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Abstract

The deployment of future self-driving vehicles is expected to have a major socioeco-
nomic impact due to their promise to be both safer and more traffic-efficient than human-
driven vehicles. In order to live up to these expectations, the ability of autonomous vehi-
cles to plan safe trajectories and maneuver efficiently around obstacles will be paramount.
However, motion planning among static or moving objects such as other vehicles is known
to be a highly combinatorial problem, that remains challenging even for state-of-the-art
algorithms. Indeed, the presence of obstacles creates exponentially many discrete ma-
neuver choices, which are difficult even to characterize in the context of autonomous
driving.

This thesis explores a new approach to motion planning, based on using this notion of
driving decisions as a guide to give structure to the planning problem, ultimately allowing
easier resolution. This decision-based motion planning approach can find applications
in cooperative driving, for instance to coordinate multiple vehicles through an unsignal-
ized intersection, as well as in autonomous driving where a single vehicle plans its own
trajectory.

In the case of cooperative driving, decisions are known to correspond to the choice
of a relative ordering for conflicting vehicles, which can be conveniently encoded as a
graph. This thesis introduces a similar graph representation in the case of autonomous
driving, where possible decisions – such as overtaking the vehicle at a specific time – are
much more complex. Once a decision is made, planning the best possible trajectory
corresponding to this decision is a much simpler problem, both in cooperative and au-
tonomous driving. This decision-aware approach may lead to more robust and efficient
motion planning, and opens exciting perspectives for combining classical mathematic
programming algorithms with more modern machine learning techniques.
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Chapter 1

A primer on automated vehicles

“If I had asked people what they wanted, they would have
said faster horses.”

Henry Ford

Contents
1.1 Context, motivations and challenges . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Road safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Traffic efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Societal and economic impacts . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motion planning in automated vehicles . . . . . . . . . . . . . . . . . . . . 6

1.2.1 A classical architecture: the perceive, plan, act paradigm . . . . . . 6

1.2.2 An alternative approach: end-to-end learning . . . . . . . . . . . . . 6

1.1 Context, motivations and challenges

The advent of automobiles has revolutionized personal transportation by giving bil-
lions of people to travel almost anywhere on land at a reasonable cost. In 2002, car own-
ership levels in western countries were estimated at 0.55 car per capita (OECD average),
even raising above 0.8 cars per capita in the United States [1].

Although it certainly is empowering, the actual driving task remains cumbersome, es-
pecially in dense traffic or on monotonous highways, prompting car manufacturers to
provide increasing amounts of assistance to the driver, with the goal of ultimately provid-
ing cars capable of driving without human intervention. However, the disruptive poten-
tial of autonomous driving goes well beyond increased comfort.

In Sections 1.1.1 and 1.1.2, we discuss some of these expected benefits and related
challenges, motivating the intense research and engineering effort currently focused on
self-driving vehicles and, in particular, motion planning which is at the center of this the-
sis. In Section 1.1.3, we briefly discuss broader-picture socioeconomic implications of au-
tonomous driving. Finally, Section 1.1.4, provides a simplified taxonomy of “intelligent”
vehicles, in order to help clarify the rest of the thesis.



Chapter 1. A primer on automated vehicles

1.1.1 Road safety

First, removing the – fallible – human driver by a near-infallible automatic pilot is ex-
pected to drastically reduce the occurrence of accidents; in the US alone, roughly 6 mil-
lion crashes are reported to the police each year [2], and more than 90% of those can be
attributed to human error [3].

Table 1.1 breaks down the consequence of reported road accidents in the US in 2015,
compared to the number of vehicle-kilometers driven on the same year. This table high-
lights the remarkably low rate of accidents for human drivers: on average, roughly 10
million kilometers are driven before the occurrence of an accident severe enough to be
reported, and almost 200 million before recording a fatality. Due to these extremely low
figures, of the major challenges for autonomous driving – although not in the scope of this
thesis – lies in the ability to achieve comparable levels of safety, and to demonstrate this
performance with a fleet of only dozens of vehicles [4].

Table 1.1 – US Crash statistics for 2015 (computed from data in [2])

Type of accident Number Rate per 108 veh. · km

Fatal 32 166 0.646
Injury 1 715 000 34.4
Property damage only 4 548 000 91.3

1.1.2 Traffic efficiency

A second wildly anticipated benefit of autonomous driving is its potential to increase
the throughput of existing road infrastructure [5], in hope to reduce congestion. This
improvement is thought to be possible due to several complementary aspects.

First, autonomous vehicles are expected to have a much shorter reaction time than
human drivers, thus allowing to reduce safety distance or start faster when a traffic light
turns green. Moreover, they can also help smooth traffic when nearing saturation, thus
delaying the transition towards congestion [6].

Second, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication
can help further improve this efficiency, for instance by allowing vehicles to drive in com-
pact platoons [7].

Third, as the penetration rate of autonomous vehicles increases, the infrastructure can
be adapted to their improved performance, for instance using narrower lanes or higher
speed limits. Finally, in an even longer time frame, some authors have proposed to over-
haul traffic management methods such as stop signs or traffic lights, and replace those
with so-called Autonomous Intersection Management schemes [8], which allows optimiz-
ing the crossing order of individual vehicles.

1.1.3 Societal and economic impacts

In a broader picture, autonomous driving is expected to have ripple effects across a
wide part of society and of the economy [5]. Indeed, self-driving cars promise to grant the
same freedom of movement to almost anyone, by allowing elderly or disabled people to
use a vehicle by themselves. Going another step further, some authors have proposed that
autonomous driving would trigger a shift in vehicle ownership patterns, notably through
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Table 1.2 – Levels of vehicle automation (as defined in [10])

Level Name Example

0 No automation Legacy vehicles
1 Driver assistance Adaptive cruise control
2 Partial driving automation Traffic jam assist
3 Conditional driving automation Highway pilot
4 High driving automation City pilot on clear daytime
5 Full driving automation Robot-taxi

an increase of car-sharing [9] which could, in turn, help decrease the amount of driving
and parked vehicles in urban centers.

Although autonomous driving is largely praised for its potential benefits, some possi-
ble downsides – most of which are discussed in [6] – need also be mentioned. For instance,
whether self-driving vehicles will effectively decrease traffic congestion is still debated,
as temporarily reduced congestion could also prompt more people to use their own car.
Since they can work or rest during their commute, people could also choose to live fur-
ther away from their workplace, potentially leading to higher urban sprawl. Due to this
induced traffic, the impact on public transportation is more uncertain: although remov-
ing the need for a driver may help decrease costs, a reduction in the number of passengers
may require higher subsidizing as the poorest population will likely remain excluded from
this progress. Similarly, although the ability to operate a vehicle without a driver can be
highly appealing to the freight and taxi industry, the loss of employment for professional
drivers should also be kept in mind, as well as potential effects in businesses such as in-
surance companies.

1.1.4 Taxonomy

Before moving on to the technical aspects of this thesis, we provide a brief overview of
the taxonomy of automated or connected vehicles.

Dynamic driving task As defined in SAE International’s J3016 standard [10], the dy-
namic driving task comprises short- and medium-term actions required to operate a ve-
hicle on-road safely. This task includes longitudinal and lateral control, monitoring and
interpreting the vehicle’s environment and plan responses to events, as well as planning
tactical maneuvers such as lane changes.

Automated vehicles Automated vehicles are vehicles equipped with systems capable of
performing parts or all of the dynamic driving task [10]; depending on these capacities,
automated driving systems are categorized into six levels as summarized in Table 1.2.
Note that in order to be considered automated, a vehicle should be able to perform these
driving tasks only using its own hardware, and without requiring communication from
outside entities.

Legacy vehicles In this thesis, we describe as legacy vehicles with low to no driving au-
tomation in a particular situation, mostly corresponding to levels 2 and below. However,
this term could also describe vehicles of level 3 or 4 in contexts where their automated
driving systems cannot function.
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Chapter 1. A primer on automated vehicles

Autonomous or self-driving vehicles As opposed to legacy vehicles, we use the terms
autonomous or self-driving to designate fully automated vehicles which can function by
themselves without requiring communication. Therefore, this term mostly relates to level
5 vehicles, although it could apply to level 4 systems in contexts where automated driving
without human intervention is possible.

Connected vehicles Regardless of their level of automation, vehicles can also be con-
nected – i.e., able to communicate wirelessly either with other vehicles (known as vehicle-
to-vehicle, or V2V communications) or with equipment attached to the road infrastruc-
ture (vehicle-to-infrastructure, or V2I). These vehicular communication capacities, com-
monly referred to as V2X, can rely on several technologies with various performance [11].

Cooperative vehicles Although vehicular communications can be used in legacy vehi-
cles (e.g., to provide traffic information), connectivity is also a means to improve safety
and traffic efficiency further than what could be achieved using only automated vehicles.
Indeed, communications could allow vehicles to cooperatively – the infrastructure acting
as an authority – make and follow decisions such as traveling in platoons [12] or passing
intersections autonomously [13]. In this thesis, we use the term cooperative to describe
partially or fully automated vehicles capable of using communication to coordinate with
others.

1.2 Motion planning in automated vehicles

To close this contextual introduction, we propose to briefly discuss the role of motion
planning in automated vehicles. Throughout the rest of this thesis, we use the term ego-
vehicle to designate a particular vehicle, from the viewpoint of which we consider the
driving task.

1.2.1 A classical architecture: the perceive, plan, act paradigm

Automated vehicles are a particular form of wheeled robots; as such, usual approaches
to automated driving systems rely on the well-established perceive-plan-act paradigm
(see, e.g., [14]). In this framework, a first perception layer is in charge of combining sensor
data and potential prior knowledge such as mapping information into a suitable repre-
sentation of the state of the ego-vehicle and its environment. The motion planning layer
then computes a feasible and efficient trajectory for the ego-vehicle; finally, a control layer
activates the vehicle’s actuators to follow this planned trajectory.

1.2.2 An alternative approach: end-to-end learning

With the dramatic increase of available computational power and the undeniable suc-
cess of deep learning approaches in applications ranging from computer vision [15] to
playing Go [16], a new approach called end-to-end learning has emerged for driving au-
tomation. This technique leverages machine learning to design a policy directly comput-
ing a sequence of actions (e.g., steering angle and acceleration) from raw sensor inputs
(e.g., camera images), without requiring human-designed algorithms.

Currently, two major techniques are being investigated for end-to-end driving. In a
classical supervised approach (see, e.g., [17]), the algorithm is taught to imitate the be-
havior of actual human drivers in given situations, thus requiring a significant amount
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1.2. Motion planning in automated vehicles

of training data recorded on real vehicles. More recently, the success of (deep) reinforce-
ment learning algorithms in outreaching human [18] or even AI [19] experts in a variety
of tasks without explicitly requiring training data has sparked a vast amount of interest in
the artificial intelligence community. In this setting, an agent (the autonomous vehicle)
learns through trial-and-error to choose actions maximizing a reward function defined by
a human operator. For obvious reasons, reinforcement learning techniques are generally
applied in simulations only, and it is unclear how training results can be transferred to the
real world.

These methods have the common advantage of considerably simplifying the develop-
ment of driving algorithms, and mimic the way humans learn to perform complex tasks.
However, they suffer from several downsides that need to be addressed by future research.
First, current learning algorithms behave as black boxes with limited interpretability of
failure scenarios and no method currently exist to provide behavior guarantees. Second,
guaranteeing that trained models will respond well to unseen situations is still an active
research topic. Finally, deep learning approaches have been shown to be vulnerable to
(adversarial) attacks, where a tiny modification of the inputs leads to arbitrary changes in
the outputs [20], which can result in security threats. For these reasons, we argue that us-
ing intrinsic structural properties of the underlying problem to guide or constrain learn-
ing algorithms is important for safety-critical applications; the results provided in this
thesis may therefore constitute a first step towards this goal.
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Chapter 2

Motion planning

“A good plan implemented today is better than a perfect
plan implemented tomorrow.”

George Patton (Military)
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2.1 Motion planning problems

The general notion of motion planning refers to the computation of a means for a
system to reach a desired goal starting from a given initial state, and is particularly impor-
tant in the field of robotics [21]. As described in the next subsections, motion planning
actually comprises a range of slightly distinct subproblems.

Sources of complexity in general motion planning arise from multiple factors. First,
the system generally has to evolve around forbidden regions such as obstacles or off-limits
areas, which usually results in non-convex search spaces and multiple local optima can
exist [22], as illustrated in Figure 2.1a. Second, kinematic constraints on the system such
as nonholonomicity1 adds another layer of complexity [23] when trying to find feasible

1A system is non-holonomic when it has fewer controllable degrees of freedom (DoF) than its total
number of DoF.



Chapter 2. Motion planning

obstacle

start

goal

(a) Obstacles and non-convexity: multi-
ple locally optimal solutions exist

goal

(b) Nonholonomicity: the car cannot
directly park in the goal region

Figure 2.1 – Sources of complexity in motion planning

solutions, as illustrated in Figure 2.1b in the case of parallel parking. Third, dynamic ef-
fects such as slip may have to be taken into account, for instance when dealing with fast
or highly precise maneuvers.

2.1.1 State representations

Before presenting different subproblems that fall within the scope of motion plan-
ning, we briefly present a terminology regarding the representations of a system’s “state”.
For the sake of simplicity, we restrict the discussion to systems comprised of a single or
multiple mobile robots.

Pose In this thesis, we call pose of a single robot having n degrees of freedom the given
of x ∈Rn fully describing the current position and orientation of the robot’s frame and its
joints. For instance, in the case of a simplified 2D vehicle representation, a pose could be
given by the vehicle’s position, orientation, and steering angle.

Configuration As introduced in [24], we call configuration of a system of robots the col-
lection of the poses of each individual robot in the system. The configuration space C is
the set of all configurations. For a single robot, pose and configuration are equivalent.
We note C f the (collision-)free part of the configuration space, i.e. where no collision be-
tween robots happens, and C o its complement so that C = C f ]C o where ] denotes a
union of disjoint sets.

The major advantage of using the configuration space is that this formulation allows
a reformulation of multi-body collision avoidance constraints as simpler point-outside-
polygon problem (assuming polygonal obstacles) or point-outside-region in the general
case, as illustrated in Figure 2.2. A standard approach in motion planning is to use the
Minkowski difference to compute the collision-free space [25].

State We call state X of a system (either a single or multiple robots) the given of its con-
figuration x and its time derivatives up to a sufficient order, such that the dynamics of the
system (without any form of control) can be expressed as a differential equation Ẋ = f0(X).
The state space X is the set of all states; we denote by X f the free portion of the state
space, i.e. the set

{
X ∈X f

∣∣ΠC (X) ∈C f
}

where ΠC (X) denotes the projection of X in the
configuration space.
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(a) Geometric space (b) Configuration space

Figure 2.2 – Comparison of planning in the geometric space and in the configuration space

goal

start

(a) Path planning

goal

start

(b) Trajectory planning

Figure 2.3 – Examples of motion planning problems; red polygons represent obstacles.

Control We call control u an input to the system that can change the evolution of its
state, such that under this control Ẋ = f (X,u). We note U the set of all admissible controls,
i.e. which are actually feasible by the system.

2.1.2 Path planning

The path planning problem corresponds to finding a (collision-free) path between an
initial configuration x0 ∈ C f and a target region Xg oal 6= ; (possibly a single point) with
Xg oal ⊂ C f is that of finding a continuous function f : [0,1] → C f such that f (0) = x0

and f (1) ∈ Xg oal . Figure 2.3a presents a possible path for a point-mass system among
obstacles in R2.

Note that, although it is the simplest form of motion planning problems, path plan-
ning amidst obstacles is known to be NP-hard [26], with a complexity growing exponen-
tially in the number of obstacles.

2.1.3 Trajectory planning

The trajectory planning problem is the time-based equivalent of path planning, ap-
plied in the state space. For an initial state X0 ∈X f and a non-empty goal region Xg oal ⊂
X f , the trajectory planning problem2 is that of finding a function g : [0,+∞] → X f with
f (0) = X0 and ∃T > 0 such that ∀t ≥ T, f (t ) ∈ Xg oal . A trajectory is said to be (dynamically)
feasible if there exists an admissible control u : [0,T] →U realizing this trajectory.

2In the case of static obstacles
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Note that the trajectory planning problem can conveniently be cast as a path planning
one in the “state-time space”R+×X f , with the first dimension representing time, and us-
ing the added constraint that the first component of the path should be strictly increasing.
This approach also allows handling the case of moving obstacles by considering the free
portion of the state-time space

{
(t ,X) ∈R+×X

∣∣X ∈X f (t )
}
, where X f (t ) denotes the free

portion of the state space at time t [27, 28].

2.2 Motion planning algorithms

Due to the existence of obstacles which effectively cause the search space to be non-
convex, generic motion planning in an arbitrary space is an NP-hard problem. basically
corresponding to the choice of a maneuver variant [29]. In this section, we present an
overview of the existing literature on motion planning algorithms; these techniques can
be grouped as either sampling-based or optimization-based [30, 31].

2.2.1 Sampling-based

Sampling-based algorithms are often used to deal with NP-hard problems, as they
guarantee a fixed runtime and can have interesting properties such as asymptotic com-
pleteness (ensuring that a solution can eventually be found) or asymptotic optimality (en-
suring that the best solution found converges to the optimum as the number of samples
increases). In the motion planning literature, sampling-based algorithms can be further
distinguished based on whether samples are chosen deterministically or randomly, and
whether samples correspond to system states or controls. Table 2.1 presents an overview
of different sampling-based algorithms used in motion planning. A more detailed review
of existing algorithms can be found, e.g., in [30].

Apart from these differences, sampling-based algorithms all operate on the same prin-
ciple: a predetermined number of samples is chosen in the sampled space, and the corre-
sponding trajectories are then evaluated with respect to a chosen cost function – possibly
using forward integration in the case of samples in the control space. The best trajectory
for this cost function is then selected.

One of the main downsides of sampling-based approaches is that they ignore the ex-
istence of maneuver variants, which are never considered explicitly. Therefore, these al-
gorithms have a high risk of being trapped around local optima without even exploring
certain configurations.

2.2.2 Optimization-based

In this review, we use the term optimization-based to describe techniques based on
directly using mathematical programming (e.g., constrained optimization) for the motion
planning problem.

Table 2.1 – Overview and classification of sampling-based algorithms for motion planning

Random sampling Deterministic sampling

State space PRM [32], RRT [33] State lattices [34], motion primitives [35]
Control space MPPI [36] Mobile automaton [37]
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In particular, Model Predictive Control (MPC) techniques – although originally de-
signed for control systems – has been extensively used in motion planning (see, e.g., [38]).
In this framework, motion planning is formulated as an optimization problem where the
system’s dynamics are used as constraints alongside with obstacle avoidance require-
ments. For real-time tractability, this optimization problem is usually solved over a finite
time horizon, and replanning is frequently used to take uncertainty and new informa-
tion into account. Although it has been demonstrated to work well in practice, a partic-
ular problem of model predictive control lies in guaranteeing infinite horizon properties
(e.g., recursive feasibility) whereas the formulation only considers a finite planning hori-
zon [39]. A possible approach to provide such guarantees lies in the use of invariant sets
theory (see, e.g., [40]); however, finding such invariant sets may be difficult for complex
systems or dynamic environments, and this verification is rarely performed in practice.

Another difficulty when using MPC methods for motion planning is linked to the in-
trinsic NP-hardness of the problem, and the modeling of obstacle-related constraints is
paramount to the actual computability of the problem. A possible approach is to model
obstacles as holes (usually rectangles or ellipses) in the search space, and use gradient
descent to perform the actual optimization (see, e.g., [14]). However, as with sampling-
based approach, the non-convexity of the search space implies a high probability of these
approaches resulting in a local optimum [29].

Note that, although this section mostly focused on MPC, other optimization-based
approaches, such as potential-field methods [41], have also been used for path planning,
although their generalization to time-dependent problems may be difficult.

2.3 Motion planning, homotopy and decision

As mentioned earlier, one of the major challenges of motion planning lies in the non-
convexity of the search space in the presence of obstacles. A particularly powerful tool
to help describe this complexity is linked to the notion of homotopy classes, which has re-
cently been leveraged in divide-and-conquer approaches to motion planning for a single-
or multi-robots systems [42, 43, 29].

2.3.1 Homotopy classes of paths

In the case of a single robot navigating among obstacles, it has long been known that
the uncountable set of collision-free paths between a given start and end point can be
partitioned into a countable3 number of homotopy classes [44]. Mathematically, two paths
having the same start and end points are said to be homotopic if they can be continuously
deformed into one another while remaining in C f , as illustrated in Figure 2.4.

The notion of homotopy allows defining an equivalence relation between collision-
free paths [45]: two such paths – sharing the same start and end points – are said to be
equivalent if they are homotopic. This equivalence relation in turn defines a partition of
the set of collision-free paths into homotopy classes. In the example of Figure 2.4, and if
requiring the paths to have an increasing horizontal component, only two classes of paths
can be distinguished as avoiding the obstacle “from above” of “from below” (Figure 2.4a).
If monotonicity is not required, there exist a (countable) infinity of classes corresponding
to an arbitrary number of loops around the obstacle (Figure 2.4b).

3Or finite if at least one coordinate is required to vary monotonously
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obstacle

start

goal

(a) Monotonous case (no loop)

obstacle

start

goal

(b) Non-monotonous case (loops)

Figure 2.4 – Homotopy classes for paths around an obstacle. The blue paths are homotopic since
they can be continuously deformed into one another (dashed paths), but cannot be deformed into
the green path without entering the obstacle region.

Figure 2.5 – Decomposition of the path planning problem in sequences of convex cells (from [43]).

However, the use of homotopy classes is shown in Chapter 8 to be poorly suited to
encode decisions in the case of autonomous driving, where lateral vehicle movement is
not monotonous. For this reason, other approaches are required to properly describe the
discrete component of motion planning.

2.3.2 Divide-and-conquer approaches

Divide-and-conquer strategies have been applied very early in order to decompose
motion planning into simpler subproblems, and show promising potential to generalize
the notion of homotopy.

The so-called path-velocity decomposition [46] – consisting in first choosing a collision-
free path, then planning the velocity of the system along this path – is a form of divide-
and-conquer approach, which has been highly successful in motion planning. However,
this approach is difficult to generalize in the case of moving obstacles.

More recently, some authors have proposed a geometric decomposition of the path
planning problem with fixed obstacles with interesting results [43], as illustrated in Fig-
ure 2.5. In doing so, they create a graph-based representation of the free space; paths in
this graph are shown to bijectively correspond to homotopy classes of collision-free paths.

Decomposition-based approaches have also been used in the field of multi-robot co-
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Figure 2.6 – Homotopy classes in a 3-robot coordination problem. Axes correspond to the curvi-
linear xi position of robot i along a predetermined path; cylinders represent the obstacle region
where two robots would collide (from [42]).

ordination using the notion of “priorities”, which exactly correspond to specifying a ho-
motopy class in an N-robots coordination space, as illustrated in Figure 2.6 [42].

2.3.3 Motion planning and decision-making

In this thesis, we argue that the reason for the success of these divide-and-conquer ap-
proaches in the field of motion planning lies in the fact that homotopy classes are intrin-
sically linked to discrete decisions relative to how obstacles should be avoided in certain
particular cases. Making such a decision essentially corresponds to solving the discrete
portion of the planning problem; once done, usual continuous optimization techniques
can be effectively used to find an optimal trajectory within the corresponding class.

Therefore, there are undeniable advantages to using an explicit or implicit represen-
tation of the possible decisions to solve motion planning problems in complex scenarios
such as the navigation of a self-driving vehicle in an urban setting, or the coordination
of cooperative vehicles in critical parts of the road infrastructure such as intersections or
roundabouts.

However, we show in Chapter 8 that the notion of homotopy does not always overlap
with driving decisions, especially in the case of motion planning for autonomous vehicles.
To the best of our knowledge, no framework exists to enumerate and represent driving de-
cisions, let alone use them efficiently for motion planning. One of the major contributions
of this thesis is the introduction of a mathematical framework allowing systematic enu-
meration of driving decisions in generic situations, as well as algorithms building upon
this framework for autonomous motion planning.

2.3.4 Algorithm evaluation

As a final consideration before closing this introductory chapter, let us point out that
motion planning has an extremely wide range of applications, and the idea of a “one-size-
fits-all” motion planning algorithm seems illusory with respect to the current state of the
art.
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In the case of automated driving, we argue that real-time performance is more impor-
tant than the optimality of the output. As a result, the ability of an algorithm to rapidly
find a solution of acceptable quality is paramount. A second performance criterion is the
ability of the algorithm to progressively improve the quality of the solution, ultimately
converging towards the actual optimum given enough time; third, the speed of this con-
vergence is also important.

Another aspect to be taken into account is that the “optimality” of the solution obvi-
ously depends on the objective function used to evaluate it. Although determining what
makes a trajectory desirable or not is out of the scope of this thesis, we wish to point out
that different kinds of algorithms or problem representations may allow different levels of
expressivity in the objective function. In particular, we show in Chapter 9 that carefully
crafted problem formulations can provide access to metrics such as margin for error –
which is arguably an important evaluation criterion, but is not easily taken into account
in other planning frameworks.
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Contributions and thesis outline

“ Basic research is like shooting an arrow in the air and,
where it lands, painting a target. ”

Homer B. Adkins (Chemist)
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As introduced in the previous chapter, one of the main challenges of motion planning
originates from the discrete choices regarding how each obstacle should be avoided, ef-
fectively resulting in a combinatorial problem. In this thesis, we advocate that a good
mathematical representation of these choices is key to improve the performance and ro-
bustness of planning algorithms, thus stressing the importance of decision-making in this
context; the thesis provides three main contributions to existing knowledge, both in the
field of cooperative and autonomous driving.

3.1 Cooperative driving

In the case of cooperative driving of fully autonomous vehicles, a previous thesis stud-
ied Priority-based coordination of mobile robots [42] and evidenced that the given of pair-
wise precedence relations between robots were necessary and sufficient to fully define a
single homotopy class of collision-free (system) trajectory. In reference [42], priority re-
lations are described as a plan to be executed in order to properly coordinate the robots,
and a simple priority-preserving control was proposed to effectively allow the robots to
comply with this ordering. However, efficient priority assignment policies have not been
yet been proposed.

A first contribution of the present thesis is the proposal of an optimal decision-making
algorithm to coordinate autonomous or semi-autonomous robots, that builds upon and
extends the priority framework of [42]. In Chapter 4, we establish the link between this
priority framework and decision-making in the case of multi-robots coordination, and
propose a mixed-integer programming approach to decision-making. This technique is



Chapter 3. Contributions and thesis outline

then adapted to the case of optimal coordination of autonomous robots in Chapter 5, or
to the supervision of semi-autonomous vehicles in Chapter 6.

By allowing the use of powerful optimization methods such as mixed-integer pro-
gramming, this decision-making framework is shown to be capable to output real-time
optimal coordinated trajectories for up to a dozen of robots. Besides cooperative driving,
we forecast potential applications to a much wider range of scenarios, including auto-
mated warehouses or guided transportation.

3.2 Autonomous driving

The second major contribution of this thesis is a generic framework to describe the
discrete choices involved in motion planning in the case of autonomous driving, i.e. with
numerous mobile obstacles in a relatively structured environment. This framework, gen-
eralizing that of [43], allows encoding the whole decision-making problem as a “shortest-
path search” in a navigation graph, as presented in Chapter 9; Chapter 10 presents exact
and heuristic approaches to use this mathematical framework for actual motion plan-
ning.

To the best of our knowledge, this framework is the first to allow systematic enumer-
ation and evaluation of possible driving decisions in generic situations. Previous studies
usually assimilate these decisions with homotopy classes of trajectories [43, 29]; however,
this notion is shown in Chapter 8 to be insufficient in the context of autonomous motion
planning. By contrast, this thesis proposes to generalize this mathematical notion into
a decision-making framework explicitly designed for the needs of autonomous driving,
opening exciting perspectives to incorporate recent machine learning approaches while
guaranteeing vehicle safety.

3.3 Towards practical implementation

Finally, the third part of this thesis focuses on feeding the decision-making algorithms
in order to bridge the gap between theory and practice. Indeed, a large part of the motion
planning literature has focused on simulation results with perfect or near-perfect sens-
ing capacities, which is far beyond the current state-of-the-art of perception systems for
automated vehicles. In Chapter 11, we present early approaches to estimate probable,
short-term future trajectories for surrounding vehicles, which we argue is a cornerstone
requirement for fully automated driving. Finally, Chapter 12 presents a simplified real-
world implementation of our decision-making algorithms to a peri-urban driving sce-
nario serving as a proof-of-concept for the ideas developed throughout the thesis.

3.4 Publications

Most of the results presented in this thesis have been published as conference or jour-
nal articles; the list below presents these publications and indicates, when applicable, the
corresponding chapter in the thesis.

Articles used as basis for thesis chapters

• F. Altche, X. Qian, and A. de La Fortelle, “Time-optimal coordination of mobile robots
along specified paths,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
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and Systems (IROS), pp. 5020–5026, IEEE, oct 2016 (used in Chapter 5)

• F. Altché and A. de La Fortelle, “Analysis of optimal solutions to robot coordination
problems to improve autonomous intersection management policies,” in 2016 IEEE
Intelligent Vehicles Symposium (IV), vol. 2016-August, pp. 86–91, IEEE, jun 2016 (used
in Chapter 5)

• F. Altché, X. Qian, and A. de La Fortelle, “Least restrictive and minimally deviat-
ing supervisor for Safe semi-autonomous driving at an intersection: An MIQP ap-
proach,” in 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 2520–2526, IEEE, nov 2016 (used in Chapter 6)

• F. Altche, X. Qian, and A. de La Fortelle, “An Algorithm for Supervised Driving of
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Cooperative motion planning





Introduction

The first part of this thesis expands on the results on priority-based coordination of
multiple mobile robots [42] to illustrate the role of decision-making in cooperative mo-
tion planning for multiple vehicles. In a multi-robot coordination problem, a set of co-
operative mobile robots having individual goals (e.g., a destination) have to share a finite
resource (namely, ground space) as efficiently as possible. This problem is of particu-
lar interest for autonomous intersection management, where vehicles cooperate with one
another or with the road infrastructure in order to improve safety and efficiency at road
intersections over more classical techniques such as traffic lights. Although we use the
generic term of robot for the sake of generality, the discussion can of course be applied to
fully (and, in some instances, partially) automated vehicles as well.

Multi-robot coordination can be considered from two complementary viewpoints,
which lead to widely different solving algorithms. A first approach is to consider coordi-
nation as a resource allocation problem to be solved using job scheduling algorithms [59]
or queuing theory (see, e.g., [60]). A second method (see, e.g., [61]) is to model the multi-
robots coordination problem as that of planning a collision-free trajectory for a system of
mobile robots, and hence falls into the class of motion planning problems. In the follow-
ing chapters, we adopt this second point of view in the following chapters; the compared
advantages and downsides of both formulations are compared in Chapter 5.

As presented in Chapter 2, priorities are a convenient way to encode homotopy classes
of collision-free trajectories for the system of vehicles, which effectively correspond to
discrete choices between relative vehicle orderings. The first contribution of this thesis
is the use of priority relations within the framework of mathematical (or, more precisely,
mixed-integer) programming to achieve optimal coordination of the vehicles. The result-
ing framework is highly versatile, and the use of well-chosen objective functions allows
achieving widely different goals.

In this thesis, we argue that the performance and versatility of this framework are
made possible by the choice of a proper representation of the intrinsic decisions involved
in the motion planning problem. In this case, decisions are encoded as priority relations
or, equivalently, as homotopy classes.

Sketch of Part I This part is divided into three chapters. Chapter 4 lays the founda-
tions of our priority-based framework for cooperative decision-making of multiple robots,
which we then use throughout the rest of Part I. A first application of this approach to
optimal coordination of automated vehicles is then presented in Chapter 5; in this case,
vehicles act as a slave to an authority which prescribes their driving speed through an in-
tersection in order to optimize its throughput. In Chapter 6, we choose a slightly different
cost function which results in a widely different behavior known as supervised driving: in
this case, the authority only acts to correct driver errors which would otherwise inevitably
lead to a collision.





Chapter 4

Priority-based cooperative
decision-making

“ In any moment of decision, the best thing you can do is
the right thing. The worst thing you can do is nothing. ”

Theodore Roosevelt
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4.1 Multi-robot coordination and motion planning

The problem of multi-robot coordination is that of best sharing a finite resource – in
this case, space – to allow multiple mobile robots to reach their respective goals without
colliding with one another. Figure 4.1 illustrates a simple example of a two-robots coordi-
nation problem: robots 1 and 2 respectively try to reach their goal region G1 and G2, but
have a potential conflict where the black dashed paths intersect.

In the example of Figure 4.1, a possible solution to avoid conflict would be to have
robot 2 follow the dotted red path going around robot 1, effectively removing the risk of
collision. However, automated driving applications are usually constrained to existing
roads and lanes, which highly restricts the applicability of so-called deconfliction tech-
niques, which are mostly used for unmanned aerial vehicles (UAVs) [62, 63]. For this rea-
son, the rest of the discussion focuses on coordinating robots along fixed paths, for in-
stance the centerline of a road lane; this hypothesis simplifies the coordination problem
into a simpler velocity planning one.
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1

2

G2

G1

Figure 4.1 – Example of a two-robot coordination problem

Throughout the rest of Part I, we consider that each robot i has a given reference path

γi : R→ C
f

i which is a (continuous) function of the curvilinear abscissa s such that γi (s)
is the reference configuration of i after traveling a distance s along the path starting from

an arbitrary reference point. In this case, C
f

i is the free portion of the configuration space
of robot i when considered alone, i.e. we only require that following the reference path
does not lead to a collision with a static obstacle; however, reference paths of two distinct
robots can be conflicting, as it is the case for the black dashed paths shown in Figure 4.1.

A useful representation to describe collisions between robots is to consider the config-
uration space for the system of robots, sometimes called coordination space (see, e.g., [64,
65]), which we denote by χ. The free portion of the coordination space, χ f , is a subset

of
∏

i∈R C
f

i , but does not contain the sets of configurations leading to collisions between
robots. Using this space, we can now define the fixed-path coordination problem as fol-
lows:

Problem 1 (Multi-robot coordination along fixed paths). We consider a (finite) set of mo-

bile robots R at time t0, with robot i traveling along a fixed path γi :R→C
f

i . We denote by
x0

i ∈ γi (R) the configuration of robot i at t0, and assume that each robot has a non-empty
goal region Gi ⊂ γi (R).

The multi-robot coordination problem is that of finding a continuous velocity profile
s = (si )i∈R for the system of robots such that:

i. for all i ∈R, γi (si (t0)) = x0
i ,

ii. for all t ≥ t0,
(
γi (si (t ))

)
i∈R ⊂ χ f ,

iii. there exists T ≥ t0 such that, for all t ≥ T and all i ∈R, γi (si (t )) ∈ Gi .

We call T the completion time of the problem.

4.2 Priority and decision-making

Since the reference paths γi are given and assumed to be perfectly followed by the
robots, Problem 1 can be formulated using curvilinear abscissas, leading to a “path-finding”
problem in an abstract space where each dimension corresponds to the curvilinear posi-
tion of one robot. For the sake of simplicity, we do not make explicit distinctions between
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1

2

G2

G1

(a) Physical space

Collision

s1

s2
Goal

1 Â 2

2 Â 1

(b) Coordination space

Figure 4.2 – Correspondence between the physical and the coordination space in a two-robots
example

these two representations and we consider curvilinear abscissas and the corresponding
robot configurations as equivalent1.

In this section, we present the so-called priority framework introduced in [42], upon
which our decision-making algorithm is built, through an example. Figure 4.2 presents
the modeling of a real world two-robots coordination problem as a pathfinding problem
in the abstract coordination space. The red “Collision” area in Figure 4.2b corresponds to
the conflict region at the intersection of the robots’ paths and is excluded from the free
space χ f . Paths in the coordination space such as shown in green and blue in can then be
mapped to collision-free trajectories for the robots2.

As was discussed in Chapter 2, the blue and green paths shown in Figure 4.2b cor-
respond to two distinct homotopy classes of paths, namely those avoiding the collision
region “from below” (blue path, corresponding to robot 1 crossing before robot 2, and
denoted by 1 Â 2) or “from above” (green path, corresponding to robot 2 crossing before
robot 1 and denoted by 2 Â 1). The name “priority” stems from the relationship between
these homotopy classes, and relative ordering of the robots. As demonstrated in [42],
this observation generalizes to an arbitrary number of robots: any homotopy class of
collision-free paths can be uniquely described by the given of pairwise priority rela-
tions between conflicting robots.

In this thesis, we argue that explicitly using this knowledge about homotopy classes
allows designing more efficient motion planners, as they provide a proper description
of the decision-making process which has to be undertaken when actually planning a
trajectory. The following sections present our proposed approach to treat the challenging
question of priority assignment, which remained unanswered in reference [42].

1This slight abuse of language may only be problematic for reference paths containing loops, for which
the mapping from curvilinear abscissa to configuration is not injective. In this case, additional information
is required to map a configuration to a single curvilinear abscissa.

2More specifically, for a path g : [0,1] → χ f , a collision-free trajectory can be obtained from g (u(t )) for
any continuous function u : R→ [0,1]. The dynamic feasibility of this trajectory, however, depends on a
proper choice of u; this aspect is discussed in Section 4.5.
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4.3 Mixed-integer programming

Motion planning usually concerns with finding efficient trajectories, and therefore is
intimately linked with (constrained) optimization. As was presented in Chapter 2, non-
convexity of the search space is one of the main challenges in this regard, and the use of
priorities is an effective way of decomposing the difficult, non-convex motion planning
problem into smaller (but numerous) convex subproblems. Indeed, as decisions corre-
spond to assignments of pairwise priority relations between robots, the number of pos-
sible assignments for N robots can be as large as 2N(N−1)/2; this upper bound is reached,
for instance, for N robots on pairwise-distinct paths all intersecting at the same point.
However, in more classical situations, many of these possibilities can be discarded as
physically unfeasible (e.g., a robot having to go through another) or as inefficient (e.g.,
introducing unnecessarily long delays by waiting for a robot far away from the conflict
point).

A possible way of handling this combinatorial explosion is, therefore, to prune the
corresponding decision tree by removing provably suboptimal or infeasible branches.
Mixed-integer programming (MIP) is a widely-used framework that allows efficient han-
dling of such combinatorial problems. General MIP problems involving arbitrary func-
tions are very hard, but good techniques exist for a subclass of these problems, called
mixed-integer second-order cone programming, or MISOCP [66]. In these problems, a
convex quadratic objective function is minimized with quadratic positive semi-definite or
affine constraints. A better-known subclass of MISOCP is mixed-integer linear (MILP) or
quadratic (MIQP) programming. In this subset of problems, all constraints are required to
be linear (possibly involving integer variables), and the objective function is also required
to be linear in the MILP variant. These techniques have already been applied to trajectory
planning in general, and to the multi-robots coordination problem in particular; a review
of existing literature and a comparison with our approach is presented in Chapter 5. A
description of MILP/MIQP3 solving algorithms can be found, for instance, in [67].

Several equivalent formulations of MIQP are commonly found in the literature; in this
thesis, we define an MIQP problem as follows:

Problem 2 (MIQP). We call mixed-integer quadratic programming an optimization prob-
lem of the form

Minimize
x∈Rn

xTQx +qTx

subject to Ae x = be ,

Ag x +bg ≥ 0,

∀i ∈ I, xi ∈Z ,

where matrix Q is positive semi-definite and I ⊂ {1, . . . ,n} is used to enforce integrality con-
straints on certain components of x. If Q = 0, the above problem is an instance of mixed-
integer linear programming.

4.4 Modeling priorities

Due to the success of MIQP methods in multiple fields of operations research, we pro-
pose to model the priority relations within the mixed-integer linear-constraints frame-

3For brevity purposes and since MILP is a subclass of MIQP, we choose the latter to represent both types
of problems, although MILP formulations are quite easier to solve and therefore are frequently preferred.
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work in order to leverage these techniques for actual resolution. As introduced in Sec-
tion 4.2, we only need consider relative orderings within pairs of robots; in what follows,
we use the curvilinear abscissa si (jointly with the reference path γi ) to encode the config-
uration of each robot i ∈R, as in Figure 4.2. Moreover, we discretize the problem in time
with a fixed time step duration τ, and we denote by sk

i the position of robot i at time step
k (corresponding to time kτ).

4.4.1 Conflict regions

We first define two regions of interest in the coordination space4:

Definition 1 (Collision region). For two robots i and j ∈ R, we note Ci j ⊂ R2 the set of
positions (si , s j ) where the two robots would collide, called collision region.

In general, Ci j can be empty (e.g., for robots on parallel paths) or have one or several
connected components (e.g., for paths with multiple intersection points). When Ci j has
multiple connected components, we denote by Cp

i j its p-th component, using the con-

vention Cp
i j = Cp

j i . Figure 4.3 illustrates the shape of the obstacle region5 in the case of
car-like robots traveling in different road configurations.

Definition 2 (Conflict region). For two robots i and j ∈R, we call conflict region between
i and j the set of positions

{
(si , s j ) ∈R2

∣∣ ({si }×R)∩Ci j 6= ; or
(
R× {s j }

)∩Ci j 6= ;}
.

By this definition, two robots are in their conflict region when there is a possibility
of collision between them; of course, the collision region is contained within the conflict
region.

Since the paths and shapes of each robot is known in advance, it is possible to com-
pute the collision regions offline using, e.g., Minkowski difference. Interestingly, each con-
nected component of the collision regions can be approximated efficiently in the shape
of a hexagon with edges either horizontal, vertical or parallel to the identity line, denoted
by Ĉi j in Figure 4.4. Schematically, the horizontal (respectively, the vertical) edge corre-
sponds to having robot j (respectively i ) wait for robot i (resp. j ) to fully pass the conflict
point before moving forward. The diagonal edges correspond to requiring the rear robot
to maintain a minimum distance from the lead one, for instance in merging or following
situations. Appendix A.1 describes a linear-time algorithm to compute minimum bound-
ing hexagons from a list of points defining the collision regions.

To simplify notations6, we consider a collision region having a single connected com-
ponent and drop the superscript p; note that the results still hold in the case of multiple
connected components by applying the described method for each component p. We
also assimilate the exact collision region Ci j with its hexagonal approximation Ĉi j . We

denote by s⊥i j , s∥i j and s⊥i j (and their j i counterparts) the coordinates of different vertices
of the bounding hexagon, as shown in Figure 4.4.

4As they only refer to pairs of robots, Definitions 1 and 2 correspond to the projection A of a set Ã
of the form A×Rn−2 ⊂ C ⊂ Rn (with a possible reordering of the coordinates), onto R2. To simplify the
presentation, we assimilate Ã with A.

5Strictly speaking, Figure 4.3 shows the convex envelope of these regions, which we will use as an ap-
proximation of their exact shape.

6This simplification was implicit in Figure 4.4.
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γi

γ j
Ci j

si

s j

(a) Simple orthogonal intersection situation with example robot
shapes

γi

γ j

C1
i j

C2
i j

si

s j

(b) Roundabout situation with multiple connected components

γi

γ j

Ci j

si

s j

(c) Merging situation

Figure 4.3 – Examples of paths (left) and corresponding collision regions (right) for robots with the
polygonal shape shown in Figure 4.3a.

4.4.2 Subregion indicators

To encode priority relations into a mixed-integer programming framework, we pro-
pose to constrain the position of each robot i at time step k, denoted by sk

i . To this end,
we introduce a set of subregion indicators, i.e. binary variables which we use to decom-
pose R2 \ Ci j into convex regions.

As presented in [68], it is possible to use the so-called “big-M” technique to encode
logical constraints in the form of linear inequalities. Consider for instance the linear con-
straint on variables x and u

Mu +x ≥ 0, (4.1)

with x ∈ [a,b], u ∈ {0,1} and M ≥ |a| a parameter. If u = 0, this constraint effectively
forces x to be positive; however, if u = 1, any value of x satisfies the constraint. There-
fore, eq. (4.1) is equivalent to the proposition

(u = 0) ⇒ (x ≥ 0). (4.2)

Logical disjunctions between propositions can also be handled in a similar fashion;
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Figure 4.4 – Bounding hexagon approximation of a connected component of a collision region

assume that propositions P and Q are respectively encoded as

APX+bP ≥ 0 and (4.3a)

AQX+bQ ≥ 0, (4.3b)

with AP and AQ matrices and bP and bQ vectors of correct dimensions, and X the prob-
lem variable. By adding a new binary variable u and a sufficiently large parameter M,
disjunction P∨Q (P or Q) can be enforced as

APX+bP +Mu ≥ 0 and (4.4a)

AQX+bQ +M(1−u) ≥ 0. (4.4b)

Note that logical conjunctions do not need such refinements, as they merely correspond
to adding additional rows to the constraints matrix.

A slight limitation of this approach is linked to the fact that strict inequalities cannot
be enforced in a linear or quadratic optimization framework. Therefore, the negation of a
proposition cannot be enforced in a strict sense; a possible way around this limitation is
to replace an inequality of the form AX+b < 0 by AX+b <−ε, with ε a small, positive toler-
ance parameter. However, since optimization will ultimately be performed numerically,
this issue can generally be ignored.

These considerations and results from propositional logic ensure that any proposi-
tion involving predicates in the form of linear inequalities can be enforced in an MIQP
framework. Therefore, we can introduce the following subregion indicator variables:

ε∥i j (k) = 1[
s∥i j ,+∞

) (sk
i

)
, (4.5a)

ε⊥i j (k) = 1[
s⊥i j ,+∞

) (sk
i

)
, (4.5b)

where the set indicator function 1X(x) = 1 if x ∈ X, and 0 otherwise7. Figure 4.5 presents
the different subregions defined by the ε variables; note that, except the bottom-left re-

7Note that, due to the limitation regarding strict inequalities, the value of these indicators is actually
undefined at their switching point; this limitation does not produce significant problems.
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∥ ⊥
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∥ ⊥
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∥ ⊥
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∥ ⊥
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ε j i 0 0
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∥ ⊥
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∥ ⊥
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ε j i 1 1

Ci j

si

s j

Figure 4.5 – Segmentation of the collision-free portion of the coordination space using the ε indi-
cators variables. The truth tables show the value of each of these variables inside each region.

gion where all variables are zero, all other regions are convex polygons and can therefore
be expressed in a matrix inequality form Ax+b ≥ 0 compatible with an MIQP formulation.

4.4.3 Priority variables

To complete the subregion indicators, we finally introduce a binary priority variable
between two robots denoted by πi j . This decision variable corresponds to the pairwise
priority in the sense of [42]; by convention, we consider that πi j = 1 corresponds to robot
i entering the conflict region before robot j (i.e., i Â j ) and we require:

πi j +π j i = 1. (4.6)

As illustrated in Figure 4.6, the priority variables are used to restrict the pair of robots to
remain on the bottom-right (πi j = 1) or top-left (πi j = 0 or, equivalently, π j i = 1) of the
obstacle region.

Coupling the priority variables with the subregions of Figure 4.5 provides a partition
of the entire collision-free portion of the coordination space into convex polygons. This
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s⊥i j s∥i j
s⊥i j

s⊥j i

s∥j i

s⊥j i

πi j = 1

πi j = 0

Ci j

si

s j

Figure 4.6 – Separation of the coordination space using the priority variables. The blue region is
only accessible if πi j = 1, and the green region if πi j = 0 (or, equivalently, π j i = 1). The bottom-left
and top-right regions are accessible in both cases.

s⊥i j s∥i j
s⊥i j

s⊥j i

s∥j i

s⊥j i πi j 6= 1

¬ε∥i j ∧¬ε⊥i j ε∥i j ∧¬ε⊥i j

ε∥i j ∧ε⊥i j

Ci j

si

s j

Figure 4.7 – Partition of the coordination space using the priority and ε variables, illustrated in
the case πi j = 1. In this case, collision avoidance is achieved by requiring s j ≤ s⊥j i in the blue(
¬ε∥i j ∧¬ε⊥i j

)
region (constraint (4.7a)) and requiring to remain below the diagonal line delimiting

the red
(
ε∥i j ∧¬ε⊥i j

)
region, i.e. s j − s⊥j i ≤ si − s∥i j (constraint (4.7b)). No constraint is necessary in

the green ε⊥i j region.
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partition in turn allows implementing the collision avoidance constraints as:(
πi j ∧¬ε∥i j (k)

)
⇒ sk+1

j ≤ s⊥j i (4.7a)(
πi j ∧ε∥i j (k)∧¬ε⊥i j (k)

)
⇒ sk+1

i − s∥i j ≥ sk+1
j − s⊥j i (4.7b)(

πi j ∧ε∥i j (k)∧¬ε⊥i j (k)
)
⇒ sk+1

i − s∥i j ≥ sk+1
j − s⊥j i +

τ

2

(
vk+1

j − vk+1
i

)
, (4.7c)

where vk
i is the longitudinal velocity of robot i at time step k, and τ is the duration of

a time step; operator ¬ corresponds to the logical negation. The subregions involved in
constraints (4.7a) to (4.7c) are illustrated in Figure 4.7.

Remark 1. In constraints (4.7a) to (4.7c), the position of each robot at step k induces a con-
straint at step k+1, in order to avoid “corner-cutting” situations. Similarly, constraint (4.7c)
is added to avoid possible collisions within the duration of a time step; Appendix A.2 pro-
vides additional details about these two issues.

Remark 2. Throughout this chapter, we only considered the interactions between pairs of
robots. Indeed, a particularity of the multi-robot coordination problem is that the colli-
sion region (in the n-dimensional coordination space) is a union of cylinders of the form
Ri−1×Ai ×R j−i−1×A j ×Rn− j – or, by reordering variables, Ci j ×RRn−2 – with Ci j = Ai ×A j .
Therefore, this two-dimensional approach generalizes to the n-dimensional problem sim-
ply by considering all pairs of conflicting robots.

4.5 Dynamic constraints

Constraints (4.7a) to (4.7c) effectively prevent collisions between robots, provided they
maintain a constant acceleration over each time step. Moreover, physical robots have
limited actuation capacities which do not allow them to change speed instantaneously.
To model this behavior, we choose a simple, one-dimensional second-order integrator
model for robots dynamics, in the form

d

dt

(
si

vi

)
=

(
vi

ai

)
, (4.8)

with si the curvilinear position, vi = ṡi the longitudinal speed and s̈i = ai ∈
[
ai , ai

]
the

(bounded) longitudinal acceleration8, and we assume that robots are only allowed to
move forward (vi ≥ 0) with a bounded velocity v i . In a time-discretized setting, we ap-
proximate the robot dynamics by requiring a constant acceleration over each time step,
and we enforce these constraints as

sk+1
i − sk

i = 1

2

(
vk

i + vk+1
i

)
τ, (4.9a)

with the additional requirements

0 ≤ vk
i ≤ v i and (4.9b)

aiτ≤ vk+1
i − vk

i ≤ aiτ (4.9c)

8With ai < 0 < ai .
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4.6 Chapter conclusion

In this chapter, we leveraged the notion of priority as a homotopy invariant to par-
tition the collision-free portion of the coordination space into convex, polygonal subre-
gions by considering the robots of R pairwise. To this end, we introduced two sets of
decision variables: the (time-independent) priority variables πi j , encoding which robot
should first go through the conflict region, and the time-dependent subregion indicators
ε∥i j (k) and ε⊥i j (k), determining when the robots should go from one subregion to another.
Moreover, we proposed a simple dynamic model for the robots, which is sufficient to cap-
ture a large range of actuating limitations – although important dynamic effects such as
skidding in high-velocity curves are neglected.

In doing so, we cast the multi-robots coordination problem as a constraint satisfaction
one that can be encoded in a mixed-integer quadratic programming framework provided
a suitable objective function is chosen. We argue that using priorities as a means to ren-
der the underlying decision-making problem explicit provides interesting properties and
allows efficiently solving a large class of problems by simply changing the cost function,
as will be illustrated in Chapters 5 and 6.
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Chapter 5

Optimal coordination of robots along
fixed paths

“ The best for the group comes when everyone in the group
does what’s best for himself and the group. ”

John Nash
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5.1 Time-optimal coordination

In the previous chapter, we used priorities as decision variables to encode the multiple
choices arising in the multi-robot coordination problem, and formulated a set of mixed-
integer constraints to ensure collision avoidance between robots with a simple second-
order dynamic model. This formulation, however, is not complete without an objective
function to be chosen according to an actual problem. In this chapter, we focus on time-
optimal coordination of robots, i.e. finding the solution to the multi-robot coordination
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problem (problem 1) minimizing the completion time T. Formally, we define the time-
optimal coordination problem as:

Problem 3 (Time-optimal coordination along fixed paths). We consider a (finite) set of

mobile robots R at time t0, with robot i traveling along a fixed path γi :R→C
f

i . The time-
optimal coordination problem is that of finding a continuous velocity profile s∗ = (s∗i )i∈R

for the system of robots such that:

i. s∗ is a solution to the coordination problem (Problem 1) with completion time T∗,

ii. for any s solution of problem 1 with completion time T, we have T ≥ T∗.

The time-optimal coordination problem obviously finds applications in robotics, for
instance in automated warehouses with robots moving objects along aisles. In the field
of automated vehicles, this problem relates to the broader concept of autonomous inter-
section management (AIM), where vehicles cooperate with one another or with the road
infrastructure in order to improve safety and efficiency at road intersections. In the rest of
this section, we offer a review of the AIM literature – which is more advanced than that on
automated warehouses – to illustrate the gains of our approach over existing techniques.

Traffic lights are a means of coordinating vehicles in road intersections by alternat-
ing right-of-way between lanes to avoid possible collisions. Extensive research has fo-
cused on algorithms to determine good timings of the phases from a statistical perspec-
tive [69, 70] off-line; more recently, several authors have proposed using sensors [71, 72]
or communication [73] to adapt traffic lights phases and timing in real-time. However,
this coordination scheme is in the end limited by its relative coarseness, which can lead
to vehicles idling unnecessarily and therefore increase pollution, travel time and conges-
tion.

Naumann et al. are the first to propose further improving intersection management
by providing finer control over the vehicles. In this scheme, each vehicle reserves an area
of the intersection for a certain duration, and only the vehicles having a valid reserva-
tion can enter at a given time [13]; Dresner et al. later perfected this approach to ac-
commodate a larger number of vehicles [74]. A limitation of such algorithms is that the
order in which reservations are granted has a significant influence on the efficiency of
the autonomous intersection. For instance, reference [74] uses a simple first-come, first-
served (FCFS) policy to grant reservations, which is paradoxically known to be less effi-
cient than pre-timed traffic lights for higher levels of traffic [75]. Some refinements to the
reservation-granting policy have been proposed (see, e.g., [76, 77]), but these techniques
remain heuristic and provide no optimality guarantee. As mentioned in the introduction
of Part I, these reservation-based algorithms effectively correspond to a job scheduling
approach solved using a greedy heuristic.

Other authors have proposed optimization-based algorithms of the job scheduling
formulation. A classical assumption is to discretize robots paths into segments of prede-
termined length (not necessarily equal), and ensure collision avoidance by requiring that
two robots cannot simultaneously occupy conflicting segments. In [61], this assumption
is translated into a mixed-integer nonlinear programming (MINLP) problem, which can-
not be solved in reasonable time; for this reason, approximations of the vehicle dynam-
ics are made to cast the MINLP problem into two simpler mixed-integer linear program-
ming (MILP) problems. Similarly, Digani et al. [78] use a minimum-velocity hypothesis to
formulate a (non-convex) quadratic programming problem for multi-robot coordination
with kinematic constraints. Despite recent advances in such formulations (see, e.g., [79]),
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handling kinematic or dynamic constraints in a spacially-discretized coordination prob-
lem remains impractical and requires approximations which can lead to suboptimality or
infeasibility issues.

By contrast, few literature entries have considered using motion planning techniques
for autonomous intersection management although this approach has been used, e.g.,
for collision avoidance between spacecrafts [80]. In this chapter, we propose to use the
priority-based decision-making framework presented in Chapter 4 in order to solve the
time-optimal coordination problem.

5.2 Problem modeling

We consider a set R of n robots evolving on predetermined paths, and we assume
that coordination between robots is only needed inside a bounded region, which we call
the coordination region. In the case of automated driving, for instance, coordination is
primarily needed in the middle of a road intersection (Figure 5.1), while vehicles only
need to keep a safe distance from the vehicle in front of them when they are not inside
the intersection. In this example, the coordination region would be chosen as the center
of the intersection and a portion of the roads leading to, and exiting from this center.

As in Chapter 4, each robot i ∈R is supposed to follow a predetermined path γi inside
the coordination region with the dynamics described in Section 4.5; we denote by si the
curvilinear position of robot i along its path and vi = ṡi its longitudinal velocity. The ve-
locity is non-negative bounded such that vi ∈ [0, v i ] and we assume that the longitudinal

acceleration ai of robot i is bounded to an interval
[

ai , ai

]
with ai < 0 < ai .

The origin of si is chosen so that si = 0 when the front of the robot enters the coordi-
nation region, and si = sout

i > 0 when it fully exits the coordination region, and we define
the goal region Gi = [sout

i ,+∞). si can therefore be interpreted as the distance traveled by
robot i inside the coordination region, and the goal is reached when exiting this area.

We assume that robot i enters the coordination region at time t i n
i with speed v i n

i ∈
[0, v i ], and is required to leave the coordination region with speed vout

i ; we let t out
i denote

the corresponding exit time. Note that vout
i should be properly chosen to avoid collisions

outside of the coordination region.

Coordination
region

North

West East

South

Figure 5.1 – Example of paths inside and outside the coordination region for a two-lanes road
intersection.
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5.3 MILP formulation

We now formulate the time-optimal coordination problem as a mixed-integer linear
program. For the problem to be tractable, we consider a finite horizon Kτ (corresponding
to K + 1 time steps indexed by k ∈ {0, . . . ,K}), and we require that Kτ is large enough to
guarantee that all robots can reach their goal by the end of the horizon.

The results of Chapter 4 allow fully encoding the collision-avoidance and dynamic
constraints on the system of robots, and are used as-is in our MILP formulation. To
complete this generic framework, we now add a few problem-specific variables and con-
straints as presented below.

5.3.1 Problem-specific constraints

For each robot i and at each time step k, we introduce a pair of (binary) indicator
variables µk

i and σk
i as:

µk
i = 1R+(sk

i ) and (5.1a)

σk
i = 1Gi (sk

i ). (5.1b)

Therefore µk
i = 1 if robot i has entered the coordination region at step k and 0 otherwise,

and σk
i = 1 if ro bot i has exited the coordination region at step k (i.e., sk

i ≥ sout
i ), and

σk
i = 0 otherwise.

To account for the initial and terminal constraints on the problem, we enforce:

µk
i = 0 ⇒vk+1

i = v i n
i , (5.2a)

σk+1
i = 1 ⇒vk

i = vout
i , (5.2b)

v0
i =v i n

i , (5.2c)

s0
i = − v i n

i t i n
i , (5.2d)

sK
i ≥ sout

i (5.2e)

(5.2f)

for all i ∈ R and all k ∈ {0, . . . ,K −1}, where K is the final time step of the problem. Note
that by design, constraint (5.2e) guarantees that all robots eventually exit the coordination
region; therefore, any feasible solution is sure to be deadlock-free.

5.3.2 Objective function(s)

The optimality criterion in problem 3 corresponds to minimizing k such that, for all
i ∈R, σk

i = 1. A possible method to design a suitable objective function corresponding to
this criterion relies on introducing a set of auxiliary binary variables Tk , with constraints

Tk = 1 ⇒
∑

i∈R

σk
i = n, (5.3)

and using

Φ1(X) =
K∑

k=0
Tk (5.4)

as objective function to be maximized, where X denotes the set of all problem variables.

40



5.3. MILP formulation

13

2

G1 = G3

G2

Figure 5.2 – Example of individual suboptimality using global completion time as optimization
function. The red robot (3) has a much longer path to travel than the others, and the global com-
pletion time therefore almost only depends on that of 3.

A limitation of using objective function Φ1 is that this optimization criterion can lead
to very “inefficient” decisions on the scale of individual robots, as it does not discrimi-
nate between solutions having the same global completion time. To illustrate this issue,
consider the case depicted in Figure 5.2 where one robot (denoted 3) has a much longer
path to travel than the others, i.e. Φ1 almost only depends on the arrival time of robot 3.
In this case, Φ1 will evaluate similarly a situation where robot 2 first crosses, then robot 1
proceeds as soon as possible, and a situation where robot 1 waits for 3 to catch up before
moving forward. This may or may not constitute an issue in the case of automated ware-
houses, depending on whether robots have more tasks to accomplish after the current
one. However, this is not an acceptable behavior in the case of autonomous intersection
management.

For this reason, it may be desirable to use a finer granularity in the objective function,
using

Φ2(X) = 1

n

∑
i∈R

K∑
k=0

σk
i . (5.5)

MaximizingΦ2 corresponds (as the time step duration τ goes to 0) to minimizing the aver-
age completion time of all robots, and therefore optimizes individual travel times within
the limits of reaching the same global average minimum. In other words, objective func-
tion Φ2 allows selecting the “best” solution for the group of robots, in the sense of Nash’s
quote at the head of this chapter.

Despite its merits, Φ2 may still not be best suited for practical applications, where to
value of τ cannot be made arbitrarily small due to the limited computational power avail-
able. Indeed, Φ2 does not distinguish solutions with completion times differing by less
than the duration of a time step for at least one robot. To correct this issue, we make use
of the fact that maximizing the speed of a robot allows to minimize its (non-discretized)
completion time. Therefore, we propose adding an “averaged normalized speed” term to
function Φ2, and define

Φ3(X) =Φ2(X)+ 1

nK

K−1∑
k=0

vk
i

vi
= 1

n

∑
i∈R

(
K∑

k=0
σk

i +
1

K

K−1∑
k=0

vk
i

vi

)
. (5.6)

Objective function Φ3 allows selecting the solution with highest average speed and thus
smallest continuous completion time. The weighing of the added term ensures that this
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solution is still optimal for Φ2 since
∑K−1

k=0
vk

i
vi

≤ K. Note that this function is linear in the
problem variables.

5.3.3 Optimization problem

For the above reasons, we propose to use Φ3 as objective function; the time-optimal1

coordination problem can then be expressed under the mixed-integer linear program-
ming framework as:

Minimize
X

Φ3(X) (5.7)

subject to constraints (4.6), (4.7), (4.9) and (5.2)

Solving eq. (5.7) of course provides the optimal decision regarding robots ordering in
the form of pairwise priority relations. However, as our formulation couples the high-level
decision-making process with robots dynamics, it is also possible to get the optimal tra-
jectory for each robot corresponding to this ordering. As will be discussed in Chapter 10,
the tight coupling between dynamics and decision-making seems to be at the core of the
algorithm efficiency.

5.4 Simulation results

The use of the above optimization problem to find a time-optimal coordination has
been validated by computer simulation on the example of autonomous vehicles in the
intersection of Figure 5.1. The simulation is based on the free traffic modeling tool SUMO
[81] and uses its path generation algorithm to compute collisions sets. Note that some ad-
ditional “helper” constraints are introduced to improve computation time, as described
in Appendix B.1.

Vehicles are generated either deterministically (Section 5.4.1), or using random Pois-
son arrival times with normally-distributed entry speeds truncated to a minimum and a
maximum speed (Section 5.4.2). Optimization problem (5.7) is then run into the commer-
cial MILP solver Gurobi [67], using its Python interface to generate the constraints. Lastly,
if the problem is feasible, the solution trajectories are simulated in SUMO using the TraCI
interface to verify that they do not generate collisions.

In all simulations, vehicles are modeled as rectangles of 4 m length by 2 m width, with
ai = −3m s−2 and ai = 4m s−2. The exit speed for all i ∈R is set as vout

i = v = 15m s−1. The

entry speed v i n
i is deterministically chosen in the first simulation and is normally dis-

tributed with average 12 m s−1 and standard deviation 3 m s−1, truncated to [10,15] m s−1

in Section 5.4.2.
Simulations were performed on a personal computer running on a 3.60 GHz Intel Core

i7-4790 CPU with 16 GB of RAM, using version 6.5 of Gurobi. A replay of some of our
simulations is available online2.

5.4.1 Microscopic simulation

We first demonstrate the ability of our approach to find the global optimum on a sim-
ple example with three vehicles on the intersection of Figure 5.1: vehicle 1 goes from south

1With modified optimality criterion
2https://youtu.be/RiW2OFsdHOY
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Figure 5.3 – Optimal trajectories within given priority classes, corresponding to a global (left) and
local (right) optimum
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Figure 5.4 – Average computation time over 10 instances for a time step duration of 1 s and a vary-
ing number of vehicles.

to west, vehicle 2 from west to east and vehicle 3 from north to south. Vehicles initially
start at

(
s0

1, s0
2, s0

3

) = (0,0,25) m with speeds
(
v i n

1 , v i n
2 , v i n

3

) = (5,15,10) m s−1. Figure 5.3a
shows the globally optimal trajectories for each vehicle, which lies in the homotopy class
represented by priorities 3 Â 2, 2 Â 1, 3 Â 1. For comparison purposes, Figure 5.3b shows
the (locally) optimal trajectories when sub-optimal priorities 1 Â 3, 3 Â 2, 1 Â 2 are en-
forced. The optimum average completion time found by solving Equation (5.7) is 6.5 s,
and the example sub-optimal one is 8.4 s.

5.4.2 Computation time

We know that the motion planning problem we are trying to solve is NP-hard, and
the worst-case complexity of mixed-integer programming is3 O (2b) with b the number
of binary variables. As formulation Equation (5.7) uses a large number of binary variables
for the indicators, b can scale as high as O (n2K), thus theoretically leading to prohibitively
large computation times for even a few vehicles4.

To measure the computation time actually required to solve problem (5.7) for the in-
tersection displayed in Figure 5.1, we run the simulator for different numbers of vehicles
with a fixed time step of 1 s and a 30 s time horizon (i.e., K = 30); results are displayed

3If all integer variables are binary
4Evaluating complexity is actually much more difficult, as b actually scales as c2K where c is the number

of pairwise conflicts and therefore heavily depends on paths geometry. However, the n2K bound could be
reached, e.g. if all robots follow different paths, all of them intersecting at the same point.
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in Figure 5.4. Although computation time does scale exponentially as expected from the
theoretical analysis, it remains below 1 s for up to 9 vehicles which would make our ap-
proach suitable for real-world applications with reasonable levels of performance. Note
that the same time horizon is considered across all simulations to provide a fair compari-
son, while a shorter one could be used for problems involving fewer vehicles, thus further
reducing computation time. Moreover, time step duration τ can be adjusted depending
on the problem; Appendix B.2 discusses the influence of the chosen value of τ on solution
optimality.

Part of this impressive performance – as a theoretical complexity bound would be
292·30/2 ≈ 10182 – is to put to the credit of the very efficient heuristics leveraged by the
solver. Experimentally, we often observe that the solver terminates without needing to
branch, i.e. linear relaxation of the root node and simple rounding heuristics are suffi-
cient to find the optimal solution. Although the black-box behavior of the solver does not
allow studying this question, we argue that intrinsic properties of our formulation, no-
tably a well-established hierarchy between explicit decision variables (especially πi j ) and
kino-dynamic constraints, are key towards delivering this performance. Further study of
the problem structure could be a topic for future research.

5.5 Some results for traffic management

Before concluding this chapter, we propose to use our framework to provide addi-
tional insight on autonomous intersection management policies. Indeed, the bijection
between priority relations and homotopy classes of collision-free trajectories ensure that
any AIM policy can be enforced through priorities. In Sections 5.5.1 and 5.5.2, we study
the first-come, first-served (FCFS) ordering policy, i.e. where vehicle i is given priority
over j , if i enters the coordination region before j . In Section 5.5.3, we propose to derive
a heuristically “good” policy from our optimal coordination algorithm.

5.5.1 Trajectory-level simulation

In this first set of simulations, we compare the optimal trajectories obtained from
Equation (5.7), with those resulting when enforcing a first-come, first-served (FCFS) or-
dering. Figure 5.5 shows these trajectories, for a given set of 57 vehicles on a single-
lane, four-roads intersection. For illustration purposes, vehicles only travel from south to
north, and from east to west in this example; the collision area is shown in gray. It can be
seen that FCFS ordering causes a higher average completion time for vehicles, and in fact
saturates the intersection, as can be seen in the increasing time vehicles remain stopped.
By contrast, an optimal ordering allows the same vehicles to pass without stopping. Note
that this does not guarantee that an optimal ordering better serves each individual vehi-
cle; for instance, the vehicle with trajectory highlighted in red exits the intersection later
in the optimal ordering than in the FCFS ordering. A video of this simulation is available
online5.

5.5.2 Number of vehicles

It is known that first-come, first-served policies are often efficient for lower volumes
of traffic, whereas they lose efficiency when the number of vehicles increases [75]. Fig-

5https://youtu.be/U7I7x09Hkeo

44

https://youtu.be/U7I7x09Hkeo


5.5. Some results for traffic management

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

Time (s)

P
o

si
ti

o
n

(m
)

(a) First-come, first-served ordering

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

Time (s)

P
o

si
ti

o
n

(m
)

(b) Optimal ordering

Figure 5.5 – Trajectories of the vehicles in a single-lane intersection for FCFS and optimal ordering
of the vehicles. Notice that trajectories do not intersect in the gray area, which corresponds to the
collision region.

ure 5.6 shows the influence of the number of vehicles N on the average relative time loss
for the optimal priority assignment and FCFS ordering. This indicator is computed as
t

poli c y
i −t al one

i

t al one
i

, where t al one
i is the minimum completion time of vehicle i if there were no

other vehicle6, and t poli c y
i the completion time of the vehicle in the given policy. This data

has been computed over a set of 20 initial configurations on the intersection presented in
Figure 5.1.

5.5.3 Design of near-optimal policies

Due to the relatively high computation time of our optimal coordination algorithm, it
may be impractical to use it as-is for autonomous intersection management. However, as
mentioned in Chapter 2, finding a provably optimal solution may be less important than
finding a “good enough” one much faster.

In a MIP framework, it is indeed possible to reduce computation time by using a less
strict termination criterion for the solver. Indeed, the branch-and-bound algorithms used
in most solvers keep exploring the decision tree until the current solution is very close to
the best known bound for the objective function, usually with tolerated relative differ-
ence (or gap) of less than 10−4. In our particular formulation, we observe that the solver
generally finds a reasonably good solution quite fast, then spends a lot of time improving

6Let t acc
i = v i−v i n

i
ai

be the time needed for i to accelerate to v i , and d acc
i = vn

i t acc
i + 1

2 ai t acc
i

2 be the

distance covered by i during this acceleration phase. We define t al one
i = t acc

i + sout
i −d acc

i
v i

.
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Figure 5.6 – Comparison of average normalized delays for optimal and FCFS ordering for an in-
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for each policy.
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10−4 and 10−1, and for the time-receding approach with tolerance value of 10−1.

this solution to gain a few percents of optimality. For real-time applications, a possible
approach to decrease computation time is therefore to increase the maximum tolerated
gap, leading to a potentially sub-optimal solution in a much shorter time while ensuring
an upper bound on the loss of optimality. The red and blue curves in Figure 5.7 compare
the average computation times for a gap tolerance of 10−4 and 10−1 over 10 instances for
a time step duration of 1 s; in our test instances, the actual average optimality loss from
increasing gap tolerance to 10% is approximately 5%. Using this method, up to 14 vehicles
can be treated in less than a second, whereas only 10 vehicles can be treated in the same
time span with a gap tolerance of 10−4.

Another possibility for real-time applications is to use a receding time horizon ap-
proach. At each time step, the optimization problem can be solved while only consider-
ing the vehicles currently inside the coordination region, taking their position and speed
at the beginning of the time step as initial conditions. Vehicles inside the coordination
region are tasked to adjust their control to comply with the optimal trajectory. This pro-
cess can then be repeated at the next time step. In this approach, priorities assigned at
a given time step can still be modified in the following steps, which should have a very
limited impact on optimality. The green curve in Figure 5.7 shows the average computa-
tion time needed to converge (with a 10% gap tolerance and 1 s time steps), as a function
of the number of vehicles simultaneously present inside the coordination region. Using
this approach, up to 24 simultaneous vehicles can be treated in less than a second, which
becomes reasonable for real-world applications in medium levels of traffic.
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5.6 Chapter conclusion

In this chapter, we used the priority-based decision-making framework presented in
Chapter 4 to design a mixed-integer linear programming framework for time optimal co-
ordination of robots along fixed paths. To this end, we introduced a set of additional vari-
ables to formulate a linear cost function which allows minimizing the average completion
time, i.e. the time needed for each robot to reach its goal without colliding with another
robot. This technique can find application in purely robotics systems such as automated
warehouses, but is also of importance for cooperative autonomous vehicles as it allows
optimal management of an intersection without traffic lights.

Computer simulations show that, despite a prohibitive theoretical worst-case com-
plexity, our formulation is actually solved quite efficiently by state-of-the-art MILP solvers,
and can be used to compute solutions for problems containing up to 10 robots in real time
on a standard computer. This number can be further increased to roughly 25 robots si-
multaneously by allowing a bounded suboptimality of up to 10%.

Note that the solver only has knowledge of the problem through a set of linear in-
equalities, and is of course not aware of the underlying geometrical properties presented
in Chapter 4. Therefore, its performance can only originate from good sparsity and struc-
tural properties of the constraint matrix, and the powerful presolving heuristics leveraged
by the solver. Although it is difficult to evaluate the exact contribution of both factors, we
argue that our structuration of the coordination problem as a decision-making one is an
important contributor to the success of this algorithm.
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Chapter 6

Supervised semi-autonomy

“ An error doesn’t become a mistake until you refuse to
correct it. ”

Orlando A. Battista (Chemist)
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6.1 Supervised driving

In the previous chapter, we considered the (optimal) coordination of robots, with ap-
plications to fully automated vehicles in the framework of autonomous intersection man-
agement. However, the adoption of these technologies will probably be relatively slow, as
the median age of the car fleet is roughly 11 years in the US [82]. Therefore, non- and
semi-automated vehicles will likely coexist with fully automated systems for years, if not
decades.

In this chapter, we consider a method to ensure the safety of semi-autonomous ve-
hicles traveling on conflicting paths, for instance crossing an intersection or entering a
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highway, while remaining compatible with the presence of human drivers. To this end,
and inspired by earlier work in [83, 84], we propose a so-called Supervisor which moni-
tors control inputs from each vehicle’s driver, and is able to override these controls when
they would result in an unsafe situation. More specifically, the role of the supervisor is
twofold: first, knowing the current states of the vehicles, the supervisor should determine
if the controls requested by the drivers would lead the vehicles into unsafe inevitable col-
lision states [85]. In this case, the second task of the supervisor is to compute safe controls
– maintaining the vehicles in safe states – which are as close as possible to those actually
requested by the drivers. We say that such a control is minimally deviating.

The existing literature on semi-autonomous driving assistance is relatively scarce, pos-
sibly because the presence of human drivers brings a lot of additional complexity. The
goal of a semi-autonomous driving assistant is to help the driver avoid collisions, either
by notifying of a potential danger [86] or by taking over vehicle control in dangerous situ-
ations. To be accepted by human drivers, such systems should be as unobtrusive as possi-
ble and, in particular, should only intervene when necessary. Most of the currently exist-
ing literature on semi-autonomous driving mainly focuses on highway driving [87, 88, 89],
which presents a relatively low difficulty as vehicle trajectories remain mostly parallel.
This chapter aims at bringing semi-autonomy one step further, in order to allow cooper-
ative driving between semi-autonomous vehicles in more complex conflict situations.

Some of these more complex problems have already been studied in the literature.
In [90], the authors consider semi-autonomous driving at an intersection and propose
that human drivers let an automated system control their vehicle while crossing said in-
tersection. However, this scheme is somewhat intrusive as drivers completely relinquish
control for a time, and handing back controls to a potentially distracted driver poses prob-
lems by itself. Reference [83] introduced the idea of a supervisory instance (called super-
visor) tasked with preventing the system of vehicles from entering undesirable states by
overriding the controls of one or several vehicles. In this more human-friendly approach,
overriding only occurs when necessary, i.e. if an absence of intervention would result in a
crash.

Interestingly, determining if an intervention is necessary is equivalent to finding a fea-
sible solution to the multi-robot coordination problem presented in Chapter 4 and is, as
such, NP-hard [91]. The existing literature on supervised driving overwhelmingly rely on
the task-scheduling formulation of the coordination problem, and suffer from the usual
downsides of such methods. In [83], the proposed supervisor is only suitable for simple
intersection geometries with a single conflict point; moreover, no additional property is
required from the safe controls used for overriding, which can widely deviate from the de-
sired ones. Reference [92] leverages job-shop scheduling to develop a supervisor that con-
siders several possible conflict points inside the intersection; however, vehicle dynamics
are only modeled as first-order integrators; thus, vehicles are allowed to have infinite ac-
celeration capacities which is not realistic in a real-world setting. Reference [84] proposed
a Pareto-optimal supervisor leading to a minimally deviating formulation by recursively
finding the most constrained vehicle, reserving its optimal crossing time, and scheduling
the crossing of the remaining vehicles using the previous schedule as constraints. This
method allows to minimize the deviation between the overridden and desired controls,
but may be computationally intensive as all possible orderings of the vehicles have to be
considered. In the rest of this chapter, we demonstrate that the priority-based decision-
making framework developed in Chapter 4 can be used for supervised driving with good
performance. Moreover, we provide useful theoretical results regarding guarantees pro-
vided by receding-horizon approaches for infinite-horizon safety.
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(a) Crossroads

(b) Roundabout (c) Highway merging

Figure 6.1 – Examples of considered road configurations, and corresponding supervision areas
(interior of the dotted rectangles).

6.2 Supervision problem

We consider the problem of safely coordinating multiple semi-autonomous vehicles
on the road, in order to prevent collisions and deadlock situations where no vehicle can
move forward. Since vehicles are human-driven, a form of outside supervision is nec-
essary to prevent undesirable situations. This section presents our formulation of a so-
called Supervision problem generalizing the work of [83]; solving this problem yields a
provably safe control, as close as possible to the original intentions of the drivers.

6.2.1 Modeling

6.2.1.1 Supervision area

We consider an isolated portion of a road infrastructure used by semi-autonomous
vehicles, where some form of coordination is required to ensure vehicles safety. For in-
stance, this could be a classical road intersection, a roundabout or an entry or weaving
lane on a highway. We call this bounded portion of infrastructure the supervision area
and we assume that vehicles can travel safely outside of this area using only their adap-
tive cruise control (ACC) capacities. In a real-world setting, different critical portions of
infrastructure which are far enough apart can be considered individually, but need to be
treated jointly if traffic from one can influence another. Figure 6.1 shows examples of
roads configurations and the corresponding possible choice for a supervision area.

In this chapter, we present an embodiment of a Supervisor working over a spatially
static supervision area over time, which can be thought of as a dedicated computer on the
infrastructure or in the cloud. Vehicles are assumed to establish a connection to the su-
pervisor when they enter the supervision area (using, for instance, V2I communication),
and maintain it until they exit this region.
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6.2.1.2 A change of paradigm

Contrary to Chapter 5 where we require the time horizon of the problem to be large
enough for all robots to exit the coordination region, the supervised driving paradigm pre-
vents us from doing so as drivers could choose to remain stopped for an arbitrary amount
of time, e.g. in the case of an obstacle on the road. Moreover, we assumed in Chapter 5
that all robots involved in the coordination problem were known in advance; this is no
longer the case in this chapter, where we consider continuous arrivals of new vehicles.

For this reason, the rest of this chapter uses a receding horizon approach where we
only considered a subset of all the vehicles at any given time, and over a fixed time hori-
zon, and we denote by Rt the set of vehicles that are located inside the supervision area
at a time t . As we will demonstrate in Section 6.3.3, it is still possible to guarantee infinite
horizon safety for all vehicles even though we only consider a (sufficiently long) finite
horizon problem.

Another difficulty arising from this change of paradigm is that deadlock avoidance is
no longer guaranteed by the design of the optimization framework, as this was the case
in Chapter 5. Therefore, naive algorithms could result in situations where no vehicle is
able to move forward, thus requiring additional constraints that are presented in Sec-
tion 6.2.1.6.

6.2.1.3 Semi-autonomous vehicles

We consider semi-autonomous vehicles equipped with advanced driver assistance sys-
tems, many of which are already commercially available, and Vehicle to Infrastructure
(V2I) communication capacities. In particular, vehicles are assumed to have advanced
cruise control, automated braking and lane keeping assistance systems such that acceler-
ating, braking and steering can be actuated by an onboard computer. Moreover, we sup-
pose that vehicles have access to reliable cartographic data and are capable of precisely
measuring their current position, orientation and velocity relative to a unique global frame,
for instance using GNSS and inertial navigation.

Since the vehicles are not assumed to have advanced environment-sensing capacities
(e.g., LIDAR data), they are not able to handle all situations and still require a human
driver to safely navigate, for instance in the case of on-road obstacles or loss of GNSS
signal. Moreover, lateral collisions or deadlock situations can happen due to human error,
justifying the need for supervision.

Moreover, we assume that systems such as lane-keeping assistance allow the vehicles
to follow one of several predetermined reference paths with a small bounded lateral er-
ror. Therefore, we assume that the fixed-path hypothesis of Chapter 4 still holds and that
collision-regions between paths can be computed in advance and inflated to account for
the maximum lateral tracking error of the vehicles. We maintain the convention that si = 0
when the front bumper of i enters the supervision area, and we let sout

i > 0 be the position
at which the rear bumper of i exits the supervision area.

6.2.1.4 Vehicle dynamics

As in previous chapters, we mostly focus on the longitudinal dynamics of the vehicles
and we use the second-order integrator model presented in Section 4.5, and we denote
by xi = (si , vi ) the state of vehicle i . As before, we assume that vi ∈ [0, v i ] (with v i > 0)
at all times, and that the acceleration ui = s̈i of each vehicle is bounded as ui ∈ [ui ,ui ],
with ui < 0 < ui . These bounds can differ between vehicles, thus allowing heterogeneous

52



6.2. Supervision problem

i
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DiAi

Figure 6.2 – Illustration of the no-stop region Di and acceleration region Ai inside the supervision
area (dotted rectangle).

vehicle performance. At a given time t , we let Ut =
∏

i∈Rt [ui ,ui ] be the set of admissible
accelerations for the vehicles of Rt . We denote by boldface x = (xi )i∈Rt and u = (ui )i∈Rt

the state and control for the system of vehicles.
In what follows, we let vmax > 0 be a global upper bound for v i , ua > 0 a lower bound

for ui and ub < 0 an upper bound for ui such that for all t ≥ tκ and all i ∈ Rt , v i ≤ vmax

and ui ≤ ub < 0 < ua ≤ ui . Therefore, all vehicles are capable of braking with ub and
accelerating with ua ; finally, we let umax be a global upper bound for ui .

6.2.1.5 Collision regions

In this chapter, we consider the possibility of collision regions having multiple con-
nected components, as illustrated in Figure 4.3 (page 30). In this case, we denote by Cp

i j

its p-th connected component, with the convention Cp
i j = Cp

j i .

6.2.1.6 No-stop regions

To prevent creating deadlock situations, vehicles are not allowed to stop when doing
so would block traffic in other directions. To this extent, we define a no-stop region Di

(illustrated in Figure 6.2) for each vehicle i ∈Rt as the smallest interval Di =
[

s⊥i , s⊥i
]

con-

taining all min
(
Πsi Cp

i j

)
for all t ′ ≥ t , j ∈Rt ′ and all p such that (0,0) ∉ Cp

i j ; in this formula,

Πsi is the projection operator on the first coordinate. The no-stop region corresponds to
the part of the supervision area where a vehicle may have to yield to another; if Cp

i j con-
tains (0,0), then either i or j enters the supervision area behind the other, in which case
the relative ordering of the vehicles is given and the Cp

i j does not count in Di .

Note that, although this definition theoretically requires knowledge of all future vehi-
cles, Di can be computed off-line as a finite intersection of intervals provided that there
only exists a finite number of possible paths inside the supervision area. In what follows,
we let vmi n > 0 be a minimum allowed speed for any vehicle inside its no-stop region, and
we assume that vmi n ≤ v i for all vehicles.

For a no-stop region Di , we define the corresponding acceleration region Ai =
[
sacc

i , s⊥i
]

such that, if vehicle i is stopped at sacc
i , it can reach a speed vmi n before reaching s⊥i . More

specifically, we require that 0 ≤ sacc
i ≤ s⊥i −

vmi n
2

2ua
for all i . Inside the acceleration region, ve-

hicles are only allowed to accelerate; this condition prevents vehicles from stopping right
before the entrance of the no-stop region, leaving them unable to proceed forward due to
the minimum speed requirement. Figure 6.2 illustrates an example of the no-stop regions
and the corresponding acceleration regions.
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6.2.1.7 Time discretization

Drivers continuously change the control input of their vehicle; however, due to com-
putational and communication constraints, it is impractical to handle functions of a con-
tinuous variable. For this reason, we choose a constant time step duration τ> 0, and we
assume that all vehicles use piecewise-constant controls with step τ, typically 0.5 s. To
simplify the formulation, we further assume that vehicles update their control simulta-
neously at times tκ = κτ for κ ∈N, and we denote by Uτ(tκ) the set of piecewise-constant
admissible controls for the vehicles of Rtκ . By definition, for all t ≥ tκ and all u ∈ Uτ(tκ),
u(t ) ∈ Utκ .

6.2.2 Problem statement

Before presenting the so-called supervision problem, we first define the safety criterion
for the vehicles inside the supervision area at a given time.

Definition 3 (Safe state). We say that the supervision area is in a safe state xκ at time tκ if
there exists an admissible piecewise-constant control u ∈Uτ(tκ) defined over [tκ,+∞) such
that, under this control and starting from xκ, for all t ≥ tκ and all i , j ∈Rtκ ,

(
si (t ), s j (t )

) ∉
Ci j . Such a control is said to be a safe control.

With this definition, the supervision area is in a safe state when all the vehicles in-
side this region can apply a dynamically admissible, infinite horizon control without risk
of collision. This safety condition corresponds to a contraposition of the notion of “in-
evitable collision state” proposed by Fraichard et al. [85]. In what follows, we denote by

U
sa f e
τ (tκ) the set of safe and dynamically admissible piecewise-constant controls for the

vehicles in Rtκ ; by definition, a control u ∈ U
sa f e
τ (tκ) is a piecewise-constant function

from [tκ,+∞) to Utκ . We now define the safety condition for vehicles entering the super-
vision area.

Definition 4 (Safe entry). Consider a safe state xκ at time tκ and let t1 > tκ be the first time
at which a new vehicle enters the supervision area. We say that the vehicles of Rt1 \ Rtκ

safely enter the supervision area with a margin τ if any safe control u ∈U
sa f e
τ (tκ):

• keeps the system of the vehicles of Rt1 safe at time tκ+τ and

• remains safe over [tκ,+∞) for the vehicles of Rtκ ,

regardless of the control applied by the vehicles of Rt1 \Rtκ over [t1, t1 +τ].

This definition ensures that a safe control computed for the vehicles of Rtκ remains
safe after new vehicles enter, i.e. the entry of new vehicles does not invalidate previously
safe controls. Moreover, we assume that we can safely exclude vehicles departing the
supervision area from the safety verification problem, i.e. that drivers can follow the pre-
viously departed vehicles safely even in the absence of supervision. We will show in Sec-
tion 6.3.3 that these hypotheses allow discrete-time supervision with continuous vehicle
arrival.

In the remainder of this chapter, we consider a centralized supervisor working in dis-
crete time steps of duration τ, and we assume that new vehicles always enter safely with a
margin τ. At the beginning of each time step κ, the supervisor receives information about
the desired longitudinal control of each vehicle for the next time step, denoted by uκ

i ,des .
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The collection of these desired controls for the vehicles of Rtκ defines a constant desired
system control uκdes defined over [tκ, tκ+τ).

This control may, or may not, lead the system of vehicles into an unsafe state. The su-
pervisor is tasked with preventing the system from entering an unsafe state, by overriding
the desired control if necessary. To remain compatible with human drivers, it is desirable
that the supervisor has several properties, namely being least restrictive and minimally

deviating. Letting U
sa f e
τ,κ (tκ) be the restriction of the functions of U

sa f e
τ (tκ) to [tκ, tκ+τ),

we define the least restrictive supervision problem:

Definition 5 (Least restrictive supervision). Consider a safe state xκ at time tκ = κτ, a de-
sired system control uκdes and assume that all new vehicles enter the supervision area safely
with a margin τ. The least restrictive supervision problem (SP) is that of finding a control

uκsa f e ∈U
sa f e
τ,κ (tκ) such that uκsa f e = uκdes if uκdes ∈U

sa f e
τ,κ (tκ).

Note that this definition corresponds to that of [83] in our generalized setting. Such
a supervisor is least restrictive because overriding only occurs if the initially requested
control would lead the vehicles in an unsafe state. However, it is also desirable that the
control used for overriding is chosen close to the drivers’ desired control. Extending the
work in [84], we define the minimally deviating supervision problem as follows:

Definition 6 (Minimally deviating supervision). Consider a safe state xκ at time tκ = κτ,
a desired system control uκdes and assume that all new vehicles enter the supervision area
safely with a margin τ. The minimally deviating supervision problem (SP∗) is that of find-
ing a constant control u∗κ

sa f e such that:

u∗κ
sa f e = argmin

u∈U
sa f e
τ,κ (tκ)

||uκ−uκdes || (6.1)

where || · || is a norm defined over Utκ .

Note that, from this definition, any solution to SP∗ is a solution to SP.
This concept of minimally deviating supervision corresponds to a different fail-safety

paradigm that could be found in, e.g., rail transportation where all trains in an area should
perform an emergency braking when an incident occurs. The reasoning behind defini-
tion 6 is that, to improve efficiency without sacrificing safety, intervention is only per-
formed on vehicles which are actually at risk, and does not necessarily result in a full sys-
tem stop. However, at the level of individual vehicles, the safe overriding control u∗κ

sa f e
may differ greatly from the driver’s input, e.g. braking instead of accelerating.

6.3 Infinite horizon formulation

In this section, we will show that the minimally deviating supervision problem can
be solved using mixed-integer quadratic programming (MIQP) using the priority-based
decision-making framework presented in Chapter 4.

The sketch of this section is as follows: in Section 6.3.1, we formulate an infinite hori-
zon MIQP problem at the beginning of a time step κ (corresponding to time tκ = κτ).
Assuming the state xκ is safe, we show in Section 6.3.2 that this formulation can be used
to find a minimally deviating safe control for the vehicles in Rtκ . We will then show in
Section 6.3.3 that, if the vehicles of Rtκ follow the corresponding control, our formula-
tion expressed at tκ+1 = (κ+1)τ remains feasible for the vehicles of Rtκ+1 , provided that
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all new vehicles enter safely with a margin τ. These properties ensure that our infinite
horizon MIQP formulation can be solved in a receding horizon fashion, to ensure safety
for all future vehicles.

6.3.1 MIQP model

The idea behind our MIQP approach stems from the observation that SP∗ corresponds
to an “optimal” motion planning problem for the system of vehicles, where only the first
time step is used to evaluate optimality. Therefore, it is possible to use the constraints1

presented in Chapter 4, applied at all time steps k ≥ κ and for all vehicles of Rtκ , for most
of the supervision problem. The additional constraints are described below.

6.3.1.1 Deadlock avoidance

As described in Section 6.2.1.6, we require all vehicles to maintain a minimum speed

inside their no-stop region Di =
[

s⊥i , s⊥i
]

. This requirement is enforced by defining addi-

tional binary variables, for all i ∈Rtκ and all k ≥ κ:

ζacc
i (k) =1[sacc

i ,+∞) (sk
i

)
(6.2a)

ζi n
i (k) =1[s⊥i ,+∞) (sk

i

)
(6.2b)

ζout
i (k) =1[

s⊥i ,+∞
) (sk

i

)
(6.2c)

ηi (k) =1[vmi n−uaτ,+∞)

(
vk

i

)
(6.2d)

and using the constraints:(
ζacc

i (k)∧¬ζi n
i (k)∧¬ηi (k)

)
⇒ vk+1

i ≥ vk
i +uaτ, (6.3a)(

ζi n
i (k)∧¬ζout

i (k)
)
⇒ vk

i ≥ vmi n . (6.3b)

As long as the acceleration regions Ai are large enough, constraint (6.3a) prevents vehicles
from remaining blocked due to the minimum speed requirement (6.3b). We will show in
the next section that these conditions effectively prevent deadlocks for all future times.

6.3.1.2 Initial conditions

The supervision problem is used in a receding horizon fashion, and we consider that
the state of each vehicle of Rtκ at time tκ is known before solving the problem. Therefore,
we use the following initial condition for all i ∈Rtκ :(

sκi , vκi
)= (si (tκ), vi (tκ)) (6.4)

6.3.2 Objective function

Any piecewise-constant control verifying the constraints of Chapter 4 as well as con-
straints (6.3a), (6.3b) and (6.4) for all k ≥ κ is dynamically admissible and prevents colli-

sions for all future times, and is therefore in U
sa f e
τ,κ (tκ). To remain compatible with hu-

man driving, we now formulate an objective function allowing to find a least restrictive

1To account for multiple connected components in Ci j , one variable πi j and one set of variables εi j

are, in this case, introduced for each connected component.
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and minimally deviating control given a desired control uκdes = (uκ
i ,des)i∈Rtκ

. In what fol-
lows, we let (wκ

i )i∈Rtκ
be a set of strictly positive weights, X be the tuple of all the problem

variables, and we define:

Φκ(X) =
∑

i∈Rtκ

wκ
i

(
uκ

i −uκ
i ,des

)2
. (6.5)

Noting πuκ the projection operator such that πuκ(X) = uκ, we deduce the following theo-
rem:

Theorem 1. The solution of the optimization problem:

Minimize
X

Φκ(X) (IH-SP)

subject to ∀k ≥ κ,constraints (4.6), (4.7), (4.9), (5.2), (6.3a), (6.3b) and (6.4)

provides a solution πuκ(X) to the minimally deviating supervision problem SP∗ at time tκ,
for the norm associated with Φκ ◦πuκ .

Note that the weighting terms wκ
i allow distinguishing between different types of traf-

fic participants, for instance to prioritize emergency services or high-occupancy vehicles.
More complex cost functions can also be used, for instance to penalize a forced accelera-
tion more than a forced braking.

6.3.3 Receding horizon properties

We now assume that there exists a solution to IH-SP at time tκ, that the vehicles of Rtκ
follow this solution control over [tκ, tκ+τ], and that the vehicles of Rtκ+1 enter safely with
a margin τ. From Definitions 3 and 4, we have the following theorem:

Theorem 2 (Recursive feasibility). Let τ> 0, κ≥ 0, tκ = κτ and tκ+1 = tκ+τ. Assume that:

• there exists a solution to IH-SP at time tκ for the vehicles of Rtκ ,

• the vehicles of Rtκ follow this solution control over [tκ, tκ+1],

• the vehicles of Rtκ+1 \Rtκ enter safely with a margin τ.

Then there exists a solution to IH-SP at time tκ+1 for the vehicles of Rtκ+1 .

Proof. From definitions 3 and 4, and using theorem 1, we know that the first two hypothe-
ses guarantee that the vehicles in Rtκ are in a safe state at time tκ+1. Moreover, the third
hypothesis ensures that the vehicles in Rtκ+1 also are in a safe state at tκ+1 regardless of
the control applied by the vehicles of Rtκ+1 \ Rtκ up to time tκ+1. By definition 3, there
exists a feasible solution to IH-SP thus proving the theorem.

We now state that the IH-SP formulation effectively prevents the apparition of dead-
locks; the proof of this theorem can be found in Appendix C.1.1.

Theorem 3 (Deadlock avoidance). Let κ ≥ 0 and assume that, for all κ ≤ k ≤ κ0, the con-
ditions of theorem 2 remain satisfied at time tk . There exists a feasible solution of IH-SP at
time tκ0 in which all the vehicles in Rtκ0

exit the supervision area in finite time.
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Note that theorem 3 only ensures that, at all times, there exists a solution where all
the vehicles inside the supervision at this particular time eventually exit. However, there
is no guarantee that such a solution will actually be selected, for instance if one driver
wishes to stop although there is no other vehicle. There is also no fairness guarantee, i.e.
it is possible that one vehicle is forced to remain stopped for an arbitrarily long time, for
instance if there is very heavy traffic coming from another direction. Future developments
will focus devising more complex objectives function to take traffic efficiency and fairness
into account.

6.3.4 Note on multiple paths choices

The above formulation assumes that the path of each vehicle is known in advance.
However, this may not be realistic in the context of semi-autonomous cars where drivers
can decide to change paths, for instance to avoid an obstacle on the road or use another
itinerary. Using additional variables to indicate the path to which a vehicle is assigned, our
formulation can be extended to handle multiple possible paths for each vehicle. As this
extension introduces important additional complexity in the notations, we only briefly
discuss the case of a single connected component in all Ci j .

Assuming that vehicle i can follow Ri possible paths2, we introduce the binary variable
Γr

i = 1 when vehicle i is assigned to path r , and 0 otherwise, and we now constrain the
subregion indicator ε depending on the value of the Γ variables:(

Γ
ri
i ∧Γr j

j

)
⇒ ε∥i j (k) = 1[

s∥i j ,ri ,r j
,+∞

) (
sk

i

)
, (6.6a)(

Γ
ri
i ∧Γr j

j

)
⇒ ε⊥i j (k) = 1[

s⊥i j ,ri ,r j
,+∞

) (
sk

i

)
, (6.6b)

where parameters si j ,ri ,r j correspond to the collision region between i and j when i fol-
lows path ri and j follows path r j . Moreover, we require each vehicle to be assigned to
exactly one path, i.e.

Ri∑
r=1

Γr
i = 1. (6.7)

This approach allows the solver to reassign vehicles to a different path to avoid possi-
ble collisions. Assuming that each vehicle has a desired path r des

i , adding a term:

∑
i

wΓ
i

(
1−Γr des

i
i

)
to the cost function (with weight wΓ

i sufficiently large) ensures that vehicles will be pref-
erentially assigned to their desired path, except in emergency situations.

6.4 An equivalent finite horizon problem

In Section 6.3.3, we presented an infinite horizon formulation to solve the minimally
deviating supervision problem. However, due to the infinite number of variables, this
formulation is not suitable for practical resolution. In this section, we derive an equivalent

2The choice of possible paths is, of course, dependent on the state of vehicle i . Furthermore, we assume
that all possible paths are equal up to the current position sk

i , so that the curvilinear position of the vehicle
is the same along each possible path.
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finite horizon formulation that can be implemented and solved using standard numerical
techniques.

In what follows, we let K ≥ 1 and we denote by FH-SPK the restriction of IH-SP at time
tκ to the variables at steps k with κ≤ k ≤ κ+K, and we only consider the constraints up to
step κ+K. The objective function is unchanged. A solution to FH-SPK at time tκ allows to
compute a control preventing collisions up to time tκ+Kτ; however, due to the dynamics
of the vehicles, the state reached at tκ +Kτ may not be safe. Since FH-SPK only has a
subset of the constraints of IH-SP, we can formulate the following proposition:

Proposition 1. Let K ≥ 1 and let X be a solution of IH-SP at step κ. The restriction of X to
the first K+1 time steps is a feasible solution to FH-SPK.

Using the global bounds ua , ub , umax and vmax defined in section 6.2.1.4, we will now
prove a reciprocal implication to proposition 1: if K is chosen large enough, any solution
of FH-SPK can be used to construct a solution of IH-SP.

The key idea of the proof lies in the choice of a planning horizon long enough to allow
any vehicle to fully stop; vehicles can then remained stopped in a safe state for an infinite
amount of time. The structure of the demonstration is as follows: lemma 1 gives a lower
bound on the time horizon to allow a single isolated vehicle to stop using discrete dynam-
ics, although with a potential risk of rear-end collisions from following vehicles. In propo-
sition 2, we give a slightly higher bound on the time horizon ensuring that all vehicles in a
line can safely stop without rear-end collisions. Finally, in proposition 3 we give a bound
on K ensuring the recursive feasibility of FH-SPK; this allows formulating theorem 4, stat-
ing the equivalence of FH-SPK and IH-SP. In this section, we only present sketches of
proofs for each result; detailed demonstrations can be found in Appendix C.1.2.

Lemma 1. At a time tκ, consider a horizon T = Kτ with T ≥ vmax
|ub | + τ. Let i ∈ Rtκ be a

vehicle for which there exists a piecewise-constant control (uk
i )κ≤k<κ+K such that, for all

κ ≤ k < κ+K, uk
i ∈ [ui ,ui ], corresponding to a dynamically feasible trajectory si (t ) over

[tκ, tκ+T+τ].
There exists a discrete control (ũk

i )κ≤k≤κ+K such that for all κ ≤ k ≤ κ+ K, uk
i ∈ [ui ,ui ]

and ũκ
i = uκ

i , and for which the corresponding dynamically feasible trajectory t 7→ x̃i (t ) =
(s̃i (t ), ṽi (t )) verifies s̃i (tκ+T+τ) ≤ si (t1 +T) and ṽi = 0 over [tκ+T, tκ+T+τ].

Sketch of proof. vmax
|ub | is an upper bound on the required time for any vehicle to stop by ap-

plying a control ub , which by definition is dynamically feasible. The additional τ accounts
for the fact that we require ũκ

i = uκ
i at the first time step.

In the following proposition and noting d·e the ceiling function, we prove a bound
ensuring that a line of vehicles can safely stop before the leader reaches its final computed
position at the end of the time horizon, without risk of rear-end collisions:

Proposition 2. At a time tκ, suppose that p vehicles of Rtκ (denoted by 1, . . . , p from rear to
front) are following one another. Consider a horizon

Tstop = Kstopτ≥
vmax

|ub |
+ (p −1)

(
1+

⌈
umax

|ub |

⌉)
τ+τ, (6.8)

and assume that every vehicle i ∈ {1, . . . , p} has a safe discrete control (uk
i )κ≤k<κ+K such that,

for all κ≤ k < κ+K, uk
i ∈ [ui ,ui ]. We let t 7→ xi (t ) be the trajectory over [tκ, tκ+T] for vehicle

i under control (uk
i ).
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For all i ∈ {1, . . . , p}, there exists a safe discrete control (ûk
i )κ≤k≤κ+K such that for all κ ≤

k ≤ κ+K, uk
i ∈ [ui ,ui ], ûκ

i = uκ
i and for which the corresponding dynamically feasible and

safe trajectory t 7→ x̂i (t ) = (ŝi (t ), v̂i (t )) verifies ŝi (tκ + T + τ) ≤ si (t1 + T) and v̂i = 0 over
[tκ+T, tκ+T+τ].

Sketch of proof. The worst case that needs to be taken into account corresponds to a situ-
ation where the initial states of the vehicles require each of them to accelerate in order to
avoid a rear-end collision from the vehicle behind. This rather extreme situation happens
when a vehicle goes faster than the one it is following, and the two are too close to allow
a safe deceleration. In this case, the rearmost vehicle can always brake with the control
from lemma 1, until it decelerates below the speed of the vehicle in front of it. The second
rearmost vehicle can then decelerate, then the third and up to the front-most vehicle. The

term
(
1+

⌈
umax
|ub |

⌉)
τ arises from the piecewise-constant control hypothesis, and vanishes

as τ goes to 0. Note that the condition Kstopτ ≥ vmax
|ub | +

vmax
ua

+τ also provides the same

guarantees, as the original safe control (uk
i ) cannot lead vehicles to go faster than vmax ;

depending on the value of p, this second bound might be more efficient.

Remark 3. The bound from proposition 2 depends on the number of vehicles in a line, and
can become quite high when p is large. It can be proven that the condition

Kstopτ≥
vmax

|ub |
+ vmax

ua
+τ (6.9)

also provides the same guarantees; depending on the value of p, this second bound might
be more efficient.

We can now prove the recursive feasibility of FH-SPK for a large enough K, as follows:

Proposition 3. Consider a time tκ, and assume that at most p vehicles are following one

another at all times t ≥ tκ. We set d = maxt≥tκ,i∈Rt

(
s⊥i − sacc

i

)
and we let Tstop be the stop-

ping horizon from proposition 2 for p vehicles; moreover, we define

Tr ec = Kr ecτ≥ Tstop + vmi n

ua
+ d

vmi n
+τ. (6.10)

We assume that all vehicles of Rt for all t > tκ enter safely with a margin τ.
Problem FH-SPKr ec is recursively feasible under the hypotheses of theorem 2, i.e. if there

exists a solution to FH-SPKr ec at time tκ for the vehicles of Rtκ , there exists a solution at
tκ+τ for the vehicles of Rtκ+τ.

Sketch of proof. The idea between the choice of Tr ec is to ensure that each vehicle can ei-
ther stop safely before entering its acceleration region (without generating rear-end colli-
sions), or has already planned to exit its no-stop region safely. Moreover, the safe entering
hypothesis ensures that the entry of new vehicles does not invalidate previously safe so-
lutions, which can therefore be extended.

We obtain the equivalence between IH-SP and FH-SPK:

Theorem 4. Problems IH-SP and FH-SPK with Kτ ≥ Tr ec are equivalent, i.e. an optimal
solution to one is also an optimal solution to the other.

Proof. Proposition 1 ensures that any optimal solution to IH-SP is a feasible solution of
FH-SPK. Proposition 3 shows that a solution to FH-SPK (with Kτ≥ Tr ec ) can be recursively
extended to a solution of IH-SP; therefore, the optimal solution of FH-SPK is feasible for
IH-SP. Using these two results, we deduce the stated theorem.
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An important corollary of theorems 1, 3 and 4 is that the control obtained by solv-
ing FH-SPK with K large enough is also a solution to the minimally deviating supervision
problem, and ensures deadlock avoidance as well. Contrary to IH-SP, FH-SPK is rela-
tively easy to solve with dedicated mixed-integer quadratic programming solvers, as will
be demonstrated in the following section.

6.5 Simulation Results

6.5.1 Simulation environment

The presented Supervisor framework has been validated using extensive computer
simulations on various test scenarios. In the absence of standardized test situations and
since no open-sourced implementation of comparable methods [83, 84] is available, this
section does not aim at a quantitative comparison with existing algorithms. Since our
Supervisor is by design guaranteed to output an optimal3 safe control, the major evalua-
tion criterion is rather its ability to handle a wider variety of traffic scenarios than existing
techniques, which is demonstrated in the rest of this section.

For implementation purposes, the resolution of the supervision problem is performed
off-line and simulations are run in two successive phases. In the first phase, we define the
geometry of the roads inside the supervision area and the corresponding possible paths,
and compute the collision and acceleration regions information for each pair of paths.
Since these sets only depend on the geometry of vehicles and paths, the corresponding
parameters are computed off-line.

In the second phase, we run the simulation by coupling the high-fidelity traffic and
physics simulator PreScan [93] with an external Python implementation of our supervi-
sor. The actual resolution uses the commercial MIQP solver GUROBI [67]; the Python
program runs a coarse simulation over a set time horizon with a fixed time step dura-
tion. Vehicles are generated using random Poisson arrivals, with a predefined arrival rate
for each possible path, while respecting the safe entering condition; the initial velocity of
each generated vehicle is chosen randomly according to a truncated Gaussian distribu-
tion. At each time step, the finite horizon supervision problem FH-SP is solved for the
vehicles inside the supervision area, and yields the best safe control for the set of vehicles.
The state of these vehicles at the next time step is then computed according to eq. (4.8).

In parallel, we use PreScan to validate the consistency of this output: from the safe
controls computed in the Python supervisor and knowing the reference paths of the vehi-
cles, we compute a target state comprising a desired position, heading and longitudinal
velocity for each vehicle. This target state is fed into a low-level controller which outputs a
steering and an acceleration or braking control. The vehicle model used in the validation
phase takes into account engine response as well as chassis and suspensions dynamics,
but does not model road-tire friction. PreScan’s collision detection and visualization ca-
pacities are then used to validate the absence of collision or dangerous situations. Note
that vehicles controllers are designed to ensure a bounded positioning error for any vehi-
cle, relative to their prescribed path and velocity profile. This error is taken into account
in the computation of the collision regions, so that the system is robust to control imper-
fections.

3Among the set of piecewise-constant controls with a given time step duration and in the sense of defi-
nition 6
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(a) Longitudinal positions; the shaded area is the collision region.
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(b) Longitudinal velocities

Figure 6.3 – Positions and velocities of the vehicles in the merging scenario; solid lines correspond
to vehicles on the entry lane and dashed lines to vehicles starting on the highway. The thick col-
ored portions show overriding intervals.

6.5.2 Test scenarios

In the rest of this section, we consider three test scenarios – chosen to represent a
wide variety of driving situations – consisting of merging on a highway, crossing an inter-
section or driving inside a roundabout. To showcase the performance of our framework
in avoiding accidents and deadlocks, we assume that drivers are “oblivious” and focused
on tracking a desired speed, regardless of the presence of other vehicles. A video of the
presented simulations is available online4.

6.5.2.1 Highway merging

We first consider a very simple highway merging scenario, where an entry lane merges
into a single-lane road; the possible paths for the vehicles are the same as in Figure 4.3c.
The collision region between a vehicle i in the entry lane and a vehicle j on the highway
have a single connected component given as s⊥i j = s⊥j i = 89m and s∥i j = s∥j i = 94m, taking
control errors into account.

To illustrate the action of the supervisor, we consider a set of six vehicles, three of
which are on the highway and three on the entry lane. All vehicles are assumed to have
“oblivious” drivers maintaining a constant speed, thus resulting in potential collisions.

4https://youtu.be/JJZKfHMUeCI
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Figure 6.4 – Positions and velocities of the vehicles in the intersection crossing scenario. The thick
colored portions show overriding intervals.

This admittedly unrealistic behavior has been chosen to generate a higher probability of
collisions in the absence of supervision. Figure 6.3 shows the longitudinal trajectories of
the supervised vehicles; colored (thick) portions of the lines represent intervals of time
during which overriding occurs. The area in gray corresponds to the collision region be-
tween entering vehicles and vehicles on the highway; thanks to the action of the supervi-
sor, all collisions are successfully avoided.

6.5.2.2 Intersection crossing

The second scenario is the crossing of a + shaped intersection by a total of eight vehi-
cles, with two vehicles per branch. In each branch, the front vehicle goes straight, and the
rear vehicle turns left; moreover, all vehicles in front start at the same distance from the
center of the intersection, and the same is true for the vehicles in the rear. This scenario
illustrates the symmetry-breaking capacities of our framework, which handles this per-
fectly symmetrical scenario well, as shown in Figure 6.4. The area in gray corresponds to
the collision region between vehicles on different branches. A video of a longer, one-hour
simulation is also available online5.

5https://youtu.be/cl32nbceZvw
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Figure 6.5 – Illustration of three possible classes of trajectories found by the solver, depending on
the initial states of the vehicles. Trajectories 1 and 2 correspond to one vehicle passing the two
collision points before the other. Trajectory 3 corresponds to the case where the vehicle on the
inner lane enters after the other, and overtakes it inside the roundabout.

6.5.2.3 Roundabout driving

Finally, the third scenario consists of vehicles driving inside a two-lane roundabout.
The particularity of this situation is that collision regions can have multiple connected
components, for instance for the paths shown in Figure 4.3b. Since our formulation
explicitly distinguishes each of these connected components, the supervisor is able to
choose an ordering for each point of conflict, as illustrated in Figure 6.5: depending on
the initial states and control targets of the vehicles, a different class of solution is chosen.
A video of a longer, one-hour simulation is also available online6.

6.5.2.4 Computation time

Due to the relatively short time horizon needed to ascertain infinite horizon safety,
computation time remains reasonable despite the NP-hardness of the MIQP formulation.
Figure 6.6 shows the evolution of the computation time in the intersection crossing and
roundabout scenarios; the limited available space in the merging scenario does not allow
enough vehicles for a similar diagram. These measurements have been obtained on a
computer equipped with an Intel Core i7-6700K CPU clocked at 4 GHz with 16 GB of RAM,
using the GUROBI solver in version 7.0. It can be seen that computation time remains
below the duration of a time step in 90% of cases for up to approximately ten simultaneous
vehicles, thus allowing real-time computation at 2 Hz.

Note that the difficulty of the MIQP problem only loosely depends on the geometry
of the paths. However, it is highly dependent on the average number of conflicts per ve-
hicle, which is higher in the case of roundabout driving, thus explaining the longer times
reported in Figure 6.6b. Moreover, the implemented algorithm has been devised for read-
ability over efficiency, and can be optimized by removing redundant variables to further
reduce computation time. In practice, this refresh rate means that vehicles could apply a
new acceleration every 0.5 s, which is faster than the typical reaction time of one second
for a human driver, and should therefore be barely perceived. Note that for practical im-
plementation purposes, the input of the supervisor should be predicted states at the end
of the computation period instead of current states; since the acceleration of each vehicle

6https://youtu.be/pLoG32wFnkE
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Figure 6.6 – Distribution of computation time depending on the number of vehicles, for τ= 0.5 s.
Shaded areas represent the [0,90%] percentiles.

is assumed to be known to the supervisor, these predictions can be easily performed by
forward integration.

6.6 Chapter conclusion

In this chapter, we demonstrated that a slight change to the objective function and
constraints in our priority-based decision-making framework can lead to dramatically
different applications, while maintaining the interesting properties of our formulation.
We argue that the resulting Supervisor offers at least levels of safety comparable to the
current state-of-the-art, and we demonstrated its capacity to handle a much wider range
of scenarios due to its generic formulation. Although the real-world feasibility of such
supervised driving schemes remains to be demonstrated, we provide some arguments in
favor of a possible implementation in Appendix C.2.

From a theoretical standpoint, we demonstrated important results regarding the equiv-
alence between safety verification on an infinite and a finite horizon, by providing a lower
bound on the verification horizon guaranteeing the safety of the vehicles for all future
times.
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Conclusion of Part I

In the first part of this thesis, we leveraged previous theoretical results on multi-robot
coordination to design a decision-based motion planning framework for a system of co-
operative robots. Using the concept of priority as decision variables, we proposed a mixed-
integer programming approach to encode the non-convex collision avoidance constraints
as a set of piecewise-linear inequalities. We then demonstrated that this generic frame-
work could be specialized by adding a few problem-specific constraints and designing a
suitable cost function.

In a first example of specialization, we proposed an algorithm for time-optimal co-
ordination of mobile robots, with applications to the field of autonomous intersection
management. In the second example of supervised semi-autonomous driving, we pre-
sented a method to detect and seamlessly correct critical driver errors that, uncorrected,
would lead to a collision. Moreover, we established useful theoretical results regarding the
equivalence between an infinite-horizon formulation and a finite-horizon one, provided
a lower bound on horizon is satisfied.

The results obtained in this first part demonstrate that proper modeling of the motion
planning problem – using fundamental results on the structure of the search space to
encode key decisions – helped achieve significant improvements compared to previous
state-of-the-art methods. Fundamentally, priority relations are a means to decompose
the (non-convex) search space into convex subregions. However, the performance of the
solver on an a priori intractable formulation leads us to believe that this particular choice
of decomposition better captures intrinsic properties of the problem, thus emphasizing
the critical role of decision-making in the case of cooperative motion planning.





Part II

Motion planning for autonomous driving





Introduction

In the first part of this thesis, we demonstrated that incorporating an explicit repre-
sentation of the discrete decisions involved in cooperative driving situations could help
design high-performance coordination algorithms. Leveraging previous results on the
structure of the solution space in multi-vehicle problems, we were able to represent these
decisions in the form of binary “priority variables” in a quite versatile optimization frame-
work. However, the underlying theory relies on the key assumption that vehicles follow
fixed paths which are known in advance. This hypothesis, although reasonable in the case
of fully automated, cooperative driving, is not suitable for autonomous vehicles having to
navigate among other traffic participants which may be operated by humans.

In Part II, we focus on such autonomous driving situations where an automated vehi-
cle (which we refer to as the ego-vehicle) has to plan a trajectory avoiding static and dy-
namic obstacles such as other traffic participants in a structured environment, i.e. along a
road. Automated systems capable of driving in a single lane while safely following another
vehicle are already commercially available, but these systems are generally incapable of
making tactical decisions such as changing lanes, overtaking or entering an intersection.
Some of these limitations stem from the difficulty of designing reliable perception and
scene understanding systems, which are out of the scope of this thesis. Another challenge
lies in efficiently handling the large number of discrete decisions that can be made even
in simple driving scenarios.

By analogy with Part I, analyzing these decisions as a means to encode classes of
collision-free trajectories seems a promising approach. Previous studies already estab-
lished that the number of classes grew at least exponentially with the number of obsta-
cles [29]. However, the existing literature does not provide a general framework to enu-
merate possible maneuver choices in a way which would be useful for motion planning.
In Part II, we propose a representation of these decisions in the form of a navigation
graph, which can then naturally be used to plan collision-free trajectories for the ego-
vehicle.

Sketch of Part II This part is divided into five chapters. In Chapter 7, we introduce a
fast, “decision-free” motion planning technique to drive a vehicle near its operational
limits. The existence of such algorithms, although potentially interesting per se, demon-
strates that trajectory planning is actually easy when decisions are already made, thus
justifying our study of decision-based motion planning. In Chapter 8, we present generic
considerations on the structure of the set of collision-free trajectories for a generic au-
tonomous driving problem. In Chapter 9, we describe our graph-based approach to rep-
resent classes of such trajectories in generic driving situations, provided that the future
behavior of all obstacles is known in advance. Finally, Chapter 10 describes a decision-
based motion planning algorithm, which uses the navigation graph to explore possible
decisions and select the one leading to the “optimal” trajectory.





Chapter 7

Decision-free, near-limits motion
planning

“ Have you ever noticed that anybody driving slower than
you is an idiot, and anyone going faster than you is a

maniac? ”

George Carlin (Humorist)
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7.1 Aggressive motion planning

Autonomous vehicles are widely expected to drive smoothly in order not to scare pas-
sengers and other road users, and to improve overall traffic safety; thus, automated ve-
hicles should usually follow the road speed limits closely. However, such speed limits
may not always exist (e.g., on some dirt roads) or they may not be followed safely due
to the road topology (e.g., mountain road with sharp curves) or weather conditions (e.g.,
icy road). Moreover, some emergency situations may require more aggressive maneuvers
to avoid potential accidents. Therefore, the ability to plan near-limits safe trajectories,
i.e. pushing the vehicle to its operational limits while ensuring collision avoidance, is of
particular importance but is little studied in the literature.

Indeed, many trajectory planning algorithms rely on an a-priori knowledge of a tar-
get velocity, that can either be an explicit parameter of the problem [94, 55] or be im-
plicitly given by requiring a set of target positions at fixed times [95, 96]. Some authors
have proposed using the road curvature [97] to provide an upper bound on the velocity,
which corresponds to a maximum lateral acceleration; this method can be extended to
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obstacle avoidance by first planning a collision-free path, then adjusting the velocity con-
sequently [98]. However, as path selection and velocity planning are intrinsically linked,
this approach can lead to severe inefficiencies.

For this reason, model predictive control (MPC) techniques are often used in the lit-
erature, since they allow to simultaneously compute a feasible trajectory and a sequence
of control inputs to track it. However, high-speed trajectory planning requires a complex
modeling of the vehicle to account for its dynamic limitations, which mainly come from
the complex and highly non-linear [99] tire-road interactions. Adding to this difficulty,
wheel dynamics are generally much faster (around 1 ms [100]) than changes of the ve-
hicle’s macroscopic state (typically 100 ms). Therefore, the existing literature is generally
divided between medium-term (a few seconds) trajectory planning including obstacle
avoidance for low-speed applications, mainly relying on simple kinematic models (see,
e.g., [101, 102]), and short-term (sub-second) trajectory tracking for high-speed or low-
adherence applications using wheel dynamics modeling (see, e.g., [103, 104, 105, 106]). In
the second case, obstacle avoidance is generally not considered (with the notable excep-
tion of [107]), and the existence of a feasible collision-free trajectory is not guaranteed in
the case of an unexpected obstacle. Note that sampling-based approaches [108] have also
been proposed in the literature; however, they do not provide optimality guarantees when
a finite number of samples is selected, and may have trouble finding a feasible solution in
complex scenarios.

In this chapter, we propose a middle-ground approach to allow trajectory planning
over a few seconds in highly dynamic situations. This approach relies on the use a simple
vehicle model derived from a realistic dynamic modeling of the vehicle body and wheels,
which accounts for tire slip effects using carefully estimated bounds on the dynamics.
Using this model, we design a non-linear trajectory planning framework, which is able
to track a predefined path (e.g., the road centerline) at high speed while avoiding obsta-
cles modeled as semi-infinite regions. As presented in the next sections, this modeling
hypothesis ensures that the planner does not have to make discrete decisions regarding
which side each obstacle should be avoided from1; we thus describe the planning prob-
lem as decision-free. The high performance of this algorithm, which is able to run in a
few milliseconds, illustrates the relative simplicity of decision-free motion planning, thus
demonstrating the need to consider these discrete decisions in order to improve trajec-
tory planning.

7.2 A simple second-order integrator model

As mentioned in the previous section, high-speed trajectory planning usually involves
dynamic behaviors such as load transfer between wheels2 as well as tire slip or skid, which
are ignored in most planning models such as the second-order integrator presented in
Section 4.5; Appendix D.2 presents a more realistic, 9-degree-of-freedom (abbreviated as
9DoF) vehicle model, taking such dynamics effects into account.

Theoretically, it is possible to use this 9DoF model inside a model predictive control
framework to directly compute an optimal trajectory and the corresponding controls.
However, standard optimization tools often struggle to solve problems involving highly

1Note that this hypothesis is not always sufficient; a short discussion about semi-infinite obstacles and
local optima can be found in Appendix D.1

2For instance, the inertia of the car body creates a roll moment when turning, resulting in more appar-
ent weight on the outer wheels. Similarly, a pitch moment is created when braking, causing more apparent
weight on the front wheels.
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Figure 7.1 – Envelope of the sets of feasible accelerations for different longitudinal velocities vx,0

and lateral velocity vy,0 ∈ [−0.2vx,0,0.2vx,0]; notice the slight deformation along the aX axis with
increasing vx,0.

nonlinear constraints or cost functions, as it is the case in the model presented in Ap-
pendix D.2 – notably due to disjunction (D.4) which makes τnon-differentiable. Addition-
ally, wheel dynamics generally occur over very small characteristic times – typically a few
milliseconds – which requires choosing a correspondingly small discretization time step,
making planning over long horizons impractical at best. For this reason, simplified mod-
els are very often preferred. Kinematic bicycle (or single-track) models [109, 101, 102], or
even simpler second-order integrator models [55] are therefore common in the trajectory
planning literature.

One of the main issues of these simplified models is that they are generally considered
to be imprecise when nearing the handling limits of the vehicle. To counter this problem,
we propose to use a constrained second-order dynamic model derived from simulation
data using the 9DoF model of Appendix D.2.

These sets are obtained using a random sampling method on the 9DoF vehicle model:
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we first compute (off-line) an envelope for the set of feasible longitudinal (aX), lateral
(aY) and angular (aψ) accelerations, as shown in Figure 7.1. Due to the shape of these
envelopes, we propose a constrained double integrator model for the vehicle dynamics.
This model considers a state vector x = [X,Y,ψ, vx , vy , vψ]T and a control u = [ux ,uy ,uψ]T,
with the same notations and reference frames as presented in Appendix D.2. The dynamic
equation of the system is ẋ = f2di (x,u) with

f2di (x,u) =
 vx cosψ− vy sinψ

vx sinψ+ vy cosψ
[vψ,ux ,uy ,uψ]T

 . (7.1)

To allow the use of this model in planning, we approximate the sets shown in Fig-
ure 7.1 as a set of convex linear and nonlinear constraints in the (aX, aY) plane as shown
in Figure 7.2. These constraints are expressed as:(aX

α

)2
+

(
aY

β

)2

≤ 1 (7.2)

ami n
X (vx,0) ≤ aX ≤ amax

X (vx,0) (7.3)

A[aX, aY, aψ]T ≤ b (7.4)

where A is a constant matrix, b a constant vector and ami n
X , ami n

Y depend on vx,0. More
detail on the derivation of this model can be found in Appendix D.3.

aX

aY

(a) Feasible set (blue) and approximation (red)

aX

aY

(b) Detail

Figure 7.2 – Convex approximation of the feasible accelerations in the (aX, aY) plane. The actual
region is shown in blue.

7.3 MPC formulation for trajectory planning

We now use the second-order integrator model developed in the previous section to
design a trajectory planner based on model predictive control. In this section, we as-
sume that the vehicle tries to follow a known reference path, for instance the centerline
of a given lane. The reference path γr e f is supposed to be given as a set of positions
(Xr e f ,Yr e f ); as obstacle avoidance is part of the MPC formulation, these positions can
simply be given through, e.g., high-definition cartography.

In this chapter, we assume that the ego-vehicle has no information on a safe choice
of longitudinal speed. Various possible scenarios can lead to this situation: in standard
on-road driving, the legal speed limit might be unsafe due to high road curvature (e.g.,
mountain roads) or low-adherence conditions; a speed limit might not even exist, for in-
stance on certain private roads or for racing applications.
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7.3. MPC formulation for trajectory planning

Furthermore, we assume that the vehicle needs to avoid obstacles on the road; we
only consider fixed obstacles with known positions and shapes. In this chapter, we do not
consider varying road adherence, and we suppose that the tire-road friction coefficient µ
is constant and equal for all four wheels.

Algorithm 1: Planning and control

Data: current state x(t0), γr e f , horizon T
find xclosest := point of γr e f closest to (X(t0),Y(t0))
set s0 := curvilinear position of xclosest

set hz := [s0, s0 + vx(t0)T]
set pX := fitpolynom(Xr e f

∣∣
hz , s − s0, 5)

set pY := fitpolynom(Yr e f
∣∣
hz , s − s0, 5)

find obs := list of relevant obstacles
find κ := max(abs(curvature(pX, pY, hz)))

set vmax := min
(
vx(t0)+aX(B)T,

√
µg /κ

)
compute xmpc := MPC(x(t0), pX, pY, vmax , T, obs)
apply low level control to track xmpc

The planning and control scheme works in several steps, as presented in Algorithm 1.
We first approximate Xr e f and Yr e f over the next planning horizon T as fifth order poly-
nomials of the curvilinear position, starting at the point of γr e f closest to the vehicle’s
current position. Using these polynomials, we compute the maximum (in absolute value)
of the path curvature over the planning horizon, noted κ, to determine an upper bound
vmax =

√
µg /κ for the speed of the vehicle in order to limit the lateral acceleration to µg

(as proposed, e.g., in [97]). Only the relevant obstacles, i.e. those for which a risk of col-
lision exists during the next planning horizon T, are effectively considered for collision
avoidance; we note O the set of these obstacles.

In order to avoid creating local optima, we only consider semi-infinite obstacles. Fun-
damentally, this hypothesis amounts to requiring that the decision on which side to avoid
each obstacle should be made before the trajectory planning phase. In practice, for each
obstacle o ∈ O we determine a bounding parabola3 as shown in Figure 7.3, such that the
collision avoidance constraints can be written as po(X,Y) ≤ 0, with po a second-order
multinomial function. The side of avoidance can, for instance, be chosen heuristically
based on whether the obstacle lies to the left or right of the reference path; however, the
simplicity of this scheme can result in infeasibilities, for instance when two close-by ob-
stacles are located on different sides of the reference path. Algorithms to choose the side
of obstacle avoidance are discussed in the next chapters.

At a time t0 corresponding to a vehicle state x(t0) (with an initial longitudinal speed
v0), we formulate the motion planning problem using model predictive control with time

3More information on the choice of these parabolas can be found in Appendix D.1
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CoM

Obstacle

γr e f

Figure 7.3 – Modeling of an obstacle as a parabola. The vertex and roots of the parabola are chosen
with enough margin to ensure that no collision can occur as long as the center of mass is outside
of the shaded region containing the obstacle.

step duration h and horizon T = Kh as follows:

min
(uk )k=0...K−1

J
(
(xk )k=0...K, (uk )k=0...K−1

)
(7.5a)

subj. to xk+1 −xk = h f2di (xk ,uk ) (7.5b)

x0 = x(t0) (7.5c)(uX

α

)2
+

(
uY

β

)2

≤ 1 (7.5d)

ami n
X (vx,0) ≤ aX ≤ amax

X (vx,0) (7.5e)

A[uX,uY]T ≤ b (7.5f)

uψ = γuY (7.5g)

∀o ∈O , po(Xk ,Yk ) ≤ 0 (7.5h)

for k = 0. . .K−1.

Note that, as it is often the case in the planning literature (see, e.g., [87]), collision avoid-
ance (eq. (7.5h)) is actually implemented as soft constraints to avoid infeasibility caused
by numerical errors. Additionally, note that our formulation can be slightly modified in
order to take moving obstacles into account, by using a different parabola pk

o for each
obstacle and at each time step.

In this chapter, we only focus on minimizing the deviation from the reference trajec-
tory. In most of the existing MPC literature where a reference speed is supposed to be
known in advance, the cost function J is expressed as:

J
(
(xk ), (uk )

)= K∑
k=0

(
Xk −Xr e f

k

)2
+

(
Yk −Yr e f

k

)2
. (7.6)

In these formulations, Xr e f
k and Yr e f

k implicitly encode the speed at which the reference
path should be followed. Since we do not assume that a reference speed is known in
advance, this method cannot be applied directly. A possible way to handle this difficulty

is to express Yr e f
k as a function of Xk (see, e.g, [110]). However, this method cannot be

applied to all shapes of reference paths, and is notably not suited to sharp turns even
when using local instead of global coordinates. For this reason, we introduce an auxiliary

state s to denote the curvilinear position of the vehicle along γr e f , so that Xr e f
k = pX(sk )

and Yr e f
k = pY(sk ). In this chapter, we use a simple first-order integrator dynamic for s
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with ṡ =
√

v2
x + v2

y . Noting x′ the extended state of the vehicle, we instead use the objective

function:

J =
K−1∑
k=0

wv vtol
2
k +wXXtol

2
k +wYYtol

2
k +woOtol

2
k (7.7)

where wv , wX, wY and wo are positive weighting terms, and we add the following con-
straints to problem (7.5):

vtol k ≥ |vmax − vXk | (7.8a)

Xtol k ≥ |Xk −pX(sk )| (7.8b)

Ytol k ≥ |Yk −pY(sk )| (7.8c)

∀o ∈O , Otol k ≥ po(Xk ,Yk ) (7.8d)

for k = 0. . .K−1.

7.4 Simulation results

We used the realistic physics simulator PreScan [93] to validate the proposed MPC
trajectory planner. The simulator uses the 9 degrees of freedom model presented in Ap-
pendix D.2, with the same parameters that were used to obtain the sets of feasible accel-
erations in Section 7.2. Robustness of the planner to variations of the vehicle parameters
is a subject for further study.

The MPC problem (7.5)-(7.8) is solved using the ACADO Toolkit [111]; due to the in-
ner workings of the simulator, the simulation is paused during resolution. The output of
the solver is the set of future target longitudinal and lateral accelerations, as well as target
future positions and longitudinal velocities for the vehicle in the horizon T. These out-
puts are fed into two low-level controllers, one being tasked with velocity tracking and
the other with steering.

Low-level tracking of the planned trajectory is achieved using PID controllers; the lat-
eral control also uses a τ seconds look-ahead [112]. At time t , the predicted position of the
vehicle at t+τ is computed as X̂ = X+τvx cos(ψ̂) and Ŷ = Y+τvx cos(ψ̂), with ψ̂=ψ+ 1

2τψ̇.
Instead of tracking the target position at time t , the lateral control uses the error between
predicted and desired positions at time t +τ. Using a look-ahead τ = 0.2s, this method
was found to provide better performance and stability than a simple PID. The lateral con-
trol takes into account a limited angular velocity for the steering wheel of 12 rad s−1, which
is in the average of recorded steering velocities for human drivers in obstacle avoidance
scenarios [113]; we do not consider the dynamics of the engine or brakes, which are sup-
posed to respond instantaneously. Note that, although the PID approach gives an overall
satisfying performance, we did observe certain rare occurrences of over-correction send-
ing the vehicle into a spin; therefore, more robust control schemes accounting for the
tire’s friction circle should be explored.

The reference path used in our simulations is presented in Figure 7.4; the path consists
of a 60 m straight line, a half circle with radius 20 m, a 200 m straight line, a Bezier arc
corresponding to a 135 degrees turn, a 100 m straight line, a half circle with radius 10 m
and a final -135 degrees turn.

In all simulations, the weights are chosen as wv = 1, wX = wY = 10 and wo = 100,
which were found experimentally to provide a good trade-off between speed and preci-
sion. The planning horizon is chosen as T = 3s and the time step duration of the MPC
is h = 200ms; replanning is performed every 100 ms. To achieve real-time computation
speeds, the solver is limited to five SQP iterations, which was experimentally shown to be
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Figure 7.4 – Detail of the reference path (black, dotted) and actual path followed by the vehicle
while avoiding obstacles (represented as orange circles), using both planners.

sufficient for a good convergence on our particular problem. Auto-generation techniques
can also be used to further reduce computation time to roughly 10 ms [96].

For comparison purposes, we also implemented the same MPC planner with a clas-
sical kinematic bicycle model such as presented in [109]; the model is written as follows:

Ẋ = v cos
(
ψ+arctanβ

)
(7.9a)

Ẏ = v sin
(
ψ+arctanβ

)
(7.9b)

ψ̇ = v

lr
sin

(
arctanβ

)
(7.9c)

v̇ = a (7.9d)

with v the longitudinal velocity and β= lr
lr +l f

tanδ the side slip angle. The control inputs

are the longitudinal acceleration a, and the steering angle of the front wheel δ.
All other parts of the planning and control algorithm are otherwise equal, including

the low-level controller. Moreover, this model is only used inside the MPC planner, while
the simulation relies on that of Appendix D.2. The maximum and minimum acceleration
in the bicycle model are chosen equal to ami n

X and amax
X (see Figure 7.2 for the notations)

respectively. Note that the solver is slightly faster using this formulation; therefore, the
maximum number of SQP iterations is set to 6 for the kinematic model to yield compara-
ble computation times, which increases solution quality.

7.4.1 Planning without obstacles

We first consider trajectory planning without obstacles; Figure 7.5 presents the actual
speed of the vehicle during the simulation as a function of its position along the path γr e f

for the two MPC planners, as well as the speed bound v2 ≤ κg (with κ the path curvature),
corresponding to a centripetal acceleration of 1 g used, e.g., in [97]. First, we notice that
both planners have similar performance in the straight portions of the road; however,
the planner based on the proposed second-order model systematically achieves higher
speeds in curves. Second, no solver reaches the upper bound

√
g /κ, thus confirming that

including a speed selection phase during planning (as opposed to tracking a predefined
velocity solely computed from path curvature) is useful for proper tracking.
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Figure 7.5 – Comparison of achieved vehicle speed with our proposed model (in blue) and for
a kinematic bicycle model (in red); the speed for the kinematic model run until convergence is
shown in solid black. The dotted curve represents the bound v2 ≤µg /κwhere κ is the path curva-
ture.

Table 7.1 – Absolute lateral positioning error for both planners.

Model RMS error (m) Maximum error (m)

Proposed 0.25 0.70
Kinematic 0.16 0.95

The superior performance of the planner based on the second-order integrator model
is likely due to the simpler relation between the optimization variables (the input con-
trols) and the objective value (the deviation from the target state) than in the bicycle
model, which allows a much faster convergence towards the solution. Indeed, when al-
lowing the solver to run until convergence with the kinematic bicycle model, the result-
ing velocity becomes comparable to that obtained with the real-time second-order model
(but computation time is above 500 ms).

Figure 7.6 shows the lateral error when tracking the reference path, for both MPC plan-
ners. Table 7.1 presents synthetic data about the lateral error of the complete planning
and control architecture in both cases, showing satisfying overall performance for high-
speed applications. Note that better precision can be achieved (at the cost of speed) by
selecting different values for the weighting coefficients. Moreover, a more precise low-
level controller can probably achieve better performance.

7.4.2 Planning with obstacle avoidance

In this section, we compare the behavior of both planners in the presence of obstacles,
modeled as parabolas as explained in Figure 7.3. Figure 7.4 shows a detail of the actual
path followed by the vehicle using the proposed planner while avoiding obstacles. A video
of the corresponding simulation can be found online4.

Figure 7.8 presents the lateral deviation from the reference trajectory while avoid-
ing obstacles using both planners. Generally speaking, the proposed planner allows a
smaller deviation from the reference and a higher average speed of 12.7 m s−1 compared
to 10.2 m s−1 using the kinematic bicycle planner (for lack of space, the velocity curves are
not shown). More importantly, the kinematic planner is sometimes unable to output a

4https://youtu.be/BRpmdIxTz-0
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Figure 7.6 – Lateral positioning error for the proposed model (in blue) and for the kinematic bicycle
model (in red), without obstacles.
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Figure 7.7 – Comparison of achieved vehicle speed with our proposed model (in blue) and for a
kinematic bicycle model (in red).
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Figure 7.8 – Lateral deviation for the proposed model (in blue) and for the kinematic bicycle model
(in red) while avoiding obstacles (shaded regions).
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Figure 7.9 – MPC computation time (with obstacles) for the proposed model, and for a kinematic
bicycle model starting from the same state.

trajectory in less than 100 ms, as shown in Figure 7.9. This situation happens when ap-
proaching obstacles in high-curvature portions of the road; as before, the better behavior
of the proposed planner is likely due to the simpler search space since the dynamic model
presents much less non-linearity. A more in-depth analysis could provide useful insights
on desirable model properties to allow fast and robust convergence.

7.5 Chapter conclusion

In this chapter, we presented a model predictive control framework for near-limits
motion planning in the absence of discrete decisions based on a simplified model for ve-
hicle dynamics. Contrary to more traditional MPC formulations, this approach automati-
cally adjusts the ego-vehicle speed to road curvature and obstacles in order to achieve the
best possible trade-off between speed and accuracy. We argue that this capacity can prove
useful in a variety of situations, notably when the speed limit is not known or not relevant,
e.g. when driving on slippery or curvy roads, or for applications such as autonomous rac-
ing.

Simulation results show that the planner is able to perform in real-time, with com-
putation time remaining below 80 ms; using advanced auto-generation techniques could
help reduce this computation time to below 10 ms. This observation tends to demonstrate
that motion planning in the absence of discrete decisions – even with speed selection –
is, in fact, a relatively “simple” problem from a computational point of view thanks to so-
phisticated optimization algorithms such as sequential quadratic programming. These
considerations, alongside with the results from Part I, motivate our work on decision-
based motion planning for more general problems where obstacles are not considered
semi-infinite.
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Chapter 8

Classes of trajectories in autonomous
driving

“ To understand is to perceive patterns. ”

Isaiah Berlin (Philosopher)
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8.1 Motion planning for autonomous driving

In the previous chapter, we showed that motion planning in the absence of discrete
decisions was relatively easy to solve using state-of-the-art methods such as model pre-
dictive control. Before moving forward with the presentation of our decision-based mo-
tion planning algorithms, we propose to discuss some specificities of the trajectory plan-
ning problem applied to automated driving.

In some robotics applications in confined areas with mostly static obstacles, it can be
conceivable to plan full trajectories from start to goal as described in Chapter 2. However,
automated driving usually deals with trajectories that can span dozens or hundreds of
kilometers, and where most of the obstacles are mobile and cannot be known in advance,
thus making it impossible to plan full trajectories. For this reason, motion planning for
on-road automated driving is usually considered in a receding horizon fashion, where
the initial state of the vehicle is known but the goal region may only be loosely defined;
the framework presented in Chapter 7 can even be considered not to have a goal region.

Control theory can be used to derive conditions guaranteeing the soundness of re-
ceding horizon schemes (see, e.g., [39]), and theoretical computations can be made to
determine the minimum horizon to be used to ensure recursive feasibility of these prob-
lems, as was done in Chapter 6. Empirically, the fact that human drivers – who generally
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γ

Figure 8.1 – Example of reference path in an on-road driving situation

do not plan more than a few seconds ahead – have a remarkably low rate of collisions also
comforts the idea of using receding horizon schemes.

Therefore, the rest of this thesis will only consider motion planning problems with
time horizons of 1 s to a few dozen seconds incorporating what is sometimes dubbed tac-
tical decisions such as lane change or overtaking maneuvers, or entering an unsignalized
intersection. At a higher level, a “mission planning” layer is tasked with providing rough
guidance in the form of sub-goals, for instance a sequence of roads to follow in order to
reach the destination. In this thesis, we do not consider the mission planning layer and
only focus on tactical motion planning – which we abbreviate as “motion planning”.

In the rest of this chapter, we present notations and considerations that will be used
through the end of this thesis. Some results discussed here are not original to this thesis,
and many ideas were already introduced in [29]. Apart from describing useful hypothe-
ses and notations, the aim of this chapter is to demonstrate that classes of trajectories in
generic driving situations are much more complex than what was previously assumed,
and thus require a more systematic method to be enumerated properly; such an algo-
rithm is presented in Chapter 9.

8.2 State representation

We consider that the input of motion planning is a reference path γ, which can for
instance correspond to the center of the rightmost lane of the roads to be followed, as
illustrated in Figure 8.1. Assuming that the reference path is sufficiently smooth and that
its curvature radii are large enough compared to the local width of the road1, we can use
the Frenet-Serret coordinates (s,r ) to represent any point X = (x, y) of the road, where s
is the curvilinear abscissa of the point Xγ of γ closest to X, and r is the (signed) distance
from X to Xγ, as illustrated in Figure 8.2.

Using the Frenet coordinates allows moving the motion planning problem from a
Cartesian geometry where the road is curved, to an abstract space where the road is rec-
tilinear. In the rest of this thesis, we focus on on-road driving of an automated vehicle,
where the ego-vehicle is assumed to remain almost parallel to the road. Therefore, we
neglect the angle between the heading of the ego-vehicle and the reference path γ, so that
we can use the Frenet coordinates (s,r ) of one point of the vehicle to fully determine its
configuration2.

1See Appendix E.1 for more detail on those conditions.
2As described in the following paragraphs, this assumption allows casting the motion planning problem

86



8.3. Free space-time
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Figure 8.2 – Frenet representation of a point on the road

To account for the possibly varying curvature of the road, we denote by rmi n(s) and
rmax(s) the extent of the road, such that the vehicle is on the road if and only if rmi n(s) ≤
r ≤ rmax(s), and we let

R = {
(s,r ) ∈R2

∣∣rmi n(s) ≤ r ≤ rmax(s)
}

denote the drivable portion of the road. Note that R does not account for small static
obstacles (e.g., a cardboard box on the road), but can be used to transcribe that a lane is
being blocked by roadworks.

8.3 Free space-time

We propose to represent the on-road motion planning problem using a configuration
space (or C-space) approach as presented in Chapter 2. Contrary to Part I where all traffic
participants were part of the problem, we now consider other traffic participants as mo-
bile obstacles; in this chapter, we further assume that the future trajectory of all obstacles
is known in advance. At any given time t , we denote by Ct the configuration space of the

ego-vehicle expressed in curvilinear coordinates, and by C
f

t ⊂ R its collision-free part,
obtained from the knowledge of the configuration of all other obstacles at time t . Fig-
ure 8.3a presents an example situation with three obstacle vehicles with reference path
in blue; Figure 8.3b shows the corresponding configuration space, with obstacles repre-
sented in the corresponding color.

γ
(a) Example situation with three obstacles (col-
ored rectangles).

s

r

rmi n

rmax

(b) Configuration space; the grey region represents

the free C-space C
f

t ; note that obstacle regions are
larger than the physical obstacles to account for the
dimension of the ego-vehicle.

Figure 8.3 – Physical and configuration space representation of obstacles at a fixed time t .

in a 3D space, thus widely simplifying conceptualization. Moreover, we argue that this assumption is not
particularly constraining in the case of on-road driving as vehicles usually keep a small angle with respect
to the road direction; however, this may not be the case for some maneuvers such as parking.
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(a) Rectilinear (s, t ) plane (b) Rectilinear (r, t ) plane

(c) Rectilinear (s,r ) plane

Figure 8.4 – Three views of the configuration space-time and an example trajectory for the scenario
shown in Figure 8.3. The gray areas represent the extent of the road.

To account for future motion of the obstacles, it is necessary to also take the time
dimension into account. To this extent, we define the configuration space-time as S =⋃

t∈R (Ct × {t }), and the free (configuration) space-time as

S f =
⋃
t∈R

(
C

f
t × {t }

)
.

Figure 8.4 illustrates the configuration space in the case of Figure 8.3; the green curve
represents a collision-free trajectory for an ego-vehicle (not shown in Figure 8.3a), corre-
sponding to overtaking the blue vehicle from the left, move back to the right lane to let
the green vehicle pass, then overtaking the red vehicle.

An interesting finding of [29] is that, in this particular scenario, an extended concept
of homotopy classes of trajectories can be mapped to maneuver variants corresponding
to passing vehicles in a particular order and from a certain side. However, the specificity
of autonomous driving – notably the fuzzy nature of “maneuvers” and the necessity to
only consider finite time horizons – make the classic homotopy theory too restrictive to
adequately describe maneuver variants in more general situations, as we present in the
next section.

8.4 Maneuver variants and homotopy classes

To illustrate these limitations, we propose a simpler scenario with a single obstacle ve-
hicle driving in the middle of a three-lane road. The corresponding configuration space-
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(a) Rectilinear (s, t ) plane (b) Rectilinear (r, t ) plane

(c) Rectilinear (s,r ) plane

Figure 8.5 – Three views of the configuration space-time and three example trajectories around a
single obstacle. The gray areas represent the extent of the road.

time is shown in Figure 8.5, alongside with three examples of collision-free trajectories.

The blue trajectory in Figure 8.5 corresponds to the ego-vehicle remaining behind the
obstacle over the horizon; the green one corresponds to overtaking the obstacle from the
left. The red trajectory first matches the green one, then diverges and terminates at the
same point than the blue one, illustrating an aborted overtaking maneuver.

According to the usual homotopy definition, the blue and green trajectories in Fig-
ure 8.5 clearly do not belong to the same homotopy class as they do not share the same
endpoint. However, the blue and red trajectories do belong to the same class, as they can
be continuously deformed into one another.

A first limitation of using homotopy classes to describe maneuver variants lies in the
restrictiveness of the same endpoint condition, as a trajectory infinitely close to the blue
one but terminating at a slightly different position would not be considered as homo-
topic, although they arguably correspond to the same maneuver of “remaining behind”
the obstacle. To counter this issue, reference [29] introduced the notion of “homotopic
relative to a start point” by only requiring the endpoints of the trajectories to be in the
same predetermined set, as illustrated in Figure 8.6. However, the choice of this set has
an impact on the resulting homotopy classes, and no results have been proposed on how
this set should be chosen to reflect maneuver variants adequately.

A second limitation is tied to the fact that motion planning for autonomous driving is
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Figure 8.6 – Homotopy classes relative to a region: the blue and red paths are considered homo-
topic (from [29]).

usually done over a finite (receding) time horizon T. As illustrated by the red and green
trajectories in Figure 8.5, the same overall trajectory can correspond to different homo-
topy classes (even by the extended definition of [29]) depending on the considered time
horizon. Indeed, as the two trajectories are equal up to a time t1, and denoting by t0 the
first instant shown in Figure 8.5, their restriction to [t0, t1] are in the same homotopy class
although their restriction to [t0,T] are not.

From an autonomous motion planning perspective, we also argue that simply provid-
ing a homotopy class of trajectory may still not be enough information to properly guide
resolution. For instance in the example of Figure 8.3, knowing that the ego-vehicle should
overtake the blue vehicle before the green one passes does not help choose the time in-
stant at which the overtaking maneuver should occur. Chapter 10 provides more detail on
this particular subject.

8.5 Chapter conclusion

In this chapter, we introduced the specificities of motion planning for autonomous
driving and we described a curvilinear state representation for the ego-vehicle which al-
lows casting the planning problem into a rectilinear frame. Using this representation, we
then proceeded to show a negative result regarding the use of homotopy classes as deci-
sion variables, as we successfully did in Part I. More specifically, although these classes do
exist, we argue that they do not match the concept of “driving decisions” or “maneuver
variant” well enough to be used in motion planning.

To address this limitation, the next chapter proposes a graph-based classification of
trajectories that sacrifices some properties ensured by homotopy theory, but that is much
more suitable to encode driving decisions for motion planning.
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Navigation graph

“ I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail. ”

Abraham H. Maslow (Philosopher)
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9.1 Free space partitioning

In this chapter, we propose to extend previous results on “divide-and-conquer” strate-
gies used in two-dimensional path planning to handle the challenges particular to on-
road trajectory planning using a third temporal dimension. Inspired by the work of [43]
where the free space is decomposed into convex polygons, we propose to partition the
free space-time as convex polyhedrons.

Of course, there are infinitely many ways to perform this partition which are equiva-
lent in theory. However, guided by the results in Part I and the considerations of Chapter 8,
we argue that performing this partitioning in a semantically meaningful way is preferable
than choosing arbitrary partitions. Simulation results presented in Chapter 10 seem to
substantiate this claim.

In the case of on-road driving, traffic is usually organized in lanes and constraints
on the longitudinal behavior of a vehicle widely differ from those on its lateral behavior.
For this reason, we propose to make use of this anisotropy in the design of our semantic
partitioning algorithm, as described below.
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Figure 2.5 – Partition of the free space for 2D path planning, from [43] (repeated from page 14)

9.2 A guiding example

The goal of this section is to give an intuition of the main mathematical results, using
the example scenario shown in Figure 9.2; the formal mathematical theory is developed
in the next section. In our example, we consider an ego-vehicle navigating on a road
with two other vehicles (obstacles); vehicles are modeled as rectangles driving parallel to
the side of the road. Intuitively, the ego-vehicle has three classes of maneuvers to choose
from: either it can remain behind vehicle 1, overtake it before vehicle 2 passes, or overtake
it after vehicle 2 has passed. As we consider a straight axis-align road, the curvilinear and
cartesian coordinates match in this example.

Assuming that the future trajectory of the obstacles is known in advance, we use the
same notations as in the previous chapter and denote by S f the free region of the space-
time (or free space-time), which is illustrated in Figure 9.3.

As presented earlier, we propose to decompose S f in convex subregions having ad-
jacency relations. First, we partition horizontal planes (corresponding to fixed time in-
stants) using relative positions with respect to each obstacle as illustrated in Figure 9.4.
Each subset of the partition corresponds to positions where the ego-vehicle is either lo-
cated in front ( f ), to the left (l ), behind (b) or to the right (r ) of each obstacle. Using the
additional information given by road boundaries, this partitioning technique yields four
subsets denoted by lb, l f , br and f r , indicating the relative position of the ego-vehicle

ev

2

1

x

y

Figure 9.2 – Example driving situation involving multiple maneuver choices for an ego-vehicle
(labeled as ev): overtake the slower (blue, denoted 1) vehicle before the green vehicle (2) passes or
wait behind the blue vehicle, possibly overtaking after the green vehicle has passed. Solid arrows
represent the velocity of each vehicle; dotted arrows represent possible ego-vehicle trajectories.
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9.2. A guiding example

Figure 9.3 – Free space-time S f (in white) corresponding to the situation of Figure 9.2. Obstacles
are pictured in the color of the corresponding vehicle, light-gray planes represent the road extent.

Table 9.1 – Validity sets Adj(A,B)

br f r lb l f

br [t0,+∞) ; [t0,+∞) [t0, t1)
f r ; [t0,+∞) (t2,+∞) [t0,+∞)
lb [t0,+∞) (t2,+∞) [t0,+∞) ;
l f [t0, t1) [t0,+∞) ; [t0,+∞)

from obstacle 1 and 2 in this order. We call these labels signature of each subset. Addition-
ally, for two such subsets A and B at a given time t , we can define an adjacency relation
adjt (related to that of [43]), such that adjt (A,B) = 1 if the intersection of their closures is
not empty, i.e. Ā∩ B̄ 6= ;.

This partitioning method can be generalized to the three-dimensional space-time by
using unions of regions sharing the same signature, as shown in Figure 9.5. The notion
of adjacency described above can be extended, and we let Adj(A,B) be the set of times t
such that adjt (A,B) = 1. We call the set Adj(A,B) the validity set of the transition from A to
B, corresponding to time periods for which a collision-free trajectory from A to B exists.
The validity sets in this example are given in Table 9.1, with initial time t0.

Using Table 9.1, we can build a directed graph (that we call navigation graph) repre-
senting all the possible transitions between cells of the partition as shown in Figure 9.6:
each vertex of this graph corresponds to a partition cell, and we add the edge A → B if
Adj(A,B) 6= ;. Additionally, we associate with each edge of the graph the corresponding
validity set. A path in this graph is given as a succession of edges and associated transition
times within the validity set of each edge, for instance

(
(br → lb, t1), (lb → f r, t2)

)
corre-

sponding to the maneuver of waiting for the green vehicle (2) to pass before overtaking
the blue one (1). Between these explicit transition times, the ego-vehicle is supposed to
remain inside the last reached cell.

Using this graph-based representation also allows computing a risk metric associated
to a maneuver, that we call time margin. This measure is defined as the time which re-
mains to the ego-vehicle to perform a particular maneuver, before the most constrained
transition becomes impossible. To illustrate this notion (which is formally defined in Sec-
tion 9.3), we present example time margins for a selection of paths in Table 9.2.
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(br )

(lb)

( f r )

(l f )

1

2
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y

(a) t = t0 : adjt0
(l f ,br ) = 1, adjt0

(lb, f r ) = 0

(br )

(lb)

( f r )

(l f )

1

2

x

y

(b) t = t1 : adjt1
(br, l f ) = adjt1

(l b, f r ) = 0

(br )

(lb)

( f r )

(l f )

1

2

x

y

(c) t = t2 : adjt2
(br, l f ) = adjt2

(lb, f r ) = 0

(br )

(lb)

( f r )

(l f )

1

2

x

y

(d) t = t3 : adjt3
(l f ,br ) = 0, adjt3

(l b, f r ) = 1

Figure 9.4 – Partitioning of the 2D space at different times in our example scenario, and adjacency
relations adj. In this example, adjt (lb,br ) = adjt (l f , f r ) = 1 and adjt is symmetrical at all times.

Although this continuous approach is mathematically interesting, it is not necessar-
ily suited for practical computer implementation, which is generally based on time sam-
pling. For this reason, we also propose a discrete partitioning as shown in Figure 9.7: for
a discretization time step τ > 0, we approximate the free space as a union of disjointed
cuboids1 of the form A× [t0 +kτ, t0 + (k +1)τ) where A is a subset in the partition at time
t0 + kτ. Using this time-discretized partition, we can adapt the notion of adjacency to
design a time-discretized navigation graph, as shown in Figure 9.8. In this graph, a path
can be simply given as a list of successive vertices, thus allowing to use classic exploration
algorithms. The time margin of an edge in the graph can also be easily computed, as
shown in Section 9.3. Note that it is also possible to perform an event-based (instead of
constant-time-based) partition, which has the advantage of exactly matching the time in-
stants when the adjacency of two cells changes. However, since the partitioning will ulti-
mately be used using the ego-vehicle’s feasible dynamics – which are not easily integrated
into an event-based framework – the constant-time discretization is preferred.

We argue that the proposed graph-based representation has two main advantages.
First, the combinatorial part of the trajectory planning problem, consisting in choosing

1Note that it is also possible to consider a constant velocity for each obstacle over each time step, lead-
ing to rhombohedral cells.
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br f r lb l f

(b) Rectilinear (s, t ) plane (c) Rectilinear (r, t ) plane

(d) Rectilinear (s,r ) plane

Figure 9.5 – Partitioning of the free space-time of Figure 9.3 into four cells. The legend gives the
signature of each cell, with blue obstacle first. Lighter rectangles represent the intersection of the
obstacle sets with the t1 and t2 planes.

br

f rlb

l f

[t2,+∞)

[t2,+∞)

[t0, t1)

[t0, t1)

Figure 9.6 – Navigation graph corresponding to Figure 9.5, with validity set of each edge. Thinner
edges shown in black have a validity set [t0,+∞) (omitted for readability).
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(a) Rectilinear (s, t ) plane (b) Rectilinear (r, t ) plane

(c) Rectilinear (s,r ) plane

Figure 9.7 – Discrete partitioning of the free space-time of Figure 9.3, with t0 = 0.

l f0

f r0

br0

lb0

l f1

f r1

br1

l b1

l f2

f r2

br2

lb2

l f3

f r3

br3

l b3

l f4

f r4

br4

lb4

l f5

f r5

br5

lb5

2τ

τ

+∞

Figure 9.8 – Discrete-time navigation graph and time margins corresponding to the partition of
Figure 9.7. Vertex Ak corresponds to the ego-vehicle being in set A at time t0 +kτ.
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Table 9.2 – Time margins of example paths

Path Most constr. trans. Margin

((br → br, t0)) br → br +∞(
(br → lb, t1), (lb → f r, t3)

)
lb → f r +∞(

(br → l f , t0), (l f → f r, t1)
)

br → l f t1 − t0

a feasible maneuver around the obstacles, is reduced to selecting a path in a navigation
graph. We will show in Chapter 10 that, once such a path is given, computing a corre-
sponding optimal trajectory becomes relatively simple for a large class of cost functions.
Second, the graph approach makes it easy to take into account safety margins by avoiding
exploration of time-constrained edges, which can be useful to handle uncertainty in tra-
jectory estimation. Additional metrics can also be computed (see, e.g., [114]) for spatial
constraints, in order to account for control or positioning error.

9.3 Mathematical results

9.3.1 Modeling

We now proceed to theorize and generalize the intuitions exposed in the previous sec-
tion. We consider an autonomous ego ground vehicle, driving on a road in the presence
of obstacles, which can either be fixed or mobile, and we make the assumptions of Chap-
ter 8 so that we can represent the configuration of the ego-vehicle using curvilinear coor-
dinates (s,r ), with rmi n(s) ≤ r ≤ rmax(s) defining the lateral extent of the road R.

We denote by O the set of obstacles (considered as open sets) existing on the road
around the ego-vehicle, and by N = |O | the number of obstacles. At a given time t0, we
consider a time horizon T and we assume that an estimation of the trajectory of each
obstacle o ∈ O is available over [t0, t0 +T]. This estimation could come, for instance, be
performed through machine learning techniques as presented in Chapter 7. We let S =
R × [t0, t0 +T] the set of space-time points for which the vehicle is on the road, and we
define the free portions of the space (respectively, of the space-time) as follows:

Definition 7 (Free space). The (collision-)free space at time t is the set

C
f

t =R \
⋃

o∈O

o.

The (collision-)free space-time over [t0, t0 +T] is the set

S f =
{
C

f
t × {t } : t ∈ [t0, t0 +T]

}
.

We call obstacle space-time S o the complement of S f ; to simplify the rest of the
presentation, we consider that for all t1 ∈ [t0, t0 +T], the intersection of S o is a union of
(potentially rotated) rectangles; due to the roughly rectangular shape of classical vehicles,
this assumption does not excessively sacrifice precision. Moreover, we assume that the
road boundary functions rmi n and rmax are piecewise-linear and continuous. In the fol-
lowing subections, we present our approach to partition S f into semantically meaning-
ful subsets using a two-step algorithm: first, we partition planes corresponding to a fixed
time t1 ∈ [t0, t0 +T] in Section 9.3.2; second, we deduce a partition of S f in Sections 9.3.3
and 9.3.4.
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Figure 9.9 – Decomposition of the road (in grey) in trapezes.

Cobs
o C1

o

C2
o

C3
o

C4
o

s

r

Figure 9.10 – Partitioning of the 2D space around a single obstacle (Cobs
o ) into four collision-free

regions Ci
o .

In what follows, we systematize the approach presented in Section 9.2 in a two-step
partitioning algorithm: first, we partition planes corresponding to a fixed time t1 ∈ [t0, t0+
T] in Section 9.3.2; second, we deduce a partition of S f in Sections 9.3.3 and 9.3.4.

9.3.2 Semantic free-space partitioning

First, note that we can use trapeze decomposition to partition the road in convex re-
gions using rmi n and rmax as shown in Figure 9.9; since the road profile does not depend
on time, this decomposition allows to fully partition χ by using cylinders with trapezoidal
base. Each trapeze Tk (with k ∈ {1 . .K}) can be defined by a set of linear constraints2, in the
form Ak X ≤ bk with Ak a 4-by-2 matrix, X = [s,r ]T and bk a vector of R4. This approach al-
lows modeling varying roadway width and curvature, but may require an important num-
ber of trapezes to handle sharp bends correctly.

For a single rectangular obstacle o at time t1, we define four regions Ci
o ⊂R2 (i ∈ {1 . .4})

as illustrated in Figure 9.10; as in Section 9.2, these regions can be identified as positions
where the ego-vehicle is located in front, to the left, behind or to the right of the obstacle.
Similarly, we let Cobs

o be the obstacle region corresponding to o. Since all obstacles are
assumed rectangular, each of the Ci

o regions is defined by a set of linear constraints3 in
the form Ai

oX ≤ bi
o , with Ai

o a two-column matrix, X = [s,r ]T and bi
o a vector having the

same number of lines as Ai
o . The partition of the free space C

f
t1

can be built recursively
according to Algorithm 2; Theorem 5 ensures the validity of this algorithm; we let P t1 be

the partition of C
f

t1
obtained by Algorithm 2.

2To ensure the sets are disjoint, some of the inequalities should be strict. In practice, we use non-strict
inequalities with a small tolerance ε.

3With the same restrictions as before.
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Algorithm 2: Partitioning of C
f

t1

set P0 := {Tk }k=1..K // Initialize P0 as a partition of R

set N = |O |
for n = 1. .N do

/* Loop over all obstacles on */

set Pn = {}
forall C ∈Pn−1 do

/* Loop over cells C in Pn−1 */

for j = 1. .4 do

if C j
on

∩C 6= ; then

set Pn =Pn ∪ {C j
on

∩C} /* Partition C \ Cobs
on

*/

/* This loop ensures the invariant: ∀e ∈Pn C j
on

⊃ e 6= ; */

set P t1 =PN

Theorem 5 (Partition). P t1 is a partition of C
f

t1
.

Proof. We will prove that, for all 0 ≤ n ≤ N, Pn is a partition of Rn = R \
⋃n

i=1 Cobs
oi

. First,
this property is verified for P0 which is a partition of R. Second, the loop preserves the
following invariants for all n ≥ 1 and e ∈Pn :

• e 6= ; and ∃e ′ ∈Pn−1 such that e ⊂ e ′;

• for all 1 ≤ i ≤ n, ∃ j ∈ {1 . .4} such that e ⊂ C j
oi

.

Thus, Pn =
{

e ∩C j
on

∣∣∣e ∈Pn−1, j ∈ {1 . .4},e ∩C j
on

6= ;
}

. Since the sets
(
C

j
on

)
j=1..4

define a

partition of R2 \ Cobs
on

and since all e ∈P0 is a subset of R, we deduce by induction that all
elements of Pn are nonempty subsets of Rn .

Reciprocally, for all any q ∈ Rn = Rn−1 \ Cobs
on

there exists j ∈ {1 . .4} such that q ∈
Rn−1 ∩C j

on
. Since P0 is a partition of R, inductive reasoning yields Rn ⊂⋃

e∈Pn e.

From the previous proof, we deduce that our partitioning of C
f

t1
bijectively corre-

sponds to relative positions from all N obstacles in the free space at time t1. Thus, each
element in the partition can be uniquely defined by a signature, as stated in Corollary 1
and Definition 8:

Corollary 1 (Semantization). For all e ∈P t1 , there exists a unique tuple

σt1 (e) = (k, j1, . . . , jN) ∈ {1 . .K}× {1 . .4}N

such that e =Tk ∩
⋂

n=1..N C jn
on

.
Using Σ= {1 . .K}× {1 . .4}N, σt1 is a bijection from Σ to P t1 ∪;.

Definition 8 (Signature). We call σt1 (e) ∈Σ from Corollary 1 the signature of subset e.

Moreover, there is a finite number of elements in the partition which is bounded by
K4N for K trapezes and N obstacles. Additionally, all elements e ∈ P t1 also are convex
polygons (or cells), which can be fully described using a single (matrix, vector) pair that
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can easily be stored in computer memory. Figure 9.11 and fig. 9.11b illustrate our parti-
tioning in a more complex scenario4 with 3 vehicles; note that, for clarity purposes, we
respectively used f , l ,b,r instead of 1,2,3,4 as defined in Definition 8. Also remark that,
although Figure 9.11a is shown in world coordinates (x, y), Figure 9.11b uses Frenet co-
ordinates (s,r ). In order to encode the relation between elements of the partition, we
introduce the notion of adjacency as follows:

Definition 9 (Adjacency). For e1,e2 ∈P t1 , we say that e1 and e2 are adjacent if, and only if
the intersection of their closures is not empty, i.e. e1 ∩e2 6= ;.
For σ,σ′ ∈Σ, we let adjt1

(σ,σ′) = 1 if σ−1
t1

(σ) and σ−1
t1

(σ′) are adjacent, and 0 otherwise.

Note that this definition considers cells whose closures intersect at single point as ad-
jacent; this situation could happen, e.g., in the case shown in Figure 9.4b between br and
l f . From a theoretical standpoint, the hypothesis that obstacles are open sets allows to
overcome this issue since, in this case, the vehicle can actually perform the maneuver; in
practice, the use of safety margins around the obstacles, and constraints on time margin
(see Section 9.3.4) prevent this question from becoming an issue. The main reason for
choosing this slightly looser criterion compared, e.g., to that of [43] – requiring the inter-
section to be a non-singleton segment – is that it can be verified in polynomial time using
the matrix inequality representation and linear programming.

ev 1

2

3
x

y

(a) Geometric obstacles

s

r

f r lbr l
l r l l f l

f f l
l l l
f l l

l l f
f l f

l l r
l l r1

2

3

(b) Semantic partition and subset signature

Figure 9.11 – A more complex example with 3 obstacles.

9.3.3 Continuous navigation graph

We now proceed to generalize these results to the free space-time S f ; to define a
partition of this space we use the union (over time) of cells sharing the same signature:

Definition 10 (Space-time cell). For σ ∈Σ, we let

Eσ =
⋃

t1∈[t0,t0+T]
σ−1

t1
(σ)× {t1}

be the space-time cell corresponding to σ, i.e. the set of all points in the free space-time
sharing this signature.

Since the set of non-empty elements of σ−1
t (Σ) defines a partition of C

f
t , the set P =

{Eσ |σ ∈Σ,Eσ 6= ;} defines a partition of S f (see Figure 9.5). The notion of adjacency can
then be generalized as follows:

4Obstacle regions 1, 2, 3 in Figure 9.11b are computed for a point-mass ego-vehicle, in order to match
the vehicle shapes shown in Figure 9.11.
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Definition 11 (Validity set). For σ, σ′ ∈Σ, we define the validity set

Adj(σ,σ′) = {
t ∈ [t0, t0 +T]

∣∣adjt (σ,σ′) = 1
}

.

Using this notion, we can now define a navigation graph (see Figure 9.6) as follows:

Definition 12 (Continuous navigation graph). The continuous navigation graph is the di-
rected graph G c = (V c ,E c ,Adj) with vertex set V c = {σ ∈Σ |Eσ 6= ;}, edges set

E c = {
(σ1,σ2) ∈Σ2

∣∣Adj(σ1,σ2) 6= ;}
and associated validity set Adj.

The motivation for introducing this graph is that any collision-free maneuver corre-
sponds to a unique path in G c . To account for the temporal aspect of this graph, such a
path is defined as follows:

Definition 13 (Path in G c ). A path in G c is given by a list of vertices (σ1, . . . ,σm+1) ∈ V c so
that for all i ≤ m, (σi ,σi+1) ∈ E c , and a list of strictly increasing transition times (t1, . . . , tm)
such that:

i. for all i ∈ {1 . .m}, ti ∈ Adj(σi ,σi+1) and

ii. for all i ∈ {0 . .m}, [ti , ti+1) ⊂ Adj(σi+1,σi+1).

In other words, a path in G c is a sequence of cells and time instants corresponding to
the transition time between two successive cells, and where the ego-vehicle can remain
in the last occupied cell until the next transition.

Remark 4 (Uniqueness). Note that in definition Definition 13, it is possible to repeat a sin-
gle cell Eσ infinitely many times as long as Adj(Eσ,Eσ) 6= ;, which still effectively results in
the same effective path. For instance, path (σ,;) (corresponding to the ego-vehicle staying
in cell Eσ indefinitely) is equivalent to

(
(σ,σ), (t1)

)
, which corresponds to the ego-vehicle

starting in cell Eσ, then “moving” from Eσ to Eσ at time t1 and then remaining there. To en-
sure representations are unique, we always assume that two consecutive signatures in the
representation of a path in G c are distinct.

For a given path, we can now define the corresponding time margin as the time left for
the vehicle to perform the most constrained transition before it becomes impossible:

Definition 14 (Time margin along a path). Consider a path in G c given as

πc = (
(σ1, . . ,σm+1), (t1, . . , tm)

)
.

The time margin along πc is V(πc ) = mini=1...m

(
sup

{
t − ti

∣∣ [ti , t ) ⊂ Adj(σi ,σi+1)
})

.

Finally, for a given collision-free trajectory, we associate a navigation graph path as
follows:

Definition 15 (Correspondance of navigation graph paths). Let

π0 =
(
(σ1, . . . ,σm+1), (t1, . . . , tm)

)
be a path in G c and x(t ) be a collision-free trajectory for the ego-vehicle. We say that π0

corresponds to x if, noting ψ(t ) = (x(t ), t ):

i. for all i ∈ {1 . .m}, ψ
(
[ti−1, ti )

)⊂ Eσi and

ii. ψ
(
[tm ,T)

)⊂ Eσm+1 .
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9.3.4 Discrete-time partitioning

Due to the potentially complex trajectories followed by the obstacles, there is no guar-
antee regarding the topology of the subsets Eσ, which can for instance have multiple con-
nected components; similarly, Adj(σ1,σ2) is in general a union of disjointed intervals. To
make practical applications easier, we also propose a temporal discretization of the free
space-time with a time step duration τ (with T = Pτ). Note that the value of τ depends
on a trade-off between acceptable computation time, length of the planning horizon and
required precision in vehicle dynamics; Section 6.5 provides some performance reports
on the influence of this parameter. We approximate Eσ as a union of box-shaped cells:

Definition 16 (Discrete space-time cell). For σ ∈Σ and p ∈ {0 . . .P}, we let

Ep
σ =σ−1

θp
(σ)× [θp ,θp+1)

be the discrete space-time cell corresponding to σ at step p, with θp = t0 +pτ.

In the rest of this section, we assume5 that Ep
σ ⊂S f for all σ ∈ Σ and p ∈ {0 . .P}. Since

σ−1
θp

(σ) is a convex (or empty) set, Ep
σ is either empty or convex, and fully defined by a set of

linear inequalities in the form A[X, t ]T ≤ b (the comments of footnote 2 page 98 also apply
here). Finally, we define a partition of the free space-time S f in convex box-shaped cells:

P τ = {
Ep
σ

∣∣ p ∈ {0 . .P},σ ∈Σ,Ep
σ 6= ;}

as illustrated in Figure 9.7, and we associate a discrete navigation graph:

Definition 17 (Discrete navigation graph). The discrete navigation graph is the directed
graph G d = (V d ,E d ) with vertex set V d =P τ and edges set

E d =
{(

Ep
σ1

,Ep+1
σ2

) ∣∣∣ Ep
σ1

,Ep+1
σ2

∈ V d , adjθp
(σ1,σ2) = 1

}
.

Therefore, each vertex of G corresponds to a certain cell of the partition P τ at a given
time θp , and the edge v1 → v2 exists if v1 and v2 represent two adjacent cells (possibly
twice the same) at two consecutive time steps. Paths in G d comply with the usual defi-
nitions of graph theory and can be given as a set of vertices. Finally, we define the time
margin for paths in G d as:

Definition 18 (Time margin in the discrete graph). For a path πd = (
E0
σ0

, . . . ,Em+1
σm+1

)
in G d ,

the time margin is v(πd ) = min
i=0...m

max
p=i ...m

ṽ(i , p) with

ṽ(i , p) = {
τ(p − i +1)

∣∣ ∀q ∈ {i . . p},adjθq
(σi ,σi+1) = 1

}
.

Note that ṽ(i , p) is the discrete-time equivalent of the set
{

t − ti
∣∣ [ti , t ) ⊂ Adj(σi ,σi+1)

}
from Definition 14, and this discrete time margin is analogous to that of Definition 14.
Finally, as in Definition 15, we associate collision-free trajectories to paths in the discrete
navigation graph as follows:

Definition 19 (Correspondance of discrete navigation graph paths). Let τ > 0 be a dis-
cretization time step, πd

0 = (E0
σ0

, . . . ,Em+1
σm+1

) be a path in G d and x(t ) be a collision-free tra-

jectory for the ego-vehicle. We say that πd
0 corresponds to x if, noting ψ(t ) = (x(t ), t ), we

have for all p ∈ {0 . .m}:

i. ψ(θp ) ∈ Ep
σp

and

ii. ψ([θp ,θp+1)) ⊂ Ep
σp

∪Ep
σp+1

.
5This assumption can be avoided by using rhombohedral cells instead of cuboids.
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9.4 Navigation graph and homotopy classes

In Chapter 8, we showed that the notion of homotopy classes was not sufficient to
properly describe the multiple decisions arising from autonomous on-road driving. In
this chapter, we therefore proposed a slightly different approach that we argue is more
suitable to encode driving decisions for motion planning, as we will show in Chapter 10.

Looking back to the example of Figures 9.5 and 9.6, there obviously are similitudes be-
tween homotopy classes of trajectories and paths in the navigation graph. In the case of
2D path planning, reference [43] even showed that non-looping paths in a similarly con-
structed graph could be mapped bijectively to homotopy classes assuming the underlying
free-space partitioning is minimal.

However, this is not the case in our navigation graph approach, as we purposely aim
to build a more discriminating notion. For instance in Figure 9.11b, the graph paths
( f r l , f f l , f l l ) and ( f r l , f f l , l f l , l l l , f l l ) both correspond to homotopic trajectories. As
hinted in [43], the non-equivalence lies in the choice of a non-minimal partition which
accounts for the “decision” of changing lanes, even though this decision ultimately has no
impact. However, the navigation graph is at least as discriminating as homotopy classes,
as stated in Theorem 6. In order to introduce this result, we first define a notion of equiv-
alence between navigation graph paths:

Definition 20 (Equivalence). Consider two paths6 π1 and π2 in G c , with

π1 = (
(σ1

1, . . ,σ1
m+1), (t 1

1 , . . , t 1
m)

)
and

π2 = (
(σ2

1, . . ,σ2
n+1), (t 2

1 , . . , t 2
n)

)
.

We say that π1 and π2 are equivalent, written π1 ≡π2, if m = n and, for all i ∈ {1, . . . ,m},
σ1

i =σ2
i =σi and either

[
t 1

i , t 2
i

]⊂ Adj(σi ,σi+1) or
[
t 2

i , t 1
i

]⊂ Adj(σi ,σi+1).

We can now use this notion (which does define an equivalence relation) to state the
following “injectivity” theorem:

Theorem 6 (Homotopy of trajectories having equivalent navigation graph paths). Let x1

and x2 be two collision-free trajectories over [t0, t0 +T] respectively corresponding to paths
π1 and π2 in G c . If π1 ≡π2, then x1 and x2 are homotopic.

Sketch of proof. The main idea behind the theorem is that the equivalence condition[
t 1

i , t 2
i

]⊂ Adj(σ1
i ,σ1

i+1)

guarantees that trajectories use the same “driving corridor”, which remains open at least
over the [t 1

i , t 2
i ] interval. Therefore, it is possible to continuously deform one trajectory

into the other. A detailed proof is available in Appendix F.

9.5 Chapter conclusion

In this chapter, we first presented an algorithm to partition the collision-free portion
of the configuration space-time into convex spatiotemporal cells which are semantically
meaningful in terms of driving. We then proposed a navigation graph approach building
upon this semantic partitioning, which is used to represent all possible driving decisions

6Assuming that consecutive signatures are distinct, as per Remark 4.
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for an ego-vehicle alongside with the temporal validity of the corresponding maneuvers.
Moreover, we showed that this navigation graph representation extends the notion of ho-
motopy classes, which we showed in Chapter 8 to be insufficient to describe maneuvers
for generic on-road driving.

We argue that the main advantage of our graph-based approach is that it allows decou-
pling the on-road motion planning problem into two simpler subproblems: a decision-
making phase (selecting a path on the graph, which is has a “polynomial” complexity)
followed by a continuous (potentially convex) optimization problem of finding the best
trajectory corresponding to this graph path. As presented in Chapter 7, the latter problem
can be solved efficiently using techniques such as MPC.

However, the motion planning problem does remain NP-hard, and the polynomial
complexity of path-finding should not obscure the fact that the navigation graph has a
number of nodes growing exponentially with the number of obstacles. Another difficulty
is that paths in the navigation graph do not always correspond to dynamically feasible
trajectories. For this reason, efficient exploration strategies in the navigation graph are
critical to the overall usability of this approach.
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Chapter 10

Graph-based decision-making

“ An approximate answer to the right problem is worth a
good deal more than an exact answer to an approximate

problem. ”

John Tukey (mathematician)
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10.1 Decision-aware motion planning

In the previous chapter, we proposed a graph-based approach to enumerate the pos-
sible driving decisions for on-road motion planning, in an attempt to overcome limitation
of earlier approaches to decision-based planning.

Indeed, it is possible to use mixed-integer quadratic programming to directly make
the driving decisions as we did in Part I. For instance, reference [55] describes a possi-
ble MIQP implementation using so-called logical constraints to encode these decisions.
However, this formulation may be too constraining to be applied for motion planning, for
instance in the case of uncertain predictions of the future behavior of other traffic partic-
ipants. Similarly, it may be difficult to encode the “desirability” of a candidate decision
using only a convex quadratic function, and a pure MIQP approach will often result in
the ego-vehicle brushing past obstacles1. For this reason, we argue that the ability of a
planning framework to provide more expressive power – at the cost of slightly increased
computation time – may be desirable.

A second advantageous property of the navigation graph approach is to simplify the
use of risk metrics, which can be directly taken into account at the graph exploration

1Although it is possible to add margins around the obstacles to counter this particular issue, objectives
such as “maximizing the distance to obstacles” cannot be implemented easily.
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phase; in [114], the authors used a similar partitioning technique to design a “space mar-
gin” metric for 2D path planning. In the previous chapter, we introduced a complemen-
tary time margin metric, corresponding to a temporal tolerance to execute a particu-
lar maneuver, that can be easily computed from our graph representation. This mea-
sure is related to the notion of “gap acceptance”, commonly used in stochastic decision-
making (see, e.g., [115]). We believe that combining a temporal margin (notably account-
ing for uncertainty in predicting the future trajectory of moving obstacles) as well as a spa-
tial margin (accounting for perception and control errors) is key for trajectory planning
and tracking in real-world situations, for instance coupled with MPC or Linear Quadratic
Gaussian motion planning and control [116].

Our navigation graph approach generalizes state-machine-based techniques [117, 118]
which rely on a predefined set of maneuvers (such as track lane or change lane) that needs
to be manually adapted to the driving situation. By contrast, our method can be applied
in many scenarios (including highway and urban driving, for instance crossing an inter-
section) with the same formalism. Although spatio-temporal graphs have already been
used for the control of AGVs [119, 120], no existing approach provides the same desirable
properties, and notably to easily account for margins in planning.

In the rest of this chapter, we demonstrate how the navigation graph can be used for
on-road motion planning in order to take into account more complex evaluation criteria
compared to the MIQP approach of [55]. Moreover, we discuss possible approaches that
could be explored in order to improve performance using different heuristics since find-
ing the global optimum may not be as important as quickly converging to a good solution,
as mentioned in Part I.

10.2 Motion planning on the navigation graph

As presented in Chapter 9, a path in the navigation graph encodes a family of trajecto-
ries that can be followed by the ego-vehicle without colliding with any obstacle, provided
they are dynamically feasible. Reciprocally, any collision-free trajectory x corresponds to
a unique path π(x) in the navigation graph. Noting π−1(π0) the set of trajectories corre-
sponding to the path π0, we deduce the following theorem:

Theorem 7 (Motion-planning equivalence). Let J(x) be a cost function for a given trajec-
tory x(t ), X the set of collision-free trajectories, and Π the set of paths in G c . Then:

min
x∈X

J(x) = min
π0∈Π

(
min

x∈π−1(π0)
J(x)

)
(10.1)

Proof. From Definition 15, for any collision-free trajectory x ∈ X there exists π0 ∈Π such
that π(x) = π0. Therefore, minx∈X J(x) ≤ minπ0∈Π

(
minx∈π−1(π0) J(x)

)
. Reciprocally, for all

π0 ∈ Π, any x ∈ π−1(π0) is guaranteed to be collision-free, leading to the reciprocal in-
equality.

In other words, it is equivalent to find an optimal trajectory for the ego-vehicle, and
to find an optimal path in the navigation graph G c and then the optimal trajectory corre-
sponding to this path; this result can of course be extended to paths in the discrete graph
G d .

An interesting feature of this decomposition of the trajectory planning problem is that
we effectively separate the discrete choice of a maneuver variant, and the search for an op-
timal control corresponding to this maneuver as was obtained in [43] for path-planning.
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10.3. Global optimum search

As presented in Chapter 7, this second problem can be solved efficiently under certain as-
sumptions on the vehicle dynamics. Moreover, we can get polynomial time computation
in certain cases, as presented below.

We now assume that the ego-vehicle follows the discrete linear dynamics xp+1 = Axp+
Bup for a state xp and a control up ∈ U (with U a convex polyhedron) with a discretization
time step τ, where A and B have constant coefficient. For a positive semi-definite matrix
Q, a line vector L and defining Xp = [xT

p ,uT
p ]T, we consider the generic quadratic cost func-

tion J(x,u) = ∑
p

1
2 XT

p QXp +LTXp . In this case, the optimal trajectory corresponding to a

path π0 in G d can be computed in polynomial time:

Theorem 8 (Polynomial time computability). Let π0 be a path in G d and x0 an initial state
for the ego-vehicle. The optimal trajectory (and associated control sequence) starting from
x0 and realizing

min
(xp )∈π−1(π0)
∀p up∈U

J(x,u)

can be computed in polynomial time in the number of obstacles and time steps.

Proof. We will show that this problem is an instance of convex quadratic programming
(QP), which has a complexity O (n3) where n is the number of constraints [121]. First, the
cost function J is quadratic and convex. Second, vehicle dynamics and control bounds
can be encoded as linear constraints. Moreover, the condition (xp ) ∈π−1(π0) corresponds
to a set of O (PN) linear constraints, leading to a QP problem with complexity O

(
(PN)3

)
for N obstacles over P time steps, thus proving the announced result.

However, the graphs G c and G d do have a number of vertices scaling exponentially
with the number of obstacles. An advantage of our approach is that exhaustive explo-
ration is not required to ensure global optimality, especially when considering safety mar-
gins such as a minimum required time or space validity (see [114]). Moreover, tailored
exploration heuristics could also be developed.

10.3 Global optimum search

To showcase the advantages of the navigation graph approach and the axes for im-
provement, we first present simulation results in the scenario of Figure 9.2. For illustra-
tion purposes, we consider a very simple second-order dynamics for the ego-vehicle as:

Xp+1 =
(

0 I2

0 0

)
Xp +

(
0
I2

)
up

with
Xp = [s,r, ṡ, ṙ ]T

p ,

up = [alon , al at ]T
p

and I2 denotes the R2 identity. To account for the nonholonomic constraints, we bound
the lateral velocity as |ṙp | ≤ αṡp with α> 0 a parameter, and we also require alon and al at

to be bounded. The objective function is chosen as

J =
∑
p

(
ṡp − ṡr e f

p

)2
+ ṙ 2

p + r 2
p ,
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Figure 10.1 – Another, less meaningful partitioning of the 2D space.

where ṡr e f
p is a reference target velocity, and we use a planning horizon of 10 s with a

time step τ = 1s, and a minimum time margin of 1 s. Despite its simplicity, this model
is generally suitable when driving on low-curvature roads (see, e.g., [55], which has been
experimentally validated on a ring of radius circa 20 m).

We propose to compare three different approaches to plan the maneuver of the ego-
vehicle in this scenario. The first one is the pure mixed-integer quadratic programming
(MIQP) method from [55], which we use as a reference; this approach has been proven to
be computationally efficient, but is not suited to take risk metrics such as the time mar-
gin into account. We then evaluate our semantic partition-based approach with a custom
graph exploration algorithm; to demonstrate the advantage of using the semantic par-
titioning of Chapter 9, we also present results obtained with the same exploration algo-
rithm on another free space-time partition shown in Figure 10.1, which is not as relevant
to driving decisions.

As mentioned earlier, one difficulty in the navigation graph approach is the need to
ensure that there exists a dynamically feasible trajectory corresponding to a given graph
path. In this implementation, we use a naive approach consisting in computing the opti-
mal trajectory corresponding to each path; as stated in Theorem 8, this computation can
be performed relatively fast, and in feasibility can be proven mathematically. Addition-
ally, we use a branch-and-bound technique to prune infeasible or poor quality branches.
The exploration algorithm is described in Algorithm 3; note that when performing mo-
tion planning, the initial position of the ego-vehicle is known, and thus the starting cell
in the discrete navigation graph is uniquely determined. As a result, the decision-making
process becomes a tree instead of a graph exploration problem; therefore, Algorithm 3 is
formulated in terms of branches.

The trajectories from both algorithms are shown in Figure 10.2; Table 10.1 reports the
computation time for all steps of our algorithm using a standard desktop computer. For
comparison purposes, we added an implementation of the same problem using a pure
mixed-integer quadratic programming (MIQP) method from [55]. We use an implemen-
tation of Seidel’s linear programming algorithm [122] to perform the partitioning, and
Gurobi [67] in version 7.5 to solve quadratic programming (trajectory optimization) and
MIQP (from [55]) problems. Reported times are obtained on a desktop Intel i7-6700K
CPU.

As shown in Table 10.1, the pure MIQP approach is faster than our navigation graph
one; indeed, the decoupling between decision-making and ego-vehicle dynamics does
not allow as efficient a resolution. However, the graph-based decision-making approach
has much more expressive power since it allows adding arbitrary high-level criteria – such
as time margin – to the optimization objective. In Figure 10.2, such considerations trans-
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Algorithm 3: Decision-based motion planning

Data: Discrete navigation graph G d , initial position (s0,r0), QP cost function Jq ,
decision cost function Jd ≥ 0

set σ0 = locateCell(s0,r0) // Starting cell

set visitList = {(0,σ0)} // History of visited cell

set prevDepth = 0 // Previous exploration depth

set bestVal = +∞ // Best objective value so far

set cellConstraints = {} // List of cell constraints

set bestBranch = {σ0} // Best branch found sor far

while visitList 6= ; do
/* Depth-first search : pop the first element of visitList */

set (k,σk ) = popHead(visitList)
for i = k . .prevDepth do

/* Remove constraints for steps i ∈ {k, . . ,prevDepth} */

removeCellConstraints(k)

/* Add constraints for the current step and update current depth */

addCellConstraints((sk ,rk ) ∈σk )
prevDepth = k
/* Minimize J under the given cell constraints and taking ego-vehicle

dynamics constraints

Returns the optimal value if feasible, or +∞ otherwise */

set branchVal = solveConstrainedQP(Jq ) + Jd (cellConstraints)
/* If the problem is infeasible or the current branch has been proven

sub-optimal, discard and move to another branch */

if branchVal >= bestVal then
continue

/* We have reached a terminal node with a lower cost; update the best

solution and continue exploring */

if k == numSteps-1 then
bestVal = branchVal
updateBestBranch() // update the best branch found

continue

/* Otherwise, loop over reachable cells from σk and add them if the time

margin is sufficient */

forall σk+1 ∈ reachable(k,σk ) do
if validity(σk ,σk+1) ≥ minValidity then

visitList = {visitList, (k +1,σk+1)}

return bestBranch
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Table 10.1 – Summary of computation time for 10 time steps (average over 1000 repetitions)

Algorithm Comp. time Objective val.

Partitioning 2.0 ms -
Optimal path computation < 1ms -

MIQP (no margin) 10.5 ms 13.58
Graph exploration (semantic partitioning, no margin) 28.3 ms 13.58
Graph exploration (other partitioning, no margin) 32.8 ms 13.58
Graph exploration (1 s margin) 27.5 ms 13.89

t = 0 s:

t = 2 s:

t = 3 s:

t = 4 s:

t = 5 s:

t = 6 s:

Figure 10.2 – Trajectories computed by both algorithms (MIQP in red, our graph-based approach
in thicker cyan) for a time margin of 1 s. The rectangles correspond to the vehicles of Figure 9.2;
the circles to the ego-vehicle position.

late into different maneuver choices for the same initial conditions between the MIQP
solution, where the ego-vehicle tries to overtake the blue vehicle (1) before the green one
(2), and our graph-based approach where this higher-risk maneuver is excluded; when
removing the time margin constraints, both algorithms of course converge to the same
optimum.

Another interesting result from Table 10.1 is that the same exploration algorithm is
roughly 25% slower when using another free-space partition with the same number of
cells, but for which the geometry is not as well suited to describe the underlying driving
decisions. This effect becomes much more dramatic when increasing the number of time
steps, as shown in Table 10.2 for 20 time steps of 0.5 s.

Note that the computation times reported in Tables 10.1 and 10.2 are obtained using a
single-thread implementation; due to the highly parallel nature of the graph exploration,
performance gains can be expected by splitting the exploration over multiple threads. In
practice, splitting the work across 4 threads only results in a slight speedup for 10 time
steps, and roughly 20% lower computation times for 20 time steps with our semantic par-
titioning. However, computation time decreases by roughly 60% in the case of the parti-
tioning shown in Figure 10.1 – but is still more than 4 times higher than obtained with our
semantic partitioning.
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Table 10.2 – Summary of computation time for 20 time steps (average over 1000 repetitions)

Algorithm Comp. time Objective val.
MIQP (no margin) 26.7 ms 26.28
Graph exploration (sem. part., no margin) 142.6 ms 26.28
Graph exploration (sem. part., no margin, 4 threads) 124.3 ms 26.28
Graph exploration (other part., no margin) 1718.6 ms 26.28
Graph exploration (other part., no margin, 4 threads) 609.7 ms 26.28

10.4 Heuristics

The previous section described an exact search algorithm which is guaranteed to con-
verge in finite (but exponential) time towards the globally optimal trajectory. However,
this search may be time consuming, and the algorithm does not provide guarantees re-
garding real-time computability. For practical applications, heuristic exploration algo-
rithms with bounded computation time may be preferable even though they can poten-
tially sacrifice optimality. In this exploratory section, we present a brief overview of possi-
ble search algorithms; their implementation and evaluation is, however, out of the scope
of this thesis but can serve as leads to be pursued in future work.

Heuristic initialization A first possible approach is to provide a feasible solution to the
solver in order to obtain a known upper bound for the minimum cost. This bound can
help the exploration algorithm cut branches off earlier, thus reducing the total amount of
calls to the QP solver. For this reason, we believe that techniques such as end-to-end imi-
tation or reinforcement learning, which have the advantage of constant-time complexity
but usually cannot be validated, could form a good complement to our decision-based
approach by serving as the initializer for the exploration.

Multi-scale exploration A second approach to reduce computation time is to use multi-
scale time discretization to prune dynamically infeasible branches faster. Indeed, know-
ing that transition (σi ,σ j ) is (dynamically) infeasible with a time step duration τ guaran-
tees that any transition (σi ,σk ,σ j ) is infeasible2 with a time step duration τ

2 . Similarly,
knowledge of a good solution with a coarser time step can be used to initialize the search
with a finer time step, as presented above.

Event-based approach A potentially promising approach, that would allow combining
the advantages of both time and space discretization, is to use the continuous navigation
graph instead of its discretized version, and perform event-based computation. In this
case, transition times themselves would be considered as optimization variables to be
optimized, possibly using gradient-based methods.

Monte-Carlo tree search and reinforcement learning Finally, building upon the suc-
cess of learning agents such as Deepmind’s AlphaGo [16, 19], techniques such as rein-
forcement learning coupled with Monte-Carlo tree search could also be evaluated to han-
dle the most complex situations.

2Note, however, that adjacency relations can be modified when using a different time step.
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10.5 Chapter conclusion

In this chapter, we proposed a decision-based motion planning algorithm building
upon the (discrete) navigation graph presented in Chapter 9. Contrary to previous algo-
rithm which simultaneously optimize decision-making and continuous trajectory plan-
ning using mixed-integer programming, our approach separates both problems to allow
a much wider range of evaluation functions. In particular, safety metrics such as mini-
mum time margins can be used easily; high-level considerations stemming from traffic
rules, for instance to avoid overtaking from the right, can also be taken into account.

Of course, this improved expressiveness comes at a cost in terms of computational
complexity. To allow practical application in real time, we proposed several possible heuris-
tics that can be investigated in order to reduce computation time while providing high-
quality – if not globally optimal – trajectories.
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Conclusion of Part II

In Part II, we first showed that – provided driving decisions were dictated by exter-
nal considerations – autonomous motion planning could be performed efficiently using
gradient-based optimization techniques in frameworks such as model predictive con-
trol. This observation, coupled with the encouraging results from Part I, motivated our
research for an efficient decision-making framework for autonomous driving.

Second, we illustrated the negative result that the mathematical notion of homotopy
classes was not sufficient to properly encode driving decisions in autonomous motion
planning. Indeed, contrary to cooperative motion planning where each vehicle could
be assumed to roughly follow a fixed path, which allowed us to cast the problem into a
two-dimensional space which did not have an explicit time dependency as all vehicles
could collaborate. In the case of autonomous motion planning where the fixed-path as-
sumption cannot be made, the search space is three-dimensional and the motion of exo-
vehicles over time is prescribed; therefore, the temporal dimension of the problem cannot
be abstracted. These key differences require more expressiveness than what is permitted
by the usual notion of homotopy classes in order to classify possible maneuvers.

To this effect, we proposed a novel representation of driving decisions in the form of
a navigation graph which generalizes the notion of homotopy classes: any collision-free
trajectory can be represented by a path in this graph, and two trajectories having the same
graph representation are guaranteed to be homotopic. As opposed to existing literature,
we build this navigation graph upon a semantic partitioning of the collision-free space-
time; we showed that this semantic partitioning leads to faster computations.

Finally, we proposed a decision-based motion planning framework, which explores
the navigation graph in order to guide the optimization. Compared to existing decision-
aware frameworks, for instanced based on mixed-integer programming, this graph-based
approach allows much more expressiveness in the choice of cost function and constraints,
at the cost of increased computation time. In order to mitigate this disadvantage, we
proposed several heuristics that could be explored in future research in order to compute
high-quality (but potentially sub-optimal) trajectories in real-time.

Another axis for future research is the generalization of our navigation graph approach
to probabilistic predictions of obstacle trajectories. Indeed, most of the current frame-
work can be used in a stochastic setting, for instance by choosing a probability threshold
above which a region is considered occupied. However, this approach may prove too sim-
plistic when longer planning horizons are considered as the existence of multiple possi-
ble behaviors for an exo-vehicle can lead to bifurcating predictions – for instance when
an exo-vehicle can change lanes. To handle such scenarios, the proposed partitioning
algorithm may have to be refined.

This last remark shows an important limitation of many motion planning algorithms,
which often consider perfect predictions on future obstacle states that by definition can-
not be obtained except in simulation. Based on this observation, Part III focuses on bridg-
ing the gap between simulations and practical implementations.





Part III

Beyond simulations: bridging the gaps





Introduction

In the first two parts of this thesis, we focused on designing cooperative (Part I) and
autonomous (Part II) motion planning algorithms for automated driving. Although the
proposed frameworks can accommodate – to some extent – to a stochastic environment,
they still rely on assumptions that are not easily met in real-world conditions. Moreover,
motion planning algorithms do not exist in a vacuum; for practical implementation, the
link between perception and planning should also be considered.

The aim of Part III is to present possible approaches to bridge the gap between the
simulated results of Parts I and II, and a practical implementation. As the state of the
art of cooperative driving is not as advanced as that of autonomous driving, we focus on
planning trajectories for a single automated vehicle.

In particular, motion planning algorithms require predictions on future obstacle tra-
jectories which in practice are not easily obtained, and are by essence stochastic rather
than deterministic. In turn, adapting existing algorithms to handle this stochasticity also
constitutes an important challenge.

Sketch of Part III This shorter and somewhat more engineering-oriented part is divided
in two chapters, each proposing exploratory approaches to tackle the above-mentioned
challenges. In Chapter 11, we present possible methods that can be used in order to per-
form either stochastic or deterministic trajectory predictions for moving obstacles. In
Chapter 12, we describe a real-world implementation of a simplified decision-making
framework for autonomous driving on an automated vehicle prototype.





Chapter 11

Trajectory prediction

“ There are many methods for predicting the future. For
example, you can read horoscopes, tea leaves, tarot cards,
or crystal balls. [. . . ] Or you can put well-researched facts

into sophisticated computer models, more commonly
referred to as ‘a complete waste of time.’ ”

Scott Adams (Cartoonist)
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11.1 Trajectory and behavior prediction

In most situations, experienced human drivers are able to accurately infer future be-
haviors for the surrounding vehicles, which is critical when making tactical driving deci-
sions such as overtaking or crossing an unsignalized intersection. Current generations of
driving assistance systems such as adaptive cruise control lack these predictive capaci-
ties; as such, they usually act in a purely reactive fashion and are unable to make tactical



Chapter 11. Trajectory prediction

driving decisions which are usually left to the driver. Similarly, autonomous vehicle pro-
totypes which lack predictive capacities have to behave very conservatively in the pres-
ence of other traffic participants; failure to properly estimate obstacle trajectories with
any amount of risk-taking has already caused accidents involving self-driving car proto-
types (see, e.g., [123]). Therefore, reliable motion prediction of surrounding vehicles is a
critical feature for safe and efficient autonomous driving.

11.1.1 Digression on probabilistic representations

Trajectory prediction for motion planning applications (such as presented in Part II)
presents important challenges, some of which are inherent to the task of state estima-
tion/prediction, while others are particular to the context of automated driving.

Fundamentally, the generic task of trajectory prediction consists in determining a
probability distribution for the future state of the considered system given a sequence
of past observations. However, when considering highly-maneuverable systems such as
cars or pedestrians, there is a large difference between (physically) possible, plausible and
probable future states. Although several authors may always consider worst-case sce-
narios (see, e.g., [124]) leading to “100% safe” systems, we argue that doing so would be
impractical in real-life as this would result in overly cautious and thus inefficient driv-
ing. Therefore, knowing where the probability distribution is non-zero is not sufficient
for practical applications.

This consideration shows a limit in the above definition of the trajectory prediction
problem, as it considers future system states as a random variable. This modeling is sen-
sible in the context of probability theory, but falls somewhat short when applied to traffic
participants who can usually be expected to behave “reasonably”. Therefore, their future
trajectory heavily depends on a priori knowledge on their behavior (including, but vastly
exceeding dynamic constraints) that may be highly difficult to account for. Moreover,
other traffic participants will react to the very driving decisions made by the ego-vehicle
based on their own prediction of the ego-vehicle’s behavior. In practice, this feedback
loop may prove difficult to take into account as it involves complex equilibrium concepts
that are close to those of game theory – although drivers are in fact both cooperating with,
and competing against one another; an iterative approach to take such feedback into ac-
count is presented in [125].

For the above reasons, determining the actual probability density function (PDF) for
future states of other traffic participants seems out of reach. For this reason, the rest of
this chapter focuses on determining functions that are expected to approximate peaks
and valleys of the actual PDF, but may not themselves be proper densities.

11.1.2 Literature review

Notwithstanding these considerations, many approaches to motion prediction have
been proposed in the literature; a more comprehensive survey can be found in [126]. Al-
though some of them (such as the one we propose in Section 11.2) can be parametrized by
hand from expert knowledge, most of the existing techniques rely on automated learning.

As in many learning applications, these techniques can be split between classification
or regression methods. When applied to motion prediction, classification problems con-
sist in determining a high-level behavior (or intention), for instance lane change left, lane
change right or lane keeping for highway driving or turn left, turn right or go straight in
an intersection. Many techniques have already been explored for behavior prediction,
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such as hidden Markov models [127, 128], Kalman filtering [129], Support Vector Ma-
chines [130, 131] or directly using a vehicle model [132]; more recently, artificial neural
network approaches have also been proposed [133, 134, 135].

The main advantage of predicting behaviors is that the discrete outputs make it easier
to train models and evaluate their performance. However, they only provide rough infor-
mation on future vehicle states, which is not easy to use when planning a trajectory for
the self-driving ego-vehicle. Some authors have proposed using a generative model, for
instance Gaussian Processes [127] or neural networks [133] based upon the output of the
behavior prediction, but this approach requires complex training and is only as robust as
the classifier accuracy. Regression problems, on the other hand, aim at directly obtain-
ing a prediction for future positions of the considered vehicle, which can then be used
for motion planning. Many regression algorithms could be used for this problem, such as
regression forests [136]; more recently, artificial neural networks have attracted the most
attention in the field of trajectory prediction for cars [137, 138], cyclists [139] or pedes-
trians [140, 141]. A potential downside of such approaches is that the output of many
regression algorithms is a single “point” (e.g., a single predicted trajectory) without pro-
viding a measure of confidence. To counter this issue, well-established approaches such
as Monte Carlo sampling or k-fold validation [142] can be used to provide error estimates;
more recently, dropout estimation techniques have also been proposed for applications
using neural networks [143]; these techniques can therefore be employed to output rough
probability distributions.

11.2 Physics-based Monte-Carlo estimation

One of the major limitations to learning-based approaches to trajectory prediction is
that they typically require large amounts of data recorded in “relevant” situations. More-
over, it is still unclear how well results obtained on a specific location (for instance, an
instrumented intersection) can be generalized.

On the other hand, physics-based approaches that mostly rely on a priori knowledge
on object dynamics do generalize well, but are more suited to computing possible – rather
than likely – trajectories. In this section, we propose a relatively simple Monte-Carlo esti-
mation scheme that can be used for trajectory prediction with little knowledge on the dy-
namic objects of the scene. Coupled with some hand-crafted parameters, this approach
was successfully used in actual driving conditions for a prototype of a level 4 automated
vehicle using 2D LiDAR data. Figure 11.1 shows an example of such a point cloud, and a
frame from a front-facing camera showing the scene at the same time instant. Although
the proposed approach can of course generalize, the rest of this section will focus on the
roundabout scenario of Figure 11.1.

11.2.1 Inputs

This algorithm is aimed at being implemented easily with a minimal amount of a pri-
ori knowledge and hypotheses on the perception layer. We consider a set of dynamic ob-
jects O that can evolve inside a navigable region R ⊂ R2. We assume that the perception
layer is capable of correctly detecting and tracking object o ∈O , and to determine its type,
for instance as a car, a bicycle or a pedestrian. As the perception layer has tracking capa-
bilities, a history of past positions (xo

k , yo
k )k is available for each obstacle o, for instance

locating the center of the bounding box corresponding to o in the LiDAR point cloud in a
ground frame. The dimensions of each object are also supposed to be provided, as well as
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(a) LiDAR point cloud (b) Camera frame

Figure 11.1 – Raw data for the estimation algorithm

its longitudinal velocity and heading; a possible approach to compute this information is
to use extended Kalman filtering with a nonlinear point-mass model. Error estimates on
input parameters can also be provided.

For each class of moving objects, a dynamic forward simulation model, with a corre-
sponding set of feasible controls, is supposed to be provided from expert knowledge. To
simplify the rest of this section, we only consider car-like objects following the kinematic
bicycle model presented in Equation (7.9); note that a better-suited model should prob-
ably be used for other types of traffic participants such as pedestrians or trailer trucks.
Finally, we assume that the drivable region R is known, for instance based on subtract-
ing detected static objects from an off-line (HD) map. Figure 11.2 shows an overlay of
the LiDAR point cloud on a binary representation of the navigable region, based on the
estimated ego-vehicle location from the perception layer.

11.2.2 Monte-Carlo approach

The basic idea of our Monte-Carlo approach is to randomly sample feasible controls
for each object, and to propagate the observed state (or an initial state sampled within
the error ellipsoid around this initial state) forward in time, resulting in a possible trajec-
tory. To filter out the most unlikely trajectories, the sequence of control is discarded if
the obstacle exits its navigable region. The use of a bicycle model, where controls are a
longitudinal acceleration and a steering angle, allows taking into account reasonable car
dynamics. This forward simulation process is repeated a predetermined number of times
for each object, and regions more frequently visited are therefore associated with a higher
value of occupancy.

In practice, we represent the driving area around the ego-vehicle as a 2D grid with
fixed spatial resolution, and we use a fixed discretization time step; the occupancy prob-
ability over a prediction horizon T is therefore represented by a piecewise-constant func-
tion defined over a 3D grid, where the third dimension represents time. Algorithm 6
presents the sampling algorithm used to evaluate future occupancy distribution for a sin-
gle object.

The output of Algorithm 6 (applied to all dynamic obstacles) is a discrete function
generally taking higher values in cells having a higher probability of being occupied at a
given time. As objects are considered individually, several of them can contribute to the
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Figure 11.2 – Overlay of the point cloud of Figure 11.1 (in red) on the navigable region (in green).
The location of the ego-vehicle estimated by the perception layer is shown in blue.

Algorithm 4: Trajectory prediction for obstacle o

Input: Initial state X0 with error (covariance) matrix Σ, (static) navigability grid G,
number of sampled controls N, number of prediction time steps K

Output: Probabilistic occupancy grids Gk at time steps k = 1. .K
for i = 1. .N do

/* Randomly sample an initial state within the uncertainty ellipsoid */

set X̃ =N (X0,Σ)
/* NonNavigable(G,X) returns true if any point of the obstacle shape, when

in state X, is in a non-navigable cell of G */

for k = 1. .K do
if NonNavigable(G,X̃) then

continue // Abort unlikely trajectory

foreach (i , j ) ∈ OccupiedCells(G,X̃) do
/* Increment by 1

N all cells occupied by the obstacle shape when in

state X at step k */

Gk [i , j ] = min
(
1,Gk [i , j ]+ 1

N

)
set u = RandomControl(X̃) // Randomly sample a feasible control for

object o

set X̃ = IntegrateDynamics(X̃,u) // Compute resulting new state
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value of a single cell; the min function in the assignment is used to bound this value to 1.
Although the value of a cell does not correspond to an actual probability, the rest of this
thesis will refer to it using the improper term of occupancy probability; an illustration of
such probabilities in the situation of Figure 11.1 is shown in Figure 11.3.

11.2.3 State-machine-based behavioral model

A key element that vastly conditions the quality of trajectories predicted by Algorithm 6
is the RandomControl function. Indeed, uniformly sampling the space of dynamically
feasible controls will admittedly yield possible trajectories, but that may be highly un-
likely, corresponding for instance to a vehicle cutting straight across the central island
in the roundabout. Statistical or machine learning techniques can of course be used to
estimate the distribution of controls actually applied by human drivers, but require po-
tentially large amounts of training data to do so, and may be difficult to generalize to other
scenarios.

Another approach, that may be less precise but possibly more generalizable is to use
expert knowledge to handcraft behavioral models depending on a high-level semantic
understanding of the driving situation. For instance, drivers in a roundabout will usually
either turn around the central island, or move outwards to reach an exit.

The main advantage of using such maneuvers is that the probability distribution of
likely controls conditioned by a maneuver choice can be hypothesized to be much simpler
than in the absence of conditioning. Moreover, we conjecture that better generalization
can be achieved by parameterizing controls depending on certain well-chosen semantic
elements; for instance, steering angle when turning around the roundabout will mostly
depend on the roundabout radius, with slight driver-dependent variations.

State machines (or finite automata) have been widely used for behavior selection, as
they allow a compact representation of multiple (and possibly hierarchical) choices [144].
In this simple implementation, we use such a state machine to parametrize the Random-
Control function based on the predetermined semantic considerations – in the case of
Figure 11.3, we only consider whether the exo-vehicle is inside the roundabout, or in one
of the straight parts of the road.

In both cases, we assume that driver inputs, i.e. longitudinal acceleration and steering
angle, have a Gaussian distribution truncated to a minimum and maximum value. How-
ever, the average value and standard deviation of the distributions depend on the current
exo-vehicle state; for instance, the steering angle has a centered distribution in straight
parts of the road, which is not the case inside the roundabout. Although quite simple,
this approach proves useful in situations where training data is scarce, for instance when
approaching an unknown road. For this reason, we believe that developing more generic
and comprehensive state-machine-based models is a promising topic for future research.

11.2.4 Interaction awareness

Another limitation of Algorithm 6 is that each object is considered individually, al-
though interactions between traffic participants is a key aspect of driving. A possible
approach to overcome this issue is to combine our simple sampling strategy with an ex-
tended notion of “priorities”.

In many situations, traffic rules avoid ambiguity by requiring one vehicle to yield to
another based on high-level concepts such as priority to the right; thus, priority relations
in the sense of [42] can be assigned within certain pairs of traffic participants. Other pairs
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Figure 11.3 – Predicted occupancy predictions in the situation of Figure 11.1 with Algorithm 6;
higher occupancy probability is shown in red. Increasing time is from left to right, and from top to
bottom.
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may not have explicit precedence relations, e.g. for two vehicles driving side-by-side on
a straight road, in which case we add another “equivalent” relation ≈ to complete the
precedence relation Â.

In order to take interactions between obstacles having an equivalent priority, we pro-
pose to adapt Algorithm 6 by simultaneously choosing a random control for all vehicles
with undetermined priority. Corresponding trajectories are discarded if they exit the nav-
igable region, or result in a collision within two obstacles with equivalent priority.

Assuming that precedence relations in a given situation are acyclic, there exists one
or several “maximum elements” corresponding to obstacles having the highest priority
(which are pairwise equivalent). As these obstacles are not required to yield, but should
only avoid collisions within themselves, their likely future occupancy can be computed
first using this simultaneous sampling technique. This process is then repeated for ob-
stacles having lower priority, taking the occupancy probability computed previously as a
constraint, i.e. discarding trajectories which enter cells with non-zero occupancy proba-
bility, with the same probability. This process is described in Algorithm 5. A limitation
of this joint estimation approach is that many samples risk being discarded, which may
require increasing the number of samples to get sufficient coverage. This remark empha-
sizes even more the importance of the RandomControl function, which may mitigate this
issue by considering, e.g., repulsive forces between obstacles.
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Algorithm 5: Interaction-aware trajectory prediction for an obstacle set O

Input: For each objet i ∈O : initial state Xi
0 with error (covariance) matrix Σi ,

(static) navigability grid G, number of sampled controls N, number of
prediction time steps K

Output: Probabilistic occupancy grids Gk at time steps k = 1. .K
/* Sort objects by decreasing level of priority */

set L = SortByPriority(O )
while L 6= ; do

set i0 =L [0] // Get the highest priority obstacle i0 remaining in L

set Leq = {i ∈L |i ≈ i0} // Get the obstacles with priority equivalent to i0

set X0 =
(
Xi

0

)
i∈Leq

// Consider the system of all obstacles of Leq

set Σ= diag
(
Σi

)
i∈Leq

// Assume independant noise

/* Randomly sample an initial system state */

set X̃ =N (X0,Σ)
/* NonNavigable(G,X) returns true if any point of an obstacle shape, when

the system of obstacles is in state X, is in a non-navigable cell */

/* PairwiseCollision(X) returns true if state X corresponds to a collision

between two objects in Leq */

/* OccupancyProb(Gk ,X) returns the maximum of the previously computed

occupancy probability in Gk, over the cells occupied by the system of

obstacles in state X */

for k = 1. .K do
/* Abort unlikely trajectories: */

if NonNavigable(G,X̃) then
continue // Non-navigable

if PairwiseCollision(X̃) then
continue // Collision between equivalent priority obstacles

if Rand() < OccupancyProb(Gk , X̃) then
continue // Probable collision with a higher-priority obstacle

foreach (i , j ) ∈ OccupiedCells(G,X̃) do
/* Increment by 1

N all cells occupied by each obstacle shape when

the system of obstacles is in state X at step k */

Gk [i , j ] = min
(
1,Gk [i , j ]+ 1

N

)
set u = RandomControl(X̃) // Randomly sample a feasible system control

set X̃ = IntegrateDynamics(X̃,u) // Compute resulting new state

for i ∈Leq do
remove i from L
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11.3 A neural network approach

The previous section described a mostly hand-crafted approach to motion prediction
which can be applied when little a priori knowledge is available. In this section, we fo-
cus on a larger scale, data-driven approach to trajectory prediction using long short-term
memory (LSTM) neural networks [145], which are a particular implementation of recur-
rent neural networks. Because they are able to keep a memory of previous inputs, LSTMs
are considered particularly efficient for time series prediction [146] and have been widely
used in the past few years for pedestrian trajectory prediction [140, 141] or to predict ve-
hicle destinations at an intersection [135, 147]. We propose an LSTM network to predict
car trajectories on highways, which is notably critical for safe autonomous overtaking or
lane changes, and for which very little literature exists.

A particular challenge for this problem is that highway driving usually comprises a
lot of constant velocity phases with rare punctual events such as lane changes, which
are therefore hard to learn correctly. For this reason, many authors rely on purposely
recorded [131] or handpicked [148, 149] trajectory sets which are not representative of
actual, average driving. Therefore, the real-world performance of trained models can be
significantly different. A second particularity of our approach is that we train and validate
our model using the entire NGSIM US101 dataset [150] without a-priori selection, and
show that we can predict future trajectories with a satisfying average RMS error below
0.7 m (laterally) and 2.5 m s−1 (longitudinally) when predicting 10 s ahead.

11.3.1 Data and features

11.3.1.1 Dataset

In this chapter, we use the Next Generation Simulation (NGSIM) dataset [150], col-
lected in 2005 by the United States Federal Highway Administration, which is one of the
largest publicly available source of naturalistic driving data and, as such, has been widely
studied in the literature (see, e.g., [137, 133, 151, 135]). More specifically, we consider the
US101 dataset which contains 45 minutes of trajectories for vehicles on the US101 high-
way, between 7:50 am and 8:35 am during the transition from fluid traffic to saturation at
rush hour. In total, the dataset contains trajectories for more than 6000 individual vehi-
cles, recorded at 10 Hz.

The NGSIM dataset provides vehicle trajectories in the form of (X,Y) coordinates of
the front center of the vehicle in a global frame, and of local (x, y) coordinates of the same
point on a road-aligned frame. Since our problem is mostly invariant by a rigid transfor-
mation, we use the local coordinates system (dataset columns 5 and 6), where x is the
lateral position of the vehicle relative to the leftmost edge of the road, and y its longitu-
dinal position. Moreover, the dataset contains each vehicle’s lane identifier at every time
step, as well as information on vehicle dimensions and type (motorcycle, car or truck).
Finally, the data also contains the identifier of the preceding vehicle for every element in
the set (when applicable).

11.3.1.2 Data preparation

One known limitation of the NGSIM set is that vehicle positioning data was obtained
from video analysis, and the recorded trajectories contain a significant amount of noise
[152]. Velocities, which are obtained from numerical differentiation, suffer even more
from this noise. For this reason, we used a first order Savitzky-Golay filter [153] – which
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Figure 11.4 – Smoothing of the lateral position and speed.
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Figure 11.5 – Vehicles of interest around the target vehicle and local axis system. The blue arrow
represents traffic direction.

performs well for signal differentiation – with window length 11 (corresponding to a time
window of 1 s) to smooth the longitudinal and lateral positions and compute the corre-
sponding velocities, as illustrated in Figure 11.4.

We hypothesize that the future behavior of a target vehicle can be reliably predicted by
using local information on the vehicles immediately around it; a similar hypothesis was
successfully tested in [154] to detect lane-change intent. For a target vehicle, we consider
9 vehicles of interest, which we label according to their relative position with respect to
the target vehicle targ, as shown in Figure 11.5. By convention, we let r (respectively l) be
the vehicle which is closest to the target vehicle in a different lane with x > xt ar g (respec-
tively x < xt ar g ). We respectively denote by fl, f, fr and ff the vehicle preceding l, targ, r
and f; similarly, vehicles bl, b and br are chosen so that their leader is respectively l, targ
and r. During the data preprocessing phase, we compute the identifier of each vehicle of
interest and perform join requests to append their information to the dataset. When such
a vehicle does not exist, the corresponding data columns are set to zero.

Note that the rationale behind the inclusion of information on ff is that only observ-
ing the state of the vehicle directly in front is not always sufficient to correctly determine
future traffic evolution. For instance, in a jam, knowing that vehicle ff is accelerating can
help infer that f, although currently stopped, will likely accelerate in the future instead of
remaining stopped. The obvious limit to increasing the number of considered vehicles is
the ability to realistically gather sufficient data using onboard sensors; for this reason, we
restrict the available information to these 9 vehicles.
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11.3.1.3 Features

In this chapter, we aim at only using features which can be reasonably easily measured
using on-board sensors such as GNSS and LiDAR, barring range or occlusion issues. For
this reason, we consider a different set of features for the target vehicle (for which we want
to compute the future trajectory) and for its surrounding vehicles as described above.

For the target vehicle, we define the following features:

• local lateral position xt ar g , to account for different behaviors depending on the
driving lane,

• local longitudinal position yt ar g , to account for different behaviors when approach-
ing the merging lane,

• lateral and longitudinal velocities vx t ar g and vy t ar g ,

• type (motorcycle, car or truck), encoded respectively as −1, 0 or +1.

For each vehicle p ∈ {bl, b, br, l, f, r, fl, f, fr, ff}, we define the following features:

• lateral velocity vx p ,

• longitudinal velocity relative to t ar g : ∆vy p = vy t ar g − vy p ,

• lateral distance from t ar g : ∆xp = xp −xt ar g ,

• longitudinal distance from t ar g : ∆yp = yp − yt ar g ,

• signed time-to-collision with t ar g : TTCp = ∆yp

∆vy p
,

• type (motorcycle, car or truck), encoded respectively as −1, 0 or +1.

These features are scaled to remain in an acceptable range with respect to the activa-
tion functions; in this first implementation, we simply divide longitudinal and lateral dis-
tances (expressed in SI units), as well as longitudinal velocities by 10, which results in
values generally contained within [−2,2]. Note that in the case of missing data (e.g., when
the left vehicle does not exist), the corresponding values of ∆ can become higher (in ab-
solute value).

This choice of features was made to replicate the information a human driver is likely
to base its decisions upon: the features from surrounding vehicles are all relative to the
target vehicle, as we expect drivers to usually make decisions based on perceived dis-
tances and relative speeds rather than their values in an absolute frame. Features re-
garding the target vehicle’s speed are given in a (road-relative) absolute frame as drivers
are generally aware of speedometer information; similarly, we use road-relative positions
since the driver is usually able to measure lateral distances from the side of the road vi-
sually, and knows its longitudinal position. The choice of explicitly including time-to-
collision as a feature comes from the high importance of this metrics in lane-change de-
cisions [155]; furthermore, neurosciences seem to indicate that animal and human brains
heavily rely on time-to-collision estimations to perform motor tasks [156].
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Figure 11.6 – Internal structure of an LSTM cell as used in the Keras framework. σ and tanh re-
spectively denote a sigmoid and hyperbolic tangent activation functions; the [ , ] node on the
lower right operates a concatenation of the new input xt and the previous output ht−1.

11.3.1.4 Outputs

Our goal is to predict the future trajectory of the target vehicle. Since the region of
interest spans roughly 1 km longitudinally, the values of the longitudinal position can
become quite large; for this reason, we prefer to predict future longitudinal velocities
v̂y t ar g instead. Since the lateral position is bounded, we directly use x̂t ar g for the out-
put. In order to have different horizons of prediction, we choose a vector of outputs
[x̂k

t ar g , v̂y
k
t ar g ]k=1...K consisting in values taken k seconds in the future.

11.3.2 Learning model

Contrary to many existing frameworks for intent or behavior prediction, which can
be modeled as classification problems, our aim is to predict future (x, y) positions for the
target vehicle, which intrinsically is a regression problem. Due to their success in many
applications, we choose to use an artificial neural network for our learning architecture,
in the form of a Long Short-Term Memory (LSTM) network [145]. LSTMs are a particular
implementation of recurrent neural networks (RNN), which are particularly well suited
for time series; in this implementation, we used the Keras framework [157], which im-
plements the extended LSTM described in [146], presented in Figure 11.6. Compared to
simpler vanilla RNN implementations, LSTMs are generally considered more robust for
long time series [145]; future work will focus on comparing the performance of different
RNN approaches on our particular dataset.

An interesting feature of LSTM cells is the presence of an internal state which serves
as the cell’s memory, denoted by mt in Figure 11.6. Based on a new input xt , its pre-
vious state mt−1 and previous output ht−1, the cell performs different operations using
so-called “gates”:

• forget: uses the inputs to decide how much to “forget” from the cell’s previous in-
ternal state mt−1;

• input: decides the amount of new information to be stored in a memory based on
xt and ht−1;
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Figure 11.7 – Network architecture used as reference design. The four repeated inputs X1...4 corre-
spond to the current target vehicle states (positions and speeds), and are directly fed to the (dense)
output layer.

• output: computes the new cell output from a mix of the previous states and output
of the input gate.

This particular feature of LSTMs allows a network to learn long-term relations between
features, which makes them very powerful for time series prediction.

Due to their recurrent nature, even a single layer of LSTM nodes can be considered
as a “deep” neural network. Although such layers may theoretically be stacked in a fash-
ion similar to convolutional neural networks to learn higher-level features, previous stud-
ies [135] and our own experiments (see Section 11.3.3) seem to indicate that stacked layers
of LSTM do not provide improvements over a single layer in our application. We use the
network presented in Figure 11.7 as our reference architecture, and we compare a few
variations on this design in Section 11.3.3. The reference architecture uses a first layer of
256 LSTM cells, followed by two dense (fully connected) and time-distributed layers of 256
and 128 neurons and a final dense output layer containing as many cells as the number
of outputs. In this simple architecture, the role of the LSTM layer is to abstract a mean-
ingful representation of the input time series; the two dense layers then combine these
higher-level “features” in order to produce the output, in this case the predicted future
states.

Additionally, the first four input features of the network – corresponding to the abso-
lute state of the target vehicle – are repeated and directly fed to the (dense) output layer,
thus bypassing the LSTMs. The motivation behind this bypass is to allow the recurrent
layer to focus on variations from the current states, rather than modeling the steady state
of driving at constant speed on a given lane. In practice (see Section 11.3.3), the use of
this bypass seems to slightly improve prediction quality.

11.3.3 Results

In this section, we use the previously described deep neural network to predict future
trajectories sampled from the US101 dataset. To assess the learning performance of the
model and its ability to generalize over different drivers, we first randomly select 80% of
vehicles (4892 trajectories) for training, and withhold the remaining 20% of vehicles (1209
trajectories) for testing; this later 20% is not used during the training phase.

In this chapter, we aim at designing a network which is capable of understanding
medium-term (up to 10 s) relations for prediction. To avoid backpropagation-related is-
sues that can arise with long time series, we trained the network using windows of 100
inputs, representing a total of 10 s past observations. One such window is taken every 10
data points; therefore, two consecutive windows have 9 s of overlap. Additionally, vehi-
cles are grouped by batches of 500 (except for the final batch), and data is shuffled within
batches. As a result, the data actually fed to the network for a batch of vehicles is a tridi-
mensional tensor of shape B× 100×N where B ≈ 20000 and N ≈ 50 are respectively the
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Figure 11.8 – Example of a predicted trajectory (2 s forecast) for a vehicle in the test set (in red); the
thick green line corresponds to the reference.

total number of time windows in the batch, and the number of features. The training is
performed on GPU using the TensorFlow backend with a batch size of 32; the model is
trained for 5 epochs on each set of 500 vehicles and the whole dataset is processed 20
times, resulting in 100 effective epochs.

For the test set, we directly feed the input features for the whole trajectory, without
processing the data by time windows. For each vehicle, we then compute the Root Mean
Squared error (RMSE) between the network prediction and the actual expected value. In
Figure 11.8, we present the prediction outputs of the network of Figure 11.7 for one of the
vehicles in the test set. For comparison purposes, we tested the following variations of the
reference design:

• Reference design of Figure 11.7,

• Using vehicle type information,

• Without using information on vehicle ff,

• Without using a bypass,

• Using bypass before the first dense layer (only bypass the LSTMs),

• Using a linear activation for the 128 dense layer,
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Table 11.1 – RMS error for the tested models

(a) Lateral position (errors are in m)

Prediction horizon

Model 1 s 2 s 3 s 4 s 6 s 8 s 10 s

Reference* 0.11 0.25 0.33 0.40 0.53 0.60 0.73
With type information* 0.39 0.39 0.44 0.48 0.53 0.63 0.69
No data on vehicle ff* 0.14 0.24 0.33 0.41 0.54 0.65 0.76
No bypass 0.80 0.82 0.85 0.88 0.93 0.97 1.03
Bypass only LSTM 0.33 0.38 0.43 0.46 0.52 0.61 0.68
Linear activation 1.38 1.39 1.40 1.42 1.46 1.51 1.56
2 LSTM layers 1.25 1.26 1.28 1.29 1.33 1.37 1.41
3 dense layers* 0.34 0.38 0.44 0.50 0.59 0.70 0.72
[138] 0.11 0.32 0.71 not available

Bagged 0.17 0.25 0.33 0.40 0.46 0.57 0.65

(b) Longitudinal speed (errors are in m s−1)

Prediction horizon

Model 1 s 2 s 3 s 4 s 6 s 8 s 10 s

Reference* 0.71 0.99 1.25 1.49 2.10 2.60 2.96
With type information* 0.65 0.88 1.05 1.25 1.75 2.28 2.74
No data on vehicle ff* 0.67 0.91 1.16 1.44 1.98 2.43 2.84
No bypass 1.50 1.50 1.55 1.66 2.05 2.50 2.89
Bypass only LSTM 0.78 0.90 1.06 1.26 1.76 2.30 2.78
Linear activation 0.77 1.10 1.34 1.56 2.08 2.58 2.94
2 LSTM layers 0.76 1.14 1.42 1.71 2.22 2.72 3.17
3 dense layers* 0.73 0.87 1.04 1.25 1.76 2.30 2.77

Bagged 0.64 0.81 0.98 1.18 1.63 2.08 2.48

• Adding another LSTM layer after the first,

• Adding a third dense layer of 64 nodes;

Table 11.1 presents the average RMS error across all networks for various prediction hori-
zons. In an effort to further improve accuracy, we used a light bagging technique con-
sisting in using the average of the outputs from the four best models (denoted by a * in
Table 11.1); this bagged predictor almost always perform best over the testing data. For
comparison purposes, we also report results from [138] which chose a related approach
using a multi-layer perceptron (which does not have a recurrent layer). The higher predic-
tion errors for longer horizons seem to show that the use of LSTMs provides better results
for longer prediction horizons.

As can be seen in Table 11.1, the architecture of Figure 11.7 provides the best overall re-
sults for lateral position prediction, but is less precise for velocity prediction. Interestingly,
providing vehicle type information does not improve predictions of lateral movement but
allows more precise forecasting of longitudinal speed, probably due to the difference in
acceleration capacities. In what follows, we focus on this reference design to provide more
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Figure 11.9 – Distribution of error on the test set for the bagged predictor.

insight on error characterization. Figure 11.9 presents the distribution of prediction error
over the test set for the bagged predictor.

Note that the above results mostly use the RMSE and error distributions to evaluate the
quality of prediction. However, such aggregated metrics may not be the best suited for this
particular application, notably due to the over-representation of sequences consisting in
straight driving at constant speed, which highly outnumber discrete events such as lane
changes or sudden acceleration. An illustration of this limitation is that we sometimes
observe that the prediction reacts with a delay, such as shown in Figure 11.10; this effect
mostly happens for longer prediction horizons, and is not properly accounted for using
RMSE. In the worst cases (such as depicted in Figure 11.10), this delay can reach up to
8 s or 9 s for a prediction horizon of 10 s, thus demonstrating that the model is sometimes
unable to interpret observed behaviors.

Experimentally, separately training each network output seems to yield better results,
at the cost of an increased overall training time; training one model per vehicle type, or
using wider networks could also be possible ways of improvement, as well as using dif-
ferent time windows durations for training. Besides providing an improvement to the
model, future work can focus on designing better-suited metrics related to correct de-
tection of meaningful traffic information, for instance lane changes, overtaking events or
re-acceleration and braking during stop-start driving, which could help further improve
predictions. Moreover, a more careful analysis of cases showing large deviations should
be performed to compare model predictions with human-made estimations.
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Figure 11.10 – Delay between prediction (in red) and reference (in green, thick line) for a prediction
horizon of 10 s. Note that although a large delay is observed on lateral position prediction, it is
much smaller for longitudinal speed.

11.4 Chapter conclusion

In this chapter, we presented exploratory results on potential solutions to bridge the
gap between perception (i.e., processing raw sensor data to extract scene elements) and
motion planning by predicting future behavior of traffic objects. We first presented a
stochastic prediction method based on hand-coded expert knowledge and Monte-Carlo
sampling, refined using an extended notion of priority to take interactions between traffic
participants into account. This approach is useful in an unknown environment or when
available training data is scarce, but may be too conservative.

For this reason, we proposed a second estimation technique based on deep learning,
and in particular long short-term memory networks. In this approach, a recurrent neural
network is trained to recognize driving patterns on recorded data, in order to infer fu-
ture states of a target object. This technique has been shown to perform satisfactorily for
short-term predictions (up to 2 to 3 s), but additional work is needed to perform longer-
term estimations. In our opinion, the major advantage of this approach is its (theoreti-
cal) ability to provide the most likely trajectory instead of a fuzzy probability distribution.
However, trajectory prediction using learning algorithms is still an open research topic,
and we do acknowledge that the approach presented in this section is far from scalable.
Indeed, a model trained on a finite set of data may not always be able to generalize to new
situations such as outlier trajectories, or different road topology.
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Interestingly, the two approaches presented in this section are almost polar opposites
in strengths and weaknesses. A possible area for future research could be to combine the
modeling power of machine learning with the predictive capacity of generative models.
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Chapter 12

A simplified implementation: velocity
planning in the real world

“ In theory, theory and practice are the same. In practice,
they are not. ”

Apocryphally attributed to Albert Einstein
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12.1 Autonomous roundabout entry

As mentioned in the introduction to Part III, a huge gap exists between assumptions
made in state-of-the-art motion planning and decision-making techniques, and the ac-
tual performance of state-of-the-art perception algorithms. Although this gap is slowly
being bridged by various techniques such as those of Chapter 11, direct application of al-
gorithms such as our decision-making motion planning framework (Chapter 10) remains
out of reach.

The aim of this final chapter is to describe an approach based on the theoretical in-
sights developed throughout this thesis for a practical implementation in the real world,
on a prototype automated vehicle. The objective of the experiment was to perform real-
time decision-making in order for the ego-vehicle to enter a roundabout autonomously,
in the midst of an actual traffic flow and in the absence of a-priori data on exo-vehicle
behavior.

Decision-wise, entering a roundabout is a problem quite similar to merging into a
highway [14], as it requires choosing the correct time instant to move forward using only
probabilistic estimations of exo-vehicle behaviors. Case-based reasoning (i.e., if-then-
else techniques), for instance based on gap acceptance policies, have already been pro-
posed in this setting [158, 159], but lack scalability as they require manually programming
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the behavior of the ego-vehicle in all possible situations. More recently, partially observ-
able Markov decision processes (POMDPs) have been used for decision-making under
uncertainty (see, e.g., [160, 161, 162]); although they are promising in theory, these ap-
proaches require a-priori data to be correctly parametrized, and usually rely on abstract
state representations which are impractical to use in actual applications.

In the rest of the chapter, we instead propose to leverage the theoretical knowledge
that we obtained on driving decisions, in order to design a pragmatic motion planning
framework capable of dealing with our roundabout scenario, while avoiding case-based
reasoning.

12.2 Decision-making for velocity planning

In this experiment, the ego-vehicle is tasked with following a predetermined path
which corresponds to driving in the center of the rightmost lane. This reference path
includes a target velocity, which takes into account speed limitations and road curvature
in order to avoid uncomfortable lateral accelerations.

With this assumption, the motion planner of the ego-vehicle is mostly tasked with
performing velocity planning and trajectory generation, in order to compensate for sen-
sor and control error.

Using the (known) reference path and probabilistic occupancy predictions such as
shown in Figure 11.3, it is possible to transform the distributions pk (x, y) (denoting the
estimated probability of a cell (x, y) being occupied k time steps into the future) into a
path-following one given as p̃k (s), denoting the estimated probability of a segment s on
the reference path being occupied k time steps into the future. Figure 12.1 presents the re-
sulting distribution, where the horizontal axis in Figure 12.1b corresponds to the space co-
ordinate, and the vertical axis the time coordinate. Thus, the first column in Figure 12.1b
corresponds to occupancy probability of the path segment currently being occupied by
the ego-vehicle.

Using this path-coordinates representation, the velocity planning problem becomes
that of selecting a “green diagonal” passing between obstacles. Partitioning techniques
such as presented in Chapter 9 could be used, but the complex shape of the predicted
occupancy regions makes this approach impractical. Instead, our implementation uses a
decision-tree approach, where a finite set of actions (ai )i=1...n , corresponding to a choice
of longitudinal acceleration, is considered. Knowing the initial position of the ego-vehicle
along its path, and its longitudinal velocity, it is possible to propagate this initial state for
a particular action, leading to a decision tree in the form of Figure 12.2.

By exploring this decision tree and for an arbitrary cost function, it is therefore possi-
ble to determine an optimal sequence of actions. For a sequence of actions (ak )k=1...K, we
propose a simple cost function of the form:

J
(
X0, a1, . . . , aK)= K∑

k=1
wa ak 2 +wv

(
vk − vk

r

)2
+wmmax

(
0, vk − vk

r

)2
+woOk (12.1)

where vk is the longitudinal speed of the ego-vehicle at the beginning of step k, vk
r the ref-

erence speed at the point occupied at step k, and wa , wv , wm and wo are positive weights
respectively penalizing longitudinal acceleration, deviation from the reference speed, ex-
ceeding the speed limit and performing a risky maneuver. The term Ok corresponds to
the estimated probability of the ego-vehicle colliding with another obstacle between step
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(a) Cartesian (x, y) coordinates; the black line represents the reference path, and the orange square corre-
sponds to the planned stopping point of the ego-vehicle.

(b) Path coordinates; the horizontal axis corresponds to the spatial dimension, and the vertical axis to the
time.

Figure 12.1 – Representations of occupancy predictions in cartesian and in path coordinates.
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Figure 12.2 – Decision tree for the velocity planning problem. Each node corresponds to a state
given by a longitudinal position and velocity; edges correspond to possible levels of longitudinal
accelerations.

k and k +1; in practice, we choose:

Ok = max
sk≤s≤sk+1

pk (s).

Using this cost function with a depth-first exploration of the decision tree, it is there-
fore possible to find the best possible decision in a given situation. An important difficulty
of this approach, however, is that the number of branches to explore grows exponentially
with the depth of the tree, i.e. the number of future time steps considered.

In practice, we choose n = 6 possible accelerations of −5 m s−2 (emergency braking),
−3 m s−2 (braking), −1 m s−2 (deceleration), 0 m s−2, 1 m s−2 (mild acceleration) and 3 m s−2

(acceleration), and a depth of K = 9 future actions with a time step duration of 0.5 s for a
total prediction horizon of 5 s, sufficient to bring the ego-vehicle to a full stop. Therefore,
the decision tree has a total of nK ≈ 107 nodes; for efficiency purposes, we therefore use
branch-and-bound techniques to prune poor quality branches, allowing real-time com-
putation at approximately 10 Hz on an on-board computer in nominal situations. How-
ever, in some occasions – notably when confronted with a seemingly inevitable collision
due to the sudden appearance of an obstacle right in front of the ego-vehicle due to errors
in the perception layer – exploration time can reach up to 1 s.

A possible way around this particular issue is to fully explore the emergency braking
branch first, and abort exploration after a maximum time has elapsed, returning the best
solution found so far. More generally, many methods could be experimented with in or-
der to reduce computation time spent in the tree search, in particular those presented at
the end of Chapter 10. Additionally, heuristically pre-ordering the actions list (e.g., first
exploring branches corresponding to braking if the ego-vehicle expects to stop) can be
used to further improve performance.

12.3 Trajectory generation

The output of the decision-making process is a list of actions that can be mapped to
target future states using the reference path. We then use a classical Model Predictive
Control approach such as presented in Chapter 7 to compute a smooth trajectory and a
sequence of controls (longitudinal acceleration and steering rate) to be fed to the vehi-
cle. Note that in order to stabilize the vehicle despite sensing and control uncertainty, the
reference waypoints for the MPC are computed starting from the measured ego-vehicle
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state, and progressively return towards the reference path. As stated in Chapter 7, the tra-
jectory generator runs in a few milliseconds, which theoretically allows replanning at the
same rate as the sensors. However, in our first implementation, the trajectory generator
runs at the same rate of the decision-making algorithm.

12.4 Experimental results

The presented algorithm has been extensively tested in simulation using the propri-
etary environment, sensor and vehicle simulator 4D Virtualiz [163], as well as on real-time
data from the prototype vehicle. During real-world testing, a human driver was piloting
the vehicle normally, and sensor data were fed to the motion planning software in real-
time. The corresponding driving decisions and planned trajectories were recorded for
later comparison, but were not communicated to the driver.

Simulated data The proposed decision-making and motion planning framework was
first evaluated in a simulated environment built from a georeferenced, high-definition Li-
DAR scan of the testing area. Besides handling the ego-vehicle dynamics, the software
simulates GPS and IMU data, as well as camera frames and laser scans for the sensors
used in the actual prototype vehicle. Therefore, the perception and motion planning al-
gorithms use the same sort of raw data, although precise noise profiles are not taken into
account.

In the simulation, the output from the MPC trajectory planner is a list of timestamped
target future states for the ego-vehicle, alongside with the corresponding controls (lon-
gitudinal acceleration and steering rate). A low-level, open-loop controller working at a
higher refresh rate is used to integrate these commands and send them as a longitudinal
velocity and steering angle to the vehicle.

Figure 12.3 presents snapshots from the simulator in a roundabout entering scenario,
with estimated future occupancy shown as color gradients. In the first row, the ego-
vehicle (in black, circled in blue) approaches the busy roundabout from the east and de-
cides to wait until the car circled in red has passed. In the second and third rows, the
ego-vehicle is still waiting for incoming vehicles (circled in red and white) to clear the way
before entering; on the second column of the third row, the white car (circled in cyan) is
detected as exiting the roundabout (no more predicted occupancy), which prompts the
ego-vehicle to pass and then accelerate sufficiently to avoid rear-end collision from the
vehicle circled in green.

Overall, the behavior of the system on simulated data is satisfactory, although slightly
conservative. A video of some simulated scenarios (including that of Figure 12.3) is avail-
able online1.

Actual sensor data During the testing on actual sensor data, the controller is disabled
and a human driver is in charge of maneuvering the vehicle. In this experiment, real-
time sensor data is sent to the perception and planning software, and the corresponding
decisions and target states are recorded. This information is not communicated to the
driver who drives normally in the right lane along the reference path; the quality of the
motion planner is evaluated as the difference between actual driver inputs and planned
trajectory.

1https://youtu.be/WsaHglp3XXo
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Figure 12.3 – Simulation results, with the ego-vehicle circled in blue; increasing time is from left to
right and top to bottom. Color gradients represent estimated future occupancy.
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Figure 12.5 – Comparison of human driver input (longitudinal velocity) and output from the ve-
locity planner. The location of the roundabouts is indicated with gray shading, and the horizontal
dotted line represents the maximum velocity for the planner.

The test drive is illustrated in Figure 12.4, and starts with the vehicle stopped a few me-
ters before the entrance of a first roundabout, which is used as the origin of the Cartesian
frame. The ego-vehicle then turns left and proceeds to drive on a roughly straight road
for approximately 800 m before entering a second roundabout, where it goes straight.
Note that localization is provided by an inertial-aided differential GPS, with a precision
of roughly 0.5 m.

Figure 12.5 presents a comparison between the actual longitudinal velocity chosen by
the human driver, and the target velocity computed by our motion planner for the same
timestamp; the gray regions correspond to the two roundabouts.

Overall, we observe quite a good correlation between the human driver’s actions and
those suggested by our planner, with a root-mean-square (RMS) error of approximately
10.5 km h−1. In particular, the driver and the motion planner took the decision to actually
enter both roundabouts at roughly the same time, although the planner is more cautious
and uses a lower speed. However, many occurrences of sudden drops of the planned ve-
locity can be observed in straight lines, for instance around 23 s, 37 s or 42 s. These drops
correspond to false-positive detections of objects on the road, which are interpreted as
obstacles appearing in front of the ego-vehicle. Similarly, the planned velocity is notice-
ably lower than that executed by the human driver starting from the 100 s mark; this effect
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is due to the important lateral positioning error of the ego-vehicle of approximately 2 m,
causing vegetation on the side of the road to be categorized as an obstacle. Improvements
to ego-localization and object detection and tracking is expected to result in much better
performance of the motion planner.

12.5 Chapter conclusion

In this final chapter, we leveraged the results obtained throughout this thesis to de-
sign a decision-making and trajectory planning algorithm capable of operating in real-
world conditions using actual sensor data. By casting the motion planning problem into
a simpler velocity planning one, we proposed a basic tree-based approach to make tacti-
cal driving decisions such as entering a roundabout. Although this implementation has
downsides, notably that tree exploration time is not deterministic, we argue that it serves
as a proof-of-concept of the advantages of incorporating an explicit decision phase dur-
ing motion planning.
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Conclusion

In this thesis, we proposed a decision-based approach to the problem of planning mo-
tion for cooperative or autonomous vehicles in a structured environment such as a road
network. Indeed, one of the main challenges of motion planning in these settings is the
handling of obstacles that can be either static (e.g., a stone fallen on the road) or dynamic,
such as other traffic participants.

Geometrically, any collision-free trajectory is known to correspond to a discrete class
depending on the way it avoids obstacles, which is linked to the topological notion of ho-
motopy. In this thesis, we built upon this knowledge to generalize the notion of homotopy
classes in order to encode driving decisions for motion planning. By explicitly formulat-
ing the decision-making aspect of the problem, we proposed new techniques to handle
real-time cooperative or autonomous motion planning.

In Part I, we studied the problem of cooperative motion planning, consisting in co-
ordinating multiple vehicles through critical parts of the road infrastructure such as in-
tersections or roundabouts in order to avoid collisions while increasing efficiency over
legacy traffic management schemes such as traffic lights. Using the notion of priority,
corresponding to the relative order in which conflicting vehicles should cross, we showed
that an optimal coordination could be computed by mixed-integer programming tech-
niques in near real-time for a reasonable number of vehicles. Performance-wise, we hy-
pothesize that our use of binary decision variables to encode priority relations provides
the solver with enough structural information on the problem to quickly converge to a so-
lution despite a theoretical complexity scaling exponentially in the square of the number
of vehicles. Another advantage of our formulation is its ability to handle a wide range of
cost functions, which allows applications both in fully and partially automated driving.
To showcase this advantage, we introduced a new supervised driving algorithm capable
of seamlessly correcting driver errors to avoid traffic accidents. In doing so, we demon-
strated the important theoretical result – usually taken for granted – that the existence of
a collision-free (system) trajectory over a sufficiently long time horizon actually ensures
that the system is in a safe state, i.e. that there exists at least one infinite horizon, collision-
free trajectory. The demonstration provides two bounds on the minimum time horizon
that should be used to provide these guarantees.

In Part II, we shifted our focus to the task of autonomous motion planning, consisting
in generating a “good”, collision-free trajectory for an automated ego-vehicle. By propos-
ing a framework for near-limits motion planning, we first demonstrated that generating
efficient trajectories even in high dynamics situations was a fairly simple problem using
state-of-the-art techniques such as model predictive control, provided driving decisions
have been made beforehand. This observation motivated our study of the driving de-
cisions involved in autonomous motion planning, which somewhat differ from those of
cooperative planning in that the temporal aspects of the problem add further challenges.
In particular, we showed that the notion of homotopy classes was too restrictive to be
actually useful in autonomous motion planning where a receding time horizon is usu-
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ally considered. Instead, we introduced a so-called navigation graph which generalizes
the notion of homotopy classes by explicitly taking the time dimension into account. We
then presented a decision-making algorithm based on this graph representation, which
allows using a much wider range of cost functions and quality criteria for the generated
trajectories compared to the previous state-of-the-art. Moreover, we showed that using
this graph-based approach to represent semantically meaningful driving decisions – in-
stead of arbitrary geometric considerations – led to significantly improved performance,
thus further highlighting the relevance of explicit decision-making in motion planning.

Finally, in Part III, we briefly studied the interface between perception and motion
planning for autonomous driving. In particular, many planning algorithms rely on the
assumption that perfect knowledge on the future behavior of other traffic participants is
provided, which is obviously not the case in practice. From this remark, we first described
a pragmatic approach to trajectory prediction in the absence of available calibration data
based on objects physics and hand-encoded behaviors. In scenarios where training data
were available, we proposed a machine learning algorithm based on recurrent neural net-
works to predict future vehicle trajectories based on past observed behavior, with satis-
fying results up to a few seconds ahead. Finally, we described a real-world implementa-
tion of the ideas presented in this thesis in order to perform decision-making and motion
planning for a prototype vehicle in real traffic conditions, in this case to drive through a
roundabout autonomously. By constraining the trajectory to roughly follow a predeter-
mined path, we proposed a decision-based motion planner providing satisfactory results
on simulated and actual sensor data in regard to the quality of the perception layer.
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Perspectives

The results presented in this thesis open many promising areas for future research, in
order to effectively bring these ideas into a fully autonomous vehicle.

Dealing with uncertainty

From a theoretical standpoint, we hope that the proposed navigation graph approach
could serve as a basis to build a good representation of the extremely wide range of pos-
sible driving decisions to be considered. Although the current construction of the graph
can accommodate uncertainty to a certain extent (e.g., by setting various thresholds on
occupancy probability), additional research is needed to build an equivalent graph from
probabilistic predictions such as those proposed in Part III. Moreover, representing un-
known elements such as possible objects coming from a blind corner is also problematic
in the current formulation.

Efficiency of exploration

The second major axis for improvement is related to efficiently making the driving
decision, i.e. explore the navigation (or related) graph in real-time. Although we pro-
posed a convenient way to enumerate and represent these decisions, the motion plan-
ning problem still remains NP-hard and has exponential complexity incompatible with
the real-time requirements of autonomous driving that will not vanish from the simple
increase of available computational power. Recent advances in artificial intelligence, no-
tably through deep and reinforcement learning (alongside with related techniques such
as Monte-Carlo tree search), seem a promising avenue to drastically reduce computation
time while maintaining high quality solutions.

Combining approaches

As mentioned in the introduction, the new trend of end-to-end learning is emerging
in many scientific communities, including motion planning. These approaches consist in
using machine learning techniques to determine a direct mapping from raw sensor data
(typically, camera frames) to driving actions (e.g., action on the steering wheel), either
by imitating a human driver or by trial-and-error through simulation. Although they are
popular, applying these these methods to actual production vehicles seems delicate as
they operate as “black boxes” and may behave catastrophically in case of failure. Never-
theless, we believe that end-to-end techniques could be beneficially combined with some
of the concepts presented in this thesis, as they could for instance be used as a heuris-
tic initialization for a decision-making algorithm in order to provide a form of intuition
which is usually specific to humans.
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Appendix A

Complements on Chapter 4

A.1 Computation of minimum bounding hexagons

We consider a set of n points X = (xi , yi )i=1...n (considered as a n ×2 matrix), and we
search the minimal convex hexagon with edges parallel to the horizontal (x) or vertical
(y) axis, or the diagonal y = x in the same order as that illustrated in Figure 4.4 (repeated
here for legibility). We note H (X) the set of such convex hexagons containing X.

We let xmi n = mini=1...n(xi ), ymi n = mini (yi ), xmax = maxi (xi ) and ymax = maxi (yi ).
Moreover, we let i1 and i2 be such that, for all i = 1. . .n,

yi1 −xi1 ≤ yi −xi ≤ yi2 −xi2

and we define x∥ = xi1 − (yi1 − ymi n) and y∥ = yi2 − (xi−1−xmi n). The values of xmi n , xmax ,
x∥ and their y equivalents can be computed in a single pass over the points of X.

We define vertices A to F having the following coordinates:

A = (
xmi n , ymi n

)
, B =

(
x∥, ymi n

)
,

C =
(
xmax , ymi n + (xmax −x∥)

)
, D = (

xmax , ymax
)

E =
(
xmi n + (ymax − y∥), ymax

)
, F =

(
xmi n , y∥

)
,

and we denote by hm(X) the ABCDEF hexagon. We then have the following theorem:

Lemma 2. hm(X) is the minimum element of H (X), i.e. hm(X) ∈ H (X) and for all h ∈
H (X),hm(X) ⊂ h.

xmi n x∥ xmax

ymi n

y∥

ymax

Ci j

A B

C

DE

F

Figure 4.4 – Bounding hexagon approximation of a collision region (repeated from page 31)



Appendix A. Complements on Chapter 4

Proof. First, the definition of hm(X) as hexagon ABCDEF trivially implies that it is a convex
hexagons with the required edges slopes, since AB and DE are parallel to the horizontal
axis, CD and FA to the vertical axis, and BC and EF to the y = x diagonal.

Second, by definition of the various vertices of hm(X) and denoting ex and ey the
canonical basis forR2, we know that X ⊂ A+R+ex+R+ey and X ⊂ D+R−ex+R−ey , and so all
points in X are contained in the rectangle defined by prolonging lines AB, CD, DE and FA.
Moreover, any point (xi , yi ) ∈ X lies above the BC line having equation y − yB = x − xB; in-
deed, we know that yi −xi ≥ yi1−xi1 from the definition of i1. Therefore, yi −xi ≥ ymi n−x∥

and thus yi −yB ≥ xi −xB. Similarly, all points of X are below the EF line, which proves that
X ⊂ hm(X) and thus hm(X) ∈H (X).

Third, consider a hexagon h ∈ H (X); we denote its vertices by A′ to F′ in the same
order as in hm(X). Since h ⊂ A′+R+ex +R+ey , xA′ ≤ xmi n and yA′ ≤ ymi n so A′ is to the
bottom-left of A; similarly, xD′ ≥ xmax and yD′ ≥ ymax , and D′ is to the top-right of D.
Since edges A′B′ and C′D′ are respectively horizontal and vertical, we get that yB′ = yA′

and xC′ = xD′ . Additionally, as (xi1 , yi1 ) ∈ X ⊂ h, we deduce that yi1 − yB′ ≥ xi1 −xB′ , leading
to ymi n−yB′ ≥ x∥−xB′ i.e. yB−y ′

B ≥ xB−xB′ , and xC′−xB′ ≥ xi1 −xB′ ≥ xB−xB′ . As a result, B
and thus C are above the B′C′ line; a symmetric reasoning applied to points E and F show
that they are below the E′F′ line. Using our knowledge on the shape of h, we conclude that
all the points A to F are within the convex hexagon h and therefore that hm(X) ⊂ h, thus
completing the proof.

A.2 Sub-timestep collision avoidance

Consider the collision-avoidance constraints introduced in Chapter 4:(
πi j ∧¬ε∥i j (k)

)
⇒ sk+1

j ≤ s⊥j i (4.7a)(
πi j ∧ε∥i j (k)∧¬ε⊥i j (k)

)
⇒ sk+1

i − s∥i j ≥ sk+1
j − s⊥j i (4.7b)(

πi j ∧ε∥i j (k)∧¬ε⊥i j (k)
)
⇒ sk+1

i − s∥i j ≥ sk+1
j − s⊥j i +

τ

2

(
vk+1

j − vk+1
i

)
. (4.7c)

As mentioned when they were first introduced, slight complications have been intro-
duced to constraints (4.7a) to (4.7c) in order to guarantee collision-avoidance within the
duration of one time step. First, the subregion indicators at step k are used to constrain
robot position at step k+1, which we presented as a means to avoid “corner cutting” phe-
nomena. Second, we introduced constraint (4.7c) to avoid potential collisions between
robots having “follower constraints” within a time step.

A.2.1 Corner cutting

To illustrate the “corner cutting” phenomenon, we consider the case of rectangular
robots on paths intersecting at straight angles; in this case, the collision region is a rect-
angle. We describe by “corner cutting” the fact that a trajectory with control points all
outside of the collision region might still enter it between two consecutive time steps,
as illustrated in Figure A.2, and encountered e.g. in [164]. By constraining the positions
at step k + 1, we prevent this problem from occurring while keeping to a minimum the
amount of suboptimality introduced as the overhead goes to 0 as the time step duration
τ decreases.

A2



A.2. Sub-timestep collision avoidance

Ci j

si

s j

0τ 1τ
2τ 3τ 4τ

5τ

6τ

Figure A.2 – Example of corner-cutting phenomenon: all points (corresponding to successive time
steps) are outside of the collision region, but the resulting trajectory intersects with Ci j . Blue labels
indicate the corresponding time instant.

kτ (k +1)τ
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sk
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Figure A.3 – Possible sub-timestep collision between following vehicles despite collision-
avoidance constraints being verified at integral time steps

A.2.2 Follower constraints

As in the case of corner cutting, collision avoidance in the case of robots following one
another also requires additional constraints in discrete time. Consider two robots i and
j on the same path, with i following j . In continuous time, collision avoidance requires
that si (t ) ≥ s j (t )+d j i for all t , where s0 is an offset corresponding, among others, to the
size of the robots. Figure A.3 illustrates that punctual verification of collision avoidance at
integral time steps is not sufficient to guarantee safety between consecutive time steps.

Assuming that each robot follows a constant acceleration a j over [kτ, (k + 1)τ] (and
choosing k = 0 for simplicity), the inter-robot distance is

d(t ) = si (t )− s j (t ) = s0
i − s0

j +
(
v0

i − v0
j

)
t + 1

2

(
ai −a j

)
t 2. (A.2)

In the case ai ≤ a j , d is concave and thus reaches its extrema over [0,τ] at the edges of the
interval; therefore, verifying safety at integer time steps is sufficient.

We now focus on the case ai > a j : in this case, d reaches a unique minimum over R,

dm = s0
i − s0

j −
1

2

(
v0

i − v0
j

)2

ai −a j
,

at tm = − v0
i −v0

j

ai−a j
, and is monotonous over ]−∞, tm[ and ]tm ,+∞[. We distinguish three

cases:
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• If v0
i − v0

j ≥ 0 then tm ≤ 0 and the monotonicity of d ensures that verifying safety at
0 and τ is sufficient (i.e. constraint (4.7b) guarantees safety).

• The same reasoning applies if v0
i −v0

j ≤−τ(ai −a j ) i.e. tm ≥ τ, and constraint (4.7b)
guarantees safety.

• Finally, if 0 < − v0
i −v0

j

ai−a j
< τ then v0

i − v0
j < 0 and thus 0 > −

(
v0

i −v0
j

)2

ai−a j
> τ

(
v0

i − v0
j

)
,. By

substituting into eq. (A.2), we deduce

dm > s0
i − s0

j +
1

2
τ

(
v0

i − v0
j

)
;

therefore, constraint (4.7c) guarantees safety.
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Complements on Chapter 5

B.1 Helper constraints

In order to slightly reduce complexity, we propose to use additional “helper” con-
straints to our MILP formulation Equation (5.7). These constraints essentially arise from
high-level considerations that are easily derived from the coordination problem, but may
be difficult to obtain from the set of constraints of Chapter 5.

First, robots starting on the same paths have their relative priority constrained by their
initial positions, which allows prescribing the value of the corresponding π variable. Sec-
ond, in the situation illustrated in Figure B.1 where robot j follows i on the same path and
conflict with robot k, then priority k Â i implies that k Â j , i.e. πki ⇒ πk j . Similarly, we
have π j k ⇒πi k .

Note that the “black-box” behavior of the solver does not allow determining which in-
ternal heuristics are used to further reduce complexity. An in-depth analysis of the struc-
ture of the problem could certainly lead to more efficient constraints being added to the
formulation and lower computation time.

ij

k

γk

γi = γ j

Figure B.1 – Example of a 3-robot situation where helper constraints can be used
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B.2 Influence of time step duration on optimality

The discretization time step has a double influence on the solution: first, we assume
constant acceleration during one time step. Second, the safety constraints require one
robot of each conflicting pair to leave the conflict area one time step before the other
enters.

In Figure B.2 we show the average optimality loss caused by choosing larger time
step durations for a random set of 85 initial configurations of 15 vehicles. For each in-
stance, the minimum average time tτopt is computed for time step durations τ ranging
from 0.125 s to 5 s. The relative loss of optimality is computed as

tτopt − t 0.125
opt

t 0.125
opt

.

Interestingly, the averaged values fit closely to an affine function with slope 7.2% per sec-
ond for the above set of parameters. The loss of optimality remains less than 6% when
the time step is smaller than 1 s; moreover, the solution of (5.7) converges as the time step
duration vanishes.

The kinodynamic parameters, i.e. the maximum speed v and the acceleration bounds
ai and ai influence the magnitude of the loss of optimality. Figure B.3 shows a comparison
of the losses of optimality for three different scenarios, namely “reference”, “lower speed”
and “’higher acceleration”. Parameters for each scenario are presented in Table B.1.

The same set of entry times and vehicles paths is used for those three scenarios, and
we only vary the kinodynamic parameters. We find that an increase of time step duration
causes higher losses of optimality in instances with more dynamic robots (higher speeds
or higher absolute values of acceleration bounds) than those with less dynamic ones. As
a result, the time step duration can be chosen according to the dynamic characteristics of
robots, e.g. by choosing a longer time step for slower robots to allow a more distant time
horizon.
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Figure B.2 – Average relative optimality loss (compared to a 0.125 s time step), depending on time
step duration, for 85 instances of 15 vehicles. Error bars correspond to 1 standard deviation for
instances above or below average.
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Figure B.3 – Average relative optimality loss (compared to a 0.25 s time step), depending on time
step duration, for 85 instances of 15 vehicles with reference parameters (red), lower maximum
speed of 10 m s−1 (blue) and higher absolute values of accelerations [ai , ai ] = −6m s−2 to 8m s−2

(green).

Table B.1 – Parameters used in the studied scenarios

Scenario v (m s−1) ai (m s−2) ai (m s−2)

Reference 15 −3 +4
Higher acceleration 15 −6 +8
Lower speed 10 −3 +4
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Appendix C

Complements on Chapter 6

C.1 Detailed demonstrations

C.1.1 Proofs for Section 6.3

C.1.1.1 Preliminary lemma

Before proving Theorem 3, we introduce the following lemma stemming from graph
theory:

Lemma 3. Let G = (V,E) a directed graph with vertices set V and edges set E. All cycles in G

can be removed by reversing a set of edges, each of them contributing to at least one cycle.

Proof. The proof is based on the existence of minimum feedback arc sets [165], i.e. a
minimum set E f eedback ⊂ E such that G ′ = (V,E \ E f eedback ) is acyclic. By minimality
of E f eedback , any e ∈ E f eedback belongs to at least one cycle of G . Moreover, it can be
seen that reversing the edges of E f eedback also leads to an acyclic graph, thus proving the
lemma.

C.1.1.2 Theorem 3

Proof of Theorem 3. Note that the only constraints requiring a vehicle to stop are con-
straints (4.7a) to (4.7c), forcing a vehicle j to wait for a vehicle i with π

p
i j = 1. From the

hypotheses and theorem 2, there exists a solution X to IH-SP at time tκ0 . We define a di-
rected priority graph GX = (V,E) with V = Rtκ0

and where an edge i → j belongs to E if

there exists p such that πp
i j = 1. Using this representation, a cycle in GX corresponds to

a chain of q conflicting vehicles i1, i2, . . . , iq , iq+1 = i1 for which there exists a connected
component Cpn

in in+1
such that πpn

in in+1
= 1 for all n = 1. . . q .

If GX is acyclic, it defines a (partial) topological order, and it is always possible to admit
the vehicles one by one in that order. Therefore, there exists a feasible solution where all
the vehicles of Rtκ0

exit the supervision area in finite time.
We now assume that there exists at least one cycle in GX. If all the vehicles involved in

the cycle can exit in finite time, the result of the theorem is proven. Otherwise, we note
Rdead ⊂ Rtκ0

a set of vehicles corresponding to a cycle in GX: all of these vehicles are
stopped at infinity, and are prevented to move further by a constraint of form (4.7a), for a
certain j ∈ Rdead . Moreover, the no-stop condition (6.3b) ensures that, for all i ∈ Rdead

and all k ≥ κ, sk
i ≤ s⊥i .
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From lemma 3, we know that it is possible to change the values of the variables πp
i j

for i , j ∈ Rdead to render GX acyclic. Using the fact that sk
i ≤ s⊥i for all of these vehi-

cles, we know that modifying these priorities does not violate constraints (4.7a) to (4.7c).
Therefore, we can build a solution X′ for which the corresponding priority graph is acyclic,
which proves the theorem as [42] has already proven that deadlocks could only occur with
cyclic priority graphs.

C.1.2 Proofs for Section 6.4

C.1.2.1 Lemma 1

Proof of Lemma 1. The proof is trivial if we consider continuous-time dynamics, as a sin-
gle vehicle can always apply a control lower or equal to ub starting from time tk +τ, which
ensures it is stopped for t ≥ tk +τ+ vmax

ub
. A slight additional complexity happens at the

final braking time step when considering piecewise-constant controls, applying ub for a
duration τ might result in a negative velocity, which is not allowed in our framework. We
now proceed to the formal proof, as below.

Let (uk
i ) be the control corresponding to trajectory si , and let us define a control (w k

i )

as: wκ
i = uκ

i , w k
i = min(ub ,uk

i ) for κ < k < κ+K, and wκ+K
i = ub . We construct (ũk

i ) itera-

tively as ũκ
i = uk

i and, for k ≥ κ+1,

ũk
i =

{
w k

i if ṽk
i +w k

i τ≥ 0

− vk
i
τ otherwise

,

where ṽk
i is the speed of vehicle i at time tk under control (ũk

i ).
As ṽκ+1

i = vκ+1
i ≤ vmax ≤ (K−1)τ|ub | from the hypothesis, there exists a minimal value

of k0 ≥ κ such that ṽk0
i ≤ |ub |τ; moreover, the condition on K ensures that

ṽκ+1
i − (K−2)|ub |∆t ≤ |ub |∆t ,

and so k0 ≤ (κ+1)+ (K−2) = κ+K−1.
From the definition of (ũk

i ), we know that for all k0 + 1 ≤ k ≤ κ+ K, ṽk
i = 0. Since

ũk
i ≤ uk

i for κ ≤ k ≤ k0 − 1, we also know that s̃k0
i ≤ sk0

i and ṽk0
i ≤ vk0

i . Finally, ũk0
i is the

minimal admissible control starting from x̃k0
i ; therefore, s̃k0+1

i ≤ sk0+1
i = sκ+K

i which proves
the above lemma.

C.1.2.2 Proposition 2

Proof of Proposition 2. We first consider the continuous-time case to give an intuition of
the proof. We build upon the fact that the rearmost vehicle in a line can always brake
with acceleration ub until it fully stops. However, some the initial conditions may require
vehicles in front to accelerate in order to avoid collisions, for instance if the rearmost
vehicle is too fast. However, even in this case, we know that the second rearmost vehicle
can brake with ub as soon as it has matched the speed of the rearmost vehicle, and by
induction this is true for all the vehicles in the line. In the continuous-time case, all of
these vehicles can therefore stop in a time bounded by vmax

|ub | .
When considering piecewise-continuous controls, an additional source of complex-

ity arises from the fact that vehicles may match speed between two time steps, resulting
in an “overshoot” in velocity. We use the hypotheses on the acceleration to bound this
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t1t2→1

≤ umaxτ
≤ |ub |τ

≤ τ(umax +|ub |)

t1

time

sp
ee

d

Figure C.1 – Illustration of the “overshoot” phenomenon; the vertical grid correspond to integer
multiples of the time step.

overshoot, as illustrated in Figure C.1: we consider a fast vehicle (noted 1, blue curve) fol-
lowing a slower vehicle (noted 2, red curve). To avoid collisions, vehicle 2 is required to
accelerate; vehicles match speed at time t2→1; however, due to the time discretization, the
overshoot phenomenon can occur. Using the bounds on the acceleration, noting k2→1

the time step immediately following t2→1, we know that

vk
2 ≤ vk

1 +τ(umax +|ub |).

Moreover, after step k, vehicle 2 can brake with a control ub up to time t1, corresponding
to the first integer time step k1 when vk1

1 ≤ τ|ub |. Since both vehicles 1 and 2 have the
same acceleration of [t2→1, t1], we know that

vk1
2 ≤ τ|ub |+τ(|ub |+umax).

Therefore, noting k2 = k1 +1+
⌈

umax
|ub |

⌉
, we get vk2

2 ≤ τ|ub |. The same reasoning can then

be repeated for the vehicles preceding vehicle 2. We will now formalize this recursion, as
follows.

We will prove by induction that, for i ∈ {1, . . . , p}, there exists a dynamically feasible
control (ûk

i ) with ûκ
i = uκ

i and ûk
i ≤ uk

i for k ≥ κ such that the corresponding vehicle speed

(v̂k
i ) verifies v̂κ+Ki

i ≤ |ub |τ with

Kiτ=
⌈

vmax

|ub |

⌉
+ (i −1)

(
1+

⌈
umax

|ub |

⌉)
τ.

First, for the rearmost vehicle i = 1, the proof of lemma 1 provides the result with ûk
i = ũk

i .
We now let i ≥ 2 and assume that every vehicle j ∈ {1, . . . , i −1} follows its correspond-

ing control (ûk
j ). We note ŝk

j and v̂k
j the position and speed of vehicle j at step k under

this control. Since ûk
j ≤ uk

j for these vehicles, we deduce from the monotony of the system

that the original control solution for vehicle i (uk
i )κ≤k<κ+K prevents rear-end collisions if

vehicle i −1 applies (̂uk
i−1). Therefore, any dynamically feasible extension of (uk

i ) is safe

over [κτ, (κ+K + 1)τ). As a result, the set Usa f e
i (uκ

i , [κ,κ+K]) of all admissible controls

(ûk
i )κ≤k≤κ+K for vehicle i such that ûκ

i = uκ
i and uk

i ≤ ûk
i ≤ uk

i for κ ≤ k < κ+ K is not

empty. We note (ûk
i ) a minimum element of this set (and so ûk

i ≤ uk
i ); we will prove that

v̂κ+Ki
i ≤ |ub |τ.
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If for all k ≥ κ, v̂k
i ≤ ṽk

i−1, we conclude that vehicle i stops before vehicle i −1 which

proves the result from the induction hypothesis. Otherwise, we let k i
0 ≥ κ be the minimum

k such that v̂k
i ≥ ṽk

i−1, and we know that

v̂
k i

0
i ≤ v̂

k i
0−1

i−1 +umaxτ.

For all k ≥ k i
0, we know from the monotony of the system that the control min(ûk

i−1,uk
i ,ub)

prevents rear-end collisions; we deduce that, for k ≥ k i
0,

v̂k
i ≤ v̂k−1

i−1 +umaxτ.

Therefore,
v̂κ+Ki−1+1

i ≤ v̂Ki−1
i−1 +umaxτ

and we deduce from the induction hypothesis that

v̂κ+Ki−1+1
i ≤ umaxτ+|ub |τ.

Therefore, we obtain the recursion relation

Ki = Ki−1 +1+
⌈

umax

|ub |

⌉
which yields the announced result.

Finally, we conclude that vehicle i can fully stop (without rear-end collisions) at step
κ+Ki +1; therefore the set of p vehicles can safely stop before the beginning of step κ+K
if

K ≥ Kp = vmax

|ub |τ
+ (p −1)

⌈
umax

|ub |

⌉
+1.

Since the recursion ensures that for all i and k, ûk
i ≤ uk

i , we deduce that sκ+K
i ≤ ŝκ+K

i which
proves the proposition.

Note that the time needed for vehicles to match speeds can also be bounded by vmax
ua

regardless of the value of p. Therefore, all vehicles can also fully stop within the time
horizon if

T = Kτ≥ vmax

|ub |
+ vmax

ua
+2τ.

Depending on the value of p, this bound may be better than the previously demonstrated
one.

C.1.2.3 Proposition 3

Proof of Proposition 3. We consider a time tκ = κτ, and we let

Tr ec = Kr ecτ≥ Tstop + vmi n

ua
+ d

vmi n
+τ.

Consider a solution X of FH-SPKr ec for the vehicles of Rtκ , defined for steps κ≤ k ≤ κ+K.
We will first show that this solution can be extended to a solution of FH-SPK+1 for the
vehicles in Rtκ . Note that the only constraints which can be unfeasible are the safety con-
straints (4.7a) to (4.7c) and the minimum velocity constraints (6.3a) and (6.3b). Consider
a vehicle i ∈Rtκ : using the control corresponding to this solution, two cases can arise:
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• si (Tstop ) ≤ sacc
i , in which case proposition 2 ensures that i and all the vehicles be-

hind it can fully stop before reaching sacc
i , and can remain stopped up to step Kr ec +

1. Since we also require that sacc
j ≥ sacc

i if j follows i , this ensures that keeping i and
its followers stopped satisfies all the above constraints;

• otherwise, si (Tr ec ) ≥ s⊥i , in which case the crossing and minimum velocity con-
straints (4.7a), (6.3a) and (6.3b) are satisfied for all conflicting vehicle j up to step
Kr ec . The requirement Tr ec ≥ Tstop and proposition 2 ensure that the safe following
constraints (4.7b) and (4.7c) involving vehicle i remain satisfiable for the vehicles of
Rtκ up to step Kr ec +1.

Indeed, if s⊥i ≥ si (Tstop ) > sacc
i , condition (6.3a) ensures that vehicle i accelerates at least

with acceleration ua until reaching speed vmi n , which takes at most a time vmi n
ua

. The

vehicle is then required to maintain speed vmi n until reaching s⊥i , which takes at most
a time d

vmi n
. Therefore, vehicle i necessarily reaches s⊥i by time Tr ec ; the additional τ

accounts for vehicles reaching doing so between two time steps.
The above considerations ensure that the solution of FH-SPK at time tκ can be pro-

longated to a solution of FH-SPK+1 for the vehicles of Rtκ . Finally, noting that the safe
entry hypothesis ensures that this solution remains safe even when taking the vehicles of
Rtκ+τ\Rtκ into consideration. By definition, there also exists a safe control (and therefore
a solution to FH-SPK) for these vehicles at time tκ+τ. As a result, there exists a solution to
FH-SPK at time tκ+τ for the vehicles of Rtκ+τ which proves the stated result.

C.2 Discussion on implementation

In Chapter 6, we presented an optimization-based algorithm for the supervision of
semi-autonomous vehicles; we now briefly discuss obstacles and possible solutions for
actual implementation. First and foremost, not all vehicles will be equipped with the
required communication capacities at the same time; therefore, the ability to deal with
unequipped vehicles and other traffic participants is key to envision actual applications.
Second, this work assumes perfect communication and control, and in general ignores
uncertainties arising from real-world constraints.

C.2.1 Dealing with unequipped vehicles

As with all innovations, the penetration rate of such a system would gradually increase
overtime, but remain below 100 % for years, yet the formulation proposed in Chapter 6
requires all vehicles to be equipped with supervision capacities. Although a detailed study
on the integration of unequipped vehicles in our framework is out of the scope of this
paper, we present a possible technique to handle these vehicles provided that they can
avoid longitudinal collisions with the leading vehicle, and have a bounded reaction time.

First, note that it is always possible to consider unequipped vehicles conservatively as
proposed in [124]: at a given step k, we compute the minimum and maximum curvilinear
position that can be reached at time tk by the unequipped vehicle iu , denoted by sk

iu ,mi n

and sk
iu ,max respectively. Using the same notations as in Chapter 6, we then define:

ε∥iu j ,p (k) = 1[
s∥iu j ,p ,+∞

) (sk
iu ,max

)
, (C.1)

ε⊥iu j ,p (k) = 1[
s⊥iu j ,p ,+∞

) (sk
iu ,mi n

)
. (C.2)
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Therefore, the unequipped vehicle is considered as occupying the conflict region at step
k when there exists a control (maximum acceleration) for which it could be inside this
region at step k. Similarly, the vehicle is only considered as liberating the conflict region
when, even by applying a maximum braking, it would exit it. The collision avoidance con-
straints (4.7b) and (4.7c) are also modified to use sk+1

iu ,mi n and vk+1
iu ,mi n , where vk+1

iu ,mi n is the
minimum speed reachable by iu at k +1. Other traffic participants such as cyclists (and,
to a lesser extent, pedestrians) could also be taken into account in this fashion. Recently
proposed “non-conservatively defensive strategies” [166] could also be applied.

A limitation of this simple approach is that it can lead equipped vehicles to often yield
right-of-way to unequipped vehicles, which may be problematic and can slow the accep-
tance of the system. A possible method (introduced in [167]) to reduce this problem while
improving the global level of safety is to use the existing equipped vehicles to force the un-
equipped ones to stop when required. Suppose that an unequipped vehicle (denoted by
iu) follows an equipped one (ie ), both crossing the path of another equipped vehicle je . By
setting πie je = 0 (thus requiring je to pass before ie ), we effectively force the unequipped
vehicle iu to also pass after je ; the reaction time of the unequipped vehicle can be taken
into account by adjusting the lower bound on the longitudinal acceleration of vehicle ie .

Note that this approach still guarantees that no collision can happen between an un-
equipped and an equipped vehicle; moreover, as the penetration rate of equipped ve-
hicles increases, additional rules may be enforced to reduce the number of occurrences
in which conflicting unequipped vehicles are simultaneously allowed in the conflict re-
gion, thus increasing safety even for the unequipped vehicles. Future work will study the
impact of penetration rate on safety and efficiency for both equipped and unequipped
vehicles.

C.2.2 Practical implementation

In a first iteration, we propose a centralized implementation where a roadside com-
puter (supervisor) with communication capacities is added to the infrastructure, and is
tasked with repeatedly solving FH-SPK. Note that resolution could also be performed us-
ing cloud computing, possibly allowing much faster computation without necessitating
fully dedicated hardware. The supervisor is also assumed to be equipped with a set of
sensors (e.g., cameras), so that the arrival of new vehicles in the supervision area can be
monitored (in order to account for unequipped vehicles and other traffic participants).
Equipped vehicles are supposed to regularly communicate their current state, including
position, velocity and driver’s control input, and receive instructions (the safe accelera-
tion sequence (uk

i ) solution of FH-SPK) from the roadside supervisor. The vehicle’s on-
board computer then uses these instructions to override the driver’s control inputs when
needed. We argue that the main sources of uncertainty, i.e. communication, sensing and
control errors, can be taken into account by using safety margins when computing colli-
sion regions.

Communications are assumed to have similar performance to current 802.11p speci-
fications; we use the figures provided in [168, 169] as reference, with latency below 20 ms,
and packet loss probability of less than 30 % under 300 m. To account for network conges-
tion, we use more conservative values than those reported experimentally in [169]. More-
over, using the additional roadside sensors, we estimate that uncertainty in each vehicle’s
localization could be reduced to below 1 m longitudinally.

First, the 20 ms latency corresponds to less than 1 m at highway speed. Second, since
they do not require exchanging a lot of data, such messages can be sent much more fre-
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quently than the refresh rate of the supervisor. Considering messages can be sent at 20 Hz,
the probability of a message not being received in 0.25 s is roughly 0.2 %, and 6×10−6 af-
ter 0.5 s. Since they receive a whole sequence of safe accelerations, individual vehicles can
keep executing this sequence until a new one is successfully received. A worst-case sce-
nario would be having one vehicle using acceleration ua (maximum acceleration) where
it should have used ub (maximum braking): after a duration t , the corresponding posi-
tioning error is 1

2 t 2(ua +|ub |), which is roughly 30 cm after 0.25 s and 1.3 m after 0.5 s for
typical values of ua and |ub | of 5 m s−2. More robust contingency protocols could likely be
developed, and will be the subject of future work, but these values can be used as safety
margins without compromising performance.

Similarly, positioning and control uncertainty can be accounted for as margins in the
collision regions, provided they can be bounded. In this work, we assume that vehicle
self-positioning can be improved using the roadside sensors from the supervisor (which
can be precisely calibrated), which could provide relatively tight bounds on error.
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D.1 Semi-infinite obstacles and local optima

In Chapter 7, we claim to use semi-infinite obstacles to avoid creating local optima
in the motion planning problem. Although this is true in the application considered in
this particular chapter, the semi-infinite obstacle hypothesis is in general not sufficient
to guarantee the existence of a unique optimum even for convex cost functions. For in-
stance, the single semi-infinite obstacle shown in Figure D.1 creates two locally optimal
solutions illustrated as the green and blue paths.

However, obstacles in autonomous driving situations generally are objects with a fi-
nite size, for which an infinity of semi-infinite bounding regions exist. Moreover, the
question of determining the “best” class of functions to represent obstacles for automated
driving is widely debated, and is out of the scope of this thesis. In Chapter 7, we proposed
using bounding parabolas as they provide good flexibility without introducing excessive
computational complexity. To avoid the issue depicted in Figure D.1, each obstacle o is
represented by a parabola po with directrix parallel to the reference path at its point clos-
est to o; we then choose the parameters of po such that it is the minimal parabola con-
taining all vertices of o.

γr e f γrγl

Figure D.1 – Example situation where a sin-
gle semi-infinite obstacle (in red) can create
multiple local optima.

γr e f

Obstacle

Figure D.2 – Modeling of an obstacle as a
semi-infinite parabola with directrix paral-
lel to the reference path at its closest point.
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D.2 Simulation model

We consider a 9-degree-of-freedom modeling (DoF) of the vehicle body, which pro-
vides a satisfying balance between accuracy and computational cost. Alongside with the
usual 2D state [X,Y,ψ] (withψ the yaw angle) of the vehicle, the model takes into account
roll and pitch movements, wheel dynamics and coupling of longitudinal and lateral tire
slips. Being a chassis model, it does not take into account the dynamics of the car engine
or brakes. The control inputs of the vehicle are the torque Ti applied to each wheel i and
the steering angle of the front wheels, δ. We use uppercase letters (e.g., X, Y) to denote
coordinates in the ground (global) frame, and lowercase letters for coordinates in the ve-
hicle (local) frame; the x coordinate in the local frame corresponds to the longitudinal
component. The notations are given in Table D.1 and illustrated in Figure D.3; subscript
i ∈ {1, . . . ,4} refers to each of the four wheels of the vehicle in the following order: front left
( f l ), front right ( f r ), rear left (r l ) and rear right (r r ).

Table D.1 – Notations for the 9DoF model

X, Y, Z Position of the vehicle’s center of mass (ground frame)
θ, φ, ψ Roll, pitch and yaw angles of the car body
Vx , Vy Longitudinal and lat. vehicle speed (vehicle frame)
Vxwi Longitudinal speed of wheel i (wheel frame)
ωi Angular velocity of wheel i
ζi Displacement of suspension i
δ Steering angle of the front wheels
Tωi Total torque applied to wheel i
Fxwi , Fy wi Longitudinal and lateral forces on wheel i (wheel frame)
Fxi , Fyi Longitudinal and lateral forces on wheel i (vehicle frame)
Fzi Normal ground force on wheel i
Faer o Air drag force on the vehicle
MT Total mass of the vehicle
Ix , Iy , Iz Roll, pitch and yaw inertia of the vehicle
Iri Inertia of wheel i around its axis
l f , lr Distance between the front/rear axle and the center of mass
lw Half-track of the vehicle
rw Effective radius of the wheels
ks , ds Suspensions stiffness and damping

We make the assumptions that the body of the vehicle rotates around its center of
mass, and that the aerodynamic forces do not create a moment on the vehicle. Moreover,
we assume that the road remains horizontal, and any slope or banking angle is neglected;
this assumption could be relaxed using a slightly more complex vehicle model. Under
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Figure D.3 – Simulation model of the vehicle in the (x, y) plane

these hypotheses, the dynamics of the vehicle’s center of mass are written as:

Ẋ = Vx cosψ−Vy sinψ (D.1a)

Ẏ = Vx sinψ+Vy cosψ (D.1b)

V̇x = ψ̇Vy +
1

MT

4∑
i=1

Fxi −Faer o (D.1c)

V̇y = − ψ̇Vx +
1

MT

4∑
i=1

Fyi , (D.1d)

where Fxi and Fyi are respectively the longitudinal and lateral tire forces generated on
wheel i , expressed in the local vehicle frame (x, y). The yaw, roll and pitch motions of the
car body are computed as:

Izψ̈= l f (Fy1 +Fy2 )− lr (Fy3 +Fy4 )+ lw (Fx2 +Fx4 − Fx1 −Fx3 ) (D.2a)

Ix θ̈= lw (Fz1 +Fz3 −Fz2 −Fz4 ) + Z
4∑

i=1
Fyi (D.2b)

Iy φ̈= lr (Fz3 +Fz4 )− l f (Fz1 +Fz2 ) − Z
4∑

i=1
Fxi (D.2c)

where Fzi =−ksζi (θ,φ)−ds
˙(ζi )(θ,φ), with ζi (θ,φ) the displacement of suspension i for the

given roll and pitch angles of the car body. The variation of Fz models the impact of load
transfer between tires. Finally, the dynamics of each wheel i can be written as

Ir ω̇i = Tωi − rw Fxwi . (D.3)

In general, the longitudinal and lateral forces Fxwi and Fy wi depend on the longitudi-
nal slip ratio τi , the side-slip angle αi , the reactive normal force Fzi and the road friction
coefficient µ. The slip ratio of wheel i can be computed as

τi =


rwωi−Vxwi
rwωi

if rwωi ≥ Vxwi
rwωi−Vxwi

Vxwi
otherwise.

(D.4)

The lateral slip-angle αi of tire i is the angle between the wheel’s orientation and its
velocity, and can be expressed as

α f = δ−
Vy + l f ψ̇

Vx ± lwψ̇
(D.5a)

αr =− Vy − lr ψ̇

Vx ± lwψ̇
(D.5b)
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where f and r denote the front and rear wheels respectively.

In this thesis, we use Pacejka’s combined slip tire model (equations (4.E1) to (4.E67)
in [99]), which takes into account the interaction between longitudinal and lateral slips,
thus encompassing the notion of friction circle [170]. For concision purposes, we do not
reproduce the complete set of equations.

D.3 Deriving a simpler dynamic model

In this section, we only consider the dynamic response of the car body, and in par-
ticular we do not model engine response precisely. Instead, we assume that the engine
can deliver a torque comprised between 0 N m and 2Tmax > 0, and that the brakes can
apply a negative torque between Tmi n < 0 and 0 N m on each wheel. The engine torque
is equally split between the two front wheels, and braking torques are supposed to be
equal for wheels on a same axle. Note that torque vectoring [171], in which the acceler-
ating and braking torques are not equally divided between the wheels of an axle, can also
be treated using the same method. The steering angle of the front wheels is supposed
to be bounded between δmi n < 0 and δmax > 0. With these hypotheses, we note U =
[Tmi n ,Tmax]×[Tmi n ,0]×[δmi n ,δmax] the set of admissible controls and u = [T f ,Tr ,δ] ∈U

a control, where T f is the torque applied on each of the front wheels, Tr the torque on the
rear wheels, and δ the steering angle for the front wheels.

Using the dynamic model of Appendix D.2 and starting from a known system state x0,
it is possible to compute future states of the vehicle under a known control input using
numerical integration. To do so, we use a fourth order Runge-Kutta integration scheme
with a time step duration ∆t of 1 ms, which appears to be sufficient to correctly handle
the wheel dynamics. We compute an approximation of the set of feasible accelerations
starting from x0 as presented in Algorithm 6. In the algorithm, the function fitpolynom(st ,
?, 2) returns the coefficients of the best fitting polynom of order 2 for the component
? of st , with leading coefficient first. Therefore, the variable feas contains the set of
resulting accelerations in the X and Y directions (noted aX and aY) as well as the yaw
rate acceleration ψ̈ (noted aψ), all expressed in the ground coordinates frame. In what
follows, we present outputs from Algorithm 6 for varying conditions. The control bounds
are chosen as Tmi n = −1500N m, Tmax = 1250N m and δmax =−δmi n = 30°.

Algorithm 6: Sampling of the feasible regions

Data: state ξ0, num. of samples n, horizon T, step ∆t
set feas := []
for i = 1. . .n do

randomly choose u ∈U

for k = 1. . .T/∆t do
set ξk := RK4 (ξk−1, u,∆t )

set st := (ξk )k=0...T/∆t

set pX := fitpolynom(st , X, 2)
set pY := fitpolynom(st , Y, 2)
set pψ := fitpolynom(st , ψ, 2)
append to: feas, 2 · [pX(1), pY(1), pψ(1)]
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D.3. Deriving a simpler dynamic model

D.3.1 Longitudinal velocity

In Figure D.4, we present the computed shapes of the set of reachable accelerations in
the (aX, aY), (aX, aψ) and (aY, aψ) planes for a standard berline car (l f = 1.17m, lr = 1.77m,
lw = 0.81m, MT = 1820kg, front-wheel drive), over a horizon T of 0.1 s and for various
initial longitudinal velocities vx,0. The initial state of the vehicle is taken with all angles
and initial velocities (except the longitudinal one) equal to zero for the car body, and the
wheels are initially rolling without slipping (i.e. ωi = vx,0/rw for all i = 1. . .4). The friction
coefficient for the road-tire contact is chosen equal to 1. Note that this technique assumes
a constant control over a time interval of 0.1 s; therefore, the impact of ABS or ESP cannot
be measured, and may be the cause of the concavity at maximum braking observed in
Figures D.4a and D.4b at higher velocities.

Remarkably, the projections of this set on the (aX, aY) and (aX, aψ) planes remain very
similar throughout the whole speed range. In the (aY, aψ) plane (Figure D.4c), the pro-
jections are all located along the same line, except for high lateral accelerations at high
speed in which over- and understeering can occur. We will use these properties to derive
efficient bounds in the next section.

D.3.2 Lateral velocity

In Figure D.5, we present similarly computed shapes for the sets of reachable accelera-
tions when varying the initial lateral velocity vy,0 with an initial longitudinal velocity vx,0 =
20 m s−1. Initial wheel velocities are chosen, as before, as ωi = vx,0/rw for all i = 1. . .4 and
initial angles and angular velocities for the car body are chosen as 0.

As the initial lateral velocity increases, the sets in the (aX, aY) and (aX, aψ) planes is
shifted mostly along the aY and aψ axes respectively. Note that we also observe a slight
gain in longitudinal acceleration, which corresponds to the fact that part of the initial lat-
eral velocity can be “redirected” into longitudinal velocity by turning the vehicle, though
this gain is very marginal. Moreover, the sets are progressively skewed as the lateral veloc-
ity increases. Interestingly, we note that increasing lateral velocity further than 0.2vx does
not provide additional acceleration performance, and instead reduces the commandabil-
ity of the vehicle thus motivating to avoid these regions during planning.

D.3.3 Friction coefficient

In the Pacejka combined slip tire model [99], the tire-road friction coefficient µ ap-
pears both as a multiplier and a nonlinear term in the tire-road forces. In Figure D.6,
we show the variation of the envelope of feasible accelerations with µ. As for the study
on initial longitudinal velocity, we observe that the envelopes keep a similar shape in the
(aX, aY) and (aX, aψ) planes, despite the nonlinearity of the tire model. In the (aX, aψ), and
in spite of more important slip occurring, the reachable sets also remain aligned along the
same line.

Moreover, our sampling-based method evidences an interesting pattern as the friction
coefficient µ decreases. Figure D.7 compares the distribution of the sampled points for
µ= 0.3 (icy road) and µ= 1 (dry road); different scales have been chosen for better read-
ability. For µ = 1, we observe that the sampled points are distributed almost uniformly
inside the feasible envelope. However, for µ = 0.3, the sampled points accumulate near
several regions of attraction, with wide areas with relatively few sampled points. This ob-
servation suggests that caution should be exercised when using direct planning methods
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velocities vx,0 with vy,0 = 0 and 105 sampling points.
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Figure D.7 – Accelerations corresponding to 104 points (uniformly) randomly sampled in the con-
trol space, shown in the (aX, aY) plane for µ= 1 (dry road) and µ= 0.3 (icy road). Notice the accu-
mulation of points in Figure D.7b.

based on sampling the control space, such as proposed in [172], since the planner would
be heavily biased towards these attraction regions, especially in low adherence situations.

D.3.4 Initial rotation

Equations (D.1) and (D.2) show that the vehicle dynamics (except for the position in
the ground coordinates) do not depend on the initial yaw angle ψ; therefore, the feasible
regions presented above remain invariant (up to a rotation) with respect to the initial yaw
angle. Moreover, we observe only very small variations of these regions for small initial
values of the pitch and roll angle or rates, and variations of initial velocities of the wheels;
these effects are neglected.

D.3.5 Model derivation

Using these results, we propose a constrained double integrator model for the ve-
hicle dynamics. In general, such models are considered very rough approximations for
the actual dynamics; however, using well-chosen constraints to couple the longitudinal,
lateral and yaw accelerations, a relatively precise approximation can be obtained in this
case. The proposed model considers a state vector x = [X,Y,ψ, vx , vy , vψ]T and a con-
trol u = [ux ,uy ,uψ]T, with the same notations and reference frames as presented in Ap-
pendix D.2. The dynamic equation of the system is ẋ = f2di (x,u) with

f2di (x,u) =
 vx cosψ− vy sinψ

vx sinψ+ vy cosψ
[vψ,ux ,uy ,uψ]T

 . (D.6)

In theory, it is necessary to take into account the initial state of the vehicle at each
time step, and use the sets shown in Figures 7.1 and D.5 to determine the feasible accel-
erations for the vehicle. However, the complex shape of these sets makes it impractical
for trajectory planning. Instead, we propose to compute the “complete” set of feasible
accelerations for the vehicle, i.e. the union of the sets shown in Figure D.5, which does
not depend on the initial lateral velocity. These sets are shown in Figure 7.1; interestingly,
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Figure D.8 – Variations of the ami n
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X coefficients with the initial longitudinal velocity vx,0;
the dashed lines show the polynomial fit.

the boundary of Figure 7.1a can be reasonably well approximated as a truncated ellipse,
which is very close to the “g-g diagram” presented in [173], although slightly smaller.

Using these results, we propose to approximate the sets shown in Figure D.4b as a
cropped ellipse in the (aX, aY) plane, and a parallelogram in the (aY, aψ) plane. The paral-
lelogram is chosen constant with the initial velocity, whereas the lower and upper bound
on aX slightly var with the initial longitudinal speed. Note that a study of the 3D set of fea-
sible accelerations (not displayed here) shows that this region is roughly convex, except
for the lowest values of aX, and that it is only necessary to consider constraints in two of
these planes to ensure that a corresponding point exists in the 3D feasible region.

The resulting set of constraints on (aX, aY, aψ) can be written as:

(aX

α

)2
+

(
aY

β

)2

≤ 1 (D.7)

ami n
X (vx,0) ≤ aX ≤ amax

X (vx,0) (D.8)

A[aX, aY, aψ]T ≤ b (D.9)

where A is a constant matrix, b a constant vector and ami n
X , amax

x depend on vx,0. For
our model vehicle, the experimental data of Figure 7.1 yield α = 9.4 m s−2, β = 9.0 m s−2,

A =
(
2.6 1
2.6 −1

)
and b =

(
15.3
15.3

)
m s−2. Figure D.8 shows the variation of ami n

X and amax
X with

the initial longitudinal velocity; a polynomial fit yields

ami n
X (vx,0) =−9.3−0.013vx,0 +0.00072vx,0

2

and
amax

X (vx,0) = 4.3−0.009vx,0

(with vx,0 expressed in m s−1). In the (aY, aψ) plane, we suppose a linear relation between
aψ and aY in the form: aψ = γaY, with γ = 0.56 rad m−1. Although seemingly restrictive,
this approximation provides better results than using a parallelogram acceptable region,
and in practice corresponds to minimizing the vehicle slip angle.

Note that these constraints only guarantee the feasibility of a trajectory. To actually
drive the vehicle, it is necessary to find a high-frequency low-level control loop capable of
following this feasible trajectory. Moreover, the current set of constraints does not account
for limitations on the actuator dynamics. Future research may focus on these limitations.
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Appendix E

Complements on Chapter 8

E.1 Unicity of the Frenet coordinates

In Part II, we use the Frenet-Serret coordinates to encode the drivable portion of the
road. This representation comes with two caveats: first, the Frenet frame may not always
exist; second, the Frenet coordinates of a point outside of the curve may not be uniquely
defined. In Part II, we briefly mentioned smoothness requirements and conditions on
road width and curvature to allow using the Frenet-Serret coordinates, which we detail in
this appendix.

We consider a simple curve γ in R2, i.e. a continuous and injective function γ :R 7→R2.
By choosing an arbitrary point of γ as a reference and a positive direction along γ, it is
always possible to define the curvilinear abscissa of a point X ∈ γ, which we denote by s.

If γ is continuously differentiable with respect to s (i.e., s 7→ γ(s) is C 1), then~T = γ′ = dγ
ds is

the unit tangent vector to γ and we can define the unit normal vector ~N such that (~T,~N)
is an orthonormal direct basis. As a result, ensuring that γ has C 1 continuity ensures that
the Frenet frame exists, thus covering the first caveat.

For given functions rmi n < rmax , we denote by

R = {
γ(s)+ r~N(s)

∣∣ s ∈R, rmi n(s) ≤ r ≤ rmax(s)
}

a subset of the plane. Determining whether curvilinear coordinates are uniquely defined
for all points in R is tightly connected to the mathematical notion of reach of a mani-
fold [174]. In particular, theoretical results ensure1 that for any compact and C 2 curve
γ, there exists a non-empty region R such as defined above for which curvilinear coordi-
nates are unique. Although a formal study is out of the scope of this thesis, we provide
some elements of justification below.

If we assume thatγ is C 2 and has no multiple points, then we know that d~T
ds = k~N where

k is the signed curvature of γ at the considered point. Consider a point X ∈ R2 : since γ
is an injection, there are two kinds of situations where the point Xγ ∈ γ is not uniquely
defined: either γ contains a circular arc with center X (Figure E.1a), or multiple non-local
arcs are equidistant to X (Figure E.1b).

In the case where γ has a locally circular arc which realizes the minimum distance
from X to γ, Figure E.1a d(X,γ) = 1

|k| with k the signed curvature and that the rest of γ

remains outside of the dotted circle. Therefore, a condition of the form |rmi n | <
∣∣ 1

k

∣∣ and
|rmax | <

∣∣ 1
k

∣∣ (with the convention that the right-hand term is +∞ if k = 0) excludes such
a case from occurring. The requirement on γ being compact is linked to the second case;

1See Proposition 14 in [175].
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Figure E.1 – Non-unicity of Xγ

schematically, this condition ensures that the distance between “loop strands” (as shown
in Figure E.1b) cannot become arbitrarily small.

In practice, as we usually consider “reasonable” road geometries, we consider that the
unicity conditions of C 2 continuity and compactness are always met, therefore justify-
ing the use of curvilinear coordinates to represent the position of the ego-vehicle in most
driving scenarios. However, some particular situations such as sharp turns in intersec-
tions wider than the turn radius may require additional work.
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Appendix F

Complements on Chapter 9

F.1 Demonstration of Theorem 6

Proof of Theorem 6. We will first demonstrate the result for paths having only one tran-
sition; the generalization to paths with multiple transitions follows directly. We con-
sider two trajectories x1 and x2, respectively corresponding to paths π1 =

(
(σ1,σ2), t1

)
and

π2 =
(
(σ1,σ2), t2

)
with t1 ≤ t2 and [t1, t2] ⊂ Adj(σ1,σ2).

First, we will show that there exists a continuous, collision-free trajectory x̃ such that
x̃ = x1 over [t0, t1] and x̃ = x2 over [t2, t0 +T]. Using the convexity of cells σ−1

t (σ1) and
σ−1

t (σ2) for all t , we will then show that x1 and x2 are both homotopic to x̃, thus proving
the theorem by the transitivity of the homotopy relation.

For t ∈ [t1, t2], we let I(t ) = σ−1
t (σ1)∩σ−1

t (σ2) be the boundary between cells having
signaturesσ1 andσ2 at time t . Since these cells are convex and disjointed, I(t ) is therefore
a convex, and non-empty as [t1, t2] ⊂ Adj(σ1,σ2). Therefore, I(t ) is a segment that can be
written in the form I(t ) = {a(t )+λu(t ) | λ ∈ [0,1]} where a(t ) ∈R and u(t ) ∈R2.

Assuming obstacles have a continuous motion, functions t 7→ a(t ) and t 7→ u(t ) are
also continuous. We deduce that function φ : (t ,λ) 7→ (t , a(t )+λu(t )) is also continuous
over the arc-connected set [t0, t1]×[0,1] and therefore the set I0 = {(t , x) | t ∈ [t1, t2]∧x ∈ I(t )}
is arc-connected.

Since x1(t1) ∈ I(t1) and x2(t2) ∈ I(t2), we have (t1, x1(t1)) ∈ I0 and (t2, x2(t2)) ∈ I0 and the
arc-continuity ensures that there exists a continuous function ψ defined over [t1, t2] such
that ψ(t1) = x1(t1), ψ(t2) = x2(t2) and for all t ∈ [t1, t2], ψ(t ) ∈ I(t ). As a result, we can build
x̃ by stitching the restrictions of x1, ψ and x2.

We now proceed to show that x1 and x̃ are homotopic: since x1 = x̃ over [t0, t1], we
need only consider their restriction over [t1, t2]. Since x1 corresponds to π1, we know

that for all t ∈ [t1, t0 +T], x1(t ) ∈ σ−1
t (σ2); similarly, x̃(t ) ∈ σ−1

t (σ2) by construction. Since
σ−1

t (σ2) is convex, we conclude that for all µ ∈ [0,1] and all t ∈ [t1, t0 +T], x1(t )+µ(x̃(t )−
x1(t )) ∈ σ−1

t (σ2), thus proving that x1 and x̃ are homotopic. A similar reasoning ensures
that x1 and x̃ are also homotopic, which proves the announced result.



Appendix G

Résumés en français

G.1 Introduction

Cette section constitue l’introduction de la thèse.

G.1.1 Chapitre 1

Ce chapitre vise à présenter le contexte de la thèse, qui s’inscrit dans l’important
effort de recherche et d’ingénierie visant à développer les véhicules autonomes. Pour
ses défenseurs, l’automatisation de la conduite vise avant tout à améliorer la sécurité
routière, puisqu’il est estimé que jusqu’à 90% des accidents routiers sont imputables à
une erreur humaine. Un second avantage souvent attribué à cette automatisation est une
réduction de la congestion routière, les véhicules autonomes étant supposés avoir des
temps de réaction inférieurs aux conducteurs humains, et une capacité à communiquer
entre eux et avec l’infrastructure pour se coordonner plus efficacement.

Il convient toutefois de garder à l’esprit que ces avantages supposés ne sont à ce jour
que théoriques, et dépendent en grande partie des capacités des véhicules autonomes à
planifier des trajectoires à la fois sûres et efficaces, deux critères a priori contradictoires
qu’il est encore difficile de satisfaire simultanément.

L’objectif de cette thèse est de contribuer à la compréhension et la modélisation du
processus de prise de décision nécessaire à la conduite, et d’utiliser cette compréhension
pour améliorer la performance des algorithmes de planification de trajectoire actuelle-
ment utilisés pour la conduite autonome.

G.1.2 Chapitre 2

Ce chapitre présente un état de l’art du problème générique de planification de mou-
vement, bien connu du domaine de la robotique. Ce problème consiste, pour un sys-
tème se trouvant dans un état donné, à calculer une “façon” de l’amener dans un état
cible connu. En règle général, la planification cherche de plus à trouver une façon effi-
cace d’atteindre l’état cible, selon des critères d’évaluation variés. Pour cette raison, la
planification de mouvement est à son cœur un problème d’optimisation sous contrainte,
dont une part de la complexité réside dans la non-convexité de l’espace de recherche en
présence d’obstacles. Pour cette raison, les problèmes de planification sont généralement
NP-difficiles.

Une des formes les plus simples du problème de planification de mouvement est la
planification de chemin, qui consiste à trouver un chemin géométrique reliant l’origine et
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la destination, par exemple une fonction continue à valeurs dans le plan dans le cas d’un
espace à deux dimensions. Ce problème, déjà complexe en présence d’obstacles à éviter,
est également rendu plus difficile si le système est soumis à des contraintes dites “non-
holonomes”1. Cette thèse porte sur un problème plus général, dit de planification de tra-
jectoire, dans lequel l’objet recherché n’est plus un simple chemin, mais une fonction du
temps respectant de plus les contraintes dynamiques du système telles que l’impossibilité
de s’arrêter ou de tourner instantanément.

La plupart des méthodes classiquement utilisés en planification de mouvement re-
posent sur deux familles de techniques. La première consiste à utiliser directement des
algorithmes d’optimisation, qui doivent alors gérer explicitement la non-convexité du
problème (par exemple via la programmation en nombres entiers, généralement coû-
teuse en temps), ou accepter que la solution trouvée ne soit que localement optimale
(notamment dans les algorithmes de commande prédictive). La seconde utilise des méth-
odes de type Monte-Carlo, qui permettent notamment de maîtriser le temps de calcul au
détriment de la qualité de la solution trouvée, ces algorithmes ne pouvant généralement
garantir qu’une convergence en probabilité vers la solution optimale. Pour cette raison,
la première famille d’approches est privilégiée dans le reste de la thèse.

Comme mentionné dans le paragraphe précédent, un inconvénient des méthodes
d’optimisation est la multitude d’optima locaux vers lesquels les algorithmes variation-
nels sont susceptibles de converger. Dans le cas de la planification de chemin, une notion
intéressante pour pallier ce problème repose sur l’utilisation de classes d’homotopies ex-
plicitesDe façon imagée, une classe d’homotopie désigne un ensemble de chemins pouvant
être déformés continûment l’un en l’autre..

G.1.3 Chapitre 3

Ce chapitre présente les principales contributions de la thèse et les publications asso-
ciées.

La première contribution de cette thèse est de montrer, pour un système particulier
et sous certaines conditions sur le critère d’optimisation, contraindre la solution à se
trouver dans une classe d’homotopie donnée rend le problème convexe et garantit donc
l’existence d’un unique optimum. Toutefois, la NP-complexité du problème est bien con-
servée puisque le nombre de classes d’homotopies croît exponentiellement avec celui des
obstacles.

La seconde contribution de cette thèse est de généraliser cette notion d’homotopie,
qui ne s’applique que difficilement dans le cadre de la planification de trajectoire, en une
notion de décision de conduite pour des applications aux véhicules autonomes.

Enfin, une troisième partie de la thèse est consacrée au passage de la théorie à la pra-
tique, discute des étapes visant à permettre l’intégration des éléments théoriques dévelop-
pés dans le reste de la thèse sur un véhicule réel. Une implémentation simplifiée sur un
tel véhicule est également présentée.

G.2 Partie I

Cette première partie de la thèse porte sur la planification de trajectoire coopéra-
tive pour un ensemble de robots ou de véhicules autonomes. Elle démontre notamment

1C’est par exemple le cas du problème du créneau pour une voiture classique, celle-ci ne pouvant pas
se déplacer latéralement (contrainte non-holonome)
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l’intérêt de l’utilisation des classes d’homotopies en tant que variables de décision et, plus
largement, d’incorporer cette prise de décision de façon explicite dans la planification de
mouvement.

G.2.1 Chapitre 4

Ce chapitre étudie la coordination de multiples robots mobiles, par exemple de véhicules
autonomes à une intersection, afin de permettre à l’ensemble des robots de rejoindre leur
objectif en évitant les collisions entre robots. Sous plusieurs hypothèses simplificatrices,
consistant notamment à ne considérer que la dynamique longitudinale des robots, ce
problème particulier de planification de trajectoire peut être ramené à un problème, plus
simple, de planification de chemin dans un espace dit de coordination.

Dans ce contexte, le reste du chapitre présente les principaux résultats concernant
l’utilisation des classes d’homotopies pour aider à la résolution du problème. En parti-
culier, il est montré dans ce chapitre qu’il est possible d’utiliser ces classes comme vari-
ables de décision entières. En supposant de plus que les robots suivent une dynamique
(longitudinale) linéaire, il est alors possible de formuler les contraintes du problème de
planification de trajectoire pour le système de robots – pour une décision donnée – comme
un problème dont toutes les contraintes sont linéaires par morceaux, et qui peut donc être
résolu efficacement de façon exacte pour toute fonction de coût quadratique convexe.

G.2.2 Chapitre 5

Ce chapitre applique les résultats précédents à la coordination optimale de robots mo-
biles, visant à ce que tous les robots atteignent leur objectif en temps minimal et sans
collision. Pour ce faire, la planification de trajectoire est formulée comme un problème
de programmation (linéaire) en nombres entiers. Cette formulation rend notamment
possible l’utilisation de techniques de séparation et évaluation (branch-and-bound), qui
permettent d’utiliser des informations sur ces sous-problèmes (i.e., à classe d’homotopie
fixée) pour accélérer la recherche de la classe d’homotopie optimale. Cette propriété per-
met de réduire fortement le temps de calcul malgré la complexité exponentielle du prob-
lème, et de coordonner jusqu’à une dizaine de robots en temps réel sur un ordinateur
classique.

G.2.3 Chapitre 6

Ce chapitre utilise les résultats théoriques du Chapitre 4 pour proposer un système
de conduite supervisée pour un ensemble de véhicules semi-autonomes, par exemple
afin d’éviter les collisions aux intersections. Contrairement à l’approche entièrement au-
tonome du Chapitre 5, les conducteurs de chaque véhicule sont ici en charge de la con-
duite. En cas d’erreur humaine, le système de supervision a en revanche la possibilité de
se substituer au conducteur de l’un ou plusieurs de ces véhicules afin d’éviter une colli-
sion. Le système garantit en particulier de n’intervenir qu’en cas de nécessité et, dans ce
cas, de dévier le moins possible les véhicules de l’intention originale de leurs conducteurs.

Ce problème de supervision est également formulé comme un programme (quadra-
tique) en nombres entiers (PQNE), offrant les mêmes possibilités de séparation et évalua-
tion. Il est notamment démontré que, sous certaines hypothèses sur le comportement des
véhicules nouvellement entrés dans la zone supervisée, il est mathématiquement possi-
ble de garantir la sécurité du système de véhicules à horizon temporel infini en démon-
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trant simplement l’existence d’une solution à un problème de type PQNE portant sur un
horizon de temps relativement court – et donc soluble en temps réel pour des systèmes
comportant jusqu’à une quinzaine de véhicules.

G.3 Partie II

Après une première partie considérant des problèmes de planification unidimension-
nels, cette deuxième partie de la thèse considère la planification de trajectoire dans un
espace à deux dimensions. En particulier, il est à nouveau démontré l’intérêt d’utiliser
une formulation explicite de la prise de décision.

G.3.1 Chapitre 7

Ce chapitre présente une architecture de planification de trajectoire pour la conduite
d’un véhicule à haute vitesse autour d’un circuit, en autorisant celui-ci à dépasser le
régime de non-glissement mais en ajustant la vitesse automatiquement afin d’éviter les
sorties de route. Cette architecture, basée sur la commande prédictive, fonctionne en
temps réel grâce à l’utilisation d’enveloppes de contrôlabilité calculées hors-ligne afin
de simplifier les calculs liés à la dynamique du véhicule durant l’exécution. L’algorithme
développé permet également d’éviter des obstacles placés sur le circuit, à condition qu’une
direction d’évitement (par la gauche ou la droite) soit explicitement fournie.

Au-delà des simples performances du système présenté, ce chapitre démontre que
la planification de trajectoire, même à haute vitesse et en présence d’obstacles, est un
problème relativement simple lorsque la décision de conduite est prise par ailleurs.

G.3.2 Chapitre 8

Ce chapitre étudie les classes de trajectoires dans le cas de la conduite autonome, en
lien avec la notion de classes d’homotopies de chemins, et vise à montrer que la simple
notion d’homotopie n’est dans ce cas pas suffisante pour décrire la prise de décision de
façon utile à la planification. La raison avancée est double.

D’une part, la notion d’homotopie n’est correctement définie que lorsque les points
d’origine et d’arrivée sont connus. Or, dans le cas de la conduite autonome2, la planifica-
tion est souvent effectuée avec un horizon temporel glissant (par exemple, les quelques
prochaines secondes), sans qu’un point d’arrivée unique ne soit défini.

D’autre part, il est argué que la temporalité de la décision est un élément critique
dans la conduite, si bien qu’il est aussi important de spécifier la décision de dépasser un
véhicule que l’instant où le dépassement doit s’effectuer, or ce second élément est absent
de la notion d’homotopie.

G.3.3 Chapitre 9

Sur la base du résultat négatif précédent, ce chapitre développe une nouvelle ap-
proche permettant de généraliser la notion de classe d’homotopie afin de surmonter les
limitations établies au Chapitre 8.

2Et pour de nombreuses applications robotiques
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Cette approche se base sur une segmentation sémantique de la portion libre de l’espace-
temps dans l’horizon de planification choisi. Sous l’hypothèse de connaître le mouve-
ment futur des autres véhicules, il est en effet possible de partitionner l’espace libre au-
tour de ceux-ci, et de sémantiser chaque élément de la partition (“ cellule” dans ce qui
suit) selon sa position relative par rapport aux autres véhicules. Le même processus peut
être appliqué dans un espace tri-dimensionnel incluant le temps.

Étant données deux cellules de cette partition 3D, il existe un intervalle3 de temps
pendant lequel il est possible de passer de l’une à l’autre sans collision. Il est argué que la
donnée d’une séquence de cellules et des temps de transition d’une cellule à la suivante
correspond, cette fois, à une décision de conduite. Par ailleurs, une représentation de ces
décisions sous la forme d’un graphe de navigation est proposée, dans lequel tout chemin4

correspond à une famille de trajectoires sans collisions. Il est par ailleurs démontré que
les chemins dans ce graphe de navigation généralisent la notion de classe d’homotopie,
i.e. deux trajectoires partageant la même représentation dans le graphe de navigation sont
homotopiques.

G.3.4 Chapitre 10

Ce chapitre présente une utilisation possible du graphe de navigation pour la prise de
décision appliquée à la planification de trajectoire, sur un scénario simple de dépasse-
ment. Il est notamment montré que l’utilisation du graphe de navigation permet effec-
tivement la prise de décision pour la conduite. Toutefois, la principale difficulté de cette
approche est la prise en compte des contraintes de faisabilité dynamique, qui n’est pas
directement encodée dans le graphe de navigation. Pour cette raison, plusieurs heuris-
tiques d’exploration sont proposées comme pistes de recherche ultérieures, notamment
basées sur l’utilisation de techniques d’apprentissage automatisé.

G.4 Partie III

Cette dernière partie vise à discuter l’implémentation pratique des résultats plutôt
théoriques établis dans les chapitres précédents. En particulier, de nombreuses hypothèses
faites dans le cadre de la planification de trajectoire sont en réalité inaccessibles aux per-
formances actuelles des systèmes de perception. En vue d’une implémentation sur un
véhicule réel, un important effort est à fournir au niveau des interfaces entre les disci-
plines.

G.4.1 Chapitre 11

Ce chapitre étudie les méthodes permettant d’estimer les trajectoires futures des véhicules
environnants, afin de pouvoir appliquer les techniques de planification discutées dans
la seconde partie de la thèse. Deux méthodes sont ici proposées : une première, appli-
cable en l’absence de données de trafic, est basée sur l’échantillonnage aléatoire d’une
séquence réaliste de commandes pour chaque véhicule. La seconde, plus classique mais
requérant des données collectées au préalable, consiste à utiliser des réseaux de neurones
récurrents pour générer la trajectoire la plus probable d’un véhicule à partir des observa-
tions de son comportement passé.

3Ou, dans le cas général, une union d’intervalles potentiellement vides.
4La définition d’un chemin dans ce graphe incluant la dimension temporelle.
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G.4.2 Chapitre 12

Ce dernier chapitre présente une implémentation simplifiée, sur véhicule réel, des
algorithmes de prise de décision développés dans la thèse sur un scénario de conduite
péri-urbain. Le système développé a présenté un fonctionnement satisfaisant en simula-
tion software-in-the-loop, et aurait adopté un comportement qualitativement similaire à
celui d’un conducteur humain sur un parcours effectué en conditions réelles (hardware-
in-the-loop).
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Résumé

Le déploiement des futurs véhicules au-
tonomes promet d’avoir un impact socio-
économique majeur, en raison de leur
promesse d’être à la fois plus sûrs et plus ef-
ficaces que ceux conduits par des humains.
Afin de satisfaire à ces attentes, la capacité
des véhicules autonomes à planifier des tra-
jectoires sûres et à manœuvrer efficacement
dans le trafic sera capitale. Cependant, le
problème de planification de trajectoire au mi-
lieu d’obstacles statiques ou mobiles a une
combinatoire forte qui est encore aujourd’hui
problématique pour les meilleurs algorithmes.
Cette thèse explore une nouvelle approche
de la planification de mouvement, basée sur
l’utilisation de la notion de décision de con-
duite comme guide pour structurer le prob-
lème de planification en vue de faciliter sa
résolution. Cette approche peut trouver des
applications pour la conduite coopérative, par
exemple pour coordonner plusieurs véhicules
dans une intersection non signalisée, ainsi
que pour la conduite autonome où chaque
véhicule planifie sa trajectoire.
Dans le cas de la conduite coopérative, les
décisions correspondent au choix d’un or-
donnancement des véhicules qui peut être
avantageusement encodé comme un graphe.
Cette thèse propose une représentation simi-
laire pour la conduite autonome, où les déci-
sions telles que dépasser ou non un véhicule
sont nettement plus complexes. Une fois
la décision prise, il devient aisé de déter-
miner la meilleure trajectoire y correspondant,
en conduite coopérative comme autonome.
Cette approche basée sur la prise de déci-
sion peut permettre d’améliorer la robustesse
et l’efficacité de la planification de trajectoire,
et ouvre d’intéressantes perspectives en per-
mettant de combiner des approches mathé-
matiques classiques avec des techniques plus
modernes d’apprentissage automatisé.

Mots Clés

Planification de trajectoire, Prise de décision,
Conduite autonome, Commande prédictive,
Gestion d’ntersection autonome

Abstract

The deployment of future self-driving vehicles
is expected to have a major socioeconomic im-
pact due to their promise to be both safer and
more traffic-efficient than human-driven vehi-
cles. In order to live up to these expectations,
the ability of autonomous vehicles to plan safe
trajectories and maneuver efficiently around
obstacles will be paramount. However, mo-
tion planning among static or moving objects
such as other vehicles is known to be a highly
combinatorial problem, that remains challeng-
ing even for state-of-the-art algorithms. In-
deed, the presence of obstacles creates ex-
ponentially many discrete maneuver choices,
which are difficult even to characterize in the
context of autonomous driving.
This thesis explores a new approach to motion
planning, based on using this notion of driving
decisions as a guide to give structure to the
planning problem, ultimately allowing easier
resolution. This decision-based motion plan-
ning approach can find applications in cooper-
ative driving, for instance to coordinate multi-
ple vehicles through an unsignalized intersec-
tion, as well as in autonomous driving where a
single vehicle plans its own trajectory.
In the case of cooperative driving, decisions
are known to correspond to the choice of a
relative ordering for conflicting vehicles, which
can be conveniently encoded as a graph. This
thesis introduces a similar graph representa-
tion in the case of autonomous driving, where
possible decisions – such as overtaking the
vehicle at a specific time – are much more
complex. Once a decision is made, plan-
ning the best possible trajectory correspond-
ing to this decision is a much simpler prob-
lem, both in cooperative and autonomous driv-
ing. This decision-aware approach may lead
to more robust and efficient motion planning,
and opens exciting perspectives for combin-
ing classical mathematic programming algo-
rithms with more modern machine learning
techniques.

Keywords

Motion planning, Decision-making, Au-
tonomous driving, Model predictive control,
Autonomous intersection management
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