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Introduction

Protein-protein interactions (PPIs) regulate complex functional networks in cells. They are

often mediated by specialized domains such as SH3 and PDZ domains. The specific recog-

nition between such domains controls important biological functions. The understanding of

these phenomena is extremely difficult and challenging, even when the interaction partners

are relatively small protein domains. Indeed, PPI networks exploit a large number of binding

events to transfer information through communication pathways, governing signalling inside

and outside cells. Disrupting or altering the equilibrium between PPIs plays an important

role in several diseases: one example is the observed altered expression of important signalling

proteins found in diseased tissues. The inibition of targeted PPIs is a recognized strategy for

the development of new drugs (Böhm & Schneider [2003]).

Understanding and engineering PPIs can be addressed by molecular modeling approaches,

including free energy simulations and Computational Protein Design. Computational Protein

Design (CPD) allows one to perform large screenings of many protein variants in a limited

amount of time. Several protein mutants can be studied starting from a native structure,

optimizing a preferred quantity such as stability or binding. CPD applications increased dra-

matically in the last ten years, but there is a strong need of continuous improvement of both

theoretical and computational models to obtain reliable and predictive results that match ex-

periments as closely as possible.

In the present thesis we focus on PDZ domains, which are among the most widespread PPI

domains. The human genome has more than 400 PDZ domains belonging to more than 200

different proteins. They are also present in bacteria, yeasts, plants, insects and vertebrates

(from the SMART database - Schultz [2000] ; Letunic & Bork [2017]). PDZs are small do-

mains, composed of roughly 90 amino acids that specifically recognize the 5 − 10 C-terminal

amino acids of their binding partners. They are often able to bind the corresponding peptides

in isolation. The experimental screening of binding of peptide and protein variants is the most

common strategy to better characterize their interactions (Songyang [1997] ; Wiedemann et al.

[2004] ; Stiffler et al. [2007]).
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PDZ domains share a common secondary structure, composed of 5-6 β strands and two α

helices, as shown in figure 1. In their typical bound configuration, C-terminal residues of the

binding partner assume an elongated β strand conformation in the binding pocket between

the strand β2 and helix α2.

Figure 1 – PDZ domain structure. Left: with labels indicating α helices and β strands

from Nter to Cter residues, colored in green and blue. The peptide ligand is colored in orange

and interacts with residues in the binding pocket situated between β2 and α2. Right: with

labels indicating ligand positions, using negative numbering: position P0 is the most buried

and corresponds to the peptide Cter residue.

Several PDZs of different amino acid sequences show similar affinities for the same ligand

(Ernst et al. [2010]). This suggests that important hotspot residues for their PPIs are situa-

ted in specific domain regions. Crystal structures and combinatorial screening showed that

strands β2, β3 as well as helix α2 are important for the PDZ:peptide binding [fig. 1]. PDZs

can be classified according to their specificity for different peptide ligands. We number the

C-ter residues of the peptide ligand in inverse order where position P0 is the most buried

C-ter residue, P−1 is the second-last and so on. Four PDZ classes are defined according to the

composition of the last 3 C-terminal positions of the peptide ligand, P0,−1,−2. The first class

binds the pattern S/T − X − Φ (Serine/Threonine followed by an amino acid X and then a

hydrophobic residue). The second class binds Φ − X − Φ (any residue between two hydropho-

bic amino acids). The third binds D/E − X − Φ and X − Ψ − D/E where Ψ is an aromatic

residue. Another PDZ classification uses 16 patterns based on the last seven Cter residues

(Tonikian et al. [2008]). In this study the authors analyzed binding specificity on a large scale.

A huge combinatorial peptide library was used to produce more than 3000 peptide ligands

able to bind to 54 PDZ domains from the human genome and 28 from the Caenorhabditis
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elegans worm genome. PDZs showed capability to bind many different peptides, with patterns

which are conserved between worm and human.

All these experimental strategies need expression and purification of PDZ domains: the

procedure can be quite expensive especially when considering several mutants. Also the struc-

tural characterization of variants can be quite difficult and time-demanding. For this reason

experiments have been coupled with computational studies, often involving molecular dyna-

mics (MD) simulations which are also able to give insights about thermodynamic properties

of the systems of interest. Basdevant et al. [2006] performed MD simulation of 12 different

PDZ:peptide systems and evaluated binding contributions. Comparing the simulated com-

plexes, they found that non-polar interactions are predominant for specificity, as expected

from the observed promiscuity. The authors also found the importance of dynamical behavior

and peptide reorganization upon binding. Other studies can be found in Tian et al. [2011],

Steiner & Caflisch [2012], Blöchliger et al. [2015] and Sensoy & Weinstein [2015].

Among the known PDZs, we will focus on the domain belonging to the Tiam1 protein. It

is known for modulating signaling activity for cell proliferation and migration, whose dysregu-

lation increases metastatis growth in cancer. Indeed, both overexpression and subexpression

of Tiam1 are connected to several tumors. For example, overexpression was found in sick tis-

sues (Minard et al. [2006]), suggesting that it can be used as a marker (Zhao et al. [2010] ;

Ding et al. [2009]). Starting from now, we will use “Tiam1” to indicate the PDZ domain of

the Tiam1 protein. It is a class 2 PDZ domain, meaning that it has a preference to bind

Φ − X − Φ peptides (any residue between two hydrophobic amino acids at positions P0,−2).

Four X-ray structures of Tiam1 complexes where the domain is bound to different ligands

can be found in the PDB with access codes 3KZD, 3KZE, 4GVC and 4GVD (Shepherd et al.

[2010]). Structures are also known for three quadruple mutants (4NXP, 4NXQ and 4NNR, Liu

et al. [2013]) and one NMR structure has also been solved for the unbound, Apo form of Tiam1

(2D8I, Qin et al. [2006]). Tiam1 is composed of 94 residues. An experimental screening of an

8-residue peptide library (Shepherd et al. [2011]) showed its capability to bind 70 different

peptides. For selected ligand variants, their relative binding free energies were measured. A

2.2 kcal/mol interval was observed between the best and worst binding free energies.

The Tiam1 natural wildtype binder is the Sdc1 peptide, composed of the last 8 amino

acid residues of the Tiam1 partner Syndecan1, TKQEEFYA. However, Tiam1 is also able to

bind to other natural peptides like Caspr4 (Spiegel et al. [2002]) of sequence ENQKEYFF.

These interactions are involved in cell adesion processes, which are important factors for the

metastatic spread of several cancers (Bendas & Borsig [2012]).
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In the first part of this manuscript, we begin with a general introduction about Computa-

tional Protein Design (CPD), with more detailed information regarding the Proteus software

(Simonson et al. [2013]) developed at École Polytechnique. Next, we apply the method to

design peptide sequences that bind the Tiam1 PDZ domain. Results were published (Villa

et al. [2018b]) and the paper can be found attached to chapter two.

A more detailed and quantitative study of Tiam1:peptide binding will be described in the

second part of this thesis. We performed polarizable free energy simulations to study relative

binding free energies for charge mutations in the binding pocket, using the Drude polarizable

force field. Results were compared to those obtained with two additive force fields (Amber and

Charmm). General information about polarizable models with a particular interest on Drude

will be given in chapter three. In chapter four, we describe more technical aspects related to

Drude free energy simulations using the a dual topology approach. Our results were published

in a larger study (Panel et al. [2018]).

In the third part of the thesis, we describe the development of a polarizable Drude model for

methyl phosphate and phosphotyrosine using established Drude parametrization procedures.

Methyl phosphate parameters were validated computing Mg2+ standard binding free energies

which showed good agreement with experiments. Results were recently published (Villa et al.

[2018a]).

Finally, we also performed a CPD study of acid:base equilibrium constants for a collec-

tion of proteins (more information can be found in Villa et al. [2017]). We compared two

approximations used to compute electrostatic interactions in Proteus, which both rely on a

Generalized Born (GB) implicit solvent model. The more sophisticated model could be used

in future design work.
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Chapter 1

Computational design of PDZ-peptide

binding

The protein design problem can be defined as looking for the amino acid sequences that fit a

specific structure according to a scoring function which depends on the system energy. Random

mutagenesis is used to produce a set of candidates that are subjected to selective pressure.

Since CPD must be efficient, combinatorial approaches are preferred. A simplified and discre-

tized conformational space, a simple scoring function and a fast exploration algorithm are key

ingredients of all CPD software.

The starting point of a typical CPD simulation is the three-dimensional structure of a given

protein. The wildtype sequence associated to this native conformation can then be altered by

modification of side chain atoms belonging to one or more residues. This is done efficiently

if the conformational space is discretized, usually keeping the protein backbone fixed. An

energy function is used to score different sequences generated by the sampling algorithm. The

conceptual difference between energy function and sequence score is important: the first is the

formula used to compute interactions between groups of atoms in a specific configuration. The

latter depends on the system energy but can vary according to the quantity to optimize. For

example, optimizing protein stability one uses a scoring function which is based on the unfol-

ding free energy difference upon mutation. On the other hand, to optimize ligand binding one

has a scoring function which is based on the change in binding affinity. To optimize protonation

states, one has to use a scoring function based on protonation free energy differences, and so on.

In this chapter we start by describing the most popular energy functions in CPD, how the

conformational space is usually discretized and some widely-used exploration routines. Then

we will give more detailed information about the Proteus software and how sequences are

scored according to different quantities, with a special interest in ligand binding.
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Chapter 1. Computational design of PDZ-peptide binding

1 Energy functions for CPD

CPD energy functions are based on molecular mechanics plus an implicit solvent model. The

first is borrowed from an existing force field for molecular simulation (for example Amber,

Charmm) while the latter is often based on simple dielectric shielding. One widely-used im-

plicit solvent model is Generalized Born (GB) combined with solvent accessible surface area

(SA), also called GB/SA.

Several CPD softwares use optimized, statistical potentials, where the physical-based energy

function terms are weighted or scaled by empirical parameters in order to fit experimental data.

However in the present discussion we will focus on physical potentials, in the spirit of our in-

house CPD software Proteus. We start by describing molecular-mechanics for internal degrees

of freedom, then nonbonded interaction terms.

1.1 Bonded and nonbonded interactions

b

 
!

Figure 1.1 – Bonded interactions Bond (left), Angle (center) and Dihedral (right).

Bonded energy term Interactions between bonded atoms (up to 1-2, 1-3, 1-4 couples) are

computed using a sum of several contributions

Ebonded = Ebond + Eangl + EUrey−Bradley + Edihedral + Eimproper (1.1)

Most of the terms share the same, harmonic potential functional form (bonds, angles, Urey-

Bradley, Impropers) while the energy associated to dihedral angles is usually periodic

Ebond = kb (b − b0)
2 Eangl = kα (α − α0)

2

EU−B = ku (u − u0)
2 Eimpr = kω (ω − ω0)

2 (1.2)

Edih = kφ [1 + cos (nφ − δ)]

In general, bond-angle-dihedral terms are applied to all 1-2, 1-3, 1-4 couples [fig. 1.1], while

Urey-Bradley and Impropers are used in more special cases [fig. 1.2]. Urey-Bradley controls

angle bending and is applied between a few 1-3 couples which form an angle α with a central
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1. Energy functions for CPD

atom. Impropers are generally used to avoid out-of-plane bending and are applied between

one central atom and other 3 bonded atoms.

u
 

Figure 1.2 – Bonded interactions Urey-Bradley (left) and Improper (right).

Bonded parameters (like bond distance b0 and force constant kb) usually depend on atom

types. Their values are optimized in order to reproduce quantum-mechanical (QM) optimi-

zed geometries or experimental structures, as well as QM vibrational spectra and QM energy

scans. In most of the existing force fields, bonded parameters are quite transferable between

different molecules when they refer to the same chemical group.

Nonbonded energy term Nonbonded interactions are not computed for 1-2 and 1-3 pairs

(their interactions are completely included in internal terms). 1-4 couples can be excluded or

scaled. The interaction between all other not excluded pairs of atoms is then sum of two terms

Enonbonded = ELJ + Eelec (1.3)

Van der Waals interactions between atoms of type i and j at distance rij are expressed in

the attractive part of the Lennard-Jones potential energy

ELJ(rij) = 4ǫij





(

σij

rij

)12

−

(

σij

rij

)6


 (1.4)

where ǫij and σij are force field constants for a couple of atom types. The first term expresses

the strong nuclear repulsion that occurs at short distances because of the Pauli principle.

The force field parameters ǫij and σij are optimized targeting QM interaction energies and

experimental consended-phase data. As for the corresponding bonded interaction terms, LJ

parameters are usually transferable between different molecules.

Partial atomic charges define the magnitude of Coulomb electrostatic interactions in a

dielectric ǫ between atoms i and j at distance rij

Eelec(rij) =
qiqj

ǫrij

(1.5)
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In contrast to bonded and LJ parameters, atomic charges are less transferable. They depend

on the specific molecule and are usually parametrized targeting its QM dipole moment, as well

as interactions between water and model compound acceptors/donors.

1.2 Implicit solvent models

Implicit solvent models are based on the decomposition of the system solvation free energy

∆Gsolv by integration over the solvent degrees of freedom. In general, the total ∆Gsolv is split

into two parts: the first counts electrostatic interactions between charged atoms and the second

counts the nonpolar, non-electrostatic interactions:

∆Gsolv = ∆Gsolv
elec + ∆Gsolv

apol (1.6)

The solvation process is decomposed in 3 steps: 1) formation of a solvent cavity which

depends on the solute volume/shape, without solute-solvent interactions 2) turn on solute-

solvent vdW dispersion interactions, 3) turn on electrostatic interactions. Steps 1 and 2 define

∆Gsolv
apol while step 3 defines ∆Gsolv

elec . We now describe how popular implicit models used in

CPD express the different terms of equation 1.6.

Surface-accessible Surface Area In SASA models, the non-polar solvation free energy

is written as a linear combination of contributions from solute atoms:

∆Gsolv
surf =

∑

i

σiSi (1.7)

For each atom i the solvent accessible surface Si [fig. 1.3] is multiplied by a coefficient σi. It

should be noted that equation 1.7 is based on a strong assumption of additivity.

probew

Figure 1.3 – Solvent accessible surface obtained rolling a sphere of radius r which represents

a rigid water molecule in contact with the solute. For surface calculations in Proteus we use a

probe radius r = 1.5Å.
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CASA model In the Coulombic Accessible Surface Area model, the total (polar+apolar)

solvation free energy is expressed using the simple function

∆Gsolv =
(1

ǫ
− 1

)

Eelec + ∆Gsolv
surf (1.8)

The apolar contribution to the solvation free energy is obtained using the surface energy term

(SASA model), while the electrostatic contribution is obtained scaling Coulomb interactions.

This is one of the first implicit solvent models used in CPD. Despite its simplicity, successful

applications can be found in the literature, for example in the work of Dahiyat & Mayo [1997].

Generalized Born model To describe continuum electrostatics in the context of GB, we

follow the analytical treatment of Schaefer & Karplus [1996]. Their integral formula for the

system electrostatic energy

Eel =
1

8πǫw

∫

w
D̄2(x̄)d3x +

1
8πǫp

∫

p
D̄2(x̄)d3x (1.9)

is based on the assumption that the system is split into two regions (solvent and solute)

characterized by two distinct dielectric constants ǫw and ǫp. Only solute atoms i contribute to

the additive dielectric displacement D̄ =
∑N

i=1 D̄i.

qi

qj

 p

 w

bi

bj

Figure 1.4 – Interaction between solute charges Left: potential at point M generated

by a charge q buried in the solute interior. Right: Solvation radii of two charges qi and qj,

interacting in the solute ǫp and screened by the solvent ǫw.

One can write

Eel =
1

8πǫw

∫

R3

D̄2(x̄)d3x +
τ

8π

∫

p
D̄2(x̄)d3x (1.10)
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Figure 1.5 – GB interaction energy as function of the distance between a couple of charges

r. Blue line: interaction for a couple of exposed charges, low bibj. Green line: interaction for

a couple of buried charges, high bibj. Red line: interaction for intermediate value of bibj

where

τ =
1
ǫp

−
1
ǫw

(1.11)

It is possible to manipulate the D̄2 integrals of equation 1.10. The full calculation is shown

in Schaefer & Karplus [1996]. One can split diagonal D̄2
i and off-diagonal D̄iD̄j elements and

then sum up results in self-energy and interaction-energy terms. Separating the standard, well-

known Coulomb interaction between charges in the solute environment and the contribution

from the solvent one obtains

Eel =
∑

i<j

qiqj

ǫprij

+ ∆Esolv (1.12)

∆Esolv =
∑

i

∆Eself
i +

∑

i<j

∆Eint
ij (1.13)

Using the approximation of Still et al. [1990], the solvent contribution is computed using

∆Eint
ij = −

τqiqj
(

r2
ij + bibj exp

[

−r2
ij/4bibj

])1/2
(1.14)

where bi is called solvation radius of the solute charge i. It has a physical interpretation, as the

measure of the distance between charge i and the solute surface. It is an analytical function

of all other solute atoms positions

bi = bi(r1,r2,...,rn) (1.15)
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Figure 1.5 shows the limiting behaviour of this interaction.

The accuracy of all GB models relies on the accuracy of solvation radii calculation. In

several applications, they are obtained from the definition of the self-energy potential

∆Eself
i

def
= −τ

q2
i

2bi

(1.16)

Using this definition, solvation radii are obtained from the calculation of associated self-

energies. To calculate this quantity, it is necessary to approximate the integral of the squared

dielectric displacement using a continuos density function Pk(x) to describe the solute volume

∆Eself
i = −τ

q2
i

2ǫwRi

+ τq2

i

∑

k �=i

Eself
ik = −τ

q2
i

2ǫwRi

+
∑

k �=i

τ

8π

∫

R3

D2

i Pk(x)dx (1.17)

where Ri is an atomic radius, part of the force field parameters.

We now describe two GB variants that differ in the method used to approximate equation

1.17. In GB/ACE, the integral is calculated using a density function Pk(x) where volume

occupied by charges is expressed with gaussians

Eself
ik =

1
ωik

exp(−r2

ikσ2

ik) +
Vk

8π

(

r3
ik

r4
ik + µ4

ik

)

(1.18)

ωik and µik are functions of the volume Vk, of the atomic radii Rk = (3Vk/4π) and a smoothing

parameter λ. Another approximation of equation 1.17 is GB/HCT, where

4Eself
ik =

1
Lik

−
1

Uik

+
rik

4

(

1
U2

ik

−
1

L2
ik

)

+
1

2rik

ln
Lik

Uik

+
R2

ik

4rik

(

1
L2

ik

−
1

U2
ik

)

(1.19)

and

Lik =























1 rik + Rk ≤ Ri

Ri rik − Rk ≤ Rk ≤ rik + Rk

rij − Rk Ri ≤ Rk ≤ rik − Rk

Uik =











1 rik + Rk ≤ Ri

rik − Rk Ri ≤ rik + Rk

(1.20)

Onufriev proposed a slightly modified version of equation 1.16 to compute bi. The atomic

radius Ri of each atom is reduced by a constant and the self-energy is scaled by a factor λ,
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then the solvation radius is reduced by δ

bi =



(Ri − ρ0)−1
− λ

∑

k �=i

Eself
ik





−1

− δ (1.21)

In the Proteus GB implementation, λ = 1.4, ρ0 = 0.09 Å and δ = 0.15 Å.

LK model In the Lazaridis-Karplus model (Lazaridis & Karplus [1999]), the free energy

of solvation is a sum of atomic terms ∆Gsolv
i

∆Gsolv =
∑

i

∆Gsolv
i (1.22)

where the sum runs over atoms and

∆Gsolv
i = Gref

i −
∑

j

∫

Vj

fi(rij)dV ≃ Gref
i −

∑

j �=i

fi(rij)Vj (1.23)

The “reference” solvation free energies Gref
i measure the change in solvation free energy for

a process where the atom i is transferred from a fully-solvated, unfolded state to a partially

solvated or buried folded state. Each integral is approximated by volumes Vj occupied by the

other atoms j. The fi terms are gaussian energy density functions

4πr2

ijfi(xij) = αi exp(−x2

ij) xij =
rij − Ri

λi

(1.24)

where Ri is the Van der Waals radius of atom i, rij is the distance between i and j and λi

is a parameter called gaussian correlation length such that when i is fully solvated, the total

∆Gsolv
i equals zero.

Dispersion term In most popular implicit solvation models, the apolar contribution to the

solvation free energy in the three steps process [eqn. 1.6] has a cavity-formation term calcula-

ted with the accessible surface area model. Moreover, the attractive part of the LJ potential

[eqn. 1.4] can be integrated for each solute atom, in order to obtain total solute-solvent vdW

dispersion

∆Gsolv
disp =

∑

i

U vdW
i =

∑

i

(

−ρw

∫

Vsolv

4ǫiwσ6
iw

(r − ri)
6
dV

)

(1.25)

In the formula, ǫiw and σiw are the nonbonded parameters of eqn. 1.4 between solute atom

i and the water oxygen. The integral is performed over the solvent volume, considering the

number density of water molecules ρw as a constant. It can be split in two parts

U vdW
i = −

4π

3
ρw

(

4ǫiwσ6

iw

)

(

1
R3

i

−
3

4π

∫ solute

Vi

4ǫiwσ6
iw

(r − ri)
6
dV

)

(1.26)
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where Vi is the solute volume excluding atom i. Onufriev and coworkes proposed an approxi-

mation of the integral: the solution consists in two terms

Idisp
i =

3
4π

∫

Vi

dV

(r − ri)
6

≃ Imain
i + Ineck

i (1.27)

where main and neck are respectively contributions relative to the volume region occupied by

atomic spheres and the volume region between atomic spheres. The two integrals are obtained

analytically (Aguilar et al. [2010]).

1.3 Structural models for CPD

Discretization of the protein conformational space Using an implicit solvent model, the

cost to compute interactions is aggressively reduced. Protein degrees of freedom must also be

simplified in order to explore large ensembles of protein variants in an acceptable computing

time. Most CPD implementations use a fixed backbone while side chains assume a discrete set

of conformations, or rotamers. These are defined by a rotamer library, which can be backbone

dependent (Dunbrack & Karplus [1993]) or not (Tuffery et al. [1991]). The use of rotamer li-

braries is justified by the fact that amino acid side chains in proteins assume a limited number

of configurations, as confirmed by several studies (Finkelstein & Ptitsyn [1977] ; Janin et al.

[1978] ; Ponder & Richards [1987]). CPD models can also use native rotamers, extending exis-

ting libraries by introduction of side chain configurations extracted from the crystallographic

structure of the system of interest.

Pairwise-additive energy function To explore vast ensembles of structures and sequences,

CPD software needs to rapidly compute interactions between couples of atoms in a discretized

conformational space. In many situations it is convenient to follow a combinatorial approach.

The protocol is based on a pre-calculated energy matrix, where pairwise-additive interactions

between groups of atoms (in general between couples of residues) are stored and can be acces-

sed during the sequence/structure exploration (Dahiyat & Mayo [1997] ; Gaillard & Simonson

[2014]). Additional information will be given below, with more details about our in-house soft-

ware Proteus.

We describe now the general case, where such an energy function would be

Etot =
∑

i

Eii +
∑

i<j

Eij (1.28)

The sum runs over residues i and j which occupy one of their possible rotamers. Using equa-

tion 1.28, a problem arises when one wants to define a pairwise-additive energy function based

on molecular-mechanics, where the solvent is described implicitly with one of the previously
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Figure 1.6 – Surface overlap between three buried residues. Individual surfaces are colored

in green, red, blue.

discussed models, for example GB. Indeed, pairwise diagonal and off-diagonal terms Eii and

Eij should depend only on atomic coordinates of residues i and j. However, the GB interaction

between couples of atoms belonging to two residues [eqn. 1.14] has an implicit dependency

on all solute atom positions through the atomic solvation radii bi [eqn. 1.15]. Further ap-

proximations are needed to make Etot residue-pairwise. One possible solution is to calculate

GB interactions between pairs of residues using solvation radii obtained in the protein native

conformation. This solution is called the Native Environment Approximation (NEA). Another

strategy (Archontis & Simonson [2005]) was recently implemented in Proteus and makes use of

a Fluctuating Dielectric Boundary (FDB, Villa et al. [2017]). Another problem arises conside-

ring the calculation of the solvent accessible surface (important when using CASA or GBSA).

Indeed, considering a couple of residues i and j the intersection between their surfaces can also

include their intersection with a third residue, as well as all other residues in the system [fig.

1.6]. To avoid double counting of buried surfaces, Street & Mayo [1998] proposed to apply a

correction factor to exclude overlapping volume defined by surfaces of nearby buried residues.

2 Exploration of the structure-sequence space

Most CPD programs generate a limited number of protein variants, solving problems of re-

duced complexity in an acceptable computing time. Indeed, one could be interested in the

lowest energy state or a group of sequences close to this Global Minimum Energy Configu-

ration (GMEC). Several approaches can be found in literature: some of them are heuristic,
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others are stochastic.

Heuristic methods Heuristic methods are useful to determine a group of low energy configu-

rations starting from one or more random states. A popular method was introduced by Wer-

nisch et al. [2000]. They proposed a simple sampling method, where starting from a random

protein sequence, a single position was picked and and its rotamer optimized. The procedure

was repeated for many iterations, until a local minimum was found. The method successfully

reproduced side chain conformations for surface residues and stability changes for mutations

applied in the protein core or at its surface. However, this method generally produces only a

few variants. For this reason it is not particularly adapted to perform high-throughput design,

where one wants to generate a distribution of many protein variants with a single simulation.

Monte-Carlo methods Monte Carlo (MC) sampling can be used to obtain a set of pro-

tein sequences generated from a stochastic process. One popular Monte Carlo method suitable

for protein design is based on the Metropolis algorithm. With MC, it is possible to generate

a distribution of protein sequences that are distribuited according to a particular probability

density function. The system energy is used to accept or refuse new system configurations that

populate the desired distribution. For MC, convergence is assured only for a very long simu-

lation, and the sampling can be stuck in local minima. However, several advanced sampling

techniques can be employed to avoid too long simulations and to jump free energy barriers.

More technical information will be given below, with a detailed description about implemen-

tation in our software Proteus.

The main advance of Monte Carlo is that is usually simple to implement and can be

easily adapted to many different problems. Sampling Boltzmann probability, is also possible

to extract statistical-mechanics properties (for example free energy differences) which can be

easily related to experimental data or to results of molecular dynamics simulations.

3 CPD softwares

Before introducing our in-house software Proteus, we briefly describe two CPD programs used

in the lab during the last few years.

Rosetta is a collection of programs suitable for molecular modelling developed by a large

community of researchers (RosettaCommons is an organization that counts 150 developers

around the world). RosettaDesign is a utility used for CPD of protein stability; other tools

like RosettaDock or RosettaAbInitio are used to predict conformations of protein-ligand com-

plexes or de novo protein structure prediction. Several Rosetta energy functions are inspired
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by molecular mechanics but make extensive use of statistical terms used to fit experimental

data. The first versions were based on a fixed backbone and a backbone-dependent rotamer

library, while models with limited backbone flexibility were introduced more recently. Despite

its remarkable success in the protein design field, the Rosetta energies are usually expressed

in unphysical, rosetta units. Even if some effort has been made to translate them to kcal/mol

(Alford et al. [2017]), results are still difficult to interpret, especially when compared to those

obtained with experiments or state-of-the-art molecular simulations. Moreover, for the design

procedure the developers preferred fast algorithms (for example Monte Carlo with Simula-

ted Annealing) which are able to generate a few variants in a limited computer time, rather

than generating many protein variants with a single run. The user interested in generating an

ensemble of sequences often needs to run several independent Rosetta simulations and then

discard repeated variants.

Toulbar2 is a C++ solver for cost function networks (CFN) developed at INRA in Toulouse

(Allouche et al. [2014]). The program uses a cost function to find the GMEC from a matrix

containing interactions between couples of residues (Traoré et al. [2013]). These interactions,

however, must be computed using an external program like Proteus or Rosetta-fixbb (fixed

backbone design).

4 The Proteus CPD framework

Figure 1.7 – General Proteus CPD protocol of 3 steps, as described in the text

Proteus (Simonson et al. [2013]) is a complete software distribution for Computational Protein

Design. It is composed of several programs and scripts: structural data and energy calculations

are managed using an in-house version of XPLOR, while the exploration of structure-sequence

space is performed with a C code called proteus (small p) which implements several sampling
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4. The Proteus CPD framework

algorithms.

A typical Proteus simulation is composed of three steps: 1) model construction, 2) pre-

calculation of residue-residue interactions using a pairwise-additive energy function and then

3) fast exploration of structure-sequence space [fig. 1.7]. The first steps are performed starting

from an input structure, given in PDB format. The initial model usually needs to be refined by

adding missing hydrogens and performing few energy minimization steps. The system energy

is expressed with an energy function which uses classical molecular mechanics plus an implicit

solvent based on GB/SA as described later.

A given protein composed of n amino acids has sequence S = {t1,t2,...,tn} where ti is the

amino acid type at site i. In a Proteus simulation, selected residues i called active positions are

able to mutate. They can vary their type ti within a mutation space Ti which is defined a priori

by the user. The only exception is for glycines and prolines, usually not mutable and modelled

as part of the fixed protein backbone. Considering all active positions with their mutation

space, the protein is then able to explore a sequence space which is defined by the ensemble

of all possible protein sequences. This is a usually a very large number: as an example, for a

mutation space of 20 possible types for N active positions one has 20N possible sequences.

Figure 1.8 – Unfolded and Folded states as described in the text. The unfolded state

is modeled as an extended polymer where side chains belonging to different residues do not

interact with pairwise terms.
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4.1 Folded and unfolded states

For each visited sequence we consider its folded and unfolded states, such that for two sequences

s and s′ the associated folding energy difference is

∆E = ∆Ef (s → s′) − ∆Euf (s → s′) (1.29)

The backbone conformation is the one of the initial model, given in input. We refer to

it as native backbone. Side chains can assume a limited number of configurations belonging

to a library of rotamers described by different torsional angles. By default Proteus uses the

rotamer library from Tuffery (1995 or 2003), but additional rotamers can easily be included.

Cβ atoms of each site are fixed together with the backbone, while the rest of the side chain can

vary. For a given amino acid type ti (for example ASP or GLU shown in figure 1.9) rotamers

are defined by a group of different torsional angles χ that belong to the rotamer space Ri.

Active positions can assume rotamers of different amino acid types, while the other positions,

called inactive, can vary their conformation within rotamers of their fixed, native amino acid

type. Another capability of Proteus is to include ligand rotamers, specified by the user, or

multiple backbone conformations for desired protein segments. These backbone rotamers are

usually obtained from molecular dynamics simulation snapshots of the wildtype protein.

Figure 1.9 – Selected rotamers for side chains of ASP and GLU (left, right).

Folded state interactions The system energy in the folded state is described by a pairwise-

additive function

Ef (s,{ri}) =
n

∑

i

Eii(ti,ri) +
n

∑

i<j

Eij(ti,ri,tj,rj) (1.30)

the sum runs over all the residues i = 1, ..., n. Diagonal terms include the interactions between

atoms belonging to side chain i (of type ti and rotamer ri) with itself and with the fixed back-

bone. Off-diagonal terms contain the interactions between atoms belonging to two different

side chains i and j.
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Unfolded state interactions On the other hand, the unfolded state energy is a sum of

diagonal terms:

Euf (S) =
∑

i

Euf
i (ti) (1.31)

It corresponds to a simple physical model of non-interacting sites. Each Euf
i (ti) term is called

the unfolded energy of amino acid type ti at position i. Unfolded energy values depend on

the specific problem of interest, where they assume a different physical meaning. For example,

to study protein stability, unfolded energies of different amino acid types are calculated using

fully solvent-exposed amino acid model compounds. Moreover, the unfolded energy of an amino

acid type can be the same for all protein positions i = 1, ..., n or it can vary for different sites.

This flexibility allows to define particular models for the unfolded state. For example, one can

use a set of unfolded energies for exposed positions and a different set for buried positions.

Using equation 1.29, this choice allows to better represent the energetic cost in transferring

side chains from pure solvent to different dielectric environments.

4.2 Proteus Energy Function

Interactions are computed using molecular-mechanics and an implicit solvent

E = EMM + Esolv (1.32)

where

EMM = Ebond + Eangl + Edih + Eimpr + Evdw + ECoul (1.33)

Interactions between solute atoms are computed borrowing parameters from the Amber ff99SB

force field

Evdw(i,j) + ECoul(i,j) = 4ǫij





(

σij

rij

)12

−

(

σij

rij

)6


 +
qiqj

ǫprij

(1.34)

where ǫp is the solute (protein) dielectric constant.

With the pairwise-additive energy function, interactions between pairs of residues (and

between residues and the protein backbone) in presence of the implicit solvent are computed

before exploring the sequence-structure space, for each couple of possible amino acid types

and each couple of rotamers. Values are stored in an energy matrix [fig. 1.10]. This calculation

can be accomplished in parallel on a small cluster or on a multi-core desktop machine. During

the exploration, energy updates are calculated by picking the necessary elements from the

pre-computed matrix.
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Chapter 1. Computational design of PDZ-peptide binding

Figure 1.10 – Proteus energy matrix calculation as described in the text. Matrix elements

contain the interaction energy between couples of positions i and j when occupy two rotamers

Roti and Rotj of two types A and B

4.3 Pairwise residue GB interaction

We consider briefly a method to compute the many-body GB interaction accurately yet ef-

ficiently, so that the NEA can be avoided. Using the Still formula to approximate the GB

interaction between a pair of charges, we compute the interaction between a couple of residues

R and R
′

as

∆Eint
RR

′ =
∑

i∈R

∑

j∈R
′

τqiqj
(

r2
ij + BRBR′ exp

[

−r2
ij/4BRBR′

])1/2
(1.35)

The right side of the equation has residue solvation radii BR and BR′ instead of the usual

atomic radii bi, bj. Radii BR can be calculated as a harmonic average over bi ∈ R,

∆Eself
R =

∑

i∈R

∆Eself
i = −

τ

2

∑

i∈R

q2
i

bi

def
= −

τ

2
(
∑

i∈R q2
i )

BR

(1.36)

This formulation is called Residue-GB. As in atomic-GB, the interaction between two group

of charges depends on the configuration of the whole solute through the residue solvation radii

which are average of the atomic radii bi = bi(r1,...,rN).

Even if residue-GB is not pairwise in the interaction term, an alternative functional form

was proposed by Archontis and Simonson [2005] and can be used to extrapolate the pairwise

“information” about a couple of residues. Indeed, equation 1.35 can be fitted for a large range
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4. The Proteus CPD framework

of B values using the formula

∆Eint
RR

′ ({ri,qi}; B = BRBR
′ ) ≃ c1({ri,qi}) + c2({ri,qi})B +

+c3({ri,qi})B2 + c4({ri,qi})B−1/2 + c5({ri,qi})B−3/2

For all pairs of residues in all posible rotamers whose coordinates and charges {ri,qi} are

known, 5 coefficients ci({ri,qi}) can be extracted and then inserted in the matrix. Then ∆E int

can be directly computed during the MC simulation, keeping updated residues solvation radii

from pairwise self-energies. More information can be found in (Villa et al. [2017]).

4.4 Monte Carlo exploration

Figure 1.11 – Amino acid mutation in MC. Two different types are represented using black

and white circles. For each mutation in the folded state, the inverse mutation is performed in

the unfolded protein, as described in the text.

Without knowing the system partition function, we can compute a priori the relative proba-

bility to visit points in the configurational and sequence space. We generate a Markov chain

of states using the well-known Metropolis acceptance method (Metropolis et al. [1953]). In

principle, the algorithm allows to sample any kind of probability density function. In our case,

we look for states that are populated according to a Boltzmann distribution. Starting from

an initial state (defined by a protein sequence and the set of occupied rotamers) we perform

N iterations to generate N states of the system. At each iteration we perform trial moves to

change conformation. These moves are accepted or rejected according to acceptance rules that

exploit the detailed balance property of long, well-behaved Markov chains.

One possible Proteus trial move is a mutation. At a given simulation timestep, we modify

the side chain at a random amino acid position i in the folded protein, mutating it to a random

amino acid type ti → t
′

i picked from mutation space Ti. A random rotamer is then selected

from the rotamer space Ri of the extracted type. At the same time, the reverse mutation is

performed in an unfolded copy of the system, t
′

i → ti. The total energy change for the mutation
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Chapter 1. Computational design of PDZ-peptide binding

which counts both folded and unfolded copies is calculated using equation 1.29. Another trial

move changes the rotamer of a randomly picked residue ri → r
′

i without modification of its

amino acid type.

Mutation and rotamer moves can be combined together to obtain a trial move that involves

multiple positions in a single attempted transition. Other possible moves are the so-called mut-

mut or rot-rot moves where we change two side chains at two different positions. To increase

the efficiency of these moves, we define lists of neighbours that are pre-computed before the

simulation looking at pairwise interactions between residues. If two residues interact with an

energy that is lower than a threshold value, they cannot be selected together in one of these

“double” moves.

With the transitions and energy changes defined above, the desider Boltzmann distribution

of states is determined by accepting or rejecting moves. Since moves are selected randomly

they have an associaged “generation” probability α(o → n) where o and n indicates the old

(current) and the new, generated states. We call acc(o → n) the corresponding move acceptance

probability. The overall probability associated with the move is the product π = α(o →

n)acc(o → n). At thermal equilibrium, the average number of leaving moves from a state o must

be equal to the number of moves going from all other states n to the state o. In other words,

the flux of configurations in one direction is canceled by the flux in the opposite direction.

This is the detailed balance condition, which holds in the limit of a very long simulation. On

average, the probability of finding the system in the two configurations corresponds to the

equilibrium populations N(o) and N(n) which obey Boltzmann distributions. The detailed

balance reads

N(o)π(o → n) = N(n)π(n → o) (1.37)

so
N(n)
N(o)

=
π(o → n)
π(n → o)

=
α(o → n)acc(o → n)
α(n → o)acc(n → o)

(1.38)

Since
N(n)
N(o)

= exp [−β∆E(o → n)] (1.39)

the acceptance probability must obey

acc(o → n)
acc(n → o)

= exp [−β∆E(o → n)]
α(n → o)
α(o → n)

(1.40)

This is verified for the Metropolis scheme

acc(o → n) = exp [−β∆E(o → n)]
α(n → o)
α(o → n)

if ∆E(o → n) > 0; 1 otherwise

(1.41)

22



5. Constant-activity and constant-pH Monte Carlo

5 Constant-activity and constant-pH Monte Carlo

The main goal of CPD is to produce one or more protein variants with an associated sequence

score in order to optimize a desired property. For example, one can use a scoring function

based on the protein unfolding free energy in order to study protein stability. In general, one

is not directly interested in the quantitative estimation of free energy differences but in pro-

ducing a relatively small set of protein variants, which will be eventually studied with more

sophisticated methods. For this reason, several scoring functions do not directly represent a

physical quantity and are expressed in arbitrary units. However, the CPD model along with

the Monte Carlo sampling described above can be used to estimate equilibrium thermody-

namic quantities like binding free energy differences or protonation probabilities at constant

pH. Proteus is particularly suitable for this kind of calculations: the fact that it is based

on well-established physical models allows to define sampling methods which target different

equilibrium properties.

Constant-activity Monte Carlo and ligand titration A special case is the design of

ligand binding. We consider the simple case of a protein of fixed sequence S wich can bind

two different ligands, represented by one mutating site of mutation space L and L
′

.

L
L'

L
L' ww

BOUND UNBOUND

Figure 1.12 – Bound and unbound states for two ligands L and L
′

Following the Proteus design protocol, an energy matrix is computed from a structure

representing the bound state. Interactions between the ligand of type L or L
′

with protein

residues are pre-calculated for all possible couples of protein rotamers. In this special case, the

bound state is represented using the folded state energy function [eqn. 1.30] while the unbound

state is represented using the unfolded state energy function [eqn. 1.31]. The ligand unfolded

energies (in this case we call them unbound energies) have a logarithmic dependence on the

concentration

Eub(X) = kT ln [X] + eub(X) (1.42)

where X is equal to L or L
′

and kT is the thermal energy. The second term eub(X) is the energy

of the unbound ligand calculated ahead of time using the molecular mechanics energy function,
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Chapter 1. Computational design of PDZ-peptide binding

including the implicit solvent. During Monte Carlo, mutations are performed swapping the

ligand type between L and L
′

.

Figure 1.13 – Ligand mutation where two different ligands are represented with black and

white circles. For a ligand mutation in the bound state, the inverse mutation is performed in

the unbound state.

For two ligand states X and Y, moves are accepted according to the energy difference

∆Ebound(X → Y ) − ∆Eub(X → Y ) where

∆Eub(X → Y ) = kT ln

(

[Y ]
[X]

)

+ eub(Y ) − eub(X) (1.43)

Choosing [X], [Y ] ahead of time, we then perform a “constant activity” MC. Constant

activity MC can be used to estimate binding free energy differences ∆∆G0(X → Y ). This

method has been recently applied to compare the binding affinity between tyrosyl-tRNA syn-

thetase (TyrRS) and several substrates (Druart et al. [2015]). It consists in performing a series

of simulations, each one at a different ∆Eref (X → Y ). From equation 1.43, this corresponds

to varying the ratio of ligand concentrations [Y ] / [X]. From each simulation, one extracts the

MC populations of X and Y , then standard binding free energy difference is computed from

the titration midpoint [fig. 1.14] where X and Y are equally populated

∆∆G0

bind(X → Y ) = kT ln

(

[Y ]
[X]

)

mid

= ∆Eref
mid − ∆eub(X → Y ) (1.44)
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Figure 1.14 – Titration of two ligands by variation of their relative concentrations. The

binding free energy is calculated extrapolating the midpoint of the sigmoidal function (dashed

line).

Constant-pH Monte Carlo As in constant-activity MC, the titration protocol can be ap-

plied to simulate protonation-deprotonation events at constant pH (Polydorides & Simonson

[2013]). This allows to calculate pKa values of side chains of proteins, a quantity of great

interest as it is connected to their stability, binding and many other biochemical properties.

Several precise and well-established methods to obtain protein pKas are based on explicit and

implicit solvent free energy calculations (Simonson et al. [2004]). However, CPD allows to

screen larger proteins in a limited amount of time.

Following the Proteus protocol, titrable protein amino acid side chains are able to mutate in

their mutation space. An energy matrix is computed, where pairwise interactions are obtained

using protonated and deprotonated rotamers at all titrable positions. We indicate their generic

deprotonated and protonated forms X and X+. For each couple of types X and X+, their

relative population in solution (model compounds) can be controlled using the unfolded energy

difference

∆Euf (X → X+) = 2.303kT (pH − pKmodel
a ) + eub(X+) − eub(X) (1.45)

where pKmodel
a is a tabulated quantity, known from experiments. The standard protonation free

energy ∆G0 depends on the dissociation constant at equilibrium through ∆G0 = kT lnKa =

−2.303kTpKa. In equation 1.45, the difference pH − pKa is used to compute the protonation

free energy at a different pH value. The pKa shift ∆pKa is then obtained from the ratio of

protonated/deprotonated populations in the protein extracted from a MC simulation:

∆∆G0 = ∆G0

protein − ∆G0

model = −2.303kT∆pKa (1.46)
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Chapter 2

High throughput design of

protein-ligand binding

The computational design of ligand binding is the search for preferred sequences using a sco-

ring function based on the binding free energy. However, most of CPD methods usually identify

few candidates, looking for low energy states close to the global minimum energy configuration

(GMEC). They often use empirical energy functions, without giving binding free energies to

be compared with experimental affinities. As a consequence, most of CPD programs cannot

be used for the more challenging high-throughput design, where one wants to optimize the

binding between a receptor and many ligand variants in a short cpu time, obtaining formally

exact binding free energies.

Here we present a general high-throughput design method that allows to overcome these

limitations. It was implemented in our in-house program Proteus, but can be easily adapted

to other CPD programs. Our protocol adaptively flattens the energy landscape in sequence

space, and then extracts formally exact binding free energy differences from biased Monte

Carlo (MC) simulations. Our test system was the Tiam1 PDZ domain (Tiam1), which binds

to its natural peptide ligand Syndecan1 (Sdc1) composed of 8 amino acids. We used the

method to design peptides that bind to Tiam1 and could serve as inhibitors of its activity. We

targeted four of the last five C-terminal amino acids of Sdc1. Considering 18 possible amino

acid types at the four “active” positions (we allow all amino types except Gly and Pro), there

are 184=104976 competiting ligands. Our protocol is efficient, since we obtained binding free

energies for almost 75000 peptide variants using just one CPU hour. Method, simulations and

results are presented in the attached paper (Villa et al. [2018b]).

Selected peptide variants were finally studied using a semi-empirical PB/LIE method,

previously optimized to predict binding specificity of the Tiam1 PDZ domain. It was recently

developed in our laboratory (Panel et al. [2017]). Details about PB/LIE calculations and

results are given below, after the attached paper. At the end of this chapter, we also describe

some theoretical aspects of the new design protocol, and how biased MC sampling techniques

can be used to design sequences either by binding affinity or by specificity.
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For the high throughput design of protein:peptide binding, one must explore a vast space of amino
acid sequences in search of low binding free energies. This complex problem is usually addressed
with either simple heuristic scoring or expensive sequence enumeration schemes. Far more efficient
than enumeration is a recent Monte Carlo approach that adaptively flattens the energy landscape in
sequence space of the unbound peptide and provides formally exact binding free energy differences.
The method allows the binding free energy to be used directly as the design criterion. We propose
several improvements that allow still more efficient sampling and can address larger design problems.
They include the use of Replica Exchange Monte Carlo and landscape flattening for both the unbound
and bound peptides. We used the method to design peptides that bind to the PDZ domain of the
Tiam1 signaling protein and could serve as inhibitors of its activity. Four peptide positions were
allowed to mutate freely. Almost 75 000 peptide variants were processed in two simulations of 109

steps each that used 1 CPU hour on a desktop machine. 96% of the theoretical sequence space was
sampled. The relative binding free energies agreed qualitatively with values from experiment. The
sampled sequences agreed qualitatively with an experimental library of Tiam1-binding peptides. The
main assumption limiting accuracy is the fixed backbone approximation, which could be alleviated
in future work by using increased computational resources and multi-backbone designs. Published

by AIP Publishing. https://doi.org/10.1063/1.5022249

I. INTRODUCTION

Computational protein design (CPD) is an emerging
technique for engineering and understanding protein struc-
ture and function.1–4 CPD explores a large space of amino
acid sequences and conformations to identify protein vari-
ants that have predefined properties, such as ligand bind-
ing. Conformational space is usually defined by a discrete
library of side chain rotamers and a small set of allowed
backbone conformations. The energy function usually com-
bines physical and empirical terms;5–7 the solvent and the
unfolded state of the protein are described implicitly. The
space of sequences and conformations is often explored with
a simulated annealing Monte Carlo (MC) approach.1,8,9 Other
approaches search for the lowest energy state, the “Global Min-
imum Energy Conformation” or GMEC, using combinatorial
optimization.10–14

To design ligand binding, the quantity to optimize is the
binding free energy, which is not a property of the GMEC
but a Boltzmann average over many states. This is a com-
plex problem, and most CPD applications have simply tried
to identify one or a few low energy states. Methods have
been developed to systematically enumerate low energy states
within a certain interval above the GMEC and to compute
the configuration integral of the molecule(s) up to a prede-
fined accuracy. They are referred to as “partition function”

a)Electronic mail: thomas.simonson@polytechnique.fr

methods. Enumeration methods are applicable to problems
with limited numbers of degrees of freedom. They exploit the
discrete nature of sequence and rotamer space and use efficient
methods from computer science to explore them. Thus, cost
function network and dead end elimination approaches have
been developed that provide deterministic guarantees on con-
figuration integral accuracy.15–17 The binding free energy is
then obtained as the ratio of bound and unbound configuration
integrals. Related methods have been developed to enumerate
secondary structures of simplified RNA molecules18,19 and
transmembrane proteins.20

Of course, partition functions are not needed to obtain
binding free energies. Molecular dynamics (MD) and Monte
Carlo (MC) simulation methods have been developed for
decades that focus directly on partition function ratios, instead.
One explores states that are “intermediate” between the
bound and unbound states, through importance sampling,
using a bias energy to increase their statistical weights.21–23

To compute binding free energy differences between two
ligands, one alchemically transforms one ligand into the
other.24–26 These methods carefully avoid calculating parti-
tion functions yet provide excellent precision when compar-
ing pairs of ligands if enough sampling is performed. They
can be accelerated by employing an implicit model of the
solvent.27

MD and MC simulations have also been applied to more
complex problems. For the competitive binding of many lig-
ands to the same protein,28–30 an adaptive, “lambda dynamics”
method was proposed. The ligand chemical potentials are

0021-9606/2018/149(7)/072302/8/$30.00 149, 072302-1 Published by AIP Publishing.
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adaptively adjusted during MD until all possible complexes
are similarly populated. Related adaptive MD methods have
been used to sample conformational basins of proteins or pep-
tides. An energy penalty is added to basins that have already
been explored, leading to a gradual flattening of the conforma-
tional free energy surface. Metadynamics,31–34 Wang-Landau
methods,35 and multicanonical simulations36–38 are three main
examples.

In protein design, the space to explore is especially com-
plex since it includes amino acid sequence variations at multi-
ple positions in a protein or peptide. Thus, adaptive simulations
are an attractive perspective. A Wang-Landau MC approach
was applied to RNA folding39 and to protein backbone con-
formations.40 A simpler, constant-activity MC protocol was
used to study the competition between pairs of ligands bind-
ing to the tyrosyl-tRNA synthetase enzyme;41,42 the relative
binding free energies obtained for four small ligands were
in qualitative agreement with experiment. Finally, an adap-
tive, Wang-Landau MC approach was applied to the binding
of peptides to several PDZ protein domains.43 A simulation
of the unbound peptide was performed with several posi-
tions allowed to mutate freely; a bias potential was adap-
tively constructed so that all available sequences were equally
populated. The same bias potential was then employed in a
simulation of the protein:peptide complex. In this simulation,
sequences are then populated according to their relative bind-
ing free energies, an elegant solution to the free energy design
problem.

Here, we propose three improvements to the adaptive
Wang-Landau MC approach43 and apply it to a PDZ:peptide
system of biological interest. The first improvement is the
use of Replica Exchange MC (REMC) for improved sam-
pling.44,45 This allows us to explore a much larger muta-
tion space than previously. Below, we simulate four mutat-
ing positions and over 105 competing ligand sequences
using one CPU hour. The second improvement is the use
of separate adaptive simulations and bias potentials for the
bound and unbound states. By adaptively flattening sequence
space for the protein:peptide complex, we make the method
more robust and allow improved sampling of weak-binding
peptides. Third, we have implemented the method within
the established, Proteus CPD software.41,46 This gives us
access to improved, Generalized Born (GB) implicit sol-
vent models,47–49 efficient exploration using a precalcu-
lated energy matrix, a user-friendly interface, and additional
Proteus features not applied here, such as multi-backbone
design.40

We consider the PDZ domain of the Tiam1 protein. The
peptide ligand corresponds to the eight C-terminal residues
of the Syndecan-1 protein. Tiam1 interacts functionally with
Syndecan-1 by binding to its C-terminus through its own PDZ
domain, helping to regulate downstream signaling pathways in
several cell types.50,51 From now on, we refer to the peptide as
Sdc1 and to the PDZ domain as Tiam1. Our goal is to design
peptides analogous to Sdc1 that can bind and inhibit Tiam1
either in vitro or in a cellular context. Such peptides could
modulate Tiam1 function and have applications as reagents in
cell biology or as inhibitors to downregulate Tiam1 in tumor
cells. We redesign the Sdc1 peptide by allowing four of its last

five residues to mutate (out of eight). This corresponds to a
pool of 184 = 104 976 competing ligands (we allow all amino
types except Gly and Pro, 18 in all). The protein and pep-
tide backbone are held fixed, while side chains mutate and/or
explore rotamers. The fixed backbone allows precalculation
of an energy matrix, which makes the MC exploration very
efficient.41,52 The ligand pool is simulated twice, in the bound
and unbound states, respectively. The ligand populations are
gradually equalized by an adaptive Wang-Landau bias poten-
tial. They can then be reranked based on their binding free
energies. Thus, our protocol directly designs peptides for their
binding free energies.

Computed binding free energies were obtained for almost
75 000 peptide variants using one simulation of the peptide
and one of the PDZ:peptide complex, each included one billion
MC steps per REMC replica and required 1/2 h of CPU time
on a desktop computer. The free energies were in fair agree-
ment with experiment for seven variants, with a mean unsigned
error of 0.8 kcal/mol (excluding one outlier). A sequence logo
based on the MC sequences was qualitatively similar to the
one based on a combinatorial library of peptide sequences
selected experimentally for Tiam1 binding.53 In future appli-
cations, longer simulations would allow larger numbers of
mutating positions to be explored and more accurate variants
of the Proteus solvent model to be used. We expect that using
multiple conformations for the protein and/or peptide back-
bone, with the help of a hybrid MC method,40 would also give
improved accuracy. The ability to design sequences directly for
binding affinity, without the need for expensive partition func-
tion calculations, should facilitate a number of biotechnology
applications.

II. COMPUTATIONAL METHODS

A. MC exploration of side chain rotamers and types

We consider a polypeptide of L amino acids. Below, it
will be either a folded protein:peptide complex or an unbound,
extended peptide. We assume that each amino acid i can adopt
a few different types s, s′, . . ., leading to different possible
sequences S. The polypeptide backbone has a fixed geometry.
The side chains can each explore a few discrete conformations
r, r ′, . . . called rotamers (around 10 per side chain type s).
The energy of any particular conformation depends on the
sequence and the particular set of rotamers. We perform a
Monte Carlo exploration, whose goal is to generate a Markov
chain of states,55–57 such that the states are populated according
to a Boltzmann distribution. The simulation system explicitly
includes one copy of the polypeptide, whose sequence and
rotamers can fluctuate. One possible MC move is to change
a rotamer ri at one particular position; the energy change is
∆Eon = E(. . .si, r ′

i
. . .) ☞ E(. . .si, ri . . .), where the subscripts o

and n refer to the old and new rotamer states. Another possible
elementary move is a mutation: we modify the side chain type
si → s′i at a chosen position i in the folded protein, assigning
a particular rotamer r ′

i
to the new side chain. Let α(o → n)

be the probability to select a move between two states o and
n; let acc(o → n) be the probability to accept it. The overall
probability of the move is π(o → n) = α(o → n) acc(o → n).
The Metropolis-Hastings scheme55–57 chooses the acceptance
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probability as

acc(o → n) = min(1, exp(−β∆Eon))
α(o → n)
α(n → o)

, (1)

where β is the usual inverse temperature. This, along with
the assumption of detailed balance45,56,57 leads to Boltzmann
statistics,

N(n)
N(o)

= e−β∆Eon , (2)

where N(o) is the equilibrium population of state o (respec-
tively, n).

B. Adaptive bias energy

The adaptive simulation method is closely analogous
to the Wang-Landau and metadynamics approaches.32,35 For
each position i among a selection of positions to be designed,
we perform a long MC simulation where only i can mutate, and
we gradually increase a bias potential until all the side chain
types at i have roughly equal populations. The bias potential,
EB

i
(ri, t), thus depends on time t and side chain type si. In

practice, an increment eb
i
(si; t) is added at a particular time t;

then, we run the simulation for an interval T before adding
a new bias increment. At the end of each interval T, the bias
increment is only added to one side chain type s: the one pop-
ulated at the end of the interval. The magnitude of the bias
increment depends exponentially on the current bias value,
which leads to a gradually decreasing increment. Specifically,
the bias potential is defined as follows:

Eb
i (s; t) =

∑

n;nT<t

eb
i (si(nT ); nT )δsi(nT ),s, (3)

eb
i (s(t); t) = e0 exp

(

−Eb
i (s(t); t)/E0

)

, (4)

where e0 and E0 are constant energies and δs ,s′ is the Kro-
necker delta. The above bias increment scheme is adapted from
the well-tempered metadynamics methodology.32–34 Once the
single-position bias potentials Eb

i
have been optimized sep-

arately, we are ready to perform simulations where all the
selected positions can mutate simultaneously. We number
these positions arbitrarily from 1 to p. We apply a bias that
is the sum of the single-position biases,

EB(s1, s2, . . . , sp; t) =
p

∑

i=1

Eb
i (si; t). (5)

C. Relative binding free energy

The protein:peptide complex and the unbound peptide are
simulated separately, each with its own bias potential. In the
biased simulations, the populations of a particular sequence S

in the bound and unbound states are denoted pb(S) and pub(S).
The binding free energy relative to a reference sequence Sr , in
the presence of the biases, has the form

∆∆Gbiased(S) = −kT ln
pb(S)
pb(Sr)

+ kT ln
pub(S)
pub(Sr)

. (6)

The relative binding free energy in the absence of bias has the
form

∆∆G(S) = ∆∆Gbiased(S) −
(

EB
b (S) − EB

ub(S)

−EB
b (Sr) + EB

ub(Sr)
)

. (7)

Subscripts b and ub indicate the bias energy in the bound
or unbound state, respectively. In practice, Eq. (7) is applied
to sequences that have been sufficiently sampled in both the
bound and unbound states.

D. Protein design model and test system

The PDZ:Sdc1 complex is modeled using an experimental
X-ray structure [Protein Data Bank (PDB) code 4GVD58]. The
backbone geometries of the protein and peptide are held fixed.
Side chains explore a discrete rotamer library.41,59 Selected
peptide positions can mutate freely. The unbound peptide is
modeled as a single, extended conformation, with a fixed back-
bone geometry. A molecular mechanics energy function is
used along with a Generalized Born (GB) implicit solvent
model. In principle, GB is a many-body model, such that
the interaction energy between two amino acids I, J depends
on the positions of the other amino acids. Here, a “Native
Environment Approximation (NEA)” is made such that the
I ☞ J interaction is computed assuming the rest of the sys-
tem occupies its native sequence and structure.41,47 With this
approximation, all inter-residue interactions can be computed
ahead of time and stored in an energy matrix. Later, they
are used for sequence exploration. More details are given
below.

We considered the X-ray structure of the Tiam1 PDZ
domain bound to an octapeptide derived from the C-terminus
of the Syndecan-1 (Sdc1) target protein (PDB entry 4GVD).
We refer to the peptide as Sdc1. Amino acids in the pep-
tide are numbered backwards from the C-terminus, as usual
for PDZ ligands. The positions allowed to mutate here are
positions ☞4 to ☞1. Position 0 is the C-terminal position. The
N-terminus is acetylated and the C-terminus carboxylated. The
peptide wildtype (WT) sequence is TKQEEFYA. Protonation
states of histidines in Tiam1 were assigned to be neutral, based
on visual inspection of hydrogen-bonding patterns in the 3D
structure.

E. Effective energy function and energy matrix for MC

The energy calculations are done with a modified version
of the Xplor program,41,60 using the following effective energy
function:

E = Ebonds + Eangles + Edihe + Eimpr + Evdw + ECoul + Esolv. (8)

The first six terms in (8) are taken from the Amber ff99SB
molecular mechanics energy function.61 The last term on the
right, Esolv, represents the contribution of a solvent. We use a
“Generalized Born + Surface Area,” or GBSA implicit solvent
model,62,63

Esolv = EGB + Esurf

=

1
2

(

1
ǫW

−
1
ǫP

)

∑

ij

qiqj

(

r2
ij + aiaje

−r2
ij
/4aiaj

)−1/2

+
∑

i

σiAi. (9)

Here, ǫW = 80 and ǫP = 4 are the solvent and protein dielec-
tric constants; rij is the distance between atoms i, j and ai

is the “solvation radius” of atom i.62,63 Ai is the exposed
solvent accessible surface area of atom i; σi is a parameter
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that reflects each atom’s preference to be exposed or hidden
from the solvent. The solute atoms are divided into 4 groups
with the followingσi values [cal/(mol/Å2)]: unpolar (☞5), aro-
matic (☞12), polar (☞8), and ionic (☞9). Hydrogen atoms have
a surface coefficient of zero. In the GB term, the solvation
radius ai is a function of the coordinates of all the protein
atoms.62,63 We use a “Native Environment Approximation,”
where the solvation radii ai of a particular group are computed
with the rest of the system having its native sequence and
conformation.41,47

The first stage in our CPD procedure41,52,64 is to cal-
culate the interaction energies between all side chain pairs
and between side chains and the backbone, considering all
allowed side chain types and the discrete rotamer library of
Tuffery et al. (enhanced by allowing several orientations for
SH and OH groups).59,65 To alleviate the rotamer approxi-
mation, each side chain pair is initially positioned using two
library rotamers; then, 15 steps of conjugate-gradient energy
minimization are performed, where only the pair of interest
can move and the energy is limited to the interaction within
the pair, plus the pair’s interaction with the backbone and sol-
vent.41,64 The final interaction energy is stored in an “energy
matrix” for later use.52 Thanks to the NEA, the GB interaction
energy only depends on the types and rotamers of the pair of
interest.

F. Replica exchange MC protocol

The MC moves included side chain mutations and rotamer
changes at one or two positions. For two-position moves, the
first position was chosen randomly and the second within its
neighborhood, defined by an interaction energy threshold of
3 kcal/mol. Simulations were done with Replica Exchange
MC,45 with 4 replicas at thermal energies of kT = 0.6, 0.9,1.3,
and 1.8 kcal/mol. A conformation swap between a random pair
of replicas (at neighboring temperatures) was attempted every
2000 steps. In the adaptive MC calculations, the bias update
period was T = 1000 steps. The bias increment amplitude was
e0 = 0.2 kcal/mol. The scaling energy E0 was 29.4 kcal/mol.
The simulations used to determine the single-position biases,
Eb

i
, lasted 108 steps (per replica). Once the biases were opti-

mized, a production simulation was run with the total bias EB

for 109 steps (per replica), both for the unbound and bound pep-
tide. The positions allowed to mutate were positions ☞4 to ☞1
of the peptide (position 0 being the C-terminal position). Each
position could adopt any side chain type except Gly or Pro, for
a total of 18 possible types per position and 184 = 104 976 pos-
sible sequences overall. During the production simulation of
the bound state, 101 159 sequences were sampled, and 74 963
(71%) were visited at least 1000 times during the PDZ:peptide
simulation. For these, the relative binding free energies were
estimated. The production simulations lasted about 1/2 h each
on a desktop computer, thanks to the precomputed energy
matrix and a shared memory, OpenMP parallelization.

III. RESULTS

The Sdc1 peptide was simulated in the unbound state,
with its backbone fixed in the extended, β sheet geome-

FIG. 1. The Tiam1-PDZ:Sdc1-peptide complex (cross-eyed stereo). Top:
Wildtype complex, X-ray structure. Bottom: Complex with the TKQYTCTA
peptide, which has the strongest computed binding affinity, representative MC
structure. The peptide is yellow; its residues are labeled with their type.

try it has in the PDZ:peptide complex (Fig. 1). An adaptive
bias potential Eb

i
was constructed separately for each position

i = ☞4, . . ., ☞1, such that when position i was the only posi-
tion allowed to mutate, the distribution of side chain types
was approximately flat. An overall bias potential was then
defined as EB(s,s3, s2, s1) =

∑

i Eb
i
(si). The peptide was simu-

lated for one billion steps with positions ☞4, . . ., ☞1 allowed
to mutate, in the presence of the overall bias EB, using REMC
with four replicas (see Sec. II). The C-terminal position 0 was
not allowed to mutate, but kept its wildtype Ala side chain.
All of the 184 = 104 976 possible sequences were sampled
during the simulation. Table I reports the mean energy differ-
ences between each side chain type and the Ala type, taken
as a reference, with the bias energy contribution removed.
The values are averaged over the simulation. Values for posi-
tions ☞4, . . ., ☞1 are similar. These energies can be thought
of as mutation energies for an extended, unfolded peptide
chain. They contain contributions from intra-side chain inter-
actions, side chain:backbone and side chain-side chain inter-
actions, and side chain-solvent interactions (estimated with
the GBSA implicit solvent model). Some of the energy dif-
ferences are large and the corresponding types would not be
sampled without using a bias potential EB to flatten the energy
landscape.

A bias potential for the bound state was estimated in the
same way, one position at a time (i = ☞4, . . ., ☞1). The complex
was then simulated for one billion REMC steps with posi-
tions ☞4, . . ., ☞1 allowed to mutate, in the presence of the
bias. 101 159 out of 104 976 possible sequences were sam-
pled during the simulation; 74 963 (71%) were visited at least
1000 times. For these 74 963, we estimated the binding free
energy difference ∆∆G, relative to Sdc1, by subtracting the
mutation free energies in the bound and unbound states. The
mutation free energies were estimated from the probability
ratios between each sequence and the wildtype Sdc1 (see
Sec. II). Populations were taken from the room temperature
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TABLE I. Mutation energies for the unbound peptide (kcal/mol). Values for
each amino acid type and peptide position, with Ala as the reference, aver-
aged over the unbound peptide simulation. “Mean” indicates an average over
positions ☞4, . . ., ☞1.

〈∆E〉

Type Mean P
☞4 P

☞3 P
☞2 P

☞1

ALA 0.0 0.0 0.0 0.0 0.0
ARG ☞46.9 ☞47.3 ☞48.1 ☞48.7 ☞48.6
ASN ☞15.8 ☞16.1 ☞16.9 ☞16.2 ☞16.3
ASP ☞18.2 ☞18.5 ☞19.1 ☞17.5 ☞17.8
CYS ☞0.4 0.1 ☞0.7 ☞0.4 ☞0.5
GLN ☞12.6 ☞12.5 ☞14.1 ☞12.7 ☞12.8
GLU ☞15.7 ☞15.1 ☞16.3 ☞14.3 ☞14.7
HIS 14.8 15.2 15.4 14.5 14.1
ILE 2.9 1.8 1.3 2.2 2.2
LEU ☞3.9 ☞4.2 ☞4.8 ☞4.7 ☞4.7
LYS ☞5.5 ☞6.0 ☞6.7 ☞7.3 ☞7.1
MET ☞1.9 ☞2.2 ☞2.9 ☞2.4 ☞2.4
PHE ☞1.1 ☞1.3 ☞2.2 ☞0.9 ☞1.2
SER ☞4.4 ☞4.4 ☞4.7 ☞4.3 ☞4.5
THR ☞7.1 ☞6.8 ☞7.9 ☞7.1 ☞7.4
TRP ☞0.7 ☞2.2 ☞1.9 ☞1.2 ☞1.6
TYR ☞6.8 ☞7.1 ☞8.4 ☞6.7 ☞7.2
VAL ☞3.1 ☞3.8 ☞4.5 ☞3.5 ☞3.9

replica. Some of the sequences led to very unfavorable bind-
ing free energies, ∆∆G > 4 kcal/mol, because of steric clashes
between a mutated peptide side chain and the PDZ protein.
Indeed, the protein and peptide backbones were held fixed in
their X-ray conformation during the MC simulation and were
unable to shift and make room for some of the larger side
chain types. These large values can therefore be considered
artefacts of the fixed backbone simulation. Figure 2 reports
the ∆∆G values for the 50 000 sequences with the strongest
binding, which span the range from ☞1.5 to 4 kcal/mol. For six
sequences, reference values are available from experiment or,
in two cases, from high-level, molecular dynamics (MD) free
energy simulations.66 The MD free energy simulations used
explicit solvent and were found earlier to give good accuracy,
within 1 kcal/mol of experiment. The reference values are also

FIG. 2. Relative binding free energies ∆∆G from adaptive Monte Carlo
(dashed line), experiment (black dots), and MD free energy simulations (gray
dots). The MC values correspond to 50 000 sampled sequences, numbered
by increasing ∆∆G values. For two sequences, only an experimental lower
bound is known (interval indicated by vertical dashed lines). Labels indicate
the mutations that define the experimental sequences (relative to the wildtype
Sdc1).

TABLE II. Experimental and computed binding free energies for
PDZ:peptide complexes (kcal/mol), with wildtype Sdc1 (WT) as the
reference.

Peptide Mutations Expt. MC |Error|

TKQEEFYA WT 0.0 0.0 . . .

TKQEEFTA Y
☞1T 0.7a

☞0.3 1.0
TKQEDFYA E

☞3D 1.8a
☞0.3 2.1

TKQEDFTA E
☞3DY

☞1T 0.9 0.1 0.8
TKQETFKA E

☞3TY
☞1K 1.3 0.5 0.8

TKQLEFYA E
☞4L 0.6 0.6 0.0

TKQKEFYA E
☞4K 0.8 1.8 1.0

TKQEENYA F
☞2N >1.3b 2.6 0.0

TKQEEEYA F
☞2E >1.3b 0.8 0.5

TKQEEIYA F
☞2I 0.8 7.7 6.9

aFrom MD free energy simulations.66

bOnly an experimental lower bound is available.54

listed in Table II. Comparing the MC to the reference values,
there are just two large errors. For the E

☞3D peptide single
mutant, the MC value is ☞0.3 kcal/mol, compared to an MD
value of +1.8 kcal/mol. For the F

☞2I single mutant, the MC
value is very large, ∆∆G = 7.7 kcal/mol, and is clearly an arte-
fact of the fixed backbone approximation. Excluding this last,
F
☞2I sequence, the mean unsigned deviation between the MC

and reference values is 0.8 kcal/mol. A Null model where all
the sequences have the same affinity gives a mean deviation of
0.5 kcal/mol.

2884 of the sampled peptide sequences have negative
∆∆G values, indicating a stronger affinity than Sdc1. 557 have

FIG. 3. Left: Sequence logos from Monte Carlo and from an experimental
library of peptides that bind Tiam1.53 Each column corresponds to a peptide
position; position P0 is the C-terminus; the last five positions are shown.
Amino acid types are shown with heights proportional to their abundancy and
colored by physico-chemical categories. Right: The 30 strongest-binding MC
sequences (ClustalW colors). The consensus sequence is shown at the bottom.
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values of ☞0.5 or less. The top 30 sequences (∆∆G ≤ ☞1.2
kcal/mol) are shown in Fig. 3. The structure of the top complex
(∆∆G = ☞1.5 kcal/mol) is shown in Fig. 1. Its peptide sequence
is TKQYTCTA, which differs from Sdc1 (TKQEEFYA) by
four mutations. Figure 3 shows the MC sequences in the
form of a sequence logo, where the sequences are Boltzmann-
weighted according to their MC binding affinities. An exper-
imental logo is shown for comparison, corresponding to a
combinatorial library of peptides, selected experimentally for
Tiam1 binding.53 Positions P0 and P

☞2 are the most important
for PDZ binding specificity. Position P0 occupies three main
types experimentally, C, A, and F, but was held fixed dur-
ing the simulations. Of the four positions allowed to mutate,
P
☞1, P

☞3, and P
☞4 are highly variable in both the MC and the

experimental logos. Of the top ten MC types at these posi-
tions, 7 or 8 are present in the experimental logo, and vice
versa, with somewhat different occupancies. Position P

☞2 is
more conserved, both experimentally and in the simulations.
Of the top four experimental types, Y, F, M, and T, all but
T are in the top five MC types. While T has less than 1%
occupancy in the MC sequences, the chemically similar types
A, C, and S are highly populated. Overall, the MC logo is in
reasonable agreement with the experimental one. The top scor-
ing sequence TKQYTCTA is a candidate for enhanced Tiam1
binding.

IV. CONCLUDING DISCUSSION

To design ligand binding, the quantity to optimize is the
binding free energy, which is a Boltzmann average over many
states. Nearly all CPD applications to-date have simply tried
to identify one or a few low energy states. In previous stud-
ies, we computed protein:ligand relative binding free energies
within the CPD framework that were formally rigorous using
constant-activity MC.41,42 Here, we went further, designing
sequences based on binding affinity in a high throughput man-
ner. We used a Wang-Landau adaptive MC approach, proposed
earlier for protein:peptide binding43 and for backbone con-
formational free energies.40 The method is analogous to the
recent metadynamics and lambda dynamics methods. We mod-
ified the earlier protein:peptide binding method in three ways.
First, we used a more powerful, Replica Exchange Monte
Carlo sampling method. Second, we introduced two adaptive
bias potentials instead of one: one for the unbound peptide
and a new one for the protein:peptide complex. This leads to
enhanced sampling of more weakly binding sequences. Third,
we implemented the method in our Proteus software, which is
a flexible, user-friendly, and freely available package for CPD
that allows very fast Monte Carlo simulations. This will make
the method easier to apply and to combine with various solvent
models or force fields.

To perfectly flatten the energy landscape in amino acid
sequence space, a complex bias energy would be needed. Here,
we used a simple bias that is a sum of one-position terms, where
each term depends only on the side chain type of a single amino
acid. As a result, we achieve only a partial landscape flatten-
ing. This is not a difficulty since we can easily compute the
relative binding free energy taking into account unequal type
distributions; this is done by Eq. (6). Despite the imperfect

landscape flattening, almost 75 000 peptide sequences were
characterized in a single REMC simulation of the bound pep-
tide and another of the unbound peptide, which required just
1/2 h each of CPU time, thanks to the precomputed energy
matrix. For more complex applications, it would be straight-
forward to include selected side chain:side chain interactions
in the bias potential to increase flattening.

Sequences were ranked by their binding free energies
and those with large, positive ∆∆G values (about 1/3 of
the sequences) were deemed artefacts of the fixed backbone
approximation and discarded. For eight sequences, comparing
to experimental or high quality MD free energy simulations
gave a mean unsigned deviation of 0.8 kcal/mol, 1/3 of the
experimental range and close to a simple Null model. The
MC sequence logo was also in reasonable agreement with
experiment. Among the predicted strong binders, the pep-
tide variant E

☞3D was characterized recently by extensive
molecular dynamics simulations,66 which predicted a weaker
binding. This variant may thus represent a false positive of the
design method (one out of eight variants tested). Additional
predicted strong binders should be characterized experimen-
tally to test for other false positives. Ideally, we would like to
have experimental binding data for a full combinatorial library
of peptide positions ☞5, . . ., ☞1, or an equivalent library for
another PDZ domain. With decreasing costs for high through-
put experiments, such data may become available in the
future.

Among the discarded sequences, we expect there are some
that would actually give strong binding, which can be con-
sidered false negatives of the fixed backbone design method.
Similar problems were seen earlier45 when designing four
specificity positions within the Tiam1 PDZ domain. Depend-
ing on the backbone conformation of the peptide that was
bound, large side chains were not always sampled at the
designed protein positions. We expect that this artefact can be
alleviated or eliminated by considering a few different peptide
backbone conformations. The design calculations can either
be done separately for each peptide backbone conformation
or the conformations can be used together in a single, multi-
backbone MC simulation using a hybrid MC method proposed
recently.40 For a system of the same size as Tiam1, with the
Proteus multi-backbone approach (which samples a Boltz-
mann distribution), we estimate it would take a few days to
run 109 MC steps using a few 16-core machines. While much
slower, the method remains feasible on a laboratory computer
cluster.

Here, as a proof of principle, we used one CPU hour
on a desktop machine to explore four mutating positions.
In future applications, more resources could be used, allow-
ing sampling to be increased by 2–3 orders of magnitude.
This would allow us to explore larger numbers of mutat-
ing positions, with a multi-backbone model and a more rig-
orous Generalized Born model that eliminates the Native
Environment Approximation.49 The method can be applied
to any protein:peptide or protein:ligand binding problem,
allowing the binding free energy to be used directly as the
design criterion. For the present, Tiam1:Sdc1 system, the
top-scoring sequence TKQYTCTA (which is also the con-
sensus sequence derived from the top 30 sequences) is a
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promising candidate for enhanced Tiam1 binding and experi-
mental testing.
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Chapter 2. High throughput design of protein-ligand binding

1 PB/LIE analysis

We computed binding free energies for 14 of the high scoring designed peptide sequences

using PB/LIE. Sequences were extracted from the set of “top 30” designed binders (listed in

Villa et al. [2018b], figure 3). We give first information about the PB/LIE method, from the

published work of Panel et al. [2017].

1.1 Semi-empirical Free Energy Function

The binding free energy between Tiam1 and each designed peptide was estimated using the

scoring function

∆G = α∆EvdW + β∆GP B + γ∆A + δ (2.1)

where α, β, γ are adjustable constants. The other terms ∆EvdW , ∆Gelec and ∆A are dif-

ferences between bound and unbound states, averaged over snapshots of MD simulations of

the protein-peptide complex. More precisely, ∆EvdW is the average van der Walls interaction

energy between protein and peptide. ∆Gelec is the electrostatic free energy difference between

bound and unbound states obtained with Poisson Boltzmann (PB) continuum electrostatics,

and ∆A is the change in molecular surface upon binding. The weights α, β and γ were opti-

mized (Panel et al. [2017]) to reproduce affinities for a target data set composed of 35 variants

of the Tiam1:Sdc1 complex (including both peptide and protein mutations). Optimized pa-

rameters were α=0.02 (vdW), β=0.25 (elec) and γ=-4 cal/mol/Å2. After optimization the

authours predicted experimental binding affinities for the target dataset, obtaining a mean

unsigned error of 0.43 kcal/mol and Pearson correlation of 0.64 between experimental and

calculate binding free energies.

1.2 Structural models and simulations setup

3D structures of the Tiam1:peptide complexes were obtained after reconstruction of the de-

signed sequences with Proteus. For each peptide sequence under analysis, we extracted its

rotamer configurations visited during the MC sampling in the bound state (hundreds for each

sequence). Configurations were then sorted according to their Proteus energy (after subtrac-

ting the bias potential). The best rotamer configuration of each sequence was finally applied

on the fixed backbone of the complex, and minimized with XPLOR. Histidines were set to be

neutral, after inspection of hydrogen bonds in the 3D structures and pKa calculations perfor-

med with PropKa (Bas et al. [2008]).
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1. PB/LIE analysis

Each reconstructed complex was then solvated in an octahedral box, filled with explicit

solvent (TIP3P water). The system was then neutralized with sodium or chloride ions. After

equilibration, production MD was run using NAMD 2.12. Simulations were done at room tem-

perature and pressure with the Amber ff14SB force field (Maier et al. [2015]), using Langevin

dynamics with a Langevin Piston Nosé-Hoover barostat (Feller et al. [1995]). Long range elec-

trostatic interactions were computed using PME (Darden, [2001]). Large energy fluctuations

during dynamics were avoided using a flat-bottomed harmonic restraint of force constant 3.0

kcal/mol/Å2 applied on the N-terminal peptide residue. Using such a restraint, the harmonic

potential started to increase beyond a threshold distance of 3 Å between peptide and protein.

For each complex, production MD was run for 100 ns.

1.3 PB calculations

MD snapshots were extracted from trajectories (1000 frames for each complex). For each

snapshot, water molecules were deleted and the system was described using continuum elec-

trostatics. We used a protein dielectric constant ǫp=8 and a solvent dielectric constant ǫw=80.

The electrostatic free energy difference was obtained taking the difference between the elec-

trostatic free energy of the complex and of the peptide, with structures built from the same

snapshot. The ∆Gelec term was finally obtained averaging the electrostatic free energy diffe-

rences over all the MD frames. PB calculations were run using CHARMM (Im et al. [1998]),

solving the PB equation on a grid of 181 planes in each direction, with a 0.4 Å spacing between

planes.

1.4 Results

Results of the PB/LIE analysis for the 14 selected peptides are resumed in table 2.1. We

include, in the same table, the relative binding free energies obtained with Monte Carlo (from

Villa et al. [2018b]). PB/LIE affinities were within 0.7 kcal/mol, while the ∆∆G obtained

with MC were within 1.5 kcal/mol. We also note that with all MC ∆∆Gs were negative (they

belong to the top 30 designed binders), while PB/LIE gived two variants (sequences ETMNA

and EEMNA) that have essentially the same affinity of the WT, while all other PB/LIE va-

riants have positive ∆∆G. It was recognized that the PB/LIE model has a small systematic

error, overestimating the experimental binding affinities by 0.30 kcal/mol on average (Panel

et al. [2017]). However, this cannot explain the observed discrepancies. Moreover, a real com-

parision is difficult because for the selected variants experimental data is unknown. It would

be interestig to test some of these variants with more sophisticated, alchemical free energy
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Chapter 2. High throughput design of protein-ligand binding

simulations (Panel et al. [2018]) which allow to extract free energies without any adjustable

parameter.

Peptide PB/LIE MC
sequence PB vdW SA ∆G ∆∆G ∆∆G
ETMNA -3.25 -48.10 -1310.1 3.46 -0.05 -1.2
EEMNA -2.99 -49.48 -1307.6 3.49 -0.02 -1.1
EEFYA -2.84 -58.67 -1349.3 3.51 0.00 0.0
YECEA -3.01 -55.62 -1371.0 3.61 0.11 -1.3
YTCDA -2.26 -50.67 -1313.2 3.77 0.16 -1.3
ESMTA -2.24 -48.65 -1305.9 3.70 0.18 -1.2
YSCDA -1.88 -49.70 -1295.0 3.71 0.20 -1.3
ETMTA -2.50 -49.47 -1331.0 3.71 0.20 -1.1
ETMEA -1.06 -46.81 -1247.8 3.79 0.28 -1.1
EEMSA -1.64 -49.27 -1329.5 3.92 0.41 -1.2
YNCTA +1.20 -38.10 -1111.0 3.98 0.47 -1.3
YTCVA -1.87 -57.31 -1398.6 3.98 0.47 -1.3
YTCTA -0.93 -50.07 -1321.8 4.05 0.54 -1.5
YNCYA -1.56 -57.28 -1401.7 4.07 0.56 -1.3
YSCTA -0.46 -49.27 -1311.0 4.14 0.63 -1.4

Table 2.1 – PB/LIE binding free energies for 14 selected peptide sequences. Each sequence

specifies the amino acids at positions P−4,−3,−2,−1,0. Specific contributions to the empirical ∆G

are given on different columns. All terms are in kcal/mol, except values in the SA column (the

surface area) which are in Å2. PB, vdW, and SA contributions were weighted by optimized

parameters to compute ∆G [eqn. 2.1]. Optimized weights were α=0.02 (vdw), β=0.25 (elec)

and γ=-4 cal/mol/Å2 (Panel et al. [2017]). Relative binding free energies of each sequence

were obtained subtracting the ∆G of the WT sequence EEFYA.

2 Bias convergence

The relative binding free energies in Villa et al. [2018b] were obtained by difference, simulating

the ligand pool twice. Two separate bias potentials were constructed, running adaptive Monte

Carlo in bound and unbound state. In a second round, the bias potentials were used in two

separate production simulations. The final free energy differences ∆Gbound and ∆Gunbound were

obtained removing the respective bias potentials from the flattened distributions.

The method is formally exact, and does not require perfect landscape flattening [fig. 2.1].

However, let us suppose that the bias converges perfectly, flattening the sequence space of

the simulated system. In the long time limit, the free energy difference between any couple of
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2. Bias convergence

sequences goes to zero, and the bias potential converges to

Eb(s,t → ∞) = −
E0

E0 + kT
F (s) + C(t → ∞) (2.2)

where kT=0.6 kcal/mol is the thermal energy, E0 is the energy factor used to define the bias

increment rule (equation 4 in the article) and C is a constant that does not depend on the

sequence but grows as t → ∞. In equation 2.2, the quantity F(s) is the unbiased free energy

of a sequence s at temperature T , that is completely compansated by the bias in the long

time limit, up to a factor E0/(E0 + kT ) and an arbitrary constant, as expected. A detailed

derivation of equation 2.2 can be found in Barducci et al. [2008].

With an exponentially decreasing bias update rule (equation 4 in the article), the bias

potential converges to the free energy F (s) of an ensemble at shifted temperature respect to the

temperature T used in the adaptive MC. To compute free energy differences at temperature

T , the bias potential must be multiplied by a factor that approaches 1 as kT is negligible

respect to E0. For very large E0, one retrieves the result of standard metadynamics where

Eb(s) → −F (s) + C.

F
(s
)

s

A

B

GMEC

F
(s
)

s

A
B

GMEC

Figure 2.1 – Free energy surface (pictorial representation) as function of sequence s. Left:

unbiased landscape, where the GMEC sits on the bottom and sequences A and B are separated

by a free energy difference of several kcal/mol. Right: Biased simulation, with an almost flatten

landscape. All sequences have similar probabilities and small free energy difference. Supposing

perfect bias convergence, all sequences have the same probability (in the flattened landscape)

and all their free energy differences are equal to zero.
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3 Perspectives: advanced sampling

The bias potential defined in the article (equation 5) is made of “diagonal terms” or single-

position biases. As a consequence, it cannot fully compensate the different interactions between

couples of residues of fluctuating amino acid types. To better flat the F (s) surface, one may

consider a more complex (but still simple) bias potential, with a funcional form that includes

double-position biases:

Eb
ij(si(t),sj(t); t) =

∑

n;nT <t

eb
ij(si(nT ),sj(nT ); nT )δsi(t),si(nT )δsj(t),sj(nT )

eb
ij(si(t),sj(t); t) = e0exp

[

−Eb
ij(si(t),sj(t); t)/E0

]

(2.3)

Here e0 and E0 are adjustable parameters, that control the growth of the bias potential during

the adaptive MC simulation. As for the single-position bias, the increment eb
ij(si,sj; t) is added

at a particular MC step t only to one couple of side chains of type si and sj. Such a double-

position bias can be combined with the previously defined single-position bias (equation 3 and

4), to give:

Eb(s1,s2,...,sp; t) =
p
∑

1

Eb
i (si; t) +

∑

i<j

Eb
ij(si(t),sj(t); t) (2.4)

The Proteus implementation is under development, and it has been verified that this “combi-

ned” bias better flattens the sequence space in various situations. For example, it can be used

to flat the free energy landscape of the unbound state of a protein:peptide complex. After

convergence and supposing almost perfect flattening, the difference in bias potential for two

couple of sequences can be used to directly obtain their free energy difference in the unbound

state. Using equation 2.2, we write

∆Gunbound(s → sr) =
[

Eb(sr,t ← ∞) − Eb(s,t → ∞)
] E0 + kT

E0

def
= Ẽb

unbound(sr) − Ẽb
unbound(s)

(2.5)

The resulting, “scaled” bias potential Ẽb
unbound(s) effectively flattens the free energy landscape

of the unbound state at temperature T . It can be used to sample sequences of the bound state.

The interesting result is that sequences sampled in this biased bound state will be populated

according to their relative binding affinities:

∆∆Gbind(s → sr) = ∆Gbound(s → sr)−∆Gunbound(s → sr) = ∆Gbound(s → sr)−∆Ẽb
unbound(s → sr)

(2.6)

This represents a clear improvement respect to the former protocol described in Villa et al.

[2018b], since using the last equation one avoids to run the production MC simulations in
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3. Perspectives: advanced sampling

the unbound state. Moreover, the design by affinity opens interesting potential applications

for the engineering of PPI networks. Once a ligand pool has been flattened in the unbound

state, the resulting bias can be applied to different complexes in separate simulations. This

allows to screen binding affinities for many peptide variants binding to different receptors. In

this case, one may also consider to compute an average Ẽb
unbound(s) for many unbound state

conformations, to better catch the peptide conformational changes upon binding.

Another interesting application is the design by specificity. It is based on the idea that

flattening the sequence space for a given protein:peptide complex, the resulting potential

Ẽb
bound(s) can be used to sample sequences in the bound state of a different receptor. Indeed,

as for the unbound state we can write

∆Gbound(s → sr) =
[

Eb(sr,t ← ∞) − Eb(s,t → ∞)
] E0 + kT

E0

def
= Ẽb

bound(sr) − Ẽb
bound(s) (2.7)

Considering the relative binding free energies for a generic couple of receptors A and B

∆∆GA
bind(s → sr) = ∆GA

bound(s → sr) − ∆Gunbound(s → sr)

∆∆GB
bind(s → sr) = ∆GB

bound(s → sr) − ∆Gunbound(s → sr) (2.8)

and indicating with Ẽb
bound,A(s) the bias potential that flattens the bound state for receptor

A, one has

∆∆GA,B
bind(s → sr) = ∆∆GB

bind(s → sr)−∆∆GA
bind(s → sr) = ∆GB

bound(s → sr)−∆Ẽb
bound,A(s → sr)

(2.9)

where the unbound state contributions cancel out. The interesting result is that sequences

sampled in the bound state of B using Ẽb
bound,A(s) will be populated according to their binding

specificity for receptors B and A.
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Chapter 3

Polarizable free energy simulations

1 Introduction

Molecular simulations need accurate energy functions to describe complex electrostatic inter-

actions in crowded environments. Molecular dynamics (MD) needs also a simple, empirical

representation of molecule’s degrees of freedom. Most popular force fields like Amber (Maier

et al. [2015]), Charmm (MacKerell et al. [1998]), Gromos (Oostenbrink et al. [2004]) and

OPLS (Jorgensen et al. [1996]) are carefully parametrized to describe both bonded and non-

bonded interactions via a similar energy function. Their functional forms differ for few terms,

usually related to internal degrees of freedom. They are parametrized following slightly dif-

ferent strategies, even if they use similar approaches to fit QM and experimental data. All

these well-established force fields are able to reproduce both equilibrium states and thermal

fluctuations of a large number of molecules, from small model compounds to big polymers.

They are also able, in some situations, to fold small proteins in a reasonable amount of time

(Lindorff-Larsen et al. [2011]). However, all these force fields share a common simplification

in their description of electrostatic interactions.

Enonbonded({r̄}) =
∑

nonbonded pairs







ǫmin
ij





(

Rmin
ij

rij

)12

− 2

(

Rmin
ij

rij

)6


+
qiqj

ǫrij







(3.1)

where {r̄} is the collection of distances rij between nonbonded pairs of the system. The elec-

trostatic interactions are computed as a sum over non-bonded pairs of the classical, Coulomb

energy. Because of that, all these force fields are called additive. They have a limited repre-

senation of the real molecular system because the charge of each atom i is condensed at one

point in space ri and has a constant magnitude, neglecting induced polarization effects. This

common feature makes all these force fields problematic when describing interactions between

ionic groups in a heterogeneous environment, for example when charges are buried inside the
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protein core or are transferred from the bulk solvent to binding pockets. These force fields have

also a limited accuracy in describing complex networks of salt bridges, when many ionic inter-

actions fluctuate at thermodynamic equilibrium (Debiec et al. [2014]). In many applications

this level of accuracy is acceptable, but there are cases where consequences can be dramatic.

Free energy calculations are among the most challenging applications in computational

biochemistry. Despite the development of advanced sampling techniques and increasing com-

putational power, there is still a great need of improved accuracy. Limitations are especially

obvious when computing free energy differences for charging processes,

∆F (q0 → q1) q0 �= q1 (3.2)

The precise calculation of electrostatic interactions for this kind of transormation is requi-

red when studying solvation, mutation free energies or ligand binding. For example, relative

binding free energies for several point and double mutations in PDZ:peptide complexes were

recently obtained from MD simulations, using a free energy perturbation protocol (Panel et al.

[2018]). Many peptide variants were studied using the Amber 99SB force field, computing their

relative affinities and comparing them to experimental data. Good agreement was obtained for

non-ionic mutations, giving a root mean square deviation of 0.37 kcal/mol, a mean unsigned

error of 0.32 kcal/mol, a maximum error of 0.6 kcal/mol and a correlation coefficient of 0.84.

The situation was quite different considering a set of ionic mutations, where the mutated side

chains have a different charge. In this case errors were larger than 1 kcal/mol. This result is

comparable to other studies in literature (Deng & Roux [2006] ; Boyce et al. [2009]).

A new generation of molecular-mechanics force fields aims to overcome difficulties related

to an additive, point-charge representation of electrostatic interactions. Because they include

an empirical representation of electronic polarization, these polarizable force fields are more

complex both in their functional form and in their parametrization strategies. Since they mo-

del the reponse of a molecule’s electron charge distribution in different environments, their

tuning requires extensive testing, carried out over several years of development. In the field of

biomolecular simulation there are still many applications where polarizable MD has not yet

been used. There are few examples of polarizable force fields that can be used routinelly to

perform MD simulations at the 100 − 1000 nanosecond timescale for free energy calculations,

where one has to sample many microstates of systems composed of tons of thousands of atoms.

The community recognises (Lemkul et al. [2016]) that there are actually three main models,

implemented in different force fields, that have been shown to be more suitable and reliable for

biomolecules: induced point-dipoles, fluctuating charges and the Drude oscillator model. The

first is the one used in AMOEBA (Shi et al. [2013]), the second in the Charmm Fluctuating
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2. Induced dipole model

Charge Force Field (Patel & Brooks [2003] ; Patel et al. [2004]) and the latter in the Drude

force field (Lamoureux & Roux [2003]). The present thesis focuses on Drude, even if a short

description of AMOEBA and Charmm Fluctuating Charge force fields will be given.

This chapter starts with a theoretical introduction about classical models used to study

interaction between induced dipoles in molecular systems. The point-dipole model and key

quantities will be presented. After a brief discussion of existing polarizable force fields suitable

for molecular simulation, we will describe the Drude Force field. Several important concepts for

the calculation of binding free energies will be discussed, with particular attention to charging

processes. Since free energy differences are extracted from molecular simulations performed in

infinite, periodic simulation boxes, several artefacts need to be taken into account.

2 Induced dipole model

2.1 Fields and dipoles

Modeling induced electronic polarization with an empirical, classical model dates back to 1972.

The original work of Applequist et al. [1972] was based on the older study from Silberstein

[1917] that introduced the point-dipole model for polyatomic molecules. Atomic polarizabilities

are assigned to each atom. Considering a system composed of N atomic dipoles µ̄j located at

positions r̄j, the electric field at position r̄i is

Ēi = −
N
∑

j=1

Tijµ̄j (3.3)
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where Tij is the dipole field tensor for atomic centers i and j, which is a 3x3 matrix. If r is

the distance between atoms i and j and where x = xi − xj, y = yi − yj and z = zi − zj, then

Tij = −
3
r5











x2 − 1/3r2 xy xz

yx y2 − 1/3r2 yz

zx zy z2 − 1/3r2











(3.4)

The induced dipole for atom i at position r̄i is computed using

µ̄i = αiĒi = αi



Ēext
i −

N
∑

j=1;j �=i

Tijµ̄j



 (3.5)

where Ēext
i is an external electric field at position ri and αi is the polarizability tensor

αi =











αxx αxy αxz

αyx αyy αyz

αzx αzy αzz











(3.6)

For a molecule composed of N atoms in the presence of an applied electric field Ē, the induced

molecular dipole moment µ̄mol can be expressed as function of the molecular polarizability αmol

µ̄mol =
N
∑

i=1

µ̄i =





N
∑

i=1

N
∑

j=1

Bij



 Ē = αmolĒ αmol =
N
∑

i=1

N
∑

j=1

Bij (3.7)

The matrix Bij contains atomic polarizabilities and the dipole field tensor. Its mathematical

expression depends on the functional form of Tij and the interaction is parametrized by mo-

lecular polarizabilities. Indeed, equation 3.5 can be seen as a system of equations for each µ̄i

where i = 1, ..., N . In matrix form, it corresponds to
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= Ẽ (3.8)
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2. Induced dipole model

if B̃ = A−1 then µ̃ = B̃Ẽ, so that for each atom

µ̄i =
N
∑

j=1

BijĒj (3.9)

This simple model proposed by Applequist makes good predictions of mean, molecular

polarizabilities. However, this point-like description suffers from several problems. First, it

produces a large anisotropy in molecular systems. Second, in some situations it leads to in-

finite polarizabilities. This problem arises when the polarizable atoms are too close. It can

be avoided by modification of the dipole field tensor. Thole [1981] proposed an alternative

interaction model in order to damp interactions between dipoles when they get closer than

a threshold value. More precisely, he proposed to compute dipole-dipole interactions using

a slightly different dipole field tensor, which is built by modification of charge distributions

according to a shape function. This shape function, which can be linear or exponential, is

parametrized by atomic polarizabilities and a general screening parameter τ :

ρ =
τ 3

8π
exp

[

−
τrij

(αiαj)1/6

]

(3.10)

Using the threshold distance r∗
ij = τ(αiαj)1/6 the modified dipole filed tensor is then computed

using

T (u = rij/r∗
ij) = −

3
rij(r∗)4











x2(1 − 4
3u

) xy xz

yx y2(1 − 4
3u

) yz

zx zy z2(1 − 4
3u

)











(3.11)

when rij < r∗
ij

2.2 Electrostatic energy

The energy of a system of point dipoles is composed of several contributions. Its general

prototype is

Eelec({r̄}) = Eq−q + Eq−µ + Eµ−µ + Epol (3.12)

The first terms are charge-charge (q-q), charge-dipole (q-µ) and dipole-dipole (µ − µ) interac-

tions. Epol is the work of polarization, also called “self polarization energy”. Electronic degrees

of freedom, parametrized by atomic polarizabilities αi, are represented using the smeared

charge distribution. The dipole field-tensor Tij is the mathematical object used to calculate
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non-additive interactions (q-µ) and (µ − µ). It is function of the charge distributions of atoms

i and j which depend, following equation 3.10, on the distance between centers i and j. A

more explicit expression of equation 3.12 is

Eelec({r̄}) =
∑

i<j





qiqj

rij

− qi

∑

α=x,y,z

T α
ijµjα +

∑

α=x,y,z

µiαT α
ijqj −

∑

α,β=x,y,z

µiαT αβ
ij µjβ



+ Upol (3.13)

where Tij is the interaction tensor, such that

T α
ij

def
= ∇αTij = −

rij,α

r3
ij

T α,β
ij

def
= ∇α∇βTij =

(

3rij,αrij,β − r2
ijδα,β

)

r−5
ij (3.14)

We immediately see that, respect to the simple charge-charge Coulomb interaction, addi-

tional terms appear in the sum. These terms are parametrized by molecular polarizability and

Thole factors, which control strength of induced dipoles and the shape of the charge distri-

bution. The last term is the work of polarization, and can be derived considering the induced

dipole µ̄i of atom i in presence of electric field Ēi at point r̄i (Böttcher [1973]). The energy of

the induced dipole is

U = −µ̄i · Ēi + Upol (3.15)

At equilibrium, for small changes dµ̄i of the induced dipole moment, one has dU=0. So we

can write

dUpol = −d
[

−µ̄i · Ēi

]

= Ēi · dµ̄i =
µ̄i

αi

· dµ̄i =
1

2αi

d
[

µ̄2
i

]

(3.16)

The work of polarization is then obtained easily:

Upol =
1

2αi

∫ µ̄i

0
d
[

µ̄2
i

]

=
1

2αi

µ̄2
i (3.17)

For the system of dipoles µ̄i, the total work of polarization or total “self-polarization energy”

is finally

Upol =
1
2

∑

i

µ̄i · µ̄i

αi

(3.18)

48



3. Point charge models

2.3 Induced dipole force fields

AMOEBA (Ren & Ponder [2003]) belongs to the class of force fields that make use of equa-

tion 3.13, as well as Amber ff02 (Cieplak et al. [2001]). AMOEBA includes also permanent,

traceless quadrupoles, which are 3x3 tensors. So for each atom i it associates properties of

the point-dipole model (charge q and dipole moment µ̄i) but also additional, quadrupole Qαβ

components. All atoms are polarizable, including hydrogens. The direct use of the induced-

dipole representation is considered useful especially for its ability to reproduce anisotropy

effects (Baker [2015]). However, increased computational cost is demanded to compute inter-

actions, as well as more-expensive force evaluations in MD. To give an idea, one can have a

look at recent timings of all-atom, explicit solvent molecular dynamics simulations performed

using AMOEBA, implemented on an optimized version of Tinker (Lagardère et al. [2018]).

Calculations were run on the Occigen supercomputer, hosted at the CINES centre of the

French supercomputing agency GENCI. For plain MD of one solvated protein (dihydrofolate

reductase, DHFR) composed of 23558 atoms the performances are of 7.2 ns/day on 960 cores.

Recent calculations on a similar system performed in our laboratory using 224 cores using

NAMD (Phillips et al. [2005]) and an additive Amberff99SB force field show performances of

∼ 74 ns/day, over 40 times faster. Despite the strong effort in software development and the

accuracy in the calculation of electrostatic interactions, long simulations at timescales of the

order of 1 µs with AMOEBA have an enormous computational cost.

3 Point charge models

3.1 Fluctuating charge model

Given the high computational cost demanded by induced-dipole representations, a lot of effort

has been made to build more empirical but less expensive energy functions suitable for MD.

In the fluctuating charge model, charges are considered as dynamical variables in an extended

lagrangian framework. It is based on the principle of electronegativity equalization. Given a

molecular system, charges fluctuate according to conformational changes that alter the local

value of the electrostatic potential. Each atom has an associated electronegativity and within

a molecule the system is constrained to keep the same electronegativity for each atom. In

pratice, each charge has an associated mass MQ that is small compared to the real, atomic

mass. In this way, electronic degrees of freedom (which evolve in the extended lagrangian)

are able to relax quickly in reponse to conformational changes. The main advantage of the

method relies is that the energy function used to compute interactions is unchanged compared

to the standard, additive force fields. However, it suffer from a strong limitation: intramolecular
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electronic charge distributions are exchanged between atoms, so that charge transfer occurs

mostly along bond lines. This is a strong limitation when one wants to model polarization in

the direction perpendicular to the molecule plane.

3.2 Drude pseudo-particle model

qD

qA

E

Figure 3.1 – Drude system composed of a polarizable atom qA and its Drude particle qD,

displaced according to an external field

In the Drude pseudo-particle model, the electronic cloud surrounding a polarizable, heavy atom

is represented by a negative charge qD attached to the nucleus with a harmonic oscillator

of force constant kD [fig. 3.1]. All atoms except hydrogens are by default polarizable. The

harmonic spring has the same force constant for all atoms. The total charge Q of the atom is

sum of the nucleus and Drude charges. Q is split between the nucleus A and its Drude particle

D depending on the atomic polarizability α:

Q = qA + qD α =
q2

D

kD

M = mA + mD mD = 0.4 a.m.u. (3.19)

where the mass is expressed in atomic mass units. In general, each atom has an isotropic

polarizability αxx = αyy = αzz. In the absence of an external field, each Drude particle

oscillates around its reference nucleus. Otherwise it oscillates around a displaced position,

defined by the vector

d̄ =
qDĒ

kD

(3.20)

which depends on the Drude particle charge, the force constant and the applied field. From

the formula we see that for a given Ē, a bigger atomic polarizability α (a more negative charge

qD) produces a bigger displacement. The atom and Drude particle behave like a point charge
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Q of polarizability α, in the spirit of the point-dipole model.

Interactions between atoms and Drude oscillators that are separated by three or more bonds

are computed using the standard, Coulomb energy function, while dipole-dipole interactions

between 1-2 and 1-3 atom pairs are screened with the previously discussed method proposed

by Thole. In the Drude force field, instead of using a general screening parameter τ for all

atoms, interactions between dipoles i and j are screened by multiplying their interactions by

S(rij) = 1 −

(

1 +
τijrij

2(αiαj)1/6

)

exp

(

−
τijrij

(αiαj)1/6

)

τij = τi + τj (3.21)

where τi and τj are screening (or Thole) parameters for atoms i and j. This formula corresponds

to a smeared charge distribution

ρ =
τ 3

ij

8π
exp

[

−
τijrij

(αiαj)1/6

]

(3.22)

The potential function includes also a self-polarization energy

Uself (d̄) =
1
2

kDd̄2 (3.23)

The 2013 version of the Drude force field includes also anisotropic polarizabilities, where

αxx �= αyy �= αzz. In this case, the self-polarization energy is calculated using the more general

formula

Uself (d̄) =
1
2

(

kxxd2
x + kyyd2

y + kzzd2
z

)

(3.24)

Drude has also other auxiliary particles, called lone pairs [fig. 3.2], not present in the first

release of the force field. Lone pairs represent electron pairs in valence shells of atoms that do

not participate in bonding. Their role is to include a charge density that is delocalized with

respect to their reference atoms, using virtual rigid interaction sites. In fact, lone particles

are massless and their forces are transferred to their reference atoms during MD simulations.

The introduction of lone pairs in Drude improved agreement with QM calculations, both for

energetics and for optimized geometries (Harder et al. [2006]).

51



Chapter 3. Polarizable free energy simulations

Figure 3.2 – Left: atom-drude + lone pair system. Right: SWM4-NDP Drude polarizable water

model

3.3 Drude polarizable water models

The first Drude water model was published in 2003 (Lamoureux et al. [2003]) and named

SWM4 : Simple Water Model with 4 interaction sites. In a former parametrization, it was

called SWM4-DP because the oxygen carried a positive Drude charge. Along with the usual

oxygen and hydrogen atoms, a rigid particle called “LPW” was attached to the oxygen in order

to better reproduce the gas-phase dipole moment and quadrupole moments. In analogy with

the TIP4P water model, this lone charge is negative and its magnitude is twice the charge

assigned to hydrogen atoms.

To be more consistent with the physical model, where negative Drude charges represent

electronic degrees of freddom, a new model called SWM4-NDP (Lamoureux et al. [2006], Ne-

gative Drude Polarization) was introduced. This is the “default” Drude water in the current

version of the force field. When compared to the non-polarizable and widely used TIP3P wa-

ter, SWM4-NDP better reproduces several thermodynamic properties, especially in situations

where a reponse to different environments is needed. In particular, the molecular dipole mo-

ment increases from the gas phase to a hydrogen-bonding environment. Another model, called

SWM6-NDP (Yu et al. [2013]) adds two lone pairs out of the molecular plane. It reproduces

water proporties even better than SWM4, but its simulation is more expensive. An important

feature of polarizable water is not just related to average properties, but also to dynamics. Po-

larizable models reproduce water self-diffusion and viscosity better than fixed-charge models

and this should give more realistic timescales in molecular dynamics simulations. However,

more interaction sites need more parametrization, especially in charged enviroments. One
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example is the case of divalent ions, in particular the interaction between SWM4-NDP and

Mg2+ (Lemkul & MacKerell [2016a]).

3.4 Simulating the Drude force field

To carry out consistent polarizable MD simulations, electronic degrees of freedom {d̄} need

to correctly relax depending on the nuclei positions {r̄} in order to reproduce the response to

variations of conformation-dependent electric fields. In the original Drude model electrons were

represented by oscillating massless particles. For each oscillator there is a unique displacement

d̄⋆
i such that the energy is minimized:

∂U

∂d̄i

=
∂Uself ({d̄})

∂d̄i

+
∂Uint({d̄,r̄})

∂d̄i

= 0 (3.25)

This is referred to as the Self Consistent Field condition, or SCF condition. The SCF condi-

tion can be achieved by minimizing the Drude positions at each MD step. This is the most

straightforward solution to produce conistent trajectories, and is compatible with massless

Drude particles. However, the procedure needs accurate implementation, is computationally

expensive and can be affected by numerical errors.

The energy minimization can be avoided by following an alternative procedure. In the

current Drude force field, Drude particles are not massless, so their motion can be integrated

as the rest of the system. One “physical” temperature T is used to thermalize the real atoms

while Drude oscillators are kept at a low temperature TD ≪ T using a dual Nosé-Hoover

thermostat. They evolve almost adiabatically in response to nuclear conformational changes

which modify the local field. The SCF condition is approximated, following Lamoureux and

Roux, using the expansion

U({r̄,d̄}) = USCF ({r̄}) +
∑

i

δd̄i
∂U

∂d̄i

(d⋆
i ) +

1
2

∑

ij

δd̄i
∂U

∂d̄i

(d⋆
i )

∂U

∂d̄j

(d⋆
j)δd̄j + ... (3.26)

where d⋆
i are the relaxed displacements for which the SCF condition is satisfied, and δd̄i =

d̄i − d⋆
i .
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3.5 MD implementation

Drude systems are preparated using CHARMM, which implements the routines necessary to

transform a system described with an additive force field to a Drude system. Drude topology

files have additional keywords: we give, as an example, the SWM4-NDP water topology

RESI SWM4           0.000    ! generate using noangle nodihedral

GROUP

ATOM  OH2  ODW      0.00000  TYPE DOH2  ALPHA -0.97825258 THOLE 1.3

ATOM  OM   LPDW    -1.11466

ATOM  H1   HDW      0.55733

ATOM  H2   HDW      0.55733

BOND  OH2  H1

BOND  OH2  H2

BOND  OH2  OM

BOND  H1   H2 ! for SHAKE

ANGLE H1 OH2 H2

LONEPAIR bisector OM OH2 H1 H2 distance 0.24034492 angle 0.0 dihe 0.0

As in the additive force fields, the residue is declared using the RESI keyword followed

by its name and its charge. The optional keyword GROUP is used to indicate that the follo-

wing atoms have a total charge equal to zero. Then the residue’s atoms are listed, each one

using the ATOM keyword followed by its name, its atom type and its charge. Polarizable

atoms (in this case the oxygen OH2) have additional keywords, used to indicate the value of

their polarizability ALPHA and their THOLE screening parameter. If THOLE is missing, a

default value of 1.3 is used. Drude particles attached to polarizable atoms are not explicitly

included in topology files, as they are automatically created by CHARMM. Their name is

assigned using the letter D followed by the name of its reference atom. For example, OH2

carries a Drude particle of atom name “DOH2”. CHARMM automatically assigns the default

atom type “DRUD” to all oscillators, except in special cases where a different type is indi-

cated using the optional keyword “TYPE”. In SWM4, the oxygen Drude particle has such a

special atom type, called “DOH2”. This particular choice allow to specify special nonbonded

interaction parameters (using NBFIX), explained later in the text. Virtual interaction sites of

default atom type LP are indicated in the residue topology. Three atoms are used to define

the particle position through the LONEPAIR line. In the example, coordinates of the OM

lone pair particle are computed from positions of the OH2-H1-H2 atoms. Like the DOH2 os-

cillator, OM has its own (non-default) atom type called “LPDW”. As in the additive water

model TIP3P, SWM4 has an H1-H2 bond used to fix bond lengths and angles during dynamics.

Another Drude keyword called ANISOTROPY is used to specify magnitudes of diagonal

elements αxx, αyy, αzz in the polarizability matrix. Since anisotropy depends on the molecule

internal geometry, (x,y,z) are defined in a reference frame constructed using positions of three
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other atoms in the residue. In the following example, the polarizability of the first oxygen

depends on the positions of atoms C, CL and N.

ANISOTROPY O C CL N A11 0.697 A22 1.219

Using the equation A11+A22+A33=3, matrix elements αxx, αyy and αzz are set scaling AL-

PHA according to the ratios between A11, A12 and A13.

After reading the Drude topology and parameter files with CHARMM, then the system is

built using the CHARMM generate command

generate @segname first @nterpatch last @cterpatch setup warn drude dmass 0.4

The sintax is similar to the one used to construct systems with additive force fields, the only

difference is a drude keyword that creates vectors to manage Drude particles and LPs. The

dmass mD = 0.4 a.m.u. is subtracted from polarizable atomic centers and assigned to their

Drude particle. Charges are split between atomic centers qA and oscillators qD, using the ratio

between polarizability and force constant, according to equation 3.19.

Once the coordinates for atomic centers are read in, Drude and Lone particle positions

are assigned using the CHARMM commands coor sdrude and coor shake. Displacements of all

oscillators are initially set to zero, requiring minimization before dynamics. This minimization

is usually performed first on Drude particles with restrained atomic centers, then relaxing the

whole system without restraints. Parameter files are very similar to the ones of the additive

force field C36. Internal parameters are speficied in the BOND, ANGLE, DIHEDRAL sections

and LJ parameters are specified after the NONBONDED keyword. As in C36, NBFIX is used

to modify LJ interactions between two particular atom types i and j, using a special value of

rmin and emin. A new keyword called NBTHOLE (in the spirit of NBFIX) is used to specify τij

for atom types i and j. It is usually introduced to balance particular interactions of charged

groups, for example between nucleic acids and divalent ions.

The Drude force field is currently implemented in CHARMM, NAMD, OpenMM and

GROMACS, even if it is only partially supported by the latter. NVT and NPT simulations

can be run with CHARMM and NAMD exploiting the dual thermostat, while GROMACS

completely supports just the NVT ensemble. Its implementation for the NPT ensemble is less

efficient because it uses the older “SCF minimization” method to relax electronic degrees of

freedom. Moreover, GROMACS does not support NBTHOLE parameters. In NAMD, pres-

sure is controled using Langevin dynamics to control fluctuations in the barostat (Martyna

et al. [1994] ; Feller et al. [1995]). Details about extended lagrangian implementation can be
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found in Jiang et al. [2010]. It is clear that to simulate a system using Drude, extra computing

time is demanded. In terms of CPU time, the Drude force field is almost four times more

expensive than a non-polarizable force field like Charmm C36. A factor of two is introduced

by the many auxiliary particles. SWM4 has four interaction sites, all heavy atoms have an

additional Drude particle and several atoms carry lone pairs. In addition, harmonic forces

(with the relative self-polarization energies) need to be calculated at each timestep for all elec-

tronic degrees of freedom. Another factor of two comes from the dual thermostat: equations

of motions need to be integrated with a small timestep, which should never be greater than 1 fs.

As an example, in table 3.1 we compare MD performances of one additive force field (C36)

and the Drude force field. We considered a protein:peptide complex, the Tiam1 PDZ domain

(89 amino acids) with its natural peptide binder Syndecan1 (8 amino acids). The system was

solvated in an octahedral box containing 10139 water molecules. We used TIP3P water for C36

simulations, SWM4-NDP water for Drude simulations. As expected, the number of atoms of

each system was proportional to the number of water molecules. TIP3P is composed of three

atoms, where SWM4-NDP has four interaction sites plus a Drude particle on the oxygen atom.

As a consequence, the C36 system was composed of roughly 30k atoms and the Drude system

was composed of roughly 50k atoms (including Drude and lone particles). MD was done using

NAMD 2.12. Long-range electrostatic interactions were computed with PME, LJ interactions

were shifted to zero for separations between 10 and 12 Å. We used a timestep of 2 fs for C36

and of 1 fs for Drude. Simulations were run on the Occigen supercomputer of the CINES center

of the French computer agency GENCI. For both simulations we used 224 cores, distribuited

over 8 nodes equipped with 28 processors. As expected, C36 was four time faster than Drude.

Description C36 Drude
Number of atoms 31 994 53 393
Timestep 2 fs 1 fs
Number of cores 224 (8x28) 224 (8x28)
Performance 75 ns/day 18 ns/day

Table 3.1 – Drude-C36 comparision for MD run using NAMD 2.12. System details are

given in the text.

Using the extended langrangian which exploit the dual-thermostat protocol described

above, polarizable simulations at timescales up to microseconds can be run using massive

parallel architectures. However, some considerations about the stability of dynamics are ne-

cessary. Since the SCF condition is satisfied approximately, there are situations where atoms

are in very polar environments and the Drude particle may oscillate too far from the corres-

ponding nucleus.
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Figure 3.3 – Atom-Drude distance during MD simulation is shown in the two plots. Left:

simulation where the Drude oscillator follows a normal regime, where the distance between

qA and qD is always lower than 0.2 Å. Right: simulation where the Drude oscillator tends to

cross the threshold value of 0.2 Å. A DrudeHardWall option is applied at frames shown in red.

In a stable system, Drude particles usually oscillate around their reference nucleus at

average distance of 0.1 Å [fig. 3.3, left]. However, large forces, arising from strong electrostatic

interactions, sometimes lead to the so-called polarization catastrophe. In the worst case, the

system will be so unstable that the dynamics will be broken and the MD engine will stop the

simulation. The polarization catastrophe can be avoided using a smaller timestep to integrate

equation of motions, decreasing it to 0.75 fs or less. However, because this represents a further

increase of CPU time, an alternative solution called DrudeHardWall has been introduced.

When a Drude particle exceeds a threshold distance respect to its center, by default equal to

0.2 Å, an hard-wall potential is applied [fig. 3.3, right] and the Drude particle is reprojected

along its bond direction. The negative displacement is generated using the projection of its

velocity along the bond line, flipped and rescaled according to the oscillator temperature

TD. This should be sufficient to correct the trajectory and restore the correct regime. Since

DrudeHardwall can be considered as a workaround, it should not be applied for large portions

of trajectories, as in the example shown in figure 3.3. Because of its implementation, it leads

to unrealistic frames and wrong energetics. The force field has been extensively tested and this

problem should not occour too often. However, this is not always true for unofficial, in-house

parametrized molecules. To avoid this situation, one may increase screening of electrostatic

interactions by adjustment of Thole factors τi of particular atoms.
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4 Standard and relative binding free energies

Considering a receptor R and a ligand L at equilibrium, their binding is governed by the

equation

RL ⇆ R + L (3.27)

The binding constant (dimensions of a volume) is

Keq =
ρRL

ρRρL

= [V ] (3.28)

It depends on the concentrations of the complex RL and of the two unbound species R and

L. We note that the use of equation 3.28 needs a definition of bound and unbound states.

We want to connect the binding constant (which can be obtained from experiments) to

the corresponding binding free energy, more precisely to the free energy that can be obtained

from a computer simulation. We use X to indicate the different species in the solution: the

ligand L, the receptor R or the complex RL. From the Gibbs free energy change

dG = V dP − SdT +
∑

X

µXdNX (3.29)

at the conditions of constant temperature and pressure (dT = 0 and dP = 0) we obtain the

change in free energy upon binding of one molecule of R and one molecule of L, to form one

molecule of the complex RL

∆G = µRL − µR − µL (3.30)

µX is the chemical potential of species X,

µX =

(

∂G

∂NX

)

NY �=X ,P,T

= −kT

(

∂lnQ

∂NX

)

NY �=X ,P,T

(3.31)

For a non-ionic, dilute solution it has a logarithmic dependence on concentration

µX(P,T ) = µ0
X(P,T ) + kT ln

[

ρX

ρ0
X

]

(3.32)
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4. Standard and relative binding free energies

µ0
X(P,T ) depends on P and T and is the standard chemical potential. It is defined by an

arbitrary standard state concentration ρ0
X = ρ0 for all chemical species X, so that

∆G = µ0
RL − µ0

R − µ0
L + kT

(

ρRL

ρ0

)

− kT

(

ρR

ρ0

)

− kT

(

ρL

ρ0

)

= ∆G0 + kT ln

[

ρ0ρRL

ρRρL

]

(3.33)

We note that the right term in the formula depends on Keq. The formula holds for a hypothe-

tical equilibrium state where concentrations are constrained to be constant; we call it reaction

free energy. Without constraints, the system goes to a state where ∆G = 0 and so

∆G0 = −kT ln

(

ρ0ρRL
eq

ρL
eqρ

R
eq

)

= −kT ln
[

ρ0Keq(p,T )
]

(3.34)

The standard chemical potential of equation 3.32 can be computed from the ratio of two

partition functions. Indeed, we can write

µ0
X = −kT ln

ZN,X(VN,X)
ZN,0(VN,0)VN,Xρ0

+ P 0V̄X (3.35)

where ZN,X is the canonical partition function of a system containing one molecule of solute

X solvated in N solvent molecules at volume VN,X . ZN,0 is the partition function of the same

system without X at volume VN,0. The two volumes are the equilibrium volumes of the two

systems (with or without solute) when they are mantained at pressure P 0. V̄ = VN,X − VN,0

is the change in equilibrium volume when a molecule of solute X is added to the system with

N solvent molecules, or partial molar volume.

In equation 3.34, the free energy has a logarithmic dependence on the binding constant

Keq. We also note that, in the equation 3.28, Keq has dimensions of a volume and the logarithm

argument in equation 3.34 is dimensionless. This trivial argument based on dimensional analy-

sis (General [2010]) is foundamental to note that computer simulations and experiments may

divide keq by two different concentration factors. The choice of standard state concentration

is arbitrary, it is usually set to be 1M. It is important, when comparing Keq obtained from

an experiment and the one obtained from a simulation, that both equilibrium constants (and

so free energies) refer to the same standard state. The relationship between the free energy

difference ∆G0 and the one measured in a simulation at ρ = ρcomp (which is usually run at a

different concentration) is

∆G0 = ∆Gcomp + kT ln

[

ρcomp

ρ0

]

(3.36)
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For ρ0 = 1M , a cubic simulation box with one solute molecule has a volume V ≃ 1661 Å3,

for L ≃ 11.84 Å. This is smaller than box size usually used to solvate proteins, and lead to

correction terms that are significative: 1.9 kcal/mol for a box of L = 30 Å, to 3.9 kcal/mol for

a box of L = 90 Å.

The above formulation is exact with classical mechanics and dilute solutions. Another

requirement of [eqn. 3.34] is that the binding involves nonionic solutes, otherwise another

correction must be applied. Indeed, the chemical potential of ions can be expressed analytically

in the limit of infinite dilution (Hill, [1992])

µX = µ0
X(p,T ) + kT ln

[

ρX

ρ0
X

]

+ kT ln [γX(ρX ,p,T )] (3.37)

At infinite dilution and small ionic strength κ the activity coefficient γ can be approximated:

kT ln [γX(ρX ,p,T )] ≃ κ
q2

X

2ǫw

κ2 =
4π

kT ǫw

(

q2
RρL + q2

LρL

)

(3.38)

Even if we know an analytical expression for standard binding free energies [eqn. 3.34]

which has a single standard-state dependence, more often we are interested in computing the

relative binding affinity between a receptor R and two different ligands L and L
′

.

∆∆G0(L → L
′

) = ∆G0(RL
′

) − ∆G0(RL) = −kT

{

ln

[

QRL
′

QRL

]

− ln

[

QL
′

QL

]}

(3.39)

We note that the standard state dependence cancels out and the calculation corresponds to

measuring ratios of configuration integrals in bound and unbound states.

5 Free energy perturbation

From the last equations we note that free energy differences are obtained from the ratio of

configuration integrals. In general, one is interested in the free energy change between two

states A and B

∆G(A → B) = −kT ln
QB

QA

(3.40)

For a system of hamiltonian

H = T + U (3.41)
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5. Free energy perturbation

the canonical partition function is defined as

Z(N,V,T ) =
∫

exp

[

−
H(x,p)

kT

]

dxNdpN (3.42)

It is proportional to the configuration integral

Q(N,V,T ) =
∫

exp

[

−
U(x)
kT

]

dxN (3.43)

In biological applications we are more often interested in the isothermal-isobaric ensemble

where the configuration integral is

Q(N,P,T ) =
∫

exp

[

−
U(x) + PV

kT

]

dxNdV (3.44)

The exact calculation of two partition functions QB and QA from computer simulations is

normally too expensive. However, one can consider states A and B which are close, connected

by a small perturbation in the potential function

U
′

= U + ǫ (3.45)

The corresponding free energy difference

F
′

− F = −kT ln

[

Z
′

Z

]

= −kT ln

∫

exp
[

−U(x)
kT

]

exp
[

− ǫ(x)
kT

]

dxN

∫

exp
[

−U(x)
kT

]

dxN
(3.46)

can be obtained from

F
′

− F = −kT ln

〈

exp

[

−
ǫ(x)
kT

]〉

U

(3.47)

For a perturbation ǫ the free energy difference F
′

−F can be measured as an average over an en-

semble of configurations, collected from a canonical simulation carried out with potential U(x).

The formula [eqn. 3.47] holds for small perturbations, where ensembles generated with

unperturbed and perturbed potentials overlap. In general, for perturbations larger than one

kcal/mol the formula cannot be used directly. To solve this problem, a good strategy is to

split the path between U and U + ǫ into several smaller steps ǫ =
∑

i ǫi (called windows) and
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then obtain the total free energy change as a sum of smaller differences. A generalization of

this step-wise procedure consists in the definition of the energy function

V (λ) = (1 − λ)VA + λVB (3.48)

where A and B are two distinct thermodynamic states of the same conformational space. The

parameter λ can vary continuously between 0 and 1, connecting the two states. This situation

is easily implemented in MD: when λ = 0 the interactions of B are turned off, while for

λ = 1 the interactions of A are turned off. For intermediate values, the system is in a hybrid

thermodynamic state between A and B. This kind of transformation with unphysical states

is called alchemical, as it cannot be reproduced in the real world. Using the energy function

[eqn. 3.48] one can split the path between any two states A and B into many, small windows

characterized by a different value of λ and then obtain the free energy difference as sum of

perturbations

∆F (A → B) = FB − FA =
∑

i

∆F (λi → λi+1) (3.49)

5.1 Thermodynamic integration

The derivative of F respect to λ can be computed:

∂F (λ)
∂λ

=

∫ ∂U(x,λ)
∂λ

exp
[

−U(x,λ)
kT

]

dxN

∫

exp
[

−U(x,λ)
kT

]

dxN
=

〈

∂U(x,λ)
∂λ

〉

U(x,λ)

(3.50)

The conformations used to calculate the average value of ∂U/∂λ are collected from a simulation

performed at fixed λ. Calculating the derivative for several values of the coupling parameter

between 0 and 1, one can integrate the results and obtain the desired free energy difference

∆F (A → B) = FB − FA =
∫ 1

0

∂F

∂λ
dλ =

N−1
∑

i=0

∫ λi+1

λi

∂F

∂λ
dλ (3.51)

In general, several numerical integration schemes can be used to estimate the integral. For a

simple, trapezoid approach

∆F (λi → λi+1) =
1
2

(λi+1 − λi)

[

∂F

∂λ
(λi+1) +

∂F

∂λ
(λi)

]

(3.52)
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Figure 3.4 – Interpolation of derivatives in thermodynamic integration. Calculated deri-

vatives are represented with circles, the interpolated curve using a dashed line.

This estimation can be inaccurate. A better interpolation scheme is the cubic spline, where

the function ∂G/∂λ is interpolated using a polynomial [fig. 3.4], then integrated.

5.2 Bennet acceptance ratio

The BAR method was introduced in 1976 (Bennett [1976]). It estimates the ratio of confi-

guration integrals QA/QB between two states defined by potential UA and UB, following a

rule inspired by Monte Carlo simulations. A detailed formulation can be found in the original

paper, here we summarize the main concepts. The idea is to consider a hypothetical MC si-

mulation where the trial move does not change the system configuration but it switches the

potential function from UA to UB. For this move, equilibrium requires that

M(UB − UA) exp(−UA) = M(UA − UB) exp(−UB) (3.53)

where M is the Metropolis acceptance probability M(x) = min(1,exp(−x)) that gives Boltz-

mann probability. Integrating both sides of the equation and multiplying each term by 1

QA

QA

∫

Ω

M(UB − UA) exp(−UA)dq =
QB

QB

∫

Ω

M(UA − UB) exp(−UB)dq (3.54)

one obtains the ratio
QA

QB

=
< M(UA − UB) >UB

< M(UB − UA) >UA

(3.55)
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As in the simple free energy perturbation method, the ratio between configuration integrals

is computed using ensemble-averages. The formula can be generalized for a function f that

satisfies f(x) = f(−x) ; the free energy difference between states A and B is then estimated

using

∆FAB = kT ln
< f(UA − UB + C) >UB

< f(UB − UA + C) >UA

+ C (3.56)

where f(x) = 1/(1 + exp(x/kT )) is the Fermi function. C is equal to

C = ln
QANB

QBNA

(3.57)

where NA and NB are the number of configurations for the two states identified with UA and

UB. The constant C is determined with an iterative procedure, until the convergence criterion

f(UA − UB + C) = f(UB − UA) + C is satisfied. It is easy to show that if NA = NB, after

convergence one has

∆FAB = C (3.58)

5.3 BAR and TI with Drude

To obtain the free energy difference between two simulation windows with BAR, one has

to compute ensemble-averages. System configurations are extracted from the trajectories of

separate MD simulations, that were performed using two different potentials U(λ) and U(λ +

δλ). Then two ensemble-averages are computed using equation 3.56

〈f(U(λ + δλ) − U(λ) + C)〉U(λ) 〈f(U(λ) − U(λ + δλ) + C)〉U(λ+δλ) (3.59)

In practice, for each MD snapshot extracted from the trajectory obtained using U(λ), one

has to compute the potential energy with U(λ) and also with U(λ + δλ). However, the Drude

particle displacements of these snapshots {d⋆
i (λ)} satisfy the SCF condition ∂U/∂d=0 for the

potential U(λ) but not for the potential U(λ + δλ). For this reason, the application of BAR

with Drude is not formally correct. Before to compute U(λ + δλ) for a shapshot of the U(λ)

trajectory, one should minimize the Drude particles using U(λ + δλ). However, this solution

is not practicable since it is too expensive.

The problem does not persist if free energy differences are obtained with TI, where one

has to compute derivatives:
∂F (λ)

∂λ
=

〈

∂U(λ)
∂λ

〉

U(λ)

(3.60)
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5. Free energy perturbation

In practice, the derivative ∂U/∂λ can be obtained by a finite-difference method, by taking the

difference between energies computed at two slightly different λ values:

∂U

∂λ
=

U(λ + δλ) − U(λ)
δλ

(3.61)

Thus, with TI, we compute energies at, or very close to the λ value used to produce the

trajectory. In this case, the relaxed displacements are supposed to be similar d⋆
i (λ+δλ) ≃ d⋆

i (λ)

and the SCF condition is still well approximated. Indeed, evaluating the Taylor expansion of

equation 3.26 for small δdi the first derivative is equal to zero, leaving a quadratic term that

is negligible when

δdi = d⋆
i (λ + δλ) − d⋆

i (λ) ≃ O(δλ2) (3.62)

Few comments can be made. First, we note that while BAR is not formally correct with

Drude, it can be applied to the AMOEBA polarizable model, where the induced dipoles are

automatically adjusted whenever the parameter λ is changed. Second, Drude simulations are

run in the “Cold oscillators regime” where the oscillators are thermalized at a low temperature

TD in order to approximate the SCF condition ∂U/∂ d̄ = 0. When combined with a barostat,

MD samples a (N,P,T,TD) ensemble. Several studies describe methods to compute free energies

for similar dual-temperature systems, where some degrees of freedom evolve adiabatically

respect to others equilibrated at room temperature (Rosso et al. [2002] ; Maragliano & Vanden-

Eijnden [2006] ; Abrams & Tuckerman [2008] ; Cuendet & Tuckerman [2014]). Even if their

application for Drude is not straightforward, the problem could be studied mode in detail in

the future.

5.4 Alchemical transformation

The calculation of binding free energies for the reaction [eqn. 3.27] has been extensively discus-

sed in literature. The article from Boresch et al. [2003] includes an overview about techniques

used to obtain absolute binding free energies, with a discussion about the standard state depen-

dence. In figure 3.5 we show the thermodynamic cycle corresponding to the Double Decoupling

method. It relies on the decomposition of the binding reaction

Rs + Ls
∆G

−−→
bind

(RL)s (3.63)
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into two transformations

Ls
∆G
−−→

1
Lg

(RL)s
∆G
−−→

2
Rs : Lg

∆G
−−→
restr

Rs + Lg

(3.64)

the subscript s is used to indicate the solvated system. In the first reaction, the ligand is

decoupled from the solvent and transferred to the gas phase (indicated using the subscript g).

The free energy cost for this transformation is called ∆G1. The second reaction is composed of

two parts. First, the ligand is transferred to the gas phase under specitic restraints introduced

in order to keep L bound to R, even when their interactions are turned off. The free energy

cost for this reaction is called ∆G2. The endpoint is called Rs:Lg to indicate that R and L are

bound just because of the introduced restraints. Then, the restraint potential is removed and

the ligand is fully transferred to the gas phase. The free energy cost for this reaction is called

∆Grestr. The the energy to apply the restraint in the bound state (RL)s is usually neglected.

Finally,

∆Gbind = ∆G2 + ∆Grestr − ∆G1 (3.65)

Figure 3.5 – Absolute binding free energy (∆Gbind) thermodynamic cycle. Top, left:

bound state in solution (RL)s. Top, right: unbound state in solution, Rs +Ls. Bottom, left:

restrained-bound state Rs : Lg with ligand in the gas phase. Bottom, right: unrestrained-

unbound state Rs + Lg with the ligand in the gas phase.

To compute the free energy necessary to remove the restraint between receptor and ligand,

one can use a simulation that starts from the endpoint of reaction (2), where the restraint

potential is gradually turned off. In practice, this is always complicated (Boresch et al. [2003]).

The most straightforward method to obtain this free energy difference is to compute it ana-
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lytically: for a cubic box, ∆Grestr = −kT ln(Qrestr/L3) where V = L3 is the volume of the

simulation box. For example, for the simple case of an ion linked to the receptor with an har-

monic spring one can estimate the configuration integral exploiting the spherical symmetry

Qrestr =
∫ +∞

0
4πr2dr exp [−βUR(r)] (3.66)

Figure 3.6 – Relative binding free energy ∆∆G(L → L
′

) thermodynamic cycle. The

transformations endpoints represent bound and unbound states with two different ligands L

and L
′

.

6 Artefacts in charging free energy calculations

When comparing simulation results with theory and experiments, several artefacts must be ta-

ken into account. In most cases, electrostatic interactions are computed on a periodic, infinite

lattice using Particle Mesh Ewald (PME). As a result, alchemical free energies differ respect

to the real quantities of interest depending on box size, charge distributions, the presence

of counterions, and the nature of the solvent (Rocklin et al. [2013]). In general, one has to

compute corrections such that the real free energy change is obtained from the alchemical free

energy difference plus a term which can be computed analitically or numerically, depending on

the situations. In few situations simulations need to be postprocessed, for example using conti-

nuum electrostatics to estimate several artificial contributions. Otherwise, a well-established

theoretical background allows to estimate some of these corrections analytically.
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6.1 PME with tinfoil boundary conditions: neutralizing gellium

We consider a simulation box and its infinite periodic images, where the total net charge of

each box Q �= 0. To avoid the (unphysical) situation where the infinite, periodic system has

a divergent potential, the simulation box must be neutral. A possible strategy consists in

introducing one (or more) counterions to balance the total net charge Q. For large boxes, the

counterions will be sufficiently isolated, without affecting the simulation interacting with the

system or perturbing each other’s solvation. However, a more straightforward and practical

solution is to introduce a uniform compensating charge density. For each charge q inserted

in the system, a neutralizing charge −q is spread uniformly over the entire box volume. This

charge density is called the gellium. Its charge density depends on the volume of the box: ρ =

−q/V = −q/L3. It generates a uniform potential that now we call φgel. Since ∇φgel(x) = 0 for

all points inside the box, the gellium does not introduce an electric field in the MD simulation

or contribute to the forces. However, the role of the gellium is to shift the electrostatic potential

φ in such a way that its average over the entire simulation box is zero:

〈φ(x)〉box = 0 (3.67)

To see this, we consider a charge q inserted in the system. It will give rise to infinite periodic

images and an associated gellium, so that at a point r inside the box, the associated charge

density is

ρ(r) = q
∞
∑

i=0

(δ(r − ri) − L−3) (3.68)

where ri is the position of the perturbing charge or one of its images. The energy change per

box is

∆U =
∫

box
drρ(r)φ(r) =

∫

box
drq
[

δ(r − ri) − L−3
]

φ(r) = q(φ(ri) − 〈φ〉box) (3.69)

The perturbing charge q thus experiences a shifted potential φ
′

= φ(ri) − 〈φ〉box. In effect, the

gellium has shifted the mean box potential φ to zero; in other words, the system is electrically

grounded.

The potential shift 〈φ〉box depends on the nature of the solute and the volume fraction of the

solvent in the box (Lin et al. [2014]). When free energy calculations are performed exploiting

thermodynamic cycles, different simulations can be run in different simulation boxes. Since

different simulation boxes can be shifted by a different potential 〈φ〉box, this effect must be

taken into account. One example is the calculation of relative binding affinities illustrated

68



6. Artefacts in charging free energy calculations

in figure 3.6, where different shifts can artificially overstabilize bound or unbound states. A

practical example to illustrate how we can correct for this effect will be given in the next

chapter.

6.2 Solvent polarization artefacts in a periodic system

Other artefacts are introduced by the the fact that electrostatic interactions are calculated

in a periodic system. We consider the simple case of a spherical ion placed at the center of

a periodic, cubic box of size L. Because of periodicity, the ion will interact with its periodic

images and the neutralizing gellium. These interactions arising from the lattice summation are

also called ion self-energy and are related to the box volume through a 1/L dependency. The

self energy must be considered when, computing alchemical charging free energies ∆G(L), one

wants to extrapolate the so called large box limit ∆G(L → ∞) where artefacts are removed.

As pointed out by Hummer et al. [1996], the self contribution to the charging free energy of a

small spherical ion of charge q is

∆Gself = q2 ξ

2L
(3.70)

where ξ = −2.837297 is the Wigner constant for a cubic lattice. The term includes interactions

between the ion, its images and the gellium. However, ∆Gself is not sufficient to remove all the

artefacts. As observed by Figueirido et al. [1997], the total charging free energy has a weaker

dependence on the simulation box volume because of the solvent screening. For high dielectric

solvents, the real deviation between ∆G(L) and ∆G(L → ∞) is smaller. It depends on the

solvent dielectric constant and is proportional to q2/(ǫW L). Another finite-size artefact can be

removed considering another correction term which scales as L−3 (Hummer et al. [1997]), valid

for spherical ions of radius R. The final correction formula that removes all these artefacts is

∆G(L → ∞) = ∆G(L) +
q2 |ξ|

2ǫW L
+

2πq2R2

3L3

ǫw − 1
ǫw

+ O(R2L−3ǫ−3
w ) (3.71)

To obtain charging free energies in kcal/mol, the Wigner constant must be multiplied by

a factor to convert e2/Å (in CHARMM this is the CCELEC constant = 332.0716). More

information can be found in Simonson & Roux [2016]. Here we report some important obser-

vations. First, the charging free energy extracted from a simulation ∆G(L) is smaller than

the one obtained in the large box limit. This is intuitive considering that the positive ion will

interact with the neutralizing gellium, which is a uniform negative charge density spread over

the simulation box volume. Second, this analytical formula is valid for spherical ions in cubic

boxes. For more complex solutes and different simulation boxes, the correction must be com-

puted using continuum theory. Numerical schemes can be found in Rocklin et al. [2013]. The

69



Chapter 3. Polarizable free energy simulations

correction is obtained by computing a charging free energy for a periodic and a non-periodic

system and then taking the difference:

∆G(L → ∞) = ∆G(L) + ∆GP E(L → ∞) − ∆GP E(L) (3.72)
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Chapter 4

PDZ-peptide binding specificity with

polarizable free energy simulations

1 Introduction

Despite the abundant experimental data, our understanding and ability to rationally engineer

PDZ/peptide interactions is limited. For the best-studied domains, experiments have revea-

led the binding thermodynamics of 20-40 protein or peptide variants, but only a few x-ray

structures are available. Even with x-ray structures, many details are unclear. Protein:peptide

binding affinity and specificity depend on many factors, difficult to quantify using experi-

ments. These are short-range interactions in the binding pocket, longer-range electrostatic

interactions, dielectric shielding by protein and solvent, ordered waters in the binding site,

the structure and flexibility of the unbound peptide, and the conformational dynamics of the

receptor.

Computer simulations are a complementary tool and several approaches have been pro-

posed to predict the binding energetics for protein/peptide complexes. Some of them are

semi-empirical and use a Linear Interaction Energy or “PB/LIE” free energy function ba-

sed on molecular mechanics plus an implicit solvent. This function has several contributions

(usually van der Waals, continuum electrostatics and a solvent accessible area term) weighted

by different factors, which are optimized to reproduce binding affinities for a training dataset.

Of particular interest are more expensive, nonempirical methods that predict binding free

energy differences from molecular dynamics (MD) simulations without any adjustable para-

meters. These methods are formally exact and are not optimized for a particular test system.

Nonempirical methods are based on thermodynamic perturbation theory, and extract free
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energies from series of simulations where a mutating side chain of interest is alchemically

mutated from one type to another. This class of methods is often referred to as free energy

perturbation or FEP (Zwanzig [1954] ; Straatsma & McCammon [1992] ; Kollman [1993]).

There are mainly two sources of errors that can influence the prediction of binding free

energies with the FEP. The first is related to sampling. FEP is expensive and usually needs

long simulations which may last several hours or days, even when performed on a supercom-

puter. Sampling requirements may be especially high for ionic mutations, since they involve

long range interactions and long timescales that characterize dielectric relaxation in proteins

(Simonson [2003]). A second source of errors is the molecular mechanics force field used to run

MD simulations and to extract the free energy differences. As anticipated in the last chapter, a

strong limitation is the simple treatment of electronic polarization modeled implicitly through

a fixed set of atomic partial charge, as in most of the widely-used, “additive” force fields. The

use of a polarizable force field could be especially important when comparing ligands that dif-

fer by one or more ionic side chain mutations. However, when using more sophisticated models

the computational time needed to accomplish sufficient conformational sampling is increased.

Experimental data is known for 50 Tiam1:peptide complexes, 25 of them are peptide va-

riants (Shepherd et al. [2010, 2011] ; Liu et al. [2013]). Binding free energies are within a

2.2 kcal/mol range, with mean experimental uncertainty of 0.2 kcal/mol. Some peptides have

high or non measurable dissociation constant. Previous FEP calculations were run using Am-

ber ff99SB and produced good results in the prediction of relative binding affinities for six

nonionic mutations. Results are listed in our recently published paper (Panel et al. [2018]).

Errors were low, with mean unsigned error (MUE) of 0.32 kcal/mol, root mean square devia-

tion (RMSD) of 0.37 kcal/mol and correlation coefficient of 0.84. For other six ionic mutations,

mean errors with the additive force field were larger, and there was one very large error of 3

kcal/mol [tab. 4.1]. Among these six mutants, four of them displayed errors of more than 1

kcal/mol: three are mutations of the peptide position P4 E4K, E4L, K4L and one mutation

was in the protein K912E. We use italics to indicate mutations, for example E4K will refer to

the alchemical Sdc1→ Sdc1-E4K mutation.

In the present chapter, we report alchemical free energy simulations of the Tiam1 PDZ

domain using two additive force fields (Amber ff99SB and Charmm C36) and the Drude po-

larizable force field. Our main goal was to determine the accuracy of free energy perturbation

(FEP) in characterizing the binding energetics of PDZ/peptide complexes. We were also inter-

ested in determining if the explicit threatment of electronic polarization can improve results

for ionic mutations, for which additive force fields are known to be imprecise. In this work, we

studied four ionic mutations using the Charmm additive force field C36 and the Drude pola-
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rizable force field, in order to investigate if the explicit threatment of electronic polarizability

can improve predictions. All calculations (with polarizable or additive force field) relied on the

Dual Topology Approach. To our knowledge, FEP has never been used to study protein:ligand

binding free energy changes with the Drude polarizable force field.

Simulations were done using periodic boundary conditions and particle mesh Ewald (PME)

summation for long-range electrostatic interactions (Darden [2001]). Special care was taken to

extrapolate the computed free energies correctly to the thermodynamic limit of an infinitely

large simulation box. Applying the Drude polarizable force field to the four ionic mutations

with the largest errors, two of the errors were significantly reduced and the largest one decrea-

sed from 3.0 to 1.3 kcal/mol. Thus, the polarizable force field led to a good accuracy for the

ionic mutations, although not as good as that previously obtained for the nonionic mutations

with ff99SB. Overall, we have established that FEP can be used successfully to understand

and potentially engineer PDZ/peptide binding specificity, and that a polarizable force field is

necessary to obtain good accuracy for some of the ionic mutations. The FEP methodology

can thus be used in a predictive way, in synergy with experiment and other computational

approaches, to design PDZ/peptide specificity.

2 Methods

2.1 Structural models and simulation setup

Complexes involving mutants of the Tiam1 PDZ domain or the Sdc1 peptide were built from

the wild-type/Sdc1 x-ray structure (pdb access code 4GVD) using the SCWRL4 program

(Krivov et al. [2009]). For each complex, the mutated side chain and nearby side chains were

positioned by SCWRL4, with the rest of the structure held fixed. There were six missing re-

sidues in the wild-type/Sdc1 x-ray structure, in the exposed β1-β2 and β2-β3 loops, which

were rebuilt using the program MODELLER (Fiser et al. [2000]). The unbound peptides were

all modeled by extracting the bound conformation from the corresponding complex.

Simulation setup was carried out using the CHARMM program. The system was first built

using the C36 force field. Each complex or unbound peptide was immersed in a cubic box of

size L =80 Å of pre-equilibrated TIP3P water, deleting solvent molecules within the volume

occupied by the solute, using a distance threshold of 3.0 Å from the complex heavy atoms. Then

the box was trimmed, from cubic to truncated octahedron, deleting solvent molecules at the

cube edges. The wild type/Sdc1 system was neutralized using sodium ions. Solvated systems

were equilibrated using CHARMM and the additive force field C36, in a step-wise procedure.
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500 ps of dynamics were run increasing timestep and system temperature, decreasing initial

restraints applied to the solute heavy atoms. Then 40 ns of MD were run. After this first,

“additive” equilibration, Drude particles and Lone pairs were added using a CHARMM script

based on the drude-prepper tool of the CHARMM-GUI (Jo et al. [2008, 2016]). The script

reads coordinates of the additive system, generates the Drude structure file (PSF) and centers

each Drude particle at the position of its reference atom. At this point, it was necessary to

relax Drude particles, since the generated Drude positions were unphysical. A first energy

minimization was run (200 steps) to relax the system with restrained centers and unrestrained

Drude particles. A second minimization (100 steps) was run relaxing the whole system without

restraints. Starting from the minimized conformation, 20 ns of NPT equilibration followed

by 100 ns of production dynamics were run. Minimization and MD were run using NAMD

2.12. Molecular dynamics simulations with the C36 and Drude force fields were done at room

temperature and pressure, using Langevin dynamics with a Langevin Piston Nosé-Hoover

barostat (Feller et al. [1995]). Long-range electrostatic interactions were treated with a PME

approach with tin-foil boundary conditions (Darden [2001]). With Drude, the MD timestep

was 1 fs, instead of 2 fs used for the simulations with C36. The Drude particles had the default

mass of 0.4 atomic units, and their temperature was controlled with a Langevin thermostat

with TD = 1 K.

2.2 Alchemical MD simulations

The FEP approach (Simonson et al. [2002] ; Tuckerman [2007] ; Jorgensen & Thomas [2008])

was used to calculate the binding free energy differences between variants A and B using

equation 3.39. Two separate alchemical simulations were performed. In the first simulation,

the mutating side chain was alchemically transformed in the bound state, represented by the

protein:peptide complex in water solution. In the second simulation, the transformation was

performed in the unbound state, represented by the unbound peptide (or unbound protein) in

solution. From these two simulations, we extracted free energy differences ∆Gbound(A → B)

and ∆Gunbound(A → B). The relative binding free energy for a generic mutation A → B was

then obtained by difference

∆∆Gbind(A → B) = ∆Gbound(A → B) − ∆Gunbound(A → B)

Let us assume we are comparing the wild type Sdc1 peptide to one of its point mutants.

For this pair, we consider a hybrid peptide, which has two side chains at the mutated position,

one of each type. The energy function U depends on a coupling coordinate λ that scales

selected electrostatic and van der Waals energy terms. When λ = 0 (respectively, 1), the
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mutant (respectively, wild type) side chain is decoupled from its surroundings, retaining only

its covalent interactions with its own backbone. For intermediate λ values, both side chains

are present, with intermediate weights. U has the form

U(λ) = ULJ(λ) + Uelec(λ) (4.1)

Considering two atoms i and j at distance rij, their Lennard Jones interactions are modified

using a coupling parameters λLJ

ULJ(rij; λLJ) = λLJǫij
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The electrostatic potential was modified using another coupling paramer λelec. For simulations

with C36:

Uelec(λ) = λelec
qiqj

rij

(4.3)

while for the Drude polarizable force field were scaled charge-charge, charge-dipole and dipole-

dipole interactions:

Uelec(λ) = λelec

[

qA,i · qA,j

|r̄A,i − r̄A,j|
+

qD,i · qD,j

|r̄D,i − r̄D,j|
+

qD,i · qA,j

|r̄D,i − r̄A,j|
+

qA,i · qD,j

|r̄A,i − r̄D,j|

]

(4.4)

The van der Waals interactions are thus modified using a soft-core functional form, ensuring a

gradual transformation. The shifting parameter δ was set to its default value in NAMD δ = 5.

Proceeding in this way, clashes at endpoints are avoided when λ is close to 0 or 1 (Beutler

et al. [1994] ; Zacharias et al. [1994]).

Calculations were done using the alch facility of NAMD. When performing simulations

with the Drude force field, particular attention is also needed to balance appearing and disap-

pearing electrostatic interactions. This is related to the stability of MD simulations, since one

has to avoid the polarization catasfrophe occurring when a Drude oscillator deviates too much

from its reference atom. In NAMD, simulations often become unstable when one atom-Drude

distance exceeds the default threshold of 0.2 Å. We observed that when the LJ repulsion bet-

ween a group of atoms is annihilated too early compared to electrostatics, positive charges

belonging to nearby groups can get too close to the negative Drude charges, attracting them

away. As a consequence, these oscillators exceed the threshold distance and NAMD prints

an error message interrupting the MD simulation. This situation shows up often when water
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molecules interact with hydrogen bond acceptors [fig. 4.2].

We set the NAMD parameter alchElecLambdaStart=0.4 or 0.5, depending whether the

simulations were run using the additive or the Drude force field. This means the van der

Waals terms of the new side chain are introduced starting at λ = 0, but the electrostatic

terms are introduced starting at λ = 0.4 or λ = 0.5. With a value of 0.4, electrostatic terms

of the disappearing side chain are completely decoupled at λ = 0.6, while its van der Waals

terms disappear at λ = 1. In figure 4.1, we show the protocol adopted for Drude simulations.
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Figure 4.1 – Alchemical transformation of two side chains A and B with Drude. In the

figure, se use the red dashed line to indicate electrostatic interactions which are decou-

pled/coupled at λelec=0.5. Scaling of LJ interactions is represented with blue dashed lines:

side chain A is canceled between λLJ = 0 → 1, while side chain B is inserted in the same

interval.
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Figure 4.2 – Water-acceptor interaction with partially-annihilated LJ interactions. Water

hydrogens approach the hydrogen bond acceptors, increasing displacements of their Drude

particle.

2.3 Drude dual topology

The structure files (PSF) for alchemical MD were built using special topology files called dual

topologies applied on the mutating residue. To simulate a mutation between two different side

chains A and B, A and B were both attached to the same Cα atom. Bonded and nonbonded

interactions between the two side chains were excluded. In figure 4.3 we give an example of

dual residue called HEK, composed of glutamate and lysine side chains attached to the same

backbone. In the first part of the file, we list atoms of the HEK backbone, shared by the two

side chains. Backbone atoms form a neutral, zero-charge group. In the second part of the file

we list the side chains, attached to the same Cα through two bonds CBE-CA and CBK-CA.

At each ATOM line we indicate the atom name, type, charge, polarizability and Thole factor,

as usual in the Drude force field. Then a list of atom names belonging to the other side chain

is given. These define nonbonded interactions between GLU and LYS that will be excluded.

These exclusions are applied for all values of λ. In the given example, we used “[...]” to ab-

breviate the lines present in the real topology file, where all the atoms of the other side chain

are listed.

In HEK, the Cβ atoms (CBE and CBK) are depolarized (they do not carry a Drude

particle) even if according to the foorce field they should be polarizable. This modification

was necessary to exclude spurious dipole-dipole interactions between these two atoms. The
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RESI HEK  0.00

! Backbone

GROUP

ATOM N    ND2A2   -0.382  ALPHA -1.942  THOLE 0.250

ATOM HN   HDP1A    0.272

ATOM CA   CD31C    0.169  ALPHA -0.960  THOLE 1.078

ATOM HA   HDA1A   -0.017

ATOM C    CD2O1A   0.497  ALPHA -0.675  THOLE 0.295

ATOM O    OD2C1A   0.000  ALPHA -0.651  THOLE 0.310

ATOM LPOA LPDO1   -0.312

ATOM LPOB LPDO1   -0.227

! Glutamate sidechain

                                                      !excluded interactions:

ATOM CBE  CD32B   -0.066                              cbk hb1k hb2k cgk [...]

ATOM HB1E HDA2A    0.033                              cbk hb1k hb2k cgk [...]

ATOM HB2E HDA2A    0.033                              cbk hb1k hb2k cgk [...]

ATOM CGE  CD32A   -0.190  ALPHA -2.528  THOLE 1.414   cbk hb1k hb2k cgk [...]

ATOM HG1E HDA2A 0.004 cbk hb1k hb2k cgk [...]

ATOM HG2E HDA2A    0.004                              cbk hb1k hb2k cgk [...]

ATOM CDE  CD2O2A   0.708  ALPHA -1.016  THOLE 0.899   cbk hb1k hb2k cgk [...]

ATOM OE1  OD2C2A   0.003  ALPHA -0.699  THOLE 2.399   cbk hb1k hb2k cgk [...]

ATOM OE2  OD2C2A   0.003  ALPHA -0.699  THOLE 2.399   cbk hb1k hb2k cgk [...]

ATOM LP1A LPD     -0.383                              cbk hb1k hb2k cgk [...]

ATOM LP1B LPD     -0.383                              cbk hb1k hb2k cgk [...]

ATOM LP2A LPD     -0.383                              cbk hb1k hb2k cgk [...]

ATOM LP2B LPD     -0.383                              cbk hb1k hb2k cgk [...]

! Lysine sidechain

                                                      !excluded interactions:

ATOM CBK  CD32A   -0.066                              cbe hb1e hb2e cge [...]

ATOM HB1K HDA2A    0.033                              cbe hb1e hb2e cge [...]

ATOM HB2K HDA2A    0.033                              cbe hb1e hb2e cge [...]

ATOM CGK  CD32A   -0.156  ALPHA -1.660  THOLE 1.300   cbe hb1e hb2e cge [...]

ATOM HG1K HDA2A    0.078                              cbe hb1e hb2e cge [...]

ATOM HG2K HDA2A    0.078                              cbe hb1e hb2e cge [...]

ATOM CDK  CD32A   -0.156  ALPHA -1.660  THOLE 1.300   cbe hb1e hb2e cge [...]

ATOM HD1K HDA2A    0.078                              cbe hb1e hb2e cge [...]

ATOM HD2K HDA2A    0.078                              cbe hb1e hb2e cge [...]

ATOM CE   CD32A    0.043  ALPHA -1.656  THOLE 0.895   cbe hb1e hb2e cge [...]

ATOM HE1  HDA2C    0.143                              cbe hb1e hb2e cge [...]

ATOM HE2  HDA2C    0.143                              cbe hb1e hb2e cge [...]

ATOM NZ   ND3P3A  -0.349  ALPHA -1.298  THOLE 0.895   cbe hb1e hb2e cge [...]

ATOM HZ1  HDP1B    0.340                              cbe hb1e hb2e cge [...]

ATOM HZ2  HDP1B    0.340                              cbe hb1e hb2e cge [...]

ATOM HZ3  HDP1B    0.340                              cbe hb1e hb2e cge [...]

Figure 4.3 – Glutamate/Lysine Dual Topology (residue HEK)
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free energy to depolarize them is computed separetly, as explained below. Other undesired,

spurious interactions between the two side chains must be removed when atom types of CA,

CBE and CBK form an angle for which the force field expects an harmonic term. The same

holds when bridging atoms are involved in a dihedral term of the energy function. This does

not occour too often in C36 or Drude and is more frequent in Amber, since Amber has fewer

atom types. In this case, undesired terms must be manually deleted within CHARMM before

producing the system PSF.

2.4 Spurious interactions with Drude and dual topology

In the Drude polarizable force field, non-bonded lists are constructed in such a way that Drude

particles have the same bond hierarchy of their parent atoms. We consider as an example a

triatomic molecule composed of atoms A1-A2-A3 and their Drude particles DA1, DA2 and

DA3, shown in figure 4.4, right. The Drude particle DA1 attached to the core atom A1 form a

1-3 pair with the Drude particle DA3 attached to the core atom A3, since their parent atoms

are a 1-3 couple. The same property holds for diatomic molecules, where Drude particles DA1

and DA2 form a 1-2 couple, as shown in figure 4.4, left.

A1

A2

A1

A2

A3

DA1

DA2

DA1

DA2

DA3

Figure 4.4 – Bond hierarchy in the Drude force field for a diatomic o triatomic molecule.

Atoms are represented in yellow, while their Drude particles are represented in blue. Interac-

tions are indicated with arrows.

The so defined non-bonded lists are exploited to compute non-bonded interactions as fol-

lows (Harder et al. [2006]). Interactions between core charges qA are excluded between 1-2 and

1-3 pairs. Interactions between Drude particles qD and core charges qA are excluded between

1-2 and 1-3 pairs. Interactions between all core charges qA and all Drude particles qD are

computed for 1-4 pairs and beyond. Interactions between Drude charges qD of 1-2 and 1-3

pairs are computed and screened according to their Thole parameters, using equation 3.21.

With NAMD, interactions between Drude particles are also screened for nonbonded 1-4 pairs

and beyond, if their distance is lower than a threshold value set by default to 5.0 Å. Howe-

ver, the screening between 1-4 pairs is disabled when running the FEP using the alch keyword.
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Summing up, as mentioned in the official CHARMM documentation “If two atoms do not

see each other in the non-polarizable force field, their dipoles (and only their dipoles, not

their net partial charges) will see each other in the polarizable force field”. The particular

bond hierarchy is used to compute the screened dipole-dipole interactions between 1-2 and 1-3

pairs, as proposed by Thole [1981]. However, this introduces a spurious interaction in the dual

topologies. In the HEK example, Cβ atoms CBE and CBK are in a 1-3 relationship as they

are both bonded to the backbone atom Cα. As a consequence, their Drude particles DCBE

and DCBK have a 1-3 relationship: their interaction is computed and screened according to

their Thole parameters, using equation 3.21. This is a spurious interaction, since in the FEP

the two side chains of the mutating residue should not interact. It occours because the Drude

force field is only partially supported by the alch facility of Namd, which does not correctly

modify the nonbonded-lists in order to exclude the dipole-dipole interaction between the two

Cβ atoms.

As a consequence, the current Namd implementation of alch does not allow to run FEP

simulations with Drude using dual topologies where the bridging atom is linked to two atoms

carrying Drude particles. However, the problem can be solved following an ad-hoc protocol.

Our dual topologies were built removing the Drude particle attached to both CB atoms of the

two side chains. These atoms were depolarized. In practice, we condensed the total charge of

the CB+DCB couple to the CB atom Q = qA and we have set the CB polarizability and Thole

factor to zero [fig. 4.5]. Alchemical simulations were then run using these modified topology

files, where the spurious interaction were removed.

Figure 4.5 – Model residue used for the Drude dual topology definition. Cβ atoms are depola-

rized, in the sense that its Drude particle is completely removed from the system. Polarization

and Thole factors are set to zero, and the oscillator charge is condensed in the reference atom.

Removing Cβ polarizability has a free energy cost that must be considered. We introduced

additional transformations at the beginning and the end of the mutation process, where the
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Cβ Drude charges were gradually removed (for A) or introduced (for B). These simulations

correct the alchemical free energy difference for the transformation with dual topology λ =

0 → 1, as shown in figure 4.6. We defined coupling parameters µ(A) and µ(B) that scaled the

polarizabilities on the two Cβ atoms. When µ(A)=1, the Cβ of A had its full polarizability;

when µ(A)=0, its polarizability had been removed. To change the polarizability α of an atom,

we adjusted the atom+Drude charges qA and qD using the relationship

α =
q2

D

kD

qA + qD = Q (4.5)

We varied µ(A) from 1 to 0 in four MD windows. During these windows, side chain A was fully

coupled (the coupling coordinate λ was zero), whereas side-chain B was decoupled and the

polarizability of its Cβ was turned off. We then did the alchemical A→B transformation with

both Cβ polarizabilities turned off. Finally, we turned on the Cβ polarizability of B,µ=0→1.

For the polarizability transformations, we used MD windows where µ(A) (respectively, µ(B))

was set to 0, 0.3, 0.7 and 1 (20 ns each). The value of the polarizability was controlled by

editing charges in the NAMD protein structure file. Free energies were computed with TI and

added to the λ=0→1 results.

Figure 4.6 – Thermodynamic cycle for the alchemical relative binding free energy of two side

chains A and B. The transformations ∆Gλ are carried out with the dual topology, where CB

atoms are depolarized. The other legs in the thermodynamic cycle ∆Gµ are the transformations

used to compute the additional contributions µ(0 → 1), as described in the text.

2.5 PME correction

Using PME under periodic boundary conditions, the electrostatic potential of the infinite,

periodic system is infinite unless the simulation boxes are grounded. In alchemical simulations
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of ionic mutations, the transformation of the mutating side chain along the path λ = 0 → 1 is

a charging process and the endpoints cannot both be neutral. There are two possible solutions,

previously discussed in the last chapter. The first is to introduce one or more counterions in

the simulation box, which are alchemically transformed during the FEP in such a way to

neutralize the system for each value of λ. The free energy can be easily corrected keeping

the counterion far from the solute, since it will contribute independently to the charging free

energy. A more common strategy is to introduce the gellium, that has an important effect:

it leads to an electrostatic potential, averaged over the box volume, that is zero at all times.

In other words, it grounds all simulation boxes to zero. However, the periodic system with

the gellium is not a faithful representation of the true physical endpoints. These correspond

to a more realistic situation, where the solute (the protein:peptide complex or the unbound

peptide) is solvated in a macroscopic but finite solvent volume, such the large spherical cluster

of water molecules, like shown in figure 4.7.

 alch 

(bound)

 Galch 

(unbound)

-

-

!lv
different

   shift

macroscopic

   clusters

       correct

  potential drop

Figure 4.7 – Grounded simulation boxes and the more realistic macroscopic clusters, which

are not grounded as described in the text. The two boxes used to simulate bound and unbound

states are neutrilized by a different grounding potential. For the unbound state, the potential

shift is close to Φlv.

In the macroscopic clusters, the average electrostatic potential per box 〈φ〉cluster is not zero,

it is close to the vapor/liquid boundary potential Φlv. For TIP3P water, Φlv = −520 mV (Lin

et al. [2014] ; Harder & Roux [2008]) while for SWM4-NDP its value is −545 mV (Lamoureux

et al. [2006]). The grounded PME potential of a simulation box 〈φ〉box is so shifted upwards,

by a quantity close to this boundary potential. The exact value of this shift depends on the

fraction of box occupied by the water and on the nature of the solute. Calculations (Lin et al.

[2014]) showed that for a small spherical ion solvated in a cubic box, the shift scales as L−3

where L is the size of the box. For more heterogeneous and different solutes, the shift will be
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different even if the same box size is used.

The potential shift for the protein/peptide complex and of the unbound peptide simula-

tions will be different, since these simulations are performed in different boxes, and the nature

of the solute is different. As a consequence, inserting a charge on the peptide in the simulation

box of the complex (bound state), this charge will be subjected to a shifted potential which

is different respect to the one in the simulation box of the unbound peptide. A mutation that

inserts a net charge onto the peptide in both bound and unbound states requires a free energy

correction, which is computed following the protocol described in Lin et al. [2014] ; Simonson

& Roux [2016].

For a given solute and mutation endpoint we compute, from the MD trajectory, the mean

potential in the solvent region of the box, defined to be > 12 Å away from the solute or its

periodic images. For a small solute like a peptide, it is close to zero, the overall box average

with PME. For a protein solute, the overall box average is an average over a solvent region

(far from the solute) and a protein region (the rest of the box):

Vp 〈Φ〉p + Vw 〈Φ〉w = 0 (4.6)

Here, Vw and Vp are the volumes of the solvent and protein regions and the brackets indicate

a spatial average of the potential φ over either region. Thus,

〈Φ〉w =
Vp

Vw

〈Φ〉p (4.7)

The potential in the solvent region of a protein solute is offset, instead of matching that in the

peptide simulation (zero). With both TIP3P and Drude SWM4 water, the offset is positive,

making it artificially easier to insert a positive charge into the protein than the peptide.

For a given solute, we denote the solvent potential 〈φw〉(solute). If the mutation introduces

a net charge q on the peptide, this charge will then experience a potential that is shifted by

φw(complex) in the bound state and φw(peptide) in the unbound state. Multiplying q by the

difference gives the free energy correction. In practice, we average the free energy correction

over the simulations of the initial and final peptides (before and after the mutation): peptide,

complex, peptide
′

and complex
′

, respectively. The potential shift correction is thus:

∆∆GΦ

P ME =
q

2

[(

Φw(complex) + Φw(complex
′

)
)

−
(

Φw(peptide) + Φw(peptide
′

)
)]

(4.8)
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In effect, we average over a calculation where q is inserted into the initial peptide and one

where q is removed from the final peptide. In practice, the two values are very similar. We

verified that the potential is almost uniform throughout the solvent region, and very similar

for complex and complex
′

, supporting the idea that φw(solute) accurately represents the PME

potential shift.

The potential throughout the simulation box was obtained for each frame of each endpoint

trajectory by the VMD plugin PMEpot (Humphrey et al. [1996]), which prints out the potential

values on a cubic grid spanning the box. Time and spatial averaging were done with a shell

script. MD simulations with a cubic box (of the same volume) were specifically done for each

system to allow use of the plugin (which does not support a truncated icosahedral box). With

Drude, for a +1 charge insertion an artificial contribution of ∆∆Gφ = −0.7 kcal/mol was

obtained and must be corrected for. For the same process C36 has a smaller shift of −0.39

kcal/mol, close to the one obtained earlier for ff99SB which equals −0.45 kcal/mol.

3 Results

We computed binding free energies differences ∆∆G for four mutations using the additive

force field C36 and the Drude polarizable force field. The same variants were previously studied

using the Amber ff99SB additive force field (Panel et al. [2018]). Results are shown in table 4.1,

including the ∆∆Gs of two other ionic mutations previously obtained using ff99SB. Peptide

positions are numbered backward from the C-terminus (position 0 or P0). In the table we list all

contributions to the binding free energy differences. Care was taken here to extrapolate the MD

results to the thermodynamic limit of a very large simulation box. The Drude PME correction

ΦP ME was 0.70 kcal/mol for E4L, −0.70 for K4L and 1.40 kcal/mol for E4K. For K912E/Sdc1,

the correction was zero, since the Vp/Vw ratio in bound and unbound states was essentially the

same. PME corrections for additive force fields were smaller, because the mean electrostatic

potential in TIP3P water is smaller than that in Drude SWM4-NDP water. With Drude,

there were additional transformations µA, µB at the beginning and end of the mutation that

removed/restored the Cβ polarizabilities, computed with TI. These contributions were between

-0.3 and 0.1 kcal/mol. The alchemical steps computed using BAR λ = 0 → 1 contributed

between −1.0 and 2.1 kcal/mol with Drude, while for C36 and ff99SB they were always positive

and between 0.8 and 3.2 kcal/mol. Some of the Drude contributions were analyzed also with

TI, obtaining the same result. Indeed, even if BAR is not formally correct when used with

Drude (as described before in the text), the moderate errors for the bound and unbound states

are mostly canceled when computing the binding free energy differences ∆∆G = ∆Gbound −
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∆Gunfound. We note that all three contributions to the Drude binding free energy change

λ = 0 → 1, ΦP ME and µA, µB were of roughly the same order of magnitude.

Mutation Contribution Exp. Drude ff99SB C36
E4K µA,µB 0.1 - -

λ = 0 → 1 -1.0 0.8 1.0
ΦP ME 1.4 0.9 0.8

∆∆Gbind 0.8 0.5 1.9 1.8
err. - -0.3 1.1 1.0

E4L µA,µB -0.2 - -
λ = 0 → 1 1.4(1.3) 3.1 3.2

ΦP ME 0.7 0.5 0.4
∆∆Gbind 0.6 1.9(1.8) 3.6 3.5

err. - 1.3 3.0 2.9
K4L µA,µB -0.3 - -

λ = 0 → 1 2.1(2.1) 1.4 2.2
ΦP ME -0.7 -0.5 -0.4

∆∆Gbind -0.2 1.1(1.1) 0.9 1.8
err. - 1.3 1.1 2.0

K912E µA,µB 0.7 - -
λ = 0 → 1 2.1 2.0 1.6

ΦP ME 0.0 0.0 0.0
∆∆Gbind 1.0 2.6 2.0 1.6

err. - 1.6 1.0 0.6
rmsd - 1.23 1.76 1.86
mue - 1.12 1.55 1.62

E3T,Y1K λ = 0 → 1 - 1.5 -
ΦP ME - 0.9 -

∆∆Gbind 1.3 - 2.3 -
err. - - 1.0 -

K912E/Caspr4 λ = 0 → 1 - 0.5 -
ΦP ME - 0.0 -

∆∆Gbind 0.7 - 0.5 -
err. - - -0.2 -

rmsd - - 1.50 -
mue - - 1.23 -

Table 4.1 – Relative binding free energies for ionic mutations obtained with polarizable

and additive force fields. Specific contributions are shown on separate lines. Alchemical free

energy differences λ = 0 → 1 were obtained using BAR. Two values were also computed with

TI, values are shown in parenthesis. The table is separated into two parts: Rmsd and Mue are

first computed considering the first 4 mutations for which Drude and C36 results are known

(E4K, E4L, K4L and K912E). Then, rmsd and mue are calculated for the six ionic mutations

previously studied using ff99SB (Panel et al. [2018]).
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The overall Drude binding free energy changes had errors of −0.3, 1.3, 1.3, and 1.6 kcal/mol,

respectively, for an RMS error of 1.2 kcal/mol. The same variants with ff99SB and C36 gave

RMS error of 1.8 and 1.9 kcal/mol. Thus, the RMS error was reduced with Drude. The

improvement was mainly due to E4L, which had the largest error with both the additive

force fields. The C36 force field gave ∆∆G values for E4K and E4L within 0.1 kcal/mol of

AMBER ff99SB and a similar RMS error. The closure errors for the thermodynamic cycle

(Sdc1/E4K/E4L/Sdc1 ) with Drude and C36 were very small, 0.3 and 0.0 kcal/mol, respec-

tively, suggesting convergence was good. The ff99SB closure error was slightly larger, 0.8

kcal/mol. For the E4L and E4K ionic mutations, previous very long simulations were run

with ff99SB (495 and 770 ns, respectively) to establish that the errors were due to force-field

limitations, not sampling. The agreement between C36 and ff99SB supports the idea that the

large E4K errors were due to the lack of explicit polarizability.

For the other five ionic mutations, agreement with experiment was still rather good using

AMBER ff99SB, with an RMSD of 0.90 kcal/mol. Errors of −1 kcal/mol were also seen re-

cently with this force field for ionic mutations in the tyrosyl-tRNA synthetase enzyme binding

its amino acid substrate (Simonson et al. [2016]).

The main interactions that stabilize the different complexes were identified by structure

analysis. With the AMBER additive force field, the Sdc1-E4 side chain makes a salt bridge

with either Arg871 or Lys912 half of the time [fig. 4.9], whereas with the Drude polarizable

force field, a Glu4-Lys921 salt bridge is present only 1/4 of the time as shown in figure 4.10.

No salt bridge is present in the x-ray complex. Thus, the additive force field overpopulates

the salt-bridge conformations, leading to an overstabilization of wild-type/Sdc1 relative to the

E4K and E4L mutants. In the mutant E4K and E4L complexes, there are no salt bridges

involving position P4, either with AMBER ff99SB or with Drude. K4 mostly makes polar

interactions with solvent and L4 is hydrophobic. Although the Drude model is less affected by

salt-bridge overstabilization, it still predicts an E4-Lys912 interaction 1/4 of the time, and this

appears to account for the positive ∆∆G errors for the E4L and K912E mutations obtained

with Drude.
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Figure 4.8 – Closure errors for relative binding free energies calculated with Polarizable or

additive force fields
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WT:Sdc1

WT:E4K

WT:E4L

Figure 4.9 – Structural views based on the Amber ff99SB MD simulations for the

wild-type/Sdc1 complex (top) and its E4K (middle) and E4L (bottom) mutants. The 3D

structures are the mean structures from the MD.
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Figure 4.10 – Structural views based on the Drude polarizable MD simulations for

the wild-type/Sdc1 complex (top) and its E4K (middle) and E4L (bottom) mutants. The 3D

structures are the mean structures from the MD.

4 Conclusions

To our knowledge, this study was the first application of the Drude force field to compute

relative binding affinities for a set of protein:ligand complexes. The described protocol can

be applied to any alchemical FEP when a dual topology is preferable. Technical issues were

highlighted, mainly related to the actual NAMD implementation of FEP. Simulations were

needed to compute the additional contributions µA, µB to restore the deleted CB polariza-

bilities. This increases the computational cost of the Drude FEP, which is already bigger (a

factor 4) compared to Amber ff99SB or C36. However, future versions of the alch facility of

Namd could solve this problem, deleting the spurious interactions. Overall Drude results are
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encouraging: the E4L error was reduced from 3.0 to 1.3 kcal/mol, the E4K error was reduced

from 1.1 to 0.3 kcal/mol; the K4L error was reduced by 0.7 kcal/mol compared to C36, and

was similar to the ff99SB error. Only the K912E/Sdc1 error increased somewhat with Drude,

from 1.0 kcal/mol with ff99SB to 1.6 kcal/mol. K912 is highly exposed to solvent and does

not form a salt bridge. Established additive force fields are well parameterized for this situa-

tion, whereas we can speculate that the more recent Drude parameters may still require some

tuning. Further studies could focus on this aspect. We also recognize that the TIP3P water

model employed in the additive simulations can play an important role, and may contribute

to the observed errors. SWM4-NDP is a four-point model, which can also adapt its dipole

moment in reponse to perturbations of nearby charges. Moreover, the possibility that a Drude

FEP using SWM6-NDP could produce better results is an interesting open question, since

SWM6 is recognized to reproduce water properties even better than SWM4 (Yu et al. [2013]).

Sophisticated methods have been proposed to accelerate conformational sampling. They in-

clude adaptive biasing of the energy surface with metadynamics (Laio & Parrinello [2002]),

λ-dynamics (Hayes et al. [2017]), or the orthogonal space random walk (Zheng et al. [2008]).

Other methods like replica exchange (Kokubo et al. [2013]) increase sampling by thermally

activating some or all degrees of freedom. Here, we used standard MD with long simulations,

and we verified convergence by doing redundant calculations. As anticipated before in the

text, the closure errors suggest that the C36 and Drude FEP were well converged, even if

this result does not give information about the convergence of the µA, µB simulations. Indeed,

these last contributions cancel out in the thermodynamic cycle since they were added and then

substracted. Overall, the accuracy obtained indicates FEP can be used in a design strategy,

where many variants obtained with empirical energy functions are filtered further with more

rigorous FEP simulations before being tested experimentally. For ionic mutations in buried

regions, electronic polarization is likely to contribute and the use of the Drude force field could

be preferred.
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Chapter 5

Classical Drude Model for methyl

phosphate and phosphotyrosine

1 Introduction

1.1 Phosphotyrosine in Tiam1 binding

Phosphorylation is among the most diffused post-translational modifications that regulate

PPIs in cell signalling networks (Khoury et al. [2011] ; Pawson & Scott [2005]). Syndecan1 is

a member of the syndecans family, high conserved transmembrane and cytoplasmic domains

containing four conserved tyrosine residues that may be phosphorylated (Reiland et al. [1996]).

In the case of Syndecan1, the phosphorylation of a tyrosine at C-terminal position P−1 has an

important role in cell adhesion (Sulka et al. [2009]).

The Tiam1 PDZ domain can bind both the wildtype Syndecan1 peptide (Sdc1, sequence

TKQEEFYA) and its phosphorylated form (pSdc1, sequence TKQEEF(pTyr)A). Their affini-

ties to Tiam1 were studied experimentally, revealing that the phosphorylation of Tyr−1 in Sdc1

does not change considerably its binding affinity to Tiam1 ∆∆Gbind(Sdc1 → pSdc1) = −0.21

kcal/mol (Liu et al. [2013]). Crystal structures of the wildtype Tiam1:Sdc1 complex (pdb ac-

cess code 4GVD) and of the Tiam1:pSdc1 complex (pdb access code 4GVC) show that there is

no Tiam1 rearrangement after binding, with an rmsd between the two backbone conformations

of just 0.26 Å. However, the interactions between amino acid side chains in the binding pocket

are different [fig. 5.1]. The tyrosine at position P−1 rotates of almost 90◦ after phosphorylation,

where the phosphate group interacs strongly with the Tiam1 residue K879 and also with T857

[fig. 5.1]. On the other hand, in the Tiam1:Sdc1 complex these interactions are different with

Tyr−1 interacting with N876, E−4 and K−6 thorugh an hydrogen bonding network.
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Figure 5.1 – Tiam1-Sdc1 and Tiam1-pSdc1 structures superposition. The wildtype

complex is shown in green, the phosphorylated complex is shown in cyan. From crystal struc-

tures 4GVD and 4GVD.

Previous molecular dynamics simulations of the Tiam1:Sdc1 and Tiam1:pSdc1 complex

(Nicolas Panel, results are not yet published) suggested that in the bound state the dianio-

nic phosphotyrosine pTyr2− is dominant respect to its monoanionic form pTyr−. During MD,

monoanionic phosphotyrosine did not conserved the crystal structure configuration, moving

towards the tyrosine orientation in the WT complex. On the other hand, dianionic phospho-

tyrosine conserved the crystal structure orientation, interacting strongly with K879.

1.2 Phosphates in biology

Phosphate groups are essential in biochemistry. They are components of nucleic acids and

also present in certain protein side chains, whose interactions with solvent, metal ions and

ionic side chains help control protein folding and binding (Westheimer [1987]). Phosphates

are in ATP, they are added/removed enzymatically as a function of cellular condition, and

they facilitate important PPIs in a number of signaling pathways (Pawson [1995]). Often, the

presence or absence of the phosphate group makes the protein competent or incompetent to

bind another molecule (Shepherd et al. [2011]). Indeed, the phosphorylated species act as che-

mical entities different from natural amino acids, making intramolecular and intermolecular

hydrogen bonds with PPI partners. During evolution, nature chose phosphates because they

were abundant on Earth, because they are solubile in water, and because they have versatile

chemical properties (Hunter [2012]). Quoting the author, “Life as we know it could not have
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evolved without phosphate”.

Computer simulations can give detailed insights into the structure and interactions of

phosphate groups. To exploit this capability it is essential to have accurate force field models

of these moieties. However, developing accurate simulation models is challenging for ionic

interactions such as those involving phosphate groups.

1.3 Earlier additive results, need for polarizability

Phosphate-containing molecules will usually be more polarized when exposed to solvent or

close to an ion, and less polarized when removed from solvent or ions. For this reason, addi-

tive force fields can give large errors, since they are usually parameterized to describe ionic

interactions between groups that are highly-exposed to aqueous solvent. Previous calculations

of the standard binding free energy between Mg2+ and hydrogen phosphate P2−
i = HPO4

−

were done using the Charmm additive force field C27, overstimating of an order of magnitude

the experimental value of -3.7 kcal.mol (Satpati et al. [2011]). Other previous calculations of

the relative binding free energy for the phosphorylation of Tyr−1 in the Tiam1:Sdc1 complex

(not published) revealed that the additive force field Amber ff99SB strongly overstimates the

stability of pTyr in the bound state, giving a ∆∆G(Sdc1 → pSdc1) = −12.1 kcal.mol, where

the experimental value is -0.2 kcal/mol.

If additive force fields give large deviations from experiments, remarkable results were

obtained using polarizable models. Mg2+:phosphate binding free energies were studied with

AMOEBA, giving excellent agreement with experiment (Kumar et al. [2014, 2018]). The

AMOEBA force field was also used to reproduce the phosphate binding mode of a phosphate-

binding protein, giving binding affinities in excellent agreement with experimental measure-

ments (Qi et al. [2018]). Dimethyl phosphate (DMP) and its interactions with Mg2+ were

studied with the Drude polarizable force field, giving good agreement with experiment for

structure and dynamics (Lemkul & MacKerell [2016a]). Another recent study revealed that

when compared to additive force fields, the Drude polarizable force field better estimates re-

lative binding free energies for a series of ionic mutations of the Tiam1:Sdc1 complex (Panel

et al. [2018]). All these studies confirm that to describe phosphate interactions, the explicit

treatment of electronic polarization becomes necessary.

1.4 Methyl phosphate as a model

Here, we extended the Drude polarizable force field to three other phosphate compounds and

their interactions with Mg2+, then we developed a model for the dianionic phosphotyrosine
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residue (pTyr2−) [fig. 5.2]. We fist developed Drude parameters for methyl phosphate (MP),

monoanionic and dianionc MP− ≡ CH4PO−
4 , MP2− ≡ CH3PO2−

4 . If DMP is analogous to the

phosphate groups within DNA and RNA polymers, methyl phosphate (MP) is analogous to the

phosphate groups at DNA and RNA termini. We validated our MP model computing MP:Mg2+

standard binding free energies, for which the additive force field gave large errors. We also

developed a model for mono hydrogen phosphate P2−
i = HPO4

−, for which experimental Mg2+

binding data is available. After validation, MP was used to derive parameters for dianionic

phosphotyrosine, for which the additive force field overstimated its interactions in the binding

pocket of the Tiam1 PDZ domain. Our parametrization strategy was inspired by the method

used to develop the pTyr2− model for the existing Charmm C36 force field (Feng et al. [1996]),

where dianionic methyl phosphate was used to optimize a residue patch that transforms the

standard tyrosine to pTyr2−. The same approach could be used in the future to develop a Drude

polarizable model for monoanionic phosphotyrosine (pTyr−) but also for other phosphate-

containing residues, like phosphoserine and phosphothreonine.

Figure 5.2 – Methyl phosphate, hydrogen phosphate and phosphotyrosine structures.

2 Methods: overview

Parametrization was done following the established Drude parametrization strategy described

in Anisimov et al. [2005] ; Lemkul et al. [2016]. The empirical, molecular-mechanics (MM)

Drude energy function was used to fit target quantum-mechanical (QM) quantities [fig. 5.3].

Several programs and tools were used to obtain and to fit the QM data. We finally validated

our models computing Mg2+:phosphate standard binding free energies in aqueous solution.
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QM optimized geometry

 Electrostatic parameters optimization

    QM electrostatic potential maps

     QM polarizability and dipole moment

  QM solute:water/ions interaction energy scans

  

Internal parameters optimization

     QM dihedral energy scans

     QM conformational energies

  Phosphate:Mg2+ binding free energies

Figure 5.3 – Parametrization procedure overview.

2.1 QM quantities and software

QM optimized geometries were used to compute the QM quantities listed in figure 5.3: elec-

trostatic potential (ESP) maps (unperturbed and perturbed, as discussed below), molecular

polarizability and dipole moment, solute-water and solute-ion interaction energies, QM confor-

mational energies. Details are given in the next section (see Methods: QM calculations). All

QM quantities were computed using the GAUSSIAN version g09 (Frisch et al. [2009]) or PSI4

(Turney et al. [2011]). GAUSSIAN is the program traditionally used to compute target QM

quantities for Charmm C36 and Drude force field parametrization. Several scripts to produce

the QM data were already available, suggesting us to use the GAUSSIAN to compute most of

the quantities. On the other hand, PSI4 is more recent and is becoming more and more used.

It is free and has a flexible python interface. Some of the GAUSSIAN scripts were so rewritten

for Psi4, and will be part of our parametrization toolbox.

2.2 The GAAMP and DGENFF tools

Parameter optimization was done using several tools. Some of them are programs borrowed

from the GAAMP distribution (Huang & Roux [2013]). GAAMP “General Automated Atomic

Model Parameterization” is a webserver for automatic force-field parametrization of small

molecules. It has a simple interface, allowing the user to load an input structure and then

automatically obtain the desired parameters for various additive force fields (for example

Charmm C36 or Amber) and for the Drude polarizable force field. However, we preferred

to run a more careful manual parametrization, where several utilities written in C++ were

extracted from the GAAMP server and then run locally on our computers. Other steps of the

95



Chapter 5. Classical Drude Model for methyl phosphate and phosphotyrosine

parametrization procedure were carried out computing molecular-mechanics quantities with

the CHARMM program (version 42b2), together with bash and python scripts. CHARMM

scripts were extracted from an ongoing first release of the Drude “DGENFF”, analogous to the

well-known toolbox for the Charmm force field parametrization CGENFF (Vanommeslaeghe

et al. [2009]).

2.3 Parametrization strategy

Starting from a PDB file containing structure information we generated the initial Drude to-

pology and parameter files using GAAMP. Input geometries were optimized with GAUSSIAN,

and then used to compute the target QM data (see Methods: QM calculations).

Figure 5.4 – Methyl phosphate and hydrogen phosphate 2D structures. Left: MP−.

Center: MP2−. Right: P2−
i

Electrostatic parameters were first optimized for MP− (2D structure shown in figure 5.4,

left), proceeding in two main phases. In the first phase, electrostatic potential maps and pola-

rizability from QM were fitted with the MM energy function by adjusting the atomic charges,

polarizabilities and Thole factors. In a second phase, these optimized parameters were fur-

ther adjusted in order to reproduce the QM solute:water interaction energies, together with

the QM molecular dipole moment. For details about the parameter fitting procedure, see the

section “Methods: fitting the QM quantities”. Once electrostatic parameters of MP− were ob-

tained, we optimized those of MP2− (2D structure shown in figure 5.4, center). We fitted the

MP2− atomic charges to all the QM data at once (electrostatic potential maps, water scans,

molecular dipole moment and polarizability) by means of a grid search in MM parameter

space. Once electrostatic parameters of MP− and MP2− were obtained, we transferred them

to P2−
i = HPO2−

4 (2D structure shown in figure 5.4, right) and then reoptimized with a grid

96



2. Methods: overview

search.

In this study we did not optimized LJ parameters. Indeed, most atom types were taken

from the existing dimethyl phosphate (DMP) in the nucleic acid Drude force field; the main

exception was an oxygen (O1) typed according to the lipid Drude force field. We also studied

DMP with QM and with the existing Drude force field, to better evaluate the quality of our fit

for methyl phosphate. For both MP− and MP2−, the overall QM/MM agreement was similar

to that obtained for DMP.

For both MP− and MP2−, we then went on and combined the optimized electrostatic

parameters with existing Drude bonded parameters. All steps stayed as close as possible to

existing Drude types/parameters, with input also from C36 where relevant (eg, a few bonded

parameters). Few dihedrals were scanned with QM. The total energy for several dihedral confi-

gurations was computed with QM and then compared to MM. In this phase, few parameters

were optimized to improve agreement. At the end of the parametrization, we tested the overall

MM model further by comparing MM conformational geometries and energies to QM.

Final MP and P2−
i models were validated computing their standard binding free energies

with Mg2+. The magnesium binding model is described below. Affinities were computed with

alchemical free energy simulations (see Methods: phosphate:Mg2+ binding free energies).

Dianionic phosphotyrosine was parametrized starting from existing Drude force field in-

formation and the MP2−
final set of parameters. The pTyr2− side chain was modeled using

a model compound, the phosphorylated form of the p-Cresol (see Results: Drude model for

dianionic phosphotyrosine). QM ESP maps (unperturbed+perturbed) and solute-water inter-

action energies were fitted. Phosphotyrosine parametrization is still underway, but the model

was partially validated running polarizable molecular dynamics of the Tiam1:pSdc1 complex.
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2.4 Phosphate:Mg2+ binding model

Figure 5.5 – Internal and Outer shell binding for methyl phosphate.

The MP−/2− : Mg2+ binding is governed by the equation:

(Mg2+)w + (MP−/2−)w
∆G

−−→
bind

(Mg2+MP−/2−)w (5.1)

where the subscript w is used to indicate that the binding reaction takes place in pure water.

For P2−
i , the equation is similar. There are two possible bound states: Outer Shell (from now

called OS) and Internal Shell (from now called IS) shown in figure 5.5. In IS, the phosphate

interacts directly with magnesium ion, while in OS this interaction is mediated by a shell of

water molecules. Experimental affinities for anionic and dianionic phosphates are known for

H2PO−
4 (-1.7 kcal/mol) and P2−

i = HPO2−
4 (-3.7 kcal/mol) (Verbeeck et al. [1984], Alberty &

Goldberg [1992]). To obtain the binding free energies, we have run a series of alchemical MD si-

mulations. The detailed protocol is explained below in the text (see Methods: phosphate:Mg2+

binding free energies).

This study is motivated by two facts. First, methyl phosphate parameters were built using

the established parametrization procedure, where most of the calculations involved constrai-

ned geometries and interactions in vacuum. To better validate our model it is important to

check its behaviour during molecular dynamics in SWM4-NDP water. Binding affinities can

give important insights about reiability of the developed parameters, and how this simple

polarizable model can reproduce biochemical properties. Second, despite several phosphate-

containing moieties were already parametrized in the official Drude force field, the correct

threatment of their interactions with charged ions are still challenging. In previous studies,

a strong effort has been made to develop consistent Drude force field parameters to balance
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interactions between Mg2+ and nucleic acids (Lemkul & MacKerell [2016a]). Several ad-hoc

parameters were used to optimize interaction energies and geometries of complexes involving

nucleic acid moieties, water and magnesium. However, they were not extensively tested. Ma-

gnesium binding free energy simulations are thus a stringent test not just for our new models,

but also for the existing Drude force field parameters.

3 Methods: QM calculations

Quantum calculations were performed using as reference the QM optimized geometry. Optimi-

zation was done with GAUSSIAN, using MP2/6-31G*. We extracted the optimized geometry

from the GAUSSIAN output and then prepared several input files, used to calculate the fol-

lowing QM data.

3.1 QM electrostatic potential maps

Ten concentric grids based on Connolly surfaces were positioned around each solute using the

program CGRID from GAAMP, totalling around 2000 grid points and ranging up to about 5

Å from the solute atoms. An example of such a grid is given in figure 5.6, left. GAUSSIAN

allows to automatically generate an uniformly distribute cubic grid with the molecule centered

in it, however the present strategy allow to reduce the number of points and to better adapt

to the solvent accessible surface of different molecules. Points which are far from the center are

inserted with a lower density factor respect to points distributed over closer Connelly surfaces.

67 perturbing charges were distributed around MP− and 69 around MP2− [fig. 5.6, right].

Grid layers were alterned with perturbing charges layers. The electrostatic potential was then

evaluated for each grid point i and for each perturbing charge j, totalling 67(69) perturbed

ESP maps
∑

i φ
QM
ji for i = 1, ..., ngrid plus one unperturbed map

∑

i φ
QM
i . During the QM

calculation, the model compound was kept fixed at its optimized geometry, which is not relaxed

for different perturbations. As grid points, perturbing charges were distributed uniformly on

connelly surfaces, except some of them which were placed at specific positions following the

protocol described by Anisimov et al. [2005]. A first group of charges sits along molecule’s

bond lines, at the intersection with the surfaces. Then a second group of charges was positioned

around oxygen or nitrogen atoms when they form covalent bonds with two other atoms. Finally,

the charge layers were covered respecting a minimum distance threshold between couples of

charges of 1.5 Å. The electrostatic potential was evaluated with GAUSSIAN, using MP2/6-

31G*.
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Figure 5.6 – QM electrostatic potential maps for MP2−. Left: Grid for evaluation of

electrostatic potential. Right: perturbing charges, in green.

3.2 QM polarizability and dipole moment

We computed molecular polarizability of MP−, MP2− and P2−
i using MP2/6-31G*. The “exact

polarizability” (au3) was extracted from the GAUSSIAN output and converted to Å3 (1 au =

0.529177249 Å). The dipole moment was computed with PSI4 using RIMP2/6-31G*. Only dia-

gonal elements of the 3x3 polarizability matrix were considered because they are considerably

greater than off-diagonal elements, which were considered negligible.

3.3 QM solute–water and solute–ion interaction energy scans

We start describing the protocol for water scans. Water poses were generated with GAUSSIAN

(scan keyword) or with a CHARMM script, varying only the solute–water distance in the

[1.4:3.0] Å range, in 0.1 Å steps. During each scan, the solute and water internal geometries

were held fixed. Internal coordinates were specified in a Z-matrix and the solute–water distance

was controlled by an rOH variable. For each pose, the interaction energy was computed with

PSI4 using RIMP2/cc-pVQZ with BSSE corrections. To define water poses relative to a specific

acceptor/donor, a DUMMY particle was added to the solute-water system [fig. 5.7, left]. This

auxiliary atom was then used to specify angles and dihedrals that define the internal geometry

of the compound:water complex. In the figure, the water hydrogen H1, the phosphate oxygen

O2 and the dummy atom DUM form together an angle of 90◦.
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Figure 5.7 – Water-solute scans. Left: water pose built using a dummy particle (shown in

blue) on the MP2− acceptor O2. Right: QM interaction energy scan for the MP2− acceptor

O2.

Solute–ion scans for magnesium (Mg2+) and sodium (Na+) were performed following an

equivalent protocol, except that QM calculations with PSI4 were done using MP2/aug-cc-pvtz

with BSSE corrections.

MP− has four hydrogen bond acceptors and one donor: O1, 02, O3, O4, and H2. Although

O3 and O4 have equivalent types, they are not symmetrical in the optimized structure so we

did a separate scan for each atom. For MP2−, we scanned the three acceptors: O1, O2, O3

(equivalent to O4), while for P2−
i we scanned acceptors O1, O2 and O3. Interactions were also

scanned for the bridging oxygen of dimethyl phosphate (DMP).

3.4 QM dihedral scans

Starting from the QM optimized geometry, selected dihedrals were scanned using angles ψ ∈

[−π : π] with a step of 15◦. We scanned O1-P1-O2-H2 and C1-O1-P1-O2 dihedrals for MP− and

the C1-O1-P1-O2 dihedral for MP2−. Scans were performed with GAUSSIAN (scan keyword)

or with PSI4, using MP2/6-31+G(d). In the GAUSSIAN input file, geometries were defined

by a z-matrix where the target dihedral angle a variable. For each configuration visited during

the scan, the system energy was computed after geometry relaxation, performed keeping the

scanned dihedral fixed at its value φ. The QM energy and geometries were saved for eachi

value of ψ, to be compared afterwards with MM.

3.5 QM vibration frequencies

We performed vibrational analysis using Gaussian with the freq keyword. We used MP2/aug-

cc-pVTZ for geometry optimization and frequencies calculation. From the QM output we
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extracted frequences and vectors for all the normal modes and also force constants in cartesian

coordinates, represented in matrix form (the Hessian). This 3Nx3N matrix has entries Hijkl

where i,j = 1, ..., N is are atom IDs and k,l = x, y ,z.

Hijkl =
∂UQM

∂k∂l
(5.2)

The QM force constants matrices of MP− and MP2− were used to compare QM and MM

energies for random displacements generated by combination of the extracted QM modes. In-

deed, for small coordinate displacements
∑

i di (where i = 1,...,Natoms) around the molecule’s

optimized geometry, the QM energy can be estimated from the force constants matrix using

the harmonic approximation

ŨQM =
1
2

∑

ijkl

dikHijkldjl (5.3)

where i,j are atoms IDs and k,l = x, y ,z.

4 Methods: fitting the QM quantities

4.1 Fitting QM potential maps

The QM electrostatic potential maps were fitted using the GAAMP “drude-fitcharge” mo-

dule. In addition to the above constraints on the molecule geometry, restraints were applied

to charges, polarizabilites and Thole parameters to avoid large deviations from physically

reasonable reference values. The target function χ2 is composed of several terms:

χ2 = χ2
ESP + χ2

CG + χ2
ALP HA + χ2

T HOLE (5.4)

The first term tries to match the QM and MM potential maps. In the presence of ngrid points

and npert perturbation charges,

χ2
ESP =
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npert

ngrid
∑

i=1

(φMM
i − φ

QM
i )2 +

npert
∑

j=1

ngrid
∑

i=1

(φMM
ji − φ

QM
ji )2



 (5.5)
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The other terms are the restraints, weighted by the constant factors wCG, wα and wτ (set to

default values). Reference values for charges are those specified in the initial topology file {q0
i }:

χ2
CG =

wCG

n

n
∑

i=1

f(qi,q
0
i ) (5.6)

where n is the number of atoms and

f(qi,q
0
i ) =











0 |qi − q0
i | ≤ 0.03

(|qi − q0
i | − 0.03)2 otherwise

(5.7)

Polarizabilities αi and Thole parameters τi were restrained using

χ2
ALP HA =

wα

n

np
∑

i

(

αi − α0
i

)2
χ2

T HOLE =
wτ

n

np
∑

i

(

τi − τ 0
i

)2
(5.8)

where n is the number of polarizable atoms. Reference polarizabilities α0
i were taken from

(Miller [1990]) then scaled by 0.7. Reference Thole factors τ 0
i were set to 1.3 for all atoms;

this corresponds to average screening parameter τij = τi + τj = 2.6, as originally proposed by

Thole.

4.2 Fitting the molecular polarizability

Using GAUSSIAN, one obtains α̂ in the {xyz} frame. Its diagonal components are denoted

αxx, αyy, αzz. Atomic polarizabilities and Thole factors were manually adjusted to reproduce

the QM values of αxx, αyy, αzz (and thus their sum, the polarizability trace). The atomic

charges were held fixed (since α̂ is independent of the charges). During adjustment, we cross-

checked that the polarizability and Thole modifications did not affect too much the quality

of the potential maps (the value of χ2
ESP ). The Drude molecular polarizability was obtained

using the CHARMM script polar_efield (from DGENFF). Diagonal elements of α̂mol in the xyz

frame were computed by measuring the variation of the molecular dipole moment under the

influence of an external electric field of intensity E = 1010 V/m. When measuring the electronic

polarizability, the atoms were kept fixed in the molecule’s optimized geometry. Drude particles

were relaxed before computing the dipole moment in the presence or absence of the applied

field. The field was applied using the CHARMM command

pull efield 1E10 xdir <float> ydir <float> zdir <float>
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The molecular mechanics calculation of αxx, αyy, αzz was done in 4 steps. First, the mole-

cular dipole moment µ̄0 was computed in the absence of an external field, with the CHARMM

command “coor dipole oxyz”. Next, values of the molecular dipole moment µ̄x, µ̄y, µ̄z were

computed in the presence of three different external fields, oriented along x, y, and z, respec-

tively. The nine components of the molecular polarizability tensor were then obtained using

αij =
µi

j − µ0
j

E
(5.9)

4.3 Fitting solute–water interaction energies and the molecular di-

pole

Two strategies were used. For MP−, we adjusted the atomic charges manually, without chan-

ging the polarizabilites or Thole values. For one atom (the bridging oxygen O1) we departed

from the Drude DMPN vdW types (see Results). After adjusting the charges, we checked the

quality of the potential maps, the dipole and the polarizability. For MP2−, we optimized the

atomic charges to fit all the QM data at once, through a simple grid search in parameter

space. Starting from MP− parameters, we transferred atomic polarizabilities and thole factors

to MP2−. Atomic charges were readjusted to match the total charge. Then we fitted molecular

polarizability (not dependent on atomic charges), adjusting polarizability and Thole factors

manually. As for MP−, targeted molecular polarizabilities were scaled by a factor 0.85. Once

α and τ factors were obtained, we went on performing a grid search for many values of atomic

charges to fit water interaction energy scans for acceptors O1, O2, O3. An equivalent protocol

was used to derive electrostatic parameters of P2−
i .

5 Methods: phosphate:Mg2+ binding free energies

5.1 Free energy perturbation protocol

To obtain the MP−/2−:Mg2+ and P2−
i :Mg2+ binding free energies, we simulated the alchemical

annihilation or “decoupling” of magnesium alone in solution and bound to the phosphate

solute, over a series of MD simulations. For MP− and MP2−, we considered both IS and OS

binding. For P2−
i , we considered OS binding. From each simulation, the binding free energy

was obtained using the Double Decoupling Method (DDM). Here we describe the procedure for

methyl phosphate, given that for P2−
i we used exactly the same protocol. The thermodynamic
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cycle is displayed in figure [5.8]. The starting point was a standard-state ideal-dilute solution

of the unbound MP + Mg2+ at concentration ρ0 = 1M , the endpoint was a standard-state

ideal-dilute solution of the complex (MP−/2−Mg2+) (bound state).

Figure 5.8 – Thermodynamic cycle used to compute absolute binding free energies for Mg2+

and methyl phosphate complexes (vertical arrow on the left, indicated using the label Bind).

The reaction is decomposed in several steps labelled with integers from 1 to 6 and described

in the text.

The binding reaction was decomposed in six steps, connecting starting and ending states:

[1] We changed the concentration to the very low value ρ∞. The corresponding free energy

change was:

∆G(ρ0 → ρ∞) = −2KTlnρ∞/ρ0 (5.10)

[2] We removed the Mg2+ charge and LJ interactions alchemically, in two steps. First, magne-

sium charge and polarizability were turned off. The corresponding free energy difference was

∆Gelec. Then, Lennard-Jones interactions of the uncharged Mg were removed giving a second

contribution ∆GLJ .

[3] A flat-bottomed harmonic restraint was introduced to keep Mg2+ close to MP. The re-
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straint potential was, for both OS and IS states:

UR(r) =























1
2
c(r − a)2 r < a

1
2
c(r − b)2 r > b

0 otherwise

(5.11)

where r is the distance between Mg2+ and the MP phosphorus atom P. For IS, [a; b] was set

to [0.0 : 3.5Å] and c=4 kcal/mol/Å2. For OS we used [4.1 : 5.9Å] and c=8 kcal/mol/Å2. The

restraint free energy was obtained analitically, using

∆Grestr = KTln(ρ∞Q(c)) (5.12)

where

Q(c) ≃
∫ ∞

0
4πr2 exp[−βUR(r)] dr = (5.13)

=
∫ a

0
4πr2 exp[−

βc

2
(r − a)2] dr +

4
3

π(b3 − a3) +

(

2πkT

c

)3/2

+
8πkTb

c
+ (2π)3/2b2

√

kT

c

[4] We alchemically reintroduced interactions between Mg and MP

[5] We restored the standard-state concentration, with the corresponding free-energy contri-

bution KTln(ρ∞/ρ0).

[6] We removed the restraint and the corresponding free energy cost was negligible.

At the end, all terms involving ρ∞ (steps 1,3,4) cancel out, leaving a logarithmic depen-

dency on the standard-state concentration kT lnρ0. Just free energies for steps 2 and 4 were

computed with alchemical free energy differences. Details about these simulations are given

below.

5.2 Simulations setup

System preparation was done with the CHARMM program. For unbound state simulations

(point 2) the solute was one Mg2+ ion placed at the center of the box. For the bound state
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simulations (point 4) the solute was represented by the MP-Mg2+ complex. OS and IS states

were prepared separetly, putting the Mg2+ ion at average distance d=(a+b)/2 from the P

atom, where a and b vary between OS and IS. Each solute was then solvated in a cubic box of

side L=31 Å, containing around 1000 pre-equilibrated SWMD4-NDP water molecules. Solvent

within the solute volume was deleted using a distance threshold of 3.0 Å from the solute heavy

atoms. The system was then minimized with NAMD, first with restrained heavy atoms and

unrestrained Drude particles, then without restraints. The minimized system was finally equi-

librated, running 200 ps of MD.

All MD similations (equilibration and alchemical) were carried out using NAMD (version

2.12) at room temperature and pressure, using Langevin dynamics with a Langevin Piston

Nosé-Hoover barostat (Feller et al. [1995]). The simulations used periodic boundary conditions

and a Particle Mesh Ewald electrostatic treatment (Darden [2001]). Bonds to hydrogen atoms

were constrained with the SHAKE method (Ryckaert et al. [1977]). LJ interactions were shifted

to zero for separations between 10 and 12 Å. The MD timestep was 1 fs and the oscillators

temperature was TD=1 K. Throughout the simulations, the center of mass of MP (or P2−
i )

was restrained to the box center using an harmonic potential.

5.3 Alchemical free energy simulations

Alchemical free energy changes for steps 2 and 4 were extracted with TI [eqn. 3.51] from

series of MD simulations. Decoupling of electrostatic interactions of Mg2+ in the bound or

unbound state was performed by scaling its charges (the atom charge qA and its Drude charge

qD), its polarizability α and Thole factor τ . MD simulations were run using the potential

function of equation 4.2, for different values of the coupling parameter λelec=1, 0.9, 0.8, ...,

0.1, 0. Decoupling of LJ interactions was done using the alch facility of NAMD, with a series

of simulations using λLJ=1, 0.9, 0.8, 0.6, 0.4, 0.2, 0. The electrostatic uncharging(respectively,

charging) free energies at concentration ρ∞ were extrapolated analitically for L → ∞, using

equation 3.71

∆G(L → ∞) = ∆G(L) +
q2|ζ|

2ǫW L
+

2πq2R2

3L3

ǫW − 1
ǫW

+ O(R2L−3ǫ−3
W ) (5.14)

where ǫW is the solvent dielectric constant, L is the box side length in the NPT simulation

(on average 31.2Å) and ζ = −2.837297. The correction was computed considering two distinct

values of Mg2+ radius for bound and unbound states, respectively R=1.2 Å and R=1.5 Å.
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6 Results

6.1 Initial MP model and atom types

Starting topology and parameter files for MP− and MP2− borrowed as much information

as possible from the Drude dimethyl phosphate (DMPN) of the official Drude nucleic acids

topology files. We give existing C36 and Drude information first.

-----------------c36 methyl phosphate information-------------------------------------------------------------------------------

RESI MP_1          -1.000       H11          RESI MP_2          -2.000                  
ATOM C1   CG331    -0.170        |           ATOM P1   PG2       1.100                 

ATOM O1   OG303    -0.620  H13--C1--H12      ATOM O1   OG303    -0.400        H11      

ATOM P1   PG1       1.500        |           ATOM O2   OG2P1    -0.900         |       

ATOM O2   OG311    -0.670       O1           ATOM O3   OG2P1    -0.900   H13--C1--H12  
ATOM O3   OG2P1    -0.820        |           ATOM O4   OG2P1    -0.900         |       
ATOM O4   OG2P1    -0.820 (-)O4==P1==O3      GROUP                            O1       

ATOM H11  HGA3      0.090        |           ATOM C1   CG331    -0.270         |       

ATOM H12  HGA3      0.090       O2           ATOM H11  HGA3      0.090 (-)O4==P1==O3(-)

ATOM H13  HGA3      0.090         \          ATOM H12  HGA3      0.090        ||       

ATOM H2   HGP1      0.330          H2        ATOM H13  HGA3      0.090        O2       

                           

---------Drude dimethyl phosphate, from nucleic acids----------------------------------

RESI DMPN -1.000

ATOM P    PD1AN     1.191  ALPHA -0.974  THOLE 2.098         H11     
ATOM O13  OD2C2C   -0.776  ALPHA -0.931  THOLE 1.083          |      

ATOM O14  OD2C2C   -0.776  ALPHA -0.931  THOLE 1.083    H13--C1--H12 

ATOM O11  OD30BN   -0.470  ALPHA -0.901  THOLE 0.181          |      
ATOM O12  OD30BN   -0.470  ALPHA -0.901  THOLE 0.181         O11      

ATOM C1   CD33C     0.0725 ALPHA -1.642  THOLE 0.862          |      

ATOM H11  HDA3A     0.026                             (-)O14==P==O13 

ATOM H12  HDA3A     0.026                                     |      
ATOM H13  HDA3A     0.026                                    O12      

ATOM C2   CD33C     0.0725 ALPHA -1.642  THOLE 0.862           \      
ATOM H21  HDA3A     0.026                                       C2--H21

ATOM H22  HDA3A     0.026                                      /  \
ATOM H23  HDA3A     0.026                                    H23  H22

The initial MP− is given below, where atom O2 (the hydroxyl oxygen) has a Lone Pair.

Atom types of the initial Drude model were transferred from “nucleic acid” DMPN.

  

---------Initial Drude methyl phosphate MP---------------------------------------------

RESI MP_1 -1.000   
ATOM P1     PD1AN   1.190  ALPHA -0.974  THOLE 2.098            H11    

ATOM O1     OD30BN -0.438  ALPHA -0.901  THOLE 0.831             |     

ATOM O2     OD31A  -0.150  ALPHA -0.927  THOLE 1.300       H13--C1--H12

ATOM LPAO2  LP     -0.180                                        |     

ATOM LPBO2  LP     -0.180                                        O1     

ATOM H2     HDP1A   0.160                                        |     

ATOM O3     OD2C2C -0.776  ALPHA -0.931  THOLE 1.083      (-)O4==P1==O3

ATOM O4     OD2C2C -0.776  ALPHA -0.931  THOLE 1.083             |     

ATOM C1     CD33C   0.072  ALPHA -1.642  THOLE 0.862             O2     

ATOM H11    HDA3A   0.026                                         \    

ATOM H12    HDA3A   0.026                                          H2  

ATOM H13    HDA3A   0.026                           

ATOM H23    HDA3A   0.026      
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We start giving results for the MP− parametrization, describing in detail all the interme-

diate sets of parameters. Results for MP2− and P2−
i will be given later, as they were obtained

all at once with a grid search. MP− parametrization was carried out following three steps

executed in sequence, resumed in table 5.1.

Set Construction Target data
1 adjusted qi, αi, τi to minimize χ2 with GAAMP QM electrostatic potential maps
2 charges from set 1, manually adjusted αi and τi QM molecular polarizability
3 αi and τi from set 2, manually adjusted charges QM dipole moment and water scans

Table 5.1 – Electrostatic parameters optimization workflow for MP−, with intermediate

and final parameter sets. Each set was optimized fitting different QM target data, as described

in the text.

6.2 Fitting the MP− potential maps

Atom Parameters Atom Parameters
O1 polarizability, Thole O3 charge, polarizability, Thole
P1 charge, polarizability, Thole O4 - redundant -
O2 charge, polarizability, Thole C1 - fixed -

LPAO2 charge H11 - fixed -
LPBO2 charge H11 - redundant -

H2 charge H11 - redundant -

Table 5.2 – Electrostatics Parameters for MP−. Some of the parameters were fixed, other

are redundant for atoms belonging to equivalent groups, as described in the text.

In table 5.2 we indicate the list of MP− electrostatic parameters to optimize. We imposed two

groups of equivalent atoms: (H11, H12, H13) and (O3, O4). Each group shares the same charge,

polarizability and Thole parameters. For the restrained electrostatic potential (RESP) fit, we

further reduced the number of parameters by fixing some of the charges at their DMPN values:

q(H11)=q(H12)=q(H13)=0.026 and q(C1)=0.0725. The charge of atom O1 is a function of all

the other charges. Initial Thole factors were set to 1.3 and weights for restraints were wCG =

3.0, wα = 0.4, wτ = 0.2 (the defaults). The performance and parameters after fitting (set 1)

are given below in table 5.3 and table 5.4.
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χ2 ESP Charge α τ Std. Err. (ESP)
0.9046 0.8042 0.0705 0.0192 0.0107 0.009

Table 5.3 – Restrained fit quality for MP− including all contributions to the target function

from equations 5.5, 5.6 and 5.8. The target function is close to the ESP fit quality, meaning

that optimized parameters don’t deviate too much respect to applied restraints.

Atom charge α τ Atom Charge α τ

O1 -0.479 -0.360 1.305 O3 -0.738 -0.497 1.391
P1 1.122 -1.254 1.395 O4 -0.738 -0.497 1.391
O2 0.097 -0.457 1.194 C1 0.072 -1.642 0.767

LPAO2 -0.290 H11 0.026
LPBO2 -0.290 H12 0.026

H2 0.166 H13 0.026

Table 5.4 – Intermediate parameters set 1 for MP−, “post-ESP” fit.

6.3 Fitting the MP− polarizability

We first computed the diagonal elements of the polarizability tensor using parameter set 1

(post-ESP fit). All the components were understimated compared to the target value, which

is the QM result scaled by 0.85. We manually adjusted polarizabilities and Thole parameters.

We found that α̂ was well reproduced by transferring parameters from DMPN and modifying

only the O1 Thole value. Fit results are in table 5.5 and optmized parameters (set2) in table

5.6.

αxx αyy αzz α

QM 8.2846 7.2605 6.9212 7.4888
QM×0.85 7.0419 6.1714 5.8830 6.3655
MM, set 1 5.3153 4.4205 4.004 4.7121
MM, set 2 7.0912 6.0173 5.9377 6.3487

Table 5.5 – Molecular polarizabilities in (Å3) fitted using initial values (intermediate pa-

rameters set 1, “post-ESP”fit) and then optimized with the intermediate parameters set 2.

6.4 Fitting the MP−–water radial interaction energy scans

Starting from the set 2 parameters, we manually modified charges to better reproduce energy

scans and also the molecular dipole moment. During adjustment, we periodically checked the

quality of the RESP fit. Below, we report QM (target) and MM interaction energies emin at
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Atom Charge α τ Atom Charge α τ

O1 -0.479 -0.901 0.831 O3 -0.738 -0.931 1.083
P1 1.122 -0.974 2.098 O4 -0.738 -0.931 1.083
O2 0.097 -0.927 1.300 C1 0.072 -1.642 0.862

LPAO2 -0.290 H11 0.026
LPBO2 -0.290 H12 0.026

H2 0.166 H13 0.026

Table 5.6 – Intermediate parameters set 2 for MP−, after fitting the molecular polariza-

bility.

the minimum distance rmin for the MP− acceptor and donor atoms [tab. 5.7]. We also report

the optimized charges, “set 3” [tab. 5.9]. The solute–water interaction for acceptor O1 was

poorly fitted initially. The problem was related to the O1 type/vdW parameters we had trans-

ferred from the existing Drude atom type OD30BN. Indeed, the results suggest that the vdW

parameters of atom type OD30BN (Drude FF, nucleic acids) are not ideal for the MP−–water

interaction when scanning the acceptor O1. Therefore, we studied the same interaction in

DMP−, which carries the same atom type on its bridging oxygen.

We optimized the DMP geometry with Gaussian using HF/6-31G* and then we scanned the

water interaction energy, focussing on the the same acceptor O11 (equivalent to O1 in MP−).

Interaction energies were obtained with PSI4 using RIMP2/cc-pVQZ with BSSE corrections.

Computing interaction energies with the MM energy function and the existing Drude DMPN

parameters, we obtained the same error: the interaction emin was too low and rmin was strongly

underestimated. Minimum energy at minimum distance were more like those of MP− rmin =

1.5 Å and emin = −11.544 kcal/mol, where QM values for DMPN were rmin = 1.9 Å and emin =

−10.996 kcal/mol. Results are shown in figure 5.9. At this point, we repeated the MM scan

using a different set of parameters: we assigned the vdW parameters of a different atom type

OD30B (Drude FF, lipids) and we transferred to DMP the electrostatic parameters obtained

at the end of the MP− optimization (set 3). This transfer required a small charge adjustment

to respect the total charge of DMP−. With this substitution, the error was completely removed

and the MM radial scan fit well the QM target data. Values were rmin = 1.8 Å and emin =

−10.784 kcal/mol, more like those obtained with QM.
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Figure 5.9 – Water scan for DMP. Left: interaction energy as function of the water-acceptor

O11 distance. Several lines represent the scan performed using different parameters set. In

blue, we show the scan performed using the official Drude parameters for DMPN (nucleic acids

topology). In red, we show the scan performed after substitution of the atom type OD30BN

with the lipid atom type OD30B. Charges were reoptimized, giving perfect agreement showed

in the black line. QM is shown in grey. Right: geometry of the complex used for the scan.

QM MM, set 2 MM, set 3
atom rmin emin rmin emin rmin emin

O1 1.9 -11.663 1.5 -12.675 1.5 -12.663
O2 1.9 -10.583 1.9 -9.456 1.8 -10.892
O3 1.8 -13.433 1.7 -13.030 1.7 -13.759
O4 1.8 -12.934 1.7 -13.206 1.7 -14.076
H 2.0 0.073 2.3 3.036 2.0 0.5518

Table 5.7 – Solute-water interaction energies for MP− , fitted using the intermediate set

(after fitting the molecular polarizability) and then optimized with the intermediate parame-

ters set 3. We highlight the strong deviation of rmin for acceptor O1, the methyl phosphate

bridging oxygen.

µx µy µz µ
QM -4.2395 2.5428 -1.0626 5.0565
MM, set 2 -2.7443 1.6167 -0.5710 3.2358
MM, set 3 -3.1737 2.5779 -0.5337 4.1234

Table 5.8 – Molecular dipole moment for MP− (Debyes), obtained using the intermediate

set 2 parameters and then optimized with the parameters set 3.

At this point, we replaced the atom type OD30BN with the atom type OD30B also for

MP−. Then repeated the charge adjustment. With this new set of charges, the radial interac-

tion energy scans were better fitted for O1, O3, O4 and the donor H, while for O2, the result
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Set 2 Set 3
Atom Charge α τ Charge α τ

O1 -0.479 -0.901 0.831 -0.470 -0.901 0.831
P1 1.122 -0.974 2.098 1.162 -0.974 2.098
O2 0.097 -0.927 1.300 0.000 -0.927 1.300

LPAO2 -0.290 -0.310
LPBO2 -0.290 -0.310

H2 0.166 0.360
O3 -0.738 -0.931 1.083 -0.796 -0.931 1.083
O4 -0.738 -0.931 1.083 -0.796 -0.931 1.083
C1 0.072 -1.642 0.862 -0.008 -1.642 0.862
H11 0.026 0.056
H12 0.026 0.056
H13 0.026 0.056

Table 5.9 – Parameters set 3 for MP−, after fitting the water interaction energy scans. The

intermediate set 2 is shown for comparison.

was slightly worse but still acceptable. To better evaluate the quality of the final set of pa-

rameters, the resulting fit for MP− will be given below, together with results for MP2− and P2−
i .

6.5 Electrostatic parameters optimization for MP2− and P2−
i

Parameters for dianionic methyl phosphate (MP2−) and hydrogen phosphate P2−
i were ob-

tained performing a grid search in parameter space. Initial models were created transfering

MP− atom types and electrostatic parameters, rapidly adjusted to match the total charge.

Polarizabilities and Thole factors were manually adjusted to reproduce the QM polarizability.

Then the charges were optimized performing a grid search, that fits all QM data at once.

The full QM/Drude comparisions are shown below MP2− and P2−
i , including MP− data for

comparision. In table 5.10, we give the fit of molecular polarizabilities and dipole moments. In

table 5.11 we give the result of the fitted water scans. The configurations used for the scans

are given in figure 5.10 for MP− (MP2− and P2−
i water poses were similar). In figures 5.11 and

5.12 we plot all the scans for MP− and MP2−, QM vs MM.
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molecule method αxx αyy αzz α method µx µy µz µ
QM 8.28 7.26 6.92 7.49 QM -4.24 2.54 -1.06 5.06

MP− QM×0.85 7.04 6.17 5.88 6.36 MM -2.74 1.62 -0.57 3.23
MM 7.09 5.96 5.88 6.31
QM 9.83 7.80 7.92 7.49 QM -4.57 -0.45 0.01 4.59

MP2− QM×0.85 8.36 6.63 6.73 7.24 MM -4.23 0.47 0.00 4.26
MM 7.59 6.50 6.49 6.86
QM 7.05 6.72 6.69 6.82 QM 0.12 -1.10 -2.36 2.61

P2−
i QM×0.85 5.99 5.71 5.68 5.80 MM 0.08 -0.67 -1.10 1.29

MM 4.75 4.80 4.47 4.67

Table 5.10 – MP−, MP2− and P2−
i molecular polarizabilities (Å3) and dipole moments (D)

QM MM
molecule atom rmin emin rmin emin

O1 1.9 -11.66 1.8 -11.40
O2 1.9 -10.58 1.8 -10.93

MP− O3 1.8 -13.43 1.7 -13.66
O4 1.8 -12.93 1.7 -13.93
H 2.0 0.07 2.0 0.55
O1 1.7 -21.08 1.7 -21.18

MP2− O2 1.6 -22.75 1.6 -22.70
O3 1.6 -22.88 1.6 -22.80
O1 1.7 -20.77 1.6 -21.00

P2−
i O2 1.6 -22.41 1.6 -23.15

O3 1.6 -22.61 1.6 -22.62

Table 5.11 – MP−, MP2− and P2−
i water interaction distances (Å) and energies (kcal/mol)

Figure 5.10 – Solute-water energy scan geometry for MP−.
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Figure 5.11 – MP−-water interaction Grey: QM; Black: MM
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Figure 5.12 – MP2−-water interaction Grey: QM; Black: MM

6.6 Fitting the dihedral energy scans

Electrostatic parameters to compute the MM energy are those optimized above. Internal pa-

rameters are those of DMPN except for the hydroxyl torsion (no present in the existing Drude

force field) which has been borrowed from C36 and then reoptimized. In all scans, the molecule

geometry energy was relaxed at each value of ψ in the selected interval, both in QM and MM

calculations. More precisely, the scan has been performed first using QM. For each dihedral

value, the QM relaxed conformation has been saved and then re-minimized using MM. We

obtained perfect agreement for MP2− and small deviations for MP− dihedrals. Scans (QM vs

MM) are given in figure 5.13. Local minima differs for ∼ 1 kcal/mol and energy barriers are

well reproduced using the MM energy function.
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Figure 5.13 – QM/MM torsion energy scans. Left: result of the scans, Grey: QM; Black:

MM. Right: geometries used for the scan (two structures of different φ, the first fixed at 180

degrees).
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6.7 Conformational energies of MP− and MP2−

For both MP− and MP2− we used optimized QM geometries and the force constant matrix in

cartesian coordinates [eqn. 5.2] to estimate the total QM energy ŨQM [eqn. 5.3] for 200 random

conformations. The obtained energies were then compared to the ones calculated with the

MM energy function applied on the same 200 random conformations. For each conformation,

displacements di were obtained as random combination of the QM normal modes, extracted

from the Gaussian output. We used all modes except the trivial ones (rotations, translations

of the molecule) and the ones relative to hydrogen(s) stretching.
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Figure 5.14 – Conformational energies. Left: QM vs MM comparision. Right: superpo-

sition of the 200 random configurations generated by random linear combination of the QM

normal modes. For both MP− and MP2− QM/MM energies have correlation coefficient of 0.9.

Root mean square deviations are 0.3 kcal/mol for MP− and 0.6 kcal/mol for MP2−.
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6.8 Fitting QM interactions with Mg and Na ions

Pair-specific NBFIX and NBTHOLE terms were optimized by the Drude force field deve-

lopers to tune Lennard-Jones and electrostatic interactions between magnesium and nucleic

acids compounds in water (Lemkul & MacKerell [2016a]). Others specific terms for sodium

were developed earlier by Savelyev & MacKerell [2014]. Details about parameter optimization

and QM target data can be found in the publications. We recall that NBFIX parameters de-

fine pair-specific LJ interactions for a couple of atom types i and j. Two variables indicating

minimum energy ǫ
ij
min and minimum radius rij

min are used to compute the LJ interaction bet-

ween atoms of type i and j at distance r. The use of NBFIX does not alter LJ interactions

between atoms of type i or j and all other types k �= i,j in the force field. NBTHOLE is

analogous to NBFIX. A pair-specific screening parameter τij is used to define the smeared

charge distribution [eqn. 3.22] for the calculation of electrostatic interaction between a couple

of atoms of type i and j.

We give the list of these optimized parameters in table 5.12. A first NBFIX was applied

between magnesium (atom type MAGD) and the Drude charge attacched to the oxygen atom

of SWM4-NDP water (atom type DOH2). The authors modified this interaction after obser-

ving undesired behaviour of Mg2+-water complexes during MD simulations. More precisely,

they noticed that after few nanoseconds of dynamics the standard Drude force field parameters

produced frequent exchange of water molecules in complex with Mg2+, where one ion inter-

acts with six SWM4-NDP molecules. This should not happen, because these exchanges should

take place at the microsecond timescale (Neely & Connick [1970]). The introduced NBFIX

was then used to damp the too-strong dipole-dipole repulsion between water molecules, which

is induced by the too-strong dipole reponse of water molecules when interact with Mg2+. The

authors also observed that the new parameters improved the agreement between QM and MM

Mg2+-water interaction energies. We conclude that this NBFIX should always be applied in

our simulations. Two couples of NBFIX and NBTHOLE parameters were introduced to better

reproduce QM geometries for several nucleic acid moieties (Ade, Gua, Cyt, Ura, DMP) in com-

plex with Mg2+. The authors considered Inner-shell and Outer-shell coordinated complexes,

parameters were optimized by a grid search. We note that the value of rmin for the phosphate

bridging oxygen (O1) is considerably big when compared with the one for the nonbridging

oxygen.

We performed QM/Drude scans with magnesium and sodium on methyl phosphate and

for the bridging oxygen of the existing DMP from the official nucleic acids Drude force field

(DMPN). For DMPN, we scanned the bridging oxygen in two directions. First, imposing

“direct interaction” with Mg2+, then in the opposite direction when magnesium is closer to

the phosphate nonbridging oxygens [fig. 5.15]. Each MM scan was performed using two slightly
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different set of parameters. First, we used all the special NBFIX and NBTHOLE parameters

from the existing force field, listed in table 5.12. Then we have run a second round. Instead

of using the official NBFIX/NBTHOLE for the bridging oxygen, we applied LJ parameters of

the Drude lipid atom type (OD30B) as we did to correct the water scans. Results are given

in table 5.13.

type NBFIX NBTHOLE
ǫ(kcal/mol) r(Å)

Drude charge of water DOH2 -0.07500 2.65500 -
Mg2+ bridging oxygen OD30B(N) -0.40592 4.40157 1.151

nonbridging oxygen OD2C2C -0.31211 2.59990 1.449
Na+ nonbridging oxygen OD2C2C -0.04696 3.49668 1.449

hydroxyl oxygen OD31A -0.06000 3.07000 1.820

Table 5.12 – Pair-specific parameters for Mg2+ and Na+ in Drude, to balance their inter-

actions with phosphates and water. Values are extracted from Lemkul & MacKerell [2016a] ;

Savelyev & MacKerell [2014]

QM NBFIX OD30B
molecule atom type rmin emin rmin emin rmin emin

DMPN O1 OD30BN 1.8 -278.27 3.35 -152.20 1.9 -265.45
O1-inv OD30BN 3.0 -313.31 3.2 -254.16 2.45 -303.32

O3 OD2C2C 1.8 -299.47 1.9 -261.07 1.9 -260.87
MP− O1 OD30B 1.9 -282.93 3.25 -168.71 1.9 -297.55

O2 OD31A 1.9 -258.80 2.2 -258.40 1.95 -262.60
O3 OD2C2C 1.8 -290.17 2.15 -272.85 1.95 -272.75
O4 OD2C2C 1.8 -298.76 2.16 -295.15 1.95 -295.10

MP2− O1 OD30B 1.8 -480.05 3.1 -315.90 1.9 -519.62
O2 OD2C2C 1.7 -483.41 1.9 -508.07 1.9 -469.15
O3 OD2C2C 2.0 -485.08 1.9 -502.42 1.9 -463.35

Table 5.13 – Ions scans with Mg2+ Distances are in Å and interaction energies in kcal/mol.
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Figure 5.15 – Ion scan with magnesium performed on dimethyl phosphate (DMPN). Two

positions were considered: direct interaction (Yellow) and inverse direction (Blue)

Results show that the NBFIX/NBTHOLE parameters of table 5.12 were optimized to re-

produce the inverse scan for the bridging oxygen, while they produce poor agreement with

QM for the “direct” scan of the same interaction. This was a reasonable choice, since the

inverse interaction is more favorable compared to the direct one. Moreover, minimum energies

for both directions were not well reproduced. On the other hand, using the lipid atom type

the energy is better fitted, even if the minimum distance could be improved. O1 scans shows

improvement also for MP. This suggested us to use the lipid atom type instead of the NBFIX.

To better check model transferability we also computed scans for sodium, using the pa-

rameters developed by Savelyev & MacKerell [2014]. Results are shown in table 5.14. We

obtained good QM/Drude agreement, for both distances and interaction energies.

QM NBFIX
molecule atom type rmin emin rmin emin

DMPN O1 OD30BN 2.2 -102.21 2.1 -107.58
MP− O1 OD30B 2.2 -105.69 2.0 -121.85

O2 OD31A 2.2 -101.12 2.2 -106.66
O3 OD2C2C 2.1 -111.73 2.2 -110.37
O4 OD2C2C 2.1 -115.81 2.2 -120.63

MP2− O1 OD30B 2.1 -193.84 1.9 -229.89
O2 OD2C2C 2.0 -199.09 2.1 -204.10
O3 OD2C2C 2.0 -200.10 2.1 -201.90

Table 5.14 – Ions scans with Na+ Distances are in Å and interaction energies in kcal/mol.
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6.9 Mg2+:phosphate binding free energies

Experimental Mg2+ binding free energies are available for HPO−
2 and H2PO− but not for

methyl phosphate. Nevertheless, we expect that the methyl substitution has a modest effect

on the free energy, since the magnesium ion binds on the opposite side of the molecule, as

shown in figure 5.5 where IS and OS binding modes were extracted from snapshots of the

MD simulations. This is further supported by the similar OS binding free energies computed

below for MP2− and P2−
i . The MP− IS complex mostly coordinated Mg2+ through a single

oxygen (mean Mg2+-O distance of 2.07±0.05 Å). The MP2− IS complex mostly had bifurcated

magnesium coordination, with two of the phosphate oxygens interacting closely with Mg2+

(mean distances of 2.09±0.07 Å).

The IS complexes were stable during 1 ns of unrestrained MD, indicating that they are

separated from OS by a free energy barrier. The MP2− OS complex was also stable during 1 ns

of MD, with no tendency to unbind or shift to IS. The MP− OS complex had a shorter lifetime,

estimated from a 10 ns unrestrained MD simulation [fig. 5.16]. At the simulation concentration

(55 mM), the MP− OS binding free energy was 0.4 kcal/mol (see below), giving an expected

long-time limit of 33% for the OS population. The observed population during the 10 ns of

MD was 27%, indicating that rough convergence was achieved for the binding/unbinding rates

(which is sufficient for our purpose). The complex remained bound for intervals of about 275

ps on average, rebinding a few hundred picoseconds later. Evidently, the barrier separating

the OS bound and unbound states is small, probably on the order of 2 kcal/mol. Transitions

to IS were not observed. The OS lifetime is roughly comparable to the rate of OS/unbound

transitions obtained for P−
i with the AMOEBA force field (which was not measured precisely,

Kumar et al. [2014, 2018]).

For P2−
i , we only considered OS binding, for several reasons. OS binding was predominant

for MP2− in the present simulations, see below; we expect P2−
i to behave similarly. It also

proved difficult in this work to obtain a good force field model for short-range P2−
i -Mg2+

interactions using the same van der Waals parameters as for MP. More extensive parameter

optimization with one or two new atom types would be necessary. Since modeling inorganic

phosphate was not our goal in this work, we left a full parameter optimization and IS binding

study for future work. The computed free energies and their components are given in table

5.15. The unbound Mg2+ decoupling free energy, 412.3 kcal/mol, is 1.8 kcal/mol larger than

the result (corrected for box size effects) of earlier simulations (Lemkul & MacKerell [2016b])

that used a smaller model and shorter runs. Repeating the entire decoupling calculation (51

ns) for the Mg2+-MP− complex gave the same result within 0.1 kcal/mol, indicating good

convergence.
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Table 5.15 – Mg2+–phosphate binding free energies from simulations and experiment

recharge Mg2+

solute or ∆Gelec size restore LJ aapply
complex (ρMD) correction ∆GLJ restraint total b

∆Gbind Expt.c

Mg2+:MP−(OS) -415.6 0.0 +0.8 +0.4 -414.4 -2.1
-1.7

Mg2+:MP−(IS) -414.4 0.0 +1.0 +1.1 -412.3 0.0
Mg2+:MP2−(OS) -417.5 +1.0 +1.0 +0.4 -415.1 -2.8

-3.7
Mg2+:MP2−(IS) -416.5 +1.0 +1.6 +1.1 -412.8 -0.5
Mg2+:P2−

i (OS) -418.5 +1.0 +0.8 +0.4 -416.3 -4.0 -3.7
Mg2+ -414.1 +0.9 +0.9 – -412.3 – –

In kcal/mol. aAt the standard state concentration. bObtained by subtracting the Mg2+ value
from the value in “total” column. cValues are for H2PO−

4 ≡ P−
i and HPO2−

4 ≡ P2−
i Verbeeck

et al. [1984] ; Alberty & Goldberg [1992].

For MP−, the computed binding free energies were -2.1 kcal/mol for the OS state, 0.0

kcal/mol for the IS state, and -2.1 kcal/mol overall. All three values are within 0.8 kcal/mol

of the AMOEBA predictions for H2PO−. The overall binding free energy is 0.4 kcal/mol

away from the experimental H2PO− value of -1.7 kcal/mol (Verbeeck et al. [1984], Alberty

& Goldberg [1992]). Binding is predicted to be dominated by the OS state, which has a

97% occupancy, close to the AMOEBA H2PO− prediction (95% OS). For MP2−, computed

binding free energies were -2.8 kcal/mol for the OS state, -0.5 kcal/mol for the IS state, and

-2.8 kcal/mol overall. The overall value is 0.9 kcal/mol away from the experimental HPO2−

value of -3.7 kcal/mol. The bound state is predicted to be 87% OS and 13% IS. Earlier ab

initio calculations with a dielectric continuum solvent also predicted that OS was favored over

IS, but with a smaller difference. For P2−
i , the OS binding free energy was -4.0 kcal/mol, close

to the experimental value. The OS values for MP2− and P2−
i show that the methyl substitution

has a modest effect, as expected, weakening binding by 1.2 kcal/mol. We note that for MP2−,

P2−
i , and unbound Mg2+, the correction for the MD box size was small but distinctly non-

negligible (over 1 kcal/mol). It was zero for MP−, since introducing Mg2+ changes the total

charge from -1 to +1 (same absolute charge magnitude). Overall, for all three complexes

considered, the computed binding free energies are in good agreement with experiment. This

contrasts dramatically with the additive, Charmm C36 force field, which overestimated the

Mg2+ binding free energy by an order of magnitude (Satpati et al. [2011]). The results are

consistent with mostly OS binding for all the complexes.
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Figure 5.16 – Magnesium-phosphate binding-unbinding Black line : distance between

Mg2+ and P atoms, extracted from a 10ns simulation of the MP−:Mg2+ complex without

restrain potential. Red ,dashed line: limit for OS bound state where the magnesium-

phosphorus distance is between 4.1 and 5.9Å

6.10 Final MP and P2−
i topology and parameters

We give first the final model for hydrogen phosphate P2−
i =HPO2−

4 , for which vdW optimiza-

tion should be improved

RESI HP_2 -2.000 ! HPO4 Hydrogenphosphate, dianionic  !        H

GROUP                                              !        | 

ATOM P1     PD1AN   1.020  ALPHA -1.244   THOLE 1.478 !        O1
ATOM O2     OD2C2C -0.860  ALPHA -0.921   THOLE 0.803 !        |

ATOM O3     OD2C2C -0.860  ALPHA -0.921   THOLE 0.803 ! (-)O4--P1--O3(-)

ATOM O4     OD2C2C -0.860  ALPHA -0.921   THOLE 0.803 !        |

ATOM O1     OD31D   0.000  ALPHA -0.927   THOLE 0.900 !        O2

ATOM LPA    LPDNA1 -0.320

ATOM LPB    LPDNA1 -0.320

ATOM H      HDP1A   0.200
LONEPAIR relative LPA O1 P1 H distance 0.35 angle 110.00 dihe 90.00

LONEPAIR relative LPB O1 P1 H distance 0.35 angle 110.00 dihe 270.00

BOND O1 P1

BOND O2 P1

BOND O3 P1

BOND O4 P1

BOND O1 H
BOND O1 LPA

BOND O1 LPB
PATCH FIRST NONE LAST NONE

The final models for methyl phosphate were included in the official Drude polarizable force

field. We give now topologies and parameters, as they are in the new force field release

124



6. Results

RESI MP_1       -1.00    ! CH4O4P Methylphosphate, anionic

GROUP                    ! Villa et al., 2018
ATOM O1      OD30D    -0.546  ALPHA -0.901  THOLE 0.811   !       H11

ATOM P1      PD1AN     1.122  ALPHA -0.974  THOLE 2.098   !        |

ATOM O2      OD31D     0.000  ALPHA -0.927  THOLE 1.100   !  H13--C1--H12

ATOM LPA     LPDNA1   -0.300                              !        |

ATOM LPB     LPDNA1   -0.300                              !        O1

ATOM H2      HDP1A     0.360                              !        |

ATOM O3      OD2C2C   -0.778  ALPHA -0.921  THOLE 1.083   !    O4==P1==O3 (-)
ATOM O4      OD2C2C   -0.778  ALPHA -0.921  THOLE 1.083   !        |

ATOM C1      CD33C    -0.008  ALPHA -1.642  THOLE 0.862   !        O2

ATOM H11     HDA3A     0.076                              !         \

ATOM H12     HDA3A     0.076                              !         H2

ATOM H13     HDA3A     0.076
BOND O1     P1

BOND O1     C1

BOND O2     P1

BOND O3     P1

BOND O4     P1

BOND O2     H2

BOND C1     H11

BOND C1     H12

BOND C1     H13

BOND O2     LPA

BOND O2     LPB

LONEPAIR relative LPA O2 P1 H2 distance 0.35 angle 110.00 dihe 90.00

LONEPAIR relative LPB O2 P1 H2 distance 0.35 angle 110.00 dihe 270.00
ANISOTROPY O2 P1 LPA LPB A11 0.76473 A22 1.16239

PATCH FIRST NONE LAST NONE

RESI MP_2         -2.00 ! CH3O4P Methylphosphate, dianionic

GROUP                   ! Villa et al., 2018

                                                         !        H11

ATOM O1     OD30D    -0.685  ALPHA -1.291  THOLE 1.091   !         |

ATOM P1     PD1AN     1.050  ALPHA -1.244  THOLE 1.678   !   H13--C1--H12

ATOM O2     OD2C2C   -0.860  ALPHA -0.951  THOLE 1.083   !         |

ATOM O3     OD2C2C   -0.860  ALPHA -0.951  THOLE 1.083   !        O1

ATOM O4     OD2C2C   -0.860  ALPHA -0.951  THOLE 1.083   !         |

ATOM C1     CD33C     0.020  ALPHA -1.642  THOLE 0.862   ! (-)O4==P1==O3(-)

ATOM H11    HDA3A     0.065                              !        ||

ATOM H12    HDA3A     0.065                              !        O2

ATOM H13    HDA3A     0.065
BOND O1 P1

BOND O1 C1

BOND O2 P1

BOND O3 P1

BOND O4 P1

BOND C1 H11

BOND C1 H12

BOND C1 H13

PATCH FIRST NONE LAST NONE
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Chapter 5. Classical Drude Model for methyl phosphate and phosphotyrosine

BONDS

OD30D  PD1AN  240.00  1.600

CD33C  OD30D  335.00  1.440

OD31A  PD1AN  237.00  1.610

OD2C2C PD1AN  525.00  1.500

HDP1A  OD31A  536.50  0.970

CD33C  HDA3A  322.00  1.111

ANGLES

CD33C  OD30D  PD1AN   40.00  120.50

OD30D  PD1AN  OD31A   48.10  108.00

OD30D  PD1AN  OD2C2C  98.90  113.00

HDA3A  CD33C  OD30    60.00  109.50

HDP1A  OD31A  PD1AN   30.00  115.00   40.00  2.3500 ! Urey-Bradley term

OD31A  PD1AN  OD2C2C  98.90  111.00

OD2C2C PD1AN  OD2C2C 120.00  125.00

HDA3A  CD33C  HDA3A   35.50  108.40

DIHEDRALS

CD33C  OD30D  PD1AN   OD2C2C  0.100  3    0 .0  ! from nucleic acids

CD33C  OD30D  PD1AN   OD31A   0.500  3    0.0

CD33C  OD30D  PD1AN   OD31A   0.950  2    0.0

PD1AN  OD30D  CD33C   HDA3A   0.000  3    0.0

OD30D  PD1AN  OD31A   HDP1A   0.2000 1  180.0

OD30D  PD1AN  OD31A   HDP1A   1.0000 2    0.0

HDP1A  OD31A  PD1AN   OD2C2C  0.2000 3    0.0

CD33C  OD30D  PD1AN   OD2C2C  0.100  3    0.0

NONBONDED E14FAC 1.000000

OD30D  0.0     -0.1700   1.7700   ! from DMP @ lipids: new type for MP

PD1AN  0.0000  -0.3200   1.9000

CD33C  0.0000  -0.0780   1.9400

OD31A  0.0000  -0.1500   1.7650

OD2C2C 0.0000  -0.0700   1.8650

HDP1A  0.0000  -0.0100   0.4000

HDA3A  0.0000  -0.0240   1.3400

MAGD   0.0000  -0.0500   1.1264156

NBFIX

MAGD   DOH2   -0.07500  2.65500 ! Lemkul & MacKerell, J.Phys.Chem.B 2016

MAGD   OD2C2C -0.31211  2.59990 ! Lemkul & MacKerell, J.Phys.Chem.B 2016

MAGD   LPD    -0.16504  2.20163 ! Lemkul & MacKerell, J.Phys.Chem.B 2016

SODD   OD2C2C -0.04696  3.49668 ! nucleic acids, Savelyev-2014

SODD   OD30BN -0.02510  3.38168 ! nucleic acids, Savelyev-2014

SODD   LPD    -0.09000  2.92000 ! nucleic acid bases

SODD   OD31A  -0.06000  3.07000 ! ethanol, ser, thr, Hui-2015

MAGD   OD30D  -0.40592  2.25157 ! new, Villa et al, 2018

SODD   OD30D  -0.02510  3.38168 ! transferred from DMP OD30BN

NBTHOLE

MAGD   OD2C2C  1.44900 ! Lemkul & MacKerell, J.Phys.Chem.B 2016

MAGD   OD30D   1.15100 ! Lemkul & MacKerell, J.Phys.Chem.B 2016 (OD30BN) )

MAGD   ODW     1.51567 ! Lemkul & MacKerell

SODD   OD31A   1.82000 ! ethanol, ser, thr, Hui-2015

MAGD   OD31A   1.95000 ! new, Villa et al, 2018
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7. Classical Drude model for dianionic phosphotyrosine

We note that a couple of atom types differ respect to those described during optimization.

Their names were changed to avoid overlapping parameters/types in the official force field,

including those for interactions with Mg2+ and the existing force field parameters for the

nucleic acids bridging (OD30BN) and hydroxyl (OD31A) oxygens. The first was replaced by

the new type OD30D, the second by the new atom type OD31D. They have the same LJ

parameters of the existing OD30B (lipids) and OD31A (nucleic acids) types.

7 Classical Drude model for dianionic phosphotyrosine

As anticipated in the Methods section, after validation of the methyl phosphate and Pi model

we parametrized the dianionic phosphotyrosine pTyr2−. The tyrosine residue in the existing

Drude force field was derived from the model compound p-Cresol C7H8O (CRES, 3D structure

shown in figure 5.18). The official Drude topology files for CRES and TYR are given in figure

5.17. Atom types and electrostatic parameters of CRES were completely transferred to the

TYR side chain, then the charges of Cβ hydrogens HB1 and HB2 were readjusted.

! Topologies from the Drude force field 

!

!

RESI CRES          0.000 ! p-Cresol                      RESI TYR           0.000

!                                                        GROUP ! tyrosine backbone

!                                                        ATOM N    ND2A2   -0.382  ALPHA -1.942  THOLE 0.250

!                                                        ATOM HN   HDP1A    0.272

!                                                        ATOM CA   CD31C    0.169  ALPHA -0.960  THOLE 1.078

!                                                        ATOM HA   HDA1A   -0.017

!                                                        ATOM C    CD2O1A   0.497  ALPHA -0.675  THOLE 0.295

!                                                        ATOM O    OD2C1A   0.000  ALPHA -0.651  THOLE 0.310

!                                                        ATOM LPOA LPDO1   -0.312

!                                                        ATOM LPOB LPDO1   -0.227

GROUP                                                    GROUP ! tyrosine side chain

ATOM CB   CD33A   -0.267  ALPHA -1.802  THOLE 0.148      ATOM CB   CD32A   -0.192  ALPHA -1.802  THOLE 0.148

ATOM HB1  HDA3A    0.075                                 ATOM HB1  HDA2A    0.075   

ATOM HB2  HDA3A    0.075                                 ATOM HB2  HDA2A    0.075

ATOM HB3  HDA3A    0.075                                 !                          

ATOM CG   CD2R6A   0.086  ALPHA -1.418  THOLE 1.270      ATOM CG   CD2R6A   0.086  ALPHA -1.418  THOLE 1.270

ATOM CD1  CD2R6A  -0.202  ALPHA -1.427  THOLE 1.270      ATOM CD1  CD2R6A  -0.202  ALPHA -1.427  THOLE 1.270

ATOM HD1  HDR6A    0.118                                 ATOM HD1  HDR6A    0.118

ATOM CD2  CD2R6A  -0.202  ALPHA -1.427  THOLE 1.270      ATOM CD2  CD2R6A  -0.202  ALPHA -1.427  THOLE 1.270

ATOM HD2  HDR6A    0.118                                 ATOM HD2  HDR6A    0.118

ATOM CE1  CD2R6A  -0.136  ALPHA -1.444  THOLE 1.270      ATOM CE1  CD2R6A  -0.136  ALPHA -1.444  THOLE 1.270

ATOM HE1  HDR6A    0.123                                 ATOM HE1  HDR6A    0.123

ATOM CE2  CD2R6A  -0.136  ALPHA -1.444  THOLE 1.270      ATOM CE2  CD2R6A  -0.136  ALPHA -1.444  THOLE 1.270

ATOM HE2  HDR6A    0.123                                 ATOM HE2  HDR6A    0.123

ATOM CZ   CD2R6A   0.297  ALPHA -1.174  THOLE 1.270      ATOM CZ   CD2R6A   0.297  ALPHA -1.174  THOLE 1.270

ATOM OZ   OD31C    0.000  ALPHA -0.683  THOLE 0.601      ATOM OH   OD31C    0.000  ALPHA -0.683  THOLE 0.601

ATOM HZ   HDP1A    0.319                                 ATOM HH   HDP1A    0.319

ATOM LP1A LPD     -0.233                                 ATOM LP1A LPD     -0.233

ATOM LP1B LPD     -0.233                                 ATOM LP1B LPD     -0.233

Figure 5.17 – Drude topology files for p-Cresol (left) and tyrosine (right). Equivalent atoms

are shown on the same line.
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Chapter 5. Classical Drude Model for methyl phosphate and phosphotyrosine

Figure 5.18 – p-Cresol 3D structure

To parametrize dianionic phosphotyrosine, we adopted a similar strategy. We considered

the dianionic, phosphorylated form of pCRESOL (residue CREP), 3D structure shown in

figure 5.19. We created the initial model combining atom types and electrostatic parameters

of the existing p-Cresol and of our MP2− model.

Figure 5.19 – Phosphorylated p-CRESOL (CREP) from non-phosphorylated p-CRESOL

(CRES). The phosphorylated form can be seen as a patch applied to the non-phosphorylated

compound. Atoms on the right of the dashed line are modified, while atoms on the left are

kept as in CRES. Groups of equivalent atoms are (HB1-HB2-HB3), (CD1,CD2), (CE1-CE2),

(HD1-HD2), (HE1-HE2) and (O2-O3-O4).

7.1 QM quantities

We computed target QM quantities, based on the QM optimized geometry. All calculations

were run with the same QM softwares and methods used for MP. During optimization, the

CZ-OH-P-O2 dihedral was constrained to 180◦. Then we computed unperturbed and per-

turbed QM ESP maps using a grid of 2178 points and 64 perturbing charges. We scanned
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7. Classical Drude model for dianionic phosphotyrosine

the solute:water interaction energy for acceptors OH and O3, then for donors P and HE1.

Geometries used for the scans are shown in figure 5.20. Using PSI4, we scanned the dihedral

CE1-CZ-OH-P. During the scan we kept the CZ-OH-P-O2 dihedral constrained to 180◦, as for

geometry optimization.

7.2 Electrostatic parameters optimization

Parameter optimization was done following an existing procedure, used in a previous study

to develop the phosphotyrosine model of the additive force field C36 (Feng et al. [1996]).

We considered pTyr like a patch for the tyrosine residue, which shares with TYR the atoms

belonging to the methyl group and the first part of the TYR ring, as shown in figure 5.19.

Charges of atoms CE1(2), HE1(2), CZ, OH, P, O2(3,4) were readjusted performing a grid

search in order to obtain the better agreement between Drude and the QM ESP maps and

QM solute-water interaction energy scans. After optimization, we obtained a χ2
ESP =0.25 in

good agreement with the QM data. Results for the water scans are listed in table 5.16.

Figure 5.20 – Phosphorylated p-Cresol Water scans

QM MM
atom rmin emin rmin emin

OH 1.8 -18.02 1.8 -17.93
O3 1.7 -19.50 1.8 -19.48
P 3.3 -24.18 3.2 -24.15

HE1 2.8 3.74 2.6 3.50

Table 5.16 – CREP–water interaction distances (Å) and energies (kcal/mol)
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Figure 5.21 – CREP2−–water interaction Grey: QM; Black: MM

7.3 Dihedral parameters and fit

Internal parameters were borrowed from the existing additive model and then readjusted to fit

dihedral scans. For the bridging oxygen OH we imposed the atom type OD30D, as in MP. We

have run a dihedral scan for the dihedral angle CE1-CZ-OH-P using PSI4. The relaxed scan

was performed keeping CZ-OH-P-O2 fixed at the value of 180◦, as in the optimized geometry.

Results are shown in figure 5.22
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7. Classical Drude model for dianionic phosphotyrosine

7.4 Final pCRES and pTyr−2 topology and parameters

We give topology information for the final, optimized CREP and pTyr2− models in the exten-

ded format. Atom names are the ones used for the pTYr (TP2) residue of the C36 force field

(Feng et al. [1996]).

RESI CREP         -2.000 ! Phosphorylated p-Cresol
!
!                       HD1  HE1
!                        |    |
!              HB1      CD1--CE1        O3(-)
!                 \     /      \       /
!              HB2-CB--CG      CZ--OH--P--O4

                  /     \      /       \
!              HB3      CD2--CE2        O2(-)
!                        |    |
!                       HD2  HE2
!
GROUP
ATOM CB     CD33A   -0.267    ALPHA -1.802    THOLE 0.148
ATOM HB1    HDA3A    0.075
ATOM HB2    HDA3A    0.075
ATOM HB3    HDA3A    0.075
ATOM CG     CD2R6A   0.086    ALPHA -1.418    THOLE 1.270
ATOM CD1    CD2R6A  -0.202    ALPHA -1.427    THOLE 1.270
ATOM HD1    HDR6A    0.118
ATOM CD2    CD2R6A  -0.202    ALPHA -1.427    THOLE 1.270
ATOM HD2    HDR6A    0.118
ATOM CE1    CD2R6A  -0.220    ALPHA -1.444    THOLE 1.270
ATOM HE1    HDR6A    0.180
ATOM CE2    CD2R6A  -0.220    ALPHA -1.444    THOLE 1.270
ATOM HE2    HDR6A    0.180
ATOM CZ     CD2R6A   0.174    ALPHA -1.174    THOLE 1.270
ATOM OH     OD30D   -0.600    ALPHA -0.683    THOLE 0.901
ATOM P      PD1AN    1.090    ALPHA -1.344    THOLE 1.678
ATOM O2     OD2C2C  -0.820    ALPHA -0.931    THOLE 1.083
ATOM O3     OD2C2C  -0.820    ALPHA -0.931    THOLE 1.083
ATOM O4     OD2C2C  -0.820    ALPHA -0.931    THOLE 1.083
BOND CB  HB1  CB  HB2  CB  HB3
BOND CB  CG   CG  CD1  CG  CD2
BOND CD1 HD1  CD1 CE1  CD2 HD2
BOND CD2 CE2  CE1 HE1  CE1 CZ
BOND CE2 HE2  CE2 CZ   CZ  OH
BOND OH  P    P   O2   P   O3   P  O4
PATCH FIRST NONE LAST NONE
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RESI TP2   -2.000 ! Dianionic Phosphotyrosine

!

!                 |        HD1  HE1
!              HN-N         |    |

!                 |   HB1  CD1--CE1         O3(-)

!                 |   |    //     \\       /
!              HA-CA--CB--CG      CZ--OH--P--O4

!                 |   |    \  __  /        \

!                 |   HB2  CD2--CE2         O2(-)
!               O=C         |    |

!                 |        HD2  HE2

!
GROUP

ATOM N     ND2A2   -0.382   ALPHA -1.942   THOLE 0.250
ATOM HN    HDP1A    0.272

ATOM CA    CD31C    0.169   ALPHA -0.960   THOLE 1.078

ATOM HA    HDA1A   -0.017

ATOM C     CD2O1A   0.497   ALPHA -0.675   THOLE 0.295

ATOM O     OD2C1A   0.000   ALPHA -0.651   THOLE 0.310
ATOM LPOA  LPDO1   -0.312

ATOM LPOB  LPDO1   -0.227

GROUP
ATOM CB    CD32A   -0.192   ALPHA -1.802   THOLE 0.148
ATOM HB1   HDA2A    0.075

ATOM HB2   HDA2A    0.075

ATOM CG    CD2R6A   0.086   ALPHA -1.418   THOLE 1.270

ATOM CD1   CD2R6A  -0.202   ALPHA -1.427   THOLE 1.270

ATOM HD1   HDR6A    0.118

ATOM CD2   CD2R6A  -0.202   ALPHA -1.427   THOLE 1.270

ATOM HD2   HDR6A    0.118

ATOM CE1   CD2R6A  -0.220   ALPHA -1.444   THOLE 1.270

ATOM HE1   HDR6A    0.180

ATOM CE2   CD2R6A  -0.220   ALPHA -1.444   THOLE 1.270
ATOM HE2   HDR6A    0.180

ATOM CZ    CD2R6A   0.174   ALPHA -1.174   THOLE 1.270
ATOM OH    OD30D   -0.600   ALPHA -0.683   THOLE 0.901

ATOM P     PD1AN    1.090   ALPHA -1.344   THOLE 1.678

ATOM O2    OD2C2C  -0.820   ALPHA -0.931   THOLE 1.083

ATOM O3    OD2C2C  -0.820   ALPHA -0.931   THOLE 1.083
ATOM O4    OD2C2C  -0.820   ALPHA -0.931   THOLE 1.083

BOND N  CA    CA C     C + N      CA HA
BOND N  HN    C  O     O   LPOA   O  LPOB

BOND CA CB    CB HB1   CB  HB2    CB CG

BOND CG  CD1  CG CD2   CD1 HD1    CD1 CE1
BOND CD2 HD2  CD2 CE2  CE1 HE1    CE1 CZ

BOND CE2 HE2  CE2 CZ   CZ  OH     OH  P
BOND P   O2   P   O3   P   O4

IMPR C   CA  +N  O   N  -C  CA HN

CMAP -C  N   CA  C   N  CA  C  +N
LONEPAIR relative LPOA O C CA distance 0.30 angle 91.0 dihe   0.0

LONEPAIR relative LPOB O C CA distance 0.30 angle 91.0 dihe 180.0

ANISOTROPY O C LPOA LPOB  A11  0.82322 A22  1.14332
DONOR HN N

ACCEPTOR O C
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BONDS

CD2R6A OD30D  340.00  1.390 

ANGLES

CD2R6A CD2R6A OD30D   75.00  119.40 

CD2R6A OD30D  PD1AN   90.00  124.20 

DIHEDRALS

HDR6A  CD2R6A  CD2R6A   OD30D    4.2000     2   180.00   

CD2R6A CD2R6A  CD2R6A   OD30D    3.1000     2   180.00   

CD2R6A CD2R6A  OD30D    PD1AN    1.5500     2   180.00   

CD2R6A CD2R6A  OD30D    PD1AN    0.2000     3   180.00   

CD2R6A OD30D   PD1AN    OD2C2C   0.100      3     0.00   

7.5 Simulating Drude phosphotyrosine in the Tiam1:pSdc1 com-

plex

Starting from the crystal stucture, the Tiam1:pSdc1 complex was solvated in a large box of

size L=80 Å containing pre-equilibrated TIP3P water. Then we deleted solvent molecules wi-

thin the volume occupied by the solute, using a distance threshold of 3.0 Å from the complex

heavy atoms. The box was trimmed, from cubic to truncated octahedron, deleting solvent

molecules at the cube edges. Drude and lone particles were added with CHARMM, then the

Drude particles were minimized with restrained atomic centers. The system was finally relaxed

without restraints.

Equilibration MD was done using the Drude force field, in a step-wise procedure: first

restraints were applied on the solute backbone and side chain atoms, then just on the solute

backbone. After equilibration, we have run 20 ns of producion MD. Throughout the simula-

tions, the center of mass of Tiam1 was restrained to the box center using an harmonic potential.

MD was done using NAMD (version 2.12) at room temperature and pressure, using Lan-

gevin dynamics with a Langevin Piston Nosé-Hoover barostat (Feller et al. [1995]). We used

periodic boundary conditions and a PME electrostatics (Darden [2001]). Bonds to hydrogen

atoms were constrained with SHAKE (Ryckaert et al. [1977]). LJ interactions were shifted to

zero for separations between 10 and 12 Å. MD was run using a timestep of 1 fs and Drude

oscillators temperature TD=1 K.

We extracted configurations from the production simulation, where pTyr2− strongly in-

teracts with K879. Average and crystal structures are showed in figure 5.23. The average

phosphorus-nitrogen distance during the 20 ns of MD was 3.42 Å, close to the 3.61 Å of the
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crystal structure. The average value of the χ1 dihedral (N-CA-CB-CG) was 168.4 degrees,

slightly bigger than in the crystal structure where it is 158.5 degrees. In the crystal structure,

phosphotyrosine interacts also with the Tiam1 residue T857. In the simulation, this interaction

is weaker, with an average phosphate-threonine side chain distance which is more than 3 Å

larger respect to the crystal structure.
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Figure 5.23 – pTyr2−-K879 interactions during 20 ns of MD. Left: crystal structure (light

blue) and average structure from the simulation (green). Right: phosphorus-nitrogen distance

during MD. Frames were extracted each 40 ps. The straight line indicates the distance in the

crystal structure (3.61 Å).

8 Conclusion

A classical Drude model for methyl phospate and its interactions with Mg2+ was developed.

The parameters obtained were similar to those derived earlier for DMP, Lemkul & MacKerell

[2016a] with some significant differences. Agreement between the QM and MM data was si-

milar to that obtained earlier for DMP.

The MP model was used to compute Mg2+ standard binding free energies. Results were in

good agreement with experiments, indicating that OS state was predominant for both anionic

forms of MP. This is the first time the predominant bound state has been clearly identified

for MP2− and MP−. For this and similar binding processes, atomistic simulations are a po-

werful tool, and the polarizable force fields perform definetively better then additive additive

force fields. This has now been confirmed for phosphate-Mg2+ binding free energies, and was

confirmed also for several other ionic interactions (Panel et al. [2018]).

The parametrization and simulation of MP with the Drude polarizable force field is a step

towards modeling phosphorylated side chains in proteins. The Drude force field is applicable to
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8. Conclusion

large biomolecules and provides the speed and accuracy for long and wellconverged simulations.

The accuracy obtained here for phosphate- Mg2+ binding indicates that the Drude force field

can be applied to elucidate molecular recognition processes involving phosphorylated proteins,

which are essential for biological signalling.

135





Bibliography

Abrams J.B. & Tuckerman M.E. (2008). Efficient and direct generation of multidimensio-
nal free energy surfaces via adiabatic dynamics without coordinate transformations. The
Journal of Physical Chemistry B 112, 15742–15757.
cited page 65

Aguilar B., Shadrach R. & Onufriev A.V. (2010). Reducing the secondary structure bias in the
generalized born model via r6 effective radii. Journal of Chemical Theory and Computation
6, 3613–3630.
cited page 13

Alberty R.A. & Goldberg R.N. (1992). Standard thermodynamic formation properties for the
adenosine 5

′

-triphosphate series. Biochemistry 31, 10610–10615.
cited pages 98 and 123

Alford R.F., Leaver-Fay A., Jeliazkov J.R., O’Meara M.J., DiMaio F.P., Park H., Shapovalov
M.V., Renfrew P.D., Mulligan V.K., Kappel K., Labonte J.W., Pacella M.S., Bonneau R.,
Bradley P., Dunbrack R.L., Das R., Baker D., Kuhlman B., Kortemme T. & Gray J.J.
(2017). The rosetta all-atom energy function for macromolecular modeling and design.
Journal of Chemical Theory and Computation 13, 3031–3048.
cited page 16

Allouche D., Andre I., Barbe S., Davies J., de Givry S., Kastirelos G., O′Sullivan B., Prestwich
S., Sciex T. & Traore S. (2014). Computational protein design as an optimization problem.
Artificial Intelligence 212, 59–79.
cited page 16

Anisimov V.M., Lamoureux G., Vorobyov I.V., Huang N., Roux B. & MacKerell A.D. (2005).
Determination of electrostatic parameters for a polarizable force field based on the classical
drude oscillator. Journal of Chemical Theory and Computation 1, 153–168.
cited pages 94 and 99

Applequist J., Carl J. & Fung K. (1972). Atom dipole interaction model for molecular pola-
rizability. application to polyatomic molecules and determination of atom polarizabilities.
Journal of American Chemical Society 94, 2952–2960.
cited page 45

Archontis G. & Simonson T. (2005). A residue-pairwise generalized born scheme suitable for
protein design calculations. The Journal of Physical Chemistry B 109, 22667–22673.
cited page 14

137



Bibliography

Baker C.M. (2015). Polarizable force fields for molecular dynamics simulations of biomolecules.
Wiley Interdisciplinary Reviews: Computational Molecular Science 5, 241–254.
cited page 49

Barducci A., Bussi G. & Parrinello M. (2008). Well-tempered metadynamics: A smoothly
converging and tunable free-energy method. Physical Review Letters 100.
cited page 39

Bas D.C., Rogers D.M. & Jensen J.H. (2008). Very fast prediction and rationalization of pKa
values for protein-ligand complexes. Proteins: Structure, Function, and Bioinformatics 73,
765–783.
cited page 36

Basdevant N., Weinstein H. & Ceruso M. (2006). Thermodynamic basis for promiscuity and
selectivity in protein-protein interactions: PDZ domains, a case study. Journal of the
American Chemical Society 128, 12766–12777.
cited page 3

Bendas G. & Borsig L. (2012). Cancer cell adhesion and metastasis: Selectins, integrins, and
the inhibitory potential of heparins. International Journal of Cell Biology 2012, 1–10.
cited page 3

Bennett C.H. (1976). Efficient estimation of free energy differences from monte carlo data.
Journal of Computational Physics 22, 245–268.
cited page 63

Beutler T.C., Mark A.E., van Schaik R.C., Gerber P.R. & van Gunsteren W.F. (1994). Avoi-
ding singularities and numerical instabilities in free energy calculations based on molecular
simulations. Chemical Physics Letters 222, 529–539.
cited page 75

Blöchliger N., Xu M. & Caflisch A. (2015). Peptide binding to a pdz domain by electrostatic
steering via nonnative salt bridges. Biophysical Journal 108, 2362–2370.
cited page 3

Böhm H. & Schneider G. (2003). Protein-ligand interactions: From molecular recognition to
drug design. Wiley, Methods and Principles in Medicinal Chemistry .
cited page 1

Boresch S., Tettinger F., Leitgeb M. & Karplus M. (2003). Absolute binding free energies: a
quantitative approach for their calculation. The Journal of Physical Chemistry B 107,
9535–9551.
cited pages 65 and 66

Böttcher C. (1973). Theory of electric polarization. Elsevier .
cited page 48

Boyce S., Mobley D., Rocklin G., Graves A., Dill K. & BK. S. (2009). Predicting ligand
binding affinity with alchemical free energy methods in a polar model binding site. Journal
of Molecular Biology 394, 747–763.
cited page 44

138



Bibliography

Cieplak P., Caldwell J. & Kollman P. (2001). Molecular mechanical models for organic and bio-
logical systems going beyond the atom centered two body additive approximation: aqueous
solution free energies of methanol and n-methyl acetamide, nucleic acid base, and amide
hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases.
Journal of Computational Chemistry 22, 1048–1057.
cited page 49

Cuendet M.A. & Tuckerman M.E. (2014). Free energy reconstruction from metadynamics or
adiabatic free energy dynamics simulations. Journal of Chemical Theory and Computation
10, 2975–2986.
cited page 65

Dahiyat B.I. & Mayo S.L. (1997). De novo protein design: Fully automated sequence selection.
Science 278, 82–87.
cited pages 9 and 13

Darden T. (2001). Computational biochemistry and biophysics, treatment of long-range forces
and potential. Taylor & Francis Group 1.
cited pages 73, 74 and 107

Debiec K., Gronenborn A. & Chong L. (2014). Evaluating the strength of salt bridges: A
comparison of current biomolecular force fields. Journal of Physical Chemistry B 118,
6561–6569.
cited page 44

Deng Y. & Roux B. (2006). Calculation of standard binding free energies: Aromatic molecules
in the t4 lysozyme l99a mutant. Journal of Chemical Theory and Computation 2, 1255–
1273.
cited page 44

Ding Y., Chen B., Wang S., Zhao L., Chen J., Ding Y., Chen L. & Luo R. (2009). Overex-
pression of tiam1 in hepatocellular carcinomas predicts poor prognosis of HCC patients.
International Journal of Cancer 124, 653–658.
cited page 3

Druart K., Palmai Z., Omarjee E. & Simonson T. (2015). Protein:ligand binding free energies:
A stringent test for computational protein design. Journal of Computational Chemistry 37,
404–415.
cited page 24

Dunbrack R.L. & Karplus M. (1993). Backbone-dependent rotamer library for proteins appli-
cation to side-chain prediction. Journal of Molecular Biology 230, 543–574.
cited page 13

Ernst A., Gfeller D., Kan Z., Seshagiri S., Kim P.M., Bader G.D. & Sidhu S.S. (2010). Coevo-
lution of PDZ domain–ligand interactions analyzed by high-throughput phage display and
deep sequencing. Molecular BioSystems 6, 1782.
cited page 2

139



Bibliography

Feller S.E., Zhang Y., Pastor R.W. & Brooks B.R. (1995). Constant pressure molecular
dynamics simulation: The langevin piston method. The Journal of Chemical Physics 103,
4613–4621.
cited pages 37, 55, 74 and 107

Feng M.H., Philippopoulos M., MacKerell A.D. & Lim C. (1996). Structural characterization of
the phosphotyrosine binding region of a high-affinity SH2 domain-phosphopeptide complex
by molecular dynamics simulation and chemical shift calculations. Journal of the American
Chemical Society 118, 11265–11277.
cited pages 94, 129 and 131

Figueirido F., Buono G.S.D. & Levy R.M. (1997). On finite-size corrections to the free energy
of ionic hydration. The Journal of Physical Chemistry B 101, 5622–5623.
cited page 69

Finkelstein A.V. & Ptitsyn O.B. (1977). Theory of protein molecule self-organization. i. ther-
modynamic parameters of local secondary structures in the unfolded protein chain. Biopo-
lymers 16, 469–495.
cited page 13

Fiser A., Do R. & Svali A. (2000). Modeling of loops in protein structures. Protein Science
9, 1753–1773.
cited page 73

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani
G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian
H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K.,
Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T.,
Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin
K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant
J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross
J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin
A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G.,
Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman
J.B., Ortiz J.V., Cioslowski J. & Fox D.J. (2009). Gaussian09 revision e01. Gaussian Inc.
Wallingford CT.
cited page 95

Gaillard T. & Simonson T. (2014). Pairwise decomposition of an MMGBSA energy function
for computational protein design. Journal of Computational Chemistry 35, 1371–1387.
cited page 13

General I.J. (2010). A note on the standard state’s binding free energy. Journal of Chemical
Theory and Computation 6, 2520–2524.
cited page 59

Harder E. & Roux B. (2008). On the origin of the electrostatic potential difference at a
liquid-vacuum interface. The Journal of Chemical Physics 129, 234706.
cited page 82

140



Bibliography

Harder E., Anisimov V., Vorobyov I., Lopes P., Noskov S., MacKerell A. & Roux B. (2006).
Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force
field based on the classical drude oscillator. Journal of Chemical Theory and Computation
2, 1587–1597.
cited pages 51 and 79

Hayes R.L., Armacost K.A., Vilseck J.Z. & Brooks C.L. (2017). Adaptive landscape flattening
accelerates sampling of alchemical space in multisite λ dynamics. The Journal of Physical
Chemistry B 121, 3626–3635.
cited page 89

Huang L. & Roux B. (2013). Automated force field parameterization for nonpolarizable and
polarizable atomic models based on ab initio target data. Journal of Chemical Theory and
Computation 9, 3543–3556.
cited page 95

Hummer G., Pratt L.R. & García A.E. (1996). Free energy of ionic hydration. The Journal
of Physical Chemistry 100, 1206–1215.
cited page 69

Hummer G., Pratt L.R. & García A.E. (1997). Ion sizes and finite-size corrections for ionic-
solvation free energies. The Journal of Chemical Physics 107, 9275–9277.
cited page 69

Humphrey W., Dalke A. & Schulten K. (1996). VMD: Visual molecular dynamics. Journal of
Molecular Graphics 14, 33–38.
cited page 84

Hunter T. (2012). Why nature chose phosphate to modify proteins. Philosophical Transactions
of the Royal Society B: Biological Sciences 367, 2513–2516.
cited page 92

Im W., Beglov D. & Roux B. (1998). Continuum solvation model: Computation of electrosta-
tic forces from numerical solutions to the poisson-boltzmann equation. Computer Physics
Communications 111, 59–75.
cited page 37

Janin J., Wodak S., Levitt M. & Maigret B. (1978). Conformation of amino acid side-chains
in proteins. Journal of Molecular Biology 125, 357–386.
cited page 13

Jiang W., Hardy D.J., Phillips J.C., MacKerell A.D., Schulten K. & Roux B. (2010). High-
performance scalable molecular dynamics simulations of a polarizable force field based on
classical drude oscillators in NAMD. The Journal of Physical Chemistry Letters 2, 87–92.
cited page 56

Jo S., Kim T., Iyer V.G. & Im W. (2008). CHARMM-GUI: A web-based graphical user
interface for CHARMM. Journal of Computational Chemistry 29, 1859–1865.
cited page 74

141



Bibliography

Jo S., Cheng X., Lee J., Kim S., Park S.J., Patel D.S., Beaven A.H., Lee K.I., Rui H., Park S.,
Lee H.S., Roux B., MacKerell A.D., Klauda J.B., Qi Y. & Im W. (2016). CHARMM-GUI
10 years for biomolecular modeling and simulation. Journal of Computational Chemistry
38, 1114–1124.
cited page 74

Jorgensen W. & Thomas L. (2008). Perspective on free energy perturbation calculations for
chemical equilibria. Journal of Chemical Theory and Computation 4, 869–876.
cited page 74

Jorgensen W., Maxwell D. & Tirado-Rives J. (1996). Development and testing of the opls
all-atom force field on conformational energetics and properties of organic liquids. Journal
of American Chemical Society 118, 11225.
cited page 43

Khoury G.A., Baliban R.C. & Floudas C.A. (2011). Proteome-wide post-translational mo-
dification statistics: frequency analysis and curation of the swiss-prot database. Scientific
Reports 1.
cited page 91

Kokubo H., Tanaka T. & Okamoto Y. (2013). Two-dimensional replica-exchange method
for predicting protein-ligand binding structures. Journal of Computational Chemistry 34,
2601–2614.
cited page 89

Kollman P. (1993). Free energy calculations: Applications to chemical and biochemical phe-
nomena. Chemical Reviews 93, 2395–2417.
cited page 72

Krivov G.G., Shapovalov M.V. & Dunbrack R.L. (2009). Improved prediction of protein side-
chain conformations with scwrl4. Proteins: Structure, Function, and Bioinformatics 77,
778–795.
cited page 73

Kumar M., Simonson T., Ohanessian G. & Clavaguéra C. (2014). Structure and thermody-
namics of mg:phosphate interactions in water: A simulation study. ChemPhysChem 16,
658–665.
cited pages 93 and 122

Kumar M., Simonson T., Ohanessian G. & Clavaguéra C. (2018). Corrigendum: Structure
and thermodynamics of mg:phosphate interactions in water: A simulation study. ChemPhy-
sChem 19, 1117–1117.
cited pages 93 and 122

Lagardère L., Jolly L.H., Lipparini F., Aviat F., Stamm B., Jing Z.F., Harger M., Torabifard H.,
Cisneros G.A., Schnieders M.J., Gresh N., Maday Y., Ren P.Y., Ponder J.W. & Piquemal
J.P. (2018). Tinker-HP: a massively parallel molecular dynamics package for multiscale
simulations of large complex systems with advanced point dipole polarizable force fields.
Chemical Science 9, 956–972.
cited page 49

142



Bibliography

Laio A. & Parrinello M. (2002). Escaping free-energy minima. Proceedings of the National
Academy of Sciences 99, 12562–12566.
cited page 89

Lamoureux G. & Roux B. (2003). Modeling induced polarization with classical drude oscil-
lators: Theory and molecular dynamics simulation algorithm. Journal of Chemical Physics
119, 3025.
cited page 45

Lamoureux G., MacKerell A. & Roux B. (2003). A simple polarizable model of water based
on classical drude oscillators. Journal of Chemical Physics 119, 5185.
cited page 52

Lamoureux G., Harder E., Vorobyov I., Roux B. & MacKerell A. (2006). A polarizable model
of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters 418,
245–249.
cited pages 52 and 82

Lazaridis T. & Karplus M. (1999). Effective energy function for proteins in solution. Proteins:
Structure, Function, and Genetics 35, 133–152.
cited page 12

Lemkul J. & MacKerell A. (2016a). Balancing the interactions of mg2+ in aqueous solution
and with nucleic acid moieties for a polarizable force field based on the classical drude
oscillator model. Journal of Physical Chemistry B 120, 11436–11448.
cited pages 53, 93, 99, 119, 120 and 134

Lemkul J., Huang J., Roux B. & MacKerell Jr A. (2016). An empirical polarizable force field
based on the classical drude oscillator model: Development history and recent applications.
Chemical Reviews 116, 4983–5013.
cited pages 44 and 94

Lemkul J.A. & MacKerell A.D. (2016b). Balancing the interactions of mg22+ in aqueous
solution and with nucleic acid moieties for a polarizable force field based on the classical
drude oscillator model. The Journal of Physical Chemistry B 120, 11436–11448.
cited page 122

Letunic I. & Bork P. (2017). 20 years of the SMART protein domain annotation resource.
Nucleic Acids Research 46, D493–D496.
cited page 1

Lin Y.L., Aleksandrov A., Simonson T. & Roux B. (2014). An overview of electrostatic free
energy computations for solutions and proteins. Journal of Chemical Theory and Compu-
tation 10, 2690–2709.
cited pages 68, 82 and 83

Lindorff-Larsen K., Piana S., Dror R. & DE. S. (2011). How fast-folding proteins fold. Nature
28, 517–520.
cited page 43

143



Bibliography

Liu X., Shepherd T.R., Murray A.M., Xu Z. & Fuentes E.J. (2013). The structure of the tiam1
PDZ domain/ phospho-syndecan1 complex reveals a ligand conformation that modulates
protein dynamics. Structure 21, 342–354.
cited pages 3, 72 and 91

MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer
S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos
C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M.,
Smith J.C., Stote R., Straub J., Watanabe M., Wiórkiewicz-Kuczera J., Yin D. & Karplus
M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of
proteins†. The Journal of Physical Chemistry B 102, 3586–3616.
cited page 43

Maier J., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. & Simmerling C. (2015).
ff14sb: Improving the accuracy of protein side chain and backbone parameters from ff99sb.
Journal of Chemical Theory and Computation 11, 3696–3713.
cited pages 37 and 43

Maragliano L. & Vanden-Eijnden E. (2006). A temperature accelerated method for sampling
free energy and determining reaction pathways in rare events simulations. Chemical Physics
Letters 426, 168–175.
cited page 65

Martyna G.J., Tobias D.J. & Klein M.L. (1994). Constant pressure molecular dynamics algo-
rithms. The Journal of Chemical Physics 101, 4177–4189.
cited page 55

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. & Teller E. (1953). Equation
of state calculations by fast computing machines. The Journal of Chemical Physics 21,
1087–1092.
cited page 21

Miller K.J. (1990). Additivity methods in molecular polarizability. Journal of the American
Chemical Society 112, 8533–8542.
cited page 103

Minard M.E., Ellis L.M. & Gallick G.E. (2006). Tiam1 regulates cell adhesion, migration and
apoptosis in colon tumor cells. Clinical & Experimental Metastasis 23, 301–313.
cited page 3

Neely J. & Connick R. (1970). Rate of water exchange from hydrated magnesium ion. Journal
of the American Chemical Society 92, 3476–3478.
cited page 119

Oostenbrink C., Villa A., Mark A. & van Gunsteren W. (2004). A biomolecular force field
based on the free enthalpy of hydration and solvation: the gromos force-field parameter sets
53a5 and 53a6. Journal of Computational Chemistry 25, 1656–1676.
cited page 43

144



Bibliography

Panel N., Sun Y.J., Fuentes E.J. & Simonson T. (2017). A simple PB/LIE free energy function
accurately predicts the peptide binding specificity of the tiam1 PDZ domain. Frontiers in
Molecular Biosciences 4.
cited pages 27, 36, 37 and 38

Panel N., Villa F., Fuentes E.J. & Simonson T. (2018). Accurate PDZ/peptide binding spe-
cificity with additive and polarizable free energy simulations. Biophysical Journal 114,
1091–1102.
cited pages 4, 38, 44, 72, 84, 85, 93 and 134

Patel S. & Brooks C.L. (2003). CHARMM fluctuating charge force field for proteins: I para-
meterization and application to bulk organic liquid simulations. Journal of Computational
Chemistry 25, 1–16.
cited page 45

Patel S., Mackerell A.D. & Brooks C.L. (2004). CHARMM fluctuating charge force field
for proteins: II protein/solvent properties from molecular dynamics simulations using a
nonadditive electrostatic model. Journal of Computational Chemistry 25, 1504–1514.
cited page 45

Pawson T. & Scott J.D. (2005). Protein phosphorylation in signaling – 50 years and counting.
Trends in Biochemical Sciences 30, 286–290.
cited page 91

Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel
R.D., Kalé L. & Schulten K. (2005). Scalable molecular dynamics with NAMD. Journal of
Computational Chemistry 26, 1781–1802.
cited page 49

Polydorides S. & Simonson T. (2013). Monte carlo simulations of proteins at constant pH with
generalized born solvent, flexible sidechains, and an effective dielectric boundary. Journal
of Computational Chemistry 34, 2742–2756.
cited page 25

Ponder J.W. & Richards F.M. (1987). Tertiary templates for proteins. Journal of Molecular
Biology 193, 775–791.
cited page 13

Qi R., Jing Z., Liu C., Piquemal J.P., Dalby K.N. & Ren P. (2018). Elucidating the phos-
phate binding mode of phosphate-binding protein: The critical effect of buffer solution. The
Journal of Physical Chemistry B 122, 6371–6376.
cited page 93

Qin X., Hayashi F. & and S.Y. (2006). Solution structure of the PDZ domain of t-cell lym-
phoma invasion and metastasis 1 varian.
cited page 3

Reiland J., Ott V.L., Lebakken C.S., Yeanman C., McCarty J. & Rapraeger A.C. (1996). Per-
vanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding
of syndecan-1. Biochemical Journal 319, 39–47.
cited page 91

145



Bibliography

Ren P. & Ponder J.W. (2003). Polarizable atomic multipole water model for molecular me-
chanics simulation. Journal of Physical Chemistry B 104, 5933–5947.
cited page 49

Rocklin G.J., Mobley D.L., Dill K.A. & Hünenberger P.H. (2013). Calculating the binding
free energies of charged species based on explicit-solvent simulations employing lattice-sum
methods: An accurate correction scheme for electrostatic finite-size effects. The Journal of
Chemical Physics 139, 184103.
cited pages 67 and 69

Rosso L., Mináry P., Zhu Z. & Tuckerman M.E. (2002). On the use of the adiabatic molecular
dynamics technique in the calculation of free energy profiles. The Journal of Chemical
Physics 116, 4389–4402.
cited page 65

Ryckaert J.P., Ciccotti G. & Berendsen H.J. (1977). Numerical integration of the cartesian
equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal
of Computational Physics 23, 327–341.
cited page 107

Satpati P., Clavaguera C., Ohanessian G. & Simonson T. (2011). Free energy simulations
of a gtpase: Gtp and gdp binding to archaeal initiation factor 2. The Journal of Physical
Chemistry B 115, 6749–6763.
cited pages 93 and 123

Savelyev A. & MacKerell A.D. (2014). All-atom polarizable force field for DNA based on the
classical drude oscillator model. Journal of Computational Chemistry 35, 1219–1239.
cited pages 119, 120 and 121

Schaefer M. & Karplus M. (1996). A comprehensive analytical treatment of continuum elec-
trostatics. The Journal of Physical Chemistry 100, 1578–1599.
cited pages 9 and 10

Schultz J. (2000). SMART: a web-based tool for the study of genetically mobile domains.
Nucleic Acids Research 28, 231–234.
cited page 1

Sensoy O. & Weinstein H. (2015). A mechanistic role of helix 8 in GPCRs: Computational
modeling of the dopamine d2 receptor interaction with the GIPC1–PDZ-domain. Biochimica
et Biophysica Acta (BBA) - Biomembranes 1848, 976–983.
cited page 3

Shepherd T.R., Klaus S.M., Liu X., Ramaswamy S., DeMali K.A. & Fuentes E.J. (2010). The
tiam1 PDZ domain couples to syndecan1 and promotes cell–matrix adhesion. Journal of
Molecular Biology 398, 730–746.
cited pages 3 and 72

Shepherd T.R., Hard R.L., Murray A.M., Pei D. & Fuentes E.J. (2011). Distinct ligand
specificity of the tiam1 and tiam2 PDZ domains. Biochemistry 50, 1296–1308.
cited pages 3, 72 and 92

146



Bibliography

Shi Y., Xia Z., Zhang J., Best R., Wu C., Ponder J. & Ren P. (2013). Polarizable atomic
multipole-based amoeba force field for proteins. Journal of Chemical Theory and Compu-
tation 9, 4046–4063.
cited page 44

Silberstein L. (1917). Molecular refrectivity and atomic interaction. Philosophical Magazine
33, 521.
cited page 45

Simonson T. (2003). Electrostatics and dynamics of proteins. Reports on Progress in Physics
66, 737–787.
cited page 72

Simonson T. & Roux B. (2016). Concepts and protocols for electrostatic free energies. Mole-
cular Simulation 42, 1090–1101.
cited pages 69 and 83

Simonson T., Archontis G. & Karplus M. (2002). Free energy simulations come of age: Protein-
ligand recognition. Accounts of Chemical Research 35, 430–437.
cited page 74

Simonson T., Carlsson J. & Case D.A. (2004). Proton binding to proteins: pKaCalculations
with explicit and implicit solvent models. Journal of the American Chemical Society 126,
4167–4180.
cited page 25

Simonson T., Gaillard T., Mignon D., am Busch M.S., Lopes A., Amara N., Polydorides S.,
Sedano A., Druart K. & Archontis G. (2013). Computational protein design: The proteus
software and selected applications. Journal of Computational Chemistry 34, 2472–2484.
cited pages 4 and 16

Simonson T., Ye-Lehmann S., Palmai Z., Amara N., Wydau-Dematteis S., Bigan E., Druart K.,
Moch C. & Plateau P. (2016). Redesigning the stereospecificity of tyrosyl-tRNA synthetase.
Proteins: Structure, Function, and Bioinformatics 84, 240–253.
cited page 86

Songyang Z. (1997). Recognition of unique carboxyl-terminal motifs by distinct PDZ domains.
Science 275, 73–77.
cited page 1

Spiegel I., Salomon D., Erne B., Schaeren-Wiemers N. & Peles E. (2002). Caspr3 and caspr4,
two novel members of the caspr family are expressed in the nervous system and interact
with pdz domains. Mol. Cell. Neurosci. 20, 283–297.
cited page 3

Steiner S. & Caflisch A. (2012). Peptide binding to the pdz3 domain by conformational
selection. Proteins: Structure, Function, and Bioinformatics 80, 2562–2572.
cited page 3

147



Bibliography

Stiffler M.A., Chen J.R., Grantcharova V.P., Lei Y., Fuchs D., Allen J.E., Zaslavskaia L.A.
& MacBeath G. (2007). PDZ domain binding selectivity is optimized across the mouse
proteome. Science 317, 364–369.
cited page 1

Still W.C., Tempczyk A., Hawley R.C. & Hendrickson T. (1990). Semianalytical treatment of
solvation for molecular mechanics and dynamics. Journal of the American Chemical Society
112, 6127–6129.
cited page 10

Straatsma T.P. & McCammon J.A. (1992). Computational alchemy. Annual Review of Phy-
sical Chemistry 43, 407–435.
cited page 72

Street A.G. & Mayo S.L. (1998). Pairwise calculation of protein solvent-accessible surface
areas. Folding and Design 3, 253–258.
cited page 14

Sulka B., Lortat-Jacob H., Terreux R., Letourneur F. & Rousselle P. (2009). Tyrosine de-
phosphorylation of the syndecan-1 PDZ binding domain regulates syntenin-1 recruitment.
Journal of Biological Chemistry 284, 10659–10671.
cited page 91

Thole B. (1981). Molecular polarizabilities calculated with a modified dipole interaction.
Chemical Physics 59, 341–350.
cited page 80

Tian F., Lv Y., Zhou P. & Yang L. (2011). Characterization of pdz domain-peptide interactions
using an integrated protocol of qm/mm, pb/sa, and cfea analyses. Journal of Computer-
Aided Molecular Design 25, 947–958.
cited page 3

Tonikian R., Zhang Y., Sazinsky S.L., Currell B., Yeh J.H., Reva B., Held H.A., Appleton
B.A., Evangelista M., Wu Y., Xin X., Chan A.C., Seshagiri S., Lasky L.A., Sander C.,
Boone C., Bader G.D. & Sidhu S.S. (2008). A specificity map for the PDZ domain family.
PLoS Biology 6, e239.
cited page 2

Traoré S., Allouche D., André I., de Givry S., Katsirelos G., Schiex T. & Barbe S. (2013). A new
framework for computational protein design through cost function network optimization.
Bioinformatics 29, 2129–2136.
cited page 16

Tuckerman M.E. (2007). Free energy calculations: Theory and applications in chemistry and
biology. springer series in chemical physics, 86 edited by christophe chipot and andrew
pohorille. Journal of the American Chemical Society 129, 10963–10964.
cited page 74

Tuffery P., Etchebest C., Hazout S. & Lavery R. (1991). A new approach to the rapid de-
termination of protein side chain conformations. Journal of Biomolecular Structure and
Dynamics 8, 1267–1289.
cited page 13

148



Bibliography

Turney J.M., Simmonett A.C., Parrish R.M., Hohenstein E.G., Evangelista F.A., Fermann
J.T., Mintz B.J., Burns L.A., Wilke J.J., Abrams M.L., Russ N.J., Leininger M.L., Jans-
sen C.L., Seidl E.T., Allen W.D., Schaefer H.F., King R.A., Valeev E.F., Sherrill C.D. &
Crawford T.D. (2011). Psi4: an open-source ab initio electronic structure program. Wiley
Interdisciplinary Reviews: Computational Molecular Science 2, 556–565.
cited page 95

Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Gu-
vench O., Lopes P., Vorobyov I. & Mackerell A.D. (2009). CHARMM general force field: A
force field for drug-like molecules compatible with the CHARMM all-atom additive biolo-
gical force fields. Journal of Computational Chemistry NA–NA.
cited page 96

Verbeeck R.M.H., Bruyne P.A.M.D., Driessens F.C.M. & Verbeek F. (1984). Solubility of
magnesium hydrogen phosphate trihydrate and ion-pair formation in the system magnesium
hydroxide-phosphoric acid-water at 25◦c. Inorganic Chemistry 23, 1922–1926.
cited pages 98 and 123

Villa F., Mignon D., Polydorides S. & Simonson T. (2017). Comparing pairwise-additive and
many-body generalized born models for acid/base calculations and protein design. Journal
of Computational Chemistry 38, 2396–2410.
cited pages 4, 14 and 21

Villa F., MacKerell A., Roux B. & Simonson T. (2018a). Classical drude polarizable force
field model for methyl phosphate and its interactions with mg2+. The Journal of Physical
Chemistry A .
cited page 4

Villa F., Panel N., Chen X. & Simonson T. (2018b). Adaptive landscape flattening in amino
acid sequence space for the computational design of protein:peptide binding. The Journal
of Chemical Physics 149, 072302.
cited pages 4, 27, 36, 37, 38 and 40

Wernisch L., Hery S. & Wodak S.J. (2000). Automatic protein design with all atom force-fields
by exact and heuristic optimization 1 1edited by j. thorton. Journal of Molecular Biology
301, 713–736.
cited page 15

Wiedemann U., Boisguerin P., Leben R., Leitner D., Krause G., Moelling K., Volkmer-Engert
R. & Oschkinat H. (2004). Quantification of PDZ domain specificity, prediction of ligand
affinity and rational design of super-binding peptides. Journal of Molecular Biology 343,
703–718.
cited page 1

Yu W., Lopes P., Roux B. & MacKerell A. (2013). Six-site polarizable model of water based
on the classical drude oscillator. Journal of Chemical Physics 138, 34508.
cited pages 52 and 89

149



Bibliography

Zacharias M., Straatsma T.P. & McCammon J.A. (1994). Separation-shifted scaling, a new
scaling method for lennard-jones interactions in thermodynamic integration. The Journal
of Chemical Physics 100, 9025–9031.
cited page 75

Zhao L., Liu Y., Sun X., He M. & Ding Y. (2010). Overexpression of t lymphoma invasion and
metastasis 1 predict renal cell carcinoma metastasis and overall patient survival. Journal
of Cancer Research and Clinical Oncology 137, 393–398.
cited page 3

Zheng L., Chen M. & Yang W. (2008). Random walk in orthogonal space to achieve efficient
free-energy simulation of complex systems. Proceedings of the National Academy of Sciences
105, 20227–20232.
cited page 89

Zwanzig R.W. (1954). High-temperature equation of state by a perturbation method. i. non-
polar gases. The Journal of Chemical Physics 22, 1420–1426.
cited page 72

150



Résumé

Les interactions protéine-protéine (IPPs) médient la signalisation cellulaire. Leur ingénie-

rie peut fournir des informations et conduire au développement de molécules thérapeutiques.

Les IPPs sont souvent médiés par domaines spécialisés, avec différents modes de reconnais-

sance (grandes surfaces de contact, peptides). Leur caractérisation avec des modèles phy-

siques est complexe à cause des nombreux événements qui ont lieu après le binding: change-

ments de conformation, réorganisation des molécules de solvant, redistribution des charges ou

protonation-déprotonation des chaînes latérales.

Le travail de thèse est focalisé sur les domaines PDZ, importants médiateurs de IPPs.

Elles lient les 4-10 résidus C-terminaux de protéines cibles. Elles lient aussi les peptides cor-

respondants, qui peuvent servir de systèmes modèle ou d’inhibiteurs. Nous avons développé

deux approches computationnelles basé sur des modèles physiques et les avons appliquées au

domaine PDZ de la protéine Tiam1, un facteur d’échange pour la protéine Rac, impliqué dans

la protrusion neuronale. Sa cible est la protéine Syndecan1. Des affinités expérimentales sont

connues pour le peptide C-terminal, noté Sdc1, et plusieurs mutants; elles ont servi pour tester

les calculs.

Dans une première phase, nous avons développé des modèles performants “haut débit”

basé sur l’échantillonnage Monte Carlo adaptatif. Contrairement aux différentes méthodes

computationnelles existantes, les nouveaux modèles permettent l’étude d’un grand nombre de

variants de protéines (grands ensembles des séquences et des structures) et de réduire signi-

ficativement les temps de calcul. Nous avons appliqué notre méthodes pour de dessin com-

putationnel haut débit de Sdc1 dans le complexe Tiam1-Sdc1. Une simulation Monte Carlo

est faite où les chaines latérales de la protéine et du peptide peuvent changer de conformères

et certaines positions peuvent muter. Le solvant est implicite. Le paysage énergétique est ap-

plati par la méthode adaptative de Wang-Landau, de sorte qu’un vaste ensemble de variants

est échantillonné. Effectuant des simulations distinctes du complexe et du peptide seul nous

avons obtenu les énergies libres relatives d’association de 75,000 variants en heure CPU sur

une machine de bureau. Les valeurs sont compatibles avec les quelques données expérimentales

disponibles. Notre modèle haut débit est implémenté dans la nouvelle version de Proteus, le
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Résumé

programme pour de dessin computationnel de protéines développé à l’École polytechnique.

Cependant, notre approche est générale et peut être implémentée dans d’autres logiciels lar-

gement utilisé.

Dans une seconde phase, nous avons développé une approche beaucoup plus détaillée et

réaliste, avec un coût de calcul plus élevé. Cette approche est basée sur des simulations de

dynamique moléculaire et implique l’utilisation de techniques de calcul d’énergie libre. So-

luté et solvant sont décrits par un champ de force atomique, qui représente explicitement la

polarisation électronique: le champ de force Drude de Charmm. La polarisabilité peut être

importante car les résidus de l’interface PDZ:peptide passent, lors de l’association, d’un en-

vironement riche en solvant à un autre pauvre en solvant. Nous avons fait des simulations

alchimiques d’énergie libre pour comparer quatre variants du peptide qui diffèrent par une ou

deux chaines latérales ioniques. Pendant chaque transformation alchimique, les chaînes laté-

rales d’intérêt sont mutées en utilisant un chemin d’états non physiques. Les transformations

sont réalisés avec plusieurs simulations indépendantes, nécessitent l’utilisation de plusieurs

processeurs en parallèle. Nos calculs sont principalement effectués sur le superordinateur OC-

CIGEN du CINES. Les résultats sont en bon accord avec l’expérience. Les champs de force

“additifs” Charmm et Amber, qui représentent la polarisabilité implicitement, donnent un

moins bon accord. Ces calculs sont le premier exemple de simulations alchimiques d’énergies

libre d’association relatives protéine:ligand avec un champ de force polarisable. Enfin, pour

une modélisation future de peptides phophorylés, nous avons étendu le champ de force Drude

pour inclure le méthyl phosphate et la phospho tyrosine. Il en résulte un excellent accord vaec

les affinités expérimentales phosphate:magnésium.
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Les  interactions  protéine-protéine  (IPPs)  médient  la
signalisation cellulaire. Leur ingénierie peut fournir des
informations et conduire au développement de molécules
thérapeutiques.  Les  domaines  PDZ sont  des médiateurs
importants de  IPPs.  Elles  lient  les  4--10  résidus  C-
terminaux  de  protéines  cibles.  Elles lient  aussi  les
peptides correspondants, qui ppeuvent servir de systèmes
modèle  ou  d'inhibiteurs.  Nous avons  développé  deux
approches computationnelles et  les avons appliquées au
domaine PDZ de la protéine Tiam1, un facteur d'échange
pour  la  protéine  Rac,  impliqué  dans  la  protrusion
neuronale. Sa  cible  est  la  protéine  Syndecan1.  Des
affinités expérimentales sont connues pour le peptide C-
terminal, noté Sdc1, et plusieurs mutants; elles ont servi
pour tester les calculs. Nous avons d'abord développé une
méthode  de dessin  computationnel  haut  débit.  Une
simulation Monte Carlo est faite où les chaines latérales
de  la  protéine  et  du  peptide  peuvent  changer  de
conformères et  certaines  positions  peuvent  muter.  Le
solvant est implicite. Le paysage énergétique est applati
par  la  méthode  adaptative  de  Wang-Landau,  de  sorte
qu'un  vaste  ensemble  de  variants  est  échantillonné.
Effectuant des simulations distinctes du complexe et du
peptide  seul  nous  avons  obtenu  les  énergies libres

relatives d'association de 75,000 variants en heure CPU
sur une machine de bureau. Les valeurs sont compatibles
avec  les  quelques  données  expérimentales disponibles.
Ensuite,  nous  avons  développé  une  approche  beaucoup
plus détaillée et réaliste. Soluté et solvant sont décrits par
un champ de force atomique, qui représente explicitement
la polarisation électronique: le champ de force Drude de
Charmm.  La  polarisabiité  peut  être  importante  car  les
résidus  de l'interface  PDZ:peptide  passent,  lors  de
l'association,  d'un  environement riche  en  solvant  à  un
autre pauvre en solvant. Nous avons fait des simulations
alchimiques d'énergie libre pour comparer quatre variants
du peptide qui diffèrent par une ou deux chaines latérales
ioniques.  Les  résultats  sont  en  bon accord  avec
l'expérience. Les chamops de force additifs  Charmm et
Amber,  qui représentent  la  polarisabilité  implicitement,
donnent un moins bon accord. Ces calculs sont le premier
exemple de  simulations  alchimiques  d'énergies  libre
d'association relatives protéine:ligand avec un champ de
force polarisable. Enfin, pour une modélisation future de
peptides  phophorylés,  nous  avons étendu  le  champ de
force  Drude  pour  inclure  le  méthyl  phosphate  et  la
phospho tyrosine. Il en résulte un excellent accord vaec
les affinités expérimentales phosphate:magnésium.

Protein-protein  interactions  (PPIs)  mediate  complex
signaling networks in cells. Engineering them can provide
understanding  and  is  a  recognized  strategy  for  drug
design.  PDZ domains  are  among  the  most  widespread
domains  mediating  PPIs.  They recognize  the  4-10  C-
terminal  amino acids  of  their  target  proteins.  They can
also bind  the  corresponding peptides,  which can  thus
serve as inhibitors or model systems. We have developed
and tested two computational approaches to characterize
and engineer PDZ:peptide recognition. We applied them
to  the  PDZ domain  of  the  Tiam1  protein, a  Rac  GTP
exchange factor involved in neuronal protrusion and axon
guidance. Its  natural  target  protein  is  the  Syndecan1
protein.  Experimental  affinities  are available for  the C-
terminal  Syndecan1 peptide,  denoted  Sdc1,  and  several
mutants; this data was used for testing and benchmarking.
We first developed a novel high throughput strategy for
protein and peptide design. A Monte Carlo simulation was
done where protein and peptide side chains could change
conformations  and  selected  positions could  mutate.
Solvent  was  modeled  implicitly.  The  energy  landscape
was  adaptively flattened,  following  the  Wang-Landau
method,  so  that  a  very  diverse  set  of  sequences was
sampled.  By  performing  separate  simulations  for  the
PDZ:peptide complex and the unbound peptide, we could
recover  the  relative  binding  free  energies  of  around

100,000 peptide variants using just one hour of CPU time
on  a  desktop  machine.  The  computed affinities  were
consistent  with  (sparse)  available  experimental  data.
Next, we developed a much more detailed and accurate
simulation model. The solute and solvent were described
in  full  atomic  detail,  using  molecular  dynamics
simulations and a state-of-the-art force field that explicitly
accounts for electronic polarization: the Charmm Drude
force field. Polarizability is expected to be important for
PDZ:peptide binding, since residues that form the binding
interface are transferred from a solvent-rich to a solvent-
poor  environment upon  binding.  We  performed
alchemical  free  energy  simulations  to  compare  the
binding free energies of four peptide variants, which all
differ  in one or two ionic side chains.  The calculations
gave good agreement  with  experiment.  In  contrast,  the
Charmm and Amber additive  force fields, which treat
electronic polarization implicitly, gave poorer agreement.
These calculations represent the first example of relative
protein:ligand binding  free  energies  computed  with
alchemical free energy simulations and a polarizable force
field. Finally, to allow future modeling of phosphorylated
peptide  variants,  we extended  the  Drude  force  field  to
include both methyl phosphate and phosphotyrosine. The
force  field  gave  excellent  agreement  with  experimental
phosphate--magnesium binding free energies.
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