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i

Résumé
Le but de la thèse était de simuler le spectre d’absorption de méta-matériaux pour les
applications photovoltaïques. Par méta-matériaux, nous entendons une assemblée d’objets
de taille nanométrique situés à distance mésoscopique. L’idée sous-jacente est qu’en modifiant
la taille du nano-objet et l’arrangement géométrique, on peut ajuster le seuil d’absorption.
Pour calculer ces quantités, j’ai utilisé l’état de l’art du formalisme, c’est-à-dire des méthodes
ab initio.

La première étape du travail a été dédiée au calcul de l’absorption d’un objet isolé (tranche
de silicium, graphène, hBN). Dans le cadre de codes périodiques, on utilise une supercellule
avec du vide pour isoler l’objet, et une méthode a été développée précédemment dans le
groupe de Spectroscopie Théorique du LSI, pour obtenir des résultats indépendants du vide.
Elle est appelée Selected-G, et a été appliquée avec succcès aux surfaces de silicium. Pour
une tranche isolée, une expression modifiée du potentiel coulombien dans l’espace réciproque,
appelé "slab potential", doit être utilisée. Pour valider l’utilisation du potentiel de slab pour
le calcul de la matrice diélectrique microscopique, j’ai simulé les spectres de perte d’énergie
d’électrons pour des empilements de quelques plans de graphène, et reproduit avec succès
les données expérimentales disponibles. Cela a offert la possibilité d’étudier la dispersion du
plasmon d’un plan de graphène, et discuter la nature des excitations électroniques dans ce
système (transitions interband ou plasmon 2D).

La second étape a été consacrée à l’étude du spectre d’absorption d’une assemblée de
tranches en interaction. Comme il a été mis en évidence que le formalisme de supercellule agit
comme une théorie de matériau moyen avec du vide, avec l’effet erroné d’avoir des spectres
dépendant de la taille de la supercellule, j’ai renversé la procédure pour extraire le spectre
de la tranche en interaction, affranchi du problème du vide. La faisabilité a été démontrée
sur les tranches de hBN, dont le caractère semi-conducteur à large bande interdite évite les
instabilités numériques. Cela a permis de comprendre la raison pour laquelle l’absorption
de la tranche en interaction de silicium apparaît à plus basse énergie que celle du matériau
massif : cela vient de la présence des états de surface dans la bande interdite de la structure
de bandes du massif. Néanmoins, la différence avec la tranche isolée doit être encore étudiée.

La troisième partie a été dédiée à l’étude de matériaux utilisés, ou candidats, aux appli-
cations photovoltaïques comme InP et InSe. J’ai étudié dans un premier temps les structures
de bandes des massifs. Pour corriger la sous-estimation de la bande interdite calculée dans
l’approximation de la densité locale (LDA), j’ai calculé les corrections GW, et utilisé la fonc-
tionnelle d’échange et corrélation de Heyd-Scuseria-Ernzerhof (HSE). Le spectre d’absorption
de InP massif a été calculé en résolvant l’équation de Bethe-Salpeter, qui permet de tenir
compte des effets excitoniques. Comme ce calcul est très lourd numériquement, j’ai égale-
ment comparé avec le calcul beaucoup plus léger de TDDFT avec le kernel à longue portée
pour introduire les effets excitoniques. Pour le massif de InSe, j’ai calculé les corrections HSE
pour les valeurs propres et obtenus un bon accord avec la bande interdite expérimentale. Les
spectres obtenus en TDDFT, avec le kernel à longue portée, donne de bons résultats. J’ai
commencé l’étude de tranches de ces deux matériaux. Des couches épaisses de InP et InSe
ont été considérées et une reconstruction de surface (2x2) a été réalisée sur InP pour obtenir
une surface semi-conductrice. La structure de bande LDA et les spectres d’absorption ont été
calculés. Comme des systèmes d’une telle taille sont hors de portée des calculs de corrections
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HSE, l’étude s’est concentrés sur des tranches beaucoup plus fine de InSe.
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Introduction

In the last two hundreds of years, with developing of manufacturing and industrial revolution,
humanity was particularly keenly aware of the need for new sources of energy. With the
passing of the time, humanity is trying to convert environment around into energy with
increasing efficiency. The first energy source called fire was used about 1 million years
BC [1]. Ancestors of people of our time converted wood into fire and heat which gave ability
to survive in a cold regions or during glacial periods which have a periodicity of appearance.
There was a great way from the first fire sources to the modern energy sources.

Nowadays people increased significantly their knowledge about energy sources and use
different materials to produce the energy. The well-known energy sources are coal and oil,
last tens of years nuclear energy has been greatly developed. But all these sources are not
safe for the environment. Coal burning emits a lot of soot and smoke in the atmosphere,
the petrol, the fraction of oil, contains heavy metal ions and this acts very negatively on
the environment. From the other side, although coal and oil deposits are huge, they are
finite and at certain moment inevitably will be fully consumed. Returning to the nuclear
energy, in the recent history, there are two catastrophes namely Chernobyl and Fukushima.
All of the spoken above pays attention to the fact that it is necessary to turn to other, less
dangerous, less polluting and easily accessible, energy sources.

The solution is renewable energy sources. The well-known examples of a renewable energy
are wind power, hydro power, geothermal energy, biomass energy and solar energy. In the
thesis the attention will be focused on the solar cells energy and on the discipline called
photovoltaics which learn how to transform the energy of the sun into the electricity.

In 1839, French physicist Edmond Becquerel discovered the photoelectric effect which
means that illuminated electrolyte can produce electricity [2]. In 1873, Willoughby Smith
discovered photo-conductive properties of the selenium. In 1883 Charles Fritts, American
inventor, relying on the discover of Willoughby Smith, creates the first solar cell made from
selenium, so the origin date of photovoltaics could be considered 1883 year. Theoretical and
experimental works on photoelectric effect has been done by Heinrich Hertz [3], by Aleksandr
Stoletov [4], who linked photoelectric current with intensity of incident radiation. In 1905,
Albert Einstein has described the photoelectric effect [5] and in 1921 was awarded by Nobel
Prize for this theory. Einstein described the mechanism of the photoelectric effect which was
the basis for the solar energy.

Nowadays three generations of solar cells batteries exist. The first generation of solar
cells with efficiency about 6% was produced from crystalline silicon [6]. The next generation
tries to reduce the manufacturing costs of the batteries and the amount of toxic waste dur-
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ing manufacturing. It leads to the second generation of the solar cells called thin-films solar
cells. Third generation of solar cells based on the quantum dots, hot carrier cells and on the
tandem. Or, in another words, several layers of semiconductors [7], [8].

The goal of the thesis is to study the properties of devices which could be applicable
to the photovoltaics. We aims to study assemblies of nano-objects: by adjusting the size
of the objects and the geometry arrangement of the array, it could be possible to tune the
absorption properties. For this reason, we are interested in the spectra of optical absorption
of such materials. We proposed to study this question from a theoretical point of view, by
the means of ab initio formalisms.



Part I

Background
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Chapter 1

The Many-Body problem

The description and the understanding of the electronic properties of a material requires to
deal with an system of a huge number of electrons, which are interacting: this is called the
Many-Body problem.

This problem is completely contained in the Schrödinger equation, which takes into
account all the possible interactions that electrons experiment in a compound.

1.1 The Schrödinger equation
Stationary Schrödinger equation have a form presented below:

ĤΨ = EΨ (1.1)

The Hamiltonian Ĥ in the equation plays the key role since it contains all the information
about energy in a quantum system. For the system of electrons and nuclei the Hamiltonian
will be:

Ĥ = − ~
2me

∑
i

∇2
i −

∑
I

~2

2MI

∇2
I −

∑
i,I

ZIe
2

|ri −RI |
+ 1

2
∑
i 6=j

e2

|ri − rj|
+ 1

2
∑
I 6=J

ZIZJe
2

|RI −RJ |
(1.2)

where me, e are the mass and charge of the electron, ~ is a Planck constant1 and M,Z
are the mass and charge of the nucleus. Indexes i, j correspond to the electrons and I, J
correspond to nucleus. The first and second terms in the equation 1.2 are the kinetic energy
of the electrons and the kinetic energy of the nuclei, the three other terms are Coulomb
interactions. The third one is the electron-nuclei interaction, the fourth term is the electron-
electron interaction and the last term is the nuclei-nuclei interaction.

The complexity of the Hamiltonian rapidly increases with the number of interacting
particles and the direct solution of the Schrödinger equation with the Hamiltonian (1.2) is
not practically possible for a real systems with lot of interacting particles. Even for a small

1Further we will consider me = e = ~ = 1.
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6 CHAPTER 1. THE MANY-BODY PROBLEM

piece of matter about 1 gram the number of particles is about 1023 which makes impossible
the brute force solving of the Schrödinger equation. The only way out to treat this equation
is to make approximations.

1.1.1 Born-Oppenheimer approximation
The first thing we could notice is that the mass of the nuclei is several orders of magnitude
larger then the mass of the electrons. The mass of the proton is approximately 1836 times
more then the mass of electron. The nuclei moves more slowly and kinetic energy of the
nuclei is much smaller then the kinetic energy of the electrons. In this context we can
perform the decoupling of the Schrödinger equation into a set of two equations, one will
describe the motion of the electrons and another one will encapsulate the motion of the
nuclei. This approximation is called Born-Oppenheimer [9] or adiabatic approximation. We
make an assumption that the initial wavefunction ψ(r.R) can be rewritten as a product of
two wavefunctions which are solutions of the equation of the electrons and equation of nuclei
ΨR(r) and Φ(R) respectively:

ψ(r,R) = ΨR(r)Φ(R)

The Schrödinger equation for the electrons will have following form

[Te + Vee + VIe] ΨR(r) = ERΨR(r) (1.3)

where the Te is a kinetic energy of the electrons, Vee is a electron-electron interaction and
VIe is a nuclei-electron interaction. The index R tell us that the position of the nuclei is fixed
and R is the parameter, while the position of the electrons r is a variable. In these equations
r stands for (r1, r2, ...) and R for (R1,R2, ...).

In the thesis, we will consider the nuclei motion to be very slow compared to the motion
of the electrons and we will take into account only the electronic equation 1.3, R being kept
fixed at the equilibrium position. However, if one needs to take into account the motion of
the nuclei, for example in case of phonons, the nuclear equation will have to be considered.

1.2 Hartree and Hartree-Fock approximations
The main problem of solving the Schrödinger equation in a Born-Oppenheimer approxim-
ation is that the wavefunction which describes N electrons ψ(r1, r2, ..., rN) is a N -variable
function. If one tries to solve the problem numerically on a grid and takes, for instance,
10-point grid, for two electrons the only x-coordinate requires a table 10x10, for 3 electrons
this is the 10x10x10 cube of information. It is clear that to model one single atom of car-
bon in three dimensions which is an important component of all the living beings, we need
a 9-dimension table with 109 elements. And the quality of the solution will be extremely poor.

The first attempt in order to solve the equation was suggested by Hartree [10]. It is
based on the assumption that the wavefunction can be written as a product of one-particle
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wavefuntions called orbitals:

ψ(r1, r2, ..., rN) = ϕ1(r1)ϕ2(r2)...ϕN(rN)

If the modulus of the wavefunction has a physical meaning, the orbitals doesn’t. This
approximation has the flaw that the product does not take into account the anti-symmetry
principle, coming from the fact that electrons are fermions. This principle says that we
don’t know which of the electrons we describe with the given orbital, so the orbitals can
exchange. And after every exchange the wavefunction has to change the sign. The Hartree
approximation does not satisfied the anti-symmetric condition.

The next development has been suggested by Fock [11]. The wavefunction is now ap-
proximated by a Slater determinant, constructed with the one-particle orbitals. The general
form for a system of N electrons will be 1.4:

ψHF (ξ1, ξ2...ξN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(ξ1) ϕ2(ξ1) ... ϕN(ξ1)
ϕ1(ξ2) ϕ2(ξ2) ... ϕN(ξ2)
... ...

. . . ...
ϕ1(ξN) ϕ2(ξN) ... ϕN(ξN)

∣∣∣∣∣∣∣∣∣∣
(1.4)

with ξi = (ri, σi), ri being the position and σi the spin.
The electronic density for the Hartree-Fock approximation is expressed as:

ρ(ξ) =
N∑
i=1
|ϕi(ξ)|2 (1.5)

Spin-orbitals can be found by minimizing the total energy of the system. Thus, we vary
the expectation value of the Hamiltonian (1.2) with respect to the single-particle orbitals:

δ

δϕ∗α(ξ)

[
〈Φ|Ĥ|Φ〉 −

N∑
i=1

εi

∫
dξ′ϕi(ξ′)ϕ∗i (ξ′)

]
= 0 (1.6)

After mathematical manipulations, one gets

[
− ~2

2m∇
2 + VIe(ξ) +

∫
dξ′ρ(ξ′)v(ξ, ξ′)

]
ϕα(ξ)

−
∫
ρ(ξ, ξ′)v(ξ, ξ′)ϕα(ξ′)dξ′ = εαϕα(ξ)

(1.7)

where the electronic density ρ(ξ′) is given by Eq. (1.5) and ρ(ξ, ξ′) can be expressed in
terms of the orbitals:

ρ(ξ, ξ′) =
N∑
i=1

ϕ∗i (ξ′)ϕi(ξ) (1.8)

This is one of the fundamental approximations for solving the Schrödinger equation.
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Nevertheless, the Hartree-Fock approximation does not give an exact solution to the
Many-Body problem.

Ab initio formalisms aim to give to this problem a in principle exact description. (The
approximations will appear later, in the practical resolution since some quantities involved
in the formalism are unknown, as it will be see in the following.)

Two ab initio frameworks can be distinguished.
One of them proposes to deal with independent electrons evolving in a effective potential

mimicking the interactions of all the surrounding electrons. It is the Density Functional The-
ory (DFT). Since DFT [and its extension to describe electronic excitations Time-Dependent
Density Functional Theory (TDDFT)] are the formalism mainly used in this thesis, they will
be described in details in further chapters.

The second ab initio framework proposed to solve the fully interacting electrons system
is called Many-Body Perturbation Theory (MBPT) [12–14]. Since it has been used in the
thesis without developement, it will be briefly summarized here.

1.3 Many-Body Perturbation Theory

1.3.1 The GW approximation
The main idea is the concept of quasi-particles [15]. Since electrons are not independent,
once the electron has left its orbital, there is a hole in the place of this electron and since
there is a positive charge, electrons are attracted and tend to screen this positive coulomb
potential (Fig. 1.1, right). It is called quasi-hole. Similarly, the electron which has moved
repels the other electrons and feels the positive remaining charge, then the electron appears
as surrounded with a positive charge cloud: it is called a quasi-electron. The quasi-electrons
interact with a reduced Coulomb interaction, and for this reason it can be treated within
perturbation theory.

Ground state

Independent particle Quasiparticle

ħν ħν

Figure 1.1: Schematical representation of independent particle approximation (left) and
quasiparticle approximation (right).

The differences between the quasiparticles and the bare ones are contained in a non-
local, non-hermitian and energy dependent operator Σ, called self-energy, which contains all
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the many-body exchange and correlation effects. In this context of Many-Body Perturba-
tion Theory, the quasi-particles energies and wavefunctions are determined by solving the
Schrödinger-like equation:

[
−1

2∇
2 + Vext(r) + VH(r)

]
ψ(r)QP +

∫
dr′Σ(r, r′;EQP

k )ψQP (r′) = Ekψ
QP (r) (1.9)

A standard and very efficient framework used to calculate the self-energy is the so-called
GW approximation. G is the one particle Green’s function. It describes the propagation of
a particle from a point r1 at time t1, to a point r2 at time t2. W is the screened Coulomb
interaction and it is calculated with W = ε−1v, where ε−1 is the inverse dielectric matrix
and v is the bare Coulomb interaction. Many calculations using this approximation were
performed successively and made this method the state-of-the-art for the evaluation of the
band structures [16,17].

Compare to LDA-approximation GW-method give relatively good result. The image 1.1
is taken from the paper [18]:

Figure 1.2: GW compare to LDA.
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1.3.2 Bethe-Salpeter equation
Among the energies and wavefunctions of the quasi-particles, one is interested to calculate
absorption spectra. In this kind of spectroscopy, the excited electron (quasi-electron) and the
hole (quasi-hole) are simultaneously present in the material, and they can interact, giving
rise of an exciton. In order to describe such a phenomenon, one needs 2-particles Green’s
function G(1, 2, 3, 4), which describes the propagation of an electron from a point r1 at time
t1, to a point r3 at time t3, and the propagation of the hole a point r2 at time t2, to a point
r4 at time t4.

The 4-point polarizability L(1, 2, 3, 4) is defined according to

L(1, 2, 3, 4) = iL0(1, 2, 3, 4)−G(1, 2, 3, 4) (1.10)

where L0(1, 2, 3, 4) = −iG(1, 3)G(2, 4) describes the propagation of the electron and the hole
separately.

This function satisfies a Dyson equation, known as the Bethe-Salpeter equation [19]:

L(1, 2, 3, 4) = L0(1, 2, 3, 4) +
∫
d(5678) L0(1, 2, 5, 6) K(5, 6, 7, 8) L(7, 8, 3, 4)

with K(5, 6, 7, 8) = δ(5, 6) δ(7, 8) v(5, 7) + i
δΣ(5, 3
δG(8, 4) (1.11)

To obtain the absorption spectrum in such a framework, one solves the modified Dyson
equation:

L̄(1, 2, 3, 4) = L0(1, 2, 3, 4) +
∫
d(5678) L0(1, 2, 5, 6) K̄(5, 6, 7, 8) L̄(7, 8, 3, 4)

with K̄(5, 6, 7, 8) = δ(5, 6) δ(7, 8) v̄(5, 7) + i
δΣ(5, 3
δG(8, 4) (1.12)

where v̄ is the Coulomb potential without the long range component.
The absorption spectrum will be given by Im[εM(ω)]

εM(ω) = 1− lim
q→0

v(q)
∫
drdr′ eiq(r−r′) L̄(r, r, r′, r′, ω) (1.13)

.
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Density Functional Theory

The starting point for another approach of solving the Schrödinger equation is the electronic
density. It is called density functional theory. The basic idea of the theory is that any prop-
erty of the many-body system can be found through a functional of the density n0(r). This
method became one of the general methods for calculating of electronic structures, [20].

2.1 Hohenberg-Kohn theorem
Density functional theory is based on the two theorems which are presented below.

Theorem I: For any system of interacting particles in an external potential Vext(r), the
potential Vext(r) is determined uniquely, except for a constant, by the ground state particle
density n0(r). It means that there is unique correspondence between the ground state density
of many-electron system and the external potential [21].

As a consequence, it could be considered that ground-state properties of the many-
electron system can be written as a functional of the density only. If we rewrite any property
as an expectation value, we will get

〈φ0 | Ô | φ0〉 = O [n]

where φ0 is a many-body ground state wavefunction.

Theorem II: A universal functional for the energy E[n] in terms of the density n(r)
can be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact
ground state energy of the system is the global minimum value of this functional , and the
density n(r) that minimizes the functional is the exact ground state density n0(r). [21]

2.2 Kohn-Sham auxiliary system
The Thomas-Fermi-Dirac functional [22–24] was let’s say a pre-step in the way to DFT, then
the theory has been developed by Kohn and Sham in 1965 [25]. They replaced the many-

11
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body system of fully interacting particles with a fictitious auxiliary system of non-interacting
particles, having the same electronic density as the fully interacting one.

The auxiliary system is described by an independent particle Hamiltonian of the form1 :

Ĥaux(ri)ψi(ri) = Eiψi(ri) Ĥaux(ri) = −1
2∇

2
i + VKS(ri) (2.1)

where i refers to the i-th electron.The effective potential VKS is given by

VKS(r) = Vext(r) + VHartree(r) + Vxc(r), (2.2)

Vext being the potential due to other nuclei and any others external fields and VHartree being
the Classical Coulomb interaction defined as

VHartree[n](r) =
∫
d3r′

n(r′)
|r− r′|

(2.3)

Here Vxc is the exchange-correlation potential, which encapsulates all the many-body effects.
It is an unknown quantity which has to be approximated.

The schematic image of the Khon-Sham auxiliary system with one electron which inter-
acts with some mean potential is presented on the figure 2.1:

Exact picture: T +T +V +V +Ve I ee Ie II

KS+BO

KS picture: +[ + +V ]xcTe Vext Vh

Figure 2.1: Khon-Sham schematic picture representation.

A key to solution of a Kohn-Sham equation is to find the best approximation for the Vxc.
Further some well-known approximations of Vxc will be shown.

The way of solving the Kohn-Sham equation is an iteration process. Since the set of
KS equation is self-consistent, first we guess the electronic density, then substitute into the
VKS and solve the KS equation (2.1). The new electronic density relying on Eq. (1.5) is
calculated and, if the difference between both densities is significant compared with our level
of accuracy, we substitute the new density into the VKS and repeat the procedure again.

1We will consider atomic units, i.e. me = e = ~ = 1.
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2.3 Functionals
Khon-Sham equation (2.1) contains one term which takes into account all the difficulties of
quantum nature of the electrons. This is the exchange and correlation potential Vxc. All
the difficulties are included there and this quantity has to be approximated. In this section,
some approximations will be shown.

2.3.1 LDA
The simplest approximation is the local density approximation (LDA). The exchange-correlation
energy has the general form

Exc[n] =
∫

d3r n(r) εxc([n], r) (2.4)

where εxc([n], r) is the energy per electron at the point r. The idea of this approximation
is to replace the functional of the density εxc([n], r) by the exchange-correlation energy per
electron of the homogeneous electron gas (HEG) (for a detailed review see [26]):

ELDA
xc [n] =

∫
d3r n(r) εhomxc (n(r)) (2.5)

where εxc(n(r)) is a function (not a functional) of the density n(r) at point r. In LDA, the
exchange-correlation energy is typically separated into the exchange part and the correlation
part: εxc = εx + εc. The exchange part takes the form εx = n1/3. For homogeneous inter-
acting electron gas, reliable parametrizations of εc are available from quantum Monte-Carlo
simulations [27,28].

The exchange-correlation potential is given in terms of the energy as

Vxc(r) = εxc([n], r) + n(r)δεxc([n], r)
δn(r) (2.6)

The LDA exchange term is known and reads V LDA
xc (r) = 4

3ε
hom
xc (n(r)).

Even if this method is very simple, it can give accurate results for a wide range of insu-
lators.

The LDA has been further extended to spin resolved local density approximation: εxc(n) −→
εxc(n↑, n↓), where n↑ and n↓ are the up and down spin densities respectively.

Nevertheless, the LDA has a tendency to over-estimate the exchange-correlation energy
[29]. To correct for this tendency, a new class of functionals has been developed, where Exc
becomes a functional of the gradient of the density: εxc(n↑, n↓) −→ εxc(n↑, n↓,∇n↑,∇n↓).
This allows for corrections based on the changes in density away from the coordinate. These
expansions are referred to as generalized gradient approximations (GGA) [30–32].

One example of such a parameter-free GGA functional is the one developped by Perdew,
Burke and Ernzerhof (PBE) [33]. It is known for its general applicability and gives rather
accurate results for a wide range of systems.
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2.3.2 Hybrid functional
Hybrid functionals are a class of approximations to the exchange-correlation energy func-
tional in DFT that incorporate a portion of exact exchange from Hartree-Fock theory with
exchange and correlation from other sources (ab initio or empirical).

For example, the hybrid functional called PBE0 (Perdew - Burke - Ernzerhof) [34, 35]
has the form:

EPBE0
xc = αEHF

x + (1− α)EPBE
x + EPBE

c (2.7)
where EPBE

x and EPBE
c corresponds to the exchange and correlation parts of the PBE GGA

functional [30–32]. α is the mixing factor.

The Heyd-Scuseria-Ernzerhof (HSE) exchange-correlation functional [36] keeps the cor-
relation part of the PBE0 functional, but applies a screened Coulomb potential to the
exchange interaction in order to screen the long-range part of the Hartree-Fock exchange.
The Coulomb interaction is cut into a short-range (SR) and a long-range (LR) contribu-
tions, with an error function depending of the parameter ω which governs the extent of the
short-range interactions. It leads to:

EPBE0
x = αEHF,SR

x (ω) + αEHF,LR
x (ω) + (1− α)EPBE,SR

x (ω) + EPBE,LR
x (ω)− αEPBE,LR

x (ω)

Numerical tests with realistic values of ω shows that EHF,LR
x and EPBE,LR

x cancel and it
results a screened Coulomb potential hybrid density functional of the form:

EwPBEh
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (2.8)

The mixing parameter α = 0.25, and in the HSE06 scheme, the parameter controlling the
short-range extension of the interaction ω is taken equal to 0.11.



Chapter 3

Time-Dependent DFT

The calculation of absorption spectra cannot be obtained in the framework of static DFT,
as it requires the knowledge of excited states. To access these quantities, one can extend
the DFT to Time-dependent Density Functional Theory (TDDFT), as introduced by Runge
and Gross [37].

3.1 Runge-Gross theorem
Following the procedure used for DFT, where the full many-body problem was transformed
into a non-interacting particle system, a time-dependent external perturbation is now ad-
ded to the static potential. The electronic density of the system is denoted by n(r, t) and
we consider that the external perturbation is switched-on adiabatically. For such a system,
Runge and Gross established the following theorem [37].

Runge-Gross theorem: Two densities n(r, t) and n′(r, t), evolving from a common
initial many-body state Ψ0 under the influence of two different potentials v(r, t) and v′(r, t) 6=
v(r, t)+c(t) (both assumed to be Taylor-expandable around t0), will start to become different
infinitesimally later than t0. Therefore, there is a one-to-one correspondence between the
time-dependent density and the time-dependent potential, for any fixed initial many-body
state. This theorem plays the same role as the Hohenberg-Kohn theorem of DFT.

Relying on this theorem, Runge and Gross suggested the use of an auxiliary system of
non-interacting particles, leading to a time-dependent version of the Kohn-Sham equations
for the time-dependent electronic density.

3.2 Time-dependent Kohn-Sham equations
The exact electronic density can be obtained from the single-particle orbitals, satisfying the
time-dependent Kohn-Sham equation.

Under the influence of time-dependent potential Vext(r, t) the time-dependent electronic
density becomes:

n(r, t) =
N∑
j=1
|φj(r, t)|2 (3.1)

15
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where the single-particle orbitals φ(r, t) can be found by solving :[
−∇

2

2 + VKS([n], r, t)
]
φj(r, t) = i

∂

∂t
φj(r, t) (3.2)

together with the initial conditions

φj(r, t0) = φ0
j(r) (3.3)

The time-dependent Khon-Sham potential becomes:

VKS([n], r, t) = Vext(r, t) +
∫
d3r′

n(r′, t)
|r− r′|

+ Vxc([n], r, t) (3.4)

3.3 Perturbation theory
If we perturb the system, the system will react. The quantity which connects the external
perturbation and the reaction of the system is called susceptibility and is represented by χ.
If the perturbation is weak, the response of the system can be expanded in power of the
perturbation and it is convenient to split the response in two types: linear and nonlinear.
In the linear regime, the response of the system to the perturbation depends linearly on the
perturbation. In the framework of TDDFT, we describe the response of the system to the
perturbation in terms of the induced electronic density nind (see Figure 3.1).

Ground-state 
density

n (r,t)0

12

3 Induced density

V (r′t′)ext ×
V (r′t′)=KS

V (r′t′)+V (r′t′)+V (r′t′)ext H xc

✓
Figure 3.1: Scheme of the perturbation of the ground state.

The relation between nind and the external potential Vext is given by

nind(r, t) =
∫
χ(r, t; r′, t′) Vext(r′, t′) dr′ dt′ (3.5)

where χ is the density response function or fully-interacting response function, defined also
by

χ(r, t; r′, t′) = δn(r, t)
δVext(r′, t′)

(3.6)

The density is "measured at time" t and position r, while the potential has been applied
at time t′ and position r′.



3.3. PERTURBATION THEORY 17

In the auxiliary non-interacting system, the induced density is related to the Kohn-Sham
potential VKS by

nind(r, t) =
∫
χ0(r, t; r′t′) VKS(r′, t′) dr′ dt′ (3.7)

where VKS is given in Eq. 3.4.
Using the “chain rule”

δF

δψ(x) =
∫
dy

δF

δG(y)
δG(y)
δψ(x) (3.8)

and the functional relation n(x)
n(y) = δ(x− y), we have

χ(r, t; r′, t′) =
∫
dr2 dt2

δn(r, t)
δV KS(r2, t2)︸ ︷︷ ︸

χ0

δV KS(r2, t2)
δVext(r′, t′)

=

=
∫
dr2 dt2 χ0(r, t; r2, t2)

δVext(r2, t2)
δVext(r′, t′)

+ δVH(r2, t2)
δVext(r′, t′)

+ δVxc(r2, t2)
δVext(r′, t′)


(3.9)

The first derivative is
δVext(r2, t2)
δVext(r′, t′)

= δ(r2 − r′) δ(t2 − t′) (3.10)

We have for the Hartree term
δVH(r2, t2)
δVext(r′, t′)

=
∫
dr3 dt3

δVH(r2, t2)
δn(r3, t3)︸ ︷︷ ︸

δ(t2−t3)/|r3−r2|

δn(r3, t3)
δVext(r′, t′)︸ ︷︷ ︸
χ(r3,t3;r′,t′)

=

=
∫
dr3 dt3 v(r2, r3) χ(r3, t3; r′, t′)

(3.11)

where v stands for the Coulomb potential.
The exchange-correlation terms defines the fxc kernel through the relation

δVxc(r2, t2)
δVext(r′, t′)

=
∫
dr4 dt4

δVxc(r2, t2)
δn(r4, t4)︸ ︷︷ ︸
fxc(r2,t2;r4,t4)

δn(r4, t4)
δVext(r′, t′)︸ ︷︷ ︸
χ(r4,t4;r′,t′)

=
∫
dr4 dt4 fxc(r2, t2; r4, t4)χ(r4, t4; r′, t′)

(3.12)

Let’s combine all the results of three terms together.∫
dr2 dt2 χ0(r, t; r2, t2)

[
δ(r2 − r′) δ(t2 − t′)

+
∫
dr3 dt3 v(r2, r3) χ(r3, t3; r′, t′) +

∫
dr4 dt4 fxc(r2, t2; r4, t4)χ(r4, t4; r′, t′)


= χ0(r, t; r′, t′) (3.13)

+
∫ ∫

dr2 dr3 dt2 dt3 χ0(r, t; r2, t2)
[
v(r2, r3) + fxc(r2, t2; r3, t3)

]
χ(r3, t3; r′, t′)
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Finally, we will have the Dyson equation:

χ(r, t; r′, t′) = χ0(r, t; r′, t′) (3.14)

+
∫ ∫

dr2dr3dt2dt3χ0(r, t; r2, t2)
[
v(r2, r3) + fxc(r2, t2; r3, t3)

]
χ(r3, t3; r′, t3)

And, in shorter form:
χ = χ0 + χ0[v + fxc]χ (3.15)

The exchange-correlation kernel fxc takes into account all the difficulties of exchange and
correlation in the dynamical linear regime. The simplest approximation for fxc is a Random
Phase Approximation (RPA) when fxc = 0, but more advanced approximations are available,
for instance based on the functional derivative of V LDA

xc with respect to the electronic density.

The Coulomb potential v is responsible for the so-called local field effects (LF). They
account for the fluctuations of the induced electronic density at the microscopic scale, cor-
responding to the atomic structure of the matter.

Due to the time invariance, the time Fourier transform gives a one frequency dependence.
Assuming a periodic crystal and performing space Fourier transform, the equation (3.15) can
be rewritten in the reciprocal space. Assume that the reciprocal vector k is equal k = G+q
where q is in the first Brillouin zone, the space integrations becomes products of matrices,
and we finally get:

χG,G′(q, ω) = χ0
G,G′(q, ω) +

∑
G2

χ0
G,G2

(q, ω)vG2(q)χG2,G′(q, ω) (3.16)

where the χ0
G,G′(q, ω) is calculated by summing the transitions between Khon-Sham

states {|ϕjk〉, ε
j
k}, calculated according to

χ0
G,G′(q, ω) = 1

NkΩ
∑
v,c,k

(f vk − f ck+q)
εvk − εck+q + ω + iη

〈ϕvk|e−i(G+q)·r|ϕck+q〉〈ϕck+q|ei(G
′+q)·r′|ϕvk〉 (3.17)

Here k refers to the k-point grid of the first (irreducible) Brillouin zone. Nk is the number
of these points. v, c are the states between which a transition is calculated. Ω is the volume
of the unit cell in real space.

These quantities describe microscopic phenomena. The term v0 correspond to the long-
range part of the Coulomb potential, and the other components vG for G 6= 0 allows the
inclusion of the local field effects.

The knowledge of χ gives access to the absorption spectra with the following relation:

ε−1(r, r′) = δ(r− r′) +
∫
V
dr′′v(r− r′′)χ(r′′, r′) (3.18)

what has in reciprocal space the following form:
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ε−1
G,G′(q, ω) = δG,G′ + vG(q)χG,G′(q, ω) (3.19)

The microscopic inverse dielectric function gives access to the absorption spectrum defined
as the imaginary part of the macroscopic dielectric function: Im[εM(ω)]. Within TDDFT,
εM(ω) is calculated according to [38,39]:

εM(ω) = lim
q−→0

1
ε−1

00 (q)
(3.20)
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Chapter 4

Supercell formalism

In solid state physics, crystals are considered to be infinite in the three directions of space
and periodic. This periodicity defines a Bravais lattice and a basis of primitive vectors
(a1, a2, a3). At each node of the Bravais lattice is attached a motif, which correspond to
the different atoms composing the crystal. The repeating pattern is called the unit cell of
the structure. Due to this periodic description, a natural framework is to use the reciprocal
space, and a planewave basis set.

Nevertheless, such an object does not take into account neither the presence of the surface,
nor the finite thickness of the sample. To model a surface or a slab in a 3D periodic formalism,
we have to construct a supercell, composed of the piece of matter we want to describe and
vacuum along the z-direction perpendicular to the surface of the sample.

I will first give a brief description of the periodic boundary conditions, illustrate the
difficulties of modeling the surfaces in this context and summarize the so-called "Selected-G"
method developed previously [40].

4.1 Periodic structure of crystal, Bloch’s Theorem and
planewave basis set

Since the crystal is described as an infinite repetition of the unit cell, the ions build a periodic
lattice and the interaction between electrons and ions is represented by a periodic potential
V (r + Rn) = V (r), where Rn = n1a1 + n2a2 + n3a3 .

According to the Bloch’s theorem, the eigenstates for the single-particle Hamiltonian
with this periodic potential can be written as

ψn,k(r) = eik.run,k(r) (4.1)

where n label the electronic level of energy, k is a wavevector and un,k(r) is a function which
has the periodicity of the crystal lattice:

un,k(r + R) = un,k(r) (4.2)

21



22 CHAPTER 4. SUPERCELL FORMALISM

For this reason, it can be expended on a basis of planewaves, whose wavevectors are the
reciprocal lattice vectors {G}: {eiG.r}

G = n1b1 + n2b2 + n3b3 (ni ∈ Z) (4.3)

where (b1,b2,b3) are the basis vectors of the reciprocal space (bi.aj = δij).

un,k(r) =
∑
G
cn,k(G)eiG.r (4.4)

In the following, the wavevector k will be written as a sum of a vector of the reciprocal
space and a vector inside the first Brillouin zone (q): k = G + q,

4.2 Modelisation of an isolated object or a surface
To model an isolated object in a framework inherited from the 3D-periodicity, in order to
take advantage of the efficiency of reciprocal space and the planewaves-based formalism, we
design a supercell, composed of the object itself surrounded by vacuum.

We will consider the example of a slab, which is infinite and periodic in the (x, y) plane,
and finite in the z-direction, with thickness Lmatz . To isolate the slab, one use a supercell as
defined on fig 4.1. In that case, the supercell is usually defined according to (a1, a2, na3),
where n is the ratio between the thickness of matter and the height of the supercell.

The effect of using a supercell approach has been studied in Ref [40, 41] and I will show
some of the results obtained for the silicon (2 x 1) surface. The surface is characterized by
asymmetric dimers formed between two atoms at the top and the bottom of the structure.
The DFT calculation within local density approximation has been performed to get ground-
state electronic properties. This configuration is shown on the figure 4.2.

The absorption spectra, calculated in the Independent-Particle Approximation (IPA)
and in the Random Phase Approximation (RPA), that is including the local field effects, are
shown for three different amounts of vacuum depicted in figure (4.3) and called void1 (half
matter/half vacuum: LSC = 2Lmatz ), void2 (2 times more thickness of vacuum than matter:
LSC = 3Lmatz ) and void3 (3 times more thickness of vacuum than matter: LSC = 4Lmatz ). The
imaginary part of εM for the in-plane and out-of-plane components, using IPA, is presented
in Fig. (4.3). One clearly sees that the amplitude of the spectra decreases when increasing
the vacuum. This decrease is actually only a scaling factor: when one scales each curve by
the factor LSC

Lmat
z

, all the curves are superimposed to the black curve labeled "renorm". This
effect comes from the fact that in such a calculation, the IPA response function is given by
the χ0

00, which is proportional to 1
Omega

∝ 1
LSC

.
The imaginary part of εM for the out-of-plane component, including local field effects, is

presented in figure (4.4). The inset in this figure shows the spectrum for void1 compared to
the bulk one. One sees that the absorption peak for the supercell void1 is located around
12 eV, and the amplitude is strongly reduced. When comparing the spectra for the different
thicknesses, the amplitude is not only changing, but the peak position is shifting towards
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high energy. This result is not physical.
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Figure 4.1: Schematical representation of
the supercell.

Figure 4.2: Left: Slab of 32 atoms corres-
ponding to the (2x1) surface reconstruc-
tion in a supercell. Right: electronic dens-
ity obtained by DFT calculation. The red
lines shows the limit of matter in the su-
percell.

Figure 4.3: In-plane component(top) and
out-of-plane component (bottom) for ab-
sorption of a silicon surface in IPA, for
the three different supercells depicted in
inset.

Figure 4.4: Absorption spectra along the
z-direction for a silicon surface in RPA for
the three different supercells.
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It has been shown that the regular TDDFT in the supercell formalism is equivalent to
Effective Medium Theory (EMT) with vacuum [41]. In this reference, we have distinguished
the two limiting cases of minimum screening and maximum screening. We have shown that
the minimum screening case was also associated with small local field effects, and was suitable
to describe the spectra for in-plane components, leading to a simple scaling factor. It reads:

εSCM = f + (1− f) εbulkM (4.5)

The maximum screening corresponds to large local field effects and allows us to interpret
the out-of-plane component; it can be written as:

1
εSCM

= f + (1− f)
εbulkM

(4.6)

The label SC means supercell and corresponds to the spectra calculated with the regular
TDDFT procedure. f is the proportion of vacuum in the supercell.

For the out-of-plane component, the application of Eq. (4.6), using the macroscopic
dielectric function of the bulk system for εbulkM gives the spectra in dashed lines in Fig. 4.5,
which account very well for the behavior of the standard TDDFT spectra (solid lines) with
vacuum.

Figure 4.5: Imaginary part of the out-of-plane component of εM for the slab of silicon of
thickness 21.72 Å introduced in supercells with different vacuum. Solid lines: results of
regular TDDFT in supercell formalism. Dashed lines : EMT according to Eq. (4.6).
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4.3 The selected-G method
In the previous section, it was shown that the calculation using a supercell with vacuum
leads to nonphysical results, and this spurious effect must be corrected.

It has been done during the PhD-thesis of N. Tancogne-Dejean [40], where the method
called “Selected-G” has been developed. It allows one to solve the problem of the vacuum size
dependency for the description of a surface. In the framework of the Selected-G method, we
define auxiliary response functions (Independent-particle response functions and susceptib-
ilities). These functions are periodic with the period Lmatz along the direction perpendicular
to the slab and they have the same values as the corresponding quantities for the isolated
slab in the region inside the matter [−Lmatz , 0]. Therefore, one has a new set of G-vectors,
associated to the periodicity of the auxiliary functions, G̃z = 2πn

Lmat
z

, which are different from
the one having the periodicity of the supercell: Gz = 2πn

Lz
.

The vectors of the reciprocal lattice are defined according to: G̃ = (Ḡ, G̃z), where Ḡ
stands for the in-plane component.

Since the slab keeps its periodicity for the in-plane directions, we consider that the in-
plane Fourier transform (FT) has already been done, and we only consider the z, z′ remaining
FT. In such a framework, the FT of the auxiliary response functions has the following form:

χ̃G̃,G̃′(q;ω) = 1
Lmatz

∫ 0

−Lmat
z

dz
∫ 0

−Lmat
z

dz′ e−i(qz+G̃z)z × χ̃Ḡ,Ḡ′(q̄, z, z′;ω)ei(qz+G̃′
z)z′

χ̃Ḡ,Ḡ′(q̄;ω) = 1
Lmatz

∑
qz

∑
G̃z ,G̃′

z

ei(qz+G̃z)z × χ̃G̃,G̃′(q;ω)e−i(qz+G̃′
z)z′

(4.7)

These auxiliary response functions χ̃ satisfy a modified Dyson equation:

χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω) (4.8)

where ṼG̃1G̃2
(q) is defined according to

ṼG̃1,G̃2
(q) = 1

Lmatz

∫ 0

−Lmat
z

dz1

∫ 0

−Lmat
z

dz2 e
−i(qz+G̃z1)z1×vḠ1(q̄; z1, z2) e−i(qz+G̃z2)z2 δḠ1,Ḡ2 (4.9)

with vḠ1(q̄; z1z2) = 1
|q̄ + Ḡ1|

e−|q̄ + Ḡ1||z1−z2| is the 2D Fourier transform of the Coulomb
potential. The full expression of ṼG̃1G̃2

(q) is [41].

ṼG̃1,G̃2
(q) = 4π

|q + G̃1|2
δG̃1,G̃2

+
ξ 4π δḠ1,Ḡ2

|q + G̃1|2|q + G̃2|2

− e−|q̄ + Ḡ1|Lmat
z sin(qzLmatz )
Lmatz

(2qz + G̃z1 + G̃z2)

+e
−|q̄ + Ḡ1|Lmat

z cos(qzLmatz )− 1
Lmatz |q̄ + Ḡ1|

[
[|q̄ + Ḡ1|2 − (qz + G̃z1)(qz + G̃z2)

]
(4.10)
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This potential is be called slab potential. The first term is the standard expression for
the 3D-FT of the Coulomb potential, and the second term is a correction due to the finite
thickness of the slab, proportional to 1/Lmatz and depending on two G̃z reciprocal lattice
vectors. The second term contains a phase factor ξ, which will be explain latter.

The corresponding microscopic dielectric matrix is

ε−1
G̃G̃′(q;ω) = δG̃G̃′ +

∑
G̃1

ṼG̃G̃1
(q)χ̃G̃1G̃′(q;ω) (4.11)

To describe a surface, one considers the limit Lmatz −→∞. In that case, the slab potential
is reduced to the standard diagonal 3D-Fourier transform of the Coulomb potential. The
absorption spectrum is deduced from ε−1

00 (q;ω) with the usual relation :

εM(ω) = lim
q−→0

1
ε−1

00 (q)
(4.12)

Figure 4.6: Silicon surface absorption using Selected-G
method.

The Selected-G formalism has
been successfully applied to the
case of surfaces [41, 42]. The ab-
sorption spectra of the (2x1) silicon
surface, including local field effects,
are presented in figure 4.6. Bulk
silicon (black solid line) is presen-
ted for reference. The in-plane
components εxx, εyy and the out-
of-plane component ε⊥ are shown
with blue, green and red colors re-
spectively.

We can see that the in-plane
components have spectra compar-
able with the bulk, both for
the amplitude and energy posi-
tion. The difference between the
in-plane components of the (2x1)
surface as compared to the bulk,
comes from the presence of surface

states in the (2x1) silicon surface, due to the creation of the dimers after the reconstruction
of the surface. These states are responsible for the structures at low energy (below 2.5 eV),
and explain the anisotropy between the εxx and εyy in-plane components.

The out-of-plane component ε⊥ (dashed red) is now located in an energy range closed
to the one of the bulk, so the unphysical shift towards high energy for the out-of-plane
component has disappeared. We have also demonstrated that this spectrum is independent of
vacuum, and move towards the bulk spectrum when increasing the thickness of the slab [40].
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Chapter 5

Application for finite slab systems

5.1 The slab potential
The slab potential has been defined to calculate the dielectric properties of an isolated
slab, in a framework of 3D code, based on planewaves and periodic boundary conditions.
The standard procedure is to define a supercell, containing the matter and some vacuum, to
prevent the slab to interact with artificial replicas through the long-range Coulomb potential.
But, we evidenced that the thickness of vacuum strongly influences the absorption spectrum
for the excitation perpendicular to the slab, when accounting for the local field effects.

Based on the idea that the response functions are localised in the matter, we considered
auxiliary response functions equal to the response functions of the isolated slab, but having
the periodicity of the matter Lmatz . Then we calculated the Fourier transform of the Dyson
equation on the volume corresponding to the matter.

As already stated in the previous chapter, the periodicity of the auxiliary response func-
tions has the consequence that the reciprocal space vectors are multiple of 2π

Lmat
z

. They
correspond to a subset of the reciprocal space vectors built with the height of the supercell,
when the ratio between supercell and matter is an integer. It justifies the name “selected-G“
vectors. The Dyson equation is solved only on this reduced basis and has to be modified
accordingly [see Eq. (4.8)]:

χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

where the slab potential is [see Eq. (4.10)]:

ṼG̃1,G̃2
(q) = 4π

|q + G̃1|2
δG̃1,G̃2

+
ξ 4π δḠ1,Ḡ2

|q + G̃1|2|q + G̃2|2

− e−|q̄ + Ḡ1|Lmat
z sin(qzLmatz )
Lmatz

(2qz + G̃z1 + G̃z2)

+e
−|q̄ + Ḡ1|Lmat

z cos(qzLmatz )− 1
Lmatz |q̄ + Ḡ1|

[
[|q̄ + Ḡ1|2 − (qz + G̃z1)(qz + G̃z2)

]
Ḡ stands for the in-plane component of G̃.
The first term is diagonal in G̃. It is the standard expression for the 3D-FT of the

Coulomb potential.
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The second term is a correction due to the finite thickness of the slab, proportional to
1/Lmatz and depending on two G̃ reciprocal lattice vectors. It is diagonal for the in-plane
component Ḡ, which gives for the total potential the following dependence: ṼG̃1G̃2(q) =
ṼḠ1Ḡ2;G̃z1G̃z2

(q) δḠ1,Ḡ2 . The second term also contains a phase factor ξ. It arises from the
definition of the cell in the integration. When the integration is done between [−Lmatz , 0]
or [0, Lmatz , 0], ξ = 1, while when the integration is done between [−Lmatz /2, Lmatz /2], ξ =
(−1)n1+n2 , where ni is the reduced coordinate of G̃zi = 2πni

Lmat
z

.

To describe the surface, we only used the first term, since we considered the limit
Lmatz −→∞, which has the consequence to suppress the correction.

We will now extend the study to finit slabs and perform the calculations with the full
expression of the potential. We will also consider the Electron Energy Loss spectra, since
some measurements on slabs of graphene exist, and will be used to validate our formalism.
Before presenting the results, we recall the main quantities of interest and the way they are
evaluated within this formalism.

5.1.1 Absorption
The absorption spectrum is the imaginary part of the macroscopic dielectric function εM(ω).
It is calculated within TDDFT according to :

εM(ω) = lim
q−→0

εM(q;ω) (5.1)

where εM(q;ω) is given, for non local fields (NLF) and local fields (LF) cases respectively,
by:

εNLFM (q;ω) = 1− 4π
q2 χ0

00(q;ω) (5.2)

εLFM (q;ω) = 1− 4π
q2

¯̃χ00(q;ω) (5.3)

with ¯̃χG̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ¯̃VG̃1G̃2(q) ¯̃χG̃2G̃′(q;ω)

and ¯̃V defined as ¯̃V0G̃2 = 0, ∀ G̃2 and ¯̃VG̃1G̃2 = ṼG̃1G̃2 for G̃1 6= 0.

5.1.2 EELS
The EEL spectrum is the imaginary part of the inverse dielectric matrix ε−1

G̃G̃(q;ω). For
momentum transferred in the first Brillouin zone, this quantity is calculated, for NLF and
NLF cases, according to:

ε−1,NLF
00 (q;ω) = 1 + Ṽ00(q)χ̃NLF00 (q;ω) (5.4)
with χ̃NLF00 (q;ω) = χ0

00(q;ω) + χ0
00(q;ω) Ṽ00(q) χ̃NLF00 (q;ω)
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ε−1,LF
00 (q;ω) = 1 +

∑
G̃

Ṽ0G̃(q)χ̃G̃0(q;ω) (5.5)

with χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

5.1.3 Remarks
One should notice that with the relations Eq. (5.3) and ( 5.5),

εM 6= lim
q̄−→0

1
ε−1

00 (q̄)
(5.6)

The slab potential, due to the presence of 1/|q̄|, which diverges at vanishing q̄, prevents
the direct calculation of the component of the absorption perpendicular to the surface of the
slab.

Since εM at vanishing q is a tensor, it is possible to extract this component from the linear
combination of spectra calculated for in-plane and (in-plane + out-of-plane) components.

In the case of the EEL spectrum, ε−1
00 does not behaves like a tensor at vanishing q, and

it is not possible to extract a qz component from any linear combination. For EELS, we will
only consider in-plane spectra.

Moreover, due to the definition of the EELS (Eq. 5.5), the spectrum strongly depends
on the value of vanishing q. To calculate the EELS spectra at vanishing q, we used q = 10−2

a.u..
A detailed behavior of the slab potential is summarized in Appendix A.

The slab potential has been implemented in the DP code, as well as the above expressions,
and all the calculations within TDDFT were done with this code [43]. The DFT calculations
are done with Abinit [44].
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5.1.4 Absorption for a finite slab
To check the behavior of the spectra with the vacuum, I have considered two different
systems: a slab of matter of 16 bilayers of silicon (thickness Lmatz = 41.052 Bohr) has
been introduced in a supercell with either LSCz = 82.104 Bohr (ratio = 2, called 4_4), or
LSCz = 123.156 Bohr (ratio = 3, called 4_8).

The spectra have been calculated with the parameters summarized in table 5.1, on a grid
of k-point mesh 16x8x1.

4_4 4_8
npwwfn 12803 19209
nbands 450 450
npwmat_xy 25 25
npwmat_z 33 33

Table 5.1: Parameters used to calculate the spectra for the 4_4 and 4_8

The local fields are included by taken into account the microscopic components associated
with G-vectors defined in a rectangular box which size is npwmat_xy × npwmat_z. For
the in-plane Gxy-vectors, I used 25, and for the out-of-plane Gz, I used 33. It corresponds
to the following closed shells:

( 0 0 ±Gz)
( 0 1 ±Gz), (0 -1 ±Gz)
( 1 0 ±Gz), (-1 0 ±Gz) ,( 0 2 ±Gz) ( 0 -2 ±Gz)
( 1 1 ±Gz) ( -1 1 ±Gz) ( 1 -1 ±Gz) (-1 -1 ±Gz), (1 2 ±Gz), (-1 2 ±Gz) ( 1 -2 ±Gz) (-1

-2 ±Gz)
( 0 3 ±Gz), ( 0 -3 ±Gz)
( 1 3 ±Gz), (-1 3 ±Gz), ( 1 -3 ±Gz), (-1 -3 ±Gz)
( 2 0 ±Gz), (-2 0 ±Gz), ( 0 4 ±Gz), ( 0 -4 ±Gz)

The Gz values for 4_4 supercell, due to selected-G procedure are:
Gz = 0,±2,±4,±6,±8,±10,±12,±14,±16,±18,±20,±22,±24,±26,±28,±30,±32

The Gz values for 4_8 supercell, due to selected-G procedure are:
Gz = 0,±3,±6,±9,±12,±15,±18,±21,±24,±27,±30,±33,±36,±39,±42,±45,±48

Figure 5.1 shows the absorption spectra for this slab, calculated using the 2 supercells,
with the Selected-G procedure and the slab potential.

The spectra are identical. This conclusion was already obtained in the case of the surface
with the 3D Coulomb potential. These results confirm that the Selected-G method, in the
presence of the slab potential, allows us to recover spectra independent of the size of the
supercell. Moreover, we see that the absorption of the slab of silicon is very similar to the
one of the surface. This is explained in appendix (A) where we did a complete analysis of
the role of the slab potential.
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Figure 5.1: Comparison of Im(εM) for the 4_4 (black) and of 4_8 (red) supercells. Top:
in-plane component. Bottom: out-of-plane component.
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5.2 EEL spectroscopy
We will now consider another kind of spectroscopy commonly used to study finite thickness
systems. For this, I studied slabs of few layers graphene, to compare with the measurements
of Eberlein et al [45]. This work aims to further validate the formalism.

In electron energy loss spectroscopy (EELS), a sample is illuminated by a beam of fast
electrons (energies of about 200keV) and the transmitted electrons are analyzed in terms
of their kinetic energy. The energy loss spectrum, defined as the probability to detect a
scattered electron having lost a certain amount of energy, gives access to information about
the target excitation (plasmon excitations, surface plasmons, core-electron excitations, core-
loss fine structure and others applications [46]). Electron energy loss spectroscopy corres-
ponds to the inelastic process where the impiging electron has an energy E0 and a momentum
K0, and the outgoing electron has an energy E1 and a momentum K1. E = E1 − E0 is the
energy loss and K = K1 −K0 is the momentum transferred to the sample. Depending on
the range of energy loss E, one distinguishes core-loss spectroscopy (E > 50 eV ), where
inner-shell electrons are excited, leading to elemental composition analysis, and low-loss
spectroscopy (E between 0 and 50 eV ), where valence electrons are excited, giving rise to
collective excitations named plasmon resonance [47]. In the following, we will be interested
in low-energy excitations and plasmon resonance effect.

k0

k1

k

Figure 5.2: The schematic
representation of an EELS
experiment.

The history of electron microscopy starts in 1932,
guided by E. Ruska and B. von Borries after the inven-
tion of the short-focal-length magnetic polepiece lens [48–
50]. For years, the electron microscopy has been de-
veloped both by laboratories and industrial companies. In
the 1980s the high resolution images have been obtained
by varying the objective lens focus and following recon-
struction of the exit-plane wavefunction [51]. In ten
years, aberration-corrected microscopes has become avail-
able, leading to the ability of gathering local information
about individual atoms, shifts in atomic positions, other
defects, stress and other local physical properties. Gen-
eral review of electronic microscopy can be found in [46,
52].

When the sample is illuminated with a broad beam, the incident electron can be de-
scribed by a single plane wave with a momentum K0. This is the Angular-Resolved regime.
By rotating the sample, one can choose a specific K direction and study the loss spectrum
for the corresponding point of the Brillouin zone. Changing the length of K, one can follow
the dispersion of the spectra along the chosen directions. However, using electromagnetic
lenses, one can focus the beam to study spatially resolved EELS: up to 0.2 nm.
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Our calculations will concern the angular-resolved EELS for valence electrons. One
defines K = G + q, where G is a vector of the reciprocal lattice, and q a vector which
belongs to the first Brillouin zone.

EEL(K;ω) = −Im[ε−1
GG(q;ω)] (5.7)

5.3 EELS for few layers of graphene.
Graphene is a material which possesses semi-metallic properties. Around the metallic point,
the bands disperse linearly, corresponding to the massless electrons called Dirac electrons.
This phenomenon is at the origin of their huge mobility. Graphene is of great interest for
research [53, 54] and studies of the graphene properties are developing very intensively. In
2008, Eberlein et al [45] study plasmon spectroscopy in free standing graphene films. The
graphene membranes have been prepared by using micromechanical cleavage [53] of natural
graphite on top of an oxidized Si wafer. After preparing the samples, the EEL spectra in
different places of the sample have been measured in the range 0 - 50 eV. The different places
chosen correspond to different numbers of layers, namely 1, 2, 5 and more that 10 layers,
which is considered to be bulk graphite.

This work is a perfect test case for our slab potential, since it will allow a direct com-
parison between our calculations and experimental data, and it will provide a validation of
our formalism: the Selected-G method has already been successfully used to simulate second
harmonic generation with surfaces, but the slab potential was not used.

5.3.1 Vacuum problem for EEL spectra
Before revisiting the work of Eberlein et al [45], I will first show the behavior of EEL spectra
with vacuum introduced in the supercell formalism, to allow for the description of an isol-
ated layer in a periodic framework. Figure 5.4 shows the EEL spectra for 1-layer graphene
introduced in supercells with increasing vacuum (Fig. 5.3). The size of the cell was chosen
to be 12.588, 18.882, 25.176, 31.470, 62.940, 125.880, and 314.700 Bohr. The calculations
are done with q = 10−2 a.u.. In Fig. 5.3, the white empty area corresponds to the amount
of vacuum in the supercell and the shaded area corresponds to one graphene layer, with a
constant thickness , defined by half of the distance between 2 layers in graphite (6.294 Bohr).

Figure 5.3: Schematic view of the supercells R2, R3 and R4 used in the calculations.
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The in-plane and out-of-plane components for graphene are presented in Fig. 5.4, includ-
ing or not the local-field effects. Note that the calculations were done using the standard
formalism, i.e. not using the selected-G method. The four panels show clearly that all the
spectra (in- and out-of-plane, with and without LF) exhibit a strong dependence with va-
cuum. For the in-plane component, (left column), the spectra are shifted towards low energy
when the vacuum increases. The effect of LF is almost negligible, as expected from a quite
homogeneous electronic density in the plane of the layer. For the out-of-plane component
(right column), the spectra without LF (top) show a reduction of the amplitude, and a much
smaller shift towards low energy, as compared to in-plane component. The LF have a large
effect, in agreement with the discontinuity of the electronic density perpendicular to the
layer. Indeed, the shape of each spectra is modified, but the influence of the vacuum is less
spectacular than for the in-plane case: it is closer to a scaling factor.
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Figure 5.4: EEL spectra of 1-layer graphene calculated with regular TDDFT for different
supercells (the size of the supercell in Bohr is given in the legend). (top-left): in-plane
component without LF, (bottom-left): in-plane component with LF, (top-right): out-of-
plane component without LF, (bottom-right): in-plane component without LF.
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We emphasize that the behavior of EEL spectra with vacuum is different from the one
observed for the absorption. For absorption, the spectra without LF (independently of the
in- or out-of-plane component considered) where simply scaled by the ratio between the
volume of the matter and the supercell. With LF, the out-of-plane spectrum was strongly
shifted; the in-plane spectra, due to the small effects of LF were not affected. For EELS,
the in-plane spectra with and without LF are strongly affected: they shift in energy. Since
the in-plane LF are rather small, the in-plane spectra with and without LF have the same
behavior and are shifted in energy in the same way.

5.3.2 Analysis of the work of Eberlein et al
Coming back to the EEL measurements on samples of few layers of graphene, the results of
the experiment for the in-plane component is presented in Fig 5.5a. Two resonant peaks are
clearly visible. The peak located around 5 eV correspond to the π plasmon, and the large
structure above 10 eV to π + σ plasmon. The amplitude of the structures increases with
increasing the number of layers, the peak position also shifts towards the high-energy region.
For thickness larger that 10 layers, the authors consider that the bulk structure have been
recovered.

This article [45] also provided numerical results (Fig. 5.5b) using a periodic framework,
and a supercell. The numerical simulations were done for 1 layer (single in red), 2 layers
(bilayer in green), 3 (trilayer in blue) layers and bulk graphite. One can see the two resonant
peaks, which shift when changing the number of layers, in agreement with the experiment.
The amplitude of the π plasmon (0 - 10 eV) seems to saturate and decreases for graphite.

Despite the fact that the numerical results reproduced the experimental ones quite well,
there is still a matter of controversy, that the authors mentioned in the paper. It was quoted
that "the precise peak positions depend on the separation of planes and to compare the loss
functions for graphite and multiple layers, we choose the separation between periodically
repeated multilayers to be 5 times the separation in graphite".

(a) Experimental EEL spectra (Eberlein et al
[45]) of layers of graphene. (b) Numerical simulation (Eberlein et al [45]) of

the EEL spectra of layered graphene. In-plane
component.

Figure 5.5: Eberlein EELS experiment (left) and numerical modeling (right). [45]
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In order to compare with their results, I extracted from my calculations the spectra
corresponding to the single layer, two and four layers of graphene, with a constant thickness
of vacuum. It corresponds to 4 times the separation in graphite (instead of 5 in Ref [45]).
The schematic view of the supercell is presented in the figure 5.6a. The white empty area
corresponds to the vacuum, the shaded area corresponds to the matter, with also a color
correspondence.

Results of the regular TDDFT calculations (without selected-G method and without slab
potential) are presented in Fig. 5.6b. The red, green and blue schemes are 1, 2 and 4 layers
respectively. I also add the bulk graphite with AB stacking. I got the same behaviour for the
spectra, compared to the experimental results and numerical modeling. The peak position
is located at a reasonable energy, and shifts towards low energy when decreasing the number
of layers; the amplitude of the peaks also decreases. Our results have the same behaviour for
the dependence in terms of the number of layers as in the experiment. However, the position
of the peaks depends on the size of the vacuum, as it is evidenced on figure 5.4 for the in
plane component.

(a) Scheme of structures on
the 5.6b.
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Figure 5.6: EEL spectra of regular calculation without slab potential and without selected-G
method for in-plane component.
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Selected-G method with the slab potential for EELS

We have seen that the vacuum problem was solved for absorption spectrum by applying the
Selected-G method, without the slab potential. We will now study the role of the Selected-G
method with the slab potential, for the EEL spectra.

I have computed the EEL spectra for supercells containing a fix number of layers of
graphene (4 layers) with different thickness of the vacuum, the relation matter-vacuum being
then 1:1, 1:2, 1:3 and 1:4 (see Fig. 5.7). The regular TDDFT calculations (without Selected-
G method and without slab potential) correspond to the four blue curves and evidence again
the dependence with vacuum. The red curves correspond to calculations with the selected-
G method only, i.e. without the slab potential (3D potential = surface). There are very
close to the curve obtained for graphite (AB stacking), shown in black. The green curves
have been obtained with the Selected-G method and with the slab potential. There are all
superimposed, showing no dependence in terms of vacuum, and are very different from the
surface or bulk spectra. The overall spectrum is in very good agreement with the measured
layered spectra [45]. This points out the importance of taking into account the finite nature
of the slab in the calculations. The collective oscillation of electrons at plasmon frequency
is affect by the thickness of the slab, even for in-plane excitation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25  30  35  40

E
E

L
S

 (
q

||
)

Energy, [eV]

R2 regular
R3 regular
R4 regular
R5 regular

R2 selectedG+V_slab
R3 selectedG+V_slab
R4 selectedG+V_slab
R5 selectedG+V_slab
R2 selectedG+V_3D 
R3 selectedG+V_3D 
R4 selectedG+V_3D 
R5 selectedG+V_3D 

Graphite AB

Figure 5.7: EEL spectra of 4 layers graphene with different methods. (blue curves): regular
TDDFT calculation within RPA; (red curves): Selected-G method for the surface case (no
slab potential) and (green curves) correspond to the Selected-G with a slab potential. The
black curve is the bulk graphite with AB stacking,

Before showing the results for different thicknesses, I also want to evidence the influence
of the phase factor ξ = (−1)n1+n2 (if the matter is between [−Lmatz /2, Lmatz /2]), or ξ = 1 (if
the matter is between [−Lmatz , 0] or [0, Lmatz ]).
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Figure 5.8: EEL spectra of graphene for two supercells (ratio=4 and ratio = 5) using
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dashed blue) or ξ = (−1)n1+n2 ([−Lmatz /2, Lmatz /2]) (matcenter=1: R4 solid green, R5:
dashed black), qΓM = 0.47 Bohr−1.

Figure 5.8 shows that the spectra are strongly dependent on ξ, (red and blue curves
calculated with ξ = 1 vs green and black curves calculated with ξ = (−1)n1+n2), at least for
large values of q̄. The effect is particularly important for the π + σ plasmon. This means
that the way how the integration is treated is important. Nevertheless, the spectra are in-
dependent of vacuum whatever the way the integration is done.

The selected-G method with the slab potential (ξ = (−1)n1+n2) has been applied to the
1,2,3,4 and 8 layers of graphene. The different systems have been modeled with different
amount of vacuum in the supercell, corresponding to an integer factor of the thickness of the
matter (this parameter is no more meaningful since we have evidenced that our formalism
provides results independent of the vacuum). The size of the supercell and the ratio between
matter and vacuum for the different systems are presented in Table 5.2. The converged
parameters for the DP calculations are presented in Table 5.3.
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Number of layers Ratio Lsupercell

Lmatter
z

Lsupercell [Bohr]
1 4 25.176
2 4 50.352
3 3 56.646
4 3 75.528
8 1 100.704

Table 5.2: The parameters of the 1, 2, 3, 4 and 8 layers of Graphene for calculation with
slab and selected G method.

1l R4 2l R4 3l R3 4l R3 8l R2
npwwfn 1299 2977 3289 4995 5479
nbands 90 120 120 120 190
npwmat_xy 19 19 19 19 19
npwmat_z 25 45 37 45 49
npwmat_z selG+slab 7 13 19 25 49

Table 5.3: Parameters for convergence for DP, carbon layers.
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Figure 5.9: (left) EEL spectra for in-plane component of 1, 2, 3, 4, 8 layers of graphene
calculated with selected-G method and slab potential. (right) Experimental data of Eberlein
et al (see Fig. 5.5a) for comparison.

Figure 5.9 shows the EEL spectra calculated with the selected-G method using the slab
potential. We clearly see that these spectra are in very good agreement with the experi-
mental results. With the selected-G method, together with the slab potential, we are able
to get spectra showing the correct behavior in terms of the thickness of the slab of matter,
but independent of the amount of vacuum in the supercell.
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5.4 Conclusion
In this chapter, I have evidenced that the EEL spectra, calculated within standard TDDFT,
are strongly dependent on the vacuum introduced in the supercell. Unlike to what was ob-
served for absorption spectra of surfaces, where the size of the vacuum affects mainly the
out-of-plane component, with only a normalization factor for in-plane components, the ef-
fect is important for the in-plane components for EEL spectra. This was already noticed by
the theoreticians, who imposed the vacuum size to obtain a plasmon at the measured energy.

I have shown that within the Selected-G method and using the slab potential, the EEL
spectra were located at the measured energy, independently of the vacuum introduced in the
supercell. This formalism has allowed me to reproduce the spectra measured by Eberlein et
al for increasing stacking of graphene layers.

Moreover, I have shown that once the vacuum problem is removed due to the Selected-G
procedure, the use of the slab potential gives an EEL spectrum very different from the surface
(where we use the 3D expression for the Coulomb potential in reciprocal space). This result
differs from the one obtained for the absorption spectrum: indeed, for the absorption, the
surface and the slab calculations are similar. On the contrary, for EEL, the surface spectrum
is similar to the one of the graphite (bulk), when the slab spectrum is different and in very
good agreement with the the experimental results measured by Eberlein et al for slabs. This
confirms that the plasmon, arising form collective excitations, is sensitive to the thickness of
the slab, even for the in-plane components.



Chapter 6

Comparison with other cutoffs

6.1 Introduction
The slab potential has been defined to treat an isolated slab system in the framework of
a 3D codes, based on plane waves periodic boundary conditions. The three ideas are the
following:

1) the response functions of the isolated slab are localized inside the matter.
2) we define auxiliary response functions in real space, equal to the response functions of

the isolated slab, and periodic with the periodicity Lmatz .
3) we calculate the Fourier transform of the Dyson equation on the volume defined by

the matter only.

The periodicity of the auxiliary response functions has the consequence that the reciprocal
space basis vectors are multiple of 2π

Lmat
z

, instead of 2π
Lz
, the so-called “selected-G“ vectors:

the Dyson equation is solved only on the reduced basis of selected G-vectors.

The limitation of the integration along the direction perpendicular to the slab to the
thickness of the matter acts as a cutoff procedure. Another procedure of cutoff has been
proposed almost simultaneously some years ago by C. Rozzi et al [55] and S. Ismail-Beigi [56].

In these two cases:
1) the reciprocal space is built on the supercell volume : kz = 2πnz

Lz
for integer value of

nz,
2) the Fourier transform for the z component of the Coulomb potential

v2D
c (k̄; z, z′) = 2π

k̄
e−k̄|z−z′| with k̄ = Ḡ + q̄ (6.1)

is treated as a function of one variable only, namely the distance |z− z′|, as it is the case for
3D-infinite systems, leading to a diagonal expression for v2D

c (k̄, kz), (Ḡ is an in-plane recip-
rocal lattice vector and q̄ is an in-plane reciprocal space vector spanning the first Brillouin
zone),

3) the integration along the direction perpendicular to the slab is limited to [−zc,+zc],
which will be further defined.

43
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The expression proposed by C. Rozzi et al [55] is:

v̂2D
C (k̄, kz) = 4π

k2

1 + e−k̄zc

[
kz

k̄
sin(kzzc)− cos(kzzc)

] (6.2)

The value of zc = Lz/2 is suggested to avoid interactions between the artificial replicas. The
cases leading to a divergence are calculated explicitly :

v̂2D
C (k̄ = 0, kz) = 4π

k2
z

[
1− cos(kzzc)− kzzc sin(kzzc)

]

+ 8 h ln
(α +

√
1 + α2)(1 +

√
1 + α2)

α

sinkzzc
kz

(6.3)

h and α define the shape of the in-plane Born von Karman cell: hx = αhy = h (much larger
than the unit cell). This last term disappears providing that the cutoff procedure is applied
in the same way to the ionic potential, ensuring the charge neutrality of the system. The
remaining expression is:

v̂2D
C (k̄ = 0, kz) = 4π

k2
z

[
1− cos(kzzc)− kzzc sin(kzzc)

]
(6.4)

The value for k ≡ 0 gives an non-diverging contribution, coming from the limit of the
previous expression when kz → 0:

v̂2D
C (k̄ = 0, kz = 0) = −2πz2

c . (6.5)

The expression proposed by S. Ismail-Beigi [56] is the same as Eq. 6.2 for k̄ 6= 0, but in
order to avoid the divergence occurring when k̄ → 0, zc is chosen as zc = Lz/2. This leads
to:

v̂2D
C (k̄, kz) = 4π

k2

1− (−1)nz e−k̄zc

 (6.6)

where nz is defined with kz = 2πnz

Lz
.

For kz = 0, it comes:

v̂2D
C (k̄, kz = 0) = 4π

k̄2

{
1− e−k̄zc

}
(6.7)

and the limit for k̄→ 0 is:

v̂2D
C (k̄ −→ 0, kz = 0) = 4πzc

k̄
(6.8)

It diverges as k̄ → 0, which gives a milder divergence as the untrucated 3D case. The
choice of zc has confined the divergence to the single wave vector k = 0. This also corres-
ponds to our limiting case (see Eq. A.9) for the slab potential.
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Note that the different values for v̂2D
C (k̄ = 0̄, kz = 0) obtained from the expression of C.

Rozzi et al and S. Ismail-Beigi come from the order of the limits. For S. Ismail-Beigi, kz
is set to zero before k̄ → 0. For C. Rozzi et al, k̄ is set to zero, leading to a new formula,
before kz is set to 0.

Finally, during the time we were working on the ”Selected-G“ formalism leading to the
slab potential, D. Novko et al [57] proposed a non-diagonal expression for the Fourier trans-
form of the Coulomb potential:

VG1G2(q) = 4π
|q + G1|2

δG1G2 (6.9)

− pGz1Gz2

4π (1− e−|q+Ḡ1|L)
|q + Ḡ1|L

× |q + Ḡ1|2 −Gz1Gz2

(|q + Ḡ1|2 +G2
z1) (|q + Ḡ2|2 +G2

z2)
δḠ1Ḡ2

with

pGz = 1 for kz = 2nzπ
Lz

pGz = −1 for kz = (2nz + 1)π
Lz

, nz ∈ Z.

q is an in-plane vector, contains in the first Brillouin zone.

As in our case for the slab potential, this comes from the finite integration limits in
the direction perpendicular to the surface, which imposes to consider the Coulomb potential
Eq.(6.1) as a function of two variables (z, z′). However, the difference with our work lies in the
definition of the reciprocal lattice vectors, built here according to the volume of the supercell.

In all these cases, except our case based on “selected-G“ vectors, the procedure is based
on the volume of the supercell, which should lead to an influence of the vacuum on the spec-
tra. To test this effect, we have studied the graphene layered systems with these different
cutoff procedures.

6.2 Behavior of C. Rozzi et al or S. Ismail-Beigi’s cutoffs
with vacuum

We have coded the formula of S. Ismail-Beigi, with zc = Lz/2, but it is equivalent to C.
Rozzi for the general case. The only difference between these two cutoffs comes from the
order of limits, as explained before. The choice of this formula is justified by the fact that
for the limit k −→ 0, (i) we do not apply any cutoff procedure to the ionic charge density,
as it is suggested by Rozzi et al, (ii) since we deal with the in-plane case, we consider the
limit k̄ −→ 0, after having set kz ≡ 0 in the calculation, (iii) the expression of this potential
for vanishinq q is the same as ours (see A.9).
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We have calculated the inverse dielectric function for q̄ in the first Brillouin zone:

ε−1
00 (q̄) = 1 + 4π

q̄2 χ̂00(q̄) (6.10)

with

χ̂GG′(q̄) = χ0
GG′(q̄) +

∑
G1

χ0
GG1(q̄) v̂2D

C G1(q̄) χ̂GG1(q̄) (6.11)

In such a framework, the potential appearing in the expression for ε−1
00 (q̄) is the 3D Coulomb

potential, since one considers that it describes the external perturbation which does not
experience the cutoff.

The absorption spectrum is then deduced from ε−1
00 (q̄) according to Eq. (3.20):

εM(q̄) = 1
ε−1

00 (q̄)

With such a relationship, one gets:

− Im(ε−1
00 ) = Im( 1

εM
) = Im(εM)

Re(εM)2 + Im(εM)2 (6.12)

This expression explains the well-known relation between EEL and absorption spectra ob-
served in bulk material: EEL spectrum present a maximum when Re(εM) = 0 and when
Im(εM) is small.

This expression has another consequence when one describes an isolated object in a
supercell formalism. When increasing the vacuum, one has Re(εM) −→ 1 and Im(εM) << 1,
which leads to − Im(ε−1

00 ) ≈ Im(εM). In such a framework, this equivalence is considered
as the criteria to ascertain that the vacuum introduced in the supercell is large enough to
produce an isolated object.

6.2.1 Results for graphene
We have calculated the EEL spectra for Graphene (1 layer) for in-plane q̄ with two different
lengths: q̄ = 10−5 Bohr−1 and q̄ = 0.078 Bohr−1.

To evaluate how the vacuum affects the results, the graphene layer has been introduced
in supercells of different thicknesses (R2, R3, R4, R5, R10 with the usual denomination see
Table 6.1).

Thickness R1 R2 R3 R4 R5 R10

LSCz (Bohr) 6.294 12.588 18.882 25.173 31.470 62.940

Table 6.1: Heigth of the different supercells in Bohr.

The R1 length corresponds to half of the graphite AB c-unit cell, also called d0. The para-
meters used for convergence are the number of plane waves for the wavefunctions (npwwfn),
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Parameters R2 R3 R4 R5 R10
Nk 40x40x1 40x40x1 40x40x1 40x40x1 40x40x1
Nb 100 100 100 100 100
npwwfn 997 1489 1795 2487 3999
npwmat_xy 19 19 19 19 19
npwmat_z 13 19 25 31 61

Table 6.2: Parameters used for convergence.
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Figure 6.1: EELS for one graphene layer in different supercells (R2, R3, R4, R5, R10) without
local field effects (NLF-left) and with local field effects (LF-right) for q̄ = 10−5 Bohr−1 (top)
and for q̄ = 0.078 Bohr−1 (bottom). The calculations are done with the standard cutoff_2D.

the number of bands (nband) and the number of G vectors in-plane and out-of-plane which
define the size of the matrix to include local fields (npwmat_xy * npwmat_z). They are
summarized in table 6.2.

Figure 6.1 presents the EEL spectra without local field (NLF - left) and with local field
effects (LF - right) for q̄ = 10−5 Bohr−1 (top) and for q̄ = 0.078 Bohr−1 (bottom). We
observe the same behavior for the two values of q̄. Without local field effects (left panels),
the amplitude of the peaks decreases when increasing the thickness of the vacuum. But it is
not a simple scaling factor effect coming from the change of the volume, as the peak positions
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are shifting towards lower energy. With local field effects, no shift is observed, the amplitude
of the spectra decreases when increasing the vacuum, and the decrease corresponds to a
scaling factor = Lz/L

mat
z , as it is shown in Fig. (6.1 - right) by the scaled curves, which are

all superimposed.

We emphasize that the behavior of in-plane EEL spectra with vacuum in the presence
of the proposed cutoff, is different from the one observed with standard TDDFT (without
cutoff, see Fig. 5.4). Without the cutoff, the EEL spectra with (and without) LF shift
towards low energy with increasing vacuum. Here, the shift still occurs for non-LF spectra,
while in-plane spectra with LF are simply scaled with the volume.

Moreover, the shape of the EEL spectrum with LF for q̄ = 10−5 Bohr−1 is very similar
to the absorption spectrum of graphene or graphite.

6.2.2 Analysis
To understand the behavior of the spectra, we have compared the associated Real and
Imaginary part of εM(q) to EELS, which are related through Eq.(6.12). The spectra are
presented in Fig. 6.2 and Fig. 6.3.
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Figure 6.2: Real and Imaginary parts of εM (top and middle respectively) and EELS (bot-
tom) for one graphene layer in different supercells (R2, R3, R4, R5, R10) without local
field effects (NLF-left) and with local field effects (LF-right) for q̄ = 10−5 Bohr−1. The
calculations are done with the cutoff_2D defined in Eq. 6.2 or 6.6.
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Figure 6.3: Real and Imaginary parts of εM (top and middle respectively) and EELS (bot-
tom) for one graphene layer in different supercells (R2, R3, R4, R5, R10) without local field
effects (NLF-left) and with local field effects (LF-right) for q̄ = 0.078 Bohr−1 (bottom). The
calculations are done with the cutoff_2D. defined in Eq. 6.2 or 6.6.

Spectra in figures 6.2 and 6.3 have the same behavior, so the description is done for both.
It is based on the Eq. 6.12.

For the NLF spectra (Fig. 6.2 and 6.3 - left column), the π-plasmon (corresponding to the
region of energy 0-10 eV) has the expected behavior of a plasmon: its maximum is located
at the energy where Re(εM) crosses zero from negative to positive values, and where Im(εM)
is very small. The evolution of Re(εM), the values are located around 1 when increasing the
vacuum , explains the shift of the peak to low energy. The π + σ - plasmon (between 10
en 14 eV) is associated to a non-vanishing Im(εM), and a non-zero crossing Re(εM). This
part of the spectra arises from interband transitions. Above 14 eV, Im(εM) decreases, and
Re(εM), increases from negative value, crosses zero, and when the vacuum is to large tends
to 1. This is at the origin of the shift to low energy of the π + σ peak.

For LF spectra (Fig. 6.2 and 6.3- right column), the structures in the EELS appear at
energy where Im(εM) is small, and Re(εM) is above zero, so the peak does not move anymore
in energy.

When the spectra are calculated without LF, one has:

εNLFM (q̄) = 1− 4π
q̄2 χ0

00(q̄) (6.13)
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Since χ0 is normalized with the volume of the supercell (Eq. 3.17), the origin of the
scaling factor is obvious. The way Re(εNLFM ) crosses zero shows clearly the reason why the
EELS is shifting with the volume of the supercell, and it is independent of the length of q̄.

When the spectra include LF, in the limit q̄ → 0, the 2D-Coulomb potential behaves
like 4πzc/q̄ (Eq. 6.8). Associated with the fact the χ0

00 ∝ q̄2 (Eq. 3.17), one sees from the
Dyson equation (Eq. 6.11) that χ̂00(q̄)→ χ0

00(q̄). Then

ε−1,LF
00 (q̄) ≡ 1 + 4π

q̄2 χ̂00(q̄) ' 1 + 4π
q̄2 χ0

00(q̄) (6.14)

and Im(ε−1,LF
00 (q̄)) ≡ Im(4π

q̄2 χ
0
00(q̄)) ' Im(εNLFM (q̄)). This is confirmed by the comparison

of the spectra in Fig. 6.2 (bottom-right for Im(ε−1,LF
00 ) and middle-left for Im(εNLFM )) and

explains why the EELS exhibits only a scaling factor for the amplitude.

For larger q̄ (= 0.078 Bohr−1), the EEL spectra with LF are more puzzling. Indeed,
the χ̂00(q̄) does not tend to χ0

00(q̄). It is confirmed by the comparison of the spectra Fig.
6.3: Im(εNLFM ) (middle-left) and Im(ε−1,LF

00 ) (bottom-right). In that case, the full Dyson
equation (Eq. 6.11) with the general expression of the potential, which behavior with q̄ is
more difficult to handle, must be inverted. Nevertheless, the χ̂00(q̄) is still proportional to
the volume of the supercell.

With this use of the cutoff_2d, the behavior of the spectra with and without local fields
is very different. This is quite surprising, since the local field effects are expected to be rather
small in the plane of the layer. Actually, this difference of behavior comes from the way the
EELS is calculated without LF. One first calculated εM with Eq. (6.13), and we invert this
quantity to obtain the EELS. It results from this procedure that no cutoff is apply to the
EELS without LF.

On the contrary, when one includes LF, one calculates a microscopic matrix ε = 1 −
v̂2D
c χ0, we invert this matrix to obtain the EEL: such a procedure is equivalent to solve the
Dyson equation (6.11), so the EELS is calculated with the cutoff. The resulting quantity at
vanishing q in actually ε−1

00 = 1 + v̂2D
c0 χ̂00. Then, one renormalises the response function to

obtain (see Eq. 6.10).
If we decide to calculate the EELS without LF directly by solving Eq (6.11) with only v̂2D

c0
and calculate ε−1

00 with this resulting response function in Eq. (6.10), then the EELS spec-
tra without LF are very similar to the ones with local fields. This procedure is the correct one.

We have shown that the cutoff procedure with a cutoff parameter zc = Lz/2, where Lz
is the height of the supercell contains a part of vacuum, and provides EEL spectra which
are not independent of the vacuum. Nevertheless, without applying the cutoff, the spectra
with local field effect were strongly shifted to high energy (see Fig. 5.4). Here, using this
2D cutoff, the spectra are "cured" from the energy shift, and the effect of the vacuum on the
spectra with LF reduces to a scaling factor equal Lz/Lmatz . Since the resulting spectra seem
to be in quite good agreement with experiments, and since the amplitude of the measured
spectra is not in absolute unit, this procedure has been considered as satisfying.
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6.3 Behavior of D. Novko et al cutoff with vacuum
Our slab potential is very similar to the one derived by Novko et al [57] and by switching-off
the selected-G procedure, we can reproduce the calculation done by Novko et al.

The EELS is calculated with the same expression as ours (we omit q for simplification):

ε−1,LF
00 = 1 +

∑
G
V0GχG0 with χGG′ = χ0

GG′ + χ0
GG1 VG1G2 χG2G′ (6.15)

Absorption is deduced from ε−1,LF
00 with the standard relation (Eq. 6.12):

εM(q̄) = 1
ε−1

00 (q̄)

We have calculated the EEL and Absorption spectra for the systems define in the previous
section.

6.3.1 Results for graphene

The parameter used in the calculations have been summarized in Table 6.2. For the Selected-
G method, we used 19 in-plane vectors, corresponding to 3 closed shells (up to (2 0)), and 7
Gz vectors, corresponding to Gz = 0 ; Gz = ±1 ∗ ratio ; Gz = ±2 ∗ ratio ; Gz = ±3 ∗ ratio.

The calculations done by D. Novko at al [57] considered only LFE out-of-plane (Gx =
Gy = 0), with 71 Gz to reach convergence. Associated to a supercell of heigth Lz = 5a =
23.26 Bohr (where a = 4.63 Bohr is the length of the in-plane unit cell of graphite), it cor-
responds to a length of maximum Gz = 9.5 Bohr−1. A complete analysis of the effect of
including only out-of plane or in- and out-of plane LF is done in appendix B.

In order to evidence the evolution of the spectra with the vacuum, we put on the same
graph the EELS calculated with Novko at al [57] method with different supercells. Figure
6.4 presents the EEL spectra without local field (NLF - left) and with local field effects (LF
- right) for q̄ = 10−5 Bohr−1 (top) and for q̄ = 0.078 Bohr−1 (bottom).

The behavior for the two ranges of q̄ is now different with vacuum:

• For q̄ = 10−5 Bohr−1, the spectra are vacuum independent. The effect of the local
fields is very small.

• For q̄ = 0.078 Bohr−1, the spectra are vacuum-dependent. The effect of the local fields
is more important than for vanishing q̄, and is different for NLF and LF spectra. For
NLF spectra (botton-left) the two plasmons shift towards low energy when increasing
vacuum. For LF spectra, the amplitude is decreasing with increasing vacuum, but no
shift occurs. The apparent effect is a scaling factor, but which is not directly related to
the scaling factor coming the volume, as shown by the normalized curves in pale lines.
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Figure 6.4: EELS for one graphene layer in different supercells (R3, R4, R5) without local
field effects (NLF-left) and with local field effects (LF-right) for q̄ = 10−5 Bohr−1 (top) and
for q̄ = 0.078 Bohr−1 (bottom). The calculations are done with the cutoff proposed by
Novko et al [57] using npwmat_xy=1 and npwmat_z=71 .

6.3.2 Analysis
The spectra are calculating with the same expressions we use with our slab potential:

ε−1,LF
00 = 1 +

∑
G
V0GχG0 with χGG′ = χ0

GG′ + χ0
GG1 VG1G2 χG2G′ (6.16)

ε−1,NLF
00 = 1 + V00χ

NLF
00 with χNLF00 = χ0

00 + χ0
00 V00 χ

NLF
00 (6.17)

where the colors refer to Fig. 6.5 and Fig. 6.6.
In order to understand the role of the different terms of the potential, we compare the

different response functions: χ0
00, as well as χNLF00 and χLF00 , which enter in the EEL spectra

(Fig. 6.5 for vanishing q̄ and Fig. 6.6 for q̄ = 0.078 Bohr−1). Left pannels contain χLF00 with
LF only out-of-plane and right pannels contain χLF00 with LF in- and out-of-plane.

The difference between the green and blue curves comes from the VGG′ for (GG′) 6= (00).
One sees from the two cases (npwmat_xy = 1; npwmat_ z = 57) and (npwmat_xy = 19;
npwmat_ z = 25) that when we consider only out-of-plane LF, these terms are extremely
small, since the curves are the same. Even when we add in-plane LF, the difference is weak
(green vs blue). The difference between the blue curve (χNLF00 ) and the red curve (χ0

00) allows
us to evaluate the role of the inclusion of V00, which tends to zero for vanishing q̄.
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(blue) χNLF00 and (green) χLF00 , with χLF00 calculated with LF only out-of-plane (left) and with
LF in- and out-of-plane (right).
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Figure 6.6: Different response functions implied in EELS for q̄ = 0.078 Bohr−1: (red) χ0
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Origin of the independence of the spectra with vacuum at vanishing q̄ (Fig. 6.4 - top):

The EELS without LF (Fig. 6.4 - top - left) is calculated according to Eq. (6.17). It gives:

χNLF00 = χ0
00

1− V00 χ0
00

(6.18)

ε−1,NLF
00 = 1 + V00χ

0
00

1− V00 χ0
00

(6.19)

Since V00 −→ 2πLSC
z

q̄ and χ0
00 ∝ 1

LSC
z

one has an exact compensation of the scaling factor
coming from the height of the supercell.
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At vanishing q̄, one sees (Fig. 6.5) that the χLF00 −→ χNLF00 , which means that the VGG′

is dominated by the V00 term and we can draw the same conclusion as for the NLF case: one
has an exact compensation of the height of the supercell (Fig. 6.4 - top - right).

Origin of the dependence of the spectra with vacuum at non-vanishing q̄ (Fig. 6.4 - bottom):

For NLF EEL spectra (Fig. 6.4 - bottom - left), we still can express ε−1,NLF
00 with Eq.

(6.19) but in the case of non-vanishing q̄, V00 6= 2πLSC
z

q̄ , which explains the fact that the
height of the supercell is not compensated and we still see an influence of the vacuum on the
spectra.

In the case of LF, the comparison of the blue and the green curves (Fig. 6.6) shows
that the inclusion of the VGG′ terms for non-zero G is not negligible, so a simple analysis
is not possible. Nevertheless, the inclusion of LF has an interesting effect, since the spectra
with different vacuums are no more shifted, only the amplitude is affected (see Fig. 6.4
bottom-right). This effect is similar to the one observed for the cutoff2D method, but in
that latter case, the scaling factor was the height of the supercell (see Fig. 6.1 bottom-right).

With such a framework, the EEL spectra still suffer from the vacuum problem. One
notices that the behavior of the cutoff procedure proposed by Novko et al does not behave
like the cutoff_2D proposed by Rozzi et al or Ismail-Beigi. In particular, for vanishing q̄,
the results obtained with the cutoff proposed by Novko et al do not depend on vacuum. For
larger q̄, all the spectra have an amplitude dependent on vacuum, but for the cutoff_2D
with local fields, the scaling factor can be deduced from the height of the supercell, contrarily
to Novko et al procedure.

On the contrary to the calculations done without cutoff, like did by Eberlein et al, the
choice of the size of the supercell is crucial to obtain plasmons peaks at an energy in agreement
with experimental data. This is done by Eberlein et al [45] with LSCz = 5d0 = 31.47 Bohr,
where d0 = 6.294 Bohr is the interlayer distance in graphite. With the two proposed cutoff
procedures, on one side Ismail-Beigi et al [56] or Rozzi et al [55] or Novko et al [57], the
energy position of the plasmon is correct, but the amplitude depends of vacuum. Since the
absorption spectrum is calculated according to Eq. (4.12), it will also suffer from the vacuum
problem, as it can bee seen on figure 6.3 middle -right).

6.4 Dispersion of the plasmon and nature of electronic
excitations

We have studied the dispersion of the plasmon for q̄ ranging from 0.039 up to 0.303 Bohr−1

by step of 0.039 Bohr−1, along the ΓM direction, using our slab potential, with and without
the Select-G method, in order to compare to the results of Novko et al [57].
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6.4.1 Calculations with Novko et al procedure
The results corresponding to Novko et al procedure calculated with our code (Slab potential
(ξ = (−1)n1+n2) but no Selected-G method) are presented in Fig. 6.7. To facilitate the
comparison, Fig. 6.8 shows the spectra extracted from the paper of Novko et al [57]. Since we
have evidenced that this procedure is dependent on the vacuum introduced in the supercell,
the calculations were done with the supercell R4 = 25.173 Bohr = 5 d0, (where d0 = 6.294
Bohr is the distance between two adjacent layers in graphite), to be as close as possible as
their results (LSCz = 5a = 23.26 Bohr, where a = 4.63 Bohr is the length of the in-plane
unit cell of graphite). We have introduced only out-of-plane LF, with npwmat_z = 71. As
already mentioned, this does not affect the position of the π-plasmon, which dispersion will
be later followed.
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Figure 6.7: Real (red lines) and Imaginary (blue lines) parts of εM and EELS (green lines)
for one graphene layer in R4 supercell for different q̄ ranging from 10−5, 0.039, 0.078 for the
top and 0.157, 0.235, 0.313 Bohr−1 for the bottom plots from left to right. (The first graph
is calculated for vanishing q̄: Re(εM) is not shown and is equal to 1). The local field effects
are only along z (npwmat_xy = 1; npwmat_z = 71). The calculations are done with the
cutoff proposed by Novko et al [57].
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Figure 6.8: This figure is extracted from by Novko et al [57].

The agreement between spectra is very good, which confirms that the formalism of Novko
et al is the same as our, except for the Selected-G part (which is not applied in that case).
The major differences come from the k-point mesh: our k-point mesh is 40x40x1 shifted grid,
which is much smaller than the one used by Novko et al (200x200x1). This is at the origin
of the spurious oscillations of the spectra, which prevent us to see some small structures
evidenced by Novko et al in the spectra (specially the peak they attribute to σ −→ σ∗2
transitions). The purpose of our work was not to reproduce their results, but to compare
to their work the calculations done with the Selected-G method, and the precision we reach
with our parameters is good enough.

6.4.2 Calculations with slab potential and Selected-G method
Since we have demonstrated that the slab potential with the Selected-G allows us to provide
results which are independent of the height of the supercell, we applied it to compare to
Novko et al’s paper. We introduced in- and out-of-plane LF, with (npwmat_xy = 19;
npwmat_z = 7) 1. Results are presented on Fig. 6.9 and can be compared to Fig. 6.7.

1We remind that 7 Gz vectors correspond to Gz = 0 ; Gz = ±1∗ratio ; Gz = ±2∗ratio ; Gz = ±3∗ratio.
Since we are in the case ratio = 4, is gives 12 for the maximum Gz, which is equivalent to consider npwmat_z
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Figure 6.9: Real (red lines) and Imaginary (blue lines) parts of εM and EELS (green lines)
for one graphene layer in R4 supercell (R4 = 25.173 Bohr) for different q̄ ranging from 10−5,
0.039, 0.078 for the top and 0.157, 0.235, 0.313 Bohr−1 for the bottom plots from left to
right. (The first graph is calculated for vanishing q̄). The calculations are done with slab
potential and Selected-G method with (npwmat_xy = 19; npwmat_z = 7).

For the absorption spectra (6.9-top), calculated with εM = 1− 4π/q̄2 ¯̃χ00, the difference
with Novko et al is more important than for the EEL spectra. In particular, the peak above
10 eV in our absorption spectra (corresponding to the π + σ structure) keeps the same
shape for all the range of q̄; in the calculations of Novko et al, the spectral shape clearly
evolves. The first peak of absorption presents the expected behavior coming from interband
transitions, diverging at 0 eV for vanishing q̄ due to the metallicity at K point, and dispersing
when q̄ increases. This was also the case for Novko et al spectra.

The EELS (Fig. 6.9 - bottom) present mainly the same features as the one calculated
with Novko at al. The π plasmon is similar, with the appearance of the structures around
5 eV. The π + σ plasmon is located in the same energy range, the slight modification of the
shape can be explained by the introduction of in-plane LF, since we have seen that they were
responsible of the shift of the spectral weight to high energy (see Fig. B.2). The evolution
of the spectral weight compares well with the experimental data of Wachsmuth et al [58].

= 25 for the non selected-G case, and allowed the convergence of the spectra (see Fig. B.1).
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The main difference comes from the amplitude. We recall that the results of Novko et
al depend from the vacuum chosen to build the supercell, which has consequences on the
amplitude, and on the shape of the absorption spectra. This is not the case of our calculation,
which is totally independent of the choice of the supercell.

6.4.3 Dispersion

In order to compare further the behavior of the spectra calculated with the different pro-
cedures (Novko et al and our method, which differ from the choice of G-vectors of the
microscopic dielectric matrix), we report the dispersion of the main peak of EEL and the
corresponding peak in absorption spectra in the 0-10 eV energy range. Figure 6.10 presents
data from different origins: black squares are experimental data (from [59]), red dots corres-
pond to dispersion of π plasmon, blue dots follow the dispersion of corresponding structure
for Im(εM) extracted from Novko et al paper [57].
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Figure 6.10: Dispersion of front edge of π transitions for EEL and absorption spectra. Black
squares are experimental data [59], red dots: dispersion of π plasmon, blue dots: correspond-
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lines corresponds to the π plasmon (absorption) dispersion taken from our calculations, done
on a 100x100x1 mesh, with Selectd-G method (see Fig. 6.9).
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Considering the results obtained by Novko et al [red (blue) dots on Fig. 6.10], the authors
distinguished in the dispersion of the EELS two regimes [57]: for large q̄, they evidence a
linear dispersion, which is in very good agreement with the experimental data of [59], and
cannot be extended to vanishing q̄. For vanishing q̄, their calculations allows them to
conclude that the dispersion is proportional at q̄2, similarly to the one of Im(εM(q̄)).

Cyan (magenta) plain circles + dashed lines on Fig. 6.10 corresponds respectively to the
π plasmon (Im(εM)) dispersion taken from our calculations done using Selectd-G method
(from Fig. 6.9). The agreement between the π plasmon dispersion with both the calculations
of Novko et al and the experimental data from Liou et al [59] is very good. Concerning the
absorption dispersion, we do not recover the dispersion of Novko et al. Nevertheless, in the
absence of experimental mesurements of absorption of graphene, it is difficult to conclude
which dispersion would be correct. The dispersion of absorption spectra taken from our
calculations is constant for vanishing q̄, then it has a q̄2 behavior, then a linear dispersion,
parallel to the one of the EELS up to 0.5 a.u. Finally, the curves seem to diverge: the two
lines don’t converge to each other, as calculated by Novko et al.

6.4.4 Discussion
This discussion about the dispersion of π plasmon of graphene takes place in the context of
the nature of electronic excitations at the origin of this spectrum. A quasi-linear dispersion of
EELS has been several times measured and explained as a consequence of the Dirac electrons
of graphene [58, 60, 61]. More recently, Nelson el al. [62] claimed that the two features
measured in EEL spectrum were not plasmons but single particle interband transitions.
Finally, using a very high q resolution TEM, Liou et al [59] evidenced a

√
q̄ dispersion of

EEL spectra, in agreement with the one expected from the pure 2D plasmon [63].
Novko et al [57] attribute the behaviour of the two dispersions curves for the EEL and

absorption spectra [red (blue) dots on 6.10] to the evolution of the screening, calculated as
the ratio D(q̄, ω) = EELS(q̄, ω)/ Im(εM(q̄, ω)). This modification of the screening would
be at the origin of the change of nature of the excitations, from single-particle excitations to
collective ones when D(q̄) moves away from 1.

They conclude from their calculated dispersion that for q̄ % 0.03 a.u., the spectra are plas-
mons, with the quasi-linear dispersion linked to the Dirac electrons of graphene [58, 60, 64].
At vanishing q̄, they assign their spectra a purely single particle character. They based their
conclusion on two arguments: (i) D(q̄, ω) ≈ 1 and (ii) the calculated dispersion is propor-
tional to q̄2 similarly to the one of Im(εM(q̄)), as a consequence of the band structure of
graphene around the M point of the Brillouin zone. This single particle interband transitions
nature is in agreement with the conclusion of Nelson et al [62]. Nevertheless, the conclusion
of Nelson et al is based on the fact that the Re(εM) extracted from their loss measurement
never reaches zero. This observation can also be done on Novko et al calculations, even in
the cases where they conclude to the collective origin of the EEL spectra.

One also notices that the quadratic dispersion obtained by Novko et al’s calculations
allows them to reach the two first experimental points, but no intermediate measured point
exists in that range to ascertain this dispersion.

Liou et al [59], who did the measurements, do not draw the same conclusion: they show
that their data follows a

√
q̄ law, expected from the pure 2D plasmon [63] up to 0.8 Å−1.
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Zoom on the dispersion for different ranges of q̄

We studied the behavior of the dispersion of the spectra calculated with the slab potential
and Selected-G method, to compare with the proposed dispersions.

For very small values of q̄, the calculations are done using k.p theory, since we cannot
reach such a thin resolution on the grid. We have checked that for q̄ = 0.016 a.u., the
results obtained on the grid were equivalent to the one using k.p theory. In this range of q̄,
the absorption spectra can be superimposed: they do not experience any dispersion. The
dispersion of the structure corresponding to the π plasmon is reported with red line in Fig.
6.11. The green line is a fit with a function proportional to q̄2. To improve the resolution
of the spectra, the calculation has been done with the R5 supercell, using a grid 100x100x1
with a broadening of 0.05 eV. (We recall that our calculations are independent of the the
choice of the supercell).
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Figure 6.11: Dispersion of front edge of π transitions for EEL spectra (cyan line) and fit
with a q̄2 function (red line).

The excellent agreement between the two curves confirms that the dispersion of the
plasmon is quadratic up to 0.018 a.u.. According to Novko et al, this should be the signature
of interband transitions, around M point of the Brillouin zone.

To check this hypothesis, I have compared the response functions at the origin of the
EEL and absorption spectra. The plots at the top of Fig. 6.12 compare the EELS spectrum
(magenta) with the EEL spectrum truncated to the first term of the summation (cyan) [see
Eq. (6.16)] for q̄ = 10−5 Bohr−1 (left), for q̄ = 0.016 Bohr−1 (right). The perfect superpos-
ition of the spectra allows to conclude that only the head of the matrix χ00 contributes to
the spectra in this range of q̄.
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Figure 6.12: (Top) comparison of the EELS spectrum ε−1,LF
00 = 1 +∑

G V0GχG0 (magenta)
with the EEL spectrum truncated to the first term of the summation 1 + V00χ00 (cyan)
[see Eq. (6.16)] for q̄ = 10−5 Bohr−1 (left), for q̄ = 0.016 Bohr−1 (right). (bottom) The
response functions leading to EELS (green) and to absorption (black) for the corresponding
q̄. The spectra have been calculated on the (100x100x1) mesh with npwmat_z=7 and
npwmat_xy=19.

The bottom plots show the comparison of χ00 (green) with the response function at the
origin of the interband transitions (black) for the respective q̄. It is clear that for vanishing q̄
(left), the EEL spectrum is equivalent to interband transitions spectrum, but for q̄ = 0.016
Bohr−1, which corresponds to one of the largest q̄ still included in the quadratic dispersion,
the EELS spectrum is not exactly given by interband transitions. Nevertheless, the energy
range of the peaks are very similar.

For q̄ � 0.02 a.u., I plot the dispersion of the front edge of π transitions for EELS,
calculated with the Slab potential and the Selected-G method on R5 supercell, on the grid
100x100x1 with a broadening of 0.05 eV. The calculated points are in cyan, and the data
are fitted with

√
q̄ function (red line), as well as a linear function (green dashed line). Black

squares are extracted from the Liou experiment [59].
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Figure 6.13: Dispersion of front edge of π transitions for EEL spectra (cyan line) and fit
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√
q̄ function (red line) and a linear function (green dashed line). Black squares is a

Liou et al experiment [59].

For q̄ ranging from 0.02 a.u. up to 0.24 a.u., (see Fig. 6.13), the
√

q̄ function (red line)
fits very well the calculated points (cyan). This result is on very good agreement with the
conclusion drawn by Liou et al [59], who observed a

√
q̄ behavior up to

√
q̄ ≈ 0.7 given in

Å−1, corresponding to q̄ ≈ 0.26 a.u.. This √ dependence with the transferred momentum
suggests that my calculations reproduced the behavior of plasmon with 2D character, in
agreement with the high resolved EELS measurements of these authors.

For q̄ � 0.25 a. u., I recover the linear dispersion, in agreement with [59], and with
others authors in previous works [58–60].

Origin of the plasmon in graphene

To further check this hypothesis, I compare εM and the EEL spectra for this range of q̄
(see Fig. 6.14). Zooming on the real part of εM , we have added a line at -1, which is the
definition of a surface plasmon for a flat thin film in vacuum [65,66].
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Figure 6.14: Real (red lines) and Imaginary (blue lines) parts of εM and EELS (green lines)
for one graphene layer in R5 supercell for different q̄ ranging from 0.016 up to 0.188 Bohr−1

by step of 0.016 Bohr−1. The calculations are done on the (100x100x1) mesh, using slab
potential and Selected-G method with (npwmat_xy = 19; npwmat_z = 7).
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One can see that for the very first values of q̄ (0.016 up to 0.094 a.u.), the EEL spec-
trum shifts from an energy similar to the one of Im(εM) to an energy corresponding to
Re(εM) = −1, and keeps this value for the range of q̄ going from 0.1 up to 0.2 Bohr−1. This
means that the loss function calculated in the graphene layer behaves like a surface plasmon.
Such a result is consistent with the

√
q̄ behavior of the dispersion for q̄ −→ 0.

We did the same analysis for q̄ � 0.25 a.u., where the dispersion was found linear (see
Fig. 6.15).
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Figure 6.15: Real (red lines) and Imaginary (blue lines) parts of εM and EELS (green lines)
for one graphene layer in R5 supercell for different q̄ ranging from 0.2 up to 0.7 Bohr−1. The
calculations are done on the (40x40x1) mesh, using slab potential and Selected-G method
with (npwmat_xy = 19; npwmat_z = 7).

The first plot shows that the π plasmon can still be associated with a 2D-plasmon. Very
rapidly, when increasing q̄, one sees that Re(εM) does not cross anymore neither the -1 nor
the 0 line in the energy range 0 - 10 eV, and the EEL spectrum has features at energy close
to Im(εM): the EEL spectrum is still given by inter-band transitions.
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One should mention a quite puzzling result: the linear dispersion for large q has been
attributed to the presence of Dirac electrons. The reason why it occurs from 4 eV, and not 0
eV, as suggested by the band structure around K point of the Brillouin zone, was explained
by the introduction of local field effects, which mix the transitions and transfer the linear
dispersion up to 4 eV (see Fig. 3 from [60]). This conclusion was drawn in a context where
the isolated graphene layer in supercell formalism was achieved by increasing the size of the
supercell, with the criteria that the EELS and the absorption should be the same. For this
reason, the EELS spectra without LF were described by the χ0

00 response function, which
follows the dispersion from 0 eV, and the inclusion of the LF was at the origin of the shift of
the dispersion from 4 eV. However, the spectra calculated with Novko procedure or with our
slab potential and selected-G method still recover the same linear dispersion, but a quick
look at the comparison between EELS spectra with and without LF (Fig. 6.16) shows that
the EEL spectra without LF (green - dashed) are not described by the χ0

00, [Im(εM) without
LF (blue - dashed)] but are very similar to the ones with LF (green - solid). The solution of
the Dyson equation with only the V00 term χNLF00 :

χNLF00 = χ0
00 + χ0

00 V00 χ
NLF
00

modifies the spectra strongly enough to push it above 4 eV.
In our calculations with the slab potential and selected-G method, the χ0

00 has not been
modified, and has the same features as in [60] (see Fig. 6.14). So it seems that the 2D
character of the Coulomb potential is more at the origin of the modification of the spectral
weight of the spectrum than the mixing of transitions induced by the local fields. The
presence of transitions arising from the K point in the peak at 4 eV should be checked to
confirm the origin of the linear dispersion [60].
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Figure 6.16: Real (red lines) and Imaginary (blue lines) parts of εM and EELS (green lines)
for one graphene layer in R5 supercell for different q̄ ranging from 0.2 up to 0.7 Bohr−1. The
calculations are done on the (100x100x1) mesh, using slab potential and Selected-G method
with (npwmat_xy = 19; npwmat_z = 7). The corresponding dashed lines are the spectra
without LF.

6.4.5 Summary
The different behaviors appearing in the dispersion of the main structure of the so-called
π plasmon in graphene, for in-plane transferred momenta, are not contradictory, since they
seem to correspond to different ranges of q̄, summarised in table 6.3.

range of q̄ (a. u.) q̄ - 0.018 0.02 - q̄ � 0.25 0.25 - q̄
dispersion q̄2 √

q̄ q̄

Table 6.3: Summary of the different dispersions of π plasmon in graphene.

A careful analysis of the q range of the measured spectra, depending on the resolution of
the setups, which are regularly improving, indicates that none of the results are in contradic-
tion. The most problematic range is of course the one of the smallest q, since the quadratic
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dependence arose surely from calculations [both Novko et al [57] and ours (Slab potential
with Selected-G method)], but is not really confirmed by experimental measurements due a
lack of data. The spectrum at vanishing q can be attributed to inter-band transitions, (as
suggested by Novko et al [57] and Nelson et al [62]) but it is quite rapidly no more true.

The nice √ dependence tends to prove the 2D nature of the plasmon, in the range 0.02
- q̄ � 0.25 a.u. This result was pointed out by Liou et al [59].

Even if the linear dispersion for large q is confirmed by all the formalisms proposed,
and very well reproduced both qualitatively and quantitatively the experimental data, the
relation between the Dirac electrons of graphene and the inclusion of local fields should be
further investigated. With our formalism, it seems to arise from inter-band transitions, with
a small influence of local fields. The presence of transitions arising from the K point of the
Brillouin zone must still be checked.

6.5 Conclusion
Our slab potential has been defined to treat an isolated slab system in a framework of 3D
codes, based on plane-waves and periodic boundary conditions. In order to obtain results
independent of the vacuum, auxiliary response functions in real space equal to the response
functions of the isolated slab, and periodic with the periodicity Lmatz has allowed the devel-
opment of the formalism called "Selected-G".

Due to the periodicity, the integration along the direction perpendicular to the slab is
limited to the thickness of the matter. This acts as a cutoff procedure.

In this chapter, we have studied the behaviour of previously proposed cutoff proced-
ures [55–57]. We have seen that all these cutoff procedures, which proposed to cut the
Coulomb interaction in the middle of the supercell still contains a portion of vacuum, and
consequently give spectra depending on the vacuum.

Among the works done with the cutoff procedures, Novko et al [57] derived a non-diagonal
expression of the Coulomb potential in reciprocal space similar to ours, except to that the
basis of G vectors is the complete one, defined on the height of the supercell, and not the
height of the matter, as we do in the Select-G method. They studied the in-plane dispersion
of the plasmon in graphene, and compared to the recent measurements of Liou et al [59], and
Nelson et al [62]. Their calculations reproduce very well the dispersion measured by Liou et
al. Nevertheless, they do not draw the same conclusions as the authors of the measurements.

Liou et al evidenced from their own data a
√

q̄ behavior, in agreement with a 2D plasmon,
followed by a linear dispersion attributed to the Dirac electrons.

Novko et al identify two regimes in the dispersion curve: one at very small q̄, proportional
to q̄2, attributed to inter-band transitions (in agreement with Nelson et al), and one at large
q̄ corresponding to the linear dispersion. The

√
q̄ dependence (evidenced by Liou et al) is,

according to Novko et al, simply the junction between the two regimes. They also conclude
from their calculations that the plasmon has an inter-band transitions origin for very small
q̄, as well as for large q̄, when the dispersion is linear. In between these two regimes, the
EEL spectrum originates from collective excitations. This conclusion is done in the light
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of the comparison with the absorption spectra calculated as the inverse of the microscopic
inverse dielectric function, which depends from the height of the supercell.

Using our formalism ("Selected-G" + slab potential), I did the similar calculations and
compared the dispersion of the in-plane plasmon in graphene to their results and to the
experiments of Liou et al, and Nelson et al [62].

My results show different ranges of dispersion: for very small q̄ (< 0.02 a.u.), the plasmon
behaves like interband transitions, with a q̄2 dependence, in agreement with the conclusion
of Novko et al and Nelson et al. Nevertheless, this conclusion arises mainly from calculations,
it is not really supported by measurements due too the lack of data in this region of very
small q̄. I also recover the linear dispersion at q̄ > 0.25 a.u., but is arises from collective
excitations. Between these two regimes, I evidenced a

√
q̄ dispersion, and the comparison

with the Re(εM) tends to show that it is a 2D plasmon.



Chapter 7

Absorption spectra for interacting
slabs

7.1 Inverse Effective Medium Theory
We have developed a formalism to calculate the electronic excitations spectra for an isolated
slab.

Now, we would like to study the absorption spectrum of an array of finite size objects.
In that case, the absorption of one object of the array should be modified by the interac-
tion with the surrounded electronic density coming from the presence of the neighbouring
objects. Moreover, the neighbouring objects should also experiment an induced electronic
density, due to the long range of the Coulomb potential. Such an effect should be accounted
for by the local fields, and the expected information should be contained in the TDDFT
spectrum of the repeated supercell, namely the regular TDDFT.

But we have already shown that the regular TDDFT in supercell formalism suffers from
what we have called the vacuum problem. Indeed, the regular TDDFT is equivalent to Ef-
fective Medium Theory (EMT) with vacuum (see Fig. 4.5) [41]. Such a spectrum cannot be
the expected absorption. In particular for the component perpendicular to the surface of the
slab, one cannot imagine that if one slab has an absorption peaked at 4 eV, the absorption
of two interacting slabs will be located above 12 eV.

In the paper where we have evidenced that the regular TDDFT in supercell formlism
behaves like EMT with vacuum [41], we also distinguished the two limiting cases of minimum
screening and maximum screening.

We showed that the minimum screening case was also associated with the small local
field effects situation, and was suitable to describe the spectra for in-plane components. It
reads

εSCM = f + (1− f) εbulkM (7.1)

69
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The maximum screening corresponds to large local field effects and allows us to interpret
the out-of-plane component and can be written as:

1
εSCM

= f + (1− f)
εbulkM

(7.2)

The label SC means supercell and corresponds to the spectra calculated with the regular
TDDFT procedure. f is the proportion of vacuum in the supercell and is related to the
quantity ratio I used to define the supercell by f = 1 − 1/ratio. The results presented in
Ref. [41] have been obtained using the macroscopic dielectric function of the bulk system for
εbulkM .

The idea is that, among the effective medium theory with vacuum, the regular TDDFT
spectra should contain the Coulomb interactions (local field effects) between the neighbouring
slabs, which should modify the response as compared to the isolated one. In the ref. [41], we
used the macroscopic dielectric tensor of bulk silicon εbulkM to mimick the regular TDDFT.
But, according to the geometry of the repeated supercell, the quantity which is “averaged”
with vacuum is the macroscopic dielectric tensor of the "interacting" slab εInteractM .

In order to “cure” the spurious influence of the vacuum included in the supercell, we
propose to apply a procedure called Inverse Effective Medium Theory (IEMT), to extract
the macroscopic dielectric function of the so-called interacting slab, that is a slab which
has experienced the local field from the neighbouring ones, but not merged in an artificial
vacuum box. For this, we reconsider the equations (7.1) and (7.2) by replacing the bulk
macroscopic dielectric function with the corresponding one of the so-called interacting slab.
It comes for the minimum screening case:

εSCM = f + (1− f) εInterSlabM (7.3)

and for the maximum screening case:

1
εSCM

= f + (1− f)
εInterSlabM

(7.4)

Inverse Effective Medium Theory (IEMT) stands for the inversion of these equations:

minimum screening case: εInterSlabM = εSCM − f
1− f (7.5)

maximum screening case: 1
εInterSlabM

= 1
1− f ∗ ( 1

εSCM
− f) (7.6)

To test the validity of the model, we have chosen to study hBN slabs as a test case.
This choice relies on the fact that the slabs of hBN have an insulating character. We do not
need to perform a reconstruction of the surface, leading to the presence of surface states,
that could modify the absorption spectrum. They present a large gap, preventing numerical
instabilities for small frequencies.
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7.2 Absorption spectra of hBN slabs

7.2.1 Results with the standard TDDFT
I have calculated the spectra for slabs of 1, 2, 3, 4 and 8 layers in supercells with different
ratios (see table 7.1). The different parameters are summarized in tables 7.2, 7.3, 7.4.

nb-layers R2 R4 R5 R10
1 X X X X
2 X X X X
3 X
4 X X X
8 X

Table 7.1: Summary of the differents systems of hBN studied.

nb-layers R1 bulk R2 R3 R4 R5 R10
1 1933/80/25 37 2393/80/49 2885/80/61 5783/80/121
2 1191/50/25 4689/100/49 73 4689/100/97 5783/100/121 11579/100/241
3 73 109 145 8681/120/181
4 4689/150/97 145 9391/150/193 11579/150/241
8 9295/190/193

Table 7.2: npwwfn/nbands/npwmat_z parameters. npwmat_xy = 13 for all the cases. The
grey color is a recommended value of npwmat_z for systems which have not been calculated.

nb-layers R1 bulk R2 R4 R5 R10
1 20x20x4 20x20x4 20x20x1 20x20x1
2 40x40x15 20x20x4 20x20x1 20x20x1 20x20x1
3 20x20x1
4 20x20x1 20x20x1 20x20x1
8 20x20x1

Table 7.3: Mesh for hBN calculations.

Parameters 1l R5 2l R4 3l R3 4l R2 8l R2
Nk 40x40x1 40x40x1 40x40x1 40x40x1 40x40x1
Nb 80 80 120 150 190
npwwfn 4001 4483 4599 4991 4989
npwmat_z 25 25 37 25 49

Table 7.4: Parameters for hBN, selected G + V_slab potential. npwmat_xy = 13.
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Figure 7.1 shows the in-plane absorption spectra for the systems listed in table 7.1.
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Figure 7.1: In-plane components of the dielectric tensor Im(εM), for the different hBN slabs
(see each panel for the thickness). The blue lines are the results of standard TDDFT for
different suprcells. The green dashed line is the isolated slab, and the red curve is the bulk.
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As already mentioned in ref [41], and as it can be easily seen from Eq. (7.5), the ab-
sorption spectrum of each slab trivially shows a scaling factor 1/ratio, corresponding to the
supercell in which it is introduced. This is directly related to the fact that in the absence of
local field (let us remind that in these systems, in-plane local fields are almost negligible),
the absorption spectrum is given by the χ0

00 response function, which is normalized by the
volume of the supercell. As a consequence, the position of the peaks in the spectra is un-
changed.

Figure 7.2 shows the out-of-plane absorption spectra for the systems listed in table 7.1.
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Figure 7.2: Out-of-plane components of the dielectric tensor Im(εM), for the different hBN
slabs(see each panel for the thickness). The blue lines are the results of standard TDDFT
for different suprcells.

For the out-of-plane component, we have shown that the regular TDDFT, as a con-
sequence of the local field effects, modifies the spectra. This was particularly dramatic for
silicon slabs [41], where the position of the peak was pushed towards high energy for more
than 10 eV. The effect is less spectacular for hBN systems, since the spectra seem to be
"only" scaled, but they are still dependent of vacuum. Moreover, the scaling factor is not
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related to the ratio of the supercell.

7.2.2 IEMT: convergence effects
To extract the spectrum of the so-called interacting slab, I applied the IEMT for the out-of-
plane component of the hBN systems.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25  30

Im
(ε

M
 )

⊥

Energy [eV]

bulk
2 layers Isolated

2 layers R4 IEMT

Figure 7.3: out-of-plane component of Im(εM) resulting from IEMT on the 2-layer slab into
R4 supercell (blue line) compared to the bulk spectrum (black line) and to the isolated slab
(red line). k-point mesh: 40x40x1 for Isolated slab and IEMT ; 40x40x15 for the bulk.

Figure 7.3 shows the out-of-plane component of Im(εM) resulting from IEMT applied to
the 2-layer slab into R4 supercell (blue line). I compared it to the bulk spectrum (black line)
and to the isolated 2-layer slab (red line). The pre-edge is exactly superimposed to the one
of the isolated slab spectrum. Above 17 eV, the IEMT spectrum also reproduces the isolated
slab, and the features are very similar to the one of the bulk. Between 8 and 17 eV, the
amplitude of the peaks is different from both the bulk and the isolated slab. The peaks are
located between these two spectra, in agreement with the idea that interacting slabs have
an absorption which “feel” more electronic interactions via the Coulomb potential than the
isolated slab, and less than the bulk material.

Nevertheless, the results presented here are extremely sensitive to the number of Gz

vectors and a careful analysis of the convergence for the local fields has been performed.
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Influence of number of Gz vectors for local fields

The convergence tests have been done on the 2-layer system for different vacuum sizes. The
k-point mesh is very coarse (5x5x1), so the spectra present spurious wiggles, but this does
not affect the results. The in-plane local fields are based on npwmat_xy=13.

For each system, the height of the supercell can be associated with a number of “equi-
valent” layers, defined by Nb_eq_layer * ratio. Then we adjust the value of the maximum
Gz to be a multiple p of Nb_eq_layer (see table 7.5). This p value aims to represent the
frequency of the spatial electronic density fluctuations between the layers building the slab.

p(Nb_eq_layer) R2(4) R4(8) R5(10) R10(20)
3 25 49 61 121
4 33 65 81 161
5 41 81 101 201
6 49 97 121 241
p(Nb_eq_layer) R2(4) R4(8) R5(10) R10(20)
3 12 24 30 60
4 16 32 40 80
5 20 40 50 100
6 24 48 60 120

Table 7.5: (Top) npwmat_z (Bottom) corresponding values of max Gz to achieved con-
vergence for the 2-layer system as a function of the p parameter. The number in paren-
thesis is the so-called "equivalent" number of layers. npwmat_z is calculated according to
npwmat_z = 2 · [Nb_eq_layer · p] + 1.

Figure 7.4 shows the absorption spectra along z-direction after applying the Inverse Ef-
fective Medium Theory (focussed on the energy range 4 - 13 eV) of the 2-layer slab for the
various supercells. The different panels correspond to the different values of the p used to
define max Gz to include out-of-plane local fields. The black curve is the bulk spectrum and
the yellow curve is the one of the isolated slab.

One sees from the top-left panel of Fig. 7.4 (corresponding to p = 3) that we achieved a
good agreement for the full range of energy, except the peak located at 9.5 eV. Indeed, the
R2, R4 and R5 supercells give a peak whose energy position and amplitude is very similar,
when the R10 supercell gives a different result, since the peak is more intense and with a
spectral weight at lower energy, that is closer to the bulk hBN than to the isolated slab
absorption spectrum. This observation is quite surprising, since one would have expected
the R10 supercell to contain less interactions between slabs than the supercell with a smaller
height. To check if this observation was physical or spurious, I have increased the number of
Gz vectors to include local fields in the perpendicular direction. By increasing the p value up
to 6 [Fig. 7.4 (bottom-right)], the spectra resulting for IEMT on the R10 supercell converge,
and finally all the spectra resulting from IEMT on all the supercells are superposed.
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Figure 7.4: Absorption spectra along z-direction from IEMT between 4 and 13 eV of the
2-layer slab for various supercell size (R2, R3, R4, R5, R10) as a function of the p used
to define max Gz to include out-of-plane local fields: p = 3 (top-left); p = 4 (top-right);
p = 5 (bottom-left); p = 6 (bottom-right). Mesh for the bulk is 40x40x15, for Isolated slab
is 40x40x1, for IEMT 5x5x1.

The p parameter depends on the ratio of the supercell which is contradictory with the
fact that is should represent the fluctuation of electronic density between the layers of the
slab. Actually, this is not completely true. For all the supercells, the convergence is better
achieved for p = 6, but to be able to do the calculations with in- and out-of-plane local fields,
on a k-points grid dense enough in plane to obtain a spectrum without spurious features,
we must limit the p value to 3. So, this analysis shows that we cannot use a too large
supercell to converge this particular peak, which corresponds to transitions bewteen states
very sensitive to small spatial electronic density fluctuations. We also mentioned that the
large intense peak is a physical result, and does not come form the coarse k-point mesh used
for convergence tests (see Fig. 7.3).

A comparison of spectra for different supercells [Fig. 7.4 - (last panel)] shows that all
the spectra are well superposed, except the R2 one. Since I did the convergence tests on the
2-layer slab, a supercell with ratio = 2 does not contains so much vacuum and we can wonder
if the slabs are really isolated at the level of the ground state, that is if their is no more
dispersion of the electronic structure along the z-direction, and if a k-point mesh NxNx1
allows to describe properly the system. To check this, I did a convergence study with the
number of divisions along the z-direction.
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Influence of k-point mesh
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Figure 7.5: Absorption spectra along z-direction of the 2-layer slab for R2 supercell as a
function of k-point meshes 15x15xNz for Nz = 1 (solid cyan), 2 (dashed magenta), 4 (long
dashed-dotted blue), 6 (short dashed-dotted green), 8 (solid red). Calculations are done
within regular TDDFT without LF.

Figure 7.5 shows that the spectrum calculated for the Nz = 1 k-point mesh is not con-
verged. The vacuum introduced inside the supercell in this R2 case is not large enough to
isolate the 2-layer slab. The electronic structure still exhibits a dispersion which is correctly
captured with Nz = 4.

Applying IEMT to the 2-layer R2 supercell calculated on the grid 15x15x4, I do not
recovered the same spectrum as the 2-layer R4, and the 2-layer R10 supercells (Fig. 7.6).
The slight difference observed is a physical effect, and not a problem of convergence. Indeed,
the level of convergence can be seen on the negligible differences at the maximum of the peak
at 10 eV for R4, R5, and R10 supercells: all the spectra are converged in amplitude better
than 5%. I also checked that for 2-layer R4 was converged with Nz = 1. Such a vacuum
is large enough to isolate the slab at the level of the ground state. As a consequence,
the difference between the R2 system and the other ones should be the signature of the
interaction between slabs.
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Figure 7.6: IEMT applied to regular TDDFT absorption spectra along z-direction of the
2-layer slab for the different supercells. The R2 case has been calculated with a k-point
mesh 20x20x4, the other supercells with a grid 20x20x1. The local field effects are included.
npwmat_xy and npwmat_z parameters has been taken according to the table 7.2.

As shown by Fig. 7.4 (bottom-right), all the IEMT spectra are the same (except the
R2, for the reasons explained just before): no effect due to the height of the supercell is
introduced by the TDDFT. The extension of the supercell does not modify the interactions
felt by the slabs. This result is quite puzzling. We would have think that by increasing the
height, the spectra would have evolved toward the spectrum of the isolated slab. The only
case where we see the presence of interactions is when the layers are not isolated even in the
ground state.

7.2.3 Inverse Effective Medium Theory with vacuum
Applying the IEMT to the full converged spectra according to equations (7.5) and (7.6), we
obtained the spectra on figures 7.7 and 7.8 respectively.

Figure 7.7 presents in-plane absorption spectra for the different hBN slabs. In blue, I
plotted the IEMT applied to the regular TDDFT calculation to mimick the interacting slab
and I compared to the bulk (red) and isolated slab spectra (green).

The IEMT spectra for in-plane components are almost exactly superposed on the ones
of the isolated slab, which are very similar to the one of the bulk material. The only part
of the spectrum which exhibits a (very) small difference with the bulk is between 10 and
14 eV. It reduces when the thickness of the slab increases. On in-plane component, this is
the only part of the spectrum which involved the part of electronic structure sensitive to the
incomplete stacking of hBN layers.
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Figure 7.7: Im(εM) for in-plane q for the different hBN slabs (top-left) 1-layer, (middle-left)
2-layer, (middle-right) 3-layer, (bottom-left) 4-layer (bottom-right) 8-layer. The solid red
line corresponds to the bulk. The green dashed line is the isolated slab and the solid + dot
blue line is the interacting slab.
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Figure 7.8: Im(εM) for out-of-plane q for the different hBN slabs (top-left) 1-layer, (middle-
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red line corresponds to the bulk. The green dashed line is the isolated slab and the solid +
dot blue line is the interacting slab.
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Figure 7.8 presents out-of-plane absorption spectra for the different hBN slabs. In blue, I
plotted the IEMT applied to the regular TDDFT calculation to mimick the interacting slab
and I compared to the bulk (red) and isolated slab spectra (green).

The following observations can be done:

1) IEMT allows us to recover a spectrum whose absorption is in the energy range of the bulk
and of the isolated slab, contrarily to what observed in [41].

2) The IEMT applied to the 1-layer slab does not reproduce the pre-edge. This means that
this structure comes from states resulting from the overlapping of the pz orbital between the
adjacent hBN layers.

3) The pre-edge at 5 eV obtained with IEMT is in the same energy as for the bulk and
the isolated slab. The amplitude is in between these two cases for all structures, except the
3-layer. It could be due to the incomplete stacking in case of an odd number of layers.

4) All the supercells give the same results for the peak at 9.5 eV shown to be very sensitive
to the small spatial electronic density fluctuations (see Fig. 7.4): its energy position is in-
between the one of the bulk and the isolated slab for thin slabs. Its amplitude is also much
more intense. Then it progressively recovers the energy position and the amplitude of the
bulk and isolated slab for thick slabs.

5) The only case where we saw interactions between neighbouring slabs is the one of the
2-layer system with vacuum defined by two times the 2-layer thickness (R2), which reveals
too small to isolate the slabs also at the level of ground state. The TDDFT does not add
new interactions.

6) The 8-layer slab gives the absorption spectrum the closest to the bulk: the pre-edge struc-
ture almost recovers the amplitude of the bulk. As already noticed from the analysis of the
1-later spectrum, it is the signature of the interaction between layers inside the slab: 8-layer
slab almost recover the electronic structure of the bulk.

7) All these conclusions are certainly valid for hBN slabs, as well as graphene ones, or more
generally systems where the layers are feebly interacting (van der Waals interactions).

For the case of silicon, where the interaction between layers is much larger, since they
are due to covalent bonds, one can wonder if the results are the same.
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7.3 Absorption spectra of silicon slabs
I have studied different slabs of silicon, introduced in different supercells. They correspond
to a (1x2) surface reconstruction. The unit block is composed of 4 bilayers of silicon atoms
(8 atoms). Then this block is repeated N times to define the slab. The thickness of the slabs
considered, as well as the number of atoms, according to their name is summarized in table
7.6.

N 3 4 6
Slab’s thickness (Å) 16.29 21.72 32.59
Number of atoms 24 32 48

Table 7.6: Definition of the slabs: first line: multiple of the unit block, second line: thickness
(Å), third line: number of atoms.

These slabs have been introduced into supercells of different heights : the second number
of the name will correspond to the thickness of vacuum, in the same unit that the thickness of
matter. As an example, 4_4 means 16 bilayers of silicon atoms in a supercell which contains
the same thickness of vacuum. 4_8 corresponds to 16 bilayers of silicon atoms in a supercell
which contains the double thickness of vacuum.

The calculations are done on a 16x8x1 k-point mesh, with the parameters summarized
in table 7.7.

3_3 4_4 4_8 6_6
npwwfn 15237 12803 19209 12319
nbands 350 450 450 650
npwmat_xy 25 25 25 25
npwmat_z (Selected-G) 25 33 33 49
npwmat_z (IEMT) 49 65 97 97

Table 7.7: Summary of parameters used to calculate slabs of silicon. (nota bene: npwwfn
is largely over converged. It is due to technical reasons).

7.3.1 IEMT for the slab “4” (thickness 21.72 Å)
I used the “4” slab to illustrate different effects.

As already mentioned, for the in-plane component (Fig. 7.9), the regular TDDFT has
the effect to scale the spectrum by a factor Lmat

z

LSC
z

. This is a consequence of the negligible
local fields for in-plane excitations. The isolated slab and the interacting slab (resulting from
IEMT) are similar.
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Figure 7.9: In-plane absorption of the silicon slab 4_4. Green: regular TDDFT, cyan:
isolated slab, blue: IEMT, and red: bulk.

For the out-of-plane component (Fig. 7.10), the regular TDDFT pushes the spectrum
to 12 eV, with a strong reduction of the amplitude. Moreover, the peak is dependent of the
size of the supercell as can be seen from the comparison of the two panels of Fig. 7.10.

The inverse effective medium theory applied to the regular TDDFT gives the blue spec-
trum peaked to 2.5 eV, that is at much smaller energy than the bulk absorption. This effect
is independent of the size of the supercell, since the spectrum extracted from the supercell
4_4 gives the same result as the one extracted from the supercell 4_8.

The comparison of the IEMT for the two supercells (embedded the same slab) (Fig. 7.10)
exhibits no differences. This confirms that the conclusions drawn for van der Waals inter-
acting layers are also valid for systems with much stronger bonds: we don’t see the influence
of interacting slab at TDDFT level.
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Figure 7.10: Out-of-plane absorption of the silicon slab 4_4, (top) and 4_8 (bottom). Green:
regular TDDFT, cyan: isolated slab, blue: IEMT, and red: bulk.
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The fact that the spectrum extracted from the IEMT applied to the standard TDDFT
calculations, is located at much smaller energy than the bulk absorption peak was, at the
very begining, a surprise, and our first conclusion was that IEMT could not be applied
to extract the absorption spectrum of the so-called interacting slab, namely to correct the
spurious effect of the vacuum introduced in the supercell.

The reason why in slab of silicon, we recover an absorption edge at lower energy than
for the bulk is actually due to the fact that the silicon slabs need to be build from a recon-
structed (2x1) surface, in order to avoid the metallic character of the (1x1) surface. The
(2x1) reconstruction, among the semi-conducting behavior, introduces surface states which
are located in the gap of the surface projected bulk band structure, and are at the origin of
the low energy transitions. 1
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Figure 7.11: Surface states of the 4_4 relaxed slab (red) superposed to the surface projected
bulk band structure (blue).

1This was one of the motivation of the study of the absorption of hBN: (i) the slabs are semi-conducting,
which avoid the necessity to relax the atomic positions and consequently to introduce surface states. (ii)
hBN has a large gap, which prevents from numerical instabilities at low energy. This system has allows us
to validate the fact that IEMT can be applied to obtain the correct absorption spectrum.
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Figure 7.11 presents the band structure of the surface projected bulk in blue. To obtain
this result, I have used the 3 blocks (24 atoms) built on the (2x1) bulk unit cell, namely
without vacuum and without relaxing the atomic positions. By calculating the band struc-
ture along the direction Γ − X − S − Y − Γ − S for different cuts along the kz direction,
I have obtained the surface projected bulk states. The reason of the use of 3 blocks was
simply to increase the density of the lines with a reduced number of cut along kz. The red
lines correspond to the band structure calculated for the 4_4 relaxed slab. We clearly see
the appearance of bands inside the gap of the blue area. These surface states are at the
origin of the pre-edge peak visible for the in-plane component of the 4_4 silicon slab (Fig.
7.9), both for the interacting and isolated slabs.

Nevertheless, even if the low energy position of the absorption peak of the so-called
interacting slab can be explained by the transitions arising from the surface states located
in the gap of the surface projected bulk states, the result still surprises us. Indeed, the
absorption peak of the interacting slab is located at much lower energy than the isolated
slab (Fig. 7.10 - (cyan)), where the surface states are also present. This result is quite
different from what we have observed for the hBN system. The effect coming from the
surface states seems us to be unexpectedly large.

7.3.2 Study of slabs with different thicknesses
I have studied the absorption spectra for three slabs, corresponding to N=3, 4, 6 as defined
in table 7.6. Figures 7.12 and 7.13 show the absorption spectra for the three isolated slab as
well as for the three interacting slab (IEMT applied to standard TDDFT), for in-plane and
out-of-plane components respectively.

Concerning in-plane component (Fig. 7.12), the solid blue, orange and green lines cor-
respond to the absorption spectra of the three isolated slabs (calculated with the Select-G
method and the slab potential) : N = 3, N = 4, N = 6 respectively. (The vacuum introduced
in the supercell is, for each system, equal to the matter (ratio = 2), but it is meaningless,
since the calculations are independent of vacuum). The dotted blue,orange and green curves
(Fig. 7.12) correspond to the Inverse Effective Medium Theory applied to the standard
TDDFT results, for the three slabs. The isolated and so-called interacting slabs give equi-
valent spectra. The peak between 0 and 2.5 eV comes from the surface states. The peak
between 2.5 eV and 10 eV, coincides in energy with the bulk spectrum (red). One clearly
sees that the ratio between the surface and bulk states reduces when the thickness of the
slab increases. The amplitude of the bulk peak tends to the bulk amplitude.
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Figure 7.12: Comparison of the in-plane absorption of the silicon slabs for isolated and inter-
acting (IEMT) slabs of different thicknesses. "3" (16.29 Å): isolated (blue solid); interacting
(blue dotted). "4" (21.72 Å): isolated (orange solid); interacting (orange dotted). "6" (32.59
Å): isolated (green solid); interacting (green dotted). Bulk (red).

In solid blue, green and orange (Fig. 7.13) are plotted the out-of-plane absorption spectra
of the three isolated slabs (calculated with the Select-G method and the slab potential) : N
= 3, N = 4, N = 6 respectively, (with ratio = 2). As already observed from surface results,
larger the thickness, the closer to the bulk the spectrum.

The dotted blue, green and orange curves (Fig. 7.13) correspond to the Inverse Effective
Medium Theory applied to the standard TDDFT results, for the three slabs. The smaller
the thickness, the lower energy for the absorption peak. This can be explained by the fact
that the absorption spectrum arises from transitions from the surface states, and from bulk
states. When the slab is thin, the relative ratio of the surface states in the total absorption
spectrum is more important: since the spectral weight at low energy comes from surface
states transitions, it justifies that the "3" slab of thickness 16.29 Å has its absorption peak
at lower energy that the "4" one of thickness 21.72 Å, itself at lower energy than the "6" one,
of thickness 32.59 Å. It also explains why the spectra are at lower energy than the bulk.

The absorption spectra of the interacting slabs are very different from the ones of the
corresponding isolated systems: the spectra tend to converge to the bulk one when increasing
the thickness of the slab, but the isolated systems exhibit a red shift while the so-called
interacting ones experiment a blue shift.
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Figure 7.13: Comparison of the out-of-plane absorption of the silicon slabs for isolated
and interacting (IEMT) slabs of different thicknesses. "3" (16.29 Å): isolated (solid blue);
interacting (dotted blue). "4" (21.72 Å): isolated (solid orange); interacting (dotted orange).
"6" (32.59 Å): isolated (solid green); interacting (dotted green). Bulk (red).

Even if most of the trends can be explained by the presence of the surface states, the
comparison between the so-called interacting slabs and the isolated slabs is still puzzling.
Indeed, the surface states are also present in the isolated slab calculations: they are visible at
2.5 eV for the "3" slab (magenta), and decrease with the increasing thickness. The fact that
the spectra of interacting slabs exhibit the presence of electronic interactions arising from
the electronic density of the surface states, is an expected result, but such a huge effect of the
Coulomb interactions between adjacent layers surprises us. A way to understand this effect
could be to calculate the spectrum of two interacting layers in real space. If such an effect
would be confirmed, it would mean that the important parameter to tune the absorption
edge is the thickness of the isolated object, and not the distance between objects, even if
neighbouring objects must be present.
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7.4 Conclusion
In this chapter, we have tested a procedure to calculate the absorption spectrum of an
interacting slab.

The idea is to consider that the standard TDDFT contains the correct information from
the point of view of the electronic interactions, due to the Coulomb potential between the
replicas arising from the periodic repetition of the supercell. However this information is
corrupted by the vacuum: the resulting spectrum can be described via an Effective Medium
Theory with vacuum, which gives an unphysical behavior of the absorption spectrum with
vacuum.

To extract the absorption spectrum of the so-called interacting slab, cured from the
spurious effect of vacuum, I have inverted the equations at the origin of the EMT, and
named it Inverse Effective Medium Theory.

For hBN slabs, the results are very encouraging, since the IEMT spectra, for all the su-
percells considered here, behave as one could expect from the absorption of the interacting
slab, somewhere in-between the bulk one and the isolated slab. A more surprising result is
that when the spectra are well converged (LF along the z-direction), and the slabs isolated
at the level of the ground state, the IEMT gives results independent of vacuum. The only
case where the absorption of a slab still exhibits a vacuum effect corresponds to a very small
amount of vacuum, and the slabs reveal to interact at the DFT level. The TDDFT does not
introduce further interactions. One can also notice that for the largest slab (8-layer hBN),
we almost recover the absorption of the bulk.

For silicon slabs, the results are more puzzling. I confirm that, as soon as the vacuum is
large enough to consider that the slab are isolated at the DFT level, the IEMT spectra are
independent of vacuum. The main surprising effect is that the absorption of the interacting
slab occurs at much smaller energy than for the bulk one. This can be explained by the
surface states, which are located in the gap of the surface projected bulk states (and which
were absent in the case of hBN). Nevertheless the difference between the isolated slab and
the interacting one needs further investigation. Even if the interaction between slabs arises
from the surface states, the effect seems to be huge, and only a real space calculation with
two interacting slabs could be a good fingerprint of the validity of the IEMT formalism.
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Chapter 8

Application for the photovoltaics

8.1 InP
Another prospective material for photovoltaics is Indium phosphide (InP). InP solar cells,
with a bandgap of 1.3 - 1.4 eV [67–70] and high absorption levels, have a strong potential of
reaching the Shockley-Queisser theoretical efficiency level of approximately 33% [71].

It is also expected that coupling this intrinsic properties to specificity of nanotechnolo-
gies, like nanowire arrays [72], much better performance could be achieved.

Before reaching the slabs systems of these materials of photovoltaic interest, I studied
the bulk counterpart.

8.1.1 InP bulk
The unit cell consist of two atoms: indium (In) with an atomic number 49 and phosphorus
with an atomic number 15. The crystalline InP has a face-centered crystal structure (Fig.
8.1 [73]).

Figure 8.1: InP bulk crystallographic structure

91
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LDA band structure for bulk InP

All the pseudo-potentials used have been generated by the fhi98PP code [74].
The electronic configuration of P is [Ne] 3s2 3p3. The pseudo-potential used was 5-

P.LDA.fhi.
The electronic structure of In is [Kr] 4d10 5s2 5p1. An important point for these kinds

of atom is the presence of the semi-core 4d electrons [75]. In order to test this effect, I first
calculated the band structure at the local density approximation (LDA) level, using two
different pseudo-potentials without 4d states (49-In.LDA.fhi), and with 4d electrons (49-In-
4d.LDA.fhi).
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InP with and without 4d -level

Figure 8.2: InP bulk, with and without 4d level.

The results is shown on Fig. 8.2. The band gap is larger of 0.1 eV without the 4d states.
The valence bands are little affected by the presence on 4d electrons (except the presence of
the 4d states), the conduction band with 4d states are attracted to lower energy in a non
rigid way. It is particularly true for bands above 15 eV around X point. Nevertheless, the
part of the spectrum over interest is below 15 eV and the energy level without 4d states can
be considered as a rather good approximation, for the case where the system is large, as it
will be the case for the slab of InP. For the case of the bulk, where the calculations with the
4d states are tractable, I kept the pseudo-potential with 4d electrons.
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Quasiparticles corrections for bulk InP

The well-known underestimation of the band gap in LDA gives a value of 0.361 eV, as
compared to the experimental value of 1.3 - 1.4 eV. In order to correct the band structure,
I calculated the quasiparticle corrections, within GW approximation using Abinit code [44].
The GW value obtained is 0.8 eV, which is still underestimated. I decided to used the
formalism of hybrid functionals, to test if it could provide a ground state with a better value
for band gap: I chose Heyd-Scuseria-Ernzerhof (HSE) exchange-correlation functional (also
using Abinit). The resulting band structure is presented with dots on Fig. 8.3, in dots,
superposed to the solid lines of the LDA band structure. The value of the band gap is
within this approximation 1.18 eV. It is much closer to the experimental band gap (1.3 - 1.4
eV [67–70]) than the GW corrections (0.8 eV), but it is still a bit smaller. GW correction on
top of HSE correction would have probably allow us to reach a better value, but it has not
been done.

In4d-P

1. DEN, ecut, etotal 52

2. DEN, mesh ngkpt, etotal 555

3. WFK, small grid, no convergence. X

4. Sigma, ecutwfn, EˆGW_gap. 18

5. Sigma, ecusigx, EˆGW_gap. 24

6. №of runs for gw_qprange, EˆGW_gap 0.5

7. gw_qprange, EˆGW_gap 25

8. bdgw, EˆGW_gap 7_34

9. Sigma, different WFK grids, EˆGW_gap 888

Table 8.1: Convergence parameters for the InP bulk for HSE-correction.
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Figure 8.3: Band structure of InP bulk. Solid lines: LDA (ELDA
g = 0.36 eV); dots: HSE

corrections (ELDA
g = 1.18 eV).

TDDFT-RPA absorption for bulk InP

I calculated the absorption spetrum using Time Dependent Density functional Theory (TDDFT),
within the random phase approximation (RPA), i. e. without exchange and correlation ker-
nel to include excitonic effects. The results, both for LDA (black) and using HSE corrections
(green) for the energies are presented in Fig. 8.4. The HSE spectrum is moved to higher
energy, as expected from the increase of the band gap. It is not an exact shift as compared to
the LDA one, but the difference is quite small, and in the perspective of larger calculations,
the HSE corrections can be rather good mimicked by a rigid shift. I also add the experi-
mental spectrum (red) from ref [76]). As it can be seen, the agreement between calculations
and experiment is quite poor. The calculated spectra are badly converged with the k-point
mesh. The grid used is the 8x8x8 with the 4 standard shifts of the Monkorst-Pack scheme.
This density of points was correct to reach the convergence of HSE correction but it is to
small to obtain a spectrum of good quality. Nevertheless, even if the spurious features of
the calculated spectra does not allow an easy comparison, one notices that the absorption
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edge given by the HSE spectrum is in better agreement with the measurement. One notes
that the TDDFT+HSE curve has a spectral weight at too large energy: this is a signature
of excitonic effects, which are not taken into account at the TDDFT-RPA level.
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Figure 8.4: InP absorption spectrum calculated within TDDFT-LDA (black), TDDFT-
LDA+HSE (green). Experiment from [76] is in red, experiment [70] is blue.

Excitonic effects for bulk InP

I calculated the excitonic effects using the Bethe-Salpeter equation (BSE). The calculations
have been done using EXC code [77]. The results are presented on the Fig. 8.5. The
experimental curve is in red for comparison. The calculated spectra are still done on the
8x8x8 - 4 shifts Monkhorst-Pack mesh, for which I calculated the quasiparticle corrections.
The screening has been calculated with LDA eigenvalues. Then I used different quasiparticle
energy corrections for the spectrum.

In green, I plotted the spectrum calculated with BSE and using the GW corrections.
The blue curve correspond to the BSE with the HSE corrections and the black curve with a
scissor (SO) of 1 eV applied on the LDA energies. As expected from the value of the band
gap, the edge of the spectrum with GW correction (green - Eg = 0.8 eV) is at too low energy,
the HSE spectrum (blue - Eg = 1.18 eV) is in better agreement, and the scissor spectrum
(black - Eg = 1.36 eV) is even better. Concerning the overall spectrum, the two main peaks
of the HSE and SO spectra are in good agreement with experiment, both from the point of
view of the energy position and relative spectral weight.
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Figure 8.5: InP absorption spectrum calculated within BSE formalism. Green: GW cor-
rections, blue: HSE correctiosn, black: scissor operator 1 eV. (For memory , TDDFT-
LDA+HSE is in magenta). Experiment from experiment from [70] is in red.

The Bethe-Salpeter equation allows to reproduce the experimental features, and thus
correctly accounts for the excitonic effects. In InP, we do not observed a bound exciton,
but a excitonic effect located in the continuum. The spectrum obtained with the SO (black)
is very similar to the one obtained with HSE correction (blue), meaning that the slight
dispersion of the bands that has been evidence in Fig. 8.3), is negligible, and we can safely
use the SO of 1 eV to mimick quasiparticule corrections.

Nevertheless, the k-point mesh is not dense enough the give a satisfying spectrum, and we
need to increase it a lot, which prevent to calculate brute force the quasiparticle corrections
and the screening.
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Thus, I tested the TDDFT with the long-range kernel fxc = α/q2 to account for the
excitonic effects, when excitons are in the continuum, which is the case for InP. This frame-
work is much less demanding, and I can increase the k-point mesh. Fig. 8.6 shows the result
on a Monkhorst-Pack grid of 32x32x32 with the standard 4 shifts. The red curve is the
experiment, the black curve is the TDDFT-RPA, and the blue line is the result of TDDFT,
with the SO = 1 eV and the long range kernel with α = −0.4.
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Figure 8.6: InP absorption: red: Experiment from [70]. Blue: TDDFT with SO=1 eV, and
α = -0.4; Black: TDDFT-LDA + SO = 1 eV.

The overall agreement is correct, even if it is not as good as the BSE one. The first peak
at 3.2 eV is correctly located, the peak at 5 eV is a bit too high in energy, and finally the
transfer of the spectral weight from the high energy peak to the low one is a bit to large.

8.1.2 InP slab
I modeled a slab of InP of thickness 22 Å. This choice was done to be in the same range of
value than for silicon slabs, and of the range of experimentally realized setups. Nevertheless,
we are still one order of magnitude smaller than the samples proposed in [72]. When we "cut"
the bulk along the (1 0 0) direction, the obtained structure is metallic. In order to obtain a
semi-conducting compound, with P atoms pending at the external of the surfaces, I needed
to model a (2x2) reconstruction surface, which contains 60 atoms. The crystallographic
structure of the corresponding slab is shown of Fig. 8.7. The relaxation of the atomic
position leads to a semi-conducting band structure (Fig. 8.8) with Eg = 0.38 eV.
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Figure 8.7: Crystallographic structure of InP (2x2) slab, side view.
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Figure 8.8: InP slab: LDA band structure (left). Brillouin zone (right) of unit cell and a
path in a band structure: ΓXSGZ, the last Z-point is a way in out-of plane direction (0 0
1/2).
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Absorption spectra have been calculated within TDDFT at the RPA level. Figure 8.9
shows the absorption spectra for in- and out-of-plane components with the slab potential,
compared with IEMT and the regular TDDFT. As expected from the very small band gap,
the spectrum for in-plane component has an onset very close to 0 eV, spectra for interacting
and isolated slabs are equivalent. The absorption spectrum for the out-of-plane component
of the isolated slab is peaked at 12 eV, the IEMT spectra is shifted towards the low-energy
region. Indeed, due the very large parameters required to converge the spectrum, a careful
check of the out-of-plane must be drawn.
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Figure 8.9: InP slab absorption spectra: (top) x-component, (bottom) z-component. Para-
meters for the calculation are: npwwfn = 220 000, nbands 500, npwmat_xy = 5, npwmat_z
= 15, mesh = 2x2x1.

Moreover, we know from the bulk calculation that the DFT-LDA band gap is largely
overestimated, but HSE corrections are out of reach of a so huge system, and since we
expect that the screening effect will be different in the slab from the one of the bulk, we
don’t know which value for the scissor could be chosen, and for this reason we do not further
investigate this system.
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8.2 InSe
InSe belongs to the familly of van der Waals (vdW) layered crystals. Their electronic prop-
erties depend on the composition, thickness and stacking of the component layers. As one of
the typical III − VI semiconductors, InSe has attracted much attention due to its outstand-
ing electronic properties, attractive quantum physics, and large photoresponse, suggesting
that it is an excellent material for thin film optoelectronic applications [78–80], and even
solar cells [81].

The low interaction between layers allows an easy exfoliation, and the realization of
sample of varying thickness, up to the monolayer. Due to the strong quantum confinement
effect, few-layer InSe samples exhibit a layer-dependent band gap, spanning the visible and
near infrared regions. It evolves from a direct band gap in the bulk (Eg = 1.2eV [82]) to an
indirect band-gap for few-layer stacking [83–85].

8.2.1 InSe bulk
The three-dimentional ε-polytype of InSe (space group D1

3h in Schoenflies notation) has been
build using the lattice parameters a = 3.953 Å, dInIn = 2.741 Å, and dSeSe = 5.298 Å [86].
ε-InSe contains 8 atoms per unit cell. The crystal structure is shown on Fig. 8.10a and
8.10b.

(a) InSe structure, side view (b) InSe structure, top view

Following the same procedure as for InP, I have calculated the LDA band structure of the
bulk InSe (Fig. 8.11 - solid lines). I used for In and Se norm-conserving Troullier-Martins
pseudo-potentials generated by fhi98PP (49-In-4d.LDA.fhi and 34-Se.LDA.fhi for In and Se
respectively). Each In atom participates with 13 valence electrons [4d105s25p1], and each Se
atom with 6 [4s24p4].

The band gap was Eg=0.38 eV, since the experimental band gap is 1.2 - 1.3 eV [82]. I
calculated the quasiparticle corrections using HSE hybrid functional, and the corrected gap
is Eg = 1.22 eV (Fig. 8.11 - dots), in good agreement with experiment.
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Figure 8.11: InSe bulk: LDA and HSE band structure, ELDA
g = 0.38 eV, EHSE

g = 1.22 eV,
Eexp
g = 1.2 - 1.4 eV [82]

The spectra have been calculated within TDDFT, with LDA energies (blue) and with
the HSE quasiparticle corrections for the energies (green) (Fig. 8.12a and 8.12b for in-
and out-of-plane components). The calculations have been done on the mesh 24x24x6 with
3989 plane waves, the number of bands is equal to 100 and the number of G-vectors along
z-component is 17.

Since InSe is a layered material, it is anisotropic and the absorption spectrum is different
for an excitation parallel (x) or perpendicular (z) to the plane of the layers. In both cases,
the spectra with quasiparticle energies appear as mainly shifted [green (HSE) to compare
with blue (TDDFT-LDA)]. To evaluate to which extend the quasiparticle corrections can
be mimicked by a scissor operator (of 0.84 eV, if we target the HSE gap, of 1 eV to reach
the experimental one), I calculated the spectra with SO = 0.84 eV (magenta curves). The
agreement with the HSE curves very good in the energy region 0 - 6 eV, then HSE spectra
slightly shift to higher energy.
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(a) Absorption spectrum for InSe (x-component),
in comparison with the experiment [87].
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Figure 8.12: Absorption spectra for InSe bulk for mesh 24x24x6.

The experimental spectrum taken from Ref. [87] is also plotted on Fig. 8.12a (red).
Since BSE calculations is very demanding, I have used TDDFT with the long-range kernel
to simulated the experiment. Calculations with α = −0.4 is plotted in black on Fig. 8.12a.
The pre-edge at 2 eV is in good agreement with the measure. The spectral weight between 4-
6 eV is also well reproduced, then the structure above 6 eV is not well located. Nevertheless,
the narrow peak at 3 eV is missing: it is probably a bound exciton, which can only be
captured within Bethe-Salpeter equation formalism.

8.2.2 InSe slab
Due to the size of the calculations, I decided to concentrate on a quite thin layer: a bilayer
of InSe (8 atoms - 16.64 Å). This system is of particular interest since is has been shown
that in InSe, the gap evolves from a direct band gap at Γ for the bulk to a indirect band
gap for few layers slabs [83–85]: it is at the origin of a huge activity around this system, as
in general around the van der Waals layered crytals.

The band structure at the LDA level is presented on figure 8.13. As already been ob-
served [83–85], the band gap evolves from an direct one in the bulk (at Γ) to an indirect
one. The value of the direct gap for the 2 layer- InSe is 1.18 eV, since the indirect one is
1.10 eV: it arises between Γ for the conduction band and a point located between Γ and K
or Γ and M for the valence band; this is in agreement with the "mexican hat" shape of the
last valence band around Γ. These gaps are much larger than the one of the bulk (0.38 eV),
at the same level of approximation (LDA).

Since we know from the bulk counterpart that the LDA gap is underestimated, I calcu-
lated the HSE corrections for InSe slab [88]: the resulting band structure is plotted with
dots on Fig. 8.13. The spectra, within TDDFT, with and without HSE corrections for the
energies are presented on Fig. 8.14a and 8.14b. The calculations are done using Selected-G
method with slab potential, the IEMT has also been applied.
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Figure 8.13: Band structure of 2 layer-InSe. LDA (lines) and HSE corrections (dots).

Again, the spectra are mainly shifted by adding HSE corrections. For the in-plane com-
ponent, the isolated slab has almost the same spectrum as the one with IEMT. For out-of-
plane component, the IEMT spectrum has additional peak around 4 eV. These spectra are
not the reliable absorption spectra. Based on the experience gained from the bulk calcula-
tion, we know that we need to use the Bethe-Salpeter equation. For this we need to calculate
the self-energy, which contained screened Coulomb potential. Since we have evidenced that
the inverse dielectric matrix was strongly dependent from the vacuum introduced in the
supercell, we know that one must calculate the screening using the slab potential.
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Figure 8.14: Isolated bilayer slab of InSe done with mesh 24x24x6.
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8.3 Conclusion
In this chapter, I have studied slab systems of materials with potential applications for
photovoltaics. To defined which level of approximation, or within which formalism, I had to
do the calculations, I have first studied the bulk counterpart.

I have evidenced that the local density approximation for the ground state was not a
good starting point. I have corrected it by using an hybrid functional (HSE), and evaluate
to which extend it could be mimicked by a scissor operator.

The calculation for InP bulk spectrum was done within Bethe-Salpeter equation form-
alism to correctly account for excitonic effects. Since it is a very demanding calculation, I
have also tried the TDDFT formalism with the long-range kernel. The result is reasonably
good to provide an absorption spectrum for a slab system, in a material where there is no
bound exciton. This is promising for slabs of InP, even if due to the thickness of the slab I
have modeled, the calculation was out of reach.

The calculation for InSe bulk was done within TDDFT formalism, but the comparison
with experimental spectrum seems to indicated the presence of a bound exciton, which
requires the use of the very computationaly demanding BSE calculation. The InSe slab of 2
layers has been studied. The HSE corrections have been calculated. The perspective is now
to calculate the screening with the slab potential, in order to calculate the self-energy for
the Bethe-Salpeter calculation.



Conclusion

The purpose of the thesis was to simulate the absorption spectrum of meta-materials for
photovoltaic applications. By meta-material, we mean an assembly of nanometric size objects
at mesoscopic distance. The underlying idea is that by adjusting the size of the nano-object
and the geometric arrangement, one could tune the absorption edge. These quantities are
calculated using ab initio methods, which are among the state-of-the art in the domain of
theoretical spectroscopy. Since these formalisms can only deal with a small number of atoms,
we cannot use brut force calculations.

The proposed strategy was to calculate the absorption for an isolated object, which in
my case was the thin slab. The second step was to calculate the absorption for the interact-
ing slabs, at nanometric distance in order to be tractable within a TDDFT calculation and
to evaluate the influence of the interaction between nano-objects on the absorption edge.
These results would allow a further analytic modelisation of these interactions to extend the
distance between objects.

Different compounds have been studied, depending on the steps of the methology. Graphene
or few layers graphene slabs have been used to validate the slab potential, by comparison
with EELS experiments. Few layers hBN slabs have been used to study the interacting slabs.
This system was chosen because the slabs are semi-conducting, without the need of surface
reconstruction, and also because it has a large gap, preventing numerical instabilities at low
energy, when both the real and the imaginary parts of the macroscopic dielectric function
are required. Silicon slabs were used for their application to photovaltaics, and because we
already have a large experience with these slabs and their surface properties. Finally, I stud-
ied InP, which is used for photovaltaics in the bulk phase, but is also expected to be a good
candidate at the nanometric scale. The last system considered is InSe. It is presently source
of an important activity in the context of two-dimensional Van der Waal crystals, and in
particular due to its property of having a cross-over from a direct to an indirect band gap
when evolving from bulk to thin slabs.

The first four chapters were dedicated to the general description of the theoretical frame-
work used in the thesis.

The ground states properties have been calculated within density functional theory
(DFT). In all of the cases dedicated to development, technical tests and feasability, I used
the local density approximation (LDA). For some cases, in particular the applications to
photovaltaics, I computed the quasiparticule corrections using the GW approximation, or
the hybrid functional formalism of Heyd-Scuseria-Ernzerhof.
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To describe electronic excitations, I used Time-Dependent Density Functional Theory
(TDDFT), which is much less computationaly demanding than the Bethe-Salpeter equation
(BSE): all the developments have been done using this formalism. Nevertheless, to account
for excitonic effects, which can be important in absorption spectra, I also used the code
which solves the Bethe-Salpeter equation. It has allowed me to evaluate to which extent
the use of the long range kernel in TDDFT could give a correct description of the excitonic
effects, at the level of bulk material, before tackle the slab configuration.

In chapter 4, I focussed on the description of isolated objects. In particular, I have
summarized the results obtained during the PhD of Nicolas Tancogne-Dejean [40] in the
Theoretical Spectroscopy group of the LSI. In this work, it has been evidenced that, in the
framework of 3D periodic codes, the use of a supercell to describe isolated objects gives some
non-physical spectra. In particular, when dealing with a surface, the out-of-plane component
of the absorption spectrum was affected by local fields with a spurious contribution from the
vacuum. To cure the problem, a new method has been proposed, called “Selected-G“: the
microscopic dielectric matrix is evaluated using a set of reciprocal lattice vectors restricted
to the ones of defined by the thickness of the matter, and not the one of the supercell.
The Dyson equation has been accordingly modified, with a non-diagonal expression for the
reciprocal space Coulomb potential [41]. In the limit of a thick slab, which corresponds to
the surface case, it reduces to the standard expression of the 3D Coulomb potential, and it
has been successfully applied to surfaces [42]. The 2D expression of the Coulomb potential,
dedicated to isolated slab, and for this reason called slab potential has not been used. This
was the initial framework for my PhD thesis.

In chapter 5, to validate the use of the slab potential, I have studied Electron Energy
Loss spectra on few graphene layers, where experimental data were available. I have shown
that for EELS, the spurious effect of vacuum, introduced in the supercell to isolate the lay-
ers, was important also at the level of in-plane components. I have demontrated that the
use of the slab potential allows us to obtain spectra independant of vacuum, and in very
good agreement with the experiments on graphene and stacking of few layers graphene of T.
Eberlein et al [45].

Since this slab potential acts as a cutoff procedure, I have analysed in chapter 6 the effect
of the vacuum with some other cutoff methods which have already been proposed. I have
shown that, since all these methods proposed to cut the Coulomb interaction somewhere in
the middle of the supercell, they are always dependent of the size of the chosen supercell.

Then, using the slab potential and the Selected-G method, I have studied the in-plane
dispersion of the plasmon of a single graphene layer, and compared it with an other similar
study, which has developed a similar slab potential, but kept the full basis set for the recip-
rocal lattice vectors [57]. This work enters in the problematics of the nature of electronic
excitations in graphene. My results showed that several ranges can be defined in terms of
momentum transfer q, shedding some light on the origin of interband transitions for collective
excitations.

One notes that the EEL spectra calculated within the formalism proposed in this thesis
is different from the spectra obtained from the corresponding surface. This demonstrates
the necessity to use the slab potential to properly describe EEL spectra of isolated slabs.
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After having demonstrated the range of application of the slab potential to calculate
electronic excitations in an isolated slab, chapter 7 is dedicated to the study of the absorption
of interacting slabs. To benchmark the work, I have, in a first step, studied slabs interacting
at nanometric distance, to allow the simulation with brut force calculations.

The interactions between slabs must be contained in the spectra resulting from the stand-
ard TDDFT, where the inclusion of local fields accounts for the microscopic fluctuations
of the induced electronic density. Nevertheless, the spectrum resulting form the standard
TDDFT suffers from the vacuum problem. It has been shown during the thesis of Nicolas
Tancogne-Dejean [40] that the spectra resulting from the standard TDDFT was actually
equivalent to an effective medium theory (EMT) with vacuum. Thus, I have inverted the
equations leading to EMT for small and large local fields. This Inverse Effective Medium
Theory (IEMT) allows to extract the absorption of the so-called interacting slab. The valid-
ity of the procedure has been evidenced on the absorption spectrum of hBN. For in-plane
components, where the local field effects are small, it is equivalent to a scaling factor. For
the out-of-plane component, the spectrum is strongly modified. The out-of-plane absorption
spectra obtained with IEMT are different from the bulk and the isolated slab ones, but
nevertheless located in the same energy range.

I have evidenced that, for a given quantity of matter, the IEMT applied to the different
supercells (containing different amount of vacuum), give the same spectra, providing the local
fields perpendicular to the slab are well converged. The only case for which the spectrum
is different is the one where the vacuum introduced in the supercell is too small to describe
an isolated slab in the ground state. When the slabs are isolated in the ground state, the
TDDFT step, with the appearance of the induced electronic density, sligthly modifies the
spectrum, but in a way which seems to be independent from the distance between slabs.
The spectra are dominated by the local fields at the surface of the slab.

The IEMT procedure has been applied to different slabs of silicon. The out-of-plane
absorption is at much smaller energy than the isolated slab, and the bulk one. This can be
explained by the presence of surface states, arising from the surface reconstruction of the
silicon slab. Indeed, it is situated in the same energy range as for the in-plane component,
and the ratio between the contribution of the surface states and of the bulk states evolves
with the thickness of the slab. It results from the different results that the most important
parameter to tune the gap seems to be the thickness of the slab, and not the distance between
the slabs.

Nevertheless, the difference between the isolated slab and the so-called interacting one
must be further investigated. The resolution of the Dyson equation in real space, with two
interacting slabs, could be a first step to confirm these conclusions. These effects must also
be studied in the light of excitonic effects, and the modification of the screening as a function
of the thickness of the slab.

Finally, in the last part (chapter 8) I studied material commonly used, or expected, for
photovoltaic applications: InP and InSe. Before tackling the problem of the slab systems, I
have studied the bulk counterpart to evaluate which level of approximation would be required.
As these materials are dedicated to photovaltaics, due to their excitonic properties, we should
use the state-of-the-art formalism to calculate excitonic spectra, the Bethe-Salpeter equation.
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However, it is extremely demanding computationaly, and the TDDFT with a kernel is a
much lighter alternative which can give very good results. I calculated quasiparticle energy
corrections, within the GW formalism, and also using HSE hybrid fonctional. Absorption
spectra have been computed with BSE and TDDFT. For InP, the TDDFT with the long
range kernel is a satisfying approximation. For InSe, the presence of a bound exciton requires
the BSE formalism. Due to the need of a surface reconstruction for InP, the size of the slab
prevents me to do further calculation. For InSe, a thin slab has been calculated, within
TDDFT with the long range kernel.

A short term perspective is to implement the calculation of the screening with the slab
potential. We could also plan to use the EET formalism [89, 90]. It would then offer the
possibility to calculate the absorption spectrum within TDDFT with the nanoquanta kernel
[91], and obtain absorption spectra for isolated slab taking benefit of TDDFT formalism.



Appendix A

The slab potential

A.1 Introduction
The slab potential has been defined to treat an isolated slab system in a framework of 3D
code, based on planewaves and periodic boundary conditions. The three ideas are:

1) the response functions of the isolated slab are localised on the matter.
2) considering auxiliary response functions in real space equal to the response functions

of the isolated slab, and periodic with the periodicity Lmatz .
3) calculating the Fourier transform of the Dyson equation on the volume defined by the

matter.

The periodicity of the auxiliary response functions implies that the reciprocal space vec-
tors are multiple of 2π

Lmat
z

, the so-called “selected-G“ vectors: the Dyson equation is solved
only on the reduced basis of selected G-vectors and has to be modified accordingly:

χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω) (A.1)

where the slab potential is

ṼG̃1,G̃2
(q) = 4π

|q + G̃1|2
δG̃1,G̃2

+
ξ 4π δḠ1,Ḡ2

|q + G̃1|2|q + G̃2|2

− e−|q̄ + Ḡ1|Lmat
z sin(qzLmatz )
Lmatz

(2qz + G̃z1 + G̃z2)

+e
−|q̄ + Ḡ1|Lmat

z cos(qzLmatz )− 1
Lmatz |q̄ + Ḡ1|

[
[|q̄ + Ḡ1|2 − (qz + G̃z1)(qz + G̃z2)

]
(A.2)

The vectors of the reciprocal lattice are defined according to: G̃ = (Ḡ, G̃z), where Ḡ
stands for the in-plane component, and G̃z is a multiple of 2π/Lmatz , with 2π/Lmatz the thick-
ness of the matter.

The first term is diagonal in G̃. It is the standard expression for the 3D-FT of the
Coulomb potential.
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The second term is a correction due to the finite thickness of the slab, proportional to
1/Lmatz and depending on two G̃ reciprocal lattice vectors. It is diagonal for the in-plane
component Ḡ, which gives for the total potential the following dependence: ṼG̃1G̃2(q) =
ṼḠ1Ḡ2;G̃z1G̃z2

(q) δḠ1,Ḡ2 . The second term also contains a phase factor ξ. It arises from the
definition of the cell in the integration. When the integration is done between [−Lmatz , 0]
or [0, Lmatz , 0], ξ = 1, while when the integration is done between [−Lmatz /2, Lmatz /2], ξ =
(−1)n1+n2 , where ni is the reduced coordinate of G̃zi = 2πn

Lmat
z

.

We will consider absorption spectrum and Electron Energy Loss spectra. Before present-
ing the results, we recall the main quantities of interest and the way they are evaluated
within this formalism.

A.1.1 Absorption
The absorption spectrum is the imaginary part of the macroscopic dielectric function εM(ω).
It is calculated within TDDFT according to :

εM(ω) = lim
q−→0

εM(q;ω) (A.3)

where εM(q;ω) is given, for non local fields (NLF) and local fields (LF) cases respectively,
by:

εNLFM (q;ω) = 1− 4π
q2 χ0

00(q;ω) (A.4)

εLFM (q;ω) = 1− 4π
q2

¯̃χ00(q;ω) (A.5)

with χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ¯̃VG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

and ¯̃V defined as ¯̃V0G̃2 = 0, ∀ G̃2 and ¯̃VG̃1G̃2 = ṼG̃1G̃2 for G̃1 6= 0.
This leads to the following matrix representation for the slab potential:

¯̃V =
(

0 0
ṼG̃10 ṼG̃1G̃2

)
. (A.6)
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A.1.2 EELS
The EEL spectrum is the imaginary part of the inverse dielectric matrix ε−1

G̃G̃(q;ω). For
momentum transferred in the first Brillouin zone, this quantity is calculated, for NLF and
NLF cases, according to:

ε−1,NLF
00 (q;ω) = 1 + Ṽ00(q)χ̃NLF00 (q;ω) (A.7)
with χ̃NLF00 (q;ω) = χ0

00(q;ω) + χ0
00(q;ω) Ṽ00(q) χ̃NLF00 (q;ω)

ε−1,LF
00 (q;ω) = 1 +

∑
G̃

Ṽ0G̃(q)χ̃G̃0(q;ω) (A.8)

with χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

A.1.3 Remarks
1) Limits for vanishing q:

lim
q̄−→0

Ṽ00(q̄) = 2πLmatz

q̄
valid for qsl < 10−3 (A.9)

lim
q−→0

Ṽ0G̃2(|q̄|, qz, qz) =
(−1)n24πδḠ1,Ḡ2

|q̄|2 + (qz + G̃z2)2
× G2qzL

2|q̄| −
(−1)n24πδḠ1,Ḡ2

|q̄|2 + (qz + G̃z2)2
(A.10)

lim
q̄−→0

Ṽ0G̃2(|q̄|) = −
(−1)n24πδḠ1,Ḡ2

|q̄|2 + G̃2
z2

(A.11)

2) One should notice that with the relations Eq. (A.5) and ( A.8),

εM 6= lim
q̄−→0

1
ε−1

00 (q̄)
(A.12)

3) The slab potential, due to the presence of 1/|q̄|, which diverges at vanishing q̄, prevents
the direct calculation of the component of the absorption perpendicular to the surface of
the slab. Since εM at vanishing q is a tensor, it is possible to extract this component
from the linear combination of spectra calculated for in-plane and (in-plane + out-of-plane)
components.
4) In the case of the EEL spectrum, ε−1

00 does not behave like a tensor at vanishing q, so
it is not possible to extract a qz from any linear combination. The reason comes from the
strong dependence of the spectrum with the length of q. Indeed, the dominant term of the
potential is given by Eq. (A.9): it is proportional to 1/q̄. Since the response functions are
still proportional to q2, it results from the definition of ε−1

00 (Eq. A.8) that the spectrum
depends on the length of q. For very small q (< 10−3), the amplitude of the spectrum is
proportional to q. Then for larger q, the spectrum exhibit the expected dispersion, with a
change of shape and energy position.
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A.2 Effect of the slab potential
In order to study the behavior of the slab potential, I have studied two systems:

1) A slab of silicon called 4_4 supercell. The block of matter is based on a (2x1) recon-
structed surface. It contains 16 bilayers of silicon with thickness Lmatz = 41.052 Bohr, and
is introduced in a supercell with LSCz = 82.104 Bohr (ratio = 2).

2) A slab of 8 layers of graphene with AB stacking. The block of matter has a thickness
of Lmatz = 50.352 Bohr, introduced in a supercell of LSCz = 100.704 Bohr (ratio = 2).

The calculations are done using ξ = (−1]n1+n2 .

A.2.1 Silicon slabs
The calculation are done on a very coarse grid (4x2x1): this explains that the amplitude of
the spectra is not correct, but it does not affect our purpose.
The parameters used to obtain a converged spectrum are: npwwfn = 8217 ; nbnd = 350 ;
npwmat_xy = 7 ; npwmat_z = 17.

Absorption

Results are contained in files named ou4xxx.MDF:

ou4nlf.MDF εNLFM (q;ω) = 1− 4π
q2 χ0

00(q;ω)

ou4lf.MDF εLFM (q;ω) = 1− 4π
q2

¯̃χ00(q;ω)



A.2. EFFECT OF THE SLAB POTENTIAL 113

range of q

Figure A.1 presents the Im(εLFM ) for different length of q vector (qsl). The black lines
are spectra for qx component, the red lines spectra for qy component, the green lines are
spectra for qz component (extracted from linear combination of spectra calculated with qx
and qx ± qz), and in blue spectra for qz component (extracted from linear combination of
spectra calculated with qy and qy ± qz).
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Figure A.1: Im(εLFM ) for different qsl (ou4lf.MDF): (black) spectra for qx component; (red)
spectra for qy component; (green) spectra for qz component (extracted from linear combina-
tion of spectra calculated with qx and qx±qz), and (blue) spectra for qz component (extracted
from linear combination of spectra calculated with qy and qy ± qz).

Results are independent of |q|, at least for the in-plane components, which allows us to
conclude that ¯̃χ00 is proportional to q2. The qz component extracted from the different linear
combinations is, as expected, the same. This is an indication of the numerical stability of the
procedure. The z-spectra calculated for qsl = 10−2 a.u. is different from the one calculated for
smaller values. Since the in-plane spectra exhibit no difference, it comes from the qx or y±qz
spectra. Nevertheless, qsl = 10−2 a.u. enters in the limit of the k.p theory.
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Effects of Local Fields
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Figure A.2: Im(εNLFM ) [lines without dots (ou4nlf.MDF)] compared with Im(εLFM ) [lines with
dots (ou4lf.MDF)] for qsl = 10−5 a.u.: (black) spectra for qx component; (red) spectra for qy
component; (green) spectra for qz component (extracted from linear combination of spectra
calculated with qx and qx ± qz), and (blue) spectra for qz component (extracted from linear
combination of spectra calculated with qy and qy ± qz).

Figure A.2 shows the influence of local fields (LF): LF effects are important for the out-of-
plane component, as expected from the discontinuous electronic density. LF are also visible
for in-plane components, where they lead to a reduction of amplitude.
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comparaison with surface

The surface spectra are calculated with Selected-G procedure, but using the limit Lmatz −→
∞ in Eq. (A.2), which reduced to the standard reciprocal space expression of 3D Coulomb
potential:

V 3D
G̃ (q) = 4π

|G̃ + q|2
(A.13)

Surface spectra are contained in ou5xxx.MDF files.
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Figure A.3: Comparison of Im(εLFM ) for the slab [lines without dots (ou4lf.MDF)] and the
surface [lines with dots (ou5lf.MDF)] qsl = 10−5a.u.: (black) spectra for qx component;
(red) spectra for qy component; (green) spectra for qz component (extracted from linear
combination of spectra calculated with qx and qx± qz), and (blue) spectra for qz component
(extracted from linear combination of spectra calculated with qy and qy ± qz).

Figure A.3 shows the comparison of spectra calculated with the slab potential and with
the surface potential. The spectra are identical for the in-plane components: the off-diagonal
terms remaining in ¯̃VG̃G̃′ as compared to V̄ 3D

G̃ have a negligible effect when we solve the
corresponding Dyson equation. We recover the influence of the qz contribution seen on Fig.
A.1. This result is independent of the length of q.
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EELS

Results are contained in files named:

ou4nlf.EEL ε−1,NLF
00 (q;ω) = 1 + Ṽ00(q)χ̃NLF00 (q;ω)

ou4nlf.EEL ε−1,LF
00 (q;ω) = 1 +

∑
G̃

Ṽ0G̃(q)χ̃G̃0(q;ω)
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range of q
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Figure A.4: Top: − Im(ε−1,LF
00 ) (ou4lf.EEL) for different length of q vector (qsl): (black)

spectra for qx component; (red) spectra for qy component. Bottom: same spectra normalised
with 2

|q̄|Lmat
z

.

The plasmon of the slab is completely different from the plasmon of the bulk, where the
spectrum is peaked around is around 17 eV. Here, the spectra are located in an energy range
close to the one of absorption (Fig. A.4). There is a dispersion. On the contrary to the
absorption case, the slab potential plays a important role. The bottom panel, where spectra
are normalized shows that the EEL spectrum reached a shape similar to the absorption for
vanishing qsl (see Fig. A.2). The factor has been chosen in such a way that the spectra are
normalized to the absorption spectrum. Since limq̄−→0 Ṽ00(q̄) = 4πLmat

z

q̄ , and the term which
multiply ¯̃χ00 is 2π

|q̄|2 , the factor is equal to 2
|q̄| Lmat

z
.
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Effects of Local Fields
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Figure A.5: Top: − Im(ε−1,LF
00 ) (ou4lf.EEL) compared to Im(ε−1,NLF

00 ) (ou4nlf.EEL) for dif-
ferent length of q vector (qsl): (black) spectra with LF for qx component; (red) spectra
without LF for qx component. Bottom: same spectra normalised with 2

|q̄|Lmat
z

.

Local field effects are small but visible (Fig. A.5). The extra-terms in the potential play
a role. In the NLF calculations, only the head of the slab potential in used. In the LF
calculations, the terms of the slab potential among the head of the matrix potential enter
in the χ̃ inversion, and in the summation for ε−1

00 . To disantangle these two contributions, I
plot for each qsl, the different quantities (Fig. A.6):
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ou4nlf.EEL : ε−1,NLF
00 (q;ω) = 1 + Ṽ00(q)χ̃NLF00 (q;ω)

with χ̃NLF00 (q;ω) = χ0
00(q;ω) + χ0

00(q;ω) Ṽ00(q) χ̃NLF00 (q;ω)
ou4lf.EEL : ε−1,LF

00 (q;ω) = 1 +
∑
G̃

Ṽ0G̃(q)χ̃G̃0(q;ω)

with χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

ou1lf.EEL : ε−1,LF
00 (q;ω) = 1 + Ṽ00(q)χ̃00(q;ω)
with χ̃G̃G̃′(q;ω) = χ0

G̃G̃′(q;ω) +
∑

G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

ou2lf.EEL :
∑
G̃6=0

Ṽ0G̃(q)χ̃G̃0(q;ω)

with χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)
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Figure A.6: The different contributions which build the EELS for different qsl.

The influence of the complementary contribution (blue line in Fig. A.6) decreases when
qsl decreases (so black and green lines become equivalent). As a consequence, the main effect
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(difference between black and red lines) comes from the inclusion of the non-diagonal terms
of the slab potential in the matrix inversion [see the Dyson equation in Eq. (A.8)].

Nevertheless, in the optical limit, all these contributions become small, and it seems that
spectra have the shape given by χ0

00 (furthermore normalized by 4π
q2 or Ṽ00).

To check this hypothesis, figure A.7 shows the different χ: χ0
00 (red); the green line is

χ̃LF00 , which enters into the EELS (first term); the black line is ˜̄χ00, which enters into the
absorption.
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Figure A.7: Comparison of the different χ00 for different qsl.

In fact, neither EELS (χ̃LF00 ) nor absorption ( ˜̄χ00) are equal to χ0
00.

The EEL spectrum is similar to the absorption for very small qsl.
The effect seen on the green curve comes from the Ṽ00 term, since it is already visible on

Fig. A.7 for qsl = 10−2a.u..
When q̄ increases, the black curve does not change, in agreement with the fact that the

absorption spectrum is independent of the size of q̄. It is still quite close to χ0
00, since the

LF are small for in-plane component.
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The fact that ˜̄χ00 is slightly different from χ0
00, and that this difference is independent

of q̄ comes from ṼG̃G̃′ for G̃ 6= 0, since it ˜̄χ00 is the solution of the Dyson equation (A.5):

χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ¯̃VG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

and ¯̃V defined as ¯̃V0G̃2 = 0, ∀ G̃2 and ¯̃VG̃1G̃2 = ṼG̃1G̃2 for G̃1 6= 0:

¯̃V =
(

0 0
ṼG̃10 ṼG̃1G̃2

)
.

One can also imagine that the contribution from ṼG̃0 will be negligible, since this term
should contain a q̄ dependence.

The reason why the green (χ̃LF00 ) and black ( ˜̄χ00) curves becomes identical when q̄ −→ 0
comes from the fact that the terms in the Dyson equation (A.8) arising from the multiplica-
tion with Ṽ0G̃, ∀ G̃ tend to zero when q̄ −→ 0. Indeed, Ṽ00 is proportional to 1/q̄ and the
χ0

00 ∝ q̄2; Ṽ0G̃ ∝ 1/G̃′ and χ0
G0 ∝ q̄.

For this reason, the χ̃00 obtained from the solution of the Dyson equation (A.8) gives the
same result as the ˜̄χ00 when q̄ −→ 0. This also confirms that the terms coming from the
multiplication with ṼG̃0 are negligible, since due to symmetry reasons ṼG̃0 = Ṽ0G̃.
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Comparison with surface
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Figure A.8: Comparison of − Im(ε−1
00 ) with local fields for the slab (ou4lf.EEL) and the

surface (ou5lf.EEL) for different qsl: (black) spectra of slab for qx component; (red) spectra
of slab for qy component, (green) spectra of surface for qx component; (blue) spectra of
surface for qy component.

The EELS of slab is clearly different from the EELS of the surface, even for in-plane
component (Fig. A.8). The collective oscillation of electrons at plasmon frequency is affect
by the thickness of the slab. The surface plasmon is independent of q in the range considered.
The plasmon of surface is the same that the bulk one (here we only plot the pre-edge).
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A.2.2 Graphene layers’ slabs
The calculation are done on a grid 20x20x1 shifted grid, which is good enough to define the
structure of the spectra, but not enough to avoid spurious oscillations.
The parameters used to obtain a converged spectrum are: npwwfn = 6531 ; nbnd = 280 ;
npwmat_xy = 19 ; npwmat_z = 49.

Absorption

ou4nlf.MDF εNLFM (q;ω) = 1− 4π
q2 χ0

00(q;ω)

ou4lf.MDF εLFM (q;ω) = 1− 4π
q2

¯̃χ00(q;ω)



124 APPENDIX A. THE SLAB POTENTIAL

range of q

Figure A.9 presents the Im(εLFM ) for different length of q vector (qsl). The black lines
are spectra for qx component, the red lines spectra for qy component, the green lines are
spectra for qz component (extracted from linear combination of spectra calculated with qx
and qx ± qz), and in blue spectra for qz component (extracted from linear combination of
spectra calculated with qy and qy ± qz).
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Figure A.9: Im(εLFM ) for different qsl (ou4lf.MDF): (black) spectra for qx component; (red)
spectra for qy component; (green) spectra for qz component (extracted from linear combina-
tion of spectra calculated with qx and qx±qz), and (blue) spectra for qz component (extracted
from linear combination of spectra calculated with qy and qy ± qz).

Results are independent of |q|, which allows us to conclude that ¯̃χ00 is proportional to
q2. This is a bit different from the silicon case, where the qz term for qsl = 10−2 a.u. was
slightly different from spectra for smaller qsl values. The qz component extracted from the
different linear combinations is, as expected, the same. This is an indication of the numerical
stability of the procedure, which is particularly delicate for graphitic systems: the metallic
point at K leads to numerical divergences.
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Effects of Local Fields
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Figure A.10: Im(εNLFM ) [lines without dots (ou4nlf.MDF)] compared with Im(εLFM ) [lines with
dots (ou4lf.MDF)] for qsl = 10−5a.u.: (black) spectra for qx component; (red) spectra for qy
component; (green) spectra for qz component (extracted from linear combination of spectra
calculated with qx and qx ± qz), and (blue) spectra for qz component (extracted from linear
combination of spectra calculated with qy and qy ± qz).

Figure A.10 shows the influence of local fields (LF): LF effects are almost negligible for
the region 0 - 10 eV corresponding to the π plasmon, for both in- and out-of-plane compon-
ents. They are more important for 10 - 30 eV range. For in-plane components, the effect is a
small blue shift, with a small reduction of amplitude. It is much larger for the out-of-plane
component, in agreement with the discontinuous electronic density.
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comparaison with surface

The surface spectra are calculated with Selected−G procedure, but using the standard
reciprocal space expression of 3D Coulomb potential, which appears as the limit Lmatz −→∞
of the slab potential in Eq. (A.2) :

V 3D
G̃ (q) = 4π

|G̃ + q|2
(A.14)

Surface spectra are contained in ou5xxx.MDF files.
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Figure A.11: Comparison of Im(εLFM ) for the slab [lines without dots (ou4lf.MDF)] and the
surface [lines with dots (ou5lf.MDF)] qsl = 10−5a.u.: (black) spectra for qx component;
(red) spectra for qy component; (green) spectra for qz component (extracted from linear
combination of spectra calculated with qx and qx± qz), and (blue) spectra for qz component
(extracted from linear combination of spectra calculated with qy and qy ± qz).

Figure A.11 shows the comparison of spectra calculated with the slab potential and with
the surface potential. The spectra are identical: the off-diagonal terms remaining in ¯̃VG̃G̃′ as
compared to V̄ 3D

G̃ have a negligible effect when we solve the corresponding Dyson equation.
It is slightly different from the Si slab, where the spectra calculated with the surface and
the slab potentials were not the same for the qz component (Fig. A.3). The spectra are
independent of the length of q.
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EELS

Results are contained in files named:

ou4nlf.EEL ε−1,NLF
00 (q;ω) = 1 + Ṽ00(q)χ̃NLF00 (q;ω)

ou4nlf.EEL ε−1,LF
00 (q;ω) = 1 +

∑
G̃

Ṽ0G̃(q)χ̃G̃0(q;ω)
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range of q
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Figure A.12: Top: − Im(ε−1,LF
00 ) (ou4lf.EEL) for different length of q vector (qsl): (black)

spectra for qx component; (red) spectra for qy component. Bottom: same spectra normalized
with 2

|q̄|Lmat
z

.

The plasmon of the slab (Fig. A.12) is different from the plasmon of the bulk, but the
effect is much less important than for the case of silicon. It comes from the fact the due to
the two main structures of graphitic systems, arising from the so-called π and π + σ bands,
the corresponding features in the EEL and absorption spectra are more or less in the same
energy range. The left panel, where spectra are normalized by 2

|q̄|Lmat
z

(the origin of the factor
as been explained for the silicon case) shows that the dispersion is only visible for large qsl;
the EEL spectrum reaches a shape similar to the absorption for qsl < 10−3. It was not reach
so rapidly for silicon slabs.
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Effects of Local Fields
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Figure A.13: Top: − Im(ε−1,LF
00 ) (ou4lf.EEL) compared to Im(ε−1,NLF

00 ) (ou4nlf.EEL) for
different length of q vector (qsl): (black) spectra with LF for qx component; (red) spectra
without LF for qx component. Bottom: same spectra normalised with 2

|q̄|Lmat
z

.

Local field effects are very small (Fig. A.13). They simply reduced the amplitude, and
shift a little bit to higher energy the π+ σ plasmon. The effect increases with increasing qsl.

To study the influence of the different contributions coming from the slab potential, I
plot for each qsl, the different quantities (Fig. A.14):
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ou4nlf.EEL : ε−1,NLF
00 (q;ω) = 1 + Ṽ00(q)χ̃NLF00 (q;ω)

with χ̃NLF00 (q;ω) = χ0
00(q;ω) + χ0

00(q;ω) Ṽ00(q) χ̃NLF00 (q;ω)
ou4lf.EEL : ε−1,LF

00 (q;ω) = 1 +
∑
G̃

Ṽ0G̃(q)χ̃G̃0(q;ω)

with χ̃G̃G̃′(q;ω) = χ0
G̃G̃′(q;ω) +

∑
G̃1G̃2

χ0
G̃G̃1

(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

ou1lf.EEL : ε−1,LF
00 (q;ω) = 1 + Ṽ00(q)χ̃00(q;ω)
with χ̃G̃G̃′(q;ω) = χ0

G̃G̃′(q;ω) +
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(q;ω) ṼG̃1G̃2(q) χ̃G̃2G̃′(q;ω)

0 5 10 15 20 25 30
Energy (eV)

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

E
E

L
S

ou4lf.EEL (x)
ou4nlf.EEL (x)
ou1lf.EEL (x)
ou2lf.EEL (x)

q
sl
 = 10

-5
 a.u.

0 5 10 15 20 25 30
Energy (eV)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

E
E

L
S

ou4lf.EEL (x)
ou4nlf.EEL (x)
ou1lf.EEL (x)
ou2lf.EEL (x)

q
sl
 = 10

-4
 a.u.

0 5 10 15 20 25 30
Energy e(V)

0

0,1

0,2

0,3

0,4

E
E

L
S

ou4lf.EEL (x)
ou4nlf.EEL (x)
ou1lf.EEL (x)
ou2lf.EEL (x)

q
sl
 = 10

-3
 a.u.

0 5 10 15 20 25 30
Energy (eV)

0

0,5

1

1,5

2

E
E

L
S

ou4lf.EEL (x)
ou4nlf.EEL (x)
ou1lf.EEL (x)
ou2lf.EEL (x)

q
sl
 = 10

-2
 a.u.

Figure A.14: The different contributions which build the EELS for different qsl.

As already noticed for Si slabs, the influence of the complementary contribution (blue
line) is decreasing when qsl is decreasing (so black and green lines become equivalent). For
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the 8-layer graphene, it is nevertheless almost negligible for qsl < 10−2. As a consequence,
the main effect (difference between black and red lines) comes from the inclusion of terms of
the slab potential among the head of the matrix potential in the matrix inversion.

Nevertheless, in the optical limit, all these contributions become small, and it seems that
spectra have the shape given by χ0

00 (furthermore normalized by 4π
q2 or Ṽ00).

To check this hypothesis, figure A.15 shows the different χ: χ0
00 (red); the green line is

χ̃LF00 , which enters into the EELS (first term); the black line is ˜̄χ00, which enters into the
absorption.
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Figure A.15: Comparison of the different χ00 for different qsl.

In fact, neither EELS (χ̃LF00 ) nor absorption ( ˜̄χ00) are equal to χ0
00. The reason has been

explained for the case of silicon.

The EEL spectrum is similar to the absorption for very small qsl.
When q̄ increases, the black curve does not change (it is still quite close to χ0

00). The
effect seen on the green curve comes from the Ṽ00 term.
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Comparison with surface
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Figure A.16: Comparison of − Im(ε−1
00 ) with local fields for the slab (ou4lf.EEL) and the

surface (ou5lf.EEL) for different qsl: (black) spectra of slab for qx component; (red) spectra
of slab for qy component, (green) spectra of surface for qx component; (blue) spectra of
surface for qy component.

The EELS of slab is clearly different from the EELS of the surface, even for in-plane
component (Fig. A.16). The collective oscillation of electrons at plasmon frequency is affect
by the thickness of the slab. The plasmon of the surface is similar to the plasmon of the
bulk.
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A.2.3 Conclusion
The behavior of the slab potential has been studied in details, on two cases which present
different characteristics. The Si slab is cut in a bulk with strong covalent bonds. The
graphene slab is part of a bulk with layers slightly linked with van der Waals interactions.

The absorption spectra of the slabs are similar to the surfaces, so the slab potential has
almost no influence. For the absorption, the resolution of the Dyson equation with the slab
potential does not introduce a dependence with the length of q. The local fields have small
effects in-plane, mainly a reduction of the amplitude. The effect is larger for qz component.
It is not so spectacular for 8-layers graphene than it is for silicon slab.

For the EELS, the spectra of the slabs are different form the surface ones: the slab po-
tential has a strong influence on the EELS. The collective excitations are sensitive to the
thickness of the slab, even for in-plane excitations. The EEL spectrum is dominated by the
first term of the summation (Eq. 5.5), the remaining terms increase with increasing q̄. The
resolution of the Dyson equation with the slab potential introduces a large dependence with
the length of q̄, essentially contained in the head of the slab potential matrix. When reducing
the length of q̄, the EELS for 8-layer graphene slab reached quite rapidly the shape of the
vanishing q spectrum. It takes longer for the silicon slab.

The EEL spectrum at vanishing q recovers the spectral shape of the absorption, even if
it does not result from the standard relation

εM(ω) = lim
q−→0

1
ε−1

00 (q;ω)
(A.15)

In the standard procedure, the EELS recovers the absorption at vanishing q̄ when increasing
the vacuum, due to Effective Medium theory with vacuum. Indeed,

ε−1
00 = 1

εM

leads to

− Im(ε−1
00 ) = Im( 1

εM
) = Im(εM)

Re(εM)2 + Im(εM)2

. When the vacuum increases Re(εM) −→ 1 and Im(εM) −→ 1, so

− Im(ε−1
00 ) = Im(εM)

Here it is not the case, but we have the same conclusion. For slab systems, the reason why
EELS has the same spectral shape as the absorption for vanishing q̄ is due to the dependence
in q̄ of the slab potential.
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Appendix B

Convergence of Local Fields with D.
Novko et al. cutoff

Our slab potential is very similar to the one of Novko et al. [57], and by modifying the
parameter which allows us to select the Gz vectors, we can reproduce the calculation done
by Novko et al.

I calculated the EEL and Absorption spectra for one layer graphene int the supercells
defined in chapter 6.

The EELS is calculated with the same expression as ours:
ε−1,LF

00 (q;ω) = 1 +
∑
G
V0G(q)χG0(q;ω) (B.1)

with χGG′(q;ω) = χ0
GG′(q;ω) +

∑
G1G2

χ0
GG1(q;ω) VG1G2(q) χG2G′(q;ω)

Absorption is deduced from ε−1,LF
00 with the standard relation (Eq. 3.20):

εM(q̄) = 1
ε−1

00 (q̄)
The parameter used in the calculations are summarized in table B.1.

Parameters R2 R3 R4 R5 R10
Nk 40x40x1 40x40x1 40x40x1 40x40x1 40x40x1
Nb 100 100 100 100 100
npwwfn 997 1489 1795 2487 3999
npwmat_xy 19 19 19 19 19
npwmat_z 13 19 25 31 61

Table B.1: Parameters used for obtaining the spectra.

For Select-G method, I used 19 in-plane vectors, corresponding to 3 closed shells (up to
(2 0)), and 7 Gz vectors, corresponding to Gz = 0 ; Gz = ±1∗ratio ; Gz = ±2∗ratio ; Gz =
±3 ∗ ratio.
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The calculation done by D. Novko at al. [57] considered only LFE out-of-plane, with 71
Gz to reach convergence. Associated to a supercell of heigth LSCz = 5a = 23.26 Bohr, it
corresponds to a length of maximum Gz = 9.5 Bohr−1.

In order to reproduce their results, I chose the system with LSCz = 4d0 = 25.173 Bohr,
which is quite close to the one of their supercell. I calculated with npwmat_xy = 1 and
npwmat_z = 77, (corresponding to Gz = 0 ; Gz = ±1 ; Gz = ±2....Gz = ±38 giving 77 Gz

vectors with maximum Gz = 9.5 Bohr−1). Since this value is quite large and prevent to
introduce in-plane local fields, I have checked if it could be reduced and I have calculated
(npwmat_xy = 1; npwmat_z = 71), (npwmat_xy = 1; npwmat_z = 49) and (npwmat_xy
= 1; npwmat_z= 25). The corresponding lengths are summarized in Table B.2.

The results are presented on fig B.1. The spectra are exactly the same for the three
lengths of q vectors (smallest and largest taken into account). For vanishing q̄, the spec-
tra are equivalent to the no local fields one. Increasing the length of q̄, local field effects
modify the spectra, but even for the largest q̄ considered, we can converge the spectrum with
much smaller npwmat_z. We do not understand why Novko and al. [57] need a so huge value.

npwmat_z 77 71 57 49 25
max(||Gz||) (a. u.) 38 35 28 24 12
max(||Gz||) ( Bohr−1) 9.5 8.7 7.0 6.0 3.0

Table B.2: Length of Gz vectors for out-of-plane local fields for ratio = 4.

npwmat_xy 7 19 31
max(||Gxy||) (a. u.) (1 0) (2 0) (2 1)
max(||Gxy||) ( Bohr−1) 1.6 3.1 4.6

Table B.3: Length of Gxy vectors for in-plane local fields.
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Figure B.1: left: EEL; right: Im(εM) for q̄ = 10−5 Bohr−1 (top), q̄ = 0.078 Bohr−1 (middle)
and q̄ = 0.627 Bohr−1 (bottom) for different out-of-plane (only) LF: npwmat_z = 77,
npwmat_z = 71, npwmat_z = 49, npwmat_z = 25. Calculation has been done with cutoff
proposed by Novko et al. [57].

To check the influence of in-plane LF, I have increased the value of npwmat_xy: 7, 19
and 31 with fixed npwmat_z = 25. The corresponding lengths are summarized in Table B.3.
The results are presented on Fig. B.2.

The spectra of Fig. B.2 show that the inclusion of also in-plane local fields has a rather
small effect, but nevertheless larger that the only out-of-plane. The convergence is achieved
with npwmat_xy = 19, even for the largest q̄ considered.
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Figure B.2: left: EEL; right: Im(εM) for q̄ = 10−5 Bohr−1 (top), q̄ = 0.078 Bohr−1 (middle)
and q̄ = 0.627 Bohr−1 (bottom) for different in- and out-of-plane LF: npwmat_z = 25, and
npwmat_xy = 7, npwmat_xy = 19, npwmat_xy = 31. Calculation has been done with
cutoff proposed by Novko et al. [57]

To be comparable with the length of the Gz vectors that I have used to reach convergence
with the Select-G method, I will further use npwmat_z = 2∗(3∗ratio)+1 in my calculations:
it corresponds to npwmat_ z = 25 in the case of a system with ratio = 4. Since npwmat_xy
= 19 allows the convergence when including also in-plane, I used this value. For the case
of only out-of-plane LF, to be closer to the order of magnitude of the maximum Gz vector
proposed by Novko et al. [57], I used (npwmat_xy = 1; npwmat_z = 2 ∗ (7 ∗ ratio) + 1) in
my calculations which corresponds to (npwmat_xy = 1; npwmat_z = 57) in the case of a
system with ratio = 4].
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The comparison of the spectra without LF, and with the two different inclusion of LF
are presented on Fig. (B.3) for q̄ = 10−5 Bohr−1 and on Fig. (B.4) for q̄ = 0.078 Bohr−1.
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Figure B.3: Imaginary part of εM (blue lines) and EELS (green lines) for one graphene
layer in different supercells [R2 (top-left), R3 (top-right), R4 (bottom-left), R5 (bottom-
right)] for q̄ = 10−5 Bohr−1: without LF (pale lines), with local field effects only along z
(npwmat_xy = 1; npwmat_ z: lines with crosses) and with local field effects in- and out-of-
plane (npwmat_xy = 19; npwmat_ z: bright lines). The different values of npwmat_ z are
given in the legend: they depend on the vacuum. The calculations are done with the cutoff
proposed by Novko et al. [57]. Re(εM) is equal to 1.

For q̄ = 10−5 Bohr−1, the local fied effects are almost negligible. Their inclusion only
slightly reduces the amplitude. The two way of including them [only out-of-plane with
(mat_xy = 1; npwmat_ z) in- and out-of-plane with (mat_xy = 19; npwmat_z)] does not
give exactly the same results. As already mentioned, the only out-of-plane LF (pale lines)
is equivalent to the spectra without LF. The effect seems to be independent of the vacuum
included in the supercell. One also notice that EEL and absorption spectra are similar.
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Figure B.4: Real (red lines) and Imaginary (blue lines) parts of εM and EELS (green lines)
for one graphene layer in different supercells [R2 (top-left), R3 (top-right), R4 (bottom-left),
R5 (bottom-right)] for q̄ = 0.078 Bohr−1: without LF (pale dashed lines), with local field
effects only along z (npwmat_xy = 1; npwmat_ z: bright dashed lines with dots) and with
local field effects in- and out-of-plane (npwmat_xy = 19; npwmat_ z: bright continuous
lines). The different values of npwmat_ z are given in the legend: they depend on the
vacuum. The calculations are done with the cutoff proposed by Novko et al. [57]

For q̄ = 0.078 Bohr−1, the effect of local fieds is also to reduce amplitude. For Im(εM),
one also observes a shift to higher energy. Larger the vacuum, more important this beha-
vior. This effect seems to be less visible for EELS. The two way of including them (only
out-of-plane with npwmat_xy = 1 and npwmat_z or in- and out-of-plane with npwmat_xy
= 19 and npwmat_z) give exactly the same results for the π plasmon energy range. For the
energy range of the π + σ plasmon, and more precisely between 11 and 15 eV, one observes
a slight difference between the two LF inclusions: the spectrum with only out-of-plane LF
are less depressed as the one with in- and out-of-plane LF. It seems that including also LF
in-plane has a (small) influence. Nevertheless, the difference is rather small, and the two
ways of including LF will not affect the behavior of the spectra with vacuum. EELS and
absorption are different from each other.
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Titre : Design numérique de métamatériaux pour des applications photovoltaı̈ques.

Mots clés : ab-initio, métamatériaux, photovoltaı̈que

Résumé : Le but de cette thèse était de simuler le
spectre d’absorption de métamatériaux pour les ap-
plications photovoltaı̈ques. Par métamatériaux, on en-
tend une assemblée d’objets de taille nanométrique
situés à distance mésoscopique. L’idée sous-jacente
est qu’en modifiant la taille du nano-objet et l’arran-
gement géométrique, on peut ajuster le seuil d’ab-
sorption. L’état de l’art du formalisme, c’est-à-dire des
méthodes ab initio, a été utilisé.
Dans les codes périodiques, on utilise une supercel-
lule avec du vide pour isoler l’objet. Il a été montré que
ce formalisme agit comme une théorie de matériau
moyen (EMT) avec le vide, avec l’effet erroné d’avoir
des spectres dépendant de la taille de la super-
cellule. Une méthode appelée “Selected-G” a été
développée précédemment dans le groupe de Spec-
troscopie Théorique du LSI pour obtenir des résultats
indépendants du vide. Elle a été appliquée avec
succès aux cas des surfaces.
La première étape de ce travail a été dédiée au
calcul de l’absorption d’une couche isolée. Le for-
malisme Selected-G a été modifié en utilisant le
potentiel de slab. Les spectres de perte d’énergie
d’électrons pour des empilements de quelques plans
de graphène ont été simulés, et reproduisent très bien

les données expérimentales. Cela a offert la possibi-
lité d’étudier la nature des excitations électroniques
dans le graphène.
La seconde étape a été consacrée à l’étude de l’ab-
sorption d’une assemblée de couches en interaction.
En s’appuyant sur le fait que le formalisme standard
en supercellule agit comme une EMT avec du vide,
les équations de cette théorie ont été inversées, pour
obtenir l’absorption de la couche en interaction, en
s’affranchissant du problème du vide.
La troisième partie s’est intéressée à l’étude de
matériaux pour des applications photovoltaı̈ques
comme InP et InSe. La structure électronique des
matériaux massifs a été calculée en utilisant la fonc-
tionnelle hybride HSE. Le spectre d’absorption a
été calculé avec l’équation de Bethe-Salpeter, qui
contient les effets excitoniques, et avec la théorie de
la fonctionnelle de la densité dépendant du temps
(TDDFT) avec le kernel à longue portée. Une couche
de InP utilisant une reconstruction de surface (2x2),
et une couche de deux plans de InSe ont été
modélisées. Les spectres d’absorption ont été cal-
culés en TDDFT pour les couches isolées et en in-
teraction.

Title : Numerical design of metamaterials for photovoltaic applications.

Keywords : ab-initio, metamaterials, photovoltaics

Abstract : The purpose of this thesis was to simulate
the absorption spectrum of metamaterials for photo-
voltaic applications. By metamaterial, one means an
assembly of nanometric size objects at mesoscopic
distance. The underlying idea is that by adjusting the
size of the nano-object and the geometric arrange-
ment, one could tune the absorption edge. The state-
of-the art formalism, namely ab initio methods, was
used.
In the framework of periodic codes, one uses a super-
cell with vacuum to isolate the object. It was eviden-
ced that the supercell formalism acts as an effective
medium theory (EMT) with vacuum, with the spurious
effect of having spectra dependent on the size of the
supercell. A method called “Selected-G” was develo-
ped previously in the Theoretical Spectroscopy group
at LSI to provide results independent of vacuum. It
was successfully applied to the case of surfaces.
The first part of the work was dedicated to the cal-
culation of the absorption of an isolated slab. The
Selected-G formalism were modified, using the slab
potential. The Electron Energy Loss spectra for slabs

of few graphene layers were simulated and success-
fully reproduced available experimental data. This has
offered the possibility to study the nature of electronic
excitations in graphene.
The second step was dedicated to the study of the
absorption of an array of interacting slabs. Based on
the result that the standard formalism acts as an EMT,
the equations of this theory were inverted to obtain the
spectrum of the so-called interacting slab, cured from
the vacuum problem.
In the third part, materials for photovoltaic applica-
tions, like InP and InSe, have been studied. The elec-
tronic structure of the bulk counterparts, using hybrid
HSE functional, have been calculated. The absorp-
tion spectra were simulated using the Bethe-Salpeter
equation to account for the excitonic effects and using
time-dependent density functional theory (TDDFT)
with a long range kernel. A slab of InP, based on a
(2x2) reconstructed surface, and a slab of 2 layers of
InSe were modeled. The absorption spectra were cal-
culated, within TDDFT for the isolated and interacting
slabs.
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