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Résumé

Nous considérons des problèmes d’optimisation stochastique, de théorie des jeux et
d’apprentissage automatique avec des mesures de risque.

Dans une première partie, nous mettons l’accent sur la cohérence temporelle en
optimisation stochastique. Nous commençons par prouver une équivalence entre
cohérence temporelle et l’existence d’une formule imbriquée pour des fonctions.
Motivés par des exemples bien connus dans les mesures de risque, nous étudions
trois classes de fonctions: les fonctions invariantes par translation, les transformées
de Fenchel-Moreau et les fonction supremum. Ensuite, nous étendons le concept de
cohérence temporelle à la cohérence entre joueurs, en remplaçant le temps séquentiel
par un ensemble non ordonné et les fonctions par des relations binaires. Enfin, nous
montrons comment la cohérence entre joueurs est liée à des formes de décomposition
séquentielles et parallèles en optimisation.

Dans une seconde partie, nous étudions l’impact des mesures de risque sur la
multiplicité des équilibres dans les problèmes de jeux dynamiques dans les marchés
complets et incomplets. Nous concevons un exemple où l’introduction de mesures de
risque conduit à l’existence de trois équilibres au lieu d’un dans le cas risque neutre.
Nous analysons la capacité de deux algorithmes différents à trouver les différents
équilibres. Nous discutons des liens entre la cohérence des joueurs et les problèmes
d’équilibre dans les jeux.

Dans une troisième partie, nous étudions l’optimisation robuste pour l’apprentissage
automatique. En utilisant des mesures de risque convexes, nous fournissons un
cadre unifié et proposons un algorithme adapté couvrant trois ensembles d’ensembles
d’ambiguité étudiés dans la littérature.
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Abstract

We consider stochastic optimization, game theory and machine learning problems
with risk measures.

In a first part, we focus on time consistency in stochastic optimization. We begin
by proving an equivalence between time consistent mappings and the existence of
a nested formula. Motivated by well known examples in risk measures, we investi-
gate three classes of mappings: translation invariant, Fenchel-Moreau transform and
supremum mappings. Then, we extend the concept of time consistency to player
consistency, by replacing the sequential time by any unordered set and mappings
by any relations. Finally, we show how player consistency relates to sequential and
parallel forms of decomposition in optimization.

In a second part, we study how risk measures impact the multiplicity of equilibria
in dynamic game problems in complete and incomplete markets. We design an
example where the introduction of risk measures leads to the existence of three
equilibria instead of one in the risk neutral case. We analyze the ability of two
different algorithms to recover the different equilibria. We discuss links between
player consistency and equilibrium problems in games.

In a third part, we study distributionally robust optimization in machine learning.
Using convex risk measures, we provide a unified framework and propose an adapted
algorithm covering three ambiguity sets discussed in the literature.
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Notation

Here are the main notations used in the manuscript:

[[a, b]] set of integers between a and b
w.r.t with respect to∧
x∈X infimum if it exists over the lattice X∨
x∈X supremum if it exists over the lattice X

Ω set of scenarios
X random variables over the set of scenarios Ω
σ(X ) σ-field generated by the random variable X
(Ω,T,P) probability space endowed with a σ-field T and a probability P
∆(Ω,T) set of all probability distributions over (Ω,T)
Q subset of ∆(Ω)
Q element of Q

R set of extended reals R ∪ {−∞} ∪ {+∞}
EP[·] mathematical expectation w.r.t. probability P
ρ(·) mathematical risk mapping
A aggregator mapping
F factor mapping
SA,F subaggregator mapping
H set of head elements
T set of tail elements
R binary relation
≤ order
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Je tiens particulièrement à remercier Michel De Lara, directeur de ma thèse, pour
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grand merci à Isabelle et Fatna pour m’avoir permis de m’affranchir des contraintes
administratives pour me concentrer sur ma recherche. Je pense également à Frédéric
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1. Introduction (French)

1.1. Contexte de la thèse

Cette thèse présente le travail que j’ai réalisé durant trois années, d’octobre 2015 à
octobre 2018, sous la direction de Michel De Lara et Jean-Christophe Pesquet.

J’ai été co-financé par l’École Nationale des Ponts et Chaussées et par le Labex
Bézout (Laboratoire d’Excellence). J’ai effectué la majeure partie de mon travail au
Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique,
allant périodiquement au Centre de Vision Numérique de Centrale Supélec. Pendant
ma thèse, j’ai eu l’opportunité d’aller en Nouvelle-Zélande d’octobre 2016 à avril 2017
où j’ai travaillé sous la direction d’Andy Philpott. Ce projet de collaboration a été
rendu possible grâce au financement de l’ambassade de France en Nouvelle-Zélande.

Dans cette thèse, nous considérons des problèmes d’optimisation stochastique, de
théorie des jeux et d’apprentissage automatique avec des mesures de risque.

Dans une première partie, nous mettons l’accent sur la cohérence temporelle en
optimisation stochastique. Nous commençons par prouver une équivalence entre
cohérence temporelle et existence d’une formule imbriquée pour des fonctions. Mo-
tivés par des exemples bien connus dans les mesures de risque, nous étudions trois
classes de fonctions : les fonctions invariantes par translation, les transformées de
Fenchel-Moreau et les fonctions supremum. Ensuite, nous étendons le concept de
cohérence temporelle à la cohérence entre joueurs, en remplaçant le temps séquentiel
par un ensemble non ordonné et les fonctions par des relations binaires. Enfin, nous
montrons comment la cohérence entre joueurs est liée à des formes de décomposition
séquentielle et parallèle usuelles en optimisation.

Dans une seconde partie, nous étudions l’impact des mesures de risque sur la multi-
plicité des équilibres, dans les problèmes de jeux dynamiques, quand les marchés sont
complets ou incomplets. Nous concevons un exemple où l’introduction de mesures
de risque conduit à l’existence de trois équilibres au lieu d’un dans le cas risque
neutre. Nous analysons la capacité de deux algorithmes différents à trouver les trois
équilibres. Enfin, nous discutons des liens entre cohérence entre joueurs, système de
prix et problèmes d’équilibre dans les jeux.

Dans une troisième partie, nous étudions lapplication de l’optimisation robuste à
l’apprentissage automatique. En utilisant des mesures de risque convexes, nous four-
nissons un cadre unifié et proposons un algorithme adapté couvrant trois catégories
d’ensembles d’ambigüıté étudiés dans la littérature.

1.2. Résumé et contribution de la cohérence entre
joueurs pour classer et optimiser

Les problèmes d’optimisation stochastique sont naturellement de grande taille car ils
sont indexés par les scénarios et le temps (et éventuellement une structure spatiale).
Pour les résoudre numériquement, on peut exploiter des schémas de décomposition.
Au lieu de résoudre un problème de grand taille, on résout séquentiellement ou en
parallèle un ensemble de sous-problèmes plus petits.

Les méthodes de décomposition sont beaucoup étudiées avec une espérance mathé-
matique et un critère additif. Nous présentons ici comme motivation deux schémas
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1.2. Résumé et contribution de la cohérence entre joueurs pour classer et optimiser

simples et évidents de décomposition : un pour la décomposition parallèle et un
pour la décomposition séquentielle. Nous présentons ensuite un cadre plus abstrait
impliquant des mesures de risque. Enfin, nous présentons notre contribution dans
le cas où l’espérance est remplacée par une application non-linéaire et où le critère
n’est pas nécessairement additif.

Méthodes de décomposition avec espérance et critère additif. Soit (Ω,T,P)
un espace de probabilité et soit X = L∞(Ω,T,P) l’ensemble des variables aléatoires
bornées. Considérons un problème d’optimisation stochastique dont la formulation
est

min
X1,X2∈X

2
EP
[
c1(X1) + c2(X2)

]
, (1.1)

où c1 : R→ R et c2 : R→ R sont des fonctions.
Il existe deux options naturelles pour décomposer le problème (1.1) en utilisant

les propriétés de l’espérance. Tout d’abord, par linéarité de l’espérance, on obtient
de façon évidente un schéma de décomposition parallèle qui s’exprime ainsi

min
X1,X2∈X

2
EP
[
c1(X1) + c2(X2)

]
= min
X1∈X

EP
[
c1(X1)

]
+ min
X2∈X

EP
[
c2(X2)

]
. (1.2)

Au lieu de résoudre un problème incluant deux variables X1 et X2, on peut résoudre
simultanément le problème minX1∈X

EP
[
c1(X1)

]
et le problème minX2∈X

EP
[
c2(X2)

]
.

On agrège ensuite les valeurs optimales de chaque problème pour obtenir la valeur
optimale du problème initial (1.1).

On considère à présent le problème

min
X1,X2∈X

EP
[
c(X1,X2)

]
, (1.3)

où c : R × R → R est une fonction, F1 ⊂ F2 sont deux tribus et où X1 est F1-
mesurable et X2 est F2-mesurable. Une seconde approche de décomposition se
fonde sur la propriété de formule imbriquée de l’espérance conditionnelle

EP[X ] = EP
[
EP[X | F]

]
,

où F est une tribu incluse dans la tribu la plus fine T. En utilisant cette propriété,
on obtient de façon évidente un schéma de décomposition séquentielle qui s’exprime
ainsi:

min
X1�F1,X2�F2

EP
[
c(X1,X2)

]
= min
X1�F1

EP

[
min
x2∈R

EP
[
c(X1, x2)

∣∣ F2

]]
. (1.4)

Le problème (1.4) est décomposable en temps en utilisant la programmation dy-
namique (Bellman, 1957; Bertsekas, 1976, 1987). On calcule tout d’abord pour
chaque X1, la solution optimale du problème intérieur minx2∈R EP

[
c(X1, x2)

∣∣ F].
Cela conduit à la solution optimale x?2(X1) qui est paramétrisée par X1 (problèmes
de mesurabilité mis à part). Nous pouvons alors résoudre le problème d’optimisation
externe

min
X1∈F1

EP

[
EP
[
c(X1, x

]

2(X1))
∣∣ F2

]]
. (1.5)
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1. Introduction (French)

Introduction de la notion de risque et de critères non additifs. Les problèmes
d’optimisation (1.1) and (1.3) peuvent être incorporés dans un cadre plus général et
s’écrivent alors

min
X1,X2∈X

2
ρ
(
c1(X1)⊕ c2(X2)

)
, (1.6a)

ou
min

X1�F1,X2�F2

ρ
(
c(X1,X2)

)
. (1.6b)

où ρ : L∞(Ω,T,P)→ R est une mesure de risque et ⊕ est un opérateur qui “agrège”
les variables aléatoires. À titre d’illustration, dans la gestion des réseaux électriques,
un critère non additif évalué sous une mesure de risque non linéaire peut améliorer la
sécurité du réseau et conduire à des politiques plus fiables (Laetitia Andrieu, 2009),
par exemple pour intégrer les énergies renouvelables.
Détaillons un exemple d’agrégateur ⊕ et de mesure de risque ρ pour motiver l’emploi
de ces notations. En lieu et place de minimiser une somme de coûts, on peut
s’intéresser à

� minimiser le maximum des coûts des joueurs; dans ce cas, l’agrégateur ⊕ est
l’opérateur maximum max;

� minimiser un coût final actualisé avec un taux d’intérêt controlé; dans ce cas,
l’agrégateur ⊕ est l’opérateur produit ×.

Ainsi, les formulations (1.6) nous permet de prendre en compte une classe plus large
de critère de modélisation.

Nous détaillons à présent un exemple de mesure de risque ρ. Une mesure de
risque très utilisée en optimisation stochastique est l’Average Value at Risk de niveau
β ∈ [0, 1) qui est donnée par la formule (Rockafellar and Uryasev, 2000a)

AV@Rβ[X ] = inf
α

{
α +

1

1− β
EP
[

max(0,X − α)
]}

. (1.7)

Une telle mesure de risque se concentre sur les 100 · (1− β)% pires scenarios, c’est-
à-dire les scénarios conduisant aux coûts les plus élevés. Si β = 0, nous retrou-
vons la définition de l’espérance mathématique et si β tend vers 1, nous retrouvons
l’expression du pire des cas comme limite. Optimiser en utilisant la mesure de risque
AV@R conduit à une solution plus robuste dans le sens où, si un “mauvais” scénario
se réalise, notre solution sera meilleure que celle donnée par le problème (1.1).
Cependant, la solution obtenue en résolvant (1.6a) aura un coût moyen plus élevé.
On dit alors qu’on est averse au risque: on préfère payer un petit peu plus dans
chaque scénario, si cela diminue les coûts les plus élevés.

Maintenant que nous avons présenté les ingrédients principaux, une question se
pose: peut-on adapter les méthodes de décompositions parallèles additives (1.2) et
séquentielles imbriquées (1.4) aux nouveaux problèmes (1.6). Premièrement, une
mesure de risque quelconque n’est pas linéaire ce qui conduit à l’inégalité

ρ(X1 +X2) 6= ρ(X1) + ρ(X2) . (1.8)
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Deuxièmement, il est connu que

AV@Rβ[X ] 6= AV@Rβ

[
AV@Rβ[X | F]

]
, (1.9)

où l’application AV@Rβ[· | F] est l’AV@R conditionnelle que nous ne détaillons pas
ici. Ainsi, une décomposition additive et une formule imbriquée ne sont pas triviales
et les décompositions parallèles et séquentielles nécessitent plus de travail que dans
le cas de l’espérance avec critère additif.

Mélanger les mesures de risque et les méthodes de décomposition. Motivés par
la question “quelles sont les mesures de risque compatibles avec la décomposition en
optimisation ?”, nous avons en premier lieu étudié la notion de cohérence temporelle.
Cela fournit en effet une formule imbriquée qui rend la décomposition séquentielle
possible, comme expliqué par exemple dans Shapiro (2009) et Ruszczyński (2010).
Nous avons pu tracer la notion de cohérence temporelle jusqu’à Koopmans (1960).
C’est un sujet largement discuté dans la littérature comme l’atteste l’étude Bielecki,
Cialenco, and Pitera (2017). Cette étude montre aussi que les cadres théoriques mis
en place pour parler de cohérence temporelle sont très disparates, mixant cohérence
temporelle proprement dite avec des hypothèses additionnelles.

Notre contribution est résumée ci-dessous.

� Dans le Chap. 3, nous présentons un cadre mathématique pour la cohérence
temporelle entre les fonctions. Ce cadre englobe des résultats obtenus par
différents auteurs. Considérons un objet mathématique qui est divisé entre un
début h et une fin t (par exemple, un processus stochastique entre les dates 0
et T peut être découpé en un début entre les dates 0 et t et une fin entre les
dates t et T avec 0 ≤ t ≤ T ). Étant donné une application A qui aggrège le
début et la fin de l’objet et étant donné une application F qui évalue seulement
la fin de l’objet, nous cherchons à satisfaire la propriété suivante :

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 . (1.10)

Autrement dit, nous considérons deux processus ayant le même début h. Si
l’évaluation de la fin est égale pour les deux processus, alors la propriété de
cohérence temporelle stipule que les évaluations des deux processus en en-
tier doivent être égales. Notre contribution principale est d’avoir montré une
équivalence entre la propriété de cohérence temporelle (1.10) et la formule
imbriquée suivante

A(h, t) = SA,F
(
h, F (t)

)
, (1.11)

où SA,F est une application bien choisie. (Nous détaillons brièvement les
équations (2.10) et (2.11) dans le cas risque neutre afin d’illustrer notre propos.
Nous avons A(h, t) = EP[h + t], F (t) = EP[t | F] et SA,F (h, f) = EP[h + f ]).
Nous revisitons ensuite la littérature à la lumière de ce cadre mathématique.
Cela nous permet de mettre en avant la contribution des différents auteurs.
Nous montrons en effet que telle hypothèse additionnelle conduit à tel résultat
supplémentaire. Par exemple, Kreps et Porteus ((Kreps and Porteus, 1978a),
(Kreps and Porteus, 1979)) énoncent un axiome de cohérence temporelle. Avec
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notre cadre abstrait, nous déduisons directement l’existence d’une application
SA,F croissante en son deuxième argument ainsi qu’une formule imbriquée;
tandis que Kreps et Porteus obtiennent un résultat plus fort sous des hy-
pothèses plus fortes. En effet, ils ajoutent des hypothèses de continuité, de
substitution (reliée à la convexité) et utilisent des inégalités strictes. Cela leur
permet d’obtenir que l’application SA,F est continue et strictement croissante
en son deuxième argument.

� Dans Chap. 4, nous nous intéressons à la cohérence temporelle pour trois
classes de fonctions. Premièrement, nous caractérisons la cohérence temporelle
pour les fonctions qui sont invariantes par translation en utilisant leur ensem-
ble de niveau 0 1. La cohérence temporelle pour cette classe de fonctions en-
globe dans un cadre abstrait les résultats sur les mesures de risque monétaires.
Cependant, nous obtenons une caractérisation qui s’avère difficile à utiliser
dans des exemples pratiques. En deuxième lieu, nous étudions les fonctions
définies comme transformées de Fenchel-Moreau. Nous donnons des condi-
tions pour que de telles fonctions satisfassent une formule imbriquée. Cela
nous permet de retrouver les résultats de Ruszczynski and Shapiro (2006a) et
Föllmer and Schied (2016). En troisième lieu, nous étudions comment la pro-
priété de cohérence temporelle se transmet pour les fonctions définies comme
des supremums.

� Dans Chap. 5, nous introduisons la notion de cohérence sans parler de la
notion de temps. Le fait est que dans des problèmes à plusieurs étapes, la
cohérence temporelle est liée à l’existence d’un coordinateur inter-temporel.
Nous pouvons donc interpréter un problème à plusieurs étapes comme plusieurs
joueurs jouant successivement. Nous définissons ainsi la notion de cohérence
entre joueurs. Dans (1.10) et (1.11), l’ensemble H représente les éléments qui
”se produisent avant” les éléments de l’ensemble T. Nous oublions ici cette
idée et considérons symétriquement les ensembles H et T. Nous cherchons une
propriété que nous appelons la cohérence entre joueurs. Celle-ci est définie
entre trois fonctions A, FH et FT et s’énonce

FH(h) = FH(h′)
FT(t) = FT(t′)

}
⇒ A(h, t) = A(h′, t′) . (1.12)

Sous des hypothèses techniques que nous ne détaillons pas, nous pouvons prou-
ver que l’Équation (1.12) est équivalente à l’existence d’une fonction SA,FH,FT

telle que
A(h, t) = SA,FH,FT

(
FH(h), FT(t)

)
. (1.13)

La notion de cohérence temporelle et de cohérence entre joueurs sont toutes
deux un cas particulier du cadre plus général que nous dénommons la R-
cohérence. Étant donné un ensemble P de joueurs, un n-uplet de relations

1Dans le cadre théorique des mesures de risque, cet ensemble de niveau est appelé ensemble
acceptable.
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(S)p∈P et une relation produit R, nous définissons la R-cohérence pour les
relations binaires comme suit∏

p∈P

Sp︸ ︷︷ ︸
produit de relations

⊂ R︸︷︷︸
relation sur un ensemble produit

. (1.14)

Nous détaillons ensuite comment manipuler la cohérence entre joueurs pour
décomposer des problèmes d’optimisation de manière séquentielle et parallèle.
Nous sommes ainsi capables, sous des hypothèses spécifiques, d’obtenir la
décomposition imbriquée suivante

inf
(h,t)∈H×T

A(h, t) = inf
h∈H

SA,F
(
h, inf

t∈T
F (t)

)
, (1.15)

et la décomposition parallèle suivante

inf
(h,t)∈H×T

A(h, t) = SA,FH,FT
(

inf
h∈H

FH(h), inf
t∈T

FT(t)
)
. (1.16)

Nous décrivons aussi comment appliquer ces décompositions de façon récursive.

1.3. Résumé et contributions des équilibres
compétitifs avec risque

Nous avons introduit la notion de cohérence entre joueurs et nous avons expliqué
comment cette notion peut aider à décomposer des problèmes d’optimisation stochas-
tique séquentiellement et parallèlement. Une méthode classique pour décomposer
en parallèle un problème d’optimisation est de le reformuler comme un problème
d’équilibre. L’idée est de dualiser les contraintes de couplage puis d’interpréter les
multiplicateurs comme des prix qui coordonnent différents joueurs. Nous présentons,
dans un but d’illustration, le cas risque neutre. Ensuite, nous détaillons nos contri-
butions.

Équilibre risque neutre et décomposition d’un problème d’optimisation stochas-
tique. Considérons un problème jouet. Soit (Ω,T,P) un espace de probabilités où
Ω est fini et où P charge tous les points. Soit L∞(Ω,T,X ) l’espace des variables
aléatoires. Soit X1 et X2 deux sous-ensembles de L∞(Ω,T,X ). Nous considérons le
problème d’optimisation stochastique suivant

min
(X1,X2)∈X1×X2

EP
[
c1(X1) + c2(X2)

]
, (1.17a)

s.c. g1(X1) + g2(X2) ≥D , P− p.s. (1.17b)

où

� les fonctions c1 : R→ R et c2 : R→ R sont des fonctions coût,

� les fonctions g1 : R→ R et g2 : R→ R sont des fonctions production,
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� la variable aléatoire D représente une demande agrégée.

Nous considérons à présent le problème d’équilibre risque neutre qui s’écrit

min
X1∈X1

EP
[
c1(X1)

]
(1.18)

min
X2∈X2

EP
[
c2(X2)

]
(1.19)

0 ≤ λ ⊥D −
(
g1(X1) + g2(X2)

)
≥ 0 , (1.20)

où λ sont les variables de prix de marché. La contrainte (1.20) d’écarts complémen-
taires exprime le fait que les prix doivent être choisis de telle sorte que l’offre soit
égale à la demande.

Le premier théorème du bien-être énonce que les problèmes (2.17) et (2.18) sont
équivalents, c’est-à-dire, le marché “trouve” une solution qui est optimale d’un point
de vue social. Ainsi, on obtient, pour le problème d’optimisation (1.17), une méthode
de décomposition en un problème d’équilibre où chaque joueur résout son sous-
problème d’optimisation.

L’idée derrière le premier théorème du bien-être est la suivante. Sous des hy-
pothèses techniques, le problème (1.17) est équivalent à son dual qui se formule

max
λ

min
(X1,X2)

EP
[
c1(X1) + c2(X2)

]
+
∑
ω∈Ω

λ(D(ω)− ω)
(
g1(X1)(ω) + g2(X2)(ω)

)
.

(1.21)
Le problème interne peut à présent être résolu joueur par joueur. Cette méthode de
décomposition est appelée méthode de décomposition par les prix. À l’optimum, on
satisfait la condition des écarts complémentaires (1.20).

Nous étudions ce qui se passe quand on remplace l’espérance mathématique par
une mesure de risque cohérente.

Équilibre averse au risque et décomposition d’un problème d’optimisation sto-
chastique. Nous étudions les équilibres averses au risque motivés par les marchés
de l’électricité. En effet, la plupart des régions industrialisées du monde ont, au
cours des trente dernières années, établi des marchés de gros de l’électricité qui
prennent la forme d’une vente aux enchères correspondant à l’offre et à la demande.
Ces marchés sont souvent appelés systèmes à deux règlements.

Si les distributions de probabilité pour les modes de production intermittents
(éolien, solaire, ...) sont connus, il est possible de maximiser le bien-être total des
producteurs et des consommateurs dans chaque scenario. Après de nombreuses
répétitions du modèle, un bénéfice total à long terme est maximisé. Maximiser le
bien-être attendu peut être modélisé comme un programme stochastique en deux
étapes. La méthode de calcul des prix et des mécanismes de paiement dans un
marché stochastique est décrite dans un certain nombre d’articles (voir Pritchard
et al. (2010), Wong and Fuller (2007) et Zakeri et al. (2016)). Lorsqu’elle est évaluée
en utilisant la distribution de probabilité supposée sur l’offre, il est possible de
démontrer que la compensation est plus efficace que les systèmes à deux règlements.

Si les agents de ces systèmes sont réticents à prendre des risques, on peut aussi
chercher à maximiser le “bien-être social averse au risque”. Dans ce contexte, le
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calcul des prix et des paiements aux agents devient plus compliqué. Si les agents
utilisent des mesures de risque cohérentes, il est possible de définir un marché com-
plet du risque dans un sens précis. Si le marché est complet, un équilibre partiel
parfaitement concurrentiel maximisera également le bien-être social averse au risque,
c’est-à-dire qu’il est efficace. D’un autre côté, si le marché du risque n’est pas com-
plet, alors un équilibre partiel parfaitement compétitif peut être inefficace. Cela a été
exploré dans un certain nombre d’articles (voir par exemple de Maere d’Aertrycke
et al. (2017), Ehrenmann and Smeers (2011) et Ralph and Smeers (2015)).

� Dans le Chap. 6, nous étudions une classe de mécanismes de répartition et de
tarification stochastiques en supposant que les agents tenteront de maximiser,
à prix donné, leur bien-être averse au risque. Les agents ont des mesures de
risque cohérentes et sont supposés agir comme s’ils n’avaient aucune influence
sur les prix sur les marchés de l’énergie et du risque. Nous visons à éclairer
certaines difficultés qui surviennent lorsque les marchés à risque ne sont pas
complets. Nous décrivons une instance simple d’un marché stochastique qui
a trois équilibres différents. Deux de ces points sont stables dans le sens de
Samuelson (1941) et sont des attracteurs d’algorithmes de tâtonnement. Le
troisième équilibre est instable, mais la solution est fournie par le solveur PATH
bien connu dans GAMS (Voir Ferris and Munson (2000)). Notre exemple
illustre la délicatesse de la recherche de solutions numériques pour les équilibres
dans les marchés incomplets. Puisque ceux-ci sont utilisés pour justifier des
décisions, la non-unicité des solutions dans ce cadre est indésirable. En effet,
nous ne pouvons pas contrôler vers quel équilibre les différents algorithmes
vont converger.

� Dans Chap. 7 nous discutons des liens entre la cohérence entre joueurs et les
problèmes d’équilibre. Nous suggérons une nouvelle interprétation des prix
des marchés en tant qu’outils pour obtenir de la cohérence entre les joueurs
et le planificateur central. En un sens, les prix ne sont pas seulement des
mécanismes de coordination efficaces mais aussi des mécanismes qui induisent
de la cohérence.

1.4. Résumé et contributions des problèmes
d’estimation et de classification avec sensibilité
au risque

Dans Rockafellar and Uryasev (2013) et Rockafellar, Uryasev, and Zabarankin (2008),
les auteurs présentent un quadrangle fondamental qui fournit un lien entre problèmes
d’estimation et de contrôle. Nous suivons leur chemin pour fournir des liens entre
l’optimisation averse au risque et l’optimisation robuste. Plus précisément, nous
montrons que les problèmes d’optimisation robustes sont des problèmes d’optimisa-
tion stochastique avec une mesure de risque bien choisie qui possède des propriétés
agréables pour l’optimisation.

� Dans Chap. 8, nous nous intéressons à l’étude du risque dans l’apprentissage
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automatique. Face à un problème d’apprentissage machine, où l’on doit classer
certaines données ou prédire certaines quantités, la robustesse des solutions
reste un problème. Aucune borne de l’erreur n’est généralement fournie et
Papernot, McDaniel, and Goodfellow (2016) et Kurakin, Goodfellow, and
Bengio (2016) présentent des exemples où de petites modifications sur l’entrée
peuvent changer radicalement la solution en sortie.

Le manque de robustesse se produit également dans les problèmes d’optimisa-
tion face à l’incertitude sur les paramètres. Dans Ben-Tal and Nemirovski
(2000), les auteurs ont montré qu’une petite modification des paramètres peut
transformer une solution réalisable en une solution irréalisable.

La robustesse apparâıt ainsi comme un moyen de contrôler les performances
hors échantillon. Il existe une vaste littérature traitant des formulations de
problèmes robustes et nous renvoyons le lecteur à Ben-Tal, El Ghaoui, and
Nemirovski (2009). Une première approche consiste à introduire des con-
traintes en probabilité. Sous certaines conditions, ceci est équivalent à une
approche basée sur des ensembles d’ambigüıtés. Nous détaillons pour plus
de clarté la formulation d’un problème robuste reposant sur des ensembles
d’ambigüıté. Soit (Ω,T,P) un espace de probabilité et X un ensemble de vari-
ables aléatoires sur cet espace. Soit f : R → R une fonction. Le problème
d’optimisation classique s’écrit

inf
x∈X

EP[f(X )] , (1.22)

et son équivalent robuste avec ensemble d’ambigüıté s’écrit

inf
x∈X

sup
Q∈Q

EQ[f(X )] , (1.23)

où Q est un ensemble de lois de probabilité sur Ω.

Ben-Tal, Den Hertog, De Waegenaere, Melenberg, and Rennen (2013); Hu
and Hong (2013); Duchi, Glynn, and Namkoong (2016); Moghaddam and
Mahlooji (2016) et Namkoong and Duchi (2016) ont largement contribué
dans le domaine des ensembles d’ambigüıté. Dans Esfahani and Kuhn (2015)
et Esfahani, Shafieezadeh-Abadeh, Hanasusanto, and Kuhn (2017), les auteurs
présentent un cadre théorique pour l’optimisation robuste fondé sur la distance
de Wasserstein. On définit l’ensemble Q dans (1.23) comme une boule de rayon
ε centrée sur la loi de référence P en utilisant la distance de Wasserstein. En-
suite, on minimise sur ces lois de probabilité en essayant de se prémunir du
pire des coûts.

Cette idée de se prémunir du pire des coûts est bien connue en finance.
La représentation robuste des mesures de risque fournit un cadre théorique
adéquat. Une classe de mesures de risque appropriée est celle des mesures de
risque cohérentes qui furent introduites dans l’article précurseur de Artzner,
Delbaen, Eber, and Heath (1999). Föllmer and Schied (2016) étudient une
plus large classe de mesures de risque qui sont les mesures de risque convexes.
Cela permet d’étendre certains résultats.
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Nous avons choisi pour ce chapitre l’approche de Esfahani and Kuhn (2015) qui
est de reformuler un problème d’optimisation robuste avec ensemble d’ambi-
güıté comme un problème convexe.

Notre contribution est double. Premièrement, nous clarifions le lien qui ex-
iste entre mesure de risque et optimisation robuste. Cela permet d’utiliser
des résultats de finance en apprentissage automatique. Deuxièmement, nous
adaptons un algorithme de projection défini dans Combettes (2003) pour être
capable de résoudre avec le même algorithme des problèmes robustes de grande
dimension avec des ensembles Q d’ambigüıté différents. Nous avons conduit
des expériences numériques.

1.5. Résumé des contributions de ce manuscrit et
perspectives de travail

Résumé des contributions

Ce manuscrit est une contribution au domaine de l’optimisation avec risque et avec
méthodes de décomposition.

� Dans le Chap. 3, nous avons présenté un cadre abstrait pour la cohérence
temporelle après avoir revisité la littérature. Notre contribution principale
est d’énoncer une équivalence entre la cohérence temporelle et une formule
imbriquée.

� Dans Chap. 4, nous avons étudié trois classes de fonctions cohérentes tem-
porellement : les fonctions invariantes par translation, les transformées de
Fenchel-Moreau et les fonctions définies comme supremum. Pour chaque
classe, nous avons donné des caractérisations de la cohérence temporelle ou
des conditions pour obtenir de la cohérence temporelle.

� Dans Chap. 5, nous avons étendu le cadre de cohé-rence temporelle à la
cohérence pour les relations binaires. Par la suite, cela nous a permis de définir
une notion de cohérence entre joueurs. Nous avons ensuite détaillé comment
la notion de cohérence entre joueurs peut être utilisée pour une décomposition
séquentielle et parallèle en optimisation.

� Dans Chap. 6, nous avons étudié l’équilibre avec risque dans des marchés.
Nous avons présenté un exemple qui montre des équilibres multiples même
avec des hypothèses de stricte concavité. Le contenu de Chap. 6 a été publié
dans Operation Research Letter (à modifications mineures près).

� Dans Chap. 7, nous avons donné une interprétation des prix du marché comme
un outil pour créer des fonctions qui sont cohérentes entre joueurs.

� Dans Chap. 8, nous avons fourni un lien entre l’optimisation avec mesure de
risque et l’optimisation robuste en apprentissage automatique. Nous avons
proposé un algorithme qui permet de résoudre plusieurs problèmes différents
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et nous avons montré que la projection différentielle est un outil qui permet
d’obtenir du parallelisme.

Perspectives de travail

Sans être exhaustif, nous récapitulons ici le travail qui pourrait être fait et les ques-
tions qui restent ouvertes.

� Dans le prolongement du Chap. 4, nous pourrions discuter de la possibilité
de mélanger les différentes classes de fonctions présentées pour obtenir un
meilleur aperçu de la cohérence temporelle. Nous devrions également nous con-
centrer sur la recherche d’exemples plus concrets pour motiver les différentes
généralisations que nous avons étudiées.

� Les conditions que doivent satisfaire les fonctions convexes généralisées pour
obtenir de la cohérence temporelle et une formule imbriquée sont difficiles à
vérifier. Exhiber des fonctions qui ne sont pas convexes mais qui satisfont
ces conditions reste une question ouverte. Nous pouvons étudier ce qu’il se
passe lorsqu’on mixe les fonctions invariantes par translation, les transformées
de Fenchel-Moreau et les fonction supremum pour construire de la cohérence
temporelle.

� En apprentissage automatique, les diagrammes d’influence capturent l’interac-
tion dynamique entre plusieurs joueurs. Ils pourraient fournir une application
adaptée aux différentes méthodes de décomposition.

� Dans l’extension de Chap. 6, nous pourrions étudier l’algorithme de tâton-
nement sur un problème d’équilibre à grande échelle en utilisant des algo-
rithmes d’approximation classiques.

� Dans l’extension de Chap. 7, nous pourrions expliquer comment la complétion
du marché est lié à la cohérence entre joueurs.

� Dans l’extension de Chap. 8, nous pourrions comparer notre algorithme avec
d’autres méthodes existantes afin de comprendre les avantages et les inconvé-
nients de ce que nous avons proposé.
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2. Introduction (English)

2.1. Context of the thesis

This manuscript presents the work that I have done during three years of PhD,
from October 2015 to October 2018, under the supervision of Michel De Lara and
Jean-Christophe Pesquet.

I was cofinanced by École Nationale des Ponts et Chaussées and by Labex Bézout
(Laboratories of Excellence). I did most of my work at Centre d’Enseignement et de
Recherche en Mathématiques et Calcul Scientifique visiting periodically the Center
for computer vision of Centrale Supélec. During my PhD, I had the opportunity
to go to New-Zealand for 6 months between October 01, 2016 and March 31, 2017
where I have worked with Andy Philpott. At that time, I was financed by the French
ambassy in New Zealand.

In this thesis, we consider stochastic optimization, game theory and machine
learning problems with risk measures.

In a first part, we focus on time consistency in stochastic optimization. We begin
by proving an equivalence between time consistent mappings and the existence of
a nested formula. Motivated by well known examples in risk measures, we investi-
gate three classes of mappings: translation invariant, Fenchel-Moreau transform and
supremum mappings. Then, we extend the concept of time consistency to player
consistency, by replacing the sequential time by any unordered set and mappings
by any relations. Finally, we show how player consistency relates to sequential and
parallel forms of decomposition in optimization.

In a second part, we study how risk measures impact the multiplicity of equilibria
in dynamic game problems in complete and incomplete markets. We design an
example where the introduction of risk measures leads to the existence of three
equilibria instead of one in the risk neutral case. We analyze the ability of two
different algorithms to recover the different equilibria. We discuss links between
player consistency, system of prices and equilibrium problems in games.

In a third part, we study distributionally robust optimization in machine learning.
Using convex risk measures, we provide a unified framework and propose an adapted
algorithm covering three ambiguity sets discussed in the literature.

2.2. Summary and contribution of player consistency
for ranking and optimization

Stochastic optimization problems are naturally large scale since they are indexed
scenarios and time (and possibly a spatial structure). To solve them numerically,
one can exploit decomposition schemes. Instead of solving one big problem, you
solve, sequentially or in parallel, a set of smaller subproblems.

Decomposition methods are widely studied with mathematical expectation taken
together with an additive criterion. We present here two simple and obvious schemes
for parallel decomposition and for sequential decomposition as a motivation. Then
we present a more abstract framework involving risk measures. Finally we present
our contribution with non-linear mappings and a criterion that is not necessarily
additive.
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2.2. Summary and contribution of player consistency for ranking and optimization

Decomposition schemes with mathematical expectation and additive criterion
Let (Ω,T,P) be a probability space and let X = L∞(Ω,T,P) be the set of bounded
real random variables. Consider a stochastic optimization problem formulated as

min
X1,X2∈X

2
EP
[
c1(X1) + c2(X2)

]
, (2.1)

where c1 : R→ R and c2 : R→ R are functions.
Let us show two natural options two decompose problem (2.1) using properties of

the mathematical expectation. First, by linearity of the mathematical expectation,
we obtain a parallel decomposition scheme, that is, obviously

min
X1,X2∈X

2
EP
[
c1(X1) + c2(X2)

]
= min
X1∈X

EP
[
c1(X1)

]
+ min
X2∈X

EP
[
c2(X2)

]
. (2.2)

Instead of solving one problem involving two variables X1 and X2, we can solve si-
multaneously the problem minX1∈X

EP
[
c1(X1)

]
and the problem minX2∈X

EP
[
c2(X2)

]
.

Then we aggregate the optimal value of each problem to get the optimal value of
the original problem (2.1).

We now consider the problem

min
X1�F1,X2�F2

EP
[
c(X1,X2)

]
, (2.3)

where c : R × R → R is a function, F1 ⊂ F2 are two σ-fields and where X1 is
F1-measurable and X2 is F2-measurable. A second approach is based on the tower
property of conditional expectation, that is, the nested formula

EP[X ] = EP
[
EP[X | F]

]
,

where F is a σ-field that is included in T. Using this property, we obtain a sequential
decomposition scheme, that is, obviously,

min
X1�F1,X2�F2

EP
[
c(X1,X2)

]
= min
X1F1

EP

[
min
x2∈R

EP
[
c(X1, x2)

∣∣ F2

]]
. (2.4)

Problem (2.4) is time decomposable using dynamic programming (Bellman, 1957;
Bertsekas, 1976, 1987). We first compute for each possible X1, an optimal solution
of the inner problem minx2∈R EP

[
c(X1, x2)

∣∣ F]. This leads to an optimal solution
x?2(X1) that is parametrized by X1 (measurability problems apart). Then we solve
the outer optimization problem

min
X1�F1

EP

[
EP
[
c(X1, x

]

2(X1))
∣∣ F2

]]
. (2.5)

Introducing risk measure and non additive criterion Problems (2.1) and (2.3)
can be casted in a more general framework that reads

min
X1,X2∈X

2
ρ
(
c1(X1)⊕ c2(X2)

)
, (2.6a)

or
min

X1�F1,X2�F2

ρ
(
c(X1,X2)

)
. (2.6b)
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2. Introduction (English)

where ρ : L∞(Ω,T,P) → R is a risk measure and ⊕ is an “aggregator” of random
variable. In the management of electricity transmission, a non additive criterion
evaluated under a non linear risk measure can improve the safety of the network
and lead to more reliable policies (Laetitia Andrieu, 2009), for example to integrate
renewable energy. Let us detail examples of aggregator ⊕ and risk measure ρ to
motivate this framework.

Instead of minimizing a sum of costs, one can look for

� minimizing the maximum of the cost of the two players; in this case ⊕ is the
maximum operator max;

� minimizing a discounted final cost with a controlled interest rate; in this case,
⊕ is the product operator ×.

Hence, formulations (2.6) account for a broader class of modeling criteria.
We now provide examples of a risk measure ρ. A popular risk measure in stochastic

optimization is the so called Average Value at Risk of level β ∈ [0, 1) given by
(Rockafellar and Uryasev, 2000a)

AV@Rβ[X ] = inf
α

{
α +

1

1− β
EP
[

max(0,X − α)
]}

. (2.7)

Such a risk measure focuses of the 100·(1−β)% worst scenarios, that is, the scenarios
that lead to the highest cost. If β = 0, we retrieve the mathematical expectation
and, if β tends to 1, we retrieve the worst case risk measure. Optimizing using this
AV@R risk measure will lead to a more robust solution in the sense that if “bad”
scenarios occurs, our solution will be better than the one given by problem (2.1).
However, the solution obtain by solving (2.6a) will have a higher expected cost. We
then say that we are risk averse: we prefer to pay a little bit more at the beginning
to avoid high cost in extreme situations.

Now that we have presented main ingredients, a question arises: can we adapt
the decomposition methods parallel additive (2.2) and nested sequential (2.4) to new
problems (2.6) ? First, a general risk measure is not linear which leads to

ρ(X1 +X2) 6= ρ(X1) + ρ(X2) . (2.8)

Second, it is well known that

AV@Rβ[X ] 6= AV@Rβ

[
AV@Rβ[X | F]

]
, (2.9)

where the mapping AV@Rβ[· | F] is the conditional average value at risk that we
do not detail here. Hence, a nested formula or an additive decomposition are not
trivial and to obtain parallel or sequential decomposition requires more work.

Mixing risk measures and decomposition schemes Driven by the question: “what
are the risk measures that are compatible with decomposition in optimization ? “,
we first focus on the notion of time consistency as it provides a nested formula and
makes sequential decomposition possible as detailed for example in Shapiro (2009)
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and Ruszczyński (2010). We could trace the notion of time consistency to Koopmans
(1960) and it is widely discussed in the literature as attests the survey Bielecki, Cia-
lenco, and Pitera (2017). This survey also shows that the frameworks to discuss time
consistency are quite disparate, mixing time consistency with different assumptions.

Our contribution are summarized below.

� In Chap. 3, we present a framework for time consistency for mappings to bring
into a common framework results obtained by different authors. Consider a
mathematical object that is divided between a head part h and a tail part t,
for example stochastic processes. Given a mapping A that ”aggregates“ the
head part and the tail part and a mapping F that evaluates only the tail part,
we look for the property that

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 . (2.10)

Our main contribution is to show an equivalence between Equation (2.10) and
the following nested formula

A(h, t) = SA,F
(
h, F (t)

)
, (2.11)

where SA,F is a well chosen mapping. (We detail briefly Equations (2.10)
and (2.11) in the risk neutral case for illustration. In a nutshell, we have
that A(h, t) = EP[h + t], F (t) = EP[t | F] and SA,F (h, f) = EP[h + f ]).
We then revisit the literature at the light of this framework. This allows us
to highlight the contribution of the different authors making clearer which
additional assumption leads to which additional result. For example, Kreps
and Porteus ((Kreps and Porteus, 1978a), (Kreps and Porteus, 1979)) state a
temporal consistency axiom. With our abstract setting, we directly deduce the
existence of a mapping SA,F increasing in its second argument and a Nested
Formula, whereas they obtain a stronger result under stronger assumptions.
Indeed, they add assumptions of continuity, substitution (related to convexity)
using strict inequalities. This enables them to obtain a mapping SA,F which
is continuous and strictly increasing in its second argument.

� In Chap. 4, we investigate time consistency for three classes of mappings.
First, we characterize time consistency for mappings that are translation in-
variant using their level sets of level 0 1. Time consistency for this class of
mappings encompasses, in an abstract setting, results on monetary risk mea-
sures. However, it gives a time consistency characterization which is quite
involved since using it on practical examples is difficult. Second, we study
mappings that are defined as Fenchel-Moreau transforms. We give conditions
on mappings to satisfy a nested formula. This allows to recover well known
result of Ruszczynski and Shapiro (2006a) and Föllmer and Schied (2016).
Third, we study inheritance of time consistency for mappings that are defined
as supremum.

1In the framework of monetary risk measure, this set is called acceptance set
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2. Introduction (English)

� In Chap. 5, we introduce the notion of consistency without relying on the
notion of time. We are motivated by the idea that, in multistage problems,
time consistency is linked to the existence of a intertemporal coordinator and
we can interpret a multistage problem as several players playing successively.
We hence define the notion of players consistency. In (2.10) and (2.11), the
head set H represents elements that ”occurs before“ elements of the tail set T.
Now, we forget this idea and we consider the sets H and T symmetrically. We
look for a property, that we call player consistency, between three mappings
A, FH and FT that reads

FH(h) = FH(h′)
FT(t) = FT(t′)

}
⇒ A(h, t) = A(h′, t′) . (2.12)

Under mild assumption, we are able to prove that Equation (2.12) is equivalent
to the existence of a mapping SA,FH,FT such that

A(h, t) = SA,FH,FT
(
FH(h), FT(t)

)
. (2.13)

The notion of time consistency and player consistency are both encompassed
in the definition of R-consistency for binary relations. Given a set P of players,
a tuple of relations (S)p∈P and a product relation R, we define R-consistency
for binary relations as follows∏

p∈P

Sp︸ ︷︷ ︸
product of relations

⊂ R︸︷︷︸
relation over product set

. (2.14)

We then detail how to use player consistency to decompose optimization prob-
lems sequentially and in parallel. We are able to derive under suitable assump-
tion the nested optimization problem

inf
(h,t)∈H×T

A(h, t) = inf
h∈H

SA,F
(
h, inf

t∈T
F (t)

)
, (2.15)

for sequential decomposition and

inf
(h,t)∈H×T

A(h, t) = SA,FH,FT
(

inf
h∈H

FH(h), inf
t∈T

FT(t)
)
. (2.16)

for parallel decomposition. We also describe how to apply these two schemes
recursively.

2.3. Summary and contributions on risk averse
competitive equilibrium

We have introduced the notion of player consistency and we have explained how
this notion may help to decompose stochastic optimization problems sequentially
and in a parallel manner. A common way to decompose an optimization problem in
parallel is to reformulate it as an equilibrium problem. The idea is to dualize coupling
constraints and then interpret multipliers as prices that coordinates different agents.
We present, for the purpose of illustration, the risk neutral case. Then we detail our
contributions.
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2.3. Summary and contributions on risk averse competitive equilibrium

Risk neutral equilibrium and decomposition of a stochastic optimization prob-
lem Let us consider a toy problem example. Let (Ω,T,P) be a probability space
where Ω is finite and P charges all points. and let L∞(Ω,T,X ) be the space of
bounded random variables. Let X1 and X2 be two subsets of L∞(Ω,T,X ). We
consider the following stochastic optimization problem

min
(X1,X2)∈X1×X2

EP
[
c1(X1) + c2(X2)

]
, (2.17a)

s.t. g1(X1) + g2(X2) ≥D , P-a.s. (2.17b)

where

� the functions c1 : R→ R and c2 : R→ R are costs functions,

� the functions g1 : R→ R and g2 : R→ R are supply functions,

� the random variable D represents an aggregated demand.

We now turn on the statement of a risk neutral equilibrium. An equilibrium
problem reads

min
(X1)

EP
[
c1(X1)

]
(2.18)

min
(X2)

EP
[
c2(X2)

]
(2.19)

0 ≤ λ ⊥D −
(
g1(X1) + g2(X2)

)
≥ 0 , (2.20)

where λ is a market price variable. The complementary slackness constraint (2.20)
express the fact that prices should be chosen such that supply equals to demand.

The first welfare theorem indicates that Problems (2.17) and (2.18) are ”equiv-
alent“, that is, the market ”finds“ a solution that is socially optimal. Thus, it
provides a decomposition scheme for the optimization problem (2.17) into an equi-
librium problem.

The idea behind the first welfare theorem is the following. Under mild assump-
tions, Problem (2.17) is equivalent to a reformulation of its dual that reads (we omit
sets over which optimum are taken to focus on decomposition)

max
λ

min
(X1,X2)

EP
[
c1(X1) + c2(X2)

]
+
∑
ω∈Ω

λ(D(ω)− ω)
(
g1(X1)(ω) + g2(X2)(ω)

)
.

(2.21)
The inner problem can now be solved player by player. This decomposition is known
as price decomposition scheme. At optimum, we want to satisfy the complemen-
tarity slackness conditions (2.20). The connection with equilibrium problem follows
naturally.

We now want to investigate what happens when we replace the mathematical
expectation by a coherent risk measure.
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2. Introduction (English)

Risk averse equilibrium and decomposition of a stochastic optimization problem
We investigate risk averse equilibrium motivated by electricity markets. Indeed,
most industrialized regions of the world have over the last thirty years have estab-
lished wholesale electricity markets, that take the form of an auction that matches
supply and demand. These are often called two-settlement markets.

If probability distributions for intermittent supply are known for these systems
then it makes sense to maximize the expected total welfare of producers and con-
sumers in each dispatch. Then many repetitions of this will yield a long run total
benefit that is maximized. Maximizing expected welfare can be modeled as a two-
stage stochastic program. Methods for computing prices and single-settlement pay-
ment mechanisms for such a stochastic market clearing mechanism are described in
a number of papers (see Pritchard et al. (2010), Wong and Fuller (2007) and Zakeri
et al. (2016)). When evaluated using the assumed probability distribution on supply,
stochastic market clearing can be shown to be more efficient than two-settlement
systems.

If agents in these systems are risk averse, then one might also seek to maximize
some risk-adjusted social welfare. In this setting the computation of prices and pay-
ments to the agents becomes more complicated. If agents use coherent risk measures
then it is possible to define a complete market for risk in a precise sense. If the mar-
ket is complete then a perfectly competitive partial equilibrium will also maximize
risk-adjusted social welfare, i.e. it is efficient. On the other hand if the market for
risk is not complete, then perfectly competitive partial equilibrium can be inefficient.
This has been explored in a number of papers (see e.g. de Maere d’Aertrycke et al.
(2017), Ehrenmann and Smeers (2011) and Ralph and Smeers (2015)).

� In Chap. 6 we study a class of stochastic dispatch and pricing mechanisms
under the assumption that agents will attempt to maximize their risk-adjusted
welfare at these prices. Agents have coherent risk measures and are assumed to
behave as price takers in the energy and risk markets. We aim at enlightening
some difficulties that arise when risk markets are not complete. We describe a
simple instance of a stochastic market that has three different equilibria. Two
of these points are stable in the sense of Samuelson (1941) and are attractors of
tâtonnement algorithms. The third equilibrium is unstable, yet is the solution
yielded by the well-known PATH solver in GAMS (See Ferris and Munson
(2000)). Our example illustrates the delicacy of seeking numerical solutions for
equilibria in incomplete markets. Since these are used for justifying decisions,
the nonuniqueness of solutions in this setting is undesirable. Indeed, we cannot
control to which equilibrium the different algorithms are going to converge.

� In Chap. 7 we discuss links between player consistency and equilibrium prob-
lems. We suggest an interpretation of markets prices as tools to obtain con-
sistency between players and social planner. In a sense, prices are not only
efficient coordinator mechanisms, but also consistent coordinator mechanisms.
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2.4. Summary and contribution on risk averse classification and estimation problems

2.4. Summary and contribution on risk averse
classification and estimation problems

In Rockafellar and Uryasev (2013) and Rockafellar, Uryasev, and Zabarankin (2008),
the authors present a fundamental quadrangle that provides link between estimation
and control problems. We follow their path to provide links between risk averse
optimization and distributionally robust optimization. More precisely, we show that
common distributionally robust optimization problems are risk averse problems with
a well chosen risk measure that displays nice properties.

� In machine learning, the robustness of the solutions obtained for classification
and prediction tasks remains a main issue. In Papernot, McDaniel, and Good-
fellow (2016) and Kurakin, Goodfellow, and Bengio (2016), some examples are
provided where small modifications of the input data can completely change
the resulting solution.

This kind of problems also occurs in optimal control when there exist uncer-
tainties on parameters. In Ben-Tal and Nemirovski (2000), the authors showed
that a small perturbation on the parameters can turn a feasible solution into
an infeasible one.

In this context, robust approaches appear as a way of controlling out-of-sample
performance. There is an extensive literature dealing with robust problems
and the reader is refered to Ben-Tal, El Ghaoui, and Nemirovski (2009) for
a survey. One of the main approaches consists of introducing constraints on
the probability distribution of the unknown data. Under some conditions, this
approach is equivalent to deal with ambiguity sets or a modified loss function.
Let us detail for clarity the formulation of a robust problem based on ambiguity
set. Let (Ω,T,P) be a probability space and X be a set of random variables on
this space. Let f : R → R be a function. The usual stochastic optimization
problem reads

inf
X∈X

EP[f(X )] , (2.22)

and its robust counterpart based on ambiguity set reads

inf
X∈X

sup
Q∈Q

EQ[f(X )] , (2.23)

where Q is a set of probability distributions on Ω. The works in Ben-Tal,
Den Hertog, De Waegenaere, Melenberg, and Rennen (2013); Hu and Hong
(2013); Duchi, Glynn, and Namkoong (2016); Moghaddam and Mahlooji (2016)
and Namkoong and Duchi (2016) have brought more insight on ambiguity sets.
In Esfahani and Kuhn (2015) and Esfahani, Shafieezadeh-Abadeh, Hanasu-
santo, and Kuhn (2017), the authors present a distributionally robust opti-
mization framework based on the Wasserstein distance. A set of probability
distributions is defined as a ball centered on the reference probability with
respect to the Wasserstein distance, then the optimization is carried out for
the worst cost over this probability set.
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This idea of minimizing the worst cost over a given probability set is well-
known in quantitative finance. The robust representation of risk measures
provides a theoretical framework to do so. A good class of risk measures is the
class of coherent ones which were introduced in the seminal paper by Artzner,
Delbaen, Eber, and Heath (1999). In Föllmer and Schied (2016), a broader
class of so-called convex risk measures was investigated, for which a large
number of results were established.

In this paper, we follow the line of Esfahani and Kuhn (2015), which aims at
reformulating robust problems using ambiguity sets as convex minimization
problems. Our contribution is threefold. First we clarify the links existing
between risk measures and robust optimization. This allows us to transpose
results from finance to machine learning. Second, we propose a unifying con-
vex optimization setting for dealing with various risk measures, including those
based on ϕ-divergences or the Wasserstein distance. Finally, we propose an ac-
celerated algorithm grounded on the subgradient projection method proposed
in Combettes (2003). We show that the proposed algorithm is able to solve
efficiently large-scale robust problems.
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Part II.

Player consistency for ranking and
optimization
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Introduction

This chapter deals with time consistency, its extension to player consistency and its
use in optimization. Time consistency is a formalization of the idea of sticking to
one’s plan. More precisely, if I decide today of an optimal policy for the future, and
if I recompute in the future an optimal policy, then I should end up with the same
policies than the one given by the original strategy.

In the risk neutral case, the notion of time consistency is related to the nested
formula

EP[X ] = EP
[
EP[X | F]

]
, (2.24)

where F is a given σ-field. Such a nested formula allows dynamic programming and
allows to decompose a stochastic problem sequentially (Bellman, 1957; Bertsekas,
1976, 1987).

We then discuss a generalization of time consistency that we call player consis-
tency. Consider a finite number of decision makers, each of them endowed with
their own preference on their own decision set. A leader supervises the team of
players. He is endowed with his own preference over the product of players decision
sets. Keeping in mind that an individual playing at two different time steps is rep-
resented by two distinct players, we extend the notion of time consistency to one of
player consistency as follows: when the players, one by one, are indifferent between
two decisions, so is the team leader with respect to the two collections of decisions.
With this approach, we expect to deal with optimization problems with a general
structure of information not necessarily processes and filtration, which can account
for decentralized information among players.

We first consider in Chap. 3 the case of a unique individual playing at different
time steps. This is the well known framework of Time Consistency. Behind the
words “time consistency”, there is a disparate literature. We could trace the notion
first in Kreps and Porteus (1978b). Other classical references include Epstein and
Schneider (2003b), Artzner, Delbaen, Eber, Heath, and Ku (2007b), Ruszczyński
(2010). Time consistency means that if a tail t′ of a stochastic process is greater
than a tail t of an other process, and if the heads of the processes are both equal to h,
then the whole process (h, t′) should be greater than the whole process (h, t). When
preferences are represented by numerical functions, we prove that time consistency
is equivalent to a nested formula. We introduce three notions of time consistency:
a weak, a usual and a strong one. We provide for each of these three notions two
characterizations: one in terms of a set valued mapping and one in terms of level
sets.

Then, in Chap. 4, we discuss applications to different class of mappings inspiring
ourselves from results on risk measures (Föllmer and Schied, 2016). We first consider
translation invariant mappings. For such mappings, the notion of acceptance set is
crucial. We show that the time consistency property between two mappings is

43



equivalent to the inclusion of an acceptance set in a starshape operation between an
acceptance set and a residual set. In certain case, this operation collapses to a an
inclusion between two acceptance sets. We then consider mappings that are defined
as Fenchel-Moreau’s transform. We illustrate that time consistency is equivalent to
a form of rectangularity property in the dual space, taken together with a additive
decomposition of the Fenchel transform of the risk mappings.

In Chap. 5, we unlink time and consistency and define R-consistency for binary
relations and player consistency. We then detail why player consistency is an adapted
tool for decomposing optimization problem sequentially and in parallel.

To conclude this part, we illustrate in Chap. 5.3 how our framework can be ap-
plied to optimization problems. We provide two results: one specialized to Time
Consistency and one, more general, for Player Consistency.

The following table 2.1 sums up the contributions of this part.

� Time consistency is equivalent to a nested formula that leads to sequential
decomposition.

� Player consistency is equivalent to a nested formula that leads to parallel
decomposition

Time consistency Player consistency

F (t) ≤ F (t′)⇒ A(h, t) ≤ A(h, t′)
FH(h′) ≤ FH(h′)
FT(t) ≤ FT(t′)

}
⇒ A(h, t) ≤ A(h′, t′)

m m
A(h, t) = SA,F

(
h, F (t)

)
A(h, t) = SA,FH,FT

(
FH(h), FT(t)

)
⇓ ⇓

Sequential optimization Parallel optimization
l l∧

(h,t)∈H×T
A(h, t) =

∧
h∈H

SA,F
(
h,
∧
t∈T
F (t)

) ∧
(h,t)∈H×T

A(h, t) = SA,F
( ∧
h∈H

FH(h),
∧
t∈T
FT(t)

)
Table 2.1.: summary of the contribution of Part II.
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3. Time consistent mappings

This chapter provides the content of Gérard, De Lara, and Chancelier (2017) with
some changes of notation. Section Sect. 3.5 is not part of the article but has been
added since it provides complementary results that will be useful in the rest of the
manuscript.
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3. Time consistent mappings

You are a financial analyst. At the beginning of every week, you are able to
rank every pair of stochastic processes starting from that week up to the horizon.
Suppose that two processes are equal at the beginning of the week. Your ranking
procedure is time consistent if the ranking does not change between this week and
the next one. In this paper, we propose a minimalist definition of Time Consistency
(TC) between two (assessment) mappings. With very few assumptions, we are able
to prove an equivalence between Time Consistency and a Nested Formula (NF)
between the two mappings. Thus, in a sense, two assessments are consistent if and
only if one is factored into the other. We review the literature and observe that the
various definitions of TC (or of NF) are special cases of ours, as they always include
additional assumptions. By stripping off these additional assumptions, we present
an overview of the literature where the contribution of each author is enlightened.

3.1. Introduction

Behind the words “Time Consistency” and “Nested Formula”, one can finds a vast
literature resorting to economics, dynamical risk measures and stochastic optimiza-
tion.

Let us start with economics. In a dynamic bargaining problem, a group of agents
has to agree on a common path of actions. As time goes on and information is
progressively revealed, they can all reconsider the past agreement, and possibly make
new assessments leading to new actions. Stability is the property that the agents will
stick to their previous commitment. Time consistency is a form of stability when an
individual makes a deal between his different selves (agents) along time. The notion
of “consistent course of action” (see Peleg and Yaari, 1973) is well-known in the field
of economics, with the seminal work of (Strotz, 1955-1956): an individual having
planned his consumption trajectory is consistent if, reevaluating his plans later on,
he does not deviate from the originally chosen plan. This idea of consistency as
“sticking to one’s plan” may be extended to the uncertain case where plans are
replaced by decision rules (“Do thus-and-thus if you find yourself in this portion
of state space with this amount of time left”, Richard Bellman cited in (Dreyfus,
2002)); (Hammond, 1976) addresses “consistency” and “coherent dynamic choice”,
(Kreps and Porteus, 1978a) refers to “temporal consistency”. Another classical
reference in economics is (Epstein and Schneider, 2003a).

Dynamic or Time Consistency has been introduced in the context of dynamical
risk measures (see Riedel, 2004; Detlefsen and Scandolo, 2005; Cheridito et al.,
2006; Artzner et al., 2007a, for definitions and properties of coherent and consistent
dynamic risk measures).

In the field of stochastic optimization, Time Consistency has then been studied in
the stochastic programming framework by (Shapiro, 2009) and for Markov Decision
Processes by (Ruszczyński, 2010).

These different origins of Time Consistency contribute to a disparate litterature.
First, as Nested Formulas lead naturally to Time Consistency, some authors study
the conditions to obtain Nested Formulas, whereas others focus on the axiomatics
of Time Consistency and obtain Nested Formulas. Second, many definitions co-
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habit. For instance, (Ruszczyński, 2010) add translation invariant property with
additive criterion, (Shapiro, 2016; Artzner, Delbaen, Eber, Heath, and Ku, 2007a)
add assumptions of coherent risk measures, and many authors focus on a particular
structure of information (filtration). In this disconnected landscape, (De Lara and
Leclère, 2016) tries to make the connection between “dynamic consistency” for op-
timal control problems (economics, stochastic optimization) and “time consistency”
for dynamic risk measures. In this paper, we will focus on Time Consistency, moti-
vated by dynamic risk measures — where the future assessment of a tail of a process
is consistent with the initial assessment of the whole process, head and tail — but
not limited to them. Below, we sketch our definitions of TC and NF. Our main
contribution will be proving their equivalence.

Axiomatic for Time Consistency. We start presenting axiomatic of Time Consis-
tency in a nutshell. Depending on the authors, the objects that are manipulated are
either processes (Riedel, 2004; Detlefsen and Scandolo, 2005; Cheridito, Delbaen,
and Kupper, 2006; Artzner, Delbaen, Eber, Heath, and Ku, 2007a) or lotteries
(Kreps and Porteus, 1978a; Epstein and Schneider, 2003a). These objects are di-
vided into two parts: a head h and a tail t. On the one hand, we have a way to
assess any tail t by means of a mapping F (factor), yielding F (t). On the other
hand, we have a way to assess any couple head-tail (h, t) by means of a mapping A
(aggregator), yielding A(h, t).

We look for a consistency property between these two ranking mapping F and A:
if a tail t is equivalent to a tail t′, then the two elements (h, t) and (h, t′) — that
share the same head — must be such that (h, t) is equivalent to (h, t′). This can be
written mathematically as

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀(h, t, t′) ∈ H× T2 . (TC)

Axiomatic for Nested Formulas. Some authors focus on sufficient conditions to
obtain a Nested Formula (Shapiro, 2016; Ruszczynski and Shapiro, 2006a). In a
Nested Formula, the assessment F (t) of any tail t is factored inside the assess-
ment A(h, t) of any head-tail (h, t) by means of a surrogate mapping SA,F as follows:

A(h, t) = SA,F
(
h, F (t)

)
. (NF)

Of course, (NF) implies (TC). We will prove the reverse: (TC) implies that there
exists a mapping SA,F such that (NF) holds true.

In Sect. 3.2, we go through the literature, with the goal of extracting the fol-
lowing components: what kind of objects are treated, what are the heads and the
tails, how are these objects ranked. In Sect. 3.3, we formally state our definitions of
Time Consistency (TC) and Nested Formula (NF), and we prove their equivalence.
We also provide conditions to obtain analytical properties of the mapping SA,F ap-
pearing in the Nested Formula, such as monotonicity, continuity, convexity, positive
homogeneity and translation invariance. In Sect. 3.4, we show that our framework
covers the different frameworks reviewed in Sect. 3.2.
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3.2. Review of the literature

We have screened a selection of papers, in mathematics and economics, touching
Time Consistency and Nested Formula in various settings. Depending on the setting,
we identify the following components, as introduced in Sect. 3.1: what kind of objects
are treated, what are the heads and the tails, how are these objects ranked. Table 3.1
sums up our survey.

Article Objects Head Tail Assessment

T
im

e
C

on
si

st
en

cy
︷

︸︸
︷ Kreps and

Porteus
Lottery

Lottery
from 1 to s

Lottery from
s+ 1 to T

Expected utility

Epstein and
Schneider

Lottery
Lottery
from 1 to s

Lottery from
s+ 1 to T

Not necessarily
expected utility

Ruszczyński Process
Process
from 1 to s

Process from
s+ 1 to T

Dynamic
risk measure

Artzner et al. Process
Process
from 1 to τ

Process from
τ to T ,
τ stopping time

Coherent
risk measure

N
es

te
d

F
or

m
u

la
︷

︸︸
︷ Shapiro Process

Process
from 1 to s

Process from
s+ 1 to T

Coherent
risk measure

Ruszczynski
and Shapiro

Process
Process
from 1 to s

Process from
s+ 1 to T

Coherent
risk measure

De Lara and
Leclère

Process
Process
from 1 to s

Process from
s+ 1 to T

Dynamic
risk measure

Table 3.1.: Sketch of papers selected on Time Consistency and Nested Formulas

3.2.1. Axiomatic for Time Consistency (TC)

The first group of authors is subdivided between economists, who deal with lotteries
and preferences, and probabilists who deal with stochastic processes and dynamical
risk measures.

Lotteries and preferences

In (Kreps and Porteus, 1978a), (Kreps and Porteus, 1979) and (Epstein and Schnei-
der, 2003a), the authors deal with lotteries and preferences. A preference is a to-
tal, transitive and reflexive relation. Proper assumptions make it possible that the
preference relation can be represented by a numerical evaluation. Assumptions of
monotonicity and convexity are also made.

In (Kreps and Porteus, 1978a), Kreps and Porteus propose axioms that make that
the preference is represented by an expected utility formula.

By contrast, more general numerical representations are studied in (Epstein and
Schneider, 2003a), even if Epstein and Schneider add an hypothesis of additive
criterion. A summary of the assumptions can be found in Table 3.2.

Dynamic risk measures and processes

In (Ruszczyński, 2010) and (Artzner, Delbaen, Eber, Heath, and Ku, 2007a), the
authors deal with stochastic processes assessed by dynamical risk measures.
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3.3. Main result: equivalence between time consistency and nested formula

In (Ruszczyński, 2010), Ruszczyński studies a family of conditional risk measures
which are monotonic, invariant by translation and homogeneous. The criterion is
additive.

In (Artzner, Delbaen, Eber, Heath, and Ku, 2007a), Artzner, Delbaen, Eber,
Heath and Ku focus on the value of the stochastic process at the final time step.
They use as assessment a particular class of risk measures, the so-called coherent
risk measures.

3.2.2. Axiomatic for Nested Formulas (NF)

In (Shapiro, 2016), (Ruszczynski and Shapiro, 2006a) and (De Lara and Leclère,
2016), the focus is on exhibiting sufficient conditions to obtain Nested Formulas.
All authors study stochastic processes, with an assumption of monotonicity for the
assessment, but there are some differences.

In (Ruszczynski and Shapiro, 2006a), Ruszczynski and Shapiro study coherent
risk measures in their dual form (hence with properties of convexity, invariance by
translation and additive criterion).

In (Shapiro, 2016), Shapiro focuses on assessing the value of the process at the
final step with coherent risk measures.

In (De Lara and Leclère, 2016), De Lara and Leclère study how commutation
properties between time aggregators and uncertainty aggregators make it possible
to obtain Nested Formulas.

Article Monotonicity
Translation
invariance

Convexity

T
im

e
C

on
si

st
en

cy
︷

︸︸
︷ (Kreps and Porteus, 1978a) Yes No Yes

(Kreps and Porteus, 1979) Yes No Yes
(Epstein and Schneider, 2003a) Yes No Yes

(Ruszczyński, 2010) Yes Yes No
(Artzner, Delbaen, Eber,
Heath, and Ku, 2007a)

Yes Yes Yes

N
es

te
d

F
or

m
u

la
︷︸︸

︷ (Shapiro, 2016) Yes Yes Yes
(Ruszczynski and Shapiro, 2006a) Yes Yes Yes

(De Lara and Leclère, 2016) Yes No No

Table 3.2.: Most common assumptions in the selection of papers on Time Consis-
tency and Nested Formula

3.3. Main result: equivalence between time
consistency and nested formula

In Sect. 3.1, we have sketched the notions of Time Consistency and Nested For-
mula. Now, in §3.3.1, we properly define Weak Time Consistency — with minimal
assumptions — and we prove that it is equivalent to a Nested Formula. In §3.3.2,
we extend definitions and results to Usual and Strong Time Consistency: by adding
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3. Time consistent mappings

order structures, we obtain additional properties. In §3.3.3, we provide conditions
to obtain analytical properties of the mapping appearing in the Nested Formula,
such as monotonicity, continuity, convexity, positive homogeneity and translation
invariance. Let us introduce basic notations.

Let H and T be two sets, respectively called head set and tail set. Let A, F be
two sets and let A and F be two mappings as follows:

A : H× T→ A , F : T→ F . (3.1)

The mapping A is called an aggregator, as it aggregates head-tail in H× T into an
element of A. The mapping F is called a factor because of the Nested Formula (NF)
in Sect. 3.1.

Definition 3.3.1. With the couple aggregator-factor (A,F ) in (3.1) we associate
the set-valued mapping

SA,F : H× Im(F )⇒ A
(h, f) 7→ SA,F (h, f) =

{
A(h, t) | t ∈ F−1(f)

}
,

(3.2)

where Im(F ) = F (T). We call SA,F the subaggregator of the couple (A,F ).

3.3.1. Weak Time Consistency

Definition 3.3.2 (Weak Time Consistency). The couple aggregator-factor (A,F )
in (3.1) is said to satisfy Weak Time Consistency (WTC) if we have

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 . (3.3)

Here is our main result where we characterize the WTC property in terms of the
subaggregator in (3.2).

Theorem 3.3.3 (Nested decomposition of WTC mappings). The couple aggregator-
factor (A,F ) in (3.1) is WTC if and only if the subaggregator set valued map-
ping SA,F in (3.2) is a mapping. In that case, the following Nested Formula between
mappings holds true:

A(h, t) = SA,F
(
h, F (t)

)
, ∀h ∈ H , ∀t ∈ T . (3.4)

Proof. Note that we always have by Equation (3.2) that

A(h, t) ∈ SA,F
(
h, F (t)

)
. (3.5)

1. We suppose that the couple (A,F ) is Weak Time Consistent. Consider (h, f)
fixed in H× Im(F ). We are going to show that the set valued mapping SA,F

is in fact a mapping, by proving that the set SA,F (h, f), defined in (3.2), is
reduced to a singleton.

We consider two elements a = A(h, t) and a′ = A(h, t′) in the set SA,F (h, f).
By definition (3.2), we have F (t) = F (t′) = f . Then, using the Weak Time
Consistency property (3.3), we deduce A(h, t) = A(h, t′). Thus, SA,F (h, f) is
reduced to one value for f ∈ Im(F ). The set valued mapping SA,F is thus a
mapping and, using Equation (3.5), we obtain A(h, t) = SA,F

(
h, F (t)

)
.
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3.3. Main result: equivalence between time consistency and nested formula

2. We suppose now that the set valued mapping SA,F , defined in (3.2), is a
mapping. Since SA,F is a mapping, we deduce by Equation (3.5) that A(h, t) =
SA,F

(
h, F (t)

)
for all t ∈ T. Therefore, we have the implications: F (t) =

F (t′) ⇒ SA,F
(
h, F (t)

)
= SA,F

(
h, F (t′)

)
⇒ A(h, t) = A(h, t′). We conclude

that the weak time consistency property (3.3) is satisfied.

In both cases, we have shown that Equation (3.4) holds true. �

Example 3.3.4 (The couple (AV@Rβ[·+ ·] , AV@Rβ[· | F]) is not Weak Time Con-
sistent). We now give an example inspired from (Pflug and Pichler, 2014, Sect. 5.3.2,
p. 188) and involving the well known Average Value at Risk. It helps to illustrate
our main result and the notions we have introduced so far.

Let Ω = (ω1, ω2, ω3, ω4), that we equip with the uniform probability distribution
P = 1

4
δω1 + 1

4
δω2 + 1

4
δω3 + 1

4
δω4 .

We introduce the sets H = T = R|Ω| = R4. On this finite space Ω, the Average
Value at Risk of level β (0 ≤ β ≤ 1) of a random variable X : Ω→ R is defined by
(Rockafellar and Uryasev, 2000a)

AV@Rβ(X ) = min
α∈R

{
α +

1

1− β
EP
[
[X − α]+

]}
. (3.6)

Let F =
{
∅, {ω1, ω2}, {ω3, ω4},Ω

}
be a σ-field on the space Ω. The Conditional

Average Value at Risk of level β, of a random variable X : Ω→ R with respect to
the σ-field F is defined by (Pflug and Pichler, 2014)

AV@Rβ(X | F) = inf
{
EP[XZ | F] : EP[Z | F] = 1 , 0 ≤ Z , βZ ≤ 1

}
(3.7)

We define two mappings

A : H× T→ R F : T→ R2 (3.8a)

(h, t) 7→ AV@R0.5[h+ t] , t 7→ AV@R0.5[t | F] . (3.8b)

Consider four elements: a head h0 = (0, 0, 0, 0) ∈ H, a first tail t0 = (3, 3, 2, 1) ∈ T,
a second tail t′0 = (1, 3, 2, 2) ∈ T and an element of the factor’s image f0 = (3, 2) ∈ F.
On the one hand, the elements F (t0) and F (t′0) are equal, because

AV@R0.5[t0|F] = (3; 2)︸ ︷︷ ︸
f0

= AV@R0.5[t′0|F] . (3.9)

On the other hand, the elements A(h0, t0) and A(h0, t
′
0) are not equal, because

3 = AV@R0.5[h0 + t0] 6= AV@R0.5[h0 + t′0] = 2.5 . (3.10)

The subaggregator SA,F in (3.2) is not a mapping since

SA,F (h0, f0) =
{

AV@R0.5[h0 + t] | AV@R0.5[t | F] = f0

}
⊃ {2.5; 3} , (3.11)

and therefore the couple (A,F ) in (3.8) is not Weak Time Consistent.
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3.3.2. Extensions to Usual and Strong Time Consistency

With additional order structures on the image sets A and F of the aggregator A and
of the factor F , and possibly on the head set H — all presented in (3.1) — we define
two additional notions of Time Consistency, usual and strong.

Usual Time Consistency (UTC)

Suppose that the image sets A and F are equipped with orders, denoted by ≤.

Definition 3.3.5 (Definition of Usual Time Consitency). The couple aggregator-
factor (A,F ) in (3.1) is said to satisfy Usual Time Consistency (UTC) if we have

F (t) ≤ F (t′)⇒ A(h, t) ≤ A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 . (3.12)

We extend the result of Theorem 3.3.3 as follows.

Proposition 3.3.6 (Nested decomposition of UTC mappings). The couple (A,F )
in (3.1) is UTC if and only if the set valued mapping SA,F in (3.2) is a mapping
and is increasing1 in its second argument. In that case, the Nested Formula (3.4)
holds true.

Proof.

1. We suppose that the couple (A,F ) is Usual Time Consistent. In particular,
it is Weak Time Consistent and Theorem 3.3.3 gives us that the set-valued
mapping SA,F in (3.2) is a mapping and that A(h, t) = SA,F

(
h, F (t)

)
, for all

h ∈ H and t ∈ T.

There remains to show that the subaggregator SA,F in (3.2) is increasing in
its second argument. Let f = F (t) and f ′ = F (t′) be two fixed elements in
the set Im(F ), such that f ≤ f ′, hence F (t) ≤ F (t′). By the Usual Time
Consistency definition (3.12), we deduce that A(h, t) ≤ A(h, t′), for all h ∈ H.
This leads to SA,F

(
h, F (t)

)
≤ SA,F

(
h, F (t′)

)
, by the nested formula (3.4).

By identification, we obtain that SA,F (h, f) ≤ SA,F (h, f ′), for all h ∈ H.
Therefore, we have proved that the subaggregator SA,F is increasing in its
second argument.

2. We suppose now that the set valued mapping SA,F is a mapping, increasing in
its second argument. Following the proof of Theorem 3.3.3, we know that, as
SA,F is a mapping, we have A(h, t) = SA,F

(
h, F (t)

)
, for all (h, t) ∈ H×T. We

consider f = F (t) and f ′ = F (t′) in Im(F ) such that f ≤ f ′. As the mapping
SA,F is increasing in its second argument, we obtain that SA,F

(
h, F (t)

)
≤

SA,F
(
h, F (t′)

)
. This leads to A(h, t) ≤ A(h, t′), for all h ∈ H, and we recover

the Usual Time Consistency property (3.12).

In both cases, we have shown that Equation (3.4) holds true. �

1Let X and Y be sets endowed with orders denoted by ≤. A mapping M : X → Y is said to be
increasing if x ≤ x′ ⇒M(x) ≤M(x′).
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Strong Time Consistency (STC)

Suppose that the head set H and the image sets A and F are equipped with orders,
denoted by ≤.

Definition 3.3.7 (Definition of Strong Time Consistency). The couple (A,F ) in
Equation (3.1) is said to satisfy Strong Time Consistency (STC) if we have

F (t) ≤ F (t′)
h ≤ h′

}
⇒ A(h, t) ≤ A(h′, t′) , ∀(h, h′, t, t′) ∈ H2 × T2 . (3.13)

We extend the results of Theorem 3.3.3 as follows.

Proposition 3.3.8 (Nested decomposition for STC mappings). The couple (A,F )
in (3.1) is STC if and only if the set valued mapping SA,F is a mapping increasing
in its first and second arguments. In that case, the Nested Formula (3.4) holds true.

Proof.

1. We suppose that the couple (A,F ) is Strong Time Consistent. In particu-
lar, it is Usual Time Consistent and Proposition 3.3.6 gives us that the set-
valued mapping SA,F is a mapping, increasing in its second argument, and
that A(h, t) = SA,F

(
h, F (t)

)
, for all h ∈ H and for all t ∈ T.

There remains to show that the subaggregator SA,F is increasing in its first
argument. We consider f = F (t) in the set Im(F ) and two elements h and
h′ of H, such that h ≤ h′. By the Strong Time Consistency property (3.13),
we have that A(h, t) ≤ A(h′, t). This leads to SA,F

(
h, F (t)

)
≤ SA,F

(
h′, F (t)

)
by (3.4). As f = F (t), we obtain that SA,F

(
h, f

)
≤ SA,F

(
h′, f

)
. We conclude

that the subaggregator SA,F is increasing in its first argument.

2. We suppose now that set-valued mapping SA,F in (3.2) is a mapping which
is increasing in its first and in its second argument. Following the proof of
Proposition 3.3.6, we know that (3.4) holds true for all (h, t) ∈ H×T. We also
have that the couple (A,F ) is Usual Time Consistent. We consider f = F (t)
and f ′ = F (t′) in Im(F ) such that f ≤ f ′. We also consider (h, h′) ∈ H2 such
that h ≤ h′. We have

F (t) ≤ F (t′)⇒ A(h, t) ≤ A(h, t′) , (3.14a)

by Usual Time Consistency property (3.12), (3.14b)

⇒ A(h, t) ≤ SA,F
(
h, F (t′)

)
, (3.14c)

by the Nested Formula (3.4), (3.14d)

⇒ A(h, t) ≤ SA,F
(
h′, F (t′)

)
, (3.14e)

by monotonicity in the first argument of SA,F , (3.14f)

⇒ A(h, t) ≤ A(h′, t′) , (3.14g)

by the Nested Formula (3.4). (3.14h)

The reasoning is true for any couple (h, h′) ∈ H2 such that h ≤ h′. We conclude
that the couple (A,F ) satisfies Strong Time Consistency.

In both cases, we have shown that Equation (3.4) holds true. �
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Summing up results about WTC, UTC and STC

In §3.3.1 and §3.3.2, we have introduced three notions of Time Consistency, from
the weakest to the strongest. Of course, we have that a Strong Time Consistent
couple is also Usual Time Consistent, and that a Usual Time Consistent couple
is also Weak Time Consistent. We sum up the different definitions and results in
Table 3.3.

Weak (3.3) ⇐ Usual (3.12) ⇐ Strong (3.13)

Definition

F (t) = F (t′)

⇓
A(h, t) = A(h, t′)

F (t) ≤ F (t′)

⇓
A(h, t) ≤ A(h, t′)

h ≤ h′ ,
F (t) ≤ F (t′)

⇓
A(h, t) ≤ A(h′, t′)

Characterization
in terms of

subaggregator
SA,F is a mapping

SA,F is a mapping
increasing

in its second argument

SA,F is a mapping
increasing

in both arguments

Table 3.3.: Characterization of Time Consistency in terms of subaggregator

3.3.3. Analytical properties of time consistent mappings

Here, we study properties inherited by the subaggregator SA,F in (3.2) when it is
a mapping, that is, when the couple (A,F ) is Weak Time Consistent (see Theo-
rem 3.3.3).

We focus on monotonicity, continuity, convexity, positive homogeneity and trans-
lation invariance.

Monotony

We suppose that the head set H, the tail set T, and the image sets A and F —
all presented in (3.1) — are equipped with orders, denoted by ≤. The proof of
the following proposition is left to the reader as a direct application of the Nested
Formula (3.4).

Proposition 3.3.9 (Monotony). Let the couple (A,F ) be Weak Time Consistent,
as in Definition 3.3.2. If the mapping A is increasing in its first argument, then the
subaggregator SA,F in (3.2) is increasing in its first argument.

Continuity

We suppose that the head set H, the tail set T, and the image sets A and F are
metric spaces.

Proposition 3.3.10 (Continuity). Let the couple (A,F ) be Weak Time Consistent,
as in Definition 3.3.2. Assume that the tail set T is compact. If the factor F is
continuous and if the aggregator A is continuous with a compact image Im(A) =
A(H× T), then the subaggregator SA,F in (3.2) is continuous on H× Im(F ).
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Proof. We prove the continuity of the subaggregator SA,F on H × Im(F ) by using
the sequential characterization of the continuity on metric spaces. For this purpose,
we consider, on the one hand, (h̄, f̄) element of H× Im(F ) and, on the other hand,
(hn)n∈N a sequence of elements of H converging to h̄ and (fn)n∈N a sequence of
elements of Im(F ) converging to f̄ . We will show that SA,F (hn, fn) converges to
SA,F (h̄, f̄). We introduce the notation L

(
{un}

)
to denote the set of limit points of

a sequence (un)n∈N.
As fn ∈ Im(F ), there exists an element tn ∈ T such that F (tn) = fn for each n.

By the Nested Formula (3.4), we deduce that

A(hn, tn) = SA,F
(
hn, F (tn)

)
= SA,F

(
hn, fn

)
. (3.15)

We will now show that the set L
({
A(hn, tn)

})
of limit points is reduced to the

singleton {SA,F (h̄, f̄)}. The proof is in several steps as follows:

1. L
({
A(hn, tn)

})
6= ∅,

2. L
({
A(hn, tn)

})
⊂ A

(
h̄,L({tn})

)
,

3. A
(
h̄,L({tn})

)
is reduced to the singleton {SA,F (h̄, f̄)},

4. L
({
A(hn, tn)

})
= {SA,F (h̄, f̄)}.

Here is the proof.

1. As the sequence
(
A(hn, tn)

)
n∈N takes value in the compact set Im(A), we have

that L
({
A(hn, tn)

})
6= ∅.

2. We prove that L
({
A(hn, tn)

})
⊂ A

(
h̄,L({tn})

)
. Let a be an element of the

set L
(
{A(hn, tn)}

)
. By definition of this latter set, there exists a subsequence(

A(hΦ(n), tΦ(n))
)
n∈N converging to a. Now, we know that (hΦ(n))n∈N converges

to h̄, but it is not necessarily the case that (tΦ(n))n∈N converges. However, by
compacity of the tail set T, there exist a subsequence (tΨ◦Φ(n))n∈N converging to
a certain t̄ ∈ L

(
{tn}

)
. As the sequence

(
A(hΦ(n), tΦ(n))

)
n∈N is converging to a,

the subsequence
(
A(hΨ◦Φ(n), tΨ◦Φ(n))

)
n∈N is also converging to a. Now that

both inner subsequences converge, we use the continuity of the mapping A,
and obtain that a = limn→∞A(hΨ◦Φ(n), tΨ◦Φ(n)) = A(h̄, t̄) ∈ A

(
h̄,L({tn})

)
.

3. We prove the equality A
(
h̄,L({tn})

)
= {SA,F (h̄, f̄)}. Since the set L

(
{tn}

)
is

not empty by compactness of T, we consider (t̄, t̄′) ∈ L
(
{tn}

)2
any two limits

points of the sequence (tn)n∈N. As F (tn) = fn and limn→∞ fn = f̄ , we deduce
that F (t̄) = f̄ = F (t̄′), by continuity of the factor mapping F . The Nested
Formula (3.4) gives

A(h̄, t̄) = SA,F
(
h̄, F (t̄)

)
= SA,F (h̄, f̄) = SA,F

(
h̄, F (t̄′)

)
= A(h̄, t̄′) .

This proves that A
(
h̄,L({tn})

)
= {SA,F (h̄, f̄)}.
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4. Gathering up the previous results, we obtain that

∅ 6= L
({
A(hn, tn)

})
⊂ A

(
h̄,L({tn})

)
= {SA,F (h̄, f̄)} . (3.16)

We conclude that L
({
A(hn, tn)

})
= {SA,F (h̄, f̄)}.

From Equation (3.15), we have the equalities L
({
SA,F

(
hn, fn

)})
= L

({
A(hn, tn)

})
= {SA,F (h̄, f̄)} . Therefore, the sequence SA,F (hn, fn) converges to SA,F (h̄, f̄). This
ends the proof. �

Convexity

As we are dealing with convexity property, we assume that the sets H,T and F
in (3.1) are vector spaces. We also suppose that the aggregator A : H × T → A
in (3.1) takes extended real values, that is, A = R ∪ {−∞,+∞}.

Proposition 3.3.11. Let the couple (A,F ) be Weak Time Consistent, as in Defini-
tion 3.3.2. If there exists a nonempty convex subset T̄ ⊂ T such that F (T̄) = Im(F )
and that the restricted function F|T̄ is affine, and if the aggregator A is jointly convex,
then the subaggregator SA,F in (3.2) is jointly convex on H× Im(F ).

Proof. We introduce the notation epi(M) to denote the epigraph 2 of a mapping M.
We prove that the subaggregator SA,F is jointly convex by showing that its epigraph
is jointly convex.

Let
(
(h1, f1), a1

)
and

(
(h2, f2), a2

)
be two elements of the epigraph epi(SA,F ) of

the subaggregator. We consequently have a1 ≥ SA,F (h1, f1) and a2 ≥ SA,F (h2, f2)
which by addition to

λa1 + (1− λ)a2 ≥ λSA,F (h1, f1) + (1− λ)SA,F (h2, f2) , (3.17)

where λ is an element of [0, 1]. As, by assumption, F (T̄) = Im(F ), there exist two
elements (t̄1, t̄2) ∈ T̄2 such that

F (t̄1) = f1 and F (t̄2) = f2 . (3.18)

We have the succession of equalities and inequality

λa1 + (1− λ)a2 ≥ λSA,F (h1, f1) + (1− λ)SA,F (h2, f2) ,

by Equation (3.17),

= λSA,F
(
h1, F (t̄1)

)
+ (1− λ)SA,F

(
h2, F (t̄2)

)
,

by Equation (3.18),

= λA(h1, t̄1) + (1− λ)A(h2, t̄2) ,

2Let X be a set. The epigraph of the mapping M : X→ R ∪ {−∞,+∞} is defined by epi(M) ={
(x, y) ∈ X× R : M(x) ≤ y

}
where y is real valued.
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by the Nested Formula (3.4),

≥ A
(
λh1 + (1− λ)h2, λt̄1 + (1− λ)t̄2

)
,

by convexity of A,

= SA,F
(
λh1 + (1− λ)h2, F

(
λt̄1 + (1− λ)t̄2

))
,

by the Nested Formula (3.4),

= SA,F
(
λh1 + (1− λ)h2, λF (t̄1) + (1− λ)F (t̄2)

)
,

by affinity of F on T̄,

= SA,F
(
λh1 + (1− λ)h2, λf1 + (1− λ)f2

)
,

by Equation (3.18).

We deduce that the element
((
λh1 + (1−λ)h2, λf1 + (1−λ)f2

)
, λa1 + (1−λ)a2

)
is in the epigraph epi(SA,F ) of the subaggregator. This ends the proof. �

For example, if F is a projection of T on F, that is, if F 2 = F , then F is the
identity mapping on F, so that F satisfies the conditions of Proposition 3.3.11.

Notice that, if the factor F is only convex, we cannot conclude in general. For
example, let A(h, t) = h + t be an aggregator and let F (t) = exp(t) be a factor.
Then the couple (A,F ) is Weak Time Consistent with an associated subaggregator
SA,F (h, f) = h+ ln(f) which is not convex.

Homogeneity

As we are dealing with homogeneity property, we assume that the sets H,T,A and
F in (3.1) are endowed with an external multiplication with the scalar field R.

Proposition 3.3.12 (Positive homogeneity). Let the couple (A,F ) be Weak Time
Consistent, as in Definition 3.3.2. If the mapping A is jointly positively homogeneous
and if the mapping F is positively homogeneous, then the subaggregator SA,F is
jointly positively homogeneous.

Proof. Let (h, t) be element of H×T. Let λ ∈ R+. We have the following equalities

SA,F
(
λh, λF (t)

)
= SA,F

(
λh, F (λt)

)
,

by positive homogeneity of F

= A(λh, λt) ,

by the Nested Formula (3.4)

= λA(h, t) ,

by positive homogeneity of A

= λSA,F
(
h, F (t)

)
,

by the Nested Formula (3.4).

This ends the proof. �
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Translation invariance

As we are dealing with translation invariance, we assume that the sets H,T,A and
F in (3.1) are endowed with an addition +. We also assume that there exists a set
I of invariants which is a common subspace of H,T,A and F, as follows.

Definition 3.3.13. Let X and Y be sets equipped with an addition +. Let I ⊂ X∩Y
be a common subset of X and Y. A mapping M : X→ Y is said to be I-translation
invariant if

M(x+ i) = M(x) + i3 , ∀x ∈ X , ∀i ∈ I . (3.19)

Proposition 3.3.14. Let the couple (A,F ) be Weak Time Consistent, as in Defi-
nition 3.3.2. If the mapping A is jointly translation invariant and if the mapping F
is translation invariant then the subaggregator SA,F is jointly translation invariant.

Proof. Let (h, t) be an element of H×T. Let i ∈ I. We have the following equalities:

SA,F
(
h+ i, F (t) + i

)
= SA,F

(
h+ i, F (t+ i)

)
,

by translation invariance of F

= A(h+ i, t+ i) ,

by the Nested Formula (3.4)

= A(h, t) + i ,

by translation invariance of A

= SA,F
(
h, F (t)

)
+ i ,

by the Nested Formula (3.4). We conclude that the subaggregator SA,F is jointly
translation invariant. �

3.4. Revisiting the literature

In Sect. 3.2, we have gone through a selection of papers, touching Time Consistency
and Nested Formula in various settings. In Sect. 3.3, we have formally stated our
(abstract) definitions of Time Consistency (TC) and Nested Formula (NF), and we
have proven their equivalence. We have also provided conditions to obtain analytical
properties of the mapping SA,F appearing in the Nested Formula, such as monotonic-
ity, continuity, convexity, positive homogeneity and translation invariance.

Now, we return to the literature that we have briefly reviewed in Sect. 3.2, and
we show how our framework applies. For this purpose, we go through each article
and try to answer two questions.

3 To recover general formulation of the form M
(
(i1, 0, · · · , 0)

)
= i1, we can extend Defini-

tion 3.3.13 by saying that the mapping M is translation invariant if M(x + i) = M(x) + γ(i)
where γ : I → J is an injection from a set I ⊂ X to a set J ⊂ Y. We prefer to stick to the
Definition 3.3.13 to enhance the clarity of the paper.
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3.4. Revisiting the literature

First, what are the core assumptions that relate to our minimal notions of Time
Consistency or Nested Formula? In particular, what are the heads and the tails and
how are the Time Consistency axiom or the Nested Formula formulated? We will
recover that the various definitions in the selection appear as special cases of ours.

Second, what are the assumptions that are additional to the core TC or NF formu-
lations, and what do they imply for the subaggregator in the Nested Formula? We
will extract the additional assumptions specific to each author and hence highlight
their additional contribution.

3.4.1. Axiomatic for Time Consistency (TC)

We start our survey with the group of authors stating Time Consistency axiomatic.
This group is subdivided between economists, who deal with lotteries and pref-
erences, and probabilists, who deal with stochastic processes and dynamical risk
measures.

Lotteries and preferences

Kreps and Porteus ((Kreps and Porteus, 1978a), (Kreps and Porteus, 1979)) state a
temporal consistency axiom (Axiom 2.1) in the first paper. In the second paper, they
focus on the particular case of two stage problems. Their axiomatic is an instance
of our Definition 3.3.5 of Usual Time Consistency. With our Proposition 3.3.6, we
directly deduce the existence of a subaggregator increasing in its second argument
and a Nested Formula, whereas they obtain a stronger result under stronger as-
sumptions. Indeed, they add assumptions of continuity, substitution (related to
convexity) and focus on Usual Time Consistency with strict inequalities. This en-
ables them to obtain a subaggregator which is continuous and strictly increasing in
its second argument and is defined by ((Lemma 4, Theorem 2) and Proposition 1
respectively)

uyt :
{

(z, γ) ∈ Zt × R : γ = Uyt,z(x) for some x ∈ Xt+1

}
→ R . (3.20)

Epstein and Schneider (Epstein and Schneider, 2003a) state an axiom of Dynamic
Consistency (Axiom 4: DC) which is a particular case of our Definition 3.3.5 of Usual
Time Consistency. With our Proposition 3.3.6, we directly deduce the existence of
a subaggregator increasing in its second argument and a Nested Formula, whereas
they obtain a stronger result under stronger assumptions. Indeed, they introduce
four additional axioms — Conditional Preferences (CP), Multiple Priors (MP), Risk
Preference (RP) and Full Support (FS) — that ensure a particular form of the
subaggregator. MP and CP ensure that the subaggregator can be represented as a
minimum of expectation over a rectangular set of probabilities which is closed and
convex. MP and RP ensure that the criterion is additive over time. FS ensures
that the probability measures have full support. Epstein and Schneider obtain the
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3. Time consistent mappings

following Nested Formula4 associated to Time Consistency (Theorem 3.2):

Vt(h, ω) = min
m∈P+1

t (ω)

∫ [
u
(
ht(ω)

)
+ βVt+1(h)

]
dm . (3.21)

Dynamic risk measures and processes

Ruszczyńsky studies (Ruszczyński, 2010) dynamic risk measures {ρs,T}Ts=1. Time
Consistency (his Definition 3), appears as a particular case of our Usual Time Con-
sistency Definition 3.3.5. With our Proposition 3.3.6, we directly deduce the exis-
tence of a subaggregator increasing in its second argument and a Nested Formula,
whereas Ruszczyńsky obtains a stronger result under stronger assumptions. Indeed,
he adds assumptions that induce a particular form for the subaggregator. From a
conditional risk measure ρs,T , he defines mappings ρs,s′ with s ≤ s′ ≤ T . With
our notations for aggregator A and factor F , he then focuses on the case where
the initial assessment is A = ρs,T and the future assessment is F = ρs′,T . With two
additional assumptions of invariance by translation and normalization (ρs,T (0) = 0),
Ruszczyńsky is able to state that the subaggregator has the specific form (Theorem
1)

SA,F = ρs,s′ . (3.22)

In (Artzner, Delbaen, Eber, Heath, and Ku, 2007a), Artzner, Delbean, Eber,
Heath and Ku present Time Consistency (their Definition 4.1) which appears as
an instance of our Definition 3.3.5 of Usual Time Consistency. With our Propo-
sition 3.3.6, we directly deduce the existence of a subaggregator increasing in its
second argument and a Nested Formula, whereas they obtain a stronger result
under stronger assumptions. Indeed, they study particular mappings of the form
Ψt = supP∈P EP[· | Ft], where P is a subset of probabilities and (Ft)

T
t=0 is a filtration.

They make an intermediary step before presenting a Nested Formula. They use a
tool that they name stability by pasting (rectangularity) of the set P of probability
distributions. With our notations for aggregator A and factor F , this enables them
to obtain, for s ≤ s′, that if A = Ψs and F = Ψs′ then the subaggregator has the
specific form (Theorem 4.2):

SA,F (h, ·) = Ψs(h+ ·) . (3.23)

3.4.2. Axiomatic for Nested formulas (NF)

Shapiro and Ruszczyński (Ruszczynski and Shapiro, 2006a) study a family of condi-
tional risk mapping ρt = ρX2|X1 ◦ · · · ◦ ρXt|Xt−1 (Equation (5.8)). Each ρt is increasing
and is associated with a σ-algebra Ft, where (Ft)

T
t=2 is a filtration. As these map-

pings ρt are instances of the mappings in our Nested Formula (3.4), they are Usual
Time Consistent, by using our Proposition 3.3.6. With our notations for aggrega-
tor A and factor F , and with additional assumptions of monotonicity, translation

4 Equation (3.21) is the original transcription of the formula in (Epstein and Schneider, 2003a),
to which we refer the reader for a better understanding. By laying it out, we only want to
stress the Nested Formula between Vt and Vt+1.
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invariance, convexity and homogeneity, Shapiro and Ruszczyński obtain that, if the
initial assessment is A = ρt and the future assessment is F = ρt+1, then the subag-
gregator is (Theorem 5.1)

SA,F = ρXt+1|Xt . (3.24)

Shapiro ((Shapiro, 2016)) focuses on a future assessment and on a subaggregator
of the form (Definition 2.1)

F = sup
P∈P

EP
[
· · · sup

P∈P
EP[· | FT−1]

∣∣ F0

]
, SA,F = sup

P∈P
EP[·] .

With our notations for aggregator A and factor F , this Nested Formula is an in-
stance of our Nested Formula (3.4). We can define a natural initial assessment
which is Usual Time Consistent with the future assessment, by using our Propo-
sition 3.3.6. With additional assumptions of finiteness, Shapiro obtains that there
exists a bounded set P̂ of probability distributions such that the initial assessment
has the specific form (Theorem 2.1)

A = sup
P∈P̂

EP[·] . (3.25)

Besides, with additional assumption (Theorem 2.2) that P is convex, bounded and

weakly closed, Shapiro establishes that P = P̂.

De Lara and Leclère (De Lara and Leclère, 2016) study composition of one time
step aggregators. They make a distinction between uncertainty aggregator and
time step aggregator, and they write a Nested Formula (Equation (11)) which is an
instance of our Formula (3.4). We can naturally define an initial assessment from this
composition operation which is time consistent with the one time step aggregator,
by using our Proposition 3.3.6. They add an additional hypothesis of monotonicity
and one of commutation between uncertainty aggregator and time aggregator. They
deduce that the initial assessment can be defined as the composition between a one
time step aggregator (subaggregator) and a future assessment (Theorem 9).

3.5. Additional characterizations of time consistency

Section § 3.5 is not part of the preprint but has been added since it provides com-
plementary results, useful in the rest of the manuscript.

3.5.1. Characterization of WTC in terms of partitions

We characterize Weak Time Consistent factors as defined in (3.1) in term of parti-
tions. For this purpose, we introduce the following definition.

Definition 3.5.1. With any A : H × T → R, we associate the family (Ah)h∈H of
mappings defined by

∀h ∈ H , Ah : T→ A , t 7→ A(h, t) . (3.26)
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We denote by T/Ah the partition of the domain T induced by the mapping Ah, that
is t, t′ belong to the same equivalence class if and only if A(h, t) = A(h, t′). We
denote by

∨
h∈H T/Ah the (less fine) partition of T induced by the family (Ah)h∈H of

mappings (where the notation
∨

is defined in Definition 9.2.2 in Appendix 9.2).

We show that a couple (A,F ) is WTC if and only if the partition T/F induced
by the mapping F : T→ F is finer than any of the partitions T/Ah.

Proposition 3.5.2. The couple aggregator-factor (A,F ) in (3.1) is Weak Time
Consistent if and only if ∨

h∈H

T/Ah 4 T/F , (3.27)

which reads ”the partition T/F is finer than the partition
∨
h∈H T/Ah” and where

notation 4 is defined in Definition 9.2.4 (See Appendix 9.1).

Proof.

1. Suppose that the couple (A,F ) is weak time consistent. We fix h ∈ H and
we consider (t, t′) ∈ T2 such that F (t) = F (t′). Then, by the weak time
consistency property (3.3), we have Ah(t) = Ah(t

′). This means that when
two elements are in the same atoms (see Appendix 9.1) of the partition T/F ,
they are also in the same atoms in the partition T/Ah. As it is defined in
Appendix 9.1, we write T/Ah 4 T/F . The previous implications are true for
all h ∈ H, so Equation (3.27) is satisfied.

2. We now suppose that Equation (3.27) is satisfied. We have in particular that

T/Ah 4 T/F , (3.28)

for a chosen h ∈ H. For this particular element h, Equation (3.28) states, by
definition, that F (t) = F (t′) ⇒ Ah(t) = Ah(t

′). The previous reasoning can
be done with every element h ∈ H.

This ends the proof. �

We state a corollary using the subaggregator SA,F defined in (3.2).

Corollary 3.5.3. If the couple aggregator-factor (A,F ) in (3.1) is Weak Time Con-
sistent then ∨

h∈H

T/(SA,Fh ◦ F ) 4 T/F , (3.29)

where SA,Fh : F→ A is a mapping defined for all h ∈ H by SA,Fh (f) = SA,F (h, f).

Proof. Suppose the couple (A,F ) is WTC. Then we know by Theorem 3.3.3 that
A(h, t) = SA,F

(
h, F (t)

)
and hence

T/Ah = T/(SA,Fh ◦ F ) , ∀h ∈ H . (3.30)

From Equation (3.30) and Proposition 3.5.2 we get Equation 3.29. This ends the
proof. �
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The following corollary, whose proof is left to the reader, is a direct consequence
of Proposition 3.5.2 and Proposition 3.5.3.

Corollary 3.5.4. The couple aggregator-factor (A,F ) in (3.1) is Weak Time Con-
sistent if and only if ∨

h∈H

T/(SA,Fh ◦ F ) 4 T/F . (3.31)

3.5.2. Characterizations of UTC in terms of level sets

In the Weak Time Consistency property (3.3), we made no assumptions to order
the values of the mappings F and A. This is not the case for the Usual Time Con-
sistency property (3.12) anymore. The characterization of Weak Time Consistency
by partitions in Proposition 3.5.2 can be extended to Usual Time Consistency as a
characterization in terms of level sets.

We first define the level sets of a mapping M .

Definition 3.5.5. Let M : X→ Y be a mapping where Y is equipped with an order
denoted by ≤. The level set of value y of the mapping M is defined by

M≤y = {x ∈ X |M(x) ≤ y} . (3.32)

Note that M is not necessarily real valued.

The following proposition states that the couple (A,F ) is Usual Time Consistent
if and only if every level set of the mapping F is included in an intersection of level
sets induced by the family of mappings (Ah)h∈H.

Proposition 3.5.6. The couple aggregator-factor (A,F ) in (3.1) is Usual Time
Consistent if and only if

F≤F (t′) ⊂
⋂
h∈H

Ah≤Ah(t′) , ∀t′ ∈ T . (3.33)

Proof.

1. We suppose that the couple (A,F ) is usual time consistent. We fix h ∈ H
and t′ ∈ T. We consider t ∈ T such that F (t) ≤ F (t′). Then, by usual
time consistency property (3.12), we have Ah(t) ≤ Ah(t

′) and thus F≤F (t′) ⊂
Ah≤Ah(t′) for all (h, t′) ∈ H× T by (3.32). The previous implications are true
for all h ∈ H, so Equation (3.33) is satisfied.

2. We consider now that Equation (3.33) holds true so that

F≤F (t′) ⊂ Ah≤Ah(t′) , (3.34)

for a chosen couple (h, t′) ∈ H×T. For this particular couple, equation (3.34)
states, by definition (3.32), that F (t) ≤ F (t′)⇒ Ah(t) ≤ Ah(t

′). The previous
reasoning can be done with every couple (h, t′) of H×T. This ends the proof.

�
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The following corollary, whose proof is left to the reader, is the counterpart of
Corollary 3.5.3.

Corollary 3.5.7. If the couple aggregator-factor (A,F ) in (3.1) is Usual Time
Consistent then

F≤F (t′) ⊂
⋂
h∈H

(SA,Fh ◦ F )≤(SA,Fh ◦F )(t′) , ∀t
′ ∈ T , (3.35)

where SA,Fh : F→ A is a mapping defined for all h ∈ H by SA,Fh (f) = SA,F (h, f).

3.5.3. Characterizations of STC in terms of level sets

In the usual time consistency property (3.12), we made no assumptions to order the
element of the set H. This is not the case for the strong time consistency prop-
erty (3.13). The characterization of UTC in terms of level sets of Proposition 3.5.6
can be extended to STC as a characterization in terms of level sets over well chosen
subsets of H.

We recall that F≤f defined in (3.32) is the level set of value f for the mapping F .

Proposition 3.5.8. The couple aggregator-factor (A,F ) in (3.1) is strong time
consistent (STC) if and only if

F≤F (t′) ⊂
⋂
h≤h′

Ah≤Ah′ (t′) , ∀t
′ ∈ T . (3.36)

Note that the intersection of level sets if over all h ≤ h′ in Equation (3.36) and
over all h ∈ H in Equation (3.33).

Proof.

1. We suppose that the couple (A,F ) is strong time consistent. We fix h′ ∈ H and
t′ ∈ T. We consider t ∈ T such that F (t) ≤ F (t′) and h ∈ H such that h ≤ h′.
Then, by strong time consistency property (3.12), we have Ah(t) ≤ Ah′(t

′) and
thus F≤F (t′) ⊂ Ah≤Ah′ (t′). The previous implications are true for all h ≤ h′, so
that Equation (3.36) is satisfied.

2. We consider now that Equation (3.36) holds true, so that

F≤F (t′) ⊂ Ah≤Ah′ (t′) , (3.37)

for any couple (h′, t′) ∈ H×T and any h ≤ h′. For a given couple and a given
element, Equation (3.37) states F (t) ≤ F (t′)⇒ Ah(t) ≤ Ah′(t

′). The previous
reasoning can be done with every couple (h′, t′) of H×T and any h ≤ h′. This
ends the proof.

�
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3.6. Conclusion

Time Consistency is a notion discussed in economics (dynamic optimization, bar-
gaining) and mathematics (dynamical risk measures, multi-stage stochastic opti-
mization). We have gone through a selection of papers that are representative of
the different fields; we have tried to separate the common core elements related to
Time Consistency from the additional assumptions that make the specific contri-
bution of each author. We have presented a framework of Weak Time Consistency
which allows us to prove an equivalence with a Nested Formula, under minimal as-
sumptions. By formulating the core skeleton axioms, we hope to have shed light on
the notion of Time Consistency, often melted with other notions in the literature.
We believe that this makes the notion more transparent and that it opens the way
for possible extensions.

First, in our setting for Weak Time Consistency, we introduced heads and tails
with asymmetric roles. More generally, we could consider a symmetric axiomatic of
the form

FH(h) = FH(h′)
FT(t) = FT(t′)

}
⇒ A(h, t) = A(h′, t′) , ∀(h, h′, t, t′) ∈ H2 × T2 , (3.38)

and a Nested Formula

A(h, t) = SFH,FT,A
(
FH(h), FT(t)

)
. (3.39)

Second, we used mappings to assess and compare objects. More generally, this
can be done using general binary relations. Time Consistency now reads

H × T ⊂ A , (3.40)

where the relation H compares head elements, the relation T compares tail elements,
and the relation A compares an overall head-tail object.

These possible extensions are presented in Chap. 5 where we do not define explicit
time order between heads and tails.
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Bézout for the financial support. The first author particularly thanks them for the
funding of his PhD program.

65





4. Three classes of time consistent
mappings

Contents
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. Time consistent translation invariant mappings . . . . . 68

4.2.1. Translation invariant mappings on a group . . . . . . . . 68

4.2.2. Characterization of UTC in terms of acceptance sets . . . 69

4.3. Time consistent convex mappings . . . . . . . . . . . . . . 75

4.3.1. Basic tools to deal with Fenchel-Moreau’s conjugacy . . . 75

4.3.2. Relation between Nested Formula in the “primal” and de-
composability in the “dual” . . . . . . . . . . . . . . . . . 75

4.3.3. Illustration with convex risk measures . . . . . . . . . . . 78

4.4. Time consistent supremum mappings . . . . . . . . . . . 81

4.4.1. Background on lattices and their topologies . . . . . . . . 81

4.4.2. Usual time consistency with mappings defined with supre-
mum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5. Conclusion and perspectives . . . . . . . . . . . . . . . . . 87

67



4. Three classes of time consistent mappings

4.1. Introduction

In this section, we investigate the properties induced by time consistency for three
classes of mappings. Indeed, we are motivated by the mappings describing risk
measures but we remain as general as possible. In particular, we do not want to
stick to an additive criterion, that is, we want to be able to encompass nested formula
of the kind

ρ0(X ⊕ Y ) = ρ1(X ⊕ ρ2(Y )) , (4.1)

where ⊕ is not necessarily the “usual addition”.
Three classes are studied in the world of risk measures. We investigate them in

an abstract framework.

� We study in Sect. 4.2.1 translation invariant mappings motivated by the rep-
resentation of risk measures in terms of acceptance set.

� Then, in Sect. 4.3, we study mappings that are defined as Fenchel-Moreau’s
transform motivated by the dual reformulation of convex risk measures.

� Finally, in Sect. 4.4, we study mappings that are defined as supremum moti-
vated by the representation of coherent risk measures (a subset of convex risk
measures).

4.2. Time consistent translation invariant mappings

We study translation invariant mappings defined on ordered groups. We associate
to each such mapping an acceptance set which is the level set of level 0. We prove
that time consistency between two mappings is equivalent to an inclusion between
acceptance sets.

4.2.1. Translation invariant mappings on a group

We provide here the definition of a translation invariant mapping and the one of an
acceptance set. With these notions, we will state our main contribution. We first
recall the definition of an ordered group.

Definition 4.2.1. The triplet (F,⊕,≤) is said to be an ordered group if F is a set
and

� (F,⊕) is a group,

� (F,≤) is an ordered set,

� the order ≤ is compatible with ⊕, i.e.

f1 ≤ f2 ⇒ f1 ⊕ f3 ≤ f2 ⊕ f3 , ∀(f1, f2, f3) ∈ F3 . (4.2)

We now provide the definition of translation invariant mappings on a group.
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4.2. Time consistent translation invariant mappings

Definition 4.2.2. Let (T,⊕) be a commutative group and (F,⊕) be a subgroup of
(T,⊕), that we denote by

(F,⊕) ⊂ (T,⊕) . (4.3)

A (T,F)-translation invariant mapping is a mapping F : T→ F that satisfies

F (t⊕ f) = F (t)⊕ f , ∀t ∈ T , ∀f ∈ F . (4.4)

In addition, if (F,⊕,≤) is an ordered group, we introduce the notations AF and
AF |F to deal with particular level sets of the (T,F)-translation invariant mapping
F : T→ F:

AF =
{
t ∈ T | F (t) ≤ 0

}
, (4.5a)

AF|F =
{
f ∈ F | F (f) ≤ 0

}
= AF ∩ F . (4.5b)

4.2.2. Characterization of UTC in terms of acceptance sets

Given two translation invariant mappings F and ρ as in Definition 4.2.2, we will
build an aggregator Aρ such that the couple (Aρ, F ) is time consistent as in Defini-
tion 3.3.5.

H × T A

H × F

Aρ

ρ

F SA,F

Figure 4.1.: Representation of links between mappings of Proposition 4.2.3

Proposition 4.2.3. Let (T,⊕) be a commutative group. Given two subgroups

(H,⊕) ⊂ (T,⊕) and (A,⊕) ⊂ (T,⊕) , (4.6)

and a (T,A)-translation invariant mapping ρ : T → A, we define the mapping
Aρ : H× T→ A by

Aρ : H× T→ (A,⊕,≤) , (4.7)

(h, t) 7→ ρ(h⊕ t) . (4.8)

Let F : T→ (F,⊕,≤) be a (T,F)-translation invariant mapping where

(F,⊕) ⊂ (T,⊕) (4.9)

Then, the couple (Aρ, F ) is Usual Time Consistent if and only if

AF ⊕ F (t) ⊂ Aρ ∗ Cρ(t) , ∀t ∈ T , (4.10)
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4. Three classes of time consistent mappings

where the starshape operation ∗ between sets is defined in Equation (9.17) and
where the set valued mapping Cρ is given by

Cρ : T⇒ T , (4.11)

t 7→ {h	 ρ(h⊕ t) , h ∈ H} . (4.12)

Proof. We first recall the notation of a level set given in Definition 3.5.5. The level
set of value y ∈ Y of a mapping M : X→ (Y,≤) is defined by

M≤y = {x ∈ X |M(x) ≤ y} . (4.13)

We know from Proposition 3.5.6 that the couple (Aρ, F ) is Usual Time Consistent
if and only if

F≤F (t) ⊂
⋂
h∈H

ρ(h⊕ ·)≤ρ(h⊕t) , ∀t
′ ∈ T . (4.14)

For h ∈ H and t ∈ T fixed, the level set ρ(h⊕ ·)≤ρ(h⊕t) of the mapping ρ(h ⊕ ·) is
defined by

ρ(h⊕ ·)≤ρ(h+t) =
{
t′ ∈ T | ρ(h⊕ t′) ≤ ρ(h⊕ t)

}
, (by Definition 3.5.5,)

=
{
t′ ∈ T | ρ

(
h⊕ t′ 	 ρ(h⊕ t)

)
≤ 0
}
,

(ρ is (T− A)-translation invariant)

=
{
t′ ∈ T | h⊕ t′ 	 ρ(h⊕ t) ∈ Aρ

}
, (Definition 4.5a)

= Aρ ⊕ ρ(h⊕ t)	 h .

Thus, for t ∈ T, we have that⋂
h∈H

ρ(h⊕ ·)≤ρ(h⊕t) =
⋂
h∈H

Aρ ⊕ ρ(h⊕ t)	 h ,

=
⋂

c∈Cρ(t)

Aρ 	 c , (by Equation 4.12)

= Aρ ∗ Cρ(t). (by Equation (9.17))

Using similar arguments, for t ∈ T fixed, the level set F≤F (t) of the mapping F is
defined by

F≤F (t) =
{
t′ ∈ T | F (t′) ≤ F (t)

}
, (by Definition 3.5.5,)

=
{
t′ ∈ T | F (t′ 	 F (t)) ≤ 0

}
, (F is (T− F)-translation invariant)

=
{
t′ ∈ T | t′ 	 F (t) ∈ AF

}
, (Definition 4.5a)

= AF ⊕ F (t) . (4.17a)

This ends the proof.
�

The next proposition and its proof provide, under additional assumptions, a refor-
mulation of (4.10). They are a generalization, with our notations, of Lemma 11.14
and Proposition 11.15 of Föllmer and Schied (2016), since we do not refer to risk
measures on probability spaces but to more general sets.
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4.2. Time consistent translation invariant mappings

Proposition 4.2.4. Let (T,⊕) be a commutative group. Given two subgroups

(H,⊕) ⊂ (A,⊕) ⊂ (T,⊕) , (4.18)

and a (T,A)-translation invariant mapping ρ : T → A, we define the mapping
Aρ : H× T→ A by

Aρ : H× T→ (A,⊕,≤) , (4.19)

(h, t) 7→ ρ(h⊕ t) . (4.20)

Let F : T→ (F,⊕,≤) be a (T,F)-translation invariant mapping.

1. The couple (Aρ, F ) is Usual Time Consistent if and only if

AF ⊕ F (t) ⊂ Aρ ⊕ ρ(t) , ∀t ∈ T . (4.21)

2. If, in addition, we have that

� (H,⊕) ⊂ (A,⊕) ⊂ (F,⊕) ⊂ (T,⊕),

� the (T,A)-translation invariant mapping ρ : T→ A is increasing,

� the (T,F)-translation invariant mapping F : T → F satisfies F (0) = 0
(where 0 is the neutral element of (T,⊕)),

then the couple of mappings (Aρ, F ) is Usual Time Consistent if and only if

AF ⊕Aρ|F = Aρ , (4.22)

where AF , Aρ|F and Aρ are defined in (4.5a) and (4.5b).

Proof. We prove both statements successively.

1. As H ⊂ A, we have by (T,A)-translation invariance of ρ : T → A that
ρ(t) = ρ(t ⊕ h 	 h) = ρ(t ⊕ h) 	 h = ρ(h ⊕ t) 	 h for any h ∈ H and t ∈ T.
The result of Proposition 4.2.3 reads now

AF ⊕ F (t) ⊂ Aρ ∗
{
ρ(t)

}
, ∀t ∈ T , (4.23)

which, by definition (9.17) of the star difference, gives equation (4.21) and
ends the proof of the first statement.

2. The proof goes in three steps as follows:

a) first, we show that t ∈ AF ⊕Aρ|F ⇔ F (t) ∈ Aρ|F , ∀t ∈ T,

b) then we use the previous assertion to prove the two following statements:

Aρ ⊂ AF ⊕Aρ|F ⇔ ρ
(
F (t)

)
≤ ρ(t) , ∀t ∈ T , (4.24a)

Aρ ⊃ AF ⊕Aρ|F ⇔ ρ
(
F (t)

)
≥ ρ(t) , ∀t ∈ T , (4.24b)

c) finally, we bring all elements together to conclude.
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4. Three classes of time consistent mappings

We now detail each step.

a) We prove the implication t ∈ AF ⊕ Aρ|F ⇒ F (t) ∈ Aρ|F and the reverse
statement F (t) ∈ Aρ|F ⇒ t ∈ AF ⊕Aρ|F successively.

� Let t ∈ AF ⊕ Aρ|F be given. By definition, t can be decomposed as
t = tF ⊕ tρ with tF ∈ AF and tρ ∈ Aρ|F . We successively obtain

F (t) = F (tF )⊕ tρ ,
(as tρ ∈ F and F is (T,F)-translation invariant)

≤ tρ , (as tF ∈ AF = {t ∈ T | F (t) ≤ 0})

which leads to

ρ
(
F (t)

)
≤ ρ(tρ) , (by monotonicity of ρ)

≤ 0 , (by definition of tρ ∈ Aρ|F)

and hence, F (t) ∈ Aρ|F .

� We now assume that F (t) ∈ Aρ|F and recall that for all t ∈ T,

F
(
t 	 F (t)

)
= F (t) 	 F (t) = 0 by (T − F)-translation invariance

of the mapping F . The converse implication follows immediately
from the decomposition t = t 	 F (t) ⊕ F (t) since F (t) ∈ Aρ|F by
assumption and t	 F (t) ∈ AF .

b) We prove statements (4.24a) and (4.24b) successively.

� First, we focus on equation (4.24a):

Aρ ⊂ AF ⊕Aρ|F ⇔ ρ
(
F (t)

)
≤ ρ(t) , ∀t ∈ T , (4.25)

We suppose that left hand side of this equation is satisfied, i.e. Aρ ⊂
AF ⊕ Aρ|F , and we show that it implies the right hand side of the
equation. For that purpose, we fix t ∈ T. We recall that ρ(t) ∈ A ⊂ F
by definition of the mapping ρ : T → A and assumption (A,⊕) ⊂
(F,⊕) We have that F (t)	 ρ(t) = F

(
t	 ρ(t)

)
by (T,F)-translation

invariance of the mappingF . As t	 ρ(t) ∈ Aρ ⊂ A
F
⊕Aρ|F we get by

item 2a just above that F
(
t	ρ(t)

)
∈ Aρ|F and then F (t)	ρ(t) ∈ Aρ|F .

This implies that

ρ
(
F (t)

)
	 ρ(t) = ρ

(
F (t)	 ρ(t)

)
≤ 0 . (4.26)

Assume now that ρ
(
F (t)

)
≤ ρ(t) for all t ∈ T and let t̃ ∈ Aρ. Then

by definition (4.5a) of an acceptance set, we got that ρ(t̃) ≤ 0. It
follows that ρ

(
F (t̃)

)
≤ 0 and that F (t̃) ∈ Aρ|F and so, by item 2a

just above, that t̃ ∈ AF ⊕Aρ|F .

� Second, we focus on Equation (4.24b)

Aρ ⊃ AF ⊕Aρ|F ⇔ ρ
(
F (t)

)
≥ ρ(t) , ∀t ∈ T , (4.27)
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4.2. Time consistent translation invariant mappings

We assume Aρ ⊃ AF ⊕Aρ|F . Let us fix t ∈ T. Then, by adding and
removing the term F (t) we get

t	 ρ
(
F (t)

)
= t	 F (t)︸ ︷︷ ︸

∈AF

⊕F (t)	 ρ
(
F (t)

)︸ ︷︷ ︸
∈Aρ|F

∈ AF ⊕Aρ|F . (4.28)

It follows by left hand side of (4.24b) that t	ρ
(
F (t)

)
belongs to Aρ.

That implies, taken together with the (T,A)-translation invariance
of the mapping ρ : T→ A

ρ(t)	 ρ
(
F (t)

)
= ρ
(
t	 ρ

(
F (t)

))
≤ 0 . (4.29)

To prove the reverse implication of Equation (4.24b), take t ∈ AF ⊕
Aρ|F and assume that ρ

(
F (a)

)
≥ ρ(a). Using step 2a, we have that

F (t) ∈ Aρ|F and we obtain that

ρ(t) ≤ ρ
(
F (t)

)
≤ 0 , (4.30)

which gives t ∈ Aρ by definition (4.5a) of an acceptance set.

c) We finally bring all elements together. We know from Theorem 3.3.6 that
the couple of mappings (Aρ, F ) is usual time consistent if and only if the
subaggregator SAρ,F defined in (3.2) is a mapping increasing in its second
argument and we have the nested formula Aρ(h, t) = SAρ,F

(
h, F (t)

)
.

In this case, by Definition 3.2, we have that

SAρ,F (h, f) =
{
Aρ(h, t) | F (t) = f

}
, ∀(h, f) ∈ H× F . (4.31)

As the set-valued mapping SAρ,F is a mapping, choosing one element
t ∈ T such that F (t) = f is sufficient to define the value of SAρ,F (h, f).
We notice that, for each element f ∈ F, the following statement holds
true

F (t) = F (0)⊕ t . (4.32)

By (T,F)-translation invariance property (4.4), we have that F
(
f 	

F (0)
)

= F (0)⊕
(
f 	 F (0)

)
= f for all f ∈ F. We deduce that

SAρ,F (h, f) = Aρ
(
h, f 	 F (0)

)
, ∀(h, f) ∈ H× F . (4.33)

Hence, the nested formula Aρ(h, t) = SAρ,F
(
h, F (t)

)
reads

Aρ(h, t) = Aρ
(
h, F (t)	 F (0)

)
, (by (4.33))

ρ(h⊕ t) = ρ
(
h⊕ F (t)	 F (0)

)
, (by (4.19) that defines Aρ)

h⊕ ρ(t) = h⊕ ρ
(
F (t)	 F (0)

)
, (by (T,A)-translation invariance)

ρ(t) = ρ
(
F (t)	 F (0)

)
, (by compatibility of ⊕ with ≤)

ρ(t) = ρ
(
F (t)

)
(as F (0) = 0.)

The fact that ρ(t) = ρ
(
F (t)

)
taken together with both statements of

Equations (4.24) gives the wanted result.

This ends the proof.
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4. Three classes of time consistent mappings

�

We have provided a characterization of time consistency for translation invariant
mappings in terms of acceptance sets leading to Equation (4.22)

AF ⊕Aρ|F = Aρ . (4.34)

However, this equation is difficult to solve when the variables are the mappings
ρ : T→ A and F : T→ F given in Proposition 4.2.4 since it is an implicit equation
in ρ.
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4.3. Time consistent convex mappings

4.3. Time consistent convex mappings

In this section, we focus on time consistency for mappings that are defined as
Fenchel-Moreau transforms. We are motivated by the result on dual representation
of convex risk mappings. We first recall Fenchel-Moreau conjugacy with general
couplings (not necessarily the classic duality pairing). Then, we state our main the-
orem that provide a nested formula and hence time consistency of mappings defined
as Fenchel-Moreau transforms. We illustrate our contribution on an example with
coherent risk measures.

4.3.1. Basic tools to deal with Fenchel-Moreau’s conjugacy

The formal tools of coupling and Fenchel-Moreau conjugate were introduced in Moreau.
We recall that

R = [−∞,+∞] = R ∪ {−∞,+∞} . (4.35)

When we manipulate functions with values in R = [−∞,+∞], we adopt the
Moreau lower addition or upper addition defined in Equations (9.46a) and (9.47a),
depending on whether we deal with sup or inf operations. We invite the reader
to refer to Appendix 9.6 for a complete review. We only recall here definitions of
coupling and transforms.

Background on Fenchel-Moreau conjugacy with respect to a coupling. Let be
given two sets C and C]. Consider a coupling function Φ : C × C] → [−∞,+∞].

We also use the notation C Φ↔ C] for a coupling, so that

C Φ↔ C] ⇐⇒ Φ : C× C] → [−∞,+∞] . (4.36)

Definition 4.3.1. The Fenchel-Moreau conjugate of a function f : C→ [−∞,+∞],
with respect to the coupling Φ in (4.36), is the function fΦ : C] → [−∞,+∞] defined
by

fΦ(c]) = sup
c∈C

(
Φ(c, c]) ·+

(
− f(c)

))
, ∀c] ∈ C] . (4.37)

4.3.2. Relation between Nested Formula in the “primal” and
decomposability in the “dual”

We provide a nested formula between mappings defined as Fenchel-Moreau trans-
forms.

Main result: nested formula for Fenchel conjugates

We introduce the notion of decomposable coupling.

Definition 4.3.2. Let X, Y, Z and Y′ be four sets and let θX×Z, θZ and θX be three
mappings with values in Y′

θX×Z : X× Z→ Y′ , (4.38a)

θZ : Z→ Y′ , (4.38b)

θX : X→ Y′ . (4.38c)
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4. Three classes of time consistent mappings

Let ϕ : Y′ × Y→ [−∞,+∞] be a coupling between Y′ and Y.
We say that the coupling ϕ is (θX×Z, θX, θZ)-decomposable if

ϕ
(
θX(x), y

)
= sup

z∈Z

{
ϕ
(
θX×Z(x, z), y

)
·+
(
− ϕ

(
θZ(z), y

))}
, (4.39)

∀(x, y) ∈ X× Y .

Here is our main proposition.

Proposition 4.3.3. Let X, Y, Z and Y′ be four sets and g : Y → [−∞,+∞] be a
numerical function. Let ϕ : Y′ × Y → [−∞,+∞] be (θX×Z, θX, θZ)-decomposable as
in Definition 4.3.2.

Let us define the coupling Φ : X× (Y× Z)→ [−∞,+∞] by

Φ
(
x, (y, z)

)
= ϕ

(
θX×Z(x, z), y

)
, ∀(x, y, z) ∈ X× Y× Z , (4.40)

and the function G : Y× Z→ [−∞,+∞] by

G(y, z) = g(y)u ϕ
(
θZ(z), y

)
, ∀(y, z) ∈ Y× Z . (4.41)

Then, we have the following Nested Formula between Fenchel-Moreau conjugates:

GΦ = gϕ ◦ θX . (4.42)

X Y′ R
θX gϕ

GΦ

Figure 4.2.: Representation of the Nested Formula (4.42)

Proof. We have, for any x ∈ X, the following equalities

GΦ(x) = sup
(y,z)∈Y×Z

{
Φ
(
x, (y, z)

)
·+
(
−G(y, z)

)}
, (4.43)

by Equation (4.37) that expresses the Φ-conjugate of G,

= sup
(y,z)∈Y×Z

{
ϕ
(
θX×Z(x, z), y

)
·+
(
− g(y)

)
·+
(
− ϕ

(
θZ(z), y

))}
, (4.44)

by Equations (4.40) and (4.41) that express particular forms of Φ and G, and by
the joint property (9.48b) of Moreau’s additions,

= sup
y∈Y

{
− g(y) ·+ sup

z∈Z

{
ϕ
(
θX×Z(x, z), y

)
·+
(
− ϕ

(
θZ(z), y

))}}
, (4.45)

by property (9.46e) of Moreau’s additions,

= sup
y∈Y

{
− g(y) ·+ ϕ

(
θX(x), y

)}
, (4.46)

by Equation (4.39) that expresses the supremum,

= gϕ
(
θX(x)

)
, (4.47)

by Definition 4.3.1 of a Fenchel-Moreau transform. This ends the proof. �
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4.3. Time consistent convex mappings

X X′ = Y × Z

Y′

Φ

ϕθX θZ

Figure 4.3.: Representation of links between the mappings of Definition 4.3.2

Special cases of the Nested formula

We now focus on two particular cases: a case of product set and a case of indicator
mappings.

The case of product set. In that case, X = X1×X2. We are motivated by Agent
Consistency that will be presented in the next Chapter 5.2. The proof is left to the
reader as an application of Proposition 4.3.3.

Proposition 4.3.4. Let X1, X2, X′, Y, Z, Y′1 and Y′2 be six sets and let G : Y×Z→
[−∞,+∞] be a mapping.

Let Φ and ϕ be two couplings as follows

Φ : (X1 × X2)× (Y× Z)→ [−∞,+∞] , (4.48)

ϕ : (Y′1 × Y′2)× Y→ [−∞,+∞] . (4.49)

We assume that there exists six mappings

θX1×Z : X1 × Z→ Y′1 , (4.50)

θX2×Z : X2 × Z→ Y′2 , (4.51)

θZ,1 : Z→ Y′1 , (4.52)

θZ,2 : Z→ Y′2 , (4.53)

θX1 : X1 → Y′1 , (4.54)

θX2 : X2 → Y′2 , (4.55)

and a numerical function g : Y → [−∞,+∞] such that, for all (x1, x2, y, z) in
X1 × X2 × Y× Z

Φ(x1, x2, y, z) = ϕ
((
θX1×Z(x1, z), θX2×Z(x2, z)

)
, y
)
, (4.56)

G(y, z) = g(y)u ϕ
((
θZ,1(z), θZ,2(z)

)
, y
)
, (4.57)

ϕ
((
θX1(x1), θX2(x2)

)
, y
)

= sup
z∈Z

{
ϕ
((
θX1×Z(x1, z), θX1×Z(x2, z)

)
, y
)

(4.58)

·+ ϕ
((
θZ,1(z), θZ,2(z)

)
, y
)}

.

Then, we have the following Nested Formula between Moreau-Fenchel conjugates:

GΦ = gϕ ◦ (θX1 , θX2) . (4.59)
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The case of indicator mappings. This proposition is inspired by coherent risk
measures for which the dual representation is a support function.

Proposition 4.3.5. Let the mapping g in Proposition 4.3.3 be, δY , the indicator
mapping of the set Y ⊂ Y that is, g takes the value 0 on Y and +∞ otherwise.
We assume that there exist two elements 0Y′ and +∞Y′ elements of Y′ such that the
coupling ϕ in Proposition 4.3.3 satisfies

ϕ(0Y′ , y) = 0 ∈ R , ϕ(−∞Y′ , y) = −∞ ∈ R , ∀y ∈ Y . (4.60)

For a set Z ⊂ Z, we define the mapping θZ that takes the value 0Y′ on Z and
+∞Y′ otherwise. Then, under the assumptions of Proposition 4.3.3 the mapping G
in (4.41) is given by

G(y, z) = δY (y) + ϕ
(
δ̃Z(z), y

)
= δY×Z(y, z) . (4.61)

If in addition the coupling ϕ is a bilinear coupling between the vector spaces Y
and Y′, we obtain by (4.42) that the mapping GΦ is the composition of a support
function with a mapping.

Previous proposition expresses the fact that the mapping G is the indicator map-
ping of the rectangle X ′ = Y × Z included in the “dual” set X′ = Y× Z.

4.3.3. Illustration with convex risk measures

We illustrate how Proposition 4.3.3 is linked to well known results concerning a
class of convex risk measures, defined as support functions by means of probability
subsets.

Basic notions Let (Ω,T,P) be a probability space and L∞(Ω,T,P;R) be the vector
space of essentially bounded random variables on Ω. We consider F0 = {∅,Ω} the
trivial σ-field over Ω and F a subfield of T:

{∅,Ω} ⊂ F ⊂ T . (4.62)

We denote by ∆(Ω,T) the set of probability distributions over (Ω,T). We will denote
by Q a generic element of ∆(Ω,T) and by X a generic element of L∞(Ω,T,P;R).
For convenience, we introduce the notation M = ∆(Ω,F) to denote the set of dis-
tributions on the σ-field F and denote by m a general element of M. We have

M = ∆(Ω,F) ⊂ ∆(Ω,T) . (4.63)

We interpret the set M as a set of marginal distributions. The set K(Ω,F) of
Radon-Nikodim derivatives with respect to F is defined by

K(Ω,F) =
{
X ∈ L∞(Ω,T,P;R) |X ≥ 0 , X ≤ 1 , EP[X | F] = 1

}
, (4.64)

where equalities and inequalities are taken P-almost surely. We denote by k a generic
element of K(Ω,F). For convenience, we use the abuse of notation K.
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4.3. Time consistent convex mappings

Proposition 4.3.3 Risk measures formalism

X L∞(Ω,T,P;R)
Y M = ∆(Ω,F)
Z K

Y′ L∞(Ω,F,P;R)

g : Y→ R g : M→ R
ϕ : Y′ × Y→ R ϕ( X︸︷︷︸

F−measurable

,m) = Em[X ]

θX : X→ Y′ θX(X ) = supk∈K Ek[X ] + θZ(k)

θZ : Z→ Y′ θZ : K→ L∞(Ω,F,P;R)
θX×Z : X× Z→ Y′ θX×Z(X , k) = Ek[X ]

Φ : X× (Y× Z)→ R Φ(X ,m, k) = Em
[
Ek[x]

]
G : Y× Z→ R G(m, k) = g(m) + Em

[
θZ(k)

]
Table 4.1.: Application of Proposition 4.3.3 in the framework of risk measures.

Illustration. As an application of the formalism developed in Sect. 4.3.2, we show
how some results of Theorem 11.17 in Föllmer and Schied (2016) can be interpreted
in the framework of Proposition 4.3.3.

Example 4.3.6 provides Time Consistency and Nested Formula when convex risk
measures are given with a “robust” formulation and uses the notion of normal
integrand whose definition can be found in Rockafellar and Wets (1998) (Defini-
tion 14.27). Before entering the example, we denote by ≤ the order defined on
L∞(Ω,T,P;R) by

X ≤ Y ⇔X (ω) ≤P-a.s. Y (ω) , X ,Y ∈ L∞(Ω,T,P;R)2 . (4.65)

Example 4.3.6. Let a mapping g : M → [−∞,+∞] and a normal integrand
θ̃Z : ∆(ω)× Ω→ R be given. Let θZ : K→ L∞(Ω,F,P;R) be defined by

θZ(k)(ω) = θ̃Z(k(ω), ω) , ∀ω ∈ Ω . (4.66)

Let (A,F ) be the couple of mappings defined by

A : L∞(Ω,T,P;R)→ [−∞,+∞] ,

X 7→ sup
m,k∈M×K

{
Em
[
Ek[X ]

]
− g(m)− Em

[
θZ(k)

]}
, (4.67a)

F : L∞(Ω,T,P;R)→ L∞(Ω,F,P;R) ,

X 7→ sup
k∈K

{
Ek[X ]− θZ(k)

}
, (4.67b)

where the second supremum is taken with respect to the order ≤ defined in (4.65)
over the complete sup-semilattice L∞(Ω,F,P;R). Then we have the Nested Formula

A = SA,F ◦ F , (4.68)

with SA,F : L∞(Ω,T,P;R)→ R given by

SA,F (X ) = sup
m∈M

{
Em[X ]− g(m)

}
. (4.69)
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4. Three classes of time consistent mappings

A particular case arises when the mappings G, g and θZ in Table 4.1 are indica-
tors mappings as in 4.3.2. In that case, the mappings A, F and SA,F are support
functions. We refer to Proposition 5.1 in Ruszczynski and Shapiro (2006a) for an
illustration.

Proof. We invite the reader to refer to Table 4.1 for the definition of the different
elements. We insist on two points. First the mapping θX given by

θX(X ) = sup
k∈K

{
Ek[X ] + θZ(k)

}
(4.70)

is well defined as the supremum is taken over the complete inf-semilattice L∞(Ω,F,P; R̄).
Second, as the mapping θZ is a normal integrand, we can apply Theorem 14.60

in Rockafellar and Wets (1998) and Proposition 5.1 in Ruszczynski and Shapiro
(2006a). Equation (4.41) is hence satisfied, i.e.

sup
k∈K

{
Em
[
Ek[X ]

]
+ Em

[
θZ(k)

]}
= Em

[
sup

k∈K(ω)

{
Ek[X ] + θ̃Z(k, ω)

}]
. (4.71)

We can now apply Proposition 4.3.3. This ends the proof. �
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4.4. Time consistent supremum mappings

We investigate in this section how the property of time consistency between map-
pings as defined in Chap. 3 remains stable by supremum, i.e. we look for the con-
ditions such that mappings that are defined as a supremum form a time consistent
couple. To speak of supremum mappings, we use lattice theory.

We first provide basic tools of the Scott’s topology, then focus on time consistency
for mappings defined as a supremum.

4.4.1. Background on lattices and their topologies

We first enunciate two definitions and a lemma that will be used further. Here is
the definition of a complete inf-semilattice.

Definition 4.4.1. A complete inf-semilattice is a preordered set such that there
exists a greatest lower bound for each (finite or infinite) subset. We denote the
preorder by ≤ and the greatest lower bound by

∧
.

We now present continuity in Scott’s topology.

Definition 4.4.2. Let X and Y be two complete inf-semilattices. A mapping f :
X→ Y is said to be

� lower semi continuous (l.s.c.) if

f
(∧
x∈X

x
)
≤
∧
x∈X

f(x) , ∀X ⊂ X , (4.72)

� ∧-increasing if x ≤ x′ ⇒ f(x) ≤ f(x′) or, equivalently, if

f
(
x ∧ x′

)
≤ f(x) ∧ f(x′) , ∀(x, x′) ∈ X2 , (4.73)

� ∧-Scott continuous if

f
(∧
x∈X

x
)

=
∧
x∈X

f(x) , ∀X ⊂ X , (4.74)

� weakly ∧-Scott continuous if

f
(∧
x∈X

x
)

=
∧
x∈X

f(x) , ∀X ⊂ X , X complete inf semi-lattice . (4.75)

Reverse definitions of upper semi-continuity, ∨-increasing, ∨-Scott continuity and
weak ∨-Scott continuity follow naturally.

If the previous statements are only valid on a subset X ⊂ X, we speak of continuity
on the set X.

The next lemma, whose proof is left to the reader, details implications between
the different notions of continuity.
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4. Three classes of time consistent mappings

Lemma 4.4.3. Let X and Y be two complete inf-semilattices and let f : X→ Y be
a mapping. Then,

� if f is weakly ∧-Scott continuous, then f is ∧-Scott continuous,

� if f is ∧-continuous, f is ∧-increasing,

� if f is ∧-increasing, f is lower semi continuous.

In Sect. 4.4.2, we will study mappings defined as supremum. The next proposition
reads as an interchange result for mappings that are continuous and defined as
supremum.

Proposition 4.4.4. Let X, Y and Z be three complete inf-semilattices and let M :
X× Y→ Z be a mapping. We define the marginal mapping MY : X→ Z by

MY(x) =
∨
y∈Y

M(x, y) . (4.76)

If the mapping MY is ∧-Scott continuous, then we have the min-max interchange
equation ∧

x∈X

∨
y∈Y

M(x, y) =
∨
y∈Y

M(
∧
x∈X

x, y) . (4.77)

Proof. If the mapping MY is ∧-Scott continuous, then we have by Definition 4.4.2
that ∧

x∈X

MY(x) = MY(
∧
x∈X

x) . (4.78)

Then by definition (4.76) of the mapping MY, we obtain Equation (4.77). This ends
the proof. �

We give an example of application of Proposition 4.4.4, that is, an example
of mappings that are continuous and defined as supremum. This example relies
on Ruszczynski and Shapiro (2006b).

Example 4.4.5. Let (Ω,T,P) be a finite probability space such that |Ω| = n and
let X = L∞(Ω,T,P) be the space of bounded random variables on Ω. We denote by
∆(Ω) the set of all probability distributions. Let ρ : X→ R be a numerical function
and let F : Rn → X be a mapping. For a subset S ⊂ R of real numbers and a subset
M ⊂ X of random variables, we introduce the set MS defined by

MS = {Z ∈M | Z(ω) ∈ S , ∀ω ∈ Ω} . (4.79)

Under technical assumptions detailed in Theorem 7.1 of Ruszczynski and Shapiro
(2006b), we have the following result. If ρ is a monotonous risk function 1, then

ρ
(

inf
z∈S

F (z)
)

= inf
Z∈MS

ρ
(
F (Z)

)
. (4.80)

1See Ruszczynski and Shapiro (2006b) for details on what is a monotonous risk function

82



4.4. Time consistent supremum mappings

In particular, Equation (4.80) is satisfied for functions ρ that are given by

ρ(Z) = sup
Q∈Q

〈
Q ,Z

〉
, ∀Z ∈M , (4.81)

where Q ⊂ ∆(Ω) is a subset of probability measures.
In Equation (4.80), the inner infimum to the left hand side is taken component per

component. The space X = L∞(Ω,T,P) is then naturally endowed with a complete
inf-semilattice structure as an infinite product space. Following the notations of
Proposition 4.4.4 we hence rewrite Equation (4.80)

ρ
( ∧
Z∈MS

F (Z)
)

=
∧

Z∈MS

ρ
(
F (Z)

)
. (4.82)

4.4.2. Usual time consistency with mappings defined with
supremum

Let H,T,U,V,A,F be six sets, and A, F be two mappings:

A : H× T× U× V→ A , (4.83a)

F : T× V→ F . (4.83b)

We want to study how time consistency is inherited after a partial supremum
operation leading to marginal mappings. For this purpose, we first characterize
time consistency for the couple of mappings (A,F ) given in (4.83) in terms of the
subaggregator SA,F defined in (3.2).

Proposition 4.4.6. The couple (A,F ) in (4.83) is Weak Time Consistent if and
only if the set-valued mapping SA,F defined by

SA,F (h, u, f) =
{
A(h, t, u, v) such that F (t, v) = f

}
, (4.84)

is a mapping increasing in its third argument. We then have the nested formula

A(h, t, u, v) = SA,F
(
h, u, F (t, v)

)
. (4.85)

Applying the result of Proposition 3.3.3 replacing H by H × U and T by T × V,
we get that

We now assume that the sets A and F are equipped with orders denoted by ≤
and are complete sup-semilattices. We define the mappings AW : H × T → A and
FV : T→ F by

FV(t) =
∨
v∈V

F (t, v) , (4.86a)

AW(h, t) =
∨

(u,v)∈W

A(h, t, u, v) , (4.86b)

where W is a subset of the product set U× V, i.e.

W ⊂ U× V . (4.86c)
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4. Three classes of time consistent mappings

Proposition 4.4.7. Let us assume that the couple (A,F ) is Usual Time Consistent,
that is,

F (t, v) ≤ F (t′, v′)⇒ A(h, t, u, v) ≤ A(h, t′, u, v′) , (4.87)

∀(h, u) ∈ H× U , ∀(t, t′, v, v′) ∈ T2 × V2 .

Let us assume that the set W in (4.86c) is such that∨
(u,v)∈W

A(h, t, u, v) =
∨
u∈U

∨
v∈V

A(h, t, u, v) , (4.88)

∀(h, t) ∈ H× T

Let also assume that one of the following conditions is satisfied

� either the mappings A(h, t, u, ·) : V → A and F (t, ·) : V → F are ∨-Scott
continuous on the set V for all (h, t, u) ∈ H× T× U,

� or, for all t ∈ T, there exists v?t ∈ V such that∨
v∈V

F (t, v) = F (t, v?t ) . (4.89)

Then the couple (AW, FV) in (4.86) is Usual Time Consistent and the subaggregator
introduced in (3.2) is given by

SAW,FV(h, f) =
∨
u∈U

SA,F (h, u, f) . (4.90)

Before stating the proof, we notice that Equation (4.88) is satisfied when W =
U× V.

Proof. The proof goes as follows:

1. we first show that the couple (AW, FV) in (4.86) is Usual Time Consistent,

2. then we explicit the form of the subaggregator SAW,FV in (4.90).

Here is the proof.

1. We first assume that the mappings A(h, t, u, ·) : V → A and F (t, ·) : V → F
are ∨-Scott continuous on the set V for all (h, t, u) ∈ H×T×U. Let (t, t′) ∈ T2.
Then we have the successive equivalence and implications

FV(t) ≥ FV(t′)⇔
∨
v∈V

F (t, v) ≥
∨
v∈V

F (t′, v) , (by definition (4.86) of FV)

⇔ F (t,
∨
v∈V

v) ≥ F (t′,
∨
v∈V

v) ,

by ∨-Scott continuity of the mapping F (t, ·) : V→ F for all t ∈ T,

⇒ A(h, t, u,
∨
v∈V

v) ≥ A(h, t′, u,
∨
v∈V

v) , ∀(h, u) ∈ H× U ,

84



4.4. Time consistent supremum mappings

by UTC of the couple (A,F ) in (4.83),

⇔
∨
v∈V

A(h, t, u, v) ≥
∨
v∈V

A(h, t′, u, v) , ∀(h, u) ∈ H× U ,

by∨-Scott continuity of the mapping A(h, t, u, ·) : V → A for all (h, t, u) ∈
H× T× U.

We now assume that Equation (4.89) is satisfied. In that case, we have the
successive equivalence and implications

FV(t) ≥ FV(t′)⇔
∨
v∈V

F (t, v) ≥
∨
v∈V

F (t′, v) , (by definition (4.86) of FV)

⇒
∨
v∈V

F (t, v) ≥ F (t′, ṽ) , ∀ṽ ∈ V ,

by definition of the supremum of F (t′, v)

⇒ F (t, v?t ) ≥ F (t′, ṽ) , ∀ṽ ∈ V ,

by (4.89) that states that the supremum is attained,

⇒ A(h, t, u, v?t ) ≥ A(h, t′, u, ṽ) , ∀ṽ ∈ V , ∀(h, u) ∈ H× U ,

by UTC of the couple (A,F ) in (4.83),

⇒
∨
v∈V

A(h, t, u, v) ≥ A(h, t, u, v?t ) ≥ A(h, t′, u, ṽ) , ∀ṽ ∈ V , ∀(h, u) ∈ H× U ,

by definition of the supremum on V.

With one or the other assumption (∨-Scott continuity of mappings A|V and
F|V of Equation (4.89) is satisfied), we have that∨
v∈V

A(h, t, ũ, v) ≥ A(h, t′, ũ, ṽ)⇒
∨
u∈V

∨
v∈V

A(h, t, u, v) ≥ A(h, t′, ũ, ṽ) ,

for all ṽ ∈ V, by defintion of the supremum over U,

⇒
∨
u∈V

∨
v∈V

A(h, t, u, v) ≥
∨
u∈V

∨
v∈V

A(h, t′, u, v) ,

(4.91)

by definition of the supremum over U,

⇒
∨

(u,v)∈W

A(h, t, u, v) ≥
∨

(u,v)∈W

A(h, t′, u, v) ,

(by Eq. (4.88))

⇒ AW(h, t) ≥ AW(h, t′) , (4.92)

by definition (4.88) of AW This shows that the couple (A,F ) in (4.83) is Usual
Time Consistent.
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4. Three classes of time consistent mappings

2. As the couple (A,F ) is Usual Time Consistent, we know from Proposition 3.3.6
that

A(h, t, u, v) = SA,F
(
h, u, F (t, v)

)
, (4.93)

where the mapping SA,F given in (4.84) is increasing in its third argument.

If Equation (4.89) is satisfied, we have for all (h, t, v) ∈ H× T× V that

F (t, v?) ≥ F (t, v) , (by definition of the supremum)

SA,F
(
h, F (t, v?)

)
≥ SA,F

(
h, F (t, v)

)
, (as the mapping SA,F is increasing)

SA,F
(
h, F (t, v?)

)
≥
∨
v∈V

SA,F
(
h, F (t, v)

)
, (by definition of the supremum.)

As v? ∈ V, we have by definition of the supremum over V the reverse inequality∨
v∈V S

A,F
(
h, F (t, v)

)
≥ SA,F

(
h, F (t, v?)

)
. Hence, we have the equality∨

v∈V

SA,F
(
h, F (t, v)

)
= SA,F

(
h, F (t, v?)

)
. (4.94)

Then we have the following equalities

AW(h, t) =
∨

(u,v)∈W

A(h, t, u, v) , (by Equation (4.86))

=
∨
u∈U

∨
v∈V

A(h, t, u, v) , (by Equation (4.88))

=
∨
u∈U

∨
v∈V

SA,F
(
h, u, F (t, v)

)
, (by Equation (4.85))

=
∨
u∈U

SA,F
(
h, u,

∨
v∈V

F (t, v)
)
, (by Equation (4.94))

=
∨
u∈U

SA,F
(
h, u, FV(t)

)
, (by Equation (4.86))

= SAW,FV
(
h, FV(t)

)
. (by definition (4.90))

This ends the proof. �

Proposition (4.4.7) covers the framework of coherent risk measures. Indeed, let
(Ω,T,P) be a probability space and let L∞(Ω,T,P) be the space of bounded random
variables. Let also ∆(Ω,T) be the set of probability distributions. Then a coherent
risk measure ρ : L∞(Ω,T,P)→ R has the form

ρ(X ) = sup
Q∈Q

EQ[X ] , (4.95)

where the Q ⊂ ∆(Ω,T) is a set of probability distributions.
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4.5. Conclusion and perspectives

We have seen in Chap. 3 that Time Consistency and Nested Formula are equivalent.
In this Chap. 4, we have studied three classes of mappings and described how time
consistency is characterized or inherited for these classes.

� First, we have characterized time consistency in terms of acceptance sets for
translation invariant mappings. This characterization, which involves two un-
known mappings ρ and F , is an implicit equation in ρ. Hence it remains
difficult to apply in practice to find interesting results.

� Second, we have given conditions for mappings that are Fenchel-Moreau trans-
form to be time consistent. These Fenchel-Moreau mappings are defined with
respect to couplings and are hence generalized convex mappings. When cou-
plings are duality pairings between vector spaces, the Fenchel-Moreau’s trans-
form provides convex mappings. We have applied our result to convex risk
measures. However, the conditions that we obtain for time consistency for
generalized convex mappings are strong. It is not an easy task to exhibit
generalized convex mappings that are time consistent (and not convex risk
measures).

� Third, we have studied how time consistency is inherited when mappings are
defined as supremum.

Time consistency for mappings remains a world to explore. Without being ex-
haustive, we detail work that could be done.

� Looking at the conditions that we have obtained on generalized convex map-
pings to obtain a nested formula, we see that these conditions are difficult
to satisfy. Are there mappings that are not convex risk measures but satisfy
these conditions ? The possibility of mixing translation invariant mappings,
Fenchel-Moreau transform, supremum to construct time consistent mappings
has not been investigated yet.

� We did not have the time to discuss the connection between the inheritance
of time consistency presented in Sect. 4.4 and the recent work of Dentcheva
and Ruszczinsky on risk forms Dentcheva and Ruszczynski (2018).

� We were not able to exhibit examples for which the characterization in terms
of acceptance sets could give some explicit results.
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5. Player consistency and decomposition of optimization problems

5.1. Introduction

We have seen in Chap. 3 that Time Consistency and Nested Formula are equivalent.
In Chap. 4, we have studied time consistency for three classes of mappings. We
have discussed translation invariant mappings, mappings that are Fenchel-Moreau’s
transform and mappings that are defined as supremum. In this Chapter 5, we first
generalize time consistency to player consistency. Then we will sketch how player
consistency can be used to decompose optimization problems.

5.2. From time consistency to player consistency

For authors who study risk and optimization, time consistency is an ingredient to
decompose optimization problems using a nested formula. We recall the example
given in introduction in the risk neutral case as an illustration

min
X1�F1,X2�F

EP
[
c(X1,X2)

]
= min
X1�F1

EP

[
min
x2∈R

EP
[
c(X1, x2)

∣∣ F]] , (5.1)

where F1 ⊂ F2. Time consistency can also be seen as a natural property for an
optimal control as “stick to one’s plan” moto. In this section, we introduce the
notion of consistency without relying on the notion of time.

5.2.1. Consistency with binary relations

In Chap. 3, we defined and characterized time consistency for couples of mappings.
We now explore a general framework for consistency with binary relations and show
that it includes the case of time consistency. We will first provide definitions and
then recover results of Chap. 3.

We define consistency over product sets, so we invite the reader to refer to Ap-
pendix 9.1 for the definition of products of binary relations.

Definition 5.2.1. Let P be a finite set (of players) and let (Sp, Sp)p∈P be a collection
of pairs of sets and relations. Let R be a relation on the set

∏
p∈P Sp. We hence

have

Sp ⊂ S2
p and R ⊂

(∏
p∈P

Sp

)2

. (5.2)

The tuple of relations (Sp)p∈P is said to be R-consistent if∏
p∈P

Sp ⊂ R . (5.3)

When the tuple (Sp)p∈P is R-consistent, we say that the relations (Sp)p∈P are factors
of the relation R.

We discuss relation of player consistency with the framework of time consistency
presented in Chap. 3 in “Discussion on time consistency” below.
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5.2.2. Player consistency for mappings

In what follows, we use the abuse of notation

(sp)p∈P = sP ,
∏
p∈P

Sp = SP . (5.4)

Definition 5.2.2. Let P be a finite set (of players), and A be a set. We consider
two collections of sets (Sp)p∈P and (Fp)p∈P and a collection of mappings

(
A, (Fp)p∈P

)
such that

A :
∏
p∈P

Sp → A , (5.5a)

Fp : Sp → Fp , ∀p ∈ P . (5.5b)

The tuple
(
A, (Fp)p∈P

)
of mappings is said to be Weakly Player Consistent (WPC)

if (
∀p ∈ P , Fp(sp) = Fp(s

′
p)
)
⇒ A

(
sP
)

= A
(
s′P
)
. (5.6)

and is said to be Strongly Monotone Player Consistent (SMPC) if(
∀p ∈ P , Fp(sp) ≤ Fp(s

′
p)
)
⇒ A

(
sP
)
≤ A

(
s′P
)
. (5.7)

Lemma 5.2.3. Weak Player Consistency and Strong Monotone Player Consistency
(Definition 5.2.2) are particular cases of of R-consistency (Definition 5.2.1).

Proof. Let us introduce the relation R and the collection of relations SP defined by

sP R s′P ⇔ A(sP ) = A(s′P ) , (5.8a)

sp Sp s
′
p ⇔ Fp(sp) = Fp(s

′
p) , ∀p ∈ P . (5.8b)

If we replace equalities = by inequalities≤ in Equation (5.8), we obtain the definition
of Strongly Monotone Player Consistency. �

As for time consistency discussed in Chap. 3, we introduce a subaggregator.

Definition 5.2.4. Let P be a set (of players), and A be a set. We consider two
collections (Sp)p∈P of sets and (Fp)p∈P and a collection

(
A, (Fp)p∈P

)
of mappings

such that

A :
∏
p∈P

Sp → A , (5.9a)

Fp : Sp → Fp , ∀p ∈ P . (5.9b)

With the tuple
(
A, (Fp)p∈P

)
, we associate the set-valued mapping

SA,F :
∏
p∈P

Im(Fp) ⇒ A

(f)p∈P = fP 7→
{
A
(
sP
)
| sp ∈ F−1

p (fp) , ∀p ∈ P
}
.

(5.10)

If the tuple
(
A, (Fp)p∈P

)
is WPC as in Definition 5.2.2, then SA,F is called a subag-

gregator.
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5. Player consistency and decomposition of optimization problems

∏
p∈P

Sp

Im(Fp)

∏
p∈P

A

Fp

A

SA,F

Figure 5.1.: Representation of connections between the mappings A, SA,F and(
(Fp)p∈P

)
of Definition 5.2.4.

To fix ideas, we illustrate the relations between the different sets and mappings
in Fig. 5.1.

The next Theorem characterizes Weak Player Consistency in Definition 5.2.2 in
terms of subaggregator. The proof is left to the reader as a generalization of Theo-
rem 3.3.3.

Theorem 5.2.5. [Nested decomposition of WPC mappings] The tuple
(
A, (Fp)p∈P

)
is WPC if and only if the set valued mapping SA,F in (5.10) is a mapping. In that
case, we have the nested formula between mappings.

A(sP ) = SA,F
((
Fp(sp)

)
p∈P

)
, ∀sP ∈ SP . (5.11)

This kind of nested formula will prove useful when we discuss decomposition in 5.3.

Mixing weak and strong monotone player consistency As a step towards de-
composition, we refine the notion of Weak Player Consistency and Strong Monotone
Player Consistency.

Definition 5.2.6. Let P be a set (of players), and A be a set. We consider two
collections of sets (Sp)p∈P and (Fp)p∈P and a collection of mappings

(
A, (Fp)p∈P

)
such that

A :
∏
p∈P

Sp → A , (5.12a)

Fp : Sp → Fp , ∀p ∈ P . (5.12b)

Let (P=, P≤) be a partition of the set P . The tuple
(
A, (Fp)p∈P

)
is said to be

(P=, P≤)-Mixed Player Consistent if have

∀p ∈ P= , Fp(sp) = Fp(s
′
p)

∀p ∈ P≤ , Fp(sp) ≤ Fp(s
′
p)

}
⇒ A

(
sP
)
≤ A

(
s′P
)
. (5.13)

Proposition 5.2.7. Let
(
A, (Fp)p∈P

)
be a tuple of mappings as in (5.12). The tuple(

A, (Fp)p∈P
)

is Mixed Player Consistent if and only if the subaggregator SA,F defined
in (5.10) is a mapping that is increasing over the set P≤.

This property will prove to be useful for optimization. We finish this section 5.2
by showing how we can extend results on time consistency and translation invariant
mappings to the case of player consistency.
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5.2. From time consistency to player consistency

5.2.3. Time consistency as a special case of player consistency

We now illustrate how time consistency presented in Chap. 3 can be seen as a
particular case of player consistency as defined in Definition 5.2.2.

We consider four sets H, T, A and F and two mappings A and F given by

A : H× T→ A , (5.14)

F : T→ F . (5.15)

Let P , S1, S2, F1 and F2 be sets defined by

P = {1, 2} , S1 = H , S2 = T , F1 = H , F2 = F . (5.16)

We define the mapping F1 by
F1 = Id . (5.17)

Then studying time consistency of a couple of mappings (A,F ) is equivalent to study
player consistency of the triplet

(
A, (F1, F )

)
defined in (5.14) and in (5.17). Indeed,

time consistency in this example reads

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 , (5.18)

and player consistency reads

Id(h) = Id(h′)
F (t) = F (t′)

}
⇒ A(h, t) = A(h′, t′) , ∀(h, h′, t, t′) ∈ H2 × T2 . (5.19)

All cases and results treated in Chap. 3 and Sect. 5.2.2 are summarized in Table 5.1
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(Sp)p∈P
∏

p∈P Sp A Fp Sp R

Characterization
in terms of
subaggregator

Characterization
in terms of
partitions
or level sets

WTC H, T H× T H× T→ A T→ F F (t) = F (t′) A(h, t) = A(h, t′) mapping

∨
h∈H T/Ah4

T/F

UTC H, T H× T H× T→ A T→ F F (t) ≤ F (t′) A(h, t) ≤ A(h, t′)

mapping
increasing
in second
argument

F≤F (t′)

∩⋂
h∈HAh≤Ah(t′)

STC H, T H× T H× T→ A T→ F h ≤ h′

F (t) ≤ F (t′)
A(h, t) ≤ A(h′, t′)

mapping
increasing
in both ar-
guments

F≤F (t′)

∩⋂
h≤h′ Ah≤Ah′ (t′)

WPC Sp
∏

p∈P Sp
∏

p∈P Sp → A Sp → Fp Fp(sp) = Fp(s
′
p)

A
(
(sp)p∈P

)
=

A
(
(s′p)p∈P

) mapping

(∏
p∈P Sp

)
/A

4(∏
p∈P Sp/Fp

)
SAC Sp

∏
p∈P Sp

∏
p∈P Sp → A Sp → Fp Fp(sp) ≤ Fp(s

′
p)

A
(
(sp)p∈P

)
≤

A
(
(s′p)p∈P

)
mapping
increasing
in all argu-
ments

∏
p∈P Fp≤Fp(sp)

∩
A≤A((sp)p∈P )

Consistency Sp
∏

p∈P Sp ∅ ∅ Sp R ∅

∏
p∈P Sp
∩
R

Table 5.1.: Recovering Time Consistency and Player Consistency with R-consistency.
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5.2. From time consistency to player consistency

5.2.4. Application of player consistency to translation invariant
mappings

We observe that time consistency results extend quite naturally to player consis-
tency. The next proposition is left to the reader as generalization of Proposi-
tion 4.2.4.

Proposition 5.2.8. Let (H,⊕) and (T,⊕) be two commutative groups. Let (A,⊕)
be a group such that

(A,⊕) ⊂ (H,⊕)× (T,⊕) , (5.20)

and let

A : H× T→ (A,⊕,≤) , (5.21)

(h, t) 7→ A(h, t) (5.22)

be a (H× T,A)-translation invariant mapping. We consider two subgroups

(G,⊕) ⊂ (H,⊕) and (F,⊕) ⊂ (T,⊕) . (5.23)

Let G : H → (G,⊕,≤) be a (H,G)-translation invariant mapping and F : T →
(F,⊕,≤) be a (T,F)-translation invariant mapping. Then,

1. the triplet (A, (G,F )) is Player Consistent if and only if(
AG ⊕G(h)

)
×
(
AF ⊕ F (t)

)
⊂ Aρ ⊕ ρ(h, t) , ∀(h× t) ∈ H× T . (5.24)

2. If, in addition, we have that

� (A,⊕) ⊂ (G× F,⊕) ⊂ (H× T,⊕),

� the (T,A)-translation invariant mapping ρ is increasing,

� the (H,G)-translation invariant mapping G satisfies G(0) = 0 (where 0
is the neutral element of (H,⊕)),

� the (T,F)-translation invariant mapping F satisfies F (0) = 0 (where 0 is
the neutral element of (T,⊕)),

then the tuple
(
A, (G,F )

)
of mappings is Usual Time Consistent if and only

if (
AG ×AF

)
⊕Aρ|G×F = Aρ . (5.25)

After having generalized some results from time consistency to player consistency,
we now outline how they can be used in optimization, especially for decomposition
purpose.
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5. Player consistency and decomposition of optimization problems

5.3. Application of player consistency to
decomposition for optimization

In Chap. 3, we have defined the notion of Time Consistency for mappings. We have
then discussed in Chap. 4 the notion of Time Consistency for classes of mappings.
Finally, in Sect. 5.2 we have highlighted the fact that Time Consistency is a partic-
ular case of Player Consistency. Now that we have presented frameworks of Time
Consistency and Player Consistency, we want to highlight how these tools can be
used in optimization.

In Chap. 3, we have shown an equivalence between Nested Formula and Time
Consistency. In Chapter 5.2, we have extended this equivalence between a Nested
Formula and Player Consistency. We explore in § 5.3.1 and in § 5.3.2 what minimal
assumptions are required to decompose an optimization problem thanks to a Nested
Formula.

As we will use notion on lattices, we refer the reader to § 4.4.1 for background on
complete inf-semilattices (Definitions 4.4.1) and Scott-continuity (Definition 4.4.2).

First, we show how time consistency is adapted to sequential decomposition, then
how player consistency is adapted to parallel decomposition. Second, we detail
how mixed player consistency offers the most general perspective for sequential and
parallel decomposition.

5.3.1. Sequential decomposition with time consistency

We start to study an optimization problem under a Time Consistency property and
we show how we can decompose the problem recursively. We first recall the main
ingredients. Let H, T, A and F be four sets, and let A and F be two mappings as
follows:

A : H× T→ A , F : T→ F . (5.26)

The following proposition states how we can operate optimization sequentially.

Theorem 5.3.1 (Sequential optimization). Assume that the sets A and F in (5.26)
are equipped with orders denoted by ≤ and are complete inf-semilattices. Let the
couple (A,F ) in (5.26) be Usual Time Consistent, so that, by Proposition 3.3.6,
there exists a mapping SA,F : H × Im(F ) → A increasing in its second argument
such that

A(h, t) = SA,F
(
h, F (t)

)
, ∀(h, t) ∈ H× T . (5.27)

Then, we have the “sequential programming inequality”∧
h∈H

SA,F
(
h,
∧
t∈T

F (t)
)
≤

∧
(h,t)∈H×T

A(h, t) . (5.28)

If, in addition, one of the following conditions is satisfied

i) Im(F ) is a complete inf-semilattice and the mapping SA,F is ∧-Scott continu-
ous,
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5.3. Application of player consistency to decomposition for optimization

ii) there exists t? ∈ T such that ∧
t∈T

F (t) = F (t?) , (5.29)

then, we have the “sequential programming equation”∧
(h,t)∈H×T

A(h, t) =
∧
h∈H

SA,F
(
h,
∧
t∈T

F (t)
)
. (5.30)

Note that in assumption i) we assume that Id(F ) is a complete inf-semilattice.
This implies that

∧
t∈T⊂T F (t) ∈ Im(F ) for all subset T ⊂ T. Assumption i) is hence

stronger than assumption ii).

Proof. Since the couple (A,F ) in (5.26) is Usual Time Consistent, we have that

A(h, t) = SA,F
(
h, F (t)

)
, by Proposition 3.3.6 , (5.31)

and the mapping SA,F is increasing in its second argument. As the mapping SA,F is
increasing, it is lower semi-continuous by Lemma 4.4.3. Using the fact that item i)
or item ii) implies ∧

t∈T

F (t) ∈ Im(F ) , (5.32)

we have the following inequalities

SA,F
(
h,
∧
t∈T

F (t)
)
≤
∧
t∈T

SA,F
(
h, F (t)

)
, (5.33)

by Definition 4.4.2 of lower semi-continuity of SA,F∧
h∈H

SA,F
(
h,
∧
t∈T

F (t)
)
≤
∧
h∈H

∧
t∈T

SA,F
(
h, F (t)

)
, (by taking the infimum over H)∧

h∈H

SA,F
(
h,
∧
t∈T

F (t)
)
≤
∧
h∈H

∧
t∈T

A(h, t) , (by the Nested Formula (5.31).)

We hence have shown that Equation (5.28) is satisfied.

Now we turn to the equality case. By Definition 4.4.2 of ∧-Scott continuity, Equa-
tion (5.33) is an equality if the mapping SA,F is ∧-Scott continuous. We focus on
the second condition. Assume that there exists t? ∈ T such that

F (t?) =
∧
t∈T

F (t) . (5.34)

Then we have that

SA,F
(
h, F (t?)

)
= SA,F

(
h,
∧
t∈T

F (t)
)
, ∀h ∈ H ,

by Equation (5.29) that states that infimum is achieved,∧
t∈T

SA,F
(
h, F (t)

)
≤ SA,F

(
h, F (t?)

)
=
∧
t∈T

SA,F
(
h, F (t)

)
, ∀h ∈ H ,

by definition of the infimum over the set T and because t? belongs to the set T. This
provides the reverse inequality in (5.33). This ends the proof. �
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5. Player consistency and decomposition of optimization problems

We call Equations (5.28) and (5.30) sequential because the optimization problem∧
(h,t)∈H×TA(h, t) can be solved sequentially: we first optimize over T with h fixed

playing the role of a parameter, then we optimize over H.
As optimization is done sequentially, we can allow the set T to depend paramet-

rically of elements h ∈ H. The next corollary focuses on this case.

Corollary 5.3.2. Assume that the sets A and F in (5.26) are equipped with orders
denoted respectively by ≤ and that the set A is a complete inf-semilattice and the set
F is a complete lattice. Let the couple (A,F ) in (5.26) be Usual Time Consistent,
so that, by Proposition 3.3.6, there exists a mapping SA,F : H× Im(F ) increasing in
its second argument such that

A(h, t) = SA,F
(
h, F (t)

)
. (5.35)

Let S ⊂ H× T be a set and let the set-valued mapping T : H⇒ T be defined by

T(h) = {t ∈ T | (h, t) ∈ S} , ∀h ∈ H . (5.36)

Then, we have the “sequential programming inequality”∧
h∈dom(T)

SA,F
(
h,
∧

t∈T(h)

F (t)
)
≤

∧
(h,t)∈S

A(h, t) , (5.37)

where the set dom(T) is given by

dom(T) = {h ∈ H | T(h) 6= ∅} . (5.38)

If, in addition, one of the following conditions is satisfied

i) either Im(F ) is a complete inf-semilattice and the mapping SA,F is ∧-Scott
continuous,

ii) for all h ∈ H, there exists t?h ∈ T(h) such that∧
t∈T(h)

F (t) = F (t?h) , (5.39)

then, we have the ”sequential programming equation”∧
(h,t)∈S

A(h, t) =
∧

h∈dom(T)

SA,F
(
h,
∧

t∈T(h)

F (t)
)
. (5.40)

Notice that if the set F is a complete lattice, then the supremum over h in (5.37)
and (5.40) can be taken over the entire set H. Indeed, in this case, if T(h) is empty
we obtain ∧

t∈∅

F (t) = > , (5.41)

where > denotes the top element of the complete lattice F.
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5.3. Application of player consistency to decomposition for optimization

5.3.2. Parallel optimization with player consistency

The next proposition is the counterpart of Theorem 5.3.1 in the framework of Strong
Monotone Player Consistency developed in Sect. 5.2.1. We hence consider a set P
(of players), a set A and two collections of sets (Sp)p∈P and (Fp)p∈P . We consider a
collection of mappings

(
A, (Fp)p∈P

)
A :

∏
p∈P

→ A (5.42a)

Fp : Sp → Fp , ∀p ∈ P . (5.42b)

For clarity, we use the abuse of notation∧
(sp)p∈P∈

∏
p∈P Sp

=
∧

sP∈SP

. (5.43)

Proposition 5.3.3. Assume that the image sets A and (Fp)p∈P in (5.42) are equipped
with orders denoted respectively by ≤ and are complete inf-semilattices. Let the
tuple

(
A, (Fp)p∈P

)
in (5.42) be Strong Monotone Player Consistent, so that, by

Theorem 5.2.5, there exist a mapping SA,F :
∏

p∈P Im(Fp) → A increasing in all
arguments such that

A(sP ) = SA,F
((
Fp(sp)

)
P

)
, ∀sP ∈ SP . (5.44)

Then, we have the “parallel programming inequality”

SA,F

( ∧
sp∈Sp

Fp(sp)
)
p∈P

 ≤ ∧
(sp)p∈P

A
(
(sp)p∈P

)
. (5.45)

If, in addition, one of the following conditions is satisfied

� either Im(Fp) is a complete inf-semilattice for all p and the mapping SA,F is
∧-Scott continuous,

� or for each p ∈ P there exist s?p ∈ Sp such that∧
sp∈Sp

Fp(sp) = Fp(s
?
p) , ∀p ∈ P , (5.46)

then, we have the “parallel programming equation”

∧
(sp)p∈P

A
(
(sp)p∈P

)
= SA,F

( ∧
sp∈Sp

Fp(sp)
)
p∈P

 . (5.47)

Equations (5.45) and (5.47) are called parallel because the infimum to the left
hand side is done player by player in the right hand side.
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5. Player consistency and decomposition of optimization problems

5.3.3. Mixing parallel and sequential optimization

We introduce a notion of decomposability related to mixed player consistency. With
this tool, we show how to handle both sequential and parallel decompositions of an
optimization problem. Finally, we sketch a recursive procedure to go deeper and
deeper in decomposition. For the sake of clarity, we use the abuses of notation∏

p∈P

Sp = SP and
∧

(sp)p∈P∈
∏
p∈P Sp

=
∧

sP∈SP

. (5.48)

Definition 5.3.4. Let P be a set of players and A be a set. Let (Sp)p∈P be a
collection of sets and AP be a mapping given by

AP : SP → A . (5.49)

The set P of players is said to be (P=, P≤)-decomposable with respect to AP if

� (P=, P≤) is a partition of P ,

� there exists two sets FP= and FP≤ and two mappings

FP= : SP= → FP= and FP≤ : SP≤ → FP≤ (5.50)

such that the triplet
(
A, (FP= , FP≤)

)
of mappings in (5.49) and (5.50) is (P=, P≤)-

Mixed Player Consistent as in Definition 5.2.6.

In that case, we know from Theorem 5.2.5 that the subaggregator denoted by S and
defined in (5.10) is a mapping and that we have the nested formula

AP (sP ) = S
(
FP=(sP=), FP≤(sP≤)

)
. (5.51)

The previous definition is closed to the definition 5.2.6 of Mixed Player Con-
sistency. The difference is that only P and AP are given in Definition 5.3.4. In
particular, if a tuple (A,FP= , FP≤) is mixed player consistent, then the set P is
(P1, P2)-decomposable with respect to A.

Proposition 5.3.5. Let P be a set of players and A be a set. Let (Sp)p∈P be a
collection of sets and AP be a mapping given by

AP : SP → A , (5.52)

and consider the problem ∧
sP∈SP

A(sP ) . (5.53)

Assume that the set P is (P=, P≤)-decomposable, and let FP= and FP≤ be mappings
as in (5.50). If the mapping S in (5.51) is ∧-Scott continuous in its second argument,
then problem (5.53) can be decomposed sequentially and in parallel, that is,∧

P

A(sP ) =
∧
P=

S
(
FP=(sP=),

∧
P≤

FP≤(sP≤)
)
, (5.54)

where the infimum over the set P≤ is done in parallel.
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5.3. Application of player consistency to decomposition for optimization

We now introduce the notion of reduced system to be able to apply decomposition
scheme recursively.

Definition 5.3.6. Let P be a set (of players), and A be a set. We consider two
collections of sets (Sp)p∈P and (Fp)p∈P and a collection of mappings

(
A, (Fp)p∈P

)
such that

A :
∏
p∈P

Sp → A , (5.55a)

Fp : Sp → Fp , ∀p ∈ P . (5.55b)

Let Pr ⊂ P be a non empty set of players, and let (s̄p)p/∈Pr ∈
∏

p/∈Pr Sp be fixed
elements. We introduce the mapping Ar defined by

Ar :
∏
p∈P r

Sp → A (5.56)

(sPr , s̄P\Pr) 7→ A(sPr , s̄P\Pr) . (5.57)

The tuple of mappings (Ar, FPr) is said to be a (Pr, s̄P\Pr)-reduced system.

Let us detail how to apply Proposition 5.3.5 recursively using the notion of reduced
system.

� Assume that the triplet
(
A, (FP= , FP≤)

)
of mappings in (5.49) and (5.50) is

(P=, P≤)-Mixed Player Consistent as in Definition 5.2.6

� We first consider the (P≤, sP=)-reduced system (A≤, FP≤) as in Definition 5.3.6
parametrized in sP= . We hence focus on the optimization problem

∧
P≤
FP≤(sP≤)

that can be solved in parallel.

� We denote by s?P≤ an optimal solution of
∧
P≤
FP≤(sP≤).

� We secondly consider the (P=, s
?
P≤

)-reduced system (A=, FP=) as in Defini-

tion 5.3.6. If P= est (P=,=, P=,≤)-decomposable with respect to A=, we apply
recursively Proposition 5.3.5 to this (P=, s

?
P≤

)-reduced system (A=, FP=).

The next pseudo code sums up the recursion.

Data: A set P of players, a mapping AP
Result: A sequential-parallel decomposition scheme

1 while If P is (P=, P≤)-decomposable with respect to AP as in
Definition 5.3.4. do

2 For each sP=, solve in parallel the problem
∧
P≤
FP≤(sP≤). and denote

the solution s?P≤ ;

3 consider the (P=, s
?
P≤

)-reduced system (A=, FP=) as in

Definition 5.3.6. Apply algorithm to the couple (P,A=) ;

4 end

Algorithm 1: Recursive decomposition scheme algorithm
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5. Player consistency and decomposition of optimization problems

5.4. Conclusion

In Sect. 5.2, we have generalized the notion of time consistency to the one of player
consistency where there is no notion of time. We have described how player con-
sistency and time consistency can be written in a framework of R-consistency for
binary relations.

In Sect. 5.3, we have shown how a Nested Formula is adapted for Nested Optimiza-
tion and can be used to decompose an optimization problem. We have described
two processes of decomposition: a parallel one and a sequential one. Then, we have
examined when we can mix sequential and parallel decomposition and how to apply
them recursively.

We discuss here perspectives that remain open for us.

� Further work needs to be done to account for dependencies between players,
that is, when there are joint constraints on the players decision sets.

� In machine learning, influence diagrams capture dynamic interactions be-
tween players. They may provide an application for the above decomposition
method.
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Conclusion of Part II

We started with the idea of adapting decomposition methods to deal with risk mea-
sures. As a well-known decomposition scheme relies on dynamic programming and
on the notion of time consistency, we first studied time consistency. Our survey of
the literature in the field has revealed that it was very disparate, mixing peripherical
assumptions with the ideas of time consistency and nested formula. Our first work
has been to clarify the contributions of each author building an abstract framework
for time consistency. This framework highlights the fact that the notion of time is
not essential. We hence have been able to generalize the notion of time consistency
for mappings to the one of player consistency for mappings. Then we have shown
that time consistency and player consistency can be incorporated into a common
framework of R-consistency for binary relations. Definition, theorems and charac-
terizations for player consistency are naturally deduced from time consistency. Our
framework is incomplete since we lack examples; however, we have clearly identified
the difficulties.

To sum up the works in this part, we connect the frameworks of Chap. 3, Chap. 4
and Chap. 5.2 through Table 5.2. We recall that time consistency appears as a
particular case of player consistency, both being an application of consistency for
binary relations. We have chosen to focus on usual time consistency in Table 5.2
when dealing with time consistency. The final Chap. 5.3 illustrates how the results
of Table 5.2 can be used to deal with optimization problems.

We detail now the different perspectives of work that we have identified.

� One could look for application of the characterization of time consistency in
terms of acceptance sets, either to demonstrate that some mappings are not
time consistent, or to build mappings that are time consistent. In particular,
we have provided a characterization of player consistency in terms of accep-
tance set.

� The conditions to be satisfied by generalized convex mappings in order to
obtain a nested formula are difficult to check. Finding mappings that are not
convex risk measures which satisfy these conditions is an open question. We
should investigate what happens when we mix translation invariant mappings,
Fenchel-Moreau transform, supremum to construct time consistent mappings.

� We did not have the time to discuss the connection between the inheritance
of time consistency presented in Sect. 4.4 and the recent work of Dentcheva
and Ruszczinsky on risk forms Dentcheva and Ruszczynski (2018).

� Further work needs to be done to account for dependencies between players,
that is, when there are joint constraints on the players decision sets.
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5. Player consistency and decomposition of optimization problems

Consistency Chap. 3 Sect. 4.2 Sect. 4.3 Sect. 5.2.1

Sets H,T,A,F H,T,A,F X, Y, Z, Y′ (Sp)p∈p

Property
of sets

A and F equipped
with orders
denoted by ≤

(H,⊕),(A,⊕),(F,⊕)
subgroups of (T,⊕)

∅ ∅

Mappings
A : H× T→ A

F : T→ F

F : T→ F

ρ : T→ A

Aρ : H× T→ A

θX×Z : X× Z→ Y′

θZ : Z→ Y′

θX : X→ Y′

ϕ : Y′ × Y→ R

g : Y→ R

Φ : X× (Y× Z)→ R

G : Y× Z→ R

∅

Property
of mappings

∅
F (T,F)-trans. inv.2

ρ (T,A)-trans. inv.2
ϕ, Φ couplings ∅

Relations ∅ ∅ ∅
R on Πp∈PSp
Sp on Sp

Expression
of Consistency

F (t) ≥ F (t′)

⇓

A(h, t) ≥ A(h, t′)

AF ⊕ F (t) ⊂ Aρ ∗ Cρ(t)

AF + Aρ|F = Aρ

GΦ = gϕ ◦ θX Πp∈PSp ⊂ R

Results
Proposition 3.3.6
and Proposition 3.5.6

Proposition 4.2.3
and Proposition 4.2.4

Proposition 4.3.3 ∅

Table 5.2.: Comparison of different framework for Consistency.
1: cis. = complete inf semilattice

2: trans. inv. = translation invariant

� In machine learning, influence diagrams capture dynamic interactions be-
tween players. They may provide an application for the above decomposition
method.
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Risk averse competitive equilibrium
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6. On risk averse competitive
equilibrium

This chapter provides the content of Gérard, Leclère, and Philpott (2018). Some
notations have changed to preserve coherence with the rest of the document.
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6. On risk averse competitive equilibrium

We discuss risked competitive partial equilibrium in a setting in which agents are
endowed with coherent risk measures. In contrast to social planning models, we
show by example that risked equilibria are not unique, even when agents’ objective
functions are strictly concave. We also show that standard computational methods
find only a subset of the equilibria, even with multiple starting points.

6.1. Introduction

Most industrialised regions of the world have over the last thirty years established
wholesale electricity markets that take the form of an auction that matches supply
and demand. The exact form of these auction mechanisms vary by jurisdiction, but
they typically require offers of energy from suppliers at costs they are willing to
supply, and clear a market by dispatching these offers in order of increasing cost.
Day-ahead markets such as those implemented in many North American electricity
systems, seek to arrange supply well in advance of its demand, so that thermal
units can be prepared in time. Since the demand cannot be predicted with absolute
certainty, day-ahead markets must be accompanied by a separate balancing market
to deal with the variation in load and generator availability in real time. These are
often called two-settlement markets. The market mechanisms are designed to be as
efficient as possible in the sense that they should aim to maximize the total welfare
of producers and consumers.

In response to pressure to reduce CO2 emissions and increase the penetration of
renewables, electricity pool markets are procuring increasing amounts of electricity
from intermittent sources such as wind and solar. If probability distributions for
intermittent supply are known for these systems then it makes sense to maximize
the expected total welfare of producers and consumers in each dispatch. Then many
repetitions of this will yield a long run total benefit that is maximized. Maximizing
expected welfare can be modeled as a two-stage stochastic program. Methods for
computing prices and single-settlement payment mechanisms for such a stochastic
market clearing mechanism are described in a number of papers (see Pritchard et al.
(2010), Wong and Fuller (2007) and Zakeri et al. (2016)). When evaluated using
the assumed probability distribution on supply, stochastic market clearing can be
shown to be more efficient than two-settlement systems.

If agents in these systems are risk averse then one might also seek to maximize
some risk-adjusted social welfare. In this setting the computation of prices and pay-
ments to the agents becomes more complicated. If agents use coherent risk measures
then it is possible to define a complete market for risk in a precise sense. If the mar-
ket is complete then a perfectly competitive partial equilibrium will also maximize
risk-adjusted social welfare, i.e. it is efficient. On the other hand if the market for
risk is not complete, then perfectly competitive partial equilibrium can be inefficient.
This has been explored in a number of papers (see e.g. de Maere d’Aertrycke et al.
(2017), Ehrenmann and Smeers (2011) and Ralph and Smeers (2015)).

In this paper we study a class of stochastic dispatch and pricing mechanisms under
the assumption that agents will attempt to maximize their risk-adjusted welfare at
these prices. Agents have coherent risk measures and are assumed to behave as
price takers in the energy and risk markets. We aim at enlightening some difficulties
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6.2. Statement of problem

that arise when risk markets are not complete. We describe a simple instance of a
stochastic market that has three different equilibria. Two of these points are stable
in the sense of Samuelson (1941) and are attractors of tatônnement algorithms.
The third equilibrium is unstable, yet is the solution yielded by the well-known
PATH solver in GAMS (See Ferris and Munson (2000)). Our example illustrates
the delicacy of seeking numerical solutions for equilibria in incomplete markets.
Since these are used for justifying decisions, the nonuniqueness of solutions in this
setting is undesirable.

The paper is laid out as follow. In Section 6.2 we present the equilibrium and
optimization models we are going to study. In Section 6.3 we give links between
equilibrium and optimization problems in the risk neutral and complete risk-averse
cases. Finally, in Section 6.4 we showcase a simple example with multiple equilibria
in the incomplete risk-averse case.

6.1.1. Notation

We use the following notation throughout the paper: [[a; b]] is the set of integers
between a and b (included), random variables are denoted in bold, Ω is a finite
sample space, P is a probability distribution over Ω, EP is used to refer to expectation
with respect to P, ρ is used to refer to a risk measure. We denote by x ⊥ y the
complementarity condition xTy = 0.

6.2. Statement of problem

Consider a two time-step single-settlement market for one good. In a single set-
tlement market, the producer can arrange in advance for a production of x at a
marginal cost cx as a first-step decision, and choose the value of a recourse variable
xr incurring an uncertain marginal cost crxr. We assume that there are a finite
number of scenarios ω ∈ Ω determining the coefficient cr(ω).

The product is purchased in the second step by a consumer with a utility function
V(ω)y(ω)− 1

2
r(ω)y2(ω). The consumer has no first-stage decision, and the amount

purchased y(ω) depends on the scenario.

6.2.1. Social planner problem

Decisions x, xr(ω) and y(ω) can be made to maximize a social objective. We denote
by

Wp(ω) = −1

2
cx2 − 1

2
cr(ω)xr(ω)2 , (6.1a)

the welfare of the producer, and by

Wc(ω) = V(ω)y(ω)− 1

2
r(ω)y(ω)2 , (6.1b)

the welfare of the consumer where both these expressions ignore the price paid for
the good in scenario ω. Then the welfare of the social planner can be defined by
Wsp = Wp +Wc.
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6. On risk averse competitive equilibrium

Optimization of the social objective requires us to aggregate the uncertain out-
comes from the scenarios. This can be done by taking expectations with respect to
an underlying probability measure P or using a more general risk measure.

Risk neutral social planner problem

Endow the set of scenario Ω with a probability P, then a risk-neutral social planner
might seek to maximize the expected total social welfare under the constraint that
supply equals demand. This problem is denoted by RnSp(P) and reads

RnSp(P) :

max
x,xr,y

EP[Wsp] , (6.2a)

s.t. x+ xr(ω) ≥ y(ω) , ∀ω ∈ Ω . (6.2b)

Risk averse social planner problem

Choosing expectation EP, assumes a risk-neutral point of view, where two random
losses with same expectation but different variances are deemed equivalent. In
practice a number of agents are risk averse. To model risk aversion we generally
use a risk measure ρ, that is a functional that associates to a random welfare its
deterministic equivalent, i.e. the deterministic welfare deemed as equivalent to the
random loss.

A risk-averse planner solves a maximization problem RaSp(ρ) defined by

RaSp(ρ) :

max
x,xr,y

ρ(Wsp) , (6.3a)

s.t. x+ xr(ω) ≥ y(ω) , ∀ω ∈ Ω . (6.3b)

A risk measure ρ is said to be coherent (see Artzner et al. (1999)) if it satisfies
four natural properties: monotonicity ( if X ≥ Y then ρ[X ] ≥ ρ[Y ]), concavity
(ρ is concave), translation-equivariance (ρ[X + c] = ρ[X ] + c with c ∈ R) and
positive homogeneity (ρ[λX ] = λρ[X ], with λ ≥ 0). By convex duality theory
(see Shapiro et al. (2014)), a lower-semicontinuous coherent risk measure can be
written ρ

(
Z
)

= minQ∈Q EQ
[
Z
]
, where Q is a closed, convex, non-empty set of

probability distributions over Ω. If Q is a polyhedron defined by K extreme points
(Qk)k∈[[1;K]], then the risk measure is denoted ρ̌ and said to be polyhedral, with
ρ̌[Z ] = minQ1,...,QK EQk

[
Z
]
.

Problem RaSp(ρ̌) can be written as follows

RaSp(ρ̌) :

max
θ,x,xr,y

θ (6.4a)

s.t. θ ≤ EQk
[
Wsp

]
, ∀k ∈ [[1;K]] , (6.4b)

x+ xr(ω) ≥ y(ω) , ∀ω ∈ Ω . (6.4c)

In what follows we assume that all risk measures are coherent.
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6.2. Statement of problem

Remark on non linearity of risk averse objective function

By linearity of expectation we have EP[Wsp] = EP[Wp] +EP[Wc] hence the criterion
of the social planner is natural, which is not the case anymore with risk-aversion.
The social planner criterion could be either ρ(Wsp) or ρ(Wp)+ρ(Wc). Furthermore,
by concavity and positive homogeneity, we have ρ(Wp +Wc) ≥ ρ(Wp) + ρ(Wc).

6.2.2. Equilibrium problem

We now define a competitive partial equilibrium for our model. This competitive
equilibrium can be risk neutral or risk averse. Definitions come from general equi-
librium theory (See Arrow and Debreu (1954) or Uzawa (1960)).

Risk neutral equilibrium

Given a probability P on Ω, a risk-neutral equilibrium RnEq(P) is a set of prices{
π(ω) , ω ∈ Ω

}
such that there exists a solution to the system

RnEq(P) :

max
x,xr

EP

[
Wp + π

(
x+ xr

)]
, (6.5a)

max
y

EP
[
Wc − πy

]
, (6.5b)

0 ≤ x+ xr(ω)− y(ω) ⊥ π(ω) (6.5c)

Here, the producer maximizes its expected profit (6.5a), the consumer maximizes
its expected utility (6.5b) and the market clears with (6.5c) (which means that
either prices are null or supply equals demand). As the consumer has no first stage
decision, she can optimize each scenario independently and so problem (6.5b) can
be replaced by

max
y(ω)

Wc(ω)− π(ω)y(ω) , ∀ω ∈ Ω .

Risk averse equilibrium

Given two risk measures ρp and ρc over Ω, a risk-averse equilibrium RaEq(ρp, ρc)
is a set of prices

{
π(ω) : ω ∈ Ω

}
such that there exists a solution to the following

system

RaEq(ρp, ρc) :

max
x,xr

ρp

(
Wp + π

(
x+ xr

))
, (6.6a)

max
y

ρc
(
Wc − πy

)
, (6.6b)

0 ≤ x+ xr(ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω . (6.6c)

Since the coherent risk measure ρc of the consumer is monotonic, and noting that
she has no first-stage decision, she can optimize scenario per scenario. Thus, she is
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6. On risk averse competitive equilibrium

insensitive to risk as any monotonic risk measure will lead to the same action (al-
though not the same welfare). Since ρp is also monotonic, we can endow both agents
with the same risk measure. In that case, we denote problem (6.6) by RaEq(ρ).

We now consider polyhedral risk measure ρ̌, using formulation (6.4), the equilib-
rium problem (6.6) reads

RaEq(ρ̌) :

max
θ,x,xr

θ (6.7a)

s.t. θ ≤ EQk
[
Wp + π(x+ xr)

]
, ∀k ∈ [[1;K]] ,

max
y(ω)

Wc(ω)− πy(ω) , ∀ω ∈ Ω , (6.7b)

0 ≤ x+ xr(ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω . (6.7c)

6.2.3. Trading risk with Arrow-Debreu securities

Until now, we have considered equilibrium problems in an incomplete market. Fol-
lowing the path of Philpott et al. (2016), we complete the market using Arrow-
Debreu securities.

Definition 6.2.1. An Arrow-Debreu security for node ω ∈ Ω is a contract that
charges a price µ(ω) in the first stage, to receive a payment of 1 in scenario ω.

The consumer now has a first-stage decision which is the number of contracts she
buys, so the choice of the consumer risk measure ρc has now consequences. For
convenience, this risk measure ρc is chosen to be the same as that of the producer ρp
and will be denoted by ρ. Unless stated otherwise, from now on we use polyhedral
risk measures.

Denote a(ω) (resp. b(ω)) the number of Arrow-Debreu securities bought by the
producer (resp. the consumer). We denote by µ(ω) the price of the Arrow-Debreu
securities associated with scenario ω. In this case the producer pays

∑
ω∈Ωµ(ω)a(ω)

in the first stage, in order to receive a(ω) in scenario ω. As a(ω) + b(ω) represents
excess demand, requiring that supply is greater than demand consists in requiring
a(ω) + b(ω) ≤ 0. Prices {π(ω),µ(ω)}ω∈Ω form a risk-trading equilibrium if there
exists a solution to:

RaEq-AD(ρ̌) :

max
θ,x,xr,a

θ −
∑
ω∈Ω

µ(ω)a(ω) (6.8a)

s.t. θ ≤ EQk

[
Wp + π(x+ xr) + a

]
, ∀k ∈ [[1;K]] , (6.8b)

max
φ,y,b

φ−
∑
ω∈Ω

µ(ω)b(ω) (6.8c)

s.t. φ ≤ EQk
[
Wc − πy + b

]
, ∀k ∈ [[1;K]] , (6.8d)

0 ≤ x+ xr(ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω , (6.8e)

0 ≤ −a(ω)− b(ω) ⊥ µ(ω) ≥ 0 , ∀ω ∈ Ω . (6.8f)

and the price µ is zero. Given prices π(ω) and µ the risk-trading
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6.3. Some equivalences between social planner and
equilibrium problems

We recall a trivial equivalence between problem RnSp(P) and problem RnEq(P)
before showing an equivalence between problem RaSp(ρ̌) and problem RaEq-AD(ρ̌).

6.3.1. Equivalence in the risk neutral case

Proposition 6.3.1. Let P be a probability measure over Ω. The elements x
]
, x

]

r

and y
]

are optimal solutions to RnSp(P) if and only if there exist equilibrium prices
π
]

for RnEq(P) with associated optimal decisions x
]
, x

]

r and y
]
.

Proof. As the producer and the consumer optimize over different uncoupled vari-
ables, it is equivalent to optimize their objectives separately or jointly. Problem (6.5)
is thus equivalent to

max
x,xr,y

EP
[
Wp + π(x+ xr)

]
+ EP

[
Wc − πy

]
,

0 ≤ x+ xr(ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω ,

which by linearity of the expectation is equivalent to

max
x,xr,y

EP
[
Wsp + π(x+ xr − y)

]
,

0 ≤ x+ xr(ω)− y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω .

This is equivalent to the optimality conditions for problem (6.2a). Convexity and
linearity of constraints ends the proof. problem (6.2a). �

Corollary 6.3.2. If both the producer’s and the consumer’s criterion are strictly
concave and if P charges all ω, then the problem RnSp(P) admits a unique solution
and the problem RnEq(P) admits a unique equilibrium.

Proof. The probability distribution P charges all ω. Then by strict concavity,
RnSp(P) has a unique solution. If RnEq(P) has two different solutions (x1,x1

r,y
1)

and (x2,x2
r,y

2) with π1 and π2 respectively then, by Proposition 6.3.1, x1 = x2,
x1
r = x2

r, and y1 = y2. Since (6.5b) implies π1(ω) = V(ω) − r(ω)y1(ω), we have
π1 = π2 which gives the result. �

6.3.2. Equivalence in the risk-averse case

The following proposition is an extension of Theorem 7 of Ralph and Smeers (2015),
to a model with producers and consumers, in the special case of a finite number of
scenarios with polyhedral risk measures.

Proposition 6.3.3. Let π and µ be equilibrium prices such that
(
x
]
,x

]

r,y
]
,a,b, θ, ϕ

)
solves RaEq-AD(ρ̌). Then

(i) µ is a probability measure, and x
]
,x

]

r,y
]

solves the risk-neutral social planning
problem when evaluated using probability µ, RnSp(µ).

(ii) x
]
,x

]

r,y
]

solves the risk-averse social planning problem, RaEq-AD(ρ̌) with worst
case measure µ.
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Proof. (i) Each agent problem is convex with linear constraints. Hence the optimal
solution satisfies for each problem the Karush-Kuhn-Tucker (KKT) conditions. The
Lagrangian of the producer problem reads

Lp = θ −
∑
ω∈Ω

µ(ω)a(ω) +
∑
k

λk

(
EQk

[
Wp + π(x+ xr) + a

]
− θ
)
,

where λk is the multiplier associated to constraint (6.8b). Then, the KKT conditions
imply that

∑
k λk = 1, and µ =

∑
k λkQk. In particular, µ is a probability measure

in Q. Furthermore (x
]
,x

]

r) maximizes
∑

ω∈Ωµ(ω)
(
Wp(ω)−π(ω)(x+ xr(ω))

)
which

is the risk-neutral producer objective evaluated with measure µ.
Similarly, looking at the consumer problem with multiplier σk associated to con-

straint (6.8d), we obtain
∑

k σk = 1 and µ =
∑

k σkQk. Hence, the consumer
maximizes her risk-neutral objective under the same probability µ as the producer.

Since by hypothesis the solutions satisfy (6.8e) we have that
(
x
]
,x

]

r(ω),y
]
(ω)
)

solves RnSp(µ).
(ii) Observe that complementary slackness gives

λk

(
EQk

[
W

]

p + π
(
x
]

+ x
]

r

)
+ ā)

]
− θ̄
)

= 0 ,

σk

(
EQk

[
W

]

c − πy
]

+ b̄
]
− ϕ̄

)
= 0 ,

where W
]

p and W
]

c are defined by (6.1) in terms of x
]
, x

]

r and y
]
. Summing over k,

and leveraging (6.8f) gives

θ̄ + ϕ̄ = Eµ [W
]

p + π
(
x
]

+ x
]

r

)
+ ā] + Eµ [W

]

c − π ȳ + b̄] ,

= Eµ [W
]

p +W
]

c ] . (6.11)

However as

θ̄ + ϕ̄ = min
Q∈Q

EQ[W
]

p + π
(
x
]

+ x
]

r

)
+ ā]

+ min
Q′∈Q

EQ′ [W
]

c − πy
]

+ b̄] ,

≤ min
Q∈Q

EQ[W
]

p +W
]

c + ā + b̄] ,

≤ min
Q∈Q

EQ[W
]

p +W
]

c ] . (6.12)

Combining (6.11) and (6.12) and observing that µ ∈ Q, we have

Eµ [W
]

p +W
]

c ] = min
Q∈Q

EQ[W
]

p +W
]

c ]. (6.13)

To complete the proof, consider any feasible x,xr(ω),y(ω). By part (i) and µ ∈ Q,
we have

Eµ [W
]

p +W
]

c ] ≥ Eµ [Wp +Wc] ≥ min
Q∈Q

EQ[Wp +Wc] ,
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where Wp and Wc are defined by (6.1). Thus (6.13) gives

min
Q∈Q

EQ[W
]

p +W
]

c ] ≥ min
Q∈Q

EQ[Wp +Wc] .

This shows that (
x
]

,x
]

r,y
]) ∈ arg max

x,xr,y
min
Q∈Q

EQ[Wp +Wc] ,

as required. �

Remark 6.3.4. Note that an equilibrium of RaEq-AD(ρ̌) consists of a price vector π,
giving one price per scenario, and a probability µ that is seen by both the producer
and the consumer as a worst-case probability for the welfare plus trade evaluation.

Remark 6.3.5. In Section 6.4 we give an example of three risked equilibrium with-
out Arrow-Debreu securities, each corresponding to a risk-neutral equilibrium with
different measure µ(ω). However if Arrow-Debreu securities are included then two
of these equilibria are no longer equilibria in a risk-averse setting. The risk-averse
consumer, who without Arrow-Debreu securities had no mechanism to alter his out-
comes will trade these securities to improve their risk-adjusted payoff.

Remark 6.3.6. Consider a set of prices π that gives a risked equilibrium in which
agent i has payoff Wi(π) and risked payoff ρi

(
Wi(π)

)
. Suppose that there ex-

ists a probability measure Q∗ such that ρi
(
Wi(π)

)
= EQ∗

[
Wi(π)

]
. Observe that

this does not imply that choosing actions x to maximize EQ∗ [Wi(π)] will give
maxx ρi

(
Wi(π)

)
. This is because x∗ solves

max
x

ρi
(
Wi(π)

)
= max

x
min
Q∈Q

EQ
[
Wi(π)

]
,

and not
max
x

EQ∗
[
fi(x,π)

]
,

since Q∗ depends on x.

Remark 6.3.7. Proposition 6.3.3 is easily extended to the case where the agents
have different risk measures ρp and ρc with non-disjoint risk set. In this case, (6.12)
becomes

θ̄ + ϕ̄ = min
Qp∈Qp

EQp [π
(
x
]

+ x
]

r

)
+W

]

p + ā]

+ min
Qc∈Qc

EQc [W
]

c − πy
]

+ b̄] ,

≤ min
Q∈Qp∩Qc

EQ[W
]

c +W
]

p ] , (6.14)

and the social planner uses a risk measure with Q = Qp ∩ Qc.

The following proposition (Theorem 11 Philpott et al. (2016)) stands as a reverse
statement for Proposition 6.3.3.

Proposition 6.3.8. Let the elements x
]
, x

]

r and y
]

r be optimal solutions to RaSp(ρ̌),
with associated worst case probability measure µ. Then there exists prices π such
that the couple (π,µ) forms a risk trading equilibrium for RaEq-AD(ρ̌) with associ-

ated optimal solutions (x
]
,x

]

r,y
]
).
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6. On risk averse competitive equilibrium

Combining Proposition 6.3.3 and Proposition 6.3.8, we are able to state the fol-
lowing result of uniqueness of equilibrium.

Corollary 6.3.9. If both the producer’s and consumer’s criterion are strictly con-
cave, and if each of the extreme points Qk charges all ω, then RaSp(ρ̌) admits a
unique solution (x

]
,x

]

r,y
]
). Furthermore RaEq-AD(ρ̌) admits unique optimal deci-

sions (x
]
,x

]

r,y
]
). If, in addition, solving RaSp(ρ̌) admit a unique worst case proba-

bility measure µ, then equilibrium prices (π,µ) are unique.

Proof. As each of the extreme points Qk charges all ω, the risk averse social planner
problem is strictly convex with linear constraints. Thus there exists a unique solution
(x

]
,x

]

r,y
]
) attained for a worst case probability µ. Applying Proposition 6.3.8,

we know that there exists π such that (π,µ) forms a risk trading equilibrium.
Suppose now that there exists two risk-trading equilibria (π1,µ1, x1,x1

r,y
1) and

(π2,µ2, x2,x2
r,y

2). Then, by Proposition 6.3.3, they both solve RaSp(ρ̌) which

admits a unique solution. Consequently, we have x
]

= x1 = x2, x
]

r = x1
r = x2

r and
y
]

= y1 = y2.
If in addition, µ1 = µ2, then by Corollary 6.3.2, we deduce that π1 = π2 which

ends the proof. �

We have shown a first equivalence between RnSp(P) and RnEq(P) and a second
one between RaSp(ρ̌) and RaEq-AD(ρ̌). These equivalences lead to uniqueness of
equilibrium if there is uniqueness of the solution of the social planner. A natural
question arises: if RaSp(ρ̌) has a unique solution, is there a unique equilibrium for
RaEq(ρ̌)? The next section provides a simple counterexample.

6.4. Multiple risk averse equilibrium

In this section, we present a toy problem where RaSp(ρ̌) has a unique optimum but
there are three different equilibria for RaEq(ρ̌). They are first found numerically
using classical methods (PATH solver and a tâtonnement algorithm), then derived
analytically. An interesting point is that the equilibrium found by PATH is unstable.

Let Ω = {1, 2} and Q = conv
{

(1
4
, 3

4
), (3

4
, 1

4
)
}

. For simplicity of notation index
by i ∈ {1, 2} the realization of each random variable. We choose the following
parameters: V1 = 4, V2 = 48

5
, c = 23

2
, c1 = 1, c2 = 7

2
, r1 = 2, r2 = 10.

6.4.1. Multiple equilibrium

PATH solver

First we look for equilibrium using GAMS with the solver PATH in the EMP frame-
work (SeeBrook et al. (1988), Ferris et al. (2009) and Ferris and Munson (2000)).
We have run GAMS from different starting points defined by a grid 100× 100 over
the square [1.220; 1.255]× [2.05; 2.18]. We always find an equilibrium defined by

π = (π1, π2) = (1.23578; 2.10953) ,

leading to risked adjusted welfare (0.821; 2.134) for producer and consumer respec-
tively.
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6.4. Multiple risk averse equilibrium

Walras tâtonnement

We now compute equilibria using a tâtonnement algorithm (See Uzawa (1960)).

Data: MAX-ITER, (π0
1, π

0
2), τ

1 for k from 0 to MAX-ITER do
2 Compute an optimal decision for each player given a price :

3 x, x1, x2 ∈ arg max ρ
(
Wp + π(x+ xr)

)
;

4 y1, y2 ∈ arg max ρ(Wc − πy);
5 Update the price :

6 π1 = π1 − τ max
{

0; y1 − (x+ x1)
}

;

7 π2 = π2 − τ max
{

0; y2 − (x+ x2)
}

;

8 end
9 return (π1, π2)

Algorithm 2: Walras tâtonnement

Running algorithm 2 starting from (1.25; 2.06), respectively from (1.22; 2.18), with
100 iterations and a step size of 0.1, we find two new equilibria:

π = (1.2256; 2.0698) and π = (1.2478; 2.1564) ,

leading to risked-adjusted welfare for producer and consumer respectively

(0.797; 2.152) and (0.845; 2.113) .

Notice that neither equilibrium dominates the other.
An alternative tatônnement method called FastMarket (see Facchinei and Kanzow

(2007)) finds the same equilibrium.

6.4.2. Analytical results

We now compute the three equilibrium analytically. Details of the computation are
in 6.5.

Consider two probabilities (p, 1 − p) and (p̄, 1 − p̄) Given prices 0 < π1 < π2, we
solve the producer (resp. consumer) optimization problem. Optimal decisions are
derived in 6.5.1 and summed up in Table 6.1 where xc is given by

xc(π) =
1

2(π1 − π2)

(
π2

2

c2

− π2
1

c1

)
.

We see that there are three regimes, depending only on the prices (π1, π2), of
optimal first stage solutions. Case a) (resp. case c)), corresponds to a set of prices
such that Ep̄[Wp] < Ep[Wp] (resp. Ep̄[Wp] > Ep[Wp]), and the optimal decision cor-
responds to an optimal risk-neutral decision with respect to one of the two extreme
points of Q. On the other hand, case b) corresponds to a set of prices such that
the expected welfare is equivalent for all probability in Q, i.e. Ep̄[Wp] = Ep[Wp].
In Figure 6.1, the red area corresponds to case a), the blue to case b) and the red
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6. On risk averse competitive equilibrium

condition x] x]i y]i

case a) xc ≤
Ep̄
[
π
]

c

Ep̄
[
π
]

c
πi
ci

Vi−πi
ri

case b)
Ep̄
[
π
]

c
≤ xc ≤

Ep
[
π
]

c
xc

πi
ci

Vi−πi
ri

case c)
Ep
[
π
]

c
≤ xc

Ep
[
π
]

c
πi
ci

Vi−πi
ri

Table 6.1.: Optimal control for producer and consumer problems

to case c), separated by black lines of equations Ep̄[π ]

c
= xc(π) and

Ep[π ]

c
= xc(π)

respectively.
We are now looking for prices (π1, π2) such that the complementarity constraints

are satisfied. For strictly positive prices, these constraints can be summed up as

zi(π) = x
]

(π) + x
]

i(π)− y]i (π) = 0 , i ∈ {1, 2}.

Accordingly we define excess supply functions zli for case l ∈ {a, b, c}, and i ∈
{1, 2}. The red, blue and green lines corresponds to manifolds of null excess supply
function for scenario i, that is of prices such that zli(π1, π2) = 0. When the lines
cross we have z1

l = z2
l = 0, and thus we have candidate equilibrium. If the lines

cross in the area of the same color we have an equilibrium. This is the case with
the parameters chosen, and equilibrium can be derived in exact arithmetic.

We end with a few remarks derived from this example.

Remark 6.4.1. The PATH solver finds the blue equilibrium, Algorithm 2 finds the
green and the red equilibrium as illustrated by Figure 6.2. Interestingly it can be
shown that the blue equilibrium is unstable in the sense that the dynamical system
driven by π′ = z(π) is not locally stable (see Samuelson (1941)) around the blue
equilibrium (see 6.6).

Remark 6.4.2. No equilibrium dominates another: if going from one equilibrium
to another increases the (risk-adjusted) welfare of one agent, then it decreases the
(risk-adjusted) welfare of the other.

Remark 6.4.3. Using the analytical results we check that there exists a set of non-
zero Lebesgue measure of parameters V1, V2, c, c1, c2, r1, and r2 (albeit small), that
have three distinct equilibria with the same properties.

Remark 6.4.4. We can show that the blue equilibrium is a convex combination of
red and green equilibrium, illustrated on Figure 6.1 by the dashed blue line.

Acknowledgments

The first-named author want to thank French ambassy of New-Zealand for their
administrative help and for the financial support thanks to France–New-Zealand
friendship fund.

The authors want to thank PGMO programs for their financial support.

118



6.5. Analytical results
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Figure 6.1.: Null excess function per scenario manifold for V1 = 4, V2 = 48
5

, c = 23
2

,
c1 = 1, c2 = 7

2
, r1 = 2, r2 = 10.

6.5. Analytical results

We first analyses the best responses of the producer and the consumer given a price
π. Then, we deduce conditions on the price and find equilibrium prices.

6.5.1. Parametric solution with respect to π

Assume without loss of generality that 0 < π1 < π2.
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2

(a) around green equilibrium. (b) around blue equilibrium. (c) around red equilibrium.

Figure 6.2.: Representation of vector field π′ = z(π)
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6. On risk averse competitive equilibrium

Statement of consumer’s problem

The consumer solves one problem per scenario ωi, i = 1, 2. Let V1, V2, r1 and r2 be
strictly positive constants. The consumer problem for ωi is

min
yi

πiyi − Viyi +
1

2
riy

2
i .

Statement of producer’s problem

The risk aversion of the producer is represented by a coherent risk measure ρ with
risk set Q. Then the producer problem reads

min
x≥0,xr≥0

ρ
[
C(x) +Cr(xr)− π(x+ xr)

]
.

Note that in the case of two outcomes the probability P measure can be defined
by P(ω1), which we denote p. Hence the probability set P can be described by an
interval [p, p̄].

Then the producer problem reads

min
x≥0,x1≥0,x2≥0

1

2
cx2 + max

p∈[p,p̄]

{
p
(c1x

2
1

2
− π1(x+ x1)

)
(6.15)

+(1− p)
(c2x

2
2

2
− π2(x+ x2)

)}
(6.16)

Statement of complementary constraints

The complementary constraint states that a feasible solution is a solution where
production is greater than demand for each scenario ω ∈ Ω. Moreover, we want
equality between production and demand at equilibrium. These constraints are
written

0 ≤ (x+ xr(ω))− y(ω) ⊥ π(ω) ≥ 0 . (6.17)

Analytic solution of the producer’s problem

Focusing on the second stage problem of (6.15) we have

Q(π)(x) = max
p∈[p,p̄]

pmin
x1≥0

{c1x
2
1

2
− π1(x+ x1)

}
+(1− p) min

x2≥0

{c2x
2
2

2
− π2(x+ x2)

}
.

Note that for i ∈ {1, 2} ci > 0, hence we have x
]

i = πi
ci

which in turn gives

Q(π)(x) = max
p∈[p,p̄]

−p
( π2

1

2c1

+ π1x
)
− (1− p)

( π2
2

2c2

+ π2x
)

(6.19)

= max
p∈[p,p̄]

p
(( π2

2

2c2

− π2
1

2c1

)
+
(
π2 − π1

)
x
)
−
( π2

2

2c2

+ π2x
)
.
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6.5. Analytical results

condition x] x]i y]i

case a) xc ≤
Ep̄
[
π
]

c

Ep̄
[
π
]

c
πi
ci

Vi−πi
ri

case b)
Ep̄
[
π
]

c
≤ xc ≤

Ep
[
π
]

c
xc

πi
ci

Vi−πi
ri

case c)
Ep
[
π
]

c
≤ xc

Ep
[
π
]

c
πi
ci

Vi−πi
ri

Table 6.2.: Optimal control for producer and consumer problems

Defining

xc(π) =
−1

π2 − π1

( π2
2

2c2

− π2
1

2c1

)
, (6.20)

we see that the worst case probability is given by

p
]

(π) =


p̄ if x > xc(π) ,

p if x < xc(π) ,

any p ∈ [p, p̄] if x = xc(π) ,

and thus Equation (6.19) yields

Q(π)(x) =

−Ep̄
[
π2

2cr
+ πx

]
if x ≥ xc(π) ,

−Ep
[
π2

2cr
+ πx

]
if x < xc(π) .

Now the first stage problem (Problem (6.15)) reads

min
x≥0

1

2
cx2 − Ep̄

[ π2

2cr
+ πx

]
1x≥xc − Ep

[ π2

2cr
+ πx

]
1x<xc .

We have

min
x≥xc

1

2
cx2 +Q(π)(x) =

−
1
2c
Ep̄
[
π
]2 − Ep̄

[
π2

2cr

]
if xc ≤

Ep̄
[
π
]

c
,

1
2
cx2

c − Ep̄
[
π2

2cr
+ πxc

]
if

Ep̄
[
π
]

c
≤ xc ,

attained at
Ep̄
[
π
]

c
and xc respectively.

If xc > 0 we also have

min
0≤x≤xc

1

2
cx2 +Q(π)(x) =


1
2
cx2

c − Ep̄
[
π2

2cr
+ πxc

]
if xc ≤

Ep
[
π
]

c
,

− 1
2c
Ep
[
π
]2 − Ep

[
π2

2cr

]
if

Ep
[
π
]

c
≤ xc ,

attained at xc and
Ep
[
π
]

c
respectively. If xc ≤ 0 the solution given earlier holds.

Recall that Ep
[
π
]
≤ Ep

[
π
]
, thus the optimal solution can be summed up in Table

6.2
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6. On risk averse competitive equilibrium

6.5.2. Finding price equilibrium

Looking at Table 6.2 we see that there are three regimes, depending only on the
prices (π1, π2) of optimal first stage solutions. We are now looking for prices (π1, π2)
such that the complementarity constraint (6.17) is satisfied. For strictly positive
prices, this constraint can be summed up as

zi(π) = x
]

(π) + x
]

1(π)− y]i (π) = 0, i ∈ {1, 2}. (6.21)

To go further we are going to split cases by defining the auxiliary excess demand
function

zai (π) =
Ep̄
[
π
]

c
+
πi
ci
− Vi − πi

ri
,

zbi (π) = xc(π) +
πi
ci
− Vi − πi

ri
,

zci (π) =
Ep
[
π
]

c
+
πi
ci
− Vi − πi

ri
,

such that we have

z = za1
cxc(π)≤Ep̄

[
π
] + zb1

Ep̄
[
π
]
≤cxc(π)≤Ep

[
π
] + zc1

Ep
[
π
]
≤cxc(π)

.

Case a and c

The set of prices such that zai (π) = 0 are lines given by

π2 =
cc1V1 −

(
c1r1p̄+ c(r1 + c1)

)
π1

c1r1(1− p̄)
,

π2 =
cc2V2 − c2r2p̄π1

c2r2(1− p̄) + c(r2 + c2)
,

and the equilibrium can be found by solving the linear system. Case c is similar,
subtituting p̄ by p.

Case b

The set of prices such that zbi (π) = 0 are an ellipsoid and an hyperbola given by

1

π1 − π2

( π2
2

2c2

− π2
1

2c1

)
+
π1

c1

− V1 − π1

r1

= 0 ,

1

π1 − π2

( π2
2

2c2

− π2
1

2c1

)
+
π2

c2

− V2 − π2

r2

= 0 ,

whose affine equations read

π2
2

2c2

−
( 1

c1

+
1

r1

)
π1π2 +

( 1

r1

+
1

2c1

)
π2

1 + (π2 − π1)
V1

r1

= 0 ,( 1

r2

+
1

2c2

)
π2

2 −
( 1

c2

+
1

r2

)
π1π2 +

1

2c1

π2
1 − (π2 − π1)

V2

r2

= 0 .
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6.6. Unstability of equilibrium

6.6. Unstability of equilibrium

Definition 6.6.1. Let π(t) be the general solution of the differential equation

π ′ = z(π) , (6.23)

such that π(0) = π0 An equilibrium π
]

such that z(π) = 0 is said to be locally
stable if for all ε > 0, there exists δ > 0 such that

‖π0 − π
]‖ < δ ⇒ ‖π(t)− π]‖ < ε , ∀t > 0 . (6.24)

Using results from the field of Ordinary Differential Equations (see Mattheij and
Molenaar (2002)), the local stability can be determined from studying the lineariza-
tion of the system around the equilibrium point.

Proposition 6.6.2. Let π
]

be an equilibrium point. Let A be the Jacobian matrix

of z(π) at point π
]
. Then π

]
is stable if and only both real parts of eigenvalues of

A are strictly positive.

Computing matrix A and its eigenvalues in exact arithmetic (using Maxima), we
find that the blue equilibrium is unstable and that green and red equilibria are
stable.

6.7. Conclusion

In Section 6.2 we have presented equilibrium and optimization models in the risk
neutral case and the risk averse case. In Section 6.3 we have given links between
equilibrium and optimization problems in the risk neutral and complete risk-averse
cases. Finally, in Section 6.4 we have detailled a simple example that displays
multiple equilibria in the incomplete risk-averse case.
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7. Equilibrium and player consistency

7.1. Introduction

We have seen in Chap. 6 that prices and Arrow-Debreu securities are suitable tools
to get uniqueness of equilibrium. In this chapter, we revisit the toy problem pre-
sented in Chapter 6 at the light of the framework of Player Consistency presented
in Sect. 5.2. We invite the reader to refer to Sect. 6.2 even if we recall notations to
remain self-contained.

Consider a two time-step single-settlement market for one good. In a single set-
tlement market, the producer can arrange in advance for a production of x at a
marginal cost cx as a first-step decision, and choose the value of a recourse variable
xr incurring an uncertain marginal cost crxr. We assume that there are a finite
number of scenarios ω ∈ Ω determining the coefficient cr(ω).

The product is purchased in the second step by a consumer with a utility function
V(ω)y(ω)− 1

2
r(ω)y2(ω). The consumer has no first-stage decision, and the amount

purchased y(ω) depends on the scenario.
We also recall that the vectorial order is the pointwise order. Decisions x, xr(ω)

and y(ω) can be made to maximize a social objective. We denote by

Wp(ω) = −1

2
cx2 − 1

2
cr(ω)xr(ω)2 , ∀ω ∈ Ω , (7.1a)

the welfare of the producer, and by

Wc(ω) = V(ω)y(ω)− 1

2
r(ω)y(ω)2 , ∀ω ∈ Ω , (7.1b)

the welfare of the consumer. Then the welfare of the social planner can be defined
by

Wsp = Wp +Wc . (7.2)

Following the idea of making connections with the framework of player consistency
presented in Sect. 5.2, we introduce the sets

H = R× R|Ω| and T = R|Ω| . (7.3)

7.2. Player consistency and equilibrium with risk
neutral players

As we focus on the question of time consistency, we introduce the mappings A,FH
and FT defined by

A : H× T→ R , (7.4a)(
(x,xr),y

)
7→ EP

[
Wp +Wc

]
, (7.4b)

F
π
H : H→ R , (7.4c)

(x,xr) 7→ EP[Wp + π(x+ xr)] , (7.4d)

F
π
T : T→ R , (7.4e)

y 7→ EP[Wc − πy] , (7.4f)
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7.2. Player consistency and equilibrium with risk neutral players

and we denote by (x
]
,x

]

r,y
]
) the solutions of the optimization problem of the social

planner

max
x,xr,y

A
(
(x,xr),y

)
, (7.5a)

s.t. x+ xr = y . (7.5b)

Looking at Equation (7.4), it is not obvious if there exists a mapping SA,F such
thatA = SA,FH,FT◦(FπH , F

π
T ) or in other words, it is not clear if the triplet (A,F

π
H , F

π
T )

is Player Consistent.
We now interpret the prices π as a tool to build agent consistency. For this

purpose, we introduce the mapping Ãπ by

Ãπ : H× T→ R , (7.6a)

(x,xr,y) 7→ EP
[
Wp +Wc + π(x+ xr − y)

]
. (7.6b)

Let us notice two facts.

1. First, the triplet (Ãπ , F
π
H , F

π
T ) is Player Consistent for any price π.

2. Second, there exists a system of prices π
]

such that, when trying to maximizes

welfares, A and Ãπ
]

coincides at optimum i.e.

Ãπ
]

(x̃
]

, x̃
]

r, ỹ
]

) = A(x
]

,x
]

r,y
]

) . (7.7)

We now state our proposition that links Player Consistency and Equilibrium in
the risk neutral case

Proposition 7.2.1.

1. For all prices π, the triplet (Ãπ , F
π
H , F

π
T ) in (7.4) and in (7.6) is Strong Player

Consistent and the subaggregator SÃ
π ,FH,FT has the following form

SÃ
π ,FH,FT (α, β) = α + β . (7.8)

2. If there exists equilibrium prices π̃, the mapping A and Ãπ̃ coincides at opti-
mum, i.e. Equation (7.7) is satisfied.

Proof. By Definition 5.10, the subaggregator SÃ
π ,FH,FT is equal to

SÃ
π ,FH,FT (α, β) =

{
Ãπ(x,xr,y) | FH(x,xr) = α , FT(y) = β

}
. (7.9)

Using Equations (7.4) and (7.6) this rewrites

SÃ
π ,FH,FT (α, β) = α + β . (7.10)

The subaggregator SÃ
π ,FH,FT is hence an mapping increasing in both arguments.

By Proposition 5.2.7, the triplet (A,F
π
H , F

π
T ) is thus Strong Player Consistent.

Last assertion is a direct application of Proposition 6.3.1. This ends the proof.
�
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7. Equilibrium and player consistency

7.3. Player consistency and equilibrium with risk
averse players

In the risk neutral case, linearity of the expectation plays a crucial role. We are now
dealing with convex risk measures but the question remains the same. Assuming
that each player and the social planner are endowed with their own risk measures,
does there exist perturbations such that perturbated criterion of the social planner
is an aggregation of perturbated criteria of each player ?

Let ρsp
1 , ρp and ρc be the risk measures of the social planner, the producer and

the consumer respectively.
We introduce the mappings A,FH and FT defined by

A : H× T→ R , (7.11a)

(x,xr,y) 7→ ρsp
(
Wp +Wc

)
, (7.11b)

F
π
H : H→ R , (7.11c)

(x,xr) 7→ ρp
(
Wp + π(x+ xr)

)
, (7.11d)

F
π
T : T→ R , (7.11e)

y 7→ ρc(Wc − πy) , (7.11f)

Looking at Equation (7.11), it is not obvious if there exists a mapping SA,F such
that A = SA,FH,FT ◦ (F

π
H , F

π
T ). Finding good properties on risk measures to get

Consistency is still an open question.

7.4. Conclusion

In this section, we have make some connections between the framework of Player
Consistency presented in Sect. 5.2 and Equilibrium problems presented in Chapter 6.

This allows us to interpret, in the risk neutral case, equilibrium prices, as tools to
build player consistency.

1 As said in Chapter 6, by linearity of expectation we have EP[Wp +Wc] = EP[Wp] + EP[Wc]
hence the criterion of the social planner is natural, which is not the case anymore with risk-
aversion. The social planner criterion could be either ρsp(Wp + Wc) or ρsp(Wp) + ρsp(Wc).
The first is more natural as it makes economic sense to add welfares.
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Part IV.

Risk averse classification and
estimation problems
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8. General risk measures for robust machine learning

A wide array of machine learning problems are formulated as the minimization
of the expectation of a convex loss function on some parameter space. Since the
probability distribution of the data of interest is usually unknown, it is is often
estimated from training sets, which may lead to poor out-of-sample performance.
In this work, we bring new insights in this problem by using the framework which
has been developed in quantitative finance for risk measures. We show that the
original min-max problem can be recast as a convex minimization problem under
suitable assumptions. We discuss several important examples of robust formulations,
in particular by defining ambiguity sets based on ϕ-divergences and the Wasserstein
distance. We also propose an efficient algorithm for solving the corresponding convex
optimization problems involving complex convex constraints. Through simulation
examples, we demonstrate that this algorithm scales well on real data sets.

8.1. Introduction

In machine learning, the robustness of the solutions obtained for classification and
prediction tasks remains a main issue. In Papernot, McDaniel, and Goodfellow
(2016) and Kurakin, Goodfellow, and Bengio (2016), some examples are provided
where small modifications of the input data can completely change the resulting
solution.

This kind of problems also occurs in optimal control when there exist uncertainties
on parameters. In Ben-Tal and Nemirovski (2000), the authors showed that a small
perturbation on the parameters can turn a feasible solution into an infeasible one.

In this context, robust approaches appear as a way of controlling out-of-sample
performance. There is an extensive literature dealing with robust problems and the
reader is refered to Ben-Tal, El Ghaoui, and Nemirovski (2009) for a survey. One of
the main approaches consists of introducing constraints on the probability distribu-
tion of the unknown data. Under some conditions, this approach is equivalent to deal
with ambiguity sets or a modified loss function. The works in Ben-Tal, Den Hertog,
De Waegenaere, Melenberg, and Rennen (2013); Hu and Hong (2013); Duchi, Glynn,
and Namkoong (2016); Moghaddam and Mahlooji (2016) and Namkoong and Duchi
(2016) have brought more insight on ambiguity sets. In Esfahani and Kuhn (2015)
and Esfahani, Shafieezadeh-Abadeh, Hanasusanto, and Kuhn (2017), the authors
present a distributionally robust optimization framework based on the Wasserstein
distance. A set of probability distributions is defined as a ball centered on the ref-
erence probability with respect to the Wasserstein distance, then the optimization
is carried out for the worst cost over this probability set.

This idea of minimizing the worst cost over a given probability set is well-known
in quantitative finance. The robust representation of risk measures provides a the-
oretical framework to do so. A good class of risk measures is the class of coherent
ones which were introduced in the seminal paper by Artzner, Delbaen, Eber, and
Heath (1999). In Föllmer and Schied (2016), a broader class of so-called convex risk
measures was investigated, for which a large number of results were established.

In this paper, we follow the line of Esfahani and Kuhn (2015), which aims at
reformulating robust problems using ambiguity sets as convex minimization prob-
lems. Our contribution is threefold. First we clarify the links existing between risk
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8.2. Problem statement

measures and robust optimization. This allows us to transpose results from finance
to machine learning. Second, we propose a unifying convex optimization setting for
dealing with various risk measures, including those based on ϕ-divergences or the
Wasserstein distance. Finally, we propose an accelerated algorithm grounded on the
subgradient projection method proposed in Combettes (2003). We show that the
proposed algorithm is able to solve efficiently large-scale robust problems.

The organization of the paper is as follows. In Section 8.2, we state the general
problem we investigate in the context of machine learning. In Section 8.3, we first
establish a parallel between this problem and convex monetary risk measures. We
then provide a convex reformulation of the problem. In Section 8.4, we discuss
some important classes of risk measures by revisiting some of the results in the
literature. In Section 8.5, we describe our algorithm for solving convex formulations
of robust problems. Then, in Section 8.6, we illustrate the good performance of the
proposed algorithm through numerical experiments on real datasets. Finally, short
conclusions are drawn in Section 8.7.

8.2. Problem statement

Let (Ω,T,P) be the underlying probability space where Ω is a finite set of cardinal
N , T is the σ-field generated by ({ω})ω∈Ω, and P is a probability distribution that is
assumed to charge all points. Let d be a nonzero integer and let z : Ω→ Rd denote
a general random variable. Note that function z can be identified with a matrix in
RN×d where, for every i ∈ [[1, N ]], zi denote the i-th line of matrix z . We denote by
M1 the set of probability distributions over (Ω,T,P).

For every i ∈ [[1, N ]], let `( : , zi) : Rn → R ∪ {+∞} be a loss function which is
assumed to be lower semicontinuous (lsc) and convex such that

N⋂
i=1

dom
(
`( : , zi)

)
6= ∅ . (8.1)

In standard formulations of machine learning problems, one aims at finding an op-
timal regression vector θ ∈ Rn such that

θ ∈ arg min
θ∈RN

N∑
i=1

Pi`(θ, zi) , (8.2)

using identifying the probability distribution P with a vector of N components
P = (Pi)1≤i≤N . Indeed, setting zi = [x>i yi]

> with n = d − 1, xi ∈ RN , and yi ∈ R
allows us to recover a wide array of estimation and classification problems. For
example, penalized least squares regression problems are obtained when

(∀i ∈ [[1, N ]])(∀θ ∈ RN) `(θ, zi) =
1

2
‖yi − x>i θ‖2 + ρ(θ) , (8.3)

where ρ : RN → R ∪ {+∞} is a proper, lsc, convex penalty function. If the random
variable y is {0, 1}-valued, we can recover binary classification problems, for example
by performing a logistic regression, i.e.

(∀i ∈ [[1, N ]])(∀θ ∈ RN) `(θ, zi) = log
(

1 + exp
(
− yix>i θ

))
. (8.4)

133



8. General risk measures for robust machine learning

One of the main limitations of this formulation is that it assumes that the true
probability distribution of the data is perfectly known. In practice, this distribution
is often estimated empirically from the available observations.

In this paper, we will focus on the following more general robust formulation to
determine an optimal regression vector.

Problem 1. Let α : RN → R∪{+∞} be a lsc convex penalty function whose domain
is a nonempty subset of M1. We want to find

θ ∈ arg min
θ∈RN

sup
Q=(Qi)1≤i≤N∈M1

(
N∑
i=1

qi`(θ, zi)− α(Q)

)
, (8.5)

In this problem, if α is the indicator function ι{P}
1 of the singleton containing the

probability distribution P, then (8.2) is recovered. More generally, if α is equal to
the indicator function of a nonempty closed convex set Q ⊂M1, then the objective
function in (8.5) reduces to

sup
q∈Q

N∑
i=1

qi`(θ, zi) = σQ
(
`(θ, z)

)
, (8.6)

where σQ is the support function of Q. This corresponds to the well-known case of
distributionally robust optimization using ambiguity sets .

8.3. Convex formulation of robust inference problems
using risk measures

In this section, we address Problem 1 in the light of the financial framework for
monetary risk measures. We first recall known properties of risk measures and then
show how Problem 1 can be reformulated as a convex problem.

8.3.1. Definition and properties of a risk measure

Let X be the space of real-valued random variables defined on the probability space
(Ω,T,P). We denote by X a generic element of X and we recall that P is assumed to
be a distribution that charges all points. The space X is endowed with the pointwise
order ≤, that is,

(∀(X ,Y ) ∈ X2) X ≤ Y ⇔ (∀ω ∈ Ω) X (ω) ≤ Y (ω) . (8.7)

A risk measure ρ is a real-valued function ρ : X→ R .
The next four properties of risk measures were first introduced in Artzner, Delbaen,
Eber, and Heath (1999) to define the so called coherent risk measures. The interested
reader can also refer to Föllmer and Schied (2016)[Part I, Chapter 4].

1The indicator mapping ιS : RN → R ∪ {+∞} of a set S ⊂ RN is the mapping that takes the
value 0 on S and the value +∞ otherwise.
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8.3. Convex formulation of robust inference problems using risk measures

Definition 8.3.1. A risk measure ρ : X→ R is said to be

� monotone: if, for every (X ,Y ) ∈ X2, X ≤ Y ⇒ ρ(X ) ≤ ρ(Y ),

� translation invariant: if, for every X ∈ X and m ∈ R, ρ(X +m) = ρ(X )+m,

� convex: if, for every (X ,Y ) ∈ X2 and λ ∈]0, 1[, ρ
(
λX+(1−λ)Y

)
≤ λρ(X )+

(1− λ)ρ(Y ),

� positively homogeneous: if, for every X ∈ X and λ ∈ [0,+∞[, ρ(λX ) =
λρ(X ).

A risk measure which satisfies the first two properties is called a monetary risk
measure. A risk measure which satisfies the first three properties is called a convex
risk measure. A risk measure which satisfies the four properties is called a coherent
risk measure.

Depending on the author, the first axiom may also be expressed as: for every
(X ,Y ) ∈ X2, X ≤ Y ⇒ ρ(X ) ≥ ρ(Y ) if the variables X and Y are interpreted
as gains instead of losses, which is common in finance. For this reason, some sign
differences may appear between results of various authors. We have chosen to follow
the paths in Rockafellar and Uryasev (2000b); Ruszczynski and Shapiro (2006b,a)
and interpret the random variable in argument as a loss. We however often refer
to Föllmer and Schied (2016), providing a comprehensive view of risk measures,
where the opposite convention has been adopted.

Remark 8.3.2.

1. It readily follows from the translation invariance property that a monetary
risk measure ρ admits a primal form given by

(∀X ∈ X) ρ(X ) = inf
s∈R
{s |X − s ∈ lev≤0 ρ} , (8.8)

where lev≤0 ρ is the lower level set of ρ at height 0 given by

lev≤0 ρ =
{
X ∈ X | ρ

(
X
)
≤ 0
}
. (8.9)

2. A monetary risk measure ρ is 1-Lipschitz continuous with respect to the supre-
mum norm ‖·‖∞. Indeed, for every (X ,Y ) ∈ X2, we haveX ≤ Y +‖X−Y ‖.
By monotonicity and translation invariance we obtain that ρ(X ) − ρ(Y ) ≤
‖X − Y ‖∞, which by symmetry implies that |ρ(X )− ρ(Y )| ≤ ‖X − Y ‖∞.

The class of convex risk measures includes a large number of useful functions.
Without entering into details, we should mention: expectation, worst case, quantile,
median, and average value at risk .
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8. General risk measures for robust machine learning

8.3.2. Convex reformulation

In this section, we will show that the “min-max” problem 1 admits a convex refor-
mulation. We first gather in the following proposition some existing results in the
literature.

Proposition 8.3.3. ρ is a convex risk measure if and only if there exists a lsc and
convex function α : RN → R ∪ {+∞} such that

(∀X ∈ X) ρ(X ) = sup
Q∈M1

(
N∑
i=1

Qixi − α(Q)

)
. (8.10)

The function α associated with ρ is uniquely defined as

(∀Q ∈ RN) α(Q) =

 sup
X∈lev≤0 ρ

EQ[X ] if Q ∈M1 ,

+∞ otherwise .
(8.11)

In addition, ρ is coherent if and only if its conjugate function α is the indicator
function of a nonempty closed convex subset of M1.

Proof.

1. We know from Föllmer and Schied (2016, Theorem 4.16 and Proposition 4.15)
that any convex risk measure ρ on X is of the form

(∀X ∈ X) ρ(X ) = sup
Q∈M1

(
EQ[X ]− α(Q)

)
, (8.12)

where α : RN → R ∪ {+∞} is the lsc and convex function whose domain is a
nonempty subset of M1 given by

(∀Q ∈M1) α(Q) = sup
X∈X

EQ[X ]− ρ(X ) , (8.13)

= sup
X∈lev≤0 ρ

EQ[X ] (8.14)

(the second equality stems from Remark 8.3.21).

Conversely, one can associate to every lsc convex function α : RN → R∪{+∞}
whose domain is a nonempty subset of M1 a unique convex risk measure defined
by (8.12).

2. It follows from Föllmer and Schied (2016, Proposition 4.15) that if, in addition,
the risk measure ρ is coherent, then the function α in (8.11) is the indicator
function of a nonempty closed convex subset of M1 and the converse property
holds.

�

We now state the main result of this section.
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8.3. Convex formulation of robust inference problems using risk measures

Theorem 8.3.4. Let α : RN → R ∪ {+∞} be a lsc convex function whose domain
is a nonempty subset of M1. Problem 1 is equivalent to find

θ ∈ arg min
θ∈RN

ρα
(
`(θ, z)

)
, (8.15)

where

(∀X ∈ X) ρα(X ) = max
Q∈M1

(
N∑
i=1

Qixi − α(Q)

)
. (8.16)

The function ρα
(
`(·, z)

)
is proper, lsc, and convex. In addition, this convex opti-

mization problem admits a primal formulation which consists of finding

inf
(θ,s)∈S

s (8.17)

where
S = {(θ, s) ∈ RN × R | `(θ, z)− s ∈ lev≤0 ρα} (8.18)

.

Proof. It follows from Proposition 8.3.3 that (8.5) is equivalent to (8.15) where
ρα is a convex risk measure. In addition, the sup in the definition of the risk
measure is attained since M1 is a compact set and q 7→

∑N
i=1 Qixi − α(Q) is upper

semicontinuous.
The function `(·, Z) is lsc convex for every Z ∈ Rd. Given a random variable z,

for every vectors θ1 and θ2 in RN , and scalar λ ∈ [0, 1], the convexity of function `
yields

(∀ω ∈ Ω) `(λθ1 + (1− λ)θ2, z(ω)) ≤ λ`(θ1, z(ω)) + (1− λ)`(θ2, z(ω)) . (8.19)

Now, by using the fact that the risk measure ρα is monotone and convex with respect
to the ordering introduced in (8.7), we get

ρα

(
`(λθ1 + (1− λ)θ2, z)

)
≤ ρα

(
λ`(θ1, z) + (1− λ)`(θ2, z)

)
(8.20)

≤ λρα

(
`(θ1, z)

)
+ (1− λ)ρα

(
`(θ2, z)

)
. (8.21)

This shows that ρα
(
`(·, z)

)
is convex.

In addition, since ρα is monotone and continuous (see Remark 8.3.21) and `(·, z)
is lsc, ρα

(
`(·, z)

)
is lsc. Because of (8.1), ρα

(
`(·, z)

)
is also proper.

Finally, formulation (8.17) is deduced from (8.8) and (8.15).
�

The general convex reformulation (8.17) is not always easy to handle. In practical
applications, the choice of the mapping α plays a crucial role in this regard. We
will see in the next section some useful examples of this function. In particular,
some mappings α lead to a formulation (8.17) that will be shown to be tractable
numerically.
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8. General risk measures for robust machine learning

8.4. Examples of risks measures

By considering particular forms of function α in Problem 1, we define three classes
of interest for robust formulations. The first two ones are based on ϕ-divergences,
while the third one is based on the Wasserstein metric.

8.4.1. Perspective functions and divergences

The notion of ϕ-divergence was first introduced independently by Csiszár (1964);
Morimoto (1963) and Ali and Silvey (1966). For a more complete bibliography on
the subject, we refer to Basseville (2013).

Definition 8.4.1. Let ϕ : R→]−∞,+∞]. The perspective function fϕ of function
ϕ is given by

fϕ : R× R→]−∞,+∞]

(x, ξ) 7→

 ξϕ

(
x

ξ

)
if ξ > 0 ,

+∞ otherwise .
(8.22)

Definition 8.4.2. Let ϕ : R → [0,+∞] be a lsc convex function with nonempty
domain included in [0,+∞[ such that ϕ(1) = 0. The ϕ-divergence Dϕ : RN ×RN →
[0,+∞] is defined as

(
∀P = (Pi)1≤i≤N ∈ RN

)(
∀Q = (Qi)1≤i≤N ∈ RN

)
Dϕ(P,Q) =

N∑
i=1

fϕ(Pi,Qi) ,

(8.23)
where the function fϕ is the lsc envelope of the mapping fϕ, that is

fϕ : R× R→]−∞,+∞] (8.24)

(x, ξ) 7→


ξϕ

(
x

ξ

)
if ξ > 0 and x ≥ 0 ,

x lim
t→+∞

ϕ(t)

t
if ξ = 0 and x > 0 ,

0 if ξ = 0 and x = 0 ,
+∞ otherwise.

(8.25)

We also recall the definitions of a conjugate function and an adjoint function.

Definition 8.4.3. Let ϕ : R →] − ∞,+∞]. The conjugate ϕ∗ of function ϕ is
defined by

(∀s ∈ R) ϕ∗(s) = sup
t∈R

(
st− ϕ(t)

)
, (8.26)

and the so-called adjoint function of ϕ is defined by

(∀t ∈ R) ϕ̃(t) =


tϕ

(
1

t

)
if t ≥ 0 ,

lim
t→+∞

ϕ(t)

t
if t = 0 .

(8.27)
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8.4. Examples of risks measures

Table 8.1 is an extension of the one in Ben-Tal, Den Hertog, De Waegenaere,
Melenberg, and Rennen (2013) and provides the expressions of common ϕ func-
tions, their conjugates, and the associated ϕ-divergence. It is well-known (Ben-Tal,
Den Hertog, De Waegenaere, Melenberg, and Rennen, 2013; Combettes and Müller,
2018) that the adjoint ϕ̃ of ϕ is such that

(∀(P,Q) ∈ (RN)2) Dϕ̃(P,Q) = Dϕ(Q,P) (8.28)

and the conjugate of function λϕ is

(∀s ∈ R) (λϕ)∗(s) = λϕ∗
( s
λ

)
. (8.29)
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Divergence ϕ(t) ϕ(t), t ≥ 0 Dϕ(P,Q) ϕ∗(s) ϕ̃(t)

Kullback-Leibler ϕkl(t) t log(t)− t+ 1
∑N

i=1 pi log
(
pi
qi

)
es − 1 ϕb(t)

Burg entropy ϕb(t) − log(t) + t− 1
∑N

i=1 qi log
(
qi
pi

)
− log(1− s) , s < 1 ϕkl(t)

J-divergence ϕj(t) (t− 1) log(t)
∑N

i=1(pi − qi) log
(
pi
qi

)
no closed form ϕj(t)

χ2-distance ϕc(t)
1
t
(t− 1)2

∑N
i=1

pi−qi
pi

2− 2
√

1− s, s < 1 ϕmc(t)

Modified χ2-distance ϕmc(t) (t− 1)2
∑N

i=1
qi−pi
qi

{
−1, s < −2
s+ s2/4, s ≥ −2

ϕc(t)

Hellinger distance ϕh(t)
(√

t− 1
)2 ∑N

i=1

(√
pi −
√
qi
)

s
1−s , s < 1 ϕh(t)

χ-divergence of order θ¿1 ϕθca(t) |t− 1|θ
∑N

i=1 qi

∣∣∣1− pi
qi

∣∣∣θ s+ (θ − 1)
(
|s|
θ

) θ
θ−1

t1−θϕθca(t)

Variation distance ϕv(t) |t− 1|
∑N

i=1 |pi − qi|
{
−1, s ≤ −1
s, −1 ≤ s ≤ 1

ϕv(t)

Cressie and Read ϕθcr(t)
1−θ+θt−tθ
θ(1−θ) , θ /∈ {0, 1} 2 1

θ(1−θ)

(
1−

∑N
i=1 p

θ
i q

1−θ
i

) {
1
θ

(
1− s(1− θ)

) θ
θ−1 − 1

θ

s < 1
θ−1

ϕ1−θ
cr (t)

Average Value at Risk of level β ϕβavar(t) ι[0, 1
1−β ] , β ∈ [0, 1]

∑N
i=1 ι[0, 1

1−β ](
pi
qi

) σ[0, 1
1−β ] =

{
1

1−β , s ≥ 0

0 , s < 0
ι[1−β,+∞[

Table 8.1.: Common perspective functions and their conjugate used to define ϕ-divergences.
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8.4. Examples of risks measures

8.4.2. Divergence penalty functions

A first case of interest is when the penalty term α(Q) in Problem 1 measures the
“distance” between P and Q in the sense of a ϕ-divergence.

Proposition 8.4.4. Let ϕ : R → [0,+∞] be a lsc convex function with nonempty
domain included in [0,+∞[ such that ϕ(1) = 0. Let α be the function given by

(∀Q ∈ RN) α(Q) =

{
λ0Dϕ(Q,P) if Q ∈M1 ,

+∞ otherwise ,
(8.30)

with λ0 ∈]0,+∞[. Problem 1 is equivalent to find

θ = arg min
θ∈RN

min
µ∈R

g(θ, µ) , (8.31)

where g is the proper, lsc, convex function given by

(∀(θ ∈ RN)(∀µ ∈ R) g(θ, µ) = µ+
N∑
i=1

Piϕ∗
(`(θ, zi)

λ0

− µ
)
. (8.32)

Proof. We can reexpress (8.5) as

θ ∈ arg min
θ∈RN

sup
Q=(Qi)1≤i≤N∈M1

(
N∑
i=1

qi
`(θ, zi)

λ0

−Dϕ(P,Q)

)
. (8.33)

It follows from Föllmer and Schied (2016, Theorem 4.122) that

(∀X ∈ X) ρα
λ
(X ) = min

µ∈R
µ+

N∑
i=1

Piϕ∗
(
xi − µ

)
. (8.34)

The equivalence between (8.33) and (8.31) then results from Theorem 8.3.4.
In addition, (8.32) yields

(∀(θ ∈ RN)(∀µ ∈ R) g(θ, µ) = µ+ sup
(ti)i∈[[1,n]]∈RN

N∑
i=1

Piti
(`(θ, zi)

λ0

−µ
)
−ϕ(ti) . (8.35)

For every (ti)i∈[[1,n]] ∈ RN ,

(θ, µ) 7→
N∑
i=1

Piti
(`(θ, zi)

λ0

− µ
)
− ϕ(ti) (8.36)

is a lsc convex function. Since convexity and lower semicontinuity are kept by the
supremum operation, g is lsc and convex. By using (8.1), (8.32), and the fact that
ϕ∗ is proper, there exist θ ∈ RN and µ ∈ R, such that g(θ, µ) < +∞.

�
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8. General risk measures for robust machine learning

8.4.3. Constrained formulations

We now investigate two particular cases when α is the indicator function of a convex
set Q of probability distributions, so defining an ambiguity set.

Ball with respect to a divergence

A possibility is to introduce an upper bound on the divergence Dϕ(Q,P) between
the sought distribution Q and P by considering the constraint set

Q = Bϕε =
{
q ∈M1 | Dϕ(Q,P) ≤ ε

}
, (8.37)

where ε ∈]0,+∞[.
The following result generalizes both Ben-Tal et al. (2013) where the authors deal

with linear costs under constraints and Hu and Hong (2013) where the authors focus
on the Kullback-Leiber divergence.

Proposition 8.4.5. Let ϕ : R → [0,+∞] be a lsc convex function such that
dom(ϕ) =]0,+∞[ or dom(ϕ) = [0,+∞[, and ϕ(1) = 0. Let ε ∈]0,+∞[ and let
α = ιBϕε . Problem 1 is equivalent to find

θ = arg min
θ∈RN

min
(λ,µ)∈R2

g(θ, λ, µ) , (8.38)

where g is the proper, lsc, convex function given by

(∀(θ ∈ RN)(∀(λ, µ) ∈ R2) g(θ, λ, µ) =λε+ µ+
N∑
i=1

piλϕ
∗
(
`(θ, zi)− µ

λ

)
if λ ∈ [0,+∞[ ,

+∞ otherwise ,

(8.39)

with the convention
0ϕ∗

( ·
0

)
= ι]−∞,0] . (8.40)

Proof. The risk function associated with α = ιBϕε is

(∀X ∈ X) ρα(X ) = sup
q∈RN

N∑
i=1

qixi − ιM1(q) , (8.41a)

s.t.
N∑
i=1

piϕ

(
qi
pi

)
≤ ε . (8.41b)

Since 1 belongs to the interior of dom(ϕ) and

N∑
i=1

piϕ

(
pi
pi

)
= 0 < ε , (8.42)

Slater’s condition holds for constraint (8.41b). Since the constraint is feasible and
q 7→ −

∑N
i=1 qixi + ιM1(q) is lsc, convex, and coercive, there exists a solution q ∈M1
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to the above constrained maximization problem. It then follows from standard
Lagrange duality for convex functions that there exists λ ∈ [0,+∞[ such that (q, λ)
is a saddle point of the Lagrange function

(∀q ∈ C)(∀λ ∈ [0,+∞[) ΨX (q, λ) = −
N∑
i=1

qixi + λ

(
N∑
i=1

piϕ

(
qi
pi

)
− ε

)
, (8.43)

where

C =

{
q ∈M1 | (∀i ∈ [[1, n]])

qi
pi
∈ domϕ

}
. (8.44)

We have thus

ρα(X ) = − sup
λ∈[0,+∞[

inf
q∈C

ΨX (q, λ) = min
λ∈[0,+∞[

G(X , λ) = G(X , λ) , (8.45)

where, for every λ ∈ [0,+∞[,

G(X , λ) = λε+ sup
q∈C

N∑
i=1

(
qixi − λpiϕ

(
qi
pi

))
. (8.46)

Two cases will be distinguished.

1. Case when λ = 0.
Then (8.46) reduces to

G(X , 0) = sup
q∈C

N∑
i=1

qixi ≤ σM1(X ) , (8.47)

where

σM1(X ) = sup
q∈M1

N∑
i=1

qixi = sup
i∈[[1,n]]

xi . (8.48)

In addition, since ]0,+∞[∈ dom(ϕ), the upper bound in (8.47) is attained,
yielding

G(X , 0) = sup
i∈[[1,n]]

xi . (8.49)

2. Case when λ > 0.
(8.46) can be reexpressed as

G(X , λ) = λε+ sup
q∈M1

N∑
i=1

(
qixi − λpiϕ

(
qi
pi

))
= λε+ (λΦ + ιM1)∗(X ) , (8.50)

where

(∀q ∈ RN) Φ(q) =
N∑
i=1

piϕ

(
qi
pi

)
. (8.51)
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The conjugate of Φ reads

(∀Y ∈ X) (λΦ)∗(Y ) = sup
q∈RN

N∑
i=1

qiyi − λpiϕ
(
qi
pi

)

=
N∑
i=1

pi(λϕ)∗(yi) , (8.52)

whereas the conjugate of ιM1 is given by σM1 in (8.48). Since σM1 is finite
valued, the conjugate of Φ + ιM1 is given by the following inf-convolution
(Bauschke and Combettes, 2011, Theorem 15.3)

(Φ + ιM1)∗(X ) = min
Y ∈X

σM1(Y ) + (λΦ)∗(X − Y ) , (8.53)

which, by using (8.52), yields

G(X , λ) = λε+ min
Y ∈X

supi∈[[1,n]] yi=µ

µ+
N∑
i=1

pi(λϕ)∗(xi − yi) . (8.54)

Since dom(λϕ) ⊂ [0,+∞[, (λϕ)∗ : ξ 7→ supυ∈[0,+∞[ ξυ − λϕ(υ) is an increasing
function. This implies that

G(X , λ) = λε+ min
µ∈R

µ+
N∑
i=1

pi(λϕ)∗(xi − µ)

= λε+ min
µ∈R

µ+
N∑
i=1

piλϕ
∗
(
xi − µ
λ

)
. (8.55)

Note that the right-hand side in the previous formula when applied at λ = 0 by
using (8.40) and (8.48) reduces to

min
µ∈R

µ+
N∑
i=1

pi ι]−∞,0](xi − µ)

= min
µ∈R

(∀i∈[[1,n]])xi≤µ

µ

= G(X , 0) . (8.56)

Consequently, (8.45) leads to

ρα(X ) = min
λ∈[0,+∞[,µ∈R

λε+ µ+
N∑
i=1

piλϕ
∗
(
xi − µ
λ

)
, (8.57)

and (8.38) follows from Theorem 8.3.4.
increasing function. This implies that 7.17(b)]RockyandWets that (λnΦ+ ιM1)n∈N

epi-converges to ιM1 . By continuity of the Legendre-Fenchel conjugate , this implies
that ((λnΦ + ιM1)∗)n∈N epi-converges to σM1 . Since
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In addition, by using the expression of the conjuguate, g can be reexpressed as

(∀θ ∈ RN)(∀(λ, µ) ∈ R2)

g(θ, λ, µ) = sup
(ti)i∈[[1,n]]∈RN

λε+ µ+
N∑
i=1

pi(`(θ, zi)− µ)ti − λϕ(ti)) + ι[0,+∞[(λ). (8.58)

As a supremum of lsc convex functions, g also is lsc convex. The fact that g is proper
follows from arguments similar to those at the end of the proof of Proposition 8.4.4.

�

Remark 8.4.6. The divergence risk measure in (8.34) is convex, whereas the risk
measure in (8.57) is coherent, which means that the risk scales with the data in the
latter case.

Ball with respect to the Wasserstein metric

We now investigate Problem 1 when function α is the indicator of a Wasserstein ball
centered on P. For this purpose, we first recall the notion of Wasserstein distance.

Definition 8.4.7. Let M(Ξ2) denote the set of probability distributions supported
on Ξ2. The Wasserstein distance between two distributions P and Q supported on
Ξ is defined as

W (p, q) = inf
Π∈M(Ξ2)

{∫
Ξ2

d(ξ, ξ′)Π(dξ, dξ′) | Π(dξ,Ξ) = q(dξ),Π(Ξ, dξ′) = p(dξ′)

}
,

(8.59)
where d is a metric on Ξ.

We now introduce the notion of Wasserstein ball. The considered constrained set
is denoted by

Q = BW
ε =

{
q ∈M1 | W (P,Q) ≤ ε

}
(8.60)

with ε ∈]0,+∞[.
The following convex reformulation of Problem 1 can be derived from (Esfahani

and Kuhn, 2015, Theorem 4.2).

Proposition 8.4.8. Let ε ∈]0,+∞[ and let α = ιBW
ε

. Then, Problem 1 is equivalent
to find

θ = arg min
θ∈RN

min
λ∈R,s∈RN

g(θ, λ, s) , (8.61)

where g is the proper, lsc convex function given by

(∀θ ∈ RN)(∀λ ∈ R)(∀s = (sj)1≤j≤N ∈ RN) g(θ, λ, s) = λε+
N∑
j=1

pjsj + ιW(θ, λ, s) ,

(8.62)
where W is the closed convex set defined as

W = {(θ, λ, s) ∈ Rn × [0,+∞[×RN | (∀(i, j) ∈ [[1, N ]]2) `(θ, zi)− λ‖zi − zj‖ ≤ sj} .
(8.63)
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8.5. Numerical solution

We will now propose an algorithm allowing us to solve numerically the three convex
optimization problems in Propositions 8.4.4, 8.4.5, and 8.4.8. This algorithm applies
to more general choices of function α in Problem 1 where the constraint S in (8.18)
splits as an intersection of a finite number of convex constraints.

8.5.1. A unifying formulation

We first show that the convex optimization problems discussed in Section 8.4 can
be reexpressed in a unifying manner.

Proposition 8.5.1. The optimization problems in Propositions 8.4.4, 8.4.5, and
8.4.8 amount to finding

(θ, λ, µ, s) ∈ arg min
θ∈RN ,λ∈[0,+∞[,µ∈R,s∈RN

λε+ µ+
N∑
i=1

pisi (8.64a)

s.t. (∀k ∈ [[1, K]]) fk
(
θ, λ, µ, z

)
≤ 0 , (8.64b)

where K ∈ N \ {0} and the functions
(
fk
(
·, z
))
k∈[[1,K]]

are proper, lsc, and convex.

More precisely,

1. for divergence penalty functions, K = N and, for every k ∈ [[1, K]],

(∀θ ∈ RN)(∀λ ∈ [0,+∞[)(∀µ ∈ R)(∀s ∈ RN)

fk
(
θ, λ, µ, s, z

)
= ϕ∗

(
`(θ, zk)

λ
− µ

)
+ ι{λ0}(λ)− sk , (8.65)

2. for divergence ball constraints, K = N and, for every k ∈ [[1, K]],

(∀θ ∈ RN)(∀λ ∈ [0,+∞[)(∀µ ∈ R)(∀s ∈ RN)

fk
(
θ, λ, µ, s, z

)
= λϕ∗

(
`(θ, zk)− µ

λ

)
− sk , (8.66)

3. for the Wassertein ball constraint, K = N2 and, for every k ∈ [[1, K]] and
(ik, jk) ∈ [[1, N ]]2 such that k = N(ik − 1) + jk,

(∀θ ∈ RN)(∀λ ∈ [0,+∞[)(∀µ ∈ R)(∀s ∈ RN)

fk
(
θ, λ, µ, s, z

)
= `(θ, zik)− λ‖zik − zjk‖ − sjk . (8.67)

8.5.2. Description of the algorithm

In this section, we propose an accelerated projected gradient algorithm for solving
Problem (8.64). One step of this proximal algorithm Combettes and Pesquet (2010)
reads as a projection onto a set defined as an intersection of non trivial closed convex
sets. To solve this projection problem, we use the subgradient projection algorithm
in Combettes (2003), which is related to ideas introduced in Haugazeau (1968, The-
orem 3-2). This algorithm allows the constraints to be activated individually in a
flexible parallel manner. We will first recall the basic structure of our algorithm
before describing in more details the subgradient projection step.

146



8.5. Numerical solution

Proximal algorithm Let H = Rn × R× R× RN and let ‖ · ‖ (resp. 〈· , ·〉) denote
the standard norm (resp. the inner product) equiping this product space. By
introducing the generic variable u = (θ, λ, µ, s) ∈ H, (8.64) can be reexpressed more
concisely as

min
u∈H
〈c , u〉+ ιC(u) , (8.68)

where c = (0, ε, 1, p) ∈ H and C = ∩Kk=0Ck with

C0 = {(θ, λ, µ, s) ∈ Rn × [0,+∞[×R× RN} , (8.69)

(∀k ∈ [[1, K]]) Ck = lev≤0 fk
(
·, z
)
. (8.70)

To solve the above problem, we propose to employ a FISTA-like algorithm Beck and
Teboulle (2009). Let n ∈ N \ {0}. The n-th iteration of this algorithm reads

v(n) = u(n) +
τ (n) − 1

τ (n+1)
(u(n) − u(n−1)) , (8.71)

u(n+1) = PC(v(n) − γc) , (8.72)

where γ ∈]0,+∞[ and PC : H → C is the projection onto the closed convex set C.
It follows from (Chambolle and Dossal, 2015, Theorem 3) that, if a solution to the
minimization problem exists, and

τ (n) =
n+ a− 1

a
, a > 2 , (8.73)

then the convergence to a solution to the problem is guaranteed.
The main difficulty in the implementation of the algorithm lies in the computation

of the projection onto C that will be discussed next.

Computation of the projection Algorithm 3 presents our projection method in-
spired from Combettes (2003). At iteration ` ∈ N, Q(p(0), p(`), r(`)) designates the
projection of p(0) onto the intersection of the 3 half-spaces C0, H`, and D`, where

H` = {u ∈ H |
〈
u− r(`) , p(`) − r(`)

〉
≤ 0} , (8.74)

D` = {u ∈ H |
〈
u− p(`) , p(0) − p(`)

〉
≤ 0} . (8.75)

Since the projection onto H` ∩ D` has an explicit form Combettes (2003), a dual
forward-backward algorithm Combettes et al. (2010) allows us to compute in a
fast manner the projection onto C0 ∩H` ∩D`. The algorithm has been intialized by
setting p(0) = PC0(v(n)−γc), taking into account the fact that PC = PC ◦PC0 . At each
iteration `, K` designates the set of indices of the constraints which are activated.
When dealing with large-scale problems, it may be useful not to required all the
constraints to be activated at each iteration. The convergence of the algorithm is
guaranteed by the study in Combettes (2000), provided that, for every k ∈ [[1, K]],
C0 ⊂ dom(∂fk) and there exists an integer Mk such that

(∀` ∈ N) k ∈
`+Mk⋃
s=`

Ks. (8.76)
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The first assumptions on the domains of the subdifferentials of the functions (fk)k∈[[1,K]]

is not however satisfied in (8.65). In this case, the direct simpler form of the algo-
rithm in Combettes (2003) can be applied since the parameter λ is fixed.

Data: u(n−1) = u(n) ∈ H, δ ∈]0, 1[
Result: Output of the accelerated projected gradient iteration (8.72)

1 v(n) = u(n) +
τ (n) − 1

τ (n+1)
(u(n) − u(n−1));

2 p(0) = PC0(v(n) − γc);
3 Initialize ` = 0, while p(`) /∈ C do
4 Take a nonempty finite index set K` ⊂ [[1, K]];
5 For every k ∈ K`,

p
(`)
k =

 p(`) − fk(p
(`))t

(`)
k

‖t(`)k ‖
, t

(`)
k ∈ ∂fk(p

(`)) , if fk(p
(`)) > 0

p(`) , if fk(p
(`)) ≤ 0

6 Choose {ωk,` | k ∈ K`} ⊂ [δ, 1] such that
∑
k∈K`

ωk,` = 1

7 q(`) =
∑
k∈K`

ωk,`p
(`)
k − p

(`)

8 L` =


∑

k∈K` ωk,`‖p
(`)
k − p(`)‖2

‖q(`)‖2
, if p(`) /∈

⋂
k∈K` Ck

1 , otherwise

9 r(`) = p(`) − L`q(`);

10 p(`+1) = Q(p(0), p(`), r(`));

11 end

12 return u(n+1) = pend

Algorithm 3: Projection algorithm.

8.6. Simulation example

Distributionally robust optimization aims at improving out-of-sample performance.
In practice, “a little of robustness” typically improves a little bit the expected reward
(around 1%) however, results in a larger reduction in terms of variance. We refer
to Shafieezadeh-Abadeh, Esfahani, and Kuhn (2015) and to Gotoh, Kim, and Lim
(2018) for a complete discussion about expected reward and variance reduction.

Our objective here is to demonstrate how our algorithm can tackle different ambi-
guity sets. We compare here the formulation in Problem 8.4.5 that uses ambiguity
sets defined through the Kullback-Leiber divergence 3 with the formulation in Prob-
lem 8.4.8 that uses ambiguity sets defined through the Wasserstein distance. In all
our simulations, the logistic regression loss in (8.4) is used for binary classification
Briceno-Arias et al. (2017).

We first apply our algorithm to the “ionosphere” dataset 4 where each sample

3We perform an asymptotic expansion when λ is close to 0 in order to compute p`k in Algorithm 3.
4This dataset is accessible at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary.html.

148

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html


8.6. Simulation example

provides n = 34 features. We divide our dataset between a training set and a
testing set where the training set contains 60% of the original dataset.

In a nutshell, the robust framework based on the Wasserstein distance provides
a better expected reward but at the expense of a higher computational cost. The
risk measure based on the Kullback-Leiber divergence is easily tractable, provides
a reduction of the variance in out-of-samples results, but no significant increase in
terms of expected reward (see Gotoh, Kim, and Lim (2018) for a more detailed
theoretical analysis).

We first present convergence results in Figures 8.1 and 8.2 for both formulations.
We see that, for both formulations, the proposed accelerated projected gradient
algorithm converges and that it converges slightly slower for larger values of ε. The
convergence is faster in the case of the Kullback-Leiber divergence since the number
of constraints grows linearly as a function of the number of observations, whereas
the growth is quadratic in the case of the Wasserstein distance.

Figure 8.1.: Value of the objective function with respect to iteration number n for
different values of ε with Kullback-Leibler divergence.

We provide in Table 8.2 below, the value of the area under the ROC curve. We
see that when ε takes larger values, we first have an improved performance. Then
the gain starts to decrease, and finally we observe a decay in performance. Indeed,
when ε tends to +∞, we recover the worst case risk measure.

We now present in Table 8.3 the evolution of the Area Under the ROC curve
for another dataset “colon-cancer” endowed with n = 2000 features and only 64
observations 5. We want to emphasize the power of robustness in the case when
only a few observations are available. This case is particularly interesting because,

5This dataset is also accessible at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html
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Figure 8.2.: Value of the objective function with respect to iteration number n for
different values of ε with Wasserstein distance.

Value of ε AUC with KL AUC with Wasserstein

ε = 0 (LR) 0.70 0.70
ε = 0.001 0.72 0.77
ε = 0.005 0.71 0.77
ε = 0.01 0.71 0.77
ε = 0.05 0.70 0.76
ε = 0.1 0.69 0.76

Table 8.2.: Values of the area under ROC curve for different value of ε for ionosphere
dataset.

when the number of observations is small, the formulation in Problem 8.4.8 is not
computationally expensive and provides an increase of 7%, which is significant.

Value of ε AUC with KL AUC with Wasserstein

ε = 0 (LR) 0.79 0.79
ε = 0.001 0.73 0.84
ε = 0.005 0.84 0.85
ε = 0.01 0.77 0.81
ε = 0.05 0.72 0.86
ε = 0.1 0.81 0.79

Table 8.3.: Values of the area under ROC curve for different value of ε for colon-
cancer dataset.
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8.7. Conclusion

We have highlighted that risk measures offer versatile tools for addressing robustly
machine learning problems. By assuming that the loss function is convex, the re-
lated optimization problem has been recast as a convex one. We have shown that
various classes of risk measures, e.g. those based on divergences or the Wasserstein
distance, lead to a common convex formulation. In addition, an efficient convex
optimization algorithm has been proposed to cope with the non trivial constrained
problem resulting from this formulation.
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Conclusion

This manuscript is the result of three years of work at École des Ponts ParisTech,
within the Optimization and Systems group whose seniors members are Pierre Car-
pentier, Jean-Philippe Chancelier, Michel De Lara and Vincent Leclère. I have also
conducted work in the University of Auckland that is presented in Chap. 6 under
the supervision of Andy Philpott. Chapter 8 is the result of a joint work with
Jean-Christophe Pesquet and Émilie Chouzenoux.

Contributions of this manuscript

This manuscript is a contribution to the domains of stochastic optimization, game
theory and machine learning. We have presented links between risk averse optimiza-
tion and decomposition methods.

� In Chap. 3, we have presented an abstract setting for time consistency after
having revisited the literature. Our main contribution is to state an equiva-
lence statement between time consistency and nested formula.

� In Chap. 4, we have studied three classes of times consistent mapping: transla-
tion invariant mappings, Fenchel-Moreau transforms and mappings defined as
supremum. For each class we have given characterizations of time consistency
or conditions to obtain time consistency.

� In Chap. 5, we have extended the framework of time consistency to the one of
consistency for binary relations. Hence, we have been able to derive a notion of
player consistency. Then we have detailed how the notion of player consistency
can be used for sequential and parallel decomposition in optimization.

� In Chap. 6, we have studied risk averse equilibrium in risk averse markets.
We have exhibited an example that displays multiple equilibria even with nice
assumptions of strict concavity. The content of Chap. 6 has been published in
Operation Research Letters (up to minor modifications).

� In Chap. 7, we have given an interpretation of market prices as tools to build
agent consistent mappings.

� In Chap. 8, we have provided links between risk averse optimization and dis-
tributionally robust optimization in machine learning. We have proposed an
algorithm that solves several different classical problems and we have shown
that sub-differential projection is a tool that let us gain parallelism in the
algorithm.
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Perspective of future work

Without being exhaustive, we recap here work that could be done and questions
that remain open.

� One could look for application of the characterization of time consistency in
terms of acceptance sets, either to demonstrate that some mappings are not
time consistent, or to build mappings that are time consistent. In particular,
we have provided a characterization of player consistency in terms of accep-
tance set.

� The conditions to be satisfied by generalized convex mappings in order to
obtain a nested formula are difficult to check. Finding mappings that are not
convex risk measures which satisfy these conditions is an open question. We
should investigate what happens when we mix translation invariant mappings,
Fenchel-Moreau transform, supremum to construct time consistent mappings.

� Further work needs to be done to account for dependencies between players,
that is, when there are joint constraints on the players decision sets.

� In machine learning, influence diagrams capture dynamic interactions between
players. They may provide an application for the decomposition method.

� In extension of Chap. 6, we could investigate tâtonnement algorithms on large
scale equilibrium problem using classical approximation algorithms.

� In extension of Chap. 7, we could explain how completing the market is related
to building player consistency.

� In extension of Chap. 8, we could benchmark our algorithm with other existing
methods to understand the pros and cons of what we have proposed.
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9.1. Recall on order and relations

9.1.1. Generalities

A binary relation on the set A is a subset A of A2 = A × A. As is traditional, we
denote from now on

aA a′ ⇔ (a, a′) ∈ A , ∀(a, a′) ∈ A2 . (9.1)

The equality or diagonal relation is

∆A = {(a, a) | a ∈ A} . (9.2)

Definition 9.1.1. Let A be a relation on the set A. The forset Aa′ of the element
a′ ∈ A for the relation A is defined by

Aa′ = {a ∈ A | a A a′} . (9.3)

The afterset aA of the element a ∈ A for the relation A has a straightforward
definition.
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Let A be a set and A ⊂ A× A be a binary relation on A.
We say that the relation A is reflexive if for all element a ∈ A , (a, a) ∈ A. We will

say that it is transitive if for all (a1, a2, a3) ∈ A3 , (a1, a2) ∈ A and (a2, a3) ∈ A⇒
(a1, a3) ∈ A. The relation A is said to be antisymmetric if ∀(a1, a2) ∈ A2 , (a1, a2) ∈
A and (a2, a1) ∈ A⇒ a1 = a2

A preorder is a reflexive and transitive relation. A preorder is said to be total
if ∀(a1, a2) ∈ A2 we have either (a1, a2) ∈ A or (a2, a1) ∈ A. A chain is a totally
ordered subset. If every chain has a supremum (See Appendix 9.2, the preorder is
complete. An antisymmetric preorder is an order.

Recall on special type of relation From now on, we consider that A is a vectorial
space. A vectorial relation is a relation applied coordinates by coordinates. We also
denote the translation of vector t by τt meaning that τt(a) = a+ t.

In this context a relation A on the set A is congruent if a A a′ ⇒ (a+ x) A (a′+
x) , ∀x ∈ A. We will say that it is translation invariant if τ ?t A ⊂ A , ∀t > 0 and
that it is monotonous whenever a ≥ a′ ⇒ a A a′. The relation A is said to be convex
if
(
θa+ (1− θ)a′

)
A x whenever a A x and a′ Ax and θ ∈]0; 1[, or equivalently A x

is convex. It said to be positively homogeneous if a A a′ ⇒ (θa) A (θa′) when θ > 0.
It is well known that there is a one to one correspondence between vectorial orders
≤K and convex cones K by a ≤K a′ ⇔ a− a′ ∈ K (See Khan et al. (2015)).

We can write similar definition using the notion of forset and afterset.

9.1.2. Useful mathematical tools to deal with forsets and
aftersets

Definition 9.1.2. We adopt a naming convention for forsets of a relation. The
forsets of a equivalence relation are the equivalence classes, the ones of orders are
the predecessors, the ones of preorders are the lower sets.

When we have particular structures on A and B, we can precise the nature of
forsets and aftersets. The following proposition explicits the nature of product and
intersection of forsets and aftersets.

Proposition 9.1.3. Let A be a relation on the set A and B be a relation on the
set B.

1. If A and B are equivalence relations, then A × B is an equivalence relation.
In addition, the equivalent classes of the product relation are the products of
the equivalent classes of relations, that is,

(A×B) (a′, b′) = A a′ ×B b′ , ∀a ∈ A , ∀b ∈ B . (9.4)

2. If A and B are preorders, then A × B is a preorder. In addition, the lower
sets of the product preorder are the products of lower sets of preorders, that is,

(A×B) (a′, b′) = A a′ ×B b′ , ∀a ∈ A , ∀b ∈ B . (9.5)

The same holds true for the product of upper sets of preorders.
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3. If A and B are preorders, then A ∩ B is a preorder. In addition, the lower
sets of the intersection preorder are the intersections of lower sets of preorders,
that is,

(a, b) (A ∩B) = a A ∩ b B , ∀a ∈ A , ∀b ∈ B . (9.6)

The same holds true for intersection of the aftersets of relations.

Let A and A′ be two relations on the set A. Recalling that A and A′ can be seen
as subsets of A2, the intersection of relations has the straightforward definition

a A ∩A′ a′ ⇔ a A a′ and a A′ a′ . (9.7)

Proposition 9.1.4. The following properties are inherited by the intersection of
two relations: reflexivity, transitivity, symmetry, congruence, positive homogeneity,
antisymmetry, monotonicity, convexity, invariance by translation and completeness.

Totality is not preserved by the intersection of two relations.

The following recalls rely upon the references Lewis and Papadimitriou (1997),
Butzer et al. (1967) and Schmidt and Ströhlein (2012). We first define three notions
of product of relations.

Definition 9.1.5 (Imrich (1998)). Let A be a relation on the set A and B be a
relation on the set B. The cardinal product A × B on the set A × B is defined by
the subset A×B of the set A2 × B2 ≡ (A× B)2 that is,

(a, b) (A×B) (a′, b′)⇔ (a, a′) ∈ A and (b, b′) ∈ B

∀(a, b, a′, b′) ∈ (A× B)2 .
(9.8)

The strong product A�B is defined by

A�B =
(
(∆A ∪A)× (∆B ∪B)

)
\∆A×B . (9.9)

The Cartesian product 1 A�B is defined by

A�B = (∆A ×B) ∪ (A×∆B) . (9.10)

By developping (9.9) we easily see that

A�B = (A�B) ∪ (A×B) (9.11)

We focus on the cardinal product of relations.

Proposition 9.1.6. The following properties are inherited by the cardinal product:
reflexivity, transitivity, symmetry, congruence, positive homogeneity, antisymmetry,
monotonicity, convexity and invariance by translation

Totality and completeness are not preserved by cardinal product.

1The definition of Cartesian product for relations differs from the usual one for sets which corre-
sponds here to the cardinal product.
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Let A and B be two sets. Given a relation C on the set A × B the parametric
relation Ca on the set B is defined by

b Ca b
′ ⇔ (a, b) C (a, b′) , (9.12)

and we then have

b ∩a∈A Ca b
′ ⇔ ∀a ∈ A , b Ca b

′ . (9.13)

The next proposition deals with the specific case of orders.

Proposition 9.1.7. If the relation C is an order on the set A× B, then Ca defined
in (9.12) is an order on the set B and the intersection ∩a∈ACa is also an order on
the set B.

Here is a general result dealing with intersections of parametric relations

Proposition 9.1.8. If the relation C is an order on the set A× B, then

1.
(
∀(a, a′) ∈ A2 , Ca = Ca′

)
⇒
(

∆A × Ca ⊂ C , ∀a ∈ A
)

;

2. if C is reflexive, then ∆B ⊂ ∩a∈ACa.

9.2. Recall on lattices and partitions

9.2.1. Lattices

The following definitions rely upon Carpentier, Cohen, Chancelier, and De Lara
(2015). The top element (of a preordered set) is an element which is greater than
any other element of the set; the top is denoted by >. The bottom element ⊥ (of
a preordered set) has a similar definition. A maximum element (of a subset) is an
element of the subset which is greater than any other element of the subset. If
it exists, it is unique, and it coincides with the top element is the subset is equal
to the whole set. A minimum element (of a subset) has a similar definition. A
maximal element (of a subset) is an element of the subset which is not less than
any other element of the subset. A majorant (of a subset), also called upper bound,
is an element not necessarily belonging to the subset, which is greater than any
other element of the subset. If a majorant belongs to the subset, it is the maximum
element. A minorant (of a subset), also called lower bound, has a similar definition.
A least upper bound (of a subset) is the least majorant, that is, the minimum element
of the subset of majorants. A greatest lower bound has a similar definition. A sup-
semilattice is an preordered set such that there exists an upper bound for each pair
of elements. An inf-semilattice has a similar definition. A lattice is an preordered
set which is both a sup- and an inf-semilattice. A complete sup-semilattice is an
preordered set such that there exists an upper bound for each finite or infinite
subset. A complete inf-semilattice has a similar definition. A complete lattice has
an obvious definition. A fundamental result asserts that a complete sup-semilattice
which has a bottom element is a complete lattice.
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9.2.2. Partition

Definition 9.2.1. Let Ω be a set. A collection P of subsets of Ω is a partition if it
consists of mutually disjoint nonempty subsets whose union is Ω.

P = {Ωi}i∈I with

{
Ω = ∪i∈IΩi ,
Ωi ∩ Ωj = ∅ , ∀i 6= j ,Ωi 6= ∅ , ∀i ∈ I . (9.14)

Definition 9.2.2. The least upper bound π∨π′ of the two partitions π and π′ is the
partition made of all nonempty intersections between elements of π and elements of
π′: G ∈ π ∨ π′ if, and only if, ∃i ∈ I and j ∈ I ′ such that G = Ωi ∩ Ω′j and G 6= ∅.

We can extend the definition to a family of partition πi. In this case, we use the
notation

∨
i πi.

Definition 9.2.3. Consider a collection G of subsets of Ω. An atom of G, or a G-
atom is an nonempty subset G ∈ G such that K ∈ G and K ⊂ G imply that K = ∅
or K = G.

Definition 9.2.4. Consider two partition fields G[ and G] on Ω. When G[ ⊂ G]

(that is, G ∈ G[ ⇒ G ∈ G]), G] is said to be finer than G[, and this is denoted by
G[ 4 G].

9.3. Recall on stochastic kernels

This recall can be found on the appendix of Carpentier, Cohen, Chancelier, and
De Lara (2015)

Definition 9.3.1. Let (X,X) and (Y,Y) be two measurable spaces. A stochastic
kernel from (X,X) to (Y,Y) is a mapping p : X× Y→ [0; 1] such that

� for any F ∈ Y, p(., F ) is X−measurable;

� for any x ∈ X, p(x, .) is a probability on Y.

A stochastic kernel may equivalently be seen as a measurable mapping from (X,X)
to P(Y). Thus, as for notation and terminology, we shall speak of a stochastic kernel
p(x, dy) from X to Y or of a stochastic kernel p(dy|x) on Y given X.

Here is a composition operation on stochastic kernels.

Definition 9.3.2. Let (X,X), (Y,Y) and (Z,Z) be three measurable spaces. Con-
sider two stochastic kernels, p(dy | x) on Y given X and q(dz | y) on Z given Y.
Then, the following expression defines a stochastic kernel p⊗ q on Z given X:

(p⊗ q)(F | x) =

∫
Y
p(dy | x)

∫
F

q(dz | y) , ∀F ∈ Z . (9.15)

Proposition 9.3.3. Let Y and Z be Borel spaces and q ∈ P(Y × Z). Then, there
exists a stochastic kernel r(dz|y) over Z knowing Y such that q = r ⊗ s :

q(dy dz) = r(dz|y)s(dy) where s(dy) =

∫
Z
d(dy dz). (9.16)
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9.4. Recall on star-difference

The definition which follows comes from the book Hiriart-Urruty and Lemaréchal
(2013) and introduces a concept of difference between convex sets. We consider for
this section the vectorial space Rn endowed with a norm denoted ‖ · ‖.

Definition 9.4.1. Given two convex sets C1 and C2, we call star-difference the
relation defined by

C1 ∗ C2 = ∩c2∈C2{C1 − c2} = {a ∈ Rn : x+ C2 ⊂ C1} . (9.17)

The star difference C1 ∗ C2 is a convex set even if C2 is not convex. It is a “small”
set and it is very often empty. Here are some examples to illustrate the notion.

Example 9.4.2. Let C1 = B(o1, r1) and C2 = B(o2, r2) be two balls with 0 < r2 ≤
r1. We have then C1 ∗ C2 = B(o1− o2, r1− r2). Let C1 and C2 be two convex cones
in the positive orthant. If C2 ⊂ C1 then C1 ∗ C2 = C1 else C1 ∗ C2 = ∅.

The first property we state analyses the result of “adding” and “deleting” a set S
to a set R.

Proposition 9.4.3. Given a set S, we have

S + (R ∗ S) ⊂ R . (9.18)

Proof. Let x be an element of R ∗ S then by definition of the star-difference we have
that

x+ S ⊂ R . (9.19)

The result (9.19) is true for all x ∈ R ∗ S which ends the proof.

(R ∗ S) + S ⊂ R . (9.20)

�

Proposition 9.4.4. Let C be a convex set. Given two convex sets D1 and D2 such
that D1 ⊂ D2, we have

C ∗ D2 ⊂ C ∗ D2 . (9.21)

Proof. By definition (9.17) of the starshape,

C ∗ D2 = {x ∈ Rn : x+D2 ⊂ C} , (9.22)

Let x ∈ C ∗ D2 and d1 be an element of the set D1. By assumption, d1 ∈ D2

therefore x+ d1 ∈ C. This implies x+D1 ⊂ C which ends the proof. �

The next proposition explores the effects of interverting star difference and inter-
section.

Proposition 9.4.5. Given three convex sets C1 , C2 and C3 we have

(C1 ∗ C2) ∩ (C1 ∗ C3) ⊂ C1 ∗ (C2 ∩ C3) . (9.23)
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Proof. By definition we have

C1 ∗ (C2 ∩ C3) =
⋂

x∈C2∩C3

{C1 − x} , (9.24)

and
(C1 ∗ C2) ∩ (C1 ∗ C3) = ∩y∈C2{C1 − y}︸ ︷︷ ︸

I2

⋂
∩y∈C3{C1 − y}︸ ︷︷ ︸

I3

. (9.25)

We denote by R2 the rest C2\(C2 ∩ C3) and by R3 the rest C3\(C2 ∩ C3). Wa have
thus Ii = ∩y∈(C2∩C3){C1 − y}

⋂
∩y∈Ri{C1 − y}. We can rewrite equation (9.24)

(C1 ∗ C2) ∩ (C1 ∗ C3) = ∩y∈(C2∩C3){C1 − y}
⋂
∩y∈R2{C1 − y}

⋂
∩y∈R3{C1 − y} ,

(9.26)
which by definition of the star difference reads

(C1 ∗ C2) ∩ (C1 ∗ C3) = C1 ∗ (C2 ∩ C3)
⋂
∩y∈R2{C1 − y}

⋂
∩y∈R3{C1 − y} ,

(9.27)

⊂ C1 ∗ (C2 ∩ C3) . (9.28)

This ends the proof. �

9.5. Recall on risk measures

The results presented rely upon Acerbi (2002), Ruszczyński (2010) and Föllmer and
Schied (2016). Let (Ω,T) be a measurable space and P be a probability distribution
over Ω. The set M1(Ω) is the set of probability distributions over Ω and let X be a
subspace of L∞(Ω,T,P).

9.5.1. Definition of monetary risk measure

Definition 9.5.1. A risk measure ρ : X→ R is said to be

� monotonous if X ≤ Y ⇒ ρ(X ) ≤ ρ(Y ),

� translation invariant if ∀ m ∈ R , ρ(X +m) = ρ(X ) +m,

� convex if ρ
(
λX + (1− λ)Y

)
≤ λρ(X ) + (1− λ)ρ(Y ) for λ ∈ [0; 1],

� positively homogeneous if ∀λ ≥ 0 , ρ(λX ) = λρ(X )

Proposition 9.5.2. A monetary risk measure ρ is Lipschitz continuous with respect
to the norm ‖ · ‖∞

A risk measure which is monetary, convex and positively homogeneous is said to
be coherent.
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9.5.2. Examples of risk measure

Before defining some well known risk measures, we need to introduce notation for
cumulative distribution function

� FX (x) = P
(
X ≤ x

)
,

� F−1
X (p) = inf

{
x|FX (x) ≥ p

}
.

Let α be a real in [0; 1]. We defined

Value at Risk:

V aRα(X ) = inf
{
m ∈ R|P

(
X ≤ m

)
≥ α

}
, (9.29a)

= F−1
X (α) . (9.29b)

Tail Conditional Expectation:

TCEα(X ) = EP[X |X ≥ V aRα] . (9.30)

Entropic risk measure:

REα(X ) =
1

1− α
log
(
EP[e(1−α)X ]

)
. (9.31)

Worst Conditional Expectation:

WCEα(X ) = sup
{
EP[X | A]; A ∈ F, P (A) ≥ 1− α

}
. (9.32)

Conditional Value at Risk:

AV@Rα[X ] = inf s ∈ R{
E[(X − s)+]

1− α
+ s} . (9.33)

Expected Shortfall:

ESα(X ) =
1

1− α
E[(X − V aRα)+] + V aRα . (9.34)

Average Value at Risk :
For all α in [0; 1)

AV aRα(X ) =
1

1− α

∫ 1

α

V aRp(X )dp . (9.35)

and by extension, for α = 1, we use the Worst Case:

AV aR1(X ) = ess.sup(X ) . (9.36)

Theorem 9.5.3. With previous definition we have

CV aRα = ESα = AV aRα . (9.37)

Proposition 9.5.4. The risk measures V aRα, TCEα and REα are not coherent in
general. the risk measure WCEα and AV aRα are coherent.
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9.5.3. Dual representation of coherent risk measure

General case

We recall that the topological dual of L∞(Ω,F,P) is the set of finite σ-additive
measures absolutely continuous with respect to P and is denoted by M1,f .

Theorem 9.5.5 (Representation theorem for convex risk measures). Every convex
monetary risk measure ρ on X has the form

ρ(X ) = max
Q∈M1,f

(EQ[X]− cmin(Q)) , (9.38)

where the penalty function cmin is given by

cmin(Q) = sup
X∈Aρ

EQ[X ]. . (9.39)

Besides, every penalty function c is such that ρ(X ) = max
Q∈M1,f

(EQ[X]−c(Q)) satisfies

c(Q) ≥ cmin(Q)

Theorem 9.5.6 (Representation theorem for coherent risk measures). The penalty
function cmin of a coherent risk measure ρ only takes the values 0 or +∞. In par-
ticular,

ρ(X ) = max
Q∈Qmax

EQ[X ] . (9.40)

with the convex set
Qmax := {Q ∈M1,f |cmin = 0} . (9.41)

Application to examples

Proposition 9.5.7.

REα(X ) = sup
Q∈M1

{EQ[X ]− 1

1− α
H(Q|P)} . (9.42)

where H(Q|P) := EQ(log dQ
dP )

Proposition 9.5.8.
The set Qmax associated with the risk measure AV aRα is defined by

Qmax := {Q ∈M1(P);
dQ
dP
≤ 1

1− α
} . (9.43)

The set Qmax associated with the risk measure WCEα is defined by

Qmax := {P[ . |A]; A ∈ F, P[A] ≥ 1− α} . (9.44)

We notice that when α goes to 1, the set Qmax of the AV aRα goes to P(Ω) which
defines the worst case risk measure.
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9.6. Recall on Moreau’s transform and Moreau’s
addition

We first present ingredients that are used to state our main contribution. The
formal tools of coupling and Fenchel-Moreau conjugate were introduced in Moreau.
We recall that

R = [−∞,+∞] = R ∪ {−∞,+∞} . (9.45)

When we manipulate functions with values in R = [−∞,+∞], we adopt the
following Moreau lower addition or upper addition, depending on whether we deal
with sup or inf operations. In the sequel, u, v and w are any elements of R̄.

Moreau lower addition

The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ . (9.46a)

With the lower addition, (R̄, ·+) is a convex cone, with ·+ commutative and associa-
tive. The lower addition displays the following properties:

u ≤ u′ , v ≤ v′ ⇒ u ·+ v ≤ u′ ·+ v′ , (9.46b)

(−u) ·+ (−v) ≤ −(u ·+ v) , (9.46c)

(−u) ·+ u ≤ 0 , (9.46d)

sup
a∈A

f(a) ·+ sup
b∈B

g(b) = sup
a∈A,b∈B

(
f(a) ·+ g(b)

)
, (9.46e)

inf
a∈A

f(a) ·+ inf
b∈B

g(b) ≤ inf
a∈A,b∈B

(
f(a) ·+ g(b)

)
, (9.46f)

t < +∞⇒ inf
a∈A

f(a) ·+ t = inf
a∈A

(
f(a) ·+ t

)
. (9.46g)

Moreau upper addition

The Moreau upper addition extends the usual addition with

(+∞)u (−∞) = (−∞)u (+∞) = +∞ . (9.47a)

With the upper addition, (R̄,u) is a convex cone, with u commutative and associa-
tive. The upper addition displays the following properties:

u ≤ u′ , v ≤ v′ ⇒ uu v ≤ u′ u v′ , (9.47b)

(−u)u (−v) ≥ −(uu v) , (9.47c)

(−u)u u ≥ 0 , (9.47d)

inf
a∈A

f(a)u inf
b∈B

g(b) = inf
a∈A,b∈B

(
f(a)u g(b)

)
, (9.47e)

sup
a∈A

f(a)u sup
b∈B

g(b) ≥ sup
a∈A,b∈B

(
f(a)u g(b)

)
, (9.47f)

−∞ < t⇒ sup
a∈A

f(a)u t = sup
a∈A

(
f(a)u t

)
. (9.47g)
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Joint properties of the Moreau lower and upper addition

We obviously have that
u ·+ v ≤ uu v . (9.48a)

The Moreau lower and upper additions are related by

− (uu v) = (−u) ·+ (−v) , −(u ·+ v) = (−u)u (−v) . (9.48b)

They satisfy the inequality

(uu v) ·+ w ≤ uu (v ·+ w) . (9.48c)

with

(uuv) ·+ w < uu(v ·+ w) ⇐⇒


u = +∞ and w = −∞ ,

or

u = −∞ and w = +∞ and −∞ < v < +∞ .

(9.48d)
Finally, we have that

u ·+ (−v) ≤ 0 ⇐⇒ u ≤ v ⇐⇒ 0 ≤ v u (−u) . (9.48e)

Background on Fenchel-Moreau conjugacy with respect to a coupling Let be
given two sets C and C]. Consider a coupling function Φ : C × C] → [−∞,+∞].

We also use the notation C Φ↔ C] for a coupling, so that

C Φ↔ C] ⇐⇒ Φ : C× C] → [−∞,+∞] . (9.49)

Definition 9.6.1. The Fenchel-Moreau conjugate of a function f : C→ [−∞,+∞],
with respect to the coupling Φ in (9.49), is the function fΦ : C] → [−∞,+∞] defined
by

fΦ(c]) = sup
c∈C

(
Φ(c, c]) ·+

(
− f(c)

))
, ∀c] ∈ C] . (9.50)

The Fenchel-Moreau biconjugate is the function fΦΦ : C→ [−∞,+∞] defined by

fΦΦ(c) = sup
c]∈C]

(
Φ(c, c]) ·+

(
− fΦ(c])

))
, ∀c ∈ C . (9.51)
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10.1. Translation invariant mappings on lattices

Inspiring ourselves from Föllmer and Schied (2016), we are going to define a general
framework for translation invariant mappings and acceptance sets. All the mappings
will be defined on a set X. We will first define a cone and use it to define what it
means to be positive with a preorder coming from this cone. Then we will use this
order to define acceptance set via an infimum operation.

10.1.1. Basic notions

Let I be a subset of the set X that is equipped with a partial order denoted by ≤.
We recall that a complete lattice I is a set such that there exists a greatest lower
bound and a least upper bound for each (finite or infinite) subset. We denote by ⊥
the bottom element of the set I, by > the top element of the set I by ∧ the infimum
operation and by ∨ the supremum operation.

Definition 10.1.1. Let F be a subset of I. We denote by F+ the set

F+ = {f ∈ F | f ≥ 0} . (10.1)

The reverse set F− has an evident definition. The set F+
∗ is the set

{f ∈ F | f > 0} , (10.2)

and the set F−∗ has an evident definition. More generally, we define the lower set
↓ {i} and the upper set ↑ {i} of i by

↓ {i} = {i′ ∈ I | i′ ≤ i} , (10.3a)

↑ {i} = {i′ ∈ I | i′ ≥ i} . (10.3b)

Let F be a subset of I

↓ F = {i′ ∈ I | i′ ≤ i ∀i ∈ F} , (10.4a)

↑ F = {i′ ∈ I | i′ ≥ i ∀i ∈ F} . (10.4b)
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10.1.2. Translation Invariant mapping and acceptance set

We suppose that (I,⊕) is a commutative group whose neutral element is 0 i.e. the
operation ⊕ is intern commutative and associative, and each element i ∈ I have an
inverse denoted by 	i such that ∀i ∈ I , i⊕ (	i) = (	i)⊕ i = 0.

Let ≤ be a partial order on I. We say that the order ≤ is compatible with ⊕ if

i1 ≤ i2 ⇒ i1 ⊕ i3 ≤ i2 ⊕ i3 , ∀(i1, i2, i3) ∈ I3 . (10.5)

Definition 10.1.2. Let (I,⊕) be a non trivial commutative group and γ : I→ X be
a given mapping. A I-translation invariant mapping on X is a mapping ρ : X → I
which satisfies

ρ(x− γ(i)) = ρ(x)⊕ (	i) , ∀i ∈ I . (10.6)

When I ⊂ X and γ = Id, Equation (10.6) reads ρ(x− i) = ρ(x)− i.

Definition 10.1.3. Let ρ be a I-translation invariant mapping on X. and let ≤ be
a partial order on I compatible with ⊕. The acceptance set Aρ of the mapping ρ is
defined by

Aρ =
{
x ∈ X | ρ(x) ≤ 0

}
. (10.7)

Proposition 10.1.4. Let A be a subset of X, (I,⊕,≤) a commutative group com-
patible with the partial order ≤ which is also a complete lattice and γ : I → X a
given mapping. Then, the mapping ρA defined by

ρA(x) = ∧{i ∈ I | x− γ(i) ∈ A} , ∀x ∈ X , (10.8)

is an I-translation invariant risk mapping.

Proof. Using the fact that I is a complete lattice, the mapping ρA is well defined
and take values in I. We fix an element j ∈ I. We have the following equalities

ρA(x− γ(j)) = ∧{i | i ∈ I and x− γ(j)− γ(i) ∈ A} , (by definition (10.8),)

= ∧{i⊕ j 	 j | i ∈ I and x− γ(j)− γ(i) ∈ A} ,

as j 	 j = 0 and associativity of ⊕,

= ∧{i⊕ j 	 j | i ∈ I and x− γ(i⊕ j) ∈ A} , (as γ is linear,)

= ∧{i⊕ j | i ∈ I and x− γ(i⊕ j) ∈ A} 	 j ,

as j is a silent variable for the infimum operation and ≤ is compatible with ⊕ ,

= ∧{i′ | i′ 	 j ∈ I and x− γ(i′) ∈ A} 	 j , (i′ = i⊕ j)
= ∧{i′ | i′ ∈ I and x− γ(i′) ∈ A} 	 j , (I = j + I)
= ρA(x)	 j , (by definition (10.8))

This ends the proof. �
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10.1. Translation invariant mappings on lattices

Proposition 10.1.5. Let ρ be a I-translation invariant mapping on X. Then we
have

ρ(x) = ρAρ(x) , ∀x ∈ X . (10.9)

Proof. Let x be an element of X. We have the following equalities

ρAρ(x) = ∧{i | i ∈ I and x− γ(i) ∈ Aρ} , (by Definition (10.8),)

= ∧{i | i ∈ I and ρ(x− γ(i)) ≤ 0} , (by Definition 10.1.3)

= ∧{i | i ∈ I and ρ(x)	 i ≤ 0} , (by Definition 10.1.2)

= ∧{i | i ∈ I and ρ(x)	 i⊕ i ≤ 0⊕ i} , (by compatibility of ⊕ and ≤)

= ∧{i | i ∈ I and ρ(x) ≤ i} , (10.10)

= ρ(x) , (10.11)

as ρ(x) is a minorant and belongs to the minimizing set. �

In the next proposition we detail assumptions that can be given on a set A in
order to define a proper risk mapping ρA i.e. a risk mapping which is not identically
equals to the top element and never take the bottom element as value.

Definition 10.1.6. A mapping ρ : X→ I is said to be proper if

∃x ∈ X , ρ(x) < > , (10.12)

∀x ∈ X , ρ(x) > ⊥ . (10.13)

Proposition 10.1.7. Let A be a subset of X. If

1. A 6= ∅,

2. {i | i ∈ I and x− γ(i) ∈ A} ≥ α(x) for all x where α : X→ I\{>,⊥},

then the translation invariant risk mapping ρA is proper.
By item 2 and definition (10.8), ρA never takes the value ⊥. This ends the proof.

Proof. We fix x ∈ Aρ as Aρ is non empty. Then ρA(x) ≤ 0 < > and ρA takes at
least one finite value.

�

Proposition 10.1.8. Let ρ be a I-translation invariant mapping on X that is proper.
Then

1. Aρ 6= ∅,

2. {i | i ∈ I and x− γ(i) ∈ Aρ} ≥ ρ(x) for all x where α : X→ I\{>,⊥}.

Proof. As the mapping ρ is proper, we fix x ∈ X such that ρ(x) < >. Then,

ρ
(
x− γ

(
ρ(x)

))
= ρ(x)	 ρ(x) = 0 ≤ 0 and the element x− γ

(
ρ(x)

)
belongs to Aρ.

By Proposition 10.1.5, we know that ρ = ρAρ = ∧{i | i ∈ I and x− γ(i) ∈ Aρ}.
This ends the proof.

�
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