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Résumé : Ces dernières années, l’apprentissage
profond a complètement changé le domaine de vi-
sion par ordinateur. Plus rapide, donnant de meilleurs
résultats, et nécessitant une expertise moindre pour
être utilisé que les méthodes classiques de vision par
ordinateur, l’apprentissage profond est devenu omni-
présent dans tous les problèmes d’imagerie, y com-
pris l’imagerie médicale.
Au début de cette thèse, la construction de réseaux
de neurones adaptés à des tâches spécifiques ne bé-
néficiait pas encore de suffisamment d’outils ni d’une
compréhension approfondie. Afin de trouver automa-
tiquement des réseaux de neurones adaptés à des
tâches spécifiques, nous avons ainsi apporté des
contributions à l’optimisation d’hyper-paramètres de
réseaux de neurones. Cette thèse propose une com-
paraison de certaines méthodes d’optimisation, une
amélioration en performance d’une de ces méthodes,
l’optimisation bayésienne, et une nouvelle méthode
d’optimisation d’hyper-paramètres basé sur la combi-
naison de deux méthodes existantes : l’optimisation

bayésienne et hyperband.
Une fois équipés de ces outils, nous les avons utilisés
pour des problèmes d’imagerie médicale : la classi-
fication de champs de vue en IRM, et la segmenta-
tion du rein en échographie 3D pour deux groupes
de patients. Cette dernière tâche a nécessité le déve-
loppement d’une nouvelle méthode d’apprentissage
par transfert reposant sur la modification du réseau
de neurones source par l’ajout de nouvelles couches
de transformations géométrique et d’intensité.
En dernière partie, cette thèse revient vers les mé-
thodes classiques de vision par ordinateur, et nous
proposons un nouvel algorithme de segmentation qui
combine les méthodes de déformations de modèles
et l’apprentissage profond. Nous montrons comment
utiliser un réseau de neurones pour prédire des trans-
formations globales et locales sans accès aux vérités-
terrains de ces transformations. Cette méthode est
validé sur la tâche de la segmentation du rein en
échographie 3D.

Title : Hyper-parameter optimization in deep learning and transfer learning - Applications to medical imaging

Keywords : Deep learning, medical imaging, transfer learning, template deformation, segmentation

Abstract : In the last few years, deep learning has
changed irrevocably the field of computer vision. Fas-
ter, giving better results, and requiring a lower de-
gree of expertise to use than traditional computer vi-
sion methods, deep learning has become ubiquitous
in every imaging application. This includes medical
imaging applications.
At the beginning of this thesis, there was still a strong
lack of tools and understanding of how to build effi-
cient neural networks for specific tasks. Thus this the-
sis first focused on the topic of hyper-parameter op-
timization for deep neural networks, i.e. methods for
automatically finding efficient neural networks on spe-
cific tasks. The thesis includes a comparison of dif-
ferent methods, a performance improvement of one of
these methods, Bayesian optimization, and the propo-
sal of a new method of hyper-parameter optimization
by combining two existing methods: Bayesian optimi-

zation and Hyperband.
From there, we used these methods for medical ima-
ging applications such as the classification of field-of-
view in MRI, and the segmentation of the kidney in
3D ultrasound images across two populations of pa-
tients. This last task required the development of a
new transfer learning method based on the modifica-
tion of the source network by adding new geometric
and intensity transformation layers.
Finally this thesis loops back to older computer vision
methods, and we propose a new segmentation algo-
rithm combining template deformation and deep lear-
ning. We show how to use a neural network to predict
global and local transformations without requiring the
ground-truth of these transformations. The method is
validated on the task of kidney segmentation in 3D US
images.
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1
Introduction

1.1 Context

1.1.1 Medical Imaging

Automated methods have been developed to analyze medical images in order to
facilitate the work of the clinicians. Tasks such as segmentation or localization of
various body parts and organs, registration between frames of a temporal sequence
or slices of a 3D image, or detection of tumors are well-suited to computer vision
methods.

While computer vision methods developed for natural images can be reused,
the specificity of medical images should be taken into account. Unlike natural
images, medical images have no background, a more limited scope in the objects
that are represented, no colors and an intensity that often has a precise meaning
depending on the modality.

While these may seem to make the problem simpler at first glance, challenges
in medical image analysis come in two categories. The first challenge is variability,
either intra-subject (changes in the body with time, or during image acquisition as
the patient breathes and moves) or inter-subject (in the shape, size and location
of bones and organs). Variability also comes from external sources: patterns of
noise specific to a machine, image resolution and contrasts depending on the image
protocol, field-of-view depending on how the clinicians handle the probe ...

The second challenge comes from the difficulty of acquiring data and therefore
the low amount of data available. This difficulty comes in many forms: the ac-
quisition of images requires time and expertise, the sensitivity of the data adds
ethical, administrative and bureaucratic overhead (the recent GDPR laws come to

1



2 CHAPTER 1. INTRODUCTION

mind), and sometimes the rarity of a disease makes it simply impossible to acquire
large amounts of data.1

And acquiring the data is not enough! The data needs to be annotated, a
task that often needs to be done by a clinical expert. Image segmentation is
an important problem, but the manual creation of the necessary ground-truth
segmentations is a time consuming activity that puts a strong limit on the size of
medical images databases. A rough estimation: at an average of 5 minutes per
image (a very optimistic time in many cases, in particular for 3D images), creating
the ground-truth segmentations of a 100 images requires slightly over 8 hours of
clinician time.

1.1.2 Deep Learning

These last few years, it has been impossible to talk about medical image analysis
without talking about deep learning. The inescapable transformation brought
with deep learning was made possible with the advent of cheap memory storage
and computing power. At first glance, deep learning gives much better results
than traditional computer vision algorithms, while often being faster. From its
first big success in the 2012 ImageNet competition won by Krizhevsky, Sutskever,
and Hinton (2012), deep learning has had a string of successes that now makes it
ubiquitous in computer vision, including medical imaging.

This change brought with it its own set of challenges. The huge amount of
resources invested into the field results in a deluge of publications where it is
difficult to keep up-to-date and separate the noise from the actual progress. New
algorithms and technologies go from research to production to widely used so fast,
the field has completely changed in the duration of this thesis.

To give some perspectives on the progress, at the start of this thesis in early
2016:

• Tensorflow (Martín Abadi et al. (2015)) was just released and a nightmare
to install - now it works everywhere from desktop to smartphone and has
been cited in over 5000 papers.

• The original GAN paper by Goodfellow et al was published mid 2014 (Good-
fellow, Pouget-Abadie, et al. (2014)). Early 2016, GANs had the reputation
of being incredibly difficult to train and unusable outside of toy datasets.

1Initiatives are underway to create big and accessible medical images databases. See for
examples the NIH Data Sharing Repositories or the Kaggle Healthcare datasets.

https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html
https://www.kaggle.com/datasets?tagids=4202
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Three years and 5000 citations later, GANs have been applied to a wide
range of domains, including medical imaging.

• The now omnipresent U-Net architecture had just made its debut a few
months earlier at MICCAI 2015 (Ronneberger, Fischer, and Brox (2015)).

1.2 Contributions and Outline

This thesis is at the cross-road of medical image analysis and deep learning. It first
started as an exploration of how to use deep learning on medical imaging problems.
The first roadblock encountered was the construction of neural networks specific to
a problem. Their was a lack of understanding of the effect of each component of the
network on the task to be solved (this is still the case). How many convolutional
layers are needed to solve this task? Is it better to have more filters or bigger
filters? What is the best batch size? The lack of answers to those questions led
us to the topic of hyper-parameter optimization; if we cannot lean on theoretical
foundations to build our models, then at least we can automate the search of the
best model for a given task and have an empirical answer.

Once equipped with hyper-parameter optimization tools, we turned to applica-
tions, first the classification of field-of-view in MR images, then the segmentation
of the kidney in 3D ultrasound images. This last problem was examined in a
transfer learning setting and led us to the development of a new transfer learning
method.

In the final part of this thesis we returned to older computer vision methods,
notably template deformation methods, and proposed a new method to combine
them with deep learning.

This thesis is structured in three parts, each starting with a review of the
relevant literature.

• Chapter 2 discusses the topic of hyper-parameter optimization in the con-
text of deep learning. We focus on three methods: random search, Bayesian
optimization and Hyperband. The chapter includes (1) a performance im-
provement of Bayesian optimization by using an incremental Cholesky de-
composition; (2) a theoretical bound on the performance of random search
and a comparison of random search and Bayesian optimization in a practical
setting; (3) a new hyper-parameter optimization method combining Hyper-
band and Bayesian optimization, published as Bertrand, Ardon, et al. (2017);



4 CHAPTER 1. INTRODUCTION

(4) an application of Bayesian optimization to solve a classification problem
of MRI field-of-view, published as Bertrand, Perrot, et al. (2017).

• Chapter 3 introduces a new transfer learning method in order to solve the
task of segmenting the kidney in 3D ultrasound images across two popu-
lations: healthy adults and sick children. The challenge comes from the
high variability of the children images and the low amount of images avail-
able, making transfer learning methods such as fine-tuning insufficient. Our
method modifies the source network by adding layers to predict geomet-
ric and intensity transformations that are applied to the input image. The
method was filled as a patent and is currently under review.

• Chapter 4 presents a segmentation method that combines deep learning
with template deformation. Building on top of the implicit template defor-
mation framework, a neural network is used to predict the parameters of a
global and a local transformation, which are applied to a template to seg-
ment a target. The method requires only pairs of image and ground-truth
segmentation to work, the ground-truth transformations are not required.
The method is tested on the task of kidney segmentation in 3D US images.

• Chapter 5 summarizes our conclusions and discusses possible future works.



2
Hyper-parameter Optimization of Neural

Networks

Abstract
This chapter introduces the problem of hyper-parameter optimization for neural
networks, which is the problem of automatically finding the optimal architecture
and training setting for a particular task. Section 2.1 presents the problem and the
existing approaches while Section 2.2 explains in depth the method of Bayesian
optimization which is used for the rest of the chapter. A performance improvement
of this method is given in Section 2.3. In Section 2.4, we compare the performance
of random search and Bayesian optimization on a toy problem and give theoreti-
cal bounds on the performance of random search. We propose a new method in
Section 2.5, which combines Bayesian optimization with another method, Hyper-
band. Finally, we apply Bayesian optimization to the practical problem of MRI
field-of-view classification in Section 2.6.
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2.1 Defining the Problem

The problem of hyper-parameter optimization appears when a model is governed
by hyper-parameters, i.e. parameters that are not learned by the model but must
be chosen by the user. Automated methods for tuning them become worthwhile
when hyper-parameters are numerous and difficult to manually tune due to a lack of
understanding of their effects. The problem gets worse when the hyper-parameters
are not independent and it becomes necessary to tune them at the same time.
The most intuitive solution is to test all possible combinations by discretizing the
hyper-parameter space and choosing an order of evaluation, a method called grid
search. This method does not scale because the number of combinations grows
exponentially with the number of hyper-parameters, making this approach usually
unusable for neural networks.

In practice, as it is usually impossible to prove the optimality of a solution
without testing all solutions, the accepted solution is the best found in the budget
allocated by the user to the search.

Even though this problem appears in all kinds of situations, we are inter-
ested here in the optimization of deep learning models, as they have many hyper-
parameters and we lack the understanding and the theoretical tools to tune them.
The hyper-parameters fall in two categories: the ones that affect the architecture
of the network (such as the number or type of layers) and the ones that affect the
training of the network (such as the learning rate or the batch size).

In the case of deep learning, evaluating a combination (a specific network) is
costly in time and computing resources. Moreover we have little understanding of
the influence of each hyper-parameter on the performance of the model, resulting
in very large boundaries and a much bigger space than needed. The situation is
even worse since combinations near the boundaries of the hyper-parameter space
can build a network too big to fit in the available memory, requiring to have a way
to handle evaluation failures.

While it is tempting to simply return an extremely bad performance, this causes
problems to methods assuming some structure in the hyper-parameter space. For
example, a continuous hyper-parameter that gives a smooth output will suddenly
have a discontinuity, and a method assuming smoothness (such as Bayesian op-
timization) might not work anymore. In practice, there are method-dependent
solutions to this problem.



8 CHAPTER 2. HYPER-PARAMETER OPTIMIZATION OF NEURAL NETWORKS

2.1.1 Notations

In this chapter we refer to a model as a neural network, even though the black-box
methods presented in Section 2.1.2 work for other machine learning models. The
parameters of a model are the weights of the network which are learned during
training. The hyper-parameters are the parameters governing the architecture of
the networks (such as the number of layers or the type of layers) and the ones
governing the training phase (such as the learning rate or the batch size).

A hyper-parameter space X is a hypercube where each dimension is a hyper-
parameter and the boundaries of the hypercube are the boundaries of each hyper-
parameter. Each point in the hyper-parameter space is referred to as a combi-
nation x ∈ X. To each combination is associated a value y corresponding to the
performance metric of the underlying neural network on the task it is trained to
solve. We name f a function taking as input a combination x, build and train the
underlying model and output its performance f (x).

Concretely in the case of deep learning, f is the process that build and train
a neural network specified by a set of hyper-parameters x, and returns the loss of
the model which serves as the performance metric.

2.1.2 Black-box optimization

From the notation of Section 2.1.1, the goal of hyper-parameter optimization is to
find the combination x∗ minimizing the performance y (typically the performance
is a loss function, which we want to minimize):

x∗ = argmin
x∈X

f(x) (2.1)

This is the problem of hyper-parameter optimization viewed as black-box op-
timization. Methods in this category are independent from the model and could
be used for any kind of mathematical function. However the hyper-parameters
we are interested in are of a varied nature (continuous, discrete, categorical), lim-
iting us to derivative-free optimization methods. This section is not a complete
review of derivative-free algorithms, but an overview of the popular algorithms
used specifically for hyper-parameter optimization.
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2.1.2.1 Grid search

The most basic method is usually called grid search. Very easy to implement,
it simply tests every possible combination (typically with uniform sampling for
the continuous hyper-parameters). With only a handful of hyper-parameters to
optimize and with a function f fast to evaluate, it can be advisable to use as a first
step to get sensible boundaries on each hyper-parameter, i.e. by testing a handful
of values over a very wide range to find a smaller but relevant range.

But in the context of deep learning, hyper-parameters are too numerous, mean-
ing there are too many combinations to evaluate, and each evaluation is costly.
Limiting oneself when choosing the hyper-parameters still leaves us with at least
5 or 6 hyper-parameters but it is easy to end up with over 30 hyper-parameters.
Assuming an average of 4 values per hyper-parameters, this implies 45 = 1024

combinations for a space of 5 hyper-parameters or 430 ' 1018 combinations with
30 hyper-parameters. Grid search does not scale well, which makes it unsuitable
for deep learning.

Even for reasonably sized hyper-parameter space, a typical implementation in
nested for-loops goes from one corner of the hyper-parameter space to the opposite
corner in fixed order. It is unlikely that the corner the search starts from happens
to be an area filled with good models, since combinations in corners are extreme
values of hyper-parameters and build atypical neural networks.

Grid search can still be used with a wide enough sampling of the hyper-
parameters to get an idea on where the interesting models are located and refine
the boundaries, but even for that other methods are preferable.

2.1.2.2 Random search

One step above grid search is random search. A big limitation of grid search is
that the order it goes through the hyper-parameter space is very dependent on
the implementation and it always selects the same limited set of values for each
hyper-parameter. Random search instead draws the value of each hyper-parameter
from a uniform distribution, allowing for a much wider range of explored values.

Figure 2.1 illustrates this. Given a hyper-parameter space of two continuous
hyper-parameters, and at equal number of evaluated combinations, random search
finds a better solution. It works because hyper-parameters are not equally relevant.
In practice, for deep learning, only a few have a high impact on the performance
(Bergstra and Bengio (2012)).1 In the figure, grid search only tested three values

1We do not know in advance which hyper-parameters have a high impact, otherwise we would
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Figure 2.1: Loss function for a two dimensional space. (Left) Grid search. (Right)
Random search. 9 combinations were tested for each method, but grid search
tested only 3 values for each hyper-parameters while random search tested 9, re-
sulting in a better solution.

of each hyper-parameters while random search tested nine for the same cost!
In terms of implementation cost, random search requires only the ability to

draw uniformly from an interval or a list, giving it the same computational cost
than grid search. The increased implementation cost is largely compensated by
the gain in performance.

2.1.2.3 Bayesian optimization

Going further requires some assumption about the structure of the hyper-parameter
space. Namely, similar values for an hyper-parameter results in similar perfor-
mance, i.e. some weak notion of continuity. If there is some structure, we can
exploit it.

Bayesian optimization (Bergstra, Bardenet, et al. (2011)), which we present
in details in Section 2.2, applies this idea by modeling f with as few evaluations
as possible while searching for the best combination. It comes with a non-trivial
implementation cost, though packages are available. In Section 2.4 we compare
the performance of random search and Bayesian optimization on a practical task.

tune only high impact hyper-parameters.
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2.1.3 Evolutionary algorithms

The first application of evolutionary algorithms to neural networks was to evolve
the weights of a fixed architecture (Miller, Todd, and Hegde (1989)). A few years
later, Braun and Weisbrod (1993) and Angeline, Saunders, and Pollack (1994)
realized it was more efficient to evolve simultaneously the weights and the topology
of the network. Further refinements of these approaches led to the NeuroEvolution
of Augmenting Topologies (NEAT) algorithm (Stanley and Miikkulainen (2002)).

NEAT uses three kinds of mutations (modifying a weight, adding a connection
between two nodes and adding a node in the middle of a connection) and one kind
of recombination based on fitness sharing. Many variants of this algorithm have
been proposed, notably HyperNEAT (Stanley, D’Ambrosio, and Gauci (2009))
which only evolves the topology and learns the weights by back-propagation.

The main drawback of NEAT and its variants is their inability to scale and
evolve the large networks typical of modern deep learning. Real et al. (2017)
and Miikkulainen et al. (2017) developed approaches able to explore extremely
diverse and atypical network structures and find architectures with state-of-the-
art performance on computer vision tasks such as CIFAR-10.

The drawback of those methods however is their excessive computational cost,
requiring thousands of iterations before starting to build good models. Coupled
with their novelty, those methods were out of our reach, while the lack of scaling
was too important in the older methods for us to use them in this thesis.

2.1.4 Reinforcement learning

Recent advances in reinforcement learning have made possible its use to design
efficient neural networks. The idea is to train an agent called the controller which
builds neural networks for a specific task. Baker et al. (2017) developed a con-
troller that chooses each layer of the network sequentially and is trained using
Q-learning. B. Zoph and Le (2017) created a string representation of neural net-
works and their controller is a RNN outputting valid strings. In both cases the
created networks must be fully trained to be evaluated and the controller takes
thousands of iterations to converge, making those approaches extremely costly.

To address this problem, Barret Zoph et al. (2017) proposed testing on a smaller
dataset as an approximation of the performance on the true dataset. Another
suggestion is to train only partially each network (Li et al. (2017), Zela et al.
(2018)), allowing longer training time as the search is refined.
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While those approaches are very promising, they are too recent and costly for
this thesis.

2.1.5 Other approaches

We finish our tour with a few methods taking radically different approaches. Hy-
perband (Li et al. (2017)) considers the question as a multi-armed bandit problem,
where each arm is a combination and we have a finite amount of training budget
to allocate to each arm. The idea is to train many models partially, and take
the decision to continue training every few epochs based on the current perfor-
mance. Since we chose to explore this approach, we present it in more details in
Section 2.5.1.

Hazan, Klivans, and Yuan (2018) proposed an approach applying compressed
sensing to hyper-parameters optimization called Harmonica. Like Bayesian opti-
mization, they aim to learn the structure of the hyper-parameter space, but using
a sparse polynomial.

Finally, Domhan, Springenberg, and Hutter (2015) suggested predicting the
learning curve of a model to decide whether to continue the training. The predic-
tion is done using a portfolio of parametric models.

2.1.6 Synthesis

We have presented a variety of methods that have been used to optimize the hyper-
parameters of neural networks. We summarize their advantages and differences in
Table 2.1 according to several important criteria.

By black-box we ask whether the method makes any assumption about the
model being optimized. Those are the methods that can be reused without modi-
fications to optimize other machine learning models. The second criterion is if the
method requires some structure in the hyper-parameter space to work. Would the
method still work if we randomize the mapping from combination to performance?

The next two criteria are about the kind of hyper-parameters the method can
work with. By conditional hyper-parameter we mean hyper-parameters whose rel-
evance depends on the value of another hyper-parameter, for example the number
of filters of a convolutional layer is only relevant if the layer exists. The second
class of hyper-parameters are the one altering the training of the model instead of
its topology, such as the learning rate or the batch size.

The last three criteria are subjective but relevant when choosing a method to
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use. If the method allows training multiple models at the same time (therefore
allowing using many GPUs) without major changes, we consider it easily paralleliz-
able. The difficulty of understanding and implementing the method is evaluated
on a coarse low to high scale. We use the same scale for the budget required to
find some of the best models of a hyper-parameter space.

2.1.7 Conclusion

The first methods used for the optimization of hyper-parameters in neural networks
were, without surprise, existing hyper-parameters optimization methods treating
the model as black-box and which were developed for other models. While still
competitive, they are limited in the architectures of networks they can explore,
often working at a layer-level.

Modern approaches based on evolutionary algorithms or reinforcement learning
focus on much more fine-grained architecture choices, at the unit-level. This shift
from optimizing hyper-parameters to building architecture is marked notably by
the problem increasingly being called Neural Architecture Search. While those
methods are too resource intensive to be used in most cases, this is changing very
rapidly (from B. Zoph and Le (2017) who used 800 GPUs for a month to Pham
et al. (2018) who used a single GPU for less than a day).

But in the context of this thesis we worked with what was the most relevant at
the time in 2016, namely Bayesian optimization, and to some extent, Hyperband.

2.2 Bayesian Optimization

Bayesian Optimization is a method for optimizing the parameters of a black-box
that is costly to evaluate. In deep learning the black-box is a neural network and
the parameters are the hyper-parameters of the network. Evaluating the network
corresponds to training it and computing its performance on the validation set. A
recent and general review of the topic can be found in Shahriari et al. (2016) where
it is treated as an optimization method, while Snoek, Larochelle, and Adams (2012)
review the topic in the context of optimizing the hyper-parameters of machine
learning models.

There are two components in Bayesian optimization methods. The first com-
ponent is a probabilistic model of the loss function, i.e. a function that takes
the values of the hyper-parameters as input and estimate the value of the loss
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the corresponding neural network would have. Gaussian processes are the typi-
cal choice and are presented in Section 2.2.1. The second component, called the
acquisition function, samples the model of the loss function to select the next set
of hyper-parameters to evaluate. Common acquisition functions are presented in
Section 2.2.2.

2.2.1 Gaussian processes

A Gaussian process is a supervised learning model mainly used for regression prob-
lems. It is a distribution over functions, i.e. from a set of data points, the Gaussian
process gives possible functions that fit those points, weighted by their likelihood.
The shape and properties of possible functions are defined by a covariance func-
tion. When predicting the value of an unseen point, the Gaussian process returns
a Normal distribution, with the variance being an estimation of the uncertainty of
the model at this point. Predicting multiple points will result in a joint Gaussian
distribution. A comprehensive review of the topic can be found in Rasmussen and
Williams (2005) and from a signal processing point-of-view in Perez-Cruz et al.
(2013).

2.2.1.1 Definitions

Following the notation of Section 2.1.1, we write the Gaussian process as:

y(x) ∼ GP (m(x), k(x, x)) (2.2)

m(x) is the mean function and k(x, x′) is the covariance function which specifies
the covariance between pair of data points. The mean function is set to 0 for
simplicity. In practice this is ensured by removing the mean of the predicted
values from the dataset. The covariance function is used to build the covariance
matrix of a set X of N data points as:

K(X,X) =


k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x2, xN)
...

... . . . ...
k(xN, x1) k(xN, x2) · · · k(xN, xN)

 (2.3)

This matrix is all that is needed to draw samples from the distribution. We pick
a set X∗ of points, build the covariance matrix K(X∗,X∗), then generate samples
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from this Gaussian distribution:

y∗ ∼ N (0, K(X∗,X∗)) (2.4)

Some such samples are shown in Figure 2.2. Since no data points were used, this
corresponds to an unfitted Gaussian process.

Figure 2.2: Gaussian process prior using a squared exponential kernel. The thin
colored lines are samples drawn from the Gaussian process. The thick blue line
represents the mean of the distribution and the blue area around this line is the
95% prediction interval, i.e. all drawn samples will be in this interval with a
probability of 95% (for a Normal distribution this is equal to 1.96σ)

In probabilistic terms, the unfitted Gaussian process corresponds to the prior
probability p (y). Given a set of observed points (X, y) and a set of points we want
to predict (X∗, y∗), the prior corresponds to p (y∗|X∗, θ), where θ denote the set
of hyper-parameters of the covariance function. We are interested in the posterior
probability p (y∗|X∗,X, y, θ) i.e. the distribution of the new points conditioned on
the points we have already observed. From probability theory we know that the
posterior is:

p (y∗|X∗,X, y, θ) =
p (y, y∗|X,X∗, θ)

p (y|X, θ)
(2.5)

The numerator is called the joint distribution and the denominator is the marginal
likelihood.

2.2.1.2 Inference

Training a Gaussian process simply means pre-computing K(X,X), i.e. the covari-
ance between the data points. At inference, we compute the covariance K(X∗,X∗)
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between the points we want to predict, and the covariance between the data points
and the points we want to predict K(X,X∗). Since the covariance matrix is by def-
inition symmetrical, K(X∗,X) = K(X,X∗)

T . For notational simplicity we denote
them K, K∗ or KT

∗ and K∗∗.
This results in the joint distribution of Equation 2.5:[

y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
= N

(
0,

[
K KT

∗
K∗ K∗∗

])
(2.6)

However the joint distribution generate functions that do not match the observed
data. The posterior is obtained by conditioning the joint distribution to the ob-
servations, which are expressed by the marginal likelihood. Because every term
involved is a Gaussian distribution, the posterior can be derived as follows:

p (y∗|X∗,X, y, θ) = N
(
K∗K

−1y,K∗∗ −K∗K−1KT
∗
)

(2.7)

This is the equation to compute when predicting new points.
Figure 2.3 shows how samples from this distribution look like on a one dimen-

sional problem. Each sample must go through every observed point, and the closer
the points are, the less freedom the samples have to change. Outside of the range
of observed points, the distribution quickly reverts to its prior.

2.2.1.3 Kernels

The most common kernel is the squared exponential kernel:

k(x, x′) = σ2 exp

(
−||x− x′||22

2l2

)
(2.8)

With this kernel, the influence of a point on the value of another point decays
exponentially with their relative distance. This implies that the Gaussian process
quickly reverts to its prior in areas without observed points.

This kernel has two hyper-parameters θ = {σ2, l}. σ2 controls the scale of the
predicted output and l is a vector of same dimensionality as x called the character-
istic length-scale which measures how much a change along each dimension affects
the output. A low value means that a small change in the input results in a big
change in the output, as shown in Figure 2.4.

The squared exponential kernel is a special case of the Matérn family of covari-
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Figure 2.3: Gaussian process posterior after fitting one point on top, six on the
bottom. All the samples pass through those points and the variance is lower close
to them.

ance functions which are, noting r = ||x− x′||2 defined as follows:

kν(r) = σ2 21−ν

Γ(ν)

(√
2ν
r

l

)ν
Bν

(√
2ν
r

l

)
(2.9)

Γ is the gamma function and Bν is the modified Bessel function of the second kind.
The hyper-parameters σ2 and l are the same as for the squared exponential kernel
and ν is a measure of how smooth the function is. ν = 1/2 results in a very rough
function while ν →∞ is the squared exponential kernel.

The samples from the squared exponential kernel are very smooth, and are in
fact infinitely differentiable. This is usually too unrealistic for the process we are
modelling. In the context of Bayesian optimization, a more realistic alternative is
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(a) l = 0.3

(b) l = 3

Figure 2.4: Gaussian process posterior after six points with different length-scale.
On the top with a low length-scale, data points are almost irrelevant, the Gaussian
process returns to its prior almost immediately. On the bottom, the GP has a very
high confidence in its prediction.

the Matérn 5/2 kernel:

k(r) = σ2

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
(2.10)

The chosen value of ν = 5/2 means that the samples will be twice differentiable,
which is a good compromise between too smooth and too difficult to optimize θ,
as many point estimate methods require twice differentiability (Snoek, Larochelle,
and Adams (2012)). Figure 2.5 shows what samples from these kernels look like.

The presented kernels have the common property of being stationary, i.e they
depend only of x−x′. They are invariant to translation. It is particularly relevant
in the context of hyper-parameter optimization as the kernels make no difference
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Figure 2.5: Gaussian process using a Matérn 5/2 kernel. On the top, the prior.
On the bottom, the posterior after fitting six points.

between values of 3 and 2 or 1000 and 999. For hyper-parameters where such a
difference matters should use a non-stationary kernel instead of the ones presented
above (see Paciorek and Schervish (2003)).

2.2.1.4 Learning the kernel hyper-parameters

Kernels have themselves hyper-parameters θ which need to be chosen. For exam-
ple, the squared exponential kernel has l, the characteristic length-scale. As shown
by Neal (1996), the inverse of the length-scale determines how relevant an input
is. In the context of hyper-parameter optimization, it can help to choose which
hyper-parameters to tune carefully. It is therefore very important to select a good
value for l.

There are two ways to learn θ. The first way is to maximize the marginal
likelihood, which can be derived as:

log p (y|X, θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (2.11)
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The optimization can be done with any off-the-shelf method, eventually with mul-
tiple restarts as there are no guarantee of a unique optimum.

The other solution is to not learn θ at all and instead marginalize the hyper-
parameters, i.e. at the inference step compute:

p (y∗|X∗,X, y) =

∫
p (y∗|X∗,X, y, θ) p (θ|X, y) dθ (2.12)

This integral is usually intractable but can be approximated by sampling meth-
ods. Murray and Adams (2010) use slice sampling, Garbuno-Inigo, DiazDelaO,
and Zuev (2016) use asymptotically independent Markov sampling and Titsias,
Rattray, and Lawrence (2011) review different Monte Carlo methods used for this
problem.

2.2.2 Acquisition functions

In the context of Bayesian optimization, the Gaussian process gives for each set
of hyper-parameters an estimation of the performance of the corresponding model
and the uncertainty of the Gaussian process in its estimation. But we do not have
a way to decide which model is the most interesting to train. Do we pick a model
that will be slightly better than our best current model, i.e. where the Gaussian
process gives low uncertainty, or do we pick a model with high uncertainty but
which could have low performance? There is an exploration/exploitation trade-off
to be found. It is the role of the acquisition function to determine which model to
train.

The oldest acquisition function is the Probability of Improvement (Kushner
(1964)). It chooses the model which has the highest probability of having better
results than a target, which is usually picked to be the loss of the current best
model. The PI is defined as below, where Φ is the Normal cumulative distribution
function, x represents a given set of hyper-parameters, y∗ is the minimum loss
found so far, µ is the mean returned by the Gaussian process and σ the variance:

PI(x) = Φ

(
y∗ − µ(x)

σ(x)

)
(2.13)

The problem with this function is that it is highly sensitive to the choice of target.
The simplest choice is the minimum loss found so far, but the PI will then sample
models very close to the corresponding model completely ignoring exploration. A
better target is how much to improve the minimum loss. But this choice is very
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inconvenient because we usually have no idea of how much better the performance
can get. Should we try to find a model 1% better? 5%? 25%? If we pick too
big an improvement, the function will simply select the models with the highest
uncertainty.

Instead, we can use the Expected Improvement function (Schonlau, Welch,
and Jones (1998), Jones (2001)) which builds on the Probability of Improvement
as below where φ is the normal density function:

EI(x) = σ(x)[uΦ(u) + φ(u)] (2.14)

with
u =

y∗ − µ(x)

σ(x)
(2.15)

The Expected Improvement EI is obtained by taking the expectation of the im-
provement function (Shahriari et al. (2016)), defined as:

I(x) = (y∗ − µ(x))1 (y∗ > µ(x)) (2.16)

This function is equal to 0 if the predicted mean is less than the best loss found
so far (which means that there is no improvement), otherwise it is proportional to
the gap between the predicted mean and best loss.

The Expected Improvement has a major advantage over the Probability of
Improvement. The target is always the minimum loss found so far, meaning that
there is no need to guess a threshold of improvement.

2.2.3 Bayesian optimization algorithm

In summary, Bayesian Optimization works as follows. Given a set of explored
combinations and their associated models performance, a Gaussian process fitted
on that set is used to predict the performance of untested combinations. Then,
an acquisition function takes those predictions and decides which combination
should be tested next. This combination is tested, added to the set of explored
combinations, and the process is repeated as long as resources are available. This
process can be seen in Figure 2.6 on a one-dimensional problem.
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Figure 2.6: Bayesian Optimization on a one dimensional function. The orange
curve is the true loss function, the blue one is the prediction of the Gaussian
process. The green curve is the acquisition function. The next evaluation will be
at the maximum of the green curve.

2.3 Incremental Cholesky decomposition

2.3.1 Motivation

The costliest part of Bayesian optimization is the construction of the Gram matrix
K and the computation of its invert K−1. To reduce that cost, the standard
solution is to compute the Cholesky decomposition L of the Gram matrix and
invert the decomposition. Every time the Gram matrix is modified, the Cholesky
decomposition and its inverse are fully recomputed.

However, Bayesian optimization alters the Gram matrix only by adding new
rows and columns corresponding to the covariance between the n older combina-
tions and the k new combinations. The Gram matrix can therefore be decomposed
in blocks where one of them is the previous Gram matrix. By callingK(n,n) the pre-
vious matrix and K(n+k,n+k) the new one with the added points, the decomposition
is:

K(n+k,n+k) =

(
K(n,n) KT

(k,n)

K(k,n) K(k,k)

)
(2.17)

Likewise, the Cholesky decomposition and its inverse can also be decomposed
into blocks where one is the previous Cholesky decomposition as we show in Sec-
tion 2.3.2. We then argue in Section 2.3.3 that this can be used to make Bayesian
optimization faster by updating incrementally the Cholesky decomposition instead
of fully recomputing it each time.
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2.3.2 The incremental formulas

The derivation of both formulas can be found in Appendix A. We present here
only the final results. The formula of the incremental Cholesky decomposition is:

L(n+k) =

(
L(n) 0

K(k,n)(L
T
(n))
−1 L(k)

)
(2.18)

Since this formula requires the costly computation of L−1
(n), we are also interested

in an incremental formula for it, which is:

L−1
(n+k) =

(
L(n) 0

K(k,n)(L
T
(n))
−1 L(k)

)−1

=

(
L−1

(n) 0

−L−1
(k)K(k,n)(L

T
(n))
−1L−1

(n) L−1
(k)

)
(2.19)

2.3.3 Complexity improvement

A standard Cholesky decomposition has a complexity of O ((n+ k)3) with n + k

the number of observed combinations. With our formulas, since we already have
L(n), all that is left is to compute L(k), which has a cost of O (k3). Since Bayesian
optimization is called after every tested combination, k = 1, the Gram matrix just
has one new row and one new column. L(k) and its inverse are trivial to compute.

There is however an increased cost in memory, as L(n) and L−1
(n) must be stored

between calls of Bayesian optimization. They are two n × n triangular matrices,
storing them costO (n2), which seems a reasonable price to pay for the performance
improvement.

2.4 Comparing Random Search and Bayesian Op-
timization

In this section we study the theoretical performance of random search, before devis-
ing an experiment that compares the performance of random search and Bayesian
optimization in a practical setting.

2.4.1 Random search efficiency

How many models of a hyper-parameters space should be trained in order to be
reasonably certain to have trained one of the best models? If we knew the loss lmin
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of the best model, how long would it take to find a model with a loss such that
l ≤ (1 + α)lmin? Due to the relative simplicity of random search, we can derive
theoretical bounds to answer these questions.

Let N be the total number of models in the hyper-parameters space, M the
number of models satisfying our performance criteria (alternatively, the M best
models of the space) and n the number of models to train.

Considering that random search chooses models uniformly, the probability of
drawing one of the best models the first time is simply M

N
. The second time, it

is M
N−1

since we do not allow redrawing a model. We can therefore define the
probability of not drawing any satisfying models after n draws as the following
equation, where Y is the random variable of failing to draw an acceptable models
among n draws in a row.

P (Y = n) =
n∏
k=0

(
1− M

N − k

)
(2.20)

This is a particular case of the hypergeometric distribution. From there, the
probability of drawing an acceptable model at the n-th draw is:

P (X = n) =
M

N − n

n−1∏
k=0

(
1− M

N − k

)
(2.21)

X is the random variable of drawing an acceptable model after n− 1 bad draws.
The probability of drawing an acceptable model in the first n draws is:

P (X ≤ n) =
n∑
k=0

P (X = k) (2.22)

From this equation we can compute the number of draws required to have drawn a
model in the top α%, by settingM as a fraction of N . Moreover since the equation
depends only of the ratio M

N−k , the effect of k becomes negligible as N grows bigger
and the equation converges.

In Table 2.2, we present some of those results, which allow us to draw the
following strong conclusion. For any hyper-parameter space, random search will
draw a model in the top 5% of models in 90 draws with a probability of 99%.
Less than a hundred draws is sufficient to draw one of the best models of any
hyper-parameter space. It is a surprisingly low number given the simplicity of the
method.
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p > 0.5 p > 0.95 p > 0.99
Top 1% 69 298 458
Top 5% 14 59 90
Top 10% 7 29 44

Table 2.2: Number of draws required to have drawn a model in the top α% with
probability p in a space of 100 000 combinations.

However that is only one of the questions we asked. Ranking the models
by their performance does not guarantee that a model in the top α% is within
α% of the performance of the best model (i.e. whose performance verifies l ≤
(1+α)lmin), unless model performance happens to be uniformly distributed. Since
we have no idea of how model performance is distributed, we cannot go further in
our theoretical analysis. In Section 2.4.3, we return to this question by studying
empirically the distribution of model performance.

2.4.2 Bayesian optimization efficiency

While we were not able to obtain similar results for Bayesian optimization as we
did for random search, we expose some of the difficulties in doing so.

First any analysis depends of the exact setup of Bayesian optimization. A
change of kernel or acquisition function changes the results. But the main problem
is that, because the process learns the structure of the hyper-parameter space, any
analysis would need to work in a particular space.

None of those difficulties prevent us from measuring the empirical performance
of Bayesian optimization, as we show in the next section.

2.4.3 Experiments on CIFAR-10

2.4.3.1 Setup

In order to compare the performance of the different hyper-parameter optimization
methods, we devised a hyper-parameter space containing 600 models and trained
them all on the CIFAR-10 dataset (Krizhevsky (2009)).

The dataset is composed of 60 000 images equally divided in 10 classes. The
images are 32x32 RGB images. The training set contains 50 000 images, the test
set 10 000.

Since the goal of the experiment is not to beat the state-of-the-art on the
dataset, the selected hyper-parameter space and the resulting models are small
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and simple. Each model is trained for a total of 10 minutes on a NVIDIA TITAN
X card.

We then compare in which order the different methods selected the models.
The methods are evaluated on the time needed to select the best model, as well
as the time needed to select a model in the top α%.

However one run is not enough to conclude that Bayesian optimization on
average is more efficient than random search. Due to the huge computing cost, we
cannot do hundreds of runs with different seeds and retrain each network every
time. But if we do not retrain the network but change the seeds of the search
policy, we can simulate hundreds of runs at a low cost.

There are a total of 600! way to explore this space, but because we do not
retrain the models, all the randomness in Bayesian optimization is in the choice of
the first model2, leaving us with only 600 possible paths through this space. We
computed them all, then randomly selected 600 ordering for random search.

2.4.3.2 Models distribution

Figure 2.7: Distribution of the models performance.

Before comparing the search methods, we look at the distribution of models
performance in Figure 2.7. A few models are really good, most are average and

2This is true for our specific approach. Incorporating Gaussian noise in the observations
(ŷ = y +N (µ, σ))) for example would make our analysis incorrect.
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then there is a long trail of progressively worse models. It looks like a skew normal
distribution.

We cannot extrapolate that every hyper-parameter space will have a distribu-
tion like this, but we assume for now that this is the case for hyper-parameter
spaces designed in practice.

Since the distribution is not uniform, there is a difference between models
in the top 5% of models and models that have a performance within 5% of the
performance of the best model. In this case, there are 30 models in the top 5% of
models (since there are 600 models), but only 6 are within 5% of the performance
of the best model. In this case, the 30-th best model is within 18% of the best
model.

This distinction is important because it changes our evaluation of the methods.
We are not simply interested in the average time to find a model in the top α% of
models, but also in the average time to find a model within α% of the best model.

2.4.3.3 Results

First, we look at the order in which models where selected during one run, shown
in Figure 2.8. The blue points represent the test loss of the models in the order
the methods selected them, and the red line shows the minimum loss found at
a given time. There is a clear trend present for Bayesian optimization where
the combinations evaluated later have low performance, suggesting it did learn
to predict correctly the performance of untested combination. In this run, it was
also able to find the best model much earlier than random search. Random search
behaves as expected and models performance is uniformly distributed.

Random Search Bayesian optimization
Average Worst Average Worst

Best model 297± 171 599 87± 64 249
Within 1% 146± 114 554 26± 16 120
Within 5% 87± 75 397 17± 11 67
Within 10% 54± 52 296 15± 9 44
Top 1% 87± 75 397 17± 11 67
Top 5% 18± 17 106 10± 8 38
Top 10% 10± 10 62 7± 7 36

Table 2.3: Average and worst number of draws taken by each method to reach
different goals over 600 runs. Within α% mean within α% of the performance of
the best model.
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Figure 2.8: Comparing the model order chosen by random search (top) vs Bayesian
optimization (bottom).
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To confirm these trends, we look at the average number of draws taken by each
method to reach different goals (Table 2.3).

Random search needed on average 297 draws before finding the best model,
which is within the expected range of the theoretical value of 300 draws. If we
rank the model by their performance, random search needed an average of 18
draws to find a model in the top 5% and 87 to find a model in the top 1%.

In comparison, Bayesian optimization did a lot better on every goal. On average
it needed 87 draws to find the best model and only 17 to find a model in the top
1%. In most cases the worst run of Bayesian optimization performed better than
the average run of random search.

Figure 2.9: Model performance predicted by the Gaussian process in red vs the
true performance in blue. The colored area is the 95% prediction interval.

To confirm whether the Gaussian process is learning the structure of the hyper-
parameter space, Figure 2.9 shows the predicted performance and the true perfor-
mance, as well as the 95% prediction interval. As more models are used to refine
the Gaussian process, the prediction interval shrinks, i.e. the Gaussian process be-
comes more confident in its prediction. Prediction for outliers, in this case models
that do not learn, is highly inaccurate at the beginning and is still the main source
of error at the end.
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2.4.4 Conclusion

We designed an experiment to measure and compare the performance of random
search and Bayesian optimization on a setting mimicking real life usage. Perfor-
mance of random search matched closely theoretical results, showing the surprising
efficiency of this method. Bayesian optimization outperformed random search on
every metric, which justifies its much higher implementation cost.

Extending the hyper-parameter space would yield insights into how Bayesian
optimization behaves in larger spaces. This framework of testing could be used to
observe the behaviour of other methods such as Hyperband. We observed models
performance to be normally distributed, but the scope is limited to one hyper-
parameter space on one task. To the best of our knowledge there is no theory on
how to build good hyper-parameter spaces and understanding the relation between
models, tasks and model performance would be of practical use to the design of
hyper-parameter optimization methods.

2.5 Combining Bayesian Optimization and Hyper-
band

This section describes and extends the work presented at CAp 2017 (Bertrand,
Ardon, et al. (2017)). We propose a new method of hyper-parameter optimization
that combines Bayesian optimization and Hyperband.

2.5.1 Hyperband

A property of neural networks is that their training is usually iterative, usually
some variant of gradient descent. A consequence is that it is possible to interrupt
training at any time, evaluate the network, then resume training. This is the
property Hyperband (Li et al. (2017)) takes advantage of.

The principle is simple: pick randomly a group of configurations from a uniform
distribution, train the corresponding networks partially, evaluate them, resume
training of the most performing ones, and continue on until a handful of them
have been trained to completion. Then pick a new group and repeat the cycle
until exhaustion of the available resources.

But a problem appears: at which point in the training can we start evaluating
the models? Too soon and they will not have started to converge, making their
evaluation meaningless, too late and we have wasted precious resources training
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under-performing models. Moreover, this minimum time before evaluation is hard
to establish and changes from one task to the other. Some hyper-parameters (such
as the learning rate) even influence the training speed! Hyperband’s answer is to
divide a cycle into brackets. Each bracket has the same quantity of resource at
its disposal. The difference between brackets is the point at which they start eval-
uating the models. The first bracket will start evaluating and discarding models
very early, allowing it to test a bigger number of configurations, while the last
bracket will test only a small number of configurations but will train them until
the maximum number of resources allowed per model.

The algorithm is controlled by two hyper-parameters: the maximal quantity
of resources R that can be allocated to a given model, and the proportion of
configurations η kept at each evaluation. R is typically specified in number of
epochs or in minutes. At each evaluation, 1/η models are kept while the rest are
discarded.

2.5.2 Combining the methods

Bayesian optimization and Hyperband being orthogonal approaches, it seems nat-
ural to combine them. Hyperband chooses the configurations to train uniformly
and intervenes only during training. On the other side, Bayesian optimization
picks configurations carefully by modelling the loss function, then let them train
without interruption.

As a result, Hyperband does not improve the quality of its selection with time,
while Bayesian optimization regularly loose time training bad models.

Combining the methods fixes these problems. Model selection is done by
Bayesian optimization as described in Section 2.2, then Hyperband train them as
described in Section 2.5.1. Two changes are required for Bayesian optimization, as
it needs some way to distinguish between fully-trained models and partially trained
models. To do that, the training time becomes an hyper-parameter, making the
performance of each model at every minute a distinct point. The performance
prediction is then done at the training time corresponding to Hyperband’s first
evaluation, to have only one prediction per model.

The second change is to normalize the values returned by the acquisition func-
tion to make it a probability distribution, i.e. divide each value by the sum of all
values, so that the sum of all normalized values is equal to one. In the standard
usage of Bayesian optimization, the chosen model is the argmax of the acquisition
function. Choosing the top α models yields models that are very close as the
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acquisition function is smooth and gives similar values for nearby combinations.
This strategy removes the property of Hyperband to explore many regions of space
at the same time. Normalizing the values and drawing from this distribution keeps
this property, while making the selection smarter over time as it changes to reflect
the knowledge acquired from the trained models.

The proposed algorithm is as follows: the first group of configurations is cho-
sen randomly and evaluated according to Hyperband. All subsequent selections
are done by training a Gaussian process with a squared-exponential kernel on all
evaluated models. The expected improvement is then computed on all untested
combinations and normalized to make a probability distribution from which the
next group of models is sampled.

2.5.3 Experiments and results

We compare the three methods presented above: Bayesian optimization, Hyper-
band, and Hyperband using Bayesian optimization. The algorithms were imple-
mented in Python using scikit-learn (Pedregosa et al. (2011)) for the Gaussian
processes and Keras (Chollet et al. (2015)) as the deep learning framework.

Comparison was done on the CIFAR-10 dataset (Krizhevsky (2009)), which is
a classification task on 32 × 32 images. The image set was split into 50% for the
training set used to train the neural networks, 30% for the validation set used for
the Bayesian model selection and the rest as test set used for the reported results
below.

Each method is allocated a total budget B = 4000 minutes meaning the sum
of all the models training time must be equal to 4000 at the end of the process.
The choice of having a budget in time means that models will not be trained in
epochs as usual, but in minutes. This is a practical choice that allows estimating
accurately the total time that the search takes, though it has the effect of favoring
small networks. Indeed, two models trained an equal amount of time will not have
seen an equal amount of data if one model is bigger and thus slower than the other.
The choice to constrain in time instead of epoch means that the quantity of data
seen by the models depends on the GPU. The training is done on two NVIDIA
TITAN X.

The chosen architecture is a standard convolutional neural network with vary-
ing number of layers, number of filters and filter size per layer. Other hyper-
parameters involved in the training method are: the learning rate, the batch size
and the presence of data augmentation. In total there are 6 hyper-parameters to
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Hyper-parameter Range of values
Number of convolutional blocks [1; 5]
Number of convolutional layers per block [1; 5]
Number of filters per layer [2; 7]
Filter size {3; 5; 7; 9}
Learning rate {10−5; 10−4; 10−3; 10−2}
Batch size [2; 9]

Table 2.4: Hyper-parameter space explored by the three methods.

tune for a total of 19 200 possible configurations, displayed in Table 2.4.
For Hyperband, we chose R = 27, meaning 27 models are chosen at each

iteration and are trained for a maximum of 27 minutes, and η = 3 which means that
1/3 of the models are kept at each evaluation. In the case of Bayesian optimization,
each model was trained 30 minutes but they are chosen sequentially.

Figure 2.10: (Left) Loss of the best model found at a given time by each method.
(Right) Running median of the loss of all tested models for each method.

The evaluation measure that matters when comparing methods is the loss of
the best model found at a given time, and is illustrated in Figure 2.10 for the two
individual methods and their combination (5 runs each). The running median sug-
gest that Bayesian optimization (in blue) performs slightly worse than both other
methods, and that Hyperband with Bayesian optimization (in red) finds a better
model quicker than Hyperband (in green). However, due to the stochastic nature
of the methods, many more runs would be needed to draw definite conclusions
from this evaluation measure.

It is more informative to look at the running median of the loss of all models
trained at a given time, as it gives us an idea of the quality of the models tried as
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the methods progress. Ideally the running median should go down for Bayesian op-
timization and Hyperband as more models are tested and the methods either learn
the shape of the space or stop training inefficient models. Bayesian optimization
performs notably worse than the other two methods. Hyperband and Hyperband
+ BO have similar performance, though Hyperband + BO seems slightly better.

2.5.4 Discussion

Due to the part of chance in all three methods, five runs are not enough to draw
definite conclusions on their performance. Ideally hundreds of runs would have
been needed, and the computational cost of this endeavor was the main reason we
did not pursue further this problem. At 4000 minutes per method per seed, the
above experiment already required around 42 days of GPU time without account-
ing for the overhead (loading the data, building the models, ...).

While the general idea of combining Hyperband and Bayesian optimization is
valid, there are two problems with our specific approach.

As mentioned previously, since Bayesian optimization is usually sequential, we
normalized the results of the acquisition function to make it a probability dis-
tribution from which the models to train were sampled. However the resulting
distribution was very close from a uniform distribution. This is because the ex-
pected improvement outputs values in a small range, i.e. the difference between
the maximum and the minimum is at most a few orders of magnitude. When
normalized, those extreme values would not be particularly likely, even with just
a small hyper-parameters space of 19200 combinations. For example if the highest
value is a hundred times the average value, after normalization, the corresponding
model has only around 0.5% chance of being sampled. This is why our version of
Hyperband + BO performed barely better than Hyperband alone.

One potential solution is to use the "liar" strategy. After choosing a model but
before training it, it is added to the training set with a low performance and the
acquisition function is re-computed. The "lie" of the low performance discourages
the acquisition function from giving high values to the surrounding models, and
the argmax will be a completely different model. Repeating this process allows
drawing many models simultaneously.

When drawing a large group of models at the same time as required by Hy-
perband, the cost of this process becomes important as the Gram matrix of the
Gaussian process needs to be inverted many times. The incremental Cholesky
decomposition presented in Section 2.3 could be used to make the process faster.
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3 27 Training time in
minutes

Loss
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Models ideally chosen
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Figure 2.11: The problem with predicting model performance at 3 minutes (dotted
blue line). Models that trained faster (due to being smaller, red line) have better
performance at 3 minutes than bigger models (green line), however they overfit
shortly after while the bigger models end up with a better performance.
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Informal observations of the chosen models revealed a second problem. After
a few iterations, many of the models chosen tended to have converged to their
best performance by the time of Hyperband’s first evaluation (after 3 minutes of
training) and to start overfitting immediately after (red line in Figure 2.11). This
was due to how Bayesian optimization handled the training time. Since all models
were trained at least 3 minutes, but only some trained longer, the Gaussian process
predictions were much more accurate at 3 minutes than at 27 minutes. This was
our reason to use the prediction at 3 minutes, despite this side-effect.

While using the prediction at 27 minutes instead would avoid choosing the
smaller models that overfit, it would also discard a lot of information as the pre-
dictions of all the models trained only partially would have reverted to the prior
of the covariance function by 27 minutes. It would be better to design a special
kernel to deal with only this hyper-parameter and that does not revert quickly.
Inspiration for this kernel could be found in Domhan, Springenberg, and Hutter
(2015) as these authors study models to extrapolate learning curves.

Using a different strategy, this combination method would perform better than
either Hyperband or Bayesian optimization, as shown recently in Falkner, Klein,
and Hutter (2018).

2.6 Application: Classification of MRI Field-of-
View

This section describes and extends work presented at ISBI 2017 (Bertrand, Perrot,
et al. (2017)). It aims at applying the hyper-parameter optimization studied earlier
in this chapter to a real application: the classification of MRI field-of-view.

2.6.1 Dataset and problem description

Given an MRI volume we would like to know which anatomical regions are con-
tained in it and their position in the volume. Since MRI data are acquired in a
slice by slice approach, we reduce the problem to a two dimensional classification
task of axial slices (into head, chest, abdomen, pelvis, legs and spine).

The dataset consists of MRI images coming from a variety of hospitals and
machines across the world (such as the Centre Hospitalier Lyon-Sud, France or
Johns Hopkins University, USA). As a consequence the images are highly varied
in terms of protocols (see Figure 2.12) as well as resolution, number of volumes
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Figure 2.12: Images from the MR dataset showing the variety of classes and pro-
tocols.

Body Part # Volumes # Slices
Head 404 17011
Chest 186 6897
Abdomen 367 15486
Pelvis 351 17962
Legs 99 12868
Spine 390 9790

Table 2.5: Content of the MRI field-of-view dataset.

per class and number of slices per volume. Table 2.5 sums up the content of our
dataset.

The dataset is splitted into a training set for the optimization of the weights
of the networks, a validation set for model selection (optimization of the hyper-
parameters) and a test set for model evaluation (respectively 50%, 25%, 25% of the
database). The separation is done volume-wise to take into account intra-subject
slices correlations. Volumes containing multiple classes are split by anatomical
regions and can end up in different sets. This raises the difficulty of the task since,
in case of overfitting, predictions will be wrong at validation or testing phases.

Finally, each slice is subject to a unique step of preprocessing: it is resized
to 128 × 128 pixels, a good trade-off between time constraints and quality of
information.
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Data augmentation is used and consists in generating 80 000 images per epoch.
The augmentation is done by applying translations, shearing and rotations, zoom-
ing, and adding Gaussian noise.

2.6.2 Baseline results

Head 0.96 
Thorax 0.02 
Abdomen 0.00 
Pelvis 0.01 
Legs 0.00 
Spine 0.01 

Block 3

Convolutional Layer 

Max-pooling Layer Fully-connected Layer 

Figure 2.13: Baseline network used to solve the problem.

Starting from a standard VGG architecture (Simonyan and Zisserman (2014)),
we modified it manually until settling on the following model, shown in Figure 2.13:
it is divided into 5 blocks, each comprising a convolution layer of 64 filters of size
3 × 3, followed by a rectified linear unit (ReLu) and a max-pooling layer. The
network ends with 2 fully-connected layers (respectively 4096 and 1024 units)
interleaved with ReLU activations and terminated with a softmax decision layer.
This network was trained by minimizing the categorical cross-entropy loss weighted
by class frequency, using stochastic gradient descent (SGD) with a learning rate
of 10−3, Nesterov momentum (m = 0.9) and decay (d = 10−6) for 30 epochs.

We achieve a 14% error rate with most of the error focused on the chest.
Examining the confusion matrix (Table 2.6), we note that the abdomen, pelvis and
legs images have most of their errors located with anatomically adjacent regions.
Further examinations of the misclassified images revealed they were for the most
part located at the boundaries of their classes. These errors make sense as these
boundaries are ill-defined and varies from one volume to the next.

2.6.3 Hyper-parameter optimization

By relaxing some structural parts of our baseline architecture we define a large
family of models. This hyper-parametric family has the following structure (see
Figure 2.14): (1) b convolution blocks, each including c convolutional layers of 2r
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Head 96 0 1 2 1 0
Chest 1 57 13 28 1 0

Abdomen 0 1 88 10 0 1
Pelvis 1 0 9 81 8 1
Legs 0 0 0 19 81 0
Spine 0 1 3 2 0 94

Table 2.6: Confusion matrix for the baseline on the test set, in percent.

Head 0.96 
Thorax 0.02 
Abdomen 0.00 
Pelvis 0.01 
Legs 0.00 
Spine 0.01 

b blocks

 

…

 

…

 

…

c convolutional layers 

2r filters per layer 
s x s filters 
Separable convolutions ? Y/N

Figure 2.14: Variations on the baseline allowed in our search.

filters of size s × s interleaved with ReLU activations and terminated by a max-
pooling layer, (2) the fully-connected layers as in our baseline architecture, and
(3) a final softmax decision layer.

The last hyper-parameter is whether the convolutions are separable or not.
Separable convolutions are two different convolutional layers using 1 × 3 filters
then 3× 1. This leads to a 33% reduction in the number of weights often without
negative impact on the model performance.

Changes within this parametric space of models may drastically transform the
optimization landscape, requiring to adjust the training setting accordingly (in our
case: learning rate and batch size, all other settings remaining identical). These ar-
chitecture hyper-parameters and training settings form the hyper-parameter space.
The ranges of those hyper-parameters, detailed in Table 2.7, were defined so as
to fulfill memory (less than 12GB) and time constraints (training should last less
than one day).
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Name Range Baseline
Number of blocks b ∈ [1; 5] 5
Number of convolutional layers per block c ∈ [1; 5] 1
Number of filters per convolutional layer 2r, r ∈ [2, 8] 64
Size of the filters s ∈ {3; 5} 3
Separable Convolutions e ∈ {Yes,No} No
Learning Rate 10l, l ∈ [−7; 0] 0.001
Batch Size 2a, a ∈ [2; 8] 8

Table 2.7: Description of the hyper-parameters, with their range and and the
baseline value.

While many more hyper-parameters could have been considered, the ones we
chose already define a search space of 34 300 models, well-above our capacity to
fully explore. Those hyper-parameters were chosen as they were considered to
have the highest impact on the performance by a mix of intuition and experience.
A more systematic approach would likely yield better results, though at a greater
computational cost.

To explore this hyper-parameter space, we used Bayesian optimization, as de-
scribed in Section 2.2.3 We chose the Expected Improvement as our acquisition
function, and we used the loss on the validation set as the value the Gaussian
process must predict. Every network was trained for 30 epochs, and we trained a
total of 300 models. The first model picked by the Bayesian optimization is usually
chosen randomly, here it made sense to start from the baseline as it was already
trained.

At the end, our optimization process yields a collection of models ranked by
their performance. The quality of this assessment is naturally limited since the
size of the validation set used in this respect cannot encompass the diversity of
clinical reality. Cross-validation could be used to get a better estimator of the
performance, but we cannot practically afford its costs.

Figure 2.15 shows the performance of the models in the order they were trained.
The baseline is quickly improved upon and the best model is found after 33 it-
erations. Another model with similar performance is found after 55 iterations.
Starting at iteration 90, most of the chosen models are too big to fit in memory
and therefore unable to train. While the fact that no previously chosen mod-
els were too memory intensive but suddenly most chosen models are may seem

3While the previous section suggests Hyperband is a better method, this work was done before
Hyperband.
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Figure 2.15: Performance of the models in the order they were trained. Each dot
is a model. The red line represents the performance of the best model found until
this point. The models with a loss of 2.5 are models that could not be trained as
they were too big.

surprising, this can be explained for two reasons.
The first model of the process was our hand-crafted baseline, which had good

performance. This likely allowed for a good initialization of the Gaussian process,
and the following models explored the area around the baseline. As models ex-
plored further and further than the baseline, eventually one was chosen that was
too big to fit in memory. This argument is speculation that should be confirmed
by repeating the Bayesian optimization many times with a different initialization
every time. Lack of resources prevented us from exploring this point further.

The second argument explains why most models became impossible to train
as soon as the first of those was chosen. This is due to how we handled models
impossible to train for memory limitations. We chose to simply remove such models
from the search space. However the acquisition function still gives a high priority
to this region of space and a surrounding model is chosen that is also likely to be
too big. Since we remove those models on subsequent iterations, the acquisition
function never learns to not go there.

An alternative way to handle un-trainable models would have been to choose
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Head 94 0 1 1 2 0
Chest 0 93 5 1 1 0

Abdomen 0 2 85 10 2 1
Pelvis 1 2 4 86 6 1
Legs 0 4 1 19 76 0
Spine 0 1 1 0 2 96

Table 2.8: Confusion matrix for the best model on the test set, in percent.

an arbitrarily high loss for those models. This violates the smoothness assumption
of the Gaussian process and would have affected strongly the prediction on nearby
models, discouraging the acquisition function from choosing them. This would
have also disqualified nearby models that fit in memory, which was our reason for
not doing that in the first place.

It is not clear which strategy is better. Choosing a high loss sacrifices some
valid models, but saves time by testing less un-trainable models. On the other
hand, an un-trainable model fails immediately at model creation, so the gain in
time is minor. But independently of the chosen strategy, the fact that some com-
binations lead to model too big to fit in memory highlights a flaw in the design
of the hyper-parameters space and the resulting networks architectures. The un-
trainable models are models with a low number of blocks but a high number of
filters per layer. With one block and 64 filters per layer, the feature maps of
the last convolutional layer are of size 64 × 48 × 48, meaning the following fully-
connected layer have 64×48×48×4096 = 603, 979, 776 weights. Since each block
ends with a max-pooling layer, the number of weights quickly becomes manageable
with additional blocks.

The best model found with Bayesian optimization has an error rate of 10%, an
improvement of 4% over the baseline. Looking at the confusion matrix in Table 2.8,
there is a significant improvement in the classification of chest, going from 57%

accuracy in the baseline to 93% accuracy. The other classes have similar accuracy
as the baseline. Most of the errors are abdomen and legs slices located at the
boundaries of the pelvis.

Looking at the architectures of the two best models that have very similar error
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rates, it can be observed that the first one only deviates from the baseline by having
two convolutional layers per block but only 32 filters per convolutional layer and a
higher batch size of 32. The second model however is completely different. It has
only 4 blocks with 3 convolutional layers per block, uses separable convolutions,
with a smaller batch size of 4 and learning rate of 10−4.

The last important factor to consider is the total number of weights. The
baseline model had 6, 713, 226 weights, the best model had 5, 468, 778, a 19%

reduction. The second best model had 13, 927, 114 weights due to using one less
block than the other two models. Once again most of the weights are caused by
the transition from the last convolutional layer to the first fully-connected layer.
To improve these results the first step would be to better design this transition,
either by controlling the number of max-pooling layers or by replacing the fully-
connected layers with convolutional layers, as is typical of modern convolutional
neural networks.

2.6.4 From probabilities to a decision

Even though we made the choice of processing the data at the slice level, the
slices form volumes and we are interested in a decision at the volume level. The
first question is: does the model classifies two successive slices similarly? This is
expected since successive slices are anatomically close and have a similar structure.
If the model gives very different predictions, this could be a sign that it relies on
noise patterns instead of the anatomical structures.

To answer this question, we processed a full body volume by classifying each
of its slices through our best model. As we can see in Figure 2.16, the network is
able to identify all body parts, despite the slices being processed independently.
Nevertheless the network tends to misclassify the boundaries between regions,
notably legs/pelvis and pelvis/abdomen. It also mistakenly identifies the empty
slices above the head as being pelvis with a high confidence. Interestingly, the
straps used to hold the patient down, visible as the bands with high intensity on
the extremities and low intensities on the body, trigger the network every time
into the pelvis class. This is likely due to the rarity of those straps in the dataset.

But we are not interested in the mere probabilities, we want to take an actual
decision. Therefore we need a decision scheme. A very simple one would be
a threshold, say 0.7, over which we consider the slice to be part of the class.
However the predictions from the network are too noisy (see Figure 2.16-b), and
this approach gives regions broken in multiple parts with messy boundaries.
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Figure 2.16: Slice by slice prediction on a full body volume. From top to bottom:
(a) Image and ground truth. (b) Raw model prediction. (c) After smoothing. (d)
Final prediction, after selecting the best transitions. Highlighted in red are the
errors compared to the ground truth.
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A first step is to smooth the probabilities curves with a Gaussian filter, as
illustrated in Figure 2.16-c. This makes the predictions easier to read, and we can
see on this example that the predictions are correct almost everywhere except for
the chest. Additionally, the pelvis is preceded and followed by the abdomen, which
is of course impossible.

From this last observation, we note that our goal is to find contiguous anatomi-
cal regions, delimited by a starting slice Zm

i and an ending slice ZM
i , where i is the

index of the region in anatomical order (legs - pelvis - abdomen - chest - head) and
Z is the slice number. Those boundaries must be such that ∀i ∈ [1;N ], Zm

i+1 ≥ ZM
i

(a region cannot start before the end of the previous region). The network outputs
the probability of a slice to belong to a region Pi (Z).

We translate these constraints on region boundaries and the fact that intu-
itively, the best region between two slices is the one that maximizes a region
probability, through the following constrained linear program:

minimize −
N∑
i=1

∫ ZM
i

Zm
i

Pi(z)dz

subject to Zm
i+1 ≥ ZM

i , i = 1, ..., N

(2.23)

The Lagrangian is:

L
(
Zm
i , Z

M
i , λ

)
= −

N∑
i=1

∫ ZM
i

Zm
i

Pi(z)dz −
N∑
i=1

λi
(
Zm
i+1 − ZM

i

)
(2.24)

From the partial derivatives, we obtain:

∂L
∂Zm

i

= Pi (Z
m
i )− λi−1

∂L
∂ZM

i

= −Pi
(
ZM
i

)
+ λi

Setting the derivatives at zero, the optimal boundary slices must verify:

λi = Pi
(
ZM
i

)
= Pi+1

(
Zm
i+1

)
(2.25)

This result implies that the optimal boundary slices are the slices where adjacent
regions intersect. For example, a slice where the probability of belonging to the
pelvis is equal to the probability of belonging to the abdomen is a potential bound-
ary slice, but an intersection slice between pelvis and head is not. We show an
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example of valid and invalid transitions slices in Figure 2.17.

Valid transitions

Invalid transition

Legend

Pelvis

Abdomen

Chest

Figure 2.17: Example of valid and invalid transitions. Pelvis/abdomen and ab-
domen/chest are valid as they are from adjacent classes, but chest/pelvis is invalid.

To find the optimal boundary slices, we find all the valid intersection slices,
construct all the valid sets of transitions and compute the function defined in
Equation 2.23. The minimum is the optimal set of boundary slices. Following the
example in Figure 2.16-d, the final prediction is wrong only at the extremities of
the volume (our decision scheme forces to pick a class) and is in minor disagreement
with the ground truth legs/pelvis boundary. The only error of consequence is the
abdomen/chest boundary. Compared to the raw prediction which was wrong for
the pelvis and chest, the improvement is clearly visible.

This scheme is robust because of its properties: each region is at most one
contiguous block (it can also be not present), the regions are always in anatomical
order and it allows for many misclassified slices.

2.6.5 Conclusion

We have shown how to use Bayesian optimization to the concrete problem of
MR FOV classification. The gain in performance between our handcrafted model
and the best model clearly shows the value of automating the search of hyper-
parameters, even with a limited budget.

The search was vulnerable to all the weaknesses of Bayesian optimization: the
process was sequential (only one model trained at a time), we were limited in the
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hyper-parameters we could use (no conditional hyper-parameters) and the kernel
was stationary.

Another problem encountered is how to deal with models that cannot be trained
(because they require too much memory for example). Not putting them in the
training set will just let the search pick other similar models, but putting an arbi-
trarily high value is not ideal either as the Gaussian process will smoothly inter-
polate to that value, even though there is a discontinuity in that region (between
the models that can and cannot be trained).

Regarding the final models, testing at the volume level has shown that the
models are robust and can generalize. Still, the neural network was not enough
to obtain smooth coherent predictions, and we presented a decision scheme to fix
that.

Further work on this problem would involve improving the dataset by adding
new volumes, new anatomical regions and defining stricter boundaries between
regions. It could also be interesting to explore how to directly predict the bound-
aries of the regions using deep learning, instead of classifying each slice and using
another method to obtain the regions.
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Transfer Learning

Abstract
After a brief tour of the landscape of transfer learning methods in Section 3.1, we
introduce the problem of kidney segmentation in 3D ultrasound images across two
populations: healthy adults and sick children (Section 3.2), which will be the main
application of the methods proposed. Using standard transfer learning methods as
our baseline in Section 3.3 was insufficient for our problem and led us to develop
a new transfer learning method presented in Section 3.4. That method is based
on predicting transformations to be applied to images during inference. We wrap
up the chapter with a comparison of the tested methods and a discussion of the
results in Section 3.5 and a conclusion in Section 3.6.
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3.1 The many different faces of transfer learning

Transfer learning is the idea of re-using knowledge learned in one situation for an-
other situation. This makes intuitive sense in many frequently encountered cases.
To take examples from the medical field, a model trained on the detection of a
specific disease in a specific imaging protocol should have learned something about
these images that could be used for the detection of another disease. Those images
have common properties like the intensity of organs and bones that computer vision
models learn and use. Transfer learning aim to avoid re-learning those properties
but instead transfer them from one model to the other. Models may also learn
other kinds of knowledge, such as the anatomy of the human body. Organs do not
change shape or location from one imaging protocol to the other, and models may
learn and use this information.

But to be useful, transfer learning must be faster or more convenient than
simply training a model from scratch. In the medical field in particular, the ac-
quisition of data is costly and time-consuming, and labeling or segmenting the
acquired data to build a training database even more so. It is very common to
have only a handful of patients from a particular population. That scarcity of
data may make some tasks unsolvable by themselves, but pooling together every
available bit of data may allow solving them.

Figure 3.1: Transfer learning can be divided into four categories depending on how
the domains and the tasks are related.
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Following the notation of Pan and Q. Yang (2010), we define the domain as a
feature space X and a probability distribution P (X) such that X = {x1, · · · , xn} ∈
X . A task is composed of a label space Y and an objective predictive function f
which is learned from the training data (i.e. pairs of {xi, yi} where xi ∈ X and
yi ∈ Y). The transfer is done from a source domain and task to a target domain
and task. These notions form the two axes according to which transfer learning
methods are divided. How are the source and target domains related, and how are
the source and target tasks related? These axes result in four different problems
as shown in Figure 3.1.

Inductive transfer learning is the category of problems where the source and
target domains are identical, while the source and target tasks are different, but
related. An example of such a problem would be an image database where the
source task is to detect the presence or absence of particular objects and the
target task is to locate those objects in the image. Transductive transfer learning
is the category where the source and target domains are different but related,
while the source and target tasks are identical. An example that we introduce in
Section 3.2 is the segmentation of the kidney in 3D ultrasound images, where the
source domain is composed of healthy adults and the target domain is composed
of sick children. Unsupervised transfer learning happens when both the domains
and the tasks are different. In this setting, labels are unavailable for both source
and target. In all three cases, transfer of knowledge is possible by exploiting the
nature of the differences between the domains and the tasks.

In this section we briefly present these three kinds of transfer learning. Then
Section 3.1.4 focuses on transfer learning in the context of deep learning.

If both the domains and the tasks are identical, this is simply standard machine
learning and not transfer learning.

3.1.1 Inductive Transfer Learning

In this setting, the source and target tasks are different, while the source and target
domains stay the same. Many approaches have been explored in this setting. An
extension of the AdaBoost algorithm, TrAdaBoost (Dai et al. (2007)), assumes
that data in the source and target domains share features and labels but have
different distributions, in order to propose an iterative reweighting of the source
domain data during training.

Learning a low-dimensional representation of the data that is shared across
tasks is an idea explored in a supervised fashion (Argyriou, Evgeniou, and Pontil
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(2006), Lee et al. (2007)) and in an unsupervised fashion (Raina et al. (2007)).
It is also possible to transfer parameters or hyper-parameters of various mod-

els. Lawrence and Platt (2004) proposed to learn kernel parameters for Gaus-
sian processes across tasks, Evgeniou and Pontil (2004) developed a regularization
framework for sharing parameters of SVMs. Gao et al. (2008) built an ensemble
learning framework where the weights of each model are assigned dynamically for
each sample in the target domain.

3.1.2 Transductive Transfer Learning

Transductive transfer learning (Arnold, Nallapati, and Cohen (2007)), also called
domain adaptation, focuses on solving the same task across different domains. The
difficulty comes when little data is available in the target domain, or when labels
are unavailable or sparse for the target domain. A lot of work has been done on how
to relate the unlabeled target data with the labeled data through the loss of the
model (Arnold, Nallapati, and Cohen (2007))) or in which proportion they should
be mixed during training (Crammer, Kearns, and Wortman (2008), Ben-David
et al. (2010)).

When the model learns simultaneously on the different domains, this is multi-
domain learning (Daume III (2007), M. Joshi et al. (2013)).

3.1.3 Unsupervised Transfer Learning

There has been relatively little work in this setting. Dai et al. (2008) proposed
a self-taught clustering algorithm which aims to cluster a small unlabeled target
dataset at the same time as a big unlabeled source dataset. By learning a common
feature space, clustering on the target dataset is improved.

Chang et al. (2018) developed a method to learn a bank of multi-scale convo-
lutional filters from a large unlabeled source dataset and a small target dataset,
which can then be used in a convolutional neural network to solve classification
tasks. Only the construction of the filters bank is done without labels. Applica-
tions on various biomedical tasks show a clear improvement in performance over
using only the target dataset.

3.1.4 Transfer Learning and Deep Learning

One method has become the de facto face of transfer learning for deep neural
networks, due to its simplicity and versatility: fine-tuning (Hinton, Osindero, and
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Teh (2006), Bengio et al. (2007)). The idea is that the features learned by a neural
network are generic enough, so that it becomes interesting to re-use them on a
different domain, for a different task, or both. No modifications to the architecture
are done. The only difference is that the weights of the network are not initialized
randomly, but set to the final weights learned on the source domain.

Figure 3.2: The first convolutional layer of AlexNet learned many filters very
similar to Gabor filters. (Source: Krizhevsky, Sutskever, and Hinton (2012))

It is not always necessary, or even a good idea, to re-train the whole network.
If the target dataset is too small, full fine-tuning risks overfitting. But then, which
layers should be fine-tuned? Lower layers tend to be more generic, while higher
layers tend to be specialized to the task (Yosinski et al. (2014)), suggesting that it
would be better to fine-tune only the last n layers of the network. As illustrated
in Figure 3.2, the AlexNet architecture trained on ImageNet learns filters very
similar to Gabor filters in its first convolutional layer, showing their genericity. An
additional advantage is that it is faster as there is no need to back-propagate to
the lower layers. The exact value of n is entirely problem-specific, the closer the
domains and the tasks are, the less layers need to be fine-tuned.

Moreover the source dataset does not need to be closely related to the tar-
get dataset. A network trained for classification on the ImageNet dataset (Rus-
sakovsky et al. (2015)) can be fine-tuned on other natural images dataset for
classification or even detection and improve the results over training from scratch
(Oquab et al. (2014), Razavian et al. (2014)).

An alternative to fine-tuning is feature extraction (Donahue et al. (2014), Ser-
manet et al. (2014)). It is similar to fine-tuning in that it uses the fact that the
features learned by the lower layers of a neural network are fairly generic. But
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instead of modifying the higher layers of the network, here they are discarded and
the output of the lower layers are used as features for a completely different model,
not necessarily a neural network (see Figure 3.3). Features extracted from natural
images have been shown to be useful to medical images (Shin et al. (2016), Bar
et al. (2015), Ginneken et al. (2015)).

Cat 0.96 
Dog 0.02 
Banana 0.00 
Rabbit 0.01 
Panda 0.00 
Panther 0.01 

Head 0.96 
Thorax 0.02 
Abdomen 0.00 
Pelvis 0.01 
Legs 0.00 
Spine 0.01 

That part stays identical 

Only that part
is trained

Figure 3.3: Feature Extraction. The network at the top is trained on natural
images. It can be reused on medical images by extracting the features at a given
layer of the network and using them as the input of a new model.

Autoencoders (Ballard (1987), Bengio et al. (2007)) are neural networks learned
in an unsupervised manner. The goal of the network is to reconstruct its input
from a compressed representation of the data that it will learn. The first part of
the network progressively compresses the input while the second part decompresses
it. This first part can then be used as a pre-trained network for other datasets
and tasks (Bengio et al. (2007), Vincent et al. (2008), Erhan et al. (2010)). The
representation learned by the autoencoder can also be used as the features of
another model, which is helpful even for distant domains such as natural images
and MR images (Gupta, Ayhan, and Maida (2013)). More generally, unsupervised
pre-training on natural images has successfully been used to improve results on
medical imaging tasks (Schlegl, Ofner, and Georg Langs (2014), Hofmanninger
and G. Langs (2015)).

The methods discussed so far assume a sequence of actions. First a source task
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is solved on a source domain, and then a target task is solved on a target domain.
But if the different tasks are defined from the start, it makes sense to solve them
simultaneously. This is the idea of multitask training (Caruana (1995), Caruana
(1997), Collobert and Weston (2008)). It consistently gives better results on both
tasks than sequential transfer methods.

Likewise, when solving a task on different domains accessible from the start, it
makes sense to use the different domains at the same time. The simplest method is
to train the network on the union of the different domains, but this does not work
well when one domain is a lot bigger than the other. Weighting each sample ac-
cording to the number of samples of each domain (Daume III (2007)) or balancing
batches across domains during training (Buda, Maki, and Mazurowski (2018)) fixes
this problem. More complex multi-domain training methods exist, such as Nam
and Han (2016) where the network learns domain-specific convolutional layers.

3.2 Kidney Segmentation in 3D Ultrasound

3.2.1 Introduction

The clinical problem motivating this work is the kidney capsule segmentation in
3D ultrasound data from potentially ill children. These images have a high amount
of noise, strong dependency on the operator, and important organ shape variability
induced by subjects age and degree of illness. Moreover we have limited access to
such volumes. In contrast, a much larger database of ultrasound kidney volumes
of healthy adults is available, from which we build a successful segmenting deep
network. We aim to transfer the knowledge (anatomy, US signal, ...) captured by
this network to the pediatric data.

This work has contributions in both the clinical and technical domains: (i) a
deep learning based algorithm for kidney capsule segmentation in 3D ultrasound
data (Section 3.3), and (ii) a new approach to perform domain adaptation of
a pre-trained neural network (Section 3.4). In addition we present experiments
comparing different transfer methods according to performance, training time and
added complexity to determine the trade-offs of each method (Section 3.5), and
discuss their results, examining the segmentation errors to suggest potential im-
provements.
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3.2.2 Related Work

Despite the clinical potential of 3D kidney ultrasounds, both the number of pub-
lications and the data used within are relatively small. Moreover, to the best our
knowledge, deep learning techniques have not yet been applied. Cerrolaza et al.
(2014) and Marsousi, Plataniotis, and Stergiopoulos (2017) have addressed the
capsule segmentation problem in 3D pediatric data using active shape models and
for real-time segmentation using implicit deformable models, respectively.

Nevertheless, deep learning techniques have been applied by Ravishankar et al.
(2017) to 2D ultrasound kidney images. Their approach is compelling since they
manage to combine deep learning and shape priors by using two networks, first a
U-Net for the segmentation, then a convolutional auto-encoder as a shape prior
used for regularization.

The baseline to our work (Section 3.3.1) is the well-known deep learning ar-
chitecture “U-Net” (Ronneberger, Fischer, and Brox (2015)) and its 3D version
(Çiçek et al. (2016)).

3.2.3 Dataset

The ultrasound volumes in our study come from several clinical sites around the
world. As a result, there is a high variability in the quality of the images, which
translates into various amounts of noise and shadow artifacts as can be seen in
Figure 3.4.

We have a total of 503 healthy adults images, and 64 children (aged between 6
months and 15 years), of which about 30% have hydronephrosis in various stages.
The database was split into 80% of the images used for training, the rest for testing.

The volumes we give to the network have been down-sampled to a resolution
of 4× 4× 4 mm3, and centered in a 80× 80× 80 voxels cube. The size in voxels
was chosen in order to fit the network and a volume on a single NVIDIA TITAN
GPU. The resolution was chosen so that each volume would fit entirely in the cube.
We show images before and after pre-processing in Figure 3.4 for the adults and
Figure 3.5 for the children.
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Figure 3.4: Healthy adults kidneys before and after pre-processing.



3.3. BASELINE 59

Figure 3.5: Sick children kidneys before and after pre-processing.
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Legend

3x3x3 Convolution

Max Pooling 

Upsampling 

Transformation Layer 

Intensity Layer 

Figure 3.6: U-Net structure with our added transformation and intensity layers.

3.3 Baseline

3.3.1 3D U-Net

The 3D extension (Çiçek et al. (2016)) of the U-Net (Ronneberger, Fischer, and
Brox (2015)) architecture is our starting point. Its symmetrical structure alter-
nates convolutional layers with down-sampling layers on one side and convolutional
layers with up-sampling layers on the other (see Figure 3.6). At each level, down-
sampled feature maps are concatenated to up-sampled ones to give multi-scale
information to the network. In our adaptation of this architecture we replace the
weighted softmax loss by a Dice-based loss, more adapted to our segmentation
task, which is defined as follow:

DICE
(
Y, Ŷ

)
=

2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(3.1)

where Y is the ground truth segmentation and Ŷ is the predicted segmentation.
The Dice varies between 0 and 1, where 0 means the prediction and the ground
truth are disjoint and 1 means a perfect prediction.

Moreover, introducing Spatial Dropout (Tompson et al. (2015)) after each
convolution-sampling block proved to significantly improve our results by prevent-
ing over-fitting. Whereas standard Dropout (Srivastava et al. (2014)) randomly
sets pixels in the feature maps at zero, Spatial Dropout randomly sets filters at
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zero, making it more relevant for convolutional layers.

3.3.2 Training the baseline

We used Keras (Chollet et al. (2015)) with the Tensorflow backend (Martín Abadi
et al. (2015)). We performed each experiment on five seeds, which impacts both
the separation of the data set into training and test sets, and the initialization of
the weights of the networks.

Three models are used as baseline: one trained on adults kidneys only, which
will also be used for transfer, one trained on children only, and one trained on
both, with oversampling of the children to balance each set. Oversampling is a
way of dealing with class imbalance (Buda, Maki, and Mazurowski (2018)) and
consists in balancing each epoch to have as many adults as children by drawing
each children multiple times.

These baseline models allow us to judge the quality of each transfer method. A
good transfer method should perform better (or close to) on the children kidneys
than the children only network, while staying close to the performance of the adults
only network on the adults. The joint model represents the ideal performance we
can hope for on adults and children. Results are displayed in Table 3.1, and
illustrated in Figure 3.10.

3.3.3 Fine-tuning

The adult baseline network is fine-tuned on the children dataset, resulting in an
important drop of performance on the adults and a comparable improvement on
the children (see Table 3.1). This is obtained by fine-tuning the whole network.

It is however unnecessary as we show below. Fine-tuning only the last 7 con-
volutional layers of the network or the first 8 is enough to obtain the same results.
This corresponds to all the layers before or after the first upsampling layer. Be-
tween the two options, fine-tuning the last layers is faster since there is no need to
back-propagate to the early layers of the network.

3.4 Transformation Layers

For our need, it is not enough to obtain good performance on the target dataset.
We placed ourselves in a context where the transfer is done at a later time than the
original training and the source dataset is not available anymore, but the network
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Figure 3.7: Partial fine-tuning. The x axis is the index of the layer and the y axis
the Dice index. In blue, all the layers up to x are fine-tuned. In orange, all the
layers after x are fine-tuned.

must still be able to segment those images. Because of the performance drop on
the source dataset of the fine-tuning method, we must use something else.

Here we propose to introduce transfer layers within the original model in order
to adapt feature maps to the new dataset. We expect these layers to selectively
adapt the network to children data while maintaining the network performance on
adults.

When inserting new layers, it might be tempting to simply use standard con-
volutional layers. The problem is that as the parameters of these layers are fixed
once the training is done, the same convolutions will be applied to all images and
feature maps. Those new convolutions will heavily degrade performance on images
from the original distribution.

We tested many variations of position and shape of those additional convolu-
tional layers. The combination with the highest performance was to add a con-
volutional layer after each downsampling or upsampling layers, i.e. 6 new layers
with filters of size 3× 3× 3. This was enough to barely reach the performance of
the fine-tuning method, while taking longer and adding 23 millions parameters to
the network.

We instead propose to predict parameters during inference for each image.
Images from the source distribution will have parameters predicted close to the
identity transform, while images from the target distribution can be transformed
to be more similar to the source distribution. We introduce two kinds of transfer
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layers with different goals.

3.4.1 Geometric Transformation Layer

Working within the same image modality, we propose to use geometric transfor-
mations as transfer layers in order to effectively transfer information between our
datasets (adults to children). This is similar to the Spatial Transformer proposed
by Jaderberg et al. (2015), but instead of predicting directly the parameters of the
transformation, we predict the amount of translation, rotation and scaling along
each axis, i.e. nine parameters in total. These parameters are then used by the
transformation layer to geometrically modify its input using tri-linear interpola-
tion. There is no attention mechanism.

We place this layer at the entrance of the network and perform the inverse
transformation at the output of the network as shown in Figure 3.6. The transfor-
mation can be seen as a projection on the adults space, and therefore we need to
project back on the children space at some point. The prediction of the parameters
is done with a 3-layers convolutional network taking the image as input.

3.4.2 Intensity Layer

Figure 3.8: Intensity Layer. “Parameters Prediction” can be any model, in our
case it is a 3-layers ConvNet.

A geometric transformation is not enough to express the differences between
the source and target datasets. We therefore propose to predict an intensity trans-
formation, implemented as a 1 × 1 × 1 convolution applied to each feature map,
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shown in Figure 3.8. Noting I = {I1, · · · , In} the input feature maps and θ the
weights of the parameters prediction component, the exact transformation applied
to each feature map Ii is:

O (Ii) = Ki (I; θ) ∗ Ii + bi (I; θ)

where Ki (I; θ) and bi (I; θ) are the predicted parameters. In the end, two parame-
ters have to be predicted for each feature map. This layer is similar to the Feature-
wise Linear Modulation layer from Perez et al. (2018). Experiments showed that
this layer works best when placed at the lowest level of the U-Net (see Figure 3.6).

3.5 Results and Discussion

3.5.1 Comparing transfer methods

Strategy # params Time (s) Dice Adults Dice Children
Adults Baseline 16M 900 0.80± 0.01 0.61± 0.02
Children Baseline 16M 112 0.57± 0.03 0.66± 0.02
Joint Baseline 16M 1790 0.81± 0.01 0.74± 0.01
Fine-tuning 0 115 0.72± 0.02 0.72± 0.03
Fixed Convolutions 23M 182 0.71± 0.02 0.72± 0.03
Geometric Input (GI) 148k 36 0.73± 0.02 0.67± 0.02
Intensity 124k 29 0.80± 0.01 0.65± 0.03
GI + Intensity 272k 37 0.74± 0.01 0.73± 0.02

Table 3.1: Performance of the baseline and the different transfer methods. Each
result is averaged over 5 random seeds impacting the separation of the database
into training and testing sets, and the weights initialization of the networks.

In all transfer experiments, the source network is the adults baseline. The
transfer is done only on the children dataset, but performances are evaluated
on both the adults and children datasets. Besides fine-tuning, we experimented
with the types of layers added to the network and their position as described in
Section 3.4. The most interesting results are presented below.

In this section, we show that some of the proposed models achieve good re-
sults, both quantitatively as shown in Table 3.1 and qualitatively, as illustrated in
Figures 3.11 and 3.10.
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Table 3.1 shows the best performing strategies among those we explored. The
number of parameters is the number of parameters added by the method to the
base network, and the time is the time it takes for one epoch (in seconds).

For the baseline models, jointly training on adults and children gives better
results than training on each class alone, or than any transfer method. This is
not surprising as having access to both datasets at the same time is an advan-
tage over our transfer setting where we only have access to one dataset at a time.
We conclude that it is the method that should be used if we have access to both
datasets at the same time. It can be noted that the performance gap on the chil-
dren dataset between the adults baseline and the children baseline is smaller than
between the children baseline and the joint baseline. In addition, the performance
on the adults dataset is better for the joint baseline than the adults baseline. This
suggests that the quantity of available data is more important than its quality, i.e.
a lot of data from a related distribution is better than a small quantity from the
correct distribution.

For the transfer methods, the fine-tuning easily beats the children baseline, but
does not reach the performance of the joint baseline on either dataset. Moreover,
while it does not add any parameter to the network, it takes more time to train
than most other transfer methods (this is due to the fact that we have to compute
the gradient of every parameter in the network).

Adding fixed convolutional layers did not work. We were able to reach the
performance of the fine tuning, but only by adding 3× 3× 3 convolutional layers
after every downsampling and upsampling layers (line “FIxed Convolutions” in
Table 3.1). This added 23 millions parameters to the network (it originally had 16
millions) and took longer to train than the fine tuning.

“Geometric Input” means that we predict the parameters of a geometric trans-
formation before the first layer of the network as described in Section 3.4.1. It is
fast to train and beats the children baseline but fine tuning gives better perfor-
mance. Likewise for “Intensity” only, which means putting an intensity layer at
the deepest layer of the U-Net (Section 3.4.2).

The best results were obtained by combining the geometric input and learning
to predict the parameters of an intensity transformation of the feature maps at
the lowest level of the U-Net. This position for the intensity transformation works
better than the others. This method adds a small amount of parameters, is fast
to train and improve the performance over fine tuning.
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3.5.2 Examining common failures

Figure 3.9: Histogram of Dice coefficient on baseline models. In red is the adults
baseline, blue is the children baseline. Left: Dice coefficient on adults, right: Dice
coefficient on children.

Examining in details the results of the different networks, we can observe a few
trends. From the histograms of the Dice coefficient in Figure 3.9, we note that a
few of them have a very low Dice index (< 0.20). We show some of these images
in Figure 3.11. Moreover they are consistently bad for all tested models. All three
images are of very low quality, and there are shadows hiding parts of the images.
Fortunately, they represent less than 1% of our dataset.

Looking at the other images, two kinds of failures were dominant. Either
there were multiple connected component in the segmentation or the segmentation
were bigger than the ground truth. Some representative samples are shown in
Figure 3.10. The multiple connected component in the segmentation result from a
lack of constraint on the shape of the segmentation. A big segmentation containing
the ground truth or a segmentation with multiple connected component can have a
high dice value. Adding constraints to the loss could also help to solve some of the
common mistakes. Other ways to alleviate the problem would be to smooth the
segmentation or to use a shape model, for example using a Conditional Random
Field such as in Kamnitsas, Ledig, et al. (2017).

3.6 Conclusion

We proposed a new transfer method taking advantage of the particularity of the
image format of our problem to obtain better results than the more generic fine-
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Figure 3.10: Middle slice of 6 different volumes and a network segmentation su-
perposed on it. The top row shows good segmentations with a Dice index > 0.90.
The bottom row shows segmentations with a Dice index between 0.60 and 0.70.
They show the most common mistakes made by the network.

tuning. This new method could be applied to other medical imaging problems,
with a few caveats. First, if access to the source dataset is possible, joint training
on the source and target should be preferred over any transfer method. Secondly,
if changes to the structure of the network are impossible (for example if the archi-
tecture is hard-coded in released software), our method cannot be used. Finally,
it depends on the nature of the differences between the source and target distribu-
tions. Our method is efficient in the case of geometric and/or intensity differences,
making it well suited for medical imaging problems.

Figure 3.11: Images on which all models fail to generalize well.
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4
Template Deformation and Deep Learning

Abstract
This chapter presents a new segmentation method that combines deep learning
and template deformation. Section 4.2 briefly discusses template construction
strategies and registration via deep learning. The implicit template deformation
framework on which this work is based, is introduced in Section 4.3. Our method
is described in Section 4.4 and tested on the task of kidney segmentation in 3D
ultrasound images (Section 4.5). The results are discussed in Section 4.6.
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4.1 Introduction

In medical imaging, the use of prior knowledge can greatly facilitate the segmenta-
tion of anatomical structures. This can be done by constraining the segmentation
to be close to a pre-defined shape, i.e. a shape prior. Despite their previous
popularity, using a shape prior is uncommon in modern deep learning, where the
standard method is to produce the segmentation only from the image.

Template deformation produces the segmentation by deforming a binary tem-
plate to match the image. Two components are needed: a template (the shape
prior) and a regularization imposed on the deformation (the shape constraint). In
this work we investigate how deep learning can be used for template deformation,
and in particular how it can improve the implicit template deformation framework.
The core idea is to use the network to predict the transformation to be applied to
the template.

Using deep learning for this task has two advantages: (1) because the network
is trained on a database of images and does not have to be retrained on new images,
the segmentation is extremely fast (even if using only CPU during inference); (2)
the loss function only requires the ground-truth segmentation, there is no need to
have the ground-truth of the geometric deformation or additional information.

As this work was done at the very end of the PhD, the results are still prelim-
inary, yet promising.

4.2 Template Deformation

An approach to the segmentation of medical images is to use a previously acquired
template and deform it to match the image to segment. Formally, given a template
φ0 and an image I, we are interested in obtaining the segmentation mask φ by
finding the transformation ψ to be applied to the template:

φ = φ0 ◦ ψ (4.1)

4.2.1 Constructing the template

The template can take different forms and there are various strategies to construct
it. One can select the template as ground-truth segmentation of the most similar
image to the one to segment in an existing database (Commowick and Malandain
(2007)) or build a mean template by using multiple images (S. Joshi et al. (2004)).
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Another strategy is to use multiple templates, which increases the robustness
of the methods (Heckemann et al. (2006)) and then fuse the predictions (Warfield,
Zou, and Wells (2004)).

A review of the existing methods of template construction can be found in-
Cabezas et al. (2011).

4.2.2 Finding the transformation

There is a vast literature of methods such as Active Shape Models (T. Cootes et al.
(1995)), Active Appearance Models (T. F. Cootes, Edwards, and Taylor (1998))
or Implicit Template Deformation (Saddi et al. (2007)) that have been proposed
to find the deformation to apply to the template. These methods make no use of
machine learning, and instead work by minimizing some kind of energy functional.
We refer the interested reader to Heimann and Meinzer (2009) for a review of these
methods.

To the best of our knowledge, deep learning has not yet been used in the context
of template models. It has however been used in the context of registration, i.e.
the spatial alignment of two medical images.

Convolutional neural networks have been used recently to regress the param-
eters of the registration transformation from the input images (Miao, Wang, and
Liao (2016), X. Yang, Kwitt, and Niethammer (2016)).

Another approach is to estimate a similarity measure from a neural network
to be used in an iterative optimization strategy (Wu et al. (2013), Cheng, Zhang,
and Zheng (2015), Simonovsky et al. (2016), Vos et al. (2019)).

Recently, method using GANs (Goodfellow, Pouget-Abadie, et al. (2014)) have
been proposed. Dalca et al. (2018) developed a diffeomorphic integration layer cou-
pled with a generative model that allows for registration without the ground-truth
deformation fields. In the approach of Fan et al. (2018), a registration network
predicts the deformation and a discrimination network evaluates the quality of the
alignment. The networks are trained in the typical GAN fashion. A regularization
term is added to the loss of the registration network to make the deformation field
smoother.

Instead of a GAN, a variational auto-encoder can be considered to learn a
latent space of transformations such as in Krebs, Mansi, et al. (2018).
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4.3 Segmentation by Implicit Template Deforma-
tion

As this work places itself on top of Mory et al. (2012) and Prevost (2013), we first
present the Implicit Template Deformation framework.

The segmentation is defined as the zero level-set of an implicit function φ :

Ω→ R where φ is positive inside the segmentation and negative outside. The set
of admissible segmentations S is defined as the set of all implicit functions with
the same topology as the implicit template φ0:

S = {φ : Ω→ R s.t.φ = φ0 ◦ ψ, ψ is diffeomorphic} (4.2)

Let H denote the Heaviside function (H(a) = 1 if a > 0, 0 otherwise), and rint and
rext image-based functions such that rint(x)− rext is negative if the pixel x belongs
to the target object, positive otherwise. The implicit template deformation aims
to find the transformation ψ : Ω→ Ω that minimizes the energy:

min
ψ

{∫
Ω

H (φ0 ◦ ψ) rint +

∫
Ω

(1−H (φ0 ◦ ψ)) rext + λR (ψ)

}
(4.3)

where R (ψ) is the regularization term that prevents the segmentation φ = φ0 ◦ ψ
to deviate too much from the initial template φ0.

In the work of Mory et al. (2012), the transformation ψ is the composition of
a global transformation G and a local transformation L:

ψ = L ◦G (4.4)

The global transformation G is a parametric transform that globally aligns the
template with the target. It is usually a similarity, as it is adapted to anatomical
structures.

The local transformation is defined by a displacement field u in the template
referential L = u + Id, where u is the smoothed version of a displacement field v
with a Gaussian filter Kσ:

u(x) = [Kσ ∗ v](x) =

∫
Ω

Kσ(x− y)v(y)dy (4.5)

Filtering the field with a Gaussian kernel enforces its regularity at a low compu-
tational cost.
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The idea of separating the transformation into a global and local component
comes from Yezzi and Soatto (2003). The global transformation modifies the pose
of the prior while preserving its shape, which is changed by the local transforma-
tion.

The advantage of this decomposition is to be able to define the regularization
term R (ψ) independently from the pose. The constraint R then controls only
the deviation of the shape of the segmentation φ from its prior φ0. It is chosen
as an L2 norm to constrain L towards the identity Id and the magnitude of the
deformation:

R (ψ) = R (L) =
λ

2
||L− Id||22 (4.6)

Figure 4.1: Implicit template deformation: the segmentation corresponds to the
deformed initial template. (Source: Mory (2011))

Once the deformation has been found through the minimization of Equa-
tion 4.3, typically through a gradient descent scheme to update G and L from
a carefully chosen initialization, the segmentation is obtained by applying it to the
template, as illustrated in Figure 4.1.

4.4 Template Deformation via Deep Learning

The method presented in this section produces the segmentation of an image given
this image and a fixed template. The deformation to be applied to the template
is predicted by a neural network. Following the reasoning of Mory et al. (2012),
we define the deformation ψ as the composition of a global transformation G and
a local transformation L: ψ = L ◦G.
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Template

Global geometric
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Output

Local geometric
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Figure 4.2: Segmentation network that predicts a global geometric transformation
and a deformation field to deform a template.

Figure 4.2 shows the neural network. The network predicts the global transfor-
mation G and the local transformation L from the image, which are then applied
to the template φ0:

φ = φ0 ◦ L ◦G (4.7)

The network architecture for the local transformation is very similar to a U-
Net, as the transformation must be produced at a relatively high resolution and
the U-Net aggregates information from many levels. The global transformation is
predicted by a classical ConvNet. As the tasks are closely related, the classical
ConvNet corresponds to the downward part of the U-Net, allowing for transfer of
information.

The next sections detail our choice of global transformation (Section 4.4.1), of
local transformation (Section 4.4.2) and how to train the network (Section 4.4.3).

4.4.1 Global transformation

A linear geometric transformation for 3D images is represented by a 4× 4 matrix,
meaning a total of 16 parameters that can be predicted. Directly predicting those
parameters, such as in Spatial Transformers (Jaderberg et al. (2015)), remove



4.4. TEMPLATE DEFORMATION VIA DEEP LEARNING 75

control on the kind of transformation that are predicted. In our case, we chose to
predict instead translation, rotation and scaling parameters.

Three parameters are predicted for the translation on each axis, giving the
following translation matrix T :

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


The scaling matrix S is built from three more parameters:

S =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1


Finally, we have one rotation matrix in each direction (Rx, Ry and Rz) built

from one parameter each:

Rx =


1 0 0 0

0 cos rx − sin rx 0

0 sin rx cos rx 0

0 0 0 1



Ry =


cos ry 0 − sin ry 0

0 1 0 0

sin ry 0 cos ry 0

0 0 0 1

 Rz =


cos rz − sin rz 0 0

sin rz cos rz 0 0

0 0 1 0

0 0 0 1


We also need to center the image at the origin before applying the rotations,

which requires no parameters except knowing the center of the image:

C+ =


1 0 0 cx
0 0 0 cy
0 0 0 cz
0 0 0 1

 C− =


1 0 0 −cx
0 0 0 −cy
0 0 0 −cz
0 0 0 1


From these matrices, the geometric transformation G applied to the shape model



76 CHAPTER 4. TEMPLATE DEFORMATION AND DEEP LEARNING

is the following:
G = T · C+ ·Rz ·Ry ·Rx · S · C− (4.8)

The prediction of the 9 required parameters is done by a convolutional layer
with 9 1 × 1 × 1 filters, followed by an average pooling layer of the size of the
feature maps.

4.4.2 Local deformation

The deformation field v is predicted from a convolutional layer with 3 3 × 3 × 3

filters, one filter per dimension. Each field is then smoothed with a 3×3×3 mean
filter, before being resized to the shape model size with a tri-linear interpolation.
This resizing step allows predicting the deformation field at a lower resolution than
the shape model, saving time and parameters to learn.

As mentioned in Section 4.3, the local deformation is then computed from v

as:
L = u(x) + Id = [Kσ ∗ v](x) + Id (4.9)

As in the implicit template deformation case, the Gaussian filtering is used here to
enforce the regularity of the deformation field. It has also been used in the context
of registration with deep learning for the same reason (Krebs, Delingette, et al.
(2019)).

4.4.3 Training and loss function

Our segmentation method requires only the usual database of images and their
ground-truth segmentations expressed as binary masks. For simplicity (and lack
of time), the template is chosen as one of these segmentations. The corresponding
image is then excluded from training and testing.

Applying the global and local transformations to the template can be done as
a layer of the network that outputs the final segmentation. The loss function J

is simply the Dice coefficient between the network output φ̂ and the ground-truth
segmentation φ:

J
(
φ, φ̂

)
= DICE

(
φ, φ̂

)
= DICE

(
φ0 ◦ L ◦G, φ̂

)
(4.10)

The only free variables are G and L, which are predicted by the network. Training
the network by backpropagation on a database of images allows it to predict G
and L for new images.
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4.5 Kidney Segmentation in 3D Ultrasound

The problem addressed in this section is the same as in Section 3.2: kidney capsule
segmentation in 3D ultrasound data of potentially ill children. The difference is
that we are not in a transfer learning setting and we have access to both adults
and children images simultaneously.

While our new segmentation method is applicable to any kind of medical imag-
ing segmentation problem, time constraint forced us to focus on an already avail-
able dataset. As the problem is difficult (in particular, US acquisitions are very
noisy), this is still a good test of the method, though further testing is required.

The dataset stays identical as in Section 3.2.3, as well as the pre-processing.
We have 503 healthy adults images and 64 children. The images have been down-
sampled to a resolution of 4 × 4 × 4 mm3, and centered in a 80 × 80 × 80 voxels
cube.

Mean Standard deviation
Gaussian noise 0 5
Translation 0 3
Rotation 0 0.05
Scaling 1 0.05

Table 4.1: Data augmentation used for the kidney dataset. The parameters for
each type of augmentation are drawn from a normal distribution with the specified
mean and standard deviation.

Unlike previously, we use data augmentation. Due to the already high cost
of training on this dataset, each image is augmented 10 times before training.
The augmentation includes adding Gaussian noise, as well as translation, rotation
and scaling of the image (and the segmentation). The range of each type of
augmentation is shown in Table 4.1.

4.6 Results and Discussion

For all the models the training is done jointly on adults and children with over-
sampling of the children to balance the populations. Each model was trained on
only one seed due to the high cost of training (around five days per model on a
NVIDIA TITAN X). The performance of each model in terms of Dice index is
reported in Table 4.2.
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Method Dice Adults Dice Children
3D U-Net (no data augmentation) 0.81 0.74
3D U-Net 0.89 0.82
Deformation 0.85 0.75
Geometric transfo + Deformation 0.88 0.82

Table 4.2: Performance of the baseline and the shape model methods.

The baseline for our comparison is the 3D U-Net (Çiçek et al. (2016)) described
in Section 3.3.1. Its performance is therefore the same as the one reported in
Section 3.5. The use of data augmentation results in a performance gain from 0.81

for the adults and 0.74 for the children to 0.89 and 0.82, an important increase of
0.08 for both populations.

Training a model predicting only deformation fields without the geometric
transformation is not enough to beat the baseline, though it does show that the
idea works. When adding the geometric transformation, the results become very
close to the baseline. The geometric transformation is beneficial in particular for
the children. This is likely due to the fact that the template model is an adult
kidney, requiring the network to learn how to shrink it when segmenting children
images. The geometric transformation provides an easy way to learn this shrinking
with the three scaling parameters.

Even though the performance of our method is similar to the baseline, using the
template model results in anatomically correct segmentation. There are no patches
of disconnected voxels classified as kidney or unlikely shapes. In Figure 4.3, we
selected three images from the test set to illustrate this. In the first one, the U-
Net segmented a patch of pixel in the top left disconnected from the rest1, while
our method did not. The second image is difficult as the huge black spot can
be mistaken for hydronephrosis. While both networks classified it as kidney, our
method kept the elongated shape of the kidney outside of the black spot. In the
third image, the U-Net segmented a patch of pixels almost disconnected from the
main patch which would be very difficult to obtain by deforming a template model,
as our method shows.

Since the geometric transformation provided an important boost in perfor-
mance, we look at the distribution of each parameter predicted on the test set in
Figure 4.4.

1As we show only a slice of a volume, the patch could be connected through the other slices,
this is not the case here.
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Figure 4.3: Comparing 3D U-Net results and deformation fields results. From left
to right: image, ground truth, U-Net segmentation, deformation fields segmenta-
tion.
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Figure 4.4: Distributions of each parameter of the geometric transformation for
the final model. Red is for the adults, blue for the children.
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First we note that the distributions are almost identical for all parameters.
Looking at the values for individual images reveals that the parameters are corre-
lated, i.e. if a parameter falls on the lower side of the distribution for an image,
the other parameters will also fall on the lower side of their distributions for the
same image. This is likely due to the use of only one convolutional layer to predict
the parameters, i.e. a lack of capacity.

The second point of interest is that the distributions for adults and for children
are very different. The children tend to have lower parameter values and the adults
are spread out over a bigger range. This makes sense for the scaling parameters:
as the template is based on an adult’s kidney, it is necessary to shrink it more to
match the size of a children. However there are no reasons why this should be true
for the translation and rotation. This is possibly a side-effect of the parameters
being so correlated. If the network lacked capacity and some parameters are much
more important than the others, it makes sense it would focus on them, in this
case the scaling, at the detriment of the others, here the translation and rotation.

Finally, looking at the actual value of the parameters, it seems that the network
relies on a very specific transformation to work. Every parameter falls into a narrow
range of values. For all images, the template is translated, rotated and scaled in
roughly the same direction and amplitude.

The very low values of the scaling means that the template model is heavily
shrunk. As a result, the deformation fields have very high values to match the
target.

4.7 Conclusion

In this chapter we presented a new segmentation method based on template defor-
mation via deep learning. This method does not require ground-truth deformation
fields, but only the standard ground-truth segmentation masks. As such, it can be
applied to any medical imaging segmentation problem where the use of a template
makes sense.

As this work was done at the very end of the PhD, it is still incomplete, and
there are some simple modifications that would likely improve the performance.

To avoid the very low values of the scaling parameters, one solution is to add
an L2 regularization term to the deformation field L:

R (L) =
λ

2
||L− Id||22 (4.11)
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This would strongly reduce the magnitude of the deformation field and force the
scaling into a more sensible range.

To counter the strong correlation among the parameters of the global trans-
formation, we should increase the capacity of the network by adding one or two
convolutional layers just before the parameters prediction.

The other aspect of this work that merits attention is the choice of template.
We chose the simplest method of simply using one of the ground-truth segmen-
tations as the template, but more complex methods are likely to yield better re-
sults. In particular the work of Prevost (2013) learns the mean shape and possible
variations and integrates them into the implicit template deformation framework,
making it a natural fit with our approach.



5
Conclusion

5.1 Summary of the contributions

When this thesis began in early 2016, deep learning had already shown its worth
on natural images, but contributions in medical imaging were rare. There was still
a strong lack of tools and understanding on how to build architectures adapted to
a specific problem, which naturally led us to the topic of hyper-parameter opti-
mization, in order to avoid tedious architecture handcrafting and hyper-parameter
fine tuning.

Now armed with a set of tools to quickly find good models, the second part
of this thesis focused on applications. Questions of transfer learning and template
deformation, and their link with deep learning were explored in this context. They
came from the lack of data so common in medical imaging, and thus a need to
re-use the limited knowledge at our disposal as much as possible.

Hyper-parameter optimization

• An incremental Cholesky decomposition to reduce the cost of Baye-
sian optimization. Most of the computational cost of Bayesian optimiza-
tion is in the inversion of the Gaussian process’ Gram matrix. We exploited
a specificity in the structure of this matrix in the case of Bayesian opti-
mization: each successive call adds new rows and columns while leaving the
rest of the matrix unchanged. We have shown that this property stays true
for the underlying Cholesky decomposition, and how to compute the new
decomposition faster when the previous decomposition is available.

83
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• A limited comparison of the performance of random search and
Bayesian optimization. We designed an experiment on a small hyper-
parameter space to observe the behavior of random search and Bayesian
optimization over many runs. Bayesian optimization found faster better
models than random search in the best, average and worst cases. We showed
that the Gaussian process quickly became a good predictor of model perfor-
mance and that the worst models were picked last. Random search behaved
in accordance with the theoretical bounds we derived.

• A new hyper-parameter optimization method combining Hyper-
band and Bayesian optimization. We proposed a method combining
the strengths of Hyperband and Bayesian optimization. Model selection is
done by Bayesian optimization, and model training follows the Hyperband
scheme. Unfortunately due to how the selection of multiple models simulta-
neously was handled, the method did not perform significantly better than
Hyperband alone.

A method to solve a classification problem of MRI field-of-view. Using a
dataset of MRI volumes from a multitude of protocols and machines, we developed
a neural network able to classify each slice of the volumes into their anatomical
regions (six classes such as head or pelvis). We improved this neural network by
using Bayesian optimization to find a better architecture providing a non-negligible
performance boost. Even though the classification was done at the slice level, we
showed that it could be used for robust region localization through a decision
scheme maximizing the likelihood of each region.

A new transfer learning method and its application to the segmentation
of the kidney in 3D ultrasound images. Working with a dataset of 3D
ultrasound kidney images across two populations, we investigated transfer learning
methods for the segmentation of the kidney from one population (healthy adults)
to the other population (sick children), where less examples are available. This led
us to develop a new transfer learning approach, based on adding layers to the pre-
trained network to predict parameters for geometric and intensity transformations.

A segmentation method of template deformation using deep learning.
The use of shape prior is still uncommon in deep learning. We proposed a new
segmentation method based on the implicit template deformation framework that
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uses deep learning to predict the transformation to be applied to the template.
While this work is still preliminary, we obtained competitive performance on the
3D US kidney segmentation task previously explored.

5.2 Future Work

Even though all the contributions listed in the previous section have immediate
ways they could be improved, those are discussed in their respective chapters. Here
we take a longer term perspective and suggest future research directions, taking
into account how we believe the field is going to evolve.

User interactions. An important aspect of the implicit template deformation
framework is that it can integrate user interactions. After the template is deformed,
a user can add or remove points from the segmentation. Those are taken into
account by the method, which produces a new refined segmentation. This process
can be repeated as many times as required. This kind of user interaction is key
in medical practice but deep learning provides no easy way to incorporate them.
While some attempts have been made such as by Çiçek et al. (2016), who provide
a partial segmentation as an additional input of the segmentation network, none
of them forces the network to make use of them. In our method of template
deformation, user input could be incorporated as additional constraints on the
deformation field, while forcing the final segmentation to still be an acceptable
shape.

A shift in applications. Deep learning has fulfilled one of its promises: many
of the tasks that were once difficult are now easily solvable with deep learning.
The classification task of MRI field-of-view we worked on is a good example. Once
the dataset is ready, automated methods of hyper-parameter optimization can be
used to find a very efficient model with little manual effort. As automation tools
improves and becomes more accessible1, many tasks will stop requiring image
processing expertise to be solved. The focus will move to more challenging tasks,
where the difficulty can come from a lack of data (rare disease, high variability),
greater complexity such as segmentation of small structures (due to the reliance
of neural networks on pooling layers), registration, surgical planning, ...

1See for example Google AutoML.

https://cloud.google.com/automl/
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An integration of older methods. This thesis first started completely focused
on deep leaning and how it could be used to solve medical imaging problems. By
the end of it, we had started working on a hybrid approach of deep learning and
template deformation. Pre-deep learning methods were tailored for medical tasks,
and were mostly discarded with the success of deep learning. But deep learning
was developed first for natural images applications, without accounting for the
differences between natural and medical images. The ideas used in these older
methods (such as the use of shape information) are still relevant, and we expect
their integration with deep learning will move the field forward in coming years.

Multi-modality, multi-task learning. The idea of transfer learning is to share
knowledge between more or less loosely connected problems. Expanding on this,
we could imagine a multi-input multi-output model that shares knowledge over
many tasks and modalities at the same time. A first step in this direction could
be the construction of modality-specific pre-trained models, a medical imaging
equivalent to ImageNet pre-trained models. This requires that huge datasets are
available per modality, but efforts in this direction are ongoing. For example, the
NIH recently released an X-Ray dataset of over 100, 000 images that could be used
to build a standard X-Ray pre-trained model. If ImageNet pre-trained models can
improve performance on most medical tasks, it seems likely that a more specific
model would improve performance even more.

Differential privacy. Due to the sensitive nature of medical images, sharing
between research institutes or hospitals is difficult. A solution to this problem
could be through the use of differential privacy. It is a mathematical framework in
which the output of an algorithm is mostly the same, whether the data from one
particular patient is included or not. This prevents an opponent from recovering
patient information from the algorithm (it is possible to reconstruct training set
images from computer vision systems, including deep neural networks, see for
example Fredrikson, Jha, and Ristenpart (2015)). There has been some work to
make deep neural networks differentially private (Martin Abadi et al. (2016)), and
this would allow institutions to release models trained on private data with strong
guarantees of patient privacy.

https://nihcc.app.box.com/v/ChestXray-NIHCC


A
Incremental Cholesky Decomposition Proofs

This appendix contains the derivations for obtaining the incremental Cholesky
decomposition and its inverse that are used in Section 2.3. For recall, the Cholesky
decomposition and its inverse can be decomposed into blocks where one is the
previous Cholesky decomposition. We obtain the formulas by developing this
block decomposition.

Let us recall that the Cholesky decomposition L(n) of a positive definite matrix
K(n) is a decomposition of the form:

K(n) = L(n)L
T
(n) (A.1)

where L(n) is a lower triangular matrix. The decomposition is unique only if K(n)

is positive definite. Since K(n) is a Gram matrix, it is always guaranteed to be
positive semi-definite (i.e. ∀v ∈ Rn, vTK(n)v ≥ 0). On top of that, if the rows and
columns are unique (i.e. there are no duplicated data points), then it is positive
definite.

A.1 Formula for L(n+k)

When adding k points to a Gram matrix of n points, the block decomposition of
the new Cholesky decomposition is:

L(n+k)L
T
(n+k) = K(n+k,n+k)

⇔
(
A B

C D

)(
AT CT

BT DT

)
=

(
K(n,n) KT

(k,n)

K(k,n) K(k,k)

)
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B is obviously 0 since a Cholesky decomposition is lower triangular.

By developing the block decomposition, we obtain the following equation for
A:

AAT +BBT = AAT = K(n,n)

Since the Cholesky decomposition is unique, A = L(n). The equation for C is also
simple to solve:

CAT +DBT = CLT(n) = K(k,n)

⇔ C = K(k,n)(L
T
(n))
−1

Solving for D requires more work. Developing the block decomposition, we have:

CCT +DDT = K(k,k)

⇔ DDT = K(k,k) −K(k,n)(K(n,n))
−1KT

(k,n)

If we can show that K(k,k)−K(k,n)(K(n,n))
−1KT

(k,n) is definite positive then D is its
unique Cholesky decomposition.

Let w ∈ Rn+k s.t. w =

(
u

v

)
, u ∈ Rn, v ∈ Rk, we have wTK(n+k,n+k)w ≥ 0

because K(n+k,n+k) is a Gram matrix. Using its block decomposition and develop-
ing it, we have: (

u

v

)T (
K(n,n) KT

(k,n)

K(k,n) K(k,k)

)(
u

v

)
≥ 0

⇔ uTK(n,n)u+ uTKT
(k,n)v + vTK(k,n)u+ vTK(k,k)v ≥ 0

⇔ uTK(n,n)u+ 2uTKT
(k,n)v + vTK(k,k)v ≥ 0

Using three successive change of variables, this equation becomes a second-order
polynomial. The first change is u = K−1

(n,n)x:

xT (KT
(n,n))

−1x+ 2xT (KT
(n,n))

−1KT
(k,n)v + vTK(k,k)v ≥ 0

The second change is x = ty where t is a scalar:

t2yT (KT
(n,n))

−1y + 2tyT (KT
(n,n))

−1KT
(k,n)v + vTK(k,k)v ≥ 0
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Since this is true for all y ∈ Rn, this is true in particular when y = KT
(k,n)v:

t2vTK(k,n)(K
T
(n,n))

−1KT
(k,n)v + 2tvTK(k,n)(K

T
(n,n))

−1KT
(k,n)v + vTK(k,k)v ≥ 0

The discriminant of this polynomial is negative or null because the polynomial is
always positive or null:

4(vTK(k,n)(K
T
(n,n))

−1KT
(k,n)v)2−4(vTK(k,n)(K

T
(n,n))

−1KT
(k,n)v)(vTK(k,k)v) ≤ 0

⇔ 0 ≤ (vTK(k,n)(K
T
(n,n))

−1KT
(k,n)v)2 ≤ (vTK(k,n)(K

T
(n,n))

−1KT
(k,n)v)(vTK(k,k)v)

vTK(k,k)v ≥ 0 since K(k,k) is a Gram matrix (i.e. positive semi-definite), meaning
by necessity vTK(k,n)(K

T
(n,n))

−1KT
(k,n)v ≥ 0 and K(k,n)(K

T
(n,n))

−1KT
(k,n) is positive

semi-definite.

Moreover, K(k,k) ≥ K(k,n)(K
T
(n,n))

−1KT
(k,n), allowing us to conclude that K(k,k)−

K(k,n)(K
T
(n,n))

−1KT
(k,n) is positive semi-definite, and it is positive definite as long as

none of the k new combinations are duplicates of the n previous combinations and
DDT is its Cholesky decomposition.

D = cho(K(k,k) −K(k,n)(K
T
(n,n))

−1KT
(k,n)) = L(k)

The final formula for the incremental Cholesky decomposition is:

L(n+k) =

(
L(n) 0

K(k,n)(L
T
(n))
−1 L(k)

)
(A.2)

Since this formula requires the costly computation of L−1
(n), we would also like to

find an incremental formula for it.

A.2 Formula for L−1
(n+k)

A standard expression for the inversion of a block matrix is:(
A B

C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
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Simplifying with L(n+k) found previously, we have:

L−1
(n+k) =

(
L(n) 0

K(k,n)(L
T
(n))
−1 L(k)

)−1

=

(
L−1

(n) 0

−L−1
(k)K(k,n)(L

T
(n))
−1L−1

(n) L−1
(k)

)
(A.3)
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Titre : Optimisation d’hyper-paramètres en apprentissage profond et apprentissage par transfert - Applications
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Résumé : Ces dernières années, l’apprentissage
profond a complètement changé le domaine de vi-
sion par ordinateur. Plus rapide, donnant de meilleurs
résultats, et nécessitant une expertise moindre pour
être utilisé que les méthodes classiques de vision par
ordinateur, l’apprentissage profond est devenu omni-
présent dans tous les problèmes d’imagerie, y com-
pris l’imagerie médicale.
Au début de cette thèse, la construction de réseaux
de neurones adaptés à des tâches spécifiques ne bé-
néficiait pas encore de suffisamment d’outils ni d’une
compréhension approfondie. Afin de trouver automa-
tiquement des réseaux de neurones adaptés à des
tâches spécifiques, nous avons ainsi apporté des
contributions à l’optimisation d’hyper-paramètres de
réseaux de neurones. Cette thèse propose une com-
paraison de certaines méthodes d’optimisation, une
amélioration en performance d’une de ces méthodes,
l’optimisation bayésienne, et une nouvelle méthode
d’optimisation d’hyper-paramètres basé sur la combi-
naison de deux méthodes existantes : l’optimisation

bayésienne et hyperband.
Une fois équipés de ces outils, nous les avons utilisés
pour des problèmes d’imagerie médicale : la classi-
fication de champs de vue en IRM, et la segmenta-
tion du rein en échographie 3D pour deux groupes
de patients. Cette dernière tâche a nécessité le déve-
loppement d’une nouvelle méthode d’apprentissage
par transfert reposant sur la modification du réseau
de neurones source par l’ajout de nouvelles couches
de transformations géométrique et d’intensité.
En dernière partie, cette thèse revient vers les mé-
thodes classiques de vision par ordinateur, et nous
proposons un nouvel algorithme de segmentation qui
combine les méthodes de déformations de modèles
et l’apprentissage profond. Nous montrons comment
utiliser un réseau de neurones pour prédire des trans-
formations globales et locales sans accès aux vérités-
terrains de ces transformations. Cette méthode est
validé sur la tâche de la segmentation du rein en
échographie 3D.

Title : Hyper-parameter optimization in deep learning and transfer learning - Applications to medical imaging

Keywords : Deep learning, medical imaging, transfer learning, template deformation, segmentation

Abstract : In the last few years, deep learning has
changed irrevocably the field of computer vision. Fas-
ter, giving better results, and requiring a lower de-
gree of expertise to use than traditional computer vi-
sion methods, deep learning has become ubiquitous
in every imaging application. This includes medical
imaging applications.
At the beginning of this thesis, there was still a strong
lack of tools and understanding of how to build effi-
cient neural networks for specific tasks. Thus this the-
sis first focused on the topic of hyper-parameter op-
timization for deep neural networks, i.e. methods for
automatically finding efficient neural networks on spe-
cific tasks. The thesis includes a comparison of dif-
ferent methods, a performance improvement of one of
these methods, Bayesian optimization, and the propo-
sal of a new method of hyper-parameter optimization
by combining two existing methods: Bayesian optimi-

zation and Hyperband.
From there, we used these methods for medical ima-
ging applications such as the classification of field-of-
view in MRI, and the segmentation of the kidney in
3D ultrasound images across two populations of pa-
tients. This last task required the development of a
new transfer learning method based on the modifica-
tion of the source network by adding new geometric
and intensity transformation layers.
Finally this thesis loops back to older computer vision
methods, and we propose a new segmentation algo-
rithm combining template deformation and deep lear-
ning. We show how to use a neural network to predict
global and local transformations without requiring the
ground-truth of these transformations. The method is
validated on the task of kidney segmentation in 3D US
images.
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