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Caroline, Daniel, Toai, Antoine), dont l’aide est très précieuse ; Renan pour son sens du
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Résumé de la thèse

Plusieurs problèmes d’optimisation – dans l’eau ou à l’interface avec l’air – sont abordés
dans cette thèse, allant de l’optimisation de la forme des coques de bateaux à celle de la
propulsion en aviron et dans la nage avec palmes. Des approches théorique, expérimentale
et numérique sont ainsi combinées.

Dans le chapitre 1, nous identifions d’abord les paramètres sans dimension qui influencent
la trâınée sur un objet se déplaçant dans l’eau ou à son interface. Les valeurs typiques de ces
paramètres pour les bateaux et quelques animaux sont données. Ensuite, nous décomposons
la force de trâınée en trois termes principaux qui sont chacun détaillés: la trâınée de peau,
la trâınée de pression (ou de forme) et la trâınée de vague. Enfin, la composante de masse
ajoutée, pertinente pour les mouvements instationnaires, est présentée.
Dans le chapitre 2, nous introduisons d’abord les bases de l’aviron. Ce sport mêle phys-
iologie, mécanique et dynamique des fluides, ce qui le rend beaucoup plus complexe qu’il
n’y parait. A partir d’expériences et de données de terrain, nous analysons ensuite la
cinématique du bateau, d’une rame et d’un rameur. Enfin, un modèle de trâınée sur la coque
d’un bateau d’aviron est proposé et validé par des expériences et des études antérieures.

Dans une première partie, nous nous intéressons à la question de l’optimisation des formes
de coque de bateaux.

Les données empiriques révèlent une grande variété de formes de coque parmi les di↵érentes
catégories de bateaux. Dans le chapitre 3, nous présentons une approche théorique mini-
male pour traiter de l’optimisation de la forme de la coque d’un navire. Nous montrons que
les rapports d’aspect de coque optimaux résultent – pour une charge et une puissance de
propulsion données – d’un équilibre subtil entre la trâınée de vague, la trâınée de pression
et la trainée de peau. Les coques élancées sont plus favorables en terme de réduction de
la résistance de vague et de la trainée de pression, tandis que les coques plus larges ont
une surface mouillée plus petite pour un volume immergé donné, ce qui réduit la trainée
de peau. Nous comparons nos résultats théoriques aux données réelles et expliquons les
di↵érences observées en considérant les autres contraintes de conception des coques, telles
que les contraintes de stabilité ou de manoeuvrabilité.
Le chapitre 4 a pour but d’évaluer l’e↵et de l’asymétrie avant-arrière d’une coque sur sa
trâınée totale et en particulier sur sa trâınée de vague. Nous considérons un ensemble de
coques d’asymétrie croissante et déterminons à la fois expérimentalement et numériquement
leur trâınée pour trouver l’asymétrie optimale. La comparaison entre les deux approches
fournit de nouveaux éléments particulièrement intéressants dans le contexte de l’optimisation
des formes de coque.

Dans une deuxième partie, nous étudions la propulsion en aviron et dans la nage avec palmes.

Dans le chapitre 5, nous revenons ainsi sur la question de la dépendance de la vitesse d’un
bateau à rames avec le nombre de rameurs. On constate en e↵et avec les records du monde
dans les di↵érentes catégories d’aviron que la vitesse augmente lentement avec le nombre de
rameurs. McMahon a montré que la relation entre les deux est une loi de puissance (avec
une puissance 1/9) qui correspond assez bien aux observations. Nous retirons deux des
hypothèses du modèle de McMahon et constatons que cela a↵ecte peu la loi de puissance.
Enfin, nous considérons une limitation du modèle de McMahon pour un grand nombre de
rameurs, qui découle de la nécessité d’un espacement su�sant entre rameurs consécutifs.
Le chapitre 6 s’intéresse à la question de la synchronisation des rameurs sur un bateau
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d’aviron. En e↵et, la synchronisation en aviron apparâıt comme une condition cruciale pour
remporter les courses de haut niveau. Cependant, dans la nature, on peut observer des ani-
maux avec plusieurs pattes, comme le krill, nageant de manière désynchronisée. Du point de
vue du physicien, l’aviron désynchronisé semble une bonne idée car il réduit les fluctuations
de vitesse et donc la trâınée sur le bateau. Dans cette étude, nous avons construit une
maquette de bateau d’aviron à l’échelle 1/10 pour étudier l’e↵et de la synchronisation des
rameurs sur les performances du bateau. Les résultats expérimentaux sont comparés aux
prévisions d’un modèle théorique.
La propulsion dans l’eau ou à sa surface peut également être réalisée avec des plaques flex-
ibles, appelées nageoires, inspirées de la nage des poissons; c’est l’objet du chapitre 7.
Dans cette étude expérimentale et théorique, nous examinons l’e↵et de la géométrie et de
l’élasticité sur les performances propulsives de plaques flexibles rectangulaires soumises à un
mouvement vertical forcé. La géométrie optimale d’une plaque rectangulaire est principale-
ment dictée par sa fréquence de résonance.
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Foreword

Once during my thesis, as I was briefly presenting the research that we were conducting
with Romain Labbé on rowing, a member of the audience made the remark that it had been
two thousand years that people were rowing in synchrony, so why consider another way
of rowing? To be exact, it has been more than two thousand years that people are using
oars to propel boats: the first representation of a rowing boat dates back to 5800 BC in
Finland [1]. But still, rowing greatly evolved over the centuries from the Phoenician boats
or Greek triremes (boats with three rows of oars), as represented on reliefs from antiquity
(see Fig. 1), to modern rowing boats and there is still a room for improvement in today’s
rowing technique and equipments. The first record of a rowing race is found in the Aeneid
written between 29 and 19 BC by Virgil (70 – 19 BC).

(a) (b)

Figure 1: (a) Phoenician warship with two rows of oars found on a relief from Nineveh,
around 700 BC [2]. (b) Lenormant relief from the Athenian Acropolis, depicting the rowers
of an Athenian trireme (with three rows of oars), around 410 BC. Pictures taken from [3].

Race rowing, as the modern sport known today, appeared in England during the reign of
Henry VII (1509 – 1547) [1]. With the competitions and the worldwide development of
rowing, important progresses in the equipment and the technique were made. For instance,
in the 1860s, slides with wheels were invented as, until that time, rowers were greasing their
seat and wearing leather bottom trousers to increase the stroke length [1]. In the meantime,
the boats became narrower and narrower, leading to the development of riggers1 to increase
or at least keep the same leverage as before.

The observed evolution of the aspect ratio of rowing boats over the years is related to the
aim of minimising the total drag on the hull. This objective is actually common among all
ship categories as they seek to expend the minimum energy to move at a given speed with a
given load under some constraints, such as stability, manoeuvrability or seakindliness. The
experimental study of the flow past a ship hull and of the corresponding drag force exerted
on the hull dates back to Leonardo da Vinci (1452 – 1519), who tested three ship models
of di↵erent fore-aft distribution of volumes [4]. Samuel Fortrey (1622 – 1681) carried out
experiments with di↵erent models towed in a tank by falling weights [5]. Around 1757,
Pieter van Zwijndregt (1711 – 1790) also used this technique in his towing experiments as
shown in Fig. 2(a). Towing three di↵erent hulls (represented in Fig. 2(b)), he concluded
that the largest width of the hull should be as far towards the stern as practically possible.
The English engineer William Froude (1810 – 1879) built the first modern towing tank
(85 m long, 10 m wide and 3 m deep, see Fig. 3) and found a scaling law, which is still
used today, to extrapolate the results from towing tests at small scale to real ship hulls.

1A rigger is a bracket on a racing shell to support the rowlock (see Fig. 2.2).
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(a) (b)

Figure 2: (a) Apparatus and (b) hull shapes used by Pieter van Zwijndregt in his towing
experiments around 1757. The model hulls were towed over a 50 m distance. Reprinted
from [6].

The development of the corresponding theoretical framework started with the work of the
Australian mathematician Michell (1863 – 1940) [7], which was then pursued by Havelock
(1877 – 1968) [8]. Various numerical methods to model the flow past a ship were used from
the 1960s following the introduction of computers [5]. However, towing experiments are still
used today to precisely predict the resistance of ship hulls and, because of the complexity
of the problem, the optimisation of ship hulls is still an active field of research.

In this thesis, we first distinguish the di↵erent drag components acting on an object moving
at the air-water interface (Chap. 1). In Chap. 2, we introduce the basics of rowing and
present kinematic analyses of rowing. As mentioned above, the length-to-width aspect ratio
of rowing boats has increased over the years. Chap. 3 on the optimal aspect ratios of ship
hulls can help understand this evolution. Then, following the observations of Pieter van
Zwijndregt, we seek the optimal asymmetry of ship hulls (Chap. 4). In Chap. 5, the e↵ect of
the number of rowers on the mean boat speed is discussed. This is followed by the study of
the e↵ect of the synchronisation between rowers (Chap. 6). Finally, we identify and discuss
the propulsive mechanism at stake in fin-swimming (Chap. 7).

(a) (b)

Figure 3: (a) View of the first naval test tank constructed in Torquay (England) by the civil
engineer and naval architect William Froude in 1872. (b) View of the trolley used to tow
ship models across the test tank. Images taken from [9].
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1
General introduction

In this chapter, we first identify the dimensionless parameters that influence the drag on an
object moving in water or at its interface. The typical values of these parameters for ships
and animals are given. Then we decompose the drag force into three main components:
skin drag, pressure drag and wave drag. Finally, the two force components, arising for an
unsteady motion, are detailed.

Starting vortex behind a disk normal to the flow. Photo credits: Henri Werlé, ONERA.
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Chapter 1. General introduction

1

1.1 Dimensional analysis

We shall start this chapter with a simple dimensional analysis of the drag on an object at the
water surface. Let us consider a duck of typical length `, width w and mass M (equivalently
immersed volume ⌦, related to M through Archimedes principle), paddling at speed U in
a pond of depth h (see Fig. 1.1), and let us seek a relation between the drag R experienced
by the duck and the relevant parameters of the problem.

Figure 1.1: Duck moving at the water surface and creating a nice wake.

The drag should depend on the following parameters: `, w, ⌦, a dimensionless parameter Ḡ
accounting for the precise geometry of the duck, h, U , the water density ⇢, the viscosity of
water µ and the acceleration of gravity g. Under such assumptions, there exists a function
F
1

such that:

F
1

(R, `, w,⌦, Ḡ, h, U, ⇢, µ, g) = 0 . (1.1)

Eq. (1.1) contains 10 parameters involving 3 dimensions. Then, following Buckingham’s ⇧
theorem, this equation can be reduced with 10 � 3 = 7 dimensionless parameters using a
dimensionless function F

2

:

F
2

(C, w/`, ⌦/`3, Ḡ, h/`, Re, Fr) = 0 , (1.2)

where we introduced the drag coe�cient C = R/(⇢`2U2), the Reynolds number Re = ⇢U`/µ
(which compares inertia and viscosity) and the Froude number Fr = U/

p
g` (which compares

inertia and gravity).

Finally, the total drag on the duck is written: C = R/(⇢`2U2) = F
3

(w/`, ⌦/`3, Ḡ, h/`, Re, Fr)
which, in the case of an infinitely deep fluid (h � `), reduces to :

R

⇢`2U2

= F
4

(w/`, ⌦/`3, Ḡ, Re, Fr) . (1.3)

In Chap. 3 and Chap. 4, the expression of the total drag on an object will be detailed in the
case of an infinitely deep fluid. When the object is immersed in a homogeneous fluid, the
total drag can be decomposed into pressure drag and skin drag [10]. When the body moves
at the water surface, it experiences an additional component of drag called the wave drag
[10]. These three main components of the total drag are described below.
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1.2. Orders of magnitude

1

1.2 Orders of magnitude

In Table 1.1, a few orders of magnitude are given for various bodies moving at the water
surface such as liners, rowing boats, sprint kayaks, sailing boats and animals. The Froude
number is typically between 0.1 and 1 and the Reynolds number ranges from 2 ·105 to 5 ·109

(typically Re 2 [107, 5 · 109], for ships).

(a) (b) (c)

Figure 1.2: Pictures of (a) the Seawise Giant, the longest ship ever built (` = 458 m) (source:
[11]), (b) the Spirit of Australia, the fastest ship (U = 142 m/s) (source: [12]), and (c) an
eight rowing boat (source: [13]), one of the fastest man-powered boat (U ' 6.3 m/s). See
Table 1.1 for their complete characteristics.

In particular, the Seawise Giant (see Fig. 1.2(a)) is the longest ship ever built. It was 458-
meter long, 69-meter wide and 30-meter high (25-meter draft), weighed 650 000 tons and
had a cruising speed of about 30 km/h. This corresponds to a Froude number of 0.13 and
a Reynolds number of 4 · 109. The world fastest ship is the jet-powered hydroplane Spirit
of Australia (see Fig. 1.2(b)). It reached a speed of 511.11 km/h on Blowering Dam Lake
(Australia), on 8 Oct. 1978. For man-powered boats such as rowing boats (see Fig. 1.2(c)),
sprint canoes or sprint kayaks, in competitions the typical values for the Froude number
are comprised between 0.5 and 0.7, while the Reynolds number ranges from 107 to 108. For
animals and human swimmers, the values of these dimensionless numbers are smaller (see
Table 1.1).

Boat Name
Length
` (m)

Width
w (m)

Mass
M (kg)

Speed
U (m/s)

Power (*)
P (kW)

Froude
number Fr

Reynolds
number Re

Seawise
Giant

458 68.9 6.5 · 108 8.3 3.7 · 104 0.13 4 · 109

Spirit of
Australia

8.22 2.5 1 500 142 4 500 15 1 · 109

Eight
rowing boat

17.7 0.56 820 6.26 3.2 0.48 1 · 108

Laser sailing
boat

4.2 1.39 130 4.1 2.7 0.64 2 · 107

Duck 0.3 0.2 5 0.66 N.A. 0.38 2 · 105

César Cielo
(swimmer)

1.95 0.6 88 2.1 N.A. 0.46 4 · 106

Table 1.1: Characteristics of some bodies moving at the water surface. N.A. stands for Not
Available. (*) The power is estimated through diverse methods depending on the category
of the boat. See Table 3.1 for more boat characteristics and the details on the methods used
for the estimation of the power.
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1.3 General expression of the total drag

In continuum mechanics, to model the forces inside a given medium, one classically in-
troduces the Cauchy stress tensor �. From this tensor, one can express the stress vector
T exerted by one part of a medium on another through an interface of normal vector n
through: T = � · n. In a fluid, the Cauchy stress tensor is written:

� = �p1+ ⌧ , (1.4)

where p is the pressure in the fluid, 1 is the identity tensor and ⌧ is the shear stress tensor
[14]. For a Newtonian fluid, the stresses depend linearly on the local strain rate, so that:

⌧ = � (r · u)1+ µ
�
ru + ruT

�
, (1.5)

where � and µ are the viscous coe�cients, u is the velocity vector and ruT denotes the
transpose of the velocity gradient ru. The coe�cient � is associated with changes of
volumes, while µ is the classical dynamic viscosity (associated with shear). Finally, assuming
the fluid to be incompressible (r ·u = 0), the Cauchy stress tensor takes the simpler form:

� = �p1+ µ
�
ru + ruT

�
. (1.6)

The general expression for the total drag on an object immersed in a fluid is:

R =

ZZ

S

w

� · n dS , (1.7)

where S
w

is the wetted surface of the object. Injecting the expression of � from Eq. (1.6)
in Eq. (1.7), one gets:

R = �
ZZ

S

w

pn dS + µ

ZZ

S

w

�
ru + ruT

�
· n dS . (1.8)

The total drag R is thus divided into two terms: the first term is related to the pressure and
thus includes both the pressure drag and the wave drag, while the second term corresponds
to the skin friction. These di↵erent components are detailed in the following sections.

1.4 Skin drag

The component of skin drag, denoted R
s

, is due to the friction of the water particles along
the surface of the object and thus depends on the total wetted surface of the object [10].
From Eq. (1.8), one has:

R
s

= µ

ZZ

S

w

�
ru + ruT

�
· n dS . (1.9)

This component of drag is the dominant one for streamlined bodies such as airfoils (see
Fig. 1.3). In the case of a flat plate, an approximate expression for R

s

was first derived by
Blasius.

Blasius boundary layer. Let us consider a semi-infinite flat plate coinciding with the
half plane (y = 0, x > 0) subjected to a parallel flow with a constant velocity U , at large
Reynolds number Re = ⇢U`/µ � 1 (see Fig. 1.4). The flow can be considered as inviscid
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Figure 1.3: Picture of the flow past a NACA 64A015 airfoil profile at Re = 7 000. The
profile is at zero incidence in a water tunnel. Colored fluid injected upstream is used to
show the streamlines. Photo credits: Wale 1974, ONERA (taken from [15]).

except in the region close to the wall, called the boundary layer, which ensures the no-slip
boundary condition and is the origin of the shear stress. Let u = (u

x

, u
y

) be the velocity of
the fluid. One can show that, in the laminar region, the horizontal component of velocity
u
x

follows a similarity solution [14]: u
x

/U = f(⌘), where ⌘ = y
p

Re
x

/x with Re
x

= ⇢Ux/µ
the Reynolds number based on the coordinate x.

U

U

U

x

x

cr

y

0

Laminar boundary
layer

Transition
region

Turbulent boundary
layer

Boundary layer thickness
¸

Figure 1.4: Schematics of the boundary layer which develops along a flat plate with the
transition from laminar to turbulent from the critical position x

cr

. Adapted from [16].

By definition, the local wall shear stress is:

⌧
0

= µ

✓
@u

x

@y

◆

0

, (1.10)

where the subscript zero means at the wall (y = 0). Then, injecting the similarity solution
for u

x

inside this equation, one finds:

⌧
0

=
⇢U2f 0(0)p

Re
x

' 0.332 ⇢U2

p
Re

x

. (1.11)

The value f 0(0) ' 0.332 is obtained by solving a di↵erential equation for f(⌘), which results
from the Navier-Stokes equations approximated in the boundary layer. Using Eq. (1.9) to
estimate the skin friction R

s

= |R
s

| on a portion of a plate of length ` and span w, one gets:

R
s

' 0.664 ⇢w`U2

p
Re

, (1.12)

9



Chapter 1. General introduction

1
C

s

Re

Figure 1.5: Skin friction coe�cient C
s

for various plates parallel to the flow from experiments
in air and water. For Re 2 [104, 106], the dash-dotted line shows the theoretical prediction
from Blasius solution (laminar regime); while for Re 2 [105, 1010], the dash-dotted line shows
the empirical law established by Schoenherr in the turbulent regime. Image reprinted from
[10].

where Re = ⇢U`/µ is now the Reynolds number based on the length `. It follows that the
skin drag coe�cient in the laminar regime reads:

C
s

=
R

s

1/2⇢w`U2

' 1.33p
Re

. (1.13)

This result from Blasius means that the skin friction depends on U3/2, which is a di↵erent
scaling than for the more classical pressure drag which scales as U2 (as will be seen in the
next section).

The evolution of the skin friction coe�cient with the Reynolds number over the range
[104, 1010] is represented in Fig. 1.5. The theoretical prediction from Blasius in the laminar
regime shows a very good agreement with experimental data points in the range 104 < Re <
106. However, when the Reynolds number becomes bigger than a critical Reynolds number
Re

cr

⇠ 5 · 105 � 106, the flow transitions from laminar to turbulent and the experimental
points start to deviate from the Blasius law [17]. This transition is also illustrated in Fig. 1.4
for a flat plate and appears once a critical position x

cr

= Re
cr

µ/(⇢U) is reached. In the
turbulent regime, the skin friction coe�cient C

s

then shows a slower decrease with the
Reynolds number C

s

⇠ Re�1/7. In this regime, many semi-empirical and empirical laws
try to capture this evolution. In particular, Schoenherr established the following law [10]:
log(Re C

s

) = 0.242/
p

C
s

, which is found in good agreement with the experimental data
points in the regime of turbulence and of forced turbulence.

In ship design, the commonly accepted formula is the one from the International Towing
Tank Conference (ITTC) of 1957 (see [18, 19, 20]):

C
s

(Re) ' 0.075

[log(Re) � 2]2
. (1.14)

As can be seen in Fig. 1.6, this formula deviates from the Schoenherr line for Re < 107. For
ships, the Reynolds number is in the range 107 < Re < 5 · 109. Over this range, Eq. (1.14)
and Schoenherr show good agreement and the skin drag coe�cient varies between 10�3 and
3 · 10�3.
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105 106 107 108 109 1010

10≠3

10≠2

Re

C

s

ITTC 1957
Schoenherr

Figure 1.6: Comparison of the skin friction coe�cient C
s

as a function of the Reynolds
number for the Schoenherr line and the ITTC 1957 line.

1.5 Pressure drag

The component of pressure drag (also called form drag), denoted R
f

, results from the
combination of all the pressure forces on the surface of the object and thus can be written
(see Eq. (1.8)) as:

R
f

= �
ZZ

S

w

pn dS , (1.15)

where p is the pressure at the surface of the object and the integration is performed over
the whole wetted surface. This force arises when the boundary layer separates from the
surface of the object, leading to the formation of vortices at the rear of the object. It scales
with the cross-sectional area of the object, denoted S, and is particularly dominant for blu↵
bodies such as cylinders or spheres (see Fig. 1.7) [10].

(a) (b)

Figure 1.7: Picture of the instantaneous flow past a sphere (a) at Re = 15 000 (below the
critical Reynolds number for the drag crisis Re

cr

) and (b) at Re = 30 000 (above the critical
Reynolds number). A wire is used to initiate the transition at a lower Reynolds number than
the one for a sphere, which is Re

cr

' 5 · 105. Photo credits: Henri Werlé, 1980 (ONERA).

We define the pressure drag coe�cient as:

C
f

=
R

f

1

2

⇢SU2

, (1.16)
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with R
f

= |R
f

|, and the pressure coe�cient c
p

as:

c
p

=
p � p1
1

2

⇢U2

, (1.17)

where p1 is the pressure far from the object. Thus, one has C
f

= (1/S)|
RR

c
p

n dS|.

Flow past a cylinder. Let us consider a cylinder of diameter D in a flow of constant
velocity U . The Reynolds number is defined as Re = ⇢UD/µ. Di↵erent flow regimes are
observed depending on the Reynolds number (see Fig. 1.8(a)) [14, 21].

• For Re < 4, the flow is laminar and attached to the cylinder.

• For 4 < Re < 40, a recirculation bubble forms behind the cylinder.

• For 80 < Re < 200, a Von Karman Vortex Street develops characterized by the
alternative shedding of vortices from the two sides of the cylinder.

• For 200 < Re < Re
cr

= 3 · 105, the Vortex Street destabilises and the wake of the
cylinder becomes turbulent.

• For Re > Re
cr

= 3 · 105, the laminar boundary layer upstream of the separation
point also becomes turbulent. As the turbulent boundary layer has a higher energy
than the laminar one and is able to withstand higher adverse pressure gradients, the
separation point is moved downstream. The drag coe�cient then decreases abruptly.
This phenomenon is called the drag crisis. Re

cr

denotes the critical Reynolds number
from which the boundary layer transitions from laminar to turbulent.

In Fig. 1.8(b), the pressure coe�cient along the surface of a cylinder is plotted for Reynolds
numbers below and above the critical Reynolds number Re

cr

, together with the potential
flow solution c

p

= 1 � 4 sin2 ✓, with ✓ the angular distance to the stagnation point. It can

(a)

Re < 4 4 < Re < 40

80 < Re < 200

Re < 3 · 105 Re > 3 · 105

81

¶ 125

¶

Laminar Turbulent

c

p

◊ (¶)

Re = 1.1 · 104

Re = 8.4 · 106

Re = 6.7 · 105

Potential
theory

(b)

Figure 1.8: (a) Di↵erent flow regimes past a cylinder depending on the Reynolds number.
Reprinted from [14]. (b) Distribution of the pressure coe�cient c

p

along a cylinder depending
on the angular distance to the stagnation point ✓, for di↵erent Reynolds numbers and in
the potential flow limit. Reprinted from [21].

12



1.5. Pressure drag

1

be noticed that the experimental pressure distributions follow the potential flow solution
until ✓ ⇡ 40�. Then, from a given angle ✓

s

(the angle at which the flow separates), the
pressure coe�cient reaches a plateau, the value of which depends on the Reynolds number.
As explained above, the curves at Re = 1.1 · 104 < Re

cr

and at Re = 6.7 · 105 > Re
cr

highlight the shift of the separation angle ✓
s

from about 81� to about 125�, corresponding
to a smaller wake and a reduced drag coe�cient (see also Fig. 1.7 for an illustration of
this phenomenon in the case of a sphere). The evolution of the drag coe�cient C

f

with
the Reynolds number is shown in Fig. 1.9 (blue curve). Interestingly, the drag coe�cient
plateaus for 103 < Re < Re

cr

at a value C
f

⇡ 1.2 before decreasing drastically at the drag
crisis (Re = Re

cr

).

10≠2 10≠1 100 101 102 103 104 105 106 107 108

10≠2

10≠1

100

101

102

103

Re

C

f

Cylinder
Sphere

Figure 1.9: Pressure drag coe�cient C
f

of a cylinder and a sphere depending on the Reynolds
number Re. Data gathered from [10].

Shape
C

f

Shape
C

f

Figure 1.10: Drag coe�cients of various 2D (right column) and 3D-axisymmetric (left col-
umn) bodies at Reynolds numbers between 104 and 106. Reprinted from [10].
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Comparison with other 2D and 3D bodies. The case of a sphere is quite di↵erent
from the one of a cylinder due to three-dimensional e↵ects. The critical Reynolds number is
a little bit di↵erent and the value of the drag coe�cient on the plateau is now C

f

⇡ 0.47, as
can be seen in Fig. 1.9 (red dashed curve). We thus see that the shape of the object plays a
major role in its resulting pressure drag. Fig. 1.10 highlights this point by listing the drag
coe�cients of di↵erent 2D and 3D-axisymmetric blu↵ bodies (for Re 2 [104, 106]).

Roughness e↵ects. It should also be mentioned that the critical Reynolds number Re
cr

at which the boundary layer transitions from laminar to turbulent is highly a↵ected by the
roughness of the solid surface. The values given for a cylinder and a sphere were obtained
for smooth bodies. If the roughness is increased, then the value of Re

cr

decreases and the
drag crisis occurs at a smaller Reynolds number [22].

1.6 Wave drag

As mentioned in Sect. 1.1, when an object moves at the water surface, the flow around it
is characterised by two dimensionless numbers: the Reynolds number Re and the Froude
number Fr defined as:

Fr =
Up
g`

, (1.18)

where U is the velocity of the object, g the acceleration of gravity and ` the length of the
object along its direction of motion. As a body moves at the air-water interface (faster
than c

min

' 23 cm/s [23]), it generates dispersive surface waves with a characteristic V-
shape wake (also called Kelvin wake [24], see Fig. 1.11(a)), which remove energy to infinity.
Consequently, the object is subjected to an additional component of drag called the wave
drag (or wave resistance), which is denoted R

w

[7, 8, 25]. An evidence of wave drag is the fact
that submarines move 20 – 40% slower at the interface than when they are fully immersed
(see Table 1.2). The same e↵ect is observed for swimmers, especially when swimming with
fins (see Chap. 7).

Submarine name
Speed when submerged

(km/h)
Speed at the surface

(km/h)

Daphné (FR) 28 22
Agosta (FR) 37 23

Franklin-class (US) 39 30
Ohio-class (US) 37 22

Typhoon (USSR) 50 40
Oscar II (USSR) 59 28

Table 1.2: Speed of di↵erent submarines when submerged and at the surface. Data gathered
from [9].

The Froude number comes into play as it compares inertia and gravity, or equivalently, the
wavelength � of the waves produced and the length of the object (see Fig. 1.11(b)-(d)):

Fr =
1p
2⇡

r
�

`
. (1.19)
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Equation (1.19) is valid in an infinitely deep fluid and is deduced from the dispersion relation
! =

p
gk with ! the angular frequency and k = 2⇡/� the wave number. The schematics in

Fig. 1.11(b)-(d) illustrate the waves produced by a ship moving at three particular Froude
numbers for which the waves produced at the front of the boat can interfere with those
produced at the stern. For Fr ' 0.33 and Fr ' 0.56, they can interfere coherently, while for
Fr ' 0.4 they interfere destructively. This strongly a↵ects the value of the wave drag.

⁄

39¶

(a) ⁄

U Fr ƒ 0.33
(b)

Fr ƒ 0.4
(c)

¸

Fr ƒ 0.56
(d)

Figure 1.11: (a) Picture of the wake of a ship (source: [26]). The angle of the wake, delimited
by the white dashed lines, is about 39� [24]. (b)-(d) Schematics of the wave elevation along
the ship hull for di↵erent Froude numbers corresponding to di↵erent ratios of the wavelength
� to the ship length `: (b) �/` = 2/3, (c) �/` = 1 and (d) �/` = 2.

Froude’s hypothesis. As it is not possible to build scale-model hulls with Reynolds and
Froude numbers matching the ones for real boats, William Froude made the assumption
that the total drag coe�cient C(Re, Fr) can be written as:

C(Re, Fr) ' C
s

(Re) + C
res

(Fr) , (1.20)

where C
s

, the skin drag coe�cient as defined in Sect. 1.4, only depends on the Reynolds
number and C

res

, the residual drag coe�cient, only depends on the Froude number. Actually,
C
res

contains both the wave drag C
w

and the pressure drag C
f

but, in the range of Reynolds
number operated for ship hulls, the pressure drag is fairly constant, so that C

res

(Fr, Re) '
C
res

(Fr). This hypothesis was verified experimentally with di↵erent hull shapes [27] .

1.6.1 Problem statement

Let us consider a hull of length `, width w and draft d moving at the water surface at velocity
U which is first supposed to be constant. We define a cartesian coordinate system (x, y, z)
with x opposite to the direction of motion of the hull. Consistent with usual parametrisation
[7, 28, 29, 30], the hull shape is considered symmetric about the center-plane y = 0 and
defined through the function f by: y = ±f(x, z) (see Fig. 1.12). The water surface is
assumed to be infinite in x and y directions.

We can then introduce the dimensionless coordinates through x = x̃`, y = ỹ` and z = z̃`
as well as f(x, z) = f̃(x̃, z̃)w. Note that w is used in the definition of f̃ as it simplifies the
expression of the wave drag coe�cient in Michell’s model (see Subsect. 1.6.3). We further
define the aspect ratios ↵ = `/w and � = `/d. We take as a characteristic surface ⌦2/3 with:

⌦ = `wd . (1.21)

This volume scales as the immersed volume of the hull, denoted ⌦
i

.1 This particular choice

1One has: ⌦i = ⌦
RR

f̃ dx̃ dz̃.
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x

y
z
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d

`

x

y
z

w
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Figure 1.12: Schematics of a hull with illustration of its length `, width w and draft d. The
hull shape follows the parametrisation y = f(x, z). The centerplane projection of the hull
is denoted S

0

. Note that only the part of the hull immersed in the water is represented.

of characteristic surface is motivated by the objective of comparing the drag on hulls that
have the same immersed volume. The wave drag coe�cient is thus defined through:

C
w

=
R

w

⇢⌦2/3U2

. (1.22)

Fig. 1.13 shows the typical evolution of C
w

with the Froude number for a parabolic hull from
experiments [31] and theoretical predictions [32]. Interestingly, the wave drag coe�cient is
maximum for Fr ' 0.5.

0 0.5 10

0.02

0.04

0.06

0.08

0.1

Fr

C

w

Tuck (1987)
Chapman (1972)

Figure 1.13: Wave-drag coe�cient C
w

as a function of the Froude number Fr predicted
theoretically by [32] together with experimental data points from [31] (black crosses). The
hull has a parabolic shape with ↵ = 6.7 and � = 2.3.

Here we present the two leading theoretical models to compute the wave drag. The first
one, developed by Havelock, represents the ship hull as a moving pressure disturbance
[8, 25]; while the second one, developed by Michell, solves, in the limit of slender hulls, the
linearised potential flow problem with a distribution of sources along the centerplane of the
ship [7, 28, 30, 33].

For both models, the frame of reference is attached to the hull, so that the flow is in the x
direction. The fluid is assumed to be steady, inviscid, incompressible and irrotational. Such
a flow can be described as a potential flow [14]. That is, there exists a potential � satisfying
u = r�. Using incompressibility, r · u = 0, it follows that � solves the Laplace equation:

r2� = 0 . (1.23)
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The velocity component along the x direction is written:

�
x

= U + �̃
x

, (1.24)

with �̃
x

⌧ U . Note that, f
x

denotes the derivative of the function f(x) with respect to the
variable x, that is f

x

= @f/@x. The water interface is described by the function z = Z(x, y).

1.6.2 Havelock’s model

As mentioned before, in Havelock’s model the ship hull is replaced by a moving surface
pressure disturbance p(x, y) [8, 23, 25]. It is somewhat tantamount to considering that
there is a cover applying the pressure p on the whole water surface (with p decaying far
from the disturbance). This model allows to compute the far-field wave pattern as well as
the wave resistance [23, 34, 35].

1.6.2.1 Model assumptions

Boundary conditions. Ensuring that water particles do not cross the air-water interface
yields the kinematic condition:

�
z

= �
x

Z
x

+ �
y

Z
y

. (1.25)

The Bernoulli equation at the air-water interface is written:

p +
1

2
⇢[�2

x

+ �2

y

+ �2

z

] + ⇢gZ = p
0

+
1

2
⇢U2 , (1.26)

with p
0

the atmospheric pressure.

For an infinitely deep fluid, we further have:

lim
z!�1

�
z

= 0 , (1.27)

while, for a fluid of finite depth h, this condition would be replaced by �
z

(z = �h) = 0.

The last condition is the radiation condition:

lim
x!�1

p
x2 + y2[�2

x

+ �2

y

+ �2

z

� U2] = 0 . (1.28)

This condition ensures that the velocity potential vanishes in the far-field upstream of the
boat.

Linearisation. The combination of the linearised kinematic and dynamic conditions at the
water surface (1.25, 1.26) yields:

�
z

+
U2

g
�
xx

+
U

⇢g
p
x

= 0 , (1.29)

while the linearisation of Eq. (1.25) alone gives �
z

= UZ
x

.
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1.6.2.2 Wave displacement

Taking the Fourier transform of Eq. (1.23), combining it with the boundary conditions and
writing: P (x, y, t) = e"tp(x, y) (with " ! 0) to ensure the radiation condition, one finds [23]:

Z(x, y) = � lim
"!0

1

4⇡2⇢

ZZ
k p̂(k

x

, k
y

)e�i(k

x

x+k

y

y)

gk � U2k2

x

+ 2i "U k
x

dk
x

dk
y

, (1.30)

where p̂(k
x

, k
y

) is the Fourier transform of the pressure field p(x, y) and k = [k2

x

+ k2

y

]1/2.
Interestingly, one can notice that, in the expression of the wave displacement, appears the
ratio between the pressure source term and the dispersion relation. The wave displacement
is therefore maximum when the pressure source term resonates with the dispersion relation.

In dimensionless form, using p̂ = ⇢g`3 ˜̂p, k
x

= k̃
x

/`, k
y

= k̃
y

/`, k = k̃/`, " = "̃
p

g/`, and
Z = Z̃`, one obtains:

Z̃(x̃, ỹ) = � lim
"̃!0

1

4⇡2

ZZ
k̃ ˜̂p(k̃

x

, k̃
y

)e�i(

˜

k

x

x̃+

˜

k

y

ỹ)

k̃ � Fr2k̃2

x

+ 2i "̃Fr k̃
x

dk̃
x

dk̃
y

. (1.31)

1.6.2.3 Wave resistance

According to [8, 25], the wave resistance is the sum of all the pressure contributions at the
interface in the x direction, that is:

R
w

= �
ZZ

p(x, y)Z
x

(x, y) dx dy . (1.32)

After injecting the wave displacement Z from Eq. (1.30) into Eq. (1.32), one finds:

R
w

= lim
"!0

1

4⇡2⇢

ZZ
i k

x

k|p̂(k
x

, k
y

)|2

gk � U2k2

x

+ 2i "U k
x

dk
x

dk
y

. (1.33)

Using the dimensionless parameters introduced before, the wave drag coe�cient is written:

R
w

⇢g`3
= lim

"̃!0

1

4⇡2

ZZ
i k̃

x

k̃| ˜̂p(k̃
x

, k̃
y

)|2

k̃ � Fr2k̃2

x

+ 2i "̃Fr k̃
x

dk̃
x

dk̃
y

. (1.34)

1.6.2.4 Limitations of Havelock’s model

Havelock provides a nice theory to model the wave pattern of ships. It is however too simple
to account for the exact shape of the hull and especially to study the e↵ect of the draft. In
particular, it is quite di�cult to predict theoretically the pressure field p(x, y) to be injected
in the formulas, which itself should depend on the hull shape and on its velocity U .

1.6.3 Michell’s model

Michell developed a model to predict the wave resistance for slender ships [7, 28, 30, 33].
This model is based on solving the linearised potential flow problem with a distribution of
sources on the centerplane of the hull.
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1.6.3.1 Model assumptions

Following [7, 28, 36], we rewrite the boundary conditions and the assumptions made to
derive Michell’s model.

Boundary conditions. The condition that water particles do not cross the hull boundary
is written:

�
y

= �
x

f
x

+ �
z

f
z

. (1.35)

Similarly, ensuring that water particles do not cross the air-water interface yields the kine-
matic condition given in Eq. (1.25). The Bernoulli equation at the air-water interface is
written:

p
0

+
1

2
⇢u2 + ⇢gZ = p

0

+
1

2
⇢U2 , (1.36)

with p
0

the atmospheric pressure. It is then straight-forward to obtain the dynamic condi-
tion:

2gZ + �2

x

+ �2

y

+ �2

z

= U2 . (1.37)

For an infinitely deep fluid, we further have the condition given in Eq. (1.27) (which is
replaced by �

z

(z = �h) = 0 for a fluid of finite depth h). The last condition to ensure is
the radiation condition given in Eq. (1.28).

Linearisation. The main assumption of Michell’s model is to consider that the hull is thin
(w ⌧ `, corresponding to small longitudinal slopes f

x

, f
z

⌧ 1).

The linearisation of the kinematic condition on the hull boundary (1.35) leads to:

�
y

(x, ±0, z) = ±Uf
x

. (1.38)

The combination of the linearised kinematic and dynamic conditions (1.25, 1.37) gives on
z = 0:

k
0

�
z

(x, y, 0) + �
xx

(x, y, 0) = 0 , (1.39)

where k
0

= g/U2.

Michell solves the Laplace equation (1.23) with the boundary conditions given in Eqs. (1.27,
1.28) and Eqs. (1.38, 1.39) using Fourier-transform methods.

1.6.3.2 Derivation of the wave resistance

Following [37] (p.579, see also [7, 30, 36]), the linearised potential flow problem is solved by
distributing sources of strength Uf

x

/(2⇡) on the centerplane projection of the hull, denoted
S
0

(see Fig. 1.12). The velocity potential can then be obtained through:

�(x, y, z) =
U

2⇡

ZZ

S0

f
⇠

(⇠, ⇣) ⇥ G(x, y, z, ⇠, 0, ⇣) d⇠d⇣ , (1.40)

where G(x, y, z, ⇠, ⌘, ⇣) is the Green function corresponding to the potential created by a
source at point (⇠, ⌘, ⇣) satisfying all the boundary conditions except Eq. (1.38). The ex-
pression of G can be obtained by Fourier transform and is given in [37] (p.484) for an
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infinitely deep fluid:

G(x, y, z, ⇠, ⌘, ⇣) =
1

r�
� 1

r
+

� 4k
0

⇡

Z ⇡

2

0

d✓ sec2✓�
Z
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0

dk
ek(z+⇣)

k � k
0

sec2✓
cos[k(x � ⇠) cos ✓] cos[k(y � ⌘) sin ✓]

+ 4k
0

Z ⇡
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d✓ sec2✓ ek0(z+⇣) sec

2
✓ sin[k

0

(x � ⇠) sec ✓] cos[k
0

(y � ⌘) sin ✓ sec2✓] , (1.41)

with r± =
p

(x � ⇠)2 + (y � ⌘)2 + (z ± ⇣)2 and where the dashed integral in the third term
of G is a Cauchy principal value integral.
In Eq. (1.41), the first term corresponds to the classic potential for a point source in an
infinite fluid. The next three terms are added to ensure that the linearized free-surface
conditions and the conditions at infinity are satisfied. In particular, the second term cor-
responds to the potential of a second point source being the mirror of the first one with
respect to the plane z = 0.

The wave resistance R
w

(f) is calculated from the velocity potential � given in Eq. (1.40)
using:

R
w

(f) = �
ZZ

S

w

pn
x

dS ' �2

ZZ

S0

pn
x

dS , (1.42)

where n
x

= �f
x

and the pressure p is obtained from the linearised Bernoulli equation:
p = ⇢U�

x

. Thus, one has:
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ZZ
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d⇠d⇣ f
⇠
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(x, 0, z, ⇠, 0, ⇣) . (1.43)

One can notice that the first three terms of G
x

are odd in (x� ⇠) and the fourth one is even
in (x � ⇠). Consequently, thanks to the symmetry of R

w

(f) with respect to (x, z) and (⇠, ⇣)
(see Eq. (1.43)), only the even term will give a non-zero contribution to R

w

(f). One then
obtains:
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Finally, letting � = sec ✓, using Euler’s formula and integrating by parts, one finds:

R
w

(f) =
4⇢U2

⇡`4Fr8

Z
+1

1

|I
f

(�, Fr)|2 �4p
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where:
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2

f(x, z)e�
2
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2
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The wave drag coe�cient for infinite depth C
w

in dimensionless form then reads:

C
w

(Fr,↵,�) =
4�2/3

⇡↵4/3Fr8

Z
+1

1

|Ĩ
˜

f

(�, Fr,�)|2 �4p
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d� , (1.47)
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where:

Ĩ
˜

f
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� 1
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Z 1
2

� 1
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2
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Finite depth. In the case of a fluid of finite depth h, the Green function given in Eq. (1.41)
must be replaced (see [30, 37]). The wave drag then has a more complicated expression that
can be found in [37] (p.581):

R
w

(f, h) =
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⇡`2Fr4
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|J
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dk , (1.49)

where k
0

= g/U2, k
h

is the solution of the dispersion relation: k
h

= k
0

tanh(k
h

h) (with
k
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� 0) and where:
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Note that k can be considered as a wave number.

Introducing the ratio � = h/`, the wave drag coe�cient in finite depth, denoted C
w

, reads:
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where k̃
h

is the solution of the dispersion relation: k̃
h

= tanh(k̃
h

�)/Fr2 (k̃
h

� 0) and where:
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The expression of the wave drag coe�cient in infinitely deep fluid (corresponding to � ! 1)
is recovered from these equations by the change of variable k̃ = �2/Fr2.
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Figure 1.14: Wave drag coe�cient C
w

as a function of the Froude number Fr predicted
by Michell’s model for increasing water depth � = h/` (for ↵ = 6.7, � = 2.3 and f̃ =
1/2 exp(�16x̃2)). The black curve corresponds to the infinite depth case.

The wave drag coe�cient C
w

can be computed numerically from Eqs. (1.51, 1.52). Fig. 1.14
shows the evolution of this coe�cient with the Froude number for di↵erent values of the
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ratio � = h/` and a gaussian hull profile (see Eq. (3.4) in Sect. 3.3). Di↵erences with the
curve for infinite depth (black curve) are observed in the range Fr 2 [0.4, 0.8] for � < 1. As
a result, the bottom of a water tank starts having an e↵ect on the wave drag for h  `.

1.7 Unsteady forces

In the case of an unsteady motion, supplementary forces come into play: the added mass
force, denoted R

a

, and a history force, known as the Basset force, denoted R
b

, which is
usually neglected at high Reynolds number.

1.7.1 Added mass force

The added mass force is typically written:

R
a

= �m
a

dU

dt
, (1.53)

where U(t) is now the instantaneous velocity of the object and m
a

is the added mass of
the object, which is defined as the mass of fluid that the object accelerates (or decelerates)
during its motion. In the resulting dynamics of the object, it is as if the mass of the object
was supplemented by the quantity m

a

. In a more general way, an added mass matrix
M

a

= (m
ij

)
1i6,1j6

can be defined [27]. The 6 dimensions correspond to the translations
in the 3 spatial directions and the rotations about these 3 directions. Fig. 1.15 gives the
added masses along the horizontal and vertical directions for a cylinder, an elliptical cylinder
and a plate. It can be noticed that these three objects have the same added mass per unit
length in the vertical direction – equal to ⇢ times the surface of the disk of radius a – but a
di↵erent one in the horizontal direction. The added mass can thus generally be defined as
the mass of fluid contained in the cylinder of diameter given by the extension of the object
in the direction perpendicular to the flow.

Figure 1.15: Added mass per unit length for various two-dimensional bodies. m
11

is the
added mass in the horizontal direction and m

22

in the vertical direction. Reprinted from
[27].

1.7.2 Basset force

The Basset force, which appears when an object is accelerating in a fluid, is related to the
lagging boundary layer development with a varying flow velocity [38, 39].

In the viscous regime, this force has two components in phase quadrature: one, denoted R0
b

,
is proportional to the fluid velocity and the other, denoted R00

b

, is proportional to the fluid
acceleration. One can show that these two components have the same dependence with the
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parameters of the problem [40]. For a flat plate moving in a fluid, one can write:

R0
b

⇠ R00
b

⇠ µa!S

�
, (1.54)

with a the characteristic distance of oscillation of the plate, ! = 2⇡f the angular frequency
of oscillation, S the wetted surface and � ⇠

p
µ/(⇢!) the thickness of the boundary layer

associated with the oscillations.

We further model the speed of the plate as: U = hUi(1 + �U/hUi cos(!t)) with hUi the
mean speed and �U the amplitude of the fluctuations of speed. Then, one can compare the
two components of the Basset force with in-phase drag terms: that is R0

b

with R
s

, the skin
drag, and R00

b

with R
a

, the added mass force. One has:

R0
b

R
s

⇠ µa!S

�
⇥ 1

⇢ShUi2 ⇠ �U/hUi
Re

�

, (1.55a)

R00
b

R
a

⇠ µa!S

�
⇥ 1

⇢⌦
a

a!2

⇠ �

d
, (1.55b)

where Re
�

= ⇢�hUi/µ is the Reynolds number in the boundary layer and ⌦
a

= m
a

/⇢ ⇠ ⌦
the volume corresponding to the added mass. For a rowing boat (see Chap. 2), one finds:
R0

b

/R
s

' 10�4 and R00
b

/R
a

' 2 · 10�2, so that the Basset force can be neglected.
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Take home message of Chapter 1

When an object (such as a ship or a duck) moves steadily at the water surface at
high Reynolds number, it experiences three main components of drag:

1. Skin friction is related to the friction of water particles along the surface of the
object. It scales with the wetted surface and with the speed as U3/2 in the laminar
regime and U2 in the turbulent regime.

2. Pressure drag (or form drag) is due to the separation of the boundary
layer and the formation of vortices at the rear of the object. It is the resulting
force of all the pressure forces exerted on the surface of the object in the absence
of waves. It scales with the cross-sectional area of the object and with the speed as U2.

3. Wave drag appears when the object moves at or close to the air-water interface
because of the generation of surface waves. This drag component highly depends on
the Froude number: Fr = U/

p
g` where ` is the length of the object in the direction

of motion. The wave drag coe�cient shows a non monotonic evolution with the
Froude number, with a maximum around Fr ' 0.5.

When an object accelerates in a fluid, it is subjected to (i) the added mass force,
which is proportional to the acceleration of the object and the mass of the fluid
accelerated and (ii) the Basset force, which is usually neglected at high Reynolds
number.
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2
Rowing basics and kinematics

Rowing is a challenging sport, not only for athletes but also for physicists. This sport mixes
physiology, mechanics and fluid dynamics, making it much more complex than it seems.
Thus, many scientists tried to figure out the details of rowing propulsion, in particular, with
a view to improving the performance of rowing crews. In rowing, three main parts can be
distinguished: the rowing boat, the oars and the rowers. Looking at the kinematics of these
di↵erent elements gives very interesting information to understand the mechanics of rowing.
In this chapter, we first introduce the basics of rowing. Then, the kinematics of the boat, the
blades and the rowers are analysed with experiments and video analysis. Finally, a model
for the drag on a rowing boat is suggested and validated by experiments and previous studies.

Picture of a water strider, a kind of “capillary rower”. Source: [41].
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2.1 The basics of rowing

In this section, we introduce the very basics of rowing with the definition of some vocabulary
specific to rowing.

2.1.1 Rowing equipment

The two essential equipments in rowing are the rowing boat and the oars. As expected,
these two equipments change from one rowing category to another (see Fig. 2.1). There
are di↵erent rowing categories depending mostly on the number of rowers (typically 1, 2,
4 or 8) and on the number of oars per rower: the rowing boat is called a sculling boat
when each rower has two oars and a sweep boat when each rower has one oar. Additional
categories for sweep boats with 2 and 4 rowers depend on whether there is a coxswain1 on
the boat. Obviously, and as sketched in Fig. 2.1, the boat geometry depends on the rowing
category: the boat length ranges from 8 m for a single scull (Fig. 2.1(a)) to 18 m for an
eight (Fig. 2.1(f)).

(a) 1x

8 m

2.9 m

(b) 2–

10 m

3.7 m

(c) 2x

2.9 m

10 m

(d) 4+

3.7 m

13 m

(e) 4x

13 m

2.9 m

(f) 8+

18 m

3.7 m

Figure 2.1: Schematics of the di↵erent rowing categories with indications of the typical
lengths of the boats and the oars. The boats in the first column (a, c, e) are sculling boats
(each rower has two oars), while the boats in the second column (b, d, f) are sweep boats
(each rower has one oar). The categories in (b) and (d) exist with or without a coxswain.
Note that, in the abbreviation of the boat category (i.e. 1x or 2–), the number indicates the
number of rowers, the symbol x stands for sculling boats, the symbol – stands for a sweep
boat without coxswain and the symbol + stands for a sweep boat with coxswain. See also
Table 2.1 for details on the geometry of the di↵erent rowing boats.

The length, width and mass of rowing boats in the di↵erent rowing categories are given
in Table 2.1. From these data, we can here point out one of the interesting particularities

1A coxswain is “a steersman of a racing shell who usually directs the rowers”, according to Merriam-
Webster dictionary.
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of rowing boats: their length-to-width aspect ratio is very large (around 30 for all boat
categories).

Boat
Abbreviation

Boat Name ` (m) w (cm) m
boat

(kg) M (kg) hUi (m/s)

1x Single Scull 8.1 28.2 14 104 5.08
2x Double Scull 10 33.5 27 207 5.56
2– Coxless Pair 10 33.5 27 207 5.43
4x Quadruple Scull 12.8 41 52 412 6.02
4– Coxless Four 12.7 42 50 410 5.92
8+ Coxed Eight 17.7 55.6 97 850 6.26

Table 2.1: Characteristics of current racing boats. The geometry characteristics and mass
are for boats from Filippi supplier [42]. The mean boat speed hUi given in the table is the
world record speed in each category.

Let us now give more details on the main parts of a rowing boat. Fig. 2.2(a) gives a detailed
picture of a coxless pair rowing boat. In particular, one can see the sliding seat on which the
rower sits with his feet attached to the boat through the foot stretcher system. The sliding
seat allows the rower to use the strong muscles from the legs in addition to the muscles of
the trunk and the arms to propel the boat. This feature together with the fact that rowers
are facing the stern of the boat distinguish rowing from canoeing or kayaking.

BowStern

U

OarlockRiggerSliding seatFoot stretcher

w

¸

(a)

¸

o

(outboard length) ¸

i

(inboard length)

CollarBlade Handle

(b)

Figure 2.2: (a) Picture of a coxless pair rowing boat (category 2–) with the definition of
some important parts of the boat. (b) Picture of a rowing oar with the definition of its
main components. In particular, the oar rotates about the collar, which is attached to the
oarlock of the boat (defined in (a)).

The oar is linked to the boat at the level of the collar (see Fig. 2.2(b)) via the oarlock,
allowing the oar to rotate, while transmitting the force resulting from the action of the
rower to the boat. The ratio between the outboard length `

o

and the inboard length `
i

,
denoted ⌘, is about 2.2 whatever the rowing category. However, Fig. 2.1 highlights that
the total length of the oars depends on the rowing category: the ones used in sweep boats
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are longer (total length of about 3.7 m) than the ones used in sculling boats (about 2.9 m).
Fig. 2.3 illustrates di↵erent kinds of blades (from Concept2 supplier [43]). The Macon blade
(Fig. 2.3(a)) is the old blade model, while the Big blade (Fig. 2.3(b)) and the Smoothie2
Plain Edge blade (Fig. 2.3(c)) are models currently used in competitions.

(a) (b)

¸

b

w

b

(c)

Figure 2.3: (a) Front view of a Macon blade, (b) a Big blade and (c) a Smoothie2 Plain
Edge blade. We denote `

b

the length of the blade and w
b

the width of the blade at the
broadest point (see Table 2.2 for the values of `

b

and w
b

for the di↵erent blades). Pictures
taken from [43].

Denoting `
b

the length of the blade and w
b

the width of the blade at the broadest point (see
Fig. 2.3(b)), it appears that these two dimensions also depend on the boat category. The
sculling blades are smaller – about 45 cm ⇥ 21 cm – than sweep blades – about 55 cm ⇥
25 cm (see Table 2.2 for the details on the di↵erent blades geometry).

Blade name Boat category `
b

(cm) w
b

(cm) S
bl

(m2)
Macon blade Sweep 58 21 0.12
Macon blade Scull 50 18 0.09
Big blade Sweep 55.5 25 0.14
Big blade Scull 44 21.5 0.095
Smoothie2 Plain Edge blade Sweep 54.5 25.5 0.14
Smoothie2 Plain Edge blade Scull 46 21.5 0.10

Table 2.2: Characteristics of current blades from Concept2 supplier [43]. w
b

is the width of
the blade at the broadest point and thus the blade surface S

bl

= `
b

w
b

is slightly overesti-
mated.

2.1.2 The rowing technique

The rowing cycle is made of two phases: the power stroke during which the blades are inside
water and propel the boat, and the recovery stroke during which the rower comes back to its
initial position, with the blades out of the water, before starting again a new cycle. Fig. 2.4
illustrates the rowing cycle with time-lapse photographies from the training of the French
athlete Thomas Baroukh. The first four pictures were taken during the power stroke and
the last four pictures during the recovery stroke. From a technical point of view, there are
two very important moments in this cycle: the beginning of the power stroke, called the
catch, when the blades enter the water (see picture (1) in Fig. 2.4) and the end of the power
stroke, called the release, when the blades go out of water (see picture (4) in Fig. 2.4).

This decomposition into a propulsive stroke and a recovery stroke is quite common in ani-
mal locomotion: for instance, it is observed at small scales for the biflagellate alga Chlamy-
domonas reinhardtii [44, 45] or, at larger scales, for water striders [46, 47] or fishing spiders
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 2.4: Time-lapse photographies of the rowing cycle for the French athlete Thomas
Baroukh. Pictures (1) to (4) correspond to the power stroke, while pictures (5) to (8)
correspond to the recovery stroke. The pictures were taken during a training on the Grand
canal of Versailles. The time between two consecutive pictures is 0.3 s.

[48, 49], which could be seen as “capillary rowers”. Fig. 2.5, reprinted from [48], shows
that the fishing spider Dolomedes triton relies on two pairs of legs (out of four), activated
synchronously, to propel itself at the surface of water. This stroke is somehow similar to the
rowing stroke, even though the propulsive mechanism, involving capillary e↵ects, is di↵erent.

Power stroke

Figure 2.5: Time-lapse pictures of the propulsive stroke of the fishing spider Dolomedes
triton including the power stroke and the recovery stroke. The drawings, adapted from [48],
were obtained from video images. The time between two consecutive pictures is about 20
ms.

As mentioned before, during the rowing stroke, the rower uses the muscles of di↵erent
segments: the legs, the trunk and the arms. A common rule among coaches is, for the
power stroke, to use first the legs, then the trunk and finally the arms to move the blade
in water, and to proceed in the reverse order for the recovery stroke. This is the general
rule but there still exist di↵erent rowing styles – basically four (DDR, Rosenberg, Adam
and Grinko styles) [50] – as illustrated in Fig. 2.6. These four di↵erent rowing styles are
distinguished by looking, firstly, at the travel of the trunk compared to the travel of the
legs, and secondly, at whether the motion of the trunk and the motion of the legs are
simultaneous. This eventually shows the great complexity of the rowing technique.

2.1.3 Rowing in competition

Rowing competitions are typically run on a 2000 m distance. At a rowing frequency f of 30
to 40 strokes per minute depending on the rowing category, the fastest boats for men run
this distance in 6 min 30 s for single sculls (M1x) and in 5 min 18 s for eight rowing boats
(M8+), corresponding to mean velocities between 5.1 and 6.3 m/s. For women, the world
record is 7 min 7 s for single sculls (W1x) and 5 min 54 s for eight rowing boats (W8+),
corresponding to mean velocities between 4.7 and 5.6 m/s.
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Figure 2.6: Schematics of the four main rowing styles. These styles depend on whether the
emphasis is on the motion of the legs or of the trunk and whether the motion of the legs
and the trunk are simultaneous or consequent. Schematics adapted from [50].

2.2 Analysis of the boat kinematics

Analysing videos from the rowing competitions at the Rio 2016 Olympics, we were able
to estimate the instantaneous velocity of rowing boats of di↵erent categories (M1x, M4–
and M8+) for a few rowing strokes. The evolution of the instantaneous velocity of a M4–
rowing boat with time over about three strokes is represented in Fig. 2.7(a). We denote
hUi the mean boat velocity over these three strokes, f = 1/T the stroke frequency (with
T the period of the stroke) and 2�U the di↵erence between the minimum and maximum
velocities.2

Firstly, one can observe on the figure that the power stroke is shorter than the recovery
stroke as it lasts about 40% of the total stroke. Secondly, as expected, the velocity increases
during the power stroke (between the red and the green vertical dashed lines), but more
surprisingly, it continues to increase during the first part of the recovery stroke before
decreasing drastically. As will be seen in Chap. 6, this particular evolution of the hull
velocity during the recovery phase is mostly related to the motion of the rowers on the
boat. The whole dynamics of the rowing stroke thus leads to large fluctuations of the boat
speed around the mean speed. For example, the velocity of the M4– rowing boat oscillates
between 4.2 and 6.7 m/s for a mean velocity hUi = 5.6 m/s. This corresponds to velocity
fluctuations �U/hUi ' 22%. Figs. 2.7(b) and (c) show that the mean velocity hUi as
well as the stroke frequency f determined over a few strokes during the race, both tend to
increase with the number of rowers. In Fig. 2.7(d), we compare the evolution of the boat
velocity with time over one rowing stroke for the three rowing categories M1x, M4– and
M8+, corresponding to an increasing number of rowers (1, 4 and 8). Very similar evolutions
are observed provided that the time t and velocity U are rescaled by the period T and the
mean speed hUi respectively.

2As will be discussed later, the mean velocity hUi and the stroke frequency f are changing during the
race (see Fig. 2.8).
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Figure 2.7: (a) Instantaneous velocity of a M4– rowing boat as a function of time for three
strokes, obtained from image analysis of the video of the men coxless four Australian crew
at the Rio 2016 Olympics. The vertical red dashed lines indicate the time of the catch (the
blades enter the water) and the vertical green dashed lines indicate the time of the release
(the blades go out of the water). The mean speed hUi is indicated with a gray horizontal
line and the minimum and maximum speed values with dotted horizontal lines. (b) Mean
boat velocity hUi over a few strokes depending on the number of rowers N . (c) Stroke
rate f over a few strokes depending on the number of rowers N . (d) Dimensionless hull
velocity U/hUi as a function of the dimensionless time t/T , where T is the period of the
rowing cycle, for three di↵erent boats (M1x, M4– and M8+). The instantaneous velocity
was obtained, in the same way as for (a), from image analysis of the videos of the di↵erent
rowing competitions at the Rio 2016 Olympics.

Recently, the International Rowing Federation (also known as FISA, Fédération Interna-
tionale des Sociétés d’Aviron) started collecting data during the world championships. The
mean velocity hUi and stroke frequency f of each rowing boat every 50 m over the whole
length of the race is available for each race [51]. We used the data available for the Lucerne
2016 world championship. In Fig. 2.8, the mean velocity and stroke frequency of the winner
boat for four di↵erent rowing categories (M1x, M2–, M4– and M8+) is plotted as a function
of the travelled distance (denoted X). For the M2–, M4– and M8+ categories, the trend is
very similar: the mean velocity hUi increases very quickly during the first hundred meters of
the race, it reaches a maximum around X = 150 m, then decreases to reach a fairly constant
value and finally increases again during the last 500 m of the race. A similar evolution is
observed for the stroke frequency f for the same categories: it is maximum at the begin-
ning of the race, it then decreases to reach a plateau and eventually increases at the end of
the race. The rowing strategy during the last 500 m of the race appears to be a little bit
di↵erent for the winner boat of the single scull category as the mean boat speed and stroke
rate decrease at the end of the race. This is probably related to the comfortable advance of
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Figure 2.8: (a) Mean speed hUi over one cycle and (b) stroke rate f averaged over 50 m as a
function of the distance X travelled during the race at the Lucerne 2016 world championship
for the winner boat in four di↵erent rowing categories (M1x, M2–, M4– and M8+). Data
extracted from [51].

the winner boat over the other boats in this particular race. The evolution of the velocity
along the race, in particular with the existence of a maximum speed at the beginning of the
race is fairly common among sports where a “long” distance has to be travelled in the least
amount of time (i.e. swimming or running over long distances). It is in particular related
to physiology and the change from anaerobic (short high intensity exercise) to aerobic (long
low intensity exercise) metabolism [52, 53].

2.3 Analysis of the blade kinematics

This work was done with Alexis Goujon and Kozeta Tutulani (students from Ecole poly-
technique).

(a) (b)

Figure 2.9: (a) Experimental set-up used to characterise the kinematics of the blade in
water. A GoPro camera is installed above one of the rowers on the eight rowing boat from
the Ecole polytechnique rowing club. The videos of the rower’s hands are coupled with
the measurement of the speed of the boat from a sensor based on GPS and accelerometer
sensors. (b) Picture taken by the GoPro camera during the measurements.
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To characterise the blade kinematics, we performed an experiment on an eight rowing boat
from the Ecole polytechnique rowing club. A GoPro camera was set-up above one of the
rowers to record the motion of his hands (see Fig. 2.9) and this was coupled with a speed
sensor (combining a GPS sensor and an accelerometer for better accuracy) to measure the
instantaneous speed of the boat. The analysis of the videos recorded onboard during the
training of the rowing team allowed us to extract the position and velocity of the rower’s
hands in the reference frame of the boat. Using ⌘ = `

o

/`
i

the ratio between the outboard
length and the inboard length of the oar (see Fig. 2.2(b)), we could get the position and
velocity of the center of the blade in the reference frame of the hull. Finally, combining this
with the synchronous measurement of the hull speed, we could get the position and velocity
of the blade center in the reference frame of the water. In Fig. 2.10(a), the trajectory of the
blade center in the reference frame of the water is plotted for three strokes. This trajectory
is very similar from one stroke to the next. The blade travels a bit forward after the catch
(entry of the blades inside water) and then backward until the release. Fig. 2.10(b) shows
a zoom on one power stroke, with the position of the blade (represented as a segment) and
the blade velocity vector v

bl/w

(red vector).
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Figure 2.10: (a) Position of the center of the blade for three strokes in the reference frame
of the water from in-situ measurements with the Ecole polytechnique rowing team. The red
dot (resp. green dot) indicate the position at which the blade enters the water (resp. goes
out of the water). (b) Zoom on the position of the center of the blade during one stroke
with the plot of the blade position at di↵erent times (black lines) and the vectors of the
blade velocity with respect to the water, during the power stroke (red arrows). The gray
line is the blade path obtained from measurements for a single scull at a racing pace and
is reprinted from [54]. Note that in both plots the origin of the y axis corresponds to the
position of the oarlock and the boat is moving from the left to the right.

The blade path during the power stroke measured previously by Kleshnev and found in [54]
is re-plotted on the same graph. The path is clearly very di↵erent from the one we obtained:
after the catch, the blade moves much more forward in the direction of motion of the boat
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before slightly moving backward and finally moves forward again until the release. Thus,
the position of the release is found forward of the position of the catch, whereas we find the
opposite with our measurements. The observation by Kleshnev is quite surprising as rowing
propulsion is at first expected to be related to a drag force on the blade, which would require
that the blade moves in the opposite direction to the direction of motion of the boat. This
further implies that lift and added mass force provide important contributions to the total
propulsive force. In particular, Caplan et al. distinguish four di↵erent phases depending on
the respective contributions of drag and lift (see Fig. 2.11) [55]. They indicate that lift is
important at the beginning and at the end of the power stroke, while drag contributes to the
total force on the blade at the middle of the stroke (see also [50]). The significant di↵erence
between the results from the experiments with the Ecole polytechnique rowing team and the
data found in literature [54] is surely related to the level of the rowers.
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to assess their ability to successfully generate lift and
drag forces during the rowing stroke. It was expected
that the Big Blade would show an improved ability to
generate fluid forces when compared with the Macon
in line with the performance advantage claimed by
the manufacturers, and that blade curvature would
also have a positive influence on the fluid forces
generated.

Methods

Oar blades

The fluid dynamic tests were performed in a water
flume that had a free stream width and depth of
0.64 m and 0.15 m, respectively. Due to the inherent
edge resistance effects on the free stream velocity, it
was decided that quarter scale oar blade models
should be used so that the length of the blades was
less than a quarter of the flume width and remained
in the part of the flume where velocity reductions
were minimal. The model blades were fabricated
from 1.80-mm thick aluminium sheet, which was
shown by dimensional analysis to provide sufficient
stiffness to be able to discount any influence of oar
blade bending. Although this model thickness
transfers to a blade thickness of 7.2 mm, compared
with the full size oar blade thickness of 5 mm, a
model thickness of 1.8 mm was required to avoid any
influence of blade flexing. Compared with the
influence of the shape of the blade, this increase in

blade thickness is unlikely to have a significant
influence on blade characteristics. Several oar blade
designs were tested, including the Macon and Big
Blade designs (Concept 2, Morrisville, USA), and a
flat plate with the same shape and projected area as
the Big Blade. Both the Big Blade and Macon oar
blade designs have both longitudinal and lateral
curvature. However, due to manufacturing limita-
tions, only the longitudinal curvature could be
modelled. Traditionally, both oar blade designs have
a spine that runs along the line of the oar shaft and
extends approximately half way along the length of
the blade. However, recent advances in oar blade
design have seen the removal of this spine from the
face of the blade (e.g. Big Blade Smoothie, Concept
2, Morrisville, USA). Therefore, the model blades
used in the present investigation were manufactured
without a spine. The flat plate was tested to help
determine the influence of blade curvature.

Experimental set-up

To measure the forces being applied to the oar blade
models, a measurement system was designed such
that the model blades could be held static in the
flume at a range of angles relative to the direction of
free stream. The blades were attached to a model oar
shaft, with their normal orientations relative to the
shaft (Figure 2), and the model shaft made an angle
of 108 with the water surface. This model oar shaft
was attached to a vertical bar, and strain gauges

Figure 3. The movement of a right-handed oar blade during the drive phase of the rowing stroke with the boat moving from left to right.

The approximate directions of the lift and drag forces generated are indicated (adapted from Dreissigacker & Dreissigacker, 2000).

Fluid dynamics of commonly used oar blades 645

Figure 2.11: The four di↵erent phases of the blade trajectory during the power stroke. The
lift and drag forces are qualitatively indicated for each phase. Reprinted from [55].

2.4 Analysis of the rower’s kinematics

This study was conducted with the elite French rower Thomas Baroukh, bronze medal in
lightweight coxless four at the Rio 2016 Olympics. The aim here was to look closer at the
kinematics of the di↵erent segments of a rower (that is the legs, the trunk and the arms)
to quantify their relative importance as mentioned in Subsect. 2.1.2, and also to roughly
quantify the di↵erence between the motion of the rower’s hands and the motion of the center
of mass of the rower.

Similarly to other studies [50, 56, 57, 58], we identify six segments to represent the rower’s
body: two segments for the legs, one for the trunk and two for the arms. We then define
three angles: ✓

1

the angle between the two segments of the legs, ✓
2

the angle between the

34



2.4. Analysis of the rower’s kinematics

2

◊

1

◊

3

◊

2

Figure 2.12: Picture from the experiment with the French athlete Thomas Baroukh on the
Grand canal of Versailles. We define six segments (two for the legs, one for the trunk and
two for the arms) and three angles ✓

1

, ✓
2

and ✓
3

.

horizontal and the segment of the trunk and ✓
3

the angle between the two segments of
the arms (see Fig. 2.12). Note that to fully characterise the rower’s position, one should
introduce one more angle, which is the angle between the trunk and the upper arm. We
filmed Thomas Baroukh from the side during his training. From the analysis of the videos,
we could get the position of his segments during a few rowing cycles.

0 0.5 1 1.5 20

0.5

1
(a)

x (m)

y
(m

)

0 0.5 1 1.5 20

0.5

1
(b)

x (m)

Figure 2.13: Position of the di↵erent segments of Thomas Baroukh’s body extracted from
the analysis of the video of his training at di↵erent instants during (a) the power stroke and
(b) the recovery stroke. The color of the segments becomes darker with time.

Fig. 2.13 presents the results of this analysis for the higher stroke rate (27 strokes per minute)
for one rowing cycle, with the position of the segments at di↵erent instants, distinguishing
the power stroke and the recovery stroke. The two pictures qualitatively show when the
di↵erent segments are activated: in particular, the trunk and the arms start to move at the
end of the power stroke. The reverse dynamics is observed for the recovery stroke with the
arms and trunk moving at the beginning of it. Note that one particularity of the recovery
stroke is that the hands of the rower have a lower position than during the power stroke,
which is needed to prevent the blade from touching the water during this phase.

The evolution of the corresponding angles ✓
1

, ✓
2

and ✓
3

is shown in Fig. 2.14(a). One can
first observe that, ✓

1

(angle between the two segments of the legs) increases quasi linearly
with time during the power stroke (between t = 0 and the green vertical dashed line) – from
about 50� to 170� –, then keeps a fairly constant value from the end of the power stroke to
the end of the first quarter of the recovery stroke and finally decreases quasi linearly until
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reaching about 50�. As for the angles ✓
2

(angle between the horizontal and the trunk) and ✓
3

(angle between the two segments of the arms), they show very similar evolutions with time.
For both angles, two phases can be distinguished during the power stroke (and similarly
during the recovery stroke): a first phase for which the angle slowly decreases and a second
phase at the end of the power stroke with a fast decrease of the angle. This is in qualitative
agreement with the decomposition of the motion of the di↵erent segments observed from
Fig. 2.13.
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Figure 2.14: (a) Angles ✓
1

(between the two segments of the legs), ✓
2

(between the horizontal
and the segment of the trunk) and ✓

3

(between the two segments of the arms), (b) speed of
the rower’s hands v

ha/h

(blue curve) and of the center of mass of the rower v
r/h

(red curve)
and (c) acceleration of the rower’s hands a

ha/h

(blue curve) and of the center of mass of
the rower a

r/h

(red curve) as a function of the dimensionless time t/T for one stroke. For
the three plots, t = 0 is the time at which the blades enter the water and the vertical green
dashed line indicates the time at which the blades go out of the water.

From this analysis, it is straight-forward to obtain the velocity v
ha/h

and acceleration a
ha/h

of the rower’s hands. Computing the velocity v
r/h

and acceleration a
r/h

of the center of
mass of the rower is a bit more tricky. We obtain them by estimating the position of the
center of mass of the rower using the data of the location of the center of mass and the
relative weight of the di↵erent segments of the body found in [59, 60]. The speed of the
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rower’s hands and of the center of mass of the rower are plotted in Fig. 2.14(b), while the
corresponding accelerations are represented in Fig. 2.14(c). One can see that the velocity of
the center of mass of the rower is always smaller than the velocity of the rower’s hands. Its
maximum is about 1 m/s, while the maximum of the rower’s hands speed is about 2 m/s.
It can also be noticed that the velocity of the rower’s hands is still slightly positive at the
end of the power stroke (i.e. at the release) to prevent from slowing down the boat when
lifting up the blades. Looking now at the acceleration curves, it can be observed that the
accelerations are of the order of magnitude of 1 g. As can be expected, the maximum of
acceleration for both the rower’s hands and the center of mass of the rower happens at the
end of the recovery stroke, as the direction of motion of the rower changes. The minimum
of acceleration for the rower’s hands is situated at the beginning of the recovery stroke as
the blade goes out of water before changing direction. On the contrary, the minimum of
acceleration for the center of mass of the rower happens before the end of the power stroke.
This is related to the dominant use of the arms in this phase of the stroke which do not
a↵ect much the position of the rower’s center of mass.

2.5 Model for the drag on a rowing boat

Given the high length-to-width aspect ratio (typically about 30) of rowing boats, skin drag
is their dominant drag component, as seen in Chap. 1. Wellicome et al. confirm this
hypothesis as they specify that, in rowing, the wave drag accounts only for less than 8% of
the total drag [61, 62]. Furthermore, the Reynolds number for a rowing boat in competition
is typically about 108. This implies, as seen in Sect. 1.4, that the boundary layer along the
hull is turbulent. The total drag on the hull can then be written as:

R = �1

2
⇢S

h

C
h

U2 , (2.1)

where R is the projection of the total drag force on the hull over the direction of motion,
S
h

is the wetted surface of the hull and C
h

is the drag coe�cient of the hull.
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Figure 2.15: Instantaneous speed of an eight rowing boat as a function of time during a
deceleration phase (blue curve). The black line is a fit of the experimental curve using
Eq. (2.3) with U

0

' 3.25 m/s and ⌧ ' 17 s. The dashed line is the tangent of the fitting
curve in t = 0.

To estimate the hull drag coe�cient C
h

for a real rowing boat, we performed measurements
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of the speed of an eight rowing boat (from the Ecole polytechnique rowing club) during a
phase of deceleration with no rower’s motion (see Fig. 2.15). This corresponds to a phase
where the rowers stop rowing. In this case, the dynamical equation for the boat simply
reads:

M
dU

dt
= �1

2
⇢S

h

C
h

U2 , (2.2)

and, assuming C
h

to be independent of U , its solution reads:

U =
U
0

1 + t/⌧
, (2.3)

where U
0

is the initial speed of the boat at the beginning of the deceleration phase and
⌧ = 2M/(⇢S

h

C
h

U
0

) is the characteristic deceleration time. Fitting the experimental curve
in Fig. 2.15(a) with Eq. (2.3) yields U

0

' 3.25 m/s and ⌧ ' 17 s. Considering that M ' 720
kg and S

h

= 10 m2, one gets C
h

' 2.6 · 10�3.

This value of the hull drag coe�cient is comparable to the one found in the literature.
Previous studies where the fluid friction force on a rowing hull is modelled [57, 63, 64]
indeed found C

h

' 2.5 · 10�3. Other studies [65, 66] use the empirical relation: R =
�13.05 U2 + 11.22 U � 24.93, which was obtained by Wellicome for an eight rowing boat
[61].

Let us now mention that Eq. (2.1) is supposed to hold in the case of a motion at constant
speed U . However, as seen in Sect. 2.2, one particularity of rowing is the unsteadiness of
the flow around the hull. Indeed, because of the motion of the rowers on the boat and the
decomposition of the rowing cycle into a propulsive phase and a recovery phase, the boat
moves with large fluctuations of speed, which are up to 30% of the mean speed. This special
feature (which also appears for sprint canoes) might drastically a↵ect the expression of the
total drag R given in Eq. (2.1).

(1) (2)

Figure 2.16: Pictures of an Eight rowing boat and its wake at the London 2012 Olympics
(source: [67]).

In particular, if the distance travelled by the boat during one rowing cycle is smaller than
the boat length, then the flow fluctuations with time are averaged out when computing the
total resistance R because it is a spatial average. The drag coe�cient C

h

is then independent
of time. On the contrary, if the distance travelled is larger than the boat length, C

h

becomes
a function of time. The case of rowing typically lies in between these two limit cases as the
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distance travelled over one stroke is about the boat length. Furthermore, the fluctuations
of speed of the hull are also expected to change the wave resistance in comparison with
the case of a motion at constant speed. Looking at the pictures in Fig. 2.16 taken at the
London 2012 Olympics, in addition to observing a turbulent wake, one can notice that
larger waves are sometimes emitted during the rowing cycle. References [68] and [69] show
both experimentally and numerically that the wave resistance increases when the velocity
fluctuates compared to a motion at constant speed. The unsteady motion of rowing boats
also surely induces added mass forces (see Sect. 1.7.1), which could be taken into account
by adding to the total mass of the boat its added mass (to be evaluated).

So far, we only considered the hydrodynamic drag on the boat assuming calm waters and
a boat with always the same orientation with respect to the horizontal plane. However,
in reality, many other parameters can contribute to increase the drag on the boat. For
example, a pitch motion3 (taken into account in [64]) or the presence of surface waves can
a↵ect the hydrodynamic drag of the hull. Furthermore, the aerodynamic drag notably from
the oars and the emerging part of the hull also adds a non-negligible contribution to the
total drag on the boat (especially in case of wind).

3The up/down rotation of a vessel about its transverse (side-to-side or port-starboard) axis.
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Take home message of Chapter 2

1. Boat kinematics. During a rowing race, after a transitory regime, the mean
hull velocity over one rowing cycle reaches a fairly constant value. Taking a closer
look at the instantaneous hull velocity, we observe that the velocity fluctuates around
20 to 30% about the mean velocity and that the maximum hull velocity is reached
during the recovery stroke.

2. Blade kinematics. We conducted an experiment to measure the blade path
in water and obtained a quite di↵erent trajectory from the one found in literature.
This result shows that, depending on the velocity of the boat, the blade trajectory
can be very di↵erent, which directly impacts the contribution of lift and drag to the
total drag on the blade.

3. Rower’s kinematics. Analysing videos of the training of the French athlete
Thomas Baroukh, we recovered that the di↵erent segments of a rower (legs, trunk
and arms) are activated consecutively. We further observed a substantial di↵erence
between the velocity of the rower’s hands and the velocity of the center of mass of
the rower.

4. Drag on a rowing boat. With a simple experiment, we find that considering
only skin friction gives a good approximate for the total drag on the hull. This is
coherent with previous studies, which state that skin friction accounts for more than
90% of the total drag. The slenderness of rowing boats minimises their wave drag
component.
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3
Optimal hull aspect ratios

Empirical data reveal a broad variety of hull shapes among the di↵erent ship categories. We
present a minimal theoretical approach to address the problem of ship hull optimisation. We
show that optimal hull aspect ratios result – at given load and propulsive power – from a subtle
balance between wave drag, pressure drag and skin friction. Slender hulls are more favourable
in terms of wave drag and pressure drag, while bulky hulls have a smaller wetted surface for a
given immersed volume, by that reducing skin friction. We confront our theoretical results to
real data and discuss discrepancies in the light of hull designer constraints, such as stability
or manoeuvrability.

Picture of the 1829 (left) and 1929 (right) Oxford boats. Source: [70].
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3.1 Position of the problem

The long-lived subject of ship hull design is with no doubt one of infinite complexity. Con-
straints may significantly vary from one ship class to another. When designing a sailing
boat, stability and manoeuvrability are of paramount importance [5, 19, 20, 71]. Liners and
warships must be able to carry a maximal charge and resist rough sea conditions. Ferrys
and cruising ships must be sea-kindly such that passengers don’t get sea-sick. All ship hulls
share however one crucial constraint: they must su↵er the weakest drag possible in order to
minimise the required energy to propel themselves, or similarly maximise their velocity for
a given propulsive power.

Figure 3.1: Bulbous bow of the passenger ship Zaandam in drydock (source: [72]). A
bulbous bow is used to reduce its wave resistance.

As one can expect, a number of technological advances have been developed over the years,
such as bulbous bows (see Fig. 3.1) intended to reduce wave drag through destructive in-
terference [5, 73, 74]. There exists an extended literature of numerical and experimental
studies dedicated to the optimisation of ship hulls. Quite surprisingly some of them only
consider wave drag in the optimisation setup (see e.g. [34, 75, 76]). Others consider both
the skin drag and the wave drag [74, 77, 78]. Very few consider the pressure drag [79]
as most studies address slender streamlined bodies for which the boundary layer does not
separate, leading to a negligible pressure drag. The complexity of addressing analytically
this optimisation problem comes from the infiniteness of the search space. Indeed without
any geometrical constraints, the functions defining the hull geometry can be anything, and
computing the corresponding drag can become an impossible task. However, from this sub-
stantial literature, it is not self-evident to deduce how ship hulls should look like – notably
in terms of aspect ratios – to minimise their drag.

In Fig. 3.2, the length to width aspect ratio ↵ = `/w of di↵erent kinds of bodies moving
at the water surface is plotted against their Froude number (see Table 3.1 for details). As
one can see, di↵erent ship categories tend to gather into clusters. These groups display
very di↵erent aspect ratios, from 2-3 to about 30, even in the same Froude number regime.
The highest aspect ratios are reached for rowing boats (`/w ⇡ 30, Fr ⇡ 0.5). The majority
of ships stand on the left hand side of the plot (Fr . 0.7). For Fr & 0.7, most hulls can
no longer be considered as displacement hulls (weight balanced by buoyancy) but rather
as planing hulls (weight balanced by hydrodynamic lift) and thus have a much smaller im-
mersed volume [20]. Here we take a simple theoretical approach to determine the optimal
aspect ratios for ship hulls depending on the required load and propulsive power. They are
compared to the aspect ratios of real ship hulls to see how close existing hulls are from the
optimal.
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Figure 3.2: Aspect ratio ↵ = `/w as a function of Froude number U/
p

g` for di↵erent
kinds of bodies moving at the water surface (see Table 3.1 for details). Solid symbols
represent displacement hulls, whereas open symbols indicate planing hulls. The aspect ratio
for multihulls is computed for each hull independently. The black line corresponds to the
optimal aspect ratio, see Sect. 3.5. Solid lines indicate global optima, while dashed lines
signify local optima.

Category Boat Name
Length
` (m)

Width
w (m)

Draft (*)
d (m)

Mass
M (kg)

Speed
U (m/s)

Power (*)
P (kW)

Liner Titanic 269.0 28.00 13.89 5.23 · 107 11.70 34000

Liner
Queen
Mary 2

345.0 41.00 10.75 7.6 · 107 14.90 115000

Liner
Seawise Gi-
ant

458.0 68.86 41.22 6.5 · 108 8.50 37000

Liner
Emma
Maersk

373.0 56.00 20.87 2.18 · 108 13.40 88000

Liner
Abeille
Bourbon

80.0 16.50 4.85 3.2 · 106 9.94 16000

Liner France 300.0 33.70 11.28 5.7 · 107 15.80 118000

Warship
Charles de
Gaulle

261.5 31.50 10.32 4.25 · 107 13.77 61000

Warship Yamato 263.0 36.90 15.04 7.3 · 107 13.80 110000
Rowing
boat

Single Scull 8.1 0.28 0.09 104 5.08 0.4

Rowing
boat

Double
Scull

10.0 0.34 0.12 207 5.56 0.8

Rowing
boat

Coxless
Pair

10.0 0.34 0.12 207 5.43 0.8

Rowing
boat

Quadruple
Scull

12.8 0.41 0.16 412 6.02 1.6

Rowing
boat

Coxless
Four

12.7 0.42 0.15 410 5.92 1.6

Rowing
boat

Coxed
Eight

17.7 0.56 0.18 867 6.26 3.2

Canoe C1 5.2 0.34 0.12 104 4.45 0.4
Canoe C2 6.5 0.42 0.15 200 4.80 0.8
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Table 3.1 – Continued from previous page

Category Boat Name
Length
` (m)

Width
w (m)

Draft (*)
d (m)

Mass
M (kg)

Speed
U (m/s)

Power (*)
P (kW)

Canoe C4 8.9 0.50 0.18 390 5.24 1.6
Kayak K1 5.2 0.42 0.09 102 4.95 0.4
Kayak K2 6.5 0.42 0.15 198 5.35 0.8
Kayak K4 11.0 0.42 0.17 390 6.00 1.6
Sailing boat
Monohull

Finn (p) 4.5 1.51 0.12 240 4.10 4.0

Sailing boat
Monohull

505 (p) 5.0 1.88 0.15 300 7.60 18.9

Sailing boat
Monohull

Laser (p) 4.2 1.39 0.10 130 4.10 2.7

Sailing boat
Monohull

Dragon 8.9 1.96 0.50 1000 7.60 16.5

Sailing boat
Monohull

Star 6.9 1.74 0.35 671 7.60 18.5

Sailing boat
Monohull

IMOCA 60
(p)

18.0 5.46 0.50 9000 15.30 843.4

Sailing boat
Monohull

18ft Ski↵
(p)

8.9 2.00 0.24 420 12.70 85.2

Sailing boat
Monohull

49er (p) 4.9 1.93 0.20 275 7.60 25.9

Sailing boat
Multihull

Nacra 450
(p)

4.6 0.25 0.12 330 9.20 20.7

Sailing boat
Multihull

Hobie Cat
16 (p)

5.0 0.30 0.12 330 7.60 20

Sailing boat
Multihull

Macif 30.0 2.50 0.50 14000 20.40 1218

Sailing boat
Multihull

Banque
populaire V

40.0 2.50 0.50 14000 23.00 1700

Sailboard
Mistral One
Design (p)

3.7 0.63 0.07 85 10.20 6.9

Sailboard RS:X (p) 2.9 0.93 0.06 85 11.70 10.2
Motorboat Zodiac (p) 4.7 2.00 0.15 700 17.80 180.0
Animal Swan 0.5 0.40 0.10 10 0.76 N.A.
Animal Duck 0.3 0.20 0.17 5 0.66 N.A.

Animal
Human
swimmer

1.8 0.60 0.17 90 2.00 0.3

Table 3.1: Characteristics of bodies moving at the water surface. The planing hulls are
indicated with (p) in the column Boat Name. N.A. stands for Not Available. (*) For all
hulls (including planing hulls for which this estimation might be too rough), the draft is
estimated using the mass of the boat and the relation M/⇢ ' 2a

˜

f

`wd (with a
˜

f

= 0.25). The
power is estimated through diverse methods depending on the category of the boat. For
liners and warships, the propulsive power can easily be found in the specification documents.
For rowing boats, canoes and kayaks, we consider that the power per oarsman is 400 W.
For sailing boats and sailboards, we use the sail area of the boat to derive its propulsive
power (with a typical wind of 10 m/s). Note that for multihull sailing boats, the indicated
dimensions correspond to one of the hulls.
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3.2 Model assumptions and simplifications

We consider here a much simpler hull geometry than in Chap. 1, that is hulls with a constant
horizontal cross-section (see Fig. 3.3). The general parametrisation of the hull shape (see
Subsect. 1.6.1) then becomes y = f(x)1

z2[�d,0]

where 1
z2[�d,0]

denotes the indicator function
(1

z2[�d,0]

= 1 if z 2 [�d, 0] and 0 otherwise).

x

y
z

w

d

`

x

y
z

w

d `

f(x)

f(x, z)
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Figure 3.3: Schematics of the simplified hull geometry considered in this chapter. The hull
shape follows the parametrisation y = f(x)1

z2[�d,0]

. Note that only the part of the hull
immersed in the water is represented.

In the same way as in Sect. 1.6, we define the length `, width w and draft d (see Fig. 3.3)
and introduce the dimensionless coordinates through x = x̃`, y = ỹ` and z = z̃` as well as
f(x) = f̃(x̃)w. We remind the definition of the aspect ratios ↵ = `/w and � = `/d.

Furthermore, the fluid is assumed to be infinitely deep and we use the theoretical model
developed by Michell to predict the wave drag on this simple geometry (see Subsect. 1.6.3).
Note that this model is only accurate in the limit of thin ships.

3.3 Wave drag expression

Applying Eqs. (1.47)-(1.48) for the simplified geometry defined above, the wave drag coef-
ficient reads:

C
w

(Fr,↵,�) =
4�2/3

⇡↵4/3Fr4
G

˜

f

(Fr,�) , (3.1)

where we have defined:

G
˜

f

(Fr,�) =

Z
+1

1

|I
˜

f

(�, Fr,�)|2
p
�2 � 1

d� , (3.2)

I
˜

f

(�, Fr,�) =
⇣
1 � e��

2
/(�Fr

2
)

⌘Z 1
2

� 1
2

f̃(x̃)ei�x̃/Fr
2
dx̃ . (3.3)

Interestingly, one can notice here that the aspect ratio ↵ only appears as ↵�4/3 in front of
the function G

˜

f

(Fr,�) in Eq. (3.1). Consequently, the higher ↵ the lower the wave drag
coe�cient. The e↵ect of the aspect ratio � is a bit more complex: for � ⌧ 1, C

w

scales as
�2/3, while for � � 1, C

w

scales as ��4/3, which is notably the same power law as for ↵.
From these scalings, we also see that there is a maximum of the wave drag coe�cient for
intermediate values of �.
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To analytically compute the wave drag coe�cient, we consider a gaussian hull profile:

f̃(x̃) =
1

2
exp[�(4x̃)2] . (3.4)

Indeed, with this particular hull profile, one can approximate analytically the integral in
Eq. (3.3) by integrating x̃ over R. One obtains:

G
gauss

(Fr,�) =
⇡

64
J

✓
1

32Fr4

◆
� ⇡

32
J

✓
1

32Fr4
+

1

�Fr2

◆
+

⇡

64
J

✓
1

32Fr4
+

2

�Fr2

◆
, (3.5)

where:

J(u) =

Z
+1

1

e�u�

2

p
�2 � 1

d� =
1

2
e�u/2K

0

(u/2) , (3.6)

with K
0

(u) the modified Bessel function of the second kind of order zero [80].

0 0.5 1 1.50

0.02

0.04

0.06

0.08

0.1

Fr

C

w

Gaussian hull (num.)
Parabolic hull (num.)
Tuck (1987)
Chapman (1972)

Figure 3.4: Wave-drag coe�cient C
w

as function of the Froude number Fr for a gaussian hull
and a parabolic hull for ↵ = 6.7 and � = 2.3. These results are compared to the theoretical
curve from [32] and experimental data points from [31] (black crosses).

In Fig. 3.4, the corresponding wave drag coe�cient for an object of aspect ratios ↵ = 6.7
and � = 2.3 is represented as function of the Froude number. This is compared with the
wave drag coe�cient obtained numerically for a parabolic profile (f̃(x̃) = 2x̃ (1 � x̃)), as
well as numerical and experimental results from previous studies also obtained for parabolic
objects with the same aspect ratios [31, 32]. The figure shows very good agreement between
the two previous studies and our result for a parabolic profile, thus validating our numerical
code. Compared to these results, the curve obtained for a gaussian profile has its maximum
shifted to the left and do not display oscillations of the wave drag coe�cient at low Froude
numbers (Fr  0.3).1 This comparison shows that the choice of a Gaussian profile rather
than more realistic profiles, such as a parabolic profile, has no qualitative impact on our
main results. We also recover from this plot that the wave drag coe�cient is maximum for
Fr ⇡ 0.5.

Figure 3.5(a-c) displays the contour plots of C
w

as function of (↵,�) for Fr 2 {0.3, 0.5, 1}. As
expected from the previously derived scalings, the contour plots make it clear that the wave
drag is minimum for large values of ↵ and �, that is for thin and shallow hulls. The Froude
number is also found to highly a↵ect the values of C

w

. Considering the three contour plots,

1The oscillations at Fr  0.3 appear to be related to the slopes of the hull profile in x̃ = �1/2 and x̃ = 1/2.
We observed that the lower these slopes the lower the oscillations.
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Figure 3.5: (a-c) Contour plots of the wave drag coe�cient C
w

as a function of the aspect
ratios ↵ and �, for (a) Fr = 0.3, (b) Fr = 0.5 and (c) Fr = 1. Black regions correspond to
C
w

� 10�2. (d-f) Contour plots of (d) the pressure drag coe�cient C
f

, (e) the skin drag
coe�cient C

s

and (f) the profile drag coe�cient C
p

= C
f

+ C
s

as a function of the aspect
ratios ↵ and �. Black regions correspond to C

f/s/p

� 10�1. In (e) the red dot indicates the
position of the minimum of C

s

(↵
0

' 5, �
0

' 7.5). In (f), it indicates the position of the
minimum of C

p

(↵
0

' 7, �
0

' 10). In (c) and (f) the gradients are indicated with black
arrows.

the e↵ect of the Froude number at given ↵ and � seems to follow the evolution depicted in
Fig. 3.4 with maximum values of the wave drag coe�cient obtained for Fr ' 0.5.

3.4 Profile drag derivation

The profile drag R
p

is defined as the sum of the skin drag and the pressure drag (or form
drag) (see [10] and Chap. 1). It is also called viscous resistance (see [19] and [20]). In
the typical range of Reynolds numbers for ships (Re 2 [107, 5 ⇥ 109], see Sect. 1.2), both
the skin and pressure components scale with U2. Thus, the profile drag can be written as
R

p

= (1/2)⇢S
h

C
h

U2 where S
h

is the wetted surface of the hull and C
h

its drag coe�cient.
The wetted surface can be decomposed in two contributions S

h

= S
b

+ Ld where S
b

=

2w`
R
1/2

�1/2

f̃(x̃) dx̃ is the surface of the bottom horizontal cross section of the hull and L =
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2`
R
1/2

�1/2

[1 + f̃ 0(x̃)2/↵2]1/2 dx̃ is the perimeter of the hull. We define:

a
˜

f

=
R 1

2

� 1
2

f̃(x̃) dx̃ , (3.7a)

b
˜

f

(↵) =
R 1

2

� 1
2

[1 + f̃ 0(x̃)2/↵2]1/2 dx̃ , (3.7b)

so that S
h

= 2`[w a
˜

f

+d b
˜

f

(↵)]. Finally, the profile drag can be written as R
p

= ⇢⌦2/3U2C
p

with:

C
p

(↵,�) =
C
h

(↵)�2/3

↵1/3


a
˜

f

+
↵

�
b
˜

f

(↵)

�
. (3.8)

The evolution of the coe�cient C
h

with ↵ was empirically derived for streamlined bodies
[10]: C

h

(↵) = C1
s

(1 + 2/↵ + 60/↵4) with C1
s

the skin drag coe�cient for a flat plate (see
Sect. 1.4). The term (1 + 2/↵) refers to the skin friction, while the term 60/↵4 corresponds
to the pressure drag.2 In the considered regimes, C1

s

is only weakly dependent on the
Reynolds number (see [10] and Sect. 1.4). In the following, we consider a constant skin drag
coe�cient C1

s

= 0.002, corresponding to a Reynolds number Re ' 108.

With this expression of the profile drag coe�cient, it is straightforward to obtain the scalings
at small and large aspect ratios. For ↵ ⌧ 1, C

p

⇠ ↵�13/3, while for ↵ � 1, C
p

⇠ ↵2/3. As
for �, when � ⌧ 1, C

p

⇠ ��1/3 and when � � 1, C
p

⇠ �2/3. Very interestingly, in the same
way as for the wave drag coe�cient, ↵ and � follow the same power law when they are large
(↵ � 1 and � � 1). Also, the scalings for both aspect ratios indicate the existence of a
minimum for intermediate aspect ratios. This is shown with the contour plot of the profile
drag coe�cient C

p

as a function of ↵ and � (see Fig. 3.5(f)). The minimum is obtained for
rather small aspect ratios: ↵

0

' 7, �
0

' 10 (indicated by a red dot). If we only took into
account the skin friction component C

s

(see Fig. 3.5(e)), the optimal aspect ratios would
be even smaller (↵

0

' 5, �
0

' 7.5) The contour plot of the pressure drag component C
f

in
Fig. 3.5(d) shows that C

f

drastically increases for small aspect ratio ↵. This explains why,
in comparison with C

s

, the position of the minimum of C
p

is shifted towards larger aspect
ratios.

3.5 Optimisation

The total drag force on the hull reads R = R
w

+ R
p

= ⇢⌦2/3U2C where:

C(↵,�, Fr) =
�2/3

↵4/3

(
4

⇡Fr4
G

˜

f

(Fr,�) + C
h

(↵)↵


a
˜

f

+
↵

�
b
˜

f

(↵)

�)
. (3.9)

Thus, within the present framework, the total drag coe�cient is completely determined by
the three dimensionless variables ↵, � and Fr, together with the function f̃ .

We seek the optimal hull shapes, that is the choice of parameters that minimises the total
drag for a given load (equivalently immersed volume through the Archimedes principle) and
given propulsive power. This is consistent with operational conditions. Before engaging in
any calculations, let us stress that the optimal aspect ratios will naturally result from a
subtle balance between skin drag, pressure drag and wave drag. Indeed, on the one hand
reducing skin drag amounts to minimising the wetted surface which corresponds to rather

2This empirical expansion is expected to hold for ↵ & 2 (see [10]).
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Figure 3.6: (a) Optimal aspect ratio ↵?, (b) optimal aspect ratio �?, (c) optimal Froude
number Fr?, (d) corresponding value of the total drag coe�cient C? = C(↵?,�?, Fr?), and (e)
corresponding ratio between the wave drag coe�cient and the total drag coe�cient C?

w

/C?,
as a function of the dimensionless power ⇧. The curves in orange and green represent the
two optimal branches. Solid/dashed lines indicate global/local optima.
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bulky hulls3 (see Fig. 3.5(e)), while on the other hand reducing wave drag or pressure drag
pushes towards rather slender hulls (see Figs. 3.5(a-c) and (d)). In Figs. 3.5(c) and (f) one
can notice that for su�ciently large ↵ and � the gradients rC

p

and rC
w

roughly point
in opposite directions. This is totally coherent with the scalings derived in the previous
sections for both the wave drag coe�cient C

w

and the profile drag coe�cient C
p

. Indeed,
for large aspect ratios (↵ � 1, � � 1), C

w

scales as (↵�)�4/3, promoting large aspect ratios,
while C

p

scales as (↵�)2/3, in favor of rather small aspect ratios.

To close the problem, we define the imposed propulsive power P = RU . Using U = Fr[↵�⌦g3]1/6

one obtains:

Fr3
p
↵� C(↵,�, Fr) = ⇧ , (3.10)

where C(↵,�, Fr) is given by Eq. (3.9), and where we have defined the dimensionless power:

⇧ =
P

⇢g3/2⌦7/6

. (3.11)

Minimising the total drag coe�cient C as given by Eq. (3.9) with respect to ↵, � and
Fr, under the constraint given by setting the dimensionless power ⇧ in Eq. (3.10), yields
the optimal set of parameters (↵?, �?, Fr?) for the optimal hull geometry at given load
(equivalently ⌦) and given propulsive power P. This optimisation problem can be written:

min
(↵,�,Fr)2K

C(↵,�, Fr) , (3.12)

where K is the set of triplets of real and positive parameters (↵, �, Fr) satisfying Eq. (3.10).

It is solved numerically using an interior-point algorithm [81, 82]. The optimal parameters
and the resulting total drag coe�cient C? = C(↵?,�?, Fr?) as function of dimensionless
power ⇧, are presented in Fig. 3.6, together with the empirical data points for comparison.

Interestingly the optimisation yields two separate solutions (see orange and green branches)
corresponding to two local optima. For ⇧  ⇧

c

(resp. ⇧ � ⇧
c

) with ⇧
c

⇡ 0.2, the orange
(resp. green) branch constitutes the global optimum, consistent with a lower total drag
coe�cient C? (see Fig. 3.6(d)). As previously mentioned, at large aspect ratios (↵ � 1,
� � 1), both the drag coe�cients C

w

and C
p

have the same scalings in ↵ and �. This
explains why, on Figs. 3.6(a) and (b), the optimal aspect ratios ↵? and �? show very similar
evolutions with ⇧. On the one hand, both of them are maximal around ⇧

max

⇡ 0.03
corresponding to Fr

max

⇡ 0.4, that is the maximum wave drag regime (see Fig. 3.4). This is
consistent with the idea that thin and shallow hulls are favourable in terms of wave drag as
illustrated in Fig. 3.5(a1-c1). On the other hand, for ⇧ ⌧ ⇧

max

or ⇧ � ⇧
max

the wave drag
becomes negligible compared to the profile drag, and one recovers the optimal aspect ratios
in the absence of wave drag: ↵? ' 7 and �? ' 10. Figure 3.6(c) shows that the optimal
Froude number Fr? increases with ⇧. Like for ↵? and �?, there is a shift of value from
Fr? ⇡ 0.8 to Fr? ⇡ 1.7, for ⇧ = ⇧

c

, which indicates that in this setting 0.8 < Fr < 1.7 is
never a suitable choice. This shift is also made visible in Fig. 3.2 where the optimal aspect
ratio ↵? is plotted against the Froude number together with the aspect ratio of existing
hulls. The results of the optimisation obviously depend on the Reynolds number, through
the value of the coe�cient C1

s

, but only weakly. Let us stress that, while for the optimal
geometries (↵?, �?) the profile drag is always the dominant force regardless of the Froude
number, our study shows that it is crucial to consider the wave drag in the optimisation. In

3With no constraint on the geometry of the hull, the shape minimising the wetted surface is a spherical
cap.
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particular, far from the optimal aspect ratios, the wave drag coe�cient can surely become
dominant. In Fig. 3.6(e), the ratio between the wave drag coe�cient and the total drag
coe�cient on the optimal curve is represented as a function of the dimensionless power ⇧.
We can see that, in the range ⇧ 2 [0.05, 0.15], this ratio is about 0.1. This means that for
rowing boats, which typically lie in this range, the wave drag is about 10 % of the total
drag. This order of magnitude is comparable to the one found in literature (see [61] and
Sect. 2.5).

3.6 Discussion

Our work provides a self-consistent framework to understand and discuss the design of
existing boats.

3.6.1 Comparison with real data

Figure 3.6 confronts data from bodies moving at the water surface (e.g. liners, rowing boats,
sailing boats or animals, see also Table 3.1) with the calculated optimal geometries. As one
can see, while some ship categories are found in a rather good agreement with the theoreti-
cal predictions (such as liners and warships), others are very far from the computed optima
(such as monohull sailing boats). Discrepancies with empirical data might primarily come
from other constraints on the design of the boat which can prevail on the minimisation
of the drag, such as stability, manoeuvrability, resistance to rough seas or seakindliness.
They could also come from the assumptions of our model. In particular, a steady motion
is considered here, while for rowing boats and sprint canoes, high fluctuations of speed are
encountered (about 20% of the mean velocity) and are expected to a↵ect the total drag,
notably through added mass.

Back to racing shells. The case of rowing boats [83, 84], sprint canoes and sprint kayaks
is of particular interest as they do not really have other constraints than the minimisation of
the total drag. Indeed, manoeuvrability is not relevant as they usually only have to go along
straight lines, stability is at its edge and they only need to carry the athletes, usually on
very calm waters. The data for racing shells are found in good agreement with the optimal
Froude number Fr?(⇧). For rowing shells, while the aspect ratios ↵ are found quite close to
the optimal value, the aspect ratios � lie above the optimal curve. This indicates that row-
ing shells could be shorter or have a larger draft. This discrepancy might be related to the
need for su�cient spacing between rowers (long shells) and/or for stability (small draft).
For sprint canoes and sprint kayaks, the competition rules from the International Canoe
Federation [85] impose maximal lengths for the boats4 which could explain their relatively
low aspect ratio ↵ compared to the optimal one. Their aspect ratio � is also found slightly
lower than the optimal results.

4The maximal lengths for sprint canoes and sprint kayaks are the same for the categories C1 and K1 (5.2
m), C2 and K2 (6.5 m) but not for C4 (9 m) and K4 (11 m) (see also Table 3.1). The letter C (resp. K)
refers to sprint canoes (resp. sprint kayaks), and the following number indicates the number of rowers.
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3.6.2 Discussion on stability

For the monohull sailing boats, the significant di↵erence between real data and the computed
optima surely comes from the need for stability. A simple criterion for static stability5 can
be derived for the model hull presented in Fig. 3.3, considering that it is a homogenous body
of density ⇢

s

< ⇢ (see Fig. 3.7).
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Figure 3.7: Cross-section of the model hull (see Fig. 3.3) in (a) vertical position and (b)
slightly inclined position.

We define the center of gravity G, the center of buoyancy B, and the metacenter M [19, 20]
as the point of intersection of the line passing through B and G and the vertical line through
the new centre of buoyancy B0 created when the body is displaced (see Fig. 3.7(b)). Imposing
that the metacenter be above the center of gravity reads GM > 0, or equivalently BM > BG.
On the one hand, the so-called metacentric height BM can be computed for small inclination
angles through the longitudinal moment of inertia of the body I = (8c

˜

f

)w3`/12 with

c
˜

f

=
R
1/2

�1/2

[f̃(x̃)]3 dx̃ and the immersed volume ⌦
i

= 2a
˜

f

⌦ as:

BM =
I
⌦
i

=
c
˜

f

3a
˜

f

w2

d
. (3.13)

On the other hand, one has BG = (D � d)/2 where D is the total height of the hull. We
then use the static equilibrium ⇢

s

⌦
tot

= ⇢⌦
i

, where ⌦
tot

= 2a
˜

f

w`D is the total volume of
the body, to eliminate D. This finally yields the criterion w/d >  (⇢

s

/⇢) with:

 (u) =

s
3a

˜

f

2c
˜

f

✓
1

u
� 1

◆
, u 2 [0, 1] . (3.14)

 is a decreasing function of u. For neutrally buoyant bodies,  (1) = 0, all configurations
are stable as B and G coincide. While for bodies floating well above the level of water,
lim

u!0

 (u) = +1, then wide and shallow hulls are required to ensure stability. In the
specific model case of Fig. 3.3, one has a

˜

f

⇡ 0.33, c
˜

f

⇡ 0.057 and thus  (u) ⇡ 3
p

1/u � 1.
Thus, the latter criterion reads: w/d = �/↵ >  (⇢

s

/⇢) where  is defined in Eq. (3.14).
For real boats, the critical value of w/d depends on mass distribution and e↵ective density
of the hull and is highly a↵ected by the presence of a keel, intended to lower the position
of the center of gravity. This stability criterion constitutes an additional constraint that
could be easily taken into account in the optimisation problem and that would reduce the
search space. In short, stability favours wide and shallow ships. This explains why most
real data points lie below the optimal curve ↵?(⇧) in Fig. 3.6(a) but above the curve �?(⇧)
in Fig. 3.6(b). Stability is all the more important for sailing boats where the action of

5Note that for real hull design one should also address dynamic stability [71], but the latter falls beyond
the scope of our study.
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the wind on the sail contributes with a significant destabilising torque. Interestingly, this
matter is overcome for multihull sailing boats, in which both stability and optimal aspect
ratios can be achieved by setting the appropriate e↵ective beam, namely the distance be-
tween hulls [86]. This allows higher hull aspect ratios, closer to the optimal curves in Fig. 3.6.

3.6.3 Discussion on planing

As displayed in Fig. 3.6(c), we predict a shift in the Froude number for ⇧ ⇡ 0.2 which
indicates that boats should not operate in the range of Froude numbers Fr 2 [0.8, 1.7].
However, when the Froude number is above Fr ⇡ 0.7, the hulls start riding their own
bow wave: they are planing. Their weight is then mostly balanced by hydrodynamic lift
rather than static buoyancy [10, 20]. As planing is highly dependent on the hull geometry
and would require to consider tilted hulls, we do not expect our model to hold in this
regime. Some changes though allow to understand the basic principles. Planing drastically
reduces the immersed volume of the hull which in turn reduces both the wave drag and the
profile drag. The e↵ect on the immersed volume can be taken into account by adding the
hydrodynamic lift in the momentum balance along the vertical direction. Thus, one has:
Mg ' ⇢⌦

i

g+1/2⇢C
L

`w sin(2✓)U2 where M is the mass of the boat, C
L

is the lift coe�cient,
and ✓(Fr) is the Froude-dependent angle of the hull with respect to the horizontal direction
of motion [10, 20]. This leads to an immersed volume which depends on the Froude number
through:

⌦
i

(Fr) ' ⌦
i

(0)

1 + C
L

� sin(2✓)Fr2/(4a
˜

f

)
, (3.15)

where ⌦
i

(0) = M/⇢. For low Froude number, ✓(Fr) ' 0 and the volume is that imposed by
static equilibrium, while for larger Fr number ✓ > 0 and the volume ⌦ ⇠ ⌦

i

is decreased.
Note that foil devices also contribute to decreasing the immersed volume by increasing the
lift.

Eventually, our study provides the guidelines of a general method for hull-shape optimisa-
tion. It does not aim at presenting quantitative results on optimal aspect ratios, in particular
due to the simplified geometry we consider and the limitations of Michell’s theory for the
wave drag estimation [28, 33, 87]. However, our method can be applied in a more quantita-
tive way for each class of boat by considering more realistic hulls.
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Take home message of Chapter 3

1. In ship hull design, the minimisation (under constraints) of the total drag on
the hull is one of the main challenges. The di↵erent drag components have opposite
e↵ects: wave drag and pressure drag decrease with increasing aspect ratios and thus
favour slender hulls, while skin drag is minimal for rather low aspect ratios and
favours more bulky hulls.

2. Using a simple theoretical approach (based on a simplified hull geometry), we
derive the optimal aspect ratios for ship hulls regarding the minimisation of the total
drag, at a given load and propulsive power.

3. Optimal aspect ratios mostly depend on the imposed propulsive power. For low
propulsive power (equivalently Froude number Fr ⌧ 0.5) and for high propulsive
power (equivalently Fr � 0.5), the wave drag is negligible and the optimal hulls are
rather bulky, while for intermediate propulsive power (corresponding to Fr ' 0.5),
they are rather thin to minimise the wave drag.

4. The aspect ratios of rowing boats are in good agreement with the optimal ones.
The discrepancies observed for other boat categories, such as sailing boats, come from
the importance of other constraints, such as stability or manoeuvrability.
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4
A question of asymmetry

The purpose of this chapter is to assess the e↵ect of the asymmetry of a hull on its total drag
and in particular on its wave drag. We consider a set of hulls of increasing asymmetry and
determine both experimentally and numerically their drag to find the optimal asymmetry.
The comparison between the two approaches provides new insights in the context of the
optimisation of hull shapes.

Supersonic flow around a wedge without incidence. Photo credits: Henri Werlé, ONERA.
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4.1 Problem statement

After having analysed in the previous chapter the optimal aspect-ratios for ship hulls, we
study the e↵ect of the asymmetry between the front and the rear of a boat and pose the
question of whether this asymmetry could decrease the total drag on the hull. On the
one hand, when an object is moving in a homogeneous fluid, to avoid flow separation and
thus minimise the pressure drag, it should be pointed at the rear and rather look like an
airfoil profile (see Fig. 1.3). This is qualitatively what Huan et al. found when seeking
numerically the two-dimensional shapes of minimum drag for di↵erent Reynolds numbers
(see Fig. 4.1(a)-(c)) [88, 89]. For example, the Dymaxion car (see Fig. 4.1(d)), designed
by the American inventor and architect Buckminster Fuller in 1933, has an aerodynamic
bodywork to reduce its fuel consumption [90]. On the other hand, when the object is moving
at the water surface, to create the least waves and thus reduce the wave drag, it should rather
be narrow at the front. Consequently, for ship hulls, which are exposed to both pressure
drag and wave drag, it is unknown whether asymmetry is optimal.

(a)

(b)

(c)

(d)

Figure 4.1: Two dimensional shapes of minimum drag found by [88] for (a) Re = 20, (b)
Re = 5 000 and (c) Re = 20 000. (d) Picture of the Dymaxion car n�1, designed by the
American inventor and architect Buckminster Fuller in 1933. This car had an aerodynamic
bodywork to increase its fuel e�ciency and reach top speed [90].

4.1.1 Asymmetry of existing hulls

As already mentioned, a large variety of shapes is found among ship hulls, in particular
because of the number of constraints that hulls must satisfy depending on their function
(stability, manoeuvrability, drag minimisation, sea-kindliness, ...).

(a)
U

(b)
U

(c)
U

Figure 4.2: Pictures of (a) a sprint canoe, (b) a sprint kayak, and (c) a single scull rowing
boat. The three boats are moving from right to left. Pictures have been rescaled (see
Table 2.1 for the characteristics of rowing boats and Table 5.1 for the characteristics of
sprint canoes and sprint kayaks).
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If one takes a closer look at sprint canoes (Fig. 4.2(a)), sprint kayaks (Fig. 4.2(b)), and
rowing boats (Fig. 4.2(c)), hulls for which the main constraint is the drag minimisation, one
can notice that, while rowing boats are nearly symmetric, sprint canoes and sprint kayaks
are found narrower at the front than at the rear.

In this section, we focus on sprint canoes as it is easy to roughly estimate the asymmetry of
these hulls from their top-view picture.1 As defined in Sect. 1.6, we use the dimensionless
coordinates x̃ = x/` and ỹ = y/` as well as the function f̃(x̃) = f(x)/w that represents the
edge of the hull (with x̃ 2 [�1/2, 1/2]). Fig. 4.3(a)-(c) shows three di↵erent canoes hulls
C1.2 The projected edge of each of these hulls f(x) is obtained through image analysis and
is plotted in dimensionless form ↵ ỹ = f̃(x̃) (with ↵ = `/w) in Fig. 4.3(d). One can thus
observe the di↵erences between di↵erent hull models; in particular the C1 Vanquish III has
a clearly more asymmetric shape than the two other hulls.

(a)

U

(b)

U

(c)

U

≠0.5 ≠0.25 0 0.25 0.50

0.25

0.5

0.75

1(d)

x̃

–
ỹ

C1 Six3

C1 Cinco XL

C1 Vanquish III

Figure 4.3: (a)-(c) Top view of three sprint canoes hulls (from Nelo manufacturer [91]), (a)
C1 Six3, (b) C1 Cinco XL and (c) C1 Vanquish III. (d) Position of the edge of the hull
↵ ỹ = f̃(x̃) for the three hulls (a), (b) and (c). The gray dashed line represents a parabolic
hull profile.

In order to characterise the asymmetry of hulls, we define the asymmetry parameter ✏ as
follows:

✏ = 

 Z
1/2

0

g̃(x̃)2 dx̃

!
1/2

, (4.1)

where g̃(x̃) = f̃(x̃) � f̃(�x̃) and  = �sign(
R
1/2

0

g̃(x̃) dx̃). Except from the factor , this is
the L2 norm of the odd function g̃(x̃). The factor  = sign(✏) is introduced to distinguish
between the two directions of motion of an asymmetric hull.

‘ < 0
U

‘ > 0
U

Figure 4.4: Schematics illustrating the two di↵erent configurations ✏ < 0 and ✏ > 0.

For example, a typical airfoil profile, such as a NACA profile (see Fig. 1.3), would have
a positive asymmetry parameter ✏ when moving along its usual direction of motion (with
the rounded part first), but a negative ✏ when moving in the reversed direction (with the

1A more accurate estimate would be obtained by considering their three-dimensional hull shape.
2C1 refers to sprint canoes with only one rower, while C2 and C4 stand for sprint canoes with two and

four rowers respectively.
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pointed part first) (see Fig. 4.4).3 The values of the asymmetry parameter for the three
di↵erent hulls in Fig. 4.3 are given in Table 4.1. Consistent with what is observed in Fig. 4.3,
the C1 Vanquish III hull is the most asymmetric one, then comes the C1 Six3 and finally
the C1 Cinco XL. Interestingly, it can be noticed that for these three hulls, the asymmetry
parameter ✏ is negative, meaning that the front of the hull is more pointed than the rear.

Boat Name ✏

C1 Six3 -0.0588
C1 Cinco XL -0.0386
C1 Vanquish III -0.0597

Table 4.1: Asymmetry parameter ✏ for the three sprint canoes hulls shown in Fig. 4.3. As
a means of comparison, for a triangular hull profile, one has |✏| ' 0.2.

To sum up, we observe that sprint canoes are slightly asymmetric: they are narrower at the
front than at the rear. The asymmetry is quantified with the parameter ✏ (see Eq. (4.1)).
It is found to change from one boat to another within a given boat category and with the
number of rowers.

4.1.2 Theoretical observations

This study started with the surprising observation that for the two theoretical models pre-
sented in Sect. 1.6, the prediction for the wave drag of an asymmetric hull is the same if the
hull moves forward or backward, which contradicts experimental observations.

Havelock’s model. In the expression of the wave drag given in Eq. (1.33), the pressure dis-
turbance appears as |p̂(k

x

, k
y

)|2. To begin with, let us assume that the pressure disturbance
p(x, y) is changed into p0(x, y) = p(�x, y) when the body moves in the opposite direction.
As the pressure disturbance is symmetric about the center-plane y = 0 (left-right symmetry
of the hull), then p0(x, y) = p(�x, �y), so that when one takes the Fourier transform:

p̂0(k
x

, k
y

) = p̂(k
x

, k
y

)? , (4.2)

where ? denotes the complex conjugate. It can be deduced that the wave resistance R
w

will be the same for both directions of motion. In fact, the assumption that the pressure
disturbance is only reversed when changing the direction of motion of the body is obviously
wrong. We conducted experiments to determine how the pressure distribution along an
asymmetric hull changes depending on its direction of motion. The first results of this
ongoing work are very promising (see Appendix B).

Michell’s model. In this second model, changing the direction of motion is equivalent to
replacing f(x, z) by f(�x, z) in Eq. (1.46). With a change of variable, one finds that I

f

is
then changed into I

f

? and, as I
f

appears as |I
f

|2 in Eq. (1.45), one finds the same wave
resistance in both directions of motion.

The identity of the wave resistance predicted by these two theoretical models when the
body moves forward or backward comes from the use of the potential flow theory which
leads to time-reversibility of the flow. As a first step to build a new theory that can include
asymmetry in the wave drag, we study experimentally and numerically the e↵ect of the hull
asymmetry on the total drag and in particular on the wave drag component.

3Note that another asymmetry parameter could be the “infinity norm” ✏1 =  max |g̃(x̃)| or the “L

1

norm” ✏1 = 

R 1/2

0
|g̃(x̃)| dx̃. The asymmetry parameters ✏, ✏1 and ✏1 can be generalised in 3d for hulls

defined by y = f(x, z).
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4.2 Family of hull shapes

First, we aim at defining a family of hull shapes that continuously varies from perfectly
symmetric to more and more asymmetric. To be able to compare the shapes, we should
keep the cross-sectional area constant (so that, for a given draft, the immersed volume
remains the same for all shapes) as well as the length-to-width aspect ratio, the e↵ect of
which was already analysed in Chap. 3. Thus, the function f̃ must satisfy the following
constraints:

• f̃(�1/2) = f̃(1/2) = 0,

•
R
1/2

�1/2

f̃(x̃) dx̃ = a
˜

f

, where a
˜

f

is a given dimensionless area (see Eq. (3.7a) in Sect. 3.4),

• max f̃(x̃) = f̃(x̃
0

) = 0.5, where x̃
0

is the position of the maximum of f̃ .

A suitable function is:

f̃(x̃) = a ln


1 + b

e↵(x̃�1/2) + be�↵�(x̃�1/2)

�
, (4.3)

with the coe�cients a, b, ↵ and � that are numerically computed to satisfy the constraints.
One of the advantages of this particular form of functions (compared with, for example,
polynomial functions) is that it allows us to adjust the slope of the tangents in x̃ = �1/2
and x̃ = 1/2 by setting the values of ↵ and �. Furthermore, it must be noted that the
surface a

˜

f

is set to a
˜

f

= 0.312 so that functions of the form given in Eq. (4.3) that satisfy
the constraints can be found. Other functions could be defined, such as the Hügelschä↵er
egg [92], which we did not explore further.
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Figure 4.5: (a) Profile ↵ỹ = ±f̃(x̃) for five di↵erent sets of the parameters (a, b, ↵, �) in
Eq. (4.3), with increasing asymmetry. (b) Picture of the five 3d-printed model hulls defined
by the functions f̃

1

to f̃
5

. They are 18 cm-long, 3 cm-wide and 5 cm-high.

Figure 4.5(a) shows the profile of five particular functions, denoted f̃
i

(with i 2 {1, 2, 3, 4, 5}),
for x̃

0

, the position of the maximum of f̃ , ranging from 0 to 0.2 with uniform spacing. The
coe�cients a, b, ↵ and � for these five functions are indicated in Table 4.2. The function f̃

1

is
symmetric, then the functions f̃

2

to f̃
5

are more and more asymmetric (see the corresponding
values of ✏ in Table 4.2).

In the following, the aim is to determine, both experimentally and numerically, the drag on
these five particular hull shapes.
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Function a b ↵ � ✏

f̃
1

0.460 0.030 3.500 1 0

f̃
2

0.488 0.066 4.182 0.660 -0.040

f̃
3

0.592 0.163 4.864 0.402 -0.080

f̃
4

0.937 0.500 5.500 0.199 -0.114

f̃
5

9.007 9.195 6.091 0.017 -0.144

Table 4.2: Coe�cients (a, b, ↵, �) defining the five functions f̃
1

to f̃
5

, with the corresponding
values of the asymmetry parameter ✏.

4.3 Experimental study

Experiments were carried out with Varvara Zhukovskaya (student from Peter the Great St.
Petersburg Polytechnic University, Russia).

4.3.1 Description of the experimental set-up

The five particular hull shapes defined in the previous section were 3d-printed (see Fig. 4.5(b)).
They are 18 cm-long, 3 cm-wide and 5 cm-high, corresponding to the aspect ratios ↵ =
`/w = 6 and `/D = 3.6 (with D the total height of the hull).

(a) (b)

d

D

Hull

Force sensor

Lifting platform

Carriage

¸

Figure 4.6: Picture (a) and schematics (b) of the experimental set-up. The hull is towed in a
water tank via a carriage. A force sensor placed between the carriage and the hull measures
the total drag force on the hull. A lifting platform allows us to change the immersion depth
d (the distance from the bottom of the hull to the water surface). The total height of the
hull is denoted D.

To measure their total drag, the di↵erent hulls were towed in a water tank (6 m long and
30 cm deep) with a force sensor placed between the carriage and the hull (see Fig. 4.6).
The force sensor is composed of strain gauges stuck on a beam which links the hull and the
carriage. The deformation measured by the strain gauges is related to the force exerted at
the point of force application on the hull, a relation which is obtained through a calibration
step. Three main parameters can be varied: the asymmetry of the hull (which depends on
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the chosen hull and on its direction of motion), the speed U of the hull and its immersion d
(i.e. the distance between the bottom of the hull and the free-surface). The corresponding
dimensionless parameters are the asymmetry parameter ✏ (positive or negative depending
on the direction of motion of the hull), the Froude number Fr = U/

p
g` and the ratio d/D,

which compares the immersion d of the hull to its total height D (see Fig. 4.6). The drag
force measured from the sensor is filtered and averaged on the time interval where the hull
speed is constant. Each data point is the mean over three experiments. The measurements
were carried out at a speed U ranging from 0.4 to 2 m/s, corresponding to a Froude number
ranging from 0.3 to 1.5.

4.3.2 Experimental results

In the following, and similarly to the definitions of the drag coe�cients in Chap. 1 and 3,
the total drag coe�cient C is defined by:

C =
R

⇢⌦2/3U2

, (4.4)

where R is the total drag force exerted on the hull and ⌦ scales as the immersed volume
of the hull. One has: ⌦ = `wd when the hull is partly immersed, and ⌦ = `wD when the
hull is fully immersed. The first measurements consisted in assessing the dependence of the
total drag coe�cient C with the Froude number and with the immersion depth d for a given
hull.
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Figure 4.7: Total drag coe�cient C for the symmetric hull (i.e. hull 1) as a function (a) of
the Froude number for d/D = 0.75 and (b) of the ratio of immersion d/D for Fr = 0.46.
The data shown in (b) have been corrected for d/D > 1 to eliminate the contribution to the
total drag of the two rods holding the hull (see Sect. 4.6).

Fig. 4.7(a) shows the evolution of the total drag coe�cient C with the Froude number for
the symmetric hull (i.e. hull 1, see Fig. 4.5) for the ratio of immersion d/D = 0.75. C
reaches a maximum for Fr ' 0.5, which is where the wave drag component is maximum (see
Fig. 1.13 in Sect. 1.6). Fig. 4.7(b) displays the e↵ect of the immersion depth on the total
drag coe�cient, for the symmetric hull and a given Froude number. The contribution to
the total drag of the two rods holding the hull, when the hull is totally immersed (i.e. for
d/D > 1) has been removed (see Sect. 4.6 for the details). One notices that C is maximum
for d/D = 1. This can be explained by the additional contribution of the upper surface
of the hull to the skin drag component when d/D � 1 and to the important contribution
of the wave drag. One can also observe that the total drag coe�cient reaches a plateau
starting from d/D ⇡ 2.5. This corresponds to a regime where the hull is su�ciently far
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from the water surface so that the wave drag component becomes negligible and does not
contribute anymore to the total drag (see also Subsect. 7.3.3 in Chap. 7 for the same kind
of discussion).
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Figure 4.8: Total drag coe�cient as a function of the signed Froude number sign(✏) Fr for
the five hulls for d/D = 0.75. The use of the parameter sign(✏) Fr allows us to compare a
given hull moving with the rounded part first (✏ > 0, right part of the plot) or with the
pointed part first (✏ < 0, left part of the plot) (see Fig. 4.4).

The measurements of the total drag coe�cient were then carried out for the five di↵erent
hulls in both directions of motion. In Fig. 4.8, we plot C as a function of sign(✏) Fr for
the five hulls at a given immersion. The parameter sign(✏) Fr is used to compare a given
hull moving with the rounded part first (✏ > 0) or with the pointed part first (✏ < 0, see
Fig. 4.4). The evolution of C with the Froude number for a given hull and a given direction
of motion is similar to the one in Fig. 4.7(a). Comparing the di↵erent hulls, we find that,
on the right part of the plot (✏ > 0), the maximum of drag is higher and higher as the hulls
are more and more asymmetric (from hull 1 to hull 5). While, on the left part of the plot
(✏ < 0), the maximum of drag is lower and lower as asymmetry is increased (from hull 1 to
hull 5). Quantitatively, at Fr = 0.46, we observe, for ✏ > 0, an increase in the total drag
coe�cient of about 33% between the symmetric hull and the most asymmetric one (hull 5),
while, for ✏ < 0, C is decreased by 22%.

Fig. 4.9 shows the contour plots of the total drag coe�cient C for the five hulls depending
on the parameter sign(✏) Fr and the immersion ratio d/D. Looking at a given contour plot,
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Figure 4.9: Contour plots of the total drag coe�cient C depending on the signed Froude
number sign(✏) Fr and the ratio of immersion d/D for hull 1 to 5 (a)-(e). The vertical dashed
white line separates these two cases for each hull.
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the same remarks as for Fig. 4.7(b) can be made, except that here the immersion ratio is
restrained to 0  d/D  1. When comparing the di↵erent hulls, it appears clearly that the
contour plots become more and more asymmetric as the asymmetry is increased (from hull
1 to 5, see Fig. 4.9(a) to (e)).
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Figure 4.10: (a) Total drag coe�cient C as a function of the asymmetry parameter ✏ (a)
for three di↵erent values of the Froude number for d/D = 0.75, and (b) for three di↵erent
values of the ratio of immersion d/D for Fr = 0.46.

The e↵ect of the asymmetry is clearer in Fig. 4.10, where C is represented as a function
of the asymmetry parameter ✏ depending on (a) the Froude number Fr or (b) the ratio of
immersion d/D. For Fr = 0.46 and Fr = 0.61, the total drag coe�cient is an increasing
function of ✏ and the minimum drag coe�cient is thus obtained for ✏ = �0.14, that is for
the most asymmetric hull (hull 5) moving with the pointed part first. For Fr = 0.31, C
plateaus for ✏  0, which could be related to the lower e↵ect of the wave drag component.
In Fig. 4.10(b), we observe that, while for d/D = 0.25 and d/D = 0.75, C is an increasing
function of ✏, for d/D = 2, it becomes a decreasing function of ✏. This is due to the pressure
drag component, which is larger for ✏ < 0 and becomes dominant deep underwater. As a
result, whilst at the water surface, optimal hulls are rather pointed at the front, deep under
water optimal hulls are rather rounded at the front and pointed at the rear, similarly to the
optimal shapes found in [88] (see Fig. 4.1(a-c)).

4.4 Numerical study

This numerical study was carried out by Louis Richard (student from ENS Cachan). The
aim of this part is to compute the flow around the five hulls presented in Sect. 4.2 in order
to compare the drag and wave pattern with the experiments.

4.4.1 Numerical set-up

To perform this study, we use the software Gerris Flow Solver (created by Stéphane Popinet
and developed at Institut Jean le Rond d’Alembert, UPMC) which provides a framework to
solve partial di↵erential equations on quad/octree finite-volume meshes [93, 94]. Each hull
is placed inside a three dimensional rectangular domain D, composed of two fluids, air
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and water, separated by a free-surface, initially at z̃ = ⇠̃(x̃, ỹ) = 0. Using the left-right
symmetry of the problem, it is solved only on one half of the fluid domain surrounding
the hull, which considerably reduces the computation time. The computational domain
approximately measures 9 ⇥ 3 ⇥ 3 (in units of length of the hull).

The Gerris software solves the Navier-Stokes equations, that is:

r · u = 0 , (4.5a)
@u

@t
+ (u · r)u = �1

⇢
rp + ⌫r2u + g , (4.5b)

where ⌫ = µ/⇢ is the kinematic viscosity. Using the dimensionless variables u = U ũ, x = `x̃,
y = `ỹ, z = `z̃, p = ⇢U2p̃, and t = `/Ut̃, the dimensionless Navier-Stokes equations read:

r̃ · ũ = 0 , (4.6a)
@ũ

@ t̃
+ (ũ · r̃)ũ = �r̃p̃ +

1

Re
r̃2

ũ � 1

Fr2
e
z

, (4.6b)

where e
z

is the unit vertical vector and, as defined before, Re = U`/⌫ and Fr = U/
p

g`.
The flow is, as a first step, supposed to be inviscid (Re ! +1) and is impulsively started
from rest at t = 0 to reach the prescribed Froude number Fr.

Boundary conditions. Neumann or Dirichlet boundary conditions along the boundaries
of the computational domain are imposed. The di↵erent boundaries are illustrated on
Fig. 4.11.
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Figure 4.11: Schematics of a horizontal cross-section of the computational domain, with
definition of the di↵erent boundaries. @

i

D refers to the inlet boundary, while @
o

D denotes
the oulet boundary. @

f

D and @
b

D are the boundaries on the front and back sides of the
domain and @

h

D is the hull boundary. Two additional boundaries are not represented on
this schematics: the top boundary @

u

D and the bottom boundary @
d

D.

At the inlet @
i

D and outlet @
o

D boundaries, the velocity is considered unidirectional and
thus we set:

@ũ
x̃

@x̃
= 0, ũ

ỹ

= 0, ũ
z̃

= 0, and p̃ = 0 . (4.7)

On the other sides of the domain, symmetry conditions are imposed, so that these boundaries
are equivalent to free-slip, impermeable boundaries. Thus, for the sides @

f

D and @
b

D, one
has:

@ũ
x̃

@ỹ
= 0, ũ

ỹ

= 0,
@ũ

z̃

@ỹ
= 0 and

@p̃

@ỹ
= 0 . (4.8)

Similarly, for the top @
u

D and bottom @
d

D boundaries, one has:

@ũ
x̃

@z̃
= 0,

@ũ
ỹ

@z̃
= 0, ũ

z̃

= 0, and
@p̃

@z̃
= 0 . (4.9)
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On the hull boundary @
h

D, an impermeability condition is imposed, that is ũ · n = 0,
with n the unit vector normal to the hull boundary. In the case of a viscous fluid, this
condition would be replaced by a no-slip boundary condition (ũ = 0). As Gerris software
uses a Volume-of-Fluid advection scheme to resolve the position of the air-water interface,
no boundary condition is imposed at the free-surface. An important feature of the code is
the adaptive meshing refinement (using an octree finite volume discretisation). This has
the advantages to increase the accuracy in the regions where the flow evolves with small
scales and to reduce the computation time compared to algorithms with constant spatial
resolution. Thus, in our case and as illustrated in Fig. 4.12, the mesh is refined at the hull
boundary, at the air-water interface and in the regions of high vorticity. The computation
time is however quite high (typically three days for Fr = 0.3).

Figure 4.12: Mesh at the air-water interface for hull 4 soon after the beginning of the
simulation. The mesh is refined in the region next to the hull.

The simulations are run until the computed flow converges to a steady flow. The outputs
of the simulations are the resulting forces on the hull, the elevation of the free-surface and
the pressure along the surface of the hull.

4.4.2 Numerical results

The simulations were carried for each hull moving forward and backward, with the Froude
number Fr ranging from 0 to 0.3, and for an immersion ratio d/D ranging from 0 to 1.
In Fig. 4.13, the resulting drag coe�cient C 0, which is the total drag coe�cient with no
viscosity, is represented as a function of the two parameters Fr and d/D for each hull in the
same way as for the experimental results (see Fig. 4.9). The right part (resp. left part) of
each contour plot corresponds to the hull moving with the rounded part first (resp. with
the pointed part first).
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Figure 4.13: Contour plots of the total drag coe�cient with no viscosity C 0 obtained numer-
ically depending on the signed Froude number sign(✏) Fr and the ratio of immersion d/D for
hull 1 to 5 (a)-(e). The vertical dashed white line separates these two cases for each hull.
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As already observed with the experiments, we see that the drag coe�cient increases with
the Froude number in the range Fr 2 [0, 0.3] and with the immersion depth in the range
d/D 2 [0, 1]. When considering hulls of increasing asymmetry (from hull 1 to hull 5), the
contour plots become more and more asymmetric (Fig. 4.13(a) to (e)). This e↵ect is however
not as strong as observed in the experiments. Also, one can observe that depending on the
immersion ratio d/D, the hull with the lowest drag changes.
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Figure 4.14: Drag coe�cient C 0 as a function of the asymmetry parameter ✏ for four di↵erent
immersion depths d/D at Fr = 0.3.

This is highlighted in Fig. 4.14 with the plot of the drag coe�cient C 0 as a function of ✏
for di↵erent immersions d/D. For d/D < 1, the drag coe�cient is minimum for ✏ ' �0.04,
corresponding to hull 2 moving with the pointed part first. On the contrary, for d/D = 1, the
hull which has the lowest drag is the symmetric hull (i.e. hull 1). This result is di↵erent from
the one obtained in the experiments (see Fig. 4.10(b)). The possible sources of discrepancies
are discussed in the next section.
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Figure 4.15: Dimensionless wave elevation ⇠̃ obtained numerically for hulls 1, 3 and 5 (for
Fr = 0.3 and d/D = 0.5). For each subplot, the upper half corresponds to the hull moving
with the rounded part first (✏ � 0), while the lower half corresponds to the hull moving with
the pointed part first (✏  0).

The fact that asymmetric hulls might not be optimal for all immersions can be understood
when looking at the wave pattern generated by each hull (see Fig. 4.15). In general, there
are two main sources of waves: the bow and stern of the hull (see Chap. 1, Sect. 1.6 and
[5]). Fig. 4.15 shows the wave patterns for hull 1, 3 and 5. For hull 3 and 5, the upper half
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of the plot corresponds to the hull moving with the rounded part first, while the lower half
corresponds to the hull moving with the pointed part first. One can notice that, depending
on the direction of motion of the hull, the highest waves are produced at the front (✏ > 0)
or at the rear (✏ < 0) of the hull. This is particularly visible with the most asymmetric
hull (hull 5, see Fig. 4.15(c)). Thus, even though the waves produced at the front of the
hull are reduced when the hull is asymmetric and moves with the pointed part first, the
waves generated at the rear become more and more important as the asymmetry of the hull
increases. This can qualitatively explain why it is for a small asymmetry (✏ ' �0.04) that
the drag coe�cient is the smallest in the numerical simulations.

The results of these simulations and especially the computed pressure along each of the five
hulls are further used in Appendix B.

4.5 Discussion

Using simple hull shapes of increasing asymmetry (with the same aspect ratio and immersed
volume), we find both experimentally and numerically that slightly asymmetric hulls can
have a lower drag than symmetric ones. The experiments show that the optimal hull, among
the five which were tested, is the most asymmetric one with ✏ = �0.14 (see Fig. 4.10). This
promising result now requires to consider more asymmetric hulls to find the optimum of
asymmetry. We indeed expect that for very asymmetric hulls the total drag coe�cient
should re-increase due to the pressure drag component. For the family of hull shapes that
we defined, it is not possible to increase much the asymmetry because then the constraints
of constant aspect ratio and cross-sectional area cannot be satisfied any more. A new family
of hull shapes allowing for the design of very asymmetric hulls should be defined for future
work.

Comparing quantitatively the experimental results with the numerical ones is not so easy.
The numerical results were obtained for rather low values of the Froude number (up to
Fr = 0.3), while, in the experiments, Fr � 0.31. Computing the total drag numerically at
larger Froude numbers is still an ongoing work. Also, we do not find exactly the same results
with the numerics and the experiments, in particular for the optimal asymmetry: with the
numerics, it is ✏ ' �0.04 (see Fig. 4.14), while in the experiments, it is ✏ = �0.14. An
explanation for this discrepancy is most likely related to the fact that our numerical results
were computed without viscosity. Taking into account viscosity will most likely a↵ect the
partition between the di↵erent drag components, thus shifting the optimal asymmetry.

Finally, let us come back to the initial problem of the asymmetry of racing shells. The
experimental and numerical results of this study tend to point out the advantage of sprint
canoes and sprint kayaks over rowing boats with regard to the optimal asymmetry. However,
to get closer to the real problem, more complex geometries should be considered, which
unfortunately goes together with the increasing di�culty of maintaining the aspect ratios
and the immersed volume constant.
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4.6 Appendix: Interaction between two cylinders

To account for the e↵ect of the rods holding the hull and correct the drag measurements
for fully immersed hulls (d/D > 1), we perform experiments with the rods only, changing
their wetted length, denoted l

w

. The total distance from the sensor to the tip of the rods is
denoted L = 26.5 cm, the distance between the two rods l

i

= 10 cm, and the diameter of a
rod d

t

= 3 mm (see Fig. 4.16(a)).
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Figure 4.16: (a) Schematics of the experimental set-up to estimate the drag on the two rods
holding the hull. The rods have a diameter d

t

= 3 mm; the distance between them is l
i

= 10
cm; the distance from the sensor to the tip of the rods is L = 26.5 cm; and the wetted length
of the rods l

w

ranges from 5 to 15 cm. (b) Measured torque M as a function of the ratio
l
w

/L for U = 0.61 m/s. The dotted line is a fit of the experimental data using Eq. (4.11).
(c) Factor k defined in Eq. (4.12) as a function of the Froude number Fr0 = U/

p
gl

i

for two
configurations ✓ = 0� and ✓ = 90�.

The total torque M measured by the sensor results from the sum of all the contributions
from the forces exerted by the water along the two rods. Thus, one has:

M = 2

Z
L

L�l

w

�f(z)z dz , (4.10)

where �f(z) is the force per unit length in the vertical direction. We assume that �f(z) is
independent of z (which might be a crude assumption given the presence of the air-water
interface) so that:

M = �fL2(2l̃
w

� l̃ 2
w

) , (4.11)

where l̃
w

= l
w

/L. The measured torque M is plotted as a function of the dimensionless
wetted length l̃

w

in Fig. 4.16(b). We further write:

�f = k
1

2
⇢d

t

C
t

U2 , (4.12)

where C
t

is the drag coe�cient of the rod (for a cylinder C
t

' 1.2) and k is a factor that
can account for the presence of the free-surface and interactions between the two rods.
The factor k is determined for a given velocity U by fitting the experimental curve M(l̃

w

)
with Eq. (4.11), as illustrated in Fig. 4.16(b). In Fig. 4.16(c), we plot this coe�cient as a
function of the Froude number based on the distance between the rods l

i

, Fr0 = U/
p

gl
i

.
The configuration is the same as in the experiments with hulls (one rod lies behind the
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other). We see that the factor k is minimum for Fr0 ' 0.6, which can be a signature of an
interaction between the wakes of the two rods. It could be interesting as a future study to
look at the interaction between two rods depending on the angle between the horizontal line
linking the two rods and the direction of motion.

These results are used in Subsect. 4.3.2 to correct the data for hulls when they are fully
immersed in water. The corrected drag coe�cient C

c

is written:

C
c

= C � M
⇢⌦2/3U2(L0 + d/2)

, (4.13)

where L0 is the distance from the sensor to the upper surface of the hull and M is given by
Eq. (4.11) in which L is replaced by L0.
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Take home message of Chapter 4

1. When designing a ship, asymmetry can be an important parameter to play with.
It is observed that typical sprint canoes and sprint kayaks are slightly asymmetric,
while rowing boats are almost perfectly symmetric.

2. The existing theoretical models to estimate the wave drag predict the same value
for an asymmetric boat moving forward or backward, which is in contradiction with
observations.

3. After choosing a particular family of hull shapes of increasing asymmetry, we find
with experiments and numerical simulations that asymmetry can decrease the overall
drag. At the water surface, it appears that a slightly asymmetric hull, as drawn in
Fig. 4.17, would be optimal.

Figure 4.17: Schematics of a hull with optimal asymmetry.

4. This result shows the need for a theory that can include asymmetry in the wave
drag.
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5
Scaling analysis of rowing

In this chapter, we reconsider the question of the dependence of the velocity of a rowing
boat with the number of rowers. It is indeed observed with the world records in the di↵erent
rowing categories that this velocity slowly increases with the number of rowers. McMahon
showed that the relation between the two is a power law (power 1/9), which is in fairly good
agreement with the observations. We relax two of the assumptions of McMahon’s model
and find that it does not change much the power law. Finally, we consider a limitation of
McMahon’s model for a large number of rowers, which comes from the need for su�cient
spacing between consecutive rowers.

Picture of an Aubrac pair of steer yoked to a dynamometric cart for the experiments on
force and power estimation by Ringelmann in 1907 (reprinted from [95]).
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5.1 Introduction

In many sports, such as rowing, tug-of-war (see Fig. 5.1(a)) or rugby, individuals must
rely on the power of the group to win. However, Ringelmann showed, with tug-of-war
experiments, that the total power produced by a group of people (or animals such as oxen
[95], see the picture on the previous page) was not equal to the sum of the power of each
individual [96]. For instance, he measured that when eight men pull together on a rope
the e↵ort exerted by each individual is about half the e↵ort developed by each individual
when pulling alone (see Fig. 5.1(b)). Ringelmann explained this di↵erence by a decrease in
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Figure 5.1: (a) Photograph of the only tug-of-war bout at the 1912 Olympics (source: [97]).
(b) Proportion of maximum e↵ort exerted on a rope during a pulling experiment depending
on the number of people N [96].

motivation as well as coordination problems when pulling in a group compared to pulling
alone [98]. More recent studies [99] show that this e↵ect (also called Ringelmann e↵ect) is
mostly explained by social loafing. A similar e↵ect has been recently observed by Phonekeo
et al. for fire ants: they form aggregates and the contribution of each ant to their cohesion
decreases with the number of ants [100]. Here we consider the problem of the e↵ect of the
number of rowers N on the speed of a rowing boat from a mechanical point of view with as
a starting point the scaling analysis of McMahon [62]. Social loafing will thus be neglected
in the following.

5.2 McMahon’s model

To predict the velocity of racing shells depending on the number of rowers, McMahon makes
four main assumptions.

(i) The racing shells have a geometric similarity regardless of the number of rowers on the
boat. In other words, the aspect ratios ↵ = `/w and � = `/d, introduced in Chap. 3,
are constant for all racing shells.

(ii) The boat weight per oarsman is constant.

(iii) Each oarsman contributes equally to the total input power.
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(iv) Lastly, the dissipation of the input power comes exclusively from skin friction.
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Figure 5.2: (a) Length-to-width aspect ratio ↵ of racing rowing boats as a function of the
number of rowers N (see Table 2.1). (b) Length-to-draft aspect ratio � of racing rowing
boats as a function of the number of oarsmen N estimated from the mass of the boat with
a momentum balance along the vertical. (c) Boat mass m

boat

as a function of the number
of oarsmen N . The black line is a linear fit of the data points (m

boat

' 12.6 ⇥ N).

The first two assumptions can be tested for N ranging from 1 to 8 in the light of today’s
racing shells characteristics. In Fig. 5.2(a) and (b), the aspect ratios ↵ and � of racing
boats are plotted as a function of the number of rowers N . Although it can be noticed that
↵ and � slightly increase with N , they can indeed be considered approximately constant:
↵ ' 30 and � ' 91 with 5% discrepancies for both. In the next section, the e↵ect of
relaxing this hypothesis will be assessed. Fig. 5.2(c) further shows that the evolution of
the boat mass m

boat

with N is very well approximated by a linear fit (m
boat

' N m
1

with
m

1

= 12.6 kg), which validates the second assumption of the model. The third assumption
is actually questionable if one accounts for social loafing as discussed in the introduction.
But given the complexity of such e↵ect, this assumption will not be put into question in the
following. As for the last assumption, McMahon states (relying on measurements from [61])
that skin friction is the dominant component of drag and that wave drag accounts for less
than 8% of the total drag (see also Sect. 2.5). Neglecting all the other components of drag is
questionable, as well as considering that the dissipation of the input power from the rowers
only comes from the dissipation by friction on the hull. In particular, a blade e�ciency can
be defined (see Appendix A) which probably depends on the number of rowers.

From the second hypothesis, the immersed volume of the hull for N rowers, denoted ⌦
N

,
scales as ⌦

N

⇠ N⌦
1

where ⌦
1

' (m
1

+ m
r

)/⇢ is the volume displaced by one rower, with
m

r

the mass of each rower. And from the third assumption, the propulsive power for N
rowers P

N

reads P
N

⇠ NP
1

with P
1

the power delivered by one rower. The total propulsive
power is also written:

P
N

= RU , (5.1)

with R the total resistance on the hull which is supposed to be dominated by skin friction,
so that one has R = 1/2⇢S

h

C
h

U2 (with S
h

the hull wetted surface and C
h

the hull drag
coe�cient, see also Eq. (2.1) in Sect. 2.5). The wetted surface can be approximated by
S
h

' `w = `2/↵ and the immersed volume by ⌦
N

' `wd = `3/(↵�), so that:

S
h

' �2/3

↵1/3

⌦
1

2/3N2/3 . (5.2)
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Combining this equation with Eq. (5.1), one finds:

U ' U
1

(↵,�)N1/9 , (5.3)

with U
1

(↵,�) = [2P
1

↵1/3/(⇢�2/3⌦
1

2/3C
h

)]1/3, the hull velocity for N = 1. If we now use the
first assumption, that is ↵ and � are independent of N , then we directly get that U ⇠ N1/9,
as found by McMahon. This scaling can be checked by looking at the world record speeds
in the di↵erent rowing categories (see Fig. 5.3(a)). We find a fairly good agreement with the
scaling law for coxless sweep and sculling categories, but not for the coxed sweep category,
which might be related to the larger e↵ect of the presence of a coxswain on the boat for
the pair and the four than for the eight, and also to the absence of the coxed pair and
coxed four categories at the Olympics. Interestingly, taking P

1

= 400 W, ⌦
1

= 0.24 m3,
C
h

= 2.5 · 10�3, ↵ = 30 and � = 91, one has U
1

' 5.0 m/s, which is very close to the world
record speed for single sculls.
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Figure 5.3: World record speed as a function of the number of oarsmen (a) for the di↵erent
rowing categories and (b) for sprint canoes and sprint kayaks. Both plot have a logarithmic
scale and the black line represents the scaling law U ⇠ N1/9. Note that the race distance
considered here is shorter for sprint canoes and sprint kayaks (1000 m) than for rowing boats
(2000 m).

In Fig. 5.3(b), McMahon’s scaling law (U ⇠ N1/9) is tried for sprint canoes and sprint kayaks
where the number of rowers this time ranges from 1 to 4. The third and fourth assumptions
are also expected to hold for these kinds of boats. We refer to Fig. 5.7 in Sect. 5.5 for
the verification of the first and second assumptions of the model. For sprint canoes, the
two assumptions (↵ constant and m

boat

⇠ N) are quite well verified. For sprint kayaks,
although the assumption for the mass of the boat seems to be respected, the assumption
↵ independent of N is far from being valid. As U scales with ↵1/9 and ��2/9, the scaling
U ⇠ N1/9 does not depend so much on this assumption, which explains the fairly good
agreement between the scaling and the data points in Fig. 5.3(b). Let us mention that the
record speeds for sprint kayaks are close to the record speeds in rowing. However, for sprint
canoes and sprint kayaks, the distance of the race is 1000 m while, for rowing boats, the
distance is 2000 m. Thus, rowing boats are the fastest man-powered boats, then come the
sprint kayaks (for which the legs do not work) and finally the sprint canoes (for which the
stroke frequency is lower than in kayak).
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5.3 Extension of McMahon’s model

In this section, we study the e↵ect of removing the hypothesis of geometric similarity of
boats and the hypothesis of negligible wave drag. Rowing boats do not really have other
constraints than the minimisation of the total drag, so their aspect ratios ↵ and � should
result from the optimisation of the rowing shell at a given load, equivalently immersed
volume ⌦

N

and given propulsive power P
N

. Letting ⌦ = ⌦
N

and P = P
N

into Eq. (3.11)
(see Sect. 3.5) yields:

⇧ = ⇧
1

N�1/6 , (5.4)

where ⇧
1

= P
1

/(⇢g3/2⌦
1

7/6). ⇧ is thus a decreasing function of N . Given the results of the
optimisation presented in Sect. 3.5 (taking P

1

= 400 W and ⌦
1

= 0.24 m3), we can find the
optimal aspect ratios ↵? and �? and the optimal Froude number Fr? as a function of the
number of rowers N . This is represented in Fig. 5.4 with the black line and compared to
the empirical data points for rowing boats. We thus recover the increasing evolution of ↵
with N and the decreasing evolution of Fr with N (see Fig. 5.4(a) and (c)).
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Figure 5.4: Log-log plot of (a) the optimal aspect ratio ↵?, (b) the optimal aspect ratio �?,
(c) the optimal Froude number Fr? and (d) the corresponding boat velocity U?, as a function
of the number of rowers N from the optimisation presented in Sect. 3.5 (black line). The
blue dots are the empirical data for real rowing boats (see Table 2.1). The Froude number
is estimated from the world record speeds in the di↵erent rowing categories. In (c), the
dashed line represents the scaling law Fr ⇠ N�1/18 from McMahon’s model. Similarly, in
(d), the dashed line represents McMahon’s scaling law U ⇠ N1/9.

McMahon’s model predicts the evolution of Fr with N : Fr ⇠ N�1/18. But we see that
McMahon’s first assumption (↵ and � independent of N) is not exactly true, even though
the evolution of ↵ and � with N over two decades is very small. The increase of ↵ and �
with N is related to the decrease of the Froude number towards Fr ' 0.5, that is in the
range where the wave drag is maximum, requiring larger aspect ratios.
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In this framework, the hull velocity U?, which corresponds to the optimal hull geometry, is
written:

U? ⇠ N1/9

P1/3

1

⇢1/3⌦
1

2/9C(↵?(N),�?(N), Fr?(N))1/3
. (5.5)

This velocity is plotted as a function of N in Fig. 5.4(d). We find an evolution with the num-
ber of rowers close to the observed evolution of the speed records. However, this evolution is
also very close to the scaling law U ⇠ N1/9 predicted by McMahon (see black dashed line).
This is related to the fact that, in Eq. (5.5), the drag coe�cient C(↵?(N),�?(N), Fr?(N))
appears at the power 1/3 and varies slowly with the number of oarsmen N (↵? and �? vary
slowly with N).

This extension of McMahon’s model, based on accounting for the optimisation of rowing
shells, do not change the final scaling law U ⇠ N1/9 of the model but allows us to understand
the evolution of the aspect ratio ↵ of current rowing boats.

5.4 A new approach

Using ⌦
N

⇠ N⌦
1

and the first assumption of McMahon’s model (aspect ratios ↵ and �
independent of the number of rowers N), one finds that the length of rowing boats scales
as ` ⇠ N1/3. This is in quite good agreement with the available data for boats from one
to eight rowers (see dashed line in Fig. 5.5(a)). However, in the specific case of rowing, a
minimal spacing between consecutive rowers is needed so that they can perform their rowing
stroke without hitting each other. This minimal spacing is slightly longer than the typical
length of the legs of a rower. This dictates a new dependence of the length of a rowing boat
with the number of rowers, this is:

` = `
c

(N + a) . (5.6)

To check this new relation, we are lucky that there exists a rowing boat, the Stämpfli
Express, with 24 rowers measuring 44 m in length (see Fig. 5.6(a)). The corresponding data
point appears in red in Fig. 5.5(a) and Eq. (5.6) gives a good fit of all the data with `

c

= 1.5
m and a = 4.1 (solid black line in Fig. 5.5(a)). Interestingly, `

c

is of the order of the typical
distance between two consecutive rowers (about 1.3 m for an eight). On the contrary, we
see that the scaling law ` ⇠ N1/3 is not able to account for the data point of the Stämpfli
Express. So we should now use Eq. (5.6) together with the assumption that the width w
and the draft d are now independent of the number of rowers to respect the force balance
along the vertical direction. The same steps as in Sect. 5.2 give:

U ' U1

✓
N

N + a

◆
1/3

, (5.7)

with U1 = [2P
1

/(⇢wC
h

`
c

)]1/3 the value reached when N ! +1. Taking P
1

= 400 W,
w = 55 cm and C

h

= 2.5 · 10�3, one has U1 ' 7.2 m/s. Looking at Fig. 5.5(b), we
see that the speed attained by the Stämpfli Express is much lower than the one expected
from McMahon’s model and is actually smaller than the speed reached by an Eight rowing
boat. This is surely related to the saturation of the speed when increasing the number
of rowers expected from Eq. (5.7) but also to the absence of high level competitions with
this boat and to the increasing di�culty for the rowers to remain synchronised when their
number increases (see Chap. 6 for a discussion of the synchronisation problem). This study
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eventually tends to indicate that, if rowing boats in competitions do not have more than
eight rowers, it is for a good reason: boats with more rowers would hardly go faster!
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Figure 5.5: (a) Length ` of rowing boats depending on the number of rowers N in logarithmic
scale. The red dot corresponds to the Stämpfli Express (see Fig. 5.6(a)). The black line is
a fit of the data including the red dot, ` = 1.5(N + 4.1), and the dashed line corresponds
to the scaling law ` ⇠ N1/3 from McMahon’s model (see Table 2.1 for the characteristics
of rowing boats). (b) Mean hull velocity U as a function of the number of oarsmen N in
logarithmic scale with the data for the Stämpfli Express in red. The black line corresponds
to Eq. (5.7) and is the evolution expected when considering that the length ` is linear with
N . The dashed line corresponds to the scaling law U ⇠ N1/9.

Actually, what is expected and observed when considering the di↵erent existing types of
man-powered watercraft is the transition in the disposition of the rowers from the line in
the case of rowing boats (see Fig. 5.6(a)) to the surface (two lines of rowers), for example for
Dragon boats (see Fig. 5.6(b)) and even to the volume with the trireme (see Fig. 5.6(c)), a
vessel used in the antiquity which had three rows of oars on each side. Classic rowing boats
have up to 8 rowers, while a Dragon boat has 20 rowers and a trireme about 180. However,
among all these boats the fastest is the eight rowing boat. This is most likely related to the
increase of the total drag, and especially the wave drag, when the disposition of the rowers
on the boat transitions from the line to the surface or the volume.

(a) (b) (c)

Figure 5.6: (a) Picture of the Stämpfli Express, a rowing boat with 24 rowers measuring 44
m (source: [101]). (b) Picture of a Dragon boat, a racing boat with 22 persons on board
among which 20 rowers (source: [9]). (c) Wood model of a Greek trireme, a boat used in
the antiquity which derives its name from its three rows of oars (source: [3]).
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5.5 Appendix: Characteristics of sprint canoes and sprint
kayaks

Fig. 5.7(a) shows the evolution of the aspect ratio ↵ of both sprint canoes and sprint kayaks.
Although the aspect ratios for sprint canoes are rather constant whatever the number of
rowers N (↵ ' 16), for sprint kayaks, the aspect ratio ↵ increases a lot from N = 1 to
N = 4. So the first assumption of McMahon’s model is respected for sprint canoes but not
for sprint kayaks. In Fig. 5.7(b), the evolution of the boat mass m

boat

with the number of
rowers N is represented. One can see here that m

boat

is not exactly proportional to N for
both sprint canoes and sprint kayaks.
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Figure 5.7: (a) Length-to-width aspect ratio ↵ of sprint canoes and sprint kayaks as a
function of the number of oarsmen N (see Table 5.1). (b) Boat mass m

boat

as a function of
the number of rowers N .

Table 5.1 gives the characteristics of current sprint canoes and sprint kayaks.

Boat
Abbreviation

` (m) w (cm) m
boat

(kg) U (m/s)

C1 5.2 37 13 4.45
C2 6.5 41 18 4.80
C4 9 58 30 5.24
K1 5.2 41 11 4.95
K2 6.5 43 17 5.35
K4 11 45 28 6

Table 5.1: Characteristics of current sprint canoes (C1, C2, C4) and sprint kayaks (K1, K2,
K4). The geometry characteristics and mass are for boats from Nelo supplier [91]. The boat
speed U given in the table is the world record speed in each category on a distance of 1000
m.
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Take home message of Chapter 5

1. The scaling law for the velocity of a rowing shell U ⇠ N1/9, derived by McMahon,
works quite well for a number of rowers ranging from 1 to 8.

2. We extend this model taking into account the optimisation of the rowing shells
depending on their number of rowers. The scaling law of McMahon remains valid
and we find an explanation for the increase of the length-to-width aspect ratio with
the number of rowers.

3. Finally, McMahon’s model is criticised in the regard of an additional constraint
on the length of the boat not taken into account until now. Indeed, in rowing, a
minimal spacing is needed between consecutive rowers. This changes the prediction
of McMahon and gives a velocity that saturates as the number of rowers further
increases.
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6
A question of synchronisation

Synchronisation in rowing seems like a crucial condition for those who aim at winning top-
level rowing races. However, in nature, one can observe animals with many legs, such as
krill, swimming in a desynchronised manner. From a physicist point of view, desynchronised
rowing also seems like a great idea because, at high Reynolds number, the desynchronised
gait has one big advantage over the synchronised one: it reduces the fluctuations of speed
and thus the drag on the body. In this study, we have built a scale model of a rowing boat to
deal with the question of the e↵ect of synchronisation on the boat performance. The results
of our model boat are compared to the predictions of a simplified theoretical model.

Synchronisation is also crucial in synchronised swimming.
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6.1 Introduction

We discuss the e↵ect of the synchronisation between rowers on the speed of a rowing boat.
This question is treated by combining an experimental model of a rowing boat and a sim-
plified theoretical model.

6.1.1 E↵ect of velocity fluctuations

In rowing competitions, the boat moves with large fluctuations of speed, as already discussed
in Sect. 2.2 (see Fig. 2.7). They are up to 30% of the mean velocity. At first order, let us
model the velocity profile of a rowing boat as a sinusoidal function of time:

U = hUi + �U cos(2⇡ft) , (6.1)

where hUi is the mean velocity, �U is the amplitude of the fluctuations around the mean
velocity and f is the stroke frequency. Assuming, as in McMahon’s model (see Sect. 5.2),
that the dissipation of the power P produced by the rowers only comes from skin friction,
one has: P ⇠ ⇢S

h

U3 (with S
h

the hull wetted surface). So the mean power dissipated over
one rowing cycle is written:

hPi ⇠ ⇢S
h

hU3i = ⇢S
h

hUi3
"
1 +

3

2

✓
�U

hUi

◆
2

#
. (6.2)

Thus, compared to a motion at constant velocity, the relative increase of the mean dissipated
power is 3/2(�U/hUi)2, which for �U/hUi ' 30% gives a 13% increase of the dissipated
power. Besides, the velocity fluctuations are also expected to increase the wave resistance
and to give rise to added mass force. Reducing these fluctuations in rowing then appears to
be crucial to avoid energy losses.

6.1.2 Synchronisation in nature

One way of reducing the velocity fluctuations can be found by looking at animal locomotion:
desynchronising the motion of the appendages during the propulsion is often observed and
is indeed a way to achieve a constant velocity.

Figure 6.1: Side-view pictures of a krill at two di↵erent times during its swimming cycle.
The proximal segments of the krill’s appendages are highlighted with di↵erent coloured lines.
The white bar is 5 mm long. Pictures reprinted from [102].

For instance, shrimps and krills swim thanks to five pairs of legs that are activated in a
desynchronised way, known as metachronal (see Fig. 6.1). This kinematics was shown to
lead to the highest average body velocity for a given mean work [102].

Fishing spiders and salticid spiders also display unsynchronised swimming at the surface of
water. For example, Fig. 6.2 shows time-lapse pictures of the rowing stroke of a salticid
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spider. From the analysis of these pictures, we find that the two pairs of legs that are
involved in the propulsion have a phase-shift of about 125�.

(1) (2) (3) (4) (5) (6) (7)

Figure 6.2: Time-lapse pictures of a salticid spider moving at the water surface in a rowing-
like stroke. Pictures extracted from a video by Suter [103]. The time between two images
is about 0.3 s.

6.1.3 Previous studies

The aim of reducing the velocity fluctuations in rowing led to the invention of sliding riggers
in 1877: instead of having a sliding seat with fixed riggers (see Fig. 2.2(a)), this boat had
a fixed seat and sliding riggers (see Fig. 6.3). This new concept significantly improved the
boat speed. However, it was banned by the International Rowing Federation in 1983, as it
was considered more costly than conventional rowing [1].

Figure 6.3: Drawing of a double scull with fixed seats and sliding riggers found in the
“Illustrated London News” of 25 September 1954.

Phase-shifted rowing has already been considered in the past. This technique was indeed
tested, in 1929, on the Thames by the London Rowing Club (see the video in [104]). But
this trial and others which were conducted in England during the early 1930s lead to in-
conclusive results and to the question of “whether the trifling gain is worth the loss of all
the rhythm, apart from neutralising the genius of strokeship1” [105]. At the 1981 and 1982
world championships, the Soviet women’s coxed four crew placed the coxswain in between
the two pairs so that they could row in antiphase. However, the crew ended up rowing in
synchrony the day of the race. Despite all these full-scale trials and more recent studies both
theoretical [66] or experimental with ergometers [106], it is still unclear whether the very
peculiar syncopated technique is more or less e�cient than the conventional synchronised
rowing.

1Strokeship means the art of row strokes, i.e. the art of rowing with a particular stroke.
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6.2 Description of our rowing boat model

To study the influence of oarsmen synchronisation on the boat speed, we built a remote
rowing boat at the scale 1/10 with eight rowing robots. In our model boat, to ensure a
straight trajectory, each rower has two oars. This kind of rowing boat is called an octuple
scull.2 Real octuple sculls exist but are not found in rowing competitions. They have the
same characteristics as eight rowing boats: they are approximately 20 meters long and
weigh 100 kg. Our model boat (see Fig. 6.4(a)) is thus 2 meters long with a hull, made of
glass fiber, that has the same shape as an eight rowing boat [107]. We made 8 independent
rowing robots that are controlled separately (see Fig. 6.4(b)). Each robot is made up of
a servomotor in a carriage which moves back and forth thanks to a pulley attached with
a cable to two fixed points on the boat. In the carriage, a bar with two stable positions
simulates the rower hands. When the bar is down, the blades are out of water and when
the bar is up, the blades are in the water. Thus, with this system, the whole rowing cycle
can be described in a similar way as in real rowing. The speed of our robotic rowers and
the phase di↵erence between them, denoted �, is controlled with an Arduino board.

(a) (b)

Figure 6.4: (a) Picture of our 2-meter long robotic rowing boat at the Ecole polytechnique
swimming pool. (b) Zoom on one robotic rower. The blades are attached to a bar that can
move up and down as the “rower” moves back and forth, thus mimicking the real rowing
cycle.

In Table 6.1 (see Sect. 6.8), the main parameters of our model boat and of a real eight
rowing boat are given. The e↵ect of the motion of the rowers on the boat can be tested
with our model boat. Indeed, even if the ratio of the total moving mass to the total mass
of the boat 8m

r

/M (with m
r

the mass of a rower) is smaller for our model boat than for
real boats, it is still significant (8m

r

/M ' 0.4). Concerning the flow regime, the Reynolds
number, Froude number and Weber number are much smaller for our model boat than for
real boats. However, the Reynolds number for our model boat (Re ' 5 · 105) is close to the
critical Reynolds number Re

cr

(see Sect. 1.4), so that we expect the flow around the hull
to be turbulent in a similar way as for real boats. The di↵erence in the Froude number is
not so important because, for real rowing boats, the wave drag is negligible compared to
the skin friction (see Sect. 2.5). As for the Weber number, in both cases, it is much larger
than 1, so that capillary e↵ects are negligible. Thus, our robotic rowing boat is expected
to model real rowing boats with a similar rowing movement, the displacement of the rowers
on the boat and a similar flow regime, the main di↵erence with real rowing being that, in
our model boat, the kinematics is prescribed, while in reality it is the power injected by the
rowers.

2An octuple scull (eight rowers with two oars each is di↵erent from an eight rowing boat where each rower
has one oar.
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6.3 Experimental results

We performed measurements of the speed of our model rowing boat at the Ecole polytech-
nique swimming pool, changing the phase di↵erence � between consecutive rowers. In the
synchronous configuration (� = 0�), we observe that our boat moves with an instantaneous
velocity profile (see Fig. 6.5) similar to the one obtained for real rowing races (see Fig. 2.7).
The velocity increases during the power stroke (between the red and green vertical lines)
thanks to the propulsion of blades, then continues to increase at the beginning of the re-
covery stroke and finally decreases at the end of the recovery stroke because of the motion
of the rowers on the boat and the hydrodynamic friction on the hull. The similarity of
the velocity profiles proves that our model boat displays the same physical features as real
rowing boats. At a pace of one stroke per second, our boat moves at a mean speed close
to 0.35 m/s. That is almost 0.2 boat length per rowing cycle (to be compared with around
0.45 boat length per rowing cycle in real races), with about 12% speed fluctuations (to be
compared with 20 to 30% speed variations in real rowing).

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5
Catch Release

t (s)

U
(m

/s
)

Figure 6.5: Instantaneous velocity of our model rowing boat as a function of time for about
three strokes, in the synchronised configuration (� = 0�) for f ' 1.3 Hz. The vertical red
dashed lines indicate the time of the catch and the vertical green dashed lines the time of
the release. The mean speed hUi is indicated with a gray horizontal line. This velocity
profile is obtained from image analysis.

Changing the phase di↵erence � from 0� to 360�, we observe that desynchronising the rowers
indeed reduces the fluctuations of the boat speed, as illustrated in Fig. 6.6(a). They are
for instance decreased up to only 2% of the mean speed for � = 45�. Yet, the at-first
surprising and puzzling outcome of these experiments is that the mean speed of the boat is
maximal in the synchronised configuration by about 8% (see Fig. 6.6(b)). Our main result
is thus in contradiction with our initial intuition: reducing velocity fluctuations does not
increase the mean velocity. This can be explained as follows: before we did not take into
account that when synchronised rowers return together to the stern of the boat during the
recovery stroke, they pull the hull beneath them, accelerating the boat. Thus, there is an
additional inertial boost that is lost when the rowers are desynchronised. Also the e�ciency
of the blade propulsion might be smaller in the desynchronised configurations than in the
synchronised one.
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Figure 6.6: (a) Speed fluctuations �U/hUi as a function of the phase-shift between consec-
utive rowers � from the experiment (blue dots) and the numerical model (orange line). (b)
Mean boat velocity hUi depending on � from the experiment (blue dots) and the numerical
model (orange line) (see Sect. 6.4).

6.4 Theoretical framework

To understand these experimental results, we built a simplified theoretical model of rowing.
For the sake of simplicity, let us consider a sweep rowing boat (a boat where each rower has
one oar) with N rowers (see Fig. 6.7). For a sculling boat (a boat where each rower has two
oars), such as in the experiments, the same model holds provided that the total force on the
blades is multiplied by the factor 2.

◊n

U

vbln/w

vrn/h
n

vhan/h

¸

i

¸

o

e
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Figure 6.7: Schematics of a sweep rowing boat (each rower has one oar) with N = 2 rowers,
where U is the velocity of the boat in the reference frame of the water, v

bl

n

/w

the velocity
of the blade n with respect to the water, v

r

n

/h

the velocity of the rower n in the reference
frame of the boat and v

ha

n

/h

the velocity of the hands of rower n in the reference frame of
the boat.

To derive a model equation for the motion of the boat, we write the momentum conservation
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for the system {boat + rowers + oars}:

dP

dt
= F

w/bl

+ R , (6.3)

where P is the momentum of the whole system, F
w/bl

is the force resulting from the propul-
sion with the N blades and R is the total drag force exerted by the fluid on the hull. We
define U the velocity of the boat with respect to the water and v

r

n

/h

the velocity of the
center of mass of the rower n in the reference frame of the boat (see Fig. 6.7). We then
have:

P = MU + m
r

NX

n=1

v
r

n

/h

, (6.4)

where m
r

is the mass of a rower and M = m
boat

+ N ⇥ m
r

is the total mass of the system.
Note that we assume the mass of the oars to be negligible.3

The drag exerted on the hull is modelled by R = �1/2⇢S
h

C
h

U2e
x

, as given by Eq. (2.1).
For a real rowing boat, we take C

h

= 2.5 · 10�3 (see Sect. 2.5) and, for our model boat, we
found experimentally C

h

' 0.04 (see Sect. 6.8).

Fluid forces on the blades.

In order to write the total force on the blades at any time during the rowing cycle, we
introduce the function H

n

(t) such that H
n

(t) = 1 during the power stroke of the rower n
(blade n inside the water) and H

n

(t) = 0 during the recovery stroke of the rower n (blade
n outside the water). The force F

w/bl

is then written:

F
w/bl

=
NX

n=1

H
n

(t)F
w/bl

n

, (6.5)

where F
w/bl

n

is the force exerted by the water on blade n. The typical speed of the blades
with respect to the water is about 5 m/s and a blade measures about 0.5 m ⇥0.25 m (see
Table 2.2 in Chap. 2). So the typical Reynolds number for the flow around the blades is
Re ' 106. We thus consider three force components acting on the blades, so that the force
exerted on blade n is written:

F
w/bl

n

= F
D

n

+ F
L

n

+ F
A

n

, (6.6)

where F
D

n

is the drag, F
L

n

the lift and F
A

n

the added mass force. Firstly, the drag force
on blade n reads:

F
D

n

= �1

2
⇢S

bl

C
D

(�
n

)v2
bl

n

/w

t , (6.7)

where S
bl

is the surface of the blade, C
D

its drag coe�cient, which depends on the blade
angle of attack �

n

(see Fig. 6.8(a)), v
bl

n

/w

= |v
bl

n

/w

| and t is the unit vector collinear to
the blade velocity v

bl

n

/w

. Secondly, the lift force is written:

F
L

n

=
1

2
⇢S

bl

C
L

(�
n

)v2
bl

n

/w

n , (6.8)

where C
L

is the lift coe�cient of the blade4 and n is the unit vector normal to the blade

3Oars typically weigh about 1.5 - 2 kg.
4
C

L

can be positive or negative depending on the angle of attack (see Fig. 6.8 (c)).
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velocity v
bl

n

/w

. The coe�cients C
D

and C
L

were determined experimentally by [55] for a
Macon blade and a Big blade depending on their angle of attack (see Fig. 6.8(b) and (c)).

�
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w/bl

(a)
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Figure 6.8: (a) Schematics of a blade in a uniform flow at speed v
w/bl

= �v
bl/w

. The angle
of attack is denoted �. (b) Drag coe�cient C

D

and (c) lift coe�cient C
L

as a function of
the angle of attack � for a Macon blade and a Big blade (see Fig. 2.3(a) and (b)). For an
angle of attack of 90�, that is for a flow normal to the blade, we recover C

L

' 0 and C
D

' 2.
Data taken from [55].

Thirdly, the added mass force reads:

F
A

n

= �m
a

dv
bl

n

/w

dt
, (6.9)

with m
a

the added mass of the blade (see Sect. 1.7.1). The added mass is estimated as
m

a

' ⇡⇢w
b

`2
b

/4 with w
b

the width of the blade and `
b

the length of the blade (see Fig. 2.3(b)).
Thus, for real blades, m

a

' 30 kg and for the blades in our model boat, m
a

' 26 g.

The speed of the blade n in the reference frame of the hull v
bl

n

/h

is related to the speed of
the hands of the rower n denoted v

ha

n

/h

and the angle ✓
n

(angle between the oar axis and
the y axis, see Fig. 6.7) through the kinematic relation:

v
bl

n

/h

= �`o
`
i

v
ha

n

/h

= �`
o

✓̇
n

[cos(✓
n

) e
x

+ sin(✓
n

) e
y

] . (6.10)

Now the speed of the blade in the reference frame of the water reads:

v
bl

n

/w

=
h
U � `

o

✓̇
n

cos(✓
n

)
i
e
x

� `
o

✓̇
n

sin(✓
n

)e
y

. (6.11)

Finally, the resulting force exerted by the fluid on the blade n, F
w/bl

n

, projected on the
vector e

x

, reads:

F
w/bl

n

= �1

2
⇢S

bl

C
D

v
bl

n

/w

U


1 � ⌘

v
ha

n

/h

U
cos(✓

n

) � ⌘
C
L

C
D

v
ha

n

/h

U
sin(✓

n

)

�

� m
a

dU

dt
+ m

a

⌘
d

dt

⇥
v
ha

n

/h

cos(✓
n

)
⇤

, (6.12)

with ⌘ = `
o

/`
i

the ratio between the outboard and the inboard oar lengths.

From here, we make two crude assumptions. Firstly, we suppose that ✓ ' 0, this is as if
the blades were moving parallel to the direction of motion of the boat, which kills the lift
contribution to the total force. Secondly, we consider that the velocity of the rower’s hands
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and the velocity of the center of mass of the rower are equal, that is: v
ha

n

/h

= v
r

n

/h

. These
two assumptions are quite far from reality, given the observations made in Chap. 2 (see
Sect. 2.3 for the first assumption, which shows the importance of lift in the propulsion of
top-level rowing boats and see Sect. 2.4 for the second assumption, in particular Fig. 2.14).
However, these two assumptions greatly simplify the expression of the force on the blade:

F
w/bl

n

=
1

2
⇢S

bl

C
D

|⌘v
r

n

/h

� U |
⇥
⌘v

r

n

/h

� U
⇤
� m

a

dU

dt
+ m

a

⌘
dv

r

n

/h

dt
. (6.13)

In the following, we use C
D

' 2, which is the value found experimentally for an angle of
attack � = 90� (see Fig. 6.8(b)).

Dynamical equation.

Combining the momentum conservation in Eq. (6.3) with Eqs. (6.4), (2.1) and (6.5), the
equation governing the velocity of the boat U reads:

 
M + m

a

NX

n=1

H
n

(t)
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⌘H
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n

/h

dt
. (6.14)

We take as a characteristic time T = 1/f the period of the rowing cycle and as a character-
istic velocity U? = 2Mf/(⇢S

h

C
h

). Writing U = ÛU? and t = t̂ T , the equation of evolution
for the dimensionless hull velocity Û reads:

 
1 +

m
a

M

NX
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dt̂
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. (6.15)

Power estimation.

We further define p
n

, the instantaneous power injected by the rower n, which is written:

p
n

= ⌘H
n

(t)F
w/bl

n

(t) ⇥ v
r

n

/h

(t) , (6.16)

with F
w/bl

n

given in Eq. (6.13). Thus, the total mean power for N rowers P
N

reads:

P
N

=
NX

n=1

hp
n

(t)i . (6.17)

6.5 First model: imposed kinematics

As a first model of rowing, we consider the problem at imposed kinematics, that is we
impose the velocity of each rower v

r

n

/h

and consequently the stroke frequency f . Eq. (6.15)
is solved taking v

r

n

/h

= ⇡�xf sin(2⇡ft + (n � 1)�), or in dimensionless form:

v̂
r

n

/h

= ⇡�xf/U? sin(2⇡t̂ + (n � 1)�) , (6.18)
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with � the phase di↵erence between consecutive rowers and �x the characteristic distance
of the rower’s motion on the boat. Following the definition of H

n

(t), we consider that
H

n

(t) = 1 if v
r

n

/h

> 0 and H
n

(t) = 0 otherwise.

6.5.1 Prediction for our model boat

Our model rowing boat was operated at a stroke frequency f ' 1.3 Hz with �x ' 3
cm. The di↵erent parameters needed for the theoretical model are given in Table 6.1. To
capture the “steady” dynamics, Eq. (6.15) is solved numerically using an explicit Runge-
Kutta method and enforcing the periodic boundary condition: Û(t̂ = 0) = Û(t̂ = 1). The
comparison between the experimental results and the numerical ones for the mean velocity
and fluctuations of our robotic rowing boat is shown in Fig. 6.6(a) and (b). The numerical
results are in good agreement with the experimental data. In particular, with the numerics,
we recover that the maximal boat velocity is obtained in the synchronised configuration,
even if it is the configuration with the highest speed fluctuations. Note that the evolution
of the mean speed hUi and the speed fluctuations �U/hUi with the phase di↵erence � is
symmetric about � = 180�, which is not what we observed experimentally. This may be
due to the hydrodynamic interactions between the blades in the experiments, which depend
on the phase di↵erence and are not taken into account in our theoretical model. One can
also notice that the smallest fluctuations of the boat speed are obtained for multiples of 45�

(except for 0� and 180�).

6.5.2 Prediction for a real rowing boat

We now solve the same equation (Eq. (6.15)) in the “steady” (or periodic) regime with the
parameters of a real eight rowing boat (see Table 6.1). In particular, we take f = 0.65 Hz
and �x = 1.3 m, which are close to the real values in competitions.
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Figure 6.9: (a) Mean hull velocity hUi and (b) fluctuations of velocity �U/hUi, as a function
of the phase di↵erence � predicted by our theoretical model at imposed kinematics for five
di↵erent values of the rower’s mass m

r

.
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The evolution of the mean hull velocity hUi and velocity fluctuations �U/hUi with the
phase di↵erence � is presented in Fig. 6.9 with the mass m

r

of each rower ranging from 0
to 90 kg. The curves hUi and �U/hUi obtained for m

r

= 90 kg, which is approximately
the right value for heavyweight rowing crews, show qualitatively the same evolution with
� as the one obtained for our model boat (see Fig. 6.6). For a given mass m

r

, we observe
that the mean hull velocity hUi remains nearly constant over the range 45� < � < 315� .
Furthermore, as the rower’s mass m

r

increases, the mean velocity hUi for � = 0� increases,
while for 45� < � < 315� it keeps almost the same value. For m

r

= 0 kg (no moving mass
on the boat), then the mean hull velocity for � = 0� is smaller than in the desynchronised
configurations. On the contrary, for m

r

= 90 kg, the maximum of hUi is reached for � = 0�.

We thus find the same result for real rowing boats than for our model boat: at imposed
kinematics and for a su�ciently large rower’s mass (typically for m

r

> 22.5 kg), the fastest
boat is the synchronised one. This model gives a second interesting result: when the mass
moving on the boat is small, then it is better to be desynchronised. However, this model
at imposed kinematics is not very realistic! In reality, given the physiology constraint, one
should rather consider that rowers inject a constant power.

6.6 Second model: imposed power

We consider the same problem but this time at imposed power instead of imposed kinematics.
We solve Eq. (6.14) for a real rowing boat in the “steady” regime, now enforcing that the
total mean power P

N

given in Eq. (6.17) is a constant. We take P
N

/N = 500 W, which is
a typical order of magnitude for the mean power injected by a rower during a competition
[50, 84]. In this model, the stroke frequency f is a result of the computation and is not
imposed a priori. Fig. 6.10 shows the evolution of the mean hull velocity, the velocity
fluctuations and the stroke frequency f with the phase di↵erence �. We first observe that
the velocity fluctuations �U/hUi are the same as in the model at imposed kinematics. This
is expected as, in this new model, the only di↵erence with the model at imposed kinematics
is that the stroke frequency is free, which do not a↵ect the value of the ratio �U/hUi.
To keep the total mean power P

N

constant, the stroke frequency f changes with the phase
di↵erence between rowers. Its value remains however close to the one imposed in the previous
model, which was f = 0.65 Hz. For 45� < � < 315�, the stroke frequency is almost
independent of the rower’s mass m

r

, while for � around 0�, f decreases with m
r

. This
means that the force exerted by the rowers on the oars becomes larger as m

r

increases,
allowing f to decrease to maintain a constant injected power.
If we now look at the evolution of the mean velocity hUi with �, we first observe, as for
the stroke frequency f , that for 45� < � < 315� the rower’s mass m

r

has no influence on
the mean hull velocity, while for � = 0�, hUi increases with m

r

. It is also interesting to
notice the position of the local maxima between 0� and 180� sorted by order of magnitude:
0�, 360/2 = 180�, 360/3 = 120�, 360/4 = 90�, etc. Local maxima for hUi are thus reached
when groups of synchronised rowers can be formed (for example, for � = 180�, there are
two groups of four synchronised rowers). Eventually, contrary to the model at imposed
kinematics, we now find that, whatever the rower’s mass m

r

, the fastest boat is always the
one with synchronised rowers (� = 0�).
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Figure 6.10: (a) Mean hull velocity hUi, (b) fluctuations of velocity �U/hUi and (c) stroke
frequency f , as a function of the phase di↵erence � predicted by our theoretical model at
imposed power for five di↵erent values of the rower’s mass.

6.7 Discussion

Our conclusion is a bit disappointing as it will not change the way rowers are currently row-
ing: we find both numerically and experimentally that the fastest boat is the synchronised
one.

From the theoretical model at imposed power (the most realistic one from a physiological
perspective), we see that the mass moving on the boat, which is equal to Nm

r

, plays an
important part in the story. Indeed, for � = 0� (synchronised configuration), the higher the
rower’s mass, the fastest the boat. On the opposite, in the desynchronised configurations,
the rower’s mass has almost no e↵ect on the mean boat velocity. To understand this, one
should remember that the velocity of the hull is maximum during the recovery stroke (see
Fig. 2.7(a)) because of the simultaneous motion of the rowers towards the stern of the
boat. This e↵ect increases with the mass of the rowers but it is lost when the rowers are
desynchronised.

Our result contradicts the one from Brearley et al. who found that an eight rowing boat
with two groups of four synchronised rowers (corresponding to � = 180�) would go faster
than the synchronised boat [66]. The discrepancy with our model is related to the e�ciency
of the blade propulsion (developed in Appendix A). If the propulsive e�ciency was the same
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for all phase di↵erences, then the model at imposed force and kinematics derived by [66]
would apply and give the result expected in the first place when we first considered the drag
on the hull (see Subsect. 6.1.1). However, imposing both the force and the kinematics at
the same time is impossible as they are related by Eq. (6.12) or Eq. (6.13). In Appendix A,
we show that, when imposing the force applied by the rower on the blade, then one can
compute the stroke frequency f . Our model at imposed power imply that the propulsion
is less e�cient in the desynchronised configuration than in the synchronised one, which
explains the changes in the stroke frequency and in the resulting mean hull velocity.

We should now mention the limitations of our theoretical model. For the models at imposed
kinematics and imposed power, the order of magnitude for the mean hull velocity is about
2 times smaller than the one for rowing boats in competitions. This is surely related to the
crude assumptions made earlier in the model, in particular the first one which removed the
contribution from the lift to the force on the blade. Taking lift into account in the model
would obviously a↵ect our results but is not expected to change the observed tendencies. As
for the second assumption, according to Fig. 2.14, the velocity of the rower’s hands is about
twice the velocity of the rower’s center of mass, which could slightly reduce the e↵ect of
the moving mass. Eventually, in our model at imposed power, we do not take into account
the recovery stroke in the power estimation. The power injected by the rowers during this
part of the stroke is indeed neglected compared to the one injected during the power stroke,
which seems a reasonable hypothesis.

6.8 Appendix: Parameters of our model boat

To estimate the hull drag coe�cient C
h

of our model boat, we conducted the same experi-
ment as the one described in Sect. 2.5 for a real boat (see also Fig. 2.15). The instantaneous
hull velocity during a deceleration phase is measured (see Fig. 6.11) and fitted using Eq. (2.3).
This fit yields U

0

' 0.21 m/s and ⌧ ' 3.7 s, which, with M ' 2 kg and S
h

' 0.13 m2, gives
C
h

' 0.04.

0 2 4 6 8 100
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0.1
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U
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)

Figure 6.11: Instantaneous speed of our model rowing boat, as a function of time during
a deceleration phase (blue curve). The black line is a fit of the experimental curve using
Eq. (2.3) with U

0

' 0.21 m/s and ⌧ ' 3.7 s.

The parameters of our model boat are listed in Table. 6.1 together with the parameters for
an eight rowing boat for comparison.
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Parameter Model boat Real boat

` (m) 2 20

w (m) 0.06 0.55

m
boat

(kg) 1.35 97

m
r

(kg) 0.1 90

M (kg) 2.15 820

8m
r

/M 0.4 0.9

S
h

(m2) 0.13 13

C
h

0.04 0.0025

`
b

(cm) 4 45

w
b

(cm) 2 21.5

S
bl

(m2) 8 · 10�4 0.1

C
D

2 2

m
a

(kg) 0.026 30

⌘ 5 2.2

Re 5 · 105 108

Fr 0.07 0.4

We 2500 7 · 106

Table 6.1: Typical values of the relevant parameters for our model boat and for an eight
rowing boat. The last three parameters are dimensionless parameters characterising the
flow around the hull. The Weber number We compares the inertia of the fluid to its surface
tension.
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Take home message of Chapter 6

1. Synchronisation in rowing is responsible for large fluctuations of speed, which
in turn increase the energy lost by friction on the hull compared with a motion at
constant speed.

2. To study the e↵ect of the synchronisation of rowers on a rowing boat, we built
a robotic rowing boat at the scale 1/10 with eight robotic rowers controlled sep-
arately. We observed that the boat was going faster in the synchronised configuration.

3. We made a simplified theoretical model of rowing and considered two di↵erent
hypotheses: imposed kinematics and imposed power, among which the most realistic
one physiologically is imposed power. The model with this hypothesis also predicts
that the fastest boat is the synchronised one.

4. We explain this result by highlighting two key ingredients: the propulsive
e�ciency, which decreases when the rowers are desynchronised and the mass of the
rowers, which does not a↵ect much the mean hull velocity in the desynchronised
cases but significantly increases the mean velocity in the synchronised one.
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7
Shape effects in fin propulsion

Propulsion in water or at its surface can also be achieved with flexible plates, called fins,
which were inspired by fish swimming. In this experimental and theoretical study, we look
at the e↵ect of geometry and elasticity on the propulsive performance of simple rectangular
flexible fins subjected to a heaving forcing. The optimal design of a rectangular fin is mostly
dictated by its resonant frequency.

Picture of the tail of a Humpback whale. Source: [9].
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7.1 Position of the problem

The locomotion of animals in water has been widely studied over the past years [108, 109,
110, 111, 112]. In particular, the propulsion of fishes and mammals has been divided into
two main categories: the anguilliform and carangiform modes of propulsion [108]. Slender
fishes such as eels (see Fig. 7.1(a)) belong to the anguilliform group. In this undulatory
mode of propulsion, the whole body is involved in the propulsion. The carangiform group
gathers larger and faster fishes, such as salmons (see Fig. 7.1(b)) or sharks, for which only
the posterior part of the body participates in the propulsion.

(a) (b)

Figure 7.1: (a) Common eel Anguilla vulgaris and (b) a salmon Salmo salar. Pictures
reprinted from [108].

The carangiform propulsion relies on the flexibility of the appendages involved, which is
thought to enhance swimming e�ciency [113, 114]. To get insight in the propulsive mecha-
nisms at stake, a number of studies modeled this propulsion theoretically [115, 116, 117, 118],
numerically [119] or experimentally [113, 114, 120, 121, 122] with pitching and heaving flexi-
ble foils and sheets. Most studies indicate that the highest propulsive e�ciencies are attained
for forcing frequencies close to the resonant frequencies of the fin [113, 120].

Inspired by fish swimming, fins (also called flippers) were designed for human swimming.
Their invention is actually fairly recent. The French lieutenant commander Louis de Corlieu
(1888 – 1967) designed the first fin model during the 1920s (see Fig. 7.2(a)) and patented it
in 1933 [123]. It then took about 30 years, until the 1950s, for this invention to be adopted
and to become a usual accessory in swimming pools (see Fig. 7.2(b)). With the development
of new materials (plastic or carbon fiber), the monofin (see Fig. 7.2(c)) started to be used in
the early 1970s and allowed to beat all fin-swimming world records. Today’s world records
are 13.85 s in apnea with a monofin (on the 50 m distance) and 15 s at the surface [125].
This makes an 8% di↵erence, which is related to the appearance of wave drag at the water

(a) (b) (c)

Figure 7.2: (a) Replica of the first fin model designed by Louis de Corlieu in the 1920s
(source: [124]). (b) Picture of one of the current fin models. (c) Picture of one of the
current monofin models.
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surface (see Sect. 1.6). These records can be compared with the world record in freestyle
on 50 m, which is 20.9 s, corresponding to a 40% di↵erence with the monofin record at the
surface.

Over the years, the shape of fins has become very complex. Today they have holes and
grooves and are made of materials with well-controlled mechanical properties to maximise
their propulsive e�ciency. Here, we model the fin as a simple rectangular flexible plate, sim-
ilarly to previous studies, and study the e↵ect of the dimensions of the fin on its propulsion.

7.2 Experimental set-up

We use the experimental set-up presented in Fig. 7.3 and inspired by [126, 127]. Two
identical flexible plates are attached at the extremities of a rod on either side. This rod
has its center linked to a vertical shaft which is set in translation by an electromagnetic
linear actuator and is free to rotate about its axis. When the system oscillates vertically, it
spontaneously starts rotating, so that it can be seen as an experimental model of swimming
with fins. The advantage of the cylindrical geometry is that the motion is unrestricted in
the horizontal direction. However, the drawback is that, at high speeds, the fins move in a
fluid disturbed by the preceding fin. We focus on rectangular fins of length L, width b and
thickness e (see Fig. 7.3).

d

U

(A, f)

L

b

e

Figure 7.3: Schematic of the experimental set-up. Two identical fins made of a rectangular
flexible plate of length L, width b, thickness e (e ⌧ b < L) and Young’s modulus E ' 2
GPa are attached to a rod, itself connected to a vertical shaft. The whole system is forced
to oscillate at the frequency f with the amplitude A. The fins are immersed in a water tank
of typical size 1 m at a distance d from the water surface.

With this set-up, we measure, on the one hand, the fin speed U and, on the other hand, the
propulsive force F while preventing the rotation of the system (i.e. U = 0). We observe
that the speed U is related to the force F through the simple force balance F ⇠ U2 (see
Sect. 7.6), which means that the measured force F is close to the propulsive force when the
system is free to rotate. Therefore, in the following, we focus on the characterisation of the
propulsive force. The experiment is conducted for di↵erent forcing amplitudes, denoted A,
and forcing frequencies, denoted f , as well as di↵erent geometries of the plate.
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7.3 Experimental results

We first present the response of a rectangular plate to an oscillatory forcing. Then, the
e↵ect of the shape of the fin is discussed. Finally, we study the e↵ect of the distance of the
fin to the water surface, denoted d.

7.3.1 Rectangular plate response to a forcing

Here, we study the e↵ect of the forcing frequency f and amplitude A on the response of a
rectangular fin of length L = 8.5 cm, width b = 5 cm and thickness e = 1 mm. When forced
to oscillate, we observe that the plate deforms. We define A

q

the amplitude of oscillation of
the trailing edge. Fig. 7.4 shows the area swept by the fin when looking at it from the side.
For low frequencies (f  3 Hz), the shape of this area remains nearly rectangular meaning
that the plate does not deform much (A

q

' A). On the contrary, for larger frequencies,
the shape of the swept area changes a lot. In particular, the amplitude A

q

is maximum for
f = 6 Hz, which corresponds to the first resonant frequency of the fin, denoted f

1

. We also
notice the appearance of a node for f = 9 Hz, which corresponds to the appearance of the
second beam mode (see Fig. 7.9 in Subsect. 7.4.1).

2
f (Hz)3 4 5 6

A

A

q

7 8 9 10

Figure 7.4: Pictures of the area swept by the fin for A = 5 mm and increasing forcing
frequencies. For each picture, the leading edge is at the top and the trailing edge at the
bottom. The width of the swept area corresponds at the top to the forcing amplitude A and
at the bottom to the trailing edge amplitude A

q

. The pictures are obtained by superposition
of images over a few cycles.

To be more quantitative and similarly to previous studies [114], from side-view videos of
the plate motion, we measured the amplitude at the leading edge A and at the trailing edge
A

q

, as well as the phase di↵erence between the leading edge and the trailing edge motions,
denoted  . Fig. 7.5(a) shows that the ratio A

q

/A is indeed maximum for f = f
1

' 6 Hz for
the three di↵erent values of the forcing amplitude A. We further observe that, close to the
resonant frequency, the ratio A

q

/A becomes lower as A becomes larger, which results from
non-linearities in the equation of deformation of the plate. The same tendency is observed in
[114]. As for the phase di↵erence  , we observe that it increases with the forcing frequency
f , while it does not depend much on the forcing amplitude A (see Fig. 7.5(b)). At low
frequencies,  is close to 0: the leading edge and the trailing edge are in phase. In this
case, the time needed for the waves to propagate from the leading edge to the trailing edge
is much smaller than the period of the forcing. This is not the case anymore when the
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Figure 7.5: (a) Ratio of the trailing edge amplitude to the leading edge amplitude A
q

/A
and (b) phase di↵erence  between the trailing edge and the leading edge, as a function of
the forcing frequency f for three di↵erent forcing amplitudes A.

frequency is increased and gets closer to the first resonant frequency f
1

, which qualitatively
explains the increase of the phase di↵erence  .

We measured the propulsive force F for di↵erent forcing frequencies and forcing amplitudes.
The evolution of F with the forcing frequency f is similar to what was observed by Quinn
et al. for plates of di↵erent bending sti↵nesses [113]. In particular, one can see that the
resonant frequency f

1

delimits two regimes (see Fig. 7.6(a) for A = 13 mm). This is even
more visible in logarithmic scale (see Fig. 7.6(b)), with the slope of the curve F (f) before the
resonance being larger than the one after the resonance. In the following, we characterise
the regime before the resonance, that is for f < f

1

. Two di↵erent cases should then be
considered: small deformations of the plate for A ⌧ L and large deformations for A ⇠ L.
In the case of small deformations (A ⌧ L = 85 mm), we observe that, F ⇠ A2f4, while for
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Figure 7.6: Propulsive force as a function of the forcing frequency for three di↵erent values
of the forcing amplitude in (a) linear scale and (b) logarithmic scale. The resonant frequency
f
1

is indicated by a vertical dashed line. In (b), the violet line is a fit of the data for A = 13
mm and f < f

1

' 6 Hz (F = 1.8 · 10�4 f4); and the green line is a fit of the data for A = 65
mm (F = 1.5 · 10�2 f3).
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large deformations we find F ⇠ A2f3 (see Fig. 7.6). The scaling for small deformations is
in agreement with the scaling analysis presented in Subsect. 7.4.2.

7.3.2 Shape e↵ects

Fig. 7.7(a) illustrates the typical evolution of the propulsive force F with the forcing fre-
quency for plates of di↵erent lengths. As previously observed in Fig. 7.6(a), we see that,
at the resonant frequency f

1

, the evolution of F with the forcing frequency changes. We
denote F

1

= F (f
1

) the propulsive force reached at the resonant frequency. The length of
the plate L has a significant e↵ect on both the resonant frequency f

1

and the value of F
1

:
an increase in the length of the plate L decreases F

1

, as well as the resonant frequency f
1

.
We find that the force at the resonance F

1

is inversely proportional to L4.
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Figure 7.7: (a) Propulsive force F as a function of the forcing frequency f for three fins
of di↵erent length L but same width (b = 5 cm) and same thickness (e = 1 mm), with
A = 13 mm. For the three data sets, the position of the resonant frequency f

1

of the plate is
highlighted by a vertical dashed line and the corresponding value of the propulsive force F

1

is indicated by a horizontal dashed line. (b) Propulsive force rescaled by the characteristic
force F

c

= Ee3bA2/L4 as a function of the frequency rescaled by the resonant frequency f
1

for the three data sets plotted in (a) and for plates of varying length, width and thickness.
The red line represents the function f(x) = x4.

Considering plates of di↵erent length L, width b and thickness e, we find that the resonant
frequency f

1

scales as the characteristic frequency f
c

=
p

Ee3/(12⇢L4b), with E the Young’s
modulus of the plate (see Fig. 7.10 in Sect. 7.4.1). Then, we obtain that the force at the
resonance F

1

depends linearly on the width b and scales as e3. Finally, in the limit of small
deformations, we get: F

1

⇠ F
c

= Ee3bA2/L4, which is consistent with the scaling analysis in
Subsect. 7.4.2. Fig. 7.7(b) shows the evolution of the force F rescaled by the characteristic
force F

c

with the forcing frequency f rescaled by the resonant frequency f
1

for plates of
di↵erent length, width and thickness. All the data collapse for f/f

1

. 1 proving the validity
of both scales.

7.3.3 Free-surface e↵ect

Now, for the same fin as in Sect. 7.3.1 (L = 8.5 cm, b = 5 cm and e = 1 mm), we change
its distance to the air-water interface, denoted d, and study how this a↵ects the propulsive
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force F and the fin velocity U . When getting closer to the water surface the propulsive
force and fin velocity are expected to decrease to zero when d = 0. This is what can be
observed in Fig. 7.8(a) and (b), where F and U are plotted as a function of the ratio d/b.
One can see that the distance from which the free-surface starts to play a role is of the order
of magnitude of the fin width b. We further notice that the distance of influence of the
free-surface is smaller for the propulsive force than for the fin velocity. This di↵erence can
be explained by the appearance of wave drag, which increases significantly the total drag
force on the fin (see Sect. 1.6).

0 0.5 1 1.5 2 2.5 30

0.05

0.1

0.15
(a)

F
(N

)

0 0.5 1 1.5 2 2.5 30

0.25

0.5
(b)

d/b

U
(m

/s
)

Figure 7.8: (a) Propulsive force F and (b) fin velocity U , as a function of the distance to
the free-surface d rescaled by the width of the fin b (for f = 5 Hz, A = 13 mm). The black
dashed line in each plot indicates the value reached far from the free-surface.

Eventually, this part highlights that the free-surface has a strong e↵ect on the propulsion
with fins when the distance from the free-surface becomes smaller than the width of the fin.
This is one of the reason why the world records in fin-swimming on the 50 m distance are
by 8% smaller at the surface than in apnea.

7.4 Theoretical model

Here we focus on the deformation of a rectangular fin deep underwater, subjected to a
heaving motion at the leading edge. As observed in the experiments, this forcing produces
an horizontal motion of the fin at the speed U . One can define two Reynolds numbers:
along the vertical Re

v

= ⇢AfL/µ and along the horizontal Re
h

= ⇢UL/µ. Taking A = 10
mm, f = 5 Hz, L = 10 cm and U = 0.5 m/s as typical values in the experiments, one finds
Re

v

' 5 000 and Re
h

' 50 000. The flow around the fin is thus at high Reynolds number in
both cases. The typical aspect ratio b/L is of the order of 0.5. This corresponds to the upper
limit of validity of the slender-body theory developed by Lighthill [115], which will still be
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used in the following. We will further assume that the boundary layer remains attached to
the fin and that the deformation of the fin is small (compared to its length L).

7.4.1 Equation of deformation of the fin

General expression and boundary conditions.

Let z(x, t) be the vertical position of an element of the plate of surface b ⇥ e in x at time
t. With the approximation of small slope (or equivalently small deformation of the fin
|@z/@x| ⌧ 1), the Newton’s second law applied to an element of the fin of length ds ' dx
and projected onto the vertical axis leads to the Euler-Bernoulli equation [128]:

⇢
s

eb
@2z

@t2
+ EI

@4z

@x4

= f
F/S

, (7.1)

where ⇢
s

is the density of the fin, I = be3/12 is the second moment of area and f
F/S

is the
force per unit length exerted by the fluid on the fin.

The boundary conditions correspond to a sinusoidal forcing imposed in x = 0 and no force
and torque at the end of the fin (in x = L). Thus, one has:

z(x = 0, t) =
A

2
sin(2⇡ft) , (7.2a)

@z

@x
(x = 0, t) = 0 , (7.2b)

@2z

@x2

(x = L, t) = 0 , (7.2c)

@3z

@x3

(x = L, t) = 0 . (7.2d)

The complicated task is now to model the force exerted by the fluid on the fin f
F/S

.

Model for f
F/S

and equation of deformation of the plate.

Similarly to [129], we model the force exerted by the fluid on the fin f
F/S

as the sum of
added mass force and pressure drag, so that:

f
F/S

= �m
a

✓
@2z

@t2
+ 2U

@2z

@t@x
+ U2

@2z

@x2

◆
� 1

2
⇢bC

D

@z

@t

����
@z

@t

���� , (7.3)

where m
a

is the added mass per unit length, U the horizontal speed of the plate and C
D

the drag coe�cient of the plate. The added mass is written: m
a

= ⇢b2C
a

with C
a

the added
mass coe�cient (C

a

' ⇡/4 for a plate, see Sect. 1.7.1).

Now given that ⇢
s

eb ⌧ m
a

= ⇢b2C
a

(because ⇢
s

⇠ ⇢, C
a

⇠ 1 and e ⌧ b), the equation of
deformation of the plate is written:

⇢b2C
a

✓
@2z

@t2
+ 2U

@2z

@t@x
+ U2

@2z

@x2

◆
+ EI

@4z

@x4

+
1

2
⇢bC

D

@z

@t

����
@z

@t

���� = 0 . (7.4)

Taking L as the characteristic length, ⌧ = L2

p
⇢b2C

a

/(EI) as the characteristic time and c =
L/⌧ as the characteristic speed, we define the following dimensionless variables: x̂ = x/L,
ẑ = z/L, t̂ = t/⌧ , Û = U/c, Â = A/L, f̂ = f⌧ and � = C

D

L/(2C
a

b). The dimensionless
beam equation is written:

@2ẑ

@ t̂2
+ 2Û

@2ẑ

@ t̂@x̂
+ Û2

@2ẑ

@x̂2

+
@4ẑ

@x̂4

+ �
@ẑ

@ t̂

����
@ẑ

@ t̂

���� = 0 , (7.5)
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with the boundary conditions:

ẑ(x̂ = 0, t̂ ) =
Â

2
sin(2⇡f̂ t̂) , (7.6a)

@ẑ

@x̂
(x̂ = 0, t̂ ) = 0 , (7.6b)

@2ẑ

@x̂2

(x̂ = 1, t̂ ) = 0 , (7.6c)

@3ẑ

@x̂3

(x̂ = 1, t̂ ) = 0 . (7.6d)

Solving method: projection onto modes of the free beam.

We follow the method developed by Paraz et al. [118]. Let us consider the equation of a
free plate (corresponding to taking Û = 0 and � = 0 in Eq. (7.5)):

@2ẑ

@ t̂2
+
@4ẑ

@x̂4

= 0 , (7.7)

with the boundary conditions that the plate is embedded in x̂ = 0 and free in x̂ = 1:

ẑ(x̂ = 0, t̂ ) = 0 , (7.8a)
@ẑ

@x̂
(x̂ = 0, t̂ ) = 0 , (7.8b)

@2ẑ

@x̂2

(x̂ = 1, t̂ ) = 0 , (7.8c)

@3ẑ

@x̂3

(x̂ = 1, t̂ ) = 0 . (7.8d)

A solution of this equation is of the form ẑ(x̂, t̂) = Kẑ
i

(x̂)eik
2
i

ˆ

t with K a constant and:

ẑ
i

(x̂) = cos(k
i

x̂) � cosh(k
i

x̂) +
sin k

i

� sinh k
i

cos k
i

+ cosh k
i

(sin(k
i

x̂) � sinh(k
i

x̂)) , (7.9)

where k
i

is the solution of the equation: cos(k
i

) cosh(k
i

) = �1. One finds for the first three
modes: k

1

' 1.875, k
2

' 4.694 and k
3

' 7.855.
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Figure 7.9: Plot of the first three modes ẑ
i

(x̂) of an embedded-free beam (see Eq. (7.7)).

As can be seen in Fig. 7.9, the nth mode crosses the horizontal axis n � 1 times, so that the
beam is more and more deformed as the number of the mode increases. Moreover, it is clear
that a higher mode corresponds to a higher resonant frequency. This study is restricted to

109



Chapter 7. Shape e↵ects in fin propulsion

7

quite low frequencies (f small compared to k2

3

/(2⇡⌧)), so the solution of Eq. (7.5) can be
approximated by a linear combination of the first three beam modes:

ẑ(x̂, t̂) '
⇣
Â + a

1

ẑ
1

(x̂) + a
2

ẑ
2

(x̂) + a
3

ẑ
3

(x̂)
⌘

e2i⇡
ˆ

f

ˆ

t . (7.10)

Such a decomposition is also found in [113] to analyse the deformation of flexible panels in
experiments. The forcing parameters Â and f̂ are imposed and the coe�cients (a

1

, a
2

, a
3

)
are obtained numerically after injecting this form of solution in Eq. (7.5) and projecting
the obtained equation on each mode ẑ

i

with the scalar product hf |gi =
R
1

0

f(x̂)g(x̂) dx̂.
Compared with linearisation methods [129], this method has the advantage to better take
into account the non-linear term.

First resonant frequency.

The characteristic time ⌧ is related to the first resonant frequency through the dispersion
relation: k2

1

= 2⇡f
1

⌧ . This gives:

f
1

=
k2

1

2⇡
p

C
a

f
c

, (7.11)

where f
c

=
p

C
a

/⌧ =
p

Ee3/(12⇢L4b).
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Figure 7.10: First resonant frequency f
1

as a function of the characteristic frequency f
c

=p
Ee3/(12⇢L4b). The black line is a fit of the experimental data: f

1

= 0.78 f
c

.

The first resonant frequency f
1

was measured experimentally for plates of various geometries
and the relation f

1

' 0.78 f
c

is found (see Fig. 7.10). This gives C
a

' 0.51, which represents
about 35% di↵erence with the expected value ⇡/4. This might be related to the separation
of the boundary layer around the plate.

7.4.2 Expression of the propulsive force

Lighthill expression.

Lighthill developed a theory to predict the mean propulsive force F on a slender body
depending on its deformation [115]. Assuming the flow around the fin to be potential and
to remain attached, this theory gives, in the limit of small slopes |@z/@x| ⌧ 1, the following
expression for the mean propulsive force:

F = f2A2

q

, (7.12)
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where  = ⇡2⇢b2C
a

/4.

Scaling analysis.

As seen in Subsect. 7.4.1, the force exerted by the fluid on the fin is the sum of added mass
force and pressure drag. In scaling analysis, the added mass force is written: F

a

⇠ ⇢b2LAf2

where ⇢b2L is the scaling of the added mass and Af2 the scaling of the acceleration of the
fluid. Similarly, the pressure drag is written: F

f

⇠ ⇢bLA2f2 with Af the scaling of the
plate velocity. From these scalings, we see that the added mass dominates when A < b,
which is in the regime of small deformations. Then, in the following, we only consider the
added mass force, which is consistent with the expression of the propulsive force derived
by Lighthill (see Eq. (7.12)) [115]. The propulsive force is then the projection of F

a

on the
horizontal direction. This is: F ⇠ (L/r)F

a

, with r the radius of curvature of the fin. r is
obtained from the balance between the torque induced by F

a

and the bending torque of the
plate:

F
a

L ⇠ EI

r
. (7.13)

Finally, using the expression of F
a

, one gets:

F ⇠ ⇢2A2f4L4b3

Ee3
. (7.14)

The combination between this scaling and the expression derived from Lighthill (see Eq. (7.12))
gives: A

q

/A ⇠ f . In comparison with the results shown in Fig. 7.5(a), this can only be valid
before the resonance (f < f

1

).

Furthermore, the first resonant frequency scales as f
1

⇠
p

Ee3/(⇢L4b) (see Eq. (7.11)).
Injecting the scaling of f

1

inside Eq. (7.14), one finds that the propulsive force at the
resonance F

1

reads:

F
1

⇠ F
c

=
Ee3bA2

L4

⇠ ⇢b2A2f2

1

. (7.15)

This scaling is in fairly good agreement with the experimental data as all the data points
for di↵erent plate geometries collapse for f/f

1

< 1 when the rescaled force F/F
c

is plotted
as a function of the rescaled frequency f/f

1

(see Fig. 7.7 (b)).

7.5 Comparison and discussion

To predict the propulsive force, we now solve numerically the dynamical equation for the
fin using the method presented in Subsect. 7.4.1. Then, we compute the amplitude at the
trailing edge A

q

, which is eventually injected inside the expression of the propulsive force
from Lighthill (see Eq. (7.12)). The dynamical equation for a plate of length L = 8.5 cm,
width b = 5 cm and thickness e = 1 mm for a given forcing amplitude (A = 13 mm)
and increasing forcing frequencies is solved taking C

a

= 0.51, as estimated experimentally
(see Fig. 7.10), and using C

D

as a fitting parameter. With C
D

= 3.4, we obtain a good
agreement with the experimental data for the ratio A

q

/A depending on the frequency f (see
Fig. 7.11(a)). As for the phase di↵erence  between the leading edge and the trailing edge,
the theoretical model gives qualitatively the good evolution with the forcing frequency but
predicts slightly larger values of  than the one measured experimentally (see Fig. 7.11(b)).
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Figure 7.11: (a) Ratio of the trailing edge amplitude to the leading edge amplitude A
q

/A and
(b) phase di↵erence  between the trailing edge and the leading edge, as a function of the
forcing frequency f given by the theoretical model (black line) together with experimental
data (blue dots). The plate has a length L = 8.5 cm, width b = 5 cm, thickness e = 1 mm
and is forced at the amplitude A = 13 mm.

Injecting the computed value of A
q

in Eq. (7.12), we can now compare the theoretical
prediction for the propulsive force F and the experimental data. Taking F = �f2A2

q

with
� a new fitting parameter, we find a good agreement between the theoretical model and the
experimental data until the resonant frequency f

1

' 6 Hz with � = 1.6 (see Fig. 7.12). After
the resonance the higher beam modes start to play a role, which can explain the discrepancy
between our model and the experimental data.
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Figure 7.12: Propulsive force F as a function of the forcing frequency f given by the
theoretical model (black line) and obtained experimentally (blue dots). The plate has a
length L = 8.5 cm, width b = 5 cm, thickness e = 1 mm and is forced at the amplitude
A = 13 mm.

Eq. (7.15) indicates that in order to maximise the force at the resonance F
1

, one should have
the largest Young’s modulus E, thickness e and width b, and the smallest length L. This is
in favor of monofins and rigid fins. As the force at the resonance scales as F

1

⇠ ⇢b2A2f2

1

,
then to have the highest propulsive force, the width of the fin and the forcing amplitude
should be as large as possible. Also the parameters of the fin should be adjusted so that
the resonant frequency of the fin is as close as possible to the forcing frequency. The
conclusions made from this simple scaling analysis must be taken carefully as they are
only valid in the regime of small deformations of the fin. They remain however coherent

112



7.6. Appendix: Relation between speed and propulsive force

7

with previous studies [113, 118, 120]. This work aimed at maximising the propulsive force.
However, maximising fin e�ciency is often more realistic [113], especially if combined with
physiological considerations (such as Hill’s relation [130, 131]).

7.6 Appendix: Relation between speed and propulsive force

For the plate of length L = 8.5 cm, width b = 5 cm and thickness e = 1 mm, we measured,
on the one hand, the propulsive force at zero velocity F for di↵erent forcing amplitudes
and frequencies and, on the other hand, the horizontal fin velocity U for the same set of
forcing parameters. Fig. 7.13 shows that the propulsive force F and the speed U are related
through a power law of the form : F ⇠ U2. Writing that the propulsive force F is balanced
by a resistive force ⇠ 1/2⇢bLC

d

U2, one gets: C
d

' 0.24. This fairly large value indicates
that the resistive force is a sum of skin drag and pressure drag.
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Figure 7.13: Propulsive force F as a function of the resulting fin velocity U in logarithmic
scale. The black line is a fit of the experimental data : F = 0.52U2.
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Take home message of Chapter 7

1. To model fin-swimming, we consider simple rectangular flexible plates forced to
oscillate vertically at the leading edge. The resulting deformation of the plate leads
to a propulsion in the horizontal plane. The e↵ects of the forcing parameters and
the dimensions of the fin on its propulsion are characterised.

2. A theoretical model with a scaling analysis are then derived to account for the
experimental results, especially the deformation of the fin (see Fig. 7.14) and its
propulsive force.

Figure 7.14: Superposition of the positions of the fin at di↵erent instants obtained
from the theoretical model at the first resonant frequency of the fin.

3. These experimental and theoretical results provide a simple way of estimating
the dimensions of a rectangular flexible plate leading to the highest propulsive force
for a given forcing. The crucial parameter in the design of optimal rectangular fins
appears to be the resonant frequency.
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Conclusion and future research

In this thesis, we firstly studied the question of the optimisation of ship hulls with a simple
theoretical and experimental approach and secondly the question of propulsion in rowing
and swimming with fins.

The optimisation of ship hulls is a fairly old subject. However, given the di�culty
to properly model the wave drag, the infiniteness of the search space and the number of
constraints, it is an extremely complex problem, which still has unanswered questions. Here,
we focused on the minimisation of the total drag on the hull at fixed power and immersed
volume, by that avoiding all the other constraints, such as stability or manoeuvrability,
which are more or less important depending on the boat category.

In Chap. 3, we looked at the simpler problem of the optimal aspect ratios for ship hulls.
Considering a simplified geometry, we use a minimal theoretical approach to account for the
di↵erent drag components. On the one hand, the components of pressure drag and wave
drag decrease with increasing aspect ratios, indicating that slender hulls are better. On the
other hand, the component of skin drag is minimal for rather small aspect ratios and thus
favours bulky hulls. As a result, a compromise is needed and was found to depend on the
imposed power. For small imposed power, corresponding to small Froude number, the wave
drag is negligible and the optimisation with only skin drag and pressure drag leads to rather
bulky hulls. For high propulsive power, corresponding to Fr � 0.5, the wave drag is also
negligible and the optimal hulls are again rather bulky. Whereas, for intermediate power,
that is for Fr around 0.5, the wave drag is important and the optimisation leads to rather
slender hulls. Interestingly, these observations are in agreement with the data found for
existing hulls. In particular, rowing boats, which typically operate around Fr = 0.5, have
the highest length-to-width aspect ratios, close to the predicted optimum. Discrepancies
with our results for other boat categories probably come from the importance of other
constraints in their design such as stability. For future work, our optimisation framework
could be adapted with more complex and realistic hull shapes to give more accurate results.
Furthermore, the stability constraint could be added to the optimisation procedure.

In Chap. 4, we then studied the e↵ect of the bow-stern asymmetry of ship hulls. We observed
that rowing boats are almost perfectly symmetric, while sprint canoes and sprint kayaks are
slightly asymmetric. This work was also motivated by the idea that, at the bow, hulls
should be pointed to minimise the wave drag and, at the stern, they should also be pointed
to avoid separation of the boundary layer. Yet, as the physical mechanisms at the bow
and at the stern are di↵erent, the optimal hull shape is not necessarily symmetric. From
a theoretical point of view, the current models for the wave drag are not able to account
for the asymmetry as they predict the same value for the wave drag for an asymmetric
boat moving forward or backward, which is obviously not the case. We conducted both
experiments and numerical simulations. We found that asymmetry can indeed decrease the
total drag and that the optimal hull should be more pointed at the front than at the rear.
Future work is needed on the numerical simulations to match with the experiments and
confirm these first results. Also studying further the pressure distribution along the hull
(see Appendix B) could be another step in the direction of building a theoretical model of
wave drag that can include asymmetry.

This work on optimal shapes at the water surface can be extended in two main directions.
Firstly, it is of great interest to consider the e↵ect of the unsteady motion of the boat on the
total drag and especially on the wave drag. Indeed, as discussed in Sect. 2.2, in rowing races,
the boat does not move at constant speed but with quite large fluctuations of speed. The
same observation also holds for sprint canoes. Havelock considered the case of a cylinder
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immersed in water near the free-surface and impulsively started from rest [132]. He found
theoretically that the wave drag coe�cient C

w

reaches its steady value with oscillations of
decreasing amplitude (see Fig. 7.15). The instantaneous wave drag coe�cient on an object
moving with velocity fluctuations is then expected to oscillate, which in turn increases the
time-averaged wave drag, as found in [68] and [69]. The optimisation of hull shapes in this
context is obviously of interest for the design of increasingly fast racing shells. Following
the study in Chap. 4, it is also likely that the optimal asymmetry would be di↵erent for a
motion at constant speed and for an unsteady motion.

C

w

X/⁄

Figure 7.15: Wave drag coe�cient C
w

as a function of the dimensionless travelled distance
X/� (where � is the wave length), for a cylinder close to the water surface started impulsively
from rest. The dashed line indicates the value of the wave drag coe�cient in the steady
regime. Adapted from [132].

Secondly, the two questions of optimal aspect-ratios and optimal asymmetry can be extended
to the capillary-gravity regime, so as to better understand animal locomotion at the air-
water interface. Indeed, animals moving at the water surface either aim at maximising
drag forces between their appendages and the water surface to propel themselves or aim at
reducing their total drag. In this regime, wave resistance, which is due to the generation of
capillary-gravity waves, plays an important role [46, 133].

(a) (b)

Figure 7.16: Pictures of two whirligig beetles found in South Asia: (a) the Porrorhynchus
landaisi, and (b) the Porrorhynchus marginatus (reprinted from [134]).

Let us quickly mention whirligig beetles, which are water beetles known for swimming
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rapidly in circles at the water surface [133, 135]. Within this family, the shape of these insects
can be very di↵erent. Some of them, like the Porrorhynchus landaisi (see Fig. 7.16(a)),
have an elliptical shape when seen from above, while others, such as the Porrorhynchus
marginatus (see Fig. 7.16(b)), are very asymmetric [134]. From the top-view pictures of
these two whirligig beetles, we obtain similar length-to-width aspect ratios (↵ = `/w ' 2)
but very di↵erent values for the asymmetry parameter ✏ defined in Eq. (4.1) (see Table 7.1).
In particular, the shape of the Porrorhynchus marginatus with its pointed front and its rather
bulky rear with small spikes seems to be dictated by drag minimisation. Experiments and
numerical simulations could be used to address the question of optimal asymmetry in the
capillary-gravity regime and determine if the shapes of whirligig beetles are optimal in this
regard.

Name ↵ ✏

Porrorhynchus landaisi 1.8 -0.036
Porrorhynchus marginatus 2 -0.097

Table 7.1: Values of the asymmetry parameter ✏ for the two whirligig beetles shown in
Fig. 7.16.

The propulsion in rowing and fin-swimming was considered in a second part.

In Chap. 5, we looked at the e↵ect of the number of rowers on the mean speed of a rowing
boat. McMahon suggested a model based on the assumption of geometric similarity of the
rowing shells [62]. It predicts that the mean boat velocity slowly increases with the number
of rowers following a power law of power 1/9. This model compares well with the world
record speeds in di↵erent rowing categories and is fairly robust, as when we relaxed two
main assumptions of the model, the power law was still valid. A limitation of the model for
a large number of rowers was also presented.

In Chap. 6, we then considered the question of the synchronisation between rowers. Syn-
chronisation is at the origin of velocity fluctuations, which increase the total drag force
compared to a motion at constant speed. However, with a robotic rowing boat at the scale
1/10, we showed that, even though the fluctuations of speed are reduced when desynchro-
nising the rowers, the mean speed remains higher in the synchronised configuration. This
experimental result was validated with a simplified theoretical model of rowing and we iden-
tified two main reasons for this at-first surprising result: the rower’s motion on the boat
and the blade e�ciency.

The rowing propulsion and the notion of blade e�ciency is further discussed in Appendix A.
For future work, the mechanism of rowing propulsion could be studied more precisely by
characterising the di↵erent drag components acting on the blade: inertial drag, lift and
added mass. The di�culty of this task comes firstly from the water surface since the added
mass at the water surface would surely be di↵erent from the one far from the free-surface; and
secondly from the complex dynamics of the blade motion in water due to the simultaneous
motion of the boat.

Finally, we studied the propulsion in fin-swimming, which is also an unsteady mode of
propulsion in water. An experimental set-up consisting of simple rectangular flexible plates
forced to oscillate vertically was used as a model of fin-swimming. Varying the forcing
frequency, we found that the resonant frequency of the system expresses the balance between
a distributed added mass force and a restoring bending moment. Measuring the propulsive
force for di↵erent forcing amplitudes and frequencies and for di↵erent geometries of the plate,
we were able to derive the scaling for the propulsive force at the resonance. A theoretical
model was derived to account for the experimental results, in particular the deformation
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of the fin and its propulsive force. For future work, the propulsion of other geometries of
fins could be considered such as triangular shapes to model swimming with a monofin and
flapping flight or streamlined shapes to study luna-tail propulsion.
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A
Optimisation of oars

In each rowing sport, the oars have their very own characteristics most of the time selected
through a long time experience. Here we address experimentally and theoretically the problem
of rowing e�ciency in rowing sports as function of row lengths and blade sizes. In contrast
with previous studies which consider imposed kinematics, we set an imposed force framework
which is closer to physiological constraints. We find that optimal row lengths depend on sport
and sportsmen strength.

Picture of Alexis Guerinot and Augustin Mouterde, winner crew of the lightweight coxless
pair category at the 2016 world championships in Rotterdam. Photo credits: Daniel Blin,
FFA.
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A

A.1 Position of the problem

Most sports require di↵erent equipment for di↵erent weight categories and genders. However
in rowing sports [83, 84], row characteristics are surprisingly quite constant in each discipline
regardless of athletes strength and gender. In sculling, the row size ranges from 287 to 291
cm [43, 136]. For sweep boats, the row size reads 371 to 376 cm [43, 136]. Through rowing
history, the tendency was to reduce row lengths (by almost 25% since 1850, see Fig. A.1(a)
and (b)). This evolution is also related to an increase in the blade area and the shift to
asymmetric blades.

¸

o

¸

i

Years

1850

1960
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¸

i

¸

o

(a)

(b)

Figure A.1: (a) Picture of three di↵erent sweep oars (taken from [137]). The first oar dates
back to 1850, the second one to 1960, and the last one to 1992. (b) Historical evolution
of the row aspect ratio ⌘ = `

o

/`
i

for sculling oars in black and sweep oars in red. Note
that the inboard length `

i

remained quite constant through time such that ⌘ can be seen as
the dimensionless row length. The oldest data points were obtained from race photographs,
while the more recent ones come from [138] or were provided by the French athlete Thomas
Baroukh.

During the propulsive stroke, typical force profiles exerted by the blade on the water were
measured by Valery Klesnev [50]. The maximal force exerted at the handle is found around
700 N. More interestingly, as described by the coaches, a good rowing stroke corresponds to
a force profile as constant as possible. The whole study is conducted in this limit. Volker
Nolte [138] performed an empirical study of the e↵ects of row length on a dataset of rowing
races. He reported that “shorter oars are more e↵ective”. However, Laschowski et al. [139]
studied experimentally the e↵ect of oar-shaft sti↵ness and length with elite athletes. They
showed that changes in sti↵ness and length of the oar led to small di↵erences in the measured
boat acceleration but these di↵erences remained of the same order of magnitude as inter-
stroke fluctuations. Caplan et al. [65], Leroyer et al. [140], and Hémon [141] took interest
in the e↵ects of row blade shapes by comparing real oars and highlighted the complexity of
addressing such a problem. A number of authors [56, 142, 143, 144, 145, 146, 147] addressed
the problem of rowing e�ciency and optimal rowing movement from the biomechanical
perspective. In particular, Kleshnev et al. [50, 148] performed an intensive experimental
study on propulsive e�ciency varying oar travel, handle force, stroke rate and many other
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A

parameters. Here we present a minimal and self-consistent analysis of the e↵ects of row
length and blade size on rowing performance, with a particular focus on rowing boat (fixed
rowlock). We first decouple the physics from its physiological counterpart. In contrast with
the majority of fluid-structure interaction studies (see for instance Chap. 6), we address the
problem with imposed force instead of imposed kinematics. We propose a simple theoretical
model that is compared to experiments made on a homemade rowing robot.

A.2 Experimental study

In order to understand the e↵ect of the ratio ⌘ = `
o

/`
i

on the boat speed under the assump-
tion of constant force, we designed and manufactured a robot rowing boat with imposed
propulsive force (see Fig. A.2(a)). Using a homemade wooden mold based on a real rowing
shell [107] at the scale 1/10 (the same as in Sect. 6.2), we built a glass fiber rowing boat with
4 robot rowers with one oar each. Constant force during the propulsive phase was ensured
through a pulley-mass system. Each row was linked to a pulley centered at its rowlock. A
suspended mass m = 80 g was connected to the pulley through a string (see Fig. A.2(b)) by
that setting the row in motion at constant force F

r

= mg (if we neglect frictional losses in
all connections). The angular travel of the row was fixed to ✓

0

= 90 degrees. The recovery
phase and the blade flips were ensured by two servomotors and position sensors connected
to an ArduinoTM board. Four polystyrene floats were added to ensure stability.

(a)

(b)
boat

row and pulley
mass and sting

inclinable row � lock
M

V
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w
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Figure A.2: (a) Picture of the 2 m long model rowing boat with 4 robot rowers at constant
force. (b) Sketch of the mechanism of one robot rower. The row and pulley (red) rotate
with respect to the rowlock (blue), itself in rotation with respect to the hull (black) to
ensure lifting/dropping of the row between the propulsive and recovery phases. A suspended
mass/string system (gray) ensures row motion at constant force during the propulsive phase.
The recovery phase and the blade flips were ensured by two servomotors and position sensors
connected to an ArduinoTM board (not shown for clarity).

The experiments were performed at the Ecole polytechnique swimming pool. Setting the
recovery phase time to a constant value T (r) = 1.3 s, we filmed the model boat rowing over
a 25 m distance for four di↵erent row lengths, with corresponding aspect ratios spanning
from ⌘ = 5 to ⌘ = 8. As one can see in Fig. A.3(a), when starting from rest, the speed of
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the hull increases for about 8 seconds (corresponding to about three strokes) until reaching
a “steady” regime where the average speed is constant. The time of the propulsive stroke in
the “steady” regime, denoted T1

(p), was recorded for each stroke using the position sensors
mentioned above and averaged for each race. The experiments show that, when increasing
the ratio ⌘, the average hull velocity hUi decreases (black dots in Fig. A.3(b)), coherent
with an increase in the propulsive stroke duration T1

(p) (see Fig. A.3(c)). This observation
agrees quite well with the historical evolution of the ratio ⌘ for real oars, as ⌘ decreased
over the years with boats going faster and faster.
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Figure A.3: (a) Instantaneous velocity of the hull starting from rest as a function of time
for ⌘ = 7. The mean velocity hUi reached after about three strokes is indicated with an
horizontal dashed line. The time of the power stroke is denoted T1

(p). (b) Mean boat
velocity hUi as a function of the row aspect ratio ⌘. (c) Propulsive stroke duration T1

(p)

as function of the ratio ⌘. The red line in (b) and (c) is the prediction from the numerical
model (see Sect. A.3).

A.3 Theoretical model

To account for these experimental results, we derive a simple theoretical model of rowing,
similar to the one in Sect. 6.4, but here with imposed force instead of imposed kinematics.

A.3.1 Single oar dynamics

Following the same steps as in Sect. 6.4, the total force exerted on a blade is written (see
Eq. (6.13)):

F
w/bl

= �1

2
⇢S

bl

C
D

|v
bl/w

|v
bl/w

� ⇢VC
a

dv
bl/w

dt
. (A.1)

where v
bl/w

is the velocity of the blade with respect to the water, S
bl

= `
b

w
b

is the surface
of the blade, C

D

and C
a

are the drag and added mass coe�cients, and V = ⇡w
b

`2
b

/4 is the
volume of the cylinder of diameter `

b

and height w
b

. The force F
w/bl

exerted by the water
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on the blade must match that of the rower F
r

through a torque conservation relation at the
rowlock (assuming the oar tubes to be rigid and of negligible mass). That is:

1

2
⇢S

bl

C
D

|v
bl/w

|v
bl/w

+ ⇢VC
a

dv
bl/w

dt
= �1

⌘
F
r

. (A.2)

Eq. (A.2) can be solved numerically for any force profile F
r

(t), such that one can determine
the exact blade velocity v

bl/w

. To go one step further, we can work out the stroke duration

T (p). The travel of the oar handle (held by the rower hands) is given by ⇤ = ✓
0

`
i

where ⇤
is the stroke length and ✓

0

' 90 degrees. The stroke duration T (p) then solves:

Z
T

(p)

0

v
r/h

dt = ⇤ , (A.3)

where v
r/h

is the velocity of the rower’s hands.

In the following we choose to work on a simple and analytically solvable case by assuming a
constant imposed force. Although previous studies show evidence of slightly time-dependent
force profiles [142, 143], we here wish to extract the general physics and scaling arguments
of rowing mechanics with minimal ingredients, for which a constant force seems appropriate.
Furthermore this hypothesis is in contrast with most fluid-structure interaction studies where
imposed kinematics seems to be the golden rule. This point of view is actually quite natural
from a physiological point of view.

A.3.2 Ship propulsion at constant force

The additional equation needed to close the problem results from the force balance on the
hull. This is F

w/h

= NF
r

/⌘, with N the number of blades. We here assume that the
drag force on the hull is dominated by skin friction (see Sect. 2.5) and we do not take into
account the motion of the rowers on the boat, contrary to the model in Sect. 6.4. According
to Newton’s second law, one obtains in this limit:

M
dU

dt
+

1

2
⇢S

h

C
h

|U |U =
NF

r

⌘
, (A.4)

where M is the mass of the boat, U the velocity of the hull with respect to water, S
h

the wetted surface of the hull and C
h

its skin drag coe�cient. To non-dimensionalise the
problem, we introduce the velocity scale U

c

=
p

2NF
c

/(⇢S
h

C
h

) and the time scale ⌧
c

=
M
p

2/(⇢NF
c

S
h

C
h

), with F
c

a characteristic force and we write U = ŨU
c

, t = t̃⌧
c

and
F = F̃F

c

. The natural characteristic length of the problem is L
c

= U
c

⌧
c

. The dimensionless
equation governing the boat velocity then reads:

dŨ

dt̃
+ |Ũ |Ũ =

1

⌘
F̃
r

. (A.5)

With this set of characteristic parameters, the dimensionless equation governing the dynam-
ics of the oar (Eq. (A.2)) is written:

�|ṽ
bl/w

|ṽ
bl/w

+ �
dṽ

bl/w

dt̃
= �1

⌘
F̃
r

, (A.6)

where � = NS
bl

C
D

/(S
h

C
h

) denotes the ratio between the blades’ pressure drag and the
hull skin drag and � = N⇢VC

a

/M is the ratio between the blades’ added mass and the
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boat mass. In the following, we consider self-similar blades (ratio w
b

/`
b

constant), so that
� ⇠ �3/2, by that reducing the number of dimensionless parameters.

Each rowing cycle k is made of two phases: (i) the propulsive phase at constant force with
duration T

k

(p) for which we set F̃
r

= 1 in Eq. (A.5) and (ii) the recovery phase with duration
T
k

(r) for which F̃
r

= 0. The overall cycle period reads T
k

= T
k

(p) + T
k

(r). We restrict to a
constant and prescribed duration for the recovery phase T

k

(r) = T (r). Eq. (A.5) and Eq. (A.6)
can be solved analytically for each rowing cycle k with the power stroke duration T

k

(p) of
the kth propulsive phase satisfying:

Z
t

k

+T

(p)
k

t

k

v
bl/h

dt =

Z
t

k

+T

(p)
k

t

k

�
v
bl/w

� U
�
dt = �↵⇤ . (A.7)

After a transient regime, a “steady” regime is reached: the average hull velocity over one
cycle and the stroke duration converge towards constant values, respectively denoted hUi
and T1

(p), as observed experimentally (see Fig. A.3(a)).

A.3.3 Propulsive e�ciency

We define the anchoring A of the blade, as the ratio of the distance travelled by the hull
during the propulsive phase ⇤

h

(⌘) and the travel of the blade in the reference frame of the
boat ⌘⇤:

A =
⇤
h

⌘⇤
, with ⇤

h

(⌘) =

Z
T

(p)
1

0

Udt . (A.8)

The anchoring can be seen as the blade e�ciency. Indeed, if A = 1, the blade does not move
with respect to the water and all the rower’s energy is transferred to the boat. In contrast,
if A = 0 the boat does not move and the blades slip in the water.

Interestingly the anchoring has an energetic interpretation. The propulsive energy provided
by the rower E

r

= ⇤F
r

is dissipated by both the hull E
h

= ⇤
h

F
r

/⌘ and the blades E
bl

, such
that E

r

= E
h

+ E
bl

. Equation (A.8) yields:

A =
E

h

E
r

, (A.9)

that is: the anchoring A 2 [0, 1] quantifies the e�ciency of the energy transfer between the
rower and the boat [50, 148]. For A ! 0 all of the rower’s energy is dissipated by the blade
with almost no propulsion of the boat, while for A ! 1 the rower’s energy is e�ciently
transferred to the boat (in this case ⇤

h

(⌘) ⇡ ⌘⇤ as if the blade was planted in a solid
medium).

A.4 Discussion

Our theoretical model is first tested with the parameters of our robotic rowing boat. The
predictions of the model for the mean hull velocity and the stroke duration in the “steady”
regime are compared to the experimental results in Fig. A.3(b) and (c). In particular, as
in the experiments, the mean hull velocity is found to decrease with increasing row aspect
ratios ⌘, which is in favour of shorter oars [138]. The small discrepancies can be the results of
two di↵erent e↵ects. First, our model does not account for the dynamic inclination of F

bl/w

126



A.4. Discussion

A

with respect to the direction of motion of the boat, by that overestimating the propulsive
force. Second, our robotic rowing boat su↵ered from an abrupt slow down at the end of
the propulsive phase (see Fig. A.3(a)) due to both (i) the rows hitting the mechanical stop
before being lifted out of the water, and (ii) the deceleration of the masses increasing the
drag on the hull.
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Figure A.4: (a) Mean boat velocity as function of the oar aspect ratio ⌘. (b) Propulsive
stroke duration as function of ⌘. (c) Anchoring (or equivalently energy transfer e�ciency,
see Eq. (A.8)) as function of ⌘. The blue curves were obtained numerically for � between
90 and 120. Empirical data for a coxless four rowing boat are indicated with a black dot.

Now, let us focus on the case of a coxless four rowing boat. We consider that each rower
deploys a force F

r

= 700N [50]. The mean boat velocity, the stroke duration and the
anchoring computed from our model in this specific case are presented in Fig. A.4. For
real sweeping oars, ↵ ' 2.2 and � ' 100. The real mean velocity (Fig. A.4(a)) is smaller
than the theoretical one. This is related to the assumptions of our model: in particular
we did not take into account the motion of the rowers on the boat and the drag on the
hull might be underestimated. As one can see in Fig. A.4(c), the estimated anchoring for
a coxless four rowing boat [148] compares well with the theoretical anchoring predictions:
A is close to 80%. The stroke duration is also o↵ compared to the theory (Fig. A.4(b)).
Physiology imposes a limit to our model: the mechanical optima identified here are not
always attainable by the athletes [130, 131, 149]. In particular, the rowers are not able to
hold the pace and row at too high frequencies (or equivalently too small stroke durations).
A given rower should thus choose the smallest possible rows corresponding to the minimal
stroke duration he is able to achieve while deploying a maximal force.

Eventually, other physiological and practical aspects can be important when it comes to the
choice of the row length. With smaller rows, the rower would have to raise more the hands
during the recovery stroke. The techniques for the catch (or blade entry in water) and the
release (blade going out of water) would also need to be changed to adapt to the new oars.
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B
Pressure distribution along a

hull

In this chapter, we study experimentally and numerically the pressure distribution along the
surface of a hull. In particular, we aim at characterising the e↵ect of both the free-surface
and the asymmetry of the hull on this distribution. With the experiments, we were not able
to measure precisely enough the pressure along a given hull in water. The numerical results
show interesting tendencies for the pressure distributions depending on the Froude number
and the asymmetry.

Hull with a NACA profile towed at the water surface.

Contents

B.1 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.2 Theoretical study . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

This work has been done with Vedant Kumar, Louis Richard, Nguyen Thanh-Vinh (Uni-
versity of Tokyo, Japan).
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B.1 Experimental study

The point of this study is to measure the pressure distribution along a hull experimentally
to see how it depends on the direction of motion of the hull (see Chap. 4). The pressure
distribution past an airfoil profile is first measured in air and is then measured in water near
the air-water interface.

B.1.1 Pressure distribution past an airfoil in air

The pressure at the surface of a symmetric NACA airfoil profile is measured in a wind
tunnel. For this purpose, small holes were made at a given cross-section of the hull (see the
picture of the airfoil in Fig. B.1(a)). Their position along the airfoil profile is made clearer
in Fig. B.1(b). These holes are connected through tubes to pressure sensors.

(a) (b)

x̃

ỹ

Figure B.1: (a) Picture of the model airfoil with which the pressure distribution is measured.
Small holes were made along the airfoil profile at a given height and can be seen on the
picture. They are connected with tubes to pressure sensors. (b) Schematics of the airfoil
with the position of the 12 points of measurements (dots on the airfoil profile).

We performed the measurements for three di↵erent flow velocities U 2 {11.7, 14, 16.2} m/s
and the presented results are averaged over five measurements. In Fig. B.2, the pressure
coe�cient c

p

= (p�p1)/(⇢U2), where p1 is the pressure at infinity (see Sect. 1.5), is plotted
as a function of the coordinate x̃ along the hull for three di↵erent Reynolds numbers and
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Figure B.2: Pressure coe�cient c
p

as a function of the position x̃ along the airfoil for three
di↵erent Reynolds numbers for (a) ✏ > 0 and for (b) ✏ < 0 (see Fig. 4.4 and Eq. (4.1)). In
both cases, the position x̃ = �0.5 corresponds to the leading edge of the airfoil.
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two cases. One first notices that the pressure distributions c
p

(x̃), either for ✏ > 0 or ✏ < 0,
do not depend much on the Reynolds number (the range of Reynolds number being however
quite small). Secondly, when one compares the results for ✏ > 0 and ✏ < 0, one can observe
that the pressure distribution is very di↵erent. In particular, the pressure coe�cient for
✏ < 0 plateaus for x̃ 2 [0, �0.5], which might be related to the formation of a recirculation
bubble in this region.

B.1.2 Pressure distribution past an airfoil near the air-water interface

This work was done at the University of Tokyo in the laboratory of Shimoyama under the
supervision of Nguyen Thanh-Vinh. Its aim is to measure the pressure distribution along
an airfoil profile near the water surface to observe the di↵erence with the case where the
airfoil is fully immersed in a fluid as measured experimentally in the previous section.

B.1.2.1 Description of the experimental set-up

The laboratory of Shimoyama at the University of Tokyo is specialised in developing micro-
sensors based on MEMS technology (Micro Electro Mechanical Systems). In particular,
they have designed sensors, made of micro cantilevers that can deform under small loads
and whose deformation can be measured through a change in the resistance of the cantilevers.
These sensors are used in particular for air pressure measurements.

The challenge here was to adapt these sensors to make measurements in water. This has
been done following the schematics in Fig. B.3.

Measurement principle

Side view through the hull

Inside the hull

Inside water

Sensor

P

w

v

Tape

Figure B.3: Schematics of the principle of the pressure measurements performed. A hole is
made through the hull. Tape is sticked on the external side of the hull in contact with water
and one of the sensors shown in Fig. B.4 is attached on the inner side. This set-up creates
a closed chamber in which the pressure changes due to changes in the water pressure P

w

through the deformation of the tape.

A series of holes were made in the hull at a given distance from the bottom of the hull.
They were covered with tape on the external side of the hull, which is in contact with
water, and the micro-sensors for air pressure measurements were sticked inside the hull at
the other end of the hole. We thus created a closed chamber in which the pressure changes
with the water pressure, through the deformation of the tape which reduces the volume of
the chamber. The first sensors that we tried are shown in Fig. B.4(a) and were the initial
sensors developed in the lab for air pressure measurements [150]. These sensors were very
sensitive but could only measure pressure changes and not the absolute pressure. This is
for this reason that we adapted the design of these sensors and created new sensors (see
Fig. B.4(b)) that have a cap filled with glycerol to prevent air leakage and thus measure the
absolute pressure inside the chamber.
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(a) (b)

Figure B.4: Pictures of (a) the first sensors used in this study and (b) the final sensors.

The shape of the hull used here is also a NACA airfoil profile. It was modeled in 3d using
a CAD software (see Fig. B.5(a)) and made using a 3d printer. The hull is equipped with
ten sensors (see Fig. B.5(b)), which are connected to a board and an amplification circuit.
The acquisition of the signal is made using a numerical oscilloscope. Fig. B.5(c) shows the
picture of the whole set-up with the 2m-long water tank and the towing system.

(a) (b) (c)

Figure B.5: (a) 3d model of the NACA hull used here. (b) Picture of the hull equipped with
10 sensors. (c) Picture of the whole set-up with the towing tank, the hull equipped with the
sensors and the acquisition devices.

B.1.2.2 Experimental results

The experiment was quite di�cult to conduct because of the fragility of the sensors. The
results shown in Fig. B.6 were obtained with one set of sensors. Experiments were carried out
for di↵erent immersions of the hull d/D (ranging from 0.17 to 0.43), for di↵erent velocities
(U 2 {0.6, 0.75} m/s) and the two directions of motion. Fig. B.6(a) and (b) show the
pressure coe�cient c

p

depending on the coordinate x̃ for di↵erent immersions d/D and the
two directions of motion. For both cases, in the first half of the plot (x̃ < 0), the pressure
coe�cient is higher for the smallest immersion d/D = 0.17. The pressure distributions in
both directions look similar but are quantitatively very di↵erent as emphasised in Fig. B.6(c),
where the pressure distribution for the two directions are plotted together for d/D = 0.17.
In Fig. B.6(d), the pressure distribution c

p

(x̃) for two di↵erent velocities, corresponding to
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Figure B.6: Pressure coe�cient c
p

depending on the coordinate x̃, (a) for the hull moving
with the rounded part first (✏ > 0) and for di↵erent immersions d/D ; (b) for the hull moving
in the other direction (✏ < 0) and for di↵erent immersions d/D ; (c) for the hull moving in
both directions for d/D = 0.17 ; and (d) for the hull moving with the rounded part first for
two di↵erent Froude numbers, for d/D = 0.17. In the same way as in Fig. B.2, the position
x̃ = �0.5 in each plot corresponds to the leading edge of the airfoil. For subplots (a) and
(b), the pressure distribution obtained for the airfoil profile in air is plotted for comparison.

Fr 2 {0.5, 0.6} look qualitatively similar. If we now compare these results with the one
obtained from the experiments in the wind tunnel (see previous section and Fig. B.6(a)
and (b)), the pressure distributions are very di↵erent. This might primarily be due to the
presence of the water surface and the creation of wave by the moving hull. However, we
must mention that the bad accuracy of the sensors can not be eliminated as a possible source
of errors in the data points.

B.2 Theoretical study

This work was done by Vedant Kumar (student from Indian Institute of Technology (BHU)
Varanasi, India). The idea here is to try to determine how the pressure along a given hull
can be predicted.

B.2.1 Pressure distribution from the numerical simulations

From the numerical simulations performed in Sect. 4.4, we also obtained the pressure distri-
bution along the di↵erent hulls and for the di↵erent sets of parameters. Fig. B.7(a) shows
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the pressure distribution c
p

(x̃) at a fixed depth (`z̃/D = �0.36) for the symmetric hull and
d/D = 0.75, for three di↵erent Froude numbers.
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Figure B.7: (a) Pressure coe�cient c
p

obtained numerically as a function of the coordinate
x̃ for the symmetric hull (hull 1), for three di↵erent values of the Froude number, for
d/D = 0.75 and at the depth `z̃/D = �0.36. (b) Pressure coe�cient c

p

obtained numerically
as a function of the coordinate x̃ for three di↵erent values of the asymmetry parameter ✏,
for Fr = 0.3, d/D = 0.75 and at the depth `z̃/D = �0.36.

It can be noticed that the curves for Fr = 0.2 and Fr = 0.3 oscillate around a mean curve
close to the curve for Fr = 0.1. These oscillations, particularly visible for Fr = 0.2 are the
signatures of the waves created by the moving hull. Indeed, the wavelength of the waves
produced by the hull depends on the Froude number as given in Eq. (1.19). If we denote
the dimensionless wavelength �̃ = �/`, one has: �̃ = 2⇡Fr2. Then, for Fr 2 {0.1, 0.2, 0.3},
�̃ 2 {0.06, 0.25, 0.565}. The second local maximum in the pressure distribution for Fr = 0.2
is situated around x̃ = �0.25 in fairly good agreement with the value of the dimensionless
wavelength �̃ = 0.25.
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Figure B.8: Image plot of the pressure coe�cient c
p

as a function of the coordinates x̃ and
`z̃/D for the symmetric hull (hull 1) and for (a) Fr = 0.1, (b) Fr = 0.2 and (c) Fr = 0.3, for
d/D = 0.75.

These signatures of the waves can also be seen in Fig. B.8, where the pressure coe�cient
is represented as a function of the two coordinates x̃ and `z̃/D. On these image plots, one
clearly see the wave created at the bow with the appearance of a positive pressure coe�cient
above the initial level of water near x̃ = �0.5. In Fig. B.7(b), the pressure coe�cient c

p

(x̃)
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is represented for three di↵erent values of the asymmetry parameter ✏. The curve for ✏ = 0
is situated in between the two curves for ✏ = 0.04 and ✏ = �0.04 and the amplitude of the
curve is maximum for ✏ = 0.04, which coincides with the idea that asymmetric hulls with
✏ > 0 ( moving with the bulky part first) create more waves than symmetric hulls or the
asymmetric hulls with ✏ < 0 (moving with the pointed part first).

B.2.2 Fit with Fourier series

The pressure distributions along the di↵erent hulls c
p

(x̃) at a given depth z̃ are fitted with
Fourier series, that is with the function:

y = b
0

+
NX

n=1

b
n

sin [n⇡(x̃ + 0.5)] , (B.1)

with N = 8. The resulting coe�cients b
n

of the fitting of the pressure distributions shown
in Fig. B.7 with Fourier series are plotted in Fig. B.9.
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Figure B.9: Coe�cients b
n

of the fit of the pressure distributions in Fig. B.7 (a) for the
symmetric hull (hull 1) and three di↵erent Froude numbers and (b) for Fr = 0.3 and three
di↵erent values of the asymmetry parameter ✏. For both plots, the immersion is d/D = 0.75
and the pressure distribution is taken at the depth `z̃/D = �0.36.
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Figure B.10: Evolution of the absolute value of the coe�cients (a) b
1

and (b) b
3

with the
asymmetry parameter ✏ for three di↵erent Froude numbers. The immersion is d/D = 0.75
and the pressure distribution is taken at the depth `z̃/D = �0.36.

In Fig. B.9(a), the coe�cients for three di↵erent Froude numbers are compared. The coe�-
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Appendix B. Pressure distribution along a hull

B

cients b
n

are quite close together whatever the Froude number Fr. In Fig. B.9(b), the e↵ect
of the asymmetry is made quite clear: the coe�cients seem to be increasing functions of the
asymmetry parameter ✏. In both plots, b

1

is the coe�cient with the largest magnitude and
the other coe�cients decay as n increases. It can also be mentioned that the coe�cients
corresponding to even frequencies are close to zero.

Since b
1

and b
3

are considerably larger than the higher frequency coe�cients, we plot their
variation with the asymmetry parameter in Fig. B.10. These plots show that b

1

is indeed an
increasing function of ✏ on the available range, while b

3

has a minimum around ✏ = �0.04.

Another possibility could be to perturb the pressure distribution of a given hull fully im-
mersed in a fluid with a function that accounts for the presence of the free-surface and the
formation of waves. The pressure coe�cient c

p

(Fr = 0.1) is expected to be close to the
pressure coe�cient when the hull is fully immersed in a fluid. Fig. B.11 thus presents the
subtracted pressure coe�cient c

p

� c
p

(Fr = 0.1) as a function of the coordinate x̃ for the
symmetric hull at a given depth for Fr = 0.2 and Fr = 0.3. Periodic oscillations of decreasing
amplitude along the ship hull are clearly visible on this figure and their wavelengths is close
to the wavelength of the waves created by the hull at the surface: �/` ' 0.25 for Fr = 0.2
and �/` ' 0.56 for Fr = 0.3 (see Eq. 1.19). As a result, the function to be used to perturb
the pressure distribution for the fully immersed hull should be an oscillatory function of
wavelength 2⇡Fr2 and decreasing amplitude.
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Figure B.11: Subtracted pressure coe�cient c
p

�c
p

(Fr = 0.1) as a function of the coordinate
x̃ for the symmetric hull (hull 1), for Fr = 0.2 and Fr = 0.3, for d/D = 0.75 and at the
depth `z̃/D = �0.36.
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The articles published during my thesis can be found below. The first one is about the
optimal aspect ratios of ship hulls and corresponds to Chap. 3. It was published in the
journal Physical Review Fluids in July 2018. The second one deals with the original subject
of the popsicle-stick cobra wave, which I worked on at the beginning of my thesis. It was
published in the journal Physical Review Letters in August 2017. Finally, the short article
about our experimental study of synchronisation in rowing (see Chap. 6), published in the
journal Physics Today in June 2017, is reprinted here with its Japanese version (reproduced
with the permission of the American Institute of Physics).
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Thin or bulky: optimal aspect ratios for ship hulls

Jean-Philippe Boucher1, Romain Labbé1, Christophe Clanet1 and Michael Benzaquen1⇤

1LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau Cedex, France
(Dated: June 22, 2018)

Empirical data reveals a broad variety of hull shapes among the di↵erent ship categories. We
present a minimal theoretical approach to address the problem of ship hull optimisation. We show
that optimal hull aspect ratios result – at given load and propulsive power – from a subtle balance
between wave drag, pressure drag and skin friction. Slender hulls are more favourable in terms of
wave drag and pressure drag, while bulky hulls have a smaller wetted surface for a given immersed
volume, by that reducing skin friction. We confront our theoretical results to real data and discuss
discrepancies in the light of hull designer constraints, such as stability or manoeuvrability.

PACS numbers: 47.85.lb, 47.35.Bb, 45.10.Db

I. INTRODUCTION

The long-lived subject of ship hull design is with
no doubt one of infinite complexity. Constraints may
significantly vary from one ship class to another. When
designing a sailing boat (see Fig. 1(a)), stability and
manoeuvrability are of paramount importance [1–4].
Liners and warships must be able to carry a maximal
charge and resist rough sea conditions. Ferrys and
cruising ships (see Fig. 1(b)) must be sea-kindly such
that passengers don’t get sea-sick. All ship hulls share
however one crucial constraint: they must su↵er the
weakest drag possible in order to minimise the required
energy to propel themselves, or similarly maximise their
velocity for a given propulsive power. Of particular
interest is the case of rowing boats (see Fig. 1(c))
[5, 6], sprint canoes and sprint kayaks as they do not
really have other constraints than the latter. Indeed
manoeuvrability is not relevant as they usually only
have to go along straight lines, stability is at its edge
and they only need to carry the athletes, usually on very
calm waters.

In Fig. 2, the length to width aspect ratio (`/w) of
di↵erent kinds of bodies moving at the water surface
is plotted against their Froude number (see Table I for
details). The Froude number is defined as Fr = U/

p
g`

with U the hull velocity, g the acceleration of gravity
and ` the length of the hull (see Fig. 1(c)). As one can
see, di↵erent ship categories tend to gather into clusters.
These groups display very di↵erent aspect ratios, from
2-3 to about 30, even in the same Froude number regime.
The highest aspect ratios are reached for rowing boats
(`/w ⇡ 30, Fr ⇡ 0.5). The majority of ships stand on the
left hand side of the plot (Fr . 0.7). For Fr & 0.7, most
hulls can no longer be considered as displacement hulls
(weight balanced by buoyancy) but rather as planing
hulls (weight balanced by hydrodynamic lift) and thus

⇤
Corresponding author: michael.benzaquen@polytechnique.edu

have a much smaller immersed volume [4]. Here we
wonder how all these shapes compare to the optimal
aspect ratios in terms of drag.

For a fully immersed body moving at large Reynolds
numbers, the drag (also called profile drag) is the
sum of two contributions [2, 4, 7]: (i) the skin-friction
drag, which comes from the frictional forces exerted
by the fluid along the surface of the body (dominant
for a streamlined body, such as a plate parallel to the
flow), and (ii) the pressure drag, which results from
the separation of the flow and the creation of vortices
(dominant for a blu↵ body such as a sphere) [7]. One
additional force arises when moving at the air-water
interface: the wave resistance or wave drag [8–10]. This
force results from the generation of surface waves which

(a) (c)

w
`

(b)

FIG. 1: Pictures of (a) a 44-footer sailing boat: length-to-
width aspect ratio 3 and typical Froude number 0.6, (b) the
Queen Mary 2 liner: length-to-width aspect ratio 8.4 and typ-
ical Froude number 0.26, and (c) a coxless quadruple scull
rowing boat: length to width aspect ratio 31 and typical
Froude number 0.54. See Table I for details and characteris-
tics of other boats.
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FIG. 2: Length to width aspect ratio `/w as a function of
Froude number U/

p
g` for di↵erent kinds of bodies moving

at the water surface (see Table I for details). Solid symbols
represent displacement hulls, whereas open symbols indicate
planing hulls. The aspect ratio for multihulls is computed for
each hull independently. The black line corresponds to the
optimal aspect ratio, see Sect. III. Solid lines indicate global
optima, while dashed lines signify local optima.

continuously remove energy to infinity. Thereby it is
interesting to notice that many animals have air or
water as a natural habitat but only a few (e.g. ducks,
muskrats or sea otters) actually spend most of their time
at the water surface [11, 12].

As one can expect, a number of technological advances
have been developed over the years, such as bulbous
bows intended to reduce wave drag through destructive
interference [3, 13, 14]. There exists an extended litera-
ture of numerical and experimental studies dedicated to
the optimisation of ship hulls. Quite surprisingly some
of them only consider wave drag in the optimisation
setup (see e.g. [15–17]). Others consider both the skin
drag and the wave drag [14, 18, 19]. Very few consider
the pressure drag [20] as most studies address slender
streamlined bodies for which the boundary layer does
not separate, leading to a negligible pressure drag. The
complexity of addressing analytically this optimisation
problem comes from the infiniteness of the search
space. Indeed without any geometrical constraints, the
functions defining the hull geometry can be anything,
and computing the corresponding drag can become an
impossible task.

Here we present a minimal approach to address the
question of optimal hull aspect ratios in presence of skin
drag, pressure drag and wave drag. Let us stress that
we do not claim for our results to be quantitative but
rather present qualitative ideas and general trends on the
very complex matter of ship hull optimisation. We first
consider a model hull shape with a minimum number of

parameters and derive the expression of the total drag
coe�cient. Then we perform the shape optimisation at
given propulsive power and load. Finally we confront our
results to the empirical data and discuss concordances
and discrepancies.

II. WAVE AND PROFILE DRAG

In order to account in a minimal way for the wide va-
riety of hull shapes, we restrict to two-dimensional hulls
(namely hulls with a constant horizontal cross-section,
see Fig. 3). Following the generic parametrisation of hull
shapes with respect to the central plane [8, 21–23], we
let y = f(x)1

z2[�d,0]

the compact support hull bound-
ary. We define the length `, width w and draft d and
introduce the dimensionless coordinates through x = x̃`,
y = ỹ` and z = z̃` as well as f(x) = f̃(x̃)w [36]. We
further define the aspect ratios ↵ = `/w and � = `/d.

There exist two main theoretical models to estimate
the wave resistance, both assuming that the fluid is in-
compressible, inviscid, irrotational and infinitely deep.
Havelock suggested to replace the moving body by a mov-
ing pressure disturbance [9, 10]. This first model allows
to compute the far-field wave pattern as well as the wave
resistance [17, 24, 25] but is too simple to account for
the exact shape of the hull and especially to study the
e↵ect of the draft. The second model was developed by
Michell for slender bodies [8, 21, 26]: the linearised po-
tential flow problem with a distribution of sources on the
centerplane of the hull is solved to get the expression of
the wave resistance. The advantage of the latter is that
it gives a very practical formula in the sense that it only
takes as inputs the parametric shape of the hull and its
velocity, with no need of inferring the corresponding pres-
sure distribution. Using Michell’s approach, we compute
the wave drag R

w

= ⇢⌦2/3U2C
w

where ⇢ is the water
density and ⌦ = `wd [37]. The wave drag coe�cient C

w

writes (see Appendix A):

C
w

(Fr,↵,�) =
4�2/3

⇡↵4/3Fr4
G

˜

f

(Fr,�) , (1)

x

y
z

w

d `

f(x)

FIG. 3: Schematics of the simplified hull geometry considered
in this study. The hull of length `, width w and draft d has
a constant horizontal cross-section, which is defined by y =
f(x)1

z2[�d,0]. Note that only the part of the hull immersed
in the water is represented.
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where we have defined:

G
˜

f

(Fr,�) =

Z
+1

1

|I
˜

f

(�, Fr,�)|2
p
�2 � 1

d�

I
˜

f

(�, Fr,�) =
⇣
1 � e��

2
/(�Fr

2
)

⌘ Z 1
2

� 1
2

f̃(x̃)ei�x̃/Fr

2

dx̃ .(2)

To compute the wave-drag we consider a Gaussian hull
profile:

f̃(x̃) =
1

2
exp[�(4x̃)2] . (3)

This particular kind of profile allows to analytically com-
pute the wave resistance coe�cient. The choice of this
profile in comparison with more realistic profiles has no
qualitative impact on our main results (see Appendix A).

The profile drag R
p

is the sum of the skin drag R
s

which scales with the wetted surface, and the pressure
drag (or form drag) R

f

which scales with the main cross-
section. Given the typical Reynolds numbers for ships
(ranging from 107 to 109), both the skin and pressure
contributions scale with U2 and the profile drag can be
written as R

p

= R
s

+ R
f

= ⇢⌦2/3U2C
p

with (see Ap-
pendix B):

C
p

(↵,�) =
C

d

(↵)�2/3

↵1/3


a

˜

f

+
↵

�
b

˜

f

(↵)

�
, (4)

where C
d

(↵) is the profile drag coe�cient of the hull, and
where:

a
˜

f

=
R 1

2

� 1
2

f̃(x̃) dx̃ (5a)

b
˜

f

(↵) =
R 1

2

� 1
2
[1 + f̃ 0(x̃)2/↵2]1/2 dx̃ . (5b)

The evolution of the profile drag coe�cient C
d

with
↵ was empirically derived for streamlined bodies [7]:
C

d

(↵) = C
f

(1 + 2/↵ + 60/↵4) with C
f

the skin drag
coe�cient for a plate. The term (1 + 2/↵) refers to
the skin friction, while the term 60/↵4 corresponds
to the pressure drag [38]. In the considered regimes,
the skin drag coe�cient is only weakly dependent on
the Reynolds number [7] (see Appendix B). We thus
consider here a constant skin drag coe�cient C

f

= 0.002,
corresponding to a Reynolds number Re ' 108.

The total drag force on the hull reads R = R
w

+ R
p

=
⇢⌦2/3U2C where C(↵,�, Fr) =

�2/3

↵4/3

(
4

⇡Fr4
G

˜

f

(Fr,�) + C
d

(↵)↵


a

˜

f

+
↵

�
b

˜

f

(↵)

�)
. (6)

Within the present framework and choice of dimension-
less parameters, the total drag coe�cient is thus com-
pletely determined by the three dimensionless variables
↵, � and Fr, together with the function f̃ . Let us stress
that this expression of the total drag coe�cient is only
expected to be accurate for slender hulls, as required in
Michell’s model [21, 26, 27].

III. OPTIMAL HULLS

We now seek the optimal hull shapes, that is the
choice of parameters that minimises the total drag for
a given load (equivalently immersed volume through
Archimedes principle) and given propulsive power –
consistent with operational conditions. Before engaging
in any calculations, let us stress that the optimal
aspect ratios will naturally result from a subtle bal-
ance between skin drag, pressure drag and wave drag.
Indeed, on the one hand reducing skin drag amounts
to minimising the wetted surface which corresponds
to rather bulky hulls [39], while on the other hand
reducing wave drag or pressure drag pushes towards
rather slender hulls. Figure 4 displays the contour
plots of C

p

and C
w

as function of (↵,�) [40]. One
notices that for su�ciently large ↵ and � the gradi-
ents rC

p

and rC
w

roughly point in opposite directions.

To close the problem we define the imposed propulsive
power P = RU . Using U = Fr[↵�⌦g3]1/6 one obtains:

Fr3
p
↵�C(↵,�, Fr) = ⇧ , (7)

where C(↵,�, Fr) is given by Eq. (6), and where we have
defined the rescaled and dimensionless power:

⇧ =
P

⇢g3/2⌦7/6

. (8)

Minimising the total drag coe�cient C as given by
Eq. (6) with respect to ↵, � and Fr, under the constraint
given by setting the dimensionless power ⇧ in Eq. (7),
yields the optimal set of parameters (↵?, �?, Fr?) for
the optimal hull geometry at given load (equivalently ⌦)
and given propulsive power P.

This optimisation is performed numerically using
an interior-point algorithm [28, 29]. The optimal
parameters and the resulting total drag coe�cient

↵

�

C
p

↵

� rC
w

(b)(a)

rC
p

C
w

FIG. 4: Contour plots of (a) the wave drag coe�cient Cw and
(b) the profile drag coe�cient Cp as a function of the aspect
ratios ↵ and �. For the wave drag coe�cient, we set Fr = 0.5.
In both plots, black regions correspond to Cp/w � 10�2 and
arrows indicate the direction of the gradient.
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C? = C(↵?,�?, Fr?) as function of dimensionless power
⇧, are presented in Fig. 5, together with the empirical
data points for comparison. Interestingly the optimi-
sation yields two separate solutions (see orange and
green branches) corresponding to two local optima. For
⇧  ⇧

c

(resp. ⇧ � ⇧
c

) with ⇧
c

⇡ 0.2, the orange (resp.
green) branch constitutes the global optimum, consistent
with a lower total drag coe�cient C? (see Fig. 5(d)).
As one can see on Figs. 5(a) and (b) the optimal aspect
ratios ↵? and �? show very similar evolutions with ⇧.
On the one hand, both of them are maximal around
⇧

max

⇡ 0.03 corresponding to Fr
max

⇡ 0.4, that is the
maximum wave drag regime (see Fig. 6 in Appendix A).
This is consistent with the idea that thin and shallow
hulls are favourable in terms of wave drag as illustrated
in Fig. 4(a). On the other hand, for ⇧ ⌧ ⇧

max

or
⇧ � ⇧

max

the wave drag becomes negligible compared
to the profile drag, and one recovers the optimal aspect
ratios in the absence of wave drag: ↵? ' 7 and �? ' 10.
Figure 5(c) shows that the optimal Froude number Fr?

increases with ⇧. Like for ↵? and �?, there is a shift
of value from Fr? ⇡ 0.8 to Fr? ⇡ 1.7, for ⇧ = ⇧

c

,
which indicates that in this setting 0.8 < Fr < 1.7 is
never a suitable choice. This shift is also made visible
in Fig. 2 where the optimal aspect ratio ↵? is plotted
against the Froude number. These results obviously
depend on the Reynolds number but only weakly.
Let us stress that, while for the optimal geometries
(↵?, �?) the profile drag is always the dominant force
regardless of the Froude number, our study shows that
it is crucial to consider the wave drag in the optimisation.

IV. DISCUSSION

Our work provides a self-consistent framework to
understand and discuss the design of existing boats.
Figure 5 confronts the real data with the calculated
optimal geometries. As one can see, while some ship
categories are found in a rather good agreement with
the theoretical predictions (such as liners and warships),
others are very far from the computed optima (such as
monohull sailing boats). Discrepancies with empirical
data might primarily come from other constraints on the
design of the boat which can prevail on the minimisation
of the drag, such as stability, manoeuvrability, resistance
to rough seas or seakindliness as mentioned in the intro-
duction. They could also come from the assumptions of
our model. In particular, a steady motion is considered
here, while for rowing boats and sprint canoes, high
fluctuations of speed are encountered (about 20% of the
mean velocity) and are expected to a↵ect the total drag,
notably through added mass.

The data for rowing boats, canoes and kayaks are
found in good agreement with the optimal Froude
number Fr?(⇧). For rowing shells, while the aspect
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and green represent the two optimal branches. Solid/dashed
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ratios ↵ are found quite close to the optimal value, the
aspect ratios � lie well above the optimal curve. This
indicates that rowing shells could be shorter or have a
larger draft. This discrepancy might be related to the
need for su�cient spacing between rowers (long shells)
and/or for stability (small draft). For sprint canoes and
kayaks, the competition rules from the International
Canoe Federation [30] impose maximal lengths for the
boats [41] which could explain their relatively low aspect
ratio ↵ compared to the optimal one. As for their aspect
ratio �, contrary to rowing boats, it is found in good
agreement with the optimal results.

For the monohull sailing boats, the significant di↵er-
ence between real data and the computed optima surely
comes from the need for stability (see Appendix C). The
stability of a boat mostly depends on the position of its
center of gravity (which should be as low as possible)
with respect to the position of the metacentre [2, 4]
(which should in turn be as high as possible). Imposing
that the metacenter be above the center of gravity
yields a simple criterion for static stability [42]. This
is w/d should be larger than a certain value depending
on mass distribution and e↵ective density of the hull,
which constitutes an additional constraint that could be
easily taken into account in the optimisation problem.
In the simple geometry considered here and assuming
a homogeneous body of density ⇢

s

the latter criterion
writes: w/d = �/↵ >  (⇢

s

/⇢) where  (u) ⇡ 3
p

1/u � 1
with u 2 [0, 1]. For real boats, the critical value of w/d
is highly a↵ected by the presence of a keel, intended to
lower the position of the center of gravity. In short, sta-
bility favours wide and shallow ships. This explains why
most real data points lie below the optimal curve ↵?(⇧)
in Fig. 5(a) but above the curve �?(⇧) in Fig. 5(b).
Stability is all the more important for sailing boats
where the action of the wind on the sail contributes
with a significant destabilising torque. Interestingly, this
matter is overcome for multihull sailing boats, in which
both stability and optimal aspect ratios can be achieved
by setting the appropriate e↵ective beam, namely the

distance between hulls [31]. This allows higher hull
aspect ratios, closer to the optimal curves in Fig. 5.

As displayed in Fig. 5(c), we predict a shift in the
Froude number for ⇧ ⇡ 0.2 which indicates that boats
should not operate in the range of Froude numbers
Fr 2 [0.8, 1.7]. However, when the Froude number is
above Fr ⇡ 0.7, the hulls start riding their own bow wave:
they are planing. Their weight is then mostly balanced
by hydrodynamic lift rather than static buoyancy [4, 7].
As planing is highly dependent on the hull geometry
and would require to consider tilted hulls, we do not
expect our model to hold in this regime. Some changes
though allow to understand the basic principles. Planing
drastically reduces the immersed volume of the hull
which in turn reduces both the wave drag and the profile
drag. The e↵ect on the immersed volume can be taken
into account by adding the hydrodynamic lift in the
momentum balance along the vertical direction (see [43]).

Our study provides the guidelines of a general method
for hull-shape optimisation. It does not aim at presenting
quantitative results on optimal aspect ratios, in partic-
ular due to the simplified geometry we consider and the
limitations of Michell’s theory for the wave drag estima-
tion [21, 26, 27]. Our method can be applied in a more
quantitative way for each class of boat by considering
more realistic hull geometries. Future work should be de-
voted to applying this method to the category of rowing
boats, sprint canoes and sprint kayaks as these particular
boats mostly require to experience the least drag, with
no or little concern on stability and other constraints.
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Appendix

A. Wave drag coe�cient

Here we derive the wave drag coe�cient and discuss
its behaviour for parabolic and Gaussian hull shapes.
According to [8, 21], the wave drag in Michell’s theory
writes:

R
w

(f) =
4⇢U2

⇡`4Fr4

Z
+1

1

|I
f

(�, Fr)|2p
�2 � 1

d� , (9)

where:

I
f

(�, Fr) =
�2

Fr2

Z
0

�d

dz

Z `
2

� `
2

f(x)e�
2
z/(`Fr

2
)ei�x/(`Fr

2
) dx .

(10)
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C
w

FIG. 6: Wave-drag coe�cient Cw as function of the Froude
number Fr for a Gaussian hull and a parabolic hull for ↵ = 6.7
and � = 2.3. These results are compared to the theoreti-
cal curve from Tuck [32] and experimental data points from
Chapman (black crosses) [33].

Taking ⌦1/3 = (`wd)1/3 as a characteristic length, we
define the wave drag coe�cient through the equation
R

w

= ⇢⌦2/3U2C
w

. Then using the dimensionless co-
ordinates x̃, ỹ, z̃ and the dimensionless parameters Fr,
↵, �, and integrating over z̃, we obtain the expression of
the wave drag coe�cient C

w

given in Eqs. (1)-(2) with
I

˜

f

= I
f

/(`2w) = I
f

/(⌦�). The wave-drag coe�cient
compares quite well with previous numerical and experi-
mental works [32, 33] as shown in Fig. 6. This plot shows
that the wave drag coe�cient has the same qualitative
evolution with the Froude number for a Gaussian hull
and a parabolic hull. The main di↵erences between the
two are the presence of humps and hollows at low Froude
number for the parabolic profile and a slight translation
of the peak of wave resistance. For a Gaussian hull, one
can approximate analytically the integrals in Eq. (10) by
integrating x over R. One obtains (see Eq. (2)):

G
gauss

(Fr,�) =
⇡

64
J

✓
1

32Fr4

◆
� ⇡

32
J

✓
1

32Fr4
+

1

�Fr2

◆

+
⇡

64
J

✓
1

32Fr4
+

2

�Fr2

◆
, (11)

where:

J(u) =

Z
+1

1

e�u�

2

p
�2 � 1

d� =
1

2
e�u/2K

0

(u/2) , (12)

with K
0

(u) the modified Bessel function of the second
kind of order zero [34].

B. Profile drag coe�cient

Here we discuss the derivation of the profile drag co-
e�cient. The profile drag is commonly written R

p

=
(1/2)⇢SC

d

U2 where S is the wetted surface and C
d

the profile drag coe�cient of the hull. Here, the wet-
ted surface can be decomposed in two contributions

S = S
b

+ Ld where S
b

= 2w`
R

1/2

�1/2

f̃(x̃) dx̃ is the sur-
face of the bottom horizontal cross section of the hull
and L = 2`

R
1/2

�1/2

[1 + f̃ 0(x̃)2/↵2]1/2 dx̃ is the perimeter
of the hull. This leads to the expression of the coe�cient
C

p

given in Eq. (4). As mentioned in the main text, C
d

depends on the geometry through an empirical relation
C

d

(↵) = C
f

(1 + 2/↵+ 60/↵4) where the skin drag coe�-
cient C

f

weakly depends on the Reynolds number [7]. In
the turbulent regime (Re > 5.105) one has the empirical
law C

f

(Re) ' 0.075/(log(Re) � 2)2 [35].

C. Static stability criterion

Here we explicit the derivation of the stability crite-
rion for the model hull presented in Fig. 3. Consider
a homogenous body of density ⇢

s

< ⇢ standing at the
air-water interface (see Fig. 7). We define the center
of gravity G, the center of buoyancy B, and the meta-
center M [2, 4] as the point of intersection of the line
passing through B and G and the vertical line through
the new centre of buoyancy B0 created when the body
is displaced (see Fig. 7(b)). As mentioned in the main
text, the stability criterion reads GM > 0, or equivalently
BM > BG. On the one hand, the so-called metacentric
height BM can be computed for small inclination angles
through the longitudinal moment of inertia of the body

I = (8c
˜

f

)w3`/12 with c
˜

f

=
R

1/2

�1/2

[f̃(x̃)]3 dx̃ and the im-
mersed volume ⌦

i

= 2a
˜

f

⌦ as:

BM =
I
⌦

i

=
c

˜

f

3a
˜

f

w2

d
. (13)

On the other hand, one has BG = (h � d)/2 where h
is the total height of the hull. We then use the static
equilibrium ⇢

s

⌦
tot

= ⇢⌦
i

, where ⌦
tot

= 2a
˜

f

w`h is the
total volume of the body, to eliminate h. This finally

x

y
z

w

d `

f(x)

h
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FIG. 7: Cross-section of the model hull (see Fig. 3) in (a)
vertical position and (b) slightly inclined position.
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yields the criterion w/d >  (⇢
s

/⇢) with:

 (u) =

s
3a

˜

f

2c
˜

f

✓
1

u
� 1

◆
, u 2 [0, 1] (14)

where  is a decreasing function of u. For neutrally buoy-
ant bodies,  (1) = 0, all configurations are stable as B
and G coincide. While for bodies floating well above
the level of water, lim

u!0

 (u) = +1, wide and shal-
low hulls are required to ensure stability. In the specific
model case of Fig. 3, one has a

˜

f

⇡ 0.33, c
˜

f

⇡ 0.057 and

thus  (u) ⇡ 3
p

1/u � 1. Taking this stability criterion
into account in the optimisation procedure would reduce
the search space and thus constraint the optimum curves
to �/↵ >  (⇢

s

/⇢).
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D. Empirical data

Category Boat Name
Length

` (m)

Width

w (m)

Draft (*)

d (m)

Mass

M (kg)

Speed

U (m/s)

Power (*)

P (kW)

Liner Titanic 269.0 28.00 10.50 52300000 11.70 33833.0
Liner Queen Mary 2 345.0 41.00 8.10 76000000 14.90 115473.0
Liner Seawise Giant 458.0 68.90 31.20 650000000 6.60 37300.0
Liner Emma Maersk 373.0 56.00 15.80 218000000 13.40 88000.0
Liner Abeille Bourbon 80.0 16.50 3.70 3200000 9.95 16000.0
Liner France 300.0 33.70 8.50 57000000 15.80 117680.0
Warship Charles de Gaulle 261.5 31.50 7.80 42500000 13.80 61046.0
Warship Yamato 263.0 36.90 11.40 73000000 13.80 110325.0
Rowing boat Single Scull 8.1 0.28 0.07 104 5.08 0.4
Rowing boat Double Scull 10.0 0.34 0.09 207 5.56 0.8
Rowing boat Coxless Pair 10.0 0.34 0.09 207 5.43 0.8
Rowing boat Quadruple Scull 12.8 0.41 0.12 412 6.02 1.6
Rowing boat Coxless Four 12.7 0.42 0.12 412 5.92 1.6
Rowing boat Coxed Eight 17.7 0.56 0.13 820 6.26 3.2
Canoe C1 5.2 0.34 0.09 104 4.45 0.4
Canoe C2 6.5 0.42 0.11 200 4.80 0.8
Canoe C4 8.9 0.50 0.13 390 5.24 1.6
Kayak K1 5.2 0.42 0.07 102 4.95 0.4
Kayak K2 6.5 0.42 0.11 198 5.35 0.8
Kayak K4 11.0 0.42 0.13 390 6.00 1.6
Sailing boat Monohull Finn (p) 4.5 1.51 0.12 240 4.10 4.0
Sailing boat Monohull 505 (p) 5.0 1.88 0.15 300 7.60 18.9
Sailing boat Monohull Laser (p) 4.2 1.39 0.10 130 4.10 2.7
Sailing boat Monohull Dragon 8.9 1.96 0.50 1000 7.60 16.5
Sailing boat Monohull Star 6.9 1.74 0.35 671 7.60 18.5
Sailing boat Monohull IMOCA 60 (p) 18.0 5.46 0.50 9000 15.30 843.4
Sailing boat Monohull 18ft Ski↵ (p) 8.9 2.00 0.24 420 12.70 85.2
Sailing boat Monohull 49er (p) 4.9 1.93 0.20 275 7.60 25.9
Sailing boat Multihull Nacra 450 (p) 4.6 0.25 0.12 330 9.20 20.7
Sailing boat Multihull Hobie Cat 16 (p) 5.0 0.30 0.12 330 7.60 20.1
Sailing boat Multihull Macif 30.0 2.50 0.50 14000 20.40 1218.3
Sailing boat Multihull Banque populaire V 40.0 2.50 0.50 14000 23.00 1701.1
Sailing boat Multihull Groupama 3 31.5 2.40 0.50 19000 18.50 1407.3
Sailboard Mistral One Design (p) 3.7 0.63 0.05 85 10.20 6.9
Sailboard RS:X (p) 2.9 0.93 0.05 85 11.70 10.2
Motorboat Zodiac (p) 4.7 2.00 0.11 700 17.80 180.0
Animal Swan 0.5 0.40 0.08 10 0.76 N.A.
Animal Duck 0.3 0.20 0.13 5 0.66 N.A.
Animal Human 1.8 0.60 0.13 90 2.00 0.3

TABLE I: Characteristics of bodies moving at the water surface. The planing hulls are indicated with (p) in the column Boat
Name. N.A. stands for Not Available. (*) For all hulls (including planing hulls for which this estimation might be too rough),
the draft is estimated using the mass of the boat and the relation M/⇢ ' 2a

f̃

`wd (with a

f̃

= 0.33). The power is estimated
through diverse methods depending on the category of the boat. For liners and warships, the propulsive power can easily be
found in the specification documents. For rowing boats, canoes and kayaks, we consider that the power per oarsman is 400 W.
For sailing boats and sailboards, we use the sail area of the boat to derive its propulsive power (with a typical wind of 10 m/s).
Note that for multihull sailing boats, the indicated dimensions correspond to one of the hulls.
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The cobra wave is a popular physical phenomenon arising from the explosion of a metastable grillage
made of popsicle sticks. The sticks are expelled from the mesh by releasing the elastic energy stored during
the weaving of the structure. Here we analyze both experimentally and theoretically the propagation of the
wave front depending on the properties of the sticks and the pattern of the mesh. We show that its velocity
and its shape are directly related to the recoil imparted to the structure by the expelled sticks. Finally, we
show that the cobra wave can only exist for a narrow range of parameters constrained by gravity and rupture
of the sticks.
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The physics of metastable states is a classical topic of
statistical physics [1,2]. A well-known route to relax
towards equilibrium is via a nonlinear front that propagates
with a constant speed, such as in viral spread [3,4],
biochemical reactions [5], or combustion [6,7]. In mechan-
ics, the domino race provides an example of such a process
for a nonconnected network [8,9]. For entangled structures,
the question of the optimization of the strength of grillages
has been addressed [10,11] especially because of its role in
construction [12], but their stability remains an open
question. The same type of question also arises in biologi-
cal systems, such as in the microtubule catastrophe [13,14].
Microtubules are assemblies of GDP tubulin arranged in a
tubular shape ending with a cap of GTP tubulin. The loss of
this cap triggers a rapid depolymerization driven by the
release of the stored mechanical strain [15–17]. Here we
study a macroscopic version of such a system, namely, the
so-called “popsicle-stick cobra wave” [18], obtained by
releasing a mesh of sticks woven according to Fig. 1(b).
To generate a cobra wave, the whole structure is loaded

by the geometrically constrained bending of the individual
sticks and is held together by the red and blue sticks at the
end of the mesh [see Fig. 1(b)]. When one of them is
removed, the structure unravels by expelling one by one the
freed sticks. Because of the asymmetry of the weaving and
the presence of the ground, two very different dynamics
occur depending on which stick was initially removed.
When the red stick is taken away first, the sticks are
expelled upwards and by reaction they pin down the rest of
the mesh to the ground (see movie Inverse-Cobra-Wave in
the Supplemental Material [19]). The outcome is dramati-
cally different when the blue stick is removed. In this case,
the sticks are expelled downwards and they raise the whole
structure as presented in Fig. 2(a) (see also the movie
Cobra-Wave provided in Ref. [19]). After a few hundreds
of ms, the shape of the wave reaches a steady state

[Fig. 2(b)], and propagates at a few meters per second.
Both the shape and the velocity remain the same until the
wave front reaches the end of the grillage [Fig. 2(c)]. In
this Letter, we combine experimental and theoretical
approaches to characterize the velocity and the shape of
the cobra wave in the steady state.
Since the lifting force raising the lattice originates from

the recoil imparted by the expelled sticks, the global
dynamics of the wave is set by the ejection rate γ and
the momentum transferred during the expulsionMv, where
M is the mass of a stick and v the velocity of a stick right
after expulsion. The time γ−1 taken by a stick to exit the
mesh is given by L=v, where L is the length of the stick
[Fig. 1(a)]. Taking E the Young’s modulus, w the width,
and e the thickness of individual sticks [Fig. 1(a)], v can be
estimated from the balance between the kinetic energyMv2

(a) (b)

(c)

FIG. 1. (a) Picture of a wooden stick with its characteristic
parameters: length L, width w, thickness e, massM, density ρ and
Young’s modulus E. (b) Schematics of the lattice with definition
of the angle θ of the lattice and the spatial period a of the pattern.
The blue and red sticks are the sticks that end the lattice. The
construction of the lattice starts with the blue stick, then the sticks
are added one after the other according to the numbering for the
first four sticks. (c) Schematic side view of a stick deformed
in the mesh.
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of a stick after ejection and the bending energy Eel ∼
Ewe5=L3 stored in each stick blocked by the lattice [this
expression is obtained by noting that the curvature of a stick
imposed by its neighbors is Γ ∼ e=L2, see Fig. 1(c)].
From the previous scaling analysis, we readily deduce

the velocity v0 of the wave front. Indeed, since the sticks are
expelled one by one, we have v0 ¼ aγ=2, where a is the
spatial period of the pattern [Fig. 1(b)]. Noting that, up to a
geometric factor depending on the angle θ, we have a ∝ L,
both v and v0 scale as

v ∼ v0 ¼ bðθÞ

ffiffiffiffi
E
ρ

s "
e
L

#
2

; ð1Þ

where ρ is the mass density of a stick and bðθÞ is a scaling
factor that depends on the geometry of the mesh. With c ¼ffiffiffiffiffiffiffiffi
E=ρ

p
the speed of sound in the material, we find that

v0 ∝ cðe=LÞ2. In Fig. 3, we confirm experimentally this
scaling for six kinds of wooden sticks (the values of the
mechanical and geometric parameters of the different stick
models are given in Ref. [19]) and we observe that indeed
v ∝ v0. As expected, the speed does not depend on the
width of the sticks and increases quadratically with the ratio
e=L. In Fig. 3(i), one can see that the speed of the cobra
decreases with the angle of the lattice θ. This trend can be
easily understood qualitatively by noting that the velocity
of the wave is proportional to the spatial periodicity
a ¼ L cos θ=3.
We now focus on the shape of the wave. The height of

the cobra can be understood quantitatively within a
generalized version of Euler’s elastica theory, where the
mesh profile results from a competition between elasticity,

gravity, and recoil imparted by the expelled sticks [20]. We
treat the mesh as a linear continuous medium characterized
by a flexion modulus K̄ [19] and we describe the expulsion
of the sticks by a force F0 and a torque C0 exerted at the
free end of the grillage. We further assume that the friction
between sticks prevents the deformation of the lattice,
allowing us to describe the mesh as an inextensible linear
medium described by a profile rðs; tÞ, where s is the
curvilinear abscissa (Fig. 4), the local force Fðs; tÞ and
torque Cðs; tÞ are given by

F ¼ −K̄∂3
sr; C ¼ K̄∂sr × ∂2

sr: ð2Þ

In the steady state, the shape of the cobra is constant
and moves at the velocity v0. We therefore have rðs; tÞ ¼
rðs0 ¼ s − v0tÞ and writing Newton’s law for an infinitesi-
mally small element of the mesh leads to the following
dynamical equation,

μv20∂2
s0r ¼ μg − K̄∂4

s0rþ ∂s0ðTτÞ þ R; ð3Þ

where μ ¼ 2M=a is the linear mass density of the cobra, T
the longitudinal tension, τ the tangent unit vector, and R the
ground reaction. We assume that the contact with the
ground occurs for s0 ≤ 0, so that zðs0 ≤ 0Þ ¼ 0 and
Rðs0 ≥ 0Þ ¼ 0, and smax is the total mesh length rising
above the ground. Projecting Eq. (3) on the tangent and
normal directions, these equations can be recast into a
closed equation for the curvature Γ ¼ j∂2

srj,

1

2

"
d3Γ2

dα3
þ dΓ2

dα

#
¼ μg

K̄

"
2 sin α
Γ

þ cos α
Γ2

dΓ
dα

#
; ð4Þ

(a)

(b) (c)

FIG. 2. Time-lapse photographs of the cobra wave obtained
with sticks of type 1 (see the Supplemental Material [19]) for
θ ¼ 45°, from videos taken at 1000 fps with a Photron-Fastcam
high-speed camera. The different colors represent the wave at
different instants. (a) At the beginning (Δt ¼ 100 ms between
two consecutive images); (b) during the stationary phase
(Δt ¼ 70 ms), with v0 ≃ 2.2 m=s the velocity of the wave front;
(c) at the end (Δt ¼ 70 ms). Scale bars are 10 cm long.

FIG. 3. Speed of the wave front v0 (solid dots) and speed of the
expelled sticks v (open dots) as a function of a characteristic
speed cðe=LÞ2 for θ ¼ 45° and six different kinds of sticks (see
the Supplemental Material [19]). The black line corresponds to
the fit v0 ¼ 3.95cðe=LÞ2 and the dashed line to the fit
v ¼ 5.46cðe=LÞ2. (i) Speed of the cobra wave v0 as a function
of the angle of the lattice θ for sticks of type 1.
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where α is the local angle between the mesh and the
horizontal axis.
This equation is of third order in α and thus requires three

boundary conditions to be solved. We obtain these con-
ditions by writing the stress at the free end αmax ¼ αðsmaxÞ
of the mesh, namely,

C0 ¼ K̄Γ; ð5Þ

F∥ ¼ T þ K̄Γ2; ð6Þ

F⊥ ¼ −
K
2

dΓ2

dα
; ð7Þ

where F∥ ¼ F0 · τ and F⊥ ¼ F0 · n and the right-hand
side terms are taken at α ¼ αmax. A fourth condition is
required by the fact that, contrary to the elastica problem
where the length of the beam is fixed, we must here
determine self-consistently the mesh length rising above
the ground. To close the system, we, therefore, impose the
usual mobile contact-point condition Γðα ¼ 0Þ ¼ 0 that
assumes that there is no adhesion energy between the mesh
and the ground [21].
On the one hand, the forces can be calculated from

the momentum transfer between the lattice and the
expelled sticks and we have F⊥ ¼ μv0v sinψ and F∥ ¼
μv0ðv0 − v cosψÞ.
On the other hand, the torque exerted at the free end of

the cobra can be neglected. Indeed, assuming that all the
elastic energy Eel is converted into rotational energy of the
sticks Erot ¼ 1

2 Iω
2 with I the moment of inertia of a stick

and ω its angular velocity, the angular momentum of an
expelled stick is L ¼ Iω ¼

ffiffiffiffiffiffiffiffiffiffiffi
2IEel

p
. Since the torque is

C¼ðdL=dtÞ∼γL, we get the upper bound Cmax∼γ
ffiffiffiffiffiffiffiffiffiffiffi
2IEel

p
.

In Eq. (6), the torque is compared to K̄Γ. Using Eq. (5), we
can eliminate Γ and we see that the relative importance of
the torque and the force is driven by the dimensionless
number

C2

K̄F
≃ γ2IðKe2=L3Þ

KγMv0
≃

"
e
L

#
2

≪ 1;

where K ∼ K̄ is the flexion modulus of a single stick [19]
and we have used the fact that v ∼ v0 ∼ γL and I ∼ML2.
We thus see that for thin sticks, the torque does not affect
much of the shape of the cobra.
Equation (4) can be solved numerically in the general

case using the shooting method and the height of the cobra
can be obtained from

H ¼
Z

αmax

0

sin α
ΓðαÞ

dα: ð8Þ

The analysis of Eqs. (4)–(9) shows that H follows the
general scaling

H ¼

ffiffiffiffiffiffiffiffiffiffi
K̄

μv0v

s

hψðΛÞ; with Λ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffi
K̄

μv30v
3

s

:

When gravity can be neglected, Eq. (4) can be solved
analytically and yields Γ ¼ Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðψ − αÞ − cosðψÞ

p
with

Γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μvv0=K̄

p
. We then obtain αmax ¼ 2ψ and the

dimensionless height can be expressed in terms of the
elliptic integrals E and K [22] with

hψð0Þ ¼ 2 sinðψÞf2E½sinðψ=2Þ& −K½sinðψ=2Þ&g: ð9Þ

For large values of Λ, gravity becomes dominant and the
cobra does not rise as high. In this regime, αmax → 0 and we
can therefore neglect the lower order derivatives in each
sides of Eq. (4) leading to the simplified expression

d3Γ2

dα3
¼ 2μg

K̄Γ2

dΓ
dα

: ð10Þ

This equation can be solved analytically leading to an
asymptotic behaviour hψ ≃ 2 sin4 ψ=3Λ3.
The asymptotic behaviors obtained in both the weak and

strong gravity regimes can be understood by a straight-
forward argument. We note first that Eqs. (7) and (8) lead to
the following scalings:

F⊥ ≃ K̄
Γ2
0

αmax
; H ≃ α2max

Γ0

: ð11Þ

We can then distinguish two regimes. For small g, the
height is saturated and αmax ≃ 1, hence, Γ0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F⊥=K̄

p
and

FIG. 4. Experimental cobra profile for sticks of type 2. The
steady profile (red dashed line) is described theoretically by a
parametric curve rðs0Þ, where s0 is the curvilinear abscissa. α is
the angle between the mesh and the horizontal axis, and ψ the
angle between the velocity of the expelled sticks and the tangent
vector in s0 ¼ smax. The scale bar is 10 cm long.
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H ≃ Γ−1
0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄=F⊥

p
. The scaling for H yields the con-

dition hψ ≃ 1 for weak gravity. Using Eq. (1), we can
express v0 and F⊥ with K, e, and L. We then obtain a
simple scaling for H ≃ L2=e, which does not depend any
more on the elasticity of the mesh. This purely geometric
scaling stems from the fact that, when gravity is negligible,
stick elasticity provides both the thrusting and restoring
forces responsible for the shape of the mesh.
For heavy sticks, the lattice is almost horizontal and the

value of αmax is set by the balance between F⊥ and the
weight. The length of the cobra being smax ≃ αmax=Γ0, we
have thus the additional condition

F⊥ ≃ μgαmax

Γ0

: ð12Þ

Combining Eqs. (11) and (12) yields the condition αmax ≃
Λ−2 and hψ ≃ 1=Λ3. The transition between the two
regimes occurs for Λ≃ 1.
We now compare the previous model to our measure-

ments. We measured the velocity v and the angle ψ at
which the sticks are expelled. We observe that for almost all
stick models, ψ varies between 50° and 70°. In Fig. 5, we
compare our measurements to the predicted value hψ¼60°

without any adjustable parameter (note in particular that the
effective flexion modulus of the mesh is measured inde-
pendently as described in Ref. [19]). Except in the weak-
gravity regime, we observe a relatively good agreement
between experiment and theory. We attribute the saturation
of the height of the cobra wave for small Λ to the strong
curvature of the mesh (in this regime the radius of curvature
is only a few times larger than stick length), leading to a
breakdown of the underlying assumptions of the theoretical

model. For instance, the validity of the continuum approxi-
mation for the description of the mesh, or the linear
approximation for the bending energy. Friction can also
play a larger role, and the strong deformation can weaken
the structure, preventing it from reaching its predicted
height.
Finally, we discuss the condition of existence of the

cobra wave. The first requirement is that the curvature
energy stored in a single stick (Eel ¼ 18Ewe5=L3) should
overcome the gravitational energy (Eg ¼ ρgweL2=2). This
leads to an upper bound for the length L of the sticks:

L < Lmax ¼
"
36Ee4

ρg

#
1=5

: ð13Þ

However, the length L of the sticks cannot be too small
because if so it becomes impossible to build the lattice: the
sticks either break or slide over each other destroying the
lattice. The breaking condition is derived from a simple
scaling law for the bending stress in a beam that sets
an upper limit for the curvature of a stick in the lattice
[Fig. 6(i)],

C ∼
e
d2

<
σ'

Ee
; ð14Þ

where the length d ¼ ðL − wÞ=3 is defined in Fig. 6(i) and
σ' is the bending stress at rupture of the material. We then
get a lower bound for the length L of the sticks

L > Lmin ∼ 3

ffiffiffiffiffi
E
σ'

r
eþ w: ð15Þ

FIG. 5. Dimensionless height hψ as a function of the dimen-
sionless numberΛ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄=ðμv30v3Þ

p
which compares gravity and

elasticity, for the six different kinds of sticks (see the Supple-
mental Material [19]). The solid line corresponds to the pre-
diction of Eqs. (4)–(9) for ψ ¼ 60°. The shaded band corresponds
to the observed 10° variations of the ejection angle. The red
dashed line represents the large Λ expansion hψ ≃ 2 sin4 ψ=3Λ3

for ψ ¼ 60°.

FIG. 6. Set of parameters (e,L) for which a cobra stick wave can
be observed (red region). This region is limited by two conditions
given in Eqs. (13) and (15): the limit set by gravity Lmax¼
ð36Ee4=ρgÞ1=5 and the breaking limit Lmin ¼ 1.5 × 3

ffiffiffiffiffiffiffiffiffiffiffi
E=σ'

p
e.

Solid blue dots: sets of parameters for which the cobra-stick wave
is observed. Open blue dots: sets of parameters for which the
cobra-stick wave could not be observed (the sticks are too small
and therefore break). (i) Schematics of the shape of a stick in the
lattice with the most probable breaking region.
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For wooden sticks, these two conditions set the boundaries
of the cobra-wave region of existence. The phase diagram
(e, L) is plotted in Fig. 6 with the region of existence of the
cobra stick wave in red, assuming the width w to be
negligible compared to the length L of the sticks.
In conclusion, we have shown that the shape of the

popsicle-stick cobra wave was the result of a competition
between the thrust provided by the expulsion of the
sticks and the elastic and gravitational restoring forces.
Depending on the relative importance of gravity, we
identified two asymptotic regimes. In particular, for neg-
ligible gravity, the cobra rises at a height which is solely set
by the weaving pattern and the dimensions of single sticks.
Finally, we showed that the Cobra wave can only exist in a
narrow region of the parameter space bounded by gravity
and rupture of the sticks.

This work was inspired by one of the problems of the
International Physicists’ Tournament (IPT). The authors
acknowledge fruitful discussions with Basile Audoly,
Daniel Suchet, and the Ecole normale supérieure and
École Polytechnique IPT teams.
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Supplementary materials

I. CHARACTERISTICS OF THE STICKS

We obtained the Young’s modulus E of our wooden
sticks through measurements of the load on a force sen-
sor for given deflections of the sticks and we found
E ' 15 GPa. The bending stress at rupture of the sticks
�⇤ ' 120 MPa was estimated experimentally through a
three-point flexural test.

Sticks L (mm) w (mm) e (mm) M (g)

1 150 18.0 1.6 2.64

2 114 14.3 1.5 1.45

3 150 9.0 1.6 1.30

4 114 7.0 1.5 0.70

5 113 9.0 2.0 1.23

6 150 17.0 1.5 2.45

7 56 7.0 1.5 0.25

8 93 9.0 2.0 1.02

TABLE I: Geometrical and mechanical properties of the
wooden sticks used in this study. Sticks 7 and 8 are sticks
for which the cobrastick wave was not observed.

II. ELASTIC MODULUS OF THE MESH

The elastic properties of the mesh are described by a
bending energy

E
el

=
K̄

2

Z
�(s)2 ds, (1)

where � is the local curvature of the mesh and K̄ the
e↵ective bending modulus. K̄ is determined experi-
mentally by measuring the load on a force sensor for
given deflections of the mesh. In Fig. 1, we plot the
measured value K̄ normalized by the bending modulus

of a single stick K = EI� (where I� = we3/12 is the
second moment of area) as a function of the weaving
angle ✓. For ✓ = ⇡/4, we find in particular K̄ ' 0.7K.
Assuming that the sticks are simply wrapped with
an angle ✓ on a cylinder of radius ��1, one obtains
K̄ = 3K cos(✓)3. This scaling is close to the fitted
behaviour K̄/K = k

0

cos(✓)3, with k
0

= 2.2. The
discrepancy with the expected value k

0

= 3 may come
from the torsion of the sticks in the mesh or from the
fact that even in the absence of macroscopic bending
of the mesh, individual sticks are already bent by the
weaving of the mesh.
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FIG. 1: Normalized bending modulus of the mesh K̄/K as a
function of the weaving angle ✓ obtained experimentally by
measuring the force on a load cell for imposed deflections of
the mesh. Solid line: fit of the data using the theoretical func-
tion K̄/K = k0 cos(✓)3 with k0 = 2.2, close to the expected
value k0 = 3 derived from a purely geometric argument.
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owing is a challenging sport, and not just for athletes.
It mixes physiology, mechanics, and fluid dynamics, so
from a physicist’s perspective, the sport is much more
complex than the elegant movement of a rowing shell
might suggest.

Many scientists have tried to work out the details of rowing
propulsion, o!en with a view to improving the performance
of rowing crews. For example, in a 1971 Science paper (volume
173, page 349), Thomas McMahon showed that the speed of
a racing boat scales as the number of rowers to the power 1/9.
In our research, we have taken a closer look at the boat speed
within one rowing cycle. In a single stroke, a propulsive phase
is followed by a gliding phase. As the figure shows, for racing
boats, the variation in speed during the stroke is typically
around 20% of the mean speed of 5 m/s or so. Such a variation
is a consequence of the synchronized rowing of the crew, a
technique that seems to be essential for success in top-level
rowing competitions. Consider, however, that for a boat mov-
ing through water, larger fluctuations about the boat’s average
speed imply increased friction on the hull. As a consequence,
the mean power dissipated due to fluid friction for speed vari-
ations typical of a racing boat is about 5% higher than it
would be if the boat could somehow be propelled steadily at
the same mean speed.

Desynchronizing the rowers can reduce speed variations.
Nature employs an out-of-sync propulsion strategy in, for ex-
ample, shrimp-like krill that swim with the so-called metachronal
movement of five pairs of legs that are activated in a desyn-
chronized way. Indeed, a 2010 study by Silas Alben and col-
leagues published in the Journal of the Royal Society Interface
(volume 7, page 1545) showed that the krill’s metachronal kine-
matics leads to the highest average body velocity for a given
amount of work. Some fishing spiders also display unsynchro-
nized swimming at the surface of water. Given that in rowing
competitions, 2 km races are o!en won by less than a boat
length, it’s worth considering the possible advantage of unsyn-
chronized rowing.

Row, rOw, roW your boat
Phase-shi!ed rowing had been tried as early as 1929, by the
London Rowing Club; you can see a video of the effort at
www.youtube.com/watch?v=zQ6fxsmo3V8. But the London
club’s exercise and others conducted in the UK during the early
1930s led to indecisive results. As one reporter for the Sydney
Morning Herald mused on 11 October 1933, the experiments

raised the question of “whether the trifling gain is worth the
loss of all the rhythm, apart from neutralising the genius of
strokeship.” At the 1981 and 1982 World Rowing Cham -
pionships, the Soviet women’s coxed four crew placed the
coxswain (the person who steers the boat) between the two
pairs so that they could row perfectly out of phase. However,
on race days the crew chose to row in synchrony. Despite the
full-scale trials and other studies, out-of-phase techniques never
have convincingly been shown to be more or less efficient than
conventional synchronized rowing.

To perform a systematic study of the influence of rower syn-
chronization on boat speed, we built a boat at 1/10 scale with
eight robotic rowers. A real racing boat with eight rowers,
known as a coxed eight, has a length of about 20 m and weighs
about 100 kg. Our 2-m-long model, shown in panel c of the
figure, has a fiberglass hull with the same shape as on a real
coxed eight. The mass ratio of robot rower to model boat is the
same as for human rowers and racing boats, and we designed
the mechanics of the robotic rowing to be as human as possible.
With the help of a device called an Arduino board, we were
able to control the stroke speed and synchronization of our
robot rowers.

Which strategy is best?
We measured the speed of our rowing boat at the swimming
pool of the École Polytechnique and explored how it changed
as we varied the phase difference ϕ between consecutive
rowers. Panel d of the figure shows the results for two of our
trials, which you can view in the supplemental videos avail-
able online. In the synchronous configuration, ϕ = 0°, the ve-
locity profile of our boat is similar to the one obtained from
videos of real rowing races (as in figure panel b). The speed in-
creases during the power stroke, from a black vertical line to
a red one in the figure plots, due to the propulsion given by
the oar blades. During the recovery stroke, from red line to
black line, the speed decreases, partly due to the hydro -
dynamic friction on the hull. The similarity of the velocity pro-
files proves that our model boat does a good job of imitating
real rowing boats.

At a pace of one stroke per second, our boat moves at a mean
speed close to 0.36 m/s, almost 0.2 boat length per rowing cycle.
By means of comparison, real race boats travel roughly 0.45
boat length per rowing cycle in competitions. As with real
boats, our model displayed large variations around its average
speed—approximately 12% of the mean.

QUICK STUDY

Row bots
Jean-Philippe Boucher, Romain Labbé, and Christophe Clanet

By dipping their oars into the water asynchronously, a rowing crew can reduce the friction on their
racing shell. Experiments with robots determine whether that trick increases the boat’s speed. 
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ROWING IN AND OUT OF SYNC. Great Britain holds a slim lead over Australia (a) halfway toward its victory in the men’s four  rowing final
at the London 2012 Olympics. (b) The velocity V of the British boat was determined from a video of the race. The black vertical lines in the
plot indicate the times at which the blades enter the water, and the red vertical lines indicate the times at which the blades are lifted out.
The mean speed of the boat V‾, about 5.3 m/s, fluctuates by about 20%, as indicated by ΔV. (c) Robots row a 2-m-long boat at the École
Polytechnique swimming pool. (d) The robots were able to row synchronously (ϕ = 0°) or asynchronously; in the out-of-sync trial plotted,
each robot is 45° out of phase with its neighbor. As we expected, relative fluctuations were reduced for asynchronous rowing, but we were
surprised to learn that the mean speed (indicated by dashed lines) was also reduced. 

For phase-shi!ed rowers, we show ϕ = 45° in the figure
panel and supplemental video. The bots row one a!er the other
to propel the boat, and when the last rower on the boat finishes
its power stroke, the first one starts anew. In this case the in-
stantaneous velocity profile displays much less speed variation
than in the synchronized case: about 2% of the approximately
0.34 m/s mean speed. The diminished fluctuations were ex-
pected, but we were surprised and initially puzzled that the
mean speed of our boat was also reduced—by about 5%. We
repeated our experiments for many phase differences spanning
the range 0°–360°. Although the quantitative values varied,
we found that compared with synchronized rowing, desynchro-
nized rowing always decreases both the relative fluctuations
and the mean speed.

Another propulsive mechanism
Our main result thus contradicts our initial intuition that re-
ducing velocity fluctuations would increase the mean velocity.
So, luckily for rowing athletes who have trained to row syn-
chronously, we can confirm the commonly accepted wisdom
that rowing together maximizes speed.

In our initial thinking, we failed to take into account that the
rowers are not stationary. Indeed, if you return to the velocity
profiles in figure panels b and d, you’ll see that the speed in
the synchronized configuration keeps increasing at the begin-
ning of the recovery stroke—that is, a!er the oars have been

li!ed from the water, as indicated by the red lines. If the veloc-
ity keeps increasing when the oars are out of the water, there
must be an additional propulsive force that does not depend
on oars. In fact, the force results from the motion of the rowers
on the boat. When the rowers return together to the stern of
the boat during the recovery stroke, they pull the hull beneath
them and accelerate the boat. Since the crew of a coxed eight
weighs several times what the boat does, the rowers generate
a significant force. When they are desynchronized, that inertial
boost is reduced.

For krill, whose tiny churning legs are always underwater,
there is no such inertial boost effect. They do be$er with de-
synchronized propulsion.

Additional resources
‣ B. Sanderson, W. Martindale, “Towards optimizing rowing
technique,” Med. Sci. Sports Exerc. 18, 454 (1986). 
‣ A. Baudouin, D. Hawkins, “A biomechanical review of fac-
tors affecting rowing performance,” Br. J. Sports Med. 36, 396
(2002).
‣ A. J. de Brouwer, H. J. de Poel, M. J. Hofmĳster, “Don’t rock
the boat: How antiphase crew coordination affects rowing,”
PLOS One 8, e54996 (2013).
‣ V. Kleshnev, The Biomechanics of Rowing, Crowood Press
(2016). PT
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漕
そう
手
しゅ
たちがオールを水中に入れるタイ

ミングをずらすことで，ボートに作用
する摩擦力を減らすことができる。こ
の試みでボートの速度を上げることが
できるかをロボットを使った実験に
よって検証する。

漕
そう
艇
てい
はスポーツとして興味深いが，そ

れは競技者にとってだけではない。漕
艇は生理学，力学，流体力学が混在し
た問題であり，物理学者の視点からみ
れば，ボートのエレガントな動きから
は想像もつかないほど複雑な運動とい
える。
　オールをこぐことによる推進のメカ
ニズムを明らかにしようと，多くの科
学者たちが試みてきた。その多くは漕
手のパフォーマンス向上を目的とした
ものである。たとえば1971年にScience
誌（173巻349ページ）に掲載されたマ
クマホン（Thomas McMahon）の論文
では，競艇用ボートの速度は漕手の人
数の1/9乗に比例するとしている。私
たちは今回，1サイクルのこぐ動きの
なかでのボートの速度の変化に着目し
た。ひとこぎのなかで，ボートは推進状
態からグライディング状態（慣性で進
む状態）に入る。〈図1〉に示すように競

技用ボートの場合，ひとこぎのあいだ
のボートの速度変化は平均速度5 m/s
に対して20％程度である。このような
変動は漕手のこぐ動きが同期した結果
であり，トップレベルの競技で勝ち抜
くためには，このテクニックが必須だ
といわれている。しかし考えてみると，
ボートが水中を進むとき平均速度が大
きく変動すると，より大きな摩擦力が
船体に作用すると考えられる。結果と
して漕手のパワーは，ボートの速度変
動にともなう摩擦抵抗の増加によって
分散してしまう。典型的な競技ボート
の場合，仮に同じ速度で一定の推進力
で進むときに比べて，約5％大きな力
が必要となる。
　漕手の動きを同期させないことによっ
て，ボートの速度の変動は抑えること
ができる。自然界では非同期の推進法
を採用している例もある。たとえばオ
キアミは5組の足を使って，非同期の
メタクロナル（metachronal）運動とよ
ばれる方法で泳いでいる。2010年に
Journal of the Royal Society Interface
誌（7巻1545ページ）に掲載されたアル
ベン（Silas Alben）たちの論文では，オ
キアミはメタクロナル運動によって，
一定の仕事量に対してもっとも速い体
の移動が可能になることが示されてい
る。ウオツリハシリグモのなかには，
水面を移動するさいに非同期の泳ぎ方
をするものもいる。漕艇の競技では2 
kmのレースでもボートの長さ以内の
差で勝敗が決まることがあるから，非
同期のこぎ方の優位性を検証すること
には意義がある。

ボートをこごう
位相をずらした（タイミングをずらし
た）こぎ方は，すでに1929年ロンドン

ローイングクラブによって試みられて
いる。この様子についてはユーチュー
ブhttps://www.youtube.com/watch? 
v=zQ6fxsmo3V8で動画を視聴できる。
しかしこのロンドンクラブの試みや
1930年代初頭に英国で行われた同様
の試みも，決定的な成功は収められな
かった。1933年10月11日付のSydney 
Morning Herald紙は，以下のように
報じた。「この実験によってわかった
ことは，『わずかな利益のために，才
能ある漕手の技術を台なしにするだけ
でなく，すべてのリズムを崩す価値は
あるのか』ということである」。1981
年と1982年の世界漕艇選手権で，女子
かじ付きフォア（coxed four，4人の漕
手とコックスが同乗する競技）のソビ
エトチームはコックス（ボートを操る
人）を漕手2人ずつのペアのあいだに
配置した。そのため彼らは完全に非同
期でこぐことができたが，レース当日
は同期してこぐことを選択した。フル
スケールでの試験やさまざまな研究が
行われたにもかかわらず，従来型の同
期するこぎ方よりも非同期のこぎ方が
優れているかいないかについて，説得
力ある説明はいまだなされていない。
　漕手が非同期でオールをこぐとき，
ボートの速度に与える影響を体系的に
研究することを目的として，私たちは
8体の漕手ロボットを搭載した1/10ス
ケールのボートを製作した。漕手が 8人
のボート競技はかじ付きエイト（coxed 
eight，漕手8人の競技でコックスも同
乗する）とよばれ，長さ20 m，重量は
100 kgのボートを使用する。今回使用
した〈図1c〉の長さ2 mのボート模型は
グラスファイバー製で，かじ付きエイ
トと船の形状は同じである。ボート模
型とロボット漕手の質量比は，レース

漕艇ロボット，ロウボット
ジャン＝フィリップ・ブーシェ，ロマン・ラッベ，クリストフ・クラネ

勝井辰博 訳
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用ボートと人間の漕手と同じである。
またロボット漕手の動きの機構は，人
間の動きとできるかぎり同一にしてあ
る。アルドゥイーノボード（Arduino 
board）とよばれる装置を使用すること
により，漕手ボットのこぐ速度や同期
を制御できるようになっている。

どちらの戦略がベストか？
私たちはエコールポリテクニークの水
泳プールでロボット漕手ボートの速さ
を計測し，それぞれの漕手のこぐタイ
ミングの位相差ϕをさまざまに変化さ
せて，それがボートの速さに与える影
響を調査した。〈図1d〉はそのうちの
2種類の結果を示している。これらに
ついては補足の動画をPhysics Today

のオンライン版でみることができる。
同期状態でのこぎ方（つまりϕ＝0）で
は，模型ボートの速度の時間変化は〈図
1b〉に示す，実際のレースでのボートの
動画から得られる結果と同様になる。
ボートの速度はオールのブレードによ
る推進力が作用しているあいだ，すな
わちパワーストロークのあいだは増加
する。これは図中の縦の実線から縦の
破線までのあいだにあたる。リカバ
リーストローク，すなわちオールを空
中に浮かせて後方にもどす，破線から
実線までのあいだは速度が減少する。
これは部分的には，ボートに作用する
流体摩擦力に起因する。速度の変化の
様子は，実際のボートもロボット漕手
による模型ボートもよく似ており，模

型ボートは実際をよく模擬できている
と判断できる。
　1秒あたり1回こぐペースでは，模
型ボートは平均で0.36 m/s程度の速
度で動く。これは1こぎあたりボート
の長さの約20％前進することになる。
実際の競技時のレースボートと比較す
ると，こちらは1こぎあたりボート長
さの45％程度進む。実際のボートと
同様に，私たちの模型ボートも平均速
度を中心に大きな時間変動を示す。そ
の大きさはおおむね平均の12％程度
である。
　同期しないこぎ方をする場合，位相
差ϕが45°のときの結果を〈図1〉と補足
の動画で示す。このとき漕手ロボット
は順々にボートを推進させ，最後の漕

〈図1〉 同期および非同期のこぎ方
英国チームがオーストラリアチームに対して僅差を守り切る。（a）2012年ロンドンオリンピックでの男子フォア決勝の終盤。（b）英国チームのボートの速度Vを，
レースの動画から計測したもの。図中の縦の実線はオールが水中に入った時間，縦の破線はオールがもち上げられた時間を表す。ボートの平均速度は約5.3 m/s，
図中にΔVで示した変動は平均値の約20％である。（c）エコールポリテクニークの水泳プールでロボット漕手が2 mのボート模型をこぐ様子。（d）ロボット漕手
は同期（φ＝0），または非同期でボートをこぐことができる。非同期の実験ではそれぞれの漕手ロボットは隣りに対して45°の位相差でこいでいる。期待したと
おり，非同期のこぎ方ではボートの速度変動は減少した。しかし水平の破線で示した平均速度も，非同期のときは減少してしまうという結果に驚いた。
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手がパワーストロークを終えたとき，
先頭の漕手が次のパワーストロークに
入る。この場合，ボートの速さは同期
してこぐ場合に比べて変動が小さく，
およそ0.34 m/sの平均速度に対して
2％の変動にとどまる。速度変動の減
少は期待どおりであったが，平均速度
も5％減少してしまうという結果には
驚き，また当初は困惑した。非同期の
実験はさまざまな位相差（0° ～360°）
でくり返し行った。しかし程度の差こ
そあれ，非同期の場合の平均速度と速
度変動量は，同期したときと比較して
つねに下回っていた。

別の推進メカニズム
このように私たちの実験結果は，速度
変動を抑えれば，平均速度は上昇する
はずだという，当初の直感を覆すもの
となった。したがって，こぎ方を同期
させるトレーニングを行ってきた漕艇
競技者にとっては幸運なことに，同時
にこぐことはボートの速度を最大化さ
せるという一般常識を，この研究が裏
づけることになった。
　私たちの当初の考えでは，漕手は動
かずにこぎ続けるわけではないという
ことを考慮していなかった。実際〈図
1b，d〉をもう一度みてみるとわかるよ
うに，同期状態での速度はリカバリー
ストローク開始時，すなわちオールが
水面からもち上げられた後（図中の縦
の破線が示す位置）も増加しているこ
とがわかる。もしオールが水中にない
ときも速度が増加し続けているなら，
オールに依存しない別の推進力が働い
ているはずである。実際，この力は
ボート上の漕手の運動に起因してい
る。漕手がリカバリーストローク中に
同時に後方にもどるとき，彼らは自分

たちの下にある船体を引っぱり，ボー
トを加速させている。かじ付きエイト
のクルーの重量は船体重量の数倍なの
で，漕手の動きは有意な力を発生させ
る。非同期のこぎ方の場合，この慣性
力が減少してしまう。
　オキアミの場合，小さくて激しく動
く足がつねに水中にあるため，このよ
うな大きな慣性力の効果がなく，非同
期運動による推進が功を奏するのであ
る。
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[94] Stéphane Popinet. An accurate adaptive solver for surface-tension-driven interfacial
flows. Journal of Computational Physics, 228(16):5838–5866, 2009.

[95] Maximilien Ringelmann. Recherches sur les moteurs animés: Essais des boeufs de
travail [Research on animate sources of power: Tests of oxen]. Annales de l’Institut
National Agronomique, 2e série, 6:243–279, 1907.
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342(9):532–538, 2014.

[115] Michael J Lighthill. Note on the swimming of slender fish. Journal of fluid Mechanics,
9(2):305–317, 1960.

[116] T Yao-Tsu Wu. Swimming of a waving plate. Journal of Fluid Mechanics, 10(3):321–
344, 1961.

164

http://archive.usrowing.org/news/details/2015/09/14/the-st%C3%A4mpfli-express-is-coming-to-a-city-near-you
http://archive.usrowing.org/news/details/2015/09/14/the-st%C3%A4mpfli-express-is-coming-to-a-city-near-you
https://www.youtube.com/watch?v=zQ6fxsmo3V8


Bibliography

bib

[117] T Yao-Tsu Wu. Hydromechanics of swimming propulsion. Part 1. Swimming of a
two-dimensional flexible plate at variable forward speeds in an inviscid fluid. Journal
of Fluid Mechanics, 46(2):337–355, 1971.

[118] Florine Paraz, Lionel Schouveiler, and Christophe Eloy. Thrust generation by a
heaving flexible foil: Resonance, nonlinearities, and optimality. Physics of Fluids,
28(1):011903, 2016.

[119] Peter Derek Yeh and Alexander Alexeev. E↵ect of aspect ratio in free-swimming
plunging flexible plates. Computers & Fluids, 124:220–225, 2016.

[120] Silas Alben, Charles Witt, T Vernon Baker, Erik Anderson, and George V Lauder.
Dynamics of freely swimming flexible foils. Physics of Fluids, 24(5):051901, 2012.

[121] Peter A Dewey, Birgitt M Boschitsch, Keith W Moored, Howard A Stone, and Alexan-
der J Smits. Scaling laws for the thrust production of flexible pitching panels. Journal
of Fluid Mechanics, 732:29–46, 2013.

[122] Veronica Raspa, Sophie Ramananarivo, Benjamin Thiria, and Ramiro Godoy-Diana.
Vortex-induced drag and the role of aspect ratio in undulatory swimmers. Physics of
Fluids, 26(4):041701, 2014.

[123] Alain Perrier. 250 Réponses aux questions du plongeur curieux. Le gerfaut, 2008.

[124] http://museedumas.fr/pages/georges_serenon/. Accessed: 2018-10-11.

[125] https://en.wikipedia.org/wiki/List_of_world_records_in_finswimming. Ac-
cessed: 2018-08-21.

[126] Nicolas Vandenberghe, Jun Zhang, and Stephen Childress. Symmetry breaking leads
to forward flapping flight. Journal of Fluid Mechanics, 506:147–155, 2004.

[127] Nicolas Vandenberghe, Stephen Childress, and Jun Zhang. On unidirectional flight of
a free flapping wing. Physics of Fluids, 18(1):014102, 2006.

[128] James M Gere and Stephen P Timoshenko. Mechanics of materials. Cole, Pacific
Grove, CA, pages 815–39, 2001.

[129] Sophie Ramananarivo, Ramiro Godoy-Diana, and Benjamin Thiria. Propagating
waves in bounded elastic media: Transition from standing waves to anguilliform kine-
matics. EPL (Europhysics Letters), 105(5):54003, 2014.

[130] Archibald Vivian Hill. The heat of shortening and the dynamic constants of muscle.
Proc. R. Soc. Lond. B, 126(843):136–195, 1938.

[131] DR Wilkie. The relation between force and velocity in human muscle. The Journal
of physiology, 110(3-4):249–280, 1949.

[132] Thomas Henry Havelock. The wave resistance of a cylinder started from rest. The
Quarterly Journal of Mechanics and Applied Mathematics, 2(3):325–334, 1949.

[133] Alexei D Chepelianskii, Frédéric Chevy, and Elie Raphael. Capillary-gravity waves
generated by a slow moving object. Physical review letters, 100(7):074504, 2008.

[134] Grey T Gustafson and Kelly B Miller. Revision of the Southeast Asian Whirligig Beetle
Genus Porrorhynchus Laporte, 1835 (Coleoptera: Gyrinidae: Gyrininae: Dineutini).
The Coleopterists Bulletin, 70(4):675–714, 2016.

165

http://museedumas.fr/pages/georges_serenon/
https://en.wikipedia.org/wiki/List_of_world_records_in_finswimming


Bibliography

bib
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  Titre : Problèmes d’optimisation à la surface de l’eau 

Des coques de bateaux à la propulsion par rame  

  Mots clés : Propulsion, Vagues, Aviron, Optimisation, Trainée. 

Résumé : Plusieurs problèmes d’optimisation 
— dans l’eau ou à l’interface avec l’air — sont 
abordés, allant de l’optimisation de la forme des 
coques de bateaux à celle de la propulsion en 
aviron et dans la nage avec palmes. Des 
approches théorique, expérimentale et 
numérique sont combinées. Nous développons 
d’abord une approche théorique minimale afin 
de déterminer, à volume immergé et puissance 
donnés, les rapports d’aspect optimaux des 
coques de bateau, qui sont discutés et comparés 
aux rapports  d’aspect de  bateaux réels.  L’effet        
 
 

de l’asymétrie  avant-arrière des coques est  
ensuite discuté. Dans une deuxième partie, nous 
étudions la propulsion en aviron et dans la nage 
avec palme. Dans le cas de l’aviron, nous 
réexaminons la question de la synchronisation 
des rameurs sur le bateau à l’aide d’un modèle 
réduit de bateau robotisé et cherchons quelle est 
la synchronisation qui permet à l’équipage 
d’aller le plus vite. Enfin, nous analysons l’effet 
de la géométrie des palmes pour trouver les 
stratégies de nage optimales. 
 

 

 

  Title : Optimisation problems at the air-water interface. 

From ship hulls to rowing propulsion  
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Abstract : We consider a few optimisation 
problems — in water and at its surface — 
ranging from drag minimisation on ship hulls 
to propulsion efficiency in rowing and 
swimming with fins.  We use theoretical, 
experimental and numerical methods. In a first 
part, we focus on the question of optimal hull 
shapes. We develop a minimal theoretical 
approach to determine, at given load and 
propulsive  power,  the optimal  aspect ratios of  

  

ship hulls, which are discussed and confronted 
to empirical data. Then, the effect of the fore-
aft hull asymmetry is addressed. In a second 
part, we study the question of propulsion in 
rowing and swimming with fins. In particular, 
the long-standing question of whether rowers 
should be synchronised or not is brought up to 
date with a scaled rowing robot. Finally, we 
analyse the optimal shape of fins in order to 
find optimal swimming strategies. 
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