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O V E RV I E W

research context

Information theory, since it was first introduced by Claude Shannon
back in 1948, has received much attention and successful applications
in a number of domains, notably in electrical engineering. This math-
ematically described communication scheme outlines the information
transmission process from a sender to a receiver over a noisy chan-
nel. Apart from the two remaining principles: Fitts’ law and Hick’s
law (or the Hick-Hyman law), which came out when experimental
psychologists were still enthusiastic about applying information the-
ory to various areas of psychology, the relation of information theory
to human-computer interaction (HCI) has not been clear. Even the
two above-mentioned “laws” remain controversial in both psychol-
ogy and HCI.

As users, we implicitly and explicitly send information to the com-
puter to accomplish tasks and to express our intentions. Interestingly,
this communication standpoint is supported by the ACM SIGCHI
Curriculum for human-computer interaction [1], which points out
that “Because human-computer interaction studies a human and a
machine in communication, it draws from supporting knowledge on
both the machine and the human side”. In recent years, we have
also started seeing information theory inspire or contribute to HCI
research.

This thesis strives to bridge the gap between information theory
and human-computer interaction. I argue that information theory can
be used as a unified tool for understanding the human-computer com-
munication process as well as for designing interactions with more ef-
ficient communication rates. Towards this goal, I propose a Bayesian
Information Gain (BIG) framework to quantify the information sent
by the user to the computer and I present two interaction techniques
that use BIG to improve communication efficiency. I then illustrate
the advantages of using information-theoretic measures to evaluate
input performance and to characterize the rich aspects of an interac-
tion task. These two contributions are not possible without a histor-
ical walkthrough of how information theory influenced psychology
and HCI. I conclude with a plea for using information theory as a
unified tool to understand and design human-computer communica-
tion & interaction.
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0.0 outlining contributions

outlining contributions

This thesis is organized in 3 parts:

Part i provides a detailed historical perspective on how information
theory influenced psychology and HCI. It starts with basic concepts
of information theory that are used throughout the thesis and high-
light how they are different from our ordinary understanding, partic-
ularly of the notion of “information”. Then it goes through the history
of how experimental psychologists were first excited by the ability to
quantitatively measure “information”, and then abandoned informa-
tion theory completely under the criticism of the information the-
ory community. Today, two principles born during this 1950’s period
are still used in HCI: Fitts’ law and Hick’s law. While Fitts’ law has
welcome a large number of applications, Hick’s law remains rather
controversial. This part continues with an in-depth discussion and
analysis of how relevant Hick’s law is for HCI. I argue that only by
understanding the essence of information-theoretic concepts and by
examining the ups and downs from a historical perspective, we can
grasp the theory, clarify the misunderstandings and take advantage
of it in the domain of HCI.

Part ii presents the Bayesian Information Gain (BIG) framework
that is built on the scheme of human-computer communication: users
send information to computers to express their intentions and inter-
ests. BIG is based on Bayesian Experimental Design using the crite-
rion of mutual information from information theory and quantifies
the information in the user input to reduce the computer’s uncer-
tainty in bits. By actively probing users for information at each inter-
action step, the computer can play a more active role and improve the
interaction & communication efficiency.

The part first introduces the framework and demonstrates it with a
1D scenario where the computer tries to gain maximum information
from the user. Then it goes in depth with two use cases in multiscale
navigation and in hierarchical file retrieval respectively. We report
two controlled experiments: a controlled experiment with 16 partic-
ipants in multicale navigation comparing the BIG technique BIGnav
with conventional pan and zoom; and a controlled experiment with
18 participants in hierarchical file retrieval comparing the BIG inter-
face BIGFile with two other interfaces. Both experiments favor the
BIG-inspired interaction technique and interface. Lastly we outline
the possibilities for future work.

2



0.0 outlining contributions

Part iii builds on and extends the concept that users send informa-
tion to the computer through the input device or the interface, which
constitute the communication channel. The information-theoretic mea-
sures quantify how much information can be transmitted (entropy),
how much information is successfully transmitted (mutual informa-
tion) and what is the information transmission rate (throughput).
Compared to the conventional objective assessment of input tech-
niques and interfaces, they offer a richer and more coherent descrip-
tion of an interaction task.

The part starts by going through some similar ideas in the HCI
literature and introduces the information-theoretic measures. It then
demonstrates how to use these measures in the context of command
selection and text entry, comparing the information-theoretic notion
of throughput with two existing definitions of throughput and out-
lines the coherence as well as consistency of the information-theoretic
measures. Finally, I emphasize the benefits of using this general frame-
work and discuss its potential use in other contexts as well as its lim-
itations.

In summary, the main contributions of this thesis are:

• A historical walkthrough of information theory applications in
psychology and in HCI with an extensive discussion of how
relevant Hick’s law is for HCI (Part i);

• A Bayesian Information Gain (BIG) framework to quantify in-
formation sent by the user to the computer (Part ii);

• An information-theoretic notion of throughput for characteriz-
ing information transmission efficiency (Part iii).

Overall, the aim of this thesis is to formally examine the human-
computer communication process using the tools of information the-
ory. The notations X and Y used in the chapters do not always corre-
spond to the same meaning (Fig. 1), but in both cases, I only consider
information transmitted from the user to the computer. I do not con-
sider information transmitted from the computer to the user. I illus-
trate two use cases in Part ii and two use cases in Part iii and discuss
future perspectives in the conclusion.

The content of this thesis is based on work already published or
under review, and more specific details will be given at the beginning
of each chapter. I do not provide a separate chapter for the related
work, but prefer to refer to it as research context that motivates the
work at the beginning of each treated subject.
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Part I

I N F O R M AT I O N T H E O RY I N P S Y C H O L O G Y
A N D I N H C I

The goal of this part is to provide a historical perspective
on how information theory influenced psychology and
HCI. It starts with basic concepts of information theory
that are used throughout this thesis. Then it outlines a
number of information theory applications in psychology
and in HCI and provides an in-depth discussion and anal-
ysis of how relevant Hick’s law is for HCI.

I argue that by understanding the basic concepts of infor-
mation theory and walking through history, we as a com-
munity can better understand why information theory has
not been successfully applied in experimental psychology,
clarify the misunderstanding that we hold so far and fur-
ther take advantage of the theory in the domain of HCI.







1.2 mutual information and equivocation

Information in the sense of information theory is defined against
our common sense. We ordinarily think of information as a collection
of facts, a file of meaningful data. The key to Shannon’s theory is
precisely that he deliberately avoided the question of meaning. Here
information measures randomness or uncertainty of the outcome of a
random variable and is captured by an entropy function, defined as
follows (entropy of a discrete random variable X):

H(X) = −
∑

x

p(x) log2 p(x). (1)

where X is drawn according to the probability distribution p(x) =

P(X = x) and entropy H(X) is measured in bit. The higher the entropy,
the more uncertain the outcome, the harder the prediction. Entropy
measures “information” in the sense that the outcome of a random
variable will increase the receiver’s knowledge (or decreases the re-
ceiver’s uncertainty).

A simple example is the weather on the next day. If the chance of
rain is 0% and the chance of sun is 100%, the entropy is 0 as it is a sure
event. However, if the chance of rain and chance of sun are 50% each,
the entropy reaches its maximum, 1 bit, as the uncertainty about the
weather is maximal. In other words, a message brings maximum “in-
formation” to those who receive it. Equiprobable messages generate
maximum entropy.

Entropy is bounded by sure event and maximum random event
0 6 H(X) 6 log2N:

• Entropy is zero if the event is sure or it is impossible:

H(X) = 0 if p(x) = 0 or 1.

• Entropy of a set of N equiprobable messages:

H(X) = log2N if p(x) = 1
N .

1.2 mutual information and equivocation

Since information is transmitted over a noisy channel, some infor-
mation might get lost. The actually transmitted information, which
is captured by mutual information, characterizes the amount of in-
formation that is effectively transmitted through the channel. Mutual
information of two discrete random variables X and Y is defined as
follows:

I(X; Y) =
∑

y

∑

x

p(x,y) log
p(x,y)
p(x)p(y)

= H(X) −H(X|Y). (2)

where p(x,y) is the joint probability function of X and Y, and p(x)

and p(y) are the marginal probability distribution functions of X and
Y respectively.
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1.3 channel capacity and throughput

Mutual information is also bounded by two quantities 0 6 I(X; Y) 6
H(X):

• If no messages get transmitted from the source to the receiver,
mutual information is 0;

• If all messages get transmitted from the source to the receiver,
mutual information is entropy H(X).

Continuing with the weather example: if a person needs to tell a
friend about the weather she experienced last week, she says“rainy
on Monday, sunny on Tuesday, rainy on Wednesday, sunny on Thurs-
day, rainy on Friday and sunny on Saturday”. The information she is
transmitting is H(X) = 1 bit, since P(rain) = 50% and P(sun) = 50%.
If her friend perfectly receives all the information, the mutual infor-
mation is I(X; Y) = H(X) = 1 bit. But if her friend does not receive
anything, the mutual information is 0. If her friend is distracted and
hears “rainy on Monday, sunny on Tuesday, rainy on Wednesday,
sunny on Thursday, rainy on Friday and rainy on Saturday”, most
of the information is transmitted but one day’s weather condition is
lost. Here the mutual information is between 0 and 1 bit.

The information lost in transmission is captured by equivocation
H(X|Y) (Equation 2). It describes the receiver’s uncertainty about the
source after the transmission given the channel output Y. In an ideal
channel without noise, equivocation H(X|Y) would be zero and mu-
tual information I(X; Y) = H(X): information is perfectly transmitted
from the source to the destination.

Equivocation is related to how errors are made. Particularly, Fano’s
inequality [34, Theorem 2.4.1] relates the average information lost in
a noisy channel to the probability of the categorization error:

H(X|Y) 6 H(E) + Pe ×H(Z|E = 1). (3)

where random variable E represents errors, Pe represents error rate
and random variable Z represents the noise in the channel that per-
turbs the effective transmission due to errors. We will provide a more
detailed discussion in Chapter 15 when this notion is needed.

1.3 channel capacity and throughput

The “information” channel has a certain capacity, computed as the
maximum amount of mutual information I(X; Y) conveyed by the
channel. It is defined as (a discrete memoryless channel):

C = max
p(x)

I(X; Y). (4)

where the maximum is taken over all possible input distributions
p(x).
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1.3 channel capacity and throughput

The well-known Shannon’s theorem [188, Theorem 17], which in-
spired Fitts’ law [63], applied the channel capacity concept to an ad-
ditive white Gaussian noise (AWGN) channel with B Hz bandwidth
and signal-to-noise ratio S/N, measured in bits per second:

C = B log2

(

1+
S

N

)

(5)

Furthermore, the theorem states that given a noisy channel with
channel capacity C and information transmitted at a rate R, then if
R < C, there exists a code that allows the probability of error at
the receiver to be made arbitrarily small [34, Theorem 8.7.1]. This
transmission rate R is widely used in wireless network communica-
tion, packet-based schemes, etc. to measure an effective speed of data
transmission, which is also known as throughput (TP). One common
computation of throughput is dividing successfully transmitted in-
formation (mutual information) by the time it takes to transmit such
information. For instance, if a friend is telling another friend perfectly
about the weather condition in 10 seconds (T ), then the throughput
in this case is:

TP =
I(X; Y)

T
= 1/10 = 0.1 bits/s. (6)

The notions of entropy and mutual information are used through-
out the thesis. Equivocation and throughput will be discussed and
compared in Part iii.
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2
I N F O R M AT I O N T H E O RY I N P S Y C H O L O G Y

Although information theory is still alive and well in a number of
fields, it went through a rather interesting development in psychol-
ogy: experimental psychologists were first swept by a wave of excite-
ment for information theory during the 1950s and 1960s, then experi-
enced a period of critical analysis and finally decided on the incom-
patibility between information theory and psychology. In the article
Whatever Happened to Information Theory in Psychology?, Luce [136] ex-
plains that “... after an initial fad in psychology during the 1950s and
1960s it [information theory] no longer is much of a factor, beyond
the word bit, in psychological theory.” While it is still well applied
in biology, engineering, computer science, physics, and statistics, it is
true that psychologists today are no longer supporters of information
theory.

In this chapter, I examine the dramatic changes of information the-
ory in psychology.

2.1 enthusiasm at the early stage

Even though Shannon himself strongly preferred the term commu-

nication theory to information theory, psychologists in the 1950s and
1960s seemed to be thrilled by the ability to quantitatively measure
information and to investigate human information capacity in vari-
ous psychological contexts. Note that the applications of information
theory during this period exclusively explored these two concepts but
left most of the engineering parts (e. g. channel coding) of the trans-
mission process aside.

2.1.1 Measuring Information

The Entropy of Language An important example of an information
source is English text [188, 189]. If we assume that the alphabet of En-
glish consists of 26 letters and the space symbol, and ignore punctua-
tion and the difference between upper and lower case letters, we can
construct models of English using empirical distributions collected
from samples of text 1. Using such a method, Shannon [188] estimated
that the entropy of English is 4.14 bits per letter.

1 The frequency of letters in English is far from uniform. The most common letter E
has a frequency of about 13% while the least common letters, Q and Z, occur with a
frequency of about 0.1%.
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2.1 enthusiasm at the early stage

We can also build more complex models by incorporating condi-
tional probability as we know that the frequency of pairs of letters is
also far from uniform. For example, the letter Q is always followed
by a U. The most frequent pair is TH, which occurs with a frequency
of about 3.7%. We can use the frequency of the pairs to estimate the
probability that a letter follows any other letter. For example, to build
a fourth order Markov approximation, we must estimate the values
of p(xi|xi−1, xi−2, xi−3, xi−4). Such a model gives an estimation of 2.8
bits per letter.

Similarly, Shannon estimated the word-entropy of printed English
as 11.82 bits per word. Later on, Grignetti [85] estimated the word
entropy in printed English as 9.83 bits using a different word sam-
ple. Miller et al. [154, 155] also studied the word context, particularly
the extent to which the prior occurrence of certain verbal elements
(word choice) influences the talker’s present choice. For instance, if
the talker has said “children like to,” his choice for the next word in
this pattern is considerably limited – elephant, punished, loud, Bill,
and many other words are highly unlikely continuations.

These statistics of English are useful in decoding encrypted English
text and in word prediction. A commonly used model is the trigram
(second-order Markov) word model, which estimates the probability
of the next word given the previous two words, as seen in intelligent
text input and speech recognition systems these days. We can also
apply the techniques above to estimate the entropy rate of other in-
formation sources such as images and other multimedia content.

The Information in Stimuli The relationship between the number
of alternate stimuli and choice-reaction times was first reported by
Helmholtz [95] in 1850, Donders in 1868 [42] and then by Merkel
in 1883 [151]. Using 1 to 10 alternatives, Merkel discovered that it
takes longer to respond to a stimulus when it belongs to a large set
as opposed to a smaller set of stimuli. This was later on taken by
psychologists, notably Hick [98] and Hyman [104], as an analogy to
information theory: the display is the transmitter of information; each
alternate stimulus the message; the sensory-perceptual system the
channel; the participant the receiver, and the appropriate action the
destination [119] (Fig. 4).

Hick was clearly motivated by finding a formula to capture the
“reaction-time era” as other psychologists discussed the increase in
reaction time with the number of alternatives and attributed it to
such causes as the division of attention or a reduction in the effective
intensity of the stimulus, but not with quantitative theory. The only
reference to a mathematical relation between reaction time and num-
ber of alternatives was by Blank [20], where a logarithmic relation
was mentioned without further explanation.
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2.1 enthusiasm at the early stage

Hyman used 8 lights in a matrix of 36 lights (6 rows by 6 columns)
display and used names – Bun, Boo, Bee, Bore, By, Bix, Bev, and Bate
– to designate them. At the beginning of each trial, the experimenter
gave a warning signal and 2 seconds later turned on one of the 8

lights and started a timer. Participants responded by calling out the
designated name of the light. A throat microphone attached to the
participant activated an electronic voice key to stop the timer. Four
subjects participated in the experiments and they all attended more
than 40 experimental sessions over a 3-month period with approxi-
mately 15,000 reaction times recorded for each subject. All errorless
performance.

The first experiment replicated Merkel’s and Hick’s experiment us-
ing 8 conditions with different numbers of equally probable alterna-
tives. The second experiment had 8 conditions which involved differ-
ent numbers of alternatives and different probabilities of the occur-
rence of these alternatives, therefore varying the average information
content by altering the probability of occurrence of each choice. The
last experiment also had 8 conditions and introduced sequential de-
pendencies between successive choices of alternatives. In each condi-
tion, each of the alternatives had equal likelihood of occurring but its
probability was conditional. For example, in condition 1, where two
alternatives were used, the conditional probability of b given that a
has occurred was p(b|a) = 0.8. These conditions yielded entropies
ranging from 0.72 to 2.81 bits.

With the three experiments, Hyman [104, p.196] concluded:

“The reaction time to the amount of information in the (visual) stimulus

produced a linear regression for each of the three ways

in which information was varied.”

His formula is written as:

RT = a+ b×HT . (8)

where RT is reaction time, a and b are empirically determined con-
stants, and HT is the transmitted information captured by log2 n

for equiprobable stimuli or −
∑n

i=1 pi log2 pi for non-uniformly dis-
tributed stimuli with probability pi.

2.1.2 Investigating Information Capacity

Information Capacity of Working Memory The Magical Number Seven,

Plus or Minus Two: Some Limits on Our Capacity for Processing Informa-

tion by Miller [153] is one of the most highly cited papers in psy-
chology. Miller demonstrated that the number of objects an average
human can hold in working memory is 7± 2.
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2.2 from criticism to abandonment

Index of Difficulty (ID) states that the minimum amount of infor-
mation required to produce a movement having a particular average
amplitude plus or minus a specified tolerance (variable error) is pro-
portional to the logarithm of the ratio of the tolerance to the possible
amplitude range:

ID = log2

(

2A

W

)

. (9)

Index of Performance (IP) shows the capacity of the human motor
system. It is measured in bits per unit time and is homologous to the
rate of gain of information in Hick’s paradigm [98] and analogous to
Shannon’s channel capacity:

IP =
ID

MT
. (10)

where MT is the empirically determined movement time.
Fitts reported that IP ranged from 10.3 to 11.5 bits/s in Experiment

1; 7.5 to 10.4 bits/s in Experiment 2; and 8.9 to 12.6 bits/s in Exper-
iment 3. He concluded that the rate of performance (IP) in a given
type of task is approximately constant over a considerable range of
movement amplitudes and tolerance limits, but falls off outside this
optimum range. The level of optimum performance was found to
vary slightly among the three tasks in the range between about 10 to
12 bits/s.

It was not until 1964, by examining the effects of response ampli-
tude and terminal accuracy on 2-choice reaction time (RT ) and on
movement time (MT ) that Fitts found the correlation between ID and
MT was found to be above 0.99 over the ID range from 2.6 to 7.6
bits per response [65]. Therefore, the Fitts’ law that we know today is
written as:

MT = a+ b× ID. (11)

where a and b are empirically determined constants.
All above-mentioned studies except Fitts (1964) were done during

the 1950s and most of these applications were summarized in a book
by Attneave [7].

2.2 from criticism to abandonment

While psychologists were still enthusiastic about applying informa-
tion theory, Shannon and the information theory community started
to challenge the use of information theory outside the sphere of com-
munication engineering.
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2.2 from criticism to abandonment

Shannon himself was among the skeptics as he is quoted as saying
“Information theory has perhaps ballooned to an importance beyond
its actual accomplishments” (cited in [110]). He insisted that “the use
of a few exciting words like information, entropy, redundancy, do not
solve all our problems” [190]. Elias [47], an important figure of the
information theory community, urged authors to stop writing papers
using information theory outside of its intended scope.

Reflecting on its applications in psychology, McGill [149] also stated
that “The somewhat fortuitous marriage of the information measures
and information theory may, in the long run, prove to have confused
psychologists as much as it has stimulated them.” He mentioned that
perhaps the most important reason is that Shannon’s information
measure is not the sort of information with which we are familiar,
and psychologists have made very little use of the performance cri-
teria and of the basic theorems of information theory apart from the
notion of channel capacity.

Garner [77] not only summarized the ideas and experiments of
information-theoretic applications in psychology, but also expanded
the interest to the relation between mean response times and the un-
certainty of the stimuli to which participants were responding. In
early experiments, mean response time appeared to grow linearly
with uncertainty, but glitches soon became evident. Laming [119] in
the late 1960s also commented on the choice-response paradigm that
“This idea does not work... there are further unpublished results that
show it to be hopeless”. Substantial sequential effects exist between
a stimulus and at least the immediately preceding stimulus-response
pair, but with the magnitude of the correlation dropping from close
to one for small signal separation in either decibels or frequency
to about zero for large separations [81]. Similarly, Bertelson [18] ex-
pressed that the paradigm could be explained as a sequential effect
independently of stimulus entropy.

Gradually, as the importance of this reality began to set in at the
end of the 1960s, one saw fewer – although still a few – attempts to
understand global psychological phenomena in simple information
theory terms. When Shannon died on February 24, 2001, at age 84,
several psychologists paid homage to this creator of information the-
ory by looking back at history.

The same year, Laming [121] provided a detailed critique. He men-
tioned that Shannon’s way of defining capacity requires that not indi-
vidual signals be transmitted but rather very long strings of them so
as to get rid of redundancies. This is rarely possible within psycho-
logical experiments, e. g. a choice-reaction experiment involves the
transmission of single stimuli, one at a time, a condition that affords
no opportunity for the sophisticated coding on which Shannon’s the-
orem depends.

22



2.2 from criticism to abandonment

Furthermore, under the influence of Shannon’s theory, psycholo-
gists are inclined to suppose that information is absolute. The truth
is that it is not. Data is absolute, but information is always relative
to the two hypotheses between which it distinguishes. Criticizing the
human observer as a physical system, Laming [120] also put forward
the difference between information available to the observer and the
partitioning of values of that information between the available re-
sponses (the choice of criteria). As he said “Looking solely at infor-
mation throughput, and disregarding the criteria, it can be shown
that the information available to the observer is derived from a sen-
sory process that is differentially coupled to the physical stimulus, be-
cause the component of information derived from the stimulus mean
is entirely absent from the information implicit in the observer’s per-
formance”.

Luce [136] in 2003 echoed this statement by further elaborating on
the incompatibility between information theory and psychology. He
argued that the elements of choice in information theory are abso-
lutely neutral and lack any internal structure; the probabilities are
on a pure, unstructured set whose elements are functionally inter-
changeable. That is fine for a communication engineer who is totally
unconcerned with the signals communicated over a transmission link;
interchanging the encoding does not matter at all. By and large, how-
ever, the stimuli in psychological experiments are to some degree
structured, and so, in a fundamental way, they are not in any sense
interchangeable. If one is doing an absolute judgment experiment of
pure tones that vary in intensity or frequency, the stimuli have a pow-
erful and relevant metric structure, namely, differences or ratios of
intensity and frequency measures between pairs of stimuli. Similarly,
if one does a memory test, one has to go to very great pains to avoid
associations among the stimuli. Stimulus similarity, although still ill
understood and under active investigation, is a powerful structural
aspect of psychology.

In summary, the word information has been almost seamlessly trans-
formed into the concept of “information-processing models” in which
information theory per se plays no role. The idea of the mind being an
information-processing network with capacity limitations has stayed
with us, but in far more complex ways than pure information theory.
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3.1 which minimum amount of information?

3.1 which minimum amount of information?

Fig. 9 shows Card, Moran and Newell’s description of Fitts law. Note
that the version shown in their book was not Fitts’ original formula.
This formula was in fact proposed by Welford [213], who argued that
the formulation log2

(

D
W + 0.5

)

makes movement time dependent on
a kind of Weber fraction 2 in that the subject is called upon to distin-
guish between the distances to the far and the near edges of the target.

Fitts originally denoted ID = log2
2D
W to express the minimum

amount of information. This expression is still being used in psychol-
ogy today [156, 170]. The HCI community, on the other hand, has
unanimously adopted Mackenzie’s formulation to describe task diffi-
culty, written as:

ID = log2(1+
D

W
).

This improvement, according to Mackenzie [138], was more con-
sistent with Shannon’s Theorem 17 and the available empirical data.
Gori et al. [80] recently used the notion of “geometrically uniformly
distributed targets” and proved that this version of ID is indeed
equivalent to Shannon’s Capacity.

Mackenzie [138] also proposed to measure movement endpoints
from the center of the target and, assuming that the distributions of
these measures is normal, to compute an effective index of difficulty
IDe, written as:

IDe = log2

(

1+
D̄

We

)

. (12)

where D̄ corresponds to the average covered distance and We is the
effective width. The computation of We is detailed in [197]. Let σ

denote the standard deviation of the endpoint distribution, and ε the
error rate, e. g. the proportion of target misses:

If σ is available: We = 4.133σ

If not: We =

{
W × 2.066

z(1−ε/2)
if ε > 0.0049%

0.5089×W otherwise.
(13)

2 The Difference Threshold (or “Just Noticeable Difference”) is the minimum amount
by which stimulus intensity must be changed in order to produce a noticeable varia-
tion in sensory experience. It was first proposed by Ernst Weber, who observed that
the size of the difference threshold appeared to be lawfully related to initial stim-
ulus magnitude [52]. This relationship, known as Weber’s law: ∆I

I = k where ∆I

represents the difference threshold, I represents the initial stimulus intensity and k

signifies that the proportion on the left side of the equation remains constant despite
variations in the I term.
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3.2 the average of minimum or the average of average?

3.2 the average of minimum or the average of average?

Fitts needed the participant (S) to work at his maximum rate, so
that the resulting movement times MT reflected S’s full commitment
to the pointing task. Therefore, the average time per response in Fitts’
term corresponds to “average minimum”, which seemed to have con-
fused many. Authors in Fitts’ law research use different wordings,
which suggest other interpretations of MT : Soukoreff and Macken-
zie [197] considered “movement time performance for rapid aimed
movements”, Hoffman [99] “movement time”, and Drewes [44] “mean
time”. Consequently, Fitts’ law has always been considered as a law
of average performance.

Yet historically speaking, Fitts’ information-theoretic rationale for
aiming movements considers the transmission of information about
the target through a human motor channel. Fitts’ law can be derived
by computing the capacity of this channel, which is a theoretical up-
per bound – the maximum amount of information that can be trans-
mitted reliably – and which is accordingly calculated as an extreme
through the Channel Coding Theorem – the maximum of mutual in-
formation over all input distributions. Hence, only movements that
maximize transmitted information should be relevant for the deriva-
tion of Fitts’ law. But can one always reach his or her maximum per-
formance? Participants can be instructed to perform as fast as they
could in a controlled experiment. In the real world, however, one
rarely tries to point as fast and as accurately as possible. Even in a
controlled experiment, participants’ attention fluctuates.

Building on Guiard and colleagues [88, 89], Gori et al. [80] recently
argued that Fitts’ law should be considered as a law of performance
limit. They introduce this concept by reanalyzing the data from a
pointing study run “in the wild” [31]. For several months Chapuis
et al. [31] unobtrusively logged cursor motion from several partici-
pants using their own computer. The authors were able to identify
offline the start and end of pointing movements as well as the target
information, for several hundreds of thousands of click-terminated
movements. With this information, one can then represent the move-
ments in a MT versus ID graph, as normally done in a controlled Fitts’
law study. To compute task difficulty in the 2D space of computer
screens, they followed the suggestion of Mackenzie and Buxton [140]

and chose ID = log2

(

1+ D
min(H,W)

)

where H and W are the height
and width of the target, respectively. Whenever an item was clicked,
it was considered the target, meaning the rate of target misses was
zero percent.
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3.3 does throughput equal channel capacity?

It seems that Mackenzie, Zhai and Guiard all agreed that this speed-
accuracy tradeoff paradigm, namely throughput, is described and
supported by Fitts’ law.

• Mackenzie [141]: “We describe an experiment to test the hypoth-
esis that Fitts’ throughput is independent of the speed-accuracy
tradeoff”;

• Zhai [222]: “Throughput (TP), also known as index of perfor-
mance or bandwidth in Fitts’ law tasks, has been a fundamental
metric in quantifying input system performance”;

• Guiard [89]: “The trade-off is described by the Fitts’ law”.

However, from previous analysis we know that what Fitts [63, 65]
called the index of performance represents the maximum rate and
channel capacity (as demonstrated by Gori et al. [80]), which, in en-
gineering terms, is the maximum rate at which data could be poten-
tially transmitted. Yet throughput captures the actually transmitted
information rate, which is bounded by the channel capacity 3. Even
though Fitts’ law has firm empirical validation, we invite the HCI
community to revisit these three questions: What is the minimum
amount of information? Should we take the average of the minimum
or the average of the average? What are we measuring – throughput
or capacity?

3 Recall the notions of channel capacity C and information transmitted at a rate R in
Chapter 1 Section 1.3.
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4.1 hci applications of hick’s law

It has been claimed to apply to a large number of contexts,
including menu design, device settings and road signs. Essen-
tially, when faced with a set of choices, this “Hick-based” design
principle guides interface design with the concept less is more (or
rather, fewer is better).

• In practice, it has not seen many successful applications. Only a
few HCI publications incorporate Hick’s law, e. g. Soukoreff &
Mackenzie [216]. In 2005, Seow [187] compared Hick’s law and
Fitts’ law, the two information-theoretic principles, and exam-
ined the possible reasons for the lack of uptake of Hick’s law to
gain momentum in the field. Nevertheless, few studies have in-
corporated Hick’s law into their work since then, e. g. Cockburn
et al. [33].

The controversial aspect of Hick’s law and the lack of comprehen-
sive understanding may explain why many HCI researchers have not
ventured to apply it to interaction tasks. Furthermore, there seems
to be different definitions of Hick’s law. While for psychologists the
law has exclusively to do with the context of the choice-reaction
paradigm, HCI researchers seem to apply it whenever choices are
presented to the user, including for visual search time, e. g. [123, 143,
218], decision time, e. g. [33] or reaction time, e. g. [181]. Does the law
really apply to these settings?

This chapter strives to clarify some misunderstanding about Hick’s
law so as to provide a clearer picture of the choice-reaction paradigm
in HCI studies. First, I re-examine HCI studies that have used Hick’s
law and revisit the historical context of the choice-reaction paradigm
in psychology. I then demonstrate that a number of logarithmic phe-
nomena observed in HCI do not justify the law; conversely, I show
that the choice-reaction paradigm does not always scale logarithmi-
cally with the number of choices. I conclude with the practical impli-
cations of this new look at Hick’s law for HCI.

4.1 hci applications of hick’s law

I first review HCI studies that have used Hick’s law. I describe their
respective contexts and tasks, and highlight the inconsistencies that
emerge.

4.1.1 Modeling Menu Performance

In a menu selection task, Landauer & Nachbar [123] asked partici-
pants to select a target item (a number in the ordered list from 1 to
4096, or a word in a list of 4096 alphabetically ordered words) by a
series of touch menu choices among sequentially subdivided ranges.
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4.1 hci applications of hick’s law

The number of alternatives at each step was 2, 4, 8, or 16. The
authors found that a logarithmic function fits the mean response time
(T ) well, as implied by Hick’s law (reaction time RT ) and Fitts’ law
(movement time MT ):

T = c1 + k1 logb
︸ ︷︷ ︸

RT

+ c2 + k2 log
d

w︸ ︷︷ ︸
MT

= c+ k logb. (16)

where c and k are empirically determined constants, b is the number
of alternatives at each step, d is the distance moved and w the width
of the target that must be hit. Since the target width w was propor-
tional to 1/b in their experiment, the Fitts’ law term log d

w reduces to
logb.

Landauer & Nachbar also observed that “in the most extreme case

(words), total selection time varied from 23.4 down to 12.5 seconds for

branching factors of 2 to 16”. They consequently concluded that broader,
shallower menu trees yield faster search time than narrower, deeper
ones (p. 76).

Cockburn et al. [33] present a predictive model for linear menu per-
formance that uses the “Hick-Hyman law” to model decision time for
expert users. They state that the decision time is dependent on the en-
tropy of each item Hi = log2(1/pi). Therefore, decision time for each
item is given by Thhi = bhh ×Hi + ahh.

The authors conducted a calibration study with 8 participants, vary-
ing menu length (2, 4, 8 and 12 items) and block (1 to 7 for two static
menu conditions and 1 to 3 for a random condition) and using a uni-
form distribution of target occurrences. Removing data from block 1

where participants were mostly doing visual search, they found that
the decision time could be modeled as Thhi = 0.08 log2 n+ 0.24 with
R2 = 0.98. They then used the values of ahh and bhh for the real
experiment, which used a Zipfian distribution 2 to account for tar-
get frequencies and found that decision time followed Hick’s law. It
is unclear how they applied the law though, namely whether Hi in
the real experiment was computed as bhh ×

∑
log2(1/pi) + ahh or

as bhh×
∑

(pi× log2(1/pi)) + ahh. Either way seems problematic as
the constants were derived from a uniformly distributed menu.

2 A Zipfian distribution is defined as: f(k; s,N) =
1/ks

∑
N

n=1
(1/ns)

where N is the num-

ber of elements, k ∈ [1,N] the rank of the considered element (with k = 1 is the
element with highest frequency) and s the value of the exponent characterizing the
distribution.
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4.1 hci applications of hick’s law

4.1.2 Modeling Text Entry

Hick’s law has also been used for modeling text entry. Investigating
the theoretical upper and lower bounds of typing speed using a stylus
on a soft keyboard, Soukoreff & Mackenzie [216] argue that Hick’s
law can be used to account for the visual scan time (RT ) of each entry,
in order to compute the lower bound of the typing rate:

RT = a+ b logn. (17)

where n is the number of choices and a and b are empirically deter-
mined constants.

Borrowing from Welford [214], they set a = 0 and b = 1/5 = 0.2 as
Welford states that for subjects in their twenties using key presses to
signal choices, the reciprocal of the slope of Hick’s law lies is between
5 and 7 bps. Therefore, with a 27-character alphabet (26 letters plus
space), n = 27, the lower bound of the visual scan time for novices is:

RT = 0.2 log2 27 = 0.951 seconds. (18)

This model was rejected by empirical investigations by Macken-
zie et al. [142, 143] who observed about twice the time expected of
0.951 seconds for visual scanning. Mackenzie et al. concluded that

“Although the Hick-Hyman metric may still be valid in general, clearly as

applied here it is confounded with the complex movement behavior we ob-

served”.

Sears et al. [185] also illustrate that it is inappropriate to use Hick’s
law for a simple visual search component task, such as the one intro-
duced by Soukoreff & Mackenzie [216]. Sears et al. argue that using
Hick’s law implies that only the number of keys is important when
determining which key to press. In contrast, they provide evidence
that both the keyboard layout, e. g. QWERTY or Dvorak, and the num-
ber of letters represented by each key, e. g.three letters per key on a
telephone keypad, must be considered.

Wobbrock & Myers [218] introduce a stroke-based word comple-
tion technique for trackball text entry and include Equation 18 in
their model. This term is added after the entry of every letter and
represents the time it takes for a user to find their word among n

choices, where n is the number of completions offered for the cur-
rent prefix (0 6 n 6 4). The authors show that this new stroke-based
word prediction and completion technique outperforms a major com-
mercial on-screen keyboard. They do not, however, demonstrate nor
analyze if and how reaction time plays a role.
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4.1 hci applications of hick’s law

4.1.3 Interface Design Guideline

In the design community, Hick’s law is interpreted as a general de-
sign guideline, which we refer to as the “Hick-based design princi-
ple” in this chapter. In the book Universal Principles of Design [130],
Lidwell et al. state that “Designers can improve the efficiency of design

by understanding the implications of Hick’s law” (p. 120). Similarly, in a
Web entry titled “Hick’s law: Making the choice easier for users” 3,
Soegaard writes that “Understanding Hick’s law means you can design so

that more users will visit and stay on your website”.

Wang [208] states that “Essentially, Hick’s law provides a general guide-

line for the design and use of hierarchical menu structures. This is consistent

with the study [123] showing that users do not consider each choice one by

one. What they normally do is to subdivide the choices into categories, and

choices in each category are further divided. The resulted structure will be a

tree, which can help users to make a quicker decision.”

Ali & Liem [3] claim that “Within the context of design, Hick’s law pro-

motes the use of design methods to simplify decision-making in situations

where designers are presented with multiple options. In practice, it has fun-

damentally proven to be effective in the design of menus, control display,

way finding layout.”

Hick’s law is also invoked in guidelines for designing applications
for mobile devices [159], visualizations [92] and spreadsheets [30]. It
seems that Hick’s law is a magical formula in the design community
and is widely used to rationalize two principles: (a) Minimize the
number of choices; and (b) Categorize choices, instead of overwhelm
users with all the choices at once.

4.1.4 Summary: Inconsistencies

From the literature above, we can see several inconsistencies in the
use of Hick’s law.

First, we notice that the formulation used in HCI studies is different
from the one introduced by Card et al. [161], especially the question
of n vs. n+ 1. Nearly all authors use logn, with the notable excep-
tion of Cockburn et al. [33], although in that case it is unclear how
the stimulus information was computed. This raises a first question:
Which formula for Hick’s Law?

3 https://www.interaction-design.org/literature/article/

hick-s-law-making-the-choice-easier-for-users
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4.2 choice-reaction time in psychology

Second, Hick’s law is used to model expert users’ decision time by
Cockburn et al. [33] and novice users’ visual search time by Soukoreff
& Mackenzie [216]. Even though Sears et al. [185] showed the incom-
patibility of the law with visual search, Wobbrock & Myers [218] use
it to model visual search time. In the design community, on the other
hand, the law seems to work universally. This raises a second ques-
tion: When does the law apply?

Third, Landauer & Nachbar [123] conclude, based on their empiri-
cal data, that broader, shallower menu trees yield faster search than
narrower, deeper ones. This contradicts the common belief in the de-
sign community that a tree structure helps users make a quicker de-
cision [208]. This raises the third question: What does the law really

say?

To answer the questions above, in the next section I review the
choice-reaction paradigm in psychology.

4.2 choice-reaction time in psychology

While HCI researchers associate reaction time with Hick’s law, there
is a long tradition in psychology in studying choice-reaction paradigm.
In this section, I review these studies in psychology and attempt to
give a more precise definition of Hick’s law.

4.2.1 Before Information Theory

Several studies have been conducted before Hick’s experiment, which
are briefly mentioned in Chapter 2 Section 2.1. The first results on re-
action time (RT) are due to Helmholtz [95], the famous physician &
physicist of the nineteenth century. He determined that signals travel
the nervous system at about 60 m/s. A comparison between typical
reaction times observed in common tasks and the calculated propa-
gation times revealed that the propagation time for signals could not
account for the reaction time, implying that humans were not simply
hard-wired to respond to certain stimuli but that time was required
“in the brain for the processes of perceiving and willing”. By the end of the
nineteenth century and early twentieth century, three other important
results were known:

• Donders [42] introduced the three-class taxonomy of reaction
time that is still in use today: simple RT (a-reaction time) is the
time it takes to react, with a predetermined response, to the on-
set of a stimulus whose identity is known in advance but whose
time of occurrence is uncertain; choice RT (b-reaction time) is
the time it takes to react to the onset of one of several possi-
ble stimuli, following a given stimulus-response mapping rule;
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4.2 choice-reaction time in psychology

and go-no-go RT (c-reaction time) is the time it takes to respond
to a stimulus that may or may not occur at a predetermined
point in time. Donders showed that simple RT was the shortest
and choice RT the longest.

• Merkel [151] performed an experiment using an identification-
choice reaction task, i. e. measured b-reaction time. It showed
that it takes longer to respond to a stimulus when it belongs to
a larger set of stimuli.

• Many psychologists have attributed the “reaction-time era” to
such causes as the division of attention or a reduction in the
effective intensity of the stimulus without providing a quanti-
tative theory. Blank [20] was the first to postulate a logarithmic
relationship between reaction time and the number of alterna-
tives but did not give further explanation.

4.2.2 The Information Analogy: Hick & Hyman

Hick’s work was strongly inspired by Merkel’s results. In fact one
could say that Hick did nothing but replicate Merkel’s experiment
and used a logarithmic scale for the x-axis rather than Merkel’s linear
scale. This misses an important point: Hick’s contribution is concep-
tual rather than experimental. Using the information-theoretical ratio-
nale that was popular at the time, Hick interpreted this logarithmic
curve by considering the human as a channel of information trans-
mission [98]. Accordingly, reaction time is seen as resulting from the
uncertainty of the stimulus, which can only be processed at some
maximum rate. The information rationale had an immediate effect: If
the “information” – in layman’s sense – mattered, then all the ways
in which information could be varied mattered. This introduced new
ways of testing the relationship between reaction time and the “infor-
mation” provided by the stimulus.

Hyman [104] varied the entropy of the stimuli in 3 ways:

• By changing the total number n of stimuli (Hick [98], Merkel
[151]). In this case, uncertainty increases with the number of
stimuli.

• By changing the probability that each stimulus is indeed ac-
tivated. The more similar the probabilities, the higher the un-
certainty. In the limit case, when all the stimuli are activated
with equal probability, uncertainty reaches its maximum value
of logn.

• By establishing “grammar rules”, i. e. introducing conditional
probabilities between successive stimuli. For example, if stimuli
B is activated, then it is certain that stimuli D will be activated
next.

Their respective experiments are detailed in Chapter 2 Section 2.1.
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4.2 choice-reaction time in psychology

4.2.3 Choice Reaction Time: Results

After Hick’s and Hyman’s respective experiments, a number of stud-
ies measuring reaction time in a choice-reaction task were reported.
Here I summarize the main results.

4.2.3.1 Reaction Time: Context

Most choice reaction time studies were conducted with the goal of
measuring b-reaction time on very simple tasks, such as responding
to bulbs lighting up by pressing keys (Hick [98]) or through speech
(Hyman [104]). It is not clear how well the logarithmic relationship
between time and information holds for more complex tasks that po-
tentially require a lot of decision making. One exception is given by
Crossman [37], who investigated card sorting and found results con-
sistent with the rest of the literature.

4.2.3.2 Measuring Information: Entropy or Mutual Information?

It has consistently been found that for a range between 1 and 3 to
4 bits, reaction time increases linearly with entropy, irrespective of
which of the three variables described above is being manipulated.
However, whenever the number of choices becomes larger, it seems
that reaction time is consistently over-estimated. In fact, Fitts & Pos-
ner [67] indicated that whatever the number of possible stimuli, re-
action time will seldom exceed 1s. Seibel [186] reported that there is
almost no difference in reaction time between responses to 31 (5 bits)
or 1023 (10 bits) stimuli. Fitts et al. [66] showed that the response to
very low probability alternatives is faster than predicted by the law.
On the other hand, Pollack [174] found that the linear relationship
extends to about 10 bits in a task where words had to be named. The
actual range where the relationship holds is thus very dependent on
the actual task.

Modulating the speed-accuracy characteristic to modify the values
of mutual information leads to gross underestimates of reaction time,
especially for very small values of mutual information I, i. e. in con-
ditions where many mistakes are made. Fitts [64] reported that be-
yond 0.6 bits of equivocation (H(X|Y), see Equation 2), the loss of
information resulting from errors increases faster than the gain from
increased response speed. We will therefore now consistently use the
term stimulus uncertainty rather than the vague term of “information”
to characterize the stimuli.

4.2.3.3 N or N+1?

Hick [98] found that if the number of possible signals is n and reac-
tion time is plotted against log(n+ 1), the observed reaction times for
different numbers of signals lie on a straight line which also passes
through the origin.
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The reason why the fit is better for (n+ 1) instead of n is that if
the subject is uncertain about when a signal will appear, then when it
does appear, he or she needs to not only decide which it is, but also
decide that a signal has occurred at all. In fact, the +1 in Hick’s for-
mulation has not always been easy to understand and several other
alternative equations have often been preferred.

Immediately after Hick, Crossman [35] conducted a card-sorting
experiment: The subjects held a well-shuffled pack, turned up the
cards one by one and sorted them into various classes. The results
were plotted against logn as the pack was always available, hence
there was no uncertainty about when a fresh signal would appear.
Hyman [104] extended Hick’s concept by manipulating uncertainty
with unequal probabilities: −

∑n
i=1 pi log2 pi. Even when he repli-

cated Hick’s experiment with equal probability, he proposed logn,
not log(n+ 1). While Suci et al. [200] fitted the data equally well with
n and n + 1, other researchers such as Griew [84] and Brown [23]
found that n+ 1 fitted data slightly better. Crossman [37] also plotted
data against log(n+ 0.45).

As Welford [214] pointed out, the proposed mathematical formu-
lations provide merely a summary statement of a complex process
of observation, identification, choice and reaction which highly de-
pends on the specific task environment. Hence one possible formula
to account for this complexity is log(n+ n0) where n0 describes the
effect of temporal uncertainty expressed in terms of n. n0 varies from
zero if the subject is able to estimate exactly when the next signal will
appear, to more than 1 if she does not have any idea of when the
stimulus will show up. When the time at which the stimulus appears
is reasonable but not completely predictable, n0 ∈ [0, 1].

4.2.3.4 Effect of Stimulus-Response Compatibility

S-R (Stimulus-Response) compatibility was introduced in psychology
to characterize the fact that it is easier to respond to a stimulus using
certain responses than others. If the stimulus is coded in terms of dig-
its appearing on a screen, it is for example much easier for someone
to call the corresponding digit out than, say, to call a letter or another
digit out. It has repeatedly been found that the better the SR com-
patibility, the shallower the slope relating reaction time to stimulus
uncertainty.

In fact, whereas Hick’s light and key experiment reports rates of
about 200 ms/bit, there are many cases where the slope can approach
0 ms/bit (Fig. 15), such as Leonard’s experiment [126] where the sub-
ject rested his fingers upon vibrators and touched the vibrator that
was activated (Fig. 15 Curve J), or Mowbray’s experiment [157] where
subjects gave a voice reaction to Arabic numerals (Fig. 15 Curve G).
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Indeed, as Fitts & Posner pointed out [67], anything that decreases
the spatial or energy correspondence between input and output, there-
fore reducing compatibility, increases the slope. This principle can
probably be beneficial to interface design.

4.2.3.5 Effect of Learning

The effect of learning is very similar to that of S-R compatibility.
When participants are heavily trained, the effects of the uncertainty of
the stimulus and even of the S-R compatibility can be reduced so that
reaction time is almost constant, regardless of the number of items.
Mowbray’s experiment [158] showed that reaction time for choices
among up to 10 possibilities could be reduced to that of a two choices
alternative when a subject practiced a key-press task for a period of
6 months. Although this is somewhat questioned by Welford [214],
it is clear that practice will significantly reduce the slope: Knight &
Dagnall [114] reported slopes dropping from 73 ms/bit to 23 ms/bit
after two months of practice.

4.2.4 Clarifying Hick’s law

It is clear at this point that Hick’s law is much more complicated
than Card et al.’s description [161] would suggest. Indeed, learning,
S-R compatibility and stimulus uncertainty all affect reaction time.
Furthermore, these effects are dependent on each other. For example,
if one wishes to modify uncertainty by changing the probabilities of
activation of each stimulus, then the subject has to go through an
extensive learning phase, as discussed by Hyman [104]. Yet, she will
inevitably improve her skill in the matter of the experiment, leading
to a reduction of the slope.

Similarly, good S-R compatibility is usually desirable, otherwise the
experiment will appear poorly designed. However, this makes the ef-
fect of Hick’s law much harder to grasp, as the influence of stimulus
uncertainty is then highly reduced.

Finally, learning does not affect all experiments in the same way.
The highest rates are usually found with experiments using words.
This is not necessarily because the S-R compatibility is particularly
good, but rather because reading and remembering words is a highly
over-learned task, which we train daily. What can we say about Hick’s
light-key association task? Is this a completely new task, or are we
somewhat familiar with it?

We therefore propose the following, a clarification of Hick’s law:
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The choice reaction time for users performing a simple task grows
linearly with the stimulus uncertainty, measured by entropy, in the
range of 1 to 4 bits. The better the S-R compatibility and the better
the training, the shallower the slope. With appropriate learning, the
effects of S-R compatibility and stimulus uncertainty can be reduced
to almost zero.

4.3 the choice-reaction paradigm and hci

In this section, I revisit the HCI applications of Section 4.1, comparing
them with the choice-reaction paradigm in psychology and outlining
the discrepancies in the use of the law. Seow [187] offered three plau-
sible reasons for the failure of Hick’s law in HCI: (1) The complexity
of computing information measures; (2) The complexity of stimuli in-
cluding font sizes, colors, etc. and (3) The unpredictability of stimuli
changes over time with practice. Therefore Hick’s law appears to be
optimal only in predicting novice performance. Here we offer two ad-
ditional explanations for why it is not trivial to use Hick’s law in HCI
studies.

4.3.1 Decomposition of Time Measures

Table 1 summarizes and demonstrates the differences between how
Hick and Hyman introduced the paradigm and how the law has been
used in HCI studies. All the studies assume a stimulus-response (S-R)
paradigm. From a measurement perspective we typically face three
time marks: Stimulus-onset time T1, Response-onset time T2, and
Response-termination time T3, allowing the calculation of three rel-
evant time durations: movement time MT = T3 - T2, task completion
time TCT = T3 - T1 and a third time, say xT = T2 - T1 (Fig. 16 (a)). xT
can stand for RT as in “reaction time” (e. g. Hick [98], Hyman [104]),
or in more complex tasks, can include, e. g. visual search [123, 216],
decision [33]. Importantly, xT and movement time MT are, by defini-
tion, non-overlapping intervals.

From the previous section we know that Hick along with other
psychologists measured the choice reaction time (b-RT) in response
to a particular stimulus: the time it takes to press the key, hence, re-
action time dominates task completion time (Fig. 16 (b)). In contrast,
all the studies in Table 1 fall into the paradigm of Fig. 16 (c) where
movement time MT contributes a relatively large portion of task com-
pletion time TCT. Despite the fact that xT involves different mental
processes in these studies (e. g. S identification, visual search, memory
search, decision to respond), the authors of these studies attributed
these phenomena to Hick’s law.
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Task Reaction Reaction VS∗ Decision VS VS VS

Stimuli Random Random Ordered Random Keyboard Keyboard Random

Participants Well-trained Well-trained All users Users
starting

from block
2

Novice
users

Novice
users

All users

Distribution Uniform Non-uniform Uniform Zipfian Uniform Uniform Uniform

Information Up to 3.32 bits Up to 2.81 bits Up to 4 bits Up to 3.58

bits
4.75 bits 4.75 bits Up to 2

bits

Measure Mutual Information Entropy Entropy Entropy Entropy Entropy Entropy

Formula
log(n+ 1) or

log(ne + 1)

logn or

−
∑n

i=1 pi log2 pi

logn logn logn logn logn

Results Logarithmic Logarithmic Logarithmic Logarithmic Logarithmic Not Loga-
rithmic

Logarithmic

Table 1: A comparison of Hick 1952, Hyman 1953 and HCI studies that used Hick’s law (VS∗: Visual Search).
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4.3 the choice-reaction paradigm and hci

Indeed, as shown in the previous section, later studies confirmed
that an extremely well-trained participant can react in almost con-
stant time despite stimulus uncertainty [158]. There are also tasks
that we are naturally experts at, such as resting fingers on vibrators
and pressing the corresponding key when it vibrates [126], or giving
a voice reaction to Arabic numerals [157].

In HCI studies, it is difficult to judge novice vs. expert users in
the stimulus-response context. We are daily computer users, and we
are all semi-experts in responding to a visual stimulus with a mouse
pointer. Unless the interaction technique uses a device that partici-
pants have never seen before or a mapping that is completely novel,
we should rethink what is their expertise in this choice-reaction
paradigm.

4.3.3 Effect Size of Hick’s Law

Then what is the effect size of choice reaction time in HCI studies?
As stated in Section 4.2, the slope in Hick’s law depends on learning
and S-R compatibility. Two questions then naturally emerge:

• How familiar are the participants in HCI experiments with the
tasks we have them perform?

• What is the S-R compatibility of the tasks we usually ask partic-
ipants to perform?

Arguably, a successful interaction should be easily learned by par-
ticipants, or, even better, exploit already over-learned tasks, and should
have a good S-R compatibility. Therefore, it can be expected that for a
successful technique, the slope of Hick’s law is already quite shallow.

To illustrate this point, we reanalyzed data from Roy et al. [181]
and Liu et al. [134] where a simple command selection task was car-
ried out. In Roy et al. [181], participants needed to select a highlighted
command by touching the screen of a tablet with a predetermined fin-
ger in the Glass condition vs. one of several fingers in the Glass+Skin

condition. In Liu et al. [134], participants were instructed to move
the mouse pointer to hit a highlighted stimulus among several com-
mands. The finger or the pointer was rested on a designated area at
the beginning of each trial. In both cases, reaction time was measured
between the start of the trial and the first move of the finger or pointer.
Fig. 17 shows the plot of reaction time as a function of stimulus un-
certainty.

We ran a repeated-measures full factorial ANOVA for 3 conditions
on these reaction times (Table 5). In conditions Glass+Skin [181] and
command selection [134], the effect of stimulus uncertainty on reac-
tion time is not significant.
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4.4 implications for hci

4.4 implications for hci

In this section, based on a mathematical analysis, I first show that
the Hick-based design principle praised in the design community is
unduly justified by Hick’s law. Then, I build on the previous discus-
sions and suggest that, in spite of the complexity of the psychological
process behind xT (Fig. 16), we can advocate a simple design strategy,
on the premise that xT is either convex or concave.

4.4.1 The Concavity of the Logarithm Contradicts the Hick-based Design

Principle

Hick’s law is usually used as an argument by the design community
to justify the need to display as few items as possible (Section 4.2).
Consider a scenario where a designer has to display N items, to see
how the Hick-based design principle holds.

car website scenario We consider as a practical example a car
website which has N = 512 cars to display. We list three display strate-
gies and evaluate Hick’s law in each case:

• Display all the cars on the same page. Hick’s law states that
reaction time RT is given by

RT = a+ b log2(512) = a+ 9× b. (19)

• Split the 512 cars into 4 pages of 128 uncategorized cars. We
apply Hick’s law to each page and sum the reaction times. If
we consider that the user will go through all the pages, total
reaction RT time is given by

RT = 4× (a+ b log2(128)) = 4a+ 28× b. (20)

Over time, there is one chance out of four that the item she is
looking for is in each page, so that the average RT is given by

RT = 1/4
(

4∑

i=1

a i+ b i log2(128)
)

= 10/4 a+ 70/4 b. (21)

• Split the 512 cars in 4 categories of 128 cars. The participant
selects one item among 4 to select a category, and then selects
one item among 128. This is the so called tree strategy, or divide
and conquer strategy. The total reaction time RT is given by

RT = a+ b log2(4) + a+ b log2(128) = 2a+ 9× b. (22)

For this example, the optimal strategy according to Hick’s law con-
sists of displaying all the cars at once on the same page.
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4.4 implications for hci

In fact the following general result holds. When there are N items to
be displayed that can be separated into k subgroups, applying Hick’s
law leads to the following:

• It is never advantageous to split elements into uncategorized
subgroups of equal sizes. Indeed, for k ∈ N; 2 6 k 6 N, we
have that:

(

N/k
)k

> N; if N > kk/(k−1). (23)

Then, taking the logarithms on both sides, we get:

k log(N/k) > logN, (24)

which generalizes4 Equation (20).

• It is not advantageous, or at best useless, to split elements into
categorized subgroups of equal size. Indeed, since N = k× N

k ,
logN = logk+ logN/k, so that

RT = a+ b log(k) + a+ b log(N/k) (25)

= a+ (a+ b logN). (26)

This generalizes Equation (22). Assuming there are m nested
categories, we must ultimately pay the price of an additional
(m− 1)a seconds on RT if we use a tree strategy.

The conclusion of this small example is that, contrary to common
sense, Hick’s law actually suggests displaying as many items as possi-
ble on the car rental site. We do not claim that the Hick-based design
principle is flawed, but rather that it cannot be justified by Hick’s
law. There are many different phenomena taking place when a user
is investigating the car rental web page, which are far more complex
than simple stimulus response and therefore Hick’s model is far too
simple.

In serial visual search, selection time increases linearly with size
[214], i. e. RT = a+ b N. If one were to choose a joint pair among a
set of size N, we would expect a quadratic increase in RT as there are
N(N− 1)/2 possible pairs. This suggests a variety of non logarithmic
models.

4 The right-hand side condition of Equation (23) implies that N must always be greater
than the number of categories. When we increase k, N should increase a little faster.
Practical cases in HCI usually verify that condition, e. g. in the example above with
k = 4, N should be greater or equal to 7.
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4.4 implications for hci

4.4.2 xT Design Principle: A Matter of Convexity

What matters for design is whether the function relating xT and N
is convex or concave. As in the previous example, we consider two
different situations: one in which items can be categorized, the other
in which they cannot. This leads to two different convexity results.
Let f be the function that relates xT to N

xT = f(N), (27)

case 1 : items cannot be categorized If the items are dis-
played in two sets of sizes x and y (x+ y = N), then xT = f(x) + f(y),
whereas if the items are displayed all at once, xT = f(x+y). Therefore,
determining whether or not we should split the items boils down to
whether f(x+ y) is greater or lower than f(x) + f(y)

f(x+ y) > f(x) + f(y), (28)

If Equation (28) holds, then f is said to be superadditive; else f is
subadditive. It can be shown [25] that if f(0) = 0:

f convex implies f superadditive; (29)

f concave implies f subadditive. (30)

The important information is thus whether f is a convex or concave
function. This leads to our first xT design principle:

If items are not categorizable and f is convex, e. g. quadratic,
then it is useful to group the items, even arbitrarily. If f is
concave, e. g. logarithmic , then it is better to display all
items at once5.

case 2 : items can be categorized For this case, we assume
for simplicity that the items are categorized in x categories with y

items each. Therefore N = xy. From the example of the previous
subsection, it is clear that the relevant question is whether f(x) + f(y)

is greater or not than f(xy). It is easily shown through the previous
result that

f(exp (.)) convex implies f(x) + f(y) 6 f(xy); (31)

f(exp (.)) concave implies f(x) + f(y) > f(xy). (32)

In Hick’s paradigm reaction time grows logarithmically, in which case
f(exp(x)) is linear; this is the limit case where f(x) + f(y) = f(xy),
i. e. the two strategies are equivalent. As all functions relating selec-
tion time to the number of items realistically grow faster than the log-
arithm (any practical HCI setup is likely more time consuming than
Hick’s task), we can state the second xT design principle as follows:

5 Note that we use the convention that a choice from a null set takes 0 seconds, which
explains the extra conditions needed in (23) as log(0) → −∞. Also note that using
the formulation of (7) conveniently solves this issue by adding 1 to N.
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4.5 conclusion

Looking forward, creating an empirical taxonomy for reaction times
analogous to the more theoretical computational complexity might
be useful for HCI researchers who strive to model human behavior.
Since sub-additivity is the main issue, an index that quantifies this
property would probably be useful. S =

f(x)+f(y)
f(x+y)

is a natural candi-
date. More empirical and theoretical work should determine whether
S is indeed useful.
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5
O T H E R I N F O R M AT I O N T H E O RY AT T E M P T S I N H C I

Apart from Fitts’ law and Hick’s law, information theory has found
few other uses in HCI. This chapter examines several attempts: statis-
tical language modeling for text entry, human information capacity
and some applications inspired by control theory [107]. My goal is to
explore how information theory has been used in these domains and
what can be done for future work.

5.1 statistical language processing for text entry

Statistical language processing models text entry as communication
over a noisy channel and calculates the bitrate of a text entry method.
It is based on Shannon’s estimation of entropy [189] and exploits the
inherent redundancies for language modeling and prediction. Intelli-
gent text entry systems that use this approach result in a lower error
rate and potentially a higher entry rate [116].

The basic idea is in line with fundamental information-theoretic
concepts. Assume a source alphabet Ω follows a probability distribu-
tion. The entropy of such alphabet is then H(Ω) (Equation 1) and the
perplexity. PP(Ω) = 2H(Ω), measures how well a probability model is
at prediction 1. The lower the perplexity, the easier the prediction. If
the random variable I is a distribution over the set of words the user
is intending to write and the random variable O is a distribution over
the set of words the user is actually writing, then the rate R (in bits
per time unit) is:

R =
I(I; O)

t
. (33)

where I(I; O) is the mutual information (Equation 2) and and t is the
average time it takes to write a word in O. If the probability of error
is zero, that is, all words in I can always be inferred from O, then
R =

H(I)
t (Equation 6).

1 The perplexity is the exponentiation of the entropy, which is a more clearcut quantity.
The lowest perplexity that has been published on the Brown Corpus (1 million words
of American English of varying topics and genres) as of 1992 is about 27.95 = 247 per
word, corresponding to a cross-entropy of log2 247 = 7.95 bits per word or 1.75 bits
per letter [24] using a trigram model. Recall that Shannon [188] estimated the word-
entropy of printed English as 11.82 bits per word and Grignetti [85] estimated 9.83

bits per word (Chapter 2 Section 2.1). It is often possible to achieve lower perplexity
on more specialized corpora, as they are more predictable.
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5.2 human information capacity

A typical use example of these measures is described as follows:

Intended sentence: I am fine if you ask.

Transcribed sentence: I an finw← e if you ask.

If we assume that a rather expert user 3 transcribed the sentence in
4 seconds, then we can compute the measures:

Words per Minute(WPM) = 21÷ 5÷ 4× 60 = 63

Not Corrected Error Rate = 1÷ 22× 100% = 4.5%
Corrected Error Rate = 1÷ 22× 100% = 4.5%

Total Error Rate = 2÷ 22× 100% = 9.0%
Keystrokes per Character (KSPC) = 23÷ 21 = 1.09

Levenshtein String Distance (LD) = 1

Keystrokes per character (KSPC) corresponds to corrected error
rate while Levenshtein string distance to not-corrected error rate. We
can see that even with such a complicated error measurement ap-
proach, the 4 types of errors are still not fully taken into account.
Indeed, measuring errors has proven to be difficult in text entry. But
one can hardly make meaningful observations about speed in the
absence of accuracy. As a result, in controlled experiment settings,
participants were often instructed to consciously limit errors within
a reasonable range, such as 4% (e. g. [53]), so that only the speed di-
mension is of concern.

It is surprising that so few researchers have taken advantage of in-
formation theory to measure performance in text entry when it has
already been used for statistical language modeling. The notion of
equivocation H(X|Y) (Equation 2 and 3) naturally provides measures
for errors and how one can recover the source messages from the re-
ceived ones. I will demonstrate in Part iii that we can use information-
theoretic measures for evaluating text entry performance.

5.2 human information capacity

The notion of human information capacity, or rather the notion of
throughput, has been mostly used in aimed movement, for instance,
selecting targets with the mouse yields throughput of 3.7-4.9 bits per
second [197]. It has also recently been applied to full-body move-
ments [164] 4.

3 An average professional typist types usually at speeds of 50 to 80 wpm.
4 Like many other researchers (e. g. Mackenzie [141], Zhai [222] and Guiard [89]),

Oulasvirta et al. [164] was in fact measuring throughput, not capacity in their study.
The notions of channel capacity C and information transmitted at a rate R are defined
in Chapter 1 Section 1.3.
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5.3 pointing without a pointer

This work inspired Fekete et al. [54] to explore motion correla-
tion as a selection technique in conventional graphical user interfaces.
Rather than using pseudo-random movement, their idea was to as-
sociate objects with oscillatory movement, drawing on user’s natu-
ral ability for harmonic motion with their hands. In their design of
the motion-pointing technique, the graphical objects of interest retain
their static presence in the interface but are augmented with a mov-
ing dot describing a small elliptical movement. These works represent
milestones in establishing the motion correlation principle [207].

In summary, these studies demonstrate the potential of using in-
formation theory and information-theoretic notions to study the user-
to-computer communication process and to design interaction with
improved communication rate.
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6
S U M M A RY

I have presented various research endeavors applying information
theory in psychology and in human-computer interaction. Some in-
volve the communication channel with human users while others do
not; some are more intuitive than others; some are more successful
than others. I particularly want to summarize and highlight the fol-
lowing four aspects that motivate the rest of the thesis:

• Chapter 2: Indeed, there are a number of difficulties in apply-
ing information theory, notably the fact that the notion of in-

formation in information-theoretic terms has absolutely no se-
mantic meaning; it is entirely described by a probability distri-
bution. Measuring information content (entropy) in printed En-
glish text or multimedia content is absolute as long as the proba-
bility distribution of words and multimedia content (e. g. video
frames) is considered objectively and as a matter of fact. On
the other hand, if we were to derive information content from
the stimuli based on human users’ reaction, as in the stimulus-
response paradigm, we need to make sure that the experimen-
tal setting corresponds to the information transmission process,
rather than the information processing phase.

• Chapter 3 and 4: We have seen that the understanding and ap-
plications of the two main laws in HCI – Fitts’ law and Hick’s
law – are problematic and I have provided an in-depth discus-
sion of Hick’s law in Chapter 4. It is necessary, therefore, to
clarify what they are, how they should be used and when they
do not apply. I believe that the HCI community at large can
benefit from theoretically justified methods.

• Chapter 5: We have also seen the potential of investigating the
information transmission process from the user to the computer
using the tools of information theory. Particularly, how to quan-
tify the information is an interesting question. In Part ii, I will
introduce a Bayesian Information Gain framework that is based
on Bayesian Experimental Design using the criterion of mutual
information from information theory. This approach quantifies
the information sent by the user to the computer to express her
intention. By having the computer demanding more informa-
tion at each time, I will show that the interaction & communica-
tion efficiency can be improved.
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summary

• Chapter 5: Since information theory has already been used in
measuring entropy of English and measuring human perfor-
mance, can we further extend it to describe interaction tasks at
large? This generic communication scheme enables us to exam-
ine the communication process between the user and the com-
puter with theoretically valid tools and provides several useful
measures that have not been taken advantage of. In Part iii, I
will introduce these information-theoretic measures for charac-
terizing interaction tasks and demonstrate that it offers a richer
picture of a given interaction scenario in comparison to the ex-
isting measurements.

We cannot foresee how information theory is going to affect and
inspire future interaction design, nor can we guess which theory will
be the next trend. Information theory was adopted and then dropped
by psychologists, yet it still has much potential for understanding and
designing the human-computer communication process. I hope this
part has fulfilled its purpose: understanding the past as well as the
present, and taking a glimpse into the future.

——————-

“The farther backward you can look,

the farther forward you are likely to see.”

- Winston S. Churchill
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Part II

A B AY E S I A N I N F O R M AT I O N G A I N ( B I G )
F R A M E W O R K F O R Q U A N T I F Y I N G

I N F O R M AT I O N

The goal of this part is to introduce Bayesian Information
Gain (BIG), an information-theoretic framework based on
Bayesian Experimental Design to quantify the information
sent by users to computers in the interaction loop. BIG
(a) allows the measurement of information in bits and (b)
improves the efficiency of interaction & communication by
maximizing or leveraging the expected information gain
from the user’s subsequent input.

I first introduce the BIG framework and then demonstrate
two use cases: BIGnav, for multiscale navigation and BIG-
File, for hierarchical file retrieval, both of which show a
new way of interacting with improved communication ef-
ficiency, suggesting other possible “BIG” opportunities.





7
B AY E S I A N I N F O R M AT I O N G A I N F R A M E W O R K

7.1 motivation

In this information-abundant world, a large amount of information
is exchanged between users and computers: we obtain information
from the computer to increase our knowledge and to complete tasks,
and we send information to the computer to express our ideas and in-
tentions. Several studies have investigated the information that users
obtain from computers. For instance, Pirolli and Card [169] have intro-
duced the concept of information foraging, describing the phenomenon
that people adapt their strategies to increase information gain in an
online information seeking task.

However, there is little understanding of the information sent by
the user to the computer. We are familiar with the notion that we give
inputs (or commands) to the computer, not information. Yet these in-
puts reflect the user’s intentions, letting the computer know what is
the user’s goal, therefore, they represent information. This leads to a
number of questions: how much information is there in these input
commands? Can we quantify this information? If we can, what can
we do with it and what does it imply?

In this part, we introduce a Bayesian Information Gain framework
(BIG), based on Bayesian Experimental Design [132]. It uses the crite-
rion of information gain, also known as mutual information in infor-
mation theory [188], to quantify the information sent by the user to
the computer in the interaction loop. Information is defined in terms
of the computer’s knowledge about what the user wants. At the be-
ginning of the interaction, the user has certain goals, e. g. looking for
a particular item on a website or typing a particular word on the
keyboard. The computer has some uncertainty about the user’s goal.
This uncertainty is represented by the computer’s prior knowledge,
expressed in a probabilistic model. When taking input from the user,
the computer updates its knowledge about what the user is looking
for. Therefore, the information carried by the user input is the knowl-
edge gained by the computer to know the user’s goal.

One can simply use BIG to measure the information sent by the
user to the computer. Furthermore, by maximizing or leveraging the
expected information gain from the user’s subsequent input through
manipulation of the feedback, the computer can increase the informa-
tion gain from the user, improving interaction efficiency.
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7.2 big framework

1. Θ represents the possible intended targets in the user’s mind.

2. p(Θ = θ) for all values of θ is the prior probability distribu-
tion of target, which expresses the computer’s prior knowledge
about the random variable Θ. p(Θ = θ) can be uniform if no
data about the user’s interests is available, or can be based on
external data sources or interaction history.

3. X represents any possible feedback provided by the computer
and X = x is a particular feedback sent to the user.

4. Y represents any particular command y issued by the user.

5. p(Y = y|Θ = θ,X = x) is the probability of the user giving an
input command Y = y when she wants Θ = θ and sees X = x.
This can be modeled from the interaction history, or by user
calibration, and can be user-independent.

6. p(Θ|X = x, Y = y) is the computer’s updated knowledge about
the user’s goal after showing the user X = x and receiving the
input Y = y from the user. It is calculated through Bayes’ theo-
rem:

p(Θ = θ | X = x, Y = y) =
p(Y = y | Θ = θ,X = x)p(Θ = θ)

p(Y = y|X = x)
.

(34)

where p(Y = y | X = x) =
∑

θ ′

p(Y = y | Θ = θ ′,X = x)p(Θ = θ ′).

7. I(Θ; Y|X = x) is the mutual information between what the user
wants and what she provides as input when seeing X = x. It is
the difference between two uncertainties1:

I(Θ; Y|X = x) = H(Θ) −H(Θ|X = x, Y). (35)

This can also be interpreted as the expected information gain,
which is always positive. To calculate this, we use Bayes’ theo-
rem for entropy to convert Equation 35 to:

I(Θ; Y|X = x) = H(Y|X = x) −H(Y|Θ,X = x). (36)

where the first term is given by:
∑

y

p(Y = y|X = x) log2 p(Y = y|X = x).

and the second one by:
∑

y,θ

p(Θ = θ)p(Y = y|Θ = θ,X = x) log2 p(Y = y|Θ = θ,X = x).

1 For a given X, knowing Y decreases uncertainty (increases knowledge) about Θ, by
a quantity which is precisely the mutual information I(Θ; Y|X = x).
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7.2 big framework

8. IG(Θ|X = x, Y = y) is the difference between the computer’s pre-
vious knowledge H(Θ) and current knowledge H(Θ|X = x, Y =

y) about the user’s goal, representing the actual information car-
ried by the user input:

IG(Θ|X = x, Y = y) = H(Θ) −H(Θ|X = x, Y = y). (37)

Information gain might be negative if the user, e. g. makes an
error, but is positive on average2.

Table 3 summarizes the notations in Bayesian Experimental Design
and Bayesian Information Gain respectively.

BED BIG

θ
parameter to be

determined
intended target in the

user’s mind

y observation user input

x experimental design system feedback

p(y|θ, x)
model for making

observation y, given
θ and x

model for user
providing input y,

given θ and x

p(θ) prior
system’s prior

knowledge about the
user’s goal

p(θ|y, x) posterior updated knowledge

I(Θ; Y|X = x) utility of the design x utility of the feedback x

IG(Θ|X = x, Y = y)

utility of the
experiment outcome
after observation y

with design x

utility of the outcome
after user input y with

system feedback x

Table 3: Notations in Bayesian Experimental Design (BED) and in Bayesian
Information Gain (BIG) respectively.

One can always calculate the actual information gain, or the infor-
mation carried by the user input informing the computer what she
wants with Equation 37 – “Running a normal experiment”. By ma-
nipulating the feedback with Equation 35, e. g. finding the X = x that
maximizes or leverages the expected information gain, the system
“runs a better experiment” on the user in order to gain more infor-
mation about the user’s goal, i. e. the intended target. The computer
then plays a more active role and therefore increases interaction &
communication efficiency.

2 IG is an “instantaneous” quantity that is positive on average: I = Ey(IG) > 0.
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7.2 big framework

In the next 4 chapters, I illustrate two applications of this BIG ap-
proach: maximizing the expected information gain in multiscale nav-
igation (Chapter 9) and leveraging the expected information gain in
hierarchical file retrieval (Chapter 11). In both cases, BIG is used in
a different manner regarding the types of intended target Θ, system
feedback X and user input Y and receives different subjective expe-
rience by the participants in the respective controlled experiments.
Chapter 8 and Chapter 10 provide the context of multiscale naviga-
tion and hierarchical file retrieval respectively. In Chapter 12, I dis-
cuss how BIG is related to other conceptual frameworks, and outline
opportunities for future work.
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9.1 bignav

BIGnav guides navigation through 3 steps:

(1) Interpreting user input: Given the view x shown to the user and
the user’s intended target θ, p(Y = y|Θ = θ,X = x) is the probability
that the user provides an input command Y = y given θ and x. This
probability distribution is the system’s interpretation of the user’s in-
tention when giving this command. For instance, if city A is to the
left of the user, what is the probability of the user giving the left com-
mand when knowing that city A is located to her left, provided she
can only go left or right? p(go left | city A is the intended target, city

A is located to the left of the current view) = 1 if the user is completely
confident about what she is doing. But maybe the user is not accu-
rate all the time. Say she is only correct 95% of time, then we need
to consider that she makes errors. For instance, p(go left | city A is

the intended target, city A is located to the left of the current view) = 0.95
and p(go right | city A is the intended target, city A is located to the left

of the current view) = 0.05. p(Y|Θ = θ,X = x) is a priori knowledge
that must be given to the system. In the implementation section, we
describe how we define it in 1D and 2D situations respectively.

(2) Updating system’s knowledge: Given the view x shown to the user
and the user reaction y to that view, the system can update its esti-
mate p(Θ|X = x, Y = y) of the user’s interest with Equation 34. If
the system has no prior knowledge about the user’s intended tar-
get, e. g. at the beginning, each θ has the same probability of be-
ing the target and p(Θ) is uniform. As the user issues commands,
the system gains knowledge about the likelihood that each point
of interest be the target, reflected by the changes to the probability
distribution. This is done, for each point of interest, by taking its
previous probability, multiplying by the above user input function
p(Y = y|Θ = θ,X = x), and normalizing it so that the sum of the new
probabilities over all the points of interest equals one.

(3) Navigating to a new view: With the new probability distribution
after receiving user input, BIGnav then goes over each view x ∈ X,
calculates its expected information gain with Equation 36 and picks
the view for which it is maximal. To maximize Equation 36, BIGnav
looks for a trade-off between two entropies. To maximize the first
term, the view should be such that all user commands given that view
are equally probable (for the system). To minimize the second term,
the view should provide the user with meaningful information about
the points of interest. Maximizing a difference does not necessarily
mean to maximize the first term and minimize the second, so the
maximum information gain is a trade-off between these two goals.
For example, showing only ocean will increase the first term but will
also increase the second term. After locating the view with maximal
information gain, BIGnav navigates there and waits for the user’s
next input.
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p(Y = + | Θ = θ,X = [a,b]) =






0.05 b < θ

0.05 a < θ

0.9 a 6 θ 6 b and b− a > 2

0 a 6 θ 6 b and b− a 6 2

p(Y = • | Θ = θ,X = [a,b]) =

{
1 a 6 θ 6 b and b− a 6 2

0 otherwise.

In Fig. 33, the cities are represented by square boxes and colored
in shades of red indicating the degrees to which the system believes
the city is the target, i. e. city i is darker than j if p(Θ = i) > p(Θ = j).
City 8 has a T indicating that it is the target. The yellow rectangle is
the view that the system shows to the user. After seeing the view, the
user provides an input command y to the system.

We can now show BIGnav in action.

Step 1 (Fig. 33 (a)): Since the initial distribution is uniform, the sys-
tem’s uncertainty about the user’s target is H1 = H(Θ1) = log2 50 =

5.64 bits.
The system then goes over every image [a,b], finds that [18, 34] max-

imizes the expected information gain and displays the corresponding
initial view to the user. In this case the expected information gain
from the user’s next action is IG(Θ1 | X = [18, 34], Y) = 1.08 bits.

The user inputs← after seeing [18, 34]. The system then updates its
knowledge with Equation 34 and ends up with a new distribution Θ2

given by p(Θ2) = p(Θ1 | X = [18, 34], Y =←). Using Bayes’ theorem
we have:

p(Θ2 = i) =

{
0.05 i < 18

0.002 i > 18.

The updated uncertainty is H2 = H(Θ2) = 4.65 bits, resulting in
an actual information gain H1 − H2 = 0.99 bits, very close to the
expected information gain of 1.08 bits.

Step 2 (Fig. 33 (b)): The system now searches for the best view us-
ing the new distribution p(Θ2), finds that it is [9, 10] with an expected
information gain of IG(Θ2 | X = [9, 10], Y) = 1.24 bits and displays it
to the user. The user then inputs ← after seeing [9, 10]. The system
then updates Θ2 to Θ3 as follows:

p(Θ3 = i) =






0.12 i < 9

0 9 6 i 6 10

0.006 10 < i < 18

0.0003 i > 18.
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The entropy of Θ3 is H3 = 3.36 bits, so the actual information
gain for this step is H2 −H3 = 1.29 bits, higher than the expected
information gain of 1.24 bits.

Step 3 (Fig. 33 (c)): With the same process, the best view is now
[4, 5] with an expected information gain of IG(Θ3 | X = [4, 5], Y) = 1.58
bits. The user inputs→, leading to the updated distribution:

p(Θ4 = i) =






0.01 i < 4

0 4 6 i 6 5

0.28 5 < i < 9

0 9 6 i 6 10

0.015 10 < i < 18

0.0007 i > 18.

The entropy of Θ4 is H4 = 2.70 bits, so the actual information gain
is H3 −H4 = 0.66 bits, compared to the expected information gain of
1.58 bits.

Step 4 (Fig. 33 (d)): The best view is now [7, 8] with an expected in-
formation gain of IG(Θ4 | X = [7, 8], Y) = 1.84 bits. The user sees that
the target city is in the view and clicks on it. The updated distribution
is updated to:

p(Θ5 = i) =

{
1 i = 8

0 otherwise.

The entropy of Θ5 is H5 = 0 bits since there is no more uncertainty
about the target. The actual information gain is H4 −H5 = 2.7 bits,
while the expected gain was 1.84 bits.

In this way, the user finds her target city in only 4 steps. At step 1,
BIGnav divides the map in 3 so that the three commands (left, right
and zoom in) have equal probability. It does not consider a click as
the view is still far from being fully zoomed-in to select the target. At
step 2, one would expect it to divide the left third of the map in 3

again so that the view would be about 5 boxes wide. However, since
it is close to the maximum scale, and it knows that the user never
misses her target when it is in the view and is clickable, showing a
2-box zoomed-in view will give BIGnav extra information: if this is
the target, the user will click on it; if it is not and the user moves away,
the probabilities of these two boxes become 0. Step 3 and step 4 work
similarly.

We ran 200 simulations with 50 cities and a uniform initial distri-
bution and found that it required 3.3 steps on average.
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Command Main Region Adjacent Regions Other Regions

Pan 0.90 0.04 0.0033

Zoom 0.95 0.00625 0.00625

Click 1 0 0

Table 4: Calibration results used as prior knowledge about the user behavior
P(Y = y|Θ = θ,X = x).

We now describe our implementation of the navigation steps.

(1) Interpreting user input: To interpret user input, we need to define
p(Y = y | Θ = θ,X = x), e. g. the probability of each command given
a target and a view, e. g. p(pan East | target (5, 7), view (4, 4, 2)). If
the user were perfectly reliable, we could assign a probability of 1 to
the correct command for each target θ and each view x, and 0 to the
others. But we know that users make errors. To model the error rate,
we collected data during a calibration session. The goal was to deter-
mine how confident users were when issuing commands. The task
was to indicate in which direction the target was in a set of views.
A set of concentric circles, identical to those used in the experiment
below, showed the direction of the target when it was not within the
view (Fig. 35 (a)).

We tested all ten input commands Y (8 pan operations, zoom in and
click on the target) with 5 repetitions each, resulting in 50 trials per
participant (N = 16). The results (Table 4) show that 90% of panning
commands are correct and 4% are in one of the adjacent directions
(Fig. 34). For zooming commands, 95% of the commands are correct
while for clicking on the target, 100% of the commands are correct.

(2) Updating system’s knowledge: We use Equation 34 to update the
probabilities pi of each point of interest being the target given the
current view x:

For all points of interest θi, the new p ′

i is the previous pi multiplied by the

user expected behavior p(Y = y | Θ = θi,X = x) divided by the

normalization over all points of interest.

(3) Navigating to a new view with maximum expected information
gain: For each view x and each user input y, the expected information
gain is the difference between two uncertainties:

Uncertainty before user input y minus the sum of pi × log2pi

over all points of interest

Uncertainty after user input y minus the sum of p ′

i × log2p
′

i

over all points of interest
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9.4 controlled experiment

Participants were instructed to navigate to the target as fast as they
could but were not informed of the condition they used.

9.4.2 Apparatus

The experiment was conducted on a MacBook Air with a 1.4 GHz pro-
cessor and 4 GB RAM. The software was implemented in Java with
the ZVTM toolkit [167]. The window was 800× 600 pixels, centered
on a 13-inch screen set to 1440× 900 resolution. A standard mouse
was used with the same sensitivity for all participants.

9.4.3 Procedure

We use a full-factorial within-participants design with a main factor:
navigation technique (Tech); and two secondary factors: distribution
of targets (DISTR), index of difficulty (ID).

9.4.3.1 Navigation Technique (Tech)

We compare BIGnav with standard pan-and-zoom:

• BIGnav: our guided navigation technique. The ten user com-
mands (eight pan, zoom in, select target) and error rates are as
described in the previous section.

• STDnav: the standard pan and zoom technique, used as base-
line. A left mouse drag pans the view in world space propor-
tional to the number of pixels dragged in screen space, and the
mouse wheel zooms around the center of the view.

In order to compare information gains between the two conditions,
we make the same computations as for BIGnav in the STDnav condi-
tion, except for the display of the new view.

9.4.3.2 Distribution (DISTR)

In order to compare different types of information spaces, we com-
pared 6 distributions of points of interest by combining three spa-
tial distributions (Grid, Random and Cluster) with three probability
distributions (Uniform, Random, Cluster) of the a priori likelihood of
each target. Since not all combinations are meaningful, we selected 6

of them. The first 3 have a uniform probability distribution, e. g. all
points of interest have equal probability of being the target, and dif-
ferent spatial distributions:

• Grid+Uniform: Points of interest are arranged in a grid, provid-
ing a strong visual pattern.

• Random+Uniform: Points of interest are placed randomly.
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• Cluster+Uniform: Points of interest are organized in clusters that
are typical of geographical maps [28], where a central city is
surrounded by smaller towns. We used 5 clusters of 10 targets.

The other 3 distributions use a non-uniform probability distribu-
tion of being the target:

• Grid+Random: Points of interest are on a grid with random prob-
abilities of being the target. These probabilities are bounded by
Uniform and Cluster.

• Random+Random: Points of interest are randomly distributed
and have random probabilities.

• Cluster+Cluster: Points of interest are clustered and the proba-
bility of the center of each cluster is ten times higher than that
of the surrounding points of interest.

The first 3 configurations are meant to demonstrate that BIGnav
works well even without prior knowledge about potential targets. The
other 3 configurations are meant to assess the added advantage, if any,
of using such prior knowledge. In particular, the last distribution is
typical of, e. g. maps.

9.4.3.3 Index of Difficulty (ID)

The ID is related to the distance between the initial position of the
view and the target to navigate to. Using Fitts’ definition of the ID [63],
the distance D to travel is D = 2ID ×W, where W is the (constant)
target width. We adopted the same large IDs as in other multiscale
navigation studies [5, 108]: 10, 15, 20, 25 and 30 bits.

We used a [2×6×5] within-subject design: we tested 2 Tech for 6

DISTR and 5 ID conditions. Each condition was replicated 5 times, so
that each participant performed 300 trials. We blocked the conditions
by Tech. Half the participants started with STDnav and the other half
with BIGnav. Within each block, we systematically varied the order of
DISTR and ID combinations across participants using a Latin square
so as to reduce the influence of learning effects. For each condition,
the targets were drawn randomly according to the probability distri-
bution of the DISTR condition. All participants used the same target
in the same DISTR× ID× Replication condition.

9.4.4 Task

The task is a multiscale pointing task: starting from a fully zoomed-
out view, the participant must navigate towards the target until it is
fully zoomed in and click on it. The target is surrounded by concen-
tric circles so that it is always possible to tell in which direction and
how far it is (Fig. 35).
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The information space contains 50 points of interest: 49 are distrac-
tors and displayed in blue, one is the target and displayed in red. The
ID is used to compute the scale of the initial view so that it contains
all the points of interest. The target becomes green and clickable only
when the view is fully zoomed in.

Participants first receive general instructions about the session and
performed several practice trials with each technique. After the ses-
sion, they answer a questionnaire asking them for feedback and com-
ments on the experiment and the techniques. A typical session lasts
60 minutes, including training.

9.4.5 Data Collection

For each trial, the program collects the task completion time (TCT),
the commands that the participants issued, the uncertainty and po-
sition of the view at each step and the information gain after each
command. We collected 2 Tech × 6 DISTR × 5 ID × 5 Replications
× 16 Participants = 4800 trials in total.

9.5 results

For our analyses, we first removed 23 missed trials (about 0.5%) and
then 54 outliers (about 1.1%) in which TCT was 3 standard devia-
tions larger than the mean. We verified that misses and outliers were
randomly distributed across participants, techniques and conditions.

9.5.1 Task Completion Time

Table 5 shows the results of a repeated-measures full factorial ANOVA
on TCT. All main effects are significant, as well as two interaction ef-
fects: Tech × DISTR and Tech × ID.

Figure 36 shows the interaction effect between Tech and ID for
task completion time (TCT). On average, BIGnav is 24.1% faster than
STDnav across all ID. A post-hoc Tukey HSD test reveals a robust
interaction effect: BIGnav is significantly faster than STDnav when
ID > 15 (p < 0.0001), significantly slower when ID = 10 (p < 0.0001)
and not significantly different for ID = 15 (p = 0.99). These results
support H1: BIGnav is 22.3% faster than STDnav for ID = 25 and
35.8% faster for ID = 30.
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Figure 37: Means and confidence intervals for TCT by DISTR.

In summary, these results support hypotheses H1 and H2: BIGnav
is faster than STDnav for distant targets, especially in non-uniform
information spaces. BIGnav is also not significantly different from
STDnav for close targets (ID = 15).

9.5.2 Number of Commands

In order to get a sense of the differences in control strategies across
conditions, we compare the number of user commands issued by the
participants. Because of the continuous control in the STDnav condi-
tions, we aggregate the mouse and wheel events as follows: we count
one panning command per sequence from a mouse down to a mouse
up, and one zooming command per series of mouse wheel with less
than 300ms between them.

We perform a Tech × DISTR × ID full-factorial ANOVA on the
number of commands issued (Table 6) and find that while Tech and
ID significantly affect the number of commands used, DISTR has a
non-significant effect. The ANOVA also indicates that the Tech × ID

interaction effect is significant. A post-hoc Tukey HSD confirms that
while the number of commands progressively increases with ID in
STDnav, it is barely affected by ID in BIGnav (Fig. 38).

Factors df, den F p

Tech 1, 15 364818.2 < 0.0001

DISTR 5, 75 0.99 = 0.4

ID 4, 60 10636.43 < 0.0001

Tech × DISTR 5, 75 0.23 = 0.9

Tech × ID 4, 60 11783.96 < 0.0001

DISTR × ID 20, 300 0.65 = 0.9

Tech × DISTR × ID 20, 300 0.71 = 0.8

Table 6: Full-factorial ANOVA on the number of commands.

91









https://perso.telecom-paristech.fr/wliu/BIGMap.html
https://perso.telecom-paristech.fr/wliu/BIGMap.html
https://en.wikipedia.org/wiki/Larger_urban_zone
https://openlayers.org


9.7 discussion

BIGnav illustrates how to derive a probability distribution from
external data, here the population of the cities. More generally, the
distribution should reflect the targets’ degree of interest, which is
typically application-dependent. The distribution can also integrate
usage data, such as the most popular cities. Finally the results of a
search can be turned into a distribution according to the ranking of
the results, therefore integrating searching and navigation into a sin-
gle paradigm.

9.7 discussion

We have shown that BIGnav is an effective technique, especially for
distant targets and non-uniform information spaces. The most effi-
cient distribution condition in the experiment was Cluster+Cluster,
which corresponds to the small-world structures found in a large
number of datasets, showing that BIGnav is a promising approach
for real-world applications.

However, both the experiment and the BIGnav prototype exhibit
some shortcomings, especially for small-ID tasks. We now discuss
how to make BIGnav more comfortable to use.

In standard pan-and-zoom interfaces, users can navigate the space
in a continuous manner and constantly anticipate the system response.
This gives them a sense of control and makes for a smooth user ex-
perience. By contrast, BIGnav uses discrete steps and the system’s
response can be difficult to anticipate and even frustrating, in partic-
ular when getting close to the target. This results in long idle times
between commands (Fig. 40) and a higher cognitive load as users
reorient themselves and decide on their next move. In a sense, this
proves the success of the technique, since it is designed to maximally
challenge the user at each step.

Yet there must be a way to improve user experience and make navi-
gation smoother. First, we could use animations to smooth transitions
and help users stay oriented 3. Research has shown that one-second
animations are sufficient and do not slow down expert users [12].
Second, we could combine BIGnav with standard pan-and-zoom ac-
cording to user input: large panning and zooming movements would
use BIGnav, smaller ones traditional pan and zoom. Finally we could
reduce the size of the grid and increase the number of panning di-
rections to provide finer control, however this requires heuristics or
optimizations of the computational cost.

3 This is implemented in BIGMap, but not in the original experiment.
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9.7 discussion

In the next two chapters, I demonstrate another use of the BIG
framework where improved efficiency and user experience are both
met in the context of hierarchical file retrieval. I will return to more
discussions of these two applications as well as the framework itself
in Chapter 12.
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10.1 personal file systems

I first review related work on personal file systems, file retrieval
techniques, and adaptive user interfaces in this chapter. In the next
chapter, I describe BIGFile’s interface as well as its underlying algo-
rithm and report on two studies.

10.1 personal file systems

Many prior studies have investigated how people manage and re-
trieve information from their personal file systems.

10.1.1 File Management

File hierarchies are the predominant way to organize files: files and
folders nested inside other folders. Previous studies that investigated
how people structure their file hierarchies have found that these hier-
archies are broad, shallow, and often unbalanced.

Gonçalves and Jorge [79] analyzed the structure of the file hier-
archies of 11 participants, examining only portions containing user
documents. Users averaged about 8000 files, however there was con-
siderable variation. Folders contained an average of 13 files, had a
branching factor (the average number of subfolders at a given tree
level) of 1.84, and the hierarchies were fairly well balanced. The hi-
erarchies had an average depth of 8.45. In an analysis of filenames,
they found that 60% of filenames contained numbers, but only 0.33%
contained dates. Filename lengths averaged 12.6 characters. However
they are likely longer in modern systems as the study was conducted
in 2003 and file systems no longer impose tight constraints on file-
name lengths.

Henderson and Srinivasan [96] ran a similar but larger scale study
of Windows XP users in 2009, again analyzing portions of hierar-
chies that contained user documents. They found similar results to
Gonçalves and Jorge: 5850 documents per user, an average tree depth
of 9.65, folders containing an average of 11.1 files and a branching fac-
tor of 1.93. They also found that 74% of folders did not contain any
subfolders, but the folders that did averaged 4.1 subfolders each. 7.9%
of folders were completely empty. When performing name compar-
isons, 21.8% of filenames were duplicates, as well as 23.5% of folder
names. Although the average maximum tree depth was 9.65, average
depths within the trees were considerably smaller – 3.4.
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Futhermore, users tend to have different habits for building these
structures. Malone [145] described two types of users based on their
document management strategies for paper documents, later referred
to as filers and pilers [204]. Filers are more organized, quickly classi-
fying new documents and placing them in an appropriate location.
Pilers spend less effort organizing their documents, and their collec-
tions may appear to be less orderly. This reduced level of organization
means that it can be harder to remember document locations. Whit-
taker and Hirschberg [215] also found that people often forgot the
categories they had already created, leading to duplicate categories
that meant that files were often overlooked when attempting to re-
trieve all the information on a topic.

10.1.2 File Retrieval

Similar to various file management practices, users retrieve files in
different manners.

10.1.2.1 How Fast Do Users Retrieve Files?

In a large-scale study with 289 participants, Bergman et al. [17] exam-
ined how various factors affected file navigation (retrieving a file by
traversing through the hierarchy using a file browser). Their method
involved statically recording the state of participants’ ‘recent docu-
ments’ list, then asking them to navigate to each of those files using
a file browser, with video capturing their actions. By analyzing the
video they found that Mac and Windows users structured their files
in different ways, with Windows users keeping more files but fewer
subfolders in each folder than Mac users. As a result, retrieved files
were deeper in the file hierarchy on Windows (2.9 levels deep, com-
pared to 2.4 levels on Mac OS X) and file retrieval times were slower
(17.3 seconds on Windows, 12.6 seconds on Mac OS X).

Fitchett and Cockburn [60] conducted a 4-week empirical study to
characterize 26 participants’ actual file retrievals on their personal
Mac computers. They found that the mean time to retrieve files using
file browser navigation was 10.2 seconds, vs. 5.7 seconds when us-
ing Spotlight searches, and 16.5 seconds when using Finder searches.
Their explanation for the high mean value with Finder search is that
it was used for files that were harder to find. Since each navigation
retrieval can be decomposed into a series of individual steps at each
level of the hierarchy, they also analyzed ‘step time’, where each step
descended to the next level of the hierarchy within a single window
by opening a folder. They found that the mean step time was 3.6 sec-
onds and that the step times were shorter at deeper levels, possibly
because deeper locations contain fewer items [17].
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Bergman et al. offered an explanation by the relative cognitive re-
quirements of the two approaches [15]. They pointed out that users
prefer orienteering (that is, taking small steps towards a target using
partial information and contextual knowledge) to teleporting (that is,
jumping directly to the target) [176, 204]. Navigation uses an orien-
teering approach, with users able to use recognition at each step of
a retrieval to identify the next folder [15]. Orienteering offers several
advantages over keyword search, including decreased cognitive load,
a sense of location, and a better understanding of the result [204].
Bergman et al. [15] also note that, with navigation, “users can con-
tinue to think of the project they are working on at the time”, even if
search might be faster.

Search interfaces, on the other hand, typically use a teleporting
approach that shows an immediate list of results with little or no con-
text [204]. Search also relies on users recalling attributes of a target
file in order to devise a search query [15], which is more cognitively
demanding than recognition [206]. Furthermore, search offers no re-
minding feature. This means that users are unlikely to encounter an
item through search if they have forgotten they have it or how it is de-
scribed in the file system, resulting in a lower sense of control [11]. A
final potential limitation of search-based file access is that it provides
minimal support for learning and rehearsing the location-based re-
trieval mechanics that users are likely to use for future accesses.

10.1.2.4 Folder Uncertainty

If users are unsure of their navigation to files, they are likely to open
more folders than necessary, i. e. opening an incorrect folder and then
backtracking. Elsweiler et al. [48] introduced the Folder Uncertainty
Ratio (FUR) to account for this effect in email folders. FUR is de-
fined as “the number of folders opened with respect to the number
of unique folders opened”.

Fitchett [60] reported that in their study, the mean FUR value for
navigation retrievals was low at 1.02. The percentage of retrievals
with a FUR > 1 was 5.2%, and the percentage of retrievals with FUR
> 2 was 0.3%. These values contrast with Elsweiler et al. [48] who
found high levels of uncertainty when navigating to email messages,
with 29.5% of retrievals having a FUR > 1, and 8.67% having FUR > 2.
Fitchett [60] offered a plausible explanation that users invest more ef-
fort in crafting effective file hierarchies than they do with email.

These practices and characteristics might evolve over time with the
continuous improvements in search algorithms and the introduction
of new interfaces and novel interaction techniques. In the next chapter,
I report on a pilot study to capture real users’ file structures and
understand their file navigation practices, informing our simulations
(Study 1) and experiment (Study 2).
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10.2.2 Prediction

Several prediction algorithms have been proposed to account for users’
repetitive behavior and to improve the efficiency of accessing previ-
ously used items. Algorithms that predict upcoming actions based on
previous actions include:

1. Most Recently Used (MRU) calculates ranks based solely on
recency.

2. Most Frequently Used (MFU) calculates ranks based solely on
frequency.

3. Split Recency and Frequency (SR&F) [55] selects n items with
MRU, then the rest with MFU.

4. Combined Recency and Frequency (CRF) [125], used originally
for cache management, considers every past access of an item.
It is calculated by Equation 38, where wf is the item’s weight,
n is the number of past accesses, t is the current time and ti is
the time of access i (where time is counted in terms of discrete
events).

wf =

n∑

i=1

1

p

λ(t−ti)

. (38)

5. The Adaptive algorithm filters menus in software such as Mi-
crosoft Office 2000 [6]. Item counts are incremented when se-
lected and decremented after multiple sessions of disuse.

6. The Places Frecency algorithm (PF) is used in Firefox to order
URL suggestions when typing a web address [29]. The last 10 ac-
cesses of each item are placed in time-based buckets with differ-
ent weights based on recency. Other factors, such as the method
of website access, are also incorporated but can be stripped out
for general purpose use.

7. A Markov chain [148] can be used to make predictions:

P(Xn+1 = x|Xn = xn) =
|xn → x|

|xn|
.

where |xn| is the number of previous occurrences of state xn,
and |xn| is the number of previous transitions from state xn to
x. Xi represents the state at time i. Given the most recent access
xn, the calculated probabilities provide a ranking, and MRU can
be used to break ties.

8. AccessRank uses a score that blends Markov chains and CRF,
a time weighting component as well as a switching threshold
to predict what users will do next and to maximize list stabil-
ity [59].
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The AccessRank score wn is defined as:

wn = wmn

αwcrfn

1
αwtn . (39)

where wmn is the Markov weight and wcrfn is the combined
recency and frequency (CRF) weight with p = 2 and λ = 0.1
(Equation 38). The Markov weight is rewritten to always give
non-zero weights:

wmn =
|xn → x|+ 1

|xn|+ 1
.

time weight wtn gives higher weight to items that have histori-
cally been more frequently accessed at the current time of day
or day of week, and is defined as:

wtn = max(0.8, min(1.25,hd))0.25.

where h and d are defined as follows: let ch be the current hour
of the day. For item n, let h be the ratio of the number of previ-
ous accesses of n in hours in the range [ch− 1, ch+ 1] compared
to the average number of previous accesses of n for a three hour
slot. Similarly, let d be the ratio of the number of previous ac-
cesses of n on the current day of the week to the average across
all days of the week. h and d are set to 1 if fewer than 10 ac-
cesses in total have occurred in the corresponding slot.

To improve prediction list stability, Fitchett and Cockburn [59]
also defined a switching threshold: item A and item B are com-
pared and their new weights wA and wB are such that wB >

wA, then B will only be ranked higher than A if wB > wA + δ

where δ > 0 is an AccessRank parameter. An item C not in the
previous list is assumed to have ranking rC = ∞.

Using 3 log datasets from previously published studies (window
switching [201], web browsing [203], and command line use [82]),
Fitchett and Cockburn [59] demonstrated that AccessRank more ac-
curately predicts upcoming accesses than Markov, CRF and MRU.
Moreover, the prediction lists generated by AccessRank are more sta-
ble than the three other algorithms (Fig. 45).

Based on the results, they also recommended to use (λ, δ) values
of (1.65, 0.2) to give the best compromise between accuracy and sta-
bility [59]. When stability is unimportant, values of (1.65, 0) give the
best top prediction accuracy, while (2.5, 0) may be better if the aver-
age rank is the primary goal. When stability is particularly important,
high values for both parameters can be used, e. g. (2.5, 0.5).
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11.1 bigfile interface

BIGFile features a split adaptive interface (Fig. 53): the shortcuts
are presented in the adaptive area at the top, while the static area at the
bottom is a traditional list view of the current folder. The shortcuts
in the adaptive area are the paths to the items selected by the BIGFile
algorithm, relative to the current folder. Displaying the relative paths,
rather than just the items, offers users contextual information that
helps them determine if they correspond to the target they are look-
ing for. It also lets users navigate directly to any folder in the path by
clicking on it, typically when the target is not in the shortcuts, but a
partial path to it is. Finally a back button (visible in Fig. 57) lets users
go back to the previous state of the interface.

Both the shortcuts in the adaptive area and the items in the static
area are updated after each user input. Similar to many other split
adaptive interfaces [55, 184], if the system correctly estimates the
user’s target item, the user can select the shortcut, or navigate the
hierarchy using the static part as usual. If none of the system’s esti-
mates are correct, the impact for the user is minimal since the items
remain at their usual locations in the static part of the interface.

For example, in Fig. 53 (left), “Islands” and “Cheese” are the esti-
mated items, presented along with their paths in the designated adap-
tive area (a). The static area (b) presents the usual hierarchy. A user
could, for example, click on “Dairy” to access dairy products other
than “Cheese” inside the folder (not shown in the figure). If the user
clicks on “Animals”, the static area is updated, showing the items
inside the “Animals” folder (Fig. 53 (d)). The adaptive area is also
updated with a new set of estimated targets (“Dog” and “Salmon”,
Fig. 53 (c)). If the user is looking for the item “Dog”, she can save one
step (“Mammals”) by clicking the shortcut in the adaptive area. The
number of shortcuts is user-customizable.

We created and considered a number of alternative designs for the
interface, including an integrated view where each shortcut is dis-
played, together with its path, next to the corresponding root folder
in the list view. However, we found that this integrated view makes
it difficult to display shortcuts of arbitrary depth. Moreover, scrolling
the view often hides shortcuts, which partially defeats their purpose.
In addition, this design only works for the list view, while the split
interface can work with any of the traditional views in the static area,
e. g. the icon and column views of the Mac OS Finder. Therefore, we
chose what seemed to be the simplest and most obvious option for
our first implementation and comparison. Note that the split interface
design is not specific to BIGFile and can be used with any algorithm
that predicts potential targets. For example, we used it with the Ac-
cessRank algorithm in Study two, described later this chapter.
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11.2 bigfile algorithm

11.2 bigfile algorithm

I introduce two algorithms for BIGFile: BIGFileOpt, an optimal but
computationally costly algorithm and BIGFileFast, a suboptimal but
very efficient version, which is used for both the simulations and
experiment.

11.2.1 BIGFileOpt: Optimal Algorithm

In order to apply the Bayesian Information Gain (BIG) framework to
file retrieval, let us consider a regular hierarchical file system. Without
loss of generality, we consider a single window, with a current folder
F. We define the following:

• Θ represents all the folders and files that a user might be in-
terested in. Θ may include all the files and folders in the file
system, but is more likely to be narrowed to a subset based on
user preference or the task at hand. For example, it can be re-
duced to a subset of the user’s home folder and/or to a category
of files such as documents of a certain type. In the simulations
and the experiment, we used only the files as potential targets
and excluded the folders.

• For each potential target Θ = θ, the initial probability, at the
beginning of a retrieval task, that it is the actual intended tar-
get is P(Θ = θ). This probability distribution is calculated using
the Combined Recency and Frequency (CRF) algorithm (Equa-
tion 38) using {p = 2, λ = 0.1}, in AccessRank [59]. The prob-
ability that a file θ is the target is calculated by normalizing
its weight: P(Θ = θ) = wθ/

∑
wθ and is updated after each

retrieval of a target by the user, to reflect interaction history.
At each step of the retrieval task, i. e. after each user input,
P(Θ = θ) is updated using Bayes’ rule, as described in Algo-
rithm 1.

• X represents the view generated by the system when first open-
ing a window and after receiving each user input in that win-
dow. This view is composed of the static part S, which shows
the folders and files of the current folder F, and the adaptive

part A, which shows the N folders and files that are produced
by the BIGFile algorithm to serve as shortcuts at this step. A
view X = x is therefore represented by S

⋃

A. The number of
shortcuts N is user customizable.

• Y represents any user input. At each step, the user issues an
input Y = y to the system: the user can select any of the items
in the static and adaptive parts, or go back to the previous view
with the back button in case of an error.
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11.2 bigfile algorithm

Algorithmus 1 : BIGFileOpt
Search the optimal set of N shortcuts.

Data : Θ,X, Y,P(Y = y|Θ = θ,X = x), IGmax = 0

Result : Return set A that, together with set S, has the maximal
expected information gain (IG).

1 Receive user input Y = y

2 Update the probability distribution of Θ (Bayes rule):

P(Θ = θ|X = x, Y = y) =
P(Y=y|Θ=θ,X=x)P(Θ=θ)

P(Y=y|X=x)

3 for all the combinations A of N nodes that are below the current

folder F in the hierarchy do

4 Compute IG(S
⋃

A) = I(Θ; Y|X(S
⋃

A))

= H(Θ) −H(Θ|X(S
⋃

A), Y)
// I is mutual information and H is entropy

5 if IG(S
⋃

A) > IGmax then

6 IGmax = IG(S
⋃

A)

7 Amax = A

8 return Amax

• P(Y = y|Θ = θ,X = x) represents prior knowledge about user
behavior: given view x and target θ, what is the probability that
user input is y at this step. For simplicity, one can assume that
the user does not make mistakes and therefore that this prob-
ability is 1 if the user is issuing the correct input, 0 otherwise.
Alternatively, one can use a calibration session, as in the BIG-
nav experiment (Chapter 9). Note that since the user may select
items that are not in Θ during the steps that lead to a selection,
user behavior must be known for any item in the file system.

At each step, i. e. after each user input, the static part S of the inter-
face is updated if the current folder has changed, i. e. if the user has
clicked on a folder to navigate to it. Then the adaptive part A of the
interface is updated to display the N items selected by the BIGFile
algorithm.

Algorithm 1 presents BIGFileOpt, an optimal algorithm that finds
the N items that, together with S, maximize the expected information
gain from the user’s next input. This slight modification of the origi-
nal BIG framework lets us calculate an optimal view S

⋃

A. However,
considering the sizes of typical personal file systems, this algorithm
is not practical: the number of sets to test grows like fN, where f is
the number of files and folders and N the number of items in the
adaptive part.

I now present a suboptimal but computationally efficient algorithm
to address this problem.
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Algorithmus 2 : BIGFileFast
Efficiently search a suboptimal set of shortcuts.

Result : Return set A that, together with set S, has a suboptimal
maximal expected information gain.

// Create the compressed tree, i.e.

1 The minimal subtree of the current folder F that contains the n

most probable targets:
2 for each element t of the tree do

3 if t is the only child of its parent then

4 Replace the parent by t and remove the parent

// Search this simplified tree

5 A = a set of N nodes such that no node is in the subtree of
another node

6 IGmax = IG(S
⋃

A)

7 while there are more sets to explore do

8 if Node ai ∈ A has a child a ′

i not yet explored then

9 A ′ = A− ai + a ′

i

10 Compute IG ′(S
⋃

A ′)

11 if IG(S
⋃

A) > IG ′(S
⋃

A ′) then

12 Skip the subtree rooted at a ′

i

else

13 IG(S
⋃

A) = IG ′(S
⋃

A ′)

14 A = A ′

else

15 A = A− ai+ the root of the next branch
16 Compute IG(S

⋃

A)

17 if IG(S
⋃

A) > IGmax then

18 IGmax = IG(S
⋃

A)

19 Amax = A

20 return Amax

11.3 pilot study

We conducted a pilot study to capture real users’ file structures and
understand their file navigation practices, informing our simulations
(Study 1) and experiment (Study 2). We wanted to see if and how
the structures and practices reported in the literature [16, 96] have
changed.

We recruited 15 participants from our institution, including faculty
members, post-docs and students, all in technical areas. 13 were Ma-
cOS users, 2 were Windows users. We wanted to know the depth
and breadth of their file systems, their navigation strategies, their
preferred view for retrieving files, and the problems they run into.
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Navigation Difficulty. Participants reported two main challenges
when retrieving a file: (1) files/folders with repeated names, and (2)
having partial knowledge about the location or the name of the tar-
get. This echoes previous studies [96, 145] reporting that people face
retrieval difficulties stemming from semantic ambiguity. Hence, con-
textual information is crucial for a successful file retrieval. We used
the findings from this pilot study to inform the designs of the simu-
lations and experiment.

11.4 study 1 : simulations

I ran simulations to investigate BIGFileFast’s performance in estimat-
ing the target in a given hierarchical structure. The goal was to know
how well the algorithm performs with respect to the following fac-
tors:

1. Depth and width: Both previous studies [79, 96] and our pilot
study show that users have different file structures. Combining
the results from [79, 96] and our pilot study, we used DEPTH

= {4, 6, 8, 10, 12} and BRANCHING FACTOR = {2, 4, 6, 8} for
the simulations.

2. Initial distribution: We did not log participants’ use of their file
system in the pilot study, but previous work indicates that file
system use approximately follows a Zipf distribution [60]. To
simulate different types of use history, we used two DISTRI-

BUTIONs: Z(s = 1) and Z(s = 2). The latter is a more skewed
distribution describing cases where users focus primarily on a
small set of targets.

3. Size of target set: Both previous work [79, 96] and the pilot study
suggest that users have different numbers of files and folders in
their file system. Therefore, we used different target set sizes to
see how BIGFileFast would perform. In our simulations, TAR-

GET SET SIZE = {10, 100, 1000}.

We used AccessRank as baseline as it outperforms existing pre-
diction algorithms [59]. In the case of navigation-based file retrieval,
AccessRank predicts the target by assuming that a subfolder is likely
to be selected if its parent folder is selected, captured by the Markov
chain model. Similarly, BIGFileFast also assumes that the target is
within the subtree of the current folder, and renormalizes the prob-
abilities at each step. The key differences between AccessRank and
BIGFileFast are as follows:

• AccessRank assigns a score to all folders and files while BIG-
FileFast only considers the set of potential targets.
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11.4 study 1 : simulations

• AccessRank updates the score of an item (file or folder) once it
has been clicked while BIGFileFast updates the probability of
all potential targets after each user input.

• AccessRank identifies the N items with highest scores while
BIGFileFast identifies N items that provide the maximally infor-
mative view.

• AccessRank has a parameter δ to control the stability of the
prediction list; BIGFileFast does not.

11.4.1 Simulation Settings

We generated a number of symmetric hierarchical structures crossing
DEPTH with BRANCHING FACTOR = 2 and BRANCHING FAC-

TOR with DEPTH = 4. When needed, extra targets were added at the
deepest level so that there would be 100 and 1000 targets respectively.
Depending on the target set sizes, we constructed a series of selec-
tions following the Zipf distributions. We randomized the mapping
between the Zipf distribution and the targets, as well as the order of
the selections.

We logged the number of steps needed to locate the target, the in-
formation gain and the accuracy rate for both algorithms. Note that
we consider the folders on the path to the final target to be partially
correct. For example, if the target is at level L2 but the shortcut is only
correct up to the folder at level L1 < L2, we consider the accuracy rate
to be L1/L2, no matter how many steps it takes to get to the target
level L2.

We used {α = 0.8, δ = 0.5} for AccessRank as in [61] and {p =

2, λ = 0.1} in CRF for both AccessRank and BIGFileFast. We also
assumed 100% correct user behavior for all simulations, i. e. that users
would be as efficient as possible, always selecting an item from the
adaptive area if it would get them to the target in fewer steps. Each
condition [DEPTH× BRANCHING FACTOR× TARGET SET SIZE

× DISTRIBUTION] was run 100 times, and the average taken.

11.4.2 Simulation Results

Fig. 56 shows the number of steps and the accuracy rate for the two
algorithms using a Z(s = 1) distribution. The results for Z(s = 2)

distribution are very similar; both BIGFileFast and AccessRank per-
formed slightly better than they did with the Z(s = 1) distribution.
This is intuitive since both algorithms are based on frequency and
recency of the file system use, and Z(s = 2) focuses on a small set
of very frequent items. In information-theoretic terms, the computer
starts with more knowledge (less uncertainty) about the user’s goal.
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11.5 study 2 : experiment

By comparison, BIGFileFast considers each user input within a re-
trieval, and since it assumes correct user behavior, if a node is shown
and not chosen, all potential targets inside that node will be assigned
a probability of 0. Therefore, the whole branch starting from that node
will be discarded, i. e. it will not show up in the prediction slots at the
next step.

Increasing the branching factor negatively affects both BIGFileFast
and AccessRank (Fig. 56, bottom). The accuracy rate of BIGFileFast
drops from 66.5% to 30.1% while the accuracy of AccessRank drops
from 62.4% to 24.3%. This is not surprising as there is not much in-
formation from the user input for a wide but shallow (DEPTH = 4)
hierarchy. Increasing target set size also negatively affects the perfor-
mance of both BIGFileFast and AccessRank.

Averaged across all simulations, BIGFileFast is 15.5% more accu-
rate and takes 23.1% fewer steps than AccessRank. The results can
be summarized as follows: The deeper the target is located, the bet-
ter BIGFileFast is than AccessRank; Increasing either target set size
or branching factor negatively affect the performance of both BIG-
FileFast and AccessRank; and BIGFileFast performs better on a deep
hierarchy than on a broad hierarchy. This echoes the results of BIG-
nav, which exhibits better results on navigation tasks with higher IDs,
i. e. on harder tasks. We next compare BIGFile (which uses BIGFile-
Fast) with a split interface using AccessRank in an experiment with
real users.

11.5 study 2 : experiment

I conducted an experiment to investigate the effectiveness of BIGFile
with users. The goal was to replicate and extend the methodology
used by Fitchett et al. [61]. We used their implementation of the algo-
rithm with the exception of one improvement which is noted below.
We also used their hierarchical structure, which is a 3-level semanti-
cally organized hierarchy.

Since the pilot study showed that people do navigate to deep levels,
we extended their structure to 6 levels using the branching factors
and folder sizes from Bergman [16]: 10, 5, and 4 folders, and 11, 8

and 7 files at levels 4, 5 and 6 respectively. Example targets for level
3 include ‘Dog’ with the path “Animals > Mammals > Dog” and
‘Darwin’ with the path “People > Inventors/Scientists > Darwin”.
Example targets for level 6 include ‘Hawaii’ with the path “Geogra-
phy > Islands > Tropical > Touristic > Large > Hawaii”, and ‘Brie’
with the path “Food > Dairy > Cheese > France > Creamy > Brie”.
As in [61], only the folders containing the final target are populated.
In total, the hierarchy contains 958 folders and 1068 files, of which 30

files are chosen as targets for each level-3 and level-6 condition.
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11.5 study 2 : experiment

11.5.1 Method

We used a [3×2] within-subject design with 3 INTERFACE condi-
tions: BIGFile with the BIGFileFast algorithm, ARFile, a split interface
using AccessRank for prediction, and a standard Finder interface as
baseline; and 2 target LEVELs: 3 and 6.

We made a slight modification to AccessRank in order to make
ARFile as effective as possible for users. In AccessRank, each folder
and file is assigned a score. If users constantly go to the same item (file
or folder), the algorithm’s set of top predictions might include both
the item and its parent folder. Since we are showing the full paths
to the predicted items (not just the items themselves), this would re-
sult in an overlap between the shortcuts. Therefore we only show the
deepest path if one shortcut is a prefix of another.

To model the user behavior, we used the notion of Folder Uncer-
tainty Ratio [48], which was used by Fitchett & Cockburn [60] to il-
lustrate users’ uncertainty when navigating to files. If users are un-
certain that they are going down the correct path, they are likely to
select incorrect folders by mistake. Fitchett and Cockburn [60] found
that users were accurate about 94% of the time, while the other 6%
of the time, they clicked on the wrong folder. Thus, we set the rate of
correct user input to 94% and divided the remaining 6% among the
other user inputs. These rates were used in the user behavior function
in BIGFileFast and for calculating information gain in ARFile and in
Finder. Furthermore, as in our simulations, we used {α = 0.8, δ = 0.5}
for AccessRank as in [61] and {p = 2, λ = 0.1} for CRF for both Ac-
cessRank and BIGFileFast. A list view was used for the static part in
all interface conditions because it was preferred in our pilot study.

11.5.2 Participants

Eighteen participants (7 women), aged 21 to 39 (mean = 28.5, σ =
5.1), all right-handed and with normal or corrected-to-normal vision,
volunteered to participate in the experiment. Ten were MacOS users,
eight were Windows users but were familiar with list view.

11.5.3 Apparatus

The experiment was conducted on a Macbook Pro with a 2.7 GHz
processor, 8 GB RAM with resolution of 2560×1600. The file browser
window was 880 × 631 pixels, as in [61]. One row on the list view
takes 20 pixels. The software was implemented in Swift 3.0. The code
can be found at https://github.com/wanyuliu/BIGFile.
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11.5 study 2 : experiment

Each trial started by displaying the stimulus inside a popup win-
dow hiding the file browser. Participants were instructed to take as
much time as they needed to understand the stimulus. When they
were ready, they hit a start button to initiate the trial, at which point
the content appeared inside the file browser (in both the adaptive and
static parts, for the two conditions with split interfaces) and they were
instructed to retrieve the file as fast and accurately as possible. When
the popup window disappeared, the stimulus was shown in the tool-
bar at the top of the file browser, as in Fig. 57. When the participant
successfully clicked the target, a popup window appeared with the
stimulus for the next trial. If they clicked a wrong target, a popup
window let them know that they had made an error and asked them
to try again. After clicking a folder or a file, the score for this item was
updated in ARFile. Similarly, after each user input, the probability of
each potential target being the actual target was updated, and after
each retrieval, the initial distribution for the potential targets was up-
dated in BIGFile.

Session 2 repeated Session 1 with the same initial distribution and
randomized selection order. The goal was to see whether and how
participants would use the split interfaces once they were more fa-
miliar with the file hierarchy and had some expectations about the
targets, which is more representative of real use. Participants could
take a break between sessions and between interface conditions.

For each level, we categorized the 30 targets into 3 non-overlapping
groups of 10. To reduce learning effects stemming from familiarity
with the hierarchy, within each group, the targets came from different
top-level folders for level 3, and from different second-level folders
for level 6. The order of interface and group of targets were counter-
balanced using Latin Square across all participants. Thus, the target
group, the order in which each target group is seen, the ordering of
targets within a group, and the order in which each interface is seen
all serve as control variables. After Session 2, for each interface, partic-
ipants completed the NASA Task Load Index (TLX) worksheets [93]
and provided comments on the interface. After all three conditions,
participants were asked for their preferences among the three inter-
faces. The experiment lasted about 90 minutes.

11.5.5 Data Collection

For each trial, the program collects the task completion time (TCT),
the number of steps a participant takes to locate the target (the num-
ber of items clicked, including the final target), the amount of time
spent at each step, the uncertainty the computer has about the final
target, the calculated shortcuts, the participant’s input at each step,
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and the information gain after each input. We collected 3 INTER-

FACE × 2 LEVEL × 2 Session (20 Selections each) × 18 Participants
= 4320 trials.

11.6 results

For the analyses, we first removed 60 outliers (about 1.3%) in which
TCT was larger than 3 standard deviations from the mean. We veri-
fied that outliers were randomly distributed across participants, inter-
faces and conditions. We also checked for outliers for all our other de-
pendent variables, but none were found. Note that the results are the
same if we include the outliers in the analyses. Except where noted,
we ran a repeated-measures INTERFACE × LEVEL × Session facto-
rial ANOVA on the dependent measures1.

11.6.1 Task Completion Time and Step Time

Table 7 shows the results of a repeated measures ANOVA on TCT.
All main effects are significant, as well as two interaction effects: IN-

TERFACE × LEVEL and LEVEL × Session.

Factors df, den F p

INTERFACE 2, 34 452.47 < 0.0001

LEVEL 1, 17 895.61 < 0.0001

Session 1, 34 32.12 < 0.0001

INTERFACE × LEVEL 2, 34 211.89 < 0.0001

LEVEL × Session 1, 17 14.69 = 0.0242

Table 7: Significant effects in the full-factorial ANOVA on TCT.

On average, BIGFile is 39.3% faster than ARFile, and 59.0% faster
than Finder, across all levels and sessions. The significant interaction
effect between INTERFACE and textbfLEVEL is shown in Fig. 58 (a)
and (b). A post-hoc Tukey HSD test reveals that all differences are
significant: BIGFile is 44.5% faster than ARFile and 63.8% faster than
Finder at level 6, while BIGFile is 27.8% faster than ARFile and 47.6%
faster than Finder at level 3. These findings are consistent with our
simulation results: the deeper the target is located, the better BIGFile-
Fast is compared to AccessRank.

1 All analyses are performed with SAS JMP, using the REML procedure to account for
repeated measures.
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11.7 discussion

For example, Gajos & Chauncey [72] have demonstrated systematic
individual differences in the use of adaptive features, correlated with
users’ personality traits. Hence this approach does not benefit all
users equally. In our case, the preference might be due to the nature
of the task: retrieving a file in a 3-level or 6-level hierarchy is much
more difficult than selecting menu items, which is the task used in
most split adaptive interface studies. Therefore, split adaptive inter-
faces may be more beneficial for difficult tasks where users need to
“work hard” to reach their goal.

One possible issue with split interfaces is screen real estate. The
more shortcuts are shown in the adaptive area, the better the underly-
ing algorithm will work. But more shortcuts use more space and may
result in higher cognitive demand and more occurrences of scrolling.
Future work should therefore study the effects of the number of short-
cuts on performance, preference and cognitive load.

11.7.2 Comparisons with AccessRank

Even though BIGFileFast can locate the final target more accurately
than AccessRank in our simulations and experiment, unlike Access-
Rank, it does not account for repeated user behavior and repetitive
access at the same time of day or day of the week. It also does not have
a parameter to control the stability of estimated shortcuts across suc-
cessive steps. These features are likely to benefit users in real settings.
Future work should study their effect in BIGFile. More generally, Ac-
cessRank needs to be compared with BIGFileFast in more realistic
settings.

We were surprised that users did not express a preference between
BIGFile and ARFile, attributing the differences to the set of targets
rather than the underlying algorithm. This may be due to the fact that
interface differences are more obvious to users than the inner work-
ings of a system. Indeed, Fitchett et al. [61] found Icon Highlights and
Search Directed Navigation to be more effective than Hover Menus, even
though the latter predicts targets several levels down the hierarchy. In
that respect, our split interface is an alternative to Hover Menus that
shows to be effective for both BIGFileFast and AccessRank. Further
work should therefore tease apart the respective roles of the interface
and the prediction algorithm in file retrieval tasks.

11.7.3 Limitations

Despite BIGFile’s strong performance benefits, we want to emphasize
some limitations of our experiment.
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11.7 discussion

File Hierarchies: Our pilot study was designed to inform the design
of our simulations and experiment in terms of the depth and width
of the hierarchy we should evaluate. Even though we combined the
results from our pilot study with those in the literature, it is still possi-
ble that the hierarchies we used are not fully representative. A larger
scale study is needed to capture user file structures and retrieval prac-
tices.

Potential Target Set Size: The simulations showed that BIGFileFast
performs much better on a 10-item potential target set than on a 1000-
item potential target set. The latter is more realistic since users have
thousands files and folders in their file systems. Larger target sets
should therefore be tested to produce more robust findings.

Task Instruction: The task was initiated by showing a full path to the
final target, which allowed users to compare the paths shown in the
adaptive area with the instruction. In real life, recall of either the full
path or the name of the final target is imperfect. Therefore, it is im-
portant to study how BIGFileFast performs in a more realistic setting,
where navigation is combined with exploration.

In the next chapter, I discuss BIGnav and BIGFile as two appli-
cations of the Bayesian Information Gain (BIG) framework. I ana-
lyze their similarities and differences, discuss how BIG is relevant
to other conceptual frameworks, and outline the opportunities for fu-
ture work.
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12
D I C U S S I O N A N D F U T U R E P E R S P E C T I V E S

In this chapter, I discuss: (a) The possible explanations for why BIG-
File was preferred by the participants but not BIGnav, despite im-
proved efficiency in both cases and (b) How BIG is conceptually re-
lated to other frameworks in the vein of human-computer partner-
ship.

12.1 bignav vs . bigfile

Both BIGnav and BIGFile significantly improved interaction efficiency:
up to 40% for BIGnav and up to 64% for BIGFile compared to their
respective baseline. Yet the subjective experience in these two cases
differ. In BIGnav, half the participants did not prefer BIGnav in com-
parison to the standard pan and zoom, but in BIGFile, all partici-
pants unanimously preferred BIGFile and ARFile, a split adaptive
interface using AccessRank [59] for prediction, to the Finder-like list
view, which was used as baseline.

The first plausible explanation is the way in which the BIG frame-
work is used. In BIGnav, the goal was to illustrate the best case sce-
nario. The feedback, which is a view in multiscale navigation, is
searched from the entire information space, therefore providing ab-
solutely maximal information. It means that the system can jump far
away from the current view, causing confusion for the users. In BIG-
File, however, the feedback, which includes the static area presenting
the usual hierarchy and the adaptive area presenting the estimated
shortcuts, is maximally informative only respective to in this given
situation. If BIG were used at its best, the view in BIGFile would com-
prise folders and files from anywhere in the hierarchical structure.
This requires users to have perfect knowledge of their file system,
which is fairly unrealistic. Therefore, BIGnav maximizes the absolute
expected information gain and BIGFile maximizes the expected infor-
mation gain relative to the current context.

The second plausible explanation is that in BIGnav, since two con-
secutive views might be far apart, the users cannot anticipate what
they will see next. This results in higher cognitive load as they need
to interpret what the system has just done and reorient themselves
before inputting the next command (see Fig. 40).
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12.2 collaboration and adaptation

In contrast, in BIGFile, users have access to both the estimated
shortcuts and the usual hierarchy so that they can choose which one
to use: if the estimated items are not correct, they can always navigate
the hierarchy in the usual way. Also, since contextual information is
provided, users can navigate to a parent folder if the estimated path
is only partially correct.

In both BIGnav and BIGFile, the system is actively probing users
for more information. However, it seems that providing users with
choices rather than making decisions for them is important. At a
higher level, BIG fosters a form of collaborative interaction whereby
system and user work together to achieve a common objective [171,
205]. It combines information from the system’s side with user’s in-
tentions in order to optimize decision under uncertainty. This concept
is related to several human-computer collaboration and adaptation
notions that I discuss in the next section.

12.2 collaboration and adaptation

While the notion of cooperative interaction between humans and com-
puters is quite ancient [128], the concept of human-computer collab-
oration has emerged in HCI only recently [205]. In human-computer
collaboration, two agents, a human and a computer, work together
to achieve shared goals. A key aspect of collaboration is communica-
tion, for example to define goals, negotiate how to proceed and deter-
mine who will do what. Similar ideas can be found in mixed-initiative

design [100], human-computer partnership [171] and co-adaptation [144].
All these approaches suggest that great opportunities lie between sys-
tems that provide automatic services [102] and systems where users
are in full control [192].

1. Mixed-Initiative Design. Mixed-initiative interaction is inspired
by human-human interaction where two humans communicate
to negotiate in a dialogue based conversation [4]. The observa-
tions are that we use a range of different actions in the course of
a conversation such as evaluating and comparing options and
suggesting courses of action. In mixed-initiative interaction, a
human and an intelligent system, use a flexible interaction strat-
egy where each agent can contribute to the task what it does
best [4]. Early works such as Lookout [101] illustrates how the
system and users collaborate to perform complex tasks. The sys-
tem has a utility function where it evaluates the costs and bene-
fits of offering the service, and takes control when the benefits
are significant but leaves the users in control when the costs are
high (Fig. 61).
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12.3 future perspectives

Adaptation and appropriation occur together. In co-adaptive
systems, users simultaneously adapt to the constraints imposed
by the system and appropriate it in their own personal way.
Rather than assuming that the designer is fully responsible for
the ‘user experience’, co-adaptation suggests that users will al-
ways place their personal stamp on their use of the system. BIG
leads to a reverse form of co-adaptation: while co-adaptation is
about users adapting to new technology and also adapting it to
their own needs, BIG adapts to users through its prior knowl-
edge, which can change over time, and adapts users to its needs
by prompting them constantly for information.

4. Recommender Systems. Another type of interactive systems
that are worth mentioning is recommender systems. Recom-
mender systems provide filtered information and seek to pre-
dict the “preference” that users would give to an item. They
are used in a variety of areas including movies, music, news,
books, research articles, search queries, social tags, and prod-
ucts in general [178]. Many of them use machine learning on
massive data collected from users’ history usage. Despite the
progressively improved algorithms, recommender systems are
still facing problems such as lack of accuracy [150], lack of
trust [163], and being “annoying” for not being aware of the
real situation [2].

At first glance, BIGFile resembles a recommender system: it
uses the user’s history as priors and presents estimated short-
cuts that users might be interested in. However, unlike recom-
mender systems, in the BIG framework, the system is not try-
ing to predict the most relevant items at the time, but tries to
maximize the expected information gain. It might not neces-
sarily show the items with the highest likelihood of being the
target, but provides the approximately equiprobable items to
estimate the final target. The simulations and controlled experi-
ment in Chapter 11 have illustrated the effectiveness of the BIG
approach in comparison to the best-of-breed prediction algo-
rithm [59].

12.3 future perspectives

Despite the effectiveness of the BIG approach demonstrated by BIG-
nav for multiscale navigation and BIGFile for hierarchical file retrieval,
a number of improvements for these two particular cases as well as
several opportunities for the framework at large arise.
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12.3 future perspectives

BIGnav: In addition to the potential improvements that are men-
tioned in the discussion section of Chapter 9, namely using anima-
tion and combining BIGnav with standard pan and zoom, we can
also regularize the search to compute the locally maximal expected
information gain. As discussed earlier, BIGnav searches the entire in-
formation space, which can result in long-distance jumps between
views. Regularizing the search area should therefore reduce the in-
creased cognitive load. Moreover, we could allow users to stop the
transition to the next view if they notice that BIGnav is going in the
wrong direction, through more dynamic control.

BIGFile: As discussed in Chapter 11, even though BIGFileFast out-
performs AccessRank [59], we would like to evaluate BIGFileFast
with AccessRank with the stability parameter and potentially repeated
user behavior. As BIGFileFast is a general algorithm that can be ap-
plied to navigate any hierarchical tree structure, its potentials should
be explored in other applications. In addition, BIGFile should be eval-
uated in a longitudinal study to see whether and how it scales in
realistic settings.

BIG: BIG is a general framework that can be utilized in many in-
teraction tasks (Fig. 24). Once the potential targets Θ and their prob-
ability distribution p(Θ), system feedback X, user input Y, and user
behavior p(Y = y|Θ = θ,X = x) are modeled, one can always com-
pute the actual information gain, or the information carried by the
user input informing the computer of what she wants. In addition to
maximizing the expected information gain (BIGnav) and leveraging
the expected information gain (BIGFile), we can also combine the in-
formation criterion with other utility functions. Furthermore, the user
behavior model can be personalized to account for individual behav-
ior and can change over time.

BIG offers an operationalized framework that applies to human-
computer communication in general. The information-theoretic no-
tion of information (entropy) is a value capable of measuring a
startling array of things – from the flip of a coin, to a telephone call
and to human-computer interaction. It helps us better understand
how information is exchanged and how technology can play a more
active and “intelligent” role in the interaction, leading to more effec-
tive human-computer partnerships.

——————-

“Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?”

- T.S. Eliot
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Part III

I N F O R M AT I O N - T H E O R E T I C M E A S U R E S F O R
C H A R A C T E R I Z I N G I N T E R A C T I O N

This part builds on and extends the two previous parts.
Users send information to the computer, therefore, an in-
teraction task can be described using information-theoretic
terms: how much information can be transmitted (entropy);
how much information is successfully transmitted (mu-
tual information); and what is the rate of successfully trans-
mitted information (throughput).

I first introduce the information-theoretic measures to char-
acterize an interaction task and demonstrate them in the
context of command selection and text entry, comparing
the information-theoretic notion of throughput with two
existing definitions of throughput. By doing so, I further
elaborate the benefits of using this framework to quan-
tify the information transmission process from a user to a
computer via an input device and an interface.





13
M O T I VAT I O N

Part i and part ii have shown a number of similar ideas from the lit- The work presented
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erature that describe an interaction task involving a user, a computer,
an interface and an input device with information-theoretic terms:

• Pointing: Two different throughputs [26, 138, 222] have been
proposed to characterize the performance rate in aimed move-
ments in bits per second (Part i).

• Text Entry: Text entry techniques, such as Dasher [137], which
features an average text entry rate of 4.8 bits per second (Part i).

• Full-body information capacity: Oulasvirta et al. [164, 191] stud-
ied human control of continuous sensors and estimated through-
put from 24 to 37 bits per second in a cyclical tapping experi-
ment with a mouse (Part i).

• Sonic interaction: Berdahl et al. [14] focused on users control-
ling sound using continuous analog sensors and found that
channel capacity for controlling a single, continuous sensor as
high as 4 or 5 bits per second (Part i).

• Multiscale navigation & hierarchical file retrieval: BIGnav [134]
reduces uncertainty by 0.88 bits on average in the controlled ex-
periment while BIGFile [135] gains 1.27 bits per user input on
average (Part ii).

Additionally, Roy et al. [181] compared two command selection
techniques on touchscreen (Fig. 62) and analyzed data in information-
theoretic terms 1. In the communication channel considered in their
study, a user serves as the source of information with her hand as the
information emitter, and transmits information to the system with the
touch screen as the receiver of the coded message. The code shared by
the source (the user) and the destination (the system) is the mapping
of a set of touch events to a set of commands. Roy et al. hypothesized
that the transmitted information levels off, as in absolute judgment
tasks [153], and that throughput as a function of command entropy is
bell-shaped (Fig. 63).

1 See Part i Chapter 4.
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motivation

However, Guiard et al. [90] only provide theoretical discussions,
which need to be complemented by experimental evidence. They also
do not illustrate how such theoretical measures can be applied to in-
put methods beyond pointing.

Building on previous studies and extending Guiard et al. [90], I ad-
vocate for the use of information-theoretic measures to characterize
an interaction task. I first introduce each element in this framework
and illustrate how these measures can be used in tasks beyond point-
ing: command selection and text entry, comparing the information-
theoretic notion of throughput with two existing definitions of
throughput. I demonstrate the benefits of using the information-
theoretic measures to quantify the information transmission process
from a user to a computer via an interface and an input device, which
provides a coherent description of the task and allows conducting
controlled experiment without deliberately controlling error rate. I
also outline other possibilities for using the theoretically justified mea-
surements to investigate and design interaction.

The contribution of this part lies in illustrating the advantages of
these measures and promoting the use of information theory as a
unified tool to characterize interaction.
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14.1 input entropy H(X)

The input received by the computer is modeled as random variable
Y, which also takes values in {x1, x2, ..., xn}. Since there is noise Z,
which can come from the user’s head, motor movement, or computer
decoding, the input Y received by the computer does not always equal
the input X sent by the user, therefore, there are errors, represented
by random variable E:

E =






0 if X = Y;

1 if X 6= Y.
(40)

The probability of error Pe = p(X 6= Y) representing the error rate
has binary entropy:

H(E) = −Pe log2 Pe − (1− Pe) log2(1− Pe). (41)

14.1 input entropy H(X)

Using Equation 1, input entropy H(X) captures how much informa-
tion there is for the user to transmit. It is the maximum amount of
information that could be transmitted in a given interaction scenario
and it corresponds to the input size and the probability distribution

of the inputs. The bigger the input size, or the more non-uniform the
probability distribution, the higher the input entropy, and the more
information can be sent.

A simple example considers a 4-item menu {“copy”, “paste”, “edit”,
“share”}. If the user uses all items equally, then the amount of in-
formation is maximum: H(X) = log2 4 = 2 bits. If p(X = x) cor-
responds to {“copy” = 1

2 , “paste” = 1
4 , “edit” = 1

8 , “share” = 1
8 },

then the information in this context is H(X) = −
∑4

i=1 pi log2 pi =
1
2(−1) + 1

4(−2) + 1
8(−3) + 1

8(−3) = 1.75 bits. If there are more items,
e. g. 8 equiprobable items, then the information is H(X) = log2 8 = 3

bits. This information expresses how uncertain the computer is about
the user’s input. An extreme case would be {“copy” = 1, “paste” = 0,
“edit” = 0, “share” = 0}, meaning that the user only accesses the
item “copy”, then the information transmitted from the user to the
computer is H(X) = 0: the computer has zero uncertainty about the
user’s input and knows exactly what the user would like to do.

14.2 transmitted information I(X ; Y )

Since there is noise Z in the channel, the received input Y by the com-
puter does not always equal the intended input X. The successfully
transmitted information is captured by mutual information (Equa-
tion 2).
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14.3 transmitted information rate T P

For instance, in the aboved-mentioned case where all 4 items are
equiprobable {“copy” = 1

4 , “paste” = 1
4 , “edit” = 1

4 , “share” = 1
4 },

the information the user can transmit is 2 bits. In the following se-
quence of inputs [“copy”, “paste”, “copy”, “paste”, “edit”, “share”,
“edit”, “share”], the user made an error for the 5th input (“edit”):
she wanted to input“share”. Then we can compute mutual informa-
tion I(X; Y) = 1.656 bits 1. The transmitted information percentage is
therefore I(X; Y)/H(X) = 1.656/2 = 82.8%. Roughly 82% of informa-
tion gets successfully transmitted from the user to the computer. This
measure of how much information the user actually transmits is sim-
ilar to, but different from, the accuracy measure, which in this case is
7/8 = 87.5%.

14.3 transmitted information rate T P

Throughput captures the successfully transmitted information rate.
It is computed by dividing the amount of successfully transmitted
information I(X; Y) by the average time T required to transmit such
information and is measured in bits per second: TP =

I(X;Y)
T (Equa-

tion 6).
For instance, if the user takes 1.5 seconds to complete the series

of above-mentioned inputs on average, then we can compute the
throughput TP = I(X; Y)/T = 1.656/1.5 = 1.104 bits per second. The
transmitted information rate from the user is then 1.104 bits per sec-
ond. Throughput quantifies the information transmission efficiency
for an interaction task and combines speed and accuracy into one
single measure. In addition to the individual speed and accuracy di-
mensions, throughput accounts for the speed-accuracy tradeoff. For
instance, if we have one technique that transmits more information
than the other but takes longer, we can compare the information
transmission rates to decide which technique is better in terms of
speed-accuracy tradeoff, or information transmission efficiency.

14.4 equivocation H(X |Y )

Equivocation H(X|Y) captures the information loss in the transmis-
sion process and describes the uncertainty the computer has about
the user’s intended target given what is the actual input. It is com-
puted by the difference between how much information the user
could have transmitted (input entropy) and how much information
the user actually transmitted (transmitted information), as indicated
by Equation 2. In the above-mentioned case, the equivocation H(X|Y) =

H(X) − I(X; Y) = 2− 1.656 = 0.344 bits.

1 https://github.com/wanyuliu/Information-Theoretic-Metrics/ includes python
code for computing all metrics of the examples in this part.

147

https://github.com/wanyuliu/Information-Theoretic-Metrics/


14.5 advantages of the information-theoretic measures

Equivocation gives much more information about how the user
makes errors in comparison to the commonly used error rate Pe.
Imagine that the user wants to select the item “edit” 4 times in a
row and consider the following 2 scenarios:

• She successfully selects “edit” twice and selects the left neigh-
boring item “paste” and the right neighboring item “share” once
each due to hand jitter.

• She successfully selects “edit” twice and hits two random items
far away from the intended one.

The error rate Pe is 0.5 in both cases but it is relatively easier to
recover the intended input X from the actual input Y in the first case,
therefore equivocation is lower in the first case than in the second.
Equivocation not only illustrates the fact that information gets lost
in the transmission process but also how it gets lost, therefore poten-
tially helping to recover the true message. We will discuss the use of
equivocation in intelligent text entry in Chapter 16.

14.5 advantages of the information-theoretic measures

Using these information-theoretic measures has several advantages:

• They provide a standard language to characterize an interac-
tion task. Input entropy H(X) captures how much information
can be transmitted; Transmitted information I(X; Y) captures
how much information the user actually transmits; Equivoca-
tion H(X|Y) captures how much information gets lost in the
transmission process and it is related to how the user makes
errors; Throughput TP quantifies the information transmission
efficiency and characterizes the speed-accuracy tradeoff.

• They are rooted in information theory with solid theoretical
foundations. They (a) capture the distribution aspect of an in-
teraction task, which has not been taken into account before; (b)
they provide a more consistent description of the task when con-
ditions are changed; and (c) they can be reasoned about using
mathematical tools.

• In particular, throughput provides a way of avoiding the pitfall
of the classic methodology of performance evaluation: to delib-
erately control experimental conditions in order to have error
rates close to a reasonable minimum, usually below 4%, result-
ing in performance measures characterized only by speed. Such
method is widely used in pointing (e. g. [138]) and text entry
(e. g. [53]). Throughput offers an accurate and principled way of
combining the speed and accuracy dimensions of performance.
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14.5 advantages of the information-theoretic measures

• Equivocation provides information about how users make er-
rors. The more errors, the more random the errors, the higher
the equivocation. On the other hand, the familiar error rate is
a rather coarse measure of accuracy. Insensitive to possible pat-
terns, error rates convey no information on the sorts of errors
users are prone to make [7]. Only by knowing how users make
errors, can we learn from user behavior and design interaction
with intelligent error correction approaches.

These measures can be applied and generalized as long as the fol-
lowing are known:

• X: A set of all possible messages (the intended inputs) that a
user can transmit;

• p(X): The probability distribution of the intended inputs;

• Y: The actual inputs, which take values in X;

• T : The time required for a user to transmit the messages.

In the next two chapters, I demonstrate how to use these measures
as well as their benefits in the context of command selection (Chap-
ter 15) and text entry (Chapter 16). Then I discuss other opportunities
for future work in Chapter 17.
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15
C O M M A N D S E L E C T I O N

Selecting commands is one of the most common interactions in graph-
ical user interfaces and menus are widely used for exploring and
selecting them. Given their prevalence and importance, menus have
motivated many studies in HCI, including more than 60 new menu
techniques during the last two decades (see Bailly et al. [8]). Con-
ceptually speaking, menus offer a set of options where selecting and
executing one (or more) of the options results in a change in the state
of the interface [94]. They provide a straightforward approach to ap-
ply the information-theoretic measures as we know the input size X:
The items in a menu; p(X): The distribution of how each item is used;
Y: The actual input on the menu and T : The time it takes to select a
menu item.

This chapter demonstrates how the information-theoretic measures
are used in the context of command selection. It includes:

• Simulations to explore how conditions affect the measures, com-
paring the information-theoretic notion of throughput with two
existing definitions;

• Data reanalysis of existing command selection datasets to demon-
strate the coherence of the information-theoretic notion of
throughput in responding to the interaction task;

• A controlled study that investigates the information-theoretic
measures with real users and reasons about their characteristics
using information-theoretic concepts.

15.1 simulations

The goal of simulations is to explore how changing conditions af-
fects the information-theoretic measures. Particularly, we compare
the information-theoretic notion of throughput with two existing def-
initions of throughput, discussed in Part i Chapter 3, both of which
only apply to pointing:

• Equation 14 from Mackenzie [141].

• 1/b from Card et al. [26] and Zhai [222].
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15.3 controlled study

15.3 controlled study
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cess is rooted in information theory, we can use mathematical tools
to reason about the properties of the measures. This work is inspired
by the study by Roy et al. [181] where the information-theoretic mea-
sures are used to illustrate the differences between two interaction
techniques when the number of inputs, which they call input vocab-

ulary and command’s entropy, increases. As Roy et al. [181] focused
on comparing these two techniques (Fig. 62), they hypothesized that
the leveling-off effect of the transmitted information is similar to ab-
solute judgment tasks 3 [153], and that throughput as a function of
command’s entropy is bell-shaped (Fig. 63).

To investigate and analyze these phenomena theoretically, I de-
signed and conducted an ad-hoc command selection experiment. This
section reports on this experiment and provides a theoretical analysis
for the above hypotheses.

15.3.1 Data Collection

15.3.1.1 Participants and Apparatus

Twelve volunteers (1 female), age 23 to 31 (mean = 26.6, σ = 1.9), were
recruited from our institution. All of them were right-handed and in-
teracted with WIMP interfaces regularly.

The experiment was conducted on a Macbook Pro with a 2.7 GHz
processor, 8 GB RAM and resolution at 227 pixels per inch. The soft-
ware was implemented in Java and the experiment window was 600

× 400 pixels. The targets representing the commands were displayed
at the top of the window as a row of adjacent rectangles. The total
area covered by the targets was 256 pixels wide and 30 pixels high.
The width of the targets depended on the experimental condition. A
circle positioned 150 pixels down below the target area was used to
reset the cursor position of each trial. A standard mouse was used
with the same sensitivity for all participants.

15.3.1.2 Task, Stimulus and Design

In response to a visual stimulus, participants were instructed to click
on the highlighted target command (Fig. 76 (a)) as fast and accurately
as they could. If they correctly hit the target command, it turned
green (Fig. 76 (b)). Clicking on a non-target command would turn
it red. In both cases the trial was complete after a single selection.
The cursor was reset at the same position at the start of each trial.

3 See Part i Chapter 2.
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15.3 controlled study

15.3.3 Information-Theoretic Analysis

We provide an information-theoretic analysis for (a) why mutual in-
formation should level off; and (b) why throughput should be a bell-
shaped function of the input entropy in the given scenario. As in
Chapter 14, X is the intended input, Y is the actual input, Z is the
noise in the information channel and E is the errors.

As Equation 2 indicates, mutual information is the difference be-
tween the input entropy H(X) and equivocation H(X|Y) of the input
given the output: I(X; Y) = H(X) −H(X|Y). The conditional entropy
equivocation is a measure of the uncertainty about X knowing Y; but
if we know Y, the uncertainty on the noise Z is the same as that on X,
so we can rewrite Equation 2 as:

I(X; Y) = H(X) −H(Z|Y). (42)

Here H(X) = log2M. We now would like to bound the penalty
term – equivocation – H(Z|Y) in the transmitted information. Since
the knowledge of the output Y reduces the uncertainty on the noise
Z (conditioning reduces entropy [34, Theorem 2.6.5]), we have:

H(Z|Y) 6 H(Z). (43)

In other words, equivocation does not exceed the entropy of the
noise. Thus it is the noise’s entropy that penalizes the transmitted in-
formation.

In our experiment, users make errors as defined in Equation 40,
and we can use the chain rule [34, Theorem 2.2.1]: H(Z) = H(Z,E) =
H(E) +H(Z|E) where:

H(Z|E) = Pe×H(Z|E = 1)+ (1−Pe)×H(Z|E = 0) = Pe×H(Z|E = 1).

(44)

since there remains no uncertainty on the noise Z if there is no er-
ror (E = 0). Combining the above, we find that the equivocation is
bounded by:

H(X|Y) 6 H(E) + Pe ×H(Z|E = 1). (45)

This is known in information theory as Fano’s inequality [34, The-
orem 2.10.1].

Here H(E) is given by Equation 41 and is at most one bit (when
Pe = 0.5). Hence making errors penalizes the amount of transmitted
information by at most one bit. However, considering the second term
of Equation 45, the uncertainty on “wrong selections” H(Z|E = 1) in-
curs an additional penalty on the amount of transmitted information:
how users make errors, not just the fact that they make errors, affects
the amount of transmitted information.
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15.3 controlled study

In our case, errors are clustered near the actual target, hence the en-
tropy of the noise is lower than if they were evenly distributed. The
relationship between error rate Pe and H(X|Y) observed from empiri-
cal data matches exactly the above illustration as shown in Fig. 77 (d).
We can now reason as follows:

• For small M: users do not tend to make errors, H(E) ≈ 0 and
Pe ≈ 0, therefore H(X|Y) is close to zero or remains very small
when the error rate is low. So I(X; Y) increases with H(X) =

log2M;

• For large M: we tend to have Pe = 1, H(E) = 0, users cannot
make a correct selection, but the errors are clustered around
the target as in pointing tasks [219]. Doubling the number of
commands from M to 2M adds 1 bit to the input entropy, but
since the error area around the correct target is approximately
the same physical size, the number of possible errors is also
doubled. Hence the equivocation is also increased by 1 bit. In
our data, the possible errors in condition 128 are 1-3 around the
target while in condition 256 they are 1-5 around the target,
which corresponds approximately to the same physical area.
As a result, the amount of transmitted information I(X; Y) =

H(X) −H(Z|Y) is not increasing any more and levels off as illus-
trated in Fig. 77 (a).

Combining this analysis with movement time, we can now turn to
the theoretical analysis of the throughput TP:

• For small M: log2M is also small, and movement time is dom-
inated by the intercept, hence can be considered as approxi-
mately constant. TP increases slowly with the input entropy;

• For large M: movement time grows linearly with log2M, and
transmitted information I(X; Y) levels off. Hence TP gradually
decreases as demonstrated in Fig. 77 (b).

However, we should distinguish the ceiling effect of transmitted
information in our case from that in absolute judgment tasks [153].
Roy et al. claimed that they have the same characteristics but in our
case, the errors made by users are around the target since they can
see where it is, and therefore H(Z) is only a few bits. In absolute
judgment tasks, since the key phenomenon is that human short-term
memory has a limited capacity, one would expect that when the
number of randomly ordered stimuli increases, H(Z) gets close to
log2(M− 1) as Y can take any value in {1, 2, . . . , M}. If this were the
case, mutual information I(X; Y) should go down, instead of leveling
off as I(X; Y) ≈ log2M− log2(M− 1) at first order when M is very
large. Since input entropy never gets very large in this type of tasks,
the phenomenon is thus never observed. This would require further
investigation in the context of absolute judgment tasks.
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15.3 controlled study

15.3.4 Summary

In summary, in command selection tasks, the amount of transmitted
information gradually increases with input entropy until it reaches
its capacity, and then levels off. Correspondingly, TP demonstrates
a bell-shaped behavior, increasing to reach a maximum and then de-
creasing. This maximum (corresponding to an entropy of 5 bits, i. e. 32

commands in our experiment) provides the optimal input size for the
given selection technique.

Following Soukoreff and MacKenzie [198], who argue that people
are imperfect information processors, this experiment demonstrates
that when input entropy increases, users tend to make more errors,
which leads to the above-mentioned behavior of transmitted informa-
tion and throughput. However, we should be aware that this is just
one particular case because of the specific conditions of most HCI
experiments including the one reported in this section:

• Participants are instructed to move as fast or as accurately as
they can, sometimes both. We can imagine that if they could
take their time to complete the task, the error rate would be
always low, therefore the mutual information I(X; Y) would al-
ways increase with H(X).

• Since the stimulus is often visual, the errors are around the real
target, which causes the leveling off effect of transmitted infor-
mation. If errors were different, equivocation would be different,
and the transmitted information would be different.

The theoretical formulations have shown that it is not just the fact
that users make errors, but how they make errors, that affects the
transmitted information, which is in turn tightly related to both the
experimental design and the instructions to the users. In this case,
equivocation H(X|Y) can help us better understand the nature of er-
rors, which is not captured by the commonly used error rate Pe,
and potentially inform the design of error correction schemes. In the
next chapter, I apply the information-theoretic measures to text en-
try, demonstrate the computation of conditional input entropy and
discuss the effects of auto-correction.
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16
T E X T E N T RY

I have outlined the statistical language processing concept in Part i,
Chapter 5. Although text entry is modeled as communication over
a noisy channel, the information-theoretic measures have not been
widely adopted for describing text entry behavior. Instead, text entry
is often characterized by words per minute (WPM), keystrokes per
character (KSPC), Levenshtein string distance (LD), etc. (See Part i,
Chapter 5).

This chapter attempts to apply the information-theoretic measures
to text entry. It first introduces how to estimate these measures us-
ing conditional entropy and demonstrates the implementation of an
intelligent statistical decoder for auto-correction. Then it presents a
set of simulations where the information-theoretic measures are com-
pared with the conventional text entry measures and the information-
theoretic notion of throughput is compared with the two other defini-
tions of throughput. I also report on a pilot study with real users to
explore the measures in a more realistic setting, as well as the effect of
auto-correction. Note that the study in this chapter is still preliminary.
It calls for further investigation.

16.1 conditional input entropy

Similar to command selection, we need to model the intended in-
put X, the probability distribution p(X) describing X, the actual input
Y and the time it takes to transmit the messages. However, unlike
command selection, where one command changes the status of the
interface, text entry involves typing a sentence that includes a string
of letters and special characters. I therefore define a series of random
variables Xi that represent the character that a user is supposed to
type at time i. Instead of considering all 26 letters and special char-
acters, here I use a simplified example (Fig. 78): Xi takes values in
{a,b, c,d, “ ′′} where “ ” represents a space. Random variable Yi rep-
resents the character that a user actually types at time i. It also takes
values in {a,b, c,d, “ ′′}. In Fig. 78, one can also use back to erase the
incorrect characters or use next to transcribe the next sentence.
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16.2 intelligent statistical decoder

16.2 intelligent statistical decoder

As discussed in Part i, Chapter 5, text entry is an integral activity
in our daily life, therefore there has been a number of intelligent text
entry methods that strive to improve text entry rate [165]. These meth-
ods infer or predict the user’s intended text by exploiting redundan-
cies in natural languages to increase users’ ability to communicate as
quickly and as accurately as possible.

Auto-correction is one of those methods. Its principal purpose is
to correct common spelling or typing errors. If it corrects user input
correctly, it saves time compared to doing it manually. On the other
hand, if the algorithm corrects it in a wrong way, it is very costly as
the user needs to correct the auto-correction before moving on 2.

The information-theoretic measures can be used to investigate the
effect of auto-correction. To do so, I implemented a substitution-only
statistical decoder using the token passing method [165, 221] on the
7-key keyboard (Fig. 78). Since text entry is inherently noisy and un-

certain, text entry decoding approach aims to find the most probable
message Y given the intended message X. This conditional probability
p(y|x) is computed from Bayes’ rule:

p(Y = y|X = x) =
p(X = x|Y = y)p(Y = y)

p(X = x)
.

The most probable message Y is then arg max
Y

[
p(X=x|Y=y)p(Y=y)

p(X=x)
].

Since the decoder is only attempting to identify the message that max-
imizes the posterior probability, the denominator is just a normaliza-
tion constant and will be invariant under the search. It can therefore
be ignored: arg max

Y

[p(X = x|Y = y)p(Y = y)] where p(X = x|Y = y) is

the likelihood of the input message X = x given a particular hypoth-
esis for Y = y and p(Y = y) is the prior probability of the message
Y = y without taking the input message into account. The objective
of the decoder is therefore to identify the most probable hypothesis
for the observation sequence Y = {Y1, Y2, ...Yi}.

Similar to Fig. 20 in Part i Chapter 5, we decode an observation
sequence of length i by starting with a single initial token, which
predicts the empty string ǫ with 1.0 probability for observing zero
observations (Fig. 80).

2 The growing use of auto-correction on smartphones has also led to the creation of
several websites, e. g. http://www.damnyouautocorrect.com, where people post and
share humorous or embarrassing cases of improper auto-corrections.
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16.3 keyboard simulations

By adjusting the pre-transcribed sentences, we can simulate two
scenarios: (a) a wrong input is auto-corrected to a correct one and (b)
a correct input is auto-corrected to an incorrect one. Both cases will
be illustrated next with simulations.

16.3 keyboard simulations

In this section, I use the 7-key keyboard example (Fig. 78) to ex-
plore the characteristics of the information-theoretic measures. The
height and the width of each key are adjustable and the language
model L is used. Transmitted information before starting the simula-
tion is set to 1. Conventional text entry measures including words per
minute (WPM), error rate, and keystrokes per character (KSPC) are
computed the same way as in Part i Chapter 5. Since Fitts’ law is also
used to model pointing behavior in text entry, we can compare the
information-theoretic notion of throughput with the two definitions
of throughput from Chapter 15: TPm = IDe/MT where IDe is the
effective index of difficulty and MT is movement time (Equation 14)
and throughput TPz = 1/b where b is the slope of Fitts’ law. As in
Chapter 15, Fitts’ law constants are a = 0.37 and b = 0.13 (from [33]).

The pointer is set at the center of the next key at the beginning of
the simulation.

Three settings are investigated:

1. The size of the keys is varied and there are no errors.

2. There are uncorrected errors.

3. An intelligent decoder is in the loop.

16.3.1 No Errors

In the first simulation, I assume that users perfectly transcribe the
intended sentence, but use different key sizes, therefore I compare
movement times. Three cases are considered: (a) small keys (width
× height = 4× 2); (b) regular keys (width × height = 5× 5) and (c)
large keys (width × height = 10× 10) (Fig. 82). Obviously, it is more
difficult to type with small keys (a) than with large keys (c). When no
errors occur, the information-theoretic notion of throughput should
be higher with large keys (c) than with small keys (a). The intended
sentence is “ad cb aac” as shown in Fig. 82. The simulation ran 10

perfectly transcribed sentences for each of the three cases along with
the time for each key press.
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16.3 keyboard simulations

In the first case, since all 3 errors are the same, the equivocation
is low and there is a certain probability for receiving “b” when it is
supposed to receive “a”. In contrast, in the second case, “b”, “c” and
“d” are received once each when “a” is expected, so it is difficult to
recover the intended input from the received characters. The equivo-
cation is high in the second case, and the transmitted information is
low compared to the first case. On the other hand, how the errors are
made is not reflected in the classical measures (Table 11). Fig. 83 (b)
also shows the comparison among the three measures of throughput
and we can see that neither TPm nor TPz account for the randomness
of errors.

16.3.3 Auto-correction

We can also use the information-theoretic measures to investigate the
effect of auto-correction on text entry. I simulated 3 scenarios using
the keyboard with regular-sized keys (Fig. 82 (b)):

1. There is no intelligent decoder in the loop: users mistype a char-
acter, use back key to erase it and retype the correct one;

2. There is an intelligent decoder in the loop: users mistype a
character, which is then auto-corrected correctly by the auto-
correction method;

3. There is also an intelligent decoder in the loop: users correctly
type a character, which is then auto-corrected incorrectly so that
users need to correct the auto-correction and then retype the
correct character.

Table 12 summarizes the measures in three scenarios.

No Auto-

correction

Correct Auto-

correction

Incorrect Auto-

correction

Total Time (s) 4.4 3.5 4.8

Input Entropy (bits) 32.8 32.8 32.8

Transmitted Information (bits) 32.8 32.8 32.8

Transmitted Information (%) 1.0 1.0 1.0

Throughput (bit/s) 7.5 9.4 6.8

Words Per Minute 21.8 27.4 20

KSPC 1.25 1.0 1.38

TPm (bit/s) 2.3 2.6 2.4

TPz (bit/s) 7.7 7.7 7.7

Table 12: A summary of different measures on the simulations with or with-
out auto-correction.
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16.4 pilot study

16.3.4 Summary

These simulations demonstrate that the information-theoretic mea-
sures provide consistent results compared with the conventional text
entry measurements. When there are no errors, the information-
theoretic notion of throughput TPi illustrates the speed dimension,
similar to words per minute (WPM). When errors are involved, TPi
accounts for the randomness of errors, which is not captured by the
classical error rate. The information-theoretic measures also provide
a way to examine the effect of auto-correction, namely that having an
incorrect auto-correction is more costly than correcting errors manu-
ally while having a good decoder keeps the text entry rate constant.
By contrast, the other two definitions of throughput do not account
for the randomness of errors, nor auto-correction in the loop, nor the
speed-accuracy tradeoff, as will be demonstrated in the next section.

16.4 pilot study

To investigate the information-theoretic measures on text entry in a
more realistic setting, I recruited nine participants, age between 24

and 33 (mean = 27.2, σ = 2.1) from our institution. All of them were
right-handed, interacted with WIMP interfaces regularly and were fa-
miliar with auto-correction methods. The pilot study was conducted
on a Macbook Pro with a 2.7 GHz processor and 8 GB RAM. The pro-
gram (Fig. 78) was implemented in Python 3.6 using the Tkinter GUI
toolkit 3. The same language model L and the keyboard with regular-
sized keys (Fig. 82 (b)) were used to allow the comparison between
the results from this study and those of the simulations. A standard
mouse was used with the same sensitivity for all participants.

Three conditions were considered:

1. No auto-correction. Intended sentence: “ad cb aac” (as in Fig. 84);

2. A good decoder that corrects errors correctly. Intended sentence:
“cba dda b” where all three ‘words’ will be correctly corrected
if wrongly transcribed;

3. A bad decoder that corrects the right characters wrongly. In-
tended sentence: “b cd aadc” where the last ‘word’ will be in-
correctly corrected even if correctly transcribed.

Before each condition, participants spent some time familiarizing
themselves with the interface. They were then instructed to transcribe
as fast and as accurately as possible. Note that unlike most text entry
experiments, e. g. Feit et al. [53], we do not control error rate, so as to
assess the speed-accuracy tradeoff.

3 https://docs.python.org/3/library/tk.html

177

https://docs.python.org/3/library/tk.html




16.5 summary

In the first condition, when auto-correction is not involved, par-
ticipants corrected incorrectly transcribed characters (corrected error
rate 5%), resulting in transmitted information equal to input entropy.
Since there are corrections, which usually involves correcting the in-
correct character only, KSPC is greater than but close to 1. In the
second condition, when a good decoder is in the loop, participants
did not need to correct errors themselves. However one participant
typed a wrong character, which was automatically corrected, but he
then deleted the correction and retyped it (KSPC averages 1.06). In
the third condition, when a bad decoder is used, the error rate is the
highest (14%). This is due to both uncorrected errors and corrected er-
rors. Seven participants saw the incorrect corrections, corrected them
and then retyped the correct character. Two participants even deleted
and retyped the whole word (KSPC averages 1.54) (Fig. 86 (b)). An-
other two participants did not see the incorrect auto-correction, so
the errors were left in the final transcribed sentence, leading to uncor-
rected errors.

This is also reflected in the information-theoretic measures. When a
good decoder or no decoder is involved, the transmitted information
equals input entropy as all errors have been corrected. This is in con-
trast to the condition when a bad decoder is involved: only 88% infor-
mation is successfully transmitted. A good decoder also saves error
correction time, therefore has the highest throughput than no auto-
correction condition, which has higher information transmission effi-
ciency than when a bad decoder is in the loop. These results echo the
previous simulations where correcting auto-correction is very costly.
On the other hand, the other two definitions of throughput exhibit op-
posite behaviors (Fig. 86 (a)). As in Chapter 15, this is due to the fact
that pointing is no longer a dominating element in this task, therefore
the two pointing-oriented definitions of throughput can no longer
capture the information transmission efficiency.

16.5 summary

This is but a first step to demonstrate how the information-theoretic
measures can be applied in the context of text entry, which is one of
the most common but complex tasks that we encounter on a regu-
lar basis. I showed how to compute each measure using conditional
entropy based on a language model, compared these measures with
conventional text entry measures as well as the two definitions of
throughput, and discussed the effect of auto-correction on text entry.
Results from simulations as well as the pilot study show several ben-
efits of using the information-theoretic measures to characterize text
entry:
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16.5 summary

• The information-theoretic measures show consistent results
compared to the conventional text entry measurements. Also,
the computation of these measures is easy due to the availabil-
ity of statistical language processing;

• Using the information-theoretic notion of throughput, researchers
do not need to deliberately control error rate when running ex-
periments, which offers a more holistic picture of the speed-
accuracy tradeoff;

• Using equivocation, we can also better exploit the distribution
of errors, and by understanding it, we can improve the text en-
try rate by designing better auto-correction and other decoding
approaches.

The studies reported in this chapter are preliminary and have sev-
eral limitations. More work is needed, for instance, to investigate the
role of the language model in estimating input entropy and how to
design more intelligent decoders by incorporating equivocation. In
the next chapter, I discuss these limitations and outline future oppor-
tunities using the information-theoretic measures.
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17
D I C U S S I O N A N D F U T U R E P E R S P E C T I V E S

In this chapter, I discuss the two use cases in Chapter 15 and Chap-
ter 16 respectively, summarizing their advantages as well as limita-
tions. I then outline opportunities for future work using information-
theoretic measures to characterize human-computer interaction.

17.1 command selection & text entry

In order to compute the information-theoretic measures, we need to
have a set of intended inputs X associated with a probability distri-
bution p(X) describing the use of each input, as well as the actual
inputs Y received by the computer and the time T to transmit these
inputs (messages). As discussed in Chapter 15, command selection
provides a straightforward scenario to examine these measures. It
does not require measuring more than what we normally measure:
a series of experimental stimuli, the actual user inputs and the time
to complete the task. However, information theory lets us explore the
interaction task and interpret the results in terms of communication
efficiency. For speed, we use the traditional measure; for error, we
look at equivocation & information transmission percentage instead
of error rate; for speed-accuracy tradeoff, we look at throughput (in-
formation transmission efficiency). These measures had not been sys-
tematically considered before.

As shown in Chapter 15, equivocation tells us not only that there
are errors in the communication channel, but also how users make
errors, which is tightly related to the experimental setting and the in-
struction given to the participants. Throughput provides information
about the rate at which information can be transmitted using a cer-
tain input technique and/or interface. For instance, in Fig. 71 (a), the
information-theoretic notion of throughput shows that the semantic
organization of a 16-item menu leads to a higher information trans-
mission rate than an alphabetic organization, whereas in Fig. 71 (b),
the traditional time measure shows the same effect for both organi-
zations. In this case, throughput can help interaction designers make
more informed decisions. Additionally, throughput provides a bigger
picture of the speed-accuracy tradeoff, helping us better understand
human behavior in various conditions.
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17.2 future work

Text entry in Chapter 16 is another scenario that benefits from
applying the information-theoretic measures. First, Shannon himself
measured the entropy of the English language right after the introduc-
tion of information theory; Second, it is a tradition to consider text
entry as communication and language as information (bits); Third,
the redundancy in languages naturally provides a probability distri-
bution; Fourth, given the complexity of measuring text entry, a com-
mon practice for text entry experiments is to control error rate un-
der, e. g. 4%, therefore only the speed dimension is considered when
evaluating new text entry techniques or intelligent decoding methods.
In this respect, information theory seems appropriate to measure text
entry performance. Chapter 16 demonstrates how to use conditional
entropy extracted from a language model to measure input entry, as
well as the transmitted information to compute throughput. With the
7-key keyboard, I explored various characteristics of these measures,
demonstrating their coherence compared to conventional text entry
measures and their benefits over the other two definitions of through-
put.

There are certainly many other aspects of text entry that I did not
cover. First it should be applied to real text entry experiments com-
paring the information-theoretic measures with conventional metrics
without controlling error rate. To do so, we need to use a real lan-
guage model and a more sophisticated language modeling scheme.
For instance, Weir et al. used a language model trained from Twit-
ter, which has 94.6 M sentences, 626 M words, and 2.56 G characters,
as well as a character-based 7-gram language modeling scheme [212].
Furthermore, as mentioned in Part i, Chapter 5, there are at least 4

types of errors in text entry. I only considered the case of substitution
and have not yet explored how omission, insertion or transposition
affect the information-theoretic measures. Finally and perhaps most
importantly, since equivocation provides information about how er-
rors are made, it can certainly be used to improve intelligent language
decoding such as auto-correction and auto-completion.

17.2 future work

Command selection and text entry are merely two examples among
many where we can apply the information-theoretic measures to char-
acterize the interaction task. I demonstrated its advantages over con-
ventional metrics and I hope that it will inspire researchers to study
other tasks. Having a standardized language to examine interaction
across devices, platforms, user groups and domain would indeed be
most beneficial to the community at large.
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17.2 future work

We can consider any type of interaction is a way for the user to
transmit information to the computer. Similar to all communications,
the goal is to improve the communication rate, to have more infor-
mation delivered and to reduce the other party’s (here the computer)
uncertainty about what we want to express. Information theory pro-
vides a way to systematically investigate and characterize interac-
tion 1. There is still a lot we can explore, e. g. how to model con-
tinuous inputs such as gestures and how to model intended inputs at
all if they are not so straightforward to model. For instance, how
do we know what users want to write in daily life? Additionally,
what is the relationship between transmitted information percentage
I(X; Y)/H(X) and the commonly defined accuracy rate 1 − Pe? Can
they be rationalized using other information-theoretic concepts in ad-
dition to Fano’s inequality? To have closed-loop interaction, rather
than the current one-directional scheme, how can we involve feed-
back, which plays a key role in determining the user’s subsequent
input? The full spectrum of conceptual and practical benefits of Shan-
non’s information theory seems to have a lot to offer to HCI. I hope
the communication standpoint supported by ACM SIGCHI Curricu-
lum can truly become human-computer interaction guidelines.

——————-

“If you just communicate, you can get by.

But if you communicate skillfully, you can work miracles.”

- Jim Rohn

1 We provide the package to compute these information-theoretic measures at https:
//github.com/wanyuliu/Information-Theoretic-Metrics/.
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C O N C L U S I O N

This thesis strives to bridge the gap between information theory and
HCI by taking the stance that human-computer interaction can be con-
sidered as a communication process and therefore be characterized
using information-theoretic concepts. While the notions that humans
are capable of transmitting and exchanging information, that we are
bound by some information capacity, etc. have been around even be-
fore information theory was introduced, to the best of my knowledge,
this thesis is the first attempt at clarifying the scientific position of in-
formation theory in HCI.

In Part i, I introduced some basic information theory concepts and
a historical walkthrough of how information theory influenced exper-
imental psychology and HCI. It is rather interesting today to see how
experimental psychologists were swept by information theory back
in the 1950s. Indeed, information is everywhere and is vital for many
aspects of our lives. One can find many quotes about how informa-
tion is the key, everything is achievable when we are armed with
information. So think about what can be done when information is
quantifiable. In the 1950s, psychologists were fascinated by the abil-
ity to quantitatively measure how we transmit/process information.
However, information, or rather entropy, which is a measure of ran-
domness in information theory, has confused many brilliant minds at
the time. Information in information theory has absolutely no seman-
tic meaning and is entirely computed by the probability distribution
of a random variable.

Among many applications from psychology, Fitts’ law and Hick’s
law are some of the most important and relevant ones to human-
computer interaction. Fitts’ law has been used to model pointing be-
havior, one of the most prevalent interactions, and Hick’s law has
been used to model reaction time in response to a number of stimuli.
While these two laws are the closest link between information theory
and HCI, both are subject to several misunderstandings. In Part i, I
showed that there are still a number of remaining questions related
to Fitts’ law after 60 years of empirical validation and it is necessary
to rigorously examine them from an information-theoretic perspec-
tive. Moreover, the contradictory position of Hick’s law is probably
not due to the fact that the law is wrong, but to how we understand
and implement it. I showed that it has been used in many different
contexts where it is not supposed to be at work. More importantly,
rather than stamping a phenomenon with Hick’s name, we can better
benefit from having a well-defined taxonomy where different types of
measured time are described using correctly formulated mathemati-
cal representations.
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conclusion

Chapters 1, 2, 3 and 4 in Part i explained the elements of infor-
mation theory and how they were understood and applied in exper-
imental psychology, with the goal of understanding information the-
ory and its applications from a historical perspective. By doing so,
we can learn from prior studies and avoid making the same mistakes.
By examining how relevant Hick’s law is to HCI in Chapter 4, I il-
lustrated that it is important to understand what we are measuring
when we measure time in controlled experiments. I showed that sev-
eral time measures often overlap and it is difficult to tear them apart.
Therefore, we should be careful when describing time measures in
experiments. Chapter 5 examined the recent studies where informa-
tion theory plays a role with the goal of inspiring future work. Finally,
I believe that there is a great deal to learn from psychology, namely
the paradigm of stimulus-response compatibility. Since psychology is
tightly related to human-computer interaction and we cannot design
or study new interfaces or interaction techniques without understand-
ing users, we should probably take better advantage of what has been
learned by Psychology and how it can be applied in HCI.

After clarifying the indirect link between information theory and
HCI in Part i, Part ii and Part iii strived to provide novel perspectives
on the direct link between information theory and HCI. Part ii in-
troduces a Bayesian Information Gain framework based on Bayesian
Experimental Design using the criterion of mutual information to
quantify the information sent by the user to the computer and re-
duce the computer’s uncertainty about the user’s goal. Information
is defined in terms of the computer’s knowledge about what the user
wants. At the beginning of the interaction, the user has a goal and the
computer has some uncertainty about that goal. This uncertainty is
represented by the computer’s prior knowledge, expressed in a prob-
abilistic model. When providing feedback to the user, the computer
takes user input and updates its knowledge about what the user is
looking for. Therefore, the information carried by the user input is de-
fined as the knowledge gained by the computer about the user’s goal.

I showed two applications of BIG to multiscale navigation (BIGnav,
Chapter 9) and hierarchical file retrieval (BIGFile, Chapter 11). In both
cases, one can compute the information gained by the computer even
when using conventional interaction techniques. I showed that often
times the input sent by the user does not carry information to reduce
the computer’s uncertainty. By presenting the user with a view where
the expected information gain is maximized (in the case of BIGnav)
or leveraged (in the case of BIGFile), the computer can gain much
more information from each user input, therefore locating what the
user is looking for with a higher rate of information gain.
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conclusion

Bayesian Information Gain is a general framework that can be ap-
plied to many interaction tasks. In order to compute information, one
needs to model Θ, which represents the potential intended targets;
p(Θ), which represents the computer’s prior knowledge about the
user’s goal; X, which represents the possible system feedback and
Y, which represents the possible user input. Often times these three
random variables take values in a very large set, therefore the cost
of computing the optimal feedback is potentially very high. I showed
that discretizing the system feedback Y as well as user input Y re-
duced the sets, and I introduced a suboptimal algorithm to make the
computation tractable. I also proposed several ideas to make interac-
tion more comfortable and intuitive so as to increase both communi-
cation efficiency and usability.

Conceptually speaking, BIG is related to several other frameworks
such as mixed initiative systems, human-computer partnerships, and
co-adaptation. BIG enables collaboration between the user and the
computer to achieve shared goals and this collaboration is not pos-
sible without contributions from both parties. In line with all these
approaches that suggest that great opportunities lie between systems
that provide automatic services and systems where users are in full
control, BIG combines human intelligence with machine power to
reinvent interaction.

BIG is also an instance of probabilistic interface. Similar to other
probabilistic interface architectures that treat user input as an uncer-
tain process, BIG uses a user behavior model to represent the ambi-
guity of user input for the computer. In conventional settings, there is
no information-theoretic uncertainty for the user regarding the com-
puter’s behavior. However, when presenting a feedback to the user,
the computer is uncertain about what the user will do. BIG offers
non-deterministic system feedback and user interfaces that leverage
probabilistic models to better infer user intent by maximizing/lever-
aging the expected information gain. It opens the door to a wide
range of “BIG” applications and also a new era of probabilistic inter-
action.

Part iii extends these concepts and applies information theory to
characterize an interaction task at large. It is based on the idea that
since the user sends information to the computer, we can use
information-theoretic concepts to describe the maximum amount of
information that can be transmitted, the actual amount of information
that gets transmitted and the transmission efficiency. The information-
theoretic measures provide several advantages over the conventional
speed and accuracy metrics:
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conclusion

1. They allow HCI researchers to investigate the full spectrum of
speed and accuracy without deliberately controlling one dimen-
sion due to the lack of tool to combine the two (throughput);

2. The information-theoretic notion of equivocation provides much
more information about how errors are made in the interaction,
which can help design intelligent error correction approaches.

I demonstrated the advantages of using the information-theoretic
measures in command selection (Chapter 15) and text entry (Chap-
ter 16). Command selection provides a straightforward perspective
on how to compute X: The intended input, which is the possible com-
mands; p(X): The probability distribution of these commands describ-
ing their history of use; Y: The actual input, which is the actual com-
mands selected by the user; T : The time to select these commands.
I illustrated that the information-theoretic notion of throughput is
more consistent than the two existing definitions of throughput and
can be rationalized using mathematical tools. Since it provides a rig-
orous way to combine speed with accuracy, it can help make more
informed decisions in terms of speed-accuracy tradeoff for interac-
tion techniques and interfaces.

Text entry is another case where it is possible to apply the
information-theoretic measures for the reasons that (a) the redun-
dancy in natural languages provides the probability distribution for
the input and (b) Text entry behavior is complex and difficult to cap-
ture therefore error rate is usually deliberately controlled by the ex-
perimenter. With the information-theoretic measures, one does not
need to control the error rate but instead can fully explore the inter-
action between speed and accuracy as well as take further advantage
of how errors are made to devise intelligent text entry methods.

Using these information-theoretic measures to characterize interac-
tion also provides a direct link between information theory and HCI.
The communication between the user and the computer is truly mod-
eled as a channel and we characterize how much information can
be transmitted and how much information is actually transmitted.
To compute these measures, one does not need to collect more data
than is already done. Information transmission efficiency (through-
put) provides a standardized way to assess human-computer interac-
tion. Overall, these measures provide a standard language to charac-
terize interaction.
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17.0 looking forward

looking forward

This thesis is a first step towards using information theory as a unified
tool for understanding and designing human-computer interaction &
communication. It is just the tip of the iceberg: there is still a great
deal to explore and I hope to have demonstrated that the community
can benefit from such theoretically sound methods.

I have demonstrated how we can learn from the past, presented
a Bayesian Information Gain framework to quantify the information
sent by the user to the computer and illustrated the advantages of
using information-theoretic measures to characterize interaction. Sev-
eral avenues of future work present themselves: applying BIG to the
design or redesign of other interactions, refining the framework by in-
corporating user behavior in real time, and combining BIG with other
frameworks to construct the utility function. More generally, I see
great potential in exploring and applying the information-theoretic
measures to other interaction tasks, particularly those with continu-
ous inputs and taking further advantage of the notion of equivoca-
tion to devise more intelligent systems. In short, there is a vast space
of open research, and I hope this human-computer communication
standpoint can truly become a standard to guide future interaction
design.

——————-

“My greatest concern was what to call it. I thought of calling it

‘information’, but the word was overly used, so I decided to call it

‘uncertainty’. When I discussed it with John von Neumann, he had a better

idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In

the first place your uncertainty function has been used in statistical

mechanics under that name, so it already has a name. In the second place,

and more important, no one really knows what entropy really is, so in a

debate you will always have the advantage’.”

- Claude Shannon
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A P P E N D I X





A
A P P E N D I X

a.1 bignav experiment consent
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Information Theory in Understanding and Guiding  
Multiscale Navigation Experiment 

 
First of all, we express our sincere gratitude to you for participating in this experiment. You can find 
cookies and candies on the table. Please feel free to serve yourself. 
 
The goal of this study is to gain some insight into the role of information theory in understanding and 
guiding multiscale navigation. It applies in the scenario where users have already decided a destination 
and navigate to it. For instance, navigating to Paris from somewhere else. Different from traditional 
zooming and panning, it utilizes both human inputs and multiscale world characteristics to enhance 
navigation. 
 
There are two sessions in this experiment -- Calibration and Controlled Study. 
 
Calibration: 
The goal of this session is to better understand human behavior when zooming and panning in multiscale 
world. We are particularly interested in your perception regarding direction. For example, if you are 
aware that your destination -- a red dot, indicated by concentric rings, is on the right, what are the 
chances that you will go to right whereas what are the chances you will go to other directions due to 
misjudge, motor error, etc. We will then use the result to tune parameters in the real experiment. Sample 
trials are as below: 
 

 
 
Controlled Study: 
In this controlled study, your task is to navigate to the target that is in red from certain distance to 
completely zoomed-in level and right click on it. Concentric circles are placed around the target to always 
indicate the direction. You will encounter two conditions that represent conventional zooming and 
panning, and information theoretic navigation respectively. At the end of the experiment, you will be 
asked for the preference toward these two techniques. There will be 300 trials in total, taking 
approximately 60 minutes. PLEASE THINK LOUD  during the experiment. You can terminate it if you 
do not feel comfortable at any moment. Do not hesitate to ask questions to experimenter if you have any. 
If you are ready, please sign the consent form below and we can start the experiment. 
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Consent Form 
 
I agree to participate in the user study conducted by the Human-Computer Interaction group at Telecom 
ParisTech. 
 
I understand that participation in this study is voluntary and I agree to immediately raise any concerns or 
areas of discomfort during the session with the study administrator. 
 
Please sign below to indicate that you have read and you understand the information on this form and that 
any questions you might have about the session have been answered. 
 
 
Participate ID:  _____________________________________________________________________ 
 
 
Participant Signature: ________________________________________________________________ 
 
 
Date: _____________________________________________________________________________ 
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Post Experiment Questionnaire 
 
Thank you again for participating in the experiment. Please take a few minutes to fill out the survey. We 
appreciate your feedback. 
 
* 1. Participant ID: ________________________________________ 
 
* 2. How would you evaluate your performance in two conditions? 

● Standard navigation 
          Bad           Good 
 1   2  3  4  5  

                                                   
 

● Information theoretic navigation 
          Bad           Good 

1   2  3  4  5  

                                                   
 

* 3. How would you evaluate your comfort level in two conditions? 
● Standard navigation 

             Uncomfortable                              Comfortable 
 1   2  3  4  5  

                                                        
 

● Information theoretic navigation 
Uncomfortable                              Comfortable 
 1   2  3  4  5  

                                                        
 

* 4. Which technique would you prefer? 
● Standard navigation  

 
● Information theoretic navigation 

 
* 5. Why do you prefer this technique? 
_______________________________________________________________________________ 
 
* 6. How would you like to have the information theoretic navigation differently? Do you have any other 
comments and thoughts? 
_______________________________________________________________________________ 

197



A.3 bigfile experiment consent

a.3 bigfile experiment consent

198



 

Study: BIGfile: Designing Adaptive File Interfaces  Participant ID: P- 

1. Purpose of the study: We want to compare three different interfaces for file retrieval and see which 
one is faster and which one is liked the best. 

2. Procedures to be followed: If you agree to participate, we will introduce the three interfaces to you 
and then ask you to perform a series of tasks. You will begin by filling out a short questionnaire about 
your experience with navigation-based file retrieval. Next, we will ask you to sit in front of a laptop 
and find a comfortable position to perform the task. We will show you how the interfaces look like and 
let you try them out. For each interface, we will display a stimulus which indicates a folder or a file 
and ask you to navigate to this target accordingly. At the end, we will ask you to fill out another short 
questionnaire and ask you your opinions about the interfaces. We will record the time you spend to 
find each target, as well as your cursor movements and eye movements.  

3. Risks and Discomforts:  We do not believe you will experience any risks by participating in this 
study, beyond those you encounter in daily life. However, you may find the tasks to be repetitive, 
slightly tiring, uncomfortable or boring. 

4. Benefits: You may find the interfaces useful for accessing your files and folders. 

5. Duration:   The complete study, including pre- and post-questionnaires will take about 60 minutes. 

6. Confidentiality: Your participation in this research is confidential and your data will be 
anonymized. This paper form is the only link between your name and your participant ID, and will be 
stored in a locked office. The researchers listed below will be able to review only the anonymized data, 
which will not include any personally identifiable information. 

7. Right to ask questions:  Please contact Wanyu Liu (wanyu.liu@telecom-paristech.fr) with questions, 
complaints or concerns about this research. Questions about research procedures and future 
publications will be answered by the research team. You may also contact the Inria COERLE ethics 
board if you feel this study has harmed you in any way: 
http://www.inria.fr/institut/organisation/instances/coerle/composition 

8. Voluntary Participation: Your decision to be in this research is entirely voluntary. You do not have 
to answer the questions, and you may ask us to withdraw your data from the analysis, up to two months 
after the study. You may stop at any time, without giving a reason, and there is no penalty for 
withdrawal. You will not be paid for taking part in this study. 

9. CONSENT:  You must be at least 18 years to participate in the study.  If you agree with the above, 
please sign your name and indicate the date. You may ask for a copy of this consent form. 
 
Contact:  
Principal investigator: Michel Beaudouin-Lafon - mbl@lri.fr Professor  
Co-investigator: Wendy Mackay - mackay@lri.fr Professor  
Co-investigator: Joanna McGrenere - joanna@cs.ubc.ca Professor    
Key Contact: Wanyu Liu - wanyu.liu@telecom-paristech.fr PhD Student 

 
The nature and purpose of this research have been sufficiently explained and I agree to participate in this 
study.  I understand that I am free to withdraw at any time without incurring any penalty. 

 
Participant's name (please print) Signature Date 

 
Researcher's name (please print) Signature Date 
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BIGFile Questionnaire 
*  Required 
 
1. Participant  ID (Ask the study  coordinator)  * 
 
_____________________________________ 
 
2. Age  * 
 
_____________________________________ 
 
3. Gender  * 
 

      
 
4. I use  a computer…  * 
 

     
 
5. I use  Finder…   * 
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Interface  1 
 
For the following  questions,  please  choose  a number  from 1  to 7  to describe  your  experience 
with  interface  1. 
 
For each  question,  we  would  appreciate  any  additional  comments  you  have  in  the “Comments” 
section. 
 
6.   Mental  Demand  * 
How  mentally  demanding  was  the task? 
 

 
 

7.   Physical  Demand   * 
How  physically  demanding  was  the  task? 
 

 
 

8.   Temporal  Demand  * 
How  hurried  or  rushed  was  the pace  of the task? 
 

 
 
9.   Performance  * 
How  successful  were  you  in  accomplishing  what  you  were  asked  to do? 
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10.    Effort  * 
How  hard  did  you  have  to work  to accomplish  your  level  of performance? 
 

 
 

11.    Frustration   * 
How  insecure,  discouraged,  irritated,  stressed  and  annoyed  were  you? 
 

 
 

12.    Please  provide  any  additional  comments  about  or  reactions  to Interface 1: * 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
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Interface  2 
 
For the following  questions,  please  choose  a number  from 1  to 7  to describe  your  experience 
with  interface  2. 
 
For each  question,  we  would  appreciate  any  additional  comments  you  have  in  the “Comments” 
section. 
 
13.    Mental  Demand  * 
How  mentally  demanding  was  the task? 
 

 
 

14.    Physical  Demand   * 
How  physically  demanding  was  the  task? 
 

 
 

15.    Temporal  Demand  * 
How  hurried  or  rushed  was  the pace  of the task? 
 

 
 
16.    Performance  * 
How  successful  were  you  in  accomplishing  what  you  were  asked  to do? 
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17.    Effort  * 
How  hard  did  you  have  to work  to accomplish  your  level  of performance? 
 

 
 

18.    Frustration   * 
How  insecure,  discouraged,  irritated,  stressed  and  annoyed  were  you? 
 

 
 

19.    Please  provide  any  additional  comments  about  or  reactions  to Interface 2: * 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
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Interface  3 
 
For the following  questions,  please  choose  a number  from 1  to 7  to describe  your  experience 
with  interface  3. 
 
For each  question,  we  would  appreciate  any  additional  comments  you  have  in  the “Comments” 
section. 
 
20.    Mental  Demand  * 
How  mentally  demanding  was  the task? 
 

 
 

21.    Physical  Demand   * 
How  physically  demanding  was  the  task? 
 

 
 

22.    Temporal  Demand  * 
How  hurried  or  rushed  was  the pace  of the task? 
 

 
 
23.    Performance  * 
How  successful  were  you  in  accomplishing  what  you  were  asked  to do? 
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24.    Effort  * 
How  hard  did  you  have  to work  to accomplish  your  level  of performance? 
 

 
 

25.    Frustration   * 
How  insecure,  discouraged,  irritated,  stressed  and  annoyed  were  you? 
 

 
 

26.    Please  provide  any  additional  comments  about  or  reactions  to Interface 3: * 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
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Overall  Preference 
 
27.    Rank  the  interfaces  from 1  (Least  Preferred)  to 3  (Most preferred)  * 
 

 
Interface 1: 
Interface 2: 
Interface 3: 
 

 
28.    Please  provide  any  additional  comments  below. 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
 
__________________________________________________________________________ 
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