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Résumeé : La théorie de linformation a influencé un
grand nombre de domaines scientifiques depuis son in-
troduction par Claude Shannon en 1948. A part la loi
de Fitts et la loi de Hick, qui sont apparues lorsque
les psychologues expérimentaux étaient encore enthou-
siastes a 'idée d’appliquer la théorie de I'information aux
différents domaines de la psychologie, les liens entre la
théorie de linformation et I'interaction homme-machine
(IHM) ont été peu explorés.

Lobjectif de cette these est de combler le fossé entre
la théorie de linformation et I'lHM en considérant que
linteraction entre les humains et les machines peut étre
considérée comme un processus de communication et
peut donc étre caractérisée a I'aide des concepts de la
théorie de I'information. Les trois principales contribu-

tions de cette theése sont : (1) une perspective historique
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discussion approfondie et une analyse de la pertinence
de la loi de Hick pour I'lHM, (2) le cadre formel Gain
d’Information Bayésienne (BIG pour Bayesian Informa-
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intention et (3) une illustration des avantages de ['utili-
sation des mesures de la théorie de 'information pour
évaluer la performance des entrées et pour caractériser
une tache d’interaction. Cette these démontre ainsi que
la théorie de linformation peut étre utilisée comme un
outil unifié pour comprendre et concevoir la communica-
tion et l'interaction homme-machine.
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Abstract : Information theory has influenced a large
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siastic about applying information theory to various areas
of psychology, the relation between information theory
and human-computer interaction (HCI) has rarely been
explored.

This thesis strives to bridge the gap between informa-
tion theory and HCI by taking the stance that human-
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cation process and therefore can be characterized using
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action task. This thesis demonstrates that information
theory can be used as a unified tool to understand and
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OVERVIEW

RESEARCH CONTEXT

Information theory, since it was first introduced by Claude Shannon
back in 1948, has received much attention and successful applications
in a number of domains, notably in electrical engineering. This math-
ematically described communication scheme outlines the information
transmission process from a sender to a receiver over a noisy chan-
nel. Apart from the two remaining principles: Fitts” law and Hick’s
law (or the Hick-Hyman law), which came out when experimental
psychologists were still enthusiastic about applying information the-
ory to various areas of psychology, the relation of information theory
to human-computer interaction (HCI) has not been clear. Even the
two above-mentioned “laws” remain controversial in both psychol-
ogy and HCIL.

As users, we implicitly and explicitly send information to the com-
puter to accomplish tasks and to express our intentions. Interestingly,
this communication standpoint is supported by the ACM SIGCHI
Curriculum for human-computer interaction [1], which points out
that “Because human-computer interaction studies a human and a
machine in communication, it draws from supporting knowledge on
both the machine and the human side”. In recent years, we have
also started seeing information theory inspire or contribute to HCI
research.

This thesis strives to bridge the gap between information theory
and human-computer interaction. I argue that information theory can
be used as a unified tool for understanding the human-computer com-
munication process as well as for designing interactions with more ef-
ficient communication rates. Towards this goal, I propose a Bayesian
Information Gain (BIG) framework to quantify the information sent
by the user to the computer and I present two interaction techniques
that use BIG to improve communication efficiency. I then illustrate
the advantages of using information-theoretic measures to evaluate
input performance and to characterize the rich aspects of an interac-
tion task. These two contributions are not possible without a histor-
ical walkthrough of how information theory influenced psychology
and HCI. I conclude with a plea for using information theory as a
unified tool to understand and design human-computer communica-
tion & interaction.



0.0 OUTLINING CONTRIBUTIONS

OUTLINING CONTRIBUTIONS
This thesis is organized in 3 parts:

Part i provides a detailed historical perspective on how information
theory influenced psychology and HCI. It starts with basic concepts
of information theory that are used throughout the thesis and high-
light how they are different from our ordinary understanding, partic-
ularly of the notion of “information”. Then it goes through the history
of how experimental psychologists were first excited by the ability to
quantitatively measure “information”, and then abandoned informa-
tion theory completely under the criticism of the information the-
ory community. Today, two principles born during this 1950’s period
are still used in HCI: Fitts” law and Hick’s law. While Fitts” law has
welcome a large number of applications, Hick’s law remains rather
controversial. This part continues with an in-depth discussion and
analysis of how relevant Hick’s law is for HCI. I argue that only by
understanding the essence of information-theoretic concepts and by
examining the ups and downs from a historical perspective, we can
grasp the theory, clarify the misunderstandings and take advantage
of it in the domain of HCI.

Part ii presents the Bayesian Information Gain (BIG) framework
that is built on the scheme of human-computer communication: users
send information to computers to express their intentions and inter-
ests. BIG is based on Bayesian Experimental Design using the crite-
rion of mutual information from information theory and quantifies
the information in the user input to reduce the computer’s uncer-
tainty in bits. By actively probing users for information at each inter-
action step, the computer can play a more active role and improve the
interaction & communication efficiency.

The part first introduces the framework and demonstrates it with a
1D scenario where the computer tries to gain maximum information
from the user. Then it goes in depth with two use cases in multiscale
navigation and in hierarchical file retrieval respectively. We report
two controlled experiments: a controlled experiment with 16 partic-
ipants in multicale navigation comparing the BIG technique BIGnav
with conventional pan and zoom; and a controlled experiment with
18 participants in hierarchical file retrieval comparing the BIG inter-
face BIGFile with two other interfaces. Both experiments favor the
BIG-inspired interaction technique and interface. Lastly we outline
the possibilities for future work.



0.0 OUTLINING CONTRIBUTIONS

Part iii builds on and extends the concept that users send informa-
tion to the computer through the input device or the interface, which
constitute the communication channel. The information-theoretic mea-
sures quantify how much information can be transmitted (entropy),
how much information is successfully transmitted (mutual informa-
tion) and what is the information transmission rate (throughput).
Compared to the conventional objective assessment of input tech-
niques and interfaces, they offer a richer and more coherent descrip-
tion of an interaction task.

The part starts by going through some similar ideas in the HCI
literature and introduces the information-theoretic measures. It then
demonstrates how to use these measures in the context of command
selection and text entry, comparing the information-theoretic notion
of throughput with two existing definitions of throughput and out-
lines the coherence as well as consistency of the information-theoretic
measures. Finally, I emphasize the benefits of using this general frame-
work and discuss its potential use in other contexts as well as its lim-
itations.

In summary, the main contributions of this thesis are:

* A historical walkthrough of information theory applications in
psychology and in HCI with an extensive discussion of how
relevant Hick’s law is for HCI (Part i);

* A Bayesian Information Gain (BIG) framework to quantify in-
formation sent by the user to the computer (Part ii);

* An information-theoretic notion of throughput for characteriz-
ing information transmission efficiency (Part iii).

Overall, the aim of this thesis is to formally examine the human-
computer communication process using the tools of information the-
ory. The notations X and Y used in the chapters do not always corre-
spond to the same meaning (Fig. 1), but in both cases, I only consider
information transmitted from the user to the computer. I do not con-
sider information transmitted from the computer to the user. I illus-
trate two use cases in Part ii and two use cases in Part iii and discuss
future perspectives in the conclusion.

The content of this thesis is based on work already published or
under review, and more specific details will be given at the beginning
of each chapter. I do not provide a separate chapter for the related
work, but prefer to refer to it as research context that motivates the
work at the beginning of each treated subject.
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Part1

INFORMATION THEORY IN PSYCHOLOGY
AND IN HCI

The goal of this part is to provide a historical perspective
on how information theory influenced psychology and
HCI. It starts with basic concepts of information theory
that are used throughout this thesis. Then it outlines a
number of information theory applications in psychology
and in HCI and provides an in-depth discussion and anal-
ysis of how relevant Hick’s law is for HCIL.

I argue that by understanding the basic concepts of infor-
mation theory and walking through history, we as a com-
munity can better understand why information theory has
not been successfully applied in experimental psychology,
clarify the misunderstanding that we hold so far and fur-
ther take advantage of the theory in the domain of HCI.






INFORMATION THEORY CONCEPTS

This chapter provides a few key concepts of information theory that
are used throughout the thesis. Readers familiar with these concepts
can move onto the next chapter directly. We recommend Elements of
information theory [34] for those who want to know more about infor-
mation theory.

The communication scheme proposed by Shannon (Fig. 2) states
that a source produces messages, which are adapted by a encoder and
then are sent over a channel and are decoded by a decoder to the final
destination. The pair of source and encoder constructs the emitter and
the pair of decoder and destination constructs the receiver. The input
of the channel by the emitter is X and the output of the channel to
the receiver is Y. Since there might be noise in the channel, output Y
does not always equal input X. The engineering process to transmit a
source message X to the other side of the channel where the message
Y is received, does not concern the semantic aspect of communication,
but is only related to the probability of each possible outcome [188].
Therefore, the channel is completely described by the probability of
Y conditional on X: p(Y|X).

Information theory covers many aspects of the communication pro-
cess including efficient encoding and decoding schemes that match
the channel to ensure reliable transmission. The following introduces
a few key concepts that are of importance to this thesis.

1.1 INFORMATION AS ENTROPY

“Shannon’s theory does not deal with "information’as that word is
generally understood. Instead, it deals with data — the raw material out of
which information is obtained.” [41]

Emitter noise Receiver

l

T I S e 2 N e

Figure 2: Shannon’s communication scheme.



1.2 MUTUAL INFORMATION AND EQUIVOCATION

Information in the sense of information theory is defined against
our common sense. We ordinarily think of information as a collection
of facts, a file of meaningful data. The key to Shannon’s theory is
precisely that he deliberately avoided the question of meaning. Here
information measures randomness or uncertainty of the outcome of a
random variable and is captured by an entropy function, defined as
follows (entropy of a discrete random variable X):

H(X) =—> p(x)log, p(x). (1)

where X is drawn according to the probability distribution p(x) =
P(X = x) and entropy H(X) is measured in bit. The higher the entropy,
the more uncertain the outcome, the harder the prediction. Entropy
measures “information” in the sense that the outcome of a random
variable will increase the receiver’s knowledge (or decreases the re-
ceiver’s uncertainty).

A simple example is the weather on the next day. If the chance of
rain is 0% and the chance of sun is 100%, the entropy is o as it is a sure
event. However, if the chance of rain and chance of sun are 50% each,
the entropy reaches its maximum, 1 bit, as the uncertainty about the
weather is maximal. In other words, a message brings maximum “in-
formation” to those who receive it. Equiprobable messages generate
maximum entropy.

Entropy is bounded by sure event and maximum random event
0 < H(X) < log, N:

¢ Entropy is zero if the event is sure or it is impossible:
H(X) =0 if p(x)=0or1.

¢ Entropy of a set of N equiprobable messages:

H(X) =log, N if p(x) = %

1.2 MUTUAL INFORMATION AND EQUIVOCATION

Since information is transmitted over a noisy channel, some infor-
mation might get lost. The actually transmitted information, which
is captured by mutual information, characterizes the amount of in-
formation that is effectively transmitted through the channel. Mutual
information of two discrete random variables X and Y is defined as
follows:

Yy pixy) _
1(x,v)—ggp(x,y)logp(x)p(y) = H(X) — H(X|Y). (2)

where p(x,y) is the joint probability function of X and Y, and p(x)
and p(y) are the marginal probability distribution functions of X and
Y respectively.



1.3 CHANNEL CAPACITY AND THROUGHPUT

Mutual information is also bounded by two quantities 0 < I(X;Y) <
H(X):

* If no messages get transmitted from the source to the receiver,
mutual information is o;

* If all messages get transmitted from the source to the receiver,
mutual information is entropy H(X).

Continuing with the weather example: if a person needs to tell a
friend about the weather she experienced last week, she says“rainy
on Monday, sunny on Tuesday, rainy on Wednesday, sunny on Thurs-
day, rainy on Friday and sunny on Saturday”. The information she is
transmitting is H(X) = 1 bit, since P(rain) = 50% and P(sun) = 50%.
If her friend perfectly receives all the information, the mutual infor-
mation is I(X;Y) = H(X) = 1 bit. But if her friend does not receive
anything, the mutual information is o. If her friend is distracted and
hears “rainy on Monday, sunny on Tuesday, rainy on Wednesday,
sunny on Thursday, rainy on Friday and rainy on Saturday”, most
of the information is transmitted but one day’s weather condition is
lost. Here the mutual information is between o and 1 bit.

The information lost in transmission is captured by equivocation
H(X]Y) (Equation 2). It describes the receiver’s uncertainty about the
source after the transmission given the channel output Y. In an ideal
channel without noise, equivocation H(X|Y) would be zero and mu-
tual information I(X;Y) = H(X): information is perfectly transmitted
from the source to the destination.

Equivocation is related to how errors are made. Particularly, Fano’s
inequality [34, Theorem 2.4.1] relates the average information lost in
a noisy channel to the probability of the categorization error:

H(XY) < H(E) + Pe x H(Z[E =1). (3)

where random variable E represents errors, P, represents error rate
and random variable Z represents the noise in the channel that per-
turbs the effective transmission due to errors. We will provide a more
detailed discussion in Chapter 15 when this notion is needed.

1.3 CHANNEL CAPACITY AND THROUGHPUT

The “information” channel has a certain capacity, computed as the
maximum amount of mutual information I(X;Y) conveyed by the
channel. It is defined as (a discrete memoryless channel):

C =maxI(X;Y). (4)
p(x)

where the maximum is taken over all possible input distributions
p(x).



1.3 CHANNEL CAPACITY AND THROUGHPUT
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Figure 3: (a) Noiseless binary channel and (b) Noisy channel with nonover-
lapping outputs (adapted from [34]).

Suppose we have a channel whose binary input is reproduced ex-
actly at the output (Fig. 3 (a)). In this case, any transmitted bit is
received without error. Therefore, 1 error-free bit can be transmitted
per use of the channel, and the capacity is 1 bit. We can also calculate
the information channel capacity C = maxI(X;Y) = 1 bit, which is
achieved by using p(x) = (%, %).

Fig. 3 (b) shows two possible outputs corresponding to each of the
two inputs. The channel appears to be noisy, but in fact is not. Even
though the output of the channel is a random consequence of the in-
put, the input can be determined from the output, and hence every
transmitted bit can be recovered without error. The capacity of this
channel is also 1 bit per transmission. We can also calculate the infor-

mation channel capacity C = maxI(X;Y) = 1 bit, which is achieved

by using p(x) = (%, %).

These are just two examples from Cover and Thomas’ book [34].
Depending on the channel usage and operations, the computation of
channel capacity differs. It defines, however, the tight upper bound
on the rate at which information can be reliably transmitted over a
communication channel.

Note that Shannon’s theorem states that the natural metric of a
discrete-time channel capacity is bits per channel use, such as in the
above-mentioned examples. However, if we are told how far apart in
time the discrete time instants are, e. g. one channel use per microsec-
ond, then a capacity C bits per channel use can be stated as bits per
second. If the inputs and outputs are continuous-time signals that oc-
cupy bandwidth W, channel capacity is naturally measured in bits
per second per Hertz, or simply bits.

10



1.3 CHANNEL CAPACITY AND THROUGHPUT

The well-known Shannon’s theorem [188, Theorem 17], which in-
spired Fitts” law [63], applied the channel capacity concept to an ad-
ditive white Gaussian noise (AWGN) channel with B Hz bandwidth
and signal-to-noise ratio S/N, measured in bits per second:

C =Blog, (1 + ;) (5)

Furthermore, the theorem states that given a noisy channel with
channel capacity C and information transmitted at a rate R, then if
R < C, there exists a code that allows the probability of error at
the receiver to be made arbitrarily small [34, Theorem 8.7.1]. This
transmission rate R is widely used in wireless network communica-
tion, packet-based schemes, etc. to measure an effective speed of data
transmission, which is also known as throughput (TP). One common
computation of throughput is dividing successfully transmitted in-
formation (mutual information) by the time it takes to transmit such
information. For instance, if a friend is telling another friend perfectly
about the weather condition in 10 seconds (T), then the throughput
in this case is:

I(X;Y)
T

TP = =1/10=0.1 bits/s. (6)

The notions of entropy and mutual information are used through-

out the thesis. Equivocation and throughput will be discussed and
compared in Part iii.

11






INFORMATION THEORY IN PSYCHOLOGY

Although information theory is still alive and well in a number of
fields, it went through a rather interesting development in psychol-
ogy: experimental psychologists were first swept by a wave of excite-
ment for information theory during the 1950s and 1960s, then experi-
enced a period of critical analysis and finally decided on the incom-
patibility between information theory and psychology. In the article
Whatever Happened to Information Theory in Psychology?, Luce [136] ex-
plains that “... after an initial fad in psychology during the 1950s and
1960s it [information theory] no longer is much of a factor, beyond
the word bit, in psychological theory.” While it is still well applied
in biology, engineering, computer science, physics, and statistics, it is
true that psychologists today are no longer supporters of information
theory.

In this chapter, I examine the dramatic changes of information the-
ory in psychology.

2.1 ENTHUSIASM AT THE EARLY STAGE

Even though Shannon himself strongly preferred the term commu-
nication theory to information theory, psychologists in the 1950s and
1960s seemed to be thrilled by the ability to quantitatively measure
information and to investigate human information capacity in vari-
ous psychological contexts. Note that the applications of information
theory during this period exclusively explored these two concepts but
left most of the engineering parts (e. g. channel coding) of the trans-
mission process aside.

2.1.1  Measuring Information

The Entropy of Language An important example of an information
source is English text [188, 189]. If we assume that the alphabet of En-
glish consists of 26 letters and the space symbol, and ignore punctua-
tion and the difference between upper and lower case letters, we can
construct models of English using empirical distributions collected
from samples of text *. Using such a method, Shannon [188] estimated
that the entropy of English is 4.14 bits per letter.

The frequency of letters in English is far from uniform. The most common letter E
has a frequency of about 13% while the least common letters, Q and Z, occur with a
frequency of about 0.1%.

13



2.1 ENTHUSIASM AT THE EARLY STAGE

We can also build more complex models by incorporating condi-
tional probability as we know that the frequency of pairs of letters is
also far from uniform. For example, the letter Q is always followed
by a U. The most frequent pair is TH, which occurs with a frequency
of about 3.7%. We can use the frequency of the pairs to estimate the
probability that a letter follows any other letter. For example, to build
a fourth order Markov approximation, we must estimate the values
of p(xilxi—1,%i—2,%i—3,Xi—4). Such a model gives an estimation of 2.8
bits per letter.

Similarly, Shannon estimated the word-entropy of printed English
as 11.82 bits per word. Later on, Grignetti [85] estimated the word
entropy in printed English as 9.83 bits using a different word sam-
ple. Miller et al. [154, 155] also studied the word context, particularly
the extent to which the prior occurrence of certain verbal elements
(word choice) influences the talker’s present choice. For instance, if
the talker has said “children like to,” his choice for the next word in
this pattern is considerably limited — elephant, punished, loud, Bill,
and many other words are highly unlikely continuations.

These statistics of English are useful in decoding encrypted English
text and in word prediction. A commonly used model is the trigram
(second-order Markov) word model, which estimates the probability
of the next word given the previous two words, as seen in intelligent
text input and speech recognition systems these days. We can also
apply the techniques above to estimate the entropy rate of other in-
formation sources such as images and other multimedia content.

The Information in Stimuli The relationship between the number
of alternate stimuli and choice-reaction times was first reported by
Helmholtz [95] in 1850, Donders in 1868 [42] and then by Merkel
in 1883 [151]. Using 1 to 10 alternatives, Merkel discovered that it
takes longer to respond to a stimulus when it belongs to a large set
as opposed to a smaller set of stimuli. This was later on taken by
psychologists, notably Hick [98] and Hyman [104], as an analogy to
information theory: the display is the transmitter of information; each
alternate stimulus the message; the sensory-perceptual system the
channel; the participant the receiver, and the appropriate action the
destination [119] (Fig. 4).

Hick was clearly motivated by finding a formula to capture the
“reaction-time era” as other psychologists discussed the increase in
reaction time with the number of alternatives and attributed it to
such causes as the division of attention or a reduction in the effective
intensity of the stimulus, but not with quantitative theory. The only
reference to a mathematical relation between reaction time and num-
ber of alternatives was by Blank [20], where a logarithmic relation
was mentioned without further explanation.

14



2.1 ENTHUSIASM AT THE EARLY STAGE

INFORMATION
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Figure 4: Schematic diagram of the choice-reaction time experiment as a
model of a communication system. Taken from [119].

To find out this quantitative formula, Hick [98] conducted 3 exper-
iments, replicating Merkel’s experiment [151]. The appartus was the
same for all 3 experiments: ten lamps were arranged in an irregular
circle formation and connected to a device that was coded to light up
one random lamp every 5 seconds [97]. Each of the participants” fin-
gers was connected to a Morse key ? corresponding to the lamps. The
participants’ task was to press the correct key for a lighting of a par-
ticular lamp. Both stimulus presentation and response were recorded
in binary code by moving paper. A uniform distribution of stimuli
was used.

The first experiment was carried out to confirm the fitness of log(n +
1) to reaction time RT, rather than logn, which is the entropy formula
accounting for equally probable choices in information theory. Hick
himself served as the only participant in the first experiment, vary-
ing the number of stimuli from 2 to 10. He trained himself over 8,000
trials before the experiment and removed incorrect reactions, so that
the transmitted information equals the entropy of stimuli. He showed
that log(n + 1) indeed gave a better fit than A + B x logn.

The second experiment included Hick himself and another par-
ticipant with the aim of testing the relationship between reaction
time and partially extracted information. Both participants were well
trained before the experiment and were instructed to make errors,
which were included in the analysis. Hick estimated the joint prob-
ability distribution between the stimuli and the actual reactions and
computed the transmitted information (I(X;Y) in Equation 2). Then
he introduced the notion of degree of choice n. where I(X;Y) = logne,
and showed that in the case of partially extracted information, log(n. +
1) also provided a better fit than A + B x log ne. The third experiment
confirmed that learning was not an issue. He therefore concluded that
“the amount of information extracted R is proportional to the time
taken to extract it, on average” where R is defined as:

R=log,(n+1) or R=log,(ne+1). (7)

2 Also known as telegraph key: a switching device used primarily to send Morse code.
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Figure 5: (a) Hick’s data as a function of Degree of Choice and (b) Hyman's
data (Subject 1) as a function of information in bits. Taken from [98]
and [104] respectively.

where ne = n if no errors are made and all information gets trans-
mitted. The “+1” accounts for the participants’ uncertainty about a
“no stimulus” condition. Reaction time RT R, therefore the constant
rate of gain of information.

Interestingly, Hick noticed the potential discrepancy between the
subjective probability and objective frequency. He mentioned that
“Although the differences with respect to individual stimuli and re-
sponses suggest that the subjective — or perhaps one should say the
psychologically effective — probabilities do not exactly correspond to
the objective frequencies, it will be an enormous practical advantage
if, for the purpose of estimating average effects, it can be assumed that
they do. To discover the limits within which that assumption is jus-
tifiable will require a great deal of experimentation”. Later research
in psychology and cognitive science indeed pointed out that subjects
react to task-relevant stimuli with subjective probability [46]. Unlike
what Hick proposed “It may be found both practicable and valid,
in some cases, to estimate subjective probabilities by some form of
quessing technique”, Duncan and Donchin [46] used the P300 wave 3
to determine the participants’ reaction.

Hick plotted data as a function of the number of alternatives (n
or n¢) and did not explicitly postulate a linear relationship between
reaction time RT and the transmitted information R (Fig. 5 (a)). Cross-
man [35] in 1953, using a card-sorting task, presented data that were
plotted as a function of R. In the same year, Hyman [104] also plotted
data as a function of R and suggested that a linear function of stim-
ulus information within the range of o to 3 bits could be considered

(Fig. 5 (b))

The P300 (P3) wave is an event related potential (ERP) component elicited in the pro-
cess of decision making. It can be recorded by e. g. electroencephalography (EEG).
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2.1 ENTHUSIASM AT THE EARLY STAGE

Hyman used 8 lights in a matrix of 36 lights (6 rows by 6 columns)
display and used names — Bun, Boo, Bee, Bore, By, Bix, Bev, and Bate
- to designate them. At the beginning of each trial, the experimenter
gave a warning signal and 2 seconds later turned on one of the 8
lights and started a timer. Participants responded by calling out the
designated name of the light. A throat microphone attached to the
participant activated an electronic voice key to stop the timer. Four
subjects participated in the experiments and they all attended more
than 40 experimental sessions over a 3-month period with approxi-
mately 15,000 reaction times recorded for each subject. All errorless
performance.

The first experiment replicated Merkel’s and Hick’s experiment us-
ing 8 conditions with different numbers of equally probable alterna-
tives. The second experiment had 8 conditions which involved differ-
ent numbers of alternatives and different probabilities of the occur-
rence of these alternatives, therefore varying the average information
content by altering the probability of occurrence of each choice. The
last experiment also had 8 conditions and introduced sequential de-
pendencies between successive choices of alternatives. In each condi-
tion, each of the alternatives had equal likelihood of occurring but its
probability was conditional. For example, in condition 1, where two
alternatives were used, the conditional probability of b given that a
has occurred was p(bla) = 0.8. These conditions yielded entropies
ranging from o0.72 to 2.81 bits.

With the three experiments, Hyman [104, p.196] concluded:

“The reaction time to the amount of information in the (visual) stimulus
produced a linear regression for each of the three ways
in which information was varied.”

His formula is written as:
RT=a-+b x Hr. (8)

where RT is reaction time, a and b are empirically determined con-
stants, and Hry is the transmitted information captured by log, n
for equiprobable stimuli or — ) ' ; pi log, pi for non-uniformly dis-
tributed stimuli with probability p;.

2.1.2 Investigating Information Capacity

Information Capacity of Working Memory The Magical Number Seven,
Plus or Minus Two: Some Limits on Our Capacity for Processing Informa-
tion by Miller [153] is one of the most highly cited papers in psy-
chology. Miller demonstrated that the number of objects an average
human can hold in working memory is 7 & 2.
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Figure 6: Channel capacity for subjects who make absolute judgments of
(a) auditory pitch (Pollack [172, 173]) and of (b) saltiness (Beebe-
Center, Rogers, and O’Connell [13]). Taken from [153].

Similar to the stimulus-response paradigm (Fig. 4), Miller [153] as-
sumed that in experiments on absolute judgment, the observer is con-
sidered to be a communication channel. The amount of information
in the stimuli is transmitted as input and the amount of information
in the subjects’” responses is the output. The experimental problem
is to increase the amount of input information and to measure the
amount of transmitted information. If the observer’s absolute judg-
ments are quite accurate, then nearly all of the input information
will be transmitted and will be recoverable from his responses. If he
makes errors, then the transmitted information may be considerably
less than the input. Miller was interested in investigating the notion
of channel capacity: it represents the greatest amount of information
for which an observer can match his responses to the given stimuli
on the basis of an absolute judgment.

Miller demonstrated the validity of this concept of capacity with
various examples from previous studies using unidimensional stim-
uli: a subject is presented with a number of stimuli that vary on one
dimension and responds to each stimulus with a corresponding re-
sponse. Unlike the Hick-Hyman paradigm, however, the participants
in these studies took as much time as needed to identify the stimulus.

These one-dimension stimuli include tones [172, 173], loudness [76],
taste intensities [13], visual position [91], and the sizes of squares [50].
All of them illustrated the leveling off effect of transmitted informa-
tion as a function of input information, some sooner than others. For
instance, most of us can identify about 1 out of 6 pitches (2.5 bits [172,
173]) and 1 out of 4 saline concentration levels (1.9 bits [13]) before
we begin to get confused (Fig. 6). Therefore, people’s maximum per-
formance on unidimensional absolute judgment can be characterized
as an information channel capacity with approximately 2 to 3 bits of
information, which corresponds to the ability to distinguish among 4
to 8 alternatives.
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2.1 ENTHUSIASM AT THE EARLY STAGE
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Figure 7: Schematic diagram of human motor system experiments as a
model of communication system. Taken from [187].

Miller also examined absolute judgments of multidimensional stim-
uli and memory span where the magic number 7 does not apply.
Memory span refers to the longest list of items (e.g. digits, letters,
words) that a person can repeat back in correct order on 50% of tri-
als immediately after presentation. Miller found that memory span is
not limited in terms of bits but rather in terms of chunks. A chunk
is the largest meaningful unit in the presented material that the per-
son recognizes — therefore, what counts as a chunk depends on the
knowledge of the person being tested. Although he did observe that
memory span of young adults is approximately 7 items, Miller only
used information-theoretic terms for interpreting the unidimensional
absolute judgment tasks and mentioned that the correspondence be-
tween the limits of one-dimensional absolute judgment and of short-
term memory span was only a coincidence [153].

Information Capacity of Motor Movement In 1954, Fitts published
the paper The Information Capacity of the Human Motor System in Con-
trolling the Amplitude of Movement, which according to himself, was in
line with Miller’s reasoning [153] and was an analogy to Shannon’s
Theorem 17 # [188]. Fitts was obviously motivated by applying infor-
mation theory as many other psychologists at the time, as he started
the paper with:

“Information theory has recently been employed to specify more precisely
than has hitherto been possible man’s capacity in certain sensory,
perceptual, and perceptual-motor functions. The experiments reported in
the present paper extend the theory to the human motor system.”

Adopting Shannon’s Theorem 17, Fitts conceptualized the human
motor system as a communication channel, movement amplitude A
as a signal, and the target width W as noise (Fig. 7).

4 Recall Shannon’s Theorem 17: C = Blog, (1 + {,—) (Equation 5)
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2.1 ENTHUSIASM AT THE EARLY STAGE
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Figure 8: Results of Fitts’ 4 experiments in the 1954 paper. Taken from [187].

Fitts ran 4 experiments using reciprocal tapping, disk transfer, and
pin transfer tasks and combined various levels of A and W. In the
reciprocal tapping task in Experiment 1, participants used a metal-
tipped stylus (1 oz. version on the first day; 1 lb. version on the sec-
ond day) to tap two stationary strips of metallic targets. The width
of the plates (W) varied from o0.25 to 2 inches, and the distance be-
tween them varied from 2 to 16 inches. Participants were instructed
to strike the targets alternately to score as many hits as possible. In
other words, accuracy was encouraged. In the disk transfer task in Ex-
periment 2, participants were instructed to transfer and stack round
plastic discs (with holes drilled through the middle) from one pin to
another. Holes of different sizes and pins of different diameters were
used. In the pin transfer task in Experiment 3, participants were in-
structed to transfer pins of different diameters from one set of holes
to another set of holes. Participants were instructed to work at their
maximum rate.

The results of these 4 experiments can be found in Fig. 8. Note that
the figure comes from a reanalysis of Fitts” data by Mackenzie [138].
In the 1954 paper, Fitts did not elaborate on the relationship between
movement time and index of difficulty. He proposed two concepts:
Index of Difficulty (ID) and Index of Performance (the rate of perfor-
mance IP).
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2.2 FROM CRITICISM TO ABANDONMENT

Index of Difficulty (ID) states that the minimum amount of infor-
mation required to produce a movement having a particular average
amplitude plus or minus a specified tolerance (variable error) is pro-
portional to the logarithm of the ratio of the tolerance to the possible
amplitude range:

ID = log, (ié) . (9)

Index of Performance (IP) shows the capacity of the human motor
system. It is measured in bits per unit time and is homologous to the
rate of gain of information in Hick’s paradigm [98] and analogous to
Shannon’s channel capacity:

IP = Ii/TDT (10)
where MT is the empirically determined movement time.

Fitts reported that IP ranged from 10.3 to 11.5 bits/s in Experiment
1; 7.5 to 10.4 bits/s in Experiment 2; and 8.9 to 12.6 bits/s in Exper-
iment 3. He concluded that the rate of performance (IP) in a given
type of task is approximately constant over a considerable range of
movement amplitudes and tolerance limits, but falls off outside this
optimum range. The level of optimum performance was found to
vary slightly among the three tasks in the range between about 10 to
12 bits/s.

It was not until 1964, by examining the effects of response ampli-
tude and terminal accuracy on 2-choice reaction time (RT) and on
movement time (MT) that Fitts found the correlation between ID and
MT was found to be above 0.99 over the ID range from 2.6 to 7.6
bits per response [65]. Therefore, the Fitts” law that we know today is
written as:

MT =a+b xID. (11)

where a and b are empirically determined constants.

All above-mentioned studies except Fitts (1964) were done during
the 1950s and most of these applications were summarized in a book
by Attneave [7].

2.2 FROM CRITICISM TO ABANDONMENT

While psychologists were still enthusiastic about applying informa-
tion theory, Shannon and the information theory community started
to challenge the use of information theory outside the sphere of com-
munication engineering.
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2.2 FROM CRITICISM TO ABANDONMENT

Shannon himself was among the skeptics as he is quoted as saying
“Information theory has perhaps ballooned to an importance beyond
its actual accomplishments” (cited in [110]). He insisted that “the use
of a few exciting words like information, entropy, redundancy, do not
solve all our problems” [190]. Elias [47], an important figure of the
information theory community, urged authors to stop writing papers
using information theory outside of its intended scope.

Reflecting on its applications in psychology, McGill [149] also stated
that “The somewhat fortuitous marriage of the information measures
and information theory may, in the long run, prove to have confused
psychologists as much as it has stimulated them.” He mentioned that
perhaps the most important reason is that Shannon’s information
measure is not the sort of information with which we are familiar,
and psychologists have made very little use of the performance cri-
teria and of the basic theorems of information theory apart from the
notion of channel capacity.

Garner [77] not only summarized the ideas and experiments of
information-theoretic applications in psychology, but also expanded
the interest to the relation between mean response times and the un-
certainty of the stimuli to which participants were responding. In
early experiments, mean response time appeared to grow linearly
with uncertainty, but glitches soon became evident. Laming [119] in
the late 1960s also commented on the choice-response paradigm that
“This idea does not work... there are further unpublished results that
show it to be hopeless”. Substantial sequential effects exist between
a stimulus and at least the immediately preceding stimulus-response
pair, but with the magnitude of the correlation dropping from close
to one for small signal separation in either decibels or frequency
to about zero for large separations [81]. Similarly, Bertelson [18] ex-
pressed that the paradigm could be explained as a sequential effect
independently of stimulus entropy.

Gradually, as the importance of this reality began to set in at the
end of the 1960s, one saw fewer — although still a few — attempts to
understand global psychological phenomena in simple information
theory terms. When Shannon died on February 24, 2001, at age 84,
several psychologists paid homage to this creator of information the-
ory by looking back at history.

The same year, Laming [121] provided a detailed critique. He men-
tioned that Shannon’s way of defining capacity requires that not indi-
vidual signals be transmitted but rather very long strings of them so
as to get rid of redundancies. This is rarely possible within psycho-
logical experiments, e.g. a choice-reaction experiment involves the
transmission of single stimuli, one at a time, a condition that affords
no opportunity for the sophisticated coding on which Shannon’s the-
orem depends.
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2.2 FROM CRITICISM TO ABANDONMENT

Furthermore, under the influence of Shannon’s theory, psycholo-
gists are inclined to suppose that information is absolute. The truth
is that it is not. Data is absolute, but information is always relative
to the two hypotheses between which it distinguishes. Criticizing the
human observer as a physical system, Laming [120] also put forward
the difference between information available to the observer and the
partitioning of values of that information between the available re-
sponses (the choice of criteria). As he said “Looking solely at infor-
mation throughput, and disregarding the criteria, it can be shown
that the information available to the observer is derived from a sen-
sory process that is differentially coupled to the physical stimulus, be-
cause the component of information derived from the stimulus mean
is entirely absent from the information implicit in the observer’s per-
formance”.

Luce [136] in 2003 echoed this statement by further elaborating on
the incompatibility between information theory and psychology. He
argued that the elements of choice in information theory are abso-
lutely neutral and lack any internal structure; the probabilities are
on a pure, unstructured set whose elements are functionally inter-
changeable. That is fine for a communication engineer who is totally
unconcerned with the signals communicated over a transmission link;
interchanging the encoding does not matter at all. By and large, how-
ever, the stimuli in psychological experiments are to some degree
structured, and so, in a fundamental way, they are not in any sense
interchangeable. If one is doing an absolute judgment experiment of
pure tones that vary in intensity or frequency, the stimuli have a pow-
erful and relevant metric structure, namely, differences or ratios of
intensity and frequency measures between pairs of stimuli. Similarly,
if one does a memory test, one has to go to very great pains to avoid
associations among the stimuli. Stimulus similarity, although still ill
understood and under active investigation, is a powerful structural
aspect of psychology.

In summary, the word information has been almost seamlessly trans-
formed into the concept of “information-processing models” in which
information theory per se plays no role. The idea of the mind being an
information-processing network with capacity limitations has stayed
with us, but in far more complex ways than pure information theory.
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PSYCHOLOGY AND HCI - FITTS" LAW

Newell, Card and colleagues [161, 162] first articulated the prospec-
tive role of psychology in HCI in the early 1980s. Particularly, they
presented laws as design principles regarding the perceptual system,
the motor system, and the cognitive system for developers to max-
imize usability in the design of human-computer interfaces. Chap-
ter 2 The Human Information-Processor listed g principles of operation
to model human information processing [161, p.27], which included
the two information-theoretic attempts from psychology: Fitts” law
(Fig. 9) and the Uncertainty principle (Hick’s law).

PS5. Fitts’s Law. The time Tm to move the hand to a target of size S which lies a
distance D away is given by:
Tpar = Iy log, (D/S + .5), (2.3)
where /,, = 100 [70~120] msec/bit.

Figure 9: Card, Moran and Newell’s description of Fitts” law. Taken
from [161, p.27].

Since the 1980s, Fitts” law has welcomed a large number of applica-
tions and research efforts in the HCI community are still ongoing *.
It is recognized as “the law of pointing”, and is regularly used for,
e.g. device evaluation or interface design. Being successfully applica-
ble to all sorts of conditions including restricted visual feedback [220],
different types of participants (e.g. elders [10] and children [103]),
and different environments such as under water [113], the law has
proven to be largely robust from the empirical point of view. Its theo-
retical foundation, however, has been challenged many times in many
frameworks.

This chapter reviews the theoretical studies on Fitts” law. Fitts de-
scribed his interpretation of human motor performance as follows:

“If the amplitude and tolerance limits of a task are controlled by E (the
experimenter), and S (the participant) is instructed to work at
his maximum rate, then the average time per response
will be directly proportional to the minimum amount of information
per response demanded by the particular conditions of
amplitude and tolerance.” [63, p.2]

1 The fundamental topic of human motor performance has invited much research
interest in psychology, most of which was summarized in the book chapter by Meyer
and colleagues [152].
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3.1 WHICH MINIMUM AMOUNT OF INFORMATION?

3.1 WHICH MINIMUM AMOUNT OF INFORMATION?

Fig. 9 shows Card, Moran and Newell’s description of Fitts law. Note
that the version shown in their book was not Fitts” original formula.
This formula was in fact proposed by Welford [213], who argued that
the formulation log, (1 + 0.5) makes movement time dependent on
a kind of Weber fraction ? in that the subject is called upon to distin-
guish between the distances to the far and the near edges of the target.

Fitts originally denoted ID = log, ZWD to express the minimum
amount of information. This expression is still being used in psychol-
ogy today [156, 170]. The HCI community, on the other hand, has
unanimously adopted Mackenzie’s formulation to describe task diffi-
culty, written as:

D

ID =log, (1 + W)'

This improvement, according to Mackenzie [138], was more con-
sistent with Shannon’s Theorem 17 and the available empirical data.
Gori et al. [80] recently used the notion of “geometrically uniformly
distributed targets” and proved that this version of ID is indeed
equivalent to Shannon’s Capacity.

Mackenzie [138] also proposed to measure movement endpoints
from the center of the target and, assuming that the distributions of
these measures is normal, to compute an effective index of difficulty
ID., written as:

ID. =log, (1 + \B) . (12)
e

where D corresponds to the average covered distance and W, is the
effective width. The computation of W, is detailed in [197]. Let o
denote the standard deviation of the endpoint distribution, and ¢ the
error rate, e. g. the proportion of target misses:

If ois available: W, =4.1330

If not: W, =

2.066 : 0
{w x 3068 if e > 0.0049% 13)

0.5089 x W otherwise.

The Difference Threshold (or “Just Noticeable Difference”) is the minimum amount
by which stimulus intensity must be changed in order to produce a noticeable varia-
tion in sensory experience. It was first proposed by Ernst Weber, who observed that
the size of the difference threshold appeared to be lawfully related to initial stim-
ulus magnitude [52]. This relationship, known as Weber’s law: 41 = k where Al
represents the difference threshold, I represents the initial stimulus intensity and k
signifies that the proportion on the left side of the equation remains constant despite
variations in the I term.
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3.1 WHICH MINIMUM AMOUNT OF INFORMATION?

Equation 13 is based on Crossman [36], who was the first to try to
incorporate the error rate information into his ID measure, leveraging
the standard Gaussian distribution model. Fitts, on the other hand,
did not measure actual amplitudes, but classified the movements in
a dichotomous way as hits and misses. In 2002, the ISO 9241 stan-
dard [199] was published, providing standards for human-computer
interface testing, including Mackenzie’s effective index of difficulty.

Recently, Gori et al. [80] challenged the standard for three reasons:
(1) The justification of a Gaussian distribution of endpoints is empiri-
cally questionable; (2) Information theory provides no justification for
the relation W, = 4.1330 and (3) The threshold of error rate placed at
0.0049% (Equation 13) is arbitrary. Instead, they proposed a compli-
ant Index of Difficulty ID(e) = (1 —¢)log, (1 + %) where € accounts
for error rate.

So far, we have identified the following 5 different indices of diffi-
culty:

* Fitts [63]: ID = log, 22;
¢ Welford [213]: ID,, = log, (17

e Gori [80]: ID(e) = (1 —¢)log, (1 + &)

According to Gori et al. [80], Mackenzie’s ID conforms to the no-
tion of Shannon’s channel capacity. For empirical studies, the behav-
ior of the standardized ID. for vanishing error rates is problematic as
limg_,0 IDe = oo (Fig 10). In contrast, ID(¢) is more consistent with
the fundamentals of information theory, and is continuous towards
the zero error rate region, thus allowing the researcher to dispense
with an arbitrary treatment of the o percent miss case, as well as is
much simpler to derive than the ISO-recommended ID.. However,
the comparison of ID. and ID(e) seems to provide essentially the
same results (Fig. 10). More research is needed to evaluate the impli-
cations of such result.
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Figure 10: Figure 8 in Gori et al. [80] comparing ID(¢) and ID, for erasure
rate in [o,1], for D = 15.
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3.2 THE AVERAGE OF MINIMUM OR THE AVERAGE OF AVERAGE?

Fitts needed the participant (S) to work at his maximum rate, so
that the resulting movement times MT reflected S’s full commitment
to the pointing task. Therefore, the average time per response in Fitts’
term corresponds to “average minimum”, which seemed to have con-
fused many. Authors in Fitts” law research use different wordings,
which suggest other interpretations of MT: Soukoreff and Macken-
zie [197] considered “movement time performance for rapid aimed
movements”, Hoffman [99] “movement time”, and Drewes [44] “mean
time”. Consequently, Fitts” law has always been considered as a law
of average performance.

Yet historically speaking, Fitts” information-theoretic rationale for
aiming movements considers the transmission of information about
the target through a human motor channel. Fitts” law can be derived
by computing the capacity of this channel, which is a theoretical up-
per bound — the maximum amount of information that can be trans-
mitted reliably — and which is accordingly calculated as an extreme
through the Channel Coding Theorem — the maximum of mutual in-
formation over all input distributions. Hence, only movements that
maximize transmitted information should be relevant for the deriva-
tion of Fitts” law. But can one always reach his or her maximum per-
formance? Participants can be instructed to perform as fast as they
could in a controlled experiment. In the real world, however, one
rarely tries to point as fast and as accurately as possible. Even in a
controlled experiment, participants” attention fluctuates.

Building on Guiard and colleagues [88, 89], Gori et al. [80] recently
argued that Fitts” law should be considered as a law of performance
limit. They introduce this concept by reanalyzing the data from a
pointing study run “in the wild” [31]. For several months Chapuis
et al. [31] unobtrusively logged cursor motion from several partici-
pants using their own computer. The authors were able to identify
offline the start and end of pointing movements as well as the target
information, for several hundreds of thousands of click-terminated
movements. With this information, one can then represent the move-
ments in a MT versus ID graph, as normally done in a controlled Fitts’
law study. To compute task difficulty in the 2D space of computer
screens, they followed the suggestion of Mackenzie and Buxton [140]

and chose ID = log, (1 + W) where H and W are the height
and width of the target, respectively. Whenever an item was clicked,
it was considered the target, meaning the rate of target misses was

zero percent.
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3.3 DOES THROUGHPUT EQUAL CHANNEL CAPACITY?
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Figure 11: Movement data as a function of ID from participant 3 of Cha-
puis et al. [31]. (a) MT up to 4 seconds and (b) MT up to 1.6
seconds: linreg (white) shows the linear fits from the usual lin-
ear regression and front (red) shows an estimate of the front of
performance. Figures are taken from [80].

Fig. 11 illustrates data from one representative participant (P3) of
Chapuis et al. [31]. We can see that the data, obtained with no speed-
ing instructions (and no experimenter to recall them), exhibits a huge
amount of stochastic variability along both dimensions of the plot.
Judging by linear regression on this raw data, they find that move-
ment time and the index of difficulty are essentially uncorrelated
since the r-squared coefficient is very close to o (r? = 0.0340). In
contrast, Fig. 11 (b) reveals that the bottom edge of the scatter plot
is approximately linear: this linear edge is what justifies Fitts’ law.
In other words, the empirical regularity in Fitts” law is, in essence, a
front of performance, a lower bound that cannot be passed by human
performance [80]. This is in line with the concept of Fitts’ 1954 paper,
titled The information capacity of the human motor system in controlling
the amplitude of movement.

Even though the front of performance has a solid theoretical back-
ground, the average law, the Fitts” law that most of us are familiar
with, claims more than 60 years of empirical validation. Both of them
characterize certain aspects of motor performance: the front Fitts” law
gives robust and consistent results as it relates to human motor capac-
ity, which provides a reference to HCI researchers; while the average
Fitts” law reflects the task environment, e.g. device, user ability, etc.,
which helps us better understand the elements that are not directly
related to the human motor system.

3.3 DOES THROUGHPUT EQUAL CHANNEL CAPACITY?

From the minimum amount of information and the average time per
response, Fitts also derived the Index of Performance 1P, which is com-
puted by dividing ID by the empirically determined movement time
MT: IP = ,\IA—DT (Equation 10), representing the subject’s maximum
rate.
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3.3 DOES THROUGHPUT EQUAL CHANNEL CAPACITY?

Fitts [63] concluded that the rate of performance IP in a given type
of task is approximately constant over a considerable range of move-
ment amplitudes and tolerance limits, expressing the capacity of the
human motor system. Measured in bits per second, however, this in-
dex of performance is different from throughput, which is claimed to
be constant as well.

In engineering, throughput is widely used to measure an effective
speed of data transmission, equivalent to the transmission rate R in
Shannon’s terms [34]. In Fitts” paradigm, we also see two definitions
of throughput.

The first one is from Mackenzie [141], and is defined as follows:

Ae
ID. log,(7735%sp; +1)

=~ MT

(14)
where TP is the throughput, in bits per second, combining speed and
accuracy in a single measure, A, is the distance or amplitude of move-
ments and SDy is the standard deviation of movement along the x
axis. Mackenzie concluded that throughput remains constant and is
independent of the speed-accuracy tradeoff.

Mackenzie [141] conducted a controlled experiment with 18 par-
ticipants varying 3 instructions; a balanced strategy, an emphasis on
speed and an emphasis on accuracy respectively, and concluded that
“This work provides empirical evidence in support of an important
but difficult-to-test tenet of Fitts” law: that throughput is independent
of the speed-accuracy tradeoff”, supported by Fig. 12.
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Figure 12: (a) Movement time; (b) Accuracy rate and (c) Throughput accross
3 conditions with a balanced strategy, an emphasis on speed
and an emphasis on accuracy respectively. Taken from Macken-
zie [141].
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3.3 DOES THROUGHPUT EQUAL CHANNEL CAPACITY?

Building on Card et al. [26], Zhai [222] came to a similar conclu-
sion that “throughput is conceptually a true constant, describing the
index of performance”: if we move fast, we ought to make more er-
rors; if we aim for accuracy or precision, we ought to slow down.
However, he argued that Mackenzie’s TP “is an ill-defined concept
that may change its value with the set of ID values used for the same
input device and cannot be generalized beyond specific experimental
target distances and sizes”. Instead, he described the two constants in
Fitts” expression MT = a +b x ID as capturing different aspects: a re-
flects the non-informational aspect and constant b the informational
aspect of input performance. Therefore, Zhai called the inverse of the
slope b, 1/b, throughput. Note that when the intercept a = 0, Zhai’s
throughput equals Mackenzie’s.

Guiard and colleagues also studied the notion of speed-accuracy
tradeoff of aimed movement [88]. They proposed a mathematical de-
scription [89]: The Weighted Homographic (WHo) Model, defined as:

(Y=yo)' X (x—x0)* = k. (15)

where x and y represent the accuracy dimension and speed dimen-
sion respectively, xo and yo represent the theoretical minima of ax-
ioms accuracy and speed, k > 0 is an adjustable constant, and weight-
ing exponent « is also an adjustable coefficient (0 < « < 1). The
role of « is to allow some degree of asymmetry, and it should not
approach o or 1.

They demonstrated the model using 4 datasets: Fitts’ reciprocal tap-
ping data [63], two datasets from Schmidt et al. [182] and Guiard [88]
(Fig. 13). They concluded that “human aimed movements are indeed
governed by a single speed /accuracy trade-off, and that that trade-off
is what it is regardless of the experimental technique with which it is
demonstrated”.
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Figure 13: Guiard and Rioul’s WHo model describing speed-accuracy trade-
off of aimed movement. ut represents the average movement
time; oA represents the standard deviation of movement am-
plitude; and d represents the distance to target center. Taken

from [89].
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3.3 DOES THROUGHPUT EQUAL CHANNEL CAPACITY?

It seems that Mackenzie, Zhai and Guiard all agreed that this speed-
accuracy tradeoff paradigm, namely throughput, is described and
supported by Fitts” law.

* Mackenzie [141]: “We describe an experiment to test the hypoth-
esis that Fitts” throughput is independent of the speed-accuracy
tradeoff”;

® Zhai [222]: “Throughput (TP), also known as index of perfor-
mance or bandwidth in Fitts” law tasks, has been a fundamental
metric in quantifying input system performance”;

¢ Guiard [89]: “The trade-off is described by the Fitts” law”.

However, from previous analysis we know that what Fitts [63, 65]
called the index of performance represents the maximum rate and
channel capacity (as demonstrated by Gori et al. [80]), which, in en-
gineering terms, is the maximum rate at which data could be poten-
tially transmitted. Yet throughput captures the actually transmitted
information rate, which is bounded by the channel capacity 3. Even
though Fitts” law has firm empirical validation, we invite the HCI
community to revisit these three questions: What is the minimum
amount of information? Should we take the average of the minimum
or the average of the average? What are we measuring — throughput
or capacity?

3 Recall the notions of channel capacity C and information transmitted at a rate R in
Chapter 1 Section 1.3.
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PSYCHOLOGY AND HCI - HICK’S LAW

Together with Fitts” law [63], Hick’s law (or the Hick-Hyman law) [98,
104] was also first introduced to HCI by Newell, Card and colleagues
[161, 162] as the Uncertainty principle. They described the law as the
time a person takes to make a decision as a result of the possible
choices she has: increasing the uncertainty /information will increase
the decision time. This uncertainty is captured by the information-
theoretic notion of entropy and is described by a logarithmic function
by Equation 2.8 when n choices are equally probable or Equation
2.9 when the n choices have different probabilities of occurrence p;

(Fig. 14).

P7. Uncertainty Principle. .Decision time T increases with uncertainty about the
judgement or decision to be made:

T=I.H,

where H is the information-theoretic entropy of the decision and
I = 150 [0~157] msec/bit. For n equally probable alternatives (called Hick's Law),

H= log,(n + 1). (2.8)
For n alternatives with different probabilities, p;, of occurence,
H =%, plog,(1/p; + 1). (2.9)

Figure 14: Card, Moran and Newell’s description of Uncertainty Principle.
Taken from [161, p.27].

Since its introduction, Hick’s law has been used in a number of
HCI contexts but its applications have been controversial: some re-
searchers found that the law did not apply to HCI tasks while others
regard it as a fundamental law of interface design.

¢ The law is ignored in many HCI textbooks [180, 194], but it is
taught in HCI classes as one of the few quantitative laws in psy-
chology. We interviewed a few HCI professors on their under-
standing of Hick’s law and received replies such as “it’s about
response time”, “decision making time”, “I have two slides about the
law, adapted from the slides by someone else”, “I teach it but I don't

feel 100% comfortable about talking about it”.

¢ Conceptually, it is regarded as a fundamental law of interface
design. It appears in design books, e.g. [130], and numerous
online articles discussing how understanding Hick’s law could
improve interface design *.

1 Examples can be seen at https://measuringu.com/hci-laws/ and https://

uxplanet.org/design-principles-hicks-law-quick-decision-making-3dcclbla0632.
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4.1 HCI APPLICATIONS OF HICK'S LAW

It has been claimed to apply to a large number of contexts,
including menu design, device settings and road signs. Essen-
tially, when faced with a set of choices, this “Hick-based” design
principle guides interface design with the concept less is more (or
rather, fewer is better).

¢ In practice, it has not seen many successful applications. Only a
few HCI publications incorporate Hick’s law, e.g. Soukoreff &
Mackenzie [216]. In 2005, Seow [187] compared Hick’s law and
Fitts” law, the two information-theoretic principles, and exam-
ined the possible reasons for the lack of uptake of Hick’s law to
gain momentum in the field. Nevertheless, few studies have in-
corporated Hick’s law into their work since then, e. g. Cockburn

et al. [33].

The controversial aspect of Hick’s law and the lack of comprehen-
sive understanding may explain why many HCI researchers have not
ventured to apply it to interaction tasks. Furthermore, there seems
to be different definitions of Hick’s law. While for psychologists the
law has exclusively to do with the context of the choice-reaction
paradigm, HCI researchers seem to apply it whenever choices are
presented to the user, including for visual search time, e. g. [123, 143,
218], decision time, e. g. [33] or reaction time, e. g. [181]. Does the law
really apply to these settings?

This chapter strives to clarify some misunderstanding about Hick’s
law so as to provide a clearer picture of the choice-reaction paradigm
in HCI studies. First, I re-examine HCI studies that have used Hick’s
law and revisit the historical context of the choice-reaction paradigm
in psychology. I then demonstrate that a number of logarithmic phe-
nomena observed in HCI do not justify the law; conversely, I show
that the choice-reaction paradigm does not always scale logarithmi-
cally with the number of choices. I conclude with the practical impli-
cations of this new look at Hick’s law for HCI.

4.1 HCI APPLICATIONS OF HICK'S LAW

I first review HCI studies that have used Hick’s law. I describe their
respective contexts and tasks, and highlight the inconsistencies that
emerge.

4.1.1  Modeling Menu Performance

In a menu selection task, Landauer & Nachbar [123] asked partici-
pants to select a target item (a number in the ordered list from 1 to
4096, or a word in a list of 4096 alphabetically ordered words) by a
series of touch menu choices among sequentially subdivided ranges.
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4.1 HCI APPLICATIONS OF HICK'S LAW

The number of alternatives at each step was 2, 4, 8, or 16. The
authors found that a logarithmic function fits the mean response time
(T) well, as implied by Hick’s law (reaction time RT) and Fitts” law
(movement time MT):

d
T=ci+kjlogb+cy+kalog— =c+kloghb. (16)
—_—— w
RT MT

where c and k are empirically determined constants, b is the number
of alternatives at each step, d is the distance moved and w the width
of the target that must be hit. Since the target width w was propor-
tional to 1/b in their experiment, the Fitts’ law term log 4 reduces to
logb.

Landauer & Nachbar also observed that “in the most extreme case
(words), total selection time varied from 23.4 down to 12.5 seconds for
branching factors of 2 to 16”. They consequently concluded that broader,
shallower menu trees yield faster search time than narrower, deeper
ones (p. 76).

Cockburn et al. [33] present a predictive model for linear menu per-
formance that uses the “Hick-Hyman law” to model decision time for
expert users. They state that the decision time is dependent on the en-
tropy of each item H; = log, (1/pi). Therefore, decision time for each
item is given by Thhi = bhn X Hi + apnh.

The authors conducted a calibration study with 8 participants, vary-
ing menu length (2, 4, 8 and 12 items) and block (1 to 7 for two static
menu conditions and 1 to 3 for a random condition) and using a uni-
form distribution of target occurrences. Removing data from block 1
where participants were mostly doing visual search, they found that
the decision time could be modeled as Ty = 0.081log, n + 0.24 with
RZ = 0.98. They then used the values of ann and bnp for the real
experiment, which used a Zipfian distribution > to account for tar-
get frequencies and found that decision time followed Hick’s law. It
is unclear how they applied the law though, namely whether H; in
the real experiment was computed as bnn x ) log,(1/pi) + ann or
as brpn X )_(pi x log,(1/pi)) + ann. Either way seems problematic as
the constants were derived from a uniformly distributed menu.

A Zipfian distribution is defined as: f(k;s,N) = 1/Kk* where N is the num-

C Zaoi(/ne)
ber of elements, k € [1,N] the rank of the considered element (with k = 1 is the

element with highest frequency) and s the value of the exponent characterizing the
distribution.
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4.1 HCI APPLICATIONS OF HICK'S LAW

4.1.2  Modeling Text Entry

Hick’s law has also been used for modeling text entry. Investigating
the theoretical upper and lower bounds of typing speed using a stylus
on a soft keyboard, Soukoreff & Mackenzie [216] argue that Hick’s
law can be used to account for the visual scan time (RT) of each entry,
in order to compute the lower bound of the typing rate:

RT = a+blogn. (17)

where 1 is the number of choices and a and b are empirically deter-
mined constants.

Borrowing from Welford [214], they seta =0and b =1/5=0.2 as
Welford states that for subjects in their twenties using key presses to
signal choices, the reciprocal of the slope of Hick’s law lies is between
5 and 7 bps. Therefore, with a 27-character alphabet (26 letters plus
space), n = 27, the lower bound of the visual scan time for novices is:

RT = 0.2log, 27 = 0.951 seconds. (18)

This model was rejected by empirical investigations by Macken-
zie et al. [142, 143] who observed about twice the time expected of
0.951 seconds for visual scanning. Mackenzie et al. concluded that
“Although the Hick-Hyman metric may still be valid in general, clearly as
applied here it is confounded with the complex movement behavior we ob-
served”.

Sears et al. [185] also illustrate that it is inappropriate to use Hick’s
law for a simple visual search component task, such as the one intro-
duced by Soukoreff & Mackenzie [216]. Sears et al. argue that using
Hick’s law implies that only the number of keys is important when
determining which key to press. In contrast, they provide evidence
that both the keyboard layout, e. g. QWERTY or Dvorak, and the num-
ber of letters represented by each key, e. g.three letters per key on a
telephone keypad, must be considered.

Wobbrock & Myers [218] introduce a stroke-based word comple-
tion technique for trackball text entry and include Equation 18 in
their model. This term is added after the entry of every letter and
represents the time it takes for a user to find their word among n
choices, where n is the number of completions offered for the cur-
rent prefix (0 < n < 4). The authors show that this new stroke-based
word prediction and completion technique outperforms a major com-
mercial on-screen keyboard. They do not, however, demonstrate nor
analyze if and how reaction time plays a role.
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4.1.3 Interface Design Guideline

In the design community, Hick’s law is interpreted as a general de-
sign guideline, which we refer to as the “Hick-based design princi-
ple” in this chapter. In the book Universal Principles of Design [130],
Lidwell et al. state that “Designers can improve the efficiency of design
by understanding the implications of Hick’s law” (p. 120). Similarly, in a
Web entry titled “Hick’s law: Making the choice easier for users” 3,
Soegaard writes that “Understanding Hick’s law means you can design so
that more users will visit and stay on your website”.

Wang [208] states that “Essentially, Hick’s law provides a general guide-
line for the design and use of hierarchical menu structures. This is consistent
with the study [123] showing that users do not consider each choice one by
one. What they normally do is to subdivide the choices into categories, and
choices in each category are further divided. The resulted structure will be a
tree, which can help users to make a quicker decision.”

Ali & Liem [3] claim that “Within the context of design, Hick’s law pro-
motes the use of design methods to simplify decision-making in situations
where designers are presented with multiple options. In practice, it has fun-
damentally proven to be effective in the design of menus, control display,
way finding layout.”

Hick’s law is also invoked in guidelines for designing applications
for mobile devices [159], visualizations [92] and spreadsheets [30]. It
seems that Hick’s law is a magical formula in the design community
and is widely used to rationalize two principles: (a) Minimize the
number of choices; and (b) Categorize choices, instead of overwhelm
users with all the choices at once.

4.1.4 Summary: Inconsistencies

From the literature above, we can see several inconsistencies in the
use of Hick’s law.

First, we notice that the formulation used in HCI studies is different
from the one introduced by Card et al. [161], especially the question
of n vs. n + 1. Nearly all authors use logn, with the notable excep-
tion of Cockburn et al. [33], although in that case it is unclear how
the stimulus information was computed. This raises a first question:
Which formula for Hick’s Law?

https://www.interaction-design.org/literature/article/
hick-s-law-making-the-choice-easier-for-users
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4.2 CHOICE-REACTION TIME IN PSYCHOLOGY

Second, Hick’s law is used to model expert users” decision time by
Cockburn et al. [33] and novice users’ visual search time by Soukoreff
& Mackenzie [216]. Even though Sears et al. [185] showed the incom-
patibility of the law with visual search, Wobbrock & Myers [218] use
it to model visual search time. In the design community, on the other
hand, the law seems to work universally. This raises a second ques-
tion: When does the law apply?

Third, Landauer & Nachbar [123] conclude, based on their empiri-
cal data, that broader, shallower menu trees yield faster search than
narrower, deeper ones. This contradicts the common belief in the de-
sign community that a tree structure helps users make a quicker de-
cision [208]. This raises the third question: What does the law really
say?

To answer the questions above, in the next section I review the
choice-reaction paradigm in psychology.

4.2 CHOICE-REACTION TIME IN PSYCHOLOGY

While HCI researchers associate reaction time with Hick’s law, there

is a long tradition in psychology in studying choice-reaction paradigm.
In this section, I review these studies in psychology and attempt to

give a more precise definition of Hick’s law.

4.2.1 Before Information Theory

Several studies have been conducted before Hick’s experiment, which
are briefly mentioned in Chapter 2 Section 2.1. The first results on re-
action time (RT) are due to Helmholtz [95], the famous physician &
physicist of the nineteenth century. He determined that signals travel
the nervous system at about 60 m/s. A comparison between typical
reaction times observed in common tasks and the calculated propa-
gation times revealed that the propagation time for signals could not
account for the reaction time, implying that humans were not simply
hard-wired to respond to certain stimuli but that time was required
“in the brain for the processes of perceiving and willing”. By the end of the
nineteenth century and early twentieth century, three other important
results were known:

* Donders [42] introduced the three-class taxonomy of reaction
time that is still in use today: simple RT (a-reaction time) is the
time it takes to react, with a predetermined response, to the on-
set of a stimulus whose identity is known in advance but whose
time of occurrence is uncertain; choice RT (b-reaction time) is
the time it takes to react to the onset of one of several possi-
ble stimuli, following a given stimulus-response mapping rule;
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and go-no-go RT (c-reaction time) is the time it takes to respond
to a stimulus that may or may not occur at a predetermined
point in time. Donders showed that simple RT was the shortest
and choice RT the longest.

* Merkel [151] performed an experiment using an identification-
choice reaction task, i.e. measured b-reaction time. It showed
that it takes longer to respond to a stimulus when it belongs to
a larger set of stimuli.

* Many psychologists have attributed the “reaction-time era” to
such causes as the division of attention or a reduction in the
effective intensity of the stimulus without providing a quanti-
tative theory. Blank [20] was the first to postulate a logarithmic
relationship between reaction time and the number of alterna-
tives but did not give further explanation.

4.2.2  The Information Analogy: Hick & Hyman

Hick’s work was strongly inspired by Merkel’s results. In fact one
could say that Hick did nothing but replicate Merkel’s experiment
and used a logarithmic scale for the x-axis rather than Merkel’s linear
scale. This misses an important point: Hick’s contribution is concep-
tual rather than experimental. Using the information-theoretical ratio-
nale that was popular at the time, Hick interpreted this logarithmic
curve by considering the human as a channel of information trans-
mission [98]. Accordingly, reaction time is seen as resulting from the
uncertainty of the stimulus, which can only be processed at some
maximum rate. The information rationale had an immediate effect: If
the “information” — in layman’s sense — mattered, then all the ways
in which information could be varied mattered. This introduced new
ways of testing the relationship between reaction time and the “infor-
mation” provided by the stimulus.
Hyman [104] varied the entropy of the stimuli in 3 ways:

* By changing the total number n of stimuli (Hick [98], Merkel
[151]). In this case, uncertainty increases with the number of
stimuli.

* By changing the probability that each stimulus is indeed ac-
tivated. The more similar the probabilities, the higher the un-
certainty. In the limit case, when all the stimuli are activated
with equal probability, uncertainty reaches its maximum value
of logn.

¢ By establishing “grammar rules”, i.e. introducing conditional
probabilities between successive stimuli. For example, if stimuli
B is activated, then it is certain that stimuli D will be activated
next.

Their respective experiments are detailed in Chapter 2 Section 2.1.
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4.2.3 Choice Reaction Time: Results

After Hick’s and Hyman's respective experiments, a number of stud-
ies measuring reaction time in a choice-reaction task were reported.
Here I summarize the main results.

4.2.3.1  Reaction Time: Context

Most choice reaction time studies were conducted with the goal of
measuring b-reaction time on very simple tasks, such as responding
to bulbs lighting up by pressing keys (Hick [98]) or through speech
(Hyman [104]). It is not clear how well the logarithmic relationship
between time and information holds for more complex tasks that po-
tentially require a lot of decision making. One exception is given by
Crossman [37], who investigated card sorting and found results con-
sistent with the rest of the literature.

4.2.3.2  Measuring Information: Entropy or Mutual Information?

It has consistently been found that for a range between 1 and 3 to
4 bits, reaction time increases linearly with entropy, irrespective of
which of the three variables described above is being manipulated.
However, whenever the number of choices becomes larger, it seems
that reaction time is consistently over-estimated. In fact, Fitts & Pos-
ner [67] indicated that whatever the number of possible stimuli, re-
action time will seldom exceed 1s. Seibel [186] reported that there is
almost no difference in reaction time between responses to 31 (5 bits)
or 1023 (10 bits) stimuli. Fitts et al. [66] showed that the response to
very low probability alternatives is faster than predicted by the law.
On the other hand, Pollack [174] found that the linear relationship
extends to about 10 bits in a task where words had to be named. The
actual range where the relationship holds is thus very dependent on
the actual task.

Modulating the speed-accuracy characteristic to modify the values
of mutual information leads to gross underestimates of reaction time,
especially for very small values of mutual information I, i.e. in con-
ditions where many mistakes are made. Fitts [64] reported that be-
yond 0.6 bits of equivocation (H(X|Y), see Equation 2), the loss of
information resulting from errors increases faster than the gain from
increased response speed. We will therefore now consistently use the
term stimulus uncertainty rather than the vague term of “information”
to characterize the stimuli.

4.2.3.3 Nor N+17?

Hick [98] found that if the number of possible signals is n and reac-
tion time is plotted against log(n + 1), the observed reaction times for
different numbers of signals lie on a straight line which also passes
through the origin.
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The reason why the fit is better for (n + 1) instead of n is that if
the subject is uncertain about when a signal will appear, then when it
does appear, he or she needs to not only decide which it is, but also
decide that a signal has occurred at all. In fact, the +1 in Hick’s for-
mulation has not always been easy to understand and several other
alternative equations have often been preferred.

Immediately after Hick, Crossman [35] conducted a card-sorting
experiment: The subjects held a well-shuffled pack, turned up the
cards one by one and sorted them into various classes. The results
were plotted against logn as the pack was always available, hence
there was no uncertainty about when a fresh signal would appear.
Hyman [104] extended Hick’s concept by manipulating uncertainty
with unequal probabilities: — ) ' ; pilog, pi. Even when he repli-
cated Hick’s experiment with equal probability, he proposed logn,
not log(n + 1). While Suci et al. [200] fitted the data equally well with
n and n + 1, other researchers such as Griew [84] and Brown [23]
found that n + 1 fitted data slightly better. Crossman [37] also plotted
data against log(n + 0.45).

As Welford [214] pointed out, the proposed mathematical formu-
lations provide merely a summary statement of a complex process
of observation, identification, choice and reaction which highly de-
pends on the specific task environment. Hence one possible formula
to account for this complexity is log(n + o) where ny describes the
effect of temporal uncertainty expressed in terms of n. ngy varies from
zero if the subject is able to estimate exactly when the next signal will
appear, to more than 1 if she does not have any idea of when the
stimulus will show up. When the time at which the stimulus appears
is reasonable but not completely predictable, ny € [0, 1].

4.2.3.4 Effect of Stimulus-Response Compatibility

S-R (Stimulus-Response) compatibility was introduced in psychology
to characterize the fact that it is easier to respond to a stimulus using
certain responses than others. If the stimulus is coded in terms of dig-
its appearing on a screen, it is for example much easier for someone
to call the corresponding digit out than, say, to call a letter or another
digit out. It has repeatedly been found that the better the SR com-
patibility, the shallower the slope relating reaction time to stimulus
uncertainty.

In fact, whereas Hick’s light and key experiment reports rates of
about 200 ms/bit, there are many cases where the slope can approach
o ms/bit (Fig. 15), such as Leonard’s experiment [126] where the sub-
ject rested his fingers upon vibrators and touched the vibrator that
was activated (Fig. 15 Curve ]), or Mowbray’s experiment [157] where
subjects gave a voice reaction to Arabic numerals (Fig. 15 Curve G).
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In those cases, corresponding to extremely good S-R compatibilities,
there is virtually no effect of stimulus uncertainty on reaction time.

Stimulus-Response (S5-R) compatibility was introduced in psychol-
ogy to characterize the fact that it is easier to respond to a stimulus
using certain responses than others. If the stimulus is coded in terms
of digits appearing on a screen, it is for example much easier for
someone to call out the corresponding digit than, say, to call a let-
ter or another digit out. It has repeatedly been found that the better
the S-R compatibility, the shallower the slope relating reaction time
to stimulus uncertainty. In fact, whereas Hick’s light and key experi-
ment reports rates of about 200 ms/bit, there are many cases where
the slope approaches o ms/bit (Figure 32 in Fitts & Posner [67, p.105]),
such as Leonard’s experiment [126] in which the subject rested his fin-
gers upon vibrators and touched the vibrator which was activated, or
Mowbray’s experiment [157] where subjects gave a voice reaction to
arabic numerals. In those cases, corresponding to extremely good S-
R compatibility, there is virtually no effect of stimulus uncertainty on
reaction time.
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Figure 15: Reaction time as a function of stimulus “information” in different
tasks. Constant reaction time: J [126], G [157], I [158]; Larger slope:
F [98], B [22]. Taken from Fitts & Posner [67, p.105].
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Indeed, as Fitts & Posner pointed out [67], anything that decreases
the spatial or energy correspondence between input and output, there-
fore reducing compatibility, increases the slope. This principle can
probably be beneficial to interface design.

4.2.3.5 Effect of Learning

The effect of learning is very similar to that of S-R compatibility.
When participants are heavily trained, the effects of the uncertainty of
the stimulus and even of the S-R compatibility can be reduced so that
reaction time is almost constant, regardless of the number of items.
Mowbray’s experiment [158] showed that reaction time for choices
among up to 10 possibilities could be reduced to that of a two choices
alternative when a subject practiced a key-press task for a period of
6 months. Although this is somewhat questioned by Welford [214],
it is clear that practice will significantly reduce the slope: Knight &
Dagnall [114] reported slopes dropping from 73 ms/bit to 23 ms/bit
after two months of practice.

4.2.4 Clarifying Hick’s law

It is clear at this point that Hick’s law is much more complicated
than Card et al.’s description [161] would suggest. Indeed, learning,
S-R compatibility and stimulus uncertainty all affect reaction time.
Furthermore, these effects are dependent on each other. For example,
if one wishes to modify uncertainty by changing the probabilities of
activation of each stimulus, then the subject has to go through an
extensive learning phase, as discussed by Hyman [104]. Yet, she will
inevitably improve her skill in the matter of the experiment, leading
to a reduction of the slope.

Similarly, good S-R compatibility is usually desirable, otherwise the
experiment will appear poorly designed. However, this makes the ef-
fect of Hick’s law much harder to grasp, as the influence of stimulus
uncertainty is then highly reduced.

Finally, learning does not affect all experiments in the same way.
The highest rates are usually found with experiments using words.
This is not necessarily because the S-R compatibility is particularly
good, but rather because reading and remembering words is a highly
over-learned task, which we train daily. What can we say about Hick’s
light-key association task? Is this a completely new task, or are we
somewhat familiar with it?

We therefore propose the following, a clarification of Hick’s law:
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The choice reaction time for users performing a simple task grows
linearly with the stimulus uncertainty, measured by entropy, in the
range of 1 to 4 bits. The better the S-R compatibility and the better
the training, the shallower the slope. With appropriate learning, the
effects of S-R compatibility and stimulus uncertainty can be reduced
to almost zero.

4.3 THE CHOICE-REACTION PARADIGM AND HCI

In this section, I revisit the HCI applications of Section 4.1, comparing
them with the choice-reaction paradigm in psychology and outlining
the discrepancies in the use of the law. Seow [187] offered three plau-
sible reasons for the failure of Hick’s law in HCI: (1) The complexity
of computing information measures; (2) The complexity of stimuli in-
cluding font sizes, colors, etc. and (3) The unpredictability of stimuli
changes over time with practice. Therefore Hick’s law appears to be
optimal only in predicting novice performance. Here we offer two ad-
ditional explanations for why it is not trivial to use Hick’s law in HCI
studies.

4.3.1  Decomposition of Time Measures

Table 1 summarizes and demonstrates the differences between how
Hick and Hyman introduced the paradigm and how the law has been
used in HCI studies. All the studies assume a stimulus-response (S-R)
paradigm. From a measurement perspective we typically face three
time marks: Stimulus-onset time T1, Response-onset time T2, and
Response-termination time T3, allowing the calculation of three rel-
evant time durations: movement time MT = T3 - T2, task completion
time TCT = T3 - T1 and a third time, say xT = T2 - T1 (Fig. 16 (a)). xT
can stand for RT as in “reaction time” (e.g. Hick [98], Hyman [104]),
or in more complex tasks, can include, e.g. visual search [123, 216],
decision [33]. Importantly, xT and movement time MT are, by defini-
tion, non-overlapping intervals.

From the previous section we know that Hick along with other
psychologists measured the choice reaction time (b-RT) in response
to a particular stimulus: the time it takes to press the key, hence, re-
action time dominates task completion time (Fig. 16 (b)). In contrast,
all the studies in Table 1 fall into the paradigm of Fig. 16 (c) where
movement time MT contributes a relatively large portion of task com-
pletion time TCT. Despite the fact that xT involves different mental
processes in these studies (e. g. S identification, visual search, memory
search, decision to respond), the authors of these studies attributed
these phenomena to Hick’s law.
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Some of these phenomena can indeed be explained by a logarith-
mic function, but attributing them to Hick’s law is a very unfortu-
nate conflation between the formula and the law. For example, vi-
sual search in a hierarchical structure is logarithmic, as shown by
Landauer and Nachbar [123]. In fact, anything that involves a divide
and conquer strategy can be logarithmic. In many cases, this has noth-
ing to do with Hick’s law. In this case, a good practice can be seen
from Cockburn and Gutwin [32], who state that scrolling an alpha-
betically organized menu can be predicted by a logarithmic function,
but do not relate it to Hick’s law. Here xT is mostly dominated by
visual search and can indeed be modeled by a logarithmic function.
The time to make a decision also has nothing to do with Hick’s law,
despite its frequent use as an argument in the design community.
Section 4.4 gives a mathematically sound proof showing that a loga-
rithmic function of task difficulty contradicts the commonly believed
Hick-based design principle.

b TI T2 T3
a T T T3 I I—
1 1 1 RT MT
I 1 1
xT MT c T ™ T3
N _J/
g I I i
TCT xT MT

Figure 16: (a) Three time marks in a stimulus-response (5-R) paradigm: S-
onset time T1, R-onset time T2, and R-termination time T3. Task
completion time (TCT) = T3 - T1, movement time MT = T3 - T2
and xT = T2 - T1, which describes the psychological processes
(reaction, visual search, decision, etc.) before movement. (b) xT =
RT choice reaction time in Hick’s experiment [98], while (c) xT
involves different mental tasks in the studies listed in Table 1.

4.3.2  The Differences between Novices and Experts

Another important issue is whether the law applies to novice users,
e.g. [143], expert users, e. g. [33], or both, e. g. [218]. Rather than stat-
ing that Hick’s law appears to be optimal in predicting novice perfor-
mance [187], we believe that, once again, it depends on the task, S-R
compatibility and practice.

In his experiments, Hick trained the participants with more than
8000 practice trials whereas in Hyman'’s experiments, more then 15,000
trials were registered, yet there was still a slope in choice reaction
time. In a way, the participants in Hick’s and Hyman’s experiments
were trained enough to recognize the mapping between the lamp
and the key (Hick) and between the lamp and the word (Hyman),
but not trained enough to completely wear out the reaction time.
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Hick [98] Hyman [104] Landauer & | Cockburn et | Soukoreff & | Mackenzie | Wobbrock
Nach- al. [33] Macken- etal [142, & My-
bar [123] zie [216] 143] ers [218]
Task Reaction Reaction VS* Decision VS VS VS
Stimuli Random Random Ordered Random Keyboard | Keyboard | Random
Participants Well-trained Well-trained All users Users Novice Novice All users
starting users users
from block
2
Distribution Uniform Non-uniform Uniform Zipfian Uniform Uniform Uniform
Information Up to 3.32 bits Up to 2.81 bits | Up to 4 bits | Up to 3.58 4.75 bits 4.75 bits Uptoz
bits bits
Measure Mutual Information Entropy Entropy Entropy Entropy Entropy Entropy
Formula log{n +1) or Tllog ot logn logn logn logn logn
log(ne +1) —2 i—1pilog, pi
Results Logarithmic Logarithmic Logarithmic | Logarithmic | Logarithmic | Not Loga- | Logarithmic
rithmic

Table 1: A comparison of Hick 1952, Hyman 1953 and HCI studies that used Hick’s law (VS*: Visual Search).
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4.3 THE CHOICE-REACTION PARADIGM AND HCI

Indeed, as shown in the previous section, later studies confirmed
that an extremely well-trained participant can react in almost con-
stant time despite stimulus uncertainty [158]. There are also tasks
that we are naturally experts at, such as resting fingers on vibrators
and pressing the corresponding key when it vibrates [126], or giving
a voice reaction to Arabic numerals [157].

In HCI studies, it is difficult to judge novice vs. expert users in
the stimulus-response context. We are daily computer users, and we
are all semi-experts in responding to a visual stimulus with a mouse
pointer. Unless the interaction technique uses a device that partici-
pants have never seen before or a mapping that is completely novel,
we should rethink what is their expertise in this choice-reaction
paradigm.

4.3.3 Effect Size of Hick’s Law

Then what is the effect size of choice reaction time in HCI studies?
As stated in Section 4.2, the slope in Hick’s law depends on learning
and S-R compatibility. Two questions then naturally emerge:

* How familiar are the participants in HCI experiments with the
tasks we have them perform?

e What is the S-R compatibility of the tasks we usually ask partic-
ipants to perform?

Arguably, a successful interaction should be easily learned by par-
ticipants, or, even better, exploit already over-learned tasks, and should
have a good S-R compatibility. Therefore, it can be expected that for a
successful technique, the slope of Hick’s law is already quite shallow.

To illustrate this point, we reanalyzed data from Roy et al. [181]
and Liu et al. [134] where a simple command selection task was car-
ried out. In Roy et al. [181], participants needed to select a highlighted
command by touching the screen of a tablet with a predetermined fin-
ger in the Glass condition vs. one of several fingers in the Glass+Skin
condition. In Liu et al. [134], participants were instructed to move
the mouse pointer to hit a highlighted stimulus among several com-
mands. The finger or the pointer was rested on a designated area at
the beginning of each trial. In both cases, reaction time was measured
between the start of the trial and the first move of the finger or pointer.
Fig. 17 shows the plot of reaction time as a function of stimulus un-
certainty.

We ran a repeated-measures full factorial ANOVA for 3 conditions
on these reaction times (Table 5). In conditions Glass+Skin [181] and
command selection [134], the effect of stimulus uncertainty on reac-
tion time is not significant.
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4.3 THE CHOICE-REACTION PARADIGM AND HCI

In the Glass condition, even though p < 0.05, the effect size is very
small. In fact, the effect size for participant is 0.49, compared to o.10
for stimulus uncertainty. This means that having a different partici-
pant incurs a higher variance than switching the stimulus uncertainty
condition. The slope of Hick’s law is very small: 32ms/bit in the Glass
condition, 8ms/bit in the Glass+Skin condition and 4ms/bit for com-
mand selection [134]. This means that the reaction time can be treated
as a constant.

1500 —— Glass (Roy et al. 2015)
—=— Glass+Skin (Roy et al. 2015)

™ —»— Command Selection (Liu et al. 2017)
g 1000
(0]
£
=
5 L7 I
§ 500 i . - % L 'I J'
x H_}*’i

C0 2 4 6 8

Stimulus Uncertainty (bits)
Figure 17: Reanalysis of data from Roy et al. [181] and Liu et al. [134]: reac-

tion time as a function of stimulus uncertainty.

Factors df,den  F p Effect Size
Glass 5,65 3.39 0.0087 0.10

Glass+Skin 6,78 4.53 0.053 0.02
CS 6,66 7.27 0.816 0.06

Table 2: Full-factorial ANOVA for 3 conditions on their respective reaction
times: Glass and Glass+Skin from [181] and CS (Command Selec-
tion) from [134].

Indeed, for GUI tasks using the mouse or fingers and a task similar
to Hick’s light-key pressing paradigm, stimulus uncertainty shows
little effect on reaction time: Inter-subject variability induces more
variation in reaction time than stimulus uncertainty. In fact, given the
relative magnitude of movement time, Hick’s choice reaction time can
be considered constant.
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4.4 IMPLICATIONS FOR HCI

4.4 IMPLICATIONS FOR HCI

In this section, based on a mathematical analysis, I first show that
the Hick-based design principle praised in the design community is
unduly justified by Hick’s law. Then, I build on the previous discus-
sions and suggest that, in spite of the complexity of the psychological
process behind xT (Fig. 16), we can advocate a simple design strategy,
on the premise that xT is either convex or concave.

4.4.1  The Concavity of the Logarithm Contradicts the Hick-based Design
Principle

Hick’s law is usually used as an argument by the design community
to justify the need to display as few items as possible (Section 4.2).
Consider a scenario where a designer has to display N items, to see
how the Hick-based design principle holds.

CAR WEBSITE SCENARIO  We consider as a practical example a car
website which has N = 512 cars to display. We list three display strate-
gies and evaluate Hick’s law in each case:

* Display all the cars on the same page. Hick’s law states that
reaction time RT is given by

RT = a+blog,(512) =a+9 xb. (19)

* Split the 512 cars into 4 pages of 128 uncategorized cars. We
apply Hick’s law to each page and sum the reaction times. If
we consider that the user will go through all the pages, total
reaction RT time is given by

RT =4 x (a+blog,(128)) =4a+28 x b. (20)
Over time, there is one chance out of four that the item she is
looking for is in each page, so that the average RT is given by

4
RT=1/4(} ai+bilog,(128)) =10/4 a+70/4 b. (21)

i=1

e Split the 512 cars in 4 categories of 128 cars. The participant
selects one item among 4 to select a category, and then selects
one item among 128. This is the so called tree strategy, or divide
and conquer strategy. The total reaction time RT is given by

RT =a+blog,(4) +a+blog,(128) =2a+9 x b. (22)

For this example, the optimal strategy according to Hick’s law con-
sists of displaying all the cars at once on the same page.
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4.4 IMPLICATIONS FOR HCI

In fact the following general result holds. When there are N items to
be displayed that can be separated into k subgroups, applying Hick’s
law leads to the following:

e It is never advantageous to split elements into uncategorized
subgroups of equal sizes. Indeed, for k € N; 2 <k < N, we
have that:

(N/K)S=N; i N> k0, (23)
Then, taking the logarithms on both sides, we get:

klog(N/k) > log N, (24)
which generalizes* Equation (20).

e It is not advantageous, or at best useless, to split elements into
categorized subgroups of equal size. Indeed, since N = k x I,
log N =log k +1log N/k, so that

RT = a+blog(k) + a+ blog(N/k) (25)
=a+ (a+blogN). (26)

This generalizes Equation (22). Assuming there are m nested
categories, we must ultimately pay the price of an additional
(m — 1)a seconds on RT if we use a tree strategy.

The conclusion of this small example is that, contrary to common
sense, Hick’s law actually suggests displaying as many items as possi-
ble on the car rental site. We do not claim that the Hick-based design
principle is flawed, but rather that it cannot be justified by Hick’s
law. There are many different phenomena taking place when a user
is investigating the car rental web page, which are far more complex
than simple stimulus response and therefore Hick’s model is far too
simple.

In serial visual search, selection time increases linearly with size
[214], i.e. RT = a+ b N. If one were to choose a joint pair among a
set of size N, we would expect a quadratic increase in RT as there are
N(N —1)/2 possible pairs. This suggests a variety of non logarithmic
models.

4 The right-hand side condition of Equation (23) implies that N must always be greater
than the number of categories. When we increase k, N should increase a little faster.
Practical cases in HCI usually verify that condition, e. g. in the example above with
k =4, N should be greater or equal to 7.
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4.4.2  xT Design Principle: A Matter of Convexity

What matters for design is whether the function relating xT and N
is convex or concave. As in the previous example, we consider two
different situations: one in which items can be categorized, the other
in which they cannot. This leads to two different convexity results.
Let f be the function that relates xT to N

xT = f(N), (27)

CASE 1: ITEMS CANNOT BE CATEGORIZED If the items are dis-
played in two sets of sizes x and y (x +y = N), then xT = f(x) + f(y),
whereas if the items are displayed all at once, xT = f(x +y). Therefore,
determining whether or not we should split the items boils down to
whether f(x +y) is greater or lower than f(x) + f(y)

fix+y) = f(x) +fy), (28)

If Equation (28) holds, then f is said to be superadditive; else f is
subadditive. It can be shown [25] that if f(0) = 0:

f convex implies f superadditive; (29)

f concave implies f subadditive. (30)

The important information is thus whether f is a convex or concave
function. This leads to our first xT design principle:

If items are not categorizable and f is convex, e. g. quadratic,
then it is useful to group the items, even arbitrarily. If f is
concave, e.g. logarithmic , then it is better to display all
items at once>.

CASE 2: ITEMS CAN BE CATEGORIZED For this case, we assume
for simplicity that the items are categorized in x categories with y
items each. Therefore N = xy. From the example of the previous
subsection, it is clear that the relevant question is whether f(x) + f(y)
is greater or not than f(xy). It is easily shown through the previous
result that

f(xy); (31)

f(exp (.)) convex implies f(x)+ f(y) <
f(exp (.)) concave implies f(x) + f(y) > f(xy). (32)

In Hick’s paradigm reaction time grows logarithmically, in which case
f(exp(x)) is linear; this is the limit case where f(x) + f(y) = f(xy),
i.e. the two strategies are equivalent. As all functions relating selec-
tion time to the number of items realistically grow faster than the log-
arithm (any practical HCI setup is likely more time consuming than
Hick’s task), we can state the second xT design principle as follows:

Note that we use the convention that a choice from a null set takes 0 seconds, which
explains the extra conditions needed in (23) as log(0) — —oo. Also note that using
the formulation of (7) conveniently solves this issue by adding 1 to N.

51



4.5 CONCLUSION

yes Group into
| > p «— convex
subsets
Data
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o » XT function concave
No subsets .

Figure 18: xT design guideline based on data categorization and xT func-
tion.

If items can be categorized, then they should always be
split.

Fig. 18 summarizes the two xT design principles.

4.5 CONCLUSION

I have shown that Hick’s law is not always relevant to the tasks be-
ing studied. Psychologists have successfully investigated the limits
and conditions of application of the law, but this knowledge is rarely
applied in HCI. To summarize:

¢ Hick’s law may not be relevant to a given context. In fact, we
doubt that Hick’s law has much to offer in many HCI tasks. In
addition, not all reaction times are expected to scale logarithmi-
cally with n.

¢ Conversely, an empirical logarithmic reaction time does not jus-
tify Hick’s law. Many mechanisms can lead to a logarithmic
time. Visual search on a hierarchical menu is a good exam-

ple [123].

Probably much more can be learned from reaction time than the
binary observation of whether or not Hick’s law holds. Psychologists
have found that reaction time highly depends on the task, S-R com-
patibility, and practice. These notions are directly applicable to HCIL.
One of the designer’s goals is certainly to maximize S-R compatibil-
ity, e. g. by making the interface more intuitive, which also makes it
easier to learn. This suggests that in simple GUI tasks, reaction time
can be treated as constant; this is indeed supported by the empirical
analysis in the previous section.
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4.5 CONCLUSION

Looking forward, creating an empirical taxonomy for reaction times
analogous to the more theoretical computational complexity might
be useful for HCI researchers who strive to model human behavior.
Since sub-additivity is the main issue, an index that quantifies this
property would probably be useful. S = % is a natural candi-
date. More empirical and theoretical work should determine whether

S is indeed useful.
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OTHER INFORMATION THEORY ATTEMPTS IN HCI

Apart from Fitts” law and Hick’s law, information theory has found
few other uses in HCI. This chapter examines several attempts: statis-
tical language modeling for text entry, human information capacity
and some applications inspired by control theory [107]. My goal is to
explore how information theory has been used in these domains and
what can be done for future work.

5.1 STATISTICAL LANGUAGE PROCESSING FOR TEXT ENTRY

Statistical language processing models text entry as communication
over a noisy channel and calculates the bitrate of a text entry method.
It is based on Shannon’s estimation of entropy [189] and exploits the
inherent redundancies for language modeling and prediction. Intelli-
gent text entry systems that use this approach result in a lower error
rate and potentially a higher entry rate [116].

The basic idea is in line with fundamental information-theoretic
concepts. Assume a source alphabet Q follows a probability distribu-
tion. The entropy of such alphabet is then H(Q) (Equation 1) and the
perplexity. PP(Q) = 2H(Q) ‘measures how well a probability model is
at prediction *. The lower the perplexity, the easier the prediction. If
the random variable I is a distribution over the set of words the user
is intending to write and the random variable O is a distribution over
the set of words the user is actually writing, then the rate R (in bits
per time unit) is:

(I, O)

I
R=—— (33)

where I(I; O) is the mutual information (Equation 2) and and t is the
average time it takes to write a word in O. If the probability of error
is zero, that is, all words in I can always be inferred from O, then
R = @ (Equation 6).

The perplexity is the exponentiation of the entropy, which is a more clearcut quantity.
The lowest perplexity that has been published on the Brown Corpus (1 million words
of American English of varying topics and genres) as of 1992 is about 27-7> = 247 per
word, corresponding to a cross-entropy of log, 247 = 7.95 bits per word or 1.75 bits
per letter [24] using a trigram model. Recall that Shannon [188] estimated the word-
entropy of printed English as 11.82 bits per word and Grignetti [85] estimated 9.83
bits per word (Chapter 2 Section 2.1). It is often possible to achieve lower perplexity
on more specialized corpora, as they are more predictable.
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5.1 STATISTICAL LANGUAGE PROCESSING FOR TEXT ENTRY
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Figure 19: A user is writing “demonstration” in Dasher. The nearby alterna-
tives such as “demonstrated that”, “demonstrative”, and “demor-
alise” can be selected by moving the cursor up or down.

Dasher [137, 209, 210] is one of the few information-efficient text en-
try methods. Unlike most other text entry methods, in Dasher a user’s
gesture does not map to a particular letter or word. Instead, text entry
involves continuous visually-guided control of gestures via, for exam-
ple, a mouse or eye gaze. The prediction of the next word is expressed
in a colored piece of text. The more probable the text, the more space
it is given so that it is easier to select (Fig. 19). A user writes text by
continuously navigating to a desired sequence of letters in a graphi-
cal user interface laid out according to a language model. If the user
writes at a rate Rp (in bits) then Dasher attempts to zoom in to the
region containing the user’s intended text by a factor of 2Rp. If the lan-
guage model generates text at an exchange rate of R; pm then the user
will be able to reach an entry rate of Rp /Ry m characters per second 2.

Other intelligent text entry methods incorporate models such as
Gaussian Process to improve text entry rate. Building on Kristensson
et al. [117, 118], Weir et al. [212] combined a language model with a
touch model to account for the inherent uncertainty of the touching
process on mobile devices. The statistical decoder is often achieved
by employing a Markov chain model [148] and token passing strate-
gies [221] (Fig. 20). Weir et al. added a Gaussian Process (GP) touch
distribution model (the likelihood) to capture individual users” phys-
ical uncertainty and demonstrated that such a method reduced the
character error rate by 1.0% when participants are standing still when
typing and by 1.3% when participants are walking when typing.

2 http://www.inference.org.uk/dasher.
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5.1 STATISTICAL LANGUAGE PROCESSING FOR TEXT ENTRY
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Figure 20: (a) Trellis of an observation sequence O = {01, 03,03}. The thick
arrows indicate an example of a highest probability path. (b) An
example of a word confusion network [147]. € represents a e-
transition state to each observation index that allows a token to
propagate to the next observation index without generating a cor-
responding letter. Figure taken from [165].

These are two examples among many intelligent text entry meth-
ods [116]. Fundamentally, such methods aim to amplify users” ability
to communicate as quickly and as accurately as possible by exploiting
redundancies in natural languages. While the information-theoretic
concept of bitrate (Equation 33) provides a natural and intuitive mea-
sure of text entry rate, however, such a method has not been widely
adopted by the HCI community. To describe the speed of typing, re-
searchers tend to use words per minute (WPM), which is measured in
words entered in a minute and the definition of each word is often
standardized to be 5 characters. Describing accuracy is more problem-
atic due to the nature of mistakes: there are at least 4 basic types of
errors, including entering an incorrect character (substitution), omit-
ting a character (omission), adding an extra character (insertion), or
swapping neighboring characters (transposition).

Soukoreff and Mackenzie [196] outlined the recent developments
in text-entry error rate measurement including total error rate, not-
corrected error rate, corrected error rate, KSPC (keystrokes per char-
acter) [139], and Levenshtein string distance statistic [195]. KSPC rep-
resents the number of keystrokes required, on average, to generate a
character of text for a given text entry technique in a given language.
For instance, the Qwerty keyboard has KSPC = 1 as each letter has
a dedicated key. If a user perfectly types a sentence without making
any mistakes, KSPC also equals 1. However, if she mistypes a letter,
erases it and inputs the correct letter (2 more steps), KSPC > 1. In
a way, KSPC describes whether there are extra actions involved in
typing, whether they are due to error or not. The Levenshtein string
distance (LD) [40, 127] is a measure of the similarity between two
strings. For instance, if string s is “test” and string t is “test”, then
LD(s,t) = 0, because no transformations are needed. The strings are
already identical. If s is “test” and t is “tent”, then LD(s,t) = 1, be-
cause one substitution (change “s” to “n”) is sufficient to transform
s into t. The greater the Levenshtein distance, the more different the
strings are.
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5.2 HUMAN INFORMATION CAPACITY

A typical use example of these measures is described as follows:

Intended sentence: I am fine if you ask.
Transcribed sentence: I an finw <« e if you ask.

If we assume that a rather expert user 3 transcribed the sentence in
4 seconds, then we can compute the measures:

Words per Minute(WPM) = 21 +5 <4 x 60 = 63
Not Corrected Error Rate = 1+ 22 x 100% = 4.5%
Corrected Error Rate = 1+ 22 x 100% = 4.5%
Total Error Rate = 2 +22 x 100% = 9.0%
Keystrokes per Character (KSPC) = 23 +21 = 1.09
Levenshtein String Distance (LD) = 1

Keystrokes per character (KSPC) corresponds to corrected error
rate while Levenshtein string distance to not-corrected error rate. We
can see that even with such a complicated error measurement ap-
proach, the 4 types of errors are still not fully taken into account.
Indeed, measuring errors has proven to be difficult in text entry. But
one can hardly make meaningful observations about speed in the
absence of accuracy. As a result, in controlled experiment settings,
participants were often instructed to consciously limit errors within
a reasonable range, such as 4% (e.g. [53]), so that only the speed di-
mension is of concern.

It is surprising that so few researchers have taken advantage of in-
formation theory to measure performance in text entry when it has
already been used for statistical language modeling. The notion of
equivocation H(X|Y) (Equation 2 and 3) naturally provides measures
for errors and how one can recover the source messages from the re-
ceived ones. I will demonstrate in Part iii that we can use information-
theoretic measures for evaluating text entry performance.

5.2 HUMAN INFORMATION CAPACITY

The notion of human information capacity, or rather the notion of
throughput, has been mostly used in aimed movement, for instance,
selecting targets with the mouse yields throughput of 3.7-4.9 bits per
second [197]. It has also recently been applied to full-body move-
ments [164] 4.

An average professional typist types usually at speeds of 50 to 8o wpm.

Like many other researchers (e.g. Mackenzie [141], Zhai [222] and Guiard [89]),
Oulasvirta et al. [164] was in fact measuring throughput, not capacity in their study.
The notions of channel capacity C and information transmitted at a rate R are defined
in Chapter 1 Section 1.3.
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Figure 21: (a) Mutual information of repeated movements (here: blue and
light-blue trajectories), determined by their complexity and the
precision of reproduction. Highly complex and precisely reen-
acted movements yield the highest throughputs. (b) Study 3: Bi-
manual in-air gesturing: the best (top) and the worst (bottom)
performance respectively. Figure adapted from [164].

Oulasvirta et al. [164] extended the notion of throughput to study
human control of continuous sensors. Their method takes input mo-
tion data with any number of movement features (observation points
on the human body) and calculates throughput from mutual informa-
tion of two or more deliberately repeated movement sequences. The
definition of mutual information captures the intuition that a skilled
actor can produce complex (surprising) movements and reenact them
precisely at will (Fig. 21 (a)). With these measures, Oulasvirta et al.
[164, 191] investigated this question in the context of 3D motion cap-
ture interfaces and touchscreens, targeting the related application of
gesture recognition. In the first study with ballet teachers, they es-
timated throughput as high as 1307 bits per second. In the second
study of cyclical tapping with a mouse, the estimated throughput is
from 24 to 37 bits per second on average. In study 3 of bimanual in-air
gestures, throughput was 182.7 bits per second with dominant hand
removed, 217.8 bits per second with non-dominant hand removed,
and 322.1 bits per second with both hands. The best and the worst
performance can be seen in Fig. 21 (b).

Even though this method provides a quantitative measurement of
throughput in the continuous space, one limitation is that all mea-
surements are assumed to follow a joint Gaussian distribution so that
the mutual information computation boils down to estimating a cor-
relation coefficient rho with an additional bias due to the estimation
of rho. Indeed, as Berdahl et al. [14] put it, “the authors appear to be
overestimating the channel capacity... The reason for this is that they
do not have a way of discounting certain input signals that may be
impossible for users to perform — for example, it is not possible to put
the human fingertips in any randomly selected arbitrary position in
Cartesian space. However, since they are counting such orientations,
the estimated channel capacity is greatly inflated and no longer di-
rectly comparable with traditional throughput measurements”.
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Figure 22: Model of a user controlling sound using continuous analog sen-
sors. Taken from [14].

Instead, Berdahl et al. [14] proposed a model to account for human
subject controlling a single, continuous sensor. Rather than estimating
the joint probability function, the goal was to estimate channel capac-
ity /throughput by asking human subjects to “perform” gestures that
match idealized, band-limited Gaussian “target gestures”. Then, the
signal-to-noise ratio of the recorded gestures determines channel ca-
pacity /throughput. They find that the channel capacity for control of
a single, continuous sensor is as high as 4 or 5 bits per second.

It is crucial to note, however, that test subjects in Berdahl et al.’s
study were sufficiently trained in accurately operating the sensors. Al-
though the work was only focused on users controlling sound using
continuous analog sensors and sonic interaction design, the commu-
nication channel in their model was represented by a human together
with a user interface, which could be potentially generalized and ex-
tended to other scenarios (Fig. 22). In Part iii, I will demonstrate such
user-to-computer information transmission scheme.

5.3 POINTING WITHOUT A POINTER

Inspired by control theory [107], Williamson and Murray-Smith [217]
in their work Pointing without a Pointer also proposed a multimodal
communication channel between the human and the system that is
bandwidth-limited both perceptually and physiologically >.

Pointing without a Pointer is an example of an interface built on methods from manual
control theory - the study of how humans control dynamic systems, and close to the
methods used in perceptual control theory [175]. It suggests that many kinds of be-
havior can be described as continuous control problems, and provides an empirical
method for the estimation of a subject’s intention.
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They considered interface components as independent agents com-
peting for user attention. Each agent is associated with an action in
the user interface. Agents try to determine whether the user is inter-
ested in them by designing and running “experiments” to look for
correlated responses in the actions of user. The experiments can take
any form where the agent changes its state and tests for correlated
responses in its inputs (movements of the mouse, for example). As
the user’s attention is a scarce resource, the agents must compete to
optimally ascertain user intentions with limited attentional resources.

One application of such a method is a selection task without requir-
ing an explicit pointer as shown in Fig. 23 (a). Each object is consid-
ered to be an agent whose experiment on the user is the disturbance;
intention is detected by looking for controlling behavior. The agents
produce a continuous probability of selecting agent i, p;.

Figure 23: (a) The prototype of [217]. Each agent is shown as a circle with
radius proportional to selection probability. The velocity of the
objects is shown as an aid to users. (b) Probability time series for
10 objects with a number of correct selection events. Entropy is
shown as the blue line below. Figures adapted from [217].

A selection event is considered to have happened when p; exceeds
some threshold, captured by the drop in entropy (Fig. 23 (b)), repre-
senting the accumulated information gradually gained by the system.
By adding degrees of freedom using higher dimensional controllers
and changing the presentation of the disturbances, such framework
for probabilistic selection interfaces in continuous environments with-
out a pointer can be adapted and extended. In Part ii, I will introduce
a similar entropy-based method where the computer “runs experi-
ments” and gains information from the user.

Coincidently, Williamson and Murray-Smith [217] were the first to

describe excitation of displayed objects as a strategy for selection by
making corresponding motions with an input device.
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5.3 POINTING WITHOUT A POINTER

This work inspired Fekete et al. [54] to explore motion correla-
tion as a selection technique in conventional graphical user interfaces.
Rather than using pseudo-random movement, their idea was to as-
sociate objects with oscillatory movement, drawing on user’s natu-
ral ability for harmonic motion with their hands. In their design of
the motion-pointing technique, the graphical objects of interest retain
their static presence in the interface but are augmented with a mov-
ing dot describing a small elliptical movement. These works represent
milestones in establishing the motion correlation principle [207].

In summary, these studies demonstrate the potential of using in-
formation theory and information-theoretic notions to study the user-
to-computer communication process and to design interaction with
improved communication rate.
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SUMMARY

I have presented various research endeavors applying information
theory in psychology and in human-computer interaction. Some in-
volve the communication channel with human users while others do
not; some are more intuitive than others; some are more successful
than others. I particularly want to summarize and highlight the fol-
lowing four aspects that motivate the rest of the thesis:

e Chapter 2: Indeed, there are a number of difficulties in apply-
ing information theory, notably the fact that the notion of in-
formation in information-theoretic terms has absolutely no se-
mantic meaning; it is entirely described by a probability distri-
bution. Measuring information content (entropy) in printed En-
glish text or multimedia content is absolute as long as the proba-
bility distribution of words and multimedia content (e. g. video
frames) is considered objectively and as a matter of fact. On
the other hand, if we were to derive information content from
the stimuli based on human users’ reaction, as in the stimulus-
response paradigm, we need to make sure that the experimen-
tal setting corresponds to the information transmission process,
rather than the information processing phase.

e Chapter 3 and 4: We have seen that the understanding and ap-
plications of the two main laws in HCI - Fitts” law and Hick’s
law — are problematic and I have provided an in-depth discus-
sion of Hick’s law in Chapter 4. It is necessary, therefore, to
clarify what they are, how they should be used and when they
do not apply. I believe that the HCI community at large can
benefit from theoretically justified methods.

e Chapter 5: We have also seen the potential of investigating the
information transmission process from the user to the computer
using the tools of information theory. Particularly, how to quan-
tify the information is an interesting question. In Part ii, I will
introduce a Bayesian Information Gain framework that is based
on Bayesian Experimental Design using the criterion of mutual
information from information theory. This approach quantifies
the information sent by the user to the computer to express her
intention. By having the computer demanding more informa-
tion at each time, I will show that the interaction & communica-
tion efficiency can be improved.
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SUMMARY

¢ Chapter 5: Since information theory has already been used in
measuring entropy of English and measuring human perfor-
mance, can we further extend it to describe interaction tasks at
large? This generic communication scheme enables us to exam-
ine the communication process between the user and the com-
puter with theoretically valid tools and provides several useful
measures that have not been taken advantage of. In Part iii, I
will introduce these information-theoretic measures for charac-
terizing interaction tasks and demonstrate that it offers a richer
picture of a given interaction scenario in comparison to the ex-
isting measurements.

We cannot foresee how information theory is going to affect and
inspire future interaction design, nor can we guess which theory will
be the next trend. Information theory was adopted and then dropped
by psychologists, yet it still has much potential for understanding and
designing the human-computer communication process. I hope this
part has fulfilled its purpose: understanding the past as well as the
present, and taking a glimpse into the future.

“The farther backward you can look,
the farther forward you are likely to see.”
- Winston S. Churchill
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Part II

A BAYESIAN INFORMATION GAIN (BIG)
FRAMEWORK FOR QUANTIFYING
INFORMATION

The goal of this part is to introduce Bayesian Information
Gain (BIG), an information-theoretic framework based on
Bayesian Experimental Design to quantify the information
sent by users to computers in the interaction loop. BIG
(a) allows the measurement of information in bits and (b)
improves the efficiency of interaction & communication by
maximizing or leveraging the expected information gain
from the user’s subsequent input.

I first introduce the BIG framework and then demonstrate
two use cases: BIGnav, for multiscale navigation and BIG-
File, for hierarchical file retrieval, both of which show a
new way of interacting with improved communication ef-
ficiency, suggesting other possible “BIG” opportunities.






BAYESIAN INFORMATION GAIN FRAMEWORK

7.1 MOTIVATION

In this information-abundant world, a large amount of information
is exchanged between users and computers: we obtain information
from the computer to increase our knowledge and to complete tasks,
and we send information to the computer to express our ideas and in-
tentions. Several studies have investigated the information that users
obtain from computers. For instance, Pirolli and Card [169] have intro-
duced the concept of information foraging, describing the phenomenon
that people adapt their strategies to increase information gain in an
online information seeking task.

However, there is little understanding of the information sent by
the user fo the computer. We are familiar with the notion that we give
inputs (or commands) to the computer, not information. Yet these in-
puts reflect the user’s intentions, letting the computer know what is
the user’s goal, therefore, they represent information. This leads to a
number of questions: how much information is there in these input
commands? Can we quantify this information? If we can, what can
we do with it and what does it imply?

In this part, we introduce a Bayesian Information Gain framework
(BIG), based on Bayesian Experimental Design [132]. It uses the crite-
rion of information gain, also known as mutual information in infor-
mation theory [188], to quantify the information sent by the user to
the computer in the interaction loop. Information is defined in terms
of the computer’s knowledge about what the user wants. At the be-
ginning of the interaction, the user has certain goals, e. g. looking for
a particular item on a website or typing a particular word on the
keyboard. The computer has some uncertainty about the user’s goal.
This uncertainty is represented by the computer’s prior knowledge,
expressed in a probabilistic model. When taking input from the user,
the computer updates its knowledge about what the user is looking
for. Therefore, the information carried by the user input is the knowl-
edge gained by the computer to know the user’s goal.

One can simply use BIG to measure the information sent by the
user to the computer. Furthermore, by maximizing or leveraging the
expected information gain from the user’s subsequent input through
manipulation of the feedback, the computer can increase the informa-
tion gain from the user, improving interaction efficiency:.
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Figure 24: The BIG framework: there are three key random variables: the po-
tential targets ©, system feedback X and user input Y. The com-
puter also has some prior knowledge about the user’s intended
target p(© = 0) and a user behavior function expressing what the
user would do p(Y = y|® = 6, X = x). After sending the feedback
X = x and receiving the user input Y = y, the computer updates
its knowledge about the user’s goal and calculates the informa-
tion gain from the user input. In order to play a more active role,
the computer can try to maximize the expected information gain
or leverage it for better interaction by manipulating the feedback.

In this chapter, we introduce the Bayesian Information Gain (BIG)
framework, which is a general approach that can be applied to a wide
range of interaction tasks (Fig. 24).

BIG is inspired by Bayesian Experimental Design [132], which pro-
vides a framework to optimize the choice of an experiment x that
will provide an observation y by maximizing an expected utility, com-
monly defined in terms of the information gained about the param-
eter O by the experiment x. The utility may also involve factors such
as the financial (or other) cost of performing the experiment.

In the BIG framework, the computer “runs experiment” on the user
by sending the feedback X = x (experiment) and receives user’s sub-
sequent input Y =y (observation) to update its knowledge about the
user’s goal (parameter).

BIG uses the following notations that are common for Bayesian
Experimental Design [132]:
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7.2 BIG FRAMEWORK

1. O represents the possible intended targets in the user’s mind.

2. p(© = 0) for all values of 0 is the prior probability distribu-
tion of target, which expresses the computer’s prior knowledge
about the random variable ©. p(® = 0) can be uniform if no
data about the user’s interests is available, or can be based on
external data sources or interaction history.

3. X represents any possible feedback provided by the computer
and X = x is a particular feedback sent to the user.

4. Y represents any particular command y issued by the user.

5. p(Y =yl® = 0,X = x) is the probability of the user giving an
input command Y =y when she wants © = 0 and sees X = x.
This can be modeled from the interaction history, or by user
calibration, and can be user-independent.

6. p(BIX =x,Y =y) is the computer’s updated knowledge about
the user’s goal after showing the user X = x and receiving the
input Y =y from the user. It is calculated through Bayes’ theo-
rem:

p(Y=y|®=0,X=x)p(@=0)
p(Y =ylX=x) '

pO=0[X=x%xY=y)=

(34)

where p(Y=y | X=x)=) p(Y=y|O=0",X=x)p(©@ =0").
e/

7. 1(©;Y|X = x) is the mutual information between what the user

wants and what she provides as input when seeing X = x. It is
the difference between two uncertainties’:

[(6;YIX=x) =H(©) —H(OX =x,Y). (35)

This can also be interpreted as the expected information gain,
which is always positive. To calculate this, we use Bayes’ theo-
rem for entropy to convert Equation 35 to:

1(; X =x) = H(Y]X = x) — H(Y|®, X = x). (36)

where the first term is given by:

Zp(Y =y[X =x)log, p(Y =y[X =x).
y

and the second one by:

Zp(@ =0)p(Y =yl® =0,X=x)log, p(Y =y|®@ =0, X =x).
y,0

1 For a given X, knowing Y decreases uncertainty (increases knowledge) about ©, by
a quantity which is precisely the mutual information I(®; Y|X = x).
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7.2 BIG FRAMEWORK

8. IG(B|X = x,Y =) is the difference between the computer’s pre-
vious knowledge H(®) and current knowledge H(OX = x,Y =
y) about the user’s goal, representing the actual information car-
ried by the user input:

IGOX=xY=y)=H(O)-HOX=x,Y=y). (37)

Information gain might be negative if the user, e.g. makes an
error, but is positive on average?.

Table 3 summarizes the notations in Bayesian Experimental Design
and Bayesian Information Gain respectively.

BED BIG
0 parameter to be intended target in the
determined user’s mind
observation user input
experimental design system feedback
model for making model for user
pylo, x) observation y, given providing input vy,
0 and x given 0 and x

system’s prior
p(6) prior knowledge about the
user’s goal

p(Bly, x) posterior updated knowledge
[(©;YIX =x) utility of the design x | utility of the feedback x

utility of the

IGOX =x,Y =vy) experiment oujccome

after observation y
with design x

utility of the outcome
after user input y with
system feedback x

Table 3: Notations in Bayesian Experimental Design (BED) and in Bayesian
Information Gain (BIG) respectively.

One can always calculate the actual information gain, or the infor-
mation carried by the user input informing the computer what she
wants with Equation 37 — “Running a normal experiment”. By ma-
nipulating the feedback with Equation 35, e. g. finding the X = x that
maximizes or leverages the expected information gain, the system
“runs a better experiment” on the user in order to gain more infor-
mation about the user’s goal, i.e. the intended target. The computer
then plays a more active role and therefore increases interaction &
communication efficiency.

2 IG is an “instantaneous” quantity that is positive on average: I = Ey, (I1G) > 0.
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7.2 BIG FRAMEWORK

In the next 4 chapters, I illustrate two applications of this BIG ap-
proach: maximizing the expected information gain in multiscale nav-
igation (Chapter 9) and leveraging the expected information gain in
hierarchical file retrieval (Chapter 11). In both cases, BIG is used in
a different manner regarding the types of intended target ©, system
feedback X and user input Y and receives different subjective expe-
rience by the participants in the respective controlled experiments.
Chapter 8 and Chapter 10 provide the context of multiscale naviga-
tion and hierarchical file retrieval respectively. In Chapter 12, I dis-
cuss how BIG is related to other conceptual frameworks, and outline
opportunities for future work.
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MULTISCALE NAVIGATION

Multiscale interfaces are a powerful way to represent large datasets
such as maps, documents and high-resolution images. The canonical
navigation commands in this type of interfaces are pan and zoom (as
seen in most of the applications such as Google Maps *): panning lets
users change the position of the view while zooming lets them mod-
ify the magnification of the viewport [71, 166]. Other representations
include focus+context [211], overview+detail [183], treemap [193], hy-
perbolic tree [122], etc. (Fig. 25). In all cases they leave the user in
complete control of navigation, leading to frustrating situations such
as getting “lost in desert fog” where there is no information available
to aid decision making [111].
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Figure 25: Multiscale representations and interactions: (a) Overview+detail;
(b) Focus+context; (c) Treemap and (d) Hyperbolic tree.

In this chapter, I review some assisted multiscale navigation tech-
niques before introducing a guided multiscale navigation technique,
BIGnav, in the next chapter.

Since pan and zoom are the most commonly used commands for
multiscale navigation, much work has explored effective pan-and-
zoom navigation. One can group these studies into 3 categories:

¢ Better understanding multiscale navigation;
¢ Assisting navigation by exploiting information space features;

¢ Interpreting user intention for guiding navigation.

1 https://www.google.com/maps
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8.1 BETTER UNDERSTANDING MULTISCALE NAVIGATION

Furnas and Bederson introduced space-scale diagrams, which pro-
vide an analytic and principled framework to examine multiscale nav-
igation [70, 71] (Fig. 26). By representing both a spatial world and its
different magnifications, the diagrams allow the direct visualization
and analysis of important scale-related issues for interfaces.

Figure 26: Space-scale diagrams: a 2D picture at its original scale (a) and at
each possible magnification along the vertical scale axis (b); The
viewing window keeps a fixed size and (c) is shifted along the
space-scale diagram to (d) a zoomed-in view; (e) a zoomed-out
view seeing the entire original picture and (f) a view of part of
the picture. Taken from [71].

Navigation tasks consist in acquiring or pointing a specific target,
characterized by a position and size. It generally involves view nav-
igation, whereby the user must first bring the target into view, at
a scale where it can be selected. Despite being quite different from
traditional pointing, Guiard & Beaudouin-Lafon [86] used theoretical
rationales and empirical studies to show that Fitts” law [63] applies
to multiscale pointing for indices of difficulty (ID) beyond 30 bits, in
contrast to the classical Fitts” law studies where ID has been confined
in the 2-10 bit range (Fig. 27). In particular, Fig. 27 (b) illustrates the re-
duction of ID over time. In contrast to this progressive decrease with
continuous panning and zooming, we will see in the next chapter that
BIGnav works differently.

IDc (bits)

MT (s)

T T T T T

0 5 10 15 20 25 30 35 -
D (bit)

Figure 27: (a) Fitts” law assessed over a selection of IDs ranging beyond 10

bits and (b) Evolution of the current level of ID over a representa-
tive target-reaching movement. Taken from [86].
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8.2 EXPLOITING INFORMATION SPACE FEATURES

Techniques in this category assist navigation by taking advantage of
the system’s knowledge of the information space. While users might
not be fully aware of the features in the multiscale world, the system
can facilitate navigation by exploiting such information and therefore
help the user interact with it more effectively, such as avoiding get-
ting “lost in desert fog”.

Javed et al. introduced GravNav [108], a gravity-inspired naviga-
tion that uses the underlying visual space to assist navigation. Grav-
Nav calculates an attention vector depending on the viewport posi-
tion in the space and the surrounding objects of interest. This vector
is then used to modulate the speed or even the direction of the user’s
interactions to facilitate navigation to objects of interest (Fig. 28 (a)).

Ishak and Feiner [106] introduced content-aware scrolling, a method
that varies the direction, speed, and zoom during scrolling, based on
document content properties. For instance, in Fig 28 (b), the scrolling
speed is varied based on the locations of important regions (solid
black parts of path) and unimportant regions (dotted black parts of
path) in a reading task (left) and in a text search task for “people” in
the same page (right).

Figure 28: (a) GravNav: illustration of an attention gravity well for an ob-
ject and (b) Content-aware scrolling. Taken from [108] and [106]
respectively.

Galyean [75] used “The River Analogy” to assist 3D navigation in
a virtual reality environment: it pulls users along a pre-computed
path, while still letting them deviate slightly from it. As shown in
Fig. 29, there are a number of different parts: the anchor moving along
the path, a spring attaching the user position to the anchor, a thrust
imparted by the user dictated by the direction the user is looking,
and a general viscous damping to prevent the user from oscillating
around the anchor position.
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Figure 29: “The River Analogy”. Taken from [75].

In the same vein but first introduced as pointing techniques, ob-
ject pointing [87] and semantic pointing [19] also “steer” users to-
wards potential targets, therefore reducing the risk of getting lost.
Object pointing [87] introduces a special screen cursor that skips
empty spaces, and allows jumping directly to the target. Semantic
pointing [19] uses two independent sizes for each potential target
presented to the user: one size in motor space adapted to its impor-
tance for the manipulation, and one size in visual space adapted to
the amount of information it conveys. The disentanglement of mo-
tor space from visual space facilitates pointing movement and can be
easily extended to multiscale navigation.

83 INTERPRETING USER INTENTION

Another family of techniques guides navigation from the user’s side
by interpreting user intention.

Igarashi & Hinckley proposed Speed-Dependent Automatic Zoom-
ing (SDAZ), where the zooming factor depends on the user-controlled
velocity so that users do not need to directly control zooming [105].
The basic idea is to automatically shrink the information space (e.g. a
large document) when the user scrolls fast, thus maintaining constant
perceptual scrolling speed and presentation of the global overview of
the information space. As shown in Fig. 30 (a), the document auto-
matically zooms out when the user scrolls fast. The speed of visual
flow across the screen is held constant. Section headings and images
become salient in the zoomed-out view to guide navigation.
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Figure 30: (a) Scrolling a long document using SDAZ and (b) The Ortho-
zoom scroller. Taken from [105] and [5] respectively.

By contrast, Appert & Fekete created Orthozoom, a 1D scroller
where users control zooming by moving along the scroller’s orthogo-
nal dimension, improving navigation in very large documents [5]. Or-
thozoom behaves like a traditional slider when the mouse is moved
within the bounds of the slider. When dragging the mouse outside
the bounds of the slider, it continuously changes the granularity of
the slider and the scale of the document (Fig. 30 (b)). The granularity
and scale decrease as the mouse cursor goes farther away from the
slider bounds. In a controlled experiment, Appert & Fekete showed
that Orthozoom performed twice as fast as SDAZ (Fig. 31) with an
ID of up to 30 bits.
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Figure 31: Controlled experiment comparing Orthozoom (OZ) with SDAZ
regarding mean movement time as a function of ID. Taken
from [5].

While these approaches have proven effective, they benefit from
only taking advantage of the information from one side: either the
information in the large spaces, or the information in user intention.
In the next chapter, I introduce a BIG-inspired multiscale navigation
technique, BIGnav, which uses both the information space features
and interprets user intention to constantly update the system knowl-
edge and guide navigation.
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MULTISCALE NAVIGATION: BIGNAV

In this chapter, I introduce BIGnav, a guided multiscale navigation
technique that is based on the BIG framework where the system tries
to gain maximal information at each interaction step. I first describe
each variable in BIGnav, demonstrate the 1D and 2D implementa-
tions, report a controlled experiment, and illustrate a more realistic
application application: BIGMap.

9.1 BIGNAV

BIGnav is a guided multiscale navigation technique based on the BIG
framework (Fig. 32). The three key random variables ©®, X and Y rep-
resent the following, respectively:

* O represents any point of interest in the multiscale space. For
each target 0, the probability that it is the actual intended target
is P(© = 0). These probabilities constitute the a priori knowl-
edge that the system has about the user’s interest, and is up-
dated as the user navigates.

* X represents any possible view provided by the system. X = x
is a particular view shown to the user. Note that the number of
possible views is potentially very large.

* Y represents any particular command y issued by the user. The
possible input commands are: move towards a direction, zoom
in or click on the target when it is big enough to be clickable.
Note that zooming out is not required in this framework: if the
target is out of view, the user should indicate in which direction
it is rather than zooming out.

PO-0)

View X = x

User InputY =y ;/

Figure 32: Illustration of BIGnav: the user is looking for a particular city
03 from all the potential targets ® and she receives the system
feedback X, which is a different view at each step, and provides
input Y.
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9.1 BIGNAV

BIGnav guides navigation through 3 steps:

(1) Interpreting user input: Given the view x shown to the user and
the user’s intended target 6, p(Y = y|© = 6, X = x) is the probability
that the user provides an input command Y =y given 6 and x. This
probability distribution is the system’s interpretation of the user’s in-
tention when giving this command. For instance, if city A is to the
left of the user, what is the probability of the user giving the left com-
mand when knowing that city A is located to her left, provided she
can only go left or right? p(go left | city A is the intended target, city
A is located to the left of the current view) = 1 if the user is completely
confident about what she is doing. But maybe the user is not accu-
rate all the time. Say she is only correct 95% of time, then we need
to consider that she makes errors. For instance, p(go left | city A is
the intended target, city A is located to the left of the current view) = 0.95
and p(go right | city A is the intended target, city A is located to the left
of the current view) = 0.05. p(Y|®@ = 6,X = x) is a priori knowledge
that must be given to the system. In the implementation section, we
describe how we define it in 1D and 2D situations respectively.

(2) Updating system’s knowledge: Given the view x shown to the user
and the user reaction y to that view, the system can update its esti-
mate p(O[X = x,Y = y) of the user’s interest with Equation 34. If
the system has no prior knowledge about the user’s intended tar-
get, e.g. at the beginning, each 0 has the same probability of be-
ing the target and p(O) is uniform. As the user issues commands,
the system gains knowledge about the likelihood that each point
of interest be the target, reflected by the changes to the probability
distribution. This is done, for each point of interest, by taking its
previous probability, multiplying by the above user input function
p(Y =y|l® = 6,X = x), and normalizing it so that the sum of the new
probabilities over all the points of interest equals one.

(3) Navigating to a new view: With the new probability distribution
after receiving user input, BIGnav then goes over each view x € X,
calculates its expected information gain with Equation 36 and picks
the view for which it is maximal. To maximize Equation 36, BIGnav
looks for a trade-off between two entropies. To maximize the first
term, the view should be such that all user commands given that view
are equally probable (for the system). To minimize the second term,
the view should provide the user with meaningful information about
the points of interest. Maximizing a difference does not necessarily
mean to maximize the first term and minimize the second, so the
maximum information gain is a trade-off between these two goals.
For example, showing only ocean will increase the first term but will
also increase the second term. After locating the view with maximal
information gain, BIGnav navigates there and waits for the user’s
next input.
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9.2 IMPLEMENTATION: BIGNAV IN 1D

We first use a 1D example to walk through how BIGnav works step
by step (Fig. 33).

Fifty cities are the points of interest, therefore ® = {1,2,...,50}.
The system does not have prior knowledge about the user’s intended
target city, so the initial distribution is p(©; = i) = 51—0. The view
presented to the user at each step is defined by X = {[a, b] C [1,50]}.
The maximum zoom factor is such that a view cannot be smaller
than two blocks (b —a < 2). Since it is a 1D map, the user can
go to the left, go to the right, zoom in or select the target if the
view is at the maximum scale. We note these commands Y = {«+
,—,+ (zoom in), e (click target i)}.

We start by modeling the user’s behavior. We consider that the user
makes some mistakes when panning and zooming, but will not miss
the target when it is shown in the view and clickable:

0.9 b<0
p(Y =] © = 0,X = [a,b]) = 0.05 a<®0
005 a<o0g<band b—a>2
L 0 a<O<<band b—a<x?2
0.05 b<©
p(Y=1©=0,X=lab)=1{ >’ a<9
005 a<o0g<band b—a>2
0 a<oO0g<band b—a<x?2

View X = x, —
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Figure 33: The user navigates to a particular city (T) among 50 others with
BIGnav in 4 steps from (a) to (d). The color gradient shows the
probability of each city being the user’s target. The redder, the
higher the probability. The yellow rectangle is the view that the
system sends to the user.
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0.05 b<0
p(Y=1+]0=0X=abl) = 05095 a<®

<0gband b—a>2
<0<Kband b—a <2

1 a<0g<band b—a<2

p(Y=0|0=0,X=[ab]) =
0 otherwise.

In Fig. 33, the cities are represented by square boxes and colored
in shades of red indicating the degrees to which the system believes
the city is the target, i. e. city i is darker than j if p(© =1) > p(O =j).
City 8 has a T indicating that it is the target. The yellow rectangle is
the view that the system shows to the user. After seeing the view, the
user provides an input command y to the system.

We can now show BIGnav in action.

Step 1 (Fig. 33 (a)): Since the initial distribution is uniform, the sys-
tem’s uncertainty about the user’s target is H; = H(®) = log, 50 =
5.64 bits.

The system then goes over every image [a, b], finds that [18, 34] max-
imizes the expected information gain and displays the corresponding
initial view to the user. In this case the expected information gain
from the user’s next action is IG(®7 | X = [18,34],Y) = 1.08 bits.

The user inputs < after seeing [18,34]. The system then updates its
knowledge with Equation 34 and ends up with a new distribution ©;
given by p(©2) = p(©; | X = [18,34],Y =«). Using Bayes’ theorem
we have:

. 005 i< 18
PO =1) = |
0.002 i>18.

The updated uncertainty is Hy = H(©;) = 4.65 bits, resulting in
an actual information gain Hy — H; = 0.99 bits, very close to the
expected information gain of 1.08 bits.

Step 2 (Fig. 33 (b)): The system now searches for the best view us-
ing the new distribution p(©;), finds that it is [?, 10] with an expected
information gain of IG(®; | X = [9,10],Y) = 1.24 bits and displays it
to the user. The user then inputs < after seeing [?,10]. The system
then updates ©; to O3 as follows:

0.12 i<

0 2<1<10
0.006 10<i<18
0.0003 i>18.

p(O3 =1) =
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The entropy of O3 is H3 = 3.36 bits, so the actual information
gain for this step is Hy — H3 = 1.29 bits, higher than the expected
information gain of 1.24 bits.

Step 3 (Fig. 33 (c)): With the same process, the best view is now
[4, 5] with an expected information gain of IG(©3 | X = [4,5],Y) = 1.58
bits. The user inputs —, leading to the updated distribution:

0.01 i<4
0 4<1<5
0.28 5<i<?9
0 2<ig10
0.015 10<i<18
0.0007 i>18.

The entropy of ©4 is Hsy = 2.70 bits, so the actual information gain
is H3 — H4 = 0.66 bits, compared to the expected information gain of
1.58 bits.

Step 4 (Fig. 33 (d)): The best view is now [7, 8] with an expected in-
formation gain of IG(®4 | X = [7, 8], Y) = 1.84 bits. The user sees that
the target city is in the view and clicks on it. The updated distribution
is updated to:

. 1 i=38
p(Os =1) = _
0 otherwise.

The entropy of G5 is Hs = 0 bits since there is no more uncertainty
about the target. The actual information gain is H4 —Hs = 2.7 bits,
while the expected gain was 1.84 bits.

In this way, the user finds her target city in only 4 steps. At step 1,
BIGnav divides the map in 3 so that the three commands (left, right
and zoom in) have equal probability. It does not consider a click as
the view is still far from being fully zoomed-in to select the target. At
step 2, one would expect it to divide the left third of the map in 3
again so that the view would be about 5 boxes wide. However, since
it is close to the maximum scale, and it knows that the user never
misses her target when it is in the view and is clickable, showing a
2-box zoomed-in view will give BIGnav extra information: if this is
the target, the user will click on it; if it is not and the user moves away,
the probabilities of these two boxes become o. Step 3 and step 4 work
similarly.

We ran 200 simulations with 50 cities and a uniform initial distri-
bution and found that it required 3.3 steps on average.
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9.3 IMPLEMENTATION: BIGNAV IN 2D

I implemented BIGnav in a 2D application using Java 1.8 and the
open source ZVTM toolkit [167]. As for the 1D case, we need to de-
fine ©®, X and Y:

O represents points of interest in the multiscale information space.
Each point 0; is defined by a triplet (xi,yi, pi) where (xi,y;i) is the
coordinate of point i and p; is the dynamic probability that point i is
the user’s intended target.

X represents views that the system can show to the user. A view
is defined by a triplet (vx,vy,z) where (vx,vy) is the center of the
view and the zoom level z determines the view size. A view is fully
zoomed in when z = 1. In traditional multiscale navigation, the sys-
tem can pan and zoom continuously, leading to a huge number of
possible views. With BIGnav, we need to calculate the information
gain corresponding to every single view X = x, which would incur
an enormous computational cost if views could be centered at any
pixel and have any size. We therefore discretize the set of views by
using tiles and discrete zoom factors. The tiles are 200 x 150 pixels
each, and each tile can contain at most one point of interest. When
z =1, the view is composed of 4 x 4 tiles. Each successive value of z
increases the number of tiles (5 x 5, 6 x 6, etc.).

Y represents input commands that the user can provide. In many
pan-and-zoom applications, users can pan in any direction by a range
of distances, and zoom in and out by fixed amounts. As for the views,
we reduce this set of commands to make computation tractable in
our prototype. We slice the view into nine regions representing eight
panning directions and a central zooming region (Fig. 34). The eight
panning regions have a 45° angle, and the zooming region is half
the size of the view. A single movement of the mouse wheel triggers
a zoom while a drag action triggers a pan. The angle between the
mouse-down and mouse-up points of the drag determines the pan-
ning direction. The last input is a click on the target, available only
when zoom level z = 1.

e . )

Region 2

Region 1 Region 3

Region 4 Region 5 Region 6

Region 7 Region 9

Region 8

Figure 34: Nine regions representing user input, delimited by dotted lines.
Panning regions also include the space outside the current view.
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Command  Main Region  Adjacent Regions — Other Regions

Pan 0.90 0.04 0.0033
Zoom 0.95 0.00625 0.00625
Click 1 0 0

Table 4: Calibration results used as prior knowledge about the user behavior
P(Y=y|®=06,X =x).

We now describe our implementation of the navigation steps.

(1) Interpreting user input: To interpret user input, we need to define
p(Y=y|0O =0,X =x), e.g. the probability of each command given
a target and a view, e.g. p(pan East | target (5, 7), view (4, 4, 2)). If
the user were perfectly reliable, we could assign a probability of 1 to
the correct command for each target 0 and each view x, and 0 to the
others. But we know that users make errors. To model the error rate,
we collected data during a calibration session. The goal was to deter-
mine how confident users were when issuing commands. The task
was to indicate in which direction the target was in a set of views.
A set of concentric circles, identical to those used in the experiment
below, showed the direction of the target when it was not within the

view (Fig. 35 (a)).

We tested all ten input commands Y (8 pan operations, zoom in and
click on the target) with 5 repetitions each, resulting in 50 trials per
participant (N = 16). The results (Table 4) show that 90% of panning
commands are correct and 4% are in one of the adjacent directions
(Fig. 34). For zooming commands, 95% of the commands are correct
while for clicking on the target, 100% of the commands are correct.

(2) Updating system’s knowledge: We use Equation 34 to update the
probabilities p; of each point of interest being the target given the
current view x:

For all points of interest 0, the new p; is the previous p; multiplied by the
user expected behavior p(Y =y | © = 0, X = x) divided by the
normalization over all points of interest.

(3) Navigating to a new view with maximum expected information
gain: For each view x and each user input y, the expected information
gain is the difference between two uncertainties:

Uncertainty before user input y minus the sum of p; x logapi
over all points of interest

Uncertainty after user input y minus the sum of p{ x logap!
over all points of interest
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Figure 35: (a) Calibration: participants were asked to give a direction that
indicates where they think the target is located (here: north-west).
(b-c) Experimental condition with the target indicated in red. (d)
Last step in the experimental condition: the target becomes green
when it is clickable.

We then calculate the new view:

For all possible views x, calculate expected information gain with Equa-
tion 36. Return the view (VXmax, VYmax,Zmax) With maximum informa-
tion gain and display it.

The code is available on Github: https://github.com/wanyuliu/
BIGnav.

9.4 CONTROLLED EXPERIMENT

Our goal is to study the performance of BIGnav compared with the
standard pan & zoom navigation (STDnav) in what Javed et al. call
micro-level navigation, when the user has decided on a destination and
needs to navigate to it [108]. This is different from searching [168] or
wayfinding [51] tasks where the user does not know where the target
is located.

We conducted a controlled experiment where participants have to
navigate towards a known target. Based on the theoretic analysis, we
formulate four hypotheses:

Hz1: BIGnav is faster than STDnav for distant targets;

H2: BlGnav performs better in non-uniform information spaces,
i.e. when the system has prior knowledge of the user’s interest;

H3: BIGnav outperforms STDnav in terms of number of commands
and rate of decreasing uncertainty;

Hg: STDnav is preferred by users, more comfortable and more in-
tuitive.

9.4.1 Participants

Sixteen participants (3 female), age 24 to 30 (mean = 25.9, 0 = 1.7),
were recruited from our institution and received a handful of candies
for their participation. All of them were right-handed, had normal or
corrected-to-normal vision, and were familiar with WIMP interfaces.
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9.4 CONTROLLED EXPERIMENT

Participants were instructed to navigate to the target as fast as they
could but were not informed of the condition they used.

9.4.2 Apparatus

The experiment was conducted on a MacBook Air with a 1.4 GHz pro-
cessor and 4 GB RAM. The software was implemented in Java with
the ZVTM toolkit [167]. The window was 800 x 600 pixels, centered
on a 13-inch screen set to 1440 x 200 resolution. A standard mouse
was used with the same sensitivity for all participants.

9.4.3 Procedure

We use a full-factorial within-participants design with a main factor:
navigation technique (Tech); and two secondary factors: distribution
of targets (DISTR), index of difficulty (ID).

9.4.3.1 Navigation Technique (Tech)

We compare BIGnav with standard pan-and-zoom:

e BIGnav: our guided navigation technique. The ten user com-
mands (eight pan, zoom in, select target) and error rates are as
described in the previous section.

* STDnav: the standard pan and zoom technique, used as base-
line. A left mouse drag pans the view in world space propor-
tional to the number of pixels dragged in screen space, and the
mouse wheel zooms around the center of the view.

In order to compare information gains between the two conditions,
we make the same computations as for BIGnav in the STDnav condi-
tion, except for the display of the new view.

9.4.3.2 Distribution (DISTR)

In order to compare different types of information spaces, we com-
pared 6 distributions of points of interest by combining three spa-
tial distributions (Grid, Random and Cluster) with three probability
distributions (Uniform, Random, Cluster) of the a priori likelihood of
each target. Since not all combinations are meaningful, we selected 6
of them. The first 3 have a uniform probability distribution, e.g. all
points of interest have equal probability of being the target, and dif-
ferent spatial distributions:

¢ Grid+Uniform: Points of interest are arranged in a grid, provid-
ing a strong visual pattern.

* Random+Uniform: Points of interest are placed randomly.
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* Cluster+Uniform: Points of interest are organized in clusters that
are typical of geographical maps [28], where a central city is
surrounded by smaller towns. We used 5 clusters of 10 targets.

The other 3 distributions use a non-uniform probability distribu-
tion of being the target:

* Grid+Random: Points of interest are on a grid with random prob-
abilities of being the target. These probabilities are bounded by
Uniform and Cluster.

* Random+Random: Points of interest are randomly distributed
and have random probabilities.

* Cluster+Cluster: Points of interest are clustered and the proba-
bility of the center of each cluster is ten times higher than that
of the surrounding points of interest.

The first 3 configurations are meant to demonstrate that BIGnav
works well even without prior knowledge about potential targets. The
other 3 configurations are meant to assess the added advantage, if any,
of using such prior knowledge. In particular, the last distribution is
typical of, e.g. maps.

9.4.3.3 Index of Difficulty (ID)

The ID is related to the distance between the initial position of the
view and the target to navigate to. Using Fitts” definition of the ID [63],
the distance D to travel is D = 2'P x W, where W is the (constant)
target width. We adopted the same large IDs as in other multiscale
navigation studies [5, 108]: 10, 15, 20, 25 and 30 bits.

We used a [2x6x5] within-subject design: we tested 2 Tech for 6
DISTR and 5 ID conditions. Each condition was replicated 5 times, so
that each participant performed 300 trials. We blocked the conditions
by Tech. Half the participants started with STDnav and the other half
with BIGnav. Within each block, we systematically varied the order of
DISTR and ID combinations across participants using a Latin square
so as to reduce the influence of learning effects. For each condition,
the targets were drawn randomly according to the probability distri-
bution of the DISTR condition. All participants used the same target
in the same DISTR x IDx Replication condition.

9.4.4 Task

The task is a multiscale pointing task: starting from a fully zoomed-
out view, the participant must navigate towards the target until it is
fully zoomed in and click on it. The target is surrounded by concen-
tric circles so that it is always possible to tell in which direction and
how far it is (Fig. 35).
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The information space contains 50 points of interest: 49 are distrac-
tors and displayed in blue, one is the target and displayed in red. The
ID is used to compute the scale of the initial view so that it contains
all the points of interest. The target becomes green and clickable only
when the view is fully zoomed in.

Participants first receive general instructions about the session and
performed several practice trials with each technique. After the ses-
sion, they answer a questionnaire asking them for feedback and com-
ments on the experiment and the techniques. A typical session lasts
60 minutes, including training.

9.4.5 Data Collection

For each trial, the program collects the task completion time (TCT),
the commands that the participants issued, the uncertainty and po-
sition of the view at each step and the information gain after each
command. We collected 2 Tech x 6 DISTR x 5 ID x 5 Replications
x 16 Participants = 4800 trials in total.

9.5 RESULTS

For our analyses, we first removed 23 missed trials (about 0.5%) and
then 54 outliers (about 1.1%) in which TCT was 3 standard devia-
tions larger than the mean. We verified that misses and outliers were
randomly distributed across participants, techniques and conditions.

9.5.1 Task Completion Time

Table 5 shows the results of a repeated-measures full factorial ANOVA
on TCT. All main effects are significant, as well as two interaction ef-
fects: Tech x DISTR and Tech x ID.

Figure 36 shows the interaction effect between Tech and ID for
task completion time (TCT). On average, BIGnav is 24.1% faster than
STDnav across all ID. A post-hoc Tukey HSD test reveals a robust
interaction effect: BIGnav is significantly faster than STDnav when
ID > 15 (p < 0.0001), significantly slower when ID = 10 (p < 0.0001)
and not significantly different for ID = 15 (p = 0.99). These results
support H1: BIGnav is 22.3% faster than STDnav for ID = 25 and
35.8% faster for ID = 30.
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Factors df, den F p
Tech 1,15 4948.94 < 0.0001
DISTR 5,75 38.32 < 0.0001
ID 4,60 5363.35 < 0.0001
Tech x DISTR 5,75 47.23 < 0.0001
Tech x ID 4,60 955.19 < 0.0001
DISTR x ID 20, 300 1.26 =0.2
Tech x DISTR x ID 20, 300 0.72 =0.8

Table 5: Full-factorial ANOVA on TCT.
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Figure 36: Means and confidence intervals of TCT by ID.

The ANOVA also reveals an interaction effect between Tech and
DISTR. A post-hoc Tukey analysis shows that for STDnav, DISTR
does not affect TCT. BIGnav, however, shows a larger advantage in
non-uniform information spaces (13.7% faster, p < 0.01) than in uni-
form ones, with Cluster+Cluster being the fastest (Fig. 37), supporting
H2. However, there is no significant difference among probability dis-
tribution conditions. For non-uniform distributions: Cluster+Cluster
(6.51+1.71s), and Random+Random (6.74 + 1.55s), Grid+Random (6.62 +
1.67s). For uniform distributions: Grid+Uniform (7.70 & 1.60), Random
+Uniform (7.83 = 1.58s), and Cluster+Uniform (7.70 £ 1.62s).

We then further compare BIGnav and STDnav when ID > 15 in
all DISTR conditions with a post-hoc Tukey HSD test. The results in-
dicate that BIGnav is significantly faster than STDnav for distant tar-
gets especially in non-uniform information spaces. Particularly, when
ID = 25, BIGnav is 16.9% faster than STDnav in uniform distributions
(p < 0.001) and is 27.6% faster in non-uniform ones (p < 0.0001).
When ID = 30, BlGnav is 31.7% faster than STDnav in uniform
distributions (p < 0.0001) and is 40.0% faster in non-uniform ones
(p < 0.0001).
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Figure 37: Means and confidence intervals for TCT by DISTR.

In summary, these results support hypotheses H1 and Hz: BIGnav
is faster than STDnav for distant targets, especially in non-uniform
information spaces. BIGnav is also not significantly different from
STDnav for close targets (ID = 15).

9.5.2  Number of Commands

In order to get a sense of the differences in control strategies across
conditions, we compare the number of user commands issued by the
participants. Because of the continuous control in the STDnav condi-
tions, we aggregate the mouse and wheel events as follows: we count
one panning command per sequence from a mouse down to a mouse
up, and one zooming command per series of mouse wheel with less
than 300ms between them.

We perform a Tech x DISTR x ID full-factorial ANOVA on the
number of commands issued (Table 6) and find that while Tech and
ID significantly affect the number of commands used, DISTR has a
non-significant effect. The ANOVA also indicates that the Tech x ID
interaction effect is significant. A post-hoc Tukey HSD confirms that
while the number of commands progressively increases with ID in
STDnav, it is barely affected by ID in BIGnav (Fig. 38).

Factors df, den F p
Tech 1,15 364818.2 < 0.0001
DISTR 5,75 0.99 =04
ID 4,60 10636.43 < 0.0001
Tech x DISTR 5,75 0.23 =09
Tech x ID 4,60 11783.96 < 0.0001
DISTR x ID 20, 300 0.65 =0.9
Tech x DISTR x ID 20, 300 0.71 =0.38

Table 6: Full-factorial ANOVA on the number of commands.
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Figure 38: Means and confidence intervals for the number of commands by
Tech.

For instance, when ID = 25, STDnav requires 28.1 commands on
average whereas BIGnav requires 4.4 commands. When ID grows to
30, STDnav requires 34.5 commands on average whereas BIGnav re-
quires only 5.8 commands.

Interestingly, BIGnav results in more commands for ID = 10 than
for larger distances. Although it still outperforms STDnav, it requires
significantly more commands for ID = 10 than for the other ID ex-
cept = 30. The reason may be that the target falls into the view very
quickly but BIGnav tends to move it away to gain more information,
because it does not know it is the target. Some participants got frus-
trated by this behavior and started to issue arbitrary commands.

Regarding the ratio between pan and zoom commands, we find
that in STDnav, 79.33 + 2.03% of the commands are zooming com-
mands v.s. 20.67 £ 2.51% for pans, but the proportions are reversed
for BIGnav: 26.74 4= 4.46% for zooming v.s. 73.26 & 3.87% for panning.
This is because with BIGnav, zooming is only needed when the target
is within the view, and panning commands most often result in a new
view with a different level of zoom.

9.5.3 Uncertainty and Information Gain

Since the essence of BIGnav is to maximize the expected information
gain at each command, we compare the actual information gain be-
tween STDnav and BIGnav. In both cases, the uncertainty that the
system has about the users” intended target drops to zero gradually.

In STDnav, sometimes a command does not make a difference in

uncertainty, i. e. the information gain is null. This is typically the case
when the system is certain of what the user is going to do.
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Figure 39: Uncertainty decrease and information gain for each successive
command in (a) STDnav and (b) BIGnav.

For example, when completely zoomed out, users must zoom in.
Similarly, if a view contains 99% of the probability distribution, users
will almost certainly zoom in.

By contrast, with BIGnav, the system gains information at each step,
therefore uncertainty drops to zero much faster and with many fewer
commands. In our data, 40.4% of the commands in STDnav do not
reduce uncertainty. The rest of the commands reduce uncertainty by
0.26 bits on average. In BIGnav, all commands reduce uncertainty
by 0.88 bits on average. Figure 39 shows typical plots of uncertainty
reduction for the two techniques and the same other conditions (Ran-
dom+Uniform and ID = 30). These results support H3: BIGnav outper-
forms STDnav with much lower command usage and much higher
rate of decreasing uncertainty.

9.5.4 Trajectory in Multiscale Worlds

Another way to look at the navigation strategies is to plot the reduc-
tion in ID over time. As participants pan and zoom, they get closer
(most of the time) to the target and therefore the ID progressively de-
creases from the initial level to o. Figure 40 shows typical plots for two
trials by the same participant in the same condition (Random+Uniform
and ID = 30). With STDnav, the reduction of ID is globally steady
while with BIGnav we see sudden drops and long plateaus as well as
occasional increases of the ID.

ID increases may occur for example when the view is close to the
target and there is a cluster of points of interest further away in that
direction. To maximize the expected information gain, BIGnav may
choose to move towards the cluster and end up further away from
the target. Another cause for ID increase is when the user makes a
mistake.
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Figure 40: Time plot of the decrease in ID in the STDnav and BIGnav condi-
tions, for two trials with the same other conditions.

The long plateaus represent waiting time and confirm the quali-
tative results reported below: that BIGnav incurs a higher cognitive
load. This is probably due in part to our implementation of BIGnav,
which skips to the new view after each input command rather than
transition to it with an animation. But it is also probably the case
that the user has to interpret the new location to plan the next move,
whereas with STDnav the user can anticipate the system response.

9.5.5 Qualitative Results

The post-hoc questionnaire provides self-evaluation of performance
and comfort level as well as subjective preference for the two tech-
niques. Regarding performance and comfort level, assessed on a five-
point Likert scale, we find no significant differences.

While we expected participants to dislike BIGnav because of its
unusual and possibly counter-intuitive mode of operation despite its
efficiency (H4), we were surprised that half the participants liked it
better than STDnav: “with one direction, it combines zoom and pan, which
was faster than doing it by hand”, “The way it navigates is quite interesting.
For most of the cases, only 2,3 actions are needed to find the target”, and “I
like the interaction part. Somebody is guessing what I'm doing”. The eight
participants who preferred STDnav found it “more comfortable, doesn’t
require that much attention”, “more intuitive as I can anticipate what 1
would see next” and “I'm already used to it”. These results indicate that

BIGnav can be a practical technique for efficient navigation.
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9.6 APPLICATION: BIGMAP

To demonstrate a realistic application of BlGnav, I implemented a
map application with a 80000 x 60000 pixel high-resolution map of
Europe using the ZVTM toolkit [167] (Fig. 41). It features the top 50
largest urban areas' and uses their population as probability distri-
bution. This corresponds to the Random+Random distribution of the
controlled experiment.

Figure 41: (a) Part of the map of Europe used by BIGMap. (b) Navigating
towards Paris from the previous view.

We conducted several pilot studies where participants had to nav-
igate to specific cities from a completely zoomed-out view down to
the maximum scale, where the city labels are readable (ID = 25).
Since this task relies on cognitive skills such as the participants’ geo-
graphical knowledge, we concentrated on observing users and collect-
ing subjective evaluation feedback. A similar version, implemented
in Javascript using the OpenLayers API ? can be found at: https:
//perso.telecom-paristech.fr/wliu/BIGMap.html.

Most participants could navigate to the target city very quickly, in
a few steps, especially for cities with large population, hence higher
probability, such as London and Paris. One of the participants re-
ferred to BIGnav as “3 steps to Paris”. For smaller cities such as Helsinki
(rank 50), participants could still navigate efficiently. Most of them felt
comfortable with BIGnav as they were familiar with the map of Eu-
rope and could reorient themselves rapidly. However, they got frus-
trated when the target was already in the view but BIGnav moved
away from it in order to gain information. One participant mentioned
that “it would be nice if we could change between pan and zoom and this
one [BIGnav] freely so that it can help us get through all the zooming at the
beginning, but once I see the target, maybe I'll switch back to pan and zoom
for the last few steps”.

1 https://en.wikipedia.org/wiki/Larger_urban_zone
2 https://openlayers.org
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9.7 DISCUSSION

BlGnav illustrates how to derive a probability distribution from
external data, here the population of the cities. More generally, the
distribution should reflect the targets” degree of interest, which is
typically application-dependent. The distribution can also integrate
usage data, such as the most popular cities. Finally the results of a
search can be turned into a distribution according to the ranking of
the results, therefore integrating searching and navigation into a sin-
gle paradigm.

9.7 DISCUSSION

We have shown that BIGnav is an effective technique, especially for
distant targets and non-uniform information spaces. The most effi-
cient distribution condition in the experiment was Cluster+Cluster,
which corresponds to the small-world structures found in a large
number of datasets, showing that BIGnav is a promising approach
for real-world applications.

However, both the experiment and the BIGnav prototype exhibit
some shortcomings, especially for small-ID tasks. We now discuss
how to make BIGnav more comfortable to use.

In standard pan-and-zoom interfaces, users can navigate the space
in a continuous manner and constantly anticipate the system response.
This gives them a sense of control and makes for a smooth user ex-
perience. By contrast, BIGnav uses discrete steps and the system’s
response can be difficult to anticipate and even frustrating, in partic-
ular when getting close to the target. This results in long idle times
between commands (Fig. 40) and a higher cognitive load as users
reorient themselves and decide on their next move. In a sense, this
proves the success of the technique, since it is designed to maximally
challenge the user at each step.

Yet there must be a way to improve user experience and make navi-
gation smoother. First, we could use animations to smooth transitions
and help users stay oriented 3. Research has shown that one-second
animations are sufficient and do not slow down expert users [12].
Second, we could combine BIGnav with standard pan-and-zoom ac-
cording to user input: large panning and zooming movements would
use BIGnav, smaller ones traditional pan and zoom. Finally we could
reduce the size of the grid and increase the number of panning di-
rections to provide finer control, however this requires heuristics or
optimizations of the computational cost.

3 This is implemented in BIGMap, but not in the original experiment.
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9.7 DISCUSSION

In the next two chapters, I demonstrate another use of the BIG
framework where improved efficiency and user experience are both
met in the context of hierarchical file retrieval. I will return to more
discussions of these two applications as well as the framework itself
in Chapter 12.
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HIERARCHICAL FILE RETRIEVAL

Retrieving files is an extremely common task for all computer users.
We all have a large number of files and folders in our personal infor-
mation systems and many interfaces support different ways of access-
ing them. One of the most common methods is navigating through a
file hierarchical. Yet this process can be slow and repetitive: Bergman
et al. found that Mac users spent 12 seconds and Windows users
spent more than 17 seconds per retrieval on average [17]. Multiple
views are available to represent the files, e.g. Fig. 42 shows the (a)
Icon view, (b) list view, and (c) column view in the Finder on Mac OS
X.
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Figure 42: Three common views to represent files & structures: (a) List view;
(b) Icon view and (c) Column view.

Another common approach is to search by, e. g. typing one or more
keywords. Despite continuous improvements in search algorithms,
previous studies [11, 15, 21, 60] have shown users’ continued pref-
erence for hierarchy-based file navigation over alternative methods.
One of the most important reasons is that the locations and mech-
anisms of navigation-based retrieval remain consistent and reliable,
whereas the organization and content of search results, which are
extracted without context, can vary from one retrieval to the next,
resulting in extra cognitive effort [15, 60, 124]. In addition to using
search to potentially improve file access, e.g. [38], researchers have
also looked at different aspects of file retrieval: how users organize
personal information [17] and how visualization [109] and prediction
algorithms [55, 59, 125] can improve efficiency.

We introduce BIGFile, a fast file retrieval technique based on the
BIG framework where the computer tries to gain information from
the user to determine which file or folder she is looking for. Unlike
BIGnav, BIGFile features a split adaptive interface that combines a tra-
ditional file navigation interface with an adaptive part that displays
the shortcuts selected by BIG so that users can navigate the list as
usual, or select any part of the paths in the adaptive area.
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10.1 PERSONAL FILE SYSTEMS

I first review related work on personal file systems, file retrieval
techniques, and adaptive user interfaces in this chapter. In the next
chapter, I describe BIGFile’s interface as well as its underlying algo-
rithm and report on two studies.

10.1 PERSONAL FILE SYSTEMS

Many prior studies have investigated how people manage and re-
trieve information from their personal file systems.

10.1.1 File Management

File hierarchies are the predominant way to organize files: files and
folders nested inside other folders. Previous studies that investigated
how people structure their file hierarchies have found that these hier-
archies are broad, shallow, and often unbalanced.

Gongalves and Jorge [79] analyzed the structure of the file hier-
archies of 11 participants, examining only portions containing user
documents. Users averaged about 8ooo files, however there was con-
siderable variation. Folders contained an average of 13 files, had a
branching factor (the average number of subfolders at a given tree
level) of 1.84, and the hierarchies were fairly well balanced. The hi-
erarchies had an average depth of 8.45. In an analysis of filenames,
they found that 60% of filenames contained numbers, but only 0.33%
contained dates. Filename lengths averaged 12.6 characters. However
they are likely longer in modern systems as the study was conducted
in 2003 and file systems no longer impose tight constraints on file-
name lengths.

Henderson and Srinivasan [96] ran a similar but larger scale study
of Windows XP users in 2009, again analyzing portions of hierar-
chies that contained user documents. They found similar results to
Gongalves and Jorge: 5850 documents per user, an average tree depth
of 9.65, folders containing an average of 11.1 files and a branching fac-
tor of 1.93. They also found that 74% of folders did not contain any
subfolders, but the folders that did averaged 4.1 subfolders each. 7.9%
of folders were completely empty. When performing name compar-
isons, 21.8% of filenames were duplicates, as well as 23.5% of folder
names. Although the average maximum tree depth was 9.65, average
depths within the trees were considerably smaller — 3.4.
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10.1 PERSONAL FILE SYSTEMS

Futhermore, users tend to have different habits for building these
structures. Malone [145] described two types of users based on their
document management strategies for paper documents, later referred
to as filers and pilers [204]. Filers are more organized, quickly classi-
fying new documents and placing them in an appropriate location.
Pilers spend less effort organizing their documents, and their collec-
tions may appear to be less orderly. This reduced level of organization
means that it can be harder to remember document locations. Whit-
taker and Hirschberg [215] also found that people often forgot the
categories they had already created, leading to duplicate categories
that meant that files were often overlooked when attempting to re-
trieve all the information on a topic.

10.1.2  File Retrieval

Similar to various file management practices, users retrieve files in
different manners.

10.1.2.1  How Fast Do Users Retrieve Files?

In a large-scale study with 289 participants, Bergman et al. [17] exam-
ined how various factors affected file navigation (retrieving a file by
traversing through the hierarchy using a file browser). Their method
involved statically recording the state of participants” ‘recent docu-
ments’ list, then asking them to navigate to each of those files using
a file browser, with video capturing their actions. By analyzing the
video they found that Mac and Windows users structured their files
in different ways, with Windows users keeping more files but fewer
subfolders in each folder than Mac users. As a result, retrieved files
were deeper in the file hierarchy on Windows (2.9 levels deep, com-
pared to 2.4 levels on Mac OS X) and file retrieval times were slower
(17.3 seconds on Windows, 12.6 seconds on Mac OS X).

Fitchett and Cockburn [60] conducted a 4-week empirical study to
characterize 26 participants’ actual file retrievals on their personal
Mac computers. They found that the mean time to retrieve files using
file browser navigation was 10.2 seconds, vs. 5.7 seconds when us-
ing Spotlight searches, and 16.5 seconds when using Finder searches.
Their explanation for the high mean value with Finder search is that
it was used for files that were harder to find. Since each navigation
retrieval can be decomposed into a series of individual steps at each
level of the hierarchy, they also analyzed “step time’, where each step
descended to the next level of the hierarchy within a single window
by opening a folder. They found that the mean step time was 3.6 sec-
onds and that the step times were shorter at deeper levels, possibly
because deeper locations contain fewer items [17].
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10.1 PERSONAL FILE SYSTEMS

10.1.2.2 How Often Files Are Accessed?

Strong patterns of revisitation in various types of computer use have
been discussed in prior studies such as command usage [83] and
email messages [48]. Zipf's law [223] is often used to characterize
such patterns of behavior, with retrieval counts to distinct items fol-
lowing a power-law according to their rank:

1/k$
Yo (1/me)
Where N is the number of elements, k € [1,N] is the rank of the
considered element (with k = 0 for the element with the highest

frequency) and s is the value of the exponent characterizing the dis-
tribution.

f(k;s,N) =

Fitchett [60] found that the frequencies of file retrievals can be ap-
proximated by Zipf’s Law, suggesting that people’s patterns of file
retrieval are strongly repetitive, with a small number of frequently
revisited files, and a large number of infrequently visited ones. As
shown in Fig. 43 (a), the cross-participant mean proportion of file re-
trievals by ranked count of file retrievals (for the 10 most frequently
visited files) for the 17 participants who retrieved more than 100 dif-
ferent files approximates a Zipt’s law. Fig. 43 (b) shows that 60.8%
of files were retrieved only once, and that 98.0% were retrieved 10 or
fewer times. Half of the participants accessed at least one file more
than 20 times and the maximum number of revisits was 280 times.
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Figure 43: (a) Mean proportion of file retrievals by ranked count of file re-
trievals. Error bars show standard error. Y-axis uses a log scale.
(b) Distribution of files” retrieval counts, across all participants.
Taken from [60].

10.1.2.3 Navigation vs. Search

Navigation- and search-based methods are the predominant retrieval
methods that can be used to retrieve a file. While search offers im-
portant benefits in certain situations, a number of prior studies have
shown that most users prefer navigation to search, with search being
used only as a method of last resort [15, 60, 124].
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10.1 PERSONAL FILE SYSTEMS

Bergman et al. offered an explanation by the relative cognitive re-
quirements of the two approaches [15]. They pointed out that users
prefer orienteering (that is, taking small steps towards a target using
partial information and contextual knowledge) to teleporting (that is,
jumping directly to the target) [176, 204]. Navigation uses an orien-
teering approach, with users able to use recognition at each step of
a retrieval to identify the next folder [15]. Orienteering offers several
advantages over keyword search, including decreased cognitive load,
a sense of location, and a better understanding of the result [204].
Bergman et al. [15] also note that, with navigation, “users can con-
tinue to think of the project they are working on at the time”, even if
search might be faster.

Search interfaces, on the other hand, typically use a teleporting
approach that shows an immediate list of results with little or no con-
text [204]. Search also relies on users recalling attributes of a target
file in order to devise a search query [15], which is more cognitively
demanding than recognition [206]. Furthermore, search offers no re-
minding feature. This means that users are unlikely to encounter an
item through search if they have forgotten they have it or how it is de-
scribed in the file system, resulting in a lower sense of control [11]. A
final potential limitation of search-based file access is that it provides
minimal support for learning and rehearsing the location-based re-
trieval mechanics that users are likely to use for future accesses.

10.1.2.4 Folder Uncertainty

If users are unsure of their navigation to files, they are likely to open
more folders than necessary, i. e. opening an incorrect folder and then
backtracking. Elsweiler et al. [48] introduced the Folder Uncertainty
Ratio (FUR) to account for this effect in email folders. FUR is de-
fined as “the number of folders opened with respect to the number
of unique folders opened”.

Fitchett [60] reported that in their study, the mean FUR value for
navigation retrievals was low at 1.02. The percentage of retrievals
with a FUR > 1 was 5.2%, and the percentage of retrievals with FUR
> 2 was 0.3%. These values contrast with Elsweiler et al. [48] who
found high levels of uncertainty when navigating to email messages,
with 29.5% of retrievals having a FUR > 1, and 8.67% having FUR > 2.
Fitchett [60] offered a plausible explanation that users invest more ef-
fort in crafting effective file hierarchies than they do with email.

These practices and characteristics might evolve over time with the
continuous improvements in search algorithms and the introduction
of new interfaces and novel interaction techniques. In the next chapter,
I report on a pilot study to capture real users’ file structures and
understand their file navigation practices, informing our simulations
(Study 1) and experiment (Study 2).

103
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10.2 ENHANCED FILE RETRIEVAL TECHNIQUES

Previous studies have explored how to use visualization, search and
prediction to enhance file retrieval.

10.2.1  Visualization and Search

Visualization techniques such as treemaps [193] and hyperbolic trees
[122] (Fig. 25) have been introduced to depict hierarchical structures.
However, this type of technique has not been widely adopted for file
systems.

Many search-based systems have also been proposed as alterna-
tives to hierarchical file systems, typically to address deficiencies such
as requirements to maintain a folder hierarchy and to store each file
in a unique location. For example, MyLifeBits [78] is primarily based
on time attributes and is intended as a replacement for a file hierarchy.
It focuses mainly on multimedia files and supports rich annotations.
It uses a range of visualizations, particularly those based on time

(Fig. 44 (a)).

Stuff I've Seen [45] is a search system focused on retrieving previ-
ously accessed documents. It gives particular emphasis to filtering
and sorting by the date documents were modified, and integrates
files, email messages and web pages into its results (Fig. 44 (b)). A
prior study to the Stuff I've Seen system found that the inclusion of
landmarks on a timeline reduced retrieval times compared to a nor-
mal timeline that only provides dates [179].

Figure 44: (a) Clustered-time view of query results in MyLifeBits [78] and (b)
Stuff I've Seen interface with top view where the lower portion of
the display shows the search results, here documents including
the search query keyword perception [45].

Similar research systems based on search include: Lifestreams [69],
TimeSpace [115], Placeless Documents [43] and Phlat [39]. All of these
systems are heavily based on time attributes.
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10.2 ENHANCED FILE RETRIEVAL TECHNIQUES

10.2.2 Prediction

Several prediction algorithms have been proposed to account for users’
repetitive behavior and to improve the efficiency of accessing previ-
ously used items. Algorithms that predict upcoming actions based on

previous actions include:

1. Most Recently Used (MRU) calculates ranks based solely on
recency.

2. Most Frequently Used (MFU) calculates ranks based solely on
frequency.

3. Split Recency and Frequency (SR&F) [55] selects n items with
MRU, then the rest with MFU.

4. Combined Recency and Frequency (CRF) [125], used originally
for cache management, considers every past access of an item.
It is calculated by Equation 38, where wy is the item’s weight,
n is the number of past accesses, t is the current time and t; is
the time of access i (where time is counted in terms of discrete
events).

W = Z - . (38)
=P
5. The Adaptive algorithm filters menus in software such as Mi-

crosoft Office 2000 [6]. Item counts are incremented when se-
lected and decremented after multiple sessions of disuse.

6. The Places Frecency algorithm (PF) is used in Firefox to order
URL suggestions when typing a web address [29]. The last 10 ac-
cesses of each item are placed in time-based buckets with differ-
ent weights based on recency. Other factors, such as the method
of website access, are also incorporated but can be stripped out
for general purpose use.

7. A Markov chain [148] can be used to make predictions:

[Xn — x|
Xnl

where [x,| is the number of previous occurrences of state X,
and |x,| is the number of previous transitions from state x,, to
x. Xi represents the state at time i. Given the most recent access
Xn, the calculated probabilities provide a ranking, and MRU can
be used to break ties.

8. AccessRank uses a score that blends Markov chains and CRF,
a time weighting component as well as a switching threshold
to predict what users will do next and to maximize list stabil-

ity [59].
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The AccessRank score w,, is defined as:

Wi = Wi, “Werf. &W (39)
n Mn crfn th- 39

where wy, . is the Markov weight and we,¢, is the combined
recency and frequency (CRF) weight with p = 2 and A = 0.1
(Equation 38). The Markov weight is rewritten to always give
non-zero weights:

= x[+1
T x| 41

time weight wy, gives higher weight to items that have histori-
cally been more frequently accessed at the current time of day
or day of week, and is defined as:

wy,, = max(0.8, min(1.25, hd))%2>.

where h and d are defined as follows: let ¢, be the current hour
of the day. For item n, let h be the ratio of the number of previ-
ous accesses of n in hours in the range [ct, — 1, cp + 1] compared
to the average number of previous accesses of n for a three hour
slot. Similarly, let d be the ratio of the number of previous ac-
cesses of n on the current day of the week to the average across
all days of the week. h and d are set to 1 if fewer than 10 ac-
cesses in total have occurred in the corresponding slot.

To improve prediction list stability, Fitchett and Cockburn [59]
also defined a switching threshold: item A and item B are com-
pared and their new weights wa and wg are such that wg >
wa, then B will only be ranked higher than A if wg > wa + 5
where 6 > 0 is an AccessRank parameter. An item C not in the
previous list is assumed to have ranking r¢ = oo.

Using 3 log datasets from previously published studies (window
switching [201], web browsing [203], and command line use [82]),
Fitchett and Cockburn [59] demonstrated that AccessRank more ac-
curately predicts upcoming accesses than Markov, CRF and MRU.
Moreover, the prediction lists generated by AccessRank are more sta-
ble than the three other algorithms (Fig. 45).

Based on the results, they also recommended to use (A, ) values
of (1.65, 0.2) to give the best compromise between accuracy and sta-
bility [59]. When stability is unimportant, values of (1.65, o) give the
best top prediction accuracy, while (2.5, 0) may be better if the aver-
age rank is the primary goal. When stability is particularly important,
high values for both parameters can be used, e.g. (2.5, 0.5).
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Figure 45: Prediction list stability v.s. Average Rank and Percentage Revis-
itations predicted over three datasets. Lower average ranks are
better, while a higher percentage of revisitations predicted is bet-
ter. Taken from [59].

Having shown that AccessRank is the best-of-breed prediction al-
gorithm, Fitchett et al. further used it to improve navigation-based
file retrieval [61, 62]. First, they proposed three augmented interfaces
to facilitate file access [61]: Icon Highlights, Hover Menu and Search
Directed Navigation (Fig. 46). Icon Highlights and Hover Menu used
AccessRank with parameters A = 0.8 and & = 0.5, and Search Di-
rected Navigation used character-based filtering to determine candi-
dates. For the short duration of the controlled experiment, the time
weighting component of AccessRank was not used.
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Figure 46: (a) Icon Highlights assists users in visually identifying likely tar-
gets at each level of the hierarchy; (b) Hover Menus facilitates
shortcuts to likely folders and files across levels of the hierarchy;
and (c) Search Directed Navigation highlights items that match
search query terms. Taken from [61].

The controlled experiment indicated that these three augmented in-
terfaces allowed faster task completion than the standard file browser
in both spatially stable icons condition (Fig. 47 (a)) and spatially un-
stable icons condition (Fig. 47 (b)). Participants also favored the aug-
mented interfaces. However, Hover Menus, while preferred to the
standard browser, was rated as the most mentally demanding of the
three augmentations. Therefore, in a later longitudinal field evalua-
tion of Finder Highlights [62], only Icon Highlights and Search Di-
rected Navigation were included.
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Figure 47: Task times by repetition number in [61]. The task was to navigate
within a three-level semantically organized hierarchy to select a
target file that was cued by displaying its name in a small win-
dow at the side of the file browser interface. Repetition number
indicates how many times the same item has been accessed.

Since Fitchett and Cockburn [59] have shown that AccessRank is
the best-of-breed prediction algorithm, in the next chapter, I com-
pare the BIGFile algorithm with AccessRank. In our controlled exper-
iment to investigate BIGFile’s performance, we replicate and extend
the methodology used by Fitchett et al. [61]. BIGFile also uses a split
adaptive interface, therefore I now review prior studies on this topic.

10.3 ADAPTIVE USER INTERFACES

Adaptive user interfaces (AUISs) are a class of interfaces that adapt the
presentation of functionality automatically, in response to individual
user behavior or context. Research results on adaptive user interfaces
are mixed. On the one hand, AUIs can lead to better user performance
and satisfaction:

¢ Findlater et al. introduced Ephemeral Adaptation where the pre-
dicted items appear first, while remaining items gradually fade
in to reduce menu visual search time while maintaining spa-
tial consistency [58] (Fig. 48). With two controlled laboratory
studies, they showed that ephemeral adaptation results in both
performance and user satisfaction benefits over a static control
condition when adaptive accuracy is high.

108



10.3 ADAPTIVE USER INTERFACES

Menu
Merlot
Shiraz
Chardonnay
Cabernet
Saturn
Venus

Menu Menu Menu

Shiraz Shiraz Shiraz

Jupiter

Mercury Mercury

Mercury
France

Mercury

France France
England
Spain

Germany

France

Pecan
Walnut
Almond
Pistachio
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immediately, while remaining items gradually fade in. Taken
from [58].

Gajos et al. introduced two systems for automatically generat-
ing personalized interfaces adapted to the individual motor ca-
pabilities of users with motor impairments [73]. The first sys-
tem, Supple uses a model of the user’s preferences and the sec-
ond system, Supple++, models a user’s motor abilities directly
from a set of one-time motor performance tests. Both systems
were shown to be faster than the traditional interface and were
preferred by the participants (Fig. 49).
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Figure 49: The baseline interface is shown in comparison to interfaces gen-

erated automatically by SUPPLE based on two participants’ pref-
erences. Participant ABo3 preferred lists to combo boxes but pre-
ferred them to be short. Taken from [73].

Reinecke and Bernstein proposed to design culturally adaptive
systems, which automatically generate personalized interfaces
that correspond to cultural preferences [177]. By incorporating
participants’ cultural background, they found that a majority
of international participants preferred their personalized ver-
sions over a non-adapted interface of the same web site MOCCA

(Fig. 50).
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Figure 50: Left: adapted interface for a participant who was from Mexico,
and had shortly lived in Bulgaria before coming to Switzerland;
Right: the interface was personalized for an Indian participant,
who had lived in France and the US for several years. Taken
from [177].

On the other hand, when poorly designed, AUIs can also lead to
the user being confused and feeling a loss of control over the inter-

face:

¢ Findlater and McGrenere [55] compared three interfaces: Static,
where the interface does not change during the course of use;
Adaptive, where the system controls changes and Adaptable,
where the user controls changes. Applied to split menus [184]
(Fig. 51), they found that optimal static split menus are sig-
nificantly faster than adaptive menus and users preferred the
adaptable interface to the other two because they can customize
the interface according to their own needs and they do not need
to adapt to the system whenever it makes changes.
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Figure 51: (a) Static split menu and (b) Adaptable split menu. Taken

from [55].
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* Gajos et al. [74] designed and implemented 3 adaptive graphical
interfaces: Split Interface, which provides an additional toolbar
that copies important functions onto this toolbar in a spatially
stable manner; Moving Interface, which moves promoted func-
tionality from inside popup panes onto the main toolbar; and
Visual Popout Interface, which highlights promoted buttons in
magenta (Fig. 52). With two experiments comparing them with
non-adaptive interface, Gajos et al. found that while Split Inter-
face has perceived high benefit and low cost, Moving Interface
and Visual Popout Interface, where the perceived cost exceeded
the benefit, were rejected by the participants.
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Figure 52: (a) The Split Interface; (b) The Moving Interface and (c) The Vi-
sual Popout Interface. Taken from [74].

Split interfaces, which are based on Split Menus [184], are a type
of AUI that are particularly effective [56, 57, 74]. A split interface
typically has two parts: a static part that represents the “status quo”
original interface, and an adaptive part that augments the static part.
The adaptive part changes its contents based on what the system be-
lieves the user needs. Users have the choice between interacting with
the static part or the adaptive part. Thus, the learnability of the origi-
nal interface is not hindered, and user performance can be enhanced
if users take advantage of the adaptive part. Most split interfaces to
date have been designed for menu selection [58], but other interface
elements have also been split, such as the toolbar [74], emails [27],
and relevant documents on Google Drive [202]. BIGFile introduces
split interfaces to hierarchical file systems.
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HIERARCHICAL FILE RETRIEVAL: BIGFILE

In this chapter, I introduce BIGFile, a fast file retrieval technique
based on the BIG framework. BIGFile provides interface shortcuts
to assist the user in navigating to a desired target (file or folder). BIG-
File’s split interface combines a traditional lisst view with an adap-
tive area that displays shortcuts to the set of file paths estimated
by a computationally efficient algorithm based on the Bayesian In-
formation Gain framework. Users can navigate the list as usual, or
select any part of the paths in the adaptive area. I first describe each
variable in BIGFile, demonstrate the BIGFileOpt and BIGFileFast al-
gorithms, and report on two studies: a simulation study comparing
BIGFileFast with AccessRank, and a controlled experiment compar-
ing BIGFile with ARFile (AccessRank instantiated in a split interface)
and with a Finder-like list view as baseline.

11.1 BIGFILE INTERFACE

BIGFile improves navigation-based file retrieval efficiency by provid-
ing shortcuts that can reduce the number of steps (user inputs) to
reach the target file or folder: the user can skip levels in the hierar-
chy by selecting one of the shortcuts, similar to Hover Menu [61]. I
first present the BIGFile interface before describing the algorithm that
determines the shortcuts.

V.

(a) Geography > Islands (c) Mammals > Dog;’ -
1
Food > Dairy > Cheese Fish > Salmon
(b) Geography (d) Mammals
Animals "2 Insects
U4
Computing 'k » Spiders
Food Fish
Transport Birds
Health Reptiles
Entertainment Worms
History Sponges
Step 1 Step 2

Figure 53: The BIGFile interface as the user navigates to “Dog” in a file re-
trieval task. (a) and (c) show the adaptive part with two shortcuts,
(b) and (d) the static part. In Step 1, the shortcuts do not help and
the user selects “Animals” in the static part, leading to Step 2
where the user directly selects “Dog” in the first shortcut, saving

one navigation step.
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11.1 BIGFILE INTERFACE

BIGFile features a split adaptive interface (Fig. 53): the shortcuts
are presented in the adaptive area at the top, while the static area at the
bottom is a traditional list view of the current folder. The shortcuts
in the adaptive area are the paths to the items selected by the BIGFile
algorithm, relative to the current folder. Displaying the relative paths,
rather than just the items, offers users contextual information that
helps them determine if they correspond to the target they are look-
ing for. It also lets users navigate directly to any folder in the path by
clicking on it, typically when the target is not in the shortcuts, but a
partial path to it is. Finally a back button (visible in Fig. 57) lets users
go back to the previous state of the interface.

Both the shortcuts in the adaptive area and the items in the static
area are updated after each user input. Similar to many other split
adaptive interfaces [55, 184], if the system correctly estimates the
user’s target item, the user can select the shortcut, or navigate the
hierarchy using the static part as usual. If none of the system’s esti-
mates are correct, the impact for the user is minimal since the items
remain at their usual locations in the static part of the interface.

For example, in Fig. 53 (left), “Islands” and “Cheese” are the esti-
mated items, presented along with their paths in the designated adap-
tive area (a). The static area (b) presents the usual hierarchy. A user
could, for example, click on “Dairy” to access dairy products other
than “Cheese” inside the folder (not shown in the figure). If the user
clicks on “Animals”, the static area is updated, showing the items
inside the “Animals” folder (Fig. 53 (d)). The adaptive area is also
updated with a new set of estimated targets (“Dog” and “Salmon”,
Fig. 53 (c)). If the user is looking for the item “Dog”, she can save one
step (“Mammals”) by clicking the shortcut in the adaptive area. The
number of shortcuts is user-customizable.

We created and considered a number of alternative designs for the
interface, including an integrated view where each shortcut is dis-
played, together with its path, next to the corresponding root folder
in the list view. However, we found that this integrated view makes
it difficult to display shortcuts of arbitrary depth. Moreover, scrolling
the view often hides shortcuts, which partially defeats their purpose.
In addition, this design only works for the list view, while the split
interface can work with any of the traditional views in the static area,
e.g. the icon and column views of the Mac OS Finder. Therefore, we
chose what seemed to be the simplest and most obvious option for
our first implementation and comparison. Note that the split interface
design is not specific to BIGFile and can be used with any algorithm
that predicts potential targets. For example, we used it with the Ac-
cessRank algorithm in Study two, described later this chapter.
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11.2 BIGFILE ALGORITHM

I introduce two algorithms for BIGFile: BIGFileOpt, an optimal but
computationally costly algorithm and BIGFileFast, a suboptimal but
very efficient version, which is used for both the simulations and
experiment.

11.2.1  BIGFileOpt: Optimal Algorithm

In order to apply the Bayesian Information Gain (BIG) framework to
file retrieval, let us consider a regular hierarchical file system. Without
loss of generality, we consider a single window, with a current folder
F. We define the following:

* O represents all the folders and files that a user might be in-
terested in. ©® may include all the files and folders in the file
system, but is more likely to be narrowed to a subset based on
user preference or the task at hand. For example, it can be re-
duced to a subset of the user’s home folder and/or to a category
of files such as documents of a certain type. In the simulations
and the experiment, we used only the files as potential targets
and excluded the folders.

¢ For each potential target ® = 0, the initial probability, at the
beginning of a retrieval task, that it is the actual intended tar-
get is P(© = 0). This probability distribution is calculated using
the Combined Recency and Frequency (CRF) algorithm (Equa-
tion 38) using {p = 2,A = 0.1}, in AccessRank [59]. The prob-
ability that a file 0 is the target is calculated by normalizing
its weight: P(©@ = 0) = wg/ ) weg and is updated after each
retrieval of a target by the user, to reflect interaction history.
At each step of the retrieval task, i.e. after each user input,
P(® = 0) is updated using Bayes’ rule, as described in Algo-
rithm 1.

* X represents the view generated by the system when first open-
ing a window and after receiving each user input in that win-
dow. This view is composed of the static part S, which shows
the folders and files of the current folder F, and the adaptive
part A, which shows the N folders and files that are produced
by the BIGFile algorithm to serve as shortcuts at this step. A
view X = x is therefore represented by S|JA. The number of
shortcuts N is user customizable.

* Y represents any user input. At each step, the user issues an
input Y = y to the system: the user can select any of the items
in the static and adaptive parts, or go back to the previous view
with the back button in case of an error.
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11.2 BIGFILE ALGORITHM

Algorithmus 1 : BIGFileOpt
Search the optimal set of N shortcuts.
Data:0,X,Y,P(Y=y[@=0,X=%),IGmax =0
Result : Return set A that, together with set S, has the maximal
expected information gain (IG).
1 Receive user input Y =y
2 Update the probability distribution of ® (Bayes rule):

PO =0[X=x,Y =y) = P00 RO=0)

3 for all the combinations A of N nodes that are below the current
folder F in the hierarchy do
4 Compute IG(SUA) =1(6; YIX(SUA))
=H(®) —H(OIX(SUA),Y)
// 1 is mutual information and H is entropy
if IG(SUUA) > IGiax then
L IGmax = IG(SUA)

Amax =A

8 return A ax

* P(Y =y|® = 6,X = x) represents prior knowledge about user
behavior: given view x and target 6, what is the probability that
user input is y at this step. For simplicity, one can assume that
the user does not make mistakes and therefore that this prob-
ability is 1 if the user is issuing the correct input, 0 otherwise.
Alternatively, one can use a calibration session, as in the BIG-
nav experiment (Chapter 9). Note that since the user may select
items that are not in © during the steps that lead to a selection,
user behavior must be known for any item in the file system.

At each step, i. e. after each user input, the static part S of the inter-
face is updated if the current folder has changed, i.e. if the user has
clicked on a folder to navigate to it. Then the adaptive part A of the
interface is updated to display the N items selected by the BIGFile
algorithm.

Algorithm 1 presents BIGFileOpt, an optimal algorithm that finds
the N items that, together with S, maximize the expected information
gain from the user’s next input. This slight modification of the origi-
nal BIG framework lets us calculate an optimal view S| J A. However,
considering the sizes of typical personal file systems, this algorithm
is not practical: the number of sets to test grows like N where f is
the number of files and folders and N the number of items in the
adaptive part.

I now present a suboptimal but computationally efficient algorithm
to address this problem.
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11.2 BIGFILE ALGORITHM

11.2.2 BIGFileFast: Efficient Algorithm

We take advantage of the hierarchical structure of the file system to
select a set A’ of targets that, together with S, has one of the highest,
if not the highest, expected information gain. At each step, BIGFile-
Fast creates a tree whose leaves are the n targets (n > N) with highest
probability as follows:

First, the tree contains the n targets and their parent nodes up to
the root (Fig. 54 (b)); Then BIGFileFast compresses this tree by replac-
ing nodes that have a single child with that child (Fig. 54 (c)). This
much smaller tree vastly reduces the number of sets of N targets to
try. For N = 4, we found that n = 6 gave good results; n = 10 gave
slightly better results, but was too slow for large hierarchies. Note
that since the set is recomputed after each user input, it adapts dy-
namically to the user’s navigation.

We further optimize the search as follows: Consider a candidate set
A = ap, ay,..ay and an item a; of A with a child a{. Let A’ be the set
where q; is replaced by its child a: Ay = ao, ..., ai—1,a{, Qi+1,..., an.
If the expected information gain for the set A’ is lower than that of
A, then we do not consider any set with an item in the subtree of
a{, effectively pruning that subtree. Fig. 54 and Algorithm 2 describe
the implementation of BIGFileFast used in the simulations and the
experiment later in this chapter.

BIGFileFast dramatically reduces search time, making it real time,
and selects sets of targets with near-optimal expected information
gain. We ran simulations comparing it to BIGFileOpt and found that,
for example, for 1000 targets and a 12-level hierarchy, BIGFileOpt
takes roughly three minutes while BIGFileFast responds in interactive
time. Also, on average, the expected information gain of BIGFileFast
was 84.7% that of BIGFileOpt.

(a ° (b) o (c) ° (d) °
° ° ° ° ° o ° o
e o o o e o o o o o e
s0oco0c0c0e 60 o o ) I
0000000000000000 00 0 0 @ oo 6o

Figure 54: BIGFileFast with a binary tree: (a) Find the n = 5 most prob-
able targets (red nodes); (b) Find their parents up to the root
(dark blue nodes) and prune all the non-parent nodes (light blue
nodes); (c) recursively replace the parent of a node by its child if
it is the only child; (d) if the expected information gain of (A,B)
is greater than that of (A,C), prune branch C and move directly
to the next branch (A,D), skipping E and F.
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Algorithmus 2 : BIGFileFast
Efficiently search a suboptimal set of shortcuts.

Result : Return set A that, together with set S, has a suboptimal
maximal expected information gain.

// Create the compressed tree, i.e.

1 The minimal subtree of the current folder F that contains the n
most probable targets:

2 for each element t of the tree do
if t is the only child of its parent then

L L Replace the parent by t and remove the parent

- W

// Search this simplified tree
5 A = a set of N nodes such that no node is in the subtree of
another node

6 IGmax =IG(SUA)

7 while there are more sets to explore do

8 if Node a; € A has a child a not yet explored then
9 Al=A—a;+ ai’

10 Compute IG'(SJA)

11 if IG(SUA) > IG'(SUA’) then

12 ‘ Skip the subtree rooted at a;

else
13 IG(SUA)=IG'(SUA")
14 L A=A’
else

15 A = A — a;+ the root of the next branch
16 Compute IG(S|JA)
17 if IG(SUUA) > IGmax then
18 IGmax = IG(SUA)
19 Amax = A

20 return A,pax

11.3 PILOT STUDY

We conducted a pilot study to capture real users’ file structures and
understand their file navigation practices, informing our simulations
(Study 1) and experiment (Study 2). We wanted to see if and how
the structures and practices reported in the literature [16, 96] have
changed.

We recruited 15 participants from our institution, including faculty
members, post-docs and students, all in technical areas. 13 were Ma-
cOS users, 2 were Windows users. We wanted to know the depth
and breadth of their file systems, their navigation strategies, their
preferred view for retrieving files, and the problems they run into.
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11.3 PILOT STUDY

Participants filled out a questionnaire, ran a script to get summary
data of their file structures on their primary computer, and then re-
flected on their own file retrieval behavior. To run the script, partic-
ipants identified the folder or folders that contain(s) the files that
they navigate routinely with the Finder or File Explorer, such as the
Documents and Desktop folders, but not the Music folder. The script
counts the number of files and folders and returns a table with the file
structure information and a graph visualizing the hierarchy (Fig. 55).

. Documents

Figure 55: Visualization of P12’s Documents folder, a 5-level tree. Each
folder is represented by four bars: number of subfolders (branch-
ing factor) in red; number of files (folder size) in dark blue; total
number of folders in subtree in pink; total number of files in sub-
tree in pale blue.

File Structures. Our findings differ somewhat from previous stud-
ies that found that people’s file hierarchies tend to be shallow and
broad (small depth and large branching factor), and have small and
well defined folders [16, 96]. We found the average depth to be 7.7
(min = 5, max = 10,0 = 1.18), and interviews with participants con-
firmed that they do regularly navigate to deeper levels to access a file
or folder. The average branching factor was 5.62 (min = 2.8, max =
10.7,0 = 1.95) and the average folder size 8.2 (min = 3.8, max =
14.6,0 = 3.37), which are relatively smaller than the findings in [16,
96], which found an average branching factor of 10 and an average
folder size of 11. We also found that, in general, relatively fewer fold-
ers and files are nested at deep levels, suggesting that people do not
build extremely complex file structures.

Navigation Strategy. Ten participants reported that they first use
Finder (or equivalent file navigator) to locate a file. Five reported us-
ing Spotlight (or equivalent search tool) first. This supports previous
studies [15, 62] reporting that people usually navigate the hierarchical
structure to locate a folder or a file, and use search as a “last resort”
if navigation does not work.

Most-used View. Six participants preferred List view, four preferred
Column view, three preferred both List view and Column view and
regularly switch between them. Only two participants preferred Icon
view, although many participants mentioned that they use Icon view
to preview images.
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Navigation Difficulty. Participants reported two main challenges
when retrieving a file: (1) files/folders with repeated names, and (2)
having partial knowledge about the location or the name of the tar-
get. This echoes previous studies [96, 145] reporting that people face
retrieval difficulties stemming from semantic ambiguity. Hence, con-
textual information is crucial for a successful file retrieval. We used
the findings from this pilot study to inform the designs of the simu-
lations and experiment.

11.4 STUDY 1: SIMULATIONS

I ran simulations to investigate BIGFileFast’s performance in estimat-
ing the target in a given hierarchical structure. The goal was to know
how well the algorithm performs with respect to the following fac-
tors:

1. Depth and width: Both previous studies [79, 96] and our pilot
study show that users have different file structures. Combining
the results from [79, 96] and our pilot study, we used DEPTH
= {4,6,8,10,12} and BRANCHING FACTOR = {2,4,6,8} for
the simulations.

2. Initial distribution: We did not log participants” use of their file
system in the pilot study, but previous work indicates that file
system use approximately follows a Zipf distribution [60]. To
simulate different types of use history, we used two DISTRI-
BUTIONSs: Z(s = 1) and Z(s = 2). The latter is a more skewed
distribution describing cases where users focus primarily on a
small set of targets.

3. Size of target set: Both previous work [79, 96] and the pilot study
suggest that users have different numbers of files and folders in
their file system. Therefore, we used different target set sizes to
see how BIGFileFast would perform. In our simulations, TAR-
GET SET SIZE = {10,100, 1000}.

We used AccessRank as baseline as it outperforms existing pre-
diction algorithms [59]. In the case of navigation-based file retrieval,
AccessRank predicts the target by assuming that a subfolder is likely
to be selected if its parent folder is selected, captured by the Markov
chain model. Similarly, BIGFileFast also assumes that the target is
within the subtree of the current folder, and renormalizes the prob-
abilities at each step. The key differences between AccessRank and
BIGFileFast are as follows:

* AccessRank assigns a score to all folders and files while BIG-
FileFast only considers the set of potential targets.
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11.4 STUDY 1: SIMULATIONS

¢ AccessRank updates the score of an item (file or folder) once it
has been clicked while BIGFileFast updates the probability of
all potential targets after each user input.

e AccessRank identifies the N items with highest scores while
BIGFileFast identifies N items that provide the maximally infor-
mative view.

* AccessRank has a parameter § to control the stability of the
prediction list; BIGFileFast does not.

11.4.1 Simulation Settings

We generated a number of symmetric hierarchical structures crossing
DEPTH with BRANCHING FACTOR = 2 and BRANCHING FAC-
TOR with DEPTH = 4. When needed, extra targets were added at the
deepest level so that there would be 100 and 1000 targets respectively.
Depending on the target set sizes, we constructed a series of selec-
tions following the Zipf distributions. We randomized the mapping
between the Zipf distribution and the targets, as well as the order of
the selections.

We logged the number of steps needed to locate the target, the in-
formation gain and the accuracy rate for both algorithms. Note that
we consider the folders on the path to the final target to be partially
correct. For example, if the target is at level L, but the shortcut is only
correct up to the folder at level L < L,, we consider the accuracy rate
to be L;/L,, no matter how many steps it takes to get to the target
level L;.

We used {&x = 0.8,8 = 0.5} for AccessRank as in [61] and {p =
2,A = 0.1} in CRF for both AccessRank and BIGFileFast. We also
assumed 100% correct user behavior for all simulations, i. e. that users
would be as efficient as possible, always selecting an item from the
adaptive area if it would get them to the target in fewer steps. Each
condition [DEPTH x BRANCHING FACTOR x TARGET SET SIZE
x DISTRIBUTION] was run 100 times, and the average taken.

11.4.2 Simulation Results

Fig. 56 shows the number of steps and the accuracy rate for the two
algorithms using a Z(s = 1) distribution. The results for Z(s = 2)
distribution are very similar; both BIGFileFast and AccessRank per-
formed slightly better than they did with the Z(s = 1) distribution.
This is intuitive since both algorithms are based on frequency and
recency of the file system use, and Z(s = 2) focuses on a small set
of very frequent items. In information-theoretic terms, the computer
starts with more knowledge (less uncertainty) about the user’s goal.
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—e— BIGFileFast, Target Set Size 10 AccessRank, Target Set Size 10
--»- BIGFileFast, Target Set Size 100 AccessRank, Target Set Size 100
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Figure 56: Simulations of BIGFileFast v.s. AccessRank for a Zipf distribution
(s = 1) and three target set sizes (10, 100, 1000). The plots show
the number of steps (left, lower is better) and accuracy rates (right,
higher is better) as a function of depth (top) and branching factor
(bottom).

In general, BIGFileFast takes fewer steps to locate the target than
AccessRank (Fig. 56, top left). In particular, the deeper the target is
located, the better BIGFileFast performs: when DEPTH = 4, BIGFile-
Fast averages 3.1 steps v.s. 3.8 for AccessRank; when DEPTH = 12,
BIGFileFast averages 7.6 steps v.s. 10.1 for AccessRank. Increasing
depth decreases the accuracy rate for both BIGFileFast and Access-
Rank, but the effect is more pronounced for AccessRank as shown in
Fig. 56, top right: when DEPTH = 4, BIGFileFast is 66.5% accurate on
average V.s. 62.4% for AccessRank; when DEPTH = 12, BIGFileFast
is 53.5% accurate v.s. 24.2% for AccessRank.

This can be explained by the fact that AccessRank assigns a score
to all files and folders; hence, the more levels that are traversed to
get to a target, the more folders that are not targets themselves (but
are on the way to the targets) have their scores increased. Another
factor is that AccessRank takes user input into account for the next
retrieval, but not within a retrieval task. If a node is shown but is not
chosen, it will show up again at the next step as a prediction if it has
a relatively high score and the final target is in the same parent folder.
This results in wasting a prediction slot and not gaining information
from the user.
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By comparison, BIGFileFast considers each user input within a re-
trieval, and since it assumes correct user behavior, if a node is shown
and not chosen, all potential targets inside that node will be assigned
a probability of o. Therefore, the whole branch starting from that node
will be discarded, i. e. it will not show up in the prediction slots at the
next step.

Increasing the branching factor negatively affects both BIGFileFast
and AccessRank (Fig. 56, bottom). The accuracy rate of BIGFileFast
drops from 66.5% to 30.1% while the accuracy of AccessRank drops
from 62.4% to 24.3%. This is not surprising as there is not much in-
formation from the user input for a wide but shallow (DEPTH = 4)
hierarchy. Increasing target set size also negatively affects the perfor-
mance of both BIGFileFast and AccessRank.

Averaged across all simulations, BIGFileFast is 15.5% more accu-
rate and takes 23.1% fewer steps than AccessRank. The results can
be summarized as follows: The deeper the target is located, the bet-
ter BIGFileFast is than AccessRank; Increasing either target set size
or branching factor negatively affect the performance of both BIG-
FileFast and AccessRank; and BIGFileFast performs better on a deep
hierarchy than on a broad hierarchy. This echoes the results of BIG-
nav, which exhibits better results on navigation tasks with higher IDs,
i.e. on harder tasks. We next compare BIGFile (which uses BIGFile-
Fast) with a split interface using AccessRank in an experiment with
real users.

11.5 STUDY 2! EXPERIMENT

I conducted an experiment to investigate the effectiveness of BIGFile
with users. The goal was to replicate and extend the methodology
used by Fitchett et al. [61]. We used their implementation of the algo-
rithm with the exception of one improvement which is noted below.
We also used their hierarchical structure, which is a 3-level semanti-
cally organized hierarchy.

Since the pilot study showed that people do navigate to deep levels,
we extended their structure to 6 levels using the branching factors
and folder sizes from Bergman [16]: 10, 5, and 4 folders, and 11, 8
and 7 files at levels 4, 5 and 6 respectively. Example targets for level
3 include ‘Dog’” with the path “Animals > Mammals > Dog” and
‘Darwin” with the path “People > Inventors/Scientists > Darwin”.
Example targets for level 6 include ‘Hawaii” with the path “Geogra-
phy > Islands > Tropical > Touristic > Large > Hawaii”, and ‘Brie’
with the path “Food > Dairy > Cheese > France > Creamy > Brie”.
As in [61], only the folders containing the final target are populated.
In total, the hierarchy contains 958 folders and 1068 files, of which 30
files are chosen as targets for each level-3 and level-6 condition.
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11.5.1 Method

We used a [3x2] within-subject design with 3 INTERFACE condi-
tions: BIGFile with the BIGFileFast algorithm, ARFile, a split interface
using AccessRank for prediction, and a standard Finder interface as
baseline; and 2 target LEVELs: 3 and 6.

We made a slight modification to AccessRank in order to make
ARFile as effective as possible for users. In AccessRank, each folder
and file is assigned a score. If users constantly go to the same item (file
or folder), the algorithm’s set of top predictions might include both
the item and its parent folder. Since we are showing the full paths
to the predicted items (not just the items themselves), this would re-
sult in an overlap between the shortcuts. Therefore we only show the
deepest path if one shortcut is a prefix of another.

To model the user behavior, we used the notion of Folder Uncer-
tainty Ratio [48], which was used by Fitchett & Cockburn [60] to il-
lustrate users’ uncertainty when navigating to files. If users are un-
certain that they are going down the correct path, they are likely to
select incorrect folders by mistake. Fitchett and Cockburn [60] found
that users were accurate about 94% of the time, while the other 6%
of the time, they clicked on the wrong folder. Thus, we set the rate of
correct user input to 94% and divided the remaining 6% among the
other user inputs. These rates were used in the user behavior function
in BIGFileFast and for calculating information gain in ARFile and in
Finder. Furthermore, as in our simulations, we used {&x = 0.8,6 = 0.5}
for AccessRank as in [61] and {p = 2,A = 0.1} for CRF for both Ac-
cessRank and BIGFileFast. A list view was used for the static part in
all interface conditions because it was preferred in our pilot study.

11.5.2 Participants

Eighteen participants (7 women), aged 21 to 39 (mean = 28.5, 0 =
5.1), all right-handed and with normal or corrected-to-normal vision,
volunteered to participate in the experiment. Ten were MacOS users,
eight were Windows users but were familiar with list view.

11.5.3 Apparatus

The experiment was conducted on a Macbook Pro with a 2.7 GHz
processor, 8 GB RAM with resolution of 2560x1600. The file browser
window was 880 x 631 pixels, as in [61]. One row on the list view
takes 20 pixels. The software was implemented in Swift 3.0. The code
can be found at https://github.com/wanyuliu/BIGFile.
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11.5.4 Procedure

The experiment consisted of two parts: practice, where participants
familiarized themselves with the split interface using a training file
hierarchy, and retrieval, where participants completed a series of file
retrievals following a stimulus, which was presented as a path to the
final target, e. g. “Food > Dairy > Cheese > France > Creamy > Brie”,
as shown in Fig. 57.

[ BN BIGFile
< Target: Food -> Dairy -> Cheese -> France -> Creamy -> Brie
Back
Geography > Islands > Tropical > Touristic > Large > Hawaii

Food > Dairy > Cheese

History > Inventions

Education > Curriculum > Masters > German

Geography Apr 5, 2017, 2:02pm -
Animals Apr 5, 2017, 2:02pm -
Computing Apr 5, 2017, 2:02pm -
Food Apr 5, 2017, 2:02pm --
Transport Apr 5, 2017, 2:02pm --
Health Apr 5, 2017, 2:02pm -
Entertainment Apr 5, 2017, 2:02pm -
History Apr 5, 2017, 2:02pm --
Plants Apr 5, 2017, 2:02pm -
People Apr 5, 2017, 2:02pm -
House & Home Apr 5, 2017, 2:02pm -
Education Apr 5, 2017, 2:02pm --
Budget Apr 5, 2017, 2:02pm 60k
Essay Apr 5, 2017, 2:02pm 60k
Paper Apr 5, 2017, 2:02pm 60k
Article Apr 5, 2017, 2:02pm 60k
Fireman Apr 5, 2017, 2:02pm 60k

Figure 57: BIGFile experimental condition: the stimulus (full path to the tar-
get) is first presented in a modal window (not shown), and the
participant must click “start” to begin the trial. The stimulus is
also displayed at the top of the BIGFile browser throughout the
trial. The image is cropped to save space: 11 additional files were
visible below ‘Fireman’.

During the retrieval phase, participants always started with level 3,
and then proceeded to level 6 using the same interface. At each level,
they completed two sessions. Session 1 consisted of 20 file retrievals,
which comprised 10 different target files following a near-Zipf distri-
bution (frequencies 5, 3, 2, 2, 2, 2, 1, 1, 1, 1), as in [61]. Unlike [61],
where the experiment started with a uniform probability distribu-
tion, we started with the above-mentioned Zipf distribution so that
the item that was assigned a certain frequency would appear the cor-
responding number of times. For instance, if an item was assigned a
frequency of 5, it would appear as the target stimulus 5 times during
the session. The mapping between frequency distribution and targets
was counterbalanced across all participants and all conditions.
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11.5 STUDY 2! EXPERIMENT

Each trial started by displaying the stimulus inside a popup win-
dow hiding the file browser. Participants were instructed to take as
much time as they needed to understand the stimulus. When they
were ready, they hit a start button to initiate the trial, at which point
the content appeared inside the file browser (in both the adaptive and
static parts, for the two conditions with split interfaces) and they were
instructed to retrieve the file as fast and accurately as possible. When
the popup window disappeared, the stimulus was shown in the tool-
bar at the top of the file browser, as in Fig. 57. When the participant
successfully clicked the target, a popup window appeared with the
stimulus for the next trial. If they clicked a wrong target, a popup
window let them know that they had made an error and asked them
to try again. After clicking a folder or a file, the score for this item was
updated in ARFile. Similarly, after each user input, the probability of
each potential target being the actual target was updated, and after
each retrieval, the initial distribution for the potential targets was up-
dated in BIGFile.

Session 2 repeated Session 1 with the same initial distribution and
randomized selection order. The goal was to see whether and how
participants would use the split interfaces once they were more fa-
miliar with the file hierarchy and had some expectations about the
targets, which is more representative of real use. Participants could
take a break between sessions and between interface conditions.

For each level, we categorized the 30 targets into 3 non-overlapping
groups of 10. To reduce learning effects stemming from familiarity
with the hierarchy, within each group, the targets came from different
top-level folders for level 3, and from different second-level folders
for level 6. The order of interface and group of targets were counter-
balanced using Latin Square across all participants. Thus, the target
group, the order in which each target group is seen, the ordering of
targets within a group, and the order in which each interface is seen
all serve as control variables. After Session 2, for each interface, partic-
ipants completed the NASA Task Load Index (TLX) worksheets [93]
and provided comments on the interface. After all three conditions,
participants were asked for their preferences among the three inter-
faces. The experiment lasted about go minutes.

11.5.5 Data Collection

For each trial, the program collects the task completion time (TCT),
the number of steps a participant takes to locate the target (the num-
ber of items clicked, including the final target), the amount of time
spent at each step, the uncertainty the computer has about the final
target, the calculated shortcuts, the participant’s input at each step,
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and the information gain after each input. We collected 3 INTER-
FACE x 2 LEVEL x 2 Session (20 Selections each) x 18 Participants
= 4320 trials.

11.6 RESULTS

For the analyses, we first removed 60 outliers (about 1.3%) in which
TCT was larger than 3 standard deviations from the mean. We veri-
fied that outliers were randomly distributed across participants, inter-
faces and conditions. We also checked for outliers for all our other de-
pendent variables, but none were found. Note that the results are the
same if we include the outliers in the analyses. Except where noted,
we ran a repeated-measures INTERFACE x LEVEL x Session facto-
rial ANOVA on the dependent measures’.

11.6.1  Task Completion Time and Step Time

Table 7 shows the results of a repeated measures ANOVA on TCT.
All main effects are significant, as well as two interaction effects: IN-
TERFACE x LEVEL and LEVEL x Session.

Factors df, den F p
INTERFACE 2,34 452.47 < 0.0001
LEVEL 1,17 895.61 < 0.0001
Session 1,34 3212 < 0.0001
INTERFACE x LEVEL 2,34 211.89 < 0.0001
LEVEL x Session 1,17 14.69 =0.0242

Table 7: Significant effects in the full-factorial ANOVA on TCT.

On average, BIGFile is 39.3% faster than ARFile, and 59.0% faster
than Finder, across all levels and sessions. The significant interaction
effect between INTERFACE and textbfLEVEL is shown in Fig. 58 (a)
and (b). A post-hoc Tukey HSD test reveals that all differences are
significant: BIGFile is 44.5% faster than ARFile and 63.8% faster than
Finder at level 6, while BIGFile is 27.8% faster than ARFile and 47.6%
faster than Finder at level 3. These findings are consistent with our
simulation results: the deeper the target is located, the better BIGFile-
Fast is compared to AccessRank.

All analyses are performed with SAS JMP, using the REML procedure to account for
repeated measures.
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Figure 58: Task Completion Time (a, b) and number of steps (c, d) for the
3 interfaces, in 2 sessions, at levels 3 & 6, with 95% confidence
intervals.

The repeated measures ANOVA on step time (the time of a single
step) shows only two significant main effects: INTERFACE (F, 34 =
114.48,p < 0.0001) and LEVEL (F; 17 = 142.27,p < 0.0001). A post-
hoc Tukey HSD test indicates that BIGFile averages 3.29s per step,
which is significantly faster than ARFile (3.78s), which is significantly
faster than Finder (4.05s). In terms of levels, the average step time
is 3.35s for level 3 v.s. 3.94s for level 6, despite the fact that there
are fewer files and folders at levels 5 and 6. Although not signifi-
cant, the average step time is 3.78s in Session 1 v.s. 3.52s in Session
2. The LEVEL x Session interaction indicates that the difference in
performance between Session 1 and Session 2 was generally smaller
at Level 6 than at Level 3, probably because Level 3 trials provided
some training for Level 6 trials.

11.6.2  Number of Steps and Information Gain
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