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Introduction

Walking around modern laboratories, the founders of quantum physics could observe
the realization of their numerous gedanken experiments that they devised to assess the
quality of their fascinating quantum mechanical theory of the microscopic world. Among
the important milestones that marked the last decades, physicists built electro-magnetic
traps where a single charged particle (an electron or an ion) can be maintained for
days [Dehmelt; 1990; Paul, 1990], engineered a photon box where a microwave photon
bounces back and forth for more than 40.000 km in a superconducting cavity [Haroche,
2013], or reached an exquisite level of control over neutral atoms cooled and trapped
by lasers [Phillips, 1998; Ashkin et al., 1986].

These quantum objects have the curious capacity to entangle, a fundamental concept
from quantum physics with no classical counterpart, referring to the fact that the
measurement on a quantum particle is strongly correlated to the one made by another
observer on a second particle entangled with the first one. Entanglement has intriguing
consequences, such as the non-locality of quantum physics, which was undeniably
demonstrated, after more than 50 years of theoretical controversies, in experiments
with two photons [Aspect, Grangier, and Roger, 1982; Aspect, 2015]. Entanglement
is believed to be a resource for the speed-up of quantum computers, — based on
qubits (elementary two-level systems) and entangling gates —, and in any case arises
naturally in correlated many-body systems.

Quantum simulation, i.e, the capacity to use artificial quantum systems to study
many-body problems, a concept introduced by Feynman, is another exciting prospect
that recently became possible with state-of-the-art experimental apparatuses [Georgescu,
Ashhab, and Nori, 2014]. A physical system realized in a laboratory is used to mimic
and explore problems where quantum effects play a key role, as in high-energy physics,
real world materials or even totally artificial models of mathematical physics. For the
study of condensed-matter systems, a usual approach is to identify the relevant degrees
of freedom and an effective Hamiltonian describing their evolution. For insulating
magnetic materials, this gives spin Hamiltonians as the remaining degree of freedom is

the magnetic moment of electrons localized at the sites of a crystalline ionic structure.



Chapter 1: Introduction

Spin models and quantum magnetism

In quantum physics, the different components of a spin S = (S'm, f;'y, f;'z) are observables
that do not commute, such that they cannot all be measured simultaneously and
verify uncertainty relations. In the simplest case of a spin-1/2 particle, the observables
take the form of Pauli matrices (6,,6,,0.) and the quantum state of a single spin
expresses simply as |S) = a|1), + B|)),, with a (5) the probability amplitude to
observe the spin (anti-)aligned with the measurement axis (here the z-axis). It is
commonly represented on the Bloch sphere, as shown in Fig. 1.1(a). Since a spin
possesses a magnetic moment, it couples to an external magnetic field B through the
Hamiltonian —pup g& - B (with pup the Bohr magneton). The torque applied by the
magnetic field on the spin makes it precess, which lies at the heart of nuclear magnetic
resonance (NMR) physics [Purcell, 1953; Bloch, 1953]. In materials, where relaxation
processes are present, the spins tend to align along B, thus forming a paramagnet [see
Fig. 1.1(b)]. At high temperatures, thermal fluctuations destroy the magnetization as
soon as the magnetic field is removed, but not at lower temperature, where magnetic
order is stabilized by the interaction between spins.

There exist many physical processes, e.g., electron exchange (combining Coulomb
repulsion and Pauli exclusion principle), that give rise to effective spin-spin couplings.
The most studied ones are the fully isotropic Heisenberg Hamiltonian H = ) (i) J;j 0% -

T

Gj, the planar XY coupling J(of o} + o]0%) or the uni-axial Jojo? one introduced by

i3] 7]
Ernst Ising [1925]. Despite the apparent simplicity of these Hamiltonians, they lead to a
fascinating variety of collective phenomena referred to as quantum magnetism [Blundell,
2001]. For instance, with a negative coupling constant in the Ising model, the energy
of the system is minimized when the spins are all aligned in a spontaneously chosen
direction (either all up or all down), which explains the phase transition at the Curie
temperature between a paramagnet and a ferromagnet, identified by the emergence
of a spontaneous magnetization. Conversely, for J > 0 two coupled spins tend to
point in opposite directions, giving rise to antiferromagnetic materials: for simple
crystalline geometries, such as a square or cubic lattice, Louis Néel [1936] postulated a
phase transition towards an ordered state of two intertwined sub-lattices with opposite
orientations of the spins, shown in Fig. 1.1(c), explaining why no net magnetization
could be observed despite experimental indications of magnetic ordering (e.g., via
magnetic susceptibility measurements). The existence of this Néel state was later
confirmed by neutron diffraction experiments [Shull, Strauser, and Wollan, 1951].

Interestingly, such ordered states cannot always be constructed, as in the triangular

12
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Figure 1.1: Spin-1/2 models. (a) Bloch sphere representation of a spin-1/2 (red arrow)
precessing around a magnetic field B (orange arrow). (b) An ensemble of spins aligning
along B forming a paramagnet (PM). (c) Anti-ferromagnetic Néel ground-state (AFM) of
an Ising Hamiltonian with J > 0. (d) Phase diagram of the quantum Ising model at zero
temperature showing a quantum phase transition (QPT) between a PM and AFM phase.
B) and B, are the magnetic field components parallel and transverse to the Ising-favored
z-axis. (e) A triangular lattice frustrates the anti-ferromagnet constraints and an exotic

phase is expected when interaction dominates.

or pyrochlore-like structures that prevent the antiferromagnetic constraint to be
simultaneously satisfied on all links, an effect known as geometrical frustration. More
exotic magnetic phases, like spin liquids, are expected to arise in these geometrically
frustrated materials.

Spin Hamiltonians with arrays of Rydberg atoms

In real materials, it is often hard to study out-of-equilibrium physics or to obtain
time- and spatially-resolved observable that would help identifying strong correlations
between the spins. Quantum simulation is thus a promising approach to condensed-
matter problems as effective spin materials can be extremely well engineered and
isolated from their thermal environment with an easy access to any local observable.
Exciting studies of spin models,— such as the propagation of correlations [Cheneau
et al., 2014; Richerme et al., 2014; Jurcevic et al., 2014], effective thermalization
of zero-temperature interacting ensembles [Kaufman et al., 2016], or many-body
localization phenomena [Smith et al.; 2016; Choi et al., 2016]—, have been reported
using chains of ions [Blatt and Roos, 2012] ultracold gases in optical lattices [Gross

and Bloch, 2017], and more recently with arrays of superconducting qubits [Roushan
et al., 2017; King, A. et al., 2018].

13



Chapter 1: Introduction

Our group has shown, since 2014, the power of a Rydberg-atom quantum simulator
for the implementation of large scale spin Hamiltonians. The sub-nanoscale crystalline
structure of spin-1/2 particles of magnetic materials is mimicked by neutral alkali
atoms trapped in holographic arrays of microscopic optical tweezers that can realize
any two-dimensional geometry [Nogrette et al., 2014]. These tweezers can be loaded
with only a single atom, and not more, because of the so-called collisional blockade
regime caused by strong, inelastic, light-assisted collisions between two atoms in
the trap, discovered at the Institut d’Optique by Schlosser et al. [2001]. Despite a
typical inter-atomic separation R of a few micrometers, effective spin-spin couplings
between the atoms are made possible by exciting them to Rydberg states of high
principal quantum number n > 50. In a classical picture, the valence electron orbits
far away from the positively-charged nucleus to form a large electric dipole d. The
dipole-dipole interaction Hyy ~d, - ds /(4mweg R?) between two Rydberg atoms is then
strongly enhanced compared to atoms in their electronic ground state, and can be
used for quantum computing or the implementation of spin Hamiltonians (see the
reviews of Saffman [2016] and Browaeys, Barredo, and Lahaye [2016]).

Historically, Jaksch et al. [2000] and Lukin et al. [2001] proposed to use the strong
interaction between Rydberg atoms for the implementation of quantum gates through
the ‘Rydberg blockade effect’. Figure 1.2 illustrates this for an elementary setup of
two atoms laser-driven from their electronic ground-state |g) to a Rydberg level |r)
with a Rabi frequency (). The dipole-dipole interaction between two atoms in the
same Rydberg state |rr) leads to a van der Waals shift V' = C/R° of their energy. In
the blockade regime, defined by A2 < V| the doubly-excited state |rr) is sufficiently
shifted away from the resonance to preclude the simultaneous excitation of the two
atoms by a laser resonant on the |g) <+ |r) transition. Therefore, |gg) is only coupled to
the entangled state %ﬂ gr) + |rg)), where a single Rydberg excitation is symmetrically
delocalized on the two atoms, with an enhanced coupling v/2Q. These effects have been
observed in experiments with exactly two atoms by Gaétan et al. [2009] at the Institut
d’Optique and by Urban et al. [2009] in the group of Prof. Mark Saffman, and soon
led to the generation of entangled states [Wilk et al., 2010] and the implementation of

quantum gates [Isenhower et al., 2010].

The Rydberg blockade effect can be readily extended to large systems of N atoms:

When the blockade condition is verified for any pair of atoms, the excitation laser

only couples |G) = |gg...g) to the entangled state [W) = =37 [g...7:...g) with

a driving strength v/N. This collective enhancement was measured for N = 3 by
Barredo et al. [2014] and up to N = 15 by Labuhn et al. [2016] using optical tweezers

14
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Inter-atomic distance R lg) = |4)

Figure 1.2: From Rydberg physics to Ising models (a) Two-atom blockade effect.
With decreasing inter-atomic distance R, the doubly-excited state |rr) is shifted away due
to the van der Waals energy correction V = Cﬁ/RS. When the driving strength Q2 of the
atomic |g) < |r) transition is much weaker than the interaction shift V, the two atoms
cannot be excited simultaneously. The [gg) ++ %ﬂrg) + |gr)) transition is driven with a
collective Rabi coupling v/292. (b) The ordering of Rydberg excitations in an atomic array
mimics an Ising anti-ferromagnet. (c) The laser driven ground-Rydberg two-level system

implements a spin-1/2 particle in an external magnetic field B.

arrays in our group, and with few hundred atoms in optical lattice experiments [Zeiher
et al., 2015]. In this fully blockaded limit, the dynamics of the system reduces to an
oscillation between |G) and |W). One can also tune the interaction strength such that
the blockade extends only to nearest neighbors and map the Rydberg atom problem
into a quantum Ising spin model by considering the coherent laser drive as an external
magnetic field B acting on the pseudo-spin states ||} = |g) and |1) = |r), and the van
der Waals shift as an Ising coupling. Such implementations have been first reported on
an optical lattice platform [SchauB et al., 2012; SchauB} et al., 2015], and more recently
using arrays of tweezers offering more flexibility in geometry [Labuhn et al., 2016;
Bernien et al., 2017; Kim et al., 2018].

A second feature of the dipole-dipole interaction allows implementing XY Hamil-
tonians: when encoding the spin-1/2 particle in two dipole-coupled Rydberg levels
[t) = |r) and |]) = |7’), driven by a microwave field (playing again the role of an
effective magnetic field), the dipole-dipole interaction is resonant and takes the form
of an XY (‘flip-flop’) coupling J(ofo5 4 o{03). Although it seems to be only a slight
extension of the Ising coupling, it leads to strikingly different properties, the main
reason being that the Pauli matrices 0™¥* do not commute. For two atoms, it leads to
a spin-exchange oscillation between the two degenerate states ||1) and |1]), hybridized
by the dipole-dipole coupling. It can also be seen as a spin-excitation hopping from
one Rydberg atom to another, as observed by Barredo et al. [2015] with an elementary
chain of three Rydberg atoms.

15



Chapter 1: Introduction

Despite successful proof-of-principle experiments with Rydberg atoms in tweezers,
scaling the system size to more than a few atoms have been hindered, prior to 2016, by
the stochastic loading of atoms in arrays of optical tweezers. When letting cold atoms
fall into the microscopic tweezers, only half of them are loaded due to the collisional
blockade. This is a weakness of the platform as it results in randomly filled atomic
arrays. While the problem is absent in optical lattice experiments, which benefit from
the transition from a superfluid phase to a Mott insulator state with a single atom
per site [Greiner et al., 2002], this comes at the expense of severe constraints on the
geometries and low experimental cycling rate (< 0.1 Hz), as one has to start from a

quantum degenerate gas.

Thesis outline

In this thesis, I present the improvements realized during the last three years of our
quantum simulator of spin models and our recent studies of Ising and XY Hamiltonians.
A first aspect is the preparation of perfectly ordered two- and three-dimensional atomic
arrays of almost one hundred atoms allowed by the development of an atom-by-atom
assembler. A second facet is the experimental simulation of an Ising spin model and
the quantitative improvement of its ingredients: the coherent control of spins and
the mapping of the van der Waals interaction to an Ising term. A third direction
is the development of experimental tools for the preparation and manipulation of
XY magnets, which enabled us to study the many-body topological phases of a
Su-Shrieffer-Heeger (SSH) chain. This manuscript is thus arranged in three parts as

follows.

Part |: Ordered 3D arrays of atoms

Chapter 2 starts with a general overview of the tweezers platform and then explains
how arbitrary three-dimensional structures of traps are formed by holography. It
continues with the implementation of tunable lenses enabling us to reconstruct 3D
views of the trap and atomic arrays by taking successive images of different planes.
Chapter 3 describes the development of our atom-by-atom assembling machine, first
the engineering of a moving tweezers to transfer an atom between two given traps,
then combining many moves to re-order, atom-by-atom, half-filled 2D matrices of

traps, which are finally repeated plane-by-plane to obtain ordered 3D arrays of atoms.
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Part Il: Ising models

Chapter 4 starts with an historical review of experimental and theoretical studies
of laser-driven ground-Rydberg systems in van der Waals interaction, relating them
to the phase diagram of a long-range Ising model where various ordered phases are
stabilized by the effective spin-spin interaction. It describes quench experiments that
probe the critical region between the paramagnetic and the ordered phases, and then
gives a general classification of the latter. It finally focuses on the case where the
long-range character of the interaction can be neglected and the system maps onto a
perfect nearest-neighbor Ising model, and presents our attempt to create adiabatically
the anti-ferromagnetic Néel state of the Ising model on a square lattice.

For both quench and adiabatic sweep experiments, we observe some deviations
from a coherent model of spin-1/2 particles that requires a better understanding of
our implementation of the two ingredients of the Ising model: the effective magnetic
B-field by a coherent laser drive and the Ising coupling between two spins originating
from the van der Waals interaction between two Rydberg atoms. The two following
chapters enter into technical and physical details to understand and improve the
fidelity of our Rydberg quantum simulator.

Chapter 5 describes the experimental techniques for the coherent manipulation
of ground-Rydberg spin-1/2 particles, implementing an effective B-field. It presents
the experiments we used to estimate independently the coupling strength of the
excitation lasers, the detection errors of the atom internal state, and the various
damping mechanisms that lead to a finite coherence time for the control of the two-level
system. Future directions to improve these figures are given.

Chapter 6 presents how the dipole-dipole interaction between two atoms reduces to
a simple van der Waals shift for two atoms in the same Rydberg level, which then
maps onto an Ising term. It analyses how precisely a real atom with many ground
and Rydberg levels can be restricted to a two-level system, while the dipole-dipole
interaction tends to mix these levels. It allows us to find better experimental parameters

to correct the discrepancies between experiment and theory observed earlier in Labuhn
et al. [2016).

Part I11: XY models

Chapter 7 presents a toolbox for the studies of XY magnets, from the preparation of
all atoms in the Rydberg manifold with the STIRAP method, the global manipulation
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Chapter 1: Introduction

of the spin-1/2 ensemble with microwave fields and the local addressing of a single
spin with a focused laser beam. Elementary experiments with two atoms will then
show our control of the dipole-dipole interaction strength, with precise measurements
of its angular dependence and dynamical tuning with the addressing laser.

Chapter 8 presents our implementation of the SSH Hamiltonian, one of the most
elementary models exhibiting two topologically distinct phases. After benchmarking
our experiment on the known single-particle properties of the model, it explores the
consequences of filling the model with many hard-core bosons. The study of interacting
topological phases is currently a hot topic in condensed-matter physics and we will
present conclusive signatures of a symmetry-protected topological phase of interacting

particles.

18



Part |.

Ordered 3D arrays of atoms
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In this chapter, I will describe the trapping and imaging of many single atoms, each
in an optical tweezers, forming 2D and 3D structures. I will start by an overview of
the experimental setup in Section 2.1, recalling how we trap single atoms in an optical
tweezers and how we perform experiments with them. I describe in Section 2.2 how we
use holography to generate many copies of a trap with arbitrary 3D positioning and
present an experimental characterization of the trap arrays using the atoms as an in
situ probe. Finally, in Section 2.3, I explain how we image and reconstruct 3D views
of the trap arrays and of the atomic fluorescence using electrically-tunable lenses to
observe successively different planes. The results presented in this chapter (and the
following one) led to two publications [Barredo et al., 2016, 2018].
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Chapter 2: 3D arrays of single atoms in optical tweezers

(a) MOT beams

dipole trap beam_»
850 nm

atomic fluorescence
780 nm

high-NA aspheric lens

atomic cloud
(b} Electrodes

Figure 2.1: From MIGOU to CHADOQ. (a) Basic elements for single-atom trapping:
A cloud of cold 8 Rb atoms is formed in a magneto-optical trap (MOT), where a dipole trap
beam is strongly focused to a ~ 1 um-size by a high-NA optical system. (b) The massive
nine-lens home-made microscope objective of MIGOU (image taken from [Schlosser,
2001]), which was operated till 2010. (c) The more compact CHADOQ setup with a pair
of aspherical lenses and a set of 8 electrodes (hidden inside the holding structure) built by
Béguin [2013] and coworkers. A pair of coils, visible in both images, is used to generate a
gradient of magnetic field for the magneto-optical trap (in anti-Helmholtz configuration)
or a vertical magnetic field to define the quantization axis (in Helmholtz configuration).
Both systems are placed in a ultra-high vacuum chamber and combined with an atomic

source (Zeeman slower), not shown here.

Overview of the experimental setup

Our group has a long history of single-atom control with optical tweezers. The basic
principle, discovered here at the Institut d’Optique by Schlosser et al. [2001], is the
so-called collisional blockade regime reached when loading atoms in microscopic dipole
traps, also named optical tweezers. The experimental setup is schematically shown
in Fig. 2.1: a magneto-optical trap (MOT) is formed by the intersection of six laser
beams (only the four in the plane of the figure are represented) and a gradient of

magnetic field generated by a pair of coils. The cloud of cold 3"Rb atoms trapped in
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2.1 Overview of the experimental setup

the MOT is used to load an optical tweezers. The latter is created by focusing a laser
beam at 850 nm to a small waist of ~ 1 um with a high-numerical-aperture (NA)

optical system.

Traditionally, large dipole traps (~ 10 — 100 um) were used to manipulate atomic
cloud made of a large number of atoms [Grimm, Weidemiiller, and Ovchinnikov, 2000]:
they combine (i) a conservative potential proportional to the intensity of the trapping
beam and (ii) friction forces from the MOT beams, such that atoms are attracted and
captured in the center of the trap. The illumination of the atoms by the MOT beams
cause an additional effect: (iii) inelastic light-assisted collisions. When two atoms
collide, we usually expect that they simply exchange some kinetic energy (elastic
collisions), such that the atomic cloud is in a thermal equilibrium (it is important
for evaporative cooling in ultra-cold quantum gas experiments). But, in presence
of the MOT light, the two atoms will also experience inelastic collisions: absorbing
a photon, they are excited to a short-lived bound state subjected to an attractive
interatomic potential, then gain a large kinetic energy by getting closer together, and
finally re-emit a photon at a larger wavelength. The gained kinetic energy of the two
atoms is usually much higher than the trap depth and the two atoms are thus lost
from the trap. This effect was initially considered as a nefast one, because it reduces

the lifetime of dense atomic clouds.

It was then demonstrated by Schlosser et al. [2001] that this effect could be turned
into an interesting tool to manipulate single atoms. Decreasing the trap size to a
pm-scale enhances the light-assisted two-body loss rate such that it dominates over
the loading rate of atoms from the MOT. In this now well-studied regime [Schlosser,
Reymond, and Grangier, 2002; Fuhrmanek et al., 2012], as soon as a second atom
enters the trap, collisions with the first atom expel both of them, such that the number
of trapped atoms alternates between 0 and 1, and never more. It thus gives us a

stochastic single atom source with a probability n = 50 % to obtain one atom.

At the heart of this platform lies a high-NA objective lens focusing the trap laser
beam down to a waist of ~ 1pum. The challenge is to combine the optical setup
with the constraints of a cold atom experiment (ultra high vacuum, need for optical
access) with Rydberg states (controlled electric environment). In our group, the
choice has always been to use a large vacuum chamber and put the lens inside, rather
than, e.g., using small glass cells and have the objective outside. In the first setup,
MIGOU, the tweezers was focused with a home-made microscope objective of nine
spherical lenses designed to obtain a diffraction-limited spot at both 780 and 850 nm
wavelengths (for imaging and trapping) [Vigneron, 1998; Schlosser, 2001]. The setup
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Chapter 2: 3D arrays of single atoms in optical tweezers

was then considerably simplified using a single commercial molded aspheric lens in
the ASPHERIX setup [Sortais et al., 2007; Fuhrmanek, 2011]. All the experimental
work presented in this thesis has been performed on CHADOQ), the third generation
experiment. It combines a custom asphere, an ITO (indium tin oxide) coating of
its surface to prevent patch charges, and a set of eight electrodes in an octopole
configuration to provide an active control of the electric field environment seen by
the Rydberg atoms. The setup was built by Aline Vernier and Lucas Béguin [2013]
and first used to perform experiments with pairs of atoms whose fluorescence was
collected on avalanche photo-detectors (APDs). It was then improved by Daniel
Barredo and Sylvain Ravets [2014] to add a third trap and a third APD, and latter
scaled to N ~ 50 atoms using holographic techniques to generate multiple traps in
parallel [Nogrette et al., 2014] and an EMCCD camera to detect and resolve the
atomic fluorescence coming from each trap [Labuhn, 2016].

In this section, I first review the experimental setup dedicated to the atomic
array preparation and imaging, which has greatly evolved in the last years with the
inclusion of the atom assembler machine and the extension from 2D to 3D structures
of traps. I then describe a typical experimental sequence and finally discuss the main

characteristics of a single atom trapped in a tweezers.

2.1.1 The holographic optical tweezers platform

Figure 2.2 shows a simplified view of our experimental setup used to trap, image and
assemble single atoms in arrays of optical tweezers. The part necessary to obtain a
source of cold 3" Rb atoms — a diffusive oven, a Zeeman slower and a magneto-optical
trap (MOT)— is described in great detail in the thesis of Lucas Béguin [2013] and is
not discussed here. From the cloud of cold atoms, a single one is loaded in a microscopic
optical tweezers formed at the focal point of a high NA (0.5) aspheric lens with an
effective focal length f = 10 mm and a clear aperture diameter D = 10 mm. The
trap laser, at A = 850 nm, is chosen far red-detuned from the D; and D, lines of the
8TRb atom to engineer an attractive potential with typical depth U ~ kg x 1 mK (or
h x 20 MHz), much larger than the atomic temperature in the MOT (T ~ 100 pK).
The trapping beam is re-collimated by a second similar aspheric lens such that we can
image the trap pattern onto the trap CCD camera.

We go from a single trap to a 3D structure of hundreds of them using holography: a
phase mask is imprinted on the trapping beam with a spatial light modulator (SLM).

Bergamini et al. [2004] first demonstrated the technique in our group for up to four
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2.1 Overview of the experimental setup

Figure 2.2: Experimental setup for creating ordered 3D structures of single atoms.
The aspheric lenses (ALs) in the vacuum chamber focus a collimated beam to create an
optical tweezers, which can load a single atom. The spatial light modulator (SLM) imprints
a phase mask on the trapping beam duplicating a single tweezers in a 3D array of traps.
The trap imaging setup gives an image of the trapping structure and the atom imaging
system of the atomic fluorescence. The deflectors (AODs) in the atom assembler part
create a moving tweezer used to assemble atom one by one in an ordered atomic pattern.

Tunable lenses (ETL) allow to work on different planes of the 3D structures.

traps and Nogrette et al. [2014] improved it to generate a hundred of traps arranged
arbitrarily in a plane. The technique is explained in the thesis of Henning Labuhn
[2016] in the case of 2D arrays. However, we are not restricted to arrays of trap in
the focal plane of the lens, as demonstrated on experiments with trapped colloidal
particles [Leach et al., 2004; Di Leonardo, lanni, and Ruocco, 2007], and I explain the

extension of our holograms to 3D in Section 2.2.

There are two imaging setups: one to diagnose the trap structure at 850 nm on
a CCD camera using the re-collimated trapping beam and another one to observe
the fluorescence photons emitted by the atoms at 780 nm, upon illumination by the
cooling beams, on an electron-multiplying CCD camera (Andor iXon Ultra 897). We
now use electrically-tunable lenses (ETLs) to image on-demand different 2D-cuts of
the 3D structure onto the CCD chips, as described in Section 2.3. The trap imaging

system is used to analyze the trap pattern and, e.g., measure the uniformity of the
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Chapter 2: 3D arrays of single atoms in optical tweezers

trap intensities, which we feedback to the algorithm calculating the holograms. The
atom imaging part allows us to detect the presence or absence of an atom in each trap.

The atom assembler machine, described in Chapter 3, was conceived to solve a
long-standing issue of the optical tweezers platform: Due to the stochastic loading
procedure based on the collisional blockade regime, there are only ~ N/2 atoms
randomly positioned in an array of N traps. The atom sorting setup reorders the
array by reshuffling atoms one by one with a moving tweezers (MT). The MT is
computer-controlled with two crossed acousto-optical deflectors (AODs) allowing 2D
movements (along y and z), extended to 3D by combining the AODs with a tunable

lens.

2.1.2 A typical experimental cycle

I now describe a complete experimental run where the goal is to study a system of
atoms excited to Rydberg states (what I will call a Rydberg experiment). In the
following of this thesis, I will focus on the assembler part (Chapter 3) and all other
chapters will be devoted to Rydberg experiments.

We first switch on the Zeeman slower and the MOT lasers to create a cloud of
cold atoms loading the array of tweezers. The atomic fluorescence of each trap is
continuously monitored and an experimental sequence is triggered as soon as enough
atoms are present in the array. After switching off the Zeeman and the MOT beams to
stop the loading, an initial fluorescence image is acquired by collecting the photons
scattered by the atoms from the cooling beams during an exposure of 20 ms (see
Appendix A). After the atom assembly, a second image is taken to confirm the
successful preparation of the cold atom sample.

Then, we switch on a vertical magnetic field B,, from a few Gauss up to 50 G
depending on the experiment, to define the quantization axis and separate the different
Zeeman sublevels. It is generated with the pair of coils located in vacuum, which is
switched from the anti-Helmholtz configuration (to create a MOT) to the Helmholtz
one in typically 5 ms. Three pairs of external coils, in Helmholtz configuration, are
used to apply any offset of B; their currents are also switched between two values: to
position the MOT or to cancel B, and B, during a Rydberg experiment. Because
they are located outside the vacuum chamber, we wait ~ 30 ms for the eddy currents
to vanish (1/e decay time of ~ 5 ms).

At that point, we can perform a variety of experiments involving Rydberg states. We

first perform optical pumping (< 1 ms) to prepare all atoms in the same ground-state
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2.1 Overview of the experimental setup
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Figure 2.3: Experimental sequence. Three fluorescence images are taken: after the
stochastic loading of atoms from the MOT, after the atom-by-atom assembly procedure
and after the Rydberg experiment. A Rydberg excitation is observed as an atom loss. The
experiment typically runs at a rate of 3 Hz, and can reach 10 Hz when we do not need

ordered arrays and when atoms are recycled from one run to the other.

level. Then we switch off the tweezers to avoid perturbing the electronic levels and
shine a set of excitation laser pulses to access the Rydberg states. The Rydberg
experiment in itself is kept extremely short (less than 10 us) compared to the full
experimental cycle, as the atoms are in free flight and we are anyway limited by the
typical lifetime of a Rydberg state (~ 100 us). Finally, we switch back the traps and
any atom left in the Rydberg manifold is repelled by the ponderomotive potential of
the tweezers (see Section 5.2) and lost. We then read the state of the array with a

third fluorescence image.

Fluorescence measurement During the imaging, the repumper beam is switched on
and we observe all ground-state atoms, irrespective of the F' =1 and F' = 2 hyperfine
levels. For some experiments, we need a hyperfine-state sensitive measurement, which
is achieved by first removing any atoms in the ' = 2 level with a push-out beam tuned
to the cycling transition |5Slf2= F = 2) > |5P3/2, F= 3) applied either during 4 ps if
the atoms are in free flight or a few hundred of microseconds if they are trapped.
In this thesis, we thus used only destructive measurements based on the loss of an
atom depending on its internal degree of freedom (Rydberg state, hyperfine level...).
However, we could also use a non-destructive method by performing the fluorescence
measurement without the repumper beam [Fuhrmanek et al., 2011; Gibbons et al.,
2011; Martinez-Dorantes et al., 2017; Kwon et al., 2017]. The interested reader will
find more details about the process of converting a photon incoming on the EMCCD
camera to a digital count sent to the computer, and the various noise sources currently

limiting the exposure time to 20 ms, in Appendix A.
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Chapter 2: 3D arrays of single atoms in optical tweezers

Repetition rate We repeat the full cycle many times to acquire enough data to
decrease statistical errors or to scan some parameters. Indeed, the quantum projection
noise, which is just the standard error on the mean (s.e.m.) of a probability p (the
state population) estimated from N binary observations (the atom is in the state or
not), is oqpx = v/p(1 — p)/N and reaches 5 % for N = 100 and 1 % for N = 2500
(for the worst-case p = 0.5). For some experiments, we can use many atoms in parallel
and average the results over the entire array, but for others we have to keep a single
atom (if they interact for example). It is thus crucial to have a high experimental
repetition rate.

After loading the MOT, an experimental run takes typically 140 ms (3 x 20 ms
for imaging, 50 ms for assembling, 30 ms for the settling time of magnetic fields),
but it can be shorter (< 80 ms) if we do not need ordered arrays, e.g., when we work
with independent atoms, or longer if we need to work with 3D structures, where the
imaging and assembling has to be performed for each plane.

When all atoms are recaptured at the end of a run, they can be directly re-used in
the next one, and the cycling rate can be as high as 10 Hz, which is quite fast for
a cold neutral atom experiment. Much more often, we gain information about the
atomic state through atom loss and we need to reload new atoms in the trap array.
After improvement of the MOT parameters, we could decrease the loading time to
~ 200 ms, such that our typical repetition rate is around 3 Hz. It is really appreciable
in day to day operation, as we can quickly perform all calibration experiments or
achieve very low quantum projection noise. Aiming at even faster rate, we can replace
the destructive state measurements by non-destructive ones to avoid the loading stage

and there is still room for optimization of the assembler speed and exposure time.

2.1.3 A single atom in a tweezers

Here, I describe how we measure the main characteristics of a tweezers (trap depth

and frequencies) and of a single atom (trapping lifetime, temperature).

Trap depth and trapping frequencies We usually describe the optical tweezers as a
simple Gaussian beam, characterized by a waist w, a Rayleigh length 2z = mw? /) and
a trap depth U. Even in the absence of aberrations, this is already an approximation,
as calculating the exact profile requires to take into account the diffraction of the
input beam slightly clipped by the aspheric lens. The real trap shape lies between a

Gaussian beam (no clipping) and an Airy profile (uniform illumination of the lens).
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Figure 2.4: Parametric heating. We first lower adiabatically the trap depth to 1/3 of its
initial 1 mK value and then modulate it by 15 % during 1 or 100 ms to excite, respectively,
the radial (red) and axial (blue) resonances. The solid line is a fit used to extract the
trapping frequencies: 2w = 27 x 16.5(1) kHz and 2w, = 27 x 103.5(5) kHz.

Anyway, as our atoms only explore the bottom of the tweezers, the relevant and
experimentally accessible quantities are the trapping frequencies w and w, defining
quadratic potentials mw;r?/2, where we distinguish the axial and radial directions.

Assuming a Gaussian profile, we can extract effective parameters w and zg from:

4U 2U
D) and Lu‘” = 5 - (21)
mw mzR

w =

We measure the trapping frequencies by modulating the trap depth, looking for
losses occurring at the parametric excitation resonance at 2w | . The results are shown

in Fig. 2.4(b) and we extract:
wy/(2r) =50.2(3)kHz and w)/(27) = 8.3(1) kHz, (2.2)

which combined with the tweezers depth U/h = 5.5(1) MHz (measured by spectroscopy,
see 2.2.3) and Eq (2.1) gives:

w=1.01(2)pm and zp=4.31(8)pm. (2.3)

The aspect ratio is slightly different than for a perfect Gaussian beam (zp is larger
than the theoretical 7w?/A = 3.6 um), which could be explained by the real diffraction

profile, as discussed previously, and aberrations.
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Figure 2.5: Atom lifetime. Background gas collisions limit the lifetime of atoms in a
trap. (Left) MOT lifetime after switching off the Zeeman slower. (Right) Lifetime of
a single atom in a tweezers when the cooling beams are off (blue) and on (red). The

continuous cooling decreases the atom lifetime.

Atom lifetime For the small trapping depth (< 1 mK) achievable with neutral
atoms and dipolar force, elastic collisions with the background gas (at 300 K) always
expel the trapped particles. We first estimate the background-gas limited lifetime
of atoms from the decay of fluorescence of the magneto-optical trap after switching
off the Zeeman slower. Figure 2.5(a) shows a lifetime 7 ~ 25 s, which is reasonable
for this vacuum chamber with a limited bake-out temperature (constraint by the
various elements placed inside). In a second experiment, we load a single atom in a
tweezers, which we check with a first fluorescence image, and measure its survival
probability after a variable time with a second image. There, we extract a lifetime of
20 s [Fig. 2.5(b), blue curve], similar to the one observed with the MOT. It varies
from 5 to 20 s depending on the oven temperature (respectively 150° C and room
temperature), as the atomic beam hit the atoms. Finally, in a third experiment (red
curve), we let the cooling beams always on and observe a decreased lifetime (7 ~ 8 s),
which is still not understood. It could be caused by the complicated interplay of the
trapping potential and the cooling mechanisms leading to atomic trajectories out of
the trap. In conclusion, the atom lifetime is typically 10 s, giving a reasonable ~ 1 %
probability to lose an atom during a 100 ms-long experiment. A solution to improve
these numbers significantly would be to reach even lower background gas pressure by

going for a cryogenic setup.

Atom temperature The energy distribution of a single atom trapped in a tweezers
is given by its temperature 7', which after loading from the MOT, is typically ~ 50 uK.

The kinetic energy is thus much larger than the energy spacing of the vibrational
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2.1 Overview of the experimental setup

levels (hw ~ kg x 5 puK along the radial axis), such that the atom is far from the
ground vibrational state of the trap and a classical description of the atomic external
degrees of freedom (position r and velocity v) is sufficient. Of importance for us, the
atomic temperature T, together with the trapping frequency w, give us the r.m.s.

position and velocity uncertainties o, and o, of the atom in the tweezers:

[ kgT [kgT
oy = B 5 and o0, = =5 (2.4)
mw m

with m the mass of " Rb and w the trapping angular frequency. The position uncertainty

is different along the strong (radial) and weak (axial) trapping axes.

We determine the atomic temperature (really the r.m.s. velocity) from a release and
recapture experiment [Tuchendler et al., 2008]: we switch off the optical tweezers, let
the atom move away from the trap due to its velocity v during a variable time T,
and switch on the tweezers again. We compare how fast the recapture probability
goes down with 7 to a Monte-Carlo simulation of the classical dynamics of a particle
at temperature T'. For the simulation, the initial position and velocity are chosen
according to normal distributions with widths o, ,, and we consider that an atom is
lost if its kinetic energy is higher than the trap potential at the atom position after the
time of flight. I show in Fig 2.6 a measurement together with the best fit simulation
T =20 pK. For daily estimation of the atom temperature, we do not record the full
curve, but only the recapture probability after a time of flight of 20 us. Importantly,
we observe that the recapture does not drop in the first ~ 5 ys, meaning that we can
perform a Rydberg experiment up to this duration without suffering from detection

errors (see 5.2).

Prospects for further cooling The finite temperature of the atom thus limits the
duration of a Rydberg experiment as they fly away from the optical tweezers and
I discuss here how to increase the available experimental time by reaching lower
temperature. After loading atoms from the MOT in the traps, or after a fluorescence
image (the MOT beam parameters are the same for both), the atom temperature is
60 uK. We further cool the atom to ~ 40 uK by increasing the detuning of the molasses
to —8T (relatively to the transition frequency of a free atom). At this temperature,
the average radial vibrational number is still n, = kgT'/(hw, ) ~ 10. Reaching the
ground-state of the optical tweezers requires a more advanced technique than Doppler
or sub-Doppler cooling: Raman sideband cooling. The technique was first employed for

ions Monroe et al. [1995] where the much higher trapping frequencies (tens of MHz)
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Figure 2.6: Time of flight. The atomic temperature is measured by releasing the atom
during a time 7 and observing the decrease in recapture. The data (red circles) are well

reproduced by a classical simulation of the atom dynamics for T' = 20 uK.

facilitates its use compared to neutral atom dipole traps. Two groups simultaneously
applied the technique to microscopic optical tweezers: Thompson et al. [2013b] obtained
averaged occupation numbers n; = 0.01, ) = 8 starting from an initial temperature
of 50 uK, while Kaufman, Lester, and Regal [2012] reached a ground-state population
of 90% (7L = 0.02, 7 = 0.08) starting from a lower temperature of 11 uK after a
careful optimization of the polarization-gradient cooling (PGC). More recently, Yu
et al. [2018] reported ground-state cooling of single Na atoms in a tweezers. The
conclusion is twofold: (i) we should be able to reach lower temperature than now
(40 uK) with standard laser cooling (PGC), most likely by a better control of the

cooling beam polarizations, and (ii) if necessary, ground-state cooling can be applied.

Position and velocity uncertainties As all the experiments presented in this thesis
are performed on planar arrays of atoms, we are mainly interested in the radial position
uncertainties o, ,, which affect the inter-atomic distance R in first order (but only in
second order,  02/R, for the axial one). At T'= 40 uK, the initial uncertainties are
0y =0.1pm (0, = 0.7 um) and o, = 0.06 m/s. During a Rydberg experiment, the
traps are switched off and the position uncertainty increases due to the velocity of the
atom, such that after ¢ ~ 1.5 us of free-flight the two contributions (¢, and o,t) are
equal. As our experiments typically last ~ 5 us,; the r.m.s. velocity is the main source
of uncertainties.

We can lower o, at the expense of o, by adiabatically lowering the trap depth U,
which decreases the trapping frequencies w o v/U. If the process is done adiabatically
(w < w?), the population of each vibrational level is conserved: n = kpT'/(hw) remains

constant and the temperature is lowered proportionally to w. Since the entropy is
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conserved during the procedure (contrarily to laser cooling where spontaneously
emitted photons take away entropy), the phase-space volume should remain constant.
And indeed, while o, oc v/T is decreased, o, o< v/T /w increases and their product is
unchanged. For too low final trap depth, the adiabaticity criterion becomes more
difficult to fulfill and we start to lose atoms. Reducing U by a factor ~ 10, we obtain
T =20 uK (see Fig. 2.6) and 0, = 0.04 m/s.

3D arrays of traps

Scaling the number of traps from a single one to hundreds of them requires to parallelize
their generation. In a first demonstration, Dumke et al. [2002] focused the trapping
beam using an array of micro-lenses creating a 2D array of traps with large spacings
of 100 pm, equal to the separation between the lenses. Our group proposed and
demonstrated the use of a spatial light modulator (SLM), located in the Fourier plane
of the aspheric lens, which imprints a phase pattern diffracting the beam and gives
in the focal plane an intensity pattern related to the Fourier transform of the phase
mask [Bergamini et al., 2004]. This holographic technique gives great flexibility in
the trap geometries, which can be changed, without any realignment of the optical

system, by simply updating the SLM phase mask.

The technique has been improved to include the correction of aberrations and
the equalization of the trap depths as described in Nogrette et al. [2014] and in
the thesis of Henning Labuhn [2016]; a similar work has also been performed at
Hamamatsu company [Matsumoto et al., 2012]. The holograms are generated with the
Gerchberg-Saxton (GS) algorithm [Gerchberg and Saxton, 1972], which uses Fourier
transforms between the focal plane of the lens and its Fourier plane, where the SLM
is located. This technique is very powerful as a large class of light patterns can be
generated [Zupancic et al., 2016]. Optical tweezers arrays, which are nothing more
than an assembly of Gaussian spots, are only a very restricted set of light patterns. In

this case, the formulation of the GS algorithm with Fourier transform is overkilled.

In this section, I will describe a simpler formalism based on the combination of
elementary phase patterns [Di Leonardo, [anni, and Ruocco, 2007], which allows the
extension of our previous works to 3D. Then, I will present how to modify the GS
algorithm to include a feedback measurement of the trap intensities. Finally, I will

characterize the trap arrays using a single atom as an in situ probe.
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Figure 2.7: Elementary phase patterns. Simple holograms exp[iA.], see Eq. (2.5),

creating a single trap at the position (Xm, Ym, Zm) -

2.2.1 Holograms for 3D arrays

I start by a quick review of the optical setup used for holography and refer a reader
interested in extensive details to Labuhn [2016]. T will explain how an elementary
phase pattern allows to displace a trap at an arbitrary position and then how to create

a 3D assembly of traps by combining many such patterns.

Setup We shine our trap laser on a spatial light modulator (SLM, Hamamatsu
X10468-02) imprinting a phase mask @siy(ys, zs) Where yg, 2, are the coordinate
system on the SLM plane. The SLM is constituted of 792 x 600 pixels, each of size
20 x 20 pm?, giving a total area of 15.8 x 12mm?. The input beam is collimated with
a diameter on the order of the SLM size, such that for simplicity we will consider
a uniform illumination: the input light-field is described by the complex amplitude
Ao(ys, 2s) = Ao, and the output of the SLM by Age’?. A relay telescope of magnification
M = —10/12 images the SLM on the aspheric lens and rescales the SLM size to fit
the lens diameter (D = 10 mm). If the beam size on the lens is too small, it effectively
reduces the NA and increases the traps size; conversely if the beam is too big, the
imaged SLM pixel size is unnecessarily large and it decreases the maximum extension
of traps array. We will now see which phase pattern to imprint on the SLM to obtain

the desired 3D trap structure around the focal plane of the lens.

A single trap Let us start with the elementary phase pattern Ay, (ys, 25) creating a
single trap at the position (Z,, Ym, 2m), where (0,0, 0) is the focal point of the lens and
z the optical axis. If no phase pattern is imprinted on the input beam, a single trap is
created at the focal point position. The trap can be displaced transversally (along ¢ or
2) by tilting the wavefront of the beam, which is achieved by imprinting a linear phase

increase along the displacement direction (a blazed grating). Similarly, the trap is
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w, exp[i (A +6)]

E Wy expll (4,+9,] /

Figure 2.8: Hologram for N traps. \V elementary phase patterns A, are combined to

give an interference pattern Agpn, see Eq. (2.6), whose phase arg[Agry] is the phase
mask displayed on the SLM.

moved along the optical axis direction by changing the divergence of the beam and
thus by imprinting a quadratic phase variation curving the wavefront (a Fresnel lens).

The elementary phase patterns, shown in Fig. 2.7, are thus exp[iAp,] with:

T

2
Am('y‘g? ZS) - )‘_f(ymy«g + zmzs) + /\f2 (yg + ZSQ)' (25)

Many traps To generate an assembly of N traps, we need to somehow combine
the N elementary phase patterns {A,,,1 < m < N} in a single phase mask pg,\;.
The solution appears when considering the following ‘inverse’ problem: what is the
interference pattern formed on the SLM given by N point-like, coherent, light sources
each located at (2, Ym, zm) and emitting with a relative amplitude and phase w,,e?"?
The light propagates through the lens, acquires a propagation phase Ap,(ys, 25) and
interferes on the SLM where the complex amplitude of the light field is given by:

Asiar(ys, z5) = Z wmei[Am(ys,zs)wm]_ (2.6)

m

To generate the trap array, we should imprint a phase and amplitude mask reproducing
this interference pattern, which at first glance looks inaccessible to a phase-only SLM.

However, a good attempt is to imprint only the phase mask:

90(93,23) - arg[ASLM(ysrzs)]: (27)
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calculated together with (2.5), (2.6) and a set {(wy,0y),1 <m < N}, for which a
good initial guess is to choose uniform w,, = 1 and random phases 6,,. Because we
cannot display the amplitude part |Agpy| of Eq. (2.6), the real amplitude and phase

of each trap will differ from this initial choice.

Diffraction equation We denote by V,, the complex amplitude of the light field
at the center of the m'™® trap. It can be calculated from the phase mask ¢ and the

elementary trap pattern A,, through the diffraction formula:

Vm - /\/ eé[ﬁo('ysszS)_Am(ys?ZS)]dysdzs} (28)

where, in our numerical implementation, the double integral is replaced by a summation
over all SLM pixels. In practice, we are not interested in the trap relative phases

arg[V,,], but only in the trap intensities I,,, = |V,|?, particularly in:

» the diffraction efficiency e = )" I,,, as not all the light is diffracted to form the

targeted traps, which increases the required laser power.

« the intensity inhomogeneity o; = 1/((I — I)?), as some traps can be shallower

than others, which affects their ability to trap atoms.

In the next section, I will explain how to find an optimized set of (wy,,fy,) such that
the hologram calculated with the simple equations (2.5-2.7) gives a high diffraction

efficiency e and low intensity inhomogeneity o7.

Current method vs FFT [ want to emphasize the difference in the way we calculate
the hologram and the diffracted pattern as compared to our previous works [Nogrette
et al., 2014; Labuhn, 2016]. There, we were propagating the coherent light field
between the SLM plane and the focal plane of the lens (or reversely) using Fast-Fourier
Transform (FFT) operations, which are not necessary to generate arrays of Gaussian
spots. Here, we replace the FFT calculations by the simpler equations (2.6) and
(2.8), where the trap positions can run over the three dimensional space. I also find
this approach more instructive as the hologram can be seen as the superposition of

elementary phase masks with an optimized choice of their relative weights and phases.
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2.2.2 Closed-loop feedback for intensity correction

I now discuss how we use the 2N degrees of freedom {(wp,,0,),1 < m < N} to
optimize the phase mask in regards of e and o;. It relies on an adaption of the
Gerchberg-Saxton algorithm, which can be found in Di Leonardo, [anni, and Ruocco
[2007], that we further modified to add an external feedback by measuring the real
trap intensities, instead of calculating them, resulting in an improved trap intensity

uniformity oy [Nogrette et al., 2014; Labuhn, 2016].

Concept The algorithm works as follows:

« initialization: calculate a phase mask ¢° using equations (2.5-2.7), random trap

0
m:

phases 02 and uniform trap intensities w
» repeat for each step 1 < k < N:
(i) calculate V¥ with the diffraction formula (2.8) and ¢*!.

(ii) calculate a new hologram ¢* with the updated values:

O, = arg[Vizl, (2.9)
_ VE¥)m
A T (llv‘l)l : (2.10)

In Eq. (2.10), the trap weight wF, is increased (decreased) for the next iteration if
the calculated trap amplitude |V}¥| is lower (higher) than the average over all traps
{|V*|) . In our closed loop implementation, we measure the trap intensities I¥ at each
iteration and replace the calculated trap amplitude |V,¥| by the measured one /I in
Eq. (2.10). The relative standard deviation o7 /I of the trap intensities measured on

the CCD camera, shown in Fig. 2.9(b), is reduced to ~ 3% after usually 10 iterations.

Implementation Our numerical implementation of the algorithm is written in
Python. We operate on matrices of 792 x 600 entries representing the value of ¢ and
Ap, on each SLM pixel. The elementary phase patterns A, are calculated once, when
the user inputs the trap coordinates. Then two operations are time-consuming and are
thus performed on a graphics card (GPU): (i) the diffraction equation (2.8) used to
calculate V;,, for each of the N traps, which requires to sum over the matrices ¢ and
A, and (ii) the interference equation (2.6) used to obtain the SLM phase mask ¢,

which requires element-wise operations on the N matrices A,,. Both element-wise and
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Figure 2.9: Gerchberg-Saxton algorithm. (3a) Schematic of the weighted GS algorithm.
We only calculate the amplitude of the light field V/,, at the trap centers, and not over
the entire 3D volume where it is a complicated interference of all the individual tweezers
(light red). (b) Relative standard deviation o;// of the trap intensities / measured on the

camera. It decreases with the number of iterations down to o;// ~ 3%.

reduction operations are performed on a GPU card (NVIDIA Quatro K2000) using
the pyCuda wrappers [Klockner et al., 2012] giving access to Nvidia’s CUDA parallel
computation API. We obtained a seven times shorter calculation time by running the
calculations on the GPU rather than on the CPU. The calculated phase pattern is
projected on the SLM using the Python wrapper slmpy written by Popoff [2017]. We
automatically acquire images of the trap pattern with a Python script making use of
the pyicic wrapper for the Imaging Source trap CCD camera. The trap intensities are
obtained by finding the brightest pixel in NV pre-defined areas around the expected
trap positions. For 3D structures, we take an image of each plane where a trap is

focused.

2.2.3 In situ characterization of trap arrays

We have so far characterized the homogeneity of the trap arrays using the beam
re-collimated by the second aspheric lens and imaged on a CCD camera. It means
that any errors introduced by the imaging system (aberrations, fringes) cannot be
distinguished from the real characteristics of the array. For example, internal reflections
in the window of the CCD camera give rise to a 10 um-period interference pattern
with a contrast of ~ 5%, which is imprinted on the trap array with our feedback
procedure. We can measure and correct these fringes by scanning a single trap over

the CCD camera. Nevertheless, we currently do not use this procedure and the real
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Figure 2.10: Differential light-shift (a) The AC Stark shifts U; and U, of the two
hyperfine ground-state levels differ due to the increased detuning of the trapping beam
from the F = 1 state. (b) Measurement of the differential light shift U, — U; by microwave
spectroscopy of the hyperfine clock transition. We perform a m-pulse interrogation with a
Rabi coupling 2,y /(2m) ~ 300 Hz and shows the resulting spectra for 4 traps. The line

centers vary due to the inhomogeneity of trap depths.

trap depth inhomogeneity is thus probably higher than the one estimated from the
camera. To avoid such potential bias of external diagnostics, it is better to characterize
the traps using a single atom as an in situ probe. I discuss here measurements of the

trap depths and trapping frequencies.

Microwave spectroscopy The dipole trap affects almost all electronic levels and
there is a plethora of transitions that we can experimentally probe to measure an energy
shift proportional to the trap depth: ground-Rydberg transitions, the D line (55 —5P)
or the microwave transition between the two hyperfine ground-state levels. The latter
offers, by far, the largest quality factor allowing us to measure small inhomogeneities
over the trap array. We prepare the atom in the |55 /5, F' = 2, mp = 0) state and drive
the Amp = 0 clock transition to the F' = 1 hyperfine level. The transition frequency is
shifted because the 850 nm trap is not equally detuned from the two levels due to the
hyperfine splitting Ap¢ ~ 6.8 GHz, causing a differential light-shift nU with:

1/67/, +2/53,

~ —24x 1074 2.11
n hfl/alﬂ n 2/5:”2 X ) ( )

where 61/, = 24 THz and 05/, = 32 THz are the 850 nm laser detuning from the D,
and D, transitions. For a trap depth U =5 MHz, we get nU = 1.2 kHz and aim at
measuring variations of a few percents of this value over the trap array.

I show in Fig. 2.10(b) selected microwave spectra from an array of 9 traps where

39



2.3

Chapter 2: 3D arrays of single atoms in optical tweezers

we clearly see the inhomogeneity in line centers. Over the 9 traps, the deviation is
oa = 87 Hz, and together with the expected differential light-shift nU = 1.2 kHz, it
gives a relative deviation oa /(nU) = 7.3 %. As expected it is slightly larger than the
one measured on the camera, but remains low enough not to cause any problems in
trapping atoms. If in future experiments it becomes important to have trap depths
equal at the percent level, we could improve the current homogeneity by correcting

the camera fringes or using in situ measurement in the feedback procedure.

Trapping frequencies We also check the homogeneity of trap shapes, or equivalently
of trapping frequencies, by performing parametric heating measurement, as in Fig. 2.4.
Over a large 9 x 8 trap array, covering an area of 65 x 65 um?, the relative standard
deviation of trap frequencies is ~ 10 %. Because the trapping frequency depends on

the trap depth, we expect the two to be partly correlated.

Limitations Finally, I discuss what kind of 3D structures we can create by holography.
First, a natural concern when one thinks about 3D arrays of optical tweezers is that the
light we have carefully structured in a given plane will propagate and give an unwanted
blurred background in other planes. In practice, the Gaussian beams forming the
tweezers diverges quickly, with a length scale given by the Rayleigh range zp ~ 5 pm
set by the NA=0.5 of the aspheric lens, such that for well enough separated traps
they only weakly interfere with each other. We can usually bring the trap as close as
~ 3zp axially and ~ 3w transversally. Secondly, the maximum extent of the array is
limited by (i) the field of view of the aspheric lens (coma and spherical aberrations
will affect traps away from the focal point) and (ii) the SLM pixel size, which defines
the maximum spatial frequency of the hologram (in the Fourier plane), and thus limits
the largest spatial separation in the focal plane. In our case, the field of view is by
far the limiting factor and we could create satisfying traps in a volume of (100 ym)?.
Further improvements in compactness and extent would rely on an objective lens

with, respectively, a higher numerical aperture and a larger field of view.

3D imaging

In this section, I present the two imaging setups on which we rely to manipulate the

atomic arrays:

» The trap imaging setup. The trap array and the moving tweezer beams (see

next chapter),; both at 850 nm, are imaged on the trap CCD camera. We use
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this image during the creation of the hologram to feedback the trap intensities
to the Gerchberg-Saxton algorithm. It is also used for the automatic alignment
of the moving tweezers, such that it can grab and release atoms at the exact

center of the traps. This imaging system is typically used once a day.

» The atomic fluorescence imaging setup. The fluorescence light emitted at 780 nm
by the trapped atoms when illuminated with the cooling light is collected and
refocused on an electron-multiplying CCD camera (EMCDD). It informs us
on the presence or absence of an atom in each trap at different stages of an

experiment.

These setups were first described by Labuhn [2016] and I focus here on the improvements
made for the imaging of three-dimensional structures. First, [ present how we integrate
electrically tunable lenses in our imaging systems and then how we use them to obtain

different 2D-cuts of the 3D structures of traps and atomic arrays.

2.3.1 Tunable lenses

Central to the two imaging systems are a pair of aspheric lenses designed to give
diffraction-limited spots of 1.0 pm at 780 and 850 nm. This resolution goes together
with a small depth of field, for the same reason that a Gaussian beam with a small
waist w has a small Rayleigh range 2, = mw?/\ ~ 4 um. It means that when imaging
a 3D structure with interatomic separation of typically 10 gm, only one atomic plane
will be focused on the CCD chip and give a clear signal while all other planes will be

defocused and contribute to the background noise of the image.

Optotune lenses Similarly to a camera objective, we need a way to tune which
plane is focused on the CCD chip and it should be fast, reproducible and computer-
controlled. This is achieved by using electrically-tunable lenses (ETLs) from the
company Optotune. These lenses, of typical aperture of 10 mm, contain an optical fluid
in a flexible polymer membrane whose curvature is changed through a current-controlled
electromagnetic actuator. A Python script is used for the serial communication with a
USB driver (Lens Driver 4) generating the control current. The change in curvature,
from concave to flat to convex, is characterized by the optical power D quoted in
diopters: D (dpt) = 1/f and ranges from D = —2 dpt (divergent lens f = —500 mm)
to D = +3 dpt (convergent lens f = 333 mm). Upon a change of the control current,

D is updated with a rise time of ~ 5 ms and a settling time of ~ 20 ms during which
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Figure 2.11: 3D imaging setups. The tunable lenses (or optotunes), controlled by
computer, focus on-demand plane of the tweezers structure on the trap CCD camera (red

beam) and of the atomic fluorescence on the EMCCD camera (brown beam).

Table 2.1.: Tunable lenses for the 3D imaging setups

optical setup | ETL model | Settle time (ms) | D (dpt) | aperture (mm) | 15 telescope
trap imaging ETL-10-30-C 15 -1.5to +3.5 10 x0.5
atom imaging || ETL-16-40-TC 25 -2to +3 16 x0.66

there are still small oscillations. We thus always wait for this time before taking an
image. We ended up using two different ETL models (see Table 2.1) for the trap and
atom imaging setups, as we wanted to compare their performances. To avoid beam
clipping and aberrations, the ETLs need to be integrated in well designed optical

setups, which I now describe.

Optical setup The imaging systems are shown in Fig. 2.11 and are basically the
same for the trapping beam and the atomic fluorescence, except that we collect the
latter propagating backwards compared to the trapping beam and they are separated
using a dichroic mirror. The aspheric lens is first imaged on the tunable lens using a
relay telescope decreasing the lens aperture by M ! ~ 0.5. The latter results from
a choice between small axial range (for large M, see 2.12) and aberrations induced

by the ETL (for small M, as we would use only a large fraction of the imperfect
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ETL aperture). The ETL are mounted horizontally inside periscopes to avoid coma
aberrations, induced by the gravity deforming the lens. We then define a fictive
intermediate image plane ~ 700 mm after the ETL, such that we obtain there an
image of the focal plane of the asphere when D = 1/0.7 dpt. Finally, a second relay
telescope rescales the image on the camera CCD chip to reach the required resolution:
the fluorescence of one atom is concentrated on only a few pixels to improve the signal
to noise ratio and we thus use a small fraction of the EMCCD chip, while the trap
images cover the full CCD chip to optimize the alignment of the moving tweezers
relatively to the traps.

The range of planes Az, along the optical axis, which can be imaged on the cameras
depends on the asphere focal length f, the first telescope magnification reducing the
effective focal length by a factor M, and the ETL optical power range AD = 5 dpt
and is given by:

Az = AD x f*/M?* ~ 100 ym. (2.12)

The expression is exact only if the optotune is conjugated with the asphere. Within
this range, any plane can be focused on the camera by changing the optical power D,
controlled from the computer. The stability of the ETL (how long does a given plane
stays focused on the CCD) is limited by the sensitivity of the optical power to the
temperature, which can vary due to the power consumption of the electromagnetic
actuators (up to ~ 1 W). Nevertheless, we usually work with a fixed average dissipated
power (as we fix the series of plane to be imaged), and after a few tens of minutes the
lens has reached its equilibrium temperature and its stability is very good, comparable

to the Rayleigh range over a day.

2.3.2 Trap patterns imaging

[ now present some three dimensional views of increasingly complex trap structures: a
single tweezers, multilayer arrays and arbitrary patterns. The tunable lens allows us to
acquire series of stack images along the optical axis z with which we reconstruct the
full 3D intensity distribution.

A single trap Let us start by imaging a single optical tweezers. Figure 2.12 shows 2D
views of the trap at different x-positions along the optical axis (indicated in the top of
each frame). The position is deduced from the ETL optical power and Eq. (2.12) with

a ~ 10 % uncertainty. We observe that, as expected, the tweezers is not a Gaussian
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Figure 2.12: 3D views of a single trap. A single optical tweezers viewed at different
positions away from the focal plane. The intensity is rescaled for each frame and is below
10 % after 5 um. Bottom: on-axis intensity showing an Airy profile smoothened by spherical

aberrations in one direction.

beam due to the diffraction on the aspherical lens. For example, we observe successive
zeros of intensity along the optical axis (y = z = 0), as seen in the bottom plot. In the
other direction, the zeros are smoothed away by the spherical aberrations. At this
stage, it is difficult to know if they are already present in the focal plane, or induced
by the imaging system.

Multilayer structures We now move to multi-plane structures made of two or three
layers of traps. In Fig. 2.13(a), I show three layers of a triangular (or hexagonal) lattice
used in the following chapter to assemble a pyrochlore structure. The layers are spaced
by 25 pm, such that the tweezers focused in one layer are completely smeared out
in other layers. In contrast, in Fig. 2.13(b), we have two square lattices at £2.5 ym.
Because the lattices are shifted by half a lattice constant along y and z, the tweezers

are well separated. It would not have been possible to overlap the two lattices at such
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(a) Triangular lattices (3 layers)
(b) AB-stacked square lattices (2 layers)
—5.0um —2.5pum 0.0 pm 2.5pm 5.0 um
10pm

Figure 2.13: 3D view of a multilayer trap structure. Depending on the separation
between 2D layers of traps, the tweezers focused on one plane are completely smeared out

in the other layers (a) or only slightly defocused (b).

a close distance, comparable to the Rayleigh range of a trap, and we can distinguish

the defocused tweezers of one layer in the other layer.

Arbitrary structures Finally, I show in Fig. 2.14 complex trap structures which
cannot always be simply decomposed in a small number of layers. A 3D view is
reconstructed using a maximum intensity projection method [Wallis et al., 1989] from
200 x-images obtained with the trap CCD camera. For clarity, there is a minimum
threshold under which we do not show the intensity. Except for the largest one (middle
frame, 320 traps) for which we lack laser power to produce that many deep enough
traps, we could load atoms in such structures and we will see in the following subsection

similar images obtained from the atomic fluorescence.

2.3.3 Atomic fluorescence imaging

Single 8"Rb atoms are randomly loaded in the optical tweezers from the MOT and we
collect the photons scattered by the atoms on the EMCCD camera. In Fig. 2.15, [

show examples of 3D views reconstructed from series of 100 x-stack images covering
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103 um
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Figure 2.14: Arbitrary 3D trap patterns. Intensity reconstructions of exemplary 3D
patterns obtained from a collection of x-stack images taken with the trap CCD camera.
The regions of maximum intensity form (a) a 5 x 5 x 5 cubic array, (b )a Cz2g fullerene-like

structure, and (c) a trefoil knot. The dimensions of the images are (~ 100 um)>.
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Figure 2.15: Single-atom fluorescence in 3D arrays. Maximum intensity projection
reconstruction of the average fluorescence of single atoms stochastically loaded into
exemplary arrays of traps. The X,y,z scan range of the fluorescence is indicated and is the
same for all the 3D reconstructions. Reconstructing a 3D view takes a total exposure time

of ~ 40 minutes as we aimed for a very high axial resolution and signal-to-noise ratio.
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(a) Triangular lattices (3 layers)

(b) AB-stacked square lattices (2 layers)

Figure 2.16: 3D view of a multilayer atomic structure. The layers are separated by
25 um (a) or only 5 um (b). In the latter case, we still distinguish the fluorescence coming

from the other layer.

an axial range of ~ 120 ym. For each image, we choose a long exposure time of ~ 15 s
while operating the MOT to average the random loading and uncover the complete
atomic structure. These reconstructed views demonstrate that we can create and image

complicated 3D atomic structures, but takes too long to be used in a real experiment.

Single shot images We have seen in Section 2.1.2 that we take 3 images of the
atomic structure (before assembly, after assembly, after Rydberg experiment). We
need to minimize the total exposure time to keep reasonable experimental cycling
time and low atom loss due to their finite lifetime. We achieve this by working with
simplified 3D structures where all atoms lie in a few planes, limiting the number of
images needed to reconstruct a 3D view. We also choose an optimal exposure time of

20 ms as described in Appendix A.

Figure 2.16 shows single-shot fluorescence images of atoms trapped in the multilayer
structures of Fig. 2.13. The stochastic loading is responsible for the 50 % filling
fraction. Similar 3D images were also reported by Nelson, Li, and Weiss [2007], there
the focus of the imaging system was varied by displacing the objective lenses with a

piezo-electric actuator.
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Conclusion

In this chapter, we have seen how to create a disordered and inert atomic sample
in one, two and three dimensions, the latter resulting from the improvement of the
holographic technique and the use of electrically-tunable lenses that I presented in this
chapter (see also [Barredo et al., 2018]). We could trap up to ~ 60 atoms in arrays of
120 traps, this number being currently limited by the available trap laser power.

In the following chapter, I will describe how to re-arrange the atoms one by one in a
well-ordered target structure. These ordered arrays will then be used in the second and
third part of this thesis to implement spin models by exciting the atoms to Rydberg
states, in which they strongly interact with each other. We will use the flexibility
in geometry offered by the holographic technique to study these models on different
patterns: 1D array with periodic boundary conditions [Labuhn et al., 2016], 2D square
and triangular patterns [Lienhard et al., 2018] (see Chapter 4) and dimerized 1D
chains (see Chapter 8). So far, we have not combined Rydberg excitations with large

3D arrays, as we lack power in the excitation lasers to illuminate them homogeneously.
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Despite the good scalability in trap numbers and flexibility in geometry offered by
holographic optical tweezers, this has a serious drawback as only half of the tweezers
are loaded with a single atom due to the collisional blockade [Schlosser et al., 2001].
This filling fraction n ~ 50% is a severe limit of the setup, and was so far avoided
by studying few-atom systems or partially filled ones. Pushing the platform to its
limit [Labuhn et al., 2016; Marcuzzi et al., 2017], we could obtain up to 9 atoms (in 9
traps) by continuously monitoring the trap occupancies and triggering the experiment
only when all traps were loaded, at the expense of an extremely low cycling time (up
to 2 minutes), increasing exponentially with the number of traps.

Several routes have been explored to increase the filling fraction by relying on
physical processes such as Rydberg blockade [Ebert et al., 2014] or tailored light-
assisted collisions [Griinzweig et al., 2010; Lester et al., 2015]. These efforts resulted in
a significant increase of the filling fraction, up to n = 90% for the latter technique,
but still insufficient for preparing fully-filled arrays of tens of atoms, as the success
probability Py = 5" is already down to 35% for N = 10 atoms.
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Instead of relying on a physical process, we can rather engineer a feedback procedure:
the initial positions of the randomly loaded atoms are recorded and the information
is used to re-organize them to fill a sub-array of the initial structure. This concept
dates back from more than ten years ago when Weiss et al. [2004] emitted the idea to
re-order atoms using state-dependent translating lattices. Soon after, Dorner et al.
[2005] proposed to implement quantum gates, through well controlled on-site collision
between two atoms, by moving them between holographically generated tweezers with
an independent fast moving head controlled by acousto-optic diffractors (AODs):
exactly the technique we will use to order large atomic arrays. On the experimental
side, two teams demonstrated, in the following year, single atom transport with an
excellent efficiency. Miroshnychenko et al. [2006b] engineered a conveyor belt lattice
and succeeded in rearranging 7 atoms in a 1D array with a single atom transport
success rate of 7 = 98%, while Beugnon et al. [2007] used a tip-tilt mirror to steer
a moving tweezers in two dimensions while keeping the coherence of an atom in a
superposition of electronic states. At this time, the holographic tweezers platform
was not yet mature enough to combine it with single atom transport, but our recent
progresses in engineering structures of up to 100 traps [Nogrette et al., 2014] and a
single-site addressing moveable tweezers [Labuhn et al., 2014] allowed us to build an

atom assembler machine, which I describe in this chapter.

An important preliminary question is: are these techniques of shuffling atoms
scalable, at least up to hundred moves? We need to look at how fast we can displace
an atom, which is set by the maximum acceleration for which the atom still follows a
moving trap. A dimensional analysis gives amax ~ wf2; = 10* m.s™2 with a trap waist
w = 1 pm and a radial trapping oscillation frequency fraqa = 100 kHz. By accelerating
an atom during a time 7/2 and decelerating it during another 7/2, we can move an
atom by L = a7r?. Even when choosing a very conservative acceleration a = 10m.s™2,
three orders of magnitude smaller than the estimated limit, it still gives a displacement
L = 10 pm, typical of the inter-atomic distance in our experiments, in 7 = 1 ms.
Hundred of atoms could then be moved in a reasonable time scale of ~ 100 ms, well
below the lifetime of a single atom (~ 10 s), and we will see in this chapter how to

engineer it.

The chapter is organized as follows: I present in Section 3.1 how we engineer a
computer-controlled moving tweezers and use it to transfer a single atom between
two traps. In Section 3.2, I describe how our home-made algorithm finds a set of
individual moves re-arranging the atoms in an arbitrary 2D pattern, and discuss its

performance and scalability. In Section 3.3, I explain how we serialize the 2D sorting to
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3.1 Moving tweezers

many planes to create 3D atomic structures. Finally, in Section 3.4, I will compare our
atom assembler to other techniques developed roughly at the same time [Kim et al.,
2016; Lee, Kim, and Ahn, 2016; Endres et al., 2016; Kumar et al., 2018]. The results
discussed in this chapter have led to two publications [Barredo et al., 2016, 2018].

Moving tweezers

Before this work, our group had already devised an independent moveable tweezers —
albeit static during the experiment — to achieve single-site addressing [Labuhn, 2016].
With this tool, Labuhn et al. [2014] performed local rotations on a two-atom system
and it was also used to prepare localized Rydberg excitations [Barredo et al., 2015;
Marcuzzi et al., 2017]. While carrying on these experiments, we observed that the
addressed atoms were ejected from their position when the moveable tweezers was not
properly aligned. It made us realize that we could use this tweezers to transport an
atom, and we upgraded the setup to build an automatic moving tweezers (MT). I
first describe the MT optical and electronic setup and then detail how we align and

displace the MT from trap to trap.

3.1.1 Optical and electronic setup

The current setup is shown in Fig. 3.1. It generates a single optical tweezers whose
focus can be moved in three dimensions. Briefly, acousto-optical deflectors (AOD,, and
AOD,) handle the y (horizontal) and z (vertical) positions, while a tunable lens moves
the tweezers along x, the optical axis. The computer controls the moving trap through

an electronic setup based on Arduino boards and RF' drivers.

Deflectors We use acousto-optical deflectors (AODs) instead of modulators (AOMs)
for their larger deflection angle range Af (related to the velocity of the acoustic mode
propagating in the material). AODs use the transverse (shear) mode propagating
~ 7 times slower than the longitudinal mode used for fast modulation. Our model
is the DTSXY-400-850 from AA Opto Electronics, it is made of two crossed AODs
(horizontal and vertical), each with a deflection range Af = 48 mrad (for a bandwidth
Av = 36 MHz) and an aperture of 7.5 x 7.5mm?. The input beam is diffracted
successively by the two AODs and the output is our moving tweezers. It is combined

with the trapping beam coming from the SLM on a PBS (the moving tweezers and the
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Figure 3.1: Setup of the moving tweezers. A 2d-AOD controls the moving tweezers
position and intensity to grab the atom one by one and assemble the desired pattern from

the disordered array.

fixed traps thus have orthogonal polarizations). Two telescopes (one being shared with
the SLM beam) magnify the beam size by M = 2.6 and image the output pupil of the
AODs on the aspheric lens. They act as relay lenses to avoid field aberrations and beam
clipping on the asphere when changing the deflection angle. The resulting tweezers has
a waist of 1.3 um, measured in situ using a single atom and parametric heating. It
is slightly bigger than the SLM traps, probably because of uncorrected aberrations.
Given the focal length of the aspheric lens and the magnifying telescopes, the moving
tweezers covers an area of 180 x 180 um? in the focal plane (L,, = A8 x f/M).

Tunable lens Similarly to our 3D imaging system presented in Section 2.3, we
use an Optotune electrically-tunable lens (model ETL-10-30-C, optical power range
AD =5 dpt, clear aperture 10 mm) to change the convergence of the moving tweezers
beam and thus the z-position of its focus. The ETL is placed before the deflectors, in a
periscope to avoid gravity-induced aberrations, and a 1:1 relay telescope conjugates the
ETL with the AODs. It keeps the beam size on the AODs independent of the wavefront
curvature imprinted by the ETL. Given the three relay-telescope magnifications (M =
2.6), the tweezers focus covers a range L, = AD x (f/M)? = 70 um. The computer
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controls the ETL optical power through its USB driver via serial communication.

Electronic setup I now present the electronic setup designed to drive, from the
computer, the horizontal and vertical deflectors. In short, we tune the radio-frequency
(RF) signals fed to the AODs, whose diffraction angle (efficiency) is tuned by the RF
frequency (power). The system, duplicated for the two AODs!, is as follows. First, we
use a Python script running on a computer to send, via USB serial communication,
two 12-bits integers to an Arduino Due micro-controller board. They are then used by
the board’s digital-to-analog converters to create two voltage signals. These signals are
sent to a home-built RF driver after amplification and filtered by a low-pass RC filter
(fe = 5 kHz). The latter rejects a 2 mV peak-to-peak noise at 540 kHz coming from
the Arduino board. The driver generates a RF signal with frequency and amplitude
controlled by the two voltages, with a response time of 10 us, and the signal is finally
fed to the AOD. We only need one AOD to control the moving tweezers intensity, so
the vertical AOD is always used at maximum diffraction efficiency, and the horizontal
one is varied. The system bandwidth is limited by the RC filter (which could be ~ 10
times faster) and ultimately by the RF driver response time. It is currently fast enough
for the typical switching time and displacement speed of the tweezers, as described in

the next subsection.

3.1.2 Moving a single atom

The elementary move of our atom assembler is shown in Fig. 3.2(a): the moving
tweezers is aligned on a source trap containing a single atom and its power is gradually
increased to capture the atom. It is then moved at a constant speed to an empty target
trap where it releases the atom. The moves are performed only in two dimensions,
meaning that the tunable lens stays at a constant optical power and only the deflectors
are tuned. The 3D assembler works plane-by-plane and we just need to refocus the
tweezers but we do not move the atoms in between planes, although full 3D assembly
with moves between different planes could also be implemented in principle. I first
describe how the MT position is calibrated relatively to the trap array and then our

optimization of the transfer time.

We use 2 Arduino Due boards, because we need three analog signals (horizontal and vertical
position, intensity) and one board has only 2 available DAC outputs.
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Automatic positioning For the computer, the MT position is set by two 12-bits
integers (I will also call them MT-coordinates) and we thus need to know the coordinates
of any holographically generated trap. Using the common imaging system for both
SLM and MT beams, we can record the position of any tweezers (the fixed or the
moving one). We first image the trap array and get the position, in terms of camera
pixels, of each fixed tweezers. Then we scan the MT position for typically 7 x 7 values
of the 12-bits integers and use an interpolating function to create a map from camera
pixel to MT-coordinates. Using this map, and the recorded pixel-position of each trap,
we can precisely set the MT on any of them to grab or release a single atom.

This calibration takes only a few minutes for the operator and stays accurate for
days. To achieve this stability, special care has been taken to avoid temperature
fluctuations of the AODs due to the dissipation of RF power. Instead of switching off
the RF signals after the assembling procedure, which makes the average dissipated
power dependent on the assembler workload, we let the RF signal at the nominal
power and rather cut the moving tweezers with a mechanical shutter controlled from
one Arduino board. In addition, we do not use the maximum diffraction efficiency of
the deflectors, as we observed displacements, up to a few hundreds of nm, of the MT

for too large RF powers.

Single-atom transfer To perform a move from a source trap to a target trap, the
computer sends the initial and final MT-coordinates to the two Arduino boards. We
have programmed the Arduinos to receive these coordinates and generate simple
voltage waveforms controlling the MT depth and position [see Fig. 3.2(b)]. We first
ramp up the moving beam intensity to reach a tweezers depth U = 10 mK, ten times
as deep as a fixed trap, in a time 7 = 300 gs. The MT having captured the atom, it
then moves from one trap to another at a velocity v = 10 um.ms™!, slow enough that
the atom stays at the bottom of the MT. Finally, we release the atom from the MT
in the target trap with the same 7 = 300 pus. The DAC converter of the Due board
generates a step-wise signal with a resolution of 4 s, the signal is smoothed by the
RC filter (f. =5 kHz) and the RF driver bandwidth (~ 100 kHz). It also limits the
MT acceleration at the beginning and at the end of the moves.

We varied the moving tweezers depth U, switching time 7 and speed v to find their
experimental optimal values, as shown in Fig. 3.2(c-e). We could reach a probability
of successful transfer of 99.3 %, limited by the probability of a collision with the
background gas during the transport (atom lifetime of ~ 10 s). Despite choosing a

very simple profile of the voltage ramps, we achieve a perfect transport of the atom
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Figure 3.2: Moving a single atom. (a) Sketch of the moving tweezers grabbing an
atom from one trap to release it in another one. (b) Temporal dependence of the moving
tweezers depth and position. (c-e) Optimization of the transfer success through three
parameters: the take/release time (c), the transfer speed (d) and the tweezers depth (e).
The experiment is performed on 8 pairs of traps separated by 4 ;zm and the transfer success
is measured on each one. The circles represent the average success rate. The efficiency
is not the same on each pair of traps, and we also show the minimum and maximum
efficiencies with the shaded areas. For the final parameters (dashed lines), the transfer is

robust (small variations amongst the pairs) and reaches an efficiency of 99.3%.

in a short timescale of 1 ms. I expect that much faster displacements are possible,
as discussed in the introduction of this chapter, and might be needed to assemble
thousands of atoms with a single moving tweezers; improvements could come from an
optimized ramp profile. Nevertheless, the current speed and transfer success rate are

more than enough to now tackle the assembly of many tens of atoms.

2D assembler

We have seen in the previous section how to deterministically move a single atom

between two traps. In this section, we will see how we combine many moves to
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re-arrange an initially disordered 2D atomic arrays into a fully-filled sub-array of size

N. The atom assembly procedure is shown in Fig. 3.3 and is as follows:

« We start from an array of 2V traps, which contains the target array as a subset,
and load it from the magneto-optical trap. The loading of the array is monitored
and we trigger the experiment as soon as at least N traps are filled with single

atoms.

« The MOT is then switched off to stop the loading and a fluorescence image is

acquired to record the initial positions of the atoms.

« After analysis of the image, an algorithm (see below) computes in real time a
list of individual atom moves that can rearrange the initial configuration into
the desired 2D pattern.

 This list is then sent to the Arduino microcontrollers via serial communication.
The Arduino program converts it into a series of voltage sweeps performing
sequentially all the single atom transfers, as explained previously. The two Arduino
boards, controlling the vertical and horizontal AODs, are kept synchronized by
triggering each other.

 Finally, after the rearrangement operation is completed, another fluorescence
image is acquired to reveal the new positions of the atoms in the array and

confirm the successful assembly.

From the moment the experiment is triggered, it takes ~ 100 ms to achieve the prepa-
ration of an array ready for a Rydberg experiment. We characterize the preparation
efficiency using the filling fraction 7 of the target array or the probability py ~ " to
obtain the fully-filled array. We typically reach a very high filling fraction n = 98.5 %,
such that even for N = 50 atoms, a perfect array is obtained with a probability
py = 46 % at a 3 Hz rate. As we take a fluorescence image of the assembled structure
before the Rydberg experiment, we can discard any experimental run with imperfect
atomic arrays.

In the following, I explain our algorithm finding a set of moves ordering the array

and then the performance and scalability of our 2D atom assembler.
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Figure 3.3: Array assembly step by step. The different steps of the assembler are

shown together with their timings. The bottom images show an initially disordered 10 x 10

array reassembled on a fully filled 7 x 7 subset. The three traces are the voltages controlling

the moving tweezers intensity, horizontal and vertical positions.

3.2.1 Sorting algorithm

We developed an algorithm that finds a set of individual moves which reorders the

atomic pattern. We did not seek to make it optimal, in terms of assembly time for

example, as it is a non-trivial task reminiscent of the traveling salesman problem and

we work in a real-time experiment where we need to find a solution much faster than

the atom lifetime. The algorithm works as follows:

We first generate two lists, of size ~ N, representing the traps filled with an
atom and the target traps.

We then compute a list £ of the N? distances between each pair of traps from

the two lists and order them by increasing distance.

L starts by pairs of traps at zero distance: a target trap is already filled with an

atom and no action is necessary.

L continues with nearest neighbor traps, and then with further and further
distant pair of traps, and after checking that neither the source nor the target
trap were previously encountered by the algorithm, we add them to a list of

moves to perform.
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Figure 3.4: Two types of moves. If the nearest neighbor distance in the array is large
enough (typically, a > 5um), we move the tweezers directly from the source to the target,
passing between adjacent atom rows (“type-1" moves). Otherwise, the atoms are moved

along the lattice links (“type-2" moves).

» The algorithm ends when N pair of traps have been identified and the remaining

unused atoms, if any, are discarded by moving them away from the trap array.

This algorithm is not optimal because it first selects the shortest moves, which can
afterward force very long ones, instead of searching for a global solution. Nevertheless,
it is fast (~ 1 ms) and versatile as it makes no assumption on the underlying array

geometry.

Moving through a maze The problem is complicated by the fact that we cannot
move the MT over or close to traps already containing an atom as it would expel
them. We thus need a way to move the atom through the maze of other atoms. We
first simplify the problem by working with trap patterns described by Bravais lattices,
defined by two unit vectors u; and u, and lattice constants a and b. An exemplary
square pattern is shown in Fig. 3.4. There are two situations: either the MT can
move in between two rows or columns without expelling atoms located there, or the
structure is too tight for the MT. Experimentally, we find that the lattice constant
needs to be larger than 5 um for the MT to go through.

In the first case, we simply perform ‘type-1" moves by ‘slaloming’ between the traps.
Each move, represented so far by the source and target trap indexes, are extended to
a list of intermediate coordinates to guide the moving tweezers. If the array lattice
constants are too small, we restrict the MT displacements to the grid defined by the
Bravais lattice (‘type-2’ moves). We then need to ensure that no filled trap is on the

way between the source S and target trap T If an obstacle O (a filled trap) is present,
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Figure 3.5: Performance. (a) Images of the initial and final configurations for a target
6 x 6 square array and distribution of the number of atoms in the target array before
(blue) and after (red) sorting for 500 repetitions of the experiment. We measure a filling
fraction 11 = 98.5%, and defect-free arrays are obtained with a probability py = 61 %.
(b) Evolution of n and py as a function of the number of traps N in the sorted array. The
dashed blue line shows the result pyy = 0.5" corresponding to random loading and the red

line shows the scaling 0.98".

we replace the move S — T by the two moves O — T and S — O, in this order.
In practice, we first run the sorting algorithm, ignoring that some moves will not
be directly possible, and then run a procedure that eliminates all obstacles as just
described. This way, we always find a solution even if the additional moves make it
even less optimal. We will soon see two examples of target arrays, where our heuristic
solution is almost optimal in one case, while it could be improved very significantly in

the other.

3.2.2 Performance and scalability

We have seen the engineering details of the atom assembler and I now present its

performance and scalability with the number of target traps N.

Performance Analyzing 500 repetitions of the experiment for a 6 x 6 square target
array [Fig. 3.5(a)], we measure a filling fraction n = 98.5 %, limited by background gas
collisions during the rearrangement. It is slightly worse than the success rate of a single
move (99.3 %), also limited by the atom lifetime, because it takes longer to perform all
the required moves. In Fig. 3.5(b), we see that 7 stays roughly constant for increasingly
large target arrays, up to N = 50. We could not create more than 100 traps (so

50 atoms) due to limited laser power at the time we performed the experiment. It
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demonstrates experimentally the scalability of the moving tweezers technique. These
performances are better than initially presented in our 2016 paper [Barredo et al.,
2016], as in the meantime we improved the full procedure.

In the inset, I show the probability py ~ 1" to obtain a defect-free array of N
atoms. Even if the assembler sometimes fails, we use the assembled image obtained
before performing a Rydberg experiment to post-select runs with a perfect atomic
sample. The probability py simply decreases the effective experimental cycling rate.
Without the assembler (blue dashed line, n = 0.5), we could perform experiments
up to N = 9 atoms, above which the cycling time was too slow; with the current
performance of the assembler we would reach in principle the same cycling time for
N =~ 300 atoms!

Scalability Previously, I have shown the successful assembly of arrays of up to
N =50 atoms, I now discuss how the assembler would perform for even larger arrays,
assuming that we had enough laser power to generate them. The figure of merit
is again the filling fraction 7 of a target array of size N. As the success rate of an
individual move does not depend on the number of traps, 1 — 7 is mainly set by the

ratio of the assembling time over the finite atom lifetime (~ 10 s).

The assembling time first depends on the initial filling fraction of the lattice. In
our case, it is 50 % and there is in average N/2 atoms to be re-arranged. When
type-1 moves are possible, the assembling time directly scales as N/2 x 1 ms, where
1 ms is the typical move duration. For type-2 moves, the scaling can be slightly
worse, as some filled traps will be in the way of a move, thus requiring additional
displacements. We numerically study the scaling in this case for two target geometries
on the same square array: a ‘checkerboard’ pattern, where one every second trap is
selected, and a ‘compact’ pattern. The results are shown in Fig. 3.6. While, in the first
case, the scaling remains linear with only a small increase in the prefactor (0.5 to
0.85), it becomes worse for the compact geometry and increases as N4, This can be
understood qualitatively as follows: our naive algorithm first fills the perimeter of the
target array, thus blocking the inner empty traps which cannot be filled with a direct
transfer anymore. A significant fraction of the atoms needs to be moved several times.
It illustrates the limit of our simple and versatile algorithm, which works for arbitrary
target arrays on any Bravais lattice, but fails to obtain an optimal solution. For the
specific case of a compact target array, a better solution is easily implemented and
was already proposed by Weiss et al. [2004]: we first balance the number of atoms in

each row and compact them.
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Figure 3.6: Scalability. Simulated assembling time using type-2 moves. (Left): For a
“checkerboard” target in a square lattice, the assembly time scales linearly with N (dashed

line). (B): For a “compact” target, it scales approximately as N4

Finally, we see from Fig. 3.6 that assembling N = 100 atoms is possible, while
maintaining the assembling time below 0.1 s and thus the loss probability below 1 %.
It could be improved by optimizing the displacement speed, by boosting the initial
filling fraction using, e.g., tailored light-assisted collisions [Griinzweig et al., 2010;
Lester et al., 2015], or by increasing the atom lifetime in a cryogenic setup. Concerning
laser power, each trap currently requires 5 mW, which could be decreased by getting

closer to the atomic resonance or achieving smaller waists of the tweezers.

Conclusion I end this section about the 2D atom assembler by showing, in Fig. 3.7, a
gallery of 2D trap arrays with arbitrary, user-defined geometries relevant for quantum
simulation (e.g., 1D chains, ladders, or lattices with square, triangular, honeycomb, or
kagome structures). Neighboring traps are separated by distances 3 < a < 6 um, for
which interactions in the MHz range can be achieved by exciting the atoms to Rydberg
states, as we will see in the next chapters. We also upgraded the assembler to move
atoms along circular patterns (using concentric reservoir and target arrays) and devised
a technique to inject multiple atoms in the same site (see also [Miroshnychenko et al.,
2006a; Serwane et al., 2011]), but were lacking a measurement method circumventing
the light-assisted inelastic losses to prove its success. In the next section, I will show
how to extend the technique to the assembly of multilayer patterns. In practice, the
assembler is very robust, with performance stable over the last year, and it requires
only minor maintenance, i.e., checking the power and polarization of the MT beam.
We have also seen that the calibration of the MT position was achieved in only a few
minutes, once per day. All this makes the atom sorting machine a user-friendly and

reliable tool to work with.
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Figure 3.7: Gallery of assembled patterns. Arbitrary, user-defined 2D arrays (bottom

images) are obtained from the initial, random configurations (top images). All images are
single shots. (a) Type-1 moves were used; (b) type-2 moves were used. The number of
elementary moves needed to achieve the sorting are indicated. The figure is adapted from
Barredo et al. [2016].

3D assembler

We have introduced the possibility to focus the moving tweezers on different planes
using a tunable lens (ETL). Combining it with the deflectors (AODs), we thus can
realize arbitrary trajectories in three dimensions. Nevertheless, it would require to
synchronize the ETL and the AODs, and a slightly more involved algorithm to avoid
trajectories bringing the moving tweezers too close to other filled traps, noting that
the axial extent of the tweezers is much longer than the radial one. As a first step
to extend the assembler machine to arbitrary 3D patterns, we therefore restrict the
problem to structures made of a few layers (up to 4), that we sequentially image and
assemble independently. I first explore the minimum spacing between two layers such

that the moving tweezers do not affect the second plane while we re-arrange the first
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Figure 3.8: Tweezers axial range. Moving tweezers efficiency as a function of the axial
distance between the MT focus and the plane where the atoms lie for an experiment
where: (a) we remove all the atoms from a 46-trap array and (b) we assemble a 4 x 4

sub-array. The lines are guides to the eye.

one. Then, I will detail our procedure to prepare fully-loaded 3D arrays of up to 72

atoms.

3.3.1 Limit in compactness

We have seen in Section 2.3.2 that a single trap was quite elongated along the axial
direction, with a typical extent given by the Rayleigh length zp ~ 5 pm. It is much
longer than the radial resolution of a trap (1 um) and gives a stronger constraint to
avoid getting too close to other traps.

We have explored, in two experiments, the range of axial distance d, for which the
MT still affects atoms. We use a simple planar structure of traps and set the moving
tweezers focus at various axial positions d,. First, having programmed the moving
tweezers to remove all atoms, we observe that the probability to eject them remains
high for |d,| < 15 um [Fig. 3.8(a)]. Then, asking the computer to assemble a 4 x 4
sub-array, we see in Fig. 3.8(b) that the filling fraction remains optimal for a smaller
range |d,| < 5 pm.

We understand these results in the following way: when the moving tweezers focus
is too far from that of a fixed trap, the MT is still able to grab the atom for a large
range as it is much deeper, but it cannot release the atom in the target trap. It gives
us two constraints: (i) the MT focus has to coincide with the layer to better than
5 pm in the axial direction, which is easily achieved using our trap imaging system,
and (ii) there should be no traps in a +15 um range in front and behind the MT focus

as it would eject atoms trapped there. We can still re-arrange two atomic arrays close
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Figure 3.9: Plane by plane assembly. Time control sequence of the experiment. We
start the experiment by recording, sequentially, an image for each target plane with an
exposure time 7. The analysis of the resulting n, images reveals the initial position of the
atoms in the traps. The 2D atom assembler, in combination with a tunable lens, arranges
the atoms plane by plane. Finally, a new set of sequential images is collected to capture

the result of the 3D assembly.

to each other if their traps do not overlap. The limited compactness of 3D structures
could be slightly improved by working with a higher NA aspheric lens, which would

give a shorter axial extent of the moving tweezers.

3.3.2 Serial 2D assembly

[ now explain the plane-by-plane assembly of 3D structures. We start by creating a 3D
trap array which can be decomposed in several planes normal to z. In each plane we
generate approximately twice the number of traps we need to load, such that we easily

load enough atoms to assemble the target structure.

The sequence to create fully loaded patterns (see Fig. 3.9) starts by loading the
MOT and monitoring the atoms entering and leaving the traps by sequentially taking
a picture for each plane. We trigger the assembler as soon as there are, in each plane,
enough atoms to fully assemble it. We then freeze the loading by dispersing the
MOT cloud, and record the initial positions of the atoms by another series of x-stack
images. Each plane is processed independently following the procedure described in the

previous section, changing the z-position of the MT to go from one layer to another.
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Figure 3.10: Gallery of assembled 3D patterns. Fully loaded arrays with various

geometries in three dimensions. All images are single shots. The models of the 3D
configurations are shown for clarity; the various colors of the frame around the images

encode successive atomic planes.

Finally, we detect the final 3D configuration with another series of z-stack images.

Figure 3.10 shows a gallery of fully-loaded 3D atomic arrays with up to 72 atoms. The
selected structures include simple cubic lattices, bilayers with a square or graphene-
like [Castro Neto et al., 2009] arrangements, lattices with inherent geometrical
frustration such as pyrochlore [Bramwell and Gingras, 2001], or lattices with cylindrical
symmetry, suitable, e.g.; to study quantum Hall physics with neutral atoms [Lacki
et al., 2016]. The minimum interlayer separation we can achieve depends on the type
of underlying geometry. This is illustrated with the AB-stacked square lattices with
a layer separation d, = 5 um. There, sites corresponding to the second layer are
displaced by half the lattice spacing. Since traps belonging to neighboring layers do
not have the same y-z coordinates, there is no limitation for the minimum interlayer

distance that we can produce. In both images we can observe a defocused fluorescence

65



34

Chapter 3: The atom-by-atom assembler

at inter-site positions due to atoms trapped in the neighboring layer.

Despite the additional complexity of working successively on different planes, our
3D assembler remains highly efficient: we reach filling fractions of typically 95 %. This
measured efficiency is again limited by the lifetime of the atoms in the traps, and thus
depends on the duration of the experimental sequence, which varies with the number
of planes. In the images shown in Fig. 3.10, we used an exposure 7 = 60 ms, which
could be decreased to 20 ms (see Appendix A) and the experiment takes ~ 700 ms for
the largest structure made of n, = 4 planes. The repetition rate of the experiment is
then ~ 1 Hz, slightly smaller than the 3 Hz rate when we work in 2D.

Other approaches

Over the last two years, several other groups have demonstrated assemblies of atoms
in one, two and three dimensions with techniques rather different than our. In this
section, I give a brief overview of these other approaches and compare their respective

advantages and limitations.

Reconfigurable 1D trap array Simultaneously to our publication of the 2D assembler
machine [Barredo et al., 2016], the group of Prof. Mikhail Lukin at Havard presented
their own work on a reconfigurable linear chain of optical tweezers [Endres et al., 2016]
(see also the perspective article of Regal [2016]). Whereas we generate a static arrays
of tweezers with a fixed hologram on a spatial light modulator, they create a 1D array
of traps using an acousto-optical deflector (the same model that we used to engineer a
single moving tweezers) fed with an RF signal composed of many (up to 100) different
frequency components. Each tone diffracts the input beam to create an independent
tweezers, and after optimizing the relative amplitude and phase of each frequency
tone, they could obtain homogeneous 1D array of traps (see the Supplemental Material
of Endres et al. [2016]). It is very similar to the Gerchberg-Saxton algorithm that we
used to equalize the trap depths, and indeed one can view the deflector as a 1D SLM
with a very fast response time.

After taking an image of the initially disordered array, they switch off the unoccupied
traps and shift the occupied ones to form arbitrary 1D arrangements of atoms. The
technique is very efficient and fast as all atoms are moved together in 3 ms, in contrast
to our solution where we re-order the array atom by atom, each move taking 1 ms.
Nevertheless, this solution is limited to 1D structures as using a second crossed AOD

would not allow arbitrary 2D geometries and individual control of all traps, but rather
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many copies of a 1D array. In future experiments, it might be possible to combine the
flexibility of static arrays of holographic tweezers generated with a SLM and AODs
creating multiple traps moving in parallel along a single line or column to re-arrange

large atomic arrays faster.

Moving holograms The group led by Prof. Jaewook Ahn at KAIST in Korea have
been working on an elegant approach of the problem by updating in real-time the
hologram displayed on the SLM [Kim et al., 2016; Lee, Kim, and Ahn, 2016]. They use
the ability of SLMs to update the displayed hologram at a video rate of 60 Hz, thus
dynamically changing the diffraction pattern. Usually, changing the SLM image leads
to important flicker of the trap intensities causing severe atom losses. They overcome
this problem using a special kind of hologram allowing flicker-free displacement of
traps. Then, once the initial positions of the atoms are known, a set of 30 holograms
are sequentially displayed on the SLM, reshuffling the atom in a target arrangement.
The team first demonstrated an assembly of a 2 x 2 atomic array in 2D [Kim et al.,
2016] and then extented it to 3D movements (while keeping the initial and final
structures planar) [Lee, Kim, and Ahn, 2016].

After these first demonstrations, limited in number of traps N by the decreasing
diffraction efficiency of their holograms with NV and the fact that they had to prepare in
advance all the re-ordering videos?, they improved their technique by using a modified
version of the Gerchberg-Saxton algorithm for the computation of the holograms, whose
efficiency remains constant with N, and by performing in real time the calculation
on a graphic card. The team also reported a specific algorithm to find a good set
of atomic trajectories avoiding collisions [Lee, Kim, and Ahn, 2017] and performed
experiments on arrays of up to 20 atoms [Kim et al., 2018]. The current limits of this
approach are the slower re-arrangement of atoms, a video taking ~ 150 ms (due to the
slow 60 Hz refresh rate of the SLM), and the necessity to repeat the procedure up to 9

times to achieve a 98 % filling fraction.

State-dependent optical lattices Finally, following the proposal of Weiss et al.
[2004], two teams demonstrated state-dependent optical lattices re-ordering atoms: the
group led by Prof. Dieter Meschede and Andrea Alberti reported on the arbitrary
arrangement of 4 atoms in a short 0.43 um-period 1D lattice [Robens et al., 2017],

while the group of Prof. David Weiss has shown 50 atoms arranged in two or three

2For N = 9 atoms, there are 2° = 512 possibilities, each of them requires to save a 30-frame video
with a 800 x 800 resolution (the SLM one), such that in total it takes 10 GB of memory, scaling
exponentially with N.
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layers of a large 4.9 pum-period 3D lattice [Kumar et al., 2018].
The experimental procedure is similar for both cases and I detail it for the 3D

sorting. The scheme relies on:

« individual-site addressing using two crossed dipole traps allowing to change the

hyperfine level of a single ground-state atom with a microwave 7-pulse [Wang
et al., 2015, 2016].

« spin-dependent translating lattices, where only atoms in one hyperfine level are

shifted from one site to another.

After recording a set of images to obtain a 3D reconstruction of the lattice site
occupancies [Nelson, Li, and Weiss, 2007], atoms to be moved are first transferred to
the hyperfine state sensitive to the moving lattice, then shifted and finally pumped
back in the original state. The operation is repeated until the target array is assembled.
In addition, the atoms can be cooled to the ground-state of the lattice either with
Raman sideband cooling or using projection sideband cooling [Li et al.; 2012], such
that almost all the entropy can be removed from the lattice.

This technique allows to prepare quite compact 3D arrays of atoms using optical
lattices instead of tweezers, at the expense of more restricted geometries than offered
by holography. Another limit is the weaker efficiency of single atom moves, which

requires to repeat the entire procedure up to 3 times to increase the filling fraction.

Conclusion

In this chapter, I presented the development of our atom assembler machine preparing
quickly and efficiently fully-filled 3D atomic arrays of up to 72 atoms and counting. I
first explained how a single moving tweezers, engineered with two deflectors and a
tunable lens, could transfer an atom from one trap to another. Then, I have shown
how to combine many such moves to re-order a 2D atomic array with an efficiency of
98.5 % per site, limited only by the finite lifetime of the atom. Finally, we scaled up
the technique to the third dimension by repeated successively the 2D procedure on
different layers of a 3D pattern.

The recent developments of atom sorting devices solved the long-standing issue of
the stochastic loading of atoms in microscopic dipole traps. So far, only ultracold
atoms in optical lattices could provide samples with high filling fraction using the

quantum phase transition to a Mott insulator [Greiner et al., 2002; Sherson et al., 2010;
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Bakr et al., 2010]. The optical tweezers platform is now able to produce perfectly filled
samples with more flexibility in geometries and at an experimental cycling rate higher
by almost two orders of magnitude. In addition it can be adapted to any particles
which can be trapped in optical tweezers but for which Bose or Fermi degeneracy have
not yet been reached.

Finally, the atom assembler technique does not only open bright perspectives for
experiments with Rydberg atoms as we will demonstrate in the two other parts of
this thesis, but can also be applied to cold polar molecules [Yao et al., 2012; Peter
et al., 2012], atoms coupled to a nanoscale cavity [Thompson et al., 2013a], or used for
metrology [Kémar et al., 2016]. Combined with Raman sideband cooling [Kaufman,
Lester, and Regal, 2012; Thompson et al., 2013b; Yu et al., 2018], it becomes a powerful
tool to engineer entangling gates through collisions [Jaksch et al.; 1999; Kaufman
et al., 2012] or study cold chemistry by inserting two atoms in the same tweezers and
building a molecule [Liu et al., 2018].
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In the introductory chapter, we motivated the development of a quantum simulator
based on Rydberg atoms by the study of many-body phenomena, and in particular of
quantum magnetism. We are interested in realizing spin-1/2 Hamiltonians, where
particles are fixed and only their spins play a role by interacting together and with an
external magnetic B-field . One way to obtain such an Hamiltonian with cold atoms
is to drive them, with lasers, from their electronic ground-state level |g) = |]) to a
Rydberg level |r) = |1), where they experience strong van der Waals interactions. If
the experiment is performed fast enough (< 10 us), the atomic motion (< 1 pum) can
be neglected, and the laser-driven frozen Rydberg gas is then well described by the

following spin-1/2 Hamiltonian:

ZO’ —MZR;—FZ}%TI@TLJ (4.1)

i<j

where we use the Pauli operators c™¥* acting on the spin-1/2 particles and n; =
(14 07)/2 is 1 for a Rydberg atom and 0 otherwise. The first term corresponds to
the coherent drive with a Rabi frequency ) of the |g) <> |r) transition, the second to
the laser detuning ¢ from the atomic transition. Their experimental implementation

will be described in Chapter 5. The third term is the van der Waals shift V' = Cg/RS

given by the dipole-dipole interaction for two atoms, separated by a distance R, in the
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same Rydberg state. The coefficient Cg oc (n*)!! depends on the choice of Rydberg

state |r) and increases dramatically with the principal quantum number n*.

Phase diagram: critical region and ordered states The connection between Eq. 4.1
and quantum magnetism is made explicit by considering the first two terms as playing
the role of, respectively, the transverse and longitudinal components of an effective
magnetic B-field, while the van der Waals interaction gives rise to an Ising coupling,
with a long-range extent. A generic ()-6 phase diagram resulting from this Hamiltonian
is represented schematically in Fig. 4.1 for a repulsive interaction energy (Cs > 0).
Along the Q = 0 line, the eigenstates are classical configurations where each atom is
either in |g) or in |r). At negative detuning, the system energy is minimized when
all the atoms are in |g), which we call a paramagnet. At positive detuning and for a
non-interacting system (Cg = 0), we have the opposite situation with all atoms in |r).
The origin O is thus a critical point around which there is a jump of the Rydberg
fraction f, = N,/N, where N, is the number of atoms in |r) in a system of N particles.
The interaction between Rydberg atoms then stabilizes ordered phases, where the
number and position of Rydberg atoms result from the competition between the
second and third term of the Hamiltonian. The Néel state, shown in Fig. 4.1, where
nearest-neighbor Rydberg excitations are avoided, is one of the possible ordered states.
In fact, the 1/R® extent of the van der Waals interaction leads to a devil’s staircase of
classical ground states [Bak and Bruinsma, 1982]. For increasing laser drive €2 > 0,
the transverse field tends to destroy the order favored by the van der Waals term by
creating and removing Rydberg excitations. At some point, the system undergoes a

quantum phase transition (QPT) to a paramagnet.

Quench experiments A first experimental approach to the study of this phase
diagram is to perform quenches of the transverse magnetic field. Starting with all
atoms initially in |g), the excitation laser is suddenly switched on resonantly on the
transition (6 = 0), and we observe the subsequent dynamics of the system. First
experiments of this kind were carried out on disordered cold atomic cloud [Tong
et al., 2004; Singer et al., 2004; Vogt et al., 2006; Heidemann et al., 2007], where
one can measure the final value of the Rydberg fraction f,. It was reported than
when driving high-n* Rydberg states, van der Waals interactions prevent f, from
reaching unity, and the observed saturation depends strongly on the Cg coefficient.
Pictorially, this saturation can be explained by considering the Rydberg blockade
effect ‘preventing’ two excitations to be located closer than a typical Rydberg blockade
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Figure 4.1: Phase diagram of laser-driven Rydberg ensembles. Left: a two-level atom
is driven from the ground-state |g) to the Rydberg level |r). The coupling strength is
Q and the detuning from the transition is 4. Middle: Phase diagram in the 2 — é plane
for a repulsive van der Waals shift between atoms (Cg > 0). Above the critical point
O = (0,0), there is a crystalline phase where the position of the Rydberg excitations
are strongly correlated to minimize the interaction energy. Outside this region, the laser
drive dominates the interaction and the many-body ground-state is a paramagnet. In this
chapter, we will explore the properties of the system close to the critical point O. This

figure is adapted from Weimer et al. [2008].

distance R}, = (Cs/hQ)Y®, emerging naturally from Eq. 4.1. It corresponds to the
interatomic distance at which the energy cost of having two Rydberg atoms is equal to
the driving strength. Consequently, in a dense atomic cloud with many particles per

Rydberg blockade volume, we expect:

1 9 m\"?
=\ o3 73 (4.2)
3R p 1672 Cgp

where p is the atomic density. This naive estimate was refined by Weimer et al. [2008],
which first pointed out that a quench experiment was probing the critical region
0 = 0 where a second order quantum phase transition separates the paramagnetic
and ordered phase, and then used a mean-field theory to obtain the critical exponent
v = 2/5 instead of 1/2 in the above equation for a 3D cloud. The scaling law was
confirmed experimentally by Low et al. [2009].

In addition to a saturation of f,., one expects many-body correlations between the
position of the Rydberg excitations to arise from the quench dynamics [Robicheaux
and Hernandez, 2005|, as we can only excite configurations where the Rydberg atoms
are further away than R}, (all other configurations, violating the Rydberg blockade
effect, being energetically decoupled). The observation of such correlations was made

possible in an atomic cloud by using an ion imaging technique [Schwarzkopf et al.,
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2013], in optical lattice experiments using a quantum gas microscope [Schauf et al.,
2012|, and later using our optical tweezers platform [Labuhn et al., 2016]. T will briefly
review the latter experiment in this chapter. More recently, Kim et al. [2018] also
presented a study of the thermalization dynamics following a quench in the Rydberg

quantum simulator developed at KAIST, in Korea.

Adiabatic ground-state preparation Instead of quenching the system, which leads
to a complex dynamics due to the beating of many excited states, one can also try to
prepare adiabatically the ordered phases of the phase diagram [Pohl, Demler; and
Lukin, 2010; Schachenmayer et al., 2010; van Bijnen et al., 2011]. Starting with the
atomic system in a paramagnetic phase with no Rydberg excitation |G) =[] |g), a
smooth evolution of the laser parameters {€2(¢),d(¢)} brings the system in an ordered
phase after crossing a quantum phase transition (QPT), provided there exists a gap
between the ground state and the first excited ones.

This approach was first followed by Schauf et al. [2015] who reported the observation
of many-body states with a few (2 to 4) Rydberg excitations with strongly correlated
positions on a lattice containing ~ 100 atoms. The reason for such a small Rydberg
fraction lies in the size of the Rydberg blockade distance, much larger than the
interatomic separation (Rp, > a), fixed by the use of optical lattices. In this case,
the ground-state properties depend on the system boundaries rather than on the

underlying lattice geometry, which is smeared out by the large Ry,.

With the development of Rydberg quantum simulators using optical tweezers with
arbitrary spacings, it is now possible to explore the regime R}, ~ a. During the
course of this thesis, the group of Prof. Mickhail Lukin reported the preparation, on a
one-dimensional chain, of ordered states with a large Rydberg fraction f, from 1/4 to
1/2 by tunning R, from ~ 4 a to a [Bernien et al., 2017]. More recently, they studied
the quantum phase transition between the paramagnetic state and these ordered
phases [Keesling et al., 2018]. In our group, we focused on the regime R}, ~ a, that
maps to a nearest-neighbor Ising model, where the atomic positions play a major role;
for example in a triangular or kagome geometry it can lead to geometrical frustration.
We attempted the adiabatic preparation of the anti-ferromagnetic ground state in
a 1D chain, and a 2D square or triangular lattice [Lienhard et al., 2018]. Finally,
let us note the simultaneous work performed in the group of Prof. Waseem Bakr at
Princeton University, where they demonstrated that it was possible to also reach the
regime R}, ~ a in an optical lattice experiment by working with low-lying Rydberg
states, so that Ry, is small [Guardado-Sanchez et al., 2018|.
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4.1 Quench experiments

Outline In this chapter, I first briefly present, in Section 4.1, the results of our
quench experiments already described in the thesis of Henning Labuhn [2016]. They
motivated a detailed study of the mapping of the dipole-dipole interaction between
Rydberg atoms to a simple van der Waals shift that will be presented in Chapter 6. In
Section 4.2, I propose a general classification of recent experimental and theoretical
studies of the different ordered phases emerging from Eq. 4.1, based on the Rydberg
blockade distance. Finally, in Section 4.3, I present our attempt to prepare the anti-
ferromagnetic ground state of the nearest-neighbor Ising model by adiabatic sweeps.
I focus on experiments performed on a square lattice, and on how the preparation
efficiency is yet limited by the coherence time in our experiment. This motivated a
quantitative analysis of all dephasing mechanisms described in Chapter 5.

A more detailed analysis of the space- and time-dependent growth of correlations
during the adiabatic preparation, for a wider range of geometries, will be given in

the thesis of Vincent Lienhard. The experiments reviewed in this chapter have been

published in Labuhn et al. [2016] and Lienhard et al. [2018].

Quench experiments

Our Rydberg experiment starts with an assembled atomic array all initialized in
the electronic ground-state |g) by optical pumping, which is the paramagnetic phase
described above. The excitation lasers, giving rise to a coherent coupling with a Rabi
frequency (2, are described in Chapter 5. A quench experiment consists in switching
on suddenly the coherent drive for a variable time 7. Recall that the optical tweezers
are off during a Rydberg experiment, and that they are switched back on at the end
to recapture atoms in |g) and repel the ones in |r). Each experimental run ends with
a fluorescence image from which we obtain the site-resolved measurement n; = 0
(atom in |g) and recaptured) or 1 (atom in |r) and lost). We use this measurement to
reconstruct the macroscopic Rydberg fraction f, = > (n;)/N and the density-density
correlation map C(i, j) = (nyn;) — (n;)(n;). The latter can also be expressed in the
form ¢\? (i, j) = (n;n;)/(n;)(n;), more popular in the quantum optics community. We
will follow the evolution of these observables after a quench.

The experiments are performed on a system of typical size L and interatomic spacing

a, and we can thus identify three main regimes:

» Ry, < a: the Rydberg blockade distance does not extend from one atom to the

other. The atoms are thus independent and we have a collection of identical and

7



Chapter 4: From van der Waals blockade to studies of Ising models

isolated two-level systems. The quench dynamics is a simple Rabi oscillation
at a frequency €2: the Rydberg fraction f, oscillates between 0 and 1, and the

pair-correlation function remains at the uncorrelated value g?(i, ) = 1.

« Ry > L: the Rydberg blockade volume encompasses the whole atomic en-
semble. There can be only one Rydberg excitation, which is delocalized over
all N atoms. The system thus restricts to only two states |G) =[], |¢;) and
W) =—<>19...7i...g), coupled to each other with a collectively enhanced
frequency v/ N2. The quench dynamics is again a Rabi oscillation of this effective

two-level system: f, oscillates between 0 and 1/N and g¢‘® (3, ) = 0.

« a < Ry < L: the system cannot be restricted to an effective two-level problem.
The quench projects the initial state |G) on a superposition of many eigenstates
with different energies. The beating of incommensurate eigenfrequencies causes
the oscillation of f, to relax' towards a steady-state value between 1/N and
1 depending on the exact value of R}, as discussed earlier. In the Rydberg

blockade picture, we expect the correlation function to be close to a step function
g (i — j| < Rp/a) =0 and g?(|i — j| > Rp/a) = 1.

Experiment I now present one experiment performed in the third regime. Fig-
ure 4.2(a) shows the atomic array, a quasi one-dimensional chain, and the Ryd-
berg blockade volume of radius Ry = 4.3 a following the choice of Rydberg state
Ir) = |[79D3)5) (Cs/h ~ —6 x 10* GHz.um®) and Rabi frequency /(27) = 1.0 MHz.
The oblong form of the blockade volume is due to the anisotropy of the van der Waals
interaction for Rydberg D3/, states (see Chapter 6). The chain has periodic boundary
conditions such that we roughly expect the average density to be uniform and the
pair-correlation to depend only on k = i — j (even if, strictly, the shape of the blockade
volume breaks the translational invariance).

For increasing excitation time 7, we observe, in Fig. 4.2(b), an initial oscillation
of f., which then reaches a steady-state value close to the naive estimate a/R},.
This is simply the adaptation of Eq. 4.2 to a one-dimensional system, where the
blockade sphere is replaced by a 1D hard-rod. Alongside the oscillation of f,, strong
correlations between Rydberg atoms appear, as seen in Fig. 4.2(c). It roughly resembles
the step function discussed above: at short-distance k < Rp/a there is a suppressed

probability to find two Rydberg atoms, while at large distances k > R} /a two atoms

IThis ‘thermalization’ of a closed quantum system is a commonly encountered property of interacting
ensembles [Deutsch, 1991].
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Figure 4.2: Dynamics following a quantum quench. (a) Quasi-1D chain with periodic
boundary conditions. The Rydberg blockade radius is Ry, = 4.3 a, with a the interatomic
spacing. (b) Evolution of the Rydberg fraction f,. with the pulse area Q7. The dashed line
indicates the maximal filling of the system with hard-rods of length R;,. The arrow indicates
the time at which we calculate the pair correlation shown in (c). The blockade effect
prevents the excitation of the second atom at a distance ka < R},. At larger separations,
the correlator oscillates around the asymptotic value 1, corresponding to uncorrelated sites.
(d,e) Quench dynamics using a different Rydberg state and geometry of the atomic array.
Here, we observe a discrepancy between the experimental data and the prediction of the
spin-1/2 model. We will search for the origin of the deviations in Chapter 6 and find better

experimental parameters.

are uncorrelated. Interestingly, there is an enhanced probability to have two Rydberg
atoms at k ~ Ry /a, also observed in Schaufl et al. [2012]. This property can be

explained using an hard-rod model [Ates and Lesanovsky, 2012; Petrosyan, Honing,
and Fleischhauer, 2013].

The results presented in Fig. 4.2(b,c) are in very good agreement with ab-initio
numerical simulations, without adjustable parameters and taking into account detection
errors, carried out by Tommaso Macri. However, for experiments performed on another

set of geometry and Rydberg state |r) = ‘61D3 /2>, we observe a clear deviation with
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the theory [see Fig. 4.2(d,e)]. The increased Rydberg fraction above the theoretical
model indicates a failure of the Rydberg blockade effect and motivated a detailed
analysis to explain and solve this problem that will be presented in Chapter 6.

Devil's staircase of ordered states

The phase diagram shown in Fig. 4.1 is only a rough description of the rich variety of
ordered states that arise from the long-range Ising coupling of Eq. 4.1. I now give a
more detailed description of these ordered phases, classifying them as a function of the
size of the typical Rydberg blockade radius. I relate them to recent experimental and
theoretical studies.

Let us start by noticing that the Hamiltonian (4.1), and so the phase diagram, are
symmetric under the operation |g) <> |r) and § <> —6 +>_,_; Vi;/N. There is thus a
second critical point O at (2,6) = (0,3, ; Vi;/N) where the physics is the same as
around O, except that ground-state atoms are replaced by Rydberg excitations and
vice-versa. Along the classical axis (€2 = 0), the many-body ground-state Rydberg
fraction rises from f, =0 at O to f, = 1 at O,. In between the two critical points,
there are many stable phases with a fixed number of Rydberg excitations whose
positions are strongly correlated to minimize the interaction energy.

Because the van der Waals potential decreases quickly as 1/R®, the interaction is
always dominated by the nearest-neighbor couplings. The largest crystalline phase in
Fig. 4.3 is thus usually the one with a Rydberg fraction f, = 1/2 with one excitation
every other site: the Néel state (note that this is not true for frustrated geometries for
example). Other phases, with 0 < f,. < 1/2, are located very close to the critical point
O where longer-ranged couplings play a role. It is possible to explore experimentally
these small phases using the extreme tunability of a Rydberg quantum simulator,
since the interaction strength V oc n'! /RS can be varied by more than 6 orders of
magnitude by choosing principal quantum numbers n = 50 — 100 and interatomic
spacings R = 3 — 10 um (by changing the holographic array of tweezers?). In contrast,
the laser drive {2 and detuning § have stronger constraints and are typically on the
order of 1 MHz: much higher coupling strengths (2 are not yet available in current
experimental apparatus, while lower energy scales require longer experiments, that are
precluded by the motion of the atoms, as long as Rydberg atoms are not trapped.

Tuning the van der Waals strength, at fixed § and €2, consists in zooming in and

2For optical lattice experiments, the spacing is much smaller and fixed to @ = A\/2 ~ 0.5 um by the
trap laser wavelength A.
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Figure 4.3: Tuning the Rydberg blockade volume. The top schemes represent the
relevant area of the phase diagram, located closer and closer to the critical point O,
which can be studied by increasing the Rydberg blockade distance Ry. The bottom
schemes illustrate a particular experimental realization: (a) nearest-neighbor Ising magnet
implemented by Lienhard et al. [2018], (b) Z3 ordered state studied by Bernien et al.
[2017], (c) crystal of three Rydberg excitations from SchauB et al. [2015] and (d) a fully
blockaded system realized by Labuhn et al. [2016].

out of the critical point O and thus allows to observe extremely small features close
to O. In the following, I classify the different ordered states by using an effective
Rydberg blockade distance R}, = [Cg /(hx1 MHZ)] Y 6, going all the way from a regime
of independent atoms (R}, < a) to a fully blockaded system (R}, > L).

Paramagnetic phase: R, < a. The interaction energy between two neighboring
atoms is smaller than the laser drive €2 or detuning 4. The atoms are thus basically
independent and act as free spin-1/2 particles under the influence of a magnetic field

defined by B  (£2,0,4): our system is a paramagnet (PM).
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Nearest-neighbor interaction: Ry, ~ a. The interaction energy between neighboring
sites Van = Cg/a® is now sufficiently large for an interaction-dominated crystalline
phase to be experimentally observable close to the critical point . The next-nearest
neighbor term?® Vyny = Vin/64 is usually neglected. In this approximation, Eq. 4.1
maps to the nearest-neighbor Ising model. The many-body ground state depends
on the exact arrangement of lattice sites: For a simple atomic array geometry, as a
1D chain or a 2D square lattice, the many-body ground state is the Néel state, but
this is not the case for a triangular lattice where geometrical frustration plays a role.
Experiments performed in this regime have been reported by Bernien et al. [2017]
and Keesling et al. [2018] (1D chain), Guardado-Sanchez et al. [2018] (2D square
lattice) and Lienhard et al. [2018] (1D chain, 2D square and triangular lattices). |
will present our results obtained on the 2D square lattice in the last section of this
chapter. Figure 4.3(a) shows the phase diagram where the second critical point at

4 =V is visible.

Z, phases: a < Ry, < L. The Rydberg blockade radius now extends over a few
lattice sites, but remains smaller than the system size. This regime has been studied
in 1D by the Harvard team [Bernien et al., 2017; Keesling et al., 2018]. When R},
increases from ~ a to ~ 2a, one has to consider the next-nearest neighbor interaction
term Vynn. The latter stabilizes, close to the critical point O, a Zs ordered state with
one Rydberg excitation every 3 lattice sites. For increasing interaction strength, the
long-range extent of the van der Waals interaction leads to a succession of Z; phases
with a Rydberg fraction f, = 1/k, as shown by zooming close to O in Fig. 4.3(b).
On an infinite-size system, there would be a never-ending succession of such phases,
increasingly closer to the critical point. Weimer and Biichler [2010] performed a
theoretical study of these phases for the particular case of a 1D chain. More generally,
for larger Rydberg blockade volume, we expect the ground state to become less

dependent on the exact lattice geometry.

Crystals with few Rydberg atoms: ¢ < Ry, < L. In a finite-size system of N
atoms, the sequence of Z; phases is halted by the finite resolution of f,, which can only
change by step of 1/N. For very large blockade distance, comparable to the system
size L, there are crystalline phases hosting only a small number of Rydberg excitations

N,, as shown in Fig. 4.3(c). The relevant interaction energy is now V; = Cg/L5.

3Considering here a 1D chain. For a 2D square lattice, we would have Vyny = Vyn/8 along the
diagonal.
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Closer to the critical point, there is a phase with a single Rydberg excitation (see next
paragraph). The following phase is a crystal with two maximally separated Rydberg
excitations: in a 1D chain they lie at the two extreme sites. It continues with crystals
containing N, = 3,4, ... Rydberg excitations. This regime has been studied by Schaufl
et al. [2015], who observed onsets of these crystalline states containing only a few
Rydberg atoms. The difficulty of preparing adiabatically such states has been discussed
by Petrosyan, Mglmer, and Fleischhauer [2016].

Fully blockaded systems : L < Ry,. Finally, the Rydberg blockade volume is larger
than the size of the system, which is thus fully blockaded. We are left with only two
accessible states: |G) and |W). While, from the point of view of many-body physics,
the theoretical description of a fully blockaded ensemble is trivial, it lies at the basis
of many proposed quantum devices [Jaksch et al., 2000; Lukin et al., 2001; Saffman
and Walker, 2002; Miiller et al., 2009] and is a very active field of research (see the
review of Saffman [2016]).

Nearest-neighbor Ising model

We are especially interested in the regime Ry, ~ a, where the Rydberg blockade radius
extends only to nearest-neighbor sites. In this regime, the laser-driven Rydberg ensemble

can be seen as realizing the nearest-neighbor Ising model and I thus reformulate
Eq. (4.1) into:

H=Y Biof+Y (Bj+Bi)oi+ > _ Jyoio}. (4.3)

i<j
First, the laser drive takes explicitly the form of an effective magnetic field B =
Bje, + Biex with a transverse component B, = h{2/2 and a longitudinal part

Bj = hé /2. Then, we use nin; = (1+ 07)(1+ 07)/4 to decompose the van der Waals

term in:

« a constant energy offset )._.V;;/4 that is ignored.

i<j

« a local longitudinal magnetic field Bj,. = >7,_; Vi;/2 = 2V/2 where 2 is the

number of nearest neighbors.

« an Ising coupling )~ _. Jy;o70} with J = V/4.

i<j
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When discussing the phase diagrams of infinite-size or periodic systems, the local field
Bioe becomes position-independent and is absorbed in the global longitudinal field
B. Choosing a laser detuning compensating this local field, we obtain a zero total
longitudinal field and, by symmetry of the Hamiltonian, the ground-state magnetization
is fr = 1/2. For bipartite lattices, such as a regular 1D chain or a 2D square array, the
ground-state is the anti-ferromagnetic Néel state with one Rydberg excitation every
other site. I now report our attempt to prepare adiabatically this state, which has been
reported in Lienhard et al. [2018]. This work was done in collaboration with a team of

theorists composed of Michael Schuler, Louis-Paul Henry and Prof. Andreas Laitichli.

4.3.1 Adiabatic sweeps to the Néel state

The experiment is performed by driving a 6 x 6 atomic array, shown in Fig. 4.4(a),
to the Rydberg state |r) = |64D3 ;2> (this choice results from our study presented
in Chapter 6 to avoid the problem observed in Fig. 4.2). From the calculated Cg =
—875 x 10* GHz.um® and a spacing® a = 8.3 um, we obtain a nearest-neighbor (NN)
coupling strength Vyn/h ~ —2.7 MHz (equivalently R}, = 1.2a). The next-nearest
neighbor term Vyny = Van/8 =~ h x 0.3 MHz is neglected and we describe our system
using the NN Ising model.

The laser drive and detuning waveforms are shown in Fig. 4.4(b) and the trajectory
in the phase diagram in (c). The results described in the following are obtained for an
optimized sweep duration of 1 us. We first observe, in Fig. 4.4(c), a quasi homogeneous
density of excitations n(i, j) over the atomic array, with a slight imbalance between
edge and bulk sites due to the local field Bjo.. The mean Rydberg fraction is 0.50(1)
and there are in average N, = 18 Rydberg excitations. Figure 4.4(d) shows the
distribution of Ny for ~ 300 realizations: it is significantly squeezed compared to
a binomial distribution (which would be the case for independent atoms) but less
than expected for a perfect Néel state even when taking into account detection errors
(dashed red lines), indicating an imperfect adiabatic preparation.

I now discuss the pair-wise correlation map C(k, 1) defined by:

]' F4 F4 F4 ¥4
C(k,l) = Nt Z(‘J’HMHJM) - (O'a'+k,j+£)<‘7i,j)a (4-4)

kl s

where N ; is the number of atom pairs separated by k sites horizontally and [ sites

4The array is slightly squeezed along the horizontal direction to compensate the anisotropic
interaction.
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Figure 4.4: Creation of antiferromagnetic-like correlations with an adiabatic sweep.
(a) 6 x 6 atomic array driven to the Rydberg state |r) = ‘64D3ﬂ, myj= 3/2) with time-
dependent laser drive Q(t) and detuning 4(¢) shown in (b). Phase diagram and system
trajectory (orange path) ending deep in the crystalline phase. (c) Quasi-homogeneous density
map obtained at the end of the sweep. (d) Histogram of the number of Rydberg excitations
for 264 experimental runs showing a squeezed distribution around Nexe = 18 = N/2. The
dashed line is a binomial distribution that would be expected for independent atoms, the
red line is the predicted histogram for the Néel state taking into account detection errors
(e,€') = (4,4) %. (e) Measured correlation map 4 x C(k,[) showing an antiferromagnetic
pattern with a sign alternating as (—1)|k|+”|. For a perfect Néel state, the correlation
would be saturated at £+1. (f) Exponential decrease of the absolute value of the correlator
with the distance m = |k| + |I|. The extracted correlation length is £ = 1.41(4).
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vertically. Figure 4.4(e) shows clear antiferromagnetic correlations, which nevertheless
remain much smaller than the expected Ci; = (—1)*¥+/!l /4 for the Néel state. In
Fig. 4.4(f), I present the same data as a function of the distance m = |k| + |l|, where

we observe an exponential decay with a fitted correlation length of £ = 1.41(4) sites.

4.3.2 Saturation of correlations by decoherence

An exact numerical simulation of the coherent evolution of our system during the
sweep predicts much larger correlations, both in magnitude and in spatial extent, than
obtained in the above experiment. We thus suspect some decoherence mechanisms
to limit the efficiency of our adiabatic sweeps. This is further motivated by the fact
that, already when performing a Rabi oscillation on a single atom (see next chapter),
we observe a damping of the oscillation caused by some dephasing mechanisms. To
comfort this analysis, our colleagues from the theory team proposed to use a simple
model for the decoherence by introducing a phenomenological dephasing rate + for
the Rydberg state and solving a master equation for a 4 x 4 array (see Appendix C
of Lienhard et al. [2018]). By fitting the model on an independently measured Rabi

oscillation, we calibrated the dephasing rate to a value of v = 3 us™.

We now compare the results of the numerical model including the dephasing rate

and our experiments. To quantify the amount of correlation, we use the Néel factor:

Sneel = 4 X Z (—)*HIC (K, 1), (4.5)
(k,1)#(0,0)

which should reach Syg = N for a perfect preparation of the Néel state. Figure 4.5(a)
shows the measured and calculated Néel factor at the end of a sweep for varying slopes
of §(t) and thus of different total sweep durations. For fast sweeps, Sneel is expected to
be small, even for a coherent dynamics (7 = 0), due to the non-adiabatic evolution
of the system, especially at the quantum phase transition (§(¢) ~ 0) where the gap
between the many-body ground-state and the first excited state is smallest. For slower
sweeps, the v = 0 prediction rises much higher than the measured Sygq, while the
v = 3pus~! calculation gives a much better agreement. In a second experiment, shown
in Fig. 4.5(b), we choose the optimal duration of 1 us indicated in panel (a), and
record the time-resolved growth of correlations during the sweep. The measured values

are again in good agreement with the numerical model.

From this study, we conclude that decoherence mechanisms, taken into account
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Figure 4.5: Influence of a dephasing rate on the adiabatic preparation. We compare
the measured Néel factor Sygq to numerical simulations including a phenomenological
dephasing rate «y affecting the Rydberg state. Using an independently measured Rabi

oscillation, we estimate v = 3 us~!.

(a) For a fast sweep, the ground-state preparation is
limited by non-adiabatic evolution and the influence of the dephasing is negligible. For
slower sweeps, the coherent evolution (v = 0) gives a much larger Sn¢e that obtained
experimentally (dark disks). Taking into account the finite dephasing rate gives numerical
results closer to our observation. (b) Temporal evolution of Sngse during a sweep of 1 us
[indicated by the arrow in (a)]. The numerical results of the dephasing model are shown
for various rates ~ (dashed lines). The agreement is best for the independently obtained

v = 3 us~! (solid line). The numerical simulations have been performed by Michael Schiiler.

here with a simplistic single-particle dephasing rate ~y, limit the efficiency of the
adiabatic sweeps. Similar limitations have also been reported by Guardado-Sanchez
et al. [2018] and in early studies of ground-state preparation on an ion platform Islam
et al. [2013]. Even if we obtained clear signatures of the underlying Néel ground-state,
the properties of the final state depend mainly on the dephasing rate rather than on
universal properties of the quantum phase transition. This motivated us to perform a
detailed study of all possible dephasing mechanisms that is presented in Chapter 5,
where I also describe how we plan to improve the current experimental setup to reach
longer coherence times. This will allow future experiments studying the intriguing
phase that arises at half-filling on a triangular lattice, where geometric frustration

leads to a ground-state degeneracy.

Let us also note that for system of increasing number of particles, the gap between
the ground state and the first excited ones closes at the QPT, which ultimately
prevents an adiabatic evolution and leads to the creation of defects. The latter is in

fact ubiquitous in physics: from magnetic domains with different spontaneously chosen
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magnetization to the production of vortexes in Bose-Einstein condensates [Beugnon
and Navon, 2017|. These defects are intrinsically connected to Lieb-Robinson bounds
describing the propagation of correlations in the system [Lieb and Robinson, 1972], or
to critical exponents of the QPT via the quantum Kibble-Zurek mechanism [Zurek,
Dorner, and Zoller, 2005].

Conclusion

I have described the phase diagram of laser-driven Rydberg ensembles. I have first
focused on the critical region é = 0 studied with quench experiments. I then detailed
the different ordered phases that appear close to the critical point when increasing
the Rydberg blockade distance. Finally, I presented our attempt to prepare the Néel
ground-state with an adiabatic sweep, that led to the observation of antiferromagnetic-
like correlations. A more detailed analysis of the temporal and spatial growth of
correlations during the sweeps will be presented in the thesis of Vincent Lienhard.
In this chapter, I did not give any experimental details about how we implement
the coherent laser drive, which mimics the B-field of the Ising model. This will be
done in Chapter 5, where I also present a quantitative analysis of detection errors
and of various dephasing mechanisms, which we showed limit the efficiency of our
adiabatic preparation. I also did not explain the physical origin of the van der Waals
interaction V' = Cg/R5 between two Rydberg atoms. This will be found in Chapter 6,
together with a study and a solution to the Rydberg blockade failure observed in

quench experiments [shown in Fig. 4.2(d,e)].
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Our implementation and studies of the quantum Ising model rely on our ability
to engineer an effective magnetic B-field for spin-1/2 particles encoded between a
ground-state level |g) and a Rydberg state |r). This is achieved by coherently driving
the |g) <> |r) transition (see Fig. 5.1) using excitation lasers that lies at the heart of
our studies. As described in the previous chapter, we can suddenly switching them
on to perform quench experiments [Labuhn et al., 2016], or rather vary slowly their
intensity and frequency to obtain quasi-adiabatic sweeps crossing a quantum phase
transition [Lienhard et al., 2018]. Ideally, these experiments require a large range of
coupling strength 2/(27) = 0.1 — 10 MHz and to maintain the coherence between |g)
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and |r). In this chapter, we use a simple experiment, a Rabi oscillation, to check the
level of control that we have on independent atoms, our objective being to observe

fully contrasted, undamped, oscillations.

Background Coherent ground-Rydberg Rabi oscillations have been observed first
in dilute gases [Deiglmayr et al., 2006; Reetz-Lamour et al., 2008], then on single
atoms [Johnson et al., 2008; Zuo et al., 2009; Miroshnychenko et al., 2010; Hankin
et al., 2014] and more recently in blockaded ensemble “superatoms” [Dudin et al.,
2012; Ebert et al., 2015; Zeiher et al., 2016; Labuhn et al., 2016]. They are one of the
crucial prerequisites for quantum information processing and the implementation of
two-qubit gates [Saffman, 2016]. Despite intensive experimental efforts, fidelities of
such gates have remained around ~ 80 % [Maller et al., 2015; Jau et al., 2016; Picken
et al., 2018], below their theoretically predicted intrinsic fidelities (> 99 %) [Zhang
et al., 2012; Xia, Zhang, and Saffman, 2013; Petrosyan et al., 2017]. This remains
much lower than on other experimental platforms such as trapped ions (99.9 %) [Monz
et al., 2011; Ballance et al., 2016] or superconducting qubits (99 %) [Chow et al.,
2012; Barends et al., 2014; Song et al., 2017]. The reason is mostly imperfections in
the coherent optical excitation to Rydberg states that I will describe in this Chapter.
In addition to quantum information processing, we are interested here in using the
coherent Rabi couplings for studies of Ising-like models [Schauf} et al., 2012; Schau83
et al., 2015; Labuhn et al., 2016; Bernien et al., 2017; Kim et al., 2018; Lienhard
et al., 2018; Guardado-Sanchez et al., 2018]. In the previous chapter, we identified the
relatively short atomic coherence time as a limitation of the duration of quantum

simulation.

Goal In all experiments reported until this year, one observes that the Rabi oscillations
are quite damped and have a finite contrast. Figure 5.1 gives typical examples; similar
behaviors were observed in other setups [Zhang et al., 2010; Hankin et al., 2014; Zeiher
et al., 2015; Bernien et al., 2017; Kim et al., 2018]. Typical 1/e damping times, for a
2 MHz Rabi frequency, are about 5 ps, much lower than the upper bound given by
the lifetime of Rydberg states, in the ~ 200 us range. The purpose of this chapter is
to understand quantitatively the origins of the damping, i.e., we want to replace the
fits shown as solid curves by ab-initio numerical calculations. This analysis helps us
to identify the limitations of our current setup and to plan its next generation. Let

us also note the recent work performed by Levine et al. [2018] who reported a 97 %
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Figure 5.1: Rabi oscillations. (a) The spin-1/2 defined by a ground-state and a Rydberg
level is driven resonantly by a laser field of coupling strength Q. (b) Bloch sphere
representation of a Rabi oscillation: the spin-1/2 (red arrow) rotates from pole to pole, at
an angular frequency €2, around the effective magnetic field pointing along the equatorial
plane (for a resonant drive). (c) Experimental Rabi oscillations for different Q2. The solid

lines are fits by a damped sine.

fidelity of preparation of an entangled! state between Rydberg atoms by solving much

of the imperfections reported in this chapter.

This chapter is organized as follows: I first describe in Section 5.1 our two-photon
excitation setup with which we drive the ground-Rydberg transition. Then, in Sec-
tion 5.2, I show how to model and measure detection errors, decreasing the contrast of
even a fully coherent Rabi oscillation. In Section 5.3, I model all the various effects
that can explain the damping of Rabi oscillations. Finally, in Section 5.4, I combine
all the effects in a comprehensive study and discuss their relative importance as a
function of the Rabi frequency, and finally present how we plan to upgrade our optical
setup to reach longer coherence times. The results presented in this chapter have been
published in de Léséleuc et al. [2018al].

1Here the entanglement is not transfered back to the long-lived hyperfine ground-state levels.
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Excitation scheme

The direct optical transition from the 55/, ground-state |g) to a Rydberg state
|r) is in the UV domain (297 nm). We avoid the need for a UV laser by using a
two-photon excitation scheme via a low-lying excited state |e). Two possibilities are
often considered for the latter: the 5P state (regular scheme) or the 6P state (inverted
scheme) [Low et al., 2012]. For historical reasons, our group always used the 5P,
level, where the |g) <> |e) transition is at 795 nm and the |€) <> |r) one at ~ 475 nm.
With this two-photon scheme, we can couple to Rydberg S; /5 and D), states®. Two

elements have to be considered when choosing which states to work with:

+ The coupling strength. The electric dipole matrix element (5P| d |r) is almost
twice as large for nD than for nS states. We will see in this Chapter that the
damping of our Rabi oscillation is partly due to a too small coupling strength,
indicating that D states should be preferred.

» The effect of the dipole-dipole Hamiltonian on two Rydberg atoms. As we will
see in Chapter 6, the interaction between two n.S; /, states is quite simple and
ideal, all the opposite of nD;/, states. So far we have succeeded in proof of
principle experiments with D states, but the wealth of phenomena occurring
between two Rydberg D states might preclude a perfect mapping on a simple

spin-1/2 model, as we will see in the next chapter.

The situation is complicated as we have to choose between a better coherent manipu-
lation at the single atom level with nD3/, states and a better control of the two-atom
interaction with n.S,/, states. Our choice, at the beginning of this thesis, was to keep
using the nDs/; levels as we would obtain longer coherence times, and to explore
carefully the effect of interaction between nD3/, states (see Chapter 6).

We now discuss the choice of hyperfine and Zeeman sublevels to use, as shown
in Fig. 5.2(a). The hyperfine structure of the nDj/, level [van Wijngaarden, Li,
and Koh, 1993] is usually neglected as it is much smaller (~ kHz) than all other
energy scales (Rabi coupling, Rydberg decay rate, Zeeman shift), here we keep it for
consistency with the expression of the 5P/, and 55/, states in the hyperfine basis
and to clearly identify the 7 and o* transitions. We work with the stretched Rydberg
level |r) = |nD3/2, F = 3, mp = 3)?® as: (i) the dipole-dipole interaction is simpler

when the angular momentum is maximized (mp = F') and (ii) the Clebsch-Gordan

2Coupling to Dy /2 states would be possible using the 5P/, intermediate level.
3r) = |RD3/21 my = 3I2> in the fine basis.

92



5.1 Excitation scheme

(b) z quantization axis

(@ np, F=3 %3

le 475 nm
_ T
sp k=2 =)
2 fF=1 9
& 795 nm
Tweezers
F=2 L
55 OI y
1/
F-1 % x

Figure 5.2: Regular excitation scheme. (a) Relevant levels involved to excite a ground-
state atom |g) to a Rydberg state |r) with a two-photon transition via an intermediate
state |e). (b) Excitation lasers: the blue and red beams have cross-sections with waists
(wg, wy) = (24 x 40) pm and (wg, w,) = (100 x 100) pm, respectively. A vertical magnetic

field B, defines the quantization axis.

coefficient of the o*transition to |e) = |5P1;2,F = 2, mp = 2) is maximal. Finally, we
choose the ground-state level |g) = }5.5'1 12 F=2,mp = 2), into which the atom can
easily be initialized by optical pumping.

Figure 5.2 shows the geometry of the 795 nm and 475 nm excitation lasers. The
475 nm laser is shone along the vertical quantization axis defined by a magnetic field B,
of a few Gauss and is " -polarized, while the 795 nm beam is shone along the y-axis and
is m-polarized. I denote by (2705 and 2475 the Rabi couplings, by A the single-photon
detuning from the intermediate state and ¢ the two-photon detuning from the Rydberg
state (0 = 0 in the figure). The radiative decay rate from |e) is ' = 27 x 5.75 MHz.
To obtain a coherent coupling between |g) and |r), despite the spontaneous emission
from |e), we use a large detuning A/(27) = 740 MHz > Q,75, Q795, T, such that the
intermediate state is almost not populated. As a result the system is well described by

the two-level Hamiltonian:

A

"=

(Ir) (gl + lg) (r|) + hdegt ) (r], (5.1)

where (g is the effective two-photon Rabi frequency:

QTQS Q4 75

Qe - )
& 2A

(5.2)

and d.q, the effective detuning, which takes into account the AC-Stark shift caused by

the excitation laser:
QQ — Q,Q
795 475

§eﬂ:§+ AN

(5.3)
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Chapter 5: Coherent ground-Rydberg Rabi oscillations

In the following, we will simply write them €2 and 4. In practice, we work with the

475 nm laser at maximum power and vary {2 by tuning (27¢5.

Experimental sequence We observe a Rabi oscillation between |g) and |r) (see
Fig. 5.1) using the following experimental sequence: After preparing the atom in |g)
by optical pumping?, we switch off the tweezers and illuminate the atom with the
Rydberg excitation lasers for a time 7 up to a few microseconds, and finally switch on
the tweezers again. The tweezers are off during the Rydberg experiment to avoid the
strong light-shift they would apply on |g), which would not be the same from trap
to trap (see Section 2.2.3) and would also depend on the exact position of the atom
in the tweezers (changing from shot-to-shot due to its non-zero temperature). The
measurement of the ground-state and Rydberg populations (F; and FP,) are detailed in
Section 5.2. Briefly, we rely on the recapture of an atom in |g), while a Rydberg atom is
repelled by the tweezers due to the ponderomotive potential and is lost. The presence
or absence of the atom after the Rydberg experiment is observed with a fluorescence
image. We repeat the sequence at least 100 times to obtain a good estimate of the
populations. In the following two subsections, I give more details about the 795 nm

and 475 nm setup and especially the achievable Rabi couplings (2795 and 475.

5.1.1 795 nm excitation laser

The 795 nm light source is a Toptica DL 100 diode with an output power of ~ 100 mW.
A small fraction of the output is directed to a high finesse ULE (ultra-low expansion)
cavity for active stabilization of the laser frequency using the Pound-Drever-Hall
technique. The cavity has a finesse of F ~ 20000 and a free spectral range FSR =
1.5 GHz (linewidth vy = FSR/F = 75 kHz); more details are given in the thesis of
Sylvain Ravets [2014]. The PDH technique requires frequency sidebands generated by
a resonant fiberized EOM (electro-optic modulator) placed in the path going to the
cavity. The rest of the laser output goes through:

« an AOM (acousto-optic modulator) in a double pass configuration, with which
we can dynamically tune the laser power and thus the Rabi coupling 795(¢) and

the laser frequency (over a ~ 50 MHz range) with a response time of less than

4We checked independently, by performing microwave transitions between the ground-state hyperfine
levels, that the pumping efficiency was higher than 99 %. In the following we will suppose that it
is perfect.
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5.1 Excitation scheme

100 ns. It is used to performing adiabatic sweeps (see Section 4.3.2) or STIRAP

excitation (see Section 7.1.1).

» an EOM (LINOS free-space) with a rise time of ~ 10 ns, used to quickly switch
on and off the beam and generate square pulses for Rabi oscillations or quench

experiments.

« a polarization maintaining fiber bringing the light close to the experimental

chamber where we can obtain up to 10 mW of laser power.

Thanks to the large dipole matrix element between the ground-state and the first
excited level, we reach up to a few ~ 100 MHz of Rabi frequency at full power even for
a beam with a waist as large as ~ 100 pum. The beam is aligned on the atomic array
by maximizing the heating-induced loss of atoms from the tweezers when shining the
laser on resonance on the 5S-5P transition. The Rabi frequency (2795 is estimated by
measuring the light-shift Q2,. /4A, applied on the ground-state level, by spectroscopy
of the Rydberg line.

5.1.2 475 nm excitation laser

The 475 nm light source is a Toptica TA-SHG laser: an ECDL (extended-cavity diode
laser) emits a 950 nm beam, a small fraction of it is sent to the ULE cavity to stabilize
the laser frequency, while the rest is amplified by a tapered amplifier and injected
in a resonant SHG (second harmonic generation) cavity. The output can reach up
to 650 mW at 475 nm. The diode current is modulated at ~ 20 MHz to generate
frequency sidebands for the Pound-Drever-Hall (PDH) lock of the SHG cavity (and
also the ULE one). This is different than for the 795 nm setup where we modulated
only the light going to the ULE cavity and not to the atoms. We thus take care to use
a modulation as small as necessary to still lock the two cavities to avoid the frequency
sidebands to drive the atomic transition and perturb the Rabi oscillation.

The dipole matrix element between |e) and |r) is much weaker than with |g) and
much more laser intensity is thus required to achieve similar Rabi frequency. To make
the best use of the available laser power, we decided to avoid coupling the light to a
fiber and rather place the laser source close to the experimental chamber. The beam
first goes through an AOM, for temporal shaping of {475(¢), and is then focused on
the atomic plane. We use the natural ellipticity of the beam at the laser output to

create a sheet-like shape with a reduced waist along the optical axis (w, = 24 pm)

95



Chapter 5: Coherent ground-Rydberg Rabi oscillations

r 1
0475 E:':
N e-r B8 Q,../(2n)
e Q, .4 Q $mm o R emmmne »
795 r e+r _,'; —
Q795
0
g —50  —25 0 25 50
(c) (d)
50
= N aof

3 2 S

2 — 30}

& 5 ™

] G N oot

k> g = w, = 41(1) um

- é*" 10
\ X \ 0 b= . . . ,
—20 0 20 50 -25 0 25 50
Azg5/(2m) (MHz) y position (pzm)

Figure 5.3: Autler-Townes splitting. (a) Scheme of the Autler-Townes effect. (b) We
extract {2475 from the splitting between the two resonances, observed when scanning
the 795 nm laser detuning. (c) Stack of Autler-Townes spectra obtained for atoms at
different positions in the excitation beam. (d) The Rabi coupling has a spatial dependence
Qars(y) = Qoexp(—y?/w?) with a fitted waist w;, = 41(1) um.

compared to w, = 40 pm. This is well adapted for planar atomic arrays, but not for
three-dimensional structures. Along the z-axis the ~ 5 mm Rayleigh range is much
larger than the typical extent of atomic arrays.

Due to the small waist of the 475 nm laser and the fact that the beam propagates
more than two meters from the laser source, we have to check its alignment on a
daily basis. We engineered a semi-automatic method: a computer-controlled mirror
mount steers the beam along z and y and the beam is aligned by maximizing the
ionization-induced loss of atoms when shining together the 780 nm (MOT cooling

beams) and the 475 nm lasers.

Autler-Townes splitting We measure the Rabi coupling €475 using the Autler-
Townes effect, as sketched in Fig. 5.3(a). When strongly driving on resonance the
le) <> |r) transition (475 > Q795), the |g) <> |e) line splits in two, corresponding to

the symmetric and anti-symmetric superpositions |e) + |r) at an energy +h{),75/2
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Figure 5.4: Dependence with Rydberg states. (a) 2475 measured on different |e) >

~3/2 scaling with the principal quantum

[r) = ‘nDyz, 3/2) transitions, illustrating the n
number n. Disks: experimental data. Solid line: power-law fit. (b) Autler-Townes spectra

on different |e) > [r) = [60S;/,) and |r) = |60D5,) transitions (see text).

in the rotating frame. After preparing the atom in |g), we record an Autler-Townes
spectrum by scanning the detuning Azgs of the weak 795 nm probe ({2795 < T'). When
the latter excites the atom to the short-lived |e) + |r) states, it decays back to the
F =1 or F =2 ground states. We remove atoms in F' = 2 with a push-out beam and
observe only atoms depumped in F' = 1 in the fluorescence image. Figure 5.3(b) shows
the resulting Autler-Townes spectrum from which we extract Q475/(27) = 45.6(1) MHz.

Since the 475 nm beam is focused on the atomic array, (2475 depends on the atom
position along the y axis. Figure. 5.3(c) shows nine spectra obtained for different
y-position of the atom, mapping the intensity profile of the excitation laser and giving
a beam waist w, = 41(1) um. These results were obtained for |r) = [65D;/,) and
~ 400 mW of laser power on the atoms. For most of the experiments presented in
this part (Rabi oscillations, simulation of Ising models), we had a weaker coupling

~ 30 MHz, as they were performed before improving the 475 nm optical setup.

Dependence with the principal quantum number The Rabi coupling to the Ry-
dberg state scales, for a fixed laser intensity, as Q475 < n~3/2 with n the principal
quantum number. In Fig. 5.4(a), [ show on a log-log scale the measurement of 475
for n = 20 — 90. To cover this range, the frequency of the 475 nm laser was changed
by 11 THz and the power varied by ~ 25%. Each measurement was rescaled by
\/m , around the averaged power at the time of this experiment. The
experimental data are well fitted by Q75/(27) = 35(1) MHz x (n/60)~*®) in good

agreement with the expected scaling.
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S states vs D states [ use Autler-Townes spectra to illustrate the reduced coupling
to nSi /2 states and the importance to choose the right intermediate level |e). Figure 5.4
shows the achievable Rabi coupling for the same laser power (~ 400 mW) on three

transitions:
o (i) [5Pij2, F =2,mp = 2) <> |60D35,my = 3/2): Quzs/(27) = 48.1(1) MHz.
o (ii) [5Pyjg, F = 1,mp = 1) & |60S) /2, my = 1/2): Qu75/(27) = 18.8(2) MHaz.
o (ili) |5Py/2, F =2,mp = 1) ¢ |60Sy/5,my = 1/2): Qur5/(2m) = 11.1(2) MHz.

Clearly the coupling is reduced for S states. Then, for the same Rydberg state, {2475 is
maximal for a stretched transition: the measured ratio of Rabi frequencies between (ii)
and (iii) is 1.69(3), close to the expected v/3 ~ 1.73 from the ratio of Clebsch-Gordan
coefficients [Steck].

Detection errors

In this section, I detail how we obtain the population of the ground and Rydberg
states by the recapture of the atoms after the experiment. It relies on the repulsion of
an atom in |r) by the tweezers. The method is extremely simple as we only need to
switch on the tweezers at the end of the Rydberg experiment, but is affected by small

detection errors of two types:

« false positive errors, with a probability e = P(r|g) to incorrectly infer that a
ground-state atom was in |r) because it was lost, e.g. due to background-gas

collisions. We discuss this in Section 5.2.1.

« false negative errors, with an error rate £ = P(g|r), caused by the decay of |r)
(radiative lifetime of ~ 200 us) to a ground-state level before it is too far away

from the trapping region to be recaptured (see Section 5.2.2).

We denote by P, and P, the real population of the states |g) and |r), and by P,

and P, the measured population altered by the nonzero values of (g,¢’):

P, = (1—¢) [ﬁgﬂ'ﬁr], (5.4)
P. = eP,+(1—¢ +¢')P,. (5.5)

It implies that, even if the real population P, undergoes a perfect Rabi oscillation
P,(t) = sin?(Q7/2), the measured one P,(t) has a finite contrast. Figure 5.5 illustrates
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Figure 5.5: Effect of detection errors. (a) Probability tree connecting the real (P,, P;)
and measured (FPy, P;) ground and Rydberg population. In addition to the first order
processes (ground-state atom loss and Rydberg atom recapture due to its quick decay), it
is also possible to loose a Rydberg atom having decayed with a small probability e¢’. (b)
Small but finite values of (e,&’) reduce the contrast of the measured probability P, (solid
line) assuming a perfect Rabi oscillation P, (dashed line). The second order terms e’ can

be neglected.

the effect to lowest order in (g, £'). In principle, one can invert the above equations [Shen
and Duan, 2012], e.g., using a maximum likelihood procedure, to correct these errors
and recover the real populations, even for many qubits [Bernien et al., 2017]. In
our publications we rather include these errors on the calculated populations when

comparing with experimental data.

5.2.1 False positives

The various sources of atom loss during an experiment® are:

» Collisions with the background gas. Given the vacuum-limited lifetime of
~ 10 s and the 30 ms delay between the two images taken before and after the

experiment, we estimate an error rate of 0.3 %.

» Loss due to the MOT cooling beam. The atom lifetime is reduced to 8 s in
presence of the cooling beam; for fluorescence images of 20 ms this results in an

error rate of 0.3 %.

» Release of the atom during the experiment. The recapture depends on how long

5Strictly speaking, we should distinguish a loss occuring before a Rydberg experiment (preparation
error) and after it (detection error).
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Chapter 5: Coherent ground-Rydberg Rabi oscillations

we open the traps. For typical atom temperature 7' = 30 uK and release time

6 ps, the loss probability is estimated to be 1% (see Section 2.1.3).

Adding all three contributions, we estimate a false positive rate ¢ < 2%, in good

agreement with typically measured values.

5.2.2 False negatives

Here, I first explain the origin of the ponderomotive potential and experimentally show
its repulsive effect on a Rydberg atom. I then combine it with the calculated lifetime of

Rydberg states in a quantitative model giving £’ and describe a measurement method.

Ponderomotive potential The potential experienced by an atom in an electro-

1
magnetic field oscillating at an angular frequency w takes the form U(r) = % (w)|E(r)|?,
where a is the polarizability of the atom depending on both the internal electronic

state |i) and the trap laser frequency w/(27) = 352 THz.

« For the Rydberg state |r), . is obtained by considering that the valence electron,
being in average very far away from the nucleus, is a free charged particle. In
this case, the ponderomotive effect gives o, = —e?/mw?, which always repel the

particle from the bright region.

« For the ground-state |g), the polarizability a, is calculated by taking into account
the strong D; and D transitions to the first excited levels 5P, and 5P/,
giving o, = €*/m(wj — w?), where wy/(2m) = 382 THz is the average frequency

of the two resonances.

For our wavelength (850 nm), the ratio of polarizabilities 8 = a,./a, is:
B =—(wj —w?)/w? ~ —0.17. (5.6)

For an increased detuning of the trap laser from the 5P states, and at constant laser
power, the ponderomotive repulsion of Rydberg states increases relatively to the
trapping potential: it is 7 % at 810 nm, 85 % at 1064 nm. £’ thus depends on the trap
wavelength and its depth.

Repulsion of Rydberg atoms [ illustrate the repulsion of Rydberg atoms by the

tweezers with a modified release and recapture experiment:
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Figure 5.6: Ponderomotive potential. Recapture probability precap(t) including anti-
trapping by the optical tweezers (red) and neglecting the anti-trapping (blue). For the
simulations, we use T' = 20 uK, Up =1 mK, and § = —0.17. The reduced contrast of
the red data with respect to the simulation is due to the finite efficiency of Rydberg

(de-)excitation.

1. We excite the atom to |r) with a Rabi 7-pulse of efficiency ~ 90 %,

2. We switch on the tweezers and let the Rydberg atom evolve during a time ¢ in

the repulsive ponderomotive potential SU(r),

3. We de-excite the atom from |r) to |g) with a second m-pulse and measure the

recapture probability in the attractive potential U(r).

Figure 5.6 shows the recapture for the usual release and recapture experiment where
the atom is in free-flight (blue points) and the modified one where the atom is subjected
to the repulsive potential (red points). We observe the faster escape of the atom in
the second case. The solid lines are Monte-Carlo simulation for a classical particle
with a temperature 7' = 20 uK and are in excellent agreement with our experimental
observations. The effect is well captured by a characteristic time during which a

Rydberg atom stays in the trapping region:

trecap = /precap(t) dt ~ 10 ps, (5.7)

where Precap 1s the red curve shown in Fig. 5.6. trecap is almost independent of the atom
temperature (6 us at 100 K, 13 s at 5 pK) since it is dominated by the ponderomotive

repulsion. The latter thus plays an important role in our detection scheme.

Model for ¢/ A detection error occurs when the Rydberg atom decays back to the

551/, ground-state levels, while it is still in the trapping region of the tweezers, as
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Figure 5.7: False negative. (a) The detection relies on the expulsion of a Rydberg atom

far enough from the trap before it decays back to the ground-state. (b) With a probability
¢/, the Rydberg atom decays too quickly and is recaptured. (c) Detection error rate £’ as a
function of n. As the Rydberg decay rate I'g, &’ scales as n™3. Red disks: measurement.

Various lines: ab-initio models (see text).

sketched in Fig. 5.7(a,b). The error rate is then given by:

= " Procan() po(t) . (5:8)

where precap Was defined above and py(t) = T'rexp(—tI'g) is the time derivative of
the ground-state population for an atom initially in |r) and decaying by spontaneous
emission (via low-lying excited states) with a rate I'p®. The radiative decay rate scales
with the principal quantum number as n=3 [Gallagher, 1994; Beterov et al., 2009].
The error rate thus depends on the principal quantum number. For the state 60Ds,,
the radiative lifetime is I';' ~ 210 us and is much longer than the recapture time

trecap ~ 10 ps. In this limit, the error rate is simply given by:
!
€ = trecapl R. (5.9)

[ show in Fig. 5.7(c) the result of the exact formula (5.8) as a red solid line and of the

approximation (5.9) in black. The two are in excellent agreement for n > 50.

Measurement of ¢/ [ now explain how we directly measure the real Rydberg
population P, and the error rate & by combining two measurements. After performing

a Rabi 7-pulse of efficiency P,, we measure either:

6 At finite temperature black-body radiation increases the depopulation rate of |r), but by transferring
population to neighboring long-lived Rydberg states, and thus it hardly affects the rate at which
|g) gets populated.
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5.3 Damping of Rabi oscillations

« the Rydberg population P, ~ (1 — ¢’ )fjr with the regular detection method.

« the proportion of Rydberg atoms being recaptured &’'P,, by removing all atoms
that remained in |g) just after the Rydberg excitation. We neglect the small

terms of order e’ P. and 5]59.

The latter is achieved by shining a push-out beam (F' = 2 <+ F' = 3), together with a
repumper beam (F' =1« F' = 2), during 4 us removing with an efficiency of 99.6 %
any ground-state atoms. If an atom is observed in the final fluorescence image, it has
necessarily decayed back from |r) and been recaptured. The measured ¢'; obtained
for Rydberg states ranging from n = 20 to 90, are shown as red disks in Fig. 5.7(c).
The values are in good agreement with the expected n~3-scaling and our numerical
models. The measured values are slightly affected by the 4 us push-out time that also
removes atoms which have decayed during this interval. We can simply estimate a
lower bound to the measured £ by calculating the integral of Eq. (5.8) starting not at
t = 0 (upper bound, red solid line) but at ¢ = 4 us (lower bound, red dashed line).

In our experiments, we typically use Rydberg states with principal quantum number
n > 50, and therefore the false negative rate is limited to &’ < 0.05. This error becomes
more severe with tweezers schemes also trapping Rydberg states as proposed by Zhang,
Robicheaux, and Saffman [2011]. To improve this detection method, one could consider,

e.g, ionizing the Rydberg atoms by applying a strong electric field [Low et al., 2012].

Damping of Rabi oscillations

[ now turn to effects that lead to a decreasing amplitude of the Rabi oscillation when
the excitation time 7 increases. We do not distinguish between effects causing the
damping when we average many experiments (due to dephasing between different
runs) or the one already affecting a single shot Rabi oscillation. The main sources of
decoherence are: the Doppler effect, the spontaneous emission from |e), and the phase
noise of the excitation lasers. I describe models for each imperfection and compare
their predictions to experiments where the magnitude of a specific deleterious effect is

increased on purpose.
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Figure 5.8: Doppler effect. (a) The atom temperature (7" = 30 uK) gives a shot-to-shot
variation of the atom velocity v. Through the Doppler effect, this translates in a detuning
4 of the excitation lasers varying for each experiment. (b) In the Bloch sphere picture, the
effective magnetic field points away from the equator with an angle given by the ratio of

detuning & over the driving strength . (c) Simulated Rabi oscillations at various Q/(2).

5.3.1 Doppler effect

A first contribution to damping is the Doppler effect: for each experimental run,
the atom has a different velocity v related to its temperature T', which, through the
Doppler effect, translates into a spread of two-photon detuning §. In the Bloch sphere
picture, it is equivalent to a shot-to-shot fluctuation of the longitudinal magnetic field
B,  §. If the spread in detuning is comparable to the Rabi frequency (2, it gives rise
to a strong damping of the Rabi oscillation.

In our setup, for exciting Rydberg Dj/, states, the two excitation lasers with
wavevectors ko5 and k,75 are orthogonal to each other, resulting in an effective
wavevector of magnitude keg ~ 1.5 x 10" m™!. A temperature T = 30 uK corresponds
to a one-dimensional r.m.s. velocity spread Av = y/kpT/m =~ 0.05m/s and the
two-photon detuning is thus a random variable with a centered Gaussian probability
distribution of standard deviation kegAv ~ 27 x 120 kHz. Figure 5.8 shows the
calculated influence of the Doppler effect for various Rabi frequencies Q/(27): below
1 MHz there is a strong damping, while from 1 MHz up the effect is hardly noticeable.
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A first route to diminish the Doppler effect is to use counter-propagating beams,
instead of orthogonal ones, which will decrease the effective wavevector keg. Nev-
ertheless, we chose to have excitation beams with polarization coupling only the
stretched Zeeman sublevels of the ground, intermediate and Rydberg states. This
constraint precludes the use of counter-propagating beams for the specific Rydberg
state ‘anﬂ,mJ = 3/2), but it is possible with |nSU2> [Bernien et al., 2017; Kim
et al., 2018] and |nD5/2> states [Maller et al., 2015]. If we exclude more technically de-
manding ways to substantially decrease the Doppler effect, e.g., by using three-photon
excitation [Ryabtsev et al., 2011] or reducing the temperature by cooling the atom
to the tweezers ground-state [Kaufman, Lester, and Regal, 2012; Thompson et al.,
2013b], the above results indicate that one should use high Rabi frequencies.

5.3.2 Spontaneous emission from the intermediate state

The coherent two-photon coupling from the ground-state |g) to the Rydberg level |r)
relies on the adiabatic elimination of the short-lived excited state |e) for A > Q475, Q795
(we usually work with A/(27) = 740 MHz). Nevertheless, the spontaneous emission is

not strictly suppressed but reduced to an effective lifetime 7 reading;:

Q%QS + 9’375

_Tr
T AA?

(5.10)

S =

with T' = 27 x 5.75 MHz the radiative decay rate of |e). We can define a quality factor
Q) = 2w x Q 7, which is the number of oscillations performed at a Rabi frequency
Q = Q795075 /(2A) during the time 7. () is maximal for equal drives Q795 = Qu7s,
but the Rabi coupling is then limited by the 475 nm coupling strength. Larger Rabi
frequencies {2 are achieved by increasing the 795 nm power, at the expense of a smaller

Q. For example:

o for the optimal €795 = (U475 = 27 x 35 MHz, we calculate 7 = 25 us and
2/(2m) = 0.8 MHz, giving @ = 20.

« for the larger Q795/(27) = 210 MHz, we find 7 = 1.3 us and Q/(27) = 5.0 MHz,
giving ) = 6.3.

The Q-factor gives a good estimate of the influence of spontaneous emission, but
it neglects the different decay channels from |e) to the various 55/, levels: there is
a probability 1/3 to go back to |g) and a probability 2/3 to go to ‘spectator’ states

|g') not coupled by the excitation lasers. In addition to the loss of atomic coherence,
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Figure 5.9: Spontaneous emission. (a) The intermediate state |e) decays back to the
initial ground-state level |g) or to other spectator states |¢') with a rate I'/3 and 2I'/3.
(b) In the Bloch sphere picture, the loss of atomic coherence and the escape of population
out of {|g),|r)} due to the depumping to |¢’) is represented by a decaying amplitude
of the state vector (red arrow). (c) Measured Rabi oscillations for different intermediate
detuning A with Q475/(27) = 35 MHz and Q795/(27) = 210 MHz. The results of the
optical Bloch equation, using the independently measured parameters, are shown as a solid

line for the two largest detuning A.

spontaneous emission also depumps the atom to [¢). I illustrate this effect in Fig. 5.9
with a set of experiments performed with various intermediate detuning A and fixed
couplings Qy75/(27) = 35 MHz and Q95/(27) = 210 MHz. The latter was chosen
particularly large to enhance the role of spontaneous emission. We clearly observe a
stronger damping when A is reduced and a characteristic asymmetry: the successive
maxima of P, become significantly smaller, while the minima remain close to zero due
to the depumping to the dark states |¢'), which are not differentiated from |g) in our

fluorescence measurement.

We now try to numerically reproduce the effect of spontaneous emission. As done
already in Miroshnychenko et al. [2010], we use a 4-level model of the atom (|g), |¢’),
le) and |r)) and solve the optical Bloch equations (OBEs) for the density matrix p:

dp

(gl + £l (5.11)
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where the Hamiltonian reads, in the rotating wave approximation:

HIE = 2% (1g) (el + Ie) al) + 2% (Ie) o] +Ir) (e

—Ale) (e| — & |r) (r|. (5.12)

with the two-photon detuning § = — (Q2y; — Q2..) /(4A) adjusted to compensate for
the light-shifts. The dissipator has the Lindblad form:

Ll =) %(2 [i) (el ple) (il — le) (el p — ple) (el ), (5.13)

i=g,g’
with Ty =T'/3 and Ty = 2T'/3. Here, decay of |r) is neglected. The probability to be
in the Rydberg state is P. = p, and is shown as a solid line in Fig. 5.9 for the two
largest detunings and are in very good agreement (without adjustable parameters)
with the experimental data. We note that the problem of spontaneous emission is
avoided when using a direct single-photon excitation scheme [Hankin et al., 2014]

or reduced by a factor ~ 4 when choosing the intermediate 6 P state with a natural

linewidth of 1.3 MHz [Levine et al., 2018].

5.3.3 Laser phase noise

So far we have considered that the excitation lasers were purely monochromatic with
perfectly stable laser phases ¢795(t) and ¢475(t). In fact, the phases of the two lasers

fluctuate in time such that the effective two-photon Rabi coupling is given by:
Q(t) — |Q|6i¢(t) Wlth qﬁ(t) — q5795(t) —|— ¢’475(t) (514)

In the Bloch sphere representation, see Fig. 5.10, the azimuthal angle ¢ of the effective
magnetic field fluctuates in time around the equator (for a resonant drive é = 0). It
thus affects the trajectory of the state vector and leads to damping of a Rabi oscillation
when averaged over many realizations of the noise. Let us first consider a purely
sinusoidal phase modulation ¢(t) = Asin(27 ft), where f is the Fourier frequency and
A « 1 is the small modulation amplitude. The effect of this time-varying phase on
the Rabi oscillation depends on both f and £2:

« 2 f <« €): the axis of rotation moves very slowly compared to the angular
frequency of the state vector. The latter always stays on the great circle

generated by the instantaneous axis, or stated otherwise, the atomic coherence
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Figure 5.10: Laser phase noise on the Bloch sphere. Left: time varying phases of the
excitation lasers. Right: Bloch sphere representation where the azimuthal angle of the

rotation axis (effective magnetic field) is the total phase ¢ of the two excitation lasers.

follows adiabatically the laser phases.

o 2 f > (): the atom do not respond to the very fast variations of the laser phases

and the state vector simply rotates around the averaged rotation axis.
« 2w f ~ (): the modulation affects maximally the Rabi oscillation.

The interesting quantity is thus the power spectral density of phase noise S4(f), or
the related spectral density of frequency noise S, (f) = f2Ss(f) [Riehle, 2004], and
particularly their components close to the Rabi frequency, typically around f = 1 MHz.

I now give three remarks. Firstly, the laser linewidth is often used to estimate the
influence of phase noise. I emphasize that this quantity is not very relevant for us as
it does not give any information about the spectral distribution of noise. Secondly,
our situation is drastically different than in another area where phase noise is an
important issue: optical clocks [Ludlow et al., 2015]. There, interrogation of the clock
transition is performed with a very weak Rabi coupling around 1 Hz, such that low
frequency phase noise is critical. The technical developments engineered in this field,
as in Zhang et al. [2017], are thus not necessarily relevant. Thirdly, the frequency
stabilization of the lasers relies on an active feedback loop using the Pound-Drever-Hall
(PDH) error signal from the ultra-stable cavity. The technique is very efficient to
reject low-frequency noise outside the bandwidth of the loop (typically ~ 1 MHz), but
the latter is too limited to decrease the high-frequency contribution important for our
fast Rabi oscillations.

In the following I explain how we estimate S, (f) and then include it in a numerical
model to reproduce the damping. In a third paragraph, I make a short digression

to discuss which quantity (S,, or Sg, or ...) is directly proportional to the damping.
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Figure 5.11: Spectral noise density and simulations. (a) Estimated spectral density

Su(f)/f of the frequency noise of the 795 nm (red) and 950 nm laser (blue). Solid

(dashed) lines: usual (enhanced) noise. (b) Calculated random processes ¢;(t). (c) Many

simulated Rabi oscillations (thin lines), each for a given realization of ¢;(t), are averaged

(thick black line). (d) With intentional extra noise in the 950 nm laser, the damping is

increased, and the simulation compares well with the experimental data (dark disks).

Finally, I present possible improvements of the current setup to solve the issue of laser

phase noise and the recent progress in the Harvard group [Levine et al., 2018].

Spectral density of frequency noise Measuring the spectral density of noise directly
is not an easy task, but we obtain a reasonable estimate of S, (f) for f above acoustic
frequencies, where the cavity noise is negligible, by analyzing the in-loop PDH error
signal with an RF spectrum analyzer. The voltage noise spectral density Sy (f) allows
to retrieve S, (f), knowing the slope K of the PDH error signal and taking into account
the storage time of light in the cavity, or equivalently its linewidth v.,, = 75 kHz,
causing a roll-off of the cavity response (see, e.g., Tarallo [2009], page 17):

K

wwrrTmm: (5.15)

Sv(f) = Su(f)
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Figure 5.11(a) shows the estimated S,,(f)/f (I explain latter why I rescale it by f) for
the 950 and 795 nm lasers” measured when operating the experiment. We observe a

broad maximum of noise around 1 MHz, due to the limited feedback loop bandwidth.

Numerical simulation In order to assess quantitatively the influence of laser phase
noise, rather than calculating analytically a sensitivity function (see, e.g., Martin
[2013]), we solve the Schrédinger equation of a two-level system driven by the time-
dependent Rabi coupling given in Eq. (5.14), each time for a different realization of
the random processes ¢7g5(t) and ¢75(t) = 2dgs0(t)®. The latter are drawn according
to the measured S,(f) (see e.g. Cladé [2004], page 65):

$(t) = Acos2nft)df with A=2y/Ss(f). (5.16)
f

Examples are shown in Fig. 5.11(b). We then average the results of the simulation over
typically 500 realizations of the phase noise. In Fig. 5.11(c), I show all individual Rabi
oscillations (thin red lines) and their average (solid black line) for our typical spectral
noise density and a Rabi frequency of 1 MHz. We observe a slow damping of the
oscillation and can extract a ()-factor of ~ 24, similar to the best-case spontaneous
emission (see previous Section). To experimentally isolate the effect of phase noise and
compare it to our numerical simulation, we increase the spectral noise density of the
475 nm laser, now shown as a dashed line in Fig. 5.11(a). In these conditions, the
experimental Rabi oscillation damping is increased and is in good agreement with the

numerical simulation, as seen in Fig. 5.11(d).

Different types of noise I now justify why the quantity S, (f)/f is shown in Fig. 5.11
and not S, (f) or Sy(f) = S,(f)/f?. We already understand that the damping of
a Rabi oscillation, quantified by its Q)-factor, depends only on the spectral density
of noise at a Fourier frequency f around the Rabi frequency /(27). Going a step
further, I repeat the previously described numerical simulations by varying the Rabi
frequency 2, and the type of frequency noise S,(f) = K f*, a € {0,1,2} (respectively
known as white frequency, flicker phase and white phase noise [Riehle; 2004]). For each

parameters, the averaged Rabi oscillation is fitted by a damped sine and we extract a

"We use the 950 nm beam for frequency stabilization and not the frequency-doubled 475 nm one.
8We consider that the frequency components of 950 nm laser phase are within the bandwidth of the
SHG cavity used for frequency doubling.
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Figure 5.12: Various type of noises. ()-factor of a Rabi oscillation at frequency €2 for
elementary types of noise S, (f) = K f* with & = 0,1, 2 (left to right). Orange (blue)
curves: S, (1 MHz) = 10* Hz (10 Hz).

Q-factor which is shown in Fig. 5.12. We observe the simple empirical relation:

Q(Q=2rf) ~ 0.1 x (S“J(cf))_l (5.17)

In conclusion, I show S,(f)/f in Fig. 5.11 because we can then directly read the
expected damping as a function of the Rabi frequency.

Solution Finally, I discuss the possible solutions to increase the deleterious effect of
phase noise. A first step is to optimize the PID controller settings, while observing on
a spectrum analyzer the spectral density of voltage noise from the PDH signal, to
avoid adding too much noise in the MHz range. Then, we took care to work with
minimal current modulation fed to the 950 nm diode, as it gives rise to frequency
modulation and noise of the laser beam sent to the atom.

Finally, it is possible to use the ULE cavity not only as an active frequency

discriminator but also as a passive low-pass filter with a transfer function:

Sv(f)

flt., o\
) S A

(5.18)

with a frequency cut-off given by its linewidth v, (full width at half-maximum). The
light transmitted by the cavity exhibits a decreased noise at high Fourier frequencies,
where the active feedback loop is inefficient, and can be used to inject another laser
diode, which then benefits from its spectral purity. This technique was first reported
by Hald and Ruseva [2005] and has been recently implemented® in the Harvard group

9See Nazarova et al. [2008] and Akerman et al. [2015] for earlier implementations in other areas.
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leading to a significant increase in coherence time from 7 to 27 us for a 2 MHz Rabi
oscillation [Levine et al.,; 2018]. The fourfold increase in Q-factor (from 14 to 54)
indicates at least a similar reduction of S, (f) according to Eq. (5.17). In fact, it is
much larger (~ 65) as seen by inserting their reported v ., = 500 kHz in Eq. (5.18),

and the remaining damping probably comes from other sources.

5.3.4 Other possible effects

Several other effects can in principle contribute to damping and dephasing of the
Rabi oscillations. First, the Rydberg states have a finite lifetime due to spontaneous
emission leading to decay to low-lying excited states and to black-body radiation
transferring the atom to close-by Rydberg states [Beterov et al., 2009]. We have
solved the OBEs with and without including the finite lifetime of Rydberg states
n > 50 and observed no significant differences on our experimental timescale of a few
microseconds for the single-atom Rabi oscillation. Thus, so far, this finite lifetime is
not a limitation in our setup, but should become the ultimate limit in coherence time

once all previously described sources will be eliminated.

Then, due to the random thermal motion of the atom in the optical tweezers, it
explores the intensity profile of the excitation beams and experiences different Rabi
frequencies and light-shifts from shot to shot. Along the x-direction, where the 475 nm
excitation laser beam waist of 24 ym is minimal and the Gaussian distribution width
of the atom position is maximal (o, ~ 1 um), the relative standard variation of Rabi
frequencies are only 2.5 x 1072, We have checked that for our experimental parameters,
this effect should be negligible unless the excitation beams are strongly misaligned.
Another dephasing mechanism is the shot-to-shot variation in the pulse areas of the
excitation beams. We have estimated the relative fluctuations of the intensity of the
pulses to be below 0.2% rms, which does not lead to any measurable dephasing over

our experimental timescales.

Finally, stray transverse electric fields leading to mixing between different Zeeman
sublevels of the targeted Rydberg state could lead to a degradation of the Rabi
oscillation, as |g) would be coupled to several Rydberg states with different coupling
strengths. However, using the set of eight electrodes under vacuum, we zero out the
electric field to better than |E| < 5mV/cm by performing Stark spectroscopy on
high-n Rydberg states (typically n ~ 100). For such low values of E, the expected
effect of stray fields is negligible.
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5.4 Prospects for improvements

Prospects for improvements

In this section, I first combine all the effects previously described, explaining the
different behaviors presented in Fig. 5.1. Using these numerical results, I describe how

we plan to improve the current excitation laser setup.

5.4.1 Damping: a combination of all effects

Having developed a quantitative modeling of each of the experimentally relevant
imperfections listed above, we can now include them all in a global simulation. All
parameters (Rabi couplings (795, {2475, detuning A, detection errors (g,¢’), atomic
temperature T, laser phase noises S,) are given their independently measured values.
We draw fluctuating parameters according to their respective distributions, integrate
the OBEs with these parameters, and then average over typically 500 realizations.
Figure 5.13(a) shows a comparison between an experimental Rabi oscillation (for
Q/(27) = 4.8 MHz, disks) and a parameter-free simulation (solid line) including
all effects detailed in the previous Section. Let us note the difference with Fig. 5.1
presented at the beginning of this chapter, where the Rabi oscillation was reproduced
by a fitting function, in contrast to the present ab-initio calculations.

Figure 5.13(b) shows how the different effects depend on the Rabi frequency Q. The
simulations are performed for a fixed Q475/(27) = 35 MHz and a varying (795. To
characterize the asymmetric damping of the Rabi oscillation, I use, instead of a Q-
factor, the oscillation amplitude during the fifth half-period [indicated in Fig. 5.13(a)].
We observe that the damping is minimized for Q/(27) &~ 2 MHz and that:

« the Doppler effect (dash-dotted line) is the dominant source of damping for
2/(2m) < 0.7 MHz,

» the spontaneous emission (dashed line) is minimized at 2/(27) = 0.8 MHz (when

Q475 = (l795) and becomes dominant at large coupling strength.

« the phase noise influence (dotted line) peaks at 2/(27) = 1 MHz, but remains

currently at the same level that the two other sources.

Analyzing a selection of Rabi oscillations performed over the course of this thesis (red

disks), we obtain a good agreement with these predictions, except around 1 MHz.
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Figure 5.13: Combining all effects. (a) Experimental Rabi oscillation and a parameter-
free simulation. The arrow indicates the amplitude on the 5th half-period used as an
indicator characterizing the asymmetric damping. (b) Influence of the Rabi frequency
Q on the damping. The curves show simulations for Doppler effect (dash-dotted line),
spontaneous emission (dashed line), laser phase noise (dotted line), combining all of them
(solid black line) and adding the detection errors (solid red line). The shading on the latter
curve corresponds to s.e.m. of the Monte-Carlo simulation for 600 runs. The red disks are

experimental results.

5.4.2 Future improvements

For each damping source, we have already detailed possible solutions to improve the
coherence time of the Rabi oscillation. Here, I present the route that we should follow
in the future. Firstly, we will be interested in Rydberg S states: despite the reduced
dipole matrix element compared to D states, we will see in the next chapter that the
interaction between two Rydberg S levels is preferable. Another immediate advantage

is the reduced Doppler effect as we could use counter-propagating lasers.

Secondly, we will use the inverted excitation scheme, changing the intermediate
state from the 5P to the 6P level. The spontaneous emission will be reduced as the
radiative decay from the 6P state is only 1.3 MHz (5.75 MHz for 5P). Then, the
le) <> |r) transition is now at a wavelength of 1013 nm, for which high-power laser
sources (Ytterbium-doped fiber amplifiers, up to 10 W) are now available allowing large
couplings to Rydberg states. Meanwhile, the |g) <+ |e) transition is shifted to 420 nm,
where we could use a similar laser source than at 475 nm and obtain a few 100 mW of
laser power, large enough for strong Rabi coupling to the intermediate state. This
solution is the one implemented in the Harvard group and reported in Bernien et al.
[2017]. Thirdly, the phase noise contribution to decoherence can be suppressed using

the ULE cavity as a passive filter and injecting its output in a slave diode [Levine
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et al., 2018|.

Concerning detection errors, the false positive rate ¢ (collision with background
gas) could be suppressed by working, e.g., in a cryogenic environment, which would
have the additional benefit of suppressing the BBR decay of Rydberg atoms. False
negative (&’) could be avoided by quickly ionizing Rydberg atoms [Low et al., 2012] or
by mapping |g) and |r) to the two hyperfine ground-state levels [Wilk et al., 2010].
Let us note that detection errors are not as detrimental as decoherence since they do

not affect the unitary evolution of the quantum system.

Conclusion

In this chapter, we have studied how the coherent coupling between a ground-state
and a Rydberg level of a single atom could be affected in many ways by physical and
technical limitations. We developed models for each detection error and dephasing
sources obtaining good quantitative agreements with experimental observations. The
conclusion, from our study and the recent results obtained by Levine et al. [2018], is
to upgrade the optical setups to reach longer atomic coherence times between the
ground and Rydberg level.

The latter is especially important for the quantum simulation of Ising models where
a spin-1/2 is encoded between |g) and |r), which is the focus of this second part of the
thesis. Finally, let us remark that the coherence time between |g) and |r) does not
always matter. For example, in the third part of this thesis, we will implement XY
quantum magnets for which the spin-1/2 is encoded between two Rydberg states and
we only use the excitation lasers to prepare the atoms in |r) quickly and efficiently. If
this is accomplished with a Rabi 7-pulse, we are back to the problem of minimizing
the decoherence of Rabi oscillations during the first half-period. But, other schemes
can be used, such as STIRAP (see Section 7.1.1) and I will demonstrate excellent
excitation to Rydberg S and D states (with an efficiency > 95 %), even with the

current excitation scheme.
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In Chapter 4, we stated that a quantum Ising model could be implemented by
driving an ensemble of atoms from their ground state |g) to a single Rydberg level |r)
from the Rydberg manifold. Crucially, the mapping requires that all other Rydberg
states |r') are decoupled from the dynamics. Already in a two-atom system, shown in
Fig. 6.1, the dipole-dipole interaction Hag challenges this simplification as it couples
the pair-state |rr) to many others |[r'r"). Nonetheless, the spin-1/2 approximation
is restored in the van der Waals regime, where the mixing with other pair-states is
negligible, such that they can all be ignored. The interaction only amounts to a simple
van der Waals energy cost V = Cs/R® of having two Rydberg atoms separated by

a distance R; and can be considered either as an Ising coupling, or giving rise to a
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Figure 6.1: The van der Waals interaction. (a) A ground-state level |g) and a specific
state |r) from the Rydberg manifold defines a spin-1/2 driven with a coupling strength
(2 by the excitation lasers. Two atoms, separated by a distance R, interact through the
dipole-dipole Hamiltonian. (b) Hyy couples |rr) to other pair-states |r/r”). In the van der
Waals regime, the state |rr) is largely detuned from any |r/r”) , such that it does not mix
with them but its energy is modified by a van der Waals shift V = Cg/R.

Rydberg blockade volume of size R, = (Cs/h£2)/¢, inside which only a single Rydberg

excitation can be created.

Motivation The validity of the Rydberg blockade picture has been disputed in many
theoretical works predicting its failure due to various competing processes, occuring
already in two-atom system, — molecular resonances [Derevianko et al., 2015], Zeeman
degeneracy [Walker and Saffman, 2005, 2008], or in presence of a magnetic field,
competition with the Zeeman effect [Vermersch, Glaetzle, and Zoller, 2015]—, or
when a third atom is considered [Pohl and Berman, 2009; Cano and Fortagh, 2012].
Motivated by these studies, Barredo et al. [2014] performed experiments on a system
of three atoms all within a blockade volume, and concluded positively on the efficiency
of the Rydberg blockade mechanism.

Going a step further than this fully blockaded regime, we then studied a situation,
reported in Section 4.1, where the blockade volume extends only over a fraction of
large 2D arrays [Labuhn et al., 2016]. Figure 6.2(a) shows the evolution of the Rydberg
fraction f, (the proportion of atoms excited to Rydberg states) as a function of the
excitation lasers pulse area {27, for different geometries and choice of Rydberg states.
Comparing the experimental data with a numerical simulation of the spin-1/2 model
(solid lines), we obtain an excellent agreement for the quasi-linear chain of 30 traps
(left), but observe clear deviations for the ring of 8 atoms and on the 7 x 7 square
array. These deviations imply that our interacting Rydberg atoms do not map perfectly
on simple spin-1/2 particles. As the Rydberg fraction increases above the prediction of
the model, it indicates a failure of the Rydberg blockade.
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Figure 6.2: Failure of spin-1/2 mapping. (a) Experiments reported in Labuhn et al.
[2016]: the excitation lasers are switched on with a strength € for a variable time 7, the
fraction f, of Rydberg excitations is shown as a function of the pulse area Q7. Each inset
shows the atomic array and the extent of the Rydberg blockade volume. In two cases, the
data deviate from numerical simulations of a spin-1/2 model (solid lines). (b) We will
show that the deviations originate from the approximation of the real pair-state spectrum

(left panel, worst-case scenario) by a single potential curve (right panel).

Following these observations, we collaborated with Prof. Hans-Peter Biichler and
Sebastian Weber from the University of Stuttgart to find the origin of this failure.
They have recently developed the open-source pairinteraction software [Weber et al.,
2017] (see also the one by Sibali¢ et al. [2016] from the University of Durham), which
can calculate the eigenstates of Hy by full diagonalization, while taking into account
external magnetic and electric fields. Figure 6.2(b) shows an example of pair-state
potentials calculated with the pairinteraction software in a particularly complicated
scenario, which we will encounter in this chapter. The mapping of Rydberg atoms
to spin-1/2 particles requires that this can be replaced by a single potential curve
[Fig. 6.2(b), right panel]. By considering only a two-atom system, they pointed out
that the failure could be caused by a too high magnetic field B, = +6.9 G, applied to
perform optical pumping into the initial state |g) and to lift the Zeeman degeneracy of
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the Rydberg manifold, and chosen at this value for historical reasons. Thereupon,
we decreased B, to 3.5 G, repeated the experiments, and observed a much better

agreement, as we will see at the end of this chapter.

Goal I will describe the origin of the Rydberg blockade failure by going through
more and more subtle modifications of the pair-state atomic structure caused by
the dipole-dipole Hamiltonian and external fields. This will make this chapter quite
technical. We will see that Rydberg nD states are particularly affected, and I remind
the reader that our original motivation to use these states is the larger driving strength
achievable with our excitation scheme (see Chapter 5).

This chapter is organized as follows. First, in Section 6.1, I remind how the dipole-
dipole coupling of two atoms in the same Rydberg state ideally gives rise to a simple
van der Waals shift, and show spectroscopic measurement of the latter. In Section 6.2,
I study the validity of the van der Waals approximation and the spin-1/2 mapping in
a quite simple configuration where two atoms are aligned with the quantization axis
and external fields are neglected. I will focus on two states, a nS;/, state and the
58 D3/, state, illustrating two very different situations. In Section 6.3, we will consider
the general case with non-zero external fields and an angle between the atomic pair
and the quantization axis. Using the pairinteraction software to perform numerical
calculations, we will investigate extensively the pair-state spectrum of the 6105, state
for which we observed the failure of the spin-1/2 approximation in Fig. 6.2. Finally, in
Section 6.4, having identified the origin of these deviations, we will demonstrate a much
better agreement of the dynamics of the many-body system with the spin-1/2 model.
Parts of the material presented in this chapter have been published in de Léséleuc

et al. [2018c].

Introduction to van der Waals interaction

[ start by briefly presenting the structure of the Rydberg manifold of states of a single
atom. Figure 6.3(a) shows the different Rydberg series around the principal quantum
number n = 60 and how the levels are interleaved due to the difference in quantum
defects! 4. The fine-structure splitting is ~ 0.5 GHz between the nPy/; and nPs3,
and ~ 0.05 GHz between the nDs/; and nDs/, states. Being sub-MHz, we neglect it

!They are currently known with a precision of 1078 from measurements performed in the group of
Prof. Thomas F. Gallagher [Li et al., 2003; Han et al., 2006], which is important for the precise
estimate of the energy defects AFE.
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6.1 Introduction to van der Waals interaction

for the nF5/; and nFy), states. The hyperfine splitting is also ignored as it is below
300 kHz for S/, states [Li et al., 2003] and sub-kHz for D3/, states [van Wijngaarden,
Li, and Koh, 1993]. We thus express all Rydberg states in the fine basis |nL;, mj)
where the magnetic quantum number m is the projection of the angular momentum
J on the quantization axis. Recall that the excitation lasers are polarized to couple
only to the stretched state (m; = J). I now present the effect on a single atom of

external magnetic B and electric E fields.

Zeeman effect M splits the Zeeman manifold, shifting the m; level by AFE; =
gpupmy B, where the g-factor depends on the Rydberg series (we neglect diamagnetic
terms here). We usually apply a moderate vertical magnetic field B, ~ 3 — 8 G,
for which AFE7 < 20 MHz remains smaller than the fine-structure splitting of D
states. Transverse magnetic fields (B,, B,) are canceled, to avoid mixing the different
Zeeman sublevels, by performing microwave spectroscopy between the two hyperfine

ground-state.

Stark effect I-}Stmk creates a quadratic Stark shift %O:Ea where « is the static
polarizability (scaling as n” and depending also on the Rydberg series) and mixes
Rydberg states of different angular momentum L, which induces a permanent electric
dipole. The electric field E thus strongly affects the dipole-dipole interaction and we
try to minimize it. Using the extreme sensitivity of large (n = 100) Rydberg state to
E, we measure and cancel E to better than 5 mV /cm over a region of 30 x 30 um?
using our set of eight electrodes. In this chapter, we will sometimes apply a weak
vertical electric field F, = 20 mV/cm to observe its effect on the interaction between a

pair of atoms.

6.1.1 Dipole-dipole interaction

Considering now two Rydberg atoms (A and B), we construct the set of unperturbed
pair-states |r/,75). The goal of this section is to show how the pair-state |rr), describing

two atoms in the same Rydberg state?, is modified by the dipole-dipole interaction:

IS 1 dA'dB—g(dA'n)(dB'ﬂ)
Hdﬂ‘. - 3 b
47eg R

(6.1)

2Tn the third part of this thesis, we will consider two atoms in different Rydberg states.
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Figure 6.3: Single- and two-atom spectra. (a) S, P, D and F Rydberg series for
n = 60 — 62, and their quantum defects 4. The fine-structure splittings for P and D states
are indicated (not to scale), we neglect the sub-MHz splitting between the F5/, and F7/,
states. The Zeeman sublevels are not shown for simplicity. (b) Two atoms in the same
Rydberg state |rr) are coupled by H 4 to many other pair-states |7'7""). The red arrows in
(a) shows one of the interaction channel with |rr) = [nD,nD) and |r'r”) = [nP,nF).
The detuning between two pair-states is denoted AE and the coupling strength J. The

contribution of all interaction channels leads to the van der Waals shift V.

where d is the dipole operator, R the interatomic distance, and n is a unit vector along
the internuclear axis. We denote by € the angle made by n with the quantization axis,
and refer to it as the interaction angle. We can reformulate Eq. (6.1) by expressing d
in terms of its components d~, d° and d* on the spherical basis, which respectively

decreases, conserves and increases by one unit the magnetic quantum number m ;:

1 [1 — 3cos?6
4meg 3 2

—I—% sinf cos 0 (d}idy + d dy + doydf; + d%df) (6.2)

Hyy = (dfdg + dyd + 2d%dY)

+% sin® 0(dd} + dydp)]

The first group of term conserves the total magnetic number of two atoms M =

m4 + mp, the second changes it by AM = +1 and the third by AM = +2.

We will take into account the action of Hyy on the pair-state spectrum in three
steps of increasing complexity: (i) in Section 6.1.2, we will ignore the details of the
various couplings between pair-states and simply state the results of the second-order

perturbation theory; (ii) in Section 6.2, we will investigate ‘manually’ the various
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6.1 Introduction to van der Waals interaction

couplings to check the validity of the second-order approximation in the simpler
case # = 0; (iii) in Section 6.3, motivated by the experimental results of Fig. 6.2, we
will focus on the specific 6103/, Rydberg state and include all effects, a non-zero

interaction angle and external fields, using numerical calculations.

6.1.2 The van der Waals regime

The two-atom Hamiltonian Hgg couples |rr) to many pair-states |r'r”) as sketched in
Fig. 6.3(b). Each |rr) <+ |r'r") coupling defines an interaction channel, characterized
by an energy (or Forster) defect AF = Ev — E,, and a coupling strength J =
(r'r"| Hyq |rr) = C3/R3. In the limit J < AE, for all channels, we can apply second-
order perturbation theory resulting in a simple shift of the pair-state energy by:

2 Cs . Cs,
V:—ZAEi:ﬁ with Cg = — _AE, (6.3)

where the sum runs over all interaction channels. In this so-called van der Waals
regime of the dipole-dipole interaction, the mixing of |rr) with other pair-states is
negligible. In practice, only a few interaction channels significantly contribute to V
and it is very instructive to identify them, as done by Reinhard et al. [2007] and
Walker and Saffman [2008]. It allows us to understand the origin of the van der Waals
shift, obtain a good estimate of V' and find the limiting cases where the second-order
approximation fails. We will perform this identification in Section 6.2 for two extreme
cases: the very simple n.S, states and the Forster resonance occurring for the 58 D3/,

state as a specific pair-state is almost degenerate (AF < J) with |rr).

Scaling laws Beforehand, let us discuss the dependence of the interaction strength
with the principal quantum number n. The C3 and Cg coefficients scale as:

2
03 11

Csoxn® and Cg=— N (6.4)

since C3 is proportional to the product of two electric dipole moments, each scaling as
n?, and the energy mismatch of an interaction channel usually decreases as AE oc n 2.
We can compare this scaling law with calculations of the Cy coefficients for all |rr)

pair-states® of the S, P and D Rydberg series using the pairinteraction software.

3We choose the stretched pair-states with maximal total quantum number M for the calculations.
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Figure 6.4: Scaling of the Cg coefficient. Calculated Cy for the five important Rydberg
series, rescaled by the expected n!!'-dependence with the principal quantum number 7.
Red: positive, blue: negative Cg. Dashed line: position of the Forster resonances. We

choose . = 60 as a reference for the energy scale.

Figure 6.4 shows the rescaled Cg/(n*/60)!!, which should remain constant according
to Eq. (6.4). We use the effective quantum number n* = n — § corrected for the
quantum defect of each Rydberg series. The scaling law is remarkably valid over the
full range n = 30 — 100 for S;/, and Py, states, with a few exceptions for P/, Ds/s
and D5/, states. For 42P,/,, the van der Waals shift almost vanishes as the various
interaction channels compensate each others. On the contrary, the interaction strength
is strongly enhanced at n = 40,58 for D3/, and n = 43 for Ds,5, due to a Forster
resonance. Whereas Cyg is increased at the resonance, it can change sign or strongly
decrease around the resonance, as the Forster defect AE' goes from positive to negative
and possibly compensates the van der Waals contribution of all other channels. Finally,
let us note that, while the interaction strength of a nP states is more than one order
of magnitude smaller than for a nS and nD states, it suffices to choose a slightly

larger n to obtain the same van der Waals shift due to the strong n'! scaling.

6.1.3 Measuring the van der Waals shift

The first experimental demonstrating an interaction shift between two isolated Rydberg
atoms was the observation of the Rydberg blockade effect [Urban et al., 2009; Gaétan
et al., 2009]. Driving the atoms from the ground-state |g) to a Rydberg state |r) with
a coupling strength (2, the probability P, to excite the two atoms is suppressed for a
large interaction shift V > k. Going a step further, Béguin et al. [2013] measured
the van der Waals shift by using an intermediate regime where A2 ~ V' and fitted the
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Detuning ¢ (MHz)

Figure 6.5: Measurement of van der Waals shift. The excitation of two Rydberg
atoms is restored when the detuning § of the excitation lasers matches half the van der
Waals shift. Comparing the two-atom resonance (red curve) to the single-atom one (dark),
we obtain V/h = —1.22(2) MHz.

evolution of P, to numerical simulations. Here, I describe a spectroscopy method of
measuring the interaction energy by probing the |gg) <+ |rr) transition.

Figure 6.5 shows how the excitation of |rr) is restored by a four-photon process* for
a laser detuning 6 = V/2 from the single atom |g) <> |r) transition. The experiments
was performed with the Rydberg state |61D3 s2,mg =3/ 2) for two atoms aligned
with the quantization axis and separated by R = 9 pum. Comparing the resonances
observed with one and two atoms, we directly extract the van der Waals shift
V/h = —1.22(2) MHz, which can be compared to Vin/h = —1.44 MHz obtained from
the calculated Cg = —769 GHz.um®. As we trust the theory, it indicates a systematic

error in the calibration of the interparticle distance, which I now discuss.

Distance calibration Over the course of this thesis, we noticed that the calculated
interaction energies were always larger than the measured ones, not only for van
der Waals shift as here, but also for the resonant dipole-dipole interaction discussed
later in Chapter 7. Because of the R™® (or R~ in the second case) scaling of the
interaction strength, it is crucial to precisely estimate the separation between two
optical tweezers. The latter was calibrated by optical ways [Béguin, 2013] but can be
affected by systematic uncertainties in the focal length of the asphere. In fact, we
can reverse the problem and use the dipole-dipole interaction as a way to precisely
calibrate the inter-atomic distance. It leads to 4.5 % larger distances than from the

optical calibration.

4|g) < |r) being itself a two-photon process, see Section 5.1
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Two simple cases with pure dipole-dipole interaction

We have considered, in the previous section, that the dipole-dipole Hamiltonian Hya
could be taken into account using second-order perturbation theory. Nevertheless, this
approximation is valid only when, for each interaction channel, the coupling strength
J remains much smaller than the energy difference AE between the pair-states. In
this section, we check this condition by identifying the various interaction channels in
the simple case § = 0, where Hyg conserves the total magnetic quantum number AM.
I will focus on n.S; ), and nDs;), states since they are the only two accessible with our

excitation scheme.

6.2.1 nsSy: ideal van der Waals regime

We have seen in Fig. 6.4 that the Cy coefficients of the n.S, /, series were, to a very
good approximation, following the n!!-scaling law over the full range n = 30 — 100.
We thus expect the situation to be roughly independent of n and we focus here on the
pair-state |rr) = |60.5'1 /2,605 ﬂ). The only available interaction channels are of the

form:

|6[}Sl‘;2, 6081{2) < |ﬂ;P.,;} ﬂﬂpj) 3 (65)

where i, 7 = 1/2,3/2 indicates the fine-structure of the P level, (n’,n"”) runs over the
full Rydberg manifold and we do not write the Zeeman sublevels for clarity. Only the
contribution C%/AE of a few channel will be significant, as C3 drastically decreases
with the difference in principal quantum numbers (due to the smaller dipole matrix

elements), while the energy mismatch AE increases:

« Energy mismatch. From Fig. 6.3(a), we identify that a nS state lies roughly
halfway between the (n — 1) P and nP levels (because ds — dp ~ 0.5), such that
the closest pair-state are of the form |(60 + k)P, (59 — k)P). The calculated
energy defect AE is —1.7 GHz® for k = 0, —5.5 GHz for k = 1, —13 GHz for
k = 2... It turns out that these pair-states all lie below |nS, nS), such that the
van der Waals shift will be positive (repulsive interaction), and coupling to
|60P, 59P) will likely be the dominant interaction channel.

« Coupling strength. It is largest for the |60P,59P) state (~ 4 GHz.um?),

50r more precisely, taking into account the fine-structure splitting of the P states (0.46 GHz at
n = 60): —2.2 GHz, —1.7 GHz, —1.7 GHz and —1.2 GHz for the four combinations |nP;, (n — 1) P;).
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Figure 6.6: nS,/, states: van der Waals regime. (a) Closest pair-states to |rr) =
‘GOSlﬁ, 605’1/2) and their C'3 coupling. (b) Numerical calculations from the pairinteraction
software. The thick colored curve represents the eigenstate energy and its overlap with
|rr), which remains > 99.5 % for R > 5pum. The dashed curve shows the Cg/R® van der

Waals scaling.

while it is already down to 0.06 GHz.um? for |61P, 58 P).

These two results are shown graphically in Fig. 6.6(a). They indicate that the closest
pair-states |60P,59P) are, in excellent approximation, the only ones contributing to
the van der Waals shift, the contribution of the second set being weaker by a factor
10%. Let us now precisely count the number of channels. Because of the fine-structure
of the P levels, there are 4 [60F;,59P;) and 4 |59F;, 60P;) states. We also need to
take into account the Zeeman sub-structure, noting that we only couple to M =1
states: there are only 1 in the |Pys, Pi/) manifold (jmy; = 1/2,m; =1/2)), 2 in
P2, P3f2> and 3 in |P3;2, Pg;g) giving a total of 16 channels. Finally, we can estimate
Cs ~ 16 C2/AE = 150 GHz.um® in quite good agreement® with a more precise
numerical estimate shown in Fig. 6.6(b) using the pairinteraction calculator.

We can now check that the second-order approximation is valid. For example, at
a distance of 5 um, the coupling strength on a single channel J ~ 32 MHz remains
much smaller than the detuning AE ~ 1.7 GHz. Numerically, we find that the overlap
of the unperturbed pair-state |rr) with the real eigenstate is larger than 99.5 %.
The remarkably simple situation explored here, with only a few interaction channel
well separated from |rr), is general for n.S /, states, which are thus particularly well
suited for the implementation of spin-1/2 Ising models. We will see in the next section

that it remains true even for a non-zero interaction angle. As we already stated, the

5The small discrepancy is because we ignored the variation of Cs over the different Zeeman pair-states
(due to the Clebsch-Gordon coefficients) and the variation of AE due to the fine-structure
splitting.
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Figure 6.7: 5805/, states: quasi-resonant regime. (a) The coupling strength to
|59P1/2,57F5/2) is larger than to |60P1,2,56F5f2>, but the latter is almost resonant
with |rr) = |58D3/2,58D3/2) and thus dominates the interaction. (b) Numerical calcula-
tion showing the strong mixing of the two gquasi-resonant channels. The interaction energy
varies between ~ /2C3/R? at short distances and ~ Cg/RS with Cs = 202 /AE at large
distances.

only reason why we do not use n.S/; states is the weaker laser coupling {2 from the

ground-state (see Section 5.1).

6.2.2 58Ds3/: A Forster resonance

We now repeat the same procedure for Rydberg D3/, states. As we observed in Fig. 6.4
a strong enhancement of the Cg coefficient around n = 58, we will focus on this specific
case. The dipole-dipole interaction couples |rr) = |58D3 /2,580 ;2> to pair-states of

the form:

|n'P;,n" P;) | |n"Pi,n”F5ﬂ>, and |n'F5/2,n”F5f2> (6.6)

with 4,5 = 1/2,3/2. Of the three’, the second one will have the smaller energy
difference as a nD states lies almost halfway of a nP and a nF' level, and the most
important pair-sates are thus ‘(58 + k)P, (58 — k)F5;2>. The energy defect A is
—4.5 GHz for k = 3, only —6 MHz (!) for k =2, 0.7 GHz for £k = 1, and 2.5 GHz
for k = 0. Let us note the incredibly small detuning of the |pf) = |60P1 /25 56F5;2>
pair-state. This accidental quasi-degeneracy is called a Forster resonance. Figure 6.7(a)
shows the two closest pair-states and their respective coupling to |rr). At a distance of

5 pm, the coupling on the Férster channel, J ~ 20 MHz is much larger than AFE| such

"For the first and third channels, the energy defect are larger than 10 GHz at n = 58, as seen in
Walker and Saffman [2008].
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that the eigenstates become:

V2Cs
RS

1
~ ﬁﬂrr) + |pf),) at E~+

where we introduced the notation |pf), for the symmetric state® %ﬂp f)+ |fp)) and

(6.7)

the v/2 enhancement of the coupling strength comes from this symmetrization. At
larger distances, the mixing between the two states decreases and we recover the van
der Waals regime, as seen in the shading of the two potential curves in Fig. 6.7(b).
Carefully looking at the two potential curves of Fig. 6.7(b), one can notice a slight
asymmetry between the upper and lower branches: this comes from the negative van
der Waals shift caused by the interaction with the far-detuned ‘59P1 /2, 57F5 /2> level.

Forster resonance and spin-1/2 mapping Even if the interaction does not take
the form of a van der Waals shift, it remains quite simple (there are two well identified
pair-states) and useful for experiments as the interaction energy is much larger than in
the regular van der Waals regime. In fact, the Forster resonance was used in the first
works of the group to achieve very efficient Rydberg blockade [Gaétan et al., 2009;
Wilk et al., 2010]. In addition, |rr) and |pf), can be tuned precisely to resonance with
an electric field using the different static polarizability of P, D and F' states, allowing
a dynamical control of the interaction [Ravets et al., 2014].

Amongst the |r) = |nD3;2> Rydberg states, we have studied the specific n = 58
case where the Forster defect AE between |rr) and |(n + 2) Py, (n — 2)F55) is only
-6 MHz. The situation is almost identical at n = 59 where AE = +9 MHz. For
56 < n < 63, AE < 50 MHz still leads to non-negligible mixing between |rr) and
Ipf), for interacting atoms. Can it explain the deviations from the spin-1/2 model
observed in Labuhn et al. [2016], and shown in Fig. 6.2, for experiments performed with

‘61D3 /2> states? We can think of two cases depending on the interatomic distance:

» For a pair of atoms far from each other, J < AF, and we are still in the van
der Waals regime. The mixing is negligible, we can safely remove |pf) from the

Hilbert space and the mapping to a spin-1/2 model is valid.

« For a pair of atoms close to each other, J > AF, and the two states strongly mix.
But in addition, the pair-states are strongly detuned from the laser resonance
(J > ), such that they are not coupled to by the excitation lasers and |pf)
will not be populated. Again, the mapping is valid.

8The anti-symmetric state |pf) — |fp) does not couple to |rr).

129



6.3

Chapter 6: Implementing the Ising coupling using the van der Waals interaction between nDs,, states

(@) (b) ,

T 50| 6ID.,,61D,, e

B = e e |aMI=01,2 (8#0)

[a O = VL — . .
z . an — oot direct mixing
l E - E 34 | e3P, 59,, .
z - v . -
O' R o E—4' > 2" order mixing

}B '_:’ —
E 0 61D3ﬁ’61D3ﬁ —-‘.‘ —
E Y — N = -3

Figure 6.8: The situation in Labuhn et al. [2016]. (a) We consider a vertical magnetic
(Bz) and electric (E,) external field, and a non-zero interaction angle § between the
pair of atoms and the vertical quantization axis. (b) Focus on the pair-state spectrum
around |rr) = |61D3/2,61D3ﬂ>. The M = —3,...,3 Zeeman sublevels are split by B,.
For B, ~ 4 G, the manifolds from |rr) and |63P1/2,59F5/2) start to overlap. The direct

and second-order mixing are described in the text.

Following these arguments, the mixing caused by the Foérster channel is compatible
with a spin-1/2 model, as long as the Forster defect AE is much larger than the
excitation lasers strength (2 and detuning §. Nevertheless, we did not yet consider (i)
the non-zero interaction angle 6, (ii) the magnetic field B, and (iii) the possibility of a
small electric field E,.

General case: non-zero external fields and interaction angle

In this section, we investigate the more general case where (6, B,, E,) # 0. We will
now use the open-source pairinteraction software [Weber et al., 2017] as it becomes
difficult to track manually all the various interaction channels. I start by recalling that

the Zeeman manifold of ‘61D3 /2,61 D3 /2> is composed of 16 sublevels denoted as®:
|61D5/2,my;61D3)5,m';) = [M =m;+m) with my,m)=+1/2,43/2. (6.8)

For § = 0, the |rr) = |[M = 3) level (the only one coupled to by the polarized excitation
lasers) does not mix with other ones as Hy, conserves M. The situation is now different
as [AM| =0,1,2 couplings are allowed as § # 0. In addition, we will have to consider
the splitting of the Zeeman manifold by B,. Figure 6.8 schematically shows the various

pair-states and how they couple to each other:

9Strictly, we should denote them as |M, a), where o takes into account the pair-state degeneracy
for |M| # 3. I ignore it to simplify the notations.
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« At n = 61, the Forster channel |pf) = ‘63P1;2,59F5ﬂ> is only detuned by
~ 35 MHz, leading to significant ‘direct’ mixing between |rr) and |pf) as
described in the previous section. While we now couple to the M = 1,2, and 3
sublevels of |pf) (see also Ravets et al. [2015]), we still rule out this mixing as

an explanation for the failure of the spin-1/2 approximation.

« Interaction channels of the form |M = 3) — |r'r") — |M' # 3) leads to a 'second-

order’ mixing of the Zeeman manifold. We investigate this in Section 6.3.1.

» The Zeeman manifolds of |rr) and |[r'r") overlap for B, > 4 G, we will see in
Section 6.3.2 that this gives rise to an extreme sensitivity of the pair-state

spectrum to even small electric fields.

 Finally, we will systematically explore in Section 6.3.3 the parameters space
spanned by (6, B,, E,), and also vary the choice of principal quantum number n,
to find conditions under which the mapping to a spin-1/2 system holds.

6.3.1 Mixing of the Zeeman manifold

In Section 6.1, the dipole-dipole interaction was restricted to channels of the form
|M =3) — |[r'r") — |M = 3), as the total magnetic quantum number M was con-
served. As we now consider pair of atoms at an angle with the quantization axis,
channels of the form |M = 3) — |r'r") — |M') are allowed. As it involves two dipole-
dipole couplings, each changing the magnetic quantum number by up to |[AM| = 2,
the range of final state is M’ = —1,....3. For B, = 0 G, all Zeeman sublevels are
degenerate and H 44 should be taken into account using the theory of degenerate
second-order perturbation. The van der Waals interaction is then described by a
matrix V. Expressed in the Zeeman basis, its off-diagonal coefficients correspond to
the coupling strength between two different Zeeman sublevels. For B, # 0, there is a
competition between these 2" order mixing terms and the Zeeman splittings, as the
different M sublevels are not degenerate anymore. We explore this situation using the
pairinteraction software to calculate the pair-state potentials for a generic!® interaction
angle § = 78° and different B,. The results are shown in Fig. 6.9:

« For B, = 0 G, the degeneracy of the Zeeman manifold leads to a complete mixing

of all | M) states by the dipole-dipole interaction. One eigenstate experiences a

10A1l AM = 0,41 and 42 couplings are allowed according to Eq. (6.2).
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Figure 6.9: Second-order mixing of the Zeeman manifold. Pair-state potentials of
the ‘61D3,2,61D3;2> Zeeman manifold composed of 16 pair-states initially ordered, at
large distances, by their total magnetic quantum number M. The zero is fixed to the
energy of |rr) = |M = 3) at R = co. The color encodes the overlap with |rr) and thus
the coupling to the excitation lasers. We do not distinguish all 16 potential curves as some
remain degenerate and the Zeeman manifold extent is larger than the energy axis. For
B, = —2 G and 0 G, we observe a clear mixing between the different pair-states, absent
for B, =2 G.

weak van der Waals shift, preventing efficient Rydberg blockade as recognized
by Walker and Saffman [2008].

« For B, = —2 G, the Zeeman splitting AFE, prevents the mixing as long as
V <« AE,. For decreasing R, the |[M < 3) pair-states ‘fall back’ on |[M = 3) as
they usually experience a stronger van der Waals shift. It leads to (i) a strong
mixing and (ii) failure of the Rydberg blockade at magic distances where a

coupled eigenstate crosses zero-energy [Vermersch, Glaetzle, and Zoller, 2015].

« For B, = +2 G, the situation remains ideal: we do not observe any mixing

between the pair-states for the range of distances and energies considered here.

Experimental confirmation I illustrate the effects discussed above with Rydberg
spectroscopy experiments performed on a two-atom system: The excitation lasers
detuning ¢ from the single-atom transition is varied and we measure the probability
P,, to excite the two atoms. Figure 6.10 shows the results for three different magnetic
fields B,. For B, < 0 (left and middle panels), we observe two peaks corresponding
to two eigenstates connected at R = oo to the M = 3 and M = 2 unperturbed
pair-states. The second is coupled to by the excitation lasers because of the 2" order

mixing with |M = 3). Notably, at B, = —1.9 G, this pair-state is at zero-energy (in

132



6.3 General case: non-zero external fields and interaction angle

Prr

0_10 B 2P —
Detuning § (MHz) Detuning § (MHz) Detuning & (MHz)

Figure 6.10: Experimental observation of 2" order mixing. Excitation spectra for
two atoms at R = 6.5um and # = 23° for B, = —5.9 G, —1.9 G and 6.9 G. Peaks in P,,
indicates the position of the different Rydberg pair-states coupled to by the excitation
lasers. In the absence of second-order mixing of the Zeeman manifold, only |rr) = |M = 3)
would be observed. For B, < 0, we clearly see a second peak corresponding to |M = 2).
The black points are single-atom reference spectra. The red solid curves are ab-initio

calculations performed by Sebastian Weber.

the rotating frame) realizing the situation envisioned by Vermersch, Glaetzle, and
Zoller [2015] of a Rydberg blockade failure at a specific ‘magic’ distance. These results
are in very good agreement with simulations without any adjustable parameters (red

solid lines).

For B, = 46.9 G (right panel) only one peak is observed: there is a single eigenstate
coupled to by the excitation lasers confirming what was predicted from Fig. 6.9. We
conclude that for a positive magnetic field, the mapping to a spin-1/2 model remains
correct even for a non-zero interaction angle. Let us note that this second-order mixing
is specific to P and D states, but does not affect Rydberg S states, as already remarked
by Vermersch, Glaetzle, and Zoller [2015]. For S/, states, the off-diagonal coefficients
of V are smaller by two orders of magnitude than the diagonal ones causing a simple

shift, whereas they are of the same order of magnitude for P and D states.

6.3.2 Sensitivity to electric fields

We now investigate the combined effect of an electric field E, and of a magnetic field
B, > 4 G, large enough to mix the |61D3;2,61D3;2> and |63P1;2,59F5ﬂ> Zeeman
manifolds. Figure 6.11 shows that the pair-state potentials are drastically modified by
a small electric field, £, = 20 mV /ecm, when B, = 6.9 G. | emphasize that, at the
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Figure 6.11: Sensitivity to FE,. Pair-state potentials for different settings of B, and E.
In contrast to Fig. 6.9, the additional potential curves originate from the |63P1/2,59F5/2)
manifold. For B, = +6.9 G, a weak E, = 20 mV/cm leads to a strong mixing, while the
effect is absent at B, = 4-3.5 G. The interaction angle is # = 78°.

single-atom level, such a weak electric field has almost no effect (the Stark shift is only
~ 0.1 MHz), but the high density of pair-states, due to the overlap of the Zeeman
manifolds, makes the pair-states very sensitive to E,. The effect indeed disappears for

a weaker B, = 3.5 G as the manifolds are more separated.

[ now turn to the experimental test of the above analysis by performing two-atom
blockade experiments with four different settings of the external fields: the magnetic
field is either 3.5 or 6.9 G, and the electric field either zero or 20 mV /em. The two
atoms are a distance R = 6.5 ym and form an angle # = 78° with the quantization
axis. We can estimate an interaction energy V/h ~ 10 MHz from the Cg coefficient of
the van der Waals regime, such that for a driving strength /(27) = 1.2 MHz we
expect an efficient Rydberg blockade and a strong suppression of the probability P,
to obtain two Rydberg excitations. The evolution of P,, with the excitation time is
displayed in Fig. 6.12. As excepted from our previous numerical calculations of the

pair-state potentials, we observe a strong suppression of P,, for all settings, except for

B=6.9 G and F =20 mV/cm.

To compare with the theory, we simulate the dynamics of the two-atom system
solving the Schrédinger equation and calculate the probability to excite the two atoms.
We assume two different models to describe the interacting system: in the first one
(solid line), we use the full interaction spectrum and include around 800 pair-states
within 2 GHz from the resonance. In the second model (dashed line), we make the
spin-1/2 approximation where we only keep a single potential curve (the one with the

largest overlap with |rr)). The numerical simulations were performed by Sebastian
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Figure 6.12: Observation of exaggerated F,-sensitivity. Probability P,, to excite the
two atoms as a function of the time. For B = 6.9 G (a-b), increasing E, from 0 to
20 mV/cm breaks the Rydberg blockade. At B = 3.5 G (c-d), an efficient blockade
is maintained, even in the presence of the electric field. The solid lines result from a
simulation taking into account the full interaction spectrum. The dashed lines are obtained
by modeling the atoms as spin-1/2 particles with a single interaction potential for |rr).
The interatomic distance is R = 6.5 pum and the angle # = 78°. The simulations have been

performed by Sebastian Weber.

Weber. The agreement between the experimental data and the ab-initio calculation is

quite satisfactory.

6.3.3 Systematic search

We now investigate systematically how the choice of nl5/, states, interaction angle 0
and the value F, and B, of the external fields affect the accuracy of the mapping
on a spin-1/2 model. Similarly to the previous section, we use the double excitation
probability P,, during a Rydberg blockade experiment as a marker for the failing
of the spin-1/2 approximation, and thus search a range of parameters for which P,

remains small. The results are shown in Fig. 6.13:

» For any n and 6, we observe a breaking of the Rydberg blockade for negative B,
as explained in Section 6.3.1, except at n = 55 — 57 where the van der Waals

shift becomes negative and the failure thus occurs for B, > 0.
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Figure 6.13: Parameters scan. Influence of n, 8, B, E, on the mapping onto a spin-
1/2 system: the latter fails when P, is non-zero. The interatomic distance is fixed at
R = 6.5pum in (a) and adjusted to maintain a constant interaction shift in (b). The
electric field is £ = 0 in the left panels and chosen between 0 and 20 mVcm such that
P, is maximized in the right panels. The orange star marks the experimental parameters
used in Labuhn et al. [2016] where deviations from a spin-1/2 model were observed. The
calculations have been performed by Sebastian Weber.

« For too large a B,, we observe the strong sensitivity to an electric field, described
in Section 6.3.2. From Fig. 6.13(b), we confirm that this effect is caused by the
close-by Forster resonance at n = 58, 59. It is impossible to map a two-atom
system onto a spin-1/2 model at the resonance due to the strong mixing, and it

requires a fine tuning of B, for n = 60 — 64 as the Forster channel remains only
weakly detuned.

Effective Cy coefficients. In the optimal regime where the Rydberg blockade and
the spin-1/2 approximation is valid, for example at B, = 3.5 G according to Fig. 6.13,
we check if we can describe the energy of |rr) by a van der Waals potential with
an angular dependence C(6)/R®. Figure 6.14(a) shows the energy dependence as a
function of R for § = 78° together with a 1/R® fit. We observe, that for R > 8 um, the
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Figure 6.14: Approximation of the interaction by an anisotropic van der Waals potential
Cs(6)/RE. (a) Comparison of the exact interaction energy (solid line) with the asymptotic
determination of the van der Waals potential (dashed line) for a fixed angle § = 78° and
B = 3.5 G. (b) Angular dependence of Cg(#)/R® at R = 9 um marked by the cross on (a).

van der Waals description is an excellent approximation. Figure 6.14(b) shows the
angular dependence of the coefficient Cg(#). We have thus extended the anisotropic
effective potential approach of Barredo et al. [2014] and Vermersch, Glaetzle, and
Zoller [2015] beyond the strong blockade regime. Consequently, we represent the
Rydberg blockade volume not by a sphere but by an ellipsoid.

Conclusion

Now that we have identified parameters allowing to map our two-atom system onto a
spin-1/2 model, we check experimentally that this can be extended to many-body
problems. We thus revisit the experiments reported in Fig. 6.2, but with a weaker
B, = 3.5 G (6.9 G previously). We illuminate the atoms with the excitation lasers
and measure the evolution of the fraction fr of atoms in Rydberg states. Figure 6.15
shows the results for two atomic arrays together with predictions of the spin-1/2
model (solid line). For the 8-atom ring, we can obtain an exact numerical solution,
while for the 7 x 7 array, the Hilbert space is too large. Sebastian Weber thus used the
fact that two neighboring atoms cannot be excited due to the Rydberg blockade to
truncate the Hilbert space from 2% to ~ 220 states and checked, with systems of up to
25 atoms, that the truncation gives the same results as an exact calculation. In both
experiments, we experimentally find a much better agreement with the simulation
than at the beginning of this chapter, despite the wealth of phenomena affecting
Rydberg Ds, states.
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Figure 6.15: Success of spin-1/2 approximation. Same experiment as in Fig. 6.2 but
with B, = +3.5 G instead of 6.9 G. The points shows the evolution of the Rydberg
fraction fr with the pulse area Q7. Left: 8-atom ring with a nearest neighbor spacing
of 6.5 um. The shaded ellipse illustrates the range of the anisotropic blockaded region
U > k. Right: Square lattice of 7 x 7 traps (lattice spacing 6.1 um), the blockade extends
over nearest and next-nearest neighbors. The solid curve is a simulation of a spin-1/2

model. The agreement is much better than in Fig. 6.2.

Conclusion We have explored the mapping on spin-1/2 models of interacting mul-
tilevel Rydberg atoms by taking into account the underlying details of the atomic
structure in the presence of electric and magnetic fields. The latter has been made
possible thanks to the recent development of open-source numerical solvers for the
dipole-dipole interaction [Sibalié et al., 2016; Weber et al., 2017]. We found experi-
mental conditions under which the Rydberg atoms can be simply viewed as spin-1/2
particles. Using two-atom systems, and then larger one of up to 49 particles, we
confirmed these theoretical findings and demonstrated a much better agreement
with a spin-1/2 model than in Labuhn et al. [2016]. The insights brought by the
numerical solver could also help improving the control of interactions in Rydberg
dressing experiments using nPs, states [Jau et al., 2016], as well as for Rydberg slow
light polaritons with nD states [Tresp et al., 2015]. We will use the pairinteraction
solver again in the third part of this thesis to explore the interaction of two atoms in
different Rydberg states and the mapping to a spin-exchange Hamiltonian. In the
future, our goal is to move towards Rydberg S levels, where the two most deleterious
effects described in this chapter, Forster resonance and Zeeman structure mixing, are
absent. It requires improving the excitation laser setups as described in the previous

chapter.

138



Part Ill.

XY magnets

139






Controlling Rydberg atoms
Interacting via a resonant dipolar
coupling

Contents
7.1 Efficient excitation to Rydberg states and readout . . . . . . . 143
7.1.1 STIRAP excitation . . . . . . . . . ... ... ... ..... 145
7.1.2 Fast read-out technique . . . . . . ... .. ... ...... 150
7.2 Manipulation of an array of Rydberg atoms . . . . . . ... .. 151
7.2.1  Global rotations with a microwave field . . . . . . . ... .. 152
7.2.2 Local addressing with a focused laser beam . . . . . . . . .. 156
7.2.3  Preparing a single spin excitation . . . . ... ... ... .. 158
7.3 Resonant dipolar interaction between two Rydberg atoms . . 160
7.3.1 Microwave spectroscopy of the super-radiant state . . . . . . 162
7.3.2 Spin-exchange oscillation . . . . . ... ... ... ... .. 163
7.3.3 Angulardependence . . ... ... ... .. ... . ..., 164
7.4 Control of the dipole-dipole interaction . . . ... ... .. .. 165
7.4.1 From a resonant coupling to a second-order shift . . . . . . . 165
7.4.2  Freezing a spin-exchange process . . . . .. ... ...... 165
7.5 Conclusion . . . . . .. .. 168

Desplte their similar forms, the Ising coupling (Jo707) and XY coupling (J [oF oj +
o; jr]) have very distinct properties. One of the striking difference is that a spin
excitation [} ... T} ...]) is a stationary eigenstate of the Ising model, while it
delocalizes on an XY magnet, as can be seen by rewriting the coupling as a spin-
exchange term J(o;" o; +0;0; 7). A spin excitation can then be considered as a particle
hopping from site to site of the lattice, with the condition that two particles cannot be

on the same lattice site (they can be considered as hard-core bosons). Remarkably, any
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Figure 7.1: XY coupling with Rydberg atoms. (a) Energy levels of the Rydberg S, P
and D series for principal quantum number n = 60 — 62. Our excitation scheme allows the
preparation of Rydberg S or D levels, which are both dipole-coupled to any nP states.
The colored areas show two possible set of pseudo-spin levels, which we have used for
our experiments. The typical transition frequency is ~ 15 GHz. (b) The dipole-dipole
interaction resonantly couples two spin-1/2 particles, which amounts to a spin-exchange

coupling (cfa; + h.c.) where a spin excitation on atom 1 is coherently transfer to atom 2.

one-dimensional XY model with only nearest-neighbor couplings maps to an exactly
solvable free fermion problem via the Jordan-Wigner transformation [Giamarchi, 2003].
In any other situation (long-range couplings or higher dimensions), the mapping is
much more complex [Galitski, 2010] and finding the ground-state of XY magnets is an
active field of research [Varney et al., 2011].

Stimulated by the perspectives of studying an XY magnet in quantum simulators,
there have been proposals to realize an XY coupling between effective spin-1/2 particles
encoded in ions [Deng, Porras, and Cirac, 2005], superconducting qubits [Dalmonte
et al., 2015] or polar molecules [Bohn, Rey, and Ye, 2017]. Another system where
an XY coupling arises is an ensemble of Rydberg atoms in resonant dipole-dipole
interaction. We start by considering only two dipole-coupled Rydberg levels |r) and
|r') of opposite parity, as indicated in Fig. 7.1(a), with a transition frequency in the
microwave domain (vg ~ 15 GHz, A ~ 2 ecm). Two Rydberg atoms in the pair-state
|r'r) are resonantly coupled to |rr’) by the dipole-dipole interaction: pictorially, a
virtual microwave photon emitted by atom 1 going from |r’) to |r) is absorbed by
atom 2 which is then excited from |r) to |’} [see Fig. 7.1(b)]. The resonant dipolar
interaction takes the form, in our spin-1/2 picture, of the XY coupling J(o; o5 + h.c.)
with J = C3(6)/R? depending on the chosen Rydberg orbitals and their orientation

compared to the interatomic axis.

Although the dipolar exchange process is a coherent phenomenon, all experiments

performed on cold atomic gases,— from the original works in the group of Prof. Pierre
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Pillet [Mourachko et al.; 1998] and Prof. Thomas Gallagher [Anderson, Veale, and
Gallagher, 1998] to more recent realizations [van Ditzhuijzen et al., 2008; Giinter
et al., 2013; Bettelli et al., 2013; Maxwell et al., 2013] —, resulted in the observation
of incoherent transfer due to the random positions of the Rydberg atoms. Only
with the development of the tweezers technique, Barredo et al. [2015] could observe
in our group a coherent exchange oscillation directly between two Rydberg atoms,
measure the 1/R* dependence of J(R, ), and realize an elementary XY magnet of
three atoms. Since then, we have engineered our atom-by-atom assembler and can
now contemplate the realization of larger systems. This will be detailed in the next
chapter, and I present here newly developed tools for the manipulation of Rydberg
atoms: efficient initialization of all atoms in the Rydberg manifold, fast read-out of the
pseudospin-state populations, robust global spin-flips by microwaves sweeps, optical
addressing, injection of a spin excitation, and dynamical control of the interaction.

This chapter is structured as follows. In Section 7.1, I describe the STIRAP
(STImulated Raman Adiabatic Passage) technique allowing us to transfer robustly
all atoms of a large atomic array in the same Rydberg state |r), which initializes
the XY magnet. After the experiment, the state of each Rydberg atom is read by
depumping |r) to the electronic ground-state while |r’) is unaffected. In Section 7.2,
I focus on the manipulation of spin-1/2 particles. The microwave field driving the
|r) <> |7') transition plays again the role of a global magnetic field for the spins. I also
present a local addressing tool, based on a focused laser beam, allowing to split (by
the Autler-Townes effect), or shift (by an AC-Stark shift), the microwave transition. In
Section 7.3, we will measure the dipole-dipole interaction between two Rydberg atoms
and observe the characteristic angular dependence of a dipolar coupling. Finally, in
Section 7.4, I will show how to tune the interaction between two atoms from the
resonant to van der Waals regime by detuning the two pair-states |rr’) and |r'r) using
the addressing beam. This will allow us to freeze the dipolar exchange process and
create an entangled subradiant state of two atoms. Part of the material presented in
this chapter have been published [de Léséleuc et al., 2017].

Efficient excitation to Rydberg states and readout

In the previous chapters, we have performed experiments starting simply with all atoms
in the ground-state level |g) = |5.5'1 12 F=2,mp = 2), in which they were prepared
by optical pumping. After the Rydberg experiment, we took a fluorescence image and

attributed the loss of an atom to its excitation to the Rydberg state (see Chapter 5).
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Figure 7.2: Typical experimental sequence. An array of atoms is prepared using the
atom-by-atom assembler technique and is optically pumped into a well-defined ground-state

level. A two-color STIRAP pulse excites all atoms in the same Rydberg state |r), here an

S orbital. The Rydberg atoms are coupled by a microwave field to another level |r’), here
a P orbital, which implements an XY magnet. At the end of the experiment, all atoms in
|r) are depumped by a short read-out pulse to the electronic ground-state where they are
recaptured in the tweezers, while atoms in |r') are unaffected and subsequently lost. The
state of the atomic array is read by a final fluorescence image. The traps are switched off
during the entire Rydberg experiment as they repel excited atoms. The sequence duration

is limited to ~ 8 us by the escape of the free-flying atoms away from the tweezers.

Studies of XY magnetism require a slightly more involved preparation and read-out,
since the experiment is now performed entirely in the Rydberg manifold. A typical
experimental sequence is shown in Fig. 7.2. After switching off the traps, atoms are
transferred from the ground state |g) = |55}/, F = 2, mp = 2) to a Rydberg level |r)
(either a n.S;/, or nDs/y orbital) with a two-photon pulse. To do so, a first possibility
is to use a Rabi m-pulse, but it is affected by the damping of Rabi oscillations, as
discussed in the Chapter 5, and additionally the finite sizes of the excitation lasers
preclude an homogeneous pulse area over a large atomic array. We thus implemented
the more robust and efficient STIRAP technique described thereafter in Section 7.1.1.

Following the preparation, which takes up to ~ 2 us (the exact timing depends on
the choice of Rydberg states), we realize our experiment in the Rydberg manifold. It
ends by a read-out pulse transferring only atoms in |r) back to the ground-state where
they are recaptured by the tweezers. Atoms in |r’) are left in the Rydberg manifold,
repelled by the tweezers and lost. For the de-excitation, we opted for an incoherent

depumping by coupling resonantly |r) to the short-lived 5P, level from which it
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Figure 7.3: The STIRAP scheme. (a) Three-level system {|g),|e),|r)} resonantly
driven by the 795 nm and 475 nm excitation lasers. (b) The time-dependent Rabi couplings
Q795(t) (red) and Q475(¢) (blue) are shaped as Gaussian pulses with temporal width o and
delay At. The ‘counter-intuitive’ sequence At < 0 is shown, with the 475 nm pulse arriving
first. (c) Evolution during the pulses of the three eigenstates [b) , [b7),|d) (black). Only
the dark-state |d) does not have any contribution from |e) and is thus not affected by
spontaneous emission. The mixing angle € (blue curve) indicates the composition of |d)
and evolves smoothly from 6 =0 (|d) = |g)) to 8 = = (|d) = |r)).

decays to the ground state, as will be discussed in Section 7.1.2.

7.1.1 STIRAP excitation

The STIRAP technique, standing for STImulated Rapid Adiabatic Passage, was
introduced in the nineties for the manipulation of three-level systems composed of
two-long lived states, |g) and |r), and a short-lived one |e). Figure 7.3(a) shows such a
system in a ladder configuration, with the two transitions |g) <> |€) and |e) <> |r)
driven by lasers. The STIRAP exploits a beautiful property of three-level systems,
namely the existence of a ‘dark-state’ free from the spontaneous emission of |e).
The technique, recently reviewed by Vitanov et al. [2017], has found a myriad of
applications in different fields of physics, and has notably been used for Rydberg
excitation of atomic clouds [Cubel et al., 2005; Deiglmayr et al., 2006], and of a single

ion [Higgins et al., 2017]. Below, I present the main theoretical concepts.

Principle We consider time-dependent resonant drives 795(t) and 475(t) of the
two transitions. The three atomic levels |g), |e) and |r) are mixed (or dressed) by the

laser drives to form three instantaneous eigenstates |b, ), |b_) and |d) with respective
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h
energy :I:a\zﬁg% + Q3,5 and 0. The zero-energy dark-state |d) reads:

|d) = cos@(t)|g) — siné(t)|r) (7.1)
0(t) = arctan [Q475(t) /Q705(t)] (7.2)

where the mixing angle # depends on the ratio of the two Rabi couplings. Remarkably,
there is no contribution of |e) in |d), which is thus unaffected by radiative decay. An
atom initially in |g) can be perfectly transferred to |r) by varying 6 from 0 to 7 slowly
enough for the system to remain in the instantaneous eigenstate |d). The adiabaticity

condition takes the form:

() < /s () + U 0). (7.3)

The variation rate of mixing angle # has to remain much smaller than the energy
difference between the dark state and the two other eigenstates. This criterion is
respected using a ‘counter-intuitive’ sequence of pulses, sketched in Fig. 7.3(b), where
the 475 nm pulse arrives before the 795 nm one. For a good choice of pulse parameters
(discussed later), @ varies significantly only when the energy splitting is maximal. The
advantage of the STIRAP over a Rabi m-pulse is that, while the latter requires the
pulse area to match exactly 7, the former works as long as the pulse area is large
enough, which is thus more robust to variations of the coupling strengths over large

atomic arrays, but also to day-to-day fluctuations of lasers power and beams pointing.

Implementation Most of the technical details about the excitation lasers have
already been described in Section 5.1. We have first worked on the Rydberg excitation
of nDs ), states, which benefits from higher coupling strength, but our studies presented
in Chapter 6 motivated us to also prepare n.S/; levels. To maximize the coupling
to ‘anﬂ,mJ = 3/2>} we use the intermediate level ‘5P1KQ,F =2,mp = 2), while
for |n.5'1;2, my = 1/2}, we choose ‘5P1f2, F=1mp= 1). The lasers intensities are

dynamically tuned with acousto-optic modulators® to obtain:

_ (tFAL)2)?

5or ) (7.4)

9475;795@) = (g exp [

with a Gaussian pulse width o, a maximal coupling strength () and a delay At

between the two pulses. The peak Rabi coupling is chosen equal for the two transitions

'We use an arbitrary waveform generator to create a 30 MHz signal with an envelope given by

Eq. (7.4), which is then mixed with a 80 MHz local oscillator, amplified and fed to the AOMs.
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by working with the 475 nm laser at full power and adjusting the power of the 795 nm
beam. The highest coupling strength that we can achieve is Qo /(27) ~ 50 MHz for
60Ds5/, state and ~ 25 MHz for 605, 5.

Optimization The pulse widths ¢ and the delay At are experimentally optimized
to obtain the best transfer efficiency from |g) to |r). Figure 7.4(a) shows how the
efficiency depends on o and At for y/(27) = 50 MHz. First, we observe the clear
signature of the STIRAP, as the efficiency drops as soon as the pulses are sent in the
wrong (‘intuitive’) order. Then we see that for larger pulses, there is a wide range
of pulse delays for which the efficiency remains constant. It is again typical of the
STIRAP, which only requires a smooth evolution of the couplings. In practice, we
are interested in performing the transfer as fast as possible and our experimentally

optimized parameters are:
« for 605, ; with Q/(27) = 25 MHz: 0 = 360 ns and At = 400 ns,
« for 60D5,, with Q/(2m) = 50 MHz: 0 = 120 ns and At = 100 ns.

We can check that the pulse parameters meet the adiabaticity criterion of Eq. 7.3 by a
factor 20 for the transfer to 605/, state. For this state, the total STIRAP sequence
takes ~ 2 us, after which we can start an experiment in the Rydberg manifold.

In addition to the pulse parameters, we can also tune the detuning A from the
intermediate 5P, /» state, while maintaining the two-photon resonance condition on
the |g) <> |r) transition. Experimentally, we obtained better transfer efficiencies
when working with a finite single-photon detuning A/(27) = 420 MHz rather than
with both beams at resonance A = 0. While this result is not expected in theory, a
reasonable explanation could be that incomplete extinctions of the beams (causing a
slow depumping from the initial and final states), and imperfect polarizations (coupling

to other Zeeman sublevels) are made less critical by working with a small detuning.

Effect of the van der Waals interaction So far, we only described the STIRAP
technique for the excitation of a single atom; we are however interested in preparing an
array of Rydberg atoms: how does the van der Waals interaction affect the process?
On the theoretical level, there have been a lot of proposals combining the STIRAP
technique and Rydberg blockade to perform robust entangling gates [Mgller, Madsen,
and Mglmer, 2008; Beterov et al., 2011, 2013; Petrosyan, Rao, and Mglmer, 2015],
but no experimental realization yet. Here we rather want to overcome the Rydberg

blockade, which might be possible up to a certain van der Waals interaction strength.
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Figure 7.4: STIRAP optimization. (a) Preparation efficiency for various pulse widths o
and delays At, for the maximum achievable coupling €2o/(27) = 50 MHz. The transfer is
optimal for a ‘counter-intuitive’ sequence of pulses with negative delays At < 0, a signature
of the STIRAP technique. For wider pulses (brown curves), the transfer is insensitive to
the precise timings of the pulses. (b) In an array of atoms, the van der Waals interaction
competes with the STIRAP preparation, which starts to fail for van der Waals shifts higher
than 3 MHz.

We experimentally probe this limit by measuring the STIRAP efficiency on 4 x 4
arrays of atoms with various inter-atomic separations. The efficiencies are shown in
Fig. 7.4(b) as a function of the calculated interaction strength V between two Rydberg
atoms. For €y/(2m) = 50 MHz, it remains remarkably good up to V ~ 3 MHz, while
it degrades sooner (V' ~ 1 MHz) for the weaker 25 MHz coupling. In the following
experiments of this thesis, the van der Waals shift will always be smaller than 0.1 MHz
and does not perturb the STIRAP preparation. In the future (see Outlook), we might
perform experiments where both van der Waals and dipolar exchange interactions are
of similar strength: the results shown here demonstrate that we would still be able to

prepare an array of Rydberg atoms using STIRAP.

Effect of the beam inhomogeneity I show here how the finite size of the 475 nm
excitation lasers affects the preparation of large Rydberg atomic arrays. In our current
optical setup, the 475 nm beam is focused on the atomic arrays with waists along
the z and y-axis of wy = 25 um and w, = 40 um (Fig. 7.5). We will consider the
excitation of planar arrays located at z = 0, such that only the spatial dependence

Qurs5(y) = Qo exp(—y?/ wg) plays a role. Figure 7.5 shows the excitation efficiency as a
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STIRAP efficiency
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Figure 7.5: STIRAP efficiency. (Left) Inhomogeneous illumination of a large planar
atomic array by the 475 nm excitation beam with a waist of 40 um in the y direction. The
795 nm beam (not shown) is much larger and can be considered as homogeneous. (Right)
STIRAP excitation efficiency as a function of the y position: experimental data (circles)
and numerical simulation (blue line). For comparison, the dark dashed line shows the
spatial dependence of the Rabi coupling. The deviation from unit efficiency decomposes in

detection errors ' and STIRAP errors 7).

function of the y position for experiments performed with €2y/(27) = 25 MHz. We
observe that the STIRAP pulses remain highly efficient over ~ 60 um. The spatial
dependence of the experimental data (circles) is well reproduced by a numerical
simulation of the optical Bloch equations using the independently measured parameters
(beam waist and Rabi coupling) of the spatial and time-dependent Rabi drives. We

also remark that the simulation predicts a perfect transfer in the center.

Transfer efficiency The STIRAP efficiency measured in the previous figures are
P, =90(1) % in Fig. 7.5 for the excitation of Rydberg S states and P, = 93(1) %
[Fig. 7.4(a)] for D states. A first explanation for these imperfect efficiencies comes from
detection errors, that we have discussed in Section 5.2.2. There is a probability &’ that
a Rydberg atom is erroneously detected as a ground-state atom. The radiative lifetime
of Rydberg 60D (60S) state is 209 pus (260 us), from which we calculate an error rate
e = 4.8% (3.9 %) and retrieve? the real Rydberg population P, ~ P,/(1—¢') = 97(1) %
(94 % for S states). The last few percents are STIRAP errors 1, which could be
explained by laser phase noise. From the better results with D, rather than S states,
we believe that larger Rabi couplings () is one of the key to reach higher excitation
efficiency and would also allow a quicker preparation. In the future, we intend to obtain

this stronger coupling by opting for the ’inverted’ scheme discussed in Section 5.4.2.

2Neglecting the other detection error €, which affect the measured value only by e’ and (1 — P,).
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Conclusion We have demonstrated the preparation of large arrays of Rydberg atoms
with an efficiency of (1 — ) ~ 95 % using two-photon resonant STIRAP pulses lasting
less than 2 us. It leaves us with enough time for studies of XY magnetism compared
to the ~ 10 us experimental time window with atoms released from their tweezers.
On the pratical side, the STIRAP technique is a very robust tool with a constant
efficiency along the days, with 7 small enough to perform experiments without being

too much affected by missing Rydberg atoms.

7.1.2 Fast read-out technique

r'=60P, 1
r=60S,,

Detection errore=5%

2 - l
J\IJJT:25 ns . . :
55 °

12 0 300 600
Read-out pulse length (ns)

Figure 7.6: Read-out pulse. Left: The 475 nm beam is shone on resonance between a
single Rydberg state |r) and the short-lived (7 = 25 ns) intermediate 5P, /, level. Right:
The strong spontaneous emission leads to an extremely fast damping of the |e) <+ |r)
Rabi oscillation, as the atom decays to the ground-state. In our experiments, we shine the
read-out pulse during 300 ns, 6 times as long as the fitted decay time constant. There
remains a e = 5 % probability not to recapture the atom, which will be considered as an

atom in |r’) and thus causes a detection error.

After preparing the atoms in a Rydberg state |r) and performing an experiment in
the Rydberg manifold between |r) and another Rydberg level |r'), we want to measure
the population of the two states. This is achieved using a read-out pulse, where atoms
in |r) is de-excited to the ground-state |g), where it is then recaptured by the tweezers
and observed by fluorescence imaging. This projective measurement needs to be quick
compared to the dynamics driven by the dipole-dipole interaction.

We achieve a fast de-excitation by shining the 475 nm laser beam on resonance
with the |r) <+ |e) transition. We then benefit from the short lifetime (25 ns) of |e) to
quickly bring the atom to the ground state. In Fig. 7.2, we observe that the probability
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to remain in |r) decreases quickly with the read-out pulse length. The small oscillatory
behavior at ~ 100 ns comes from a strongly damped Rabi oscillation between the
Rydberg and intermediate levels. The depumping laser is derived from the same source
as the 475 nm excitation beam used in the STIRAP sequence, but goes through an
independent AOM to tune its frequency precisely to the resonance while the excitation
beam is detuned by A/(27) ~ 20 MHz. The read-out beam is quickly switched on and
oftf (~ 10 ns) with an EOM. A high extinction ratio of the latter is critical to avoid
depumping the Rydberg atoms during the experimental sequence and is re-optimized

daily.

Detection errors We fix the read-out pulse length to 300 ns, for which we measure
a recapture probability of 95 % that does not increase for longer pulses. This gives us
a detection error € = 5 %, as we are going to attribute the loss events to an atom in
|r"), whereas it was truly in |r). Most of these errors are caused by background-gas
collisions and by the displacement of the atom away from the capture region of the
tweezers, as already described in Section 5.2. Here, € is slightly higher than what it
is predicted from the previously mentioned error sources (~ 3 %), as we also need
to consider stimulated transfer to other Rydberg levels by the 300 K black-body
radiation: for a principal quantum number n = 60, for which we have performed this
experiment, the depopulation rate is I'ggr ~ 1/(150 us), which integrated during the
~ 3 us that we spent in the Rydberg manifold gives an error rate of 2 %.

Manipulation of an array of Rydberg atoms

[ now turn to the control of spin-1/2 particles defined by two dipole-coupled Rydberg
levels. With our two-photon excitation scheme, we can prepare Rydberg nS,/, and
nDs3/, states and both have a direct microwave transition to Rydberg P orbitals.
During this thesis, we performed experiments with two different sets of pseudo-spin

states:
. 1) = |60.5'1f2, 1/2), 1) = |60P1f2, —1/2) with a 16.7 GHz transition frequency,
e 1) = |61D3;2,3/2>, 1) = ‘GQPUQ, 1/2) with a 9.5 GHz transition frequency.

Initially, all atoms are prepared in ||) by the STIRAP pulses. In this section, I
first present how to drive the spin-1/2 particles with microwave radiations and then

demonstrate the control of the transition frequency with an addressing beam.
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Figure 7.7: Rydberg-Rydberg microwave transition. (a) Microwave experimental setup
(described in the text). (b) A possible spin-1/2 system using the Rydberg 605/, and
60P; /o states. The green line indicates the microwave transition between the two chosen
pseudo-spin states |1) and |]). The solid disk indicates the level in which atoms are
prepared after the STIRAP sequence. The Zeeman manifolds are split by a magnetic field.
(c) Microwave spectrum of the |]) <+ |1) transition with Q,y/(27) = 7.4 MHz.

7.2.1 Global rotations with a microwave field

Here, I show how to manipulate spin-1/2 particles, independent or in interaction,
using microwave pulses driving the transition between the two Rydberg orbitals.
Due to the extremely large electric dipole matrix element between ||) and [1), the
two-level system is efficiently driven even with weak microwave intensities. I start by
describing the experimental setup shown in Fig. 7.7(a): first, a microwave synthesizer
outputs a 13 dBm local oscillator (LO) of frequency fLo up to 20 GHz, a mixer
then combines it with an RF signal A(t) cos[27 frrt + ¢(t)] with frr ~ 50 MHz and
programmable time-dependent amplitude and instantaneous phase generated by an
arbitrary waveform generator. At the output of the mixer, we get two main sidebands
at fLo £ frr around the LO signal attenuated by ~ —30 dB. Then, frr is chosen
sufficiently large such that only the upper sideband drives the atom.

The microwave pulse is then radiated by a simple dipole antenna placed outside the
vacuum chamber. The field polarization is not controlled due to the presence of the

metallic lens holder (spaced by ~ 1.5 ecm) strongly affecting the propagation of the
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Figure 7.8: Highly coherent microwave Rabi oscillations (a) Rabi oscillation on a
single atom. There is no observable damping on the 6 first periods shown here. The solid
line is a fit used to extract the microwave Rabi frequency Qv /(27) = 13.4(1) MHz. The
finite contrast is only caused by preparation and detection errors. (b) Same experimental
sequence but on a chain of four Rydberg atoms coupled by the dipole-dipole interaction.
The relaxation of the oscillations is induced by the spin-spin couplings. The solid line is a

result of an ab-initio calculation using the Rabi coupling obtained in (a).

microwave radiation (A ~ 2 em). We thus rely on the splitting of the Zeeman manifold
by an applied magnetic field B, to energetically isolate a single transition between
two Zeeman sublevels. For the atomic levels shown in Fig 7.7(b), and a magnetic
field B, = 50 G, the o~ transition between |]) and |1) is separated by 45 MHz from
the closest 7 transition between ||) and ‘60P1 /2,1/2). Finally, Fig. 7.7(c) shows a
microwave spectrum of the two-level resonance ||) <> [1) with a Rabi frequency

Quw/(2m) = 7.4 MHz.

Rabi oscillations I then demonstrate the high level of coherence obtained on a single
atom driven with microwaves. Figure 7.8(a) shows a Rabi oscillation between ||) and
[1) that is strikingly better than any optically-driven ground-Rydberg Rabi oscillations
obtained in our experiments (see Chapter 5). Firstly, there is no observable damping,
which is explained by the fact that the microwave transition is not affected by Doppler
effect, spontaneous emission or phase noise of the driving field. The finite contrast of
the spin-flip rotation is only caused by the preparation and detection errors. Secondly,
we can reach high Rabi coupling, here Q,, /(27) = 13.4(1) MHz, which is here limited
on purpose to avoid coupling to the other Zeeman sublevels. Using the full available
microwave power, we could reach driving strengths of many tens of MHz.

With this tool, we can already perform a simple experiment demonstrating the

presence of dipolar interactions between Rydberg atoms. We repeat the same Rabi
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oscillation experiment as above, but now with a small chain of four Rydberg atoms.
The pair-wise dipolar coupling constant is calculated to be J/h = 2.5 MHz and
will compete with the Rabi drive Q,,/(27) = 13.4 MHz. Consequently, the Rabi
oscillation shown in Fig. 7.8(b) is strongly damped, not by decoherence but by the
interaction-induced dephasing of each spin relatively to the microwave field. Similar

experiments, but in a cold atomic gas, have been reported by Orioli et al. [2018].

Microwave sweeps Using the arbitrary waveform generator, we can generate time-
dependent microwave Rabi couplings €2, (t) and detunings A, (¢). Recall that, in our
mapping to spin-1/2 particles, they are equivalent to transverse B, and longitudinal
B)| magnetic fields, respectively. In the previous paragraph, we have observed the
precession of a spin around a fixed transverse magnetic field (B =0, B, (t) = B),
resulting in many Rabi spin-flips. Another approach to perform a spin-flip is to use a
microwave sweep to adiabatically rotate the spin from |]) to [1), as illustrated on the
Bloch sphere in Fig. 7.9(a). An adequate microwave profile is shown in Fig. 7.9(b): the
detuning is swept in 0.3 us from —15 MHz to +15 MHz around the resonance, while
the Rabi coupling is momentarily increased up to 0w /(27) ~ 10 MHz. As a first step,
we apply this sweep on a single atom initially in ||) and record the temporal evolution
of P; by interrupting the sweep at different times. The experimental data are shown in
Fig. 7.9(d) and are in excellent agreement with a numerical simulation of the two-level
system dynamics taking into account the independently measured preparation and
detection errors. A microwave sweep is as efficient as a Rabi w-pulse, though much

slower: 0.3 us instead of 0.05 us for Q. /(27) = 10 MHz.

The advantage of microwave sweeps appears clearly when considering an ensemble
of interacting Rydberg atoms. Starting from a many-body state with all spins pointing
down, we want to prepare them all in |1). We have seen in the previous paragraph that
strong dipole-dipole interactions between Rydberg atoms led to dephasing between the
spins during a Rabi oscillation, which prevented an efficient global spin-flip. The effect
of interactions is mitigated by using a large effective magnetic field [B(¢)| > J. In this
case, the ensemble of spins is always in a paramagnetic state with only a change in
orientation of the magnetization during the sweep, which is illustrated in Fig. 7.9(c)
and demonstrated experimentally in Fig. 7.9(e). At the end of the sweep, all atoms are
in [1), and the evolution of the population P; averaged on the four spins is again in very
good agreement with an ab-initio calculation taking into account the independently
measured preparation and detection errors (7, €, €') = (0.05,0.04,0.05) %. The measured

spin-flip efficiency is consistent with the perfect transfer predicted numerically.
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Figure 7.9: Spin-flips with microwave sweeps. (a) Snapshots of the spin-1/2 state
(red arrow) and effective magnetic field (orange) on the Bloch sphere during an adiabatic
evolution of the microwave Rabi coupling €, (t) and detuning A, (¢) shown in (b).
(c) Phase diagram of the ground-state of an ensemble of interacting spins in the parameter
space spanned by the rescaled transverse B /J and longitudinal By /J magnetic fields,
with J the typical dipole-dipole coupling. For sufficiently large B-field, the ensemble is
always a paramagnet and the orientation of the spins follows the magnetic field. The gap
between the ground state and the first excited states closes only when B/J < 1: the system
goes through a quantum phase transition (red dashed line) and the new ground state
depends on the exact geometry of the atomic array. The microwave sweep is represented by
the orange profile and remains deep in the paramagnetic phase. (d,e) Temporal evolution
during the sweep of the probability P; for an experiment performed on a single atom (d)
or a chain of 4 interacting spins (e). The solid line is the result of an ab-initio calculation
taking into account independently measured preparation and detection errors (dashed

lines).
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7.2.2 Local addressing with a focused laser beam

The previous section has shown that microwave manipulation is a very powerful
tool, but it has a disadvantage: we cannot manipulate a single Rydberg atom in an
atomic array. For our studies of spin Hamiltonians, we ideally need a technique to
manipulate single spins, while leaving others unaffected. We achieve this by focusing,
on a single atom, an addressing beam tuned close to the 1006 nm transition between
the Rydberg state ||) (S or D orbitals) and the low-lying 6P, ), level. Due to electric
dipole selection rule, Rydberg P states remains unaffected, except for the small
repulsive ponderomotive light-shift common to both states [Younge et al.; 2010].
Initially suggested by Saffman and Walker [2005], this scheme has been used for the
magic trapping of both ground and Rydberg atoms [Li, Dudin, and Kuzmich, 2013].

Implementation A 1006 nm beam, obtained from a tunable cw Ti:sapphire laser, is
focused through our aspheric lens on the atomic array and manually aligned on the
position of a 850 nm tweezers. We achieved the latter by comparing the fluorescence of
atoms trapped at the focus of the 850 nm and 1006 nm beams. The addressing beam
has a waist of 3.4 um (measured by parametric heating, see Section 2.1.3), chosen as a
trade-off between adjacent sites cross-talk (1% residual intensity at R ~ 5 ym) and
robustness to beam pointing fluctuations. The addressing beam is switched on and off
by an electro-optic modulator with a rise time of 10 ns. The laser frequency is locked
on a commercial wavemeter (High Finesse, WLM SU10) with a sub-MHz precision.
The 1006 nm transitions used to address the Rydberg n.S and nD states are:

61Ds3)5, F = 3,mp = 3) <+ |6Py /5, F = 2, mp = 2) at 298.139450 THz

60S )5, F = 2,mp = 2) ¢ |6P, )5, F = 2,mp = 2) at 208.046990 THz

where the stated transition frequencies are the measured one for B, ~ 10 G. The
typically achievable Rabi coupling on these transitions is Qa44,/(27) ~ 100 MHz with
a laser power of a few tens of mW. We use this coupling either to apply a light-shift on

the Rydberg state, or to split the transition resonance using the Autler-Townes effect.

AC-Stark shift When the addressing beam is detuned by Aaqqr from the resonance
frequency, it creates an AC-Stark shift on the Rydberg state |]). As [1) is unaffected,

the microwave transition frequency of |}) <> |1) is changed by:

Awy = %. (7.5)
4Aadar
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Figure 7.10: AC-Stark shift and Autler-Townes splitting with an addressing laser.
(a) Experimental setup for the generation of an addressing laser, locked on a wavelength-
meter, focused on a single atom through our aspheric lens. (b) The 1006 nm addressing
laser, with Rabi frequency ,44,, is detuned by A,qqr from the 6P /5 <> 61D/, transition
to apply a light-shift Awg = Q2,,/4A44r on the Rydberg state. The shifted state acquires
only a small decay rate. (c) The microwave transition frequency between the 62P, /5 and
6103/, levels is measured for various detunings Agaar of the addressing beam and shows
the expected dispersive dependence. The solid line is the result of a calculation without
any adjustable parameters. (d) Tuning the addressing beam on resonance with the 6P /
level (Aaddr = 0), we realize the Autler-Townes condition where the Rydberg level is split
into two short-lived states. (e) The Autler-Townes splitting is observed by preparing the
atom in the 60P /, state and then looking for the 60P; ;5 <+ 605} /5 transition. With the
addressing beam switched on (green circles), the microwave transition is split into two
symmetric lines around the reference spectrum (yellow circles), the splitting directly gives
the Rabi coupling Qadar/(27) = 92(1) MHz.
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Figure 7.10(c) shows the measurement of Awy by microwave spectroscopy for various
detuning A,q4r of the addressing beam and a fixed laser power of ~ 30 mW. The
experimental data is in perfect agreement with Eq. (7.5) using an ab-initio calculation
of the Rabi coupling Q,44,/(27) = 158 MHz from the dipole matrix element (obtained
from the ARC software [Sibali¢ et al., 2016]) and the independently measured beam
waist and incident power. For increasing light-shift, the Rydberg state lifetime 7, is

decreased, due to the mixing with the short-lived 6P/, level, to the value:

2
. (Qaddf) - (7.6)

Aaddr

where 7sp = 120 ns is the lifetime of the 6P/, level [Gomez et al., 2004]. For
Qaddr/Aaqar < 0.1, we still obtain a considerable light-shift of a few MHz, while the
lifetime 7, remains on the order of several tens of microseconds, comparable to the

lifetime of the Rydberg levels, and thus barely affects the system.

Autler-Townes splitting The situation is different when the addressing beam is
tuned exactly to the resonance with the 6P/, state and gives rise to an Autler-Townes
splitting (see Section 5.1.2). Figure 7.10(e) illustrates the effect with microwave spectra,
obtained by coupling an atom initially in |1) to the addressed state |]): we observe
the splitting of the line when the addressing beam is on, which also gives a direct
measurement of the Rabi coupling Q,44,/(27) = 92(1) MHz (different than above as
we used another Rydberg state and addressing power). Let us note that if the atom is
in ||) when the beam is on, it will quickly decay to the electronic ground state, such

that we can only apply this technique when the addressed atom is in |1).

7.2.3 Preparing a single spin excitation

I now explain how to combine microwave sweeps with the Autler-Townes splitting
effect to prepare a single spin excitation in an array of Rydberg atoms. This technique
will be used to observe a spin-exchange oscillation between two atoms in the next
section, and dynamical properties of an XY magnet in the next chapter. The procedure
is shown in Fig. 7.11: After the STIRAP sequence, all atoms are in ||), and the first
step is to transfer them all to 1) by a first microwave sweep. We then switch on
the addressing beam on a selected atom, which will be unaffected by any microwave
radiation within +$,44,/2 ~ 27 x 50 MHz of the resonance. Next, a second microwave

sweep transfers all the other atoms back to ||), leaving a single spin excitation on the
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Figure 7.11: Preparation of a single spin excitation. Following the STIRAP initializa-
tion, all atoms are in |). We then combine microwave sweeps and Autler-Townes effect to
flip a single atom in |1). As the resonant addressing beam can only be applied on an atom
in |1) (when addressed with the Autler-Townes technique, the state ||) is short-lived),
we start by transferring all atoms in |1) with a first microwave sweep. The addressing
beam is then safely shone on a selected atom and a second sweep transfers all the other
atoms back to ||). After switching off the addressing beam, spin-exchange dynamics will
start, driven by the resonant dipolar coupling. The quoted efficiencies are corrected for

preparation and detection errors.

addressed site. A spin-exchange dynamics will start as soon as the addressing beam is

switched off, which tunes back the selected atom in resonance with the other ones.

The efficiency of the procedure is 94 % for the addressed atom and 98 % for the
others. We obtain these numbers by measuring the recapture probability of the atoms
when shining the read-out pulse directly after the second sweep: 12 % for the addressed
atom and 93 % for the others, and by correcting for preparation and detection errors
(n,€,€') = (0.05,0.04,0.05). Special care was taken to ensure a complete extinction of
the resonant addressing beam when the selected atom A was in |]). Additionally,
even if the 1006 nm laser intensity on another atom B separated by, e.g., 10 um
from the addressing spot is reduced by a factor ~ 102, it is still possible that atom
B scatters a 1006 nm photon after being transferred back to ||) by the second
sweep. To avoid this, we slightly detune the addressing beam from the resonance by
Dep < Agaar >~ (2m) x 10 MHz < Qa44:r: we still obtain a quasi-resonant Autler-Townes
splitting for the addressed atom A, while the scattering rate of a photon on atom B is
reduced by an additional factor (Auqqr/Tép)? > 100.

In our work on a two-atom system [de Léséleuc et al., 2017], we prepared the
spin-excitation [1]) with a Rabi 7-pulse (instead of microwave sweeps) and an AC-
Stark shift (instead of the Autler-Townes splitting). However, for strongly interacting

systems, the preparation efficiency is maximized with the aforementioned procedure.

159



7.3

Chapter 7: Controlling Rydberg atoms interacting via a resonant dipolar coupling

Resonant dipolar interaction between two Rydberg atoms

Having learnt how to manipulate our ensemble of Rydberg atoms with a global
microwave field and a local addressing beam, we now explore the effect of the resonant
dipolar coupling on an elementary system of two Rydberg atoms. Figure 7.12 shows
the situation that we consider: two atoms are separated by a distance R and make an
angle § with the quantization axis. Each atom encodes a spin-1/2 particle using two
dipole-coupled Zeeman sublevels. Neglecting other levels, the two-atom system evolves

in the Hilbert space spanned by four pair-states: [|]), [1}),|[41),|[1T). The main effect

of the dipole-dipole interaction is to resonantly couple the two degenerate pair-states

1)) and [{1):
_ 1 —3cos?f Cs

(N Haa [11) = == x 73 = J(R,0), (.7)

where C} is proportional to the product of two dipole matrix elements. This expression
is readily derived from Eq. (6.2). The angular dependence can be understood with
classical permanent dipoles: the interaction energy is of opposite sign for two dipoles
side by side (§ = £90°) or head to tail (§ = 0° or 180°). The interaction cancels and
changes sign at the so-called ‘magic’ angle 6,, = arccos(1/+/3) ~ 54.7°.

Other Zeeman sublevels 1 justify here that we can ignore the other Zeeman sublevels
by applying a sufficiently large magnetic field B,. As can be seen from Fig. 7.12,
although the dipole-dipole Hamiltonian couples ||1) to |[r"r') (but also [T ') and
| 1)), these processes become off-resonant when applying a magnetic field B, splitting
the Zeeman manifolds by AE; = gupAmB,. For example, with B, ~ 10 G, we obtain
a splitting AEz ~ 30 MHz between the two S}/, sublevels, which is much larger than
the typical interaction energy J, in the MHz range.

Van der Waals interaction vs dipolar exchange coupling We also need to consider
the second-order effect of the dipole-dipole Hamiltonian on the pair-states |||) and
[t1), which takes the form of a van der Waals shift V' = Cys/R® (see Chapter 6). The
Cs coefficients depend on the pair-states: it is smaller by more than one order of
magnitude for P orbitals than for S or D states (remember Fig. 6.4). Here, we want
to minimize the van der Waals interaction that gives rise to an Ising coupling between
the spins, relatively to the resonant dipole-dipole interaction giving an XY coupling.
Due to the different scaling laws V' oc n'' /R® and J o< n*/R3, it is possible to tune the

relative weight of the two contributions and, in particular, reach the regime V' < J by
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Figure 7.12: Resonant dipole-dipole interaction. (a) Two atoms separated by a distance
R and making an angle 6 with the quantization axis defined by a magnetic field B,. (b)
Possible dipolar exchange couplings between two atoms in S/, or P/, orbitals. Two
Zeeman sublevels play the role of pseudo-spin states |1) and |]). We are interested in
the resonant spin-exchange process ||1) <+ |1]) indicated by the solid orange arrows.
The dashed arrows show one of the possible dipolar coupling leading to population of
other sublevels (in gray). Such processes are made off-resonant, and thus inhibited, for a
sufficiently large Zeeman splitting AEz. (c) The two-atom system reduces to only four
pair-states. The resonant dipole-dipole interaction between the Rydberg atoms translate
to an XY coupling between ||1) and |1]). The van der Waals interactions, V; and V34,
affecting two atoms in the same Rydberg state are made negligible compared to J for our

choice of interatomic separation R and principal quantum number n.

using relatively low n and large interatomic separation R. For the two sets of Rydberg

states used in the following experiments, we have:

o |1) = [62P1)2,1/2), |1) = |61Ds)5,3/2): C3/h = —7.458 GHz.um?, C}"* /h =
(6,—769) GHz.um®. For R = 20 um, we reach J/h = 0.93 MHz and |V|/h <
0.01 MHz.

e [1) = 60P,/5, —1/2), |}) = |60Sy/5,1/2): Cs/h = —3.035 GHz.um3, CI" /b =
(4,137) GHz.um®. For R = 12 um, we reach J/h = 1.7 MHz and |V|/h <
0.05 MHz.

For these parameters, we can thus safely neglect the van der Waals shifts V', which
are one to two orders of magnitude smaller than the dipolar exchange couplings
J. In the future, we could harness the van der Waals interaction to implement an
Heisenberg magnet by choosing, e.g., the 905/, and 90P, , Rydberg states and a
typical interatomic separation R = 10 um giving J ~ V = h x 16 MHz, or tune the
relative strength between the XY and Ising couplings to explore different phases of

anisotropic XXZ magnets (see Outlook).
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Previous studies In an earlier work of the group, Barredo et al. [2015] presented
the first observation of a spin-exchange process between two single Rydberg atoms,
measured the 1/R?® dependence of the dipolar coupling J and implemented an
elementary XY magnet on a chain of three atoms. At that time, the different tools
presented in the previous sections (STIRAP excitation, Rydberg addressing beam)
were not yet developed. Using them, I now revisit these previous studies of the
dipole-dipole interaction, showing how to extract the interaction energy J either from
a spin-exchange oscillation or from a microwave spectrum of the interacting system,

and I use it to measure the angular dependence of J(R, ).

7.3.1 Microwave spectroscopy of the super-radiant state

The resonant dipole-dipole interaction modifies the spectrum of pair-states as shown
in Fig. 7.13(a): the two degenerate pair-states hybridize to form the two eigenstates:

|+) = [t £ 1) with energies FEy = +J. (7.8)

V2
The anti-symmetric state |—) is not coupled to the microwave field, due to destructive
interference between the two pair states, and is sometimes dubbed as a dark or
‘subradiant’ state. On the contrary, the symmetric state |+) couples to the microwave
field with an enhanced Rabi frequency v/2Q,y, and is referred to as the bright or
‘superradiant’ state. We can thus use the microwave transition |||) <> |[4+) to measure
the coupling strength J.

Starting from |]]) prepared by the STIRAP excitation, we shine a microwave field
with Rabi frequency €2, /(27) = 0.3 MHz during 1 ps and record the probability
Py, that the system remains in the initial state for various detuning A,y from the
single-atom resonance. The results are shown in Fig. 7.13(b). In the higher panel, where
the interaction energy is positive, we observe a single dip at a detuning hA,,, = J. As
expected, there is no signal at hA,y, = —J as |—) does not couple to the microwave
field. In the middle panel, we changed the orientation @ of the pair of atoms such that
the interaction strength is now negative J/h = —0.8 MHz. In the lower panel, the
interaction is suppressed by choosing the angle 0, = 54.7°. As a side remark, we also
couple to the state |11) through the two-photon resonance |||} <> [11) occurring at
A = 0, which can slightly distort the line shape for A€, ~ J (but not seen here).
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Figure 7.13: Probing the resonant dipolar coupling. (a) The dipole-dipole interaction
mixes the two degenerate states [f]) and ||1) to give symmetric |[+) and anti-symmetric
|—) eigenstates shifted by an energy +J. The microwave coupling to the anti-symmetric
state vanishes, while it is enhanced by a factor /2 for the symmetric state. (b) The
interaction energy J is measured by spectroscopy of the ||.l) <+ |4+) transition, shown
here for three different values J = 2.4, —0.8,0.0 MHz obtained by varying 6. (c) After
preparing the two atoms in the state |1]), the dipole-dipole interaction gives rise to a
spin-exchange dynamics at a frequency 2.J, as observed in (d). Solid lines are fits used to

extract the interaction energy.

7.3.2 Spin-exchange oscillation

In addition to probing the stationary eigenstates of the two-atom system, we can
also observe directly in the time domain the spin-exchange oscillation [1}) <+ [{1)
driven the dipolar coupling J. After preparing the initial state |1|) with the procedure
described in Section 7.2.3, we let the system evolve freely for a time T' before applying
the read-out pulse. Figure 7.13(d) shows the population of the two pair-states Py
and P+, oscillating at a frequency 2J/h = 0.80 MHz. The finite contrast of the
oscillations is caused by preparation and detection errors, while the small damping of
the oscillations (discussed in detail in the thesis of Sylvain Ravets [2014]) is due to
the finite temperature of the atoms, which gives rise to shot-to-shot fluctuations of
the interatomic distance R and thus of the coupling strength J oc 1/R? driving the

dynamics.
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Figure 7.14: Angular dependence. The interaction strength J depends on the angle 8
made by the pair of atoms with the quantization axis. The left panel shows measurements of
J by spectroscopy for various angles and two values of the magnetic field. The experimental
data are in excellent agreement with ab-initio calculations (colored solid lines), closely
following the 1 — 3 cos?(#) scaling (dashed line). Empty circles in the polar plot denote a

negative coupling J. Error bars are smaller than the symbol size.

7.3.3 Angular dependence

I now present the measurement of the angular dependence J(f) by performing
microwave spectroscopy on pairs of atoms with a fixed separation R = 12 ym and
varying angle # with the quantization axis. The results are shown on a linear and
a polar plot in Fig. 7.14. We observe that J(f) slightly differs from the simple
1 — 3cos?(f) dependence (dashed line), in perfect agreement with exact ab-initio
calculations of the energy difference between the two pair states ||} and |+) using the
pairinteraction solver. The slight difference is caused by residual van der Waals shifts
and second-order mixing between Zeeman sublevels, which depend on the Zeeman
splitting and thus on the value of B,, as observed experimentally by performing
the measurement for B, = —7 G and 47 G. The interatomic distance used in the
calculation is Ry, = 1.045 x 12 pm. The correction factor is the same as in Section 6.1.3

and points at a systematic error in our calibration of the inter-atomic distance.

Finally, let us remark that this angular dependence was also observed in a previous
work of the group [Ravets et al., 2015], though in a different regime of the dipole-dipole
interaction. There, it was between two pair-states |dd) <> |pf), which were tuned at
the same energy using an accidental Forster quasi-resonance and an electric field.
Here, the coupling is between the two naturally degenerate pair-states |rr’) and |r'r):

the system is simpler and more adapted for quantum simulation.
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Control of the dipole-dipole interaction

We have previously studied the effect of the dipole-dipole interaction on two atoms
with the same transition frequency. Using the addressing beam, we can tune the

transition frequency of atom 1 by AAwy, such that the system is now described by:
H = J(oF0; + 070F) + hAweo?, (7.9)

By tuning the relative weight of the dipolar coupling J and the energy mismatch
hAwy, I first demonstrate the transition from the resonant dipole-dipole regime to
the van der Waals interaction, and then use it to control a spin-exchange oscillation,

freezing it at will, and to create the stationary sub-radiant entangled state |—).

7.4.1 From a resonant coupling to a second-order shift

The pair-state spectrum of Eq. (7.9) is sketched in Fig 7.15(a) for the two extreme
regimes. For J > hAwy, the energy mismatch between the two pair-states is negligible
and we retrieve the previously studied resonant dipole-dipole coupling. In turn, for
J < hAwy, the dipole-dipole interaction only affects in second-order the two detuned
pair-states and corrects their energy by a van der Waals-like term +.J2/(hAwp). Since
the pair-states do not mix, they remain equally coupled to the microwave field, which
contrasts with the resonant regime where |—) is dark.

Figure 7.15(b) demonstrate the continuous tuning of the dipole-dipole interaction
from the resonant to second-order regime, taking the form of an avoided crossing
between the dipole-dipole coupled [1]) and ||1). The energy difference hAwy is
obtained by shining the addressing laser on atom 1 to apply a tunable AC Stark
shift. Microwave spectra, with a Rabi frequency €,y /(27) = 0.1 MHz < J/h and an
excitation time 7 = 7/(v/2Qmw) = 3.5 us, are recorded for different detuning Aw, and
shown as a 2D color map. The microwave resonances, seen as a drop in the population

of the initial state ||}, compare well with their predicted positions (right panel).

7.4.2 Freezing a spin-exchange process

We now use the addressing beam as a tool to freeze at will the spin-exchange dynamics
between the two states [1]) and ||1). As a reference, I show again in Fig. 7.16(a) the
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Figure 7.15: From a resonant to second-order interaction. (a) Two-atom spectra in
the resonant (left) and off-resonant (right) limit. The addressing beam applies a light-shift
hAwg on the state |1) of atom 1, while all other states are unaffected. Due to the strong
energy mismatch between the pair-states 1) and []1), the dipolar coupling takes the form
of a second-order van der Waals shift. (b) Microwave spectroscopy for J/h = 0.40 MHz
and Qmw/(27) = 0.1 MHz starting from []]). At resonance, the dark eigenstate |—) is not

coupled to by the microwave field.

unperturbed spin-exchange oscillation driven by a dipolar coupling J/h = 0.4 MHz.
In panel (b), we first let the system evolves to |¢)) = [[1), after half a period
of spin exchange, and then shine the addressing beam, which detunes atom 1 by
Awg = 27 x 4.8 MHz > J and froze the spin-exchange dynamics during a controllable
time 7. The oscillation then resumes without any noticeable loss of contrast. During
the freezing time, the energy-shifted state |1]) acquires a dynamical phase ¢ = Awpr,
while ||1) is unaffected. To observe it, we switch on the addressing beam when the
system is in the superposition of states —%(H“L) + 1 [{1)), which then evolves into
[y = —%{e‘w [Ty 4+ |[41)). In Fig. 7.16(c), we adjust the addressing time 7 such that
¢ = 2m and the dynamics resumes as before we froze it. For ¢ = 2.57 (d), we create
the stationary eigenstate |1)) = i|—) and the populations do not evolve anymore.

Finally in (e), we obtain a m-phase shift of the spin-exchange dynamics when ¢ = 3.

Bloch sphere representation The previous results can be easily understood on a
Bloch sphere, shown in Fig. 7.16(f,g), as the dynamics occurs only in the basis spanned
by [{1) and [1]). The resonant dipolar coupling amounts to a precession of the state
vector |¢b) around an horizontal axis at an angular frequency 2J/A. In turn, when the
addressing beam is on, the state vector revolves around the vertical axis at a frequency
Awyp. In Fig. 7.16(c-e), we stopped the exchange when |¢)) was in the equatorial plane,
where all the maximally entangled states lie.
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Figure 7.16: Freezing a spin-exchange oscillation. (a) Unperturbed spin-exchange
dynamics [1) <> |[{1). (b) The addressing beam freezes the spin-exchange oscillation
during a variable time (purple area). (c-e) The oscillation is now frozen when the system is
in the maximally entangled state |¢)) = —%(m,) +7[J71)). The light-shift on atom 1
modifies the relative phase between the two pair-states by Awyr = 2m,2.57, 37 (c,d,e),
which prepares three different entangled states giving rise to strikingly distinct spin-
exchange dynamics. Solid lines are guides to the eyes. (f) Bloch sphere representation of
the spin-exchange oscillation: The dipolar coupling makes the state vector (red) rotates
around an horizontal axis (orange) at an angular frequency 2J/A. (g) When hAwg > J,
the spin-exchange is stopped and the dynamical phase imprinted by the light-shift amounts

to a rotation by an angle AwyT around the vertical axis.
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Creation of entangled states This control gives us two ways to create entangled
states of two atoms. A first possibility consists in starting from |||) and in collectively
driving the system with microwaves to |[+). In contrast to the usual Rydberg blockade
protocols, based on optical driving between |g) and || ), this approach benefits from
the high amplitude and phase stability of microwave sources, and the long wavelength
of microwave fields compared to the interatomic spacing, making motional phases
negligible [Wilk et al., 2010]. A second possibility, demonstrated here, is to start from
[1}) and to stop the spin-exchange dynamics at the appropriate time, which allows
to create any coherent superposition of |1]) and |[1), in particular the otherwise
inaccessible subradiant state |—). In the future, we could map the entanglement back

to the long lived hyperfine ground-states.

Conclusion

In this chapter, I have demonstrated the high level of control that we have reached on
XY magnets. The implementation of the STIRAP technique was critical to reach a
95 % efficiency in the preparation of Rydberg atoms and thus the initialization of a
magnet with very few holes. The exaggerated response of Rydberg atoms to microwave
radiation and the extreme stability of microwave sources give us a highly coherent
tool to manipulate the spin-1/2 particles, strikingly better than what is possible on
a ground-Rydberg system. The engineering of the addressing beam, combined with
microwave sweeps, makes it possible to prepare localized spin excitations. Combining
all the aforementioned tools, we performed advanced manipulations of a two-atom
system, freezing the dipolar exchange process and preparing entangled Bell states.

The current experimental apparatus could still be improved in future works, for
example one could generate several independently-controlled addressing beams using
spatial and/or temporal light modulators. This would enlarge our toolbox for the
studies of XY magnets, and we could, e.g., initialize a one-dimensional chain in the
state [TJ1J1) - --) and then let it evolve, or apply controlled disorder on the spins for
many-body localization studies [Choi et al., 2016; Smith et al., 2016].

In a wider context, the resonant coupling between two-level systems, obtained here
with Rydberg atoms whose transition frequencies are by nature all identical, is a
more challenging and longed-for goal in solid-state platforms where the bandwidth
and resonance frequencies of artificial atoms (e.g., semiconductor quantum dots) are
affected by fabrication disparities, which, as we have seen, shifts the coupling from

resonant to second-order (see also Shlesinger et al. [2018]).

168



8.1

The Su-Schrieffer-Heeger model
with hard-core bosons

Contents

8.1 Introduction to symmetry protected topological phases . . . . 169

8.2 Implementing the SSH model and its chiral symmetry. . . . . 173
8.2.1  Origin of the zero-energy localized edge-states . . . . . . .. 174
8.22 Thechiral symmetry . . . . . . .. ... 175
8.2.3 Experimental implementation . . . .. ... ... ...... 177

8.3 Single-particleregime . . . . . ... ... L. 179
8.3.1 Microwave spectroscopy of the single-particle eigenstates . . 179
8.3.2 Dynamics of a single particle in a SSH chain . . . . . .. .. 183

8.4 Entering the strongly correlated regime: half-filling with hard-
corebosons . ... ... ..o Lo 185
8.4.1 Many-body phases of the SSH model . . . . . . .. ... .. 186
8.4.2  Adiabatic preparation of the ground-state . . . . . . ... .. 189

8.4.3  Ground-state degeneracy and robustness to a perturbation

breaking the chiral symmetry . . . . . . .. ... ... ... 195
85 Conclusion . . . .. ... ... e 199

Introduction to symmetry protected topological phases

A single spin-excitation on an XY magnet behaves as a particle tunneling between
lattice sites and can thus be described using the framework of Bloch wavefunctions
and bandstructures. In the last decades, there has been a growing interest in materials
exhibiting bands with topological properties and a current open question is how there
are affected when considering interacting particles. With our experimental platform,

where two spin excitations cannot be located on the same lattice site, we naturally
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implement hard-core bosons: particles with an infinite on-site interaction energy. In
this chapter, I present our study of the simplest model giving rise to a topological
phase, — the one-dimensional Su-Schrieffer-Heeger (SSH) model —, both at the
single-particle level where its properties are well-known and originate from a chiral
symmetry, but also in the many-body regime with a lattice half-filled with hard-core
bosons where we will uncover a bosonic topological phase protected by a different

symmetry.

Symmetry protected topological phases The most prominent example of a topo-
logical phase is the integer quantum Hall (IQH) state with its remarkably robust
edge modes giving rise to a quantized Hall conductance [Klitzing, Dorda, and Pepper,
1980], now used as a practical standard for electrical resistance. Triggered by this
discovery, a new classification of quantum phases of matter in terms of topological
invariants has emerged [Thouless et al., 1982] and led to the prediction [Kane and
Mele, 2005a,b] and discovery [Koénig et al., 2007; Hsieh et al., 2008] of topological
insulators (see also the review of Hasan and Kane [2010] and Qi and Zhang [2011]).
In these materials, in contrast to the original IQH effect, a specific symmetry of the
Hamiltonian is required to protect the topological phases, and they are thus nowadays
denoted as symmetry protected topological phases (SPT). They appear in systems
displaying an excitation gap in the bulk, i.e., bulk insulators, and invariant under a
global symmetry operator. The properties of the many-body ground-state, such as the
existence of edge-states at the interface between two materials with different topology
(one could be the vacuum), are protected from any perturbation that does not close

the excitation gap or violates the symmetry.

Non-interacting fermions and the ten-fold way In the specific case of non-
interacting fermions, we can use the Fermi sea picture,— stating that the many-body
ground-state is obtained by filling the single-particle eigenstates up to a chemical
potential—, to classify the SPT phases by considering only the action of the Hamilto-
nian on a single particle, that we call the single-particle Hamiltonian. For example,
when the particles move on a lattice (as electrons in a material in the tight-binding
approximation), the single-particle Hamiltonian is the matrix formed by the hopping
amplitude between different sites. Now, there is a remarkable fact, from a mathematical
physics origin, that all single-particle Hamiltonians divide in only ten symmetry
classes; this classification is known as the ten-fold way and was proposed by Kitaev
[2009] and Ryu et al. [2010] (see also the recent reviews of Chiu et al. [2016] or Ludwig
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[2016]). This classification is based on the behavior of the single-particle Hamiltonian
under three general operations: the time-reversal (TR), the particle-hole (PH) and the
chiral (S) symmetries.

In addition to the search for materials realizing such symmetries, a current hot
topic is the realization of SPT phases in artificial systems where Hamiltonians can
be designed and the symmetries enforced. Ultracold atoms in optical lattices are a
natural platform for this, and there have been, in the last five years, many realizations
of topological bandstructures (see the review by Cooper, Dalibard, and Spielman
[2018]). Let us remark that, at the single particle level, the particle statistics is
irrelevant, such that bosons or fermions have been indifferently used in experiments
with atomic systems. In addition, it means that topological systems can also be realized
with classical objects, such as coupled mechanical oscillators [Siisstrunk and Huber,
2015; Nash et al., 2015; Chaunsali et al., 2017] or radio-frequency circuits [Ningyuan
et al., 2015]. Topological properties also find applications in the manipulation of
light, leading to the field of topological photonics (reviewed by Ozawa et al. [2018]),
which could notably lead to the development of lasers harnessing the robustness of
edge-modes [St-Jean et al., 2017; Bandres et al., 2018].

Bosonic phases The above discussion started from the description of topological
phases for non-interacting fermions. In turn, for bosons we have to consider strong
interactions between the particles, as they otherwise accumulate in the lowest single-
particle eigenstate to form a Bose-Einstein condensate. Spin models are thus a good
place to look at, since a spin excitation can be seen as a hard-core boson, and a
primary example of a bosonic SPT phase is the ground state of the anti-ferromagnetic
spin-1 chain studied by Haldane [1983a]. Signatures of the Haldane phase have later
been observed experimentally in real-world materials [Hagiwara et al., 1990; Glarum
et al., 1991; Avenel et al., 1992]. However, there has been no experimental realization
of a bosonic topological phase in artificial quantum matter yet.

For the classification of interacting topological phases, the ten-fold way does
not apply as the properties of the many-body ground state cannot be derived
from the single-particle Hamiltonian. However, for one-dimensional systems, a full
classification of bosonic SPT phases has been achieved and expressed in terms of
group cohomology [Chen et al., 2012, 2013].

The Su-Schrieffer-Heeger model In this chapter, I report the realization of a

symmetry protected topological phase of hard-core bosons using our Rydberg quantum
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Figure 8.1: The SSH chain. To explain some properties of poly-acetylene (top), Su,
Schrieffer, and Heeger [1979] introduced a model Hamiltonian where a particle hops from
site to site of a staggered one-dimensional lattice. The hopping amplitude alternates

between two values J and J'.

simulator. We implement a coupling matrix between spin-1/2 particle that realizes a
modern version of the Su-Schrieffer-Heeger (SSH) model [Su, Schrieffer, and Heeger,
1979, 1980] (see also the review by Heeger et al. [1988] or his 2000 Nobel lecture).
The model was initially proposed to explain the properties of (trans-)polyacetylene
(CH),, a conjugated polymer, and notably its high conductivity when doped. The
most important aspect of this macromolecule is that it takes a dimerized structure
with an alternation of single and double chemical bonds between each (CH) group. In a
tight-binding approximation, the additional electron brought by the dopant is hopping
from one (CH) group to the other with a hopping amplitude alternating between a
strong J and weak J’ value (see Fig. 8.1). The one-dimensional SSH Hamiltonian thus

reads:

Hssu=-JY [bgbm + h.c.] -y [b}bm + h.c.] (8.1)

oddi eveni

where b} (b;) are the creation (annihilation) operator of a particle on site i and follows,
in the initial formulation of the SSH model, the commutation rules of fermionic
operators. In their original paper, Su, Schrieffer and Heeger considered the case where
there is a change of dimerization at some position in the chain, called a topological
defect, that translates in Eq. 8.1 by interchanging J and .J’ for sites 7 > i4, and
realized that it gives rise to a zero-energy mode localized at the position of the defect.
Similarly, a finite-size system ending with a weak link J' < J also gives rise to a
topological defect at the interface between the chain and the vacuum, and thus to
localized edge-states. The model has then been recognized as realizing a topological

phase for non-interacting fermions protected by the chiral symmetry (see details
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8.2 Implementing the SSH model and its chiral symmetry

later), which motivated its experimental realization in artificial systems to observe
single-particle properties [Atala et al., 2013; Meier, An, and Gadway, 2016; St-Jean
et al., 2017; Chaunsali et al., 2017]. A unique asset of our platform is that we can
populate the system with hard-core bosons and study how these strong interaction

affects the properties of the many-body phase.

Outline This chapter is organized as follows. I first introduce, in Section 8.2, the
defining sub-lattice (chiral) symmetry of the SSH Hamiltonian and describe how to
implement it experimentally using the angular dependence of the resonant dipolar
interaction between Rydberg atoms. In Section 8.3, I present our experimental studies of
the SSH model at the single-particle level demonstrating that we correctly implemented
the model. In Section 8.4, we prepare the many-body ground state of the bosonic
SSH chain at half-filling using a microwave adiabatic sweep. We then characterize it
experimentally to demonstrate that it is a SPT phase, and finally observe a robustness
to a perturbation that breaks the chiral symmetry protecting the fermionic phase,
indicating the presence of a different symmetry for the bosonic phase. This work was
performed in collaboration with a theoretical team composed of Sebastian Weber,
Nicolai Lang and Prof. Hans-Peter Biichler, from the University of Stuttgart. The
results presented here are in the process of being published [de Léséleuc et al., 2018b).

Implementing the SSH model and its chiral symmetry

Here, I examine the properties of Eq. (8.1) for a single particle in the lattice. This
restriction makes sense as the number of particles is conserved in the model. In this
limit, the statistics of a particle (bosonic or fermionic) is irrelevant, as we will not
have to commute two operators bf. The Hamiltonian eigenstates and their energies
are obtained either by using the Bloch theorem for an infinite-size system, or, for a
finite one, by exact diagonalization. Below, I describe how we use the zero-energy
edge-modes to distinguish a topologically trivial from a non-trivial configuration.
Then, I explain the requirements of the chiral symmetry that protects the topological
edge-modes. Finally, I show how to implement a long-range version of the SSH model,

while enforcing the chiral symmetry, on our Rydberg platform.
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Figure 8.2: Single particle spectra. (a) For J' = 0, the SSH chain is a collection of
independent dimers. A particle lowers its energy to —J when it is symmetrically delocalized
on the two lattice sites. (b) For J' # 0, the particle delocalizes over the lattice, giving a
bandstructure of eigenstates with a width 2J’. (c) When the chain ends with weak links
J’, there are two zero-energy modes lying in the gap, corresponding to a particle localized

on the left or right side of the chain.

8.2.1 Origin of the zero-energy localized edge-states

We approach the SSH model by first considering the limit J° = 0, where the lattice
becomes a collection of independent dimers (two sites linked by the hopping amplitude
J). On each dimer, a particle delocalizes on the two sites to form either a symmetric
eigenstate |+), at energy —J (because of the minus sign in Eq. ?7), or an anti-
symmetric one, |—), at an energy +.J [see Fig. 8.2(a)]. We have already encountered
these eigenstates in the previous chapter, when considering two Rydberg atoms in
resonant dipole-dipole interaction. Restoring the inter-dimer hopping J’ allows the
particle to delocalize over the entire lattice, which leads to an hybridization of the
degenerate symmetric and anti-symmetric orbitals of each dimer, and to the formation
of two bands of eigenstates centered at +.J with a width 2.J’; as shown in Fig. 8.2(b).
There is a finite gap 2(J — J’) between the two bands as long as J' # J.
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8.2 Implementing the SSH model and its chiral symmetry

I number of sites. If

We now consider edge effects on a finite-size lattice with an even
the chain ends with a weak coupling constant J', as shown in Fig. 8.2(c), we readily
see that it gives, in the limit J’ = 0, a zero-energy mode localized on the edge site
that is disconnected from the rest of the chain. The interesting fact is that this mode

remains at zero-energy even when restoring a finite J’, and then reads:

L) ~ [Ar) — (%) |43) + ("%)2 1As) . (8.2)

where |A;) indicates that the particle is on site i. In contrast, there is no such mode
when the chain ends with a strong coupling constant J. From the existence of edge
modes, we can thus identify two different lattice configurations (ending either with
J" or J), which are said to topologically distinct. The chain shown in Fig. 8.2(b) is
the trivial (or topologically trivial) configuration, while the one in Fig. 8.2(c) is the
topological (or topologically non-trivial) configuration that gives rise to zero-energy

modes.

Infinite-size system: winding number I briefly describe how the problem is treated
for an infinite-size system, which is not the situation that we will realize experimentally,
but is a common approach to the SSH problem. In this limit, the two bands of eigenstates
with energies +|J + J'e¢'?| identified in Fig. 8.2 become continuous and we use the
Bloch theorem to label each state with a quasi-momentum ¢ € [—7/a, 7 /al], with a the
lattice spacing. There are two eigenstates for each momentum ¢, because we have to
choose a unit cell composed of two lattice sites (a dimer) to restore the translational
invariance broken by the staggered hopping. The topology of each band is not revealed
in the energy levels, but in the evolution of the wavefunction when going around the
Brillouin zone, characterized by a topological invariant,— the winding number or
the related Zak phase —, and I refer the reader to the tutorial of Asbéth, Oroszlany,
and Palyi [2016] or the review by Cooper, Dalibard, and Spielman [2018], for a more

detailed introduction to these concepts.

8.2.2 The chiral symmetry

The zero-energy edge modes of the SSH model are topologically protected from
any perturbation of the lattice, that (i) does not close the gap or (ii) breaks the

IThis condition just makes the situation simpler, as the two edges then have the same properties.
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Figure 8.3: Chiral symmetry. We define a more general version of the SSH model where
the coupling matrix J;; is not restricted to nearest neighbors. However, we still need to
enforce the defining chiral (or sub-lattice) symmetry of the Hamiltonian. This requires
that there is no hopping between two sites of the same sub-lattice. Expressed in the basis
starting with sites from the A sub-chain, and then all the B sites, the coupling matrix

cannot have non-vanishing elements on the two diagonal blocks.

chiral symmetry. We have just seen above why condition (i) is necessary, as the edge
states disappear when going from one gapped spectrum J’ < J to another J' > J,
through the gapless situation at J' = J. Condition (ii) expresses the fact that the SSH
Hamiltonian (8.1) is invariant under a chiral symmetry? {;‘F} or in a mathematical
language: [I;T , S\F] = 0. Now, this statement on the many-body Hamiltonian translates
to a property of the single-particle Hamiltonian, which is the matrix J;; containing
the hopping amplitudes between the different lattice sites. Following the derivation
of Chiu et al. [2016] (in particular Section I1.C), the chiral symmetry requires that
there is a basis in which J;; is block-off-diagonal [see Fig. 8.3(a)]. This basis defines
two sets of lattice sites, A and B, and there can only be hopping terms between
sites in different sub-lattices. For this reason, the chiral symmetry is often called the

sub-lattice symmetry.

Now, we readily see why the SSH model realizes the chiral symmetry, since we can
identify two such sub-lattices, as shown in Fig. 8.3(b). In addition, we understand that
restricting the hopping terms to nearest neighbors only is not necessary, and we now
consider an extended SSH model where long-range hoppings are allowed, as long as

they couple two sites of the same sub-chain:

H=— Y J, [b;'bj + b}bi] , (8.3)

icA,jeB

Let us now consider how to break the chiral symmetry. A first possibility is to have

non-zero diagonal terms in the coupling matrix. These terms correspond to on-site

2The subscript indicates that the symmetry protects the fermionic SPT phase.
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potential energies J;; that differ® from site to site. A well-studied example is to take
Jii = (—1)*A, which realizes the Rice and Mele [1982] model. Another way is to break
the symmetry with hopping terms between two sites of the same sub-chain, such as a
next-nearest neighbor hopping J; ;12 = J,. We will come back to this idea later in the
chapter.

8.2.3 Experimental implementation

[ first briefly review implementations of the SSH model in artificial systems, and then

describe how we have done it on our experimental platform.

Previous implementations Atala et al. [2013] loaded a Bose-Einstein condensate
in an optical super-lattice, formed by overlapping two lasers with walevength A and
2 A, leading to staggered tunneling amplitudes. The non-interacting particles are
initially in a well-defined quasi-momentum |¢g = 0) and are then made to perform Bloch
oscillations to measure the geometrical Zak phase acquired when moving adiabatically
around the Brillouin zone. Meier, An, and Gadway [2016] also used a BEC, but loaded
in a finite-size momentum-space lattice with staggered couplings engineered with
time-dependent (real-space) lattices; they notably reported the adiabatic preparation
of the atomic cloud in a localized edge-state in momentum space. Using an array of
polariton micropillars, St-Jean et al. [2017] demonstrated lasing from the edge-mode
that should thus be robust to deformations of the lattice structure. Finally, Chaunsali
et al. [2017] used mechanical granular chains and observed a vibrational mode localized
at the interface between two chains with different dimerizations. These experiments
probed the single particle properties of the SSH model, that derive from the chiral

symmetry of the coupling matrix J;; and are independent of the particle statistics.

Our implementation with Rydberg atoms In our case, we implement the SSH
model on an effective XY magnet (see previous chapter) where the spin excitations are
seen as hard-core bosons. We engineer the adequate coupling matrix J;; using the
angular dependence of the resonant dipolar interaction between Rydberg atoms.
Our realization of the SSH chain is performed on an artificial structure of 14 Rydberg
atoms, assembled atom-by-atom and initialized with our STIRAP procedure in the
Rydberg state ||) = |60S;/2, ms = 1/2) with an efficiency of 95% (there is thus a 5 %
probability that a Rydberg atom is missing). From there, the atom can be coherently

31f all J;; = Jo, we can just redefine the origin of the energy axis to remove this constant offset.
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Figure 8.4: The SSH chain with Rydberg atoms A single-shot fluorescence image of
the atom assembled in the artificial structure for the trivial (left) and the topological
configuration (right). The chain is tilted by the angle 6,,, to cancel couplings between
sites in the same sub-lattice. The measured couplings are J/h = 2.42(2) MHz, J'/h =
—0.91(2) MHz, |J5|/h < 0.07 MHz, J3/h = 0.21(1) MHz and J%/h = —0.14(1) MHz.

transferred to the Rydberg level |1) = |60P, 5, m; = —1/2) using microwave radiations
at ~ 16.7 GHz. The detuning from the transition is Ay, and the Rabi frequency
Quw/(2m) can range from 0.1 to 20 MHz. We denote the state with all Rydberg atoms
in |}) as the ‘vacuum’ |0) of the many-body system, while a spin-excitation |1), at
site 7 is described as a bosonic particle b|0). The creation and annihilation operators
satisfy bosonic commutation relations on different sites 7 # j, and obey the hard-core
constraint (51)2 = 0, as two particles cannot occupy the same site i.

Then, the resonant dipolar interaction occurring between two Rydberg atoms at
site 7 and j gives rise to hopping of the hard-core bosons, which we use to engineer
the hopping matrix J;;. Notably, we need to impose the chiral symmetry requiring
that there is no coupling between atoms in the same sub-lattice. Using the angular
dependence J;; oc 1 — 3 cos? 6;; of the dipolar coupling, we choose the geometry shown
in Fig. 8.4, where the two sub-chains A and B form an angle 6, ~ 54.7° with the
quantization axis. The vanishing coupling along this ‘magic’ angle enforces the required
sub-lattice symmetry of the SSH model. The experiment is performed for two different
configurations: a topological setup with a weak hopping J’ at the boundary, and a
trivial setup with a strong hopping J at the boundary.

Hopping amplitudes The couplings up to the third neighbors have been measured
experimentally. First, we obtained J/h = 2.42(2) MHz and J'/h = —0.92(2) MHz
with an inhomogeneity over the chain smaller than 3 %. For the next-nearest neighbor

hopping Js, forbidden by the chiral symmetry, we estimate a higher bound on the
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8.3 Single-particle regime

coupling strength |J;|/h < 0.07 MHz by observing the transfer of a spin-excitation
between two atoms at the magic angle. Even though the transfer is in principle
suppressed, we observe a slow incoherent transfer, from which we extract the bound, due
to the shot-to-shot fluctuation of the atoms position caused by their finite temperature
(see Section 2.1.3), resulting in angle 6; ;42 fluctuating around #,, by £0.5°. Finally,
the hopping terms to third neighbors are measured to be J3/h = 0.21(1) MHz and

t/h = —0.14(1) MHz. Couplings between further atoms are not relevant on our
experimental time scales. The different signs* of J and J’ do not modify the physics of
the SSH model, but simply change the energy ordering of the single-particle eigenstates

compared to the ‘usual’ situation of identical signs.

Single-particle regime

In this section, I present four experimental results illustrating the single-particle
properties of the SSH model: (i) the presence of zero-energy modes when the SSH
chain contains topological defects, (ii) the exponential localization of such modes,
(iii) the different dynamics of a particle in a trivial or topological chain, and (iv) the

coherent transfer of a particle between two localized modes due to their hybridization.

8.3.1 Microwave spectroscopy of the single-particle eigenstates

Starting with the chain in the vacuum state |0), we shine a weak microwave probe
and observe the coherent creation of a particle if the eigenstate energy is matched by
the microwave detuning A . The coupling strength Q,,,,/(27) = 0.2 MHz and the
excitation time t = 0.75 us are chosen small enough to limit the creation of multiple
particles. Figure 8.5 shows the site-resolved probability to observe a particle on a given
site for different SSH chains: the trivial (a) and topological (b) configurations, but also
two chains with a topological defect in the bulk (c¢,d). I first discuss the properties of
the delocalized modes that are mostly independent on the specific geometry and then

the zero-energy ones localized at the position of the defects.

Delocalized modes For all configurations, we observe a clear signal for A,; <

|J'| — |J| from the lower band modes delocalized along the chain, while there is no

4A global change of sign of all coupling constants is equivalent to changing the sign of the microwave
detuning (which we do in this chapter as compared to the previous one).
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Figure 8.5: Microwave spectroscopy. First row: lattice geometry. Second row: ex-
perimental spectra showing the site-resolved probability to find a particle. Third row:
calculated spectra and microwave couplings | ), aF| (orange bars). Fourth row: selection
of eigenstates. (a) Trivial configuration. The white dashed lines indicates the limit of the
spectral gap £(|J| — |J’|). (b) Topological configuration. (c) Topological defect of ‘type-1’
(two consecutive weak links). (d) Topological defect of ‘type-2' (two consecutive strong

links).
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signal from states in the higher band. To explain this, let us consider the microwave

transition strength from the vacuum state |0) to the eigenstate |e*) = 3", okbl |0):

RQ% (ek‘ Z: [bl + bt-] 0) = h%’w X Z:af. (8.4)

[ show these couplings on the right of the calculated spectra for each chain configuration,
together with a selection of wavefunctions {a*}. For all chains, a specific delocalized
mode (i,vii,ix) has a dominant contribution to the signal: this is the mode where
almost all coefficients «; have the same sign and gives a collectively enhanced coupling
to the microwave probe. In contrast, couplings to other modes are either weak (ii) or
completely inhibited (iii). The coupling to only a few eigenstates is linked to the use of
a coherent probe: for example, St-Jean et al. [2017] could observe all the delocalized
modes by relying on the incoherent creation of the particles.

For an infinite chain (N — o), the mode (i) would correspond to the eigenstate
|g = 0) with zero quasi-momentum; no other mode |q # 0) can be created by absorbing
a microwave photon whose momentum is negligible®. On the higher band, the mode
(iii) also transforms into an eigenstate with zero quasi-momentum but its Bloch
function is anti-symmetric, preventing the coupling to the microwave field. Finally, the
mode (i) would have the lowest energy for coupling strengths J, J' > 0, it is not the

case here as J' < 0.

Zero-energy modes [ now describe the modes that appear in the gap when topo-
logical defects are present in the chain. In the panel (a), the chain is in the trivial
configuration and there is no such mode. In panel (b), the chain ends with two
weak links that give rise to the left |L) and right |R) edge modes. We couple in
fact to the symmetric superposition |L) 4+ |R) of these two modes (iv) and not to
the anti-symmetric one |L) — |R) (v). We will see later that (iv) and (v) are not
strictly degenerate in finite chains due to their hybridization. In panel (c), there
are two consecutive weak links that lead to the localized mode (vi) centered on the
topological defect. Finally, in panel (d), two consecutive strong links give rise to an
anti-symmetric zero-energy mode (viii) that is thus not observed experimentally, but
also to a finite-energy symmetric localized mode (x) observed at the bottom of the
spectrum. Let us also note that, in panel (c¢) and (d), the chiral symmetry is not
strictly enforced between the two part of the chains from each side of the defect. The

width of the signal comes from the microwave probe Rabi frequency.

5Tts wavelength exceeds by more than 4 orders of magnitude the spacing between lattice sites.
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Figure 8.6: Localization of the zero-energy modes. Probability to find a spin-excitation
(= a particle) on a given site when shining the microwave field at A, = 0 to probe the
zero-energy modes on a chain with (a) topological defects at both ends or (b) with a
central defect. The microwave probe can also create states with more than 1 particle.
To remove the contributions from the n > 1 manifolds of eigenstates, we post-select
experimental runs where only one particle was observed (right panels). The dark crosses
indicate the theoretical probability distribution of the localized mode, rescaled to the
measured value at the defect site i = ig. We expect the probability for the particle to be
found at site iq & 2 to decrease by a factor (J’/J)z, which is indeed observed. For further
sites, the expected probability to find a particle is below 1 %.

Edge-state localization Recalling Eq. (8.2), we expect a zero-energy mode to be
localized at the position of each topological defect, which is seen in the spectra of
Fig. 8.5, but also that the mode extends beyond the defect site. More precisely, having
created a particle in the localized mode, there should be a ratio of ~ (J’/J)? between
the probability to find it at the defect site i = iq and at the next-nearest neighbor site
iq £ 2. To observe this, I present in Fig. 8.6(a,b) 1d-cuts at A, = 0 of Fig. 8.5(b,c),
giving us the spatial distribution of the zero-energy edge modes (iv) and (vi) of,
respectively, a SSH chain with two topological defects at each end, and an isolated
defect in the bulk of the chain (the original situation envisioned by Su, Schrieffer; and

182



8.3 Single-particle regime

1 - , , —
=2 =3 i=4 Trivial |  __
v
3o
> Y m
£ £ 0. S,
o) 88, _ 0000808082220 = =
E _  08afeas = s
2 o ; : : - S
e 1 12 [tos >
o1 . 0.0 E
S Topological S
= iy ©
o W =
35 £ 06 Z
Wﬂ—ﬁ =
o LS N . . 0.9 o1
0.0 0.3 0.6 0.9 1 11
Time (ps)

Figure 8.7: Dynamics: trivial vs topological chain. We observe the dynamics of a
single particle prepared on the leftmost site of a trivial (top) and topological (bottom)
SSH chain. The left curves show the occupancy probability of the first four sites, while the
2d-map on the right shows the dynamics over the entire lattice. In the trivial configuration,
the particle delocalizes on the bulk in a coherent manner. In the topological configuration,

the initial state has a strong overlap with the left edge modes and only a small fraction of

the particle delocalizes.

Heeger [1979]). The left panels show the raw data (as in Fig. 8.5) on a logarithmic
scale, while in the right panels we post-select for experimental runs where at most a
single particle was observed. This procedure allows us to remove the contributions from
delocalized eigenstates with n = 2 particles that can also be created at zero detuning®.
We then clearly observe the expected spatial dependence of the localized mode, that
compares well with theory (dark crosses). The effect of longer range couplings J3 and
J} was estimated numerically to give a correction of only 10 % to the ratio (J'/J)?,

which cannot be resolved experimentally here due to the ~ 2 % background signal

caused by preparation and detection errors.

8.3.2 Dynamics of a single particle in a SSH chain

In this section, we now initialize a particle in the leftmost site [t) = bl |0), using the

technique described in Section 7.2.3, and observe its subsequent evolution.

5These states can be seen on Fig. 8.9(d).
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Figure 8.8: Edge-modes hybridization On finite chains, the hybridization between the
left and right edge modes allows the coherent transfer of particles between the two extreme
sites. (a) Experimental observation for chains of N = 4, 6, 8 and 10 sites. (b) Occupancy
probability of the rightmost site (with an arbitrary offset between the different curves).
The solid lines are sinusoidal fits, with both amplitude and period as free parameters,
from which we extract the hybridization energy Eqyn shown in (c). We compare it to
calculations keeping only nearest-neighbor hoppings (dashed line) or including couplings to
the third neighbors (solid line). The error bar on the last point is particularly large as we

can only record the very beginning of the transfer.

Trivial vs topological chains Figure 8.7 shows how the dynamics of the particle

differs depending if the chain is in a trivial (top) or topological (bottom) configuration.
In the former case, the initial state |¢)g) decomposes into a superposition of delocalized
modes leading to a propagation and expansion of the wavepacket in the bulk of the
chain. In the topological configuration, the probability to find the particle at its initial
location remains high as there is a large overlap |(1o|L)|> =1 — (J'/J)? ~ 0.85 of the
initial state on the left edge-mode. For this specific experiment, we chose a chain with

an odd number of sites and there is no edge-mode on the right side.
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8.4 Entering the strongly correlated regime: half-filling with hard-core bosons

Hybridization of edge states We now repeat the same experiment as above, but
on a topological chain with two edge modes separated by L sites. There is now a finite
coupling Eyy, = (L] I—:TSSH |R) between the left and right edge-modes that leads to their
hybridization into symmetric and anti-symmetric states at energy =+ Fjy,. Similarly
to the spin-exchange oscillation observed in the previous chapter, we now observe
the coherent transfer of a spin-excitation from the leftmost site to the rightmost site.
Figure 8.8 shows this effect on chains of length L = 4, 6, 8 and 10 sites. We extract the
hybridization energy from the transfer frequency between the two extreme sites and
compare it, in Fig. 8.8(c), to calculations using only nearest neighbor couplings (dashed
line) or including J3 and J} (solid line). The latter gives a much better agreement
with our experimental data, and thus demonstrates the influence of the long-range
couplings in our version of the SSH model. Finally, let us remark that for a chain of 14
sites, Enyp/h = 0.01 MHz is negligible compared to our experimental energy scale. In
the following, we will thus neglect the hybridization between the two edge modes and

consider them as degenerate eigenstates.

Entering the strongly correlated regime: half-filling with hard-core

bosons

Having studied the SSH model at the single-particle level, we now turn to the properties
of its quantum many-body ground-state. The latter depends on the type of particles
that are loaded on the chain, — fermions or bosons, interacting or not —, and I first
review the different cases in Section 8.4.1. With our experimental platform, we naturally
obtain hard-core bosons that can be coherently created or annihilated with a microwave
field. We use this property in Section 8.4.2 to prepare the many-body ground-state
of hard-core bosons with a microwave adiabatic sweep. Finally, in Section 8.4.3, [
demonstrate that this ground-state is four-fold degenerate, due to the two zero-energy
edge-modes, and that this degeneracy remains even when adding a perturbation to the
SSH chain that breaks the chiral symmetry of the hopping matrix J;;. The latter fact
is explained by the existence of a different symmetry for the bosonic phase, with no

equivalent at the single-particle level.
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8.4.1 Many-body phases of the SSH model

[ describe here the many-body ground-state of the SSH chain when using different types
of particles: (i) non-interacting bosons, (ii) non-interacting fermions, (iii) hard-core
bosons, and (iv) bosons with a finite interaction energy. The SSH model was originally
formulated for non-interacting fermions, while in our experimental platform the

particles are hard-core bosons.

Non-interacting bosons The many-body ground-state [ip) is a Bose-Einstein con-

densation of all bosons in the lowest single-particle eigenstate, as shown in Fig. 8.9(a).

Non-interacting fermions In contrast to bosons, the Pauli principle forbids to have
two fermions (considering here spinless or spin-polarized fermions) in the same state.
The ground-state |¢r) is then obtained using the Fermi sea picture stating that
each single-particle eigenstate is occupied by a fermionic particle up to the chemical
potential p. In Eq. (8.3), we have implicitly chosen p = 0: the chemical potential lies
within the spectral gap and only states in the lower band are populated, as shown in
Fig. 8.9(b). For a chain in the trivial configuration, one obtains a single insulating
ground state, while for the topological case a four-fold degenerate ground state appears
due to the two edge modes |L) and |R) at zero energy: each of them can be populated

or not without changing the energy of the system.

Hard-core bosons (or spins) We now consider hard-core bosons that obey bosonic
commutation rules on different lattice sites, and the constraint (b;)> = 0 indicating
that there can be at most one particle per site. A direct consequence is that the
dimension of the Hilbert space is restricted to 2V, as in the case of spin-polarized
non-interacting fermions (due to the Pauli principle). For a one-dimensional chain
with only nearest-neighbor hopping, there is in fact a direct mapping between the
two Hilbert spaces, the Jordan-Wigner transformation, that we can use to derive the
many-body ground state |¢ug) from the fermionic one |¢r). The bosonic phase thus
inherits the properties of a bulk excitation gap and a four-fold ground state degeneracy
for the topological configuration. If we would restrict the coupling matrix .J;; to only
nearest neighbor, there would be no difference between the fermionic ground-state and
our phase of hard-core bosons.

However, in our experiment, the long-range dipolar interaction gives rise to hopping

of particles beyond nearest neighbor sites, such that applying the Jordan-Wigner
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Figure 8.9: Many-body ground-states of the SSH model. We consider different types
of particles loaded in the SSH chain: (a) non-interacting bosons forming a Bose-Einstein
condensate in the lowest energy single-particle eigenstate, (b) non-interacting fermions
forming a Fermi sea with one particle per eigenstate up to the chemical potential (here
p = 0), (c) and (d) hard-core bosons (or spins) for which we represent the full Dicke
ladder of 2V eigenstates arranged by number of particles (= spin-excitations). The spectra
are calculated for the couplings J and J' realized in our experiments. sFor the trivial SSH
chain, there is a single many-body ground-state with INV/2 particles, while there are four
degenerate states for the topological chain. (e) Pictorial representation of the ground-state
with N/2 — 1 particles. In the limit J’ = 0, the edge sites are empty while the bulk of the
chain is half-filled with particles, each symmetrically delocalized on the two sites forming a
dimer (equivalently each dimer is in a Bell state). For finite J’, correlations also appear

between dimers.

187
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transformation maps a system of hard-core bosons into interacting fermions. Conse-
quently, |¢r) (for free fermions) and |¢ug) now have different properties. The most
striking difference will be observed upon deforming the SSH chain to allow hoppings
between next-nearest neighbor sites that breaks the four-fold degeneracy of |¢g),
but not of |¢ug). The latter thus needs its own representation that does not rely
on a Fermi sea picture. Since there are ‘only’ 2V eigenstates of the Hamiltonian, we
can directly calculate its spectrum which takes the form of a Dicke ladder, shown in
Fig. 8.9(c,d) for N = 10 sites (to keep the number of states in the figure reasonable).
The states are organized by increasing number of particles n =0,1..., N. A particle-
hole transformation allows to go from the n = k to the n = N — k manifold, which
have thus identical properties. For n = 1, we recognize the single-particle eigenstates

studied in the previous section. For the topological chain, the many-body ground—state

particles, clearly separated from the first excited states by a spectral gap calculated to
be A,/(2m) ~ 1.83 MHz. If there were only nearest neighbor hoppings, this gap would
be identical to the single-particle one A, = |J| — |J'|.

In the limit of vanishing inter-dimer coupling J’ = 0, an exact formulation of the
many-body ground states is readily found. They correspond to exactly one particle
per dimer, symmetrically delocalized between the two sites, while the edge sites of the
topological chain can be either empty or occupied. In any case, the bulk of the chain

is a product of entangled Bell states:

bu]k J’ DH 2@ bgz—f—l (8.5)

A finite coupling J’ gives rise to fluctuation of the particle number in each dimer,
and to additional correlations between neighboring dimers, pictorially represented in

Fig. 8.9(e). We will observe such effects in the following section.

Super-lattice Bose-Hubbard Hamiltonian For completeness, I also present the
case where bosons are interacting with an on-site interaction energy U. Hard-core
bosons are obtained by taking the limit U — oo. For finite interaction energies, the
problem is more complicated than for hard-core bosons as there can be more than one
particle per site, and the Hilbert space is not restricted anymore to 2V eigenstates.

The Hamiltonian now reads:

Sy [ty +00] + 5 - ), (3.6)

icA,jeB
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8.4 Entering the strongly correlated regime: half-filling with hard-core bosons

where n; = b;rbi counts the number of particles on site i. For uniform couplings J;; = J,
we obtain the Bose-Hubbard model (BHM), whose quantum phase transitions between
a superfluid phase for U <« J and Mott insulators (MI) for U >> J have been intensely
studied in optical lattice experiments (see, e.g., Bakr et al. [2010]). For increasing
chemical potential p, there is a succession of incompressible MI phases with fixed
number of particles per site n/N = 1,2,3,.... By overlapping optical lattices with
different periodicity, we obtain the super-lattice Bose-Hubbard model (SL-BHM),
with a unit cell containing [ lattice sites and MI phases with a fractional number of
particles per site [Buonsante and Vezzani, 2004; Grusdt, Héning, and Fleischhauer,
2013]. The specific case | = 2 realizes Eq. 8.6 and gives rise to a Mott insulating phase
with n/N = 1/2 particles per site.

As a first step towards studying many-body phases of interacting particles in
topological models, there have been studies of simpler systems with only two particles.
In a theoretical analysis of Eq. 8.6, Di Liberto et al. [2016] found the existence
of repulsive bound pairs. On the experimental side, Tai et al. [2017] realized the
Harper-Hofstadter Hamiltonian, another topological model, and observed the influence
of interaction on the propagation of two particles. However, no study in the many-body

regime have been reported so far.

8.4.2 Adiabatic preparation of the ground-state

I now demonstrate the adiabatic preparation of the many-body ground-state of a
topological SSH chain of 14 sites. Figure 8.10(a) shows our objective: starting with
the system initially in the vacuum state |0), we want to bring it in one of the four
degenerate ground states at half-filling. To achieve this, we use an adiabatic microwave
sweep. I remind the reader that for a microwave drive €, (¢) with a detuning A (¢),

the Hamiltonian reads:

H=—Y I, [bgbj + b}bi] + m% Z [b;f + bi] - Z b,  (8.7)

icA,jeB

Recalling that the SSH part can be separated in manifolds of fixed number n of
particles, the detuning creates an energy shift nhA ,;, different for each manifold, while
the driving term couples a manifold of n particles to the n + 1 manifolds through the
coherent creation and annihilation of particles by the microwave field. Figure. 8.10(a)
shows the microwave amplitude and detuning profiles that we use to prepare the

many-body ground state. Starting with a large initial detuning A, > |J|,|J’|, the

189



Chapter 8: The Su-Schrieffer-Heeger model with hard-core bosons

vacuum state |0) becomes the many-body ground-state (in the spin language, this
is our usual paramagnet for a large longitudinal magnetic field). We then turn on
the microwave drive to couple the different manifolds together, and then chirp the
microwave frequency until we reach a final detuning A, and finally switch off the
coupling strength.

From a theoretical analysis simulating the full time-evolution, discussed just after,
we expect that such a ramping procedure prepares the ground-state with high fidelity.
In this section, I demonstrate it experimentally by observing (i) the local density of
particles as a function of the final detuning Ayg, (ii) the squeezing of the number of

particles during the sweep, and (iii) the apparition of strong correlations between sites.

Discussion about adiabaticity A natural question is if we can reach adiabatically
the many-body ground state assuming a fully-coherent” evolution of the system. In
particular, if there is a quantum phase transition between the initial vacuum state (a
paramagnet) and the many-body ground state (an ordered state) during the microwave
sweep, then there will be a gap closing (for an infinite size system) leading to defect
and preparation errors. In fact, in contrast with our studies of Ising antiferromagnets
in Chapter 4, there is no such QPT and it is thus possible to prepare almost perfectly
the many-body ground state in a finite amount of time.

Using the sweep shown in Fig. 8.10(b) with A¢/(27) = —1 MHz and numerically
solving a time-dependent Schrodinger equation (for N = 10 sites), we find that our
ramping procedure prepares the ground state with N/2 — 1 particles [marked by an
orange star in panel (a)] with a fidelity of 96 %. The efficiency can be increased to
99.7 % by using an optimized sweep, proposed by Sebastian Weber and shown later in
Fig. 8.13(b). Let us note that only the half-filled ground states (and the fully filled
one) can be adiabatically prepared in the limit N — oo, since all other states are not
separated by a gap from the first excited ones (away from half-filling, the system is a

‘metal’ without an excitation gap).

Plateaus at half-filling I first present how the local density of particles depends on
the final detuning Af and the configuration of the SSH chain. The experimentally
observed filling fraction of the bulk sites i € [2,13] and the two edge sites are shown in
Fig. 8.10 for the trivial (¢) and topological SSH chains (d). We find that the bulk sites
occupancy (blue curves) presents a characteristic plateau at half-filling when the final
detuning lies within the gap A;/(27) = 1.83 MHz.

"We have demonstrated in Section ?? that the microwave drive is a perfectly coherent tool.
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Figure 8.10: Sweeps to half-filling. (a) We aim at preparing one of the four degenerate
ground-state of the topological chain with a microwave sweep. (b) Time-dependent
microwave coupling strength €, (t) and detuning A w(t) ending at A¢. (c,d) We scan
the final detuning A¢ and measure the excitation probability of bulk sites (blue) and edge
sites (green and brown) for the trivial (c) and topological (d) setup (right). For a sweep
ending in the gap (dashed line), the bulk of the chain is half-filled. Bosons are loaded in
the edge sites of the topological setup when Af > 0.

While the local bulk properties are independent of the topology of the setup, it
is drastically different for the edge occupancies: in the trivial setup, the edge sites
behave as the bulk sites, whereas for the topological setup, the boundaries remain
depleted for Ay < 0 and exhibits a sharp transition to fully occupied for Ay > 0.
This is consistent with the ground state degeneracy represented in Fig. 8.10(a) as for
A <0 (> 0), we create the ground-state of the n = N/2 — 1 (n = N/2 + 1) manifold
where both edge sites are unoccupied (occupied). The small jump of the bulk density
around Ay = 0 comes from preparation errors of the Rydberg array: this creates holes
in the chain and thus topological defects accompanied by zero-energy modes that are
filled with a particle for Ay > 0.
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Figure 8.11: Particle number squeezing during the sweep. Measured distributions
of the number of spin-excitations in the bulk of the chain, at different times along the
microwave sweep. Black curves show binomial distributions (uncorrelated spins) centered at
the mean value of the measured ones. Red dashed curves are the results of a Monte-Carlo
simulation taking into account detection errors (g,&") = (0.04,0.04) for each of the 12 bulk

sites, assuming a state with exactly O (leftmost panel) and 6 particles (rightmost panel).

Squeezed number of particles In the previous paragraph, we have seen that an
adiabatic sweep ending at Ay = 0 led to a bulk half-filled with 6 particles on average.
[ now show that we are actually quite close to preparing exactly 6 particles in the
bulk. Here, I do not consider the edge sites as they give rise to strong fluctuations of
the particle number for A; = 0. Figure 8.11 shows the evolution during the sweep of
the particle number distribution. Initially, the system is in the vacuum state |0) and
the few detected particles come from detection errors. We then observe an increase of
particle numbers with a distribution remaining binomial (black dashed curve). In
our spin language, we are still in a paramagnetic phase with uncorrelated spins but
with a decreasing magnetization. At the end of the sweep, we have reached half-filling
(no net magnetization), the particle number distribution is much narrower than a
binomial law (the spins are now correlated, see next paragraph) and we obtain a 48 %
probability to have ezactly 6 particles in the bulk. I also show, with the red dashed
curve, how an ideal distribution perfectly peaked at n = 6 is affected by detection
errors (£,¢') = (0.04,0.04). Due to the accumulation of detection errors over the 12
bulk sites, the probability to observe exactly 6 particles is decreased to 65 %, close to

our measured value. The remaining difference originates from preparation errors.
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Correlations We expect the many-body ground-state of a half-filled chain, prepared
by an adiabatic sweep ending at Af = 0, to show strong correlations between the
particles. Especially, from our discussion in Section 8.4.1, and in particular Eq. (8.5),
we expect the bulk of the chain to be approximately a product of Bell states on each
dimer. A first consequence is that there should be close to only one particle per dimer,
giving strong anti-correlations for the excitation probability of two spins in the same

dimer. Figure. 8.12(a) shows the correlation map:
Cz(1,5) = (0705) = (07)(03), (8.8)

which takes the maximal value of £1/4 when two lattice sites ¢ and j are always found
in the same (opposite) state. As expected, we observe strong ‘intra-dimer’ correlations
4C%(2i,2i + 1) = —0.630(6) (averaging over all dimers for ~3000 experimental runs,
the error bar is the standard deviation obtained by the bootstrap method). The
‘inter-dimer’ correlations between two nearest neighbor sites in different dimers are
much weaker: 4 Cz(2i — 1,2i) = —0.025(9).

The above correlations tell us that, on each dimer, only one of the two spins is
observed in the excited state, but we do not know if each dimer is in a statistical
mixture of |01) and |10) or in a coherent state. To demonstrate the coherence between
the two sites, we have to rotate the measurement basis (the method is described

below) to measure the correlations:
Cx (i, 5) = (07 0F) — (07)(07)- (8.9)

Figure 8.12(b) shows strong intra-dimer correlations 4 Cy (2i,2i + 1) = +0.454(7)
demonstrating that a particle is coherently delocalized between the two lattice sites
forming a dimer. Additionally, we observe inter-dimer correlations 4 Cx (2i — 1,2i) =
—0.041(8) that are stronger than when measuring along the z-axis. The latter fact is a
general property of the ground-state of XY magnets: spatial correlations measured

along the z-axis decrease faster than along the xy-plane [Giamarchi, 2003].

The rotation of the measurement basis is better explained in the spin language.
Our read-out method always projects the state of each spin in the state ||) or [1)
along Z. However, we can rotate the spins just before the measurement by applying a
strong microwave pulse with a Rabi frequency (2, /(27) ~ 14 MHz during a time 7.
The microwave drive is chosen strong enough, such that interactions are negligible
during one period (recall Fig. 7.8). In Fig. 8.12(d), we vary the pulse area 2,7 to

measure the spins along any direction in the X7 plane. We obtain an oscillation of the
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Figure 8.12: Correlations at half-filling. (a) Correlation map Cz(%, j) and (b) Cx (i, 5)
showing strong intra-dimer correlations and weaker inter-dimer one. (c) Experimental
sequence: after the microwave sweep, and before shining the read-out beam, we apply
a strong microwave pulse to rotate the spins. We then show the averaged intra-dimer

correlator along different axes of the XZ plane (d) and the XY plane (e).
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intra-dimer correlator, alike to parity oscillations used to demonstrate entanglement
between two spins (see, e.g., Wilk et al. [2010]). Finally, in Fig. 8.12(e), by changing
the phase ¢ of the microwave field between the sweep and a 7/2-pulse rotating the
measurement basis to the equatorial plane, we project the spins along any directions in
the XY plane. As expected for an Hamiltonian with an XY symmetry, the correlations
do not depend on the chosen axis in the XY plane.

8.4.3 Ground-state degeneracy and robustness to a perturbation breaking

the chiral symmetry

I now turn to the experimental demonstration of the four-fold degeneracy of the
many-body ground-state in a topological SSH chain. Figure 8.13(a) shows the four
ground-states separated by a spectral gap from the first excited ones. To observe the
degeneracy and the finite gap, we use the experimental sequence shown in Fig. 8.13(b):
we first initialize the system in the ground-state with N/2 — 1 particles with an
adiabatic sweep ending at Ag/(27) = —1 MHz, and then apply a weak microwave
probe (Quw/(27) = 0.3 MHz, 7 = 2 us) at various detunings Agpectro-

The final local density of particles in the bulk and in the edge sites are shown in
Fig. 8.13(c). For a detuning Agpectro/(27) = £2.1 MHz, we observe a change in the
bulk density resulting from the transitions (i) and (ii) from the ground-state with
N/2 — 1 particles to excited states with N/2 — 2 and N/2 particles (the microwave
field cannot drive a transition to the excited states with the same number of particles).
Finally, the fact that the peak (iii) in the excitation probability of the edge sites is
exactly at Agpectro = 0 MHz demonstrates that the two other ground-states with N/2
particles are degenerate with the one prepared with the adiabatic sweep. From the
symmetry of the Hamiltonian, we obtain that the fourth ground-state with N/2 41
particles is also at the same energy as the three others. A quantitative simulation of

this spectrum is a work in progress at the time of writing this thesis.

Breaking the chiral symmetry We finally explore how the properties of the topo-
logical phase are modified upon a perturbation breaking the chiral symmetry Sp:

H]JEI'L - _J2 [bL—ZbN + ijbN—Q] . (810)

We engineer it by displacing the rightmost site of the chain out of the magic angle,
to give a finite coupling J;/h = 0.26 MHz between the edge site and its second

195



Chapter 8: The Su-Schrieffer-Heeger model with hard-core bosons

(a)

(b)

neighbor [see Fig.8.14(a)]. Recall that the chiral symmetry is protecting the topological
phase of the SSH chain when filled with non-interacting fermions, while we have
here hard-core bosons. Also, applying the Jordan-Wigner transformation maps our
hard-core bosons on interacting fermions due to the long-range character of the
perturbation, such that the phases of free fermions and hard-core bosons do not have
to share the same properties regarding the perturbation. By deriving the symmetry
Sup protecting the bosonic phase (described later), our colleagues from the theory
team in Stuttgart predicted that the degeneracy of the bosonic ground-state is not
broken by the perturbation, whereas numerical calculations of the single-particle

eigenstates (that fully describe the fermionic phase) give a finite energy difference
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Figure 8.13: Probing the ground-state degeneracy of the topological phase. (a)
For an SSH chain in a topological configuration, there are four degenerate states separated
by an energy gap of A,;/(2m) = 1.83 MHz from the first excited states. (b) Microwave
sequence starting with an optimized adiabatic preparation of the ground state with N/2—1
particles, followed by a spectroscopy experiment where Agpeciro is scanned. (c) Density of
particles in the bulk and in the edge sites at the end of the experiment. We observe three
resonances corresponding to (i) the removal and (ii) the creation of a particle in the bulk
for a finite energy cost > hA, (indicated by the dashed line), and (iii) the addition of a
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Figure 8.14: Robustness of the bosonic topological phase to a perturbation break-
ing the chiral symmetry. (a) The rightmost site is shifted upwards to give rise to a finite
hopping amplitude J; to the second neighbor. (b) The symmetry-breaking perturbation
leads to an energy difference Egr — Ey, ~ h x 0.16 MHz between the left and right
single-particle edge modes. The fermionic ground-state is not degenerate anymore. (c) In
contrast, with hard-core bosons, the four many-body ground-states remain degenerate.
(d) Energy difference extracted from microwave spectra performed after an adiabatic
sweep ending at various Ag. When |A¢| > J,.J’, the chain is either empty or fully filled
(the two cases are equivalent), and we are probing the degeneracy of the single-particle
edge-modes. For |Af|/(2m) < 1.8 MHz, we have prepared an half-filled chain, and we
probe the degeneracy of the many-body states. (e) Examples of spectra from which we
extract the energy difference | Eg — Ep,| using Gaussian fits to the density of particle in the
left and right edge sites.
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Er — E;, = h x 0.17 MHz between the left and right edge modes. The difference

between the fermionic and bosonic phases is illustrated in Fig. 8.14(b,c).

We probe experimentally the properties described above by microwave spectroscopy
performed after a microwave sweep with various final detunings A¢. For this experiment
(and the one in the previous paragraph), we use an optimized microwave waveform
calculated by Sebastian Weber and shown in Fig. 8.13(b), that improves the adiabatic
preparation when A is not deep in the single-particle gap (where the simpler waveform
used previously was already giving excellent results). The experiment is identical to
the one described in the previous paragraph and we now look more closely at the
energy difference Er — Ey, between the peaks corresponding to the population of the
leftmost and rightmost edge sites. To improve the spectral resolution, we use a weaker
microwave probe €2y, /(2m) = 0.15 MHz. The results presented in Fig. 8.14(d) show a
striking difference depending if the spectroscopy is performed for a sweep ending in or

out of the single-particle gap (dashed line).

For a sweep ending at Ag/(2m) = —4 MHz, the chain remains in the vacuum state
|0), and the spectroscopy experiment probes the energy difference between the two
single-particle modes giving Er — Er, = h x 0.23(3) MHz [panel (1) of Fig. 8.14(e)].
In contrast, for a sweep ending at A¢/(27) = —1 MHz, we have half-filled the bulk
with the edge sites remaining empty, and we obtain an energy difference between the
many-body ground states of only h x 0.08(2) MHz [panel (2) of Fig. 8.14(e)]. The two
last panels show spectra when the edge-sites are initially filled with a half-filled bulk
(3), or when the chain is fully filled with hard-core bosons (4). Recalling that the SSH
Hamiltonian is invariant under a change of definition |]) <> [1), we understand why

the results (3) and (4) are similar to (2) and (1), respectively.

Finally, comparing the energy difference between the single-particle edge-modes and
the many-body ground-states, we obtain a value of 0.23(2) — 0.08(2) = 0.15(3) MHz in
very good agreement with the ab-initio calculation predicting 0.16 MHz. The small
energy mismatch of 0.08 MHz between the two many-body ground-states is explained
in part by an independently measured difference in microwave transition frequency
of ~ 0.02 — 0.03 MHz between the two extreme Rydberg atoms (caused by a small
gradient of electric field). Another possible contribution is the smaller van der Waals
shift between the edge site and its neighbors when moving the rightmost site to
engineer the perturbation, and we are currently performing simulation to quantify this
effect.
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8.5 Conclusion
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Figure 8.15: A three site model. We restrict to only three sites of the SSH chain with
perturbative couplings J', Jo < J and evaluate the energy of the ground-state with (a)
one particle and (b) two particles. In both cases and in a zeroth order approximation, the
ground state is a particle delocalized on the dimer, thus having an energy —J, while the
edge site is occupied or not. In a second-order approximation, the energy is lowered as one
particle can virtually hop between the dimer and the edge sites. However, in (b), we have
to consider the commutation relation between the two particles, such that the energy

correction is different for bosons and fermions.

Conclusion

The remarkable fact that the many-body ground-states of an SSH chain half-filled with
hard-core bosons remain degenerate under the perturbation Hpe was first indicated by
our colleagues in the group of Prof. Hans-Peter Biichler. To understand qualitatively
this feature, we consider a simple model of only three sites of the SSH chain: a dimer
with a coupling J and an edge site with couplings J’ and J;, to the two first sites, as
shown in Fig. 8.15. We use the perturbative limit .J', J, < J to evaluate the energy
of the two lowest energy states containing 1 and 2 particles. In the first case of one
particle [Fig. 8.15(a)], the ground state is given by a particle delocalized in the dimer
at an energy —J, the latter is additionally lowered when the particle virtually hops
to the edge site at zero energy. In the second case of two particles [Fig. 8.15(b)],
the ground state is given by one particle in the dimer and another one in the edge
site. Similarly, the second particle lowers its energy by hopping from the edge site
to one dimer site. However, the energy correction now depends on the statistics of
the particle, because it has to be exchanged with the one located on the dimer. This
simplified model captures why the fermionic degeneracy is broken by the J, term,
while it is not the case for hard-core bosons.

A more general way to come to this conclusion is to derive the bosonic equivalent
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to the chiral symmetry Sp protecting the fermionic topological phase using the

Jordan-Wigner transformation:

Sp = H [ci + (_1)@.3;!] oK — Sup= H [bi + bg] oK, (8.11)

T T

where we make a clear distinction between fermionic ¢; and (hard-core) bosonic b;
operators, and K denotes the complex conjugation. The perturbation Hi,ex commutes
with SHB:

[Hpert, Stte] = | (blvby—s + bybly—s), T (b + 8D
= (bl by_s + bybly o) (by—2 +bly ) (b +bly) — ...
= bl by _obabh oy 4+ byl _blby o — ...
= TIN(TLN_Q + 1) —+ TLN_g(ﬂ,N —+ 1) — ﬂN_g(ﬂ,N -+ 1) — TIN(TLN_Q + 1)
-0

Because the perturbation is invariant by the symmetry Sy, we indeed expect the
ground-state degeneracy to be unaffected by it, which we checked numerically and
demonstrated experimentally with the results shown in Fig. 8.14.

Let us note that the derivation of Syp from the fermionic one using the Jordan-
Wigner transformation does not prove that it gives rise to a symmetry protected
topological phase of hard-core bosons. This is in fact a highly non-trivial task that
was performed by Nicolal Lang and that rely on the mathematical concepts of group
cohomology used by Chen et al. [2012, 2013] to derive a general classification of
one-dimensional bosonic SPT phases [Chen et al., 2012, 2013]. In their classification
(see Table I of Chen et al. [2013]), our bosonic SSH chain is in the symmetry group
U(1) x Zy inside which Chen and coworkers could construct (with abstract arguments)
a trivial and a topological phase. Here, we experimentally realized these two phases by
simply populating an SSH chain with hard-core bosons. More generally, the symmetry
Sup also allows complex hopping amplitudes or interaction terms of the form o7 o7,
that can be used to connect our bosonic SSH model to the Haldane anti-ferromagnetic

spin-1 chain [Haldane, 1983b] or to the AKLT model [Affleck et al., 1987].
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Conclusion and Outlook

In this manuscript, I have presented the development of a quantum simulator of spin
systems based on assembled arrays of single Rydberg atoms. During the course of
this thesis, we have bridged the gap between proof-of-principle experiments with a
few Rydberg atoms, and large-scale studies with tens of particles. In 2015, the most
critical drawback of our experimental platform, based on arrays of optical tweezers,
was the random loading of each trap with zero or one atom. A major progress,
described in Chapter 3, has been the engineering of a robust and easy-to-use method
to assemble perfectly filled atomic arrays of any shape. The excellent efficiency of this
atom-by-atom assembler, with a filling fraction of target arrays higher than 98 %,
combined with the fast repetition rate of the experiment (> 3 Hz), offers now a
high-performance platform for quantum simulation. The extension of our technique
to 3D arrays, by using commercially-available tunable lenses to manipulate atoms
in different planes, further improved the flexibility of the platform. Our assembling
technique is likely to find many applications in the field of quantum simulation and
qunatum information processing [Regal, 2016; Lundblad, 2018].

To obtain sizable interactions between atoms in different optical tweezers separated
by a few micrometers, we excite them to Rydberg states. In 2008, our group observed
the Rydberg blockade effect, preventing the simultaneous excitation of Rydberg atoms
due to strong van der Waals shifts, in the most pristine situation setup of only two
atoms. Then, with the new CHADOQ) apparatus offering a better control of electric
fields, Béguin and coworkers measured the van der Waals shift in 2013. The following
year, the team demonstrated that the Rydberg blockade was also efficient in a system
of three atoms. When I joined the project, the goal was to realize quantum Ising
models on larger arrays of a few tens of traps, where the ground and Rydberg level of
each atom encodes a spin-1/2 particle. At that time we did not have yet the assembler
and we used large Rydberg blockade volumes to minimize the influence of holes in the
randomly loaded arrays. Performing quench experiments, we observed the saturation
of the Rydberg fraction (an effective magnetization of the system) and the dynamical

emergence of correlations that I presented in Chapter 4. For some choice of array
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geometries and Rydberg states, we obtained a perfect agreement with numerical

predictions, while for others we observed systematic deviations from the theory.

These results motivated a deeper investigation of the effect of the dipole-dipole
interaction between two atoms, presented in Chapter 6, that goes beyond the simple
van der Waals approximation to take into account subtle interplays with external
magnetic and electric fields. We attributed the observed deviations to complex pair-
state properties peculiar to the Rydberg D series, that lead to a mixing of Rydberg
levels and thus a failure of the spin-1/2 approximation. We finally found an optimized

regime of operation where the spin-1/2 mapping was re-established for D states.

Benefiting from this new insight and the development of the assembling technique,
we pursued our studies of Ising models. Tuning the Rydberg blockade volume such
that it extends only to nearest neighbor sites, we attempted the adiabatic preparation
of antiferromagnetic states in linear, square and triangular lattices. We slowly evolved
the laser drive and detuning, respectively mimicking a transverse and longitudinal
components of a B-field acting on the spin-1/2 particles, to bring our system from a
paramagnetic phase to the ordered one after crossing a quantum phase transition. While
we successfully observed the emergence of Néel-like antiferromagnetic correlations,
they remained lower than the numerical predictions from a perfectly coherent evolution
of our spin-1/2 particles. Our experimental data were well reproduced by an empirical
model including a dephasing rate of the Rydberg states. This motivated a detailed
characterization of all technical and physical effects that affect, already at the single-
particle level, the coherence of the ground-Rydberg laser-drive. Our conclusions,
reported in Chapter 5, pointed to the limited coupling strengths achievable with our
current setup and, to a lesser extent, to the phase noise of the laser sources. These
insights help us in devising the next generation of our Rydberg quantum simulator of

Ising models.

The dipole-dipole interaction between Rydberg atoms takes another form when
the two atoms are excited in different dipole-coupled orbitals of opposite parities.
There, the interaction gives rise to a spin-exchange process allowing the studies of
XY spin models, as demonstrated by Barredo and colleagues in elementary setups of
two and three atoms in 2015. In Chapter 7, after presenting the STIRAP technique,
critical for the initialization of an XY magnet with all atoms in the same Rydberg
state, I showed how to manipulate Rydberg-Rydberg spin-1/2 particles using a global
microwave field and a local addressing beam. With the latter, we demonstrated our
control of the dipole-dipole coupling, stopping at will a spin-exchange processes or

creating a sub-radiant entangled state of two atoms.
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Finally, in Chapter 8, we implemented a spin (or bosonic) version of the Su-Schrieffer-
Heeger model. In its original formulation, an SSH chain is half-filled with non-interacting
fermions, which is the simplest setup giving rise to a symmetry-protected topological
phase. In our experimental realization, we used spin excitations of an XY magnet
to encode bosonic particles with an hard-core constraint, effectively giving infinite
on-site interaction energies. Up to this date, realizations of topological phases in
artificial quantum systems were limited to the regime of non- or weakly-interacting
particles, where the physical properties of the system can be understood at the single
particle level. Here, benefiting from the hard-core constraint of spin-excitations, we
can explore the interplay between strong interactions and topological phases. Using
a microwave adiabatic sweep, we prepared the many-body ground state of an SSH
chain half-filled with hard-core bosons, and observed clear signatures of a bosonic
symmetry-protected topological phase. Notably, we demonstrated a robustness of the
ground-state degeneracy of this phase that cannot be explained at the single-particle
level. To the best of our knowledge, this is the first realization of an interacting

topological phase in artificial matters.

The above-mentioned experimental studies demonstrate the flexibility of a Rydberg
quantum simulator, able to tackle various many-body problems originating from
real-world condensed-matter systems. In the immediate future, we will set up new
excitation lasers that will give us a much better control on the ground-Rydberg
transition, crucial for the studies of Ising models with coherent adiabatic sweeps. In
particular, this should allow to explore antiferromagnetism in frustrated geometries.
Another direction is to realize these frustrated systems on XY-like magnets, where we
benefit from an almost perfect effective magnetic field when driving the Rydberg-
Rydberg microwave transition. Until now, we have worked with the quantization
axis aligned with the atomic plane such that the resonant dipolar interaction is
strongly anisotropic, which we used to implement the SSH model, but this gives
ferromagnetic couplings in one direction and anti-ferromagnetic ones in the other. To
realize frustrated XY-antiferromagnets, such as the one proposed by [Varney et al.,
2011], we ideally need isotropic couplings, that we recently obtained by rotating the
orientation of the quantization axis to the normal of the atomic plane. Interestingly,
in this configuration, it is also possible to engineer a spin-orbit coupling when the
dipolar exchange process is accompanied by a change of total magnetic quantum
number AM. This process is at the basis of a proposal by Weber et al. [2018] to
engineer topological flat bands in a honeycomb lattice of Rydberg atoms, adapting

ideas originally formulated for polar molecules trapped in optical lattices [Yao et al.,

203



Chapter 9: Conclusion and Outlook

2012; Peter et al., 2015].

So far, only the Ising and XY spin models have been implemented on our Rydberg
platform, but it is also possible to combine Ising and XY couplings to realize an
anisotropic XX7 model, or, if the two contributions are tuned to be equal, the
isotropic Heisenberg model. The properties of these systems are modified by the
long-range character of the dipole-dipole interaction, which motivated theoretical
studies and proposals for experimental realizations with ions [Hauke et al., 2010] or
polar molecules [Peter et al.; 2012]. With Rydberg atoms, we could use the same
encoding than for the XY magnets, but use higher principal quantum numbers, or
closer atoms, to tune the ratio between the van der Waals (o< n!!/R®) and resonant
dipolar coupling (o< n*/R?). Another possibility is to encode the spin-1/2 particles in
two levels of the same Rydberg series, for example the 60S and 615 states. In this
case there is no dipole matrix element between the two states, such that both the
Ising and XY terms originate from a second-order perturbation by the dipole-dipole
Hamiltonian and thus have the same 1/R° dependence.

We also envision several technical developments of our experimental platform:

« Increasing the available time for Rydberg experiments by cooling the atoms to

the motional ground-state of the tweezers [Kaufman, Lester, and Regal, 2012;
Thompson et al., 2013b).

« Reaching higher number of atoms in our assembled structure with a more

powerful trap laser to create up to a thousand tweezers.
« Suppressing atom loss by working in a cryogenic environment.

« Increasing the experimental cycling rate above 10 Hz by recycling all atoms,
which could be achieved by mapping down the Rydberg states to the ground-state
hyperfine levels before a state-sensitive fluorescence measurement [Martinez-
Dorantes et al., 2017; Kwon et al., 2017].

Additionally, it would be interesting to develop an objective lens with a larger field
of view to increase the maximal extent of our atomic structure and a higher NA to
reduce the tweezers size and improve the compactness of our 3D structures. This
would also enable to bring two Rydberg atoms close enough such that their electronic
wavefunction overlap, leading to a delocalization of the electrons, alike in real-materials,
and their study using ultrafast coherent probes [Ohmori, 2014; Takei et al., 2016].
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Fluorescence signal

Fluorescence signal Up to this work, we have been using an exposure of 7 = 50 ms
and decreasing it requires to understand what limits our ability to discriminate the
presence or absence of an atom. A typical fluorescence signal obtained by taking
8000 images with random loading of a trap is shown in Fig. A.1. The signal is the
number of counts from a single pixel where the fluorescence of an atom is focused. The
distribution of counts is almost binary: it is low (Sy) if there is no atom in the trap,
and high (Sg) if a single atom scatters photons from the cooling beams. Noise, of
different sources, contaminates the signal and broadens its low and high parts, giving
Gaussian distributions with widths o and op. The signal is re-binarized to give the
absence (0) or presence (1) of an atom by setting a threshold Sy,; for equal widths
o1, = oy we could simply choose Sy, = (S + Sg)/2, but more generally the optimal

choice is the weighted average:

Sthr — M ( A1 )
oL +og

The probability to make an error is then given by the integral of the Gaussian
distribution above (or below) the threshold. In the case shown in Fig. A.1, obtained
after noise and signal optimization (see below) and an exposure 7 = 50 ms, this
probability is ridiculously small (~ 10~?). An error rate of 1 % would be obtained for
a reduced exposure 7 = 20 ms assuming a constant noise (which is partly wrong, the
shot noise contribution will also decrease). As a side remark, we observe that there are
21 counts (0.3 %) in the central region (more than 40 away from the average low
or high part of the signal). They are not caused by the noise (the probability is less
than 107°) but by an atom loss occurring during the exposure time with a probability
7/(10 8) = 0.5 %. I will now present a quantitative analysis of the noise and signal

values.

Signal height The number of counts obtained when an atom is present in the tweezers

depends on (i) the number of photons emitted by the atom, (ii) their collection on the
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Figure A.1: Fluorescence signal. The exposure is 50 ms, and the EM gain is set to
%30 (the real gain is different though). We measure a signal height of 415 counts and

noises o; = 22 counts and or = 48 counts.

EMCCD chip and (iii) the conversion process from photons to electrons to digital
counts in the camera. The number of emitted photons is ultimately limited by the
scattering rate of the Rb Ds-line (1 photon every 50 ns), but is usually much less
to avoid heating out the atom from the tweezers. It is still unclear how close to
the maximal scattering rate we are, and a careful optimization of the cooling beam
parameters in view of maximizing the number of emitted photons has yet to be done.
Of these fluorescence photons, only a few (typically 1 %) arrive on the camera due
to the finite collection efficiency of the aspheric lens (~ 7 %) and the large number
of optics between the lens and the camera (dichroic mirror, tunable lens, 780 nm
interference filter, to cite only the least transparent ones), see Béguin [2013] for a

detailed estimate.

The EMCCD conversion process, which can be found in the Andor Hardware Guide,
is as follows. Hitting a pixel of the CCD chip, a photon creates a photo-electron with
a high probability given by the camera quantum efficiency (~ 90 %). After integrating
during the exposure time 7, the electron charges are moved towards a readout unit
composed of an electronic amplifier and an analog-to-digital converter, which outputs
a number of counts. If we use the electron multiplication (EM) technique, the electrons
pass through a gain region where they are multiplied by a large factor (10 to 1000)
before going to the readout unit.

Depending on the readout rate of the camera (0.08 to 17 MHz) and the amplifier
settings, the number of counts per electron given by the readout unit will vary. We
always use the fastest readout rate, such that a cropped region of 100 x 100 pixels
(large enough to cover the full extent of typical atomic arrays) is read in ~ 0.5 ms and

we can quickly use the image for atom assembly. For our settings, the conversion is
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16.87 electrons per counts.

The number of counts lies above a baseline level of 450 counts, simply measured
with the camera shutter off (this level changes from camera to camera). On top of this
baseline, there is a background signal, caused by the cooling beams. While these beams
are not directed towards the camera, it appears that they are clipped, possibly by the
aspheric lens holder, and reflected in arbitrary directions. These reflected photons,
being at the same wavelength than the fluorescence photons, are not rejected by the
interference filter placed in front of the EMCCD.

Noise sources The noise on the number of counts, observed in Fig. A.1, has two
main origins: it can already be present in the number of photons incoming on the
camera (photon shot-noise), or come from the conversion process in the camera. A
detailed modeling of all known sources have been reported by Alberti et al. [2016] and

I briefly review them here:

» The photon shot noise of the atomic fluorescence signal ogy, affecting the ‘high’
signal. It is equal to the square root of the signal height (osy = /Sy — SL o /7).

Ultimately, the photon shot noise will limit the minimal exposure time.

« The photon shot noise of the background signal ognpg. It affect both the ‘low’
and ‘high’ signal.

« The CCD dark current noise, which is reduced to a negligible level (1.3 x 10~
electrons per second) by cooling the CCD chip to —80° C.

» The clock-induced charge noise due to electrons generated when moving the
charges from the CCD chip to the read-out unit. It is quoted at a level of 1072

event per pixel in the camera specifications and should be negligible here.

» The electronic noise y¢,q of the read-out unit (output amplifier and electron
counter), which is the dominating source of noise in cameras. It depends on the
readout rate: 220 electrons per pixel at 17 MHz, 14e~ at 3 MHz and 4e™ at
0.08 MHz (from the camera performance sheet). It can be reduced relatively to
the signal by using the electron multiplication (EM) technique, which increases
the signal by a large factor before introducing the o,..q noise. Nevertheless, the

EM technique comes with its own source of noise:

« The EM noise caused by the stochastic nature of the gain process. In practice, it

increases by a factor ~ 1.4 all previous source of noises (mainly the photon shot
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noise). For this reason, using the EM mode improves the SNR only in low-light
applications when Nphoton < 02%,4. We are in this regime as we use the fastest

and noisest readout rate, and aim for low exposure time.

We first measure the readout noise when the camera shutter is off and obtain o,e,q = 14
counts (220 electrons according to the ADC sensitivity), as specified in our camera
performance sheet. Then, we measure the background level and its associated shot noise
by shining only the molasses beam without any atom. By chasing any uncontrolled
reflections of these beams, and decreasing their diameter until it destabilizes the MOT
operation, we could bring the background to 135 counts (and the associated shot-noise
to ogNbg = \/E) The total rms deviation of the ‘low’ signal is measured at oy, = 21.1,

and is in excellent agreement with our noise budget: o, = \/ (1.408Nbg)? + 02,4 ~ 21.5.
The same estimation for the ‘high’ part, taking into account the total shot noise
(background and atomic fluorescence) gives ot} = 38 counts, while the measured
noise is slightly higher (0" = 48), which could from additional fluctuations in the

fluorescence process.

Conclusion Already, with the previously quoted values, we could decrease the
exposure time to 20 ms. It allowed us to minimize the probability to lose an atom
during the imaging, to push the cycling rate of 2D experiments (only one plane
to image) up to 3 Hz (now mainly limited by the loading time), or to perform 3D
experiments with many planes. Further improvements would require a complete
cancellation of the background signal to reach the minimal noise floor o7 = 0reaq.

In a previous work in our group, Fuhrmanek et al. [2011] imaged an atom using
a single laser beam to excite the fluorescence, which could be useful to minimize
the background light. Martinez-Dorantes et al. [2017] reported similar results in an
optical lattice and also performed a detailed experimental and theoretical analysis of
the heating-induced losses during the measurement [Martinez-Dorantes et al.; 2018].
Finally, I mention here the promising results obtained by Bergschneider et al. [2018].
They established an ultra-fast (20 us) free space imaging technique of °Li atoms with
a 4 pm resolution, limited by the atom displacement; despite leading to the loss of the
atom, prohibitive for our system where we need to image the atom before doing the
experiment (for assembly), this technique shows that enough photons can be collected

in far less than 1 ms.
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Résumé en francais

Cette these présente le développement et I'exploitation d’un simulateur quantique
de modeles de spins utilisant des matrices d’atomes piégés et excités vers des états
de Rydberg. Ces travaux peuvent étre organisés en trois parties. Un premier aspect
concerne la préparation de matrices uni-, bi- et tri-dimensionnelles d’atomes uniques
grace au développement d’un outil automatisé réordonnant les atomes un par un. La
deuxiéme partie de ce manuscrit décrit la réalisation du modele d’Ising en excitant de
maniéere cohérente les atomes depuis leur état électronique fondamental vers un niveau
de Rydberg. Dans la troisieme et derniére partie de cette thése, nous avons utilisé un
autre régime d’interaction, le couplage dipolaire résonant, pour étudier des modeles de

spins de type XY, dont le modeéle Su-Schrieffer-Heeger.

Partie |: Préparation de matrices 3D d'atomes

Chapitre 2 Ce chapitre présente notre dispositif expérimental basé sur des pinces
optiques chacune chargée avec au plus un seul atome de Rubidium 87. Je commence
par un rappel sur la technique de piégeage d’atomes uniques, reposant sur le principe
de blocage collisionnel, et des parameétres caractérisant les pinces optiques. Je décris
ensuite notre technique d’holographie nous permettant d’obtenir des matrices tri-
dimensionnelles de pieges. Afin de former une image 3D de la matrice d’atomes, nous
avons inclus dans notre systeme d’imagerie des lentilles & focales variables. Celles-ci
sont controlées par ordinateur, nous permettant de prendre successivement des images

de différents plans et de reconstruire les structures 3D.

Chapitre 3 Le blocage collisionnel prévient le chargement de deux atomes dans la
méme pince optique, mais a pour conséquence que le taux de chargement d’un piege
est limité a 50 %. Ce remplissage aléatoire des pieges a pour conséquence que les
matrices d’atomes sont désordonnées, ce qui représente une limitation importante de

notre dispositif. Afin de résoudre ce probléeme, nous avons développé un automate basé
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sur une pince optique mobile repositionnant un par un les atomes. Dans ce chapitre
je décris d’abord le dispositif (optique, électronique et informatique) permettant le
controle de cette pince mobile dans un plan en utilisant un déflecteur acousto-optique
controlé par ordinateur. Je démontre ensuite expérimentalement que la probabilité de
transférer un atome entre deux pieges excede 99.5 % pour une gamme de parametres
(profondeur de piégeage, vitesse de déplacement) pertinente pour nos expériences.
Je détaille alors comment notre algorithme heuristique propose une succession de
déplacements permettant de réordonner les atomes pour former n’importe quelle
sous-structure d’une matrice 2D de pieges. Nous obtenons alors un taux d’occupation
des pieges sélectionnés de 98.5 %, limité par la durée de vie des atomes dans les pieges.
Enfin, pour des matrices 3D, cette opération est répétée pour chaque plan d’atomes.
J’étudie finalement les performances et limites de notre technique d’assemblage atome

par atome, et présente brievement d’autres systémes similaires développés récemment.

Partie |l: Modele d'Ising

Chapitre 4 Ce chapitre débute par un apercu historique des études, expérimentales
et théoriques, d'un ensemble d’atomes excités de maniere cohérente depuis leur état
électronique fondamental vers un niveau de Rydberg. Chaque atome peut étre considéré
comme un spin 1/2 soumis & un champ magnétique effectif. L’interaction de van
der Waals entre deux atomes dans un état de Rydberg donne lieu a un couplage de
type Ising entre les spins dont la portée est variable. Ce systéeme possede un riche
diagramme de phase qui peut étre étudié expérimentalement en réalisant un quench
ou, au contraire, une évolution adiabatique du champ magnétique effectif. Je présente
notre tentative de créer 'état anti-ferromagnétique de Néel sur une matrice carrée, qui
est I'état fondamental du modele d’Ising pour des interactions restreintes aux plus
proches voisins. Pour chaque expérience, nous mesurons ’état de chaque spin donnant
ainsi acces aux fonctions de corrélations du systeme. Une comparaison de nos résultats
expérimentaux avec une étude numérique démontre 'influence de phénomenes de
décohérence diminuant ces corrélations par rapport a une évolution unitaire. Les deux
chapitres suivants détaillent I'implémentation de notre simulateur quantique pour

comprendre ces imperfections.

Chapitre 5 Ce chapitre discute des imperfections intervenant au niveau d'un atome
unique et provenant de ’excitation a deux photons de I’état fondamental vers le

niveau de Rydberg, qui donne lieu au champ magnétique effectif agissant sur le spin
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1/2. Nous nous intéressons en particulier au contraste et a ’amortissement d’une
oscillation de Rabi. Apres une caractérisation du couplage atome-lasers, je présente
les expériences menées pour estimer les erreurs de détections de I'état interne de
I’atome qui réduisent le contraste de 'oscillation. Je discute ensuite les différents
mécanismes d’amortissements provenant de 'effet Doppler, de I’émission spontanée
depuis I’état intermédiaire, et du bruit de phase des lasers. En prenant en compte
ces effets dans une simulation numérique, nous obtenons un tres bon accord avec les
résultats expérimentaux. Enfin, je décris les futures pistes que nous souhaitons explorer

pour améliorer le temps de cohérence de 'excitation vers les états de Rydberg.

Chapitre 6 Ce chapitre s’intéresse a 'interaction dipole-dipole entre deux atomes,
et notamment a son approximation par un simple cout énergétique lorsque deux
atomes sont dans le méme état de Rydberg (régime de van der Waals) et donc & un
couplage effectif de type Ising entre deux spins 1/2. La difficulté réside en ce que
I'interaction dipolaire tend & mélanger les nombreux états de Rydberg alors que nous
cherchons au contraire & considérer chaque atome comme un systéme a deux niveaux.
Ce chapitre commence donc par un rappel théorique sur I'approximation de van der
Waals, qui s’obtient par un calcul perturbatif considérant le déplacement énergétique
de deux atomes dans le méme état de Rydberg due aux couplages non résonants aux
autres états de Rydberg. Néanmoins cette approximation peut étre invalidée par la
présence d’autres états de Rydberg quasi-résonant (régime de Forster), par le mélange
des différents sous-niveaux Zeeman résultant d’une compétition avec l'effet Zeeman,
ou par la sensibilité exacerbée aux champs électriques des états de Rydberg. Pour
prendre en compte ces différents phénomenes, nous avons collaboré avec Sebastian
Weber du groupe d’Hans Peter Biichler qui a récemment développé un logiciel libre
(pair-interaction solver) résolvant numériquement le probléme d’interaction dipolaire
entre deux atomes de Rydberg. L’excellent accord entre les résultats numériques et
des expériences de spectroscopie sur deux atomes en interaction a permis de valider
notre compréhension sur les limites du régime de van der Waals. Nous avons ensuite
utilisé ce logiciel pour trouver une gamme de parameétres expérimentaux (distance
inter-atomique, champ magnétique) pour lesquels 'approximation d’un systéme &

deux niveaux est valide.
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Partie Ill: Modele XY

Un couplage de type XY entre deux spins 1/2 est de la forme J(o70§ + oj0}) =
J(of o; +o; O';_ ). Une différence importante entre un couplage Ising et XY est qu’une
excitation de spin || ... J1] ... ]) est un état stationnaire du modele d’Ising, alors que
I’excitation se délocalise dans le cas du modele XY. Cette excitation peut étre considéré
comme une particule effective se déplacant de site en site d’un réseau formé par les
atomes de Rydberg, avec la condition que deux particules ne peuvent pas étre situé sur
le site (contrainte de coeur dur). Dans cette troisieme partie, je démontre que notre
plateforme est aussi adaptée pour réaliser de tels problemes de type XY en encodant
un spin 1/2 sur deux états de Rydberg de parité opposée, par exemple [|) = |60S)
et [1) = |60P), avec une transition dans le domaine micro-onde (v, ~ 15 GHz).
L’interaction dipole-dipéle couple alors de maniére résonante I'état a deux atomes [1])
1) donnant un couplage XY d’amplitude J(R,8) = (11| Vig |11) = C3(6)/R? qui

dépend des orbitales Rydberg choisies et de 'orientation ¢ de I'axe inter-atomique

a

avec I'axe de quantification. L’échange cohérent de I’excitation de spin entre deux
atomes de Rydberg a été observé dans notre groupe avant cette theése, et a permis la
mesure de la dépendance en 1/R* de J(R,6) ainsi que la réalisation d’un aimant XY
élémentaire avec trois spins. Grace a la technique d’assemblage atome par atome, nous
pouvons maintenant réaliser des systémes contenant un plus grand nombre de spins.
Avant de détailler dans le chapitre 8 I’étude d’'un aimant XY de 14 spins réalisant le
modele SSH, je présente dans le chapitre 7 le développement de nouvelles techniques

pour controler les atomes de Rydberg.

Chapitre 7 Ce chapitre commence par une description de la méthode STIRAP
permettant de transférer tous les atomes depuis leur état fondamental électronique vers
un état de Rydberg représentant le spin ||) avec une efficacité de 95 %. Nous bénéficions
ensuite du large élément de matrice dipole électrique de la transition micro-onde entre
|4) et 1), ainsi que de Pextréme stabilité des sources micro-ondes, pour manipuler les
spins 1/2 de maniere cohérente. Le champ micro-onde affectant tous les atomes avec le
méme couplage, nous avons mis en place un faisceau laser focalisé sur un seul atome
pour controler localement la fréquence de transition entre ||) et |1) de 'atome adressé.
En combinant cet adressage optique local et la manipulation micro-onde globale,
nous avons démontré la préparation d’une excitation de spin avec une efficacité de
94 %. Cette préparation initialise une dynamique d’échange de spin due au couplage

dipolaire résonant entre les atomes de Rydberg. En mesurant la fréquence de cet
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échange entre deux atomes, nous obtenons I'amplitude de couplage J(R, ) et avons
vérifié sa dépendance angulaire suivant une loi en 1 — 3 cos?(f), avec notamment
une annulation du couplage J(#,,) = 0 pour un angle ‘magique’ 6,,, = arccos(1/+/3).
Finalement, je démontre que la dynamique d’échange peut étre interrompue a souhait
en utilisant le faisceau d’adressage pour créer une différence d’énergie entre les deux
spins 1/2, ce qui transforme le couplage résonant en un couplage perturbatif. Cette
technique permet la préparation d’états avec une intrication maximale entre les deux
atomes (états de Bell).

Chapitre 8 Ce chapitre présente une réalisation avec notre simulateur quantique
du modele Su-Schrieffer-Heeger (SSH) développé dans les années 80 pour expliquer
les propriétés du polymere poly-acétylene. Ce modele a depuis ré-interprété dans le
cadre de la classification des phases topologiques de la matiére comme un exemple
emblématique ou une phase non-triviale protégée par une symétrie apparait. L’essence
du probleme originalement considéré consiste en 'alternance dans le polymere de
liaisons simples et doubles qui affecte le déplacement d’un électron apporté par un
dopant. Le modele SSH consideére donc une particule se déplacant de site en site
d’un réseau A-B-A-B-A-B-... ou le couplage entre deux voisins alterne entre J' (A-B)
et J (B-A). Un deuxieme point crucial du modele est 'existence d’une symétrie de
sous-réseaux (ou symeétrie chirale) qui découle de I'absence de couplage entre deux
sites du méme sous-réseau (A-A ou B-B). Ce probleme peut étre réalisé avec notre
simulateur quantique en utilisant une chaine de spins en couplage XY, ou la particule
est représentée par une excitation de spin. Afin d’obtenir ’alternance de couplage A-B
et B-A et I'annulation des couplages A-A et B-B, nous utilisons une géométrie en
‘zig-zag’ et la dépendance angulaire du couplage J(6). Notre étude de la chaine SSH
peut alors se diviser en deux étapes : (i) vérifier les propriétés topologiques connues du
modele dans le cas d’une seule particule, (ii) explorer 'influence de la contrainte de
coeur dur lorsque plusieurs particules sont présentes dans la chaine.

L’alternance de couplages J et J' a pour conséquence que les états stationnaires a
une particule sont regroupés en deux bandes séparées par une bande d’énergie interdite
entre +(J — J'). Il peut néanmoins exister deux états d’énergie nulle, au milieu de la
bande interdite, localisés spatialement sur les bords de la chaine, lorsque cette derniere
se termine par une liaison faible J’ < J. Ces deux états dégénérés sont I'indicateur
d’une phase topologiquement non-triviale. Nous avons vérifié expérimentalement
Pexistence et les propriétés de ces états de bords. Nous avons ensuite mis en évidence

I'importance de la symétrie de sous-réseaux sur la dégénérescence des deux états de
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Appendix B: Résumé en francais

bords : lorsque la géométrie de la chaine est modifiée pour créer un couplage A-A
entre le premier et troisiéme site (ce qui brise la symétrie chirale), nous observons une
différence d’énergie entre les deux états de bords. Ce dernier point signale la fragilité
de la phase topologique du modele SSH a une perturbation brisant la symétrie qui
protege cette phase.

Dans la seconde partie de ce chapitre, nous explorons le régime d’interaction
forte ou la chaine est remplie & moitié avec des bosons de coeur dur. Nos collegues
théoriciens de I’équipe d’Hans Peter Biichler ont prédit que la dégénérescence de
I’état fondamental de ce probléeme & N corps (et non plus & une particule) est alors
robuste a la perturbation appliquée précédemment. Motivés par cette prédiction, nous
avons préparé I’état fondamental en utilisant un passage adiabatique micro-onde, puis
vérifié par spectroscopie la dégénérescence de cet état, méme lorsque la symétrie de

sous-réseau est brisée.
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Résumé : Des atomes individuels piégés dans des
matrices de pinces optiques et excités vers des €tats
de Rydberg forment une plateforme expérimentale
prometteuse pour la simulation quantique de
modéles de spins. Lors de cette thése, nous avons
d’abord résolu le probléme du chargement aléatoire
des piéges, seulement 50 % d’entre eux étant
chargés avec un atome. Nous avons développé une
technique pour préparer des matrices 2D, puis 3D,
d’atomes de ®Rb en les déplacant un par un avec
une pince optique mobile contrélée par ordinateur.
Nous avons ensuite réalisé le modéle d’Ising en
excitant de maniére cohérente les atomes depuis
leur état électronique fondamental vers un niveau
de Rydberg. Aprés avoir trouvé un régime optimal
ou l'interaction dipolaire entre deux atomes de
Rydberg se réduit a une énergie de van der Waals,
nous avons tenté de préparer adiabatiquement 1’état
de Néel qui minimise 1’énergie d’interaction. Nous
avons montré que 1’efficacité de préparation était

limitée par la décohérence induite par les lasers
d’excitation. Nous avons ensuite utilisé un autre
régime d’interaction, le couplage dipolaire
résonant, pour étudier des modeles de spins de type
XY, dont le modéle Su-Schrieffer-Heeger, connu
pour sa phase fermionique topologique protégée
par une symétrie chirale. Ici, nous avons remplacé
les fermions par des particules effectives de type
‘boson de cceur dur’, ce qui modifie les propriétés
de cette phase. Nous avons d’abord retrouvé les
propriétés a une particule, comme 1’existence
d’états de bords a énergie nulle. Nous avons ensuite
préparé 1’état fondamental & N corps pour un
remplissage moiti€, et observé sa dégénérescence
causée par les €tats de bords, méme en présence
d’'une  perturbation qui  léverait  cette
dégénérescence dans le cas fermionique. Nous
avons expliqué ce résultat par 1’existence d’une
symétrie plus générale, qui protége la phase
bosonique.

Title : Quantum simulation of spin models with assembled arrays of Rydberg atoms
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Abstract : Single atoms trapped in arrays of
optical tweezers and excited to Rydberg states are
a promising experimental platform for the
quantum simulation of spin models. In this thesis,
we first solved a long-standing challenge to this
approach caused by the random loading of the
traps, with only 50% of them filled with single
atoms. We have engineered a robust and easy-to-
use method to assemble perfectly filled two-
dimensional arrays of ’Rb atoms by moving them
one by one with a moveable optical tweezers
confrolled by computer, a technique further
enhanced to trap, image and assemble three-
dimensional arrays. We then implemented the
quantum Ising model by coherently coupling
ground-state atoms to a Rydberg level. After
finding experimental parameters where the dipole-
dipole interaction takes the ideal form of a van der
Waals shift, we performed adiabatic preparation of

the Néel state. We showed that the coherence time
of our excitation lasers limited the efficiency of
this technique. We then used a different type of
interaction, a resonant dipolar coupling, to
implement XY spin models and notably the Su-
Schrieffer-Heeger model, known for its fermionic
topological phase protected by the chiral
symmetry. Here, we used effective hard-core
bosons, which modify the properties of the
topological phase. We first recovered known
properties at the single particle level, such as the
existence of localized zero-energy edge-states.
Then, preparing the many-body ground state at
half-filling, we observed a surprising robustness of
its four-fold degeneracy upon applying a
perturbation. This result was explained by the
existence of a more general symmetry protecting
the bosonic phase.
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