
HAL Id: tel-02086680
https://pastel.hal.science/tel-02086680

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deployment of mixed criticality and data driven systems
on multi-cores architectures

Roberto Medina

To cite this version:
Roberto Medina. Deployment of mixed criticality and data driven systems on multi-cores ar-
chitectures. Embedded Systems. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLT004�. �tel-02086680�

https://pastel.hal.science/tel-02086680
https://hal.archives-ouvertes.fr

Déploiement de Systèmes à Flots de
Données en Criticité Mixte pour

Architectures Multi-cœurs

Deployment of Mixed-Criticality and
Data-Driven Systems on Multi-core

Architectures

Thèse de doctorat de l'Université Paris-Saclay
préparée à TELECOM ParisTech

École doctorale n°580 : Sciences et technologies de l’information et
de la communication (STIC)

Spécialité de doctorat: Programmation : Modèles, Algorithmes, Langages,
Architecture

Thèse présentée et soutenue à Paris, le 30 Janvier 2019, par

 Roberto MEDINA

Composition du Jury :

Alix MUNIER-KORDON
Professeure, Sorbonne Université (LIP6) Présidente

Liliana CUCU-GROSJEAN
Chargée de Recherche, INRIA de Paris (Kopernic) Rapporteuse

Laurent GEORGE
Professeur, ESIEE (LIGM) Rapporteur

Arvind EASWARAN
Maître de conférences, Nanyang Technological University Examinateur

Eric GOUBAULT
Professeur, Ecole Polytechnique (LIX) Examinateur

Emmanuel LEDINOT
Responsable recherche et technologie, Dassault Aviation Examinateur

Isabelle PUAUT
Professeure, Université Rennes 1 (IRISA) Examinatrice

Laurent PAUTET
Professeur, TELECOM ParisTech (LTCI) Directeur de thèse

Etienne BORDE
Maître de conférences, TELECOM ParisTech (LTCI) Co-Encadrant de thèse

N
N

T
 :

 2
0

1
9
S

A
C

LT
0
0
4

ii © 2019 Roberto MEDINA

Acknowledgments

First and foremost, I would like to thank my advisors Laurent Pautet and Etienne Borde. I
feel really lucky to have worked with them during these past 3 years and 4 months. Lau-
rent was the person that introduced me to real-time systems and the interesting complex
problems that the community is facing. His insight was always helpful to identify and
tackle challenging difficulties during this research. Etienne was an excellent supervisor.
His constant encouragement, feedback and trust in my research kept me motivated and
allowed me to complete this work. I am thankful to both of them for putting their trust in
me and allowing me to pursue my career ambition of preparing a PhD.

Besides my advisors, I would like to thank Liliana Cucu-Grosjean and Laurent George
for accepting to examine my manuscript. Their feedback was really helpful and valuable. I
extend my appreciation to the rest of my PhD committee members Arvind Easwaran, Eric
Goubault, Emmanuel Ledinot, Alix Munier-Kordon and Isabelle Puaut for their interest in
my research.

Then I would like to thank the people I met at TELECOM ParisTech during these
past few years. Especially, I want to thank my former colleagues Dragutin B., Robin D.,
Romain G., Mohamed Tahar H., Jad K., Jean-Philippe M., Edouard R., and Kristen V., for
all the conversations we had (even if it was just to chat about anime, films, TV series or
video games).

Heartfelt thanks go to my friends for their unconditional support and friendship. I es-
pecially want to thank Alexis, Anthony, Alexandre, Gabriela, Irene, Nathalie and Paulina
for sticking with me and always supporting me.

Finally, I would like to thank my parents, Dora and Hernán, and my sister Antonella
for their unconditional support, love and care.

© 2019 Roberto MEDINA iii

iv © 2019 Roberto MEDINA

Résumé

De nos jours, la conception de systèmes critiques va de plus en plus vers l’intégration
de différents composants système sur une unique plate-forme de calcul. Les systèmes à
criticité mixte permettent aux composants critiques ayant un degré élevé de confiance (c.-
à-d. une faible probabilité de défaillance) de partager des ressources de calcul avec des
composants moins critiques sans nécessiter des mécanismes lourds d’isolation logicielle.

Traditionnellement, les systèmes critiques sont conçus à l’aide de modèles de calcul
comme les graphes data-flow et l’ordonnancement temps-réel pour fournir un comporte-
ment logique et temporel correct. Néanmoins, les ressources allouées aux data-flows et
aux ordonnanceurs temps-réel sont fondées sur l’analyse du pire cas, ce qui conduit sou-
vent à une sous-utilisation des processeurs. Les ressources allouées ne sont ainsi pas
toujours entièrement utilisées. Cette sous-utilisation devient plus remarquable sur les ar-
chitectures multi-cœurs où la différence entre le meilleur et le pire cas est encore plus
significative.

Le modèle d’exécution à criticité mixte propose une solution au problème susmen-
tionné. Afin d’allouer efficacement les ressources tout en assurant une exécution correcte
des composants critiques, les ressources sont allouées en fonction du mode opérationnel
du système. Tant que des capacités de calcul suffisantes sont disponibles pour respecter
toutes les échéances, le système est dans un mode opérationnel de « basse criticité ».
Cependant, si la charge du système augmente, les composants critiques sont priorisés pour
respecter leurs échéances, leurs ressources de calcul augmentent et les composants moin-
s/non critiques sont pénalisés. Le système passe alors à un mode opérationnel de « haute
criticité ».

L’ intégration des aspects de criticité mixte dans le modèle data-flow est néanmoins
un problème difficile à résoudre. Des nouvelles méthodes d’ordonnancement capables de
gérer des contraintes de précédences et des variations sur les budgets de temps doivent être
définies.

Bien que plusieurs contributions sur l’ordonnancement à criticité mixte aient été pro-
posées, l’ordonnancement avec contraintes de précédences sur multi-processeurs a rarement
été étudié. Les méthodes existantes conduisent à une sous-utilisation des ressources, ce
qui contredit l’objectif principal de la criticité mixte. Pour cette raison, nous définissons
des nouvelles méthodes d’ordonnancement efficaces basées sur une méta-heuristique pro-
duisant des tables d’ordonnancement pour chaque mode opérationnel du système. Ces

v

tables sont correctes : lorsque la charge du système augmente, les composants critiques
ne manqueront jamais leurs échéances. Deux implémentations basées sur des algorithmes
globaux préemptifs démontrent un gain significatif en ordonnançabilité et en utilisation
des ressources : plus de 60 % de systèmes ordonnançables sur une architecture donnée par
rapport aux méthodes existantes.

Alors que le modèle de criticité mixte prétend que les composants critiques et non cri-
tiques peuvent partager la même plate-forme de calcul, l’interruption des composants non
critiques réduit considérablement leur disponibilité. Ceci est un problème car les com-
posants non critiques doivent offrir une degré minimum de service. C’est pourquoi nous
définissons des méthodes pour évaluer la disponibilité de ces composants. A notre con-
naissance, nos évaluations sont les premières capables de quantifier la disponibilité. Nous
proposons également des améliorations qui limitent l’impact des composants critiques sur
les composants non critiques. Ces améliorations sont évaluées grâce à des automates prob-
abilistes et démontrent une amélioration considérable de la disponibilité : plus de 2 % dans
un contexte où des augmentations de l’ordre de 10−9 sont significatives.

Nos contributions ont été intégrées dans un framework open-source. Cet outil fournit
également un générateur utilisé pour l’évaluation de nos méthodes d’ordonnancement.

Mots-clés: Système temps réel, criticité mixte, multi-processeurs, flux de données

vi

Abstract

Nowadays, the design of modern Safety-critical systems is pushing towards the inte-
gration of multiple system components onto a single shared computation platform. Mixed-
Criticality Systems in particular allow critical components with a high degree of confi-
dence (i.e. low probability of failure) to share computation resources with less/non-critical
components without requiring heavy software isolation mechanisms (as opposed to parti-
tioned systems).

Traditionally, safety-critical systems have been conceived using models of computa-
tions like data-flow graphs and real-time scheduling to obtain logical and temporal correct-
ness. Nonetheless, resources given to data-flow representations and real-time scheduling
techniques are based on worst-case analysis which often leads to an under-utilization of
the computation capacity. The allocated resources are not always completely used. This
under-utilization becomes more notorious for multi-core architectures where the differ-
ence between best and worst-case performance is more significant.

The mixed-criticality execution model proposes a solution to the abovementioned prob-
lem. To efficiently allocate resources while ensuring safe execution of the most critical
components, resources are allocated in function of the operational mode the system is in.
As long as sufficient processing capabilities are available to respect deadlines, the sys-
tem remains in a ‘low-criticality’ operational mode. Nonetheless, if the system demand
increases, critical components are prioritized to meet their deadlines, their computation
resources are increased and less/non-critical components are potentially penalized. The
system is said to transition to a ‘high-criticality’ mode.

Yet, the incorporation of mixed-criticality aspects into the data-flow model of compu-
tation is a very difficult problem as it requires to define new scheduling methods capable
of handling precedence constraints and variations in timing budgets.

Although mixed-criticality scheduling has been well studied for single and multi-core
platforms, the problem of data-dependencies in multi-core platforms has been rarely con-
sidered. Existing methods lead to poor resource usage which contradicts the main purpose
of mixed-criticality. For this reason, our first objective focuses on designing new efficient
scheduling methods for data-driven mixed-criticality systems. We define a meta-heuristic
producing scheduling tables for all operational modes of the system. These tables are
proven to be correct, i.e. when the system demand increases, critical components will
never miss a deadline. Two implementations based on existing preemptive global algo-

vii

rithms were developed to gain in schedulability and resource usage. In some cases these
implementations schedule more than 60% of systems compared to existing approaches.

While the mixed-criticality model claims that critical and non-critical components can
share the same computation platform, the interruption of non-critical components degrades
their availability significantly. This is a problem since non-critical components need to
deliver a minimum service guarantee. In fact, recent works in mixed-criticality have rec-
ognized this limitation. For this reason, we define methods to evaluate the availability of
non-critical components. To our knowledge, our evaluations are the first ones capable of
quantifying availability. We also propose enhancements compatible with our scheduling
methods, limiting the impact that critical components have on non-critical ones. These
enhancements are evaluated thanks to probabilistic automata and have shown a consider-
able improvement in availability, e.g. improvements of over 2% in a context where 10−9

increases are significant.
Our contributions have been integrated into an open-source framework. This tool also

provides an unbiased generator used to perform evaluations of scheduling methods for
data-driven mixed-criticality systems.

Keywords: Safety-critical systems, mixed-criticality, multi-processors, directed acyclic
graphs, data-driven

viii

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported” li-
cense.

© 2019 Roberto MEDINA ix

x © 2019 Roberto MEDINA

Table of Contents

1 Introduction 1

1.1 General context and motivation overview 1

1.2 Contributions . 3

1.3 Thesis outline . 5

2 Industrial needs and related works 7

2.1 Industrial context and motivation . 7

2.1.1 The increasing complexity of safety-critical systems 8

2.1.2 Adoption of multi-core architectures 9

2.2 Temporal correctness for safety-critical systems 10

2.2.1 Real-time scheduling . 10

2.2.2 Off-line vs. on-line scheduling for real-time systems 11

2.2.3 Real-time scheduling on multi-core architectures 12

2.2.4 The Worst-Case Execution Time estimation 14

2.3 The Mixed-Criticality scheduling model 15

2.3.1 Mixed-Criticality mono-core scheduling 17

2.3.2 Mixed-Criticality multi-core scheduling 18

2.3.3 Degradation model . 19

2.4 Logical correctness for safety-critical systems 21

2.4.1 The data-flow model of computation 21

2.4.2 Data-flow and real-time scheduling 22

2.5 Safety-critical systems’ dependability 26

2.5.1 Threats to dependability . 27

2.5.2 Means to improve dependability 27

2.6 Conclusion . 28

xi

Table of Contents

3 Problem statement 31
3.1 Scheduling mixed-criticality data-dependent tasks on multi-core architec-

tures . 32

3.1.1 Data-dependent scheduling on multi-core architectures 33

3.1.2 Adoption of mixed-criticality aspects: modes of execution and dif-

ferent timing budgets . 35

3.2 Availability computation for safety-critical systems 39

3.3 Availability enhancements - Delivering an acceptable Quality of Service . 41

3.4 Hypotheses regarding the execution model 43

3.5 Conclusion . 43

4 Contribution overview 45
4.1 Consolidation of the research context: Mixed-Criticality Directed Acyclic

Graph (MC-DAG) . 47

4.2 Scheduling approaches for MC-DAGs 49

4.3 Availability analysis and improvements for Mixed -Criticality systems . . 51

4.4 Implementation of our contributions and evaluation suite: the MC-DAG

Framework . 52

4.5 Conclusion . 53

5 Scheduling MC-DAGs on Multi-core Architectures 55
5.1 Meta-heuristic to schedule MC-DAGs 56

5.1.1 Mixed-Criticality correctness for MC-DAGs 57

5.1.2 MH-MCDAG, a meta-heuristic to schedule MC-DAGs 60

5.2 Scheduling HI-criticality tasks . 62

5.2.1 Limits of existing approaches: as soon as possible scheduling for

HI-criticality tasks . 62

5.2.2 Relaxing HI tasks execution: As Late As Possible scheduling in

HI-criticality mode . 65

5.2.3 Considering low-to-high criticality communications 67

5.3 Global implementations to schedule multiple MC-DAGs 70

5.3.1 Global as late as possible Least-Laxity First - G-ALAP-LLF . . . 72

5.3.2 Global as late as possible Earliest Deadline First - G-ALAP-EDF 79

5.4 Generalized N-level scheduling . 82

5.4.1 Generalized MC-correctness . 82

xii © 2019 Roberto MEDINA

5.4.2 Generalized meta-heuristic: N-MH-MCDAG 83

5.4.3 Generalized implementations of N-MH-MCDAG 86

5.5 Conclusion . 89

6 Availability on data-dependent Mixed-Criticality systems 91
6.1 Problem overview . 92

6.2 Availability analysis for data-dependent MC systems 94

6.2.1 Probabilistic fault model . 95

6.2.2 Mode recovery mechanism . 97

6.2.3 Evaluation of the availability of LO-criticality outputs 100

6.3 Enhancements in availability and simulation analysis 101

6.3.1 Limits of the discard MC approach 101

6.3.2 Fault propagation model . 103

6.3.3 Fault tolerance in embedded systems 105

6.3.4 Translation rules to PRISM automaton 109

6.4 Conclusion . 115

7 Evaluation suite: the MC-DAG framework 119
7.1 Motivation and features overview . 120

7.2 Unbiased MC-DAG generation . 121

7.3 Benchmark suite . 128

7.4 Conclusion . 129

8 Experimental validation 131
8.1 Experimental setup . 131

8.2 Acceptance rates on dual-criticality systems 133

8.2.1 Single MC-DAG scheduling . 133

8.2.2 Multiple MC-DAG scheduling 140

8.3 A study on generalized MC-DAG systems 147

8.3.1 Generalized single MC-DAG scheduling 147

8.3.2 The parameter saturation problem 151

8.4 Conclusion . 151

9 Conclusion and Research Perspectives 155
9.1 Conclusions . 155

9.2 Open problems and research perspectives 159

© 2019 Roberto MEDINA xiii

Table of Contents

9.2.1 Generalization of the data-driven MC execution model 160

9.2.2 Availability vs. schedulability: a dimensioning problem 160

9.2.3 MC-DAG scheduling notions in other domains 161

List of Publications 163

Bibliography 165

xiv © 2019 Roberto MEDINA

List of figures

2.1 Real-time task characteristics . 11

2.2 Example of a SDF graph . 22

3.1 A task set schedulable in a dual-criticality system 36

3.2 A deadline miss due to a mode transition 37

3.3 Interruption of non-critical tasks after a TFE 42

4.1 Contribution overview . 46

4.2 Example of a MCS S with two MC-DAGs 49

5.1 Illustration of case 2: ψLO
i (ri,k, t)<Ci(LO). 60

5.2 Example of MC-DAG . 63

5.3 Scheduling tables for the MC-DAG of Fig. 5.2 65

5.4 Usable time slots for a HI-criticality task: ASAP vs. ALAP scheduling in
HI and LO-criticality mode . 66

5.5 Improved scheduling of MC-DAG . 68

5.6 A MC-DAG with LO-to-HI communications 69

5.7 ASAP vs. ALAP with LO-to-HI communications 70

5.8 MC system with two MC-DAGs . 72

5.9 Transformation of the system S to its dual S� 76

5.10 HI-criticality scheduling tables for the system of Fig. 5.8 76

5.11 LO-criticality scheduling table for the system of Fig. 5.8 78

5.12 Scheduling of the system in Fig. 5.8 with G-ALAP-EDF 80

5.13 Scheduling with the federated approach 81

5.14 Representation of unusable time slots for a task τi in a generalized MC
scheduling with ASAP execution . 86

5.15 MC system with two MC-DAGs and three criticality modes 87

5.16 Scheduling tables for the system of Fig. 5.15 with three criticality levels . 88

xv

List of figures

6.1 Execution time distributions for a task 95
6.2 Exceedance function for the pWCET distribution of a task 96
6.3 MC system example for availability analysis, D = 150 TUs. 98
6.4 Scheduling tables for the system of Fig. 6.3 99
6.5 Fault propagation model with an example 104
6.6 A TMR of the MC system of Fig. 6.3 . 106
6.7 (1−2)-firm task state machine . 108
6.8 (m− k)-firm task execution example . 108
6.9 PRISM translation rules for availability analysis 111
6.10 PA of the system presented in Fig.6.8 113
6.11 Illustration of a generalized probabilistic automaton 115

7.1 Example of a dual-criticality randomly generated MC-DAG 127

8.1 Measured acceptance rate for different single MC-DAG scheduling heuristic135
8.2 Comparison to existing multiple MC-DAG scheduling approach 141
8.3 Number of preemptions per job . 145
8.4 Impact of having multiple criticality levels on single MC-DAG systems.

m = 8, |G|= 1, |V |= 20, e = 20%. 149
8.5 Saturation problem in generation parameters 150

xvi © 2019 Roberto MEDINA

1 Introduction

TABLE OF CONTENTS

1.1 GENERAL CONTEXT AND MOTIVATION OVERVIEW 1

1.2 CONTRIBUTIONS . 3

1.3 THESIS OUTLINE . 5

1.1 General context and motivation overview

Safety-critical software applications [1] are deployed in systems such as airborne, rail-
road, automotive and medical equipments. These systems must react to their environment
and adapt their behavior according to conditions presented by the latter. Therefore, these
systems have stringent time requirements: the response time of the system must respect
time intervals imposed by its physical environment. For this reason, most safety-critical
systems are also considered as real-time systems. The correctness of a real-time system
depends not only on the logical correctness of its computations but also on the temporal
correctness, i.e. the computation must complete within its pre-specified timing constraint
(referred to as the deadline). In this dissertation, we focus on modern complex real-time
systems which are often composed of software applications with different degrees of crit-
icality. A deadline miss on a high critical component can have severe consequences. That
is the main reason why these systems are categorized as safety-critical: a failure or a
malfunction could cause catastrophic consequences to human lives or cause environmen-
tal harm. On the other hand, a deadline miss on a low critical/non-critical component,
while it should occur on rare occasions, does not have catastrophic consequences on its
environment, it reduces the quality of service of the system significantly.

Ensuring logical and time correctness is a challenge for system designers of safety-
critical systems. The real-time scheduling theory has defined workload models, scheduling
policies and schedulability tests, to deem if a system is schedulable (i.e. that respects

1

Chapter 1. Introduction

deadlines) or not. At the same time, programs often communicate, and share physical and
logical resources: the interaction between these software components needs to be taken
into account to guarantee timeliness in a safety-critical system.

Besides real-time schedulability, logical correctness is also necessary in safety-critical
systems: the absence of deadlocks, priority inversions, buffer overflows, among others
non-desired behaviors, is often verified at design-time. For these reasons system designers
have opted to use models of computation like data-flow graphs or time triggered execution.

The data-flow model of computation [2; 3] has been widely used in the safety-critical
domain to model and deploy various applications. This model defines actors that commu-
nicate with each other in order to make the system run: the system is said to be data-driven.
The actors defined by this model can be tasks, jobs or pieces of code. An actor can only
execute if all its predecessors have produced the required amount of data. When this re-
quirement is met, the actor also produces a given amount of data that can be consumed
by its successors. Therefore, actors have data-dependencies in their execution. Theory
behind this model and its semantics provide interesting results in terms of logical correct-
ness: deterministic execution, starvation freedom, bounded latency, are some examples of
properties that can be formally proven thanks to data-flow graphs. Building upon these
theoretical results, industrial tools like compilers, have been developed for safety-critical
systems. Besides verifying logical correctness, these tools perform the deployment of the
data-flow graph into the targeted architecture, i.e. how actors are scheduled and where
they are placed in the executing platform.

Current trends in safety-critical systems: In the last decade, safety-critical systems
have been facing issues related to stringent non-functional requirements like cost, size,
weight, heat and power consumption. This has led to the inclusion of multi-core architec-

tures and the mixed-criticality scheduling model [4] in the design of such systems.

The adoption of multi-core architectures in the real-time scheduling theory led to the
adaptation and development of new scheduling policies [5]. Processing capabilities of-
fered by multi-core architectures are quite appealing for safety-critical systems since there
are important constraints in terms of power consumption and weight. Nonetheless, this
type of architecture was designed to optimize the average performance and not the worst-
case. Due to shared hardware resources, this architecture is hardly predictable. The dif-
ference between the best and worst-case becomes more significant. Since in hard real-
time systems the Worst-Case Execution Time (WCET) is used to determine if a system is
schedulable ensuring time correctness becomes harder when multi-core architectures are
considered.

2 © 2019 Roberto MEDINA

1.2. Contributions

Safety standards are used in the safety-critical to certify systems requiring a certain
degree of confidence. Criticality or assurance levels define the degree of confidence that
is given to a software component. The higher the criticality level, the more conservative
the verification process and hence the greater the WCET of tasks will be. For example the
avionic DO-178B standard defines five criticality levels (also called assurance levels). Tra-
ditional safety-critical systems tend to isolate physically and logically programs that have
different levels of criticality, by using different processors or by using software partitions.
Conversely, Mixed-Criticality advocates for having components with different criticality
levels on the same execution platform. Since WCETs are often overestimated for the
most critical components, computation resources are often wasted. Software components
with lower criticalities could benefit from those processing resources. To guarantee that
the most critical components will always deliver their functionalities, in Mixed-Criticality
the less critical components are penalized to increase the processing resources given to the
most critical components. The fact that the execution platform can be shared between soft-
ware components with different criticalities improves resource usage considerably, more
so when multi-core architectures are considered (the WCET tends to be more overesti-
mated for this type of architecture).

Multi-core mixed-criticality systems are a promising evolution of safety-critical sys-
tems. However, there are unsolved problems that need to be leveraged for the design of
such systems, in particular when data-driven applications are considered. This thesis is an
effort towards designing techniques for data-driven mixed-criticality multi-core systems
that yield efficient resource usage, guarantee timing constraint and deliver a good quality
of service.

The work presented in this dissertation was funded by the research chair in Complex
Systems (DGA, Thales, DCNS, Dassault Aviation, Télécom ParisTech, ENSTA and École
Polytechnique). This chair aims at developing research around the engineering of complex
system such as safety-critical systems.

1.2 Contributions

Regarding the deployment of data-driven applications for mixed-criticality multi-core sys-
tems, our contributions are centered around two main axes. (i) We begin by defining
efficient methods to schedule data-dependent tasks in mixed-criticality multi-core
systems. At the same time, dependability is essential for safety-critical systems and while
mixed-criticality has the advantage of improving resource usage, it compromises the avail-

ability (an attribute of dependability) of the less critical components. (ii) For this reason,

© 2019 Roberto MEDINA 3

Chapter 1. Introduction

we define methods to evaluate and improve the availability of mixed-criticality sys-
tems.

The schedulability problem of real-time tasks in multi-core architectures is known to
be NP-hard [6; 7]. When considering mixed-criticality multi-core systems, the problem
holds its complexity [8]. Thus, in our contributions we have designed a meta-heuristic
capable of computing scheduling tables that are deemed correct in the mixed-criticality
context. This meta-heuristic called MH-MCDAG, led to a global and generic implemen-
tation presented in this dissertation. Existing scheduling approaches can be easily adapted
with this generic implementation. Because we based our implementation in global ap-
proaches there is an improvement in terms of resource usage compared to approaches of
the state-of-the-art. Since most industrial standards define more than two levels of critical-
ity, the generalization of the scheduling meta-heuristic to handle more than two criticality
modes is also a contribution presented in our works. This extension is a recursive ap-
proach of MH-MCDAG to which additional constraints are added in order to respect the
schedulability of tasks executed in more than two criticality modes.

The second axis of contributions presented in this dissertation is related to the quality
of service that needs to be delivered by safety-critical systems. In fact, all mixed-criticality
models penalize the execution of tasks that are not considered with the highest criticality
level, that way tasks that have a higher criticality can extend their timing budget in order
to complete their execution. By guaranteeing that the highest criticality tasks will always
have enough processing time to complete their execution, mixed-criticality ensures the
time correctness of the system even under the most pessimistic conditions. While some
tasks are not considered as high-criticality, they are still important for the system: their
services are required to deliver a good quality of service. For this reason, we propose
methods to analyze the availability of tasks executing in a mixed-criticality system. We
have defined methods in order to estimate how often tasks are correctly executed (time-
wise). Additionally, we propose various enhancements to multi-core mixed-criticality sys-
tems that considerably improve the availability of low criticality services. The inclusion
of these enhancements has led to the development of translation rules to probabilistic au-
tomaton, that way system simulations can be performed and an availability rate can be
estimated thanks to appropriate tools.

The final contribution we present in this dissertation is the open source framework we
developed during our research works. This framework gathers the scheduling techniques
we have developed in addition to the transformation rules that are used to estimate avail-
ability rates. Another key aspect of the framework was the development of an unbiased
generator of data-driven mixed-criticality systems. In fact since our works are adjacent to

4 © 2019 Roberto MEDINA

1.3. Thesis outline

various research domains (real-time scheduling and operational research), we had to incor-
porate different methods to assess statistically our scheduling techniques. This framework
allowed us to perform experimental evaluations. We statistically compared our scheduling
techniques to the state-of-the-art in terms of acceptance rate and number of preemptions.
We also present experimental results for generalized systems with more than two criticality
levels. To our knowledge these experimentations are the first ones to consider generalized
data-driven mixed-criticality systems.

1.3 Thesis outline

The organization and contents of the chapters of this thesis are summarized below.

• Chapter 2 presents industrial trends, background notions and related works. We start
by describing the current industrial trends that led to the consideration of multi-core
and mixed-criticality. Then, we briefly describe how time correctness is obtained in
safety-critical systems. The third part of the chapter presents the data-flow model
of computation that has been widely used in real-time applications to demonstrate
logical correctness. Finally, a discussion about the importance of dependability as-
pects is developed. In particular we look into the influence that data-driven and
mixed-criticality applications have in the dependability of the system.

• Chapter 3 defines problems and sub-problems that we have identified and addressed
in this dissertation. The scheduling of mixed-criticality systems composed of data-
dependent task has been rarely addressed in the literature and most approaches
present limitations. At the same time, the most popular mixed-criticality execution
model of the literature only copes with the schedulability of the system, whereas
other aspects related to dependability, e.g. availability, are also important in the
safety-critical domain.

• Chapter 4 introduces the task model model we consider, in addition to an overview
of our contributions presented in this thesis. The MC-DAG model we define gath-
ers all the relevant aspects related to our research works: data-dependencies with
mixed-criticality real-time tasks. We briefly present how the contributions presented
throughout this dissertation tackle the problems and sub-problems defined in Chap-
ter 3.

• Chapter 5 presents our findings related to the scheduling of MC-DAGs in multi-
core architectures. We begin by introducing the notion of MC-correctness for the

© 2019 Roberto MEDINA 5

Chapter 1. Introduction

scheduling of MC-DAGs. Then, we present a necessary condition ensuring MC-
correctness. Building upon this condition, we designed a MC-correct meta-heuristic:
MH-MCDAG. A generic and global implementation of MH-MCDAG is also pre-
sented in this chapter: this implementation aims at solving the limits of existing
approaches that have also tackled the problem of MC-DAG scheduling. The fi-
nal part of this chapter presents a generalization of the necessary condition and the
meta-heuristic to handle an arbitrary number of criticality levels.

• Chapter 6 studies the availability analysis problem of MC system executing MC-
DAGs. We first introduce the necessary information required in order to perform
availability analyses for MC systems. The second part of the chapter proposes to
enhance the availability for MC systems in order to deliver an improved quality of
service for tasks that are not consider has highly critical. Translation rules in order
to obtain probabilistic automata have been defined. Probabilistic automata allow us
to perform system simulations when the execution model of the system becomes
complex due to the availability enhancements we want to deploy.

• Chapter 7 describes the open-source framework tool we have developed during this
thesis. Existing contributions have mostly proposed theoretical results, therefore an
objective during this thesis was to develop a tool allowing us to compare our con-
tributions to existing scheduling techniques. To achieve this objective we developed
an unbiased generator for the task model we have defined.

• Chapter 8 presents the validation of our contributions thanks to experimental re-
sults. First, an evaluation of the scheduling approaches presented in Chapter 5 is
performed. We statistically assess the performances of our scheduling strategies
compared to the existing approaches of the literature. Two important metrics for
real-time schedulers are considered: the acceptance rate (i.e. the number of systems
that are schedulable) and the number of preemptions entailed by the algorithms. Sec-
ond, we study the impact of having more than two criticality levels: since few works
have tackled the mixed-criticality scheduling problem with more than two levels of
criticality, our results are the first ones to present experimental results considering
data-driven applications in mixed-criticality multi-core systems. Many configura-
tions for the generated systems were tested to carry out rigorous benchmarking.

• Chapter 9 is the conclusion of this dissertation. It summarizes our contributions and
discusses future research perspectives.

6 © 2019 Roberto MEDINA

2 Industrial needs and related works

TABLE OF CONTENTS

2.1 INDUSTRIAL CONTEXT AND MOTIVATION 7

2.2 TEMPORAL CORRECTNESS FOR SAFETY-CRITICAL SYSTEMS 10

2.3 THE MIXED-CRITICALITY SCHEDULING MODEL 15

2.4 LOGICAL CORRECTNESS FOR SAFETY-CRITICAL SYSTEMS 21

2.5 SAFETY-CRITICAL SYSTEMS’ DEPENDABILITY 26

2.6 CONCLUSION . 28

In this chapter we present the engineering and technological trends related to our re-
search works. These trends are pushing towards the reduction of non-functional proper-
ties (e.g. cost, power, heat, etc) while still delivering more functionalities. This explains
the motivation behind the adoption of multi-core architectures and mixed-criticality sys-

tems. We briefly recall principles of real-time scheduling, used to obtain temporal cor-
rectness. Then, we discuss related contributions dealing with mixed-criticality. To obtain
logical correctness in safety-critical systems, we discuss works related to the design of
data-flow/data-driven applications. For the final part of this chapter, we discuss the impor-
tance of dependability on safety-critical systems and demonstrate how mixed-criticality
influences availability (a criteria of dependability). Our research works are related to all
these topics and we have identified objectives that need to be fulfilled to deploy data-driven
applications into mixed-criticality multi-core systems.

2.1 Industrial context and motivation

Safety-critical systems are nowadays confronted to new industrial trends: (i) embedded
architectures used in the safety-critical domain, are putting efforts towards reducing size,

7

Chapter 2. Industrial needs and related works

weight and power of computing elements; but at the same time (ii) more and more services
are expected to be delivered by safety-critical systems. These two trends have led to
innovation in terms of hardware (e.g. introduction of multi-core processors in embedded
systems) and theory (e.g. mixed-criticality scheduling).

2.1.1 The increasing complexity of safety-critical systems

Nowadays, safety-critical systems are composed of many software and hardware compo-
nents necessary to the correct execution of these systems into their physical environments.
If we consider an airborne system for example, its services can be decomposed into the
following categories: cockpit, flight control, cabin, fuel and propellers. Each one of this
categories is decomposed into various software functionalities as well: camera systems,
audio control, displays, monitoring, data recording, are some examples of functionalities
included in the cockpit. The design of safety-critical system is therefore very complex.
Safety standards have defined criticality or assurance levels for software and hardware
components that are deployed into safety-critical systems. The consequence of missing a
deadline vary based on the software component criticality level. Standards such as DO-
254, DO-178B and DO-178C (used for airborne systems), define five assurance levels:
each one of these levels is characterized by a failure rate (level A 10−9 errors/h, level
B 10−7, and so on). A deadline miss on a level A task might lead to catastrophic con-
sequences, while a deadline miss on a level E task has no impact on the system’s safety.
Traditionally, services of different criticalities have been separated at a hardware level: in
federated avionics for example, Line Replacement Units (LRUs) are used within the air-
borne system to deliver one specific functionality. By having such a space isolation, failure
propagation is avoided. Modularity is also a key property achieved thanks to LRUs: a fail-
ing LRU can be replaced when needed.

Nevertheless, during the past few years, the safety-critical industry is putting efforts
towards reducing size, weight and power consumption. This trend essentially advocates
for the integration of multiple functionalities on a common computing platform. Some
examples of this trend are the Integrated Modular Avionics (IMA) [9; 10] and the AUTo-
motive Open System ARchitecture (AUTOSAR) [11] initiatives that aim at the integration
of functionalities onto common hardware, while maintaining compliance with safety stan-
dards. The main focus of these initiatives is to maintain benefits of the isolation offered by
separated processing units but at a software level. In other words, a software component
like a hypervisor [12] or a real-time operating system [13], will be responsible for execut-
ing and isolating the different functionalities required by the safety-critical system. This

8 © 2019 Roberto MEDINA

2.1. Industrial context and motivation

integration has gained additional interest due to the constant innovation in integrated chips
as well, in particular thanks to multi-core processors.

2.1.2 Adoption of multi-core architectures

Multi-core architectures were proposed to solve problems related to power consumption,
heat dissipation, design costs and hardware bugs that mono-core processors were facing
due to the constant miniaturization of transistors. Computational power is improved by

exploiting parallelism instead of increasing clock frequency of processors. This prevents
power consumption to grow and limits heat dissipation. Architectural design errors are
also limited since in most multi-core architectures, all cores are identical.

Since manufacturers have decided to adopt multi-core architectures as the dominant
architecture platform for embedded devices (for cost reasons, mainly due to scale fac-
tors in mobile phone industry), the adoption of multi-core architectures is a necessity for

the safety-critical domain. Nevertheless, while multi-core architectures improve average
performances, shared hardware resources like caches and memory buses makes these ar-

chitectures hardly predictable. To ensure temporal correctness, this limitation has been
solved by overestimating the worst behavior of applications deployed in the multi-core
system. Real-time systems allocate processing resources to guarantee the execution of
tasks even in their worst case.

In conclusion, to cope with current industrial needs, safety-critical systems need to: (i)
execute efficiently in multi-core architectures. Efficiency in this case is related to number
of cores necessary to schedule a system, most embedded architectures are limited by the
number of processors that can be integrated. (ii) Make good use of processing resources
by delivering as many functionalities as possible, even if these functionalities different
criticalities. These two requirements need to respect temporal and logical correctness
which are necessary in safety-critical systems. To do so, real-time scheduling and models
of computation that assist system designers need to be adapted to these current trends.

In the next section we recall principles of real-time scheduling and present contribu-
tions that allowed systems designers to deploy real-time systems into mono and multi-core
architectures.

© 2019 Roberto MEDINA 9

Chapter 2. Industrial needs and related works

2.2 Temporal correctness for safety-critical systems

Like we mentioned in Chapter 1, the correctness of a safety-critical system not only de-
pends on the logical correctness of its outputs but also on timeliness. To satisfy deadlines
imposed by their environments, safety-critical systems use models and theoretical results
from real-time scheduling analyses and techniques. Nonetheless, resource allocation used
by real-time schedulers is based on worst-case analysis which is very difficult to estimate,
more so when multi-core architectures are considered.

2.2.1 Real-time scheduling

The workload models used in the real-time scheduling theory define timing constraints
such as deadlines and resource requirements of the system. The workload model [14]

we are interested in, also called task model, states that a program/function/piece of code
becomes available at some instant, consumes a certain time duration for its execution and
is required to complete its execution within a deadline.

The periodic task model [14] is the most widespread model in the conception of safety-
critical systems. Each task τi, is instantiated several times during the life-time of the
safety-critical system. These instances are called jobs.

Definition 1. Periodic task A periodic task is defined through the following parameters:

• Period Ti: the delay between two consecutive job activations/releases of τi.

• Execution time Ci: the required time for a processor to execute an instance of

the task τi. In general, this parameter is given by the Worst-Case Execution Time

(WCET) of the task. The WCET represents an upper-bound of the task execution

time.

• Deadline Di: the relative date at which the task must complete its execution.

Fig. 2.1 illustrates a Gantt diagram of a real-time task execution and its parameters.
The actual execution of the task is represented with the blue box: two jobs are illustrated
in the figure. These two jobs are released at the same the period of the task arrives and have
to complete before their respective deadlines. The second job of the task is preempted at
some point of its execution. Only one activation occurs during the Ti period.

The utilization factor Ui of a task τi is derived from these parameters:

Ui =
Ci

Ti
.

10 © 2019 Roberto MEDINA

2.2. Temporal correctness for safety-critical systems

Figure 2.1: Real-time task characteristics

A real-time system is said to be composed of a task set τ, and its utilization can also be
easily derived:

U = ∑
τi∈τ

Ui.

Definition 2. Schedulability A task set τ is said to be schedulable under a scheduling

algorithm A , if for all possible releases of a task τi ∈ τ, τi can execute for Ci time units

and complete its execution within its deadline Di.

Therefore, the goal of real-time scheduling is to allocate tasks (i.e. give processing ca-
pabilities to a task for a specific amount of time) so as to not provoke deadlines misses. The
real-time scheduling can be performed off-line (i.e. static scheduling tables are produced
at design-time and used at runtime) or on-line (i.e. processing capabilities are allocated to
tasks according to a scheduling policy during the execution of the system).

2.2.2 Off-line vs. on-line scheduling for real-time systems

To compute off-line schedulers for real-time systems, release times and deadlines of all
tasks that constitute the system must be known a priori. A scheduling table needs to
be computed respecting these constraints. Integer linear or constraint programming [15]

are some of the techniques used to compute the scheduling tables. Once the table is ob-
tained, the operating system uses it to allocate tasks into the computation platform. Some
examples of approaches that compute static scheduling tables are Time-Triggered (TT)
systems [16]. An advantage of TT scheduling is its complete determinism, which makes
this approach easier to verify and certify: in the safety-critical domain systems need to be
certified before they are deployed into their physical environment. Nonetheless, an impor-
tant shortcoming of this approach is its flexibility: if new tasks need to be incorporated, a
new table needs to be computed. The processing capabilities left cannot be easily used for
extra services.

© 2019 Roberto MEDINA 11

Chapter 2. Industrial needs and related works

On-line schedulers generate the scheduling during runtime and are capable of incor-
porating new tasks on-the-fly. This type of schedulers can be classified into fixed-priority

(FP) and dynamic-priority (DP). Some examples of well-known FP algorithms are Rate
Monotonic Scheduling (RMS) and Deadline Monotonic Scheduling (DMS) [14]. These
scheduling policies have defined sufficient conditions to determine if a task is schedulable
a priori of runtime. If the utilization rate of the system is equal or less than n(21/n − 1),
where n is the number of implicit-deadline tasks, the task set will be schedulable with
RMS on mono-core architectures. Earliest Deadline First (EDF) [14] and Least-Laxity
First (LLF) [17] on the other hand are DP schedulers. It is known that EDF is an opti-
mal scheduling algorithm for single-core architectures with implicit deadline tasks [14],
i.e. the utilization of the system needs to be inferior or equal to one (U ≤ 1) to correctly
schedule the system. LLF is also an optimal algorithm for mono-core processors [17] but
it entails more preemptions than EDF.

Definition 3. Utilization bound [18] A scheduling algorithm A can correctly schedule any

set of periodic tasks if the total utilization of the tasks is equal or less than the utilization

bound of the algorithm.

In the case of constrained deadlines (i.e. the deadline is inferior to the period) the
demand bound function can be used in order to test for schedulability and EDF is still
optimal [19].

Different scheduling approaches to schedule a real-time task sets on a mono-core ar-
chitecture have been proposed by the literature and optimality has proven to be obtainable.
However, like we mentioned at the beginning of this chapter, current industrial needs are
pushing towards the adoption of multi-core architectures.

2.2.3 Real-time scheduling on multi-core architectures

To support multi-core architectures, existing real-time scheduling algorithms developed
for mono-core processors were adapted. This adaptation followed two main principles:
the partitioned or the global approach. A survey presenting different methods to schedule
real-time tasks on multi-core processors is presented in [7].

The partitioned approach consists in dividing the task set of the system into vari-
ous partitions, and schedule them into a single core by applying a mono-core scheduling
algorithm in this partition. Therefore, existing scheduling algorithms for mono-core pro-
cessors can be used as-is in the partition created. How partitions are formed and distributed
among cores is the main problem this approach needs to solve. It is widely known that such
partitioning is equivalent to the bin-packing problem, and is therefore highly intractable:

12 © 2019 Roberto MEDINA

2.2. Temporal correctness for safety-critical systems

NP-hard in the strong sense [20]. Optimal implementations are impossible to be designed.
Approximation algorithms are therefore used to perform such partitioning. For example,
Partitioned-EDF (P-EDF) using First-fit Decreasing, Best-fit Decreasing and Worst-fit De-
creasing heuristics have shown to have a speedup factor no larger than 4/3 [20].

Definition 4. (Clairvoyant optimal algorithm [21]) A clairvoyant optimal scheduling al-

gorithm is a scheduling algorithm that knows prior execution for how long each job of

each task will execute and is able to find a valid schedule for any feasible task set.

Such clairvoyant algorithm cannot be implemented. Nevertheless, the speedup factor
quantifies the distance from optimality of the algorithm’s resource-usage efficiency.

Definition 5. (Speedup factor) The speedup factor φ ≥ 1 for a scheduling algorithm A
corresponds to the minimal factor by which the speed of each processor (of a set of unit-

speed processors) has to be increased such that any task set schedulable by a clairvoyant

scheduling algorithm becomes schedulable by A .

To avoid partitioning and its underlying bin-packing problem, global approaches have
also been developed by the real-time community. Other advantages over partitioned ap-
proaches are the following: (i) spare capacity created when tasks execute for less than their
WCET can be utilized by all other tasks, (ii) there is no need to run load balancing/task
allocation algorithms when the task set changes. Some examples of global scheduling poli-
cies are Global-EDF (G-EDF), which has a speedup factor of (2−1/m) [22] (where m is
the number of processors). An adaptation to use static priorities under the global approach
was proposed by Andersson et al [23] which has a utilization bound of m2/(3m−2). The
Proportionate Fair (Pfair) [24] is based on the idea of fluid scheduling, where each task
makes proportionate progress to its utilization. Pfair has been shown to be optimal for
period tasksets with implicit deadlines and has a utilization bound of m [24]. Further
improvements to the fluid model have been designed by the community to gain in effi-
ciency [25] since a limitation of the fluid is the number of preemptions generated by this
type of algorithm.

Efficient scheduling for multi-core real-time systems have been developed by the com-
munity either by adapting existing scheduler (e.g. P-EDF, G-EDF) or by proposing com-
pletely new models (e.g. Pfair). Nevertheless, real-time systems are dimensioned in func-
tion of the WCET of tasks. In fact, estimating precise and tight WCET for a task is very
difficult and for safety reason it tends to be overestimated. This overestimation leads to
poor resource usage since real-time systems are dimensioned taking into account these
pessimistic WCETs. This overestimation is more remarkable for multi-core architectures.

© 2019 Roberto MEDINA 13

Chapter 2. Industrial needs and related works

2.2.4 The Worst-Case Execution Time estimation

To ensure temporal correctness in the safety-critical domain, systems are dimensioned in
terms of tasks’ WCET. That way, in the worst-case scenario a task will have enough timing
budget to complete its execution. However, estimating the WCET of a task is a difficult
problem [26]. The WCET estimation has to take into account many factors: the target
architecture (e.g., optimizations at the hardware level to improve performance), the com-
plexity of software (e.g. loops and if-else branches can significantly change the execution
time of a program), the shared resources (e.g. data caches shared among multi-core pro-
cessors, software-level resources like semaphores and mutex), and so on. The estimation
of WCET can be classified into three main categories: static analysis, measurement-based

and probabilistic approaches.

Static analysis is a generic method to determine properties of the dynamic behavior of
a task without actually executing it. Research around static analysis methods has shown to
be adaptable to different types of hardware architectures, ranging from simple processors
to complex out-of-order architectures. For example, WCET analysis taking into account
pipeline behavior was studied in [27]. Due to the large processor-memory gap, all modern
processors have opted to employ a memory hierarchy including caches. Predicting caches
behavior has been a major research perspective for WCET analysis [28] since execution
time of tasks is highly impacted by hits or misses on caches. Recent works are pushing
towards the modularity of the WCET analysis. For instance, integer linear programming to
analyze abstract pipeline graphs were studied in [29]. Another modular and reconfigurable
method to perform the WCET analysis on different types of architectures was developed
in [30]. The limit with static analysis comes from the model describing the software and
the architecture that needs to match the reality. Obtaining a realistic model can be very
difficult since it requires an extensive knowledge of the system components. Performing
static analysis on hardware instructions or large programs becomes complex very easily
as well, so this approach is not appropriate during early stages of the development phase.

Measurement-based approaches is an alternate solution to static analysis that does
not require an extensive knowledge of the software and hardware architecture. The princi-
ple of measured-base analysis is to execute a given task on a given hardware or simulator to
estimate bounds or distributions for the execution times of the task. Because the subset of
measurements is not guaranteed to contain the worst-case, this approach often requires to
perform many tests. Test have to cover all potential execution scenarios which can also be
difficult since putting the hardware or software into specific states for testing might not be

14 © 2019 Roberto MEDINA

2.3. The Mixed-Criticality scheduling model

straightforward. Hybrid approaches try to overcome these limitations [31] by combining
static methods and completing them with measurement-based techniques.

Probabilistic timing analysis based on extreme value theory [32] aims at providing
sound estimations in an efficient manner (i.e. with a low number of measurement runs).
A probabilistic distribution which bounds the WCET is obtainable thanks to this method.
This probabilistic WCET (pWCET) is derived for single and multi-path programs thanks
to this method. The applicability of probabilistic timing analysis for IMA-based appli-
cations was demonstrated in [33]. The approach showed that tight pWCET estimates
were obtainable and that the approach was scalable for large functions. Some of the main
challenges that probabilistic timing analysis aims to solve nowadays are presented in [34].
Determining if input samples to derive pWCETs are representative, reliable parameters for
extreme value models and the interpretation on the consequences of the obtained results
are some of the main open problems for probabilistic analysis nowadays.

As we have demonstrated, the worst-case execution time is a difficult problem which
becomes even more difficult when multi-core architectures are considered. Multi-cores are
harder to analyze due to inter-thread interferences when accessing shared resources (e.g.

shared bus or caches). The average performance is improved but the difference between
best and worst-case execution becomes significant. To be compliant with safety standards,
system designers are enforced to give a large WCET for tasks that have a high assurance
level. Yet, most of the time, tasks will not use all their timing budgets, leading to poor
resource usage.

2.3 The Mixed-Criticality scheduling model

The design of Mixed-Criticality (MC) systems is a consequence of the overestimation of
WCET enforced by certification authorities and the need to integrate multiple functionali-
ties of different criticalities on a common computing platform.

The seminal paper of Mixed-Criticality was presented by Vestal in [4]. This paper
presents the following observation: the higher the criticality level, the more conservative
the verification process and hence the greater the WCET of tasks will be. This is prob-
lematic since enforcing a “pessimistic” WCET leads to poor resource usage, nonetheless
for safety reasons the WCET is used as the Ci timing budget in the periodic real-time task
model. Due to the fact that systems are dimensioned considering this pessimistic WCET,
tasks are often going to finish their execution before their timing budget is consumed. MC
systems solve this issue since they are capable of considering various WCETs for tasks in

function of the criticality mode the system is in. This behavior allows system designers to

© 2019 Roberto MEDINA 15

Chapter 2. Industrial needs and related works

incorporate more tasks in their systems and improve resource usage. The safety-critical
system is enriched with the following parameters [35]:

• Set of criticality levels: a MC system is now composed of a finite set of criticality

levels. The most common MC model defines two levels of criticality: HI and LO-
criticality. The system is said to be executing in a given criticality level/mode. It is
assumed the system starts its execution in the lower criticality level.

• Criticality level of a task: a task is said to belong to one of the criticality levels
of the system. Depending on the criticality level the tasks belongs to, different
timing budgets will be allocated to it. For example HI-criticality tasks in a dual-
criticality system are executed in the LO and HI-criticality modes of the system,
whereas LO-criticality tasks are often only executed in the LO-criticality mode [36;
8; 37] or have reduced service guarantees in the HI-criticality mode [38].

• Set of timing budgets, periods and deadlines: since the exact WCET is very dif-
ficult to estimate [26], MC systems define a vector of timing budgets for tasks that
execute in more than one criticality level. Ci(χ j) is the timing budget given to task
τi in criticality mode χ j. Periods can also change in function of the criticality mode.
In general, the following constraints need to be true for any task τi [35]:

χ1 � χ2 =⇒ Ci(χ1)≥Ci(χ2)

χ1 � χ2 =⇒ Ti(χ1)≤ Ti(χ2)

for any two criticality levels χ1 and χ2. The completion of the model to make the
deadline criticality-dependent has not been addressed in detail but greater or lower
deadlines could be considered.

If any job attempts to execute for a longer time than is acceptable in a given
mode then a criticality mode change occurs. The majority of papers restrict the
model to increase the criticality mode.

Definition 6. Timing Failure Event The time at which a job consumes its task LO

time budget without completing its execution is called a Timing Failure Event (TFE).

Definition 7. MC task set A MC periodic task set τ, is defined by the tuple (χi,Ti,Ci,Di).

• χi the criticality level of the task.

• Ti the set of period values corresponding to the criticality levels.

16 © 2019 Roberto MEDINA

2.3. The Mixed-Criticality scheduling model

• Ci the set of execution time budgets of the task for the criticality levels of the system.

• Di the set of deadlines corresponding to the criticality levels.

Definition 8. MC-schedulable in dual-criticality systems A MC task set τ is said to be

MC-schedulable by a scheduling algorithm A if,

• LO-criticality guarantee: Each task in τ is able to complete its execution up to its

Ci(LO) within its deadline in LO-criticality mode (Di(LO)), and

• HI-criticality guarantee: Each task with a HI-criticality level is able to complete its

execution up to its Ci(HI) within its deadline in HI-criticality mode (Di(HI)).

The scheduling of MC tasks is computationally intractable [8; 39] for mono and multi-

core processors. The problem is NP-hard in the strong sense. In fact, the schedulability
of the system has to be guaranteed in all the operational modes but also when the sys-

tem needs to perform a mode transition to the higher-criticality mode. The variations in
execution time can provoke a deadline miss if the scheduling is not performed correctly.
Efficient (with polynomial or pseudo-polynomial complexity) scheduling algorithms have
been designed by the community. Like when multi-core architectures where first intro-
duced, existing real-time scheduling policies were adapted to support the MC model.
Completely new approaches have also been developed in the literature of MC scheduling.
Yet, most contributions have simplified the execution model by not considering commu-
nication between tasks, concurrent resource sharing or more than two criticality levels. A
review of contributions related to Mixed-Criticality is maintained by Burns and Davis [35].

2.3.1 Mixed-Criticality mono-core scheduling

Similarly to the real-time scheduling policies, MC algorithms on mono-core processors
can be performed with FP or DP.

In FP scheduling, Response Time Analysis (RTA) is used to determine if the system
is schedulable. RTA determines the worst-case response time of a task. In the seminal
work of MC, Vestal [4] demonstrated that neither rate monotonic nor deadline monotonic
priority assignments were optimal for MC systems: Audsley’s priority assignment algo-
rithm [40] was found to be applicable for this model when mono-core architectures are
considered. The FP approach gave birth to the Adaptive Mixed-Criticality (AMC) [37]

which was extended many times to limit the number of preemptions [41] or gain in overall
quality (i.e. improve the acceptance rate, decrease the speedup factor, among other quali-
tative metrics). Santy et al. [42] propose to delay as much as possible the mode transition

© 2019 Roberto MEDINA 17

Chapter 2. Industrial needs and related works

to allow the completion of LO-criticality tasks under a FP scheduling. They have also
proposed to switch back to a lower criticality mode when an idle time (i.e. no tasks being
scheduled on the system) occurs during the execution of the system.

Regarding DP scheduling, most MC scheduling approaches for mono-core architec-
tures have been based on EDF. Baruah et al. [43] proposed a virtual deadline based EDF
algorithm called EDF-VD. Virtual deadlines for HI-criticality tasks are computed so that
their execution in the LO-criticality mode is performed sufficiently soon to be schedulable
during the mode transition to the HI-criticality mode. It was demonstrated that EDF-
VD has a speedup factor of 4/3, the optimal speedup factor for any MC scheduling algo-
rithm [44]. Ekberg and Yi [45] introduced a schedulability test for constrained-deadline
dual-criticality systems using a demand bound function. A deadline tightening strategy for
HI-criticality tasks was also introduced, showing that their algorithm performs better than
EDF-VD. Further improvements on the demand bound function test and in the deadline
tightening strategy were proposed by Easwaran in [46].

While scheduling approaches have been designed for mono-core processors and have
proven to be efficient (i.e. EDF-VD has the optimal speedup factor for mono-core MC
systems), MC scheduling also had to be adapted for multi-core processors. To adopt MC
scheduling in modern safety-critical system, multi-core execution needs to be supported.

2.3.2 Mixed-Criticality multi-core scheduling

To adopt MC scheduling in current safety-critical design, scheduling strategies need to be
capable of allocating tasks into multi-core architectures. Most of the existing multi-core
scheduling algorithms have been designed based on partitioned or global scheduling.

Similarly to the partitioned strategies that were presented before in this chapter, parti-
tioned MC scheduling needs to statically assign tasks to cores with a partitioning strat-

egy. Once the partitioning is performed, a single-core scheduling strategy is applied on
the partition. We say that a partitioning strategy is criticality-aware when higher critical-
ity tasks are assigned to cores before lower criticality tasks. An appealing feature of the
partitioned approaches is that the mode transition to a higher criticality mode can be con-
tained within the core that had the fault, limiting the fault propagation. The partitioning
strategy is criticality-unaware tasks’ criticalities do not have an influence on the parti-
tioning policy. Baruah et al. [47] combined the EDF-VD schedulability test with a first-fit
partitioning strategy to derive a scheduling algorithm with a speedup factor of 8/3. In [48],
criticality-aware partitioning was shown to perform better than criticality-unaware parti-
tioning for dual-criticality systems. Consequently, improvements to the criticality-aware

18 © 2019 Roberto MEDINA

2.3. The Mixed-Criticality scheduling model

partitioning were designed by Gu et al. [49] and Han et al. [50]. Nonetheless, Ramanathan
and Easwaran [51] recently developed a utilization-based partitioning strategy that gives
better schedulability rates for criticality-aware and unaware partitioning. Gratia et al. [52]

extended the single-core server based scheduling algorithm RUN, developed for classical
real-time systems, to implicit-deadline dual-criticality periodic MC systems. Their exper-
imental results demonstrated that GMC-RUN generated less preemptions than schedulers
based on the fluid model [53].

Global MC scheduling allow task to execute on any of the processing cores and mi-
grate between cores during runtime. While global MC scheduling approaches have proven
to be less efficient in terms of schedulability compared to partitioned approaches, they
are more flexible (e.g. no need to calculate new partitions when tasks are added to the
system). Pathan [54] proposed a global FP scheduling algorithm based on RTA with a
schedulability test based derived from Audsley’s approach [40]. A global adaptation of
the EDF-VD algorithm was designed by Li et al. [55]. Lee et al. [56; 53] have adapted the
fluid scheduling model [24] to handle MC systems. Their contribution called MC-Fluid
assigns two execution rates to each task in function of the criticality mode of the system.
An optimal rate assignment algorithm for such systems was also proposed and showed
that MC-Fluid has a speedup factor of (

√
5+1)/2. Baruah et al. [57] proposed a simpli-

fied execution rate assignment called MCF and proved that both MC-Fluid and MCF are
speedup optimal with a speedup factor of 4/3.

MC semi-partitioned scheduling is an extension to partitioned scheduling that al-
lows the migration of tasks between cores. The intention behind this approach is to im-
prove the schedulability performance while maintaining the advantages of partitioning.
Burns and Baruah [58] proposed a semi-partitioned scheduling of cyclic executives for
dual-criticality MC systems. Awan et al. [59] extended semi-partitioned algorithms to
constrained-deadline dual-criticality MC systems. LO-criticality tasks are allowed to mi-
grate between cores for better utilization.

In conclusion, there are many scheduling strategies for MC systems on multi-cores [35].
Yet, most contributions employ a very pessimistic approach when a mode transition oc-
curs: LO-criticality tasks are completely discarded/ignored. This is not suitable for many
practical systems that require minimum service guarantees for LO-criticality tasks.

2.3.3 Degradation model

The most widespread model of MC is the discard model [36; 8; 37] where LO-criticality
are completely discarded/ignored once the system makes a transition to the HI-criticality

© 2019 Roberto MEDINA 19

Chapter 2. Industrial needs and related works

mode. This approach has shown to give the best schedulability results compared to other
existing degradation models but degrades the quality of service of LO-criticality tasks
significantly. To overcome this problem, several techniques have been proposed in the
past few years for mono and multi-core processors.

Selective Degradation is an improvement for MC systems first proposed by Ren et

al. in [60]. Task grouping is performed to limit the mode switching consequences within
the group that had the failure. Al-bayati et al. [61] propose semi-partitioned scheduling in
which LO-criticality tasks are able to migrate once the mode transition to the HI-criticality
mode occurred. The mode transition occurs for all cores simultaneously but LO-criticality
tasks are able to migrate to a different core so they can complete their execution. An-
other take on semi-partitioned scheduling algorithms was proposed by Ramanathan and
Easwaran [62], the utilization bound of their algorithm was derived and experimental re-
sults demonstrated that their method outperforms other semi-partitioned approaches [63].

New conditions to restart the LO-criticality mode execution have been proposed by
Santy et al. [42] and Bate et al. [64; 65]. These contributions can be categorized as Timely

recovery methods. By minimizing the duration in which the system is in the HI-criticality,
the limited-service duration of LO-criticality tasks is reduced as much as possible so their
availability increases.

Su et al. [38; 66] have extended the MC scheduling model with an Elastic task model.
The LO-criticality tasks parameters are changed by increasing their period so that their
utilization is diminished. At the same time, LO-criticality jobs are released earlier so the
slack time that HI-criticality tasks can have is utilized by the LO-criticality tasks that have
a minimum service guarantee. EDF-VD is adapted to support this execution model.

Many scheduling algorithms for MC systems have been proposed by the literature.
Mono and multi-core scheduling ensuring time correctness and efficient resource usage
can be obtained thanks to this model. There are limitations in terms of LO-criticality
tasks execution identified by the community and new improvements are being proposed.
Nevertheless, most existing scheduling approaches for MC systems have been developed
for independent tasks sets, where no communication takes place. This is an important
limitation regarding the adoption of MC scheduling for industrial safety-critical systems.
In real applications tasks communicate or share resources. At the same time, industrial
tools to design and verify safety-critical applications often describe software components
thanks to graphs and data-flows with precedence constraints and data-dependencies.

20 © 2019 Roberto MEDINA

2.4. Logical correctness for safety-critical systems

2.4 Logical correctness for safety-critical systems

To assist in the design, implementation, deployment and verification of safety-critical sys-
tem, Models of Computation (MoC) like data-flow graphs have been used in the safety-
critical domain. These MoCs help to guarantee the logical correctness of software de-
ployed in safety-critical systems. Tools and programming languages based on these mod-
els have also been developed and are nowadays widely used by the industry. In this section
we present main contributions related to the design of reactive safety-critical systems us-
ing this MoC. We also demonstrate that most data-flow MoCs are not adapted to handle
the MC execution model. The few contributions that do support variations in execution
times of tasks and mode transitions have poor resource usage which is in contradiction
with the main purpose of the MC model.

2.4.1 The data-flow model of computation

The data-flow model of computation began with Kahn Process Networks (KPN) [2]. These
networks model a collection of concurrent processes communicating with first-in, first-out
(FIFO) channels. Data is represented as tokens that go through the network. A process
blocks its execution if at least one of its input channels is empty. Once all inputs are
present, the process is able to produce tokens in its output channels at any time. Chan-
nels are supposed to be unbounded (i.e. have infinite memory). Data Process Networks
also known as Data-flow networks (DFN) are related to Kahn’s denotational semantics
and have been able to help the safety-critical community in different fields. As opposed
to KPNs, due to their mathematical foundation, various properties can be checked and
demonstrated in DFNs, e.g. check if any deadlock can occur or to prove that an invariant
is respected, if the number of tokens in the graph is always the same, channels can be
bounded, and so on), therefore modeling a program with a Data-flow graph can be inter-
esting. Specific tools (eg. Prelude [67], SynDEx [68], Lustre-v4, Polychrony, . . .) are
able to generate code from a data-flow specification, making development of applications
easier for certification and less error-prone.

The Synchronous Data-flow (SDF) model [3; 69] is widely used in safety-critical sys-
tems, in particular for reactive systems and signal processing because it provides a natural
representation of data going throw processes. An application modeled with a SDF can be
proven to be executable (indefinitely) in a periodic way.

Definition 9. Synchronous data-flow A Synchronous data-flow graph is defined by a tuple

G = (V,E, p,c):

© 2019 Roberto MEDINA 21

Chapter 2. Industrial needs and related works

Figure 2.2: Example of a SDF graph

• V is the vertex set of nodes also called actors. Vertices can also have execution times

but some models consider instant execution of vertices.

• E ⊆V ×V is the edge set between vertices.

• p : E → N is a function with p(e), which gives the number of produced tokens by

actor a for actor a� connected by edge e.

• c : E → N is a function with c(e), which gives the number of consumed tokens by

actor a in its edge e, connected to actor a�.

An example of SDF is presented in Fig. 2.2. This SDF is composed of three actors
and three edges. The production and consumption rates are annotated next to the edges.
The black dots in the vertices represent the initial marking of the graph: between actors A

and C there are two tokens available and between actors B and C there is a single token
available.

Mapping a SDF into a multi-core architecture is known to be a NP-complete com-
plete problem and most approaches define heuristics or other approximation algorithms
in order to maximize specific criteria, e.g. throughput, reliability, efficiency. A general
survey of how graph based applications can be scheduled in many and multi-core archi-
tectures is presented in [70]. In our context, we focus on approaches that are capable of
mapping data-flow with real-time constraints. That way, temporal and logical correctness
are ensured.

2.4.2 Data-flow and real-time scheduling

Besides the logical correctness that the data-flow MoC can provide, we are interested
in guaranteeing temporal correctness for software components deployed in safety-critical
systems. The community around data-flow systems has also recognized the necessity to
deliver services in a timely manner which led to the development of real-time scheduling
techniques for data-flow MoCs.

22 © 2019 Roberto MEDINA

2.4. Logical correctness for safety-critical systems

Directed Acyclic Graph real-time scheduling

In the seminal work of SDF scheduling [69], Lee and Messerschmitt demonstrate how
the SDF graph can be transformed into an acyclic precedence graph. This “unfolding”
procedure can be done for a given number of periods of the SDF. The construction of a
static schedule with acyclic precedence graph, also called Directed Acyclic Graph (DAG),
is well known in the literature of operational research [71; 72]. For example techniques
that aim at minimizing the makespan of the DAG (i.e. the timespan between beginning
and the end of the execution of the DAG) can be applicable to respect a deadline. This
transformation has the advantage of opening the possibility to apply a large number of

contributions that have been proposed for the scheduling and allocation of DAG models

into computation platforms.

Other approaches to schedule DAGs with real-time approaches have also been de-
veloped. For instance, sufficient conditions to schedule DAGs with real-time scheduling
policies have been found. Fork-join DAG models and G-EDF scheduling was also tackled
in [73] by Saifullah et al. Nevertheless, their scheduling method is restricted regarding the
shape of the DAG that can be scheduled: not all DAGs can be represented with a fork-join
model. In [74] Saifullah et al. proposed transformation techniques to schedule generalized
DAG shapes with G-EDF. This approach is applicable to preemptive and non-preemptive
G-EDF scheduling. The speedup factor of this scheduling approach is 4, which is larger
in comparison to the scheduling algorithms presented in Section 2.2. This shows that

the scheduling problem with data-dependencies and real-time constraints is more compli-

cated than independent real-time tasks. Recent works in response time analysis [75] aim
at reducing the pessimism on sufficient conditions for G-EDF and G-DM scheduling of
DAG: these tests need to take into account the interruption that can be caused by vertices.
Qamhieh et al. [76] have developed a method to deduce local offsets and deadlines for
vertices of the DAG and apply G-EDF thanks to these parameters. A schedulability test is
derived for their algorithm as well. Some optimizations to reduce the number of cores used
to schedule DAGs with real-time constraints were also developed by Qamhieh et al. [77;
78]. Their stretching algorithm decomposes the sequential vertices to fill the slack that is
left between the completion of the latest vertex of the DAG and the deadline.

Baruah has proposed scheduling techniques for DAGs composed of dual-criticality
MC tasks for mono-core [79] and multi-core [80; 81] architectures. These approaches are
based on the same principle: a priority ordering is computed for the HI and LO-criticality
tasks independently (list scheduling [72] is used to obtain these orderings). To verify
MC-schedulability, the HI-criticality mode is scheduled first. If a feasible schedule is ob-

© 2019 Roberto MEDINA 23

Chapter 2. Industrial needs and related works

tainable in the HI-criticality mode, then the LO-criticality mode is tested. The particularity
of the LO-criticality mode schedule is that HI-criticality tasks will always be scheduled
as soon as possible, potentially preempting LO-criticality tasks that were being allocated.
The speedup bound of this scheduling approach is equal to (2−1/m), inherited from the
performances of list scheduling. Similar works to schedule MC DAGs on multi-core ar-
chitectures have been proposed in [82; 83] but their model is restricted to the case where
all vertices of a DAG have the same criticality level. Ekberg and Yi [84] have proposed a
graph-based model called mode-switching digraph real-time (MS-DRT) task model. They
have established schedulability analyses for their task model based on EDF under unicore
processors.

Other data-flow scheduling algorithms

While the SDF model can be transformed into an acyclic precedence graph, this transfor-
mation tends to be costly in terms of memory. For this reason, scheduling approaches for
the data-flow MoC have also been performed directly in the SDF graph.

Recent works to extend the SDF model in order to apply real-time scheduling poli-
cies have been presented in [85; 86; 87]. Since the classical SDF graph representation
does not include any information about deadlines that need to be respected by tasks, a
pre-processing phase is applied to the SDF by adding a source and destination node that
execute exactly once per iteration. The idea is to specify the real-time latency constraint
between the input and output of the SDF. Thanks to this transformation the SDF is trans-
formed to a three-parameter sporadic task set. This task set can then be scheduled by
uniprocessor real-time policies.

Other methods to schedule SDF with real-time constraints have used linear program-
ming to find preemptive schedulers for dependent periodic tasks in [88]. Temporal isola-
tion by adjusting offsets and deadlines for tasks are found, that way the dependent real-
time task set is transformed into an independent one. Existing FP uniprocessors schedul-
ing techniques are then applied on this newly generated task set. Linear programming was
also used to schedule strictly period tasks modeled through SDF graphs without preemp-
tions [89].

Dynamism on communication production and consumption rates

A major limitation of SDF graphs comes from their static behavior: communication rates,
topology and execution times never change during the execution of the SDF. This is a

24 © 2019 Roberto MEDINA

2.4. Logical correctness for safety-critical systems

limitation for MC system which are based on modes of operations and changes between
these modes.

Cyclo-static data-flows (CSDF) [90; 91] have been proved to be schedulable with static
schedulers [90] and more recently with real-time policies [92]. CSDF differ from SDFs
due to their cyclic changing behavior, i.e. rates can vary from one iteration of the graph
to another. However dynamic changes are known at compile-time, actors can produce/-
consume different amount of tokens at each iteration of the graph. In [92], the authors
go a step further in their analysis of the CSDF graphs: they apply real-time scheduling
policies for the produced task set and consider multi-core architectures as their platform.
Their contribution also aims to minimize buffer size between actors, calculate the min-
imum number of processors and compute earliest starting times (i.e. start time for the
actor). The CSDF is therefore a generalization of the SDF, however Bamakhrama et al.

do not support loops in the graph. Complete design of the real-time application is done
in [93], the authors transform the program specification until a CSDF is generated. From
there, hard real-time scheduling policies are applied in order to schedule the actors of the
graph in a multi-core architecture.

Affine Data-flow graphs (ADF) is another form of variation in communication rates.
This model was first studied in [94]. An affine function gives a relation between the
different clocks of actors in the data-flow graph, the graph becomes ultimately periodic
after a certain amount of firings. There is a (n,ϕ,d) relation between the actors a1 and a2,
where n ∈ N∗ is the number of times actor a1 fires for each d ∈ N∗ activations of actor a2

and ϕ is the instant the affine relation starts.

This MoC inherits interesting functional properties like deadlock freedom, bounded-
ness in communication channels, starvation freedom, among other properties. Bouakaz et

al. [95] also present a method to schedule ADF using partitioned multiprocessor schedul-
ing. Given different data-flow graphs annotated with production and consumption rates,
WCETs and user-provided timing requirements, the proposed method estimates periods,
phases and process allocation in order to ensure that overflow/underflow is excluded, tim-
ing requirements are met and overall throughput (i.e. production of data tokens) is maxi-
mized. Since actors of the graphs are related by an affine relation a single variable needs to
be computed. The main challenge is to find a suitable factor that will respect the constraint
mentioned before. For each possible value a parametric EDF schedulability analysis is
made, the analysis is made in two phases: a Quick convergence Processor demand Analy-
sis is computed to find a schedulable configuration and then an optimization finds the best
trade-off between utilization of the processor, feasibility and processor demand. To extend
their approach to multi-core systems, a best-fit allocation is used as a partitioning scheme.

© 2019 Roberto MEDINA 25

Chapter 2. Industrial needs and related works

While CSDF and ADF are models capable of representing dynamic changes on com-
munication rates, they are known at design-time. Therefore, while allocating these tasks
into processors, system designers known exactly when changes are going to take place. At
the same time, execution times for actors remains unchanged which is not the case for the
MC scheduling model we want to adopt.

Variations in communications rates and execution times

Dynamism in communication rates and execution times have been included in Scenario-
Aware Data-flow (SDAF) Graphs [96; 97]. The SDF model is enriched thanks to detectors
that alert other vertices of changes in the behavior of the application. These vertices change
their execution time and communication rate according to the scenario the system is in.
SDAFs define semantics capable of performing the same formal verifications that SDFs
have. However, regarding time analysis for this model, only the average execution time of
the application can be performed and deadlines for vertices are not considered. This is a
limitation on the applicability of this model to MC constraints.

The data-flow MoC has been widely used in the design and certification of safety-
critical systems. Its mathematical foundation is interesting since properties like deadlock
freedom, boundedness in communication channels, starvation freedom can be formally
proven. In our context, we are interested in obtaining temporal correctness and resource
efficient scheduling (i.e. MC scheduling) for this MoC as well. We have demonstrated that
existing approaches are capable of scheduling data-flow graphs into mono and multi-core
architectures with different constraints (e.g. with or without preemptions, with varying
communication rates, etc). Nevertheless, the scheduling approaches defined for MC data-
flow graphs lead to poor resource usage (i.e. federated approaches [81] require more
processing capabilities than what is actually needed) or exhibit pessimistic assumptions
for the LO-criticality tasks.

2.5 Safety-critical systems’ dependability

Besides logical and temporal correctness an important aspect that needs to be considered
for the development of safety-critical systems is dependability [1; 98].

26 © 2019 Roberto MEDINA

2.5. Safety-critical systems’ dependability

2.5.1 Threats to dependability

Dependability [98] is a generic concept incorporating various attributes such as reliability,
availability, safety, integrity and maintainability. While safety-critical systems can be de-
signed in a way that logical and temporal correctness were proven to be obtainable (thanks
to data-flow models and real-time scheduling for instance); in the real world systems are
often confronted to threats to dependability.

In the context of MC scheduling: The discard MC model [36; 8; 37], the most com-
mon approach to schedule MC systems, advocates for the interruption of LO-criticality
tasks after a timing failure occurs. This has a direct impact on the availability of LO-
criticality tasks since they are not executed while the system is in the HI-criticality mode.
While the discard MC approach has shown to give better schedulability results, delivering
a minimum service guarantee is a necessity for the applicability of the MC model into the
safety-critical domain. The literature around MC has recognized the necessity to improve
the availability (also related to the quality of service) for LO-criticality tasks [99] which
has been considered in recent contributions.

Other types of threats to dependability can come from different sources and some
of them are naturally unavoidable. For instance, an important aspect that safety-critical
system are confronted to, is the fact that these systems are often deployed in hazardous
environments [1]. For example, satellites are exposed to radiation coming from the Sun
and this has a direct impact on the usability/longevity of hardware components. If no
measures are taken to handle these threats to dependability, then systems risk to produce
errors that can have tragic consequences.

Therefore, safety-critical systems are confronted to different types of threats that affect
the dependability of a system. Nonetheless, system designers are aware of this problem
and have proposed means to improve dependability.

2.5.2 Means to improve dependability

One of the main arguments to use the data-flow MoC is actually related to the improvement
on dependability it offers. Errors can be limited during the design-phase of safety-critical
systems [100] thanks to the soundness of this MoC. This is actually one of the main reasons
behind the success of industrial tools like SCADE or Simulink that use SDF models.

When we look into MC scheduling, the general solution that has been taken to im-
prove dependability consists in limiting the non-execution of LO-criticality. By doing so,
the availability rate of LO-criticality tasks remains acceptable for safety standards. We
presented in Section 2.3, contributions that are capable of delivering a minimum service

© 2019 Roberto MEDINA 27

Chapter 2. Industrial needs and related works

guarantee for LO-criticality tasks. For example the elastic MC model [38; 66] changes the
parameters of LO-criticality tasks in order to reduce their utilization in the HI-criticality
mode. Semi-partitioned approaches [63; 61; 62] are capable of limiting the mode transition
to certain cores and migrate LO-criticality tasks to other cores to allow them to complete
their execution. The problem with these enhancements is that they have only been applied
to independent task sets. For dependent task scheduling on MC with minimum service
guarantee, Pathan [83] has designed a scheduling method that allow LO-criticality tasks
to utilize the slack time left by HI-criticality tasks after they have been scheduled. Instead
of performing a mode switch everytime a tasks has a TFE, in [101] Burns et al. propose
to consider tasks that capable of dropping a job in order to balance the workload of the
system. This enhancement has been applied to the AMC scheduler and they measure their
impact on the acceptance rate of randomly generated task sets.

The approaches we have mentioned have proven to be effective but require to define
new scheduling methods. Other means to improve dependability that are orthogonal to
scheduling can also be considered in order to deliver a minimum service guarantee. For
example in reactive systems where tasks are sampled at certain frequencies, incoherent or
missing values are expected to be measured. Weakly-hard real-time tasks [102] can be
used in those system since these tasks are capable of tolerating a fixed amount of failures
given a number of successive executions. Finally, while recent contributions around MC
claim that the quality of service of LO-criticality tasks is improved, there are no methods
capable of quantifying an availability rate for these LO-criticality tasks.

In conclusion, safety-critical systems are unavoidably confronted to threats to depend-
ability. Given the environment these systems are executed in, means to improve depend-
ability are necessary. Design methodologies like the data-flow MoC we presented in Sec-
tion 2.4 have been adopted by system designers to limit errors at design-time. While MC
scheduling improves considerably resource usage and allows to incorporate various func-
tionalities into the same computing platform, a minimum service guarantee needs to be
ensured for practical safety-critical systems. The literature around MC systems has rec-
ognized this limitation. New task models have been proposed to cope with these require-
ments but new scheduling policies supporting these tasks models need to be developed.
We also want to propose a generic method to evaluate the availability of less critical tasks
on data-driven MC systems which has not been explored before.

2.6 Conclusion

This chapter presented the context and related works we consider in this dissertation.

28 © 2019 Roberto MEDINA

2.6. Conclusion

To cope with current industrial needs, safety-critical systems need to (i) execute ef-

ficiently in multi-core architectures and (ii) make good use of precessing resources by
delivering as many functionalities as possible. These two trends have a direct impact on
the design and thus the deployment of safety-critical systems. Since logical and time cor-
rectness need to be ensured for this type of systems, innovation in real-time scheduling
and data-flow MoCs have been proposed to cope with these new objectives.

Real-time scheduling has been adapted to support execution in mutli-core architec-
tures and to incorporate tasks with different criticalities into the same execution platform.
That way, both necessities for modern safety-critical systems are satisfied. Nevertheless,
most contributions handling the MC model have been simplified and are not directly ap-
plicable to existing safety-critical systems design methodologies which often define data-
dependencies.

On the other hand, while data-flow MoC are used to design and verify safety-critical
systems, dynamism in their representation is very constrained. Incorporating mode tran-
sitions and different executions budgets to support the MC scheduling model has started
to been addressed by the literature, yet current allocation policies often lead to poor re-
source usage, e.g. more processors than what is actually need are required to find feasible
schedules.

For this reason, we need to define new scheduling methods capable of satisfying cur-
rent industrial needs. These methods need to be efficient, logical and temporal correct and
also capable to satisfying data-dependencies.

We have also demonstrated that MC scheduling can compromise the availability of the
less critical services which is a problem for safety-critical system that require to deliver a
minimum service guarantee. Methods to evaluate and enhance the availability for this type
of tasks need to be developed, that way MC scheduling can be adopted in the safety-critical
domain.

The next chapter establishes the problem statement of this dissertation, we explain
and list the problems that need to be addressed in order to obtain an efficient deployment
of data-driven applications into MC multi-core systems delivering a minimum service
guarantee.

© 2019 Roberto MEDINA 29

Chapter 2. Industrial needs and related works

30 © 2019 Roberto MEDINA

3 Problem statement

TABLE OF CONTENTS

3.1 SCHEDULING MIXED-CRITICALITY DATA-DEPENDENT TASKS ON MULTI-
CORE ARCHITECTURES . 32

3.2 AVAILABILITY COMPUTATION FOR SAFETY-CRITICAL SYSTEMS 39

3.3 AVAILABILITY ENHANCEMENTS - DELIVERING AN ACCEPTABLE QUALITY

OF SERVICE . 41

3.4 HYPOTHESES REGARDING THE EXECUTION MODEL 43

3.5 CONCLUSION . 43

The increasing popularity of the Mixed-Criticality (MC) model on safety-critical sys-
tems led to the development of many scheduling algorithms. Since these systems have to
respect real-time constraints (i.e. deadlines, periods), to ensure a correct execution, many
real-time schedulers were adapted to support the MC model. Like it was pointed out in
Section 2.3, most MC scheduling approaches in the literature [35] have only considered
the independent task set model.

On the contrary, we are interested in designing a scheduler for MC tasks with data
dependencies. Incorporating data dependencies on MC scheduling raises new challenges
regarding (i) the schedulability of the system in all execution modes and (ii) on mode
transitions to higher criticality modes. At the same time, designing scheduling approaches
has been the main focus in MC [35], yet we are also interested in the availability of non-
critical tasks delivered by these systems. The principle of the MC model is to degrade the
execution of non-critical tasks’ in favor of HI-criticality tasks, their availability is therefore
influenced by this behavior.

In most reactive safety-critical systems, tasks communicate with each other in order to
inform different components of changes that occur during the execution of such systems.

31

Chapter 3. Problem statement

For example, in a flight control system, data computed by a navigation functionality is
sent to an altitude controller in order to adjust the speed of the propellers. We are inter-
ested in incorporating MC aspects to such systems in order to improve resource usage.
Specially now that multi-core architectures are widely adopted in the industry, processing
capabilities are very promising.

Regarding the availability of non-critical tasks, they are often in charge of delivering
end-user functionalities, e.g. a satellite sending cellular signals, a drone sending images,
etc. Executing them is therefore of prime importance to ensure a good quality-of-service
for the system. However, due to mode transitions in MC, when the system makes a transi-
tion to a HI-criticality mode, all non-critical tasks are less or no longer executed in favor
of critical tasks. In consequence, we aim at defining methods to estimate and improve the
availability of non-critical tasks.

In this chapter we begin by defining the challenges related to the scheduling of MC
data-dependent tasks on multi-core architectures. We then present the limitations we need
to address when evaluating the availability of MC systems. Finally, we demonstrate that
the discard MC model, widely used in the literature, has limitations when considering the
availability of non-critical tasks.

3.1 Scheduling mixed-criticality data-dependent tasks on
multi-core architectures

There are two main aspects we have to consider when proposing a MC scheduler for data-
dependent tasks on multi-core architectures. On the one hand, data dependencies between
tasks need to be respected, i.e. the predecessors of a task need to complete their execution
before this task can be executed. While defining schedulers that satisfy this condition,
we also need to ensure that deadlines for tasks are respected. On the other hand, we
are interested in having a MC system with criticality modes and different timing budgets
for tasks, in order to take advantage of the computation resources offered by multi-core
architectures. Many schedulers satisfying data dependencies have been proposed in the
literature and have shown good performances. Nonetheless, the key aspects of the MC
model are often missing in these scheduling approaches.

In this section, we show the different approaches used to solve the data-dependent
scheduling on multi-core architectures, known to be a NP-hard problem. We then demon-
strate that scheduling MC tasks with data dependencies is also NP-hard. The challenges
that are risen by considering the MC model are presented as well.

32 © 2019 Roberto MEDINA

3.1. Scheduling mixed-criticality data-dependent tasks on multi-core architectures

3.1.1 Data-dependent scheduling on multi-core architectures

To represent data dependencies between tasks, graphs are often used to describe appli-
cations: vertices represent tasks or jobs and edges represent dependencies between these
jobs/tasks. Like we presented in 2.4, many graph models have been proposed in the litera-
ture. In safety-critical systems, the communication model that is often deployed, consists
in having at least one execution of all the tasks’ predecessor before such task can be ex-
ecuted. In other words, a task will not be able to execute if all its predecessors have not
completed their execution. This communication model has been widely used in the Syn-
chronous Dataflow (SDF) model [3] and in operational research with Directed Acyclic
Graph (DAG) scheduling [103].

While SDF allocation on uni- and multi-core processors has seen many contributions
since it was first introduced, deadlines and periods are rarely considered on multi-core ar-
chitectures. Most allocation techniques optimize a given metric, like memory buffers [104]

or throughput [105]. In our context, where deadlines and periods need to be respected, un-
folding the SDF to obtain a DAG can be used to find feasible schedules where tasks respect
their deadlines and periods [69]. As opposed to multimedia applications, the type of sys-
tem’s specifications we are targeting do not have large numbers of executions of tasks
during one period of the application (tenths as opposed to thousands in multimedia appli-
cations). Therefore, we consider that applications running in the safety-critical system are
or can be transformed into DAGs. Each vertex is a task of the application and edges are
the dependencies between these tasks.

Deadline satisfaction problem of data-dependent tasks: Scheduling a DAG where
tasks have an arbitrary execution time, in a multi-core architecture, while minimizing its
completion time, is known to be a NP-complete problem [106; 6]. The fact that com-
pletion time of the DAG is minimized, is a desired aspect to design a scheduling ap-
proach. If the algorithm tries to minimize the completion time (Cmax), it can also to satisfy
a deadline (D) given to the graph, if we have Cmax ≤ D. The problem are not equiva-
lent, but makespan minimization can respect deadlines. Additionally, it has been proven

that no optimal scheduler in polynomial time can be found to solve this problem [106;
6].

On-line scheduling approaches: Existing approaches have tried to transform the prob-
lem of scheduling DAGs, into scheduling independent task sets. However this transfor-
mation requires more resources than what is actually needed to solve the original schedul-
ing problem. By computing offsets and deadlines for each task of the DAG, a global
real-time scheduler (e.g. G-EDF, G-RMS) can be used to schedule the system and still

© 2019 Roberto MEDINA 33

Chapter 3. Problem statement

satisfy the original data dependencies. Sufficient conditions to determine if a set of data-
dependent tasks will be schedulable using these approaches have been defined [73; 74;
75]. Nonetheless, since the allocation of task to processor is not known in advance, the
number of tasks that can interrupt the execution of another task has to be upper bounded,
leading to an overestimation of tasks’ response times. This overestimation leads to a poor
resource usage of the platform, since to satisfy sufficient conditions, processor time where
no tasks are running needs to be introduced in the system. While finding tighter bounds
on the response times of tasks is a current research perspective [107], overestimated re-
sponse time is problematic in our context of MC systems: we want to take advantage of
the computation resources offered by the platform.

Off-line scheduling approaches: In 2.4.2 we presented another family of contribu-
tions that tackle the scheduling problem for data-dependent tasks, called List Scheduling
(LS) heuristics. LS is an interesting solution since it can find feasible static schedules in
pseudo-polynomial time. This family of scheduling techniques has a greedy behavior: a
ready task will always be scheduled if there is an available processor. Consequently, LS
minimizes the makespan of the scheduled DAG while still taking advantage of the plat-
form’s execution capabilities. LS computes static scheduling tables prior to runtime. Only
the application of the LS heuristic will determine if the system is schedulable or not. Nev-
ertheless, the heuristics are quite efficient even when the number of vertices and edges is
large [72].

It has been shown that LS has a worst-case approximation ratio (or speedup factor) of
(2− 1

m), when comparing it to an optimal clairvoyant algorithm [103]. The approxima-
tion ratio is calculated between the completion time of the LS algorithm and an optimal
clairvoyant algorithm. If an optimal algorithm can generate an m-processor schedule of
with a completion time Cmax, then LS generates a schedule of length ≤ (2− 1

m)×Cmax.
A more recent result has demonstrated that (2− ς) is likely a lower bound on the worst-
case approximation ratio of any polynomial-time heuristic, where ς is a constant close to
0. This makes LS the closest best known heuristic to solve the scheduling problem in
polynomial time [108]. The benchmark studies in [72] list the most efficient LS heuristics
and demonstrate that, LS can be adapted to efficiently solve different and more complex
scheduling problems. Communications costs between each vertex, heterogeneous archi-
tectures, release dates, among other extensions, have been solved thanks to LS. However,
most LS heuristics have not taken into consideration tasks with different timing budgets
and systems with various modes of execution, which are the foundation of the MC model.

To solve the scheduling problem of DAGs, two main categories of contributions have
shown promising results in the literature. The first category, transforms the DAG into

34 © 2019 Roberto MEDINA

3.1. Scheduling mixed-criticality data-dependent tasks on multi-core architectures

an independent tasks set by computing offsets and deadlines to implicitly respect data-
dependencies [73; 74; 75; 107]. These approaches are interesting since the system is
schedulable if the sufficient conditions are satisfied. Nonetheless, these approaches require

more processing capabilities than what is needed to satisfy sufficient conditions for global
real-time schedulers like G-EDF or G-DMS. This is an important limitation if a MC sched-
uler is to be defined using these approaches. The second category, the LS heuristics [103;
72], have interesting properties that are desirable when defining a MC scheduler. The
heuristics are fast when trying to compute feasible schedules due to their polynomial com-
plexity. The completion time of the DAG is minimized and therefore, it can implicitly
respect a deadline. Finally, the greedy behavior of the heuristics takes advantage of the
computation resources. By basing the MC scheduler on LS heuristics we can take advan-
tage of the computation resources and still respect real-time constraints. Nonetheless, the
problem of scheduling MC tasks with data dependencies is even more complex than the
problem of scheduling DAGs, tasks have different timing budgets and mode transitions
can occur during the system’s execution.

3.1.2 Adoption of mixed-criticality aspects: modes of execution and
different timing budgets

While existing LS heuristics have proven to be quite efficient when computing feasible
schedules [72], only a few works have proposed to schedule data-dependent MC tasks us-
ing these heuristics [79; 80]. Like it was explained in Section 2.3, in the MC model, as
defined by Vestal in [4], a system has different criticality levels which correspond to modes
of execution. This decomposition allows to consider different timing budgets (correspond-
ing to different WCET estimation) for tasks executed in the MC system. In a HI-criticality
mode, tasks can have a larger timing budget compared to the one given in a lower critical-
ity mode. In the previous section we explained that scheduling data-dependent tasks was
already a very complex problem, therefore considering MC tasks adds a layer of complex-
ity to the scheduling problem. Schedulability in all modes of execution but also during the
transition to higher criticality modes need to be respected when defining a MC scheduler.

Problem 1 - Mixed-criticality scheduling problem: scheduling a system with data
dependencies, in the form of DAGs, while respecting MC constraints, is NP-hard. We will
demonstrate its complexity by showing how data dependencies only render the scheduling
problem more difficult than regular MC scheduling.

© 2019 Roberto MEDINA 35

Chapter 3. Problem statement

(a) A set of data-dependent
mixed-criticality tasks

(b) Proposed scheduling

Figure 3.1: A task set schedulable in a dual-criticality system

MC scheduling needs to respect the following constraints: first, the system needs to
respect deadlines in all criticality modes, and second, the system must respect deadlines
when the system makes a transition to a higher criticality mode.

Sub-problem 1.1 - Schedulability in all modes of execution: the systems needs to
be schedulable in all its modes of execution. An example of a schedulable task set is
illustrated in Fig. 3.1. This figure illustrates a dual-criticality system (Fig. 3.1a) with a
task set composed of four data-dependent tasks. Edges represent dependencies between
tasks and each task is annotated with its WCET(s). Tasks illustrated in gray are considered
to be HI-criticality tasks and tasks illustrated in white are LO-criticality tasks. In the LO-
criticality mode (LO mode), all four tasks are executed in the system, whereas in the
HI-criticality mode (HI mode), only the gray tasks are scheduled with an extended timing
budget (i.e. 65 TUs for τ1 and 70 TUs for τ2). The proposed scheduling of the MCS is
presented in Fig. 3.1b, since the deadline is respected in the LO mode, but also in the HI
mode, the system might be considered as schedulable. However, in the next paragraph we
show that the schedulability in all criticality modes is not sufficient for MC systems.

Sub-problem 1.2 - Schedulability in case of a mode transition: mode transitions
to higher criticality modes [109] often carry timing extension budgets for HI-criticality
tasks, which could lead to a deadline miss. A mode transition to a higher criticality mode
is triggered by a Timing Failure Event (TFE), i.e. if a task did not complete its execution
within the timing budget that was given. Having safe mode transitions for the system, i.e. a
mode transition that respects deadlines, is a desired property when designing a scheduling
algorithm for MC systems. In Fig. 3.2, we illustrate the problem of safe mode transitions

36 © 2019 Roberto MEDINA

3.1. Scheduling mixed-criticality data-dependent tasks on multi-core architectures

(a) Proposed scheduling tables

(b) Scenario with a TFE in τ2

Figure 3.2: A deadline miss due to a mode transition

when scheduling a MC system. We consider the same system of Fig. 3.1a, but this time,
another proposed scheduling for the two modes of execution is presented in Fig. 3.2a, this
scheduling respects precedence constraints since τ1 (resp. τ2) is executed before τ3 (resp.
τ4). Nonetheless, with these new scheduling tables, if a TFE occurs on task τ2 (Fig. 3.2b),
the mode transition causes a deadline miss on task τ3.

Proof. NP-hardness: the scheduling problem for a task set represented by a DAG, where
vertices have an arbitrary execution times is known to be NP-complete [106; 6] and the
problem of MC task scheduling is known to be NP-hard [8; 39].

Sub-problem 1.1 - When we consider a MC system, the schedulability of the DAG (or
a subset of it, some tasks can be interrupted depending on the criticality mode) needs to
be guaranteed on all modes of execution. In other words, we have to solve the scheduling
problem for a DAG M times, where M is the number of criticality levels, known to be
NP-complete.

Sub-problem 1.2 - In addition, when the system makes a mode transitions to higher
criticality modes, tasks that are executed in both criticality modes need to respect dead-
lines and precedence constraints. This makes the scheduling more complex since timing
budgets can increase from one criticality mode to another. Ensuring this condition has
been shown to be NP-hard.

Therefore, scheduling MC data-dependent tasks, where sub-problem 1.1 and 1.2 need
to be solved is NP-hard.

To summarize, the proposed scheduler for data-dependent tasks in a MC systems needs
to satisfy: (i) the schedulability in all the criticality levels and (ii) ensure safe mode tran-

© 2019 Roberto MEDINA 37

Chapter 3. Problem statement

sitions to higher criticality modes.

Scheduling approaches based on LS to schedule dual-criticality MC data-dependent
tasks in the form of DAGs have been proposed in the literature [79; 80; 81]. Computing
static scheduling tables by defining a priority ordering for MC tasks with precedence con-
straints is proposed in [79]. In this contribution, LS is used to find a priority ordering of
tasks when the allocation decision is made. A priority ordering is found for HI-criticality
tasks and for LO-criticality tasks as well. These orderings are independent from each other.
Nonetheless, HI-criticality tasks’ allocation is prioritized over LO-criticality tasks in the
LO execution mode, ensuring safe mode transitions. However, this approach only con-
siders mono-core architectures. The adaptation to multi-core architectures was proposed
in [80]. The problem of scheduling multiple DAGs in a single MC system was tackled
in [81]. The author proposes to transform the problem of scheduling multiple DAGs on a
multi-core architecture, to schedule a single DAG on a cluster of cores of the multi-core
architecture. The approach proposed in [81] relies on the method presented in [80] to
schedule a DAG on its cluster.

Sub-problem 1.3 - Limits of existing approaches: as it is shown in [80; 81], adapting
LS to handle MC aspects on data-dependent tasks is possible and has been proven to be
correct (i.e. schedulability and safe mode transitions are delivered). Nonetheless, in these
contributions only theoretical results have been presented, making it difficult to assess
the performances of these approaches, e.g. checking if a scheduling can be found for
different system configurations with various utilization rates. Prioritizing the allocation of
HI-criticality tasks whenever they are ready is also a pessimistic condition. LO-criticality
tasks also have dependencies among them, therefore if HI-criticality tasks preempt LO-
criticality tasks too often, these preempted tasks (and their successors) will have a large
response time potentially leading to a deadline miss. With the priority ordering defined
in [80; 81], the preemption of LO-criticality tasks can occur frequently if HI-criticality are
constantly being activated for example. This pessimistic condition has been used in order
to ensure safe mode transitions, but we will demonstrate that this pessimism can be lifted.

Another aspect that we have to address is the generalization of the scheduling method
to support an arbitrary number of criticality levels. This makes the scheduling problem
more difficult, because safe mode transitions need to be ensured in more than two critical-
ity modes. As a matter of fact, industrial standards often define more than two criticality
levels. For example, railroad systems have four levels, while airborne systems have five.

In conclusion, a correct scheduling of MC data-dependent tasks on multi-core archi-
tectures is a complex problem: schedulability in all criticality modes needs to be respected

38 © 2019 Roberto MEDINA

3.2. Availability computation for safety-critical systems

but also when mode transitions take place. While LS heuristics are a good comprise in
terms of performance and optimality, existing approaches that have taken this direction
are too restrictive: execution of HI-criticality tasks is prioritized systematically. Better
conditions to promote HI-criticality tasks’ allocation in the LO-criticality mode should be
found. Additionally, existing approaches only consider dual-criticality systems, whereas
standards for safety-critical systems often define four or more criticality levels. There-
fore, we are also interested in proposing a scheduling method for a MC system having an
arbitrary number of criticality levels.

3.2 Availability computation for safety-critical systems

While defining a correct scheduler for mixed-criticality data-dependent tasks is of prime
importance for our works, we are also interested in the availability of services deliv-
ered by these tasks. As a matter of fact, most contributions regarding MC systems have
been focused on scheduling methods considering the MC discard approach [36; 8; 37].
After a mode transition takes place in the system, timing budgets given to high criti-
cality tasks increase. The MC discard approach has been the most dominant hypoth-
esis considered when defining MC schedulers [35]. This approach has shown that in-
terrupting the execution of non-critical tasks after the mode transition takes place gives
a higher schedulability ratio for MC systems. While non-critical tasks are not consid-
ered as highly critical, they are often in charge of the quality-of-service (QoS) of the
system: their execution is important as well [110]. In practice, interrupting non-critical
services indefinitely gives a very poor availability for MC systems. Recent trends in
MC scheduling acknowledge this limitation and propose to guarantee a minimal execu-
tion of LO-criticality tasks in the HI-criticality mode to deliver a minimum QoS [38;
65]. Nonetheless, these approaches have defined specific scheduling methods that are
not applicable to data-dependent task sets. In this section we look into the requirements
to define availability estimations for MC systems following the discard approach. At the
same time, we show the limitations that the MC discard approach entails regarding the
availability of non-critical tasks.

Problem 2 - Estimating availability rates: the evaluation of availability in MC sys-
tems can be performed in different manners, but it boils down to knowing how many
times a task runs, divided by the number of times the system was executed (in LO and
HI-criticality modes):

A(τi) =
Executions of τi

Executions of the system
. (3.1)

© 2019 Roberto MEDINA 39

Chapter 3. Problem statement

This availability equation can be solved numerically if the model of the system allows it.
Otherwise, we need to perform simulations of the system’s execution in order to obtain an
estimated value of the availability. In both cases, the most popular MC discard model of
the literature [36; 8; 37] is missing necessary aspects to solve Eq. 3.1: (i) we need to know
how often non-critical tasks are executed and interrupted, but (ii) we also need to propose
a method to restore them in case a mode transition to a higher criticality mode occurred.
The recovery of non-critical tasks is necessary because staying in a HI-criticality mode
indefinitely would give very bad results on the availability of non-critical tasks. At the
same time, safety-critical systems are often used in hazardous environments where human
maintenance is impossible or very difficult.

In order to solve Eq. 3.1, the first information we need to have is how many times a

task τi is executed? Since we are in a MC discard system, the execution of non-critical
tasks is dependent on the criticality level the system is in, i.e. if the system is in (or makes
the transition to) a HI-criticality mode, then non-critical tasks are not executed. Thus, we
need to know how often a TFE takes place in a MC system?

Subproblem 2.1 - Incorporating a fault model: to determine how often a system
switches to a HI-criticality mode, we need to incorporate a fault model for tasks executed
in the MC system. This fault model should assign failure probabilities to each task, i.e. the
probability a task will provoke a TFE and therefore a mode transition to a higher criticality
mode. The occurrence of failures within a period of time is actually used in safety-critical
standards to certify that a functionality meets a certain criticality level. For example, the
airborne standard DO-178B [111] defines five software levels (also called “assurance”
levels), where each one of them has a Failure Rate. Highest level A has a rate of 10−9/h,
level B 10−7/h, and so on.

Sub-problem 2.2 - Incorporating a mode recovery: while having information about
failure probabilities on tasks executed in the MC system is necessary for the availability
computation, we also need to introduce a recovery mechanism for these tasks. Most ap-
proaches of the literature of MC systems only limit themselves to ensure the safe mode
transition to a higher criticality level [35]. Nevertheless, for safety-critical systems, stay-
ing in the HI-criticality mode is a very important limitation since non-critical tasks are no
longer executed, having an undesired impact on their availability. The complete interrup-
tion of non-critical tasks is a problem, since these tasks are often in charge of the QoS
for safety-critical systems, e.g. if an exploration drone fails to send images/videos, the
mission fails even if HI-criticality tasks allowed the drone to avoid crashing. We need to
avoid human-maintenance since safety-critical systems are often used in hazardous envi-
ronments, making this type of maintenance even impossible in some cases.

40 © 2019 Roberto MEDINA

3.3. Availability enhancements - Delivering an acceptable Quality of Service

Defining the fault model and the recovery process in the MC system will allow us to es-
timate an availability rate for non-critical tasks quite efficiently: we can assess numerically
the availability rates for non-critical tasks. Nonetheless, in most MC contributions [36; 8;
37], the fault propagation model considered is quite simplistic, in the sense that actual
safety-critical systems often incorporate mechanisms to limit the impact of faults on the
system. These mechanisms have a positive impact on the availability of non-critical tasks
and we would like to incorporate them in our analysis as well.

3.3 Availability enhancements - Delivering an acceptable
Quality of Service

With the necessary information regarding the system’s failures and the recovery mecha-
nism of non-critical tasks, we can propose methods to compute an availability rate. How-
ever, in the discard MC model [36; 8; 37] we see limitations regarding the obtainable
availability.

Problem 3 - The discard MC model degrades availability significantly: sharing an
architecture with functionalities of different criticalities has an impact on their availability.
The problem is that even if functionalities are independent from each other, after a TFE oc-
curs, the whole system makes a transition to a HI-criticality mode and LO-criticality tasks
are no longer executed. Fig. 3.3 illustrates this scenario. We consider a dual-criticality
system presented in Fig. 3.3a, the deadline and period of the system is set to 160 TUs.
The scheduling tables for the HI and LO-criticality mode are presented in Fig. 3.3b, we
have a dual-core processor to schedule the system. We suppose a TFE takes place when
τ7 is running (Fig. 3.3c), at this point the system switches to a HI-criticality mode, LO-
criticality tasks are discarded and HI-criticality tasks have an extended timing budget. In
this example, the problem of having a shared architecture can be seen with tasks τ4 and τ5

that are interrupted but are not dependent on the execution of task τ7 (i.e. there are no data
dependencies between τ7 and τ4, τ5). In addition, the TFE took place during the execution
of τ7 that is a LO-criticality task but HI-criticality task τ2, had its timing budget increased:
it is possible that τ2 did not need this timing extension. Having a mode transition when-
ever a task has a TFE is too pessimistic, specially when designers need to guarantee that
an availability rate is met. It is thus necessary to limit fault propagation to limit the impact
of resource sharing on services’ availability.

Sub-problem 3.1 - Limiting the number of mode transitions to higher criticality
modes: mode transitions to higher criticality modes are at the core of MC scheduling, and

© 2019 Roberto MEDINA 41

Chapter 3. Problem statement

(a) MC system, D = P = 160

(b) Scheduling tables

(c) TFE scenario: τ7 causes a mode transition

Figure 3.3: Interruption of non-critical tasks after a TFE

need to be conserved in order to guarantee a safe execution of HI-criticality tasks. Nev-
ertheless, incorporating a more precise fault propagation model would allow us to prevent
unnecessary mode transitions to higher criticality modes. As a matter of fact, safety-
critical system often integrate mechanisms to contain, mask or limit faults. For example
Real-Time Operating Systems (RTOSes) [112] are conceived in a way that software com-
ponents are isolated from each other, by partitioning the memory for example. That way,
if a task has a failure, the kernel is capable of interrupting only faulty services and have the
rest of components running normally. Other types of measures like using design patterns,
allow safety-critical system to be fault tolerant.

Sub-problem 3.2 - Incorporating availability enhancements : Incorporating soft-
ware or hardware mechanisms to improve the availability of tasks, thanks to fault tol-
erance, can have an impact on the system’s model, invalidating previous methods that
compute availability rates for non-critical tasks. If we consider for example, weakly hard
real-time tasks [102], to know if the task is in an operational state we need to keep track

42 © 2019 Roberto MEDINA

3.4. Hypotheses regarding the execution model

of a given number of executions. To estimate an availability rate for these cases, we need
to adapt the methods proposed. For instance, simulations of the system’s execution may
be required.

3.4 Hypotheses regarding the execution model

The following section presents a summarized table of the hypotheses that are made in
order to solve the abovementioned problems.

Table 3.1: Hypotheses of our execution model

Data-dependencies
Graph Directed acyclic graphs.
Vertices Real-time tasks.
Edges Precedence constraints.

Real-time
Execution time Tasks use all their timing budget.
Period Tasks are periodic.
Deadline Hard deadlines. Constrained or implicit.

Architecture
Processors Homogeneous.
Communication costs Considered in tasks execution time.

Mixed-criticality
Criticality levels Two or more criticality levels.
Timing budgets Monotonically increasing.
Degradation Discarding lowest-criticality tasks.

Fault model
Failures Timing failure events.

A more detailed execution model capturing all the elements of our research context is
presented in the next chapter (Section 4.1).

3.5 Conclusion

We have presented in this chapter the main issues regarding the scheduling of MC tasks
with precedence constraints, as well as the importance of ensuring an availability rate to
deliver a proper QoS.

We started by demonstrating that scheduling MC tasks with precedence constraints in
a multi-core architecture is a NP-hard problem (Problem 1). Without MC constraints,
scheduling data-dependent tasks was already NP-complete, we are therefore tackling a

© 2019 Roberto MEDINA 43

Chapter 3. Problem statement

more difficult problem. The schedulability in all criticality modes needs be ensured when
designing a new MC scheduler (Sub-problem 1.1), but we also need to guarantee that
mode transitions do not cause a deadline miss (Sub-problem 1.2). The most promising
approaches of the literature have adapted a heuristic called List Scheduling in order to
allocate MC tasks to multi-core processors. These heuristics are known to have the best
performance in terms of time complexity (polynomial) while having a known speed-up
factor of (2− 1

m). They also take advantage of the processing capabilities of the targeted
architecture due to their work-conserving behavior. Nonetheless, existing contributions
have some limitations we need to address (Sub-problem 1.3): (i) find better conditions to
schedule HI-criticality tasks in LO-criticality modes, (ii) use less processing cores when
the problem becomes more complex; and (iii) generalize the scheduling to support an
arbitrary number of criticality levels for the system.

While defining a correct and efficient scheduler is a main concern for our works, we are
also interested in the availability offered by a MC systems (Problem 2). Non-critical tasks
in safety-critical systems are often in charge of the QoS, for this reason we are interested
in knowing how often these tasks are executed in MC systems. To define methods for
estimating an availability rate, we need to know how often a non-critical task is interrupted
(Sub-problem 2.1). In most MC contributions, after the system is a HI-criticality mode,
there is no recovery mechanism for non-critical tasks (Sub-problem 2.2).

In the discard MC model, when a timing fault occurs, the whole system makes a mode
transition to a higher criticality mode, interrupting the execution of non-critical tasks. In
the context of multi-core architectures this is very limiting since applications that are non-

dependent on the failing tasks are also interrupted (Problem 3). We want to address this
problem by proposing a more detailed fault propagation model that could allow us to limit
the number of mode transitions (Sub-problem 3.1). Another aspect that has not been
considered in the literature of MC systems, are reliability mechanisms often deployed to
ensure that an availability rate for the system is met (Sub-problem 3.2). The necessity to
evaluate and potentially improve the availability of non-critical tasks is a necessity for MC
systems minimum service guarantees are required by safety-critical standards.

The next chapter presents our contributions tackling these problems: scheduling of
MC data-dependent tasks, as well as methods to evaluate and improve availability on data-
driven MC systems.

44 © 2019 Roberto MEDINA

4 Contribution overview

TABLE OF CONTENTS

4.1 CONSOLIDATION OF THE RESEARCH CONTEXT: MIXED-CRITICALITY DI-
RECTED ACYCLIC GRAPH (MC-DAG) . 47

4.2 SCHEDULING APPROACHES FOR MC-DAGS 49

4.3 AVAILABILITY ANALYSIS AND IMPROVEMENTS FOR MIXED -CRITICALITY

SYSTEMS . 51

4.4 IMPLEMENTATION OF OUR CONTRIBUTIONS AND EVALUATION SUITE: THE

MC-DAG FRAMEWORK . 52

4.5 CONCLUSION . 53

The previous chapter detailed the problem we need to address in order to define a cor-
rect and efficient MC scheduler for data-dependent tasks (Problem 1). We also presented
the different requirements needed to compute (Problem 2) and improve the availability
(Problem 3) of non-critical tasks.

In this chapter, we begin by defining the MC task model used throughout our contri-
butions. This model, called Mixed-Criticality Directed Acyclic Graph (MC-DAG), takes
into account the different elements and constraints of our context: data dependencies, MC
timing budgets and real-time constraints (deadline and periods). In addition, our model
allows us to propose evaluation methods for the availability rate of non-critical tasks by
including a failure model.

An overview of our contributions is illustrated in Fig. 4.1. When it comes to MC sys-
tems our first contributions tackle the problem of scheduling data-dependent MC tasks on
multi-core architectures, represented by the blue box in the figure. These contributions
tackle Problem 1. We designed a meta-heuristic, called MH-MCDAG, to find feasi-
ble and correct schedules of MC-DAGs. Few modifications are required in order to ob-
tain different implementations of MH-MCDAG. We have also managed to generalize our

45

Chapter 4. Contribution overview

Figure 4.1: Contribution overview

multi-periodic MC-DAG scheduler to handle an arbitrary number of criticality levels: the
meta-heuristic can be recursively generalized to support more than two levels of criticality.

Our methods developed to solve Problem 2, the evaluation of the availability for MC
systems, are also described in this chapter. In Fig. 4.1, we represent this contribution with
the green box. If the system allows it, we apply formulas to compute an availability rate:
these are the numerical evaluations. These first evaluations led to the incorporation of
enhancements to the MC model, in order to overcome Problem 3. These improvements
are twofold: we incorporated a more detailed fault propagation model and considered fault
tolerant mechanisms. Nonetheless since the execution model differs from simple real-time
tasks, the availability evaluation requires us to perform system simulations.

Finally, we present the framework that was developed in order to experimentally eval-
uate our contributions. The framework is represented with the dotted box of Fig. 4.1 since
it contains the implementations of our various contributions. Besides the implementations
of our meta-heuristic, we have also implemented the scheduling approaches of the litera-
ture for MC-DAGs [80; 81] in order to compare us to the state-of-the-art. The framework
also includes model transformation rules to perform system simulations in order to eval-
uate availability rates. A generator of random unbiased MC systems with data-dependent
tasks is also included in the framework: this generator is of prime importance to assess the
performances of our scheduling methods.

46 © 2019 Roberto MEDINA

4.1. Consolidation of the research context: Mixed-Criticality Directed Acyclic Graph (MC-DAG)

4.1 Consolidation of the research context: Mixed-Criticality
Directed Acyclic Graph (MC-DAG)

In this section we present the model developed incorporating all the elements of our con-
text: data-dependent tasks, MC timing budgets and our fault model. Like we explained
in 3.1.1, to incorporate data-dependencies between tasks, we assume that applications can
be modeled in the form of DAGs.

A Mixed-Criticality System (MCS) is defined by the tuple S = (G ,CL ,Π).

• G is the set of applications executed by the MCS. The definition of an application

is given in the next paragraph.

• CL = {χ1, . . . ,χn} is the set of criticality levels of the system. We consider this set is
ordered, i.e. and operator ≺ can be defined such as χ1 ≺ · · ·≺ χ� ≺ χ�+1 ≺ · · ·≺ χn.
The transition to a higher criticality mode is progressive: if the system is in χ� mode,
it will switch to χ�+1 mode.

• Π is the homogeneous multi-core processor, i.e. all processors have the same speed
for all the tasks in the system. |Π| = m is the number of cores available on this
platform. Data can be sent through the cores thanks to an interconnect bus.

A Mixed-Criticality Directed Acyclic Graph (MC-DAG), G j ∈ G , represents an ap-

plication being executed in the system S . It is defined by the following tuple: G j =

(Vj,E j,D j,Pj).

• Vj is the set of vertices of the MC-DAG. Each vertex is a MC task executed by the
application.

• E j ⊆ (V ×V) is the set of edges between two tasks. If (τi,τ j)∈ E j , then task τi must
finish its execution before task τ j can start. A vertex is ready to be executed as soon
as all of its predecessors have been executed. We define succ(τi) (resp. pred(τi))
the set of successors (resp. predecessors) of a task.

The existing model of MC-DAGs described in [80; 79; 81] is closed to ours. Nonethe-
less, it has restricted communications coming from a lower-criticality level for safety
reasons: if a low-criticality predecessor of a high-criticality task does not produce
its output, then the high-criticality task would not be able to execute. However, low-
to-high communications often take place in safety-critical systems, one example is
the monitoring the execution of tasks to determine if there are errors on the values

© 2019 Roberto MEDINA 47

Chapter 4. Contribution overview

computed by tasks. Therefore, in our model low-to-high communications are al-
lowed and in Chapter 5 we explain how the scheduling can take into account this
type of communication.

• D j ∈ N+ is the deadline of the graph, i.e. all vertices of the MC-DAG need to be
executed before this deadline.

• Tj ∈ N+ is the period of the graph, i.e. vertices without predecessors become active
again once this period has been reached. We have the following relation D j ≤ Tj.

Each vertex of the MC-DAG corresponds to a MC task, τi ∈ Vj, defined as follows
τi = (χi,Ci(χ1), . . . ,Ci(χ�), pi(χ1), . . . , pi(χi−1)).

• χi ∈ CL is the criticality level of the task.

• Ci(χ1), ...,Ci(χn) is the set of WCETs of the task. {Ci(χ�)∈N | ∀χ�� χi,Ci(χ�)= 0}
since we are in the discard MC model, the task is not executed on criticality levels
that are higher than χi.

We assume that Ci(χn) is monotonically increasing when n increases, this corre-
sponds to the observation of [4], the higher the criticality level is, the more overes-
timated the WCET is. We also assume that the communication time is included in
the WCET of a task.

• pi(χ1), . . . , pi(χi) is the set of failure probabilities for task τi. Each pi(χn) ∈ [0;1]
is the failure probability of task τi in the mode pi(χ�), i.e. the probability the task
can cause a Timing Failure Event (TFE). These probabilities are deduced from the
WCET estimation analysis [113]. In order to perform the availability analysis for
our MC systems, this information needs to be provided.

• ji,k is the job of task τi. In a multi-periodic system a task can have multiple activa-
tions, ji,k is the k-th activation of task τi.

In Fig. 4.2 we illustrate an example of a MCS system. For this example, we suppose
we have the following criticality levels, CL = {L1,L2,L3}, L3 being the most critical level.
The system presented, is composed of two MC-DAGs, G1 and G2, each one of them has
a different deadline and period. Tasks are annotated with their WCETs (if Ci(χ�) = 0, we
do not represent the value) and their failure probabilities. The criticality level of a task
is illustrated by the gray-scale: dark gray means the task has a L3 criticality level, white
means it has a L1 criticality level. Edges represent the data dependencies between the

48 © 2019 Roberto MEDINA

4.2. Scheduling approaches for MC-DAGs

Figure 4.2: Example of a MCS S with two MC-DAGs

tasks. As we can see, we have a communication that go from tasks of level L1 to tasks
belonging to level L2: τ12 communicates with task τ13 which would be restricted in the
MC-DAG model of [80; 79; 81].

4.2 Scheduling approaches for MC-DAGs

Like we demonstrated in the previous chapter (section 3.1.2), the MC Scheduling of MC-
DAGs (Problem 1) is a NP-hard problem. Promising approaches based on LS to solve
this problem have been proposed in the literature [80; 81] they handle the Schedulabil-
ity in all modes of execution (Sub-problem 1.1) and also the Schedulability in case
of a mode transition (Sub-problem 1.2). Nonetheless, there are Limits of existing ap-
proaches (Sub-problem 1.3): (i) the priority ordering used to schedule the MC systems,
systematically prioritize high-criticality tasks in all criticality modes. At the same time,
(ii) when multiple MC-DAGs are being scheduled, the existing approaches create clusters
of cores in order to reduce the problem of scheduling multiple MC-DAGs to scheduling
a single MC-DAG in its cluster. This leads to poor resource usage since more cores are
required in order to obtain feasible schedules. The last limitation of these approaches is
the fact that they are (iii) applicable only to dual-criticality systems and in safety-critical
standards more than two criticality levels are often used.

© 2019 Roberto MEDINA 49

Chapter 4. Contribution overview

We designed a meta-heuristic, called MH-MCDAG, capable of solving the scheduling
problem by respecting the schedulability in all criticality modes and by enforcing HI tasks’
execution at precise instants in order to have safe mode transitions. Our implementations
of MH-MCDAG compute static scheduling tables, one for each criticality mode: the HI-
criticality mode is scheduled first, and in the LO-criticality scheduling, HI-criticality tasks
can preempt LO-criticality tasks in order to have safe mode transitions. Similarly to the
approaches of [80; 81], our scheduling strategies are list-based but the tables computed
are Time Triggered (TT). We have improved the constraints enforced on high criticality
tasks to ensure safe mode transitions. Chapter 5 gives a detailed description of the meta-
heuristic and its implementations. The recursive generalization to support an arbitrary
number of criticality levels is also described in that chapter.

Global generic implementations of MH-MCDAG for CL = {LO,HI} and |G |= N

To schedule an arbitrary number of MC-DAGs on a multi-core architecture, we im-
plemented MH-MCDAG following a global approach, i.e. all tasks of all MC-DAGs can
be scheduled in all cores. The targeted architecture is homogeneous and communication
costs are assumed to be accounted for in the execution time of tasks. The first instance of
our implementation uses a priority ordering based on the laxity of each task. The laxity
of a task is given by the difference between the deadline of the task, the current instant
t and the remaining execution time. To prioritize tasks that have an important number
of successors, we calculate virtual deadlines for each vertex of the MC-DAGs. To re-
spect safe mode transitions to the HI-criticality mode, HI-criticality tasks can preempt
LO-criticality tasks during the computation of the LO-criticality scheduling table. Our
experimental results comparing our heuristic to the existing method of the literature [80;
81] showed that we outperform the state-of-the-art in terms of schedulability for randomly
generated MC-DAGs. The comparison is done supposing a periodic activation of MC-
DAGs which also benefits the federated scheduling approach [81]: offsets between MC-
DAGs activations are non-existent which increases the resource usage of the platform. A
limit to our laxity-based scheduler is the number of preemption it entails, for this rea-
son the second instance of our meta-heuristic defines a priority ordering based on G-EDF.
Experimental results have shown that this instance generates up to 100 times less preemp-
tions and performs better than existing approaches of the state-of-the-art in the majority of
cases.

Generalization of MH-MCDAG for |CL |= M and |G |= N

The meta-heuristic we developed to schedule MC-DAGs in dual-criticality systems
can be generalized to support an arbitrary number of criticality levels. This generalization
is done by recursively respecting activation times of high-criticality tasks. However, new

50 © 2019 Roberto MEDINA

4.3. Availability analysis and improvements for Mixed -Criticality systems

conditions on the finish time of high-criticality tasks need to be respected in order to
allow timing budget extensions. We implemented this new meta-heuristic basing it on the
laxity of each task. The generalization of our previous heuristic consists in computing the
scheduling tables starting with the highest criticality levels first. By doing so, in the lowest
criticality mode, the most critical tasks will have enough processing time to complete their
execution if TFEs take place in all the criticality modes. To the best of our knowledge, our
approach is the only one that has generalized the scheduling of multiple MC-DAGs on a
system with an arbitrary number of criticality levels.

Works related to the scheduling of MC-DAGs into multi-core architectures have been
published in two different conferences: at the International Conference on Reliable Soft-
ware Technologies (Ada-Europe) in 2017 and at the Real-Time Systems Symposium (RTSS)
in 2018. Details about these contributions are given in Chapter 5.

4.3 Availability analysis and improvements for Mixed -
Criticality systems

To propose evaluation methods for availability analysis in order to overcome Problem 2,
we considered a fault model for the MC system (Sub-problem 2.1). By including fail-
ure probabilities for each task and thanks to the static scheduling tables computed by our
heuristics (Section 4.2), we are capable of defining methods to compute the availability
rate of non-critical tasks numerically. The reincorporation of non-critical tasks is a neces-
sity for the computation of availability rates: considering that the MC system stays in a
high criticality mode indefinitely is too constraining for real industrial applications (Sub-
problem 2.2). We considered a recovery mechanism of non-critical tasks once the system
makes the transition to a high criticality mode: if all high criticality tasks are able to finish
their execution within their low criticality WCET, we can start reincorporating low crit-
icality tasks. Once all low criticality tasks have been reincorporated, we have made the
transition back to the low criticality mode. The availability of a task is given by its failure
probability, plus the failure probabilities of all tasks executed before it. This allows us to
solve the availability formula of Eq. 3.1.

The results we obtained with this recovery mechanism showed the problem we have
when considering the discard MC model [36; 8; 37]: since we are sharing a single exe-
cution platform, all tasks executing in the system have an influence on the availability of
other tasks (Problem 3). Even if there are no data-dependencies between two tasks, mode
transitions occur in a synchronous way for the whole system: a task with a higher failure

© 2019 Roberto MEDINA 51

Chapter 4. Contribution overview

probability executing at the beginning of the scheduling table will influence the availabil-
ity of a task executing at the end of the scheduling table. A TFE is more likely to occur
during the execution of this first task.

To overcome this problem, we incorporated a more detailed fault propagation model

that limits the interruption of non-critical tasks, and avoids unnecessary timing budget ex-
tensions for high criticality tasks (Sub-problem 3.1). At the same time, we decided to take
into account mechanisms deployed into safety-critical systems that improve the availabil-
ity of tasks (Sub-problem 3.2). For instance, we considered tasks that are weakly-hard
real-time (they can tolerate a given number of faults within a number of successive exe-
cutions) [102] and also design patterns that use redundancy to mask faults. Nonetheless,
when these improvements are incorporated into the system, availability needs to be es-
timated thanks to simulations of the system’s execution. To deal with this requirement,
we defined translations rules to produce probabilistic automata that are then used in the
PRISM model checker [114] to perform system’s simulations.

These analyses and improvements led to two publications at the Symposium on In-
dustrial Embedded Systems (SIES) in 2016 and at Design, Automation & Test in Europe
Conference & Exhibition (DATE) in 2018. More details about these contributions are
given in Chapter 6.

4.4 Implementation of our contributions and evaluation
suite: the MC-DAG Framework

Our different contributions led to the development of an open source framework: the MC-
DAG Framework1. This framework was developed in Java and is cross-platform. It is
composed of a scheduling module, a translation module and a random MC-DAG generator.
We briefly describe how these different modules work in this section.

Specification of a MC system - to model a MC system with all the elements described
in section 4.1, we use XML files. The scheduling tables, computed by our schedulers can
also be written to XML files. We chose this markup language because it has been used in
similar tools like SDF³ [115], and in some RTOSes.

Scheduling module - this module uses the specification of a MC-DAG system and
applies the requested scheduling heuristic using the number of cores that are given. If the
heuristic managed to find a solution, the scheduling tables are written into a file. Otherwise
an exception is thrown and an error message is returned to the user. The implementation

1MC-DAG framework - https://github.com/robertoxmed/MC-DAG

52 © 2019 Roberto MEDINA

4.5. Conclusion

of the scheduling module is multithreaded: we can test the schedulability of various sys-
tems at the same time in order to perform benchmarks. These benchmarks are capable of
comparing us to the state of the art [80; 81], but they also allow us to analyze the behavior
of our heuristics.

PRISM translation rules - this module takes the system and the scheduling tables
as an input in order to apply the translation rules to obtain PRISM automata. Two files
need to be produced in this case, one for the model and another contains the formulas to
evaluate the availability rate of non-critical tasks thanks to the simulations of the system.

Random MC-DAG generator - existing approaches of the literature to schedule MC-
DAGs on multi-core architectures have only shown theoretical works. No benchmarking
tools were developed which was an important limitation we wanted to address. To test our
heuristics and compare our works to the state of the art, the MC-DAG framework includes
a random MC-DAG generator. The generation of random MC-DAG has to be unbiased
nonetheless. In order to achieve this unbiased generation, we incorporated existing works
of the literature regarding the generation of DAGs [116] but also the distribution of timing
budgets for tasks for MC systems [5; 55]. Nevertheless, we want to be able to control
some parameters of this generation to assess statically our contributions.

4.5 Conclusion

This chapter presented an overview of our contributions that address the problems we pre-
sented in Chapter 3. Our first contributions are related to the scheduling of MC-DAGs on
multi-core architectures. Since delivering a minimum service guarantee for the less criti-
cal components is a necessity in safety-critical systems, we have also developed methods
to perform availability analyses.

To solve the scheduling problem of data-dependent tasks using the MC model, we de-
signed a list-based meta-heuristic capable of computing scheduling tables for data-driven
MC systems. As opposed to existing approaches of the literature that have taken the same
route, we defined improved conditions for the execution of HI-criticality tasks in the LO-
criticality mode, in order to keep safe mode transitions. We have also implemented our
meta-heuristic following a global approach which improves our schedulability rate com-
pared to existing approaches of the literature. Our scheduling approach has been gen-
eralized to support an arbitrary number of criticality levels as well. Details about our
scheduling approaches are given on Chapter 5.

The availability analysis and proposed improvements for MC systems are presented
in Chapter 6. We explain in detail how we calculate the availability of non-critical tasks

© 2019 Roberto MEDINA 53

Chapter 4. Contribution overview

thanks to our fault model. Our results also demonstrate that the discard MC model, where
LO-criticality tasks are discarded after a mode transition occurs, delivers a poor avail-
ability rate for LO-criticality tasks. For this reason, we propose to include availability
enhancements on MC systems. Our availability analysis is extended to support these en-
hancements in the system.

The framework we developed incorporating all our contributions is presented in Chap-
ter 7. In order to compare our methods to existing approaches of the literature, this frame-
work includes a random MC-DAG generator, capable of generating unbiased graphs.

Finally, we present the experimental validations of our contributions in Chapter 8.
We compare the performances of our scheduling heuristics to the existing methods of the
literature [80; 81]. This comparison uses metrics like acceptance rates and number of
preemptions generated by the scheduling methods we propose. We also present a study on
the schedulability of MC systems that integrate more than two criticality levels.

54 © 2019 Roberto MEDINA

5 Scheduling MC-DAGs on Multi-core
Architectures

TABLE OF CONTENTS

5.1 META-HEURISTIC TO SCHEDULE MC-DAGS 56

5.2 SCHEDULING HI-CRITICALITY TASKS . 62

5.3 GLOBAL IMPLEMENTATIONS TO SCHEDULE MULTIPLE MC-DAGS 70

5.4 GENERALIZED N-LEVEL SCHEDULING . 82

5.5 CONCLUSION . 89

Many scheduling algorithms have been proposed for the MC model, nevertheless tak-
ing into account data dependencies (or precedence constraints) between tasks has rarely
been addressed [35]. In chapter 3, we demonstrated that MC Scheduling of MC-DAGs
(Problem 1) is a NP-hard problem. In this chapter we present the contributions related to
solving this problem.

We first present a meta-heuristic capable of scheduling MC systems executing appli-
cations in the form of MC-DAGs on a multi-core architecture: MH-MCDAG. The meta-
heuristic tries to compute feasible schedules to satisfy Schedulability in all modes of
execution (Sub-problem 1.1). Nonetheless, when the low-criticality mode scheduling is
computed, we need to take particular care of mode transitions to higher criticality modes
since the Schedulability in case of a mode transition (Sub-problem 1.2) needs to be
ensured. In order to do so, we introduce a property that needs to be respected for high-
criticality tasks when we are computing the low-criticality scheduling table. By doing so,
we are sure to obtain MC-correct schedulers (solving Sub-problem 1.1 and 1.2) for any
implementation of the meta-heuristic. Therefore, we propose a generic approach to solve
the MC Scheduling of MC-DAGs (Problem 1).

55

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Works in the literature have tackled the problem of scheduling MC-DAGs in mono and
multi-core architectures [80; 79; 81; 82; 83]. We have categorized and proposed solutions
to Limits of existing approaches (Sub-problem 1.3) throughout this chapter.

First of all, (i) the execution of high-criticality tasks is heavily constrained since these
tasks are systematically prioritized even when the system is in low-criticality mode. By
doing so, low-criticality tasks’ execution could be considerably delayed, potentially caus-
ing a deadline miss. Therefore, we propose to relax the execution of high-criticality tasks

in high-criticality mode in order to obtain better schedulability while still guaranteeing
MC-correctness. This relaxation is also motivated by the fact that communication between

low and high-criticality tasks are more likely to be satisfied when the scheduling of the
system is less constrained.

Approaches in [81; 82; 83] advocate for the creation of core clusters when multiple
sporadic MC-DAGs need to be scheduled: each cluster schedules a single MC-DAG. (ii)
Clustering often leads to a poor resource usage when MC-DAGs are activated in a peri-
odic manner. It is very likely that a MC-DAG will not use all the processing capabilities
offered by the cores of their clusters. To overcome this problem, we developed a global

and generic implementation of our meta-heuristic MH-MCDAG. Since the scheduling
problem is complex, we want to be able to solve it efficiently (e.g. in pseudo-polynomial
time) while still ensuring good resource usage of the targeted architecture. Two different
real-time schedulers where adapted to fit this implementation. The scheduler builds tables
off-line, similarly to Time-Triggered (TT) execution [16].

The final part of this chapter presents a generalization of MH-MCDAG to support
an arbitrary number of criticality levels: (iii) existing scheduling strategies for MC-DAGs

are limited to dual-criticality systems. New conditions on high-criticality tasks activations
need to be introduced in order to have safe mode transitions to higher criticality modes.
The generalization of the scheduling approach is motivated by the fact that industrial stan-
dards often define more than two criticality levels for their systems.

5.1 Meta-heuristic to schedule MC-DAGs

When designing a scheduling approach for MC-DAGs executing in multi-core architec-
tures, we need to make sure that the scheduling computed respects deadlines, data-dependencies
and mode transitions to the higher-criticality mode.

In this section we define a meta-heuristic to schedule MC-DAGs: MH-MCDAG. This
meta-heuristic is applicable to schedule dual-criticality systems, i.e. MC systems with
two levels of criticality: HI and LO. In order to achieve this, we define a condition on

56 © 2019 Roberto MEDINA

5.1. Meta-heuristic to schedule MC-DAGs

high-criticality tasks execution, that when respected, ensures that the system is capable of
switching to the high-criticality mode without causing a deadline miss.

5.1.1 Mixed-Criticality correctness for MC-DAGs

To define a scheduling strategy for MC systems executing MC-DAGs, we begin by char-
acterizing properties to be respected in order to satisfy Schedulability in all modes of
execution (Sub-problem 1.1) and Schedulability in case of a mode transition (Sub-
problem 1.2). In [81], Baruah introduced the notion of a MC-correct scheduling strategy
for MC-DAGs:

Definition 10. A MC-correct schedule is one which guarantees

1. Condition LO-Mode: If no vertex τi, of any MC-DAG in G executes beyond its

Ci(LO) then all the vertices complete execution by the deadlines; and

2. Condition HI-Mode: If no vertex τi, of any MC-DAG in G executes beyond its

Ci(HI) then all the vertices that are designated as being of HI-criticality complete

execution by their deadlines.

Condition LO-Mode in Definition 10 ensures the schedulability in LO mode: as long
as all tasks execute within their Ci(LO) (i.e. no TFE occurs), a MC-correct scheduling
satisfies task deadlines and precedence constraints. Condition HI-Mode in Definition 10
states that when HI-criticality vertices need to execute until their Ci(HI) (i.e. after a mode
transition has occurred), a MC-correct scheduling satisfies deadlines and precedence con-
straints for HI tasks. Condition HI-Mode needs to be ensure at all times for the MC
system.

Guaranteeing Condition LO-Mode is possible as long as a correct scheduler for the
MC system is found in the LO-criticality mode.

Definition 11. A correct schedule in a given criticality mode χ ∈ CL , is a schedule that

respects the deadline and precedence constraints on all task jobs of the MCS, considering

their Ci(χ) as execution time.

The difficulty in guaranteeing MC-correctness comes from the fact that Condition HI-
Mode needs to be respected. In fact, having two independent correct schedulers for both
criticality modes is not sufficient to guarantee MC-correctness: in other words having
a correct schedule in HI mode and another in LO mode is not sufficient to have MC-
correctness. The HI-criticality mode scheduling needs to be correct allowing the system

© 2019 Roberto MEDINA 57

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

to switch to the HI-criticality mode without missing a deadline for HI-criticality tasks.
This problem was demonstrated in Section 3.1.2 (Fig. 3.2), the scheduling of tasks in
the LO-criticality mode plays a major role in mode transitions. If HI-criticality tasks are
activated too late in the LO-criticality mode, then a possible deadline miss can occur. To
avoid this problem, we want to know when does a HI-criticality task need to be executed

in the LO-criticality mode, in order to not miss a deadline if a TFE occurs?

To answer this question, we define Safe Transition Property, a sufficient property on
HI-criticality tasks execution in the LO-criticality mode. Respecting the property in the
LO-criticality mode guarantees that the timing budget allocated to HI-criticality tasks is
large enough so they can complete their execution even after a mode transition. This can
be done by executing HI-criticality tasks in the LO-criticality mode, before or at the same
time they are executed in the HI-criticality mode.

To formalize this concept, we start by defining the function ψχ
i as follows:

ψχ
i (t1, t2) =

t2

∑
s=t1

δχ
i (s). (5.1)

where

δχ
i (s) =

1 if τi is running at time s in mode χ,

0 otherwise
.

This function defines the cumulated execution time allocated to task τi in χ mode from
time t1 to time t2. In other words it counts how much time was allocated to task τi in the χ
mode during the timespan [t1; t2]. Thanks to this function we are now capable of defining
the sufficient property to have MC-correct scheduling.

Definition 12. Safe Transition Property (Safe Trans. Prop.)

ψLO
i (ri,k, t)<Ci(LO) =⇒ ψLO

i (ri,k, t)≥ ψHI
i (ri,k, t). (5.2)

where ri,k is the release date of the job k of task τi. Since we are considering real-time
periodic systems, tasks can have multiple activations.

Safe Trans. Prop. states that, while the k-th activation of HI task τi has not been fully
allocated in LO mode, the budget allocated to this job in LO mode must be greater than
the one allocated to it in HI mode. Intuitively this guarantees that whenever a TFE occurs,
the final budget allocated to the job of τi is at least equal to its WCET in HI mode.

58 © 2019 Roberto MEDINA

5.1. Meta-heuristic to schedule MC-DAGs

Theorem 1. To ensure MC-correctness (Definition 10), it is sufficient to obtain a correct

schedule in HI-criticality mode and from this, define a correct schedule in LO-criticality

mode respecting Safe Trans. Prop.

Proof. We suppose that we have computed two scheduling tables using Theorem 1 for a
MC system S . Let us prove that the scheduling tables obtained respect MC-correctness.

Condition LO-Mode is respected since the LO-criticality scheduling table obtained
through Theorem 1 is correct (Definition 11). Therefore tasks are able to complete their
execution within their Ci(LO) and no deadline is missed.

Condition HI-Mode can be decomposed into two parts: (i) the scheduling table for
the HI-criticality is correct by construction (i.e. data-dependencies and deadlines are

respected), but we need to prove that (ii) mode transitions to the HI-criticality mode do
not provoke deadline misses for HI-criticality tasks. To prove the second point, we need
to demonstrate that HI-criticality tasks will have enough processing time to complete their
execution without missing a deadline in case of a TFE. Let us assume a TFE occurs at
time t, and let us consider the job ji,k of any HI-criticality task τi. At time t, ji,k has been
executed for ψLO

i (ri,k, t) (see Equation 5.1).

Case 1. If ψLO
i (ri,k, t) =Ci(LO), ji,k has been fully allocated by the scheduler at time

t. τi was completely executed in LO mode and met its deadline. Indeed, the scheduling
in LO mode is correct and ensures that all tasks meet their deadlines if they are executed
within their Ci(LO).

Case 2. If ψLO
i (ri,k, t)<Ci(LO), as a TFE occurs, the scheduling strategy triggers the

HI mode. Basically, it stops the LO-criticality scheduling to start the HI-criticality at time
instant t. The WCET of ji,k is also updated to Ci(HI). At time instant t, job ji,k in LO mode
has already been executed for ψLO

i (ri,k, t) and has Ci(HI)−ψHI
i (ri,k, t) of execution time

available to complete its execution in HI mode. We want to know if the allocated budget is
large enough to respect the deadline di,k after the mode switch to the HI-criticality mode.

We define Bi,k(t) as the budget that would be allocated between the LO and the HI-
criticality mode for job ji,k. This budget is decomposed in two parts. The LO mode part
allocated during time interval [ri,k, t] and the HI mode part allocated during time interval
[t,di,k]. More formally,

Bi,k(t) = ψLO
i (ri,k, t)+ψHI

i (t,di,k)

Since Ci(HI) = ψHI
i (ri,k, t)+ψHI

i (t,di,k), we have:

Bi,k(t) = ψLO
i (ri,k, t)+Ci(HI)−ψHI

i (ri,k, t)

© 2019 Roberto MEDINA 59

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Enforcing Safe Trans. Prop. in LO mode, we know that ψLO
i (ri,k, t)≥ ψHI

i (ri,k, t). There-
fore:

Bi,k(t)≥ ψHI
i (ri,k, t)+Ci(HI)−ψHI

i (ri,k, t)

≥Ci(HI).

We conclude that the budget allocated to job ji,k when a TFE occurs, is large enough to
complete its execution within its HI criticality WCET.

Figure 5.1: Illustration of case 2: ψLO
i (ri,k, t)<Ci(LO).

To better understand the proof, Fig. 5.1 illustrates the behavior of the scheduling strat-
egy respecting Safe Trans. Prop. and being schedulable in HI and LO modes. The red
rectangles represent the available computation time for a job ji,k when a TFE occurs. It is
clear from the figure that this computation time is large enough for the job to complete its
execution within its Ci(HI).

To design a scheduling approach that is MC-correct and therefore that respects condi-
tions Condition LO-Mode, Condition HI-Mode and correct execution in both criticality
modes, we have introduced the sufficient property: Safe Trans. Prop. Building on this
condition, we present MH-MCDAG, a meta-heuristic capable of scheduling MC systems
composed of MC-DAGs.

5.1.2 MH-MCDAG, a meta-heuristic to schedule MC-DAGs

In this subsection we define MH-MCDAG, a meta-heuristic to schedule MC systems ex-
ecuting multi-periodic MC-DAGs. This meta-heuristic is decomposed in two steps: the
scheduling of the system in the HI-criticality mode, and the scheduling of the system in
the LO-criticality mode enforcing Safe Trans. Prop. MH-MCDAG schedules the system
in HI-criticality mode using an adaptation of a suitable scheduling algorithm for real-time

60 © 2019 Roberto MEDINA

5.1. Meta-heuristic to schedule MC-DAGs

tasks with data dependencies. Global-Earliest Deadline First (G-EDF) can be used for
instance. If the schedule is correct in HI-criticality mode, we then proceed to schedule the
system in LO-criticality mode. The same scheduling algorithm can be used again for the
LO-criticality mode, but we enforce Safe Trans. Prop. to guarantee Condition HI-Mode
of MC-correctness (Definition 10). If the resulting schedule is correct in LO-criticality
mode, Condition LO-Mode of MC-correctness is also satisfied and therefore the sched-
ule is MC-correct.

Definition 13. MH-MCDAG Meta-heuristic for multi-periodic MC-DAG scheduling

1. Schedule tasks in HI-criticality mode and check its correctness.

2. Schedule tasks in LO-criticality mode, enforcing Safe Trans. Prop. Check correct-

ness of the schedule in LO-criticality mode.

The main advantage of defining a meta-heuristic is its genericity: any implementation
of MH-MCDAG will be able to obtain MC-correct schedulers for MC-DAGs. In fact,
we simply need to adapt a scheduler to take into account real-time deadlines and data-
dependencies. Different aspects can be considered when adapting a scheduler in order to
follow MH-MCDAG. If the user is looking to improve theacceptance rate for example,
solutions based on the laxity of a task, like G-LLF, have shown to be efficient [117]. On
the other hand, if the user is concerned about the number of preemptions entailed by the
adapted scheduler, another algorithm like G-EDF would be more suitable than laxity-based
algorithms. The only requirement for the adaptation is that Safe Trans. Prop. needs to
be ensured, this is not suitable for all scheduling algorithms since we need to count the
timing budget that is allocated for tasks in both criticality modes.

In the next section we begin to tackle the Limits of existing approaches (Sub-problem
1.3). As a matter of fact, existing approaches that schedule MC-DAGs [79; 80; 81] can
be considered as implementations of MH-MCDAG. They implicitly enforce Safe Trans.
Prop.. In these existing approaches, HI-criticality tasks are systematically prioritized dur-
ing the scheduling of the two-criticality modes, that way HI-criticality tasks complete
their execution in the low-criticality mode before or at least at the same time than in the
HI-criticality mode. We demonstrate that by doing so, HI-criticality tasks’ execution in the
low-criticality mode is too constrained which makes the MC scheduling problem harder
than it should be.

© 2019 Roberto MEDINA 61

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

5.2 Scheduling HI-criticality tasks

Existing approaches of the literature to schedule MC-DAGs [79; 80; 81] on dual-criticality
systems (i.e. system having a LO and HI execution mode) are implicit implementations
of MH-MCDAG. These approaches, based on List Scheduling (LS), compute two sep-
arate priority orderings for HI and LO-criticality tasks. Condition HI-Mode of MC-
correctness (Definition 10) is ensured by systematically prioritizing the execution of HI-

criticality tasks in both criticality modes. In this section we explain (i) why constraining
HI-criticality task this way is detrimental for the schedulability of the MC system. Thus,
(ii) we propose to compute the HI-criticality scheduling by maximizing their completion
time. This relaxation of HI-criticality tasks’ execution also allows to (iii) incorporate low-
to-high communication more easily than in the existing approaches.

5.2.1 Limits of existing approaches: as soon as possible scheduling
for HI-criticality tasks

The adoption of LS heuristics to schedule a MC-DAG into a multi-core processor was first
proposed by Baruah in [80]. This contribution proposes a method to schedule a MC-DAG
using the MC discard model with two levels of criticality: HI and LO. The motivation
behind the contribution is to keep the performances of LS scheduling (i.e. polynomial
complexity to find feasible solutions) but include constraints on HI-criticality tasks in
order to have safe mode transitions.

In order to obtain the scheduling for a MC-DAG, [80] establishes a priority ordering
for HI-criticality tasks: this priority ordering is used to sort a list of ready tasks (i.e. tasks
that have met their precedence constraints). The order gives more or less priority to tasks
when the allocation decision is made, i.e. when a task is scheduled in a core for a given
timeslot. In [80] proved that the heuristic is valid for any priority ordering obtained by

LS algorithms: in other words, the approach is generic as long as a LS algorithm is used
to obtain the priority ordering of vertices for the MC-DAG. A HI-criticality scheduling
table (SHI) is then computed by picking the top elements of the list. The list is updated
progressively when tasks finish their execution or when tasks have met their precedence
constraints and become ready. In the HI-criticality mode, tasks cannot be preempted.

If the system is schedulable in the HI-criticality mode, then the LO-criticality schedul-
ing table is computed by considering tasks with their Ci(LO). Another priority ordering is
calculated for all tasks but LO and HI-criticality priority orderings are independent. While
computing the scheduling table, HI-criticality tasks always have a greater priority than LO-

62 © 2019 Roberto MEDINA

5.2. Scheduling HI-criticality tasks

(a) MC-DAG in LO mode (b) MC-DAG in HI mdoe

Figure 5.2: Example of MC-DAG

criticality tasks. In order to have safe mode transitions to the higher criticality mode, HI-
criticality tasks can also preempt LO-criticality tasks. In other words, HI-criticality tasks
are executed As Soon As Possible (ASAP), while LO-criticality tasks can be preempted.
Proofs of MC-correctness for the heuristic are included in the publications supporting the
contribution [80; 81].

Thanks to an example of a MC-DAG (illustrated in Fig. 5.2) we explain how the algo-
rithm of [80] computes the scheduling tables for the MC system. We aim to demonstrate
how HI-criticality tasks’ execution affects the scheduling in the LO-criticality mode, more
precisely how LO-criticality tasks can be affected by the ASAP execution of HI-criticality
tasks. While the algorithm of [80] might declare a system as non-schedulable, we show
that a MC-correct schedule can be obtained if HI-criticality tasks are less constrained.

The MC-DAG in LO mode is represented in Fig. 5.2a, and the HI mode is shown in
Fig. 5.2b. Gray vertices represent HI-criticality tasks and white vertices LO-criticality
tasks. The number labels on the vertices represent the WCET in LO mode (Ci(LO)) and in
HI mode (Ci(HI)). The WCET is represented in Time Units (TUs). We consider that the
deadline and period of this MC-DAG are equal to 18 TUs. We define the utilization for a
MC-DAG on criticality level χ� as:

Uχ�(G) = ∑
τi∈V

Ci(χ�)

Tj
. (5.3)

The utilization rate can be generalized for the whole system S :

Uχ�(S) = ∑
G j∈G

Uχ�(G j). (5.4)

© 2019 Roberto MEDINA 63

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

We define Umax(S) = max{Uχ�(S) | ∀χ� ∈ CL}. This value allows us to deduce the lower
bound for the number of cores required to schedule the system S : mmin = �Umax(S)�. If
Umax(S)> m, (where m is the number of cores available in the architecture) we know for
a fact that the processor Π does not have enough processors to schedule the system. In
our example (Fig. 5.2), the utilization in LO mode is obtained with Eq. 5.3: U(LO) =
1+7+3+5+1+3+3+2+2+1+1

18 ≈ 1.61 and U(HI) ≈ 1.67. Therefore we need at least mmin =

�max(1.61,1.67)�= 2 cores to schedule the system.

As we mentioned before, the contribution in [80] demonstrated that any priority or-
dering can be used for the LS heuristic to compute the scheduling tables for the MC-
DAG. With the execution model that we have, Highest Level First with Estimated Times
(HLFET) has shown to be the most efficient in terms of complexity and makespan mini-
mization. Therefore, HLFET has better chances to find a feasible schedule with the dead-
line that was given to the DAG [72]. With this priority ordering and thanks to the example
of Fig. 5.2, we demonstrate how LO-criticality tasks’ execution is affected by the constant
preemption caused by HI-criticality tasks.

HLFET bases its priority ordering on a level coefficient, given by the longest path to
an exit vertex, considering timing budgets given to tasks. This path is known in graph
theory as the critical path from a vertex to an sink vertex. The critical path of a MC-DAG
is the largest critical path from an entry vertex to a sink vertex. For example in Fig. 5.2a,
the HLFET level/critical path of vertices K and J in the LO-criticality mode is 10, because
they are exit vertices with no successors. The HLFET level of A in the LO mode is 110,
and so on. When we apply the heuristic proposed in [80] using HLFET as the priority
ordering, we obtain the scheduling tables presented in Fig. 5.3 considering a dual-core
architecture. The priority orderings calculated thanks to HLFET are the following. For
the HI-criticality mode: : �A ≺HI D ≺HI C ≺HI F ≺HI G ≺HI I ≺HI J�. For the LO-
criticality mode: �A ≺LO C ≺LO D ≺LO G ≺LO F ≺LO I ≺LO J� for HI tasks and �B ≺LO

E ≺LO H ≺LO K� for LO tasks.

As we can see the system is schedulable in the HI-criticality mode (Fig. 5.3a): the
deadline is respected as well as data-dependencies between tasks. Nonetheless, the SLO

table in Fig. 5.3b shows that the deadline given to the MC-DAG is not respected for task
K. The missed deadline is due to the fact that task B is being constantly preempted by
HI-criticality tasks. Task B becomes ready right after the execution of task A, i.e. at time
slot 10, but it only starts its execution at time slot 70. HI-criticality tasks C,F,G, I and J

are being allocated before task B because they are HI-criticality tasks.

Intuitively, we can see that some HI-criticality tasks like I and J do not need to be
scheduled as soon as they become ready to respect their deadlines and have safe mode tran-

64 © 2019 Roberto MEDINA

5.2. Scheduling HI-criticality tasks

(a) SHI scheduling table

(b) SLO scheduling table

Figure 5.3: Scheduling tables for the MC-DAG of Fig. 5.2

sitions. We can also conclude that LO-criticality tasks might need to be scheduled before
some HI-criticality tasks in order to respect the deadline. If a LO-criticality task response
time is too large, then its successors might be activated too late. While the approach [80]

advocates for the systematic execution of HI-criticality tasks in the LO-criticality mode,
we demonstrate in the next subsection that this constraint can be relaxed. The relaxation
of HI-criticality tasks’ execution tends to improve LO-criticality tasks response times and
results in a better acceptance rate for MC systems. This latest affirmation will be demon-
strated in Chapter 8, where we measure acceptance rates for our scheduling method and
the scheduling method of [80].

5.2.2 Relaxing HI tasks execution: As Late As Possible scheduling in
HI-criticality mode

The scheduling approach proposed in [80] constrains the activation and execution of HI-
criticality tasks As Soon As Possible (ASAP) in the LO-criticality mode, in order to en-
sure MC-correctness. In Section 5.1.1 we demonstrated that, as long as the Safe Trans.
Prop. is respected in the LO-criticality mode, the scheduling computed by the scheduling
strategy will be MC-correct. The key difference with the existing approach [80], is that
HI-criticality tasks in our implementations, are not systematically prioritized during the
computation of the LO-criticality scheduling. The promotion of HI-criticality tasks only
takes place if Safe Trans. Prop. would not be respected during the allocation.

To ease the computation of the LO scheduling table, we want to ease the enforcement
Safe Trans. Prop. To do so, ψHI

i (ri,k, t) should be kept minimal as long as ψLO
i (ri,k, t)<

Ci(LO). In other words, HI-criticality tasks in HI mode should be scheduled As Late

© 2019 Roberto MEDINA 65

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Figure 5.4: Usable time slots for a HI-criticality task: ASAP vs. ALAP scheduling in HI
and LO-criticality mode

As Possible (ALAP) and not as soon as they become ready. In Fig. 5.4 we illustrate how a
HI-criticality task τ is constrained in three different cases: (i) when the HI-criticality task
is scheduled ASAP in HI and LO-criticality modes [80], (ii) when the HI-criticality tasks
is scheduled ASAP in the HI-criticality mode but only Safe Trans. Prop. is enforced; and
(iii) when the HI-criticality tasks is scheduled ALAP in the HI-criticality mode and Safe
Trans. Prop. is enforced.

The down arrow in Fig. 5.4 represents the time slot at which τ becomes ready (i.e. its
data dependencies have been met). This time slot is different in the HI and LO-criticality
mode since tasks have different timing budgets in both criticality mode and data depen-
dencies can be satisfied earlier in the LO-criticality mode (we have Ci(LO)≤Ci(HI)). We
highlighted in green the time slots that task τ can use to execute. The first two timetables
represent the scheduling that would be performed by the approach in [80]: HI-criticality
tasks are scheduled ASAP in both criticality modes, leaving very few usable slots for task
τ. The two middle timetables present the execution of τ that respects Safe Trans. Prop.
with HI-criticality tasks scheduled ASAP in the HI-criticality mode. For the LO-criticality
mode, we lift the ASAP constraint on HI-criticality tasks and show where task τ needs to
be scheduled in order to respect Safe Trans. Prop. Finally, the last two timetables demon-
strate the interest of the approach we chose: if HI-criticality tasks are scheduled ALAP in
the HI-criticality mode, when the LO-criticality scheduling table respecting Safe Trans.
Prop. is computed, task τ has a larger amount of usable time slots for its execution.

66 © 2019 Roberto MEDINA

5.2. Scheduling HI-criticality tasks

The scheduling approaches we propose throughout this chapter are based on the third
timetables: we execute HI-criticality tasks ALAP in order to obtain more usable time slots
for HI-criticality tasks to execute.

In [118], we proposed a scheduling approach for single MC-DAGs based on LS as
well. The difference with [80] is the relaxation of HI-criticality tasks in the LO-criticality
mode. The algorithm has the following differences:

• HI-criticality tasks are scheduled ALAP in the HI-criticality mode.

• We use a single priority ordering, ≺, for all tasks independently of their criticality
level in the LO-criticality mode. Safe Trans. Prop. is enforced in the LO-criticality
mode, i.e. HI-criticality tasks can preempt LO-criticality tasks to respect the prop-
erty for every time slot.

When we apply the HLFET priority ordering to our scheduling approach, we obtain the
following orders, in the HI-criticality mode: �A ≺ D ≺ C ≺ F ≺ G ≺ I ≺ J� and in the
LO-criticality mode: �A ≺ B ≺ D ≺C ≺ F ≺ E ≺ G ≺ H ≺ I ≺ J ≺ K�. The HI-criticality
scheduling table is presented in Fig. 5.5a. As we mentioned, tasks are scheduled ALAP but
the scheduling needs to remain correct, i.e. data-dependencies and deadlines need to be
respected. The LO-criticality scheduling table is presented in Fig. 5.5b. A major difference
when comparing our HI-criticality scheduling table to the one in Fig. 5.3a is that task B

starts its execution at time slot 10 (as opposed to 7). This allows LO-criticality tasks to not
miss the deadline in our case. We can also notice that task B is preempted at time slot 4,
this is due to the fact that Safe Trans. Prop. needs to be respected in order to have MC-
correct scheduling tables. In Chapter 8 we present a comparison in terms of acceptance
rate for our scheduling approach and the one proposed in [80]. The experiments confirm
the statistical gain of our approach due to the relaxation of HI-criticality tasks execution
in the LO-criticality mode.

5.2.3 Considering low-to-high criticality communications

Another motivation to have an ALAP scheduling for HI-criticality tasks in the HI-criticality
mode is related to the LO-to-HI communications that we consider in our execution model
(Chapter 4 Section 4.1). The execution model adopted in [79; 80; 81], restricts the commu-
nication LO-to-HI tasks. This could be in fact be a problem: LO-criticality components do
not go through the same certification process than HI-criticality components do, therefore
a failure on their execution is more likely to happen. If a HI-criticality task needs the input
of the LO-criticality tasks, then the HI-criticality task risks to not be capable of executing.

© 2019 Roberto MEDINA 67

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

(a) ALAP scheduling in HI mode

(b) Scheduling in LO mode

Figure 5.5: Improved scheduling of MC-DAG

Nonetheless, in safety-critical systems HI-criticality components could be in charge of
monitoring LO-criticality tasks: their outputs are used by the HI-criticality components.
For example a HI-criticality task can be in charge of controlling values computed by a LO-
criticality tasks in order to detect if these values are correct, e.g values are between bounds
or do not have drastic changes. In this subsection we answer the following problem: what

are the implications of the LO-to-HI communication in terms of scheduling?

Characterization of the LO-to-HI communication

For LO-to-HI communications, we need to respect the precedence constraint: the LO-
criticality task needs to be scheduled before the HI-criticality successor. Nonetheless, the
HI-criticality task is capable of fulfilling its execution even if the LO-criticality task did

not produce any data (caused by the a TFE and the mode transition to the HI-criticality
mode for example). The semantic for this type of communication is defined as follows:

Definition 14. A soft data-dependency is used when the transmitting task has a lower crit-

icality level than the receiving task. While the precedence constraint needs to be respected

in all criticality modes where both tasks are executed on, the receiving tasks is capable of

completing its execution even if the transmitting task was not able to produce its outputs

(due to a TFE for example).

In Fig. 5.6 we represent a MC-DAG with a LO-to-HI communication. HI-criticality
tasks are represented in gray (τ1 and τ3). These tasks are annotated with their WCET in
LO and HI-criticality mode. τ2 is a LO-criticality task represented in white, annotated
with its WCET in LO mode. The communication between τ2 and τ3 is considered to be

68 © 2019 Roberto MEDINA

5.2. Scheduling HI-criticality tasks

Figure 5.6: A MC-DAG with LO-to-HI communications

a soft data-dependency. The deadline/period for the MC-DAG is equal to 5 TUs. Thanks
to this example we explain how the ASAP strategy is often not capable of scheduling the
system whereas a MC-correct schedule for this system exists.

Constraints on the scheduling

When it comes to scheduling MC-DAGs containing LO-to-HI communications, we can
characterize a necessary condition for LO-criticality tasks that emit data to HI-criticality
tasks. This condition applies to off-line scheduling methods. The following condition
needs to be respected in the LO-criticality mode:

tLO
comp(ji,k)≤ min

�
di,k, min

τ j ∈ succ(τi)

�
tHI
ready(τ j)

��
. (5.5)

The condition states that the completion time of a job ji,k in the LO-criticality mode,
noted tLO

comp(ji,k), needs to be inferior or equal to: the minimum between deadline of the
job di,k and; the minimum of the time at which HI-criticality task become ready in the
HI-criticality mode. Respecting this conditions ensures that data produced by the LO-
criticality tasks will be available when the HI-criticality task is executed. Also it guar-
antees that the HI-criticality task can execute in the HI-criticality mode without causing
deadline misses.

We illustrate this necessary condition in Fig. 5.7 by scheduling the system illustrated
in Fig. 5.6 on a dual-core architecture. The scheduling tables obtained by using the ASAP
scheduling of [80] are illustrated in Fig. 5.7a. As we can see, the system is schedulable
in the HI-criticality mode: deadlines are respected, as well as precedence constraints.
Nonetheless, in the LO-criticality mode there is an incoherence in the scheduling tables:
at time slot 3, τ2 is still being scheduled while τ3 starts its execution because it needs to
respect Safe Trans. Prop.. The precedence constraint between τ2 and τ3 is not respected

in this case. In Fig. 5.7b, we illustrate the scheduling tables using an ALAP strategy for

© 2019 Roberto MEDINA 69

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

(a) HI-criticality ASAP (b) HI-criticality ALAP

Figure 5.7: ASAP vs. ALAP with LO-to-HI communications

HI-criticality tasks. Again the system is schedulable in the HI-criticality mode. This time
in the LO-criticality mode, there are no incoherence because τ3 is capable of starting its
execution at a later time slot.

In this section we have presented the limits regarding the scheduling of HI-criticality
tasks on existing approaches of the literature. Because HI-criticality tasks are sched-
uled ASAP in all criticality modes, systems are deemed as non-schedulable when feasible
and MC-correct solutions exist. Relaxing the execution of HI-criticality tasks in the HI-
criticality mode by using an ALAP strategy allows us to gain in schedulability and also
allows systems to have LO-to-HI communication. The next section presents our contri-
bution related to the scheduling of multiple MC-DAGs: existing approaches have reduced
the multiple MC-DAG scheduling problem to the scheduling of a single MC-DAG on a
cluster of cores. This reduction often leads to poor resource usage.

5.3 Global implementations to schedule multiple MC-DAGs

In this section we present our global implementation of MH-MCDAG tackling the prob-
lem of multiple periodic MC-DAG scheduling for multi-core architecture. Existing contri-
butions [81; 82; 83] scheduling multiple MC-DAGs have chosen to follow the federated

approach. The idea behind federated approaches is to create clusters of cores for DAGs
that have a high utilization, i.e. Umax(G j) > 1. A MC-DAG then has exclusive access
to �Umax(G j)� cores. By doing so, the problem of scheduling multiple MC-DAGs into a
multi-core architecture is transformed into single MC-DAG scheduling (in a set of cores).
For MC-DAGs with Umax(G j)≤ 1, they are transformed into sequential tasks and are ex-

70 © 2019 Roberto MEDINA

5.3. Global implementations to schedule multiple MC-DAGs

ecuted with a MC scheduling policy [35] on the remaining cores after the clustering has
taken place.

While federated approaches have the advantage of being quite simple and being capa-
ble of supporting sporadic activations of MC-DAGs, they lead to poor resource usage. For
example in a system composed of two MC-DAGs G1 and G2 with the following utilization
rates Umax(G1) = 3.1 and Umax(G2) = 1.2, the federated approach of [81] needs at least 6
cores to schedule the system, �Umax(G1)�+ �Umax(G2)� = 4+2 = 6. Nonetheless, since
the utilization of the system is closer to 5: Umax(S) = 3.1+ 1.2 = 4.5, we would like to
define a scheduling approach capable of computing tables with the least amount of cores
required.

To overcome poor resource usage, we have designed a global version of MH-MCDAG
for multi-periodic MC-DAGs. Multi-periodicity of software components is often used in
the design of reactive safety-critical systems and better scheduling methods can be defined.
The implementation of MH-MCDAG, called G-ALAP, is based on the principle that HI-
criticality tasks are scheduled ALAP in the HI-criticality mode and that all cores can be
used during the allocation of the vertices. G-ALAP computes static scheduling tables
off-line that are MC-correct. This implementation has been instantiated three times by
using different real-time scheduling algorithm: because the implementation is generic we

can easily choose one of the three adaptations. We instantiate our algorithm by adapting
real-time scheduling algorithms instead of using LS heuristics like HLFET. HLFET is

not applicable for the case when multiple MC-DAGs are considered since it only uses
execution times to calculate the priority ordering of tasks. Conversely, we need to respect
periods and deadlines of tasks as well.

By choosing global scheduling policies we are capable of taking into account dead-
lines and also allocate tasks on all the cores that are available in the architecture. The first
instance of G-ALAP is based on the Global Least-Laxity First (G-LLF) algorithm known
to give good performances in terms of acceptance rates. The second instance is based on
Global Earliest Deadline First (G-EDF), it entails less preemptions and migrations which
are relevant aspects when designing schedulers for safety-critical systems. The third in-
stance of our scheduling algorithm combines both G-EDF and G-LLF. We limit the num-
ber of preemptions in the HI-criticality mode by using G-EDF and improve schedulability
in the LO-criticality mode by using G-LLF. Other adaptations of MH-MCDAG could also
be considered and we show that few modifications are required in order to obtain them.

In Fig. 5.8 we present a MC system composed of two MC-DAGs. Fig. 5.8a repre-
sents the system in the LO-criticality mode, numbers correspond to the Ci(LO) of tasks.
Fig. 5.8b represents the system in HI-criticality mode. This system includes the previous

© 2019 Roberto MEDINA 71

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

(a) LO-criticality mode (b) HI-criticality mode

Figure 5.8: MC system with two MC-DAGs

MC-DAG presented in Fig. 5.2, noted G1, with a new period/deadline of 24 TUs. We
consider MC-DAGs have implicit deadlines deduced by their periods. The second MC-
DAG, G2, has a period/deadline of 12 TUs. Since the system is multi-periodic due to the
two MC-DAGs, scheduling tables need to be computed for the hyper-period of the sys-
tem. The hyper-period H is equal to the least common multiplier of all the periods of the
MC-DAGs. In this example lcm(24,12) = 24. Therefore, MC-DAG G2 will have two
executions, while MC-DAG G1 will have only one execution during the hyper-period.

5.3.1 Global as late as possible Least-Laxity First - G-ALAP-LLF

In this subsection we present the global implementation of MH-MCDAG, called G-ALAP.
We detail how the algorithm works considering the G-LLF instance of the algorithm. G-
ALAP is decomposed in two steps: (i) compute the HI-criticality scheduling table; and (ii)
compute the LO-criticality scheduling table enforcing Safe Trans. Prop.

HI-criticality scheduling table: Algorithm 1 presents the computation of the HI-
criticality scheduling table (SHI). Like we mentioned in the previous section, in order to
ease the computation of the LO-criticality scheduling table for HI-criticality tasks, we are
going to allocate HI-criticality tasks ALAP in the HI-criticality mode. An easy way to ob-
tain such behavior is to produce dual task graphs of the MC-DAGs and schedule this new

72 © 2019 Roberto MEDINA

5.3. Global implementations to schedule multiple MC-DAGs

set using an ASAP strategy. A dual task graph is obtained by inversing the precedence
constraints. Obtain a dual for each graph of the system can also be performed, we use the
following notation: S� for the dual of the system and G� for the dual of a single MC-DAG.
Once a correct scheduling is found for the dual graphs, the final step of the algorithm in-
verses the table: we horizontally “flip” the scheduling table, since data-dependencies were
respected for the dual system, once the horizontal flip is performed data-dependencies will
be respected for the normal system. The transformation of the system to its dual is done
in line 2 of Alg. 1. The inversion of the scheduling table is done in line 27.

The rest of the algorithm is straightforward. We begin by initializing the remaining
time of all HI-criticality tasks and by inserting source vertices into the ready list (l. 5-
8). RHI

i is the variable that stores the remaining time that needs to be allocated for a
task job. The next step consists in building the scheduling table slot by slot until the
hyper-period. Before the scheduling decisions for each core are made, we sort the ready
list. The SORTHI (l. 9) function is the core of our scheduling strategy: jobs that are
in the ready list are sorted according to a specific priority ordering. In the G-ALAP-LLF
implementation, SORTHI order is determined by the laxity of each task, therefore SORTHI
needs to compute laxities of ready tasks to then sort them in ascending order.

To obtain a scheduler based on G-LLF we need to define a laxity formula in the context
of tasks with precedence constraints. We consider critical path (CPχ

i) of a vertex τi in
mode χ. The laxity of the k-th job of task τi (noted ji,k), at time slot t, in the criticality
mode χ is defined as follows:

Lχ
i,k(t) = di,k − t − (CPχ

i +Rχ
i,k). (5.6)

di,k is the deadline of job ji,k. Rχ
i,k is the remaining execution time of the job ji,k, i.e.

Rχ
i,k =Ci(χ)−ψχ

i (ri,k, t −1). Like for the normal G-LLF, a lower laxity leads to a higher
priority of the task allocation.

Once laxities are updated and the list is sorted, the function VERIFYCONSTRAINTS

is called (l. 10). This utility function needs to be defined differently depending on the
scheduling policy used to implement MH-MCDAG. In the case of G-ALAP-LLF, the
following constraints have to always be respected:

• Number of tasks with zero-laxities: the number of tasks with zero-laxities needs
to be inferior or equal to the number of cores available.

• Non-negative laxities: if a task has a negative laxity it means that it has accumulated
some delay. Due to precedence constraints this cannot be tolerated (delays could be
propagated to successors of tasks, leading to a deadline miss).

© 2019 Roberto MEDINA 73

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Algorithm 1 Computation of the HI scheduling table with G-ALAP

1: function CALCSHI(S : MC system to schedule)
2: Transform system S to S�

3: Ready ← /0 � List of ready tasks

4: for all HI tasks τi do
5: RHI

i ←Ci(HI) � Remaining execution time
6: Ready ← Ready∪{τi | pred(τi) = /0} � Add source vertices
7: end for

8: for all timeslots t < H do
9: SORTHI(Ready, t) � Updates ready list order if necessary

10: if VERIFYCONSTRAINTS(Ready, t) =⊥ then
11: return NOTSCHEDULABLE

12: end if
13: for all cores c ∈ Π do
14: τi ← head of Ready not being allocated
15: SHI[t][c]← τi � Allocate task τi
16: RHI

i ← RHI
i −1

17: end for
18: Ready ← Ready ∪ {succ(τi) | ∀τ j ∈ pred(succ(τi)),RHI

i = 0}
19: Ready ← Ready \ {τi ∈ Ready | RHI

i = 0}

20: for all G j ∈ G do
21: if t +1 mod Tj = 0 then � Reactivation of G j
22: ∀τi ∈ G j, RHI

i ←Ci(HI)
23: Ready ← Ready∪{τi ∈ G j | pred(τi) = /0} � Add source vertices
24: end if
25: end for

26: end for
27: Reverse the scheduling table SHI

28: return SHI scheduling table
29: end function

74 © 2019 Roberto MEDINA

5.3. Global implementations to schedule multiple MC-DAGs

• Number of slots left in the scheduling table: the number of available time slots
is equal to the difference between the hyper-period and the current time slot t mul-
tiplied by the number of cores: (H − t)×m. If the total remaining times of all
ready tasks is superior than this value, then there are not enough time slots left in
the scheduling table to allocate all tasks.

If one of these constraints is not respected, VERIFYCONSTRAINTS returns a false boolean
and we stop the scheduling heuristic, declaring the system as NOTSCHEDULABLE.

The next step in the algorithm is to allocate tasks to cores (l. 15-19). We just need
to grab up to m (m being the number of available cores of Π) tasks that are in Ready and
allocate them to the available cores. The remaining time for each of the allocated task is
updated as well (l. 18).

Once tasks are allocated to the available cores, the algorithm can perform two types
of updates on the ready list. The first one consists in activating new jobs (l. 18), if all
the predecessors of a task have been scheduled then the task’s job becomes ready and is
added to the list. The second update removes tasks that have been fully allocated, i.e. their
remaining time reached zero (l. 19).

After updating the ready list, we verify if any MC-DAG of the system has a new activa-
tion (l. 22-27). Since the scheduling table is computed during the hyper-period, MC-DAGs
can have multiple activations during the computation of the table. If the period of a MC-
DAG is reached, then we reinitialize the remaining time of tasks (l. 24) and reincorporate
jobs of the source vertices of the MC-DAG (l. 25). Finally, if the algorithm was capable of
going through all timeslots until the hyper-period and VERIFYCONSTRAINTS was never
false, then we reverse the scheduling table calculated for S� (l. 27) and return it (l. 30).

Application of Alg. 1 with G-ALAP-LLF in an example: Let us demonstrate the
application of the algorithm with the MC system presented in Fig. 5.8. We have the fol-
lowing utilization rates for the MC-DAGs: for G1 ULO(G1) ≈ 1.21 and UHI(G1) = 1.25,
for G2 ULO(G2) = 1.5 and UHI(G2)≈ 1.33. The maximum utilization rate for the system
is therefore Umax(S)≈ 2.71 and the lower bound of of cores required is mmin = �2.71�= 3.
We apply the Alg. 1 on system S of Fig. 5.8 with a tri-core architecture.

The transformation of the system to its dual is presented in Fig. 5.9. Like we men-
tioned, the transformation consists of inversing data dependencies: source vertices become
exit vertices and vice versa. With the dual system S�, we initialize remaining times for all
the HI-criticality task jobs and add the first vertices to the ready list, task jobs jI,0, jJ,0, jd,0
and je,0 in this case.

The main loop is then reached, and we start the allocation process core by core.
The SORTHI function starts by calculating laxities of the ready tasks for time slot 0:

© 2019 Roberto MEDINA 75

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Figure 5.9: Transformation of the system S to its dual S�

(a) HI-criticality scheduling for S�

(b) HI-criticality scheduling with ALAP execution

Figure 5.10: HI-criticality scheduling tables for the system of Fig. 5.8

LHI
d,1(0) = 2, LHI

e,1(0) = 2, LHI
I,1(0) = 6 and LHI

J,1(0) = 8. None of the constraints of VERIFY-
CONSTRAINTS is violated so the function does not return false. Since we only have four
ready tasks and three available cores, only tasks d,e and I are allocated at this time slot.
No updates are performed to the ready list because none of the task finished its execution.
Also we have not reached the period of another MC-DAG. Moving to the next slot t = 1,
we have the following laxities: LHI

d,1(1) = 2, LHI
e,1(1) = 2, LHI

I,1(1) = 6 and LHI
J,1(1) = 7.

The same allocation as the previous slot takes place. At time slot t = 2 however, tasks I

and J will have the same laxity, the algorithm has an arbitrary order when tasks have the
same laxities so in this case, tasks d,e and J are allocated. Also tasks d and e finish their
execution thus the ready list is updated: tasks c has its dependencies met therefore it is
added to the ready list, and tasks d and e are removed from the ready list. These steps are
reproduced until time slot 12: G2 is then reactivated because we have reached its period.

76 © 2019 Roberto MEDINA

5.3. Global implementations to schedule multiple MC-DAGs

The final scheduling tables produced by Alg. 1 for the system of Fig. 5.8 are presented
in Fig. 5.10. Blue boxes represent the execution MC-DAG G1 and its tasks. Orange boxes
represent the execution of MC-DAG G2. For this example, the system is in fact schedula-
ble, constraints in VERIFYCONSTRAINTS were never violated during the computation of
the scheduling table. Fig. 5.10a presents the scheduling tables of the dual system created
by the inversion of dependencies. The final table for system S is presented in Fig. 5.10b.

LO-criticality scheduling table: Algorithm 2 presents the computation of the LO-
criticality scheduling table (SLO). This table is computed almost the same way as the HI-
criticality table (Alg. 1). However, for this criticality mode we do not perform a system
transformation. The only requirement in order to obtain a MC-correct scheduling is to
respect Safe Trans. Prop. and obtain a correct scheduler in LO-criticality mode.

Like for Alg. 1, we start by initializing remaining times and adding source vertices to
the ready list (l. 4-7). Then the main loop allocates tasks to cores slot by slot until it reaches
the hyper-period. The sorting function SORTLO, is called for each slot (l. 8): laxities are
calculated and the ready list is sorted. However, the main difference between SORTHI and
this function, is the fact that Safe Trans. Prop. will be enforced by SORTLO. Thus, in
order to respect Safe Trans. Prop. (Eq. 5.2), if at the current time slot the condition does
not hold, then the task is promoted with the highest priority and put at the beginning of the
ready list. The rest of the function is similar to Alg. 1: the ready list is updated by adding
newly activated tasks (l. 19) and by removing tasks that finished their execution (l. 20),
MC-DAGs are reactivated when we reach their period (l. 21-26) and, the final step returns
the scheduling table if VERIFYCONSTRAINTS has not been violated.

Going back to the example presented in Fig. 5.8, we are going to apply Alg. 2 on
that system. The ready list is initialized and the source vertices A,a and b are added first.
Their laxities are the following: LLO

a,1(0) = 2, LLO
b,1(0) = 2 and LLO

A,1(0) = 12. Once task A

is fully allocated at time slot 10, tasks B,C,D and G are activated and added to the ready
list. We have the following laxities LLO

a,1(1) = 2, LLO
b,1(1) = 2, LLO

B,1(1) = 12, LLO
D,1(1) =

12, LLO
C,1(1) = 14 and LLO

G,1(1) = 19. Tasks are allocated according to their laxities until
time slot 7, where tasks C and G are promoted (i.e. they are considered as zero-laxity
tasks for that time slot and are put at the top of the ready list) in order to respect Safe
Trans. Prop.. Other promotions occur at time slots 8 (task C), 10 (task D), 11 (task D),
14 (task F), 15 (task F) and 20 (task J).

The final LO-criticality scheduling table is illustrated in Fig. 5.11. Again, blue boxes
represent the execution of MC-DAG G1 and orange boxes represent the execution of MC-
DAG G2. The system is schedulable in LO-criticality mode and thanks to the task pro-

© 2019 Roberto MEDINA 77

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Algorithm 2 Computation of the LO scheduling table with G-ALAP

1: function CALCSLO(S : MC system to schedule)
2: Ready ← /0 � List of ready tasks sorted by laxities

3: for all τi do
4: RLO

i ←Ci(LO) � Remaining execution time
5: Ready ← Ready∪{τi | pred(τi) = /0} � Add source vertices
6: end for

7: for all timeslots t < H do
8: SORTLO(Ready, t)
9: if VERIFYCONSTRAINTS(Ready) =⊥ then

10: return NOTSCHEDULABLE

11: end if
12: for all cores c ∈ Π do
13: τi ← head of Ready not being allocated
14: SLO[t][c]← τi � Allocate task τi
15: RLO

i ← RLO
i −1

16: end for
17: Ready ← Ready∪{succ(τi) | ∀τ j ∈ pred(succ(τi)),RLO

i = 0}
18: Ready ← Ready \ {τi ∈ Ready | RLO

i = 0}

19: for all G j ∈ G do
20: if t +1 mod Tj = 0 then � Reactivation of G j
21: ∀τi ∈ G j, RLO

i ←Ci(LO)
22: Ready ← Ready∪{τi ∈ G j | pred(τi) = /0} � Add source vertices
23: end if
24: end for

25: end for
26: return SLO scheduling table
27: end function

Figure 5.11: LO-criticality scheduling table for the system of Fig. 5.8

78 © 2019 Roberto MEDINA

5.3. Global implementations to schedule multiple MC-DAGs

motions that were performed by the algorithm, Safe Trans. Prop. (Eq. 5.2) is respected.
Thus, by construction the scheduling tables that were produced are MC-correct.

While the G-LLF adaptation of the G-ALAP algorithm is capable of finding MC-
correct scheduling tables, it can entail an important number of preemptions. In the example
we have presented, the scheduling produces 13 preemptions for 44 activations of tasks for
both criticality modes. The next subsection presents another adaptation of G-ALAP that
has a lowest acceptance ratio but it entails less preemptions.

5.3.2 Global as late as possible Earliest Deadline First - G-ALAP-
EDF

A known limitation for LLF is the fact that the strategy usually generates numerous pre-
emptions and migrations. This can be seen in Fig. 5.11 during time slots 11-15 where
tasks B and F preempt each other. Improvements to avoid this type of behavior have been
proposed in the literature [119] and can be included in our heuristic. Nonetheless, in order
to demonstrate the genericity of our approach, we detail how we can obtain a version of
G-ALAP based on G-EDF, we refer to this adaptation as G-ALAP-EDF.

To adapt the implementation of the meta-heuristic we define a function for the priority
ordering of tasks that will be used for the SORTHI and SORTLO functions of Alg. 1
and Alg. 2. Since we are basing the algorithm in G-EDF, the priority ordering needs
deadlines for each task. While we could choose the deadline of the MC-DAG (D j), due
to precedence constraints this is not a good alternative: we would like to prioritize tasks
that are predecessors to have better chances of finding a correct scheduler for example.
Therefore, we define dχ

i as the virtual deadline of task τi in criticality mode χ:

dχ
i = D j −CPχ

i . (5.7)

Where D j is the deadline of the MC-DAG G j, and CPχ
i is the critical path of the vertex’

successors.

The constraints that has to be respected during the computation of the scheduling tables
and that are verified by VERIFYCONSTRAINTS are the following:

• Respecting virtual deadlines: tasks must always respect their virtual deadlines,
otherwise their successors could miss the deadline for the MC-DAG, D j.

• Number of slots left: the sum of remaining times of ready tasks needs to always be
inferior or equal to the number of slots available.

© 2019 Roberto MEDINA 79

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

(a) HI-criticality mode

(b) LO-criticality mode

Figure 5.12: Scheduling of the system in Fig. 5.8 with G-ALAP-EDF

For the SORTHI and SORTLO functions the difference with the previous implementa-
tion is that, tasks are sorted in ascending order in function of their virtual deadlines. For
the HI-criticality mode, the priority ordering of the ready list does not change in function
of the time slot that is being allocated. Nonetheless, preemption occurs when a task with
an earlier deadline is activated at some point. In the LO-criticality mode, virtual deadlines
are also used and preemption can occur as well. Nonetheless, like for the SORTLO version
of G-ALAP-LLF, we need to ensure that Safe Trans. Prop. is respected, therefore if a
task can potentially violate Eq. 5.2, then it is promoted and it is put at the beginning of the
ready list. Because G-ALAP-EDF is an implementation of MH-MCDAG, by construction
we will obtain MC-correct scheduling tables.

In Fig. 5.12 we represent the scheduling tables that are found for the system of Fig. 5.8
using G-ALAP-EDF. Fig. 5.12a shows that a correct scheduler for the HI-criticality mode
can be found. The SLO table is represented in Fig. 5.12b, the system is also schedulable
in this criticality mode and task promotions took place for time slots 7, 8 (tasks D and G)
and 19 (task J). As we can see, the number of preemptions is also lower to the number
of preemptions produced by G-ALAP-LLF: we have 8 preemptions for the 44 activations
of tasks. Chapter 8 presents detailed results in terms of acceptance rate for both G-ALAP-
LLF, G-ALAP-EDF and G-ALAP-HYB.

G-ALAP-HYB is the third instance of our algorithms combining both G-EDF for the
HI-criticality mode and G-LLF for the LO-criticality mode. For the SORTHI function
Eq. 5.7 is used to order tasks in the ready list, and SORTLO uses Eq. 5.6 to sort ready lists
in addition to Safe Trans. Prop.

80 © 2019 Roberto MEDINA

5.3. Global implementations to schedule multiple MC-DAGs

(a) Federated approach: HI-criticality mode

(b) Federated approach: LO-criticality mode

Figure 5.13: Scheduling with the federated approach

The Federated approach

The scheduling tables that are computed by the federated approach [81] are illustrated in
Fig. 5.13. Each MC-DAG of Fig. 5.8, has a maximum utilization rate greater than 1 and
lower than 2, therefore we need two clusters of two cores to schedule each of these MC-
DAGs. Like we explained in Section 5.2, in [79; 81] the author advocates for the execution
of HI-criticality tasks as soon as they become ready in order to ensure MC-correctness.
Nonetheless, like we demonstrated throughout this section, G-ALAP-LLF and G-ALAP-
EDF were capable of finding MC-correct schedules for the same system with only three
cores, which corresponds to the lower bound of required cores to schedule the system.

In this section we have presented our global and generic implementation of the MH-
MCDAG meta-heuristic: G-ALAP. The main objective of this implementations was to
overcome the limitation regarding the scheduling of multiple MC-DAGs: the creation of
clusters to schedule MC-DAGs leads to poor performance usage. To achieve improved
performances in terms of resource usage and acceptance rate we adapted global real-time
scheduler (G-LLF and G-EDF). In Chapter 8 we experimentally assess the performances
of our heuristics and we compare them to the state of the art [81]. In the next section
we tackle the final limitation we have identified for existing approaches: safety-critical
systems often define more than two levels of criticalities. We propose a generalization of
our meta-heuristic to handle an arbitrary number of criticality levels.

© 2019 Roberto MEDINA 81

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

5.4 Generalized N-level scheduling

In safety-critical systems, certifications standards usually define more than two criticality
levels, as opposed to most contribution in MC [35]. For example, for railroad systems four
different Safety Integrity Levels (SIL) are used to categorize applications that are hosted in
the system. In airborne systems, the DO-178B certification defines five different Software
levels, depending on the effects of a failure condition in the system. Therefore, our final
objective when it comes to scheduling MC-DAGs in multi-core architectures, is to define
an approach capable of handling an arbitrary number of criticality levels.

We begin by extending the definition of MC-correctness, firstly introduced by Baruah
in [81]. Thanks to this definition, we design a new meta-heuristic to schedule MC-DAGs
with an arbitrary number of criticality levels in a multi-core architecture. At the end of
this section, we briefly describe a N-criticality levels implementation of the meta-heuristic
based on G-LLF.

5.4.1 Generalized MC-correctness

To define a scheduling strategy for a generalized MC system, we have to introduce new
properties in order to satisfy Schedulability in all modes of execution (Sub-problem
1.1) and Schedulability in case of a mode transition (Sub-problem 1.2). Considering
more than two criticality modes makes the MC scheduling problem of the system more
difficult: the scheduling needs to be compatible in all criticality modes.

In Chapter 4, we defined the task model for a MC system with N criticality modes of
execution. We remind some key aspects of the generalization:

• Criticality modes can be ordered as a set of N elements: χ1 ≺ χ2 ≺ · · ·≺ χN . When
a TFE occurs in mode χ� the system makes a transition to mode χ�+1. The system
always starts its execution in mode χ1.

• Timing budgets are monotonically increasing, i.e. Ci(χ1)≤Ci(χ2)≤ · · ·≤Ci(χN).

• A task is considered to be of χ�-criticality if it executes in modes {χ1, . . . ,χ�}.

Definition 15. Generalized MC-correctness - A generalized MC-correct scheduling is one

that guarantees:

1. If all vertices of any MC-DAG execute within their Ci(χ1), then all vertices complete

their execution by the deadlines; and

82 © 2019 Roberto MEDINA

5.4. Generalized N-level scheduling

2. If no vertex of any MC-DAG executes beyond its Ci(χ�), then all vertices that are

designed as being of χ�-criticality complete their execution by their deadlines.

The first point of Definition 15 ensures the schedulability in the lowest-criticality
mode: if all tasks complete their execution within their Ci(χ1) then the system must sat-
isfy all deadlines. The second point states that when the system is operating in the χ�

mode, then all tasks that belong to that criticality level are capable of completing their
execution within their Ci(χ�). This definition is a simple induction of the MC-correct def-
inition (Definition 10). We now define the necessary property that allows MC system with
N-criticality modes to have safe mode transitions to the higher criticality level.

Definition 16. Generalized Safe Trans. Prop.

ψχ�
i (ri,k, t)<Ci(χ�) =⇒ ψχ�

i (ri,k, t)≥ ψχ�+1
i (ri,k, t). (5.8)

The principle of Safe Trans. Prop. (Eq. 5.2) is generalized by induction with this
definition. Its generalization states that a χ�+1-criticality task should not have executed
for less time in the χ� than it has executed in χ�+1 mode. Respecting this condition will
guarantee the second part of Definition 15, since χ�+1-criticality tasks will have enough
time to extend their timing budget and complete their execution within their Ci(χ�+1).

5.4.2 Generalized meta-heuristic: N-MH-MCDAG

Thanks to Definition 15 and 16, we can design a new meta-heuristic to schedule multiple
MC-DAG with an arbitrary number of criticality modes.

Definition 17. N-MH-MCDAG Meta-heuristic for multi-periodic MC-DAG scheduling

with an arbitrary number of criticality levels.

1. Schedule the MC system in descending order: starting by the highest criticality

mode and going towards the lowest criticality mode.

2. While scheduling criticality modes that are not the highest-criticality mode, enforce

Generalized Safe Trans. Prop..

Due to the fact that N-MH-MCDAG enforces Generalized Safe Trans. Prop. during
the computation of the criticality tables, we obtain Generalized MC-correctness for the
scheduling produced by this meta-heuristic.

In the generalization of our scheduling heuristics, we also aim at relaxing the execu-
tion of tasks that are executed in more than one criticality mode. This can be done by
scheduling these tasks ALAP for all the criticality modes they are executed in.

© 2019 Roberto MEDINA 83

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Safe Transition Property for Dual Graphs

When scheduling tasks ALAP in more than one criticality, we need to take particular care
of Generalized Safe Trans. Prop. We define an equivalent necessary property that needs
to be respected while we are scheduling the dual of the system. Respecting the property
ensures that Generalized Safe Trans. Prop. is satisfied once we perform the horizontal
flip of the scheduling tables.

Definition 18. Dual Graph Generalized Safe Transition Property:

ψχ�+1
i (r�i,k, t

�)≤Ci(χ�+1)−Ci(χ�) =⇒ ψχ�
i (r�i,k, t

�) = 0. (5.9)

This property states that while the timing budget Ci(χ�+1)−Ci(χ�) of task τi has not been
fully allocated in the χ�+1 mode, then the task start its execution in the χ� mode.

Theorem 2. Respecting Dual Graph Generalized Safe Transition Property on the schedul-

ing of the dual MC-DAGs in all criticality modes is equivalent to respecting Generalized
Safe Trans. Prop. on the normal MC-DAGs.

Proof. We recall the definition of ψχ�
i (t1, t2) = ∑t2

s=t1 δχ�
i (s), where

δχ�
i (s) =

1 if τi is running at time s in mode χ�,

0 otherwise
.

The dual operation on the system transform a job ji,k into a dual job j�i,k� of a task of
period P as follows, n×P being the hyper-period:

A job ji,k with the following release date and deadline [ri,k = k×P, di,k = (k+1)×P],
is transformed into the dual job j�i,k� with parameter [ri,k� = k�×P, di,k� = (k�+ 1)×P]

with k� = n−1− k.
For instance, if during the hyper-period a task of period 10 has 3 jobs (0, 1, 2), the

event consisting in the release of job k = 2 occurs at time slot 10 and in the dual space, it
corresponds to the deadline of job k� = 0 at time 10.

This allows us to define the following properties for any task job ji,k:

1. ψχ�
i (ri,k, t)+ψχ�

i (t,di,k) =Ci(χ�).

2. ψχ�
i (t,di,k) = ψχ�

i (ri,k� , t�) and ψχ�
i (ri,k, t) = ψχ�

i (t�,di,k�) where t� = n×P− t.

We simplify the following notations for clarity in the proof ψχ�
i ≡ ψχ� , ri,k� ≡ r�, ri,k ≡

r, di,k� ≡ d�, Ci(χ�)≡C(χ�).

84 © 2019 Roberto MEDINA

5.4. Generalized N-level scheduling

Generalized Safe Trans. Prop. states:

ψχ�(r, t)<C(χ�) =⇒ ψχ�(r, t)≥ ψχ�+1(r, t)

C(χ�)−ψχ�(t,d)<C(χ�) =⇒ C(χ�)−ψχ�(t,d)≥C(χ�+1)−ψχ�+1(t,d) with Prop. 1

ψχ�(t,d)> 0 =⇒ ψχ�+1(t,d)−ψχ�(t,d)≥C(χ�+1)−C(χ�)

ψχ�(r�, t�)> 0 =⇒ ψχ�+1(r�, t�)−ψχ�(r�, t�)≥C(χ�+1)−C(χ�) with Prop. 2.

This can be used as is. If we take the contraposition it states that:

ψχ�+1(r�, t�)−ψχ�(r�, t�)≤C(χ�+1)−C(χ�) =⇒ ψχ�(r�, t�)≤ 0

but we have ψχ�(t1, t2)≥ 0 for any t1, t2, thus:

ψχ�+1(r�, t�)−ψχ�(r�, t�)≤C(χ�+1)−C(χ�) =⇒ ψχ�(r�, t�) = 0.

ALAP strategy with N criticality modes

In Section 5.2, we explained the motivation behind the idea of executing HI-criticality
tasks ALAP in the HI-criticality mode. By doing so, the usable slots for all tasks during
the computation of the LO-criticality scheduling table is significantly larger. This leads to
a better schedulability of MC-systems.

In practice, we will apply the same type of task graph transformation we had in Sec-
tion 5.3: by inverting data dependencies on MC-DAGs and scheduling the system with an
ASAP strategy, we obtain an ALAP behavior for the scheduling tables once we inverse it.
We will compute scheduling tables on the dual of the system: S�, for all criticality modes
that are not the lowest criticality mode. Nonetheless, by doing so we need to enforce the
Dual Graph Generalized Safe Transition Property for tasks that are executed in more
than one criticality level.

In Fig. 5.14, we illustrate how the scheduling of the dual graph is constrained during
the allocation of a task τ for the criticality modes χ�+1,χ� and χ�−1. The first time diagram
represents the scheduling obtained for the χ�+1 mode, the task can be executed at all time
slots that are represented. Once the scheduling in the χ�+1 mode is found, we proceed to
schedule the task in the χ� mode. The time slots highlighted in red represent slots that
cannot be used by the τ task, if the task is scheduled in those slots then Dual Graph
Generalized Safe Transition Property is not respected. Once the χ� mode has been

© 2019 Roberto MEDINA 85

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

Figure 5.14: Representation of unusable time slots for a task τi in a generalized MC
scheduling with ASAP execution

scheduled, then we can proceed to the χ�−1 mode. Again slots highlighted in red cannot
be used by τ.

5.4.3 Generalized implementations of N-MH-MCDAG

Like for MH-MCDAG, we have implemented a generic and global version of N-MH-
MCDAG. Like the implementation of MH-MCDAG we presented in this chapter, the
algorithm produces static scheduling tables for all criticality modes. We also have adapted
the implementation to use priority orderings based on G-LLF and G-EDF. For both adapta-
tions the equations for the priority orderings of jobs remain unchanged (Eq. 5.6 for G-LLF
and Eq. 5.7 for G-EDF).

The algorithms to schedule the system are very similar to Alg. 1 and 2 as well. To
schedule the system in criticality modes that are not lowest criticality mode, we have
almost the same algorithm than Alg. 1: the scheduling is performed with the S� system,
and it is done slot by slot. The sorting function needs more tuning however, we need
to enforce Dual Graph Generalized Safe Transition Property in addition to sort jobs
according to their laxities or deadlines. Therefore tasks can be suspended as long as Eq. 5.9
holds: this is the behavior we represented in Fig. 5.14 with the time slots being highlighted

86 © 2019 Roberto MEDINA

5.4. Generalized N-level scheduling

Figure 5.15: MC system with two MC-DAGs and three criticality modes

in red. Once the tables for the modes have been computed we can perform the horizontal
flip in order to obtain the ALAP behavior in all tables. For the lowest criticality mode,
the algorithm is almost identical to Alg. 2, the sorting function uses the chosen priority
ordering for the ready list and tasks’ jobs are promoted in order to respect Generalized
Safe Trans. Prop. (Eq. 5.8).

The VERIFYCONSTRAINTS function of Alg. 1 and Alg. 2 are the same that were pre-
sented on the dual-criticality version of the algorithms. For the G-LLF adaptation: jobs
must not have negative laxities, not more than m tasks have zero laxities. For the G-EDF
adaptation: jobs must always respect their virtual deadlines. And for both implementa-
tions the number of available slots always needs to be superior or equal to the remaining
time to be allocated for jobs in the ready list.

To illustrate how the generalized scheduling works, we schedule the system presented
in Fig. 5.15 with the G-LLF adaptation of the generalized algorithm. This system is com-
posed of three criticality modes and it is based on the system of Fig. 5.8. The gray-scale
represent the criticality a task belongs to: dark gray means the task belongs to the highest-
criticality mode, light gray to the second higest-criticality mode and white tasks are only
executed in the lowest-criticality mode. Vertices are annotated with the WCETs in all
criticality modes.

The scheduling tables produced by the G-LLF adaptation are illustrated in Fig. 5.16.
We assume the system has three criticality levels: χ1 �χ2 �χ3. Like we explained before,
in order to compute generalized MC-correct scheduling tables, the heuristics starts by the
higher-criticality level, which is χ3 in this case. During the computation of this criticality
mode, there are no constraints to be respected, jobs are ordered simply according to their
laxities. The scheduling table is illustrated in Fig. 5.16a. Once the χ3 has been scheduled,
the algorithm proceeds to compute the scheduling for the χ2 mode. For this mode, Dual

© 2019 Roberto MEDINA 87

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

(a) Scheduling in the χ3 mode

(b) Scheduling in the χ2 mode

(c) Sscheduling in the χ1 mode

Figure 5.16: Scheduling tables for the system of Fig. 5.15 with three criticality levels

88 © 2019 Roberto MEDINA

5.5. Conclusion

Graph Generalized Safe Transition Property is enforced. The final scheduling table
computed by the algorithm is presented in Fig. 5.16b.

The final scheduling table is computed for the χ1 mode, where an ASAP strategy is
used. In this case, we schedule the normal system and not its dual. We also enforce
Generalized Safe Trans. Prop. in this case. The table is illustrated in Fig. 5.16c.

5.5 Conclusion

This chapter presented our contributions regarding the MC Scheduling of MC-DAGs
(Problem 1). Like it was stated in Chapter 3, the MC scheduling problem can be de-
composed into two different sub-problems: the Schedulability in all modes of execution
(Sub-problem 1.1) and the Schedulability in case of a mode transition (Sub-problem
1.2). In the first part of this chapter, we defined a property to characterize when a system is
capable of performing a safe mode transition: Safe Trans. Prop. Building upon this prop-
erty, we designed a meta-heuristic called MH-MCDAG capable of producing MC-correct
scheduling tables. To solve the Schedulability in all modes of execution (Sub-problem
1.1), correct scheduling (i.e. a scheduler that respects deadlines and data dependencies)
are produced for the HI and LO-criticality mode. To solve Schedulability in case of a
mode transition (Sub-problem 1.2), HI-criticality tasks can preempt LO-criticality tasks
in the LO-criticality mode to respect Safe Trans. Prop..

While MH-MCDAG solves Sub-problem 1.1 and 1.2, there are Limits of existing
approaches (Sub-problem 1.3) to schedule MC-DAGs into multi-core architectures [80;
81; 82]. These limitations can be listed as follows: • HI-criticality tasks are too constrained
on their execution in LO-criticality mode, • poor resource usage of the architecture when
multiple MC-DAGs are considered; and • only dual-criticality systems are considered by
these approaches.

Our global implementation of MH-MCDAG presented in this chapter, G-ALAP deals
with the first two limitations. Our improvements over the state-of-the-art come from the
fact that HI-criticality tasks execution in the LO-criticality is less constrained. We sched-
uled HI-criticality tasks as late as possible in the HI-criticality mode to allow LO-criticality
tasks to complete their execution even when HI-criticality tasks are ready to be allocated.
Another advantage of our heuristics is that they improve resource usage due to the fact
that they are based on global schedulers: G-ALAP has been adapted to use the G-LLF and
G-EDF real-time schedulers. The federated approaches [81; 82] advocate for the creation
of core-clusters to schedule MC-DAGs while we are capable of using all cores for all tasks
of MC-DAGs of the system.

© 2019 Roberto MEDINA 89

Chapter 5. Scheduling MC-DAGs on Multi-core Architectures

The final part of this chapter deals with the last limitation of existing approaches: the
generalization of the scheduling of MC-DAGs to support an arbitrary number of criti-
cality levels. By applying a simple induction of MH-MCDAG we are able to schedule
MC-DAGs with an arbitrary number of criticality levels on multi-core architectures. The
definition of MC-correctness was generalized and we also established a new necessary
property: Generalized Safe Trans. Prop., so that tasks executing in more than one criti-
cality level will have enough time to extend their timing budget and not miss the deadline.
Besides defining this condition we introduced its equivalent for the dual MC-system (i.e. a
system with inversed data-dependencies). The scheduling on the dual system needs to be
performed in order to constraint as less as possible the allocation of tasks during the com-
putation of the scheduling tables. An implementation of the generalized MH-MCDAG
based on global algorithms has also been developed and is used as an example in this
chapter.

90 © 2019 Roberto MEDINA

6 Availability on data-dependent Mixed-
Criticality systems

TABLE OF CONTENTS

6.1 PROBLEM OVERVIEW . 92

6.2 AVAILABILITY ANALYSIS FOR DATA-DEPENDENT MC SYSTEMS 94

6.3 ENHANCEMENTS IN AVAILABILITY AND SIMULATION ANALYSIS 101

6.4 CONCLUSION . 115

In the previous chapter we characterized MC-correctness of scheduling strategies for
MC-DAGs executing in a multi-core architecture: the system needs to be schedulable in
all criticality modes and we have to be capable of making the transition to the higher
criticality mode without missing deadlines for tasks. We also developed a meta-heuristic
guaranteeing MC-correctness thanks to the enforcement of a safe transition property. The
genericity of this meta-heuristic was demonstrated thanks to the different implementations
presented in the chapter.

While the main focus of research related to mixed-criticality has been the develop-
ment of scheduling policies; in our works, we are also interested in the Quality of Service
(QoS) of these systems. In this chapter we look into the availability of mixed-criticality

systems, in particular the availability of non-critical tasks: how often non-critical services
are executed defines the QoS of the safety-critical system. In fact, high-criticality tasks are
mostly reserved to guarantee the system’s safety since they often go through costly cer-
tification processes: for example functions to avoid that the drone or the satellite crashes
will be high-criticality. Nevertheless, in a safety-critical system, the end-user applications
are often executed by tasks characterized as non-critical (or low-criticality): for exam-
ple recording video on a exploration drone, sending telecommunication signals to mobile

91

Chapter 6. Availability on data-dependent Mixed-Criticality systems

phones on a satellite, etc. While maintaining the system from crashing is very important,
delivering end-user functionalities is the main reason the system was deployed, therefore
the availability of non-critical tasks is also important.

As we explained in Chapter 2, recent trends in mixed-criticality systems recognize the
necessity to guarantee a minimal QoS for non-critical tasks [99; 38]. Therefore, our first
objective consists in Estimating availability rates (Problem 2): this can be done either
numerically or experimentally, but in both cases the MC model is lacking information. To
overcome this problem, we introduce in this chapter a Fault model (Sub-problem 2.1)
allowing us to estimate how often mode transitions to higher criticality modes occur. At
the same time, in most MC models once the transition to the high-criticality mode is made,
there is no recovery method to reincorporate low-criticality tasks: we also propose in this
chapter a Recovery mechanism (Sub-problem 2.2) for low-criticality tasks.

The final part of this chapter demonstrates how the Discard MC model degrades
availability (Problem 3) of the system. To address this limitation we propose different
enhancements for MC systems: the first enhancement Limiting the number of mode
transitions to higher criticality modes (Sub-problem 3.1) and the second enhancement
consists in Incorporate mechanisms for availability enhancement (Sub-problem 3.2)
to re-evaluate the availability of the system.

6.1 Problem overview

Commercialized safety-critical systems are subject to meticulous development cycles,
tests and certification processes in order to guarantee reliability, availability, maintain-
ability, safety, security, (RAMS) properties [110]. When we look into MC systems,
safety is ensured thanks to high-criticality execution modes: the most critical software
components are capable of extending their timing budget in order to complete their ex-
ecution, guaranteeing that their services will be available in case of a TFE. As a matter
of fact, in the literature of MC systems, most contributions are focused on the schedul-
ing problem [35] and in order to schedule such systems, the discard approach [36; 8;
37] has been the prevailing model. Nonetheless, since the discard model advocates for the
interruption of LO-criticality tasks when a TFE occurs, the availability of these tasks is
affected. Even if tasks are considered as LO-criticality, their execution on a safety-critical
system is also important: most functionalities that are not related to the system’s safety
will be executed by LO-criticality tasks. For example video recording for an exploration
drone will most likely be executed by LO-criticality tasks while the autopilot software will
be of HI-criticality to avoid crashing or losing the drone. The main propose of the drone is

92 © 2019 Roberto MEDINA

6.1. Problem overview

to collect exploration data by the means of video, yet tasks fulfilling this duty are consid-
ered as LO-criticality and can potentially be interrupted if HI-criticality tasks need more
processing time. At the same time, it is unrealistic to assign the highest criticality to all
tasks in a system since certification processes are very costly and computation resources
would be wasted.

In this chapter we want to answer the following question: how available are LO-

criticality tasks in a MC system? Calculating the availability of a task boils down to
determining a ratio between the expected uptime of a task (i.e. the time the task executes
without failures) to the aggregate of expected values of up and downtime (i.e. the time
the task was supposed to be executed but was discarded). The availability of a task τi is
measured for a given timelapse. Its formula is given by:

Ai(t1, t2) =
U ptimei

U ptimei +Downtimei
. (6.1)

When we consider periodic systems, like the MC-DAGs we introduced in Chapter 4
(Section 4.1), the availability can be measured in function of the hyper-period of the sys-
tem. At each hyper-period we can verify which tasks were and were not executed. In fact,
during the hyper-period, a task is supposed to be executed a fixed number of times: HP/Pi.
The availability of a task is therefore given by the following equation:

Ai(t1, t2) =
Ni

N × HP
Pi

.

The availability of a task is measured during the time interval [t1, t2]. Ni is the number of
times task τi is executed during the interval specified. N is the number of times the system
was executed during its hyper-period between t1 and t2. Therefore N × HP

Pi
is the number

of times the task was supposed to be executed during the N hyper-periods that took place
in the interval [t1, t2]. Nonetheless, a TFE can be triggered by any task at some point
during the execution of the system, potentially interrupting the execution of τi: this affects
the value Ni, while the value N keeps increasing since the system keeps its execution in
a higher-criticality mode. Therefore, we need to know how often mode transitions are
triggered in the MC system by incorporating a Fault model (Sub-problem 2.1) . Most
MC contributions only consider the degradation of LO-criticality tasks in favor of HI-
criticality tasks, for this reason, we want to incorporate a Recovery mechanism (Sub-
problem 2.2) of LO-criticality tasks, i.e. a mechanisms that would allow the system to
switch from the HI-criticality to the LO-criticality mode. Without a recovery mechanism

© 2019 Roberto MEDINA 93

Chapter 6. Availability on data-dependent Mixed-Criticality systems

the availability of LO-criticality tasks becomes negligible since only the N value increases
as time progresses.

Our contributions related the availability of MC systems demonstrate that the Discard
MC model degrades availability (Problem 3). Since we are considering multi-core ar-
chitectures for our works, when a TFE occurs, the system changes to the HI-criticality
mode in a synchronous way, i.e. all cores start executing tasks in the HI-criticality mode
and LO-criticality tasks are discarded. This is a limitation in terms of availability since
LO-criticality tasks can be interrupted by independent tasks that were executed in other
cores, in other words, some tasks are being interrupted while they could finish their execu-
tion. Therefore, Limiting the number of mode transitions to higher criticality modes
(Sub-problem 3.1) is a relevant enhancement that can be considered. We propose a more
detailed fault propagation model in order to contain faults and limit the number of mode
transitions. This same principle of limiting the interruption of LO-criticality tasks has
been presented in partitioned [61] and semi-partitioned [63] MC models but for indepen-
dent tasks and performing tasks migrations. The approach that we have taken is closer
to the selective degradation proposed in [60], where tasks are grouped in order to reduce
the impact of mode switch within that group. Finally, commercialized safety-critical sys-
tems Incorporate mechanisms for availability enhancement (Sub-problem 3.2) and
often define more than two criticality levels. We propose to look into two different fault-
tolerance mechanisms: design patterns using replicas with voting mechanisms [120] and
the (m− k) firm tasks [102]. The incorporation of such mechanisms changes the execu-
tion model of the system and analyzing the availability of non-critical tasks considering
more than two criticality levels forces us to run systems simulations in order to estimate
availability rates. To perform these simulations we transform the system and its schedul-
ing tables into probabilistic automata. Then the PRISM model checker [114] is capable of
performing the system simulations to estimate the availability.

6.2 Availability analysis for data-dependent MC systems

In this section we present how we perform the availability analysis for non-critical tasks
in MC systems (Problem 2). We begin by presenting the fault model we consider in order
to estimate how often mode transitions to the higher criticality mode occur (Sub-problem
2.1). Then we explain the mode recovery mechanism that can be used in order to reincor-
porate non-critical tasks and switch back to the low-criticality mode (Sub-problem 2.2).
We are only interested in the availability of LO-criticality outputs since data produced by
these tasks are used by the end-user or other devices.

94 © 2019 Roberto MEDINA

6.2. Availability analysis for data-dependent MC systems

Figure 6.1: Execution time distributions for a task

6.2.1 Probabilistic fault model

The works of this thesis are based on the MC model first introduced by Vestal [4], the
basis of this model relies on the fact that different timing budgets can be given to a task
depending on the assurance level that needs to be ensured: the higher the assurance level
is, the more conservative the verification process and hence the greater the timing budget
will be. Criticality modes were introduced [36; 8; 37] for dual-criticality systems, in
order to allow tasks to switch from one timing budget to another: this change occurs
whenever a HI-criticality task needs more timing budget to complete its execution (or if
a LO-criticality task did not complete its execution). The fault model that we present in
this section only takes into account timing failures that would cause mode transitions, we
called them Timing Failure Events (TFEs) in the previous chapters. These failures can
be caused by various things like execution paths in the software, shared caches and data
buses in the architecture, etc. We explain how we incorporate and the logic behind the
probabilistic fault model for MC systems that we consider. Other types of failures are
out-of-scope for this thesis but can be considered as perspectives for future works related
to the availability analysis of MC systems.

During the conception of a safety-critical system, system designers need to estimate
the WCET of tasks that will be executed in the system. Like we explained in Chapter 2,
finding a tight WCET is very difficult [26] and due to certification processes, upper-bounds
for WCETs are often used. This procedure often leads to poor resource usage since the
upper-bounded WCET is almost never consumed by the task during its execution.

Fig. 6.1 (based on [26]) presents the detailed execution time distribution for a task.
Depending on the method applied to estimate the WCET, the range of observed execution
times can vary. For instance the execution time range covered by measurement techniques,
e.g. Measured Based Timing Analysis (MBTA) for instance, tend to be more restricted
than the range produced by static methods. In Fig. 6.1 we can see that “measured execu-

© 2019 Roberto MEDINA 95

Chapter 6. Availability on data-dependent Mixed-Criticality systems

Figure 6.2: Exceedance function for the pWCET distribution of a task

tion times”‘, typically obtained by MBTA, do not include the actual WCET of the task.
What we want to demonstrate is that the estimation of the WCET is related to the prob-

ability of having a TFE. For example if the system designer decides to use the maximal
observed time as the timing budget for its task, then there is a non-negligible probability
that a TFE will occur because the task needs more processing time in order to complete
its execution. This can be clearly seen in Fig. 6.1: the execution time distribution goes
beyond the maximal observed execution time. With the MC model, the maximal mea-
sured execution time and the upper-bounded WCET can be used: typically one would be
the Ci(LO) capable of satisfying the execution for most cases; and the other would be the
Ci(HI) for the rare cases when the task needs more timing budget.

In the context of safety-critical systems, standards define levels of assurance for tasks
executed in the system. A failure in the higher levels can cause important losses, therefore
lower failure probability are ensured, e.g. on airborne systems Level A of the DO-178B
certification [111] has a failure rate of 10−9/h, while Level C has a failure rate of 10−5/h.
The certification process for a Level A task will most likely demand that an upper-bounded
WCET is used, and therefore the 10−9/h failure rate can always be guaranteed. On the
other hand, if the maximal observed execution is used then the failure rate would be closer
to 10−7/h. Therefore we can associate failure probabilities to tasks in function of their

timing budget. This conjecture is also used in the works from [113], where a failure prob-
ability can be deduced in function of the WCET that is assigned to a task. The objective is
to choose a WCET accordingly to the failure probability and therefore the failure rate we
need to guarantee.

96 © 2019 Roberto MEDINA

6.2. Availability analysis for data-dependent MC systems

In Fig. 6.2 (extracted from [113]), the exceedance function for the probabilistic-WCET
(pWCET) of a task is illustrated. From this function, an execution time that has no higher
probability of being exceeded can be deduced. The figure shows that the selected Ci(LO)

has a probability pi(LO) = 10−8 of causing a TFE. For the Ci(HI) the probability is equal
to 10−12 (a lower probability than the failure rate for the Level A of the DO-178B stan-
dard).

Complementing the task model we presented in Chapter 4, a task τi is therefore char-
acterized by a set of failure probabilities, pi(χ�) is the timing failure probability of task
τi for the χ� criticality mode. Timing failure probabilities are monotonically decreasing
following the observation from the seminal work on MC [4]: higher assurance level im-
plicate that lower failure probabilities are enforced. This set of timing failure probabilities
is our probabilistic fault model for MC systems and solves Sub-problem 2.1 since we can
now estimate how often a mode transition to the higher criticality mode occurs.

6.2.2 Mode recovery mechanism

With the probabilistic fault model we have defined, we have the first requirement in order
to estimate the availability rates thanks to Eq. 6.1. Nonetheless, few MC scheduling tech-
niques are capable of reincorporating LO-criticality tasks after the system has switched to
the HI-criticality mode. Most works interested in the QoS for LO-criticality tasks propose
to degrade the execution of these tasks either by changing their periods [38], migrating
them to other cores [61; 63] or interrupt only a subgroup of tasks [60]. The problem
with these approaches is that they rely on the hypothesis that enough processing power
is available to not drop completely the execution of LO-criticality tasks. Reincorporat-
ing LO-criticality tasks after they have been dropped due to the mode transition to has
been proposed for the Adaptive Mixed-Criticality scheduler and independent task sets [64;
65]. Since our works are based on data-dependent tasks, we need to consider a different
recovery mechanism.

The mode recovery we consider in our works consists in resuming the execution of the

MC system in the LO-criticality mode at the hyper-period. Since our scheduling meth-
ods are work-conserving it is rare that idle instants will occur during the execution of the
system. Assuming that the scheduling strategy is MC-correct, the system can start allo-
cating LO-criticality tasks once again when the hyper-period is reached. If other failures
occur after the system is executing in the LO-criticality mode, then the mode transition is
guaranteed to not miss a deadline (characteristic guaranteed by the MC-correctness).

© 2019 Roberto MEDINA 97

Chapter 6. Availability on data-dependent Mixed-Criticality systems

(a) LO-criticality mode (b) HI-criticality mode

Figure 6.3: MC system example for availability analysis, D = 150 TUs.

Thanks to the Recovery mechanism (Sub-problem 2.2) we have introduced and to the
Fault model (Sub-problem 2.1) , the availability of LO-criticality tasks can be estimated.
The number of task executions (Ni in Eq. 6.1) will not remain constant if a TFE takes place.
As a matter of fact, the availability for a k-th job ji,k of task τi in a dual-criticality system
in the LO-criticality mode can be estimated with the following formula, for t ∈ [0;+∞[:

ALO
i,k = 1−

pi(LO)+ ∑

τ j ∈ be f ore(ji,k)
p j(LO)

 . (6.2)

Where be f ore(ji,k) is the set of tasks executed before the task job ji,k by the scheduling
strategy. The availability of the task itself is equal to the average of jobs’ availability.

The formula states that the availability of a task is equal to the probability of the task
not failing in the LO mode (1− pi(LO)), to which we need to add the failure probability
of tasks executed before τi in the scheduling table (∑τ j∈be f ore(ji,k) p j(LO)). The recovery
mechanism allows tasks to execute again after the hyper-period has been reached.

Let us consider the MC system presented in Fig. 6.3, we illustrate our recovery mech-
anism and how we are capable of obtaining the availability rates for LO-criticality outputs
thanks to this example: we limit the example to a single dual-criticality MC-DAG for
clarity, nonetheless multiple MC-DAGs can be considered for the analysis. The system
presented in the figure has three HI-criticality tasks represented in gray, and five LO-
criticality tasks represented in white. The LO-criticality mode is illustrated in Fig. 6.3a
and the HI-criticality mode in Fig. 6.3b. Full arrowed lines represent data dependencies

98 © 2019 Roberto MEDINA

6.2. Availability analysis for data-dependent MC systems

(a) LO-criticality mode

(b) HI-criticality mode

(c) Mode recovery explanation

Figure 6.4: Scheduling tables for the system of Fig. 6.3

among tasks and dotted lines represent output data production (i.e. data produced by these
tasks is used by the user or other devices). For the LO-criticality mode (Fig. 6.3a), timing
budgets are annotated by the upper numbers on the vertices. The second number included
in the vertex is the timing failure probability of a task: like we explained in the previous
subsection, the failure probability is related to the timing budget that was given to the task.
For the HI-criticality mode (Fig. 6.3b), only the timing budgets are given: the system can-
not make an additional transition to a higher-criticality mode. The deadline for the system
is 150 TUs. The utilization in LO mode is ULO(S) ≈ 1.67 and in HI mode UHI(S) = 1.
Hence, at least 2 cores are needed in order to schedule the system.

For this example, we apply the G-ALAP-EDF our scheduling algorithm presented
in Chapter 5 since it entails less preemptions than G-ALAP-LLF. The scheduling tables
obtained are illustrated in Fig. 6.4 for the LO-criticality mode (Fig. 6.4a) and the HI-
criticality mode (Fig. 6.4b). The hyper-period of the system is at 150 TUs and is also
called an iteration.

Let us now consider a scenario where task F has a TFE for an iteration i. Fig. 6.4c
represents such scenario. At 60 TUs, the expected completion time for task F , the OS
detects a failure and the system changes to a HI-criticality mode. Since we are in a discard
MC system, LO-criticality tasks are dropped (i.e. they are no longer executed) and HI-
criticality tasks execute with an extended timing budget. The dashed line in red illustrates
the TFE that occurred during the execution of task F . In order to reestablish the execution
of LO-criticality tasks, for the i+1-th iteration of the system, we start executing the LO-
criticality scheduling table again. The reasoning behind this approach is that, if tasks are

© 2019 Roberto MEDINA 99

Chapter 6. Availability on data-dependent Mixed-Criticality systems

Table 6.1: Availability rates with the discard MC approach

Availability Rate
Outputs Discard MC

E 95.789%
F 98.9%
H 97.79%

capable of completing their execution within their Ci(LO), then processing time for LO-
criticality tasks becomes available. After all, the LO-criticality table was built in a way
that all tasks are schedulable within their Ci(LO) and we can switch to the HI-criticality
mode safely if another TFE takes place (properties demonstrated for MH-MCDAG in
Chapter 5). We can see in Fig. 6.4c that the system tries to restart the scheduling in
the LO-criticality mode and successfully executes task F this time. Nonetheless, during
the execution of task A, another TFE occurs and the system makes the transition to the
HI-criticality mode once again. It is only at iteration i+ 2 that the system is capable of
executing all tasks within their Ci(LO): we consider that the LO-criticality mode has been
reestablished when this happens.

6.2.3 Evaluation of the availability of LO-criticality outputs

Availability rates obtained by our analysis are presented in Table 6.1. Like we mentioned,
we are only interested in the LO-criticality outputs, tasks E,F and H in the system of
Fig. 6.3. The rate of task H is obtained with the following formula:

ALO
H,1 = 1−

pH(LO)+ ∑

τ j ∈ be f ore(jH,1)

p j(LO)

= 1− (pH(LO)+ pA(LO)+ pC(LO)+ pF(LO)+ pG(LO))

= 1− (10−2 +10−4 +10−2 +10−3 +10−3)

= 0.9779.

The be f ore(H) set is composed of tasks A,B,C,F and G since they are executed before
task H in the SLO scheduling table (Fig. 6.4a). The same formula is applied for the other
LO-criticality outputs. Nevertheless, the difference of availability between tasks is highly
dependent on the scheduling of the system: all tasks that are executed before a given task,
degrade the availability since more potential TFEs can occur during the execution. E.g. for
task E of Fig. 6.3, since it is scheduled at the end of the LO scheduling table (Fig. 6.4a),

100 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

its availability is lower than task H even if both have the same failure probability. This
difference of almost 2% is quite significative for safety-critical systems, like we explained,
failure rates are measured up to the 10−9.

As we have demonstrated in this section, thanks to the probabilistic Fault model (Sub-
problem 2.1) and to the Recovery mechanism (Sub-problem 2.2), we are capable of
Estimating availability rates (Problem 2) for LO-criticality tasks. In the next section
we present enhancements that can be deployed on MC systems in order to improve the
availability of LO-criticality tasks since the Discard MC model degrades availability
(Problem 3).

6.3 Enhancements in availability and simulation analysis

In the previous section we enriched the MC-DAG model with a probabilistic failure model
to represent potential TFEs that can occur during the execution of the system. At the
same time, we introduced a recovery mechanism allowing us to perform an availability
analysis and concluded that the discard MC model [36; 8; 37] degrades the availability
of LO-criticality tasks significantly. In this section we detail the limits in terms of avail-
ability of the MC discard approach, to then propose two different types of enhancements
allowing us to improve significantly the availability of LO-criticality tasks. The inclusion
of enhancements to MC systems led to the necessity of defining translation rules to prob-
abilistic automata: the production of these automata is defined for the generalized case
where systems have more than two criticality levels.

6.3.1 Limits of the discard MC approach

The MC discard approach [36; 8; 37] has been the most dominant model for MC schedul-
ing due to its simplicity and its results in terms of acceptance rate. Because LO-criticality
tasks are completely interrupted when the system makes the transition and are not exe-
cuted in the HI-criticality mode, HI-criticality tasks have better chances of being schedu-
lable since the whole architecture is available to them. This approach is only focused
on safety, i.e. guaranteeing that HI-criticality tasks will be able to complete their ex-
ecution, to the detriment of availability for LO-criticality tasks. Some recent contribu-
tions in MC acknowledge that the complete interruption of LO-criticality tasks affects
the QoS [99; 38], which is a main concern for safety-critical systems. For example the
elastic MC model [38; 66] proposes to change periods of LO-criticality tasks when the
system is in a HI-criticality mode in order to execute them less often, the utilization

© 2019 Roberto MEDINA 101

Chapter 6. Availability on data-dependent Mixed-Criticality systems

of LO-criticality tasks is reduced by applying this period transformation. Other type
of service guarantee schedulers have been proposed since then, partitioned and semi-
partitioned systems are capable of limiting the mode transition to their partitions and
migrate LO-criticality tasks to other cores so they can complete their execution [61;
63]. Other adaptations of LO-criticality tasks execution have also been proposed [49;
83]. Our approach is similar to the selective degradation proposed in [60], the impact of
the TFE will only affect a subgroup of tasks. Our goal is to deploy enhancements to the

system while still conserving the execution model we introduced in Chapter 4: thus, we

want to incorporate enhancements to the MC discard model.
The limits we have identified thanks to our availability analysis are the following:

• Mode transitions to higher criticality modes are made in a synchronous manner
where all cores switch to the higher criticality scheduling table. While this is nec-
essary in most cases to guarantee MC correctness, tasks can be interrupted by any
task that was executed before, regardless of their criticality. For example, since
LO-criticality tasks are less constrained in terms of service guarantee, it is natural
that their failure rate is greater than HI-criticality tasks’ rates: a TFE coming from
a LO-criticality task triggers a mode transition, yet HI-criticality tasks should be
more capable of completing their execution within their Ci(LO). In other words,
HI-criticality will have their timing budget extended, but it is very likely that it was
not necessary since the TFE was caused by a LO-criticality task. Limiting the num-
ber of mode transitions to higher criticality modes (Sub-problem 3.1) is the first
objective we want to solve, in order to avoid discarding non-criticality tasks.

• Safety-critical systems often Incorporate mechanisms for availability enhance-
ment (Sub-problem 3.2). The notion of robustness on MC systems is studied
in [101]. In this section, we explain how these enhancements can be deployed into
the system and how the availability rate can be estimated. These mechanisms should
be compatible with the MC discard approach. We focus only on two mechanisms
to demonstrate the interest of the enhancements. Due to the execution behavior of
these robust mechanisms we are forced to estimate availability thanks to system’s
simulations. Future works can be built on our results in order to consider other types
of enhancements.

We present in the next subsections our contributions in terms of availability enhance-
ments for non-criticality tasks. These contributions are described for a generalized MC
system with an arbitrary number of criticality levels. For clarity, throughout the exam-
ples we just present results on a dual-criticality system. We begin by describing a fault

102 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

propagation model capable of limiting the number of mode transitions to higher criticality
modes. We then incorporate design patterns like Triple Modular Redundancy [120] and
weakly hard real-time tasks [102] as additional enhancements to the overall system. In
order to estimate the availability of a system enriched with these enhancements and with
more than two criticality levels, we have defined translation rules in order to obtain PRISM
probabilistic automata [114].

6.3.2 Fault propagation model

The first enhancement for MC system we consider is a detailed fault propagation model.
In fact, safety-critical systems are equipped with software or hardware mechanisms that
limit fault propagations to other components so as to improve dependability [121; 122;
123]. Instead of switching systematically to the higher criticality mode whenever a task
has a timing failure, we differentiate TFEs coming from a task with the same criticality
level the system is executed in, or a TFE coming for a task with a higher criticality level
than the system is executed in. The main objective of this fault propagation model is to
avoid dropping the execution of tasks that could complete their execution by performing
unnecessary mode transitions to the higher criticality mode. This principle of limiting
the fault propagation for MC systems has been initially studied in [60]. Nonetheless, it
differs from our fault model since we try to limit the number of mode transitions in func-
tion of tasks’ criticalities, whereas the proposed approach performs the mode transitions
whenever a TFE takes place.

The fault propagation model we define has the two following behaviors:

1. When system is executing in the χ� mode and a χ�+1-criticality task has a timing
failure: make the mode transition to the χ�+1-criticality mode.

2. When the system is executing in the χ� mode and a χ�-criticality task has a
timing failure: interrupt only the successors of the task that had a failure (i.e. tasks
that depend on the data produced by the failing task). χ�+1-criticality task (or higher)
and unaffected χ�-criticality tasks can finish their execution within their Ci(χ�).

By considering this fault propagation model in our MC systems, the availability for-
mula changes for the dual-criticality case:

ALO
i,k = 1−

pi(LO)+ ∑

τ j ∈ pred(τi) ∪ be f oreHI(ji,k)
p j(LO)

 . (6.3)

© 2019 Roberto MEDINA 103

Chapter 6. Availability on data-dependent Mixed-Criticality systems

(a) MC system (b) Scenario with TFEs on LO and HI-criticality tasks

Figure 6.5: Fault propagation model with an example

The set considered of tasks that can affect the availability tends to be smaller: pred(τi) is
the set of predecessors of the task (predecessors in the DAG, i.e. tasks that send data to
τi) and be f oreHI(τi) is the set of HI-criticality tasks executed before τi. If any of these
tasks fail then τi is interrupted. This set covers all tasks that have an influence on task τi

execution, the others are not communicating directly or indirectly with it, so they can be
ignored by the availability formula.

Fig. 6.5 illustrates our fault propagation model. The iteration of the system illustrated
in Fig. 6.5b, shows the behavior of our fault propagation model when a LO-criticality task
has a TFE. In the example, task G had a failure and task H depends on its output, as shown
in Fig. 6.5a, we just discard task H (represented with the dotted box). In order to keep
LO-criticality tasks running, we discard only tasks that have dependencies with the failing
task, in other words the successors of the task that had a failure are no longer executed.
At the same time, since HI-criticality tasks are capable of completing their execution even
when they communicate with LO-criticality tasks (Chapter 5 Section 5.2.3), we allow
them to complete their execution within their Ci(LO).

The second iteration of the system illustrated in Fig. 6.5b shows the behavior of the
failure propagation model when a HI-criticality task has a timing failure. In this case,
task A has a TFE and the system makes a transition to the HI-criticality mode (dropping
LO-criticality tasks and extending timing budgets for HI tasks). Since HI-criticality tasks
must always complete their execution within their deadlines even in the case of a TFE, we
drop all LO-criticality tasks, the timing budget that was previously used by LO-criticality
tasks can potentially be used by HI-criticality tasks.

104 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

The availability of task H of Fig. 6.5a can be calculated as follows:

ALO
H,1 = 1−

pH(LO)+ ∑

τ j∈pred(H) ∪ be f oreHI(jH,1)

p j(LO)

= 1− (pH(LO)+ pA(LO)+ pC(LO)+ pG(LO))

= 1− (10−2 +10−4 +10−2 +10−3)

= 0.9889.

As opposed to the previous calculus now the availability of task H is only dependent on the
execution of tasks A,C and G (as opposed to A,C,F and G). The availability was increased
of 1.1% thanks to the fault propagation model. We provide results for the rest of LO-
criticality outputs in the next subsection where we present the fault-tolerant mechanisms
we consider in our availability analysis.

6.3.3 Fault tolerance in embedded systems

Fault-tolerant mechanisms have been widely deployed into safety-critical systems in order
to improve dependability. In this subsection we describe how a MC system can incorporate
design patterns like Triple Modular Redundancy (TMR) [120] and/or weakly hard real-
time tasks [102] in order to improve the availability of LO-criticality tasks. We present
the deployment of these mechanisms with the example of the system presented in Fig. 6.3,
our goal is to improve the availability of output E, which has the lowest availability rate
out of all LO-criticality outputs (as shown in Table 6.1). We detail the changes that take
place in the execution model of the system and our contributions in order to estimate the
availability rate of the MC system with these new enhancements.

Triple Modular Redundancy

Design patterns like Triple Modular Redundancy (TMR) [120] are widely used in safety-
critical systems in order to improve RAMS properties. We focus only on one design
pattern as a motivating example to demonstrate the interest of considering such design
patterns during the conception of MC systems.

The TMR consists in replicating a software (or hardware) component three times and
comparing the produced results of these replicas thanks to voting mechanisms. If at least
two out-of three results are the same, then the correct output can be deduced: the majority
has the advantage. The idea is to mask faults that can occur during the execution of one of
the replicas. In fact, having a failure in one of the replicas already occurs on rare occasions

© 2019 Roberto MEDINA 105

Chapter 6. Availability on data-dependent Mixed-Criticality systems

Figure 6.6: A TMR of the MC system of Fig. 6.3

for a safety-critical system, consequently having two or more replicas in a failing state at
the same time is almost impossible.

To take into account the presence of replicas on the availability rates we apply a prob-
ability tree to deduce the following formula:

ALO,T MR
i = (ALO

i)3 +3×
�
(ALO

i)2 × (1−ALO
i)

�
. (6.4)

The availability of a task with a TMR is the equal to the combination of the three repli-
cas being in a functional state (ALO

i)3, plus the states when at least two replicas are in a
functional state: 3×

�
(ALO

i)2 × (1−ALO
i)

�
.

The application of a TMR design pattern is presented in Fig. 6.6. We incorporated
voting mechanisms, vertices labeled as the V task, responsible for checking outputs pro-
duced by task D and its replicas. We consider the execution of these voting mechanisms
is negligible compared to the timing budget of tasks. The failure probabilities for tasks
F and G remains unchanged in each one of the replicas, since the TMR does not affect
them (i.e. none of these tasks communicate with the voting mechanism and are executed
beforehand). For the E task however, its availability changes since the probability that task
D has a failure is now different:

pT MR
D (LO) = 3×

�
(1−10−2)× (10−2)2�+(10−2)3

= 0.000298.

The equation is again an application of a probability tree to deduce the states where task
D has a failure even with the voting mechanism. D is said to be in a failing state when
at least two of the replicas are also in a failing state: 3×

�
(1−10−2)× (10−2)2� or when

106 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

Table 6.2: Availability rates for LO-criticality outputs with availability enhancements

Availability Rate
Outputs Discard MC Enhanced FP Enhanced FP + TMR

E 95.78900% 96.98900% 99.87675%
F 98.90000% 98.90000% 99.96397%
H 97.79000% 98.89000% 99.96331%

the three replicas are simultaneously in a failure state (10−2)3. We can see that the failure
probability was reduced considerably (it used to be 0.01%).

The availability obtained for the LO-criticality outputs using the TMR design pattern
are resumed in Table 6.2. We present the availability values for all LO-criticality out-
puts considering the normal discard MC approach (column “Discard MC”), the enhanced
model with fault propagation (column “Enhanced FP”) and the enhanced fault propaga-
tion model with TMR (column “Enhanced FP + TMR”). These results clearly show the
improvements in availability that we can obtain using this type of fault tolerance mech-
anisms: for example, task E which has the lower criticality, increased its availability by
over 1% with our enhanced fault propagation model and by over 4% with the TMR. Nev-
ertheless, using a TMR might not always be possible due to budget, space, or power con-
straints. For this reason we look into another method of fault tolerance in order to improve
the availability of LO-criticality outputs.

Weakly hard real-time task

Tolerating a given number of deadline misses on hard real-time tasks was presented in [102].
On monitoring systems or automatic control systems for example, sampling periods need
to be set. These periods tend to be set as fast as possible in order to detect changes that
the system might need to handle. Nonetheless, for safety reasons periods tend to be faster
than what is actually required. Therefore, missing one or more measurements within a
fixed number of executions of the sampler can actually be tolerated, as long as the action
from monitoring can be done within the delay caused by the missing measurements. In
other words, provided that the effect on such a delay does not have severe consequences,
deadlines can be missed.

We represent the behavior of a Weakly Hard Real-time Task (WHRT) in Fig. 6.7. The
task represented in a (1−2)-firm task which means that out-of two successive executions,
we tolerate one deadline miss. The state machine representing its behavior is composed
of four states: white states in the figure indicate that the task is functional, the red state
represents that the task is in a failure state. Each state is annotated with a bitset, this bitset

© 2019 Roberto MEDINA 107

Chapter 6. Availability on data-dependent Mixed-Criticality systems

Figure 6.7: (1−2)-firm task state machine

(a) MC system (b) Scenario with TFEs on LO and HI-criticality tasks

Figure 6.8: (m− k)-firm task execution example

records the execution history for the number of successive executions we are interested
in: 1’s are recorded when the task completed its execution within its Ci(LO) and 0’s are
recorded when a TFE occurred. Arrows between states are labeled with “TFE” or “Ok”
indicating what state is reached after the task has a TFE or when the task completed its
execution with the timing budget given.

Let us now consider a WHRT in the system we have presented throughout this chapter.
In Fig. 6.8 we have represented the WHRT with a blue label: task D is now considered to
be a (1−2)-firm task, i.e. one fault is tolerated out of two successive executions (Fig. 6.8a).
The time diagrams represented in Fig. 6.8b show how the task is capable of maintaining its
execution on iteration i even after a TFE occurred. Nevertheless, on iteration i+1, the sec-
ond successive TFE provokes the interruption of the successors of the task, in this case task
E. Due to the fact that the functional (or non-functional) state of the task is now depen-
dent on a series of executions, the availability formula (Eq. 6.3) can no longer be used to

108 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

estimate the availability rate: the failure probability of a task is more complex to estimate.
In order to solve this problem we propose to transform the system and its scheduling to
perform system simulations. These simulations are performed thanks to the PRISM [114]

model checker since it allows us to incorporate all the aspects presented throughout the
chapter: failure model, recovery mechanism and the fault propagation model.

6.3.4 Translation rules to PRISM automaton

The incorporation of WHRT tasks changes the execution behavior of the MC system quite
significantly, since the failure probability of a task is now dependent on a sequence of
executions. In order to estimate the availability rate when this type of task is deployed in
the system we need to perform system simulations. This type of analysis is completely new
to the domain of MC systems with data-dependent tasks. We need to choose an adapted
tool capable of modeling all the aspects that we have presented in this chapter until now.
The challenges of this procedure are the following: (i) there has to be a way to keep track
of tasks’ executions in order to estimate their availability rate, (ii) failure probabilities
need to be considered, (iii) the fault propagation model we propose capable of limiting
the number of mode transitions also needs to be taken into account, and (iv) a record of
sequential executions of the system needs to be stored.

The tool that allows us to perform system simulations considering all the abovemen-
tioned aspects is the PRISM model checker [114]. We introduce translations rules that take
the MC system specification and the scheduling tables as an input to produce probabilistic

automaton. This probabilistic automaton represents the state of the multi-core processors,
the criticality mode the system is in and the tasks that are being executed on it. The trans-
lation rules have been defined for the generalized case where systems can have more than
two criticality levels: when more than two criticality levels are considered the number of

scenarios that lead to the execution or interruption of a task increases significantly which
also motivates the introduction of translation rules. The availability of a task is therefore
a measurement when we consider the automaton we produce: by simulating the execution
of the system for a long period of time, we estimate what the availability rate is.

The implementation under PRISM uses the following aspects offered by the tool:

• States in the automaton allow us to represent the state of the processor, i.e. what
tasks are running in the architecture at a certain instant. By doing so we can repre-
sent the system running in any χ�-criticality mode.

© 2019 Roberto MEDINA 109

Chapter 6. Availability on data-dependent Mixed-Criticality systems

• Probabilistic automata allow us to encapsulate our failure model: probabilistic tran-
sitions are used to represent if the task did complete its execution within its Ci(χ�)

or if it had a TFE.

• The fault propagation model is captured by the use of boolean variables in the au-
tomaton. If the output of a task was produced, the boolean is marked as true, oth-
erwise it is marked as false. To detect if an output is available, we check if all
the predecessors of the output produced data, i.e. we verify that the conjunction of
booleans is true.

• The behavior of the WHRT is simulated thanks to a bit set. This bit set will be
updated according to the task’s behavior: a 1 is added at the end of the bit set if data
was produced, otherwise a 0 is added. Once the bit set is updated, we check the
number of bits marked with 1 to deduce if the task is a failure state or not.

• The fault recovery process can be easily represented thanks to a transition that goes
to the first state representing the beginning of the lowest criticality scheduling table.

• Transitions can update counters used to measure the number of times a tasks is
executed and the number of times the system is executed. The formula of Eq. 6.1 is
then applied to obtain the availability rates of outputs.

General principle: The idea behind the translation of scheduling tables to a proba-
bilistic automaton (PA) is to represent the state of the processor, i.e. which task is running
and in which mode. Since we are executing MC-DAGs in multi-core architectures, we
could transform the scheduling table of each core into an automaton. However, having
parallel automata in PRISM increases significantly the simulation time due to the large
number of possible states. To limit the number of states on the PA and because TFEs can
only be detected at the the end of the timing budget given to a task, we only include

states that represent the end of the timing budget given to a task for a given criticality

mode. This means that if a task job is preempted several times during its execution, in the
automaton we will only have one state representing the end of its timing budget. Since the
completion of all tasks need to be checked, doing it in a sequential manner does not change
the final result for the availability rates but significantly reduces the simulation time.

Translation rules: To check the completion of tasks, we sort them by considering

their end of time window in the scheduling tables. The first step is to create ordered list
of tasks for each criticality level. For each task τi in this list (where i is the index of this
task in the list) we create a state Sχ�

i and a boolean variable bi. The state represents the
end of the timing budget given to a task job for its execution at that time instant, and

110 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

the boolean is used to notify the successors that output was produced or not. Tasks that
are executed in more than one criticality level have more than one state in the automaton:
each state represents the execution of the task in the criticality modes it is executed in. Due
to parallelism obtainable thanks to multi-core processors, tasks can have the same end of
time window. This has to be taken into consideration for the availability computation since
mode transitions can be triggered by tasks that have a higher criticality level than the level
the system is executed in; but outputs can be available at the same time slot. Ties in the
list need to be broken with the following rules:

1. Tasks that are exit nodes in the mode considered go first: we need to know if their
output is available.

2. Tasks with a higher criticality level than the mode considered go afterwards, a mode
transition occurs when they have a TFE.

3. Other tasks are checked at the end, no mode transition occurs even if they fail. In
reality, some tasks could have been dropped because one (or more) of their prede-
cessors failed to complete their execution. While the state is always presented in the
automata, detecting faulty predecessors takes place in the transition that is taken to
leave the state.

After generating the states representing the execution of tasks in all criticality modes,
we connect them with the rules illustrated in Fig. 6.9. How tasks are connected is essential
for the PA, the rules presented avoid deadlocks, are coherent with the execution of the
system and represent the potential TFEs that can occur during the system’s execution.

1. From a state Sχ�
i when the task TFE cannot cause a mode transition to higher crit-

icality mode: we add two probabilistic transitions connecting Sχ�
i to Sχ�

i+1. One of
the probabilistic transition represents the occurrence of a TFE (with a probability
pi) and updates bi to false, whereas the other (with a probability 1− pi) updates bi

to true. This rule is illustrated in Fig. 6.9a, the dotted/dashed lines represent the
probabilistic transitions, the left label is the probability and the right label is the
assignment of the boolean bi.

2. From a state Sχ�
i when the criticality mode considered is not the highest criticality

mode the task it is executed in: we add a probabilistic transition with a probability
1− pi to the next state Sχ�

i+1, boolean bi is marked as true. A second probabilistic
transition with a probability pi is added to a state Sχ�+1

i : the system performs a
mode transition to the higher criticality mode. This translation rule is represented in
Fig. 6.9b.

© 2019 Roberto MEDINA 111

Chapter 6. Availability on data-dependent Mixed-Criticality systems

(a) Same criticality level rule (b) Higher criticality level rule

(c) Output rule

(d) WHRT rule

Figure 6.9: PRISM translation rules for availability analysis

112 © 2019 Roberto MEDINA

6.3. Enhancements in availability and simulation analysis

Figure 6.10: PA of the system presented in Fig.6.8

3. The translation rule of Fig. 6.9c is used when a task is also an output for the critical-
ity mode considered. After applying the rule of Fig. 6.9a, we need to add an extra
state, named Sχ�

out,i, that checks if all the predecessors of the task were able to com-
plete their execution (

�
τ j∈pred(τi) b j). If that was the case, then the availability of the

output is incremented thanks to PRISM counters: each output has its own counter
and the system has a counter to check if the system completed its execution in the
LO or HI-criticality mode. If the conjunction of booleans is false, the availability
counter for the LO-criticality output is not incremented.

4. The final translation rule, illustrated in Fig. 6.9d represents a WHRT task. Like we
mentioned before, to capture the behavior of the WHRT task we use a bit set that
keeps track of the successive executions of the task. The size of the bit set naturally
keeps track of the right amount of successive executions we are interested in. Like
it is represented in the figure, the probabilistic transitions are in charge of updating
the bit set: if the task did not fail, a 1 is added at the end of the bit set; and if there is
a TFE, a 0 is added at the end of the bit set. The oldest bit is erased after during the
update. A state, Sχ�

wh,i∗ is added for WHRT tasks in order to check the status of the
task, if the number of bits equal to 1 is superior to the number tolerated faults, then
the task is in a functional state and its boolean bi is marked as true. Otherwise the
task is considered to be in a failing state and its boolean is marked as false.

Application to the example and results: When we apply the translation rules to
the system and the scheduling tables (Fig. 6.7 and Fig. 6.4), we obtain the automaton

© 2019 Roberto MEDINA 113

Chapter 6. Availability on data-dependent Mixed-Criticality systems

Table 6.3: Availability rates for LO-criticality outputs with availability enhancements

Availability Rate
Outputs Discard MC Enhanced FP Enhanced FP + WHRT

E 95.78900% 96.98900% 97.90121%
F 98.90000% 98.90000% 98.90099%
H 97.79000% 98.89000% 98.89441%

presented in Fig. 6.10. White states represent the system’s execution in the LO-criticality
mode, while gray states represent the HI-criticality mode. Like we mention, the first step
of the translation, creates the states representing the completion time of tasks for each
operational mode. Afterwards, rules to connect each state are applied like we previously
explained. Once this automaton is obtained, we can use it in the PRISM model checker in
order to estimate the availability rate.

Table 6.3 presents the results obtained for the LO-criticality outputs when we con-
sider a WHRT task. Again we show the gains in availability for all outputs of the system.
First, the values obtained with the classic MC discard model are presented. Like for Ta-
ble 6.2, we present the results obtained when we consider the fault propagation model we
described: there is an increase in availability for tasks E and H of 1.2% and 1.1% respec-
tively. The last column presents the results obtained with the PRISM model checker after
performing simulations of the system. As we can see, the experimental results are equiva-
lent to the numerical values obtained for tasks F and H. For task E, since its predecessor
task D is a (1−2)-firm task, we can see another improvement in its availability: we gained
almost 1%, demonstrating the interest of including WHRT tasks in the system in order to
gain in availability for LO-criticality tasks.

An example of the generalized translation: Fig. 6.11 presents a simplified represen-
tation of a probabilistic automaton for a system with N-levels of criticality. This illus-
tration demonstrates the interest of performing translation rules for systems composed of
more than two levels of criticality. As an example let us assume we are interested in the
availability of task τi2 . In the automaton we can see that this task is executed in modes χ0

and χ1. Thus, in order to evaluate the availability of τi2 , we need to know how many times
this task was executed in both operational modes. The lines illustrated in red represent the
different paths leading to the execution of task τi2 for modes χ0 and χ1. As we can see there
are four possible combinations that lead to the complete execution of τi2 . Nonetheless for
tasks that are further in the scheduling table and that executed in various criticality levels,
the number of possible paths that lead to the complete execution of a task grows rapidly.
While enumerating the possible execution paths for the system leading to the execution of

114 © 2019 Roberto MEDINA

6.4. Conclusion

Figure 6.11: Illustration of a generalized probabilistic automaton

a task is possible, it easily becomes error prone. In addition, the translation rules can be
combined, so we can have WHRT tasks in addition to an arbitrary number of criticality
levels. For this reason translation rules are also interesting when more than two criticality
levels are used in the MC system.

In this section we presented our solutions tackling the following problem: Discard
MC model degrades availability (Problem 3). We started by introducing a more de-
tailed fault propagation model aiming at Limiting the number of mode transitions to
higher criticality modes (Sub-problem 3.1) . Thanks to this model, outputs that are
unaffected by the TFE can complete their execution. The other type of enhancement we
considered, is the fact that safety-critical systems Incorporate mechanisms for avail-
ability enhancement (Sub-problem 3.2). While the TMR has shown to greatly improve
the availability rate for all LO-criticality tasks, it might not always be possible to deploy
replicas in the targeted system. For this reason we have also considered WHRT tasks and
proposed translation rules that allow us to perform simulations of the system in order to
estimate availability rates.

6.4 Conclusion

In this chapter we presented our availability analysis for MC systems. We suppose MC
systems are described following the MC-DAG model presented in Chapter 4 (Section 4.1)
and are scheduled with static scheduling tables considered to be MC-correct: for exam-

© 2019 Roberto MEDINA 115

Chapter 6. Availability on data-dependent Mixed-Criticality systems

ple our implementations of the MH-MCDAG meta-heuristic (Chapter 5) can be used to
schedule these systems.

Thanks to these hypotheses we can Estimate availability rates (Problem 2) for LO-
criticality outputs. This quantification of availability has not been considered before for
MC systems. The scheduling methods we consider is based on the discard MC model [36;
8; 37] of literature: LO-criticality tasks are discarded once a mode transition to the HI-
criticality mode has to be performed. We defined a probabilistic Fault model (Sub-
problem 2.1) in order to estimate how often LO-criticality tasks are discarded and a
Recovery mechanism (Sub-problem 2.2) to reincorporate the discarded tasks once pro-
cessing time is available once again. Availability formulas for LO-criticality outputs are
then established thanks to the fault model and the recovery process.

While these enrichments to the execution model of MC-DAGs allowed us to calcu-
late the availability rate for LO-criticality outputs, we demonstrated that the Discard MC
model degrades availability (Problem 3). This is due to the fact that any TFE occurring
in the system provokes a mode transition to the HI-criticality mode, and therefore tasks
that are executed last in the scheduling table have the lowest availability rate. We solved
this limitation in two ways: first of all, we incorporated a fault propagation model that
contains faults in order to Limit the number of mode transitions to higher critical-
ity modes (Sub-problem 3.1). Second, since safety-critical systems often Incorporate
mechanisms for availability enhancement (Sub-problem 3.2), we considered them into
our analysis. Throughout the chapter we demonstrated the significant improvements in
the availability rate of LO-criticality tasks that were obtained thanks to our enhancements.
In the example considered, the fault propagation model increased the availability of some
tasks by over 1%. When we incorporated fault tolerance mechanisms in addition to the
fault propagation model, we increased between 1% and 4% of availability. This changes
are quite significant since certification processes measure the availability of tasks up to
10−9.

In this chapter we have also presented translation rules to obtain PRISM automata
from MC systems specifications and scheduling tables. These translation rules are applied
when the execution model of the system becomes too complex, i.e. when enhancements
like weakly hard real-time tasks are incorporated in the system, or when the system has
more than two criticality levels. The automata produced by our rules simulates the state
of the processor during its execution. Availability rates are estimated thanks to execution
simulations of this representation.

In the next chapter, we present the MC-DAG framework. This open source tool we
developed incorporates the model transformation rules we defined in Section 6.3.3, used

116 © 2019 Roberto MEDINA

6.4. Conclusion

to estimate availability rates thanks to simulations of the system. The framework is also
capable of scheduling systems and performing benchmarks in order to assess statically our
contribution regarding the scheduling of MC-DAGs in multi-core architectures.

© 2019 Roberto MEDINA 117

Chapter 6. Availability on data-dependent Mixed-Criticality systems

118 © 2019 Roberto MEDINA

7 Evaluation suite: the MC-DAG frame-
work

TABLE OF CONTENTS

7.1 MOTIVATION AND FEATURES OVERVIEW 120

7.2 UNBIASED MC-DAG GENERATION . 121

7.3 BENCHMARK SUITE . 128

7.4 CONCLUSION . 129

In this chapter, we present the MC-DAG framework, an open-source tool developed
to perform the scheduling and availability analyses of MC data-driven systems. This tool
consolidates all our contributions and is composed of four different modules:

• A scheduling module capable of applying the G-ALAP-LLF, G-ALAP-HYB and G-
ALAP-EDF heuristics to schedule a system (contributions presented in Chapter 5).

• An unbiased and random MC-DAG generator. This module has been developed in
order to compare our scheduling methods to existing approaches of the literature.
Since different aspects need to be considered in order to obtain an unbiased MC-
DAG we had to combine different generation methods of the literature.

• A benchmark suite to measure acceptance rates and number of preemptions for the
scheduling heuristic we have developed, but also to compare them to scheduling
policies of the state-of-the-art [80; 81].

• An availability module that applies transformation rules to obtain PRISM automata
from the system and its scheduling tables (this contribution is presented in Chap-
ter 6).

119

Chapter 7. Evaluation suite: the MC-DAG framework

We begin by presenting the motivation and an overview of the features included in the
MC-DAG framework. Details about how we developed the unbiased MC-DAG generation
are presented afterwards. The final part of this chapter explains how benchmarks are done
in order to compare our contributions to the state-of-the-art.

7.1 Motivation and features overview

When we look at existing approaches capable of scheduling MC-DAGs on multi-core
architectures [80; 81; 82; 83], two of them only present theoretical results and the other
two have a restricted execution model where all vertices of the MC-DAG belong to the
same criticality mode. The scheduling approaches of MC-DAGs [82; 83] have shown
experimental results, nevertheless their evaluation framework has not been made publicly
available.

The MC-DAG framework we have developed provides the abovementioned feature:
scheduling for MC data-driven systems. The framework is hosted on GitHub 2 under the
Apache 2 license. It was developed in Java in order to be cross-platform and different JAR
files can be created to execute the modules included in the tool.

One JAR module handles the scheduling of MC systems. This module takes a MC
system specification as an input. To specify a MC systems a XML file needs to be cre-
ated following the specification described in the GitHub wiki (https://github.com/
robertoxmed/MC-DAG/wiki/Declaring-a-XML-MxC-System). The MC-DAG specifi-
cation includes the vertices, edges, timing budgets in all criticality modes, number of avail-
able cores and number of criticality levels. If the debugging flag is turned on, then all the
steps of the scheduling table computation are displayed. The user can choose between the
three heuristics we have implemented (G-ALAP-LLF, G-ALAP-HYB or G-ALAP-EDF)
in order to schedule the system. Whenever VERIFYCONSTRAINTS of Alg. 1 or Alg. 2
returns false, the programs stops and returns an exception since scheduling tables could
not be computed. When the scheduling of the MC system in all criticality modes succeeds,
the scheduling tables are written in a XML output file and are displayed if debugging is
on.

To statistically assess our contribution, we need to perform benchmarks. Nonetheless,
publicly available tools usually only deal with one of the aspects of our research: for
example we can find random DAG generators (e.g. TGFF [124], GGEN [116]) but the
execution time allocated to vertices in the graphs is not controlled like for task sets when
real-time scheduling policies are evaluated. On the other hand, task set generators are not

2MC-DAG Framework - https://www.github.com/robertoxmed/MC-DAG

120 © 2019 Roberto MEDINA

7.2. Unbiased MC-DAG generation

capable of creating MC-DAGs. For these reasons one of our objectives was to integrate a
generator of MC-DAGs that would be publicly available and reusable by the community.
The MC-DAG generator and the benchmark suite are also contained in the framework.
Many parameters need to be set for the MC-DAG generator, in the next section we explain
how we achieve an unbiased generation. The program can generate an important number
of random systems with the parameters chosen by the end-user. Generated systems are
written into XML files so they can be read by the scheduling module if the user desires. To
generate a graphical representation of the system that was generated, a .dotfile is written
so it can be transformed into post script using Graphviz tools3. With these generated
systems, the benchmark suite is capable of performing tests to evaluate acceptance rates
and measure the number of preemptions generated by different scheduling policies. Since
these tests can take a large amount of time, the suite is fully automated for the generation
and the performance evaluation.

Additionally, when we look into availability or quality-of-service aspects related to
MC systems the same problem also exists: there are not publicly available tools in order to
evaluate the availability of non-critical tasks of MC systems. For the availability analysis,
the module takes the MC system specification as an input file as well. This JAR file
can use scheduling tables given as an additional input or it can calculate the scheduling
tables on the fly thanks to our heuristics. With these two inputs, the transformation rules
defined in Chapter 6 are applied and the automata are build. Two output files are created:
one contains the probabilistic automata (a .pm file) and the other contains formulas to
measure the availability rates of the non-critical tasks (a .pctl file). With these two files
the PRISM model checker can be run from the command line or by using the GUI to obtain
the availability rates for the non-critical tasks.

7.2 Unbiased MC-DAG generation

In this section we describe how we perform an unbiased generation for systems composed
of MC-DAGs. We developed this module of the framework in order to perform statis-
tical analyses. In particular, we planned to compare our scheduling methods to existing
approaches of the state-of-the-art [80; 81]. Like we mentioned before, a tool capable of
generating DAGs with MC tasks was not available publicly. In order to overcome this
limitation we incorporated different aspects related to the generation of unbiased DAGs
and the generation of task sets to evaluate real-time scheduling policies.

3Graphviz layout programs - http://www.graphviz.org

© 2019 Roberto MEDINA 121

Chapter 7. Evaluation suite: the MC-DAG framework

First of all, when it comes to DAG generation, in [116] Cordeiro et al. describe various
algorithms capable of creating DAGs with random topologies. We decided to extend the
Layer-by-Layer [125] method due to its simplicity and effectiveness. The idea behind
this procedure is to progressively create vertices by assigning them a “layer” level. For
each layer level a given number of vertices is created. The number of vertices and layers
is parameterized by the user. As layers are created, edges are formed between vertices
following a probability rate, i.e. there is a probability e of having an edge between two
vertices of different layers. To avoid cycles during the formation of edges, an edge can
only be added if the source vertex has a lower layer level than the destination vertex.

The second part of the generation, is related to the real-time aspect of our heuristics.
We want to tests the limits of our scheduling method by having control over the utilization

rate of the system. Scheduling policies are often judged based on how they can perform
when a system has a high utilization rate: high utilization rates translate to a more diffi-
cult scheduling problem. As a matter of fact, many contributions have been proposed in
the literature to perform evaluations of real-time scheduling policies. Nonetheless, UU-
NIFAST [126] has proven to be the most used generation method due to the fact that an
uniform distribution of utilization rates can be obtain easily and quickly. Therefore in
order to distribute an utilization rate among tasks we use UUNIFAST and its multi-core
adaptation UUNIFASTDISCARD [5]. UUNIFAST is used to distribute an overall utiliza-
tion rate among a given number of MC-DAGs included in the system. Since the utilization
rate of a MC-DAG can be greater than 1, we do not need to filter utilization rate sets like
UUNIFASTDISCARD does. Nevertheless, when we distribute the utilization rate among
vertices we use UUNIFASTDISCARD, we cannot have a vertex with a utilization greater
than 1 since it would implicate that more than one processor is needed to scheduled a
sequential task.

Generation of a MC system

Algorithm 3 presents the random system generation of our tool. Seven parameters need to
be given by the user:

• Umax ∈ R∗
+ the maximum utilization of the system in all the criticality modes.

• nG ∈ N the number of MC-DAGs that will be included in the system.

• {χ1, . . . ,χN} the set of criticality levels.

• nV the number of vertices that need to be create for each MC-DAG.

122 © 2019 Roberto MEDINA

7.2. Unbiased MC-DAG generation

Algorithm 3 Unbiased System generation
1: function GENERATESYSTEM(Umax: utilization of the system in all modes,

nG : number of DAGs to create,
{χ1, . . . ,χN}: set of criticality levels,
nV : number of vertices to create,
e: probability of having an edge,
p: vertices/layer lower-bound,
r: reduction factor)

2: S ← new MC system
3: |S .Π|← �Umax� � Number of available cores
4: S .χ ← {χ1, . . . ,χN} � Set of criticality levels
5: UGset []← new set of utilizations for DAGs
6: UUNIFAST(UGset ,Umax) � Distribute utilization rates
7: for all i < nG do
8: S .G ← S .G ∪ GENERATEGRAPH(UGset [i],S .χ,nV ,e, p,r)
9: end for

10: return S
11: end function

• e the probability of having an edge between two vertices.

• p an lower-bound on the number of vertices that belong to a layer.

• r a reduction factor for the utilization of tasks executed in more than one criticality
mode.

After the system is instantiated and initialized with the architecture and the criticality
modes (l. 2-4), an array of utilization rates is created (l. 5). This array UGset of size nG ,
is used by UUNIFAST to distribute the utilization rate of the system to each MC-DAG (l.
6). The idea behind UUNIFAST is to distribute the utilization Umax among the slots of
UGset uniformly. Once the distribution is performed, we proceed to create the number of
MC-DAGs requested by the user (l. 7-8).

Generation of a MC-DAG

The function GENERATEGRAPH is detailed in Algorithm 4. The Layer-by-layer

procedure described in [125; 116] is used as a basis for the algorithm. The timing bud-
get distribution and assignment to each vertex of the MC-DAG is done before edges are
created.

The parameters used by the function are almost identical to parameters used by GEN-
ERATESYSTEM. The only difference is the utilization rate that will be used by the vertices
of the graph: UGset ∈ R∗

+.

© 2019 Roberto MEDINA 123

Chapter 7. Evaluation suite: the MC-DAG framework

Algorithm 4 Unbiased MC-DAG generation
1: function GENERATEGRAPH(UG: DAG utilization,

χ: criticality levels,
nV : number of tasks,
e: edge probability,
p: vertices/layer upper-bound,
r: reduction factor)

2: G ← new MC-DAG � Initialization block
3: D ← random deadline from pre-defined list
4: budget[]← �D×UG�
5: prevLayer ← 0
6: for all χ� ∈ χ in decreasing order do � Generation
7: layer ← rand(0, prevLayer)
8: Uset []← array of utilization rates for each task

9: repeat � Generate the utilization for each task
10: returnUUD ← UUNIFASTDISCARD(Uset ,budget[χ�]/D)
11: until returnUUD =�

12: tasksToGen ← n
13: while budget[χ�]> 0 ∧ tasksToGen > 0 do � Vertices generation phase
14: count ← 0
15: while count ≤ p ∧ tasksToGen > 0 do
16: τi ← new vertex
17: Ci(χ�)← �D×Uset [i]�
18: budget[χ�]← budget[χ�]−Ci(χ�)
19: τi.layer ← layer

20: if layer �= 0 then � Edges incorporation phase
21: for all {τ j ∈ G | τ j.layer > τi.layer} do
22: if rand(0,1)≤ e ∧ CPχ�

j +Ci(χ�)≤ D then
23: G.E ← G.E ∪ (τ j,τi)
24: end if
25: end for
26: end if

27: G.V ← G.V ∪ {τi}
28: tasksToGen ← tasksToGen−1
29: count ← count +1
30: end while
31: layer ← layer+1
32: end while

124 © 2019 Roberto MEDINA

7.2. Unbiased MC-DAG generation

33: if χ� ≥ χ2 then � Reduction phase
34: Ureduc ←UG/r � Reduce by the reduction factor
35: budgetreduc ←Ureduc ×D
36: repeat
37: for all τi ∈ G do
38: Ci(χ�−1)← rand(1,Ci(χ�))
39: end for
40: until budgetreduc < ∑τi∈GCi(χ�−1)
41: budget[χ�−1]← budget[χ�−1]−budgetreduc
42: end if
43: prevLayer ← layer
44: end for

45: return G
46: end function

Initialization phase (l. 2-5): The function starts by creating a MC-DAG and assigning
it a deadline (l. 3). This deadline is randomly selected from a pre-defined list: {100,
120, 150, 180, 200, 220, 250, 300, 400, 500}. Since industrial implementations often
avoid large hyper-periods caused by prime numbers between deadlines of applications, we
follow the same principle with this list of possible deadlines. With the utilization and the
deadline of the MC-DAG, we can deduce the timing budgets that needs to be distributed
among tasks in all criticality levels (l. 4). Budgets are stored in an array of size |χ|, the
cardinality of the criticality levels. The timing budget is used for all tasks that are executed
in a given criticality level: this includes tasks that are executed in more than one criticality
level. For example, let us consider a system of three criticality modes composed of 30
vertices/tasks: in the highest criticality mode, the timing budget is distributed among 10
tasks. Once we move to the second highest criticality level, the timing budget is divided
among 20 tasks, the 10 tasks that were created in the previous criticality mode (with a
reduced timing budget since Ci(χ�)≤Ci(χ�+1)), in addition to the 10 new tasks that need
to be added. The final level will distribute the timing budget between 30 tasks.

Generation initialization (l.7-11): The generation phase of Alg. 4 (l. 6-44) then starts
by looping over the criticality levels in descending order. A layer value is randomly se-
lected (l. 7): in the highest criticality level, we are forced to start with layer number 0,
but for subsequent criticality levels, we can start in a deeper layer. This prevents biases
that could be caused by having too many source vertices and MC-DAGs with very few
consecutive tasks. The next step consists in creating an array of utilization ranges. This
array Uset of size n, is used to store the utilization given to each task created in the χ�

level. In order to do so, we use the adaptation of UUNIFAST for multi-core architectures:

© 2019 Roberto MEDINA 125

Chapter 7. Evaluation suite: the MC-DAG framework

UUNIFASTDISCARD [5]. The idea behind this method is to use UUNIFAST but discard
a set of utilization rates where one (or more) value is greater than one. This needs to be
avoided since it would mean that a sequential task would need more than 1 CPU in order
to complete its execution, which is impossible. Since UUNIFASTDISCARD can take sev-
eral tries to create an acceptable utilization array, the procedure is called as many time as
it is required (l. 9-11). (For Alg. 3, regular UUNIFAST is used since a MC-DAG can have
a utilization greater than one).

Vertex generation phase (l.12-32): With the utilization rates for each task being cre-
ated, the vertex generation phase starts. We need to create n vertices per level, and up
to p vertices per layer. After the vertex is created (l. 16), we transform the utilization
rate obtained thanks to UUNIFASTDISCARD to timing budget Ci(χ�) (l. 17), the overall
budget for the criticality level is then updated (l. 18) and the current layer level is given to
the task (l. 19).

Incorporation of edges (l.20-26): If the current layer is not the 0-layer, then we try
to add edges between the newly created vertex and all the vertices that have a lower layer
level (l. 20-26). By only having edges that go from a low-level layer to a high-level layer
we prevent the creation of cycles in the graph: a cycle would imply that an edge goes
from a high layer communicates with a low layer vertex at some point. We do follow the
probability e to have an edge but also verify that adding an edge would not create a critical
path bigger than the deadline assigned to the MC-DAG: CPχ�

j +Ci(χ�)≤ D (l. 22).

Once the edges are created, we add this new vertex to the graph (l. 27), update the
number of tasks to create (l. 28) and the number of tasks created in the layer (l. 29). This
procedure is repeated until the timing budget has been distributed.

Reduction phase (l.33-42): Once all tasks for the current criticality level have been
created, we check if we are not in the lowest-criticality level (l. 33). If that is not the
case, the reduction phase takes place. This reduction phase creates timing budgets for
tasks executed in the χ� criticality mode for the χ�−1 mode. We start by dividing the
level utilization, UG , by the reduction factor r (l. 34) and we obtain the targeted timing
budget for all tasks afterwards (l. 35). The process to reduce timing budgets for the χ�−1-
criticality mode then starts: we randomly generate the Ci(χ�−1) timing budget to avoid an
homogeneous reduction that could also introduce biases for the scheduling (l. 38). The
only restriction is that timing budgets need to be monotonically decreasing in function
of the criticality-level: Ci(χ�) ≤ Ci(χ�+1). This reduction is applied to all tasks until the
targeted budget is reached (l. 36-40). The budget array is also updated (l. 41) for tasks
that will be exclusive to the χ�−1-criticality mode.

126 © 2019 Roberto MEDINA

7.2. Unbiased MC-DAG generation

Figure 7.1: Example of a dual-criticality randomly generated MC-DAG

After the generator has iterated through all levels and through all layers, the generated
MC-DAG is returned (l. 45) and is added into the system (Alg. 3 l. 8).

An example of the random generation

Like for the scheduling module, the random generator is capable of generating multiple
systems in parallel. This feature is very convenient for our benchmarking suite. An exam-
ple of generated system is illustrated in Fig. 7.1. The generator was set to use the following
parameters: nG = 1, UG = 2, χ = {HI,LO}, n = 16, e = 20%, p = 2, r = 2. Vertices are
annotated with their IDs and with their timing budgets: HI-criticality tasks have two non-

© 2019 Roberto MEDINA 127

Chapter 7. Evaluation suite: the MC-DAG framework

null timing budgets, while LO-criticality tasks have one non-null timing budget. Edges
represent the data-dependencies among vertices.

Thanks to Alg. 3 and Alg. 4 we can generate a large number of unbiased and random
MC-DAGs in order to perform benchmarks of our scheduling algorithm. This generation
is generalized and MC systems with more than two criticality levels can be created. In the
next section, we present the benchmark suite we have developed, as well as the metrics
that can be obtained thanks to this module of the framework.

7.3 Benchmark suite

Like we explained at the beginning of this chapter, most contributions that tackle the prob-
lem of MC-DAG scheduling have only presented theoretical work [80; 79; 81] or have not
published open tools [82; 83] that could be used by the community. To overcome this lim-
itation and in order to evaluate our contributions by comparing them to the state-of-the-art,
our MC-DAG framework includes a benchmark suite.

The suite is a combination of a Python script and two Java JAR files. One JAR file
contains the generation tool we described in the previous section. The other JAR file
performs schedulability tests and measures the number of preemptions for G-ALAP-LLF,
G-ALAP-HYB, G-ALAP-EDF and FEDMCDAG from [80; 81]. The script was created in
order to perform and automatize a large number of tests.

In the script, the user needs to set the following parameters: number of tasks per MC-
DAG (nV), number of MC-DAGs (nG), number of cores, the probabilities of having an
edge between two vertices (e), the number of threads that are used by the benchmark suite
and the number of files to create for each combination of parameters. All combinations of
these parameters are used by the script in order to generate unbiased random MC-DAGs
thanks to Alg. 3 and Alg. 4; and to perform benchmarks on these generated systems.
Extensive tests are needed in order to cover a large space of possible MC system config-
urations. For example in Chapter 8 where we compare our results to existing approaches,
we tested 500 systems for a single point of some graphs and tests took about 8hrs for over
350,000 files.

The benchmark module (the second JAR file of the benchmark suite) takes an arbitrary
number of input files (XML MC system specifications) to perform tests, the user can
choose which scheduling algorithms are used by the tool and needs to specify an output
path to write detailed results in addition to an output path were the summarized results are
written. Detailed and summarized results are written in the form of CSV files in order to
plot curves afterwards.

128 © 2019 Roberto MEDINA

7.4. Conclusion

7.4 Conclusion

The MC-DAG framework, an open-source tool developed in order to have a platform
capable of analyzing MC systems composed of MC-DAGs was presented in this chapter.
Since existing works scheduling MC-DAGs have not released publicly available tools and
since availability analyses for MC-DAGs has never been performed before, we developed
this tool so the community can use it and extend it at will.

This framework is decomposed in different independent modules. The scheduling
module contains our scheduling heuristics (contribution detailed in Chapter 5). An un-
biased random MC-DAG generator is also included in the framework. Finally, transfor-
mation rules to obtain probabilistic automata from MC systems are included on another
module (contribution presented in Chapter 6).

While two modules are simply the implementations of our contributions (Chapter 5
and 6), in this chapter we have presented another key contribution included in our frame-
work: the unbiased MC-DAG generator. By combining different methods of the literature
regarding DAG generation (the Layer-by-Layer method [116; 125]) and task set uti-
lization distribution (UUNIFAST [126] and UUNIFASTDISCARD [5]), we have developed
a random MC-DAG generator. Thanks to this generator we can evaluate the performances
of our scheduling methods and compare them to existing methods of the state-of-the-art.

The benchmark suite included in this framework was used for the experiments pre-
sented in the following chapter. We give detailed results of our scheduling heuristics
regarding acceptance rates and number of preemptions for randomly generated systems.

© 2019 Roberto MEDINA 129

Chapter 7. Evaluation suite: the MC-DAG framework

130 © 2019 Roberto MEDINA

8 Experimental validation

TABLE OF CONTENTS

8.1 EXPERIMENTAL SETUP . 131

8.2 ACCEPTANCE RATES ON DUAL-CRITICALITY SYSTEMS 133

8.3 A STUDY ON GENERALIZED MC-DAG SYSTEMS 147

8.4 CONCLUSION . 151

This chapter presents our experimental validation for the scheduling contributions pre-
sented in this dissertation. We begin by describing our experimental setup. Many param-
eters have to be considered for the generation of MC-DAGs so we describe the rationale
behind the setup that we use. The second section of this chapter aims at demonstrating how
our scheduling approaches for a dual-criticality system outperform the state-of-the-art [80;
81]. We measure the acceptance rate and the number of preemptions for the G-ALAP im-
plementations of MH-MCDAG and for the FEDMCDAG algorithm of [81]. These two
metrics are decisive when judging the quality of real-time scheduling policies. Finally, we
present experiments of our scheduling approach when we consider MC systems composed
of more than two levels of criticality. To best of our knowledge this is the first statistical
analysis performed on MC data-driven systems executing MC-DAGs where vertices can
have different criticality levels. The influence that the number of criticality levels have on
the acceptance rate is demonstrated.

8.1 Experimental setup

In the previous chapter we presented our contribution regarding the generation of unbiased
MC-DAGs. In order to statistically assess the performance of our scheduling algorithms
we need to see the influence of generation parameters on the performance criteria we use:

131

Chapter 8. Experimental validation

acceptance rate and number of preemptions. The following list gives the parameters that
we varied in order to perform the assessment of our scheduling approaches:

• Utilization of the system: the main parameter used in order to assess the quality
of real-time schedulers is the utilization of the system. Having a higher utilization
makes the scheduling problem more difficult as the processor is more demanded.
Therefore, a scheduling approach is efficient if it continues to find feasible schedules
as utilization increases.

• Probability of having an edge between two vertices: the density of graphs we try
to schedule has a big influence on the scheduling problem. Increasing the number
of data dependencies makes the scheduling problem more difficult. For our exper-
imentations we chose to set this parameter to 20% or 40%. Having denser graphs
is not a problem for the generator of MC-DAGs but does not represent the normal
amount of precedence constraints in industrial safety-critical systems.

• Number of tasks per DAG: each MC-DAG is fragmented into a set of tasks and
the size of this set has an influence on the scheduling problem. The overall timing
budget that needs to be distributed among tasks is fixed once the utilization of the
system and the deadline of the graph have been set. Having a small number of tasks
implies that each task has a large timing budget Ci. The scheduling problem tends
to become easier when the number of tasks increases given a set utilization rate and
deadline as timing budgets become smaller.

• Number of DAGs: having various MC-DAGs in the system implies that tasks have
different periods and need to be activated more than once during the hyper-period of
the system. This has an impact on the scheduling problem since from one activation
to the other, the number of jobs that need to be scheduled can be different.

• Number of cores for a given architecture: by increasing the number of cores
considered in the architecture, the scheduling problem also becomes more difficult.
For a given utilization rate, timing budgets that need to be distributed among tasks
become greater, subsequently increasing tasks’ timing budgets. Again allocating
‘larger” tasks is more difficult for the approximation algorithms we study. We con-
sider architectures having four and eight cores for our experiments. Considering
architectures with more than eight cores switching to higher criticality mode in a
synchronous manner is unrealistic [127]. There is latency in messages provoked by
the network-on-chip.

132 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

• Number of criticality levels: intuitively by increasing the number of levels the
scheduling problem becomes more complex. More tables need to be computed and
have to be schedulable. At the same time safe transitions need to be ensured between
more criticality modes.

The generation of MC-DAGs is a combination of all these parameters and in order
to cover as much as possible all configurations, we need to generate an important num-
ber of test files. The influence of other generation parameters was also studied but the
variations on acceptance rates and number of preemptions were not relevant enough to
present them in this manuscript. The next section evaluates the behavior and perfor-
mances of our scheduling approaches compared to existing works of the literature [80;
81] for dual-criticality systems.

8.2 Acceptance rates on dual-criticality systems

The first experiments we present are centered around dual-criticality systems. Like we
have mentioned before, existing approaches capable of scheduling MC-DAGs have only
been developed for dual-criticality systems. In our experimentations we want to evaluate
the performance gain of our scheduling approach compared to schedulers defined in [80;
81]. This evaluation remains experimental and we do not provide a theoretical proof of
dominance over the existing approaches of the literature. Nonetheless, we explain the key
aspects that differentiate our implementations of MH-MCDAG from the ones proposed
in [80; 81].

Our study is divided in two parts: we begin by performing an analysis on MC systems
composed of a single DAG, to then evaluate performances on multiple MC-DAG systems.
For all experimentations we have instantiated the G-ALAP-LLF, G-ALAP-EDF, G-ALAP-
HYB version of our meta-heuristic and GENSCHEDMULTIPROC [80] / FEDMCDAG [81]

to compare results.

8.2.1 Single MC-DAG scheduling

In our first experiments, we compare our scheduling heuristic to the approach presented
in [80; 81] for a system composed of a single MC-DAG with a utilization superior to one:
this implies that more than one processor is needed to schedule the MC-DAG. Like we ex-
plain in the Chapter 5, the approach presented in [80; 81] uses LS to find a priority ordering
for HI and LO-criticality tasks. The two priority orderings are independent. HI-criticality
tasks’ allocation is systematically prioritized in order to obtain MC-correct schedules, i.e.

© 2019 Roberto MEDINA 133

Chapter 8. Experimental validation

when a HI-criticality task becomes active it will be executed ASAP potentially preempting
any LO-criticality task that was running in the architecture. On the other hand, we have
proposed to schedule HI-criticality tasks ALAP and only preempt LO-criticality tasks in
order to respect Safe Trans. Prop. (see Definition 12 in Chapter 5). The idea is to
constraint as less as possible the computation of the LO-criticality scheduling table.

Besides the comparison to the state-of-the-art, we show the impact of some generation
parameters like (i) the number of tasks per DAG, (ii) the probability to have an edge
between two vertices and (ii) the number of cores available in the architecture. Therefore,
the first experiments we present are configured as follows:

• A single MC-DAG is generated for the system.

• The number of tasks progressively changes between 20 and 50.

• The probability to have an edge between two vertices is set to 20% or 40%.

• The number of cores increases from four to eight.

• The reduction factor is set to two: the utilization rate given to HI-criticality task is
reduced by half when the timing budgets for the LO-criticality mode are generated.
Other reduction factors can be considered but a reducing budgets by half ensures
that LO-criticality tasks will have large timing budgets and HI-criticality tasks in
LO mode will also have an impact on the scheduling.

• The ratio between HI and LO-criticality tasks is set to 1:1, the same amount of LO
and HI-criticality tasks is created for each MC-DAG. Like for the reduction factor,
other values could have been considered, but the idea is to have both types of tasks
for all the experiments.

Acceptance rate

Fig. 8.1, presents our results in terms of acceptance rate (i.e. the percentage of systems that
were schedulable) for our scheduling heuristics compared to the heuristic of the state-of-
the-art. In the plots that we present, we have represented the measured rates in addition to
their polynomial fitting curve for readability reasons.The X-axis represents the normalized
utilization while the Y-axis is the acceptance rate. For each point of the graph we generated
500 random MC systems.

For GENSCHEDMULTIPROC of [80], we implemented it using the most efficient LS
heuristic to minimize the makespan considering our hypotheses for the MC system: High-
est Level First with Estimated Times (HLFET). This heuristic is based on the longest

134 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cc

ep
ta

nc
e

ra
te

(%
)

G-ALAP-LLF
G-ALAP-EDF

G-ALAP-HYBRID
GENSCHEDMULTIPROC

(a) m = 4, |G|= 1, |V |= 20, e = 20%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) m = 4, |G|= 1, |V |= 50, e = 20%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cc

ep
ta

nc
e

ra
te

(%
)

(c) m = 4, |G|= 1, |V |= 20, e = 40%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d) m = 4, |G|= 1, |V |= 50, e = 40%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Unorm(S)

A
cc

ep
ta

nc
e

ra
te

(%
)

(e) m = 8, |G|= 1, |V |= 20, e = 20%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Unorm(S)
(f) m = 8, |G|= 1, |V |= 50, e = 20%

Figure 8.1: Measured acceptance rate for different single MC-DAG scheduling heuristic

© 2019 Roberto MEDINA 135

Chapter 8. Experimental validation

cumulative path, considering timing budgets from an exit vertex. In [72] it was demon-
strated that this heuristic is the most efficient when homogeneous architectures and no
communication costs are considered. Also it holds the lowest complexity which makes it
an efficient algorithm.

In Fig. 8.1a we show the results obtained for a MC system composed of a single MC-
DAG with 20 vertices in a four cores architecture. The scheduler that has the best perfor-
mance is G-ALAP-LLF, followed by G-ALAP-HYB. We recall the principle of G-ALAP-
HYB: the HI-criticality mode is scheduled with the EDF priority ordering we defined
thanks to Eq.5.7 (see Chapter 5) and in the LO-criticality mode we use the LLF prior-
ity ordering (Eq. 5.6 of Chapter 5). For G-ALAP-LLF the acceptance rate is very good
since more than 90% of the generated systems are schedulable until the utilization reaches
90%. For G-ALAP-HYB, the acceptance rate degrades faster compared to G-ALAP-LLF.
After the system is at 65% of its utilization, the acceptance rate drops below 90%. Nev-
ertheless, results are still good: when the system has a utilization of 80%, almost 60% of
systems remain schedulable. When we look into the results obtained by G-ALAP-EDF
and GENSCHEDMULTIPROC, their performances are similar to each other, specially after
the utilization reaches 60%. These two approaches present the lowest acceptance rate: less
than 60% when the utilization of the system is at 60%. G-ALAP-EDF and GENSCHED-
MULTIPROC are very similar when the utilization of the system is high, due to the fact
that HLFET and EDF define a similar priority ordering (based on critical paths) and HI-
criticality tasks become bigger so executing them ALAP or ASAP does not influence on
the acceptance rate anymore.

Influence on the number of tasks: In Fig. 8.1b, we present the results obtained by
the schedulers when the number of tasks is incremented from 20 to 50. The fact that
more tasks are created implicates that potentially more precedence constraints need to
be respected. However, these tasks tend to have a smaller execution time, so for certain
utilization rates the scheduling problem becomes easier.

Again the best performances are obtained by the G-ALAP-LLF implementation. Yet,
when the normalized utilization reaches 70%, the acceptance rate goes below 90% and
progressively degrades. The degradation on the acceptance rate is more notorious than
when 20 tasks were created for each MC-DAG. Nonetheless, the performance is still good
since over 70% of systems were schedulable when the utilization is below 80%.

For the G-ALAP-HYB implementation, once the utilization is over 65%, the acceptance
rate degrades faster than in Fig. 8.1a. For example in Fig. 8.1b when Unorm(S) = 0.8 the
acceptance rate is at 54% as opposed to 60% in Fig. 8.1a However, since the difference
between Fig. 8.1a and Fig. 8.1b is around 5%, results are still interesting for this heuristic.

136 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

The behavior of G-ALAP-EDF is a bit different: the degradation on the acceptance
rate is only visible when the system reaches a utilization of 50%, as opposed to 40%
in Fig. 8.1a. There is an improvement in the acceptance rate due to the fact that the
utilization is distributed among more tasks. This be seen when the system’s utilization is
at 0.6: 60% of schedulable systems for Fig. 8.1a whereas in in Fig. 8.1b 70% of systems
are schedulable. Once the utilization goes beyond 70% there is a slight degradation in
terms of acceptance rate, around 5%, between Fig. 8.1a and Fig. 8.1b.

Finally, the results of GENSCHEDMULTIPROC show that having more tasks greatly af-
fects the performances of the algorithm. For example when Unorm(S)= 0.4, the acceptance
rate drops from over 80%, to a bit over 50%. In this case, our heuristics clearly outperform
the existing approach, until the utilization reaches 70% where G-ALAP-EDF and GEN-
SCHEDMULTIPROC perform almost identically. There are two main reasons that explain
this behavior. (i) HI-criticality tasks are scheduled until their completion by GENSCHED-
MULTIPROC and because we incremented the number of tasks we also incremented the
number of HI-criticality tasks. Our approach on the other hand, can preempt HI-criticality
if a task with a higher priority becomes active and does not violate Safe Trans. Prop. (ii)
A second source of optimization comes from the fact that HI-criticality tasks are sched-
uled ALAP in the HI-criticality mode, which relaxes the execution of LO-criticality tasks.
This difference in scheduling becomes negligible after the utilization of the system reaches
70% but this is due to the fact that HI-criticality tasks become bigger and scheduling them
ASAP or ALAP does not have an impact anymore.

Influence of the graph’s density: In Fig. 8.1c and Fig. 8.1d we evaluated the impact of
the probability to have a data dependency between two vertices. This probability increased
from 20% to 40%.

Between Fig. 8.1c and Fig. 8.1a the only parameter that changed was the probability to
have an edge. The overall behavior of the four scheduling heuristics is the same between
the two plots that we mentioned: G-ALAP-LLF shows the best performance, followed by
G-ALAP-HYB, and G-ALAP-EDF is comparable to GENSCHEDMULTIPROC. Nonethe-
less, there is a general deterioration on performances of all heuristics, which was expected
since graphs are denser (i.e. more dependencies need to be considered).

The results of Fig. 8.1d are quite different from the behavior observed in Fig. 8.1b: for
these two plots we set the number of tasks to 50. Because the number of tasks is bigger
and due to the increment in data dependencies, the results of our three implementations
are “closer”, e.g. for G-ALAP-LLF and G-ALAP-HYB there is only a 10% difference in
the acceptance rate. The gap between G-ALAP-HYB and G-ALAP-EDF is also tinner, we
have on average a 20% difference between both curves. This behavior can be explained by

© 2019 Roberto MEDINA 137

Chapter 8. Experimental validation

the increment of data dependencies and tasks which makes the scheduling problem quite
difficult to solve.

For GENSCHEDMULTIPROC we can also see a general deterioration on its performance
due to the numerous precedence constraints that need to be considered to compute the
scheduling tables. Nonetheless when the system has a utilization higher than 65%, GEN-
SCHEDMULTIPROC has a better performance than G-ALAP-EDF. This can be explained
by the fact that the priority ordering we defined based on G-EDF is too permissive for some
tasks that can have the exact same deadline but not the same execution time. Nonetheless,
GENSCHEDMULTIPROC is only better than G-ALAP-EDF by a very small margin.

Influence of the targeted architecture: The final experiments presented in Fig. 8.1
demonstrate the effects of the number of cores considered in the targeted architecture. We
increased this number from four to eight. The probability to have a data dependency is set
to 20% and the number of tasks varies from 20 (Fig. 8.1e) to 50 (Fig. 8.1f).

Because the number of cores has increased, the timing budget that is given to tasks
also increases in function of the normalized utilization. As we can see, this has an impact
on the performance of all the scheduling heuristics. While G-ALAP-LLF still shows the
best performance in this case, its results are not that different from G-ALAP-HYB. The
deterioration in its performance is also visible: for a system with a utilization of 80% in
four cores, 90% of systems were schedulable (Fig. 8.1a) as opposed to 48% (Fig. 8.1e).
Nevertheless, when we look into the results obtained in Fig. 8.1f, G-ALAP-LLF has a
better acceptance ratio. Tasks with smaller execution times explain this improvement but is
limited when the utilization increases: 60% of systems are schedulable when Unorm(S) =
0.8 as opposed to 80% (Fig. 8.1b).

The performance of G-ALAP-HYB also suffers from a general deterioration but less
visible than results obtained by G-ALAP-LLF. Considering the case where a MC-DAG
has 20 vertices, when the utilization is at 80%, the acceptance rate diminished from 60%
(Fig. 8.1a) to almost 40% (Fig. 8.1e). This decrement is also visible when a MC-DAG has
50 vertices: for Unorm(S) = 0.8 we have a 25% of acceptance rate (Fig. 8.1f) as opposed
to 55% (Fig. 8.1b).

When we look into the results obtained by G-ALAP-EDF, we notice that there is al-
most no impact on the acceptance rate when the number of cores increases and MC-DAGs
have 20 vertices. The curves and values from Fig. 8.1a and Fig. 8.1e are almost the same.
However, when the number of cores and the number of tasks increases this is no longer the
case. The acceptance rate drops almost in a linear fashion for G-ALAP-EDF when MC-
DAGs have 50 vertices and the architecture has eight cores (Fig. 8.1f). A similar linear

138 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

degradation is seen when the architecture has only four cores (Fig. 8.1b) but it occurs at a
later point in Fig. 8.1f, i.e. when the utilization is over 40%.

For GENSCHEDMULTIPROC, when the number of tasks is set to 20 (Fig. 8.1e) the
results are similar to what we observed for G-ALAP-EDF: the results are quite similar be-
tween four (Fig. 8.1a) and eight (Fig. 8.1e) cores. Nonetheless, when the number of tasks
and cores increases (Fig. 8.2c) there is a more significant difference specially when the uti-
lization of the system is low (below 50%). We can also observe the fact that GENSCHED-
MULTIPROC outperforms G-ALAP-EDF when the utilization of the system is higher than
60%, this is due to the fact the the G-EDF priority ordering of tasks is more permissive
(the same behavior was observed in Fig. 8.1d).

Conclusion on single MC-DAG scheduling

The following conclusions can be established thanks to our experimental results:

• G-ALAP-LLF gives the better performance in terms of acceptance rates which is in
accordance with the result presented in [117]: G-EDF is dominated by G-LLF. G-
ALAP-HYB has the second best performance followed by G-ALAP-EDF and GEN-
SCHEDMULTIPROC. In some situations GENSCHEDMULTIPROC has better perfor-
mances than G-ALAP-EDF.

• Increasing the number of tasks tends to make the scheduling more difficult when the
utilization of the system is elevated. Conversely when the utilization of the system is
low, having more vertices makes the scheduling problem easier: the timing budgets
are smaller so allocating them is easier.

• Increasing the probability to have an edge between two vertices is one of the main
parameters affecting the scheduling problem of MC-DAGs. When the number of
tasks is not very high (20 or less for example), the degradation is not very conse-
quent. However if a lot of tasks need to be scheduled by the system and there is a
high probability to have an edge between them, the performances of our scheduling
heuristics were clearly affected (e.g. there is 60% decrease in the acceptance rate
for G-ALAP-LLF when Unorm(S) = 0.8).

• Considering a bigger architecture with more cores has an implication on the timing
budgets that tasks will have. This has shown to have consequences on the per-
formance of G-ALAP-LLF rending the scheduling problem more difficult for this
scheduler. G-ALAP-EDF and GENSCHEDMULTIPROC seem to be less affected by
this change when 20 tasks are on the system. Nonetheless, when more cores and

© 2019 Roberto MEDINA 139

Chapter 8. Experimental validation

tasks are considered(eight cores and 50 tasks), G-ALAP-EDF and GENSCHEDMUL-
TIPROC see a degradation on their performances.

In the next section we present a study comparing our scheduling heuristics to the
method presented in the state-of-the-art [81] when multiple MC-DAGs with different pe-
riods are on the same system . We include results presenting the number of preemptions
per job generated for each heuristic: we did not present these results for single MC-DAG

scheduling since they had the same order of magnitude and conclusions can be drawn
from our experiments with multiple MC-DAGs. While G-ALAP-LLF might give better
performances in terms of acceptance rate, it is known that solutions based on laxities en-
tail an important number of preemptions which could compromise the feasibility of the
scheduler.

8.2.2 Multiple MC-DAG scheduling

We now present the results of our analysis on MC systems composed of more than one
MC-DAG. Our main objective is to statistically evaluate how our heuristic outperform the
federated approach of the literature [81]. Like we explained in Chapter 5, the federated ap-
proach [81] creates clusters of cores to reduce the multiple MC-DAG scheduling to various
single MC-DAG scheduling sub-problems. The advantage of this approach is that sporadic
activations of MC-DAGs are possible and therefore the execution model is more generic
than our global implementations of MH-MCDAG. Nonetheless, by considering periodic
activations of MC-DAGs, the federated approach has better resource utilization since there
is no offset between MC-DAG activations. At the same time, the type of data-driven re-
active systems we are interested in (e.g. flight control systems) follow periodic activations
of software components. Finally, to the best of our knowledge only the federated ap-
proach [81] is the only existing algorithm capable of scheduling multiple MC-DAGs in a
single architecture.

We measured the acceptance rate of our heuristics (G-ALAP-LLF, G-ALAP-HYB and
G-ALAP-EDF) compared to FEDMCDAG [81]. We also provide an analysis on the num-
ber of preemptions that are produced by all scheduling heuristics since it is an important
aspect to consider for the feasibility of the schedulers. The generation parameters for the
random MC systems are the following:

• Multi-core architectures have four or eight cores.

• We increase the number of MC-DAGs from two to four. The periods given to the
MC-DAGs are chosen randomly from a pre-defined list of periods (like it was ex-
plained in Section 7.2, Chapter 7).

140 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
A

cc
ep

ta
nc

e
ra

te
(%

)

G-ALAP-LLF
G-ALAP-EDF

G-ALAP-HYBRID
FEDMCDAG

(a) m = 4, |G|= 2, ∑ |V |= 100, e = 20%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) m = 4, |G|= 4, ∑ |V |= 100, e = 20%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Unorm(S)

A
cc

ep
ta

nc
e

ra
te

(%
)

(c) m = 8, |G|= 2, ∑ |V |= 100, e = 20%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Unorm(S)
(d) m = 8, |G|= 4, ∑ |V |= 100, e = 20%

Figure 8.2: Comparison to existing multiple MC-DAG scheduling approach

• The number of tasks is fixed to 100, i.e. between all the MC-DAGs that are created
we have 100 tasks in total.

• The probability to have an edge between two vertices was set to 20% since it repre-
sents the normal amount of data-dependencies that are included in industrial safety-
critical applications.

This evaluation method is therefore focused on the effects of multi-periodicity caused by
the inclusion of more than one MC-DAG in a single MC system.

Acceptance rate

Fig. 8.2 presents the results obtained in terms of acceptance rate for our scheduling heuris-
tics compared to the federated approach of literature. Points in the curve present the mea-
surements obtained by the scheduling heuristics and for clarity we have also presented
the polynomial fitting curves (like we did for Fig. 8.1). 500 random MC systems were

© 2019 Roberto MEDINA 141

Chapter 8. Experimental validation

generated for each experiment. The Y-axis represents the acceptance rate for randomly
generated MC systems, while the X-axis gives the normalized utilization of the architec-
ture considered for the generation.

Like we mentioned at the beginning of this subsection, our study is mostly focused on
the effects of multi-periodicity: tasks now have to be scheduled multiple times during the
hyper-period. Fig. 8.2a and Fig. 8.2c presents the results obtained when 2 MC-DAGs are
considered in the system and both of them have 50 vertices. We increased the number of
MC-DAGs to four in Fig. 8.2b and Fig. 8.2d.

Like for single MC-DAG scheduling the general observation in terms of performance
remains the same: it is G-ALAP-LLF that shows the best performances, followed by G-
ALAP-HYB, then G-ALAP-EDF and finally FEDMCDAG.

For G-ALAP-LLF, the performances obtained by the scheduling heuristic are quite
good when two MC-DAGs are deployed into a quad-core architecture (Fig. 8.2a): over
80% of systems are schedulable when Unorm = 0.8 with this heuristic. If we increase the
number of MC-DAGs considering the same hardware architecture (Fig. 8.2b) and the same
cumulative number of tasks (∑ |V | = 100): the performance of the heuristic is similar to
the previous case up to the point when the system is at 80% of its utilization, afterwards
the degradation is more significant. However, when we increase the number of cores from
four to eight, for two (Fig. 8.2c) and four MC-DAGs (Fig. 8.2d) performances change more
significantly between both experiments. Comparing to the case when the architecture had
only four cores, we can draw the following conclusion: the performance is significantly
degraded because the timing budgets for tasks becomes bigger. For instance between
Fig. 8.2a and Fig. 8.2c, instead of having 80% of schedulable systems in four cores, we
have 70% in eight cores. In fact, the degradation is more noticeable when more MC-DAGs
are in the system and the architecture has more processors. This last observation is due to
the fact that tasks have more than one activation during the computation of the scheduling
table and their timing budget is larger (Fig. 8.2d).

When we look into the behavior of G-ALAP-HYB, its performance is almost com-
parable to what G-ALAP-LLF produced when the system has four cores (Fig. 8.2a and
Fig. 8.2c). The biggest difference in terms of acceptance rate is seen when two MC-
DAGs are considered in the system and the utilization is over 80% (Fig. 8.2a): on aver-
age G-ALAP-LLF schedules 15% more systems than G-ALAP-HYB. This difference is
less remarkable when four MC-DAGs are considered in the architecture, after the system
reaches 70% G-ALAP-LLF only outperforms G-ALAP-HYB by a 10% margin. The fact
that G-ALAP-LLF dominates G-ALAP-HYB can be explained by the fact that scheduling
the system in the HI-criticality mode is also a difficult problem, which G-LLF tends to

142 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

do better than G-EDF. When the number of cores increases to eight, G-ALAP-HYB shows
a degraded performance and the difference with G-ALAP-LLF is less important. When
two MC-DAGs are on the system (Fig. 8.2c), after the system reaches a utilization rate of
55%, G-ALAP-HYB degrades in a linear fashion. The same type of degradation is visible
for MC systems with four MC-DAGs and when the utilization is over 50% (Fig. 8.2d).
However, the difference between G-ALAP-LLF and G-ALAP-HYB is less visible in this
case.

The analysis of G-ALAP-EDF is the following: when the system considered has four
cores its performances are good until the point where the system has a utilization inferior to
70%. There is a degradation in performance after this point for both cases, when two MC-
DAGs are in the system (Fig. 8.2a) G-ALAP-EDF follows a polynomial decrease while
when four MC-DAGs are in the system there is linear degradation (Fig. 8.2b). Like in
single MC-DAG results, G-ALAP-EDF suffers a performance loss when the architecture
has more cores (Fig. 8.2c and Fig. 8.2d). The scheduling problem does become more
difficult when more MC-DAGs are in the system, but the difference is very slight (only 5%
difference in acceptance rate). Another important observation concerns results produced
by G-ALAP-EDF and by the approach from the literature [81]. G-ALAP-EDF clearly
outperforms FEDMCDAG when only two MC-DAGs are in the system and the architecture
has four or eight cores (Fig. 8.2a and Fig. 8.2c).

The principle of FEDMCDAG to create clusters of cores for MC-DAGs that have a high
utilization (greater than one), has the advantage of being quite simple and inherit from
the correctness of single MC-DAG scheduling. However, the results shown in Fig. 8.2
clearly shows that our heuristics outperform this method in terms of acceptance rate. For
example when only two MC-DAGs are in the system (Fig. 8.2a and Fig. 8.2c), the results
of FEDMCDAG are up to 50% less effective than G-ALAP-LLF with four cores(Fig. 8.2a)
or even 70% when eight cores are considered (Fig. 8.2c). The fact that our approach
is global and not federated is why systems are more schedulable in our case. There is
an improvement in the results delivered by the approach when the number of MC-DAGs
increases (Fig. 8.2b and Fig. 8.2d) which was expected because MC-DAGs with a low
utilization (lower than one) are transformed into sequential tasks and isolated into a single
cluster. These results are also comparable to the performance of G-ALAP-EDF which is
in accordance to the previous results we had for single MC-DAG scheduling.

Considering multiple MC-DAGs in a single system does in fact make the problem
more difficult for most of the heuristics that we study. The general observation in terms
of performance between the heuristics is the same that we established for single MC-
DAG scheduling: G-ALAP-LLF gives the best results, followed by G-ALAP-HYB, G-

© 2019 Roberto MEDINA 143

Chapter 8. Experimental validation

ALAP-EDF and FEDMCDAG. For some configurations, the last two are almost identical
when the utilization of the system increases. When MC systems are composed of MC-
DAGs with a high utilization, FEDMCDAG tends to give the worst performances. On
the other hand, when the utilization of the system is decomposed into more MC-DAGs,
since their utilization can be inferior to one, they are transformed into sequential tasks by
FEDMCDAG. By doing so, the schedulability of this algorithm improves but it defeats the
purpose of having MC-DAGs and parallel execution in applications in the first place.

Entailed number of preemptions

Besides the acceptance rate obtained by a scheduling approach, another metric that needs
to be taken into account is the number of preemptions for jobs. In fact, having too many
preemptions in the system could invalidate the theoretical results obtained since the over-
head caused by context switches and migrations would not be negligible and potential
deadline misses could occur. For this reason we look into the number of preemptions
per job produced by each one of the heuristics we have presented. We limit the results
to the most relevant cases since the magnitude order across all results was similar. For
single MC-DAG scheduling the results also showed the same magnitude order so we have
not included them in this chapter. We have also limited our study to the cases where all
scheduling approaches were able to schedule a system. For instance, when the utiliza-
tion is high and G-ALAP-LLF is the only heuristic capable of scheduling the system, the
number of preemptions is not comparable since the other algorithms were unable to find a
feasible MC correct schedule.

The results regarding the number of preemptions are illustrated in Fig. 8.3. Like for the
acceptance rate experiments, we generated 500 random MC systems and tried to schedule
them with the four heuristics presented in this chapter. Points in the plots represent an
average of the number of preemptions for schedulable systems out of the 500 randomly
generated test files. We aim to demonstrate the impact that some generation parameters
have on the number of preemptions for each heuristic we have studied. The parameter
changes we present are the following:

• Fig. 8.3a is used as a basis for our comparisons.

• The number of DAGs is increased from two to four in Fig. 8.3b.

• The number of tasks per DAG is decreased from 50 to 20 in Fig. 8.3c.

• The number of cores is increased from four to eight in Fig. 8.3d.

144 © 2019 Roberto MEDINA

8.2. Acceptance rates on dual-criticality systems

0.2 0.4 0.6 0.8

0.1

1

Pr
ee

m
pt

io
ns

pe
rj

ob

G-ALAP-LLF
G-ALAP-EDF

G-ALAP-HYBRID
FEDMCDAG

(a) m = 4, |G|= 2, ∑ |V |= 100, e = 20%.

0.2 0.4 0.6 0.8

0.01

0.1

1

(b) m = 4, |G|= 4, ∑ |V |= 100, e = 20%.

0.2 0.4 0.6 0.8

0.1

1

Pr
ee

m
pt

io
ns

pe
rj

ob

(c) m = 4, |G|= 2, ∑ |V |= 40, e = 20%.

0.2 0.4 0.6 0.8
0.01

0.1

1

(d) m = 8, |G|= 2, ∑ |V |= 100, e = 20%.

0.2 0.4 0.6 0.8

0.1

1

Unorm(S)

Pr
ee

m
pt

io
ns

pe
rj

ob

(e) m = 4, |G|= 2, ∑ |V |= 100, e = 40%.

Figure 8.3: Number of preemptions per job

© 2019 Roberto MEDINA 145

Chapter 8. Experimental validation

• The density becomes greater (from 20% to 40%) in the graph of Fig. 8.3e.

For all the plots in Fig. 8.3, the X-axis is the normalized utilization of the system. The
Y-axis gives the average number of preemptions per job: it is the division between the
number of preemptions and the number of jobs activations. We use a logarithmic scale
on the Y-axis to illustrate the results.

Solutions based on G-LLF: Like it was expected, solutions based on the G-LLF
scheduler entail more preemptions: between 0.4 to 4 preemptions per job for G-ALAP-
LLF and between 0.3 to 1 for G-ALAP-HYB. When the utilization of the system increases,
the average number of preemptions increases as well. This increment is caused by tasks
with an increased timing budget which causes them to be executed for a longer period of
time and therefore the chances to be preempted increase as well. This type of behavior
can be seen for the set of plots presented in Fig. 8.3.

An important result we want to insist on is the number of preemptions that G-ALAP-
HYB produces compared to G-ALAP-LLF. The purpose of a hybrid algorithm combining
G-EDF for the HI-criticality mode and G-LLF for the LO-criticality mode was to limit
the number of preemptions that can be generated while the algorithm computes the HI-
criticality scheduling table. The results of Fig. 8.3 show that we were in fact capable of
limiting the number of preemptions thanks to G-ALAP-HYB. At the same time, while
G-ALAP-LLF and G-ALAP-HYB generate more preemptions they tend to use less cores
to find feasible schedules since clusters are not necessary for the scheduling of the system.

G-ALAP-EDF vs. Federated approach: When comparing the results in terms of
number of preemptions between G-ALAP-EDF and FEDMCDAG, the results are more
sparse and different conclusions can be established.

When we look into the results presented Fig. 8.3a, Fig. 8.3c and Fig. 8.3e, we have the
same behavior for both heuristics: at the beginning FEDMCDAG generates more preemp-
tions but as utilization increases, G-ALAP-EDF takes the upper hand and entails more
preemptions compared to FEDMCDAG. Nevertheless, we can see that while G-ALAP-
EDF tends to generate more preemptions, both heuristics are placed in the same threshold
varying from 0.01 to 0.4 average number of preemptions per job.

In the last two figures we have two different behaviors. When the number of MC-
DAGs is increased to four, Fig. 8.3b shows that G-ALAP-EDF has more preemptions than
FEDMCDAG: since FEDMCDAG transforms MC-DAGs with a low utilization into a single
bigger sequential task, the number of jobs decreases and therefore the average number of
preemptions is inferior in this case. Also the clustering of MC-DAGs gives exclusive
cores to tasks which limits the cases when tasks need to be preempted. In Fig. 8.3d on the
other hand, we can see that FEDMCDAG creates the most preemptions when the number of

146 © 2019 Roberto MEDINA

8.3. A study on generalized MC-DAG systems

cores increases to eight. This can be explained by the fact that HI-criticality tasks are being
scheduled ASAP and potentially preempting LO-criticality that were being executed. This
does not happen for G-ALAP-EDF at the beginning but as utilization increases we can see
that both curves tend to group around the same value.

While G-ALAP-LLF and G-ALAP-HYB give the better results in terms of acceptance
rate (Fig. 8.1 and Fig. 8.2), we have seen that these solutions tend to entail an important
number of preemptions (Fig. 8.3). In comparison to G-ALAP-EDF and FEDMCDAG,
our solution based on G-LLF generates on average 100 times more preemptions per job.
However, without knowing the implications that a preemption and context switch has on
the targeted system/architecture it is impossible to draw a conclusion on the applicability
of our scheduling heuristics. We are conscious of this limitation and is the main reason
we have proposed solutions using both G-LLF and G-EDF or only G-EDF to schedule
MC-DAGs on multi-core architectures.

8.3 A study on generalized MC-DAG systems

In this section we present a study on the schedulability of MC systems composed of MC-
DAGs with more than two criticality levels. To the best of our knowledge, our heuristics
(G-ALAP-LLF, G-ALAP-HYBand G-ALAP-EDF) are the only ones capable of perform-
ing this type of scheduling. Other approaches considering more than two criticality levels
have not been adapted to handle precedence constraints. We aim at analyzing the impact
that criticality levels have on the scheduling problem of MC-DAGs on multi-core proces-
sors.

8.3.1 Generalized single MC-DAG scheduling

In the previous section we demonstrated the influence that generation parameters have on
the acceptance rate and number of preemptions for our heuristics. In order to analyze
exclusively the effects that multiple criticality levels have on the acceptance rate, we have
decided to fix most of the generation parameters.

The experimental evaluation is set as follows:

• There is a single MC-DAG in the system.

• The number of vertices for the MC-DAG is set to 20.

• The number of cores is set to eight.

© 2019 Roberto MEDINA 147

Chapter 8. Experimental validation

• The probability to have an edge between two is set to 20%.

• Criticality levels are set to two, three and five. In airborne systems the maximum
levels of criticality is five, so we do not test systems with more than five criticality
levels. It is very unlikely that a single architecture will host five different criticality
levels as well.

• The reduction factor is set to two: the utilization rate occupied by tasks that have a
higher level than the level considered during the generation is divided by two.

• The number of tasks that are created at each level is proportional to the number of
levels, i.e. when five criticality levels are considered, four tasks have the highest
criticality levels and four tasks have the lowest criticality level.

Acceptance rate

Fig. 8.4 presents the results we have obtained for our three heuristics in terms of accep-
tance rate (Y-axis) in function of the normalized utilization (X-axis). Each point that is
presented in the graphs represents the acceptance rate of 500 randomly generated MC
systems.

The behavior of G-ALAP-LLF when the MC systems has two or more criticality levels
is presented in Fig. 8.4a. Each curve in the plot gives the acceptance rate for systems
with two, three and five criticality levels. For the dual-criticality case, we already saw
the performances of G-ALAP-LLF in Fig. 8.1e: the acceptance rate is quite good since
more than 60% of systems are schedulable when the utilization is lower than 75%. The
green polynomial approximation with the triangle marks represent the acceptance for three
criticality levels: like we anticipated the scheduling problem becomes more complex and
therefore an important degradation in the acceptance rate is visible, when Unorm(S) = 0.6
the acceptance rate was almost at 78% as opposed to 49%. When five criticality levels are
considered for the MC system, the acceptance rate drops to 33% for Unorm(S) = 0.6.

The effects of multiple criticality levels on G-ALAP-HYB are illustrated in Fig. 8.4b.
G-ALAP-HYB schedules all the criticality modes that are not the lowest one using the G-
EDF priority ordering we defined, it is only at the lowest criticality mode that the heuristic
applies the G-LLF priority ordering. Again the behavior for dual-criticality systems was
shown in Fig. 8.1e, and while results were inferior to G-ALAP-LLF, the acceptance rate
was still quite good: over 60% of schedulable system when the utilization is lower than
70%. We can see there is an important degradation when three criticality levels: on aver-
age G-ALAP-HYB schedules 30% less MC systems. This performance loss is also visible

148 © 2019 Roberto MEDINA

8.3. A study on generalized MC-DAG systems

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cc

ep
ta

nc
e

ra
te

(%
) |CL |= 2

|CL |= 3
|CL |= 5

(a) G-ALAP-LLF

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) G-ALAP-HYB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Unorm(S)

A
cc

ep
ta

nc
e

ra
te

(%
)

(c) G-ALAP-EDF

Figure 8.4: Impact of having multiple criticality levels on single MC-DAG systems.
m = 8, |G|= 1, |V |= 20, e = 20%.

© 2019 Roberto MEDINA 149

Chapter 8. Experimental validation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cc

ep
ta

nc
e

ra
te

(%
)

|CL |= 2
|CL |= 3
|CL |= 5

(a) G-ALAP-LLF
m = 4, |G|= 1, |V |= 50, e = 20%.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) G-ALAP-EDF
m = 8, |G|= 4, ∑ |V |= 80, e = 40%.

Figure 8.5: Saturation problem in generation parameters

between three and five criticality levels, on average 20% less of MC systems are schedu-
lable with five criticality levels.

Fig. 8.4c presents the results obtained for G-ALAP-EDF when two and more criticality
levels are considered in the system. Like in the two previous cases, G-ALAP-EDF has
more troubles to schedule systems when the number of criticality levels increases. The
difference is nonetheless less remarkable compared to results obtained by G-ALAP-LLF
and G-ALAP-HYB: the performance loss is around 20% when we compare two criticality
levels to three levels, and also around 20% when the system has five criticality levels.

Like it was stated, the fact that more criticality levels are included in the systems makes
the scheduling of MC-DAGs more difficult. The performance loss for all our heuristics
was expected, nonetheless the curves follow a polynomial performance loss.

It was not possible to establish a conclusion regarding the number of preemptions.
Because the scheduling problem becomes more difficult as the number of criticality levels
increases there are less schedulable systems. Therefore the average number of preemptions
entailed by our algorithms also decreased. This gives the impression that by increasing the
number of criticality levels, we are decreasing the average number of preemptions needed
to find a feasible MC correct schedule. This may not be true since more tasks need respect
the Generalized Safe Trans. Prop. which implies more preemptions.

In the next part of our analysis for generalized MC-DAGs, we present the effects that
some generation parameters had on the schedulability of the system.

150 © 2019 Roberto MEDINA

8.4. Conclusion

8.3.2 The parameter saturation problem

For our evaluations on the generalized scheduling of MC systems, we tested many com-
binations of generation parameters for MC-DAGs. Like we stated at the beginning of this
chapter, there are many configurations that can be considered for the generation of MC
systems. We wanted to test as many configurations as possible to establish a conclusion
on the influence on the number of criticality levels a system can have. Nonetheless, after
performing various experimentations, we realized that some of these parameters tend to
produce specific MC-DAG shapes influencing the scheduling problem to a point where
criticality levels do not play a major role on schedulability. We refer to this phenomena as
the parameter saturation problem.

As a matter of fact, in Fig. 8.1d (one MC-DAG, with e = 40% and |V | = 50), we
started to see this problem when the number of tasks and the graph’s density increased in
a dual-criticality system: the acceptance rates for all heuristics were less sparse because
the only schedulable cases were specific to certain MC-DAG shapes that were easier to
schedule (e.g. all HI-criticality vertices are sources or are always scheduled before LO-
criticality tasks). Fig. 8.5 shows a couple of examples of the parameter saturation problem.
When we increased the number of tasks and had an architecture of only four cores, for G-
ALAP-LLF the difference in terms of acceptance rate between two, three and five levels of
criticality was almost negligible (Fig. 8.5a). We can see that there is still a degradation in
the acceptance rate when the number of criticality levels increases, but as opposed to the
results obtained in Fig. 8.4, this difference is very small: between 1 and 3%, as opposed
to 30%. In Fig. 8.5b, we can also see that increasing the number of criticality levels has
almost no influence in the acceptance rate of G-ALAP-EDF. In this case, we considered
a MC system with four MC-DAGs containing each 20 vertices, a probability to have an
edge of 40% and an octo-core architecture. The two results that were presented are just
some examples to illustrate the saturation generation problem, other configurations faced
the same limitation.

8.4 Conclusion

The experimental validation of our contributions related to the scheduling of MC-DAGs
on multi-core processors was presented in this chapter.

We started by comparing our scheduling heuristics to the methods proposed by the
state-of-the-art [80; 81]. This dual-criticality study was decomposed into single and mul-

tiple MC-DAG scheduling. Throughout all experimentations we confirmed that our G-

© 2019 Roberto MEDINA 151

Chapter 8. Experimental validation

LLF-based solutions have a better performance in terms of acceptance rate compared to
solutions based on G-EDF and to the state-of-the-art. In most cases, G-ALAP-EDF gave
better results in terms of acceptance rate compared to the state-of-the-art [80; 81]. And
even in configurations where this was no longer the case, the difference in acceptance rate
between G-ALAP-EDF and existing contributions [80; 81] remained small: between 1%
and 5%.

We analyzed the influence that certain parameters have on the schedulability of MC-
DAGs: the number of vertices, the number of cores in the architecture and the graph’s
density (i.e. the probability to have an edge between two vertices) have an important
impact on the difficulty of the scheduling problem. We found that graph’s density and the
targeted architecture in particular have a major impact in the schedulability problem for
the heuristics that were studied.

The difference in terms of acceptance rate between our global approaches and the fed-
erated approach [81] was more notorious when multiple MC-DAGs with different periods
were considered in the system. This was expected since the federated approach reduces the
multiple MC-DAG scheduling problem into the scheduling of a single MC-DAG in a clus-
ter of cores. In many cases, the cluster will not be used to its full capacity and more cores
than what is actual needed are demanded by the federated algorithm. This performance
difference was quite notorious under certain hypotheses, e.g. our approach was capable
of scheduling over 60% more systems than the federated approach. For the multiple MC-
DAG scheduling problem we also provided results on the number of preemptions per job
that are generated by each one of the scheduling heuristic we analyzed. It is well-known
that laxity based schedulers tend to generate more preemptions than deadline based sched-
ulers. This was in fact confirmed by our experimentations since G-ALAP-LLF would
generate 100 times more preemptions per job than our solution based on G-EDF. If the
number of preemptions is a limiting factor for system designers our two other heuristics
G-ALAP-HYB and G-ALAP-EDF have demonstrated to give better schedulability results
with less preemptions.

The final part of this chapter presented an evaluation of our scheduling heuristics for
MC systems with an increasing number of criticality levels. The scheduling problem of
MC-DAGs into multi-core architectures becomes more difficult since more tables need
to be computed and they need to be compatible in order to ensure safe mode transitions
to higher criticality levels. We saw that all our heuristic suffered from a performance
loss when the criticality levels increased from two to three, and from three to five. This
performance loss was not less than 20% on average.

152 © 2019 Roberto MEDINA

8.4. Conclusion

This concludes our exhaustive statistical validation of our scheduling heuristics defined
in Chapter 5. Many configurations for the generated systems were tested and the influence
of the generation parameters were presented throughout the chapter. Overall our heuristics
have proven to be more efficient in terms of acceptance rate. Therefore, system designers
can choose a solution among the heuristics we have presented in function of their needs.
For example, systems with a high utilization are more likely to be schedulable with our
G-LLF adaptations. If the number of preemptions needs to be kept minimal, G-ALAP-
EDF can be tested first to see if feasible schedulers can be found. This latest heuristic
entails a comparable number of preemptions to approaches of the state-of-the-art [80;
81].

© 2019 Roberto MEDINA 153

Chapter 8. Experimental validation

154 © 2019 Roberto MEDINA

9 Conclusion and Research Perspectives

TABLE OF CONTENTS

9.1 CONCLUSIONS . 155

9.2 OPEN PROBLEMS AND RESEARCH PERSPECTIVES 159

This chapter presents the conclusion for this dissertation. We also proceed to identify
future research perspectives.

9.1 Conclusions

Safety-critical systems are facing two major trends in their design and deployment. First
of all, manufacturers are pushing towards the reduction of non-stringent functional con-
straints like power consumption, size, weight, price and heat. Thanks to processing ca-
pabilities offered by multi-core architectures this objective is tangible. Conversely, the
demand to deliver additional functionalities on safety-critical systems keeps increasing.
Research around the Mixed-Criticality execution model has given promising results to
achieve this last objective since temporal correctness is ensured while additional function-
alities are delivered.

Logical correctness required in the safety-critical domain is often achieved thanks to
computation models like data-flow graphs which have data dependencies and are said to
be data-driven. For this reason, in this thesis we have studied the problem of deploying
Mixed-Criticality (MC) data-driven applications into multi-core architectures.

To propose solutions to this complex problem, we started by looking into the schedul-
ing of MC applications with precedence constraints into multi-core processors. At the
same time, while the MC model claims that less critical services become available thanks
to this execution model, there has not been contributions capable of quantifying the avail-

155

Chapter 9. Conclusion and Research Perspectives

ability of less critical software components. In case the minimum service guarantee is not
satisfied, means to improve availability can be used to achieve this objective.

The contributions that have been presented in this manuscript are the following:

• The task model we defined is presented in Chapter 4. The MC-DAG model incor-
porates all the necessary aspects related to our research works: the MC execution
model, precedence constraints in the form of graphs and a fault model to perform
availability analyses.

• In Chapter 5, we presented our contributions related to the scheduling of MC-DAGs
into multi-core architectures. The scheduling problem for MC dual-criticality sys-
tems and data-dependent applications is known to be very complex (NP-hard in the
strong sense).

To propose an efficient approximate solution, we started by defining a property to
ensure safe mode transitions to the HI-criticality mode: Safe Trans. Prop. This
property states that, as long as a sufficient timing budget was given to HI-criticality
tasks in the LO-criticality mode, the mode transition to the HI-criticality mode can
take place without missing any deadline. Building upon this property we defined a
generic meta-heuristic to produce MC-correct scheduling tables for MC-DAGs:
MH-MCDAG. The genericity of our approach allowed us to adapt efficient real-
time scheduling algorithms for multi-core architectures.

Existing approaches capable of scheduling MC-DAGs on multi-core architectures
are implicit implementations of MH-MCDAG. Nevertheless, they show the fol-
lowing limitations: (i) HI-criticality tasks are scheduled as soon as possible which
constraints the execution of LO-criticality tasks significantly. (ii) When multiple
MC-DAGs with different periods have to be scheduled, the problem is reduced to
various single MC-DAG scheduling on a cluster of cores. Therefore, this scheduling
approach often needs more cores than what is actually needed to find MC-correct
scheduling tables.

To overcome these limitations our implementations of MH-MCDAG are based on
the two following principles: (i) the scheduling of HI-criticality tasks is done as
late as possible in the HI-criticality mode in order to constrain as less as possible
the LO-criticality tasks scheduling. LO-criticality tasks will only be preempted if a
HI-criticality tasks has to be scheduled in order to respect Safe Trans. Prop. (ii)
Our implementation of MH-MCDAG is global, i.e. all tasks can be executed
on all cores. We defined a priority ordering based on G-LLF since it is known to

156 © 2019 Roberto MEDINA

9.1. Conclusions

give good performances in terms of acceptance rate. We have also defined a priority
ordering based on G-EDF which generates less preemptions.

The final part of the chapter presents a generalization of our scheduling heuristic
to support an arbitrary number of criticality levels. The generalization is an
inductive application of the scheduling method we designed for the dual-criticality
case. Nonetheless, to guarantee safe mode transitions and maintain an “as late as
possible” behavior in more than two criticality levels, we had to introduce a new
constraint on the scheduling of tasks to guarantee MC-correctness in the generalized
system.

• We defined techniques to perform the availability analysis of MC systems executing
MC-DAGs in Chapter 6. This chapter also presented different improvements we
have considered in order to enhance availability. To the best of our knowledge,
the contributions presented in this chapter are the first ones to actually quantify the
availability of LO-criticality tasks in MC systems.

By defining a fault model for tasks (i.e. how often a TFE takes place) and a recovery

mechanism for LO-criticality tasks after the system has performed a mode transition
to the HI-criticality mode, we were able to estimate the availability rate for LO-
criticality tasks under the discard MC model (the most widespread MC model of
the literature). Thanks to this numerical evaluation, we concluded that the discard
MC model degrades the availability of LO-criticality tasks significantly. This is an
important limitation to the adoption of MC on practical safety-critical systems since
a minimum service guarantee is expected to be delivered even for the less critical
software components.

In order to limit the degradation caused by the discard MC model, we have pro-
posed to incorporate two different types of enhancements on MC systems. The
first enhancement consists in defining a more precise fault propagation model,
i.e. instead of systematically switching to the HI-criticality mode whenever a LO-
criticality task produces a timing failure, only successors of this task are interrupted.
By doing so, independent LO-criticality tasks are capable of completing their exe-
cution even after a TFE occurs in a LO-criticality task. This enhancement showed a
significant improvement on the availability rate for the LO-criticality tasks, e.g. up
to 1% in a context where availability is measured up to 10−9.

The second type of enhancement is the incorporation of additional components to
improve availability. For instance availability formulas we defined in this chapter
can be easily adapted to consider design patterns used in safety-critical systems like

© 2019 Roberto MEDINA 157

Chapter 9. Conclusion and Research Perspectives

Triple Modular Redundancy. This replication of components in addition to our fault
propagation model improved the availability of LO-criticality tasks even further:
up to a 4% increase. However, some design patterns are not applicable to systems
limited in power consumption or weight. In this case, extensions to the real-time
execution model can be considered. For instance, we looked into weakly-hard real-
time tasks which are capable of missing a fixed number of deadlines within a fixed
amount of sequential executions. To estimate the availability rate when this type
of task is deployed in the system, we developed translation rules to obtain prob-
abilistic automata. The availability equations we previously defined do not take
into account previous states the task was in, which forces us to perform simulations.
Probabilistic automata are capable of capturing all the elements related to the ex-
ecution model of the system: the fault and fault propagation model, in addition to
the recovery process. The PRISM model checker is used to perform system’s sim-
ulations and obtain an estimation of the availability rate. This latest enhancement
showed an improved of over 2% for tasks that were the most impacted by the discard
MC model.

These translation rules can be applied to MC systems with more than two crit-
icality levels. The possible execution states that the system can be in when more
than two levels of criticality are considered in the system, is another reason to use
probabilistic automata to estimate the availability rate of MC systems.

• The abovementioned contributions have been integrated into an open-source tool:
the MC-DAG framework presented in Chapter 7. This tool is decomposed into three
modules: a scheduling module (contributions presented in Chapter 5), an availability
module to obtain probabilistic automata (contributions of Chapter 6) and an unbi-
ased random MC-DAG generator.

To achieve an unbiased generation for MC-DAGs we had to combine different con-
tributions of the literature for DAG scheduling and real-time systems. This gener-
ation is unbiased in the sense that shapes that influence DAG’s schedulability are
avoided. At the same time, since the utilization given to the system and its task set
is one of the main attributes used to judge the quality of an scheduling algorithm, we
used existing works of the literature to uniformly distribute this utilization among
the vertices of the MC-DAGs we create.

• The experimental validation of our scheduling contributions performed thanks to
the MC-DAG framework is discussed in Chapter 8. The evaluation was divided into

158 © 2019 Roberto MEDINA

9.2. Open problems and research perspectives

dual-criticality assessment and a study of schedulability of generalized MC systems
(i.e. systems with more than two criticality levels).

In the dual-criticality assessment we compared the implementations of our meta-
heuristic to the existing methods of the state-of-art [80; 81]. Like we expected, our
G-LLF based heuristics outperforms the state-of-the-art in terms of acceptance
rate: the difference is notorious and goes up to a 60% in some cases. On the other
hand, while our implementation based on tends to outperform the state-of-the-art,
for systems with a high utilization the priority ordering can be too permissive. In
those cases, the existing approaches [80; 81] perform better than our heuristic by
a small margin. The number of preemptions was also measured for our scheduling
methods and for the state-of-art. While it is true that laxity-based heuristics generate
more preemptions, the acceptance rate obtained was significantly superior. The hy-
brid approach using the G-EDF priority ordering in the HI-criticality mode and the
G-LLF priority ordering in the LO-criticality mode, can be used as a middle-ground
solution to achieve a good acceptance rate and limit the number of preemptions.

The incidence of generation parameters on the acceptance rate and on the num-
ber of preemptions was also demonstrated in our experimental evaluations:
increasing the density of the graph or the number of cores in the architecture con-
sidered have a major impact on the performances of all the scheduling heuristics.

To the best of our knowledge, our experimental evaluations on generalized MC-
DAGs is the first one to consider data-dependent MC tasks with an arbitrary
number of criticality levels. Like it was expected, considering multiple criticality
levels increases the complexity of the scheduling problem: we saw an average of
20-30% degradation in the performance of our three heuristics as we increased the
number of criticality to three and then five.

This dissertation presented two complementary contributions: (i) a scheduling algo-
rithm and (ii) methods to evaluate and enhance availability for data-driven MC systems.
These contributions were generalized to MC systems with an arbitrary number of critical-
ity levels and were validated thanks to rigorous and precise evaluations.

9.2 Open problems and research perspectives

In this section we present some open problems and research perspectives for future works.

© 2019 Roberto MEDINA 159

Chapter 9. Conclusion and Research Perspectives

9.2.1 Generalization of the data-driven MC execution model

Considering different periods on vertices

Some reactive safety-critical systems have incorporated periods within vertices of a graph.
This is has been seen in Flight Control Systems for example. Defining feasible and MC-
correct schedulers in this case is more complicated in this case: firings of vertices cannot
occur as soon as input data is available, the vertex can only execute after its release date
and needs to complete its execution before its next period. In other words, the data-

dependency needs to satisfied within a timespan. We pictured two possibilities that can be
explored to solve this issue: (i) include “virtual” vertices that are allocated into “virtual”
cores to enforce the interarrival time between activations of a vertex; or (ii) adopt a method
to transform the SDF graph into a classic sporadic MC real-time task set.

Considering elastic tasks

We demonstrated that the discard MC model degrades the availability of LO-criticality
tasks significantly. In order to improve and deliver a minimum service guarantee for LO-
criticality tasks, the elastic task model [38; 66] is another solution that has been pro-
posed in the literature. By decreasing the timing budget and increasing the period of
LO-criticality tasks in the HI-criticality mode, some applications are capable of delivering
a degraded service. The implications of such a transformation in the context of data-

driven applications has not been explored yet but is an interesting research perspective.
Our means to improve availability might not be applicable to all safety-critical systems so
having an execution model with elastic tasks is another way to improve availability of MC
systems.

9.2.2 Availability vs. schedulability: a dimensioning problem

In Chapter 6 we presented the dimensioning problem of safety-critical systems. An over-
estimated WCET leads to less timing failure events but is also responsible for the under-
utilization of the system. There is a trade-off to consider when systems are dimensioned. If
system designers incorporate as many tasks as possible by reducing their timing budgets,
tasks are prone to overrun and more mode transitions will occur. Availability is degraded
in this case. On the other hand, incorporating less tasks with an increased timing budget
will limit the number of mode transitions. Less LO-criticality services will be incorpo-
rated but will be more available in this case. Defining architectural exploration techniques

160 © 2019 Roberto MEDINA

9.2. Open problems and research perspectives

that take into account the trade-off between availability and schedulability can be another

research perspective of our works.

9.2.3 MC-DAG scheduling notions in other domains

Data-driven models of computation have been used in other domains than safety-critical
systems. For example DAG representations are used in scientific workflows. These work-
flows are then executed by distributed systems. Some aspects about workflow computing
are adjacent to real-time scheduling. For instance, trying to respect deadlines or mini-
mizing response time are some problems that this domain tries to solve. We believe our

contributions defining mode transitions and different execution times for vertices can be

of use in workflow computing as well. Computation processes of the scientific workflow
can require more or less time depending on previous results or on system demand.

© 2019 Roberto MEDINA 161

Chapter 9. Conclusion and Research Perspectives

162 © 2019 Roberto MEDINA

List of Publications

[MBP16] Roberto Medina, Etienne Borde, and Laurent Pautet. Availability analysis for
synchronous data-flow graphs in mixed-criticality systems. In 2016 11th IEEE

Symposium on Industrial Embedded Systems (SIES), pages 1–6. IEEE, 2016.

[MBP17] Roberto Medina, Etienne Borde, and Laurent Pautet. Directed acyclic graph
scheduling for mixed-criticality systems. In Ada-Europe International Con-

ference on Reliable Software Technologies, pages 217–232. Springer, 2017.

[MBP18a] Roberto Medina, Etienne Borde, and Laurent Pautet. Availability enhance-
ment and analysis for mixed-criticality systems on multi-core. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2018, pages
1271–1276. IEEE, 2018.

[MBP18b] Roberto Medina, Etienne Borde, and Laurent Pautet. Scheduling multi-
periodic mixed criticality dags on multi-core architectures. In 2018 IEEE

Real-Time Systems Symposium (RTSS). IEEE, 2018.

163

List of Publications

164 © 2019 Roberto MEDINA

Bibliography

[1] N. R. Storey, Safety critical computer systems. Addison-Wesley Longman Publish-
ing Co., Inc., 1996.

[2] G. Kahn, “The semantics of a simple language for parallel programming,” Informa-

tion processing, vol. 74, pp. 471–475, 1974.

[3] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the

IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance,” in Real-Time Systems Symposium, 2007. RTSS 2007.

28th IEEE International, pp. 239–243, IEEE, 2007.

[5] R. I. Davis and A. Burns, “Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems,” in Real-Time Systems Symposium,

2009, RTSS 2009. 30th IEEE, pp. 398–409, IEEE, 2009.

[6] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 29. wh freeman
New York, 2002.

[7] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM computing surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

[8] S. Baruah, “Mixed criticality schedulability analysis is highly intractable,” 2009.

[9] P. J. Prisaznuk, “Integrated modular avionics,” in Aerospace and electronics confer-

ence, 1992. naecon 1992., proceedings of the ieee 1992 national, pp. 39–45, IEEE,
1992.

[10] C. B. Watkins and R. Walter, “Transitioning from federated avionics architectures
to integrated modular avionics,” in Digital Avionics Systems Conference, 2007.

DASC’07. IEEE/AIAA 26th, pp. 2–A, IEEE, 2007.

165

Bibliography

[11] “Autosar consortium. automotive open system architecture (autosar).” https://

www.autosar.org/.

[12] X. Jean, Maîtrise de la couche hyperviseur sur les architectures multi-coeurs COTS

dans un contexte avionique. PhD thesis, Télécom ParisTech, 2015.

[13] R. Kaiser and S. Wagner, “Evolution of the pikeos microkernel,” in First Interna-

tional Workshop on Microkernels for Embedded Systems, p. 50, 2007.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–
61, 1973.

[15] K. Schild and J. Würtz, “Scheduling of time-triggered real-time systems,” Operat-

ing Systems of the 90s and Beyond, vol. 5, no. 4, pp. 335–357, 2000.

[16] H. Kopetz, “The time-triggered model of computation,” in Real-Time Systems Sym-

posium, 1998.

[17] A. K.-L. Mok, Fundamental design problems of distributed systems for the hard-

real-time environment. PhD thesis, Massachusetts Institute of Technology, 1983.

[18] F. Liu, A. Narayanan, and Q. Bai, Real-time systems. Citeseer, 2000.

[19] S. Baruah and J. Goossens, “Scheduling real-time tasks: Algorithms and com-
plexity,” Handbook of scheduling: Algorithms, models, and performance analysis,
vol. 3, 2004.

[20] S. Baruah, “Partitioned edf scheduling: a closer look,” Real-Time Systems, vol. 49,
no. 6, pp. 715–729, 2013.

[21] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoyance,” Journal

of the ACM (JACM), vol. 47, no. 4, pp. 617–643, 2000.

[22] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical scheduling
via resource augmentation,” in Proceedings of the twenty-ninth annual ACM sym-

posium on Theory of computing, pp. 140–149, ACM, 1997.

[23] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on multipro-
cessors,” in Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd

IEEE, pp. 193–202, IEEE, 2001.

166 © 2019 Roberto MEDINA

[24] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate
progress: A notion of fairness in resource allocation,” Algorithmica, vol. 15, no. 6,
pp. 600–625, 1996.

[25] J. H. Anderson and A. Srinivasan, “Mixed pfair/erfair scheduling of asynchronous
periodic tasks,” Journal of Computer and System Sciences, vol. 68, no. 1, pp. 157–
204, 2004.

[26] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al., “The worst-case execution-
time problem—overview of methods and survey of tools,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 7, no. 3, p. 36, 2008.

[27] J. Engblom, Processor pipelines and static worst-case execution time analysis. PhD
thesis, Acta Universitatis Upsaliensis, 2002.

[28] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior prediction for
real-time systems,” Real-Time Systems, vol. 17, no. 2-3, pp. 131–181, 1999.

[29] I. J. Stein, ILP-based path analysis on abstract pipeline state graphs. epubli, 2010.

[30] A. Colin and I. Puaut, “A modular and retargetable framework for tree-based wcet
analysis,” in Real-Time Systems, 13th Euromicro Conference on, 2001., pp. 37–44,
IEEE, 2001.

[31] A. Betts, N. Merriam, and G. Bernat, “Hybrid measurement-based wcet analysis at
the source level using object-level traces,” in OASIcs-OpenAccess Series in Infor-

matics, vol. 15, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[32] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla, “Measurement-based prob-
abilistic timing analysis for multi-path programs,” in Real-Time Systems (ECRTS),

2012 24th Euromicro Conference on, pp. 91–101, IEEE, 2012.

[33] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quinones, J. Abella, A. Gogonel,
A. Baldovin, E. Mezzetti, L. Cucu, et al., “Measurement-based probabilistic timing
analysis: Lessons from an integrated-modular avionics case study,” in Industrial

Embedded Systems (SIES), 2013 8th IEEE International Symposium on, pp. 241–
248, IEEE, 2013.

© 2019 Roberto MEDINA 167

Bibliography

[34] S. J. Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-Grosjean, “Open
challenges for probabilistic measurement-based worst-case execution time,” IEEE

Embedded Systems Letters, vol. 9, no. 3, pp. 69–72, 2017.

[35] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department of Com-

puter Science, University of York, Tech. Rep, pp. 1–69, 2013.

[36] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,” in Inter-

national Symposium on Mathematical Foundations of Computer Science, pp. 90–
101, Springer, 2010.

[37] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed critical-
ity systems,” in Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pp. 34–43,
IEEE, 2011.

[38] H. Su and D. Zhu, “An elastic mixed-criticality task model and its scheduling algo-
rithm,” in Proceedings of the Conference on Design, Automation and Test in Europe,
pp. 147–152, EDA Consortium, 2013.

[39] K. Agrawal and S. Baruah, “Intractability issues in mixed-criticality schedul-
ing,” in LIPIcs-Leibniz International Proceedings in Informatics, vol. 106, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[40] N. C. Audsley, “On priority asignment in fixed priority scheduling,” Information

Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[41] Q. Zhao, Z. Gu, and H. Zeng, “Pt-amc: integrating preemption thresholds into
mixed-criticality scheduling,” in Proceedings of the Conference on Design, Au-

tomation and Test in Europe, pp. 141–146, EDA Consortium, 2013.

[42] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-criticality
scheduling strictness for task sets scheduled with fp,” in Real-Time Systems

(ECRTS), 2012 24th Euromicro Conference on, pp. 155–165, IEEE, 2012.

[43] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. Van Der Ster,
and L. Stougie, “Mixed-criticality scheduling of sporadic task systems,” in Euro-

pean Symposium on Algorithms, pp. 555–566, Springer, 2011.

168 © 2019 Roberto MEDINA

[44] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. Van
Der Ster, and L. Stougie, “The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems,” in Real-Time Systems (ECRTS),

2012 24th Euromicro Conference on, pp. 145–154, IEEE, 2012.

[45] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems,” Real-time systems, vol. 50, no. 1, pp. 48–86,
2014.

[46] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic tasks on one
processor,” in 2013 IEEE 34th Real-Time Systems Symposium, pp. 78–87, IEEE,
2013.

[47] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality scheduling on
multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp. 142–177, 2014.

[48] P. Rodriguez, L. George, Y. Abdeddaïm, and J. Goossens, “Multicriteria evaluation
of partitioned edf-vd for mixed-criticality systems upon identical processors,” in
Workshop on Mixed Criticality Systems, 2013.

[49] X. Gu and A. Easwaran, “Dynamic budget management with service guarantees for
mixed-criticality systems,” in 2016 IEEE Real-Time Systems Symposium (RTSS),
pp. 47–56, IEEE, 2016.

[50] J.-J. Han, X. Tao, D. Zhu, and H. Aydin, “Criticality-aware partitioning for multi-
core mixed-criticality systems,” in Parallel Processing (ICPP), 2016 45th Interna-

tional Conference on, pp. 227–235, IEEE, 2016.

[51] S. Ramanathan and A. Easwaran, “Utilization difference based partitioned schedul-
ing of mixed-criticality systems,” in Proceedings of the Conference on Design, Au-

tomation & Test in Europe, pp. 238–243, European Design and Automation Asso-
ciation, 2017.

[52] R. Gratia, T. Robert, and L. Pautet, “Generalized mixed-criticality scheduling based
on run,” in Proceedings of the 23rd International Conference on Real Time and

Networks Systems, pp. 267–276, ACM, 2015.

[53] J. Lee, S. Ramanathan, K.-M. Phan, A. Easwaran, I. Shin, and I. Lee, “Mc-fluid:
Multi-core fluid-based mixed-criticality scheduling,” IEEE Transactions on Com-

puters, no. 1, pp. 1–1, 2018.

© 2019 Roberto MEDINA 169

Bibliography

[54] R. M. Pathan, “Schedulability analysis of mixed-criticality systems on multipro-
cessors,” in 2012 24th Euromicro Conference on Real-Time Systems, pp. 309–320,
IEEE, 2012.

[55] H. Li and S. Baruah, “Outstanding paper award: Global mixed-criticality schedul-
ing on multiprocessors,” in Real-Time Systems (ECRTS), 2012 24th Euromicro Con-

ference on, pp. 166–175, IEEE, 2012.

[56] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee, “Mc-fluid:
Fluid model-based mixed-criticality scheduling on multiprocessors,” in Real-Time

Systems Symposium (RTSS), 2014 IEEE, IEEE, 2014.

[57] S. Baruah, A. Eswaran, and Z. Guo, “Mc-fluid: simplified and optimally quanti-
fied,” in Real-Time Systems Symposium, 2015 IEEE, pp. 327–337, IEEE, 2015.

[58] A. Burns and S. Baruah, “Semi-partitioned cyclic executives for mixed critical-
ity systems,” in Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS,
pp. 36–41, 2015.

[59] M. A. Awan, K. Bletsas, P. F. Souto, and E. Tovar, “Semi-partitioned mixed-
criticality scheduling,” in International Conference on Architecture of Computing

Systems, pp. 205–218, Springer, 2017.

[60] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multiprocessors using
task grouping,” in Real-Time Systems (ECRTS), 2015 27th Euromicro Conference

on, pp. 25–34, IEEE, 2015.

[61] Z. Al-bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu, “Enhanced partitioned
scheduling of mixed-criticality systems on multicore platforms,” in Design Automa-

tion Conference (ASP-DAC), 2015 20th Asia and South Pacific, pp. 630–635, IEEE,
2015.

[62] S. Ramanathan and A. Easwaran, “Mixed-criticality scheduling on multiprocessors
with service guarantees,” in 2018 IEEE 21st International Symposium on Real-Time

Distributed Computing (ISORC), pp. 17–24, IEEE, 2018.

[63] H. Xu and A. Burns, “Semi-partitioned model for dual-core mixed criticality sys-
tem,” in Proceedings of the 23rd International Conference on Real Time and Net-

works Systems, pp. 257–266, ACM, 2015.

170 © 2019 Roberto MEDINA

[64] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criticality systems,”
in Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on, pp. 259–268,
IEEE, 2015.

[65] I. Bate, A. Burns, and R. I. Davis, “An enhanced bailout protocol for mixed crit-
icality embedded software,” IEEE Transactions on Software Engineering, vol. 43,
no. 4, pp. 298–320, 2017.

[66] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-criticality
systems,” in 2014 IEEE 20th International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), pp. 1–10, IEEE, 2014.

[67] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti, “Developing critical
embedded systems on multicore architectures: the prelude-schedmcore toolset,” in
19th International Conference on Real-Time and Network Systems, 2011.

[68] C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine, “The syndex software envi-
ronment for real-time distributed systems design and implementation,” in European

Control Conference, vol. 2, pp. 1684–1689, 1991.

[69] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Transactions on computers, vol. 100,
no. 1, pp. 24–35, 1987.

[70] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core
systems: survey of current and emerging trends,” in Design automation conference

(dac), 2013 50th acm/edac/ieee, pp. 1–10, IEEE, 2013.

[71] T. L. Adam, K. M. Chandy, and J. Dickson, “A comparison of list schedules for
parallel processing systems,” Communications of the ACM, vol. 17, no. 12, pp. 685–
690, 1974.

[72] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph
scheduling algorithms,” Journal of Parallel and Distributed Computing, vol. 59,
no. 3, pp. 381–422, 1999.

[73] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time scheduling
for generalized parallel task models,” Real-Time Systems, vol. 49, no. 4, pp. 404–
435, 2013.

© 2019 Roberto MEDINA 171

Bibliography

[74] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Parallel real-
time scheduling of dags,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 12, pp. 3242–3252, 2014.

[75] A. Parri, A. Biondi, and M. Marinoni, “Response time analysis for g-edf and g-
dm scheduling of sporadic dag-tasks with arbitrary deadline,” in Proceedings of the

23rd International Conference on Real Time and Networks Systems, pp. 205–214,
ACM, 2015.

[76] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global edf scheduling
of directed acyclic graphs on multiprocessor systems,” in Proceedings of the 21st

International conference on Real-Time Networks and Systems, pp. 287–296, ACM,
2013.

[77] M. Qamhieh, L. George, and S. Midonnet, “A stretching algorithm for parallel real-
time dag tasks on multiprocessor systems,” in Proceedings of the 22Nd Interna-

tional Conference on Real-Time Networks and Systems, p. 13, ACM, 2014.

[78] M. Qamhieh, L. George, and S. Midonnet, “Stretching algorithm for global schedul-
ing of real-time dag tasks,” Real-Time Systems, pp. 1–31, 2018.

[79] S. Baruah, “Implementing mixed-criticality synchronous reactive programs upon
uniprocessor platforms,” Real-Time Systems, vol. 50, no. 3, pp. 317–341, 2014.

[80] S. Baruah, “Implementing mixed criticality synchronous reactive systems upon
multiprocessor platforms,” The University of North Carolina at Chapel Hill, Tech.

Rep, 2013.

[81] S. Baruah, “The federated scheduling of systems of mixed-criticality sporadic dag
tasks,” in Real-Time Systems Symposium (RTSS), 2016 IEEE, pp. 227–236, IEEE,
2016.

[82] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu, “Mixed-criticality fed-
erated scheduling for parallel real-time tasks,” Real-Time Systems, vol. 53, no. 5,
pp. 760–811, 2017.

[83] R. M. Pathan, “Improving the schedulability and quality of service for federated
scheduling of parallel mixed-criticality tasks on multiprocessors,” in LIPIcs-Leibniz

International Proceedings in Informatics, vol. 106, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

172 © 2019 Roberto MEDINA

[84] P. Ekberg and W. Yi, “Schedulability analysis of a graph-based task model for
mixed-criticality systems,” Real-Time Systems, vol. 52, pp. 1–37, jan 2016.

[85] A. Singh, P. Ekberg, and S. Baruah, “Applying real-time scheduling theory to the
synchronous data flow model of computation,” in LIPIcs-Leibniz International Pro-

ceedings in Informatics, vol. 76, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[86] A. Singh, P. Ekberg, and S. Baruah, “Applying real-time scheduling theory to the
synchronous data flow model of computation,” in Proceedings of the 29th Euromi-

cro Conference on Real-Time Systems (ECRTS) (M. Bertogna, ed.), vol. 76 of
Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 8:1–8:22, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[87] A. Singh, P. Ekberg, and S. Baruah, “Uniprocessor scheduling of real-time syn-
chronous dataflow tasks,” Real-Time Systems, pp. 1–31, 2018.

[88] E. C. Klikpo and A. Munier-Kordon, “Preemptive scheduling of dependent peri-
odic tasks modeled by synchronous dataflow graphs,” in Proceedings of the 24th

International Conference on Real-Time Networks and Systems, pp. 77–86, ACM,
2016.

[89] K. Jad, Modeling and scheduling embedded real-time systems using Synchronous

Data Flow Graphs. PhD thesis, Sorbonne Université, 2018.

[90] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Static scheduling
of multi-rate and cyclo-static dsp-applications,” in VLSI Signal Processing, VII,

1994.,[Workshop on], pp. 137–146, IEEE, 1994.

[91] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static dataflow,”
IEEE Transactions on signal processing, vol. 44, no. 2, pp. 397–408, 1996.

[92] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-dependent
tasks in embedded streaming applications,” in Proceedings of the ninth ACM inter-

national conference on Embedded software, pp. 195–204, ACM, 2011.

[93] M. A. Bamakhrama, J. T. Zhai, H. Nikolov, and T. Stefanov, “A methodology for
automated design of hard-real-time embedded streaming systems,” in Proceedings

of the Conference on Design, Automation and Test in Europe, pp. 941–946, EDA
Consortium, 2012.

© 2019 Roberto MEDINA 173

Bibliography

[94] A. Bouakaz, J.-P. Talpin, and J. Vitek, “Affine data-flow graphs for the synthesis
of hard real-time applications,” in Application of Concurrency to System Design

(ACSD), 2012 12th International Conference on, pp. 183–192, IEEE, 2012.

[95] A. Bouakaz, T. Gautier, and J.-P. Talpin, “Earliest-deadline first scheduling of mul-
tiple independent dataflow graphs.,” in SiPS, pp. 292–297, Citeseer, 2014.

[96] B. D. Theelen, M. C. Geilen, T. Basten, J. P. Voeten, S. V. Gheorghita, and S. Stu-
ijk, “A scenario-aware data flow model for combined long-run average and worst-
case performance analysis,” in Formal Methods and Models for Co-Design, 2006.

MEMOCODE’06. Proceedings. Fourth ACM and IEEE International Conference

on, pp. 185–194, IEEE, 2006.

[97] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware dataflow: Model-
ing, analysis and implementation of dynamic applications,” in Embedded Computer

Systems (SAMOS), 2011 International Conference on, pp. 404–411, IEEE, 2011.

[98] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE transactions on dependable

and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[99] A. Burns and S. Baruah, “Towards a more practical model for mixed criticality
systems,” in Workshop on Mixed-Criticality Systems (colocated with RTSS), 2013.

[100] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow
programming language lustre,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–
1320, 1991.

[101] A. Burns, R. I. Davis, S. Baruah, and I. J. Bate, “Robust mixed-criticality systems,”
IEEE Transactions on Computers, 2018.

[102] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE trans-

actions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[103] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell Labs Technical

Journal, vol. 45, no. 9, pp. 1563–1581, 1966.

[104] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of syn-
chronous dataflow graphs with model checking,” in Proceedings of the 42nd annual

Design Automation Conference, pp. 819–824, ACM, 2005.

174 © 2019 Roberto MEDINA

[105] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor resource allo-
cation for throughput-constrained synchronous dataflow graphs,” in Proceedings of

the 44th annual Design Automation Conference, pp. 777–782, ACM, 2007.

[106] M. R. Garey and D. S. Johnson, ““strong”np-completeness results: Motivation,
examples, and implications,” Journal of the ACM (JACM), vol. 25, no. 3, pp. 499–
508, 1978.

[107] H. S. Chwa, J. Lee, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global edf
schedulability analysis for parallel tasks on multi-core platforms,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1331–1345, 2017.

[108] O. Svensson, “Conditional hardness of precedence constrained scheduling on iden-
tical machines,” in Proceedings of the forty-second ACM symposium on Theory of

computing, pp. 745–754, ACM, 2010.

[109] A. Burns, “System mode changes-general and criticality-based,” in Proc. of 2nd

Workshop on Mixed Criticality Systems (WMC), pp. 3–8, 2014.

[110] D. L. Parnas, A. J. Van Schouwen, and S. P. Kwan, “Evaluation of safety-critical
software,” Communications of the ACM, vol. 33, no. 6, pp. 636–648, 1990.

[111] L. A. Johnson et al., “Do-178b, software considerations in airborne systems and
equipment certification,” Crosstalk, October, vol. 199, 1998.

[112] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, et al., “sel4: Formal verification of an os
kernel,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, pp. 207–220, ACM, 2009.

[113] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran, “Probabilistic analysis
for mixed criticality systems using fixed priority preemptive scheduling,” in Pro-

ceedings of the 25th International Conference on Real-Time Networks and Systems,
pp. 237–246, ACM, 2017.

[114] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of prob-
abilistic real-time systems,” in Proc. 23rd International Conference on Computer

Aided Verification (CAV’11) (G. Gopalakrishnan and S. Qadeer, eds.), vol. 6806 of
LNCS, pp. 585–591, Springer, 2011.

© 2019 Roberto MEDINA 175

Bibliography

[115] S. Stuijk, M. Geilen, and T. Basten, “Sdfˆ 3: Sdf for free,” in Application of Con-

currency to System Design, 2006. ACSD 2006. Sixth International Conference on,
pp. 276–278, IEEE, 2006.

[116] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wag-
ner, “Random graph generation for scheduling simulations,” in Proceedings of the

3rd international ICST conference on simulation tools and techniques, p. 60, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), 2010.

[117] J. Lee, A. Easwaran, I. Shin, and I. Lee, “Zero-laxity based real-time multiprocessor
scheduling,” Journal of Systems and Software, vol. 84, no. 12, pp. 2324–2333, 2011.

[118] R. Medina, E. Borde, and L. Pautet, “Directed acyclic graph scheduling for mixed-
criticality systems,” in Ada-Europe International Conference on Reliable Software

Technologies, pp. 217–232, Springer, Cham, 2017.

[119] S.-H. Oh and S.-M. Yang, “A modified least-laxity-first scheduling algorithm for
real-time tasks,” in Real-Time Computing Systems and Applications, 1998. Pro-

ceedings. Fifth International Conference on, pp. 31–36, IEEE, 1998.

[120] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve
computer reliability,” IBM Journal of Research and Development, vol. 6, no. 2,
pp. 200–209, 1962.

[121] J. Rushby, “Bus architectures for safety-critical embedded systems,” in Interna-

tional Workshop on Embedded Software, pp. 306–323, Springer, 2001.

[122] H. Kopetz, “Fault containment and error detection in the time-triggered architec-
ture,” in Autonomous Decentralized Systems, 2003. ISADS 2003. The Sixth Interna-

tional Symposium on, pp. 139–146, IEEE, 2003.

[123] A. Goldberg and G. Horvath, “Software fault protection with arinc 653,” in
Aerospace Conference, 2007 IEEE, pp. 1–11, IEEE, 2007.

[124] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in Proceed-

ings of the 6th international workshop on Hardware/software codesign, pp. 97–101,
IEEE Computer Society, 1998.

176 © 2019 Roberto MEDINA

[125] T. Tobita and H. Kasahara, “A standard task graph set for fair evaluation of multi-
processor scheduling algorithms,” Journal of Scheduling, vol. 5, no. 5, pp. 379–394,
2002.

[126] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,”
Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[127] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D. de Dinechin,
“Mixed-criticality scheduling on cluster-based manycores with shared communica-
tion and storage resources,” Real-Time Systems, vol. 52, no. 4, pp. 399–449, 2016.

© 2019 Roberto MEDINA 177

Titre : Déploiement de Systèmes à Flots de Données en Criticité Mixte pour Architectures Multi-cœurs

Mots clés : Ordonnancement, temps-réel, criticité mixte, architectures multi-cœurs, flux de données

Résumé : De nos jours, la conception de systèmes
critiques va de plus en plus vers l’intégration de
différents composants système sur une unique plate-
forme de calcul dans le but de réduire la taille, poid,
coût et diffusion de chaleur de ces systèmes.
Traditionnellement, les systèmes critiques sont
conçus à l’aide de modèles de calcul comme les
graphes data-flow et l’ordonnancement temps-réel
pour fournir un comportement logique et temporel cor-
rect. Néanmoins, les ressources allouées aux data-
flows et aux ordonnanceurs temps-réel sont fondées
sur l’analyse du pire cas, ce qui conduit souvent à
une sous-utilisation des processeurs. Cette sous-
utilisation devient plus remarquable sur les architec-
tures multi-cœurs où la différence entre le meilleur et
le pire cas est encore plus significative.
Le modèle d’exécution à criticité mixte propose une
solution au problème susmentionné : les ressources
sont allouées en fonction du mode opérationnel du
système. Tant que des capacités de calcul suffisantes
sont disponibles pour respecter toutes les échéances,
le système est dans un mode opérationnel de � basse

criticité �. Cependant, si la charge du système aug-
mente, les composants critiques sont priorisés pour
respecter leurs échéances, leurs ressources de calcul
augmentent et les composants moins/non critiques
sont pénalisés. Le système passe alors à un mode
opérationnel de � haute criticité �.
L’ intégration des aspects de criticité mixte dans le
modèle data-flow est néanmoins un problème diffi-
cile à résoudre. Des nouvelles méthodes d’ordon-
nancement capables de gérer des contraintes de
précédences et des variations sur les budgets de
temps doivent être définies.
Alors que le modèle de criticité mixte prétend que les
composants critiques et non critiques peuvent parta-
ger la même plate-forme de calcul, l’interruption des
composants non critiques réduit considérablement
leur disponibilité. Ceci est un problème car les com-
posants non critiques doivent offrir une degré mini-
mum de service. C’est pourquoi nous définissons des
méthodes pour évaluer et améliorer la disponibilité de
ces composants.

Title : Deployment of Mixed-Criticality and Data-Driven Systems on Multi-core Architectures

Keywords : Scheduling theory, real-time systems, mixed-criticality, multi-core architectures, data-driven

Abstract : Nowadays, the design of modern Safety-
critical systems is pushing towards the integration
of multiple system components onto a single shared
computation platform in order to reduce cost, size,
weight, heat and power consumption.
Traditionally, safety-critical systems have been concei-
ved using models of computations like data-flow
graphs and real-time scheduling to obtain logical and
temporal correctness. Nonetheless, resources given
to data-flow representations and real-time scheduling
techniques are based on worst-case analysis which
often leads to an under-utilization of the computation
capacity. The allocated resources are not always com-
pletely used. This under-utilization becomes more no-
torious for multi-core architectures where the diffe-
rence between best and worst-case performance is
more significant.
The mixed-criticality execution model proposes a so-
lution to the abovementioned problem. To efficiently
allocate resources while ensuring safe execution of
the most critical components, resources are allocated
in function of the operational mode the system is in.
As long as sufficient processing capabilities are avai-

lable to respect deadlines, the system remains in a
‘low-criticality’ operational mode. Nonetheless, if the
system demand increases, critical components are
prioritized to meet their deadlines, their computation
resources are increased and less/non-critical compo-
nents are potentially penalized. The system is said to
transition to a ‘high-criticality’ operational mode.
Yet, the incorporation of mixed-criticality aspects into
the data-flow model of computation is a very difficult
problem as it requires to define new scheduling me-
thods capable of handling precedence constraints and
variations in timing budgets.
While the mixed-criticality model claims that critical
and non-critical components can share the same
computation platform, the interruption of non-critical
components degrades their availability significantly.
This is a problem since non-critical components need
to deliver a minimum service guarantee. In fact, recent
works in mixed-criticality have recognized this limi-
tation. For this reason, we define methods to eva-
luate and improve the availability of non-critical com-
ponents.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

