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R É S U M É

De nombreux phénomènes de la vie quotidienne sont bien plus subtils
qu’ils n’y paraissent. C’est le cas par exemple du magnétisme, qui, bien
que très simple en apparence, se révèle très complexe à l’échelle atomique.
En pratique, même les modèles les plus simples demandent rapidement
une puissance de calcul bien supérieure à celle des supercalculateurs ac-
tuels.

Pour contourner cet obstacle, une alternative consiste à remplacer le
calcul par la mesure d’un système expérimental se comportant comme
le modèle : c’est la simulation quantique. Cette technique a été propo-
sée pour étudier un vaste panel de problèmes, allant du rayonnement de
Hawking à la thermodynamique quantique, avec différentes plateformes
expérimentales telles que les ions, photons ou gaz d’atomes froids.

La simulation quantique permet notamment d’étudier des phases exo-
tiques de la matière, comme par exemple les rotons, solitons, supersolides
ou encore les phases topologiques. Ces phases n’apparaissent pas sponta-
nément dans les gaz d’atomes alcalins, mais plusieurs travaux théoriques
ont montré qu’elles peuvent émerger en présence d’interactions à longue
portée.

Pour augmenter la portée des interactions dans un échantillon atomique,
une solution consiste à exciter les atomes dans des états électroniques n

de haute énergie appelés états de Rydberg. Ces états ont une interaction
de type van der Waals, laquelle évolue rapidement avec le niveau d’énergie
(UvdW Ã n11). Cependant, ces états ont une durée de vie trop courte pour
permettre d’observer les nouvelles phases (voir Fig.1 a).

Ce problème peut être résolu en mélangeant de manière cohérente une
petite fraction Á π 1 d’états de Rydberg |rÍ avec une fraction plus
large d’atomes dans l’état fondamental |gÍ. Le mélange qui en résulte
|ÂÍ = (1 ≠ Á) |gÍ + Á |rÍ combine long temps de vie et large portée d’in-
teractions (voir Fig.1 b). Cette proposition d’habillage Rydberg offre ainsi
une solution expérimentale pour observer de nouvelles phases de la ma-
tière dans des échantillons d’atomes alcalins.

Cette idée a suscité un vaste intérêt dans la communauté scientifique et
a conduit à de nombreuses études théoriques. L’habillage Rydberg a été
appliqué avec succès sur un système de deux atomes (voir Fig.1 c), mais
la même technique appliquée à des systèmes plus larges n’a pas produit
les résultats escomptés.
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A N O T E T O T H E J U RY

In 2015, I had the opportunity to do a joint Ph.D. between Trey Porto’s
and Antoine Browaeys’ laboratories. Both experiments focus on quantum
simulation using atoms in the Rydberg state: while the American ex-
periment studies dissipation in large ensembles, the French experiment
investigates the dynamics of smaller ensembles.

I started my Ph.D. in January 2016 at the Joint Quantum Institute
(JQI) and stayed there for two years. We identified an avalanche decoher-
ence mechanism affecting large Rydberg ensembles: this work had a large
resonance in the cold atom community as it calls into question dozens
of proposals. In January 2018, I joined the team at Laboratoire Charles
Fabry at Institut d’Optique (LCFIO) to work on an evolution of their
“atom-by-atom assembler”. This new setup aims to eliminate the black-
body radiation at the origin of the broadening mechanism. Our goal is
to make sure that large structures assembled on the tweezer-based exper-
iment will not be affected by the decoherence.

As cold atoms experiments always correspond to a collective effort, it
may be difficult to identify my contributions. Below is a list of some of
my achievements as a graduate student.

— In early 2015, the experiment had just been move from the N.I.S.T
building and was still to be reassembled. After Bose-Einstein con-
densation was achieved, I was in charge of the Rydberg excitation.
In particular, we took the opportunity to modernize the setup.

— Later that year, I dedicated some significant amount of time to the
double-wells optical lattice. We did not get to use this tool to its
full capacity that year, but we achieved to get balanced sublattices.

— While the first publication concerning the decoherence in Rydberg
ensembles was published before my arrival[60], I built the optics and
took the data for the two next publications[24, 149].

— I built and characterized the “piezo-mirrors” currently used on the
JQI experiment for Floquet excitation (see App.A).

— At LCFIO, I assembled from scratch a new experimental setup for
cold atom experiments under the supervision of T. Lahaye. I also
performed series of tests in an optomechanical mount at 77 K.

Palaiseau, France, October 2018

Éric Magnan
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I N T RO D U C T I O N

Many phenomena observed in condensed matter physics are still not
properly understood today. Physicists are able to write simplified theoret-
ical models that capture the essence of the phenomena, but these models
are still too complicated to be solved when the number of interacting
particles is larger than a few tens[103]. This is especially true when the
interactions are long-range or when dissipation is present because the sys-
tem is not well-enough shielded from the fluctuations of its environment.

The field of quantum simulation has emerged as one approach to solve
these problems[55, 88]. It consists in building artificial experimental sys-
tems that are ruled by the idealized models proposed by the theorists.
Measuring the properties of these engineered systems gives access to prop-
erties of the model that is otherwise impossible to calculate.

Over the last 20 years, several experimental platforms for quantum
simulation have been proposed, including superconducting circuits[121],
interacting photons[70], trapped ions[152] and cold atoms[19, 76]. Among
them, laser-cooled atoms prepared in highly-excited “Rydberg” states are
promising candidates[127, 145]. The van der Waals interaction between
two atoms scales as Ã n11 (where n is the principal quantum number),
allowing strong interactions even at interatomic distances of a few mi-
crometers[53]. Moreover, the interaction is fully controllable with lasers
or static electric fields. Remarkably, the interaction can also be mapped
onto spin Hamiltonians, which are relevant to many models proposed in
condensed matter physics[83, 147].

Among Rydberg-based quantum simulators, two different approaches
have emerged. On one hand, atoms trapped in optical lattices allow to en-
gineer large arrays of atoms with a fixed geometry where several thousands
of particles are separated by intersite distances of 0.5 µm[84, 99]. On the
other hand, arrays of individual microtraps allow to produce mesoscopic
structures of arbitrary geometry containing several tens of atoms at tun-
able interatomic distances Ø 3 µm[10, 117]. These two solutions allow to
address the atoms individually, i.e. detect and manipulate each atom in-
dependently of its neighbor.

Interatomic distances plays a major role in both types of simulators. In
the case of atoms in individual microtraps, the large distances between
the atoms requires to work at high Rydberg states (n > 50) in order
to get strong enough interactions. As the radiative lifetime scales with
the Rydberg level (Ã n3), it can reach several hundreds of microseconds.
This timescale is much larger than the usual times of the experiment
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(≥ 100 ns ≠ 1 µs) and allows to observe the coherent evolution of the en-
semble of interacting atoms. This is an ideal system to explore interaction
induced dynamics in an elementary closed many-body system.

On the opposite, atoms in optical lattices are much closer to each other
and do not necessitate high levels of Rydberg states. Principal quantum
numbers around n = 20 are typically sufficient to produce visible inter-
actions. The typical lifetimes of such states is relatively short (5 µs) and
can lead to dissipation and relaxation of the system. Relaxation to equilib-
rium is predicted to hide interesting phenomena, notably the spontaneous
formation of an antiferromagnetic order[98]. The model predicts an oscil-
lation between two anti-ferromagnetic configurations — seing this effect
in the laboratory would be an experimental realization of an elementary
open many-body system.

Both types of simulators are limited by the radiative lifetime of Rydberg
states, leading to a regime where the atoms are effectively frozen in space
during the experiment. However, major effects related to the mechanical
motion of the atoms have been predicted to exist, notably non-linear dy-
namics[110] and exotic phases such as supersolidity[107]. The timescale
of these effects is directly linked to the trapping frequencies of the optical
lattice (typically in the kHz range), and thus requires atomic lifetimes in
the range 1 ≠ 10 ms.

In recent years, “Rydberg-dressing” has been proposed as a solution to
increase the lifetime of Rydberg ensembles by several orders of magnitude
while maintaining relatively strong interactions[23, 58, 87]. The proposal
consists in coherently admixing a large fraction of ground state atoms
with a small fraction of Rydberg states, resulting in a mixture combining
long lifetime and long interaction ranges. While this approach has been
successful with two atoms[86], deviations to the theory have been seen in
all experiments using larger ensembles[1, 46, 54, 60].

In this thesis, we investigate the two types of Rydberg-based quantum
simulators. In a first serie of experiments performed at Joint Quantum
Institute (University of Maryland, USA), we study the physics of a Bose-
Einstein Condensate loaded into optical lattices and excited to the 18S

level. We show that the spontaneous apparition of a population in nearby
Rydberg states triggers an avalanche of decoherence responsible for the
anomalies observed in Rydberg dressing experiments in large ensembles.
The decoherence emerges from stimulated emission induced by blackbody
radiation followed by diffusion via resonant dipole-dipole interaction be-
tween states of opposite parity. This type of physics being extremely
complex, we use simple scalings based on mean-field approximations to
analyze the effects.
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We then investigate the time evolution of the several Rydberg popula-
tions in the system. While some populations can be directly measured
by fluorescence, others require indirect schemes: we use a “pump-probe”
technique to decouple the production of pollutant states from their obser-
vation. Our measurements show a good agreement with mean-field models.
Though Rydberg dressing does not seem applicable for large scale quan-
tum simulators, we show that the decoherence can be mitigated to some
extent by several simple techniques such as stroboscopic excitation or us-
ing cut-off cavities. The use of a cryostat to inhibit blackbody radiation
emerges as a particularly efficient solution, at the cost of being technically
demanding.

Experiments performed in an array of microtraps at the Laboratoire
Charles Fabry at Institut d’Optique (Palaiseau, France) show that the
size of the atomic structures is limited by two-body collisions with the
background residual gas. Using a cryostat could reduce the pressure by
several order of magnitude in a process called cryopumping, where gaseous
particles freeze at the contact of cold walls and stick to them. However,
this types of experiment uses optomechanical components under vacuum:
their adaptation to a cryogenic environment is bound to be challenging.
We present the first investigations concerning the optomechanical design
at 4 K.

This thesis is divided as follows:

a. The first part (see Part.i) is an introduction to the techniques of
atom cooling and trapping and Rydberg excitation. While Ch.1
provides some details about the production of ultracold gases in
optical lattices, Ch.2 is dedicated to the physics of Rydberg states.

b. The second part (see Part.ii) covers experimental investigations of
the spontaneous onset of decoherence in large Rydberg ensembles
done at JQI at University of Maryland. In Ch.3, we detail steady-
state observations, Ch.4 explores the time evolution of the Rydberg
populations.

c. The third part (see Part.iii) concerns the design of a new apparatus
using a 4 K cryostat with high-precision optomechanical components
inside. This work was done at LCFIO. Our first tests are gathered
in Ch.5.
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Part I

A H O M O G E N E O U S G A S O F U LT R AC O L D
AT O M S W I T H T U N A B L E I N T E R AC T I O N S





1
U LT R AC O L D AT O M S I N D E E P O P T I C A L L AT T I C E S

The experimental platform of this thesis work consists in a ho-
mogenous frozen ideal gas of ultracold atoms.

Using a magneto-optical trap followed by evaporative cooling,
we bring a thermal vapor down to quantum degeneracy (see
Sec.1.2). The resulting in Bose-Einstein condensate (BEC) has
a macroscopic size and exhibits purely quantum properties.
Because of its accessibility and tunability, this state of matter
is an excellent platform to probe quantum physics[40].

Optical lattices are periodic patterns of light resulting from
the interference of two or more optical beams[18]. Trapping a
BEC into such a structure completely modifies its physics. In
particular, increasing the depth of the lattice sites allows to ob-
serve a quantum phase transition from a superfluid to a Mott-
insulator[65, 84]. In our experiment, we load the BEC into a
very deep lattice, resulting in a cubic insulator close to unit
filling (see Sec.1.3). The resulting sample, which has little to
no interactions due to large interatomic distances (≥ 0.5 µm),
is a homogeneous ideal gas of ultracold atoms. Long-range
and well-controlled interactions can be added later on to the
system in a process discussed Ch.2.

Over the years, the association of a BEC with optical lattices
has led to a variety of experiments[17], notably including exci-
tation into the Rydberg state[104] or periodic shaking of the
optical lattice[151]. In particular, Bose gases in optical lattices
have become one of the most popular platforms for quantum
simulation[19] and many-body quantum experiments[20].

In this chapter, we present the generic concepts involved in the
preparation of the ideal gas. We use the dressed-state picture
to introduce energy lightshifts and show that they can be used
to generate taylor-made trapping potentials, such as harmonic
traps and optical lattices (see Sec.1.1). We briefly explain the
concept of Bose-Einstein condensation (see Sec.1.2) and show
how ultracold atoms in deep lattices can form an interaction-
free homogenous frozen gas (See sec.1.3). We finally provide a
brief overview of our experimental apparatus (see Sec.1.4).
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6 ultracold atoms in deep optical lattices

1.1 optical traps for neutral atoms

Among the many types of atom-photon interactions, we focus here on a
conservative process called energy lightshifting. Using simple arguments,
we recall how light affects the energy levels of a quantum system and show
how this effect can be used to spatially confine atoms.

1.1.1 energy lightshifts

Let’s consider an atom as a two-level quantum system with ground state
|gÍ, excited state |eÍ separated by an energy h̄ω0.

When immersing this atom into a light field, a possible approach con-
sists in studying the system [atoms + photons in the mode][41].

Assuming N photons with energy h̄ω, the ground state |g, NÍ has an
energy N h̄ω. After absorption of a photon, the excited state |e, N ≠ 1Í
has an energy h̄ω0 + (N ≠ 1) h̄ω. The interaction between the field and
the atom can be written

V̂ =
h̄ Ω1(r)

2

1

σ̂+â + σ̂≠â†
2

(1)

where â an â† are the usual creation and anihilation operators. The exci-
tation and decay operators σ̂+ and σ̂≠ define as

σ̂+ = |eÍÈg| (2a)
σ̂≠ = |gÍÈe| (2b)

Ω1(r) can be understood as the Rabi frequency at r when only one
photon is in the mode.

The interaction V̂ can only couple states of the dressed atom of same
multiplicity,

Èe, N ≠ 1|V̂ |g, NÍ = h̄Ω1(r)

2

Ô
N (3)

We usually define it as the Rabi frequency as Ω, where

Ω(r) = Ω1(r)
Ô

N (4)

In the mutiplicity {|g, NÍ, |e, N ≠ 1Í}, the Hamiltonian writes

Ĥ =
h̄

2

Q

a

∆ Ω(r)

Ω(r) ≠∆

R

b + εN (5)

with εN = (N ≠ 1/2) h̄ω + h̄ω0/2 and ∆ = ω ≠ ω0. We introduce the
mixing angle ϑ(r) as

cos(2ϑ(r)) =
∆

Ò

∆2 + Ω2(r)
sin(2ϑ(r)) =

Ω(r)
Ò

∆2 + Ω2(r)
(6)
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The eigenvectors of the previous hamiltonian define as

|1(N)Í = cos(Ë)|g, NÍ + sin(Ë)|e, N ≠ 1Í (7a)

|2(N)Í = sin(Ë)|g, NÍ + cos(Ë)|e, N ≠ 1Í (7b)

The energies associated to these eigenstates write

EN (r) = ±ÁN ± h̄

2

Ò

∆2 + Ω2(r) (8)

where + is for the higher level and ≠ is for the lower level.

As we can see from Eq.(8), the energy levels are shifted by the inter-
action. This light-induced modification of the eigenenergies is usually
referred as lightshifting. In the limit of large detunings |∆| ∫ |Ω(r)|, the
lightshift writes

V (r) = û h̄Ω
2(r)

4∆
(9)

where ≠ is for the higher level and + is for the lower level. As far as the
ground state is concerned, the lightshift lowers the energy for red-detuned
light ∆ < 0 and increases it for blue-detuned light ∆ > 0.

Figure 1 – Energy lightshift

Shifting of the energy levels of a two-level quantum system in the
red-detuned case (∆ < 0).

1.1.2 harmonic traps

Atoms tend to localize at the minimum of their ground state energy.
Combining this behavior with energy lightshifts, it is possible to induce
forces and create trapping potentials with light. One of the simplest man-
ner to engineer such trap consists in using a tightly focused gaussian beam.
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In the semi-classical approach, the Rabi frequency can be directly re-
lated to the electric field

h̄Ω(r) = ≠d0E(r) (10)

where d0 is the atomic dipole moment and E(r) the amplitude of the elec-
tric field at position r.

The irradiance of a tightly focused laser beam propagating along z

writes

I(r, z) = I0

A

w0

w(z)

B2

exp

A

≠ 2r2

w(z)2

B

(11)

where r2 = x2 + y2, w0 is the waist of the beam and w(z) its 1/e2 diameter
at position z, which writes

w(z) = w0

Ò

1 + (z/zR)2 (12)

where zR is the Rayleigh length and writes

zR =
πω2

0

λ
(13)

Introducing the impedance of free space η, the Rabi frequency corre-
sponding to a gaussian beam can be written

Ω
2(r) =

d2
0I(r)

2η h̄2 (14)

Combining Eq.(9), (11) and (14) and assuming r2 π w2
0, the energy shift

of the atomic ground state induced by a gaussian beam writes

Vharm(r, z) = V0

A

w0

w(z)

B2 A

1 ≠ 2
r2

w(z)2

B

(15)

where V0 = d2
0I0/(8∆η h̄).

In the case of a red-detuned laser (∆ < 0), the potential is minimum at
r = 0, so that the atoms localize at the maximum of intensity (see Fig.2).

The trap depth is given by Vharm(r = 0, z = 0). In the case of cold
atoms, kT π V0, so that the atoms gather at the center of the trap. The
dipole potential can be approximated as a harmonic oscillator

Vharm(r, z) = ≠V0

C

1 ≠ 2
3

r

ω0

42

≠
3

z

zR

42
D

(16)

This type of trap is usually anisotropic and characterized by its trapping
frequencies, which define as ωr = (4V0/mω2

0)
1/2 and ωz = (2V0/mz2

R)
1/2
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Figure 4 – Examples of optomechanical setups for optical lattices

Two independent crossed beams lead to an array of tubes (a), adding
a third pair of beams produces a tridimensional array (b). The
vertical spacing can be magnified by crossing the vertical beams at
a non-zero angle (c). The lasers beams are in red, the mirrors in
dark grey, the lenses in light gray.

1.2 bose-einstein condensation

Optical and magnetic trapping allow to cool neutral atoms to extremely
low temperatures. Starting in the middle of the 1980s, remarkable ad-
vances in these techniques led to the discovery of a new phase of matter:
Bose-Einstein condensates.

In this section, we show that bosons exhibit a gregarious behavior at
low temperature and that a significant fraction of a bosonic ensemble can
reach quantum degeneracy. This process, called Bose-Einstein Condensa-
tion, was initially predicted by S. Bose and A. Einstein in 1924[22, 49].
A major argument of the theory is the indistinguishability of bosons, a
property that implies strong deviations from Boltzmann statistics. Pro-
ducing a Bose-Einstein Condensate requires extremely low temperatures,
a condition that can be met with optical traps.

The canonical derivation of Bose-Einstein condensation involves sta-
tistical mechanics and thermodynamics[40]. The starting point of the
demonstration consists in evaluating the average occupancy of a state j

with energy Ej for a bosonic sample of N particles at temperature T

and chemical potential µ. This number is given by the Bose-Einstein law,
which writes[66]

Nj =
1

e(Ej≠µ)kBT ≠ 1
(21)



12 ultracold atoms in deep optical lattices

1.2.1 condensation in a cubic box

Assuming a homogenous ideal gas of N identical bosons of mass m in a
cubic box of typical size L, the eigen-states are plane waves characterized
by their impulsion p = h̄k and eigen-energies

Ep =
|p|2
2m

(22)

with

p =
2fi h̄

L
n (23)

with n = (nx, ny, nz) œ Z
3. The ground state corresponds to p = 0 and

E0 = 0.

Using Eq.(21), it is possible to evaluate the average number of particles
in the state p and

Np =
1

e(Ep≠µ)kBT ≠ 1
(24)

and the total number of particles

N =
ÿ

p

Np (25)

For each Np to be positive, Eq.(24) imposes µ < E0. Since the condensa-
tion corresponds to a gathering in the state of lowest energy, we decompose
the total number of particles between the ones in the ground state (N0)
and the ones in all excited states (Nexc). We find

N0 =
Z

1 ≠ Z
(26)

with the fugacity Z = exp(µ/kBT ). Since µ is negative, 0 < Z < 1. This
implies an upper boundary for Nexc.

Nexc < N (max)
exc (T ) =

ÿ

p”=1

1
exp(Ep/kBT ) ≠ 1

(27)

In three dimensions, this sum is finite. Bose-Einstein condensation is
predicted by this very upper boundary: one expect a gathering of N0(T ) =

N ≠ N
(max)
exc (T ) particules in the ground state. This result is a major

deviation from Boltzmann statistics, which only predicts an accumulation
of particles in the ground state in the absence of thermal activation.
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1.2.2 condensation in a harmonic potential

The previous reasoning can be applied to many types of potentials such
as harmonic potentials.

Assuming a harmonic trap with typical trapping frequency ω̄ = (ωxωyωz)1/3,
the corresponding energy levels are non-degenerate. We enumerate them
using the index j œ N, which leads to their energies

Ej =
3

j +
1
2

4

h̄ω̄ (28)

The condition µ < E0 now becomes µ < 3 h̄ω̄/2. The upper bound for
the number of excited states becomes

N (max)
exc (T ) =

ÿ

nx,ny,nz ”=0

1
exp[ h̄(ωxnx + ωyny + ωznz))/kBT ] ≠ 1

(29)

When increasing the number of particles (N æ Œ), the level spacing
becomes smaller and smaller, so that the previous sum can be replaced by
an integral,

N (max)
exc (T ) =

⁄⁄⁄ Œ

0

dnxdnydnz

exp[ h̄(ωxnx + ωyny + ωznz)/kBT ] ≠ 1
(30)

The previous integral reduces to

N (max)
exc (T ) = ζ(3)

A

kBT

h̄ω̄

B3

(31)

With this, we can extract the critical temperature of condensation, Tc,

kBTc = 0.94 h̄ω̄N1/3 (32)

Tc typically variates from a few µK to a few hundreds of nK depending
on N and ω̄.

1.3 loading bose-einstein condensates
in deep lattices

Bose-Einstein condensates are usually produced in harmonic traps. Due
to the harmonic confinement, the density profile is gaussian. Atoms also
interact with each other, mostly via two-body collisions. In this part, we
show that confining ultracold atoms in an optical lattice can lead to the
production of a homogeneous ideal gas of ultracold atoms.

For the purpose of this thesis, we require an ensemble of ultracold atoms
free of any interactions and uniformly distributed in space. One way to
do it consists in loading a Bose-Einstein Condensate into a deep optical
lattice using the superfluid to Mott-insulator transition. In this process,
we load one atom per site, each lattice site being separated by ≥ λ/2. Such
distances are typically much larger than interatomic interactions ranges
between atoms in the ground state, the gas is therefore free of interactions.
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1.3.1 bose-hubbard model

Ultracold atoms in optical lattices can be described by the Bose-Hubbard
Hamiltonian, which writes

Ĥ = ≠J
ÿ

Èi,jÍ

â
†
i âj +

ÿ

i

(Ái ≠ µ)n̂i +
1
2

U
ÿ

i

n̂i(n̂i ≠ 1) (33)

where J is the hopping term capturing the tunneling of bosons between
the traps and U is the onsite energy. This term is related to the scatter-
ing length from contact interactions. µ is the chemical potential, Ái =
Vharm(ri) a correcting factor that takes in account the inhomogeneities
in the external trapping potential. In our case, this term captures the
curvature of the harmonic trap.

In the limit J ∫ U , the atoms are delocalized over the entire lattice
and the sample is superfluid. On the contrary, when U ∫ J , the atoms
become strongly confined and the tunneling is negligible. It is possible to
show that under these conditions, the configuration that minimizes the
energy corresponds to unit filling: each site is occupied by only one atom
for an appropriate density. This state is called the Mott-insulator phase.

Both regimes minimize the energy of the system: it is possible to con-
nect them adiabatically by slowly increasing the ratio U/J , i.e. progres-
sively increasing the optical lattice depth. Experimentally, the depth is
controlled by the optical power of the lattice light: higher optical power
results in deeper optical lattice depths. A Mott insulator can thus be
produced by performing an adiabatic passage from the superfluid to the
Mott insulator phase by progressively ramping up the optical power of the
lattice light.

Superfluid and Mott-insulator phases are not specific to quantum gases:
superfluidity has been encountered in 4He[89] and the Mott insulator has
been originally developed to explain anomalous insulation in metal oxy-
des[116].
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1.4 experimental setup

This section is dedicated to the experimental setup developed at JQI.
The apparatus involves generic methods to cool atoms down to quantum
degeneracy. The experiment was first built in the 2000s[102] but went
through deep modifications ten years after[32]. Notably, the entire appa-
ratus was moved from the NIST (Gaithersburg, MD) to the JQI at Univer-
sity of Maryland (College Park, MD) in October 2015. The reconstruction
started shortly before my arrival at JQI. During my first months in the
team, I participated to the assembly of the scientific features (notably the
Rydberg setup, described in Chapter 2 and the optical superlattice).

As far as BEC production is concerned, the apparatus is a relatively
standard machine. Yet, two major peculiarities deserve to be pointed out:

1. The experiment uses a magnetic trap as a reservoir for a dipole trap.
This system enables to overcome the usual magnetic trap limitations
(notably Majorana spin-flip losses[28]) as well as those of the far-
detuned dipole trap (need for prohibitively high laser power).

2. Contrary to most BEC sequences, the BEC is held in a purely mag-
netic trap for a relatively long time (≥ 1 s) before the evaporative
cooling. This “dark” stage allows to move bulky optical components
and switch laser beams during this time.

1.4.1 magnetic equipment

The main chamber is a standard spherical octagon equipped with two
independent sets of coils (see Fig.5). The top and bottom windows are
recessed.

A pair of anti-Helmoltz coils oriented along the vertical axis (z) and
placed under vacuum generates a magnetic quadrupole. Under typical
conditions, ˆzB = 0.12 T m≠1 for the MOT, and ˆzB = 0.48 T m≠1 for
the magnetic trap. Three additional pairs of coils are oriented along the
main axes (x, y, z). Each pair is in the Helmholtz configuration and can
produce a small magnetic shift.

1.4.2 initial cooling equipment

After being slowed down by a Zeeman slower, atoms enter the chamber
from the left port and are captured by a magneto-optical trap (MOT)
constituted of six independent laser beams in (see Fig.6) ≥ 5 cm diameter.
Under typical conditions, the slower laser and the Zeeman repumping
lasers are respectively set to 30 mW and 15 mW. Once optimized, the
MOT captures N = 9 ◊ 108 atoms in 3 s. The temperature of the cloud
reaches 30 µK after polarization gradient cooling[42].
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ferred for quantitative analysis such as Kapitza-Dirac measurements[62]
used to calibrate the lattice depth.

Overall, a typical BEC sequence takes approximately 16 s (see Fig.10),
most of the time being dedicated to the dipole evaporation. The total du-
ration of the sequence can be slightly modified (notably the MOT loading
time) depending on the quality of the vacuum pressure and the size of the
BEC.

Figure 10 – Typical sequence to produce a BEC

1.5 an exotic optical lattice

The experiment at Joint Quantum Institute is equipped with an ex-
otic optical lattice capable of generating pairs of double-wells[131]. Along
with the other types of tunable, non-cubic lattices (i.e. the Zurich exper-
iment[138]), these optical lattices are often referred as superlattices.

Contrary to usual cubic lattices, the horizontal interference pattern is
produced by a single laser folded onto a retro-reflected bowtie. Controlling
the polarization allows to dynamically modify the interference pattern: if
the beams are polarized along the lattice plane, they can only interfere
with their retro-reflexion. This leads to a standard ⁄/2 lattice. However,
when the polarization is orthogonal to the 2d-plane, all beams interfere,
leading to a ⁄ lattice. The vertical interference pattern is produced by
a pair of beams crossing at 20 degrees, which leads to a layer spacing of
2.34 µm.
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Experimentally, the system includes two Pockels-cells which can vary
the polarization of the light during the experiment (see Fig.11). We use
P ¥ 200 mW of ⁄ = 813 nm laser light, which leads to intersite spacings
of 813 and 407 nm for the two sublattices.

Figure 11 – Bowtie-shaped lattice

The relative intensity and positions of the two sublattices are con-
trolled by two Pockels cells (Cylindrical black and white compo-
nents) inserted between pairs of half-wave plates (in green).

1.5.1 intrinsic phase-stability

When engineering a superlattice, spatial drifts between the sublattices
are a major concern. Small dephasing between the light beams, e.g. due
to vibrational noise in the mirrors can lead to an uncontrolled deformation
of the lattice pattern.

The bowtie structure is naturally phase-stable[131]: since any dephasing
affects all beams simultaneously, changing the phase translates the entire
lattice without altering its structure.

The superlattice at JQI is a superposition of a sin2(⁄/2) lattice oriented
along x and y and a sin4(⁄) lattice along x + y and x ≠ y,

Ilattice = –Ixy + —Iz (34a)

Ixy(x, y)/I0 = 2 cos(2kx ≠ 2◊xy ≠ 2Ïxy) + 2 cos(2ky + 2Ïxy) + 4 (34b)

Iz(x, y)/I0 = 16

C

cos

A

k

2
(x + y) ≠ ◊z

2

BD2 C

cos

A

k

2
(x ≠ y) ≠ ◊z

2

B

≠ Ïz

D2

(34c)
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where ◊xy, Ïxy, ◊z, Ïz represent path length differences and k = 2fi/⁄ is
the norm of the wave-vector. Ixy correspond to the in-plane situation,
where the polarization of the beams is in the plane of the lattice (defined
by x and y). Conversely, Iz is obtained when the beams are polarized
along z, which is orthogonal to the lattice plane.

In practice, electro-optic components (Pockels cells) are set to produce
differential phase-shifts between the in-plane and out-of-plane configura-
tions. Controlling the phase-shifts ”Ï = Ïxy ≠ Ïz and ”◊ = ◊xy ≠ ◊z and
the relative intensity Ixy/Iz allows to engineer a lattice of double-wells
(see Fig.12). The orientation and the relative depths of the wells can be
dynamically controlled by the same parameters.
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Figure 12 – Examples of superlattices

(a) Purely λ/2 lattice (Iz = 0), (b) purely λ lattice (Ixy = 0), (c)
equilibrated pairs of wells (Ixy/Iz = 9, δ◊ = π/2), (d) desequili-
brated pairs of traps (Ixy/Iz = 4, δ◊ = π/3).

Pairs of isolated dimers are a remarkable tool for quantum simulation.
However, the possibilities of this superlattice have not been broadly used
in this thesis work. Several earlier publications have used this tool for its
true worth[93].

1.5.2 loading ultracold atoms into the op-
tical lattice

A typical sequence produces a condensate of N = 4 ◊ 104 atoms in
the state |5S1/2, 1, ≠1Í. Once the atoms reach quantum degeneracy, the
sample is adiabatically loaded into the optical lattice. The power of the
lattice beam is ramped up in 300 ms, reaching approximately 150 mW in
the horizontal and the vertical beams.

The lattice depth is estimated by Kapitza-Dirac diffraction[62, 90] (See
Fig.13). In a nutshell, the technique consists in sending a short pulse of
the lattice light onto the sample and wait for the atoms to interfere. The
shape and intensity of the resulting interference pattern provides informa-
tions about the geometry and depth of the optical lattice. Under typical
conditions, the lattice depth is ≥ 50 ≠ 70 Er.





2
RY D B E RG AT O M S

Rydberg atoms are atoms with a high principal quantum num-
ber n, which gives them exaggerated properties[37, 53]. The
remarkable behavior of Rydberg states include tunable polariz-
ability (Ã n7), long radiative lifetimes (Ã n3), and extremely
large interaction strength (C6 Ã n11), where C6 is the van
der Waals interaction coefficient. Besides, their sensibility to
external fields allows to taylor their properties, notably near
Förster resonances[124].

While Rydberg atoms have long been studied in hot vapors or
in atomic beams, the remarkable advances in laser sources and
high-resolution absorption spectroscopy now allow to study
Rydberg states in cold samples. At low temperatures, the mo-
tion of the nuclei are almost frozen during the lifetime of the
Rydberg states; this, combined with the extremely large inter-
action strength, enables direct observation and control of the
interatomic interactions[12]. This has been used to measure
the interaction between pairs of atoms and now constitutes
the cornerstone of several many many-body quantum simula-
tors[9, 105].

Both experiments discussed in this thesis are based on cold
Rydberg atoms. On one hand, the experiment at JQI investi-
gates the dissipation of a large ensemble (N = 40000) of Ry-
dberg atoms trapped in a tridimensional optical lattice. On
the other hand, the LCF teams focuses on the dynamics of
smaller ensembles (N Æ 72) in arbitrary geometries. The typi-
cal interatomic distances (≥ 0.5 µm at JQI, 3 µm to tens of µm
at LCF) play a major role in both experiment, they notably
determine the Rydberg level compatible with each platform.

In this chapter, we introduce some generalities concerning the
physics of Rydberg atoms and show that Rydberg excitation
combined with a Bose-Einstein condensate (see Ch.1) allows to
produce a gas of ultracold atoms with tunable interactions. We
provide some insight concerning Rydberg lifetimes (see Sec.2.1)
as well as interactions between pairs of atoms (see Sec.2.2).
We motivate the choice of the 18S level for the experiment
at JQI and provide details about this experimental setup (see
Sec.2.3).

23



24 rydberg atoms

2.1 generalities

Atoms in the Rydberg state have a high principal quantum number, typ-
ically n Ø 10[53]. These levels being very close to ionisation, the electron
is very loosely bound to the cationic core. These states have exaggerated
properties, notably in their polarizability and interaction strength.

In the semi-classical approach, an alkali Rydberg atom can be described
as a single electron orbiting far away from the cationic core. The inter-
action between the core and the electron can is described with the usual
Coulomb potential over long distances,

VCoulomb Ã ≠1/r (35)

In the classical picture, the electron has an elliptical Kepler orbit around
the core, with long axis proportional to n2 and small axis determined by
the angular momentum of the valence electron l.

2.1.1 quantum defect theory

The starting point of our investigation consists in calculating the en-
ergy of the Rydberg states. One peculiarity of Rubidium (compared to
Hydrogen) is the presence of other electrons in the inner shells. As long as
the angular momentum l is high enough, these electrons perfectly shield
the nucleus charges and the atom is hydrogen-like to a very good ap-
proximation. However, for low angular momentum (typically l Æ 3), the
trajectory of the electron becomes very elliptical and the valence electron
penetrates the higher electronic shells. The shielding is no longer perfect
and corrections must be applied. This also induces a deviation from the
pure coulombic potential at short ranges.

As originally noted by J.R. Rydberg himself[125], this phenomenon can
be taken in account by simply applying a phenomenological correcting
factor to the principal quantum number n. Quantum defect theory[130]
consists in treating the Hydrogen atom problem with a non-integer prin-
cipal quantum number neff = n ≠ ”nlj , where ”nlj defines as

”nlj = ”0lj +
”2lj

(n ≠ ”0lj)2
+

”4lj

(n ≠ ”0lj)4
+ ... (36)

where the values of ”i are species dependent and tabulated. For nS states
of 87Rb, ”0nS = 3.131 and ”2nS = 0.178[100].

From there, the energy of a Rydberg state of principal quantum number
n and orbital angular momentum l is

En,l = ≠ Ry

n2
eff

(37)
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With the Rydberg constant Ry,

Ry =
Z2e4me

2(4fiÁ0 h̄)2
(38)

Z is the nucleus charge, e the elementary electronic charge, me the mass
of the electron and Á0 the vacuum permittivity.

2.1.2 rydberg lifetimes

The lifetimes of Rydberg states strongly depend on their principal quan-
tum number and typically scale as ·neff

Ã n3
eff[53]. Longer timescales can

be accessed with higher Rydberg states, but experimental difficulties (e.g.
narrow lines, extreme sensitivity to external fields) prevent from using
Rydberg states higher than n ≥ 120. Experimentalist rather tend to use
Rydberg states within the range n = 30 ≠ 70, corresponding to lifetimes
in the range 50 µs ≠ 100 µs.

These lifetimes are well suited to probe phenomena in the MHz range,
such as measuring the van der Waals interaction between Rydberg atoms
separated by a few microns[12]. However, other experiments require longer
experimental timescales. This is notably the case of phenomena involving
the mechanical response of a sample trapped in an optical trap. The typ-
ical frequencies of the optical trap being in the kHz range, experimental
timescales larger than 1 ms are necessary. As we discuss in Ch.3, there
has been a global effort to address issue[23, 87], notably with the aim of
using Rydberg atoms for many-body quantum simulation.

Rydberg atoms decay by two majors channels: spontaneous emission
and radiative transfer. When calculating the lifetime, it is common to
separate the two contributions. As radiative transfers are thermally in-
duced, the lifetime due to spontaneous emission only corresponds to the
lifetime at zero-temperature. The decay rate between two states |eÍ and
|gÍ with an electric dipole moment eÈe|r|gÍ and separated by an energy
h̄ωeg is given by the Einstein coefficient[105]

A =
2e2ω3

eg

3ε0c3h
Èe|r|gÍ (39)

The lifetime at zero temperature can be estimated with the empirical
equation[26, 53]

τe(0 K) = γ≠1
e (0 K) = tSnÁ

eff (40)

where tS is specific to nS states. tS and ε ¥ 3 are specie-dependent and
experimentally determined.
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Softwares based on this method are accessible online, notably N. äibaliÊ’s
Alkali Rydberg Calculator (ARC). We use this platform to calculate the de-
cay rate as a function of the Rydberg level (see Fig.15). At T = 300 K,
blackbody induced transfer dominate for n Ø 48.

2.2 interactions between rydberg atoms

In this section, we give some insights concerning the interactions be-
tween Rydberg atoms. Taking in account the “Rydberg blockade” we
show that principal quantum numbers around 18 are the best suited for
the JQI experiment.

2.2.1 van der waals and dipole-dipole regimes

Due to their strong polarizability, Rydberg atoms can have long-range
interactions. In the limit where the two atoms at stake are separated
by a distance R much larger than their size, the interaction potential is
dominated by the dipole-dipole term[29]

Ĥdd =
1

4fi‘0R3

Ë

d̂A · d̂B ≠ 3(d̂A · u)(d̂B · u)
È

(43)

where u = R/R is a unitary vector pointing from atom A to atom B.

The dipole matrix elements dA,B capture the transition from the initial
Rydberg state |rÍ to the other dipole-coupled states, |rÕÍ and |rÕÕÍ. We
introduce the Förster defect, which corresponds to the energy difference
between the dipole-coupled pairs,

”F = ErÕ + ErÕÕ ≠ 2Er (44)

The largest contribution to Ĥdd corresponds to the potential given by
the pair state that minimizes |”F|. In general, the coupling is dominated by
one two-atom state, so that the problem simply reduces to a two-level sys-
tem. Typically, the energy difference between |ns, nsÍ and |np, (n ≠ 1)pÍ
is usually much smaller than any other two-atom state, so that the prob-
lem reduces to the coupling |ns, nsÍ ¡ |np, (n ≠ 1)pÍ.

The Hamiltonian of the two atoms reduced in the basis |np, (n ≠ 1)pÍ
writes

H =

Q

a

0 C3/R3

C3/R3 ”F

R

b (45)

with eigenvalues

∆E± =
”F

2
± 1

2

Û

”2
F + 4

3

C3

R3

42

(46)

http://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/


28 rydberg atoms

This leads to two asymptotic behaviors depending on R. In the limit
C3/R3 π ”F, the |ns, nsÍ and |np, (n ≠ 1)pÍ states are hardly admixed.
The energy levels are shifted by

∆Ens,ns ¥ 1
4”F

3

C3

R3

42

=
C6

R6
(47)

This is the van der Waals regime. In practice, the state |nl, nlÍ can be cou-
pled to many other |nÕlÕ, nÕÕlÕÕÍ states, where previous reasoning was only
taking in account the largest contribution. A better estimation consists
in summing the contribution of each coupling. The result yields the C6

coefficient,

C6 nl =
ÿ

nÕlÕ nÕÕlÕÕ

|Ènl, nl|V (R)|nÕlÕ, nÕÕlÕÕÍ|2
”F (nÕlÕ nÕÕlÕÕ)

(48)

For 18S, C6(18S) = 27 kHz µm6. It is quite clear that C6 Ã n11
eff, as on

one hand, we have C3 Ã d2 Ã n4
eff; on the other hand, ”F Ã n3

eff, yielding
to the n11

eff scaling.

When C3/R3 ∫ ”F, the two states are strongly admixed and the two
eigenenergies of the Hamiltonian become

∆E± ¥ ±C3

R3
(49)

where the states are |±Í = (|ns, nsÍ û |np, (n ≠ 1)pÍ)/
Ô

2. This is the
dipole-dipole regime.

The transition between the van der Waals and dipole-dipole regimes
occurs at the van der Waals radius, which defines as

RVdW = (C6/|”F|)1/6 (50)

2.2.2 rydberg blockade

The interaction between Rydberg atoms can lead to extreme energy
shifts. This can lead to a “blockade”, in which the presence of one Ryd-
berg atom prevents its neighbors from being excited.

Considering a system of two atoms A and B separated by a distance R,
the two-atom pair can be described by four different states, |g, gÍ, |g, rÍ, |r, gÍ
and |r, rÍ, where |gÍ represents the ground state and |rÍ the Rydberg state.
Assuming the van der Waals regime, we expect the state |r, rÍ to be shifted
by an energy UVdW, the shifting of the other states being negligible. As a
consequence, a laser tuned on resonance with one of the atoms will become
off-resonant with the other atom. This is the phenomenon of “Rybderg
blockade”, in which the excitation of one atom to the Rydberg state pre-
vents the other one from being excited.
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Driving the Rydberg transition results in the excitation of a superposi-
tion of states

|Â+Í = 1Ô
2
(|r, gÍ + |g, rÍ) (51)

In the blockaded regime, the system undergoes a Rabi oscillation with
frequency of

Ô
2Ω between the states |g, gÍ and |Â+Í, where Ω defines as

the Rabi frequency of the single atom, Ω = dE/ h̄.

On crucial parameter is the “blockade radius”, which defines as

Rb =
3

C6

h̄Ω

4(1/6)

(52)

In the case of N atoms within the blockade sphere, the system oscillates
between the collective ground state |g, g, g, ..., gÍ and the collective exited
state

|ÂcÍ =
1Ô
N

N
ÿ

i=1

|g, g..., rj , ...gÍ (53)

at a frequency Ωc =
Ô

NΩ.

The physics of the blockaded regime is very rich and is an interesting
platform to engineer many-body quantum systems. This phenomenon has
been used in many experimental works, such as the production of C-NOT

quantum gates and quantum information processing[85, 126, 141].

Figure 16 – Blockade regime

The blockaded regime (in green) occurs when the interaction po-
tential (solid blue line) becomes larger than the laser linewidth (in
red).



http://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/
http://jupyter.org/
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2.3 experimental production of rydberg
atoms

2.3.1 two-level excitation scheme

The n = 5 and n = 18 levels are approximately separated by 980 THz.
Exciting this transition requires an intense source of photons at 300 nm,
which can be relatively difficult to find, and expensive. We use a generic
method based on a two-photon scheme, in which the transition is driven
by two photons of lower energy (see Fig.20). This allows to couple the
5S1/2 state to the 18S1/2 level.

Figure 20 – Two-photon excitation

The Rydberg transition (a) is driven by a two-photon process (b).

We excite the 5S1/2 ≠ 18S1/2 transition with intermediate state 5P1/2

state and detuning ∆/2fi = 235 MHz. We couple the |5S1/2, F = 2, mF =
≠2Í and the |18S1/2, 2, ≠2Í levels by combining a σ+ red photon and a σ≠

blue photon. Assuming single-photon Rabi frequencies Ωr and Ωb, the
resulting two-photon Rabi frequency is given by

Ω =
ΩrΩb

2∆
(55)

The corresponding lightshift is given by

∆E =
Ω

2
r ≠ Ω

2
b

4∆
(56)

2.3.2 ultrastable cavity

The Rydberg excitation scheme on the JQI experiment is quite conven-
tional: both lasers are stabilized by means of a Pound-Drever-Hall lock
(PDH)[16] on an ultrastable cavity. The Fabry-Pérot cavity serves as fre-
quency reference, the error signal is based on a measurement of the light
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the most representative paths. This requires to know the rate of each
transition (calculable with the ARC Library) and the repartition between
the sublevels (calculable with the dipole matrix elements). Though we do
not detail the calculation here, we have used –1 = 0.55 as the branching
ratio from 18S1/2 to |5S1/2, 2, ≠2Í in the following. To get a quantitative
value for the pumping rate, flR must be rescaled by 1 ≠ –1 = 0.45.

2.3.6 towards experimentations

In this part, we have presented an apparatus allowing to produce an
homogenous frozen gas of Rydberg atoms. Combining a Bose-Einstein
condensate loaded into tridimensional optical lattices (see Ch.1) and Ryd-
berg excitation (see Ch.2), this setup is an excellent platform to simulate
large many-body quantum systems.

However, the short distance between neighboring lattice sites imposes to
use relatively low Rydberg levels (see Sec.2.2.3). In our case, the lifetime
of 18S atoms (·18S = 3.3 µs) can be a limiting factor for some experiments.
In particular, some proposals for quantum simulation with Rydberg states
impose to measure the mechanical response of the sample, a measurement
that typically requires 1 ≠ 10 ms.

In the next part (see Part.ii), we investigate a proposal aiming to in-
crease the lifetime of low Rydberg states. We experimentally observe an
unexpected onset of decoherence that complicates the implementation of
the technique.

http://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/
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When using Rydberg atoms in an optical lattice, the short
intersite distance (≥ 0.5 µm) imposes to use relatively low Ry-
dberg levels (n=20) to avoid Rydberg blockade, hence rela-
tively short lifetimes (· = 5 µs). Unfortunately, a vast number
of phenomena are related to the mechanical properties of the
sample, which, given typical trapping frequencies in the kHz
range, impose experimental timescales of several milliseconds.

Rydberg dressing is a proposal aiming to increase the life-
time of Rydberg atoms[23, 58, 87]. Coherently admixing a
small fraction of Rydberg atoms with a much larger fraction
of ground state atoms is predicted to result in a mixture com-
bining long-range interactions and long lifetimes. This idea
has triggered many theoretical and experimental proposals[4,
72, 73, 77, 87, 97, 107, 122], including methods to produce
new states of matter such as supersolids[74], rotons[73] and
solitons[110]. Rydberg dressing has been experimentally suc-
cessful with a pair of atoms[86], but several experiments in
large Rydberg ensembles the have reported major deviations
from the theory[1, 7, 46]. Deformations of the Rydberg spectra
attributed to interaction-induced decoherence and anomalous
depopulation of the ground state have notably been observed
by the Houston team[1, 46].

In this chapter, we present our investigations of Rydberg dress-
ing in an optical lattice. We intepret our observations in terms
of an interaction-induced onset of decoherence due to resonant
dipole-dipole interactions between Rydberg states of opposite
parity. This type of many-body problem being extremely cor-
related, we circumvent the difficulty by using simple scalings
based on mean-field assumptions.

This chapter begins with a brief overview of Rydberg dressing
(see Sec.3.1). We then present experimental observations in the
steady-state regime (see Sec.3.2), followed by steady-state scal-
ings resulting from the hypothesis of an interaction-induced
dephasing. We show that the dephasing is beyond pure Van
der Waals interactions and involves resonant dipole-exchange
scaling as C3/R3 (see Sec.3.4).
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3.1 elements of theory: rydberg dress-
ing

Many-body systems with long-range interactions are the cornerstone of
many proposals concerning Hamiltonian engineering[87]. Complex states
of matter, such as dipolar crystals[33], supersolids[21, 61], checkerboard
phases[92], rotons[73] and solitons[110] could be produced in many-body
systems with strong dipole-dipole interactions. These phases usually as-
sume particles with typical electric dipole moments of 2 to 5 ea0, which
have notably been achieved with polar molecules prepared in their rovi-
brational ground state[35, 122].

There is a strong interest in producing such large dipole moments in
quantum gases experiments using alkali atoms. Rydberg excitation has
been identified as a potential solution, because the dipole moment of
Rydberg states increases rapidly with their principal quantum number
(Ã n4 ea0) and can become extremely large. However, the short lifetime
of Rydberg states has been a limiting factor so far. Most experiments
involve the mechanical properties of the BEC, which, given the typical
trapping frequencies of the lattice traps (≥ 1 kHz) require 1 ≠ 10 ms of
experimental time. Rydberg lifetimes (1 ≠ 100 µs) are typically 3 orders
of magnitude lower than these requirements.

Rydberg dressing is a proposal aiming to tackle this issue. It consists
in coherently admixing a small fraction of Rydberg states with a much
larger fraction of ground state atoms, resulting in mixture that combines
the advantages of each states. With a small fraction of Rydberg atoms
(e.g. 1%), the mixed state would combine a long lifetime (≥ 10 ms) and
a sufficiently large dipole moment for the proposed applications. The
lifetime and interaction range of the would be both adjustable by the
choice of the Rydberg level n and by the fraction of Rydberg atoms in the
system. First proposed in 2002[23], Rydberg dressing triggered a vast
interest in the community.

3.1.1 a naive approach to rydberg dressing

A usual description of Rydberg dressing consists in assuming a pair of
two-level atoms with ground state |gÍ and Rydberg state |rÍ[87, 106]. The
mixed-state results from the coherent admixture of both states and writes

|ÂÍ = –|gÍ + —|rÍ (60)

Assuming a detuning ” and a Rabi frequency Ω, the fraction — can be
defined in first approximation as

— =
Ω

2”
(61)
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Rydberg states can be pumped with an off-resonant continuous wave.
In the hypothesis of a two-photon scheme (see Ch.2), the intermediate de-
tuning ∆ must be large with respect to the Rabi frequency, ∆ ∫ Ω1, Ω2, Γ

in order to ensure coherent coupling between |gÍ and |rÍ.

Introducing the dipole operator for spontaneous decay of the Rydberg
state d̂, the mixture would have a decay rate[87]

“ Ã |Èg|d̂|ÂÍ|2 Ã —2“r (62)

where “r is the natural decay rate of the Rydberg state. Since — can be
set very small, |ÂÍ has potentially a much longer lifetime than |rÍ.

The dipole-dipole interaction between two dressed states could be cal-
culated as follows

Áint = ÈÂ|Udd|ÂÍ = —2Èr|Udd|rÍ = —2Ár (63)

where Udd the usual dipole operator and Ár the full interaction energy
between two Rydberg states. Ár strongly depends on the Rydberg level n

and the distance between the atoms. In fact, the phenomenon of Rydberg
blockade (see Ch.2), not considered in this equation, leads to interaction
energies much lower than the one presented in Eq.(63).

3.1.2 rydberg dressing in a pair of atoms

A correct estimation of the interaction energy can be done by calcu-
lating the dressed state for two atoms simultaneously[87]. The inter-
action Hamiltonian could be described as a 4 ◊ 4 matrix in the basis
(|ggÍ, |grÍ, |rgÍ, |rrÍ), but the antisymmetric state is uncoupled. The prob-
lem can therefore be reduced to a 3 ◊ 3 matrix in the dressed-state basis
(|ggÍ, 1/

Ô
2(|rgÍ + |grÍ), |rrÍ), and we get

Ĥ = h̄

Q

c

c

a

0 Ω/
Ô

2 0

Ω/
Ô

2 ” Ω/
Ô

2

0 Ω/
Ô

2 2” + Uvdw

R

d

d

b

(64)

Considering that the interaction at stake is the dipole-dipole interac-
tion, we can take Uvdw = C6/R6, with R the interatomic distance. The
interaction leads to very different behaviors depending on the sign of C6

(see Fig.27). A negative C6 triggers an avoided crossing when the laser is
2-photon resonant with the dipole-shifted |rrÍ state, 2” = C6/R6. Analyz-
ing the energy of the eigenstate connecting with the ground state (which is
the state of interest in the context of Rydberg dressing), we note that the
energy slowly varies with R inside the avoided crossing but rapidly falls off
at larger distances. Conversely, when C6 > 0, there is no avoided crossing
but the eigenenergy is also R-independent at short distances (R . 0.5 µm
for n = 40 and C6/2fi = 0.9 GHz µm6). This independence is the direct
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In the limit of small R, the dipole energy is much larger than the laser
detuning, Udd ∫ ”. Atoms are fully blockaded and the state |rrÍ cannot
be excited. The energy of the ground state reduces to

U2 =
h̄”

2

Q

a1 ≠
Û

2Ω2

”2
+ 1

R

b (66)

To evaluate the interaction energy, we take the difference between this
energy and the ground state energy without interactions, and get

Eint

h̄
≥

Udd∫”

1
8

Ω
4

”3
(67)

In the case of large distances, the energy shift due to the interactions
becomes negligible compared to the detuning, Udd π ”. The system
is not blockaded, and the previous expression of the Rydberg fraction
applies, — ≥ Ω/2”. The doubly-excited state has a fraction —2 and the
interaction between two doubly-excited states is expected to evolve as
Èrr|Udd|rrÍ ≥ —4. The ground state energy value dependent on R scales
as

Eint

h̄
≥

Uddπ”

1
16

Ω
4

”4
Uvdw ≥ 1

16
Ω

4

”4

C6

R6
(68)

Taking in account the energy of the ground state without interactions, the
total energy at large distances has the asymptotic value

U1 = h̄”

Q

a1 ≠
Û

Ω2

”2
+ 1

R

b (69)

3.1.3 experimental implications

The previous results can be interpreted in terms of experimental re-
quirements and perspectives. From a low Rydberg state, e.g. n = 20,
·20 = 5 µs, reaching a mixture lifetime of ·m Ø 1 ms imposes — Æ 0.07.

For the dressing to be visible, the interaction energy must be of the same
order of magnitude than other energies in the system. In the case of a BEC
in an optical lattice, the onsite energy (see Ch.1) is typically in the range
U ≥ 1 ≠ 10 kHz. Given Eq.(67), Ω/2fi = 10 MHz and ”/2fi = 100 MHz
would match the requirements while maintaining an acceptable value of —.

In the particular case of a BEC trapped in optical lattices, the avoided
crossing should impact the correlation function of the sample and poten-
tially lead to new phases of matter. The apparition of 4 phases of matter
has been predicted: superfluid, mesoscopic supersolid, ring-shaped crystal
and classical cristalline[122]. These predictions have been done in a 2d
optical lattice with Rydberg state n = 20, conditions that are very close
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to those available in our experiment.

The intersite distance matches the blockade radius on the JQI exper-
iment (see Ch.2). This setup is a good opportunity to characterize the
region around the avoided crossing, and possibly find a way towards the
production of a supersolid. However, only a limited fraction of the param-
eter space can be explored: Ω/2fi can range from 0 to 150 kHz at best.

As a starting point, we characterize the Rydberg states produced on
the experiment. As we will show in the next part, strong dephasing per-
turbs the system and strongly modifies its physics (see Sec.3.2.3.1). These
effects are believed to have negative implications on Rydberg dressing.
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3.2 rydberg dressing in large ensembles

The first series of Rydberg dressing experiment follows the excitation
and detection schemes presented in Ch.2. We excite the |5S1/2, F =
2, mF = ≠2Í æ |18S1/2, F = 2, mF = ≠2Í transition via an off-resonant
two-photon excitation with intermediate detuning ∆/2fi = 235 MHz. The
detection is performed via pumped atoms which are separated in time
of flight with a Stern-Gerlach magnetic field gradient. All experiments
(unless mentioned otherwise) are performed in the tridimensional cubic
lattice (see Ch.1) with intersite distance ⁄/2 = 406 nm.

3.2.1 experimental parameters

The experiment has three main experimental parameters: the two-
photon Rabi frequency Ω, the two-photon detuning ” (see Ch.2) and
the density of atoms in the ground state available for Rydberg excitation
fl0. As mentioned in the previous chapter, the Rabi frequency is directly
related to the optical power in each beam. In practice, we keep the blue
laser at Pb = 100 mW and set Ω manually with Pr. The two-photon de-
tuning ” is controlled by an AOM.

We control the atomic density available for Rydberg excitation by mi-
crowave transfer between the sublevels of the ground state manifold. The
BEC is produced in the |5S1/2, F = 1, mF = ≠1Í level while the Ryd-
berg transition starts in the |5S1/2, F = 2, mF = ≠2Í: a tunable rapid
adiabatic passage[109] between the two states allows to load an arbitrary
atomic fraction 0 Æ f Æ 1 into the |5S1/2, F = 2, mF = ≠2Í state.

Due to the Rydberg detection scheme (See Ch.2), atoms remaining in
the |5S1/2, F = 1, mF = ≠1Í level must be transferred into another, “non-
participating” sublevel. We shelve this population into the |5S1/2, 2, 2Í
state with three consecutive microwave rapid adiabatic passages. Atoms
excited to the Rydberg state tend to decay back to the sublevels mF Æ 1:
the |5S1/2, F = 2, mF = 2Í sublevel does not participate to the detection
and can be used as a reservoir for the 1 ≠ f fraction.

3.2.2 experimental observables

3.2.2.1 resonant pumping rate R0

We measure the resonant pumping rate R0 by measuring the depopu-
lation of the initial state as a function of the excitation time ·k. The red
laser, however, also weakly drives the D1 line. An accurate measurement
of R0 must take in account the depopulation due to this transition. We
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measure the depopulation of the ground state with and without the blue
laser (see Fig.28), leading to

fl
(r+b)
0 (t) = – exp

1

≠R(r+b)t
2

fl
(r)
0 (t) = — exp

1

≠R(r)t
2 (70)

R0 can be extracted from R(r+b) and R(r). Since the experiment is run
in the steady-state regime, the technique used to measure the population
cannot be applied to the initial state of the excitation. Knowing that
55% of the atoms decay back to this state, we can extract the resonant
pumping rate from all other states using a 45% scaling.

R0 =
R(r+b) ≠ R(r)

0.45
(71)

ρ
0

(r+b) (r)ρ
0

τk (s) τk (s)

5S1/2

5P1/2

18S1/2

5S1/2

5P1/2

18S1/2

Figure 28 – An example of resonant pumping rate measurement

We measure R(r+b) (left) and R(r) (right) independently. Note the
different timescale in the axis. This measurement was performed
with Ω/2π = 13kHz.

The depopulation due to the 5S ≠ 5P transition only is relatively small,
we typically observe two orders of magnitude of difference between R(r+b)

and R(r). In the range Ω/2fi = [0.1, 150] kHz, the typical values of the
resonant pumping rate are in the range R0 = [0.1, 15]ms≠1.

3.2.2.2 width of rydberg spectra Γ

We extract the transition width from spectroscopy via pumped atoms
(see Fig.29). We excite the Rydberg transition during a fixed excitation
time ·k Ø 3 ◊ 2fi/Γ0, sufficiently long to build up the population in the
ground state sublevels but short enough to avoid fully depopulating the
ground state. Using the detection technique presented in Ch.2, we scan
the two-photon detuning ” and observe the spectrum of the transition.
The spectra are symmetrical, we extract the full width at half-maximum
Γ from a Lorentzian fit,

R =
R0

1 + 4”2/Γ2
(72)









54 anomalous broadening in large rydberg ensembles

3.3 shortlisting the broadening causes

In this section, we detail the approach we followed to determine the
mechanism underlying the anomalous broadening[60]. Conventional sources
of broadening such as power broadening and pure dephasing were in-
consistent with our observations, and previous publications suggested
an interaction-induced mechanism[7]. We performed additional measure-
ments to get specific insights into the phenomenon; these informations
helped shortlisting two possibles mechanisms, both involving interactions.
Steady-state scalings finally led to a satisfactory explanation of the broad-
ening.

3.3.1 microscopic arrangement

The effect of the microscopic arrangement on the broadening can pro-
vide a hint concerning the range of the phenomenon: a short-range effect
would strongly depend on the geometry, while a long-range mecanism
would only depend on the atomic density.

The superlattice (see Ch.1) allows to perform two specific tests: modify
the intersite distance and control the lattice filling. Under usual condi-
tions, loading a N = 4 ◊ 104 BEC into this optical lattice leads to over-
filling, i.e. the number of atoms per site is larger than one and follows a
Poissionnian distribution. The corresponding density can be measured via
site-dependent spectroscopy[34] and leads to fl0 = 57 µm≠3 in the usual
⁄/2 configuration.

A specific procedure (involving extremely narrow addressing pulses in
pairs of unbalanced lattice sites) allows to empty every other site. This
results in a checkerboard configuration with nearest neighbor distanceÔ

2⁄/2 = 574 nm and density fl0 = 20 µm≠3.

A carreful matching of the density of atoms allows to load a Mott in-
sulator in both configurations: the resulting density are fl0 = 15 µm≠3 in
the ⁄/2 configuration and fl0 = 7 µm≠3 in the ⁄ configuration.

We test all 4 configurations for two values of Ω, all other parameters un-
changed (see Fig.33). As described in Sec.3.4.2, a long-range mechanism
involving resonant dipole-dipole interactions C3/R3 is compatible with a
relation of type Γ Ã R0flg v, where v is a volumic term. This, combined
with the observation R0 ¥ Ω

2/Γ, leads to Γ
Ô

flgv Ã Ω. Once adjusted
for their respective densities, all configurations lead to the similar width
Γ, which is a strong indication towards a long-range mechanism based on
resonant dipole-dipole interactions.
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3.4 steady-state scalings

In this section, we identify the underlying cause of the broadening. We
first gather our observations to shortlist the potential sources of broaden-
ing.

— The observed spectra are symmetrical, well characterized by Lorentzian
distributions and with widths up to 8 MHz: this is uncompatible
with power-broadening or pure dephasing.

— The lifetime of the Rydberg state is unchanged: this does not match
with superradiance.

— We observe R0 Ã fl≠1/2
g . At first sight, a modification of the reso-

nant pumping rate could arise from a “superatom” behavior, where
Ns > 1 atoms share a single Rydberg excitation due to Rydberg
blockade. The resulting collective state has specific properties, such
as a collective Rabi frequency Ωs =

Ô
NsΩ[105]. However, if the

broadening was caused by a superatom, the previous equation com-
bined with the observation R0 ¥ Ω

2
s /Γ would lead to the scaling

R0 ¥ flg Ω/Γ. This last equation does not match the observations
and therefore rules out a superatom behavior.

At the same time, we observe that both Γ and R0 evolve linearly with Ω,
and Γ scales linearly with the Rydberg population. These are strong indica-
tions towards a mechanism involving interactions between Rydberg states.
The effect is independent from the microscopic arrangement, which sup-
ports the hypothesis of a long-range interaction, such as the dipole-dipole
interaction.

Modeling the effect of interactions in a large system is difficult: the
complexity of the problem grows exponentially with the number of parti-
cles, leading to an extremely large parameter space in our case. Instead
of developing a full model, we propose simple heuristic scalings based on
our observations. This scalings are mean-field an do not take in account
correlations in the system. We adapt our scalings to two types of interac-
tions, Van der Waals (see Sec.3.4.1) and dipole-dipole (see Sec.3.4.2), and
show than one captures the phenomenon much better than the other.

3.4.1 van der waals scaling

We first consider the case of Van der Waals interactions between the
Rydberg states in the system. The knowledge of the lifetime of the 18S

level allows to estimate the density of 18s atoms in the steady-state regime.

fl18S = flg
R0

Γ0
(76)
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phenomenon — notably the dynamics — are still unexplored. We present
further investigations in the next chapter.



4
I N V E S T I G AT I O N S O F T H E DY N A M I C S O F T H E
RY D B E RG P O P U L AT I O N S

The previous chapter was dedicated to the steady-state anal-
ysis of a decoherence mechanism affecting large Rydberg en-
sembles (see Ch.3). We have postulated the spontaneous ap-
parition of a new population of Rydberg atoms (the nÕP states)
that trigger a rapid dephasing of the sample (see Fig.39). While
the exact phenomenon involves strong correlations and is dif-
ficult to calculate, our mean-field steady-state scalings match
the data relatively well.

In this chapter, we study the time evolution of the decoher-
ence. We confirm the mechanism by investigating the dynam-
ics of the two types of Rydberg populations in the system,
namely the nS and the nÕP states (see Sec.4.1 and Sec.4.2).
We show that whereas one population is directly accessible
via fluorescence measurements, the other one requires the use
of an indirect method. Our observations are completed by two
models based on non-linear rate equations and mean-field as-
sumptions. We note that the typical timescale of the problem
is determined by the apparition of the first pollutant state. We
show that the duration of the drive plays a key role in the dy-
namics and that the broadening can be slightly reduced by a
careful choice of excitation time (See Sec.4.1.3).

We finally propose several techniques to mitigate the decoher-
ence (See Sec.4.4). While none of them completely solves the
problem, we note that microwave cavities can be remarkably
efficient in the case of circular Rydberg states. We also iden-
tify cryogenic environments as a potential solution for Rydberg
dressing in small many-body systems.
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4.1 dynamics of the nS population

Decoherence in large Rydberg ensembles is the consequence of interac-
tions between Rydberg atoms. Understanding the time evolution of the
Rydberg populations is a critical step towards a full understanding of the
phenomenon. Ultimately, controlling the populations could help mitigat-
ing the decoherence.

At first sight, the time evolution of the populations seems relatively com-
plex: our initial observations suggest a highly correlated problem. This
type of mechanisms is delicate to simulate and requires advanced simula-
tion methods. Such an approach has been developed in our group[149],
but we present here a much simpler model based on mean-field arguments.

These simulations can be compared to experimental data in order to
confirm or infirm the model: as we will show in this section, the nS popu-
lation can be measured directly by fluorescence. Observing the evolution
of the pollutant population is more difficult and requires a specific tech-
nique discussed in the next section.

4.1.1 mean-field modeling

We describe the system with an ensemble of coupled non-linear rate
equations based on phenomenological results and mean-field arguments.
Although the physics behind involves strong correlations, this type of
mean-field models is commonly adapted to situations with strong deco-
herence[6, 78].

Each atom is modeled as a three-level system, with a ground state |gÍ,
an excited state |sÍ and an “pollutant” state |pÍ. We attribute to each |iÍ
state a fraction fli, so that the number of atoms in the state |iÍ is given
by Ni = fliN and

q

i fli = 1. The levels are coupled by three transitions,
|gÍ æ |sÍ, |sÍ æ |pÍ and |pÍ æ |gÍ to which we attribute the branching
ratios b1, b2 and b3 (see Fig.40).

In our experiment the |sÍ state corresponds to the 18S level, the |pÍ
state is a virtual state representing the four most probable pollutant states,
17P1/2, 17P3/2, 18P1/2, 18P3/2 (see Ch.2). We estimate the properties of
the effective |pÍ state using a weighted average of the properties of these
four states. Using the ARC Library, we estimate Γp = 25 kHz, b1 = 0.49,
b2 = 0.18 and b3 = 0.55.

One should note that this picture is very simplified. In particular, there
are many other desexcitation schemes than b3 for |pÍ. We also have
q

i bi < 1, which captures the fact that some atoms decay to sublevels
of the ground state that are not the initial state of the Rydberg excita-

https://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/
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the pumping rate R.

We simulate the evolution of the populations for a resonant drive, ” = 0
(see Fig.41). At early times, the model shows an overshoot of the |sÍ popu-
lation followed by a maximum of the |pÍ population. The rapid growth of
the |sÍ population happens before the creation of the first |pÍ atom, when
R0 is not yet altered. As soon as the first |pÍ atom appears, the resonant
pumping rate decreases, thus reducing the number of |sÍ atoms. The mas-
sive decay of |sÍ atoms facilitates the apparition of a large number of |pÍ.
At longer times, both populations decrease due to the depopulation of the
ground state.

The same simulation performed off-resonance (”/2fi = 2.1 MHz) leads
to slower dynamics (see Fig.42). Where the |sÍ population used to take
only a fraction of 1 µs to build up, it now requires nearly 15 µs when the
drive is off-resonant. This simply corresponds to a lower pumping rate
at early times. We observe a similar — yet delayed — overshoot of the
population followed by a global decrease of the Rydberg population.
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Figure 41 – On-resonant |sÍ and |pÍ populations

(left) We simulate the evolution of the |sÍ (blue) and |pÍ (orange)
populations with Ω/2π = 140 kHz and δ = 0. (right) Zoom at
early times.

4.1.2 dynamics of the nS population

The evolution of the |sÍ population can be measured directly by fluo-
rescence via pumped atoms. Similarly than in the previous chapter, we
use the fact that the number of photons fluoresced on the 5S1/2 ≠ 5P3/2

transition is proportional to the population of |sÍ atoms.

We collect the photons using a relay lens with high numerical aperture
(NA=0.12) placed outside vacuum. A dichroic filter separates the fluo-
rescence signal of the D2 line (⁄ = 780 nm) from the Rydberg excitation
photons (⁄ = 795 nm) slightly detuned from the D1 line. We use a Laser
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Figure 42 – Off-resonant |sÍ and |pÍ populations

(left) We simulate the evolution of the |sÍ (blue) and |pÍ (orange)
populations with Ω/2π = 140 kHz and δ/2π = 2.1 MHz. (right)
Zoom at early times.

Components Count 100-C-FC fibered avalanche photodiode to perform a
time resolved detection. We typically collect less than 10 photons per
run: obtaining quantitative data requires to build statistics over several
hundreds of experiments.

On-resonance (see Fig.43) and off-resonance (see Fig.44) measurements
show a good agreement with the model at long excitation times (typically a
few tens of µs), but discrepancies appear at shorter times. Since our model
is based on mean-field arguments, we expect the predicted dynamics to be
slower than the phenomenon. This translates into a slower increase of the
width and a slower diminution of the resonant pumping rate in the model.

On-resonance data show an overshoot at early times, though much
smaller than the one predicted. The strong correlations in the real sys-
tem lead to a rapid disparition of the |sÍ population. Our model, which
is slower because of its mean-field arguments, exhibits a delayed onset of
decoherence. The population has more time to grow at the full single
particle rate, hence leading to an overestimation of the |sÍ population at
early times.

Off-resonant observations are also compatible with a beyond mean-field
phenomenon. The quick growth of the Rydberg population is consistent
with a rapid increase of the transition width. Due to its mean-field charac-
ter, the width predicted by the model is growing slower, thus leading to an
underestimation of both the off-resonant pumping rate and the Rydberg
population.
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Using this approach, the dressed interaction could be time-averaged
over many pulses. This technique could be used for experiments where
the observable does not rely on correlations being preserved during the
dark time.

An estimate of the typical time available before the apparition of the
first |pÍ state, ·c, can be extracted from the lifetime of the |sÍ state, Γ0,
weighted by the population in this state, Ns, and the branching ratio to
the |pÍ state, b,

·≠1
c = Ns b Γ0 (88)

and the number of |sÍ atoms in the system is given by

Ns =
NR

Γ0
=

R0Γ0

4”2
(89)

where we have assumed ”/Γ ∫ 1 which is always true at the beginning of
the experiment. We combine the previous equations with the experimental
observation R0 = Ω

2/Γ and get

·c =
1

bNΓ0

A

2”

Ω

B2

(90)

In the case of n = 18, Γ0 = 45 kHz, N = 40000, assuming Ω/2fi = 66 kHz
and ”/2fi = 1 MHz, we get ·c = 10 µs.

To calculate the time-averaged dressing potential, we define the dark
time ·dark = A·0 with A ∫ 1 and ·0 the lifetime of the |sÍ state. Con-
sidering a short-distance dressing potential, U2 = Ω

4/8”3 (see Ch.3), the
interaction energy averaged over the pulses becomes

Uı =

A

Ω
4

8”3

B

·c/·0

A + ·c/·0
(91)

Taking the optimistic conditions from[87], Ω/2fi = 10 MHz and ”/2fi =
100 MHz, we find U2 = 8 kHz. Assuming A = 18 (corresponding to
·dark = 80 µs, ·0 = 4.5 µs, n = 18), the time-averaged interaction en-
ergy reduces to Uı = 0.9 kHz. All other parameters maintained, more
reasonable values such as Ω/2fi = 66 MHz and ”/2fi = 1 MHz lead to
U2 = 15 Hz and Uı = 1.7 Hz. The interaction energy is still orders of
magnitude below the typical resonance frequencies of the traps.

We perform the experiment with a serie of Np pulses of length tp =
0.5 ≠ 40 µs separated by 80 µs of dark time. The number of pulses Np is
adjusted so that the total excitation time is kept constant. Experimen-
tally, the pulses are performed with an AOM on the red laser while the
blue laser is kept on during the full duration of the experiment.
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Figure 45 – Evolution of the width of the Rydberg spectra as a func-

tion of the excitation time

We excite the Rydberg transition stroboscopically at Ω/2π =
66 kHz and measure the width of the transition. The number of
pulses is chosen accordingly with the pulse duration, so that all dat-
apoints have the same total excitation time. Errorbars corresponds
to the residuals of Lorentzian fits. The model (in green) reproduces
the trend while being slower than the data (blue dots). Short exci-
tation times are limited by Fourier broadening (gray zone).

We observe a clear diminution of the measured width in the case of
short pulses (see Fig.45). However, the minimum measured width is about
1 MHz, which is still more than 20 times the natural linewidth. We at-
tribute this limitation to the Fourier limit, which leads to broad spectra
at short pulse times.

Besides, this technique cannot be used for experiments requiring long
coherence times because the coherence is reset at each excitation pulse.
While succeeding in probing the dynamics of the phenomenon, there is
little hope to use this technique for Rydberg dressing in large ensembles.

4.2 dynamics of the n ÕP population

4.2.1 a pump-probe technique

The symptoms of the decoherence in large Rydberg ensembles have been
observed in several experiments, notably by the Houston team[1, 46, 60].
However, a measurement of the time evolution of the pollutant popula-
tion is still missing in the literature. The desexcitation scheme of the |pÍ
population is relatively complex and measurement techniques well-suited
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for the |sÍ population cannot be used for the |pÍ population.

The evolution of the |pÍ population is difficult to measure because the
creation and the detection of contaminants states are coupled: evaluating
the |pÍ population by measuring the properties of a Rydberg transition
creates additional |pÍ states that affect the transition. This mechanism
of self -broadening, in which the Rydberg transition creates the contami-
nants and gets affected by them, prevents from using a single transition
to measure the time-evolution of the contaminants.

In this section, we present an indirect method to count the |pÍ states.
Our technique takes advantage of the fact that all sublevels of the |sÍ
state can resonantly dipole-dipole interact with the contaminants. This
suggests using two transitions at the same time, one as a sensor for the
pollutant states (the “probe”), the another as an external source of con-
taminants (the “pump”). Both transitions are affected by their own con-
taminants (self-broadening), and by the contaminants produced by the
other transition (cross-broadening). Creation and detection of additional
contaminants are effectively decoupled, thus opening the door for dynamic
investigations.

We model each atom as a six-level system, with two ground states |gÍ
and |gÕÍ, two Rydberg nS states |sÍ and |sÕÍ, and two nÕP states |pÍ and
|pÕÍ (see Fig.46). The pump transition drives the |gÍ æ |sÍ transition, the
probe the |gÕÍ æ |sÕÍ. Wealky driving the probe creates a very limited
number of |sÕÍ states, and an even smaller number of |pÕÍ states, so that
the population of contaminant states is mostly represented by |pÍ states.
Both the pump and the probe get broadened by their interaction with
the contaminant states in the system. However, since the number of |pÕÍ
states is negligible, the probe has almost no self-broadening and is mostly
affected by pure cross-broadening, making it an effective sensor for the |pÍ
population.

4.2.2 steady-state cross-broadening

As a first experiment, we compare the properties of the probe transition
with and without the presence of additional |pÍ states. This is done in the
steady-state regime. Experimentally, we use the sublevels of the 5S1/2

and 18S1/2 to drive two independent transitions between these states.

We extend the results found in the previous chapter in the case of
several sources of |pÍ states. Assuming Nt transitions |gÍ æ |sÍ with

resonant pumping rate R
(i)
0 and an atomic fraction available for Rydberg

excitation f (i), we get a width for all transitions

Γ = Γ0 + —3fl0

Nt
ÿ

i

R
(i)
0 f (i) (92)
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This time, the measurements show a remarkable agreement with the
values expected from Eq.(94), which is a further confirmation of the tech-
nique.

4.3 dynamical cross-broadening

In this section, we combine the pump-probe technique and stroboscopic
excitations to investigate the dynamics of the pollutant population.

4.3.1 cross-broadening homogeneous mean-field
model

The cross-broadening model is based on two coupled three-body systems
similar to the previous ones (see Sec.4.1.1). Each atom i is described as a
three-level system referred to as |i, gÍ, |i, sÍ and |i, pÍ. This effective six-
level system captures the effect of the pump on the probe, and reciprocally.

Figure 50 – Model for the cross-broadening

We model the experiment as an effective six-level system corre-
sponding to two coupled three-level atoms.

In the following, we consider the states |1, iÍ as corresponding to the
pump and |2, iÍ as corresponding to the pump. The system writes

fl̇1,g(t) = ≠ fl1,g(t)R1(t) + Γ0b1,1fl1,s(t)

+ Γpb1,3fl1,p(t) ≠ Γ1,Dfl1,g(t)
(95a)

fl̇1,s(t) = fl1,g(t)R1(t) ≠ Γ0fl1,s(t) (95b)

fl̇1,p(t) = b1,2Γ0fl1,s(t) ≠ Γ1,pfl1,p(t) (95c)

fl̇2,g(t) = ≠ fl2,g(t)R2(t) + Γ0b2,1fl2,s(t)

+ Γpb2,3fl2,p(t) ≠ Γ2,Dfl2,g(t)
(95d)
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fl̇2,s(t) = fl2,g(t)R2(t) ≠ Γ0fl2,s(t) (95e)

fl̇2,p(t) = b2,2Γ0fl2,s(t) ≠ Γ2,pfl2,p(t) (95f)

In Eq.(95a),(95d), the last terms correspond to off-resonant scattering
to the 5P1/2 state. Its rates evolves as Γi,D = (Ω1,i/2∆i)2

Γ5P , with Γ5P =
2fi ◊ 6 MHz. We use the same mean-field argument than before, which
assumes that the dephasing rate depends on the density of contaminants.

R1(t) =
Γ1

2
2Ω

2

4”2
1 + Γ2

1

(96a)

R2(t) =
Γ2

2
2Ω

2

4”2
2 + Γ2

2

(96b)

We keep Γp = 2fi ◊ 25 kHz and C3 = 2fi ◊ 34 MHz µm3 for both the
pump and the probe. The cross-broadening is captured by an effective
interaction term C

(cross)
3 which depends on the transitions at stake and is

a fitting parameter for the model.

Γ1(t) = Γ0 + C3fl0fl1,p + C
(cross)
3 fl0fl2,p (97a)

Γ2(t) = Γ0 + C3fl0fl2,p + C
(cross)
3 fl0fl1,p (97b)

4.3.2 dynamical cross-broadening experiment

To measure the evolution of the additional |pÍ states, we build up the
population with a short pulse of pump light at t = 0 and measure the ef-
fect of the contaminants with a pulse of probe light after a delay ∆t. Since
the cross-broadening appears only when the additional |pÍ states and |sÍ
states are both present in the system, we expect a maximal broadening
at short delays and pure self-broadening for ∆t ∫ Γ

≠1
0 . The evolution of

the width of the probe transition gives an estimate of the dynamics of the
additional |pÍ states.

In practice, dynamical investigations of the |sÍ population (see Sec.4.1.2)
show that the Rydberg population can take several tens of microseconds
to build up, the precise timing depending on the two-photon detuning
”. We take tp = 20 µs ≥ 3 ·0 for both the pump and the probe pulses.
This value allows to investigate the the range ”/2fi œ [≠3, 3]MHz with
sufficient signal but below saturation.

Probing a unique pump pulse leads to a small signal: we hence repeat
the experiment several times, each new experiment separated by a long
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Figure 51 – Dynamical pump-probe experimental setup

Contrary to the steady-state experiment, this one uses a blue inter-
mediate detuning: this allows to use the |5P1/2, F = 2, mF = 2Í
sublevel as intermediate state for the transition.

dark time in order to let all excited atoms decay back to the ground state
before the new excitation. We set tdark = 3 ◊ ·p, which leads to a full
period of 120 µs.

We use |1, sÍ = |18S1/2, F = 2, mF = ≠2Í and |2, sÍ = |18S1/2, F =
1, mF = 1Í. We set Ωpump = 2fi ◊ 20 kHz and Ωprobe = 2fi ◊ 15 kHz, with
an intermediate detuning ∆ = 2fi ◊ 240 MHz. Contrary to the steady-
state experiment (see Sec.4.2.2), the two-photon scheme is blue-detuned
(see Fig.51). We chop the excitation light (see Fig.52 insets) of the pump
and the probe with two independent AOM. Only the red light is chopped,
the blue laser is kept on during the full duration of the experiment. As
usual, the measured width are extracted from a Lorentzian fit.

We observe a clear evolution of the probe width (see Fig.52), which goes
from Γ = 2fi ◊ 760 kHz (pump and probe in phase) to Γ = 2fi ◊ 500 kHz
(pump and probe out of phase).

We apply the model of cross-broadening to this data: our model leads
to a correct estimate of the amplitude of broadening. There is however a
consistent 10 µs delay between experiment and simulation. We attribute
this delay to the mean-field assumptions in the model which fail to cap-
ture the early time dynamics.

This measurement gives an estimate of the typical times necessary to
build and wipe out the population of contaminant in the system. Building
the population is a relatively quick process (saturation after 10 µs), while
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4.4.1 stroboscopic approach

We have seen in Sec.4.1.3 that a stroboscopic approach can help to limit
the decoherence. Short excitations times tp followed by long dark times
tdark ∫ ·0 allow to limit the broadening.

The time available before the apparition of the first contaminant ·c

provides an estimate of the actual coherence time available. ·≠1
c typically

corresponds to the number of atoms in the |sÍ state multiplied by their
probability to transfer to a nearby |pÍ state, ·≠1

c = N (Ω/2”)2
Γ0, which

can be written

·c

·0
=

4”2

Ω2

1
bN

=
Nc

N
(98)

where Nc is a critical number of atoms above which the coherent time
available drastically reduces.

We note that using larger samples (large N) should provide more coher-
ence time. Besides, using larger principal quantum numbers leads to high
values of ·0 (·0 Ã n3[53]), that also postpone the apparition of the first
pollutant state. However, high n also lead to larger interactions ranges:
once the first pollutant state appears, the avalanche dephasing is much
more dramatic.

The stroboscopic approach can reduce the broadening down to the
Fourier limit (see Sec.4.1.3). Avoiding the Fourier broadening requires
·c ∫ ”≠1, which imposes N π Nc ”/Γ0. The dark times between the
pulses do not preserve quantum correlations: this reduces the experimen-
tal possibilities of this technique, especially for Hamiltonian engineering.
This technique has been used in other experiments involving Rydberg
dressing, notably by the Munich group[150].

4.4.2 microwave cavities

We have seen in the previous sections that the decoherence is triggered
by the apparition of blackbody induced pollutant states. Thermal pho-
tons are present at room temperature and can seem unavoidable at first
glance. However, atomic absorption and radiative properties are strongly
influenced by the environment of the sample[112]: for example, insert-
ing atoms in a cavity or a waveguide drastically modifies their radiative
properties due to the Purcell effect[91]. In the particular case of Rydberg
atoms, it has been shown that their absorption of blackbody radiation[142]
and their spontaneous emission[80] can be can be dramatically reduced
by placing the sample in a microwave cavity. This can be used to increase
their lifetime.
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For a given transition, the rate of radiative absorption is given by An̄,
where A is the spontaneous transition rate and n̄ the photon occupation
number, n̄(T, ‹) = [exp(h‹/kT ) ≠ 1]≠1. A is proportional to the mode
density for photons at frequency ‹, fl(‹), which defines as fl(‹) = 4fi‹2/c3

in free space.

Optical cavities, such as Fabry-Pérot cavities, strongly modify the prop-
agation of the electric field. In the particular case of Rydberg atoms, such
cavities can be used as “cut-off” cavities, which filter all transitions below
a critical frequency defined as ‹c = c/2d, where d is the distance between
the two plates.

Atoms in cavities are deceptively simple: taking in account the finite size
of the plates, their imperfect electrical conductivity, the inhomogeneities
of the cloud and the occupation of the energy levels deeply complicates
the problem. Taking in account all these corrections is beyond the scope
of this section, we only evaluate here the experimental possibilities of such
systems.

Under the simplistic assumptions of two parallel plates with infinite size
and perfect conductivity, the cavity allows two families of electrical modes:
one type parallel to the normal of the plate, the other one orthogonal. In
the frequency region 0 Æ ‹ Æ 2‹c, the two types of density of modes evolve
as[142]

flÎ = 4fi
‹c‹

c3
(99a)

fl‹ =

Y

]

[

4fi‹c‹/c3 for ‹ > ‹c

0 for ‹ < ‹c

(99b)

The selection rules for blackbody absorption also show that flÎ couples
transitions with ∆|m| = 0 and fl‹ transitions with ∆|m| = 1 when the
quantization axis is orthogonal to the plates. Cut-off cavities are only
filtering one family of modes, and therefore only a fraction of all possible
transitions.

Circular Rydberg states[81], i.e. states satisfying |m| = n ≠ 1 consti-
tute a remarkable exception. These atoms radiate only by a single dipole
transition, which happens to correspond to a fl‹ mode. A cavity com-
bined with these states can effectively block the only possible blackbody
transfer. Circular Rydberg states in cavities have been used in the past,
and notably in the famous Haroche experiments[59].

In the case of non-circular Rydberg states, it is worth evaluating the
reduction of blackbody transfers provided by a cavity. We use the ARC

Library to calculate the energy of each transition coupling the 18S level
with a nP state, n œ [5, 100]. Setting a cavity length allows to extract a
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cutting frequency ‹c, and transitions with energy h̄‹ < h̄‹c are expected
to be blocked. We estimate to 75% the reduction of the radiative absorp-
tion in the fl‹ mode for 18S atoms in a cavity of length l = 130 µm. Using
such a cavity, however, is challenging due to laser clipping.

Because of their dense spectrum, higher Rydberg atoms are compatible
with larger cavity sizes. The same 75% filtering can be achieved with
l = 4 mm and 50S atoms or l = 12.5 mm and 70S atoms. Such high-
Rydberg states, however, are not compatible with optical lattices due
to Rydberg blockade (see Ch.2). Besides, their relatively long lifetimes
(≥ 100 µs) are sufficient for tweezer-based experiments (see Ch.5).

Non-circular Rydberg states have also tested experimentally. Using
the 29D æ 30P transition, D. Kleppner reported a decrease of 59% of
the absorption rate below the cutoff frequency. The experiment was per-
formed with copper plates 40 mm in diameter and separated by a distance
r = 2 mm[142]. Adressing and detection techniques used at the time, how-
ever, need to be adapted to current experimental schemes. In this type
of experiments, high Rydberg levels are favorable, in the sense that they
lead to larger cavity size, hence better optical access.

4.4.3 cryognenic temperatures

Another approach consists in reducing the number of thermal photons
by working in a cryogenic environment. In fact, most experiments using
Rydberg atoms in a cavity work at cryogenic temperatures (e.g. T = 0.8 K
in the Haroche team, T = 6.5 K in the Kleppner group, etc.). However,
cooling the entire system can be technically difficult, notably because of
the current atom and trapping techniques: usual cryocoolers have rela-
tively low cooling power, that can easily be overwhelmed by laser-induced
heating. Experimental challenges concerning cryogenic experiments are
discussed in more detail in Ch.5.

4.4.3.1 parallel cold plates

We first consider the simplistic case of an atomic sample placed between
two cold plates of an insulating material separated by a distance d. As-
suming that each plate has a radius r, the solid angle of the shield is given
by

Ωshield = 4fi [1 ≠ cos(Ï)] (100)

with tan(Ï) = 2r/d.
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be produced with liquid N2-cooled alumina, which is an insulator with
reasonable thermal conductivity. Using cold glass plates with a conductive
coating (e.g. Indium Tin oxide) could combine a cold shield with a cavity
effect, though limitations due to the poor conductivity of ITO and thermal
properties of glass must be addressed.

4.4.3.2 coherence time in a cryogenic environment

Going back to the avalanche dephasing in large Rydberg ensembles, we
now consider the case of a fully cryogenic experiment. This implies a cold
shielding, which (optical access neglected) would block thermal radiation
on the full 4fi solid angle. Such platform would involve a cryocooler[123],
whose design would be adapted to the range of temperatures required. As
this is the solution we have identified, technical considerations and designs
are detailed in the next chapter (See Ch.5).

We have shown that the available coherent time is typically given by ·c

(see Eq.(98)). This time depends both on the branching ratio to nearby
nÕP states and the lifetime of the nS state, two parameters that are tem-
perature dependent.

Lowering the temperature of the environment diminishes the stimulated
emission of thermal photons, and therefore the decay rate of nS states.
However, the difference in lifetime between room and cryogenic temper-
atures is relatively negligible for low-lying Rydberg states, ·0(300 K) =
3.27 µs vs. ·0(0 K) = 4.12 µs for 18S[15] (see Fig.55, right).

The absence of radiative transfers also means the disparition of nÕP

atoms in the system: a consequence much more dramatic for Rydberg
dressing. Indeed, limiting (ultimately suppressing) these states cancels
the resonant dipole-dipole interaction and therefore halts the dephasing
mechanism. Limiting the apparition of nÕP states can be done by reduc-
ing b (see Fig.55, left).

Figure 55 – Evolution of τ0 and b with the temperature

For 18S, cryogenic temperatures have a much larger impact on the
branching ratio to states of opposite parity than to the lifetime.
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In Rydberg-dressing proposals, the spontaneous decay rate is expected
to evolve as (see Ch.3).

“ = —2
Γ0 =

A

Ω

2”

B2

Γ0 (102)

where — is the Rydberg fraction in the mixture.

At room temperature, the actual coherence time is limited by the ap-
parition of the first pollutant state. We have estimated this time (see
Sec.4.1.3)

·c =

A

2”

Ω

B2 1
bNΓ0

(103)

The diminution of both b and ·0 with T suggest the existence of a tem-
perature below which the limiting factor becomes the spontaneous decay
rate. We define a critical temperature T ı

N such that the time of apparition
of the first pollutant state is equal to the coherence time at T = 300 K.

·c(T
ı
N ) =

A

2”

Ω

B2

·0(300 K) (104)

We plot the evolution of T ı
N as a function of the sample size (N) and

the Rydberg level (n) (see Fig.56). The number of atoms in the system is
involved in the estimation of ·c, while the Rydberg level directly impacts
the branching ratio b and the natural lifetime ·0.

Figure 56 – Evolution of T ı
N with the temperature

Our simulations show that low atom number and low Rydberg levels are
favorable to Rydberg dressing. Experiments in the range N ≥ 30 ≠ 100



86 investigations of the dynamics of the rydberg populations

could perform Rydberg dressing in a cryogenic environment at T = 10 K.
Higher temperatures (e.g. T = 77 K) could be compensated by lower
atom number (N ≥ 10).

However, this approach is limited by the finite value of spontaneous
decay rate: even at 0 K, spontaneous decay leads to the apparition of states
of opposite parity that trigger the dephasing. This could be compensated
by combining a cryogenic environment with a cut-off cavity.

4.5 perspectives for rydberg dressing

In the last two chapters, we have investigated the proposal of Rydberg
dressing. This technique has been proposed as a method to engineer long-
range interactions between atoms in the ground state, but among with
other groups (Houston[1], Munich[150]), we have observed disagreements
with the proposal. We have proposed a mechanism of spontaneous dephas-
ing due to resonant dipole-dipole interactions in the sample[60]. We have
identified two types of Rydberg populations and systematically studied
their dynamic evolution[24]. Despite the complex nature of this highly-
correlated problem, we have captured its physics in simple mean-field
equations. We have formulated possible workarounds aiming to reduce
the decoherence and provide larger experimental times.

Our observations show that Rydberg dressing might be difficult to com-
bine with Hamiltonian engineering. Probing new phases of matter typi-
cally requires 1 ≠ 100 ms, timescales which are far beyond the range acces-
sible today. However, Rydberg dressing can be performed at short times,
as it has been proved by the Munich group[150]: by using a post-selection
technique (spin-echo), the group has successfully filtered all cases exhibit-
ing the decoherence and observed Rydberg dressing in the remaining cases.
Their experiment was performed with N = 200 in a 2D optical lattice at
room temperature.

Despite difficulties with Rydberg dressing, there is still room for Ry-
dberg atoms in many-body quantum systems. Experiments such as the
“atom-by-atom assembler” at the Institut d’Optique have demonstrated
the versatility of these states in diverse experiments[9, 12, 29, 117, 124].
Low-lying Rydberg states do not exhibit decoherence at short times, which
is the regime of this experiment.

In the last part of this thesis, we discuss the combination of Rydberg
atoms and cryogenic environment. In particular, we focus on an improved
design of the “atom-by-atom assembler” involving a cryocooler at 4 K.
Such system would allow for larger experimental times and therefore larger
matrices of atoms.
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The previous part was dedicated to the study of large ensem-
bles of ultracold atoms trapped in optical lattices and excited
to relatively low Rydberg states (see Part.ii). A different ap-
proach consists in using optical tweezers to trap the atoms.
With this approach, it is possible to engineer atomic structures
of several tens of atoms with arbitrary geometries. While the
intersite distance in an optical lattice is typically 0.5 µm, the
usual distance between two optical tweezers reaches Ø 3 µm.
This implies using much higher Rydberg states (n > 50) to
obtain sizeable interactions. This type of quantum simulator
can be used to investigate phenomena with energy scale in
the MHz range, thus requiring experimental timescales much
shorter than the Rydberg lifetime. Contrary to Rydberg atoms
in optical lattices, Rydberg dressing is not relevant here.

The tweezer-based experiment at LCFIO has had a remark-
able evolution in the last few years: Initially able to produce
pair of atoms individually trapped in optical tweezers[52, 113,
148], the experiment has quickly evolved into a versatile ma-
chine generating tridimensional arbitrary atomic structures
with N = 72 atoms[9, 10, 117]. The experiment combines
a spatial light modulator (SLM) and a pair of high-NA lenses
under vacuum to produce arbitrary arrays of microtraps. From
stochastically filled matrices, an independent moving tweezer
assembles the atoms into deterministic structures (see Sec.5.1).

However, the size of the structures is currently limited by col-
lisions with the background gas. To increase the size of the
structures, we suggest using a 4 K cryostat: at the contact of
cold walls, residual gaseous particles immediately freeze and
stick, effectively reducing the residual pressure. We first briefly
remind the reader of the current apparatus (see Sec.5.1) before
discussing the requirements of the new setup (see Sec.5.2). We
detail the first steps of its construction (see Sec.5.3) with a spe-
cific focus on the optomechanical mount to be placed under
vacuum at 4 K (see Sec.5.4).
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5.1 arbitrary structures up to 72 atoms

Started in 2010, the “atom-by-atom assembler” constituted the logical
evolution of a previous experimental platform developped in the Quantum
Optics group at LCFIO, the “Large Aperture Microscope” (MIcroscope
Grande OUverture). This experiment started the investigation of pairs
of Rydberg atoms individually trapped in optical tweezers, and notably
the direct observation of Rydberg blockade[52, 113, 129, 148]. Adding a
spatial light modulator (SLM) led to the realization of three independent
tweezers[8], quickly followed by arbitrary two-dimensional arbitrary arrays
of atoms[117]. Two years later, the addition of a “moving-tweezer” allowed
to produce deterministic atomic structures up to 70 particles. In 2018,
the acquisition of tunable lenses made possible the fabrication of artificial
three-dimensional atomic structures[10].

5.1.1 pairs of interacting rydberg atoms

Since its beginning, the setup is based on a pair of high numerical aper-
ture (high-NA) lenses placed under vacuum (see Fig.57). A collimated
red-detuned laser beam is tightly focused at the focal plane of the first
lens and serves as dipole trap (see Ch.1). We detect the the fluorescence
of the D2 line using the same aspheric lens to focus the dipole beam and
collect the signal. The second aspheric lens, placed in a symmetric config-
uration, allows to perform diagnostics on the recollimated light.

Figure 57 – The apparatus able to trap pairs of Rydberg atoms

The experiment as it was in 2013 (picture from [12])

The lenses are plano-convex aspheres from LightPath, with focal length
fasp = 10 mm and working distance dasp = 7 mm. These lenses are made
of D-ZLaF52LA glass and have a numerical aperture of NA = 0.45. They
are diffraction-limited at ⁄ = 780 nm but similar performances can be
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reached at ⁄ = 850 nm for lower apertures (NA = 0.44). They have been
coated on their flat surface with a transparent conducting material (ITO)
in order to avoid electrostatic perturbations of Rydberg levels.

The tweezer is a tightly focused red detuned dipole trap at wavelength
⁄ = 850 nm. It is possible to replicate as many tweezers as needed by
simply using several collimated dipole beams. On the earlier setup by the
group (MIGOU), the distance R between a pair of tweezers was tuned
by changing the incidence angle between the two collimated beam, R typ-
ically ranging from 3 ≠ 5 µm[52, 148]. Each tweezer has a typical 1/e2

radius w0 = 1 µm, the typical trapping depth is U0/kB ¥ 1 mK, with
trapping frequencies of order of 100 kHz (radially) and 20 kHz (longitudi-
nally). Such a microtrap can capture one atom at maximum.

Atoms are excited into the Rydberg state via the transition |5S1/2, F =
2, mF = 2Í æ |nD3/2, F = 3, mF = 3Í, where n typically ranges from 50

to 100. The setup uses a typical off-resonant two-photon scheme (see Ch.2)
with intermediate detuning ∆/2fi = 740 MHz and two-photon Rabi fre-
quency Ω/2fi = 1 MHz. The two lasers are locked on a ultra-stable cavity
via PDH[16, 45] limiting frequency fluctuation to less than 100 kHz. These
Rydberg levels lead to energy shifts ∆E Ø 10 MHz at R = 5 µm, frequen-
cies that require experimental timescales (0.1 ≠ 1 µs) much shorter than
Rydberg lifetimes (100 µs). These highly excited states being extremely
sensitive to parasitical electric fields, the apparatus is equipped with an
ensemble of 8 independent electrodes, placed around the lenses, and al-
lowing to zero out the magnetic field.

We drive the Rydberg transition selectively[96]: a tightly focused beam
at 850 nm can be superimposed with each trap by means of two AOM.
The resulting lightshift (∆E ¥ h ◊ 10 MHz) prevents Rydberg excitation
of the addressed atoms. The addressing beam has a 1/e2 radius of 1.3 µm,
which is slightly larger than the microtrap size.

In this initial configuration, this apparatus enabled the direct measure-
ment of the Van der Waals interaction between two Rydberg atoms[12].

5.1.2 building arbitrary arrays of microtraps

A first evolution of the apparatus consisted in adding a spatial light
modulator (SLM) to the setup (See Fig.58)[79]. We use this SLM to im-
print a phase pattern on the dipole beam, thus replicating the original
tweezer as many times as needed. The resulting array of microtraps is
completely modulable and can be used to generate arbitrary trapping po-
tentials. Some of them, such as kagome or honeycomb structures have
direct counterparts in condensed matter (see Fig.59). Overall, this appa-
ratus allows to form arbitrary structures up to 100 single-atom sites with
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5.1.4 building synthetic 3d structures

The most recent evolution of the setup consisted in adding three electri-
cally tunable lenses (ETL) onto the experiment[10]. While three dimen-
sional structures can be built without these lenses (it only requires an
SLM), they are essential for addressing and diagnostics. The first ETL
is placed on the moving tweezer and allows to arrange the atoms in each
planes. The ETL on the path of the EMCCD camera allows to selectively
analyze the fluorescence, and therefore the atomic arrangement. The last
ETL is placed on the control CCD (after the second asphere) allows to
analyze the trapping sites in each planes.

Figure 62 – Atom-by-atom assembler of tridimensional structures

(a) Sketch of the apparatus (b,c,d) Examples of structures (picture
from [10]).

This new evolution allows to assemble arbitrary tridimensional struc-
tures such as cubic lattices, Möbius strips, fullerene-like structures... or
even Eiffel towers! The typical distance between two layers is about 17 µm
but could be reduced to in principle 14 µm.

5.2 towards structures of Ø 300 atoms

5.2.1 motivations

Quantum simulation consists in building controllable many-body quan-
tum systems that imitate the behavior of less accessible real-world sys-
tems. Quantities of interest, such as correlation functions, can be mea-
sured instead of calculated. Such “toy systems” have been engineered
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with ions[36] and photons[70], the experiments at JQI and LCFIO being
representative of their atomic counterpart. The experiment at JQI has
successfully simulated magnetic fields[102] and two-dimensional superex-
change[30], while the apparatus at LCFIO has recently investigated Ising
models[101] and topological phases.

In spite of their complexity, few-body quantum systems can be calcu-
lated classically. The limit corresponding to the largest quantum system
computable by exact diagonalization with classical tools is usually esti-
mated around N = 40[103]. The experiment at LCFIO has followed a
bottom-up approach: in a first time, experiments performed with few-
body systems could be compared to classical computations of the model.
As several experiments have successfully matched theoretical predictions,
we can now safely simulate larger systems that cannot be classically com-
puted.

The new version of the experiment aims to simulate many-body systems
up to N ≥ 300, a regime which is far beyond classical computers. This
regime, which has only been probed in a very limited number of geometries,
promises exciting prospects.

5.2.2 limitations of the current setup

In the current experimental setup at LCF, diagnostics and atom-by-
atom assembling are time consuming. For each plane, building the atomic
structure requires an initial fluorescence image, a serie of moves and a
control image. Each fluorescence image takes about ·fluo = 60 ms and the
assembling approximately scales with the number of atoms in the plane,
·mt = 1 ms per atom. Other steps, such as computation for the trajec-
tories (≥ 1 ms) can be neglected in first approximation (at least for low N).

Overall, a structure containing N atoms allocated in Np planes takes
at time ·build to assemble, with

·build = 2 Np ·fluo + N ·mt (107)

While this time can be relatively short for 2D structures, it increases
rapidly with the number of planes. As an example, building a cubic
N = 300 structure containing 10 ◊ 10 atoms per plane would require
half of a second, a N = 324 honeycomb structure made of 6 identical
parallel planes would take more than a second.

At the same time, the lifetime of an atom in a single tweezer is not in-
finite. Atoms tend to escape the traps due to collisions with the residual
background gas[94]. Ab initio estimations of this process can be deli-
cate, notably because a precise estimation of the collision cross-section
requires an excellent knowledge of the composition of the background gas.
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monolayer adsorption, the phenomenon is well captured by the Dubinin
Raduschkevich Kaganer (DRK) equation, which writes[135]

ln(S/Sm) = ≠D[kbT ln(P0/P )]2 (110)

where Sm is the maximum monolayer capacity and D an experimental
parameter notably depending on the species adsorbed.

5.2.3.2 non evaporative getter pumps

Cryosorbers, such as carbon glass fiber[2] or coconut charcoal[132], can
be added to the chamber in order to increase the sorbing capacity and
pumping speed of the system. These highly porous materials have remark-
ably large surface areas — up to 3000 m2 g≠1 for activated charcoal — and
cavities that can capture gaseous particles inside them[119]. These mate-
rials are often used in high-energy experiments, notably at the LHC and
ITER[2, 132]. The AMO community tend to prefer Non-Evaporative Get-
ter pumps[108] (NEG pumps), which are another type of passive pumps.
Adding a NEG pump to a cryopump can reduce the pressure by one order
of magnitude[57].

5.2.3.3 surface treatments

Surface treatments can also help lowering the vacuum pressure. To start,
the materials used inside vacuum must have an extremely low outgassing
rate. This is the case of stainless steel (notably the 300 serie of austenitic
steel such as 304L or 316L), but also titanium, Cu/Be alloys, OHFC cop-
per and aluminium. UHV pressures are usually reached by means of a
thermal treatment (“bake-out” or annealing), during which the walls of
the chamber are heated for hundreds of hours. The process accelerates
the desorption of H2, thus reducing the rate of the virtual leak when back
at room temperature. Each time the chamber is opened, a bake-out must
be done again in order to remove H2O.

Several treatments aiming to reduce the initial adsorption of H2 can
be done, including polishing the inner walls (ion bombardement) or using
chemical treatements. Thin film deposition of Ti (also known as “Tita-
nium sublimation”[111]), ZrO2 or Al2O3 have successfully been used in
high-energy experiments in the past. Some of these coatings increase the
diffusion barrier of H2 (the H2 adsorbed in the walls cannot escape) while
others transform the walls into effective getter pumps.

Overall, a cryostat at 4 K combined with NEG pumps seems to be a
reasonable starting point. Given our needs, it is not yet entirely clear
whether additional surface treatments will be required.
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5.3 first steps of a cryogenic assem-
bler

The adaptation of a cryopump requires deep modifications in the current
setup. Adjusting the optomechanical parts will involve several months (or
even years) of development. Besides, the radical change in dimension of
the chamber necessitates to rearrange most of the optics in the setup.

At the same time, the current setup still has a lot of potential for many
experiments. We would regret to stop research for the sake of new tech-
nical improvements. Rather than restrain our research capabilities, we
chose to build from scratch a second apparatus dedicated to cryogenic
investigations.

The first step of our development consists in assembling a single-atom
experiment at room temperature. This apparatus involves the usual cool-
ing and trapping techniques as well as a single optical tweezer focused
by a high-NA lens. This setup will allow to adjust laser parameters and
coils currents in a well-known regime. Eventually, the science chamber
(containing the doublet of lenses) will be replaced by the cryocooler.

Meanwhile, we design optomechanical components compatible with cryo-
genic temperatures. Several fundamental questions, such as the behavior
of the high-NA lens at low temperatures and the deformation of all me-
chanical components must be investigated. For this, we use a high-vacuum
(HV) cryostat at 77 K to test our prototypes.

5.3.1 a new cold atoms apparatus

We are currently building the new apparatus. This setup is based on
the original Rydberg assembler (see Fig.66), except for the main chamber
which will eventually be replaced by the 4 K cryostat. Most of the parts
have been directly inspired from the original design.
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perform our first investigations in a cryostat at 77 K.

Figure 73 – Sketch of the testbench at 77 K
We use a cost-effective cryostat based on LN2.

The experimental platfrom consists in a LN2 reservoir of approximately
2 L capacity (see Fig.73) and placed under high vacuum (≥ 10≠7 mbar).
A tube within the reservoir and aligned with optical accesses allows to test
optomechanical components. The seals of the chamber are rubber-based
(ISO-KF) and allow quick vacuum breaking. Overall, this modest system
is cost effective and adapted to our needs for testing various lens-holder
designs.

We initially design a very simple mount for the aspheric doublet. The
ensemble consists in two stainless steel tubes one inside the other. The two
aspheric lenses are facing each other, each of them attached to one tube.
The external tube is tighten to a “cradle” which matches the shape of
the reservoir. This allows to maximize thermal conduction. The internal
tube is well adjusted to the external tube: to adjust the distance between
the two lenses, we slide the two tubes. The position can be locked by a
screw. Both lenses are held by grub screws. This rudimentary system has
no control on the relative tilt or shift between the two lenses. Technical
details and precise dimensions are available in App.B.

This system is meant to perform elementary checks, such as verifying
that the glass is still transparent at low temperature, that the ITO coating
does not crack, that the lenses do not break due to differential shrinkage,
etc.

5.4.3 thermal deformation of the mount

Initial tests performed with a thermocouple under vacuum show that
the minimum temperature on the lenses is 120 K. This limit is probably
due to poor thermal contact between the reservoir and the craddle, and
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Figure 74 – Elementary doublet mount

(top) The lens mount (gray) is attached to a craddle (yellow). The
ensemble is fitted onto the reservoir (green). (bottom) Sliding the
two tubes allows to set the distance between the two lenses.

blackbody radiation coming from the viewports. Such temperature typi-
cally takes 15 h to reach. Our first observations indicate that the lenses
can operate at these temperatures without major troubles.

Given the difference in linear thermal expansion coefficients between
stainless steel and glass, we can assume in first approximation that most
of the deformation will be happening in the stainless steel parts. We
therefore neglect the variation of focal length of the lenses due to their
deformation. Between 4 K and 300 K, the thermal expansion for stainless
steel is typically ∆L/L = 3 mm m≠1.

To measure the thermal expansion of the mount, we prepare the doublet
in an afocal configuration at room temperature and measure the evolution
of its focal length when lowering the temperature. The diminution of the
distance between the two lenses results in an equivalent lens with focal
length f Õ that directly relates to the distance between the two lenses, e

and the focal length of the two lenses fasph = 10 mm

1
f Õ

=
2

fasph
≠ e

f2
asph

(111)

We place a beam profiler at a known distance from the optical doublet
and measure the 1/e2 diameter of the beam as a function of the tem-
perature. We deduct the effective focal length f Õ(T ) and the distance
between the two lenses, e = 2fasph ≠ ∆e(T ). Between 300 K and 120 K,
we measure a displacement of ∆e ¥ 15 µm. Given NIST data, we esti-
mate the thermal expansion for stainless steel between 120 K and 300 K
to ∆L/L = 2.3 mm m≠1. Given a spacing L = 14 mm between the two

www.cryogenics.nist.gov
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Figure 75 – Precompensation of the thermal expansion of the mount

We have successfully pre-compensated the diminution of the dis-
tance between the two lenses. From a converging optical system at
room temperature, we obtain a nearly afocal system at cryogenic
temperatures.

lenses, this provides the expected value ∆L = 32 µm, which in the same
order of magnitude than our observations.

We use this information to precompensate the setup: at room tempera-
ture we set e = 2fasph + ∆e(120 K). With this setting, we obtain a nearly
afocal configuration (|f Õ| ¥ 20 m) at 120 K (see Fig.75).

5.4.4 stress in the lenses

Photoelasticimetry is an optical method based on the polarization of
light and allowing to measure the stress in transparent objects[43]. This
technique takes advantage of the birefringence induced by the stress in a
material: imaging local alterations of the polarization allows to map the
stress in the sample.
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Depending on the complexity of the setup, the method can lead to qual-
itative or quantitative results. We use it in its simplest form, i.e. as a dark
field plane polariscope: we place the afocal doublet between two crossed
polarizers and illuminate the system with collimated white light.

Figure 76 – Observation of birefringence in the doublet of aspheres

We image a beam of white light passing through the aspheric lenses
between crossed polarizers. At room temperature (upper images),
the presence of a dark cross aligned with the polarizers axes corre-
sponds to low or no modification of the polarization. The partial
disparition of the cross at lower temperatures (lower image) indi-
cates the presence of birefringence.

At room temperature, we observe a black cross aligned on the principal
axes of the polarizers (see Fig.76). This isogyre is due the setup itself[115]
and appears in the absence of stress. In our case, a slight asymmetry in
the cross exhibits some residual stress, probably due to the grub screw
holding the lens. At 120 K, we observe a disparition of the center of the
cross (the melatope), which is an indication of polarization rotation in the
lenses, and therefore stress in the lens.

These results indicate the presence of stress, but further analysis should
be done to get a quantitative information. In particular, using a circular
polariscope with a monochromatic source would be an interesting comple-
mentary experiment.

5.4.5 further development of the cryogenic
experiment

In this part, we have detailed the first developments of a new atom-by-
atom assembler. The size of the structures achievable with the current
setup is limited to N Æ 72 because of the background pressure: combin-
ing UHV components with a 4 K cryostat, we expect to reach structure
sizes of order of N Ø 300. Working at 4 K also allows to eliminate black-
body radiation and protect the system against the avalanche dephasing
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observed in large Rydberg ensembles (see Part.ii).

This work is still very preliminary, but we have verified that no major
obstacle prevents us from using the aspheric lenses at low temperatures.
The full development of the experimental platform is still in progress and
will require a significant amount of additional work in the coming months.



C O N C L U S I O N A N D P E R S P E C T I V E S

During my doctoral studies, I had the opportunity to investigate two
radically different types of Rydberg-based many-body quantum simula-
tors. At JQI, we use N = 40000 Rydberg atoms trapped in optical lattices
to produce many-body quantum systems in a cubic geometry. At LCF,
we combine a SLM with optical tweezers to assemble smaller many-body
quantum systems (N Æ 72) in arbitrary geometries.

One of the fundamental difference between these structures lies in the
distance between two neighboring atoms, which is of order of 0.5 µm in the
first case and larger than 3 µm in the second one. This imposes the use of
very different Rydberg states (n = 20 in lattices, n Ø 50 in tweezers) with
different lifetimes (·20 = 5 µs and ·50 = 100 µs). The tweezer-based exper-
iment investigates phenomenon in the MHz range, therefore experimental
timescales are much shorter than the Rydberg lifetime. On the contrary,
the phenomena at stake in the lattice experiment are in the kHz range and
necessitate a dramatic increase of the Rydberg lifetime. Rydberg dressing
has been proposed as a potential solution, but its experimental implemen-
tation in large many-body quantum systems has been difficult so far.

We propose an explanation to this deviation based on observations per-
formed on the JQI apparatus during my time there. We show that Ry-
dberg states of opposite parity spontaneously appear in the system due
to blackbody radiation at room temperature. An onset of decoherence
emerges from the resonant dipole-dipole interaction between the Rydberg
states of opposite parity. The physics of this phenomena is beyond mean-
field and therefore extremely difficult to simulate: we circumvent this
difficulty by using simple scalings that match relatively well the data. We
take the opportunity to investigate the dynamics of the Rydberg popu-
lations and measure their typical timescales. A complete elimination of
the decoherence seems to be unrealistic, but we show that it is possible to
limit its effects notably by working at low temperatures, where blackbody
radiation is minimized.

In the case of the JQI experiment, it remains possible to engineer ex-
otic Hamiltonians without Rydberg states. Ultracold atoms in periodically
driven optical lattices allow to engineer exotic phases and band structures
in a process called “Floquet engineering”[5]. Combining two-dimensional
motion with the double-well lattice[131] promises exciting prospects. In
particular, I present in App.A a technical solution I developed to adapt
the super-lattice of the JQI experiment to Floquet engineering. At the
time of writing, this equipment is used to study the parametric instabili-
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ties in 2-D periodically driven systems[25].

At LCF, we show that the size of the atomic structures is limited by
the lifetime of the atoms in their individual microtraps. We attribute this
limitation to losses induced by the residual gas in the vacuum chamber
and conclude that a lower vacuum pressure is a necessary condition to as-
semble larger structures. Besides, larger ensembles of Rydberg atoms may
be impacted by decoherence in a similar fashion than the JQI experiment.
To address both issues, we suggest using a cryopump at 4 K. We take the
opportunity to design a new experiment, with a particular focus on the
optomechanical components to be placed under vacuum.

While remarkable results have been obtained with a linear chain con-
taining a hundred ions[120], the cryogenic assembler will open the door to
quantum simulation in arbitrary tridimensional geometries with several
hundreds of interacting particles. This experiment will enable to probe
many-body quantum phenomena far beyond the capabilities of classical
computers, thus reaching the goal of quantum simulation.
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We present a piezo-driven translatable mirror with excellent pointing stability, capable of driving at

frequencies up to tens of kilohertz. Our system uses a tripod of piezo actuators with independently

controllable drive voltages, where the ratios of the individual drive voltages are tuned to minimize

residual tilting. Attached to a standard∅= 12.7 mm mirror, the system has a resonance-free mechanical

bandwidth up to 51 kHz, with displacements up to 2 µm at 8 kHz. The maximum static steering error

is 5.5 µrad/µm displaced, and the dynamic steering error is lower than 0.6 µrad µm−1. This simple

design should be useful for a large set of optical applications where tilt-free displacements are required,

and we demonstrate its application in an ensemble of cold atoms trapped in periodically driven optical

lattices. Published by AIP Publishing. https://doi.org/10.1063/1.5035326

I. INTRODUCTION

Piezo-based opto-mechanical devices, such as tip-tilt

stages, are routinely used for applications as diverse as

image stabilization,1,2 adaptive optics,3–5 microscopy,6,7 opti-

cal communication systems,8 and laser stabilization.9 The

typical figures of merit for such devices are the modulation

bandwidth of the mechanical displacement and the maximum

possible displacement. For some applications, minimal angu-

lar rotation of the optical element while it is translated is

essential, but typical designs10 fail to compensate for unde-

sired tilts when driving the piezo. This is particularly true if

the optical path lengths in the system are long such that angu-

lar rotation leads to large beam displacements. One approach

to minimize beam steering is to stabilize rotations using kine-

matic restrictions that allow for translation but not rotation.

The kinematic approach has the drawback that it can be com-

plicated to implement, and the increased mass and friction

of such a design can limit the bandwidth of the modulation

response. We present here a mechanically simple design that

provides low rotation during translation, while maintaining

large mechanical bandwidths.

Ultra-cold neutral atoms can be optically trapped in the

interference patterns of light to form the so-called “optical

lattices,”11,12 which allows for cold atom simulation of crys-

talline many-body physics. The most common way to create

such an optical lattice is to retro-reflect a laser beam from

a mirror, where the position of the optical lattice is deter-

mined by the position of the retro-reflecting mirror. Elec-

tronic control of the optical lattice position, e.g., for posi-

tion stabilization or to modify the quantum properties of

the system by applying a time-periodic force,13–15 can be

accomplished by moving the retro-reflected mirror. In the

simplest approach using a mirror glued to a piezoelectric

material, deformation of the piezo is not uniform and the

mirror experiences a position dependent tilt. Typical path

a)Also at Laboratoire Charles Fabry, Institut d’Optique Graduate School,
CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France.

lengths in optical lattice experiments are fractions of a meter,

and even a small amount of steering leads to a signifi-

cant misalignment of the retro-reflected beam. This misalign-

ment results in an unwanted modulation of the optical lattice

depth, which motivated the present low-steering piezo mirror

design.

The system is based on a triplet of individually con-

trolled piezo actuators, which allows for independent adjust-

ment of the expansion of each transducer in order to correct

for imbalances between the three actuators. The design sub-

stantially reduces steering errors while maintaining a multi-

micron displacement up to high frequencies. The system can

vibrate ∅ = 12.7 mm mirrors and is compatible with stan-

dard optical mounts. The easy to assemble design has been

tested on an ensemble of atoms trapped in optical lattices.

This approach could be useful in a large set of applica-

tions, including high-finesse tunable optical cavities and live

focus-stacking.

II. OPTOMECHANICAL DESIGN

The present design is based on a triplet of piezo actua-

tors (Noliac NAC201216). These piezo plates (3 ⇥ 3 mm2)

combine a low capacitance (65 nF) with a relatively high max-

imum free stroke (nominally 3.3 µm). The piezos are epoxied

onto the edges of a thin ceramic disk in an equilateral trian-

gle (see Fig. 1). The ceramic plate (alumina, 1 mm thickness,

∅ = 12.7 mm) facilitates electrical insulation between the

piezos and the metal support. The plate is attached to a heavy

steel support of mass m = 310 g which acts as a mechanical

insulator, preventing resonances in the region of interest.17

While other materials (e.g., tungsten or marble) could be

used, steel remains a good compromise between the density,

cost, and machining time. The steel piece can be machined

to fit within standard 1-in. optomechanical mirror mounts.

All surface bonds are performed with a slow-curing epoxy

resin.

The design is compatible with ∅ = 12.7 mm mirrors. Two

types of mirrors have been tested: a (R, e, ∅) = (−500 mm,

0034-6748/2018/89(7)/073110/6/$30.00 89, 073110-1 Published by AIP Publishing.
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FIG. 1. Optomechanical design: (a) The system includes a heavy steel sup-

port (metallic gray) compatible with standard ∅ = 25.4 mm optical mounts,

a ceramic electrical insulator (yellow), three piezo transducers (green with

white and red cables), and a mirror (in blue). (b) Technical plan of the system,

all units in millimeter.

2 mm, 12.7 mm) dielectric concave mirror (Lattice Electro-

Optics, Inc. RX-810-UF-MPC-0512-519) and a (e, ∅)

= (3.1 mm, 12.7 mm) flat silver mirror (Newport ValuMax).

R is the radius of curvature, e is the thickness, and ∅ is the

diameter of the mirror. In the following, we refer to these

two mirrors as M1 (concave mirror) and M2 (flat mirror).

Section IV presents the performance of M2, while Sec. V

demonstrates the compatibility of M1 with an ensemble of

cold atoms in optical lattices.

III. ELECTRONIC SYSTEM

The three piezo actuators are controlled by a tailor-made

electronic device schematically shown in Fig. 2. An external,

commercial, ground-referenced high voltage driver (Piezo-

Drive PX200) provides most of the amplitude necessary to

drive the piezo actuators. The driver has a gain of 20 V/V over

the control signal V Input. The rest of the diagram shows the

electronics used to vary the voltage across each piezo actua-

tor. While PZ1 is referenced to ground, the other two piezos

are referenced to nodes A and B. Through the 20 kΩ trim-pots,

the adjustment voltages VA and VB of the two nodes can be

set to VA = kA · V Input and VB = kB · V Input, where kA and

kB can vary from −2 to +2. This allows for an overall gain of

those two nodes to be adjusted over 18 V/V and 22 V/V.

The design of the second amplification stage of the

driver is determined by the requirements of low dynamic out-

put impedance and high output current capabilities that are

needed when a highly capacitive load is driven at high volt-

age and high frequency. With driving frequencies of the order

of 10 kHz and peak amplitudes of the order of 100 V, the

peak current flowing in each piezo can be on the order of

(100 V) · 2π · (10 kHz) · (65 nF) = 0.4 A.

To obtain this current capability, four non-inverting gain

stages based on a Texas Instruments LM717118 are connected

in parallel. The choice of this simple architecture is driven by

the goals of limiting the component count, ensuring a flat fre-

quency response over all the spectrum of operation and elim-

inating the additional design complexity that a push-pull or

totem-pole high-current output stage with discrete transistors

usually introduces. The LM7171 has a current driving capa-

bility of 100 mA. Combining four of them in parallel allows to

deliver to a load up to 400 mA of peak current. In addition

to the high current capability, the wide open-loop band-

width of the operational amplifier (120 MHz) ensures a low

dynamic output impedance over the entire frequency spectrum

of operation of few tens of kHz.

When connecting in parallel multiple amplifiers, one issue

is that small differences between their feedback networks

cause them to compete with each other by forcing a slightly

different voltage at the common output node. To prevent this

undesirable behavior, a solution is to decouple the outputs by

inserting small resistors in series. This potentially degrades

the performance by increasing the overall output impedance,

but in this particular circuit the value of just 1 Ω shown

in Fig. 2 is sufficient to decouple the four amplifiers. The

additional increase in the output impedance is only 0.25 Ω.

All LM7171 are configured as non-inverting buffers with a

gain of 2.

When holding a DC output voltage, or for AC drives

during the typical cold atoms experimental time scales

(τ  100 ms), the LM7171 do not require heat sinking. Full

schematics, printed circuit board artwork, and bill of material

for the fabrication of the circuit in Fig. 2 are available on the

JQI git repository.19

IV. PERFORMANCE

In this section, we characterize the mechanical response,

the maximum stroke, the static steering-error, and the ampli-

tude of the dynamic tilt. These measurements have been

performed with M2.

A. Frequency response

We measure the frequency response of the piezo-tripod

by interferometry. The setup is based on a Michelson

interferometer set to measure the optical path length of a

vibrating arm. The interferometer has an arm length about

l ⇡ 100 mm and uses a collimated beam from a λ = 780 nm

laser diode.

In order to compensate slow drifts, we phase-lock the test

interferometer. The reference arm is equipped with a sepa-

rate piezo-actuated mirror controlled by a feedback loop. This

corrects low frequency drifts due to thermal and mechanical

imperfections. The locking frequency of the proportional inte-

gral differential loop is f lock ⇡ 100 Hz, which is an order of
magnitude lower than the smallest frequency tested on the

piezo-tripod.

A periodic path length difference ∆x results in a mod-

ulation of the intensity ∆I. Around half-maximum, the sin2

dependence of the intensity in ∆x can be linearized. In this

region and assuming small path length differences (∆x⌧ λ/2),

the variation of intensity becomes proportional to the mirror

displacement, ∆I / ∆x.
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FIG. 2. Schematic of the piezo controller: To improve

readability, the circuit diagram omits the power supply

distribution and bypass network for the operational

amplifiers described here briefly. All the operational

amplifiers are powered from a dual-power supply

between ±15 V. Each operational amplifier has an indi-

vidual bypass capacitor (4.7µF, 0805 multilayer ceramic)

very close to the positive and negative supply pins. In

addition, a common 220 µF capacitor is placed between

each voltage rail and ground. An effective bypassing of

the power supply is critical to prevent instability espe-

cially when connecting several operational amplifiers in

parallel.

We use a Bode 100 network analyzer to generate a fre-

quency sweep from 1 kHz to 55 kHz which is then amplified

and sent to the piezo-tripod. The modulation of intensity is

measured by a photodiode and separated between the pro-

portional integral differential feedback loop and the network

analyzer input. We observe a flat response up to 40 kHz [see

Fig. 3(a)]. The phase is decreasing linearly with a remarkable

absence of resonances up to 40 kHz. We attribute the linear

decrease to a large mechanical resonance at higher frequencies.

B. Maximum displacement

The maximum displacement characterization involves the

same interferometer, with the phase-locking piezo of the
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FIG. 3. Characterization of the system: (a) The frequency response (gain in blue, phase in orange) is flat up to 40 kHz. In the inset, we plot a zoom of the

transmission in the region of interest (1 kHz–40 kHz, ⇥10 magnification on the y-axis). (b) We achieve a 2 µm displacement up to 8 kHz. (c) The feed-forward

systems enable gaining a factor of 3.5 on the static steering error. (d) We observe a maximum dynamic steering error lower than 0.6 µrad µm−1. The uncertainty

of the phase is due to the exposure time of the beam profiler. The dashed gray line indicates the instantaneous voltage. On both (c) and (d), the vertical error bars

correspond to the standard deviation of the fit to a Gaussian.

reference arm disabled. The piezo-tripod is driven with a peri-

odic symmetric triangular signal, leading to a time-dependent

path length difference 2δ(t) with the same characteristics. Over

one period, we observe n minima of intensity from which we

can recover the mirror displacement δ. With the given drive

circuit operating at the maximum amplitude, we achieve dis-

placements up to 2 µm for frequencies between 1 kHz and

8 kHz [see Fig. 3(b)].

C. Static steering error

We characterize the amplitude of the static steering error

by measuring the lateral displacement of a retro-reflected

beam at a large distance. We place a beam profiler Thorlabs

BC106N-VIS at D = 12.38(3) m from the vibrating mirror. We

take a reference position r0 = r(V = 0). We then apply a DC

voltage V, measure the position of the reflected beam r(V ) and

determine the tilt angle θ(V ) = arctan[(r(V ) − r0)/D].

For each position, we average a set of 10 images and

extract the position of the center with a two-dimensional Gaus-

sian fit. The exposure time is 1 s, which helps to filter the

vibrational noise. The images are taken after thermalization of

the optomechanics.

We first measure the maximum static tilt without using

the adjustment trim-pots of the electronic board, kA = kB = 0.

We observe a 17.9(3) µrad µm−1 tilt. With the trim-pots

adjusted, this reduces to 5.5(3) µrad µm−1 [see Fig. 3(c)].

We attribute the residual tilt to low-frequency thermal drifts.

The intrinsic hysteresis of each piezo may also be detri-

mental to pointing stability. The same experiment per-

formed with a single, center-mounted 10 ⇥ 10 mm2 piezo

plate (Noliac NAC2015) leads to a static tilt larger than

250 µrad µm−1. We note that even the uncompensated design

improves the steering over a single-piezo design. With drive

compensation, the steering of the tripod design is 50 times

smaller.

D. Time-dependent residual tilt

The time-dependency of the tilt with a periodic shaking

is measured via a similar technique. We drive the piezo-tripod

with a sinusoidal signal at frequency f. The beam profiler is

now placed at D = 7.76(3) m from the mirror and is triggered

with a pulse signal at the same frequency f than the drive.

The drive phase φ sets the instantaneous voltage at which the

picture is taken.

In order to limit effects due to heating, we gate the two

signals with a 10 Hz square signal so that we only shake

ten periods every 100 ms. For each trigger phase, we extract

the position of the retro-reflected beam from an average over

20 fitted images. Each image has an exposure time of 20 µs,

which is short enough to resolve frequency-dependent tilts up

to 5 kHz. The uncertainty of the measured position is given by

the fit residuals.

We measure a maximum dynamic tilt of 1.25 µrad for

three different frequencies (1, 3, and 5 kHz) shaken at maxi-

mum amplitude (160 V); see Fig. 3(d). This largely reduced

steering error, by a factor of 10 compared to the static case,

suggests that most of the DC steering is due to low frequency

thermal effects. The dynamic tilt of the compensated tripod

design of 0.6 µrad µm−1 is 17 times smaller than the single

piezo design.

V. APPLICATION: SHAKING COLD ATOMS
IN OPTICAL LATTICES

Atoms in optical lattices are extremely sensitive to the

depth of the trapping potential.12 In the case of a bowtie-shaped
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FIG. 4. Shaking an optical lattice: (a) The bowtie-shaped optical path leads to a two-dimensional optical lattice at the crossing of the beams. (b) We compare

the performances of a single piezo actuator (Noliac NAC2015) with the piezo-tripod for DC voltages. While the first becomes rapidly unusable, the latter performs

well up to its maximum displacement. The errorbars of the piezo-tripod measurement are given by F; the ones of the single-piezo data correspond to F/
p

10.

(c) We measure a lattice depth modulation lower than 8% for f = 2 kHz, with errorbars equal to F. Identical measurements done at 1, 3, and 4 kHz lead to similar

results.

lattice,20 misalignments in the retro-propagation as small as a

few tens of microradians lead to a visible degradation of the

trapping depth.

Our experimental setup consists of a 87Rb Bose-Einstein

condensate of N ⇡ 4 ⇥ 104 atoms and typical dimension

a = 10 µm loaded into a bowtie-shaped lattice made of

λ = 813 nm light. M1 is closing the bowtie and is placed

at d = 500 mm from the atomic cloud [see Fig. 4(a)]. This

leads to a 1/e2 beam radius of σ ⇡ 170 µm on the atoms.

The optical lattice depth can be measured with the atoms

by Kapitza-Dirac diffraction,21 in which the lattice light is

switched on and off and the lattice depth is determined from

the resulting atom diffraction.

To test the alignment for constant voltages, we step the

position of the piezo and observe the evolution of the lattice

depth. Over a δ = 2 µm displacement, the deterioration of the

lattice depth is lower than the noise floor (F = ±4%). The

same experiment made with a single 100 mm2 piezo plate

(Noliac NAC2015) leads to a reduction of the lattice depth

larger than 30% over less than a 1.2 µm [see Fig. 4(b)]. For this

latter experiment, each datapoint corresponds to an average of

10 measurements.

To measure the instantaneous steering error, we set the

mirror in a sinusoidal motion at the maximum driving ampli-

tude. We then send the pulse of lattice light (2 µs duration) at

different phases of the drive and extract the lattice depth from

the diffraction pattern. Up to 4 kHz, the measured variation in

the lattice depth is lower than 8% [see Fig. 4(c)].

VI. CONCLUSION

We present the design of a retro-reflecting vibrating mirror

combining high frequencies, high amplitude, and low steering

error. Along with its relatively low cost, the system combines

efficiency and compactness. It allows vibrating relatively large

mirrors (∅ = 12.7 µm) with a flat frequency response, in prin-

ciple, up to tens of kHz and fits into standard optomechanical

mounts.

While this design was originally optimized for optical

lattices, its versatility could be applicable for a wide range

of applications, such as high-finesse tunable optical cavities,

interferometric microscopy, and laser stabilization. We believe

that further modifications could possibly reduce the steering

error, e.g., increasing the number of piezo actuators or driving

each piezo with an independent waveform.
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