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Abstract

In the field of the security of the embedded systems, it is necessary to know and understand

the possible physical attacks that could break the security of cryptographic components. Since

the current algorithms such as Advanced Encryption Standard (AES) are very resilient against

differential and linear cryptanalysis, other methods are used to recover the secrets of these

components. Indeed, the secret key used to encrypt data leaks during the computation of the

algorithm, and it is possible to measure this leakage and exploit it. This technique to recover

the secret key is called side-channel analysis.

The main target of this Ph. D. manuscript is to increase and consolidate the knowledge on

the side-channel threat. To do so, we apply some information theoretic results to side-channel

analysis. The main objective is show how a side-channel leaking model can be seen as a

communication channel.

We first show that the security of a chip is dependant to the signal-to-noise ratio (SNR) of

the leakage. This result is very useful since it is a generic result independent from the attack.

When a designer builds a chip, he might not be able to know in advance how his embedded

system will be attacked, maybe several years later. The tools that we provide in this manuscript

will help designers to estimated the level of liability of their chips.
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Résumé

Dans le cadre de la sécurité des systèmes embarqués, il est nécessaire de connâıtre les attaques

logicielles et physiques pouvant briser la sécurité de composants cryptographiques garantissant

l’intégrité, la fiabilité et la confidentialité des données. Étant donné que les algorithmes utilisés

aujourd’hui comme Advanced Encryption Standard (AES) sont considérés comme résistants

contre la cryptanalyse linéaire et différentielle, d’autres méthodes plus insidieuses sont utilisés

pour récupérer les secrets de ces composants. En effet, la clé secrète utilisée pour le chiffrement

de données peut fuiter pendant l’algorithme. Il est ainsi possible de mesurer cette fuite et de

l’exploiter. Cette technique est appelée attaque par canal auxiliaire.

Le principal objectif de ce manuscrit de thèse est de consolider les connaissances théoriques

sur ce type de menace. Pour cela, nous appliquons des résultats de théorie de l’information

à l’étude par canal auxiliaire. Nous montrons ainsi comment il est possible de comparer un

modèle de fuite à un modèle de transmission de l’information.

Dans un premier temps, nous montrons que la sécurité d’un composant est fortement

dépendante du rapport signal à bruit de la fuite. Ce résultat a un impact fort car il ne dépend

pas de l’attaque choisie. Lorsqu’un designer équipe son produit, il ne connâıt pas encore la

manière dont son système embarqué pourra être attaqué plusieurs années plus tard. Les outils

mathématiques proposés dans ce manuscrit pourront aider les concepteurs à estimer le niveau

de fiabilité de leurs puces électroniques.
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domaine des attaques par canaux cachés et son aide m’a été très précieuse.
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1.1 On the Importance of Cyber Security

In electronic devices such as embedded systems, personal computers, GPUs, etc, the need of

security has grown wildly over the last 20 years. Indeed, millions of threats may compromise the

security and therefore the private life of users, companies or state agencies, and one breach of

security may alter the privacy of millions of users. For example, when ransomware WannaCry

appeared in May 2017, about 200,000 computers were infected over 150 countries. The financial

impact of this worldwide attack has been evaluated by cyber-risks modeling firm at $4 billion

USD. However, experts of this domain noticed that such an attack could possibly go even worse

since more sensible systems could have been affected, such as nuclear plants. This is why state

agencies and big companies invest a lot of money to secure such sensible sites.

However, it is difficult to predict how a target will be attacked as the security breaches are

very various and are often discovered by attackers. The attackers can have different goals such

as:

• take the control of the target device;

• make the target device inoperant;

• catch the private data of the target.
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Figure 1.1: Screenshot of an infected system by WannaCry

In order to protect the systems, the designer should protect their software as well as their

hardware systems. The protection of the data can be made thanks to encryption algorithms..

1.2 The Rise of Cryptography

As mentioned earlier, the protection of sensitive data is therefore crucial. This is why the notion

of cryptography appeared.

1.2.1 A Bit of History

The notion of cryptography has appeared more than two thousands years ago. The oldest known

ciphered document dates from the 16th century B.C. in Iraq. This is a clay tablet, in which a

potter wrote his secret recipe. To make it secret, he removed the consonants, modifying the

spelling of the words [41].

The Greeks where also using their own methods of encoding. One of them is the scytale.

The scytale is a stick with a strip of parchment wound around it (cf Figure 1.2). The encoder

and the decoder must own a stick having the same geometric characteristics to encrypt and
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Figure 1.2: A scytale c© CC BY-SA 3.0

decrypt the message. Overall, the encryption that is performed is a transpositions of letters.

Today, it would be considered as a very weak code, but we must not forget that in these times,

a lot of people where not even able to read and write.

During the first century B.C., Caesar ciphers appeared. They were the first letter substitution

codes that appeared. In a message, every letter was changed into the n-th letter after. This

method was used by the Roman army. Once again, this code is weak as one only has to check

26 possibilities to recover the message.

In 1586, French diplomat Blaise de Vigenère, published a book in which he exposed his own

method of ciphering. This was called the Vigenère cipher. The method is still simple to encode

and decode a message but the strength of the code is much higher than a Caesar cipher. Indeed,

the code is based on a password and every letter of the message can be changed into different

letter, depending on its place. The Vigenère cipher was broken in 1863 by Friedrich Kasiki.

During the Second World War, cryptography and cryptanalysis played a crucial role as Alan

Turing managed to break the German encoding algorithm Enigma, supposed to be fully secured

by the Wehrmacht. The impact of this was so important that today’s historians agree that the

war would have been at least two years longer if Enigma had not been broken [47].

1.2.2 Cryptography Today

Nowadays, codes are more sophisticated, but the idea is still the same: protect secrets from

malicious threats.
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For a greater security, Auguste Kerckhoffs showed that the security and the secret of a

crypto-system should only be based on the secret of the encoding key [42]. This means that

anyone can know the process leading to encoded data, but in this process, the encoder uses a

secret key (therefore only known by him).

Eventually, a “good” coding algorithm is supposed to ensure that the best possible way to

recover the secret message is to try every possibility of the key (exhaustive search). For 256 bits

long keys, this would take more than 10 billions years with the best current computing power.

We can divide the codes into two big families:

• The symmetric codes where the secret key is the same for both encoding and decoding.

This means that the sender and the receiver of the message must know the secret key

before.

• The asymmetric codes where there is a key to encode the message (often called a public

key) and a secret key to decode the message (often called the private key).

The advantage of symmetric codes is that they are often very easy to compute and to design on

hardware. The speed of coding is very high (more than 10 Mb/s). The main drawback is the

key exchange. How to share a secret key in a safe manner with someone?

On the contrary, asymmetric codes are much slower, but the sharing of the key is absolutely

not a problem because the public key is used to encode the message and only the owner of the

secret key will be able to decode the message. The only difficulty is to certify the owners of the

public keys.

On the adversary’s side, the goal is to recover the secret key. Obviously, the longer the key

is, the more difficult it will be for the attacker to get it. The most naive way to recover a key is

the brute force, i.e. to check every possible key. This process is very fast when the size of the key

is low (today’s machines can treat more than a billion operations per second). However, when

keys are longer (for example 128 or 256 bits), it would take years to examine all the possibilities,

even with the best processing units of the world. Other possibilities may exist to decrease to

number of possibilities. They are called differential and linear cryptanalysis.

• In the differential cryptanalysis, the attacker is able to choose the input text. He exploits

the differences at the input and sees how these differences behave at the output. A “good”

algorithm transforms small differences into big ones.
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Code Year and Size of Broken?

type the key

DES 1977 - symmetric 56 bits Yes

RSA 1983 - asymmetric 2048 bits No1

RC4 1987 - symmetric 40 to 256 bits Yes

AES (see 1.2.3) 1999 - symmetric 128, 192 or 256 bits No2

Table 1.1: List of the main encryption standards

• In linear cryptanalysis, the attacker approximates the algorithm as a linear function,

and by carefully choosing the plaintext, the secret key can be recovered if the algorithm

presents some linearities.

A small list of the existing encryption methods is given Table 1.1. This list is not exhaustive

since there are many ways to encrypt data but is shows the main standards that are used or

have been used.

1.2.3 AES

Currently, the most used algorithm is called AES [26] (for Advanced Encryption Standards).

AES was invented by Joan Daemen and Vincent Rijmen in 1997. In 2001, the National Institute

of Standards and Technologies (NIST) chooses AES as the main encoding standard. Since then,

AES has acquired a very good reputation of being a very secure algorithm. It has been built so

that differential and linear cryptanalysis have no effect on its security. The only known attack on

a full AES algorithm has been published in 2011 by a team working for Microsoft [10]. However,

this attack recovers the key in 2126 operations, while exhaustive search takes 2128 operations.

This attack is therefore four times faster than the exhaustive search, but it is still a very long.

This is why AES is still considered as safe.

AES is a block encoding algorithm. This means that it cuts the message to be encoded into

blocks of 16 bytes. Then each block is encoded separately with the same secret key. The length

of the secret key is either 16, 24 or 32 bytes. From the secret key, the algorithm first generates

subkeys, as many as the number of rounds of the algorithm. For the first round, the secret key

1The security of RSA is based on the difficulty to reduce very big numbers into a product of prime numbers.

The algorithm is simple and can be used for any key size. Nowadays, it is considered as safe to choose keys

that are at least 2048 bits long. However, it has been proved that RSA will be very vulnerable to quantum

cryptanalysis [80].
2According to the NSA, AES can be considered as secure. It is however advised to encrypt very sensitive

data with keys that are at least 192 bits long.
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1.3 Side-Channel Analysis

meets the plaintext block through an exclusive or function. Then, for each round, the block

passes through linear and non-linear functions such as:

1. SubBytes, a non-linear one-to-one function;

2. ShifRows, a cyclical shift of the rows of the block;

3. MixColumns, an invertible linear transformation.

Then the subkey corresponding to the number of the rounds is added.

1.3 Side-Channel Analysis

As we mentioned earlier, without more information than the message to be encoded and its

encoded version, there is no better way to recover the key than the exhaustive search. To break

the security of a device without performing an exhaustive search, one has therefore to use other

type of information than only the plaintext and the ciphertext. These are the side information.

They can be of any type:

• the computation time of the algorithm;

• the electro-magnetic radiations of the device during the algorithm;

• the power consumption of the device;

• the insertion of faults during the computation of the algorithm.

These methods can be classified into two types of attacks: the invasive and non-invasive attacks.

Invasive attacks may alterate the targeted device while non-invasive attacks are more passive.

They only listen the behaviour of the system and try to establish a model of the leakage.

According to François-Xavier Standaert [82], we can model a side-channel attack by the

framework designed Figure 3.1.

Secret key Leakage
Sensitive

variable
Channel

Traces
Distinguisher Estimation

Plaintext Plaintext

Noise

Figure 1.3: Representation of a side-channel attack
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During the encryption algorithm, the plaintext that is to be encrypted meets the secret key

via an exclusive or function (or xor). As the secret key is used in the algorithm, a possible

leakage may happen since it is possible to measure an image of the secret key.

For example, in AES, the secret key is used during the first round of the algorithm, and in

some devices, it is possible to recover the secret key when the substitution box of the secret key

xor the plaintext is stored in the register of the target device [51].

1.3.1 Vulnerabilities

The main advantage of side-channel analysis compared to classical cryptanalysis, is that it is

possible to recover each of the byte of the secret key separately. For attacker, this is a great

improvement because, they no more supposed to consider at least 2128 possibilities but 16 times

28 = 256 possibilities to recover the secret key. Therefore, in side-channel, the vulnerabilities

come no-more from the algorithm itself, but from the way that this algorithm is implemented in

a hardware chip. This means that, form the designer point of view, it is crucial to perfectly

know the hardware architecture of the chip and to be very aware of any possible power leakage

that may occur.

Nowadays, systems are build with sensors that are able to detect intrusive attacks and

algorithms are developed to bring counter-measures to the leakages.

1.3.2 Attack

In practice, an attack happens in the following way as described by François-Xavier Standaert

in [82]. In this framework, we notice that most of the attack follow the same pattern.

• As mentioned in Section 1.2, the encryption algorithm is known by the attacker. In most

of the cases it will be AES (sometimes RSA or DES).

• The first phase of an attack is called the profiling phase. The attacker builds a modelization

of the leakage using a copy of the target device. This modelization can be under a leakage

model function or via histograms called template. Of course, as this profiling phase is

made on a copy of the target device, the secret key of this copy is known. A drawback of

this technique is that there may exist a bias between the model obtained with the copy

device and the target device.

• Then, the exploitation phase is based on applying the model obtained during the profiling

phase to the target device.
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1.3 Side-Channel Analysis

Figure 1.4: One power consumption trace of DES algorithm

Example: the DPA Contest In 2008, the DPA contest [84] was launched by Télécom

Paristech. The challenge was to recover a secret key used in an encrypting algorithm DES with

a very little number of traces. The participants were provided very big sets of data such as:

• For each query, the 64 bits plaintext to be encrypted;

• The corresponding 64 bits ciphertext;

• The power consumption of the whole encryption process.

A trace has the shape given in Figure 1.4. With one figure like this, it is not possible to recover

the secret key. However, if we average them according to existing leakage models such as the

hamming weight leakage [51], we can notice some points of interest. For example, the SNR of

the leakage of one DES substitution box is given in Figure 4.8. In this figure, we notice that

given a leakage model, the SNR is relevant in three points. We call these samples points of

interest. By selecting only theses points of interest and computing mathematical functions called

distinguishers, it is possible to recover the secret key. For the first edition of the DPA contest,
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Figure 1.5: The SNR of this leakage according to the Hamming weight model.
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the best attacking method was provided by Christophe Clavier [21]. In his method, the full key

recovery takes only 43 traces in average.

1.4 A Look on Information Theory

1.4.1 Background

The communication of information has benefited from many improvements at the physical level.

However, it is also profitable to optimize the data rate by studying how information shall be

preprocessed before being sent. This need has given rise to Information Theory : the science

of data transmission. It was created in 1948 by Claude E. Shannon from the Bell labs in his

famous article A Mathematical Theory of Communication [78]. In this article, for the first time,

the basis of digital communication were drawn. The idea was: how to send some information

from a sender to a receiver through a noisy channel? To do so, Shannon proposed a framework

for a communication channel, from the message to be sent, to the received message. Figure 1.6

shows this communication system designed in 1948.

Signal

Received

signal

Source Transmitter Receiver Estimation

Noisy source

Figure 1.6: A communication system by Shannon

For the first time, a precise model was proposed to describe distant communications. But

Shannon did not only describe the model. With probabilistic considerations, he proved that it

is possible to send messages with an arbitrary small error at the decoding phase, as long as the

coding rate (i.e. the amount of data per sample) is lower than a given limit. Moreover, this

limit has an analytic expression and is called the Mutual Information between the signal and

the received signal. As the transmitter has access to the way that the data is sent, it is possible

to modify the Mutual Information, and therefore reach the highest possible limit, called the

Channel Capacity. When the noisy source is additive and the noise is Gaussian, the capacity of

the channel takes the well-known expression C = 1
2 log(1 + SNR), where SNR is the signal to
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noise ratio, i.e. the power or the input signal divided by the power power of the noise. This

formula is known as the Shannon capacity.

However, Shannon did only predict that there exists ways to transmit data that reach this

bound. He did not tell how to find one. For mobile communications, the first time that a team

managed to implement a transmission scheme reaching the Shannon capacity, was in 1996 when

Berrou and Glavieux invented the Turbo-codes [7].

1.4.2 Link With Side-Channel Analysis

The attractive point of information theory is that its fields of applications are wide. Indeed, in

the case of side-channel analysis, we can consider that the secret key is an information, and that

the leakage is a transmission.

In 2014, Annelie Heuser proposed a diagram where both notions of side-channel analysis and

information theory are represented [39]. We have copied this figure in Figure 1.8. The notations

are the following:

• K∗ is the random variable standing for the leaking secret key.

• T is the random vector standing for the plaintext vector.

• Y is the random vector standing for the sensitive variable vector.

• N is the random vector standing for the additive noise (most often supposed as Gaussian).

• X is the random vector standing for the measured traces.

• K̂ is the random variable standing for the estimated key. If the attack is efficient, the

estimated key is equal to the secret key.

• The functions f and ϕ are respectively the algorithmic function (for example a SubBytes

function and the leakage model function. The leakage model function can be supposed

to be known or estimated. The best case for the attacker is of course when the leakage

function is known.

• D is the distinguishing rule. It is a mathematical function taking as inputs the traces and

the plaintext, and returning an estimation of the secret key.
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Figure 1.7: Claude Shannon c©MFO
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Figure 1.8: Framework linking communication channels with leakage model.

1.5 Organization of the Manuscript

The manuscript is organized as follows. In Chapter 2, I describe the main contributions of my

thesis. Part II deals with a generic upper bound to any type of attack thanks to information

theoretic results. In Part III, I consolidate the knowledge of some distinguishers. More specifically,

Chapter 5 deals with monobit leakages while Chapter 6 shows that Mutual Information Analysis

can be optimal in some scenarios. In Part IV, we discuss about practical issues that may happen

in real world devices, in particular for timing attacks.

1.6 Notations

All over this manuscript, we will use the following notations for the mathematical derivations.

The sets will be written with calligraphic letters, and elements of such sets in small caps. If

possible we will use the same letter. for example x ∈ X. Random variables will be written in

capital letter. For example, X is a random variable taking values in X. Probabilities are written

with the symbol P. Therefore, the probability that X is x is noted P(X = x). If it is clear that

the random variable is X, we will only write P(x). We use bold letters to write vectors. For

example x is a vector whose all the element are in X. And X is a random vector taking values

in X. If the set X is continuous, the probability distribution function is written as p(x).

We also recall some information theoretic definitions that are used in this manuscript. The
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entropy of a random variable X is defined as:

H(X) = −
∑
x∈X

P(x) logP(x).

The conditional entropy of X knowing Y is defined as:

H(X | Y ) =
∑
y∈Y

P(y)H(X | Y = y)

=
∑
y∈Y

P(y)
∑
x∈X

P(x | y) logP(x | y).

The mutual information between two random variables X and Y is defined as:

I(X;Y ) = H(X)−H(X | Y )

= H(Y )−H(Y | X)

=
∑

(x,y)∈X×Y

P(x, y) log
P(x, y)

P(x)P(y)

For these definitions, we have not precised the base of the logarithm since it is mathematically

possible to choose any base. However, in communication theory, base 2 is very often used and

information is consequently expressed in bits. This is why we will use this base for all the

logarithms.
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2.1 Formal Security Proofs and Studies

During my thesis, my main concern has been: how to unify and understand the link between

the different metrics used to evaluate the sensitive information leakage of cryptographic chips?

Indeed, various different metrics have been proposed by various authors in respond to specific

issues. For example, we can cite:

• The Mutual Information (MI) between measurements and the sensitive variables;

• The Perceived Information computed with the estimated distribution of the leakage, based

on template attacks;

• The Success Rate or the Guessing Entropy of an attack exploiting a leakage.

2.1.1 A Generic Bound for Any Leakage With Only SNR

For example, the notion of MI is a widely spread concept in Side-Channel Analysis [30], and

everyone agrees that the larger the MI, the better the attack, or from the defender’s side, the

weaker the chip. However, the link between MI and the success rate of an attack, has never been

established formally yet for generic attacks. Some links have already been made [29, 53] but

they have been made for particular types of attacks, especially to show how the masking order

impacts the MI [67] and are therefore true in a specific context. Moreover, I have noticed that

no paper really deals with a tight prediction of the security of a chip. My question was: how can

a designer predict the success rate of an attack with a very restricted number of assumptions.

Indeed, a designer does not know how a device will be attacked. New methods may appear
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several years after the conception of the chip. This is why I have started looking for a framework

that can unify any type of attack under simple concepts and notations.

This is the beginning of my reflection: if we use some information theoretic metrics, then

the answer must be in this field.

In order to better formalize a side-channel attack, I based myself on the framework given by

François-Xavier Standaert in [82]. This framework presents a simple albeit comprehensive look

on what a side-channel attack is.

In 2014, Annelie Heuser has published an article [39] where she demonstrates that the

optimal distinguisher for an attack is the Maximum Likelihood decoder. To obtain this result,

she establishes a first formal link between side-channel analysis and information theory. The

leakage model is there seen as a communication channel with a message to recover (i.e. the

secret key). The method to derive the optimal distinguisher has been to express the expression

for the key decoding rule which maximizes the success rate.

As MI is an information theoretic metric, it becomes here natural to study its impact with

information theoretic models and theorems. I have therefore worked on this aspect. The main

difficulty for me has been to deal with the philosophical differences between information theory

and side-channel. Indeed, the purpose of each is clearly different:

• The goal of an information theorist is to send a message with the highest possible rate

and with an arbitrary small error rate. To do so, the communication engineer can use

correcting codes and choose how the message is encoded.

• In side-channel analysis, the message is the secret key. But the attacker do not have access

to it (which is obvious). This means that the input distributions are imposed by the model

and that there is not coding possibility to improve the success rate.

However, Shannon’s coding theorem and converse coding theorem are still useful to determine

bounds. Indeed, the Shannon’s converse coding theorem shows that the probability of success of

a transmission is upper-bounded by the mutual information of the channel [79]. I have used this

major theorem (proved 60 years ago!) and applied it to my side-channel model.

I have therefore applied the theorem to side-channel. The main problem that I have

encountered is a formal calculation of the Mutual Information. Indeed, the leakages are not

independent and identically distributed (i.i.d.). This means that the Mutual Information

between the traces and the sensitive variables cannot be easily estimated via Shannon’s formula
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C = 1
2 log2(1 + SNR). This one remains only a loose upper-bound of the real MI. Therefore, I

had to resort to other methods to estimated the MI as tight as possible.

I therefore proposed two new methods to estimate the MI of large vectors:

1. A mathematical upper-bound that converges to the right value when the number of traces

q tends to infinity;

2. A parametric estimation based on empirical results.

The mathematical approach is true for any leakage model and any type of noise. However,

the bound is not tight for small values of q. In this case, a good tradeoff is to merge our

approach with Shannon’s bound. Our parametric estimation is due to empirical observations

with Additional White Gaussian Noise (AWGN). Indeed, I have noticed that the MI between

two vectors behaves like an error function. With such estimation, the only knowledge of the

Signal-to-Noise Ratio (SNR) is enough to approximate the MI. This leads to a computation of

the Success Rate (SR) of an attack that can be computed only with the calculation of the SNR

and with the assumption of an additive white Gaussian noise. We do not suppose anything on

the leakage model.

I have then compared the bound obtained by these estimations of the MI, with the best

possible distinguisher i.e. the Maximum Likelihood distinguisher (as demonstrated by Heuser et

al. in [39]). The results show that the tighter the estimation of the MI, the tighter the bound is.

2.1.2 Extension to Template Attacks

My work on the best possible success rate for a given number of traces relies on the calculation

of the Mutual Information between the sensitive variable and the measured traces. In many

cases, the leakage model is not perfectly known and it has to be estimated. This is the case for

example, when the attacker has a copy of the targeted device and learns the leakage model from

this copy. These are called template attacks. Here the goal is different because we want to know

how fast an attacker can break a secret key after a learning phase.

This means that the attacker does not know the real leakage model, but an estimation that

may even be biased. François-Xavier Standaert proposed the notion of Perceived Information

(PI) [30] to replace a MI that cannot be computed because of the lack of knowledge.

A first formal study about this PI shows that it is obviously lower than the MI and can even

be smaller than zero. But we wish a link between PI and SR. I have shown that, when PI is

strictly positive, the attack will succeed with a sufficient enough number of traces. This result
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is based on the demonstration of the Shannon theorem and a proof based on the mismatched

decoders by Merhav [57].

2.1.3 MIA is Universal ML

On the distinguishing point of view, I have noticed that when the attacker has to profile with

on-the-fly data, the Maximum Likelihood distinguisher is perfectly equivalent to a Mutual

Information Analysis (MIA).

We have shown with theoretical case-study that MIA is very relevant when the leakage model

is not perfectly known. Indeed, we have built an experiment where Correlation Power Analysis

(CPA) crashes while MIA works well to recover a secret key.

2.1.4 A Unified Vision of Monobit Leakages

Several papers noticed that some distinguishers related to monobit leakages can be linked with

Fei et al.’s confusion coefficient [32]. For example, Heuser et al. derived the Kolmogorov-Smirnov

Analysis (KSA) as a function of the confusion coefficient and the SNR [38]. Moreover, in [51],

Mangard et al. made the link between Correlation Power Analysis (CPA) and the confusion

coefficient.

After reading these articles, we had the feeling that the link between any distinguisher of a

monobit leakage, was deeper. Therefore, we first made the link between Mutual Information

Analysis (MIA) and the confusion coefficient. We noticed that it also depends on the standard

deviation of the noise. We extracted an analytic function linking MIA the confusion coefficient,

and the standard deviation of the noise.

Eventually, we have noticed that for monobit leakages, the confusion coefficient can also be

seen as the transition probability of a Binary Symmetric Channel (BSC). This has allowed us to

prove that any sound distinguisher in monobit leakages is a function of two parameters: the

confusion coefficient and the standard deviation of the noise.

2.2 Adapting Theoretical Tools for Practical Issues

Another task of my thesis was to adapt some of the theoretical tools for practical issues. I

based my studies on an ARM processor edited by ST Microelectronics: the STM32 Discovery

Board [59].
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On this architecture, we compute timing attacks on the AES algorithm. Here, in this

practical example, the leakage model is not easy to find and to deal with. A template attack is

therefore needed to learn the model. However a learning phase may encounter some problems

such as:

• A bias between the learned model and the real leakage;

• A poor learning phase.

2.2.1 Avoid the Empty Bin Issue

One of the issues that we have met is the empty bin issues. The empty bin issue appears when

there is a difference between the distribution of the learning phase and the distribution of the

attack. We may face a strange case: when we compute the maximum likelihood distinguisher

based on the distribution of the templates, we can meet some data such that the probability is

null. This appears even for the correct key guess and therefore, the ML distinguisher crashes.

We have therefore imagined several solutions to avoid this empty bin issue but still keeping

the notion of maximum likelihood that is supposed to be the best distinguishing rule according

to Annelie Heuser’s paper [39].

The solutions that we have imagined are easy to compute and are sound. When the profiling

is correct, the best distinguisher is a ML with a small penalty if an empty bin occurs. On the

contrary, when the profiling is poor, the best possible distinguisher is to compute an MIA based

on the learned model. Indeed, MIA is known to be more robust when the leakage model is not

well characterized.

2.2.2 Extract a Model for a Timing Attack

In addition to the empty bin issue, I have worked on the STM32 Discovery board in order to

extract a leakage model. In a black box view, we have as inputs the plaintext that is to be

encoded and the number of clock cycles to compute AES as the output of this black box.

With this architecture, it is possible to enable or not the data cache (DC) or the instruction

cache (IC). We have noticed that, when the DC is enabled, the computation of AES is not time

constant, meaning that there is a leakage. A part of this leakage is still difficult to understand

but we have managed to find out that the number of cache hits during the computation of the

algorithm has a great impact.

24



Part II

A Mathematical Bound on

Success Rate

25





Introduction

As a general rule, the most successful man in life

is a man who has the best information.

— Benjamin Disraeli.

Side-channel analysis is renown as an effective “eavesdropping” attack technique to extract

sensitive secrets from cryptographic chips. In recent literature, many exploits have been put

forward. Starting from the seminal timing attack of Kocher [44], various biases of different

kinds have been exhibited. Vertical attacks such as power analysis [45] have been shown to be

highly efficient. However, from a designer’s viewpoint, the exact details of the various attacks

are irrelevant. Instead, defenders aim at estimating a security risk in general, e.g., the chance

that a major security breach occurs. It is thus highly desired to protect designs against all

kinds of SCA attacks in a provable way. When implementing a secure design, the natural

question which arises is the quantification of its security, with respect to its architecture and its

operational environment. In [30], the authors present several metrics that can help the designers

to secure cryptographic chips. Shannon’s mutual information (MI) between measured traces

and guessed models has been considered, but is often thought of as theoretical (too far from

practical evaluations) and impracticable (too computationally inefficient). In [83], the authors

explain the relative importance of MI and probability of success, but in a separate way. Our

aim is to join the two concepts and to show how the knowledge of MI allows to derive an upper

bound on the success rate.

We wish to estimate the success rate with very few assumptions, based on simple and

easy-to-compute tools, such as the signal to noise ratio (SNR). The calculation of the SNR can

be made without the knowledge of the leakage model as the SNR is the ratio between the power

of the useful signal and the power of the noise. The power of the noise is easily measured as is

is the measurement noise, and as the power of the useful signal is the difference between the

power of the measured signal and the power of the noise, the SNR is obtained.
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Related Work As our main goal is to find an estimation of the success rate of an attack that

can be as accurate as possible. Using Information theoretic tools, [39] extracted the best possible

distinguishing rule. However, this does not give any clue to estimate the success rate of an

attack. In practice, the success rate is estimated by repeating a sufficient number of simulations.

Moreover, this is dependent of the knowledge of the leakage model. In practice, it is difficult

to know exactly this model. Indeed, the estimation may be biased, the learning phase of the

model, may be too short, the model, may be too complicated, etc. This is why, we wish to use

general information theoretic tools in order to be as generic as possible, and to give bounds that

are true whatever the attacker may do or may know.

In [50], a link between the success rate and the number of traces to succeed in a correlation

power analysis [11] has been studied, and an analytical formula has been derived. However, this

results is untrustworthy in practice because of the assumption that incorrect key guesses lead to

independent distinguishers, which is not true. Subsequent work on this topic therefore consider

the joint distribution of all values of the distinguisher (correct key and all remaining incorrect

key guesses).

In [36, 48, 74], the authors propose an estimation of the success rate of specific distinguishers.

Namely, Rivain [74] studies the distribution of two examples of distinguishers (correlation and

template) in the presence of normal noise. Lomné et al. [48] extend this work for masked

implementations, while however still focusing on correlation and template attacks. Guilley et

al. [36] extend the approach from additive to some non-additive distinguishers (such as the

mutual information analysis), but through the approximation that the number of traces tends

to the infinity. To summarize, all three papers [36, 48, 74] have in common that the knowledge

of the leakage model, or at least an estimation via a learning phase with templates, is needed to

predict the success rate. In addition, this estimation, in the three cases, is based on the central

limit theorem, meaning that it is relevant for a large number of traces and only for additive

distinguishers. We wish a bound valid for any distinguisher, for any number of traces (even

small).

A bound on the Mutual Information is proposed in [67]. The MI involved is based on one

trace, supposing that every leakage is independent from each other. We show in this part

that this is not the case in practice. In this paper, the bound is valid for MI with only one

measurement. We will see in this part of the manuscript that calculating MI with the probability

functions of all the traces is crucial.
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In [29, Theorem 2], the authors proposed a link between success rate and the number of

measurements. This bound is based on the the link between MI and random probing. Therefore,

it is valid only for leakages with very low SNR and the bound is very loose For instance (see

Figure 4.6), with SNR > 10−4, the bound of Duc et al. [29] is trivial (the success rate is smaller

than one), and for SNR = 10−5, it predicts a number of traces 4, which is much smaller than

our result of 1.3× 106 (where the best attack using ML predicts 1.5× 106, which is in the order

of magnitude of our prediction). In fact, the main contribution of the bound of Duc et al. [29] is

to show that the masking order of an attack has an exponential impact on the success rate, but

not to yield an accurate link between number of traces and success rate.

In the field of information theory, Arimoto [2] proved a lower bound of the error rate (hence

an upper-bound of the success rate) in terms of a so-called Gallager coefficient. However, not only

requires intensive computations, but also the model assumes a freely chosen input distribution.

In our case, that input distribution is set by the leakage model and therefore, cannot be freely

chosen. Arimoto’s main result (Equation 24 of [2]) remains true because it represents the best

possible case for an attacker for all possible input distributions; but the resulting bound is very

loose in our side-channel context. Equation 9 of [2] could be used instead but depends on a

parameter β. With our notations (presented in section 3.1), Arimoto’s Equation 9 becomes:

∀β > 0, Pe ≤ 1− 2n(β−1)
∑
t∈Tq

P(t)
∑
x∈Xq

[
2n−1∑
k=0

P(k)P(x | k, t)1/β

]β
.

The minimization of the r.h.s is practical untraceable for q > 1. Indeed, it consists in sums over

|X|q elements; the complexity is even worse when the output is continuous.

Overall, we can sum up the related work with the following table 2.1. The table classifies the

state-of-the-art according various criteria, such as the way the results are derived and whether

or not the mutual information is involved in the estimation of the success rate. The last two

columns show whether a closed form bound exists and whether it is generic in the attack method.

Our method provided an analytic expression for the lower bound (Theorem 3.1) and is agnostic

in the attack method.

Contributions In this chapter, we derive bounds on the success rate of any attack, irrespective

to the exact attack. Thus we can consider our bounds as universal. To do so, we address this

problem using rigorous information theoretic tools. This is why we revisit the use of MI as a

conservative security metric. Our main contribution is to give a clear relationship between MI

and probability of success. More precisely, we seek a lower bound on the number of available
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Related work
Link with Usage Closed form

Generic
information theory of MI bound on SR

[39] Yes No No No

[74] [48] [36] No No Yes

(but asymptotic)

No

[67] No Yes No Yes

[29] No Yes Yes

(but very loose)

Yes

[2] Yes No Computationally

too difficult

Yes

This part Yes Yes Yes (Theo-

rem 3.1)

Yes

Table 2.1: Summary of the related work

traces where a given success level can be reached, based only on theoretical assumptions on the

channel. The actual value of MI is important to estimate and such an estimation is not immediate

because random vectors of very high dimensions are involved in its expression. Therefore, we

propose several ways to simply estimate the MI by mathematically proved upper bounds and by

numerical estimations. Our results are applied to the most common type of noise, namely the

additive white Gaussian noise. We show that, in the case of additive Gaussian noise, the only

calculation of the SNR is sufficient enough predict accurately the security of a device. Last,

the main result on success rate is translated in terms of guessing entropy, another informative

criterion in side-channel analysis.

Organization This part is organized as follows. In Chapter 3, we provide the mathematical

computaions to prove this bound and we apply them in the case of additive white Gaussian

noise. Section 3.1 describes the side-channel and shows how a leakage can be modeled with a

Markov chain. Section 3.2 provides our main result and three different ways to exploit it. An

application to leakages with additive Gaussian noise is carried out in Section 3.3, where we

show at the end that the SNR is enough to predict the security of a device. The link to the

guessing entropy is done in Section 3.4. In Chapter 4, we show how we can tighten the bound

with numerical estimations of the mutual information. We give a general conclusion of both

chapters in Section 4.4. Technical computations involved in proofs are in Appendix.
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Notations Throughout this paper we use the following notations. Calligraphic letters (e.g.

X) denote sets. Uppercase letters (e.g. X) denote random variables taking their values in the

corresponding set (e.g. X). Lowercase letters (e.g. x) denote realizations of this random variable.

Vectors are written in bold characters. By default, the length of a vector is q ∈ N. Thus, a

random vector is denoted with a bold capital letter (e.g. X = (X1, X2, . . . , Xq)) and a vector of

realizations on this random vector is denoted with a small bold letter (e.g. x = (x1, x2, . . . , xq)).

Given the random variable X taking its values in X and x ∈ X, the probability that X equals x

is noted P(X = x) or simply P(x).

We also define some information theoretic tools. The entropy of a random vector X of length

q is defined by:

H(X) = −
∑
x∈Xq

P(x) log2 P(x).

The conditional entropy of a random vector X knowing vector Y is defined by:

H(X | Y) = −
∑
y∈Yq

P(y)H(X | Y = y)

= −
∑
y∈Yq

P(y)
∑
x∈Xq

P(x | y) log2 P(x | y).

The Mutual Information between two random vectors X and Y is defined as I(X; Y) =

H(X)−H(X | Y). The conditional Mutual Information I(X; Y | T) where X, Y and T are

random vectors is defined as I(X; Y | T) = H(X | T)−H(X | Y,T). Last, the Kullback-Leibler

divergence between two distributions P and Q over the same set X is defined as:

D(P‖Q) =
∑
x∈X

P(x) log2

P(x)

Q(x)
.
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3. A MATHEMATICAL BOUND OF THE SUCCESS RATE WITH MUTUAL
INFORMATION

This chapter presents a mathematical theory of leakage models. Some open issues are

discussed in Appendix A.

Contents
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3.2.3 First Upper Bound on I(X; Y | T): Proof of Inequality (3.4) . . . . 39

3.2.4 Second Upper Bound on I(X; Y | T) - Proof of Inequality (3.5) . . . 40

3.3 Application to Additive White Gaussian Noise . . . . . . . . . . 42
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3.4 Link with Guessing Entropy . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Side-Channel Seen as a Communication Channel

The link between side-channel analysis and information theory has been proposed by [39] to

derive the optimal distinguisher. In this section, we review how the side-channel can be seen as

a communication channel. The secret key byte that the attacker wants to recover is denoted

as k∗ and is n bits long (typically n = 8). We assume that the attacker inputs q text bytes

t = (t1, t2, . . . , tq) and receives that many traces in a vector x = (x1, x2, . . . , xq), with the

following leakage model :

xi = f(ti ⊕ k∗) + ni (i = 1, 2, . . . , q) (3.1)

where n = (n1, n2, . . . , nq) is an additive noise independent of x and f(.) is some leakage function.

We assume that f is deterministic but not necessary known to the attacker. This assumption

will make our calculations generic and therefore true for any type of attack. This is the worst

possible case for the security designers. Define the sensitive variable y(k) = yt(k) as

yt(k) = f(t⊕ k) = (f(t1 ⊕ k), . . . , f(tq ⊕ k)) (3.2)

so that the leakage can be written in compact form as

x = yt(k
∗) + n.

Such vectors t,y and x are realizations of random vectors noted T,Y and X. In the case of one

particular sample, t, y and x are realizations of random variables T, Y and X. We assume that
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the channel is memoryless, which means that each trace xi depends on the input y only from yi.

In particular xi and yj are independent for all if i 6= j. We also make the natural assumption

that the secret key is independent from all text bytes: the secret key random variable K is

independent from T. In other words, the text bytes do not give any information about the

secret key (at least in a design which adheres to Kerckhoffs’s principle).

Following [39] we make the following hypotheses:

• K is uniformly distributed over K = {0, . . . , 2n − 1}. K is a scalar (there is one key-byte

to break), and is therefore not written in bold font.

• T is uniformly distributed over T = {0, . . . , 2n − 1}. Moreover, we suppose that vector T

is balanced, meaning that the number of occurrences of each symbol in the vector is the

same.

• As seen above, the random variable Y is such that Y = f(T ⊕ K), with f a known

deterministic function.

• As q textbytes are sent and therefore q traces are received, we consider the random vectors

T,Y and X.

Thus from (3.1), we can write

X = f(T⊕K) + N

= Y + N.

Considering only scalars, this writes for random variables

X = f(T ⊕K) +N

= Y +N.

After acquiring q traces, the attacker applies a function called distinguisher D to obtain

an estimate K̂ = D(X,T) of the secret key from X and T. This allows us to define the

communication channel as depicted in Figure 3.1:

• the “encoder” models the leakage from the device: not only the composition of the

algorithm which mixes the unknown key K with the known text T into a sensitive variable,

but also the way the device leaks the sensitive variable (function f);
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K Encoder
Y

Channel
X

Decoder K̂

T T

N

Figure 3.1: Representation of Side-Channel

• the (side) channel consists in noise addition, arising from the untargeted parts of the

design and from the measurement setup; and

• the “decoder” implements the distinguishing rule with allows the attacker to get a key

guess K̂ from the measured leakage X and the knowledge of public text bytes T. The

realizations t of the random vector T are known by the attacker.

From the model we can deduce Lemma 3.1 dealing with Markov chains.We recall that

a Markov chain is a stochastic model describing a sequence of possible events in which the

probability of each event depends only on the state attained in the previous event.

Lemma 3.1. The communication channel just described admits the following Markov chains:

(K,T) −→ (Y,T) −→ (X,T) −→ K̂ (3.3)

K −→ Y −→ X −→ K̂

(K,T) −→ Y −→ X.

Proof. The first case is easily seen by re-drawing Figure 3.1 into the different constitutive blocks

as shown in Figure 3.2, where all the variables pass through different blocks corresponding to

the Markov Chain. The two other cases are proved similarly.

K Encoder
Y

Channel
X

Decoder K̂

T

N

T T

Block 1

Block 2

Block 3

Figure 3.2: The Markov chain (K,T) −→ (Y,T) −→ (X,T) −→ K̂.
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3.2 Theoretical Bounds on Mutual Information

One of the important properties of a Markov chain is the data processing inequality [23], which

is used to prove the following theorem in this section, which is our main result.

3.2.1 Main Result

Let Ps = P(K̂ = K) be the probability of success of an attack and H2(Ps) its binary entropy1 [23]:

H2(Ps) = −Ps log2(Ps)− (1− Ps) log2(1− Ps).

The following theorem is fundamental because it provides a trade-off for any possible type of

attack.

Theorem 3.1. The following inequality is always true for any distinguishing rule:

H(K)− (1− Ps) log2(2n − 1)−H2(Ps) ≤ q · I(X;Y | T ). (3.4)

The probability of success of an attack also follows the following inequality:

H(K)− (1− Ps) log2(2n − 1)−H2(Ps)

≤ ETEK1
log2 EK2

exp
(
−D(PX|K1,T‖PX|K2,T)

)
; (3.5)

where D(P‖P′) is the Kullback-Leibler divergence [23] and K1,K2 are identically distributed as

K.

Merging these two equations we can write:

H(K) + (Ps − 1) log2(2n − 1)−H2(Ps)

≤ min(ETEK1 log2 EK2 exp
(
−D(PX|K1,T‖PX|K2,T)

)
, qI(X;Y | T )). (3.6)

This theorem shows that the success rate of an attack is directly linked to the Mutual

Information between the leakage and the model. Furthermore, as we consider generic attacks,

this inequality remains true whatever the attacker does with the traces. In the next subsections

we prove both inequalities and we show that (3.4) is more interesting for low values of q while (3.5)

is a better approximation for high values of q.

To do so, we first demonstrate a preliminary lemma in Section 3.2.2 that will be useful for

both Equation (3.4) and (3.5).

1The binary entropy is the entropy of a binary random variable with probabilities p and 1− p.
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3.2.2 A Fundamental Lower Bound on Mutual Information I(X;Y | T)

The first step of the demonstration of Theorem 3.1 is the following lemma that links the Mutual

Information between the random vectors X and Y with the probability of success.

Lemma 3.2. With the notations of Theorem 3.1, we have:

H(K)− (1− Ps) log2(2n − 1)−H2(Ps) ≤ I(X; Y | T). (3.7)

Proof. Using the Markov Chain (3.3) we compare two MI values thanks to the data processing

inequality [4]. Indeed, this is a direct consequence of Lemma 3.1. This inequality states that the

further two random variables are in a Markov Chain, the less MI between these variables. Here

we have

I((K,T) ; (X,T)) ≤ I((Y,T) ; (X,T)). (3.8)

Let us expand both sides of this inequality. In the l.h.s., since the channel is memoryless and K

and T are independent, we have:

I((K,T); (X,T)) = H(K,T)−H((K,T) | (X,T))

= H(K) +H(T)−H(K | T,X).

As K̂ is a deterministic function of T and X, adding the knowledge of K̂ does not change the

entropy:

I((K,T); (X,T)) = H(K) +H(T)−H(K | T,X, K̂);

≥ H(K) +H(T)−H(K | K̂).

The latter inequality holds since conditioning reduces entropy [23]. Now by Fano’s inequality1[23,

Page 43],

H(K | K̂) ≤ H2(Pe) + Pe log2(|K| − 1)

where Pe is the probability of error Pe = P(K 6= K̂). Since Ps = 1−Pe and H2(Pe) = H2(Ps) =

−Pe log2(Pe)− Ps log2(Ps), this is rewritten as

H(K | K̂) ≤ H2(Ps) + (1− Ps) log2(2n − 1).

Plugging this inequality into the previous one gives

I((K,T); (K̂,T)) ≥ H(K) + qH(T )−H2(Ps)− (1− Ps) log2(2n − 1). (3.9)

On the other hand, the r.h.s. of the data processing inequality (3.8) is:

I((Y,T); (X,T)) = H(X,T)−H(X,T | Y,T);

= H(X,T)−H(X | Y,T);

= I(X; Y | T) +H(T). (3.10)

1Fano’s inequality is an important information-theoretic result about the uncertainty of the transmission of a

message, which is due to the error probability and the number of possible errors.
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Combining Equations (3.9) and (3.10), we obtain the following fundamental inequality:

H(K)−H2(Ps)− (1− Ps) log2(2n − 1) ≤ I(X; Y | T), (3.11)

And proving Lemma 3.2.

The same l.h.s. of (3.11) will be used to prove for both inequalities (3.4) and (3.5), the

difference being the way that I(X; Y | T) is evaluated. Indeed, the next part of the proofs for

Equations (3.4) and (3.5) is about finding an upper-bound for I(X; Y | T). We have to do so

because there is no analytic expression for this conditional Mutual Information computed with

vectors of q dimensions.

Remark 3.1. A quick analysis of the value n+ (Ps − 1) log2(2n − 1)−H2(Ps) reveals that it is

always non-negative for any Ps in the range (0, 1) and vanishes if and only if Ps = 1/2n.

Therefore, when there are no traces, I(X; Y | T) = 0, the only probability that can respect

inequality (3.11) is Ps = 1/2n, meaning that without information, that attacker can not have a

better success rate than 1/2n obtained with an equiprobable random guess, as expected. Every

trace will bring additional information and therefore increase the probability of success.

3.2.3 First Upper Bound on I(X;Y | T): Proof of Inequality (3.4)

Thanks to Lemma 3.2, the l.h.s. of Theorem 3.1 is given. Inequality (3.4) is a straightforward

consequence of the following lemma.

Lemma 3.3. Let X and Y be two random vectors with joint distribution PX,Y, PX be the

marginal distribution of X, and PX be the marginal of one element X of vector X. Define the

distribution P̃X =
∏q
i=1 PXi . We have

I(X; Y) = qI(X;Y )−D
(
PX‖P̃X

)
;

≤ qI(X;Y ).

This Lemma means that the Mutual Information of two random vectors made of identically

distributed random variables is lower than q times the Mutual Information of the marginal

distribution of these random vectors.
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Proof. From the memoryless assumption of the channel, one has PX|Y =
∏q
i=1 PXi|Yi . Thus

I(X; Y) = EX,Y

[
log2

PX|Y(X | Y)

PX(X)

]
= EX,Y

[
log2

PX|Y(X | Y)

P̃X(X)

]
+ EX,Y

[
log2

P̃X(X)

PX(X)

]

= EX,Y

[
log2

∏
i PX|Y (Xi | Yi)∏

i P̃X(Xi)

]
−D

(
PX‖P̃X

)
=
∑
i

EX,Y

[
log2

PX|Y (Xi | Yi)
P̃X(Xi)

]
−D

(
PX‖P̃X

)
= qI(X;Y )−D

(
PX‖P̃X

)
.

The inequality follows since the divergence is always non-negative.

This upper bound on MI is easily derived but is linear in q, and, therefore, will not converge

to a finite value as the number of measurements increases (q →∞). This will be in contradiction

with Lemma 3.4. Therefore, it is interesting to propose another bound that converges to a finite

value. This will be made in the next section.

3.2.4 Second Upper Bound on I(X;Y | T) - Proof of Inequality (3.5)

Before proving (3.5) we first notice that in our side-channel model, as there is a finite number of

keys, the MI is always bounded by H(K).

Lemma 3.4.

I(X; Y | T) = I(K; X | T) ≤ H(K)

Proof. We use the Markov chain defined in Equation (3.3). Notice that, adding the knowledge

of T,K when T,Y are already known does not change the entropy of X. Therefore,

H(X | T,Y) = H(X | T,Y,K,T);

= H(X | T,Y,K).

As Y is a deterministic function of K and T, it can be removed, so we get:

H(X | T,Y) = H(X | T,K).

Therefore, we obtain I(X; Y | T) = I(X;K | T). Since I(X;K | T) = H(K)−H(K | T,X) in

follows that I(X;K | T) ≤ H(K).

Here H(K) is a constant that depends only on the distribution of K; it reaches its maximum

value for a uniform distribution: H(K) = n bit. As a consequence, since I(X; Y | T) increases
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with q, it must converge to a finite value when q → ∞. This explains why the upper-bound

given by (3.4) is poor when q →∞.

Therefore, we provide another bound that is more accurate for large values of q because it

converges to a finite value when K is finite. First we need the following

Lemma 3.5. For any random variables X and Y and real-valued function (x, y) 7→ f(x, y),

−EY log2 EX [exp(f(X,Y ))] ≤ − log2 EX [exp(EY f(X,Y ))].

Proof. See Appendix A.2.

Corollary 3.1. For any random variables X and Y and positive function (x, y) 7→ g(x, y),

expEY log2 EX [g(X,Y )] ≥ EX [exp(EY log g(X,Y ))]

Proof. See Appendix A.3.

Equipped with Lemma 3.5, we compute MI as follows:

I(X;K | T) = ETEX,K|T log2

P(X | KT)

P(X | T)
;

= ETEKEX|K,T log2

P(X | KT)

P(X | T)
;

We introduce here K2, a random variable following the same distribution as K.

I(X;K | T) = ETEKEX|K,T log2

P(X | K,T)

EK2P(X | K2,T)
;

= −ETEKEX|K,T log2 EK2

P(X | K2,T)

P(X | K,T)
;

= −ETEKEX|K,T log2 EK2 exp

[
log2

P(X | K2,T)

P(X | K,T)

]
.

By Lemma 3.5 we obtain

I(X;K | T) ≤ −ETEK log2 EK2 exp

[
EX|K,T log2

P(X | K2,T)

P(X | K,T)

]
;

= −ETEK log2 EK2 exp
[
−D(PX|K,T || PX|K2,T)

]
.

This proves inequality (3.5) and Theorem 3.1 1.

1An alternative proof of inequality (3.5), which resorts only on convexity arguments, is given in Appendix A.4.
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3.3 Application to Additive White Gaussian Noise

In this section, we develop the results of Theorem 3.1 for leakages with additional white Gaussian

noise. Indeed, this is the most common case for attacks such as DPA, where the noise comes

from the measurement tools.

With this model, we can link the success rate to Shannon’s capacity C = 1
2 log(1 + SNR),

and therefore, to the SNR, where SNR = VAR(Y )
σ2 . Moreover, at the end of this section, we will

extract a parametric estimation of the Mutual Information where the only parameter to know is

the SNR.

Remark 3.2. With additive white Gaussian noise, the SNR of the traces can also been written

as:

SNR =
Var(Y )

σ2
,

where σ is the standard deviation of the noise.

3.3.1 Shannon’s Channel Capacity

Under the additive white Gaussian noise (AWGN) assumption, it is easily seen that the scalar

mutual information I(X;Y | T ) does not exceed Shannon’s capacity. Indeed, we have:

I(X;Y | T ) = ET I(X;Y | T = t);

= ET [H(X | T = t)−H(X | Y, T = t)] ;

= ET [H(f(T ⊕K) +N | T = t)]−H(X | Y );

= ET [H(f(t⊕K) +N)]−H(X | Y );

= H(f(K) +N)−H(X | Y );

≤ 1

2
log2(2πe(VarK(f(K)) + Var(N)))−H(X | Y );

=
1

2
log2(1 + SNR).

Combining this with inequality (3.4) yields a lower bound on the number of traces to reach a

given probability of success:

q ≥ n+ (Ps − 1) log2(2n − 1)−H2(Ps)
1
2 log2(1 + SNR)

(3.12)

Remark 3.3. The number of traces q to be sure to recover the key is lower-bounded by:

lim
Ps→1

q ≥ n
1
2 log2(1 + SNR)

. (3.13)
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However, since as we have seen the MI can never be higher than H(K), the above constant

bound is not accurate for real attacks. The next subsection provides a much more accurate

estimation.

3.3.2 Evaluation of the Kullback-Leibler Divergence

Inequality (3.5) gives an upper bound with a divergence term that depends on PX|Ki,T (i = 1, 2).

In the AWGN model, PX|Ki,T follows a multivariate normal distribution N(y(Ki,T), σ2Iq). For

such distributions, the divergence is very easy to compute as the covariance matrix is diagonal.

It is easily found that

D(PX|K,T‖PX|K2,T) =
‖y(K,T)− y(K2,T)‖22

2σ2
.

Inequality (3.5), when applied to the AWGN model, becomes

n+ (Ps − 1) log2(2n − 1)−H2(Ps) ≤ −ETEK log2 EK2
exp

(
−‖y(K,T)− y(K2,T)‖22

2σ2

)
.

In order to make a precise evaluation of the r.h.s., we need several lemmas.

Lemma 3.6. Let t = (t1, . . . , tq) ∈ Tq and (k1 6= k2) ∈ K2. One has

lim
q→∞

‖y(k1, t)− y(k2, t)‖22 = +∞ (3.14)

and more precisely:

‖y(k1, t)− y(k2, t)‖22 ∼
q→∞

q.α(k1, k2), (3.15)

where α(k1, k2) = 1
2n

∑2n−1
t=0 (y(k1, t)− y(k2, t))

2.

Proof. We make use of the assumption made in Section 3.1 that T is balanced. For k1 6= k2, we

have

‖y(k1, t)− y(k2, t)‖22 =

q∑
i=1

(y(k1, ti)− y(k2, ti))
2;

= q

q∑
i=1

(y(k1, ti)− y(k2, ti))
2

q
;

= q
∑
t∈T

nt(y(k1, ti)− y(k2, ti))
2

q
;

where nt is the number of times that a particular t ∈ T appears in vector t. As t is balanced,
nt
q → 1

|T| and therefore:

‖y(k1, t)− y(k2, t)‖22 ∼
q→∞

q
∑
t∈T

(y(k1, ti)− y(k2, ti))
2

|T| .
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Lemma 3.7. Let t ∈ Tq be fixed and k ∈ K be a fixed key. We have

lim
q→∞

− log2 EK2
exp

(
−‖y(k, t)− y(K2, t)‖22

2σ2

)
= n (3.16)

− log2 EK2
exp

(
−‖y(k, t)− y(K2, t)‖22

2σ2

)
∼

q→∞
− log2 EK2

exp

(
−q.α(k,K2)

2σ2

)
. (3.17)

Proof. One has

− log2 EK2
exp

(
−‖y(k, t)− y(K2, t)‖22

2σ2

)
= − log2

[∑
k2

1

2n
exp

(
−‖y(k, t)− y(k2, t)‖22

2σ2

)]

When q is a multiple of 2n we have exactly

‖y(t, k1)− y(t, k2)‖22 = q.α(k1, k2)

and the proof of Equation (3.17) is trivial. Otherwise, for k 6= k2 we have exp(−qα(k,k2)
2σ2 )→ 0

as q →∞; and for k = k2 we have exp(−qα(k,k2)
2σ2 ) = 1. Therefore

− log2

[∑
k2

1

2n
exp

(
−‖y(k, t)− y(k2, t)‖22

2σ2

)]
−→ n.

Lemma 3.8. With the assumptions made in Section 3.1, we have as q →∞:

ETEK log2 EK2 exp
(
−D(PX|K ||PX|K2

)
)
∼

q→∞
n− nmin

2n
exp(−q. min

k1 6=k2
α(k1, k2)) (3.18)

where nmin is the number of indexes k1 6= k2 reaching the minimum value of α(k1, k2).

This simple asymptotic expression can be used to upper-estimate the MI for high values of q.

Notice that for any k1 6= k2, α(k1, k2) = α(k2, k1), hence nmin is an even number.

Proof. Let t = (t1, . . . , tq) be a balanced vector. By Lemma 3.7, we have

−EK logEK2 exp
(
−D(PX|Kt||PX|K2t)

)
∼

q→∞
−EK logEK2 exp

(
−q.α(K,K2)

2σ2

)
where

−EK logEK2
exp

(
−q.α(K,K2)

2σ2

)
= −EK log

[
1

2n

∑
k2

exp

(
−q.α(K, k2)

2σ2

)]
;

= n− EK log

1 +
∑
k2 6=K

exp

(
−q.α(K, k2)

2σ2

) .
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As the value inside the logarithm vanishes as q →∞, consider its first-order Taylor expansion:

−EK logEK2
exp

(
−q.α(K,K2)

2σ2

)
∼

q→∞
n− EK

 ∑
k2 6=K

exp

(
−q.α(K, k2)

2σ2

) ;

= n− 1

2n

∑
k1 6=k2

[
exp

(
−q.α(K, k2)

2σ2

)]
.

Let k1 6= k2 be a couple such that α(k1, k2) is the minimum of all the possible α. For any other

couple k3 6= k4, there are two possibilities:

1. either α(k3, k4) = α(k1, k2) and the corresponding exponentials will converge at the same

rate;

2. or α(k3, k4) > α(k1, k2) and exp
(
− q

2σ2α(k3, k4)
)

is negligible w.r.t. exp
(
− q

2σ2α(k1, k2)
)
.

Hence we can simply count the number of occurrences of the minimum value of α. We have

proven that:

−EK logEK2
exp

(
−D(PX|Kt||PX|K2t)

)
∼

q→∞
n− nmin

2n
exp

(
−q.mink1 6=k2 α(k1, k2)

2σ2

)
.

As this expansion is true for any vector t that is balanced, and is independent of it, this proves

the lemma.

Remark 3.4. The simplification of Lemma 3.8 is useful to obtain a simple equivalent form for

high values of q. However, it is also possible to compute a tight approximation of the numerical

value of ETEK log2 EK2 exp
(
−D(PX|K ||PX|K2

)
)
.

Remark 3.5. Interestingly, we notice that parameter α(k1, k2) is proportional to the confusion

coefficient κ(k1, k2) defined first in [32] for binary leakages, and extended in [36, Equation (45)]

for any leakage:

κ(k1, k2) = 4α(k1, k2).

3.4 Link with Guessing Entropy

Another way to quantify the quality of an attack is the Guessing Entropy [55], defined as

H(K | X,T). This metric quantifies the complexity of the exclusive search to recover K

knowing the side-channel measurements. Besides, let NK be the average number of tries to

retrieve the secret key K with the knowledge of X and T. Mathematically, we have:

NK = EXT

[∑
k

δXT(k)P(k | X,T)

]
,
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where δXT(·) is the permutation that re-orders the probabilities P(k | X,T) into the decreasing

order. There exists a relationship between NK and H(K | X,T) called the inequality of

Massey [55, Section 2]:

NK ≥ 2H(K|X,T)−2 + 1.

We propose here an improved inequality relating Nk with H(K | X,T).

Lemma 3.9 (Improved Inequality of Massey). The average number of tries to recover the

correct key is upper-bounded by:

NK >
2H(K|X,T)

e
. (3.19)

Our inequality improves Massey’s inequality as soon as the entropy is greater than log2( e
1−e/4 ).

Proof. Let bk = (1−1/NK)k

NK−1 for all k ∈ N∗. As
∑
k bk = 1, bk is a distribution (geometric).

Moreover, by the Gibbs inequality [23],

H(K | X,T) = −
∑
t,x

P(tx)
∑
k

P(k | t,x) log2 P(k | t,x)

≤ −
∑
t,x

P(t,x)
∑
k

P(k | t,x) log2 bδXT(k)

= −
∑
t,x

P(t,x)
∑
k

P(k | t,x)δX,T(k) log2(1− 1/NK) + log2(NK − 1)

= − log2(1− 1/NK)NK + log2(NK − 1)

= NKH2(1/NK)

In fact, the inequality is strict since equality would hold if and only if P(k | X,T) = bδX,T(k),

which is not the case as the support of P is finite and the support of bk is not. Therefore, we

have proven that:

H(K | X,T) < NKH2(1/NK).

Last, we notice that the function f(x) = x log2(x) is convex ( f ′(x) = log2(ex) is increasing).

Therefore, fore any x in the range ]0, 1[, we have:

f(x)− f(x− 1)

x− (x− 1)
≤ f ′(x) = log2(ex).

When we apply this for x = NK , we get:

NKH2(1/NK) = NK log2(NK)− (NK − 1) log2(NK − 1)

≤ log2(eNK).

Overall, this means that H(K | X,T) < log2(eNK) which proves the lemma.
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The lemma can be exploited by replacing H(K | X,T) by log2(eNK) in Subsection 3.2.2.

Therefore, instead of using Fano’s inequality, we directly have

I((K,T); (X,T)) ≥ H(K) +H(T)− log2(eNK),

leading to:

NK ≥
2−I(X;Y|T)+H(K)

e
. (3.20)

Once more, we can use Theorems (3.4) and (3.5) to estimate the mutual information.

For example, we suppose that we have a Gaussian channel, with SNR = 1/8 and q = 40

traces. We apply Equation (3.4) to obtain that I(X; T | T) ≤ q 1
2 log(1 + SNR). For a n = 8

bits leakage, the average number of tries is lower-bounded by:

NK ≥
−220∗log2(1+1/8)+8

e

≈ 24.6

e

≈ 8.9

This means that, for such a channel, it would take at least 8 tries to recover one byte of the

secret key with 40 traces. However, a secret key is made of 16 or even 32 bytes. Supposing

that the attacker has only 40 traces for each key-byte, after the attack, one would need at least

8.916 ≈ 1.6× 1015 tries in average to recover the entire key as there is no way to check only byte

per byte.
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4. APPLICATION

In this Chapter, we apply the results of Lemma 3.2 and Theorem 3.1 to practical cases. In

addition, we also discuss about the difficulty to estimate the mutual information I(X; Y | T)

and therefore, we provide numerical estimations based on the law of grat numbers. With these

estimations, we then notice that that they fit well with a parametric estimation.
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4.1 Numerical Approximations for Mutual Information

4.1.1 Numerical Estimation of I(X;Y | T)

Theorem 3.1 gave analytic bounds to the success rate. However, one may need to obtain a

precise value of I(X; Y|T) making the bound tighter. In this section, we propose numerical

tools to obtain an accurate value of the Mutual Information as a function of the number of

queries q. A full estimation of I(X; Y | T) by numerical integration becomes impossible for

q-dimensional distributions, and we have recourse to simplifying approximations of MI. Since

I(X; Y | T) = H(X | T)−H(X | Y,T)

= H(X | T)−H(X | Y)

we can estimate only the entropy H(X | T) because H(X | Y) = qH(X | Y ) is easily computable

with classical numerical tools.

One possible approximation is from the law of large numbers [23, Chapter 3]:

H(X | T) = lim
J→∞

− 1

J

∑
t∈Tq

J∑
j=1

P(t) log2 P(xj | t). (4.1)
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Unfortunately, such a computation is not tractable since it involves the sum over all balanced

vectors t, which represents q! possibilities. However, we can obtain a good approximation of

H(X | T) with only one vector t form the following

Lemma 4.1 (A Symmetry Property). Let t = (t1, . . . , tq) ∈ T and τ be a permutation in

{1, . . . , q}. Noting τ(t) = (tτ(1), . . . , tτ(q)), we have:

H(X | T = t) = H(X | T = τ(t)). (4.2)

Proof. See Appendix A.1.

As a consequence of the symmetry of Lemma 4.1, one needs only one balanced vector t to

estimate H(X | T). Therefore, by the law of large numbers,

H(X | T) ≈ lim
J→∞

− 1

J

J∑
j=1

log2 P(xj | t). (4.3)

This leads to Algorithm 1 to evaluate the entropy H(X | T).

Algorithm 1: Computation of the entropy using the law of large numbers.

input : A balanced vector t

An integer J

The probability distribution P(x | t)

output : An approximation of H(X | T)

1 Hxt ← 0 ;

2 Generate a secret key byte k∗ ;

3 for j ← 0 to J do

4 Generate the traces x with the model ;

5 Hxt ← Hxt − 1
J log2 P(x | t);

6 end

7 return Hxt

When the leakage models are not perfectly known (e.g. template attacks), a possible way to

estimate Mutual Information is to approximate numerically the distributions. An example is

given in [35].

Other estimation methods can be used, depending on the distribution of the noise. As an

example, for Gaussian noise, we may consider Gaussian mixtures as discussed in [43].

Such numerical estimations are all the more accurate as J is taken large, which means that

they make take a tremendous amount of time to compute. Having I(X; T|T) as a function of q,

even numerically estimated, is very useful as we have the link between the success rate and the

minimum number of traces to reach such probability of success.
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4.1.2 Graphical Comparison

In order to visualize the difference between the two upper bounds given above, we have plotted

the mutual information I(X; Y | T = t), where t is a fixed balanced vector. The leakage model

chosen is given by the equation

y(k, ti) = Hw(Sbox(ti ⊕ k)) (i = 1, 2, . . . , q)

where Hw(·) is the Hamming weight (of the value written in binary), and Sbox(·) is the AES

substitution box[24]. We suppose that the zero-mean additive white Gaussian noise (AWGN)

has standard deviation σ = 4. This gives a signal-noise ratio SNR = 1/8.

Figure 4.1 shows the results on I(X; Y | T = t) obtained by Monte-Carlo simulation. We

notice that

• as expected in Subsection 3.2.3, the first upper bound (3.4) is linear in q;

• as expected in Subsection 3.2.4, the second upper bound (3.5) converges to H(K) = n = 8.

Figure 4.1: Comparison of the two upper bounds (3.4) and (3.5).

4.1.3 A Parametric Estimation of I(X;Y | T)

An estimation of I(X; Y | T) with a simple analytic expression can be obtained by a parametric

estimation of the mutual information. This study is based on an empirical model that fits
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correctly with I(X; Y | T). The information function I(q) = I(X; Y | T) can be approximated

by the error function such as

I(q) ≈ n. erf(q.α), (4.4)

where α is a constant, and erf the error function defined as:

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

In order to verify this hypothesis numerically, for a Hamming weight leakage with additive

Gaussian noise, we have plotted in Figure 4.2 the estimated parameter α for different values of

σ and different number of traces. The mutual information is estimated using the law of large

numbers and therefore, the parameter α is obtained by:

α =
erf−1(I(X; Y | T)/n)

q

Notice that for each value of σ, α is constant, which suggest that our empirical model fits the

MI well.

We can go even further and find the analytic value of α. Indeed, the first order derivative

of our model is nα 2√
π
e−q

2

, therefore, the slope at the origin is nα 2√
π

. We know that I(0) = 0

and I(1) = I(X;Y | T ) ≈ 1
2 log2(1 + SNR). This means that if we approximate ∂I(q)

∂q (0) by

I(1)− I(0), we have:

1

2
log2(1 + SNR) = nα

2√
π
, (4.5)

and therefore,

α =

√
π

4n
log2(1 + SNR). (4.6)

Therefore, given the value of the SNR, one can predict the value of MI for additive Gaussian

noise. We can see that the approximation (4.4) holds very well for σ > 2. This happens for low

values of SNR as we encounter in practice when evaluating cryptographic devices. The number

of traces needed to reach a given success rate Ps is therefore lower-bounded by:

q ≥ 4n√
π log2(1 + SNR)

erf−1
(n−H2(Ps)− (1− Ps) log2(2n − 1)

n

)
(4.7)

The interest of such bound is that it requires only the knowledge of an additive Gaussian noise

and the calculation of the SNR to be exploited and to therefore predict a tight bound on the

number of traces to reach a given success rate.
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Figure 4.2: Estimation of parameter α
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4.2 Application to Two Leakage Models

4.2.1 Example for Monobit Leakage

In this subsection, we consider a monobit leakage model:

f(ti ⊕ k) = LSB(Sbox(ti ⊕ k)) (i = 1, 2, . . . , q)

where Sbox is the AES substitution box and LSB is the least significant bit of a number. Figure 4.3

represents the success rate of a monobit leakage with additive Gaussian noise (standard deviation

σ = 4). The distinguisher used is the maximum likelihood distinguisher which is optimal [39].

The other curves are the bounds obtained with:

• a numerical estimation of I(X; Y | T) (using the law of large numbers, as described in

Section 4.1.1);

• MI’s upper bound (3.4);

• MI’s upper bound (3.5).

(a) σ = 1 (b) σ = 4

Figure 4.3: Success rates with monobit leakage.

The three bounds curves lie above the success rate curve as expected, the one obtained with a

numerical estimation of I(X; Y | T) being the tightest (since it gives the closest approximation

of the MI). The two other curves obtained with Equations (3.4) and (3.5) are not as tight but

very easy to calculate. Theses results show that the better approximation of the MI we have,

the closer we are from the optimal success rate.
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In Figure 4.4, we have plotted the error rate in a semilog scale, so that one can observe that

the curves obtained with Equations (3.4) and (3.5) actually cross each other. This shows that,

(a) σ = 1 (b) σ = 4

Figure 4.4: Error rate for a monobit leakage in a logarithmic scale

closer to Ps = 1 it is more interesting to choose the approximation of Equation (3.5), rather

than Equation (3.4).

Remark 4.1. For this leakage model, with a balanced vector t, one needs at least 8 traces to

obtain 256 different vectors y, since the function k 7→ y(k) is one-to-one.

4.2.2 Example for Hamming Weight Leakage

In practice, the AES algorithms compute SubBytes with 8 bits. The leakage function are

therefore different if we take this into account. Our conclusion is the same. We now consider

the leakage model based on the Hamming Weight:

yi = f(ti ⊕ k) = Hw(Sbox(ti ⊕ k)) (i = 1, 2, . . . , q)

where Sbox is the AES substitution box and Hw is the Hamming weight function. Figure 4.5 shows

the success rate compared with the three other types of estimation with an additive Gaussian

noise with two values of standard deviation σ. For this model, we recall that SNR = 2/σ2.

Once again, we notice that our bounds are above the optimal distinguisher and that the closest

estimation of the MI gives the tightest bound.
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(a) σ = 1 (b) σ = 4

Figure 4.5: Success rate for a Hamming weight leakage

4.2.3 Comparison with Duc’s Bound

In order to show that our bounds are tight, we have plotted the number of traces needed to

reach a success rate of 90% for a monobit leakage with additional Gaussian noise (same leakage

as Section 4.2.1). In this figure, we compare our bound with the ML distinguisher and the

success rate proposed by Duc et al. in [29].

To compute our bound, we only suppose that the noise is AWGN and we apply the parametric

estimation of the SNR, proposed in the previous subsection (cf. Equation (4.7)).

In Figure 4.6, we notice that our bound is always very close to the real success rate, calculated

for the best case for the attacker. This means that our predictions give a good idea of the

security of any device, and we recall that this prediction has been made with the only knowledge

of a Gaussian noise. Therefore, with very low assumptions and very few measurements (needed

to calculate the SNR), we are able to predict the number of traces to reach a given success rate

with a good approximation.

4.3 Practical Applications

In practice, the estimation of the SNR is therefore crucial to estimate the protection level of a

device. In this section, we propose an algorithm that extracts the SNR of a leakage. Then, in

order to compare our results with real world data sets, we apply our methods to that obtained

within the framework of the “DPA Contest” challenge.
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Figure 4.6: Comparison of our prediction with Duc’s bound
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4.3.1 The SNR estimation

In order to apply Theorem 3.1 or Equation 4.4 with the parametric estimation of the Mutual

Information, one shall estimate the SNR of the leakage. When the leakage is monovariate,

meaning that the attacker has at her disposal one share of the leakage, it is possible to estimate

the SNR on-the-fly. The SNR of the leakage can be written as follows:

SNR =
Var(Y )

Var(N)

=
Var(Y )

Var(X − Y )

=
Var(Y )

Var(X)−Var(Y )
.

We also notice that since X = Y + N , where the noise N is independent from the signal Y

(which depends only on the plain/cipher-text T ), we have Y = E[X | T ]. This means that the

SNR can be estimated with:

SNR =
Var(E[X | T ])

Var(X)−Var(E[X | T ])
. (4.8)

This equation is valid for algorithms such as AES, since the leakage model of AES does not

depend on anything else than the 8 bits of the plaintext T .

When the leakage is multivariate, it is possible to compute dimensionality reduction (c.f. [15,

Corollary 4]). In such case, a profiling phase is needed to estimate the noise covariance matrix.

Besides, other methods to estimate the SNR can be used such as Linear Discriminant Analysis

(LDA) [81].

4.3.2 A Real World Case: the DPA Contest

In order to compare our theoretical results with practical evaluations, we used the data set of

the DPA Contest v1 [84]. In the first version of this contest, the goal is to recover the 56-bit key

of the DES encrypting algorithm. The device is a Side-channel Attack Standard Evaluation

Board (SASEBO) developed by the Japan AIST / RCIS.

According to the data given in the DPA contest, the attacker has at her disposal a high

number of traces, each made up of 20003 samples. An example is given in Fig. 4.7. We will

consider here the first round of the algorithm (some attacks consider the last round but the

results are very similar).

For example, we have plotted in Fig. 4.8 the SNR of this leakage considering the first

substitution box. In this figure, we notice that the maximum value of the SNR is 0.144 but we
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Figure 4.7: One trace of DES leakage (from DPA contest v1 [84])
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Figure 4.8: SNR of the first Sbox for the first round of DES.
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Sbox # SNR Prediction for 99% CPA 99%

0 0.144 112 230

1 0.077 203 350

2 0.075 208 350

3 0.071 220 450

4 0.064 243 300

5 0.151 107 190

6 0.079 198 330

7 0.136 118 270

Table 4.1: SNR for each Sbox for the DPA contest

notice that other points of interest may be used.

We have computed a simple CPA on the first round of DES with this data set to recover

6 bits of key. Figure 4.9 shows the partial success rate for all the substitution boxes. This

success rate has been obtained with 100 experiments. We have plotted the CPA for the best

time sample (the one that maximizes the SNR) in the green curve and the CPA over all the

time samples (the blue curve). The red curves corresponds to the bound of Equation 4.7.

According to the figures of the table, without any pre-processing the attacker will need at

least 243 traces to recover the secret key with one sample and 138 traces with two samples. This

corresponds to the results obtained without pre-processing or Build-up Sub-keys.

However, in practice, other methods may help the attacker to increase the SNR of the leakage

such as BS-CPA [46] where the attacker takes into account one broken subkey to recover others.

For such method, the upper-bound is the best SNR i.e. 0.151 for one sample leading to 107

traces for key extraction.

4.4 Conclusion

In this chapter, we have linked two metrics used in the field of side-channel analysis: the

probability of success of an attack (also known as the success rate) and the mutual information

between the leaked traces and the secret key. With such links, designers will be given more

precise tools to secure their cryptographic chips. Our results are of interest to better understand

the different factors that impact the success rate of an attack. This is the first time that a study

gives universal tight bounds to the success rate, in the sense that these bounds are independent

of what the attacker may exploit with the measurements.

62



4.4 Conclusion

(a) Sbox # 0 (b) Sbox # 1

(c) Sbox # 2 (d) Sbox # 3

Figure 4.9: Success rate for each DES Sbox
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(e) Sbox # 4 (f) Sbox # 5

(g) Sbox # 6 (h) Sbox # 7

Figure 4.8: Success rate for each DES Sbox
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4.4 Conclusion

This is therefore a great improvement for designers. Indeed, in practice they are not able to

know how their devices will be attacked in the future, but here, we allow them that to ensure

the minimal security of their device in any adversarial context.

In addition, the link that we have made with the notion of guessing entropy gives an idea of

how many attempts have to be made to recover the key after an attack.
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5. WHEN MONOBIT LEAKAGES ARE DEFINED WITH THE CONFUSION
COEFFICIENT

This chapter presents the work accepted at InsCrypt 2018 conference. The conference will

take place in Fuzhou, China http://xxhb.fjnu.edu.cn/inscrypt2018/.
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5.1 Introduction

Today’s ciphering algorithms such as AES are considered resistant to cryptanalysis. This means

that the best possible way to recover a 128 bit key is about as complex as to compute an

exhaustive search over the 2128 possibilities. With our current computational power, this is

not achievable within a reasonable amount of time. However, it is possible to use plaintexts,

ciphertexts, along with additional side information in order to recover the secret key of a

device. Indeed, the secret key may leak via side-channels, such as the time to compute the

algorithm, the power consumption of the device during the computation of the algorithm, or

the electro-magnetic radiations of the chip.

In order to secure chips from side-channel attacks, designers have to understand how these

work and what could be the future security breaches in the cryptographic algorithm as well as in

the hardware computation. A preliminary step is to identify how the secret keys leak and deduce

leakage models. Then, there are mathematical functions—called distinguishers—that take the

leakage as argument and return an estimation of the secret key. They come in many flavours1

1We cover in this chapter the following distinguishers: Difference of Means or DoM [45], Correlation Power

Analysis or CPA [11], Euclidean distance [39, §3], Kolmogorov-Smirnov Analysis or KSA [90], and Mutual

Information Analysis or MIA [34].
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Leakage model SNR

device acquisition
platform

crypto
algo

Figure 5.1: Illustration of the two parts of the side-channel analysis context (in red).

and have different figures of merit in different contexts. A given context not only involves the

cryptographic algorithm and the device through the leakage model, but also the side-channel

acquisition setup through the measurement characterized by its signal-to-noise ratio (SNR). This

is illustrated in Fig. 5.1 borrowed from Heuser et al. [39] (with our annotations in red).

In practice one may encounter monobit leakages, meaning that the output of the leakage

model can only take two values. In this case, as we shall see, the mathematical computations turn

to be simpler and information theoretic tools may be used to precisely describe the link between

the leakage model and the real-world leaking traces. From another perspective, considering

monobit leakages can also be seen as an “abstraction” trick meant to intentionally ignore the

complex effect of the way the device leaks, thereby keeping only the contribution from the

cryptographic algorithm in the leakage model.

A related question is how the choice of the substitution box in the cryptographic algorithm

may “help” the attacker. The standard AES substitution box was designed to be very secure

against linear and differential cryptanalysis [25]. On the contrary, under side-channel analysis,

the substitution box may be helpful for the attacker, especially for monobit leakages as shown

below.

Related Work. Distinguishers were often studied empirically, yet such an approach does not

allow for generalizations to other contexts and measurement campaigns. A theoretical approach

consists in analyzing the formal expressions of the distinguishers as mathematical functions.
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Fei et al. have shown that distinguishers such as DoM and CPA can be expressed in terms

of a confusion coefficient [32]. They gave the impetus to extend this formal analysis to other

types of distinguishers. In 2014, Heuser et al. [38] relate KSA to the confusion coefficient, and

also noticed that the confusion coefficient can be related to the resistance of a substitution box

against differential cryptanalysis.

Whitnall and Oswald [89] have proposed the relative distinguishing margin metric to compare

distinguishers. However, it has been shown [73] that this metric may not be relevant in all

contexts. Another way to compare distinguishers is to contrast how their success rate (SR)

in key recovery depends on the number q of side-channel traces. However, even if works such

as [32] and [48] were able to provide mathematically models for the SR, the comparison between

different distinguishers has never been actually carried out based on such frameworks. We shall

leverage instead on the so-called success exponent (SE) [36] which allows to compare the SR of

various distinguishers based on only one exponent parameter.

Our Contributions. In this chapter we consolidate the knowledge on side-channel attacks

exploiting monobit leakages. We provide a rigorous proof that any distinguisher acting on

monobit leakages depends on only two parameters: the confusion coefficient and the standard

deviation of the noise. Some distinguishers, namely DoM, CPA and KSA, have already been

expressed as a function of those two parameters [32, 38]. In this chapter, we derive this expression

for MIA and we obtain a simple analytic function when the non zero values of the confusion

coefficient are near 1/2 (which is the case of leakages occurring at cryptographically strong

substitution boxes [18]).

Success exponents allow to characterize the efficiency (in terms of number of traces) of

distinguishers to recover the key. We derive the success exponent of these distinguishers in

terms of the confusion coefficient and the standard deviation of the noise. These closed-form

expressions of the success exponent enable the comparison of distinguishers based only on these

two parameters. The flow chart of Fig. 5.2 situates our contributions in relation to the current

state of the art.

Organization. The paper is organized as follows. In Section 5.2, we recall the main definitions.

In Section 5.3, we mathematically unify all the distinguishers and we show that they are only

functions of two parameters. In Section 5.4, we compare the distinguishers thanks to the success

exponent. Section 8.3 concludes. Appendices provide proofs for technical lemmas.
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Distinguishers:

DoM [45],

CPA [11],

Euclidean

distance

[39, §3],

KSA [90], and

MIA [34]

How to

study?

Empirical

simulations

[89]

Theoretical

formal-

ization

Asymptotic
or

Concrete

q → ∞
and/or

SNR → 0

[54]

Which

results?

Finite

q and

SNR. See

Table 5.1

Accurate

equation of

q 7→ SR(q)

[31, 48, 74]

Compare

SR using

SE. See

Table 5.2

Figure 5.2: The state of the art in relation to our contributions (in yellow boxes—see also

Tables 5.1 and 5.2 below).

Notations. Throughout this chapter, we use calligraphic letters to denote sets and lower-case

letters for elements in this set (e.g. x ∈ X). Capital letters denote random variables. For

example, X is a random variable taking values in X and x ∈ X is a realization of X. The

probability that X is x is noted P(X = x) or simply P(x) when there is no ambiguity. The

expectation of a random variable is noted E[X] and its variance Var(X). The differential entropy

h(X) of a random variable X following distribution p(x) is defined as

h(X) = −
∫
R
p(x) log2 p(x) dx. (5.1)

The mutual information between two random variables X and Y is defined as

I(X;Y ) = h(X)− h(X|Y ) = E
[
log2

P(X,Y )

P(X)P(Y )

]
. (5.2)

5.2 Modelization and Definitions

5.2.1 The Leakage Model

In order to compare the different distinguishers for monobit leakages, we need a leakage model

upon which our computations will be based. A plaintext t meets the secret key k∗ through

a leakage function f(t, k∗). The resulting variable y(k∗) is called the sensitive variable. The

dependence in the plaintext t will be omitted to make equations easier to read when there is no

ambiguity.
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The attacker measures a noisy version of y(k∗) called trace and denoted by x. When the

key is unknown, the attacker computes a sensitive variable with a key hypothesis k, that is,

y(k) = f(t, k). Thus our model takes the form{
y(k) = f(t, k)

x = y(k∗) + n
(5.3)

where n is an independent measurement noise.

As we consider monobit leakages, we suppose that y(k) can take only two values. In practice,

t (resp. k) are subsets of the full plaintext (resp. key). Typically, in the case of AES where

attacks can be conducted using a divide-and-conquer approach on a per substitution box basis,

t and k are 8-bit works (i.e., bytes).

The above leakage model can also be written using random variables. Let T the random

variable for the plaintext, Y (k) for the sensitive variable, X for the measurement, and N for the

Gaussian noise. We have: {
Y (k) = f(T, k)

X = Y (k∗) +N.
(5.4)

In a view to simplify further mathematical computations, we suppose that the leakage random

variable is reduced, that is, centered (E[Y (k)] = 0 for all k) and of unit variance (E[Y (k)2] = 1

for all k). The noise is also assumed Gaussian of zero mean and its standard deviation is noted

σ > 0. Moreover, we assume that for any key hypothesis the sensitive variable is balanced, that

is, P(y(k)) = 1
2 . Since Y (k) is a binary random variable, we necessarily have that Y (k) ∈ {±1}

in our model, and consequently the signal-to-noise ratio equals SNR = 1/σ2.

Last, we suppose that the attacker has at his disposal a number of q traces x1, . . . , xq obtained

from leaking sensitive variables y1(k∗), . . . , yq(k
∗) under additive noise n1, . . . , nq.

5.2.2 The Confusion Coefficient

In the side-channel context, the confusion coefficient was defined by Fei et al. as the probability

that two sensitive variables arising from two different key hypotheses are different [32, Section 3.1].

Mathematically, the confusion coefficient is written as

κ(k, k∗) = P(Y (k) 6= Y (k∗)). (5.5)

As the secret key k∗ is constant and understood from the context, we can write κ(k, k∗) = κ(k).

Notice that in practical situations, the EIS (Equal Images under different Subkeys [77, Def. 2])

assumption holds, therefore κ is actually a function of the key bitwise XOR difference k ⊕ k∗.
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Figure 5.3 illustrates the confusion coefficient for a monobit leakage Y (k) = SubBytes(T ⊕
k) mod 2, where SubBytes is the AES substitution box (application F8

2 → F8
2) and ⊕ is the

bitwise exclusive or. We notice that except for k = k∗ (here taken = 178), the confusion

Figure 5.3: Confusion Coefficient for the AES SubBytes

coefficient for the AES SubBytes is close to 1/2. This results from the fact the AES SubBytes has

been designed to be resistant against differential cryptanalysis. Specifically, Heuser et al. [38,

Proposition 6] noticed that a “good” substitution box leads to confusion coefficients near 1/2.

The original definition of the confusion coefficient [32] considers only monobit leakages. An

extension for any type of leakage was proposed in [36] where κ(k) is defined by

κ(k) = E
[(Y (k∗)− Y (k)

2

)2
]
. (5.6)

Equation (5.5) can be easily recovered from this more general expression by noting that when

Y (k) and Y (k∗) ∈ {±1},
(Y (k∗)−Y (k)

2

)2
is 0 or 1 according to whether Y (k) = Y (k∗) or

Y (k) 6= Y (k∗).
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5.2.3 Distinguishers

Distinguishers aim at recovering the secret key k∗ from the traces and the model. For every key

k, the attacker computes the associated distinguisher. The key hypothesis that gives the highest

value of the distinguisher is the estimated key. The attack is successful if the estimated key is

equal to the secret key.

For every key hypothesis k, a distinguisher is noted D̂(k) and the estimated key is k̂ =

arg maxk D̂(k). Five classical distinguishers are:

• Difference of Means (DoM) [32], also known as the Differential Power Analysis (DPA) [45]

where the attacker computes

D̂(k) =

∑
i|yi(k)=+1 xi∑
i|yi(k)=+1

−
∑
i|yi(k)=−1 xi∑
i|yi(k)=−1

. (5.7)

• Correlation Power Analysis (CPA) [11] where the attacker computes the absolute value of

the Pearson coefficient

D̂(k) =

∣∣∣∣ 1
q

∑q
i=1 xiyi(k)− 1

q

∑q
i=1 xi · 1

q

∑q
i=1 yi(k)√

Var(X)Var(Yi(k))

∣∣∣∣. (5.8)

Notice that Var(Yi(k)) do not depend on the index i, since repeated measurements are

i.i.d.

• Euclidean distance, which corresponds to the Maximum Likelihood (ML) attack under the

Gaussian noise hypothesis, where the attacker actually computes the negative Euclidean

distance between the model and the trace

D̂(k) = −1

q

q∑
i=1

(xi − yi(k))2. (5.9)

Maximizing the value of the distinguisher amounts to minimizing the Euclidean distance.

According to [39], as the noise is Gaussian and additive, the Euclidean distance is the

optimal distinguishing rule (ML rule) that maximizes the success probability.

• Kolmogorov-Smirnov Analysis (KSA) [90] where the traces are used to build an estimation

of the cumulative density function F̂ (x), and the distinguisher is

D̂(k) = −EY (k)

[
‖F̂ (x|Y (k))− F̂ (x)‖∞

]
(5.10)

where the infinite norm is defined as ‖F̂ (x)‖∞ = supx |F̂ (x)|. Maximizing the value of the

distinguisher amounts to minimizing the expected infinite norm.
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• Mutual Information Analysis (MIA) [34] where the attacker computes the mutual informa-

tion between the traces and each model. The traces are used to build an estimation of the

joint distribution of X and Y (k), denoted by p̂(X,Y (k)), and with this estimation, we

calculate the mutual information

D̂(k) =
∑
x,y(k)

p̂(x, y(k)) log2

p̂(x, y(k))

p̂(x) · p̂(y(k))
. (5.11)

Given the available data, the attacker computes the distinguisher as a function of x1, . . . , xq

and y1(k), . . . , yq(k). To emphasize the dependence on the data, we may write D̂(k) =

D̂(X1, . . . , Xq, Y1(k), . . . , Yq(k)). As these traces are realizations of random variables, we may

also consider D̂(k) as a random variable which is a function of X1, . . . , Xq and Y1(k), . . . , Yq(k),

with expectation E[D̂(k)] and a variance Var(D̂(k)).

When the number of queries q tends to infinity, we assume that the distinguisher converges

in the mean-squared sense:

Definition 5.1 (Theoretical Distinguisher [36]). The theoretical value of the distinguisher is

defined as the limit in the mean square sense when q →∞ of the distinguisher. The notation

for the theoretical distinguisher is D(k), which is therefore implicitly defined as:

E[(D̂(k)−D(k))2] −→ 0 as q →∞. (5.12)

Put differently, D̂(k) can be seen as an estimator of D(k). An illustration of theoretical

distinguishers is provided in the lower right graph of Figure 5.4. It is easily seen that as q → +∞
the distinguishers presented previously have the following theoretical distinguishers:

• For DoM, the theoretical distinguisher is

D(k) = E[XY (k)]. (5.13)

• For CPA, the theoretical distinguisher is

D(k) =

∣∣E[XY (k)]− E[X]E[Y (k)]
∣∣

1 + σ2
. (5.14)

• For Euclidean distance (ML) distinguisher, we have:

D(k) = −E
[
(X − Y (k))2

]
. (5.15)

• For KSA, we have:

D(k) = EY (k)

[
‖F (x|Y (k))− F (x)‖∞

]
. (5.16)

• For MIA, it is the mutual information

D(k) = I(X;Y (k)). (5.17)
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Target: AES

Signal: 1 unit

Noise: σ = 2

Distinguisher: DoM

view from here
view from here

(at number of traces = 1000)

Figure 5.4: Illustration of a theoretical distinguisher

78



5.3 Theoretical Expressions for Distinguishers

5.3 Theoretical Expressions for Distinguishers

In this section, we show that all distinguishers for monobit leakages are functions of only two

parameters: the confusion coefficient κ(k) and the SNR = 1/σ2. This is confirmed by the

closed-form expressions for classical distinguishers. In particular we derive the one corresponding

to MIA.

5.3.1 A Communication Channel Between Y (k) and Y (k∗)

To understand the link between any sensitive variable Y (k) and the leaking sensitive variable

Y (k∗), consider the following information-theoretic communication channel between these two

variables described in Fig. 5.5. This communication channel is simply a theoretical construction

that helps explain the link between Y (k) and Y (k∗), which are both binary and equiprobable

random variables taking their values in {±1}. The parameters p and p′ are the transition

probabilities defined as p = P(Y (k∗) = +1|Y (k) = −1) and p′ = P(Y (k∗) = −1|Y (k) = +1).

−1
1− p −1

+1
1− p′

+1

p

p′
Y (k) Y (k∗)

Figure 5.5: Abstract communication channel between Y (k) and Y (k∗)

Lemma 5.1. The communication channel defined in Fig. 5.5 is a binary symmetric channel

(BSC) with transition probability equal to the confusion coefficient κ(k).

Proof. To prove that the channel is symmetric, we show that both transition probabilities

coincide: p = p′. In fact, from Fig. 5.5, 1
2 = P(Y (k∗) = 1) = pP(Y (k) = −1) + (1− p′)P(Y (k) =

1) = 1
2 (p+ 1− p′) hence p = p′. Now the confusion coefficient κ(k) = P(Y (k) 6= Y (k∗)) can be

expanded as

κ(k) = 1
2

(
P(Y (k) 6= Y (k∗)|Y (k) = 1) + P(Y (k) 6= Y (k∗)|Y (k) = −1)

)
(5.18)

= 1
2

(
P(Y (k∗) = −1|Y (k) = 1) + P(Y (k∗) = 1|Y (k) = −1)

)
(5.19)

= 1
2

(
p+ p′

)
= p = p′. (5.20)

This proves that the BSC has transition probability equal to κ(k).

According to a well-known information theoretic result [23, p. 187], the Shannon’s capacity

in bits per bit of this channel is

C = 1−H2(κ(k)), (5.21)
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where H2(x) is the binary entropy function defined by

H2(x) = x log2

( 1

x

)
+ (1− x) log2

( 1

1− x
)
. (5.22)

This is represented in Fig. 5.6 as a function of κ(k). Interestingly, the value κ(k) = 1/2 corresponds

to null capacity while the capacity is evidently 1 bit per bit for κ(k∗) = 0, since in this case the

above communication channel reduces to the identity.

Figure 5.6: Representation of the channel capacity according to κ(k)

5.3.2 A General Result

We can now explain why all distinguishers for monobit leakages depend only on the two

parameters κ(k) and SNR = σ−2.

Theorem 5.1. Any theoretical distinguisher D(k) for a binary leakage y can be expressed as a

function of κ(k) and σ.

Proof. Any theoretical distinguisher is defined in terms of the joint probability distribution of

X and Y (k), noted p(x, y(k)). Now for any x ∈ R and y(k) = ±1,

p(x, y(k)) = P(y(k)) p(x | y(k)) (5.23)

=
1

2
p(y(k∗) + n | y(k)) (5.24)

=
1

2

∑
y(k∗)

p(y(k∗) + n | y(k), y(k∗)) P(y(k∗) | y(k)) (5.25)
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where P(y(k∗) | y(k)) is the transition probability of the channel defined in Fig. 5.5. There are

two possibilities. Either y(k) = y(k∗), and in this case P(y(k∗)|y(k)) = 1− κ(k), or y(k) 6= y(k∗)

and in this case P(y(k∗)|y(k)) = κ(k). The sum over y(k∗) has two terms and both cases are

represented. Moreover, the Gaussian noise is independent from every other random variable.

Therefore, we have two possibilities for the joint probability:

p(x, y(k)) =


1
2

(
ϕ( 1+n

σ )κ(k) + ϕ(−1+n
σ )(1− κ(k))

)
1
2

(
ϕ(−1+n

σ )κ(k) + ϕ( 1+n
σ )(1− κ(k))

) (5.26)

where ϕ(x) is the probability density function of a standard normal random variable. As the

noise is centered and Gaussian, the only parameter that characterizes ϕ is its standard deviation

σ. Therefore, a joint distribution of a monobit leakage is fully characterized by σ and κ(k).

This proves that the knowledge of the confusion coefficient and the noise power are essential

to predict the performances of the side-channel attacks for monobit leakages.

5.3.3 Classical Distinguishers as Functions of κ(k) and σ2

To highlight the result of section 5.3.2, we compute the classical distinguishers according to the

confusion coefficient and the noise power. As we mentioned in the introduction, some of them

have already been expressed according to these variables: we recall these results in Table 5.1

with references to the articles where the expression of the distinguisher in terms of κ(k) is proven.

These expressions confirm the strong link between confusion coefficient (recall Fig. 5.3) and the

values of the theoretical distinguisher (for all key hypotheses, recall Fig. 5.4).

Distinguisher
Original Theoretical expression

Reference
paper with κ(k)

DoM [45] D(k) = 2(1/2− κ(k)) [52]

CPA [11] D(k) = 2 |
1/2−κ(k)|√

1+σ2
[52]

Euclidean distance [39, §3] Lemma 5.2 This chapter

KSA [90] D(k) = erf
(

1
2σ2

)
|1/2− κ(k)| [38]

MIA [34] Lemma 5.3 This chapter

Table 5.1: Summary of classical distinguishers. Among all the classical theoretical distinguishers,

we notice that the expression of the theoretical value of DoM with κ(k) does not depend on σ.

The new results are given by the following lemmas.
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Lemma 5.2. For monobit leakages, the Euclidean distance distinguisher can be expressed as:

D(k) = 4(1/2− κ(k))− (σ2 + 2). (5.27)

Proof. We have D(k) = −E
[
(X−Y (k))2

]
= −E

[
(Y (k∗)−Y (k)+N)2

]
= −E

[
(Y (k∗)−Y (k))2

]
−

σ2 since the noise is independent from Y (k∗)− Y (k). Then by (5.6), D(k) = −4κ(k)− σ2 =

4(1/2− κ(k))− 2− σ2 where we have stressed the dependence in 1/2− κ(k) as in Table 5.1.

Lemma 5.3. For monobit leakages, when κ(k) ≈ 1/2 for k 6= k∗, the MIA distinguisher can be

expressed at first order as:

D(k) = 2 log2(e)(κ(k)− 1/2)2g(σ) (5.28)

where

g(σ) =
1

2
E
[
tanh2

(Z
σ

+
1

σ2

)
+ tanh2

(Z
σ
− 1

σ2

)]
(5.29)

and Z ∼ N(0, 1). The function g satisfies

lim
σ→0

g(σ) = 1 and lim
σ→∞

σ2 × g(σ) = 1. (5.30)

Proof. See Appendix B.1.

Figure 5.7 plots the shape of g(σ) which tends to 1 when σ → 0 and is equivalent to 1
σ2

when σ →∞.

When k = k∗ the MIA distinguisher also has a simple expression since it reduces to the

known expression of the channel capacity for channels with binary input and additive Gaussian

noise [9, p. 274]:

D(k∗) =
1

σ2
−
∫
R

e−
1
2y

2

2π
log2 cosh(

1

σ2
− y

σ2
)dy. (5.31)

Remark 5.1. With respect to their theoretical distinguishers, DoM is in bijection with the

Euclidean distance, and CPA is in bijection with KSA. Indeed, the Euclidean distance is

D(k) = 4(1/2− κ(k))− 2− σ2 and σ is independent from the choice of the key. Therefore, there

is a bijection between 4(1/2− κ(k))− 2− σ2 and 2(1/2− κ(k)) which is the theoretical value of

DoM. Regarding CPA and KSA, both distinguishers are functions of |1/2− κ(k)|.
We also notice that MIA is in bijection with CPA (and therefore KSA). Indeed, according to

the value of MIA with κ(k), the distinguisher is a function of (1/2− κ(k))2 which is in bijection

with |1/2−κ(k)| =
√

(1/2− κ(k))2. This means that for monobit leakages, any attack that works

with one of these distinguishers will also work with another, and vice versa.
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Figure 5.7: Representation of g(σ)

5.4 Comparing Distinguishers with the Success Exponent

5.4.1 Mathematical Expression of SE

In the previous section, we have computed the theoretical values of the classical distinguishers in

terms of κ(k) and σ. Now, we wish to compare their success rate. As we mentioned Section 5.2.3,

the attacker computes the estimated distinguisher D̂(k) to recover the secret key. This is the

main reason why all distinguishers do not perform equally in key recovery; indeed, they do not

converge at the same speed towards their theoretical value.

In order to compare them, we have computed their success exponent, a metric proposed by

Guilley et al. in [36] that evaluates how fast the success rate of a distinguisher converges to

100%. With a Gaussian assumption, they prove that the success rate can be modeled as

SR = 1− exp(−q × SE), (5.32)

where q is the number of traces and SE ∈ R+ is the so-called success exponent. Therefore, the

greater the success exponent is, the faster the convergence of the success rate.

We present the theoretical values of the success exponent for the different distinguishers in

Table 5.2. As a direct consequence of Theorem 5.1, all of these success exponents are function
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Distinguisher
Closed form SE

Reference
Numerical value

with κ(k) and σ for AES SubBytes

DoM
1

2
min
k 6=k∗

κ(k)

1 + σ2 − κ(k)
[36, Proposition 4] 3.39× 10−3

CPA Lemma 5.4 This chapter 3.39× 10−3

Euclidean distance
1

2
min
k 6=k∗

κ(k)

1 + σ2 − κ(k)
[36, Proposition 5] 3.39× 10−3

KSA Lemma 5.5 This chapter 1.08× 10−3

MIA Lemma 5.6 [36, Proposition 6] 8.52× 10−5

Table 5.2: Success exponents for the classical distinguishers. The numerical values of SE are

obtained for AES SubBytes least significant bit leakage model and noise of standard deviation

σ = 4. Notice that in the monobit case, Euclidean distance and DoM have strictly the same success

rate because −(X − Y (k))2 = −X2 + 2XY (k)− 1, and X2 is independent of the choice of the key.

of κ(k) and σ. Therefore, if the attacker only knows the type of substitution box that is used

and the SNR of the leakage, he can predict how fast he recovers the secret key.

Lemma 5.4 (Success exponent of CPA). The success exponent of CPA1 is:

SE =
1

2
min
k 6=k∗

1− 2|1/2− κ(k)|
1 + 2σ2 + 2|1/2− κ(k)| . (5.33)

Proof. See Appendix B.2.

Lemma 5.5 (Success exponent of KSA). Assuming that the distributions are estimated with

the kernel method using Heaviside step function, the success exponent of KSA is

SE =
1

2
min
k 6=k∗

erf
(

1√
2σ

)2
(1/2− |1/2− κ(k)|)

2− erf
(

1√
2σ

)2
(1/2− |1/2− κ(k)|)

. (5.34)

Proof. See Appendix B.3.

Lemma 5.6 (Success exponent of MIA). When σ � 1, the success exponent for an MIA

computed with histograms is

SE =
4 log2(e)2

σ4
min
k 6=k∗

κ(k)2(1− κ(k))2. (5.35)

Proof. See Appendix B.4.

In order to validate our theoretical results, we have simulated attacks within the monobit

model presented in Sec. 5.2. The success rates of these attacks are presented in Fig. 5.8. In

1In [36], CPA is treated as a distinguisher, but without the absolute values. Those remove false positives

which occur in monobit leakages when there are anti-correlations. Our value of the success exponent is, therefore,

different from theirs.

84



5.4 Comparing Distinguishers with the Success Exponent

this figure, we notice that, as expected, the Euclidean distance (ML) is the best distinguisher,

closely followed by CPA. Both have similar same success rate. The small difference is due to the

use the the absolute values in the distinguishing function of CPA (see discussion in Remark 9

of [39]). The KSA is requiring a bit less than the double of traces, compared to Euclidean

distance, DoM and CPA. The MIA performs really bad compared to the other distinguishers.

Error bars represent the inaccuracy while estimating the SR (here, we ran 100 simulations).

Figure 5.8: Success rate for classical distinguishers (σ = 4)

These simulations are therefore in complete coherence with the theoretical results of Table 5.2.

Indeed, the order of the distinguishers is the same w.r.t. the success rate and w.r.t. the success

exponent. In addition, according to the definition of the success exponent SE in (5.32), the

number of traces q to reach a given success rate (e.g., SR = 80%) is proportional to the inverse

of SE. This quantitative law is satisfied in the simulation of Fig. 5.8. For an accurate validation,

we have plotted in Fig. 5.9 the success exponent vs the success rate, and indeed points are

aligned.
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Figure 5.9: Success rate versus success exponent
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5.4.2 Comparison of Distinguishers Based on their Success Exponent

With the theoretical expressions of the Success Exponent, it is now possible to rank distinguishers

for a given value of σ and a specific set of confusion coefficients (κ(k))k 6=k∗ .

We first show that for all of the distinguishers presented in Table 5.2, the key that minimizes

the expression of the success exponent is either the one that minimizes κ(k) or the one that

maximizes κ(k) (for k 6= k∗). Indeed, there are only two values of κ(k), k 6= k∗, which are

relevant for the comparison of distinguishers presented in Table 5.2.

Lemma 5.7. For all value of σ, the value of k 6= k∗ which minimizes the formal expressions of

monobit distinguishers is either

kmin = argmin
k 6=k∗

κ(k) (nearest rival)

or

kmax = argmax
k 6=k∗

κ(k) (furthest rival).

Proof. For each distinguisher, let us replace κ(k) by a real-valued variable x ∈ [0, 1] in the

formal expression of the theoretical distinguishers given in the second column of Tab. 5.2. If the

expression which is a function of x is increasing, then its minimum value over {κ(k), k 6= k∗} ⊂
[0, 1] is κmin = κ(kmin). Symmetrically, if the function of x is decreasing, than its minimum

value over {κ(k), k 6= k∗} ⊂ [0, 1] is κmax = κ(kmax). The argument of the minimum operator is

always either strictly increasing or decreasing with x. Indeed, we take the derivative of each

function and we notice that it is always positive for any value of x ∈ [0, 1]:

• For DoM and Euclidean distance: ∂
∂x

1
2

x
1+σ2−x = 1

2
1+σ2

(1+σ2−x)2 > 0.

• For CPA, we distinguish to cases. Either, the minimum is reached for a value k0 such that

(1/2− κ(k0)) is greater than 0, and in this case, the value of the success exponent is equal

to the Success Exponent of DoM (and thus k0 = κmin), or (1/2− κ(k0)) is lower than 0.

In this last case, the value of the Success Exponent is 1
2

1−κ(k)
σ2+κ(k) . The derivative of this

function is ∂
∂x

1
2

1−x
σ2+x = − σ2+1

(σ2+x)2 < 0. This means that the higher x is, the smaller the

success exponent is. Hence, k0 = κmax.

• For KSA, the computation is similar to the case of CPA. Either the value which minimizes

the expression in Lemma 5.5 is k0, such that (1/2 − κ(k0)) is greater than 0, in which

case the Success Exponent is equal to
erf
(

1√
2σ

)2
2

κ(k0)

2−erf
(

1√
2σ

)2
κ(k0)

, or (1/2− κ(k0)) is nega-

tive, in which case the Success Exponent is equal to
erf
(

1√
2σ

)2
2

1−κ(k0)

2−erf
(

1√
2σ

)2
(1−κ(k0))

. Now,

∂
∂x

erf
(

1√
2σ

)2
2

x

2−erf
(

1√
2σ

)2
x

=
erf
(

1√
2σ

)2
(2−x)2

> 0, hence κ(k0) = κmin, and ∂
∂x

erf
(

1√
2σ

)2
2

1−x
2−erf

(
1√
2σ

)2
(1−x)

=

− erf
(

1√
2σ

)2
(2−x)2

< 0, hence κ(k0) = κmax.
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• For MIA, ∂
∂xx

2(1−x)2 = 4x(1−x)( 1
2 −x), which has the sign of 1

2 −x. As 0 ≤ x ≤ 1, the

Success Exponent for MIA is thus increasing on [0, 1/2] and decreasing on [1/2, 1]. Thus, the

minimum value of the Success Exponent is either occurring for κmin (if κmin < 1− κmax)

or for κmax.

This means that the wrong key k that determines the minimum value in the closed form of

the Success Exponent in the expressions from Tab. 5.2:

• (regarding DoM and Euclidean distance): is also the one which happens to minimize κ(k),

k 6= k∗, i.e., the nearest rival of the correct key k∗;

• (regarding CPA, KSA and MIA): is also the one which corresponds to the nearest confusion

coefficient from its bounds (either 0 or 1).

Lemma 5.7 validates the role of Relative Distinguishing Margin (RDM [89]) metric while

comparing distinguishers. Indeed, the distinguishers DoM and Euclidean distance (resp. CPA,

and at first order, KSA and MIA) only consider the nearest rivals (resp. nearest or furthest) in

terms of confusion coefficient. This is general property of the distinguisher, since it does not

depend on the noise variance σ2.

However, we will highlight other factors that determine the efficiency in terms of “data-

complexity” of the classical distinguishers. To illustrate Lemma 5.7, we have reported in

Table 5.3 the 32 κmin and κmax for the 32 possible fanout bits of Data Encryption Standard

(DES) substitution boxes (sboxes). These values correspond to the 8 sboxes in DES multiplied

by the 4 bits of the output of the LUT. In this table, we notice that each sbox has a particular

behaviour. The value which determines the success exponent represented with a grey background

color. It is interesting to see that CPA, KSA and MIA are actually limited by κmax most of the

time (i.e., 1− κmax < κmin, for about 89% of the bits, excluding ties).

Remark 5.2. It was previously unnoticed that, in the case of DES, distinguishers with “absolute

values”, such as CPA, were better than without the absolute values.

Regarding AES, we notice that for the AES SubBytes function, the values of κmin and κmax

are always the same regardless to the leaking bit. Moreover, we also notice that κmin = 1−κmax.

Indeed, for all output bits of SubBytes, we have:

• κmin = 0.4375

• κmax = 0.5625.
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Element κmin κmax

Bit 1 – Sbox 1 0.2500 0.7500

Bit 2 – Sbox 1 0.1875 0.7500

Bit 3 – Sbox 1 0.3125 0.6875

Bit 4 – Sbox 1 0.2500 0.7500

Bit 1 – Sbox 2 0.2500 0.8125

Bit 2 – Sbox 2 0.3125 0.7500

Bit 3 – Sbox 2 0.1875 0.9375

Bit 4 – Sbox 2 0.2500 0.8125

Bit 1 – Sbox 3 0.2500 0.8750

Bit 2 – Sbox 3 0.3125 0.7500

Bit 3 – Sbox 3 0.2500 0.8750

Bit 4 – Sbox 3 0.2500 0.8125

Bit 1 – Sbox 4 0.3125 0.6875

Bit 2 – Sbox 4 0.3125 0.6875

Bit 3 – Sbox 4 0.3125 0.6875

Bit 4 – Sbox 4 0.3125 0.6875

Bit 1 – Sbox 5 0.3750 0.6875

Bit 2 – Sbox 5 0.3125 0.7500

Bit 3 – Sbox 5 0.3125 0.8125

Bit 4 – Sbox 5 0.2500 0.7500

Bit 1 – Sbox 6 0.2500 0.8125

Bit 2 – Sbox 6 0.3125 0.8125

Bit 3 – Sbox 6 0.2500 0.7500

Bit 4 – Sbox 6 0.1250 0.7500

Bit 1 – Sbox 7 0.2500 0.8750

Bit 2 – Sbox 7 0.2500 0.7500

Bit 3 – Sbox 7 0.1875 0.8750

Bit 4 – Sbox 7 0.2500 0.7500

Bit 1 – Sbox 8 0.3125 0.8125

Bit 2 – Sbox 8 0.2500 0.8125

Bit 3 – Sbox 8 0.2500 0.8125

Bit 4 – Sbox 8 0.2500 0.7500

Table 5.3: Numerical values of κmin and κmax for DES
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Lemma 5.8 (CPA correlating positively or negatively). The CPA correlates negatively (i.e.,

|1/2 − κ(k)| is minimum for k 6= k∗ when 1/2 − κ is positive) when κmin < 1 − κmax. And

vice-versa.

Proof. It is easy to check that

1

2

κmin

1 + σ2 − κmin
<

1

2

1− κmax

σ2 + κmax
⇐⇒ κmin(σ2 + κmax) < (1 + σ2 − κmin)(1− κmax)

⇐⇒ κmin < 1− κmax.

Lemma 5.9 (KSA expression of SE). The expression of the Success Exponent for KSA (for

large values of σ) is:
erf
(

1√
2σ

)2
2

κmin

2−erf
(

1√
2σ

)2
κmin

if κmin < 1− κmax,

erf
(

1√
2σ

)2
2

1−κmax

2−erf
(

1√
2σ

)2
(1−κmax)

if κmin > 1− κmax.

Proof. It is a direct consequence of the fact the function x ∈ [0, 1] 7→ erf
(

1√
2σ

)2
2

x

2−erf
(

1√
2σ

)2
x

is

increasing (recall Lemma 5.7).

Lemma 5.10 (MIA expression of SE). The expression of the Success Exponent for MIA (for

large values of σ) is:{
4 log2(e)2

σ4 κ2
min(1− κmin)2 if κmin < 1− κmax,

4 log2(e)2

σ4 κ2
max(1− κmax)

2 if κmin > 1− κmax.

Proof. We have:

4 log2(e)2

σ4
κ2

min(1− κmin)2 <
4 log2(e)2

σ4
κ2

max(1− κmax)2 ⇐⇒ κmin(1− κmin) < κmax(1− κmax)

⇐⇒ (κmax − κmin) [κmax + κmin − 1] < 0

⇐⇒ κmin < 1− κmax.

Corollary 5.1 (Revised expressions of the Success Expoennt for the 5 distinguishers). With

κmin and κmax defined in Lemma 5.7, the success exponents of the 5 distinguishers are written in

Table 5.4. For CPA, KSA and MIA, there are two expressions depending whether κmin ≶ κmax.

Now, we can proceed to compare distinguishers:

Proposition 5.1 (DoM is always better than CPA). For any value of σ, the success exponent

of DoM is always greater than the success exponent of CPA.
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Distinguisher

Condition
κmin < 1− κmax κmin > 1− κmax

DoM 1
2

κmin

1+σ2−κmin

CPA 1
2

κmin

1+σ2−κmin

1
2

1−κmax

σ2+κmax

Euclidean distance 1
2

κmin

1+σ2−κmin

KSA 1
2

erf
(

1√
2σ

)2
κmin

2−erf
(

1√
2σ

)2
κmin

1
2

erf
(

1√
2σ

)2
(1−κmax)

2−erf
(

1√
2σ

)2
(1−κmax)

MIA 4 log2(e)2

σ4 κ2
min(1− κmin)2 4 log2(e)2

σ4 κ2
max(1− κmax)2

Table 5.4: Expression of the Success Exponent for the 5 studied distinguishers

Proof. The expression of CPA is either with κmin or with κmax. We therefore have two cases:

• If κmin < 1− κmax, then the expression of CPA is the same as the expression of DoM (cf.

Table 5.4). Therefore, the success exponents of the two distinguishers are the same in this

case.

• In the other case, the expression of the success exponent is 1
2

1−κmax

σ2+κmax
. However, as

1 − κmax < κmin, we have 1
2

1−κmax

σ2+κmax
< κmin

1+σ2−κmin
, which is the expression of DoM.

Therefore, in this case, the success exponent of CPA is smaller than the success exponent

of DoM.

Overall, DoM is therefore a better distinguisher than CPA in terms of success exponent.

Proposition 5.2 (CPA vs KSA). When σ � 1 the success exponent of CPA is always higher

than the success exponent of KSA.

Proof. We consider that σ � 1. This means that the success exponent of CPA (we consider

the formula with κmin) is equivalent to 1
2
κmin

σ2 . For KSA, the success exponent is equivalent to
1
2
κmin

πσ2 . Indeed, when σ � 1,
(

1√
2σ

)2
is equivalent to 2

πσ2 .

Therefore, when σ � 1, the success exponent of CPA is always higher than the success

exponent of KSA. The calculations are the same if we consider κmax.

Proposition 5.3 (MIA vs DoM). For σ > 1, the success exponent of MIA is always smaller

than the success exponent of CPA.

Proof. For DoM, the expression of the success exponent is proportional to 1
σ2 while the expression

of the success exponent for MIA is proportional to 1
σ4 .

To highlight these lemmas, we have plotted in Figure 5.10 the success exponents obtained

for every distinguisher with respect to the value of σ. We notice that the order obtained in the

previous lemmas is verified1 In this case, the value of κmin is lower than the value of 1− κmax.

Therefore, the Success Exponent based on the value κmin will be used.

1We did not plot for values of σ lower than 5, since the lemmas are true for large values on σ.
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Figure 5.10: Success Exponent for DES (κmin = 0.125, κmax = 0.75)
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Figure 5.11: Success Exponent for DES (κmin = 0.25, κmax = 0.8125)

On the contrary, we have plotted in Figure 5.11 the Success Exponents for values of κmin

and κmax such that κmin > 1 − κmax. In this case, the Success Exponents of CPA, KSA and

MIA is based on the value of κmax.

In the state-of-the-art, the only assertion which could be done was that the optimal dist-

inguisher is performing the best, i.e., it is better than all others. However, in general, it was

difficult to formal and numerical comparison between distinguishers was not possible. We enable

that. More precisely, we rate distinguishers according to whether they match for minimum or

maximal values of κ. Then, we classify them when there is one distinguisher better than another

one over the full range of σ > 0. Finally, we show that depending on the values of κmin and

κmax, some distinguishers might be better than others.

5.5 Conclusion

In this chapter, we have mathematically proven that only two parameters, the confusion coefficient

and the SNR, determine the side-channel distinguishing efficiency for monobit leakages. Both of
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them are easy to compute because the confusion coefficient can be calculated with the knowledge

of the operating substitution box and the SNR can be measured offline.

Our work is useful to predict how fast a distinguisher will succeed to recover the secret key.

Long and painful simulations can be advantageously replaced by the computation of the success

exponent using closed-form expressions.

This chapter also consolidates the state of the art about the classical distinguishers, especially

for MIA and KSA. We have derived the success exponent for these two distinguishers as a

function of the confusion coefficient and the standard deviation of the noise.
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Chapter 6

When MIA is a Maximum

Likelihood and better than CPA
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

This chapter covers the work presented at ArticCrypt 2016.
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6.1 Introduction

Many embedded systems implement cryptographic algorithms, which use secret keys that must

be protected against extraction. Side-channel analysis (SCA) is one effective threat: physical

quantities, such as instant power or radiated electromagnetic field, leak outside the embedded

system boundary and reveal information about internal data. SCA consists in exploiting the

link between the leakage signal and key-dependent internal data called sensitive variables.

The cryptographic algorithm is generally public information, whereas the implementation

details are kept secret. For high-end security products, the confidentiality of the design is

mandated by certification schemes, such as the Common Criteria [22]. For instance, to comply

with ALC_DVS (Life-Cycle support – Development Security) requirement, the developer must

provide a documentation that describes “all the physical, procedural, personnel, and other security

measures that are necessary to protect the confidentiality and integrity of the TOE (target of

evaluation) design and implementation in its development environment” [22, clause 2.1 C at

page 141]. In particular, an attacker does not have enough information to precisely model the

leakage of the device. On commercial products certified at highest evaluation assurance levels

(EAL4+ or EAL5+), the attacker cannot set specific secret key values hence cannot profile
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the leakage 1 Therefore, many side-channel attacks can only be performed online using some

distinguisher.

Correlation Power Analysis (CPA) [12] is one common side-channel distinguisher. It is

known [39, Theorem 5] that its optimality holds only for a specific noise model (Gaussian) and

for a specific knowledge of the deterministic part of the leakage—namely it should be perfectly

known up to an unknown scaling factor and an unknown offset.

Linear Regression Analysis (LRA) [28] has been proposed in the context where the leakage

model is drifting apart from a Hamming weight model. Its parametric structure and ability to

include several basis functions makes it a very powerful tool, that can adjust to a broad range

of leakage models when the additive noise is Gaussian. Incidentally, CPA may be seen as a

2-dimensional LRA [39].

When both model and noise are partially or fully unknown, generic distinguishers have been

proposed, such as Mutual Information Analysis (MIA) [34], Kolmogorov-Smirnov test [86, 90]

or Cramér-von-Mises test [86, Sec. 3.3.]. Thorough investigations have been carried out (e.g.,

[17, 60, 88]) to identify strengths and weaknesses of various distinguishers in various scenarios,

including empirical comparisons. In keeping with these results, we aim at showing some

mathematical justification regarding MIA versus CPA and LRA. Our goal is thus to structure the

field of attacks, by providing theoretical motivations why attacks strength may differ, irrespective

of the particular traces datasets.

Contributions. In this chapter, we derive MIA anew as the distinguisher which maximizes

the success rate when the exact probabilities are replaced by online estimations. In order to

assess the practicability of this mathematical result, we show two scenarios where MIA can

outperform its competitors CPA and LRA, which themselves do not estimate probabilities.

In these scenarios, we challenge the two hypotheses needed for CPA to be optimal: additive

Gaussian noise and perfect knowledge of the model up to an affine transformation. This is

illustrated in Fig. 6.1.

Last, we extend the fast computation trick presented in [49] to MIA: the distinguisher is

only computed from time to time based on histograms obtained by accumulation, where the

accumulated histograms are shared for all the key guesses.

1Obviously, this hypothesis only holds provided the device manufacturer does not reuse the same cryptographic

engine in an open platform, such as a JavaCard, where the user is able to use the cryptographic API at its will.
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CPA is optimal [39]:

• known model,

• Gaussian noise.

Section 6.3: MIA > CPA:

• known model,

• non-Gaussian noise.

Section 6.4: MIA > CPA, LRA:

• unknown model,

• Gaussian noise.

Figure 6.1: Illustration of two practical situations where MIA can defeat CPA

Organization. The remainder of this chapter is organized as follows. Section 6.2 provides

notations, assumptions, and the rigorous mathematical derivation that MIA reduces to a

maximum likelihood distinguisher, where exact leakage probabilities are replaced by online

probabilities. Section 6.3 studies two examples where the attacker knows the one-bit model under

non-Gaussian algorithmic noise, and for which MIA is shown to outperform CPA. Section 6.4

provides a scenario in which the leakage model is partially unknown under additive Gaussian

noise, and where MIA outperforms CPA and LRA. Last, in Section 6.5, we propose a fast MIA

computation deduced from our mathematical rewriting allowing to factor several computations.

Section 6.6 concludes.

6.2 Optimality of Mutual Information Analysis

6.2.1 Notations and Assumptions

We assume that the attacker has at his disposal q̃ independent online leakage measurements1

x̃ = (x̃1, . . . , x̃q̃)
2 for some sequence of independent and uniformly distributed text n-bit words

t̃ = (t̃1, . . . , t̃q̃) (random but known). The n-bit secret key k∗ is fixed but unknown.

We do not make any precise assumption on the leakage model—in particular the attacker

is not able to estimate the actual probability density in a profiling phase. Instead we choose

an algorithmic-specific function f and a device-specific function ϕ to compute, for each key

hypothesis k, sensitive values ỹ = (ỹ1, . . . , ỹq̃) by the formula

ỹ = ϕ(f(k, t̃)), (6.1)

1We comply with the usual notations of [30] where offline quantities are indicated with a hat, whereas online

quantities are indicated with a tilde. In this chapter, there is no profiling phase hence no offline quantities.
2We use bold letters to indicate vectors while scalars are presented using small italic letters.
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that is, ỹi = ϕ(f(k, t̃i)) for all i = 1, . . . , q̃. In practice, a suitable choice of ϕ should be optimized

depending on some leakage model but in what follows, f and ϕ can be taken arbitrarily such

that they fulfill the following Markov condition.

Assumption 6.1 (Markov condition). The leakage x̃ depends on the actual secret key k∗ only

through the computed model ỹ = ϕ(f(k∗, t̃)).

Thus, while the conditional distribution Pk(x̃|̃t) depends on the value k of the secret key,

the expression P(x̃|ỹ) depends on k only through ỹ = ϕ(f(k, t̃)). If we let Pk(x̃, t̃) be the joint

probability distribution of x̃ and t̃ when k∗ = k, one has the Fisher factorization [19]

Pk(x̃, t̃) = P(t̃)Pk(x̃|̃t) = P(t̃)P(x̃|ỹ) where ỹ = ϕ(f(k, t̃)). (6.2)

In the latter expression we have P(t̃) = 2−q̃n since all text n-bit words are assumed independent

and identically distributed (i.i.d.) and uniformly distributed.

In the case of an additive noise model, we simply have x̃ = ỹ + ñ where ñ is the noise

vector, and the Markov condition is obviously satisfied. In general, in order to fulfill the Markov

condition the attacker needs some knowledge on the actual leakage model. We give two examples

regarding the Markov condition:

Example 6.1. If leakage xi is linked to ti and k∗ through the relationship xi = wH(k∗ ⊕ ti) + ni

for all i = 1, . . . , q̃, where wH is the Hamming weight and ni is the noise (independent of ti),

then both models yi = k ⊕ ti and yi = wH(k ⊕ ti) satisfy the Markov condition.

In order to uniquely distinguish the correct key, some conditions on the expressions of y are

required. Specifically, let us denote by yk the function t 7→ yk(t) = y(k, t), and let B the set of

bijections on the leakage space X. We have:

if ∀k,∃k′ 6= k, ∃β ∈ B s.t. yk′ = β ◦ yk, then the distinguisher features a tie, (6.3)

if ∀k,∀k′ 6= k, ∃β ∈ B s.t. yk′ = β ◦ yk, then the distinguisher is not sound . (6.4)

Indeed, in Eq. (6.3), there is no way for the distinguisher to tell k∗ from k′, and in Eq. (6.4),

the distinguisher yields the same value for all the key guesses 1. Sections 6.3 and 6.4 give other,

more sophisticated, examples that satisfy the Markov condition.

Example 6.2. In the same scenario as in Example 6.1, consider the bit-dropping strategy (called

7LSB in [34] and used in [72, 89]). Then e.g., yi = (k ⊕ ti)[1 : 7] (the first seven bit components)

does not satisfy the Markov condition. Note that the leakage model in this example intentionally

discards some information, hence may not be satisfactory [72].

1 We refer the interested reader to the work done in [91, Sec. 3]. We note that yi = k ⊕ ti does not lead to a

sound distinguisher, as for all k′, x 7→ x⊕ k′ is bijective, and maps yk to yk⊕k′ . On the contrary, there is no

bijection β such that for all t, wH(k ⊕ t) = β(wH(k ⊕ k′ ⊕ t)). So the choice yi = wH(k ⊕ ti) is sound.
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Let k̃ be the key estimate that maximizes a distinguisher D given x̃ and t̃, i.e.,

k̃ = arg max
k∈K

D(x̃, ỹ) (6.5)

where K is the key space.

We also assume that leakage values are quantized1 in a suitable finite set X. Letting Y denote

the discrete sensitive value space, we have x̃ ∈ Xq̃ and ỹ ∈ Yq̃. The actual probability densities

being unknown, the attacker estimates them online, during the attack, from the available data

in the sequences x̃ and ỹ (via t̃), by counting all instances of possible values of x ∈ X and y ∈ Y:

P̃(x) =
1

q̃

q̃∑
i=1

1x̃i=x, (6.6)

P̃(y) =
1

q̃

q̃∑
i=1

1ỹi=y, (6.7)

P̃(x, y) =
1

q̃

q̃∑
i=1

1x̃i=x,ỹi=y, (6.8)

P̃(x|y) =

∑q̃
i=1 1x̃i=x,ỹi=y∑q̃
i=1 1ỹi=ỹ

=
P̃(x, y)

P̃(y)
, (6.9)

where 1A denotes the indicator function of A: 1A = 1 if A is true and = 0 otherwise.

Definition 6.1 (Empirical Mutual Information). The empirical mutual information is defined

as

Ĩ(x̃, ỹ) =
∑

x∈X,y∈Y

P̃(x, y) log2

P̃(x, y)

P̃(x)P̃(y)
, (6.10)

which can also be written as

Ĩ(x̃, ỹ) = H̃(x̃)− H̃(x̃|ỹ), (6.11)

where the empirical entropies are defined as

H̃(x̃) =
∑
x∈X

P̃(x) log2

1

P̃(x)
(6.12)

and

H̃(x̃|ỹ) =
∑

x∈X,y∈Y

P̃(x, y) log2

1

P̃(x|y)
. (6.13)

These quantities are functions of the sequences x̃ and ỹ since P̃(x, y) is a function of x̃ and ỹ.

They also depend on the key guessed value k, via the expression of ỹ.

1Some side-channels are discrete by nature, such as the timing measurements (measured in units of clock

period). In addition, oscilloscopes or data acquisition appliances rely on ADCs (Analog to Digital Converters),

which usually sample a continuous signal into a sequence of integers, most of the time represented on 8 bits

(hence X = F8
2).
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6.2.2 Mathematical Derivation

In this subsection, we show that MIA coincides with the maximum likelihood expression where

leakage probabilities P are replaced by online estimated probabilities P̃.

Definition 6.2 (Success Rate [82, Sec. 3.1]). The success rate (averaged over all possible secret

key values) is defined as:

SR =
1

2n

2n−1∑
k=0

Pk(k̃ = k). (6.14)

Here we follow a frequentist approach. An equivalent alternative Bayesian approach would

be to assume a uniform prior key distribution [39].

Theorem 6.1 (Maximum Likelihood [20]). Let ỹ = ϕ(f(k, t̃)). The optimal key estimate that

maximizes the success rate (6.14) is:

k̃ = arg max
k

P(x̃|ỹ). (6.15)

Proof. We give here a formal proof, which nicely relates to Definition 6.2. Straightforward

computation yields:

SR =
1

2n

2n∑
k=1

∑
x̃,̃t

Pk(x̃, t̃) 1k=k̃ (6.16)

=
1

2n

2n∑
k=1

∑
x̃,̃t

P(x̃|ỹ = ϕ(f(k, t̃))) P(t̃) 1k=k̃ (by (6.2) & Assumption 6.1) (6.17)

=
1

2n(q̃+1)

2n∑
k=1

∑
x̃,̃t

P(x̃|ỹ = ϕ(f(k, t̃))) 1k=k̃ (6.18)

=
1

2n(q̃+1)

∑
x̃,̃t

P(x̃|ỹ = ϕ(f(k = k̃, t̃))). (6.19)

Thus, for each given sequences x̃, t̃ maximizing the success rate amounts to choosing k = k̃ so

as to maximize P(x̃|ỹ) = P(x̃|ỹ = ϕ(f(k = k̃, t̃))):

k̃ = arg max
k

P(x̃|ỹ). (6.20)

When no profiling is possible the conditional distribution

P(x̃|ỹ) =

q̃∏
i=1

P(x̃i|ỹi) (6.21)
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is unknown to the attacker. Therefore, Theorem 6.1 is no longer practical and we require a

universal1 version of it.

Definition 6.3 (Universal Maximum Likelihood). Let ỹ = ϕ(f(k, t̃)). The universal maximum

likelihood (UML) key estimate is defined by

k̃ = arg max
k

P̃(x̃|ỹ), (6.22)

where

P̃(x̃|ỹ) =

q̃∏
i=1

P̃(x̃i|ỹi). (6.23)

Here P̃, defined in Equations (6.9), (6.8), (6.7) and (6.6), is estimated directly from the

available data, that is, from the actual values in the sequences x̃ and ỹ.

Theorem 6.2 (UML is MIA). The universal maximum likelihood key estimate is equivalent to

the mutual information analysis (MIA) [34]:

k̃ = arg max
k

P̃(x̃|ỹ) = arg max
k

Ĩ(x̃, ỹ), (6.24)

where Ĩ(x̃, ỹ) is the universal mutual information (definition 6.1).

Proof. Rearrange the likelihood product according to values taken by the x̃i and ỹi’s:

P̃(x̃|ỹ) =

q̃∏
i=1

P̃(x̃i|ỹi) =
∏

x∈X,y∈Y

P̃(x|y)ñx,y (6.25)

where ñx,y is the number of components (x̃i, ỹi) equal to (x, y), i.e.,

ñx,y =

q̃∑
i=1

1x̃i=x,ỹi=y = q̃ P̃(x, y). (6.26)

The second inequality in Eqn. (6.25) is based on a counting argument: some events collide, i.e.,

we have (xi, yi) = (xi′ , yi′) for i 6= i′. The exponent ñx,y is meant to enumerate all such possible

collisions. This gives

P̃(x̃|ỹ) =
∏

x∈X,y∈Y

P̃(x|y)q̃ P̃(x,y) = 2−q̃H̃(x̃|ỹ), (6.27)

(see Definition 6.1). Therefore, maximizing P̃(x̃|ỹ) amounts to minimizing the empirical condi-

tional entropy H̃(x̃|ỹ). Since H̃(x̃) is key-independent, this in turn amounts to maximizing the

empirical mutual information Ĩ(x̃, ỹ) = H̃(x̃)− H̃(x̃|ỹ).

1Universal, in the information theoretic sense of the word, means: computed from the available data without

prior information.
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From Theorem 6.2 we can conclude that MIA is “optimal” as a universal maximum likelihood

estimation. This constitutes a rigorous proof that mutual information is a relevant tool for

key recovery when the leakage is unknown (in the case where the model satisfies the Markov

condition) as was already hinted in [34, 66, 72, 88].

Corollary 6.1. MIA coincides with the ML distinguisher as q̃ →∞.

Proof. By the law of large numbers, the online probability P̃ converges almost surely to the

exact probability of the leakage as q̃ →∞. For any fixed values of x̃ ∈ X, ỹ ∈ Y,

P̃(x̃|ỹ) −→
q̃→∞

P(x̃|ỹ) a.s.

Thus in the limit, MIA coincides with the maximum likelihood rule.

Remark 6.1. It is well known [66] that if the mapping t̃ 7→ ỹ = ϕ(f(k, t̃)) is one-to-one (for all

values of k), then MIA cannot distinguish the correct key. This is also clear from Eq. (6.4) in

footnote 1: given two different keys k, k′, there is a bijection between yk and yk′ , which is simply

β = yk′ ◦ y−1
k . In our present setting this is easily seen by noting that when ỹ = ϕ(f(k, t̃)),

P̃(x|y) =

∑q̃
i=1 1x̃i=x,ỹi=y∑q̃
i=1 1ỹi=y

=

∑q̃
i=1 1x̃i=x,t̃i=t∑q̃
i=1 1t̃i=t

(6.28)

is independent of the value k. Note that this is true for any fixed number of measurements q̃

during the attack.

6.2.3 MIA Faster Than ML Distinguisher

Now that we have shown that the Universal Maximum Likelihood distinguisher is strictly

equivalent to the MIA distinguisher, we show that the use of the MIA Distinguisher is cheaper

in terms of calculations than the ML distinguisher. Both distinguishers require the knowledge

of P̃, the online estimation of the leakage probability. However, the summation is not exactly

the same:

• the ML distinguisher consists in a sum of q̃ logarithms, whereas

• the MIA involves a sum over |X| × |Y| logarithms1.

This means that computing a ML requires q̃ logarithm computations while computing a MIA

requires |X| × |Y| logarithm computations. As long as |X| × |Y| is smaller than q̃, which is

verified for practical signal-to-noise values, the MIA is faster than the ML in terms of logarithm

computations. Furthermore, in section 6.5.2, we present a fast algorithm to compute MIA; it

takes advantage of precomputations, which are similar to that already presented in [49].

1In practice, logarithms require a high computational power, hence the number of calls to this function shall

be minimized.
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6.3 Non-Gaussian Noise Challenge

In this section, we show two examples where MIA outperforms CPA due to non-Gaussian noise.

The first example presented in subsection 6.3.1 is an academic (albeit artificial) example built

in order to have the success rate of CPA collapse. The second example in subsection 6.3.2 is

more practical.

6.3.1 Pedagogical Case-study

We consider a setup where the variables are X = Y +N , with Y = ϕ(f(k∗, T )), where Y ∈ {±1},
and N ∼ U({±σ}) (meaning that N takes values −σ and +σ randomly, with probabilities 1

2

and 1
2 ), where σ is an integer. Specifically, we assume that k∗, t ∈ Fn2 , with n = 4, and that

f : Fn2 × Fn2 → Fm2 is a (truncated version) of the SERPENT Sbox1 fed by the XOR of the two

inputs (key and plaintext nibbles) and ϕ = wH is the Hamming weight (which reduces to the

identity F2 → F2 if m = 1 bit).

The optimal distinguisher (Theorem 6.1) in this scenario has the following closed-form

expression:

D(x̃, t̃) = arg max
k

P(x̃|̃t, k) = arg max
k

1

2q̃

q̃∏
i=1

δ(x̃i, t̃i, k), (6.29)

where δ : Fm2 × Fn2 × Fn2 → {0, 1} is defined as:

δ(x, t, k) =


1 if x− ϕ(f(k, t)) = −σ,
1 if x− ϕ(f(k, t)) = +σ,

0 otherwise.

The evaluation of this quantity requires the knowledge of σ, which by definition is an unknown

quantity related to the noise. Our simulations have been carried out as follows.

1. Generate two large uniformly distributed random vectors t̃ and ñ of length q̃;

2. Deliver the pair of vectors (t̃, x̃ = ϕ(f(k∗, t̃)) + ñ) to the attacker;

3. Estimate averages and PMFs (probability mass functions) of this data for q̃step (= 1), then

for 2q̃step, 3q̃step and so on;

1The least significant bit S0 of the PRESENT Sbox S is not suitable because one has ∀z ∈ F4
2, S0(z) =

S0(z ⊕ 0x9) = ¬S0(z ⊕ 0x1) = ¬S0(z ⊕ 0x8). As in Eq. (6.3) of footnote 1, ties occur: it is not possible to

distinguish k∗, k∗ ⊕ 0x9, k∗ ⊕ 0x1, k∗ ⊕ 0x8 (the corresponding bijections are respectively x 7→ x and x 7→ 1− x).

Therefore, we consider component 1 instead of 0, which does not satisfy such relationships.
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Figure 6.2: Success rate for σ = 2 (left) and σ = 4 (right), when Y ∼ U({±1}) and N ∼ U({±σ})

4. At each multiple of q̃step, carry out CPA and MIA.

The attacks are reproduced 100 times to allow for narrow error bars on the estimated success

rate.

Remark 6.2. We do not consider linear regression analysis because the model is not parametric.

The only unknown parameter is related to the noisy part of the leakage, not its deterministic

part.

Simulation results are given in Fig. 6.2 for σ = 2 and σ = 4. The success rate of the “optimal”

distinguisher (the maximum likelihood distinguisher of Theorem 6.1 – see Eqn. (6.29)) is drawn

in order to visualize the limit between feasible (below) and unfeasible (above) attacks. It can

be seen that MIA is almost as successful as the maximum likelihood distinguisher, despite

the knowledge of the value of σ is not required for the MIA. In addition, one can see that

the CPA performs worse, and all the worst as σ increases. In this case, the CPA is not the

optimal distinguisher (as e.g., underlined in [39, Theorem 5]) since the noise is not Gaussian

(but discrete).

Remark 6.3. Another attack strategy for the leakage model presented in this subsection would

simply be to filter out the noise. One could for instance dispose of all traces where the leakage is

negative. The remaining traces (half of them) contain a constant noise N = +σ > 1, hence the

signal Y can be read out without noise. Such attack, known as the subset attack [62, Sec. 5.2],

is not far from the optimal one (Eqn. (6.29)). It actually does coincide with the optimal attack

if the attacker recovers Y from both subsets {i/Xi > 0} and {i/Xi < 0}. Still it can noted that

MIA is very close to being optimal for this scenario.

Asymptotics. We can estimate the theoretical quantities for CPA and MIA as follows. We

have Var(Y ) = 1 and Var(N) = σ2, hence a signal to noise ratio SNR = 1/σ2. In addition, X

can only take four values: ±1± σ. Since E(XY ) = E(X2) + E(Y N) = V ar(X) + E(Y )E(N) =

1 + 0× 0 = 1, the correlation is simply ρ(X,Y ) = 1/σ, which vanishes as σ increases.
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However, for σ > 1, the mutual information I(X,Y ) = 1 bit. Indeed, H(X) = −∑x∈{±1±σ} P(X =

x) log2 P(X = x) = −∑x∈{±1±σ}
1
4 log2

1
4 = log2 4 = 2 bit, H(X|y = ±1) = log2 2 = 1 bit, so

I(X,Y ) = log2 4−∑y∈{±1} P(X = x) log2 2 = log2 4− log2 2 = 1 bit, irrespective of σ ∈ N.

The important fact is that the mutual information does not depend on the value of σ.

Accordingly, it can be seen from Fig. 6.2 that the success rate of the MIA is not affected by the

noise variance. This explains why MIA will outperform the CPA for large enough σ.

6.3.2 Application to Bitslice PRESENT

Bitslicing algorithms is a common practice. This holds both for standard [70] (e.g., AES) and

lightweight [56] (PRESENT, Piccolo) block ciphers. Here the distinguishers must be single-bit:

Y ∈ {±1}. However, compared to the case of Sec. 6.3.1, the noise takes now more than two

values: On an 8-bit computer, the 7 other bits will leak independently. They are, however,

not concerned by the attack, and constitute algorithmic noise N which follows a binomial law

α×B(7, 1
2 ), where α is a scaling factor.

Figure 6.3: Success rate for the attack of a bitsliced algorithm on an 8-bit processor, where 7

bits make up algorithmic noise, and have weight 0.5, 1.0 (top) and 0.8 and 2.0 (bottom).

Simulation results for various values of α are in Fig. 6.3. Interestingly, MIA is efficient for

the cases where the leakage Y ∼ U({±1}) is not altered by the addition of noise: For α = 0.8

and α = 2.0, it is still possible to tell unambiguously from X what is the value of Y . On the

contrary, when α = 0.5 or α = 1.0, the function (Y,N) 7→ X = Y +N is not one-to-one. For
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6.4 Partially Unknown Model Challenge

instance, in the case α = 1.0, the value X = 2 can result as well from Y = −1 and N = 3, or

Y = +1 and N = 2. (see Fig. 6.4).

α = 1.0

X

P(X|Y = −1)

α = 0.8

X

Caption: P(X|Y = +1)

Figure 6.4: Illustration bijectivity (left) vs. non-injectivity (right) of the leakage function.

6.4 Partially Unknown Model Challenge

Veyrat-Charvillon and Standaert [86, section 4] have already noticed that MIA can outperform

CPA if the model is drifted too far away from the real leakage. However, LRA is able to make

up for the model drift of [86] (which considered unevenly weighted bits). In this section, we

challenge CPA and LRA with a partially unknown model. We show that, in our example, MIA

has a much better success rate than both CPA and LRA.

For our empirical study we used the following setup:

X = ψ(Y (k∗)) +N, Y (k∗) = wH(Sbox(k∗ ⊕ T )),

where Sbox is the AES substitution box, ψ is the non-linear function given by:

x 0 1 2 3 4 5 6 7 8

ψ(x) +1 +2 +3 +4 0 −4 −3 −2 −1

which is unknown to the attacker, and N is a centered Gaussian noise with unknown standard

deviation σ. The non-linearity of ψ is motivated by [60], where it is discussed that a linear

model favors CPA over MIA.

The leakage is continuous due to the Gaussian noise. In order to discretize the leakage to

obtain discrete probabilities, we used the binning method. We conducted MIA with several

different binning sizes:

B = {[(i− 1)×∆x, i×∆x[, i ∈ Z} for ∆x = {1, 3, 5, 7, 9}. (6.30)

In this chapter, we do not try to establish any specific result about binning, but content ourselves

to present empirical results obtained with different bin sizes.
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We have carried out LRA for the standard basis in dimension d = 9 and higher dimensions

d = {37, 93, 163}. More precisely, for d = 9 we have ỹ′(k) = (~1, ỹ1(k), ỹ2(k), . . . , ỹ8(k)) with

ỹj(k) = [Sbox(k ⊕ T )]j where [·]j : Fn2 → F2 is the projection mapping onto the jth bit. For

d = 37 the attacker additionally takes into consideration the products between all possible ỹj

(1 ≤ j ≤ 8), i.e., ỹ1 · ỹ2, ỹ1 · ỹ3, ỹ1 · ỹ4 and so on. Consequently, d = 93 considers additionally

the product between 3 ỹ’s and d = 163 includes also all possible product combinations with 4

columns. See [37] for a detailed description on the selection of basis functions.

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 3

Figure 6.5: Success rate for σ ∈ {0, 1, 2, 3} when the model is unknown

Fig. 6.5 shows the success rate using 100 independent experiments. Perhaps surprisingly,

MIA turns out to be more efficient than LRA. Quite naturally, MIA and LRA become closer as

the the variance of the independent measurement noise N increases. It can be seen that LRA

using higher dimension requires a sufficient number of traces for estimation (for d = 37 around
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100, d = 93 around 150, and d = 137 failed below 200 traces). Consequently, in this scenario

using high dimensions is not appropriate, even if the high dimension in question might fit the

unknown function ψ.

One reason why MIA outperforms CPA and LRA in this scenario is that the function ψ was

chosen to have a null covariance. Moreover, one can observe that the most efficient binning

size depends on the noise variance and thus on the scattering of the leakage. As σ grows larger

values of ∆ should be chosen. This is contrary to the suggestions made in [34], which proposes

to estimate the probability distributions as good as possible and thus to consider as many bins

as there are distinct values in the traces. In our experiments, when noise is absent (σ = 0) the

optimal binning size is ∆ = 1 which is equivalent to the step size of Y , while for σ = 2 the

optimal binning is ∆ = 5 (see Fig. 6.5(c)).

(a) ∆ = 1, correct key guess (b) ∆ = 1, false key guess

(c) ∆ = 5, correct key guess (d) ∆ = 5, false key guess

Figure 6.6: Estimated P̃(X|Y ) using 40 traces for σ = 2 (see Fig. 6.5(c))

It can be seen that using 40 traces the success rate of MIA with ∆ = 5 reaches 90%, whereas
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using ∆ = 1 it is only about 30%. To understand this phenomenon, Fig. 6.6 displays the

estimated P̃(x|y) in a 3D histogram for the correct key and one false key hypothesis, such

that MIA is able to reveal the correct key using ∆ = 5 but fails for ∆ = 1. Clearly, the

distinguishability between the correct and false key is much higher in case of ∆ = 5 than for

∆ = 1.

More precisely, as the leakage is dispersed by the noise the population of bins of the false key

becomes similar to the the ones of the correct key when considering smaller binning size (compare

Fig. 6.6a and 6.6b). In contrast, the difference is more visible when the leakage is quantified

into larger bins (compare Fig. 6.6c and 6.6d). Therefore, even if the estimation of Ĩ(x̃, ỹ) using

P̃(x|y) for larger ∆ is more coarse and thus looses some information, the distinguishing ability

to reveal the correct key is enhanced.

6.5 Fast Computations

In this section, we explain how we compute CPA and MIA in a faster way. We first show an

algorithm for CPA, then we move to MIA.

6.5.1 Fast computation of CPA

We recall here the definition of empirical CPA:

ρ(X,Y (k)) =
1
m

∑m
i=1 xiyi(k)−

(
1
m

∑m
i=1 xi

) (
1
m

∑m
i=1 yi(k)

)√
1
m

∑m
i=1 x

2
i −

(
1
m

∑m
i=1 xi

)2√ 1
m

∑m
i=1 y

2
i (k)−

(
1
m

∑m
i=1 yi(k)

)2
=

m
∑m
i=1 xiyi(k)− (

∑m
i=1 xi) (

∑m
i=1 yi(k))√

m
∑m
i=1 x

2
i − (

∑m
i=1 xi)

2
√
m
∑m
i=1 y

2
i (k)− (

∑m
i=1 yi(k))

2
, (6.31)

where yi(k) = ϕ(f(k, ti)). For the fast computation the following accumulators are required:

• sx[t] =
∑
i/ti=t

xi, the sum of leakages for a common t;

• sx2[t] =
∑
i/ti=t

x2
i , the sum of leakage squares for a common t;

• qt[t] =
∑
i/ti=t

1, the number of t which occurred.

We detail the various terms in the two next paragraphs.
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6.5.1.1 Averages

First, we simply have:

m∑
i=1

xi =
∑
t

sx[t],

which is key independent. Second:

m∑
i=1

yi =
∑
t

∑
i/ti=t

yi

=
∑
t

∑
i/ti=t

ϕ(f(k, ti))

=
∑
t

ϕ(f(k, ti))qt[t],

which, quite surprisingly, is key independent.

6.5.1.2 Scalar product

The scalar product can be written the following way:

m∑
i=1

xiyi =
∑
y

∑
i/yi=y

xiyi

=
∑
y

y
∑
i/yi=y

xi

=
∑
y

y
∑

i/ϕ(f(k,ti))=y

xi

=
∑
y

y sx′[y],

where sx′[y] =
∑
t/ϕ(f(k,t))=y sx[t]. This optimization is certainly useful for long traces, because

it minimizes the number of multiplications (precisely, only 2m multiplications are done). But,

we need 2m temporary accumulators to save the sx′[y].

However, in monosample traces, we can also use this more simple computation:

m∑
i=1

xiyi =
∑
t

∑
i/ti=t

xiϕ(f(k, ti))

=
∑
t

∑
i/ti=t

ϕ(f(k, ti))xi

=
∑
t

ϕ(f(k, ti))
∑
i/ti=t

xi

=
∑
t

ϕ(f(k, ti))sx[t].
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6.5.2 Fast computation of MIA

We setup a structure for the PMF, namely an array of hash tables, denoted as PMF[t][x], where

t and x live in the sets Fn2 and Im(ϕ ◦ f) + supp(N). So, let us say we have accumulated q̃

leakage pairs (t, x).

At this stage, we have the joint probability given by

P̃(t, x) =
1

q̃
PMF[t][x].

Now, when using MIA as a distinguisher, we need to compute PMF[y][x], where y ∈ Fn2
(and we expect the (t, k) 7→ y = ϕ(f(k, t)) function to be non-injective [91], which is the case

in the previous sections). The value PMF[y][x] implicitly depends upon a key guess k, as:

PMF[y][x] = PMF[y = ϕ(f(k, t))][x]. Now, instead of computing P̃(x, y) through PMF[y][x]

explicitly for each key guess, we are able to reformulate

P̃(y, x) =
∑
t

P̃(t, y, x) =
∑

t/ϕ(f(k,t))=y

P̃(t, x) =
1

q̃

∑
t/ϕ(f(k,t))=y

PMF[t][x].

Thus, we can reuse the tabulated PMF[t][x] for each key guess, which requires thus much less

computations as a straightforward implementation.

Recall the expression of the estimated mutual information:

Ĩ(x̃, ỹ) =
∑
x,y

P̃(x, y) log2

P̃(x, y)

P̃(x) P̃(y)
.

The value for P̃(x) is identical for all key hypotheses and thus can be factored out. Indeed,

this quantity is a scaling constant which could be omitted. But for the sake of completeness, we

have

P̃(x) =
∑
t

P̃(t, x) =
1

q̃

∑
t

PMF[t][x].

Lastly, we need to evaluate P̃(y). This is simply done as:

P̃(y) =
∑
x

P̃(x, y),

Algorithm 2 illustrates the fast computation process for MIA while Algorithm 3 computes

the success rate of MIA. It calls the function MIA-Distinguisher as a subroutine. This last

function corresponds to the of the computation of fast MIA (Alg. 2). However, it is optimized

this way:
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Algorithm 2: Fast computation algorithm for MIA

input : x̃ a set of q̃ traces which take discrete values,

t̃ a corresponding set of q̃ plaintexts/ciphertexts

output : (Ĩ(x̃, ỹ(k)))k∈K

// From x̃ and t̃, build a hash table PMF[t][x] (i.e., an histogram)

1 for i ∈ {1, . . . , q̃} do

2 PMF[t̃i][x̃i] += 1

3 end

4 for x ∈ X do

5 P̃(x) = 0 // P̃(x) holds mP̃(x), cf. Eqn. (6.6)

6 for t ∈ Fn2 do

7 P̃(x) += PMF[t][x]

8 end

9 end

10 for k ∈ K do // Key enumeration

11 ∀x ∈ X, y ∈ Y, P̃(x, y) = 0 // P̃(x, y) holds mP̃(x, y), cf. Eqn. (6.8)

12 for t ∈ Fn2 do

13 for x ∈ X do

14 P̃(x, ϕ(f(k, t))) += PMF[t][x] // y = ϕ(f(k, t)), cf. Eqn. (6.1)

15 end

16 end

17 Ĩ(x̃, ỹ(k)) = 0

18 for y ∈ Y do

19 P̃(y) = 0 // P̃(y) holds mP̃(y), cf. Eqn. (6.7)

20 for x ∈ X do

21 P̃(y) += P̃(x, y)

22 end

23 for x ∈ X do

// Nota bene: (P̃(x) = 0 ∨ P̃(y) = 0) =⇒ P̃(x, y) = 0

24 if P̃(x) 6= 0 and P̃(y) 6= 0 then

25 Ĩ(x̃, ỹ(k)) += P̃(x,y)
m log2

(
mP̃(x,y)

P̃(x)P̃(y)

)
26 end

27 end

28 end

29 end

30 return (Ĩ(x̃, ỹ(k)))k∈K // As in Eqn. (6.10)
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Algorithm 3: Computation of the MIA success rate

input :

• x̃ a set of q̃ traces which take discrete values,

• t̃ a corresponding set of q̃ plaintexts/ciphertexts,

• k∗ ∈ K, the correct key,

• q̃step, typically of the order of q̃/100 (number of times the success rate is computed),

• M , the number of experiments

output : ŜRk∗ , the empirical rate of MIA (computed as per Eqn. (6.10))

1 ŜRk∗ = {0, . . . , 0} // Initialization of m/mstep values to zero

2 foreach experiment ∈ {1, . . . ,M} do

3 PMF[t][x] = 0,∀t ∈ Fn2 , x ∈ X

4 foreach step ∈ {1, . . . , q̃/q̃step} do

5 for i ∈ {1 + (step− 1)× q̃step, . . . , step× q̃step} do

6 PMF[ti][xi] += 1

7 end

8 for k ∈ K do // Key enumeration

9 + + scorek = MIA-Distinguisher(PMF, k) + +

// See MIA-Distinguisher

10 scorek = MIA-Distinguisher(PMF, k) // Function at page 116

11 end

12 if arg maxk∈K scorek = k∗ then

13 ŜRk∗ [step] += 1/M

14 end

15 end

16 end

17 return ŜRk∗ // The empirical Success Rate
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• The values of P̃(x) and q̃ do not impact the result, hence they are not computed. This

means that lines 4–8 of Alg. 2 are not part of Alg. MIA-Distinguisher, and that in the

accumulation of Ĩ(x̃, ỹ(k)) at line 15 of Function MIA-Distinguisher, the terms P̃(x) and

q̃ (present at line 25 of Alg. 2), are simply dropped.

• In the line 17 of MIA-Distinguisher, we subtract the term which corresponds to the

denominator P̃(y) of line 25 of Alg. 2. Notice that all the parameters of the logarithms

are now integers. We can thus tabulate the logarithms in a table log[i], for i = 1, . . . , q̃.

Incidentally, the basis of the logarithm can be arbitrarily chosen. If q̃ is really large, say

larger than 10 millions, then log[i] can be precomputed from all i < 106, and evaluated

otherwise, since anyhow the call of log for large values is restricted to the case of P̃(y)

which is expected to be way larger than any P̃(x, y).

6.5.3 Standard computation algorithm for MIA

The standard computation for MIA unfolds as in Alg. 4. This algorithm outputs exactly the

same as Alg. 2 but is slower for two reasons:

1. All the q̃ samples are scanned for each key hypothesis;

2. Probability mass functions are normalized. Now, divisions are costly, and also they require

a conversion from integer to floating point numbers;

6.6 Conclusion

We derived MIA anew as the distinguisher which maximizes the success rate when the exact

probabilities are replaced by online estimations. This suggests that MIA is an interesting

alternative when the attacker is not able to exactly determine the link between the measured

leakage and the leakage model. This situation can either result from an unknown deterministic

part or from an unknown noise distribution. We have proved that, if the number of traces is

greater than the number of possible values of x and y, the MIA is faster in terms of logarithm

computations.

We have presented two practical case-studies in which MIA can indeed be more efficient

than CPA or LRA. The first scenario is for non-Gaussian noise but known deterministic leakage

model. The second scenario is for Gaussian noise with unknown deterministic leakage model,
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Function MIA-Distinguisher

input : PMF[t][x] ∈ NFn2×X, a non-normalized bi-dimensional histogram,

k ∈ K, a key guess

output : A score, affinely proportional to MIA (computed as per Eqn. (6.10)), with the

same (irrelevant) affine scaling factors for all the keys

1 ∀x ∈ X, y ∈ Y, P̃(x, y) = 0 // P̃(x, y) holds mP̃(x, y), cf. Eqn. (6.8)

2 for t ∈ Fn2 do

3 for x ∈ X do

4 P̃(x, ϕ(f(k, t))) += PMF[t][x] // y = ϕ(f(k, t)), cf. Eqn. (6.1)

5 end

6 end

7 Ĩ(x̃, ỹ(k)) = 0 // Quantity actually affine with Ĩ(x̃, ỹ(k))

8 for y ∈ Y do

9 P̃(y) = 0 // P̃(y) holds mP̃(y), cf. Eqn. (6.7)

10 for x ∈ X do

11 P̃(y) += P̃(x, y)

12 end

13 for x ∈ X do

14 if P̃(x, y) 6= 0 then // P̃(x, y) 6= 0 =⇒ (P̃(x) 6= 0 ∧ P̃(y) 6= 0)

15 Ĩ(x̃, ỹ(k)) += P̃(x, y) · log[P̃(x, y)]

16 end

17 Ĩ(x̃, ỹ(k)) −= P̃(x) · log[P̃(y)]

18 end

19 end

20 return Ĩ(x̃, ỹ(k))
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Algorithm 4: Standard computation algorithm for MIA

input : x̃ a set of m traces which take discrete values,

t̃ a corresponding set of m plaintexts/ciphertexts

output : (Ĩ(x̃, ỹ(k)))k∈K

1 Ĩ(x̃, ỹ(k)) = 0, ∀x ∈ X, k ∈ K

2 for k ∈ K do // Key enumeration

// From x̃ and ỹ, build a hash table PMF[y][x] (i.e., an histogram)

3 for i ∈ {1, . . . ,m} do

4 PMF[ϕ(f(k, ti))][xi] += 1 // y = ϕ(f(k, t)), cf. Eqn. (6.1)

5 end

6 ∀x ∈ X, y ∈ Y, P̃(x, y) = 0 // cf. Eqn. (6.8)

7 for y ∈ Y do

8 for x ∈ X do

9 P̃(x, y) = 1/m PMF[y][x]

10 end

11 end

12 for y ∈ Y do

13 P̃(y) = 0 // cf. Eqn. (6.7)

14 for x ∈ X do

15 P̃(y) += P̃(x, y)

16 end

17 end

18 for x ∈ X do

19 P̃(x) = 0 // cf. Eqn. (6.7)

20 for y ∈ Y do

21 P̃(x) += P̃(x, y)

22 end

23 end

24 for y ∈ Y do

25 for x ∈ X do

// Nota bene: (P̃(x) = 0 ∨ P̃(y) = 0) =⇒ P̃(x, y) = 0

26 if P̃(x) 6= 0 and P̃(y) 6= 0 then

27 Ĩ(x̃, ỹ(k)) += P̃(x, y) log2

(
P̃(x,y)

P̃(x)P̃(y)

)
28 end

29 end

30 end

31 end

32 return (Ĩ(x̃, ỹ(k)))k∈K // As in Eqn. (6.10)
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where one leverages a challenging leakage function which results in failure for CPA, and in harsh

regression using LRA. Incidentally, this example is in line with the work carried out by Whitnall

and Oswald [88] where a notion of relative margin is used to compare attacks. Our findings go

in the same direction using the success rate as a figure of merit to compare attacks.

Finally, we extended the computation trick given for CPA to MIA avoiding the histogram

estimation of conditional probabilities for each sub key individually, improving the speed of the

computation.

We note that all our results are ϕ-dependent. It seems obvious that the closer we are to the

actual leakage, the better the success rate will be. An open question is to find an analytic way

to determine the function model that will provide the highest success rate.

Last, we note that our analysis is monovariate: we consider a leakage which consists in only

one value. A future work would be to extend our results to mutivariate attacks.

Another topic of research is to carry out practical examples where MIA beats CPA. An

viable option would be the exploitation of some specific timing attacks where the behaviour of

the processor changes at every start-up.
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Introduction

The field of cryptography is currently very sensitive as it deals with data protection and safety.

Thus, in order to assess the security of cryptographic devices, it is crucial to know and test

their weaknesses. For example, the Advanced Encryption Standard (AES) [26] is renowned

as trustworthy from a mathematical point of view—there is currently no realistic way to

cryptanalyze the AES-128. However, it is possible to break the 128-bit secret key byte by byte

using side-channel analysis (SCA). SCA exploits the physical fact that the secret key leaks

some information out of the device boundary through various “side-channels” such as power

consumption or timing—number of clock cycles to perform a given operation. These leakages,

correctly analyzed by SCA, yield the secret key of a device.

A good side-channel attack needs a good leakage model. Timing, for example, can be modeled

easily when the implementation is unbalanced: Several successful attacks [13, 14, 75, 76] exploit

a timing leakage in the conditional extra-reductions of Montgomery modular multiplications.

Some conditional operations can also happen in AES, e.g. in field operations, as for instance

discussed in [27, Alg. 1].

Even when the code is balanced—a recommended secure coding practice—some residual un-

balances in timing can result from the hardware which executes the code. Indeed, processors

implement speed optimization mechanisms such as memory caching and out-of-order execution.

As a consequence, it is not possible to predict with certainty how timing leaks information. The

attacker is then led to make predictions about the way the device leaks.

In this part, we consider side-channel attacks that are performed in two phases:

1. a profiling phase where the attacker accumulates leakage from a device with a known

secret key;

2. an attacking phase where the attacker accumulates leakage from the device with an

unknown secret key.

This type of attack is known as a template attack [20]. It has been shown [20] to be very efficient

under three conditions: (a) leakage samples are independent and identically distributed (i.i.d.);

(b) the noise is additive white Gaussian; and (c) the secret key leaks byte by byte, which enables
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a divide-and-conquer approach. For some side-channels, such as power or electromagnetic

radiations, condition (b) is met in practice. However, for timing attacks, the noise cannot be

Gaussian as timing is discrete. Moreover, the noise source is non-additive in this case, since it

arises from complex replacement policies in caches and processor-specific on-the-fly instructions

reordering.

The first proposed profiled timing attack is the seminal timing attack of Kocher [44]. The

same methodology can be used on AES, as noted by Bernstein in 2005 [5]. Further works used

the same method [8, 69, 87]. To our best knowledge, all these works consist in profiling moments,

such as the average timing under a given plaintext and key. However, it is known [20] that the

best attacks should use maximum likelihood1

In this part, as illustrated in Tab. 6.1, we focus on a profiling where the distribution is

characterized and used as such, and is not reduced to its moments. The attacker computes

distributions using histogram methods. These distributions are then used to recover the correct

secret key.

Table 6.1: State-of-the-art on profiled timing attacks

Profiling method Reference articles

Moments [5, 8, 69, 87]

Distributions This part (Caution about empty bins)

The discrete nature of timing leakage leads to an empty bin issue which appears when a

data value in the attacking phase has never been seen during the profiling phase. Based on

profiling only, this data should have a zero probability, which can be devastating for the attack.

One known workaround is to use kernel distribution methods [64] to estimate probabilities since

the smoothing can be such that no empty bins remain. This method can however be seen as a

postprocessing in existing information. This alters therefore the data. In addition, this method

has very large computational complexity and its performance highly depends on ad-hoc choices

of several parameters such as kernel type and bandwidth. Moreover the estimation via the

kernel method depends on other parameters such as the choice of the kernel and the size of the

1We will explain in Subsec. 8.2.2 that in practice, maximum likelihood might not always perform better

than moment-based distinguishers in ideal situations (no noise), because the learning stage for probability mass

functions demands too many traces; besides an imperfect profiling is very detrimental to maximum likelihood

distinguishers, and affects less the moment-based distinguishers. However, in non-ideal situations, e.g., in the

presence of random delay kind of noise, maximum likelihood remains robust, where the model-based distinguishers

collapse (since they are value-based).
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kernel. In this part, we have decided to keep information as it comes as we focus on information

theoretic distinguishers.

Contributions In this part, we show that even when all abovementioned requirements (a),

(b), and (c) are not present, timing attacks with incomplete profiling can be achieved successfully

by adapting the maximum likelihood distinguisher and keeping the histogram method for

probabilities estimation. We build six different distinguishers, which are all good answers to

the empty bin issue. For some of them, new histograms are built, such that the empty bin

issue totally disappears. Furthermore, we compare these distinguishers and show which one

of them is the best in every specific context. We underline that, in practice, for a moderate

profiling with 256 000 offline measurements, the soft drop and the combined offline-online

profiling approaches are clearly the two best strategies: the AES key is typically extracted with

only about 2 000 online measurements, i.e., a complete break in about 0.2 ms. Finally, we

provide some theoretical results proving how optimal some of the distinguishers can be.

Organization The part is organized according to the following structure. In Chapter 7, we

first provide the mathematical tools to deal with the empty bins issue. Section 7.1 provides

mathematical tools to understand distinguishers and notations. Section 7.2 introduces new

distinguishers that are suitable in the context of empty bins. Section 7.3 provides simulations

for these distinguishers. In Chapter 8 we focus on the timing leakages for a specific implemen-

tation. Section 8.1 investigates real attacks on an ARM processor. Interestingly, all proposed

distinguishers work, albeit with very noticeably different performances. In section 8.2, some

interpolations of the obtained results in the presence of external measurement noise are derived.

Section 8.3 concludes for both chapters.
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Chapter 7

Methods to Solve the Empty-Bin

Issue
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7. METHODS TO SOLVE THE EMPTY-BIN ISSUE

A part of the work of this chapter has been presented at HASP 2018.
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7.1 Mathematical Derivations

The mathematical notations and assumptions presented here will also be used in Chapter 8.

7.1.1 Notations and Assumptions

We consider a side-channel attack with a profiling stage and use the following notations:

• during the profiling phase, a vector t̂ of q̂ text bytes is sent and the profiler garners a

vector of x̂ measurements;

• during the attacking phase, a vector t̃ of q̃ text bytes is sent and the attacker gathers a

vector x̃ of leakage measurements—also customarily known as traces;

• we use simplified notations t, q and x when discussing either profiling data or attacking

data;

• the probability of a vector x with i.i.d. components xi is denoted by P(x) =
∏
i P(xi);

• we define the following sets:

1. X̂, T̂, X̃ and T̃ are the sets of possible values of components x̂, t̂, x̃ and t̃, respectively;

2. X = X̂ ∪ X̃ and T = T̂ ∪ T̃;

3. K is the set of all possible values for the key k.

• k and t are made of n bits (in particular, they are “bytes” when n = 8).
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7.1 Mathematical Derivations

Here all sample components of one vector are i.i.d. and belong to some discrete set. Typically,

X is a finite subset of N and T is equal to {0, 1}n.

In the profiling stage, the secret key k̂∗ is known and variable. In the attacking phase, the

secret key k̃∗ is unknown but fixed. Further, we assume that xi depends only on ti and k∗ for

all i = 1, 2, . . . , q, in the form:

xi = ψ(ti ⊕ k∗) (i = 1, 2, . . . , q) (7.1)

where ⊕ is the XOR (exclusive or) operator and ψ is an unknown function which may contain

noise, masking and other hidden parameters1.

Furthermore, in this part, we use of the notation nx,t to denote the number of occurrences

of (x, t). Thus we can write

n̂x,t =
∑q̂
i=1 1x̂i=x,t̂i=t n̂x =

∑q̂
i=1 1x̂i=x,

ñx,t =
∑q̃
i=1 1x̃i=x,t̃i=t ñx =

∑q̃
i=1 1x̃i=x.

where 1A = 1 if A is true, = 0 otherwise.

Definition 7.1 (Probabilities). We define three2 different types of probabilities P, P̂ and P̃. P
is the actual (real) underlying probability distribution, but it is generally not available and has

to be estimated by either P̂ or P̃.

• P̂ is computed using the profiling data:

P̂(x, t) =
1

q̂

q̂∑
i=1

1x̂i=x,t̂i=t =
n̂x,t
q̂
, (7.2)

P̂(x) =
1

q̂

q̂∑
i=1

1x̂i=x =
n̂x
q̂
. (7.3)

• P̃ is computed using the attacking data:

P̃(x, t) =
1

q̃

q̃∑
i=1

1x̃i=x,t̃i=t =
ñx,t
q̃
, (7.4)

P̃(x) =
1

q̃

q̃∑
i=1

1x̃i=x =
ñx
q̃
. (7.5)

1The AES meets the secret and the text byte through a xor (SubBytes) executed in a fixed number of clock

cycles. However, the rest of the AES consists in table look-ups and other miscellaneous operations which are

difficult to model and need different amounts of time to execute, hence the use of unknown function ψ.
2For the sake of evading the empty bin issue, we will also introduce yet another notation “sPα” in section 7.2.1

(Equation (7.15)).
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7. METHODS TO SOLVE THE EMPTY-BIN ISSUE

In practice, as the secret key leaks through the function via a XOR (Equation (7.1)), we

shall often consider P(x, t⊕ k).

For a fair comparison between distinguishers, Standaert et al. [82] have put forward the

success rate as a measure of efficiency of a given distinguisher.

Definition 7.2 (Success Rate). The success rate SR is probability, averaged over all possible

keys, of obtaining the correct key.

SR =
1

2n

2n−1∑
k∗=0

Pk∗(k̃ = k∗), (7.6)

where k̃ is the key guess obtained by the distinguisher during the attack.

It has been proven [39, Theorem 1, equation (3)] that for equiprobable keys the optimal

distinguisher maximizes likelihood:

DOptimal(x̃, t̃) = arg max
k∈K

P(x̃|̃t⊕ k). (7.7)

In real life, however, the attacker does not know the leakage model perfectly and thus P(x̃|̃t⊕ k)

is not available. In order to get an estimation of P, we use the profiling data to build P̂ defined

in Equation (7.2). This is the classical template attack. The distinguisher becomes

DTemplate(x̃, t̃) = arg max
k∈K

P̂(x̃|̃t⊕ k). (7.8)

This distinguisher is no longer optimal as it does not use the real distribution P. However, if

profiling tends to exhaustivity, P̂ and P will be very close since by the law of large numbers,

∀x, t P̂(x, t) −→
q̂→∞

P(x, t).

Moreover, we notice that non-optimality is not the only issue with template attacks in the

context of discrete leakage. The attacker also faces the problem that the attack is ill-formed.

In practice, it is convenient to use the logarithm arg max
k∈K

log P̂(x̃|̃t ⊕ k). In fact, since the

samples are i.i.d., we have

P(x̃|̃t⊕ k) =

q̃∏
i=1

P(x̃i|t̃i ⊕ k) and P̂(x̃|̃t⊕ k) =

q̃∏
i=1

P̂(x̃i|t̃i ⊕ k).

Therefore, the attacker computes

DTemplate(x̃, t̃) = arg max
k∈K

q̃∑
i=1

log P̂(x̃i|t̃i ⊕ k) (7.9)

where the logarithm is used to transform products into sums for a more reliable computation.

However, we would like to avoid empty bins for which P̂(x̃i|t̃i⊕k) = 0; otherwise, Equation (7.9)

would not be well defined.
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7.1 Mathematical Derivations

7.1.2 About Empty Bins

The empty bin issue appears when there exists i ∈ {1, . . . , q̃} and k ∈ K such that P̃(x̃i|t̃i⊕k) > 0

and P̂(x̃i|t̃i ⊕ k) = 0. This may even happen for the correct key hypothesis, leading to a wrong

key guess during the attack.
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Figure 7.1: Empirical probability P̂(x|t⊕ k) for t = 0 and k = 67 and q̂ = 2 560 000

Figures 7.1 and 7.2 show how empty bins can look like after a profiling phase1. We notice

that some parts of the histograms are left blank, some of them indicated by arrows noticed

as “holes” in the figures. These timing values x are possible “empty bins”. When such a hole

is called during the attack, meaning that the attacker gets a trace with corresponding with a

hole, we call this an empty bin. Notice that no additional “binning” is needed as in the case

of continuous distributions. The figures also show that the noise is not Gaussian as can be

observed from the shape of the distribution.

The shortcoming of empty bins can be seen when evaluating the likelihood. The attacker

encounters a zero probability, which makes the product vanish for the probability of a given key

guess, even if many traces are used. As we wrote earlier, the empty bin may appear even for the

correct key guess in template attacks, leading to a null success rate if not taken into account and

1Figures obtained with the STM Discovery Board presented in Section 8.1. The unit of x is the “clock cycle”.
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Figure 7.2: Empirical probability P̂(x|t⊕ k) for t = 0 and k = 149 and q̂ = 2 560 000

not well treated. As an example, the number of empty bins for the practical example presented

Section 8.1 for the correct key guess is around 500 for a poor learning phase and around 50 for

a good learning phase. This multiplication by zero is not inherent to the attack; it is rather a

profiling artifact. In fact, with more profiling traces, the empty bin would likely be populated.

Thus, the empty bin issue is a mere side-effect of insufficient profiling, which results in an attack

failure if it is encountered in the computation of the likelihood of the correct key.

7.2 Distinguishers which Tolerate Empty Bins

7.2.1 Building Distributions or Models

Before presenting the novel distinguishers in Subsection 7.2.2, we need to define yet another

other type of distribution known as a Dirichlet a posteriori in a Bayesian approach.

The Dirichlet A Posteriori

In order to avoid zero probabilities, we use a method based on Dirichlet Prior calculations [33,

Section 1]. This method leads to a new distribution denoted by sPα, where α > 0 is a user-defined
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7.2 Distinguishers which Tolerate Empty Bins

parameter whose value (typically = 1) will be discussed next.

Let X be the set of possible values for x and T be the set of possible values for t. For any x,

we set px,t = P(x, t) their joint probability and p = (px,t)x,t. Prior to obtaining any trace, px,t

is completely unknown and we consider a Bayesian approach to estimate px,t.

1. We consider the following a priori : without further information, we suppose that for all

x, t,

sPα(x, t) =
αx,t∑

x′,t′ αx′,t′
,

where αx,t > 0 is an a priori parameter. To simplify, we may choose αx,t = α constant for

all x, t. Let us suppose that p follows a Dirichlet (prior) distribution, whose probability

density function is

f(p) =
Γ(
∑
x,t αx,t)∏

x,t Γ(αx,t)

∏
x,t

p
αx,t−1
x,t , (7.10)

where Γ is the Gamma function defined for x > 0 as

Γ(x) =

∫ +∞

0

tx−1e−t dt. (7.11)

The Dirichlet distribution can also be written as

f(p) =Nα
∏
x,t

p
αx,t−1
x,t , (7.12)

where Nα =
Γ(

∑
x,t αx,t)∏

x,t Γ(αx,t)
is a normalization factor. Notice that the prior distribution is

uniform when αx,t = α = 1 for all x, t.

2. Then suppose we know x̂, x̃, t̂ and t̃. We can now compute the a posteriori probability

P(x, t|x̂, x̃, t̂, t̃) =

∫
f(p, x, t|x̂, x̃, t̂, t̃) dp.

By Bayes’ rule,

f(p, x, t|x̂, x̃, t̂, t̃) = P(x, t|p, x̂, x̃, t̂, t̃)f(p|x̂, x̃, t̂, t̃).

As components xi and ti are i.i.d., we can write

f(p, x, t|x̂, x̃, t̂, t̃) = P(x, t|p) · f(p|x̂, x̃, t̂, t̃, t)

= px,t · f(p|x̂, x̃, t̂, t̃)
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7. METHODS TO SOLVE THE EMPTY-BIN ISSUE

Again by Bayes’ rule,

f(p|x̂, x̃, t̂, t̃) =
P(x̂, x̃, t̃, t̂|p)f(p)

P(x̂, x̃, t̃, t̂)

=

∏
x′,t′∈X×T p

n̂x′,t′+ñx′,t′ (k)

x′,t′

P(x̂, x̃, t̃, t̂)
f(p)

=
Nα

P(x̂, x̃, t̃, t̂)

∏
x′,t′∈X×T

p
n̂x′,t′+ñx′,t′+αx′,t′−1

x′,t′ .

We recognize another Dirichlet distribution with parameters n̂x′,t′ + ñx′,t′ + αx′,t′ . Let

Nα′ =
Γ(

∑
x′,t′ αx′,t′+ñx′,t′+αx′,t′ )∏
x,t Γ(αx,t+ñx′,t′+αx′,t′ )

be the new normalization constant for this distribution.

We, finally, obtain

f(p, x, t|x̂, x̃, t̂, t̃) = px,t ·Nα′
∏

x′,t′∈X×T

p
n̂x′,t′+ñx′,t′+αx′,t′−1

x′,t′ . (7.13)

Therefore,

P(x, t|x̂, x̃, t̂, t̃) =

∫
px,t ·Nα′

∏
x′,t′∈X×T

p
n̂x′,t′+ñx′,t′+αx′,t′−1

x′,t′ dp.

which is known as the Dirichlet a posteriori.

3. The integral can be easily expressed in terms of the Gamma function:

P(x, t|x̂, x̃, t̂, t̃) =
Γ(
∑
x′,t′ αx,t + n̂x′,t′ + ñx′,t′)∏

x′,t′ Γ(αx,t + n̂x′,t′ + ñx′,t′)
×
∏
x′,t′ Γ(αx,t + n̂x′,t′ + ñx′,t′ + δx,t)

Γ(
∑
x′,t′ αx,t + n̂x′,t′ + ñx′,t′ + δx,t)

which simplifies to

P(x, t|x̂, x̃, t̂, t̃) =
n̂x,t + ñx,t + αx,t
q̂ + q̃ +

∑
x′,t′ αx′,t′

.

This new distribution will now be noted:

sPα(x, t) = P(x, t|x̂, x̃, t̂, t̃) =
n̂x,t + ñx,t + αx,t
q̂ + q̃ +

∑
x′,t′ αx′,t′

. (7.14)

It is important to notice that for all (x, t) ∈ X× T, one has sPα(x, t) > 0. In other words,

sPα has no empty bin issue.

4. With sPα(x, t) we can calculate

sPα(t) =
∑
x

sPα(x, t) =
∑
x

n̂x,t + ñx,t + αx,t
q̂ + q̃ +

∑
x′,t′ αx′,t′

=
n̂t + ñt +

∑
t αx,t

q̂ + q̃ +
∑
x′,t′ αx′,t′

=
n̂t + ñt + αt

q̂ + q̃ +
∑
x′ αx′

,
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7.2 Distinguishers which Tolerate Empty Bins

where αt =
∑
x αx,t. The resulting conditional probability1 is

sPα(x|t) =
sPα(x, t)

sPα(t)
=
n̂x,t + ñx,t + αx,t
n̂t + ñt + αt

. (7.15)

The Learned MIA Model

When q̂ is small, the model cannot be profiled accurately, and P̂ is a bad approximation of

P. However, these profiled values x̃ and t̃ can still be useful, yet they require a more robust

distinguisher.

Distinguishers that compute models using profiling have already been proposed. For example,

[61] computes a correlation on moments. However, correlations analysis may be sensitive to

model errors [85]. Mutual Information Analysis (MIA) yields a distinguisher that can be robust

when models are not perfectly known [85, Section 4], but it requires at least a vague estimation

of the leakage model.

Since our function ψ is unknown, we can create a first-order model ψ̂ with the profiled data

as

ψ̂(t⊕ k̂∗) = Step
( 1

nt

∑
i s.t. t̂i=t

x̂i

)
(∀t ∈ T). (7.16)

The Step function is a function that ensures the non-injectivity of the model. The simplest way

to define Step is the following:

Step(x) =
bd · xc
d

(x ∈ R)

where d > 0—the greater d, the smaller the step size. This parameter d has to be small enough

in order to make the model non-injective [34, Sec. 4.1]. In our case, we choose, for all our

experiments, d = 1. With such a model, it is possible to compute a MIA, which successfully

distinguishes the correct key.

7.2.2 Robust distinguishers

In this subsection, we present six distinguishers that tackle null probabilities. Some of these

solutions seem quite obvious while others are deduced from the notions presented in the preceding

Subsection 7.2.1.

1We should normally have used the notation
˜̂Pα instead of sPα, but we found this too heavy and confusing;

hence the use of sPα.
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Ê Hard Drop Distinguisher

The first naive method consists in removing all the traces which, for any key guess, have a zero

probability.

Definition 7.3 (Hard Drop Distinguisher). The hard drop distinguisher is defined as followed:

DHard(x̃, t̃) = arg max
k∈K

∑
i∈I

log P̂(x̃i|t̃i ⊕ k), (7.17)

where set I is defined as

I =
{
i ∈ {1, . . . , q̃} | ∀k ∈ K, P̂(x̃i|t̃i ⊕ k) > 0

}
. (7.18)

Recall that P̂, defined in Equation (7.2), is an empirical histogram estimated on profiled

data x̂ (along with corresponding texts t̂).

The Hard Drop Distinguisher, as the name indicates, drops some data. In very noisy cases,

it may even drop most of the data.

Ë Soft Drop Distinguisher

The second possibility is to drop values only for some keys. However, it has to be done carefully

because dropping a value in a product implicitly implies a probability value of one. For this

reason, instead of removing the trace, we replace the zero probability by a constant which is

smaller than the smallest probability.

Definition 7.4 (Soft Drop Distinguisher). We define the Soft Drop Distinguisher as

DSoft(x̃, t̃) = arg max
k∈K

∑
i s.t. P̂(x̃i|t̃i⊕k)>0

log P̂(x̃i|t̃i ⊕ k) +

∑
i s.t.P̂(x̃i|t̃i,k)=0

log γ, (7.19)

where γ ∈ R∗+ is a constant such that ∀i, k ∈ {1, . . . , q̃} ×K, γ ≤ P̂(x̃i|t̃i ⊕ k). This means

that we penalize data with zero probability. The smaller γ, the harder the penalty.

The choice of parameter γ is thus important in order to get a fair result for the distinguisher.

If we choose γ ≥ 1
q̂ , the penalty may be greater than the smallest strictly positive probability.

This case would mean that the penalty is less important than some licit probabilities. On the

other hand, choosing γ smaller than 1
q̂ means a very strong penalty. In this case, the limit when

γ → 0 is a distinguisher for which only the number of empty bins is really matters. This leads

to the Empty Bin Distinguisher presented next in Definition 7.8.
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Ì The Dirichlet Prior Distinguisher

The Dirichlet Prior Distinguisher uses the Dirichlet a posteriori distributions presented in

Subsection 7.2.1.

Definition 7.5 (The Dirichlet Distinguisher). We define the Dirichlet Distinguisher as:

DDirichlet(x̃, t̃) = arg max
k∈K

sPα(x̃|̃t⊕ k). (7.20)

Remark 7.1. As can be seen in the construction of the Dirichlet a posteriori, the Dirichlet

distinguisher is α-dependent. It is important to evaluate the influence of α over the success

rate. In practice, α = 1 seems a natural choice since the corresponding prior is uniform, which

minimizes the impact of the a priori. In contrast, another value of α like 1/2 can be interpreted

as an a priori bin count. We may also consider scenarios where α ≈ 0 to have the least possible

impact to the modified values of the histogram.

Í Offline-Online Profiling

The Dirichlet Prior Distinguisher is set by α. As we discussed in Remark 7.1, we can choose

any α so long as it is strictly positive (the Dirichlet distribution would not be defined if α = 0).

However, it is interesting to study its asymptotical behavior as α vanishes:

lim
α→0

sPα(x|t) =
n̂x,t + ñx,t
n̂t + ñt

.

This distribution can be denoted as sP0(x|t) and resembles a profiling stage that would start

offline and continue online.

Definition 7.6 (Offline-Online Profiling). The Offline-Online Profiled (OOP) distinguisher is

defined as:

DOOP(x̃, t̃) = arg max
k∈K

sP0(x̃|̃t⊕ k) (7.21)

The OOP distinguisher seems easier than the Dirichlet prior distinguisher since α is no

longer in use. Of course, it also solves the empty bin issue since for all (x, t) ∈ X× T, one has

sP0(x, t) > 0.

Î Learned MIA Distinguisher

The Learned MIA Distinguisher is constructed with the profiled model function ψ̂ presented in

Eqn. (7.16) of Subsection 7.2.1.
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Definition 7.7 (The Learned MIA Distinguisher).

The Learned MIA Distinguisher is defined as:

DMIALearned = arg max
k∈K

Ĩ
(
x̃; ψ̂(t̃⊕ k)

)
, (7.22)

where Ĩ is the empirical mutual information [34].

Ï Empty Bin Distinguisher

The empty bin Distinguisher is yet another intuitive solution based on the idea that instead of

avoiding null probabilities, we may take only these into account. It is the key guess with the

least number of null probabilities that “should” be the correct key.

Definition 7.8. The Empty Bin Distinguisher is defined as:

DEmptyBin(x̃, t̃) = arg min
k∈K

q̃∑
i=1

1P̂(x̃i|t̃i⊕k)=0. (7.23)

The Empty Bin Distinguisher assumed that missing data contain more information than

actual (measured) data. More precisely, a drop should normally not happen unless the guessed

key is wrong; hence, the key guess with the least drops should be the correct key. Obviously,

this distinguisher is not effective anymore if no drop occurs for at least two key guesses.

Further Remarks All these distinguishers use a profiling phase. Before comparing them,

we would like to make a priori discussion about their respective efficiency. As the Hard Drop

Distinguisher does not take into account some data, we may suppose that it will be the one

with the least success rate for a given number of traces. The OOP Distinguisher takes into

account two types of data: profiling and attacking data. Therefore, it should be more efficient

than other distinguishers. Lastly, we build the Learned MIA Distinguisher in order to prevent

model errors, such as inaccurate profiling. In that case, we suppose that Learned MIA should

work better with few data during the profiling stage.

7.3 Simulated Results

In this section, we present the results obtained on a simulated model. With these results, we

can give a comparison of the proposed distinguishers.
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7.3.1 Presentation of the Simulated Model

The simulated model is built as follows:

xi = Hw(Sbox(ti ⊕ k∗)) + ui

= ϕ(ti ⊕ k∗) + ui = yi(k
∗) + ui,

(7.24)

where ui is a discrete uniformly distributed noise ui ∼ U(−σ, σ), Sbox is the AES substitution

box function, and Hw is the Hamming weight of a byte.

This very simple leakage is used to compare distinguishers in the case the attacker has no

information about the model.

Remark 7.2 (Optimal Distinguisher). The optimal distinguisher (7.7) can be easily calculated if

the model is perfectly known, as

DOptimal(x̃, t̃) = arg max
k∈K

q̃∏
i=1

δσ(x̃i −Hw(Sbox(t̃i ⊕ k))), (7.25)

where δσ is defined such that δσ(x) = 1 if |x| ≤ σ and 0 otherwise. In Figures 7.3, 7.4 and 7.5,

we include the optimal distinguisher for reference, to show how far the other curves are from

the fundamental limit of performance.

By construction, the leakage simulation (7.24) generates some traces with zero probability,

but notice that there is no i such that P(xi|ti, k) = 0 for the correct key guess. This academic

example is useful to compare the distinguishers defined in Section 7.2.

7.3.2 Attack Results

We computed the success rates (7.6) of the various attacks (namely attacks Ê, Ë, Í, Î and Ï —

attack Ì being less efficient than its limit Í) for for σ = 24, n = 4 bits, and q̂ ranging from

small to high values.

The only difference between Figures 7.3, 7.4, and 7.5, is that we have increased the number

of data during the profiling stage. When profiling is bad (Figure 7.3), the best distinguisher is

the Offline-Online profiling distinguisher, while the Learned MIA Distinguisher is not as good as

was expected. When q̂ = 1 600 (Figure 7.4), all distinguishers improve. Finally, when profiling is

good (q̂ = 4 000, Figure 7.5), the best distinguisher is now the Empty Bin distinguisher, followed

by the Soft Drop distinguisher and the Offline-Online profiling.

Remark 7.3. In this very special case, we can show that the Empty Bin Distinguisher can

accurately approximate the Optimal Distinguisher. Indeed, the actual probability is such that
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Figure 7.3: SR for q̂ = 320 and σ = 24 on synthetic measurements
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Figure 7.4: SR for q̂ = 1 600 and σ = 24 on synthetic measurements
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for all (x, t) ∈ X× T,

P(x|y(k)) =

 1
2σ+1 if −σ ≤ x− ϕ(t⊕ k) ≤ σ,
0 otherwise,

(7.26)

which is constant if x is in the appropriate interval. For the Empty Bin Distinguisher,

P̂(x|y(k)) > 0 =⇒ P(x|y(k)) =
1

2σ + 1

due to the leakage model. Therefore, we can predict that at least q̂ = (2σ+ 1)|Y| 1
min P(y) = 3 920

profiling traces are needed to make sure that the Empty Bin Distinguisher becomes as efficient

as the Optimal Distinguisher. As profiling consists in random draws with replacement, the

DEmptyBin distinguisher is found very close to the DOptimal distinguisher with q̂ = 4 000 profiling

traces.
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8.1 Results on Real Devices

We have chosen to carry out a timing attack on an STM32F4 discovery board [59]. One

interesting aspect is that we do not make any assumption on the model. In real life, the

leakage model happens to be much more complex than the one employed in simulations (e.g.,

Equation (7.24)). As will be seen, in practice empty bins appear even for the correct key guess

and for a “good” profiling phase. This observation differs from the ideal case of our simulations

carried out in the preceding Section 7.3.

8.1.1 The ARM processor

We used a STM32F4 discovery board by STMicroelectronics1. It contains an STM32F407VGT6

microcontroller, which has an ARM cortex-M4 MCU with 1 MB flash memory for instructions

and data, and a 192 KB Random Access Memory (RAM). The RAM is divided into three

sections: one of 16 KB, another one of 112 KB, and the last one consisting of 64 KB Core

Coupled Memory (CCM). The CCM has a zero flash wait state and is often used to store critical

data such as data from the operating system. Since the RAM is divided into three regions, the

users are unable to make use of the 192 KB RAM as a continuous memory block.

1We emphasize that the attacks we present are not due to a flaw in ARM or STMicroelectronics processors.

Instead, as we will discuss next, the CCM feature of STM32F4 processors allows to protect the implementation

against timing attacks by granting a constant execution time.
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STM32F4 microcontrollers contain a proprietary prefetch module (Adaptive Real-Time

memory accelerator - ART accelerator). ART accelerator contains an instruction cache which

has 64 lines and a data cache which contains 8 lines. The line size of both instruction cache

and data cache is 128-bits. The precise details about ART accelerator (cache replacement

policy and cache associativity) are not mentioned as the module is an intellectual property of

STMicroelectronics

The STM32F407VGT6 microcontroller does not have either a CPU cycle counter or a

performance register to measure a cycle accurate time. However, the Data Watchpoint and

Trace (DWT) unit has a cycle accurate 32 bit counter (DWTCYCCNT register), which can be

used for measuring the duration of critical operations. When processor runs at 168 MHz, the

DWTCYCCNT register will overflow at every 25.5 seconds providing enough time window to

measure the encryption / decryption time for an adversary to measure the elapsed time without

timer overflowing. In practice, we collected timing data repeatedly within the ARM, and then

dump it as large data buffers sporadically. This modus operandi allowed us to reach about

10 000 measurements per second.

8.1.2 Weaknesses - Non Constant AES Time

We use OpenSSL (version 1.0.2) AES as the cryptographic library, where the Sbox function

is implemented with large 1 KB T-boxes (see [63, Sec. 5.2.1, page 18]). Interestingly, the

OpenSSL code (copied in Appendix C.1) does not contain any conditional statement, hence can

be considered constant-time by a code review. However, once programmed on the STM32F4

processor, one notices that the execution duration depends on the inputs. The AES timing

acquisition is illustrated in Figure 8.1. Before each encryption, we reset DWTCYCCNT register.

This yields the exact timing of the AES execution (which is about 2 600 clock cycles in average

— recall Figure 7.1 and 7.2). In a real attack, an attacker would measure a noisy timing using an

external “chronometer”. However, our attack models the best case for an attacker; hence, bounds

the security of the analyzed implementation. In particular, we underline that our measurement

methodology is fully non invasive: the timing measurement is performed in parallel to the AES

computation, thereby keeping the victim circuit run at full speed, without interference.

Time deviations for different configurations of Instruction Cache (IC) and Data Cache (DC)

are shown in Figure 8.1. We observe a huge time difference when data cache is turned Off / On.

When DC is turned off, there is no timing leakage as AES is constant time. Yet, when DC is
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Figure 8.1: Measuring elapsed time for AES encryption

turned on, AES is not time constant. This non-constant time on AES leads to the following

conclusions:

• This is a weakness for the security of the processor as two different plaintext lead to two

different time clock to compute AES.

• Following Figure 8.1, it seems the enabling or not Instruction Cache, does not modify the

behaviour of the leakages.

• Data presented Figure 8.1 are obtained using a fixed key and varying one byte of the

plaintext.

Figure 8.1 instructs us that caches shall be disabled to reduce the leakage in timing. However,

we emphasize that such decision has a strongly negative impact on the AES performance: with

DC off, the overall AES execution time is about 27% longer.

Therefore, in a realistic context, we shall assume that both DC and IC are enabled, which

we will do in the sequel (see next Sec. 8.2 for some indications how well attacks perform when

caches are disabled).

8.1.3 Characterizing the leakages for Data Cache On

As seen earlier, when the Data Cache in enabled, the AES computation is not time constant.

This can be due to the T-boxes called during the computation. Indeed, calling a value in a

table also stores this in the Data Cache. If this value is called within the eight next calls, the

load will be faster. In Appendix C.1, we have copied the OpenSSL source code for the AES

encryption with a 128 bits key. In this code, we notice that there are 160 calls to the T-boxes.

In order find a model of the leakage, we inferred the cache policy of STM32F4 ARM micro-

controllers based on a thorough study of their timing response to some adaptively constructed
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Figure 8.2: Time deviations for different configurations of Instruction Cache (IC) and Data

Cache (DC).
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requests. We discovered that it is actually a FIFO (First-In, First Out) cache. If one requests a

particular table lookup within last eight cache accesses, then the access is a hit (if not, it is a

miss).

In case of a hit, the time to access such register is 5 or 6 clock cycles faster than a miss. To

show this behaviour, we have done a very simple experiment:

• We generate a table of length 256;

• We generate 16 random values between 0x00 and 0xff;

• We call 16 elements of the table corresponding to the 16 values generated previously;

• We measure the time to call these 16 elements of the table.

We have plotted in Figure 8.2 the histogram of the clock cycles. the negative number in the

x axis is due to the fact that we have set the 0 at the maximum value of the clock cycles, which

is the obtained value for not hit at all1. We notice that when a hit occurs, the time is faster by

5 or 6 clock cycles. For two hits, there are three possible values: 10, 11 or 12 clock cycles.

Figure 8.2 has to be compared with a full AES encryption timing in order to see if this model

is relevant. Therefore, we have plotted in Figure 8.3 the histogram for a full AES encryption.

Once more, the 0 in the x axis is set to the maximum.

Very interestingly, we can observe in this figure high density levels corresponding to the hits:

1. One hit at -5 and -6;

2. Two hits at -10 and -11;

3. Three hits at -15 and -16.

Below -16 clock cycles, the hits are lost into the noise.

The comparaison of these two figures show that the FIFO model for table hits is correct,

but does not explain all the time leakage due to the cache policy of the processor.

8.1.4 Attack Results

As already noticed above, the leakage model is mostly unknown. We only suppose that the

text byte is mixed with the key through a XOR operation. As a consequence, the optimal
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Figure 8.2: Distribution of the clock cycles for a simple example
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Figure 8.3: Distribution of the clock cycles for a full AES encryption
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Figure 8.4: SR for q̂ = 25 600 on real-world measurements
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distinguisher (giving the limit of performance) is not known. The SNR of the leakage is

Var(E(x|t))/E(Var(x|t)) = 0.4.

In Figure 8.4, we notice that Learned MIA is the best distinguisher in the case of poor

profiling. The Hard Drop Distinguisher is not succeeding at all since it drops about 90% of the

data.
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Figure 8.5: SR for q̂ = 256 000 on real-world measurements

Figure 8.5 presents the success rate for a better profiling stage. We notice the following

interesting improvements:

• The Learned MIA distinguisher is only slightly better than in Figure 8.4. To reach 80%

success rate, 1 100 traces are needed as compared to 1 250 traces previously.

• The Soft Drop and Offline-Online distinguishers are the best distinguishers in this scenario,

with a small advantage for the Soft Drop distinguisher.

• The Hard Drop distinguisher remains unsuccessful.

1This is a voluntary choice as we only focus on the gap between two picks of distribution. The absolute value

has no real sense since we are comparing two computations that are not the same.
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We notice that the Soft Drop Distinguisher has been established using the γ parameter defined

in Equation 7.19 such that γ = 1/q̃.
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Figure 8.6: SR for q̂ = 2 560 000 on real-world measurements

Figure 8.6 is the continuation of Figure 8.5 with much more traces in the profiling stage. The

resulting profiling is very good and one may consider that the approximation of P is tight. In this

case, Soft Drop and OOP Distinguishers are both very successful, which seems natural regarding

the fact that P̂ has converged to the actual probability P. For this attack, we recall that the

timing of 10 000 traces can be acquired in one second. Therefore, the attack is successfully in

about 0.2 second using Soft Drop or OOP distinguishers.

As a conclusion to this study on the STM32F4 discovery board, we have learned the following

comparisons between the proposed distinguishers:

• when the profiling stage is poor, the best distinguisher is the Learn MIA Distinguisher;

• when there is enough data in the profiling stage, the best distinguisher is the Soft Drop

Distinguisher, closely followed by the OOP Distinguisher;
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• the Empty Bin Distinguisher converges to the optimal success rate, but is not as efficient

as previously in Section 7.3. This can be explained by the fact that we skip a lot of data

in the computation;

• the Hard Drop Distinguisher is the slowest to converge to 100% success rate.

Remark 8.1. When comparing Figures 8.5 and 8.6, we notice that the Empty Bin distinguisher

does not improve as the number of profiling traces increases. An explanation that there is no

more empty bins to be filled between these two situations; then only a more precise estimation

of the probability would make the difference.

Remark 8.2. As discussed in Definition 7.4, the value of γ is important. We have run the

same experience as in Figure 8.5 with γ = 1
q̂×1010 . The results, we obtained, are presented in

Figure 8.7. When comparing this figure with Figure 8.5, we notice that the performance of

Figure 8.7: SR for q̂ = 256 000 with γ = 1
q̂×1010

.

the Soft Drop Distinguisher has dropped and is now much closer to that of the Empty Bin

Distinguisher, as we had forecast.

8.1.5 Nature of Empty Bins

Defined in 7.1.2, Empty Bins can appear under two circumstances. The first possibility is

insufficient profiling: some rare occurrences are not encountered by lack of training measurements.

The second possibility is what we call Structural Empty Bins. They are present whatever the

profiling under fixed key and do not depend on the number of traces q̂ in the profiling stage. In
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order to decide for the reason of Empty Bins, we have drawn the number of empty bins for a

given key according to the number of traces in the profiling stage.

Figure 8.8: Empirical number of empty bins

Figure 8.8 presents this study obtained with the STMicroelectronics Discovery Board. We

considered q̂ = 1 280 000, and define the number of empty bins as:∣∣∣∣{x ∈ { q̂

min
q=1

x̂q, . . . ,
q̂

max
q=1

x̂q}, such that 6 ∃q, x̂q = x

}∣∣∣∣ .
We can see that the number of empty bins decreases, but never reaches 0. At the beginning, the

high number of empty bins is due to both poor profiling and structural empty bins. With a

good profiling, we only keep the structural empty bins.

8.1.6 Study on the Mean-Square Error

An interesting point noticed in Figures 8.4, 8.5, and 8.6 is that the Learned MIA distinguisher

is working better than the Soft Drop Distinguisher for a poor learning phase (i.e., q̂ = 25 600).

However, with a better learning phase (i.e., q̂ = 256 000 and q̂ = 2 560 000), the Soft Drop

Distinguisher has a much better success rate. In order to understand why the Learned MIA
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Distinguisher does not improve that much with a better learning phase, we have computed

the Mean-Square Error of these two distinguishers for the three learning phases (i.e., q̂ ∈
{25 600, 256 000, 2 560 000}).

Definition 8.1 (MSE, Bias and Variance). Let us consider a random variable X and its

expectation θ = E[X]. An estimator of the random variable is noted sX. The MSE is defined as

follows:

MSE = E
[
( sX − θ)2

]
.

The bias of the estimator is the expectation of the difference between the estimator and the

mean of the random variable:

Bias = E
[

sX − θ
]
.

At last, the variance of the estimator is:

Variance = E
[

sX2
]
− E

[
sX
]2

From these definitions, we have the following relation between MSE, bias and variance:

MSE = Bias2 + Variance (8.1)

The Mean-Square Error (MSE) is computed using the following method:

1. For the secret key k∗, we calculate the value of the distinguisher i.e. the value of P̂(x̃|̃t⊕k∗)
for the Soft Drop and I(x̃; ϕ̂(t̃ ⊕ k∗) for the Learned MIA. We compute this value for

different number of traces q̃. This gives an estimation of the normalized distinguisher for

the correct key.

2. The most accurate estimation is obtained for the highest value of q̃. Therefore, taking

the average over a large number of experiences for this highest value of q̃ gives a good

estimation of the Expectation of the estimator.

3. Then we calculate, for every value of q̃ the bias and the variance of the estimator, and the

Average MSE is obtained using the formula: MSE = Bias2 + Variance.

We have plotted in Figures 8.9 and 8.10 the Average MSE for the two distinguishers. In order

to be more relevant, we have plotted the logarithm of the MSE. Furthermore, we have chosen to

plot the MSE separately as the distinguishers are not comparable.

The MSE for the Learned MIA Distinguisher stays almost constant with the improvement

of the learning phase whereas the MSE of the Soft Drop Distinguisher is much smaller. This

means that a better learning phase gives a much better estimator of the distinguisher.
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Figure 8.9: Average MSE for the Learned MIA Distinguisher
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Figure 8.10: Average MSE for the Soft Drop Distinguisher
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To understand more deeply this MSE, we separate bias and variance for these two distinguish-

ers. The results are computed Figure 8.11 for the Learned MIA Distinguisher and Figure 8.12

for the Soft Drop Distinguisher.

Figure 8.11: Variance and bias of the Learned MIA Distinguisher

We notice the following aspects:

• For the Soft Drop Distinguisher, the bias is almost equal to zero. In fact, the MSE is the

variance.

• For the Learned MIA Distinguisher, it is mainly the opposite: the biggest part of the MSE

is the bias.

To conclude with the MSE, the Soft Drop Distinguisher improves because the estimator has a

much smaller variance with a better learning phase. Meanwhile, the Learned MIA Distinguisher

does not improve because it is a biased estimator and a better learning phase does not reduce

this bias.
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Figure 8.12: Variance and bias of the Soft Drop Distinguisher
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8.2 Success Rate in Presence of External Noise

The measurement setup used in simulation (Sec. 7.3) and on real-world traces (Sec. 8.1) is

ideal. Indeed, the only considered noise is said algorithmic, i.e., it consists in the varying timing

which arise from the parts of the algorithm not under study. In this section, we analyse the

effect of noise external to the monitored cryptographic algorithm. Subsection 8.2.1 discusses

in general terms the effect of noise addition, and subsection 8.2.2 details quantitatively how

distribution-based distinguishers cope efficiently with noise (while moment-based distinguishers

fail to resist noise).

8.2.1 Effect of Measurement Noise

However, in practice, timing measurements contain a noisy part. Let us give three examples:

1. Measure of a difference of timing between request and response from the AES (over a

network of unknown latency);

2. Use of a side-channel signal (such as the power or the electromagnetic field) to observe the

AES computation; the beginning and the end of an AES are easy to identify, as they consist

in sixteen consecutive operations (namely sixteen XOR making up the AddRoundKey

operations). As these patterns have a remarkable signature, they can be extracted with

great accuracy thanks to a mere cross-correlation. Still, the AES itself might not be

executed in constant time, hence some alignments issues;

3. Use of a cache attack, which would disclose that the program flows entered and exited the

AES function. However, the timing for access to cache is non deterministic.

Let us denote the variance of the added noise as σ2.

Now, it is known that any additive distinguishers (which is the case of our distinguishers),

the number of traces to recover the secret for a given success rate is inversely proportional to

the inverse of the signal-to-noise ratio (see e.g., [36, Corollary 2]).

As a direct consequence, we can predict the complexity of the attacks when IC and DC are

disabled. It can be seen in Figure 8.1 that the timing variation is about divided by three (from

≈ 20 to ≈ 8) when the DC is disabled. Therefore, the number of required traces to recover the

key is about multiplied by three.
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In addition, we can approximate the required number of traces to extract the key in presence

of external noise of standard deviation σ. In our case-study of OpenSSL AES on ARM, the

algorithmic noise has standard deviation about 20 clock cycles (see Figure 7.1 and 7.2).

So, if the external noise has standard deviation σ < 20, the impact is small. But when

σ/20 > 1, the influence of the external noise becomes preponderant. As the algorithmic noise

and the external noise are independent, the number of traces required to extract the key will

actually grow linearly with σ as soon as σ/20� 1.

8.2.2 Comparison with Existing Methods in the Presence of Noise

In this subsection, we aim at comparing our distribution-based method with the existing methods

(moment-based method mentioned in Tab. 6.1). In particular, we focus on the representative

Bernstein correlation [5] with a learned model [the timing expectation for each value of the

target AES byte], that we refer to as “CPA”. This “CPA” between timing measurements and

the learned average of timing per byte of the key does not suffer from the empty bin issue. We

start by a comparison with little external noise. In this case, we have plotted in Figure 8.13

the success rate for both the soft drop distinguisher and the CPA. The x axis represents the

number of traces for the profiling phase while the y axis is the number of traces needed during

the attack to reach 80% of success rate. We notice that the CPA performs better than the soft

drop method, for any profiling (even when learning with several million of traces). This can be

due to bias between the profiled distribution and the attack distribution.

However, in a practical case, we encounter noisy timing leakages. In order to compare

our methods with the existing methods (such as CPA) in the presence of external noise, we

plotted Figure 8.14. In this figure, we took a good profiling phase (q̂ = 3× 106), i.e., profiling is

performed on sufficiently enough traces. This figure is obtained for a noisy timing, that is the

nominal time to compute AES (as in Subsec. 7.1.2), where the noise follows the following law:{
0 added time with probability 50%,

T added (T ∈ N, a number of clock periods), with probability 50%.
(8.2)

This models the interruption of the CPU from a peripheral when AES is baremetal, or a

descheduling of the AES process during one time slot on systems with an operating system

(OS). Indeed, such events have the consequence, when they occur, to add a long period of time

(often as long or even longer than the duration of the AES) to the encryption time, so that the

interruption can be served, or so that the OS re-schedules the AES process. We notice that, in

such case, it is more interesting to compute one of our methods, rather than previous existing
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Figure 8.13: Comparison between CPA and soft drop distinguisher at 80% of success rate
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(a) Standard deviation = 5

(b) Standard deviation = 50

Figure 8.14: Success rate for soft drop versus CPA for small noise and noise of standard deviation

T = 50 (recall (8.2))
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methods such as CPA. Indeed, distribution-based profiling is more accurate than CPA estimation

with noisy signals. For instance, the results from Hassan Aly and Mohammed ElGayyar [1] show

that 222 encryptions are required for a key extraction on a more recent processors (Pentium

Dual-Core and Core 2 Duo), which is significantly more than that used by Bernstein CPA in his

original attack [6]. The authors of this paper remark incidentally that the best method is not to

use correlation with the means of each class, but with the minimum value in each class. This

confirms that the complexity of the distributions are better suited for distinguishing that simply

the average per class. This justifies that our study focuses on distribution-based distinguishers

(more robust to binary noise situations encountered while measuring durations) rather than

moment-based distinguishers (recall Tab. 6.1).

8.3 Conclusion and Perspectives

We have derived several “information-theoretic” distinguishers as possible solutions to the empty

bin issue. Some of them, like the Dirichlet Prior and the Offline-Online distinguishers, required

the computation of novel distributions. We have shown in particular that the empty bins,

previously believed to be an annoyance and dropped accordingly, can turn out to be valuable

assets for the attacker as long as they are treated carefully. In all the part, real timing data are

used, making the results very practical.

We have also compared the various distinguishers under two frameworks: a simulated test

with synthetic leakage and real-world timing attacks. In both cases, we noticed that the outcome

of the attacks depends on the quality of the profiling stage. A good profiling improves the results,

where the best distinguisher seems to be the Soft Drop Distinguisher. A poor profiling makes the

traditional distinguishers break down. More sophisticated solutions like Offline-Online Profiling

and Learned MIA distinguishers are very useful in this case. A possible way to investigate more

on this aspect is to use more powerfull statistical tools in order to extract the most precise

model for the Learned MIA Distinguisher.

The interesting aspect on the studied timing attack is that one does not have to make

any assumption on the leakage model. In addition to this, the main advantage of the new

distinguishers is that the empty bin issue is completely solved. We also introduced distinguishers

which can jointly exploit offline and online side-channel measurements. As an interesting

perspective, our approach could advantageously be analyzed using the “perceived information”

metric recently introduced by Standaert et al. in [71, Eqn. (1)].
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Another perspective would be to compare our information-theoretic attacks with attacks

based on machine learning techniques. Surprisingly and contrary to results reported in other

papers, our preliminary results show that SCA based on support vector machines [40] has poor

performance, even when profiling with very few traces (q̂ is small), which may be due to the

univariate nature of the leakage.

An interesting observation is that writing cryptographic code robust to timing attacks is

challenging. While the OpenSSL code for AES has no obvious flaw (such as unbalanced branches

which depend on sensitive data), the timing of AES is data-dependent, due to microarchitectural

features of the studied ARM core. There seem to exist two classes of solutions against timing

attacks: The first aims at randomizing the execution timing, as studied for instance in [6]. Such

an implementation can still be attacked with high-order distinguishers, albeit with more traces

than without any protection. The second would attempt to balance the timing, yet this requires

some hardware support such as the CCM feature of the STM32F4 processors.
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9. CONCLUSION

9.1 Conclusion

The title of my Ph.D. is “Towards a Better Formalization of the Side-Channel Threat”. When I

was recruited by Olivier Rioul in 2015 to start my Ph.D., Annelie Heuser was finishing writing

her manuscript. During her thesis, she specially focused on the study of distinguishers. I could

therefore use her fresh results to work on my thesis.

During my thesis, I focused on the similarities between a side-channel leakage model and a

communication channel. The main result of these three years is based on a mathematical link

between the success rate of an attack and the signal-to-noise ratio of the leakage. To obtain

this result, I have used information theoretic tools. More specifically, I focused on the Mutual

Information between the sensitive variable and the measured traces. When the noise is Gaussian,

the Mutual Information is a function of the SNR. However, the main difficulty is that the

leakage is not independent. This means that the Mutual Information is more complicated than

Shannon’s formula. I have therefore investigated on the estimation of Mutual Information for

this particularity of side-channel analysis. This is indeed a particularity since in the literature in

communication theory, most of the channels are considered with independent random variables.

According to me, this result will give a good bound to the efficiency of a model. Indeed, in

side-channel analysis, the SNR is model dependant. With this knowledge of the SNR, we have

an upper-bound on the success rate. This gives a first idea of the level of security of a chip

without making simulations to calculate the success rate.

It is possible to extend this result to protected implementations but the formula of the

mutual information is much more difficult to calculate. A possibility would therefore be to

consider the approximation of Independence even if the bound is therefore looser.

On a more personal point-of-view, this thesis has been for me a very intense period. When

I arrived at Télécom in 2015, I had never heard of cryptography. Side-channel analysis has

therefore been for me a very good mean to enter this particular world. Side-channel analysis is

a mixture between cryptography, electronics, mathematics and physics. This is therefore a very

beautiful topic of research and I am confident that several talented researchers will invest time

in this field.

More generally, this three years and a half Ph.D. has made of me a more mature man. When

I started in 2015, I had no idea of what I could do after my thesis. During these three years I

have learned how to be rigorous and how to self-criticize my work. I believe that I will be very

well prepared for my future work.
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9.2 Further Perspectives

Side Channel analysis has a very large spectrum of applications and studies. This topic is quite

new since the first literature on this subject appeared in the 1990s.

The next challenges for the coming years will be focused on the Artificial Intelligence. Indeed,

neural networks will be soon able to extract leakage models and furthermore, be able to recover

secret keys. On the future of cryptography, post-quantum is a big topic of research. To prepare

this quantum revolution, designers are already rethinking asymmetric algorithms (such as RSA)

to be secured against quantum cryptanalysis. These new algorithms will be of course subject to

side-channel analysis and it will be interesting to study them on different architectures.

On the study of distinguishers, another interesting topic of research will be the success rate

under a wrong leakage model. In communication theory, this is called mismatch decoding. I

mentioned this issue in the appendix but I believe that there is a lot to study in order to predict

the success rate of an attack under this supposition.
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A. APPENDIX ON THE SHANNON BOUND

A.1 Proof of Lemma 4.1

Let t ∈ T and τ be the considered permutation. We have

H(X | T = t) = −
∑
x

P(x | t) log2 P(x | t))

= −
∑
x

[∑
k

P(k)P(x | t, k)

]
log2

(∑
k

P(k)P(x | t, k)

)

= −
∑
x

[∑
k

P(k)

q∏
i=1

P(xi | ti, k)

]
log2

(∑
k

P(k)

q∏
i=1

P(xi | ti, k)

)
Re-arranging both products so that they are ordered in accordance with the permutation, we

obtain

H(X | T = t) = −
∑
x

[∑
k

P(k)

q∏
i=1

P(xτ(i) | tτ(i), k)

]
log2

(∑
k

P(k)

q∏
i=1

P(xτ(i) | tτ(i), k)

)

= −
∑
x

[∑
k

P(k)

q∏
i=1

P(xi | tτ(i), k)

]
log2

(∑
k

P(k)

q∏
i=1

P(xi | tτ(i), k)

)
= H(X | T = τ(t))

A.2 Proof of (3.5)

We study the sign of the difference

∆ = −EY log2 EX [exp(f(X,Y ))] + log2 EX [exp(EY f(X,Y ))];

= − log2 expEY log2 EX′ [exp(f(X ′, Y ))] + log2 EX [exp(EY log2 exp f(X,Y ))];

= log2 EX
exp(EY log2 exp f(X,Y ))

expEY log2 EX′ [exp(f(X ′, Y ))]
;

= log2 EX expEY [log2 exp f(X,Y )− log2 EX′ [exp(f(X ′, Y ))]] ;

= log2 EX expEY
[
log2

exp f(X,Y )

EX′ [exp(f(X ′, Y ))]

]
.

Since the log function is concave:

∆ ≤ log2 EX exp log2 EY
[

exp f(X,Y )

EX′ [exp(f(X ′, Y ))]

]
;

= log2 EXEY
[

exp f(X,Y )

EX′ [exp(f(X ′, Y ))]

]
;

= log2 EY
[

EX exp f(X,Y )

EX′ exp(f(X ′, Y ))

]
;

= log2 EY [1] ;

= 0.
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A.3 Proof of Corollary 3.1

In Lemma 3.5, we have proven that:

EY log2 EX [exp(f(X,Y ))] ≥ log2 EX [exp(EY f(X,Y ))]

or

EY log2 EX [exp(f(X,Y ))] ≥ log2 EX [exp(EY log exp f(X,Y ))].

Setting g(x, y) = exp(f(x, y)), we have:

EY log2 EX [g(X,Y )] ≥ log2 EX [exp(EY log g(X,Y ))].

Hence,

expEY log2 EX [g(X,Y )] ≥ exp log2 EX [exp(EY log g(X,Y ))]

≥ EX [exp(EY log g(X,Y ))]

A.4 Alternative Proof of (3.5) and Further Comments

Consider, for any random vector Y′,

∆ = I(X; Y) + EY logEY′ exp

(
EX|Y log

P(X | Y′)
P(X | Y)

)
= EYEX|Y log

P(X | Y)

P(X)
+ EY logEY′ exp

(
EX|Y log

P(X | Y′)
P(X | Y)

)
= EY log expEX|Y log

P(X | Y)

P(X)
+ EY logEY′ exp

(
EX|Y log

P(X | Y′)
P(X | Y)

)
= EY logEY′ expEX|Y log

P(X | Y)

P(X)
+ EY logEY′ exp

(
EX|Y log

P(X | Y′)
P(X | Y)

)
= EY logEY′ expEX|Y log

P(X | Y)P(X | Y′)
P(X)P(X | Y)

= EY logEY′ expEX|Y log
P(X | Y′)

P(X)

By the concavity of the log function,

∆ ≤ EY logEY′ exp logEX|Y
P(X | Y′)

P(X)

= EY logEX|Y
EY′P(X | Y′)

P(X)

= EY logEX|Y
P(X′)

P(X)
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where the X′ distribution is given by P(x′) = EY′P(x | Y′). It is important to note that this

derivation can be applied for any random vector Y′. The derivations made in Section 3.2 were

made for Y′ following the same distribution as Y. In this case P(X′) = P(X) and

∆ ≤ EY logEX|Y
P(X)

P(X)
= 0

which proves inequality (3.5).

Another choice is to take an i.i.d. vector Y′ having the same marginals as Y. Then

∆ = EY logEY′ expEX|Y log
P(X | Y′)

P(X)

and by Corollary 3.1,

∆ ≤ EY log expEX|Y logEY′
P(X | Y′)

P(X)

= EYEX|Y log
EY′P(X | Y′)

P(X)

= EX,Y log

∏
i P(Xi)

P(X)
× P(X | Y)

P(X | Y)

= I(X; Y)− qI(X;Y )

which is to be compared to Lemma 3.3. This proves that if applying our second bound with

such an i.i.d. distribution Y′ would lead to a bound that would be worse than the first upper

bound (3.4).
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A.5 A Discussion about Masking

In chapter 3, we supposed that there was no masking in the AES protocols. Nowadays, as

side-channel analysis becomes a real threat, designers have started to invent new types of security

against side-channel analysis. Masking is a good way to improve the security of a chip. Indeed,

the higher the order of masking is, the more difficult it is to break the security of an embedded

system.

Even if the security of the chip increases, it is though possible to recover the secret key.

Nicolas Bruneau et al. mathematically proved that the best possible attack in case of masking

is the maximum likelihood [16]. We can also cite once again Duc’s paper where he showed that

the order of making exponentially increases the security of a chip in the sens that the number of

traces needed to recover the secret key are much higher [29, Equation (10)].

According to the leakage model of [16], we obtain the following framework for the communi-

cation channel.

K Encoder
Y0, . . . ,Yd

Channel
X0, . . . ,Xd

Decoder K̂

T T

N0, . . . ,Nd

Figure A.1: Representation of Side-Channel with masks

We consider that the masking order is d. In Figure A.1, the notations are the following:

• the d shares of sensitive variables are represented by Y0, . . . ,Yd.

• N0, . . . ,Nd are the d shares of additive noise.

• The d shares of the traces are X0, . . . ,Xd.

The Markov chain with masking security, therefore becomes:

(K,T) −→ (Y0, . . . ,Yd,T) −→ (X0, . . . ,Xd,T). −→ K̂ (A.1)

This means that Lemma 3.2 can be adapted to masking and becomes

H(K)− (1− Ps) log2(2n − 1)−H2(Ps) ≤ I(X0 . . .Xd;K | T). (A.2)
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This means that, one again, the Mutual Information between the traces and the key is

relevant to calculate a bound on the success rate. However, estimating such Mutual Information

is a open issue.

A.6 About Mismatched Decoding

The upper-bound obtained by Theorem 3.1 is always true for any distinguisher. Moreover, as

we have based our calculations with the best possible case for the attacker. Indeed, the lower

bound is obtained because we have supposed that the attacker knows the leakage model and

therefore the distributions P.

However, in many cases, the attacker only knows an estimation of the leakage distribution

(noted P̂) that may not be exactly equal to P. In this case, our bound is still correct since

the knowledge of P is the best possible case for the attacker. In this filed, François-Xavier

Standaert proposed the notion of Perceived Information [30] as a metric to measure the impact

of the estimation distribution P̂ on the mutual information. In this section, we first re-write the

Shannon channel coding theorem to show that it is possible to recover the secret key if perceived

information is strictly positive (cf. Subsection A.6.1). Then we discuss about an information

theoretic paper written by Neri Merhav and Amos Lapidoth in 1994 that deals with mismatch

decoding [58](cf. Subsection A.6.2).

A.6.1 The Channel Coding Theorem with Divergence

In Information Theory, the Channel Coding Theorem written and proved by C.E. Shannon

in [79] shows that, it is possible to send a message with an arbitrary small amount of error

through a channel, as long as the rate of the message (i.e. the number of sent bits) is lower than

the mutual information of this channel.

In his demonstration, Shannon supposed that the channel was perfectly known, meaning

that the probability P(y|x) was known. In our case, we only have P̂(y|x) at our disposal. This

means that even if Shannon’s theory is true, we do not how far we can go with our estimation.

Thus, we will re-write the proof of the channel-coding theorem with the consideration that the

attacker makes an error of estimation.

Theorem 1.1 (Channel Coding with Divergence). Let us consider a channel noted (Y,P(y|x),X),

where the decoder only knows P̂(y|x) an estimation of P(y|x). We suppose furthermore that the

decoder perfectly knows the distribution of X (i.e. P(x)).
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Let a message M to be sent taken uniformly in a set M and to be sent over a block of length

q. The rate of the transmission is thus R = log2(|M|
q . Let ε > 0, there exists a code C such that

the probability of error is smaller than ε as long as R < I(X;Y )−D(P(y|x)||P̂(y|x))− ε.

To prove Theorem 1.1, we first show the law of great numbers for a random variable taken

under another distribution.

Lemma 1.1. Let X a random i.i.d. vector of size q following the distribution P and P̂ another

distribution taking its values in the same set as X. Then, we have:

−1

q
log2 P̂(X) −→

q→∞
H(X) + D(P||P̂)

This is a convergence in probability.

Proof for Lemma 1.1. We use the Bienaymé-Chebychev inequality to show the convergence. Let

ε > 0, we know that:

P
[
| − 1

q
log2 P̂(X)− E

[
− 1

n
log2 P̂(X)

]
| ≥ ε

]
≤ qVar

q2ε2

P
[
| − 1

q
log2 P̂(X)−H(X) + D(P||P̂)| ≥ ε

]
≤ Var

qε2

Therefore, we have:

P
[
| − 1

q
log2 P̂(X)−H(X) + D(P||P̂)| ≥ ε

]
−→ 0

As this is true for any ε > 0, this proves the lemma.

We have now shown that the law of great numbers leads to a value which is H(X) + D(P||P̂).

In order to prove the Channel-Coding Theorem, C.E Shannon defined subsets of Xq × Yq called

typical sets. All the definitions of the typical sets, and their properties may be found in [23,

Chapter 7]. We define here typical sets related to the estimation P̂ of a random variable.

Definition 1.1 (Typical set related to P̂). Let X a random i.i.d. vector of size q following the

distribution P and P̂ the estimation of this distribution. Let ε > 0. The typical set related to P̂
is defined as:

AεP̂ = {x ∈ Xq | | − 1

q
log2 P̂(x)−H(X)−D(P||P̂)| ≤ ε}

For two random vectors X and Y, we can also define the joint typical set.

Definition 1.2 (Joint Typical set related to P̂). Let X and Y two i.i.d. random vectors of

length q each. (X,Y) follows the distribution PXY and the estimation is P̂XY . The marginal

distribution of X is PX and the marginal distribution of Y is PY . Let ε > 0. The joint typical

set related to P̂ is noted Aε
P̂XY

. (x,y) ∈ Xq × Yq belongs to Aε
P̂XY

if and only if the three

conditions below are verified:
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1. | − 1
q log2 P̂X(x)−H(X)−D(PX ||P̂X)| ≤ ε;

2. | − 1
q log2 P̂Y (y)−H(Y )−D(PY ||P̂Y )| ≤ ε;

3. | − 1
q log2 P̂XY (x,y)−H(X,Y )−D(PXY ||P̂XY )| ≤ ε.

In [23], Cover and Thomas prove that the joint typical set has several very interesting

properties. Here, with the joint typical set related to P̂, we adapt these properties so they can

fit with the estimation.

Lemma 1.2 (Properties of the joint typical set related to P̂). Let (X,Y) a random vector of

length q drawn i.i.d. according to PXY and estimated by P̂XY . Let ε > 0. We have:

1. P
[
(X,Y) ∈ Aε

P̂XY

]
−→ 1 as q →∞;

2. |Aε
P̂XY
| ≤ 2q(H(X,Y )+D(PXY ||P̂XY )+ε)

3. For X̃, Ỹ two independent random vectors such that X̃ ∼ PX and Ỹ ∼ PY the marginals

of PXY , we have:

P
[
(X̃, Ỹ) ∈ AεP̂XY

]
≤ 2−n(I(X;Y )−D(PXY ||P̂XY )+D(PX ||P̂X)+D(PY ||P̂Y )−3ε)

The last property of the Lemma 1.2 seems quite heavy with the number of divergences.

However, in our case, we suppose that the attacker knows the distribution of Y, meaning that

D(Py||P̂Y ) = 0. Furthermore, we have the relation between D(PX ||P̂X) and D(PXY ||P̂XY ):

D(PX ||P̂X)−D(PXY ||P̂XY ) = −D(PY |X ||P̂Y |X) (A.3)

Proof of Lemma 1.2. We prove each term of the lemma one by one. Let ε > 0.

1. By the law of large numbers we know that there exist n1, n2, n3 such that:

P
[
| − 1

n1
log2 P̂X(X)−H(X)−D(PX ||P̂X)| > ε

]
≤ ε

3

P
[
| − 1

n2
log2 P̂Y (Y)−H(Y )−D(PY ||P̂Y )| > ε

]
≤ ε

3

P
[
| − 1

n3
log2 P̂XY (X,Y)−H(X,Y )−D(PXY ||P̂XY )| > ε

]
≤ ε

3

Taking n = max{n1, n2, n3}, and the union of the three probabilities, we obtain, for every

q ≥ n:

P
[
(X,Y) /∈ AεP̂XY

]
≤ ε

This proves the first part of the lemma.
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2. We have the following inequality:

1 =
∑

x,y∈Xq×Yq
P̂XY (x,y)

≥
∑

x,y∈Aε
P̂XY

P̂XY (x,y)

≥ |AεP̂XY |2
−n(H(X,Y )+D(PXY ||P̂XY )+ε)

This show the second part of the lemma.

3. We consider X̃ and Ỹ defined in the lemma. We have:

P
[
(X̃, Ỹ) ∈ AεP̂XY

]
=

∑
x,y∈Aε

P̂XY

P̂X(x)P̂Y (y)

≤ |AεP̂XY |2
−n(H(X)+D(PX ||P̂X)−ε)2−n(H(Y )+D(PY ||P̂Y )−ε)

Putting this with the proof result of item 2, we obtain the inequality.

With all of these tools, we are now able to proof the Channel-Coding Theorem with divergence.

This proof will be mainly inspired by the proof of the Coding-Channel Theorem written by

Cover and Thomas in [23]. Our main contribution is to add the divergence into the proof and

use typical sets including divergence to do so.

Proof of the Channel-Coding Theorem. To prove the Channel-Coding theorem, Shannon did

not consider the probability of error of one particular code, but the average of the probability of

error, taken over all the possible codebooks for a given message. Let us consider a rate R and

the length q of the sent vector of the message. Shannon proved that the average probability of

error over all the codebooks, is equal to the average probability of error over all the codebooks

supposing that one particular index was sent. Let us consider a massage modeled by the random

equiprobable variable M and the possible set of M is {1, . . . , 2qR}. Y is therefore a function of

M . Let us suppose that we send a 1 over the channel. Then, the average probability of error

over all the codebooks knowing that a 1 is sent is noted P(E|M = 1).

We consider the following decoding scheme: y(1) is sent over the noisy channel and x is

received. The decoder tests for which i ∈ {1, . . . , 2qR} the y(i) and x are jointly typical with

probability P̂XY . An error occurs if y(1) and x are not jointly typical, or if there is another

i 6= 1 such that y(i) and x are jointly typical. Let us note Bi the event: y(i) and x are jointly

typical. We notice that if index 1 is sent, then, for any i 6= 1, Y(i) and X will be independent as

the code is chosen randomly. The average probability of error over all the codebooks is therefore:

P(E|M = i) = P [Bc1 ∪B2 ∪ . . . ∪B2qR ]

≤ P(Bc1) +

2qR∑
i=2

P(Bi)
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Let ε > 0. According to Lemma 1.2, we know that there exists q large enough such that

P(Bc1) ≤ ε. Moreover, for Bi with i 6= 1, the probabilities are independent. Therefore, we have,

according to Lemma 1.2 we have: P(Bi) ≤ 2−n(I(X;Y )−D(PY |X ||P̂Y |X)−3ε) Therefore, we have, for

ε > 0 and q sufficiently large:

P(E|M = i) ≤ ε+

2qR∑
i=2

2−q(I(X;Y )−D(PY |X ||P̂Y |X)−3ε)

≤ ε+ (2qR − 1)2−q(I(X;Y )−D(PY |X ||P̂Y |X)−3ε)

≤ ε+ 2q(R−I(X;Y )+D(PY |X ||P̂Y |X)+3ε)

≤ 2ε if R− I(X;Y ) + D(PY |X ||P̂Y |X) + 3ε < 0

Remark 1.1. We notice that I(X;Y ) − D(PY |X‖P̂Y |X) is equal to the Perceived information

metric proposed by François-Xavier Standeart in [30]. This means that, in a side-channel context,

if the perceived information if positive, it is possible to recover the secret key of the device.

However, we are not able to tell how fast the key recovery will be with this approach since

this calculation only shows the achievability o fa coding rate.

A.6.2 Discussion About Merhav’s Paper

In 1994, Merhav et al. published an article dealing with mismatch decoding in information

theory. When the decoding is performed with a maximum likelihood distinguisher based on an

estimation of the distribution P̂ instead of P, the article show that the the maximum achievable

rate of transmission exists and can be calculated. Moreover, if the coding rate is higher than

this limit, the probability of error tends towards 1. In side-channel analysis, to result does not

tell how fast the probability of success of the attack Ps will converge to 1.
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B. APPENDIX ABOUT THE MONOBIT LEAKAGES

B.1 Proof of Lemma 5.3

The MIA distinguisher is expressed as

D(k) = I(Y (k∗) +N ;Y (k)) = h(Y (k∗) +N)− h(Y (k∗) +N | Y (k)). (B.1)

From Section 5.3.1, Y (k∗) knowing Y (k) is a binary random variable with probability κ(k).

As N is Gaussian independent from Y (k), the pdf of Y (k∗) +N knowing Y (k) is a Gaussian

mixture that can take two forms:

pκ(k)(x) =

 1√
2πσ

[κ(k)e−
(x−1)2

2σ2 + (1− κ(k))e−
(x+1)2

2σ2 ]

1√
2πσ

[κ(k)e−
(x+1)2

2σ2 + (1− κ(k))e−
(x−1)2

2σ2 ]
, (B.2)

By symmetry, their entropy h(Y (k∗) +N | Y (k)) will be the same and we can take any of these

pdfs. Letting ϕ be the standard normal density, we can write

pκ(k)(x) = p1/2(x)− 2(1/2− κ(k))ϕ(x)e−
1
σ2 sinh(

x

σ2
) (B.3)

= p1/2(x)(1− 2(1/2− κ(k)) tanh(
x

2σ2
). (B.4)

where

p1/2(x) =
1

2
√

2πσ
[e−

(x−1)2

2σ2 + e−
(x+1)2

2σ2 ] =
1

σ
e−

1
2σ2 ϕ(

x

σ
) cosh(

x

σ2
). (B.5)

For notational convenience define ε = 2(1/2− κ(k)), p = p1/2(x), and t = tanh(x). Then

I(X;Y (k)) = h(Y (k∗) +N)− h(Y (k∗) +N | Y (k)) (B.6)

= −
∫
p log2 p+

∫
(p(1− εt)) log2(p(1− εt)) (B.7)

= −
∫
εpt log2 p+

∫
p log2(1− εt)−

∫
pεt log2(1− εt). (B.8)

The first term vanishes since p is even and t odd. We apply a Taylor expansion:

I(X;Y (k)) =

∫
p[−εt− ε2t2

2
− ε3t3

3
+O(ε4)]−

∫
εpt[−εt− ε2t2

2
− ε3t3

3
+O(ε4)]. (B.9)

The odd terms of the expansion are null as t is odd and p even. We therefore obtain:

I(X;Y (k)) =

∫
p[−ε

2t2

2
+O(ε4)]−

∫
[−ε2pt2 +O(ε4)] =

∫
ε2pt2

2
+O(ε4). (B.10)

Thus, finally,

D(k) = 2 log2(e)(1/2− κ(k))2g(σ), (B.11)

where

g(σ) =
1

σ
e−

1
2σ2

∫
R
ϕ(
x

σ
) cosh(

x

σ2
) tanh2(

x

σ2
)dx. (B.12)
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There are several ways to express g(σ). For example, we have:

g(σ) = e−
1

2σ2

∫
R
ϕ(x) cosh(

x

σ
) tanh2(

x

σ
)dx. (B.13)

This expression can be reduced to:

g(σ) =
1

2
EX

[
tanh2(

X

σ
+

1

σ2
) + tanh2(

X

σ
− 1

σ2
)

]
, (B.14)

where X ∼ N(0, 1). By the dominated convergence theorem (tanh2(Xσ + 1
σ2 ) is always smaller

than 1) when σ → 0, we obtain g(0) = 1 and when σ →∞ we obtain the equivalent 1
σ2 .

B.2 Proof of Lemma 5.4

The success exponent is defined by

SE =
E[D̂(k∗)− D̂(k)]2

2Var(D̂(k∗)− D̂(k))
. (B.15)

where in our case

D̂(k) =
1

q
√

1 + σ2

∣∣∣ q∑
i=1

XiYi(k)
∣∣∣. (B.16)

First for large q we can consider that E[|∑iXiYi(k)|] = |E[
∑
iXiYi(k)]|.

E[D̂(k)] = |E[XY (k)]| = 2× |1/2− κ(k)|√
1 + σ2

(B.17)

hence

E[D̂(k∗)− D̂(k)] =
1− 2× |1/2− κ(k)|√

1 + σ2
. (B.18)

Secondly we have

Var(D̂(k∗)− D̂(k)) =
1

q2(1 + σ2)
Var
(∣∣∣ q∑
i=1

XiYi(k
∗)
∣∣∣− ∣∣∣ q∑

i=1

XiYi(k)
∣∣∣). (B.19)

To remove the absolute values, we distinguish two cases whether the sum is positive or negative.

We consider that q is large enough to have strictly positive or negative values.

Var(D̂(k∗)− D̂(k)) =
1

q2(1 + σ2)
Var
( q∑
i=1

XiYi(k
∗)∓

q∑
i=1

XiYi(k)
)

(B.20)

=
1

q2(1 + σ2)
Var
( q∑
i=1

Xi

(
Yi(k

∗)∓ Yi(k)
))

(B.21)

=
1

q(1 + σ2)
Var
(
X
(
Y (k∗)∓ Y (k)

))
(B.22)

=
1

q(1 + σ2)
Var
(
(Y (k∗) +N)

(
Y (k∗)∓ Y (k)

))
(B.23)

=
1

q(1 + σ2)
Var
(
∓Y (k∗)Y (k) +N(Y (k∗)∓ Y (k))

)
. (B.24)
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The variance term is the difference of the two following quantities

E
[
(∓Y (k∗)Y (k) +N(Y (k∗)∓ Y (k)))2

]
= 1 + 2σ2(1− 2|1/2− κ(k)|) (B.25)

E
[
∓Y (k∗)Y (k) +N(Y (k∗)∓ Y (k))

]2
=
(

2(1/2− κ(k))
)2

. (B.26)

Combining all the above expressions we obtain (5.33).

B.3 Proof of Lemma 5.5

To prove the success rate of KSA, we first need an estimator for the cumulative density function.

We take as kernel a function Φ as simple as possible i.e. the Heaviside function Φ(x) = 0 if

x < 0 and Φ(x) = 1 if x ≥ 0.

With this function and for x ∈ R, we can estimate F (x|Y (k) = 1)− F (x) by the following

estimator:

F̃ (x|Y (k) = 1)− F̃ (x) =

∑
i|Yi(k)=1 Φ(x−Xi)∑

i|Yi(k)=1 1
−
∑
i Φ(x−Xi)

q
. (B.27)

We suppose that q is large enough to consider that
∑
i|Yi(k)=1 1 = q

2 (by the law of large

numbers). Therefore we have:

F̃ (x|Y (k) = 1)− F̃ (x) =

∑
i|Yi(k)=1 Φ(x−Xi)

q
− 2

∑
i Φ(x−Xi)

q
. (B.28)

We notice that
∑
i|Yi(k)=1 Φ(x−Xi) = 1

2

∑
i(Yi(k) + 1)Φ(x−Xi). Therefore

F̃ (x|Y (k) = 1)− F̃ (x) =
1

q

q∑
i=1

Yi(k)Φ(x−Xi). (B.29)

This estimator is a sum of i.i.d. random variables. We can therefore apply the central limit

theorem.

E[F̃ (x|Y (k) = 1)− F̃ (x)] = E[Y (k)Φ(x−Xi)] (B.30)

= E[Y (k)Φ(x− Y (k∗)−N)] (B.31)

=
1

2
(κ(k)− 0.5)

(
erf
(1− x
σ
√

2
) + erf

(1 + x

σ
√

2

))
. (B.32)

The maximum of the absolute value is for x = 0 and we obtain:

‖E[F̃ (x|Y (k) = 1)− F̃ (x)]‖∞ = |0.5− κ(k)| erf
( 1

σ
√

2

)
. (B.33)
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B.4 Proof of Lemma 5.6

We notice that ‖E[F̃ (x|Y (k) = 1)− F̃ (x)]‖∞ = ‖E[F̃ (x|Y (k) = −1) − F̃ (x)]‖∞. To calculate

the variance, we consider that x = 0 as it is the value that maximizes the expectation of the

distinguisher.

Var(D̂(k∗)− D̂(k)) = Var
(1

q

( q∑
i=1

Φ(x−Xi)(Yi(k
∗)− Yi(k))

))
(B.34)

The computation of this variance gives:

Var(D̂(k∗)− D̂(k)) = 2(0.5− |0.5− κ(k)|)− erf
( 1

σ
√

2

)2

(0.5− |0.5− κ(k)|)2. (B.35)

Overall, the success exponent is:

SE =
1

2
min
k 6=k∗

erf
(

1√
2σ

)2
(1/2− |1/2− κ(k)|)

2− erf
(

1√
2σ

)2
(1/2− |1/2− κ(k)|)

. (B.36)

B.4 Proof of Lemma 5.6

For MIA, we refer to [36, Section 5.3] for the theoretical justifications. In order to obtain a

simple closed-form expression of the success exponent, we suppose that σ � 1 and that the

probability density functions are all Gaussian. This means that X|Y (k) is a Gaussian random

variable of standard deviation
√

4κ(k)(1− κ(k)) + σ2. Moreover, we will keep only the first

order approximation in SNR = σ−2 of the SE.

h(X|Y (k))− h(X|Y (k∗) =
1

2
log2(2πe · (4κ(k)(1− κ(k)) + σ2)− 1

2
log2(2πe · σ2) (B.37)

=
1

2
log2

4κ(k)(1− κ(k)) + σ2

σ2
(B.38)

≈ log2(e)4κ(k)(1− κ(k))

2σ2
(B.39)

The Fisher information of a Gaussian random variable of standard deviation ζ is equal to 1
ζ2 .

Therefore the Fisher information of X knowing Y = y(k) is:

F (X|Y (k) = y(k)) =
1

4κ(k)(1− κ(k)) + σ2
. (B.40)

As this value does not depend on the value of Y (k), we have:

F (X|Y (k)) =
1

4κ(k)(1− κ(k)) + σ2
(B.41)

J(X|Y (k))− J(X|Y (k∗)) =
1

4κ(k)(1− κ(k)) + σ2
− 1

σ2
(B.42)

≈ −κ(k)(1− κ(k))

σ4
. (B.43)
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Last, we have to calculate Var(− log2 p(X|Y (k) = y(k))). Let ζ2 = σ2 + 4κ(k)(1− κ(k)) and C

the normalization constant. We have:

Var(− log2 p(X|Y (k) = y(k))) = Var
(
− log2

(
C exp

(
−1/2

(X − µ)2

ζ2

)))
(B.44)

= Var
(
− log2(C) + 1/2

(X − µ)2

ζ2

)
(B.45)

=
1

4
Var
( (X − µ)2

ζ2

)
=

1

4ζ4
Var(X2) (B.46)

=
1

4(σ2 + 4κ(k)(1− κ(k)))2
2(1 + σ2)2 ≈ 1

2
. (B.47)

Overall, the success exponent defined in [36, Proposition 6] can be simplified in the case of

monobit leakage as:

SE ≈ min
k 6=k∗

4
log2(e)2κ(k)2(1− κ(k))2

σ4
. (B.48)
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C. THE OPENSSL SOURCE CODE

C.1 The OpenSSL AES Encryption Code

We have copied here the OpenSSL C code for the encryption function. We notice that this is a

straightline code, and that there is a use of Look Up Tables (the T boxes) that may cause the

non constant time.

void AES_encrypt(const unsigned char *in , unsigned char *out ,

const AES_KEY *key) {

const u32 *rk;

u32 s0 , s1 , s2 , s3 , t0 , t1 , t2 , t3;

int r;

# 796 "aes_core.c" 3

((void)0)

# 796 "aes_core.c"

;

rk = key ->rd_key;

s0 = ((( u32)(in)[0] << 24) ^ ((u32)(in)[1] << 16) ^ ((u32)(in)

[2] << 8) ^ ((u32)(in)[3])) ^ rk[0];

s1 = ((( u32)(in + 4)[0] << 24) ^ ((u32)(in + 4)[1] << 16) ^ ((

u32)(in + 4)[2] << 8) ^ ((u32)(in + 4)[3])) ^ rk[1];

s2 = ((( u32)(in + 8)[0] << 24) ^ ((u32)(in + 8)[1] << 16) ^ ((

u32)(in + 8)[2] << 8) ^ ((u32)(in + 8)[3])) ^ rk[2];

s3 = ((( u32)(in + 12) [0] << 24) ^ ((u32)(in + 12) [1] << 16) ^

((u32)(in + 12) [2] << 8) ^ ((u32)(in + 12) [3])) ^ rk[3];

t0 = Te0[(s0 >> 24)] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >>

8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[ 4];

t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8)

& 0xff] ^ Te3[s0 & 0xff] ^ rk[ 5];
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t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8)

& 0xff] ^ Te3[s1 & 0xff] ^ rk[ 6];

t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8)

& 0xff] ^ Te3[s2 & 0xff] ^ rk[ 7];

s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8)

& 0xff] ^ Te3[t3 & 0xff] ^ rk[ 8];

s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8)

& 0xff] ^ Te3[t0 & 0xff] ^ rk[ 9];

s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8)

& 0xff] ^ Te3[t1 & 0xff] ^ rk[10];

s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8)

& 0xff] ^ Te3[t2 & 0xff] ^ rk[11];

t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8)

& 0xff] ^ Te3[s3 & 0xff] ^ rk[12];

t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8)

& 0xff] ^ Te3[s0 & 0xff] ^ rk[13];

t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8)

& 0xff] ^ Te3[s1 & 0xff] ^ rk[14];

t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8)

& 0xff] ^ Te3[s2 & 0xff] ^ rk[15];

s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8)

& 0xff] ^ Te3[t3 & 0xff] ^ rk[16];

s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8)

& 0xff] ^ Te3[t0 & 0xff] ^ rk[17];

s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8)

& 0xff] ^ Te3[t1 & 0xff] ^ rk[18];

s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8)

& 0xff] ^ Te3[t2 & 0xff] ^ rk[19];

t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8)

& 0xff] ^ Te3[s3 & 0xff] ^ rk[20];

t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8)

& 0xff] ^ Te3[s0 & 0xff] ^ rk[21];

t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8)

& 0xff] ^ Te3[s1 & 0xff] ^ rk[22];

t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8)

& 0xff] ^ Te3[s2 & 0xff] ^ rk[23];
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s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8)

& 0xff] ^ Te3[t3 & 0xff] ^ rk[24];

s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8)

& 0xff] ^ Te3[t0 & 0xff] ^ rk[25];

s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8)

& 0xff] ^ Te3[t1 & 0xff] ^ rk[26];

s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8)

& 0xff] ^ Te3[t2 & 0xff] ^ rk[27];

t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8)

& 0xff] ^ Te3[s3 & 0xff] ^ rk[28];

t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8)

& 0xff] ^ Te3[s0 & 0xff] ^ rk[29];

t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8)

& 0xff] ^ Te3[s1 & 0xff] ^ rk[30];

t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8)

& 0xff] ^ Te3[s2 & 0xff] ^ rk[31];

s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8)

& 0xff] ^ Te3[t3 & 0xff] ^ rk[32];

s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8)

& 0xff] ^ Te3[t0 & 0xff] ^ rk[33];

s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8)

& 0xff] ^ Te3[t1 & 0xff] ^ rk[34];

s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8)

& 0xff] ^ Te3[t2 & 0xff] ^ rk[35];

t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8)

& 0xff] ^ Te3[s3 & 0xff] ^ rk[36];

t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8)

& 0xff] ^ Te3[s0 & 0xff] ^ rk[37];

t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8)

& 0xff] ^ Te3[s1 & 0xff] ^ rk[38];

t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8)

& 0xff] ^ Te3[s2 & 0xff] ^ rk[39];

rk += key ->rounds << 2;

# 944 "aes_core.c"

s0 =

(Te2[(t0 >> 24) ] & 0xff000000) ^

(Te3[(t1 >> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t2 >> 8) & 0xff] & 0x0000ff00) ^
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(Te1[(t3 ) & 0xff] & 0x000000ff) ^

rk[0];

{ (out)[0] = (u8)((s0) >> 24); (out)[1] = (u8)((s0) >> 16); (

out)[2] = (u8)((s0) >> 8); (out)[3] = (u8)(s0); };

s1 =

(Te2[(t1 >> 24) ] & 0xff000000) ^

(Te3[(t2 >> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t3 >> 8) & 0xff] & 0x0000ff00) ^

(Te1[(t0 ) & 0xff] & 0x000000ff) ^

rk[1];

{ (out + 4)[0] = (u8)((s1) >> 24); (out + 4)[1] = (u8)((s1) >>

16); (out + 4)[2] = (u8)((s1) >> 8); (out + 4)[3] = (u8)(

s1); };

s2 =

(Te2[(t2 >> 24) ] & 0xff000000) ^

(Te3[(t3 >> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t0 >> 8) & 0xff] & 0x0000ff00) ^

(Te1[(t1 ) & 0xff] & 0x000000ff) ^

rk[2];

{ (out + 8)[0] = (u8)((s2) >> 24); (out + 8)[1] = (u8)((s2) >>

16); (out + 8)[2] = (u8)((s2) >> 8); (out + 8)[3] = (u8)(

s2); };

s3 =

(Te2[(t3 >> 24) ] & 0xff000000) ^

(Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ^

(Te1[(t2 ) & 0xff] & 0x000000ff) ^

rk[3];

{ (out + 12)[0] = (u8)((s3) >> 24); (out + 12)[1] = (u8)((s3)

>> 16); (out + 12) [2] = (u8)((s3) >> 8); (out + 12) [3] = (

u8)(s3); };

}

193



C. THE OPENSSL SOURCE CODE

194



Bibliography

[1] Hassan Aly and Mohammed ElGayyar. Attacking AES Using Bernstein’s Attack on Modern

Processors. In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors,

Progress in Cryptology - AFRICACRYPT 2013, 6th International Conference on Cryptology

in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings, volume 7918 of Lecture Notes in

Computer Science, pages 127–139. Springer, 2013. 163

[2] Suguru Arimoto. On the converse to the coding theorem for discrete memoryless channels

(corresp.). IEEE Transactions on Information Theory, 19(3):357–359, May 1973. 29, 30

[3] Lejla Batina and Matthew Robshaw, editors. Cryptographic Hardware and Embedded

Systems - CHES 2014 - 16th International Workshop, Busan, South Korea, September

23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer Science. Springer,

2014. 199, 200

[4] Normand J. Beaudry and Renato Renner. An intuitive proof of the data processing

inequality. Quantum Info. Comput., 12(5-6):432–441, May 2012. 38

[5] Daniel J. Bernstein. Cache-timing attacks on AES, April 14 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf. 122, 160

[6] Daniel J. Bernstein. Cache-timing attacks on AES, April 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf. 163

[7] Claude Berrou and Alain Glavieux. Near optimum error correcting coding and decoding:

turbo-codes. IEEE Trans. Communications, 44(10):1261–1271, 1996. 14

[8] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay. Hardware prefetchers

leak: A revisit of SVF for cache-timing attacks. In 45th Annual IEEE/ACM International

195

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf


BIBLIOGRAPHY

Symposium on Microarchitecture, MICRO 2012, Workshops Proceedings, Vancouver, BC,

Canada, December 1-5, 2012, pages 17–23. IEEE Computer Society, 2012. 122

[9] Richard E. Blahut. Principles and Practice of Information Theory. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1987. 82

[10] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis

of the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology

- ASIACRYPT 2011 - 17th International Conference on the Theory and Application of

Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,

volume 7073 of Lecture Notes in Computer Science, pages 344–371. Springer, 2011. 8
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Titre: Vers une meilleure formalisation des attaques par canaux cachés.

Mots clés: Cryptographie, canaux cachés, Théorie de l’information, optimisation

Résumé: Dans le cadre de la sécurité des
systèmes embarqués, il est nécessaire de con-
naître les attaques logicielles et physiques pou-
vant briser la sécurité de composants cryp-
tographiques garantissant l’intégrité, la fiabilité
et la confidentialité des données. Étant donné
que les algorithmes utilisés aujourd’hui comme
Advanced Encryption Standard (AES) sont con-
sidérés comme résistants contre la cryptanalyse
linéaire et différentielle, d’autres méthodes plus
insidieuses sont utilisés pour récupérer les se-
crets de ces composants. En effet, la clé se-
crète utilisée pour le chiffrement de données
peut fuiter pendant l’algorithme. Il est ainsi
possible de mesurer cette fuite et de l’exploiter.
Cette technique est appelée attaque par canal
auxiliaire.
Le principal objectif de ce manuscrit de thèse est

de consolider les connaissances théoriques sur ce
type de menace. Pour cela, nous appliquons des
résultats de théorie de l’information à l’étude
par canal auxiliaire. Nous montrons ainsi com-
ment il est possible de comparer un mod-
èle de fuite à un modèle de transmission de
l’information.
Dans un premier temps, nous montrons que la
sécurité d’un composant est fortement dépen-
dante du rapport signal à bruit de la fuite. Ce
résultat a un impact fort car il ne dépend pas
de l’attaque choisie. Lorsqu’un designer équipe
son produit, il ne connaît pas encore la manière
dont son système embarqué pourra être attaqué
plusieurs années plus tard. Les outils mathé-
matiques proposés dans ce manuscrit pourront
aider les concepteurs à estimer le niveau de fia-
bilité de leurs puces électroniques.

Title: Towards a Better Formalisation of the Side-Channel Threat.

Keywords: Cryptography, Side-Channel, Information Theory, Optimization

Abstract: In the field of the security of the
embedded systems, it is necessary to know and
understand the possible physical attacks that
could break the security of cryptographic com-
ponents. Since the current algorithms such as
Advanced Encryption Standard (AES) are very
resilient against differential and linear crypt-
analysis, other methods are used to recover the
secrets of these components. Indeed, the secret
key used to encrypt data leaks during the com-
putation of the algorithm, and it is possible to
measure this leakage and exploit it. This tech-
nique to recover the secret key is called side-
channel analysis.

The main target of this Ph. D. manuscript is to

increase and consolidate the knowledge on the
side-channel threat. To do so, we apply some in-
formation theoretic results to side-channel anal-
ysis. The main objective is show how a side-
channel leaking model can be seen as a commu-
nication channel.
We first show that the security of a chip is de-
pendant to the signal-to-noise ratio (SNR) of the
leakage. This result is very useful since it is
a generic result independent from the attack.
When a designer builds a chip, he might not be
able to know in advance how his embedded sys-
tem will be attacked, maybe several years later.
The tools that we provide in this manuscript will
help designers to estimated the level of liability
of their chips.
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