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Abstract

The evolution of wireless communication must meet the increasingly high

demand in mobile data. It is an important subject studied by Information

Theorists in the last decade. A challenge has been launched by Qualcomm

to increase the maximum rates of wireless by a factor of 1000 by 2020. It is

clear that to reach this goal, a combination of different ingredients is necessary.

The major limitation of wireless communication is the interference due to

frequency reuse. For 2G networks, this interference was treated as noise and

was limited by a moderate frequency reuse behavior. Spread spectrum in 3G

created so much intracell interference that the frequency reuse issue became

less problematic. The use of an orthogonal modulation which is orthogonal

frequency-division multiplexing (OFDM) again in 4G led to an interference

management by dynamic coordination of resource blocks. The use of multiple

antennas started with multiple input multiple output (MIMO) in 3G and

Multiuser (MU) MIMO (single cell) or Coordinated Multipoint (CoMP) for

multiple cells in 4G. These techniques allowed only modest gains in rates. A

new technique of interference management was born 5 years ago, the Inteference

Alignment (IA). IA permits to have a capacity which equals half of the capacity

of an interference-free system. This technique supposes that each transmitter

(Tx) knows the channels not only towards its receivers (Rxs), but the channels

from all Txs to all receivers Rxs. A more recent interference management

technique is Massive MIMO, where Txs use antennas at a very large scale. The

idea is introduced in a single cell scenario for MU MIMO. Massive MIMO is

motivated by many simplifications which appear in an asymptotic regime where

base stations (BSs) are endowed with large numbers of antennas. MIMO allows

simultaneous transmission of multiple streams (spatial multiplexing), which

permits to increase the rates inevitably. Although MIMO makes use of multiple

antennas at both Tx and Rx sides, it needs a very rich propagation environment

(like in indoor); the MU MIMO allows the same spatial multiplexing with
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single antenna users and any environment. However, for MU MIMO, all of the

interference management must be done at the Tx side, which implies a good

channel state information at trasmitter (CSIT) requirement. In this case, the

optimal transmission technique becomes complex, which is the Dirty Paper

Coding (DPC). If the number of transmit antennas increases a lot, a linear

beamformer (BF) will be near optimal and even simple matched filters will

be optimal asymptotically. Although such a large number of antennas looks

freaky, we can argument that the RF circuits do not need to be very precise

which allows to decrease the BS consumption. The goal of this thesis is to

introduce complete and realistic solutions for interference management using

Massive MIMO in a multicell (MC) scenario.
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Chapter 1

Motivation and Models

1.1 Introduction

Demand for high data rates is growing heavily over the next years. In order to

meet this demand in the next generation networks or 5G, a combination of

ingredients are crucial:

• Densifying the network: putting the access points closer one to another.

• Adding more spectrum: the introduction of new high frequency bands

in 5G ≥ 6Ghz allows the introduction of millimeter-waves (mmWaves)

communications.

• Adding more antennas at the BSs: Massive MIMO. We mean by ’Massive

MIMO’, systems having antenna arrays with a few hundred antennas

serving tens of terminals in the same time-frequency resource. Massive

MIMO is a serious enabler for 5G.

However, densifying the network will create more intercell interference in the

system, which is already contaminated by intercell interference and mmWaves

suffer from severe pathloss and penetration loss.

The main focus of this work is the Massive MIMO technology, which presents

numerous advantages. [1–8] Massive MIMO increases spectral efficiency

because tens of terminals are served simultaneously. It increases energy effi-

ciency; the energy can be focused with extreme sharpness into small regions in

space. Moreover, it enables reduction of latency by relying on the law of

1
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large numbers and beamforming to avoid fading dips, so that fading no longer

limits latency. It also simplifies the Medium Access Control (MAC)

layer: The channel hardens and frequency domain scheduling no longer pays

off. All subcarriers have the same gain so with OFDM the whole frequency

band per resource block can be allocated to each user.

Massive MIMO uses low-cost low-power Radio Frequency (RF) hard-

ware, e.g. the ultra linear 50 Watt amplifiers used in conventional amplifiers

are replaced by low cost ones with output power in the milli-Watt range. This

causes quality degradation in the RF. Although Massive MIMO reduces the

constraints on accuracy RF, it relies on law of large number, so that hardware

imperfections average out when signals from a large number of antennas are

combined together.

Cheap hardware components are particularly prone to the following impair-

ments:

• Amplifiers non-linearities: OFDM-based wireless communications systems

suffer from high Peak-to-Average Power Ratio (PAPR), which necessitates

the use of linear power amplifiers to avoid out-of-band radiation and

signal distortions. Linear RF are more costly and less power efficient

than their nonlinear counterparts, which induces high costs for large scale

BSs.

• I/Q imbalance: It is one of the most severe RF impairments. On the

one hand, non-ideal mixers cause phase imbalance between the I and Q

branches. On the other hand, imperfect responses of amplifiers, filters,

analog-to-digital and digital-to-analog converters result in gain imbalance

between the I and Q branches. The resulting signal distortion is well

known to cause inter-carrier interference in multi-rate systems.

• Phase noise: Phase noise is introduced during the up conversion of the

baseband signal to passband and vice versa due to imperfections in the

circuitry of local oscillators.

However, the influence of hardware impairments is mitigated by compensation

algorithms which can be implemented by analog and digital processing and

which benefit from the excess of degrees of freedom (DoF) by the Massive

MIMO antennas configuration and the averaging effect in Massive MIMO
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resulting.

Although Massive MIMO has numerous advantages [4, 9–12], scaling up the

number of antennas faces several challenges that prevent the corresponding

scaling of the gains. So, what are the challenges that Massive MIMO is facing?

In a conventional Frequency Division Duplexing (FDD) system, the amount of

time-free resources for Downlink (DL) pilots scales as the number of antennas.

So, a massive MIMO system would require up to a 100 times more resources

than a conventional system. The BS sends out pilots based on which the

terminals estimate the channel responses, quantify the obtained estimates

and feed them back to the BS. In the uplink (UL), the number of pilots

is proportional to the number of users, which is acceptable. However, in a

coherence interval (UL + DL) transmission, training and feedback have high

overhead and hence the number of users servable would be limited.

To overcome the above, Time Division Duplexing (TDD) is used where the

DL channel can be simply obtained from the UL channels due to channel

reciprocity. We should not spend too much resources on pilots in TDD mode.

Nevertheless, the max number of orthogonal pilot sequences that can exist

is upper-bounded by the duration of the coherence interval divided by the

delay-spread. The effect of reusing pilots from one cell to another is ’pilot

contamination’.

This problem is not specific to Massive MIMO, but effect on Massive MIMO

appears to be more profound. Pilot contamination causes channel estimation

errors which in turn leads to DL intercell interference. Recent ideas based on

the exploitation of side-information lying in the second-order statistics of the

user channels, both for desired and interfering users, lead to a complete removal

of pilot contamination effects in large number of antennas limit. Covariance-

aware pilot assignment strategies within the channel estimation phase itself

are used as well to combat the pilot contamination.

Therefore, even though pilot contamination is a tough problem, many practical

solutions exist to eliminate its effects so that the system performance grows

unboudedly to infinity with the number of antennas.

A crucial question is on what frequencies Massive MIMO will work. In 5G, we

identify 3 groups of frequency bands:

• low-range frequencies (around 700 Mhz): it offers great penetration and
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coverage and would be used for Internet of Things (IoT) which requires

wide range coverage and good penetration especially when sensors are

indoor. These frequencies will not be used for Massive MIMO, because,

at these frequencies, the carrier wavelength λ is high. This would result

to the antenna spacing λ
2 being larger, so the antenna array would in

turn become very large. This is not practical. FDD mode is applicable

in this range.

• mid-range frequencies around 2.6 Ghz: Massive MIMO will be used in

this band, where it would be beneficial for its advantages discussed above.

TDD mode is applicable in this range.

• high-range frequencies ≥ 6 Ghz (mmWaves): Massive MIMO is essential

in this band. More details are given below.

Wireless industries face spectrum crunch at microwave frequencies (up to

6Ghz)[13]. Due to his fact, there is interest to exploit underutilized mmWaves.

However, mmWaves face severe path loss, penetration loss and rain fading and

are easily absorbed or scattered by gases. As a result, they require very high

gain antenna systems, which can be provided by Massive MIMO. For that

reason, there is a marriage between Massive MIMO and mmWaves.

Massive MIMO increases spectral efficiency by serving tens of terminals simul-

taneously. However, in order to so, signals transmitted by the BSs must be

precoded by some precoders/ BFs. What are the best precoders for Massive

MIMO BSs?

With Massive MIMO, the effect of small fading, intracell interference and

intercell interference vanish if and only if pilot contamination is dealt with

[14–21]. It is shown that, with linear precoders in single cell scenario, the

achievable sum rates are up to 98 percent of those achieved by DPC, for BS to

user antenna ratios as low as 10.

For FDD systems, two-stage precoding schemes are used to reduce pilot re-

sources and CSI feedback in FDD systems. The users are put into groups

which have similar second-order channel statistics, i.e. transmit correlation.

The first stage precoding is then used for each group of users semi-statistically.

With reduced dimensions on the effective channel, simple channel feedback can

be realized, thus the second-stage dynamic precoding can be applied. However,

we stress the fact that Massive MIMO will mainly be deployed with TDD.

For high-range frequencies, the RF chains operating at such high frequencies
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are so expensive that installing a RF chain per antenna is unlikely to happen.

Hybrid analog digital architectures have been proposed in the literature. They

utilize discrete phase shifters or switches, which move some of the signal pro-

cessing from the digital baseband domain to the analog RF domain, so as to

decrease the number of RF chains.

Massive MIMO can also be beneficial when combined with technologies such

as full duplex (FD) relaying. FD has received a lot of research interest for

its ability to recover the bandwidth loss induced by conventional half-duplex

relaying. The benefit of improved spectral efficiency in the FD mode comes at

the price of loop interference, due to signal leakage from the relay’s output to

input. Nevertheless, Relay station (RS) equipped with massive arrays loop can

canceled out interference.

In this work, we focus on linear precoders for MC MU Massive MIMO scenarios

for massive MIMO. For classical multicell MIMO networks, two algorithms are

known to be the best. The first algorithm is the weighted sum minimun squared

error (WSMSE) approach, which transforms the weighted sum rate (WSR)

maximization problem into an equivalent WSMSE minimization problem with

some special chosen weighted matrices that depend on the beamforming ma-

trices as in [22], [23] and [24]. The other algorithm is the KG algorithm,

which transforms the WSR maximization problem into a difference of concave

function problems as in [25].

1.2 Summary of Contributions

In this thesis, we reconsider the WSMSE and KG algorithms and apply/ adapt

them for Massive MIMO scenarios. The work is divided into three sub-parts.

The first one concerns the Random Matrix Theory for large system analysis

and Massive MIMO design and is discussed in Chapters 2 and 3. The second

one is about the further Random Matrix Theory exploitation with partial CSIT.

Details can be found in Chapters 4 and 5. Finally, Relaying with Random

Matrix Theory is the main subject of Chapter 6.

As far as the first part is concerned, in Chapter 2, we perform a large system

analysis on the WSMSE algorithm for MC MU massive MIMO scenarios in

order to study its performance. The results are published in:
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• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, Weighted sum rate

maximization of correlated MISO interference broadcast channels under

linear precoding: a large system analysis, VTC 2016-Spring, IEEE 83rd

Vehicular Technology Conference, 15-18 May 2016, Nanjing, China

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, A Large system analysis

of weighted sum rate maximization of single stream MIMO interference

broadcast channels under linear precoding, ISWCS 2016, Poznan, Poland

In Chapter 3, we inspire from the derivations in Chapter 2, and we propose a

new fast-convergent precoder suitable for MC MU massive MIMO with perfect

CSIT scenarios.

• Tabikh, Wassim; Yuan-Wu, Yi; Slock, Dirk TM, Decentralizing multi-

cell maximum weighted sum rate precoding via large system analysis,

EUSIPCO 2016, 24th European Signal Processing Conference, 28 August-

2 September 2016, Budapest, Hungary

As far as the second part is concerned, in Chapter 4, we deal with scenarios

where the Tx do not have anymore a good knowledge of the channels towards

the users. A robust precoder is proposed for that case, and a study of its

performance is provided using large system approach. The results are patented

and then published in:

• Tabikh, Wassim; Yuan-Wu, Yi; Slock, Dirk, Beamforming design with

combined channel estimate and covariance CSIT via random matrix

theory, ICC 2017, IEEE International Conference on Communications,

IEEE ICC 2017 Wireless Communications Symposium, May 21-25, Paris,

France

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, MaMISO IBC beam-

forming design with combined channel estimate and covariance CSIT: a

large system analysis, ICC 2017, WS08-3rd International Workshop on

Advanced PHY and MAC Technology for Super Dense Wireless Networks

(CROWD-NET), May 21-25, Paris, France

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, MIMO IBC beamform-

ing with combined channel estimate and covariance CSIT, ISIT 2017,
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IEEE International Symposium on Information Theory June 25-30, 2017,

Aachen, Germany

In Chapter 5, we deal with nonlinear robust transmit precoders design for the

case of partial CSIT. The results are published in:

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, Robust Non-Linear

Precoders for the MIMO Interference Broadcast Channels with Imperfect

CSIT, submitted to EUSIPCO 2018, September 2018, Rome, Italy.

Finally, in Chapter 6, we extend our system model and we suppose the existence

of relays. DoFs and new beamforming algorithms for MC MU scenarios are

derived. The results are published in:

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, Relay aided coordinated

beamforming and interference neutralization, ITA 2017, Information

Theory and Applications Workshop, February 12-17 2017, San Diego,

USA

Chapter 7 concludes and gives insights into possible extensions of the current

work in the future.

1.3 Notation

The following notation is adopted throughout the thesis: Scalars are denoted

in lower case, vectors are denoted in bold-face and lower case, matrices are

denoted in bold-face and upper case. The subscripts (·)T and (·)H denote the

matrix transpose and conjugate transpose respectively. det(·), tr(·) and (·)−1

denote the matrix determinant, trace and inverse respectively. E(·) denotes
the expectation of a random variable. log(·) denotes the binary logarithm. IM

denotes the identity matrix of dimension M, x ∼ NC(0, σ2) denotes that x

follows a complex Gaussian distribution with zero mean and σ2 variance.

1.4 System Model

We analyse a cellular DL MC MU MIMO scenario where C cells are presented,

c=1...C, each of the C cells consists of one BS with M antennas which transmits
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Figure 1.1: The IBC or MC MU system model

data to K users equipped with N-antennas Rxs (See Figure 1.1). We assume

transmission on a single narrow-band carrier. The received signal yc,k ∈ C
N×1

at the kth user in cell c reads

yc,k =
C∑

m=1

K∑

l=1

Hm,c,kGm,lsm,l + nc,k (1.1)

where the user symbols are chosen from a Gaussian codebook, i.e, sm,l ∈ C
dm,l,1,
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where each one of its elements ∼ NC(0, 1), are linearly precoded and form the

transmit signal; dm,l is the number of streams allowed by the user l of cell m;

Gm,l ∈ C
M×dm,l is the precoding vector of user l of cell m, Hm,c,k ∈ C

N×M

is the channel matrix from the mth transmitter to the kth user of cell c, and

the nc,k is a C
N×1 vector independent complex Gaussian noise terms with

zero mean and variance σ2. Moreover, the channel Hi,c,k has as covariance

matrix E[HH
i,c,kHi,c,k] = Θi,c,k and the precoders are subject to an average

power constraint due to power budget limitation at each Tx, thus

trGcG
H
c � Pc for c ∈ C (1.2)

where C is the set of all BSs.

Gc = [Gc,1,Gc,2, ...,Gc,K ] ∈ C
M×K is the precoding matrix and Pc is the total

available transmit power of cell c.

Under the assumption of optimal single-user decoding and perfect CSIT and

CSI at the receivers (CSIR), the achievable rate rc,k of the kth user of cell c is

given by

rc,k = log det(IN + Γc,k) (1.3)

Γc,k = R−1
c,k

Hc,c,kQc,kH
H
c,c,k (1.4)

where Qc,k = Gc,kG
H
c,k is the transmit covariance matrix, Γc,k is the signal

to interference plus noise ratio (SINR) of the kth user of cell c and Rc,k is

the received interference plus noise covariance matrix at the kth user of cell c,

given by

Rc,k = Hc,c,kQc,kH
H
c,c,k +Rc,k

Rc,k =
∑

(j,i) 6=(c,k)

Hj,c,kQj,iH
H
j,c,k + σ2IN .

(1.5)

The rate, especially when the Rxs are located at the cell edges, is greatly

influenced by the intercell interferences (Figure 1.2).

For instance, for a cell edge user, the received interference signal in the DL

can be severe and even of a comparable strength to the useful signal, which

degrades the achieved rate significantly. To enhance the performance in cellular

systems and maximize the WSR of all users, smart spatial signal processing

techniques at the BSs and the Rxs are needed. Furthermore, we assume a

coordinated beamforming (CoBF) scheme in which each BS sends data to its
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Figure 1.2: Intercell interference at cell edges

own users only but CSI is shared between the BSs so that each BS can exploit

its excess number of spatial dimensions to mitigate the interference generated

in other cells.Thus, we are facing an optimization problem which is the following

G =argmax
G

C∑

c=1

K∑

k=1

uc,krc,k

s.t. trGcG
H
c ≤ Pc for c ∈ C

(1.6)

where G is the short notation for {Gc}c∈C and where uc,k ≥ 0 is the weight of

the kth user of cell c.

Two algorithms exist that solve this problem: the WSMSE and the KG

algorithms which we will discuss below.

1.4.1 The WSMSE algorithm

The optimization problem in (1.6) is hard to be solved directly, since it is

highly non concave in the precoding matrix G. To solve it, we consider the

linear receive filters Fc,k ∈ C
N×dc,k , the error variance Ec,k ∈ C

dc,k×dc,k after

the linear receive filtering, given in (1.8), and we introduce additional weighting

matrices Wc,k ∈ C
dc,k×dc,k , so that the utility function (1.6) can be modified
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and an equivalent optimization problem can be formulated as [22]:

{G,F,W} =

arg min
G,F,W

∑

(c,k)

uc,k(tr(Wc,kEc,k − log det(Wc,k)) (1.7)

s.t. trGcGc ≤ Pc for c ∈ C

with

Ec,k = E[(FHc,kyc,k − sc,k)(F
H
c,kyc,k − sc,k)

H ]. (1.8)

is the mean squared error (MSE), i.e. the error variance at the Rx. The

advantage of this formulation is that the objective function is now convex

and quadratic in G. Denote ρc =
Pc

σ2 , the signal-to-noise ratio (SNR) in cell

c. From (1.7), and after applying alternating optimization techniques, the

precoders are obtained as the following

Fc,k = (σ2IN +
C∑

m=1

K∑

l=1

Hm,c,kGm,lG
H
m,lH

H
m,c,k)

−1Hc,c,kGc,k (1.9)

Wc,k = (Idc,k − FHc,kHc,c,kGc,k)
−1 (1.10)

Gc,k = (

C∑

j

K∑

i

uj,iH
H
c,j,iDj,iHc,j,i + λcIM )−1HH

c,c,kFc,kWc,k (1.11)

where Di,j = Fi,jWi,jFi,j . Subsequently Fc,k and Wc,k are computed, which

then constitute the new precoder Gc,k. The Lagrangian λc must be adjusted

by bisection in order to satisfy the power constraints. However, if we would

like to not do any bisection, [24] has proposed a closed-form expression for the

Lagrangian, thus the precoder is reformulated as follows:

Gc,k = ξc(

C∑

j

K∑

i

uj,iH
H
c,j,iDj,iHc,j,i +

trDc

Mρc
IM )−1HH

c,c,kFc,kWc,k (1.12)

Wc = diag(wc,1, ..., wc,K), Ac = diag(ac,1, ..., ac,K),Dc = AH
c WcAc and A =

diag(A1,A2, ...AC), D = diag(D1,D2, ...,DC), ξc is the normalization term

and given by

ξ(j)c =

√
Pc

Gc,kG
H
c,k

=

√
Pc

Ψ
(j)
c

. (1.13)
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This process is repeated until convergence to a local optimum.

1.4.2 The KG precoding algorithm

Another way to solve the problem in (1.6) is to use a classical difference of

concave functions (DC) programming approach as in [25] and [26]. Moreover,

all of this section stem from [25]. This problem in (1.6) is non concave because

of interference, the KG algorithm proposes to isolate the signal of interest from

the sum rate of the rest of the signals which renders the problem non concave.

The rest is then linearized using Taylor’s expansion method, since a linear

function is simultaneously convex and concave. More specifically, consider the

dependence of WSR on Qc,k alone. Then, the objective function in (1.6) can

be rewritten as:

WSR = uc,k log det(R
−1
c,k

Rc,k) +WSRc,k ,

WSRc,k =
∑

(j,i) 6=(c,k) uj,i log det(R
−1
j,i

Rj,i)
(1.14)

Consider the first order Taylor series expansion in Qc,k around Q̂ (i.e. all Q̂j,i)

with e.g. R̂j,i = Rj,i(Q̂), then

WSRc,k(Qc,k, Q̂) ≈WSRc,k(Q̂c,k, Q̂)− tr{(Qc,k − Q̂c,k)Âc,k}

With Âc,k

= −
∂WSRc,k(Qc,k,Q̂)

∂Qc,k

∣∣∣∣∣
Q̂c,k,Q̂

=
∑

(j,i) 6=(c,k)

uj,iH
H
c,j,i(R̂

−1
j,i
−R̂−1

j,i )Hc,j,i

(1.15)

Note that the linearised (tangent) expression for WSRc,k constitutes a lower

bound for it. Now, dropping constant terms, reparameterizing the Qc,k =

Gc,kG
H
c,k, performing this linearisation for all users, and augmenting the WSR

cost function with the constraints, we get the Lagrangian

WSR(G, Ĝ, λ) =
C∑

j=1

λcPc +

C∑

c=1

K∑

k=1

uc,k log det(Idc,k +GH
c,kB̂kGc,k)− tr{GH

c,k(Âc,k + λcIM )Gc,k}

(1.16)

where
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B̂c,k = HH
c,c,kR̂

−1
c,k

Hc,c,k . (1.17)

The gradient (w.r.t. Gc,k) of this concave WSR lower bound is actually still the

same as that of the original WSR criterion. And it allows an interpretation as a

generalized eigenmatrix condition, thus G
′

c,k = eigenmatrix(B̂c,k, Âc,k+λcIM )

is the (normalized) generalized eigenmatrix of the two indicated matrices, with

eigenvalues Σc,k = eigenvalues(B̂c,k, Âc,k + λcIM ). The Lagrange multipli-

ers λc, for all c, are adjusted to satisfy the power constraints
∑

k,l

Pc,k(l, l) =

Pc. This can be done by bisection and gets executed per BS. Note that

some Lagrange multipliers could be zero. Let Σ
(1)
c,k = G

′H
c,kB̂c,kG

′

c,k, Σ
(2)
c,k =

G
′H
c,kÂc,kG

′

c,k. The advantage of formulation (1.16) is that it allows straight-

forward power adaptation: introducing powers Pc,k ≥ 0 and substituting

Gc,k = P
1
2
c,kG

′

c,k in (1.16) yields

WSR =
∑

c

λcPc +
K∑

c,k

{uc,k log det (Idc,k +Pc,kΣ
(1)
c,k)− tr(Pc,k(Σ

(2)
c,k + λcI))}

(1.18)

which leads to the following interference leakage aware water filling

Pc,k(l, l) =


 1

Σ
(1)
c,k(l, l)


 ukΣ

(1)
c,k(l, l)

Σ
(2)
c,k(l, l) + λc

− 1






+

(1.19)

for all l s.t. Σ
(1)
c,k > 0 where z+ = max(0, z). Note also that as with any alter-

nating optimization procedure, there are many updating schedules possible,

with different impact on convergence speed. The quantities to be updated

are the G
′

c,k, the Pc,k and the λc. The advantage of the DC approach is

that it works for any number of streams/user dc,k, by simply taking more or

less eigenvectors. In other words, we can take the dmaxc,k max eigenvectors of

the eigenmatrix G
′

c,k. We mean by the max eigenvectors, the eigenvectors

corresponding to the highest eigenvalues. The waterfilling then automatically

determines (at each iteration) how many streams can be sustained.
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1.5 Deterministic annealing (DA) and WSMSE-SR

(Simple Receiver)

1.5.1 DA

From [23], we recall that the maximization problem in (1.6) is highly non

concave. At low SNR (high noise variance), any interference is negligible

compared to the noise. Hence, all links can be considered decoupled, and, like

in single-user MIMO, rate maximization becomes SNR maximization for a

single stream to which all transmit power is devoted. The optimal Tx and

Rx filters are the left and right singular vectors corresponding to the largest

singular value of the channel between the Tx and Rx. This implies that, for

SNR = 0, a convergence to the global optimum is guaranteed.

Meanwhile, as soon as the SNR increases, many further local optima get

introduced due to the appearance of the additional streams. Then, as the

SNR increases further, more streams and local optima appear. The idea of

DA (Figure 1.3) is to initialize the WSMSE (KG) with the solution of the

WSMSE (KG) algorithm at lower SNR, starting from very low SNR, which

guarantees a convergence to a global optimum. This process goes on until a

stream distribution is reached, at some higher SNR, corresponding to a maxi-

mal stream distribution for which interference alignment is feasible. Indeed,

at very high SNR, the Tx and Rx filters converge to the global solution.

Figure 1.3: Deterministic Annealing

In order to prove the efficiency of the DA approach, we plot the sum rate

versus SNR corresponding to an IBC system where the signals are precoded

by the WSMSE (KG) precoder and by the WSMSE (KG) precoder with DA.

This latter means that precoders at lower SNR will serve as initializations

for the precoding algorithm at higher SNR. The classical WSMSE precoder

is initialized by the right eigenvectors of user’s channel. The classical KG is

initialized by zero matrices. The overall number of iterations will remain the
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Figure 1.4: WSR vs SNR for C = 3, K = 2, M = 5, N = 3

same.

In other words, with DA the number of iterations will be the sum of the number

of iterations needed to converge at each of the SNR used before achieving our

goal SNR. However, using the classical algorithms we do not need to iterate

over lower SNRs, but we run our algorithm immediately at the goal SNR; a

number of iterations, which equals the total number of iterations in the case of

DA is herein needed. We can observe in Figure 1.4 that DA enhances a lot the

performance of the WSMSE (or LUO) and KG algorithms.

1.5.2 The WSMSE-SR

We propose a variant of the WSMSE, which consists in using a Matched filter

(MF) Rx as the user’s Rx instead of the minimum mean squared error (MMSE)

Rx (1.9), when the number of antennas is very large compared to the number

of users. So now, we are no more obliged to exchange the interference received

at each user. The Rx expression (1.9) becomes:

Fc,k = (σ2IN +Hc,c,kGc,kG
H
c,klH

H
c,c,k)

−1Hc,c,kGc,k (1.20)
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The new precoder is denoted as WSMSE-SR. The explanation is as follows: The

Tx and Rx cooperate to cancel the interference received because of transmission

to other users. If the number of Tx antennas is very high, the Tx can cancel

the interference by itself and there is no need to user complicated Rx. So,

simple Rx techniques are optimal herein.

Surprisingly, the WSMSE precoder with a large number of Tx and simple

Rx, i.e. the WSMSE-SR precoder, converges almost always to better local

optima compared to the classical WSMSE precoder. The explanation is simple.

When we dispose of simple Rx, the Tx and Rx are no more coupled via the

interference, which eases the convergence. This procedure does not affect

the performance, since we have enough antennas at the Tx to cancel the

interference, as discussed earlier.

Figure 1.5: WSR vs SNR for C = 3, K = 2, M = 15, N = 1 and N = 2

Figures 1.5 and 1.6 show that the WSMSE-SR is a compromise between the

WSMSE and the WSMSE with DA, since it has the advantage of requiring less

information to exchange, it reaches better local optimum than the WSMSE

but still does not reach the global optimum as the WSMSE-DA does. We

would like to recall that this approach is only applicable when the number of

Tx antennas is not less than the sum of the receive antennas of all users, as

highlighted in Figures 1.5 and 1.6.

To summarize,



17

Figure 1.6: WSR vs SNR for C = 3, K = 2, M = 10, N = 2

• the WSMSE with DA is an extension of the WSMSE, which consists

in applying the DA approach on the WSMSE precoder. It reaches the

global optimum, instead of local optimum in the case of WSMSE.

• the WSMSE-SR is a variant of the WSMSE, which consists in replacing

the MMSE Rx by an MF Rx. It reaches better optima compared to the

WSMSE with the advantage of having simpler Rx, which implies less

information exchange. However, this method is applicable only for very

large numbers of transmit antennas.

• the WSMSE-SR approach is useful in the case of large system analysis

for MIMO single stream scenarios, as we will show later on in Chapter 2.

1.6 Channel estimation

In a MIMO system, the CSI can be acquired in FDD mode as depicted in

Figure 1.7, i.e. each user estimates the channels based on a DL training and

then feeds back the channel estimates to the BS through the reverse link.

This is not spectrally efficient in Massive MIMO since in that case, the BS is

equipped with a very large number of antennas; hence the channel estimation,

which uses downlink resources proportional to the number of antennas of the
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Figure 1.7: Channel estimation in FDD

BS in FDD, becomes challenging and the feedback consumption in UL becomes

also challenging.

However, in TDD the BS can estimate CSI directly from the uplink training

due to channel reciprocity. Then, in the DL, the BS uses the channel estimates

to precode the transmit signals. As a consequence, TDD is considered for

Massive MIMO studies and deployment. Moreover, the estimation process in

TDD can generate some errors, i.e. the estimate and the real channel are not

exactly the same. In that case we say that we have partial CSIT. Beamformers

for that case will be studied later on in this work. So, we assume that the real

channels H, the estimate H and the error H̃ are related as follows:

H = H+ H̃ (1.21)

We also assume Kronecker model for the channels, hence (1.21) can be written

as:

H = H+C1/2
r H̃(2)Θ1/2

p = C1/2
r H̃(1)Θ

1/2
t +C1/2

r H̃(2)Θ1/2
p (1.22)

H̃(1) and H̃(2) have i.i.d. complex entries of zero mean and variance 1
MN . The

channel estimate covariance matrix at the Tx Θt and the error covariance

matrix Θp are non-negative Hermitian and of uniformly bounded spectral norm

w.r.t. to the number of transmit antennas M. The channel covariance matrix

at the Rx Cr is non-negative hermitian. It is considered as an identity matrix

in this chapter and in this thesis in general.

Each Tx knows H and Θp only. In order to design precoders for the partial

CSIT case, we must, from now on, solve the Expected WSR (EWSR) problem

instead of the WSR maximization problem in (1.6). The objective function is

EWSR(Q).
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The constraint is however the same as in (1.6). We recall it:

s.t. trQc ≤ Pc for c ∈ C (1.23)

where

EWSR(Q) = EHWSR = EH

∑

c

∑

k

uc,k log det(IM +HH
c,c,kR

−1
c,k

Hc,c,kQc,k)

(1.24)

We explore many approaches to solve this problem in Chapter 4.

1.7 Conclusion

In this chapter, we have introduced the main problem of interest which is to

design precoders that maximize the weighted sum rate for MC scenarios under

a power budget constraint per cell. The rate is very influenced by intercell

interference. We propose to use CoBF, where all BSs exchange their knowledge

of the channels to design jointly all the BFs in the network. The problem is

formulated as the WSR maximization problem. If the ratio number of served

users per cell to number of transmit antennas is small enough (around 1
10),

simple linear beamformers such as MF achieve very good performance. For

general cases, two algorithms are known to be the best in terms of achievable

sum rates, WSMSE and KG. WSMSE solves the sum rate maximization

problem by reformulating it as a minimization of a function of the MSE. A

solution is given by an iterative algorithm where at each iteration we alternate

between the calculation of F,W and G which represent respectively the filter

at Rx side, a weight and the beamformer. KG proposes to decompose the sum

rate objective function into two functions, one corresponding to the rate of

the user (c, k) of interest and the second one corresponding to the the sum

rate of the rest of the users. These two functions are concave in Qc,k (transmit

covariance) and non concave in Qc,k respectively. It is proposed to linearize

the non concave part, so that we get a new objective function which is the

difference of a concave function and a linear function (concave and convex at

the sum time). The soltion of the new problem is given by the eigenmatrix

of two matrices. It is a normalized solution so power must be adjusted. It is

proposed to be done using waterfilling. WSMSE and KG both converge to

local optima. To force them to converge to global optima, we propose a DA
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approach. Moreover, we propose the WSMSE-SR beamformer which is variant

of the WSMSE algorithm by replacing the MMSE expression of F by a MF

expression. The proposed beamformer has lower complexity than WSMSE.



Part I

Random Matrix Theory for

large system analysis and

Massive MIMO design

21



Chapter 2

The WSMSE algorithm: A

Large System Analysis

2.1 Introduction

We consider the Multiple-input Single-Output (MISO) MC MU scenario, which

is a special case of the general system model detailed in Chapter 1. In this

case, the Rxs are equipped with a single receive antenna: N = 1.

In this Chapter, we are interested in studying the performance of linear

precoders, extended from the originally proposed MC MU MIMO (or IBC

MIMO) to MC MU massive MISO scenarios. We carry out a large system

analysis of the performance of the WSMSE precoding algorithm applied to the

MISO MC MU case, for large number of transmit antennas and large number

of users served per BS.

Herein, we extend the work in [27], which presents the deterministic equivalent

expressions of the SINR of the WSMSE iterative algorithm for MU (or broadcast

channels (BC)). We also inspire from the works in [28] and [29], which present

Massive MISO deterministic equivalents of the SINR, corresponding to the

sub-optimal zero-forcing (ZF) and regularized zero-forcing (RZF) precoders.

Although our study could be considered an extension of the work in [28], [29]

and [27], this extension is not straightforward and needs careful attention as

concerning the impact of inter-cell interference.

Other works on large systems exist, e.g. [30], [31], [32], [33] and [34]. A multi

cell RZF denoted interference-aware RZF (iaRZF) is presented in [31]. This

22
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latter maximizes the sum rate as our precoder does, but it is not good for all

existing scenarios, e.g. the scenario where many users are located on the cell

edges, in fact, corresponds to a good BF only in the case of identical intra-cell

channel attenuation and identical inter-cell channel attenuation.

Algorithms that minimize the total transmit power for large systems are

presented in [32], [33] and [34]. However, they are different from the WSMSE

approach, which maximizes the total sum rate instead of minimizing the total

power. Furthermore, the deterministic limit of the SINR corresponding to the

iterative IBC WSMSE process is presented, which makes it possible to evaluate

its performance more easily and compare to other algorithms and precoders.

2.2 System model: The MISO IBC case

We reconsider the section 1.4 and adapt it to MISO scenario. The advantage

of using MISO over MIMO is the possibility to perform large system analysis

on the SINR expression for the MISO case. We assume transmission on a

single narrow-band carrier, the received signal yc,k at the kth user in cell c reads

yc,k =

C∑

m=1

K∑

l=1

hHm,c,kgm,lsm,l + nc,k (2.1)

where sm,l ∼ NC(0, 1); gm,l ∈ C
M is the precoding vector of user l of cell m,

hHm,c,k ∈ C
1×M is the channel vector from the mth transmitter to the kth user

of cell c, and the nc,k is the noise. Moreover, the channel hHi,c,k is correlated as

E[hi,c,kh
H
i,c,k] = Θi,c,k thus

hi,c,k =
√
MΘ

1/2
i,c,kzi,c,k (2.2)

where zi,c,k has i.i.d. complex entries of zero mean and variance 1
M and the

Θ
1/2
i,c,k is the Hermitian square-root of Θi,c,k. The correlation matrix Θi,c,k is

non-negative Hermitian and of uniformly bounded spectral norm w.r.t. to M.

For notational convenience, we denote Θc,c,k as Θc,k.

Under the assumption of optimal single-user decoding and perfect CSIT and

CSIR, the achievable rate of the kth user of cell c is given by
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rc,k = log(1 + γc,k) (2.3)

γc,k =
|hHc,c,kgc,k|2∑

(m,l) 6=(c,k)

hHm,c,kgm,lg
H
m,lhm,c,k + σ2

(2.4)

where γc,k is the SINR of the kth of cell c.

As previously, the precoders maximize the WSR of all users so we are facing

an optimization problem which is the following

G =argmax
G

C∑

c=1

K∑

k=1

uc,krc,k

s.t. trGcG
H
c ≤ Pc for c ∈ C

(2.5)

where G is the short notation for {Gc}c∈C , Gc = [gc,1,gc,2, · · · ,gc,k] ∈ C
M×K

and where uc,k ≥ 0 is the weight of the kth user of cell c. Using the WSMSE

algorithm from section 1.4.1, the precoders are obtained as follows

ac,k = gHc,khc,c,k(σ
2 +

C∑

m=1

K∑

l=1

hHm,c,kgm,lg
H
m,lhm,c,k)

−1 (2.6)

ec,k = (1 + γc,k)
−1 (2.7)

wc,k = uc,k(ec,k)
−1 (2.8)

g̃c,k = (HH
c DHc +

trDc

ρc
IM )−1hc,c,ka

H
c,kwc,k (2.9)

where gc,k = ξcg̃c,k with ξc =
√

Pc

trG̃cG̃c
H .

We recall Wc = diag(wc,1, ..., wc,K), Ac = diag(ac,1, ..., ac,K),Dc = AH
c WcAc

and A = diag(A1,A2, ...AC), D = diag(D1,D2, ...,DC),

Hc = [hc,1,1, ...,hc,1,K ,hc,2,1, . . . ,hc,2,K , . . . ,hc,C,K ]
H ∈ C

KC×M is the com-

pound channel. Subsequently ac,k and wc,k are computed, which then consti-

tute the new precoder gc,k. This process is repeated until convergence to a

local optimum. UL/DL duality: the Tx filter gc,k is of the form of a MMSE

linear Rx for the dual UL in which trDc

ρc
plays the role of Rx noise variance

and uc,kwc,k plays the role of stream variance.
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2.3 Large system analysis

In this section, performance analysis is conducted for the precoder of the

previous section. The large-system limit is considered, where the number

of transmit antennas M and the numbers of users served per BS K go to

infinity while keeping the ratio K/M finite such that limsupMK/M <∞ and

liminfMK/M > 0.

The results should be understood in the way that, for each set of system

dimension parameters M and K we provide an approximate expression for the

SINR and the achieved sum rate, and the expression is tight as M and K grow

large.

Before we continue with our performance analysis of the above precoder, a

deterministic equivalent of the SINR of the MF precoder is required.

All vectors and matrices should be understood as sequences of vectors and

matrices of growing dimensions.

2.3.1 Deterministic Equivalent of the SINR for the MF

Our precoder must me initialized so we have chosen the MF precoder to do

the job.

Theorem 2.1: Let γMF
c,k be the SINR of user k under MF precoding, i.e., Gc =

ξc
MHH

ĉ then, γMF
c,k −γMF

c,k
M→∞−−−−→ 0, almost surely, whereHĉ = [hc,c,1, ...,hc,c,K ]H

and

γMF
c,k =

1
1

βcρc
+ 1

M2

∑

(l,i) 6=(c,k)

trΘl,c,kΘl,i

(2.10)

Proof: The normalization parameter is ξc =
√

Pc
1

M2 trHH
ĉ
Hĉ

, where and thus we

have

ξc =

√
Pc

1
M2

∑K
k=1 trΘc,k

=
√
βcPc (2.11)

Denote Pc,k = ‖gHc,khc,c,k‖2 the signal power of the kth user of cell c. Applying

[[35], Lemma 2.7] we have 1
MhHc,c,khc,c,k − 1

M→∞−−−−→ 0 and hence

P c,k = ξ2c = βcPc (2.12)



26

The interference is:
ξ2c
M

∑C
m=1,m 6=c z

H
m,c,kΘ

1/2
m,c,kH

H
m̂Hm̂Θ

1/2
m,c,kzm,c,k+

ξ2c
M zHc,c,kΘ

1/2
c,k H

H
ĉ,[k]Hĉ,[k]Θ

1/2
c,k zc,c,k,

where Hm̂,[k] = [hm,m,1, ...,hm,m,k−1,hm,m,k+1, ...hm,m,K ]H .

Now we apply again [[35],Lemma 2.7] since 1
MΘ

1/2
m,c,kH

H
m̂Hm̂Θ

1/2
m,c,k and

1
MΘ

1/2
c,k H

H
ĉ,[k]Hĉ,[k]Θ

1/2
c,k have uniformly bounded spectral norm w.r.t M almost

surely, and obtain

[
1

M

C∑

m=1,m 6=c
zHm,c,kΘ

1/2
m,c,kH

H
m̂Hm̂Θ

1/2
m,c,kzm,c,k

+
1

M
zHc,c,kΘ

1/2
c,k H

H
ĉ,[k]Hĉ,[k]Θ

1/2
c,k zc,c,k]

−[
1

M2

∑

m 6=c

K∑

i=1

trΘm,c,kΘm,i +
1

M2

∑

i 6=k
trΘc,kΘc,i] → 0 (2.13)

almost surely. Substituting the terms in (2.4) by their respective deterministic

equivalents yields (2.10), which completes the proof.

2.3.2 Deterministic equivalent of the SINR of proposed pre-

coder for correlated channels

For the precoder (2.9), a deterministic equivalent of the SINR is provided in

the following theorem

Theorem 2.2: Let γc,k be the SINR of the kth user of cell c with the precoder

defined in (2.9). Then, a deterministic equivalent γ
(j)
c,k at iteration j > 0 and

under MF initialization is given by

γ
(j)
c,k =

w
(j)
c,k(m

(j)
c,k)

2

Υ
(j)
c,k + Υ̂

(j)

c,k + d
(j)
c,k

Ψ
(j)
c

ρc
(1 +m

(j)
c,k)

2

(2.14)
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where

m
(j)
c,k =

1

M
trΘ

(j)
c,kVc (2.15)

Ψ
(j)
c =

1

M

K∑

i=1

w
(j)
c,i e

′

c,i

(1 + ec,i)2
(2.16)

Υ
(j)
c,k =

1

M

K∑

l=1,l 6=k

w
(j)
c,l

(1 +m
(j)
c,l )

2
e′c,c,k,c,l (2.17)

Υ̂
(j)

c,k =
1

M

C∑

m=1,m 6=c

(1 +m
(j)
c,k)

2

(1 +m
(j)
m,c,k)

2

K∑

l=1

w
(j)
m,l

(1 +m
(j)
m,l)

2
e′m,c,k,m,l (2.18)

with Θm,c,k = dc,kΘm,c,k, m
(j)
m,c,k = 1

M trΘ
(j)
m,c,kVm and a

(j)
c,k, w

(j)
c,k and d

(j)
c,k are

given by

a
(j)
c,k =

1√
P

(j−1)
c,k

γ
(j−1)
c,k

1 + γ
(j−1)
c,k

(2.19)

√
P

(j−1)
c,k =

1

a
(j−1)
c,k

√
P

Ψ
(j−1)
c

m
(j−1)
c,k

1 +m
(j−1)
c,k

(2.20)

w
(j)
c,k = (1 + γ

(j−1)
c,k ) (2.21)

d
(j)
c,k = w

(j)
c,ka

2,(j)
c,k . (2.22)

Denoting

Vc = (Fc + αcIM )−1 (2.23)

with α
(j)
c = trD

(j)

c

Mρc
, three systems of coupled equations have to be solved. First,

we need to introduce em,c,k∀{m, c, k} ∈ {C, C,Kc}, where Kc is the set of all

users of cell c, which form the unique positive solutions of

em,c,k =
1

M
trΘm,c,kVm, (2.24)

Fm =
1

M

C∑

j=1

K∑

i=1

Θm,j,i

1 + em,j,i
. (2.25)

ec,c,k and mc,c,k denote ec,k and mc,k respectively.

Secondly,we give e
′

m,c,k∀{m, c, k} ∈ {C, C,Kc} which form the unique positive
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solutions of

e′m,c,k =
1

M
trΘm,c,kVm(F

′
m + IM )Vm, (2.26)

F′
m =

1

M

C∑

j=1

K∑

i=1

Θm,j,ie
′
m,j,i

(1 + em,j,i)2
. (2.27)

And finally, we provide e′m,c,k,m,l∀{m, c, k, l} ∈ {C, C,Kc,Kc} which form the

unique positive solutions of

e′m,c,k,m,l =
1

M
trΘm,c,kVm(F

′
m,m,l +Θm,l)Vm (2.28)

F′
m,m,l =

1

M

C∑

j=1

K∑

i=1

Θm,j,ie
′
m,j,i,m,l

(1 + em,j,i)2
. (2.29)

For j = 0, γ
(0)
c,k = γMF

c,k , given by Theorem 2.1 and P
(0)
c,k = βcPc, cf. (2.12).

Proof: For j ≥ 1, define Γ
(j)
c = 1

MHH
c D

(j)
Hc + α

(j)
c IM , the precoder at the

end of iteration j is given by

g
(j)
c,k =

ξ
(j)
c

M
(Γ(j)

c )−1hc,c,ka
H,(j)
c,k w

(j)
c,k (2.30)

for each user k in the cell c,

where ξ
(j)
c is

ξ(j)c =

√
Pc

1
M2 tr(Γ

(j)
c )−2HH

ĉ A
H,(j)
c W

2,(j)
c A

(j)
c Hĉ

=

√
Pc

Ψ
(j)
c

. (2.31)

We derive the deterministic equivalents of the normalization term ξ
(j)
c , the

signal power |gH,(j)c,k hc,c,k|2 and the interference power
∑C

m=1

∑K
l 6=k if m=c h

H
m,c,kg

(j)
m,lg

H,(j)
m,l hm,c,k. We will show that in the following.

a) Power normalization: The term Ψ
(j)
c can be written as

Ψ(j)
c =

1

M2

K∑

k=1

w
(j)
c,kd

(j)
c,kz

H
c,c,kΘ

(1/2)
c,k (Γ(j)

c )−2Θ
(1/2)
c,k zc,c,k

=
1

M2

K∑

k=1

w
(j)
c,kz

H
c,c,kΘ

(1/2)
c,k (Γ(j)

c )−2Θ
(1/2)
c,k zc,c,k. (2.32)
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Similarly to [28], [29] and [27] a deterministic equivalent Ψc such that Ψc −
Ψc

M→∞−−−−→ 0, almost surely, is given by

Ψ
(j)
c =

1

M

K∑

k=1

w
(j)
c,k

1
M trΘ

(j)
c,k(Γ

(j)
c )−2

(1 + 1
M trΘ

(j)
c,k(Γ

(j)
c )−1)2

=
1

M

K∑

k=1

w
(j)
c,k

m
′,(j)
c,k

(1 +m
(j)
c,k)

2
=

1

M

K∑

k=1

w
(j)
c,k

e
′

c,k

(1 + ec,k)2
, (2.33)

where we denote m
(j)
c,k =

1
M trΘ

(j)
c,k(Γ

(j)
c )−1 and m

′,(j)
c,k the derivative w.r.t z at

z = −α(j)
c .

b) Signal power: The square-root of the signal power P
(j)
c,k = |gH,(j)c,k hc,c,k|2 is

√
P

(j)
c,k = ξ(j)c a

(j)
c,kw

(j)
c,kz

H
c,c,kΘ

1
2
c,k(Γ

(j)
c )−1Θ

1
2
c,kzc,c,k

=
ξ
(j)
c

a
(j)
c,k

zHc,c,kΘ
1/2
c,k (Γ

(j)
c )−1Θ

1
2
,(j)

c,k zc,c,k. (2.34)

Again, following [27], [28] and [29] a deterministic equivalent

√
P

(j)
c,k of (2.34)

is given by
√
P

(j)
c,k =

ξc
(j)

a
(j)
c,k

m
(j)
c,k

1 +m
(j)
c,k

, (2.35)

where ξc
(j)

=
√

Pc

Ψ
(j)
c

.

c) Interference power: The interference power received by user k of cell c can

be written as

C∑

m=1

K∑

l=1,l 6=k if m=c

hHm,c,kg
H,(j)
m,l g

H,(j)
m,l hm,c,k

=
ξ
2,(j)
c

M2

C∑

m=1

hHm,c,k(Γ
(j)
m )−1

K∑

l=1,l 6=k if m=c

a
2,(j)
m,l w

2,(j)
m,l hm,m,lh

H
m,m,l(Γ

(j)
m )−1hm,c,k

=
ξ
2,(j)
c

d
(j)
c,k

C∑

m=1

zHm,c,kΘ
1
2
,(j)

m,c,k(Γ
(j)
m )−1

×
K∑

l 6=k if m=c

w
(j)
m,lΘ

1
2
,(j)

m,l zm,m,lz
H
m,m,lΘ

1
2
,(j)

m,l (Γ(j)
m )−1Θ

1
2
,(j)

m,c,kzm,c,k (2.36)
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Which can be approximated as the following

C∑

m=1

K∑

l=1,(l,m) 6=(k,c)

hHm,c,kg
H,(j)
m,l g

H,(j)
m,l hm,c,k

−
ξc

2,(j)
[Υ

(j)
c,k + Υ̂

(j)

c,k]

d
(j)
c,k(1 +m

(j)
c,k)

2

M→∞−−−−→ 0, (2.37)

almost surely, where Υ
(j)
c,k and Υ̂

(j)

c,k are given by the expressions (2.17) and

(2.18) which represent the large system limits of the intra-cell and inter-cell

interference respectively, the proof is given in Appendix B.

2.3.3 Numerical results

In this section, results of simulations based on realistic settings with a finite

number of transmit antennas corroborate the correctness of the proposed ap-

proximation. We use the IBC WSMSE algorithm with MF initialization and

compare it to the large system approximation in Theorem 2.2. The channel

correlation matrix is modeled as [27]

[Θm,c,k]ij =

1

Θm,c,k,max −Θm,c,k,min

∫ Θm,c,k,max

Θm,c,k,min

ej
2π
λ
δijcos(Θ)dΘ

(2.38)

where j =
√
−1, λ denotes the signal wavelength and δij is the distance between

antenna i and j. We choose the range of azimuth angle Θm,c,k of user k as

Θm,c,k,min = −π and Θm,c,k,max = φm,c,k − π, where φm,c,k = 2π c∗k
KC . The

transmitter is endowed with a uniform linear array (ULA) of antennas. We

assume that δij is independent of M so that the spectral norm of Θm,c,k remains

bounded as M grows large, let δij =
λ
2 |j − i|.

Figures 2.1 and 2.2 show the WSMSE precoder and its approximation for

correlated channels (Θm,c,k 6= IM ) and i.i.d. channels (Θm,c,k = IM ) for C = 2

and C = 3 respectively. For the simulations of the IBC WSMSE algorithm, we

used 200 channel realizations. It can be observed that for i.i.d channels the

approximation is accurate for low SNR, but less precise at high SNR.

As the Figures 2.1 and 2.2 suggest, this effect is diminished when the channel
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is correlated resulting in an increased accuracy of the approximation for high

SNR. Or for i.i.d channels the inaccuracy effect at high SNR diminishes when

the system load (C∗K
M ) decreases as shown in the figure 2.3 for load = 0.9.The

reason of imprecision for full load C∗K
M = 1 is that the regularization term in

(2.23) is going to be imprecise at high SNR.

Moreover, we observed that the sum rate of our system stays unmodified for

the same total number of users (Fig. 2.1 and Fig. 2.2) while keeping in mind

the fact that we have more total power budget as the number of transmitters

increases.

Finally, we demonstrated that our asymptotic sum rate follows the simulated

one, which validates our asymptotic approach. Although the sum rate expres-

sion for the approximation approach (2.14) seems to be complex, we need to

calculate it only once per a given SNR, while we need to run the IBC WSMSE

simulations as many times as the number of channel realizations, i.e. 200 times.

Figure 2.1: Sum rate comparisons between the IBC WSMSE and our
proposed approximation for C=2,K=15,M=30.
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Figure 2.2: Sum rate comparisons between the IBC WSMSE and our
proposed approximation for C=3,K=10,M=30.

Figure 2.3: Sum rate comparisons between the IBC WSMSE and our
proposed approximation for C=3,K=9,M=30.

2.4 The MIMO single stream case

In the section, we will switch to the MIMO single stream case and we will show

that the SINR in that case is amenable as well to large system analysis. We

provide a large system analysis of the performance of the WSMSE algorithm

for MIMO IBC single stream scenario. The received signal yc,k at the kth user
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in cell c reads

yc,k =

C∑

m=1

K∑

l=1

Hm,c,kgm,lsm,l + nc,k (2.39)

where

HH
i,c,k =

√
NMΘ

1/2
i,c,kXi,c,kΘ

1/2
r,i,c,k (2.40)

XH
i,c,k is an N×M matrix with i.i.d. complex entries of zero mean and variance
1

NM and the Θ
1/2
i,c,k and Θ

1/2
r,i,c,k are the Hermitian square-root of Θi,c,k and

Θr,i,c,k respectively. Treating interference as noise, user k of cell c will apply

a linear receive filter fc,k of dimensions N × 1 to maximize the signal power

(diversity) while reducing any residual interference that would not have been

(sufficiently) suppressed by the precoder. The achievable rate of the kth user

of cell c is given by

Rc,k = log(1 + γc,k) (2.41)

γc,k =
|fHc,kHc,c,kgc,k|2∑

(m,l) 6=(c,k)

fHc,kHm,c,kgm,lg
H
m,lHm,c,kfc,k + fHc,kfc,kσ

2
(2.42)

where γc,k is the SINR of the kth user of cell c.

The WSMSE solution for the MIMO single stream case is as follows:

fc,k = gHc,kH
H
c,c,k(σ

2IN +
C∑

m=1

K∑

l=1

Hm,c,kgm,lg
H
m,lH

H
m,c,k)

−1 (2.43)

ec,k = (1 + γc,k)
−1 (2.44)

wc,k = uc,k(ec,k)
−1 (2.45)

g̃c,k = (
∑

i,j

HH
c,i,jfi,jdi,jf

H
i,jHc,i,j +

trDc

ρc
IM )−1HH

c,c,kfc,kwc,k (2.46)

WhereWc = diag(wc,1, ..., wc,K), Fc = blockdiag(fc,1, ..., fc,K),Dc = FcWcF
H
c .

Performance analysis is conducted for the proposed precoder. A deterministic

equivalent of the SINR is provided in the following theorem.

Theorem 2.3: Let γc,k be the SINR of the kth user of cell c with the precoder

defined in (2.46). Then, a deterministic equivalent γ
(j)
c,k at iteration j > 0 is

given by

γ
(j)
c,k =

w
(j)
c,k(m

(j)
c,k)

2

Υ
(j)
c,k + Υ̂

(j)

c,k + d
(j)
c,k

Ψ
(j)
c

ρc
(1 +m

(j)
c,k)

2

(2.47)
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where

m
(j)
c,k =

1

M
trΘ

(j)
c,kVc (2.48)

Ψ
(j)
c =

1

NM

K∑

i=1

w
(j)
c,i e

′

c,i

(1 + ec,i)2
(2.49)

Υ
(j)
c,k =

1

M

K∑

l=1,l 6=k

w
(j)
c,l

(1 +m
(j)
c,l )

2
e′c,c,k,c,l (2.50)

Υ̂
(j)

c,k =
1

M

C∑

m=1,m 6=c

(1 +m
(j)
c,k)

2

(1 +m
(j)
m,c,k)

2

K∑

l=1

w
(j)
m,l

(1 +m
(j)
m,l)

2
e′m,c,k,m,l (2.51)

with Θm,c,k = dc,kΘm,c,k, m
(j)
m,c,k =

1
M trΘ

(j)
m,c,kVm. Furthermore, we have

a
(j)
c,k =

1√
P

(j−1)
c,k

γ
(j−1)
c,k

1 + γ
(j−1)
c,k

(2.52)

√
P

(j−1)
c,k =

1

a
(j−1)
c,k

√
P

Ψ
(j−1)
c

m
(j−1)
c,k

1 +m
(j−1)
c,k

(2.53)

w
(j)
c,k = (1 + γ

(j−1)
c,k ) (2.54)

d
(j)
c,k = w

(j)
c,ka

2,(j)
c,k . (2.55)

where ac,k denotes the module of the linear receive filter fc,k. Denoting

Vc = (Tc + αcIM )−1 (2.56)

with α
(j)
c = trD

(j)
c

Mρc
, three systems of coupled equations have to be solved. First,

we need to introduce em,c,k∀{m, c, k} ∈ {C, C,Kc}, where Kc is the set of all

users of cell c, which form the unique positive solutions of

em,c,k =
1

M
trΘm,c,kVm, (2.57)

Tm =
1

M

C∑

j=1

K∑

i=1

Θm,j,i

1 + em,j,i
. (2.58)

ec,c,k and mc,c,k denote ec,k and mc,k respectively.

Secondly, we give e′1,1, ..., e
′
1,K , ...e

′
C,1, ..., e

′
C,K which form the unique positive
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solutions of

e′c,k =
1

M
trΘc,kVc(T

′
c + IM )Vc, (2.59)

T′
c =

1

M

C∑

j=1

K∑

i=1

Θc,j,ie
′
j,i

(1 + ec,j,i)2
. (2.60)

And finally, we provide e′m,c,k,m,l∀{m, c, k, l} ∈ {C, C,Kc,Kc} which form the

unique positive solutions of

e′m,c,k,m,l =
1

M
trΘm,c,kVm(T

′
m,m,l +Θm,l)Vm (2.61)

T′
m,m,l =

1

M

C∑

j=1

K∑

i=1

Θm,j,ie
′
m,j,i,m,l

(1 + em,j,i)2
. (2.62)

For j ≥ 1, define Γ
(j)
c = 1

NMHcD
(j)

HH
c +α

(j)
c IM , withD = diag(D1,D2, ...,DC)

and Hc = [HH
c,1,1, ...,H

H
c,1,K ,H

H
c,2,1, . . . ,H

H
c,2,K , . . . ,H

H
c,C,K ], the precoder at the

end of iteration j is given by

g
(j)
c,k =

ξ
(j)
c

M
(Γ(j)

c )−1HH
c,c,ka

(j)
c,kf

(j)
0 w

(j)
c,k (2.63)

for each user k in the cell c,

where f0,c,k is the the normalized linear receive filter such that fc,k = ac,kf0,c,k,

and ξ
(j)
c is given by

ξ(j)c =

√
Pc

1
M2 tr(Γ

(j)
c )−2HĉF

H,(j)
c W

2,(j)
c F

(j)
c HH

ĉ

=

√
Pc

Ψ
(j)
c

. (2.64)

where Hĉ = [HH
c,c,1, ...,H

H
c,c,K ]. We derive the deterministic equivalents of the

normalization term ξ
(j)
c , the signal power |gH,(j)c,k HH

c,c,k|2 and the interference

power
∑C

m=1

∑K
l 6=k if m=c f

H
c,kHm,c,kg

(j)
m,lg

H,(j)
m,l HH

m,c,kfc,k similarly to [27], [28] and [29]

and , i.e., using the same logic and mathematical approach, but for a more

complex problem. We will show that in the following.

Proof: We write fc,k as fc,k = ac,kf0,c,k with ac,k =
√

fHc,kfc,k and |f0,c,k| = 1.
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Let P
(j)
c,k = |fH,(j)0,c,k Hc,c,kg

(j)
c,k|2 = |Hc,c,kg

(j)
c,k|2. We have

g
(j)
c,k =

ξ
(j)
c

NM
(Γ

(j)
c,[c,k])

−1HH
c,c,kf

(j)
0,c,ka

(j)
c,kw

(j)
c,k

− ξ
(j)
c

NM
(Γ(j)

c )−1 1

NM
HH
c,c,kf

(j)
0,c,kd

(j)
c,kf

H,(j)
0,c,k Hc,c,k(Γ

(j)
c,[c,k])

−1HH
c,c,kf

(j)
0,c,ka

(j)
c,kw

(j)
c,k;

=
ξ(j)

NM
(Γ−1

c,[c,k]H
H
c,c,kf

(j)
0,c,ka

(j)
c,kw

(j)
c,k −m

(j)
c,kg

(j)
c,k);

=
ξ
(j)
c

(1 +m
(j)
c,k)NM

(Γ
(j)
c,[c,k])

−1HH
c,c,kf

(j)
0,c,ka

(j)
c,kw

(j)
c,k. (2.65)

Thus,

√
P

(j)
c,k =

ξ
(j)
c a

(j)
c,kw

(j)
c,k

(1 +mc,c,k)NM
|Hc,c,k(Γc,[c,k])

−1HH
c,c,kf0,c,k|

=
ξ
(j)
c

a
(j)
c,k(1 +mc,k)

|Θ1/2
r,c,kXc,c,kΘ

1/2
c,k (Γc,[c,k])

−1Θ
1/2
c,k X

H
c,c,kΘ

1/2
r,c,kf

(j)
0,c,k|

=
ξ
(j)
c

a
(j)
c,k(1 +mc,k)

|Θ1/2
r,c,k

1

M
tr{Θc,k(Γ

(j)
c )−1}INΘ1/2

r,c,kf
(j)
0,c,k|

=
ξ
(j)
c mc,k

a
(j)
c,k(1 +mc,k)

|Θ1/2
r,c,kf

(j)
0,c,k| =

ξ
(j)
c mc,k

a
(j)
c,k(1 +mc,k)

. (2.66)

Where Γc,[c,k] = Γc −Hc,c,kdc,kHc,c,k.

From (2.66) we see that if Θr,c,k = IN the filters will have no effect on the

signal power which motivates our choice for the channel correlation matrix at

the receiver side as an identity matrix for the rest of the proof. Then,

Ψ(j)
c =

1

(NM)2
tr(
∑

k

(Γ(j)
c )−2HH

c,c,kf
(j)
0,c,ka

2
c,kw

2
c,kf

H
0,c,kHc,c,k)

=
1

NM
tr(
∑

k

w
(j)
c,kd

(j)
c,kz

H,(j)
c,c,k Θ

1/2
c,k (Γ

(j)
c )−2Θ

1/2
c,k z

(j)
c,c,k)

=
1

NM
tr(
∑

k

w
(j)
c,kz

H,(j)
c,c,k Θ

1/2
c,k (Γ

(j)
c )−2Θ

1/2
c,k z

(j)
c,c,k)

...→ Ψ
(j)
c . (2.67)

the rest of the proof is as in 2.3.2. zc,c,k = XH
c,c,kf

(j)
0,c,k will have i.i.d entries of

zero mean and 1
NM variance if f

(j)
c,k is a MF as in (2.68) instead of the MMSE

filter in (2.43)
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fMF
c,k = gHc,kH

H
c,c,k(σ

2IN +Hc,c,kgc,kg
H
c,kH

H
c,c,k)

−1 (2.68)

The good performance of the MF filters is demonstrated in Figure 2.4 and in

Chapter 1 when we proposed the WSMSE-SR precoder. In fact, when f
(j)
c,k is a

MF, the WSMSE precoder becomes the WSMSE-SR precoder introduced in

1.5.2. We have proved by simulations that using a MF Rx is correct especially

when we have large system dimensions. Finally, the interference power can be

Figure 2.4: Sum rate comparisons between the IBC WSMSE with MMSE
filters and the IBC WSMSE with MF filters for C=1, M=10, K=4, N=2
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given by

(
ξ
(j)
c

NM
)2f

H,(j)
0,c,k Hm,c,k

∑

m,l;(m,l) 6=(c,k)

Hm,c,kg
(j)
m,lg

H,(j)
m,l HH

m,c,k (2.69)

×HH
m,c,kf

(j)
0,c,k (2.70)

= (ξ
(j)
c )2zHm,c,kΘ

1/2
m,c,k (2.71)

×
∑

m,l;(m,l) 6=(c,k)

Hm,c,kg
(j)
m,lg

H,(j)
m,l HH

m,c,kΘ
1/2
m,c,kzm,c,k (2.72)

=
ξ
2,(j)
c

d
(j)
c,k

zHm,c,kΘ
1/2
m,c,k

∑

m,l;(m,l) 6=(c,k)

w
(j)
m,l(Γ

(j)
m )−1 (2.73)

×Θ
1/2
m,lzm,lz

H
m,lΘ

1/2
m,l(Γ

(j)
m )−1Θ

1/2
m,c,kzm,c,k (2.74)

...→ ξ
2,(j)
c

d
(j)
c,k

Υ
(j)
c,k + Υ̂

(j)

c,k

(1 +m
(j)
c,c,k)

2
. (2.75)

as in section 2.3.2. The filters are MF filters as denoted previously which

completes the proof.

2.4.1 Applications of the deterministic equivalent of the SINR

In this subsection, the deterministic equivalent of the SINR in (2.47) is used

in order to prove a property of the MU communications. We prove that for a

BC system, the achievable SINR for a system with N-antennas receivers Rx

and where only a single stream (SS) equals N times the SINR achieved in the

case of MISO for identical channel covariance matrices. Thus,

γBC,SS,NRx = N × γBC,MISO (2.76)

Proof: For a BC system with K users where all channel covariances matrices

Θk are identical, the equations (2.59) and (2.61) can be written as:

e
′,(j) =

e
′,(j)
i

di
=

1

Ξ(j)

e
(j)
1

1− c(j)e
(j)
2

, e
′,(j)
k =

e
′,(j)
i,k

di
=
d
(j)
k

Ξ(j)

e
(j)
2

1− c(j)e
(j)
2

, (2.77)
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where c(j) = ∆(j)

(Ξ(j))2
,

∆(j) =
1

M

K∑

k=1

(
1

d
(j)
k

+ e(j))−2,Ξ(j) =
1

M

K∑

k=1

(
1

d
(j)
k

+ e(j))−1, (2.78)

e(j) =
e
(j)
k

d
(j)
k

=
1

M
trΘV, e

(j)
1 = Ξ(j) 1

M
trΘV2, (2.79)

and

e
(j)
2 = Ξ(j) 1

M
trΘ2V2. (2.80)

Furthermore, the equations (2.49), (2.50) and (2.51) can be written as:

Ψ
(j)

= e
′,(j)Ω(j),Υ

(j)
k = e

′,(j)
k Ω

(j)
k (2.81)

where

Ω(j) =
1

MN

K∑

i=1

w
(j)
i

d
(j)
i

(
1

d
(j)
i

+ e(j))−2, (2.82)

and

Ω
(j)
k =

1

M

K∑

i=1,i 6=k

w
(j)
i

d
(j)
i

(
1

d
(j)
i

+ e(j))−2 (2.83)

Thus, the SINR in (2.47) will be equivalent to:

γ
(j)
k = e(j)w

(j)
k (Ξ(j))2

d
(j)
k e(j)[1− c(j)e

(j)
2 ]

e
(j)
2 Ω

(j)
k +

e
(j)
1
ρ Ω(j)(1 + d

(j)
k )e(j)

(2.84)

For Θk = Θ∀k, we have: d
(j)
k = d, Ω

(j)
k = Ωk = N × Ω(j) = N × Ω,

c(j) = β = K
M . Let e be the unique positive solution of (2.79), then we can

show that

ed = β(1 + ed)e2 +
β

ρ
(1 + ed)2e1 (2.85)

The interference is diminished after the convergence of the WSMSE: e
(j)
2 Ω

(j)
k →

0. Substituting (2.85) in (2.84), we get due to the presence of N in the

denominator of (2.82):

γ
(j)
k = Ne = N × γ

(j)
k,SS (2.86)

Where γ
(j)
k,SS is the SINR when N = 1. We can extend the result in (2.76)

to IBC systems. Now, we will prove using numerical simulations the double

findings of this section. We prove the correctness of the deterministic equivalent
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of the SINR of MIMO SS system (2.47) as well as the validity of (2.76). We

have seen that the SINR scales with N. Thus, the weighted sum rate function

of SNR curve in the case of N antennas Rx must be parallel to the one obtained

in the case of MISO. Figure 2.5 shows the simulation of WSMSE precoder for

C = 1,K = 15,M = 30 and its approximation for the both cases of N = 1 and

N = 2. For the simulations of the WSMSE algorithm, we have used 200 channel

realizations. It can be observed that for i.i.d channels the approximation is

accurate and that our asymptotic sum rate follows the simulated one; which

validates our asymptotic approach. Although the sum rate expression for

the approximation approach (2.47) seems to be complex, however we need

to calculate it only once per a given SNR, while we need to run the IBC

WSMSE simulations as many times as the number of channel realizations, i.e.

200 times. Moreover, we can observe that the curves of N = 1 and N = 2

are parallel which validates our proposition (2.76). Similarly, Figure 2.6 with

C = 1,K = 15,M = 30 for both cases of N = 1 and N = 2 validates our

results for IBC systems.

Figure 2.5: Sum rate comparisons between the IBC WSMSE and our
proposed approximation for C=1,K=20,M=30,N={1,2}

2.5 Conclusion

In order to assess the performance of algorithms like KG and WSMSE, Monte-

Carlo simulation of the average rate versus SNR needs extensive averaging



41

Figure 2.6: Sum rate comparisons between the IBC WSMSE and our
proposed approximation for C=2,K=10,M=30,N={1,2}

over many channel realizations. In order to ease this procedure of evaluation,

in this chapter, we presented a consistent framework to study the WSMSE

precoding for MISO based on the theory of large-dimensional random matrices.

The tools from Random Matrix Theory allowed us to derive a deterministic

expression of the rate for MISO. In MISO, the SINR is the ratio of scalar signal

variance to scalar (interference + noise) variance. Hence, since we have a ratio

of two scalars, Random Matrix Theory can be applied on each of these scalars

apart resulting in a deterministic expression of the rate, which depends only

on channels statistics and constant system parameters. The advantage of this

proposition is that from now on, we do not need to do Monte-Carlo to evaluate

performance. We have seen as well in this chapter that the deterministic

expression represents well the true rate, especially when the total number of

served users is inferior to the number of transmit antennas, which is true in

general for Massive MIMO scenarios. Then, we proposed the same deterministic

expression for MIMO single stream, i.e. MIMO but only a single stream is

allowed to be transmitted. We used the resulting deterministic expression to

show that the capacity scales with the number of receive antennas.



Chapter 3

Using the Complex Large

System Analysis to Simplify

Beamforming

The precoding schemes studied in Chapter 2 require a global knowledge of

CSIT, which in turn requires a centralized controller to gather the information.

If a centralized controller is not available, decentralized methods for optimal

beamforming can be applied. In this chapter, we extend the works in [22], [23]

and [24], in order to propose a decentralized beamforming approach that relies

on the slow fading exchange of information between the BSs.

Our work is based on large system analysis. Other works on decentralization

exist already in the literature, but they rather rely only on optimization

techniques to decentralize, such as [36], [37] and [38], or on estimation tricks

such as [30]. To the best of our knowledge, only one work considers decentralized

coordinated beamforming using large system analysis [39], but it is sub-optimal.

A work on decentralization techniques for decentralized minimum transmit

power beamforming exists in [33], which is different from our WSMSE technique.

3.1 Decentralized approach for large dimensions sys-

tem

The idea is to try to identify the quantities that require global knowledge of

the channel vectors, the intercell interference Υinter,c,k and D in our case, and

42
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exchange them (or the quantities related to them) between the different BSs

in such a way that the maximum WSR problem will decompose into parallel

sub-problems (one per BS). However, it is necessary to limit as much as possible

this exchange in order to be backhaul friendly (efficient). The solution in the

last section can be reformulated as the following:

ac,k = gHc,khc,c,k(σ
2 +Υintra,c,k +Υinter,c,k)

−1 (3.1)

ec,k = (1 + γc,k)
−1 (3.2)

wc,k = uc,k(ec,k)
−1 = uc,k(1− ac,kh

H
c,c,kgc,k)

−1 (3.3)

g̃c,k = (HH
c DHc +

trDc

ρc
IM )−1hc,c,ka

H
c,kwc,k (3.4)

with

Υintra,c,k =
∑

n

hHc,c,kgc,ng
H
c,nhc,c,k (3.5)

Υinter,c,k =
∑

m;m 6=c
Υinter,m,c,k (3.6)

and

Υinter,m,c,k =
∑

n

hHm,c,kgm,ng
H
m,nhm,c,k (3.7)

This solution can be initialized by a random precoder, e.g., a matched filter

(MF) precoder. In general, it needs a central processing node to be imple-

mented because of (3.6) which depends on global channels knowledge as shown

in (3.7). In the case of absence of this central node, (3.6) can be detected by

each receiver and then fed back using an over-the-air link as in [22]. However,

this approach is spectral inefficient.

Another way to decentralize consists in that each BS m calculates the quantities

in (3.7), Υinter,m,c,k considered as the interference leakage from BS m to user

k of cell c 6= m for all the users and sends them to the BS c using a backhaul

link. This procedure is a bit heavy, so it is beneficial to limit as much as

possible the number of iterations. However, at high SNR, the solution above

requires a lot of iterations to converge, hence, requires an extensive exchange

of information using the backhaul link which burdens this latter and makes it

practically infeasible. For a limited number of iterations, the solution becomes

very sub-optimal.

Thus, in the following we present a new initialization method which acceler-

ates the convergence, hence, few iterations are no more sub-optimal and the
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backhaul-based decentralization becomes realistic. In this following, perfor-

mance analysis is conducted for the proposed precoder. The large-system limit

is considered, where M and K go to infinity while keeping the ratio K/M finite

such that limsupMK/M <∞ and liminfMK/M > 0.

Theorem 3.1: From 2.3.2, for a large MISO system, precoders g̃c,k can be

written as the following:

g̃c,kg̃
H
c,k − g̃c,kg̃

H
c,k

M→∞−−−−→ 0 (3.8)

where

g̃c,k = (HH
c DHc +

trDc

ρc
IM )−1hc,c,ka

H
c,kwc,k (3.9)

We propose that (3.9) serves as an initialization for the iterative solution

above. It also serves as a precoder itself, which is denoted as large system

(LS)-precoder. Further details will be provided in the following sections. The

fast-converging iterative algorithm behind (3.9) and the definitions of its terms

are summarized in Algorithm 1. We give here the large system approximation

of the intercell interference term as follows:

Υinter,c,k = lim
j→∞

ξc
2,(j)

[Υ̂
(j)

c,k]

d
(j)
c,k(1 +m

(j)
c,k)

2
. (3.10)

3.2 Signaling

This section summarizes the iterative procedure to design transmit beamform-

ers in a decentralized manner. The authors of [22] proposed a decentralized

reasoning as well; so we will compare it to ours. They assumed that local

channel information is available at each BS and for each user; we assume that

as well. Moreover, they assume that each user has an additional channel to

feedback information, which is di,k = |ai,k|2wi,k, to the BS; however we relax

this assumption and we assume instead the existence of a backhaul link which

is a way to save the wireless capacity consumption w.r.t an over-the-air link.

It is used as explained in the previous section.

We would then propose three different strategies: a) The intercell interference-

free strategy, where at each iteration of the precoders design each BS c calculates
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Algorithm 1 Large System Computation of Dual UL Scalars

Step 1: Set j = 0 and calculate

γ
(0)
c,k

=
1

1
βcρc

+ 1
M2

∑

(l,i) 6=(c,k)

trΘl,c,kΘl,i

.

a
(0)
c,k

=
1√
P

(0)
c,k

γ
(0)
c,k

1 + γ
(0)
c,k

,

√
P

(0)
c,k =

√
P

1
M2

∑K
k=1 Θc,c,k

,

w
(0)
c,k

= uc,k(1 + γ
(0)
c,k

), d
(0)
c,k = w

(0)
c,k
a
2,(0)
c,k

Step 2: Set j = j + 1 and calculate the following quantities:

Υ̂
(j)

c,k =
1

M

C∑

m=1,m 6=c

(1 +m
(j)
c,k

)2

(1 +m
(j)
m,c,k

)2

K∑

l=1

w
(j)
m,l

(1 +m
(j)
m,l

)2
e
′,(j)
m,c,k,m,l

;

m
(j)
m,c,k

=
1

M
trΘ

(j)
m,c,kV

(j)
m ,V

(j)
m = (F

(j)
m + α

(j)
m IM )−1,

m
(j)
c,k

= m
(j)
c,c,k

,

F
(j)
m =

1

M

C∑

j=1

K∑

i=1

Θ
(j)
m,j,i

1 +m
(j)
m,j,i

, with Θ
(j)
m,c,k = d

(j−1)
c,k Θm,c,k.

e
′,(j)
m,c,k,m,l

=
1

M
trΘ

(j)
m,c,kV

(j)
m (F

′,(j)
m,m,l

+Θ
(j)
m,l)V

(j)
m ,

α
(j)
m =

∑
i d

(j−1)
m,i

Mρm
,F

′,(j)
m,m,l

=
1

M

C∑

j=1

K∑

i=1

Θ
(j)
m,j,ie

′,(j)
m,j,i,m,l

(1 +m
(j)
m,j,i)

2
.

Ψ
(j)
c =

1

M

K∑

k=1

w
(j)
c,k

m
′,(j)
c,k

(1 + e
(j)
c,k

)2
,

e
′,(j)
c,k

=
1

M
trΘ

(j)
c,kV

(j)
c (F

′,(j)
c + IM )V

(j)
c ,

Υ
(j)
c,k =

1

M

K∑

l=1,l 6=k

w
(j)
c,l

(1 +m
(j)
c,l

)2
e
′,(j)
c,c,k,c,l

,

F
′,(j)
c =

1

M

C∑

j=1

K∑

i=1

Θ
(j)
c,j,ie

′,(j)
j,i

(1 +m
(j)
c,j,i)

2
,

a
(j)
c,k

=
1√

P
(j−1)
c,k

γ
(j−1)
c,k

1 + γ
(j−1)
c,k

,

√
P

(j−1)
c,k =

1

a
(j−1)
c,k

√
P

Ψ
(j−1)
c

m
(j)
c,k

1 +m
(j)
c,k

,

w
(j)
c,k

= uc,k(1 + γ
(j−1)
c,k

), d
(j)
c,k = w

(j)
c,k
a
2,(j)
c,k

Step 3:γ
(j)
c,k

=
w

(j)
c,k

(m
(j)
c,k

)2

Υ
(j)
c,k

+Υ̂
(j)

c,k+d
(j)
c,k

Ψ
(j)
c
ρc

(1+m
(j)
c,k

)2
; ρc = Pc

σ2 .

Step 4: If converge stop and calculate g̃
(j)
c,k as in Theorem 3.1,

otherwise go to step 2.
*Note that all em,c,k = mm,c,k, e

′
c,k

and e′
m,c,k,m,l

are obtained using the fixed-point iteration method as in Chapter2.
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only the quantities Υintra,c,k using the local channel information and supposes

the Υinter,c,k is null. b) The constant intercell interference strategy, where

for every iteration of the precoders design each BS c calculates the quantities

Υintra,c,k using the local channel information but utilizes the intercell interfer-

ence given by Algorithm 1 using (3.10). c) The up-to-date intercell interference

strategy, where for every iteration of the precoders’ design, each BS c calculates

the quantities Υintra,c,k using the local channel information, then calculates the

intercell interferences Υinter,m,c,k in (3.7) and sends them to the corresponding

BS and finally this BS c collects the interference leakages corresponding to

each user and sums them.

Clearly, the strategies (a) and (b) are sub-optimal but less demanding than

(c) w.r.t to the backhaul capacity. Although the strategies (a) and (b) are

sub-optimal, however they perform better than the approach in [22] by taking

the MF initialization for a limited number of iterations. We recall that for

each of the three strategies above, each BS calculates the dc,k for all served

users and then send them to all the neighbouring BSs via the backhaul link.

Furthermore, the fact that (c) requires that each BS m calculates the quantities

in (3.7) for all users not served by m and then sends them to the concerned BS

consumes more backhaul capacity than (a) and (b). The maximum number of

iterations itermax is chosen to be very small, e.g., itermax = 2 or itermax = 3.

The overall mechanism is described briefly in Algorithm 2.

Algorithm 2 The Decentralized Algorithm

Step 1: Set iter = 0. All BSs estimate local channel matrices (from BS to
served users and to the users of the neighbouring cells). The BSs distribute the
channel covariance matrices to neighbouring cells via the backhaul link only
at slow fading rate. They apply Algorithm 1 and then calculate (3.9). They
calculate (3.10) for strategy (b) and the intercell inteference Υinter,m,c,kwith
(3.9) for strategy (c) and exchange them with the concerned BS.
Step 2:
All the BSs calculate Υintra,c,k, ac,k, wc,k and dc,k = |ac,k|2wc,k using (3.5),
(3.1) and (3.3) and send dc,k to the neighbouring BSs, at fast fading rate.
Moreover, each BS calculates the interference leakages and collects the
interference corresponding to its served users in strategy (c).
Step 3: All the BSs calculate their precoders using (3.4).
Step 4: iter = iter + 1, if iter = itermax stop, otherwise go to step 2.
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3.3 Numerical results

In this section, results of simulations based on realistic settings with a finite

number of transmit antennas show the correctness of the proposed approxi-

mation. We compare the three strategies of our decentralized algorithm to

the WSMSE decentralized approach in [22], to the performance given by large

system approximation in Chapter 2 which proposes an asymptotic approxi-

mation of the SINR of the WSMSE precoder at every iteration, and to the

performance given directly by the precoder (3.9).

The channel correlation matrix [Θm,c,k]ij∀i, ∀j can be modeled as in [28]. In

our case, we take them as identity matrices. For the simulations, we used 200

channel realizations, while the large system approximation in [11] needs only

one channel realization. Furthermore, we used itermax = 3 iterations for the

simulation of strategies (a), (b) and (c), 1 iteration for (21) and 3, 30 and 100

iterations for [22].

In Fig. 3.1 and Figure 3.2, we can observe that the curves’ performance

corresponding to ’LS-precoder’, ’strategy (a)’, ’strategy (b)’ and ’strategy (c)’

are combined. We also notice that our precoders corresponding to LS-precoder,

(a), (b) and (c) behave very efficiently in general, which means that they

achieve higher rates than [22] with much less iterations (less information ex-

changed in the backhaul and smaller latencies). However, LS-precoder has a

better performance in Figure 3.1 corresponding to a non fully loaded system

(load = KC
M < 1) than in Figure 3.2 corresponding to a fully loaded system

(load = 1).

Further explanations about the behavior of the large system approximations

for fully loaded systems as in Figure 3.2 can be found in section 2.3.3.

3.4 Analytic solution

In practice, Massive MIMO BSs with hundreds of antennas serve tens of users,

so load = 0.1 < 1. This description is more suitable for the configuration of

Figure 3.1. Hence, we conclude that for practical Massive MIMO configuration

the LS-precoder works very well.

In this section, we propose closed-form expressions for this LS-precoder for

some special practical cases as explained below. The expressions for aHc,k, wc,k,

D and ξc are given above. However, these expressions are a bit complex.
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Figure 3.1: Sum rate comparisons for C=3,K=2,M=15.

Therefore, we propose closed-form expressions to determine aHc,k, wc,k, D and

ξc for uncorrelated channels, identical uc,k for all c, k and at high SNR .

We now consider two simple case studies as depicted in Figures 3.3 and 3.4. Let

αintra and αinter denote the path losses of the intracell and intercell channels

respectively.

Assumption 3.1: Θm,c,k = αintraIM for all m, c and k such that m = c,

Θm,c,k = αinterIM otherwise. The total available transmit power is the same

for all cells, i.e. Pi = P and ρi = ρ for all i in C. Non-negligible intercell

interference: ραinter >> 1. High SNR: ραintra >> 1.

Theorem 3.1. Let Assumption 3.1 hold, then for all c and k, γc,k = γ, ac,k = a,

dc,k=d, wc,k=w, ξc=ξand the intracell and intercell terms have closed-form

expressions which are given by (3.11), (3.12), (3.13) and (3.14).

γ = mintra =
αintra(1− β−1)

β−1
2

ρ; (3.11)

a = (γσ2)−
1
2 ; d =

1

σ2
;w = γ; ξ =

P
ρ

d

; (3.12)
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Figure 3.2: Sum rate comparisons for C=3,K=5,M=15.

Figure 3.3: Figure corresponding to Assumption 3.1

intra = σ2
β−1
2

1− β−1

1

γ
; (3.13)

inter = σ2
C−1
M K

1− β−1

αintra
αinter

1

γ
. (3.14)
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Figure 3.4: Figure corresponding to Assumption 3.2

where

β−1 =
K × C

M
;β−1

2 =
K

M
(3.15)

Note that interference is ∼ σ2

ρ . This means that the interference is completely

reduced to the noise level by the WSMSE precoder.

Proof : If ραintra >> 1 and ραinter >> 1 we obtain from (2.15):

mc,c,k =
1− β−1

β−1
2

ραintra;mm,c,k =
1− β−1

β−1
2

ραinter (3.16)

e =
mm,c,k

αinter
=
mc,c,k

αintra
with m 6= c (3.17)

In fact, from (2.15) we obtain

mm,c,k =αinter × d× 1

M
trVm = minter (3.18)

mc,c,k =αintra × d× 1

M
trVc = mintra (3.19)

but Vc=Vm (we suppose mintra ∼ 1+mintra and minter ∼ 1+minter) because

V−1
c =

1

M

∑

i,j

Θc,i,j

mc,i,j
+

K∑

i=1

d

Mρ
IM

=
K

M

αintrad

mintra
IM + (C − 1)K

αinterd

minter
+
Kd

Mρ
IM = V−1

m = V−1 (3.20)
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Hereinafter,
mintra

αintrad
=

minter

αinterd
(3.21)

(2.15) leads to:

mintra =αintradV = αintrad
1

M
tr
(K
M

αintrad

mintra
IM

+(C − 1)K
αinterd

minter
+

K

Mρ
IM
)−1

(3.22)

Using (3.21), we get:

mintra =αintradV = αintrad
1

M
tr
(CK
M

αintrad

mintra
IM +

Kd

Mρ
IM
)−1

(3.23)

We simplify by d and use (3.15), we get:

mintra =αintradV = αintra
(
β−1 αintra

mintra
+ β−1

2

1

ρ

)−1
(3.24)

We solve this equation and get:

mintra =
αintra(1− β−1)

β−1
2

ρ (3.25)

We do the same procedure for minter.

From (2.26) we obtain:

e
′

c,c,k = e
′

intra = e
′
αintra for all c and k. e

′

m,c,k = e
′

inter = e
′
αinter for all m, c

and k.

Thus,

e
′

intra = αintrade
2 1

d
2 (

K
Mα

2
intrade

′

(αintrae)2
+

(C−1)K
M dα2

intere
′

(αintere)2
+ 1) (3.26)

=αintra
1

d
e2(

1

M

de
′
K

e2
+

1

M

(C − 1)Ke
′

e2
+ 1) (3.27)

=
αintra

1
d
e2

1− 1
MK − 1

M (C − 1)K
(3.28)
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From (2.28), e
′

m,c,k,m,l = e”intra = αintrae
” if m = c else e

′

m,c,k,m,l = e”inter =

αintere
” Then,

e”intra = αintrade
2 1

d
2 (

1

M

α2
intrade

”K

(αintrae)2
+

1
M (C − 1)Kdα2

intere
”

(αintere)2
(3.29)

+ αintrad) =
α2
intrae

2

1− K
M − (C−1)K

M

; (3.30)

e”inter =αinterde
2 1

d
2 (

1

M

α2
intrade

”K

(αintrae)2
+

1
M (C − 1)Kdα2

intere
”

(αintere)2
(3.31)

+ αintrad) =
αintraαintere

2

1− K
M − (C−1)K

M

(3.32)

From (2.16), we get:

Ψ =
K

M
w

e
′

intra

α2
intrae

2
=

β−1
2

1− β−1
w

1

dαintra
(3.33)

Similarly, we obtain:

Υ =
β−1
2

1− β−1
w; Υ̂ =

C−1
K M

1− β−1

αintra
αinter

w (3.34)

By simplifying by w, (2.47) gives:

γ =
m2
intra

C−1
M

K

1−β−1
αintra

αinter
+

β−1
2

1−β−1 +
β−1
2

1−β−1
1

αintra

1
ρm

2
intra

(3.35)

Using (3.15), we get:

γ =
m2
intra

C−1
M

K

1−β−1
αintra

αinter
+

β−1
2

1−β−1 +mintra

(3.36)

However, mintra ∼ ρ so approximately γ = mintra at convergence and we have

:

Ψ =
β−1
2

αintra(1− β−1)

1

d
γ =

ρ

γd
γ =

ρ

d
(3.37)

From (2.20), (2.19) and (2.22) respectively we have:

√
P =

1

a

√
P
P
dσ2

=
√
dσ2

1

a
= (γσ2)

1
2 ; a = (γσ2)−

1
2 ; d =

1

γσ2
γ =

1

σ2
(3.38)
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Finally, the intracell and intercell interferences are herein given by

intra =
ξ2

d

Υ

γ2
=
P

Ψ

1

d

Υ

γ2
=
P
ρ

d

1

d

Υ

γ2
= σ2

Υ

γ2
= σ2

β−1
2

1− β−1

1

γ
(3.39)

inter = σ2
Υ̂

γ2
= σ2

C−1
K M

1− β−1

αintra
αinter

1

γ
(3.40)

Assumption 3.2: Θm,c,k = IM for all m, c, k.Different available total transmit

power per cell.

Theorem 3.2. Let Assumption 3.2 hold, then for all c and k γc,k = γc,

ac,k = ac, dc,k=dc, wc,k=wc, ξc and the intracell and intercell terms have

closed-form expressions which are given by (3.41), (3.42), (3.43), (3.44), (3.45)

and (3.46).

γc ∼ mc =
1− β−1

β−1
2

ρc. (3.41)

ac = (γcσ
2)−

1
2 ; (3.42)

dc =
1

σ2
;wc = γc; (3.43)

ξc =
P c
ρc
dc

; (3.44)

intra = σ2
β−1
2

1− β−1

1

γc
; (3.45)

inter =
σ2

γc2
β−1
2

1− β−1

C−1∑

m=1

ρc
ρm

wm. (3.46)

The proof is omitted because its is somehow similar to the one detailed above.

3.5 Conclusion

WSMSE and KG are hard to implemented in real systems. In this chapter,

we considered the deterministic expressions for MISO derived in the previous

chapter and deduced a new beamformer named ’LS-precoder’ . It is based on

deterministic values and has the advantage to converge in one iteration. Then,

simple closed-form expressions for this precoder are given for some specific
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scenarios. Moreover, signalling and practical implementation of WSMSE are

treated in this chapter.



Part II

Further Random Matrix

Theory exploitation with

partial CSIT

55



Chapter 4

Robust Beamformers for

Partial CSIT

In Part I, we investigated transmit precoding designs for the case of perfect

CSIT. Two beamforming algorithms, WSMSE and KG, have been identified

for MIMO DL as optimal solutions to solve the WSR problem under transmit

power constraints and full knowledge of the CSIT. When the CSIT is partial,

the WSR problem is denoted as the EWSR. Many precoders solve this latter,

however they are sub-optimal.

Although solving the EWSR is difficult, in this chapter we show how to approach

the optimal solution, leading to a novel precoder algorithm for the case of

partial CSIT denoted as the Expected Signal Covariance Expected Interference

Covariance based WSR (ESEI-WSR) BF. This BF takes advantage of the

presence of both the error covariance matrices and channel estimates. We also

apply the DA of section 1.5 to this BF, which boosts the convergence rate of

our precoder and leads somehow the precoding algorithm to global optima.

In computer simulations using Matlab, the ESEI-WSR BF method shows

a substantial gain in performance over the existing approaches, mainly the

expected weighted sum mean squared error (EWSMSE) approach of [40], which

does not benefit in a correct manner from the error covariance CSIT. We expect

our precoder to be effective in practical communications systems. It reduces

the consommation of backhaul capacity, especially in the practical special case

presented in section 4.5 of this chapter, where it requires the exchange of scalars

(traces of matrices) instead of square matrices of size the number of receive

56
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antennas. We explore many approaches to solve the EWSR problem shown in

(1.24).

4.1 The naive approach : ENAIVEKG

The naive approach ENAIVEKG, which uses the KG precoder introduced

in section 1.4.2, but this time by replacing the real channels that we do not

know by their estimates H. Please refer to 1.6 for further details on channel

estimation. The disadvantage of this approach is that we do not use all the

information that we know; we do not use the covariance CSIT (error covariance

matrix), i.e. Θp. This approach is sub-optimal.

4.2 The EWSMSE approach

This EWSMSE approach is proposed in [40]. We rewrite in what follows the

main results. The optimization problem in (1.24) as explained in [40] can be

written as

{G,F,W} =

arg min
G,F,W

∑

(c,k)

uc,k(tr(Wc,kEc,k)− log det(Wc,k)) (4.1)

s.t. trGcGc ≤ Pc for c ∈ C

with

Ec,k = EH|H[(FHc,kyc,k − sc,k)(F
H
c,kyc,k − sc,k)

H ]; (4.2)
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is the expected value of the MSE. The solution is given in [40] by an iterative

procedure as follows:

Fc,k = (σ2IN +

C∑

m=1

K∑

l=1

(Hm,c,kGm,lG
H
m,lH

H
m,c,k+

tr(Θp,m,c,kGm,lG
H
m,l)))

−1Hc,c,kGc,k; (4.3)

Wc,k = (Idc,k − FHc,kHc,c,kGc,k −GH
c,kH

H
c,c,kFc,k+

C∑

l

K∑

j

FHc,kHl,c,kGl,jG
H
l,jH

H
l,c,kFc,k+

FHc,k(
K∑

l

C∑

j

tr(Θp,l,c,kGl,jG
H
l,j) + IN )Fc,k)

−1 (4.4)

Gc,k = uc,k(
C∑

j=1

K∑

l=1

(H
H
c,j,iDi,jHc,j,i + tr(Di,j)Θp,c,i,j) + λcIM )−1H

H
c,c,kFc,kWc,k

(4.5)

Subsequently Fc,k and Wc,k are computed, which then constitute the new

precoder Gc,k. This process is repeated until convergence to a local optimum.

4.3 The ESEI-WSR approach

In the Massive MU MIMO limit where the number of transmit antennas M

becomes very large, the WSR converges to a deterministic limit that depends

on the distribution of the channels. The actual statistical distribution of

the channel is one thing. The Txs have no choice but to design their BFs

according to their partial CSIT. Then to get the actual resulting WSR, the

BFs designed with the partial CSIT need to be evaluated with the actual

channel distribution. Now, for the design with partial CSIT, the WSR will

also converge to a deterministic limit in the Massive MU MIMO regime. We

get a convergence for any term of the form

HQHH M→∞−→ EHHQHH = HQH
H
+ tr{QΘp}Cr . (4.6)

We suppose Cr = IN . H is the estimate of the channel and Θp is the covariance

matrix of the error estimation. Using (4.6) we will extend the KG algorithm
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in 1.4.2 to be more robust to partial channel knowledge . Let us define:

Hc,k = [H1,c,k · · ·HC,c,k] = Hc,k + H̃c,kΘ
1/2
p,c,k

Q=



Q1 . . .

QC


=




∑

k

Q1,k

. . .∑

k

QC,k


=

∑

c

∑

k

IcQc,kI
H
c ;

Qc,k = Q− IcQc,kI
H
c .

(4.7)

where Θp,c,k = blockdiag{Θp,1,c,k, . . . ,Θp,C,c,k}, and Ic is an all zero block

vector except for an identity matrix in block c. Using (4.6), the interference

plus noise covariance matrices of (1.5) give:

R̆c,k = σ2IN +Hc,kQH
H
c,k + tr{QΘp,c,k} IN

R̆c,k = σ2IN +Hc,kQc,kH
H
c,k + tr{Qc,kΘp,c,k} IN

(4.8)

which represent the total and the interference plus noise Rx covariance matrices

in the Massive MU MIMO regime respectively.

This leads (1.14) to

WSR = uc,k log det(R̆
−1
c,k

R̆c,k) +WSRc,k ,

WSRc,k =
∑

(j,i) 6=(c,k) uj,i log det(R̆
−1
j,i

R̆j,i)
(4.9)

where log det(R̆−1
c,k

R̆c,k) is concave in Qc,k, WSRc,k is convex in Qc,k and R̆c,k

and R̆c,k are given by (4.8).

Consider the first order Taylor series expansion in Qc,k around Q̂ of WSRc,k

as explained in section 1.4.2 then

Â
′

c,k =
∑

(j,i) 6=(c,k)

uj,iH
H
c,j,i(R̆

−1
j,i

− R̆−1
j,i )Hc,j,i (4.10)

And the term B̂
′

c,k corresponding to Bc,k can then be given by:

B̂
′

c,k = HH
c,c,kR̆

−1
c,k

Hc,c,k (4.11)
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Then, we calculate the expected values Ăc,k and B̆c,k of Â
′

c,k and B̂
′

c,k respec-

tively:

B̆c,k = EH|HHH
c,c,kR̆

−1
c,k

Hc,c,k

= H
H
c,c,kR̆

−1
c,k

Hc,c,k + tr{R̆−1
c,k

}Θp,c,c,k

(4.12)

Ăc,k = EH|HA
′

c,k =
∑

(j,i) 6=(c,k)

uj,i[Ă
C
j,i,c,k(IM +Qc,kĂ

C
j,i,c,k)

−1

−ĂD
j,i,c,k(IM +Qc,kĂ

D
j,i,c,k)

−1]; (4.13)

with

ĂC
j,i,c,k = H

H
c,j,iR̆

−1
j,i,c,k

Hc,j,i + tr{R̆−1
j,i,c,k

}Θp,c,j,i

ĂD
j,i,c,k = H

H
c,j,iR̆

−1
j,i,c,k

Hc,j,i + tr{R̆−1
j,i,c,k

}Θp,c,j,i;

R̆j,i,c,k = σ2IN +Hj,iQj,i,c,kH
H
j,i + tr{Qj,i,c,kΘp,j,i} IN ;

R̆j,i,c,k = σ2IN +Hj,iQc,kH
H
j,i + tr{Qc,kΘp,j,i} IN

(4.14)

where Qj,i,c,k = Q− IcQc,kI
H
c − IjQj,iI

H
j . The proof is given in Appendix C.

As in section 1.4.2, to get the normalized precoder we use

G
′

c,k = eigenmatrix(B̆c,k, Ăc,k + λcIM ) (4.15)

with eigenvalues Σc,k = eigenvalues(B̆c,k, Ăc,k + λcIM ).

Let Σ
(1)
c,k = G

′H
c,kB̆c,kG

′

c,k, Σ
(2)
c,k = G

′H
c,kĂc,kG

′

c,k. Powers Pc,k ≥ 0 are defined as

in (1.19). λc is determined also as described in section 1.4.2. And we can take

also only dmaxc,k max eigenvectors as described in section 1.4.2. The algorithm

can be then summarized as in Table 4.1. The more intuitive expression for

Ăc,k is given next. It provides more or less the same performance as (4.13)

does.

4.3.1 Alternative expression of Ăc,k

Another expression of Ăc,k can be derived using (4.6).

Ăc,k =EH|HÂ
′

c,k =
∑

(j,i) 6=(c,k)

uj,iH
H
c,j,i(R̆

−1
j,i

− R̆−1
j,i )Hc,j,i

+ tr{R̆−1
j,i

− R̆−1
j,i }Θp,c,j,i (4.16)
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Table 4.1: The Iterative Algorithm

For (c, k) = (1, 1) . . . (C,K), initialize Qc,k

Repeat until convergence
For c = 1 . . . C

Set λc = 0, λc = λmax
For k

Compute Ăc,k using (4.13)
Next k
Repeat until convergence

λc =
1
2(λc + λc)

For k

Compute B̆c,k using (4.12)

Compute the generalized eigenmatrix Gc,k of B̆c,k

and Ăc,k + λcIM
Normalize the generalized eigenmatrix so as to have G

′

c,k

Compute Σ
(1)
c,k = G

′H
c,kB̆c,kG

′

c,k, Σ
(2)
c,k = G

′H
c,kĂc,kG

′

c,k

Compute Pc,k as in (1.19)
Next k
Compute P =

∑
kPc,k

if tr(P) ≥ Pc, set λc = λ , otherwise set λc = λ

For all k, set Qc,k = G
′

c,kPc,kG
′,H
c,k

Next j

Using simulations, it can be shown that (4.13) and (4.16) achieve the same

performance. We didn’t include these simulations in this manuscript.

Another way to solve the EWSR is to apply (4.6) directly on the EWSR in

(1.24). We divide this latter into two parts. One corresponding to the rate of

the user of interest (c,k), concave in Qc,k, and the other part corresponding to

the sum rate of the other users.

EWSR =uc,k log det{IN + R̆c,k

(
Hc,c,kQc,kH

H
c,c,k + tr{Qc,kCp,c,c,k}

)
}

+
∑

(j,i) 6=(c,k)

uj,i log det{IN + R̆j,i

(
Hj,j,iQj,iH

H
j,j,i + tr{Qj,iCp,j,j,i}

)
}

(4.17)

Consider the first order Taylor series expansion in Qc,k, we get

Ăc,k =
∑

(j,i) 6=(c,k)

uj,iH
H
c,j,i(R̆

−1
j,i

− R̆−1
j,i )Hc,j,i + tr{R̆−1

j,i
− R̆−1

j,i }Θp,c,j,i (4.18)
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which is the same as (4.16). And B̆c,k can then be given by:

B̆c,k = H
H
c,c,kR̆

−1
c,k

Hc,c,k + tr{R̆−1
c,k

}Θp,c,c,k (4.19)

4.4 Numerical results and interpretation

In this section, we evaluate the different approaches ENAIVEKG, EWSMSE

and ESEI-WSR through numerical simulations and show the achievable sum

rate versus SNR for a MIMO system with M = 8. The Transmit covariance

matrices Θp,i,c,k are considered as uncorrelated identity matrices in Fig. 4.1,

Fig. 4.2 and Fig. 4.3 and as correlated low rank matrices (rank = 4) in Fig.

4.4, Fig. 4.5 and Fig. 4.6. The low rank property of the correlation matrices is

demonstrated in the work [41].

In our study, we apply the DA approach. We suppose that the error part of the

signal has 25 percent of the total gain. From (1.22), we construct the channels

Hi,c,k and the channel estimates Hi,c,k, for all i, c and k :

Hi,c,k = H̃
(1)
i,c,kΘ

1/2
t,i,c,k + H̃

(2)
i,c,kΘ

1/2
p,i,c,k (4.20)

Hk,bk = H̃
(1)
i,c,kΘ

1/2
t,i,c,k . (4.21)

Moreover, for the uncorrelated identity matrices of Fig. 4.1, Fig. 4.2 and Fig.

4.3, we have :

Θp,i,c,k = α2IM (4.22)

and

Θt,i,c,k = (1− α2)IM (4.23)

with α2 accounting for the percentage of the gain residing in the error part. We

take α2 = 1
4 . We note that in order to do the simulations correctly, we must

consider that all of the real channel, the estimate and the error have the same

rank, i.e. 4. In other words, for the correlated channel estimate covariance

matrices, we take:

Θp,i,c,k = α2 SSH

tr(SSH)
×M (4.24)

and

Θt,i,c,k = (1− α2)
TTH

tr(TTH)
×M (4.25)



63

where S and T are matrices of dimension 8 × 4 whose elements are i.i.d.

Furthermore, we apply DA on the different approaches. The simulations’

parameters for all the figures are summarized in Table 4.2. As the figures

Figure 4.1: Sum rate comparisons for C=2, M=8, K=4, N=1 and uncorre-
lated channels, identity channel covariance matrices

Figure 4.2: Sum rate comparisons for C=2, M=8, K=4, N=2 and uncorre-
lated channels, identity channel covariance matrices
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Figure 4.3: Sum rate comparisons for C=2, M=8, K=4, N=4 and uncorre-
lated channels, identity channel covariance matrices

suggest, the ESEI-WSR is, in general, the best precoder. The EWSMSE

approach improves over ENAIVEKG by accounting for covariance CSIT in

the interference. The improvement can be significant if the instantaneous

channel CSIT quality does not scale with SNR. However, we note from (4.5)

that EWSMSE also moves the channel estimation error in the signal term to

the interference plus noise.

A further improvement is proposed here in the ESEI-WSR approach which

represents a better approximation of the EWSR. In this approach, the channel

uncertainty in the signal term is accounted for in the signal power. In fact, in

the Massive MU MIMO setting, ESEI-WSR represents an EWSR upper bound

due to the concavity of log(:).

Furthermore, Fig. 4.7 shows the convergence of the ESEI-WSR with DA at 0

and 20 dB. We observe that the algorithm converges on average in few steps.

Note that we must add on some more steps, e.g. for the case of 20 dB we must

add some iterations which are necessary for the convergence of the precoder at

SNRs = 0 and 10 dB according to the DA principle. So, the total number of

iterations required is on average 3− 4 times the number shown in this figure

for 20 dB. The algorithm converges monotonically.
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Figure 4.4: Sum rate comparisons for C=2, M=8, K=4, N=1 and correlated
low rank channels

Figure 4.5: Sum rate comparisons for C=2, M=8, K=4, N=2 and correlated
low rank channels

4.5 Practical decentralized solution

Our algorithm is difficult to be applied in practical systems because of the

extensive exchange of information between the different base stations. To cope
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Figure 4.6: Sum rate comparisons for C=2, M=8, K=4, N=4 and correlated
low rank channels

Figure 4.7: Convergence behavior for C=2, M=8, K=4, N=4 and correlated
low rank channels

with this issue, we extend our ESEI-WSR algorithm in a way that it requires

only instantaneous CSIT towards the desired receiver and statistics of the users

of the others cells. Thus, we suppose that, always in the TDD case, a BS does

not have any estimate for the intercell channels and that the intracell channels
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are perfect, namely, for all c and k, Hc,c,k = Hc,c,k; Hj,c,k = Θ
1/2
p,j,c,kH̃

(1)
j,c,k for

j 6= c. We suppose that BS j knows Θp,j,c,k by reciprocity; in real systems,

Θp,j,c,k vary very slowly over time 1. The resultant algorithm is suitable for

distributed implementation and has a low complexity with fast realization. In

this case, we have:

R̆c,k = σ2IN +Hc,c,kQcH
H
c,c,k + tr{QcΘp,c,k} IN (4.26)

where Qc = Q− IcQcI
H
c .

R̆c,k = σ2IN +Hc,c,kQ
′

c,kH
H
c,c,k + tr{QcΘp,c,k} IN (4.27)

where Q
′

c,k = Qc −Qc,k.

B̆c,k = HH
c,c,kR̆

−1
c,k

Hc,c,k. (4.28)

Ăc,k =
∑

j 6=c

∑

i

uj,i[Ă
C
j,i,c,k(IM +Qc,kĂ

C
j,i,c,k)

−1

−ĂD
j,i,c,k(IM +Qc,kĂ

D
j,i,c,k)

−1]

+
∑

i 6=k
uc,i[Ă

C
c,i,c,k(IM +Qc,kĂ

C
c,i,c,k)

−1

−ĂD
c,i,c,k(IM +Qc,kĂ

D
c,i,c,k)

−1]; (4.29)

with, for j 6= c,

ĂC
j,i,c,k = tr{R̆−1

j,i,c,k
}Θp,c,j,i; (4.30)

ĂD
j,i,c,k = tr{R̆−1

j,i,c,k
}Θp,c,j,i; (4.31)

R̆j,i,c,k = σ2IN +Hj,j,iQ
′

j,iH
H
j,j,i + tr{Qj,c,kΘp,j,i} IN ; (4.32)

where Qj,c,k = Q− IjQjI
H
j − IcQc,kI

H
c .

R̆j,i,c,k = σ2IN +Hj,j,iQjH
H
j,j,i + tr{Qj,c,kΘp,j,i} IN ; (4.33)

and with, for j = c,

ĂC
c,i,c,k = HH

c,c,iR̆
−1
c,i,c,k

Hc,c,i; (4.34)

1Although we operate in TDD but this slow variation of Θp,j,c,k can be profitable for

FDD mode as the mobile feedbacks over-the-air and the backhaul capacity consumption can

be suitable with low exchange rhythm
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ĂD
c,i,c,k = HH

c,c,iR̆
−1
c,i,c,k

Hc,c,i; (4.35)

R̆c,i,c,k = σ2IN +Hc,c,iQ
′

c,i,c,kH
H
c,c,i + tr{QcΘp,c,i}IN ; (4.36)

where Q
′

c,i,c,k = Qc −Qc,i −Qc,k.

R̆c,i,c,k = σ2IN +Hc,c,iQ
′

c,kH
H
c,c,i + tr{QcΘp,c,i}IN ; (4.37)

In order to build the precoder, each BS must know B̆c,k and Ăc,k for each of

its users. To obtain Ăc,k from (4.29), we need ĂC
j,i,c,k and ĂD

j,i,c,k. To obtain

ĂD
j,i,c,k of (4.31), BS c just needs to know the trace of R̆−1

j,i,c,k
which will be

given by BS j. From (4.33), j possesses the second matrix term and still needs

the third term which is the product of a scalar and an identity matrix. This

scalar is the trace of Qj,c,kΘp,j,i, which is a block diagonal matrix.

Next, exchange (E1) takes place. Then, BS j possesses all the necessary traces

to obtain the third term, since the trace of a sum of matrices equals the sum

of the traces of each matrix.

Exchange (E1) denotes that each BS l calculates the trace of Ql,mΘp,l,j,i

and sends it to BS j where l = 1 . . . C, j = 1 . . . C, l 6= j, m = 1 . . .K,

i = 1 . . .K.

To obtain ĂD
c,i,c,k of (4.35), the BS c needs R̆c,i,c,k of (4.37). BS c possesses its

second term, while for the third term, it can be obtained from the exchange

(E1). Following a similar analysis, we can obtain ĂC
j,i,c,k for all j. To obtain

B̆c,k of (4.28), BS c requires R̆c,k as given in (4.27) where the second term is

known by the BS itself and the third term, which is the same as the third term

in (4.37) known above, can be gathered once (E1) is done. Herein, our solution

is very suitable for practical distributed implementations because only scalars

must be exchanged as in (E1).

The algorithm in Table 4.1 can still be applied by simply replacing the equations

(4.13) and (4.12) by (4.29) and (4.28) respectively. We suppose as well for the

EWSME null intercell channel estimates and perfect intracell channels and we

compare both algorithms in Figures 4.8, 4.9 and 4.10. Although the authors in

[42] studied our practical scenario for uncorrelated channels, Θi,j,k = ηi,j,kIM

for all i, j, k, and proposed a precoder in their paper, the authors attempted

to provide a low-complexity closed-form precoder. Therefore, it cannot be

compared to our precoder which results from an iterative algorithm.

Let us start with Fig. 4.8 corresponding to uncorrelated channels. We can

observe that the ESEI-WSR is slightly better than the EWSMSE at low SNR
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Table 4.2: Simulation Parameters : ’Y’ denotes ’yes’ and ’N’ denotes ’no’

Figure 4. 4 5 6 7

Number of Cells C 2 2 2 2

Number of Transmit antennas M 8 8 8 8

Number of users per Cell K 4 4 4 4

Number of Receive Antennas N 1 2 4 1

Number of Channel Realizations 50 50 50 50

Low Rank Correlated Channels N N N Y

Rank 8 8 8 4

Uncorrelated Identity Matrices Y Y Y N

Figure 4. 8 9 10 11 12

Number of Cells C 2 2 2 2 2

Number of Transmit antennas M 8 8 8 8 8

Number of users per Cell K 4 4 4 3 4

Number of Receive Antennas N 2 4 4 4 4

Number of Channel Realizations 50 50 50 50 50

Low Rank Correlated Channels Y Y N N Y

Rank 4 4 8 8 4

Uncorrelated Identity Matrices N N Y Y N

but worse that the the EWSMSE at high SNR. This result is contradictory to

the result obtained in Fig. 4.3. This is due to the fact that the system is fully

loaded. We recall that the load is given by:

load =
CK

M
(4.38)

For Fig.4.8, load = 1 and hence the system is fully loaded. So as to avoid this

problem, we propose a slight decrease of the load, as shown in Fig. 4.9. As

expected, the ESEI-WSR returns to it normal behavior and outperforms the

EWSMSE algorithm. Finally, in Fig.4.10 corresponding to correlated low rank

channels, we remark that our ESEI-WSR outperforms the EWSMSE almost

every time.

From now on we will consider the IBC MISO system model explained in

Chapter 2. The goal is to perform a large system analysis of the beamforming

algorithms in the case of partial CSIT as done in 2.3.2 but the case of perfect

CSIT.
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Figure 4.8: Sum rate comparisons for C=2, M=8, K=4, N=4 and uncorre-
lated channels, identity channel covariance matrices

Figure 4.9: Sum rate comparisons for C=2, M=8, K=3, N=4 and uncorre-
lated channels, identity channel covariance matrices
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Figure 4.10: Sum rate comparisons for C=2, M=8, K=4, N=4 and corre-
lated low rank channels

4.6 The MISO case for large system analysis

In this case we shall denote the matrices R, HH as the scalar r and the vector

h. S = Eh| ¯hhh
H = h̄h̄

H
+Θp. We consider a system-wide numbering of the

users for this section and the next one.

4.6.1 Max EWSR BF (ESEI-WSR) in the MaMISO limit

The EWSR represents two rounds of averaging over the partial CSIT

EWSR = E ¯hmaxgEWSR(g)

EWSR(g) = Eh| ¯hWSR(g) =
∑K

k=1 uk Eh| ¯h log(rk/rk)

(a)
=
∑K

k=1 uk [log(r̄k)− log(r̄k)]

(4.39)

where transition (a) represents the MaMISO limit and

r̄k = 1 +
∑

i 6=k
Eh| ¯h|h

H
k,bi

gi|2 = 1 +
∑

i 6=k
gHi Sk,bigi

r̄k = r̄k̄ + gHk Sk,bkgk .

(4.40)
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By adding the Lagrange terms for the BS power constraints,
∑C

c=1 λc(Pc −∑

k:bk=c

||gk||2), to the EWSR in (4.39), we get the gradient

∂EWSR

∂g∗k
= αkSk,bkgk −

[∑
i 6=k βiSi,bk + λbk I

]
gk = 0

αk =
uk
r̄k
, βk = uk(

1
r̄
k
− 1

r̄k
) .

(4.41)

This leads to the iterative (power method like) solution

g
′

k(λbk)=


∑

i 6=k
βih̄i,bk h̄

H
i,bk

+Θp,k+λbk I



−1

h̄k,bkαkĥ
H

k,bk
gk

gk = ξc g
′

k , ξc =
√
Pc/

∑
k:bk=c

||g′

k(λbk)||2

Θp,k =
∑

i 6=k βiΘp,i,bk − αkΘp,k,bk .

(4.42)

The BF scale factors ξc are introduced because instead of a bisection method to

force satisfaction of the power constraints, the Lagrange multipliers (if non-zero)

can be adapted analytically as in [40] by exploiting
∑

k:bk=c
gHk

∂EWSR

∂g∗k
= 0

and
∑

k:bk=c

||gk||2 = Pc. Then from (4.41) we get

λc =

{
λ

′

c , ζc > Pc

0 , ζc ≤ Pc
(4.43)

where
λ

′

c =
1
Pc

∑
k:bk=c

[αkg
H
k Sk,cgk −

∑
i 6=k βig

H
k Si,cgk]

ζc =
∑

k:bk=c
||g′

k(0)||2
(4.44)

Indeed, in the case of multiple power constraints, not all constraints are

necessarily satisfied with equality.

4.6.2 EWSMSE and the naive approach

On one hand, the EWSMSE BF design of 4.2 can be obtained from the EWSR

design above by setting Θ̃p,k,bk = 0 in (4.40)-(4.44) hence Sk,bk = h̄k,bk h̄
H
k,bk

.

On the other hand, the naive EWSR approach, which ignores the covariance

of in any occurrence, is obtained from the EWSR design above by setting

Θ̃p,k = 0 in (4.40)-(4.44) and setting Si,c = h̄i,ch̄
H
i,c for any (i, c). Of course,

these simplifications should be carried out in the BF design from (4.40)-(4.44),

but not in the EWSR evaluation in (4.39)-(4.40).
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4.7 Large System Approximation of the EWSR

Due to the law of large numbers, the scalars rk, rk, ak = h̄
H
k,bk

g
′

k, ||g
′

k(λbk)||2,
gHk Sk,cgk, g

H
k Si,cgk and hence αk, βk, ξc, λ

′

c and ζc converge to deterministic

limits as M,K → ∞ at fixed ratio β =M/K. We shall perform a large system

analysis to determine these deterministic limits, which will also provide the

limiting value for

EWSR =

K∑

k=1

uk log(r̄k/r̄k) =
K∑

k=1

uk log(1 + γ̄k) (4.45)

where the γk are the limiting SINRs. The deterministic limits will follow the

same iterations as the BF design algorithm for which we can rewrite iteration

j as

µ
(j)
k,i = ğ

(j−1)H
k Si,bk ğ

(j−1)
k , ∀i, k

r̄
(j)

k
= 1 +

∑
i 6=k ξ

2,(j−1)
bi

µ
(j)
i,k , r̄

(j)
k = r̄

(j)

k
+ ξ

2,(j−1)
bk

µ
(j)
k,k

α
(j)
k = uk

r̄
(j)
k

, β
(j)
k = uk(

1

r̄
(j)

k

− 1

r̄
(j)
k

)

a
(j−1)
k = h̄

H
k,bk

ğ
(j−1)
k

Θ
(j)
p,k =

∑
i 6=k β

(j)
i Θp,i,bk − α

(j)
k Θp,k,bk

ψ
(j)
k (0) = h̄

H
k,bk


∑

i 6=k
β
(j)
i h̄i,bk h̄

H
i,bk

+Θ
(j)
p,k



−2

h̄k,bk

ν
(j)
k = α

(j)
k ξ

(j−1)
bk

a
(j−1)
k

ζ
(j)
c = ξ

2,(j−1)
c

∑
k:bk=c

ψ
(j)
k (0) ν

2,(j)
k

λ̆
(j)
c = 1

Pc

∑

k:bk=c

[α
(j)
k ξ

2,(j−1)
bk

µ
(j)
k,k −

∑

i 6=k
β
(j)
i ξ

2,(j−1)
bk

µ
(j)
k,i ]

λ
(j)
c =

{
λ̆
(j)
c , ζ

(j)
c > Pc

0 , ζ
(j)
c ≤ Pc

(4.46)

ğ
(j)
k =


∑

i 6=k
β
(j)
i h̄i,bk h̄

H
i,bk

+Θ
(j)
p,k+λ

(j)
bk

I



−1

h̄k,bkν
(j)
k

ψ
(j)
k (λ

(j)
bk

) = h̄
H
k,bk


∑

i 6=k
β
(j)
i h̄i,bk h̄

H
i,bk

+Θ
(j)
p,k+λ

(j)
bk

I



−2

h̄k,bk

ξ
(j)
c =

√
Pc/

∑
k:bk=c

ψ
(j)
k (λ

(j)
bk

) ν
2,(j)
k

g
(j)
k = ξ

(j)
c ğ

(j)
k

(4.47)
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where we used the short-hand notation for e.g. ν
2,(j)
k = (ν

(j)
k )2. Note that a

(j)
k

can be computed recursively by introducing

φ
(j)
k = h̄

H
k,bk


∑

i 6=k
β
(j)
i h̄i,bk h̄

H
i,bk

+Θ
(j)
k +λ

(j)
bk

I



−1

h̄k,bk ,

⇒ a
(j)
k = φ

(j)
k ν

(j)
k = φ

(j)
k α

(j)
k ξ

(j−1)
bk

a
(j−1)
k .

(4.48)

4.7.1 Large system analysis

In the large system analysis, we do not compute the BFs gk. Instead, deter-

ministic limits are determined for the following quantities: φ
(j)
k , µ

(j)
k,i , ψ

(j)
k (0),

ψ
(j)
k (λ

(j)
bk

).

The following results can now be obtained by applying the principles applied

in section 2.3.2 For (with asymptotic equalities)

φk = h̄
H
k,bk

[
∑

i 6=k βih̄i,bk h̄
H
i,bk

+Θp,k+λbk I]
−1h̄k,bk

= tr{Θp,k,bk [
∑

i 6=k βih̄i,bk h̄
H
i,bk

+Θp,k+λbk I]
−1} ,

(4.49)

the deterministic limit φk = ek,bk(λbk) can be computed from the C sets of

implicit equations

ek,c(λc) = tr{Θt,k,bk(
∑

i 6=k

βi
1 + βiei,c(λc)

Θt,i,c +
˜̃Θk,c+λcI

︸ ︷︷ ︸
Tk,c(λc)

)−1} (4.50)

where ˜̃Θk,c =
∑

i 6=k βiΘp,i,c − αkΘp,k,c, hence Θp,k = ˜̃Θk,bk . For ψk(λ) =

ψk,bk(λ), we get

ψk,bk(λ) = ĥ
H

k,bk
[
∑

i 6=k βiĥi,bk ĥ
H

i,bk
+Θp,k+λ I]

−2ĥk,bk

= tr{Θi,k,bk [
∑

i 6=k βiĥi,bk ĥ
H

i,bk
+Θp,k+λ I]

−2}
= − d

dλtr{Θt,k,bkT
−1
k,bk

(λ)} = −e′k,bk(λ)
(4.51)

The ψk,bk(λbk) can be solved from the linear equations

ψk,c(λc) = tr{Θt,k,bkT
−1
k,c(λc)T

′
k,c(λc)T

−1
k,c(λc)}

with T′
k,c(λc) =

∑
i 6=k

βiψi,c(λc)
(1+βiei,c(λc))2

Θt,i,c + I .
(4.52)
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The C sets of equations (4.49) for the C values λc have to be augmented with

a set C+1 for the ek(0). And also (4.52) has to be considered for ψk(0).

For µk,i we introduce µk,i = ν2k µ̂k,i + ν2k µ̃k,i with µ̂k,i = ğHk ĥi,bk ĥ
H

i,bk
ğk/ν

2
k and

µ̃k,i = ğHk Θp,i,bk ğk/ν
2
k . We shall obtain µ̃k,i as µ̃k,i = e′k,bk,i,bk = ∂

∂z ek,bk,i,bk(λbk , 0)

where

ek,c,i,d(λc, z) = tr{Θt,k,cT
−1
k,c,i,d(λc, z)} with

Tk,c,i,d(λc, z) =
∑

j 6=k

βjΘt,j,c

1 + βjej,c,i,d(λc, z)
+k,c+λcI−zΘp,i,d

(4.53)

We can then obtain the e′k,c,i,d as the solution of the linear equations

e′k,c,i,d = tr{Θt,k,cT
−1
k,c,i,d(λc, 0)T

′
k,c,i,d(λc, 0)T

−1
k,c,i,d(λc, 0)}

T′
k,c,i,d(λc, 0) =

∑

j 6=k

βje
′
j,c,i,d(λc)

(1 + βjej,c(λc))2
Θt,j,c +Θp,i,d

(4.54)

On the other hand, we get µ̂k,k = a2k. For i 6= k,

µ̂k,i = |h̄Hi,bk [
∑

j 6=k βjh̄j,bk h̄
H
j,bk

+Θp,k+λbk I]
−1h̄k,bk |2

=
| ¯h

H

i,bk
[
∑

j 6=k,i βj
¯hj,bk

¯h
H

j,bk
+Θp,k+λbk I]−1 ¯hk,bk

|2

(1+βi
¯h
H

i,bk
[
∑

j 6=k,i βj
¯hj,bk

¯h
H

j,bk
+Θp,k+λbk I]−1 ¯hi,bk

)2

(4.55)

Hence µ̂k,i = ˆ̂µk,i/(1 + βiei,bk(λbk))
2 where the ˆ̂µk,i are obtained from a system

of equations similar to that for µ̃k,i (as in (4.53), (4.54)), by replacing the

Θp,i,bk by Θt,i,bk .

4.7.2 Numerical results for MISO large system analysis

We plot the performance of the proposed ESEI-WSR with MF initialization

and compare it to the proposed large system approximation. Figure 4.11 shows

the performance of the precoder and its approximation for rank 2 correlated

channels. Monte Carlo simulations are averaged over 1000 channel realizations.

It can be observed that the approximation is very accurate which validates

our asymptotic approach. Although the large system analysis for the sum rate

seems complex, we need to calculate it only once per given SNR (independent

of channel realization).



76

Figure 4.11: Sum rate comparison for C = 2,K = 6,M = 15N = 1∀k and
rank(Ct,i,bk) = rank(Cp,i,bk) = 2 ∀i, ∀k and α2 = 1

10

4.8 Alternative (sub-optimal) approach

We propose another precoder to optimize the EWSR under partial CSIT. We

reconsider as the KG algorithm in 1.4.2 but this time we apply results from a

slightly different type of large system analysis which considers that the number

of transmit antennas at the Tx and the number of receive antennas at the

users are jointly going to infinity with bounded ratio whereas until now we

have supposed that the number of transmit antennas and the number of users

go jointly to infinity. Indeed, this particular regime of large systems is not in

line with what future network will look like. In sub-6 GHz bands receivers

will be merely equipped with 2 or 4 antennas. However, our study would still

very beneficial, since all the results that we obtain are accurate even when the

number of users’ antennas is finite or small. A recent paper in [43] used this

assumption (regime), however, the authors used the large system to provide

accurate estimates of the average achievable rates using some precoder and

did not use the large system approach to design precoders as we do.

In what follows we shall go one step further in the separable channel correlation

model and assume Cr,k,bi = Cr,k, ∀bi. From (1.5) and using the notation in
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(4.7), Rc,k and Rc,k are given respectively by

Rc,k = I+Hc,kQHH
c,k (4.56)

and

Rc,k = I+Hc,kQc,kH
H
c,k (4.57)

The large MIMO asymptotics from [44],[45], in which both M,N → ∞ at

constant ratio, tend to give more precise approximations when M is not so

large. For the general case of Gaussian CSIT with separable (Kronecker)

covariance structure, [44],[45] lead to asymptotic expressions of the form

EH log det(I+HQHH)

= max
z≥0, w≥0

{
log det

[
I+ w H

−QH
H

I+ zQΘp

]
− zw

}
.

(4.58)

where the maximization over z and w should be carried out alternately (and

not jointly: the joint optimization may correspond to a global maximum or a

saddle point; the cost function is concave however in z or w separately). We

shall assume the same fully separable correlation Gaussian channel model. The

EWSR of (1.24) can be written as

EWSR = EH

∑

k

∑

c

(
log detRc,k − log detRc,k

)
(4.59)

using (4.58), the EWSR now becomes

EWSR =

K∑

k=1

C∑

c=1

uc,k

(
max

zc,k,wc,k

{log detSc,k(Q, zc,k, wc,k)−

zc,kwc,k

− max
z
c,k
,wc,k

{
log detSc,k(Qc,k, zc,k, wc,k)− zc,kwc,k

})
(4.60)

where

Sk(Q, z, w) =

[
I+ wI Hc,k

−QH
H
c,k I+ zQΘp,c,k

]
. (4.61)

Note that

log detSc,k(Q, z, w)=log det(I+wI)+log det(I+QTc,k(z, w))

with Tc,k(z, w) = zΘp,c,k +H
H
c,k(I+ wI)−1Hc,k

(4.62)
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where Tc,k plays the role of some kind of total Tx side channel correlation

matrix. Note that the weighting coefficients z, w depend on the BFs also

though. The EWSR expression in (4.60) can be maximized alternatingly over

the {gk}, the {zc,k, wc,k} and the {zc,k, wc,k}. For the optimization of the BFs

gc,k, for given z, w, introduce

R̂c,k,c,k = I+ Q̂c,kTk(zc,k, wc,k)

R̂c,k = I+ Q̂c,kTc,k(zc,k, wc,k)

R̂c,k = I+ Q̂c,kTk(zc,k, wc,k) .

(4.63)

Inspired by section 1.4.2, we get

B̆c,k = IHc Tk(zc,k, wc,k) R̂
−1

c,k,c,kIc

Ăc,k =
∑

(j,i) 6=(c,k)

uiI
H
j

[
Tj,i(zj,i, wj,i) R̂

−1

j,i −Tj,i(zj,i, wj,i) R̂
−1

j,i

]
Ij .

(4.64)

Note that in spite of their appearance, matrices of the formTR−1 are symmetric.

Indeed, if e.g. T is invertible then T(I + QT)−1 = (T−1 + Q)−1. For

the optimization max
z≥0,w≥0

{log detS(Q, z, w)− zw}, we get from the extremum

conditions

w = f(Q, z, w) = tr{QCt[I+QT(z, w)]−1}
z = g(Q, z, w) = tr{Cr[I+wCrH(I+zQCt)

−1QH
H
]−1}

(4.65)

which can be iterated until a fixed point. To get the normalized precoder we

use

G
′

c,k = eigenmatrix(B̆c,k, Ăc,k + λcIM ) (4.66)

with eigenvalues Σc,k = eigenvalues(B̆c,k, Ăc,k + λcIM ).

Let Σ
(1)
c,k = G

′H
c,kB̆c,kG

′

c,k, Σ
(2)
c,k = G

′H
c,kĂc,kG

′

c,k. Powers Pc,k ≥ 0 are defined

as in (1.19). λc is determined also as described in section 1.4.2. The algorithm

can then be summarized as in Table 4.3. The performance of the proposed

precoder is evaluated through numerical simulations. The algorithm in Table

4.3 is repeated and averaged for 100 realizations of the channels Hc,k for all c,

k and their estimates Hc,k.

Figure 4.12 shows the EWSR versus transmit SNR for a cellular network having

C = 6 cells and one BS at the center of each cell. Then, we assume that each
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Table 4.3: The Iterative Algorithm

For (c, k) = (1, 1) . . . (C,K), initialize Qc,k, zc,k, zc,k, wc,k, wc,k,

Tk(zc,k, wc,k), Tk(zc,k, wc,k)

Repeat until convergence

For j = 1 . . . C

Set λc = 0, λc = λmax

For k

Compute Ăc,k using (4.64)

Next k

Repeat until convergence

λc =
1
2(λc + λc)

For k

Compute B̆c,k using (4.64)

Compute the generalized eigenmatrix Gc,k of B̆c,k

and Âc,k + λcIM

Normalize the generalized eigenmatrix so as to have G
′

c,k

Compute Σ
(1)
c,k = G

′H
c,kB̆c,kG

′

c,k, Σ
(2)
c,k = G

′H
c,kĂc,kG

′

c,k

Compute Pc,k as in (1.19)

Next k

Compute P=
∑

kPc,k

if tr(P) ≤ Pc, set λc = λc , otherwise set λc = λc

For all k, set Qc,k = G
′

c,kPc,kG
′,H
c,k

For all k, compute zc,k, zc,k, wk,wc,k

and then compute Tc,k(zc,k, wc,k) and Tc,k(zc,k, wc,k)

Next j

BS is endowed with a number M = 6 Transmit antennas and serving one Rx

equipped with N = 6 Receive antennas. We assume Cr = IN and we compare

the performance of the algorithm explained in Table 4.3 to the performance of

the naive approach ENAIVEKG of 4.1. The Txs design their BFs according

to their partial CSIT. Then, the BFs designed with the partial CSIT need to

be evaluated with the real channel in order to get the actual resulting WSR.

We suppose that the error covariances matrices Θp,i,c,k for all i, c and k are

identity matrices multiplied by a scalar α2; α2 = 1
10 in Figure 4.12. From

(1.22), we construct the channels Hi,c,k and the channel estimates Hi,c,k, for
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all i, c and k :

Hi,c,k = H̃
(1)
i,c,kΘ

1/2
t,i,c,k + H̃

(2)
i,c,kΘ

1/2
p,i,c,k (4.67)

Hk,bk = H̃
(1)
i,c,kΘ

1/2
t,i,c,k . (4.68)

Moreover, we have:

Θp,i,c,k = α2IM (4.69)

and

Θt,i,c,k = (1− α2)IM (4.70)

Figure 4.12: Sum rate comparisons for C=6, M=6 and N=6

We do not show simulations that compare the approach proposed in this section

to the ESEI-WSR; however we can assure that the ESEI-WSR outperforms

easily this approach.

4.9 Conclusion

In the previous chapters, we have talked about BFs. But a requirement to

practically design the BFs is to know perfectly the channels. As explained in

Chapter 1, the procedure to acquire the channels differ from FDD to TDD.

We have concluded as well that TDD is more suitable to Massive MIMO. Then
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we have said that in TDD, DL channels which are estimated from UL training

suffer from estimation noise. In order to design beamformers robust to that,

a new optimization problem must be dealt with, the EWSR maximization

problem. The objective function is the expected value of the weighted sum rate.

The constraints are always the same, a power budget limit per cell. The new

problem of interest is a stochastic problem. Two solutions exist already, this

first one is ENAIVEKG, which is the same as KG but it is proposed to replace

the true channels but their estimates without considering the knowledge of

channel estimation error covariance. The second one is EWSMSE, it proposes

to reformulate the EWSR maximization problem into a minimization of the

expected value of the MSE. Then comes our proposal. We propose to solve

the EWSR as a DC approach. We divide the objective function into two parts

corresponding to the expected value of the rate of the user of interest and

to the expected sum rate of the others. A new objective function appears.

The solution is given by the eigenmatrix of some matrices. Then, we propose

to calculate the expected values of these matrices as shown in Appendix.

Simulations show for different configurations that our approach is the best

one. The gain over the other approaches comes from exploiting the channel

covariance information not only in the interference terms, but also in the signal

power. As in Chapter 2, we have derived deterministic expression for the rate

for MISO. Moreover, we proposed another robust precoder for partial CSIT.

However, this proposed precoder is less beneficial and achieve less gains than

its counterpart, the ESEI-WSR precoder.



Chapter 5

Non-Linear Precoding

Schemes

5.1 Introduction

In this chapter, we consider the DL of a MC MU MIMO known as the IBC

MIMO scenario where we have many cells having each a BS equipped with

many antennas serving many multi-antenna users. We use CoBF. In other

words, at each cell, each BS sends signals to its connected users only and does

not serve users from other cells. The main goal of this work is to jointly design

the BFs transmitted by each BS in order to maximize the achievable sum

rate of the cellular network. In the case of single cell multiuser MIMO the

capacity is achieved using the famous DPC technique [46]. In the case of IBC

MIMO, it is possible to use the DPC approach by cell, in other words, each

BS applies the DPC as if it is the only cell in the network. This approach is

suboptimal due to the interference created by each BS on the neighbouring cells.

Herein Nguyen and Le-Ngoc in [47] proposed coordinated CoBF solution where

the maximization of the WSR problem in the presence of DPC is done using

techniques such as WSMSE or DC. In [47] perfect CSIT is considered which

implies that the DPC conditions are fulfilled and DPC can be employed. To

design the precoding matrices, CSIT must be known at the BSs. We suppose

a TDD configuration. We recall that the main concept of DPC is that users

in each cell will receive only a part of the intracell interference because the

other part is meant to be encoded by the serving BS in such way that the user

82
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will not see it as interference. However, this scenario will not hold if the CSIT

is partial and the BS would not be able to encode the data [48]. Therefore,

we present the Linear Assignment (LA) operation which is to the best of our

knowledge the best way to practically design DPC in the case of partial CSIT

[49]. If we want to design BC MIMO precoders, the LA precoders design

explained in [50] will be enough. Meanwhile, as discussed above, in the MC

case, intercell interference will be a major limitation and a new implementation

is needed. We follow the example of [47] and use a CoBF technique where the

maximization of the EWSR in the presence of LA using an approach similar

to the ESEI-WSR approach of section 4.3 which combines DC and asymptotic

limits of some expressions. ESEI-WSR is used to design linear robust BFs for

partial CSIT. This approach consists in isolating and linearizing the sum-rate

function at all other cells except a particular cell under consideration into a

linear interference penalty. Then, maximizing the EWSR is like maximizing

the BC EWSR with LA at the given cell minus a penalty-term corresponding

to the intercell interference generated by the cell under consideration. The LA

and DPC are difficult to be implemented in practice, however the Tomlinson-

Harashima precoding [51] and Vector Precoding[52] allow the implementation

of nonlinear precoders which achieve rates close to the ones achieved by the LA

and DPC. In this chapter, we make the following key contribution: We provide

a joint design of the linear assignment matrices of the LA operation as well

as an robust design of transmit covariance matrices corresponding to the BF

matrices for the MC MU cellular communications scenarios with partial CSIT.

5.2 The IBC signal model

Let us consider an IBC system with C cells and a total amount of K users.

We shall consider a system-wide numbering of the users. User k is served by

BS bk. The N × 1 received signal at user k in cell bk is

yk=Hk,bk Gk xk︸ ︷︷ ︸
signal

+
∑

i 6=k

bi=bk

Hk,bk Gi xi

︸ ︷︷ ︸
intracell interf.

+
∑

j 6=bk

∑

i:bi=j

Hk,j Gi xi

︸ ︷︷ ︸
intercell interf.

+vk (5.1)

where xk are the intended dk × 1 signals (each white and unit variance), dk

is the number of intended streams, Hk,bk is the N ×M channel from BS bk
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Figure 5.1: Interference in DPC

to user k. BS bk serves Kbk =
∑

i:bi=bk
1 users. We consider the noise as

vk ∼ CN (0, σ2IN ). The M × dk spatial Tx filter or BF is Gk. We suppose

that users 1, . . . ,K1 belong to cell-1; users K1 + 1, . . . ,K1 + K2 belong to

cell-2; . . . ; users
∑C−1

c=1 Kc + 1, . . . ,K belong to cell-C. At each cell bk, the

LA operation is used such that the intended codeword for user k does not see

intracell interference from users i > k : bi = bk (See Figure 5.1).

5.3 The LA operation

The LA operation is characterized by an auxiliary M -dimensional random

variable u with a particular linear structure given by:

u = Fs+ x (5.2)

where F is the LA assignment matrix and s is the intracell interference which is

known to the Tx. As concerning the design of u, it was proved in [49] that the

maximum rate is achieved by choosing x and s to be Gaussian and independent

which have many implications on u. For further details, please refer to [49].

Hence, when the transmit signal is generated as x = u − Fs, the rate rk of

user k can be achievable, where:

rk = log det(Qk)− EH{log det
[
Ck−

YkH
H
k,bk

(Hk,bkBkH
H
k,bk

+Rk)
−1Hk,bkY

H
k

]
}

(5.3)
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where

Qk = GkG
H
k (5.4)

Yk = FkSk +Qk (5.5)

Bk = Sk +Qk (5.6)

Ck = FkSkF
H
k +Qk

Sk =
∑

j:bj=bk;j>k+1

Qj . (5.8)

Rk = Hk,bkQkH
H
k,bk

+Rk ,

Rk =
∑

i:bi=bk;i<k

Hk,biQiH
H
k,bi

+ σ2IN .
(5.9)

Rk, Rk are the total and the interference plus noise Rx covariance matrices

respectively.

We investigate the transmit side design of the LA assignment matrix Fk and

beamforming covariance matrix Qk that optimize the rate. There are some

conditions that characterize the optimal design of Fk andQk. The two variables

depend on each other. A valid approach is to iteratively design one variable at

time while the others considered as fixed. This approach requires an exhaustive

averaging in each iteration which might cause long execution time. To avoid

this issue, the authors of [50] used the second-order statistics of the CSI and an

upper-bound of the LA achievable rate to derive a closed-form solution for Fk.

The simulations in [50] show that this suboptimal approach provide almost the

same performance as the optimal approach mentioned above but with reduced

complexity. While the derivation stems from [50], however, there is a slight

difference due to the fact that this latter deals only with single cell design and
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no intercell interference to deal with. (5.3) can be rewritten as:

rk = log2 det(Qk)− log2 det(Ck)

− log2 det[(Hk,bkH
H
k,bk

+Cp,k,bk)(DDDk +
∑

i<k:bi=bk

Qi)

+σ2IM + R̃inter,k]

− log2 det[(Hk,bkH
H
k,bk

+Cp,k,bk)(Bk +
∑

i<k:bi=bk

Qi)

+σ2IM + R̃inter,k

)
] (5.10)

where

DDDk = Bk −YH
k C−1

k Yk (5.11)

and

R̃inter,k =
∑

j:bj 6=bi
HH
i,bj

Hi,bjQj (5.12)

We inspire from [50] and propose a closed-form expression for the assignment

matrix Fk such as:

Fk =Qk{Qk +
∑

j:bj=bk;j<k

Qj + [H
H
k,bk

(Rinter,k + σ2IN )
−1Hk,bk

+Θp,k,bktr((Rinter,k + σ2IN )
−1
)
]−1} (5.13)

where

Rinter,k =
∑

j:bj 6=bk Hk,bjQjH
H
k,bj

(5.14)

We note that this matrix depends only on the second order statistics of the

channels.

Now, it remains to calculate Qk. In (5.10), we replace Fk by its closed-form

expression (5.13), the obtained expression can be upper bounded, as shown in

([50], Appendix C), by the new objective function::

EWSR(Q) = EH

∑

k

uk log2 det(IM +HH
k,bk

R−1
k

Hk,bkQk) (5.15)

with uk being the rate weights.
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5.4 Solving the EWSR problem

For the case of perfect CSIT, DC approach is used where the 1st order Taylor

series expansion of the covariance matrix, combined with successive interference

cancellation (SIC) for the dual Multiple Access Channel (MAC) problem, leads

to a separable convex optimization problem that provides successively the

solutions of the optimal decoders. The effect of imperfect CSIT is then

captured by considering the asymptotic expressions of channel covariances

which in the infinite antenna limit equal the corresponding deterministic values.

The precoding matrices are given by an iterative algorithm.

5.4.1 Max WSR with Perfect CSIT : DC approach

This section stems entirely from [47]. We assume that each BS implements the

LA operation. It is utilized such that the intended codeword for a certain user

k does not see the intracell interference from user-i > k : bi = bk. Consider as

a starting point for the optimization of WSR which is equivalent to the EWSR

in the perfect CSIT case.

max
Q

WSR =WSR(Q) (5.16)

=

K∑

k=1

uk log2 det(IN +R−1
k

Hk,bkQkH
H
k,bk

) (5.17)

where Q represents the collection of transmit covariance matrices Qk. The

WSR cost function needs to be augmented with the power constraints

∑

k:bk=j

tr{Qk} ≤ PBSj . (5.18)

So our optimization problem can be expressed as the following:

max
Q

WSR(Q)

s.t.
∑

k:bk=j

tr{Qk} ≤ PBSj (5.19)

where WSR(Q) is given in (5.17). In a classical DC programming approach,

Kim and Giannakis proposed to keep the concave signal terms and to replace

the convex interference terms by the linear (and hence concave) tangent
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approximation. Here, we consider the WSR of all the other cells except

cell bk, as this latter is not concave in Qk, we take their Taylor expansion

around Qk and retain only the first linear term. Then, we get a set of C

optimization problems corresponding to each cell. At cell bk it can be written

as:
max
Q

∑
i:bi=bk

ui log2 det(IN +R−1
i

Hi,bkQiH
H
i,bk

)

−tr{
(
Âbk + λbkI

)
Qi}

subject to Qi ≥ 0 ∀i
(5.20)

or

max
Q

∑
i:bi=bk

ui log2 det
(Rinter,i+

∑
j:bj=bk;j≤i Hi,bk

QjH
H
i,bk

Rinter,i+
∑

j:bj=bk;j<i Hi,bk
QjH

H
i,bk

)

−tr{
(
Âbk + λbkI

)
Qi}

subject to Qi ≥ 0 ∀i

(5.21)

where

Âbk = − ∂WSRk(Qk,Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑

bi 6=bk
uiH

H
i,bk

(R−1
i
−R−1

i )Hi,bk

(5.22)

As explained in [47], we change the variables as follows:

Q̃j = (Âbk + λbkIM )1/2Qj(Âbk + λbkIM )1/2 (5.23)

and

H̃i,bk = R
−1/2
inter,iHi,bk(Âbk + λbkIM )−1/2 (5.24)

Then (5.21) can be rewritten as:

max
Q

∑
i:bi=bk

ui log2 det
( IN+

∑
j:bj=bk;j≤i H̃i,bk

Q̃jH̃
H
i,bk

IN+
∑

j:bj=bk;j<i H̃i,bk
Q̃jH̃

H
i,bk

)

−tr{ÂbkQ̃i}
subject to Qi ≥ 0 ∀i

(5.25)

Using the MAC-BC duality, we can instead of maximizing the objective function

in (5.25), optimize its dual function corresponding to MAC scenario where K

N antennas users are transmitting to an M-antenna BS. The uplink channel

from user i will be HH
i,bi

. The BS employs SIC to decode the signals from the

K users. Therefore, our new problem will be:



89

max
D

∑
i:bi=bk

log2 det
( IN+

∑
j:bj=bk;j≥i H̃

H
i,bk

DjH̃i,bk

IN+
∑

j:bj=bk;j>i H̃
H
i,bk

DjH̃i,bk

)

−tr{Di}
subject to Di ≥ 0 ∀i

(5.26)

where Di is the precoding covariance matrix at user i. This is a convex

optimization problem, which leads to optimal Di ∀i : bi = bk. Therefore, from

Di we can re-obtain Q̃i ∀i : bi = bk using MAC-BC transformation as detailed

in [53]. It is easy to show that the problem in (5.26) is optimal as shown in

[47]. The constraints are decoupled for each variable which allows a sequential

maximization. Since the objective function is a substraction of a log function

to a linear function, the sequential optimization of D1 . . .Dk is guaranteed to

converge to the optimal solution. The optimal solution of Di can be given as:

Di = uiUi[I−Σ−1
i ]+UH

i (5.27)

where z+ = max(0, z) andUi andΣi come from the following eigen-decomposition

operation:

H̃i,bk(IN +
K∑

j:bj=bk,j>i

H̃H
j,bk

DjH̃j,bk)
−1H̃H

i,bk
= UiΣiU

H
i (5.28)

5.4.2 Solution with imperfect CSIT

In order to solve the EWSR problem, we first solve the problem with the

perfect CSI assumption, we get the expressions of the beamformers, and then,

in order to apply these beamformers to the imperfect CSIT case, we have

to use the expected values of many expressions instead of the deterministic

values, as explained in this section and in (4.3). Furthermore, in the Massive

MIMO limit, where the number of Tx antennas M becomes very large, we get

a convergence for any term of the form

HQHH M→∞−→ EHHQHH = HQH
H
+ tr{QΘp}Cr . (5.29)

In what follows we shall go one step further in the separable channel correlation

model and assume Cr,k,bi = Cr,k, ∀bi. We get a new expression for Âbk as
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follows:

Ăbk =EHÂbk =

K∑

bi 6=bk
ui[Ă

C
i,k(IM +QkĂ

C
i,k)

−1

− ĂD
i,k(IM +QkĂ

D
i,k)

−1] (5.30)

with
ĂC
i,k = H

H
i,bk

R̆−1
i,k

Hi,bk + tr{R̆−1
i,k

Cr,i}Θp,i,bk ;

ĂD
i,k = H

H
i,bk

R̆−1
i,k

Hi,bk + tr{R̆−1
i,k

Cr,i}Θp,i,bk ;

R̆i,k =
K∑

j 6=k,j<i ifbj=bi
Hi,bjQjH

H
i,bj + tr{QjΘp,i,bj}Cr,i

+σ2IN ;

R̆i,k =
K∑

j 6=k,j≤i ifbj=bi
Hi,bjQjH

H
i,bj + tr{QjΘp,i,bj}Cr,i

+σ2IN .

The proof is similar to the proof of (4.3) so it is omitted. New expressions for

the total and interference plus noise receive covariance matrices in (5.9) are

given here according to (5.29):

R̆k = Hk,bkQkH
H
k,bk

+ tr{Θp,k,bkQk}Cr,k + R̆k ,

R̆k =
∑

i<k ifbi=bk

Hk,biQiH
H
k,bi

+ tr{Θp,k,biQi}Cr,k + σ2IN .
(5.31)

Rinter,k given by (5.14) becomes:

R̆inter,k =
∑

j:bj 6=bk Hk,bjQjH
H
k,bj

+ tr{Θp,k,bjQj}Cr,k + σ2IN (5.32)

Hence, we change the variables as follows:

Q̃j = (Ăbk + λbkIM )1/2Qj(Ăbk + λbkIM )1/2 (5.33)

and

H̃i,bk = R̆
−1/2
inter,iHi,bk(Ăbk + λbkIM )−1/2 (5.34)

Furthermore, the LA assignment matrix Fk in (5.13) can be expressed as:

F̆k = Qk

(
Qk +

∑

j:bj=bk;j<k

Qj + (Hk,bkR̆
−1
inter,kH

H
k,bk

+Θp,k,bktr{R̆−1
inter,k})−1

)−1

(5.35)
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Table 5.1: The Iterative EWSR Algorithm

For k = 1 . . . K, initialize Qk

Repeat until convergence

For j = 1 . . . C

Set λj = 0, λj = λmax

Compute Ăk using (5.31)

Repeat until convergence

λj =
1
2(λj + λj)

For k such that bk = j

Change the variables as in (5.33) and (5.34)

Repeat until convergence

For k such that bk = j

Update Di = uiUi[I−Σ−1
i ]+UH

i

Next k

Compute optimal matrices Q̃1 . . . Q̃k

from D1 . . .Dk by the MAC-BC transformation

Recompute Q1 . . .Qk from Q̃1 . . . Q̃k

using the relation in (5.33)

Next k

Compute P =
∑

k:bk=j
tr(Qk)

if P ≥ PBSj , set λj = λj , otherwise set λj = λj

Next j

5.5 Simulation results

This section simulates the achievable rate in the DL for different transmit

schemes. We compare the following:

• A robust transmit design as described in Table 5.1, the sum rate is

evaluated using (5.3)

• An upper bound of this latter where the evaluation is done this time

using the classical log2(IN +R−1
k

Hk,bkQkH
H
k,bk

) expression.
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• A naive approach, where the our robust design is used, nevertheless the

channel estimation error covariance matrices are considered as unknown

(Θp = 0) when applying the algorithm in Table 1, here as well the

evaluation of the performance is based on (5.3).

• The robust linear approach from section 4.3.

In order to proceed to the comparison of the algorithms mentioned above,

we consider a MC MU scenario where we have 3 cells, a BS in the center of

each cell and 3 users per cell. We assume 8 antennas at the BS and 2 receive

antennas at each user. We assume that the channels are imperfecly known

at the BS, the channel estimation error covariances Θp are considered as low

rank matrices of rank 2 precisely. The low rank property of the covariance

matrices is motivated in the work in [41]. The intercell channels are considered

as attenuated by a factor of 1√
2
. We consider 50 realizations of the couple of

(H,H). We have H = H+C1/2
r H̃pΘ

1/2
p︸ ︷︷ ︸

error term

from section 1.6 and we assume that

the error term has a power gain which equals 1
4 the power gain of H. Figure

Figure 5.2: Achievable sum rate for C = 3,K = 9,M = 8, N = 2 with
2-rank channel estimation error covariance matrices

5.2 shows that the robust nonlinear BF has gain over the robust linear one.
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To avoid joint design of F and Q, we justified our single variable Q design by

the upper bound of the achievable rate; and then we designed the F with the

closed-form solution (5.35). From the results of Figure 5.2, we can state that

at high SNR we may need the joint F and Q design to get better performance.

5.6 Conclusion

The contributions in this chapter are based on the fact that we want to explore

non linear robust BFs for partial CSIT. The most famous one is DPC. However,

DPC works only with perfect CSIT and single cell scenario. We propose a

variant of DPC which is LA that works with partial CSIT. With LA, we have a

certain expression of the rate. There are two parameters: F (LA matrix) and G

(beamforming matrix). We optimize w.r.t F, we get a closed-form expression.

We put this expression in the rate expression. We get a new objecive function.

The new objective is similar to EWSR of (1.24) but with difference at intracell

interference. To solve this problem w.r.t Q, a DC approach is used, where we

decompose the objective function into two functions corresponding respectively

to the rate of the cell of interest (the cell serving the user of interest) and

to the sum rate of the other cells. We get a new objective function which is

difference of concave functions, where the first function is the rate of the cell of

interest and the second function is the penalty corresponding to the intercell

interference generated by the cell of interest. We solve first the dual problem

and the primal solution is then deduced by MAC-BC duality. Finally, the

expected values of some expressions are calculated in order to be robust for

partial CSIT.
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Chapter 6

Beamformers Design with AF

Relays

6.1 Introduction

In Part I, We explained two beamforming algorithms from the state of the art:

KG and WSMSE. We proposed DA. We introduced determinsitic equivalent of

SINR for WSMSE. We proposed a beamformer that converges in one iteration

In Part II, Practical scenarios with imperfect channel knowledge are studied.

We want beamformers that maximize sum rate with partial CSIT. This problem

is denoted as EWSR. We solved the EWSR and proposed a new robust linear

beamformer; then we performed large system analysis. We explained the linear

assignment approach and proposed a new robust nonlinear beamformer.

In this part, we focus on relaying, which is a promising technology to improve

the reliability and coverage of wireless systems. There are many types of relays

that differ depending on the way the received signals are processed by the

relays. We distinguish between the decode-and-forward (DF), the Amplify and

forward (AF), the compress-and-forward (CF), mixed-forward and so forth.

In this chapter, we deal with the AF RSs where relays are used to linearly

process the signal they receive and then re-transmit it to the final user. The

advantage of this processing protocol is that it is transparent to the modulation

and coding schemes and thus offers a flexible implementation. Again, the goal

is to optimize the WSR via CoBF for Interference Broadcast Relay Channels

(IBRC), as the papers in [54], [55] and [56] do. The first two papers extend

95
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the WSMSE algorithm discussed extensively in the previous chapters to the

broadcast relay channels (BRC) scenario for the two cases of absence and

presence of direct links respectively. Meanwhile, the third paper uses a gradient

descent suboptimal approach such as in [57].

Non-linear approaches such as DPC and so forth are presented in [58], [59] and

[60], however non-linear approaches are out of the scope of this chapter.

As an extension to the conventional AF or the one-way relaying scheme, the

two-way AF is proposed in [61], [62], [63], [64] [65] and [66]. It has the advan-

tage of reducing the number of time-slots required to finish one round (UL

and DL) of information exchange between the nodes, i.e. the BS and the users,

using techniques based on network coding. With the two-way AF only two

time slots are required compared to four time slots using the one-way AF. In

this chapter, we are concerned only at a first point by the more challenging

DL of cellular systems, so we do not consider the two-way AF.

Other papers design the BFs based on the optimization of other utility func-

tions such as minimizing the MSE in [64],[65], [67–73]; minimizing the total

transmit power [67]; minimizing the total leakage in [71]; maximizing the total

signal to total interference plus noise ratio (TSTINR) in [74].

Moreover, we assume FD RSs. Many efforts focused on improving the FD

transmissions, which increases the capacity of conventional Half-Duplex (HD)

systems. As for the two-way relays, the real benefits of FD are gained by

allowing UL and DL communications at the same time, which is not the case

in this chapter. Further work is expected to deal with the simultaneous UL

and DL communications. Main papers on FD beamforming with and without

relays are as follows: [75], [76], [77] and [78].

In this chapter, we first neglect the direct link between the BS and the users and

we propose an alternating optimization technique where we alternate between

the optimization of the BFs at the BSs and at the RS. For the design of the

RS, we reconsider the work in [54] and extend it from the case of BRC to the

case of IBRC. Furthermore, for the BFs at the BS side, we reconsider the KG

approach of section 1.4.2. Apart from faster convergence, the main advantage

of KG is that it’s partial CSIT version demonstrates higher performance than

the WSMSE approach.

Second, we consider a non negligible direct link. A new form of interference

management is hence possible. This form is interference neutralization (IN),

in which artificial multipath is introduced to provoke destructive interference
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superposition at Rxs. So, with non negligible direct links, interference manage-

ment is done via beamforming (ZF) at the BS and RS sides and via interference

neutralization as well. Our contribution consists in studying the joint ZF+IN

feasibility conditions at the BS and RS respectively. This involves the full

column rank of Khatri-Rao products.

6.2 The IBRC signal model

In this chapter, we consider the MIMO IBRC with MIMO FD relay scenario

known as the Two-Hop Interference Broadcast Scenario. We also consider a

DL cellular network consisting of C cells serving a total of K N -antennas users

with the assistance of a AF RS. The direct links between the BSs and the

users are neglected. We shall consider a system-wide numbering of the users

for some sections. User k is served by BS bk. The system’s configurations is

depicted in Figure 6.1. The transmitted signal at BS c is given by:

Figure 6.1: The IBRC DL scnenario
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xc =
∑

i:bi=c

Gisi (6.1)

where i : bi = c denotes the users served by BS c. si ∈ C
dk×1 represents the

intended signal of user i and is chosen from a Gaussian codebook. Gi is the

BF of user i with dimensions MBS × di with di being the number of streams

designated to user i. At the RS, the received signal can be expressed as follows:

YRS =
∑

c

HRB
c xc + nRS (6.2)

where HRB
c ∈ C

MRS×MBS is the channel from BS c to the RS and nRS ∼

C(0, σ2RS) follows a Gaussian additive noise of zero mean and σ2RS variance.

The covariance matrix RRS of the signal received YRS at the RS is given as

follows:

RRS =
∑

j

HRB
j

( ∑

i:bi=j

GiG
H
i

)
HRB,H
j + σ2RSIMRS

(6.3)

The RS is an AF relay, hence it retransmits the signal after linearly preprocess-

ing it with the relay matrix F of dimensions MRS ×MRS . Then, the received

signal at user k is given by:

Yk=HUB
k,bk

Gk sk︸ ︷︷ ︸
signal

+Zk (6.4)

with

Zk =
∑

i 6=k

bi=bk

HUB
k,bk

Gi si

︸ ︷︷ ︸
intracell interf.

+
∑

j 6=bk

∑

i:bi=j

HUB
k,j Gi si

︸ ︷︷ ︸
intercell interf.

+HUR
k FnRS + nk︸ ︷︷ ︸

noise

where HUR
k ∈ C

N×MRS is the channel matrix from RS to user k and nk ∼

C(0, σ2) and HUB
k,bk

= HUR
k FHRB

k ∈ C
N×MBS is the concatenation of BS-RS

channel, relay matrix and RS-user channel

Since we wish to perform power control, the transmitted signals by the RS and

by the BS are subject to the following constraints respectively:

tr(FRRSF
H) ≤ PRS (6.5)
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and

trGcG
H
c ≤ Pc for c ∈ C (6.6)

where PRS and Pc are respectively the maximum transmit power of the RS

and BS c and C is the set of all BSs.

Our objective is to maximize the WSR, so the function becomes:

G =argmax
G

C∑

c=1

∑

k

ukrk (6.7)

subject to (6.5) and (6.6)

where uk is the corresponding weight and rk the achievable rate of user k. rk

is given by

rk = log det(IN + Γk) (6.8)

Γk = R−1
zk

HUB
k,bk

QkH
UB,H
k,bk

(6.9)

where Qk = GkG
H
k is the transmit covariance matrix at the BS, Γk is the

SINR of the kth user and Rzk is the received interference plus noise covariance

matrix at user k given by

Rzk =
∑

i 6=k:bi=bk
HUB
k,bk

GiG
H
i H

UB,H
k,bk

+

∑

j 6=bk

∑

i:bi=j

HUB
k,j GiG

H
i H

UB,H
k,j + σ2RSH

UR
k FFHHUR,H

k + σ2IN (6.10)

Moreover, we define the covariance matrix Rk of the total received signal at

user k as follows:

Rk =
∑

j

∑

i:bi=j

HUB
k,j GiG

H
i H

UB,H
k,j + σ2nRS

HUR
k FFHHUR,H

k + σ2IN

=Rzk +HUR
k,bk

GkG
H
k H

UR,H
k,bk

(6.11)

6.3 The WSMSE precoder for IBRC

The optimization problem in (6.7) is hard to solve directly, since it is highly

non convex in the precoding matrix at the BS G and at the RS F, where G
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without any index represents the collection of BF at the BSs Gk. Similarly,

W and D, whose definitions are given in the following, represent the collection

of Wk and Dk respectively. To solve it, we reformulate it as an equivalent

WSMSE minimization problem as explained in 1.4.1. The new minimization

problem is (the constraints are the same as above):

min
G,F,W,D

∑

k

(
tr(WkΨk)− log(Wk)

)
(6.12)

Where

Ψk = Idk −GH
k H

UB,H
k,bk

Dk −DH
k H

UB
kbk

Gk +
∑

i:bi=bk

DH
k H

UB
k,bk

GiG
H
i H

UB,H
k,bk

Dk

+
∑

j 6=bk

∑

i:bi=j

DH
k H

UB
k,j GiG

H
i H

UB,H
k,j Dk + σ2RSD

H
k H

UR
k FFHHUR,H

k Dk + σ2DH
k Dk

(6.13)

where the Ψk is the MSE covariance matrix for general Tx and Rx filters,

Wk ∈ C
dk×dk is an additional weighting matrix and Dk ∈ C

N×dk is the Rx at

user k. The new problem is quadratic in G and (F) if we suppose as F and

(G) fixed respectively. Thus, it can be solved using alternating optimization.

The optimal Wk and Dk for fixed F,G,D and F,G respectively are given by:

Wk = Ψ−1
k (6.14)

and

Dk = GH
k H

UB,H
k,bk

(
Rk)

−1 (6.15)

because the two objective functions (6.7) and (6.12) are equivalents only if

Wk = Ψ−1
k . To determine F, we must consider all other variables as fixed and

set the following Lagrangian as null, as follows:

L1 =
∑

k

tr(WkΨk) + λ(tr(FRFH)− PRS) (6.16)
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dL1

dF
= 0 =⇒

F =
(∑

i

HUR,H
i DH

i WiDiH
UR
i + λIMRS

)−1
(6.17)

× (
∑

j

∑

l 6=bk

∑

i:bi=l

HUR,H
j DjWjD

H
j H

UR
j FHRB

l GiG
H
i H

RB,H
l

−
∑

i

HUR,H
i DiWiG

H
i H

RB,H
bi

)
(∑

j

∑

i:bi=j

HRB
j GiG

H
i H

RB,H
j + σ2RSIMRS

)−1

(6.18)

The Lagrangian λ must be adjusted by bisection. Now, we proceed to determine

the BF Gk while the other variables are considered as fixed. Two constraints

are related to that problem. We reduce it to a problem with a single sum

constraint as follows:

L2 =
∑

k

tr
(
WkΨk

)
+ ξ
(∑

j

∑

i:bi=j

µjtr(Qi) + λtr(FRRSF
H)− Pt

)

where Pt is the total transmit power.

dL2

dGk
= 0 =⇒

Gk = (
∑

i

HUB,H
i,bk

DiWiD
H
i H

UB
i,bk

+ ξ
(
µbkIMBS

+ λERB,Hbk
FHFERBbk

)
)−1HUB,H

kbk
DkWk (6.19)

The Lagrangian ξ and λ must be adjusted by bisection in order to satisfy the

power constraints at the RS. To determine the maximum µbk ∀ bk and λ a

subgradient method is applied. For further details, please refer to [54].

6.4 The KG precoder for IBRC

In this section, we propose a variant for the calculation of the Tx BFs, which

is the KG approach of 1.4.2. We assume fixed relay matrix, hence we are

concerned by the Transmit BFs. The starting point is the objective function

of (6.7).

WSR = uk log det(R
−1
zk

Rk) +WSRzk ,

WSRzk =
∑K

i=1, 6=k ui log det(R
−1
zi Ri)

(6.20)
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where Rzk and Rk are given by (6.7) and (6.12). log det(R−1
zk

Rk) is concave

in Qk but WSRzk is not. We consider the first order Taylor series expansion

of WSRzk in Qk around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRzk(Qk, Q̂) ≈WSRzk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = − ∂WSRk(Qk,Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑

i 6=k
uiH

UB,H
i,bk

(R̂−1
zi −R̂

−1
i )HUB

i,bk

(6.21)

We get the Lagrangian

WSR(G, Ĝ, λ) =

C∑

j=1

µjPc+

K∑

k=1

uk log det(Idk +GH
k B̂kGk)− tr{GH

k (Âk + µbkIM + λHRB,H
bk

FHFHRB
bk

Gk}

(6.22)

where
B̂k = HUB,H

k,bk
R̂−1
zk

HUB
k,bk

. (6.23)

The gradient (w.r.t. Gk) of this concave WSR allows an interpretation as a

generalized eigenmatrix condition, thus G
′

k = eigenmatrix(B̂k, Âk + µbkIM +

λHRB,H
bk

FHFHRB
bk

) is the (normalized) generalized eigenmatrix of the two

indicated matrices, with eigenvalues Σk = eigenvalues(B̂k, Âk + µbkIM +

λHRB,H
bk

FHFHRB
bk

). Let Σ
(1)
k = G

′H
k B̂kG

′

k, Σ
(2)
k = G

′H
k ÂkG

′

k. The advan-

tage of formulation (6.22) is that it allows straightforward power adaptation:

introducing diagonal power matrices Pk ≥ 0 and substituting Gk = G
′

kP
1
2
k in

(6.22) yields

WSR =
C∑

j=1

λjP
BS
j +

K∑

k=1

[
uk log det

(
Idk +PkΣ

(1)
k )

− tr{Pk(Σ
(2)
k +µbkIdk + λHRB,H

bk
FHFHRB

bk
)}
]

(6.24)

which leads to the following interference leakage aware water filling

Pk(l, l) = (6.25)
(

1

Σ
(1)
k (l, l)

(
ukΣ

(1)
k (l, l)

Σ
(2)
k (l, l) + µbk + λ(EHbkF

HFEbk)(l, l)
− 1

))+

(6.26)

for all l s.t. Σ
(1)
k > 0 where z+ = max(0, z).

We propose to use the optimization method exposed in this section in order to
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Table 6.1: The Iterative WSR Algorithm

For k = 1 . . . K, initialize Gk
(0)

Initialize F(0)

Repeat until convergence

1. Compute D
(j+1)
k and W

(j+1)
k for ∀k for fixed G(j) and F(j)

using (6.15) and (6.14).

2. Compute F(j+1) for fixed D(j+1), W(j+1) and G(j) using (6.18).

3. Repeat Until Convergence

3.1 Compute G
′,(i+1)
k and P

(i+1)
k using G

′,(i+1)
k =

eigenmatrix(B̂
(j)
k , Â

(j)
k + µ

(i)
bk
IM + λHRB,H

bk
FH,(j)F(j)HRB

bk
)

and (6.26) respectively.

3.2 Update µ
(i+1)
bk

for ∀k and λ(i+1) as

µ
(i+1)
bk

= µ
(i)
bk

+ α
(∑

i:bi=bk
trQi

(i+1) − Pbk
)
for∀ bk

λ(i+1) = λ(i) + α(tr
(
F(j)R

(j)
RSF

H,(j)
)
− PBS)

update the BFs at the BSs G. Meanwhile, we use the approach of the previous

section in order to update F. The final algorithm is explained in Table 4.1,

where α denotes the step size of the subgradient algorithm.

6.5 Numerical results and short discussion

In this section, we present some simulation results which prove that our

algorithm is slightly better that the pure WSMSE algorithm.

We consider the DL of a cellular system consisting of C = 2 cells having BSs

with MBS = 4 antennas each and serving a total of K = 4 N = 2-antennas

users with the help of a RS endowed withMRS = 8 antennas. The power of the

different BSs and RS are normalized such that Pi = 1 = PRS for i ∈ C. However,
σ2 = σ2RS = 1

SNR , where SNR ranges from 0 to 20 dB in the simulations. The

channel coefficients are generated as i.i.d zero mean unit-variance complex

Gaussian random variables. We average 50 different channel realizations to

produce our results. The step size is chosen to be α = 0.01. The convergence
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criteria for the third step in Table 4.1 are as follows:

|λtr
(
FRRSF

H
)
− PRS)| ≤ ǫ (6.27)

|µbk
( ∑

i:bi=bk

trQi − Pbk
)
| ≤ ǫ for ∀bk (6.28)

with ǫ = 0.001.

Figure 6.2 shows that our proposed algorithm is slightly better than the the

pure WSMSE algorithm. A small difference can be explained by the fact that

this study does not assume a direct link between the BSs and the users, hence

all the work must be performed by the RS and some changes at the BS side

would not affect a lot the final achievable sum rate.

Indeed, the value of this work does not reside only in this difference of sum

rate. More than that, this work smooths the path for future studies where

imperfect channel estimations would be assumed. In that particular case, our

proposed method based on KG to design G and on the WSMSE approach to

design F would be way more advantageous than the pure WSMSE, since, in

general, KG-based BFs are more robust to channel imperfections as shown in

Chapter 4.

Figure 6.2: Sum rate Comparison for C = 2,K = 4,MBS = 4, N =
2,MRS = 8
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6.6 Joint ZF-IN feasibility conditions

We consider MISO IBRC with MIMO FD relay with direct links (Figure 6.3).

So, BS and users communicate both directly and via relay. hUBc,c,k and hURc,k are

Figure 6.3: Relay and direct links

now vectors of dimensions 1×MBS and 1×MRS respectively. In this section

we do not use system-wide numbering of the users. Let us suppose that we

have K users per cell. The received signal can be written as:

yc,k = hUBc,c,kgc,kxc,k +

(C,K)∑

(j,i) 6=(c,k)

hUBc,j,kgj,ixj,i + vc,k

︸ ︷︷ ︸
direct signal

+ hURc,k F{
(C,K)∑

(j,i)=(1,1)

HRB
j gj,ixj,i + nc,k

︸ ︷︷ ︸
link via relay

} (6.29)

where the conditions for joint ZF-IN on the BF vectors gj,i and the AF matrix

F are indicated. The noise-free received signal can be rewritten as:

yc,k = (hUBc,c,k + hURc,k FH
RB
c )gc,k︸ ︷︷ ︸

6= 0

xc,k +

(C,K)∑

(j,i)=(1,1), 6=(c,k)

(hUBc,j,k + hURc,k FH
RB
j )gj,i︸ ︷︷ ︸

=0

xj,i

(6.30)
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These conditions can perhaps be more easily interpreted in a dual UL in which

we have an Interfering Multiple Access Channel (IMAC) plus Relay:

gHj,i(h
UB,H
c,j,k +HRB,H

j FHhUR,Hc,k ) = 0 ∀(j, i) 6= (c, k) (6.31)

in which the BF gHj,i now plays the role of ZF Rx. Having MBS antennas, the

BS Rx can zero force MBS − 1 interfering streams while still receiving the

stream of interest. For user (j, i), let Sj,i denote the set of MBS − 1 users that

will be suppressed by gj,i. Then, the conditions (6.31) become IN conditions for

the AF matrix F for the interfering users (c, k) 6∈ {{(j, i)}, Sj,i}. The number

of such conditions is KC(KC − 1)(MBS − 1)KC = KC(KC −MBS). Note

that the ZF conditions for the gj,i and the IN conditions for F involve different

(and hence independent) user channels hc,j,k. Hence, even though the ZF and

IN conditions are coupled, the BF can be considered as independent of F in

the IN conditions. For the same reason also, the direct overall channel gains

appearing in (6.30) (for (c, j, k) = (c, c, k)) will be non-zero, in spite of the

conditions (6.31).

By introducing the vec(:) operator, which stacks consecutive columns of a

matrix in a supervector, with the property vec(AXB) = (BT ⊗ A)vec(X)

where ⊗ denotes the Kronecker product, and taking Hermitian transpose of

the scalars in (6.31), we can rewrite the IN conditions from (6.31) as:

vecH(FH)(hUR,Tc,k ⊗HRBgj,i) = −hUBc,j,kgj,i (6.32)

which need to hold for ∀(c; k) /∈ {{(j; i)}, Sj,i}. There are many ways of

selecting the sets Sj,i, leading to many solutions for joint ZF-IN. Each solution

will correspond to a local optimum for utility optimization designs. Let us

consider one specific choice for the Sj,i in which the MBS − 1 users to be

ZF’d comprise in any case the K − 1 other users in cell j and such that

Sj = {{(j, i)}, Sj,i} is independent of i. Then let HUR
j = [hUR,Tc,k , (c, k) /∈ Sj ]

which is a matrix of size MRS × (CK −MBS). Introduce Gj = [gj,1 · · ·gj,k] of
size MBS ×K and hUBj = [hc,j,kGj , (c, k) /∈ Sj ], then we can rewrite (6.32) as

vecH(FH)[HUR
1 ⊗HRB

1 G1 · · ·HUR
C ⊗HRB

C GC ] = −[hUB1 · · ·hUBC ] (6.33)

This system of equations can be solved for vecH(FH) if the matrix of coefficients

has full column rank. To investigate this, we can use the following Lemma.
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Lemma 4.1: Full column rank conditions of Khatri-Rao product. We consider

the block matrices A = [A1 · · ·An],B = [B1 · · ·Bn] with compatible column

block structure, their Khatri-Rao product A ·B = [A1 ⊗B1 · · ·An ⊗Bn] has

full column rank if and only if (iff)

1. all Ai and Bi have column rank

2. at least one of A or B has full column rank.

Proof. Sufficiency is fairly straightforward. For necessity, (1) is a result of

rank(Ai ⊗Bi) = rank(Ai)rank(Bi). (2) for the case n=2, by contradiction:

given that the Ai and Bi have full column rank, but if both A and B didn’t

have full column rank, then vectors ai,bi exist so that A1a1 = A2a2 and

B1b1 = B2b2. Then A1a1b
T
1 B1 = A2a2b

T
2 B2 and

vec(Bibia
T
i A

T
i ) = (Ai ⊗Bi)vec(bia

T
i ) = (Ai ⊗Bi)(ai ⊗ bi) (6.34)

Hence, (A ·B)[(a1 ⊗ b1)
T − (a2 ⊗ b2)

T ]T = 0, which means that A ·B would

not have full column rank. Applying Lemma 4.1 to (6.33) leads to the following.

Theorem 4.1: Interference Neutralization Feasibility IN the MISO IRBC with

MIMO relay with the dimensions considered above, IN is feasible iff

MRS ≥ max(K,CK −MBS , Cmin(K,CK −MBS)),K ≤MBS (6.35)

This leads to the following evolution for the number of relay antennas:

MRS =





0, 1 ≤ K ≤ MBS

C

C2(K − MBS

C ), MBS

C ≤ K ≤ MBS

C−1

CK, MBS

C−1 ≤ K ≤MBS

where in the first regime only

ZF BF is needed. The following are two variations on the basic scenario.

Intracell BF. In this case, the BF is non-cooperative between cells and

only considers the intracell users (the BF is multicell oblivious). All intercell

interference needs to be canceled by IN. Hence, N = C(CK −MBS) gets

replaced by MRS = C(C − 1)K.

BF-independent AF The IN equations will not depend on the BF Gj

(though the BF will still depend on the AF F) if interference is not neutralized

starting from the BF inputs but starting from the BS antennas. Then, the

factors Gj disappear from the equation in (6.33). This leads to IN conditions:
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MRS ≥ max(MBS , CK − MBS , Cmin(MBS , CK − MBS). The ZF and IN

conditions can be solved iteratively as follows. Start e.g. with F = 0.

1. The BFs gj,i can be solved by ZF the direct links in (6.30) w.r.t. the

effective channels in (6.31) of the other users in Sj .

2. The AF matrix F can then be determined from the equations (6.33).

Iterate (1) and (2) until convergence. Whereas joint ZF-IN can have many

solutions, fixing the sets Sj forces convergence to one particular solution (apart

from underdeterminacy issues of course if N is larger than necessary). For the

case of C = 2 cells, MRS = 4(K − MBS

2 )+ which evolves from 0 to 2MBS as K

evolves from MBS

2 to M . For the Intracell BF case, we get MRS = 2K, whereas

the BF-independent AF case (typically) also leads to MRS = 4(K − MBS

2 )+.

6.7 Conclusion

In this chapter, we treat the problem of communications with relays. In the

first study, we treat the case where the BSs and the users can’t communicate

directly but via a relay. Again, the problem of interest is to design jointly all

the BFs and the relay matrix. We suppose perfect CSIT. A WSMSE-type

solution exists. We propose a WSMSE-DC based solution where the relay

matrix is always given by the WSMSE approach, but the BFs at the Tx side

are given by a DC approach. Briefly, the BFs are given by linearizing the

objective function corresponding to the sum rate of all the users except for the

one of interest. We show that this solution is better. In the second study, we

suppose that the BSs and the users can communicate via two ways, directly or

via the relay. Two interference management techniques are at stake: IA and IN.

IA is the interference management technique highlighted in all of the chapters

of this thesis. IN appears here for the first time, where artificial multipath is

introduced to provoke destructive interference superposition at Rxs. We derive

the DoFs of such scenario. The difficulty of IN is that the relay must know the

channels from BSs to users which is hard to be achieved in practice.



Chapter 7

Conclusions and Future

Works

7.0.1 Summary and conclusions

Some results of this thesis are presented in the deliverables of two European

Projects H2020 Fantastic5G (http://fantastic5g.com) and One5G (https:

//one5g.eu). The thesis treats the problem of interference cancellation and

capacity maximization in Massive MIMO 5G networks. The study focuses on

the wireless access segment of 5G cellular communications and targets the key

problem of interference that is due to frequency reuse. This has been a long

standing impairment in cellular networks of all generations that will be further

exacerbated in 5G networks, due to the expected dense cell deployment. In this

context, the thesis proposes new interference management alternatives thanks

to the Massive MIMO antenna regime, taking into account also the practical

challenges of Massive antenna arrays. Chapter 1 provides the motivation and

sets the context for the thesis studies. It also introduces the key notation

and system model to be studied. The main drawbacks and challenges of

antenna and system design when the number of antennas at the base station

scales to large numbers (such as RF impairments and channel contamination)

are first discussed, followed by a discussion on the important topic of pilot

contamination and its elimination. This is followed by a presentation of the

frequency bands for 5G and a motivation of the combined mmwave / Massive

MIMO communication. After the notation and system setup, two precoding

algorithms (WSMSE and KG) are presented in detail, since they constitute

109
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the basis for the thesis’ proposed techniques for the massive MIMO regime.

This is followed by the presentation of deterministic annealing and channel

estimation for this considered setup. A listing of the key contributions of

the thesis is also included in this chapter. Chapter 2 contains a performance

analysis of the WSMSE algorithm in the large system regime (antennas, users)

of multi-cell / multi-user massive MISO networks based on Random Matrix

Theory. The work can be seen as an extension of previous studies which rely

on deterministic equivalent SINR expressions (since SINR is a key capacity

parameter for MISO systems). This approach is adopted here as well and

applied to the WSMSE precoders presented in Chapter 1, assuming perfect CSI

and centralized precoding. The derived deterministic equivalent expressions

are then validated numerically, showing good agreement with the actual sum

rates for the case of 3 cells, 30 antennas and on the order of 10 users per

cell. The results are then extended to the MIMO single stream cases, where

the equivalent deterministic SINR approach is again shown to be valid. The

derived deterministic equivalent SINR expressions are then used in order to

prove a capacity scaling result for the case of multi-antenna receivers. Chapter

3 considers the case of decentralized coordinated beamforming that relies on

slow fading information exchange between the base stations. The large system

analysis approach is adopted again, focusing on the WSMSE technique and

targeting optimal beamforming solutions in this sense. The approach relies

on the exchange of interference leakage terms that are caused by every base

station to all the users of every interfering base station via fixed (perfectly

reliable) backhaul links. Since in general this information exchange may be

heavy and take many iterations until it converges, the initialization of the

precoders is key both in terms of convergence speed and of the attained

solution. For this, the thesis proposes a new initialization which is shown

theoretically to be asymptotically optimal in the large system (infinite antenna

/ infinite users, with fixed ratio between them) regime (Theorem 3.1), termed

’LS-precoder’. Three different variants of interference leakage calculation and

exchange between base stations are considered, ranging from the calculation

of only intracell interference based on local channel knowledge and complete

disregard of intercell interference to the calculation of all up-to-date intra

and inter cell interference and full sharing between all the cells via the fixed

backhaul links. Interestingly, even the two sub-optimal variants that do not use

the up-to-date intercell interference, perform better than previously proposed
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techniques and in fact seem to have identical performance between them and

offer minimal gain over the LS precoder initialization in the non-fully loaded

case. They also converge very fast (in 2 to 3 iterations). The results also

show that non-fully loaded networks (KC/M < 1) perform clearly better than

fully loaded ones. The chapter concludes with some closed-form expressions

of the LS precoder for some highly idealized assumptions of diagonal channel

covariance matrices (which may relate to actual situations in asymptotic large

scale regimes). Chapter 4 switches gears by assuming partial CSIT, (still

assuming perfect CSIR) and targeting again optimal precoders for the large

system regime. The problem is formulated as an optimization of the EWSR

objective function. The proposed technique is termed ESEI-WSR and relies on

the fact that in the large (Massive) system regime, the expected weighted sum

rate (over the channels) will converge to the actual WSR and can be written

as a function of the WSR corresponding to the estimated channel and an error

term that relies on the channel error covariance matrix. The corresponding

precoder is optimal in this sense (having assumed, as throughout the thesis, an

identity channel covariance matrix at each receiver). DA is again adopted in

order to drive the solution to avoid local optima. The ESEI-WSR thus obtained

is then numerically evaluated for small / practical configurations (2 cells, 8

antennas and 4 users per cell) and shown to provide small gains over previous

sub-optimal approaches for the case of single antenna receivers but clearly

better performance for multi (2 or 4) antenna receivers, in which case the

sub-optimal approaches show a flooring of their performance. While optimal

in the above sense, the ESEI-WSR technique is heavy in terms of channel

information exchange between base stations requirements. For this, a practical

decentralized extension is derived, wherein instantaneous CSIT is only used

for the intended receivers, while unintended receivers of other cells are only

captured via the corresponding channel covariance matrices (intracell channels

are assumed perfectly known via TDD, while intercell instantaneous channels

are unknown). The algorithm is suitable for distributed implementation (due

to the small required information exchange, i.e., only several scalars coming

from the trace function need be exchanged) and has low complexity and

fast convergence. Its performance is numerically evaluated for a number of

cases (correlated low rank channels and uncorrelated channels with identity

channel covariances). The ESEI-WSR is then further formulated and simplified

for the case of Massive MISO channels by using the large system analysis
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tools. An alternative suboptimal approach based on the KG algorithm is then

proposed for the case of both transmit and receive antennas jointly growing

to infinity with bounded ratio, showing numerically significant gains over the

näıve approach. Chapter 5 departs from the realm of linear precoding and

considers nonlinear schemes. The MIMO IBC setup is formulated and the

pursued approach consists of a combination of per-cell nonlinear scheme and

a cooperative management on the inteference leaked by the precoders of all

the cells in order to jointly optimize the ESEI-WSR criterion introduced in

Chapter 4. In view of partial CSIT, the chosen per-cell nonlinear precoding is

LA instead of DPC, which would be optimal in the case of perfect CSIT. After

the formulation of the IBC problem, the linear assignment and beamforming

matrices are formulated, setting the ground for the sought joint transmit design.

As the two parameter sets (matrices) depend on one another, an alternative

optimization approach would make sense, yet would require a high complexity.

To avoid this, a closed form expression is derived for the LA matrix, based on an

upper bound of the rate. This reduced the search of the optimal beamforming

matrix to a single criterion (ESWR), similar to the one introduced in Chapter

1. For the case of perfect CSIT, a previously derived approach by Nguyen

and Le-Ngoc is adopted, where the 1st order Taylor series expansion of the

covariance matrix, combined with successive interference cancellation for the

dual (MAC) problem, leads to a separable convex optimization problem that

provides successively the solutions of the optimal decoders. For the case of

partial CSIT, the same approach is followed, but the effect of partial CSIT

is captured by considering the asymptotic expressions of channel covariances

which in the infinite antenna limit equal the corresponding deterministic values

(same approach as in Section 4.3). The precoding matrices are obtained in an

iterative way by assuming a certain diagonalization property of the separable

channel correlations. The obtained solutions are numerically evaluated for

cases of 3 cells, 3 users per cell, 8 base station antennas and 2 antennas per

receiver terminal and compared with (and shown to be superior to) the robust

linear solutions, as well as other special cases and bounds. Finally, Chapter

6 considers the case of the interference broadcast channel with use of relays

(termed IRBC). A two-hop relay configuration is considered and AF relaying

is adopted, wherein the relaying nodes perform new linear combining to the

received signals, subject to new power constraints. It is further assumed that

relays are full-duplex (as opposed to conventional half-duplex relaying), in
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order to further boost the spectral efficiency. After introducing the IBRC signal

model, the maximization of the weighted sum rate metric is formulated, subject

to the power constraints. Then, we explain the existing WSMSE solution.

However, we propose an Alternate optimization, using WSME precoding for

the base station precoders and KG filters for the relay stations. The chapter

concludes by considering the case where direct links between the base stations

and the end users exist as well and derives conditions and a solution that

involve zero forcing precoding and interference neutrality.

7.0.2 Future work

Numerous extensions of this works are possible. Ranging from studying the

practical implementation of the algorithms proposed in this thesis to extending

the relays study in Chapter 6 to partial CSIT... Massive MIMO is beneficial for

sub-6 Ghz, but essential for mmWaves. Concerning mmWaves, the beamformers

developed in this thesis may not be feasible because we would need as many

RF chains as the number of antennas which is very costly at high frequencies.

It would be very useful to investigate hybrid design of beamformers that are

suitable for mmWaves. It involves a two stage design one RF and another

digital stage in baseband which are optimized jointly.



Chapter 8

Résumé en Français

8.1 Introduction

L’évolution des communications sans fil doit répondre à la demande toujours

croissante de débits plus élevés. C’est l’un des sujets phares étudiés dans la

théorie d’information pendant cette dernière décennie. Un défi a été lancé par

Qualcomm pour augmenter les débits maximales des communications sans fil

par un facteur 1000 pour l’horizon 2020. Il est déjà clair que pour atteindre

cet objectif, une combinaison d’ingrédients est nécéssaire. La caractéristique

majeure des communications sans fil est l’interférence dû à la réutilisation

des fréquences. Dans les systémes 2G, cette interférence est subie comme du

bruit et limitée par une réutilisation modérée des fréquences. L’étalement de

spectre dans les systèmes 3G mène à trop d’interférence intracellulaire, ainsi

une réutilisation des fréquences entre cellules est devenue moins problématique.

L’utilisation du OFDM dans les systèmes 4G a mené à une gestion des in-

terférences par coordination dynamique des blocs de ressources. Cependant,

cela ne permet que des gains modestes en débit. Une nouvelle technique de

gestion des interférences a vu le jour il y a 5 ans: l’alignment d’interférences

(IA). La promesse de l’IA est qu’avec cette gestion des interférences la capacité

d’un réseau sans fils est égale la moitié de la capacité en absence d’interférences

(comme si tous les liens étaient filaires et ne transmettaient que la moitié

du temps). Le hic est que cela suppose que chaque transmetteur connaisse

les canaux, non seulement de lui vers tous les récepteurs, mais aussi ceux à

partir de tous les autres transmetteurs (Tx)s vers tous les récepteurs (Rx)s.

Finalement, une autre technique encore plus récente est l’IA avec du Massive

114
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MIMO, l’utilisation des antennes multiples, mais à échelle massive. L’idée

est d’abord introduite dans un contexte mono-cellulaire, pour le MU MIMO.

L’idée est motivée par des simplifications qui apparaissent dans un régime

asymptotique d’une station de base avec un nombre d’antennes massif. Le

MIMO permet la transmission simultanée de flux multiples (le multiplexage

spatial) ce qui permet d’augmenter les débits de manière évidente. Alors que le

MIMO nécéssite des antennes multiples aussi bien du côté du Tx que du côté

du Rx, et nécessite un environnement de propagation très riche (comme en in-

door), le MU MIMO permet le même multiplexage spatial avec des utilisateurs

mono-antenne et un environnement de propagation quelconque. Dans le MU

MIMO toute la gestion des interférences s’effectue par le Tx ce qui nécéssite

une très bonne connaissance du canal au Tx. Quand le nombre d’antennes

du Tx augmente beaucoup, un transmetteur linéaire tel qu’un filtre adapté

(qui ne nécessite pas de calculs) devient optimal asymptotiquement. Bien

qu’un nombre super élevé (par exemple 100) d’antennes de transmission puisse

sembler effrayant, on argumente qu’un autre effet du régime asymptotique est

que les circuits RF des antennes n’ont pas besoin d’être très précis et qu’en

dépit des premières impressions, tout cela permet de diminuer la consommation

globale de la station de base. L’objectif de la thèse est d’introduire des solutions

complètes et réalistes pour la gestion des interférences multi-utilisateur entre

cellules en se servant du Massive MIMO dans un contexte multicellulaire.

Le Massive MIMO a plusieurs avantages.

• Il augmente l’efficacité spectrale : parce que de nombreux utilisateurs

sont servis en même temps

• Il augmente l’efficacité en énergie : parce que l’énérgie peut-être bien

focalisée sur une très petite région de l’espace

• Il permet de dimimuer la latence : Le Massive MIMO repose sur la loi

des grands nombres pour éviter l’évanouissement

Dans cette thèse, on s’intéresse à faire de l’IA avec du Massive MIMO afin de

pouvoir réaliser des précoedeurs qui maximisent le somme pondérée des débits

des utilisateurs dans un scénario de communications multicellulaires.

Si le rapport nombre d’utilisateurs servis/ nombre d’atennes de transmission

par station de base ≤ 1
10 est respecté, des précodeurs linéaires simples tel

que MF seront capable d’atteindre de très bonnes performances. Dans le cas
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contraire, deux solutions existent. Cependant, ces solutions souffrent d’une

convergence à des optimums locaux, non résistance aux imperfections des

canaux de transmission et nécessitent beaucoup d’itérations pour converger.

8.2 Problème à résoudre

Figure 8.1: Communications multicellulaires

On considère un système de communications multicellulaires avec C cellules

(Figure 8.1). une station de base par cellule équipée de M antennes de

transmission et K utlisateurs par cellule avec N antennes chacun. On assume

une transmission sur un seul resource bloc. Le signal reçu par l’utilisateur k
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de la cellule c est donné par: yc,k ∈ C
N×1

yc,k =

C∑

m=1

K∑

l=1

Hm,c,kGm,lsm,l + nc,k (8.1)

où les symboles transmis sont Gaussiens, c.à.d, sm,l ∈ C
dm,l,1, dm,l est le

nombre de flux pour l’utilisateur l de la cellule m; Gm,l ∈ C
M×dm,l est le

précodeur de l’utilisateur l de la cellule m, Hm,c,k ∈ C
N×M est le canal depuis

le mième transmetteur et vers l’utilisateur k de la cellule c, nc,kC
N×1 est un

bruit Gaussien de moyenne nulle et de variance égale à σ2.

Le débit rc,k de l’utilisateur k de la cellule c est:

rc,k = log det(IN + Γc,k) (8.2)

Γc,k = R−1
c,k

Hc,c,kQc,kH
H
c,c,k (8.3)

où Qc,k = Gc,kG
H
c,k est la matrice de covariance de transmission Γc,k est le

rapport signal sur intérférence plus bruit (SINR) de l’utilisateur k de la cellule

c et Rc,k est la matrice de covariance de l’intérférence plus bruit toujours de

l’utilisateur k de la cellule c, donnée par

Rc,k = Hc,c,kQc,kH
H
c,c,k +Rc,k

Rc,k =
∑

(j,i) 6=(c,k)

Hj,c,kQj,iH
H
j,c,k + σ2IN .

(8.4)

Le débit est très dégradé par les interférence intercellulaires surtout pour les

utilisateurs aux bords des cellules (8.2). Pour y remédier on propose d’utiliser

le CoBF où les BSs se partagent leur connaissance des canaux de transmission

envers les différents utilisateurs du réseau afin de réaliser conjointement les

différents précodeurs. Cela se reformule en un problème de maximisation de

la somme pondérée des débits (WSR) avec une contrainte de puissance par

cellule.

G =argmax
G

C∑

c=1

K∑

k=1

uc,krc,k

s.t. trGcG
H
c ≤ Pc for c ∈ C

(8.5)

En d’autres termes, on veut calculer conjointement tous les précodeurs de telle
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Figure 8.2: Interférence intercellulaire aux bords des cellules

manière à avoir une somme de débits maximale. Le problème d’optimisation

est non concave, donc c’est difficile de le résoudre. Cependant, deux solutions

existent: WSMSE et KG.

8.2.1 L’algorithme WSMSE

Le premier algorithme est WSMSE qui veut dire somme pondérée de l’erreur

quadratique moyenne (WSMSE). Pour résoudre (8.5), il a été proposé de

reformuler ce problème en un problème de minimisation d’une fonction de

l’erreur quadratique moyenne (MSE):

{G,F,W} =

arg min
G,F,W

∑

(c,k)

uc,k(tr(Wc,kEc,k − log det(Wc,k)) (8.6)

s.t. trGcGc ≤ Pc for c ∈ C

avec

Ec,k = E[(FHc,kyc,k − sc,k)(F
H
c,kyc,k − sc,k)

H ]. (8.7)

étant la MSE. L’avantage des cette reformulation est que la nouvelle fonction

de coût est convexe et quadratique en G. Soit ρc =
Pc

σ2 , le rapport signal

sur bruit (SNR) dans la cellule c. La solution est un algorithm itératif, où à

chaque itération on calcule F, W et G et qui représentent pour l’utilisateur k

de la cellule c respectivement le filtre au récepteur, un certain poids et le filtre
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d’émission.

Fc,k = (σ2IN +

C∑

m=1

K∑

l=1

Hm,c,kGm,lG
H
m,lH

H
m,c,k)

−1Hc,c,kGc,k (8.8)

Wc,k = (Idc,k − FHc,kHc,c,kGc,k)
−1 (8.9)

Gc,k = (
C∑

j

K∑

i

uj,iH
H
c,j,iDj,iHc,j,i + λcIM )−1HH

c,c,kFc,kWc,k (8.10)

avec Di,j = Fi,jWi,jFi,j . Le Lagrangien λc doit être ajusté par bissection afin

de satisfaire les contraintes de puissance. Cet algorithme converge vers un

optimum local.

8.2.2 L’algorithme KG

Le deuxième algorithme pour résoudre (8.5) est KG pour Kim et Giannakis, les

deux auteurs qui l’ont introduit. Cet algorithme propose de diviser la fonction

d’uitilité en deux parties. La première correspond au débit de l’utilisateur

d’intérêt (k, c) et la seconde partie correspond à la somme des débits des autres

utilisateurs. La première partie étant concave en Qk et la deuxième partie non

concave en Qk, il a été proposé de linéariser la fonction d’utilité en utlisant les

séries de Taylor. La fonction d’utilité peut être ainsi écrite sous la forme:

WSR = uc,k log det(R
−1
c,k

Rc,k) +WSRc,k ,

WSRc,k =
∑

(j,i) 6=(c,k) uj,i log det(R
−1
j,i

Rj,i)
(8.11)

Après linéarisation, on aura:

WSRc,k(Qc,k, Q̂) ≈WSRc,k(Q̂c,k, Q̂)− tr{(Qc,k − Q̂c,k)Âc,k}

With Âc,k

= −
∂WSRc,k(Qc,k,Q̂)

∂Qc,k

∣∣∣∣∣
Q̂c,k,Q̂

=
∑

(j,i) 6=(c,k)

uj,iH
H
c,j,i(R̂

−1
j,i
−R̂−1

j,i )Hc,j,i

(8.12)

En d’autres termes, en utilisant Qk = GkG
H
k , on a:
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WSR(G, Ĝ, λ) =
C∑

j=1

λcPc +

C∑

c=1

K∑

k=1

uc,k log det(Idc,k +GH
c,kB̂kGc,k)− tr{GH

c,k(Âc,k + λcIM )Gc,k}

(8.13)

where
B̂c,k = HH

c,c,kR̂
−1
c,k

Hc,c,k . (8.14)

Une fonction linéaire est à la fois concave et convexe alors cette dernière fonction

correspond à une différence de fonctions concaves (DC). Le nouveau problème

de maximisation a une solution donnée par une matrices généralisée de deux

matrices G
′

c,k = eigenmatrix(B̂c,k, Âc,k + λcIM ) Soient Σ
(1)
c,k = G

′H
c,kB̂c,kG

′

c,k,

Σ
(2)
c,k = G

′H
c,kÂc,kG

′

c,k. Il s’agit d’une solution normalisée, il nous faut donc

ajuster les puissances, cela se fait par Waterfilling.

Pc,k(l, l) =


 1

Σ
(1)
c,k(l, l)


 ukΣ

(1)
c,k(l, l)

Σ
(2)
c,k(l, l) + λc

− 1






+

(8.15)

L’avantage de cette approche c’est qu’elle marche pour n’importe quel nombre

de flux dc,k, en prenant simplement plus ou moins de vecteurs propres. En

d’autres termes, on peut prendre les dmaxc,k vecteurs propres correspondant aux

vecteurs propores maximaux de la matrice généralisée.

KG et WSMSE convergent tous les deux vers des optimums locaux, pour y

remédier, on propose l’approche ‘deterministic annealing’. L’algorithme est

initialisé avec les précodeurs obtenus à très bas SNR (interférence négligée

par rapport au bruit) avant de prendre en compte de manière progressive

l’alignement des interférences dès que le SNR le permet. Une variante du

WSMSE est de remplacer le filtre de réception F de WSMSE par du filtrage

adapté (MF) conduisant à des performances similaires aux précédentes pour un

grand nombre d’antennes d’émission mais offrant une convergence plus rapide

avec moins de compléxité.

Les contributions ce cette thèse sont divisées en trois parties:

La partie I, intitulée Random Matrix Theory for large system analysis and

Massive MIMO design est composée de 2 chapitres respectivement intitulés The

WSMSE algorithm: a large system analysis et Using the complex large system

analysis to simplify beamforming. Dans le second chapitre, on traite l’extension

de l’algorithme WSMSE au cas multi-user massive MIMO où chaque utilisateur

est équipé d’une seule antenne (MISO). Des expressions du SINR et du débit

maximum sont fournies pour des petits rapports K
M . Dans le chapitre 3, une
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simplification du précodeur WSMSE pour MISO, basée sur l’analyse de systèmes

larges, est proposée pour une architecture décentralisée. Trois stratégies de

mise en oeuvre sont ensuite déclinées selon que les interférences entre cellules

sont négligées, estimées localement ou plus globalement, conduisant à des

overheads différents.

Les publications correspondantes à cette partie sont les suivantes:

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, Weighted sum rate

maximization of correlated MISO interference broadcast channels under

linear precoding: a large system analysis, VTC 2016-Spring, IEEE 83rd

Vehicular Technology Conference, 15-18 May 2016, Nanjing, China

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, A Large system analysis

of weighted sum rate maximization of single stream MIMO interference

broadcast channels under linear precoding, ISWCS 2016, Poznan, Poland

• Tabikh, Wassim; Yuan-Wu, Yi; Slock, Dirk TM, Decentralizing multi-

cell maximum weighted sum rate precoding via large system analysis,

EUSIPCO 2016, 24th European Signal Processing Conference, 28 August-

2 September 2016, Budapest, Hungary

La partie II, intitulée Further random aatrix theory exploitation with partial

CSIT est composée des chapitres 4 et 5 respectivement intitulés robust beam-

formers for partial CSIT et non-linear precoding schemes. Dans le chapitre 4,

on propose plusieurs précodeurs lorsque la connaissance des canaux aux trans-

metteurs (CSIT) n’est pas parfaite sur la base de l’analyse des systèmes larges.

Les systèmes étudiés offrent des performances qui varient selon l’exploitation

ou non d’information sur la covariance des canaux dans les calculs des termes

interférents ou dans la puissance des signaux. La mise en oeuvre dans un

système décentralisé est étudiée ; plusieurs solutions dont une basée sur la

variation lente de certaines caractéristiques des canaux sont discutées.

Dans le chapitre 5, ce sont des solutions à base de précodeurs non-linéaires

basés sur les techniques de type Dirty Paper Coding (DPC) et assignement

linéaire qui sont étudiées toujours dans le cas d’une CSIT partielle.

Les résultats de cette partie sont publiées dans les suivants:

• Tabikh, Wassim; Yuan-Wu, Yi; Slock, Dirk, Beamforming design with

combined channel estimate and covariance CSIT via random matrix
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theory, ICC 2017, IEEE International Conference on Communications,

IEEE ICC 2017 Wireless Communications Symposium, May 21-25, Paris,

France

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, MaMISO IBC beam-

forming design with combined channel estimate and covariance CSIT: a

large system analysis, ICC 2017, WS08-3rd International Workshop on

Advanced PHY and MAC Technology for Super Dense Wireless Networks

(CROWD-NET), May 21-25, Paris, France

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, MIMO IBC beamform-

ing with combined channel estimate and covariance CSIT, ISIT 2017,

IEEE International Symposium on Information Theory June 25-30, 2017,

Aachen, Germany

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, Robust Non-Linear

Precoders for the MIMO Interference Broadcast Channels with Imperfect

CSIT, submitted to EUSIPCO 2018, September 2018, Rome, Italy.

La partie III relaying with random matrix theory est constituée du seul chapitre

6 lui même intitulé Beamformers Design with AF relays. Cette étude permet

d’introduire les techniques à relais de type AF et de les considérer dans un

contexte massive-MIMO avec ou sans lien direct entre la station de base (BS)

et les utilisateurs. Les algorithmes présentés dans le chapitre 1 (WSMSE et

KG) sont alors adaptés aux cas sans lien avec un traitement au niveau des

relais. On étudie ensuite le cas avec un lien direct entre la BS et les utilisateurs,

sans considérer un grand nombre d’utilisateurs; on étudie des transmissions en

full duplex en proposant un précodeur de type ZF (Zero Forcing) au niveau de

la station de base et une technique de neutralisation des interférence au niveau

des relais. Le résulat de cette partie est publié dans un papier de conférence:

• Tabikh, Wassim; Slock, Dirk TM; Yuan-Wu, Yi, Relay aided coordinated

beamforming and interference neutralization, ITA 2017, Information

Theory and Applications Workshop, February 12-17 2017, San Diego,

USA

Le chapitre 7 Conclusions et future works vient clore le document de thèse.
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8.3 Partie I: Random Matrix Theory for large sys-

tem analysis and Massive MIMO design

Pour évaluer les performances des algorithmes KG et WSMSE, il faut faire

des simulations du débit atteignable en fonction du SNR pour des simulations

Monte-Carlo. Or ce dernier nécessite un moyennage sur un nombre suffisant

grand de tirages de canaux différents. Dans cette partie, on proposer d’utiliser

la théorie des matrices aléatoire afin d’en sortir des expressions déterministes

du débit pour les systèmes MISO. Le débit est fonction du SINR qui est le

rapport de la covariance signal sur la covariance (interférence + bruit). Pour

MISO, ce rapport est un rapport de scalaires donc l’application des théorie des

matrices aléaotires est tout à fait possible. L’expression déterministe résultante

ne dépend que des statistiques, comme par exemple la matrice de covariance

du canal, et ne dépend donc pas de la valeur instantanée du canal. L’avantage

c’est qu’on n’a plus besoin de faire de simulations type Monte-Carlo, mais il

faudra juste tracer la courbe correspondante à l’expression déterministe pour

des matrices de covariance du canal de notre choix.

Pour prouver que notre expression, donnée par l’équation (2.47), ést correcte on

trace le débit atteignable en fonction du SNR par les simulations Monte-Carlo

ainsi que par l’expression déterministe pour trois cas de figure 2.1 and 2.2 et

2.3. D’après les figures on remarque qu’en général l’expression déterministe se

comporte très bien et donne une approximation assez correcte. Cependant, on

remarque un petit écart dans les deux premières figures qui se rétrécit dans

la troisième figure. On peut en conclure que les expressions déterministes à

base d’analyse de systèmes larges est plus précise quand le rapport nombre

d’utilisateurs servis en total (=nombres de cellules × nombres d’utilisateurs

par cellule) sur nombre d’antennas de transmission par station de base (en

suppose que les stations de base aillent le même nombre d’antennes) est plus

petit.

Ensuite, on propose de faire la même procédure pour du MIMO mono-flux.

De même, on aura un SINR qui est un rapport de scalaires, donc une analyse

des systèmes larges est faisable. Des simulations (Figure 2.5 et Figure 2.6)

montrent à nouveau que notre approche est correcte.

KG et WSMSE étant relativement lents à converger, on propose un nouveau

précodeur basé sur les résultats de l’analyse des systèmes larges. L’avantage

de cette nouvelle contribution c’est que ce précodeur converge en une seule
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itération, ce qui réduit à fond les échanges entre les stations de base et réduit

également la latence.

8.4 Partie II: Further random matrix theory exploita-

tion with partial CSIT

Dans ce qui précède, on a parlé de précodeurs. Or, pour réaliser pratiquement

un précodeur, une connaissance parfaite des canaux de transmission de toutes

les BSs vers tous les utilisateurs de la même cellule et des cellules voisines est

réquise.

L’acquisition des canaux diffère selon qu’on est en TDD ou en FDD. En FDD,

les BSs envoient des pilotes à partir desquels les utilisateurs estiment les canaux,

les quantifient puis envoient un feedback aux BSs (Figure 8.3) Or, le nombre

Figure 8.3: Estimation du canal en FDD

de pilotes y nécessaire est proportionnel au très grand nombre d’antennas de

transmission. Donc le nombre de pilotes requis est lui-même très grand. C’est

pour cela que le TDD sera utilisé au lieu du FDD.

Pour le TDD, les BSs obtiennent les canaux du lien descendant (DL) par

réciprocité en se référant à une estimation des canaux à la base de pilotes

envoyés sur le lien montant (UL). Cette procédure d’estimation du canal est

en général accompagnée par un certain bruit d’estimation. Par conséquant, le

canal réel H et son estimé seront légèrement différents et seront reliés par la

relation suivante:

H = H+ H̃ (8.16)

Ou

H = H+C1/2
r H̃(2)Θ1/2

p = C1/2
r H̃(1)Θ

1/2
t +C1/2

r H̃(2)Θ1/2
p (8.17)
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H̃(1) et H̃(2) sont complexes i.i.d. d’espérance nulle et de variance 1
MN . La

matrix de covariance de l’estimé Θt et la matrice de covariance de l’erreur

d’estimation Θp sont Hermitiennes non-negatives. La matrix de covariance du

côté du récepteur Cr est une matrice Hermitienne non-négative également .

Elle est considérée comme une matrice identité dans cette thèse.

Chaque Tx transmetteur ne connâıt que H et Θp. H̃ est l’erreur d’estimation

du canal. En prenant en compte cette connaissance partielle des canaux, notre

problème d’intérêt sera toujours de réaliser conjointement les précodeurs mais

cette fois en supposant une connaissance partielle des canaux. Cela se reformule

comme suit:

EWSR(Q) = EHWSR = EH

∑

c

∑

k

uc,k log det(IM +HH
c,c,kR

−1
c,k

Hc,c,kQc,k)

(8.18)

avec une contrainte sur les puissances par cellule

s.t. trQc ≤ Pc for c ∈ C (8.19)

En d’autres termes, il faut maximiser l’espérance de la somme pondérée des

débits sachant qu’on a une puissance de transmission limitée par BS. Il s’agit

d’un problème stochastique.

Deux solutions existent déjà pour résoudre ce problème: ENAIVEKG et

EWSMSE. ENAIVEKG propose d’appliquer KG, mais en remplaçant le terme

H par H. Cette solution est sous-optimale parce qu’elle ne profite pas de

la connaissance des covariances Θp. EWSMSE propose de reformuler le

problème de maximisation en un autre problème de minimisation d’une fonction

de l’espérance de MSE. On montre par simulations que cette approche est

également sous-optimale.

Notre approche consiste à résoudre le problème EWSR en utilisant en une

approache DC. Pour un système Massive MIMO, en utilisant la loi des grands

nombres, on a:

HQHH M→∞−→ EHHQHH = HQH
H
+ tr{QΘp}Cr . (8.20)
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On suppose Cr = IN . H est l’estimé du canal et Θp est la matrice de covariance

de l’erreur d’estimation. Soient

Hc,k = [H1,c,k · · ·HC,c,k] = Hc,k + H̃c,kΘ
1/2
p,c,k

Q=



Q1 . . .

QC


=




∑

k

Q1,k

. . .∑

k

QC,k


=

∑

c

∑

k

IcQc,kI
H
c ;

Qc,k = Q− IcQc,kI
H
c .

(8.21)

avec Θp,c,k = blockdiag{Θp,1,c,k, . . . ,Θp,C,c,k}, and Ic est vecteur bloc nul sauf

au bloc c où on a une matrice d’identité. En utilisant (8.20), on obtient:

R̆c,k = σ2IN +Hc,kQH
H
c,k + tr{QΘp,c,k} IN

R̆c,k = σ2IN +Hc,kQc,kH
H
c,k + tr{Qc,kΘp,c,k} IN

(8.22)

Cela mène (8.11) à

WSR = uc,k log det(R̆
−1
c,k

R̆c,k) +WSRc,k ,

WSRc,k =
∑

(j,i) 6=(c,k) uj,i log det(R̆
−1
j,i

R̆j,i)
(8.23)

avec log det(R̆−1
c,k

R̆c,k) étant concave en Qc,k, WSRc,k est non-concave en Qc,k

et R̆c,k et R̆c,k sont données par (8.22).

On linéarise la partie correspondante à la somme des débits de tous les utilisa-

teurs sauf l’utilisateur d’intérêt, ce qui donne:

Â
′

c,k =
∑

(j,i) 6=(c,k)

uj,iH
H
c,j,i(R̆

−1
j,i

− R̆−1
j,i )Hc,j,i (8.24)

Et le terme B̂
′

c,k correspondant à Bc,k est donné par:

B̂
′

c,k = HH
c,c,kR̆

−1
c,k

Hc,c,k (8.25)

On calcule ensuite les espéreances Ăc,k B̆c,k de Â
′

c,k et B̂
′

c,k respectivement:

B̆c,k = EH|HHH
c,c,kR̆

−1
c,k

Hc,c,k

= H
H
c,c,kR̆

−1
c,k

Hc,c,k + tr{R̆−1
c,k

}Θp,c,c,k

(8.26)
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Ăc,k =
∑

(j,i) 6=(c,k)

uj,i[Ă
C
j,i,c,k(IM +Qc,kĂ

C
j,i,c,k)

−1

−ĂD
j,i,c,k(IM +Qc,kĂ

D
j,i,c,k)

−1]; (8.27)

avec

ĂC
j,i,c,k = H

H
c,j,iR̆

−1
j,i,c,k

Hc,j,i + tr{R̆−1
j,i,c,k

}Θp,c,j,i

ĂD
j,i,c,k = H

H
c,j,iR̆

−1
j,i,c,k

Hc,j,i + tr{R̆−1
j,i,c,k

}Θp,c,j,i;

R̆j,i,c,k = σ2IN +Hj,iQj,i,c,kH
H
j,i + tr{Qj,i,c,kΘp,j,i} IN ;

R̆j,i,c,k = σ2IN +Hj,iQc,kH
H
j,i + tr{Qc,kΘp,j,i} IN

(8.28)

avec Qj,i,c,k = Q − IcQc,kI
H
c − IjQj,iI

H
j . Une solution normalisée de G est

donné par:

G
′

c,k = eigenmatrix(B̆c,k, Ăc,k + λcIM ) (8.29)

Il ne reste qu’à ajuster les puissances par waterfilling.

Pour voir si notre approache est correcte, on fait des simulations. On compare

notre approache avec ENAIVEKG et EWSMSE pour plusieurs configurations.

D’après les figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, on remarque que notre approche

est toujours meilleure.

Comme pour WSMSE, on utilise la théorie matrices aléatoires pour dériver une

expression déterministe du SINR. De même, on prouve que notre dérivation

est correcte par simulations (Figure 4.11).

Dans ce qui suit, on vise à dériver des précodeur non linéaires pour le cas de

connaissance partielle des canaux. Le précodeur non linéaire le plus connu est

DPC. Mais DPC nécessite une connaissance parfaite des canaux. En plus, DPC

n’est optimale que pour des scénarios monocellulaires. Ce qui n’est pas notre

cas. Pour surmonter le problème de la connaissance des canaux, on propose

d’utiliser une variante de DPC qui est LA.

Considérons un système IBC avec C cellules et un nombre total d’utilisateurs

K users. On considère une numérotation des utilisateurs à l’échelle du système.

k est servi par la BS bk. Le signal de dimensions N × 1 reçu par l’utilisateur k

dans la cellule bk est

yk=Hk,bk Gk xk︸ ︷︷ ︸
signal

+
∑

i 6=k

bi=bk

Hk,bk Gi xi

︸ ︷︷ ︸
interférence intracellulaire

+
∑

j 6=bk

∑

i:bi=j

Hk,j Gi xi

︸ ︷︷ ︸
interférence intercellulaire

+vk

(8.30)
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où xk est le signal de dimensions dk × 1, dk est le nombre de flux, Hk,bk est le

canal de dimensions N ×M du BS bk vers k. La BS bk sert Kbk =
∑

i:bi=bk
1

users. Le bruit est vk ∼ CN (0, σ2IN ). Le précodeur est une matrice de

dimensions M × dk nommée Gk. On suppose que les utilisateurs 1, . . . ,K1

appartiennent à la cellule-1; les utilisateurs K1 +1, . . . ,K1 +K2 appartiennent

à la cellule-2; . . . ; users
∑C−1

c=1 Kc + 1, . . . ,K appartiennent à la cellule-C.

Dans chaque cellule bk, LA est utilisée tel que l’utilisateur k ne reçoit pas

d’interférence des utilisateurs i > k : bi = bk.

LA est caractérisée par une variable aléatoire u de dimension M × 1 avec une

structure particulière:

u = Fs+ x (8.31)

F est la matrice d’assignement du LA et s est l’interférence intracellulaire

connue au Tx. Pour réaliser u, il a été prouvé dans [49] que le maximum de

débit est atteint en choisissant x and s Gaussiens et indépendent. Ainsi, quand

le signal est transmis comme x = u − Fs, le débit rk de l’utilisateur k est

atteignable, avec

rk = log2 det(Qk)− EH{log2 det
[
Ck−

YkH
H
k,bk

(Hk,bkBkH
H
k,bk

+Rk)
−1Hk,bkY

H
k

]
}

(8.32)

où

Qk = GkG
H
k (8.33)

Yk = FkSk +Qk (8.34)

Bk = Sk +Qk (8.35)

Ck = FkSkF
H
k +Qk

Sk =
∑

j:bj=bk;j>k+1

Qj . (8.37)

Rk = Hk,bkQkH
H
k,bk

+Rk ,

Rk =
∑

i 6∈{i:bi=bk,i≥k}
Hk,biQiH

H
k,bi

+ σ2IN .
(8.38)

Contrairement aux études précédentes, on doit désormais optimiser par rapport

à deux paramètres F et G. En optimisant par rapport à F, on aura une
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solution analytique de F donnée par:

Fk =Qk{Qk +
∑

j:bj=bk;j<k

Qj

+ [H
H
k,bk

(Rinter,k + σ2IN )
−1Hk,bk

+Cp,k,bktr((Rinter,k + σ2IN )
−1
)
]−1}−1 (8.39)

avec

Rinter,k =
∑

j:bj 6=bk Hk,bjQjH
H
k,bj

(8.40)

Il nous manque que de calculer Qk. Dans (8.32), on remplace Fk par sa solution

analytique (8.39), l’expression obtenue sera limitée par une limite supérieure

qui correspond à une nouvelle fonction d’utilité:

EH

∑

k

uk log2 det(IM +HH
k,bk

R−1
k

Hk,bkQk) (8.41)

En d’autres termes, notre but est de réaliser conjointement les précodeurs qui

maximisent l’espérance de la somme des débits en supposant l’IA. Le problème

parâıt être similaire au problème dejà résolu (EWSR), la seule différence

qu’içi Rk ne contient pas l’interférence de tous les utilisateurs de la même

cellule. En fait, DPC ou LA encodent les signaux de telle manière à que les

utilisateurs ne voient l’interférence de certiaines utilisateurs de la même cellule.

On sait résoudre (8.18) si on avait une seule cellule. Quand on a plusieurs

cellules, il suffit de linéariser la somme des débits correspondant aux cellules

différentes que celle où l’utilisateur qui nous intéresse se trouve. On aura une

maximisation de la somme des débits d’utilisateurs dans une cellule d’intérêt

moins une certaine pénalité qui représente physiquement l’interférence causée

aux différentes cellules voisines. Pour résoudre ce problème, on résoud son duel

qui correspond à une maximisation des précodeurs au niveau des utilisateurs

pour l’UL.

max
D

∑
i:bi=bk

log2 det
( IN+

∑
j:bj=bk;j≥i H̃

H
i,bk

DjH̃i,bk

IN+
∑

j:bj=bk;j>i H̃
H
i,bk

DjH̃i,bk

)

−tr{Di}
subject to Di ≥ 0 ∀i

(8.42)

Di étant la covariance du précodeur à l’utilisateur i. C’est un problème concave,

donc c’est facile d’obtenir Di à partir de cela. Ensuite, il suffit de calculer Qi
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à partir de Di en utilisant la dualité DL-UL. Enfin, on calcule les espérances

des expressions obtenus.

Par simulation, on montre que notre précodeur nonlinéaire est mieux que le

ESEI-WSR linéaire.

8.5 Partie III: Relaying with random matrix theory

Dans cette partie, on considère un relai (Figure 8.4) avec des BSs à antennes

multiples et des utilisateurs à antennes multiples également. Le signal transmis

Figure 8.4: Scénario avec relais

à la BS c est donné par:

xc =
∑

i:bi=c

Gisi (8.43)

avec i : bi = c veut dire les utilisateurs servis par BS c. si ∈ C
dk×1 représente

le signal de l’utilisateur i et est Gaussien. Gi est le précodeur i de dimensions

MBS ×di avec di étant le nombre de flux pour l’utilisateur i. Au relai, le signal
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reçu:

YRS =
∑

c

HRB
c xc + nRS (8.44)

avec HRB
c ∈ C

MRS×MBS est le canal de la BS c vers le relai et nRS ∼ C(0, σ2RS)
est du bruit Gaussien d’espérance nulle et σ2RS comme variance. La matrice de

covariance RRS du signal reçu YRS au relai est donné par:

RRS =
∑

j

HRB
j

( ∑

i:bi=j

GiG
H
i

)
HRB,H
j + σ2RSIMRS

(8.45)

Le relai retransmet le signal après être multiplié par la matrice F du relai de

dimensions MRS ×MRS . Le signal reçu par l’utilisateur k est donné par:

Yk=HUB
k,bk

Gk sk︸ ︷︷ ︸
signal

+Zk (8.46)

avec

Zk =
∑

i 6=k

bi=bk

HUB
k,bk

Gi si

︸ ︷︷ ︸
interf. intracellulaire

+
∑

j 6=bk

∑

i:bi=j

HUB
k,j Gi si

︸ ︷︷ ︸
interf. intercellulaire

+HUR
k FnRS + nk︸ ︷︷ ︸

bruit

avec HUR
k ∈ C

N×MRS est le canal du relai vers l’utilisateur k et nk ∼ C(0, σ2)
et HUB

k,bk
= HUR

k FHRB
k ∈ C

N×MBS . Les signaux transmis par le relai et les

stations de base sont soumis à des contraintes de puissance, comme suit:

tr(FRRSF
H) ≤ PRS (8.47)

et

trGcG
H
c ≤ Pc for c ∈ C (8.48)

avec PRS et Pc correspondant respectivement à la puissance maximale trans-

mise par le RS et la BS c et C est l’ensemble de toutes les BSs.

Notre function d’utilité est de maximiser la somme pondéré des débits:

G =argmax
G

C∑

c=1

∑

k

ukrk (8.49)

subject to (8.47) and (8.48)
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Le débit rk est donné par:

rk = log det(IN + Γk) (8.50)

Γk = R−1
zk

HUB
k,bk

QkH
UB,H
k,bk

(8.51)

Γk est le SINR de l’utilisateur k et Rzk est la covariance de le la matrice

d’interférence plus bruit à l’utilisateur k:

Rzk =
∑

i 6=k:bi=bk
HUB
k,bk

GiG
H
i H

UB,H
k,bk

+

∑

j 6=bk

∑

i:bi=j

HUB
k,j GiG

H
i H

UB,H
k,j + σ2RSH

UR
k FFHHUR,H

k + σ2IN (8.52)

En plus, on défineRk, la matrice de covariance du signal total reçu à l’utilisateur

k, comme suit:

Rk =
∑

j

∑

i:bi=j

HUB
k,j GiG

H
i H

UB,H
k,j + σ2nRS

HUR
k FFHHUR,H

k + σ2IN

=Rzk +HUR
k,bk

GkG
H
k H

UR,H
k,bk

(8.53)

La solution est donné par un algorithme itératif, où à chaque itération, on

calcule plusieurs variables:

Wk = Ψ−1
k (8.54)

Dk = GH
k H

UB,H
k,bk

(
Rk)

−1 (8.55)

F =
(∑

i

HUR,H
i DH

i WiDiH
UR
i + λIMRS

)−1

× (
∑

j

∑

l 6=bk

∑

i:bi=l

HUR,H
j DjWjD

H
j H

UR
j FHRB

l GiG
H
i H

RB,H
l

−
∑

i

HUR,H
i DiWiG

H
i H

RB,H
bi

)
(∑

j

∑

i:bi=j

HRB
j GiG

H
i H

RB,H
j + σ2RSIMRS

)−1

(8.56)

Gk = (
∑

i

HUB,H
i,bk

DiWiD
H
i H

UB
i,bk

+ ξ
(
µbkIMBS

+ λERB,Hbk
FHFERBbk

)
)−1HUB,H

kbk
DkWk (8.57)
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Dans ce qui suit, on propose une variante pour calculer Gk en utilsant DC:

(8.49). On aura un nouveau problème dont le Lagrangien est donné par:

WSR(G, Ĝ, λ) =
C∑

j=1

µjPc+

K∑

k=1

uk log det(Idk +GH
k B̂kGk)− tr{GH

k (Âk + µbkIM + λHRB,H
bk

FHFHRB
bk

Gk}

(8.58)

avec
B̂k = HUB,H

k,bk
R̂−1
zk

HUB
k,bk

. (8.59)

Cela aboutit à une solution sous forme de matrices généralisées. On conclut

par simulations (Figure 6.2) que cette approche hybride de calcule de G tout

en calculant F via WSMSE est mieux que WSMSE pure.

La dernière contribution se base sur le fait de supposer que maintenant les BSs

et les utilisateurs peuvent communiquer directement et via les relais. Deux

techniques d’interférence sont en jeu: l’IA qui est le sujet de la majorité des

contributions de cette thèse et la neuralisation des interférences (IN), où des

chemins multiples artificels sont créés et se recombinent au Rx pour annluer

les interférences.

8.6 Conclusions

Les travaux de cette thèse s’incrivent dans le cadre de deux projets Européens

H2020 Fantastic5G et One5G. La thèse traite le problème de l’annulation des

interférences et de la maximisation de la capacité dans les réseaux Massive

MIMO 5G. L’étude se concentre sur le segment d’accès sans fil des communi-

cations cellulaires 5G et cible le problème clé de l’interférence qui est due à

la réutilisation des fréquences. Cela a été une déficience de longue date dans

les réseaux cellulaires de toutes les générations qui sera encore exacerbée dans

les réseaux 5G, en raison du déploiement de cellules denses prévu. Dans ce

contexte, la thèse propose de nouvelles alternatives de gestion des interférences

pour le régime d’antennes MIMO Massive, en tenant compte également des défis

pratiques des réseaux d’antennes Massive. Le chapitre 1 fournit la motivation

et prépare le terrain pour les études de thèse. Il introduit également la notation

clé et le modèle de système à étudier. Les principaux inconvénients et défis

de la conception d’antennes et de systèmes lorsque le nombre d’antennes à la

station de base évolue vers un grand nombre (tels que les dégradations RF
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et la contamination des canaux) sont discutés, suivi d’une discussion sur le

sujet important de contamination pilote et son élimination . Ceci est suivi

d’une présentation des bandes de fréquences pour 5G et d’une motivation de

la communication MmWaves / Massive MIMO combinés. Après la notation et

la configuration du système, deux algorithmes de précodage (WSMSE et KG)

sont présentés en détail, puisqu’ils constituent la base des techniques proposées

par la thèse pour le régime MIMO massif. Ceci est suivi de la présentation

DA et de l’estimation de canal pour cette configuration considérée. Une liste

des principales contributions de la thèse est également incluse dans ce chapitre.

Le chapitre 2 contient une analyse des performances de l’algorithme WSMSE

dans un système large (antennes, utilisateurs) de réseaux MISO massifs multi-

cellules multi-utilisateurs basée sur la théorie des matrices aléatoires. Le travail

peut être vu comme une extension d’études antérieures qui reposent sur des

expressions SINR équivalentes déterministes (puisque SINR est un paramètre

de capacité clé pour les systèmes MISO). Cette approche est également adoptée

ici et appliquée aux précodeurs WSMSE présentés au Chapitre 1, en sup-

posant un CSI parfait et un précodage centralisé. Les expressions équivalentes

déterministes dérivées sont ensuite validées numériquement, montrant un bon

accord avec les débits réels pour le cas de 3 cellules, 30 antennes et de l’ordre

de 10 utilisateurs par cellule. Les résultats sont ensuite étendus aux cas de flux

unique MIMO, où l’approche déterministe équivalente SINR est de nouveau

montrée d’être valide. Les expressions SINR équivalentes déterministes dérivées

sont ensuite utilisées pour prouver un résultat d’échelle de capacité dans le

cas des récepteurs multi-antennes. Le chapitre 3 considère le cas de CoBF

décentralisée qui repose sur un échange lent d’informations d’évanouissement

entre les stations de base. La grande approche d’analyse de système est à

nouveau adoptée, en mettant l’accent sur la technique WSMSE et en ciblant

des solutions optimales de formation de précodeur dans ce sens. L’approche re-

pose sur l’échange d’informations via des liaisons terrestres fixes (parfaitement

fiables). Comme en général cet échange peut être lourd et prendre de nom-

breuses itérations jusqu’à ce qu’il converge, l’initialisation des précodeurs est la

clé tant en termes de vitesse de convergence que de la solution atteinte. Pour

cela, la thèse propose une nouvelle initialisation asymptotiquement optimale

dans le régime large (antenne infinie / utilisateurs infinis, avec rapport fixe

entre eux) (Théorème 3.1), appelé ’LS-précodeur’. Trois variantes différentes

de calcul et d’échange de fuites entre stations de base, allant du calcul de
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l’interférence intracellulaire uniquement basée sur la connaissance des canaux

locaux et le non-respect total des interférences intercellulaires au calcul de

toutes les interférences intra et inter cellules mises à jour. Fait intéressant,

même les deux variantes sous-optimales qui n’utilisent pas les interférences

intercellulaires à jour, fonctionnent mieux que les techniques précédemment

proposées et semblent en fait avoir des performances identiques entre elles

et offrir un gain minimal sur l’initialisation du précodeur LS dans le cas non

entièrement chargé. Ils convergent aussi très vite (en 2 à 3 itérations). Les

résultats montrent également que les réseaux non entièrement chargés (KC

/ M < 1) fonctionnent nettement mieux que les réseaux entièrement chargés.

Le chapitre se termine par quelques expressions analytiques du précodeur LS

pour certaines hypothèses hautement idéalisées des matrices de covariance

diagonale des canaux (qui peuvent se rapporter à des situations réelles dans

des régimes asymptotiques à grande échelle). Le chapitre 4 change de direction

en supposant une CSIT partielle (supposant toujours une connaissance des

canaux aux récepteurs CSIR parfait) et en ciblant à nouveau des précodeurs

optimaux pour le régime de système large. Le problème est formulé comme

une optimisation de la fonction d’objectif EWSR. La technique proposée est

appelée ESEI-WSR et repose sur le fait que dans le régime de système large

(Massive), l’espérance de la somme pondérée des débits convergera vers le WSR

réel et peut être écrite en fonction du WSR correspondant au canal estimé et

un terme d’erreur qui repose sur la matrice de covariance d’erreur de canal. Le

précodeur correspondant est optimal dans ce sens (ayant supposé, comme tout

au long de la thèse, une matrice de covariance de canal d’identité à chaque

récepteur). DA est à nouveau adopté afin de conduire la solution à un optimum

global. L’ESEI-WSR ainsi obtenu est ensuite évalué numériquement pour

des configurations petites / pratiques (2 cellules, 8 antennes et 4 utilisateurs

par cellule) et montre de faibles gains par rapport aux précédentes approches

sous-optimales dans le cas des récepteurs à antenne unique. Pour les récepteurs

avec multi-antennes (2 ou 4), les approches sous-optimales montrent un pla-

fonnement de leurs performances. Bien qu’optimale dans le sens ci-dessus, la

technique ESEI-WSR est lourde en termes d’échange d’informations de canal

entre les exigences des stations de base. Pour cela, une extension décentralisée

pratique est dérivée, dans laquelle la CSIT instantané n’est utilisé que pour

les récepteurs prévus, tandis que les récepteurs involontaires d’autres cellules

sont uniquement captés via les matrices de covariance correspondantes (les
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canaux intracellulaires sont supposés parfaitement connus via TDD, tandis

que les canaux intercellulaires sont inconnus). L’algorithme est adapté à une

implémentation distribuée (en raison du petit échange d’informations req-

uis) et a une faible complexité et une convergence rapide. Ses performances

sont évaluées numériquement pour un certain nombre de cas (canaux de rang

inférieur corrélés et canaux non corrélés avec des covariances de canal d’identité).

L’ESEI-WSR est ensuite formulé et simplifié dans le cas des canaux MISO

massifs. Une approche sous-optimale alternative basée sur l’algorithme KG

est ensuite proposée pour les antennes d’émission et de réception croissantes à

l’infini avec un rapport fini, montrant des gains numériquement significatifs

par rapport à l’approche näıve. Le chapitre 5 s’écarte du précodage linéaire

et considère les schémas non linéaires. La configuration de l’IBC MIMO est

formulée et l’approche poursuivie consiste en une combinaison de schémas

non-linéaires par cellule et une gestion coopérative des interferences fuites

des precodeurs de toutes les cellules afin d’optimiser conjointement le critère

ESEI-WSR introduit au chapitre 4. En vue de la CSIT partielle, le précodage

non linéaire choisi par cellule est LA au lieu de DPC, ce qui serait optimal

dans le cas d’une CSIT parfait. Après la formulation du problème IBC, les

matrices d’affectation linéaire et de formation de précodeurs sont formulées,

établissant la base pour la conception d’émission conjointe recherchée. Comme

les deux ensembles de paramètres (matrices) dépendent les uns des autres,

une approche d’optimisation alternative aurait du sens, mais nécessiterait une

grande complexité. Pour éviter cela, une expression analytique est dérivée pour

la matrice LA. Cela a réduit la recherche de la matrice optimale de formation

de précodeur à un seul critère (ESWR), similaire à celui introduit au chapitre

1. Dans le cas de la CSIT parfaite, une approche précédemment dérivée par

Nguyen et Le-Ngoc est adoptée. L’expansion en série de Taylor de la matrice

de covariance, combinée à une annulation d’interférence successive pour le

problème duel (MAC), conduit à un problème d’optimisation convexe séparable

qui fournit successivement les solutions pour les décodeurs optimaux. Dans le

cas de la CSIT partielle, la même approche est suivie, mais l’effet de la CSIT

partielle est capturé en considérant les expressions asymptotiques de covariances

de canal qui dans la limite d’antenne infinie égalent les valeurs déterministes

correspondantes (même approche que dans la section 4.3). Les matrices de

précodage sont obtenues itérativement en supposant une certaine propriété

de diagonalisation des corrélations de canaux séparables. La solution obtenue
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est évaluée numériquement pour les cas de 3 cellules, 3 utilisateurs par cellule,

8 antennes de station de base et 2 antennes par récepteur et comparée (et

supérieure) à la solution robuste linéaire, ainsi qu’à d’autres cas particuliers et

bornes. Enfin, le chapitre 6 considère le cas du canal de diffusion d’interférences

avec utilisation de relais (appelé IRBC). Une configuration de relais à deux

sauts est considérée et un relais AF est adopté, dans lequel les nœuds de relais

effectuent une nouvelle combinaison linéaire avec les signaux reçus, sous réserve

de nouvelles contraintes de puissance. Il est en outre supposé que les relais sont

en FD (par opposition au relais semi-duplex conventionnel), afin de renforcer

encore l’efficacité spectrale. Après l’introduction du modèle de signal IBRC,

l’algorithme WSMSE de maximisation de la somme pondérée des débits sous

réserve des contraintes de puissance est expliqué. Nous proposons ensuite une

optimisation alternative, en utilisant la matrice de précodage WSMSE pour

les stations relais et le précodeur KG pour les stations de base. Le chapitre

conclut en considérant le cas où des liens directs entre les stations de base

et les utilisateurs finaux existent également et en déduit des conditions et

une solution qui impliquent le précodage à forçage zéro (IA) et la neutralité

d’interférence.



Appendix A

Random Matrix Theory

We will recall lemmas and a theorem from Random Matrix Theory established

by [28].

Lemma A.1 (Matrix Inversion Lemma):

Let U be an M ×M invertible matrix and x ∈ C
M , c ∈ C for which U+ cxxH

is invertible. Then

xH(U+ cxxH)−1 =
xHU−1

1 + cxHU−1x
. (A.1)

Lemma A.2 (Resolvent Identity): Let U and V be two invertible complex

matrices of size M ×M . Yhen

U−1 −V−1 = −U−1(U−V)V−1. (A.2)

Lemma A.3 Let A ∈ C
M×M and x, y ∼ CM(0, 1

M IM ). Assume that A has

uniformly bounded spectral norm (with respect to M) and that x and y are

mutually independent and independent of A. Then

xH − 1

M
trA

M→∞−−−−→ 0 (A.3)

Lemma A.4 Let A1,A2, ..., with AM ∈ C
M×M , be deterministic with uni-

formly bounded spectral norm and B1,B2, ... with BM ∈ C
M×M , be random

hermitian, with eigenvalues λBM

1 � ... � λBM

M such that, with probability 1,

there exist ǫ > 0 for which λBM

1 > ǫ for all large M. Then for v ∈ C
M

1

M
trAMB−1

M − 1

M
trAM (BM + vvH)−1 M→∞−−−−→ 0 (A.4)
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almost surely, where B−1
M and (BM + vvH)−1 exist with probability 1.

Theorem A.1 Let BM = XH
MXM + SM with SM ∈ C

M×M Hermitian non

negative definite and XM ∈ C
m×M random. The ith column xi of X

H
M is

xi = Ψiyi, where the entries of yi ∈ C
ri are i.i.d. of zero mean, variance 1

M

and have eight-order moment of order O( 1
M4 ). The matrices Ψi ∈ C

M×ri are

deterministic. Furthermore, letΘi = ΨiΨ
H
i ∈ C

M×M and defineQM ∈ C
M×M

deterministic. Assume limsupM→∞sup1�i�m‖Θi‖ � ∞ and let QM have

uniformly bounded spectral norm (with respect to M). Define

mBM ,QM
(z) =

1

M
trQM (BM − zIM )−1 (A.5)

Then, for z ∈ R
+, as m,M grow large with ratios βM,i =

M
ri

and βM = M
m

such that 0 < liminfMβM � limsupMβM <∞, we have that

mBM ,QM
(z)−mBM ,QM

(z)
M→∞−−−−→ 0 (A.6)

with mBM ,QM
(z) given by

mBM ,QM
(z) =

1

M
trQM (

1

M

m∑

j=1

Θj

1 + eM,j(z)
+ SM − zIM )−1 (A.7)

where the functions eM,1(z)...eM,m(z) form the unique solution of

eM,i(z) =
1

M
trΘi(

1

M

m∑

j=1

Θj

1 + eM,j(z)
+ SM − zIM )−1 (A.8)

which is the Stieltjes transform of a non negative finite measure on R
+. More-

over, for z < 0, the scalars eM,1(z)....eM,m(z) are the unique non negative

solutions to (A.8).



Appendix B

Proof of an equivalent

deterministic expression:

Perfect CSIT

Lemmas A.1, A.2, A.3, A.4 and Theorem A.1 from Appendix A are used. Using
Lemma A.2,
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Denoting,

m
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Using Lemmas A.1,A.3 and A.4 and (B.5),
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Using (B.1), (B.2), (B.3), (B.4), (B.5) and (B.6),
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Note that (a), (b) and (c) above correspond to ”using Lemma A.3 and the

fact that the matrices in a trace of a product can be switched”, ”using Lemma

A.3 and the property of trace” and ”using Theorem A.1” respectively. Now,

the proof is completed.



Appendix C

Proof of an equivalent

deterministic expression:

Imperfect CSIT

The equation (4.10) can be reformulated as
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Applying [Lemma A.2],
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Similarly,
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Using the channel model in section 1.6,
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Moreover,
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Note that (a) and (c) above correspond to ”using the expected value of the

matrix and (C.2)”, and ”using the expected value of the matrix and (C.3)”

respectively, while (b) and (d) correspond both to ”using the expected value of

the matrix”. Now, the proof is completed.
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[38] J. Kaleva, A. Tölli, and Markku Juntti. Primal decomposition based
decentralized weighted sum rate maximization with qos constraints for
interfering broadcast channel. IEEE 14th Workshop on signal processing



Bibliography 150

advances in wireless communications (SPAWC), 2013.

[39] A. Müller, R. Couillet, E. Björnson, S. Wagner, and M. Debbah.
Interference-aware rzf precoding for multi cell downlink systems. IEEE
Trans. on signal processing, vol. 63, no. 15, August 2015.

[40] F. Negro, I. Ghauri, and D.T.M. Slock. Sum rate maximization in the
noisy mimo interfering broadcast channel with partial csit via the expected
weighted mse. IEEE International symposium on wireless communication
systems (ISWCS), March 2012.

[41] H. Yin, D. Gesbert, and L. Cottatellucci. Dealing with interference in
distributed large-scale mimo systems: a statistical approach. IEEE Journal
of selected topics in signal processing, Vol. 8, No. 5, October 2014.

[42] N. H. Mahmood, G. Berardinelli, K.I. Pedersen, and P. Mogensen. An
interference-aware distributed transmission technique for dense small
cell networks. IEEE ICC - Workshop on small cell and 5G networks
(SmallNets), October 2015.

[43] S. Bazzi, G. Dietl, and W. Utschick. Large system analysis of interference
alignment achievable rates for the MIMO interference channel. IEEE
Transactions on signal processing, vol. 63, no. 6, 2015.

[44] J. Dumont, W. Hachem, P. Loubaton S. Lasaulce, and J. Najim. On
the Capacity achieving covariance matrix for rician MIMO channels: An
asymptotic approach. IEEE Trans. Info. Theory, 2010.

[45] G. Taricco. Asymptotic mutual information statistics of separately corre-
lated Rician fading MIMO channels. IEEE Trans. Info. Theory, 2008.

[46] W. Yu and J.M. Cioffi. Sum Capacity of Gaussian Vector Broadcast
Channels. In IEEE Transactions on Information Theory, Vol. 50, No. 9,
2004.

[47] D.H.N. Nguyen and T. Le-Ngoc. Sum-rate maximization in the multi-
cell MIMO broadcast channel with interference coordination. In IEEE
Transactions on signal processing, 2014.

[48] I. Bergel, D. Yellin, and S. Shamai. Dirty paper coding with partial
channel state information. In Spawc, 2014.

[49] A. Bennatan and D.Burshtein. On the fading-paper achievable region of
the fading MIMO broadcast channel. In IEEE transactions on information
theory, Vol. 54, No. 1, 2008.

[50] Y. Wu, S. Jin, X. Gao, M.R. Mckay, and C.Xiao. Transmit designs for
the MIMO broadcast channels with statistical CSI. In IEEE Transactions
on signal processing, vol.62, no.17, 2014.

[51] H. Harashima and H. Miyakawa. Matched-transmission technique for
channels with intersymbol interference. In IEEE Trans. Commun., vol.
20, no. 4, pp. 774–780, 1972.

[52] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst. A vector-perturbation
technique for near-capacity multiantenna multiuser communications—Part
II: Perturbation. In IEEE Trans. Commun., vol. 53, no. 3, 2005.



Bibliography 151

[53] S. Vishwanath, N.Jindal, and A. Goldsmith. Duality, achievable Rates
and sum-rate capacity of Gaussian MIMO broadcast channels. In IEEE
Transactions on information theory, vol. 49, no. 10, 2003.

[54] H. Choi, K.-J. Lee, C. Song, H. Song, and I. Lee. Weighted sum-rate
maximization for multiuser multirelay MIMO systems. IEEE Transactions
on vehicular technology, February 2013.

[55] H. Choi, K.-J. Lee, C. Song, H. Song, H. Kim, and I. Lee. Weighted
sum-rate maximization for multi-user multi-relay MIMO systems with
direct links. Vehicular technology conference (VTC), June 2013.

[56] K.-J. Lee, H. Sung, E. Park, and I. Lee. Joint optimization for one and
two-way MIMO AF multiple-relay systems. IEEE Transactions on wireless
communications, December 2010.

[57] C.-E. Chen and S.-K. Chou. A gradient-descent weighted sum MSE
transceiver design for multi-user multi-relay downlink systems. IEEE
Transactions on vehicular technology.

[58] N. Lee and R.W. Heath Jr. Degrees of freedom for the two-Cell two-
Hop MIMO interference channel: interference-free relay transmission and
spectrally efficient relaying protocol. IEEE Transactions on information
theory, May 2013.

[59] N. Lee and R.W. Heath Jr. Joint beamforming and transmit design for
the non-regenerative MIMO broadcast relay channel. IEEE 8th Sensor
array and multichannel Signal processing workshop (SAM), 2014.
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