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Introduction

The risk of failure has always been associated with the use of metallic materials in

structures. The failure of a mechanical component can happen through different

scenarios and cause large scale losses, both financial and human, as well as serious

damage to the environment, for example aircraft crashes, the failure of nuclear re-

actors, the burst of big pipelines, or the collapse of large bridges. Fatigue cracking

in metals is considered as one of the major causes which can lead to the failure of a

mechanical component. It is mainly due to the presence of cracks which occur fur-

ther to eventual manufacturing defects or a stress concentration zone, and propagate

during service when the component is subjected to cyclic loading.

The use of fracture mechanics analysis has proven to be a powerful tool to un-

derstand fatigue crack extension and is of interest for assessing the use life of struc-

tures. Since the 1950s, fracture mechanics has always been a fascinating branch

of research in mechanics and materials. It involves the analysis of the stress and

strain in a cracked solid, by using a theoretical concept named the K-concept or

the concept of stress intensity factor. The use of this concept for studies of fatigue

cracking was shown to be of special value to make estimates of the danger of fatigue

crack growth by small initial cracks due to cyclic loading during periods of use in

service. Moreover, the development of experimental and numerical techniques has

enabled engineers and researchers to improve the use of fracture mechanics concepts

for studying potential of real fatigue cracks in various complex structural locations.

Of course, the appearance and propagation of fatigue cracks in a metallic struc-

ture is an undesirable fact. The role of fracture mechanics concepts is also to provide

tools enabling to predict the behavior of fatigue crack propagation through the es-

tablishment of physical crack growth laws from calibration tests, commonly named

fatigue crack growth tests. These tests, carried out with cracked specimens at room

temperature (when the ambient temperature is not of interest), have always been

considered as isothermal, in other words, the temperature of the cracked specimen

is supposed to remain constant and uniform during the tests. However, it is well

known in the literature that plasticity occurs at the crack tip and mostly converts
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into heat. As a consequence, this heat generates a temperature field which modifies

the temperature of the cracked specimen. Then, the assumption of isothermal fatigue

crack growth tests is called into question. In addition, with recent developments of

infrared imaging techniques, the generated temperature field at the crack tip turned

out to be heterogeneous, which confirms the questioning about isothermal fatigue

crack growth tests.

The purpose of the work undertaken during this PhD thesis is to estimate the

consequences of the heat produced at the tip of a long propagating fatigue crack, on

the fracture mechanics concept of stress intensity factor since this is the key param-

eter for simulating crack extension. Dealing with this problematic is complex and

requires a relevant scientific approach of problem-solving since it involves different

aspects in fracture mechanics, fatigue of materials, and heat transfer. Moreover, the

background literature about the heat produced at the tip of a fatigue crack contains

very few studies (mainly [Pippan and Stüwe, 1983]). Many researchers have studied

the thermal effect that the heat at the crack tip could produce, but they only fo-

cused on the case of a monotonic loading (for instance in [Döll, 1973], or [Fuller and

Fox, 1975]). In fatigue, the problem is more complicated since under cyclic loading,

cyclic plasticity accumulates at the crack tip, and can depend on several phenomena

which appear in fatigue, such us underloads or overloads on the crack, crack closure,

and material cyclic behavior. For this purpose, this PhD work, funded by a French

ministerial allocation with the support of Arts & Métiers ParisTech, is a joint work

which brings together the expertise of the laboratory of Processes and Engineer-

ing in Mechanics and Materials (PIMM, Paris), and the Institute of Mechanics and

Mechanical Engineering (I2M, Bordeaux).

Prior to this work, Professor Nicolas Ranc from PIMM, and Professor Thierry

Palin-Luc from I2M, have initiated a study about the effects of the heat generated

at the tip of a fatigue crack on the stress intensify factor. Indeed, in [Ranc et al.,

2011], they analytically studied the effect of the heat, produced at a fatigue crack

tip, on the stress intensity factor in the case of a sem-infinite propagating fatigue

crack in an infinite cracked plate. Subsequently, in [Ranc et al., 2014], they carried

out the same study with a finite center-cracked plate where they first proposed a

method to estimate the heat dissipated from cyclic plasticity at the crack tip, and

then they computed the resulting effect on the stress intensity factor.

The goal of this PhD work was initially the further development of the inves-

tigation previously initiated by Prof. Nicolas Ranc and Prof. Thierry Palin-Luc,

but the presence of additional thermal effects, produced during fatigue crack growth

tests, broadens the investigation to study the associated resulting consequences on
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the stress intensity factor. In this dissertation, Chapter I gives a review of the back-

ground information relevant to the work carried out in this thesis, namely fracture

mechanics concepts, fatigue crack propagation, and dissipative mechanisms pro-

duced at the tip of a long crack during its propagation. Additional literature review

is discussed as we go along the following chapters. Chapter II explains the origins of

thermal effects generated during fatigue crack growth as well as the instrumentation

and methods enabling to characterize and quantify these effects. Afterward, Chapter

III contains the methodology, as well as the development, of calculations leading to

achieve the goal of this work. Finally, Chapter IV initiates potential further studies

aiming at exploring the effect of the loading frequency, as well as the effect of the

material behavior, on the heat dissipated at the tip of a long propagating fatigue

crack, which may consequently impact the stress intensity factor.

Before delving into the content of this thesis, it should be mentioned that all the

calculations involved in the thermal and the mechanical problems presented in this

thesis, are done with a home-made Matlab code, developed within the scope of this

work, which uses specific two-dimensional finite elements in heat transfer analysis

as well as a specific post-treatment of the stress intensity factor.
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C
e premier chapitre présente les notions essentielles de la mécanique de la rup-

ture et de la propagation des fissures de fatigue qui serviront de support et

de cadre théorique pour le reste du mémoire. Les concepts clés dans le cadre de

la mécanique élastique linéaire de la rupture sont premièrement définis, notamment

le champ des contraintes au voisinage d’une fissure, le facteur d’intensité des con-

traintes, la plasticité confinée en pointe de fissure, et le concept de la zone de plas-

ticité cyclique.

Ensuite, l’application de ces concepts dans le domaine de la propagation des

fissures de fatigue est présentée à travers l’exemple de la loi classique dite de Paris.

L’accent est mis par la suite sur les effets qui apparaissent en sollicitation cyclique

et qui peuvent modifier cette loi de propagation, en particulier les effets associés au

rapport de charge et au phénomène de la fermeture de la fissure.

Enfin, les travaux en lien avec ce travail sont présentés afin de situer les objectifs

de ce travail par rapport à ce qui a été antérieurement fait dans la littérature.

Il est à noter qu’en plus des éléments de la littérature présentés dans ce premier

chapitre, d’autres passages bibliographiques sont présentés au fur et à mesure de

l’avancement des parties de ce mémoire, et ce en fonction de l’objectif de chaque

partie.

I
n this first chapter, the main knowledge of fracture mechanics and fatigue crack

propagation is presented. It serves as theoretical framework of this dissertation.

The key concepts within the linear elastic fracture mechanics are first defined. That

concerns the crack tip stress field, the stress intensity factor, the small scale yielding,

and the concept of the reverse cyclic plastic zone.

These concepts are afterward used to present the field of fatigue crack growth

through the example of the classical law of Paris. The emphasis is made on the

effects that appear when a cracked structure is loaded in fatigue, particularly the

effect related to the loading ratio and that associated with crack closure phenomena.

These effects can actually modify the Paris law.

Finally a background literature is presented in order to set the goal of this PhD

work in relation to what has previously done in the literature.

It should be mentioned that besides the literature review presented in this first

chapter, additional bibliographic elements are discussed through the following parts

of this dissertation, depending on the aim of each part.
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1. Background and literature review

1.1 Fracture mechanics issues

Fracture mechanics covers the analysis of the response of materials in the presence

of cracks. It is aimed at assessing the stress and strain fields in the vicinity of

cracks and establishing experimental procedures in order to determine the kinetics

of propagation of cracks as well as their critical size beyond which, under a given

loading, the unstable fracture occurs. It is possible to distinguish two aspects of

fracture mechanics: the aspect of stress analysis in terms of quantifying the stress

fields at the crack tip, and the aspect of material behavior in terms of defining the

fracture strength and the resistance to the imposed loading.

A concrete knowledge of the fracture mechanisms of materials was first presented

by Griffith in 1920, [Griffith, 1920]. Griffith explained the problem of the rupture of

elastic solids by an approach based on energy-balance. Indeed, according to [Poynt-

ing and Thomson, 1913], the equilibrium state of an elastic solid body, deformed by

specified surface forces, is such that the potential energy of the whole system is a

minimum. Griffith’s criterion of rupture is obtained by adding the statement that

the equilibrium position, if equilibrium is possible, must be one in which rupture

of the solid has occurred, if the system can pass from the unbroken to the broken

condition by a process involving a continuous decrease in potential energy. When a

crack occurs, Griffith defined the surface energy as the rate of loss of stress field en-

ergy per unit of new separation area. However, the surface energy is unrealistically

high for ductile materials and the usual training in stress analysis did not provide

methods of estimating this energy, that is why Griffit’s theory was ignored until

the 1950s. From a stress analysis standpoint, [Irwin, 1957] proposed a relatively

simple method of crack-stress field analysis for linear elastic solids, which allowed to

show that the severity of the stress field near the crack tip, tending to cause crack

extension, could be represented by a stress intensity factor (SIF), K.

According to [Tada et al., 1973], for linear elastic bodies, the intensity of the local

stress field at the crack tip can be affected by: (i) the surfaces of the crack as they

are the nearby and stress-free boundaries of the cracked body, (ii) the mechanical

loading, and (iii) other eventual remote boundaries. The surfaces of the crack are

the dominating influence on the distribution of stresses in the vicinity of the crack.

The stress fields near crack-tips can be decomposed into three types, each associated

with a local mode of loading as shown in Figure 1.1.
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1.1. Fracture mechanics issues

Figure 1.1: Modes of crack loading.

Irwin’s linear elastic fracture mechanics (LEFM) approach defines the stress in-

tensity factors KI , KII and KIII from the surrounding crack-tip stress fields associ-

ated with each mode. It is based on Westergaard’s work presented in [Westergaard,

1939]. For mode I, which is of interest in this thesis, the fields of crack tip stress

and displacement are respectively written in Equations (1.1) and (1.2), with plane

strain hypothesis, by referring to Figure 1.2 for notation.

Figure 1.2: Coordinates from leading edge of a crack and stress components in the

crack-tip stress field, [Tada et al., 2000].

For r << a: 
σxx

σyy

τxy

 =
KI√
2πr


cos( θ

2
)[1− sin( θ

2
) sin(3θ

2
)]

cos( θ
2
)[1 + sin( θ

2
) sin(3θ

2
)]

sin( θ
2
) cos( θ

2
) cos(3θ

2
)

 , (1.1)

9



1. Background and literature review

for plane strain: σzz = ν(σxx + σyy), τxz = τyz = 0, and:
ux

uy

uz

 =
E

KI

√
r

2π


cos( θ

2
)[1− 2ν + sin2( θ

2
)]

sin( θ
2
)[2− 2ν − cos2( θ

2
)]

0

 . (1.2)

For plane stress hypothesis, Equations (1.1) and (1.2) can be rewritten by taking

σzz = 0 and replacing Poisson’s ratio, ν, in the displacements with ν
1+ν

. Equation

(1.1) shows the characteristic singularity in elastic solutions defining the stress fields

near and around the crack tip. In a more generic form, the opening mode stress

intensity factor, KI , can be expressed as:

KI = σα
√
πa, (1.3)

where σ is the nominal stress remote from the crack tip, a is the crack length, and

α is a geometrical function which accounts for effects of boundaries or other cracks,

orientations of the crack, shape of the crack and the restraints on the structure

containing the crack. It is with the determination of this geometrical function that

crack analysis methods are concerned.

As the LEFM approach to determine the SIF became crucial to solve problems

of engineering design, a series of handbooks were written to list complete SIF solu-

tions for typical cracked structures and loadings. Some of these handbooks: [Sih,

1973], [Tada et al., 1973], [Rooke and Cartwright, 1976], and [Murakami, 1987]. For

instance, for the typical geometry of a finite two-dimensional center-cracked tensile

(CCT) plate, which is used in this doctoral work, subjected to a uni-axial and uni-

form nominal stress, σ, at its extremities as presented in Figure 1.3, the elastic SIF

solution is given by Equation (1.4), [Tada et al., 1973], which is one of the asymptotic

approximations to calculate the SIF in linear-elastic response.

KI = σ
√
πa 0.5

(
3− a

a+ r

)(
1 + 1.243

(
1− a

a+ r

)3
)
, (1.4)

where a is the half-length of the crack, and r is the radius of the central whole.
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Figure 1.3: Illustration of a finite two-dimensional center-cracked tensile plate.

There are many other methods that were developed for determining solutions

of the SIF for linear-elastic cracked solids subjected to arbitrary loading conditions,

such as the methods of the complex stress-functions provided in the book of [Muskhe-

lishvili, 1953], the techniques of integral calculation involving the J-integral method

in [Rice, 1968], the weight functions method in [Bueckner, 1970] and the Green’s

functions method in [Cartwright and Rooke, 1980], about which more will be said

in Section §3.1 of Chapter III. In all cases where a solution for the SIF cannot be

obtained from existing methods, the technique of finite element analysis (FEA) can

be used ([Byskov, 1970], [Tracey, 1971]).

It must be pointed out that the LEFM framework is based on two fundamental

statements: (i) the inelastic behavior at the crack tip is of no major influence on the

elastic stress field near the crack, this leads to introduce the ”small scale yielding”

assumption which is defined afterward, (ii) the surrounding elastic crack tip stress

fields are identical for two configurations if their SIF are equal, and if material elastic

properties are identical ([Tada et al., 2000]). Indeed, when a crack is loaded, a plastic

zone takes place at the tip of the crack. This plastic zone size establishes a geometric

dimension indicating the region over which deviations from elastic behavior occur.

Figure 1.4 depicts the shape of the plastic zone computed by FEA according to Von

Mises criterion ([Brocks, 2017]). Under the hypothesis of plane stress, the plastic

zone size is larger than that computed under the hypothesis of plane strain, and

the plane stress hypothesis is adapted to define the crack tip stress field on the

outer surfaces of the specimen, while the plane strain hypothesis is considered for
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describing the crack tip stress field in the core of the crack front.

Figure 1.4: Shape of the plastic zone at the crack tip ([Brocks, 2017]): (a) under

the assumptions of plane stress and plane strain; (b) illustration of the stress state

along the crack front.

When the plastic zone size is small compared to the characteristic length asso-

ciated with the elastic stress field such as crack length, uncracked width of a finite

specimen, distance from crack tip to points of load application, and so forth, the

situation is called small scale yielding, [Rice, 1967].

Within this situation, analytic rough estimates of the size of the plastic zone are

obtainable by assuming a circular shape of the plastic zone as illustrated in Figure

1.5.

Figure 1.5: Schematic plastic zone ahead of the crack tip.

[Irwin, 1960] proposed an estimation of the size of the plastic zone where he

suggested that the elastic stress field beyond the plastic zone is the same as the

12
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one which would be present in the singular linear-elastic solution with the crack tip

advanced by the distance OB −OA as shown in Figure 1.6.

Figure 1.6: Estimation of the plastic zone size, according to Irwin’s model, for an

elastic perfectly plastic material under monotonic tensile load.

Assuming the plane stress hypothesis, the size of the plastic zone, schematized

by a disc whose center is the point A and diameter is the distance OB, is obtained

by equalizing the hatched areas of Figure 1.6.∫ A

O

KI√
2πx

dx− σyOA = σy(OB −OA), (1.5)

with OA = 1
2π

(KI
σy

)2 according to the crack tip stress field solution given by Equation

(1.1) after considering the plane stress hypothesis. Thus:

OB =
KI

σy

√
2OA

π
, (1.6)

=
1

π

(
KI

σy

)2

. (1.7)

In another approach based on cohesive forces principle and developed by [Dug-

dale, 1960]:

OB =
π

8

(
KI

σy

)2

. (1.8)

Although different approaches were used to model the plastic zone size, they give

close approximations as shown in Table 1.1.
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Irwin Dugdale

OB(
KI
σy

)2 0.318 0.393

Table 1.1: Comparing estimations of Irwin and Dugdale about the size of the plastic

zone with a circular shape.

In the case of cyclic loading, the problem of characterizing the plastic zone be-

comes more complex since it may depend on several effects such as the effect of

underloads or overloads on the crack, or the effect of the material cyclic behavior.

Moreover, additional quantities related to cyclic loading of a crack should be defined,

such as the SIF range, ∆KI = KImax −KImin , the ratio R =
KImin
KImax

, and the mean

stress intensity factor, Km
I =

KImax+KImin
2

.

To simplify the problem of characterizing the plastic zone under cyclic loading,

the hypothesis of a circular plastic zone is considered within small scale yielding

condition. The hypothesis of plane stress can be considered for instance. The esti-

mations of the plastic zone size in the case of a monotonic loading presented above

can be used to treat the response to cyclic loading through the plastic superposi-

tion method developed by [Hult and McClintock, 1956] and [Rice, 1965]. Indeed,

according to [Rice, 1967], when a cracked body is loaded by a system of forces pro-

portional to some parameter F , and that the loading parameter is reduced by ∆F

to a lower level F −∆F , a reverse plastic flow takes place with the first increment

of load reduction, creating a new plastic zone of reversed deformation included in

the plastic zone accompanying the original loading. This new yielding zone is called

the reverse cyclic plastic zone (RCPZ). Figure 1.7 illustrates this phenomenon for

an elastic perfectly plastic material.
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Figure 1.7: Plastic superposition principle: Adding (b) for load −∆F with a doubled

yield stress to (a) gives the solution (c) resulting after unloading from F to F −∆F .

Reloading F −∆F to F restores (a), [Rice, 1967].

[Rice, 1967] explains that, after the first loading step, the effect of unloading is

to reverse the direction of stresses without affecting their magnitude or distribution

when flow is proportional. The changes in stresses, strains, and displacements due to

load reduction are then given by a solution identical to that for original monotonic

loading, but with the loading parameter replaced by the load reduction ∆F and the

yield strain and stress replaced by twice their values for original loading, so that

stresses have the correct magnitude and direction in the RCPZ when the changes

due to load reduction are subtracted from the distributions corresponding to the

original monotonic loading. Therefore, Rice estimates the diameter of the RCPZ as

one-quarter of that estimated by Irwin for the plastic zone under monotonic loading,

and that by replacing the SIF, KI , and the yield stress, σy, in Equation (1.7) (in

plane stress for example) by the SIF range, ∆KI , and the cyclic yield stress, σcyc.y ,
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respectively, which gives the following approximation:

2rp* =
1

4π

(
∆KI

σcyc.y

)2

, (1.9)

where r∗p denotes the radius of the RCPZ. It should be noted here that this equation

is an analytic approximation of the diameter of the RCPZ modeled by a disc ahead

of the crack tip under the hypothesis of plane stress.

When the effects of yielding are not negligible, i.e. large scale yielding case,

the small scale yielding condition as well as the concept of the SIF defined by the

LEFM are no longer valid. In such a case, the problem becomes non-linear and the

characterization of the plastic zone, either under monotonic loading or cyclic loading,

can not be done with an analytic approach, because it requires the definition of new

boundary conditions around the zone of plasticity, which is complicated and needs

a numerical implementation of a non-linear calculation.

Within the scope of this PhD work, the main problem deals with solving the

SIF in linear elasticity for a fatigue crack. Therefore, the small scale yielding condi-

tion must be fulfilled. By considering the plane stress hypothesis for simplifying the

problem, the estimation of the size of the RCPZ, even with a first order approxima-

tion as Rice’s estimation based on Irwin’s model with a circular RCPZ (Equation

(1.9)), enables to verify the validity of the small scale yielding condition where the

diameter of the RCPZ should be small compared to the crack ligament.

1.2 Bridge between fracture mechanics and fa-

tigue crack propagation

After defining the items of fracture mechanics required for solving the problem

of this thesis, namely, the elastic crack tip SIF, and the estimation of the size of the

RCPZ created ahead of the crack tip enabling to verify the condition of small scale

yielding, it is now important to define the framework of crack growth due to fatigue

from the point of view of fracture mechanics.

Fatigue is actually caused by repeated cycling of the load. A structure subjected

to cyclic loads develops a crack which usually grows slowly until it reaches a critical

size. At this point, the solid undergoes sudden failure and fractures.

At the beginning of the 1960s, numerous researchers became aware that the

methods of Irwin’s fracture mechanics could be applied to fatigue crack growth.
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They have therefore based their studies on the LEFM approach to understand and

model the fatigue crack growth process. Several laws, mainly based on empirical

representations fitting experimental data, were established to predict the fatigue

crack propagation behavior. Hereinafter, the background about fatigue crack growth

process is discussed.

1.2.1 Fatigue crack propagation behavior

The first crack propagation model was proposed before Irwin’s work on the SIF.

It dates back to 1953 when [Head, 1953] employed a mechanical model considering

rigid plastic work hardening elements ahead of a crack tip and elastic elements over

the remainder of an infinite body. Head’s model considered the plastic zone size

constant during crack propagation, and took into account its effect on the fatigue

crack growth rate. However, this model was based on a limited amount of data

and required extensive calculations and deductions. That is why, [Paris and Er-

dogan, 1960] showed within the LEFM approach, with a wide range of data, that

the propagation under cyclic loading of a long fatigue crack could be modeled by

a mathematical correlation between the fatigue crack growth rate, da
dN

, and the SIF

range, ∆K, which is commonly known as the Paris’ law:

da

dN
(s) = λ.(∆K(s))m, (1.10)

with s is the curvilinear abscissa of a current point of the crack front, λ and m are

experimental constants that depend on the material and the fatigue crack growth

test conditions (R-ratio, environment, etc.). When the cracked specimen is thin and

flat, it can be assumed that the crack grows with the same rate along the front, in

other words, the curvilinear abscissa s disappears in Equation (1.10).

Experimental measurements of the fatigue crack growth rate, da
dN

, for a fixed

R-ratio, in relation to the SIF range, ∆K, enable to plot the fatigue crack growth

curve, as depicted in Figure 1.8, where three stages can be distinguished: (i) crack

initiation, (ii) progressive crack propagation across the structure, and (iii) quick

propagation with final sudden fracture of the remaining cross section. Indeed, when

∆K reaches a threshold value, ∆Kth, the crack starts to propagate at low speeds

at first. Then, by increasing ∆K, the crack progressively grows until the last stage

where its velocity grows very quickly before the final fracture. The break is reached

when the value of the applied maximum SIF over one load cycle, Kmax, reaches the

toughness of the material, Kc. The Paris’ law, Equation (1.10), is only valid in the
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second stage of crack propagation where log( da
dN

) varies linearly against log(∆K).

Figure 1.8: Generalized fatigue crack growth rate curve showing the three major

crack growth stages.

In general, all available fatigue crack propagation models, based on the conditions

of the LEFM, can be classed into three groups: the first one consists of the most

primitive model represented by the Paris’ law, Equation (1.10). This group does not

consider the effect of the load ratio R. Moreover as ∆K tends toward ∆Kth, the

Paris’ law overestimates the crack growth rate da
dN

. The second group, represented

by [Broek and Schijve, 1963], has therefore tried to modify Equation (1.10) in order

to correct this overestimation of da
dN

at lower ∆K by integrating parameters such as

R or Kmax. The third group is represented by [Saxena et al., 1979] with the Three-

Component (TC) model considering the R-ratio effect and covering the stages I and

III of fatigue crack growth.

However, no suitable explanation for the R-ratio effect was found until Elber

proposed the concept of ”crack closure” ([Elber, 1970]).

1.2.2 Effects of crack closure and R-ratio on fatigue crack

propagation

Elber observed that the tip of a fatigue crack experienced a modified stress range

compared to that calculated from the nominal applied stress, due to a phenomenon

of crack closure at some load higher than the minimum of the loading cycle. Indeed,

he noticed that a fatigue crack in a finite specimen subjected to zero-to-tension

loading is fully open for only a part of the loading cycle. The stress at which the

fatigue crack opened fully, σop, is about 50% of the maximum stress, σmax, for

the material he studied (2024-T3). To follow up his studies on the effect of crack
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1.2. Bridge between fracture mechanics and fatigue crack propagation

closure on the fatigue crack growth rate, [Elber, 1971] postulated that crack closure

is caused by the residual plastic tensile deformation left in the wake of the fatigue

crack extension, as shown schematically in Figure 1.9, which reduces crack opening

by creating compressive stresses at the crack tip, and results in crack closure during

unloading.

Figure 1.9: Development of a RCPZ envelope around a fatigue crack, [Elber, 1971].

Therefore, Elber differentiated between the crack opening SIF, Kop, and the crack

closure SIF, Kcl, for the loading and unloading half cycles respectively. He proposed

that the crack tip SIF range, ∆K, would be replaced with an effective SIF range,

∆Keff , such that ∆Keff = Kmax −Kop as illustrated in Figure 1.10.

Figure 1.10: Defining the effective SIF range ∆Keff according to Elber.
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Furthermore, Elber established a relationship between the effective SIF range,

∆Keff , and the SIF range, ∆K, through a factor, U , as defined by Equation (1.11).

∆Keff = U∆K. (1.11)

For the material he studied, he found a linear relationship between U and the

R-ratio: U ≈ 0.5 + 0.4R for −0.1 < R < 0.7 .

As a result, the Paris’law (Equation (1.10)) should be corrected according to

Elber’s effective SIF range as follows:

da

dN
(s) = λ.(∆Keff (s))

m. (1.12)

The importance of Elber’s work in practical fatigue situations has gradually

become recognized. For example, the effect of changing the R-ratio, the effect of a

short crack geometry, low ∆K crack growth (near-threshold) effects, and retardation

due to an overload ([Gan and Weertman, 1983]), have been recognized as involving

crack closure mechanisms which modify the SIF range experienced by the crack tip

and hence the crack growth rate.

Indeed, the effect of the R-ratio may generate a work of friction resulting from

eventual rubbing of contacting regions along the crack faces. Although cracked

specimens are cyclically loaded in tension, crack closure may occur at low R-ratios,

typically R < 0.3 as reported by [Shih and Wei, 1974] for a Ti-6Al-4V alloy. Similar

results were obtained by [Katcher and Kaplan, 1974] on Ti-6A-4V alloy and 2219-

T851 aluminium, namely, that the crack closure was observed at approximately

R ≈ 0.32.

It is well known that the fatigue crack propagation behavior exhibits a strong

dependence upon the load ratio R, especially when decreasing the SIF range ∆K to

lower values than the threshold ∆Kth, [Ritchie, 1979]. In the usual stage II of crack

growth, this dependence upon R is generally not as considerable as that observed

in stage I, [Suresh et al., 1979]. Furthermore, [Ohta et al., 1978] showed that for

R ≥ 0.4, the crack closure phenomena, in HT80 steel and SUS304 stainless steel,

starts to be less pronounced with respect to loading ranges ∆K ≤ ∆Kth. But,

for ∆K ≥ ∆Kth in stage II, the crack closure does not occur. For R = 0.8, they

reported that the crack was fully open over the whole applied SIF ranges. [Suresh

et al., 1979] obtained, with SA387-steel, that from R = 0.5 the crack closure has no

effect on the fatigue crack growth behavior.

Therefore, there is not a fixed standard R value above which it could be said
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1.2. Bridge between fracture mechanics and fatigue crack propagation

that the crack closure would not occur. This strongly depends on the material and

also on the surrounding environment during fatigue tests (for example vacuum or

air, [Cooke et al., 1975]). Within the scope of this work, the fatigue crack growth

tests are carried out in the stage II of crack growth with a long fatigue crack for

R = 0.1, R = 0.4 and R = 0.6. Moreover, they are carried out under the mode I

of crack loading where friction due to contact of crack faces is not as important as

that occurring in modes II and III. For this reason, the effect of the work of friction

due to crack closure in the crack tip region is not taken into account in this work.

1.2.3 Plastic work effect ahead of a long propagating fatigue

crack

Since Elber’s discovery of the effect of plasticity-induced crack closure on fa-

tigue crack growth rate, other mechanisms in the fatigue crack propagation process

were studied, such as the effect of the plastic work at fatigue crack tips. This was

first begun by [Weertman, 1973] and elaborated later by [Mura and Lin, 1974] and

[Antolovich et al., 1975] who considered the following formulation:

da

dN
= η

∆K4

µp2γF
, (1.13)

where η is a proportional constant, µ is the shear modulus, p is a strength parameter,

and γF is the plastic work absorbed in advancing the crack a unit area. Equation

(1.13) shows that for materials with high plastic work at the crack tip, the fatigue

crack growth rate decreases, and that decelerates the crack propagation process.

In the same vein, [Pippan and Stüwe, 1992] studied the effect of the applied SIF

range on the cyclic plastic work spent at the fatigue crack tip. For this purpose,

they defined the specific plastic work necessary to create a unit of fracture surface

as:

γF =
δW

2Bda/dN
, (1.14)

where δW is the plastic work spent at the crack tip during one fatigue cycle, and

B is the length of the advancing crack front. To quantify γF , Pippan and Stüwe

first showed that δW is mostly dissipated into heat, δQ, by computing δW with a

mechanical approach and experimentally estimating δQ by thermal measurements.

The values of δW and δQ were plotted against different applied SIF ranges ∆K, as

shown in Figure 1.11, where the circles denote computed mechanical quantities of

δW , and the triangles and crosses correspond to experimental thermal estimations of
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δQ. It can be seen that they both lie on the same straight line, hence the assumption:

δW ≈ δQ.

Figure 1.11: Cyclic plastic work spent at the crack tip versus the SIF range (for two

structural steels) at a loading frequency f = 250Hz, [Pippan and Stüwe, 1983].

Afterward, Pippan and Stüwe measured the fatigue crack growth rate, da
dN

, so

that they could quantify the specific plastic work, γF , by using Equation (1.14).

This enabled to plot γF against ∆K as shown in Figure 1.12 below. In this figure,

the steep rise of the curves towards low values of ∆K is because the values of

the fatigue crack growth rate drop to virtually zero at low ∆K, thus according to

Equation (1.14) the value of γF is singular at low ∆K. For intermediate ∆K, γF

is roughly constant. For high values of ∆K, γF dips down to low values because

the fatigue crack growth rate increases much faster at this stage of crack growth.

Moreover, from Figure 1.12, for the same material and applied ∆K, it can be read

that the specific plastic work at the crack tip decreases when the applied R-ratio

increases. This remained open for further research as it depends on the material.
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1.2. Bridge between fracture mechanics and fatigue crack propagation

Figure 1.12: Specific plastic work spent to create a unit of fracture surface, [Pippan

and Stüwe, 1992].

1.2.4 Heat production mechanisms during fatigue crack prop-

agation

Following the work of Pippan and Stüve, [Flores and Dauskardt, 1999] charac-

terized, from a thermodynamics standpoint, the dissipation of the plastic work as

heat generated at the tip of a propagating fatigue crack in a bulk metallic glass.

They observed a near tip temperature increase which was found to be consistent

with predictions of the dissipation of plastic work as heat. They also observed a

locally cooled zone ahead of the crack tip which was consistent with thermoelastic

effects.

In fact, many experimental and theoretical works have been done between 1970s

and 1990s in order to study the characteristics related to thermal effects induced

by the dissipation of plasticity into heat near the tip of cracks. In the area of ex-
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perimental studies under monotonic loading, [Döll, 1973] was one of the earlier

investigators who estimated the overall heat output at the tip of a dynamic propagat-

ing crack. From thermocouple measurements on four different polymer specimens,

he found that the heat output due to plastic work increases with the crack speed.

[Fuller and Fox, 1975] performed similar tests with liquid crystal films and infrared

detectors, as well as thermocouples. They estimated that the peak temperature rise

near a crack that was growing at a speed in the range of 200− 650m.s−l was about

500K. A more surprising result was reported by [Weichert and Schönert, 1978] who

measured, with a very sensitive radiation thermometer, temperatures between 2500

and 3000K for cracks propagating in glass and about 4700K for cracks growing in

quartz at very high crack velocities. [Bryant et al., 1986] conducted tests on two

titanium alloys. They examined the fracture surface of test specimens using scan-

ning electron microscopy and found out that the melting point of the titanium alloys

could be exceeded at the tip of a rapidly moving crack.

Much attention has later been devoted to the search for understanding the mech-

anism of plastic dissipation in heat at the crack tip under cyclic loading ([Ranc

et al., 2008]). However, no impact of the associated thermal effect on fracture,

in terms of the SIF, was established until [Ranc et al., 2011] proposed a thermo-

mechanical analysis, based on the LEFM, highlighting the consequences on the SIF

of the cyclic plasticity dissipated into heat at the tip of a fatigue crack. They ad-

dressed the issue because the SIF may be modified because of the cyclic plastic

dissipation in heat occurring in the RCPZ, especially since this thermal effect may

increase with the loading frequency. They therefore established a direct analytic

linear relationship between the cyclic plastic dissipation in heat in the RCPZ and

the SIF in an infinite plate with a semi-infinite through crack under mode I cyclic

loading. Afterward, [Ranc et al., 2014] studied the problem for a finite CCT spec-

imen made of C40-steel, where they first proposed an experimental method, based

on infrared measurements during fatigue crack growth tests, to quantify the heat

produced by cyclic plasticity in the RCPZ, and then they computed by FEA the

associated effect on the SIF, KI , under different applied SIF ranges, ∆KI , and for

a fixed applied load ratio, R = 0.1. Indeed, under the superposition principle of the

LEFM, they showed that a thermal correction of the SIF, denoted by Ktemp, must

be assessed and added to the SIF associated with the applied mechanical loading,

KI(t). They therefore calculated Ktemp from the estimated cyclic plastic dissipa-

tion in the RCPZ of a long propagating fatigue crack, by computing the associated

heterogeneous temperature field, and solving the thermomechanical crack-tip stress

field enabling to calculate Ktemp under the hypothesis of plane stress.
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1.3. Conclusion of Chapter I

Table 1.2 gives the estimation of the cyclic plastic dissipation in heat in the

RCPZ, denoted by q, obtained with frequencies of cyclic loading about 100Hz. It is

interpreted as a dissipated power per unit length of the crack front. The calculation

of the thermal correction Ktemp is presented as well.

R ∆K(MPa.
√
m) q(W.m−1) Ktemp(MPa.

√
m)

0.1 12 17.7 −0.04

0.1 15 62.2 −0.14

0.1 17 84.1 −0.18

0.1 20 153 −0.32

Table 1.2: Results of the estimation of the cyclic plastic dissipation in heat in the

RCPZ and the associated thermal corrections of the SIF, on C40 steel. ([Ranc et al.,

2014])

From the results of Table 1.2, the thermal correction of the SIF is negative

because it describes the compressive state of the stress field around the crack tip,

which is due to thermal expansion of the material ahead of the crack tip. As a result,

Ktemp modifies the local load ratio near the crack tip, R = Kmin
Kmax

, since it decreases

the minimum and maximum values of the SIF. However, the absolute values of these

thermal corrections are small compared to the values of the SIF range.

Therefore, it is interesting to study the effect of additional applied fatigue loading

in terms of ∆KI and R-ratio to see how much this impacts the order of magnitude of

the thermal correction Ktemp resulting from the effect of the cyclic plastic dissipation

in heat in the RCPZ.

1.3 Conclusion of Chapter I

This PhD work comes then, not only to complete the study of [Ranc et al.,

2014], but also to explore the consequences, on the SIF, of other thermal effects

which can develop in fatigue of metallic alloys. It should be noted that many stakes

are associated with this problem, especially: (i) quantifying the thermal effects

that are likely to be generated under cyclic loading of a finite specimen with a

long propagating fatigue crack. This requires a thermodynamic characterization, as

well as a specific methodology of assessment which can be either experimental or

numerical. More about this item is discussed in Chapter II. (ii) Modeling and solving

the thermomechanical problem leading to study the consequences of the thermal
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effects on the SIF. This actually needs to define a specific calculation framework

with relevant methodology and hypothesis in order to simplify the problem since it

deals with non-linearities as well as coupled thermal and mechanical effects.
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L
e deuxième chapitre de ce mémoire a pour objectifs de quantifier les sources de

chaleur présentes pendant la sollicitation mécanique cyclique d’une éprouvette

fissurée, et de calculer les champs de température générés par chaque source.

Dans un premier temps, les concepts de la thermodynamique sont rappelés afin

d’expliquer l’origine et la nature de chaque source de chaleur. Les sources en ques-

tion sont la source de couplage thermoélastique, la source de dissipation intrinsèque

liée à la microplasticité, et la source de dissipation plastique en chaleur liée à la

plasticité cyclique qui se produit en pointe de fissure. Dans un second temps, ces

sources de chaleur sont séparément quantifiées suivant des méthodes particulières à

chaque source. La source thermoélastique est numériquement calculée par la méth-

ode des éléments finis, et ce après un développement mathématique des équations

classiques de la thermoélasticité linéaire. La source de dissipation intrinsèque liée

à la microplasticité est quantifiée selon une approche expérimentale basée sur les

essais d’auto-échauffement en fatigue. La source de dissipation plastique cyclique en

pointe de fissure est aussi quantifiée selon une approche expérimentale basée sur les

essais de propagation d’une fissure de fatigue. Enfin, le champ de température as-

socié à chaque source est calculé par éléments finis en résolvant le problème linéaire

de l’équation de la chaleur. Il faut souligner que ce calcul thermique constitue la

première étape menant à la résolution du problème de cette thèse.

T
he second chapter aims at quantifying the heat sources generated during cyclic

loading of a cracked specimen as well as computing their resulting temperature

fields. First, the fundamental theoretical knowledge of thermodynamics is presented

to explain the origins and the nature of the heat sources. The heat sources in question

are the thermoelastic coupling source, the intrinsic dissipation due to microplastic-

ity, and the cyclic plasticity dissipated into heat in the reverse cyclic plastic zone

ahead of the crack tip. Secondly, the heat sources are separately quantified. Each

heat source has its specific quantification method. The thermoelastic source is nu-

merically computed by finite element analysis after a mathematical development of

classical equations of linear thermoelasticity. The intrinsic dissipation due to mi-

croplasticity is quantified with an experimental approach using self-heating fatigue

tests. The cyclic plasticity dissipated into heat in the reverse cyclic plastic zone is

also experimentally quantified by using infrared measurements at the crack tip.

Having determined the three heat sources, the associated temperature fields are

computed by solving the linear heat diffusion equation problem. This is carried out

by finite element analysis. It should be noted that solving the thermal problem is the

key point to solve this thesis problem which is discussed later in the next chapter.
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2. Characterization and assessment of the heat sources and their
resulting temperature fields

2.1 Theoretical concepts behind the heat sources

Characterizing the heat sources generated during mechanical cyclic loading of a

cracked specimen requires the use of a thermodynamic approach in order to under-

stand their origins and the relationship between mechanical and thermal effects.

Initially, thermodynamics was developed for fluids in the 19th century, and more

recently it was extended to solids. Such an approach has already been used in the

literature, for instance in [Thomson, 1857], [Germain et al., 1983], and [Rosakis

et al., 2000].

The interest of quantifying the heat sources lies in the fact that they are related

to the thermomechanical behavior of the material. For instance, elastic or plastic

behaviors do not lead to produce the same heat sources.

Before quantifying the heat sources involved in this problem, their origins are

presented by using the concepts of thermodynamics.

2.1.1 Fundamental concepts of thermodynamics

In thermodynamics, the state of a volume of a solid system is described by a

given number of variables, named state variables, such as temperature and strain.

These state variables enable to define the internal energy of the material, e, or the

free energy, ψ, which is more used in materials science. The free energy is defined as

the Legendre transform of the internal energy according to temperature and entropy

variables, T and s, respectively. This is given by Equation (2.1).

ψ = e− Ts. (2.1)

The use of the free energy concept for describing the thermodynamic state of

materials is more convenient than the use of the internal energy since the free energy

is easily expressed by the use of measurable quantities such as temperature and

strain, while the internal energy uses the entropy and strain. Therefore, in order to

describe the thermomechanical behavior of a material, it is necessary to express its

free energy with respect to state variables.

When the material undergoes a thermodynamic transformation (evolution of its

state variables), the free energy changes, and the final transformation state can be

determined by using the first law of thermodynamics. This law postulates that

the internal energy is equal to the transferred energy like, work and heat, during

the transformation. However, it does not give information about the transformation
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direction. That is why, it is necessary to introduce the second law of thermodynamics

which allows to describe the irreversibilities taking place during the transformation.

This is characterized by Clausius-Duhem inequality:

ρT ṡi = dtot = σε̇− ρψ̇ − ρsṪ︸ ︷︷ ︸
d1

− 1

T
~q.
−−→
gradT︸ ︷︷ ︸
d2

≥ 0, (2.2)

where �̇ denotes ∂�
∂t

with t is time, ρ is the material density, si is the entropy

associated with irreversibilities, and ~q is the heat flux vector.

Since it is more convenient to describe the irreversibilities by an energy, the

total dissipation, dtot, is defined. According to the second law of thermodynamics,

ṡi ≥ 0, thus, dtot ≥ 0. Moreover, the total dissipation, dtot, can be decomposed

into two parts, d1, the intrinsic dissipation, and d2, the thermal dissipation. These

two dissipative quantities are independent, and thus, positive or null. When the

transformation of the material is reversible, ṡi = 0, and then, dtot = 0.

The thermal dissipation, d2, is the part of dissipation which is associated with

thermal losses, by conduction for example. While the intrinsic dissipation, d1, is

related to the thermomechanical behavior of the material, in other words, char-

acterizing the dissipation of a material can be done through defining its intrinsic

dissipation, d1.

Rearranging the first law of thermodynamics (conservation of energy), the free

energy, and the total dissipation, lead to write the heat diffusion equation. By

considering the classical conduction law of Fourier (~q = −k
−−→
gradT , where k is the

thermal conductivity coefficient of the material), the volume heat diffusion equation

can be written as follows:

ρcṪ = scoupling + d1 + k∆T, (2.3)

where c is the specific heat capacity, and scoupling is the power of the thermome-

chanical coupling due to the dependence of the mechanical part of the free energy

with the temperature. This thermochanical coupling power is more important when

the material mechanical behavior is sensitive to temperature variation. Moreover,

by considering a material with an elastic-plastic behavior for example, scoupling can

be written as the sum of a thermoelastic coupling term, sthe, associated with the

dependence of the mechanical behavior with the temperature, and a thermoplastic

coupling term, splas, associated with the dependence of the material hardening with

the temperature, that being: scoupling = sthe + splas.

Within the framework of the study carried out in this work, the temperature
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of the material does not reach levels at which material hardening can be impacted

by the temperature change. Thus, in this study it is assumed that the temperature

has negligible effects on material hardening, and the thermoplastic coupling is then

not taken into account. In Equation (2.3), the thermomechanical coupling power,

scoupling, can therefore be replaced by the thermoelastic coupling power, sthe (called

”thermoelastic source” in the following of this thesis), which gives the volume heat

diffusion equation:

ρcṪ = sthe + d1 + k∆T. (2.4)

As mentioned above, the intrinsic dissipation, d1, is always a positive heat source,

while the thermoelastic source, sthe, can be either positive or negative depending

on the cyclic loading (loading-unloading). Moreover, the thermoelastic source is

proportional to the trace of the stress tensor (hydrostatic stress), as well as the

loading frequency. This dependence is more detailed afterward in Section §2.4.1.

For a plastic behavior, an intrinsic dissipation can always be generated during

the loading of a material. It is generally expressed as the product of the material

yield stress, σy, and the equivalent plastic strain rate, ε̇peq, as given by Equation

(2.5).

d1 = σy.ε̇
p
eq. (2.5)

Furthermore, under a cyclic loading for example with an applied stress amplitude

lower than the cyclic yield stress of the material, the intrinsic dissipation can also

take place. This was experimentally verified in [Boulanger et al., 2004] for instance,

as shown in Figure 2.1 on a dual phase steel (DP60). The physical origin of this

phenomenon is related to the plasticity at the scale of the microstructure. This is

called ”microplasticity” in the following.
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Figure 2.1: Evolution of d1 over time for several applied load block series, [Boulanger

et al., 2004].

From the thermodynamic approach, it is therefore possible to describe the be-

havior of a loaded material by defining two types of heat sources. The first one is

the thermoelastic source which is related to the thermoelastic coupling. The second

one is the intrinsic dissipation related to plasticity and microplasticity.

2.1.2 Application of the thermodynamic approach in the

presence of a long propagating fatigue crack

The description of thermomechanical processes for a material affected by a long

propagating fatigue crack and cyclically loaded, can be done within the thermody-

namic approach introduced in the previous section. In other words, the thermoelastic

and dissipative heat sources are also present in this situation. But, it is known that

the presence of a fatigue crack implies the generation of a heterogeneous stress field

around the crack tip, as well as a reverse cyclic plastic zone (RCPZ) ahead of the

crack tip (cf. Chapter I). This means that, inside this zone, cyclic plastic strains

occur and produce an intrinsic dissipation related to plasticity at the macroscopic

scale. Moreover, since the size of the RCPZ is small compared to the crack ligament

under the small scale yielding condition, the heat produced inside this zone can be

expressed as a cyclic plastic power per unit length. In the following, this power per
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unit length, which is positive, is denoted by, q. Additionally, outside the RCPZ,

the stress in the material is below the cyclic yield stress, which generates microplas-

tic strains leading to an intrinsic dissipation at the grain scale. This is called ”the

intrinsic dissipation due to microplasticity”, denoted by d1 in the following.

Figure 2.2: Drawing of the distribution of the three types of heat sources considered

in this work.

Figure 2.2 illustrates that when a material contains a long propagating fatigue

crack and is subjected to a cyclic loading, three heat sources are present: the ther-

moelastic source, sthe, the intrinsic dissipation due to microplasticity, d1, and the

cyclic plasticity dissipated into heat in the RCPZ, q. It should be mentioned that

the shape of the RCPZ is represented, for simplification, by a disc ahead of the

crack tip as done in the literature when the RCPZ is small compared to the crack

ligament.

Furthermore, the dissipative heat sources, d1 and q, can be separated as illus-

trated in Figure 2.3. This helps in solving the associated linear thermal problem in

Section §2.4.

Figure 2.3: Separating the dissipative heat sources d1 and q.

Then, the linear heat diffusion equation (Equation (2.4)) can be rewritten as

follows:

ρcṪ − k∆T = sthe + d1 + qvolδ(M), (2.6)

where q = qvolARCPZ , qvol is the volume cyclic plastic power dissipated into heat
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in the RCPZ, ARCPZ is the area of the RCPZ, δ(M) is the Dirac function such

that δ(M ∈ ARCPZ) = 1 and δ(M /∈ ARCPZ) = 0. Thermal boundary conditions

must be added to the heat diffusion equation in order to fully define the linear

thermal problem leading to solve the temperature fields, Tthe, Td, and Tq, respectively

associated with the heat sources, sthe, d1, and q, such that T = Tthe + Td + Tq. This

is discussed afterward in Section §2.4.

It must be pointed out that the heat diffusion equation (Equation (2.6)) describes

a volume thermal problem and does not take into account the heat which may result

from frictional contact of crack faces. This heat is actually considered negligible in

the crack mode I loading which is of interest in this work.

In the next section, the methodology used for quantifying the three types of heat

sources characterized above is presented.

2.2 Methodology for quantifying the heat sources

Since the goal is to quantify the three types of heat sources generated during

fatigue tests with a cracked specimen, it is important to first explain the methods

considered to achieve this goal. It should be noted that each heat source has its

specific estimation method.

As mentioned in the previous section, the thermoelastic source, sthe, is propor-

tional to the trace of the stress tensor. In other words, by knowing the stress tensor

in the cracked specimen, the thermoelastic source can be defined. Therefore, a FEA

is carried out in order to compute the fields of the components of the stress tensor

in the cracked specimen by considering a linear-elastic and isotropic material behav-

ior. Afterward, based on the relationship between the thermoelastic source and the

trace of the stress tensor, detailed in Section §2.4.1, the thermoelastic source is then

numerically computed in the cracked material.

For the intrinsic dissipation, d1, it directly depends on the amplitude of the stress

field occurring in the cracked material, for this reason, experimental ’self-heating’

fatigue tests, introduced by [Luong, 1995], are carried out. They enable to link the

intrinsic dissipation to the normal stress amplitude applied to a smooth uncracked

specimen. Indeed, during self-heating fatigue tests, a normal stress amplitude is ap-

plied at the top of a smooth uncracked specimen and is homogeneously distributed

in its remainder, and while the fatigue test goes on, the temperature of the specimen

increases because of the effect of intrinsic dissipation. Therefore, infrared measure-

ments are used to measure this temperature variation, which then leads to estimate

the intrinsic dissipation associated with the applied stress amplitude. The resulting
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curve showing the dependence of the intrinsic dissipation with the applied stress

amplitude is called ”self-heating curve”. Establishing the self-heating curve with

smooth uncracked specimens enables later to approximate the intrinsic dissipation

occurring in the cracked specimen, outside the RCPZ. Indeed, by considering a nor-

mal stress amplitude applied to the cracked specimen, the field of the amplitude of

the Von-Mises equivalent stress is computed in the cracked material by using FEA

assuming a linear-elastic and isotropic behavior. Then, by assuming the hypothesis

of quasi-static processes and small perturbations, the field of the intrinsic dissipa-

tion is deduced in the cracked specimen outside the RCPZ by using the self-heating

curve. This method is detailed afterward in Section §2.4.2.

For the cyclic plasticity dissipated into heat in the RCPZ, q, a direct experimental

method is used to estimate this heat source. It consists in measuring the increase

of temperature occurring at the crack tip during fatigue crack growth tests, and

then estimating the associated heat source, q, by using a specific method based on

the linearity of the heat diffusion equation. More about this method is explained in

Section §2.4.3.

It should be noted that after estimating the heat sources, the temperature field

generated by each heat source, is numerically computed, by FEA, by using the lin-

earity of the heat diffusion equation (Equation (2.6)). This step could have been

directly done by infrared measurements, but a sub-sampling factor (1/5) associated

with the frequency acquisition (25Hz) of the infrared camera used in this investiga-

tion, was used for optimizing the recording of infrared measurements during fatigue

tests conducted at loading frequencies, f ≈ 100Hz. This is not high enough to

measure the thermoelastic effect. Moreover, the optical resolution of the infrared

camera is not accurate enough to precisely measure the distribution of the temper-

ature field inside the RCPZ, so this temperature field is computed after quantifying

its associated heat source, q, occurring in the RCPZ.

Before presenting the estimations of the heat sources and the computation of

the associated temperature fields, the material and the geometry of the cracked

specimens used in this work are presented in the next section.

2.3 Material and geometry of the specimens

The cracked specimens used in this work are center-cracked tensile (CCT) plates,

made of C40 steel which is a medium carbon steel with the physical properties given

in Tables 2.1 and 2.2.
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E(GPa) ν σy(MPa) σcyc.y (MPa) Rm(MPa) A(%) ρ(kg.m−3)

210 0.3 340 200 600 16 7568

Table 2.1: Mechanical properties of C40 steel.

where E is the Young’s modulus, ν is the Poisson’s ratio, σy is the yield stress under

quasi-static monotonic loading, σcyc.y is the cyclic yield stress, Rm is the ultimate

tensile strength, A is the material elongation after fracture, and ρ is the material

density.

α(K−1) k(W.K−1.m−1) c(J.K−1.kg−1)

1.2× 10−5 52 460

Table 2.2: Thermal properties of C40 steel.

where α is the thermal expansion coefficient, k is the thermal conductivity coefficient,

and c is the specific heat capacity.

The CCT specimens are designed with a rectangular thin-flat geometry according

to fatigue test execution requirements of the ASTM Standard E647, [ASTM-E647,

2013]. The geometry is given in Figure 2.4. The specimens were cut in a way that the

central notch, machined by electro-erosion, is perpendicular to the rolling direction.

Figure 2.4: Geometry of the CCT plate.

It is important to note that this geometry is originally used for estimating the

cyclic plastic dissipation into heat in the RCPZ, q, by carrying out fatigue crack
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growth tests. But, in order to be able to compare the thermal effects generated

by the three types of heat sources and their resulting consequences on the SIF, the

same geometry is considered in the calculation of the thermoelastic source, sthe, and

the estimation of the intrinsic dissipation due to microplasticity, d1.

2.4 Quantification of the heat sources and com-

putation of the associated temperature fields

2.4.1 The thermoelastic source

As mentioned in Section §2.2, the thermoelastic source is numerically computed

from the trace of the stress tensor calculated in the cracked material. Before develop-

ing the calculation enabling to establish the relationship between the thermoelastic

source and the trace of the stress tensor, an emphasis is hereinafter made on the

assumptions defining the calculation framework.

The thickness of the CCT specimen (Figure 2.4) is very small compared to its

length and width. Moreover, during fatigue tests, since the CCT specimen respects

ASTM standard requirements, it is reasonable to assume that the load is uniformly

applied at its upper boundary by forces acting parallel to its plane and uniformly

distributed through the thickness. Having considered these conditions, the hypoth-

esis of plane stresses is adopted in order to simplify the problem and reduce the

calculation time.

Furthermore, due to the symmetries of the CCT specimen geometry (Figure 2.4),

a two-dimensional model of one-fourth of the specimen is considered. The geometry

of this quarter model is presented in Figure 2.5.
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Figure 2.5: Geometry of the quarter model of the CCT plate.

As said before, the thermoelastic source contribution to thermal effects accounts

for the power of the thermoelastic coupling. It is defined by the following equation:

sthe(x, y, t) = T (x, y, t).
∂ ¯̄σ(x, y, t)

∂T
: ˙̄̄ε(x, y, t), (2.7)

where ¯̄σ is the second order stress tensor, and ¯̄ε is the second order strain tensor.

The development of this equation is based on the introduction of the two-

dimensional constitutive equation of thermoelasticity written by assuming linear

responses and isotropy in both the deformation and dilatation phenomena of the

material:

¯̄σ(x, y, t) =
¯̄̄̄
C :

[
¯̄ε(x, y, t)− α.(T (x, y, t)− T0).¯̄1

]
, (2.8)

where
¯̄̄̄
C is the fourth order stiffness tensor, α is the thermal coefficient, T0 is the

reference temperature, and ¯̄1 is the second order identity tensor.

The derivative of the stress with respect to the temperature gives :

∂ ¯̄σ(x, y, t)

∂T
= −α. ¯̄̄̄C : ¯̄1. (2.9)

To simplify the development of Equation (2.7), it is assumed that the temperature

variation, T − T0, is small with respect to T0 (i.e. T ≈ T0). This leads to write the

strain tensor rate as follows:

¯̄σ(x, y, t) =
¯̄̄̄
C : ¯̄ε(x, y, t), (2.10)

⇒ ˙̄̄ε(x, y, t) =
¯̄̄̄
C−1 : ˙̄̄σ(x, y, t). (2.11)
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As a result, the thermoelastic source becomes:

sthe(x, y, t) = −α.T0.
¯̄̄̄
C : ¯̄1 :

¯̄̄̄
C−1 : ˙̄̄σ(x, y, t), (2.12)

which can finally be written as:

sthe(x, y, t) = −α.T0.
∂¯̄1 : ¯̄σ(x, y, t)

∂t
= −α.T0.tr( ˙̄̄σ(x, y, t)), (2.13)

with tr( ˙̄̄σ) is the time derivative of the stress tensor trace resulting from the me-

chanical response in the material.

During fatigue tests, the load applied at the top of the CCT plate is sinusoidal.

Therefore, the stress response in the CCT plate is also sinusoidal and can be ex-

pressed as: ¯̄σ(x, y, t) = ¯̄σa(x, y). sin(2πft) + ¯̄σm(x, y) where ¯̄σa is the resulting stress

tensor amplitude, and ¯̄σm(x, y) is the resulting mean stress tensor. Equation (2.13)

can then be developed as:

sthe(x, y, t) = −α.T0.tr( ˙̄̄σ(x, y, t)) (2.14)

= −2π.f.α.T0.tr(¯̄σa(x, y)). cos(2πft) (2.15)

⇒ sthe(x, y, t) = 2π.f.α.T0.tr(¯̄σa(x, y)). sin(2πft− π

2
). (2.16)

The transition from Equation (2.14) to Equation (2.15) is done by the derivation

over time of the stress tensor response. It can therefore be seen that the mean stress

disappears after this time-derivation since the applied mean stress is constant over

time. As a consequence, it is important to note that a constant applied mean stress

has no effect on the thermoelastic source.

In a more generic format, Equation (2.16) of the thermoelastic source can finally

be written as:

sthe(x, y, t) = sathe(x, y). sin(2πft− π

2
), (2.17)

with:

sathe(x, y) = 2πf.α.T0.tr(¯̄σa(x, y)). (2.18)

Thus, by computing the trace of the stress amplitude response, tr(¯̄σa), due to the

mechanical loading applied to the CCT plate, the field of the thermoelastic source

amplitude, sathe, can be computed. FEA is used for this purpose.

An example of loading conditions is considered here in order to highlight the
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numerical calculations. It concerns the conditions of a real loading applied during

fatigue crack growth tests which allowed to estimate the heat source q, namely: a

crack length a = 31.3mm, a loading frequency f = 98.6Hz, an applied SIF range

∆KI = 26MPa.
√
m, which is equivalent to an applied normal stress amplitude

∆σ
2

= 44.6MPa according to Equation 1.4, and a reference temperature T0 = 20°C.

Figure 2.6 illustrates the applied loading and the boundary conditions of sym-

metries considered in the FEA.

Figure 2.6: Schematic sketch showing the boundary conditions of symmetries and

the load applied to the quarter model of the CCT specimen.

It should be noted that the FEA is done within the scope of the linear elasticity

by considering a homogeneous isotropic material behavior as well as a stationary

crack.

Figure 2.7 depicts the calculation of the trace of the stress tensor amplitude,

tr(¯̄σa), computed in the quarter model of the CCT specimen. On the left of this

figure, a zoom near the crack tip shows the field map of tr(¯̄σa). On the right, the

evolution of tr(¯̄σa) along the cracked axis (x axis of Figure 2.6) is plotted.
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Figure 2.7: Trace field of the stress tensor amplitude, tr(¯̄σa), computed with the

loading configuration: a = 31.3mm, and ∆KI = 26MPa.
√
m.

Therefore, from the trace of the stress tensor amplitude, tr(¯̄σa), the amplitude

of the thermoelastic source, sathe, is computed according to Equation (2.18). Figure

2.8 illustrates the field map of the thermoelastic source amplitude as well as its

evolution along x axis.

Figure 2.8: Field of the thermoelastic source amplitude, sathe, computed with the

loading configuration: a = 31.3mm, f = 98.6Hz, ∆KI = 26MPa.
√
m, and T0 =

20°C.

As it can be observed in Figure 2.8, the thermoelastic source amplitude, sathe, is

strongly heterogeneous, and reaches a peak at the crack tip. This originates from

the singularity of the trace of the stress tensor amplitude response occurring in the
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same region (Figure 2.7) since the crack-stress fields are singular at the crack tip in

linear-elasticity.

Thus, the thermoelastic source is fully defined. It should be noted that it has a

phase shift of π
2

with respect to the mechanical response in the material (Equation

(2.17)).

Now, in order to compute the resulting thermoelastic temperature field, a thermal

problem needs to be defined. First, it is assumed that the computed two-dimensional

thermoelastic source is representative of what happens throughout the CCT spec-

imen thickness since it results from the stress tensor which is calculated under the

assumption of plane stresses. In addition, the resulting thermoelastic temperature

field is also supposed to be homogeneous over the thickness. This last assumption

can be verified by calculating the Biot number which has to be small compared with

unity. Indeed, the Biot number is defined by Bi = h.lc
k

, where h is the convection

coefficient, lc is a characteristic length taken equal to the CCT specimen thickness,

and k is the material thermal conductivity. By considering the following values:

h = 10W.m−2.K−1 (typical value for natural convection in air), lc = 4mm and

k = 52W.m−1.K−1, the Biot number is then Bi = 7.7× 10−4 << 1. It can therefore

be considered that the temperature is homogeneous over the plate thickness.

Having considered these assumptions, the thermal problem enabling to calculate

the thermoelastic temperature can be modeled by the following two-dimensional

heat diffusion problem:
ρ.c.θ̇the − k.(∂

2θthe
∂x2

+ ∂2θthe
∂y2

) + 2h
e
.θthe = sthe(x, y, t),

θthe(x, y, t = 0) = 0

k.∂θthe
∂x
|x=±W = h.θthe(x = ±W, y, t)

k.∂θthe
∂y
|y=±L = h.θthe(x, y = ±L, t)

(2.19)

where θthe = Tthe − T0 is the thermoelastic temperature variation, T0 is the ini-

tial condition supposed to be homogeneous in the specimen and taken equal to the

surrounding temperature (T0 = 20°C). The left-hand term is obtained by averag-

ing, over the CCT plate thickness, the temperature in the left-hand term of the

volume heat diffusion equation (Equation (2.4)). The resulting term, 2h
e
.θthe, rep-

resents the heat exchange by convection with air which occurs on the upper and

lower faces of the CCT specimen ([Chrysochoos and Louche, 2000]). Besides, the

material density, ρ, the specific heat, c, and the thermal conductivity coefficient,

k, are material constants independent from the internal state. Natural convection
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in air is considered as a thermal boundary condition applied around the specimen

(with h = 10W.m−2.K−1). Figure 2.9 illustrates the boundary conditions considered

in the quarter model of the CCT specimen for solving the thermal problem.

Figure 2.9: Schematic sketch showing the boundary conditions of the thermal prob-

lem.

Since the thermoelasic source is sinusoidal (Equation (2.17)), the solution of the

heat diffusion equation (2.19) is also sinusoidal. Then, θthe can be written as:

θthe(x, y, t) = θathe(x, y). sin(2πft+ ϕ(x, y)) (2.20)

where θathe is the amplitude of the thermoelastic temperature variation field and

ϕ denotes the phase shift between the thermoelastic temperature and the stress

response resulting from the applied mechanical loading. The computation of the

amplitude, θathe, and the phase, ϕ, is carried out by using complex numbers technique

for representing sinusoidal functions. This technique enabled to rearrange Equation

(2.19) in an easier format simplifying its resolution by FEA.

Furthermore, the magnitude of ϕ should be constant unless adiabatic conditions

are not met. This can be shown in Figure 2.10 where the phase shift is computed

and plotted along x axis. It can be observed that ϕ changes at the crack tip because

of important heat losses due to conduction and convection occurring in the same

region.
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Figure 2.10: (a) Evolution of ϕ along x axis. (b) Zoom near the crack tip region.

Figure 2.11 below shows the field of the thermoelastic temperature amplitude,

θathe, as well as its evolution along x axis. It can be seen that θathe is also singular

at the crack tip, which is a result of the singularity of the thermoelastic source

amplitude (Figure 2.8).

Figure 2.11: Amplitude of the thermoelastic temperature variation, θathe, computed

with the loading configuration: a = 31.3mm, f = 98.6Hz, ∆KI = 26MPa.
√
m,

and T0 = 20°C.

Having presented the numerical method of computing the thermoelastic source

and its resulting temperature field, the next section presents the experimental method

of estimating the intrinsic dissipation due to microplasticity, d1, and its associated
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temperature field in the CCT plate.

2.4.2 The intrinsic dissipation due to microplasticity

As explained before in Section §2.2, the intrinsic dissipation due to microplastic-

ity, d1, is linked to the amplitude of the normal stress applied to a smooth uncracked

specimen, through the self-heating curve. In the case of this problem which deals

with cracked specimens, the applied normal stress amplitude is not homogeneous in

the material because the stress state near the crack tip is heterogeneous and multi-

axial. Additionally, the intrinsic dissipation, d1, is due to microplasticity. Having

considered these two conditions, it is assumed that, in this case, the intrinsic dissipa-

tion, d1, is linked to the Von Mises equivalent stress and not to the amplitude of the

normal stress. Thus, by computing the field of the Von Mises equivalent stress, the

self-heating curve can be used to estimate the intrinsic dissipation, d1, in each point

(elementary volume) of the CCT specimen. Hereinafter, the emphasis is first made

on the method used for establishing the self-heating curve as a material intrinsic

property.

In order to obtain the C40-steel self-heating curve, self-heating fatigue tests are

carried out. They consist in applying load block series of cycles to a smooth un-

cracked specimen at room temperature with a constant normal stress amplitude,
∆σ
2

, and a constant load ratio, R = σmin
σmax

, as illustrated in Figure 2.12.

Figure 2.12: A schematic curve defining an applied loading block.
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The fatigue machine used in this work is a resonant testing machine (or Vi-

brophore, as shown in Figure 2.13) with a load cell of ±150kN . It has mechanical

grips fixing the specimen at the extremities. This is an advantage compared with

hydraulic grips used in servohydraulic testing machines which heat up because of

pressurized oil and may generate additional heating in the specimen during cyclic

loading. Therefore, by the use of mechanical grips, heating of the griped regions of

the specimen is neglected. It should also be mentioned that the central gauge zone

of the specimen is far enough from the gripping system of the vibrophore. More-

over, in Figure 2.13, the use of a temperature control sample enabled to measure

the reference temperature, T0.

Figure 2.13: Fatigue device used in this work.

The geometry of the smooth uncracked specimens, made of C40-steel, has been

designed to optimize the loading capacity of the vibrophore. It is based on a ’dog-

bone’ shape to get a uniform testing area enabling to sufficiently reach high stress
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levels. This enables to prevent failure in the gripped portion of the specimen. Figure

2.14 shows the geometry of the specimens used during self-heating fatigue tests.

Figure 2.14: Geometry of the unnotched specimens made of C40 steel and used

during self-heating fatigue tests.

During these tests, an infrared camera measures and records the temperature

evolution on the specimen surface. The camera model used in this experimental

investigation is FLIR SC7000 MWR. The measuring range of the camera has been

chosen between 5°C and 300°C, and the frequency acquisition and the integration

time are respectively 5Hz and 600µs. In order to enhance the temperature measure-

ments, the surface of the specimen was covered by a thin layer of mat black paint

used as a coating to increase the emissivity of the material surface and avoid reflec-

tions from the environment. Moreover, during the tests, the lens axis of the camera

is kept fixed and perpendicular to the specimen surface. The infrared camera image

resolution has been configured on 320× 256 pixels (1mm ≈ 5px) in order to observe

the whole heating central gauge area.

Regarding experimental conditions, the applied load block series are performed

in sinusoidal load-control with loading frequencies 83 ≤ f ≤ 94Hz, at a room

temperature around 20°C. Table 2.3 presents the conditions of the load blocks

applied during self-heating fatigue tests.
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Test R f ∆t N σmax σmin
∆σ
2

σm

ref. (Hz) (s) (cycles) (MPa) (MPa) (MPa) (MPa)

S010 0.1 93 215 19995 44.4 4.4 20 24.4

S011 0.1 93 206.4 19195 88.8 8.8 40 48.8

S012 0.1 92 2608.7 240000 133.3 13.3 60 73.3

S013 0.1 92 3728.26 343000 177.7 17.7 80 97.7

S014 0.1 91 3219.8 293000 200 20 90 110

S015 0.1 91 3483.5 317000 222.2 22.2 100 122.2

S016 0.1 90 3133.3 282000 244.4 24.4 110 134.4

S017 0.1 89 1977.5 176000 266.6 26.6 120 146.6

S018 0.1 89 2337 208000 288.8 28.8 130 158.8

S019 0.1 87 3448.3 300000 311.1 31.1 140 171.1

S040 0.4 93 2613 243000 66.6 26.6 20 46.6

S041 0.4 93 1125.8 104700 133.3 53.3 40 93.3

S042 0.4 93 860.2 80000 200 80 60 140

S043 0.4 92 934.8 86000 233.3 93.3 70 163.3

S044 0.4 92 1195.6 110000 266.6 106.6 80 186.6

S045 0.4 92 1608.7 148000 300 120 90 210

S046 0.4 92 2750 253000 316.6 126.6 95 221.66

S047 0.4 92 2478.2 228000 333.3 133.3 100 233.3

S048 0.4 91.5 1063.4 97300 366.6 146.6 110 256.6

S070 0.7 93 2236.5 208000 133.3 93.3 20 113.3

S071 0.7 94 638.3 60000 200 140 30 170

S072 0.7 93.6 1068.4 100000 233.3 163.3 35 198.3

S073 0.7 93 859.1 79900 266.6 186.6 40 226.6

S074 0.7 93 860.2 80000 300 210 45 255

S075 0.7 93 1258 117000 333.3 233.3 50 283.3

S076 0.7 92.3 1083.4 100000 366 256 55 311

S077 0.7 90 1777.8 160000 400 280 60 340

S078 0.7 88.7 958.3 85000 433.3 303.3 65 368.3

S079 0.7 87.7 1368.3 120000 466.6 326.6 70 396.6

S0710 0.7 87 1310.3 114000 500 350 75 425

S0711 0.7 85.6 1261.7 108000 533.3 373.3 80 453.3

S0712 0.7 83 576 47808 566.6 396.6 85 481.6

Table 2.3: Conditions of applied loading per block during self-heating fatigue tests.
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Determining the intrinsic dissipation, d1, directly from the temperature field mea-

sured by the infrared camera on the specimen surface, is an ill-posed inverse problem

that is complicated, nay impossible, to solve without information on the heat source

distribution ([Capatina and Stavre, 2000]). However, for thin-flat specimens, several

options may be proposed to simplify the problem.

Let Td be the temperature measured by the infrared camera on the reduced-

surface of the smooth uncracked specimen during self-heating fatigue tests. It is

generated by the intrinsic dissipation effect and is assumed to be uniformly dis-

tributed in the reduced-area of the specimen because the material is homogeneous

and the stress too. The link between Td and d1 is written according to the following

heat-diffusion equation:

ρ.c.
∂θd
∂t
− k.(∂

2θd
∂x2

+
∂2θd
∂y2

) + 2
h

e
.θd = d1, (2.21)

established within the same assumptions as those considered to write the thermal

problem with the thermoelastic source presented in the previous section. The quan-

tity, θd, denotes, Td − T0, and is the temperature variation due to the intrinsic

dissipation, d1, in the smooth uncracked specimen. In Equation (2.21), d1 is an

averaged volume power over one loading cycle.

According to [Chrysochoos et al., 2012], like stress and strain fields, it may be

supposed that, before localization onset, the distribution of the intrinsic dissipation

is uniform at any time within the specimen gauge part. This is consistent with a

classical view of homogeneous uniaxial tests. In such cases, the spectral solution

of the heat-diffusion equation (2.21) can be analytically determined using eigen-

functions of the Laplacian operator
(
∂2θd
∂x2

+ ∂2θd
∂y2

)
. For symmetric linear boundary

conditions and initial conditions corresponding to uniform temperature fields, the

spectral solution can then be well approximated by only considering the first eigen-

function. Then, the heat-diffusion equation (2.21) becomes an ordinary differential

equation and can be written as ([Chrysochoos and Louche, 2000]):

∂θd
∂t

+
θd
τ

=
d1

ρ.c
(2.22)

where θd is now the temperature variation measured at the center of the smooth

uncracked specimen gauge part, and τ is a time constant characterizing local heat

losses. Practically, θd identifies the mean temperature, of a small centered area,

measured by the infrared camera in the reduced-surface of the smooth uncracked

specimen. To avoid confusion, this mean temperature is hereinafter denoted by θ̄d.
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As mentioned before in Figure 2.1 at the end of Section §2.1.1, during each

applied loading block of self-heating fatigue tests, the intrinsic dissipation, d1, can

be assumed constant over time. It can then be quantified from Equation (2.22) in

the stabilized regime of temperature. As a result, d1 is estimated as follows:

d1 =
ρ.c

τ
.θ̄stad , (2.23)

where θ̄stad is identified as the mean temperature variation, measured in the stabilized

regime, of a small centered area in the reduced-surface of the smooth uncracked

specimen.

Figure 2.15 shows an example of the evolution of the mean temperature θ̄d over

time, experimentally measured by the infrared camera under the experimental con-

ditions of the self-heating fatigue test referenced by S019 in Table 2.3. It is spatially

averaged over the blue area with a size of 15 × 10mm (Figure 2.15). For this ex-

ample, τ = 285s and θ̄stad = 14.7°C. Therefore, according to Equation (2.23), d1 is

estimated to be equal to 179.56kWm−3 ± 0.855kWm−3. The uncertainty on this

estimation comes from the thermal noise of the camera (0.07°C). However, this

uncertainty remains very small compared with the value of d1.

Figure 2.15: Example of C40 steel self-heating measurement under the loading con-

ditions of the self-heating fatigue test S019 : ∆σ
2

= 140MPa, f = 87Hz, R = 0.1.

With the same method, the intrinsic dissipation, d1, is estimated for all the

applied self-heating fatigue tests, referenced by S0XY and listed in Table 2.3, under

three applied load ratios: R = 0.1, R = 0.4 and R = 0.7. This enabled to plot
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the self-heating curves of C40-steel, depicted in Figure 2.16, which show a non-

linear relationship between the intrinsic dissipation, d1, and the applied normal

stress amplitude, ∆σ
2

. In these self-heating curves, each point corresponds to a

configuration of applied loading blocks S0XY .

It must be pointed out that the points plotted in the self-heating curves are

assessed at f = 100Hz by using the linear dependence between the intrinsic dissi-

pation, d1, and the loading frequency, f . In other words, if d1 is first assessed with

a loading frequency fa, then with a loading frequency f b, d1 must be multiplied by

f b/fa, [Berthel et al., 2007]. This has been done since the real loading frequency is

not exactly the same at each stress amplitude, and that because of the change in

dissipation (specimen self-heating).

Figure 2.16: Self-heating curves of C40 steel plotted in: (a) linear scale, and (b)

logarithmic scale.

From Figure 2.16, it can be seen that for a fixed stress amplitude, the higher the

R-ratio, the higher the intrinsic dissipation d1.

Thus, for a given load ratio R and a stress amplitude ∆σ
2

, the intrinsic dissipation

d1 can be identified from the corresponding self-heating curve.

As said earlier in this section, estimating the intrinsic dissipation in a cracked

material is done through the calculation of the Von Mises equivalent stress. For

this purpose, the two-dimensional quarter model of the CCT specimen as well as its

boundary conditions, presented in the previous section for calculating the thermoe-

lastic source, are considered here for computing the field of the Von Mises equivalent

stress resulting from an applied normal stress amplitude.
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The Von Mises equivalent stress, denoted by σeq, is defined as follows:

σeq(x, y) =

√
3

2
.¯̄σd,a : ¯̄σd,a(x, y), (2.24)

where ¯̄σd,a(x, y) is the deviatoric part of the stress tensor defined by:

¯̄σd,a(x, y) = ¯̄σa(x, y)− 1

3
.Tr(¯̄σa(x, y)).¯̄1, (2.25)

where ¯̄σa is the amplitude of the stress tensor response in the cracked material

subjected to a normal stress amplitude ∆σ
2

.

The example of loading configuration considered in the previous section is reused

here to highlight the numerical calculation by FEA of the field of the Von Mises

equivalent stress. It concerns the quarter model of the CCT specimen with a crack

length a = 31.3mm, subjected to an applied SIF range ∆KI = 26MPa.
√
m equiva-

lent to an applied normal stress amplitude ∆σ
2

= 44.6MPa at its upper edge, and a

load ratio R = 0.1. Figure 2.17 depicts the resulting field of the Von Mises equivalent

stress.

Figure 2.17: Amplitude of the Von Mises equivalent stress, σeq, computed in the CCT

specimen with a = 31.3mm, under ∆KI = 26MPa.
√
m (i.e. ∆σ

2
= 44.6MPa), and

R = 0.1.

It can be seen in Figure 2.17 that the Von Mises equivalent stress field is singular

at the crack tip, but it should be noted that this singularity does not have a conse-

quence on the intrinsic dissipation due to microplasticity since it is estimated outside

the RCPZ where it is supposed to have a major role. Indeed, in the RCPZ the ma-
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jor role is supposed to be played by cyclic plasticity. In this calculation model, the

RCPZ is defined with the criterion σeq ≥ σcyc.y , where σcyc.y = 200MPa is the cyclic

yield stress of C40-steel. Close to the RCPZ, the values of the computed Von Mises

equivalent stress are higher than the values of the stress amplitude plotted in the

self-heating curves (Figure 2.16). It should be known that during self-heating fatigue

tests, it was not possible to apply a stress amplitude higher than that plotted in Fig-

ure 2.16 because of the problem of sliding, occurring at high applied loads, between

the specimen and the grips of the fatigue machine. That is why, the self-heating

curves are extrapolated till ∆σ
2

= 200MPa.

Figures 2.18, 2.19, and 2.20, below, show the polynomial extrapolation of the

three self-heating curves separately plotted, for the three applied load ratios, R =

0.1, R = 0.4, and R = 0.7, respectively. It can be seen that these extrapolations

remain rough and can be used as first approximations to provide an order of mag-

nitude estimate of the intrinsic dissipation due to microplasticity, d1, close to the

RCPZ.

Figure 2.18: (a) Experimental self-heating curve at R = 0.1, (b) extrapolation of

the self-heating curve till ∆σ
2

= 200MPa.
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Figure 2.19: (a) Experimental self-heating curve at R = 0.4, (b) extrapolation of

the self-heating curve till ∆σ
2

= 200MPa.

Figure 2.20: (a) Experimental self-heating curve at R = 0.7, (b) extrapolation of

the self-heating curve till ∆σ
2

= 200MPa.

Therefore, these self-heating curves can be used in order to estimate the field of

the intrinsic dissipation due to microplasticity in the CCT specimen. Indeed, for

each point in the CCT specimen, outside the RCPZ, the value of the computed Von

Mises equivalent stress (Figure 2.17) is read on the self-heating curve (on the axis

of stress amplitudes), and thus, the corresponding value of the intrinsic dissipation

is estimated.

It must be pointed out that the load ratio near the crack tip of a cracked material

is not the same as the applied one. Indeed, by considering for example an elastic

perfectly plastic material, let σcyc.y be the cyclic yield stress of the material, according

to the cyclic plasticity behavior explained by [Rice, 1967] and previously presented in
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Figure 1.7 (Section §1.1 in Chapter I), the load ratio inside the RCPZ is: R = σmin
σmax

=
−σcyc.y

σcyc.y
= −1 no matter what the applied R-ratio is. Therefore, for an elastic-plastic

material, the R-ratio in the region ahead of the crack tip may differ from the applied

one. However, since the conditions of the LEFM are fulfilled, in particular the small

scale yielding condition, the R-ratio outside the RCPZ can be assumed as same as

the applied load ratio. Thus, the intrinsic dissipation due to microplasticity, d1, can

be estimated outside the RCPZ with a constant load ratio equal to the applied one.

For the example of loading configuration considered before, let R = 0.1 be the

applied load ratio and f = 100Hz be the loading frequency. Figure 2.21 depicts the

field of the intrinsic dissipation, d1, in the quarter model of the CCT specimen.

Figure 2.21: Field of the intrinsic dissipation, d1, with the loading configuration

a = 31.3mm, ∆KI = 26MPa.
√
m, R = 0.1, and f = 100Hz. (a) Zoom near the

crack tip region, (b) evolution of d1 along x axis, and (c) zoom near the RCPZ.
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It should be noted that the estimation of d1 is assumed to be valid outside the

RCPZ modeled by a disc shape with a diameter, 2r∗p = 1.34mm in this loading

case, according to Irwin’s model (Equation (1.9) in Chapter I). Actually, it is the

same model used to represent the RCPZ in the quantification of the two other heat

sources, sthe and q, and this also simplifies the comparison of the thermal effects

generated by the three heat sources.

Now, in order to compute the temperature variation field, θd, generated in the

CCT specimen by the effect of the intrinsic dissipation due to microplasticity, the

associated thermal problem (Equation (2.21)) is solved in transient regime by FEA

with the same assumptions and boundary conditions used to write the thermal

problem associated with the thermoelastic source (cf. previous section).

Within the example of loading configuration considered in the numerical calcu-

lations above, let ∆t = 258.4s be the duration of the cyclic loading. It actually

corresponds to a real duration of a fatigue crack growth test carried out for esti-

mating the heat source q. Figure 2.22, depicts the temperature variation field, θd,

computed at the end of cyclic loading (at t = 258.4s).

Figure 2.22: Field of the temperature variation, θd, generated by the intrinsic dissipa-

tion, d1, at t = 258.4 of the fatigue test with the loading configuration: a = 31.3mm,

∆KI = 26MPa.
√
m, R = 0.1, and f = 100Hz.

In the following, the estimation of the cyclic plasticity dissipated into heat in

the RCPZ, q, as well as the computation of its associated temperature field are

discussed.
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2.4.3 The cyclic plasticity dissipated into heat in the RCPZ

The cyclic plasticity dissipated into heat in the RCPZ, q, is estimated by using the

method proposed by [Ranc et al., 2014]. It is based on infrared measurements of the

temperature field generated around the crack tip during fatigue crack growth tests

carried out with the CCT specimen previously illustrated in Figure 2.4. The same

fatigue testing machine (vibrophore) and infrared camera, presented in the previous

section, are used in this experimental investigation. It should be known that the

fatigue crack growth tests were carried out in this work within the framework of

the LEFM, that is why the following conditions were considered during the fatigue

crack growth tests:

− The RCPZ is modeled by a disc whose radius, r∗p, is estimated under the plane

stress hypothesis (cf. Equation (1.9) in Chapter I). During the tests, r∗p should

be small compared with the crack ligament size.

− The amplitude of the nominal applied stress over the crack ligament does not

exceed the cyclic yield stress of the material, σcycy = 200MPa.

− The applied SIF range, ∆KI , is assumed to be constant during an applied

fatigue load block. Actually, the initial applied SIF range, ∆KIi , changes as

the fatigue crack propagates, and the duration of each applied fatigue load

block is defined so that the final applied SIF range, ∆KIf , does not exceed 7%

of ∆KIi . With this criterion ([ASTM-E647, 2013]), it can be assumed that

∆KI remains constant during one applied fatigue load block.

− To apply a new load block, the applied maximum SIF, KImax , must be greater

than the SIF range ∆KIf applied in the last block. This enables to avoid an

underload effect on the fatigue crack.

− At the end of an applied fatigue load block, a new RCPZ must be created. In

other words, the crack must be propagated outside the RCPZ created during

the last block so that the cyclic plasticity dissipated into heat, q, generated

during the current load block, would not be affected by that of the previous

load block.

It should be noted that the CCT specimens were pre-cracked under load-controlled

cyclic loading with a load ratio R close to zero (R = 0.01) in order to initiate a nat-

ural fatigue crack of about 2mm at the tips of the initial central notch. Moreover,

a high resolution optical camera was used to measure the initial and final lengths
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of the crack, ai and af , respectively. The lengths of the two cracks propagating

from the central notch of the CCT specimen are close (the maximum difference is

less than 0.5mm), thus only one crack side is observed during this experimental

investigation. It should be mentioned that during fatigue testing, one side of the

CCT specimen is facing the optical camera, and the other side is facing the infrared

camera.

In Table 2.4, all the fatigue crack growth tests carried out in this work are

presented. The crack size, a, denotes the half-length measured from the center of

the hole of the CCT specimen (as illustrated before in Figure 2.4).

Test R f ∆t ai ∆Ki af ∆Kf
∆Kf−∆Ki

∆Ki
2r∗p

ref. (Hz) (s) (mm) (MPa.
√
m) (mm) (MPa.

√
m) (%) (mm)

T011 0.1 100.1 974 14.8 13 16.8 13.85 6.5 0.32

T012 0.1 100 405 16.8 16 18.4 16.7 4.3 0.50

T013 0.1 99.5 211 18.4 20 20.8 21.3 6.5 0.79

T014 0.1 99 313 23.8 23 27.1 24.5 6.5 1.05

T015 0.1 98.6 258.4 27.1 26 31.3 28 7.3 1.34

F016 0.1 98.2 169 29.8 30 35.8 32 6.6 1.79

F017 0.1 97.7 184.2 35.8 32 41 34.2 6.8 2.02

F018 0.1 97 179.3 41 34 47.4 36.5 7.3 2.28

T041 0.4 99.6 261 21.2 13 22.6 13.4 3 0.32

T042 0.4 99.4 523.1 22.6 16 25.7 17 6.2 0.50

F043 0.4 98.7 344.4 25.7 20 29.3 21.3 6.5 0.79

F044 0.4 98.4 170.6 29.3 23 31.3 23.7 3 1.05

F045 0.4 97.6 237.6 31.3 26 36 27.8 6.9 1.34

F046 0.4 97 82.4 36 30 41.8 32.3 7.6 1.79

T061 0.6 98.4 614.5 17.7 13 19.3 13.5 3.8 0.32

F062 0.6 98 673.4 19.3 14.5 22.7 15.7 8.2 0.40

F063 0.6 97.7 563.9 22.7 16 26.1 17.1 6.8 0.50

Table 2.4: Applied loading conditions per block during fatigue crack growth tests.

The tests referenced by T0XY in Table 2.4 satisfy the conditions of the LEFM

presented above, while the tests referenced by F0XY do not verify the small scale

yielding condition as the crack ligament yields during these tests. The infrared data

resulting from the tests F0XY are not used in the calculations presented later in

this thesis.
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Before explaining the way the heat source, q, is estimated, it is important to

present the following assumptions considered for this aim:

– The cyclic plasticity, resulting from the cyclic plastic strain occurring in the

RCPZ, is mostly converted into heat. About 90% of the plastic energy is dissi-

pated into heat for metals according to [Farren and Taylor, 1925] and [Taylor

and Quinney, 1934]. Moreover, it is positive and assumed to be constant

during one applied load block.

– During fatigue crack growth tests, between the beginning and the end of one

applied load block, the loading frequency changes of about 0.5Hz. It is as-

sumed that this change in the loading frequency is negligible and has no effect

on the heat source q during one applied load block.

– In the numerical calculations presented afterward, the distribution of the heat

source q in the RCPZ is modeled by a spot positioned at the center of the

RCPZ. This assumption was verified in [Ranc et al., 2011] where a two-

dimensional calculation is presented to compare the temperature variation

fields generated by: (i) a spot heat source centered in the RCPZ, and (ii) a

uniformly distributed heat source in the RCPZ with a disc shape. They found

that outside the plastic zone, the temperatures computed with these two as-

sumptions are very close: for the size of the RCPZ, 2r∗p = 4µm, the relative

difference is about 0.03%. But inside the RCPZ the temperature can be very

differently distributed. Therefore, since this work is focused on the effect of

the temperature gradient on the stress state outside the RCPZ in order to

calculate its consequence on the SIF, the assumption of a spot heat source, q,

is considered.

– During the applied load blocks of fatigue crack growth tests, the heat source

q is assumed to be stationary for solving the thermal problem in the follow-

ing. That can be verified by calculating the Peclet number which compares

the characteristic time of the crack growth rate with the characteristic time

of thermal diffusion. The Peclet number is defined as : Pe = L.v
D

with L

is a characteristic length of the crack, v is the crack growth rate and D is

the thermal diffusivity. For the typical values measured during fatigue crack

growth tests: L = 20mm and v = 0.01mm.s−1, and for the typical value of the

thermal diffusivity in medium carbon steels: D = 1.5×10−5m2.s−1, the Peclet

number value is Pe = 2× 10−3, which is very small compared with unity. As

a result, the crack front moving is slow and the heat source q has enough time
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to diffuse during one applied load block. The heat source q could therefore be

considered as stationary.

Within the scope of these assumptions and by using the two-dimensional model

of the thermal problem written in Section §2.4.1, the temperature variation field, θq,

related to the heat source q must conform to the following heat-diffusion equation:

ρ.c.θ̇q − k.(
∂2θq
∂x2

+
∂2θq
∂y2

) + 2
h

e
.θq = q.δ(0), (2.26)

with the same thermal boundary conditions as those presented in the thermal prob-

lem with the thermoelastic source in Section §2.4.1.

In this equation, q represents the dissipated power per unit length of the crack

front. By using the linearity of this equation, the heat source q can be estimated as

follows:

q =
∆θ̄expq (tf )

∆θ̄q1(tf − ti)
q1, (2.27)

where q1 is the unit heat source (q1 = 1W.m−1), ∆θ̄expq (tf ) is the total increase,

between the beginning and the end of cyclic loading, of the temperature variation

θexpq measured by the infrared camera and spatially averaged over a small area named

Area A (1.6× 1.6mm) located ahead of the crack tip as depicted in Figure 2.23.

Figure 2.23: (a) Infrared measurement of θexpq at the end of the applied load block

of fatigue test T015. (b) Evolution of θexpq and θ̄expq , spatially averaged in Area A,

against time during the whole applied loading block.
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It must be noted that the temperature measured in Area A is considered due only

to the heat source q. Indeed, it is true that in reality the overall sources are involved

in this measurement area, but since the thermoelastic coupling fluctuates over time

and the intrinsic dissipation due to microplasticity generates a small thermal effect,

it is reasonable to relate the temperature increase measured near the crack tip, to

the cyclic plasticity dissipated into heat in the RCPZ, q.

In Equation (2.27), ∆θ̄q1(tf−ti) is the total increase of the temperature variation

calculated by FEA (Equation (2.26)) and spatially averaged in the finite element

mesh over the same Area A, for q = 1W.m−1, and at t = tf − ti which is the

duration of the applied load block between the initial and the final time of cyclic

loading, ti and tf , respectively.

The temperature field mapping plotted on the left of Figure 2.23 corresponds

to the end of the applied load block (t = tf ). As it can be observed, a hetero-

geneous temperature field is generated around the crack tip. It is assumed that

this heterogeneous temperature field is due to the heat generated by the dissipa-

tion of cyclic plasticity in the RCPZ. The temperature oscillations appearing in the

red curve plotted on the right in Figure 2.23 are due to the thermoelastic effect.

The average temperature variation, θ̄expq , is due to the cyclic plastic dissipation into

heat, q, and is plotted by averaging the oscillating curve over a time series of 20s.

For this example of applied load block: tf − ti = 258.4s, ∆θ̄expq (tf ) = 0.97°C, and

∆θ̄q1(tf − ti) = 0.015°C. Thus, q = 64.6W.m−1 = 0.65J.m−1.cycle−1, according to

Equation (2.27).

As it can be seen, the estimation of the heat source, q, depends on the infrared

measurements and may depend on the zone of measurements Area A. In the follow-

ing, the effect of the thermal noise coming from the infrared camera as well as the

effect of the position and size of the zone of measurements on the estimation of the

heat source q are checked.

� Effect of the thermal noise of the infrared camera

To quantify the thermal noise of the infrared camera, let θ̂(t0) be the temperature

variation averaged over Area A at t = t0 where t0 is an arbitrary time chosen before

starting cyclic loading (t0 < ti). The standard deviation associated with the infrared

measurements can be defined as:

δIR =

√√√√√∑j
(
θj(t0)− θ̂(t0)

)2

n
, (2.28)

where j is the index of pixels in Area A, n is the total number of pixels in Area
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A, and θj(t0) is the temperature variation measured at the pixel j at t = t0. For

the example of infrared measurements given above in Figure 2.23, δIR = 0.069°C.

The effect on the estimation of q is quantified by calculating the associated standard

deviation:

δq =
δIR

∆θ̄q1(tf ti)
q1, (2.29)

which leads to δq = 0.046J.m−1.cycle−1. It is very small compared with the value

of the cyclic plastic dissipation into heat q (q = 0.65J.m−1.cycle−1). Therefore, the

effect of the infrared camera noise on the estimation of the heat source q can be

neglected.

� Effect of the size and the position of the measurement area

As said above, the infrared measurements are spatially averaged over a small

area ahead of the crack tip. The position of this area is roughly chosen outside the

RCPZ because the calculation of ∆θ̄q1 is assumed to be correct outside the RCPZ

since the associated FEA is singular inside (problem of a spot heat source). For this

purpose, the measurement area is placed ahead of the crack tip at a distance greater

than the RCPZ size, but as close as possible in order to detect the temperature

increase generated by the heat source q.

In order to check the sensitivity related to the location and the size of this mea-

surement area, three area configurations are studied. Let Area A0 be the reference

area positioned at 4mm from the crack tip with a size of 1.6 × 1.6mm. Let Area

A1 be the double in size of Area A0, that being 3.2 × 3.2mm, positioned as same

as Area A0, and finally let Area A2 be the same in size as Area A0, but positioned

at a lower distance of 2mm from the crack-tip. For instance, under the conditions

of the applied load block T013 (a = 20.8mm, ∆KI = 20MPa.
√
m, R = 0.1, and

f = 99.5Hz), the heat sources q estimated from the infrared measurements in these

three areas, with the same method presented above, are reported in the following

table:

Area ref. ∆θ̄expq (°C) ∆θ̄q1(°C) q(J.m−1.cycle−1)

A0 0.39 0.012 0.326

A1 0.40 0.012 0.335

A2 0.45 0.014 0.323

Table 2.5: Effect of the infrared measurement area on the estimation of the heat

source q.
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As it can be seen, the quantification of the heat source q obtained with the three

areas A0, A1, and A2, are very close. Therefore, for all of the fatigue crack growth

tests T0XY satisfying the conditions of the LEFM, the estimation of the heat source

q is done with the same dimensions and location of the zone of measurements ’Area

A’ previously defined in Figure 2.23.

The results of the estimation of the heat source q for all the fatigue crack growth

tests T0XY are summarized in Table 2.6, where δq is the associated standard devi-

ation originating from the infrared camera noise (Equation (2.29)).

Test R ∆KIi f q q δq

ref. (MPa.
√
m) (Hz) (W.m−1) (J.m−1.cycle−1) (J.m−1.cycle−1)

T011 0.1 13 100.1 23.023 0.23 0.035

T012 0.1 16 100 17 0.17 0.042

T013 0.1 20 99.5 31.84 0.32 0.044

T014 0.1 23 99 42.57 0.43 0.044

T015 0.1 26 98.6 64.09 0.65 0.039

T041 0.4 13 99.6 22.908 0.23 0.054

T042 0.4 16 99.4 26.838 0.27 0.041

T061 0.6 13 98.4 24.6 0.25 0.035

Table 2.6: Estimation of the heat source, q, generated during applied load blocks

of fatigue crack growth tests T0XY (cf. Table 2.4), and its associated standard

deviation, δq (q ± δq).

In order to highlight the variation of the cyclic plastic dissipation into heat, q, in

relation with the applied load controlled by the SIF range, ∆KI , the curve of Figure

2.24 plots the evolution of the estimated heat sources, q, against the applied SIF

ranges, ∆KIi , for the three load ratios applied in this experimental investigation.

64



2.4. Quantification of the heat sources and computation of the
associated temperature fields

Figure 2.24: Evolution of the cyclic plastic dissipation into heat, q, against the

applied SIF range ∆KIi and load ratio R.

It can be observed that for the applied SIF range ∆KIi = 13MPa.
√
m, the three

values of the heat sources q, obtained for the three applied R-ratios, coincide very

closely. For R = 0.1 and ∆KIi ∈ [16, 26], the values of the heat source q increase and

are almost lined up. However, the value of the heat source q at ∆KIi = 13MPa.
√
m

seems startling and isolated, this may come from the effect of fracture behavior

since the value of the corresponding applied ∆KIi is close to the threshold value

∆Kth (around 10MPa.
√
m for mild steels, [Farahmand and Nikbin, 2008]). There-

fore, a change of the fracture mode may occur and affect the heat produced at the

crack tip. Moreover, it is known that at near-threshold SIF there is a strong in-

fluence of microstructure which can be related to the change of the fracture mode,

[Ritchie, 1979], this may therefore produce an extra self-heating due to microplas-

ticity which would be converted into heat and then produce an additional heating

to that resulting from the crack tip cyclic plasticity, hence the slight high value of

q at ∆KIi = 13MPa.
√
m compared with that estimated at ∆KIi = 16MPa.

√
m.

Another question may raise upon this point concerns the crack length during this

fatigue crack growth test (test T011 with ∆KIi = 13MPa.
√
m) which is short since

this test corresponds to the configuration when the initial crack just emanates from

the central notch of the CCT specimen, so maybe the crack is still not long enough

and that may affect the cyclic plastic dissipation into heat in the RCPZ.

For ∆KIi ∈ [16, 26MPa.
√
m] and R = 0.1, Figure 2.25 shows that the empirical

data of the heat source q depending on the applied ∆KIi fit the following fourth

power law: q = 1E−6.∆K4
I +0.105 with a correlation coefficient of 0.998. This agrees

with the results found in the literature assuming that in the regime of the Paris law,
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for many metallic materials, the plastic work spent during each cycle in the RCPZ

has a ∆K4 dependence ([Pippan and Stüwe, 1983] and [Klingbeil, 2003]).

Figure 2.25: Cyclic plastic dissipation q vs. ∆K4
Ii

for R = 0.1 with C40 steel.

The estimated heat sources q at R = 0.4 and R = 0.6 are not enough numerous

to investigate the ∆K4
I dependence at such load ratios. Actually, above the values

of ∆KIi plotted in Figure 2.24, the small scale yielding condition is not fulfilled as

the entire crack ligament of the CCT specimen yields. Thus, the hypothesis of the

LEFM are no longer valid to define an elastic solution of the SIF range, ∆KI .

After estimating the heat source q, the associated temperature variation field, θq,

can be computed by FEA. In fact, the temperature variation field, θexpq , measured by

the infrared camera is not accurate enough in the vicinity of the crack tip, because

the size of one pixel (about 200µm) is barely close to the size of the RCPZ (cf. Table

2.4), particularly when the applied SIF range is low.

For this reason, the two-dimensional model of the thermal problem associated

with the heat source q (Equation (2.26)) is numerically solved in transient regime

by FEA. The temperature variation field, θq, is then computed according to the

experimentally estimated heat source q.

For instance, by considering the loading configuration used in the two previ-

ous sections to compute the temperature variation fields, θthe, and θd, namely:

a = 31.3mm, ∆KI = 26MPa.
√
m, R = 0.1, and f = 98.6Hz, which actually cor-

responds to the configuration of the applied load block referenced by T015 (Table

2.4), the temperature variation field, θq, is computed with the associated dissipated

power per unit length of the crack front, q = 64.6W.m−1. Figure 2.26 depicts the

distribution of the temperature variation field, θq, computed at t = 258.4s which is
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the time of the end of cyclic loading.

Figure 2.26: Field of the temperature variation, θq, generated by the heat source,

q = 64.6W.m−1, and computed at t = 258.4s of the fatigue test T015: a = 31.3mm,

∆KI = 26MPa.
√
m, R = 0.1, and f = 98.6Hz.

In Figure 2.26, the peak of the temperature variation, θq, is reached at the crack

tip region because of singularity due to the spot heat source q applied at the center

of the disc modeling the RCPZ. Moreover, the computed values of θq are in a good

agreement with the experimental measurements of θexpq previously shown in Figure

2.23. This can be seen in Figure 2.27 which plots the two temperature variations, θq

(the numerical solution), and θexpq (obtained with infrared measurements), over the x

axis. It can then be concluded that the computed θq does give a good approximation

of what locally happens around the RCPZ.
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Figure 2.27: Evolution of the computed temperature variation, θq, and the measured

temperature variation, θexpq , along x axis.

2.5 Conclusion of Chapter II

By way of conclusion of this chapter, the three types of heat sources, generated in

a thin-flat CCT specimen and subjected to cyclic loading, are characterized based on

continuum thermodynamics, then the methodology for identifying each heat source

is presented. Their resulting temperature fields are separately computed by solving

a two-dimensional model of the heat diffusion problem. The linearity of the heat

diffusion equation is used for this purpose.

In the finite element calculations presented in this chapter, the same applied

loading configuration is considered: a quarter model of the CCT specimen made of

C40 steel with a crack-length of a = 31.3mm, subjected to an applied SIF range

∆KI = 26MPa.
√
m, with a load ratio R = 0.1 and a loading frequency f = 98.6Hz.

This configuration was considered to highlight the calculation methodology which

remains the same for all the applied loading of fatigue crack growth tests fulfilling

the conditions of the LEFM.

The thermoelastic source is numerically computed within the classical framework

of linear thermoelasticity. The resulting thermoelastic temperature amplitude is

singular at the crack tip, and this comes from the singularity of the linear-elastic

model used to solve the thermoelastic source amplitude.

The intrinsic dissipation is estimated in the CCT specimen outside the RCPZ by

first computing the Von Mises equivalent stress field and then using the self-heating
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curve associated with the applied load. One drawback of this method is that of

rough extrapolation of the self-heating curve in order to reach the amplitude of the

Von Mises equivalent stress near the RCPZ region. A solution can be proposed here

as a prospect to correct this problem, that of optimizing the geometry of the smooth

uncracked specimens, used during self-heating fatigue tests, in order to reach higher

applied stress amplitudes without the problem of sliding in the portions gripped

with the vibrophore.

The cyclic plasticity dissipated into heat in the RCPZ is estimated from infrared

measurements recorded during fatigue crack growth tests conducted at loading fre-

quencies f ≈ 100Hz. The obtained results agree with a known result found in the

literature ([Pippan and Stüwe, 1984] and [Klingbeil, 2003]), that of the fourth power

law linking the cyclic plastic dissipation into heat to the applied SIF range. For the

resulting computed temperature variation field, it is singular because the model of

heat diffusion equation uses a spot heat source. It should be noted that the problem

of singularity has not a major consequence since the focus afterward is on the SIF

elastic solution calculated outside the zone of singularity (the RCPZ).

Furthermore, as it can be seen in Figure 2.28, even low, the temperature varia-

tion field, θd, has the same order of magnitude as the temperature variation field, θq,

assumed generated by the heat source, q. One could notice that during the quan-

tification of the heat source q, the temperature variation field, θd, should have been

substracted from the temperature variaton measured near the crack tip in order to

properly obtain the temperature field associated with only the heat source, q. But

it should be reminded that the extrapolation of the heat source, d1, was rough, and

so does its associated temperature field, θd. That is why and for simplification, in

the following the temperature variation field, θq, is considered due to only the heat

source, q.
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Figure 2.28: Evolution of the temperature variation, θq(t = 258.4s), and the tem-

perature variation, θd(t = 258.4s), along x axis, with the loading configuration:

a = 31.3mm, ∆KI = 26MPa.
√
m, R = 0.1, and f = 98.6Hz.

70



Chapter 3

Thermomechanical analysis -

Effects of the heat sources on the

SIF

Contents

3.1 Techniques to solve the SIF solution in crack problems

involving thermal stresses . . . . . . . . . . . . . . . . . . 75

3.2 Methodology and assumptions for computing the ther-

mal corrections of the SIF . . . . . . . . . . . . . . . . . . 80

3.3 Thermomechanical problem . . . . . . . . . . . . . . . . . 83

3.4 Computing the thermal corrections of the SIF . . . . . . 86

3.4.1 Consequence of the thermoelastic source on the SIF . . . 86

3.4.2 Consequence on the SIF of the intrinsic dissipation due to

microplasticity . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.3 The effect on the SIF of cyclic plasticity dissipated into

heat in the RCPZ . . . . . . . . . . . . . . . . . . . . . . 89

3.4.4 Comparison of the three thermal effects on the SIF through

the applied fatigue crack growth tests . . . . . . . . . . . 89

3.5 Consequences of the heat sources on the fatigue crack

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Consequence of the cyclic plasticity dissipated into heat

in the RCPZ, on the fatigue crack growth rate . . . . . 95

3.7 Conclusion of Chapter III . . . . . . . . . . . . . . . . . . 97

71





D
ans ce troisième chapitre, les effets thermiques quantifiés au deuxième chapitre

sont pris en compte dans le calcul du champ des contraintes permettant de

calculer le facteur d’intensité des contraintes. Pour ce faire, une décomposition du

problème général est proposée dans le cadre de l’hypothèse de linéarité issue de la

mécanique élastique linéaire de la rupture. Cette décomposition permet de mettre

en évidence la partie mécanique du problème, associée à la sollicitation mécanique

cyclique, et sa partie thermomécanique reliant les effets thermiques et leurs champs

de contraintes associés.

L’objectif est de résoudre la partie thermomécanique du problème qui permet de

calculer la correction thermique du facteur d’intensité des contraintes due à chaque

source de chaleur. Avant de présenter ces calculs, la technique utilisée dans ce travail

pour calculer le facteur d’intensité des contraintes est expliquée au début du chapitre.

Ensuite, la méthodologie détaillant la démarche et les hypothèses nécessaires à la

résolution de ce problème est présentée. Les résultats du calcul thermomécanique

des contraintes viennent par la suite.

Après avoir résolu le problème thermomécanique, l’effet de chaque source de

chaleur, sur le facteur d’intensité des contraintes, est quantifié. L’effet global des

trois sources est aussi évalué. De plus, les effets de chaque source de chaleur sur

les paramètres de fatigue (l’étendu du facteur d’intensité des contraintes, ses valeurs

minimale et maximale ainsi que leur rapport) sont calculés.

A la fin du chapitre, une attention particulière est portée sur l’effet associé à la

source de dissipation plastique cyclique en pointe de fissure. Son effet sur la vitesse

de propagation de la fissure est calculé.
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T
he third chapter deals with a thermomechanical analysis taking into account the

temperature fields computed in the previous chapter, and enabling to compute

the stress field leading to calculate the stress intensity factor. For this purpose,

the main problem is decomposed, within the hypothesis of the linear elastic fracture

mechanics, into two problems, the first one is purely mechanical and related to the

mechanical cyclic loading, and the second one is thermomechanical and related to

the thermal effects and their associated stresses.

The aim is to solve the thermomechanical part of the problem which enables

to compute the thermal correction of the stress intensity factor associated with each

thermal effect. Before delving into the results, the technique used in this work to

calculate the stress intensity factor is first presented. Afterward, the methodology

detailing the approach and the assumptions used to solve the problem is explained

and followed by the results of the thermomechanical calculation.

The thermal effect, on the stress intensity factor, of each heat source is quan-

tified. The overall effect of the three heat sources is computed as well. In addition,

the effects of the heat sources on the stress intensity factor range, its minimum and

maximum values as well as their ratio, are computed.

At the end of this chapter, a special attention is paid to the effect resulting from

the cyclic plasticity dissipated into heat at the crack tip. Its effect on the fatigue

crack growth rate is calculated.
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3.1 Techniques to solve the SIF solution in crack

problems involving thermal stresses

It is well established that one of the most effective methods for analyzing cracked

structures is the finite element method ([Chan et al., 1970] and [Wilson, 1972]).

Indeed, once a finite element solution is obtained, the value of the SIF can be

extracted from it. While there are many ways of doing this, one of the sturdiest

methods involves the use of the J integral ([Rice, 1968]). This integral is calculated

from the finite element solution over any arbitrary path surrounding the crack tip,

and from this calculated value, the crack tip SIF can be determined.

In the case of a cracked structure, the J integral for a linear-elastic isotropic

material is defined as ([Rice, 1968]):

J =

∫
Γ

(
wdy − ξi

∂ui
∂x

ds

)
, (3.1)

where Γ denotes a closed path around the crack tip (Figure 3.1), s is distance along

the path, w = w(x, y) =
∫
ε
σijdεij is the strain energy density, ξi = σijni and ui are

components of the stress vector and displacement vector, respectively. Moreover, it

is assumed that no singularities are enclosed by the path Γ.

Figure 3.1: Notch in plane deformation field with contour integral Γ, [Rice, 1968].

To prove path independent, [Rice, 1968] transformed the line integral (3.1) into

an area integral by using the Green-Gauss theorem:

J =

∫
a0

[
∂w

∂x
− ∂

∂xj
(σij

∂ui
∂x

)

]
dxdy, (3.2)

where a0 is the area enclosed by the path Γ (Figure 3.1), xj is for x1 = x and x2 = y.
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By differentiating the strain energy density w,

∂w

∂x
=

∂w

∂εij
.
∂εij
∂x

= σij
∂εij
∂x

(3.3)

=
1

2
σij

[
∂

∂x
(
∂ui
∂xj

) +
∂

∂x
(
∂uj
∂xi

)

]
(3.4)

= σij
∂

∂xj
(
∂ui
∂x

) (since σij = σji) (3.5)

=
∂

∂xj
(σij

∂ui
∂x

) (since
σij
xj

= 0). (3.6)

Thus, the integral of Equation (3.2) vanishes identically, and therefore J = 0 for

any closed path Γ.

From this property of the J integral, the magnitude of the crack tip SIF can

be determined by calculating the integral over any path surrounding the crack tip.

Considering the closed path (Γ1 + s1 + Γ2 + s2) shown in Figure 3.2, it follows that:∫
Γ1

� +

∫
s1

� +

∫
Γ2

� +

∫
s2

� = 0, (3.7)

with � = Wdy − ξi ∂ui∂x
ds.

Figure 3.2: Contours for calculating the SIF from the J-line integral, [Wilson and

Yu, 1979].

The path Γ2 is considered to be arbitrary, but the path Γ1 is chosen circular

with radius r1 about the crack tip where r1 tends to 0. In the region through which

the path Γ1 passes, the stresses and displacements can be expressed in the form of

the classical crack tip equations previously presented in Chapter I (Equations (1.1)

and (1.2)) where the magnitude is dependent on the mode I SIF. Thus, the line

integration over the path Γ1, for plane stress condition for instance, results in
K2
I

E

under the condition of small scale yielding, [Rice, 1968]. Using this relation and

rearranging Equation (3.7) leads to:
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K2
I

E
= JΓ2 −

∫
s1+s2

ξi
∂ui
∂x

ds, (3.8)

where JΓ2 represents the value of the J integral over the path Γ2. Moreover, the fact

that dy = 0 on s1 and s2 is used to obtain Equation (3.8).

As a result, the SIF can be calculated by evaluating the J integral over any path

Γ2 which surrounds the crack tip, by assuming that the tractions ξi are null on the

crack surfaces between the points where the path Γ2 meets the crack surfaces and

the crack tip. If these tractions are not null, then the right hand integral in Equation

(3.8) must be calculated.

Now in the case of thermal stresses generated by thermal expansion due to a

temperature variation θ, by assuming the hypothesis of plane stresses and linear-

elastic thermoelasticity, along [Rice, 1968]’s development (Equations (3.2) to (3.6)),

the J integral is written in this case as ([Wilson and Yu, 1979]):

J =
Eα

1− ν

∫
a0

[
θ
∂

∂x
(εii)−

1

2

∂

∂x
(θεii)

]
dxdy, (3.9)

which is not null because θ ∂
∂x

(εii) 6= 1
2
∂
∂x

(θεii). Therefore, the value of the J integral

over a closed path in the case of thermal stresses is not zero, which leads to conclude

that for such problems, the elastic crack tip SIF cannot be directly assessed from the

J integral calculation over a path surrounding the crack tip. In fact, a correction of

the J integral technique is needed when thermal stresses are present, and this can be

done by developing the integrand of Equation (3.9) in order to obtain an alternate

formulation satisfying the J-line properties. Such a procedure is unfortunately com-

plicated to implement, but several options may be proposed as simple alternative

solutions.

Indeed, beyond what is proposed in the literature to overcome the problem of the

J integral in thermal stress crack problems, other integral techniques can be used,

namely, the weight function technique ([Bueckner, 1971]) and the Green’s functions

technique ([Cartwright and Rooke, 1980]). The second one was proven to be simply

applicable and gives direct SIF solutions for problems with random complex load

configurations.

This integral technique is based on the use of Green’s functions, first postulated

by Green in 1828 ([Green, 1828]), and defined as the response of a system to a

standard input which is usually in the form of an impulse. The important property

of these functions is that, when suitably defined, they contain all the essential in-
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formation about the system. They can thus be used to obtain the response of the

system to any input by considering it as being composed of large numbers of small

impulses. The total response is the sum of all the individual responses due to each

input impulse acting separately.

[Cartwright and Rooke, 1980] applied this concept to fracture mechanics in order

to calculate the SIF for different cases of loaded cracks. Indeed, for a linear-elastic

cracked body submitted to a force P acting at a point in the body, the SIF at the

crack tip which arises in response to the point force may be considered as a special

case of a Green’s function. For the example of crack loaded with a point force P

(Figure 3.3), the mode I SIF is:

KI =
P√
πa

[
a+ x0

a− x0

] 1
2

=
P√
πa
G(x0), (3.10)

where x0 is the distance of the point of application of the force from the centre of

the crack, and G(x0) =
[
a+x0
a−x0

] 1
2

denotes the Green’s function for this case.

Figure 3.3: Crack loaded with a point force P , [Cartwright and Rooke, 1980].

If a pressure p(x), with −a ≤ x ≤ a, acts normal to the crack faces, the SIF is

given by:

KI =
1√
πa

∫ a

−a
p(x)G(x)dx. (3.11)

For the case of p(x) = p (a constant), Equation (3.11) gives the well known result,

KI = p
√
πa, which corresponds to the case of an infinite center-cracked sheet whose

crack of length, 2a, is subjected to a constant-uniform load p.

In general, to obtain the opening mode SIF for elastic cracked bodies subjected to

”arbitrary” forces, the problem can be simplified by using Bueckner’s decomposition

method, [Bueckner, 1958]. Bueckner’s result is that the SIF for a crack in an elastic

body subjected to external forces is identical to that for a similar crack, subjected

to internal pressure in a similar body which has no external forces acting on it. The
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internal pressure p(x) acting in the crack is equal to the stress that would exist

normal to the crack line along the crack site in the uncracked body subjected to

external forces. This principle is illustrated in Figure 3.4.

Figure 3.4: Schematic illustration of Bueckner’s principle with an elastic body sub-

jected to arbitrary forces, F , boundary tractions, T , and boundary displacements

V . This figure is reproduced from [Cartwright, 1979].

Therefore, Bueckner’s principle is a common and simple technique used for ob-

taining SIF when complex loading configurations are considered. The determination

of the SIF using Green’s functions usually involves the use of Bueckner’s principle

and always involves evaluating an integral of the form of Equation (3.11). More-

over, detailed knowledge about the type of cracked structures (structures with edge

cracks, embedded cracks, or cracks emanating from holes) is required in order to use

the correct Green’s function since many of them are available in [Cartwright and

Rooke, 1980] for example. For the crack problem studied in this work, the Green’s

function adapted to the problem is:

G(x) =

√
a2

a2 − x2
, (3.12)

which is used in the integral of Equation (3.11). This is the integral technique used

in this work in order to calculate the thermal corrections of the SIF by taking into

account the effects of the computed temperature fields.
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3.2 Methodology and assumptions for computing

the thermal corrections of the SIF

During classical fatigue crack growth tests at room temperature, the mode I

fatigue crack propagation is governed by the SIF KI(t), the SIF range ∆KI , and

the load ratio R. The applied mechanical cyclic loading generates a cyclic stress

field in the CCT specimen. But, as the thermal effects take place due to the three

types of heat sources, previously presented and quantified in Chapter II, the thermal

expansion of the material modifies this cyclic stress field. As a result, a thermal

correction of the SIF needs to be calculated as introduced before at the end of

Chapter I. To highlight this thermal correction, denoted afterward by KItemp(t), the

main physical problem, where the mechanical and thermal effects are coupled, can

be decomposed into two problems within the LEFM and the hypothesis assuming

the absence of crack closure phenomena. This decomposition is illustrated in Figure

3.5.

Figure 3.5: Decomposition of the main problem.
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The first sub-problem of this decomposition is purely mechanical. Under the

applied sinusoidal loading, the associated SIF, KI(t), can be written as:

KI(t) =
∆KI

2
sin(2πft) +Km

I , (3.13)

Km
I =

∆KI

2

1 +R

1−R
, (3.14)

where f is the loading frequency, t is time, and Km
I is the mean value of the mode

I SIF KI(t).

The second sub-problem of the decomposition above is a thermomechanical prob-

lem. It is related to the thermomechanical effects due to the heat sources, sthe, d1

and q. Each of the three heat sources generates a temperature variation field which

contributes to the thermal expansion of the material, and consequently creates an

associated thermal stress field according to the linearity assumption of the LEFM.

Thus, three types of thermal stress fields induce three types of thermal corrections

on the SIF: Kthe
Itemp

, Kd
Itemp

, and Kq
Itemp

, respectively associated with the effects of the

heat sources sthe, d1, and q.

The superposition principle of the LEFM enables to write the SIF of the main

problem, Kcorr
I , corrected by taking into account the three thermal corrections:

Kcorr
I (t) = KI(t) +KItemp(t), (3.15)

KItemp(t) = Kthe
Itemp(t) +Kd

Itemp(t) +Kq
Itemp

(t). (3.16)

The thermal correction of the SIF, KItemp(t), is calculated by using the integral

technique using Green’s function presented in the previous section. As a result:

KItemp(t) = 2

√
a

π

∫ a

0

σyy(x, 0, t)√
a2 − x2

dx, (3.17)

with σyy(x, 0, t) is defined as the normal stress field toward y axis generated by

thermal expansion such that the condition of uncracked body is applied. That is

why, the thermomechanical sub-problem on the right in Figure 3.5 is decomposed,

within the LEFM and the assumption of no crack closure, into two additional sub-

problems satisfying the superposition principle (Figure 3.6). For simplifying the

notation, σyy(x, 0, t) is denoted by σyy(x, t) in the following.
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Figure 3.6: Decomposition of the thermomechanical problem.

The condition of uncracked body is illustrated in the first sub-problem of Figure

3.6. Then, in order to compute, σyy(x, t), this sub-problem is solved by FEA. The

boundary condition applied over the RCPZ contour is a null radial stress as proposed

by [Ranc et al., 2014]. Indeed, with alternating cyclic plasticity in the RCPZ, the

mean stress tends to zero. However, it should be noted that, under the small scale

yielding condition, applying this RCPZ boundary condition, or considering only

elasticity in the whole domain, both give very close stress solutions and have very

negligible impact on the elastic crack tip SIF.

For the sake of simplification, the RCPZ is modeled in these calculations by a

disc for the three types of thermal effects, with the diameter previously given by

the estimation of Irwin’s model under the plane stress hypothesis (Equation (1.9),

Chapter I).

As a result, σyy(x, t) is known and the thermal correction of the SIF, KItemp(t),

can be computed according to Equation (3.17). It should be pointed out that the

integrand in Equation (3.17) is defined for x ∈ [0, a] as shown in Figure 3.7. More-

over, the factor of two outside the integral accounts for the use of a half crack model

because of symmetries.
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Figure 3.7: A schematic fatigue crack model showing the position of the abscissas x

used in Equation (3.17).

This methodology is used to calculate the three components of the thermal cor-

rection of the SIF, Kthe
Itemp

, Kd
Itemp

, and Kq
Itemp

.

3.3 Thermomechanical problem

Solving the thermomechanical problem consists in computing, by FEA with the

condition of uncracked body, the three normal stress fields, σtheyy , σdyy and σqyy, respec-

tively generated by the thermal expansion of the material due to the temperature

variation fields, θthe, θd and θq. For this purpose, the first sub-problem of the decom-

position of Figure 3.6 is solved by considering a two-dimensional linear, isotropic,

and thermoelastic material behavior law:

¯̄σ(x, y, t) =
¯̄̄̄
C : (¯̄ε(x, y, t)− ¯̄εth(x, y, t)), (3.18)

¯̄εth = α.θ.¯̄1, (3.19)

where ¯̄εth is the strain resulting from thermal expansion.

As mentioned earlier, the hypothesis of plane stress is considered. In this case,

the two-dimensional linear thermoelastic behavior law is written as:σxx(x, y, t)σyy(x, y, t)

τxy(x, y, t)

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2


 εxx(x, y, t)

εyy(x, y, t)

2εxy(x, y, t)

− Eα

1− ν
θ(x, y, t)

1

1

0

 .

(3.20)

It must be known that, besides the boundary conditions of symmetries in the two-

dimensional quarter model as well as the boundary condition of a null radial stress
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applied around the RCPZ, solving the first sub-problem of Figure 3.6 involves one

additional boundary condition, that of considering the crack absent, which implies

a null normal displacement over the crack (Figure 3.8).

Figure 3.8: Boundary conditions to solve the thermomechanical problem.

The example of loading configuration used in the previous chapter to compute the

temperature variation fields, θthe, θd, and θq, is used in the following for highlighting

the calculation of the stress fields, σtheyy , σdyy, and σqyy. It is a quarter model of

the CCT specimen with a crack length, a = 31.3mm, under an applied SIF range,

∆KI = 26MPa.
√
m, which is equivalent to an applied normal stress amplitude,

∆σ
2

= 44.6MPa. The reference temperature is, T0 = 20°C, the loading frequency is,

f = 98.6Hz, the load ratio is, R = 0.1, and the fatigue test duration is, ∆t = 258.4s.

As a reminder, this loading configuration corresponds to the fatigue crack growth

test T015 carried out to estimate the heat source q (cf. Table 2.4, Chapter II).

Furthermore, it should be noted that the calculation of the normal stress fields,

σtheyy , σdyy, and σqyy, do not take into account the dynamic effect. In other words, the

assumption of static calculation is considered.

The thermoelastic stress field, σtheyy , is sinusoidal as the thermoelastic temperature

variation field, θthe. Moreover, it is in phase with θthe according to the classical law

of linear thermoelasticity (Equation (3.20)). As a consequence, σtheyy is out of phase

with the stress response due to mechanical loading. σtheyy can then be written as:

σtheyy (x, y, t) = σathe(x, y). sin(2πft+ ϕ(x, y)), (3.21)

where σathe denotes the amplitude of the normal stress field related to the thermo-

elastic effect.
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Since the temperature variation fields, θd, and θq, are computed in the transient

regime and determined at t = 258.4s (the end of the fatigue test), the resulting

stress fields σdyy and σqyy are also computed at t = 258.4s.

It should be mentioned that contrary to, σthea , which is an amplitude since it

is calculated from the thermal expansion generated by the amplitude of the ther-

moelastic temperature variation field, θathe, the normal stress fields, σdyy and σqyy,

are mean stresses generated by the thermal expansion related to the temperature

variation fields, θd and θq, respectively.

Figure 3.9 plots the evolution over x axis of σthea , σdyy(t = 258.4s) and σqyy(t =

258.4s).

Figure 3.9: (a) Evolution of the normal stress fields, σthea , σdyy(t = 258.4s), and

σqyy(t = 258.4s), along x axis for the loading configuration: a = 31.3mm, ∆KI =

26MPa.
√
m, R = 0.1, f = 98.6Hz. (b) Zoom near the RCPZ.

In Figure 3.9, it can be observed that the three normal stress fields are hetero-

geneous and compressive near the crack tip. Moreover, near the RCPZ, the normal

stress field associated with the heat source q, σqyy, is more compressive than the

normal stress field associated with the intrinsic dissipation due to microplasticity,

σdyy. This is normal because in the same region the temperature variation field, θq,

is greater than the temperature variation field, θd, which means that the thermal

expansion generated by the heat source, q, is the most intense.

Furthermore, the fact that the computed stress fields, σathe, σ
d
yy, and σqyy, are neg-

ative means that they contribute to reduce the mechanical stress response generated

by the applied mechanical loading. Indeed, the thermoelastic stress amplitude field,
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3. Thermomechanical analysis - Effects of the heat sources on the SIF

σthea , decreases the stress response resulting from the applied stress amplitude (∆σ
2

=

44.6MPa in this example), and the mean stress fields, σdyy and σqyy, decrease the mean

stress response due to the applied mean stress (σm = ∆σ
2

(
1+R
1−R

)
= 54.5MPa in this

example).

3.4 Computing the thermal corrections of the SIF

Having computed the stress fields, σathe, σ
d
yy, and σqyy, the three components of the

thermal correction of the SIF, Kthe
Itemp

, Kd
Itemp

, and Kq
Itemp

, are hereinafter computed.

3.4.1 Consequence of the thermoelastic source on the SIF

The thermoelastic part of the thermal correction of the SIF, Kthe
Itemp

(t), is ex-

pressed according to Equation (3.17) as follows:

Kthe
Itemp(t) = 2

√
a

π

∫ a

0

σtheyy (x, t)
√
a2 − x2

dx, (3.22)

where σtheyy (x, t) is defined by Equation (3.21). Since σtheyy (x, t) is sinusoidal, it can

be represented by the complex formula:

σtheyy (x, t) = σathe(x).ej(2πft+ϕ(x)), (3.23)

which enables to write Equation (3.22) in a complex form as follows:

Kthe
Itemp(t) = 2

√
a

π

∫ a

0

σathe(x).ej(2πft+ϕ(x))

√
a2 − x2

dx, (3.24)

The complex equation (3.24) enables to simplify and write Equation (3.22) as a

sinusoidal function defined as follows:

Kthe
Itemp(t) =

∆Kthe
Itemp

2
sin(2πft+ φ), (3.25)
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3.4. Computing the thermal corrections of the SIF

such that:
∆Kthe

Itemp

2
= 2

√
a

π

∣∣∣∣∫ a

0

σathe(x).ejϕ(x)

√
a2 − x2

dx

∣∣∣∣ , (3.26)

φ = arg

(∫ a

0

σathe(x).ej(ϕ(x))

√
a2 − x2

dx

)
, (3.27)

where
∆Kthe

Itemp

2
is the amplitude ofKthe

Itemp
(t), and φ is the phase shift betweenKthe

Itemp
(t)

and the SIF associated with the mechanical response, KI(t). Therefore, ∆Kthe
Itemp

and

φ, are calculated from the previously computed σathe(x) and ϕ(x). That numerically

gives, ∆Kthe
Itemp

= 0.084MPa.
√
m, and φ = 0.013rad.

As a consequence, the thermoelastic coupling effect on the SIF can be expressed

as follows:

Kcorr,the
I (t) = KI(t) +Kthe

Itemp(t), (3.28)

=
∆KI

2
sin(2πft) +Km

I +
∆Kthe

Itemp

2
sin(2πft+ φ), (3.29)

where Kcorr,the
I is the SIF corrected by taking into account the thermoelastic coupling

effect. To simplify the sinusoidal form of Equation (3.29), the technique of complex

variables is used:

Kcorr,the
I (t) =

∆KI

2
.ej(2πft) +Km

I +
∆Kthe

Itemp

2
.ej(2πft+φ), (3.30)

= (
∆KI

2
+

∆Kthe
Itemp

2
.ejφ).ej(2πft) +Km

I . (3.31)

Equation (3.31) can then be rewritten in the real sinusoidal form as:

Kcorr,the
I (t) =

∆Kcorr,the
I

2
sin(2πft+ ψ) +Km

I . (3.32)

such that :
∆Kcorr,the

I

2
=

∣∣∣∣∣∆KI

2
+

∆Kthe
Itemp

2
.ejφ

∣∣∣∣∣ , (3.33)

ψ = arg

(
∆KI

2
+

∆Kthe
Itemp

2
.ejφ

)
, (3.34)

which numerically gives, ∆Kcorr,the
I = 26.08MPa.

√
m, and ψ = 0.
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3. Thermomechanical analysis - Effects of the heat sources on the SIF

As a result, the thermoelastic effect slightly increases the SIF range of KI(t), ini-

tially ∆KI = 26MPa.
√
m, by 0.31%, and creates no phase shift with the mechanical

response. Furthermore, this small change in the amplitude of KI(t) due to the ther-

moelastic effect, leads to modify the minimum and maximum values of KI(t), and

consequently modifies the load ratio R near the crack tip. This is presented and

discussed apart in Section §3.5.

3.4.2 Consequence on the SIF of the intrinsic dissipation

due to microplasticity

For the effect resulting from the intrinsic dissipation due to microplasticity,

d1, according to Equation (3.17), the associated normal stress field, σdyy, enables

to calculate the thermal correction of the SIF, Kd
Itemp

. The normal stress field,

σdyy(t = 258.4s), previously computed (Figure 3.9), enables to calculate the asso-

ciated thermal correction on the SIF: Kd
Itemp

(t = 258.4s) = −0.022MPa.
√
m. It

is negative because of the compressive stress field due to the part of thermal ex-

pansion induced by the intrinsic dissipation due to microplasticity. Moreover, it is

very small compared to Km
I for instance which is equal to 15.88MPa.

√
m for this

example of loading configuration. For simplifying the analysis afterward and since

Kd
Itemp

(t = 258.4s) is small, it is considered as time-independent during the duration

of the applied fatigue test. As a result, the SIF corrected after considering the effect

of the heat source, d1, can be written as:

Kcorr,d
I (t) = KI(t) +Kd

Itemp , (3.35)

=
∆KI

2
sin(2πft) +Km

I +Kd
Itemp . (3.36)

The intrinsic dissipation due to microplasticity consequently affects the SIF by

decreasing its mean value Km
I as well as its minimum and maximum values, even

though this decrease remains small. Moreover, it has no effect on the SIF range,

∆KI .
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3.4. Computing the thermal corrections of the SIF

3.4.3 The effect on the SIF of cyclic plasticity dissipated

into heat in the RCPZ

For the cyclic plasticity dissipated into heat in the RCPZ, q, the associated ther-

mal correction of the SIF, Kq
Ith

, is calculated from σqyy, by using Equation (3.17). For

example, the computed normal stress field, σqyy(t = 258.4s), previously plotted in

Figure 3.9, Kq
Ith

(t = 258.4s) = −0.091MPa.
√
m, which is negative like Kd

Ith
because

of the compressive stress field resulting from the associated thermal expansion. It is

also small compared to the value of the mean SIF associated with this loading con-

figuration (Km
I = 15.88MPa.

√
m). Subsequently, the assumption of considering a

constant value of Kq
Ith

is considered during the applied fatigue test for simplification.

Therefore, the thermal effect related to the heat source, q, modifies the SIF as:

Kcorr,q
I (t) = KI(t) +Kq

Itemp
, (3.37)

=
∆KI

2
sin(2πft) +Km

I +Kq
Itemp

. (3.38)

Thus, according to Equation (3.38), the heat source, q, modifies the SIF by

decreasing its minimum, maximum and mean values, whereas ∆KI is not impacted.

3.4.4 Comparison of the three thermal effects on the SIF

through the applied fatigue crack growth tests

By applying the same calculation methodology with the loading configurations

of the fatigue crack growth tests which are carried out to estimate the heat source,

q, and fulfill the conditions of the LEFM (i.e. fatigue tests T0XY listed in Table

2.4, Chapter II), the three types of thermal corrections on the SIF are quantified

and summarized in Table 3.1.
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Test R ∆KI Km
I KImin KImax ∆Kcorr,the

I ψ(rad) Kd
Itemp

Kq
Itemp

T011 0.1 13 7.94 1.44 14.44 13.04 0 0.001 −0.04

T012 0.1 16 9.77 1.77 17.77 16.04 0 0.002 −0.033

T013 0.1 20 12.22 2.22 22.22 20.06 0 −0.006 −0.051

T014 0.1 23 14.05 2.55 25.55 23.06 0 −0.012 −0.064

T015 0.1 26 15.88 2.88 28.88 26.08 0 −0.022 −0.091

T041 0.4 13 15.16 8.66 21.66 13.04 0 −0.002 −0.04

T042 0.4 16 18.66 10.66 26.66 16.02 0 −0.04 −0.04

T061 0.6 13 26 19.5 32.5 13.04 0 � −0.05

Table 3.1: Components of the main SIF, expressed in MPa.
√
m, according to the

conditions of the applied load blocks of fatigue crack growth tests T0XY (cf. Table

2.4, Chapter II).

From Table 3.1, it can be read that the order of magnitude of the computed

thermal corrections of the SIF, for all the fatigue crack growth tests carried out in

this work, is very small compared to that of the parameters of the SIF related to

the mechanical loading (∆KI , K
m
I , KImin , and KImax). Even small, the thermal

correction, Kq
Itemp

, due to the cyclic plasticity dissipated into heat in the RCPZ,

is more substantial in comparison with the thermal corrections resulting from the

thermoelastic source and the intrinsic dissipation due to microplasticity.

It should be mentioned that, for the applied load block of the fatigue crack

growth test T061, Kd
Itemp

was not determined since the intrinsic dissipation due

to microplasticity, d1, was not assessed under the applied load ratio R = 0.6 (cf.

Section §2.4.2, Chapter II).

In the following, the consequences of these thermal corrections on the fatigue

crack parameters, ∆KI , KImin , KImax , and the R-ratio, are presented.

3.5 Consequences of the heat sources on the fa-

tigue crack parameters

In order to well understand the consequences behind the numerical values of the

computed thermal corrections on the SIF (Table 3.1) and to quantify their impact,
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3.5. Consequences of the heat sources on the fatigue crack parameters

the relative corrections associated with: the SIF range, ∆KI , the minimum and

maximum values of the SIF, KImin and KImax , and the load ratio near the crack tip,

R, are calculated. Hereinafter, Table 3.2 presents these relative corrections, assessed

for the three types of heat sources, with the following notations:

� χ∆ denotes the relative correction associated with the SIF range, ∆KI . As

shown above, only the thermoelastic source affects the SIF range by defining

the corrected range, ∆Kcorr,the
I (Equation (3.32)). χ∆ is null for the dissipative

heat sources, d1 and q, as they do not modify the SIF range. It is therefore

calculated for the thermoelastic source, sthe, such that:

χ∆ =
∆Kcorr,the

I −∆KI

∆KI

. (3.39)

� χmin denotes the relative correction associated with, KImin , such that:

- For the thermoelastic source sthe:

χmin =
Kcorr,the
Imin

−KImin

KImin

, (3.40)

where Kcorr,the
Imin

= −∆Kcorr,the
I

2
+ Km

I , which is the minimum value of the

thermal correction Kcorr,the
I (t) (Equation (3.32)).

- For the intrinsic dissipation d1:

χmin =
Kcorr,d
Imin

−KImin

KImin

, (3.41)

where Kcorr,d
Imin

= −∆KI
2

+Km
I +Kd

Itemp
, which is the minimum value of the

thermal correction Kcorr,d
I (t) (Equation (3.36)).

- For the heat source q:

χmin =
Kcorr,q
Imin

−KImin

KImin

, (3.42)

where Kcorr,q
Imin

= −∆KI
2

+Km
I +Kq

Itemp
, which is the minimum value of the

thermal correction Kcorr,q
I (t) (Equation (3.38)).

� χmax denotes the relative correction associated with, KImax , such that:

χmax =
Kcorr
Imax
−KImax

KImax

, (3.43)
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3. Thermomechanical analysis - Effects of the heat sources on the SIF

where Kcorr
Imax

is separately defined for the three heat sources along the same

lines as Kcorr
Imin

above.

� Finally, χR denotes the relative correction associated with the R-ratio near the

crack tip, such that:

χR =
Rcorr,∗ −R

R
, (3.44)

with Rcorr,∗ is the corrected R-ratio calculated for each heat source:

- For the thermoelastic source, sthe, and according to Equation (3.32):

Rcorr,the =
Kcorr,the
Imin

Kcorr,the
Imax

=
−∆Kcorr,the

I

2
+Km

I

∆Kcorr,the
I

2
+Km

I

. (3.45)

- For the intrinsic dissipation, d1, and according to Equation (3.36):

Rcorr,d =
Kcorr,d
Imin

Kcorr,d
Imax

=
KImin +Kd

Itemp

KImax +Kd
Itemp

. (3.46)

- For the heat source, q, and according to Equation (3.38):

Rcorr,q =
Kcorr,q
Imin

Kcorr,q
Imax

=
KImin +Kq

Itemp

KImax +Kq
Itemp

. (3.47)

sthe d1 q

Test χ∆ χmin χmax χR χmin χmax χR χmin χmax χR

T011 0.31 −1.39 0.14 −1.80 0.07 0.01 −0.21 −2.78 −0.28 −2.78

T012 0.25 −1.13 0.11 −1.63 0.11 0.01 −0.29 −1.86 −0.19 −2.07

T013 0.30 −1.35 0.14 −1.57 −0.27 −0.03 −0.33 −2.30 −0.23 −2.16

T014 0.26 −1.18 0.12 −1.49 −0.47 −0.05 −0.62 −2.51 −0.25 −2.46

T015 0.31 −1.39 0.14 −1.80 −0.76 −0.08 −0.96 −3.16 −0.32 −3.12

T041 0.31 −0.23 0.09 −0.37 −0.02 −0.01 −0.06 −0.46 −0.18 −0.32

T042 0.25 −0.19 0.08 −0.30 −0.08 −0.03 −0.09 −0.38 −0.15 −0.26

T061 0.31 −0.10 0.06 −0.16 � � � −0.26 −0.15 −0.10

Table 3.2: Relative corrections (%) due to the three types of thermal effects.
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3.5. Consequences of the heat sources on the fatigue crack parameters

In Table 3.2, negative relative corrections mean that the corresponding heat

source leads to decrease the associated quantity, while positive values mean the

opposite. It can be read that the effect of the thermoelastic source tends to slightly

increase the SIF range as well as its maximum value, while it contributes to decrease

the SIF minimum value and the R-ratio near the crack tip. This effect remains small

and has almost the same impact over all the applied load blocks of fatigue crack

growth tests. Moreover, the effect of the thermoelastic source on the minimum and

maximum values of the SIF, as well as the R-ratio, is lower compared to that of

the heat source, q, which has the greatest decreasing impact on these parameters.

Furthermore, for the same applied R-ratio, R = 0.1 for instance (from fatigue test

T012 to fatigue test T015), the consequences of the heat source, q, manifest as

follows: the larger the applied SIF range, ∆KI , the greater the consequence of

decreasing the parameters KImin , KImax , and R. The fatigue test T011 is excluded

from this last statement since the corresponding heat source q was estimated with a

startling result (cf. Figure 2.24, Section §2.4.3 in Chapter II). The effects related to

the intrinsic dissipation due to microplasticity, d1, are minimal and can be neglected

compared to those of the heat sources, sthe and q.

Moreover, increasing the applied R-ratio for the same applied ∆KI , i.e. fatigue

tests T012 and T042, which amounts to increase the applied mean stress, consid-

erably reduces the consequences, of the three types of heat sources, on the fatigue

crack parameters, particularly on the R-ratio near the crack tip.

Having separately quantified the effects of the three types of heat sources on the

SIF, it is now reasonable and important to investigate their ”total impact”on the SIF

since they jointly occur during fatigue crack growth tests. Accordingly, summing

the three thermal effects leads to write the SIF of the main problem (as introduced

earlier in Section §3.2 of this chapter):

Kcorr
I (t) = KI(t) +Kthe

Itemp(t) +Kd
Itemp +Kq

Itemp
, (3.48)

=
∆Kcorr,the

I

2
sin(2πft+ ψ) +Km

I +Kd
Itemp +Kq

Itemp
. (3.49)

Equation (3.49) shows that the amplitude (and then the range) of the corrected

SIF is indeed modified because of the thermoelastic coupling effect, while the thermal

corrections due to the dissipative heat sources, d1 and q, do impact the mean SIF,

Km
I , and consequently its minimum and maximum values, as well as the R-ratio

near the crack tip.

From Equation (3.49), the total effect on the minimum and maximum values of
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the SIF is expressed as:

Kcorr
Imin

= −∆Kcorr,the
I

2
+Km

I +Kd
Itemp +Kq

Itemp
, (3.50)

Kcorr
Imax =

∆Kcorr,the
I

2
+Km

I +Kd
Itemp +Kq

Itemp
. (3.51)

As a result, the total effect on the R-ratio near the crack tip is:

Rcorr =
Kcorr
Imin

Kcorr
Imax

, (3.52)

=
−∆Kcorr,the

I

2
+Km

I +Kd
Itemp

+Kq
Itemp

∆Kcorr,the
I

2
+Km

I +Kd
Itemp

+Kq
Itemp

. (3.53)

Table 3.3 lists the calculation of the corrected minimum and maximum values of

the SIF, Kcorr
Imin

and Kcorr
Imax

, and the corrected R-ratio near the crack tip, Rcorr, after

taking into account the total effect resulting from the three types of heat sources. To

see how much these fatigue crack parameters are impacted, three relative corrections

are calculated and also presented in Table 3.3. That concerns, δmin =
Kcorr
Imin

−KImin
KImin

,

which denotes the relative correction on KImin , δmax =
Kcorr
Imax

−KImax
KImax

, which denotes

the relative correction on KImax , and δR = Rcorr−R
R

denoting the relative correction

on the R-ratio near the crack tip.

Test R ∆KI KImin KImax Kcorr
Imin

Kcorr
Imax

Rcorr δmin(%) δmax(%) δR(%)

T011 0.1 13 1.44 14.44 1.38 14.42 0.095 −4.17 −0.14 −5

T012 0.1 16 1.77 17.77 1.72 17.76 0.097 −2.82 −0.06 −3

T013 0.1 20 2.22 22.22 2.13 22.19 0.096 −4.05 −0.14 −4

T014 0.1 23 2.55 25.55 2.44 25.51 0.095 −4.31 −0.20 −5

T015 0.1 26 2.88 28.88 2.73 28.81 0.094 −5.21 −0.24 −6

T041 0.4 13 8.66 21.66 8.60 21.64 0.397 −0.69 −0.09 −0.75

T042 0.4 16 10.66 26.66 10.59 26.63 0.397 −0.66 −0.11 −0.75

T061 0.6 13 19.5 32.5 19.43 32.47 0.598 −0.36 −0.09 −0.33

Table 3.3: Total effect of the three heat sources on the minimum and maximum

values of the SIF as well as the R-ratio near the crack tip. The SIF are expressed

in MPa.
√
m.
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3.6. Consequence of the cyclic plasticity dissipated into heat in the
RCPZ, on the fatigue crack growth rate

From Table 3.3, it can be seen that considering the total effect of the three heat

sources, sthe, d1, and q, particularly increases the consequences on the minimum

value of the SIF as well as the applied R-ratio, while the maximum value of the

SIF remains less affected and the associated impact can be neglected. Therefore,

although one heat source may have low consequences on these parameters compared

to other heat sources, considering their total effect leads to a significant decreasing

impact on the fatigue crack parameters KImin and R, particularly at low applied

load ratios and high applied SIF ranges as illustrated in the case of the fatigue crack

growth test T015.

Besides the fatigue crack parameters, KImin, KImax, and R, it would also be

interesting to know the order of impact the fatigue crack growth rate would have.

This point is discussed in the next section.

3.6 Consequence of the cyclic plasticity dissipated

into heat in the RCPZ, on the fatigue crack

growth rate

Given the pronounced impact on the R-ratio, near the crack tip, of the cyclic

plasticity dissipated into heat in the RCPZ, q, it is interesting to see how this could

impact the fatigue crack growth rate, da
dN

, since it is one of the key parameters used

in studying the fatigue crack growth behavior.

As it has already been introduced in Section §1.2.1 in Chapter I, the load ratio,

R, has indeed an effect on the fatigue crack growth rate, da
dN

, and many models

are proposed in the literature to take this effect into account when modeling the

behavior of fatigue crack growth. For example, [Sperr, 1977] proposed the following

law enabling to assess the fatigue crack growth rate by considering the load ratio

effect:

da

dN
= C.

(∆K −∆Kth)
m

(1−R).Kc −∆K
, (3.54)

where C and m are experimental constants, ∆Kth is the threshold of the SIF range,

Kc is the material toughness, and ∆K is the applied SIF range.

By considering the main results obtained in the two previous sections, about

consequences of the thermal effects on the SIF, namely: negligible impact on the

SIF amplitude, and remarkable effect of the heat source q on the R-ratio near the
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crack tip, the resulting consequence on the calculation of da
dN

, according to Equation

(3.54), would then come from the R-ratio by considering the thermal effect due to

the heat source q, and assuming that the applied SIF range ∆K is constant1.

In this manner, let ∆( da
dN

) and ∆R be the absolute corrections, respectively

associated with, da
dN

and R, generated by the effect of the heat source q. The relative

corrections associated with da
dN

can be written from Equation (3.54) and deduced as

follows:

∆(
da

dN
) = C.Kc

(∆K −∆Kth)
m

[(1−R).Kc −∆K]2
∆R, (3.55)

thus:

∆( da
dN

)
da
dN

=
Kc.R

(1−R).Kc −∆K

∆R

R
. (3.56)

For the example of the applied load block of the fatigue crack growth test T015

(∆KI = 26MPa.
√
m, R = 0.1, f = 98.6Hz, and a = 31.3mm), the effect of the

heat source, q, on the R-ratio near the crack tip is ∆R
R

= −3.12% (cf. Table 3.2).

As a result, with the numerical values: ∆KI = 26MPa, R = 0.1, and the typical

value of the material toughness for mild steels Kc = 40MPa.
√
m, Equation (3.56)

gives the impact of the heat source, q, on the fatigue crack growth rate:

∆( da
dN

)
da
dN

= −1.24%. (3.57)

Hence, within the conditions of the fatigue crack growth test T015, the corre-

sponding heat source q tends to slightly decrease the fatigue crack growth rate by

1.24%.

Now, by inversely proceeding, the point is to find the order of magnitude of the

SIF thermal correction, Kq
Itemp

, due to the heat source, q, in order to get a significant

correction, of −10% for example, on the fatigue crack growth rate, da
dN

.

By considering ∆KI = 26MPa.
√
m, R = 0.1, and Kc = 40MPa.

√
m, the R-

ratio near the crack tip should be modified by ∆R
R

= −25% according to Equation

(3.56). This leads to write:

1Under force control, the applied SIF range, ∆K, is not constant as it depends on the crack
length which increases during the fatigue test. But in this context, it can be supposed constant
since the change in ∆K is small during one applied load block (≤ 7%).
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∆R

R
=
Rcorr,q −R

R
= −0.25 ⇒ Rcorr,q = 0.075. (3.58)

In other words, and according to Equation (3.47), the thermal correction Kq
Itemp

is:

Kq
Itemp

=
∆K

2

1 +Rcorr,q

1−Rcorr,q
−Km

I , (3.59)

where Km
I = ∆KI

2
1+R
1−R = 15.88MPa.

√
m for this example (∆KI = 26MPa.

√
m

and R = 0.1), which gives a thermal correction of Kq
Itemp

= −0.77MPa.
√
m. For

the C40 steel and according to similar conditions of applied loading (fatigue test

T015), Kq
Itemp

= −0.091MPa.
√
m (cf. Table 3.1). This means that, in order to

get a significant impact on the fatigue crack growth rate, da
dN

, greater than 10% for

example, the cyclic plastic dissipation in heat in the RCPZ needs to be about ten

times that which has been estimated within the scope of this work (cf. Table 2.6,

Chapter II). Therefore, this lets think about the factors that could amplify the effect

of the heat source q.

3.7 Conclusion of Chapter III

From studying the consequences, on the SIF, of the heat sources, sthe, d1, and q,

it can be concluded that:

� The thermoelastic source, sthe, modifies the SIF range, ∆KI , while the dissi-

pative heat sources, d1, and q, modify the mean SIF, Km
I .

� Within the scope of the fatigue crack growth tests carried out in this work at

loading frequencies f ≈ 100Hz with C40 steel, each of the three heat sources

generates a low impact on the SIF. For example, under the applied loading

of the fatigue test T015 (∆KI = 26MPa.
√
m, R = 0.1), the thermoelastic

source, sthe, increases the SIF range, ∆KI , by 0.31%; the intrinsic dissipation

due to microplasticity, d1, decreases the mean SIF, Km
I , by 0.13%; and the

cyclic plastic dissipation in heat, q, decreases the mean SIF by 0.57%.

� Even though these impacts are low, the one related to the heat source, q, is

distinctly higher than those generated by the heat sources, sthe, and d1.

� These changes consequently lead to modify the fatigue crack parameters, KImin ,
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KImax , and the R-ratio near the crack tip. The cyclic plasticity dissipated into

heat in the RCPZ, q, has the greatest impact on these parameters.

� When the total effect of the three heat sources is considered, it impacts more

the SIF as well as the fatigue crack growth parameters. For example, for the

same example of loading conditions as above (test T015), the heat source, q,

decreases the R-ratio near the crack tip by 3.12%, while the three heat sources

decrease it by 6%.

� By considering the change of the R-ratio near the crack tip generated by the

heat source, q, it implies an increase of the fatigue crack growth rate, da
dN

.

Within the same loading example, da
dN

is increased by 1.24%, which is small

and can be neglected.

� In order to get the fatigue crack growth rate, da
dN

, decreased by 10% for instance,

the heat source, q, should decrease the R-ratio near the crack tip by 25%, which

means that the heat source, q, should be ten times greater than that dissipated

in the RCPZ with C40 steel.

Having considered these conclusions, it should be known that among the key

factors to get a more dissipative heat source, q:

(i) The applied SIF range, ∆KI , since the heat source, q, is proportional to, ∆K4
I

(cf. Figure 2.25, Section §2.4.3 in Chapter II). Therefore, carrying out fatigue

crack growth tests at high SIF ranges implies an increase of the cyclic plasticity

dissipated into heat in the RCPZ, q.

(ii) The loading frequency since the three heat sources are linearly proportional

to the frequency. Thus, increasing the loading frequency leads to amplify the

thermal effects, particularly that related to the cyclic plasticity dissipated into

heat in the RCPZ, q.

(iii) The cyclic plastic behavior of the material since the cyclic plasticity occurring

in the RCPZ is the origin of the heat source, q. A material with high cyclic

plastic strain energy in the RCPZ would dissipate more considerable heat

during fatigue crack growth.

For the two first items, they are unfortunately difficult to achieve in practical use

since such fatigue tests imply an important increase of fatigue crack growth rate,

which makes the tests complicated to carry out. Moreover, the set of hypothesis

adopted in this work makes the methodology (cf. Section §3.2) used to calculate the
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thermal corrections of the SIF, very limited, especially the hypothesis of decomposing

the main problem under the conditions of the LEFM which may not be fulfilled at

high applied SIF ranges. An attempt is however made, in the next chapter, to

initiate the study leading to investigate the effect of the loading frequency on the

heat source, q, and its resulting consequence on the SIF.

With regard to the last item above, a study carried out within the scope of this

PhD work is presented in the next chapter. The idea is to correlate the heat source,

q, with the cyclic behavior of the material, in order to numerically estimate its value

instead of doing the experimental investigation presented in Section §2.4.3 (Chapter

II). This actually enables to identify the type of materials having a cyclic plastic

behavior making the heat source, q, more apparent and dissipative than that of the

C40 steel.
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C
e dernier chapitre est consacré à l’exploration des effets potentiels sur la source

de dissipation liée à la plasticité cyclique en pointe de fissure, que peuvent

engendrer la fréquence du chargement et le comportement du matériau. Cet intérêt

vient suite aux conclusions du chapitre précédent où il a été souligné que la plasticité

cyclique dissipée en chaleur à la pointe de la fissure génére un effet, sur le facteur

d’intensité des contraintes, plus important par rapport aux effets liés aux deux autres

sources. Donc si cette source de chaleur devient plus considérable, cela induit une

correction thermique plus significative sur le facteur d’intensité des contraintes.

La fréquence du chargement est parmi les facteurs qui modifient l’intensité des

sources de chaleur. Son augmentation implique une amplification des effets ther-

miques, en particulier celui lié à la source de dissipation plastique en pointe de fis-

sure, ce qui en conséquence peut engendrer une correction thermique non-négligeable

du facteur d’intensité des contraintes. Afin de vérifier ce point, des essais de prop-

agation de fissure sous des fréquences ultrasoniques sont effectués. Cette étude est

présentée dans la première partie de ce chapitre.

En sus de la fréquence du chargement, le comportement cyclique du matériau

joue aussi un rôle dans la définition de la dissipation plastique en chaleur puisque

cette source tire son origine de la plasticité cyclique produite en pointe de fissure.

L’étude présentée dans la deuxième partie de ce chapitre, consiste à corréler numérique-

ment la source de dissipation plastique et le comportement plastique cyclique de

l’acier utilisé dans ce travail, l’acier C40. Cette étape permet en fait d’identifier

une loi élasto-plastique cyclique modélisant le comportement cyclique du C40, ce qui

permettra à la fin, en modifiant les paramètres de cette loi, de voir si un matériau

plus dissipatif que l’acier C40 existe.
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T
he last chapter of this thesis explores potential effects of the loading frequency

and the material behavior, on the cyclic plasticity dissipated into heat at the

crack tip. The motivation behind this study actually comes from the conclusions

drawn in the last chapter where it turned out that the heat source in question has the

most important effect on the stress intensity factor compared to those resulting from

the two other heat sources. So, if this heat source is great, its resulting consequence

on the stress intensity factor is great too.

The loading frequency is among the factors that modify the heat sources. In-

creasing the loading frequency amplifies the thermal effects, especially that related

to the cyclic plasticity dissipated into heat at the crack tip. As a consequence, the

associated thermal correction of the stress intensity factor would be more significant.

In order to verify this point, ultrasonic fatigue crack growth tests are carried out.

This is presented in the first part of this chapter.

Besides the loading frequency, the material cyclic behavior also plays a role in

defining the cyclic plasticity dissipated into heat at the crack tip. The second part

of this chapter presents a study aiming to numerically correlate the cyclic plastic

dissipation in the reverse cyclic plastic zone, with the cyclic behavior of the material

used in this work, the C40 steel. This enables to identify a cyclic elastic-plastic

constitutive model of C40 steel, whose parameters are afterward modified in order to

see if a material, more dissipative than C40 steel, exists.
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into heat in the RCPZ

4.1 Effect of the loading frequency on the cyclic

plasticity dissipated into heat in the RCPZ

Given the motivation mentioned at the end of the previous chapter, this section

comes to present the attempt made in this work in order to estimate the effect

the loading frequency may have on the cyclic plastic dissipation in the RCPZ, q.

For this purpose, ultrasonic fatigue crack growth tests were carried out with loading

frequencies of about 20kHz by using ultrasonic fatigue concepts ([Bathias and Paris,

2005]).

It should be known that in conventional fatigue tests, the frequency is that of

the external load system of the testing machine, which is different from the natural

frequencies of the specimen. In other words, the specimen is in forced vibration. An

ultrasonic fatigue test differs from this in that the external frequency supplied by

the testing machine must be one of the natural frequencies of the specimen. This is

the definition of free vibration.

Therefore, the specimens used in ultrasonic fatigue crack growth tests must be

specially designed. The geometry is determined with a specific procedure, detailed in

[Bathias and Paris, 2005], so that the displacement is maximum at both extremities

of the specimen whereas stresses and strains vanish at the same places. Moreover,

in order to obtain maximum stress in the middle of the specimen, it is designed with

a reduced section in the center as shown in Figure 4.1. The length L1 is called the

resonance length, the determination of which involves a numerical approach, such

as FEA. The reduced section in the specimen center also enables to optimize the

geometry by reducing the resonance length L1.

Thus, a three-dimensional ’modal analysis’ study using FEA was carried out,

with the software Abaqus 6.12, to determine the geometry of notched specimens for

ultrasonic fatigue crack growth tests. Indeed, free vibration modes are computed by

FEA for several specimen geometries with different resonance lengths, and the final

geometry is chosen so that the resonance frequency of the longitudinal vibration

mode (along ~z axis of Figure 4.1) is as close as possible to that of the ultrasonic

fatigue machine, f ≈ 20kHz, and the other vibration modes have resonance fre-

quencies outside the range 20Khz± 500Hz (which is the operating frequency range

of the ultrasonic fatigue machine). The dimensions of the specimen shown in Fig-

ure 4.1 give a longitudinal vibration mode with a resonance frequency of 19966Hz,

while the closest vibration modes are those of torsion with resonance frequencies of

17485Hz and 21257Hz. Then, the ultrasonic notched specimens made of C40 steel
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are designed with the computed geometry illustrated in Figure 4.1.

Figure 4.1: Computed dimensions of the specimen used during the ultrasonic fatigue

crack growth tests. The geometry shape is that of [Wu and Bathias, 1994].

The ultrasonic fatigue crack growth tests were carried out under applied load

blocks of SIF ranges, ∆KI , with a load ratio, R = −1. It should be noted that at

ultrasonic loading frequencies, under R = −1, it is not yet known how to assess the

crack opening SIF, KIop , and then the effective SIF range, ∆KIeff = KImax −KIop .

That is why, it is assumed that, KIop = 0, which means that the part of cyclic

loading where crack closure occurs is neglected, and then, ∆KI = KImax . Therefore,

the determination of the SIF in a vibratory regime is needed. This can be done by

FEA.

[Wu and Bathias, 1994] proposed a rough approximation of KImax (Equation

(4.1)), within the hypothesis of the LEFM for a plane strain problem, as a function

of the displacement amplitude applied by the ultrasonic fatigue machine, U0, the

dynamic Young’s modulus, Ed, the Poisson’s ratio, ν, the crack length, a, and a

geometrical function, f(a/W ):

KImax =
Ed

1− ν2

√
π

a
U0f(a/W ), (4.1)

with Ed = 209GPa and ν = 0.3 for the C40 steel. The C40 steel dynamic Young’s

modulus, Ed, is determined according to a method in [Bathias and Paris, 2005], and

it can be seen that it is close to the static Young’s modulus (E = 210GPa).
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In order to establish the geometrical function, f(a/W ), KImax is computed by

carrying out three-dimensional finite element ’harmonic response analysis’ with the

software ANSYS 13.0 (Mechanical APDL). An assembly of the ultrasonic fatigue

machine horn and the specimen is modeled to better predict the resonance frequency

computed before doing the harmonic analysis. Moreover, a regular fine finite element

mesh resolution is applied in the crack region with 8-node isoparametric quadratic

and quadrilateral elements, with a size of 70µm (Figure 4.2). This mesh resolution

was checked by doing a static finite element calculation with an applied static tension

stress, σ0, at the top of the specimen, and then the SIF, K, was computed and

compared with an asymptotic formula (Equation (4.2)) given for this case in [Tada

et al., 2000]. For a crack length a = 4.9mm for example, the relative error related

to both SIF solutions is 7%. It should be mentioned that this FEA model uses a

symmetry with respect to (~y, ~z) plane, as shown in Figure 4.2, in order to reduce

the computation time.

KI = σ0

√
πa
(

1.122− 0.231(
a

W
) + 10.55(

a

W
)2 − 21.71(

a

W
)3 + 30.382(

a

W
)4
)
.

(4.2)

Figure 4.2: Finite element mesh used to compute the geometrical function f(a/w)

from the calculation of KImax .

Furthermore, the crack is assumed to be stationary in the harmonic analysis

response, and the method of crack opening displacement ([Burdekin and Stone,

1966]) is used in ANSYS post-treatment to calculate KImax . An ANSYS script was
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then created to carry out this calculation through three steps:

- Given a crack length, a, a first modal analysis step is done to compute the res-

onance frequency, denoted hereinafter by fr, corresponding to the longitudinal

vibration mode.

- A harmonic response analysis is then carried out by applying an arbitrary

displacement amplitude, U0 = 16µm for instance, and the resonance frequency,

fr, computed in the first step.

- Then, the SIF, KImax , is computed under the plane strain condition by using

the function ’KCALC’ of ANSYS, [AnsysFracture, 2010]. The correspond-

ing value of the geometrical function, f(a/W ), is therefore deduced by using

Equation (4.1).

Table 4.1 reports the numerical values of the computed geometrical function,

f(a/W ), for three given crack lengths.

a(mm) a/W fr(Hz) KImax(MPa.
√
m) f(a/W )

0.7 0.05 20317 8.20 0.03

2.1 0.15 20269 22.24 0.15

3.5 0.25 20192 39.05 0.35

Table 4.1: Calculation of the geometrical function f(a/W ).

Afterward, the geometrical function, f(a/W ), is plotted against, a/W , and ap-

proximated by polynomial regression as shown in Figure 4.3.

Figure 4.3: Approximation of the geometrical function, f(a/W ).
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The approximated geometrical function is then used to expedite ultrasonic fa-

tigue crack growth tests under applied SIF ranges.

The assumptions which enabled to carry out conventional fatigue crack growth

tests, previously presented in Section §2.4.3 (Chapter II), are considered to carry

out ultrasonic fatigue crack growth tests. It must be known that one major problem

was encountered during these tests, that of fast crack propagation, which made

applied load blocks complicated to control, particularly maintaining a quasi-constant

applied SIF range under the condition
∆KIf−∆KIi

∆KIi
≤ 7%. This problem consequently

calls into question the hypothesis of stationary heat source, q, assumed during one

applied load block. In addition, the condition stating that for a load block, i, the

crack must be propagated outside the RCPZ created during the load block, i − 1,

was also complicated to control.

The experimental device used to carry out the ultrasonic fatigue crack growth

tests is presented in Figure 4.4. The infrared camera and the optical camera used

during the conventional fatigue crack growth tests are reused in this experimental

investigation. The infrared camera has the same configuration presented before

(Section §2.4.2 in Chapter II).

Figure 4.4: Experimental device used during the ultrasonic fatigue crack growth

tests.
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The experimental conditions of applied load blocks during ultrasonic fatigue

crack growth tests are presented below in Table 4.2. The tests are referenced as

follows: UXY , X for the specimen reference number, and Y for the test refer-

ence number. It should be mentioned that the specimens were initially pre-cracked

by applying a low SIF range of, ∆KI = 7MPa.
√
m, with ultrasonic frequencies,

20119 ≤ f ≤ 20126Hz, for a pre-cracking test duration varying between 60s and

180s. The lengths of pre-cracks, for the three specimens reported in Table 4.2, are

2mm, 1.4mm, and 2.8mm, respectively. The crack lengths, ai and af , take into

account the size of the machined initial notch (1mm, cf. Figure 4.1). Moreover, the

size of the RCPZ, modeled by a disc with the radius, r∗p, is estimated according to

Irwin’s model under plane stresses hypothesis by considering the value of ∆KIf in

Equation (1.9) (cf. Chapter I).

Test R ∆t f N ai ∆KIi af ∆KIf δ(∆KI) 2r∗p

ref. (s) (Hz) (cycles) (mm) (MPa.
√
m) (mm) (MPa.

√
m) (%) (mm)

U11 −1 894.4 20124 1.79× 107 2 9 2 9 0 0.16

U12 −1 51.63 20124 1.04× 106 2 10.5 2.1 11.04 5.14 0.24

U13 −1 45 20119 9.05× 105 2.1 11 2.9 15.58 41.63 0.48

U14 −1 143.9 20113 2.89× 106 2.9 12 3.4 14.37 19.75 0.41

U15 −1 74.9 20087 1.5× 106 3.4 16 4.7 23.52 47 1.10

U16 −1 106.3 20016 2.12× 106 4.7 20 7 33.05 65.25 2.16

U21 −1 1.3 20119 2.61× 104 1.4 16 1.7 19.28 20.50 0.74

U31 −1 41.7 20116 8.38× 105 2.8 14 3.3 16.85 20.35 0.56

U32 −1 19.6 20115 3.94× 105 3.3 18 3.9 21.87 21.50 0.95

Table 4.2: Applied loading conditions per block during ultrasonic fatigue crack

growth tests, with δ(∆KI) =
∆KIf−∆KIi

∆KIi
.

As the outcome of these tests, besides the problem of maintaining a constant

applied SIF range during one load block, it was found that the intrinsic dissipation

has a significant effect that is manifested by a temperature increase in the central

area of the specimen far from the crack tip, and this consequently noises the tem-

perature increase resulting from the heat source, q, generated in the vicinity of the

crack tip. Indeed, at low applied SIF ranges (∆KIi ≤ 14MPa.
√
m), the tempera-

ture increase at the crack tip was so low that it was impossible to be observed by the

IR camera because of the effect of intrinsic dissipation becoming more significant
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in all the specimen central part as the test goes on. While at high SIF ranges, the

increase of temperature at the crack tip starts to be observable, but the crack moves

fast and does not let the heat to diffuse enough ahead of the crack tip, in addition,

the applied SIF range increases because of the increase of the crack length, and the

intrinsic dissipation quickly becomes more pronounced and hides the temperature

increase at the crack tip.

Given these hurdles, the only load block of ultrasonic fatigue crack growth tests

which allowed to clearly observe the temperature increase due to the cyclic plastic

dissipation in heat in the RCPZ, is that referenced by U21 in Table 4.2. Although

it is so quick with a duration of 1.3s (2.61× 104 cycles), the temperature increase at

the crack tip, ∆T expq , is distinctly detectable by the IR camera as shown in Figure

4.5, particularly at t = 0.6s before the intrinsic dissipation due to microplasticity

starts to increase. The temperature increase due to the intrinsic dissipation related

to microplasticity is about 32°C as shown in Figure 4.5, and thus, ∆T expq at the

crack tip is obtained by subtracting the part of temperature due to this intrinsic

dissipation, that being ∆T expq = 6.63°C.

Figure 4.5: Increase of the temperature at the crack tip, at t = 0.6s, for the applied

load block of the ultrasonic fatigue crack growth test U21 (∆KIi = 16MPa.
√
m,

ai = 1.4mm, f = 20119Hz, and R = −1). The temperature curve on the right is

plotted along the red line in the middle of the specimen.

The cyclic plasticity dissipated into heat in the RCPZ and produced during the

load block of the test, U21, is estimated by using the same method previously pre-

sented for estimating the heat source, q, in conventional fatigue crack growth tests
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(cf. Section §2.4.3 of Chapter II). Indeed, a two-dimensional FEA, with the same

Matlab code developed in this work for solving the thermal and thermomechanical

problems previously presented, was carried out to solve the corresponding heat dif-

fusion equation with the unit heat source, q1 = 1W.m−1 (cf. Equation (2.26)). It

should be noted that this two-dimensional FEA is a simplified model which does

not take into account the variable thickness of thin ultrasonic specimens. The tem-

perature increase, ∆Tq1 , generated by the unit heat source, is computed and the

associated value, at t = 0.6s, determined outside the singular region (at x = 2.5mm)

is ∆Tq1 = 0.0055°C. The equivalent real temperature increase, ∆T expq , measured at

the same position and time (x = 2.5mm and t = 0.6s) is 1.91°C. Therefore, the

cyclic plasticity dissipated into heat during the test, U21, is q = 347.27W.m−1 (by

using Equation (2.27), Chapter II).

In order to check the validity of the calculations done above to estimate the

heat source, q, the temperature field in the middle of the specimen along x axis

is computed from the estimated heat source, q = 347.27W.m−1, by solving the

associated two-dimensional model of heat diffusion equation (Equation (2.26)). The

order of magnitude of the computed temperature field, shown below in Figure 4.6,

is in agreement with the experimentally measured temperatures (Figure 4.5).

Figure 4.6: Computed temperature generated by the estimated heat source, q =

347.27W.m−1, at t = 0.6s, plotted along x axis in the middle of the specimen.

The closest loading configuration to that of the test U21 (∆KIi = 16MPa.
√
m,

ai = 1.4mm, f = 20119Hz, and R = −1), in terms of applied SIF range, is that of

the load block of the conventional fatigue crack growth test, T012, carried out under

the same SIF range at loading frequency, f = 100Hz, and applied R-ratio, R = 0.1.
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Its associated heat source, q, previously estimated is, q = 17.47W.m−1. It then turns

out that the heat source, q, produced during the ultrasonic fatigue test U21 is 19.87

times greater than that estimated during the conventional fatigue test T012. This

ratio is however ten times lower than that expected, which actually results from the

linear proportionality with respect to the loading frequencies, 20119
100

= 201.19. Two

explanations are possible, either the cyclic behavior of the material has changed in

the ultrasonic regime, or the heat source, q, estimated during the ultrasonic test has

not yet reached its stabilized regime since it was determined at a very early time of

the test U21 (at t = 0.6s).

With the estimated heat source, q = 347.27W.m−1, the thermal correction of the

SIF, Kq
Itemp

, is computed by using the same methodology, presented in the previous

chapter, used to calculate the thermal corrections of the SIF at loading frequencies

f ≤ 100Hz. That numerically gives, Kq
Itemp

= −0.152MPa.
√
m, which however

remains small compared with the values of the applied SIF range during the test

U21, 16 ≤ ∆KI ≤ 19.28MPa.
√
m.

Therefore, by starting exploring the effect of the loading frequency on the cyclic

plasticity dissipated as heat in the RCPZ, it can be concluded that, ultrasonic fatigue

crack growth tests do amplify the heat source q. This increase of the heat source, q,

can consequently lead to a non-negligible thermal correction on the SIF contrary to

what has been found in conventional fatigue crack growth tests. It should be noted

that the methodology of decoupling the problem, which is implemented in this work

in order to calculate the thermal corrections on the SIF, may unfortunately be

not valid in the ultrasonic regime since the increase of temperature at the crack tip

becomes more considerable as well as the intrinsic dissipation due to microplasticity,

in other words, the thermomechanical coupling becomes more important and makes

questionable the hypothesis of decoupling the problem. Then, a new calculation

model needs to be implemented within this study in order to take into consideration

the thermomechanical coupling when computing the stress field leading to calculate

the thermal corrections on the SIF. Moreover, further work needs to be done in order

to overcome the technical problems encountered during the ultrasonic experimental

investigation.

113



4. Exploring the consequences of the loading frequency and the material
behavior on the cyclic plasticity dissipated into heat in the RCPZ

4.2 Another approach to estimate the cyclic plas-

ticity dissipated into heat in the RCPZ

The aim of this section is to propose a numerical correlation of the cyclic plasticity

dissipated into heat in the RCPZ, q, with the cyclic plastic behavior of the material

used in this work, C40 steel, in order to deduce the characteristics of potential ma-

terials more dissipative than the C40 steel. This is based on the statement assuming

that the cyclic plasticity occurring in the RCPZ during fatigue crack growth tests,

is mostly converted into heat for ductile materials. The purpose is first to exper-

imentally characterize the cyclic behavior of the C40 steel by carrying out cyclic

tension-compression tests with smooth flat specimens, and then establish a cyclic

elastic-plastic constitutive model describing the behavior of the C40 steel as well as

its plastic flow evolution. Afterward, this model is numerically implemented in order

to compute the cyclic plastic energy dissipated per cycle in the RCPZ by using the

software Abaqus 14.5. The validity of the results of the computed heat source, q, are

first compared with those experimentally estimated in Section §2.4.3 (Chapter II),

then the parameters of the C40 steel cyclic constitutive model can be modified in

order to find a material with a cyclic plastic dissipation more significant than that

obtained with the C40 steel.

4.2.1 Brief review of the cyclic behavior of materials

In the plasticity theory ([Lemaitre and Chaboche, 1990]), there are different ways

of schematically representing the hardening of materials induced by deformations,

namely:

- Isotropic hardening: a material will be considered to justify the hypothesis of

isotropic hardening if the boundary of the elastic domain is found to depend

only on a scalar parameter (Figure 4.7). The compression curve, subsequent

to the initial loading in tension in a work-hardening test, can be derived from

the monotonic tensile curve by a homothetic transformation centered at the

point of the zero stress (point B in Figure 4.7) with ratio 1. The loading

curves, which represent points corresponding to the limit of elasticity in a

two-dimensional stress space, of normal stress and shear stress (tension-torsion

tests on thin-walled tubes at different states of hardening), are derived from

one another by homothetic transformation about the center 0 (Figure 4.7).
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Figure 4.7: Isotropic hardening: (a) Tension-compression test, (b) tension-torsion

test, [Lemaitre and Chaboche, 1990].

- Kinematic hardening: a very useful schematic representation of anisotropic

hardening is that of kinematic hardening in which the elastic domain retains a

constant size but moves about in the stress space by translation. The center of

the elastic domain (point C in Figure 4.8) represents the internal stress of the

neutral state (or back-stress). The one-dimensional compression curve can be

derived from the new tension curve by a homothetic transformation with ratio

−1 and center C. In the tension-torsion test, the loading curves corresponding

to different hardening states, can be derived from one another by translation

of the vectors such as
−→
OC (Figure 4.8).

Figure 4.8: Kinematic hardening: (a) Tension-compression test, (b) tension-torsion

test, [Lemaitre and Chaboche, 1990].
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- Bauschinger effect: the Bauschinger effect manifests itself when a specimen is

subjected to a tension followed by a compression. It is often found that since

the tension test was carried out first, the material has hardened in tension

(increased yield stress) but has softened in compression. Figure 4.9 shows

that the yield stress in compression is lower than that if the test was carried

out in compression first.

Of the two simple schematic representations mentioned above, the kinematic

hardening is closer to the real case and represents a first approximation to the

Bauschinger effect, but this remains dependent on the material.

Figure 4.9: Bauschinger effect, [Lemaitre and Chaboche, 1990].

- Effect of cyclic loadings: under cyclic loadings, most metals and alloys expe-

rience a variation in their hardening properties. They may soften or harden

depending on the material, temperature, and the initial state. The quantities

generally used in describing the results of cyclic tests (with stabilized cycles)

are defined in Figure 4.10.
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Figure 4.10: A stress-strain cycle, [Lemaitre and Chaboche, 1990].

The softening is said to occur when the stress range, ∆σ, decreases during

successive cycles under strain control, or when the strain range, ∆ε, increases

in a stress-controlled test. On the other hand, a cyclic hardening corresponds

to a rise in the stress range, ∆σ, when strain is controlled or to a fall in the

strain range, ∆ε, when the test is stress-controlled. When a periodic load

induces a periodic response, there is a stabilized cycle leading to a stabilized

stress-strain response.

If the load is not purely alternating, additional effects can occur. In non-

symmetric stress-controlled tests, either shakedown may occur (stress-strain

curve (a) of Figure 4.11) or, more often, a ratchetting effect may be induced

(stress-strain curve (b) in Figure 4.11). Correspondingly, in a strain-controlled

test, the phenomena of relaxation or non-relaxation of the mean stress may

occur (stress-strain curves (c) and (d) in Figure 4.11).
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Figure 4.11: Phenomena of (a) shakedown, (b) ratchetting, (c) non-relaxation and

(d) relaxation of the mean stress. [Lemaitre and Chaboche, 1990].

It should be reminded that during fatigue crack growth tests, previously pre-

sented in Chapter II, cyclic plasticity occurs in the RCPZ, while the behavior of the

remainder of the CCT plate specimen is linear elastic. The emphasis is afterward

made on the cyclic plastic behavior of the C40 steel. For this purpose, the hypothesis

of partition, consisting in decomposing strain into elastic and plastic parts, as well

as the assumption of time-independent plastic behavior are considered ([Lemaitre

and Chaboche, 1990]) .

It is known that the hypothesis of kinematic hardening, mentioned above, can be

used to model the inelastic behavior of materials that are subjected to cyclic loadings
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([AbaqusPlasticity, 2012]). The models of kinematic hardening, used to simulate the

behavior of metals subjected to cyclic loading, are pressure-independent plasticity

models, in other words, yielding of metals is independent of the hydrostatic stress.

These models are suited for most metals subjected to cyclic loading conditions,

except voided materials.

In the following, the hypothesis of kinematic hardening model is considered.

Moreover, the plasticity criteria used in this work is that of Von Mises yield surface

defined by Equation (4.3) ([Lemaitre and Chaboche, 1990]):

F = f(¯̄σ − ¯̄X)− σy = 0, (4.3)

where σy is the monotonic yield stress defining the size of the yield surface, and

f(¯̄σ − ¯̄X) is the equivalent Von Mises stress with respect to the back-stress tensor
¯̄X (the back-stress is defined above by point C in the one-dimensional schematic

stress-strain curve of Figure 4.8). The equivalent Von Mises stress is here defined

by:

f(¯̄σ − ¯̄X) =

√
3

2
.(¯̄σd − ¯̄Xd) : (¯̄σd − ¯̄Xd), (4.4)

where ¯̄σd is the deviatoric stress tensor, and ¯̄Xd is the deviatoric part of the back-

stress tensor.

Furthermore, the kinematic hardening models assume the hypothesis of associ-

ated plastic flow expressed by Equation (4.5):

˙̄̄εp = ε̇p
∂F

∂ ¯̄σ
, (4.5)

where ˙̄̄εp is the rate of plastic flow and ε̇p is the equivalent plastic strain rate.

The evolution of the equivalent plastic strain rate is obtained from the following

equivalent plastic work formula ([Lemaitre and Chaboche, 1990]):

σy.ε̇p = ¯̄σ : ˙̄̄εp, (4.6)

which yields ε̇p =
√

2
3

˙̄̄εp : ˙̄̄εp for isotropic Von Mises plasticity.

When the kinematic hardening model is considered as linear, the simulation of

the hardening behavior is carried out with a constant hardening rate. This hardening

rate should be matched to the average hardening rate measured in stabilized cycles

over a strain range, ∆ε, corresponding to that expected in reality. A stabilized
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cycle is obtained by cycling over a fixed strain range until a steady-state condition

is reached, in other words, until the stress-strain curve no longer changes from one

cycle to the next. When the kinematic hardening model is considered as non-linear,

it gives better predictions by improving the shape of the cycles. Moreover, it enables

to take into consideration the Bauschinger effect.

Therefore, in order to predict the cyclic behavior of the C40 steel, the model

of non-linear kinematic hardening is considered. The evolution law of this model

consists of two components: a non-linear kinematic hardening component, and a

constant isotropic hardening component.

Indeed, the kinematic hardening component is defined to be an additive combi-

nation of a purely kinematic term (known as linear Ziegler hardening law, [Ziegler,

1959]) and a relaxation term (or the recall term) which introduces the non-linearity.

By assuming that the temperature and field variables dependencies are neglected1,

the criterion and the non-linear kinematic hardening law can be respectively ex-

pressed in the form:

F = f(¯̄σ − ¯̄X)− k = 0, (4.7)

˙̄̄
X = C

1

σy
(¯̄σ − ¯̄X) ˙̄εp − γ ¯̄X ˙̄εp, (4.8)

where k, C, and γ, are material parameters that must be calibrated from exper-

imental cyclic test data. Indeed, the parameter k is a specific cyclic yield stress

generally different from the monotonic yield stress, σy. The parameter C is the

kinematic hardening modulus, and the parameter γ determines the rate at which

the kinematic hardening modulus decreases with increasing plastic deformation (Fig-

ure 4.12). When γ is zero, the kinematic hardening law (Equation (4.7)) becomes

linear.

1In this study, this assumption is reasonable because of the very low temperature change
compared with the material transformation temperatures.
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Figure 4.12: Non-linear kinematic hardening model in tension/compression,

[Lemaitre and Chaboche, 1990].

Therefore, an identification of the material characteristic coefficients, k, C, and

γ, is needed. This can be done in tension/compression from the stabilized hysteresis

loops which correspond to different strain amplitudes, ∆ε
2

. According to [Lemaitre

and Chaboche, 1990], estimating the values of k, C, and γ, can be done in three

steps:

i. Determine the parameter, k, approximately from the elastic domain;

ii. Determine the ratio, C
γ

, as an asymptotic value of the measure, ∆σ
2
− k, as ∆ε

increases;

iii. Determine the γ coefficient by using Equation (4.9), and then deduce the C

coefficient:

∆σ

2
− k =

C

γ
tanh

(
γ

∆εp
2

)
, (4.9)

where ∆εp is the plastic strain range (Figure 4.10).

For this purpose, an experimental investigation consisting in determining the pa-

rameters, k, C, and γ, of the C40 steel is done by carrying out cyclic uniaxial

tension/compression tests under strain control.
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4.2.2 Cyclic tension/compression tests to determine the non-

linear kinematic hardening coefficients of C40 steel

The testing machine used in this work to carry out uniaxial cyclic tension/compression

tests is a 100kN MTS servo-hydraulic testing machine with vertical wedge grips.

An axial contact extensometer, MTS 632.13 model with a 10mm gauge length, was

used to perform strain measurement over the middle of the specimen gauge section.

The specimens, made of C40 steel, were machined from large rectangular plates

(950×700×5mm) in the rolling direction, and designed in a classical dog-bone thin

and flat form (Figure 4.13) with narrower gauge section in order to ensure that the

deformation occurs along the length with a constant area cross-section.

Figure 4.13: Geometry of the C40 steel specimens used in cyclic tension/compression

tests. Dimensions are in mm.

The cyclic tension/compression tests were performed, at room temperature (around

20°C), under strain control with constant strain amplitudes and a constant loading

frequency, fL = 0.1Hz, with a triangular waveform (Figure 4.14).
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Figure 4.14: Schematic strain-time curve of applied loading.

In order to prevent instability due to possible buckling of the specimen in com-

pression, an anti-buckling device was used as shown in Figure 4.15.

Figure 4.15: Assembly of the MTS machine, the specimen, the anti-buckling device,

and the extensometer.

123



4. Exploring the consequences of the loading frequency and the material
behavior on the cyclic plasticity dissipated into heat in the RCPZ

The cyclic test data, extracted during this experimental investigation, concern

the axial strain and stress in the one-dimensional case, where the true strain, εtr,

and the true stress, σtr, are considered for taking into account eventual changes

of the specimen cross-sectional area. The assumption of material incompressible

plasticity is adopted to write the true strain and true stress as follows ([Lemaitre

and Chaboche, 1990]):

εtr = ln(1 + ε), (4.10)

σtr ≈ σ(1 + ε). (4.11)

Figure 4.16 shows the stabilized hysteresis loops obtained for various applied

strain amplitudes, ∆ε
2

= 0.1%, 0.25%, 0.3%, 0.5%, 0.8%, 1%, and 1.5%. For each

applied strain amplitude, a new specimen is used. It should be pointed out that

the stabilized cycle is reached after about ten cycles of tension/compression loading.

From the applied strain amplitude 1.5%, the buckling in the specimen gauge part

starts to be more apparent, and that makes the tests complicated to carry out, even

with the use of the anti-buckling device.

Figure 4.16: Stabilized hysteresis loops of C40 steel obtained from cyclic ten-

sion/compression tests.
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To examine if the material has a cyclic hardening or softening, the maximum

true stress, σtrmax , can be plotted over time to see if it increases (cyclic hardening)

or decreases (cyclic softening). An example of this curve, corresponding to data of

the test with applied strain amplitude ∆ε
2

= 0.25%, is plotted in Figure 4.17 below.

This figure shows that the maximum true stress slightly increases with time in the

first cycles before reaching a constant value, which indeed means that the C40 steel

hardens cyclically before stabilizing.

Figure 4.17: Cyclic hardening of the C40 steel observed for the test example with

the applied strain amplitude ∆ε
2

= 0.25%.

This cyclic hardening can also be confirmed by plotting the ’cyclic hardening

curve’, obtained from the maximum true stresses reached by the stabilized hystere-

sis loops of Figure 4.16 against the true strain εtr, superposed to the ’monotonic

hardening curve’ of the C40 steel as shown in Figure 4.18. The data points of the

monotonic hardening curve are reported from [Gaudillière, 2012]. It can be seen in

Figure 4.18 that the cyclic hardening curve is above the monotonic hardening curve,

which indeed accounts for the cyclic hardening effect of the C40 steel.
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Figure 4.18: Cyclic hardening stress-strain curve in comparison with the monotonic

hardening curve.

Therefore, according to the three steps presented at the end of the previous

section, the non-linear kinematic hardening coefficients of the C40 steel can be de-

termined from the experimentally obtained loops as follows:

- Figure 4.19 shows the four stabilized cycles corresponding to applied strain

amplitudes 0.5%, 0.8%, 1%, and 1.5%, plotted against the plastic strain. The

plasticity is more apparent in these four configurations and the coefficient, k,

can then be approximated from the values of elastic domains defined with a

0.2% offset yield point with respect to the plastic strain (Figure 4.19). That

roughly gives:

k =
1

2

(
462.23 + 612.72 + 623.12 + 675.19

4

)
, (4.12)

= 296.66MPa. (4.13)

- Figure 4.20 illustrates the determination of coefficients, C and γ, with plotted

data points corresponding to the applied strain amplitudes 0.5%, 0.8%, 1%,

and 1.5%. The asymptotic value of, C
γ

, is roughly determined by extrapolating

the plotted data points.
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Figure 4.19: Identification of the coefficient k from stabilized stress-plastic strain

curves.

Figure 4.20: Identification of the coefficients C and γ.

Thus, with the coefficients, k = 296.66MPa, C = 16625MPa, and γ = 66.5, the

non-linear kinematic hardening model of the C40 steel is fully defined and can be

numerically implemented.

As mentioned earlier in this section, the software Abaqus is used. After numeri-

cally defining the inputs of the non-linear kinematic model characterized above, the
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validity of the model was assessed through a comparison with experimental data.

Figure 4.21 depicts simulated stabilized cycles compared with experimental ones for

applied total strain amplitudes 1% and 1.5% since in the real application (modeling

the cyclic plastic dissipation in the RCPZ during fatigue crack growth tests) the ex-

pected strain ranges are high. This comparison shows that the computed stabilized

cycles fits well with the experimental curves.

Figure 4.21: Verification of the model.

Furthermore, for the experimental and simulated curves of Figure 4.21, the

cyclic plastic strain energy density, Wcyc (Equation (4.14)) is calculated in the one-

dimensional case for determining the associated relative error between experimental

data and the model.

Wcyc =

∮
cycle

σdεp. (4.14)

∆ε
2

= 1% ∆ε
2

= 1.5%

Experiment Model Experiment Model

Wcyc(MJ.m−3.cycle−1) 10.956 11.251 19.483 19.552

Table 4.3: Cyclic plastic strain energy density per cycle calculated for checking the

accuracy of simulated curves.

According to the results reported in Table 4.3, the relative error in energy density

for the case of the applied strain amplitude, ∆ε
2

= 1%, is: δ1 = 11.251−10.956
10.956

= 2.69%,
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while that for the case of the applied strain amplitude, ∆ε
2

= 1.5%, it is equal

to: δ1.5 = 19.552−19.483
19.483

= 0.35%. Thus, the model gives a good agreement with

experimental data.

It must be known that this non-linear kinematic model was determined from

experimental data obtained with strain ranges lower than those expected in the

RCPZ during fatigue crack growth tests, it is however used as an approximated

model to compute, by FEA, the plastic strain energy dissipated per cycle in the

RCPZ according to the conditions of conventional fatigue crack growth tests carried

out in this work. The method of computing this energy as well as the corresponding

results are presented in the next section.

4.2.3 Computing the cyclic plastic dissipation in the RCPZ

In order to compute the cyclic plasticity dissipated into heat in the RCPZ, q,

which was previously estimated by carrying out infrared measurements during fa-

tigue crack growth tests (cf. Section §2.4.3, Chapter II), the non-linear kinematic

hardening model identified in the previous section is used. The aim is to carry out

numerical calculation by FEA of the plastic strain energy per cycle over the RCPZ,

denoted here by Ecyc
p , which can be expressed as:

Ecyc
p =

∫∫∫ (∮
(¯̄σ : d¯̄εp)

)
dV, (4.15)

where the cyclic integral signifies the accumulation of plastic work at each point in

the RCPZ over the course of a complete load cycle, while the subsequent integration

over the RCPZ provides the plastic strain energy per cycle.

In the following, the quantity, Ecyc
p , is computed from the plastic work performed

during a single load cycle on a stationary crack. With this simplifying assumption,

possible plasticity-induced crack closure is intentionally neglected for simplification

(such a problem has been extensively treated in the literature, [Ellyin, 1997]). More-

over, a stationary crack modeling assumption also neglects the contribution of the

actual crack extension to the total plastic dissipation occurring during any given

load cycle. This contribution is actually negligible in Paris-regime crack growth for

ductile materials ([Klingbeil, 2003]).
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Under this hypothesis, the plastic strain energy per cycle, Ecyc
p , is computed

with the software Abaqus 14.5 by a two-dimensional elastic–plastic finite element

model of a stationary mode I crack under static amplitude loading. The applied

loading conditions are those of the fatigue crack growth tests T0XY carried out

to experimentally estimate the cyclic plastic dissipation in heat in the RCPZ (cf.

Table 2.4, Chapter II). The quarter model of the CCT plate specimen as well as the

assumption of plane stresses are considered in this calculation. The elastic response

of C40 steel is defined by E = 210GPa, and ν = 0.3. While the cyclic plastic

behavior is approximated by the non-linear kinematic hardening model previously

identified.

The type of finite elements is an 8-node isoparametric quadratic and quadri-

lateral mesh (CPS8R, [AbaqusElements, 2012]) uniformly refined in the RCPZ re-

gion with the smallest element ahead of the crack tip measuring 40µm. Moreover,

reduced-integration elements are chosen for their accurate performance during nearly

incompressible material response, [AbaqusElements, 2012].

Figure 4.22 shows schematic boundary conditions, due to symmetries, as well as

the applied load scheme. Indeed, the load is defined as a normal stress uniformly

applied over the upper edge of the specimen, by using four steps defining two load

cycles, which are subdivided with a load step of 0.01 as recommended for enhancing

the convergence and integration accuracy of Abaqus algorithms ([AbaqusAnalysis,

2012]).

Figure 4.22: Boundary conditions and applied load steps.
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Since Abaqus automatically computes the plastic strain energy (Equation (4.15))

during each load step by using the function ’ELPD’, extraction of the plastic strain

energy per cycle, in the RCPZ, from the finite element results can be done as follows:

- Compute Ecyc
p over the RCPZ area computed from Abaqus finite element so-

lution during the second cycle, that is:

Ecyc
p = 2

∫∫ (∫ Step 4

Step 2

(¯̄σ : d¯̄εp)

)
B dA, (4.16)

where B is the CCT specimen thickness, and the factor 2 accounts for the

use of symmetrical model with half RCPZ. It should be pointed out that two

cycles are necessary because, during the first cycle, the plastic strain occurs

throughout the monotonic plastic zone, while in subsequent cycles, the plastic

strain occurs in the RCPZ (cf. Figure 1.7, Chapter I).

- Then, divide the obtained quantity, Ecyc
p , by the CCT plate specimen thickness,

B = 4mm, in order to get the plastic strain energy per cycle and unit length

of the crack front, denoted afterward by qmodel, which is comparable with the

experimentally estimated cyclic plastic dissipation in heat, q.

By considering configurations of crack lengths corresponding to the end of applied

load blocks of the fatigue tests T0XY , previously presented in Table 2.4 (Chapter

II), the plastic strain energy per cycle and unit length of the crack front, qmodel,

is computed by following the method explained above. The numerical results are

reported in Table 4.4.

Test R ∆KI q qmodel

ref. (MPa.
√
m) (J.m−1.cycle−1) (J.m−1.cycle−1)

T012 0.1 16 0.17 0.13

T013 0.1 20 0.32 0.24

T014 0.1 23 0.43 0.44

T015 0.1 26 0.65 0.67

T041 0.4 13 0.23 0.04

T042 0.4 16 0.27 0.12

T061 0.6 13 0.25 0.04

Table 4.4: Experimentally estimated heat source, q, and numerically computed cyclic

plastic strain energy, qmodel
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From the results in Table 4.4, it can be concluded that, for R = 0.1, by assuming

that all the cyclic plastic strain energy in the RCPZ is dissipated in heat and respon-

sible for the existence of the heat source q, the heat source in the RCPZ is realistic.

This is in agreement with the results in [Pippan and Stüwe, 1983]. Moreover, for

R = 0.4 and 0.6, the gap between qmodel and q reveals a non-representative model.

Further work is needed to understand this difference.

Computed data for R = 0.1 can be used to verify if the model predicts a ∆K4

dependence of the cyclic plastic dissipation in the RCPZ. Indeed, Figure 4.23 shows

that the computed cyclic plastic dissipation is close to that estimated by infrared

measurements, especially when experimental uncertainties are considered, and the

corresponding values are nearly proportional to ∆K4.

Figure 4.23: Computed and experimentally estimated cyclic plastic dissipation in

heat, for R = 0.1, plotted against ∆K4.

The important difference between q, and qmodel, obtained for high load ra-

tios, R = 0.4 and R = 0.6 (Table 4.4), may be due to the fact that cyclic ten-

sion/compression tests for determining the non-linear kinematic hardening model

were carried out at R = −1, which is close to R = 0.1 and not convenient to

characterize the material cyclic behavior for high load-ratios. Furthermore, cyclic

tension/compression tests were carried out under strain control loading, while fatigue

crack growth tests were performed under stress control loading, this may generate

accumulated ratchetting strains in the RCPZ, which are not well simulated by the

proposed non-linear kinematic hardening model.

However, this model can be used as a first order approximation with the applied

load-ratio R = 0.1 in order to see if a more dissipative material exists. This is done

by adjusting the non-linear kinematic hardening parameters, k, C, and γ, previously

presented in the previous section. The idea is to know if such material does manifest

132



4.2. Another approach to estimate the cyclic plasticity dissipated into
heat in the RCPZ

a more considerable cyclic plastic dissipation in the RCPZ compared to that of C40

steel, under the same loading conditions.

Having considered the following numerical values: k = 100MPa, C = 800GPa,

and γ = 104, with the same applied loading conditions as the load block of the fatigue

test T014 (a = 27mm, ∆KI = 23MPa.
√
m, R = 0.1), the resulting computed cyclic

plastic dissipation is qmodel = 22.26J.m−1.cycle−1. Thus, such a material would

dissipate about 50 times more heat, in the RCPZ, than the C40 steel (for the test

T014, q = 0.43J.m−1.cycle−1).

Therefore, the thermal correction, Kq
Itemp

, due to the computed heat source,

qmodel = 22.26J.m−1.cycle−1, with the theoretical material, is computed with the

resulting effects on, KImin , KImax , and the R-ratio near the crack tip. This is pre-

sented in Table 4.5. From these results, such material would generate a cyclic plastic

dissipation in heat in the RCPZ with significant consequences on the SIF.

R ∆KI KImin KImax K
q
Itemp

Kcorr,q
Imin

Kcorr,q
Imax

Rcorr,q

0.1 23 2.55 25.55 −3.11 −0.56 22.44 −0.025

Table 4.5: Effects of the thermal correction, Kq
Itemp

, due to the heat source, qmodel =

22.26J.m−1.cycle−1, of the theoretical material.

Figure 4.24 depicts the stress-strain hysteresis loop of the theoretical material

computed under the applied strain amplitude, ∆ε
2

= 1.5%.

Figure 4.24: (a) Hysteresis loop of the theoretical material computed at ∆ε
2

= 1.5%.

(b) Comparison with the hysteresis loop of C40 steel.
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From Figure 4.24, it can be seen that, for this example of applied strain am-

plitude, ∆ε
2

= 1.5%, even though the hysteresis loop of the theoretical material is

less wide-open than that of C40 steel, its cyclic plastic strain energy dissipated in

the RCPZ, computed above, is greater than that of C40 steel. Indeed, the cyclic

yield stress of the theoretical material is lower compared to that of C40 steel, and

since the size of the RCPZ is inversely proportional to the square of the cyclic yield

stress, the RCPZ region in the theoretical material is greater than that of C40 steel.

Therefore, even with a reduced area of hysteresis loop, in other words a low ’plastic

strain energy density’, the ’plastic strain energy’ dissipated in the RCPZ per cycle

can be high if the size of the RCPZ is large, and of course, small enough to fulfill

the small scale yielding condition.

4.3 Conclusion of Chapter IV

� The experimental investigation about ultrasonic fatigue crack growth tests

enabled to verify that at ultrasonic loading frequencies, the cyclic plastic-

ity dissipated into heat in the RCPZ, q, is amplified. Moreover, it should

be noted that not only the heat source, q, but also the intrinsic dissipation

due to microplasticity becomes significant. In the example presented in this

study, the intrinsic dissipation due to microplasticity is not taken into ac-

count, and the heat source, q, is estimated at, q = 347.27W.m−1, under

the applied loading conditions: 1.4 ≤ a ≤ 1.7mm, N = 2.61 × 104cycles,

16 ≤ ∆KIi ≤ 19.28MPa.
√
m, f = 20119Hz, and R = −1. The value

of this heat source is about 20 times greater than that estimated during

the conventional fatigue test with close applied SIF range and load ratio,

∆KI = 16MPa.
√
m and R = 0.1, respectively. However, its resulting ther-

mal correction on the SIF, Kq
Itemp

= −0.152MPa.
√
m, is small compared to

the values of the applied SIF range. But, this result should be treated cau-

tiously because since the heat source, q, amplifies in ultrasonic frequencies, it

may be high enough, in other configurations of applied loading, to generate a

considerable thermal correction on the SIF.

� With numerically correlating the cyclic plastic behavior of C40 steel with the

cyclic plasticity dissipated into heat in the RCPZ (at loading frequencies f ≈
100Hz), the associated constitutive model was modified to see if a material

with a great cyclic plastic strain energy in the RCPZ exists. An example of the

cyclic behavior of such material was computed. With the following non-linear
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kinematic hardening parameters, k = 100MPa, C = 800GPa, and γ = 104,

the cyclic plastic dissipation in heat in the RCPZ is about 50 times higher

than that of C40 steel, which means that, since the calculations are linear, the

resulting consequences on the SIF are also about 50 times greater than those

quantified for the C40 steel. As a result, for such material, the consequences

of the cyclic plasticity dissipated into heat in the RCPZ, q, on the SIF are

significant and should be taken into consideration.
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The aim of this doctoral work was to investigate the consequences on the mode

I SIF of three types of heat sources generated during fatigue crack growth tests,

carried out at room temperature, in the case of a long propagating fatigue crack

in a thin-flat CCT specimen made of C40 steel. These heat sources concern the

thermoelastic coupling source, the intrinsic dissipation due to microplasticity, and

the cyclic plasticity dissipated as heat in the RCPZ ahead of the crack tip. The first

step was to assess these heat sources. The thermoelastic coupling source was then

computed within the framework of linear-isotropic thermoelasticity. The intrinsic

dissipation was approximated with a specific method based on experimental results

of self-heating fatigue tests. And the cyclic plastic dissipation in heat in the RCPZ

was experimentally estimated from infrared measurements conducted during fatigue

crack growth tests. The second step was to separately compute the temperature

fields generated by each heat source by using the linearity of the heat diffusion

problem. Then, the third step was to solve the stress field, within the hypothesis of

LEFM, corresponding to each thermal effect and leading to calculate the associated

three types of thermal corrections on the mode I SIF. As a result, the following

conclusions can be drawn:

- The three types of heat sources studied in this work have negligible impacts

on the SIF during fatigue crack growth tests conducted at loading frequencies

close to 100Hz.

- Although the thermal consequences on the SIF are small at this scale of load-

ing frequencies (f ≈ 100Hz), the thermal effect related to the cyclic plasticity

dissipated as heat in the RCPZ has a relatively greater impact on the SIF com-

pared to the effects due to the thermoelastic coupling source and the intrinsic

dissipation.

- Not only the SIF, but also the parameters associated with fatigue crack growth

tests, namely: the SIF range, the minimum and maximum values of the SIF,

and the R-ratio, are modified because of these thermal effects. Indeed, the

137



Conclusion and Prospects

thermoelastic coupling source tends to increase the SIF range by increasing

the SIF maximum value and decreasing its minimum value, while it decreases

the initial value of the applied R-ratio near the crack tip. The two remaining

dissipative heat sources, do not change the SIF range, but both decrease the

minimum and maximum values of the SIF as well as the R-ratio near the crack

tip.

- By taking into consideration the overall thermal effects on the SIF, the re-

sulting consequences on the minimum and maximum values of the SIF as well

as the value of R-ratio, increase, particularly the consequence on the R-ratio

when its initial applied value is low (R = 0.1) and the applied SIF range gets

higher (16 ≤ ∆KI ≤ 26MPa.
√
m).

- By considering the thermal effect on the R-ratio due to the cyclic plastic

dissipation in heat in the RCPZ, the fatigue crack growth rate tends to increase,

but this increase remains negligible for the material used in this work (C40

steel) at loading frequencies f ≈ 100Hz.

- To get an important impact on the fatigue crack growth rate, for example

modifying its initial value by 10%, the cyclic plasticity dissipated as heat in

the RCPZ should be 10 times greater than that obtained with the C40 steel at

the loading frequency, f = 100Hz, the applied SIF range, ∆KI = 26MPa.
√
m,

and the applied load ratio R = 0.1. For that purpose, two effects associated

with the loading frequency and the material behavior on the cyclic plastic

dissipation in heat in the RCPZ, are carried out at the end of this doctoral

work.

- The effect of the loading frequency on the cyclic plastic dissipation in heat in

the RCPZ aimed to launch a new line of research work leading to investigate the

thermal correction on the SIF at the scale of ultrasonic frequencies since they

generate considerable thermal effects. In the study presented in this thesis,

only the thermal effect related to cyclic plastic dissipation in heat in the RCPZ

is considered. It was experimentally estimated from infrared measurements

during ultrasonic fatigue crack growth tests conducted with loading frequencies

of about 20kHz. Many technical obstacles have been encountered during this

experimental investigation, particularly fast crack propagation at high applied

SIF ranges, making the condition of applying a constant SIF range during

one load block difficult to fulfill, and the significant intrinsic dissipation effect

due to microplasticity occurring outside the RCPZ at low applied SIF ranges,
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which prevents the observation of the increase of temperature at the crack tip.

However, it was possible to use infrared data of one applied ultrasonic fatigue

crack growth test to confirm the amplification, in the ultrasonic regime, of

the cyclic plasticity dissipated as heat in the RCPZ. According to the loading

conditions, f = 20119Hz, ∆KIi = 16MPa.
√
m, and R = −1, the cyclic

plastic dissipation in heat is estimated at q = 347.27W.m−1, which is about 20

times greater than that estimated during a fatigue crack growth test carried

out at f = 100Hz with a close loading configuration (∆KIi = 16MPa.
√
m,

and R = 0.1).

- In order to find the class of materials with a considerable cyclic plastic dis-

sipation in heat in the RCPZ, a numerical correlation between this thermal

effect and the cyclic plastic behavior of C40 steel is first established. The aim

was to implement a cyclic plastic behavior model enabling to predict the heat

dissipated by cyclic plasticity in C40 steel, and then use this model for finding

characteristics of potential materials which would dissipate more heat, in the

RCPZ, compared to C40 steel. For such materials, thermal corrections on the

SIF would be more significant contrary to what has been reported with the C40

steel. By way of conclusion of this last study, a material with low cyclic yield

stress (≈ 100MPa), high kinematic hardening modulus (≈ 800GPa), and high

rate of kinematic hardening (≈ 104), would have a RCPZ 50 times more dis-

sipative than that of C40 steel under applied SIF range, ∆KI = 23MPa.
√
m,

and applied R-ratio, R = 0.1.

In addition to these conclusions, it should be reminded that the calculations

presented in this thesis fulfilled the LEFM assumption of small scale yielding because

the SIF is calculated as a LEFM parameter. This condition may be seen as the

main limitation of this work since when the crack ligament yielded during fatigue

crack growth tests under high applied SIF ranges and R-ratios, the tests were not

exploitable, while it turned out that those tests generate more considerable thermal

effects which could consequently impact the SIF. That is why, potential further work

would be to use a new calculation method of the SIF under large scale yielding.

Additional work should also be done in order to overcome the problems en-

countered during ultrasonic fatigue crack growth tests, especially developing a new

estimation method of heat sources enabling to properly quantify the cyclic plas-

tic dissipation in heat in the RCPZ as well as the intrinsic dissipation due to mi-

croplasticity which is not negligible in the ultrasonic regime. Moreover, decoupling

the thermomechanical problem, with the decomposition considered in this work for
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loading frequencies around 100Hz, may no longer be valid because of the high ther-

momechanical coupling order generated by the dynamic effect due to ultrasonic

frequencies. This remains to be confirmed, otherwise, a new methodology with new

hypothesis adapted to solve the thermal corrections of the SIF in the ultrasonic

regime is needed.

A last prospect would be to find a real material with a cyclic behavior close to

the simulated one proposed in the last conclusion above because in such a case, the

thermal corrections on the SIF become significant and can have a more apparent

impact on the extension of long propagating fatigue cracks.
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Conséquences des effets thermiques générés pendant la propagation d’une fissure 

de fatigue sur le facteur d’intensité des contraintes en mode I 

RESUME : 

Lors du chargement cyclique d’une pièce métallique fissurée, un champ de température 

hétérogène est créé à la pointe de la fissure. Ce champ de température est dû à trois 

types de sources de chaleur : (i) la première source est une source de couplage 

thermoélastique liée à la partie hydrostatique du tenseur des contraintes résultant de la 

sollicitation mécanique cyclique. Elle fluctue périodiquement dans le temps et l’énergie 

qui lui est associée est nulle à la fin de chaque cycle de chargement ; (ii) la deuxième 

source de chaleur est une source dissipative et intrinsèque au comportement du 

matériau. Elle est reliée au phénomène de l’auto-échauffement dû à la microplasticité 

dissipée en chaleur dans le matériau à l’échelle microscopique. Elle est positive et 

s’accumule dans le temps ; (iii) enfin, la troisième source de chaleur a les mêmes 

origines et propriétés que la deuxième source, mais elle est associée à la plasticité, à 

l’échelle macroscopique, qui se dissipe en chaleur dans la zone de plasticité cyclique à 

la pointe de la fissure. En présence de ces trois sources de chaleur, le champ de 

température résultant génère un champ de contrainte dû au phénomène de la dilatation 

thermique. Ce nouveau champ des contraintes s’ajoute au champ des contraintes dû au 

chargement mécanique cyclique, et donc l’état des contraintes sur la fissure est modifié. 

En conséquence, le facteur d’intensité des contraintes, qui est un paramètre clé dans la 

modélisation de la propagation des fissures, est modifié. D’où l’objectif de cette thèse 

qui vise à quantifier les conséquences de ces trois sources de chaleur sur le facteur 

d’intensité des contraintes, et ce dans le cas d’une fissure longue de fatigue.  
 

Mots clés : Facteur d’intensité des contraintes, Couplage thermoélastique, Dissipation 

intrinsèque, Plasticité cyclique, Fatigue, Propagation des fissures. 

 

Consequences of the thermal effects generated during fatigue crack growth on the 

mode one stress intensity factor 

ABSTRACT :  

By subjecting a cracked specimen to a cyclic loading, thermal effects take place and 

create a heterogeneous temperature field around the crack tip. Those thermal effects are 

associated with coupling and dissipative heat sources, namely: (i) the heat source due to 

thermoelastic coupling generated by the hydrostatic part of the stress tensor related to 

cyclic mechanical loading; (ii) the heat source due to intrinsic dissipation associated 

with the self-heating phenomena originating from plasticity at the microscopic scale; 

(iii) and the heat source due to cyclic plasticity, at the macroscopic scale, which occurs 

in the reverse cyclic plastic zone ahead of the crack tip, and dissipates into heat. The 

overall heterogeneous temperature field resulting from the heat sources induces a 

heterogeneous stress field due to thermal expansion phenomena. As a consequence, the 

stress state over the crack is modified and leads to modify the stress intensity factor, 

which is a key parameter in modeling fatigue crack growth. Therefore, the aim of this 

PhD thesis is to quantify the consequences of the heat sources on the stress intensity 

factor, in the case of a long propagating fatigue crack. 
 

Keywords : Stress intensity factor, Thermoelastic coupling, Intrinsic dissipation, Cyclic 

plasticity, Fatigue, Crack propagation. 
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