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Abstract

Cement foam advantages compared to normal concrete are its low density, low mate-

rial need and thermal insulation capacity. To better understand how the morphology of

cement foam affects its properties, we wish to create solid samples with well controlled

structure. This involves two steps: the creation of a fresh cement foam with chosen struc-

ture, and the stability of this structure up to cement hardening. First step is ensured by

our preparation protocol, and second step is investigated in this thesis.

First, we study the interaction of surfactants and cement paste. Some surfactants can-

not stabilize foam in cement paste highly alkaline solution. Some others, mainly anionic

surfactants, adsorb on cement grain surface, which modifies interactions between ce-

ment grains and consequently the yield stress of the cement paste. At low surfactant

concentration, cement grain surface becomes hydrophobic and yield stress increases due

to hydrophobic attraction between cement grains. At high surfactant concentration, ad-

sorbed micelles create a steric repulsion between cement grains and make cement paste

yield stress drop.

Second, we study the effect of bubbles on the yield stress of aerated cement paste,

at air content below 40%. The measured yield stress is normalized by the yield stress of

the suspending cement paste. For a surfactant with low affinity to cement grains surface,

results are consistent with literature, whereas dimensionless yield stress is much higher

than expected when surfactant strongly adsorbs on cement grain surface. This effect is

attributed to the change of the bubble surface properties due to the adsorption of hy-

drophobic cement grains at the air-liquid interface.

Then, we focus on cement foam stability, at air content 83%. We first study three se-

ries of experiments at given water-to-cement ratio and bubble size. For each series, the

yield stress of the cement paste is changed by addition of superplasticizer or high amount

of anionic surfactant. Unexpectedly, the best foam stability is obtained for relatively low

yield stress. Rheological measurements on the fresh cement foams allowed us to under-

stand this improved stability as a consequence of the reorganization of cement grains

into denser packing. In a second part on stability, we study the influence of bubble size,

water-to-cement ratio and surfactant content. A stability criterion is defined from the

bubble size and the interstitial cement paste yield stress.

Eventually, we observe that cement foam structure affects water imbibition velocity.

Imbibition front is slowed down when it crosses the constrictions between the bubbles.
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Résumé

Les mousses de ciment présentent d’intéressantes propriétés : une faible densité, une

faible consommation de matière première et une bonne résistance thermique. Certaines

de ces propriétés dépendent de sa morphologie. Pour mieux comprendre cette dépen-

dance, on veut créer des échantillons de mousse de ciment avec une structure bien con-

trôlée : les bulles sont de même taille, et les quantités d’air, de ciment, d’eau et de ten-

sioactif sont fixées. Pour ce faire, on mélange d’une part une mousse aqueuse de mor-

phologie contrôlée, stabilisée par des tensioactifs, et d’autre part une pâte de ciment. Le

but de cette thèse est d’étudier comment conserver cette structure jusqu’à la prise du ci-

ment.

Tout d’abord, nous étudions l’interaction entre tensioactifs et pâte de ciment. Cer-

tains tensioactifs ne sont pas compatibles avec la solution alcaline présente dans la pâte

de ciment et ne permettent pas de produire une mousse dans ces conditions. Parmi les

tensioactifs compatibles avec la solution interstitielle de ciment, certains s’adsorbent sur

les grains de ciment. Cette adsorption change les interactions entre grains de ciment et

par conséquent, la contrainte seuil de la pâte. A faible concentration en tensioactif, la

monocouche de molécules adsorbée rend les grains de ciment hydrophobes, ce qui pro-

duit une attraction hydrophobe entre grains et une augmentation de la contrainte seuil

de la pâte. A forte concentration en tensioactif, les micelles adsorbées engendrent une

répulsion stérique entre les grains de ciment et une chute de la contrainte seuil.

Dans un deuxième temps, nous étudions l’effet des bulles d’air sur la contrainte seuil

d’une pâte de ciment aérée, lorsque celle-ci contient moins de 40% d’air. Les mesures

sont normalisées par la contrainte seuil de la pâte interstitielle afin d’être comparées à la

littérature. Lorsque le tensioactif utilisé s’adsorbe peu sur les grains de ciment, les résul-

tats sont semblables à ceux de la littérature obtenus sur des fluides à seuil modèles. En

revanche, lorsque le tensioactif utilisé a une grande affinité avec les grains de ciment, la

contrainte seuil normalisée est bien supérieure aux prédictions. Notre hypothèse pour

expliquer ce résultat est une modification des propriétés de surface des bulles à cause de

l’adsorption des grains de ciment rendus partiellement hydrophobes par le tensioactif.

Ensuite, nous nous focalisons sur la stabilité des mousses de ciment avant la prise,

pour une fraction d’air de 83%. On s’intéresse tout d’abord à trois séries de mesures, en

gardant pour chacune d’elles le rapport eau/ciment et la taille des bulles constants. Pour

chacune des trois séries, seule la contrainte seuil de la pâte de ciment est changée par

l’addition de superplastifiant ou d’une grande quantité de tensioactif anionique. On ob-

tient alors un résultat inattendu : la meilleure stabilité est observée lorsque la pâte de
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RÉSUMÉ

ciment utilisée pour faire la mousse est fluide. Les mesures des propriétés rhéologiques

de la mousse nous font émettre l’hypothèse que la bonne stabilité aux faibles contraintes

seuil de pâte de ciment est due à la réorganisation des grains de ciment en un réseau gran-

ulaire plus dense. Pour aller plus loin sur l’étude de la stabilité des mousses, nous faisons

ensuite varier la taille des bulles, le rapport eau/ciment et la quantité de tensioactif. Nous

définissons un critère de stabilité pour l’ensemble de ces mousses, qui dépend de la con-

trainte seuil interstitielle de la pâte de ciment confinée par les bulles et de la taille des

bulles.

Pour finir, nous mesurons la vitesse d’imbibition des échantillons solides. Nous ob-

servons que la vitesse est plus faible que celle attendue, à cause d’un ralentissement du

front d’eau lors du passage des constrictions entre les bulles.
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Introduction

Environment impact of buildings is considerable, both because of the material need for

their construction and the energy demand during their life. Implementation of novel con-

struction materials is required to save raw material resources and build energy efficient

buildings. Partial replacement of solid by air bubbles offers a promising solution to ad-

dress these issues. Aerated concrete, with varying air content from a few percent to 98%,

provides a wide range of construction materials with reduced raw material need, reduced

transport costs because of it low density, and improved thermal insulation properties.

Microstructural features of solid foams have significant impact on several functional

properties. The size of the openings between the bubbles is known to play an important

role on cement foam permeability and acoustic absorption capacity. The study of well-

controlled cement foam samples is expected to provide better understanding of relation

between foam morphology and functional properties.

The production of cement foams with well controlled morphology requires two steps.

Firstly, a well-controlled fresh cement foam must be produced. Secondly, the controlled

structure must not evolve as long as the cement has not hardened. However, when cement

paste is fresh, the cement foam sometimes destabilizes: bubbles tend to raise and to grow.

The goal of this work is to give hints to formulate stable cement foams. The role of the

rheological properties of the cement paste is mainly investigated.

We describe in chapter 1 the preparation techniques and the main properties of the

cement foams reported in the literature. The diversity of the formulations of these foams

makes their comparison difficult. Then, we focus independently on the characteristics of

fresh cement paste and on the properties of aqueous foams. At the scale of the cement

grains, cement paste can be seen as solid particles interacting with each other, and sus-

pended in alkaline solution. At the macroscopic scale, cement paste behaves like a yield

stress fluid, i.e. it can flow under applied stress above its yield stress. Aqueous foams are

also yield stress fluids. Besides, they are unstable systems due to the difference of density

between liquid and air, and to the high energy required to create the numerous air-liquid

interfaces. Three destabilization mechanisms occur: drainage is due to gravity, Ostwald

ripening leads to gas transfer between the bubbles and coalescence is the breakage of

walls separating neighbor bubbles. Finally, in the last part of chapter 1, we analyze litera-

ture results on complex foams to understand how fresh cement paste can affect stability

and rheological properties of cement foams.

In chapter 2, we investigate the interaction between surfactants and cement paste,
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without adding bubbles. We study the efficiency of surfactants, first in cement paste in-

terstitial solution, and then in the presence of cement grains. In addition, we measure

how surfactants adsorb on cement grains, and how adsorption affects the surface prop-

erties of the grains, the consistency of the cement paste and the setting time. We show in

this chapter that if surfactant type and concentration are well chosen, it can be used as an

additive in cement paste to make cement grain surface hydrophobic and to monitor the

yield stress of the paste.

In chapter 3, we focus on aerated cement pastes at low air volume content, below

40%. We investigate the effect of the air inclusions on the yield stresses of the pastes and

we compare our results with models and measurements performed on model yield stress

fluids. We note and discuss a major difference between the cases when cement grains are

hydrophobic and hydrophilic.

In chapter 4 and 5, we focus on cement foam stability, at air content 83%. In chapter

4, we change the yield stress of the cement paste by varying the amount of surfactant or

superplasticizer, while water-to-cement ratio and bubble size are kept constant. Unex-

pectedly, remarkable stability is observed when cement paste yield stress is low, which

coincides with a major enhancement of the yield stress due to confinement between the

bubbles. In chapter 5, we study the influence of bubble size, water-to-cement ratio and

surfactant content, in order to define a stability criterion for cement foams from the bub-

ble size, the yield stress of the interstitial cement paste and the time evolution of the ce-

ment paste.

In chapter 6, we measure water imbibition of cement foams with open porosity, pre-

pared with two different surfactants. Classic model cannot account for the low measured

imbibition velocity. We attribute this effect to the morphology of solid foams. Indeed, we

observe that water front is slowed down when it crosses the windows between the bub-

bles.

Lastly, some measurements of the compressive stress of cement foams samples are

presented in Appendix A.

2
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1.1 Introduction

Construction industry faces everyday new challenges. Need of new infrastructures is

growing; architectural innovations call for stronger and more flexible materials. At the

same time, environmental issues require to save raw resources and to enhance energy

efficiency of the new and renovated buildings.

Therefore, new construction materials must be developed. However, a successful new

construction material has to meet lots of requirements such as low production cost, low

environmental impact, thermal insulation, sound insulation, mechanical strength, dura-

bility, fire resistance and manufacturing/placement efficiency.

Cementitious materials fulfill a lot of these requirements. They are composed of a

binder (usually a mixture including Portland cement), water and aggregates, most of which

can be found near the construction site. They can be poured into molds or easily shaped

during a few hours after mixing. After chemical reaction of cement with water, it pos-

sesses high compressive strength. In addition, it is fire resistant and lasts several decades,

up to centuries. But it raises a major environmental concern because of the high amount

of raw materials needed and the carbon dioxide released during cement manufacture.

Addition of small amount of air bubbles into concrete improves its life time in areas

exposed to freeze-thaw cycles. In larger amount, it helps to save resources, reduce the

material density and improve its thermal resistance. Aerated concrete is thus a promising

material, as it combines the advantages of concrete while improving its environmental

performance.

In this chapter, we will first briefly describe the fabrication methods and properties of

aerated cementitious materials (part 1.2). We will see that the formulations and manu-

facturing methods are very numerous, and, therefore, the range of the final properties of

these materials is very wide. This motivates the approach used in the following chapters,

where we choose to prepare and study aerated materials with well controlled formulation

and morphology. We will mainly deal with the manufacture and the early time evolution

of well-controlled cement foams (chapters 2 to 5). This requires proper understanding of
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the fresh properties of aerated cementitious material. These properties result from the

behaviors of both the continuous phase (concrete, cement or mortar) and the bubbles. In

part 1.3, we will give an overview of the properties of fresh cementitous materials. In parts

1.4 and 1.5, we will deal with foams.

1.2 Aerated concrete

1.2.1 Production methods

Two types of methods are used to add air bubbles into concrete, mortar or cement paste:

chemical methods or physical methods. Note that materials are usually named in the

literature accordingly to their fabrication method. Cellular concrete or autoclaved con-

crete refers to chemical foaming, while foamed concrete or cement foam refers to physical

foaming [1].

1.2.1.1 Chemical foaming

Chemical foaming consists in adding to the mix slurry an additive which is able to re-

act and produce gas. Produced gas remains stuck in the slurry and forms pores. This

method is used for autoclaved aerated concrete. Autoclaved aerated concrete is a solu-

tion patented in the 1920’s [2] to manufacture prefabricated lightweight concrete blocks.

In this case, the additive is aluminium powder [3] which releases hydrogen in cement or

concrete alkaline environment [4]. Aluminium grain size and quantity control the final

size and volume of porosity [1]. Mechanical strength of autoclaved concrete is enhanced

by curing at high temperature and pressure (190° C and 1.2 MPa) [1, 5]; this curing method

is called autoclaving. Another common foaming agent for chemical foaming is hydrogen

peroxide H202 [6, 7].

1.2.1.2 Physical foaming

Physical foaming methods require the use of surfactant molecules to avoid coalescence

of bubbles. The effect of surfactant is detailed later in the next sections: in part 1.3.5, we

study their effect in cement paste, and, in 1.4, how they stabilize aqueous foams.

Bubbles can be brought into cement/concrete slurry by two methods. First, bubbles

can be entrained by fast mixing of the slurry ([8, 9, 10]). Surfactants used for this method

are usually called air entraining agents (AEA). They are used, for instance, to create freeze-

thaw resistant concretes, where air volume fraction is between 4 and 8%. Higher air vol-

ume fraction can also be reached. For instance, the fiber reinforced foams prepared by

Akthar & Evans [11] have air volume content up to 95%. The morphology and the amount

of the entrained bubbles are however hard to control, and the resulting foam can be un-

stable [1].

Precursor foam method allows a better control of the foamed cement properties [12].

Some authors also suggest that these foams have better thermal insulation capacities [7].
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A separate precursor foam, i.e. an aqueous foam made of water and surfactant, is pre-

pared and then incorporated into the slurry [13, 14, 15]. The morphology of the hardened

cement depends on the bubble size distribution of the precursor foam and on the evolu-

tion of the bubbles during mixing and until cement hardening. Conservation of bubble

size during mixing is however challenging. Paste consistency must be well chosen: if it is

too fluid, bubbles tend to rise and escape from the mix, and if it is not fluid enough, bub-

bles tend to break [13, 16]. Both cases lead to a decrease of the incorporated air volume.

In this thesis, we focus on material with very well controlled structure, that is why

the chosen manufacturing method is the precursor foam method (see chapters 3 to 6).

Therefore, for the literature review on the properties of cement foams, we focus mainly on

the foams obtained with this method; materials obtained by air entrainment or chemical

foaming are only used when complements are necessary.

1.2.2 Properties

1.2.2.1 Density and compressive strength

Cement foams are first characterized by their low density. Many studies aim at improv-

ing the mechanical strength at a given density. For autoclaved aerated concrete, den-

sities range from 300 kg/m3 to 1200 kg/m3 with compressive strength from about 1 to

10 MPa [2].

Cement foams prepared using physical methods usually have lower strengths. In Fig.

1.1, we can see compression strength as a function of density for samples prepared with

precursor foam method as a function of density. On the whole, compression strength

increases with density. The graph however illustrates the heterogeneity of the measured

strengths: results obtained by Jones & McCarthy [14] are much below the measurements of

Tonyan & Gibson [17] and Abd & Abd [18] at similar densities. At a given density, mechan-

ical strength depends on the composition and on the preparation protocol of the cement

foam. For instance, Nambiar and Ramamurthy [13] (red symbols in Fig.1.1) have noticed

an important effect of the filler type on the cement foam resistance. Falliano et al. [19]

measured the yield stress of cement foams made by the precursor foam method with var-

ious cements, surfactants, curing methods and water to cement ratio and observed that

all these factors play a role on the hardened cement foam strength.

In many industrial applications, strength-density ratio of the cement foams must be

optimized. From the literature results, we can distinguish three methods to go to this

direction. The first one consists in increasing the strength of the concrete matrix. For in-

stance, as mentioned previously, this is the role of autoclaving during the fabrication of

autoclaved aerated concrete. The use of reinforcing fibers [11] and carbon nanotubes [20,

21] has also been studied. Secondly, some authors use a lighter concrete matrix; the air

content at given density is therefore smaller. Lighter matrix can be obtained for example

by the use of lightweight aggregates [12] and the replacement of sand by fly ash [13]. The

third optimization mean could be the control of the bubble morphology, though, the ef-

fect of bubble morphology raises no consensus. In the strength-density model proposed

6
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Figure 1.1: Compressive strength of some cement foams prepared by precursor foam method and

measured 28 days after preparation. Empty back squares correspond to foams containing mi-

crosilica, polyesther fibers and superplasticizer [17]; black crosses, sand [14]; black diamonds [18].

All red signs have been published in reference [13], different solid particles have been added to

cement paste: fly ash (asterisks), fly ash and sand (dots), fine sand (crosses) coarse sand (circles).

by Hoff [22] and checked by Kearsley & Wainwright [23], no effect of the bubble mor-

phology appears. However, Nambiar and Ramamurthy [13] suggest that the strength loss

observed when fine sand is replaced by coarse sand is due to a non-homogeneous distri-

bution of the air bubbles in the latter case. Some authors notice that decreasing water-

to-cement ratio, although it increases the strength of the concrete matrix, decreases the

cement foam compressive strength [19], they attribute this effect to the irregular shape

of the bubbles. Some authors mention that best mechanical resistance is obtained when

bubble size distribution is narrower [24, 25] and when bubbles are not connected [26, 27].

Others [1, 28] also suggest that the strength of chemically foamed concrete is better in the

case of small and spherical bubbles.

However, a major difficulty to study the effect of foam structure on cement foam strength

arises from the fact that, in the studies previously mentioned, the structure of the foam

is not modified independently from the composition of the matrix. On the contrary, it

results for instance from a change of paste fluidity or surfactant. As a consequence, the

effect of foam structure on its final strength can hardly be distinguished from the modifi-

cation of the strength of the cementitious matrix.

Some authors have also measured the tensile strength [7] as well as the compression

elastic modulus [12] of aerated concrete. Similarly to compression strength, these me-

chanical properties also decrease when density decreases and are strongly related to the

composition of the matrix.

1.2.2.2 Thermal resistance

Samson et al. [29] compare the thermal conductivities of lightweight concrete prepared

with various methods: chemical foaming, air entrainment, pre-formed foam and lightweight
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aggregate concretes (see Fig. 1.2). Thermal conductivity depends mainly on density, in-

deed, values obtained for lightweight aggregate concretes are similar to aerated concretes.

Some authors report a linear relation between density and thermal conductivity [7]. In a

minor extent, thermal conductivity depends also on the content on the continuous phase,

for instance its moisture content [3]. A small dependence of the thermal resistance on the

foam structure is observed by some authors[3, 30]. However, like mentioned previously

in the case of compressive strength, porosity morphology has been changed by a modifi-

cation of the formulation of the foam. For instance, in chemically produced metakaolin-

blast furnace slag foams studied in [30], the size of the pores is changed with the concen-

tration of added stabilizing surfactant.

Figure 1.2: Thermal conductivity of lightweight concretes. Graph extracted from [29]. In the leg-

end, LA corresponds to concrete containing lightweight aggregates; GF, to aerated concretes pre-

pared with chemical foaming method; MF, to air-entrained concretes; PF, to pre-foaming method;

G, to foamed gypsum.

1.2.2.3 Rheology

There is no consensus on the effect of bubbles on the fresh properties of cement foams.

Rixom and Mailvaganam [16] report a decreases of fluidity when bubbles are entrained

with some surfactant. On the contrary, Aïtcin [31] and Ahmed et al. [32] mention a reduc-

tion of the viscosity due to entrained bubbles.
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1.3 Fresh cementitious materials

In literature concerning cementitious materials, a distinction is made between concrete,

mortar and cement paste. Cement paste contains no aggregates whereas mortar includes

fine aggregates (sand) and concrete, fine and coarse aggregates. In this work, we want to

understand the interaction of foam and surfactant with cementitious materials. We there-

fore choose to study the most simple cementitious material, i.e. cement paste, containing

only water and Portland cement. For the same reason, alternative binders such as fly ash

and blast furnace slag, which are widely used in practice due to their lower environmental

footprint, are not investigated here.

1.3.1 Suspension

Portland cement is mainly composed of clinker, obtained from limestone and clay. It is

mixed, heated at 1450° and ground. It contains several oxides, mainly calcium oxide CaO

(∼ 60 %) and silicium oxide SiO2 (∼ 20%), as well as Al2O3, Fe2O3, MgO, K2O and Na2O

[33]. When it is mixed with water, some of the ions dissolve, and for several minutes up

to hours, cement paste can be considered as a suspension of rigid particles in a strongly

alkaline electrolyte solution. During this dormant period, the cement can be poured in

mold or shaped. Then, chemical reaction between the cement oxides and water takes

place and the formed hydration products bind the unreacted particles to form a solid

material. We will discuss here only the properties of the fluid cement paste, before cement

hydration.

Size of the cement grains range from about 1 µm to 100 µm with average about 10 µm

[34, 35]. The cement grains have irregular shape and very rough surfaces, the radius of

curvature of the edges are of the order of magnitude of 500 nm [34]. Cement powder

specific surface area measured by Blaine apparatus is often close to 3000-4000 cm2/g.

Figure 1.3: Example of volume distribution of cement grain size in water. Measure has been made

with a laser granulometer, in the presence of various amounts of superplasticizer (SP) [36].

Cement density is close to 3.15 g/cm3. Cement content of a paste is usually given in

terms of the mass water-to-cement ratio W/C. For a cement paste, solid fraction Φp is

related to the water-to-cement ratio byΦp = (W/C×ρC/ρE+1)−1, where ρC and ρE are the
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densities of cement and water.

1.3.2 Yield stress fluid

A yield stress fluid is a material which can flow only if applied stress is above a critical

stress, called yield stress and noted τy [37]. Below the yield stress, its behaves like an

elastic solid, whose properties are often measured in a rheometer by applying oscillations

of small strain amplitude. Above the yield stress, the material flows, and the shear rate γ̇

depends on the applied shear stress τ.

In the case of cement paste, yield stress arises from attractive interactions between ce-

ment grains. A model, called Yodel (for yield stress model) has been derived by Flatt and

Bowen [38] to relate the interactions at particle scale with the macroscopic yield stress of

a solid suspension. Authors calculate how the unbroken bonds between solid particles

affect the effective maximal solid volume fractionΦ∗
max of the suspension: when particles

are connected to each other, they can be less effectively packed than unconnected parti-

cles, which reduces Φ∗
max . Solid suspension can flow only if solid volume fraction Φp is

smaller than Φ∗
max . The yield stress calculated with this approach is:

τy = m1

Φ2
p (Φp −Φper c )

Φmax(Φmax −Φp )
(1.1)

where Φper c is the minimum solid volume fraction required to create a percolated net-

work of solid grains and Φmax the maximal volume fraction of the grains with no attrac-

tive interaction. Φper c as well as Φmax depend on the particle shape and size distribu-

tion. m1 accounts for the intensity of the interparticle forces and is also related to the

size distribution of the particles. The major particle forces are the electrostatic repulsion

(for charged particles), the Van der Waals attraction and the steric repulsion (when some

polymers are adsorbed on cement grain surface). Cement grains are charged, but due to

high electrolyte content of cement paste interstitial solution, the range of the electrostatic

repulsion is short: Debye length is κ−1 ≈ 0.7 nm [39]. When molecules are adsorbed on

solid grains and form a layer of thickness hster above κ−1, they create a steric repulsion

between cement grains and increase the interparticle distance h up to 2hster . Van der

Waal attraction depends on interparticle distance FVdW ∝ 1/h2.

Flow properties of cement paste are well fitted with a Bingham model [34, 40, 41]:

τ= τy +µd γ̇ (1.2)

with µd the plastic viscosity of the paste. Both τy and µd are affected by the formulation

of the paste. For instance, a rise of W/C increases not only the yield stress but also the

plastic viscosity of the paste.

One of the methods to measure the yield stress consists in measuring the shear stress

over a wide range of shear rates and fitting the results with Bingham model (equation

1.2). A second method is the start-of-flow curve: small constant shear rate is applied and

shear stress is measured as a function of deformation. Yield stress is the maximum value
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of the curve (see Fig. 1.4 (a) for a typical start-of-flow curve of cement paste). Different

measurement methods can result in different values of the yield stress [36]. Note that the

yield stress predicted by the Yodel corresponds to the start-of-flow method, and that this

method will be used in the following chapters (see chapters 3 and 4).

Figure 1.4: Example of start of flow curve of cement paste, with two different scales. Measured

yield stress is the maximum observed in graph (a), the corresponding critical strain is 2.5%. On

graph (b), the critical strain for C-H-S bonds is observed close to 0.05%. [35]

The formation of the structure of cement grains due to Van der Waals forces takes

place in a few seconds. The critical strain of the percolated structure, i.e. the deformation

needed to break the bonds, is a few percent.

When cement paste is at rest for several minutes, yield stress increases with time. Ini-

tial yield stress can be retrieved by a strong shearing of the cement paste. These obser-

vations remind the behavior of thixotropic materials [37, 41, 42]. Their cause is discussed

below.

1.3.3 Hydration and thixotropic behavior

Cement paste hardening takes place through the nucleation and growth of hydration

products, mainly calcium silicate hydrates (CSH). CSH nucleates preferentially in the pseu-

do contact zones between cement grains, i.e. at the places where the distance between

solid surfaces is h. CHS hydrates act as solid bonds between cement grains and can be

broken when cement paste is sheared. "Rigid" critical strain needed to break the CHS

bond is much lower than the critical strain associated to flocculation: only a few hun-

dredths of percent [35]. This small critical strain is illustrated in Fig. 1.4 (b). The elas-

tic properties of cement paste due to CHS bond can be measured with oscillations tests:

oscillations of strain amplitude ε0 < 10−4 are applied, and stress response recorded. In-

phase material response gives the elastic modulus, while out-of-phase response accounts

for the viscous dissipation.

A typical elasticity evolution curve is shown in Fig. 1.5 (a). The network of CSH bond

is formed in about 100 s. Then elastic modulus increases linearly with time due to the

increase of the area of CSH bonds. Formation and growth of CSH bonds are also respon-

sible for an increase of the yield stress. The stress at the rigid critical strain, i.e. about
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0.05%, increases with time. After a few minutes, it overcomes the stress at the soft critical

strain (about 2.5%). That is to say that the measured yield stress during the first minutes

is related to the Van der Waals forces, whereas, after about 15 min, it is related to the CSH

bonds and increases linearly with time [35] (see Fig. 1.5 (b)).

Figure 1.5: Evolution of the rheological properties of cement paste with time. (a): Elastic modulus,

measured with strain oscillations, amplitude 0.03 % and frequency 1 Hz [35]. (b): Yield stress

measured by start of flow curve [35].

1.3.4 The role of chemical admixtures

We have mentioned that, to prepare cement foams in chapters 3 to 5, we will add pre-

cursor aqueous foam to cement paste. The precursor foam contains surfactants. Adding

chemical additives to cement paste can strongly affect its properties in the fresh state. Let

us first say a few words about the common additives for concrete.

The most used of them are superplasticizers, which make the mix more fluid. Su-

perplasticizers are polymers which adsorb on cement grain surface. Layers of adsorbed

polymers (thickness hster is several nm) on neighboring grains cannot interpenetrate and

create a steric repulsion. The increased separation distance h reduces the intensity of Van

der Waals forces, which decreases the yield stress.

Rheological properties of cementitious materials can also be modified by the use of

viscosity-modifying admixtures. With notation defined previously (see equation 1.2), they

increase the plastic viscosity µd of the paste with no major modification of the yield stress

τy . These additives are used for instance for self-compacting concrete, whose yield stress

is very low, to maintain a homogeneous distribution of solid particles in the paste [43].

They are large polymers, which can either increase the viscosity of the interstitial solution,

create bridges between cement grains by adsorbing simultaneously on several particles or

produce depletion forces.

Some superplasticizers delay hydration of cement paste. This is often an undesirable

effect due to the surface coverage of cement grains by the adsorbed polymers. When hy-

dratation retardation is required, other additives called retarders are used. Most of them

are sugars. Their working mechanism is not yet perfectly understood; it may be related to

preferential adsorption of these additives on the most reactive cement phases [44].
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Other additives include setting accelerators and admixtures to prevent water from

freezing.

1.3.5 Surfactants in cement paste

Surfactants, or “surface active molecules", are also widely used concrete additives for two

aims: air-entrainment in the production of freeze-thaw resistant concrete and shrink-

age reduction. They are amphiphilic molecules, i.e. they are composed of a hydrophilic

head and a hydrophobic tail. Surfactants are classified according to the nature of the hy-

drophilic head. They are called anionic if the head is negatively charged, cationic if it is

positively charged, amphoteric or zwitterionic if both charges are present and non-ionic

when it is not charged. In addition to the different hydrophilic heads, surfactants also

differ by their molar mass. For usual synthetic surfactants, it is rather low: 288 g/mol for

anionic sodium dodecyl sulfate (SDS) studied by [45] and 336 g/mol for cationic tetrade-

cyltrimethylammonium bromide (TTAB). On the other hand, molar mass of proteins,

used by [12, 46], is much bigger than SDS or TTAB, about 20 000 g/mol for instance for

casein.

Several authors have observed that surfactants adsorb on cement grains. Fraction of

adsorbed surfactant depends both on their chemical formula and on the cement compo-

sition [8, 47, 48]. Reported consequences of surfactant adsorption are a change of cement

grains zeta potential [49], a hydrophobization of cement grains [49] and bridging between

cement grains [16]. In addition, surfactants may interfere in cement hydration. Complex-

ation with calcium ions is reported by [10, 45, 47] and modification of the structure of the

hydration product crystals, by [10, 50]. Some authors have also measured a delay of hy-

dration due to surfactants [47, 51, 52]; Kuzielová et al. [52] note that retardation can be

avoided if low amount of surfactant is used.

Surfactants used for air-entrainment are called air entraining agent (AEA). They stabi-

lize air bubbles which enter the paste during the mixing process. Most of AEA are nega-

tively charged [10, 16, 43]. Some authors mention that voids are more stable in this case

[8, 9]. Indeed, anionic surfactants tend to adsorb both on air-water interfaces and cement

grain surfaces. They create bonds between cement grains and air bubbles, which avoids

sedimentation of cement grains and rising of the bubbles.

Shrinkage reducing admixtures are often non-ionic surfactants. Shrinkage reduction

is due to their ability to reduce the surface tension [43], and therefore, to decrease the

internal stresses due to capillarity during hydration and drying of concrete (see parts 1.4.1

and 1.4.2 for the definition of surface tension and how it is affected by surfactants).

Effect of surfactant on the rheology of cement paste has hardly be studied indepen-

dently from the consequences of bubbles addition. We can however mention the study of

Rixom and Mailvaganam [16], who report an increase of apparent viscosity η(γ̇) = τ/γ̇ =
τy /γ̇+k for several mixing velocities (i.e. several shear rates γ̇) when anionic surfactant is

added. Non-ionic surfactant, on the other hand, has no effect on rheology.

This short literature review on surfactant in cementitious materials reveals that surfac-

tants sometimes have the same consequences as usually concrete admixtures: they may
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adsorb on cement grains, delay hydration, bridge the particles... Hovewer, these effects

depend of the chemical formula of the surfactants. Systematic investigation of several

surfactants is required to elucidate the consequences of surfactants in cement paste, in

order to facilitate the selection of surfactants to formulate cement foams.

1.4 Aqueous foams

Foams have raised a lot of attention in the last decades due to their application not only

in construction materials, but also in food industry, cosmetics, etc. They are materials

containing two phases: gas bubbles are dispersed in a continuous phase. For all these

materials, the final properties result, on the one hand, from the properties on the contin-

uous phase, and on the other hand, from the role of the air bubbles. Let us first focus on

liquid foams. The phenomena described in this part apply to precursor foams used for

the cement foam fabrication (see part 1.2.1). In addition, they enlighten the role of the

bubbles in the behavior of the cement foams. How the cement paste can affect this role is

discussed in part 1.5.

We will only focus on the most important points to produce and understand cement

foams. For a more detailled description of the physics of foams, the reader can refer to the

books [53] and [54].

1.4.1 Surface tension and Laplace’s law

The creation of an interface increases the free energy of the system proportionally to the

surface area of the interface [55]. This additional surface energy is called surface tension

and will be noted γ. In other words, surface tension is homogeneous to a force per unit

length; it acts as a force that tends to reduce the area of the interface.

Surface tension leads to a difference of pressure between the phases of each side of

the interface, called capillary pressure PC and given by Laplace’s law [53, 54, 55] (with R1

and R2 the major radii of curvature on the interface):

PC = γ
(

1

R1
+ 1

R2

)
(1.3)

For example, in the case of an isolated bubble in a liquid, surface tension tends to

reduce the size of the bubble. Major radii of curvature are equal, R1 = R2 = R, and Laplace’s

law becomes:

PC = Pg as −Pl i q = 2γ

R
(1.4)

1.4.2 Role of surfactant in foams

Due to their specific shape, surfactants in solution tend to settle at air-liquid interface,

with their hydrophilic head in the aqueous solution and their hydrophobic tail in the

air. First consequence is a reduction of the surface energy: when surfactant concentra-

tion increases, surface tension γ decreases down to a minimal value. The minimal value
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is reached at the surfactant critical micelle concentration (CMC), it is the concentration

above which surfactant molecules gather into agglomerates, with their hydrophobic tail

close to each other and hydrophilic head toward the solution. Surfactant agglomerates

are called micelles. Surfactant effect on surface tension and distribution in solution is

shown in Fig. 1.6.

Figure 1.6: Effect of surfactants on air-water surface tension and surfactant distribution as a func-

tion of their concentration.

In addition, surfactant adsorbed layer at interfaces lead to a repulsion between the

interfaces, which is essential to foam stability [53] (see paragraph 1.4.4).

Low molecular mass surfactant diffusion from bulk solution to interfaces is very fast

[56]. Time needed to diffuse from the bulk solution to the interface is longer for proteins

[56], therefore the surface tension value decreases slowly with time before reaching a min-

imum. This make the creation of a foam by shaking or strong mixing more difficult than in

the case of low molecular mass surfactants. On the other hand, once adsorbed, proteins

hardly desorb from the interface, which explains that the foams are very stable [53].

1.4.3 Foam structure

When the amount of air bubbles in a fluid is increased, surface tension tends to keep the

bubbles spherical as long as their are not deformed by their neighbors. We call aerated

materials with spherical bubbles “bubble suspensions". In the following, we will distin-

guish the suspension regime from the foam regime, where the bubbles are deformed by

their neighbors. Note that when continuous phase is a Newtonian liquid, bubble sus-

pensions are in practice unstable because of buoyancy forces. Bubble suspensions will

therefore not be studied in this part. We will mention them in part 1.5.

In a foam, air-liquid surface area is very large. Surface minimization strongly con-

straints the foam structure. The morphology of dry foams, i.e. when air fractionΦ is close
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to 100%, is ruled by three laws, known as Plateau’s laws from the name of the Belgian

physicist who stated them in 1873 [53].

1. Two bubbles are separated by a liquid film of constant average curvature.

2. Three films join in channels called Plateau border and form 120° angles.

3. At each node, four Plateau borders intersect and form 109.5° angles.

Figure 1.7: (a) Illustration of 2nd and 3r d Plateau’s laws. (b) Schema of a Plateau border and nota-

tion of r , the radius of curvature of the Plateau border. Figure taken from [53].

When foams are dry, the volume of nodes and Plateau border is small. When the liquid

volume fraction Φl = 1−Φ is increased, Plateau border volume increases and the surface

of the liquid film between two bubbles decreases. The capillary pressure Pc , i.e. pressure

difference between air and liquid in the Plateau borders, can be deduced from Laplace’s

law, which can be written with the notations defined in Fig. 1.7 (b) as:

Pc = Pg as −Pl i q = γ

r
(1.5)

where r depends on the foam liquid fraction. To estimate its value, let us consider now

monodisperse foams, where all the bubbles have the same size. When Φl < 6.3%, bubble

configuration which minimizes the energy is body-centered cubic, whereas above 6.3%, it

is face-centered cubic. Bubble in the body-centered cubic configuration is called Kelvin-

Voigt cell. The following relation stands for Kelvin-Voigt cell when Φl . 1% [53]:

r ≈ R
√
Φl /0.33 (1.6)

Bubbles being not spherical, R is defined as the radius of the spheres having the same

volume as the bubbles.
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1.4.4 Foam stability

We have seen that the morphology of a foam follows Plateau’s laws and is affected by the

liquid fraction. This morphology evolves with time: gravity leads to drainage, and ripen-

ing and coalescence tend to make the bubbles grow bigger, which reduces the interface

quantity and therefore the total surface energy of the foam. The three foam destabiliza-

tion mechanisms are illustrated in Fig. 1.8. Let us focus on each of them.

Figure 1.8: Schema of the three foam destabilization mechanisms.

1.4.4.1 Drainage

“Drainage" refers to the destabilization of the foam due to gravity. The interstitial fluid,

denser than air bubbles, tend to flow towards the bottom of the foam.

In a liquid foam at equilibrium, the pressure in the liquid continuous phase is equal to

the hydrostatic pressure: Pl i q (z) = Pl i q (0)−ρl g z, where ρl is the liquid density and z = 0

at the bottom of the foam, where the bubbles are spherical and air fraction is equal to the

maximal volume fraction of disordered spheres Φc = 1−Φl ,c = 64%. Together with equa-

tions 1.5 and 1.6, it shows that in a foam at hydrostatic equilibrium, the liquid fraction is

imposed and depends on height [53]:

1√
Φl (z)

− 1√
Φl (0)

≈
p

3ρ2
l g 2Rz

γ2
(1.7)

Examples of the liquid fraction profiles are drawn in Fig. 1.9.

When a liquid foam is not at hydrostatic equilibrium, liquid flows between the bub-

bles. Foam can be compared with a porous medium of porosity Φl and flow velocity can

be predicted by the Darcy’s law:

u = k

µ

(
−dPl i q (z)

d z
+ρl g

)
(1.8)
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Figure 1.9: Liquid fraction as a function of height in a foam at hydrostatic equilibrium. Curves

are plotted from equation 1.7 with γ = 35 mN/m, ρl = 1000 kg/m3 and several bubble sizes: blue

curve, R = 150 µm; red curve, R = 300 µm and green curve, R = 750 µm.

where the permeability k depends on the bubble size and on the liquid content. It is also

affected by the surface viscosity and elasticity, which depends on the surfactant [53, 57].

The conclusion of this paragraph is that, for a given bubble size, gravity fixes the mor-

phology of a simple liquid foam: liquid fraction and the radius of curvature of the Plateau

borders are imposed at each height. As soon as the morphology of the foam differs from

this structure, liquid flows inside the Plateau borders and nodes. To create cement foams

and choose their air fraction, we will therefore need to rely on the complex behavior of

cement paste.

1.4.4.2 Coalescence

Two neighbor bubbles are separated with a liquid film made of two air-liquid interfaces.

Coalescence occurs when this film ruptures.

Film stability is due to the repulsion between the interfaces and is achieved thanks to

the surfactants. Layers of adsorbed surfactant of each interface repel each other due to

electrostatic repulsion (for ionic surfactants) and steric repulsion. The presence of non-

adsorbed surfactant micelles, or protein or polymer in the film can also enhance interface

repulsion [53]. The thickness of the film is typically a few tens of nanometers for low

molecular weight surfactants, and can be bigger for instance in the case of proteins [53,

57] .

Studies on an isolated film shows that the film ruptures when the pressure in air on

each side of the film reaches a critical value, the maximal disjoining pressure, which can

be deduced from the above described interface interactions. However, in a foam, film

rupture can be observed even if bubble pressure is below the maximal disjoining pressure.

Dynamic effect play also a role. For instance, creation of a new film during topological

rearrangement can lead to rupture if liquid fraction is too low [58].
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Key point is that the repulsion between interfaces depends not only on the chosen

surfactant and its concentration, but also on the liquid composition. In particular, elec-

trostatic repulsion has no effect if the distance separating the interfaces is above twice the

Debye length [56]. The Debye length decreases when the concentration of ions in the so-

lution decreases. Therefore, surfactant which are able to stabilize a foam in water might

not be as efficient in cement paste, where electrolytes concentration is very high.

1.4.4.3 Ostwald ripening

As a consequence of Laplace’s law, pressure in the smaller bubbles is higher that in the

bigger bubbles. As gas migrates from the high pressure areas to the lower pressure areas,

the size of the smaller bubbles keeps decreasing until they disappear. This phenomenon,

called Ostwald ripening, leads to a reduction of the number of bubbles in time and to an

increase of their average radius. In a foam, gas crosses the liquid films. A freshly prepared

foam first undergoes a transient regime, during which ripening occurs only locally. Then,

during the so-called auto-similar regime, the average radius of the bubbles is proportional

to the square root of the time. In a bubble suspension where there is no film between the

bubbles, ripening is slower: average radius increases as the cubic root of the time.

Ripening velocity of a 3D aqueous foam depends on several factors. Firstly, ripening

depends on the morphology of the foam. If the foam is initially monodisperse, ripening is

very slow at the beginning: after an induction period where no change can be observed,

the transient regime occurs. Then the auto-similar regime finally takes place. In addition,

ripening is faster if the initial bubble size is smaller. Secondly, the nature of the gas affects

ripening: the less soluble the gas is, the slower the ripening. Thirdly, surfactant plays

a major role: increasing the film thickness, creating of a less permeable layer near the

interface and increasing the surface elastic modulus all slow down ripening [57, 59].

1.4.5 Foam rheology

Let us say a few words about emulsions. Emulsions are a suspension of liquid drops in

a non-miscible liquid continuous phase. Like air-water interfaces, the interface between

both immiscible liquids can be stabilized by surfactants. Concentrated emulsions, i.e.

where dispersed phase volume fraction is above the maximal sphere volume fraction, pos-

sess a structure very similar to foams. Emulsion destabilization mechanisms are the same

as for foams, but they are usually slower, which makes their study easier. In particular,

liquid phases can have the same density and drainage effects can therefore be discarded.

This makes experimental investigation of the rheology of emulsions easier than for foams.

Most results obtained on emulsions are however true for foams [60, 61] and we will use

them in this paragraph.

Foams (and concentrated emulsions) are yield stress fluids. When applied stress is

small, bubbles stay in place while films and Plateau borders elongate: foams behave

like an elastic solid. When applied stress is above the yield stress, bubbles displacement

makes the foam flow.
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1.4.5.1 Solid regime

Similarly to cement paste (see part 1.3.3), elastic properties of foams and emulsions in

the solid regime can be measured by oscillation tests. Viscous modulus is one order of

magnitude below the elastic modulus [61].

Foam elastic modulus does not depend on oscillation frequency in the range 0.01 - 1

Hz. For a monodisperse foam, it is related to foam structure by equation 1.9. This empir-

ical relation has been first obtained on emulsions [62] with cone and plane geometry and

Couette geometry. It has been later confirmed with a Couette tool on foams [60, 61]:

G′
aq = αγ

R
Φ(Φ−Φc ) (1.9)

where α value is 1.4 according to [60, 61], while the value measured by [63] is 1.8.

The critical strain can be of the order of magnitude of 1 for dry foams and decreases

down to zero when liquid content increases and bubbles or drops become spherical [53,

61, 64].

1.4.5.2 Flow

Flow curve for liquid foams can be modelled by an Hershel-Bulckley law [61, 65, 66, 67]:

τy = τy,aq +kγ̇n (1.10)

The exponent n is about 0.5 in the absence of viscous dissipation and shear thinning

effects in films, and below otherwise[61, 67]; it is therefore affected by surfactant. The

plastic viscosity µd depends on the air fraction.

Yield stress dependence on liquid fraction has been experimentally observed for emul-

sions [64] and for foams [60]:

τy,aq = αγ
R

(Φ−Φc )2 (1.11)

Coefficient α depends on the measurement method. In [53], it is mentioned that α

varies between 0.2 and 0.5; value measured in [68] is 0.6.

1.4.6 Conclusion on aqueous foams

Production of an aqueous foam is possible thanks to the stabilization of the liquid films

between the bubbles by surfactants. The morphology of a monodisperse foam at given air

fraction and bubble size is ensured by the surface tension. However, foam destabilization

due to drainage, ripening and coalescence makes the control of the liquid fraction and

bubble size difficult. This raises major challenges to manufacture cement foams with

controlled morphology.

Cement foam stability issues are sometimes solved by increasing hydration speed, by

using fast setting cement [69] or adding accelerator admixtures [6, 7, 26]. However, fast

setting cements cannot be used for all applications, especially if the time needed to put in

place the material can vary. Therefore, we choose to investigate how the properties of the

fresh cement paste itself, as described in part 1.3, can stabilize the cement foam.
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1.5 Complex foams and bubble suspensions

We have seen in section 1.3 that a cement paste is a suspension of solid grains and that it

behaves as a yield stress fluid. To investigate how this can affect the foam stabiliy, we first

focus on granular foams (parts 1.5.1 and 1.5.2), and then on the effect of yield stress (part

1.5.3).

1.5.1 Hydrophobic particles

Ramsden in 1904 [70] and Pickering in 1907 [71] studied respectively foams and emulsions

containing particles and reported a very good stability. Best stability is achieved when

contact angle θ of air-liquid interface on the solid surface is close to 90° (see example on

Fig. 1.10).

Figure 1.10: Effect of the addition hydrophobised Ballotini beads on the stability of aqueous foam.

Half life ratio is (tpar t − taq )/taq where tpar t is the half life duration of the foam with particles and

taq the half life of the aqueous foam. Graph taken from [72]

This remarkable stability is achieved thanks to the adsorption of the particles at air-

liquid interface [56, 73, 74]. Note that for partially hydrophobic particle adsorption to

occur, the particles must be small enough to be able to diffuse to the interface within the

time of the experiment. In addition, adsorption barrier, due for instance to electrostatic

repulsion between interface and particle, must be small enough [56]. When these con-

ditions are fulfilled and a spherical particle of radius a reaches the interface, desorption

energy is given by [73]:

EDes = γa2π(1−|cosθ|)2 (1.12)

Desorption energy is maximal and equal to γa2π when θ= 90°, drops to γa2π/4 when

θ = 60° and is equal to zero for fully hydrophilic (θ = 0°) or fully hydrophobic (θ = 180°)

particles.

Let us first mention that experiments have showed that adsorbed spherical particle

monolayer can stop the propagation of a hole in the film [75].
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Besides, particles tend to prevent the formation of holes in the film. Coalescence is

avoided when adsorbed particles in films can stop the reduction of liquid film thickness

to zero. The critical pressure which leads to zero film thickness depends on the configu-

ration of the particles in the film. It has been theoretically calculated for a closely packed

single layer and double layer of spherical particles [73, 76] (see illustration of configu-

rations in Fig 1.11). For both configurations, calculated critical pressure is higher when

θ = 0° and decreases with contact angle. Film ruptures if (1) particles desorb or (2) film

thickness between the adsorbed particles reaches zero. Combination of these two condi-

tions leads to an optimal contact angle for film stability for each configuration: 70° for a

single layer of particles and 86° for a double layer [76].

Figure 1.11: Left: illustration of double layer (A) and single layer (B) of particles [56]. Right: Di-

mensionless pressure leading to film rupture [77]

Several authors have studied foams stabilization with colloidal particles [78, 79, 80],

with diameter ranging from several 10 nm to a few 100 nm. Van der Waals and electro-

static attractions between particles lead to the formation of agglomerates in the films

which can enhance film stability. One possible explanation is the increase of the criti-

cal pressure at which the film thickness is zero due to a 3D organisation of the particles

in the films [76, 80]. Gautier et al.[78] also observed the stabilization of foams with inter-

faces weakly covered by particles and suggested that this stability is due to the formation

of patches of particles at contact areas between the bubbles.

In addition to reducing the risk of coalescence, adsorbed particles around a bubble

can prevent gas dissolution into liquid phase and gas transfer to the neighboring bubbles.

Ripening is stopped at one of the two following conditions:

• The overpressure inside the bubbles becomes zero: Pg as−Pl i q = 0, or in other words,

the macroscopic surface tension of the interface with particles becomes zero [56].

Observations of the shape of the bubbles [81, 82] and numerical simulations [83]

showed that when the size of an armored bubble decreases, its shape does not re-

main spherical, as shown in Fig. 1.12. When the bubble deforms, the shape of the

air-liquid interface between the particles also changes: it takes the form of a sad-

dle, with average curvature zero, which, as shown by Laplace’s law (equation 1.3),

cancels the overpressure [83].
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• Decrease of bubble volume leads to a decrease of gas pressure: dPg as/dR > 0. This

condition is fulfilled when the adsorbed particles form an elastic shell of elastic

modulus Es = −Σdγ/dΣ with Σ = 2πR2 and when this elastic modulus fulfills to

Gibbs criterion, Es > 2γ [79, 84].

Figure 1.12: Images of deformed armored bubbles at two different particle-bubble size ratio:

faceted shape for a/R = 0.19 (C) and crumpled shape for a/R = 0.008 (D). Scale bars are 8 µm

long [83].

How can particle adsorption at interfaces be used to prepare cement foams? A solu-

tion succesfully implemented by Krämer et al. [4, 21] is the use of hydrophobized nanosil-

ica particles in the precursor foams. We can also wonder in which conditions cement

grains can themselves stabilize the interfaces. It has been shown that adsorption barrier

is proportional to the radius of curvature of the edge of the particles [56]. In this extent,

cement grains, due to their irregular shape, are good candidates to adsorb at interfaces.

In addition, adsorption barrier is reduced when electrolyte concentration is high, which

is the case in cement paste interstitial solution. However, using cement grains to stabilize

the interfaces requires to make them hydrophobic.

In practice, hydrophobization of solid particles can be achieved by the adsorption of

surfactants. The review [85] describes adsorption mechanisms of ionic and non-ionic

surfactants on solid surfaces. In the case of ionic surfactant in presence of an oppositely

charged solid surface, adsorption takes place in two phases. At low surfactant concentra-

tions, surfactant charged head is oriented to the solid surface, and hydrophobic tail, to the

solution (see Fig. 1.13, (b)). In this regime, contact angle θ increases which increasing sur-

factant concentration until a maximal value. In the second regime, surfactant molecule

agglomerate on the solid surface. Hydrophilic heads of adsorbed molecules in the second

layer are directed toward the solution; thus, contact angle decreases when surfactant con-

centration increases (see Fig. 1.13, (c)). Contact angle of the solid particles can therefore

be monitored by surfactant concentration.

In the case of cement, adsorption for anionic surfactant is higher than cationic sur-

factant [48, 86]. When anionic surfactant concentration increases, cement grain contact
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Figure 1.13: Mechanism of cationic surfactant adsorption at the surface of negatively charged sil-

ica beads. Blue and red circles represent respectively negative and positive charges [86].

angle increases up to a maximal value and then decreases [48, 86]. Petit et al. [86] ob-

served that hydrophobic cement grains do adsorb at the surface of bubbles rising in a

cement paste. How they affect foam stability remains to be investigated.

1.5.2 Hydrophilic particles

Hydrophilic particles, i.e. θ = 0°, remain in bulk aqueous solution and do not adsorb at

interfaces. Experiments showed that the presence of particles increases the life time of a

foam. In particular, they decrease drainage velocity. A small reduction of ripening rate has

also been observed, but its was interpreted as a consequence of the higher liquid content

in the foam due to the slower drainage [87].

Fig. 1.14 summarizes several experiments where the drainage of model granular foams

has been measured. These foams have been prepared from a suspension of hydrophilic

beads of uniform size and same density of aqueous phase.

Figure 1.14: Left: Drainage behavior of hydrophilic particle foams. λ is the ratio of the sizes of the

particles and of the Plateau borders, φp the particle volume fraction in the continuous phase and

φp (0) its value forλ→ 0 [88]. Right: Illustration of sphere packing in a Plateau border section: solid

volume fractions in the corners and against the walls are smaller than the bulk volume fraction

[89].
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Drainage behavior depends onλ, the ratio of the particle size to the Plateau border size

rPB, i.e. the radius of the biggest particles which can enter the Plateau borders. Relation

of λwith liquid fraction has been obtained by numerical simulations for 0. λ. 0.26 [90]:

λ= a

RBP
=

0.27
√
Φl +3.17Φ2.75

l

1+0.57Φ0.27
l

(1.13)

When λ. 1, the particles are not individually stuck in the foams. Therefore, particles

can flow in the Plateau borders and nodes together with the liquid. The drainage veloc-

ity decreases when particle volume fraction increases and is stopped when φp reaches a

critical value φcr i t
p which decreases when size ratio λ increases. For a given λ, effect of

particle fraction on suspension viscosity µ can be fitted with a Krieger-Dougherty law:

µ(Φp ) =µl i q

(
1− φp

φcr i t
p

)−2.5φcr i t
p

(1.14)

where µl i q is the viscosity of the liquid phase of the suspension. Dependence of φcr i t
p

on lambda is a consequence of the specific shape of the Plateau borders and nodes in the

foam. As illustrated by the schema on the right of Fig. 1.14, the beads cannot fill the whole

volume. Excluded volume, in the corners and near the walls, increases with increasing

bead size.

Stopping drainage with hydrophilic particles is facilitated when particles size increases

up to λ∼ 1. However, when λ exceeds 1, the particles remain stuck in the nodes, and the

liquid is free to move between the bubbles and the particles. Thus, drainage rate increases

again [91].

This study on a model solid suspensions highlights the major effect of particle critical

packing fraction. Critical packing fraction is expected to be affected by the particle shape,

the surface properties and distribution. To implement drainage arrest with cement grains,

the main issue would be to identify critical packing fraction and how it is affected by bub-

ble size. A decrease of drainage rate caused by confinement has already be reported in

foams containing coal fly ash particles [87] and clay nanoparticles [92].

Foams containing colloidal particles have also been investigated [93]. In this case

however, the authors suggest that drainage stabilization is due to the presence of a yield

stress in the colloidal suspension. Let us now focus on this point.

1.5.3 Yield stress fluid

As already mentioned, yield stress fluids do not flow when the stress they undergo is below

the yield stress. Therefore, to understand how the yield stress can stabilize the foam, yield

stress must be compared with the yield stress at stake during destabilization.

Regarding ripening, as we have seen in paragraph 1.4.4.3, destabilization is driven by

capillary pressure. Thus, ripening of a foamy yield stress fluid should stop if yield stress

is the same order of magnitude as the capillary pressure difference between the bubbles.

The critical yield stress to stop ripening is therefore [94]:
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τc,r ∼ γ

R
(1.15)

To estimate the stresses leading to drainage, authors have compared the Plateau bor-

ders and nodes to a porous medium whose pore size can be estimated by rPB. Drainage is

expected to stop when the yield stress reaches a critical value [93, 94]:

τc,d ∼ ρg rPB (1.16)

where ρ is the density of the continuous phase. Drainage prevention due to yield stress

has been experimentally observed by Goyon et al.[95], who have successfully created foams

with constant air volume fraction (71%) over the sample height, stable for several hours

(ripening was stopped by using low-solubility gas).

In addition, the presence of a yield stress makes the existence of bubble suspensions

possible, with a stability of several hours. Indeed, bubble cannot rise if the buoyancy

force Fbuoy anc y = 4/3ρgπR3 is compensated by the drag force due to suspending fluid

yield stress Fdr ag = CdτyπR2. Cd is a coefficient which depends on the geometry of the

moving object and on the surface properties. The minimum yield stress to avoid bubble

rising is therefore:

τc,buoy anc y =
4Rρg

3Cd
(1.17)

The value measured for a smooth sphere is Cd = 6.7 [96]. With ρ≈ 2000 kg/m3 for ce-

ment paste, calculated values are τc,buoy anc y ≈ 4 Pa if R = 1 mm and τc,buoy anc y ≈ 0.04 Pa

if R = 10 µm.

Therefore, the presence of a yield stress in cement paste, mortar or concrete explains

why cement foams described in the literature can possess air content as low as 10% or

20% and still be stable.

1.5.4 Rheology of complex foams and bubble suspensions

Rheological behavior of foams described in part 1.4.5 is strongly affected by the rheologi-

cal properties of the continuous phase.

1.5.4.1 Aerated yield stress fluids

The elastic modulus and the yield stress of aerated yield stress fluids have been studied

both in the case of high air content (85 to 95%) and low air content (below 50%). Measure-

ments and model of the reduced elastic modulus (i.e. normalized by the elastic modulus

of the continuous phase G’i nt ) are shown in Fig. 1.15.

At given volume fraction, reduced elastic modulus depends on the elastic capillary

number Cael , which accounts for the deformability of the bubbles compared to the sur-

rounding continuous phase and is defined by1:

1Note that in reference [99] related to bubble suspensions, definition of elastic modulus differs from this

definition by a factor 2: Cael = RG′
0/(2γ).
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Figure 1.15: Elastic modulus of aerated yield stress fluids, normalized by the elastic modulus of the

continuous phase, as a function of the volume fraction of the dispersed phase. Graph reproduced

from [97]; it summarizes data from [97] for emulsion foams (filled squares), from [98] for gelatine

foams (empty squares), from [99] for bubbles suspensions in emulsions (circles) and from [100]

for liquid droplet in silicone gel (empty diamonds).

Cael =
RG′

i nt

γ
(1.18)

At low air content, measurements of bubble suspension elastic modulus fit well with

a theoretical prediction from [101]. The suspension elastic modulus decreases when air

volume fraction increases for deformable bubbles, i.e. for large values of bubble radius or

continuous phase elasticity, so that Cael > 1/2 [99]. When bubbles are non-deformable

Cael < 1/2, suspension elastic modulus is expected to increase with air content. This

effect has not been experimentally measured with bubbles but has been observed with

small drops [100].

At high air content, macroscopic elasticity is a sum of the contribution of the bubbles

G′
aq (see equation 1.9), the contribution of the elasticity of the interstitial fluid G′

sk and a

coupling term ψ [97]. The contribution of the interstitial fluid G′
sk is given by Gibson and

Ashby relation [102]:

G′
sk ≈ G′

i nt (1−Φ)2 (1.19)

The coupling termψ accounts for the deformation of bubbles due to embedding elas-

tic fluid. An empirical relation has been proposed by [97] as a function of elastic capillary

number and air fraction. ψ→ 0 whenΦ→ 0, i.e. when the volume of the suspending fluid

is very low. In fact, when air fraction is very high, yield stress fluid foam behaves like a

dry aqueous foam. ψ/G′
i nt → 0 for large values of G′

i nt , that is to say that when the con-

tribution of the capillary effect becomes negligible compared to interstitial elasticity, the

contribution of the skeleton G′
sk is the main term, like in solid foams.

Yield stress of aerated yield stress fluids has also raised attention. It is affected by the
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Bingham capillary number, defined by2:

Cay =
Rτy,i nt

γ
(1.20)

For low air contentΦ< 50%, behavior of indeformable bubbles (Cay → 0) and fully de-

formable bubble (Cay →∞) have both been determined theoretically [101] as a function

of the air content. The curves have been obtained experimentally in oil-in-water emul-

sion, respectively for Cay . 0.22 and Cay = 1.1 [99]. Theoretical curves and experimental

points are shown in Fig. 1.16. Non-deformable bubbles hardly change the yield stress of

the suspension for air fractions up to 50%, whereas in the case of deformable bubbles,

yield stress decreases when air volume content increases.

Figure 1.16: Yield stress of bubble suspensions in yield stress fluids. Measurements for Cay . 0.22

(grey points) and Cay = 1.1 (blue triangles) and theoretical curves for Cay → 0 (solid line) and

Cay →∞ (dotted line) [99].

In the foam regime, i.e. at high air content, macroscopic yield stress is related to Bing-

ham capillary number and to air fraction by the following empirical relation [97]:

τy, f oam(Φ)

τy,aq (Φ)
= 1+ c(1−Φ)4/3Ca2/3

y (1.21)

where c = 110 is a fitting parameter.

1.5.4.2 Granular foams

The case of granular foams containing hydrophilic particles has also been investigated.

Elastic modulus and yield stress were measured after drainage of the foams. In particu-

lar, in the case of small particles (λ< 1), particle volume fraction in the continuous phase

is equal to the maximal packing fraction φp = φcr i t
p . Size effects, described in part 1.5.2

on the drainage of granular foams, have a notable consequence on the rheological prop-

erties of the foams [63]. When the particle size a is much bigger than the bubble size,

aqueous foam behaves like a continuous medium at the scale of the particles [63, 68]. As

2Definition used in [99] is Cay = Rτy,i nt /(2γ).
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a consequence, the granular foam rheological properties fit well with the properties of a

yield stress fluid (i.e. the aqueous foam) reinforced by particles. On the other hand, when

λ¿ 1, the small particles stuck in the Plateau borders and nodes can be considered as

a continuous granular structure [68, 103]. As λ increases between those two asymptotic

behaviors, the number of particles in the Plateau border decreases and reaches zero when

λ≈ 1. Illustration of the particle configurations for increasing values of λ are shown in Fig

1.17.

Figure 1.17: Images of granular foams for R = 225 µm and increasing particle radius. (a) a = 5 µm,

(b) strings of particles a = 20µm, (c) isolated particles in foam nodes a = 40µm, and (d) isolated

large particles embedded in foam a = 250 µm [63].

At given particle and air volume fractions, the biggest values of elastic modulus and

yield stress are obtained for the small particles. Let us deal now with this small particle

regime. Elastic modulus and yield stress curve do not depend on particle size as long as

a/R . 0.05 [68, 103]. They are given by the same equations as yield stress fluid foams.

Elasticity and yield stress of the granular phase are obtained as the only fitting param-

eters in equations 1.19 and 1.21, their respective values are G′
i nt = 150 kPa [103] and

τy,i nt = 120 Pa [68]. Note that coupling term was not taken into account for the calcu-

lation of G′
i nt , but it is expected to be negligible at this high value of the interstitial elastic

modulus. These values of the interstitial elasticity and yield stress correspond to a dense

granular material under confinement pressure 400 Pa, which is the order of magnitude

of the pressure exerted by the bubbles on the continuous phase in the reported studies

[63, 68, 103].

This analysis of the behavior of complex foams shows that, in the case of cement

foams, interstitial cement paste is expected to strongly improve the stability of the foam

compared to aqueous foam. Indeed, drainage is strongly reduced in the presence of yield

stress or hydrophilic particles. Regarding coalescence, a proper choice of surfactant or the

use of hydrophobic particles is required. Lastly, ripening can be stopped by the presence

of yield stress or hydrophobic particles. Besides, cement paste rheological properties and
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particle content is promising to increase the yield stress and elastic modulus of the foams.

In addition, thanks to cement paste yield stress, aerated materials can be prepared with

small air fractions.

1.6 Conclusion

Cement foams properties are mainly related to their density, but also to their formula-

tion and preparation protocol. To study how they are affected by pore configuration, ce-

ment foams with well controlled morphological properties must be produced. Mixing

well controlled precursor foam with cement paste seems to be a promising manufacturing

method. However, the structure of fresh cement foam is endangered by three destabiliza-

tion mechanisms, encountered in all liquid foams: drainage because of gravity, Ostwald

ripening due to pressure differences between the bubbles, and coalescence when a liquid

film ruptures. Comparison of studies on liquid and complex foams shows that cement

paste characteristics offer promising hints to stop or slow down destabilization.

First, the presence of a high interstitial yield stress in foams can stop drainage and

ripening. The interstitial yield stress is expected to depend on the water-to-cement ratio.

Similarly to concrete admixtures, surfactant adsorption on cement grains is expected to

modify the yield stress. This effect is the subject of chapter 2.

Second, particles have a strong effect on foam stability. Hydrophilic particles can slow

down and stop drainage. Hydrophobic particles, on the other hand, adsorb at interfaces

and can avoid ripening and coalescence. For the implementation of cement particles

as stabilizers, we therefore have to monitor cement grain surface properties by choosing

adequate surfactant and concentration. We will discuss this aspect in chapters 4 and 5.

We have reviewed literature studies about the rheology of aqueous and complex foams.

They show that yield stress and elastic modulus of aerated yield stress fluid or particle

foams depend on the rheological properties of the continuous phase and on the charac-

teristics of the bubbles (size, volume fraction and surface tension). This analysis will be

used in the following chapters for two points. In chapter 3, we will compare the measured

yield stress of aerated cement pastes, prepared with two different surfactants, with yield

stress of a model aerated yield stress fluid. In chapter 4, rheological measurement of fresh

cement foams will be used to assess the properties of the interstitial cement paste.
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Chapter 2

Effects of surfactants on the yield stress

of cement paste
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2.1 Introduction

Cement foams are promising materials. Indeed, addition of air into cement paste may of-

fer, besides substantial material savings, improved thermal properties. This is why, since

several years, the study of aerated cementitious materials has become an active field of

research. In order to control cement foam morphology, the destabilisation mechanisms

of fresh cement foams, until cement hardening, must be stopped or slowed. Stabilisation

can be achieved by monitoring rheological properties of the fresh cement paste, espe-

cially its yield stress [1, 2, 3].

Most formulations of cement foams include chemicals known as surfactants. Surfac-

tants can either enhance air entrainment into cement paste (air entraining agents) during

fast stirring of the cement slurry, or they can be used to create a pre-formed aqueous foam

which is later incorporated into the cement slurry. In both processes, surfactants remain

in the cement paste and may thus affect the rheological and early age properties of the

cement matrix.

Besides cement foams, surfactants can be used as air entraining agents in frost-resistant

concrete and as shrinkage reducing admixtures [4].

In this study, we consider the interaction of surfactants with a cement paste. We first

investigate the effect of a synthetic pore solution on the foaming ability of these surfac-

tants. Then, we measure the effect of surfactant addition on the yield stress of the cement

paste. Our results show the major role played by the amounts of surfactant adsorbed at

the surface of the cement grains both on fresh cement paste yield stress and on the hy-

drophobization of the cement grains.

2.2 Background

2.2.1 Surfactant molecules in cement paste

Surfactant molecules are composed of a hydrophilic head and a hydrophobic hydrocar-

bon tail. In aqueous solution, some surfactant molecules adsorb at the air-water inter-

face, with their hydrophobic tails towards air, which reduces the liquid-air surface tension
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γ [5, 6]. Above the Critical Micelle Concentration (CMC), the air-water interface becomes

saturated with surfactant molecules while residual surfactant molecules in bulk solution

gather into elements called micelles. As a consequence, above CMC, liquid-air surface

tension does not decrease any more with increasing surfactant concentration as shown

in Fig. 2.1.

Figure 2.1: Surfactant distribution and surface tension

The hydrophilic head can either be charged (ionic surfactants) or polar (non-ionic

surfactants). Ionic surfactants are said cationic if their charge is positive, anionic if their

charge is negative and amphoteric when their head include both types of charge [5, 6].

Surfactants enhance foam creation and foam stability through several mechanisms. First,

lowering surface tension means that less energy is needed to create air-water interface.

Then, layers of surfactant on both sides of the water film separating two bubbles repel

each other due to some steric interactions and, in the case of ionic surfactants, some elec-

trostatic interaction. In addition, it was shown that micelles or other structures inside the

film may contribute to its stabilisation [5]. It is worth noting that dynamics of surfactant

adsorption at air-water interface is also an important aspect for foam generation and sta-

bility: to stabilize newly formed interfaces, surfactant adsorption must indeed be faster

than surface formation [5]. Length of stretched hydrocarbon chain in nm is related to the

number of carbon atoms nC by [7]:

l = 0.1275(nc −1)+0.19+0.23 (2.1)

Stretched length of a 10 carbon chain is therefore 1.57 nm, which gives an idea of the

size of these molecules compared to other organic compounds used as additives in the

cement and concrete industry, namely around 5 nm for water reducing agents such as

PCE comb copolymer coils [8, 9, 10] and around 50 nm for the coiled macromolecules

used as viscosity agents [11].

Most organic additives for cement adsorb on the cement grain surfaces [12, 13]. In the

case of large molecules, such as poly-carboxylic ethers, adsorption of polymer coils leads
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to steric repulsion between grains and to a decrease in the yield stress of the suspension

[14, 15].

Adsorption of surfactant molecules on cement grains has been reported by [6, 16, 17].

Due to their specific molecular structure, surfactant molecules may adsorb in various

configurations as single molecules adsorption is reported to find its origin in either the

hydrophilic head or the hydrophobic tail depending on the surface properties [12, 13].

While in 1992, Uchikawa et al. [16] made the hypothesis that hydrophilic heads were ori-

ented towards the bulk solution, the hypothesis of electrostatic adsorption of the head

was latter most common for ionic surfactants [6, 13, 17]. Zhang et al. [17] measured ad-

sorption on cement of three surfactants - cationic, anionic and non-ionic - and com-

pared adsorption isotherms with contact angle on compacted cement powder pastilles

(see details of a similar protocol in paragraph 2.3.2.5). They observed no adsorption with

the non-ionic surfactant, whereas partial adsorption of both tested ionic surfactants was

measured no matter their initial concentrations. For ionic surfactants, adsorption of ionic

heads on the cement particle surface is reported to lead to an hydrophobization of the

grain surface and thus to an increase of the contact angle with water of the resulting

hardened material up to a maximum value reached when the grain surface is saturated.

At higher concentrations, hydrophobicity of the cement grains surface was noted to de-

crease in the case of anionic surfactant. This effect was explained by the formation of

surfactant agglomerates at the surface of the grains. Recently, Petit et al. [18] also mea-

sured the above hydrophobicity maximum at intermediate concentrations for one an-

ionic surfactant. The experimental procedure was the imbibition of cement powder by

the surfactant solution. They observed no effect of cationic surfactant on cement surface

properties.

2.2.2 Foam stability

Before cement setting and hardening, the initial pores structure obtained after mixing

can get destabilized through three distinct mechanisms: (1) the gravity driven flow of the

paste through the rising bubbles leads to an heterogeneous distribution of air within the

sample, (2) difference in capillary pressure between bubbles of different sizes leads to gas

exchange (ripening); it leads to bubble rearrangements and a global increase of the aver-

age bubble size Rb as a function of time, and (3) foam films breakage induces the coarsen-

ing of the bubble assembly through coalescence events. It is to note that the magnitude

of the two latter mechanisms increases as the gas fraction increases, which is precisely a

consequence of gravity drainage.

Bubble coalescence is generally counteracted by a significant disjoining pressure aris-

ing in thin liquid films due to the presence of surfactants at concentrations above the

CMC. However, in cement pastes and more specifically in the high ionic strength inter-

stitial fluid, the ability of common surfactants to ensure the stability of thin water films is

not obvious and deserves specific investigation [6].

A relevant strategy to control the destabilizing mechanisms of a foam is to take advan-

tage of yield stress (τy ) properties of pastes [1, 2, 3]: basically, drainage stops as τy ∼ ρg r ,
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Figure 2.2: Destabilisation mechanisms in a foam

where ρ is the density of the paste and r is the typical size of interstices between the bub-

bles. Moreover, the ripening process is strongly dampened as τy ∼ γ/Rb , where γ is the

surface tension of the liquid/air interface. An alternative foam stabilization strategy in-

volves particles adsorption at the bubbles surface thanks to the in-situ hydrophobization

of the particles contained in the paste to be foamed [19], [18]. No matter the strategy cho-

sen to stabilize the foamed material, adsorption properties of surfactants at the surface of

cement grains appear in all literature available as a crucial parameter.

2.2.3 Yield stress of solid suspensions

Cement paste is a suspension a solid cement grains in aqueous phase. The yield stress

τy depends on the interaction of each solid particle with its closest neighbors. A relation

between macroscopic yield stress and particle interaction has been proposed in the so-

called Yodel [20]. In this model, the inter-particle force parameter G(h) is defined as

G(h) = FVdW +FES +FSter

ã
(2.2)

where FVdW is Van der Waals attractive force between particles, FES is the electrostatic

interaction, FSter is the steric interaction and ã refers to the radius of curvature of the

particle surface. G depends on the distance h between solid grains. Flatt et al. [20] showed

that the yield stress of a suspension is proportional to the maximum value of G, obtained

at the minimal inter-particle distance.

Hence, to understand the change of yield stress with surfactant addition, analysis of

the interactions between cement grains must be carried out. First, attraction due to the

Van der Waals force is inversely proportional to the square of the interparticle distance:

FVdW ∝ 1/h2. Thus, increasing distance between the cement grains reduces the Van der

Waals interaction. Secondly, for a charged surface in an electrolyte solution, the range

of the electrostatic force is given by the Debye length κ−1. The Debye length gives the

thickness of the ions layer balancing the electrostatic close to the solid surface. In cement

paste, the Debye length is rather small because of the high ionicity of the interstitial solu-
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tion, i.e. κ−1 ' 0.7nm [14]. Thirdly, steric interaction depends on the thickness of the layer

of adsorbed molecules on grains surface. Adsorbed layers on grain surfaces can hardly

interpenetrate. For instance, poly-carboxylate superplasticizers are polymers which ad-

sorb on cement grain surface. The layer they form is at least 2.5nm thick. If hSter is the

thickness of the layer of adsorbed molecules, steric interaction imposes h ≥ 2hSter . The

increase of the distance between the grains leads to a lowering of the attractive Van der

Waals forces and thus to fluidification of the paste.

2.3 Materials and methods

2.3.1 Materials

2.3.1.1 Cement

Cement is a CEM I from Lafarge, Saint Vigor. Blaine specific surface provided by the man-

ufacturer is 0.359 m2/g. Chemical composition is given in table 2.1.

C3S C2S C3A C4AF CaO/SiO2 Al2O3

62.0% 16.0% 2.1% 15.2% 3 4%

MgO Na2O +0.658 K2O SO3 Gypsum L.O.I.

1.1% 0.34 % 2.58 % 2.4% 0.9%

Table 2.1: Chemical composition of CEM I cement from Lafarge, Saint-Vigor

2.3.1.2 Synthetic cement pore solution

To study the effects of ions from the cement paste on surfactants, a synthetic cement pore

solution is prepared by dissolving in distilled water 1.72 g/L of CaSO4 ·2H2O, 6.959 g/L of

Na2SO4, 4.757 g/L of K2SO4 and 7.12 g/L of KOH [21].

2.3.1.3 Surfactants

Surfactants are listed in table 2.2 with their charge, molar mass and active content when

given by the provider. Average values are presented when necessary. All of them have

been used as received from the provider. Fig. 2.3 gathers their molecular structures.

2.3.1.4 Cement paste preparation

The cement pastes studied here have a water-to-cement ratio of 0.5. They are prepared as

follows:

1. A cement paste at water-to-cement ratio 0.4 is prepared by adding cement to dis-

tilled water and is mixed by hand for 1 min.
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Name Charge Molar Mass Purity Provider

(g/mol) a%

TTAB + 336 ≥ 99% Sigma-Aldrich

TEGO® Betain F50 +/- 343 Evonik

SDS - 288 ≥ 98.5% Sigma-Aldrich

Steol® 270 CIT - 382 68-72% Stepan

Bio-Terge® AS-40K - 315 39.1% Stepan

Triton™ X-100 (labo-

ratory grade)

0 625 Sigma-Aldrich

Brij 700 0 4670 Sigma-Aldrich

Tween® 20 0 1225 97% Acros

Table 2.2: Surfactant properties. Molar weight is an average in the case of mixed molecules and a%

is the active content of the products

Figure 2.3: Surfactant molecular structures. Bio-Terge is a mix of several molecules close to the

one drawn here.

2. The paste rests for 20 min so that first hydration products (mostly sulfo-aluminates)

form [21] before surfactants are added.

3. A solution of surfactant in distilled water is added, in such a way that the final wa-

ter to cement ratio reaches W/C=0.5. Hence, if the surfactant concentration in the

added solution is Cadd , the concentration of the surfactant in the whole amount of

water contained in the cement paste is Ci = 1/5×Cadd .

4. The paste is mixed manually and slowly to avoid any air entrainment for 5 min.

A very important point to note here is that our mixing protocol is specifically chosen
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in order to avoid any air entrainment or any foaming. We focus here on the role of surfac-

tants only and we therefore chose to prepare pastes, in which the presence of a surfactant

and its concentration were the only varying parameters. For some samples, we checked a

posteriori that only very few bubbles were entrained through the surfactant addition pro-

tocol either by centrifugation of the sample or by addition of small amount of the paste

into distilled water. We did not visually detect any air bubbles release in these tests (results

not shown here).

2.3.2 Methods

2.3.2.1 Surfactant compatibility with cement pore solution

50mL tubes are filled with 10mL of solution containing 0.1 g of surfactant. Tubes are

shaken by hand during 15s, then placed vertically at rest. First, precipitation is visually

assessed, then samples are classified according to their foaming capacity:

• 0 : No foam

• + : Foam volume below 20 mL

• ++ : Moderately stable foam

• +++ : The tube is filled with foam for longer than 1h

For each surfactant, a sample prepared from the synthetic cement pore solution de-

scribed in paragraph 2.3.1.2 is compared to a reference sample prepared with distilled

water (pH=7).

2.3.2.2 CMC

CMC in water and in cement pore solution are obtained from surface tension measure-

ments using the Pendant Drop Method and a Teclis tensiometer (see figure 2.1). The test

consists in generating a drop of solution at the lower end of a vertical needle. The surface

tension is then computed from the drop profile, according to the Young-Laplace equation.

2.3.2.3 Yield stress

Yield stress is assessed using simple spread tests. Cement paste is poured on a horizontal

flat surface. When flow stops, two perpendicular diameters of the paste deposit are mea-

sured. The yield stress is then computed from the average radius R, the sample volume ω

and the material density ρ using the following formula [22]:

τy = 225ρgΩ2

128π2R5
(2.3)

Note that Eq. 2.3 is valid if the thickness of the sample is small compared to its radius

and if the surface tension effects can be neglected. The second condition writes:
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τy À 3(1− cosθ)γ

R
(2.4)

Theta is here the contact angle between the cement paste and the solid surface. γ

being smaller than the value for pure water, i.e. 70 mN/m, and R being higher than 5 cm

for our tests, the second term of equation 2.4 is of the order of 0.1 Pa. Thus, all measured

values computed from Eq. 2.3 which are below 1 Pa are taken equal to 1 Pa.

2.3.2.4 Adsorption

To measure adsorption of surfactants on cement grains, we centrifuge the cement paste

to collect the interstitial liquid. This liquid is filtered through a 0.45 µm polypropylene

filter and analyzed with a Total Organic Carbon analyser TOC VCSH manufactured by Shi-

madzu.

TOC values are converted into concentration through calibration curves, which have

been previously identified for each surfactant. The measured raw value is corrected by

subtracting the carbon content of the cement powder due to the presence of grinding

aids [21]. This gives access to the residual concentration of surfactants in the extracted

interstitial liquid Cr . Adsorption value A per gram of cement is then calculated as follows:

A = (Ci −Cr )×W/C.

It can be noted that the relative error is large for smaller residual concentration as

measured TOC values get close to the reference value due to grinding aid. Hence, all

residual concentration values below 0.01 g/L have been set to 0.01g/L. As the smallest

surfactant initial concentration is 0.1g/L, error on adsorption value is below 10%.

2.3.2.5 Contact angle

The contact angle of water on cement α is measured by placing a distilled water drop on

a cement pastille using a tensiometer (Teclis).

To prepare the cement pastille, the cement paste is mixed as described in 2.3.1.4, then

most of the water is removed either by sedimentation or by filtration. Full drying is then

obtained by placing the sample in a 20°C and 30% humidity chamber for at least 30 hours.

The resulting solid is ground into a fine powder, which is then compacted to prepare 2 cm

diameter pastilles by applying a 210 MPa compaction stress for 15 seconds. Preliminary

tests showed that increasing compaction stress from 150 to 210 MPa reduces the pene-

tration speed of the water into the pastille; hence, 210 MPa stress has been chosen for all

samples.

α is assessed from images of the water drop as shown in figure 2.4. After the drop is

set on the pastille, it fully penetrates into cement in 2 to 10 seconds, even if the surface is

initially hydrophobic. This may be explained by the change in surface properties due to

the dissolution of adsorbed surfactant molecules into water. This specific phenomenon

may lead to underestimate α. Picture is taken 1 second after drop deposition and for each

sample, measurement is repeated 4 times and the average value is considered.
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Figure 2.4: Example of pictures used for contact angle measurement. Left : reference sample, α

=19.6°; right : sample with initial concentration of Bio-Terge of 25 g/L, α =103°

2.4 Results and discussion

2.4.1 Surfactants in synthetic cement pore solution

Foamability of surfactant solutions in water and in cement pore solution are summarized

in table 2.3. For the latter case, the table reports whether a precipitate was observed.

Surfactant Preci- Foam Compati-

pitation in water in cement sol. bility

+ TTAB No +++ ++ YES

+/- Betain No ++ 0 no

-

SDS Yes +++ 0 no

Steol 270 No +++ +++ YES

Bio-Terge No +++ +++ YES

0

Triton X100 No ++ ++ YES

Brij 700 No + 0 no

Tween 20 Yes + 0 no

0 : No foam

+ : Foam volume below 20 mL

++ : Moderately stable foam

+++ : Tube filled with 40 mL foam

for longer than 1h

Table 2.3: Precipitation and foamability of surfactants in distilled water and synthetic cement pore

solution

For some surfactants, foam could not be obtained in presence of the synthetic cement

pore solution while foam could be generated with the same surfactant in distilled wa-

ter. Among them, SDS and Tween 20 precipitated when added to the cement solution.

This observation for SDS is in agreement with results reported by Jolicoeur [23], who no-

ticed that there is no residual surfactant in solution when SDS is added to a cement paste,

even at high surfactant dosage. Note however that air bubbles have been successfully en-

trained in the cement pastes containing SDS in [23, 24]. Some authors [4, 23] suggested

that the insoluble surfactant - calcium salts enhance stabilization of the bubbles. Similar

conclusion was obtained by Tunstall et al. [25], who observed the complexation of some
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commercial air-entraining agents in their synthetic cement pore solution. Besides, Petit

et al. [18] observed a modification of the surface properties of cement grains when adding

SDS to a cement paste, suggesting that, at the low concentration they studied, some SDS

molecules did not precipitate but adsorbed on cement grain surface.

Regarding Betain and Brij 700, even if no precipitate could be visually observed, no

foam could be generated in the synthetic cement pore solution. One hypothesis to explain

the incompatibility of Betain and Brij 700 with cement solution is the formation of soluble

complexes with ions (calcium, sulfate...).

The other four surfactants are compatible with the cement solution: one of them is

cationic (TTAB), two are anionic (Steol and Bio-Terge) and one is non ionic (Triton). In

the following, we will focus on these four surfactants.

Surface tension was measured for distilled water and synthetic cement pore solution

without surfactant. In both cases, it was around 71mN/m. Figure 2.5 gives the surface

tension curves for all four compatible surfactants. On the X-axis, concentration refers

to the total surfactant mass added to the solution whether they are under liquid or solid

form, which means that it includes some water in the case of Steol and Bio-Terge solutions

(see table 2.2).

Figure 2.5: Comparison on surface tension curves of compatible surfactants in distilled water and

synthetic cement pore solution

The cement solution has a strong effect on the surface tension of solutions containing

ionic surfactants. Because of the high ion content, electrolyte solution reduces the range

of the electrostatic repulsion between surfactant charged heads [5]. Therefore, surfactant

density increases at gas-water interfaces, which leads to a decrease of the surface tension.

As expected, this reduction is found to be small for non-ionic Triton. Tunstall et al. [25]

observed, with some of the anionic surfactants they tested, an increase of surface tension

in alkaline solutions containing calcium ions. This effect was related to the loss of surfac-

tant molecules available to settle at air-water interface due to the formation of complexes
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with calcium ions. This effect is not observed in figure 2.5 because the chosen surfactants

are not affected by calcium ions.

CMC are deduced from these curves as the intersection of two straight lines, each of

them being representative of the surfactant effect before and after the CMC. In the follow-

ing, the CMC measured in the synthetic cement pore solution is noted CMC*. All extracted

CMC in water and CMC* are given in table 2.4. For all ionic surfactants, CMCs are lower

in synthetic cement pore solution than in distilled water solutions whereas it stays almost

constant for the non-ionic surfactant. Indeed, reduction of the electrostatic force range

favors the agglomeration of ionic surfactant molecules into micelles.

Surfactant CMC CMC*

TTAB (+) 1.5 g/L 0.5 g/L

Steol (-) 1.5 g/L 0.3 g/L

Bio Terge (-) 2 g/L 0.5 g/L

Triton (0) 0.2 g/L 0.15 g/L

Table 2.4: CMC in distilled water and CMC* in synthetic cement pore solution. Values give weight

of the surfactants as sold by the providers.

It is worth noting that electrostatic repulsion between surfactant layers may contribute

to the stabilization of liquid films in foams. As a consequence, the above screening of

these forces may be at the origin of the faster destabilisation of the TTAB foam in cement

solution reported in Table 3 as well as the inability of Betain to form foam with the syn-

thetic cement solution.

2.4.2 Adsorption sites and surfactant distribution

Adsorption isotherms for the four compatible surfactants are given in figure 2.6.

Figure 2.6: Comparison of adsorption isotherms of compatible surfactants. On Y-axis, adsorption

is given in µmol per gram of cement and on X-axis, residual concentration is divided by the CMC*

in synthetic cement pore solution (see table 2.4).

First, let us note the difference of maximum adsorption for the surfactants. Measured

maximal adsorption is, for one gram of cement, 4.6 g of Steol and 13 g of Bio-Terge, that is

to say respectively 8.5 µmol and 16 µmol. Maximum adsorption of TTAB is 3.7 µmol (1.3
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g) per gram of cement. As mentioned in part 2.3.1.4, surfactants are added to the cement

paste 20 minutes after the first contact between cement and water. At this time, solid

surfaces in solution are hydroxylate surfaces of clinker phases, mainly C3S and C2S, and

first hydration products, C-S-H, ettringite and portlandite. In high electrolyte solution like

cement pore solution, calcium ions adsorb on negatively charged silicate surfaces (C3S,

C2S, C-S-H and portlandite), resulting in positive zeta potential [26]. On the other hand,

sulfate ions adsorbed on ettringite provide for negative zeta potential [26]. The diversity

of solid surfaces accounts for the different affinities of cationic and anionic surfactants.

Very low adsorption is measured for non-ionic Triton X100 (maximum 0.12 mg/g or

0.19 µmol/g), which is consistent with previous measurements of adsorption with this

surfactant [17].

Isotherms of Steol, Bio-Terge and TTAB in figure 2.6 can be compared with adsorption

isotherms of ionic surfactant from the literature. Such adsorption has indeed been exten-

sively studied [27, 28, 29, 30, 31] on silica or metal oxides. Typical adsorption isotherm

comprises four regimes: (1) isolated molecules adsorb "head on" thanks to electrostatic

attraction, (2) adsorption rate increases due to favorable hydrophobic interactions with

tails of previously adsorbed molecules, (3) starting from a residual concentration called

hemimicelle concentration (HMC) surface agglomerates form by attraction of the hy-

drophobic tails on hydrocarbon chains of the first layer of molecules. (4) at residual con-

centrations close to the CMC, adsorption reaches a plateau. This plateau may have two

origins: first, free molecule concentration varies slowly above CMC and micelles do not

adsorb on the surface [27, 30] (pseudophase separation model), secondly, the solid sur-

face may be saturated with surface agglomerates.

Figure 2.7: Four regimes model for adsorption of ionic surfactants on oppositely charged surfaces.

Schema is adapted from [29, 30].

The above four regimes cannot be clearly identified on Steol, Bio-Terge and TTAB

isotherms on figure 2.6. Main difference between cement and model systems from the lit-

erature are the diversity in potential adsorption sites in cement paste, to which one given

surfactant may have different affinities, making the dissociation of adsorption regimes

difficult. Though, we can observe that, for all of these three molecules, the adsorption

plateau is indeed reached close to the CMC*.

Regarding cationic TTAB, at lowest concentrations, adsorption is very low so that ini-
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tial slope is close to zero and adsorption isotherm has an S-shape. S-shaped adsorption

isotherms have been simulated by Zhu et al. [31] for systems where the equilibrium con-

stant of the formation of surface agglomerates is high compared to the constant related to

the adsorption of one molecule. In other words, in systems simulated by Zhu et al., an ad-

sorbed molecule hardly remains alone. This translates in a very low adsorption of single

molecules at low concentrations and a brutal rise in adsorption as soon as concentration

allows for the formation of agglomerates.

Contact angle of cement grain surface are plotted as a function of surfactant concen-

tration in Fig. 2.8.

For the reference sample, measurement has been carried out on 4 different cement

pastilles. The 15 obtained contact angle values range from 11◦ to 34◦ with average value

21◦ and standard deviation 7◦ (i.e. 33% of the average value).

Regarding samples containing surfactant, the drop imbibition takes more time, prob-

ably because surfactant dissolution is required prior to imbibition. For each surfactant

concentration, contact angle is measured on four different drops. Error bars in Fig. 2.8

give the highest and the lowest of the four values. They provide for an estimation of the

error related to the time of the measurement. Maximum relative error is 15% of the con-

tact angle for both anionic surfactants (Steol and Bio-Terge), 20% for cationic TTAB and

30% for Triton. Relative errors are smaller when surfactant adsorption is higher, which

tends to show that drop imbibition is delayed because of the surfactant desorption time.

Figure 2.8: Contact angle of cement surface after surfactant adsorption

Anionic surfactants increased the contact angle up to a maximal contact angle at inter-

mediate concentrations. No change of contact angle was observed for samples containing

TTAB or Triton.

Contact angle curves for anionic surfactants are consistent with previous results from

literature [17]. They confirm that surface agglomerates form at residual concentration

close to CMC*. Indeed, contact angle increases at low concentrations indicating that

a monolayer of surfactant forms on cement grain surface. In this concentration range,

molecules heads adsorb through electrostatic interaction and hydrocarbon chains are ori-

ented outwards. Contact angle increases as the number of adsorbed molecules increases.

In the higher concentration range, reduction of contact angle shows that orientation of

the additional molecules is opposite: hydrophilic heads are oriented toward the solution.
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Contact angle for TTAB cationic surfactant is constant. Eventually, contact angle mea-

surement and adsorption isotherm shape both seem to show that during adsorption of

TTAB, adsorbed molecules tend to agglomerate even at low concentrations while the am-

ount of free molecules adsorbed at low concentrations is too low to affect contact angle.

2.4.3 Relation between yield stress and adsorbed surfactant

Yield stress measurements of the reference paste without surfactant were repeated three

times. The average value was 11.9 Pa and the standard deviation was 0.6 Pa. Results for

surfactant containing samples are given in the graphs of figure 2.9.

Figure 2.9: Yield stress results of compatible surfactants on cement

Results presented in figure 2.9 show a drop in yield stress down to below 1 Pa above a

concentration threshold for two surfactants: Steol and Bio-Terge. A slight yield stress re-

duction, down to half the reference value, is also observed for TTAB. At low concentration

range, a large increase in yield stress is observed for Bio-Terge, and a small increase for

Steol. It remains close to the reference paste value for all other surfactants. No variation

of yield stress is observed for Triton, which is consistent with the very low adsorption and

the absence of contact angle variations.

We note CCr i t the critical residual concentration between higher yield stress regime

and low yield stress regime. It is for all three ionic surfactants close to CMC*.

2.4.3.1 Yield stress drop at high concentration range

Figure 2.9 shows that, for Steol and BioTerge, yield stress drops drastically above CCr i t

' CMC* the adsorption plateau is reached and the contact angle is maximal, i.e. when

surfactants agglomerate on cement grains surfaces. Besides, using the light scattering

method, the typical diameters of Steol and Bio-Terge micelles in synthetic cement pore

solution were measured to be around 10 nm. It is one order of magnitude above the Debye

length κ−1 ' 0.7nm [14], which means that these adsorbed micelles are large enough to

increase inter-particle distance through steric repulsive interactions. We can then suggest

that drop in yield stress is due to steric repulsion between cement grains related to the

agglomeration of adsorbed surfactant molecules.

Lower amounts of TTAB are adsorbed compared to anionic surfactants, so that some

surfaces are not covered by TTAB. This may cause the lower reduction of yield stress ob-
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served for this surfactant above CCr i t ' CMC*. Besides, TTAB micelle typical size mea-

sured in synthetic cement pore solution is slightly smaller than other surfactants, i.e. 5nm.

2.4.3.2 Yield stress increase at low concentration range

Regarding concentrations below the threshold, for both anionic surfactants, the yield

stress increases. A previous study showed a 40% increase of dynamic viscosity due to

added anionic surfactants (SDS, sodium abietate and petroleum sulfonate) at low con-

centration, i.e. 0.1wt% of cement [32]. As a comparison, in the present study the yield

stress drops when the initial concentrations of Steol and Bio-Terge are above respectively

0.3 and 1wt%. The present results shed new light on results from [32]: at low shear rate

γ̇, the apparent viscosity η of yield stress fluid is related to the yield stress by η ∼ τy /γ̇,

therefore, a relative increase of τy leads to the same relative increase of η.

We have already mentioned that, in the residual concentration regime below CMC*, a

single layer of adsorbed molecules turns the grains surface hydrophobic. Several authors

have shown that hydrophobic surfaces tend to attract each other [33, 34]. This hydropho-

bic interaction is for instance the driving mechanism for the formation of surfactant mi-

celles in solution [34].

The force between two hydrophobic surfaces FH can be estimated from the radius

of curvature of the surface ã and the surface tension between water and hydrocarbons

γH [33] at the distance h where both hydrocarbon layers are in contact :

FH = 2πãγH (2.5)

The irregular shape of cement grains makes the radius of curvature ã difficult to esti-

mate. Though FH can be compared with van der Waals force, which is also proportional

to ã [20, 33, 35]:

FVdW = 1

12
A(h)

(
ã

h2

)
(2.6)

At separation distance of a few nanometers, Hamaker constant A(h) is close to the

reference value A(0), which is of the order of magnitude of 10−20J in cement pastes[35]. In

addition, the order of magnitude of γH is 10−2J/m2 [33]. The ratio of hydrophobic to van

der Waals interactions can be roughly estimated as:

FH/FVdW ∼ 24πh2γH/A(0) ∼ 102

This shows that hydrophobic attractive interaction potentially dominates van der Waals

attractive forces between hydrophobic particles at separation distance above h = 2 nm.

Number of carbons in hydrocarbon chains of surfactant molecules are 12 for Steol

and 14 to 16 for Bio-Terge. Estimation of their length with formula 2.1 gives thus 1.8nm

for Steol and 2.2nm for Bio-Terge. Either this length difference or simply the higher local

hydrocarbon density may explain why the yield stress increase is larger with Bio-Terge.
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2.5 Conclusion

We observed in this work several distinct behaviors for surfactants when they are intro-

duced into a cement paste:

1. precipitation, which in turn leads to loss of foamability of the molecule,

2. adsorption on cement grains surface and

3. no interaction with cement grains.

In case (2), the surfactant noticeably affect the rheology of the cement paste. At low

concentration, i.e. below a critical residual concentration CCr i t , molecules adsorb head

on. Hydrophobic forces between tails results in most cases in an increase of the yield

stress with respect to the surfactant-free paste. At high concentration range, above CCr i t ,

the formation of large surface agglomerates is at the origin of a brutal decrease in yield

stress due to steric hindrance.

To manufacture a cement foam, the low concentration regime Cr < CCr i t could be

promising. First, high yield stress values enhances foam stabilization. In addition, surfac-

tant monolayer induces hydrophobization of cement grains, and hydrophobic particles

are known to stabilize liquid films by setting at air-water interfaces.
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Appendix 2A: Additional surfactants

Materials

Alpha Foamer® is an anionic surfactant provided by Stepan. It is an ammonium alkyl

ether sulfate; average molar mass according to the manufacturer is 277 g/mol and purity

52 %. Chemical formula is not given, but as molar weight of sulfate group, 96 g/mol, and

each ether group 48 g/mol, we can assume that the average length of the hydrophobic

chain is below (277-96-48)/16=8 carbons. Hydrocabon chain is therefore shorter than in

the case of Steol 270 (12 carbons) and Bio-Terge (14 to 16).

Glucopon® 225 DK is an anionic surfactant provided by BASF. It is a mix of several

molecules of average molar mass 420 g/mol and its purity is 70%. Carbon chain length of

the molecules is comprised between 8 and 10 and chemical formulas are close to the one

drawn in Fig. 2.10.

Figure 2.10: Example of chemical formula of a molecule contained in Glucopon non-ionic surfac-

tant. Glucopon is a mix of molecules with carbon chain length between 8 and 10, and number of

glucoside group may vary.

As shown in Appendix B, their are both compatible with synthetic cement pore solu-

tion.

Surface tension measurements

Effect of synthetic cement pore solution on surface tension curves is very similar to other

surfactants: cement solution reduces the CMC and the surface tension at given surfac-

tant concentration. This effect is smaller for the non-ionic surfactant than for the anionic

surfactant.

Figure 2.11: Comparison on surface tension curves of Alpha Foamer and Glucopon in distilled

water and synthetic cement pore solution. Black dots refer to surface tension measurements in

water and grey diamonds, in synthetic cement pore solution.
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Surfactant CMC CMC*

Alpha Foamer (-) 6 g/L 2.5 g/L

Glucopon (0) 2 g/L 1.5 g/L

Table 2.5: CMC in distilled water and CMC* in synthetic cement pore solution. Values give weight

of the surfactants as sold by the providers.

Surfactants in cement paste

Adsorption, contact angle and yield stress results are given for Alpha Foamer and Gluco-

pon in Fig. 2.12.

Figure 2.12: Left: Adsorption isotherms of Alpha Foamer (-) and Glucopon (0); on Y-axis, adsorp-

tion is given in µmol per gram of cement and on X-axis, residual concentration is divided by the

CMC* in synthetic cement pore solution (see table 2.5). Center: Contact angle of cement surface

after surfactant adsorption. Right: Yield stress of cement pastes containing surfactant.

Results for Alpha Foamer are very similar to other anionic surfactants. It has a strong

affinity onto cement grains surfaces. Adsorption isotherms reaches a plateau value close

to 10 µmol per gram of cement when residual concentration overcomes the CMC*. Effect

on contact angle is minor, but large increase of yield stress appears before the CMC* and

yield stress drop after CMC* is noticeable.

Glucopon exhibits a more complex behavior. It is non-ionic and is not expected to

adsorb on cement grains, though, large adsorption amount have been measured, as well

as change of contact angle and a yield stress drop at high surfactant concentration. In ad-

dition, adsorption plateau and yield stress drop occur at residual concentration CCr i t ∼
10CMC∗. Studies on molecules similar to Glucopon showed that the micelles can be neg-

atively charged [36]. We can therefore assume that individual molecules are not charged

and hardly adsorb onto cement surface, whereas micelles adsorb. Second hytothesis is

that molecules become charged in highly alkaline solution and that the high value of

CCr i t is a consequence of the fact that Glucopon is a mix of different molecules. Indeed,

if molecules have different affinity from cement grains and different CMC*, some of them

can adsorb on cement grains and form agglomerates while the others remain in solution,

which makes the residual concentration higher than if only high-affinity molecules were

present.
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Appendix 2B: Compatibility with calcium hydroxide solution

Table 2.6 gives foamability results including surfactants studied in Appendix A. In addi-

tion to compatibility with synthtetic cement pore solution, effect of a calcium hydroxide

solution at 0.85 g/L has been studied.

Precipitation in... Foam in...

Surfactant Ca(OH)2 cement sol. water Ca(OH)2 cement sol.

+ TTAB No No +++ ++ ++

+/- Betain No No ++ 0 0

-

SDS No YES +++ ++ 0

Steol 270 No No +++ +++ +++

Bio-Terge No No +++ +++ +++

Alpha Foamer No No +++ +++ ++

0

Triton X100 No No ++ ++ ++

Brij 700 No No + + 0

Tween 20 YES YES + 0 0

Glucopon No No +++ +++ +++

0 : No foam

+ : Foam volume below 20 mL

++ : moderately stable foam

+++ : Tube filled with 40 mL

foam for longer than 1h

Table 2.6: Results of foaming tests in synthetic cement pore solution and calcium hydroxide solu-

tion.

Effect of Ca(OH)2 solution is the same as synthetic cement pore solution for all sur-

factants but SDS, which does not precipitate in calcium hydroxide. SDS precipitation in

cement pore solution is therefore no caused by complexation with calcium ions. Addi-

tionnal tests for SDS at 10 g/L in solutions containing only some of the constituents of a

synthetic cement pore solution have been carried out.

• 7.12 g/L of KOH

• 1.72 g/L of CaSO4 ·2H2O, 6.959 g/L of Na2SO4 and 4.757 g/L of K2SO4

• 1.72 g/L of CaSO4 ·2H2O and 6.959 g/L of Na2SO4

We note that in all three cases, precipitation occurs.
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Appendix 2C: Delay of hydration

Method

Effect of surfactants on cement paste setting time is assessed by monitoring tempera-

ture in the samples with a thermocouple. Samples are casted in 2.8 cm diameter 5.5 cm

high cylinder and are thermally insulated. Initial temperature is about 25°. For all sam-

ples, temperature is constant for some hours, then it increases, reaches a maximal value

around 32°and finally decreases down to the intial value. Setting time is the time between

the start of the temperature measurement and the peak.

Results

Results are presented in Fig. 2.13 for TTAB (+), Steol and Bio-Terge (-) and Triton and

Glucopon (0). Setting time for reference sample with no surfactant is 12 h.

Figure 2.13: Effect of surfactants on cement paste setting time.

TTAB and Triton, i.e. the surfactants which have low or no affinity to cement grains

have no effect on setting time. Both anionic surfactant delay slightly hydration. We can

compare this retarding effect for similar observations made with several superplasticizers.

The reasons why superplasticizer tend to delay hydration are not fully understood. First

proposed mechanism is the complexation with calcium ions. In addition, coverage of

cement grains due to adsorbtion prevents the dissolution of ions and the nucleation of

hydrates on the solid surfaces [13]. Glucopon strongly delays hydration. At the highest

added amount, cement paste does not harden three days after casting. The structure of

Glucopon hydrophilic head is similar to sugars, which are known as efficient retarders for

cement setting [13].
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Chapter 3

Yield stress of aerated cement paste
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3.1 Introduction

Yield stress of a cement paste, mortar or concrete is a crucial property. For instance, suf-

ficient yield stress can stop bleeding [1]. When material is poured in a formwork, yield
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stress can have negative effects when it prevents proper filling of the mold [1] but it helps

to reduce the lateral formwork pressure [2]. In the case of sprayed mortar, yield stress

dictates the maximum thickness of the sprayed layer [3].

Among cementitious materials, aerated materials raise growing interest. Entrainment

of air bubbles into concrete, up to 10% by volume, is known to improve its durability in en-

vironments exposed to freeze-thaw cycles [4]. At higher air content, aerated construction

materials are promising for various industrial applications thanks to their low densities,

low raw material needs, and improved thermal and acoustic properties.

The goal of this paper is to understand the effect of air bubbles on the yield stress of

cement pastes containing air below 40% by volume. These materials will be referred to as

"aerated cement paste" or "bubbles suspensions in cement paste" as the word "foams"

usually refers to materials with higher air volume content, above 64% [5], where bub-

bles are densely packed and deformed by their neighbors. In foams, bubble interactions

enhance the rheological properties, therefore the results described in this paper are not

applicable.

Various observations have been reported in the literature concerning aerated cement

pastes or mortars. Aïtcin [4] notes that entrained bubbles improve workability of concrete

whereas Rixom and Mailvaganam [6] reports a large increase of viscosity with the amount

of entrained air. These opposite results may arise from the different experimental proto-

cols and the different paste formulations. To quantify the effect of air inclusions on the

cement paste yield stress independently from the paste composition, we study the yield

stress of the aerated material, τy , normalized by the yield stress of the suspending paste

τr e f . Micromechanical analysis shows that the normalized yield stress is a function of air

volume content Φ and of the ability of the suspending fluid to deform the bubbles [7, 8].

Deformability of the bubbles can be characterized by the Bingham capillary number Cay ,

which compares the suspending fluid yield stress τr e f and the bubble capillary pressure

2γ/R:

Cay =
τr e f

2γ/R
(3.1)

where γ is the air-liquid surface tension and R is the bubble radius. These curves have

been confirmed experimentally when Cay → ∞ and Cay → 0 [9] for model yield stress

fluids.

In the case of aerated cement paste, comparison with the theoretical model requires

an accurate determination of the yield stress τr e f of the suspending paste. Indeed, this

yield stress depends on the water-to-cement ratio [10] and is affected by the presence of

additives, for instance water reducing agents.

In this study we prepare aerated cement paste by incorporating a precursor aqueous

foam, stabilized by surfactant molecules, into a cement paste. Consequences of addition

of aqueous foam into cement paste is an increase of water-to-cement ratio and possible

interaction between surfactant and cement. We will first study how these two effects af-
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fect τr e f . Afterwards, we will focus on dimensionless yield stress of aerated cement paste

τy (Φ)/τr e f for two types of surfactant.

3.2 Materials and methods

3.2.1 Materials

We use a CEM I cement from Lafarge, Saint Vigor. Specific surface area is 0.359 m2/g and

chemical composition is given in Table 3.1.

C3S C2S C3A C4AF CaO/SiO2 Al2O3

62.0% 16.0% 2.1% 15.2% 3 4%

MgO Na2O +0.658 K2O SO3 Gypsum L.O.I.

1.1% 0.34 % 2.58 % 2.4% 0.9%

Table 3.1: Chemical composition of CEM I cement from Lafarge, Saint-Vigor

Surfactants are TTAB and Bio-Terge®. TTAB (tetradecyltrimethylammonium bromide)

is a cationic surfactant provided by Sigma-Aldrich, its molar mass is 336 g/mol. Bio-

Terge® is an anionic surfactant provided by Stepan, its molar mass is 315 g/mol. Chemical

formulas for both molecules are given in Fig. 3.1.

Figure 3.1: Chemical formulas of studied surfactants (reproduced from [11])

Cement and both surfactants are the same as in reference [11].

3.2.2 Method

3.2.2.1 Preparation of aerated and reference cement paste

As the yield stress of cementitious material depends on their history, the same time sched-

ule has been followed for all the samples. It is given in Table 3.2.

Reference samples have been made with no foam. In these cases, the same procedure

was followed and surfactant solution was added 28 minutes after addition of cement to

mixing water.

We measure the weight of added foam in cement paste. Amount of water added to

the cement paste with the foam is then taken into account to calculate the final water-to-

cement ratio W/C f of the aerated paste. Final air content Φ is assessed by weighting the

aerated paste in the rheometer cup. By weighting reference samples, whose density can
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0:00 Addition of cement to water; water to cement ratio is W/Ci

0:30 - 1:00 Mixing of the paste 200 rpm

1:00 - 1:30 Mixing of the paste 800 rpm

1:30 - 3:30 Mixing of the paste 2000 rpm

21:00 - 21:30 Mixing of the paste 2000 rpm

24:00 - 28:30 Addition of foam on cement paste

29:00 - 30:30 Careful mixing of cement paste and foam by hand

30:30 - 31:30 Filling rheometer cup

31:30 Start of rheometer sequence

Table 3.2: Sample preparation protocol

be calculated from the water-to-cement ratio, we note that the maximum error between

theoretical and measured density was 4%. Therefore, we can assume that maximal error

on Φ is 4%.

Note that in the chosen procedure, foam or surfactant solution is added more than 20

minutes after first mixing of cement and water so that surfactant cannot interfere in the

formation of first hydration products [12].

3.2.2.2 Foam generation

Aqueous foam is generated with the device schematized in Fig. 3.2. Bubbles are created

with a small T junction with two inputs: surfactant solution and nitrogen. Bubble diam-

eter depends on the size of the T junction and the flow rates of liquid and gas. All the

bubbles are the same size for each sample. After generation, bubbles are collected in a

column and foam is wetted from the top to prevent it from drying and breaking.

Figure 3.2: Foam generation. All the bubbles are the same size and are generated by small T junc-

tion through with constant rates of surfactant solution and nitrogen flow.

Once foam is ready to use, it is pushed from the column at constant flow rate.
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3.2.2.3 Samples

We study seven sets of samples. For each of them, water-to-cement ratio before addition

of foam, and foam characteristics (surfactant and bubble size) are kept constant.

Surfactant Surfactant Bubble Initial

concentration diameter W/C

Set T1 TTAB 4.5 g/L 475 +/- 10 µm 0.382

Set T2 TTAB 4.5 g/L 270 µm 0.335

Set T3 TTAB 4.5 g/L 475 +/- 10 µm 0.325

Set T4 TTAB 4.5 g/L 475 +/- 10 µm 0.305

Set T5 TTAB 4.5 g/L 780 +/- 20 µm 0.335

Set B1 Bio-Terge 30 g/L 440 +/- 5 µm 0.329

Set B2 Bio-Terge 8 g/L 590 +/- 10 µm 0.335

Table 3.3: Characteristics of each set of experiments on bubble suspension in cement paste

Sets of reference samples are prepared to match with each set of bubble suspensions.

Their properties are given in Table 3. Same reference data R_T2 is used for T2 and T5

sets. In addition, reference set R_0 refers to yield stress measurement on pastes where no

surfactant solution is added.

Surfactant Surfactant concentration Initial W/C

concentration W/C

Reference set R_0 - - 0.305 to 0.405

Reference set R_T1 TTAB 4.5 g/L 0.382

Reference set R_T2 TTAB 4.5 g/L 0.335

Reference set R_T3 TTAB 4.5 g/L 0.325

Reference set R_T4 TTAB 4.5 g/L 0.305

Reference set R_B1 Bio-Terge 30 g/L 0.329

Reference set R_B2 Bio-Terge 8 g/L 0.335

Table 3.4: Characteristics of each set of experiments on reference cement paste

3.2.2.4 Yield stress measurement

Yield stress measurement are carried out with a vane-in-cup geometry in Ultra+ Kinexus

Rheometer from Malvern. The six-blade vane tool is 5 cm high and 25 mm wide. We

use striated cup to avoid wall slip, diameter is 37 mm and height 62.5 mm. Rheometer

cup is filled with aerated or non-aerated cement paste with a spoon, then vane tool is

slowly inserted in the paste. No pre-shear is carried out prior to yield stress measurement.

This method is chosen to avoid material flow before the measurement in order to prevent

bubble migration due to shear rate heterogeneities [13] and gravity. Indeed, bubble rise
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in sheared yield stress fluid [14] and particle migration to low shear rate zones [2, 13] are

phenomena which are known to lead to distorted rheological measurements.

Yield stress is measured with a start of flow sequence: shear rate is constant and equal

to 0.01 s−1 for 10 minutes. This shear rate value was chosen by Mahaut et al. [15] to mea-

sure the yield stress of particle suspension in cement paste. For all the samples, stress

increases up to the yield stress and then decreases. Maximum is reached when shear

strain of the sample is between 40 and 45%. Ovarlez et al. [16] showed that this value is

low enough to enable correct measurement of yield stress with a vane tool.

Figure 3.3: Start of flow curves for yield stress measurement of an aerated cement paste (a) and the

corresponding reference paste (b). Examples are from set T3 with air content 31% and set R_T3.

3.3 Results

3.3.1 Reference yield stress

Yield stresses for reference samples are plotted in Fig. 3.4. As expected, when no surfac-

tant is added (crosses on the graph), yield stress decreases when water-to-cement ratio

increases. For each reference data set containing surfactant, yield stress decreases when

the amount of added TTAB solution increases. Same trend is observed with Bio-Terge so-

lution at the smaller concentration (R_B2), even if the decrease is smaller than for TTAB.

On the contrary, when 30 g/L Bio-Terge surfactant solution is used (R_B1), yield stress

increases with added solution amount.
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Figure 3.4: Yield stress of cement paste without air. Final water-to-cement ratio is calculated from

both initial water and added surfactant solution. Yield stresses for pastes with no surfactant (R_0)

or TTAB surfactant (R_T1 to R_T4) are fitted with equation (1) withΦper c = 0.32,Φmax = 0.545 and

m1 = 65 Pa. In the case of Bio-Terge surfactant, linear regressions for each set of data are plotted

with dotted lines

3.3.2 Aerated cement paste

Yield stresses measured for each data set at different air contents are given in Figs. 3.5 and

3.6.

Evolution of yield stress with increasing foam content is not the same for all data sets:

it is constant in set T1, it decreases in sets T2 to T5 and increases for B1 and B2.
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Figure 3.5: Yield stresses of cement pastes mixed with TTAB foams. Bubble diameter is 475 µm

for T1,T3 and T4, 270 µmm for T2 and 780 µm for T5. Initial water-to-cement ratio is 0.382 for T1,

0.335 for T2 and T5, 0.325 for T3 and 0.305 for T4.

Figure 3.6: Yield stresses of cement pastes mixed with Bio-Terge foams. Bubble diameter is 440µm

for B1 and 590 µmm for B2. Initial water-to-cement ratio is 0.329 for B1 and 0.335 for B2.

3.4 Discussion

3.4.1 Reference yield stress with surfactant

We showed in a previous study that ionic surfactants, mainly anionic, can strongly affect

yield stress when they are added to a cement paste (see chapter 2 [11]). At low concentra-

tion, adsorbed surfactant monolayer tends to make the cement grain surface hydropho-

bic and creates hydrophobic attraction between cement grains. At macroscopic scale,

increase of yield stress has been measured. At high surfactant concentration, surfactant

agglomeration on the solid surfaces leads to steric repulsion between cement grains and a

drop of the paste yield stress. In Fig. 3.7, yield stress for cement paste containing TTAB and

Bio-Terge are given as a function of surfactant concentration for cement pastes at W/C f =
0.5 prepared as in reference [11]. Even if W/C is not the same in the present study, we can
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use these curves to estimate the concentration regime for both surfactants.

Figure 3.7: Effect of surfactant concentration on the yield stress of cement pastes at W/C f =0.5

prepared following the protocol described in [11]. Doted line shows yield stress of the paste with

no surfactant (12 Pa). Grey areas show the surfactant concentrations used in the present chapter.

Let us calculate the final surfactant concentrations CTA, f after mixing foam and ce-

ment paste. They depend on the concentration in the foaming solution CTA,i , on the ini-

tial water-to-cement ratio of precursor cement paste W/Ci and the final water-to-cement

ratio W/C f .

CTA, f = CTA,i
W/C f −W/Ci

W/C f
(3.2)

Surfactant concentrations range from 0.03 to 0.2 g/L for samples containing TTAB and

between 0.08 and 0.8 g/L for Bio-Terge. We can see in Fig. 3.7 that for both surfactants,

these concentrations well below the concentrations at which maximum yield stresses are

expected. Surfactants are therefore in the low concentration regime, where yield stress

can be enhanced by hydrophobic interactions, but due to the very low concentrations

used, we can expect this effect to be minor. Further analysis is made below for each sur-

factant.

3.4.1.1 Reference yield stress with TTAB

In Fig. 3.4, all reference yield stresses, when no surfactant is added or when TTAB is added,

seem to follow a single curve. First of all, this shows that TTAB, at the concentrations we

use here, has no effect on yield stress. In addition, yield stress depends only on the water

content of the cement paste, including both initial mixing water and foaming solution

added later.

We choose to fit TTAB reference curve with equation 3.3 from the Yodel [10]:

τr e f = m1

Φ2
p (Φp −Φper c )

Φmax(Φmax −Φp )
(3.3)

In this equation, m1 accounts for the intensity of the interactions between cement

grains, whose major components are Van der Waals, electrostatic and steric forces [10].

Φp is the solid volume fraction and is related to the water-to-cement ratio and to the den-

sities of water ρw and cement ρc :
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Φp = 1/(1+ρc /ρw W/C) (3.4)

Φper c is the percolation threshold, Φmax is the maximal solid fraction .

This curve is shown in Figure 4 by a solid line with parameters Φper c = 0.32, Φmax =
0.545 and m1 = 65 Pa.

3.4.1.2 Reference yield stress with Bio-Terge

When Bio-Terge solution is added to cement paste, yield stress is higher than for sam-

ples containing TTAB or no surfactant at the same water-to-cement ratio. In fact, addi-

tion of Bio-Terge solutions into cement pastes has two consequences: solid fraction Φp

decreases and the intensity of of the attractive forces between cement grains increases.

Therefore, reference yield stress τr e f cannot be fitted by an equation like 3.3. We choose

to use linear regressions:

τr e f = 1062 W/C−257 for experiment set B1 (3.5)

τr e f = 369−859 W/C for experiment set B2 (3.6)

3.4.2 Dimensionless yield stress

Results normalized with reference yield stresses from equations 3.3, 3.6 and 3.6 are shown

in Fig. 3.8.

Figure 3.8: Dimensionless yield stress for all samples. For samples made with TTAB, bubble diam-

eter is 475 µm for T1,T3 and T4, 270 µm for T2 and 780 µm for T5; initial water-to-cement ratio is

0.382 for T1, 0.335 for T2 and T5, 0.325 for T3 and 0.305 for T4. For samples made with Bio-Terge,

bubble diameter is 440 µm for B1 and 590 µm for B2. Initial water-to-cement ratio is 0.329 for B1

and 0.335 for B2.

The dimensionless yield stresses of bubble suspensions in cement paste exhibit dif-

ferent behaviors depending on the surfactant. In the case of cationic surfactant TTAB, it

is smaller than 1, that is to say that addition of air inclusions reduce the yield stress. On

the other hand, in the case of Bio-Terge (anionic), air inclusions enhance yield stress.
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Observation of bubbles shows that bubble surface aspect is very different in the TTAB

and Bio-Terge samples. In Fig. 3.9, picture on the right shows that bubbles in Bio-Terge

sample are covered with a layer of cement grains. We can see that as bubbles rise in the

paste, the grain layer cracks. On the contrary, no layer of cement grain is visible around the

bubbles stabilized by TTAB (Fig. 3.9, left). Observation of bubbles in samples containing

TTAB is difficult because they tend to break as soon as they reach the sample surface. On

the contrary, in samples from set B1, only few bubbles break.

Figure 3.9: Left: sample from set T1 containing TTAB. Right: sample from set B1 containing Bio-

Terge. Note that bubbles tend to break rapidly when exposed to air, especially for samples con-

taining TTAB, so that the number of the bubbles on each picture is not representative of the air

content. Width for each image is 1.5 mm.

The different effect of bubble incorporation on cement paste yield stress is presum-

ably related to the different aspects of bubble surface. In the following we compare the

dimensionless yield stress with theoretical models for each of the surfactants.

3.4.3 Bare bubbles (TTAB)

In order to compare TTAB data sets with the micromechanical model from [7, 8], we need

to calculate the capillary numbers Cay = τy,r e f R/(2γ). As mentioned previously, refer-

ence yield stress τy,r e f decreases with increasing liquid content as shown by equation 3.3.

Besides, at low surfactant concentration, surface tension γ decreases when concentra-

tion increases. Its variation for cement paste interstitial fluid containing TTAB is reported

in [11] and illustrated in Fig. 3.10 as a function of TTAB residual concentration Cr es , i.e.

concentration of TTAB molecules in solution. In concentration range 0.02-0.2 g/L, we can

assume, for γ in mN/m and Cr es in g/L that γ= 31−6.8∗ l n(Cr es).

We assume that the amount of adsorbed TTAB molecules is small compared to the

residual molecules in solution, so Cr es ≈ CCA, f . Therefore, Bingham capillary numbers for

each set of results are given in Table 3.5.

Theoretical dimensionless yield stress for non-deformable bubbles Cay → 0, is indi-

cated by a full line in Fig. 3.11 and is given by [7, 8]:
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Figure 3.10: Surface tension of TTAB solution in cement paste interstitial fluid used to calculate

Bingham capillary numbers. Grey dots are measurements taken from [11].

Set Cay

T1 0.08

T2 0.10

T3 0.21 - 0.23

T4 0.34 - 0.36

T5 0.28 - 0.30

Table 3.5: Bingham capillary numbers for experiments with TTAB

τy /τr e f =
√

(1−Φ)
5+3Φ

5−2Φ
when Cay → 0 (3.7)

When the bubble are fully deformable (Cay →∞), the relation becomes:

τy /τr e f =
√

(1−Φ)
3−3Φ

3+Φ when Cay →∞ (3.8)

This is shown by the dotted line in Fig. 3.11.

Both curves have also been obtained experimentally for bubble suspensions in a model

yield stress fluid (concentrated oil-in-water emulsion) by Ducloué et al. [9]. Experimental

results fitted with equation 3.7 for 0.0069 ≤ Cay ≤ 0.11 and with equation 3.8 for Cay =
0.57.

In Fig. 3.11, dimensionless yield stress results of aerated cement paste with TTAB have

been plotted and can be compared with both theoretical curves.

At low air content, dimensionless yield stresses obtained from our measurement seems

to tend toward a value smaller than 1. This behavior must be an experimental artifact and

shows that despite all our effort to keep the same preparation protocol for aerated and

reference samples, shearing of the paste during hand mixing may be influenced by the

presence of bubbles.

However, all the results are located as expected between the two theoretical curves.

Moreover, dimensionless yield stress depends only on the capillary number (it does not

depend on the reference yield stress or the bubble size) as sets T1 and T2 follow the same

curve, and sets T4 and T5 are very close. This can be seen mainly at high air content. The

higher the capillary number, the lower the dimensionless yield stress.
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Figure 3.11: Dimensionless yield stress for samples made with TTAB. Theoretical curves, which

have been observed experimentally on model yield stress fluid by Ducloué [17], are indicated for

non-deformable bubbles (full line) and fully deformable bubbles (dotted line).

3.4.4 Particle covered bubbles

Surface tension of Bio-Terge in interstitial solution of cement paste can be approximated

by 30 mN/m if Cr es > 0.3 and 18−12ln(Cr es) at lower concentrations (see Fig. 3.12).

Figure 3.12: Surface tension of Bio-Terge solution in cement paste interstitial fluid used to calcu-

late capillary numbers. Grey dots are measurements taken from [11].

Bingham capillary numbers calculated following the same method as for TTAB are be-

tween 0.32 and 0.38 for B1 and between 0.24 and 0.30 for B2. Note that the assumption

Cr es ≈ C f ,TA may not be valid for Bio-Terge because of its high affinity to cement grain

surface. We probably overestimate of Cr es and thus overestimate the capillary numbers.

However, the values are the same order of magnitude as the capillary numbers calculated

for TTAB. Thus, the specific behavior of Bio-Terge bubbles cannot be related to the capil-

lary number.

The particle layer on the bubble surface suggests that the behavior in the case of Bio-

Terge lies in the modified surface properties of the bubbles. Particle covered interfaces

have first been reported by Ramsden [18] and Pickering [19]. Afterwards, particles covered

films, bubbles and foams have raised a lot of attention due to their increased life time

compared to surfactant stabilized systems [20, 21, 22, 23, 24]. First requirement to allow

solid particle adsorption at air-water or oil-water interface is that the particles must be

partially hydrophobic. Then, the elastrostic barrier to particle adsorption must be low

enough [25].
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Increase of contact angle of water on cement grains has been observed in the pres-

ence of low amount of Bio-Terge, so that we can assume that the first point is fulfilled.

Cement grains have size comprised between a few and 100 µm with average value close

to 10 µm [15]. Due to their irregular shape, radius of curvature of the edges is several or-

ders of magnitude below the grain size [26], which decreases the adsorption barrier [25].

In addition, cement solution contains a high concentration of dissolved ions [12], and this

high electrolyte content is known to reduce electrostatic repulsion between charged par-

ticles and interface, which also reduces the adsorption barrier [25]. All these aspects show

that cement particles covered by a monolayer of Bio-Terge molecules are good candidates

to adsorb at air-water interfaces.

Once partially hydrophobic solid particles are adsorbed at interfaces, energy required

to remove them is very high. Desorption energy EDes for spheres is given by the for-

mula [27]:

EDes = γa2π(1− | cosθ |)2 (3.9)

Where a is the radius of the particles and θ the contact angle. Note that in the case of

irregularly shaped particles, desorption energy is higher than in the case of spheres be-

cause anisotropic particles tend to settle at the interface with the orientation which max-

imizes the desorption energy [28]. In the case of cement, calculation with πγ∼100 mN/m

and a ∼ 10 µm gives EDes ∼ 10−11 J if θ=90°and EDes ∼ 10−12 J if θ=60°.

To evaluate if shearing of the cement paste can desorb the cement grains, we can com-

pare this value to the shear energy. For simple shear, energy per unit volume is τ ·ε, where

the shear stress τ is of the order of magnitude of the yield stress τy,r e f ∼ 100 Pa and the

deformation ε is about 1 in our experiments. Integration on the particle volume a3 gives

Eshear ∼ 10−13 J.

Therefore, the Bio-Terge covered cement grains cannot not desorb from bubbles sur-

face during yield stress measurement.

To understand the effect of the cement particle shell on the grain surface, we can com-

pare Bio-Terge results with dimensionless yield stress of solid particle suspensions in ce-

ment paste. Procedure followed for the tests is the same as described in paragraph 3.2.2.1;

at 27 minutes after preparation of the cement paste, we added to the paste 500 µm diam-

eter polystyrene beads or 2 mm diameter glass beads. These additional samples contain

no surfactant, so reference yield stress is given by equation 3.3.

Like for bubbles, micromechanical analysis provides a theoretical curve for unde-

formable solid particles. This theoretical analysis requires that the yield stress fluid is

continuous and homogeneous compared to the beads. In the case of cement paste, this

means that the beads must be much bigger than the cement grains. Moreover, it assumes

no slip condition at the bead surface [7]. Dimensionless yield stress of a bead suspension

in a yield stress fluid is :

τy /τr e f =
√

(1−Φ)

(1−Φ/Φm)2.5Φm
(3.10)
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where Φm is the maximal packing fraction of the beads when material is sheared. This

curve has been experimentally validated in model yield stress materials [13] and in ce-

ment paste [15]. Φm value measured in cement paste is 0.56. In Fig. 3.13, our experimen-

tal results for Bio-Terge bubbles and for beads can be compared with the bead theoretical

curve.

Figure 3.13: Dimensionless yield stress for samples made with Bio-Terge. Dotted line correspond

to the theoretical curve for a suspension of solid spheres with maximal solid fraction 0.56. Crosses

correspond to measurements carried out with 500 µm polystyrene beads or 2 mm glass beads.

Similarly to the theoretical curve, our bead experimental results show that dimension-

less yield stress increases when the volume fraction of inclusions increases. In addition,

no dependence on the bead size can be seen. However, experimental points are above

the expected values. This must be related to our experimental method and the difficulty

to follow accurately the same protocol for cement paste with and without inclusions.

No major effect of Bio-Terge concentration is observed on the dimensionless yield

stress. During preparation hovewer, we note incorporating aqueous foam in cement paste

was more difficult for B2 measurements, where Bio-Terge concentration is lower, because

the bubbles tend to break during hand mixing.

The main observation is that Bio-Terge data points coincide with experimental mea-

surements with polystyrene and glass beads. That is to say that the armored bubbles be-

have like solid inclusions. Our hypothesis is that adsorbed particles provide to the bubbles

a surface solid layer with roughness which prevents the slipping of the continuous phase

during shearing.

Striking point is that the armored bubbles behave like indeformable objects, even if

Bingham capillary number the Bio-Terge sets of experiments are below 0.38, a value cor-

responding to partially deformable bubbles in the case of TTAB. Evaluation of deforma-

bility by Bingham capillary number may not be relevant in the case of armored bubbles

because the adsorbed particle layer increases the surface elasticity of the bubbles [24]

which opposes deformation.

3.5 Conclusion

We have investigated the effect of added bubbles of chosen size on the yield stress of aer-

ated cement paste. Bubbles are stabilized with two surfactants, which are know to have
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different affinities to cement grains.

Behavior of the bubbles is strongly affected by the surfactant. When surfactant has low

affinity to cement grains, dimensionless yield stress depends on Bingham capillary num-

ber, which accounts for the deformability of the bubbles. While non-deformable bubbles

(Cay ∼ 0.1) do not change the yield stress, dimensionless yield stress decreases with air

volume content for deformable bubbles (Cay & 0.2).

Totally different behavior is observed when surfactant adsorbs on cement grains. Ef-

fect of bubbles is comparable to solid inclusions, and no effect of bubble size and sur-

factant amount can be seen. We attribute this effect to the irreversible adsorption of hy-

drobobic cement particles at the bubbles surface which change the surface properties of

the bubbles.
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Optimal cement paste yield stress for the

production of stable cement foams
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4.1 Introduction

Cement foams are highly porous materials which offer interesting thermal insulation pro-

perties. When cement foam density decreases, thermal resistance is improved but me-

chanical strength decreases [1]. Control of bubble morphology is a crucial issue to op-

timize all macroscopic properties at a given density. For example, bubble size and pore

connections are control parameters for acoustic absorption [2] and flow permeability [3].

Several foam production methods have been reported in the literature, including che-

mical foaming, air entrainment and mixing with aqueous precursor foam. In the precur-

sor foam method, cement slurry and aqueous foam are prepared separately before being

mixed together. Resulting cement foam morphology depends on (1) the precursor foam

morphology, (2) the capacity of the mixing process to preserve the precursor foam bub-

ble sizes and (3) the bubble size evolution in the sample at rest until cement hydration.

Third point is challenging. As long as the material embedding the bubbles is not solid,

foam destabilization occurs through three mechanisms [4]: drainage is caused by specific

gravity difference between air bubbles and cement paste, ripening is a gas transfer from

smaller bubbles to bigger bubbles, and coalescence refers to thin film breakage between

two neighbor bubbles. Both drainage and ripening are affected by the consistency of the

suspending fluid. Promising method to stop or slow them down is to increase the fluid

yield stress in order to counteract bubble rise and deformation processes [5, 6, 7].

In the case of cement foams, yield stress results from attractive interaction between

cement grains. It depends on both the intensity of these interparticle forces and the par-

ticle volume content [8]. Particle volume content is related to the water-to-cement ratio

and interparticle forces can be tuned by additives. For instance, superplasticizers adsorb

on cement grains, which causes steric repulsion between cement grains and decrease of

yield stress [9]. In a cement foam made from precursor aqueous foam, surfactants are

needed to reduce air-fluid surface tension and stabilize the films separating the bubbles.

Some of them, mainly anionic surfactants, have been shown to have a strong affinity to-

wards cement grains and change the yield stress (see chapter 2 [10]). When they are added

in small amount in cement paste, adsorbed molecules form an hydrophobic layer on ce-

ment grains. Resulting hydrophobic attraction between cement grains leads to an in-

crease of the macroscopic yield stress. On the other hand, when large amount of anionic

surfactant is added to cement paste, surfactant molecules agglomerate into micelles on

cement grains surface and leads to steric repulsion and a strong decrease of yield stress.

In this paper we investigate the effect of yield stress on the stability of cement foams.

Yield stress is controlled by using additives, either superplasticizer or large amount of

anionic surfactant. Additionally, in order to assess the rheological behavior of the cement

paste as confined between the bubbles, we perform rheological measurements on cement

foams.
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4.2 Materials and methods

4.2.1 Materials

Cement is a CEM I from Lafarge, from Lagerdorf factory. Specific surface provided by the

manufacturer is 0.433 m2/g. Chemical composition is given in table 4.1.

C3S C2S C3A C4AF CaO/SiO2 MgO Na2O +0.658 K2O SO3 Gypsum

60% 13% 2% 13% 3 0.8% 0.5 % 2.5% 4%

Table 4.1: Chemical composition of CEM I cement from Lafarge, Lagerdorf

Two different surfactants are used. Steol® 270 CIT is an anionic surfactant provided by

Stepan. Its molar mass indicated by the manufacturer is 382 g/mol and active content 68-

72%. Steol Critical Micelle Concentration (CMC) is 1.5 g/L in water and 0.3 g/L in cement

pore solution [10]. Triton™ X-100 (laboratory grade) is a non-ionic surfactant provided

by Sigma-Aldrich; molar mass is 625 g/mol and CMC is 0.2 g/L in water and 0.15 g/L in

cement pore solution.

Figure 4.1: Chemical formula of surfactants : Steol is anionic and Triton is non-ionic

When added into cement paste, Steol 270 has a strong affinity with cement grains sur-

face [10] and can either increase the cement paste yield stress at low concentration or act

as a deflocculant at high concentration. On the contrary, non-ionic Triton has very low

affinity with cement grains [10, 11] and does not change the yield stress.

SIKA Tempo 12 superplasticizer has been used to modify cement paste yield stress in

cement foam samples containing non-ionic surfactant. It has been checked that Tempo

12 does not alter stability of aqueous foam made with Triton: we have compared the foam

volume obtained by shaking tubes containing a Triton solution with and without super-

plasticizer. Details about the experimental method can be found in [10]. Results are not

shown here.

In paragraph 4.2.3, we give the yield stress of cement paste containing either Steol 270

or Superplasticizer and Triton, prepared with the same protocol as the cement foam de-

scribed in paragraph 4.2.2.1.
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4.2.2 Methods

4.2.2.1 Protocol

In order to remove any effect of cement paste age on results, all cement foams are pre-

pared following the same time schedule, from initial water and cement mixing to sample

casting or rheometry measurement.

Water is mixed with cement paste at initial water-to-cement ratio W/Ci =0.35 or 0.32

and then left at rest for 20 minutes to allow the formation of sulfo-aluminate phases.

Then, a deflocculant is added. Deflocculant is either Steol surfactant added in large quan-

tity or SIKA Tempo 12 superplasticizer. Cement paste is then mixed with precursor foam.

This procedure is schematized in Fig. 4.2.

Figure 4.2: Preparation protocol of cement foams made with Steol anionic surfactant and Triton

non-ionic surfactant.

4.2.2.2 Precursor foam

Precursor aqueous foam generator is schematized in figure 4.3. Nitrogen and surfac-

tant solution (concentration 1 g/L for both surfactants) flow in T-junction. Characteristic

length of the T-junction is lT = 100 µm. The capillary pressure PC depends on the gas-

liquid surface tension γ ∼ 10 mN/m and is PC ∼ γ/lT ∼ 102 Pa. The hydrostatic pressure

PH depends on the liquid density ρl i q ∼ 1000 kg /m3: PH = ρl i q g lT ∼ 1 Pa. Therefore, as

PC À PH, capillary effects dominate gravity effects, and liquid and gas pass alternately,

which leads to the formation of bubbles. Bubble diameter depends on the flow rates of

surfactant solution and nitrogen respectively, and on the T junction size.

Then, created bubbles are collected in a vertical column. Imbibition flow at the foam

top compensates liquid loss due to drainage and is used to tune the precursor foam liquid

fraction. Precursor foam is mixed with cement paste about 40 minutes after the beginning

of the generation, when ripening has not started to occur in the column.

Bubble radius for all precursor foams is R = 390±20 µm and liquid fraction 1.4±0.1%.

4.2.2.3 Mixing

To mix precursor foam and cement paste, we use a convergent mixing device schematized

in Fig. 4.3, right. Cement paste flows in a conic tube, which length is L = 4 cm, smaller

diameter at cone exit 2 mm and cone angle 3°. Then, mixing of paste and precursor foam
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Figure 4.3: Schema of precursor foam generation (left) and mixing device (right)

takes place thanks to a 1.5 mm diameter constriction. Input flow rates are chosen so that

final air content is Φ = 83%±1%. Note that this mixing method involves the flow of the

precursor cement paste in small tubes, which requires moderate cement paste yield stress

(below a few 10 Pa). For each cement foam sample, we first fill the rheometer cup for yield

stress or elasticity measurement and then a mold for stability assessment.

4.2.2.4 Final stability

Samples are casted in 6 cm high 2.6 cm-diameter air-tight plastic cylinders. We checked

that foams do no break when they are in contact with the mold walls. Samples are de-

molded 7 days after casting. Cement foam stability is visually assessed and samples are

classified within the five categories illustrated in Fig. 4.4:

• 3: fully stable sample

• 2: large stable area

• 1: small stable area(s)

• 0: no stable area

• -1: sample collapse

Figure 4.4: Example of samples illustrating each stability class. Sample height is 6 cm.
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It can be noted that the final stability is the result of many competing phenomena

including the intrinsic stability of the foam and the time during which the foam is exposed

to destabilisation. This time relates to the setting time of the system.

4.2.2.5 Rheological measurement

To measure rheological properties of cement foams, we use stress controlled Kinexus Ul-

tra+ rheometer from Malvern with a Vane geometry. Cup is striated to avoid wall-slip,

height is 6 cm and diameter 37 mm. Six-blade Vane tool is 5 cm high and 25 mm large.

Each measurement sequence starts with stress relaxation during 30 s. Then, either yield

stress is measured with a start of flow curve at flow rate ε̇= 0.01 s−1, or elastic modulus is

monitored with 10−5 amplitude oscillations at 1 Hz.

In the elastic regime, energy balance shows that local deformation εl in the foam skele-

ton is related to the macroscopic deformation ε by the relation εl = ε
p

1−Φ [12] whereΦ is

the volume air content. Therefore, local strain amplitude during elastic measurements is

4.10−6. This value is well below both critical strains related to flocculation and formation

of CSH bridges between cement grains [13]. Therefore, we expect that elasticity mea-

surement does not affect material thixotropic behavior and is, as such, a non-destructive

measurement.

4.2.2.6 Water suction out of the cement pastes

Cement paste containing surfactant (and superplasticizer in the case of Triton) are pre-

pared as described in paragraph 4.2.2.1, but here only surfactant solution at 1 g/L is added

instead of foam. We call free cement paste this bulk paste whose composition is expected

to be the same as the foam interstitial paste.

We measure free cement paste ability to release water with the experimental device

schematized in Fig. 4.5. A 1.6-cm thick layer of cement paste containing Steol surfactant

is placed on one side of a U-shaped tube filled with water. A filter (0.45 µm) separates the

cement paste and the tube. It can be crossed by the water but not by the cement grains.

Surface of water in the other branch of the tube is free to move. When the cement paste

is raised above the free water surface at height h, pressure difference ∆P = ρl i q g h is cre-

ated at the bottom of the cement paste. Volume of extracted water can then be deduced

from the displacement of the free water surface. Note that h decreases during the time of

the experiment because water extraction makes the free water surface rise. For each ex-

periment, pressure is ∆P0 = 440 Pa and decreases to a value comprised between 400 and

375 Pa after 10 minutes. The value chosen for∆P0 accounts for the hydrostatic pressure in

the continuous phase in the 6-cm high foam samples which varies between 0 and 600 Pa.

4.2.3 Cement paste yield stress

In the following we will correlate the foam properties with the yield stress of the free ce-

ment paste. To measure free cement paste yield stress, paste is poured on a flat surface
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Figure 4.5: Experimental device used to measure the water volume extracted from the free cement

pastes at ∆P ' 440 Pa.

and average radius Rspr ead is measured. Yield stress τy is then obtained from the paste

density ρ and the poured volume Ω with the following formula [14]:

τy = 225ρgΩ2

128π2R5
spr ead

(4.1)

Equation 4.1 is valid at intermediate yield stress values. On the one hand, it must be

high compared to capillary forces and on the other hand, the spread height hspr ead must

be small compared to the radius. As already discussed in [10], capillary forces can be

neglected when yield stress is above 1 Pa. We choose to set all the values measured below

1 Pa to 1 Pa. Regarding the second condition, maximal measured value is τy ' 100 Pa, in

this case, if poured volume is 30 mL, we obtain Rspr ead /hspr ead ' 3.

Measured free cement paste yield stresses are given in figure 4.6. Two water-to-cement

ratios W/C f = 0.38 and 0.41 have been studied in the case of Steol surfactant whereas only

W/C f =0.36 has been considered in the case of Tempo 12 and Triton mixes.

Exponential fit correlates well with each of the curves. Therefore, in the following,

we will use equations 4.2, 4.3 and 4.4 to estimate the free cement paste yield stress τy

from the Steol or Tempo 12 concentrations CSteol or CTempo 12 (with yield stresses in Pa

and concentrations in g/L):

τy = 6.87 ·109 e−1.89 CSteol with Steol and W/C f =0.41 (4.2)

τy = 8.30 ·1012 e−1.97 CSteol with Steol and W/C f =0.38 (4.3)

τy = 137 e−0.191 CTempo 12 with Tempo 12 and Triton (4.4)
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Figure 4.6: Yield stress of cement pastes prepared following the same protocol as cement foam.

Top: pastes containing Steol anionic surfactant with W/C f =0.38 (empty dots) and W/C f =0.41

(full dots). Bottom: superplasticizer and Triton non-ionic surfactant with W/C f =0.36.

4.3 Results

4.3.1 Stability

Fig. 4.7 illustrates a typical evolution of the morphology of an unstable foam with time.

Pictures of the sample are taken through the transparent mold. Cement paste appears in

light grey whereas air voids are black. Note that we can see only the morphology of the

side of the sample against the mold walls, where the movement of the bubbles deposes

a cement layer. Therefore, the apparent morphology after foam destabilization may not

be representative of the bulk morphology of the foam. However, we can neatly see that

major change of the foam structure takes place before 30 min after sample preparation.

The stability of cement foams samples containing either anionic or non-ionic surfac-

tant is plotted in figure 4.8 as a function of the yield stress of the corresponding free ce-

ment paste.

In all cases, best foam stability is obtained at moderately low free cement paste yield

stress. On the one hand, foams are unstable at high τy , i.e. above a critical value τ∗y '
10 Pa. Increase of free yield stress above τ∗y leads consistently to unstable foams. This

behavior is particularly noticeable in Tempo 12 - Triton foams, where foam collapse was

observed for yield stress close to 25 Pa. On the other hand, very low free yield stress val-

ues, below τ∗∗y ' 2 Pa also lead to unstable foams. In this very low yield stress regime,

reproductibility of the results is poor, foams with the same formulation can sometimes

have different stability behavior.

These stability results are unexpected, because, as mentioned before, high interstitial

yield stress is expected to contribute to stopping drainage and ripening. These puzzling

results can be due to several effects including:
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0 min 10 min 20 min

30 min 40 min 50 min

Figure 4.7: Example of the evolution of the morphology of an unstable cement foam (W/C f = 0.41,

10.2 g/L of Steol, τy = 18 Pa). Foam on the pictures is seen through the transparent mold ; note

that the movement of the bubbles deposes a cement layer on the mold walls and that apparent

morphology after foam destabilization may not be representative of the bulk morphology of the

foam. Cement paste is in light grey and bubbles are black. Picture width is 1 cm.

Figure 4.8: Top: Stability of cement foams containing Steol anionic surfactant. Grey diamonds cor-

respond to foams made with initial W/C f =0.38 and black dots to foams with W/C f =0.41. Bottom:

Stability of cement foams containing superplasticizer and Triton.

• The cement paste inside the foam structure may have different behavior than the

free cement paste.
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• Time related effects, i.e. thixotropy and hydration kinetics, may play a dominant

role.

• Segregation of water and cement grains and water in the foam may occur.

Rheological investigation will be used to elucidate the first two points. Yield stress

measurement at foam early age is used to assess the behavior of the interstitial cement

paste. Then, as a non-destructive measurement, elastic modulus is monitored to evaluate

the evolution of the paste rheological properties with time.

Segregation of water and cement grains are then measured by the water suction ex-

periment.

4.3.2 Rheological measurements

4.3.2.1 Foam yield stress

We notice that two types of start-of-flow curve shape of fresh cement foams were ob-

tained. For some samples, the stress increases up to a plateau value. For other samples,

plateau value is lower than the yield stress and the curve exhibits an overshoot. In both

cases, yield stress τy, f oam is obtained for deformation between 40 an 75%. Examples for

both curve shapes are shown in figure 4.9.

Figure 4.9: Examples of the two types of start-of-flow curves. Both curves were obtained for sam-

ples with W/C f =0.41, for two different Steol concentrations. Curve with overshoot (empty circles)

is obtained with 11.4 g/L of Steol and τy =3 Pa, and curve without overshoot (black dots), with

10.4 g/L of Steol and τy =18 Pa.

τy, f oam for all the samples are plotted as a function of the yield stress of the free ce-

ment paste in figure 4.10. Presence of overshoot is indicated by empty dots and diamonds.

For the three sets of results, τy, f oam increases with τy but foam yield stress variation

is limited: while τy ranges from about 1 to 100 Pa, 5.7 Pa ≤ τy, f oam ≤ 14 Pa. Besides,

overshoot occurs when τy ≤ τ∗y .

4.3.2.2 Elasticity

Two different types of elastic modulus evolution are shown in figure 4.11. Curve slope can

either be constant during 50 min or decrease with time.
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Figure 4.10: Macroscopic yield stress of fresh cement foam. Black dots refer to cement pastes

containing anionic surfactant at W/C f = 0.41 and grey diamonds at W/C f = 0.38. Grey triangles

refer to samples with superplasticizer and non-ionic surfactant. Empty symbols refer to curves

where an overshoot was measured.

Figure 4.11: Examples of the two possible shapes of elastic modulus curves. Both curves were

obtained for samples containing Steol surfactant with W/C f =0.41. Linear curve (empty circles) is

obtained with 11.4 g/L of Steol and τy =3 Pa, and non-linear curve (black dots), with 10.4 g/L of

Steol and τy =18 Pa.

Elastic modulus at t=0 and t=40 min are plotted as a function of τy in Fig. 4.12. As

expected, the higher τy , the higher the initial elastic modulus. When free yield stress in-

creases by two decades, elastic modulus is increased by a factor 4. However, 40 minutes

after the start of the oscillation test, elastic modulus hardly increases with yield stress any-

more.

In addition, foams where G’ evolution is linear are shown by empty symbols in Fig. 4.12.

We note that for the low free yield stresses, elastic modulus increases linearly with time

whereas for the higher free yield stresses, elastic modulus slope decreases.

4.3.3 Water suction

Percentage of extracted water from free cement paste containing Steol whose W/C f = 0.41

are shown on Fig. 4.13. We note that the amount of extracted water decreases when τy

increases, mainly when τy > τ∗y
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Figure 4.12: Elastic modulus of fresh cement foam at t=0 and t=40 min. Black dots refer to cement

pastes containing anionic surfactant at W/C f = 0.41 and grey diamonds at W/C f = 0.38. Grey

triangles refer to samples with superplasticizer and non-ionic surfactant. In first graph, empty

symbols refer to linear elastic modulus curves.

Figure 4.13: Ratio of extracted water from free cement pastes at W/C f = 0.41 containing Steol

surfactant after 10 minutes at ∆P ' 400 Pa

4.4 Discussion

4.4.1 Comparison with aqueous foams

Aqueous foams are known to behave like an elastic solid at small deformations and to

exhibit a yield stress at higher deformation. Rheological properties depend on the bubble

radius R, the surface tension γ and the air volume content Φ. Yield stress is given by

equation 4.5 [15, 16] and elastic modulus by equation 4.6 [4].

τy,aq (Φ) = 0.6
γ

R
(Φ−Φc )2 (4.5)

G′
aq (Φ) = 1.4

γ

R
Φ(Φ−Φc ) (4.6)
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where Φc is the critical packing fraction above which there are films between the bubbles

and equals 0.64 in the case of disordered monodisperse foam.

Surface tension value depends on the surfactant and its concentration. After incorpo-

ration of precursor foam in cement paste, Triton concentration in cement foam is 0.11 g/L.

Surface tension of Triton solution in cement pore solution at this concentration is 35 mN/m

[10]. Regarding Steol, surface tension in cement pore solution for concentrations above

CMC is 27 mN/m [10]. As low yield stress is achieved when anionic surfactant residual

concentration is above CMC [10], we can assume that for both surfactants, when cement

paste yield stress is the lowest, surface tension is below 35 mN/m.

Therefore, aqueous foam yield stress for both surfactants is τy,aq (83%) ' 2 Pa and elas-

tic modulus is G′
aq (83%) ' 20 Pa. Both are below the values measured on the cement

foams samples for all τy . This means that the interstitial cement paste strongly enhances

the foam rheological properties, even when τy is very low.

4.4.2 Early age rheological properties

Let us first discuss the fact that in low-yield stress regime, an overshoot appears on the

start-of-flow curve. This overshoot is not expected to result directly from thixotropy ef-

fects in the cement paste, as they appear only for low yield stress cement paste, that is

to say, for the highest concentrations of anionic surfactant or superplasticizer. Indeed,

we recall that apparent thixotropy in cement paste arises from two effects: creation of a

percolated network of colloidal cement grains during the first seconds after high shear

mixing, then nucleation and growth of CSH bond between the grains [13]. Our yield

stress measurements are carried out only a few minutes after foam production, so the

major contribution to the measured yield stress is the colloidal percolation network. As

attraction forces between cement grains are reduced in the presence of high amount of

Steol [10] or superplasticizer [9] due to steric repulsion, colloidal network is not expected

to be stronger or to form faster in the case of deflocculated pastes.

We stress that start-of-flow curve of granular material exhibits overshoot when grains

are densely packed [17, 18]. Moreover, Gorlier et al. [19] studied start-of-flow curves of

complex fluid foams. They showed that there is no overshoot when interstitial fluid is a

simple yield stress fluid (i.e. concentrated emulsion for example), whereas overshoot ap-

pears when aqueous foam is mixed with small beads suspension, even if the correspond-

ing unconfined granular suspension does not exhibit yield stress properties; that is to say

that yield stress results from the confinement of the beads by the bubbles. Authors ana-

lyzed the stresses at stake in the granular foam and concluded that small particles packed

in the foam structure behave as dense granular matter.

Yield stress of emulsion foams and small-particle foams can both be fitted by equa-

tion 4.7. This equation has been empirirically determined for samples where τy,i nt R/γ<
0.5 [19].

τy, f oam(Φ)

τy,aq (Φ)
= 1+ c(1−Φ)4/3

(
τy,i nt R

γ

)2/3

(4.7)
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Where c = 110 is a fitting parameter, and τy,i nt is the yield stress of the interstitial fluid.

Using equation 4.7, we deduce from foam mascroscopic yield stress τy, f oam(Φ) (plotted in

Fig. 4.10) the yield stress of the interstitial cement paste τy,i nt . It is compared in Fig. 4.14

with τy , that is to say with the yield stress of the cement paste with the same composi-

tion and prepared following the same protocol, but not confined in the foam. This graph

shows that when cement paste yield stress is high, above 20 Pa, interstitial yield stress

is equal to free paste yield stress. When free yield stress is lower, yield stress is strongly

enhanced, up to a factor 10.

Figure 4.14: Comparison of yield stress of identical cement pastes when they are confined in the

foam τy,i nt and with no foam τy . Black dots refer to cement pastes containing anionic surfactant

at W/C f = 0.41 and grey diamonds at W/C f = 0.38. Grey triangles refer to samples with superplas-

ticizer and non-ionic surfactant.

To summarize, start-of-flow curve shape (Fig. 4.9) and estimations of interstitial yield

stress (Fig. 4.14) allow us to identify two cement paste rheological behaviors:

• When τy > τ∗y , cement paste acts as yield stress fluid because of the high Van der

Waals attraction between cement grains and rearrangement of grains cannot oc-

cur. Interstitial yield stress is similar to the yield stress of the free cement paste. In

this regime, that we call yield stress regime, cement foams are unstable within our

experimental conditions.

• When τy < τ∗y , cement paste behaves in part as a confined granular material. An

overshoot appears on the start-of-flow curve and interstitial yield stress is signif-

icantly increased with respect to free paste yield stress. This regime, that we call

granular regime because it is reminiscent of the behavior of confined granular pack-

ing, allows significant foam stability. The stability loss at the lower free yield stresses

will be discussed in part 4.4.4.

In the granular regime, the formation of a network of cement grains in contact re-

quires the removal of the excess water from the interstitial cement paste. Let us estimate

the amount of water which must be removed. After the mix of cement paste and foam,

the maximal water-to-cement ratio is 0.41. Corresponding solid volume content in the

cement paste is given byφp = (1+ρc /ρw W/C)−1; we obtainφp =44%. Random loose pack-

ing fraction is 0.8∗60% = 48% [20]; this corresponds to W/C=0.34. Water loss is therefore
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(0.48−0.44)/0.48 = 8% of the paste volume and less than 2% of the foam volume, which

cannot be visually observed with our samples.

Experimental estimation of the water-to-cement ratio 10 min after the foam produc-

tion is given by the water extraction curve. In graph in Fig. 4.15, we observe that when

τy < τ∗y , W/C reaches nearly 0.35 while it remains above 0.36 in the yield stress regime.

This observation tends to confirm that a denser granular network can be set up, thanks to

grains rearrangement, when τy < τ∗y but not when τy > τ∗y .

Figure 4.15: Ratio of extracted water from free cement pastes at W/C f = 0.41 containing Steol

surfactant after 10 minutes at ∆P ' 400 Pa

Note that τy,i nt in the granular regime is lower than the 120 Pa value obtained for

foams made with monodisperse spherical particles [19]. This suggests that the ideal gran-

ular regime is not fully achieved in cement foams. In fact several effects could be consid-

ered for explaining this deviation. (1) The large particle polydispersity in our case with re-

spect to the monodisperse particles assemblies studied in [19]. It has been shown in [19]

that confinement effect is strongly dependent on particles size: large ones, i.e. > 40 µm,

and small ones, i.e. <1 µm, are not expected to contribute to that effect. (2) The effective

friction coefficient is µ= 0.3 in the case of solid spheres. The yield stress of a granular ma-

terial, under confinement pressure P, is given by τy = µP. Friction coefficient is however

not known for polymer (or surfactant) covered cement grains.

Granular effect can account for the increase of yield stress of the interstitial cement

paste due to the confinement provided by the bubble interface when τy < τ∗y . However,

interstitial yield stress is still smaller in granular regime than in yield stress regime and

cannot account for the remarkable stability of the foams. One hypothesis to explain this

stability is that the time evolution of the interstitial cement paste rheological properties

may play a role on foam stability. Therefore, to understand the stability of cement foams,

we will focus in the next paragraph on the evolution of the rheological properties upon

aging.

4.4.3 Time evolution of rheological properties

Elastic modulus curves allow us to assess the evolution of the interstitial cement paste

with time. For foams in the granular regime, slope of foam elastic modulus curve is con-

stant. This linear increase at low amplitude oscillations is a typical evolution in cement
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pastes and it is known to result from the constant volume formation rate of hydrates be-

tween cement grains [13]. In the yield stress regime, however, elastic modulus slope be-

comes smaller with time. We can assume that the slow shearing induced by the bubbles

deformation during destabilization leads to a partial rejuvenation of the cement paste

and partially compensates the increase of elasticity caused by thixotropy.

Similarly to what we have done with yield stress, we can estimate the interstitial elastic

modulus from the measured value of the foam elastic modulus. Foam modulus is the

sum of the contribution of aqueous foam G′
aq , and a contribution which depends on the

interstitial elastic modulus G′
i nt [21, 22] :

G′
f oam = G′

aq +G′
i nt (1−Φ)2

(
1+15(2Φ−1)

(
γ

RG′
i nt

)2/3)
(4.8)

Equations 4.6 and 4.8 allow us to assess G′
i nt at several times. Results are shown in

Fig. 4.16 for t=40 min.

Figure 4.16: Interstitial elastic modulus at time t=40 min. Black dots refer to cement pastes con-

taining anionic surfactant at W/C f = 0.41 and grey diamonds at W/C f = 0.38. Grey triangles refer

to samples with superplasticizer and non-ionic surfactant.

We see that rigidity increase is faster in the granular regime than in the yield stress

regime. Though, elastic modulus remains higher in most of the colloidal-type foams than

in the granular regime until 40 minutes. At this time, as shown in Fig. 4.7, ripening has

already started to occur in unstable foams. Therefore, the values of interstitial elasticity

up to 40 minutes after foam production cannot account for the better stability observed

in the granular regime.

In order to further investigate the effect of foam aging, we measured the evolution of

yield stress with time. Whereas elastic modulus is measured at low deformation, below

0.1%, yield stress is obtained at high shear strain. Therefore, elasticity and yield stress

measured in cement paste have different origins [13]: elasticity is caused only by the hy-

drates bonds between cement grains, whereas yield stress results from both colloidal in-

teraction and hydrate bonds. Second consequence of the high sample deformation dur-

ing start-of-flow experiment is that this measurement is destructive: yield stress for each

age must be measured with a different sample. Each sample is prepared following the

same protocol as described in 4.2.2.1 and placed in the rheometer geometry. Then a rest-

ing time between 0 and 45 min is chosen before the start of the yield stress measurement.
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Measured yield stresses are shown in Fig. 4.17. Curve shape in yield stress regime is typical

from cement paste [13] and exhibits a two-regime behavior with two different slopes: in

the first regime, yield stress is governed by colloidal interaction between cement grains,

and in the second regime, formation of hydrates bonds become predominant. For the

stable foam in the granular regime, very fast increase of yield stress in the first 15 minutes

of rest supports the hypothesis of the formation of a dense structure of cement grains in

contact. Both interstitial yield stress curves have the same slope after 15 minutes, which

shows that there is no major difference of hydration kinetics between these two types of

samples.

Figure 4.17: Increase of interstitial yield stress with time for cement foams W/Ci = 0.35 containing

Steol. Full dots to foams in the yield stress regime (Steol concentration 10.4 g/L, τy = 18 Pa), empty

dots refer to very stable foams in the granular regime (Steol concentration 11.4 g/L, τy = 3 Pa) and

grey crosses to less stable foams in the granular regime (Steol concentration 12.3 g/L, τy < 1 Pa)

We can therefore assume that the origin of stability of cement foams in the granular

regime lies in the formation of a dense cement grain structure, where dominant inter-

actions are frictional contacts. 15 minutes after the start of the experiment, this dense

structure exhibits a yield stress two times larger than the value obtained in the yield stress

regime and it appears to be able to stop foam destabilisation.

4.4.4 Stability loss at very high surfactant content

Last point that remains to be elucidated is the stability loss of Steol in the granular regime

when free cement paste yield stress is very low, i.e. τy < τ∗∗y . Interstitial yield stress evo-

lution for a foam corresponding to a free cement paste below 1 Pa is plotted in Fig. 4.17.

The increase of interstitial yield stress before 15 min is smaller than in the stable foam,

but higher than in the case τy > τ∗y .

The most probable explanation for the observed unstability is that at very low yield

stress, drainage of the cement paste can occur between the bubbles. Indeed, a layer of

cement can often be seen at the bottom of the highly deflocculated cement foam sample.

Flow of a yield stress fluid in the foam channels, called Plateau borders, and nodes can be

compared to the flow of a fluid in a porous media. Flow of a yield stress fluid in a porous

medium under gravity is expected to occur if the yield stress is below a critical value τc,d

with depends on the pore radius a [23].
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τc,d = ρg a (4.9)

In the case of a foam, we can assume that the equivalent pore size is of the order of

magnitude of the bigger spheres which can pass in the plateau borders. This radius is

given by [24]:

rPB = R
0.27

p
1−Φ+3.17(1−Φ)2.75

1+0.57(1−Φ)0.27
(4.10)

When R=390µm andΦ = 83%, equation 4.10 gives rPB= 40µm. Therefore, τc,d ∼ 1 Pa ∼
τ∗∗y , which explains that the drainage occurs when τy < τ∗∗y .

Note that drainage in the Plateau borders and nodes may induce a segregation of ce-

ment grains in the very deflocculated cement pastes. Diameter of the bigger spheres that

can pass in the Plateau borders is 2rPB=80 µm, which is close to the size of the bigger ce-

ment grains. Therefore, while bigger cement grains are potentially retained by the foam

nodes and channels, small grains can escape the structure and settle at the sample bot-

tom.

Hydration kinetics may also play a role on foam stability. Though, as mentioned in the

previous paragraph, the influence must be minor compared to the early age structuration

of the cement paste into a dense granular packing or colloidal network. We can note how-

ever that high amount of surfactant can delay hydration: this effect has been observed by

other authors [25] and is confirmed for Steol in Fig. 4.18.

Figure 4.18: Delay of the temperature peak of cement pastes containing Steol (W/C=0.5, CEM I

cement from St Vigor factory, Lafarge): (tpeak − tpeak,r e f )/tpeak,r e f where tpeak,r e f = 12 h is the

reference time in sample containing no surfactant.

4.5 Conclusion

We have studied the capacity of cement pastes for producing morphology-controlled ce-

ment foams. By using two distinct additives, our experimental approach allowed us to

tune finely the paste yield stress τy while keeping constant several control parameters,

namely the W/C ratio, the bubble size and the gas volume fraction. Our results reveal

that appropriate morphological control can be achieved, for each studied system, when

τ∗∗y < τy < τ∗y .
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This result is attributed to the additives-induced reduction of attractive van der Waals

interactions: weak attractive forces allow densification of the cement grains within the

foam network as well as the simultaneous drainage of the excess interstitial pore solu-

tion. Within this regime, the partially flocculated state of cement grains allows for these

particles to be retained within the foam skeleton. Combination of these effects has been

proved to enhance drastically the effective yield stress property of the bubble-embedded

cement paste, resulting in efficient immobilization of fresh foams, without resorting to

set accelerators. Such a mechanical behavior is reminiscent of aqueous foams made with

granular matter, i.e. grains without any other interaction than contacts, as studied re-

cently by Gorlier et al. [19]. We anticipate that the drainage of the excess interstitial pore

solution could be critical if the drained volume is large, i.e. for large W/C ratios.

For τy > τ∗y , cement foams were found to evolve significantly before setting, leading

to uncontrolled final morphology. In contrast to the above-described regime, attractive

van der Waals forces are strong enough to prevent cement particles from being reorga-

nized within a denser structure between the bubbles, and in the same time, pore cement

solution is hardly squeezed out through the interstitial cement paste. As a result, the in-

terstitial cement paste behaves as a “classical” yield stress material with yield stress equal

to τy . Within our experimental conditions, studied τy < 100 Pa values were not found

to allow morphology control. However, we anticipate that larger τy and/or larger bubble

size should allow for such a control.

Finally, we show that fresh cement foams with τy < τ∗∗y do not allow foam morphol-

ogy to be controlled. This result is attributed to the deflocculated state of cement colloidal

particles in this regime: deflocculated small cement particles exit the foam skeleton along

with the draining pore solution so the above-described densification mechanism is pre-

vented from occurring.
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Stability criterion for fresh cement foams
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5.1 Introduction

When it is unconstrained, a bubble has a spherical shape because of the air-liquid surface

tension. Though, in a foam, bubbles are deformed by their neighbors. The structure of

a foam was studied in 1873 by Joseph Plateau, who stated three laws known as Plateau’s

laws [1]: (1) two bubbles are separated by a soap film of constant average curvature, (2)

three films join in a channel, called Plateau border, forming 120°angles, (3) four Plateau

borders join into a node at angle 109.5°. The resulting morphology of the foam tends

to evolve with time due to downward flow of interstitial fluid due to gravity (drainage),

air exchange between bubbles (ripening) and film breakage (coalescence), as shown in

Fig. 5.1.

Figure 5.1: Destabilisation mechanisms in a foam (taken from [2])

In cement foams, these destabilization mechanisms can occur until cement paste

hardening. Thus, to control the bubble size and air distribution in the foam, we have

to stop or slow down these three mechanisms. In this study, we want to define a stabil-

ity criterion for cement foams. The first step is to select the relevant foam characteristics

which should be included in such a criterion.

All destabilization mechanisms are affected by bubble size. Increasing bubble radius

R leads to large film areas between the bubbles, which enhances coalescence. It also in-

creases the Plateau borders and nodes width, which favors drainage [1]. Ripening, on

the contrary, is reduced when bubble size increases. Indeed, it is caused by the capillary

pressure inside the bubbles Pc = γ/R, where γ is the air-liquid surface tension.

Consistency of the continuous phase, i.e. of cement paste, is also expected to play

a major role in foam stability. High yield stress can stop drainage and ripening [3, 4].

However, we have shown in chapter 4 that for foams at given bubble size, air fraction

and water-to-cement ratio, best cement foam stability is obtained at intermediate cement

paste yield stress: on the one hand, it should be high enough to stop drainage and on the
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other hand it should be low enough to allow cement grains confined by the bubbles to

reorganize into a dense structure.

To avoid coalescence, liquid film must be stabilized by molecules or partially hydropho-

bic particles which adsorb at air-water interfaces. The molecules, called surfactants, must

be compatible with the highly alkaline cement solution and be present in sufficiently high

amount [1].

In the materials and methods, we describe how we prepare cement foams with con-

trolled morphology. The goal of this paper is to investigate the factors controlling the

stability of these cement foams. First, the leading destabilization mechanism is identi-

fied. Then, effect of bubble size and cement paste yield stress are investigated. Finally, a

cement foam stability criteria will be defined, independently from the composition of the

foam.

5.2 Materials and methods

5.2.1 Materials

5.2.1.1 Cement

We use two cements. The first will be refered to as C1, it is manufactured by Lafarge, in

Saint-Vigor factory and C2 is a CEM I cement from Lafarge, Lagerdorf. Their compositions

and physical properties are specified in Table 5.1.

C1 C2

CaO/SiO2 3 3

MgO 1.1% 0.8%

Na2O + 0.658 K2O 0.34% 0.5%

SO3 2.58% 2.5 %

Cl− 0.03% 0.04 %

Gypsum 2.4% 4%

Density (g/cm3) 3.21 3.15

SSB (cm2/g) 3586 4330

Table 5.1: Chemical and physical properties of cements. C1 refers to CEM I cement from Lafarge,

Saint-Vigor and C2 to CEM I cement from Lafarge, Lagerdorf.

5.2.1.2 Surfactants

Two surfactants are used to produce the precursor foam. Tetradecyltrymethyl ammonium

bromide (TTAB) is a cationic surfactant at purity above 99% provided by Sigma-Aldrich.

Its molar mass is 336 g/mol. Steol® 270 CIT is an anionic surfactant provided by Stepan.

Its molar mass indicated by the manufacturer is 382 g/mol and active content 68-72%.

Surfactant chemical formulas are given in figure 5.2.
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Figure 5.2: Chemical formulas of TTAB and Steol 270 surfactants

Previous study showed that both surfactants are able to form stable foam in a highly

alkaline model solution of interstitial cement paste [2].

5.2.2 Methods

5.2.2.1 Precursor foam and mixing

Cement foams are prepared by mixing precursor aqueous foam and cement paste. Pre-

cursor foams are generated with the method described in chapter 4. They are monodis-

perse, i.e. they contain bubbles of the same size. Bubbles are generated with a ∼ 100 µm

diameter T junction, their radius depends on the entrance rates of the gas (nitrogen) and

the foaming liquid (water and surfactant). Bubbles are collected in a column, where liquid

fraction is controlled thank to addition of foaming liquid from the top of the foam. Bubble

radius are comprised between 200 µm and 900 µm. In TTAB precursor foams, concentra-

tion is 10 g/L and liquid fraction is between 0.5 and 2%. In Steol precursor foams, Steol

concentration is 1 g/L and liquid fraction, 1.6±1% when bubble radius is below 350 µm

and 1.4±1% otherwise.

Mixing of cement paste and precursor foam is carried with a flow focusing device as

described in chapter 4. The main advantage of this method is that bubbles are not broken

during the mixing process. Flow rates of the precursor foam and the cement paste are

chosen so that the final air content of cement foam is 83% ± 2%. Note however that flow

focusing method requires the flow of the cement paste in small channels (2 mm diameter)

and that therefore, yield stress of the paste must be limited to a few tens of Pascals to avoid

jamming in the channels.

Mold is filled by deposition of successive cement foam layers. Therefore, cement foam

does not undergo strong shearing after its preparation, and bubbles are not broken during

sample production.

5.2.2.2 Protocol

All cement foam samples, for each surfactant, are prepared using the same mixing proce-

dure, from water and cement mixing to casting. In the case of Steol samples, surfactant

is added to cement paste 20 minutes after cement paste preparation in large amount to

make consistency of the paste decrease (see chapter 4). For both surfactants, precursor

foam and cement paste are mixed 30 min after cement paste preparation. Protocol is

schematized in Fig. 5.3.
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Figure 5.3: Preparation protocol of cement foams made with Steol anionic surfactant and TTAB

cationic surfactant.

5.2.2.3 Observation of stability

Samples are cast in 6-cm-high and 2.6-cm-diameter air-tight transparent tubes. They are

demolded one week after casting and the stability is visually assessed from the final mor-

phology of the cement foam. Sample stability is assessed as in chapter 4, according to

the scale described below. In this study, no cement foam has collapsed, the height of the

hardened samples is always 6 cm.

• 3: fully stable sample

• 2: large stable area

• 1: small stable area(s)

• 0: no stable area

We can also observe the evolution of the bubble morphology of fresh cement foams

across the transparent molds. Note however that shape of the bubbles that we can see

are affected by the presence of the mold wall and are not necessarily representative of the

bubbles in the foam volume. In particular, Plateau borders are larger. For samples with

big bubble size or low cement paste yield stress, this leads to the full coverage of the mold

walls by cement paste. Obtained images are analyzed with ImageJ software to calculate

the apparent radius of the bubbles.

Besides, our experimental setup allows us to prevent one or two destabilization mech-

anisms in some of the samples. To prevent ripening, we use perfluorohexane saturated

nitrogen instead of pure nitrogen [1, 5]. Chemical formula of perfluorohexane is C6F14

and it has very low solubility in water, so that it can hardly cross the liquid films between

the bubbles. In addition, we can also stop drainage: we make sample rotate at 10 rpm, for

several hours after preparation, around a horizontal axis.

5.2.2.4 Stability of aqueous foam

To check the ability of surfactant to stabilize the liquid films during several hours, we

prepare an initial height h0=11cm of aqueous foam from surfactant solution. Generation

method is the same as described in part 5.2.2.1, with initial bubble size R' 300µm. Foams

with and without C6F14 were tested. At time t=0, wetting of the foam by imbibition is
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stopped and we record the evolution of the height h(t ) of the foam. Both surfactants

(TTAB at concentration 5 g/L and Steol at 1 g/L) were tested in distilled water and in a

synthetic cement pore solution containing 1.72 g/L of CaSO4 ·2H2O, 6.959 g/L of Na2SO4,

4.757 g/L of K2SO4 and 7.12 g/L of KOH [6].

5.2.2.5 X-ray tomography

Some stable cement foams have been studied by X-ray tomography one or two months

after the preparation.

Two types of experiments are performed. Laboratory tomograph gives images of the

whole 2.6-cm-diameter and 6-cm-high samples. One 11-cm-high sample has also been

prepared and studied. Resolution for the obtained images is 16.3 µm. On the other hand,

synchrotron provides high resolution images with voxel size 0.65 µm, on a few millimeter

wide pieces of the samples.

5.2.3 Properties of cement paste

5.2.3.1 Yield stress of cement paste

Cement foams prepared with TTAB surfactant are made with C1 cement and those with

Steol contain C2 surfactant. In both cases, we estimate the yield stress of the cement

pastes corresponding to cement foams, i.e. prepared following the protocol described

in 5.2.2.2 with addition of foaming solution (without bubbles) instead of foam. Yield

stresses of these pastes are measured by spread tests: paste is poured on a flat horizontal

surface and yield stress is obtained by the following formula [7]:

τy = 225ρgΩ2

128π2R5
spr ead

(5.1)

where Ω and Rspr ead are respectively the volume and the average radius of the spread

cement paste and ρ its density. Note that this formula requires that 1 Pa . τy . 100 Pa [2,

7].

In the case of TTAB, we have seen in a previous study [2] that TTAB partially adsorbs

on C1 and has only a low effect on cement paste yield stress. Therefore, paste yield stress

depends mainly on the final water-to-cement ratio of the cement foam, W/C f . Water-to-

cement ratio of the precursor cement paste is W/Ci =0.37. As air content of the cement

foam is constant, W/C f and final TTAB concentration in cement foam both depend only

on the liquid content of the precursor foam. Measured yield stress is given as a function

of W/C f in Fig. 5.4. Yield stress of a solid suspension can be described by the Yodel [8],

which states that it is a product of the contribution of the intensity of the forces between

two neighboring solid particles m1 and a function of the solid volume fraction Φp :

τy = m1

Φ2
p (Φp −Φper c )

Φmax(Φmax −Φp )
(5.2)
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where Φper c is the percolation threshold and Φmax is the maximal solid fraction. In ce-

ment pastes, Φp is related to the water to cement ratio Φp = 1/(1+ρc /ρw W/C f ). TTAB

hardly affects interparticle interaction between cement grains, therefore, we choose to

use equation 5.2 to fit the yield stress of cement pastes containing TTAB. Obtained fitting

parameters are m1 = 15 Pa, Φper c = 0.32 and Φmax = 0.46.

Figure 5.4: Yield stress of cement pastes containing TTAB cationic surfactant (Fit with Yodel, equa-

tion 5.2 with m1 = 15 Pa, Φper c = 0.32 and Φmax = 0.46)

Regarding Steol surfactant, we have observed that it has a strong affinity with cement

grain surface [2]. Steol adsorption onto cement grains changes the interaction between

the particles and modifies the yield stress of the cement paste. At low Steol concentration,

yield stress increases due to hydrophobic interaction between cement grains. At high con-

centration, adsorbed Steol micelles create a steric repulsion between cement grains and

reduces the yield stress. For the present study, we choose to use two Steol concentrations

in the precursor cement paste: 11.4 and 12.4 g/L. In both cases, the addition of Steol into

cement paste makes the yield stress drop to very low values, respectively 4 Pa and 1 Pa.

Addition of Steol foaming solution at 1 g/L leads at the same time to an increase of W/C

and to a decrease of the final Steol concentration. We measured in chapter 4 that after

mixing with foam at liquid content 1.4%, the final water-to-cement ratio is W/C f = 0.41,

Steol concentration drops to 10.4 and 11.4 g/L and τy = 18 Pa and 3 Pa. When liquid

content in the precursor foam is higher, for instance 1.6%, W/C f increases and Steol con-

centration decreases, which have opposite effect on the yield stress. Therefore, we will

assume that paste yield stress in this case is also τy = 18 Pa and 3 Pa.

5.2.3.2 Surface tension of cement paste

For TTAB surfactant, concentration after mixing of the precursor foam into the paste is

between 0.7 and 2.4 g/L. Adsorption isotherms measured on pastes at W/C f =0.5 showed

that partial adsorption on cement grains leaves a residual concentration in solution be-

tween 0.2 and 1 g/L [2]. Surface tension of TTAB at these concentrations in synthetic

cement pore solution is comprised between 37 and 42 mN/m [2], so that we can assume

for TTAB cement foams γTTAB ' 40 mN/m.

For Steol surfactant, both yield stress values are smaller than the yield stress of the

same cement paste without surfactant. Therefore, they are both in the high Steol con-
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centration regime, and residual concentration is above Critical Micelle Concentration [2],

therefore, the surface tension of the cement pastes is γSteol = 27 mN/m.

5.3 Results

5.3.1 Stability of aqueous foams

Height of aqueous foams was monitored for at least one day. Note that the presence of

perfluorohexane tends to make the foam swell. Indeed, there is C6F14 in the bubbles but

not in the air in the column above the foam. Difference in C6F14 chemical potentials leads

to gas transfer from the air above the foam to the bubbles. This swelling is however not

reported on the graphs.

During the six experiments presented in Fig. 5.5, we observe that the foam becomes

more and more dry and that the size of air bubbles increases. However, the height of the

foam did not decrease for 10 hours in all cases. Foams made with synthetic cement pore

solution are less stable than in distilled water, and the absence of C6F14 also increases

destabilization speed; however, both these effects can be seen only after 10 hours.

Figure 5.5: Evolution of the height of aqueous foams with time made with TTAB solutions at 5 g/L

(left) and Steol solutions at 1 g/L. Black dots or triangles refers to surfactant solutions in distilled

water and grey signs to synthetic cement paste solutions. Dots refers to foams containing C6F14 to

slow down ripening and triangles to foams made of nitrogen only.

5.3.2 Drainage and ripening

5.3.2.1 Smaller bubbles (R . 500 µm)

All the samples presented in Table 5.2 are unstable if none of the destabilisation mecha-

nism is artificially counteracted. For all of them, preventing drainage by a rotation of the

samples does not stop destabilisation, whereas samples containing perfluorohexane are

stable.
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R Free drainage No drainage No ripening No ripening

(µm) and ripening Free ripening Free drainage No drainage

TTAB - C1, W/C f from 0.39 to 0.5

≈ 300 Unstable Unstable STABLE STABLE

≈ 400 Unstable Unstable STABLE STABLE

Steol - C2, τy = 18 Pa

≈ 200 Unstable Unstable STABLE STABLE

≈ 300 Unstable Unstable STABLE STABLE

≈ 400 Unstable Unstable STABLE STABLE

Steol - C2, τy = 3 Pa

≈ 200 Unstable Unstable STABLE STABLE

Table 5.2: Effect of slowing down ripening and drainage on sample stability.

When W/C f is further increased above 0.5 for TTAB samples containing perfluoro-

hexane, we sometimes notice a segregation of cement grains at the bottom of the samples

as illustrated in Fig. 5.6 for a TTAB sample at W/C f =0.69 (i.e. a yield stress deduced for

equation 5.2 below 1 Pa) where R = 300 µm. Bubble size after cement hardening in these

samples is kept unchanged, except at the bottom of the sample.

Figure 5.6: Bottom of cement foam sample 15 minutes after production containing TTAB, R =

300 µm, W/C f =0.69 with perfluorohexane (τy < 1 Pa). Sample diameter is 2.6 cm.

Some pictures of the samples after cement hardening are shown as examples in Fig. 5.7.

Each bubble is connected with its neighbors; the size of the opening between two bubbles

depends on the bubble size. Just after sample production and during several hours, the

bubbles are separated by a liquid film containing no cement particle. When the samples

are demolded after 7 days, the liquid film has already disappeared.

Note that for the smaller bubbles, mixing of cement paste and foam is sometimes

not fully homogeneous at the bubble scale: small volumes of cement paste only are sur-

rounded by foam of higher air content than the average value (see Fig. 5.8, top). For in-

stance structure of foams in pictures (c) and (d) in Fig. 5.7 should be the same, but mix-

ing was more inhomogeneous in sample (c). However, the quality of the mixing does not

change the fact that samples are stable only if ripening is prevented: the bubble size distri-

bution measured from the tomography images after cement hardening is narrow around
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(a) (b) (c) (d)

Figure 5.7: Pictures of hardened cement foams. From left to right: (a) sample containing TTAB,

initial bubble size 400 µm, with no control of destabilisation mechanisms; (b) sample containing

Steol (18 Pa), initial bubble size 300µm, with perfluorohexane; (c) sample containing Steol (18 Pa),

initial bubble size 200 µm, with perfluorohexane; (d) sample containing Steol (3 Pa), initial bubble

size 200 µm, with perfluorohexane. Height for all pictures is 5 mm.

the average value (see Fig. 5.8, bottom).

Figure 5.8: Top : 3D reconstruction from tomography experiment on a TTAB cement foam,

R=370 µm and W/C f =0.42, stabilized by perfluorohexane. Red arrow indicates an area without

bubbles. Cube size is 3 mm. Bottom: Bubble size distribution by volume (arbitrary unit on vertical

axis), statistics on a 1.5 cm cube in the middle of the sample (about 10 000 bubbles).

An example of the evolution of the morphology of a TTAB cement foam with R =
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365 µm is shown in Fig. 5.9. The average radius of the bubbles and the radius of the bigger

bubbles (i.e. average of the bigger three radius) are given in Fig. 5.10 for two TTAB sam-

ples with different initial bubble sizes. Note that fast variations for the default size curves

are due to the image analysis process: some of the bubbles cannot be identified on all the

pictures because of unclean sample walls.

Figure 5.9: Evolution of morphology of fresh cement foam. Example of sample with initial bubble

radius 365µm, W/C=0.41 and 83% air content containing TTAB surfactant. Picture width is 1.5 cm.

Figure 5.10: Evolution of bubble radius with time for the TTAB samples with initial bubble radius

365 µm, W/C f =0.41 (grey curves) and 270 µm, W/C f =0.42. Lines correspond to average value of

all the bubbles and dots show the size of the defaults (average of the bigger three radius).

For both samples, the maximal radius and the average radius of the apparent bubbles

start to increase just after sample preparation. We can notice that the apparent radius are

below the radius of the bubbles of the precursor foam due to the width of the Plateau bor-

ders on the pictures. Bubble size increases faster when the initial bubble size is smaller.

Time for the bigger bubbles to reach twice their initial size is about 20 minutes after foam
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preparation when R = 270 µm and W/C f = 0.42, and 40 minutes after foam preparation

when R = 365 µm, W/C f = 0.41

5.3.2.2 Bigger bubbles (R & 500 µm)

In samples containing bigger bubbles, air fraction often increases from the bottom to the

top of the sample when drainage is not prevented through rotation. Examples of slices ob-

tained by X-ray tomography of a 11 cm high sample are shown in Fig. 5.11. Air fraction has

been calculated by image analysis of the tomography slices, and is plotted at the bottom

of Fig. 5.11 as a function of the height. It increases from 80% at the bottom of the sample

to 85% at the top of the 11 cm high sample. This curve additionally shows oscillations of

the air fraction over a length scale close to 1300 µm, i.e. the diameter of the bubbles (see

inset). This is a signature of the organization of the monodisperse bubbles into a crys-

talline structure. When the curve is averaged over a height bigger than the bubble size

(black curve), some local minima and maxima are still present. The local variations may

be created during the mixing of cement paste and precursor foam or appear later during

the drainage of the sample. In Fig. 5.12, a 3D reconstruction drawn from the tomography

images is shown. In addition, the volume size distribution of the bubbles is plotted and

confirms the narrow distribution around the average bubble radius

h=3 cm h= 10 cm

Figure 5.11: Steol sample (τy =3 Pa, R=685 µm). Top: Slices of cement foam sample obtained by

X-ray tomography at different height, bubbles appear in black and cement paste is grey. Bottom :

evolution or air fraction with sample height. Grey curve is raw data, black curve is the data average

over 2000 µm
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Figure 5.12: Top: 3D reconstruction from tomography experiment on a Steol sample (τy = 3 Pa,R =

685µm). Cube size is 3 mm. Bottom: Bubble size distribution by volume (arbitrary unit on vertical

axis), statistics on a 1.5 cm cube in the middle of the sample (about 2000 bubbles).

In addition, drainage sometimes leads to a strong destabilization of bubbles at the

bottom of the sample (see Fig. 5.13, left). Preventing drainage by sample rotation makes

the sample more homogeneous (see Fig. 5.13, center) but often leads to weak samples,

that break when they are demolded (see Fig. 5.13, center). This occurs when cement paste

in the foam sample moves when sample rotates, which is often the case when τy is too low.

Figure 5.13: Comparison of samples with big bubble size (TTAB, Φ=0.87%, R=1000 µm) after free

drainage (W/C f =0.44, left) and when drainage has been prevented by rotation (center and right).

Rotation sometimes leads to weak samples that break when they are demolded (W/C f =0.49, right).

Sample height is 6 cm.
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5.3.3 Influence of initial yield stress and bubbles size

In the following we do not consider the destabilization of the bottom the foam samples

due to drainage. A sample is considered as instable when a major change of bubble size

has occurred in the whole sample. Cement foam stability for samples are gathered in

Figs. 5.14 and 5.15. For Steol, each point correspond to at least two experiments. In some

of the cases, identical foams have different stability behavior.

Figure 5.14: Stability of TTAB-C1 cement foam samples. Black lines show constant Bingham cap-

illary number with γTTAB = 40mN/m

Figure 5.15: Stability of Steol-C2 cement foam samples. Black lines show constant Bingham capil-

lary number with γSteol = 27 mN/m

We observe for both surfactants a large effect of bubble size: all samples are stable

when R is high and unstable at very low R. Minimum radius for stable foams depends

however on the composition of the foams: 600 µm for TTAB and C1, and respectively

400 µm and 200 µm for Steol and C2 when τy =18 Pa and 3 Pa. On the contrary, increase of

yield stress does not improve stability in the studied range, i.e. below 50 Pa. Higher yield

stresses can not be achieved with our mixing device.
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5.4 Discussion

5.4.1 Destabilization mechanisms

First, volume of aqueous foams for both surfactants was constant for more than 10 hours

with C6F14 and without. Stability of a liquid film depends on the ability of the surfactant

layers on both interfaces to repel each other. Film breakage occurs when the disjoining

pressure Πd , i.e. the pressure in the liquid film due the the repulsion on the air-liquid

interfaces, reaches a critical value Πd ,cr i t . In an aqueous foam in equilibrium, disjoining

pressure is maximal at the top of the foam and Πd = ρl g h where ρl is the liquid density.

Our results show that TTAB and Steol are able to prevent coalescence, even in the highly

alkaline conditions in cement paste, at Πd = 1000 Pa. In foams, coalescence can take

place even if Πd < ρg hcr i t , because bubble rearrangement can lead to film breakage due

to dynamics, if liquid volume content is very low [9]. Rearrangements can for instance

be a consequence of the evolution of bubble shape due to ripening. This explains why

coalescence occurs after a few hours in Steol aqueous foams containing perfluoroexane

whereas the sample foams with perfluorohexane were stable for 30 hours.

These observations on aqueous foams show that coalescence is not expected to be the

leading destabilisation mechanism in cement foam samples when their height is below

11 cm. Let us now investigate the other two mechanisms. Drainage should stop if yield

stress exceeds a critical value τc,d whose order of magnitude is given by [3]:

τc,d ∼ ρg r (5.3)

where r refers to the external radius of curvature of Plateau borders. At high air con-

tent Φ > 99%, r ≈ R/
p

(1−Φ)/0.33 [1] whereas at low air content Φ→ 64%, r → R. In our

case Φ= 83 %; we take r ∼ R, so τc,d ∼ ρg R.

Ripening is expected to be slowed down or stopped when the yield stress of the in-

terstitial material reaches the order of magnitude of the bubble capillary pressure PC [4].

Therefore, we define the critical stress for ripening as:

τc,r ∼ γ/R (5.4)

Both critical stresses for drainage and ripening depend on the bubble radius R. We can

estimate their value for cement foam samples, where ρ ' 2000 kg/m3 and γ ' 30 mN/m.

The obtained curves are shown in Fig 5.16. We notice that for the bubble sizes we have

studied, i.e. 100 µm < R < 1000 µm, τc,d < τc,r . τc,r is two orders of magnitude above

τc,d when R is a few 100 µm, which explains that ripening this the dominant destabiliza-

tion mechanism at small bubble size. When R → 1 mm, critical stresses for drainage and

ripening are the same order of magnitude, and drainage can take place even if no major

evolution of bubble size occurs.

To summarize, the orders of magnitude of the stresses in Fig. 5.16 are in adequation

with experimental observations: ripening is the major destabilization mechanism for the

smaller bubble size, and drainage starts to pays a role when R→ 1 mm.
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Figure 5.16: Comparison of driving stresses for drainage and ripening. The curves define three

possible behavior of cement foams when no experimental artifice is used to slow down ripening

or drainage: stable foam if τy > τc,r , both drainage and ripening if τy < τc,d and only ripening at

intermediate yield stress values.

5.4.2 Characteristic destabilization times

To get deeper understanding of drainage and ripening, we can calculate their respective

time scales.

Let us first calculate a rough estimation of drainage characteristic time td . It depends

on the cement foam sample height H and the drainage velocity v : td = H/v . The velocity

is given by Darcy’s law for pressure gradient induced by gravity ρg:

v = k

µapp
ρg (5.5)

Where k is the permeability and µapp the apparent viscosity of the cement paste. Per-

meability of a foam depends of the air fraction and the bubble size [10]:

k = 4(1−Φ)3/2

1700(1−2.7(1−Φ)+2.2(1−Φ)2)2
R2 (5.6)

For Φ= 0.83, this gives k = 5.10−4R2.

To assess the apparent viscosity of the continuous phase, a rheological model must be

chosen. Bingham model describes well the rheological behavior of cement paste [11], the

stress τ and the shear rate γ̇ in the paste are related by:

τ= τy +µp γ̇ (5.7)

where the yield stress τy and the plastic viscosity µp depends on the paste formulation.

We have measured the flow curves of three cement pastes with no surfactant, at water-

to-cement ratio from 0.37 to 0.5 (results not shown here). For all three of them, stress at

γ̇100 = 100 s−1 is close to 2τy , i.e. µp ∼ τy /γ̇100.

At the scale of the Plateau borders and nodes, the stress is τ ∼ ρg r where r is the

charateristic size of the channels and is close to the bubble radius R for the studied air

fraction. The apparent viscosity is therefore
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µapp = τ/γ̇∼ ρg Rτy

(ρg R−τy )γ̇100
(5.8)

From equations 5.5, 5.6 and 5.8, we find that the characteristic drainage time is

td ∼ Hτy

5.10−4R(ρg R−τy )γ̇100
(5.9)

This gives, for τy = 1 Pa, td ∼ 30 min when R = 200 µm and td ∼ 1 min when R =

700 µm.

Regarding ripening, characteristic time is given by [12]:

tr =
2R2

0

K2
(5.10)

where K2 is the diffusion coefficient. For nitrogen and low molecular weight surfactants

K2 ∼ 50 µm2/s. For polydisperse foams, characteristic time given by equation 5.10 is the

time during which the average bubble size grows from its initial value R0 to 2 R0. In the

case of monodisperse foams, ripening is delayed. First, there is an induction period dur-

ing which defaults appear and grow in the foam. The length of this induction period is not

known. However, we chose to use equation 5.10 with R0 = R to assess the time evolution

of the defaults due to ripening.

We obtain tr ∼ 50 min when R = 270 µm and tr ∼ 90 min when R = 365 µm. These

calculated times are the same order of magnitude than the ripening times observed in

Fig. 5.10.

Comparison of drainage and ripening characteristic times shows that when cement

paste yield stress is below driving pressures for both drainage and ripening, drainage oc-

curs faster than ripening as soon as R & 200 µm.

R = 200 µm 700 µm 1 mm

τy = 1 Pa Drainage + ripening ∼ 30 min Drainage ∼ 1 min Drainage ∼ 1 min

10 Pa Ripening ∼ 30 min Drainage ∼ 1 h STABLE

100 Pa Ripening ∼ 30 min STABLE STABLE

Table 5.3: Characteristic destabilization times for cement foams with different bubble size and

interstitial yield stress

5.4.3 Effect of Bingham capillary number

We have identified ripening as the major destabilisation mechanism. To go further, we

can use the Bingham capillary number which compares the yield stress (stabilizing effect)

with the capillary pressure inside the bubbles, which leads to ripening:

Cay =
τy

τc,r
= τy

γ/R
(5.11)
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We expect that a suitable criterion for foam stability would be under the form of a criti-

cal capillary number Ca∗
y . Most intuitive calculation of Bingham capillary number would

use the yield stress of the free cement paste τy obtained from Fig. 5.4. The calculated

values are plotted in Fig. 5.14 and 5.15 and compared to the stability of TTAB and Steol

samples. Cay for all the samples are summarized in Fig. 5.17. We see that Cay cannot be

used to predict cement foam stability: even if stability improves with increasing bubble

size as expected, no improvement can be seen when τy increases up to 50 Pa.

Figure 5.17: Cement foam stability as a function of Bingham capillary number calculated from free

cement paste yield stress. Black dots correspond to Steol samples with τy = 3 Pa, grey dots to Steol

samples with τy = 18 Pa and empty triangles to TTAB samples.

τy is therefore not the adequate yield stress that we can take into account to define a

stability criterion. Chapter 4 provides two hints to define a better criterion :

• The yield stress of the cement paste when it is confined in the foam structure can be

higher than the free yield stress. It is the effective stress that the bubbles must over-

come to deform, consequently, it is more likely to be related to foam stability than

free yield stress. Interstitial yield stress τy,i nt can be obtained from macroscopic

foam yield stress τy, f oam(Φ) by [13]:

τy,i nt =
(
1− τy, f oam(Φ)

τy,aq (Φ)

)3/2
γ

Rc3/2(1−Φ)2
(5.12)

where τy,aq (Φ) = 0.6
γ

R
(Φ−Φc )2 is the yield stress of aqueous foam with the same air

content and c=110 is a constant.

• Yield stress of cementitious materials at rest increases with time due to flocculation

and creation of hydrate bonds between the particles [11]. Therefore, we can wonder

what age t∗ should be taken into account to define a stability criterion. We have

seen in Fig. 5.10 that for unstable samples, the size of the bigger bubbles doubles in

several tens of minutes, so we choose to try t∗ = 15 min.
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5.4.4 15 min interstitial Bingham capillary number

We have measured cement foam yield stress at 15 min with rheometry protocol described

in chapter 4. Interstitial capillary number have been deduced using Equation 5.12. Note

that bubble size have an effect on interstitial yield stress: interstitial yield stress decreases

when bubbles size increases.

Figure 5.18: Interstitial yield stress calculated from foam yield stress measured at 15 min for sam-

ples containing TTAB, W/C f =0.42

Two hypothesis can account for this observation. First, equation 5.12 has been empir-

ically obtained on model yield stress fluids (oil-in-water emulsion and beads suspension)

when Cay,i nt = Rτy,i nt /γ < 0.5. The interstitial yield stress value obtained for the bigger

bubbles in Fig. 5.18 gives Cay,i nt ' 1, so that a deviation of the yield stress from the value

given by equation 5.12 is possible.

Besides, a possible effect of bubble size is illustrated by the high resolution tomogra-

phy pictures in Fig. 5.19. When the bubbles are small, the bigger cement grains, whose

diameter before the start of hydration is about 100 µm, have similar size as the Plateau

borders. Note that the synchrotron pictures have been taken two months after the sam-

ple preparation, when most of the cement has reacted with water and formed hydrates,

and that therefore apparent cement grain size on the pictures is smaller than their initial

size. The diameter of the bigger particles that can enter the Plateau borders is given by

equation [14]:

dPB = 2R
0.27

p
1−Φ+3.17(1−Φ)2.75

1+0.57(1−Φ)0.27
(5.13)

With Φ= 83%, we obtain dPB = 60 µm if R = 300 µm and dPB = 160 µm if R = 800 µm.

As a consequence, when the bubbles are small, bigger cement grains cannot enter the

Plateau borders and are stuck in the foam nodes. This leads to a segregation of cement

grains following their size, this segregation can change the yield stress of the cement paste.

Stability of samples is plotted as a function the interstitial capillary number at t∗ =
15 min in Fig. 5.20. We can see for all the curves that a transition from unstable samples

at Cay,i nt (t∗) . 1 to stable samples when Cay,i nt (t∗) is higher. We can therefore define a

critical value of the capillary number Ca∗y,i nt (t∗) = 1. It is important to note that the value

of t∗ is expected to highly depends on the preparation method of cement foam sample
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Figure 5.19: Synchrotron slices of TTAB cement foams stabilized by C6F14, for R=265 µm (left) and

R=550 µm (right), two months after preparation. Image width is 1300 µm. Red arrows indicate

some of the bigger cement grains.

and can be affected, for instance, by the polydispersity of the foam and the setting time of

the cement.

Figure 5.20: Cement foam stability as a function of Bingham capillary number calculated from

interstitial yield stress at 15 min. Black dots correspond to Steol samples with τy = 3 Pa, grey dots

to Steol samples with τy = 18 Pa and empty triangles to TTAB samples.

5.5 Conclusion

We have investigated the mechanisms at stake in the destabilization of cement foam sam-

ples. We first note that a proper choice of surfactant can prevent coalescence of the films

up to cement hardening.

For most cement foam samples, prepared either with anionic or cationic surfactant,

ripening is the leading destabilization mechanism. Drainage is also sometimes observed

when yield stress of cement paste is very low or bubble size is big. In these cases, drainage

takes place faster than ripening.
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Ripening is avoided if Cay,i nt (t∗) > Ca∗
y,i nt (t∗) ' 1 where t∗ depends on the prepara-

tion method of the foam. This criterion is independent of bubble size, cement paste yield

stress and surfactant. Yield stress used for the calculation of this criterion is the interstitial

yield stress.

In this work, the air fraction of the samples has been kept constant and both cement

used have similar setting times. In addition, we have studied foams with initially very

narrow bubble size distribution. We can wonder how these factors change the stability

criterion and whether they affect its value or the time t∗.
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Appendices

Appendix A: aqueous foam stability

Stability of aqueous foam is shown in Fig. 5.21 for several surfactants studied in [2] and

appendix of chapter 2. All foams contain perfluorohexane.

Figure 5.21: Stability of aqueous foams containing perfluorohexane with surfactants studied in

chapter 2.

Synthetic cement pore solution makes Bio-Terge foam less stable. Whereas Bio-Terge

at 1 g/L can stabilize aqueous foam. Glucopon at 10 g/L was not enough to get stable

foams for 10 hours, whereas 20 g/l provided stable foams in water and synthetic cement

pore solution. Alpha Foamer and Triton are stable at the studied concentration in water

and synthetic cement pore solution for at least 10 h.
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Chapter 6

Water imbibition of open-cell cement

foams
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6.1 Introduction

Durability of construction materials can be jeopardized by successive imbibition/drying

cycles. Therefore, controlling sorption properties of those materials is a crucial issue and

water repellents can be used for preventing or decreasing water absorption [1]. Theory

of capillary imbibition has been intensively studied from the pioneering works of Bell &

Cameron [2], Lucas [3] and Washburn [4]. They assumed, in agreement with experimental

observations, that under the action of capillary effects, a wet front progresses through the

sample while saturating the material behind. The above basic theory turns out to be in-

appropriate when applied to complex materials with several levels of porous phases. This

is the case for foamed concretes [5], autoclaved aerated concretes [6] and aerated gyp-

sum [7] for example, in which effects of multimodal distributions of pores remain difficult

to understand in terms of material sorption characteristics. However, designing materi-

als with appropriate imbibition properties requires understanding how sorption behav-
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ior depends on the material morphology. Here we investigate the imbibition behavior of

well-controlled cement foams. In contrast to autoclaved aerated concrete, the studied

cement foams are open-cell foams with cell window size that depends on both pore size

and foam density. We show that those pore windows control the imbibition properties of

such material. Moreover, choice made for the surfactant when preparing cement foam is

proven to be crucial.

6.2 Materials and methods

6.2.1 Materials

Two surfactants are used: tetradecyltrymethyl ammonium bromide (TTAB) provided by

Sigma-Aldrich and Steol® 270 CIT provided by Stepan. The main difference between the

surfactants lies in the charge of the hydrophilic head: TTAB is positively charged and Steol

negatively charged. This leads to different adsorption behavior on cement grains sur-

face. More information about these surfactants and their behavior in cement paste can

be found in reference [8].

We use two different cements; their compositions and physical properties are speci-

fied in Table 6.1. The first is used in TTAB samples and will be referred to in the following

as C1; it is manufactured by Lafarge, in Saint-Vigor factory. C2 is used in Steol samples

and is a CEM I cement from Lafarge, Lagerdorf.

C1 C2

CaO/SiO2 3 3

MgO 1.1% 0.8%

Na2O + 0.658 K2O 0.34% 0.5%

SO3 2.58% 2.5 %

Cl− 0.03% 0.04 %

Gypsum 2.4% 4%

Density (g/cm3) 3.21 3.15

SSB (cm2/g) 3586 4330

Table 6.1: Chemical and physical properties of cements. C1 refers to CEM I cement from Lafarge,

Saint-Vigor and C2 to CEM I cement from Lafarge, Lagerdorf.

6.2.2 Cement foam production

To prepare cement foam samples, we mix a precursor aqueous foam with a cement paste.

Precursor foam is made from a surfactant solution in distilled water and from nitrogen

gas. For each sample, all the bubbles have the same size. They are generated through

a 100 µm size T-junction with two entrances, one for gas and one for foaming solution.

Then they are collected in a column, where the foam is kept at constant liquid fraction
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until it is mixed to cement paste. Perfluorohexane is sometimes added to nitrogen during

precursor foam generation to avoid destabilization of cement foams samples (see chapter

5).

Cement paste is prepared by mixing water and cement. In the case of Steol samples,

large amount of surfactant is added to cement paste before the mixing with precursor

foam to reduce its yield stress (see chapters 4 and 5). Mixing of precursor foam and ce-

ment paste is then carried out with millimeter-sized channels, which does not break the

bubbles. Fresh cement foam is then poured in 26-mm diameter and 6-cm high airtight

molds.

Cement foam preparation protocol is kept constant for all the samples to avoid effect

of cement age on the results. All samples are demolded one week after preparation and

kept in a box at 100% humidity for three weeks before the imbibition experiment.

6.2.3 Characterization of the foam morphology

The cement foam production method allows us to obtain samples with very well con-

trolled morphology. The morphology does not depend on the surfactant. Bubble radius

R of the cement foam samples is equal to the bubble radius of the precursor foam and

the radius of the cell windows Rop depends on R and the air volume content Φ (or solid

volume content Φs = 1−Φ).

Two samples are scanned with X-ray tomography after cement hardening. The ob-

tained images are analyzed with image analysis software to extract the bubble radius R

and size of the openings between the bubbles. We can check in Fig. 6.1 that the average

bubble radius for both samples is equal to the radius of the bubbles in the precursor foam.

Figure 6.1: Bubble size distribution and opening size distribution obtained by X-ray tomography

on hardened cement foam samples at 83% air fraction. Left: Bubble size distribution by volume

for TTAB sample with precursor foam bubble radius 370 µm (black, left axis) and Steol samples

with precursor foam bubble radius 685 µm (grey, right axis). Right: Window size distribution for

TTAB sample with R=370 µm.

Area of the windows between the bubbles is related to the solid volume fraction Φs by

S(Φs) ≡ πR2
op ≈ S0

(
1−

√
Φs

Φs,c

)
where Φs,c = 0.36 and S0 is the surface of the films when

Φs → 0 [9]. S0 can be estimated for instance for an hexagonal face in a Kelvin-Voigt bub-
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bles: S0,Kel vi n = 3
p

3

2

(
π

6
p

2

)2/3

R2 [9]. Therefore, the opening radius can be estimated by

the following equation:

Rop ≈ R

√√√√3
p

3

2π

(
π

6
p

2

)2/3
(

1−
√

Φs

Φs,c

)
(6.1)

ForΦs = 0.17 and R = 370µm, the calculated value of the window size is Rop ≈ 140µm;

it fits well with the average value obtained from the tomography pictures (see size distri-

bution in Fig. 6.1, right).

6.2.4 Permeability measurement

Gas-flow permeability was measured with a home-made setup (see Fig. 6.2). A gas flow

controller was used to push dry nitrogen through the foam sample (length L and circular

cross-section S = 5.3 cm2) embedded with PTFE ribbon and fitting a cylindrical tube. The

pressure difference ∆P across the sample was measured thanks to a manometer. Several

measurements were performed as a function of the gas flow rate Q (see a typical measure-

ment in Fig. 6.2). The foam permeability was deduced from the Darcy law:

k = ηL/S

d(∆P)/dQ
(6.2)

where η= 1.8 10−5 Pa.s is the dynamic viscosity of the gas.

Figure 6.2: Setup used for measuring air-flow permeability of cement foams. A gas flow controller

is used to push nitrogen at volume flow rate Q through the foam sample. The pressure difference

∆P across the sample is measured thanks to a manometer. A typical example for the resulting

∆P(Q) curve is presented.
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6.2.5 Imbibition experiment

Water imbibition was studied by measuring the capillary rise through foam samples. Sam-

ples were put in contact with a thin layer (5 mm) of water in a 30-cm diameter container.

The diameter of the container is large compared to the sample dimension so that we can

assume that the height of the liquid layer does not vary during an experiment. The rising

front was followed using a camera (see the picture in Fig. 6.4).

6.3 Results and discussion

Results for foam permeability are presented in Fig. 6.3 as a function of solid volume frac-

tion Φs , for several samples with different pore radius R, and for both TTAB and Steol

surfactants. Note that it is more convenient to plot the dimensionless permeability, i.e.

k/V2/3
b , with Vb = 4/3πR3, because k/V2/3

b is expected to depend only onΦs . Fig. 6.3 shows

such a behavior, where k/V2/3
b decreases from 0.018 to 0.010 as Φs increases from 0.1 to

0.17. Note that permeability values are close for the two studied surfactants. We have

reported theoretical values provided by Lusso & Chateau for the foam permeability of dis-

ordered monodisperse foams [10]. It can be seen that this theoretical curve is in very good

agreement with our data. In the following, we will refer to that curve for estimating foam

permeability of our foam samples.

Figure 6.3: Results for cement foam permeability as measured by gas flow experiment (circles:

yellow for TTAB samples and green for Steol samples) and deduced from imbibition experiment

using equation 6.4 (squares). The black line corresponds to the theoretical values provided by

Lusso & Chateau [10].

Typical results for water imbibition are presented in Fig. 6.4. All TTAB foam samples

reach the height h = 1 cm within 1 s. After the rapid rising regime, data show a stair-

shape curve in the linear-log scale. This behavior is related to the saturation height (the

so-called Jurin height) for imbibition of the foam pores. The further increase of the front

height can be explained by the imbibition of the foam porous skeleton (i.e. cement ma-

trix), which is characterized by a much lower imbibition velocity. Note that the second
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Figure 6.4: Typical imbibition curves, i.e. water capillary rising height as a function of time, for

TTAB and Steol cement foams. Such curves are obtained from images of the foam samples (see

left picture, sample diameter: 26 mm), showing clearly the water rising front. Blue squares: TTAB,

Φs = 0.14, R = 265µm. Orange squares: TTAB,Φs = 0.10, R= 360µm. Green squares: TTAB,Φs = 0.10,

R = 550 µm. Grey diamonds: Steol, Φs = 0.18, R = 575 µm. Solid lines correspond to equation 6.4

fitted to experimental data using γ = 0.065 N/m and µ = 0.001 Pa.s, with the following parameters:

Blue squares (r̄ = 460 µm, k = 3.5 10−10 m2). Orange squares (r̄ = 640 µm, k = 3.5 10−10 m2). Green

squares (r̄ = 900 µm, k = 6 10−10 m2). Inset: data (TTAB, Φs = 0.10, R = 360 µm) with linear scale for

time.

imbibition regime corresponds to long times, i.e. several hours, so within our experimen-

tal conditions water evaporation is expected to take place. As we are mostly interested in

the imbibition properties provided by the foam geometry of such cement material, rather

than the intrinsic imbibition properties of the cement matrix, in the following we consider

only the first and rapid regime. Note that in this regime, the volume of absorbed water is

Ω(t ) = (1−Φs)×h(t ).

Let us briefly recall the classical theory for capillary imbibition of liquids through

porous media. By introducing the mean curvature for the water interface in the pores,

1/r̄ , the driving capillary pressure is given by the Laplace law: 2γ/r̄ . The progression

of the interface at height h is restrained by gravity, so the effective driving pressure is

∆P = 2γ/r̄ −ρg h(t ). The resulting interface velocity can be estimated via the Darcy law:

VD = k/µ×∆P/h, where VD =Φdh/d t is the Darcy velocity. The equation for the evolution

of the interface height is therefore:

vI ≡ dh

d t
= 2γk

Φµr̄

1

h
− ρg k

Φµ
= a

h
−b (6.3)

where parameters a = 2γk/(Φµr̄ ) and b = ρg k/(Φµ) have been introduced. Note that

the ratio a/b corresponds to the Jurin height: h∞ = 2γ/(ρg r̄ ). The solution of equation 6.3

is given by [4]:

t =−h

b
− a

b2
l n

(
1− bh

a

)
(6.4)

Equation 6.4 is plotted against experimental data for TTAB cement foams in Fig. 6.4.
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Note that the value for the saturation height sets the value for r̄ , so fitting equation 6.4

to our data provides the expected value for the foam permeability k. Following such a

procedure, we obtain values for r̄ and k presented in Figs. 6.5 and 6.3 respectively. Let us

first discuss values obtained for r̄ : the radius of curvature of the interface is set mainly by

the pore size, and secondarily by solid volume fractionΦs (see Fig. 6.5). This result is con-

sistent with the theory of capillarity in thin tubes, as expressed by the Jurin law: smaller

pores induce smaller radii of curvature, and consequently larger capillary pressures. The

observed relation between r̄ and bubble size can be approximated by: r̄ ≈ 1.5R. Note that

for a perfectly wetting cylindrical tube of radius R, one would have r̄ ≈ R. This deviation

reflects the complex pore shape in foam and the numerous gaps (windows between pores)

located around each pore. Note that the foam pore shape geometry with solid struts and

gaps has some similarity with bundles of cylindrical fibers as studied by Princen [11]. Of

course, the size of those gaps decreases as Φs increases, i.e. the surface area covered by

solid walls increases, and this could explain the weak effect observed for Φs .

Figure 6.5: Radius of curvature for the water/air interface in cement foam samples, as deduced

from equation 6.4, as a function of the pore size. Different symbols are used for indicating the

solid volume fraction of the foam samples: blue diamonds (Φs ≈ 0.10), green squares (Φs ≈ 0.15)

and orange circles (Φs ≈ 0.20). The dotted lines correspond to equations r̄ = 1.32R and r̄ = 1.72R.

Permeability values deduced from imbibition results (see Fig. 6.3) are found to be one

order of magnitude smaller than measured foam permeability, i.e. within the range 0.2-

0.6 10−10 m2. In other words, using the measured foam permeability values in equation

6.4 would give imbibition velocity 10 times larger than observed velocity. In order to un-

derstand the physical origin of this deviation, we have taken images of the imbibition

process with a larger image frequency (100 i/s) and a higher magnification. Such image

sequence is presented in Fig. 6.6 as a single spatio-temporal image (image width corre-

sponds to time). This reveals how the water front proceeds during rising through the

porous structure: from pore to pore, the capillary ascending motion pauses regularly, and

the durations of those pauses appear to be distributed within the range 0.05 s – 0.2 s.

It is recognized that interface motions can be slowed down or even stopped by passing

through pore junctions or through capillaries with significant expansion of the cross-

section [12, 13, 14]. We therefore attribute the observed pauses to the windows between

the pores, where the interface is expected to flatten, i.e. r̄ → ∞, for satisfying contact
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angle conditions at sharp edges constriction geometry [13]. This means that the driving

capillary pressure drops at pore windows and then spreading of thin precursor film em-

anating from the rising liquid promotes the sudden pull-up of the interface in the new

pore, where equilibrium contact angle conditions can be recovered. Note that the porous

nature of the cement skeleton may contribute to such breakthrough. This process takes

the time identified as the pauses during imbibition (see Fig. 6.6 (c)).

Figure 6.6: Capillary water imbibition observed at the pore scale. (a) Image of the foam sample

and (b) spatio-temporal image (width corresponds to time: 1 pixel = 0.01 s) of the water rising

front (yellow curve) observed at frame rate of 100 images per second. A stair-shape curve is ob-

tained, which means that the capillary ascending motion pauses regularly. The dotted line cor-

responds to the average front velocity with slope (dh/dt), whereas the continuous line shows the

slope 10×(dh/dt). (c) Schematic plot of the interface ascending motion at pore scale, where the

rising velocity is vI for the main part of the pore – i.e. areas (i) and (iii), whereas it drops down to

a low value at pore window, i.e. area (ii). Configurations of the interface are shown by sketches (i),

(ii) and (iii). The evolution of the driving capillary, i.e. γ/r̄ , is also presented: first it drops down at

pore window, and it rebuilds after a characteristic time tc .

We propose to account for the effect of the pauses by introducing the average dura-

tion tc spent by the interface between two neighbor pores during the vertical motion (see

Fig. 6.6). The dynamics of the vertical motion between two successive stops can still be

considered as mainly governed by the balance between capillary effects and Darcy’s law

(leading to equation 6.4). Therefore, the average time for the interface to travel a length

2R is equal to 2R/vI + tc , and the modified imbibition velocity is given by:

vI,tc =
2R

2R
vI

+ tc
= vI

1+ vI

2R/tc

(6.5)

In the following we choose to use k values provided by Lusso & Chateau [10] (see

Fig. 6.3) and to consider tc as a fitting parameter such as tc = t0(1+ p h
t0

), where t0 is a

minimal time and coefficient p accounts for the slowdown effect of gravity (time tc is

expected to increase as a function of height). Parameters t0 and p can be determined by

fitting equation 6.5 to our data. In practice, we chose hi values within the range of interest

and we calculate the corresponding times ti = ti−1 + (hi −hi−1)/(vI,tc )i , where (hi −hi−1)

correspond to small steps. Results obtained by fitting equation 6.5 to data from Fig. 6.4
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are presented in Fig. 6.7, showing reasonable agreement. Note that both r̄ and k values

are now consistent. This procedure is performed for all samples, providing values for the

fitting parameters: t0 ≈ 0.005 s, and p is shown in figure E (inset), where the average value

is given by p ×R ≈ 0.005 s. This corresponds to p ≈ 0.1 s/cm, or equivalently, the average

time tc is approximately equal to 0.1 s for h ≈ 1 cm, which is consistent with observed

pause durations in Fig. 6.6. The additional parameter tc is therefore useful for reconcil-

ing k values and r̄ values in the water capillary imbibition process of cement foams, and it

shows that pore windows have a significant influence on water imbibition properties. The

analysis of p values reveals that p increases with both pore size and gas volume fraction,

so does foam permeability. Indeed, recent work showed that k/R2 ∼ (Rop /R)3 [15]. We

identify a simple relationship between p and k: (pR)/k ≈ 106 s/m2, which indicates that

the pore halting mechanism depends on geometry of the pore windows. Further study

would be useful for clarifying this issue.

Figure 6.7: Water capillary rising height as a function of time for TTAB cement foams (data from

Fig. 6.4). Solid lines correspond to equation 6.5 fitted to experimental data using γ = 0.065 N/m

and µ = 0.001 Pa.s, with the following parameters: Blue squares (r̄ = 460 µm, k = 8.5 10−9 m2, t0

= 0.005 s, p = 0.06 s/cm). Orange squares (r̄ = 660 µm, k = 5 10−9 m2, t0 = 0.005 s, p = 0.18 s/cm).

Green squares (r̄ = 950 µm, k = 12 10−9 m2, t0 = 0.005 s, p = 0.23 s/cm). Inset: Results for p ×R

as a function of foam permeability for all studied TTAB samples. The dotted line corresponds to

equation pR = 106k.

Finally we discuss the effect of surfactant. Whereas imbibition velocities for TTAB ce-

ment foams were found to be of the order of 1 cm/s, Steol cement foam requires almost

1000 s for the water front to reach h = 1 cm (i.e. 0.001 cm/s). Moreover, an “induction

period" of almost 100 s is observed before measurable imbibition. In fact, such behav-

ior cannot be described with equation 6.4 whatever the value for k. On the other hand,

such slow kinetics can be reconciled with theory using equation 6.5 with tc ∼ 100 s. This

extremely long time suggests that additional chemical effects are involved, such as the

dissolution of dried surfactant remaining onto the cement surface. Note that Steol sur-

factant has been shown to induce high water contact angles on cement surface, provided

that Steol concentration is low enough [8]. Initial Steol concentration is rather high in
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this study, but one can expect that Steol molecules, that are known to adsorb significantly

on cement/hydrate grains, are consumed by new hydrate surface area, making the Steol

concentration drop below a critical value. Therefore, a plausible mechanism for Steol ac-

tion is (1) the in-situ hydrophobization of the cement skeleton, (2) the surfactant layer re-

mains on the surface of the foam skeleton as the sample is left for drying, and (3) the slow

dissolution of the dried hydrophobic surfactant layer by the imbibing water. As TTAB sur-

factant has not been shown to induce such hydrophobization effect on cement [8], TTAB

cement imbibition does not exhibit such specific behavior.

6.4 Conclusion

Water imbibition has been studied in cement foams prepared from two distinct foam-

ing solutions, namely TTAB and Steol surfactant solutions. Thanks to a dedicated foam-

ing method, we were able to produce samples with controlled pore size and gas volume

fraction. Results obtained for TTAB show imbibition behavior consistent with Washburn

theory if the permeability parameter is used as a fitting parameter. However, fitted val-

ues were found to one order of magnitude smaller than theoretical and measured values.

Observation of the imbibition process at the pore scale revealed that the capillary ascend-

ing motion pauses regularly, which makes the imbibition velocity decrease and explains

the low fitted values for the foam permeability. This was attributed to the effect of pore

windows, i.e. passages between pores. We have introduced a characteristic time corre-

sponding to the excess time spent by the interface at those pore windows. Using that time

as a fitting parameter, we succeed to reconcile measured permeability values with mea-

sured imbibition velocities. The fitted values for the characteristic time are of the order

0.1 s, which was found to be consistent with direct observations of the imbibition pro-

cess at the pore scale. Further work could be useful for evaluating the relevance of our

approach for porous materials exhibiting the similar morphological features. Results ob-

tained for Steol show extremely slow imbibition velocities, i.e. 1000 times smaller than

for TTAB samples, which cannot be described using the classical Washburn theory. This

effect has been attributed to the in-situ hydrophobization of the cement foam skeleton

during the production process. As water is put in contact with the foam sample, imbibi-

tion is prevented by the water-repellent action of the dried surfactant layer. Imbibition

proceeds on condition that the dried surfactant layer is dissolved by the imbibing water

as the front goes along. This clearly shows that surfactant used for preparing cement foam

has crucial effect on imbibition properties of such porous material.
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Conclusion

When cement foams are prepared by mixing an aqueous foam and a cement paste, sur-

factants must be used. We have first selected various surfactants that are compatible with

cement solution and investigated their effects on cement paste, without air bubbles. De-

pending on the type of surfactant and its concentration, addition of surfactant can have

three different consequences on cement paste yield stress. (1) Some surfactants have low

affinity to cement grains and hardly change the properties of the cement paste. (2) At

low concentration, surfactants with high affinity to cement grains (mainly anionic sur-

factants) form a single layer that makes the cement grains hydrophobic. Hydrophobic

interaction increases attraction between cement grains and enhances the yield stress of

the cement paste. (3) At high concentration, the same surfactants form micelles on the

cement grains surface, which creates a steric repulsion between the grains and makes

cement paste yield stress drop.

Then, we have studied aerated cement pastes and cement foams. The identification

of the three surfactant regimes has allowed us to control the properties of the produced

cement foams, and to analyze the rheological measurements and the stability of the fresh

materials, and the water imbibition of the solid foams.

When bubbles are added to cement paste at air fractions below 40%, their effect on

the paste yield stress is strongly affected by the surface properties of cement grains. Hy-

drophobic cement grains irreversibly adsorb on bubble surface; this changes the surface

characteristics of the bubbles, so that bubbles enhance the yield stress similarly to solid

inclusions. On the other hand, when cement grains are hydrophilic and do not adsorb at

air-liquid interfaces, behavior of bubbles in cement paste corresponds to observations in

model yield stress fluids: dimensionless yield stress depends on the air volume content

and on the deformability of the bubbles.

When air volume content is higher, around 83%, most foams tend to destabilize be-

fore cement hardening due to ripening. Unexpectedly, when yield stress of the cement

paste τy is changed by the addition of superplasticizer or high amount of anionic surfac-

tant, ripening can be stopped if the yield stress is relatively low, in the range τ∗∗y < τy < τ∗y .

Rheological measurements on the foam when τy < τ∗y show that the yield stress of the

interstitial cement paste is greatly increased due to the confinement between the bub-

bles. In addition, water can be more easily extracted from the interstitial cement paste

under gravity when τy < τ∗y than when τy > τ∗y . Our hypothesis is that the yield stress en-

hancement and remarkable stability in the low yield stress regime is a consequence of the
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reorganization of cement grains into a denser granular structure. Destabilization when

τy < τ∗∗y is attributed to the deflocculated state of the smaller cement particles, which

exit the foam skeleton.

Then, we have compared cement foams prepared with two different surfactants, with

low and high affinities to cement grains. A stability criterion, independent on the surfac-

tant, can be defined from the bubble radius R, the yield stress of the paste confined by the

bubbles τy,i nt and the air-fluid surface tension γ. Foams are stable when the Bingham

capillary number, evaluated for the interstitial cement paste at time t∗, is above a critical

value. Time t∗ is expected to depend on the preparation method of the cement foam.

Further studies on cement foam stability would be needed to understand the role of

air volume fraction. In addition, the regime when cement grains are hydrophobic has

not been investigated here. We expect that the adsorption of cement grains at air-fluid

interfaces leads to the formation of closed porosity. Effect of cement membranes between

the bubbles on foam stability and rheology remains to be investigated.

Finally, we have studied the water imbibition of cement foams with open porosity.

We have observed that the imbibition is slower than the velocity predicted from the per-

meability measurement. We have introduced a characteristic time, corresponding to the

excess time spent by the water interface at windows between the bubbles, to reconcile

measured permeability values with measured imbibition velocities. For surfactant with

low affinity to cement grain surface, the fitted values for the characteristic time are of the

order 0.1 s, which was found to be consistent with direct observations of the imbibition

process at the pore scale. Results obtained for surfactant with high affinity to cement sur-

face shows extremely slow imbibition velocities, i.e. 1000 times smaller. The main reason

must be the hydrophobization of the pore walls. This observation illustrates the strong

relation between material formulation and its final properties.
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Appendix A

Compressive resistance

In this appendix, we report some measurements of compressive strength of cement foams.

We compare two surfactants (anionic and cationic). We study mostly samples at air frac-

tion above 75% and a few samples at air fraction below 40%.

A.1 Materials and methods

A.1.1 Materials

Two surfactants and two cements are used. Samples containing TTAB cationic surfactant

are made with CEM I cement from Lafarge, Saint-Vigor factory (C1). For samples contain-

ing Steol anionic surfactant, CEM I cement from Lafarge, Lagerdorf factory (C2) is used.

Manufacturers and chemical formulas of surfactants, and cement chemical compositions

can be found in chapter 5.

A.1.2 Sample preparation protocol

Precursor foam is generated as explained in chapters 3, 4 and 5. For each sample, it is

mixed with a cement paste. Then samples are cast into 26-mm diameter and 6 cm high

sealed molds. Samples are demolded 7 days after preparation and kept in a 100% humid-

ity box for three additional weeks.

Three types of samples are prepared :

• Steol samples with high air content Φ' 83%. Preparation procedure is described in

chapters 4 and 5.

• TTAB samples with high air contentΦ' 83%. Preparation procedure is described in

chapter 5; for the smaller bubble sizes, we use C6F14 during precursor foam prepara-

tion to avoid ripening. Often, the density at the top of the sample and at the bottom

of the sample are different. These samples are cut in two parts and both parts were

weighted to measure their true density. Densities are between 200 and 500 kg/m3,

that is to say that the corrected air fractions range from 76% to 92%.
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• TTAB sample with low air content Φ < 40%. Preparation procedure is described in

chapter 3. In particular, precursor foam is incorporated by hand into the cement

paste.

A.1.3 Compression tests

All samples are tested in average 28 days after production (between 25 and 35 days). Sam-

ples are cut so that final height is between 25 and 35 mm.

Different presses are used for the different types of samples according to the needed

crushing force required :

• Steol samples are tested with a press with maximal force 500 N at speed 0.1 mm/s.

Before the test, sample ends are plastered to create flat parallel surfaces as shown in

Fig. A.1.

• TTAB samples at high air content are tested with a press with maximal force 20 kN

at speed 0.1 mm/s. Before the test, sample ends are plastered to create flat parallel

surfaces as shown in Fig. A.1.

• TTAB samples at low air content are tested with a press with maximal force 100 kN at

speed 1 mm/min = 0.016 mm/s. Sample top and bottom faces are filed so that their

are flat and parallel. The surfaces are not plastered, but rubber layers are placed at

the top and bottom of the sample during the compression test.

Figure A.1: Steol cement foam sample (Φ = 83%, R = 380 µm) ready for compression test. All the

Steol and TTAB samples at air fraction above 75% have been plastered in order to make flat parallel

ends.
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A.2 Results and discussion

A.2.1 Curve shape

A.2.1.1 Air contentΦ> 75%, Steol and TTAB samples

Examples of stress-strain curves for some samples with high air content are shown in Fig.

A.2. Usually, a first peak occurs, then stress increases again.

Figure A.2: Examples of stress-strain curve obtained during compression tests of TTAB samples

with air content above 74%. Left: σpeak =σmax = 0.40 MPa. Right: σpeak = 0.14 MPa and σmax =
0.30 MPa

Two values can be extracted from these curves: the stress at the peak σpeak and the

maximal reached stress σmax . For most of the samples, both values are the same order of

magnitude, and sometimes, the maximal value is reached at the first peak.

With Steol samples, the press force is sometimes not enough to break the samples ;

therefore, the peak value and the maximal value cannot be always measured.

We can compare this shape with a typical curve of brittle foam material [1] shown

in Fig. A.3. In this typical curve, three phases can be seen. First, in the elastic regime,

stress increases linearly up to a σpeak . When σpeak is reached, foam locally breaks. After

this first rupture, during the the "plateau" regime, broken area expands: the more strain

increases, the more Plateau borders are broken. When deformation approaches the air

volume fraction Φ, amount of air voids in the crushed sample is very small and further

increase leads to the compaction of the broken Plateau borders and nodes (densification)

and then to compression of the plain material itself. In this typical curve, the peak value

is the maximal stress before the beginning of densification.

In our case, densification phase is never achieved. Compression of plain cement paste

should occur when deformation is nearly the initial air volume fraction Φ, but maximal

deformation of our samples is 30% whereas air volume fraction of the denser samples is

75%. Therefore, the presence of distinct values for σpeak and σmax would not occur if the

samples were homogeneous. A possible explanation is that σpeak is the resistance of the

weakest areas of the sample and σmax , the resistance of the strongest areas.
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Figure A.3: Stress-strain curve during compression test of a brittle foam, deformation rate is 10−3

and air fraction, Φ= 92% [1].

A.2.1.2 Air contentΦ< 40%

Initial stress peak can also been observed when air content is below 40%, but the stress

decrease after the first peak is small. In addition, the peak value is much lower than the

maximum value, often one order of magnitude below.

Figure A.4: Example of stress-strain curve obtained during a compression test, for a TTAB sample

containing 8% of air.

When the maximum value is reached, several cracks have formed in the sample.

A.2.2 Compression resistance

A.2.2.1 Comparison with literature

Comparison of the resistance with data from literature (seen chapter 1) is presented in

Fig. A.5. Note that air fraction is related to the density by the following equation:

ρ= ρpaste (1−φ) (A.1)

Where ρpaste is the density of the paste without the bubbles and is related to the water-

to-cement ratio by the formula:
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ρpaste = W/C+1
W/C

ρE
+ 1

ρC

(A.2)

Paste density decreases from 1950 kg/m3 when W/C=0.40 to 1835 kg/m3 when W/C=0.50.

Figure A.5: Comparison of the measured strength with the results from the literature. Top: peak

value σpeak . Bottom: maximal value σmax .

We can first note that the measured values are the same order of magnitude as litera-

ture values for low densities (i.e. Φ> 75%). For high density samples, maximal stress fits

with literature values whereas peak stress is lower.

A.2.2.2 Effect of surfactant

As seen in Fig. A.5, compressive strengths for Steol foam samples are bigger than for sam-

ples containing TTAB, the difference is certainly larger than what appears in the graph

because some of the Steol samples have not been broken. This can be explained by a

stronger matrix in the case of Steol samples. Water-to-cement ratios are similar for both

types of samples: between 0.39 and 0.5 with average value 0.43. However, cement C2 used

to prepare Steol foams has smaller grains than C1, used in TTAB sample: Blaine specific

surface area is 3586 cm2/g for C1 and 4330 cm2/g for C2. Therefore, C2 is expected to hy-

drate faster than C1 and to reach a higher degree of hydration of cement at 28 days, which

increases the cement paste strength.

A.2.2.3 Effect of W/C

Decreasing water-to-cement ratio is expected to increase the strength of the interstitial

cement paste, and therefore, increase the strength of the cement foams. The results for
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cement W/C are plotted in Fig. A.6 for bubble size from 990 to 1100 µm. No effect of

water-to-cement ratio can be seen on these graphs. No conclusion can however be drawn

because of the large dispersion of the results.

Figure A.6: Peak compressive strength for TTAB foams samples with bubble size 990-1100 µm, for

several water-to-cement ratios.

A.2.2.4 Effect of bubble size

Peak stress results on TTAB foams and bubble suspensions are detailled in Fig. A.7 for

several bubble sizes.

Figure A.7: Dependence of the measured strengthσpeak on the bubble radius for TTAB foams (left)

and bubble suspensions (right).

In the low air fraction regime, no major effect of bubble size can be seen.

On the contrary, for Φ> 75%, strength decreases when bubble radius decreases. This

effect may be due to a poor mixing in the samples containing the smaller bubbles. In-

deed, areas of cement paste without bubbles can be seen. From the tomography images

of a TTAB sample of bubble radius 370 µm and air fraction 83%, we measure the size of

bubble-free areas and their total volume. A few of these areas have volume between 1 and

30 bubble size, and there is a large area of nearly 400 bubble volume. All together, they

compose 12% of the total sample volume. Therefore, effective air content of the foam

around these areas between bubbles is:

Φe f f = 1− (1−Φ)−Φde f aul t s

1−Φde f aul t
≈ 94% (A.3)
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This value corresponds to a density ρ ≈ 110 kg/m3. Very few values of mechanical

resistance can be found in the literature at this very low density. We can for instance

mention the work of Tonyan and Gibson [2], who created foams at density 170 kg/m3 and

mechanical resistance 50 Pa. They used polyester fibers to reinforce the cement paste

matrix. In our case, we obtain similar compressive strength for a simple cement paste

matrix, without fiber reinforcement.

The difficulty to obtain a good mixing may be related to the small size of the Plateau

borders when bubble radius is small. The diameter of the bigger spheres that can fit in the

Plateau borders is given by equation 5.13. The values calculated for several bubble radius

and air fractions are summarized in Table A.1. For C1 cement, grains of size above 60µm

compose 5% of the total volume of cement grains (for C2, 5% volume is filled by grains

size above 40µm). That is to say that if Plateau border diameter is below 60µm, 5% of the

grains must remain in the nodes.

Φ=75% Φ=80% Φ=85% Φ=90% Φ=95%

R=200 µm 59 µm 46 µm 36 µm 28 µm 20 µm

R=300 µm 88 µm 70 µm 54 µm 42 µm 29 µm

R=400 µm 118 µm 93 µm 73 µm 56 µm 39 µm

R=500 µm 147 µm 116 µm 91 µm 70 µm 49 µm

R=600 µm 177 µm 139 µm 109 µm 84 µm 59 µm

Table A.1: Plateau border diameter at given bubble size and air volume fraction. Values in red

indicate that at least 5% of the volume of C1 cement grains cannot fit in the Plateau borders.

A.3 Conclusion

Measured strength are the same order of magnitude as the values measured in the litera-

ture.

However, we have measured an unexpected effect of bubble size on TTAB samples at

air fraction above 75%. The poor mixing, that has been observed on some samples with

small bubbles, can account for this effect.
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