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If I have seen further it is by standing on the shoulders
of Giants.

Newton, citing Bernard of Chartres

If I have not seen as far as others, it is because giants
were standing on my shoulders.

Hal Abelson



Summary

The analysis of approximation techniques is a key topic in computational geometry,
both for practical and theoretical reasons. In this thesis we discuss sampling tools
for geometric structures and geometric approximation algorithms in combinatorial
optimisation.

Part I focuses on the combinatorics of geometric set systems. We start by discussing
packing problems in set systems, including extensions of a lemma of Haussler, mainly
the so-called shallow packing lemma. For said lemma we also give an optimal lower
bound that had been conjectured but not established in previous work on the topic.
Then we use this lemma, together with the recently introduced polynomial partitioning
technique, to study a combinatorial analogue of the Macbeath regions from convex
geometry: Mnets, for which we unify previous existence results and upper bounds,
and also give some lower bounds. We highlight their connection with epsilon-nets,
staples of computational and combinatorial geometry, for example by observing that
the unweighted epsilon-net bound of Chan et al. (SODA 2012) or Varadarajan (STOC
2010) follows directly from our results on Mnets.

Part II deals with local-search techniques applied to geometric restrictions of clas-
sical combinatorial optimisation problems. Over the last ten years such techniques
have produced the first polynomial-time approximation schemes for various problems,
such as that of computing a minimum-sized hitting set for a collection of input disks
from a set of input points. In fact, it was shown that for many of these problems, local
search with radius Θ(1/ε2) gives a (1 + ε)-approximation with running time nO(1/ε2).
However the question of whether the exponent of n could be decreased to o(1/ε2) was
left open. We answer it in the negative: the approximation guarantee of local search
cannot be improved for any of these problems.

Keywords computational geometry, combinatorial optimisation, epsilon-nets, ap-
proximation algorithms, local search
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Résumé

L’analyse des techniques d’approximation est centrale en géométrie algorithmique,
pour des raisons pratiques comme théoriques. Dans cette thèse nous traitons de l’échan-
tillonage des structures géométriques et des algorithmes d’approximation géométriques
en optimisation combinatoire.

La première partie est consacrée à la combinatoire des hypergraphes. Nous débutons
par les problèmes de packing, dont des extensions d’un lemme de Haussler, particuliè-
rement le lemme dit de shallow packing, pour lequel nous donnons aussi un minorant
optimal, conjecturé mais pas établi dans les travaux antérieurs. Puis nous appliquons
ledit lemme, avec la méthode de partition polynomiale récemment introduite, à l’étude
d’un analogue combinatoire des régions de Macbeath de la géométrie convexe : les M-
réseaux, pour lesquels nous unifions les résultats d’existence et majorations existants,
et donnons aussi quelques minorants. Nous illustrons leur relation aux epsilon-réseaux,
structures incontournables en géométrie combinatoire et algorithmique, notamment
en observant que les majorants de Chan et al. (SODA 2012) ou Varadarajan (STOC
2010) pour les epsilon-réseaux (uniformes) découlent directement de nos résultats sur
les M-réseaux.

La deuxième partie traite des techniques de recherche locale appliquées aux restric-
tions géométriques de problèmes classiques d’optimisation combinatoire. En dix ans,
ces techniques ont produit les premiers schémas d’approximation en temps polynomial
pour divers problèmes tels que celui de calculer un plus petit ensemble intersectant
pour une ensemble de disques donnés en entrée parmi un ensemble de points donnés
en entrée. En fait, il a été montré que pour de nombreux tels problèmes, la recherche
locale de rayon Θ(1/ε2) donne une (1 + ε)-approximation en temps nO(1/ε2). Savoir si
l’exposant de n pouvait être ramené à o(1/ε2) demeurait une question ouverte. Nous
répondons par la négative : la garantie d’approximation de la recherche locale n’est
améliorable pour aucun desdits problèmes.

Mots-clefs géométrie algorithmique, optimisation combinatoire, algorithmes d’ap-
proximation, epsilon-réseaux, recherche locale
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Introduction à l’usage du lecteur
francophone

Le lecteur de langue française pourra regretter que l’emploi de l’anglais, lingua franca
de la recherche scientifique, crée entre lui-même et l’auteur un obstacle superflu

outre ceux déjà introduits par l’écrit. Ces quelques pages lui sont dédiées à titre d’excuse.
Elles suivent à peu près la structure du chapitre d’exposition rédigé en anglais.

Ces travaux de thèse ressortissent surtout à la géométrie algorithmique, discipline
assez jeune née dans les années 1970 de la spécialisation de l’algorithmique aux objets
géométriques.

§

§ §
L’objectif unissant les travaux présentés dans ce mémoire est l’analyse d’algo-

rithmes d’approximation dans le contexte spécifique de l’optimisation combinatoire
géométrique. Sous l’hypothèse, largement considérée comme plausible, que la classe
P des problèmes admettant un algorithme polynomial soit strictement incluse dans la
classe NP, plusieurs problèmes d’importance capitale ne sauraient être résolus par des
algorithmes polynomiaux.

L’algorithméticien est contraint d’envisager une notion de résolution plus large
pour contourner ces limitations théoriques. Pour les problèmes d’optimisation, s’il
n’est pas envisageable de calculer efficacement une solution optimale, on essaie d’en
proposer une dont la valeur soit garantie assez proche dudit optimum ; dans la pratique,
il sera souvent préférable d’être à quatre-vingt-quinze pourcent de l’optimum en temps
raisonnable, plutôt que de l’atteindre après de longs calculs.

Outre ces aspects pratiques, l’étude des propriétés d’approximabilité de tels pro-
blèmes est en soi une contribution à la théorie de la complexité. Par exemple, le pro-
blème du voyageur de commerce est également NP-complet dans sa formulation géné-
rale et dans un monde euclidien, mais le fait qu’il admette un schéma d’approximation
en temps polynomial dans ce second cas (travaux pour lesquels S. Arora et J. Mitchell
ont partagé le prix Gödel en 2010) suggère une différence de difficulté entre les deux
versions.

La première partie de ce manuscrit est dédiée à certains problèmes combinatoires
dans les hypergraphes. Eu égard à une famille de parties tirées d’un même ensemble
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Introduction 7

(univers) à n éléments (une telle famille et ses éléments sont un hypergraphe et ses
arêtes dans la terminologie classique de Berge [21], ou un set system et ses ranges en
anglais) et à un paramètre strictement positif ε, on se propose de prélever dans l’univers
un échantillon de façon à intersecter chaque arête contenant au moins εn éléments. Un
tel échantillon est appelé ε-réseau (ε-net).

Le succès de cet objet en géométrie algorithmique est attribuable à deux facteurs
principaux. D’une part, cette notion capture bien certaines propriétés souvent atten-
dues d’un échantillon statistique : l’ε-réseau intersecte toutes les arêtes les plus grandes
et le sur-échantillonage est permis puisqu’un sur-ensemble d’un ε-réseau demeure
un ε-réseau. (Par comparaison, d’autres notions d’approximation plus contraignantes
exigent non seulement que les arêtes de cardinalité εn soient atteintes, mais aussi
qu’elles le soient en proportion de leur taille. L’inconvénient en est que cela peut néces-
siter de prélever bien plus d’éléments.) D’autre part, Haussler et Welzl [60] ont mon-
tré que les hypergraphes de dimension de Vapnik–Chervonenkis bornée1 admettent
toujours des ε-réseaux de taille

O

(
1

ε
log

1

ε

)
,

ceci indépendemment de la cardinalité de l’univers. Les hypergraphes définis par inter-
section de n points avec des régions géométriques « simples » (demi-plans, triangles, co-
niques, etc.) ont habituellement cette propriété. Cette quantité bornée indépendamment
de n est à comparer avec une méthode d’échantillonage qui prélèverait une fraction
constante de l’univers. En outre, connaissant la taille du plus petit ε-réseau, un tirage
aléatoire d’un échantillon de cette cardinalité produit un tel réseau avec probabilité
constante.

L’introduction ultérieure de mesures plus fines de la complexité des hypergraphes,
telle que la complexité en cellules peu profondes (qui est à peu de chose près la fonction
de répartition des cardinalités des arêtes), a permis ces dernières années de préciser
les résultats classiques sur la taille minimale de ces ε-réseaux [32, 99]. Lorsque pour
tous entiers m et l tout sous-hypergraphe induit sur m éléments a au plus ϕ̃(m) · lO(1)

arêtes de cardinalité inférieure à l avec ϕ̃ majorée par un polynôme, la taille des plus
petits ε-réseaux est

O

(
1

ε
log ϕ̃

(
1

ε

))
,

ce qui étend le majorant précédent, et l’améliore dans certains cas : par exemple pour
les disques de R2, qui ont ϕ̃(m) = O(1).

Nous contribuons à cette étude de l’échantillonnage des hypergraphes par des
résultats sur une généralisation du réseau récemment introduite : le M-réseau (Mnet).

1. Pour une définition de cette propriété purement combinatoire, voir Definition 1.3.
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En géométrie convexe, toute partie compacte et convexe C d’un espace euclidien inclut
pour tout petit paramètre ε > 0 un petit nombre de « régions de Macbeath » convexes,
toutes de volume proportionnel à ε · volC et telles que tout demi-espace affine qui
inclue une fraction ε de C contienne une de ces régions [23]. Le M-réseau, introduit par
Mustafa et Ray [86], en est l’analogue combinatoire : un ε-M-réseau d’un hypergraphe
à n éléments consiste en une famille de parties de l’univers (mais pas nécessairement
d’arêtes), toutes de cardinalité Ω(εn), telles que toute arête à plus d’εn éléments en
inclue au moins une.

La principale contribution de cette première partie est l’unification de précédents
résultats sur l’existence et la taille d’un plus petit M-réseau dans les hypergraphes géo-
métriques, résultats initialement obtenus par des méthodes disparates. Notre approche
combine deux outils : d’une part, le point de vue algébrique pour la manipulation des
incidences entre points et régions géométriques (plus particulièrement la technique de
partition polynomiale introduite par Guth et Katz [54]), d’autre part, un lemme de
Haussler [59] sur l’entropie métrique (la taille maximale d’une famille d’arêtes (δ/n)-
discernable, c’est-à-dire dont les différences symétriques deux à deux comprennent
toutes au moins δ points, ce qu’en anglais on appelle un problème de packing) des
hypergraphes dont la dimension de Vapnik–Chervonenkis est bornée :

Théorème (Haussler). Dans un hypergraphe sur n éléments de dimension de Vap-
nik–Chervonenkis d ∈ N, toute famille (δ/n)-discernable a O((n/δ)d) arêtes.

Si le résultat final est unemajoration de la cardinalité des plus petitsM-réseaux, dont
nous montrons aussi qu’elle est presque optimale, nos outils intermédiaires incluent
de nouveaux résultats sur deux variantes du lemme de Haussler exploitant le rang de
l’hypergraphe, c’est-à-dire la cardinalité maximale de ses arêtes. En particulier nous
donnons une borne inférieure conjecturéemais pas obtenue dans des travaux antérieurs,
et ce par la construction explicite d’un hypergraphe. De plus, nous observons qu’il est
possible d’obtenir un ε-réseau par une méthode probabiliste à partir d’un ε-M-réseau du
même hypergraphe. Nous dérivons par cette nouvelle méthode les théorèmes usuels sur
la cardinalité des ε-réseaux, illustrant de ce fait les liens étroits entre les deux structures.

§

§ §
Dans un second temps, nous étudions les algorithmes de recherche locale. Là où

l’exploration totale de l’espace des solutions d’un problème n’est pas envisageable en
raison de sa taille, les méthodes de ce type limitent la recherche à un voisinage de la
solution initiale, pourvu bien sûr qu’une notion de voisinage ait été définie sur l’espace
des solutions.

Le problème archétypal que nous considérons est une restriction géométrique de
celui de Plus Petit Ensemble Intersectant (Minimum Hitting Set). Étant donnée
une instance composée d’ensembles finis P et D de points et de disques de R2, l’ob-
jectif est de calculer une plus petite partie de P qui intersecte tous les disques de D.
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Brönnimann et Goodrich [24] ont donné un algorithme qui, exploitant l’existence
d’ε-réseaux de cardinalité O(1/ε) pour l’hypergraphe défini sur P par D, retourne en
temps polynomial une solution dont la cardinalité est à un facteur multiplicatif constant
de l’optimum, soit une O(1)-approximation.

Ce résultat peut sembler surprenant puisque la version non géométrique du pro-
blème, c’est-à-dire la recherche d’un plus petit transversal dans un hypergraphe quel-
conque à n sommets, est au mieux log(n)-approximable. Toutefois cette méthode ne
saurait fournir une (1 + ε)-approximation dès lors qu’ε est petit. Un autre outil permet
d’attaquer ce problème : la recherche locale.

Son principe est d’améliorer itérativement une solution initiale. Spécifiquement,
à chaque étape on s’autorise à retirer t ≤ λ éléments de la solution courante (ici,
des points de P) et à les remplacer par au plus t − 1 autres, pourvu que l’ensemble
résultant soit toujours solution. L’entier λ est le pas, ou rayon, de la recherche locale. On
définit ainsi une règle de parcours sur l’espace des solutions, qui reçoit une structure de
graphe orienté acyclique. Les solutions que l’on ne peut améliorer de cette manière sont
dites localement optimales. Puisque l’exploration du voisinage à chaque étape nécessite
de considérer nO(λ) solutions candidates, ce parcours de l’espace des solutions doit
s’achever en un optimum local en un temps nO(λ).

Si l’idée d’amélioration par recherche limitée à un petit voisinage (ici une boule de
rayon 2λ pour la distance de Hamming qui à deux ensembles A et B associe la cardi-
nalité |(A ∪B) \ (A ∩B)|) est commune à tous les algorithmes de recherche locale,
qu’on les applique à des problèmes discrets ou continus, la singularité de cette approche
en optimisation combinatoire géométrique est l’existence de garanties liant les optima
locaux à l’optimum global. Plus précisément, Agarwal et Mustafa [3] observent que
la recherche locale fournit une O(1)-approximation pour un certain problème géomé-
trique2, puis Chan et Har-Peled [33] et Mustafa et Ray [87] montrent simultanément
que le ratio d’approximation peut être pris aussi proche de 1 que voulu lorsque le pas
augmente, à savoir 1 + ε pour λ = Θ(1/ε2).

Cette technique a été étendue par de nombreux auteurs à de multiples problèmes
géométriques d’optimisation combinatoire, fournissant pour tous une (1 + ε)-approxi-
mation en temps nO(1/ε2). Dans la deuxième partie de cette thèse, nous étudions une
question posée dès les premières applications [52, 87], à savoir s’il est possible par une
analyse plus rigoureuse de diminuer cet exposant : par exemple on voudrait savoir si
l’algorithme termine en fait en nO(1/ε), voire même en no(1/ε).

La clef de l’analyse de ces algorithmes est un théorème sur les graphes bipartis. On
appelle un tel graphe k-expanseur lorsque chaque ensemble de t sommets à gauche a au
moins t voisins à droite, ce pour tout t ≤ k. Par le théorème de Hall, cela revient aussi
à exiger que chaque ensemble d’au plus k sommets à gauche participe à un couplage.

2. À savoir Plus Grand Ensemble Indépendant dans un graphe d’intersection de rectangles.
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Théorème. Si un graphe planaire biparti, d’ensembles de sommets gauche et droit G et
D, est k-expanseur, k ≥ 3, alors

|G| ≤
(
1 +

c√
k

)
|D|

pour une certaine constante c > 0.

L’analyse commune aux divers algorithmes géométriques de recherche locale de
pas λ, telle qu’elle apparaît par exemple chez Chan et Grant [31], Chan et Har-
Peled [33], Gibson et Pirwani [52] et Mustafa et Ray [87], passe par la construction
d’un graphe d’échange planaire, biparti et λ-expanseur, dont les ensembles de sommets
sont deux solutions, l’une étant un optimum local. On conclut alors que le rapport
de leurs cardinalités doit être au plus 1 + c/

√
λ (par analogie avec la programmation

linéaire, nous appelons cette quantité écart de localité du problème), et donc qu’un pas
λ = Θ(1/ε2) correspond à une garantie d’approximation de 1 + ε.

Nous prouvons que l’inégalité sur les graphes bipartis est, à un facteur multiplica-
tif près, optimale ; ceci par la description explicite d’une certaine famille de graphes
planaires et k-expanseurs sur des ensembles de sommets (Gn , Dn) vérifiant

|Gn| , |Dn| = Θ(n),

et |Gn| ∼
(
1 +

c′√
k

)
|Dn| lorsque n→∞.

À partir de la famille de graphes saturant l’inégalité, nous construisons pour divers
problèmes géométriques des instances dans lesquelles l’écart de localité est effective-
ment de 1 + Ω(1/

√
λ), y compris pour celui du Plus Petit Ensemble Intersectant

dans un hypergraphe défini par des disques. Par conséquent, nous pouvons répondre
par la négative à la question posée précédemment : l’exposant O(1/ε2) du temps d’exé-
cution de la recherche locale n’est pas contingent, mais nécessaire si l’on ne connaît de
la structure des graphes d’échange que leur planarité.

Enfin, l’analyse des algorithmes de recherche locale s’étend à des graphes d’échange
non nécessairement planaires, mais possédant toujours des séparateurs de taille sous-
linéaire, et notre construction aussi : pour les graphes k-expanseurs dont tout sous-
graphe d’ordrem possède un séparateur équilibré3 de taille O(m1−1/d), avec d ∈ N∗, le
théorème ci-dessus s’applique toujours, mais avec un facteur de la forme 1+O(k−1/d),
tandis que notre construction atteint un ratio 1 + Ω(k−1/d).

3. C’est-à-dire un ensemble de sommets dont la suppression ne laisse pas plus de 2m/3 sommets dans
une même composante connexe.
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Notations and Terminology

In this dissertation, the letters N and R stand for the sets of natural numbers (including
0) and real numbers respectively. The (possibly infinite) cardinality of a setX is denoted
by |X|, its powerset isP(X), its 0−1 valued indicator function is 1X and the symmetric
difference of two set setsX and Y , denoted byX ∆ Y , isX ∪ Y \ (X ∩ Y ). For n ∈ N,
the set

(
X
n

)
consists of all subsets of X of cardinality n.

For any (m,n) ∈ N2 we write [m..n] for the integer interval {i ∈ N : m ≤ i ≤ n}
as opposed to [m,n] and (m,n) for the corresponding closed and open real intervals.

For a real x, we write dxe for the smallest integer greater than x − 1 and bxc for
the largest integer smaller than x+ 1.

A graph is a pair (V ,E) where V is a (possibly infinite) set and E ⊆
(
V
2

)
. The

elements of V are called vertices and those of E edges. For any subset X of V , the set
N(V ) consists of the neighbours of X , that is, the vertices in V \X that share an edge
with a vertex of X .

Wherever they appear, the functions ϕ and ϕ̃ correspond to the shallow-cell com-
plexity of a set system as defined in Chapter 1. They will never have another meaning.

The function log is the natural logarithm. The function log∗ is the iterated logarithm,
an integer-valued slow-growing function defined by

log∗ : x ∈ (0,+∞) 7→ min

n ∈ N : (log ◦ · · · ◦ log)︸ ︷︷ ︸
n times

(x) ≤ 1

 .

Concepts are highlighted where they are first defined. Finally, our contributions
are numbered whereas theorems from other authors are labeled with letters.

13



Contents

Summary 4

Résumé (in French) 5

Introduction (in French) 6

Acknowledgements 11

Notations and Terminology 13

Contents 14

Chapter 0. A Detailed Overview 19
Combinatorics of Geometric Set Systems . . . . . . . . . . . . . . . . . . . . 19
Interlude: Nets and Minimum Hitting Set . . . . . . . . . . . . . . . . . . . 28
Local Search Techniques for Approximation Algorithms . . . . . . . . . . . . 29

Part I. Sampling Geometric Set Systems 35

Chapter 1. Set Systems and Geometry 36
1 Set Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Geometric Set Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Combinatorial Complexity of Set Systems . . . . . . . . . . . . . . . . . 38

3.1 Vapnik–Chervonenkis Dimension . . . . . . . . . . . . . . . . . 38
3.2 Shatter Function . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Shallow-Cell Complexity . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Union Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Semi-Algebraic Set Systems . . . . . . . . . . . . . . . . . . . . 42

4 Hitting and Sampling Set Systems . . . . . . . . . . . . . . . . . . . . . 43

14



Contents 15

4.1 Transversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Combining Set Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 2. Packing Lemmas 47
1 Classical and Shallow Packing Lemmas . . . . . . . . . . . . . . . . . . 48

1.1 Haussler’s Packing Lemma . . . . . . . . . . . . . . . . . . . . 48
1.2 Shallow Packing Lemma . . . . . . . . . . . . . . . . . . . . . . 49

2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1 Optimality of Shallow Packings (Proof in Section 3) . . . . . . . 50
2.2 l-Wise Shallow Packings (Proof in Section 4) . . . . . . . . . . . 50

3 Building Large Shallow Packings . . . . . . . . . . . . . . . . . . . . . . 51
4 Proving the l-Wise Shallow Packing Lemma . . . . . . . . . . . . . . . 54
5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 3. Combinatorial Macbeath Regions 58
1 Macbeath Regions and Mnets . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Mnets for Semi-algebraic Set Systems (Proof in Section 3) . . . 60
2.2 Lower Bounds on the Size of Mnets (Proof in Section 4) . . . . 62

3 Construction of Mnets . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1 Preliminaries on Polynomial Partitioning . . . . . . . . . . . . 63
3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Main Lower Bound on Mnets . . . . . . . . . . . . . . . . . . . . . . . . 68
5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Computing Mnets . . . . . . . . . . . . . . . . . . . . . . . . . 69

Part II. Geometric Local Search 70

Chapter 4. Hardness of Approximation 71
1 Combinatorial Optimisation Problems . . . . . . . . . . . . . . . . . . . 71
2 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 72
3 Parametrised Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 Fixed-Parameter Tractability . . . . . . . . . . . . . . . . . . . 72
3.2 Lowest Levels of the W Hierarchy . . . . . . . . . . . . . . . . 73
3.3 Complexity Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 A Few Optimisation Problems . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Problems on General Graphs and Set Systems . . . . . . . . . . 75
4.2 Geometric Problems . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Hardness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents 16

Chapter 5. Approximation Guarantee of Local Search 78
1 General Principles of Local Search . . . . . . . . . . . . . . . . . . . . . 79

1.1 Space of Feasible Solutions . . . . . . . . . . . . . . . . . . . . . 79
1.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.3 Locality Gap and the Efficiency of Local Search . . . . . . . . . 80

2 Geometric PTASs Based on Local Search . . . . . . . . . . . . . . . . . 81
2.1 Approximation Guarantees for Local Search . . . . . . . . . . . 81
2.2 Computational Efficiency of Geometric Local Search . . . . . . 83
2.3 Contributions: Limits of Geometric Local Search . . . . . . . . 83
2.4 Algorithmic Consequences . . . . . . . . . . . . . . . . . . . . 84

3 Lower-Bound Construction . . . . . . . . . . . . . . . . . . . . . . . . . 85
4 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Geometric Problems in the Plane . . . . . . . . . . . . . . . . . 91
4.2 Other Problems with Hereditary Separators . . . . . . . . . . . 95
4.3 Matchings and Local Versions of Hall’s Theorem . . . . . . . . 95

5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1 Local Search and Terrain Guarding . . . . . . . . . . . . . . . 96
5.2 Local Search with Small Radius . . . . . . . . . . . . . . . . . . 96

Appendices 99

A. Some Classical Theorems 100
1 Circle Packing Theorem of Koebe, Andreev and Thurston . . . . . . . . 100
2 Cubical Loomis–Whitney Inequality . . . . . . . . . . . . . . . . . . . . 100
3 Hall’s Marriage Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4 Graph Separator Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 101
5 Turán’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B. OpenQuestions and Remaining Problems 102
1 On Mnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2 On Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C. Tentative English–French Lexicon 104

References 106

Index 115



List of Figures

0.1 Disks have both (primal) VC dimension and dual VC dimension 3. . . . . . 22
0.2 Macbeath regions of an Euclidean ball . . . . . . . . . . . . . . . . . . . . . 24
0.3 The locality gap of optimisation problems may be arbitrarily large. . . . . . 30
0.4 Exchange graph construction for Minimum Hitting Set of disks . . . . . 31
0.5 Lower bound construction and algorithmic consequences . . . . . . . . . . 33
0.6 Lower bound construction for radius-3 local search on Independent Set

of disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.1 The VC dimension of convex sets in R2 is +∞. . . . . . . . . . . . . . . . . 39
1.2 Union complexity of disks in R2 . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Euclidean intuition for Haussler’s packing lemma . . . . . . . . . . . . . . 48
2.2 A set system with linear growth . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Selecting ranges corresponding to low-depth nodes . . . . . . . . . . . . . 53

4.1 Hasse diagram of some complexity classes . . . . . . . . . . . . . . . . . . 74

5.1 Construction of locally-expanding ‘unbalanced’ bipartite graphs . . . . . . 86
5.2 Three-dimensional lowest cell of G(3, L) . . . . . . . . . . . . . . . . . . . 86
5.3 Loomis–Whitney inequality for cubes . . . . . . . . . . . . . . . . . . . . . 89
5.4 The graph G(1, 3, 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Building a ‘tight’ instance for the Hitting Set problem . . . . . . . . . . . 92
5.6 ‘Tight’ instances for Independent set and Set Cover with disks . . . . . 93
5.7 Exchange graph construction for Terrain Guarding. . . . . . . . . . . . . 97
5.8 Lower bound construction for c5 ≥ 3 . . . . . . . . . . . . . . . . . . . . . 98

17



List of Tables

0.1 Some systems with nets smaller than Haussler and Welzl’s upper bound . . 23
0.2 Net–Mnet correlation observed by Mustafa and Ray . . . . . . . . . . . . . 25

1.1 Complexities of some geometric set systems . . . . . . . . . . . . . . . . . 44

3.1 Bounds on the size of Mnets . . . . . . . . . . . . . . . . . . . . . . . . . . 61

18



Chapter Zero

A Detailed Overview

This introductory chapter lays out in broad strokes the main ideas of this work.
With technical minutiae and the machinery of proofs committed to later chapters,

we want to give a landscape view of the results, their context and their interplay.
Appropriate references are given so that the details of proofs can be found in the
remainder of the thesis.

Our core problem is the study of approximation in geometric settings. This is
motivated both by practical applications (a key topic in computational geometry is
to approximate a complicated object with a simpler one that has roughly the same
properties of interest: examples include polytope approximation, surface simplification,
Vapnik-Chervonenkis theory, coresets) and by theoretical consequences, as showing
that some problemswhose exact resolution is challenging admit efficient approximation
algorithms—or that others do not—helps chart the ‘invisible electric fence’1 between
‘easy’ and ‘hard’ problems.

In this chapter, original contributions are highlighted in the margin.

Combinatorics of Geometric Set Systems
The first part of this thesis is dedicated to the study of set systems or range spaces: those
are just a family of subsets (ranges) of a common universe (the ground set). As geometers
we are particularly interested with such systems built from geometric objects, for
example when the ground set is a subset of R2 and the ranges are all its intersections
with disks.

1. The simile is S. Aaronson’s [1].

19
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Nets: sampling set systems
Given a set system (X,R)withR ⊆ P(X), a simple and natural problem is to compute
a small set of elements of X that together intersect all nonempty ranges in R. For
example, let X be a subset of R2 and let the ranges of R be of the form X ∩D with
D a disk (we say thatR is defined on X by disks). If we allow D to be any disk, there
will be |X| singleton ranges and only the whole universe X will be a solution. This is
not too interesting, but we might do better if we introduce the condition that all ranges
contain at least a fraction ε ∈ (0, 1) of X . Formally, given a set system (X,R) with a
finite subset Y of X (very often we will take Y = X) and a positive parameter ε, an
ε-net for Y is any N ⊆ Y such that

∀R ∈ R, |R ∩ Y | ≥ ε |Y | =⇒ N ∩R 6= ∅.

Applications

Nets share a property with random samples: they hit the most significant ranges. (They
are not however required to hit the ranges in proportion to their cardinalities, a stronger
constraint that defines approximations. Approximations are nets, but the smallest nets
can be much smaller than approximations.)

This is sufficient for nets to replace random samples in various algorithmic applic-
ations that rely on this property, and constructive methods to build nets are used to
derandomise sampling-based algorithms. For example nets have been employed in
deterministic algorithms for linear programming since the nineties, see Chan [30] for
a recent reference. In this setting the ground set’s elements are the linear constraints
(forbidden half-spaces) and each range consists of all constraints violated by a same
point, that is, all half-spaces that contain this point. Then an ε-net is a subset N of con-
straints such that any point which violates a fraction ε of all constraints must violate
at least one of those in N . Conversely solutions that satisfy all constraints in N will
satisfy at least a fraction 1− ε of all constraints. Another use, which we will discuss in
a few pages, is in optimisation problems that involve hitting sets or set covers.

Finally there is also a natural interpretation in statistical learning. There the ranges
inR are called classifiers. In realisable classification problems, a specific classifier R∗

is distinguished in R, but is not known to the learner. Without loss of generality we
can assume that R∗ is the empty set: translate all ranges by R 7→ R∆R∗. A random
sample x1, . . . , xm is drawn from X and one is told for each i whether xi ∈ R∗. The
goal is to identify R∗ based on this knowledge. If the sample is an ε-net for (X,R),
this information is sufficient to reject classifiers that disagree with R∗ on more than
ε |X| elements. The question is then to determine how large m must be for the sample
to be a net with high probability. See the recent paper by Kupavskii and Zhivotovskiy
[70] for such parallels between computational geometry and learning theory.
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The main question about nets is to determine how small they can be depending
on the combinatorics of the set system, that is, the cardinality of a smallest net. For
our example with disks in R2, we can build an X for which every ε-net must have at
least 1/ε points: consider 1/ε disjoint disks containing εn points each and let X be the
union of these sets of points, then an ε-net for X (with respect to disks) must contain
at least one point from each disk. (For simplicity assume that 1/ε and εn are integers.)
The same construction applies also to ranges defined by half-planes, or rectangles, or
other geometric regions, so that in general the size of the smallest ε-nets should be at
least 1/ε.

On the other hand, the system ([n],P([n])) whose ranges are all subsets of [n]
cannot have ε-nets with fewer than (1−ε)n elements, i.e. almost all of [n]must be taken
in any net. Note that this system is geometric: it is (up to isomorphism) the system
defined on n points in convex position by all convex regions. Thus any good upper
bound result on the size of nets (such as (1) below) will require additional constraints
on (X,R).

Geometric Set Systems

Although the definition of nets is purely combinatorial, their study has been grounded
in geometric intuition since its inception.

For example, consider a finite set of points X in R2. Remember that the ε-net
problem for half-planes asks how small N ⊆ X can be if every half-plane containing
dε |X|e points ofX contains at least a point ofN . The answer in this case relies on and
highlights the fact that half-plane arrangements are simpler than abstract set systems. It
follows from a combinatorial property enjoyed by many natural geometric set systems
(defined by half-planes in the plane, by half-spaces in higher-dimensional Euclidean
space, by disks and other semi-algebraic regions, etc.): finite VC dimension.

Broadly, for any such set system, there is an integer d (the VC dimension) such that
every set of d + 1 points has a subset that is not obtainable as the intersection of the
points with a range. On Figure 0.1a, one sees that this is true of the system defined by
disks in R2, with d = 3. Intervals of R and half-spaces of Rd, with VC dimensions 2
and d+ 1, are popular examples in learning theory.

Building on ideas of Vapnik and Chervonenkis [97], Haussler and Welzl [60] in the
seminal paper that introduced nets proved that any set systemwith finite VC dimension
d has small ε-nets. After some later simplifications [22], their bound is

O

(
d

ε
log

1

ε

)
. (1)

Their proof is probabilistic: it is based on a modification of the ghost sample technique
of Vapnik and Chervonenkis [97]. They show that taking a random sample of the
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(a) Disks have VC dimension 3. Given any four points of R2, some subset cannot be cut out by
a disk. (There are in essence two configurations to examine. In both any disk that contains the
red squares must contain one black point.)
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(b) Disks also have dual VC dimension 3. Three disks of R2 may define 23 full-dimensional cells
(sign patterns) but no arrangement of four disks has 24 cells.

Figure 0.1: Disks have both primal and dual VC dimension 3. See Definition 1.2 for the
definition of set system duality.

ground set of this size yields an ε-net with constant probability. The most important
fact here is that the size of this sample does not depend on the universe’s cardinality.

Shallow-cell complexity

This bound of Haussler and Welzl must be close to optimal, since—as we noted pre-
viously—a lower bound of Ω(1/ε) on the size of ε-nets is easily obtained for natural
geometric systems. In terms of VC dimension only it is tight: for every integer d ≥ 2
there are systems with VC dimension at most dwhose ε-nets all haveΩ((d/ε) log(1/ε))
elements [68]. However it was observed via various specialised constructions that
some set systems admit smaller nets: see Table 0.1.

It was believed for some time that O(1/ε) should be the correct bound for all set
systems that beat (1). However in 2010 Alon [6] gave a lower bound on the size of
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Objects Space Upper bound on the smallest ε-nets
Intervals R 1/ε
Half-spaces R2,R3 O(1/ε)
Disks R2 13.4/ε
Axis-parallel rectangles R2 O((1/ε) log log(1/ε))

Table 0.1: Some systems with nets smaller than Haussler and Welzl’s upper bound (1).

nets for the very simple example of lines in R2 that is (barely) super-linear in 1/ε.
Alon’s lower bound has been improved recently but is still roughly a logarithmic factor
away from the upper bound. This was followed by some more strongly super-linear
lower bounds of Pach and Tardos [91], such as Ω((1/ε) log log(1/ε)) for axis-parallel
rectangles (rectangles with their sides horizontal and vertical) in R2.

To understand this behaviour one has to introduce finer measures of complexity,
usually rooted in geometric properties.

A first example is the union complexity of a class of geometric regions, defined as
the maximum number of faces in the boundary of the arrangement of any n members,
as a function of n. See the ‘State of the Union’ survey of Agarwal, Pach, and Sharir [4]
for further details and the papers by Clarkson and Varadarajan [39] and Varadarajan
[98] that highlight a connection between union complexity and size of nets.

Shallow cell complexity extends the idea of union complexity and is the most suc-
cessful complexity measure to date. Again, consider disks in R2. From any set of n
points in general position, Θ(n3) different subsets can be cut out by a disk, but we
also have some information on their cardinalities: most are large. More precisely, only
O(nl2) of them have fewer than l elements for each l ∈ [1 .. n]. For various geometric
set systems, similar bounds on the distribution function of cardinalities are known.
Generally speaking, we say that the system has shallow cell complexity ϕ̃ : N 7→ R+

when the number of ranges of size at most l induced on n elements is n · ϕ̃(n) · lO(1).
Thus ϕ̃(n) = O(1) for disks. When the VC dimension is bounded—or equivalently
ϕ̃(n) = O(nd) for some constant d—the system admits ε-nets as small as

O

(
1

ε
log ϕ̃

(
1

ε

))
. (2)

(This result as it appears in both Chan et al. [32] and Varadarajan [99] actually extends
to a more general setting, where the universe’s elements have positive weights and (2)
is the fraction of the total weight carried by the lightest ε-net.) In particular (2) refines
the Haussler–Welzl bound (1), which is obtained from it by injecting ϕ̃(n) = O(nd).
Observe that (2) is more precise in some cases such as that of disks, for which it yields
O(1/ε). See Chapter 1 for further information about the combinatorics of set systems
and nets.
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Figure 0.2: Macbeath regions of an Euclidean ball. Each cap containing a fraction ε of
the ball’s volume includes one.

Combinatorial Macbeath regions
The object that we investigate is an extension of nets, adding a thickness constraint to
the intersection requirement: rather than to consist of separate elements (or singletons),
our cover must consist of large subsets of the ground set. Formally, given a set system
(X,R) with a distinguished finite subset Y ⊆ X , consider a collectionM⊆ P(Y ) of
subsets of Y that are relatively large:

∀M ∈M, |M | ≥ Cε |Y | ,

with C a positive constant, and that ‘hit’ every large range:

∀R ∈ R, |R ∩ Y | ≥ ε |Y | =⇒ ∃M ∈M : M ⊆ R.

Yet again the intuition for this structure comes from geometry—and so does its
name. Brönnimann, Chazelle, and Pach [23], based on a classical result of Macbeath
[74], show how to obtain a small family of relatively large convex regions of any given
convex body such that every large cap of the body must include one of the regions
(see Figure 0.2, note that we call Macbeath regions any objects with these properties
regardless of their construction). Recently these Macbeath regions have been used in
the design of algorithms for polytope approximation [11]. By analogy, the discrete
objectM is called a collection of combinatorial Macbeath regions or an Mnet.

In their paper introducing Mnets, Mustafa and Ray [86] gave a few bounds (see
Table 3.1 on page 61), using different techniques for various kinds of geometric set
systems. For example, they showed that the primal system defined by lines in R2 had
ε-Mnets of cardinality O((1/ε)2 · log2(1/ε)), whereas that defined by half-planes has
ε-Mnets as small as O(1/ε). They observed an apparent relation between the upper
bounds on nets and Mnets. Notably, systems with linear-sized―i.e. O(1/ε)―ε-nets
also had linear-sized ε-Mnets. Generally speaking their bounds tended to be O((1/ε) ·
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Objects of R2 ϕ̃(n) Smallest ε-nets Smallest ε-Mnets
Lines O(n) (2/ε) · log(1/ε) O((1/ε)2 · log2(1/ε))
Disks O(1) O(1/ε) O(1/ε)
Half-Planes O(1) O(1/ε) O(1/ε)

Table 0.2: Net–Mnet correlation observed by Mustafa and Ray: some examples. In
particular, linear-sized nets correspond to linear-sized Mnets.

ϕ̃(1/ε)) for set systems of shallow-cell complexity ϕ̃—sometimes up to polylogarithmic
factors in 1/ε.

We are able to confirm this intuition with the following theorem (Theorem 3), which
extends these results.

Theorem (Mnets, informal). Set systems defined on an Euclidean space by some constant
number of bounded-degree polynomial constraints with VC dimension d and shallow cell
complexity ϕ̃ a non-decreasing function have ε-Mnets of size

O

(
d

ε
· ϕ̃
(
8d

ε

))
. (3)

This theorem unifies previous bounds on Mnets, in some cases with a polylogar-
ithmic improvement, such as that of lines in R2 for which the new bound is O(1/ε2).

Algebraic tools.

In the statement of this theorem, we restrict ourselves to semi-algebraic objects, such as
polytopes with a bounded number of sides or zero-sets of bounded-degree polynomials.
This is because our proof—like many recent results in incidence geometry—relies on
algebraic techniques, namely a recursive form of the celebrated polynomial partitioning
approach introduced by Guth and Katz [54]. At the same time, and as in other results
derived with such tools, there is no clear reason why these restrictions should be
necessary.

Conjecture. The same bound (3) holds without the algebraicity hypothesis.

Packing numbers.

Besides polynomial partitioning, the proof of the Mnet bound (3) also involves results
about packings in set systems (i.e. metric entropy with respect to Hamming distance).
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We gather them in Chapter 2, whereas the discussion on Mnets proper is in Chapter 3.
Here it may help to view a set system on n elements as a subset of the Boolean hyper-
cube {0, 1}n, with the ranges as its elements. The original packing lemma of Haussler
[59] is as follows.

Theorem (packing lemma, informal). In a set system on n elements with VC dimension
d, a δ-packing of ranges (a family of ranges of which any two differ on at least δ elements)
has O((n/δ)d) ranges. This bound is tight.

Without the VC dimension hypothesis, a δ-packing on n elements could have 2n/δ
ranges; with the introduction of said hypothesis the bound goes from exponential to
polynomial in (n/δ). If we additionally require that all ranges have at most k elements,
Haussler’s bound can be further strengthened [44, 84].

Theorem (shallow packing lemma). In a set system on n elements with VC dimension d
that for every l has s(n, l) ranges of size at most l, every δ-packing of ranges all of size at
most k has at most

6 · s
(
4d · n

δ
, 12d · k

δ

)
(4)

ranges. In particular when s(n, l) = O(nd1ld2) this bound is

O

(
nd1kd2

δd1+d2

)
. (5)

This is the version that is used in the proof of our main theorem on Mnets. Note
that s in the statement of this theorem is almost the shallow-cell complexity: s(n, l) =
n · ϕ̃(n) · lO(1).

In passing, we observe that this variant of Haussler’s lemma is still asymptotic-
ally tight and give an explicit construction of set systems that achieve the bound (5)
(Theorem 1).

Sketching the proof of the Mnet upper bound.

Now that we have introduced algebraicity and packing lemmas, here are the main
ideas of the proof for the Mnet theorem. Suppose that all ranges have cardinality εn
and take an inclusion-maximal (εn/2)-packing P among them. Its cardinality |P| is
controlled by the shallow packing lemma. Then it can be seen that it suffices to build
a (1/2)-MnetMR for every range R ∈ P with respect to the system induced by all
other ranges on R. To do so we use polynomial partitioning. The cardinality of the
resulting Mnet is then at most |P| · sup{|MR| : R ∈ P}. Of course, the actual proof
requires some additional work to iron out all difficulties.
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Tightness of the Mnet bound.

Our upper bound (3) on the cardinality of a smallest Mnet is tight in terms of VC
dimension alone, when it is only known that ϕ̃(n) = O(nd−1). Specifically, it is tight for
the set system defined by hyperplanes in Rd (which has VC dimension d): its ε-Mnets
must have cardinality Ω(ε−d) (Theorem 4) while the upper bound gives an ε-Mnet of
cardinality O(ε−d). We also have a close, albeit not tight, lower bound in terms of
shallow-cell complexity (Theorem 5).

A return to nets.

As a testimony of the deep connection between Mnets and epsilon-nets, the usual
bounds on nets (2) are obtained again by a simple probabilistic argument. Consider a
set system with an ε-MnetM. Picking at least one element from each M ∈M yields
an ε-net, because every range containing a fraction ε of all elements includes some
M ∈M. We observe (Corollary 3.1) that this can be done with

O

(
log(εM)

ε

)
+

1

ε

elements in total, by random sampling, so that in particular the systems to which (3)
applies admit ε-nets of cardinality

O

(
1

ε
log ϕ̃

(
8d

ε

))
,

with a constant depending on d and the algebraic parameters. This is a new derivation
of the standard bound (2) on nets which does not rely on the results of Haussler and
Welzl.

The reference for the results in this first part is

[45] Kunal Dutta, Arijit Ghosh, Bruno Jartoux, and Nabil H. Mustafa. ‘Shallow Pack-
ings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial Partition-
ing’. In: 33rd International Symposium on Computational Geometry (SoCG 2017).
Vol. 77. 2017, 38:1–38:15.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.38
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.38
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.38
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Interlude: Nets and Minimum Hitting Set
Minimum Hitting Set is a combinatorial optimisation problem in which one is given a
set system (X,R) with ∅ /∈ R and |X| , |R| ≤ n and must compute a smallest H ⊆ X
that intersects all R ∈ R. This is NP-hard. When all ranges have cardinality 2, the set
system is a graph and the problem becomes Minimum Vertex Cover, which is still
NP-hard. (The decision versions of both are among Karp’s 21 NP-complete problems
[65].)

The greedy algorithm to solve this problem selects at each stage an element of X
that hits the most uncovered ranges. It achieves an approximation ratio (slightly better
than) 1+ logn, meaning that it always returns a solution at most 1+ logn times larger
than the optimum.

On the other hand, unless some unexpected things happen in computational com-
plexity—unless P = NP—there cannot be a polynomial-time algorithm that decreases
this ratio to (1− δ) logn for any positive δ [42]. That is, for every δ > 0, it is NP-hard
to approximate Minimum Hitting Set within a factor (1− δ) logn. Thus the question
of designing efficient approximations for the general Minimum Hitting Set problem
is almost optimally resolved.

However, Brönnimann and Goodrich [24] observed that this lower bound can be
beaten on set systems with small ε-nets. (Recall that by (1) this is the case in set systems
whose VC dimension is bounded). They showed that efficient computation of small
nets is sufficient to achieve a polynomial-time approximation for Minimum Hitting
Set. More precisely, where ε-nets of cardinality 1/ε · f(1/ε) can be computed their
algorithm achieves an O(f(OPT))-approximation for Minimum Hitting Set, i.e. it
returns a set of at most OPT · f(OPT) elements where OPT would have been the size
of a smallest solution. (This requires f to be sub-linear and nondecreasing, which it is
in practice.)

For example, consider the geometric restriction of the problem where (X,R) is
induced by disks on X ⊂ R2. Disks have ε-nets of size O(1/ε), so the algorithm of
Brönnimann and Goodrich achieves aO(1)-approximation, i.e. within a constant factor
of the optimum. Agarwal and Pan [5] even showed that this could be made to run in
near-linear time. Thus the geometric restriction of Hitting Set to points and disks,
while still NP-hard [62] even when all disks have the same radius, has much better
approximability properties than the general problem.

The constant approximation factor depends on the constant in the size of optimal
nets. There’s the rub—only recently has the best bound for disks been brought down to
13.4/ε [26], which is still a large constant. In any case this technique cannot achieve
arbitrarily small approximation factors. To overcome this limitation one has to turn to
another algorithmic tool: local search.
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Local Search Techniques for Approximation
Algorithms
The second part of this thesis deals with the use of local search (a class of optimisation
algorithms) in geometric combinatorial optimisation.

Approximation algorithms
We focus on the geometric restriction of Minimum Hitting Set described previously,
and similar geometric versions of classic optimisation problems (Independent Set,
Dominating Set, etc.). In spite of the geometric restrictions these problems are still
NP-hard, so that they are unlikely to admit an efficient exact solution (under standard
complexity-theoretic assumptions).

Furthermore, some results from the field of parametrised complexity also suggest
that there is no f for which an approximation ratio of 1 + ε could be obtained in
time f(1/ε) · nO(1) for all ε > 0. Specifically we observe (page 76) that the decision
versions of these problems are W[1]-hard and thus are not fixed-parameter tractable
unless W[1] = FPT. Then a result of Bazgan [19, see Theorem I] implies that―again
unless W[1] = FPT―the problems cannot have ‘efficient PTASs’. That is, as ε ↓ 0 the
exponent of n has to depend on 1/ε. Typically we could hope for a family of algorithms
running in nO(1/ε) for every small positive ε. Details on approximation algorithms and
hardness results are gathered in Chapter 4.

Principle of local search
Given a combinatorial optimisation problem—such as Minimum Hitting Set on a
finite set system—local search is a class of iterative procedures that step-wise modify
an initial solution, always maintaining feasibility. At each step, either a new feasible
solution with a better objective value can be found in the neighbourhood of the current
solution, or the procedure terminates.

In all problems studied here, we are given a finite ground set X and feasible solu-
tions form a subset S of P(X). The value of a feasible solution is always its cardinality,
which we either want to minimise or maximise depending on the problem. Thus it is
natural to equip the solution space with the Hamming distance

(s1, s2) ∈ S2 7→ |s1 ∆ s2| ,

and to say that s ∈ S is λ-locally optimal when the Hamming ball of of radius 2λ
centred at s contains no better solution.

To fix ideas, let us assume that we are dealing with a minimisation problem. The
specific kind of local search that we are studying consists only in finding a swap that
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globally optimal

locally optimal

?

Figure 0.3: The locality gap of optimisation problems may be arbitrarily large.

involves up to 2λ − 1 elements of X and strictly decreases the solution’s cardinality,
that is, replace t ∈ [1 .. λ] elements from the current solution with up to t− 1 that did
not belong to it.

Since each such step strictly improves the current solution and there are only n =
|X| possible solution values, this procedure terminates in at most n steps. At each of
them one has to enumerate

(
n
2λ

)
candidate swaps, check their feasibility and compute

their value, all of which is done in time nO(λ). Thus the total cost of finding a λ-local
optimum is nO(λ).

Combinatorics of local search
In general, local search does not come with any guarantees on the value of locally
optimal solutions compared with the global optimum—deep valleys in the Himalaya
are still much higher than in the Mariana Trench (Figure 0.3). This lack of guarantees
on the ‘locality gap’ makes it a heuristic rather than an approximation algorithm and
is the reason for the development of meta-heuristics such as tabu search or simulated
annealing. Rather surprisingly, it was observed by Agarwal and Mustafa [3] that local
search does achieve constant-factor approximation for some problems on geometric
inputs, and then simultaneously by Chan and Har-Peled [33] and Mustafa and Ray [87]
that this constant factor could be made arbitrary small, i.e. 1 + ε for any ε > 0.

This has since been extended by other authors to various geometric optimisation
problems [non-exhaustive list: 15, 28, 31, 46, 52, 53, 57]. The common idea of all
these papers is the construction of a planar (or otherwise sparse) ‘exchange graph’ that
encapsulates the interplay of any two feasible solutions. Roughly speaking, it encodes
a rule by which elements from the first solution may be replaced with others from the
second in such a way that this modified first solution remains feasible. See for example
the construction for geometric Minimum Hitting Set in Figure 0.4.

When one of the solutions is locally optimal, the fact that it cannot admit ‘small’
improvements translates into a specific combinatorial property of the graph. Say that a
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Figure 0.4: Exchange graph construction for Minimum Hitting Set of disks. Given
two feasible solutions, this bipartite Delaunay graph has an edge between two vertices
from different solutions if and only if some disk ofR2 contains them and no other vertex
from either solution. In this way any disk of the input, being hit by both solutions,
must include at least one edge of the exchange graph.

bipartite graph is k-expanding if each subset of up to k vertices on the left participates
in a matching. By Hall’s marriage theorem (see Appendix A) an equivalent property
is that every t ≤ k left vertices have at least t neighbours. Such a graph, if it is also
planar, cannot be too unbalanced.

Theorem. If a bipartite planar graph on left and right vertex setsL andR is k-expanding,
k ≥ 3, then

|L| ≤
(
1 +

c√
k

)
|R| (6)

with c a positive constant.

A simple consequence for Minimum Hitting Set for disks of R2 (and similar prob-
lems) is that anyΘ(ε−2)-locally optimal solution is at most (1+ε) times larger than the
global optimum, because Mustafa and Ray [87] construct a Θ(ε−2)-expanding planar
bipartite exchange graph with these two solutions as vertex sets (see Figure 0.4). In
other words, local search is a polynomial-time approximation scheme that computes a
(1 + ε)-approximate solution in time nO(ε−2). This has been applied to other problems,
usually with exchange graphs based on a modified Delaunay property.

The 2 in the exponent of ε comes from the square root on k in (6), which itself is a
consequence of the planar separator theorem of Lipton and Tarjan [72].

Theorem (planar separators). In every planar graph of order n ∈ N there is a set of
O(
√
n) vertices whose removal only leaves connected components of order at most 2n/3.
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Briefly, recursive application of this separator theorem splits the graph intoO(n/k)
blocks, each of cardinality kwithO(

√
k) shared boundary vertices between them. (This

construction follows an idea of Frederickson [50].) Then in each block the k-expansion
property indicates that there must be at least as many vertices ofR as of L. This is then
summed over the whole graph with a corrective term that accounts for the multiple
counting of boundary vertices and yields (6).

We show that the inequality (6) is tight: up to the value of the constant c the
asymptotic rate of convergence in 1/

√
k cannot be improved (Theorem 6).

Theorem. For any large integer k, there is a family of k-expanding bipartite planar
graphs on vertex sets Bn and Rn where n ∈ N such that

|Bn| , |Rn| = Θ(n) and |Bn| ∼
(
1 +

c′√
k

)
|Rn| as n→ +∞,

with c′ > 0 an absolute constant.

Here is the idea of the proof. A square grid is seen as a bipartite planar graph with
the bipartition defined by the parities of the coordinates. Its vertex sets (say blue and
red) have approximately the same cardinality, even more so when the grid is large.
It has good expansion properties, i.e. any subset of blue vertices far from the grid’s
boundaries can be extended into a matching. Periodically duplicating roughly one in√
k blue vertices (as in Figure 0.5a) restricts these expansion properties, but the graph

remains Θ(k)-expanding. This is the crux of the proof; it is shown by combining a
charging argument with an isoperimetric one.

Finally observe that there are in the resulting graph 1 + Θ(k−1/2) times as many
blue vertices as there are red ones.

Practical consequences for existing algorithms

As the construction of these graphs is explicit, they can be transformed into in-
stances of various combinatorial optimisation problems (such as Minimum Hitting
Set, Minimum Dominating Set or Maximum Independent Set for arrangements of
disks). For example, we give an instance of Minimum Hitting Set with Θ(n) points
and Θ(n) disks that has a λ-locally optimal solution 1 + Θ(1/

√
λ) times larger than

its optimal solution. This shows that the locality gap of these problems is 1+Θ(1/
√
λ)

and that the ε−2 in the running time exponent is an inherent limitation of the algorithm
rather than an artefact of the analysis, answering an open question from [52, 87].
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(a) Detail of the locally-expanding
graph that attains the bound.

(b) Part of a ‘tight’ instance for the hit-
ting set problem based on the lower-
bound graph’s Delaunay structure.

Figure 0.5: Lower bound construction and algorithmic consequences

Small radii

Note that the inequality (6) can be improved for small values of k. The sharpest possible
specialised versions are |L| ≤ 8 |R| for k = 3 [8] and |L| ≤ 4 |R| for k = 4 [25]. Like
ours, the lower bounds are obtained by graph constructions and translate into sharp
upper bounds on the approximation ratio of local search—with radii 3 and 4 rather
than some large λ. See for example the construction in Figure 0.6.

Figure 0.6: Lower bound construction for radius-3 local search on Independent Set
of disks based on the graph in [25]. The graphs that asymptotically attain |L| = 4 |R|
are obtained by tiling the plane with the triangular patch on the left (L is blue and R
is red). Instances are built by realising these graphs as intersection graphs of disks.
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Non-planar extensions.

Several authors have noticed that the inequality (6) could be extended to bipartite
graphs that, while not necessarily planar, still possess strong separator properties.
Indeed the analysis only requires that any subgraph on m ∈ N vertices has a separator
of cardinality O(

√
n). Thus the result also applies to graphs of bounded genus and

more generally to graphs excluding a fixed minor [28]. (Planar graphs are exactly the
graphs of genus 0, and also the graphs that exclude the 5-clique and the (3, 3)-biclique
as minors.) Finally, if one considers instead graphs with separators in O(m1−s) for
some fixed s ∈ (0, 1) then the analysis still goes through [15, 57] and the inequality
becomes

|L| ≤
(
1 +

cs
ks

)
|R| , (7)

with cs a constant depending on s.

Conversely our lower bound construction extends to dimension d > 2 by perturbing
a d-dimensional grid rather than a 2-dimensional one, meaning that (7) is also tight at
least for s ∈ {1/d : d ∈ N∗}.

The reference for the results in this second part is

[64] Bruno Jartoux and Nabil H. Mustafa. ‘Optimality of Geometric Local Search’.
In: 34th International Symposium on Computational Geometry (SoCG 2018). 2018.
Forthcoming.
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Chapter One

Set Systems and Geometry

He didn’t see the expression of the shopman’s face, but to smooth
over the awkwardness of the position a little he felt called upon to
make some purchase. But what should he buy? He looked round
the walls of the shop to pick out something inexpensive, and his
eyes rested on a green net hanging near the door.

Chekhov, An Avenger (trans. Garnett).

Basic notions that will be required afterwards are introduced in this chapter. We
discuss set systems and several descriptions of their combinatorial complexities,

some finer than others, then we define basic operations on them. Finally we consider
two simple structures related to the problem of sampling these systems: transversals
and nets. Only Definition 1.13 is non-standard.

1 Set Systems

1.1 Definition
The basic framework within which the following work takes place is that of a set system.
As its definition is quite elementary, this object appears under various names in many
different fields in the computational sciences.

Definition 1.1. A set system is a pair (X,R) where X is a set andR ⊆ P(X), that
is,R is a set of subsets of X .

Borrowing from the vocabulary of range searching, we call R the range set and
its elements ranges, while X is the ground set. We say that (X,R) is finite when X
is, in which case there are at most 2|X| ranges.

36
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Some other names for set systems include range spaces, hypergraphs, incidence
structures or Lévy graphs. Objects such as (abstract) simplicial complexes, binary block
codes, bipartite graphs with a fixed two-colouring and classifiers in learning theory all
have a natural set-system structure.

1.2 Duality
Definition 1.2. The system whose ground set isR and whose ranges are the pencils
defined by points of X , that is, with range set

{{R ∈ R : x ∈ R} : x ∈ X}

is the dual set system of (X,R), which is then the corresponding primal system.

This involutive duality is similar to the point–line duality of projective planes―as
a matter of fact, projective planes are examples of set systems.

2 Geometric Set Systems
Themost natural way for a geometer to obtain a set system is to consider the incidences
of two families of geometric objects, especially of a space with some of its regions. For
example, there is a set system whose ground set is the Euclidean plane and whose
ranges are disks. It is tersely referred to as the primal set system defined by disks,
omitting a mention of its ground set. In the same way one defines the primal set
system of half-planes (or half-spaces in higher dimension), of triangles (simplices), of
lines (affine subspaces), etc. Each has its corresponding dual system, whose ground set
consists of shapes in Euclidean space and whose ranges are pencils of shapes with a
common intersection.

Set systems help formulate many geometric problems from range reporting, where
one designs space- and time-efficient data structures that answer range queries on a
stored point set, to some variants of facility location problems, where one chooses an
economical cover of an input point set from a set of candidate disks.

§

§ §
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3 Combinatorial Complexity of Set Systems
Although all elements of P(X) could be ranges in a set system on X , the examples
that arise in geometry often exhibit sparsity properties―a behaviour that extends for
example that of planar graphs. We present several descriptions of those properties.

3.1 Vapnik–Chervonenkis Dimension
In any set of three non-collinear points in R2, all 23 subsets can be realised as intersec-
tions with a half-plane. However, in every set of four points of R2 some subset cannot
be cut out in this way: either one point is a convex combination of the others and is
thus contained in any half-plane that contains them, or all four points are in convex
position and the diagonal pairs cannot be realised. This means that the set system
defined by half-planes on a ground set X ⊆ R2 of four points or more cannot have all
of P(X) as ranges.

Definition 1.3. For a set system (X,R), the trace of the range set on any Y ⊆ X is
the set

R|Y = {R ∩ Y : R ∈ R} ⊆ P(Y )

and Y is shattered (by R) if R|Y equals P(Y ). The VC dimension of (X,R) is the
supremum of the cardinalities of shattered subsets of X .

The concept of trace extends that of induced subgraph: the trace is the range set
induced by R on a subset of X . In keeping with this analogy, a shattered subset is
one whose induced subsystem is ‘full’, not unlike cliques in graphs. VC dimension was
introduced by Vapnik and Chervonenkis [97] to characterise the ‘expressiveness’ of a
set system. In learning theory, ranges represent classifier sets. A shattered set is one
for which all classifications are possible.

Example 1.1. The primal set system of half-planes has VC dimension 3. Every triple
of points (not on a same line) in general position can be shattered. On the other hand,
consider four distinct points in the plane. Either one of them lies inside the convex hull
of the others and thus the corresponding singleton cannot be realised with a half-space,
or the four points are in convex position and two of the six pairs of points cannot be
realised either.

Example 1.2. The VC dimension of the primal set system of convex sets in R2 is +∞.
All subsets of a circle can be realised by their convex hulls, see Figure 1.1.
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Figure 1.1: The VC dimension of the primal set system of convex sets in R2 is +∞ as
each subset of a set of points in convex position may be cut out by some convex shape.

3.2 Shatter Function
Now we observe the behaviour of the trace of the range set on Y as a function of Y ’s
cardinality.

Definition 1.4. The shatter function of (X,R) is the function

sR : m ∈ N 7→ max
{∣∣R|Y

∣∣ : Y ⊆ X and |Y | ≤ m
}
.

Remark 1.1. The shatter function is non-decreasing. Additionally it does not depend
on X―the subset Y can always be taken in the union ∪R of all ranges. So if ∪R has
more than m elements―say it is infinite—the maximum is simply over Y ∈

(∪R
m

)
.

The quantity sR(m), or simply s(m)whenR is clear from the context, is sometimes
known as the m-th shatter coefficient and is always upper-bounded by 2m since R|Y
is a subset of P(Y ). In particular shattered sets are those Y for which this bound is
attained (recall Definition 1.4) and the VC dimension is the supremum of all m ∈ N for
which sR(m) = 2m.

Example 1.3. Consider the primal set system of half-planes in R2, and let Y consist of
m points of R2. Any range with at least two elements can be realised by a half-plane
whose boundary contains (at least) two points of Y . (This can be seen by rotating and
translating any half-plane while preserving its intersection with Y .) Thus the trace
R|Y contains at most

(
m
2

)
+m+ 1 ranges and the system has s(m) = O(m2).

A more precise relation between shatter function and VC dimension is given by
the following lemma. It was independently established by Norbert Sauer, by Saharon
Shelah (crediting Micha Perles), and by Vladimir Vapnik and Alexey Chervonenkis [93,
95, 97].
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Lemma 1.1. For a set system whose VC dimension is d ∈ N,

∀m ∈ N, s(m) ≤
d∑

i=0

(
m

i

)
.

The inequality is tight. For example, the system on N with range set

d⋃
i=0

(
N
i

)
has VC dimension d since every set of d integers is shattered and no set of d+1 can be,
and it attains this bound. See Example 1.4 for a geometric system that also saturates
it. The take-away of this lemma is that the right-hand side is less than (em/d)d for
m, d ≥ 1 and thus the shatter function is polynomially bounded, in sharp contrast with
the general bound of 2m.

Example 1.4. Consider the primal set system of lines in R2. The VC dimension of this
system is 2, so it follows from Lemma 1.1 that s(m) ≤

(
m
2

)
+ m + 1. This bound is

sharp: any set of m points in the plane, no three of them collinear, attains it.

3.3 Shallow-Cell Complexity
Common geometric set systems have finite VC dimension (convex sets being the main
counterexample) and thus satisfy Lemma 1.1: their shatter function grows polyno-
mially rather than exponentially. However, these systems often also satisfy a finer
property―not only is the size of R|Y polynomially bounded, but also the number of
small sets inR|Y is lower.

Example 1.5. Let (R2,R) be the primal set system induced by disks. For any finite
Y ⊂ R2 and l ∈ N, the number of sets inR|Y of size at most l is O(|Y | · l2). For small
values of l, this contrasts with the total cardinality ofR|Y , which can be Θ(|Y |3).

This motivates a finer classification of set systems, which was gradually introduced
over several papers [32, 44, 47, 99]. Given a system (X,R), define size-sensitive ver-
sions of its trace and shatter function:

R|Y,≤l = {S ∈ R|Y : |S| ≤ l} = {R ∩ Y : R ∈ R and |R ∩ Y | ≤ l},
sR : (m, l) ∈ N2 7→ max

{∣∣R|Y,≤l

∣∣ : Y ⊆ X and |Y | ≤ m
}
.

This extends Definition 1.3 and Definition 1.4: clearly R|Y,≤|Y | = R|Y for every
subset Y and sR(m) = sR(m,m) for every natural number m. Again, we write s for
sR when this does not introduce any ambiguity.
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Example 1.6. In [44, 47], a set system was said to satisfy the Clarkson–Shor prop-
erty with parameters (d, d1) ∈ N2 when it had s(m, l) = O(md1ld−d1). For example
the primal system for disks in R2 is (3, 1)-Clarkson–Shor as it has s(m, l) = O(ml2).
For most natural geometric set systems, the best known upper bounds on s are of this
form.

Definition 1.5. The shallow-cell complexity (SCC) of a set system (X,R) is the
function

ϕR : N× N→ R

(m, l) 7→

{
1 m = 0
1
m
· s(m, l) m ∈ N∗ .

As for the shatter function, the subscript will be dropped whenR is clear from the
context.

The reason for which we normalise bym instead of working directly with sR is that
this makes later results on nets simpler to state. For reasonable geometric set systems
s(m, l) is linear or super-linear in m. For example, in the primal system of disks in R2,
some subset Y of m points of R2 induces s(m, l) ranges of size at most l and Y ∪ τ(Y )
will determine at least 2 ·s(m, l) such ranges for a large enough translation τ : it follows
that for disks s(2m, l) ≥ 2 · s(m, l).

Often the precise dependency of ϕ(m, l) on l is less important, so we introduce a
one-variable SCC.

Definition 1.6. The one-variable shallow-cell complexity of a set system (X,R)
is the least ϕ̃ : N→ R such that, for some fixed nonnegative constant c,

∀(m, l) ∈ N× N, ϕ(m, l) ≤ ϕ̃(m) · lc.

The VC dimensions and (upper bounds on the) SCCs of several basic geometric set
systems are gathered in Table 1.1.

3.4 Union Complexity
Union complexity is another measure of complexity specific to geometric set systems
and an historical precursor of SCC. It is well-defined as soon as there is a notion of
face and cell in a geometric arrangement of the considered objects, hence in particular
when these objects are semi-algebraic (see the next subsection for a discussion of semi-
algebraicity).

Definition 1.7. The union complexity of a family O of geometric objects is the
function that maps each positive integer m to the maximum number of faces of all
dimensions in the boundary of the arrangement of any m members of O.
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Figure 1.2: Union complexity of disks in R2. The combinatorial complexity of the
boundary (total number of arcs and vertices) in an arrangement of n disks is linear in
n.

There is an immediate relation between union and shallow-cell complexities: the
dual set system induced by a family of objects with union complexity κ has SCC ϕ̃(m) =
O(κ(m)/m) [4, 94].

Example 1.7. Disks in R2 have linear union complexity: in an arrangement of n ≥ 3
disks, the boundary is composed of at most 6n − 12 circular arcs, so that the total
number of 1-faces (arcs) and 0-faces (endpoints of said arcs) is linear in n [4, 66], see
Figure 1.2. As a consequence the dual system of disks has SCC O(1).

Remark 1.2. The dual VC dimension, dual shatter function or dual shallow-cell
complexity of a set system simply refer to the corresponding quantities in its dual.

3.5 Semi-Algebraic Set Systems
Quite frequently, the geometric set systems that we manipulate are associated with
regions of the Euclidean space defined by polynomial constraints: this is the case of
half-spaces, of balls, of polyhedra, etc.

Definition 1.8. (Real) semi-algebraic sets are subsets of Rd obtained by taking
Boolean operations (unions, complements, and intersections) on a finite family of sets
of the form {x ∈ Rd : g(x) ≥ 0}, where g is a d-variate real polynomial.

Example 1.8. The cube [−1, 1]d of Rd is the intersection of the slabs {1 − x2
i ≥ 0}

over i ∈ [1 .. d]. The unit ball of Rd is {1−
∑

x2
i ≥ 0}.
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Semi-algebraic sets can be classified according to the complexity of the formula that
defines them. For (d,∆, s) ∈ N3 we denote by Γd,∆,s the family of all semi-algebraic
sets in Rd obtained by taking Boolean operations on at most s polynomial inequalities,
each of degree at most ∆.

Definition 1.9. A set system is semi-algebraic with parameters (d,∆, s) ∈ N3 if its
groundsetX is a subset ofRd and its ranges are all of the formX∩S where S ∈ Γ(d,∆,s).

The ‘semi-algebraic parameters’ of a system control its VC dimension.

Lemma 1.2. The VC dimension of Γd,∆,s as a set system on Rd is a finite function of
(d,∆, s).

A precise, almost-tight bound can be found in [20]: at least s
2

(
∆+d
∆

)
and at most

2s
(
∆+d
∆

)
log2

(
s(s+ 1)

(
d+∆
∆

))
.

Furthermore, the same parameters also control the behaviour of the dual set system.

Lemma 1.3. There is a function f : N3 → N3 such that the dual of a (d,∆, s)-semi-
algebraic set system is itself f(d,∆, s)-semi-algebraic.

Proof. Let P consist of all d-variate real polynomials of degree at most ∆. As a vector
space, Ps ' RNs where N =

(
∆+d
d

)
. This isomorphism sends a tuple of polynomials

p = (p1, . . . , ps) ∈ Ps to the vector p̃ ∈ RNs of its coefficients.
For every s-variate Boolean function Φ we let

EΦ = {(x, p̃) ∈ Rd × RNs : Φ((pi(x) ≥ 0)1≤i≤s)}.

Observe that for every given x and i ∈ [1 .. s] the condition pi(x) ≥ 0 is linear in the
coefficients of p̃. It suffices to consider the ‘full’ system (Rd,Γd,∆,s) whose ranges are
all sets of the form {x ∈ Rd : (x, p̃) ∈ EΦ} for every choice of Φ and p ∈ Ps. If we let
i ∈ [1 .. 22

s
] 7→ Φi be any permutation of the 22s Boolean functions of s variables, the

range of its dual corresponding to a given choice of x is(t, p̃) ∈ R× RNs :
22

s∨
i=1

(t = i ∧ (x, p̃) ∈ EΦi
)

 .

4 Hitting and Sampling Set Systems
Once we have defined set systems, sampling those structures becomes a natural prob-
lem. Indeed the ground set might hold more elements than is computationally feasible
to manipulate in practical applications; it might even have infinitely many. Moreover
many natural problems can be formulated as the choice of a system of representatives
for the ranges: for example the design of surveys.
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Objects Space VC dim. s(m) ϕ̃(m)
Intervals R P 2 m(m+ 1)/2 + 1 O(1)
Intervals R D 2 O(m2) O(1)
Lines R2 P 2 m(m+ 1)/2 + 1 O(m)
Lines R2 D 2 O(m2) O(m)
Triangles R2 D 7 O(m7) O(m)
Pseudodisks R2 P 3 O(m3) O(1)
Pseudodisks R2 D O(1) O(m2) O(1)
Half-spaces Rd P/D d+ 1 O(md) O(mbd/2c−1)
Balls Rd P/D d+ 1 O(md+1) O(mdd/2e−1)
Convex sets Rd P +∞ 2m O(2m/m)

Table 1.1: Complexities of some geometric set systems (Primal andDual). (A family of
pseudodisks is a set of bounded planar regions whose boundaries are Jordan curves
and such that the boundaries of any pair of pseudodisks intersect at most twice.)

4.1 Transversals
A requirement for our sampling could be that it contains at least one representative
element from each range: this is the classical hitting-set problem.

Definition 1.10. A transversal, or hitting set, for the set system (X,R) is any subset
H of X that intersects all ranges ofR:

∀R ∈ R, H ∩R 6= ∅.

Example 1.9. In the Art Gallery optimisation problem, we are given a simple poly-
gonal region P in the plane―a gallery―and we want to find a smallest subset G of
P―consisting of guards―that together see all of P , that is, there is a segment fully
contained inP fromG to every point ofP . The art gallery problem amounts to comput-
ing a transversal for the set system on P whose ranges are the sets {g ∈ P : g sees x}
for x ∈ P .

Example 1.10. In the Minimum Set Cover optimisation problem, we are given a finite
set system and want to find a smallest subset of ranges whose union equals the ground
set. This is exactly a smallest transversal of the dual system.

Computing transversals for various classes of set systems is a fundamental al-
gorithmic challenge. However, for some applications small ranges may be inconsequen-
tial, but have a significant contribution to the size of transversals. For example the
primal set system defined by disks admits all singletons as ranges, meaning that only
its ground set is a transversal.

The idea of discarding those small ranges leads to the concept of nets.
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4.2 Nets
Definition 1.11. Given a set system (X,R), a parameter ε ∈ [0, 1], and a finite subset
Y ⊆ X , let

Rε = {R ∈ R : |R ∩ Y | ≥ ε |Y |}.
A weak ε-net for Y in (X,R) is any transversal of (X,Rε), i.e. any N ⊆ X such that

∀R ∈ R, |R| ≥ ε |Y | =⇒ N ∩R 6= ∅.

It is strong if it is a subset not only of X but also of Y .

We also say that the system (X,R) ‘has ε-nets of size S(ε)’ if it has an ε-net of
cardinality at most S(ε) for each finite Y ⊆ X .

Example 1.11. The primal set system of convex sets in R2 has weak ε-nets of size
O(ε−(3/2+δ)) for any positive δ. This bound is independent of |Y | and ‘close to linear’
in 1/ε. (This is a very recent development by Rubin [92]. The previous best bound had
been O(ε−2) since 1992.)

In contrast any strong ε-net for a subset Y ⊂ R2 in convex position must have size
at least |Y | − bε |Y |c, a quantity that grows linearly with |Y |.

Remark 1.3. Inwhat followswe either talk about ε-nets or (1/r)-nets (r ≥ 1), depending
on what is most convenient at the time. Furthermore ‘net’ without a qualifier always
means strong net as in Definition 1.11.

4.2.1 Existence of small nets

Beginning with the breakthrough results of Clarkson [37, 38] and Haussler and Welzl
[60], nets have been one of the most fundamental structures in combinatorial geometry
with many applications in areas such as approximation algorithms, discrete and com-
putational geometry, combinatorial discrepancy theory and learning theory [35, 77, 78,
90].

Haussler and Welzl showed that set systems with finite VC dimension d have (1/r)-
nets of size O(dr log(dr)).

Chan et al. [32], improving on an earlier, weaker result of Varadarajan [99] for dual
set systems induced by geometric objects, generalised this result to descriptions based
on SCC. See also the simpler proof by Mustafa, Dutta, and Ghosh [85].

Theorem A. A set system with SCC ϕ̃(m) = O(md) for some constant d has (1/r)-
nets of size O(r log ϕ̃(r)) for any r ≥ 1. Furthermore, such nets can be computed in
deterministic polynomial time.

Theorem A has been shown to be tight by Kupavskii, Mustafa, and Pach [69] (this is
Theorem F on page 62). A recent survey on nets is the one by Mustafa and Varadarajan
[88].
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5 Combining Set Systems
There are numerousways to define binary operations on set systems. Themost common
ones extend those that are already well-studied on graphs, either unions or products
[61]. Here we present one that does not extend a graph-theoretic construct since it
does not preserve the cardinalities of ranges.

Definition 1.12. The union (X1,R1) ∪ (X2,R2) is (X1 ∪X2,R1 ∪R2).

Definition 1.13. Given two set systems (X1,R1) and (X2,R2) with X1 and X2 dis-
joint, their ?-sum (X1,R1) ? (X2,R2) has ground setX1 ∪X2 and ranges R1 ∪R2 for
all (R1, R2) ∈ R1 ×R2.

Discard the disjointness condition by replacing the union of ground sets with a
disjoint union. In this way the operation ? is defined on all set systems.

Example 1.12. Consider the set system S with ground set {0, 1} and only range {0, 1}.
The union S ∪S is still S whereas the ?-square S ?S is (up to isomorphism) the system
({0, 1, 2, 3}, {{0, 1, 2, 3}}).

The interest of ? is that it behaves like a sum on ground sets but also like a product
on range sets. For example, the n-th ?-power of (X,R) has a ground set of cardinality
n |X|, but |R|n ranges.
Remark 1.4. On simplicial complexes (set systems whose ranges are all finite and whose
range sets are downward closed), ? coincides with the join operation [79].
Remark 1.5. The reader is free to choose her favourite construction for disjoint unions
as they are universal in a category-theoretic sense. A possible choice is

X t Y = (X × {0}) ∪ (Y × {1}) .

Lemma 1.4. For any two systems S1 and S2 and for all (m, l) ∈ N2, one has

sS1∪S2(m, l) ≤ sS1(m, l) + sS2(m, l), (1.1)
sS1?S2(m, l) ≤ sS1(m, l) · sS2(m, l), (1.2)

and as a consequence

VC-dim(S1 ∪ S2) ≤ VC-dim(S1) + VC-dim(S2) + 1, (1.3)
VC-dim(S1 ? S2) = VC-dim(S1) + VC-dim(S2). (1.4)

Proof. Write Si = (Xi,Ri) for i ∈ {1, 2}. To prove (1.1) we may assume X1 = X2.
Then for any Y ⊆ X1, the trace (R1 ∪R2)|Y is the union of R1|Y and R2|Y . On the
other hand to prove (1.2) we may take X1 and X2 disjoint. Let R be the range set of
S1 ? S2. With some slight notational abuse, for any Y ⊆ X1 ∪X2 the set R|Y,≤l is in
bijection with a subset ofR1|Y ∩X1,≤l ×R2|Y ∩X2,≤l.



Chapter Two

Packing Lemmas

Haussler’s packing lemma gives an upper bound on the number of ranges in a set
system with finite VC dimension whose ranges have pairwise large symmetric

difference [59]. In this chapter we discuss it and present some recent extensions.
The packing lemma has turned out to be the technical foundation for many results

in combinatorial discrepancy of geometric set systems using the entropy method (see
Matoušek’s Geometric Discrepancy: An Illustrated Guide [77]) as well as recent work
on Zarankiewicz’s problem for semi-algebraic graphs by Fox et al. [49]. Recently it
was generalised [44, 84] to the shallow packing lemma, applying to set systems as a
function of their SCC.

The two new results on packings in this chapter are:

• An optimal lower bound for shallow packings (Theorem 1), which settles the
open question in Ezra [47] and Dutta, Ezra, and Ghosh [44].

• The l-wise shallow packing lemma (Theorem 2), which combines the ideas of the
shallow packing lemma and the l-wise packing lemma of Fox et al. [49].

Although the shallow packing lemma is worthy of study in its own right, it will be
a stepping stone towards the Mnet results in Chapter 3.

These results were obtained with Kunal Dutta, Arijit Ghosh & Nabil H. Mustafa and
presented at the 33rd International Symposium on Computational Geometry [45], then
invited to a special edition of Discrete & Computational Geometry dedicated to the
Symposium’s best papers.

47
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δ/2

Figure 2.1: Euclidean intuition for Haussler’s packing lemma: in Rd, balls of diameter δ
have volume Θ(δd), so only O((n/δ)d) of them may be packed within a d-dimensional
cube of volume nd.

1 Classical and Shallow Packing Lemmas

1.1 Haussler’s Packing Lemma
Definition 2.1. A set system with range set R is a δ-packing for some δ ∈ N∗ if
|R∆ S| ≥ δ for all distinct (R,S) ∈ R2, where ∆ is the symmetric difference.

By extension, we also say that P is a δ-packing of (X,R) if (X,P) is a δ-packing
and P ⊆ R. It is maximal if no subset of R is both a proper superset of P and a
δ-packing.
Remark 2.1. In a (semi-)metric space, a δ-packing is defined as any subset of points with
pairwise distance at least δ. This includes Definition 2.1 with the Hamming distance

(R,S) ∈ R2 7→ |R∆ S| .

Haussler [59] gave the following upper bound on the size of packings.

Theorem B (Packing Lemma). If (X,R) is a finite δ-packing with VC-dim(R) ≤ d,
then

|R| ≤ e(d+ 1)

(
2e(|X|+ 1)

δ + 2d+ 2

)d

≤ e(d+ 1)

(
2e |X|

δ

)d

.

Remark 2.2. The same asymptotic bound also holds as long as s(m) = O(md), see [77,
Chapter 5.3].
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Haussler’s proof ofTheorem B, later simplified by Chazelle [34], is an elegant applic-
ation of the probabilistic method, and has since been applied to diverse areas ranging
from computational geometry and machine learning to Bayesian inference―see e.g.
[59, 71, 77]. Haussler also showed that this bound is tight:

Theorem C. Given any positive integers d, n and δ ∈ [1 .. n], there exists a δ-packing
(X,R) such that |X| = n, VC-dim(R) ≤ d, and

|R| ≥
(

n

2e(δ + d)

)d

.

1.2 Shallow Packing Lemma
Recent efforts have been devoted to extending the packing lemma to finer classifications
of set systems. For k ∈ N, call (X,R) k-shallow if |R| ≤ k for every R ∈ R.
EquivalentlyR is included in the Hamming ball of radius k around ∅ in P(X).

Example 2.1. Graphs are 2-shallow set systems, d-dimensional simplicial complexes
are d-shallow set systems.

After some earlier bounds [47, 86], the following lemma has been recently estab-
lished for Clarkson–Shor set systems by Dutta, Ezra, and Ghosh [44]. Recall from
Example 1.6 that a system is (d, d1)-Clarkson–Shor when it has s(m, l) = O(md1ld−d1).
The result was then extended in terms of SCC by Mustafa [84].

Theorem D (Shallow Packing Lemma). Let (X,R) be a finite and k-shallow δ-packing.
If VC-dim(R) ≤ d, then

|R| ≤ 6 · sR
(
4d · |X|

δ
, 12d · k

δ

)
.

Remark 2.3. When the system is (d, d1)-Clarkson–Shor, the bound becomes

O

(
|X|d1kd−d1

δd

)
.

Additionally, taking k = |X| gives the bound of Theorem B up to a constant factor.

§

§ §
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2 Contributions
In this chapter we present two new results: a tight lower bound for shallow packings
and a generalisation of the shallow packing lemma to l-wise packings.

2.1 Optimality of Shallow Packings (Proof in Section 3)
While Haussler gave a matching lower bound to his packing lemma, the optimality
of the shallow packing lemma was an open question in previous work [44, 47, 84, 86].
In particular a matching lower bound was presented for one particular case, when
ϕ̃(m) = m [44]. We show that the shallow packing lemma is tight up to a constant
factor for the most common case of upper bound on the SCC: the Clarkson–Shor
property.

Theorem 1 (Optimality of Shallow Packings). For any positive integers d ≥ d1 and for
any large positive integer n, there exists a set system on n elements with

s(m, l) ≤ 2d1md1ld−d1

that, for any δ and k ≥ 4dδ, has a k-shallow δ-packing of size

Ω

(
nd1kd−d1

δd

)
.

The proof is an explicit construction of such a set system.

2.2 l-Wise Shallow Packings (Proof in Section 4)
Definition 2.2. A set system (X,R) is an l-wise δ-packing if for all tuples of l distinct
ranges R1, . . . , Rl ∈ R we have∣∣(R1 ∪ · · · ∪Rl)

∖
(R1 ∩ · · · ∩Rl)

∣∣ ≥ δ.

In particular δ-packings are 2-wise δ-packings. Building on the proof of the packing
lemma by Chazelle together with Turán’s theorem on independent sets in graphs, Fox
et al. [49, Lemma 2.5] proved the following:

Theorem E (l-Wise Packing Lemma). Let (X,R) be a finite set system with sR(m) =
O(md). IfR is an l-wise δ-packing, for an integer l ≥ 2 and δ ∈ [1 .. |X|], then

|R| = O

((
|X|
δ

)d
)
,

where the constant in the asymptotic notation depends on l and d.
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Building on the proofs by Matoušek [77] and Mustafa [84], we prove the following,
which simultaneously generalises the theorems of Haussler [59] (Theorem B), Fox et al.
[49] (Theorem E), and Dutta, Ezra, and Ghosh [44] (Theorem D).

Theorem 2 (l-Wise Shallow Packing Lemma). Let (X,R) be a k-shallow l-wise δ-
packing with |X| = n. If VC-dim(R) ≤ d, then

|R| = O

(
l3dn

δ
· ϕR

(
s, 4l · ks

n

))
, where s =

8l(l − 1)dn

δ
− 1.

Corollary 2.1. Theorems B, D (up to a constant factor) and E.

Proof. Theorem D is Theorem 2 with l set to 2. To obtain Theorem E, set k = |X| in
Theorem 2. Theorem B is the special case of Theorem E when l = 2.

3 Building Large Shallow Packings
In this section we prove Theorem 1 by building a set system with the desired SCC that
contains a large shallow packing.

Proof of Theorem 1. Without loss of generality we assume that n is an integer multiple
of d. Let n̂ = n/d.

Define the following range set P on [1 .. n̂]:

P =
{
[2αβ + 1 .. 2α(β + 1)] : 0 ≤ α ≤ log2 n̂, 0 ≤ β < 2−αn̂

}
.

Intuitively, consider a balanced binary tree T with its leaves labelled from 1 to n̂
(see Figure 2.2). Then for each node of T , P contains a set consisting of the leaves of
the sub-tree rooted at that node. Here α is the height of the node (so 2α is the number
of elements in the corresponding subset), while β identifies one of the nodes of that
height (among the 2log(n̂)−α = 2−α · n̂ choices), see Figure 2.2.
Claim 2.1. sP(m, l) ≤ 2m.

Proof. For any Y ⊆ [1 .. n̂], the sets in P|Y are in a one-to-one correspondence with the
nodes of T whose left and right sub-trees, if they exist, both contain leaves labelled by
Y . If the nodes of T corresponding to Y form a connected sub-tree, then these nodes
define a new binary tree whose leaves are still labelled by Y , and thus their number
is at most 2 |Y | − 1. Otherwise, the statement holds by induction on the number of
connected components of Y in T .

Next define the range set

Q = {[1 .. γ] : γ ∈ [1 .. n̂]} ,

whose elements can be seen as prefix sets of the list 〈1, . . . , n̂〉.
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Figure 2.2: A set system with linear growth. Each inner node corresponds to the set
of leaves of its sub-tree, a sub-interval of [1 .. n̂], and is identified by a pair (α, β)
corresponding to its depth and its position relative to other nodes at the same depth.
Claim 2.1 establishes that it has s(m, l) ≤ 2m.

Claim 2.2. sQ(m, l) ≤ l.

Proof. The number of sets of size at most l is |Q|Y,≤l| = min{l, |Y |} ≤ l.

Write S1 for the system ([1 .. n̂],P) and S2 for ([1 .. n̂],Q). Recall the ? operation
(Definition 1.13) and consider the system

(X,R) = S1 ? · · · ? S1︸ ︷︷ ︸
d1 times

?S2 ? · · · ? S2︸ ︷︷ ︸
d− d1 times

.

By Lemma 1.4 one has the desired bound on sR:

sR(m, l) ≤ (sP(m, l))d1 · (sQ(m, l))d−d1 = (2m)d1ld−d1. (2.1)

Now that we have builtR, it remains to construct a subset ofRwhich is a large shallow
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δ

Figure 2.3: Selecting ranges corresponding to low-depth nodes.

packing. For every choice of the parameters k, δ, define:

P(k,δ) =

[2αβ + 1 .. 2α(β + 1)] :
α, β ∈ N
log2 δ ≤ α ≤ log2(

k
d
)

0 ≤ β < 2−αn̂

 ⊆ P ,
Q(k,δ) =

{
[1 .. γδ] : γ ∈ N, 1 ≤ γ ≤ k

dδ

}
⊆ Q.

The intuition here is that we pick only the nodes in our binary tree T with height
at least log2 δ (and thus a symmetric difference of at least δ elements), see Figure 2.3.
Similarly inQ we pick every δ-th set only. All these sets have size at most k/d. This is
straightforward for Q(k,δ); on the other hand, a set in P(k,δ) defined by the pair (α, β)
has size 2α ≤ k/d.

All those sets also are integer intervals of the form {λδ + 1, . . . , µδ} for some
λ, µ ∈ N and thus pairwise δ-separated (for P (k,δ), notice that 2α is a multiple of δ).
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Write S(k,δ)
1 for the system ([1 .. n̂],P(k,δ)) and S(k,δ)

2 for ([1 .. n̂],Q(k,δ)). The system

S(k,δ)
1 ? · · · ? S(k,δ)

1︸ ︷︷ ︸
d1 times

?S(k,δ)
2 ? · · · ? S(k,δ)

2︸ ︷︷ ︸
d− d1 times

is a δ-packing of (X,R) which is k-shallow.
Its number of ranges is:

∣∣P(k,δ)
∣∣d1 · ∣∣Q(k,δ)

∣∣d−d1
=

n̂

blog2(
k
d
)c∑

α=dlog2 δe

2−α

d1

·
(

k

dδ

)d−d1

≥ d−d
(
21−dlog2 δe − 2blog2(

k
d
)c
)d1

nd1

(
k

δ

)d−d1

≥ d−d

(
1

δ
− 2d

k

)d1

nd1

(
k

δ

)d−d1

≥ d−d(2δ)−d1nd1

(
k

δ

)d−d1

= Ω

(
nd1kd−d1

δd

)
.

The gist of Haussler’s probabilistic lower bound construction for Theorem C was
to consider this sameR with d1 = 0―that is, no trees—and randomly build a maximal
packing (select a range at random, remove its Hamming ball of radius δ, recurse).

4 Proving the l-Wise Shallow Packing Lemma
The proof of Theorem 2 uses a technical lemma that combines the ideas in [49, 77, 84].

Lemma 2.1. Let (X,R) be an l-wise δ-packing on n elements with VC-dim(R) ≤ d. If
A ⊆ X is a uniformly selected random sample of size 8l(l − 1)dn

δ
− 1, then

E
∣∣R|A

∣∣ ≥ |R|
2l

.

Proof. Let t = 8l(l− 1)dn
δ
and pick a random sample S = {x1, . . . , xt} one element at

a time without replacement, from x1 to xt, from X . Let (R|S, ER) be the unit distance
graph on the traceR|S , with an edge between any two sets whose symmetric difference
is a singleton. Define the weight of a set Q ∈ R|S as the number of ranges ofR whose
projection is Q, i.e.

w(Q) = |{R ∈ R : R ∩ S = Q}| ,
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and the weight of an edge {Q1, Q2} ∈ ER as w(Q1, Q2) = min{w(Q1), w(Q2)}. Fi-
nally let

W =
∑
ER

w.

In [77, Chapter 5, Proof 5.14] it was shown that

W ≤ 2d · |R| . (2.2)

On the other hand, we lower-bound the expected value ofW . LetWi be the weight
of the edges in ER for which the symmetric difference is the singleton {xi}. By sym-
metry, we have EW =

∑t
i=1 EWi = t · EWt.

LetA = {xi : i ∈ [1 .. t−1]}, i.e.A = S \{xt}. A proof of the following conditional
lower bound on the expected value of Wt is deferred until the end of this section:

t · E(Wt|A) ≥ 4d
(
|R| − l ·

∣∣R|A
∣∣) . (2.3)

It follows from it that

EW = t · EWt = t · E(E (Wt|A)) ≥ 4d
(
|R| − l E

∣∣R|A
∣∣) . (2.4)

Finally combine the upper bound (2.2) with the lower bound (2.4):

2d |R| ≥ EW ≥ 4d |R| − 4dl · E
∣∣R|A

∣∣,
and then |R| ≤ 2l · E

∣∣R|A
∣∣.

We can now prove Theorem 2.

Proof of Theorem 2. Let A ⊆ X be a random sample of size 8l(l − 1)dn
δ
− 1. Also let

R̂ =

{
R ∈ R : |R ∩ A| ≤ 4l · k

n
|A|
}
.

Each element of X belongs to A with probability |A|
n
, and thus E |R ∩ A| ≤ k

n
|A| as

|R| ≤ k for all R ∈ R. Markov’s inequality then bounds the probability of a range of
R not belonging to R̂:

Pr (R /∈ R̂) = Pr
(
|R ∩ A| > 4l · k

n
|A|
)
≤ 1

4l
,

from which:

E
∣∣∣R \ R̂∣∣∣ ≤ |R|

4l
.
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Let t = 4l k
n
|A| and R̂|A is exactlyR|A,≤t, so∣∣∣R̂|A

∣∣∣ = ∣∣R|A,≤t

∣∣ ≤ |A| · ϕ(|A| , t).
From this it follows that

E
∣∣R|A

∣∣ ≤ E
∣∣∣R̂|A

∣∣∣+ E
∣∣∣R \ R̂∣∣∣ ≤ |A| · ϕ( |A| , 4l · k

n
|A|
)
+
|R|
4l

.

Now the bound follows from Lemma 2.1.

We end by proving the inequality (2.3) which was used to obtain Lemma 2.1.

Proof of (2.3). Consider a set Q ∈ R|A, and let RQ consist of the ranges of R sent to
Q by the projection on A, i.e. those R such that R ∩ A = Q. Depending on the choice
of xt, RQ is split into those ranges containing xt―forming a set A―and those not
containing xt―in a set B. From the definition of weights, the expected contribution of
the ranges ofRQ to edge weight is

Emin{|A| , |B|} ≥ E
(
|A| |B|
|A|+ |B|

)
=

1

|RQ|
· E(|A| |B|). (2.5)

The above inequality follows from min{|A| , |B|} ≥ |A| |B| /(|A|+ |B|). Now:

E(|A| |B|) = 1

|X \ A|
∑

x∈X\A

|{R ∈ RQ : x ∈ R}| |{R ∈ RQ : x /∈ R}|

=
1

|X \ A|
∑

x∈X\A

∑
R1∈RQ

∑
R2∈RQ

1R1(x)(1− 1R2(x))

=
1

|X \ A|
∑

R1∈RQ

∑
R2∈RQ

|(X \ A) ∩ (R1 \R2)|

=
1

|X \ A|
∑

{R1,R2}∈(RQ
2
)

|(X \ A) ∩ (R1 ∆R2)| .

Observe that R1 and R2 agree on A, so this simplifies to

E(|A| |B|) = 1

|X \ A|
∑

{R1,R2}∈(RQ
2
)

|R1 ∆R2| . (2.6)

For all l sets R1, . . . , Rl ∈ RQ,⋃
2≤j≤l

R1 ∆Rj = (R1 ∪ · · · ∪Rl) \ (R1 ∩ · · · ∩Rl) ,
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and sinceR is an l-wise δ-packing∑
2≤j≤l

|R1 ∆Rj| ≥ |(R1 ∪ · · · ∪Rl) \ (R1 ∩ · · · ∩Rl)| ≥ δ.

So for every l-tuple there exists one pair (R1, Rj) with |R1 ∆Rj| ≥ δ
l−1

. Consider
the graph (RQ, EQ), where {R1, R2} ∈ EQ if |R1 ∆R2| ≥ δ

l−1
. As RQ is an l-wise

δ-packing this graph does not have independent sets of size l. Turán’s theorem (see
Appendix A) gives a lower bound for its number of edges:

|EQ| ≥
|RQ| (|RQ| − l)

2l
. (2.7)

Recall (2.6):

E(|A| |B|) = 1

|X \ A|
∑

{R1,R2}∈(RQ
2
)

|R1 ∆R2|

≥ 1

|X \ A|
∑

{R1,R2}∈EQ

|R1 ∆R2|

≥ |EQ|
|X \ A|

· δ

l − 1

≥ δ |RQ| (|RQ| − l)

|X \ A| (l − 1)
by (2.7).

Now come back to (2.5):

E(min{|A| , |B|}) ≥ E(|A| |B|)
|RQ|

≥ δ(|RQ| − l)

|X \ A| (l − 1)
,

where |X \ A| = n− (s− 1) ≥
(
1− 8l(l−1)

δ

)
n. Summing up over all sets ofR|A,

E(Ws|A) ≥
1

2l(l − 1)

∑
Q∈R|A

δ

n
(|RQ| − l)

=
δ/n

2l(l − 1)

(
|R| − l

∣∣R|A
∣∣) .

5 Remarks
Lower bound for the Shallow Packing Lemma. The lower bound construction
given in the proof ofTheorem 1, showing the optimality of the Shallow Packing Lemma
(Theorem D), is constructive. Also observe that it can be realised in a number of simple
ways, for example with points on a square grid and sets induced by some specific
(2d)-gons, i.e. a semi-algebraic set system with constant description complexity.



Chapter Three

Combinatorial Macbeath Regions

Combinatorial analogues of decomposition theorems that use Macbeath regions in
convex geometry are obtained using the packing lemmas from the previous chapter.

Building on the results of Chapter 2, this chapter contains several applications to the
combinatorics of geometric set systems:

1. Improved bounds on combinatorial Macbeath regions, or Mnets, a combinatorial
analogue to Macbeath regions in convex geometry [23, 74] (Theorem 3). This
resolves one of the main open problems in Mustafa and Ray [86], where some
bounds were obtained by disparate techniques.

2. Mnets provide a general, more powerful framework from which the state-of-
the-art unweighted ε-net results of Varadarajan [99] and Chan et al. [32] follow
immediately (Corollary 3.1).

3. Our upper bounds on Mnets for general semi-algebraic set systems of fixed VC
dimension are asymptotically tight (Theorem 4). We also give a more precise
lower bound in terms of SCC, based on a similar bound for nets by Kupavskii,
Mustafa, and Pach [69].

Besides using the packing lemma and a combinatorial construction, our proofs
combine tools from the polynomial partitioning technique of Guth and Katz [54] and
the probabilistic method.

Together with those on packings (Chapter 2) these results were presented at the 33rd
International Symposium on Computational Geometry [45], then invited to a special
edition of Discrete & Computational Geometry dedicated to the Symposium’s best papers.

58
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1 Macbeath Regions and Mnets
Given a convex bodyK in Rd and a small parameter ε > 0, Brönnimann, Chazelle, and
Pach [23] use a classical construction of Macbeath [74] to build a collection of smaller
convex regions K1, . . . , Kl ⊂ K collectively known as Macbeath regions of K such
that

• l = O
((

1
ε

)1− 2
d+1

)
,

• volKi = Θ(ε volK) for each i, and

• for any half-space H with vol(H ∩ K) ≥ ε vol(K), there exists a j such that
Kj ⊆ H .

Details on Macbeath regions can be found in the surveys by Bárány [16] and Bárány
and Larman [17]. Mnets1 (or combinatorial Macbeath regions), introduced by Mustafa
and Ray [86], are a combinatorial analogue of Macbeath regions for set systems, repla-
cing the Lebesgue measure with the counting measure.

Definition 3.1. Given a set system (X,R), two positive parameters ε and C , and a
finite subset Y ⊆ X , a C-heavy ε-Mnet for Y in (X,R) is a collection {M1, . . . ,Ml}
of subsets of Y such that

• |Mi| ≥ Cε |Y | for each i, and

• for any R ∈ R|Y with |R| ≥ ε |Y |, there exists an index j such that Mj ⊆ R.

Mnets can be seen as a generalisation of strong nets, where the ranges are hit not
just with a singleton, but with a set of at least dCε |Y |e elements. Just as we do for
strong nets, we say that the set system ‘has ε-Mnets of size S(ε)’ if there is an ε-Mnet
of this size for each finite Y ⊆ X .

2 Contributions
The main contribution of this chapter is a new construction of Mnets using the shallow
packing lemma. The key idea of this construction is a combination of the polynomial
partitioning technique and the shallow packing lemma from Chapter 2.

1. The recommended pronunciation is ‘em-net’. The M stands for Macbeath.
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2.1 Mnets for Semi-algebraic Set Systems (Proof in Section 3)
Recall that Γd,∆,s is the family of all semi-algebraic sets in Rd obtained by taking
Boolean operations on at most s polynomial inequalities, each of degree at most∆. For
our purposes d, ∆, and s are all regarded as constants and therefore the sets in Γd,∆,s

have constant description complexity. For a detailed introduction to this topic, see the
book by Basu, Pollack, and Roy [18].

Given a setX of points inRd and a range setR onX , we say that (X,R) is a semi-
algebraic set system generated by Γd,∆,s ifR is a subset of {X ∩ γ : γ ∈ Γd,∆,s}.

Theorem 3 (Mnets). Let d, d0,∆ and s be integers. Semi-algebraic set systems generated
by Γd,∆,s with VC dimension d0 and SCC ϕ non-decreasing in the first argument have
(1/r)-Mnets of size

O (d0r · ϕ(8d0r, 48d0)))
for all r ≥ 1. In particular this simplifies to O (r · ϕ̃ (8d0r)) for SCC in one variable.
Constants depend on d, ∆, and s; the second one also depends on d0.

Most of the time this bound simplifies further to O (r · ϕ̃(r)). The proof of The-
orem 3 uses the shallow packing lemma (Theorem D), as well as the polynomial par-
titioning method of Guth and Katz [54], specifically a multilevel refinement due to
Matoušek and Patáková [81].

First we point out that Theorem 3 immediately implies the best known bounds
on unweighted nets―though with the additional restriction that the set system be
semi-algebraic―because any transversal for an Mnet is a net.

Corollary 3.1. Set systems with 1
k
-heavy 1

r
-Mnets of size M(r, k) have 1

r
-nets of size

rk log(M(r, k)/r) + r.

In particular a set system (X,R) with VC-dim(R) ≤ d has 1
r
-nets of size

O (r logϕR(8dr, 48d)) .

Proof. LetM be an 1
k
-heavy 1

r
-Mnet for (X,R) and p = kr

n
log(|M| /r). We can

assume that p ∈ (0, 1) since if p ≤ 0 thenM≤ r, and picking one element from each
set ofM is enough, whereas if p ≥ 1 then X is a small enough net. Pick each point of
X into a random sample R independently with probability p. This sample R is disjoint
from any fixed Mi ∈M with probability

Pr(R ∩Mi = ∅) ≤ (1− p)n/(kr) ≤ e−np/(kr) =
r

|M|
.

Therefore the expected number of sets ofM not hit by R is at most r; let the set S
consist of an arbitrary point from each such set. As E |S| ≤ r, we have that R ∪ S is a
1
r
-net of expected size at most np+ r.
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Set system Primal/Dual Size of (1/r)-Mnets
Objects w. union complexity κ D O(κ(r))
α-fat triangles D O(r log∗ r)
Locally γ-fat objects D r · 2O(log∗ r)

Triangles of approx. same size D O(r)
Axis-parallel rectangles in R2 P O(r log r)
Lines in R2 P O(r2)
Strips in R2 P O(r2)
Cones in R2 P O(r2)
Semi-algebraic pseudodisks in R2 P/D O(r)
Half-spaces in Rd P/D O(rbd/2c)
Hyperplanes in Rd P/D O(rd)

Table 3.1: Bounds on the size of Mnets. Many known results follow fromTheorem 3 via
their SCC. Poly-logarithmic improvements are in bold. The bounds are for r ∈ [1,+∞).

Second, Theorem 3 unifies and generalises several previous statements. Mustafa
and Ray [86] gave some results on Mnets using different techniques: for the dual set
system induced by regions of union complexity κ using cuttings, for rectangles using
divide-and-conquer constructions, and for triangles using nets. All these and more
results follow as immediate corollaries of Theorem 3.

Corollary 3.2 (See Table 3.1). There exist (1/r)-Mnets of size

(i) O(κ(r)) for the dual set system induced by semi-algebraic objects in R2 with union
complexity κ. In particular, O (r log∗ r) for the dual set system induced by α-fat
triangles2, O

(
r · 2O(log∗ r)

)
for the dual set system induced by locally γ-fat semi-

algebraic objects3 in the plane, andO (r) for the dual set system induced by triangles
of approximately same size [80].

(ii) O (r log r) for the primal set system induced by axis-parallel rectangles in the plane.

(iii) O(r2) for the primal system induced by lines, strips and cones in the plane, improv-
ing the previous-best results by poly-logarithmic factors. They were O(r2 log2 r),
O(r2 log3 r2) and O(r2 log4 r) respectively.

(iv) O (r) for the primal set system of semi-algebraic pseudodisks.

(v) O(rbd/2c) for the primal set system of half-spaces in Rd.

2. For a fixed parameter α with 0 < α ≤ π/3, a triangle is α-fat if all three of its angles are at least α.
3. For a fixed parameter γ with 0 < γ ≤ 1/4, a planar semi-algebraic object o is called locally γ-fat

if, for any disk D centred in o and that does not fully contain o in its interior, we have area(D u o) ≥
γ · area(D), where D u o is the connected component of D ∩ o that contains the centre of D.
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(vi) O(rd) for the primal and dual set systems of hyperplanes in Rd.

The main open question in [86] was the following interesting pattern that was
observed: for all cases studied, a set system that had (1/r)-nets of size O(r log ϕ̃(r))
had Mnets of size O(rϕ̃(r)). Theorem 3 now shows that this was not a coincidence. By
Theorem A, a set system with SCC ϕ̃(·) has (1/r)-nets of size O(r log ϕ̃(r)). And now,
from Theorem 3, it follows that it has Mnets of size O(rϕ̃(r)).

2.2 Lower Bounds on the Size of Mnets (Proof in Section 4)
We obtain some lower bounds on the size of (1/r)-Mnets in semi-algebraic settings.
Mustafa and Ray [86] already gave a number of non-linear lower bounds (in terms of r),
e.g.Ω (r2) for primal systems induced by points and lines in the plane andΩ

(
rb(d+1)/3c)

for primal set systems induced by points and half-spaces in Rd.
We establish that Theorem 3 is tight for general semi-algebraic set systems with

finite VC dimension.

Theorem 4. Given r > 0 and integers n and d, there exists a set P of n points in Rd such
that any c-heavy (1/r)-Mnet for the primal set system induced on P by hyperplanes has
size Ω

(
rd
)
, where the constant depends on d and c.

Note that said primal set system has VC dimension d. Using Lemma 1.1 and The-
orem 3, we get that it has (1/r)-Mnets of size O(rd), and Theorem 4 shows that this
bound is asymptotically tight.

Kupavskii, Mustafa, and Pach [69] recently gave the following lower bound on the
size of nets in terms of SCC.

Theorem F. Let ϕ̃ : R+ → R+ be a monotonically increasing sub-multiplicative4 func-
tion which tends to infinity and is bounded from above by a polynomial of constant degree.
Given any δ ∈ (0, 1/10) and r > r0(δ) > 0, there exists a set system with SCC ϕ̃ that
does not have (1/r)-nets smaller than(

1

2
− δ

)
r log ϕ̃(r).

Note that the family of sub-multiplicative functions includes commonly appearing
functions in discrete and combinatorial geometry such as polynomials, log, log ◦ log,
log∗, inverse Ackermann.

Through Corollary 3.1 this lower bound on the size of nets translates directly to a
lower bound on the size of Mnets.

4. A function f : R+ → R+ is sub-multiplicative if there exists x0 ∈ R+ such that for every
α ∈ (0, 1) and x > x0 we have fα(x1/α) ≤ f(x).
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Theorem 5. Let ϕ̃ : R+ → R+ be a monotonically increasing sub-multiplicative function
which tends to infinity and is bounded from above by a polynomial of constant degree.
Given any δ ∈ (0, 1/10) and r > r0(δ) > 0, there exists a set system with SCC ϕ̃ that
does not have 1

k
-heavy (1/r)-Mnets smaller than

Ω
(
rϕ̃

1−2δ
2k (r)

)
.

3 Construction of Mnets
In this section we prove Theorem 3 on the existence of small Mnets in semi-algebraic
set systems, then we derive from it the bounds listed in Corollary 3.2. We begin with a
brief overview of a technical tool that is used in the proof of Theorem 3.

3.1 Preliminaries on Polynomial Partitioning
We use the following theorem of Matoušek and Patáková [81]. For two subsets γ and
ω of Rd, say that γ crosses ω if ω ∩ γ /∈ {∅, ω}.

Theorem G (Multilevel polynomial partitioning). For every integer d > 1, there are
positive constants K and C such that the following holds. Given a finite set P ⊂ Rd and
a parameter η > 1, there exists a partition of P

P = Σ∗ ∪
d⋃

k=1

tk⋃
l=1

Σkl,

where |Σ∗| ≤ ηK and the following properties hold for each k ∈ [1 .. d]:

1. tk ≤ CηC , and for l ∈ [1 .. tk], |Σkl| ≤ |P |
ηk

with ηk ∈ [η, ηK ].

2. there exists a family of semi-algebraic regions Sk = {Sk1, . . . , Sktk} such that for
each l ∈ [1 .. tk],

a) Skl is connected, defined by O(ηC) polynomial inequalities of degree O(ηC),

b) Σkl ⊆ Skl, and

c) every set γ ∈ Γd,∆,s crosses at most Cd,∆,s · η1−1/d
k of the sets in Sk, where the

constant Cd,∆,s depends only on d, ∆ and s.

In other words, the point set P can be partitioned into a constant number of parts
defined by a set Sk of semi-algebraic regions (for all k ∈ [1 .. d]), such that every set in
Γd,∆,s either contains, or is disjoint from, most of these regions. Theorem G extends
the Guth–Katz polynomial partitioning technique [54], a partition of Rd by an algebraic
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variety that is balanced with respect to the set P . Here partitioning is applied not once
but recursively on varieties of decreasing dimension. This allows us to dispense with
assumptions of genericity on P .

3.2 Proofs
We now give proofs of Theorem 3 and Corollary 3.2.

Proof of Theorem 3. Here is a first overview of the proof. Suppose that all ranges inR
are of size exactly εn. Consider a maximal (εn/2)-packing P ⊆ R. It is necessarily
(εn)-shallow so its cardinality |P| is bounded by Theorem D. Further, each range ofR
has size εn and must have an intersection of size at least εn/2 with some range of P ,
since the latter is maximal. So, to get an ε-Mnet, one just needs to get a (1/2)-Mnet
for each of the set systems (R,R|R) for each R ∈ P , and take their union. This is
where the polynomial partitioning theorem comes in. Fix such a set system (R,R|R).
Suppose we could partition the points in R into a constant number c of roughly equal-
sized parts, such that each set of size at least εn/2 in R|R was a union of some parts
in the partition. Then the average size of a part inside a set of size εn/2 in R|R is at
least εn/2c, and so each such set contains at least one part of size ≥ εn/2c. Thus by
choosing those parts in R which have at least εn/2c elements, we are guaranteed to
cover all the sets in R|R which have at least εn/2 elements. Since we have chosen at
most c parts from each R ∈ P , the total number of sets inM is at most c |P |, which
is what we wanted. The actual proof involves a finer analysis to show that these ideas
go through even when we require that all sets of size at least εn have to be covered,
and we are guaranteed only a partition with a small but possibly nonzero number of
crossings.

Nowwe come to the formal proof. Note that if εn = O(1), then the trivial collection
of singleton sets {{p} : p ∈ X} is an ε-Mnet for (X,R), of size n = O(ε−1). Therefore
we may restrict ourselves to the case when

ε >
4 (16 · d · Cd,∆,s)

Kd

n
. (3.1)

For i ∈ [0..dlog(1/ε)e], letRi ⊆ R be an inclusion-maximal (2i−1ε n)-packing amongst
the ranges of R whose cardinality is in [2iεn, 2i+1εn). Denote the elements of Ri by
Rij for j ∈ [1 .. |Ri|]. From Theorem D, we have

|Ri| ≤
48d0
2iε
· ϕ
(
8d0
2iε

, 48d0

)
. (3.2)



Chapter 3. Combinatorial Macbeath Regions 65

For a parameter η to be fixed later, consider the multilevel polynomial partitioning
ofRij as in Theorem G. We write

Rij = Σ∗
ij ∪

d⋃
k=1

tijk⋃
l=1

Σijkl,

where

1. The point set Σijkl is included in a connected semi-algebraic region Sijkl of Rd;
see Theorem G.

2. ηij1, ηij2, . . . , ηijd ∈ [η, ηK ] with K = K(d) as in Theorem G.

3. For all k = 1, 2, . . . , d, tijk ≤ CηC , with C = C(d) as in Theorem G. This
implies

∑d
i=1 tijk ≤ CdηC .

4. |Σijkl| ≤ |Rij|
ηijk

for all k and l.

5.
∣∣Σ∗

ij

∣∣ ≤ ηK .

6. For all γ ∈ Γd,∆,s and every k = 1, 2, . . . , d, the number of Sijkl crossed by γ is
at most Cd,∆,sη

1−1/d
ijk , where the constant Cd,∆,s is defined in Theorem G.

The indices ijkl will appear frequently in the sequel. For ease of reference, we
remind the reader that i stands for the packing Ri, j stands for the j-th range Rij in
Ri, k indicates the level in the multilevel polynomial partitioning of the setRij , and l
stands for the l-th part in the k-th level.

The MnetM is the union of a family (Mi) of set collections. Let

Mi =

{
Σijkl : |Σijkl| ≥

2iεn

8CdηC

}
for each index i, and

M =

dlog 1
ε
e⋃

i=0

Mi.

It remains to show thatM is the required Mnet for an appropriate value of η.
Namely,

(i) the promised bound on |M| holds,

(ii) each set inM has size Ω(εn), and

(iii) for every R ∈ R with |R| ≥ εn, there is a choice of (i, j, k, l) such that R ⊇
Σijkl ∈M.
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Let η = (16dCd,∆,s)
d, ensuring that ηK < 1

4
εn.

To see i), observe that

|Mi| = O
(
dηC · |Ri|

)
= O

(
d0
2iε
· ϕ
(8d0
2iε

, 48d0

))
,

so as ϕ is non-decreasing in the first variable,

|Mi| = O

(
d0
2iε
· ϕ
(8d0

ε
, 48d0

))
,

|M| =
dlog 1

ε
e∑

i=0

|Mi| = O

(
d0
ε
· ϕ
(8d0

ε
, 48d0

))
.

To see ii), observe that by definition each set added toM satisfies

|Σijkl| ≥
2iεn

8CdηC
= Ω

(
εn
)
.

To see iii), let R ∈ R be any set such that |R| ≥ εn, and let i be the index such
that |R| ∈ [2iεn, 2i+1εn). Since Ri is a maximal packing, there must exist an index j
such thatRij ∈ Ri and |R∆Rij| ≤ 2i−1εn. Note that then

|R| − |R∆Rij| ≤ |R ∩Rij| ≤ |R| ,

so that |R ∩Rij| ∈ [2i−1εn, 2i+1εn).
We shall show that in fact,R∩Rij must contain a set Σijkl ∈Mi, by contradiction.

Suppose it does not, then consider the contribution to the points in the disjoint union

R ∩Rij =

(⋃
k,l

(R ∩ Σijkl)

)
∪
(
R ∩ Σ∗

ij

)
.

a. The total number of points contained in R ∩ Rij from the sets Σijkl such that
|Σijkl| < 2iεn

8CdηC
, summed over all indices k and l, is at most

CdηC · 2iεn

8CdηC
=

2iεn

8
,

because there are at most CdηC such sets.

b. All points in the parts Σijkl, such that the semialgebraic set γ defining R ∩ Rij

crosses the connected component Sijkl corresponding to Σijkl. It may be that
R ∩ Rij = Rij, in which case the number of such points is zero, because for
all k, l, R ∩ Rij = Rij ⊃ Σijkl. By Theorem G, there are at most Cd,∆,s η

1−1/d
ijk

such sets γ, and by the property (1.) of multilevel partitioning, each such region
contains at most 2i+1εn

ηijk
points of X .
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c. The points of R ∩Rij contained in Σ∗
ij : at most ηK .

Using the fact that η is sufficiently large in terms of d, ∆ and s, we sum these three
contributions and obtain:

|R ∩Rij| ≤ 2i−3εn+
d∑

k=1

(
2i+1εn

ηijk
· Cd,∆,sη

1−1/d
ijk

)
+ ηK

< 2i−3εn+
dCd,∆,s2

i+1εn

η1/d
+ ηK

< 2i−1εn.

This last inequality follows from the fact that ηijk ≥ η, η = (16dCd,∆,s)
d and ηK <

2i−2εn. We get a contradiction to the fact that |R ∩Rij| ≥ 2i−1εn, which completes
the proof.

Proof of Corollary 3.2.

1. Remember that the dual of a semi-algebraic set system is itself semi-algebraic
(Lemma 1.3). The SCC of the dual set system induced by objects with union
complexity κ is ϕ̃(m) = O(κ(m)/m), which together with Theorem 3 implies
the stated bound. The value of κ(m) is O(m) for triangles with approximately
same size [80], O(m log∗ m) for α-fat triangles [48](where the constant of pro-
portionality depends only on α), and O(m2log∗ m) for locally γ-fat objects [9],
where the constant of proportionality in the linear term depends only on γ.

2. Let (X,R) be the set system induced on a setX of n points inR2 by the family of
axis-parallel rectangles. Aronov, Ezra, and Sharir [10] show that there is another
set systemR′ onX with SCCϕR′(m, l) = O (l · logm), such that for anyR ∈ R,
there exists a R′ ∈ R′ such that R′ ⊆ R and |R′| ≥ |R|/2. Thus a (1/2r)-Mnet
forR′ is a (1/r)-Mnet forR, of size O(r log r).

3. The other results follow from the facts that the SCC ϕ(m, l)

• of the primal set system induced on R2 is O(m) for lines, O(ml) for strips,
and O(ml2) for cones [86].

• of the primal set system induced on R2 by pseudodisks is O(l2) [27].
• of the primal set system induced by half-spaces on Rd is O(mbd/2c−1ldd/2e).
• of the primal and dual set systems induced by hyperplanes on Rd is O(md).
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4 Main Lower Bound on Mnets
To prove Theorem 4, we use the following result from [86].

Lemma 3.1. For ε > 0 and positive integers d and k, there exists a set P of n points inR2

and a set C of curves of polynomial functions of degree at most d satisfying the following
conditions:

(i) |C| = Ω
(
ε−d
)
where the constant of proportionality depends on d and k.

(ii) For all Ci ∈ C, |Ci ∩ P | ≥ εn.

(iii) For any two distinct C1 and C2 in C, we have |C1 ∩ C2 ∩ P | ≤ εn
k
.

Let P and C be as in Lemma 3.1. By the standard Veronese lifting [78], they are
mapped to a set P ′ of n points in Rd and a family of hyperplanes H in Rd satisfying
the following conditions:

1. |H| = Ω
(
ε−d
)
where the constant of proportionality depends on d and k.

2. For all Hi ∈ H, |Hi ∩ P ′| ≥ εn.

3. For any two distinct Hi and Hj inH, we have |Hi ∩Hj ∩ P ′| ≤ εn
k
.

Now any 1
k
-heavy ε-Mnet for the primal set system defined byH on P ′ must have

at least |H| = Ω
(
ε−d
)
sets, which proves Theorem 4.

5 Remarks
New approach to understand ε-nets. We showed that Mnets gives a new approach
to understand ε-nets for geometric set systems. Corollary 3.1 gives a proof of optimal
ε-nets that is independent of Haussler and Welzl’s work.

Applications of Mnets. Corollary 3.1 shows that the existence of small nets follows
immediately from the more general structure of Mnets. Macbeath regions for convex
bodies have found algorithmic applications such as volume estimation of convex bodies
[11, 13]. We believe that Mnets will also find important applications and connections
to various aspects of set systems with bounded VC dimension.
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5.1 Computing Mnets
In the real RAM model of computation one can compute exactly with arbitrary real
numbers and each arithmetic operation takes unit time. Matoušek and Patáková [81]
gave the following algorithmic counterpart of Theorem G.

Theorem H (Algorithmic Multilevel Polynomial Partitioning). The sets Σ∗, Σij , Sij

from Theorem G can be computed in time O(nrC), where the constant C is the same as
in Theorem G.

Using this result and the construction in the proof of Theorem 3, we can get a
randomised algorithm with time complexity poly (n, 1/ε) that computes Mnets for
semi-algebraic set systems matching the upper bound on the size of Mnets from The-
orem 3.

We finish with our main open problem.
Question. Can the optimal bounds on weighted nets (see e.g. [99], [32]) be obtained via
Mnets?
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Chapter Four

Hardness of Approximation

In this chapter we introduce a few complexity classes related to optimisation prob-
lems, especially classes associated with approximation algorithms and parametrised

tractability. This is not intended as a description of complexity theory from the ground
up; several surveys such as [43, 82] contain all notions needed and more. A convenient
online resource is the Complexity Zoo [40]. Our goal is to prepare for Chapter 5 by
explaining why some geometric optimisation problems are hard to approximate.

1 Combinatorial Optimisation Problems
We mostly follow the introduction to approximation algorithms by Jansen [63]. Where
decision problems are yes–no questions, optimisation problems may have multiple
possible answers, out of which one has to pick the best.

Definition 4.1. An optimisation problem is a tuple (I,S, val,≺) where I is a set
of instances, S is a function with domain I that maps each instance to its nonempty
set of feasible solutions, the operator val associates a positive integer to every solution,
and ≺ is either ≤ (minimisation) or ≥ (maximisation).

Example 4.1. Minimum Vertex Cover is a minimisation problem whose instances
are all finite graphs with at least one edge. Its function S maps a graph to the set of its
vertex covers (its sets of vertices that cover all edges) and the value of a solution is its
cardinality.

Example 4.2. Travelling SalesPerson or TSP is a minimisation problem whose
instances are all finite complete graphs with edge weights. The feasible solutions of an
instance are its Hamiltonian circuits and the value of a solution is the sum of its edge
weights.
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We write OPT(Π, I) for the ≺-minimal value of all solutions of the problem Π for
the instance I , or simply OPT when both the problem and the instance are clear from
the context. A solution that attains this value is an optimal solution.

The optimisation problem belongs to the class NPO or NP-optimisation if I is in
P (can be recognised in polynomial time), for each instance I the set S(I) is in P, and
val is computable in polynomial time.

To any such optimisation problem corresponds a natural decision problem: given
an instance and a positive integer k, is OPT ≺ k? If the optimisation problem is in
NPO, then its decision version is in NP. Furthermore PO (for P-optimisation) is the
class of optimisation problems whose corresponding decision versions are in P.

2 Approximation Algorithms
Definition 4.2. An approximation algorithm with factor r ∈ [1,+∞) for some
optimisation problem (an r-approximation for short) is an algorithm that for each
instance returns a solution whose value is within a factor r of OPT.

Example 4.3. There is a well-known 2-approximation for Minimum Vertex Cover.
Find a maximal matching and let t be its number of edges. The set of all its endpoints
is a vertex cover with 2t vertices and it is clear that OPT ≥ t.

Optimisation problems can be classified according to their approximability prop-
erties. A problem in NPO is in APX if it admits a polynomial-time approximation, in
PTAS if it admits a polynomial-time (1 + ε)-approximation for all ε > 0, in EPTAS
if said algorithms have running time f(ε) · polyn for some arbitrary function f , and
in FPTAS when said running time is poly(ε−1, n). Somewhat confusingly perhaps,
algorithms of those types are also called PTAS, EPTAS and FPTAS respectively. These
abbreviations stand for (efficient or fully) polynomial-time approximation scheme.

3 Parametrised Complexity

3.1 Fixed-Parameter Tractability
The decision version of an optimisation problem is in the class FPT if there is an
algorithm that for every instance I and positive integer k decides OPT ≺ k in time
f(k) ·poly |I|with f a computable function. (There are many more ways to parametrise
a problem, but as we only use this parametrisation by the value we may specialise our
discussion of FPT.)

Example 4.4. The decision version of Minimum Vertex Cover is the problem of
deciding whether an input graph on n vertices admits a vertex cover of cardinality at
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most k. This can be answered in time O(2kn), meaning that Minimum Vertex Cover
is in FPT.

3.2 Lowest Levels of the W Hierarchy
Definition 4.3. An fpt-reduction from the decision version of an optimisation prob-
lemΠ1 = (I1,S1, val1,≺1) to another problem of the same kindΠ2 = (I2,S2, val2,≺2)
is an algorithm

M1→2 : I1 × N∗ → I2 × N∗

(I1, k1) 7→ (I2, k2)

such that

• M1→2 runs in time at most g(k1) poly |I1|,

• k2 ≤ f(k1),

• and OPT(Π1, I1) ≺1 k1 ⇐⇒ OPT(Π2, I2) ≺2 k2

for some computable functions f and g.

Example 4.5. The reduction from Independent Set to Cliqe is straightforward. To
a pair (G, k)withG a graph of order n it associates (G̃, k), where G̃ is the complement
of G (the graph with the same vertex set whose edges are those not present in G).
Clearly G̃ can be computed from G in time polyn, the identity of N∗ can be taken for
f , and G has an independent set of cardinality at least k if and only if G̃ has a clique
of cardinality at least k.

The class W[1] is defined with Boolean circuits of restricted complexity. For our
purposes it is sufficient to know that a problem is W[1]-hard if it is fpt-reducible to
the decision version of Cliqe, or to any other W[1]-hard problem. As the previous
example indicates this is the case for Independent Set.

3.3 Complexity Bounds
The inclusion FPT ⊆W[1] is commonly thought to be strict as equality of those classes
would imply failure of the exponential time hypothesis. Under this assumption, the
inclusions of complexity classes presented in Figure 4.1a are all strict (with some abuse
of language in that optimisation problems are identified with their decision version).

Recall that an EPTAS is a PTAS that runs in time f(ε)nc for an arbitrary function
f and c ≥ 0. The following observation first appeared in C. Bazgan’s master’s thesis
[19, 29].
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PO

FPTAS

EPTAS

PTAS

APX

NPO

FPT

W[1]

(a) State of the world if FPT is a proper
subclass of W[1].

PO

FPTAS

EPTAS

PTAS

=?

APX

NPO

FPT

(b) State of the world if W[1] = FPT
but P 6= NP.

Figure 4.1: Hasse diagram of some complexity classes depending on the relative status
of FPT and W[1].

Theorem I. Combinatorial optimisation problems with integral-valued objective func-
tions and efficient PTASs are in FPT.

Proof. Given a minimisation problem with an efficient PTAS in f(ε)nc, for each in-
stance we can find in time f(1/2k)nc a solution with value V such that(

1 +
1

2k

)
· OPT ≥ V ≥ OPT.

If V ≤ k this implies OPT ≤ k, whereas if V ≥ k + 1 then

OPT ≥ 2kV

2k + 1
≥ 2k2 + 2k

2k + 1
> k,

so computing V answers the question ‘Does the instance have OPT ≤ k?’ in time
f(1/2k)nc, i.e. the problem parameterised by the size of its solution is in FPT.
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Since the problems that we will consider in the sequel areW[1]-hard, we conclude
that none of them admits efficient PTASs unless the inclusion of FPT in W[1] is an
equality.

4 A Few Optimisation Problems
Let us define the problems that we will encounter in the next chapters.

4.1 Problems on General Graphs and Set Systems
In the Minimum Hitting Set problem, we are given a (finite) set system and the
goal is to find a smallest transversal. (Recall Definition 1.10.) The restricted version of
this problem when the input set system is a graph―that is, all ranges have cardinality
two―is Minimum Vertex Cover.

In the Minimum Set Cover problem, the input is again a set system but the goal
is to find a smallest subset of ranges whose union is the ground set. Minimum Hitting
Set and Minimum Set Cover are equivalent problems via set-system duality.

In the Maximum Independent Set problem, the input is a graph and the goal
is to compute a largest subset of pairwise non-adjacent vertices (such subsets are inde-
pendent).

In the Minimum Dominating Set problem, the input is a graph and we search
for a smallest subset D of vertices such that every vertex of the graph is in D or has
an edge to a vertex of D.

4.2 Geometric Problems
Geometric optimisation problems are typically obtained by specialising the inputs to
these general problems. For example, the inputs to Minimum Hitting Set of pseudo-
disks are points and pseudodisks inR2. Remember that a family of pseudodisks consists
of the interior regions of a family of Jordan curves such that any two curves intersect
at most twice. Here are the problems that we will encounter in the next chapter.

Minimum Hitting Set for pseudodisks: given a set P of points and a family D
of pseudodisks in the plane, compute a smallest subset of P that intersects all
pseudodisks in D.

Maximum Independent Set of pseudodisks: given a familyD of pseudodisks in
the plane, compute a maximum size subset of pairwise disjoint pseudodisks in
D.
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Minimum Dominating Set of pseudodisks: given a family D of pseudodisks in
the plane, compute a smallest subset of pseudodisks of D that together intersect
all other pseudodisks of D.

Minimum Set Cover for disks: given a set P of points and a family D of disks in
the plane, return a smallest subset of disks in D that together cover all points of
P .

Unit-Capacity Point-Packing: given a set of points P and a set of disks D, com-
pute a largest subset ofP that hits no disk ofDmore than once. This last problem
was introduced by Ene, Har-Peled, and Raichel [46].

5 Hardness Results
We prepare for the next chapter by proving the W[1]-hardness of some geometric
problems. Under the assumption that FPT is strictly included in W[1] this means that
they cannot be fixed-parameter tractable (when parametrised by the cardinality of the
optimal solution) and then by Theorem I that they cannot admit efficient PTASs.

Marx already gave hardness results for two of our problems, even when the input
is restricted to disks of unit radius.

Theorem J ([75]). Maximum Independent Set of unit disks is W[1]-complete (and in
particular W[1]-hard).

Theorem K ([76]). Minimum Dominating Set of unit disks is W[1]-hard.

This second result extends to Hitting Set by a simple reduction. All reductions that
we give are very simple examples of fpt-reductions as in Definition 4.3 with f : k 7→ k
and g ≡ 1.

Corollary 4.1. Minimum Hitting Set of unit disks isW[1]-hard.

Proof. Given an instance of Dominating Set with n unit disks, let P consist of their
centres and D consist of the n radius-2 disks centred at P . The hitting sets of D in P
are exactly the dominating sets of the initial unit disks.

Corollary 4.2. Minimum Set Cover by unit disks is W[1]-hard.

Proof. Given an instance of Hitting Set with unit disksD and points P , let P ′ consist
of the centres of D and D′ contain one unit disk centred at each point in P . The set
covers of P ′ in D′ are exactly the hitting sets of D in P .
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Now recall the Unit-Capacity Point-Packing problem defined on page 76. Unit-
Capacity Disk-Packing, also introduced in [46], is the dual problem where we are
given a set D of disks and at set P of points and must return a largest subset of D that
covers every point of P at most once.

Corollary 4.3. Unit-Capacity Disk-Packing isW[1]-hard even with unit disks.

Proof. Given an instance ofMaximum Independent Setwith n unit disks, letD consist
of these disks and P contain one point from each nonempty pairwise intersection inD.
The set P has size O(n2) and can be computed in O(n2). Now the feasible solutions of
Unit-Capacity Disk-Packing for D and P are exactly the independent sets of D.

Corollary 4.4. Unit-Capacity Point-Packing is also W[1]-hard, even with unit disks.

Proof. Given an instance of Unit-Capacity Point-Packing with unit disks D and
points P , let D′ consist one unit disk centred at each point in P and P ′ contain the
centres of the disks in D. The feasible solutions of Unit-Capacity Disk-Packing for
D and P are exactly the feasible solutions of Unit-Capacity Point-Packing for D′

and P ′.



Chapter Five

Approximation Guarantee of
Geometric Local Search

In this chapter we analyse geometric algorithms for combinatorial optimisation
based on local search. Such algorithms have been extremely fruitful in the last

decade.
More precisely, the algorithmic status of several basic NP-complete problems in

geometric combinatorial optimisation were unresolved. This included the existence of
polynomial-time approximation schemes (PTASs) for Hitting Set, Set Cover, Dom-
inating Set, Independent Set, and other problems for some basic geometric objects.
Other the past past nine years all have been solved―interestingly, with the same al-
gorithm: local search. In fact, it was shown that for many of these problems, local
search with radius λ gives a (1 + O(1/

√
λ))-approximation with running time nO(λ).

Setting λ = Θ(ε−2) yields a PTAS with a running time of nO(ε−2).
On the other hand, hardness results suggest that a PTAS for any of these problems

cannot run in poly(n) · f(ε) for any arbitrary f . Thus the main question left open in
previous work is whether the exponent of n can be decreased to o(ε−2).

We are able to establish a negative result: we show that in fact the approximation
guarantee of local search cannot be improved for any of these problems. The key
ingredient, of independent interest, is a new lower bound on locally expanding planar
graphs, which is then used to show the impossibility results. Our construction extends
to other graph families with small separators.

These results were obtained with Nabil H. Mustafa and presented at the 34th Interna-
tional Symposium on Computational Geometry [64].
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1 General Principles of Local Search

1.1 Space of Feasible Solutions
Computing an optimal solution for NP-hard combinatorial optimisation problems typ-
ically involves exploring all (or a constant fraction of) feasible solutions, which is
costly. The strict inclusion of P in NP and the exponential time hypothesis are two
common assumptions that extend this observation; they posit respectively that NP-
complete problems cannot be solved in polynomial or even sub-exponential time, i.e.
an algorithm that enumerates and evaluates all solutions is roughly optimal.

1.2 Local Search
This motivates techniques such as local search that restrict the domain to be invest-
igated in the solution space. Given a notion of neighbourhood in this space, a local
search starts from an initial solution then visits neighbouring solutions as long as such
moves improve the value of the solution.

Algorithm 1 Local search algorithm
1: procedure Feasible(S) . Problem-specific feasibility test.
2: …
3: procedure Neighbours(S) . Lists all neighbouring solutions.
4: …
5: procedure LocalSearch(s0)
6: s← s0
7: for s′ in Neighbours(s) do
8: if val s′ ≺ val s then
9: s← s′

10: jump to line 7
11: return s . The solution s is locally optimal.

Given a solution space S and a neighbourhood operator N : S → P(S) with
s ∈ N (s) for every s ∈ S , the N -locally optimal solutions are the s ∈ S such that

∀s′ ∈ N (s), val s ≺ val s′. (5.1)

All problems that we are interested in have for their feasible solutions elements of
P(X), where the finite setX is part of the instance. For example, the feasible solutions
of Minimum Vertex Cover are subsets of the vertex set of the graph given in the
instance. Additionally for all problems considered the value of a solution will be its
cardinality (which we either want to maximise or minimise depending on≺∈ {≤,≥}).
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In this setting, our notion of neighbourhood is based on the Hamming distance
(the solutions can be seen as binary words of length |X|). In a λ-local search we try
to improve the current solution by removing t elements from it and adding at most
t − 1 new ones for any t ∈ [1 .. λ] (for a minimisation problem). For this notion of
neighbourhood, condition (5.1) becomes

∀s′ ∈ S, |s∆ s′| < 2λ =⇒ |s| ≺ |s|′ .

Letting n = |X|, every improvement step is executed in time nO(λ) and there cannot
be more than n such steps since each decreases the cardinality of the solution. Thus
λ-local search obtains a λ-locally optimal solution in time nO(λ).

Algorithm 2 Local search algorithm with radius λ, cardinalities as objective
1: procedure Feasible(s) . Problem-specific feasibility test.
2: …
3: procedure LocalSearch(X)
4: s← X
5: for s1 ⊆ s, |s1| ≤ λ do
6: for s2 ⊆ X \ s, |s2| ≤ λ do
7: s′ ← s ∪ s2 \ s1
8: if Feasible(s′) and |s′| ≺ |s| then
9: s← s′

10: jump to line 5
11: return s . s is locally optimal.

1.3 Locality Gap and the Efficiency of Local Search
Based on prior use by Arya et al. [14] and mirroring the integrality gap from linear
programming, we introduce the notion of locality gap.

Definition 5.1. For a given optimisation problem, the locality gap of an instance is
the function

λ ∈ N 7→ max
{
max

{
|s|
OPT

,
OPT
|s|

}
: s λ-locally optimal solution

}
,

which is the maximal multiplicative ratio between the value of an optimal solution
and that of a λ-locally optimal one. The locality gap of the problem itself is the
supremum of this ratio over all instances.
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Since (λ + 1)-local optimality also implies λ-local optimality, these are both non-
increasing functions of λ.

There is no obvious reason why the locality gap of a problem should be bounded or
even finite, and it often is not. However it turns out―and this is the foundation of local
search techniques in computational geometry―that for many optimisation problems
arising from geometry it is a somewhat quickly decreasing function of λ.

In fact it has been shown that for several problems that are somehow characterised
by planarity this ratio is asymptotically 1 + O(λ−1/2). This is described in Section 2.
An immediate consequence is that those problems admit (1 + ε)-approximations in
time O(nO(ε−2)) and belong thus to the PTAS class, although they may be otherwise
computationally hard. Amongst our contributions to the study of geometric local
search techniques, we prove a matching lower bound of 1 + Ω(λ−1/2), meaning that
the existing analysis of local search for those problems is tight.

2 Geometric PTASs Based on Local Search
Within the past decade polynomial-time approximation schemes (PTASs) have been
proposed for a number of long-standing open problems in geometric approximation al-
gorithms, including the following NP-hard problems (see [36, 62] for hardness results):

1. Minimum Hitting Set for pseudodisks [87],

2. Maximum Independent Set of pseudodisks [3, 33],

3. Minimum Dominating Set of pseudodisks [52, 53],

4. Minimum Set Cover for disks [15, 31],

5. Unit-Capacity Point-Packing [46].

2.1 Approximation Guarantees for Local Search
Surprisingly, the PTAS for all these problems is essentially the same: local search.
Let X be the set of base elements of the problem (for example, this would be the
input points in the Hitting Set problem), and let the search radius λ ≥ 3 be an
integer. Then start with any feasible solution L ⊆ X and increase (in the case of a
maximisation problem, e.g. Maximum Independent Set) or decrease (in the case of
a minimisation problem, e.g. Minimum Hitting Set) its size by local improvement
steps while maintaining feasibility. Here a local improvement step is to swap a
subset L′ of at most λ elements of the current solution L with a subset of X \ L of
size at least |L′|+ 1 (for maximisation problems) or at most |L′| − 1 (for minimisation
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problems), as long as the new solution is still feasible. The algorithm finishes when no
local improvement step is possible. Such a solution is called λ-locally optimal.

All these algorithms are analysed in a similar way, as follows. Let L be a λ-locally
optimal solution and O be an optimal solution. We can assume that these solutions
are disjoint by considering L \ O and O \ L. To relate the cardinalities of L and O, a
bipartite exchange graph is built on vertex setsL andO with a local vertex expansion
property:

Minimisation: for all L′ ⊆ L of size at most λ, |N(L′)| ≥ |L′| . (5.2)
Maximisation: for all O′ ⊆ O of size at most λ, |N(O′)| ≥ |O′| . (5.3)

(When a graph G is clear from the context and V ′ is a subset of its vertices, N(V ′)
denotes the set of neighbours of the vertices of V ′ in G.)

The construction of exchange graphs is problem-specific and exploits the geometric
properties of optimal and local solutions. For example, in the Minimum Vertex Cover
problem on a graph G this would simply be the bipartite subgraph of G induced by L
and O; condition (5.2) follows from the local optimality of L.

The key in the analysis lies in a general theorem on local expansion in sparse graphs.
A bipartite graph on vertex sets (B,R) is λ-expanding if for allB′ ⊆ B of size at most
λ we have |N(B′)| ≥ |B′|. Note that the roles of B and R in this definition are not
symmetric. A (vertex) separator of a graph on n vertices is a subset of vertices whose
removal leaves connected components of cardinality at most 2

3
n. A class of graphs G

has the separator propertywith parameter s ∈ [0, 1] if there exists a positive constant
c such that any graph in G has a separator of size at most cn1−s, where n is the number
of vertices. For example, trees have this property with s = 1 as they have constant-
sized separators, whereas planar graphs have the separator property with parameter
s = 1

2
. In fact, the separator property with s = 1

2
actually holds for graphs excluding

fixed minors and in particular for minor-closed classes other than the class of all graphs,
e.g. graphs of bounded genus [7]. A class of graphs closed under taking subgraphs is
called monotone.

Theorem L ([15, 33, 87]). If a finite and λ-expanding bipartite graph on (B,R) belongs
to a monotone family with the separator property with parameter s ∈ (0, 1) and λ ≥ λs,
then |B| ≤ (1 + csλ

−s) · |R|, where cs and λs are positive constants that depend only on
s.

In an independent paper, Cabello and Gajser [28] describe a subcase of this theorem
for Kh-minor-free graphs, which have separators of size O

(
h3/2
√
n
)
. Finally, Har-

Peled and Quanrud [57, 58] observe that intersection graphs of low-density objects in
Rd have the separator property with s = 1/d.

To complete the analysis for minimisation problems, apply Theorem L with B = L
and R = O, and get |L| ≤ (1 + csλ

−s) · |O|. For maximisation problems, take B = O
and R = L, and get |O| ≤ (1 + csλ

−s) · |L| or equivalently |L| ≥ (1− c′sλ
−s) · |O|.
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2.2 Computational Efficiency of Geometric Local Search
Given a positive parameter ε, local search with radius λ = Θ(ε−1/s) provides a (1 + ε)-
approximate solution to problems whose exchange graphs have the separator property
with parameter s. This can be implemented in nO(λ) time by considering all possible
local improvements, thus yielding a PTAS in time nO(ε−1/s), and in particular nO(ε−2)

for the five problems listed on page 81.
The parameterised versions of these problems are W[1]-hard: even for unit disks,

Maximum Independent Set is W[1]-complete [75] and Minimum Dominating Setis
W[1]-hard [76], and the latter is easily reduced to our other three problems. Under
the common assumption that FPT ( W[1], which follows from the exponential time
hypothesis, these problems do not admit PTASs with time complexity poly(n) · f(ε)
for any arbitrary function f . In other words, the dependence of the exponent of n on ε
is inevitable. The details were given in the previous chapter, Section 5.

Still, this running time is prohibitively expensive, and there have been two com-
plementary approaches towards further progress: firstly, careful implementations of
local search that find local improvements more efficiently than by brute force [25]. The
second, more structural approach is to better analyse the quality of solutions resulting
from local search algorithms, mainly by studying the properties of exchange graphs
[8].

2.3 Contributions: Limits of Geometric Local Search
The construction that we give in Section 3 shows that Theorem L is asymptotically
tight whenever 1/s is an integer.

Theorem 6. Given a positive integer d, there are positive constants cd and λd such that,
for every integer λ ≥ λd, there is a family of bipartite graphs (Bn, Rn;En) indexed by
n ∈ N that

• are λ-expanding,

• have the separator property for s = 1/d, and so do their subgraphs,

• satisfy |Bn| , |Rn| = Θ(n) and |Bn| ≥ (1 + cd · λ− 1
d ) |Rn| − o(|Rn|) as n→∞.

Furthermore when d = 2 they are Gabriel graphs.

(A graph (V,E) is called Gabriel if there exists a mapping f : V → R2 such that
{vi, vj} ∈ E if and only if the circumdisk of the segment f(vi)f(vj) contains no other
point of f(V ). Gabriel graphs are subgraphs of Delaunay triangulations and thus
planar.)
Remark 5.1. Since our construction for d = 2 is planar, previous analogues ofTheorem L
restricted to planar graphs are also tight.
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2.4 Algorithmic Consequences
The analysis of local search in terms of the radius that achieves a (1+ε)-approximation
is tight for the five problems listed earlier (which all had s = 1

2
), as well as for a few

other problems with small separators (Section 4).

TheoremM ([87]). Local search with radiusO(ε−2) is a (1+ε)-approximation algorithm
for Minimum Hitting Set for pseudodisks.

Corollary 5.1. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there is
a set D of at least n disks and two disjoint sets B and R of at least n points in R2 each
such that bothB andR are hitting sets forD, |B| ≥ (1+Cλ− 1

2 ) |R| andB is a λ-locally
optimal solution to the Hitting Set problem for D with P = B ∪R.

TheoremN ([33]). Local search with radiusO(ε−2) is a (1+ε)-approximation algorithm
for Maximum Independent Set for pseudodisks.

Corollary 5.2. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are
two independent sets B and R of at least n disks in R2 such that |B| ≥ (1 + Cλ− 1

2 ) |R|
and R is a λ-locally optimal solution to the Independent Set problem in B ∪R.

Theorem O ([15, 31]). Local search with radius O(ε−2) is a (1 + ε)-approximation
algorithm for Minimum Set Cover for disks.

Corollary 5.3. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are
two independent sets B and R of at least n disks in R2 and a set P of Θ(|R|) points in R2

such that |B| ≥ (1 + Cλ− 1
2 ) |R| and R is a λ-locally optimal solution to the Set Cover

problem for P in B ∪R.

Theorem P ([52, 53]). Local search with radius O(ε−2) is a (1 + ε)-approximation al-
gorithm for Minimum Dominating Set for pseudodisks.

Corollary 5.4. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there is a
set D of disks in R2 and two dominating sets B and R of D of at least n disks each such
that |B| ≥ (1 +Cλ− 1

2 ) |R| and B is a λ-locally optimal solution to the Dominating Set
problem for D.

TheoremQ ([46]). Local search with radiusO(ε−2) is a (1+ε)-approximation algorithm
for the Unit-Capacity Point-Packing problem for disks.
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Corollary 5.5. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are
two sets B and R of at least n points in R2 and a set D of Θ(|R|) disks in R2 such that
every disk of D contains one point from B and one point from R, |B| ≥ (1 + Cλ− 1

2 ) |R|
and R is a λ-locally optimal solution to the Unit-Capacity Point-Packing problem for
D in B ∪R.

Following Definition 5.1 we say that: ‘The locality gap for Maximum Independent
Set of disks, Minimum Dominating Set of disks, etc. is 1 + Θ(λ−1/2)’.

3 Lower-Bound Construction
In this section we build a family of graphs that have the properties stated in Theorem 6.
Namely, given parameters d, a large enough λ and n, we construct a bipartite graph G
with vertex set (B,R) such that:

1. |R| = n+ o(n) as n→ +∞,

2. G is λ-expanding,

3. |B| ≥ (1 + cλ− 1
d ) · |R| − o (|R|) as n→ +∞, where c depends only on d,

4. any subgraph of G on m vertices has a separator of size O(m1− 1
d ), and

5. G is a Gabriel graph when d = 2.

The vertices ofR are called the red vertices, and the vertices ofB the blue vertices.
Our construction is geometric, in that vertices correspond to points in Rd. Thus we use
the terminology vertex and point interchangeably. We denote the i-th coordinate of a
point p ∈ Rd by xi (p).

Let L ≥ 2 and t be two positive integers whose values will be fixed later as a
function of the parameters d, λ and n. Let Ξ be a L × · · · × L regular integer grid
in Rd consisting of the (L+ 1)d points in {0, . . . , L}d. It has Ld cells, each defined
by precisely 2d vertices of Ξ. In every cell of Ξ, the vertex with the lexicographically
minimum coordinates among the 2d red vertices defining it is called the anchor vertex
of that cell. Each vertex―apart from those with one of the d coordinate values equal
to L―is the anchor vertex of exactly one cell, which is called its top cell. The cell with
anchor vertex (0, . . . , 0) is called the lowest cell of Ξ.

We define a first bipartite graph G(d, L) as follows. The red vertices of G(d, L)
consist of the (L+ 1)d points of Ξ. We next place a blue vertex at the centre of each
of the Ld cells of Ξ―except for the lowest cell, which contains two blue vertices with
coordinates

(
1
4
, . . . , 1

4
, 3
4

)
and

(
3
4
, . . . , 3

4
, 1
4

)
. Thus G(d, L) has precisely Ld + 1 blue
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vertices. The edges of G(d, L) consist of 2d edges from each blue vertex to the 2d red
vertices of its cell. Of the two blue vertices in the lowest cell of Ξ, one is connected to
all the red vertices of the cell except for (0, . . . , 0, 1) (the vertex v that has xi(v) = 1 if
and only if i = d) and the other to all red vertices except for (1, . . . , 1, 0) .

Our second and final graph G(d, L, t) = (B,R;E) is defined as a t× . . .× t grid
composed of td translates of G(d, L). Each translate of G(d, L) is indexed by a vector
~τ ∈ {0, . . . , t− 1}d, where by G~τ we denote the translate of G(d, L) by L · ~τ . The blue
vertices of G(d, L, t) are simply the disjoint union of the blue vertices of each G~τ ; the
red vertices are also the union of the red vertices of each G~τ , except that we identify
duplicate red vertices shared by the boundary of two adjacent grids. See Figure 5.1 for
an example for the case d = 2 and Figure 5.2 for the lowest cell when d = 3.

L
G00

G01

G02

G03

G04

G10

G11

G12

G13

G14

G20

G21

G22

G23

G24

G30

G31

G32

G33

G34

G40

G41

G42

G43

G44

t

Figure 5.1: Construction of locally-expanding ‘unbalanced’ bipartite graphs. The graph
G(d, L) (shown on the left for d = 2 andL = 3) hasLd grid cells. It is the basic building
block of the graphG(d, L, t) (right, with t = 5). Square vertices are red, round vertices
are blue.

Figure 5.2: Three-dimensional lowest cell of G(3, L).
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An explicit, if awkward, description of G(d, L, t) = (B,R;E) is:

R = {0, . . . , tL}d ,

B =

{(
1

2
, . . . ,

1

2

)
+ ~x : ~x ∈ {0, . . . , tL− 1}d \ {0, L, . . . , (t− 1)L}d

}
⋃{

(µ, . . . , µ, 1− µ) + L · ~x : ~x ∈ {0, 1, . . . , t− 1}d , µ ∈
{
1

4
,
3

4

}}
,

E =

{b, r} :
(b, r) ∈ B ×R,

min
i∈{1,...,d}

|xi(b)− xi(r)| ≤
1

2
,

max
i∈{1,...,d}

|xi(b)− xi(r)| ≤ 1

 .

The Ld + 1 blue vertices of G~τ form the set B~τ . For the red vertices, note that the
outer red vertices of each copy of G(d, L) may be shared between up to 2d translates.
To avoid this overlap, let R~τ consist only of the Ld red vertices v ∈ G~τ such that
xi(v) < L(~τi +1) for each i. In two dimensions, this amounts to peeling off the 2L+1
red vertices located on the top and right boundaries of G~τ .

Let Rb be the set of red vertices with at least one coordinate value equal to tL. We
have

B =
⋃
~τ

B~τ and R = Rb ∪
⋃
~τ

R~τ ,

where all unions are disjoint. Observe that

|B| = td(Ld + 1) and |R| = (tL+ 1)d. (5.4)

Local expansion. To prove that G(d, L, t) is locally expanding we fix a subset B′ of
B and let R′ = N(B′) be the set of its (red) neighbours in G(d, L, t). We show that
|R′| ≥ |B′| whenever B′ is smaller than some function of L and d; later we will set L
such that this function turns out to be at least λ.

A grid cell is non-empty if it contains a vertex of B′ and otherwise empty. A
vertex ofR′ that belongs toRb or whose top cell is empty is called a boundary vertex.

We first sketch a proof in two dimensions based on a charging argument (a one-to-
one mapping from B′ to R′): each vertex of B′ is charged to a vertex of R′ such that
each vertex of R′ receives at most one charge, implying that |R′| ≥ |B′|. Charge each
blue vertex of B′ to the anchor red vertex of its cell. For those G~τ containing two blue
vertices in the lowest cell, one of them remains uncharged. On the other hand, each
red vertex receives one charge, except the boundary vertices which receive zero charge.
Now for each ~τ for which G~τ contains at least two boundary red vertices charge the
uncharged blue vertex in G~τ (if it exists) to any one of these (at least two) boundary
vertices.
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There still remains an uncharged blue vertex in thoseG~τ with less than two bound-
ary red vertices. However, for each such ~τ , the number of vertices of B′ in G~τ must
be at least L2

2
. Thus overall, there can remain at most |B′|

L2/2
= 2|B′|

L2 uncharged blue
vertices. On the other hand, we argue that the total number of boundary red vertices
is at least c2 ·

√
|B′|, for some constant c2. By our charging scheme, at least half of

them―or c2
2
·
√
|B′|―are still uncharged. Thus when 2|B′|

L2 ≤ c2
2
·
√
|B′|―or equival-

ently |B′| ≤ c′ ·L4, the number of uncharged blue vertices will be less than the number
of uncharged red vertices, and we are done.

Now we present the complete proof for general d. We need two preliminary state-
ments. Let the indicator variable d~τ be 1 if both blue vertices in the lowest cell of G~τ

belong to B′ and 0 otherwise. Also let δ~τ be the number of boundary vertices in R~τ .
The total number of boundary vertices in R′ is thus

δ = |Rb ∩R′|+
∑
~τ

δ~τ . (5.5)

Lemma 5.1. For each index ~τ , if d~τ = 1 and δ~τ < 2, then |B′ ∩B~τ | ≥ Ld

2
.

Proof. For such an index, B′ contains both blue vertices from the lowest cell of G~τ so
R′ contains the 2d red vertices of this cell. If δ~τ = 0, that is, R~τ contains no boundary
vertex, then the blue vertex in each other cell ofG~τ is present in B′, and so B′ includes
all of B~τ , which consists of Ld + 1 blue vertices. It remains to consider the case when
R~τ contains one unique boundary vertex vr ∈ R′ ∩R~τ .

Without loss of generality, assume that ~τ = (0, . . . , 0). As both blue vertices from
the lowest cell of G~τ belong to B′, the boundary vertex vr cannot be the lowest vertex
of G~τ , which has coordinates (0, . . . , 0). Thus there must be some j ∈ {1, . . . , d} for
which xj(vr) > 0. Consider the grid slab Ξ′ consisting of all cells whose anchor vertex
v has xj(v) = 0. Note that Ξ′ contains the lowest cell of G~τ , which has two vertices of
B′. Thus no other cell of Ξ′ can be empty, as otherwise that would imply the existence
of another boundary red vertex anchoring one of the cells of Ξ′. Now take any cell
c of Ξ′ whose anchor vertex differs in at least one coordinate other than xj from vr;
there are Ld−1 − 1 such cells. All the L cells of G~τ whose anchor vertex only differs
in the j-th coordinate value from the anchor vertex of c must also be non-empty, as
otherwise it would imply the existence of a boundary red vertex in one of these L cells.

Thus there are at least L
(
Ld−1 − 1

)
non-empty cells inG~τ , i.e. |B′ ∩B~τ | ≥ Ld−L

which is at least Ld

2
since L ≥ 2.

Let T be the set of indices ~τ with d~τ = 1 and δ~τ < 2. As a consequence of the
previous lemma, for every such ~τ ∈ T , the translate G~τ contains at least Ld

2
vertices of

B′, and thus |T | ≤ 2 |B′|L−d. Now consider the quantity d~τ − δ~τ
2
. If ~τ ∈ T , we have

d~τ = 1 and 0 ≤ δ~τ < 2 and so d~τ − δ~τ
2

is at most 1. Otherwise for any ~τ /∈ T , it is 0 or
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Figure 5.3: Loomis–Whitney inequality for cubes. The number of cubes in a subset
of the ‘cubical subdivision’ of Rd is controlled by the number of (d− 1)-dimensional
cubes in its projections onto the {xi = 0} hyperplanes. Here d = 2 and the inequality
is 73−1 ≤ 6× 4× 5.

negative. Therefore ∑
~τ

(
d~τ −

δ~τ
2

)
≤ |T | ≤ 2 |B′|

Ld
. (5.6)

An isoperimetric inequality. Consider the set S of all grid cells containing vertices
of B′. As each cell contains at most two blue vertices, |B′| ≤ 2 |S|. In the orthogonal
projection along the i-th coordinate, S is sent to a set Si of (d− 1)-dimensional cells.
The preimage of each cell of Si is a column of d-dimensional cells and must contain at
least one boundary vertex, so the total number δ of boundary vertices is at least |Si|.
The combinatorial Loomis–Whitney inequality (see Figure 5.3 and Appendix A) relates
d- and (d− 1)-dimensional volumes:

d∏
i=1

|Si| ≥ |S|d−1 ≥
(
|B′|
2

)d−1

,

from which it follows that

δd ≥
(
|B′|
2

)d−1

. (5.7)

Nowwe come to the key claim, which means that the graphG(d, L, t) is (21−3dLd2)-
expanding.

Lemma 5.2. If 23d−1 |B′| ≤ Ld2 , then |R′| ≥ |B′|.

Proof. For every index ~τ , by definition, each vertex in the set R~τ ∩R′ either has its top
cell non-empty or is a boundary vertex of G~τ . The number of non-empty top cells in
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G~τ is |B~τ ∩B′| − d~τ , while the number of boundary vertices is δ~τ . Thus

|R′| = |Rb ∩R′|+
∑
~τ

|R~τ ∩R′| = |Rb ∩R′|+
∑
~τ

(|B~τ ∩B′| − d~τ + δ~τ )

= |Rb ∩R′|+ |B′| −
∑
~τ

(d~τ − δ~τ )

≥ |B′| −
∑
~τ

(
d~τ −

δ~τ
2

)
+

1

2

(
|Rb ∩R′|+

∑
~τ

δ~τ

)

= |B′| −
∑
~τ

(
d~τ −

δ~τ
2

)
+

δ

2
.

Use the lower bounds (5.6) and (5.7) for the second and third summands:

|R′| ≥ |B′| − 2 |B′|
Ld

+
1

2

(
|B′|
2

)(d−1)/d

,

and the result |R′| ≥ |B′| follows when

2 |B′|
Ld

≤ 1

2

(
|B′|
2

)(d−1)/d

23−1/d |B′|1/d ≤ Ld

or equivalently 23d−1 |B′| ≤ Ld2 .

Ball graph structure. A ball graph is the intersection graph of a family of n balls
in Rd and is p-ply if it has no clique of size p+ 1. Such graphs have separators of size
O(p

1
dn1− 1

d ) [83].
A bounded-ply ball graph is obtained from G(d, L, t) by only adding some edges:

put a d-dimensional ball of radius
√
d
4

at each vertex of G(d, L, t). The resulting edge
set includes that of G(d, L, t)―they coincide when d ≤ 3―so that G(d, L, t) inherits
separator properties of ball graphs. In other words, any subgraph of G(d, L, t) on m

vertices has a separator of size O(m1− 1
d ) (this is property (4)).

Note that said bound on the graph’s ply is a function of d only: the largest number
of vertices of B ∪R included in a same ball of radius

√
d
2
. See e.g. [41] for estimates on

such bounds.

Gabriel graph structure. For d = 2, the circumdisk of each blue–red edge in
G(d, L, t) contains no vertex but its endpoints, so G(d, L, t) is a Gabriel graph and
property (5) is proved.
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Remark 5.2. With the understanding that a one-dimensional cell is an interval, the
construction covers the case d = 1. The graph G(1, L, t) is a path of length 2tL + 1,
seen as blue–red bipartite, with every L-th blue vertex duplicated. It has |R| = tL+ 1
and |B| = t(L+ 1) and is (L+ 2)-expanding.

Figure 5.4: The graph G(1, 3, 3).

Setting parameters and concluding the proof. Given d, λ and n, choose

L = max
{
2,
⌈(
23d−1λ

)1/d2⌉} and t = dn1/dL−1e.

Note that L does not depend on n and Ld is Θ(λ
1
d ) when λ → +∞. Using (5.4), we

obtain (1) and (3):

|R| = (tL+ 1)d = n+ o(n),

|B|
|R|

=
td
(
Ld + 1

)
(tL+ 1)d

= 1 +
1

Ld
+ o(1) as n→ +∞

≥ 1 + cdλ
− 1

d + on(1) for λ ≥ λd

where the positive constants cd and λd depend only on d. Since 21−3dLd2 ≥ λ, it follows
from Lemma 5.2 that (2) holds: G is at least λ-expanding. This concludes the proof of
Theorem 6.

4 Consequences

4.1 Geometric Problems in the Plane
We construct arbitrarily large instances of our five optimisation problems for which
some λ-locally optimal solution is 1 +Ω(λ−1/2) times worse than the optimal solution.
Since our instances consist of proper disks rather than just families of pseudodisks, the
bound applies also to the restrictions of these problems to disk families.

For d = 2 and any given λ ≥ λd and n, let G = (B,R;E) be the planar and
λ-expanding graph (Bn, Rn;En) described in Theorem 6 and built in Section 3. Our
instances are based on G: its vertex sets are associated with feasible solutions of the
problems. It then suffices to check that the solution associated with Bn (for minimisa-
tion problems) or Rn (for maximisation problems) is locally optimal.



Chapter 5. Approximation Guarantee of Local Search 92

4.1.1 Hitting Set for Pseudodisks

(a) Detail of the graph G used in ‘bad’
instances.

(b) Hitting set (drawing only a few
disks for readability).

Figure 5.5: Building a ‘tight’ instance for the Hitting Set problem.

TheoremM ([87]). Local search with radiusO(ε−2) is a (1+ε)-approximation algorithm
for Minimum Hitting Set for pseudodisks.

Corollary 5.1. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there is
a set D of at least n disks and two disjoint sets B and R of at least n points in R2 each
such that bothB andR are hitting sets forD, |B| ≥ (1+Cλ− 1

2 ) |R| andB is a λ-locally
optimal solution to the Hitting Set problem for D with P = B ∪R.

Proof. Recall that the circumdisk of each edge of G contains only its two endpoints.
The input consists of all such disks, with P = B∪R, so that the hitting sets are exactly
the vertex covers of G. By construction both B and R are feasible solutions.

On this instance, a λ-local improvement forB would remove a setB′ of blue vertices
with |B′| ≤ λ. To preserve the hitting set property, it would then need to add to the
solution the red endpoints of all edges with their blue endpoint inB′, i.e. the setN(B′).
Because the graph is λ-expanding, there are at least |B′| such red neighbours: B is
λ-locally optimal.

4.1.2 Independent Set of Pseudodisks

TheoremN ([33]). Local search with radiusO(ε−2) is a (1+ε)-approximation algorithm
for Maximum Independent Set for pseudodisks.

Corollary 5.2. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are



Chapter 5. Approximation Guarantee of Local Search 93

two independent sets B and R of at least n disks in R2 such that |B| ≥ (1 + Cλ− 1
2 ) |R|

and R is a λ-locally optimal solution to the Independent Set problem in B ∪R.

Proof. Realise the graph G as an intersection graph of red and blue disks. As it is
planar, the disks could even be taken interior-disjoint by the Koebe–Andreev–Thurston
theorem (see Appendix A). The independent sets of disks correspond to the independent
sets of G. Since G is bipartite both the blue and red families of disks form independent
sets, and the red solution is (λ− 1)-locally optimal―in maximisation terms: a (λ− 1)-
local improvement for the red solution would remove a set R′ of up to λ − 1 red
disks and replace them with a set B′ of blue disks such that N(B′) ⊆ R′ (to preserve
independence) and |B′| > |R′|. If there exists a subset B′′ ⊆ B′ of size |R′|+ 1, which
is at most λ, then since G is λ-expanding such a set has |B′′| ≤ |N(B′′)| ≤ |R′|, a
contradiction. Thus R is a (λ− 1)-locally optimal solution.

4.1.3 Set Cover for Disks

(a) Independent set. (b) Set cover.

Figure 5.6: ‘Tight’ instances for Independent set and Set Cover with disks.

Theorem O ([15, 31]). Local search with radius O(ε−2) is a (1 + ε)-approximation
algorithm for Minimum Set Cover for disks.

Corollary 5.3. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are
two independent sets B and R of at least n disks in R2 and a set P of Θ(|R|) points in R2

such that |B| ≥ (1 + Cλ− 1
2 ) |R| and R is a λ-locally optimal solution to the Set Cover

problem for P in B ∪R.

Proof. As in the proof of Corollary 5.2, realise G as an intersection graph of blue and
red disks. Take for P one point from each blue–red intersection. The set covers for
this instance are exactly the vertex covers of G.
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4.1.4 Dominating Set of Pseudodisks

Theorem P ([52, 53]). Local search with radius O(ε−2) is a (1 + ε)-approximation al-
gorithm for Minimum Dominating Set for pseudodisks.

Corollary 5.4. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there is a
set D of disks in R2 and two dominating sets B and R of D of at least n disks each such
that |B| ≥ (1 +Cλ− 1

2 ) |R| and B is a λ-locally optimal solution to the Dominating Set
problem for D.

Proof. The instance that was proposed for Set Cover (Figure 5.6b) becomes an instance
of Dominating Set when the points of P are seen as zero-radius disks, i.e. take D =
P ∪B ∪R. A feasible solution that involves some of the zero-radius disks of P can be
transformed into a solution of at most the same cardinality whose support is entirely
blue and red since the disks of P are fully included in the other disks. Thus it suffices to
examine the efficiency of local search on blue–red solutions. The blue–red dominating
sets of this instance are exactly the covers of points by blue and red disks.

4.1.5 Unit-capacity Packing Problems

TheoremQ ([46]). Local search with radiusO(ε−2) is a (1+ε)-approximation algorithm
for the Unit-Capacity Point-Packing problem for disks.

Corollary 5.5. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are
two sets B and R of at least n points in R2 and a set D of Θ(|R|) disks in R2 such that
every disk of D contains one point from B and one point from R, |B| ≥ (1 + Cλ− 1

2 ) |R|
and R is a λ-locally optimal solution to the Unit-Capacity Point-Packing problem for
D in B ∪R.

Proof. Take for D the set of all disks associated with the edges, as in the Hitting Set
instance (see Figure 5.5b). Since every such disk contains only two points of P , the
‘unit-capacity point-packings’ of this instance are exactly the independent sets of G.
The result then follows from the analysis in Corollary 5.2.

Recall that Unit-Capacity Disk-Packing is the dual problem [46].

Corollary 5.6. There is a positive constant C and a positive integer λ0 such that for every
integer λ ≥ λ0 there is a positive integer nλ such that for every integer n ≥ nλ there are
two sets B and R of at least n disks each and a set P of Θ(|R|) points such that every
point of P is contained in one disk from B and one disk from R, |B| ≥ (1 + Cλ− 1

2 ) |R|
and R is a λ-locally maximal solution to the Unit-Capacity Disk-Packing problem for
B ∪R in P .
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4.2 Other Problems with Hereditary Separators
The paper by Har-Peled and Quanrud [57] is to the best of our knowledge the most
extensive study of geometric local search in non-planar settings. The authors study
graphs with polynomial expansion, which have strongly sub-linear separators, and
in particular intersection graphs of low-density families of objects, where a family of
objects in Rd has density ρ if for any r ≥ 0 any ball of diameter r intersects at most
ρ objects of diameter larger than r and has depth D if no point of Rd is contained in
D + 1 objects. A survey on expansion and sparsity is the book by Nešetřil and Ossona
de Mendez [89].

We are still able to give some lower bounds on the local search radii that achieve
PTASs. Fix the positive integers d, λ ≥ λd and n and letG be the λ-expanding graph on
vertex sets Bn and Rn that has |Bn| , |Rn| = Θ(n) and achieves |Bn| ≥ (1 + cλ−1/d −
o(1)) |Rn|, as built in Section 3. Recall that G and its subgraphs have the separator
property with s = 1/d.

By combining Theorem 3.2.1 and Lemma 2.2.9 from [57], we obtain the following.

Theorem R. On graphs with hereditary separators of size O(n1−s), local search with
radius O(ε−s) is a (1 + ε)-approximation algorithm for Maximum Independent Set.

Corollary 5.7. For every positive integers d and λ, there are arbitrarily large bipartite
graphs on vertex sets (B,R) with hereditary separators of sizeO(n1−1/d) such that |B| ≥
1 + Ω(λ−1/d) |R| and R is a λ-locally maximal independent set.

Proof. Since the graph G is bipartite, both Bn and Rn are independent sets, and by the
same analysis as in the proof of Corollary 5.2 the feasible solution Rn is (λ− 1)-locally
optimal.

Theorem S ([57]). On graphs with hereditary separators of size O(n1−s), local search
with radius O(ε−O(1)) is a (1+ ε)-approximation algorithm for Minimum Vertex Cover.

Corollary 5.8. For every positive integers d and λ, there are arbitrarily large bipartite
graphs on vertex sets (B,R) with hereditary separators of sizeO(n1−1/d) such that |B| ≥
1 + Ω(λ−1/d) |R| and B is a λ-locally minimal vertex cover.

Proof. In G both Bn and Rn are vertex covers. Since G is λ-expanding, Bn is λ-locally
optimal.

4.3 Matchings and Local Versions of Hall’s Theorem
With our terminology, Hall’s theorem is as follows (see also Appendix A).

Theorem T (Hall’s marriage theorem). Any bipartite graph on vertex sets (B,R) that
is |B|-expanding has a matching with |B| edges.
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Restricting the condition to λ-expansion for some fixed λ breaks Hall’s theorem:
for example, the matchings of K|B|,λ have at most λ edges. However it was observed
by Antunes, Mathieu and Mustafa [8] that a strengthening of Hall’s theorem holds for
planar graphs.

Theorem U. There is an absolute constant c > 0 such that, for every given integer λ ≥ 3,
any bipartite planar graph on vertex sets (B,R) that is λ-expanding has a matching with
at least (1− cλ− 1

2 ) |B| edges.

Now it follows from our constructions that this is tight.

Corollary 5.9. There are absolute constants c0, λ0 > 0 such that, for every given integer
λ ≥ λ0, some bipartite, λ-expanding planar graph on vertex sets (B,R) does not have
matchings with more than (1− c0λ

− 1
2 ) |B| edges.

5 Remarks
We emphasise that our results apply to standard, non-specialised local-search tech-
niques. Although the approximation quality of a previously successful one-size-fits-all
approach cannot be improved, custom algorithms tailored for specific problems can
bypass this bound, especially when the exchange graphs are extremely sparse.

5.1 Local Search and Terrain Guarding
For example we do not yet know whether our constructions can be transformed into a
local-search-defeating instance for Terrain Guarding, a question that can be formu-
lated as follows.
Question. Are the exchange graphs of Gibson et al. [51] for Terrain Guarding sparser
than other planar graphs? What is the minimum size of their separators?

5.2 Local Search with Small Radius
When used with small radii rather than λ = Θ(1/ε2), geometric local search yields
constant-factor approximations instead of PTASs. For planar exchange graphs and
such small radii, the combinatorial analysis based on Theorem L can be specialised: for
k ∈ N∗, let ck be the smallest c such that all planar k-expanding graphs on vertex sets
B and R have |B| ≤ c |R|+O(1).

By combining Theorem L with our lower bound (Theorem 6), the asymptotic beha-
viour of ck is

ck = 1 + Θ

(
1√
k

)
.
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Figure 5.7: Exchange graph construction for Terrain Guarding, as it appears in Gib-
son et al. [51]. Edges are drawn between guard vertices based on the targets (stars in
this picture) that they jointly see.

It is known that c1 = c2 = +∞ (consider the sequence of 2-expanding planar
bicliques Kn,2 as n→∞), that c3 = 8 [25] and that c4 = 4 [8]. Thus local search with
radius 2 and 3 achieves approximation ratios of respectively 8 and 4 on the problems
in this chapter.
Conjecture. We believe that the value of c5 is 3.

At any rate we are able to construct graphs showing that c5 ≥ 3: see Figure 5.8.
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Figure 5.8: Lower bound construction for c5 ≥ 3: as the plane is tiled in this fashion,
the infinite blue–red bipartite graph is 5-expanding and planar, and the asymptotic
blue-to-red ratio is 3.
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Appendix A

Some Classical Theorems

Here we gather somewell-known theorems from discrete mathematics that are referred
to in the body of this dissertation.

1 Circle Packing Theorem of Koebe, Andreev and
Thurston

A circle packing is a family of disks of R2 whose interiors are pairwise disjoint. To
every such packing one associates a coin graph that has a vertex for each disk and
whose edges correspond to intersecting boundaries. The circle packing theorem asserts
that the planar graphs are exactly the coin graphs [67].

2 Cubical Loomis–Whitney Inequality
This lemma is the critical step in the proof of the more general Loomis–Whitney in-
equality [73]. Consider Rd tiled with all unit cubes of the form x + [0, 1]d where x is
a tuple of d integers. Let S be a finite subset of such cubes and for each index i let
Si be the set of (d− 1)-dimensional cubes in the orthogonal projection along the i-th
coordinate. Then

d∏
i=1

|Si| ≥ |S|d−1 .

3 Hall’s Marriage Theorem
This theorem was first formulated by Philip Hall [55] in terms of the combinatorics of
set systems, but can also be seen as a result in graph theory. In a bipartite graph on
finite vertex sets L and R, the following properties are equivalent.

100



Appendix A. Some Classical Theorems 101

1. Every subset L′ of L has at least as many neighbours in R as its own cardinality,
i.e. at least |L′|.

2. There is a subset of edges, no two of them sharing a vertex (a matching), that
covers all vertices of L.

In this dissertation we discuss some results (Theorem U) that extend this theorem.

4 Graph Separator Theorems
A separator in a graph of order n is a subset of vertices whose complement does not
induce a subgraph with connected components containing more than 2/3n vertices.

Planar graphs admit separators of cardinality only O(
√
n). This was first shown by

Lipton and Tarjan [72]. Many other proofs have been found. For example Har-Peled
[56] observed that it follows from the circle packing theorem.

A minor of a graph is a smaller graph obtained by a sequence of the following
operations: contracting an edge so that its two vertices become identified, deleting an
edge, and deleting a vertex that is not part of any edge. A minor can be embedded
in the same space as the original graph. For this reason planar graphs form one of
the graph families closed under taking minors. From the point of view of separators,
such minor-closed families all behave like planar graphs in the sense that each of them
except for the family of all graphs has a separator theorem in O(

√
n). Precisely, all

graphs of order up to h ∈ N are minors of the complete graph Kh, so a minor-closed
family that does not include all graphs must exclude Kh for some h. Then a theorem
of Alon, Seymour, and Thomas [7] states that the graphs in this family have separators
in O(h3/2

√
n).

5 Turán’s Theorem
A t-clique in a graph (t ∈ N) is a subset of t vertices that span all possible edges between
them, i.e.

(
t
2

)
edges. A theorem of Pál Turán [96] states that a graph of order n that has

no (t+ 1)-clique must possess at most

t− 1

t
· n

2

2

edges. By considering the complement graph one obtains the equivalent result that a
graph of order n that does not have t+ 1 independent vertices must have at least(

n

2

)
− t− 1

t
· n

2

2
=

n(n− t)

2t

edges, which is the statement that we use in Chapter 2.



Appendix B

OpenQuestions and Remaining
Problems

Here are a few problems encountered in this dissertation that remain open.

1 On Mnets
• The proof of the Mnet theorem (Theorem 3) uses algebraic tools, which is why
the theorem applies to semi-algebraic set systems only. Can this be avoided? In
other words, come up with an alternative to polynomial partitioning.

• The usual bounds on unweighted nets are easy consequences of said theorem
(see Corollary 3.1 in Chapter 3). Can the same be said of weighted nets?

• Give a sharp lower bound on the size ofMnets in terms of shallow-cell complexity,
i.e. improve the exponent in Theorem 5.

• The recent employment of Macbeath regions in efficient and elegant data struc-
tures for convex body approximation and approximate polytope membership
[2, 12] has renewed interest in those structures. Can Mnets—a discrete ana-
logue—find similar uses?

• The result of Brönnimann, Chazelle, and Pach [23] on the small family of Mac-
beath regions that approximate a given convex body holds in a Lebesgue setting.
Propose extensions to other measures, absolutely continuous or singular.

2 On Local Search
• The lower bound on the efficiency of local search (Theorem 6) is proved for d a
positive integer, but there is no reason why it should not hold for any real d in
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[1,+∞). Perhaps some kind of interpolation could be defined on grid graphs of
distinct dimensions.

• Describe the exchange graphs for Terrain Guarding (see page 96). Can our
lower bound construction be adapted to this problem?

• Prove the conjecture on page 97: the correct value of c5 (the left-to-right ratio
for planar 5-expanding graphs) is 3. More generally, determine ck for all k.

• In practice, local search algorithms may be initialised from a feasible solution
chosen at random. The choice of local improvements could also be random
whenever several candidates are available. What can still be said about the
efficiency of local search? Are there instances were not only some but most
possible search paths end at a solution whose value is far from the optimum?



Appendix C

Tentative English–French Lexicon

5.6―Die Grenzen meiner Sprache bedeuten die Grenzen meiner
Welt.

Wittgenstein

Discussing my work in French has proved difficult. With the amount of French-
speaking literature dwindling over time, many concepts do not have a well-established
name. Here are a few proposals.

ground set univers
hitting set transversal(e), ensemble intersectant
locality gap écart de localité
Mnet M-réseau, réseau de Macbeath
net (set system) réseau
(ε-)packing (semimetric space) partie (ε-)discernable [1]
packing (set system) famille discernable
polynomial partitioning partition par polynômes
range of a set system (hyper)arête d’un hypergraphe [2]
shallow-cell complexity complexité en cellules peu profondes
shallow set system hypergraphe de rang borné [2]
shatter dimension / exponent densité réelle [1]
shatter function coefficient de pulvérisation
shattered set ensemble pulvérisé
VC dimension dimension VC, densité entière [1]

[1] Patrick Assouad. ‘Densité et dimension’. French. In: Annales de l’institut Fourier
33.3 (1983), pp. 233–282.

[2] Claude Berge. Hypergraphes: combinatoire des ensembles finis. French. Gauthier-
Villars, 1987.
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union, 41
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VC dimension, 38

dominating set
minimum, 75
pseudodisks, 75, 81

epsilon-net, see net
EPTAS, 72
exchange graph, 82
exponential time hypothesis, 73, 79

FPT, 72
reduction, 73

FPTAS, 72

Gabriel graph, 83
graph separators, 101
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growth function, see shatter function

Hall’s marriage theorem, 95, 100
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independent set
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Koebe–Andreev–Thurston, 93, 100

local search, 79, 102
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small radii, 96

locality gap, 80
locally expanding graph, 82
Loomis–Whitney inequality, 89, 100
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lower bound, 63, 102
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l-wise, 50
packing lemma

l-wise, 50
Haussler, 48
shallow, 49
lower bound, 50

point-packing, 75, 81
polynomial expansion, 95
polynomial partitioning

Guth–Katz, 64
multi-level, 63

problem
art gallery, 44
dominating set, 75
hitting set, 75
independent set, 75
optimisation, 71
set cover, 75
travelling salesperson, 71
vertex cover, 71, 75

pseudodisks, 44, 75
PTAS, 72

local search, 81

randomised, 103
range set, 36

Sauer–Shelah, 40
semi-algebraic set, 42, 60
separator property, 82
set cover

disks, 75, 81
minimum, 44, 75

set system, 36

?-sum, 46
geometric, 37
packing, see packing
primal, dual, 37
shallow, 49
trace, 38
union, 46

shallow packing
l-wise and shallow, 51

shallow-cell complexity, 41
in one variable, 41
one variable, 41

shatter function, 39
shatter lemma, see Sauer–Shelah
shattered set, see VC dimension
small radii, 103
solution

feasible, 71, 79
space, 79

locally optimal, 79
optimal, 72

sub-multiplicative function, 62

terrain guarding, 96, 103
transversal, 44
travelling salesperson, 71
Turán’s theorem, 57, 101

union complexity, 41

VC dimension, 38
vertex cover, 71

minimum, 75
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