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Résumé de la these

Plusieurs problemes d’optimisation — dans ’eau ou a interface avec I'air — sont abordés
dans cette these, allant de I'optimisation de la forme des coques de bateaux a celle de la
propulsion en aviron et dans la nage avec palmes. Des approches théorique, expérimentale
et numérique sont ainsi combinées.

Dans le chapitre 1, nous identifions d’abord les parametres sans dimension qui influencent
la trainée sur un objet se déplacant dans ’eau ou & son interface. Les valeurs typiques de ces
parametres pour les bateaux et quelques animaux sont données. Ensuite, nous décomposons
la force de trainée en trois termes principaux qui sont chacun détaillés: la trainée de peau,
la trainée de pression (ou de forme) et la trainée de vague. Enfin, la composante de masse
ajoutée, pertinente pour les mouvements instationnaires, est présentée.

Dans le chapitre 2, nous introduisons d’abord les bases de ’aviron. Ce sport méle phys-
iologie, mécanique et dynamique des fluides, ce qui le rend beaucoup plus complexe qu’il
n’y parait. A partir d’expériences et de données de terrain, nous analysons ensuite la
cinématique du bateau, d’une rame et d’un rameur. Enfin, un modele de trainée sur la coque
d’un bateau d’aviron est proposé et validé par des expériences et des études antérieures.

Dans une premiére partie, nous nous intéressons a la question de 'optimisation des formes
de coque de bateaux.

Les données empiriques révelent une grande variété de formes de coque parmi les différentes
catégories de bateaux. Dans le chapitre 3, nous présentons une approche théorique mini-
male pour traiter de I'optimisation de la forme de la coque d’un navire. Nous montrons que
les rapports d’aspect de coque optimaux résultent — pour une charge et une puissance de
propulsion données — d’un équilibre subtil entre la trainée de vague, la trainée de pression
et la trainée de peau. Les coques élancées sont plus favorables en terme de réduction de
la résistance de vague et de la trainée de pression, tandis que les coques plus larges ont
une surface mouillée plus petite pour un volume immergé donné, ce qui réduit la trainée
de peau. Nous comparons nos résultats théoriques aux données réelles et expliquons les
différences observées en considérant les autres contraintes de conception des coques, telles
que les contraintes de stabilité ou de manoeuvrabilité.

Le chapitre 4 a pour but d’évaluer U'effet de ’asymétrie avant-arriere d’une coque sur sa
trainée totale et en particulier sur sa trainée de vague. Nous considérons un ensemble de
coques d’asymeétrie croissante et déterminons a la fois expérimentalement et numériquement
leur trainée pour trouver l'asymétrie optimale. La comparaison entre les deux approches
fournit de nouveaux éléments particulierement intéressants dans le contexte de ’optimisation
des formes de coque.

Dans une deuxieme partie, nous étudions la propulsion en aviron et dans la nage avec palmes.

Dans le chapitre 5, nous revenons ainsi sur la question de la dépendance de la vitesse d’'un
bateau & rames avec le nombre de rameurs. On constate en effet avec les records du monde
dans les différentes catégories d’aviron que la vitesse augmente lentement avec le nombre de
rameurs. McMahon a montré que la relation entre les deux est une loi de puissance (avec
une puissance 1/9) qui correspond assez bien aux observations. Nous retirons deux des
hypothéses du modele de McMahon et constatons que cela affecte peu la loi de puissance.
Enfin, nous considérons une limitation du modele de McMahon pour un grand nombre de
rameurs, qui découle de la nécessité d’un espacement suffisant entre rameurs consécutifs.

Le chapitre 6 s’intéresse a la question de la synchronisation des rameurs sur un bateau
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d’aviron. En effet, la synchronisation en aviron apparait comme une condition cruciale pour
remporter les courses de haut niveau. Cependant, dans la nature, on peut observer des ani-
maux avec plusieurs pattes, comme le krill, nageant de maniere désynchronisée. Du point de
vue du physicien, ’aviron désynchronisé semble une bonne idée car il réduit les fluctuations
de vitesse et donc la trainée sur le bateau. Dans cette étude, nous avons construit une
maquette de bateau d’aviron a ’échelle 1/10 pour étudier l'effet de la synchronisation des
rameurs sur les performances du bateau. Les résultats expérimentaux sont comparés aux
prévisions d’un modele théorique.

La propulsion dans ’eau ou & sa surface peut également étre réalisée avec des plaques flex-
ibles, appelées nageoires, inspirées de la nage des poissons; c’est l'objet du chapitre 7.
Dans cette étude expérimentale et théorique, nous examinons l'effet de la géométrie et de
I’élasticité sur les performances propulsives de plaques flexibles rectangulaires soumises a un
mouvement vertical forcé. La géométrie optimale d’une plaque rectangulaire est principale-
ment dictée par sa fréquence de résonance.
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Foreword

Once during my thesis, as I was briefly presenting the research that we were conducting
with Romain Labbé on rowing, a member of the audience made the remark that it had been
two thousand years that people were rowing in synchrony, so why consider another way
of rowing? To be exact, it has been more than two thousand years that people are using
oars to propel boats: the first representation of a rowing boat dates back to 5800 BC in
Finland [1]. But still, rowing greatly evolved over the centuries from the Phoenician boats
or Greek triremes (boats with three rows of oars), as represented on reliefs from antiquity
(see Fig. 1), to modern rowing boats and there is still a room for improvement in today’s
rowing technique and equipments. The first record of a rowing race is found in the Aeneid
written between 29 and 19 BC by Virgil (70 - 19 BC).

Figure 1: (a) Phoenician warship with two rows of oars found on a relief from Nineveh,
around 700 BC [2]. (b) Lenormant relief from the Athenian Acropolis, depicting the rowers
of an Athenian trireme (with three rows of oars), around 410 BC. Pictures taken from [3].

Race rowing, as the modern sport known today, appeared in England during the reign of
Henry VII (1509 — 1547) [1]. With the competitions and the worldwide development of
rowing, important progresses in the equipment and the technique were made. For instance,
in the 1860s, slides with wheels were invented as, until that time, rowers were greasing their
seat and wearing leather bottom trousers to increase the stroke length [1]. In the meantime,
the boats became narrower and narrower, leading to the development of riggers' to increase
or at least keep the same leverage as before.

The observed evolution of the aspect ratio of rowing boats over the years is related to the
aim of minimising the total drag on the hull. This objective is actually common among all
ship categories as they seek to expend the minimum energy to move at a given speed with a
given load under some constraints, such as stability, manoeuvrability or seakindliness. The
experimental study of the flow past a ship hull and of the corresponding drag force exerted
on the hull dates back to Leonardo da Vinci (1452 — 1519), who tested three ship models
of different fore-aft distribution of volumes [4]. Samuel Fortrey (1622 — 1681) carried out
experiments with different models towed in a tank by falling weights [5]. Around 1757,
Pieter van Zwijndregt (1711 — 1790) also used this technique in his towing experiments as
shown in Fig. 2(a). Towing three different hulls (represented in Fig. 2(b)), he concluded
that the largest width of the hull should be as far towards the stern as practically possible.
The English engineer William Froude (1810 — 1879) built the first modern towing tank
(85 m long, 10 m wide and 3 m deep, see Fig. 3) and found a scaling law, which is still
used today, to extrapolate the results from towing tests at small scale to real ship hulls.

A rigger is a bracket on a racing shell to support the rowlock (see Fig. 2.2).
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Figure 2: (a) Apparatus and (b) hull shapes used by Pieter van Zwijndregt in his towing
experiments around 1757. The model hulls were towed over a 50 m distance. Reprinted
from [6].

The development of the corresponding theoretical framework started with the work of the
Australian mathematician Michell (1863 — 1940) [7], which was then pursued by Havelock
(1877 — 1968) [8]. Various numerical methods to model the flow past a ship were used from
the 1960s following the introduction of computers [5]. However, towing experiments are still
used today to precisely predict the resistance of ship hulls and, because of the complexity
of the problem, the optimisation of ship hulls is still an active field of research.

In this thesis, we first distinguish the different drag components acting on an object moving
at the air-water interface (Chap. 1). In Chap. 2, we introduce the basics of rowing and
present kinematic analyses of rowing. As mentioned above, the length-to-width aspect ratio
of rowing boats has increased over the years. Chap. 3 on the optimal aspect ratios of ship
hulls can help understand this evolution. Then, following the observations of Pieter van
Zwijndregt, we seek the optimal asymmetry of ship hulls (Chap. 4). In Chap. 5, the effect of
the number of rowers on the mean boat speed is discussed. This is followed by the study of
the effect of the synchronisation between rowers (Chap. 6). Finally, we identify and discuss
the propulsive mechanism at stake in fin-swimming (Chap. 7).

Figure 3: (a) View of the first naval test tank constructed in Torquay (England) by the civil
engineer and naval architect William Froude in 1872. (b) View of the trolley used to tow
ship models across the test tank. Images taken from [9].



PART 1

INTRODUCTION






(GENERAL INTRODUCTION

In this chapter, we first identify the dimensionless parameters that influence the drag on an
object moving in water or at its interface. The typical values of these parameters for ships
and animals are given. Then we decompose the drag force into three main components:
skin drag, pressure drag and wave drag. Finally, the two force components, arising for an
unsteady motion, are detailed.

Starting vortex behind a disk normal to the flow. Photo credits: Henri Werlé, ONERA.
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Chapter 1. General introduction

1.1 Dimensional analysis

We shall start this chapter with a simple dimensional analysis of the drag on an object at the
water surface. Let us consider a duck of typical length ¢, width w and mass M (equivalently
immersed volume €, related to M through Archimedes principle), paddling at speed U in
a pond of depth h (see Fig. 1.1), and let us seek a relation between the drag R experienced
by the duck and the relevant parameters of the problem.

Figure 1.1: Duck moving at the water surface and creating a nice wake.

The drag should depend on the following parameters: ¢, w, €, a dimensionless parameter G
accounting for the precise geometry of the duck, h, U, the water density p, the viscosity of
water p and the acceleration of gravity g. Under such assumptions, there exists a function
JF1 such that:

fl(R7€7w7Q7G7h7U7p7/J'7g):0' (1'1)

Eq. (1.1) contains 10 parameters involving 3 dimensions. Then, following Buckingham’s II
theorem, this equation can be reduced with 10 — 3 = 7 dimensionless parameters using a
dimensionless function Fs:

FolCow/t, )03, G, h/l,Re, Fr) =0 , (1.2)

where we introduced the drag coefficient C = R/(pf?U?), the Reynolds number Re = pU//u
(which compares inertia and viscosity) and the Froude number Fr = U/+/gf (which compares
inertia and gravity).

Finally, the total drag on the duck is written: C = R/(pl?U?) = F3(w/¢,Q/3,G, h/l, Re, Fr)
which, in the case of an infinitely deep fluid (h > ¢), reduces to :

R

ST Fi(w/e,Q/6%, G, Re, Fr) . (1.3)

In Chap. 3 and Chap. 4, the expression of the total drag on an object will be detailed in the
case of an infinitely deep fluid. When the object is immersed in a homogeneous fluid, the
total drag can be decomposed into pressure drag and skin drag [10]. When the body moves
at the water surface, it experiences an additional component of drag called the wave drag
[10]. These three main components of the total drag are described below.

6



1.2. Orders of magnitude

1.2 Orders of magnitude

In Table 1.1, a few orders of magnitude are given for various bodies moving at the water
surface such as liners, rowing boats, sprint kayaks, sailing boats and animals. The Froude
number is typically between 0.1 and 1 and the Reynolds number ranges from 2-10° to 5-10°
(typically Re € [107,5 - 109], for ships).

(b)

%! ® | FOSSEYS
- v

—r s avwTRALS

Figure 1.2: Pictures of (a) the Seawise Giant, the longest ship ever built (¢ = 458 m) (source:
[11]), (b) the Spirit of Australia, the fastest ship (U = 142 m/s) (source: [12]), and (c) an
eight rowing boat (source: [13]), one of the fastest man-powered boat (U ~ 6.3 m/s). See
Table 1.1 for their complete characteristics.

In particular, the Seawise Giant (see Fig. 1.2(a)) is the longest ship ever built. It was 458-
meter long, 69-meter wide and 30-meter high (25-meter draft), weighed 650000 tons and
had a cruising speed of about 30 km/h. This corresponds to a Froude number of 0.13 and
a Reynolds number of 4 - 10°. The world fastest ship is the jet-powered hydroplane Spirit
of Australia (see Fig. 1.2(b)). It reached a speed of 511.11 km/h on Blowering Dam Lake
(Australia), on 8 Oct. 1978. For man-powered boats such as rowing boats (see Fig. 1.2(c)),
sprint canoes or sprint kayaks, in competitions the typical values for the Froude number
are comprised between 0.5 and 0.7, while the Reynolds number ranges from 107 to 10%. For
animals and human swimmers, the values of these dimensionless numbers are smaller (see
Table 1.1).

Length Width Mass Speed Power (*) Froude Reynolds

Boat Name £ (m) w (m) M (kg) U (m/s) P (kW) number Fr number Re
Seawise 458  68.9 6.5-10° 83  3.7-10% 0.13 4.10°
Giant

Spirit of 8.22 25 1500 142 4500 15 1-10°
Australia

Eight 177 0.56 820  6.26 3.2 0.48 1-108
rowing boat

Laser sailing 42 1.39 130 4.1 2.7 0.64 2.107
boat

Duck 0.3 0.2 5 0.66 N.A. 0.38 2.10°
César Cielo 1.95 0.6 88 2.1 N.A. 0.46 4.106

(swimmer)

Table 1.1: Characteristics of some bodies moving at the water surface. N.A. stands for Not
Awailable. (*) The power is estimated through diverse methods depending on the category
of the boat. See Table 3.1 for more boat characteristics and the details on the methods used
for the estimation of the power.



Chapter 1. General introduction

1.3 General expression of the total drag

In continuum mechanics, to model the forces inside a given medium, one classically in-
troduces the Cauchy stress tensor o. From this tensor, one can express the stress vector
T exerted by one part of a medium on another through an interface of normal vector n
through: T'= o - n. In a fluid, the Cauchy stress tensor is written:

o=-pl+T1, (1.4)

where p is the pressure in the fluid, 1 is the identity tensor and 7 is the shear stress tensor
[14]. For a Newtonian fluid, the stresses depend linearly on the local strain rate, so that:

=AMV uw)l+p(Vu+Vul) (1.5)

where A and p are the viscous coefficients, w is the velocity vector and Vu! denotes the
transpose of the velocity gradient Vu. The coefficient A is associated with changes of
volumes, while p is the classical dynamic viscosity (associated with shear). Finally, assuming
the fluid to be incompressible (V - u = 0), the Cauchy stress tensor takes the simpler form:

a:—p]l+u(Vu+VuT) . (1.6)

The general expression for the total drag on an object immersed in a fluid is:

R://Swa.nds, (1.7)

where S, is the wetted surface of the object. Injecting the expression of o from Eq. (1.6)
in Eq. (1.7), one gets:

R:—//wpnd5+u//w(Vu+VuT)-ndS. (1.8)

The total drag R is thus divided into two terms: the first term is related to the pressure and
thus includes both the pressure drag and the wave drag, while the second term corresponds
to the skin friction. These different components are detailed in the following sections.

1.4 Skin drag

The component of skin drag, denoted Ry, is due to the friction of the water particles along
the surface of the object and thus depends on the total wetted surface of the object [10].
From Eq. (1.8), one has:

Rs:u//w (Vu+ Vu') -ndS. (1.9)

This component of drag is the dominant one for streamlined bodies such as airfoils (see
Fig. 1.3). In the case of a flat plate, an approximate expression for Rg was first derived by
Blasius.

Blasius boundary layer. Let us consider a semi-infinite flat plate coinciding with the
half plane (y = 0, x > 0) subjected to a parallel flow with a constant velocity U, at large
Reynolds number Re = pU¥/p > 1 (see Fig. 1.4). The flow can be considered as inviscid
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1.4. Skin drag

Figure 1.3: Picture of the flow past a NACA 64A015 airfoil profile at Re = 7000. The
profile is at zero incidence in a water tunnel. Colored fluid injected upstream is used to
show the streamlines. Photo credits: Wale 1974, ONERA (taken from [15]).

except in the region close to the wall, called the boundary layer, which ensures the no-slip
boundary condition and is the origin of the shear stress. Let u = (ug, u,) be the velocity of
the fluid. One can show that, in the laminar region, the horizontal component of velocity
u follows a similarity solution [14]: u,/U = f(n), where = yy/Re,/z with Re, = pUz/p
the Reynolds number based on the coordinate x.

— Laminar boundary Transition __| Turbulent boundary
— layer region layer

— U

)/‘3

e ~4

M—— — —e — —

— " \)?).J \.}__\:q

0 /
z Boundary layer thickness |

Figure 1.4: Schematics of the boundary layer which develops along a flat plate with the
transition from laminar to turbulent from the critical position z.,. Adapted from [16].

By definition, the local wall shear stress is:

Oug
o= p < a“y) : (1.10)
0

where the subscript zero means at the wall (y = 0). Then, injecting the similarity solution
for u, inside this equation, one finds:

o pU?f'(0)  0.332 pU? (L11)
vRe, = Re, ’

The value f/(0) ~ 0.332 is obtained by solving a differential equation for f(n), which results
from the Navier-Stokes equations approximated in the boundary layer. Using Eq. (1.9) to
estimate the skin friction Rs = |Rs| on a portion of a plate of length ¢ and span w, one gets:

_ 0.664 pwlU?
N vRe ’

9

Ry (1.12)
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Figure 1.5: Skin friction coefficient C for various plates parallel to the flow from experiments
in air and water. For Re € [10%,10%], the dash-dotted line shows the theoretical prediction
from Blasius solution (laminar regime); while for Re € [10°, 10'°], the dash-dotted line shows
the empirical law established by Schoenherr in the turbulent regime. Image reprinted from
[10].

where Re = pU//u is now the Reynolds number based on the length ¢. It follows that the
skin drag coefficient in the laminar regime reads:

c Ry 133
T 1/2pwlU? T \/Re
This result from Blasius means that the skin friction depends on U3/2, which is a different

scaling than for the more classical pressure drag which scales as U? (as will be seen in the
next section).

(1.13)

The evolution of the skin friction coefficient with the Reynolds number over the range
[10%,10'°] is represented in Fig. 1.5. The theoretical prediction from Blasius in the laminar
regime shows a very good agreement with experimental data points in the range 10* < Re <
10%. However, when the Reynolds number becomes bigger than a critical Reynolds number
Req ~ 5-10° — 1()6, the flow transitions from laminar to turbulent and the experimental
points start to deviate from the Blasius law [17]. This transition is also illustrated in Fig. 1.4
for a flat plate and appears once a critical position x., = Recept/(pU) is reached. In the
turbulent regime, the skin friction coefficient Cs then shows a slower decrease with the
Reynolds number Cg ~ Re /7. In this regime, many semi-empirical and empirical laws
try to capture this evolution. In particular, Schoenherr established the following law [10]:
log(Re Cs) = 0.242/1/Cs, which is found in good agreement with the experimental data
points in the regime of turbulence and of forced turbulence.

In ship design, the commonly accepted formula is the one from the International Towing
Tank Conference (ITTC) of 1957 (see [18, 19, 20]):

0.075

Cs(Re) ~ Tog(Re) — 2 -

(1.14)

As can be seen in Fig. 1.6, this formula deviates from the Schoenherr line for Re < 107. For
ships, the Reynolds number is in the range 107 < Re < 5-10°. Over this range, Eq. (1.14)
and Schoenherr show good agreement and the skin drag coefficient varies between 10~3 and
3-1073.

10



1.5. Pressure drag
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Figure 1.6: Comparison of the skin friction coefficient Cs as a function of the Reynolds
number for the Schoenherr line and the ITTC 1957 line.

1.5 Pressure drag

The component of pressure drag (also called form drag), denoted Ry, results from the
combination of all the pressure forces on the surface of the object and thus can be written

(see Eq. (1.8)) as:
Rf:—// pndS, (1.15)

where p is the pressure at the surface of the object and the integration is performed over
the whole wetted surface. This force arises when the boundary layer separates from the
surface of the object, leading to the formation of vortices at the rear of the object. It scales
with the cross-sectional area of the object, denoted S, and is particularly dominant for bluff
bodies such as cylinders or spheres (see Fig. 1.7) [10].

Figure 1.7: Picture of the instantaneous flow past a sphere (a) at Re = 15000 (below the
critical Reynolds number for the drag crisis Re.,) and (b) at Re = 30000 (above the critical
Reynolds number). A wire is used to initiate the transition at a lower Reynolds number than
the one for a sphere, which is Rec, ~ 5 - 10°. Photo credits: Henri Werlé, 1980 (ONERA).

We define the pressure drag coefficient as:

Ry

Cr=—t
! $pSU2

(1.16)
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Chapter 1. General introduction

with Ry = |Ry|, and the pressure coefficient ¢, as:

P — P
2pU?

cp = : (1.17)

where po is the pressure far from the object. Thus, one has Ct = (1/5)| [[ ¢, ndS|.

Flow past a cylinder. Let us consider a cylinder of diameter D in a flow of constant
velocity U. The Reynolds number is defined as Re = pUD/pu. Different flow regimes are
observed depending on the Reynolds number (see Fig. 1.8(a)) [14, 21].

e For Re < 4, the flow is laminar and attached to the cylinder.
e For 4 < Re < 40, a recirculation bubble forms behind the cylinder.

e For 80 < Re < 200, a Von Karman Vortex Street develops characterized by the
alternative shedding of vortices from the two sides of the cylinder.

e For 200 < Re < Re.,, = 3-10°, the Vortex Street destabilises and the wake of the
cylinder becomes turbulent.

e For Re > Re.,, = 3 - 10°, the laminar boundary layer upstream of the separation
point also becomes turbulent. As the turbulent boundary layer has a higher energy
than the laminar one and is able to withstand higher adverse pressure gradients, the
separation point is moved downstream. The drag coefficient then decreases abruptly.
This phenomenon is called the drag crisis. Re., denotes the critical Reynolds number
from which the boundary layer transitions from laminar to turbulent.

In Fig. 1.8(b), the pressure coefficient along the surface of a cylinder is plotted for Reynolds
numbers below and above the critical Reynolds number Rec,, together with the potential
flow solution ¢, = 1 — 4sin? @, with 6 the angular distance to the stagnation point. It can

(a) (b)
/‘\ /_\ 1 Potential
Re < 4 4 < Re < 40 0 \l f/ - Re = 6.7 - 10°
i
/
¢p 1 \ - Re=1.1-10%
- — — —_ WA 7 74
80 < Re < 200 .
Laminar Turbulent \ / j
] N
NV
-3 \\_//
0 20 40 60 B0 100 120 140 180 180

Re < 3-10° Re > 3-10°

o

-
0(°)
Figure 1.8: (a) Different flow regimes past a cylinder depending on the Reynolds number.
Reprinted from [14]. (b) Distribution of the pressure coefficient ¢, along a cylinder depending
on the angular distance to the stagnation point 6, for different Reynolds numbers and in
the potential flow limit. Reprinted from [21].
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1.5. Pressure drag

be noticed that the experimental pressure distributions follow the potential flow solution
until # ~ 40°. Then, from a given angle 6 (the angle at which the flow separates), the
pressure coefficient reaches a plateau, the value of which depends on the Reynolds number.
As explained above, the curves at Re = 1.1 - 10* < Re., and at Re = 6.7 - 10° > Reer
highlight the shift of the separation angle 8, from about 81° to about 125°, corresponding
to a smaller wake and a reduced drag coefficient (see also Fig. 1.7 for an illustration of
this phenomenon in the case of a sphere). The evolution of the drag coefficient C; with
the Reynolds number is shown in Fig. 1.9 (blue curve). Interestingly, the drag coefficient
plateaus for 10> < Re < Reg, at a value C; = 1.2 before decreasing drastically at the drag

crisis (Re = Reg).
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Figure 1.9: Pressure drag coefficient Ct of a cylinder and a sphere depending on the Reynolds

number Re. Data gathered from [10].

Figure 1.10: Drag coefficients of various 2D (right column) and 3D-axisymmetric (left col-
umn) bodies at Reynolds numbers between 10* and 10°. Reprinted from [10].
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Chapter 1. General introduction

Comparison with other 2D and 3D bodies. The case of a sphere is quite different
from the one of a cylinder due to three-dimensional effects. The critical Reynolds number is
a little bit different and the value of the drag coefficient on the plateau is now C; &~ 0.47, as
can be seen in Fig. 1.9 (red dashed curve). We thus see that the shape of the object plays a
major role in its resulting pressure drag. Fig. 1.10 highlights this point by listing the drag
coefficients of different 2D and 3D-axisymmetric bluff bodies (for Re € [10%,10%]).

Roughness effects. It should also be mentioned that the critical Reynolds number Rec,
at which the boundary layer transitions from laminar to turbulent is highly affected by the
roughness of the solid surface. The values given for a cylinder and a sphere were obtained
for smooth bodies. If the roughness is increased, then the value of Re., decreases and the
drag crisis occurs at a smaller Reynolds number [22].

1.6 Wave drag

As mentioned in Sect. 1.1, when an object moves at the water surface, the flow around it
is characterised by two dimensionless numbers: the Reynolds number Re and the Froude
number Fr defined as:

Fr=— (1.18)

where U is the velocity of the object, g the acceleration of gravity and ¢ the length of the
object along its direction of motion. As a body moves at the air-water interface (faster
than cmin >~ 23 cm/s [23]), it generates dispersive surface waves with a characteristic V-
shape wake (also called Kelvin wake [24], see Fig. 1.11(a)), which remove energy to infinity.
Consequently, the object is subjected to an additional component of drag called the wave
drag (or wave resistance), which is denoted Ry, [7, 8, 25]. An evidence of wave drag is the fact
that submarines move 20 — 40% slower at the interface than when they are fully immersed
(see Table 1.2). The same effect is observed for swimmers, especially when swimming with
fins (see Chap. 7).

Submarine name Speed when submerged Speed at the surface

(km/h) (km/h)
Daphné (FR) 28 22
Agosta (FR) 37 23
Franklin-class (US) 39 30
Ohio-class (US) 37 22
Typhoon (USSR) 50 40
Oscar IT (USSR) 59 28

Table 1.2: Speed of different submarines when submerged and at the surface. Data gathered
from [9].

The Froude number comes into play as it compares inertia and gravity, or equivalently, the
wavelength A of the waves produced and the length of the object (see Fig. 1.11(b)-(d)):

1 A
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1.6. Wave drag

Equation (1.19) is valid in an infinitely deep fluid and is deduced from the dispersion relation
w = /gk with w the angular frequency and k = 2w/ the wave number. The schematics in
Fig. 1.11(b)-(d) illustrate the waves produced by a ship moving at three particular Froude
numbers for which the waves produced at the front of the boat can interfere with those
produced at the stern. For Fr ~ 0.33 and Fr ~ 0.56, they can interfere coherently, while for
Fr ~ 0.4 they interfere destructively. This strongly affects the value of the wave drag.

Figure 1.11: (a) Picture of the wake of a ship (source: [26]). The angle of the wake, delimited
by the white dashed lines, is about 39° [24]. (b)-(d) Schematics of the wave elevation along
the ship hull for different Froude numbers corresponding to different ratios of the wavelength
A to the ship length ¢: (b) \/¢ =2/3, (c) A/¢ =1 and (d) \/{ = 2.

Froude’s hypothesis. As it is not possible to build scale-model hulls with Reynolds and
Froude numbers matching the ones for real boats, William Froude made the assumption
that the total drag coefficient C'(Re, Fr) can be written as:

C(Re, Fr) ~ C5(Re) + Cres(Fr) | (1.20)

where Cjy, the skin drag coefficient as defined in Sect. 1.4, only depends on the Reynolds
number and Cis, the residual drag coefficient, only depends on the Froude number. Actually,
Cles contains both the wave drag Cy, and the pressure drag C but, in the range of Reynolds
number operated for ship hulls, the pressure drag is fairly constant, so that Ces(Fr, Re) ~
Cres(Fr). This hypothesis was verified experimentally with different hull shapes [27] .

1.6.1 Problem statement

Let us consider a hull of length ¢, width w and draft d moving at the water surface at velocity
U which is first supposed to be constant. We define a cartesian coordinate system (z,y, )
with z opposite to the direction of motion of the hull. Consistent with usual parametrisation
[7, 28, 29, 30], the hull shape is considered symmetric about the center-plane y = 0 and
defined through the function f by: y = +f(z,2) (see Fig. 1.12). The water surface is
assumed to be infinite in x and y directions.

We can then introduce the dimensionless coordinates through = @/, y = gf and 2z = z¢
as well as f(z,2) = f(&,2)w. Note that w is used in the definition of f as it simplifies the
expression of the wave drag coefficient in Michell’s model (see Subsect. 1.6.3). We further

define the aspect ratios o = £/w and 8 = ¢/d. We take as a characteristic surface Q%3 with:
Q= twd . (1.21)

This volume scales as the immersed volume of the hull, denoted €;." This particular choice

'One has: Qi = Q [ fdidz.
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Chapter 1. General introduction

e = S
d
V4

Figure 1.12: Schematics of a hull with illustration of its length ¢, width w and draft d. The
hull shape follows the parametrisation y = f(z,z). The centerplane projection of the hull
is denoted Sy. Note that only the part of the hull immersed in the water is represented.

of characteristic surface is motivated by the objective of comparing the drag on hulls that
have the same immersed volume. The wave drag coefficient is thus defined through:

Ry

(1.22)

Fig. 1.13 shows the typical evolution of Cy, with the Froude number for a parabolic hull from
experiments [31] and theoretical predictions [32]. Interestingly, the wave drag coefficient is
maximum for Fr ~ 0.5.

0.1 ‘
—— Tuck (1987)
0.08 |- X x  Chapman (1972) ||

0.06 -

0.04 |-

0.02 |-

| |
OO 0.5 1

Fr

Figure 1.13: Wave-drag coefficient Cy, as a function of the Froude number Fr predicted
theoretically by [32] together with experimental data points from [31] (black crosses). The
hull has a parabolic shape with o = 6.7 and 8 = 2.3.

Here we present the two leading theoretical models to compute the wave drag. The first
one, developed by Havelock, represents the ship hull as a moving pressure disturbance
[8, 25]; while the second one, developed by Michell, solves, in the limit of slender hulls, the
linearised potential flow problem with a distribution of sources along the centerplane of the
ship [7, 28, 30, 33].

For both models, the frame of reference is attached to the hull, so that the flow is in the z
direction. The fluid is assumed to be steady, inviscid, incompressible and irrotational. Such
a flow can be described as a potential flow [14]. That is, there exists a potential ® satisfying
u = V®. Using incompressibility, V - u = 0, it follows that ® solves the Laplace equation:

Vo =0. (1.23)
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1.6. Wave drag

The velocity component along the x direction is written:
o, =U+d,, (1.24)

with ®, < U. Note that, f, denotes the derivative of the function f (x) with respect to the
variable x, that is f, = df/0x. The water interface is described by the function z = Z(z,y).

1.6.2 Havelock’s model

As mentioned before, in Havelock’s model the ship hull is replaced by a moving surface
pressure disturbance p(z,y) [8, 23, 25]. It is somewhat tantamount to considering that
there is a cover applying the pressure p on the whole water surface (with p decaying far
from the disturbance). This model allows to compute the far-field wave pattern as well as
the wave resistance [23, 34, 35].

1.6.2.1 Model assumptions

Boundary conditions. Ensuring that water particles do not cross the air-water interface
yields the kinematic condition:

O, = 0,7, +D,7, . (1.25)

The Bernoulli equation at the air-water interface is written:

1

1
SPL27 + )+ O+ pgZ = po + 5pU” (1.26)

p+

with pg the atmospheric pressure.

For an infinitely deep fluid, we further have:

lim ®, =0, (1.27)

Z——00

while, for a fluid of finite depth h, this condition would be replaced by ®,(z = —h) = 0.

The last condition is the radiation condition:

lm /a2 +y2[®2 + &, + &2 - U’ =0. (1.28)

T—r—00

This condition ensures that the velocity potential vanishes in the far-field upstream of the
boat.

Linearisation. The combination of the linearised kinematic and dynamic conditions at the
water surface (1.25, 1.26) yields:

U? U
S, +—Ppp +—p. =0, (129)
g P9
while the linearisation of Eq. (1.25) alone gives ®, = UZ,.
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Chapter 1. General introduction

1.6.2.2 Wave displacement

Taking the Fourier transform of Eq. (1.23), combining it with the boundary conditions and
writing: P(z,y,t) = e'p(x,y) (with e — 0) to ensure the radiation condition, one finds [23]:

Z ] kplho, by b 1.30
(x’y)__sli’%zm //gk U2k2 + 2ieUky 2007 (1.30)

where p(ky, ky) is the Fourier transform of the pressure field p(x,y) and k = [k2 + k‘g]l/ 2,

Interestingly, one can notice that, in the expression of the wave displacement, appears the
ratio between the pressure source term and the dispersion relation. The wave displacement
is therefore maximum when the pressure source term resonates with the dispersion relation.

In dimensionless form, using p = pgl3p, ky = ky /!, ky = INcy/E, k=k/t, e =&/g/l, and
Z = Z/{, one obtains:

. kp(ky, ky)e ik kofthyd)
A — dk, dk, . 1.31
(Z.9) = €~>0 472 // k— FrQlc2 + 21 €Frk, Y ( )

1.6.2.3 Wave resistance

According to [8, 25], the wave resistance is the sum of all the pressure contributions at the
interface in the x direction, that is:

_//p(x,y)zz(x,y) dzdy . (1.32)

After injecting the wave displacement Z from Eq. (1.30) into Eq. (1.32), one finds:

i kg k|p(ky, ky) 2
Ry =1 dk, dk, - 1.33
el—r>r(l)47rp//gk U2k2 + 2ie U ky y (1.33)

Using the dimensionless parameters introduced before, the wave drag coefficient is written:

P e // d 2|p k) dlep dFey . (1.34)
pgt Ho 42 k—Fr’k2 +2ieFrk,

1.6.2.4 Limitations of Havelock’s model

Havelock provides a nice theory to model the wave pattern of ships. It is however too simple
to account for the exact shape of the hull and especially to study the effect of the draft. In
particular, it is quite difficult to predict theoretically the pressure field p(z,y) to be injected
in the formulas, which itself should depend on the hull shape and on its velocity U.

1.6.3 Michell’s model

Michell developed a model to predict the wave resistance for slender ships [7, 28, 30, 33].
This model is based on solving the linearised potential flow problem with a distribution of
sources on the centerplane of the hull.
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1.6. Wave drag

1.6.3.1 Model assumptions

Following [7, 28, 36], we rewrite the boundary conditions and the assumptions made to
derive Michell’s model.

Boundary conditions. The condition that water particles do not cross the hull boundary
is written:

Sy =0, f, +P.f. . (1.35)

Similarly, ensuring that water particles do not cross the air-water interface yields the kine-
matic condition given in Eq. (1.25). The Bernoulli equation at the air-water interface is
written:

1 1
po+ 5pu’ +pgZ =po+ 5pU” (1.36)

with pg the atmospheric pressure. It is then straight-forward to obtain the dynamic condi-
tion:

297 4+ @5 + @, + 2 =U> . (1.37)

For an infinitely deep fluid, we further have the condition given in Eq. (1.27) (which is
replaced by ®.(z = —h) = 0 for a fluid of finite depth k). The last condition to ensure is
the radiation condition given in Eq. (1.28).

Linearisation. The main assumption of Michell’s model is to consider that the hull is thin
(w < ¢, corresponding to small longitudinal slopes f,, f, < 1).

The linearisation of the kinematic condition on the hull boundary (1.35) leads to:
Oy (x,+0,2) =xUf, . (1.38)
The combination of the linearised kinematic and dynamic conditions (1.25, 1.37) gives on
z=0:
ko®.(z,y,0) + ®pp(z,y,0) =0, (1.39)
where ko = g/U?.

Michell solves the Laplace equation (1.23) with the boundary conditions given in Egs. (1.27,
1.28) and Egs. (1.38, 1.39) using Fourier-transform methods.

1.6.3.2 Derivation of the wave resistance

Following [37] (p.579, see also [7, 30, 36]), the linearised potential flow problem is solved by
distributing sources of strength U f,/(27) on the centerplane projection of the hull, denoted
So (see Fig. 1.12). The velocity potential can then be obtained through:

U
Ba.0.2) = 5 [[ 16,0 x Gy 20,0 dcc (1.0)

where G(z,y,z,&,1,() is the Green function corresponding to the potential created by a
source at point (&, 7, () satisfying all the boundary conditions except Eq. (1.38). The ex-
pression of G can be obtained by Fourier transform and is given in [37] (p.484) for an

19



Chapter 1. General introduction

infinitely deep fluid:

1 1
G(%?J;%fa”a() = -

r— T+

C Yo 12 g secte k 0] cos[k ing
= sec ]é mcos[ (x — &) cos ] cos[k(y —n) sin 0]

jus

+ 4ko / © 40 sec2f eko(=+¢) sec?0 sinfko(z — €) sec 8] cos[ko(y — n) sin @ secd] , (1.41)
0

with re = \/(z — )2 + (y — 7)2 + (2 £ ¢)? and where the dashed integral in the third term
of G is a Cauchy principal value integral.

In Eq. (1.41), the first term corresponds to the classic potential for a point source in an
infinite fluid. The next three terms are added to ensure that the linearized free-surface
conditions and the conditions at infinity are satisfied. In particular, the second term cor-
responds to the potential of a second point source being the mirror of the first one with
respect to the plane z = 0.

The wave resistance Ry(f) is calculated from the velocity potential ® given in Eq. (1.40)

using;:
—// pngdS ~ —2 // png, dS (1.42)
w SO

where n, = —f, and the pressure p is obtained from the linearised Bernoulli equation:
p = pU®,. Thus, one has:

2
R(f) = 2= /dedzfx:cz/ AEAC fel€,O)Gale,0,5,6,0,C) . (1.43)

One can notice that the first three terms of G, are odd in (z — &) and the fourth one is even
in (z — &). Consequently, thanks to the symmetry of Ry (f) with respect to (z,z) and (&, ()
(see Eq. (1.43)), only the even term will give a non-zero contribution to Ry(f). One then
obtains:

4k pU>
T

Ru(f) = / [ dadz £.(0.2) / [ agacsete.o

X /2 d6 sec@ eko(z+C) sec’ coslko(z — &) sech] . (1.44)
0

Finally, letting A = sec 6, using Euler’s formula and integrating by parts, one finds:

Ru(f) = W/+°O T Fr) P i (1.45)
T RS A NS VI '

where:

+(A, Fr) / dz f x,z)e A2/ (EFY?) gida/(EFY%) g (1.46)

‘
2
The wave drag coefficient for infinite depth CY, in dimensionless form then reads:

4,82/3 +oo ) A4
Cw(Fr,a,8) = 7roz4/3Fr8/1 [ Z5(A, Fr, B)| ﬁd)‘ ; (1.47)
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1.6. Wave drag

where:

Z:(\ Fr, B) = / &, 2)eN AP A B gz (1.48)
1
E T2

Finite depth. In the case of a fluid of finite depth h, the Green function given in Eq. (1.41)
must be replaced (see [30, 37]). The wave drag then has a more complicated expression that
can be found in [37] (p.581):

2pU?
T2t

k3/2 tanh(kh)

Ryw(f,h) = 'k — ko tanh(kh)

k (1.49)

400
/ |7k, Fr, 1) 2
kn,

where kg = g/U?, ky, is the solution of the dispersion relation: kj = ko tanh(kyh) (with
kp > 0) and where:

#(k,Fr, h) / dz z)wemV kok tanh(kh) qg (1.50)
£ cosh(kh)

2

Note that k can be considered as a wave number.

Introducing the ratio v = h/¢, the wave drag coefficient in finite depth, denoted Cy, reads:

k3/2 tanh (k) ~

Cw(Fr,a, B,7) = dk , (1.51)
k- tanh(iy) /Fr?

932/3 oo
it | kg

mad/BF? Ji,

where &y, is the solution of the dispersion relation: kj = tanh(ky7y)/Fr? (kj, > 0) and where:

Tk, Fr, ,7) = /

The expression of the wave drag coefficient in infinitely deep fluid (c orresponding toy — 00)
is recovered from these equations by the change of variable k= \2 / Fr?.

1 f ~ ~) COSh[k(Z:F '7)] eii‘\/l;tanh(l%’y)/Fr ds . (152)
-1 cosh(kv)

Q\H

0.1

Fr

Figure 1.14: Wave drag coefficient Cy as a function of the Froude number Fr predicted
by Michell’s model for increasing water depth v = h/¢ (for « = 6.7, § = 2.3 and f =
1/2 exp(—16?)). The black curve corresponds to the infinite depth case.

The wave drag coefficient Cy, can be computed numerically from Eqgs. (1.51, 1.52). Fig. 1.14
shows the evolution of this coeflficient with the Froude number for different values of the
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Chapter 1. General introduction

ratio v = h/¢ and a gaussian hull profile (see Eq. (3.4) in Sect. 3.3). Differences with the
curve for infinite depth (black curve) are observed in the range Fr € [0.4,0.8] for v < 1. As
a result, the bottom of a water tank starts having an effect on the wave drag for h < £.

1.7 Unsteady forces

In the case of an unsteady motion, supplementary forces come into play: the added mass
force, denoted R,, and a history force, known as the Basset force, denoted Ry, which is
usually neglected at high Reynolds number.

1.7.1 Added mass force

The added mass force is typically written:

dU

R, = —my T (1.53)
where U(t) is now the instantaneous velocity of the object and m, is the added mass of
the object, which is defined as the mass of fluid that the object accelerates (or decelerates)
during its motion. In the resulting dynamics of the object, it is as if the mass of the object
was supplemented by the quantity m,. In a more general way, an added mass matrix
Ma = (mi5)1<i<6.1 <j<e can be defined [27]. The 6 dimensions correspond to the translations
in the 3 spatial directions and the rotations about these 3 directions. Fig. 1.15 gives the
added masses along the horizontal and vertical directions for a cylinder, an elliptical cylinder
and a plate. It can be noticed that these three objects have the same added mass per unit
length in the vertical direction — equal to p times the surface of the disk of radius a — but a
different one in the horizontal direction. The added mass can thus generally be defined as
the mass of fluid contained in the cylinder of diameter given by the extension of the object
in the direction perpendicular to the flow.

O @

my:  mwoa® wpb? 0
Myy:  Tpa® Toa’ Tpa?

Figure 1.15: Added mass per unit length for various two-dimensional bodies. my; is the

added mass in the horizontal direction and mo9 in the vertical direction. Reprinted from
[27].

1.7.2 Basset force

The Basset force, which appears when an object is accelerating in a fluid, is related to the
lagging boundary layer development with a varying flow velocity [38, 39].

In the viscous regime, this force has two components in phase quadrature: one, denoted R},
is proportional to the fluid velocity and the other, denoted Ry, is proportional to the fluid
acceleration. One can show that these two components have the same dependence with the
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1.7. Unsteady forces

parameters of the problem [40]. For a flat plate moving in a fluid, one can write:

S
Ry, ~ Ry ~ MagJ : (1.54)

with a the characteristic distance of oscillation of the plate, w = 2w f the angular frequency
of oscillation, S the wetted surface and 6 ~ \/u/(pw) the thickness of the boundary layer
associated with the oscillations.

We further model the speed of the plate as: U = (U)(1 + AU/(U) cos(wt)) with (U) the
mean speed and AU the amplitude of the fluctuations of speed. Then, one can compare the
two components of the Basset force with in-phase drag terms: that is R} with Rs, the skin
drag, and R; with R,, the added mass force. One has:

Ry paws 1 AU/(U)

b ~ 1.

R, 5 S " Res (1.55)
R} pawS 1

where Res = pd(U)/u is the Reynolds number in the boundary layer and Q, = m,/p ~ Q
the volume corresponding to the added mass. For a rowing boat (see Chap. 2), one finds:
R} /Rs ~10"% and R}'/R, ~2-1072, so that the Basset force can be neglected.
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Take home message of Chapter 1

When an object (such as a ship or a duck) moves steadily at the water surface at
high Reynolds number, it experiences three main components of drag:

1. Skin friction is related to the friction of water particles along the surface of the
object. It scales with the wetted surface and with the speed as U3/2 in the laminar
regime and U? in the turbulent regime.

2. Pressure drag (or form drag) is due to the separation of the boundary
layer and the formation of vortices at the rear of the object. It is the resulting
force of all the pressure forces exerted on the surface of the object in the absence
of waves. It scales with the cross-sectional area of the object and with the speed as U?.

3. Wave drag appears when the object moves at or close to the air-water interface
because of the generation of surface waves. This drag component highly depends on
the Froude number: Fr = U/\/gf where £ is the length of the object in the direction
of motion. The wave drag coefficient shows a non monotonic evolution with the
Froude number, with a maximum around Fr ~ 0.5.

When an object accelerates in a fluid, it is subjected to (i) the added mass force,
which is proportional to the acceleration of the object and the mass of the fluid
accelerated and (ii) the Basset force, which is usually neglected at high Reynolds
number.
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ROWING BASICS AND KINEMATICS

Rowing is a challenging sport, not only for athletes but also for physicists. This sport mixes
physiology, mechanics and fluid dynamics, making it much more complex than it seems.
Thus, many scientists tried to figure out the details of rowing propulsion, in particular, with
a view to improving the performance of rowing crews. In rowing, three main parts can be
distinguished: the rowing boat, the oars and the rowers. Looking at the kinematics of these
different elements gives very interesting information to understand the mechanics of rowing.
In this chapter, we first introduce the basics of rowing. Then, the kinematics of the boat, the
blades and the rowers are analysed with experiments and video analysis. Finally, a model
for the drag on a rowing boat is suggested and validated by experiments and previous studies.

Picture of a water strider, a kind of “capillary rower”. Source: [{1].

Contents
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This work has been done with Alexis Goujon, Kozeta Tutulani, Romain Labbé, Michael
Benzaquen and Christophe Clanet.
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Chapter 2. Rowing basics and kinematics

2.1 The basics of rowing

In this section, we introduce the very basics of rowing with the definition of some vocabulary
specific to rowing.

2.1.1 Rowing equipment

The two essential equipments in rowing are the rowing boat and the oars. As expected,
these two equipments change from one rowing category to another (see Fig. 2.1). There
are different rowing categories depending mostly on the number of rowers (typically 1, 2,
4 or 8) and on the number of oars per rower: the rowing boat is called a sculling boat
when each rower has two oars and a sweep boat when each rower has one oar. Additional
categories for sweep boats with 2 and 4 rowers depend on whether there is a coxswain! on
the boat. Obviously, and as sketched in Fig. 2.1, the boat geometry depends on the rowing
category: the boat length ranges from 8 m for a single scull (Fig. 2.1(a)) to 18 m for an

eight (Fig. 2.1(f)).

(a) 1x (b) 2-

2.9 m/

Figure 2.1: Schematics of the different rowing categories with indications of the typical
lengths of the boats and the oars. The boats in the first column (a, c, e) are sculling boats
(each rower has two oars), while the boats in the second column (b, d, f) are sweep boats
(each rower has one oar). The categories in (b) and (d) exist with or without a coxswain.
Note that, in the abbreviation of the boat category (i.e. 1x or 2—), the number indicates the
number of rowers, the symbol x stands for sculling boats, the symbol — stands for a sweep
boat without coxswain and the symbol + stands for a sweep boat with coxswain. See also
Table 2.1 for details on the geometry of the different rowing boats.

The length, width and mass of rowing boats in the different rowing categories are given
in Table 2.1. From these data, we can here point out one of the interesting particularities

LA coxswain is “a steersman of a racing shell who usually directs the rowers”, according to Merriam-
Webster dictionary.
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2.1. The basics of rowing

of rowing boats: their length-to-width aspect ratio is very large (around 30 for all boat
categories).

Abb]rge(z/?;tion Boat Name ¢ (m) w(cm) mpoat (kg) M (kg) (U) (m/s)
1x Single Scull 8.1 28.2 14 104 5.08
2x Double Scull 10 33.5 27 207 5.56
2— Coxless Pair 10 33.5 27 207 5.43
4x Quadruple Scull  12.8 41 52 412 6.02
4— Coxless Four 12.7 42 50 410 5.92
8+ Coxed Eight 17.7 55.6 97 850 6.26

Table 2.1: Characteristics of current racing boats. The geometry characteristics and mass
are for boats from Filippi supplier [42]. The mean boat speed (U) given in the table is the
world record speed in each category.

Let us now give more details on the main parts of a rowing boat. Fig. 2.2(a) gives a detailed
picture of a coxless pair rowing boat. In particular, one can see the sliding seat on which the
rower sits with his feet attached to the boat through the foot stretcher system. The sliding
seat allows the rower to use the strong muscles from the legs in addition to the muscles of
the trunk and the arms to propel the boat. This feature together with the fact that rowers
are facing the stern of the boat distinguish rowing from canoeing or kayaking.

(a)

U
—_—
Stern Ve Bow
/ T
// \
//
Foot stretcher Sliding seat Rigger Oarlock
(b)
£, (outboard length) _ ¢; (inboard length)
Blade Collar Handle

Figure 2.2: (a) Picture of a cozless pair rowing boat (category 2—) with the definition of
some important parts of the boat. (b) Picture of a rowing oar with the definition of its
main components. In particular, the oar rotates about the collar, which is attached to the
oarlock of the boat (defined in (a)).

The oar is linked to the boat at the level of the collar (see Fig. 2.2(b)) via the oarlock,
allowing the oar to rotate, while transmitting the force resulting from the action of the
rower to the boat. The ratio between the outboard length ¢, and the inboard length /¢;,
denoted 7, is about 2.2 whatever the rowing category. However, Fig. 2.1 highlights that
the total length of the oars depends on the rowing category: the ones used in sweep boats
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Chapter 2. Rowing basics and kinematics

are longer (total length of about 3.7 m) than the ones used in sculling boats (about 2.9 m).
Fig. 2.3 illustrates different kinds of blades (from Concept2 supplier [43]). The Macon blade
(Fig. 2.3(a)) is the old blade model, while the Big blade (Fig. 2.3(b)) and the Smoothie2
Plain Edge blade (Fig. 2.3(c)) are models currently used in competitions.

(a) (b) ()

Figure 2.3: (a) Front view of a Macon blade, (b) a Big blade and (c) a Smoothie2 Plain
Edge blade. We denote ¢, the length of the blade and w;, the width of the blade at the
broadest point (see Table 2.2 for the values of ¢, and wy for the different blades). Pictures
taken from [43].

Denoting ¢ the length of the blade and wy the width of the blade at the broadest point (see
Fig. 2.3(b)), it appears that these two dimensions also depend on the boat category. The
sculling blades are smaller — about 45 cm x 21 c¢m — than sweep blades — about 55 cm X
25 cm (see Table 2.2 for the details on the different blades geometry).

Blade name Boat category /£, (cm) wjy (cm) Sy (m?)
Macon blade Sweep 58 21 0.12
Macon blade Scull 50 18 0.09
Big blade Sweep 55.5 25 0.14
Big blade Scull 44 21.5 0.095
Smoothie2 Plain Edge blade Sweep 54.5 25.5 0.14
Smoothie2 Plain Edge blade Scull 46 21.5 0.10

Table 2.2: Characteristics of current blades from Concept2 supplier [43]. wy is the width of
the blade at the broadest point and thus the blade surface Sy = fywy is slightly overesti-
mated.

2.1.2 The rowing technique

The rowing cycle is made of two phases: the power stroke during which the blades are inside
water and propel the boat, and the recovery stroke during which the rower comes back to its
initial position, with the blades out of the water, before starting again a new cycle. Fig. 2.4
illustrates the rowing cycle with time-lapse photographies from the training of the French
athlete Thomas Baroukh. The first four pictures were taken during the power stroke and
the last four pictures during the recovery stroke. From a technical point of view, there are
two very important moments in this cycle: the beginning of the power stroke, called the
catch, when the blades enter the water (see picture (1) in Fig. 2.4) and the end of the power
stroke, called the release, when the blades go out of water (see picture (4) in Fig. 2.4).

This decomposition into a propulsive stroke and a recovery stroke is quite common in ani-
mal locomotion: for instance, it is observed at small scales for the biflagellate alga Chlamy-
domonas reinhardtii [44, 45] or, at larger scales, for water striders [46, 47] or fishing spiders
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2.1. The basics of rowing

Figure 2.4: Time-lapse photographies of the rowing cycle for the French athlete Thomas
Baroukh. Pictures (1) to (4) correspond to the power stroke, while pictures (5) to (8)
correspond to the recovery stroke. The pictures were taken during a training on the Grand
canal of Versailles. The time between two consecutive pictures is 0.3 s.

[48, 49], which could be seen as “capillary rowers”. Fig. 2.5, reprinted from [48], shows
that the fishing spider Dolomedes triton relies on two pairs of legs (out of four), activated
synchronously, to propel itself at the surface of water. This stroke is somehow similar to the
rowing stroke, even though the propulsive mechanism, involving capillary effects, is different.

* K K F XK

Power stroke
Figure 2.5: Time-lapse pictures of the propulsive stroke of the fishing spider Dolomedes
triton including the power stroke and the recovery stroke. The drawings, adapted from [48],
were obtained from video images. The time between two consecutive pictures is about 20
ms.

As mentioned before, during the rowing stroke, the rower uses the muscles of different
segments: the legs, the trunk and the arms. A common rule among coaches is, for the
power stroke, to use first the legs, then the trunk and finally the arms to move the blade
in water, and to proceed in the reverse order for the recovery stroke. This is the general
rule but there still exist different rowing styles — basically four (DDR, Rosenberg, Adam
and Grinko styles) [50] — as illustrated in Fig. 2.6. These four different rowing styles are
distinguished by looking, firstly, at the travel of the trunk compared to the travel of the
legs, and secondly, at whether the motion of the trunk and the motion of the legs are
simultaneous. This eventually shows the great complexity of the rowing technique.

2.1.3 Rowing in competition

Rowing competitions are typically run on a 2000 m distance. At a rowing frequency f of 30
to 40 strokes per minute depending on the rowing category, the fastest boats for men run
this distance in 6 min 30 s for single sculls (M1x) and in 5 min 18 s for eight rowing boats
(M8+), corresponding to mean velocities between 5.1 and 6.3 m/s. For women, the world
record is 7 min 7 s for single sculls (W1lx) and 5 min 54 s for eight rowing boats (W8+),
corresponding to mean velocities between 4.7 and 5.6 m/s.
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Trunk emphasis

/R/
Lo

Simultaneous timing
Consequent timing

Adam style Grinko style
Leg emphasis

Figure 2.6: Schematics of the four main rowing styles. These styles depend on whether the
emphasis is on the motion of the legs or of the trunk and whether the motion of the legs
and the trunk are simultaneous or consequent. Schematics adapted from [50].

2.2 Analysis of the boat kinematics

Analysing videos from the rowing competitions at the Rio 2016 Olympics, we were able
to estimate the instantaneous velocity of rowing boats of different categories (M1x, M4—
and M8+) for a few rowing strokes. The evolution of the instantaneous velocity of a M4—
rowing boat with time over about three strokes is represented in Fig. 2.7(a). We denote
(U) the mean boat velocity over these three strokes, f = 1/T the stroke frequency (with
T the period of the stroke) and 2AU the difference between the minimum and maximum

velocities.?

Firstly, one can observe on the figure that the power stroke is shorter than the recovery
stroke as it lasts about 40% of the total stroke. Secondly, as expected, the velocity increases
during the power stroke (between the red and the green vertical dashed lines), but more
surprisingly, it continues to increase during the first part of the recovery stroke before
decreasing drastically. As will be seen in Chap. 6, this particular evolution of the hull
velocity during the recovery phase is mostly related to the motion of the rowers on the
boat. The whole dynamics of the rowing stroke thus leads to large fluctuations of the boat
speed around the mean speed. For example, the velocity of the M4— rowing boat oscillates
between 4.2 and 6.7 m/s for a mean velocity (U) = 5.6 m/s. This corresponds to velocity
fluctuations AU/(U) ~ 22%. Figs. 2.7(b) and (c) show that the mean velocity (U) as
well as the stroke frequency f determined over a few strokes during the race, both tend to
increase with the number of rowers. In Fig. 2.7(d), we compare the evolution of the boat
velocity with time over one rowing stroke for the three rowing categories M1x, M4— and
M8+, corresponding to an increasing number of rowers (1, 4 and 8). Very similar evolutions
are observed provided that the time ¢ and velocity U are rescaled by the period T" and the
mean speed (U) respectively.

2As will be discussed later, the mean velocity (U) and the stroke frequency f are changing during the
race (see Fig. 2.8).
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Figure 2.7: (a) Instantaneous velocity of a M4— rowing boat as a function of time for three
strokes, obtained from image analysis of the video of the men coxless four Australian crew
at the Rio 2016 Olympics. The vertical red dashed lines indicate the time of the catch (the
blades enter the water) and the vertical green dashed lines indicate the time of the release
(the blades go out of the water). The mean speed (U) is indicated with a gray horizontal
line and the minimum and maximum speed values with dotted horizontal lines. (b) Mean
boat velocity (U) over a few strokes depending on the number of rowers N. (c) Stroke
rate f over a few strokes depending on the number of rowers N. (d) Dimensionless hull
velocity U/(U) as a function of the dimensionless time t/T", where T' is the period of the
rowing cycle, for three different boats (M1x, M4— and M8+). The instantaneous velocity
was obtained, in the same way as for (a), from image analysis of the videos of the different
rowing competitions at the Rio 2016 Olympics.

Recently, the International Rowing Federation (also known as FISA, Fédération Interna-
tionale des Sociétés d’Aviron) started collecting data during the world championships. The
mean velocity (U) and stroke frequency f of each rowing boat every 50 m over the whole
length of the race is available for each race [51]. We used the data available for the Lucerne
2016 world championship. In Fig. 2.8, the mean velocity and stroke frequency of the winner
boat for four different rowing categories (M1x, M2—-, M4— and M8+) is plotted as a function
of the travelled distance (denoted X). For the M2—, M4— and M8+ categories, the trend is
very similar: the mean velocity (U) increases very quickly during the first hundred meters of
the race, it reaches a maximum around X = 150 m, then decreases to reach a fairly constant
value and finally increases again during the last 500 m of the race. A similar evolution is
observed for the stroke frequency f for the same categories: it is maximum at the begin-
ning of the race, it then decreases to reach a plateau and eventually increases at the end of
the race. The rowing strategy during the last 500 m of the race appears to be a little bit
different for the winner boat of the single scull category as the mean boat speed and stroke
rate decrease at the end of the race. This is probably related to the comfortable advance of
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Figure 2.8: (a) Mean speed (U) over one cycle and (b) stroke rate f averaged over 50 m as a
function of the distance X travelled during the race at the Lucerne 2016 world championship
for the winner boat in four different rowing categories (M1x, M2—-, M4— and M8+). Data
extracted from [51].

the winner boat over the other boats in this particular race. The evolution of the velocity
along the race, in particular with the existence of a maximum speed at the beginning of the
race is fairly common among sports where a “long” distance has to be travelled in the least
amount of time (i.e. swimming or running over long distances). It is in particular related
to physiology and the change from anaerobic (short high intensity exercise) to aerobic (long
low intensity exercise) metabolism [52, 53].

2.3 Analysis of the blade kinematics

This work was done with Alexis Goujon and Kozeta Tutulani (students from Ecole poly-
technique).

Figure 2.9: (a) Experimental set-up used to characterise the kinematics of the blade in
water. A GoPro camera is installed above one of the rowers on the eight rowing boat from
the FEcole polytechnique rowing club. The videos of the rower’s hands are coupled with
the measurement of the speed of the boat from a sensor based on GPS and accelerometer
sensors. (b) Picture taken by the GoPro camera during the measurements.
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To characterise the blade kinematics, we performed an experiment on an eight rowing boat
from the FEcole polytechnique rowing club. A GoPro camera was set-up above one of the
rowers to record the motion of his hands (see Fig. 2.9) and this was coupled with a speed
sensor (combining a GPS sensor and an accelerometer for better accuracy) to measure the
instantaneous speed of the boat. The analysis of the videos recorded onboard during the
training of the rowing team allowed us to extract the position and velocity of the rower’s
hands in the reference frame of the boat. Using n = ¢,/¢; the ratio between the outboard
length and the inboard length of the oar (see Fig. 2.2(b)), we could get the position and
velocity of the center of the blade in the reference frame of the hull. Finally, combining this
with the synchronous measurement of the hull speed, we could get the position and velocity
of the blade center in the reference frame of the water. In Fig. 2.10(a), the trajectory of the
blade center in the reference frame of the water is plotted for three strokes. This trajectory
is very similar from one stroke to the next. The blade travels a bit forward after the catch
(entry of the blades inside water) and then backward until the release. Fig. 2.10(b) shows
a zoom on one power stroke, with the position of the blade (represented as a segment) and
the blade velocity vector vy, (red vector).

(a) 3 \ \ \ \ \
é | M :
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® Catch
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Figure 2.10: (a) Position of the center of the blade for three strokes in the reference frame
of the water from in-situ measurements with the Ecole polytechnique rowing team. The red
dot (resp. green dot) indicate the position at which the blade enters the water (resp. goes
out of the water). (b) Zoom on the position of the center of the blade during one stroke
with the plot of the blade position at different times (black lines) and the vectors of the
blade velocity with respect to the water, during the power stroke (red arrows). The gray
line is the blade path obtained from measurements for a single scull at a racing pace and
is reprinted from [54]. Note that in both plots the origin of the y axis corresponds to the
position of the oarlock and the boat is moving from the left to the right.

The blade path during the power stroke measured previously by Kleshnev and found in [54]
is re-plotted on the same graph. The path is clearly very different from the one we obtained:
after the catch, the blade moves much more forward in the direction of motion of the boat
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before slightly moving backward and finally moves forward again until the release. Thus,
the position of the release is found forward of the position of the catch, whereas we find the
opposite with our measurements. The observation by Kleshnev is quite surprising as rowing
propulsion is at first expected to be related to a drag force on the blade, which would require
that the blade moves in the opposite direction to the direction of motion of the boat. This
further implies that lift and added mass force provide important contributions to the total
propulsive force. In particular, Caplan et al. distinguish four different phases depending on
the respective contributions of drag and lift (see Fig. 2.11) [55]. They indicate that lift is
important at the beginning and at the end of the power stroke, while drag contributes to the
total force on the blade at the middle of the stroke (see also [50]). The significant difference
between the results from the experiments with the Ecole polytechnique rowing team and the
data found in literature [54] is surely related to the level of the rowers.

Phase 1

Direction of oar blade

Phase 2

Direction of

travel through oar Blade

the water ;
travel through Lift

the water

Drag
Lift

Catch

Phase 3 /—\ Direction of oar blade travel Phase 4

through the water

Drag

Drag
— Lift
Direction of

oar blade travel

through the water

Finish

Figure 2.11: The four different phases of the blade trajectory during the power stroke. The
lift and drag forces are qualitatively indicated for each phase. Reprinted from [55].

2.4 Analysis of the rower’s kinematics

This study was conducted with the elite French rower Thomas Baroukh, bronze medal in
lightweight coxless four at the Rio 2016 Olympics. The aim here was to look closer at the
kinematics of the different segments of a rower (that is the legs, the trunk and the arms)
to quantify their relative importance as mentioned in Subsect. 2.1.2, and also to roughly
quantify the difference between the motion of the rower’s hands and the motion of the center
of mass of the rower.

Similarly to other studies [50, 56, 57, 58], we identify six segments to represent the rower’s
body: two segments for the legs, one for the trunk and two for the arms. We then define
three angles: 61 the angle between the two segments of the legs, 62 the angle between the
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Figure 2.12: Picture from the experiment with the French athlete Thomas Baroukh on the
Grand canal of Versailles. We define six segments (two for the legs, one for the trunk and
two for the arms) and three angles 61, 62 and 6.

horizontal and the segment of the trunk and 63 the angle between the two segments of
the arms (see Fig. 2.12). Note that to fully characterise the rower’s position, one should
introduce one more angle, which is the angle between the trunk and the upper arm. We
filmed Thomas Baroukh from the side during his training. From the analysis of the videos,
we could get the position of his segments during a few rowing cycles.

(a) (b)

1 I 1 T
/E\ .'/_t
= 0.5 . 0.5 *
>

! ! ! ! ! !
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Figure 2.13: Position of the different segments of Thomas Baroukh’s body extracted from
the analysis of the video of his training at different instants during (a) the power stroke and
(b) the recovery stroke. The color of the segments becomes darker with time.

Fig. 2.13 presents the results of this analysis for the higher stroke rate (27 strokes per minute)
for one rowing cycle, with the position of the segments at different instants, distinguishing
the power stroke and the recovery stroke. The two pictures qualitatively show when the
different segments are activated: in particular, the trunk and the arms start to move at the
end of the power stroke. The reverse dynamics is observed for the recovery stroke with the
arms and trunk moving at the beginning of it. Note that one particularity of the recovery
stroke is that the hands of the rower have a lower position than during the power stroke,
which is needed to prevent the blade from touching the water during this phase.

The evolution of the corresponding angles 67, 62 and 63 is shown in Fig. 2.14(a). One can
first observe that, 6; (angle between the two segments of the legs) increases quasi linearly
with time during the power stroke (between ¢ = 0 and the green vertical dashed line) — from
about 50° to 170° —, then keeps a fairly constant value from the end of the power stroke to
the end of the first quarter of the recovery stroke and finally decreases quasi linearly until
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reaching about 50°. As for the angles 65 (angle between the horizontal and the trunk) and 63
(angle between the two segments of the arms), they show very similar evolutions with time.
For both angles, two phases can be distinguished during the power stroke (and similarly
during the recovery stroke): a first phase for which the angle slowly decreases and a second
phase at the end of the power stroke with a fast decrease of the angle. This is in qualitative
agreement with the decomposition of the motion of the different segments observed from
Fig. 2.13.
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Figure 2.14: (a) Angles 01 (between the two segments of the legs), 2 (between the horizontal
and the segment of the trunk) and 03 (between the two segments of the arms), (b) speed of
the rower’s hands vy, (blue curve) and of the center of mass of the rower v,.;, (red curve)
and (c) acceleration of the rower’s hands a,/, (blue curve) and of the center of mass of
the rower a, ), (red curve) as a function of the dimensionless time ¢/7" for one stroke. For
the three plots, t = 0 is the time at which the blades enter the water and the vertical green
dashed line indicates the time at which the blades go out of the water.

From this analysis, it is straight-forward to obtain the velocity vy, /, and acceleration apq/p,
of the rower’s hands. Computing the velocity v,/, and acceleration a,, of the center of
mass of the rower is a bit more tricky. We obtain them by estimating the position of the
center of mass of the rower using the data of the location of the center of mass and the
relative weight of the different segments of the body found in [59, 60]. The speed of the
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2.5. Model for the drag on a rowing boat

rower’s hands and of the center of mass of the rower are plotted in Fig. 2.14(b), while the
corresponding accelerations are represented in Fig. 2.14(c). One can see that the velocity of
the center of mass of the rower is always smaller than the velocity of the rower’s hands. Its
maximum is about 1 m/s, while the maximum of the rower’s hands speed is about 2 m/s.
It can also be noticed that the velocity of the rower’s hands is still slightly positive at the
end of the power stroke (i.e. at the release) to prevent from slowing down the boat when
lifting up the blades. Looking now at the acceleration curves, it can be observed that the
accelerations are of the order of magnitude of 1 g. As can be expected, the maximum of
acceleration for both the rower’s hands and the center of mass of the rower happens at the
end of the recovery stroke, as the direction of motion of the rower changes. The minimum
of acceleration for the rower’s hands is situated at the beginning of the recovery stroke as
the blade goes out of water before changing direction. On the contrary, the minimum of
acceleration for the center of mass of the rower happens before the end of the power stroke.
This is related to the dominant use of the arms in this phase of the stroke which do not
affect much the position of the rower’s center of mass.

2.5 Model for the drag on a rowing boat

Given the high length-to-width aspect ratio (typically about 30) of rowing boats, skin drag
is their dominant drag component, as seen in Chap. 1. Wellicome et al. confirm this
hypothesis as they specify that, in rowing, the wave drag accounts only for less than 8% of
the total drag [61, 62]. Furthermore, the Reynolds number for a rowing boat in competition
is typically about 10%. This implies, as seen in Sect. 1.4, that the boundary layer along the
hull is turbulent. The total drag on the hull can then be written as:

R = —%,OShChU2 , (2.1)

where R is the projection of the total drag force on the hull over the direction of motion,
St is the wetted surface of the hull and C}, is the drag coefficient of the hull.

Figure 2.15: Instantaneous speed of an eight rowing boat as a function of time during a
deceleration phase (blue curve). The black line is a fit of the experimental curve using
Eq. (2.3) with Uy ~ 3.25 m/s and 7 ~ 17 s. The dashed line is the tangent of the fitting
curve in t = 0.

To estimate the hull drag coefficient Cy, for a real rowing boat, we performed measurements
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of the speed of an eight rowing boat (from the Ecole polytechnique rowing club) during a
phase of deceleration with no rower’s motion (see Fig. 2.15). This corresponds to a phase
where the rowers stop rowing. In this case, the dynamical equation for the boat simply
reads:

and, assuming C}, to be independent of U, its solution reads:

v=_ ,
1+t/7

(2.3)

where Uy is the initial speed of the boat at the beginning of the deceleration phase and
T = 2M/(pSpCLUy) is the characteristic deceleration time. Fitting the experimental curve
in Fig. 2.15(a) with Eq. (2.3) yields Uy ~ 3.25 m/s and 7 ~ 17 s. Considering that M ~ 720
kg and Sy, = 10 m?, one gets C}, ~ 2.6 - 1073.

This value of the hull drag coefficient is comparable to the one found in the literature.
Previous studies where the fluid friction force on a rowing hull is modelled [57, 63, 64]
indeed found Cj, ~ 2.5-1073. Other studies [65, 66] use the empirical relation: R =
—13.05U2% 4+ 11.22U — 24.93, which was obtained by Wellicome for an eight rowing boat
[61].

Let us now mention that Eq. (2.1) is supposed to hold in the case of a motion at constant
speed U. However, as seen in Sect. 2.2, one particularity of rowing is the unsteadiness of
the flow around the hull. Indeed, because of the motion of the rowers on the boat and the
decomposition of the rowing cycle into a propulsive phase and a recovery phase, the boat
moves with large fluctuations of speed, which are up to 30% of the mean speed. This special
feature (which also appears for sprint canoes) might drastically affect the expression of the
total drag R given in Eq. (2.1).

Figure 2.16: Pictures of an Fight rowing boat and its wake at the London 2012 Olympics
(source: [67]).

In particular, if the distance travelled by the boat during one rowing cycle is smaller than
the boat length, then the flow fluctuations with time are averaged out when computing the
total resistance R because it is a spatial average. The drag coeflicient C}, is then independent
of time. On the contrary, if the distance travelled is larger than the boat length, C}, becomes
a function of time. The case of rowing typically lies in between these two limit cases as the
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2.5. Model for the drag on a rowing boat

distance travelled over one stroke is about the boat length. Furthermore, the fluctuations
of speed of the hull are also expected to change the wave resistance in comparison with
the case of a motion at constant speed. Looking at the pictures in Fig. 2.16 taken at the
London 2012 Olympics, in addition to observing a turbulent wake, one can notice that
larger waves are sometimes emitted during the rowing cycle. References [68] and [69] show
both experimentally and numerically that the wave resistance increases when the velocity
fluctuates compared to a motion at constant speed. The unsteady motion of rowing boats
also surely induces added mass forces (see Sect. 1.7.1), which could be taken into account
by adding to the total mass of the boat its added mass (to be evaluated).

So far, we only considered the hydrodynamic drag on the boat assuming calm waters and
a boat with always the same orientation with respect to the horizontal plane. However,
in reality, many other parameters can contribute to increase the drag on the boat. For
example, a pitch motion® (taken into account in [64]) or the presence of surface waves can
affect the hydrodynamic drag of the hull. Furthermore, the aerodynamic drag notably from
the oars and the emerging part of the hull also adds a non-negligible contribution to the
total drag on the boat (especially in case of wind).

3The up/down rotation of a vessel about its transverse (side-to-side or port-starboard) axis.
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Take home message of Chapter 2

1. Boat kinematics. During a rowing race, after a transitory regime, the mean
hull velocity over one rowing cycle reaches a fairly constant value. Taking a closer
look at the instantaneous hull velocity, we observe that the velocity fluctuates around
20 to 30% about the mean velocity and that the maximum hull velocity is reached
during the recovery stroke.

2. Blade kinematics. We conducted an experiment to measure the blade path
in water and obtained a quite different trajectory from the one found in literature.
This result shows that, depending on the velocity of the boat, the blade trajectory
can be very different, which directly impacts the contribution of lift and drag to the
total drag on the blade.

3. Rower’s kinematics. Analysing videos of the training of the French athlete
Thomas Baroukh, we recovered that the different segments of a rower (legs, trunk
and arms) are activated consecutively. We further observed a substantial difference
between the velocity of the rower’s hands and the velocity of the center of mass of
the rower.

4. Drag on a rowing boat. With a simple experiment, we find that considering
only skin friction gives a good approximate for the total drag on the hull. This is
coherent with previous studies, which state that skin friction accounts for more than
90% of the total drag. The slenderness of rowing boats minimises their wave drag
component.
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PART 11

OPTIMISATION OF SHIP
HULLS

41






OPTIMAL HULL ASPECT RATIOS

Empirical data reveal a broad variety of hull shapes among the different ship categories. We
present a minimal theoretical approach to address the problem of ship hull optimisation. We
show that optimal hull aspect ratios result — at given load and propulsive power — from a subtle
balance between wave drag, pressure drag and skin friction. Slender hulls are more favourable
in terms of wave drag and pressure drag, while bulky hulls have a smaller wetted surface for a
given immersed volume, by that reducing skin friction. We confront our theoretical results to
real data and discuss discrepancies in the light of hull designer constraints, such as stability
or manoeuvrability.

Picture of the 1829 (left) and 1929 (right) Oxford boats. Source: [70].
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This work has been done with Romain Labbé, Christophe Clanet and Michael Benzaquen
and has been published in the journal Physical Review Fluids in July 2018 (see Appendix. C).
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Chapter 3. Optimal hull aspect ratios

3.1 Position of the problem

The long-lived subject of ship hull design is with no doubt one of infinite complexity. Con-
straints may significantly vary from one ship class to another. When designing a sailing
boat, stability and manoeuvrability are of paramount importance [5, 19, 20, 71]. Liners and
warships must be able to carry a maximal charge and resist rough sea conditions. Ferrys
and cruising ships must be sea-kindly such that passengers don’t get sea-sick. All ship hulls
share however one crucial constraint: they must suffer the weakest drag possible in order to
minimise the required energy to propel themselves, or similarly maximise their velocity for
a given propulsive power.

Figure 3.1: Bulbous bow of the passenger ship Zaandam in drydock (source: [72]). A
bulbous bow is used to reduce its wave resistance.

As one can expect, a number of technological advances have been developed over the years,
such as bulbous bows (see Fig. 3.1) intended to reduce wave drag through destructive in-
terference [5, 73, 74]. There exists an extended literature of numerical and experimental
studies dedicated to the optimisation of ship hulls. Quite surprisingly some of them only
consider wave drag in the optimisation setup (see e.g. [34, 75, 76]). Others consider both
the skin drag and the wave drag [74, 77, 78]. Very few consider the pressure drag [79]
as most studies address slender streamlined bodies for which the boundary layer does not
separate, leading to a negligible pressure drag. The complexity of addressing analytically
this optimisation problem comes from the infiniteness of the search space. Indeed without
any geometrical constraints, the functions defining the hull geometry can be anything, and
computing the corresponding drag can become an impossible task. However, from this sub-
stantial literature, it is not self-evident to deduce how ship hulls should look like — notably
in terms of aspect ratios — to minimise their drag.

In Fig. 3.2, the length to width aspect ratio @ = ¢/w of different kinds of bodies moving
at the water surface is plotted against their Froude number (see Table 3.1 for details). As
one can see, different ship categories tend to gather into clusters. These groups display
very different aspect ratios, from 2-3 to about 30, even in the same Froude number regime.
The highest aspect ratios are reached for rowing boats (¢£/w ~ 30, Fr ~ 0.5). The majority
of ships stand on the left hand side of the plot (Fr < 0.7). For Fr 2 0.7, most hulls can
no longer be considered as displacement hulls (weight balanced by buoyancy) but rather
as planing hulls (weight balanced by hydrodynamic lift) and thus have a much smaller im-
mersed volume [20]. Here we take a simple theoretical approach to determine the optimal
aspect ratios for ship hulls depending on the required load and propulsive power. They are
compared to the aspect ratios of real ship hulls to see how close existing hulls are from the
optimal.

44



3.1. Position of the problem
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Figure 3.2: Aspect ratio @ = f/w as a function of Froude number U/+/gf for different
kinds of bodies moving at the water surface (see Table 3.1 for details). Solid symbols
represent displacement hulls, whereas open symbols indicate planing hulls. The aspect ratio
for multihulls is computed for each hull independently. The black line corresponds to the
optimal aspect ratio, see Sect. 3.5. Solid lines indicate global optima, while dashed lines
signify local optima.

Length Width Draft (*) Mass Speed Power (*)
Category  Boat Tame ™ “y(m)  wm) d(m)  M(g)  U(ms) P (W)
Liner Titanic 269.0  28.00 13.89 5.23.107  11.70 34000
Liner Queen 345.0  41.00 1075  7.6-107 1490 115000
Mary 2
Liner ii‘;‘wme G- 4580 68.86 4122 6.5-108 8.50 37000
Liner Emma 373.0  56.00 20.87 2.18-108  13.40 88000
Maersk
Liner Abeille 80.0  16.50 4.85 3.2.106 9.94 16000
Bourbon
Liner France 300.0  33.70 11.28  57-107 1580 118000
Warship Charles de o) = 37 59 10.32 4.25-107  13.77 61000
Gaulle
Warship Yamato 263.0  36.90 15.04  7.3-107  13.80 110000
Rowing Single Scull 81 028 0.09 104 5.08 0.4
boat
Rowing Double 100  0.34 0.12 207 5.56 0.8
boat Scull
Rowing Coxless 100  0.34 0.12 207 543 0.8
boat Pair
Rowing Quadruple 12.8 041 0.16 412 6.02 1.6
boat Scull
Rowing Coxless 127 0.42 0.15 410 5.92 1.6
boat Four
Rowing Coxed
o Pight 177 0.56 0.18 867 6.26 3.2
Canoe C1 52  0.34 0.12 104 4.45 0.4
Canoe 2 6.5  0.42 0.15 200 4.80 0.8
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Table 3.1 — Continued from previous page

Length Width Draft (*) Mass Speed Power (*)
Category - Boat Name ) w(m)  d(m)  M(ke) U(mf) P (W)
Canoe C4 8.9 0.50 0.18 390 5.24 1.6
Kayak K1 5.2 0.42 0.09 102 4.95 0.4
Kayak K2 6.5 0.42 0.15 198 5.35 0.8
Kayak K4 11.0 0.42 0.17 390 6.00 1.6
Sailing boat .
Monohull Finn (p) 4.5 1.51 0.12 240 4.10 4.0
Sailing boat
Monohull 505 (p) 5.0 1.88 0.15 300 7.60 18.9
Sailing boat
Monohull Laser (p) 4.2 1.39 0.10 130 4.10 2.7
Sailing boat
Monohull Dragon 8.9 1.96 0.50 1000 7.60 16.5
Sailing boat
Monohull Star 6.9 1.74 0.35 671 7.60 18.5
Sailing boat - IMOCA 160155 5 46 0.50 9000  15.30 843.4
Monohull (p)
Sailing boat  18ft  Skiff
Monohull (p) 8.9 2.00 0.24 420 12.70 85.2
Sailing boat
omerudl A9er (9) 49  1.93 0.20 275 7.60 25.9
Sailing boat Nacra 450
Multihull ) 4.6 0.25 0.12 330 9.20 20.7
Sailing boat Hobie Cat
Multibull 16 (p) 5.0 0.30 0.12 330 7.60 20
Sailing boat .
Multihull Macif 30.0 2.50 0.50 14000 20.40 1218
Sailing boat Banque
Multibull poptlaire V 40.0 2.50 0.50 14000 23.00 1700
Sailboard ~ Thistral One 3.7 063 0.07 8  10.20 6.9
Design (p)
Sailboard RS:X (p) 2.9 0.93 0.06 85 11.70 10.2
Motorboat  Zodiac (p) 4.7 2.00 0.15 700 17.80 180.0
Animal Swan 0.5 0.40 0.10 10 0.76 N.A.
Animal Duck 0.3 0.20 0.17 5 0.66 N.A.
Animal Human 1.8 0.60 0.17 90 2.0 0.3
swimmer

Table 3.1: Characteristics of bodies moving at the water surface. The planing hulls are
indicated with (p) in the column Boat Name. N.A. stands for Not Available. (*) For all
hulls (including planing hulls for which this estimation might be too rough), the draft is
estimated using the mass of the boat and the relation M/p ~ 2af€wd (with ap= 0.25). The
power is estimated through diverse methods depending on the category of the boat. For
liners and warships, the propulsive power can easily be found in the specification documents.
For rowing boats, canoes and kayaks, we consider that the power per oarsman is 400 W.
For sailing boats and sailboards, we use the sail area of the boat to derive its propulsive
power (with a typical wind of 10 m/s). Note that for multihull sailing boats, the indicated
dimensions correspond to one of the hulls.
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3.2 Model assumptions and simplifications

We consider here a much simpler hull geometry than in Chap. 1, that is hulls with a constant
horizontal cross-section (see Fig. 3.3). The general parametrisation of the hull shape (see
Subsect. 1.6.1) then becomes y = f(x)1,¢[_q,0) Where 1 .¢[_q ) denotes the indicator function
(1.¢(—a,0 = 1 if z € [=d,0] and 0 otherwise).

Figure 3.3: Schematics of the simplified hull geometry considered in this chapter. The hull
shape follows the parametrisation y = f(z)1.c|_q0- Note that only the part of the hull
immersed in the water is represented.

In the same way as in Sect. 1.6, we define the length ¢, width w and draft d (see Fig. 3.3)
and introduce the dimensionless coordinates through x = ¢, y = gf and z = Z{ as well as

f(x) = f(#)w. We remind the definition of the aspect ratios a = ¢/w and = ¢/d.

Furthermore, the fluid is assumed to be infinitely deep and we use the theoretical model
developed by Michell to predict the wave drag on this simple geometry (see Subsect. 1.6.3).
Note that this model is only accurate in the limit of thin ships.

3.3 Wave drag expression

Applying Eqgs. (1.47)-(1.48) for the simplified geometry defined above, the wave drag coef-
ficient reads:

4,82/3
Cw(Fr,a,8) = AT Gy(Fr, B) (3.1)
where we have defined:

oo |[T5(A, Fr, B)[?
G:(Fr,B) = A AR 3.2
I (3:2)

3

I:(\Fr,5) = (1 - e—”/(ﬁFfQ)) F(&)e™/P* 4z (3.3)

1

2

Interestingly, one can notice here that the aspect ratio o only appears as a~%3 in front of
the function G];(Fr,ﬁ) in Eq. (3.1). Consequently, the higher o the lower the wave drag
coefficient. The effect of the aspect ratio 8 is a bit more complex: for f < 1, Cy, scales as
B2/3_ while for 8> 1, Cy, scales as 8~%/3, which is notably the same power law as for o.
From these scalings, we also see that there is a maximum of the wave drag coefficient for
intermediate values of 5.
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To analytically compute the wave drag coefficient, we consider a gaussian hull profile:

~ 1

f@) = §exp[—(45«")2]- (3-4)

Indeed, with this particular hull profile, one can approximate analytically the integral in
Eq. (3.3) by integrating & over R. One obtains:

Ggauss (1, B) = 614J (321Fr4> - ;—QJ (321Fr4 + Blir2> + %J (321Fr4 + B;ﬁ) . (3.5)
where:

oo g—un? 1
A v d\ = §e—"/2/c0(u/2) , (3.6)

with Ko(u) the modified Bessel function of the second kind of order zero [80].

J(u) =

0.1 I
—— Gaussian hull (num.)
0.08 - X —— Parabolic hull (num.) |_|
Tuck (1987)
0.06 - x  Chapman (1972) i
Cw
0.04 - N
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0 — ”/ - \ \
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Figure 3.4: Wave-drag coefficient Cy, as function of the Froude number Fr for a gaussian hull
and a parabolic hull for & = 6.7 and 8 = 2.3. These results are compared to the theoretical
curve from [32] and experimental data points from [31] (black crosses).

In Fig. 3.4, the corresponding wave drag coefficient for an object of aspect ratios @ = 6.7
and g = 2.3 is represented as function of the Froude number. This is compared with the
wave drag coefficient obtained numerically for a parabolic profile (f(Z) = 2& (1 — Z)), as
well as numerical and experimental results from previous studies also obtained for parabolic
objects with the same aspect ratios [31, 32]. The figure shows very good agreement between
the two previous studies and our result for a parabolic profile, thus validating our numerical
code. Compared to these results, the curve obtained for a gaussian profile has its maximum
shifted to the left and do not display oscillations of the wave drag coefficient at low Froude
numbers (Fr < 0.3).} This comparison shows that the choice of a Gaussian profile rather
than more realistic profiles, such as a parabolic profile, has no qualitative impact on our
main results. We also recover from this plot that the wave drag coefficient is maximum for
Fr ~ 0.5.

Figure 3.5(a-c) displays the contour plots of Cy, as function of («, ) for Fr € {0.3,0.5,1}. As
expected from the previously derived scalings, the contour plots make it clear that the wave
drag is minimum for large values of o and 3, that is for thin and shallow hulls. The Froude
number is also found to highly affect the values of CY,. Considering the three contour plots,

!The oscillations at Fr < 0.3 appear to be related to the slopes of the hull profile in & = —1/2 and & = 1/2.
We observed that the lower these slopes the lower the oscillations.
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(a) Cw
150 102 150 102 150 102
100 1025 100 10=25 100 10—25
B
50 1073 50 10-3 50 10—3
— —-3.5 —3.5 = —-3.5
00 10 20 30 40 10 00 10 20 30 40 10 00 10 20 30 40 10
« « «
(d) Ce
150 10-1 150 10-1 150 101
102
100 100 1014 100 10~14
10—3
B
—4 |
50 10 50 f 10718 50 10718
105 |
0 —6 0 - 9292 0 ., J{//‘,// 9292
0 10 20 30 40 10 0 10 20 30 40 10 0 10 20 30 40 10

(67

(07

(07

Figure 3.5: (a-c) Contour plots of the wave drag coefficient Cy, as a function of the aspect
ratios « and S, for (a) Fr = 0.3, (b) Fr = 0.5 and (c) Fr = 1. Black regions correspond to
Cy > 1072, (d-f) Contour plots of (d) the pressure drag coefficient Ct, (e) the skin drag
coefficient Cs and (f) the profile drag coefficient C}, = Ct + Cs as a function of the aspect
ratios a and 3. Black regions correspond to Cy/g/p, > 107!, In (e) the red dot indicates the
position of the minimum of Cs (o ~ 5, fp ~ 7.5). In (f), it indicates the position of the
minimum of C}, (g ~ 7, By ~ 10). In (c) and (f) the gradients are indicated with black
arrows.

the effect of the Froude number at given « and 3 seems to follow the evolution depicted in
Fig. 3.4 with maximum values of the wave drag coefficient obtained for Fr ~ 0.5.

3.4 Profile drag derivation

The profile drag Ry, is defined as the sum of the skin drag and the pressure drag (or form
drag) (see [10] and Chap. 1). It is also called wiscous resistance (see [19] and [20]). In
the typical range of Reynolds numbers for ships (Re € [107,5 x 10%], see Sect. 1.2), both
the skin and pressure components scale with U2. Thus, the profile drag can be written as
R, = (1/2)pSpCrU 2 where S}, is the wetted surface of the hull and C}, its drag coefficient.
The wetted surface can be decomposed in two contributions S; = Sy, + L£d where S, =

2wl f_1/2

12 f(#)dz is the surface of the bottom horizontal cross section of the hull and £ =
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20 fl{% (14 f'(2)%/a?]'/? d# is the perimeter of the hull. We define:

a; = f_%% f(@)di , (3.7a)
bila) = fé[w FI(#)?2 /0?2 d7 | (3.7b)

so that Sy, = 20w a];+d b];(oz)]. Finally, the profile drag can be written as R, = pQZ/SUZCp
with:

o) 32/3 «
Co(a, B) = % [af + Bbf(a)} . (3.8)

The evolution of the coefficient C}, with o was empirically derived for streamlined bodies
[10]: Cp(a) = CX(1 +2/a + 60/a*) with C the skin drag coefficient for a flat plate (see
Sect. 1.4). The term (1 + 2/a) refers to the skin friction, while the term 60/a* corresponds
to the pressure drag.? In the considered regimes, C> is only weakly dependent on the
Reynolds number (see [10] and Sect. 1.4). In the following, we consider a constant skin drag
coefficient C>° = 0.002, corresponding to a Reynolds number Re ~ 108.

With this expression of the profile drag coefficient, it is straightforward to obtain the scalings
at small and large aspect ratios. For a < 1, C} ~ a~13/3 while for a > 1, Cp ~ o?/3. As
for B, when 8 < 1, C}, ~ 5713 and when > 1, Cp ~ (%/3. Very interestingly, in the same
way as for the wave drag coefficient, o and 5 follow the same power law when they are large
(> 1 and B > 1). Also, the scalings for both aspect ratios indicate the existence of a
minimum for intermediate aspect ratios. This is shown with the contour plot of the profile
drag coefficient Cy, as a function of a and f (see Fig. 3.5(f)). The minimum is obtained for
rather small aspect ratios: ag ~ 7, By ~ 10 (indicated by a red dot). If we only took into
account the skin friction component Cs (see Fig. 3.5(e)), the optimal aspect ratios would
be even smaller (g ~ 5, By ~ 7.5) The contour plot of the pressure drag component Cf in
Fig. 3.5(d) shows that Cf drastically increases for small aspect ratio . This explains why,
in comparison with Cs, the position of the minimum of (), is shifted towards larger aspect
ratios.

3.5 Optimisation

The total drag force on the hull reads R = Ry + R, = pQ2/3U2C where:

2/3 o
€0, 8. 1) = §4/3{W§Y4Gf<Fr )+ Chlaa oy + ﬁbﬂaﬂ} . (3.9

Thus, within the present framework, the total drag coefficient is completely determined by
the three dimensionless variables «, 8 and Fr, together with the function f.

We seek the optimal hull shapes, that is the choice of parameters that minimises the total
drag for a given load (equivalently immersed volume through the Archimedes principle) and
given propulsive power. This is consistent with operational conditions. Before engaging in
any calculations, let us stress that the optimal aspect ratios will naturally result from a
subtle balance between skin drag, pressure drag and wave drag. Indeed, on the one hand
reducing skin drag amounts to minimising the wetted surface which corresponds to rather

2This empirical expansion is expected to hold for a > 2 (see [10]).
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(a) A Liners and warships
® Rowing boats
Canoes and kayaks
- Monohull sailing boats
B Multihull sailing boats
Animals

cr/Cc*
o
T
|

Figure 3.6: (a) Optimal aspect ratio o*, (b) optimal aspect ratio 5*, (c) optimal Froude
number Fr*, (d) corresponding value of the total drag coefficient C* = C(a*, f*, Fr*), and (e)
corresponding ratio between the wave drag coefficient and the total drag coefficient C,/C*,
as a function of the dimensionless power II. The curves in orange and green represent the
two optimal branches. Solid/dashed lines indicate global/local optima.
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Chapter 3. Optimal hull aspect ratios

bulky hulls?® (see Fig. 3.5(e)), while on the other hand reducing wave drag or pressure drag
pushes towards rather slender hulls (see Figs. 3.5(a-c) and (d)). In Figs. 3.5(c) and (f) one
can notice that for sufficiently large o and g the gradients VC}, and VCy, roughly point
in opposite directions. This is totally coherent with the scalings derived in the previous
sections for both the wave drag coefficient Cy, and the profile drag coefficient C,. Indeed,
for large aspect ratios (a > 1, 8 > 1), C}, scales as (aﬂ)_4/ 3, promoting large aspect ratios,
while C}, scales as (aﬂ)z/ 3 in favor of rather small aspect ratios.

To close the problem, we define the imposed propulsive power P = RU. Using U = Fr[aBQgS]l/ 6
one obtains:

Fr*\/aBC(a, B,Fr) =11, (3.10)
where C(a, 8, Fr) is given by Eq. (3.9), and where we have defined the dimensionless power:
P

H —_— W . (3.11)

Minimising the total drag coefficient C as given by Eq. (3.9) with respect to «, 5 and
Fr, under the constraint given by setting the dimensionless power II in Eq. (3.10), yields
the optimal set of parameters (a*, 8*, Fr*) for the optimal hull geometry at given load
(equivalently Q) and given propulsive power P. This optimisation problem can be written:

in  C(a, 3, Fr), 3.12
o (o, B, Fr) (3.12)

where K is the set of triplets of real and positive parameters («, 3, Fr) satisfying Eq. (3.10).

It is solved numerically using an interior-point algorithm [81, 82]. The optimal parameters
and the resulting total drag coefficient C* = C(a*, 5*,Fr*) as function of dimensionless
power II, are presented in Fig. 3.6, together with the empirical data points for comparison.

Interestingly the optimisation yields two separate solutions (see orange and green branches)
corresponding to two local optima. For IT < Il (resp. II > IlI.) with II. ~ 0.2, the orange
(resp. green) branch constitutes the global optimum, consistent with a lower total drag
coefficient C* (see Fig. 3.6(d)). As previously mentioned, at large aspect ratios (o > 1,
B > 1), both the drag coefficients Cy, and C}, have the same scalings in o and (. This
explains why, on Figs. 3.6(a) and (b), the optimal aspect ratios a* and 5* show very similar
evolutions with II. On the one hand, both of them are maximal around Il,., ~ 0.03
corresponding to Fry.x &~ 0.4, that is the maximum wave drag regime (see Fig. 3.4). This is
consistent with the idea that thin and shallow hulls are favourable in terms of wave drag as
illustrated in Fig. 3.5(al-c1). On the other hand, for IT < I ax or II >> I1}, the wave drag
becomes negligible compared to the profile drag, and one recovers the optimal aspect ratios
in the absence of wave drag: o* ~ 7 and * ~ 10. Figure 3.6(c) shows that the optimal
Froude number Fr* increases with II. Like for o* and (*, there is a shift of value from
Fr* ~ 0.8 to Fr* ~ 1.7, for II = II., which indicates that in this setting 0.8 < Fr < 1.7 is
never a suitable choice. This shift is also made visible in Fig. 3.2 where the optimal aspect
ratio o* is plotted against the Froude number together with the aspect ratio of existing
hulls. The results of the optimisation obviously depend on the Reynolds number, through
the value of the coefficient CS°, but only weakly. Let us stress that, while for the optimal
geometries (a*, 5*) the profile drag is always the dominant force regardless of the Froude
number, our study shows that it is crucial to consider the wave drag in the optimisation. In

3With no constraint on the geometry of the hull, the shape minimising the wetted surface is a spherical
cap.
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particular, far from the optimal aspect ratios, the wave drag coefficient can surely become
dominant. In Fig. 3.6(e), the ratio between the wave drag coefficient and the total drag
coefficient on the optimal curve is represented as a function of the dimensionless power II.
We can see that, in the range IT € [0.05,0.15], this ratio is about 0.1. This means that for
rowing boats, which typically lie in this range, the wave drag is about 10 % of the total
drag. This order of magnitude is comparable to the one found in literature (see [61] and
Sect. 2.5).

3.6 Discussion

Our work provides a self-consistent framework to understand and discuss the design of
existing boats.

3.6.1 Comparison with real data

Figure 3.6 confronts data from bodies moving at the water surface (e.g. liners, rowing boats,
sailing boats or animals, see also Table 3.1) with the calculated optimal geometries. As one
can see, while some ship categories are found in a rather good agreement with the theoreti-
cal predictions (such as liners and warships), others are very far from the computed optima
(such as monohull sailing boats). Discrepancies with empirical data might primarily come
from other constraints on the design of the boat which can prevail on the minimisation
of the drag, such as stability, manoeuvrability, resistance to rough seas or seakindliness.
They could also come from the assumptions of our model. In particular, a steady motion
is considered here, while for rowing boats and sprint canoes, high fluctuations of speed are
encountered (about 20% of the mean velocity) and are expected to affect the total drag,
notably through added mass.

Back to racing shells. The case of rowing boats [83, 84|, sprint canoes and sprint kayaks
is of particular interest as they do not really have other constraints than the minimisation of
the total drag. Indeed, manoeuvrability is not relevant as they usually only have to go along
straight lines, stability is at its edge and they only need to carry the athletes, usually on
very calm waters. The data for racing shells are found in good agreement with the optimal
Froude number Fr*(II). For rowing shells, while the aspect ratios « are found quite close to
the optimal value, the aspect ratios § lie above the optimal curve. This indicates that row-
ing shells could be shorter or have a larger draft. This discrepancy might be related to the
need for sufficient spacing between rowers (long shells) and/or for stability (small draft).
For sprint canoes and sprint kayaks, the competition rules from the International Canoe
Federation [85] impose maximal lengths for the boats* which could explain their relatively
low aspect ratio a compared to the optimal one. Their aspect ratio 3 is also found slightly
lower than the optimal results.

“The maximal lengths for sprint canoes and sprint kayaks are the same for the categories C1 and K1 (5.2
m), C2 and K2 (6.5 m) but not for C4 (9 m) and K4 (11 m) (see also Table 3.1). The letter C (resp. K)
refers to sprint canoes (resp. sprint kayaks), and the following number indicates the number of rowers.
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3.6.2 Discussion on stability

For the monohull sailing boats, the significant difference between real data and the computed
optima surely comes from the need for stability. A simple criterion for static stability® can
be derived for the model hull presented in Fig. 3.3, considering that it is a homogenous body
of density ps < p (see Fig. 3.7).

(a) : (b) z

+G D

Figure 3.7: Cross-section of the model hull (see Fig. 3.3) in (a) vertical position and (b)
slightly inclined position.

We define the center of gravity G, the center of buoyancy B, and the metacenter M [19, 20]
as the point of intersection of the line passing through B and G and the vertical line through
the new centre of buoyancy B’ created when the body is displaced (see Fig. 3.7(b)). Imposing
that the metacenter be above the center of gravity reads GM > 0, or equivalently BM > BG.
On the one hand, the so-called metacentric height BM can be computed for small inclination
angles through the longitudinal moment of inertia of the body .# = (8¢ f)w3€ /12 with

cj= f_lﬁz[f(i)]?’ dz and the immersed volume € = 2a 2 as:

54 Cf w?
BM=—= —.
Qi 3&}; d

(3.13)

On the other hand, one has BG = (D — d)/2 where D is the total height of the hull. We
then use the static equilibrium psQior = p€, where Qior = 2a ;wlD is the total volume of
the body, to eliminate D. This finally yields the criterion w/d > ¥ (ps/p) with:

3a;
b(u) =[5 ! (1 - 1) . uelo1]. (3.14)

CJE u

¥ is a decreasing function of u. For neutrally buoyant bodies, 1(1) = 0, all configurations
are stable as B and G coincide. While for bodies floating well above the level of water,
lim,, 0 ¢ (u) = 400, then wide and shallow hulls are required to ensure stability. In the
specific model case of Fig. 3.3, one has ay~ 0.33, c; ~ 0.057 and thus ¢ (u) =~ 3/1/u — 1.
Thus, the latter criterion reads: w/d = B/a > ¥(ps/p) where 9 is defined in Eq. (3.14).
For real boats, the critical value of w/d depends on mass distribution and effective density
of the hull and is highly affected by the presence of a keel, intended to lower the position
of the center of gravity. This stability criterion constitutes an additional constraint that
could be easily taken into account in the optimisation problem and that would reduce the
search space. In short, stability favours wide and shallow ships. This explains why most
real data points lie below the optimal curve o*(II) in Fig. 3.6(a) but above the curve 5*(II)
in Fig. 3.6(b). Stability is all the more important for sailing boats where the action of

®Note that for real hull design one should also address dynamic stability [71], but the latter falls beyond
the scope of our study.
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the wind on the sail contributes with a significant destabilising torque. Interestingly, this
matter is overcome for multihull sailing boats, in which both stability and optimal aspect
ratios can be achieved by setting the appropriate effective beam, namely the distance be-
tween hulls [86]. This allows higher hull aspect ratios, closer to the optimal curves in Fig. 3.6.

3.6.3 Discussion on planing

As displayed in Fig. 3.6(c), we predict a shift in the Froude number for IT ~ 0.2 which
indicates that boats should not operate in the range of Froude numbers Fr € [0.8,1.7].
However, when the Froude number is above Fr ~ 0.7, the hulls start riding their own
bow wave: they are planing. Their weight is then mostly balanced by hydrodynamic lift
rather than static buoyancy [10, 20]. As planing is highly dependent on the hull geometry
and would require to consider tilted hulls, we do not expect our model to hold in this
regime. Some changes though allow to understand the basic principles. Planing drastically
reduces the immersed volume of the hull which in turn reduces both the wave drag and the
profile drag. The effect on the immersed volume can be taken into account by adding the
hydrodynamic lift in the momentum balance along the vertical direction. Thus, one has:
Mg ~ pQig+1/2pCplwsin(20)U? where M is the mass of the boat, C7, is the lift coefficient,
and 6(Fr) is the Froude-dependent angle of the hull with respect to the horizontal direction
of motion [10, 20]. This leads to an immersed volume which depends on the Froude number
through:
(0)

h(Fr) = J + CpBsin(20)Fr?/(daj) | (3.15)

where Q;(0) = M/p. For low Froude number, 0(Fr) ~ 0 and the volume is that imposed by
static equilibrium, while for larger Fr number 6 > 0 and the volume Q ~ € is decreased.

Note that foil devices also contribute to decreasing the immersed volume by increasing the
lift.

Eventually, our study provides the guidelines of a general method for hull-shape optimisa-
tion. It does not aim at presenting quantitative results on optimal aspect ratios, in particular
due to the simplified geometry we consider and the limitations of Michell’s theory for the
wave drag estimation [28, 33, 87]. However, our method can be applied in a more quantita-
tive way for each class of boat by considering more realistic hulls.
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Take home message of Chapter 3

1. In ship hull design, the minimisation (under constraints) of the total drag on
the hull is one of the main challenges. The different drag components have opposite
effects: wave drag and pressure drag decrease with increasing aspect ratios and thus
favour slender hulls, while skin drag is minimal for rather low aspect ratios and
favours more bulky hulls.

2. Using a simple theoretical approach (based on a simplified hull geometry), we
derive the optimal aspect ratios for ship hulls regarding the minimisation of the total
drag, at a given load and propulsive power.

3. Optimal aspect ratios mostly depend on the imposed propulsive power. For low
propulsive power (equivalently Froude number Fr < 0.5) and for high propulsive
power (equivalently Fr > 0.5), the wave drag is negligible and the optimal hulls are
rather bulky, while for intermediate propulsive power (corresponding to Fr ~ 0.5),
they are rather thin to minimise the wave drag.

4. The aspect ratios of rowing boats are in good agreement with the optimal ones.
The discrepancies observed for other boat categories, such as sailing boats, come from
the importance of other constraints, such as stability or manoeuvrability.
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A QUESTION OF ASYMMETRY

The purpose of this chapter is to assess the effect of the asymmetry of a hull on its total drag
and in particular on its wave drag. We consider a set of hulls of increasing asymmetry and
determine both experimentally and numerically their drag to find the optimal asymmetry.
The comparison between the two approaches provides new insights in the context of the
optimisation of hull shapes.

Supersonic flow around a wedge without incidence. Photo credits: Henri Werlé, ONERA.
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Chapter 4. A question of asymmetry

4.1 Problem statement

After having analysed in the previous chapter the optimal aspect-ratios for ship hulls, we
study the effect of the asymmetry between the front and the rear of a boat and pose the
question of whether this asymmetry could decrease the total drag on the hull. On the
one hand, when an object is moving in a homogeneous fluid, to avoid flow separation and
thus minimise the pressure drag, it should be pointed at the rear and rather look like an
airfoil profile (see Fig. 1.3). This is qualitatively what Huan et al. found when seeking
numerically the two-dimensional shapes of minimum drag for different Reynolds numbers
(see Fig. 4.1(a)-(c)) [88, 89]. For example, the Dymazion car (see Fig. 4.1(d)), designed
by the American inventor and architect Buckminster Fuller in 1933, has an aerodynamic
bodywork to reduce its fuel consumption [90]. On the other hand, when the object is moving
at the water surface, to create the least waves and thus reduce the wave drag, it should rather
be narrow at the front. Consequently, for ship hulls, which are exposed to both pressure
drag and wave drag, it is unknown whether asymmetry is optimal.

Figure 4.1: Two dimensional shapes of minimum drag found by [88] for (a) Re = 20, (b)
Re = 5000 and (c) Re = 20000. (d) Picture of the Dymaxion car n°l, designed by the
American inventor and architect Buckminster Fuller in 1933. This car had an aerodynamic
bodywork to increase its fuel efficiency and reach top speed [90].

4.1.1 Asymmetry of existing hulls

As already mentioned, a large variety of shapes is found among ship hulls, in particular
because of the number of constraints that hulls must satisfy depending on their function
(stability, manoeuvrability, drag minimisation, sea-kindliness, ...).

Figure 4.2: Pictures of (a) a sprint canoe, (b) a sprint kayak, and (c) a single scull rowing
boat. The three boats are moving from right to left. Pictures have been rescaled (see
Table 2.1 for the characteristics of rowing boats and Table 5.1 for the characteristics of
sprint canoes and sprint kayaks).
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If one takes a closer look at sprint canoes (Fig. 4.2(a)), sprint kayaks (Fig. 4.2(b)), and
rowing boats (Fig. 4.2(c)), hulls for which the main constraint is the drag minimisation, one
can notice that, while rowing boats are nearly symmetric, sprint canoes and sprint kayaks
are found narrower at the front than at the rear.

In this section, we focus on sprint canoes as it is easy to roughly estimate the asymmetry of
these hulls from their top-view picture.! As defined in Sect. 1.6, we use the dimensionless
coordinates # = x/¢ and § = y/{ as well as the function f(Z) = f(z)/w that represents the
edge of the hull (with z € [—1/2,1/2]). Fig. 4.3(a)-(c) shows three different canoes hulls
(1.2 The projected edge of each of these hulls f(x) is obtained through image analysis and
is plotted in dimensionless form a§ = f(Z) (with a = ¢/w) in Fig. 4.3(d). One can thus
observe the differences between different hull models; in particular the C1 Vanquish III has
a clearly more asymmetric shape than the two other hulls.

(a) d) 1

T
— e — —— C18ix3
0.75 ——— C1 Cinco XL
(b) ' C1 Vanquish IIT

Figure 4.3: (a)-(c) Top view of three sprint canoes hulls (from Nelo manufacturer [91]), (a)
C1 Siz3, (b) C1 Cinco XL and (c) C1 Vanquish III. (d) Position of the edge of the hull
o = f(&) for the three hulls (a), (b) and (c). The gray dashed line represents a parabolic
hull profile.

In order to characterise the asymmetry of hulls, we define the asymmetry parameter € as

follows:
1/2 1/2
€=k (/ g(i«)%}) , (4.1)
0

where §(z) = f(Z) — f(—%) and k = —sign(fol/2 g(Z)dz). Except from the factor s, this is
the L? norm of the odd function §(#). The factor x = sign(e) is introduced to distinguish
between the two directions of motion of an asymmetric hull.

e<0 e>0
L= > e
Figure 4.4: Schematics illustrating the two different configurations e < 0 and € > 0.
For example, a typical airfoil profile, such as a NACA profile (see Fig. 1.3), would have

a positive asymmetry parameter ¢ when moving along its usual direction of motion (with
the rounded part first), but a negative ¢ when moving in the reversed direction (with the

LA more accurate estimate would be obtained by considering their three-dimensional hull shape.
21 refers to sprint canoes with only one rower, while C2 and C4 stand for sprint canoes with two and
four rowers respectively.
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pointed part first) (see Fig. 4.4).3 The values of the asymmetry parameter for the three
different hulls in Fig. 4.3 are given in Table 4.1. Consistent with what is observed in Fig. 4.3,
the C1 Vangquish III hull is the most asymmetric one, then comes the C1 Siz8 and finally
the C1 Cinco XL. Interestingly, it can be noticed that for these three hulls, the asymmetry
parameter € is negative, meaning that the front of the hull is more pointed than the rear.

Boat Name €
C1 Siz3 -0.0588
C1 Cinco XL -0.0386

C1 Vanquish III  -0.0597

Table 4.1: Asymmetry parameter € for the three sprint canoes hulls shown in Fig. 4.3. As
a means of comparison, for a triangular hull profile, one has |e| ~ 0.2.

To sum up, we observe that sprint canoes are slightly asymmetric: they are narrower at the
front than at the rear. The asymmetry is quantified with the parameter ¢ (see Eq. (4.1)).
It is found to change from one boat to another within a given boat category and with the
number of rowers.

4.1.2 Theoretical observations

This study started with the surprising observation that for the two theoretical models pre-
sented in Sect. 1.6, the prediction for the wave drag of an asymmetric hull is the same if the
hull moves forward or backward, which contradicts experimental observations.

Havelock’s model. In the expression of the wave drag given in Eq. (1.33), the pressure dis-
turbance appears as [p(kz, ky)|?. To begin with, let us assume that the pressure disturbance
p(z,y) is changed into p'(x,y) = p(—x,y) when the body moves in the opposite direction.
As the pressure disturbance is symmetric about the center-plane y = 0 (left-right symmetry
of the hull), then p'(z,y) = p(—x, —y), so that when one takes the Fourier transform:

ﬁ/(kxaky) :ﬁ(kxaky)* ) (4'2)

where * denotes the complex conjugate. It can be deduced that the wave resistance Ry
will be the same for both directions of motion. In fact, the assumption that the pressure
disturbance is only reversed when changing the direction of motion of the body is obviously
wrong. We conducted experiments to determine how the pressure distribution along an
asymmetric hull changes depending on its direction of motion. The first results of this
ongoing work are very promising (see Appendix B).

Michell’s model. In this second model, changing the direction of motion is equivalent to
replacing f(z, z) by f(—z,z) in Eq. (1.46). With a change of variable, one finds that Z is
then changed into Z;* and, as I appears as |Z,'f|2 in Eq. (1.45), one finds the same wave
resistance in both directions of motion.

The identity of the wave resistance predicted by these two theoretical models when the
body moves forward or backward comes from the use of the potential flow theory which
leads to time-reversibility of the flow. As a first step to build a new theory that can include
asymmetry in the wave drag, we study experimentally and numerically the effect of the hull
asymmetry on the total drag and in particular on the wave drag component.

3Note that another asymmetry parameter could be the “infinity norm” e, = s max |§(Z)| or the “L!

norm” € = kK fol/ ?13(&)|dZ. The asymmetry parameters €, e~ and e can be generalised in 3d for hulls
defined by y = f(z, 2).
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4.2 Family of hull shapes

First, we aim at defining a family of hull shapes that continuously varies from perfectly
symmetric to more and more asymmetric. To be able to compare the shapes, we should
keep the cross-sectional area constant (so that, for a given draft, the immersed volume
remains the same for all shapes) as well as the length-to-width aspect ratio, the effect of
which was already analysed in Chap. 3. Thus, the function f must satisfy the following
constraints:

o f(=1/2)=f(1/2) =0,
o f_152 f(#)dz = af, where af is a given dimensionless area (see Eq. (3.7a) in Sect. 3.4),

e max f(Z) = f(iy) = 0.5, where &g is the position of the maximum of f.

A suitable function is:

. 1+0b
f(@)=aln e(T-1/2) 4 pe—aB(@-1/2) |~

(4.3)

with the coefficients a, b, & and § that are numerically computed to satisfy the constraints.
One of the advantages of this particular form of functions (compared with, for example,
polynomial functions) is that it allows us to adjust the slope of the tangents in & = —1/2
and £ = 1/2 by setting the values of a and . Furthermore, it must be noted that the
surface a 7 is set to ay = 0.312 so that functions of the form given in Eq. (4.3) that satisfy
the constraints can be found. Other functions could be defined, such as the Hiigelschéffer
egg [92], which we did not explore further.

0.5 -
(a) ,]il
0.25 f2
— f3
l;g 0 f:4
fs

—0.25

—0.5 —0.25 0 0.25 0.5

Figure 4.5: (a) Profile aj = (%) for five different sets of the parameters (a, b, o, 3) in
Eq. (4.3), with increasing asymmetry. (b) Picture of the five 3d-printed model hulls defined
by the functions f; to f5. They are 18 cm-long, 3 cm-wide and 5 cm-high.

Figure 4.5(a) shows the profile of five particular functions, denoted f; (with i € {1,2,3,4,5}),
for Zo, the position of the maximum of f, ranging from 0 to 0.2 with uniform spacing. The
coefficients a, b, o and 3 for these five functions are indicated in Table 4.2. The function fl is
symmetric, then the functions fg to f5 are more and more asymmetric (see the corresponding
values of € in Table 4.2).

In the following, the aim is to determine, both experimentally and numerically, the drag on
these five particular hull shapes.
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Function a b Q 15} €
fi 0.460 0.030 3.500 1 0
f 0.488 0.066 4.182 0.660 -0.040
f 0.592 0.163 4.864 0.402 -0.080
fa 0.937 0.500 5.500 0.199 -0.114
f 9.007 9.195 6.091 0.017 -0.144

Table 4.2: Coefficients (a, b, o, ) defining the five functions f1 to fs, with the corresponding
values of the asymmetry parameter e.

4.3 Experimental study

Experiments were carried out with Varvara Zhukovskaya (student from Peter the Great St.
Petersburg Polytechnic University, Russia).

4.3.1 Description of the experimental set-up

The five particular hull shapes defined in the previous section were 3d-printed (see Fig. 4.5(b)).

They are 18 cm-long, 3 cm-wide and 5 cm-high, corresponding to the aspect ratios a =
¢/w =6 and ¢{/D = 3.6 (with D the total height of the hull).

(a) (b)

«—— Carriage
«—— Lifting platform

«—— Force sensor

=

Figure 4.6: Picture (a) and schematics (b) of the experimental set-up. The hull is towed in a
water tank via a carriage. A force sensor placed between the carriage and the hull measures
the total drag force on the hull. A lifting platform allows us to change the immersion depth
d (the distance from the bottom of the hull to the water surface). The total height of the
hull is denoted D.

To measure their total drag, the different hulls were towed in a water tank (6 m long and
30 cm deep) with a force sensor placed between the carriage and the hull (see Fig. 4.6).
The force sensor is composed of strain gauges stuck on a beam which links the hull and the
carriage. The deformation measured by the strain gauges is related to the force exerted at
the point of force application on the hull, a relation which is obtained through a calibration
step. Three main parameters can be varied: the asymmetry of the hull (which depends on
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the chosen hull and on its direction of motion), the speed U of the hull and its immersion d
(i.e. the distance between the bottom of the hull and the free-surface). The corresponding
dimensionless parameters are the asymmetry parameter e (positive or negative depending
on the direction of motion of the hull), the Froude number Fr = U//g? and the ratio d/D,
which compares the immersion d of the hull to its total height D (see Fig. 4.6). The drag
force measured from the sensor is filtered and averaged on the time interval where the hull
speed is constant. Each data point is the mean over three experiments. The measurements
were carried out at a speed U ranging from 0.4 to 2 m/s, corresponding to a Froude number
ranging from 0.3 to 1.5.

4.3.2 Experimental results

In the following, and similarly to the definitions of the drag coefficients in Chap. 1 and 3,
the total drag coefficient C is defined by:

R

¢= Q2302

(4.4)

where R is the total drag force exerted on the hull and €2 scales as the immersed volume
of the hull. One has: 2 = fwd when the hull is partly immersed, and € = fwD when the
hull is fully immersed. The first measurements consisted in assessing the dependence of the
total drag coefficient C' with the Froude number and with the immersion depth d for a given
hull.
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Figure 4.7: Total drag coefficient C' for the symmetric hull (i.e. hull 1) as a function (a) of
the Froude number for d/D = 0.75 and (b) of the ratio of immersion d/D for Fr = 0.46.
The data shown in (b) have been corrected for d/D > 1 to eliminate the contribution to the
total drag of the two rods holding the hull (see Sect. 4.6).

Fig. 4.7(a) shows the evolution of the total drag coefficient C' with the Froude number for
the symmetric hull (i.e. hull 1, see Fig. 4.5) for the ratio of immersion d/D = 0.75. C
reaches a maximum for Fr ~ 0.5, which is where the wave drag component is maximum (see
Fig. 1.13 in Sect. 1.6). Fig. 4.7(b) displays the effect of the immersion depth on the total
drag coefficient, for the symmetric hull and a given Froude number. The contribution to
the total drag of the two rods holding the hull, when the hull is totally immersed (i.e. for
d/D > 1) has been removed (see Sect. 4.6 for the details). One notices that C' is maximum
for d/D = 1. This can be explained by the additional contribution of the upper surface
of the hull to the skin drag component when d/D > 1 and to the important contribution
of the wave drag. One can also observe that the total drag coefficient reaches a plateau
starting from d/D =~ 2.5. This corresponds to a regime where the hull is sufficiently far
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from the water surface so that the wave drag component becomes negligible and does not
contribute anymore to the total drag (see also Subsect. 7.3.3 in Chap. 7 for the same kind
of discussion).
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Figure 4.8: Total drag coefficient as a function of the signed Froude number sign(e) Fr for
the five hulls for d/D = 0.75. The use of the parameter sign(e) Fr allows us to compare a
given hull moving with the rounded part first (e > 0, right part of the plot) or with the
pointed part first (e < 0, left part of the plot) (see Fig. 4.4).

The measurements of the total drag coefficient were then carried out for the five different
hulls in both directions of motion. In Fig. 4.8, we plot C as a function of sign(e) Fr for
the five hulls at a given immersion. The parameter sign(e) Fr is used to compare a given
hull moving with the rounded part first (¢ > 0) or with the pointed part first (e < 0, see
Fig. 4.4). The evolution of C' with the Froude number for a given hull and a given direction
of motion is similar to the one in Fig. 4.7(a). Comparing the different hulls, we find that,
on the right part of the plot (¢ > 0), the maximum of drag is higher and higher as the hulls
are more and more asymmetric (from hull 1 to hull 5). While, on the left part of the plot
(e < 0), the maximum of drag is lower and lower as asymmetry is increased (from hull 1 to
hull 5). Quantitatively, at Fr = 0.46, we observe, for ¢ > 0, an increase in the total drag
coefficient of about 33% between the symmetric hull and the most asymmetric one (hull 5),
while, for € < 0, C' is decreased by 22%.

Fig. 4.9 shows the contour plots of the total drag coeflicient C for the five hulls depending
on the parameter sign(e) Fr and the immersion ratio d/D. Looking at a given contour plot,

(a) (b)

sign(e) Fr sign(e) Fr

Figure 4.9: Contour plots of the total drag coefficient C' depending on the signed Froude
number sign(e) Fr and the ratio of immersion d/D for hull 1 to 5 (a)-(e). The vertical dashed
white line separates these two cases for each hull.
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the same remarks as for Fig. 4.7(b) can be made, except that here the immersion ratio is
restrained to 0 < d/D < 1. When comparing the different hulls, it appears clearly that the
contour plots become more and more asymmetric as the asymmetry is increased (from hull
1 to 5, see Fig. 4.9(a) to (e)).
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Figure 4.10: (a) Total drag coefficient C' as a function of the asymmetry parameter e (a)
for three different values of the Froude number for d/D = 0.75, and (b) for three different
values of the ratio of immersion d/D for Fr = 0.46.

The effect of the asymmetry is clearer in Fig. 4.10, where C is represented as a function
of the asymmetry parameter e depending on (a) the Froude number Fr or (b) the ratio of
immersion d/D. For Fr = 0.46 and Fr = 0.61, the total drag coefficient is an increasing
function of € and the minimum drag coefficient is thus obtained for ¢ = —0.14, that is for
the most asymmetric hull (hull 5) moving with the pointed part first. For Fr = 0.31, C
plateaus for € < 0, which could be related to the lower effect of the wave drag component.
In Fig. 4.10(b), we observe that, while for d/D = 0.25 and d/D = 0.75, C is an increasing
function of €, for d/D = 2, it becomes a decreasing function of e. This is due to the pressure
drag component, which is larger for ¢ < 0 and becomes dominant deep underwater. As a
result, whilst at the water surface, optimal hulls are rather pointed at the front, deep under
water optimal hulls are rather rounded at the front and pointed at the rear, similarly to the
optimal shapes found in [88] (see Fig. 4.1(a-c)).

4.4 Numerical study

This numerical study was carried out by Louis Richard (student from ENS Cachan). The
aim of this part is to compute the flow around the five hulls presented in Sect. 4.2 in order
to compare the drag and wave pattern with the experiments.

4.4.1 Numerical set-up

To perform this study, we use the software Gerris Flow Solver (created by Stéphane Popinet
and developed at Institut Jean le Rond d’Alembert, UPMC) which provides a framework to
solve partial differential equations on quad/octree finite-volume meshes [93, 94]. Each hull
is placed inside a three dimensional rectangular domain D, composed of two fluids, air
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and water, separated by a free-surface, initially at Z = £(#,§) = 0. Using the left-right
symmetry of the problem, it is solved only on one half of the fluid domain surrounding
the hull, which considerably reduces the computation time. The computational domain
approximately measures 9 x 3 x 3 (in units of length of the hull).

The Gerris software solves the Navier-Stokes equations, that is:

V.u = 0, (4.5a)
ou 1 9
E%—(u-V)u = —;Vp—i—l/V u+g, (4.5b)
where v = p/p is the kinematic viscosity. Using the dimensionless variables u = U, z = (7,
y =1L, 2= L% p=pU?p, and t = £/Ut, the dimensionless Navier-Stokes equations read:

V-u = 0, (4.6a)
ou ~ ~ 1 =2 1
— u-Viu = —-Vp+—Vu—— 4.6b
ot +(@- V)@ p+Re v Frzez’ ( )
where e, is the unit vertical vector and, as defined before, Re = Uf/v and Fr = U/+\/g¥.
The flow is, as a first step, supposed to be inviscid (Re — +00) and is impulsively started
from rest at ¢ = 0 to reach the prescribed Froude number Fr.

Boundary conditions. Neumann or Dirichlet boundary conditions along the boundaries
of the computational domain are imposed. The different boundaries are illustrated on
Fig. 4.11.

— <
&
o]

0;D oD 0,D

Figure 4.11: Schematics of a horizontal cross-section of the computational domain, with
definition of the different boundaries. 9;D refers to the inlet boundary, while 0,D denotes
the oulet boundary. 9;D and 9D are the boundaries on the front and back sides of the
domain and 0D is the hull boundary. Two additional boundaries are not represented on
this schematics: the top boundary 0, D and the bottom boundary 9y4D.

At the inlet 0;D and outlet 9,D boundaries, the velocity is considered unidirectional and
thus we set:

0t
0z

—0, 4y=0, 4=0, and =0 . (4.7)

On the other sides of the domain, symmetry conditions are imposed, so that these boundaries
are equivalent to free-slip, impermeable boundaries. Thus, for the sides 9;D and 9,D, one
has:

O0lz Ous ~ 0 and op

Similarly, for the top 9, D and bottom J;D boundaries, one has:

oug - Odug - ap
53 =0, ag—O,uz—O,andg—O. (4.9)
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On the hull boundary 9D, an impermeability condition is imposed, that is @ -n = 0,
with n the unit vector normal to the hull boundary. In the case of a viscous fluid, this
condition would be replaced by a no-slip boundary condition (@ = 0). As Gerris software
uses a Volume-of-Fluid advection scheme to resolve the position of the air-water interface,
no boundary condition is imposed at the free-surface. An important feature of the code is
the adaptive meshing refinement (using an octree finite volume discretisation). This has
the advantages to increase the accuracy in the regions where the flow evolves with small
scales and to reduce the computation time compared to algorithms with constant spatial
resolution. Thus, in our case and as illustrated in Fig. 4.12, the mesh is refined at the hull
boundary, at the air-water interface and in the regions of high vorticity. The computation
time is however quite high (typically three days for Fr = 0.3).

Figure 4.12: Mesh at the air-water interface for hull 4 soon after the beginning of the
simulation. The mesh is refined in the region next to the hull.

The simulations are run until the computed flow converges to a steady flow. The outputs
of the simulations are the resulting forces on the hull, the elevation of the free-surface and
the pressure along the surface of the hull.

4.4.2 Numerical results

The simulations were carried for each hull moving forward and backward, with the Froude
number Fr ranging from 0 to 0.3, and for an immersion ratio d/D ranging from 0 to 1.
In Fig. 4.13, the resulting drag coefficient C’, which is the total drag coefficient with no
viscosity, is represented as a function of the two parameters Fr and d/D for each hull in the
same way as for the experimental results (see Fig. 4.9). The right part (resp. left part) of
each contour plot corresponds to the hull moving with the rounded part first (resp. with
the pointed part first).

() (b)
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sign(e) Fr sign(e) Fr sign(e) Fr sign(e) Fr sign(e) Fr

Figure 4.13: Contour plots of the total drag coefficient with no viscosity C’ obtained numer-
ically depending on the signed Froude number sign(e) Fr and the ratio of immersion d/D for
hull 1 to 5 (a)-(e). The vertical dashed white line separates these two cases for each hull.
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As already observed with the experiments, we see that the drag coefficient increases with
the Froude number in the range Fr € [0,0.3] and with the immersion depth in the range
d/D € [0,1]. When considering hulls of increasing asymmetry (from hull 1 to hull 5), the
contour plots become more and more asymmetric (Fig. 4.13(a) to (e)). This effect is however
not as strong as observed in the experiments. Also, one can observe that depending on the
immersion ratio d/D, the hull with the lowest drag changes.
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Figure 4.14: Drag coefficient C’ as a function of the asymmetry parameter € for four different
immersion depths d/D at Fr = 0.3.

This is highlighted in Fig. 4.14 with the plot of the drag coefficient C’ as a function of e
for different immersions d/D. For d/D < 1, the drag coefficient is minimum for ¢ ~ —0.04,
corresponding to hull 2 moving with the pointed part first. On the contrary, for d/D = 1, the
hull which has the lowest drag is the symmetric hull (i.e. hull 1). This result is different from
the one obtained in the experiments (see Fig. 4.10(b)). The possible sources of discrepancies
are discussed in the next section.
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Figure 4.15: Dimensionless wave elevation é obtained numerically for hulls 1, 3 and 5 (for
Fr = 0.3 and d/D = 0.5). For each subplot, the upper half corresponds to the hull moving
with the rounded part first (e > 0), while the lower half corresponds to the hull moving with
the pointed part first (e < 0).

The fact that asymmetric hulls might not be optimal for all immersions can be understood
when looking at the wave pattern generated by each hull (see Fig. 4.15). In general, there
are two main sources of waves: the bow and stern of the hull (see Chap. 1, Sect. 1.6 and
[5]). Fig. 4.15 shows the wave patterns for hull 1, 3 and 5. For hull 3 and 5, the upper half
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of the plot corresponds to the hull moving with the rounded part first, while the lower half
corresponds to the hull moving with the pointed part first. One can notice that, depending
on the direction of motion of the hull, the highest waves are produced at the front (e > 0)
or at the rear (e < 0) of the hull. This is particularly visible with the most asymmetric
hull (hull 5, see Fig. 4.15(c)). Thus, even though the waves produced at the front of the
hull are reduced when the hull is asymmetric and moves with the pointed part first, the
waves generated at the rear become more and more important as the asymmetry of the hull
increases. This can qualitatively explain why it is for a small asymmetry (e ~ —0.04) that
the drag coeflicient is the smallest in the numerical simulations.

The results of these simulations and especially the computed pressure along each of the five
hulls are further used in Appendix B.

4.5 Discussion

Using simple hull shapes of increasing asymmetry (with the same aspect ratio and immersed
volume), we find both experimentally and numerically that slightly asymmetric hulls can
have a lower drag than symmetric ones. The experiments show that the optimal hull, among
the five which were tested, is the most asymmetric one with e = —0.14 (see Fig. 4.10). This
promising result now requires to consider more asymmetric hulls to find the optimum of
asymmetry. We indeed expect that for very asymmetric hulls the total drag coefficient
should re-increase due to the pressure drag component. For the family of hull shapes that
we defined, it is not possible to increase much the asymmetry because then the constraints
of constant aspect ratio and cross-sectional area cannot be satisfied any more. A new family
of hull shapes allowing for the design of very asymmetric hulls should be defined for future
work.

Comparing quantitatively the experimental results with the numerical ones is not so easy.
The numerical results were obtained for rather low values of the Froude number (up to
Fr = 0.3), while, in the experiments, Fr > 0.31. Computing the total drag numerically at
larger Froude numbers is still an ongoing work. Also, we do not find exactly the same results
with the numerics and the experiments, in particular for the optimal asymmetry: with the
numerics, it is € ~ —0.04 (see Fig. 4.14), while in the experiments, it is € = —0.14. An
explanation for this discrepancy is most likely related to the fact that our numerical results
were computed without viscosity. Taking into account viscosity will most likely affect the
partition between the different drag components, thus shifting the optimal asymmetry.

Finally, let us come back to the initial problem of the asymmetry of racing shells. The
experimental and numerical results of this study tend to point out the advantage of sprint
canoes and sprint kayaks over rowing boats with regard to the optimal asymmetry. However,
to get closer to the real problem, more complex geometries should be considered, which
unfortunately goes together with the increasing difficulty of maintaining the aspect ratios
and the immersed volume constant.
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4.6 Appendix: Interaction between two cylinders

To account for the effect of the rods holding the hull and correct the drag measurements
for fully immersed hulls (d/D > 1), we perform experiments with the rods only, changing
their wetted length, denoted [,,. The total distance from the sensor to the tip of the rods is
denoted L = 26.5 cm, the distance between the two rods [; = 10 cm, and the diameter of a
rod d; = 3 mm (see Fig. 4.16(a)).
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Figure 4.16: (a) Schematics of the experimental set-up to estimate the drag on the two rods
holding the hull. The rods have a diameter d; = 3 mm; the distance between them is [; = 10
cm; the distance from the sensor to the tip of the rods is L = 26.5 cm; and the wetted length
of the rods l,, ranges from 5 to 15 cm. (b) Measured torque M as a function of the ratio
ly/L for U = 0.61 m/s. The dotted line is a fit of the experimental data using Eq. (4.11).
(c) Factor k defined in Eq. (4.12) as a function of the Froude number Fr’' = U/+\/gl; for two
configurations § = 0° and 6 = 90°.

The total torque M measured by the sensor results from the sum of all the contributions
from the forces exerted by the water along the two rods. Thus, one has:

M = 2/L df(z)zdz (4.10)

L—1y
where §f(z) is the force per unit length in the vertical direction. We assume that § f(z) is

independent of z (which might be a crude assumption given the presence of the air-water
interface) so that:

M =6fL* 21, —12), (4.11)

where I, = Ly, ~/ L. The measured torque M is plotted as a function of the dimensionless
wetted length [, in Fig. 4.16(b). We further write:

Sf=k %pdtC’tUQ : (4.12)

where C; is the drag coefficient of the rod (for a cylinder C; ~ 1.2) and k is a factor that
can account for the presence of the free-surface and interactions between the two rods.
The factor k is determined for a given velocity U by fitting the experimental curve ./\/l(le)
with Eq. (4.11), as illustrated in Fig. 4.16(b). In Fig. 4.16(c), we plot this coefficient as a
function of the Froude number based on the distance between the rods l;, Fr' = U/+\/¢l;.
The configuration is the same as in the experiments with hulls (one rod lies behind the

70



4.6. Appendix: Interaction between two cylinders

other). We see that the factor & is minimum for Fr’ ~ 0.6, which can be a signature of an
interaction between the wakes of the two rods. It could be interesting as a future study to
look at the interaction between two rods depending on the angle between the horizontal line
linking the two rods and the direction of motion.

These results are used in Subsect. 4.3.2 to correct the data for hulls when they are fully
immersed in water. The corrected drag coefficient C,. is written:

M

C.=C— :
pR2BU2(L + d/2)

(4.13)

where L’ is the distance from the sensor to the upper surface of the hull and M is given by
Eq. (4.11) in which L is replaced by L'.
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Take home message of Chapter 4

1. When designing a ship, asymmetry can be an important parameter to play with.
It is observed that typical sprint canoes and sprint kayaks are slightly asymmetric,
while rowing boats are almost perfectly symmetric.

2. The existing theoretical models to estimate the wave drag predict the same value
for an asymmetric boat moving forward or backward, which is in contradiction with
observations.

3. After choosing a particular family of hull shapes of increasing asymmetry, we find
with experiments and numerical simulations that asymmetry can decrease the overall
drag. At the water surface, it appears that a slightly asymmetric hull, as drawn in
Fig. 4.17, would be optimal.

Figure 4.17: Schematics of a hull with optimal asymmetry.

4. This result shows the need for a theory that can include asymmetry in the wave
drag.
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PART III

PROPULSION IN ROWING AND
FIN-SWIMMING
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SCALING ANALYSIS OF ROWING

In this chapter, we reconsider the question of the dependence of the velocity of a rowing
boat with the number of rowers. It is indeed observed with the world records in the different
rowing categories that this velocity slowly increases with the number of rowers. McMahon
showed that the relation between the two is a power law (power 1/9), which is in fairly good
agreement with the observations. We relax two of the assumptions of McMahon’s model
and find that it does mot change much the power law. Finally, we consider a limitation of
McMahon’s model for a large number of rowers, which comes from the need for sufficient
spacing between comsecutive rowers.

Picture of an Aubrac pair of steer yoked to a dynamometric cart for the experiments on
force and power estimation by Ringelmann in 1907 (reprinted from [95]).
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Chapter 5. Scaling analysis of rowing

5.1 Introduction

In many sports, such as rowing, tug-of-war (see Fig. 5.1(a)) or rugby, individuals must
rely on the power of the group to win. However, Ringelmann showed, with tug-of-war
experiments, that the total power produced by a group of people (or animals such as oxen
[95], see the picture on the previous page) was not equal to the sum of the power of each
individual [96]. For instance, he measured that when eight men pull together on a rope
the effort exerted by each individual is about half the effort developed by each individual
when pulling alone (see Fig. 5.1(b)). Ringelmann explained this difference by a decrease in
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Figure 5.1: (a) Photograph of the only tug-of-war bout at the 1912 Olympics (source: [97]).
(b) Proportion of maximum effort exerted on a rope during a pulling experiment depending
on the number of people N [96].

motivation as well as coordination problems when pulling in a group compared to pulling
alone [98]. More recent studies [99] show that this effect (also called Ringelmann effect) is
mostly explained by social loafing. A similar effect has been recently observed by Phonekeo
et al. for fire ants: they form aggregates and the contribution of each ant to their cohesion
decreases with the number of ants [100]. Here we consider the problem of the effect of the
number of rowers N on the speed of a rowing boat from a mechanical point of view with as
a starting point the scaling analysis of McMahon [62]. Social loafing will thus be neglected
in the following.

5.2 McMahon’s model

To predict the velocity of racing shells depending on the number of rowers, McMahon makes
four main assumptions.

(i) The racing shells have a geometric similarity regardless of the number of rowers on the
boat. In other words, the aspect ratios o = £/w and § = £/d, introduced in Chap. 3,
are constant for all racing shells.

(ii) The boat weight per oarsman is constant.

(iii) Each oarsman contributes equally to the total input power.
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(iv) Lastly, the dissipation of the input power comes exclusively from skin friction.
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Figure 5.2: (a) Length-to-width aspect ratio « of racing rowing boats as a function of the
number of rowers N (see Table 2.1). (b) Length-to-draft aspect ratio 8 of racing rowing
boats as a function of the number of oarsmen N estimated from the mass of the boat with
a momentum balance along the vertical. (¢) Boat mass mypeat as a function of the number
of oarsmen N. The black line is a linear fit of the data points (mpeat ~ 12.6 X N).

The first two assumptions can be tested for N ranging from 1 to 8 in the light of today’s
racing shells characteristics. In Fig. 5.2(a) and (b), the aspect ratios a and /3 of racing
boats are plotted as a function of the number of rowers N. Although it can be noticed that
« and § slightly increase with IV, they can indeed be considered approximately constant:
a ~ 30 and § ~ 91 with 5% discrepancies for both. In the next section, the effect of
relaxing this hypothesis will be assessed. Fig. 5.2(c) further shows that the evolution of
the boat mass mpeat with N is very well approximated by a linear fit (mpoat ~ N m1 with
mq = 12.6 kg), which validates the second assumption of the model. The third assumption
is actually questionable if one accounts for social loafing as discussed in the introduction.
But given the complexity of such effect, this assumption will not be put into question in the
following. As for the last assumption, McMahon states (relying on measurements from [61])
that skin friction is the dominant component of drag and that wave drag accounts for less
than 8% of the total drag (see also Sect. 2.5). Neglecting all the other components of drag is
questionable, as well as considering that the dissipation of the input power from the rowers
only comes from the dissipation by friction on the hull. In particular, a blade efficiency can
be defined (see Appendix A) which probably depends on the number of rowers.

From the second hypothesis, the immersed volume of the hull for N rowers, denoted 2y,
scales as Qn ~ NQ; where Q) ~ (m1 +m,)/p is the volume displaced by one rower, with
m, the mass of each rower. And from the third assumption, the propulsive power for N
rowers Py reads Py ~ NPy with P; the power delivered by one rower. The total propulsive
power is also written:

Py = RU , (5.1)

with R the total resistance on the hull which is supposed to be dominated by skin friction,
so that one has R = 1/2pS,Cy,U? (with Sy, the hull wetted surface and C}, the hull drag
coefficient, see also Eq. (2.1) in Sect. 2.5). The wetted surface can be approximated by
Sp ~ fw = % /a and the immersed volume by Qy ~ fwd = £3/(af3), so that:

62/3
Sy, ~ m912/31\72/3 : (5.2)
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Combining this equation with Eq. (5.1), one finds:
U ~ Uy, B)N? (5.3)

with Uy (a, B) = [2P1a'/?3/(pB%/3Q2/3Cy,)]Y/3, the hull velocity for N = 1. If we now use the
first assumption, that is o and /3 are independent of N, then we directly get that U ~ N/9,
as found by McMahon. This scaling can be checked by looking at the world record speeds
in the different rowing categories (see Fig. 5.3(a)). We find a fairly good agreement with the
scaling law for coxless sweep and sculling categories, but not for the coxed sweep category,
which might be related to the larger effect of the presence of a coxswain on the boat for
the pair and the four than for the eight, and also to the absence of the coxed pair and
cozed four categories at the Olympics. Interestingly, taking P; = 400 W, Q; = 0.24 m?,
Cp=25-1073, a =30 and B = 91, one has U; ~ 5.0 m/s, which is very close to the world
record speed for single sculls.

(a) (b)

® Sweep (coxless)

® Sweep (coxed) L ® Sprint canoe
Sculling A Sprint kayak
4 ! I I 4 ! I I
1 2 4 8 1 2 4 8
N N

Figure 5.3: World record speed as a function of the number of oarsmen (a) for the different
rowing categories and (b) for sprint canoes and sprint kayaks. Both plot have a logarithmic
scale and the black line represents the scaling law U ~ N'/9. Note that the race distance

considered here is shorter for sprint canoes and sprint kayaks (1000 m) than for rowing boats
(2000 m).

In Fig. 5.3(b), McMahon’s scaling law (U ~ N'/9) is tried for sprint canoes and sprint kayaks
where the number of rowers this time ranges from 1 to 4. The third and fourth assumptions
are also expected to hold for these kinds of boats. We refer to Fig. 5.7 in Sect. 5.5 for
the verification of the first and second assumptions of the model. For sprint canoes, the
two assumptions («a constant and mpee ~ N) are quite well verified. For sprint kayaks,
although the assumption for the mass of the boat seems to be respected, the assumption
« independent of N is far from being valid. As U scales with a/? and $72/9, the scaling
U ~ N9 does not depend so much on this assumption, which explains the fairly good
agreement between the scaling and the data points in Fig. 5.3(b). Let us mention that the
record speeds for sprint kayaks are close to the record speeds in rowing. However, for sprint
canoes and sprint kayaks, the distance of the race is 1000 m while, for rowing boats, the
distance is 2000 m. Thus, rowing boats are the fastest man-powered boats, then come the
sprint kayaks (for which the legs do not work) and finally the sprint canoes (for which the
stroke frequency is lower than in kayak).
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5.3 Extension of McMahon’s model

In this section, we study the effect of removing the hypothesis of geometric similarity of
boats and the hypothesis of negligible wave drag. Rowing boats do not really have other
constraints than the minimisation of the total drag, so their aspect ratios a and § should
result from the optimisation of the rowing shell at a given load, equivalently immersed
volume Qy and given propulsive power Py. Letting 2 = Qun and P = Py into Eq. (3.11)
(see Sect. 3.5) yields:

IM=ILN"V6 (5.4)

where II; = Py /(pg®/?9,7/6). 11 is thus a decreasing function of N. Given the results of the
optimisation presented in Sect. 3.5 (taking P; = 400 W and ©; = 0.24 m?), we can find the
optimal aspect ratios o and 8* and the optimal Froude number Fr* as a function of the
number of rowers N. This is represented in Fig. 5.4 with the black line and compared to
the empirical data points for rowing boats. We thus recover the increasing evolution of «
with N and the decreasing evolution of Fr with N (see Fig. 5.4(a) and (c)).
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Figure 5.4: Log-log plot of (a) the optimal aspect ratio a*, (b) the optimal aspect ratio 5*,
(c) the optimal Froude number Fr* and (d) the corresponding boat velocity U*, as a function
of the number of rowers N from the optimisation presented in Sect. 3.5 (black line). The
blue dots are the empirical data for real rowing boats (see Table 2.1). The Froude number
is estimated from the world record speeds in the different rowing categories. In (c), the
dashed line represents the scaling law Fr ~ N~1/18 from McMahon’s model. Similarly, in
(d), the dashed line represents McMahon’s scaling law U ~ N1/9.

McMahon’s model predicts the evolution of Fr with N: Fr ~ N~Y/!¥ But we see that
McMahon’s first assumption (o and 8 independent of N) is not exactly true, even though
the evolution of a and B with N over two decades is very small. The increase of o and 3
with N is related to the decrease of the Froude number towards Fr ~ 0.5, that is in the
range where the wave drag is maximum, requiring larger aspect ratios.
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In this framework, the hull velocity U*, which corresponds to the optimal hull geometry, is
written:

pl/3

p!BNHOC(a*(N), B*(N), Fr*(N))1/3

U* ~ N/? (5.5)

This velocity is plotted as a function of N in Fig. 5.4(d). We find an evolution with the num-
ber of rowers close to the observed evolution of the speed records. However, this evolution is
also very close to the scaling law U ~ N/ predicted by McMahon (see black dashed line).
This is related to the fact that, in Eq. (5.5), the drag coefficient C'(a*(NV), 8*(N), Fr*(N))
appears at the power 1/3 and varies slowly with the number of oarsmen N (a* and * vary
slowly with N).

This extension of McMahon’s model, based on accounting for the optimisation of rowing
shells, do not change the final scaling law U ~ N1/9 of the model but allows us to understand
the evolution of the aspect ratio « of current rowing boats.

5.4 A new approach

Using Qx ~ NQp and the first assumption of McMahon’s model (aspect ratios a and
independent of the number of rowers N), one finds that the length of rowing boats scales
as £ ~ N1/3. This is in quite good agreement with the available data for boats from one
to eight rowers (see dashed line in Fig. 5.5(a)). However, in the specific case of rowing, a
minimal spacing between consecutive rowers is needed so that they can perform their rowing
stroke without hitting each other. This minimal spacing is slightly longer than the typical
length of the legs of a rower. This dictates a new dependence of the length of a rowing boat
with the number of rowers, this is:

0=0.(N +a). (5.6)

To check this new relation, we are lucky that there exists a rowing boat, the Stdmpfli
Ezxpress, with 24 rowers measuring 44 m in length (see Fig. 5.6(a)). The corresponding data
point appears in red in Fig. 5.5(a) and Eq. (5.6) gives a good fit of all the data with . = 1.5
m and a = 4.1 (solid black line in Fig. 5.5(a)). Interestingly, /. is of the order of the typical
distance between two consecutive rowers (about 1.3 m for an eight). On the contrary, we
see that the scaling law ¢ ~ N'/3 is not able to account for the data point of the Stampfli
Ezxpress. So we should now use Eq. (5.6) together with the assumption that the width w
and the draft d are now independent of the number of rowers to respect the force balance
along the vertical direction. The same steps as in Sect. 5.2 give:

N\ /3
UQUOO<N+G) , (5.7)

with Us = [2P1/(pwCrl.)]"/? the value reached when N — +oco. Taking P; = 400 W,
w = 55 cm and Cy, = 2.5 - 1073, one has Uy, =~ 7.2 m/s. Looking at Fig. 5.5(b), we
see that the speed attained by the Stdmpfli Express is much lower than the one expected
from McMahon’s model and is actually smaller than the speed reached by an Eight rowing
boat. This is surely related to the saturation of the speed when increasing the number
of rowers expected from Eq. (5.7) but also to the absence of high level competitions with
this boat and to the increasing difficulty for the rowers to remain synchronised when their
number increases (see Chap. 6 for a discussion of the synchronisation problem). This study
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eventually tends to indicate that, if rowing boats in competitions do not have more than
eight rowers, it is for a good reason: boats with more rowers would hardly go faster!

100

8 T T 11717

[ V|

(| Lo (| Lo
11 10 100 41 10 100

N N

Figure 5.5: (a) Length ¢ of rowing boats depending on the number of rowers N in logarithmic
scale. The red dot corresponds to the Stampfli Express (see Fig. 5.6(a)). The black line is
a fit of the data including the red dot, £ = 1.5(N + 4.1), and the dashed line corresponds
to the scaling law ¢ ~ N'/3 from McMahon’s model (see Table 2.1 for the characteristics
of rowing boats). (b) Mean hull velocity U as a function of the number of oarsmen N in
logarithmic scale with the data for the Stampfli Fxpress in red. The black line corresponds
to Eq. (5.7) and is the evolution expected when considering that the length ¢ is linear with
N. The dashed line corresponds to the scaling law U ~ N/9.

Actually, what is expected and observed when considering the different existing types of
man-powered watercraft is the transition in the disposition of the rowers from the line in
the case of rowing boats (see Fig. 5.6(a)) to the surface (two lines of rowers), for example for
Dragon boats (see Fig. 5.6(b)) and even to the volume with the trireme (see Fig. 5.6(c)), a
vessel used in the antiquity which had three rows of oars on each side. Classic rowing boats
have up to 8 rowers, while a Dragon boat has 20 rowers and a trireme about 180. However,
among all these boats the fastest is the eight rowing boat. This is most likely related to the
increase of the total drag, and especially the wave drag, when the disposition of the rowers
on the boat transitions from the line to the surface or the volume.

Figure 5.6: (a) Picture of the Stampfli Ezpress, a rowing boat with 24 rowers measuring 44
m (source: [101]). (b) Picture of a Dragon boat, a racing boat with 22 persons on board
among which 20 rowers (source: [9]). (c) Wood model of a Greek trireme, a boat used in
the antiquity which derives its name from its three rows of oars (source: [3]).
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5.5 Appendix: Characteristics of sprint canoes and sprint
kayaks

Fig. 5.7(a) shows the evolution of the aspect ratio a of both sprint canoes and sprint kayaks.
Although the aspect ratios for sprint canoes are rather constant whatever the number of
rowers N (o ~ 16), for sprint kayaks, the aspect ratio a increases a lot from N = 1 to
N = 4. So the first assumption of McMahon’s model is respected for sprint canoes but not
for sprint kayaks. In Fig. 5.7(b), the evolution of the boat mass My, with the number of
rowers IV is represented. One can see here that mp.q: is not exactly proportional to N for
both sprint canoes and sprint kayaks.

(a) (b)
40 I I 40
@ Sprint canoe ® Sprint canoe
o Sprint kayak o Sprint kayak
30 - 8 30— ° e
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s . 2 ¢
H = o
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Figure 5.7: (a) Length-to-width aspect ratio a of sprint canoes and sprint kayaks as a
function of the number of oarsmen N (see Table 5.1). (b) Boat mass mpoat as a function of
the number of rowers V.

Table 5.1 gives the characteristics of current sprint canoes and sprint kayaks.

Aot ) w (em) b (kg) U (m/s)
C1 5.2 37 13 4.45
C2 6.5 41 18 4.80
C4 9 58 30 5.24
K1 5.2 41 11 4.95
K2 6.5 43 17 5.35
K4 11 45 28 6

Table 5.1: Characteristics of current sprint canoes (C1, C2, C4) and sprint kayaks (K1, K2,
K4). The geometry characteristics and mass are for boats from Nelo supplier [91]. The boat
speed U given in the table is the world record speed in each category on a distance of 1000
m.
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Take home message of Chapter 5

1. The scaling law for the velocity of a rowing shell U ~ N/9, derived by McMahon,
works quite well for a number of rowers ranging from 1 to 8.

2. We extend this model taking into account the optimisation of the rowing shells
depending on their number of rowers. The scaling law of McMahon remains valid
and we find an explanation for the increase of the length-to-width aspect ratio with
the number of rowers.

3. Finally, McMahon’s model is criticised in the regard of an additional constraint
on the length of the boat not taken into account until now. Indeed, in rowing, a
minimal spacing is needed between consecutive rowers. This changes the prediction
of McMahon and gives a velocity that saturates as the number of rowers further
increases.
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A QUESTION OF SYNCHRONISATION

Synchronisation in rowing seems like a crucial condition for those who aim at winning top-
level rowing races. However, in nature, one can observe animals with many legs, such as
krill, swimming in a desynchronised manner. From a physicist point of view, desynchronised
rowing also seems like a great idea because, at high Reynolds number, the desynchronised
gait has one big advantage over the synchronised one: it reduces the fluctuations of speed
and thus the drag on the body. In this study, we have built a scale model of a rowing boat to
deal with the question of the effect of synchronisation on the boat performance. The results
of our model boat are compared to the predictions of a simplified theoretical model.

Synchronisation is also crucial in synchronised swimming.
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Chapter 6. A question of synchronisation

6.1 Introduction

We discuss the effect of the synchronisation between rowers on the speed of a rowing boat.
This question is treated by combining an experimental model of a rowing boat and a sim-
plified theoretical model.

6.1.1 Effect of velocity fluctuations

In rowing competitions, the boat moves with large fluctuations of speed, as already discussed
in Sect. 2.2 (see Fig. 2.7). They are up to 30% of the mean velocity. At first order, let us
model the velocity profile of a rowing boat as a sinusoidal function of time:

U = (U)+ AU cos(2r ft) , (6.1)

where (U) is the mean velocity, AU is the amplitude of the fluctuations around the mean
velocity and f is the stroke frequency. Assuming, as in McMahon’s model (see Sect. 5.2),
that the dissipation of the power P produced by the rowers only comes from skin friction,
one has: P ~ pSyU? (with Sy, the hull wetted surface). So the mean power dissipated over

one rowing cycle is written:
L3 (AU 2
2\ (U)

Thus, compared to a motion at constant velocity, the relative increase of the mean dissipated
power is 3/2(AU/(U))?, which for AU/(U) ~ 30% gives a 13% increase of the dissipated
power. Besides, the velocity fluctuations are also expected to increase the wave resistance
and to give rise to added mass force. Reducing these fluctuations in rowing then appears to
be crucial to avoid energy losses.

(P) ~ pSp(U?) = pSu(U)® (6.2)

6.1.2 Synchronisation in nature

One way of reducing the velocity fluctuations can be found by looking at animal locomotion:
desynchronising the motion of the appendages during the propulsion is often observed and
is indeed a way to achieve a constant velocity.

Figure 6.1: Side-view pictures of a krill at two different times during its swimming cycle.
The proximal segments of the krill’s appendages are highlighted with different coloured lines.
The white bar is 5 mm long. Pictures reprinted from [102].

For instance, shrimps and krills swim thanks to five pairs of legs that are activated in a
desynchronised way, known as metachronal (see Fig. 6.1). This kinematics was shown to
lead to the highest average body velocity for a given mean work [102].

Fishing spiders and salticid spiders also display unsynchronised swimming at the surface of
water. For example, Fig. 6.2 shows time-lapse pictures of the rowing stroke of a salticid
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spider. From the analysis of these pictures, we find that the two pairs of legs that are
involved in the propulsion have a phase-shift of about 125°.

Figure 6.2: Time-lapse pictures of a salticid spider moving at the water surface in a rowing-
like stroke. Pictures extracted from a video by Suter [103]. The time between two images
is about 0.3 s.

6.1.3 Previous studies

The aim of reducing the velocity fluctuations in rowing led to the invention of sliding riggers
in 1877: instead of having a sliding seat with fixed riggers (see Fig. 2.2(a)), this boat had
a fixed seat and sliding riggers (see Fig. 6.3). This new concept significantly improved the
boat speed. However, it was banned by the International Rowing Federation in 1983, as it
was considered more costly than conventional rowing [1].

SeerEmBer 25, 1954 THE JILLUSTRATED LONDON NEWS

Figure 6.3: Drawing of a double scull with fixed seats and sliding riggers found in the
“Illustrated London News” of 25 September 1954.

Phase-shifted rowing has already been considered in the past. This technique was indeed
tested, in 1929, on the Thames by the London Rowing Club (see the video in [104]). But
this trial and others which were conducted in England during the early 1930s lead to in-
conclusive results and to the question of “whether the trifling gain is worth the loss of all
the rhythm, apart from neutralising the genius of strokeship!” [105]. At the 1981 and 1982
world championships, the Soviet women’s cozed four crew placed the coxswain in between
the two pairs so that they could row in antiphase. However, the crew ended up rowing in
synchrony the day of the race. Despite all these full-scale trials and more recent studies both
theoretical [66] or experimental with ergometers [106], it is still unclear whether the very
peculiar syncopated technique is more or less efficient than the conventional synchronised
rowing.

1Strokeship means the art of row strokes, i.e. the art of rowing with a particular stroke.
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6.2 Description of our rowing boat model

To study the influence of oarsmen synchronisation on the boat speed, we built a remote
rowing boat at the scale 1/10 with eight rowing robots. In our model boat, to ensure a
straight trajectory, each rower has two oars. This kind of rowing boat is called an octuple
scull.? Real octuple sculls exist but are not found in rowing competitions. They have the
same characteristics as eight rowing boats: they are approximately 20 meters long and
weigh 100 kg. Our model boat (see Fig. 6.4(a)) is thus 2 meters long with a hull, made of
glass fiber, that has the same shape as an eight rowing boat [107]. We made 8 independent
rowing robots that are controlled separately (see Fig. 6.4(b)). Each robot is made up of
a servomotor in a carriage which moves back and forth thanks to a pulley attached with
a cable to two fixed points on the boat. In the carriage, a bar with two stable positions
simulates the rower hands. When the bar is down, the blades are out of water and when
the bar is up, the blades are in the water. Thus, with this system, the whole rowing cycle
can be described in a similar way as in real rowing. The speed of our robotic rowers and
the phase difference between them, denoted ¢, is controlled with an Arduino board.

Figure 6.4: (a) Picture of our 2-meter long robotic rowing boat at the Ecole polytechnique
swimming pool. (b) Zoom on one robotic rower. The blades are attached to a bar that can
move up and down as the “rower” moves back and forth, thus mimicking the real rowing
cycle.

In Table 6.1 (see Sect. 6.8), the main parameters of our model boat and of a real eight
rowing boat are given. The effect of the motion of the rowers on the boat can be tested
with our model boat. Indeed, even if the ratio of the total moving mass to the total mass
of the boat 8m,/M (with m, the mass of a rower) is smaller for our model boat than for
real boats, it is still significant (8m,/M =~ 0.4). Concerning the flow regime, the Reynolds
number, Froude number and Weber number are much smaller for our model boat than for
real boats. However, the Reynolds number for our model boat (Re ~ 5 - 10°) is close to the
critical Reynolds number Re., (see Sect. 1.4), so that we expect the flow around the hull
to be turbulent in a similar way as for real boats. The difference in the Froude number is
not so important because, for real rowing boats, the wave drag is negligible compared to
the skin friction (see Sect. 2.5). As for the Weber number, in both cases, it is much larger
than 1, so that capillary effects are negligible. Thus, our robotic rowing boat is expected
to model real rowing boats with a similar rowing movement, the displacement of the rowers
on the boat and a similar flow regime, the main difference with real rowing being that, in
our model boat, the kinematics is prescribed, while in reality it is the power injected by the
rowers.

2 An octuple scull (eight rowers with two oars each is different from an eight rowing boat where each rower
has one oar.
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6.3 Experimental results

We performed measurements of the speed of our model rowing boat at the Ecole polytech-
nique swimming pool, changing the phase difference ¢ between consecutive rowers. In the
synchronous configuration (¢ = 0°), we observe that our boat moves with an instantaneous
velocity profile (see Fig. 6.5) similar to the one obtained for real rowing races (see Fig. 2.7).
The velocity increases during the power stroke (between the red and green vertical lines)
thanks to the propulsion of blades, then continues to increase at the beginning of the re-
covery stroke and finally decreases at the end of the recovery stroke because of the motion
of the rowers on the boat and the hydrodynamic friction on the hull. The similarity of
the velocity profiles proves that our model boat displays the same physical features as real
rowing boats. At a pace of one stroke per second, our boat moves at a mean speed close
to 0.35 m/s. That is almost 0.2 boat length per rowing cycle (to be compared with around
0.45 boat length per rowing cycle in real races), with about 12% speed fluctuations (to be
compared with 20 to 30% speed variations in real rowing).

Catch  Release
0.5 I T

0.3r
0.2+

U (m/s)

0.1

Figure 6.5: Instantaneous velocity of our model rowing boat as a function of time for about
three strokes, in the synchronised configuration (¢ = 0°) for f ~ 1.3 Hz. The vertical red
dashed lines indicate the time of the catch and the vertical green dashed lines the time of
the release. The mean speed (U) is indicated with a gray horizontal line. This velocity
profile is obtained from image analysis.

Changing the phase difference ¢ from 0° to 360°, we observe that desynchronising the rowers
indeed reduces the fluctuations of the boat speed, as illustrated in Fig. 6.6(a). They are
for instance decreased up to only 2% of the mean speed for ¢ = 45°. Yet, the at-first
surprising and puzzling outcome of these experiments is that the mean speed of the boat is
maximal in the synchronised configuration by about 8% (see Fig. 6.6(b)). Our main result
is thus in contradiction with our initial intuition: reducing velocity fluctuations does not
increase the mean velocity. This can be explained as follows: before we did not take into
account that when synchronised rowers return together to the stern of the boat during the
recovery stroke, they pull the hull beneath them, accelerating the boat. Thus, there is an
additional inertial boost that is lost when the rowers are desynchronised. Also the efficiency
of the blade propulsion might be smaller in the desynchronised configurations than in the
synchronised one.
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Figure 6.6: (a) Speed fluctuations AU/(U) as a function of the phase-shift between consec-
utive rowers ¢ from the experiment (blue dots) and the numerical model (orange line). (b)
Mean boat velocity (U) depending on ¢ from the experiment (blue dots) and the numerical
model (orange line) (see Sect. 6.4).

6.4 Theoretical framework

To understand these experimental results, we built a simplified theoretical model of rowing.
For the sake of simplicity, let us consider a sweep rowing boat (a boat where each rower has
one oar) with N rowers (see Fig. 6.7). For a sculling boat (a boat where each rower has two
oars), such as in the experiments, the same model holds provided that the total force on the
blades is multiplied by the factor 2.

Vbl /w

Figure 6.7: Schematics of a sweep rowing boat (each rower has one oar) with N = 2 rowers,
where U is the velocity of the boat in the reference frame of the water, vy, /., the velocity
of the blade n with respect to the water, v, s, the velocity of the rower n in the reference
frame of the boat and vy, /; the velocity of the hands of rower n in the reference frame of
the boat.

To derive a model equation for the motion of the boat, we write the momentum conservation
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for the system {boat + rowers + oars}:

dP
EZFM/bl_FR, (63)
where P is the momentum of the whole system, F',, 3 is the force resulting from the propul-
sion with the NV blades and R is the total drag force exerted by the fluid on the hull. We
define U the velocity of the boat with respect to the water and v, /, the velocity of the
center of mass of the rower n in the reference frame of the boat (see Fig. 6.7). We then
have:

N
P:MU+er'vm/h, (6.4)

n=1

where m, is the mass of a rower and M = mypeat + IV X my is the total mass of the system.
Note that we assume the mass of the oars to be negligible.?

The drag exerted on the hull is modelled by R = —1/2pS,C,U%e, , as given by Eq. (2.1).
For a real rowing boat, we take C}, = 2.5 - 1072 (see Sect. 2.5) and, for our model boat, we
found experimentally C}, ~ 0.04 (see Sect. 6.8).

Fluid forces on the blades.

In order to write the total force on the blades at any time during the rowing cycle, we
introduce the function H,(t) such that H,(t) = 1 during the power stroke of the rower n
(blade n inside the water) and H,(¢) = 0 during the recovery stroke of the rower n (blade
n outside the water). The force F',; is then written:

N
Fop =Y Hyt)Fyuy, (6.5)
n=1

where F, y,, is the force exerted by the water on blade n. The typical speed of the blades
with respect to the water is about 5 m/s and a blade measures about 0.5 m x0.25 m (see
Table 2.2 in Chap. 2). So the typical Reynolds number for the flow around the blades is
Re ~ 10°. We thus consider three force components acting on the blades, so that the force
exerted on blade n is written:

where F'p, is the drag, F'r, the lift and F' 4, the added mass force. Firstly, the drag force
on blade n reads:

1
Fp, = =50SuCp(Pn)viy, st (6.7)
where Sp; is the surface of the blade, Cp its drag coefficient, which depends on the blade

angle of attack @, (see Fig. 6.8(a)), vy, /w = |Vbi,/w| and t is the unit vector collinear to
the blade velocity vy, /., Secondly, the lift force is written:

1
Fp = 5psbch(<1:>n)v§ln T s (6.8)

where C7 is the lift coefficient of the blade* and m is the unit vector normal to the blade

3Qars typically weigh about 1.5 - 2 kg.
1C1, can be positive or negative depending on the angle of attack (see Fig. 6.8 (c)).
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velocity vy, /,- The coefficients Cp and O, were determined experimentally by [55] for a
Macon blade and a Big blade depending on their angle of attack (see Fig. 6.8(b) and (c)).

(a) (b) (c)
I I I
— 2+ 8 2 8
- J"#d*._..
- 1 L ., ]
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— S0 S0 ., .
U /bl " ..-"
—1 — —1 .'..v. -
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Figure 6.8: (a) Schematics of a blade in a uniform flow at speed v,,/;; = —vy;/,y. The angle

of attack is denoted ®. (b) Drag coefficient Cp and (c) lift coefficient C, as a function of
the angle of attack ® for a Macon blade and a Big blade (see Fig. 2.3(a) and (b)). For an
angle of attack of 90°, that is for a flow normal to the blade, we recover C;, ~ 0 and C'p ~ 2.
Data taken from [55].

Thirdly, the added mass force reads:

dwvy,, /w

FA = —MN, dt 3

n

(6.9)

with m, the added mass of the blade (see Sect. 1.7.1). The added mass is estimated as
ma =~ Tpwpls /4 with wy, the width of the blade and ¢, the length of the blade (see Fig. 2.3(b)).
Thus, for real blades, m, ~ 30 kg and for the blades in our model boat, m, ~ 26 g.

The speed of the blade n in the reference frame of the hull vy, s, is related to the speed of
the hands of the rower n denoted vy, /;, and the angle 6, (angle between the oar axis and
the y axis, see Fig. 6.7) through the kinematic relation:

Lo : .
Vbl /b =~ Vhay /b = —Loby, [cos(8y,) ex + sin(6y) ey] . (6.10)

Now the speed of the blade in the reference frame of the water reads:

Vpl,y o = [U — 0,0, cos(0,)| ex — 0,0, sin(6y)ey . (6.11)

Finally, the resulting force exerted by the fluid on the blade n, F',,,, projected on the
vector e,, reads:

Uha, /h

CL, Yhan /b i
U

- 77@ U in(6,)

cos(6,)

1
Fopi, = —§prlCDszn/wU [1 -

dU d
—Ma g + mat] [Vhan/ncos(0n)] » (6.12)

with n = ¢,/¥; the ratio between the outboard and the inboard oar lengths.

From here, we make two crude assumptions. Firstly, we suppose that # ~ 0, this is as if
the blades were moving parallel to the direction of motion of the boat, which kills the lift
contribution to the total force. Secondly, we consider that the velocity of the rower’s hands
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and the velocity of the center of mass of the rower are equal, that is: vy, /5 = vy, /5. These
two assumptions are quite far from reality, given the observations made in Chap. 2 (see
Sect. 2.3 for the first assumption, which shows the importance of lift in the propulsion of
top-level rowing boats and see Sect. 2.4 for the second assumption, in particular Fig. 2.14).
However, these two assumptions greatly simplify the expression of the force on the blade:

dU dup, /n

1
Fuoi, = 550 Cplnvp, n = Ul [0y jp — U] = ma—— + man &

- (6.13)

In the following, we use Cp ~ 2, which is the value found experimentally for an angle of
attack ® = 90° (see Fig. 6.8(b)).

Dynamical equation.

Combining the momentum conservation in Eq. (6.3) with Egs. (6.4), (2.1) and (6.5), the
equation governing the velocity of the boat U reads:

N N
dU
(M + maZHn(t)> a = —f,OShChU + PSbZCD ZH" ’T]UT Jh— U|(T}Um/h -U)
n=1 n=1
N dvrn/h
+ ) (manHy(t) — m,) o5 (614
n=1

We take as a characteristic time 7' = 1/ f the period of the rowing cycle and as a character-
istic velocity U* = 2M f/(pSpCh). Writing U = UU* and t = £ T, the equation of evolution
for the dimensionless hull velocity U reads:

N

Power estimation.

We further define p,,, the instantaneous power injected by the rower n, which is written:
Pn = an(t)Fw/bln (t) X Urn/h(t) ) (6'16)
with Fy,p, given in Eq. (6.13). Thus, the total mean power for N rowers Py reads:

N

Py = (palt)) - (6.17)

n=1

6.5 First model: imposed kinematics

As a first model of rowing, we consider the problem at imposed kinematics, that is we
impose the velocity of each rower v, /, and consequently the stroke frequency f. Eq. (6.15)
is solved taking v, j, = mAxzfsin(27 ft + (n — 1)¢), or in dimensionless form:

by, p = TAxf /U*sin(27t + (n — 1)) , (6.18)
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with ¢ the phase difference between consecutive rowers and Ax the characteristic distance
of the rower’s motion on the boat. Following the definition of H,(t), we consider that
Hy(t) = 1if v, s, > 0 and Hy,(t) = 0 otherwise.

6.5.1 Prediction for our model boat

Our model rowing boat was operated at a stroke frequency f ~ 1.3 Hz with Az ~ 3
cm. The different parameters needed for the theoretical model are given in Table 6.1. To
capture the “steady” dynamics, Eq. (6.15) is solved numerically using an explicit Runge-
Kutta method and enforcing the periodic boundary condition: U(f = 0) = U(f = 1). The
comparison between the experimental results and the numerical ones for the mean velocity
and fluctuations of our robotic rowing boat is shown in Fig. 6.6(a) and (b). The numerical
results are in good agreement with the experimental data. In particular, with the numerics,
we recover that the maximal boat velocity is obtained in the synchronised configuration,
even if it is the configuration with the highest speed fluctuations. Note that the evolution
of the mean speed (U) and the speed fluctuations AU/(U) with the phase difference ¢ is
symmetric about ¢ = 180°, which is not what we observed experimentally. This may be
due to the hydrodynamic interactions between the blades in the experiments, which depend
on the phase difference and are not taken into account in our theoretical model. One can
also notice that the smallest fluctuations of the boat speed are obtained for multiples of 45°
(except for 0° and 180°).

6.5.2 Prediction for a real rowing boat

We now solve the same equation (Eq. (6.15)) in the “steady” (or periodic) regime with the
parameters of a real eight rowing boat (see Table 6.1). In particular, we take f = 0.65 Hz
and Az = 1.3 m, which are close to the real values in competitions.

4.5
(a) ——my =0 kg
—— my = 22.5 kg
= 4N /| my, = 45 kg
E —— my = 67.5 kg
~ —— my =90 kg
= 3.5
3

|
0O 45 90 135 180 225 270 315 360

¢ (°)

Figure 6.9: (a) Mean hull velocity (U) and (b) fluctuations of velocity AU/(U), as a function
of the phase difference ¢ predicted by our theoretical model at imposed kinematics for five
different values of the rower’s mass m,.
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The evolution of the mean hull velocity (U) and velocity fluctuations AU/(U) with the
phase difference ¢ is presented in Fig. 6.9 with the mass m, of each rower ranging from 0
to 90 kg. The curves (U) and AU/(U) obtained for m, = 90 kg, which is approximately
the right value for heavyweight rowing crews, show qualitatively the same evolution with
¢ as the one obtained for our model boat (see Fig. 6.6). For a given mass m,, we observe
that the mean hull velocity (U) remains nearly constant over the range 45° < ¢ < 315° .
Furthermore, as the rower’s mass m, increases, the mean velocity (U) for ¢ = 0° increases,
while for 45° < ¢ < 315° it keeps almost the same value. For m, = 0 kg (no moving mass
on the boat), then the mean hull velocity for ¢ = 0° is smaller than in the desynchronised
configurations. On the contrary, for m, = 90 kg, the maximum of (U) is reached for ¢ = 0°.

We thus find the same result for real rowing boats than for our model boat: at imposed
kinematics and for a sufficiently large rower’s mass (typically for m, > 22.5 kg), the fastest
boat is the synchronised one. This model gives a second interesting result: when the mass
moving on the boat is small, then it is better to be desynchronised. However, this model
at imposed kinematics is not very realistic! In reality, given the physiology constraint, one
should rather consider that rowers inject a constant power.

6.6 Second model: imposed power

We consider the same problem but this time at imposed power instead of imposed kinematics.
We solve Eq. (6.14) for a real rowing boat in the “steady” regime, now enforcing that the
total mean power Py given in Eq. (6.17) is a constant. We take Py /N = 500 W, which is
a typical order of magnitude for the mean power injected by a rower during a competition
[50, 84]. In this model, the stroke frequency f is a result of the computation and is not
imposed a priori. Fig. 6.10 shows the evolution of the mean hull velocity, the velocity
fluctuations and the stroke frequency f with the phase difference ¢. We first observe that
the velocity fluctuations AU/(U) are the same as in the model at imposed kinematics. This
is expected as, in this new model, the only difference with the model at imposed kinematics
is that the stroke frequency is free, which do not affect the value of the ratio AU/(U).

To keep the total mean power Py constant, the stroke frequency f changes with the phase
difference between rowers. Its value remains however close to the one imposed in the previous
model, which was f = 0.65 Hz. For 45° < ¢ < 315°, the stroke frequency is almost
independent of the rower’s mass m,, while for ¢ around 0°, f decreases with m,. This
means that the force exerted by the rowers on the oars becomes larger as m, increases,
allowing f to decrease to maintain a constant injected power.

If we now look at the evolution of the mean velocity (U) with ¢, we first observe, as for
the stroke frequency f, that for 45° < ¢ < 315° the rower’s mass m, has no influence on
the mean hull velocity, while for ¢ = 0°, (U) increases with m,. It is also interesting to
notice the position of the local maxima between 0° and 180° sorted by order of magnitude:
0°, 360/2 = 180°, 360/3 = 120°, 360/4 = 90°, etc. Local maxima for (U) are thus reached
when groups of synchronised rowers can be formed (for example, for ¢ = 180°, there are
two groups of four synchronised rowers). Eventually, contrary to the model at imposed
kinematics, we now find that, whatever the rower’s mass m., the fastest boat is always the
one with synchronised rowers (¢ = 0°).
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= 3.8 i | ——m, =90 kg
)
36

0.76

0.72
0.68
0.64 |- s

0.6

056 | | | | | | |
0 45 90 135 180 225 270 315 360

¢ (%)

Figure 6.10: (a) Mean hull velocity (U), (b) fluctuations of velocity AU/(U) and (c) stroke
frequency f, as a function of the phase difference ¢ predicted by our theoretical model at
imposed power for five different values of the rower’s mass.

6.7 Discussion

Our conclusion is a bit disappointing as it will not change the way rowers are currently row-
ing: we find both numerically and experimentally that the fastest boat is the synchronised
one.

From the theoretical model at imposed power (the most realistic one from a physiological
perspective), we see that the mass moving on the boat, which is equal to Nm,, plays an
important part in the story. Indeed, for ¢ = 0° (synchronised configuration), the higher the
rower’s mass, the fastest the boat. On the opposite, in the desynchronised configurations,
the rower’s mass has almost no effect on the mean boat velocity. To understand this, one
should remember that the velocity of the hull is maximum during the recovery stroke (see
Fig. 2.7(a)) because of the simultaneous motion of the rowers towards the stern of the
boat. This effect increases with the mass of the rowers but it is lost when the rowers are
desynchronised.

Our result contradicts the one from Brearley et al. who found that an eight rowing boat
with two groups of four synchronised rowers (corresponding to ¢ = 180°) would go faster
than the synchronised boat [66]. The discrepancy with our model is related to the efficiency
of the blade propulsion (developed in Appendix A). If the propulsive efficiency was the same
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for all phase differences, then the model at imposed force and kinematics derived by [66]
would apply and give the result expected in the first place when we first considered the drag
on the hull (see Subsect. 6.1.1). However, imposing both the force and the kinematics at
the same time is impossible as they are related by Eq. (6.12) or Eq. (6.13). In Appendix A,
we show that, when imposing the force applied by the rower on the blade, then one can
compute the stroke frequency f. Our model at imposed power imply that the propulsion
is less efficient in the desynchronised configuration than in the synchronised one, which
explains the changes in the stroke frequency and in the resulting mean hull velocity.

We should now mention the limitations of our theoretical model. For the models at imposed
kinematics and imposed power, the order of magnitude for the mean hull velocity is about
2 times smaller than the one for rowing boats in competitions. This is surely related to the
crude assumptions made earlier in the model, in particular the first one which removed the
contribution from the lift to the force on the blade. Taking lift into account in the model
would obviously affect our results but is not expected to change the observed tendencies. As
for the second assumption, according to Fig. 2.14, the velocity of the rower’s hands is about
twice the velocity of the rower’s center of mass, which could slightly reduce the effect of
the moving mass. Eventually, in our model at imposed power, we do not take into account
the recovery stroke in the power estimation. The power injected by the rowers during this
part of the stroke is indeed neglected compared to the one injected during the power stroke,
which seems a reasonable hypothesis.

6.8 Appendix: Parameters of our model boat

To estimate the hull drag coefficient C}, of our model boat, we conducted the same experi-
ment as the one described in Sect. 2.5 for a real boat (see also Fig. 2.15). The instantaneous
hull velocity during a deceleration phase is measured (see Fig. 6.11) and fitted using Eq. (2.3).
This fit yields Uy ~ 0.21 m/s and 7 ~ 3.7 s, which, with M ~ 2 kg and Sy, ~ 0.13 m?, gives
Ch ~ 0.04.

0.25

0 2 4 6 8 10

Figure 6.11: Instantaneous speed of our model rowing boat, as a function of time during
a deceleration phase (blue curve). The black line is a fit of the experimental curve using
Eq. (2.3) with Uy ~ 0.21 m/s and 7 ~ 3.7 s.

The parameters of our model boat are listed in Table. 6.1 together with the parameters for
an eight rowing boat for comparison.
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Parameter Model boat Real boat

¢ (m) 2 20
w (m) 0.06 0.55
Mpoat (kg) 1.35 97
m, (kg) 0.1 90
M (kg) 2.15 820
8my /M 0.4 0.9
Sy (m?) 0.13 13
Ch 0.04 0.0025
0y (cm) 4 45
wy, (cm) 2 21.5
Sh (m2) 8.107* 0.1
Cp 2 2
ma (kg) 0.026 30
n ) 2.2
Re 5-10° 108
Fr 0.07 0.4
We 2500 7109

Table 6.1: Typical values of the relevant parameters for our model boat and for an eight
rowing boat. The last three parameters are dimensionless parameters characterising the
flow around the hull. The Weber number We compares the inertia of the fluid to its surface
tension.
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Take home message of Chapter 6

1. Synchronisation in rowing is responsible for large fluctuations of speed, which
in turn increase the energy lost by friction on the hull compared with a motion at
constant speed.

2. To study the effect of the synchronisation of rowers on a rowing boat, we built
a robotic rowing boat at the scale 1/10 with eight robotic rowers controlled sep-
arately. We observed that the boat was going faster in the synchronised configuration.

3. We made a simplified theoretical model of rowing and considered two different
hypotheses: imposed kinematics and imposed power, among which the most realistic
one physiologically is imposed power. The model with this hypothesis also predicts
that the fastest boat is the synchronised one.

4. We explain this result by highlighting two key ingredients: the propulsive
efficiency, which decreases when the rowers are desynchronised and the mass of the
rowers, which does not affect much the mean hull velocity in the desynchronised
cases but significantly increases the mean velocity in the synchronised one.
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SHAPE EFFECTS IN FIN PROPULSION

Propulsion in water or at its surface can also be achieved with flexible plates, called fins,
which were inspired by fish swimming. In this experimental and theoretical study, we look
at the effect of geometry and elasticity on the propulsive performance of simple rectangular
flexible fins subjected to a heaving forcing. The optimal design of a rectangular fin is mostly
dictated by its resonant frequency.

—_— e

—

Picture of the tail of a Humpback whale. Source: [9].
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7.1 Position of the problem

The locomotion of animals in water has been widely studied over the past years [108, 109,
110, 111, 112]. In particular, the propulsion of fishes and mammals has been divided into
two main categories: the anguilliform and carangiform modes of propulsion [108]. Slender
fishes such as eels (see Fig. 7.1(a)) belong to the anguilliform group. In this undulatory
mode of propulsion, the whole body is involved in the propulsion. The carangiform group
gathers larger and faster fishes, such as salmons (see Fig. 7.1(b)) or sharks, for which only
the posterior part of the body participates in the propulsion.

Figure 7.1: (a) Common eel Anguilla vulgaris and (b) a salmon Salmo salar. Pictures
reprinted from [108].

The carangiform propulsion relies on the flexibility of the appendages involved, which is
thought to enhance swimming efficiency [113, 114]. To get insight in the propulsive mecha-
nisms at stake, a number of studies modeled this propulsion theoretically [115, 116, 117, 118],
numerically [119] or experimentally [113, 114, 120, 121, 122] with pitching and heaving flexi-
ble foils and sheets. Most studies indicate that the highest propulsive efficiencies are attained
for forcing frequencies close to the resonant frequencies of the fin [113, 120].

Inspired by fish swimming, fins (also called flippers) were designed for human swimming.
Their invention is actually fairly recent. The French lieutenant commander Louis de Corlieu
(1888 — 1967) designed the first fin model during the 1920s (see Fig. 7.2(a)) and patented it
in 1933 [123]. It then took about 30 years, until the 1950s, for this invention to be adopted
and to become a usual accessory in swimming pools (see Fig. 7.2(b)). With the development
of new materials (plastic or carbon fiber), the monofin (see Fig. 7.2(c)) started to be used in
the early 1970s and allowed to beat all fin-swimming world records. Today’s world records
are 13.85 s in apnea with a monofin (on the 50 m distance) and 15 s at the surface [125].
This makes an 8% difference, which is related to the appearance of wave drag at the water

(a) (b)

Figure 7.2: (a) Replica of the first fin model designed by Louis de Corlieu in the 1920s
(source: [124]). (b) Picture of one of the current fin models. (c) Picture of one of the
current monofin models.
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surface (see Sect. 1.6). These records can be compared with the world record in freestyle
on 50 m, which is 20.9 s, corresponding to a 40% difference with the monofin record at the
surface.

Over the years, the shape of fins has become very complex. Today they have holes and
grooves and are made of materials with well-controlled mechanical properties to maximise
their propulsive efficiency. Here, we model the fin as a simple rectangular flexible plate, sim-
ilarly to previous studies, and study the effect of the dimensions of the fin on its propulsion.

7.2 Experimental set-up

We use the experimental set-up presented in Fig. 7.3 and inspired by [126, 127]. Two
identical flexible plates are attached at the extremities of a rod on either side. This rod
has its center linked to a vertical shaft which is set in translation by an electromagnetic
linear actuator and is free to rotate about its axis. When the system oscillates vertically, it
spontaneously starts rotating, so that it can be seen as an experimental model of swimming
with fins. The advantage of the cylindrical geometry is that the motion is unrestricted in
the horizontal direction. However, the drawback is that, at high speeds, the fins move in a
fluid disturbed by the preceding fin. We focus on rectangular fins of length L, width b and
thickness e (see Fig. 7.3).

(NEN)
b

Figure 7.3: Schematic of the experimental set-up. Two identical fins made of a rectangular
flexible plate of length L, width b, thickness e (¢ < b < L) and Young’s modulus E ~ 2
GPa are attached to a rod, itself connected to a vertical shaft. The whole system is forced
to oscillate at the frequency f with the amplitude A. The fins are immersed in a water tank
of typical size 1 m at a distance d from the water surface.

With this set-up, we measure, on the one hand, the fin speed U and, on the other hand, the
propulsive force F' while preventing the rotation of the system (i.e. U = 0). We observe
that the speed U is related to the force F' through the simple force balance F' ~ U? (see
Sect. 7.6), which means that the measured force F' is close to the propulsive force when the
system is free to rotate. Therefore, in the following, we focus on the characterisation of the
propulsive force. The experiment is conducted for different forcing amplitudes, denoted A,
and forcing frequencies, denoted f, as well as different geometries of the plate.
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7.3 Experimental results

We first present the response of a rectangular plate to an oscillatory forcing. Then, the
effect of the shape of the fin is discussed. Finally, we study the effect of the distance of the
fin to the water surface, denoted d.

7.3.1 Rectangular plate response to a forcing

Here, we study the effect of the forcing frequency f and amplitude A on the response of a
rectangular fin of length L = 8.5 cm, width b = 5 ¢cm and thickness e = 1 mm. When forced
to oscillate, we observe that the plate deforms. We define A, the amplitude of oscillation of
the trailing edge. Fig. 7.4 shows the area swept by the fin when looking at it from the side.
For low frequencies (f < 3 Hz), the shape of this area remains nearly rectangular meaning
that the plate does not deform much (4, ~ A). On the contrary, for larger frequencies,
the shape of the swept area changes a lot. In particular, the amplitude A, is maximum for
f = 6 Hz, which corresponds to the first resonant frequency of the fin, denoted f;. We also
notice the appearance of a node for f = 9 Hz, which corresponds to the appearance of the
second beam mode (see Fig. 7.9 in Subsect. 7.4.1).

2 3 1 5 6 7 8 9 10
| | ! | ! | | | | f (Hz)

i

Figure 7.4: Pictures of the area swept by the fin for A = 5 mm and increasing forcing
frequencies. For each picture, the leading edge is at the top and the trailing edge at the
bottom. The width of the swept area corresponds at the top to the forcing amplitude A and
at the bottom to the trailing edge amplitude A,. The pictures are obtained by superposition
of images over a few cycles.

To be more quantitative and similarly to previous studies [114], from side-view videos of
the plate motion, we measured the amplitude at the leading edge A and at the trailing edge
Ay, as well as the phase difference between the leading edge and the trailing edge motions,
denoted 1. Fig. 7.5(a) shows that the ratio A,/A is indeed maximum for f = f; ~ 6 Hz for
the three different values of the forcing amplitude A. We further observe that, close to the
resonant frequency, the ratio A;/A becomes lower as A becomes larger, which results from
non-linearities in the equation of deformation of the plate. The same tendency is observed in
[114]. As for the phase difference 1), we observe that it increases with the forcing frequency
f, while it does not depend much on the forcing amplitude A (see Fig. 7.5(b)). At low
frequencies, 1 is close to 0: the leading edge and the trailing edge are in phase. In this
case, the time needed for the waves to propagate from the leading edge to the trailing edge
is much smaller than the period of the forcing. This is not the case anymore when the
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Figure 7.5: (a) Ratio of the trailing edge amplitude to the leading edge amplitude A,/A
and (b) phase difference ¢ between the trailing edge and the leading edge, as a function of
the forcing frequency f for three different forcing amplitudes A.

frequency is increased and gets closer to the first resonant frequency fi, which qualitatively
explains the increase of the phase difference .

We measured the propulsive force F for different forcing frequencies and forcing amplitudes.
The evolution of F' with the forcing frequency f is similar to what was observed by Quinn
et al. for plates of different bending stiffnesses [113]. In particular, one can see that the
resonant frequency f; delimits two regimes (see Fig. 7.6(a) for A = 13 mm). This is even
more visible in logarithmic scale (see Fig. 7.6(b)), with the slope of the curve F'(f) before the
resonance being larger than the one after the resonance. In the following, we characterise
the regime before the resonance, that is for f < fi;. Two different cases should then be
considered: small deformations of the plate for A < L and large deformations for A ~ L.
In the case of small deformations (A < L = 85 mm), we observe that, F' ~ A2 f* while for
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Figure 7.6: Propulsive force as a function of the forcing frequency for three different values
of the forcing amplitude in (a) linear scale and (b) logarithmic scale. The resonant frequency
f1 is indicated by a vertical dashed line. In (b), the violet line is a fit of the data for A = 13
mm and f < f; ~ 6 Hz (F = 1.8-10~* f4); and the green line is a fit of the data for A = 65
mm (F =1.5-1072 f3).
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large deformations we find F' ~ A2f3 (see Fig. 7.6). The scaling for small deformations is
in agreement with the scaling analysis presented in Subsect. 7.4.2.

7.3.2 Shape effects

Fig. 7.7(a) illustrates the typical evolution of the propulsive force F' with the forcing fre-
quency for plates of different lengths. As previously observed in Fig. 7.6(a), we see that,
at the resonant frequency fi, the evolution of F' with the forcing frequency changes. We
denote Fy = F(f1) the propulsive force reached at the resonant frequency. The length of
the plate L has a significant effect on both the resonant frequency fi; and the value of Fi:
an increase in the length of the plate L decreases F}, as well as the resonant frequency fi.

We find that the force at the resonance Fj is inversely proportional to L*.

(a) (b)
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Figure 7.7: (a) Propulsive force F' as a function of the forcing frequency f for three fins
of different length L but same width (b = 5 cm) and same thickness (e = 1 mm), with
A = 13 mm. For the three data sets, the position of the resonant frequency f; of the plate is
highlighted by a vertical dashed line and the corresponding value of the propulsive force Fj
is indicated by a horizontal dashed line. (b) Propulsive force rescaled by the characteristic
force F. = Fe3bA%/L* as a function of the frequency rescaled by the resonant frequency f;
for the three data sets plotted in (a) and for plates of varying length, width and thickness.

The red line represents the function f(z) = 2*.

Considering plates of different length L, width b and thickness e, we find that the resonant
frequency fi scales as the characteristic frequency f. = \/Ee?/(12pL*b), with E the Young’s
modulus of the plate (see Fig. 7.10 in Sect. 7.4.1). Then, we obtain that the force at the
resonance F; depends linearly on the width b and scales as e3. Finally, in the limit of small
deformations, we get: I} ~ F. = Ee3bA?/L*, which is consistent with the scaling analysis in
Subsect. 7.4.2. Fig. 7.7(b) shows the evolution of the force F' rescaled by the characteristic
force F, with the forcing frequency f rescaled by the resonant frequency f; for plates of
different length, width and thickness. All the data collapse for f/f1 < 1 proving the validity
of both scales.

7.3.3 Free-surface effect

Now, for the same fin as in Sect. 7.3.1 (L = 8.5 cm, b = 5 cm and e = 1 mm), we change
its distance to the air-water interface, denoted d, and study how this affects the propulsive
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force F' and the fin velocity U. When getting closer to the water surface the propulsive
force and fin velocity are expected to decrease to zero when d = 0. This is what can be
observed in Fig. 7.8(a) and (b), where F' and U are plotted as a function of the ratio d/b.
One can see that the distance from which the free-surface starts to play a role is of the order
of magnitude of the fin width b. We further notice that the distance of influence of the
free-surface is smaller for the propulsive force than for the fin velocity. This difference can
be explained by the appearance of wave drag, which increases significantly the total drag
force on the fin (see Sect. 1.6).
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Figure 7.8: (a) Propulsive force F' and (b) fin velocity U, as a function of the distance to
the free-surface d rescaled by the width of the fin b (for f =5 Hz, A =13 mm). The black
dashed line in each plot indicates the value reached far from the free-surface.

Eventually, this part highlights that the free-surface has a strong effect on the propulsion
with fins when the distance from the free-surface becomes smaller than the width of the fin.
This is one of the reason why the world records in fin-swimming on the 50 m distance are
by 8% smaller at the surface than in apnea.

7.4 Theoretical model

Here we focus on the deformation of a rectangular fin deep underwater, subjected to a
heaving motion at the leading edge. As observed in the experiments, this forcing produces
an horizontal motion of the fin at the speed U. One can define two Reynolds numbers:
along the vertical Re, = pAfL/u and along the horizontal Rep = pUL/u. Taking A = 10
mm, f =5 Hz, L =10 cm and U = 0.5 m/s as typical values in the experiments, one finds
Rey, ~ 5000 and Rep, ~ 50000. The flow around the fin is thus at high Reynolds number in
both cases. The typical aspect ratio b/ L is of the order of 0.5. This corresponds to the upper
limit of validity of the slender-body theory developed by Lighthill [115], which will still be
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used in the following. We will further assume that the boundary layer remains attached to
the fin and that the deformation of the fin is small (compared to its length L).

7.4.1 Equation of deformation of the fin

General expression and boundary conditions.

Let z(x,t) be the vertical position of an element of the plate of surface b x e in = at time
t. With the approximation of small slope (or equivalently small deformation of the fin
|0z/0x| < 1), the Newton’s second law applied to an element of the fin of length ds ~ dx
and projected onto the vertical axis leads to the Euler-Bernoulli equation [128]:
02z 0tz

pseb——= o012 EI@ = fF/S ) (7.1)
where pg is the density of the fin, I = be3/12 is the second moment of area and JFys is the
force per unit length exerted by the fluid on the fin.

The boundary conditions correspond to a sinusoidal forcing imposed in z = 0 and no force
and torque at the end of the fin (in x = L). Thus, one has:

Ar=0,1) = gsin(%rft), (7.2a)
%(:U:O,t) = 0, (7.2b)
gj;(:z:L,t) — 0, (7.2¢)
Zig(:lj:L,t) = 0. (7.2d)

The complicated task is now to model the force exerted by the fluid on the fin fr/g.

Model for fr;s and equation of deformation of the plate.

Similarly to [129], we model the force exerted by the fluid on the fin fr/g as the sum of
added mass force and pressure drag, so that:

0z
ot

2, 2,
Frys = (8 +2U6 +U23 z) 1prD82

ot? Otox dz? ot ’ (7.3)

where m, is the added mass per unit length, U the horizontal speed of the plate and Cp
the drag coeflicient of the plate. The added mass is written: m, = prC’a with C, the added
mass coefficient (C, ~ 7/4 for a plate, see Sect. 1.7.1).

Now given that pseb < m, = pb?C, (because ps ~ p, Cy ~ 1 and e < b), the equation of
deformation of the plate is written:

0z 0z |0z
08 prD ot

022 0% 0%
U ot

2 —_—
pyCa <8t2 HW g U

+ EI— =0. (7.4)
)

Taking L as the characteristic length, 7 = L2/pb2C,/(EI) as the characteristic time and ¢ =
L/T as the charactqristic spee(j, we deﬁng the following dimensionless variables: & = x/L,
2=z/L,t=t/r,U=UJe, A= AJ/L, f = fr and v = CpL/(2C,b). The dimensionless
beam equation is written:

0%z 0%z 0%z 0%z 0z |0z

+2U +U? SaMpT Vo) ke
o2 007 032 a1 " T oi | o

=0, (7.5)

108



7.4. Theoretical model

with the boundary conditions:

22=0,1) = ’jsm(zwﬁ), (7.6a)
gi(fzo,f) = 0, (7.6b)
g;i(:z»:l,f) = 0, (7.6¢)
gz(ﬁzsz) = 0. (7.6d)

Solving method: projection onto modes of the free beam.

We follow the method developed by Paraz et al. [118]. Let us consider the equation of a
free plate (corresponding to taking U = 0 and v = 0 in Eq. (7.5)):
0%z 0'z
— +===0 7.7

with the boundary conditions that the plate is embedded in Z = 0 and free in = 1:

2&=0,t) = 0, (7.8a)
gz(aezo,f) = 0, (7.8b)
g;z;(fczl,f) = 0, (7.8¢)
g;’i(i":l,f) = 0. (7.8d)
A solution of this equation is of the form 2(,#) = Kéi(ﬁ:)eikgf with K a constant and:

A A R sink; —sinh k; , | . . R
i(Z) = i) — cosh(k; — ;&) — sinh(k;z)) , .
Zi(z) = cos(k;z) — cosh(k;z) + cos ki coshi ki (sin(k;z) — sinh(k;)) (7.9)
where k; is the solution of the equation: cos(k;) cosh(k;) = —1. One finds for the first three
modes: ki ~ 1.875, ko ~ 4.694 and k3 ~ 7.855.
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Figure 7.9: Plot of the first three modes Z;(#) of an embedded-free beam (see Eq. (7.7)).

As can be seen in Fig. 7.9, the n'® mode crosses the horizontal axis n — 1 times, so that the
beam is more and more deformed as the number of the mode increases. Moreover, it is clear
that a higher mode corresponds to a higher resonant frequency. This study is restricted to
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quite low frequencies (f small compared to k3/(277)), so the solution of Eq. (7.5) can be
approximated by a linear combination of the first three beam modes:

2@, 1) ~ (A + a121(2) + a222(T) + azz3 (2 ))