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Chapter 1

Introduction

Context
In many applications, estimating the current state of a dynamical system is crucial either to
build a controller or simply to obtain real time information on the system for decision-making
or surveillance. A common way of addressing this problem is to place some sensors on/in the
physical system and design an algorithm, called observer, whose role is to process the incomplete
and imperfect information provided by the sensors and thereby construct a reliable estimate of
the whole system state. Of course, such an algorithm can exist only if the measurements from
the sensor somehow contain enough information to determine uniquely the state of the system,
namely the system is observable.

The number and quality of the sensors being often limited in practice due to cost and physical
constraints, the observer plays a decisive role in a lot of applications. Many efforts have thus
been made in the scientific community to develop universal methods for the construction of
observers. Several conceptions of this object exist, but in this thesis, we mean by observer a
finite-dimensional dynamical system fed with the measurements, and for which a function of
the state must converge in time to the true system state. Although very satisfactory solutions
are known for linear systems, nonlinear observer designs still suffer from a significant lack of
generality. The very vast literature available on the subject consists of scattered results, each
making specific assumptions on the structure and observability of the system. In other words,
no unified and systematic method exists for the design of observers for nonlinear systems.

Actually, observer design may be more or less straightforward depending on the coordinates
we choose to express the system dynamics. For instance, dynamics which seem nonlinear at first
sight could turn out to be linear in other coordinates. In particular, some specific structures,
called normal forms, have been identified for allowing a direct and easier observer construction.
One may cite for instance the state-affine forms with their so-called Luenberger or Kalman ob-
servers, or the triangular forms associated to the celebrated high gain design. With this in mind,
most solutions available in the literature actually fit in the following three-step methodology :

1. look for a reversible change of coordinates transforming the dynamics of the given nonlinear
system into one of the identified normal forms,

2. design an observer in those new coordinates,
3. deduce an estimate for the system state in the initial coordinates via inversion of the

transformation.

Of course in order to follow this method one need to know

I. a list of normal forms and their associated observers,
II. under which conditions and thanks to which invertible transformation one can rewrite a

dynamical system into one of those forms,
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III. how to compute the inverse of this transformation.

When browsing the literature, one discover that the first two points have been extensively
studied, although not always under this terminology. In fact, they constitute the core of the
observer design problem and they are tightly linked since a particular form is of interest if it
admits observers (Point I.) and if a large category of systems can be transformed into that
form (Point II.). Therefore, Points I. and II. are often treated simultaneously. On the contrary,
very few results concern Point III., mainly because the observer problem is often considered
theoretically solved, once an invertible transformation into a normal form has been found.

Problems addressed in this thesis

Actually, in practice, inverting a nonlinear map is far from trivial. Most of the time, the system
and the normal form have different dimensions, so that the transformation is at best an injective
immersion. Since its inverse is a priori defined only on a submanifold of the observer space, an
extension is often necessary. When an explicit expression for a global inverse is not available,
numerical inversion usually relies on the resolution of a minimization problem with a heavy
computation cost, which thus raises implementation issues. That is why the first goal of this
thesis was to develop a methodology to avoid the explicit inversion of the transformation, by
bringing the dynamics of the observer (designed in the normal form coordinates) back into the
initial system coordinates.

When I started my thesis, some preliminary results in that direction had already been ob-
tained in the case of autonomous systems, but some tools remained to be developed in order to
complete the theory and also to make the method implementable in practice. This kept us busy
for several months and at the end, we tried to extend our results to time-varying/controlled
systems. In doing so, we discovered that surprisingly, the limitation did not come from our
method of inversion, but rather from the scarcity of general observer design techniques available
for nonlinear controlled systems, namely from Points I.-II. rather than Point III.

In particular, we realized that, in the usual case where the derivatives of the input are
unknown, even the widely used high gain design, reputed to be general, had only been proved to
work under the assumptions that the system be observable for any input AND that its order of
differential observability be equal to the system dimension. In this particular case, the system can
indeed be transformed into a triangular normal form with Lipschitz nonlinearities appropriate for
the design of a high gain observer. Given the restrictive nature of this framework, we naturally
wondered if one of those two assumptions could be relaxed. Actually, the "observable for any
input" assumption is necessary to have a triangular form and cannot be altered. However, we
discovered that, interestingly, it was often possible to preserve the triangularity of the target
form when allowing the order of differential observability to be larger than the dimension of the
system, but that the Lipschitzness of the nonlinearities could be lost. This observation led us to
address the following two problems : first, what kind of observers can be used for a triangular
normal form with continuous (non-Lipschitz) nonlinearities, and second under which conditions
a system can be transformed into such a continuous triangular form.

Apart from the high gain paradigm, another general technique for nonlinear observer design
had recently been developed, inspired from Luenberger’s initial approach to build observers for
linear systems. This so-called Kazantzis-Kravaris or Luenberger design consists in transforming
the system into a Hurwitz linear form (for which a trivial observer exists) via the resolution
of a partial differential equation (PDE). But this approach was only available for autonomous
systems and we thus tried to figure out how it could be extended to controlled/time-varying
systems, namely how to transform this kind of system into a Hurwitz linear form.
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Thesis organization

Summing up, this thesis provides contributions to each of the three points mentioned above :

Contribution 1 observer design for a continuous triangular form (related to Point I.)
Contribution 2 characterization of controlled systems which can be transformed into a con-

tinuous triangular form (related to Point II.)
Contribution 3 characterization of controlled systems which can be transformed into a Hur-

witz linear form (related to Point II.)
Contribution 4 method to express the dynamics of the observer in the given coordinates to

avoid the inversion of the transformation (related to Point III.)

Instead of presenting the results in a chronological way, I thus found clearer to organize my
thesis along this three-step methodology and classify the contributions accordingly, namely in
three parts :

Part I Normal forms and their observers (with Contribution 1)
Part II Transformation into a normal form (with Contributions 2 and 3)
Part III Observer in given coordinates (with Contribution 4)

Since the topics of Part I and II have been extensively studied in the literature, detailed reviews
are provided in each of those parts, so that this thesis finally gives a good overview of the state
of the art in terms of observer design for nonlinear systems.

On the other hand, I also had the opportunity to work on applications, in particular the
design of observers for permanent magnet synchronous motors (PMSM) without mechanical
information (sensorless) and with some unknown parameters. This led to the following contri-
butions :

Contribution 5 gradient observer for the estimation of the rotor position and magnet flux of
a PMSM

Contribution 6 observability analysis and observer design for a PMSM with unknown rotor
position and unknown resistance.

This work was carried out in parallel to the rest and is detailed in a separate part :

Part IV Observers for PMSMs with unknown parameters (with Contributions 5 and 6).

Publications

The work presented in this thesis has resulted in the following publications :

- Journals

1. P. Bernard, L. Praly, V. Andrieu, Observers for a non-Lipschitz triangular form,
Automatica, Vol. 82, p301-313, 2017

2. P. Bernard, L. Praly, V. Andrieu, On the triangular normal form for uniformly ob-
servable controlled systems, Automatica, Vol. 85, p293-300, 2017.

3. P. Bernard, L. Praly, V. Andrieu, Expressing an observer in given coordinates by
augmenting and extending an injective immersion to a surjective diffeomorphism,
Submitted to SIAM

- Conferences
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1. P. Bernard, Luenberger observers for nonlinear controlled systems, Conference on
Decision and Control, 2017 (To appear)

2. P. Bernard, L. Praly, Robustness of rotor position observer for permanent magnet
synchronous motors with unknown magnet flux, IFAC World Congress, 2017

3. P. Bernard, L. Praly, V. Andrieu, Non Lipschitz triangular normal form for uniformly
observable controlled systems, IFAC Symposium on Nonlinear Control Systems, 2016

4. P. Bernard, L. Praly, V. Andrieu, Tools for observers based on coordinate augmenta-
tion, Conference on Decision and Control, 2015



Introduction

Contexte
Dans beaucoup d’applications, l’estimation en temps réel de l’état d’un système dynamique est
cruciale, que ce soit pour la synthèse d’un contrôleur ou simplement pour la surveillance et la
prise de décision. Une façon usuelle de résoudre ce problème consiste à installer des capteurs
sur/dans le système physique et implémenter un algorithme, appelé observateur, dont le rôle est
de traiter les informations partielles et imparfaites données par les capteurs, et d’en déduire une
estimation fiable de l’état complet du système. Bien sûr, un tel algorithme ne peut exister que
si les mesures des capteurs contiennent assez d’informations pour déterminer de manière unique
l’état du système : le système est alors dit observable.

Le nombre et la qualité des capteurs étant souvent limités en pratique en raison de contraintes
physiques et de coût, l’observateur est amené à jouer un rôle décisif dans beaucoup d’applications.
La communauté scientifique s’est donc efforcée de développer des méthodes aussi universelles
que possible pour la synthèse d’observateur. Plusieurs conceptions de cet objet existent, mais
dans cette thèse, le terme "observateur" désigne un système dynamique de dimension finie,
prenant en entrée les mesures, et dont une fonction de l’état converge en temps vers l’état
réel du système. Alors que des solutions satisfaisantes existent pour les systèmes linéaires, les
synthèses d’observateurs non linéaires manquent cruellement de généralité. La littérature, par
ailleurs très fournie sur le sujet, se compose essentiellement de résultats épars, chacun faisant sa
propre hypothèse sur la structure et l’observabilité du système. Autrement dit, il n’existe pas
de méthode générale pour la synthèse d’observateur pour système non linéaires.

En fait, il se peut que la synthèse soit plus ou moins facile suivant les coordonnées que l’on
a choisies pour exprimer la dynamique du système. Par exemple, une dynamique qui paraît
non linéaire au premier abord pourrait s’avérer être linéaire dans d’autres coordonnées. Or,
des structures particulières, appelées formes normales, ont été identifiées comme permettant la
construction facile et directe d’un observateur. Parmi elles, les formes affines en l’état, avec
leurs observateurs de Luenberger ou de Kalman, ou les formes triangulaires, associées au célèbre
observateur grand gain. A partir de là, la plupart des solutions disponibles dans la littérature
s’inscrivent en fait dans une démarche à trois étapes que l’on peut résumer ainsi :

1. chercher un changement de coordonnées réversible qui transforme la dynamique du système
non linéaire donné dans l’une des formes normales connues,

2. synthétiser un observateur dans ces coordonnées,
3. en déduire une estimation de l’état du système dans les coordonnées initiales en inversant

la transformation.

Bien sûr, pour suivre cette méthode, il est nécessaire de connaître

I. une liste de formes normales et les observateurs associés,
II. sous quelles conditions et grâce à quelle transformation inversible il est possible de réécrire

un système dynamique sous l’une de ces formes,
III. comment calculer l’inverse de la transformation.
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Il s’avère que les deux premiers points ont beaucoup été étudiés dans la littérature (pas toujours
sous cette terminologie). En fait, ils constituent le coeur du problème de synthèse d’observateur
et ils sont fortement liés puisqu’une forme particulière n’a d’intérêt que si elle admet un obser-
vateur (Point I.) et si une large catégorie de systèmes peuvent être transformés en cette forme
(Point II.). Les Points I. et II. sont donc très souvent traités simultanément. Au contraire, très
peu de résultats concernent le Point III., principalement parce que le problème d’observateur est
souvent considéré comme résolu lorsque une transformation inversible dans une forme normale
a été trouvée, c’est-à-dire lorsque les Points I. et II. ont été traités.

Problèmes abordés dans cette thèse

En fait, en pratique, inverser une application non linéaire est loin d’être trivial. La plupart
du temps, le système et la forme normale ont des dimensions différentes, et la transforma-
tion est donc au mieux une immersion injective. Puisque son inverse n’est a priori définie que
sur une sous-variété de l’espace où évolue l’observateur, une extension est souvent nécessaire.
En l’absence d’expression explicite et globale de l’inverse, l’inversion numérique repose sur la
résolution d’un problème de minimisation coûteux en calcul, ce qui soulève d’importants prob-
lèmes d’implémentation. C’est pourquoi le premier objectif de cette thèse était de développer
une méthode permettant d’éviter l’inversion explicite de la transformation, en ramenant la dy-
namique de l’observateur (écrite dans les coordonnées de la forme normale) dans les coordonnées
initiales du système.

Lorsque j’ai commencé ma thèse, des résultats préliminaires avaient déjà été obtenus dans
cette direction pour les systèmes autonomes, mais il restait à développer certains outils pour
compléter la théorie ainsi que pour la rendre implémentable en pratique. Ceci nous a occupés
quelques mois, jusqu’à ce que nous essayions d’étendre nos résultats aux systèmes instation-
naires/commandés. C’est alors que nous nous rendîmes compte avec surprise que les limitations
ne provenaient pas de notre méthode d’inversion, mais plutôt de la rareté des techniques générales
de synthèse d’observateurs existant pour les systèmes non linéaires commandés, c’est-à-dire des
Points I. et II. plutôt que du Point III.

En particulier, nous réalisâmes que, dans le cas usuel où les dérivées de l’entrée sont in-
connues, même la synthèse grand gain, si largement utilisée et réputée générale, ne s’applique
théoriquement qu’aux systèmes observables pour toute entrée dont l’ordre d’observabilité dif-
férentielle est égal à la dimension du système. Dans ce cas particulier en effet, le système peut
être transformé en une forme normale triangulaire avec des non linéarités Lipschitz appropriées
à la synthèse d’un observateur grand gain. Vu le caractère restrictif de ce cadre, nous nous de-
mandâmes naturellement si l’une de ces deux hypothèses pouvait être relâchée. Pour ce qui est
de la première, l’observabilité "pour toute entrée" est nécessaire pour obtenir une forme trian-
gulaire et ne peut donc être modifiée. Par contre, nous découvrîmes qu’il était souvent possible
de préserver la triangularité de la forme cible en autorisant l’ordre d’observabilité différentielle
à être supérieur à la dimension du système, mais que le caractère Lipschitz des non linéarités
pouvait alors être perdu. Cette observation nous amena naturellement à nous intéresser à deux
nouveaux problèmes : d’une part, quels types d’observateurs peuvent être utilisés pour une
forme triangulaire avec des non linéarités continues (non-Lipschitz), et d’autre part, sous quelles
conditions un système quelconque peut être transformé en une telle forme.

En face de la synthèse grand gain, une autre technique générale de synthèse d’observateurs
non linéaires avait été récemment développée, inspirée de l’approche initialement adoptée par
Luenberger pour la synthèse d’observateur de systèmes linéaires. Cette synthèse "de Kazantzis-
Kravaris" ou "de Luenberger", consiste à transformer le système en une forme linéaire Hurwitz
(pour laquelle un observateur trivial existe) via la résolution d’une équation aux dérivées par-
tielles (EDP). Mais cette approche étant disponible seulement pour les systèmes autonomes,
nous essayâmes de l’étendre aux systèmes instationnaires/commandés.
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Organisation de la thèse
En résumé, cette thèse contribue à chacun des trois points mentionnés plus haut :

Contribution 1 Synthèse d’observateurs pour une forme triangulaire continue (relié au Point
I.)

Contribution 2 Caractérisation des systèmes commandés pouvant être transformés en une
forme triangulaire continue (relié au Point II.)

Contribution 3 Caractérisation des systèmes commandés pouvant être transformés en une
forme linéaire Hurwitz (relié au Point II.)

Contribution 4 Méthode pour exprimer la dynamique de l’observateur directement dans les
coordonnées du système pour éviter l’inversion de la transformation (relié au Point III.)

Au lieu de présenter les résultats chronologiquement, j’ai ainsi trouvé plus clair d’organiser ma
thèse en suivant cette démarche à trois étapes, et donc de classifier les contributions en trois
parties :

Partie I Formes normales et leurs observateurs (avec Contribution 1)
Partie II Transformation dans une forme normale (avec Contributions 2 et 3)
Partie III Expression de l’observateur dans les coordonnées du système (avec Contribution 4)

Les thèmes des Parties I. et II. ayant été intensivement étudiés dans la littérature, ce plan m’a
aussi permis de faire apparaître un bilan détaillé des résultats existant en début de ces deux
parties. Cette thèse donne donc finalement une bonne vue d’ensemble de l’état de l’art en
matière d’observateur pour les systèmes non linéaires.

Enfin, j’ai aussi eu l’opportunité de travailler sur des applications, en particulier sur la
synthèse d’observateurs pour moteurs synchrones à aimant permanent (MSAP) en l’absence
d’informations mécaniques (sensorless) et avec certains paramètres inconnus. Ce travail a mené
aux contributions suivantes :

Contribution 5 Observateur gradient pour l’estimation de la position du rotor et du flux de
l’aimant dans un MSAP

Contribution 6 Analyse d’observabilité et synthèse d’observateur pour un MSAP dont la po-
sition du rotor et la résistance sont inconnues.

Ceci a été réalisé en parallèle et est donc détaillé dans une partie séparée et indépendante :

Partie IV Observateurs pour MSAPs aux paramètres inconnus (avec Contributions 5 et 6).

Publications
Les travaux présentés dans ce manuscrit ont fait l’objet des publications suivantes :

• Journaux internationaux avec comité de lecture

1. P. Bernard, L. Praly, V. Andrieu, Observers for a non-Lipschitz triangular form,
Automatica, Vol. 82, p301-313, 2017

2. P. Bernard, L. Praly, V. Andrieu, On the triangular normal form for uniformly ob-
servable controlled systems, Automatica, Vol. 85, p293-300, 2017.

3. P. Bernard, L. Praly, V. Andrieu, Expressing an observer in given coordinates by
augmenting and extending an injective immersion to a surjective diffeomorphism,
Soumis à SIAM.
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• Conférences internationales avec comité de lecture

1. P. Bernard, Luenberger observers for non linear controlled systems, Conference on
Decision and Control, 2017 (A paraître)

2. P. Bernard, L. Praly, Robustness of rotor position observer for permanent magnet
synchronous motors with unknown magnet flux, IFAC World Congress, 2017

3. P. Bernard, L. Praly, V. Andrieu, Non Lipschitz triangular normal form for uniformly
observable controlled systems, IFAC Symposium on Nonlinear Control Systems, 2016

4. P. Bernard, L. Praly, V. Andrieu, Tools for observers based on coordinate augmenta-
tion, Conference on Decision and Control, 2015



Chapter 2

Nonlinear observability and observer
design problem

Chapitre 2 – Observabilité non-linéaire et synthèse d’observateur. Ce chapitre
présente brièvement la notion d’observabilité pour les systèmes non-linéaires commandés et intro-
duit le problème de la synthèse d’observateur. La méthode introduite en introduction consistant
à transformer le système dans une "forme normale" est formalisée et les notations utiles au reste
de la thèse sont introduites.
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This first chapter introduces the problem of observer design for nonlinear controlled systems
and presents some basic notions of observability which will be needed throughout the thesis.
The subject under discussion here is well-established and widely described in the literature. Our
aim is not to provide an exhaustive study on nonlinear observability and observer design, but
rather to situate our contribution and introduce the basic tools/notations needed in the rest of
this thesis.

2.1 Observation problem
We consider a general system of the form :

ẋ = f(x, u) , y = h(x, u) (2.1)

with x the state in Rdx , u an input function with values in Rdu , y the output (or measurement)
with values in Rdy and f and h sufficiently many times continuously differentiable functions
defined on Rdx × Rdu . We denote

- X(x0, t0; t;u) the solution at time t of (2.1) with input u and passing through x0 at time
t0. Most of the time, t0 is the initial time 0 and x0 the initial condition. In that case, we
simply write X(x0; t;u).
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- Y (x0, t0; t;u) the output at time t of System (2.1) with input u passing through x0 at time
t0 i-e :

Y (x0, t0; t;u) = h(X(x0, t0; t;u), u(t)) .

To alleviate the notations when t0 = 0, we simply note yx0,u, i-e

yx0,u(t) = h(X(x0; t;u), u(t)) .

Those notations are used to highlight the dependency of the output on the initial condition
(and the input). When this is unnecessary, we simply write y(t).

- X0 a subset of Rdx containing the initial conditions that we consider for System (2.1).
For any x0 in X0, we denote σ+(x0;u) (resp σ+

X (x0;u)) the maximal time of existence of
X(x0; ·;u) in Rdx (resp in a set X ).

- U the set of all sufficiently many times differentiable inputs u : [0,+∞)→ Rdu which the
system can be submitted to.

- U a subset of Rdu containing all the values taken by the inputs u ∈ U , i-e⋃
u∈U

u([0,+∞)) ⊂ U .

More generally, for an integer m such that any u in U is m times differentiable, Um
denotes a subset of Rdu(m+1) containing the values taken by the inputs u in U and its first
m derivatives, i-e ⋃

u∈U
um([0,+∞)) ⊂ Um ,

with um = (u, u̇, . . . , u(m)).

The object of this thesis is to address the following problem :

Observation problem

For any input u in U , any initial condition x0 in X0, find an estimate x̂(t) of X(x0; t;u) based
on the only knowledge of the input and output up to time t, namely u[0,t] and y[0,t], and so
that x̂(t) asymptotically approaches X(x0; t;u), at least when x̂(t) is defined on [0,+∞).

Note that the solutions are defined from any points in Rdx , but we may choose to restrict
our attention to those starting from a subset X0 of Rdx (perhaps for physical reasons) and thus,
we are only interested in estimating those particular solutions. Otherwise, take X0 = Rdx . As
for the causality constraint that only the past values of the input u[0,t] can be used at time t,
this may be relaxed in the case where the whole trajectory of u is known in advance, namely for
a time-varying system.

The continuous differentiability of f says that any solution to System (2.1) is uniquely
determined by its initial condition. Thus, the problem could be rephrased as : "given the input,
find the only possible initial condition which could have produced the given output up to time
t". Of course, this raises the question of uniqueness of the initial condition leading to a given
output trajectory, at least after a certain time. This is related to the notion of observability
which will be addressed later in this chapter. In any case, one could imagine simulating System
(2.1) simultaneously for a set of initial conditions x0 and progressively removing from the set
those producing an output trajectory Y (x0; t;u) "too far" from y(t) (with the notion of "far" to
be defined). However, this method presents several drawbacks : first, one need to have a fairly
precise idea of the initial condition to allow a trade off between number of computations and
estimation precision, and second, it heavily relies on the model (2.1) which could be imperfect.
This path has nevertheless aroused a lot of research :
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- either through stochastic approaches, adding random processes to the dynamics (2.1) and to
the measurement, and following the probability distribution of the possible values of the state
([Jaz70])

- or in a deterministic way, adding unknown admissible bounded disturbances to the dynamics
(2.1) and to the measurement, and producing a "set-valued observer" or "interval observer"
such as in [GRHS00, LZA03].

But as far as we know, no viable solution exist for standard nonlinear systems.
Another natural approach is the resolution of the minimization problem ([Zim94])

x̂(t) = Argminx̂
∫ t

0

∣∣∣Y (x̂, t; τ ;u)− y(τ)
∣∣∣2dτ

or rather with finite memory

x̂(t) = Argminx̂
∫ t

t−t

∣∣∣Y (x̂, t; τ ;u)− y(τ)
∣∣∣2dτ .

Along this path, a first idea would be to integrate backwards the differential equation (2.1)
for a lot of initial conditions x̂ at time t until t − t and select the "best" one, but this would
require a huge number of computations which would be impossible to carry out online and, as
before, it would rely too much on the model. Some methods have nonetheless been developed to
alleviate the number of computations and solve this optimization problem online, in spite of its
non-convexity and the presence of local minima (see [Ala07] for a survey of existing algorithms).

In this thesis, the path we follow is rather to look for a dynamical system using the current
value of the input and output and whose state is guaranteed to provide (at least asymptotically)
enough information to reconstruct the state of System (2.1). This dynamical system is called an
observer. A more rigorous mathematical definition is the following (a sketch is given in Figure
2.1).

Definition 2.1.1.

An observer for System (2.1) initialized in X0 is a couple (F , T ) where

- F : Rdz × Rdu × Rdy → Rdξ is continuous

- T is a family of continuous functions Tu : Rdz × [0,+∞) → Rdx , indexed by u in U ,
which respect the causality1 condition :

∀ũ : [0,+∞)→ Rdu , ∀t ∈ [0,+∞) , u[0,t] = ũ[0,t] =⇒ Tu(·, t) = Tũ(·, t) .

- for any u in U , any z0 in Rdz and any x0 in X0 such that σ+(x0;u) = +∞, any2 solution
Z(z0; t;u, yx0,u) to

ż = F(z, u, yx0,u) (2.2)

initialized at z0 at time 0, with input u and yx0,u, exists on [0,+∞) and is such that

lim
t→+∞

∣∣∣X̂((x0, z0); t;u)−X(x0; t;u)
∣∣∣ = 0 (2.3)

with
X̂((x0, z0); t;u) = Tu (Z(z0; t;u, yx0,u), t) .

1Again, this causality condition may be removed if the whole trajectory of u is explicitly known, for instance
in the case of a time-varying system where u(t) = t for all t.

2We say "any solution" because F being only continuous, there may be several solutions. This is not a
problem as long as any such solution verifies the required convergence property.
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In other words, X̂((x0, z0); t;u) is an estimate of the current state of System (2.1) and the
error made with this estimation asymptotically converges to 0 as time goes to the infinity.

If Tu is the same for any u in U and is defined on Rdξ instead of Rdξ × R, i-e is time-
independent, T is said stationary. In this case, T directly refers to this unique function and
we may simply say that

ż = F(z, u, y) , x̂ = T (z)

is an observer for System (2.1) initialized in X0.
In particular, we say that the observer is in the given coordinates if T is stationary and is

a projection function from Rdz to Rdx , namely X̂((x0, z0); t;u) can be read directly from dx
components of Z(z0; t;u, yx0,u). In the particular case where dx = dz and T is the identity
function, we may omit to precise T .

Finally, when X0 = Rdx , i-e the convergence is achieved for any initial condition of the
system, we say "observer" without specifying X0.

ẋ = f(x, u)
y = h(x, u) ż = F(z, u, y)

x̂ = Tu(z, t)

u

u

y

x̂

Plant

Observer

Figure 2.1: Observer : dynamical system estimating the state of a plant from the knowledge of
its output and input only.

Remark 1 We will see in Chapter 4 that it is sometimes useful to write the observer dynamics
(2.2) as a differential inclusion. In this case, F is a set-valued map and everything else remains
unchanged.

The time-dependence of Tu enables to cover the case where the knowledge of the input and/or
the output is used to build the estimate x̂ from the observer state z. For example, using the
output sometimes enables to reduce the dimension of the observer state (and thus alleviate the
computations). However, for those so-called reduced-order observers, the estimate x̂ depends
directly on y and is therefore affected by measurement noise. This kind of observer won’t be
mentioned in this thesis. On the other hand, we will see that it is sometimes necessary to use the
input (either implicitly or explicitly) in Tu, but always keeping in mind the causality condition.

The advantage of having an observer in the given coordinates is that the estimate of the
system state can directly be read from the observer state. This spares the maybe-complicated
computation of Tu. Writing the dynamics of the observer in the given coordinates constitutes
one of the goals of this thesis, but we will see that unfortunately, it is not always possible, nor
easy.

Anyhow, the role of an observer is to estimate the system state based on the knowledge of
the input and output. This means that those signals somehow contain enough information to
determine uniquely the whole state of the system. This brings us to the notion of observability.

2.2 Observability and observer design for nonlinear systems

2.2.1 Some notions of observability

In order to have an observer, a detectability property must be satisfied :
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Lemma 2.2.1.

Assume there exists an observer for System (2.1). Then, System (2.1) is detectable for any u
in U , i-e for any u in U and for any (xa, xb) in X0×X0 such that σ+(xa, u) = σ+(xb, u) = +∞
and

yxa,u(t) = yxb,u(t) ∀t ≥ 0 ,

we have
lim
t→∞
|X(xa; t;u)−X(xb; t;u)| = 0 .

The property of detectability says that even if two different initial conditions are not dis-
tinguishable with the output, the corresponding system solutions become close asymptotically
and thus we still get a "good" estimate no matter which we pick. This is a well-known nec-
essary condition which can be found for instance in [ABS13], and which admits the following
straight-forward proof.

Proof : Consider any u in U and any (xa, xb) in X 2
0 such that σ+(xa, u) = σ+(xb, u) = +∞ and yxa,u =

yxb,u. Take z0 in Rdz and pick a solution Z(z0; t;u; yxa,u) of (2.2) with input yxa,u. It is also a solution
to (2.2) with input yxb,u. Therefore, by denoting X̂((xa, z0); t;u) = T (Z(z0; t;u, yxa,u), u(t), yxa,u(t)),
we have

lim
t→∞

|X̂((xa, z0); t;u)−X(xa; t;u)| = 0

and
lim
t→∞

|X̂((xa, z0); t;u)−X(xb; t;u)| = 0 .

The conclusion follows. �

This means that detectability at least is necessary to be able to construct an observer.
Actually, we often ask for stronger observability properties such as :

Definition 2.2.1.

Consider an open subset S of Rdx . System 2.1 is

- distinguishable on S for some input u : R→ Rdu if
for all (xa, xb) in S × S,

yxa,u(t) = yxb,u(t) ∀t ∈ [0,min{σ+(xa;u), σ+(xb;u)}) =⇒ xa = xb .

- instantaneously distinguishable on S for some input u : R→ Rdu if
for all (xa, xb) in S × S, for all t in (0,min{σ+(xa;u), σ+(xb;u)})

yxa,u(t) = yxb,u(t) ∀t ∈ [0, t) =⇒ xa = xb .

- uniformly observable on S if
it is distinguishable on S for any input u : R→ Rdu (not only for u in U).

- uniformly instantaneously observable on S if
it is instantaneously distinguishable on S for any input u : R→ Rdu (not only for u in
U).

In particular, the notion of instantaneous distinguishability means that the state of the
system can be uniquely deduced from the output of the system as quickly as we want. In the
particular case where f , h and u are analytical, y is an analytical function of time ([Die60,
10.5.3]) and the notions of distinguishability and instantaneous distinguishability are equivalent
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because two analytical functions which are equal on an interval are necessarily equal on their
maximal interval of definition. Besides, for any x0, there exists tx0 such that

yx0,u(t) =
+∞∑
k=0

y
(k)
x0,u(0)
k! tk , ∀t ∈ [0, tx0) ,

and distinguishability is thus closely related to the important notion of differential observability
which will be defined in Chapter 5 and which roughly says that the state of the system at a
specific time is uniquely determined by the value of the output and of its derivatives (up to a
certain order) at that time.

The notion of uniform observability could appear unnecessary at first sight because it seems
sufficient that the system be observable for any u in U , namely for any considered input, rather
than for any u : R→ Rdu . However, we will see that this (strong) observability property infers
some structural properties on the system which are useful for the design of certain observers.

In fact, more or less strong observability properties are needed depending on the observer
design method and on what is required from the observer (tunability, exponential convergence
etc). For example, it is shown in [ABS13], that for autonomous systems, instantaneous distin-
guishability is necessary to have a tunable observer, i-e an observer giving an arbitrarily small
error on the estimate in an arbitrarily short time.

2.2.2 Observer design

It is proved in [ABS13] that if there exists an observer (F , T ) for an autonomous system

ẋ = f(x) , y = h(x)

and a compact subset of Rdx × Rdz which is invariant by the dynamics (f,F), then there exist
compact subsets Cx of Rdx and Cz of Rdz , and a closed set-valued map T defined on Cx such that
the set

E = {(x, z) ∈ Cx × Cz : z ∈ T (x)}

is invariant, attractive, and verifies :

∀(x, z) ∈ E , T (z, h(x)) = x .

In other words, the pair made of the system state x (following the dynamics f) and the observer
state z (following the dynamics F) converges necessarily to the graph of some set-valued map T
and T is a left-inverse of this mapping. Note that this injectivity is of a peculiar kind since it is
conditional to the knowledge of the output, namely "x 7→ T (x) is injective knowing h(x)". This
result justifies the usual methodology of observer design for autonomous systems which consists
in transforming, via a function T , the system into a form for which an observer is available,
then design the observer in those new coordinates (i-e find F), and finally deduce an estimate
in the original coordinates via inversion of T (i-e find T ). Note that in practice, we look for a
single-valued map T because it is simpler to manipulate than a set-valued map.

When considering a time-varying or controlled system, the same methodology can be used,
but two paths are possible :

- either we keep looking for a stationary transformation x 7→ T (x) like for autonomous
systems

- or we look for a time-varying transformation (x, t) 7→ Tu(x, t) which depends either explic-
itly or implicitly on the input u.

It is actually interesting to detail what we mean by explicitly/implicitly. In building a time-
varying transformation, two approaches exist, each attached to a different vision of controlled
systems :



2.2. Observability and observer design for nonlinear systems 21

- either we consider, as in System (2.1), that only the current value of the input (or some-
times the extended input um = (u, u̇, . . . , u(m))) is necessary to determine Tu(·, t) at time
t, i-e there exists a function T̃ such that for any u in U , Tu(x, t) = T̃ (x, u(t)).

- or we consider System (2.1) as a family of systems indexed by u in U , i-e

ẋ = fu(x) , y = hu(x)

and we obtain a family of functions Tu, each depending on a whole function u in U . In
this case, it is necessary to ensure that Tu(·, t) depends only on the past values of u to
guarantee causality.

Along this thesis, we will encounter/develop methods from each of those categories. In any case,
here is a sufficient condition to build an observer for System (2.1) :

Theorem 2.2.1.

Consider an integer dξ and continuous maps F : Rdξ×Rdu×Rdy → Rdξ , H : Rdξ×Rdu → Rdy
and F : Rdξ × Rdu × Rdy → Rdξ such that

˙̂
ξ = F(ξ̂, u, ỹ) (2.4)

is an observer for3

ξ̇ = F (ξ, u,H(ξ, u)) , ỹ = H(ξ, u) (2.5)

i-e for any (ξ̂0, ξ0) in (Rdξ)2 and any u in U , any solution Ξ̂(ξ̂0; t;u, ỹξ0,u) of (2.4) and any
solution Ξ(ξ0; t;u) of (2.5) verify

lim
t→+∞

∣∣∣Ξ̂(ξ̂0; t;u, ỹξ0,u)− Ξ(ξ0; t;u)
∣∣∣ = 0 . (2.6)

Now suppose that for any u in U , there exists a continuous function Tu : Rdx ×R→ Rdξ and
a subset X of Rdx such that :

a) for any x0 in X0 such that σ+(x0;u) = +∞, X(x0; ·;u) remains in X .

b) there exists a concave K function ρ and a positive real number t such that for all (xa, xb)
in X 2 and all t ≥ t

|xa − xb| ≤ ρ
(
|Tu(xa, t)− Tu(xb, t)|

)
,

i-e x 7→ Tu(x, t) becomes injective on X , uniformly in time and in space, after a certain
time t.

c) Tu transforms System (2.1) into System (2.5), i-e for all x in X and all t in [0,+∞)

L(f,1)Tu(x, t) = F (Tu(x, t), u(t), h(x, u(t)) , h(x, u(t)) = H(Tu(x, t), u(t)) , (2.7)

where L(f,1)Tu is the Lie derivative of Tu along the extended vector field (f, 1), namely

L(f,1)Tu(x, t) = lim
h→0

Tu(X(x, t; t+ h;u), t+ h)− Tu(x, t)
h

d) Tu respects the causality condition

∀ũ : [0,+∞)→ Rdu , ∀t ∈ [0,+∞) , u[0,t] = ũ[0,t] =⇒ Tu(·, t) = Tũ(·, t) .

3The expression of the dynamics under the form F (ξ, u,H(ξ, u)) can appear strange and abusive at this
point because it is highly non unique and we should rather write F (ξ, u). However, we will see in Part I how
specific structures of dynamics F (ξ, u, y) allow the design of an observer (2.4).
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Then, for any u in U , there exists a function Tu : Rdξ × [0,+∞) → Rdx such that for each
t ≥ t, ξ 7→ Tu(ξ, t) is uniformly continuous on Rdξ and verifies

Tu(Tu(x, t), t) = x ∀x ∈ X .

Besides, denoting T the family of functions Tu for u in U , (F , T ) is an observer for System
(2.1) initialized in X0.

Solving the partial differential equation (2.7) a priori gives a solution Tu depending on the
whole trajectory of u and rather situates this result in the last design category presented above.
But this formalism actually covers all three approaches and was chosen for its generality. In
fact, the dependence of Tu on u may vary, but what is crucial is that they all transform the
system into the same target form (2.5) for which an observer (2.4) is known.

Proof : Take u in U . For any t ≥ t, x 7→ Tu(x, t) is injective on X , thus there exists a function
T−1
u,t : Tu(X , t) → X such that for all x in X , T−1

u,t (Tu(x, t)) = x. Taking any ũ : [0,+∞) → Rdu such
that u[0,t] = ũ[0,t] thus gives T−1

u,t = T−1
ũ,t on Tu(X , t) = Tũ(X , t) according to d). Besides, with b), for

all (ξ1, ξ2) in Tu(X , t)2,
|T−1
u,t (ξ1)− T−1

u,t (ξ2)| ≤ ρ
(
|ξ1 − ξ2|

)
. (2.8)

Applying [McS34, Theorem 2] to each component of T−1
u,t , there exist c > 0 and an extension4 of T−1

u,t on
Rdξ verifying (2.8) with ρ̄ = cρ for all (ξ1, ξ2) in (Rdξ )2 (i-e T−1

u,t is uniformly continuous on Rdξ ) and
such that T−1

u,t = T−1
ũ,t on Rdξ . Defining T on Rdξ × [0,+∞) as

Tu(ξ, t) =
{

T−1
u,t (ξ) , if t ≥ t

0 , otherwise

Tu verifies the causality condition and we have for all t ≥ t and all (x, ξ) in X × Rdξ ,

|Tu(ξ, t)− x| ≤ ρ̄
(
|ξ − Tu(x, t)|

)
. (2.9)

Now consider x0 in X0 such that σ+(x0;u) = +∞. Then, from a) and c), since X(x0; ·;u) remains in X
and Tu(X(x0; ·;u), t) is a solution to (2.5) initialized at ξ0 = Tu(x0, 0) and for all t, yx0,u(t) = ỹξ0,u(t).
Thus, because of (2.6), for any ξ̂0 in Rdξ and any solution Ξ̂(ξ̂0; t;u, yx0,u) of

˙̂
ξ = F(ξ̂, u, yx0,u)

we have
lim

t→+∞

∣∣∣Ξ̂(ξ̂0; t;u, yx0,u)− Tu(X(x0; t;u), t)
∣∣∣ = 0 .

If follows from (2.9) that
lim

t→+∞

∣∣∣X̂((x0, ξ̂0); t;u)−X(x0; t;u)
∣∣∣ = 0

with X̂((x0, ξ̂0); t;u) = Tu(Ξ̂(ξ̂0; t;u, yx0,u), t). Thus, (F , T ) is an observer for System (2.1). �

Remark 2 Without the assumption of concavity of ρ, it is still possible to show that x 7→
Tu(x, t) admits a continuous left-inverse Tu defined on Rdξ . But, as shown in [SL16, Example 4],
continuity of T is not enough to deduce the convergence of x̂ from that of ξ̂ : uniform continuity5

is necessary. Note that if X is bounded, the concavity of ρ is no longer a constraint, since a
concave upper-approximation can always be obtained by saturation of ρ (see [McS34] for more
details).

Besides, if there exists a compact set C such that X is contained in C, it is enough to ensure
the existence of ρ for (xa, xb) in C2. As long as for all t, x 7→ Tu(x, t) is injective on C, then for
all t, there exists a concave K function ρt verifying the required inequality for all (xa, xb) in C2

4Denoting T−1
u,t,j the jth component of T−1

u,t , take T−1
u,t,j(ξ) = minξ̃∈Tu(X ,t){T

−1
u,t,j(ξ̃)+ρ(|ξ̃− ξ|)} or equivalently

T−1
u,t,j(ξ) = minx∈X {xj + ρ(|Tu(x, t)− ξ|)}

5A function γ is uniformly continuous if and only if limn→+∞ |xn−yn| = 0 implies limn→+∞ |γ(xn)−γ(yn)| = 0.
This property is indeed needed in the context of observer design.
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(see Lemma A.3.2). Thus, only uniformity in time should be checked, namely that there exists
a concave K function ρ greater than all the ρt, in other words that x 7→ T (x, t) does not become
"less and less injective" with time. Of course, when Tu is time-independent, no such problem
exists and it is sufficient to have x 7→ Tu(x) injective on C. This is made precise in the following
corollary.

Corollary 2.2.1.

Consider an integer dξ and continuous maps F : Rdξ×Rdu×Rdy → Rdξ , H : Rdξ×Rdu → Rdy
and F : Rdξ ×Rdu ×Rdy → Rdξ such that (2.4) is an observer for (2.5). Suppose there exists
a continuous function T : Rdx → Rdξ and a compact set C of Rdx such that :

- for any x0 in X0 such that σ+(x0, u) = +∞, X(x0; ·;u) remains in C.

- x 7→ T (x) is injective on C.

- T transforms System (2.1) into System (2.5) on C, i-e for all x in C, all u in U , all t in
[0,+∞)

Lf(·,u)T (x) = F (T (x), u(t), h(x, u(t)) , h(x, u(t)) = H(T (x), u(t)) .

Then, there exists a uniformly continuous function T : Rdξ → Rdx such that

T (T (x)) = x ∀x ∈ C ,

and (F , T ) is an observer for System (2.1) initialized in X0.

Proof : This is a direct consequence of Lemma A.3.2 and Theorem 2.2.1. �

2.3 Organization of the thesis

As illustrated in Figure 2.3, Theorem 2.2.1 shows that a possible strategy to design an
observer is to transform the system into a favorable form (2.5) for which an observer is known,
and then bring the estimate back into the initial coordinates by inverting the transformation.
This design procedure is widely used in the literature and raises three crucial questions :

1. what favorable forms (2.5) do we know and which observers are they associated to ?

2. how to transform a given nonlinear system into one of those forms ?

3. how to invert the transformation ?

The present thesis contributes to each of those questions and is thus organized accordingly,
dedicating one part to each of them. Since the first two have aroused a lot of research, detailed
literature reviews are provided in each case to help the reader situate our contributions. As for
the third one, it has not received a lot of attention as far as we know, although it constitutes a
recurrent problem in practice.

To those contributions, we add in a fourth part the results obtained in parallel concerning
observer design for permanent magnet synchronous motors with some unknown parameters.

Here is a more detailed account of the content of this thesis :
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Part II

Part I

Part III

Figure 2.2: Process of observer design suggested by Theorem 2.2.1 and organization of the thesis.

Part I : Normal forms and their observers. We start by making a list of system
structures (2.5) for which we know an observer (2.4). We call those favorable structures normal
forms. Chapter 3 reviews the normal forms existing in the literature and recalls their associated
observer : state-affine forms with Luenberger or Kalman observers and triangular forms with
high gain, homogeneous or mixed high gain-Kalman observers. Noticing that few observers exist
for non-Lipschitz triangular forms, we then fill this gap in Chapter 4, by extending the use of
existing homogeneous observers to a broader class of Hölder triangular forms and proposing a
new observer for the "only continuous" triangular form.

Part II : Transformation into a normal form. We address the problem of transforming
a nonlinear system into one of the previously mentioned normal forms. In each case, sufficient
observability conditions on the system are given. A lot of results in this area already exist in
the literature and are recalled in Chapter 5. Then, we present in Chapters 6 and 7 our new
results concerning the transformation of nonlinear systems into continuous triangular forms and
Hurwitz forms.

Part III : Expression of the observer dynamics in the initial system coordinates.
Although the observer design problem seems solved with Part I and II according to Theorem
2.2.1, implementation issues may arise such as the computation of the inverse Tu of the trans-
formation. That is why, we develop in Part III a novel methodology to avoid the inversion of Tu
by bringing the dynamics (2.4) back in the x-coordinates, i-e find ˙̂x and obtain an observer in
the given coordinates as defined in Definition 2.1.1. Although this process is quite common in
the case where Tu is a diffeomorphism, completeness of solutions is not always ensured and we
show how to solve this problem. Most importantly, we extend this method to the more complex
situation where Tu is only an injective immersion, i-e the dimension of the observer state is
larger than the one of the system state. This is done by adding some new coordinates to the
system.

Part IV : Observers for permanent magnet synchronous motors with unkown pa-
rameters. This part gathers results concerning observability and observer design for permanent
magnet synchronous motors when some parameters such as the magnet flux or the resistance
are unknown. Simulations on real data are provided. This work was carried out in parallel and
this part is mostly independent from the rest of the thesis.
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Normal forms and their observers





Chapter 3

Quick review of existing normal
forms and their observers

Chapitre 3 – Formes normales existantes et leurs observateurs Ce chapitre présente les
principales formes normales observables qui existent dans la littérature et pour chacune d’entre
elles, rappelle la ou les observateurs associés. Deux principales catégories sont dissociées : d’une
part les formes affines en l’état pour lesquelles des observateurs de Luenberger ou de Kalman
sont utilisés, et d’autre part, les formes triangulaires auxquelles s’appliquent les observateurs de
type grand gain.
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In this chapter we consider systems of the form1

ξ̇ = F (ξ, u, y) , y = H(ξ, u) (3.1)

with ξ the state in Rdξ , u an input with values in U ⊂ Rdu , y the output with values in Rdy
and F (resp H) a continuous function defined on Rdξ × Rdu × Rdy (resp Rdξ × Rdu). We are
interested in finding normal forms, namely specific expressions of the functions F and H such
that an explicit observer for System (3.1) can be written in the given coordinates2, i-e the ξ-
coordinates. Indeed, an a priori knowledge of such forms is necessary to apply Theorem 2.2.1
and design an observer for a nonlinear system.

We do not claim to be exhaustive, neither about the list of normal forms nor about their
history. We select the most popular forms and associated observer, and endeavor to give the
most sensible references. Our goal is only to introduce some definitions and results which will
be of interest throughout this thesis, and give a starting point to the problem of observer design

1The notation F (ξ, u, y) is somehow abusive because y is not an input to the dynamics of ξ. We should rather
write F (ξ, u,H(ξ, u)) as in (2.5) but this latter notation is less straight-forward. We thus decided to keep the
former for clarity.

2see Definition 2.1.1
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for nonlinear systems. Note that according to Theorem 2.2.1, we are only interested in global
observers with guaranteed convergence. This excludes for example the extended Kalman filters,
obtained by linearizing the dynamics and the observation along the trajectory of the estimate
([Gel74]). Indeed, their convergence is only local in the sense that the estimate converges to
the true state if the initial error is not too large and the linearization does not present any
singularity ([BS15] and references therein).

Before giving the results of this chapter, we need the following definition.

Definition 3.0.1.

The observability grammian of a linear system of the form

χ̇ = A(ν)χ , y = C(ν)χ

with input ν and output y, is the function defined by :

Γν(t0, t1) =
∫ t1

t0
Ψν(τ, t0)>C(ν(τ))>C(ν(τ))Ψν(τ, t0) dτ

where Ψν denotes the transition matrix3, namely the unique solution to :

∂Ψν

∂τ
(τ, t) = A(ν(τ))Ψν(τ, t)

Ψν(t, t) = I .

3.1 State-affine normal forms
In this section, we consider a system with dynamics of the form :

ξ̇ = A(u, y) ξ +B(u, y) , y = H(ξ, u) (3.2)

where ξ is a vector of Rdξ , A : Rdu×Rdy → Rdξ×dξ , B : Rdu×Rdy → Rdξ andH : Rdu×Rdy → Rdy
are continuous functions.

3.1.1 Constant linear part : Luenberger design

In this section, we consider the case where A is constant, with two sub-cases :

- A is Hurwitz and H any continuous function

- A is any matrix but H is linear.

A Hurwitz : Luenberger’s original form

We introduce the following definition :

Definition 3.1.1.

We call Hurwitz form dynamics of the type:

ξ̇ = Aξ +B(u, y) , y = H(ξ, u) . (3.3)

where A is a Hurwitz matrix in Rdξ×dξ and B and H are continuous functions.
3See for instance [Che84]
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For a Hurwitz form, a trivial observer is made of a copy of the dynamics of the system :

Theorem 3.1.1.

The system
˙̂
ξ = A ξ̂ +B(u, y) (3.4)

is an observer for system (3.3).

Indeed, the error ξ̂ − ξ decays exponentially according to dynamics

·︷ ︷
ξ̂ − ξ = A(ξ̂ − ξ) .

We have referred to this form as "Luenberger’s original form" because originally in [Lue64],
Luenberger’s methodology to build observers for linear systems was to look for an invertible
transformation which would map the linear system into a Hurwitz one, which admits a very
simple observer. We will study in Part II under which condition a standard nonlinear system
can be transformed into such a form, namely extend Luenberger’s methodology to nonlinear
systems.

H linear : H(ξ, u) = Cξ with C constant

We consider now a system of the form4

ξ̇ = Aξ +B(u, y) , y = C ξ (3.5)

where B is a continuous function. The following well-known result can be deduced from [Lue64]:

Theorem 3.1.2.

If the pair (A,C) is observable, there exists a matrix K such that A −KC is Hurwitz. For
any such matrix K, the system

˙̂
ξ = Aξ̂ +B(u, y) +K(y − Cξ̂) (3.6)

is an observer for system (3.5).

As opposed to Theorem 3.1.1, A is not supposed Hurwitz but H is a linear function.

3.1.2 Time-varying linear part : Kalman design

We suppose in this section that H is linear, but not necessarily constant namely

ξ̇ = A(u, y) ξ +B(u, y) , y = C(u)ξ . (3.7)

The most famous observer used for this kind of system is the Kalman and Bucy’s observer
presented in [KB61] for linear time-varying systems, i-e with A(t), B(t) and C(t) replacing
A(u, y), B(u, y) and C(u) respectively. Later, a "Kalman-like" design was proposed in [HM90,
BBH96] for the case where A(u, y) = A(u). This design can be easily extended to System (3.7)
by considering (u, y) as an extended input. The difference with the time-varying case studied by
Kalman and Bucy in [KB61] is that every assumption must be verified uniformly for any such

4In [AK01], the authors propose an observer for a more general form ξ̇ = Aξ + B(u, y) + Gρ(Hξ), y = C ξ,
under certain conditions on ρ.
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extended input, namely for any input u and for any output function y coming from any initial
condition. To highlight this fact more rigorously, we denote

yξ0,u(t) = C(u(t)) Ξ(ξ0; t;u)

the output at time t of system (3.7) initialized at ξ0 at time 0.

Theorem 3.1.3. [HM90, BBH96]

Assume the input u is such that
- for any ξ0, t 7→ A(u(t), yξ0,u(t)) is bounded by Amax,
- for any ξ0, the extended input ν = (u, yξ0,u) is regularly persistent for the auxiliary dy-
namics

χ̇ = A(u, yξ0,u)χ , y = C(u)χ (3.8)

uniformly with respect to ξ0, i-e there exist strictly positive numbers t0, t and α such that
for any ξ0 and any time t ≥ t0,

Γν(t, t+ t) ≥ α I

where Γν is the observability grammian (see Definition 3.0.1) associated to System (3.8).
Then, for any γ > 2Amax, there exist strictly positive numbers α1 and α2 such that the
matrix differential equation

Ṗ = −γP − PA(u, y)−A(u, y)>P + C(u)>C(u) (3.9)

initialized at P (t0) = P (t0)> > 0, admits a unique solution verifying for all t ≥ t0,

P>(t) = P (t) , α1I ≤ P (t) ≤ α2I .

Besides, the system
˙̂
ξ = A(u, y) ξ̂ +B(u, y) +K

(
y − C(u)ξ̂

)
(3.10)

with the gain
K = P−1C(u)> (3.11)

is an observer for the state-affine system (3.7).

Remark 3
- It is important to note that K is time-varying and depends on the functions t 7→ u(t) and
t 7→ yξ0,u(t) and thus on ξ0.

- The assumptions of boundedness of A and regular persistence are mainly to ensure that
the solution to (3.9) is uniformly bounded from below and above, namely that P (and thus
the gain K) neither goes to 0 nor to infinity.

- An equivalent way of writing (3.9) and (3.11) is with

Ṗ = A(u, y)P + PA(u, y)> − PC(u)>C(u)P + γP

K = P C(u)>

(i-e P is replaced by P−1). This implementation does not require the computation of the
inverse of P (t) at each step.

- Following Kalman and Bucy’s original paper [KB61], the gain K can also be computed
with

Ṗ (t) = A(u(t), y(t))P (t) + P (t)A(u(t), y(t))>
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−P (t)C(u(t))>R−1(t)C(u(t))P (t) +D(t)Q(t)D(t)>
K(t) = P (t)C(u(t))>R−1(t)

where R(t) (resp Q(t)) is a positive definite matrix representing the covariance at time t
of the noise which enters the measurement (resp the dynamics) and D(t) describes how
the noise enters the dynamics. In the case where those noises are independent white noise
processes, this observer solves the following optimal problem : given the values of u and
y up to time t, find an estimate ξ̂(t) of ξ(t) which minimizes the conditional expectation
E
(
|ξ̂(t)− ξ(t)|2 | y[t0,t], u[t0,t]

)
. In order to ensure asymptotic convergence of the observer,

according to [KB61, Theorem 4], the following assumptions are needed :
- boundedness of A
- uniform complete observability of (A,C) : this corresponds to the regular persistence
condition of Theorem 3.1.3 when A and C depend on an input u and A is bounded (see
[Kal60])

- uniform complete controllability of (A,D) : this is the dual of uniform complete ob-
servability, namely uniform complete observability of (A>, D>) (see [Kal60])

- R and Q are uniformly lower and upper-bounded in time.
Only the first two assumptions depend on the system and they are the same as in Theorem
3.1.3 ; the other two must be satisfied by an appropriate choice of the design parameters
R and Q.

3.2 Triangular normal forms

3.2.1 Nominal form : high-gain designs

Triangular forms became of interest when [GB81] related their structure to uniformly observable
systems, and when [Zei84] introduced the phase-variable form for differentially observable sys-
tems. The celebrated high gain observer proposed in [Tor89, EKNN89] for phase variable forms
and later in [BH91, GHO92] for triangular forms, have been extensively studied ever since. It
would be too long for the interest of this thesis to provide a thorough review of this literature,
but we refer the interested reader to [KP13] and the references therein for a detailed analysis of
the high gain design.

Definition 3.2.1.

We call continuous triangular form dynamics of the form:

ξ̇1 = ξ2 + Φ1(u, ξ1)
...

ξ̇i = ξi+1 + Φi(u, ξ1, . . . , ξi)
...

ξ̇m = Φm(u, ξ)

, y = ξ1 (3.12)

where for all i in {1, ...,m}, ξi is in Rdy , ξ = (ξ1, . . . , ξm) is in Rdξ , with dξ = mdy,
Φi : Rdu × Ridy → Rdy are continuous functions. In the particular case where only Φm

is nonzero, we say continuous phase-variable form.
If now the functions Φi(u, ·) are globally Lipschitz on Ridy uniformly in u, namely there

exists a in R such that for all u in U , all (ξa, ξb) in (Rdξ)2 and for all i in {1, ...,m}

|Φi(u, ξ1a, . . . , ξia)− Φi(u, ξ1b, . . . , ξib)| ≤ a
i∑

j=1
|ξja − ξjb| ,

we say Lipschitz triangular form and Lipschitz phase-variable form.
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Lipschitz triangular form

The Lipschitz triangular form is well-known because it allows the design of a high gain observer
:

Theorem 3.2.1.

Suppose the functions Φi(u, ·) are globally Lipschitz on Ridy , uniformly in u. For any
(k1, ..., km) in Rm such that the roots of the polynomial

sm + kms
m−1 + . . .+ k2s+ k1

have strictly negative real parts, there exists L∗ in R+ such that for any input function u
with values in U , for any L ≥ L∗, the system

˙̂
ξ1 = ξ̂2 + Φ1(u, ξ̂1)− Lk1 (ξ̂1 − y)
˙̂
ξ2 = ξ̂3 + Φ2(u, ξ̂1, ξ̂2)− L2 k2 (ξ̂1 − y)

...
˙̂
ξm = Φm(u, ξ̂)− Lm km (ξ̂1 − y)

(3.13)

is an observer for the Lipschitz triangular form (3.12).

Actually, extensions of this high gain observer exist for more complex triangular forms, in
particular when each block does not have the same dimension, but extra assumptions on the
dependence of the function Φi must be made to ensure convergence (see [BH91] or later [HBB10]
for instance). We omit these here because they are of no use for this thesis.

In any cases, the standard implementation of a high gain observer necessitates the global
Lipschitzness of the nonlinearities Φi. In the case where they are only locally Lipschitz, it is
still possible to use observer (3.13) if the trajectories of the system evolve in a compact set, by
saturating Φi outside this compact set (see Section 4.4). Otherwise, several researchers have
tried to adapt the high gain L online by "following" the Lipschitz constant of Φi when it is
observable from the output ([PJ04, AP05, APA09, SP11] and references therein).

Unfortunately, when the nonlinearities are only continuous, we will see in the next Chapter
4 that the convergence of the high gain observer can be lost, but that, under specific Hölder-
like conditions, it still provides arbitrary small errors (by taking a sufficiently large gain). In
particular, it has been known for a long time, mostly in the context of dirty-derivatives and
output differentiation, that a high gain observer can provide an arbitrary small error for a
phase-variable form as long as Φm is bounded ([Tor89] among many others).

Hölder continuous triangular form

Fortunately, moving to a generalization of high gain observers exploiting homogeneity makes it
possible to achieve convergence in the case of non-Lipschitz nonlinearities verifying some Hölder
conditions. It is at the beginning of the century that researchers started to consider homogeneous
observers with various motivations: exact differentiators ([Lev b, Lev03, Lev05]), domination as
a tool for designing stabilizing output feedback ([YL04], [Qia05], [QL06], [APA08] and references
therein (in particular [APA06])), ... The advantage of this type of observers is their ability to
face Hölder nonlinearities. In [Qia05], or in more general context in [APA08], the following
observer design is used :
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Theorem 3.2.2. [Qia05]

Consider a continuous triangular form (3.12). Assume there exists d0 in (−1, 0] and a in R+
such that for all i in {1, . . . ,m}, for all ξa and ξb in Rdξ and u in U

|Φi(u, ξ1a, . . . , ξia)− Φi(u, ξ1b, . . . , ξib)| ≤ a
i∑

j=1
|ξja − ξjb|

ri+1
rj , (3.14)

where r is a vector in Rm+1, called weight vector, the components of which, called weights,
are defined by

ri = 1− d0(m− i) . (3.15)

There exist (k1, . . . , km) and L∗ ≥ 1 such that for all L ≥ L∗, the system5



˙̂
ξ1 = ξ̂2 + Φ1(u, ξ̂1)− Lk1

⌊
ξ̂1 − y

⌉ r2
r1

˙̂
ξ2 = ξ̂3 + Φ2(u, ξ̂1, ξ̂2)− L2 k2

⌊
ξ̂1 − y

⌉ r3
r1

...
˙̂
ξm = Φm(u, ξ̂)− Lm km

⌊
ξ̂1 − y

⌉ rm+1
r1

(3.16)

is an observer for the continuous triangular form (3.12).

d0 is called degree of the observer. When d0 = 0, all the weights ri are equal to 1, the
nonlinearities are Lipschitz and we recover the high gain observer (3.13). In that sense, we can
say that the homogeneous observer (3.16) is an extension of (3.13). Noticing that the Hölder
constraints (3.14) become less and less restrictive as d0 goes to −1, it is interesting to wonder
what happens in the limit case where d0 = −1. In that case, rm+1 = 0, which makes the last
correction term of (3.16) equal to

⌊
ξ̂1 − y

⌉0
= sign(ξ̂1−y). This function being discontinuous at

0, the system becomes a differential inclusion when defining the sign function as the set valued
map6 :

S(a) =


{1} if a > 0 ,
[−1, 1] if a = 0 ,
{−1} if a < 0 .

(3.17)

Note that this set valued map is upper semi-continuous with nonempty, compact and convex val-
ues, namely it verifies the usual basic conditions for existence of absolutely continuous solutions
for differential inclusions given in [Fil88, Smi01].

Actually, when d0 = −1, we recover the same correction terms as in the exact differentiator
presented in [Lev b], where finite-time convergence is established for a phase-variable form with
Φm is bounded. Quite naturally, this boundedness condition on Φm is exactly the condition we
obtain when taking d0 = −1 in the Hölder constraint (3.14). Actually, we will show in the next
Chapter 4 that Theorem 3.2.2 still holds when allowing the degree to be −1, i-e that the exact
differentiator presented in [Lev b] can also be used in presence of continuous nonlinearities on
every line, provided they verify the Hölder constraint (3.14) with d0 = −1.

Note that a generalization of observer (3.16) was presented in [APA08] in the context of
"bi-limit" homogeneity, i-e for nonlinearities having two homogeneity degrees (around the origin
and around infinity), namely

|Φi(u, ξ1a, . . . , ξia)− Φi(u, ξ1b, . . . , ξib)| ≤ a0

i∑
j=1
|ξja − ξjb|

r0,i+1
r0,j + a∞

i∑
j=1
|ξja − ξjb|

r∞,i+1
r∞,j ,

5We denote the signed power function as baeb = sign(a) |a|b, for b > 0.
6Writing c = bae0 will mean c ∈ S(a).
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with
r0,i = 1− d0(m− i) , r∞,i = 1− d∞(m− i)

and −1 < d0 ≤ d∞ < 1
m+1 . It would also be interesting to see if this design is still valid when

d0 = −1.

Continuous triangular form ?

The only existing observer we are aware of able to cope with Φ no more than continuous is the
one presented in [BBD96]. Its dynamics are described by a differential inclusion7

˙̂
ξ ∈ F(ξ̂, y, u)

where (ξ̂, y, u) 7→ F(ξ̂, y, u) is a set valued map defined by : (v1, . . . , vm) is in F(ξ̂, y, u) if there
exists (ξ̃2, ..., ξ̃m) in Rm−1 such that

v1 = ξ̃2 + Φ1(u, y)
ξ̃2 ∈ satM2(ξ̂2)− k1 S(y − ξ̂1)

...
vi = ξ̃i+1 + Φi(u, y, ξ̃2, . . . , ξ̃i)

ξ̃i+1 ∈ satMi+1(ξ̂i+1)− ki S(ξ̂i − ξ̃i)
...

vm ∈ Φm(u, y, ξ̃2, . . . , ξ̃m)− km S(ξ̂m − ξ̃m)

where sat is the saturation function

sata(x) = max{min{x, a},−a} (3.18)

and Mi are known bounds for the solution. It can be shown that any absolutely continuous
solution gives in finite time an estimate of ξ under the only assumption of boundedness of the
input and of the state trajectory. But the set valued map F above does not satisfy the usual
basic assumptions given in [Fil88, Smi01] (upper semi-continuous with non-empty, compact and
convex values). It follows that we are not guaranteed of existence of absolutely continuous
solutions nor of possible sequential compactness of such solutions and therefore of possibilities
of approximations of F .

That is why we dedicate the next Chapter 4 to the problem of designing observers for
the continuous triangular forms. In particular, we propose a novel cascade of homogeneous
observers whose convergence is established without requiring anything but the continuity of the
nonlinearities and boundedness of trajectories.

3.2.2 General form : High gain-Kalman design

A more general triangular form is the following :

Definition 3.2.2.

7See Remark 1.
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We call general continuous triangular form dynamics of the form

ξ̇1 = A1(u, y) ξ2 + Φ1(u, ξ1)
...

ξ̇i = Ai(u, y) ξi+1 + Φi(u, ξ1, . . . , ξi)
...

ξ̇m = Φm(u, ξ)

, y = C1(u)ξ1 (3.19)

where for all i in {1, . . . ,m}, ξi is in RNi ,
∑m
j=1Nj = dξ, Ai : Rdu × Rdy → RNi×Ni+1 ,

C1 : Rdu → Rdy×N1 , and Φi : Rdu × R
∑i

j=1 Nj → RNi are continuous functions.
If besides the functions Φi(u, ·) are globally Lipschitz on Ri uniformly in u, then we will

say general Lipschitz triangular form.

Note that when the values of the functions Ai are constant full-column rank matrices and
C1(u) is the identity function, this form covers the standard triangular form (3.12) if Ni = Nj for
all (i, j), and also the forms studied in [BH91] or [HBB10]. In those cases, a high gain observer
is possible because the system is observable for any input and the functions Φ are triangular
and Lipschitz. When the dependence on the input and output is allowed in Ai however, the
observability of the system depends on those signals and a high gain is no longer sufficient. In
fact, System (3.19) is a combination of both (3.2) and (3.12). It is thus quite natural to combine
both Kalman and high gain designs, as proposed in [Bes99] for the case where Ni = 1 for all i,
and then in [BT07] for the general case.

In the following, we denote yξ0,u the output at time t of system (3.19) initialized at ξ0 at
time 0, and

A(u, y) =


0 A1(u, y) 0 . . . 0
... . . . . . . ...

0
Am−1(u, y)

0 . . . 0

 , C(u) = (C1(u) , 0 , . . . , 0)

Φ(u, ξ) =



Φ1(u, ξ1)
...

Φi(u, ξ1, . . . , ξi)
...

Φm(u, ξ1, . . . , ξm)


, Λ(L) =



LIN1 0 . . . 0

0 . . .
... Li INi

...
. . . 0

0 . . . 0 Lm INm


Theorem 3.2.3. [BT07]

Assume the input u is such that
a) For any ξ0, t 7→ A(u(t), yξ0,u(t)) is bounded by Amax,
b) for any ξ0, the extended input ν = (u, yξ0,u) is locally regular for the dynamics

χ̇ = A(u, yξ0,u)χ , y = C(u)χ (3.20)

uniformly with respect to ξ0, i-e there exist strictly positive real numbers α and L0 such
that for any ξ, any L ≥ L0 and any t ≥ 1

L ,

Γν
(
t− 1

L
, t

)
≥ αLΛ(L)−2

where Γν is the observability grammian (see Definition 3.0.1) associated to System (3.20).
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c) the functions Φi(u, ·) are globally Lipschitz on R
∑i

j=1 Nj uniformly in u,
Then, there exists a strictly positive real gain L∗ such that for any L ≥ L∗ and any γ ≥ 2Amax,
there exist strictly positive real numbers α1 and α2 such that the matrix differential equation

Ṗ = L
(
−γP −A(u, y)>P − PA(u, y) + C(u)>C(u)

)
initialized at P (0) = P (0)> > 0 admits a unique solution verifying for all t

P (t)> = P (t) , α1I ≤ P (t) ≤ α2I .

Besides, the system
˙̂
ξ = A(u, y) ξ̂ + Φ(u, ξ̂) +K

(
y − C(u)ξ̂

)
(3.21)

with gain
K = Λ(L)P−1C(u)>

is an observer for the general Lipschitz triangular form (3.19).

As opposed to the classical Kalman observer (3.10), the input needs to be more than regularly
persistent, namely to be locally regular. This is because in a high gain design, observability at
arbitrarily short times is necessary. Note that in the case where the matrices Ai are of dimension
one, [GK01, Lemma 2.1] shows that the gain K can be taken constant under the only condition
that there exists Amin and Amax such that for any ξ0,

0 < Amin < Ai(u(t), yξ0,u(t)) < Amax .

3.3 Conclusion
We have introduced in this chapter the main normal forms and their associated observer design
with guaranteed global convergence. They are summed up in Table 3.1.

Although the Lipschitz triangular form and its high gain observer have been widely studied,
its continuous version has received little attention. This is quite unfortunate because in Part II,
we will show that a large category of nonlinear systems can be transformed into this form, and
not in the Lipschitz one. Partial solutions exist nevertheless, such as the homogeneous observer
(3.16) when the nonlinearities verify some Hölder conditions. In the next Chapter 4, we show
that the use of this type of observer can be extended to a broader class of Hölder nonlinearities
and present a novel observer made of a cascade of homogeneous observers which requires only
continuity of the nonlinearities and boundedness of trajectories : we are thus going to fill lines
6-7 of Table 3.1 which for now are empty.

Note that we concentrate our efforts on the continuous triangular form (3.12) because it is
of special interest for Part II. But many of the techniques used in the following chapter should
also be applicable to the general continuous triangular form (3.19) (lines 9 of Table 3.1).
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Structure Observability
assumption Observer design

State-affine
forms

H
nonlinear

A constant
Hurwitz ∅ copy of the

dynamics

H linear
A and C constant (A,C) observable Luenberger

A or C non
constant
A bounded

(u, y) regularly
persistent Kalman

Triangular
forms

Nominal
(3.12)

Φi Lipschitz ∅ High-gain

Φi Hölder (3.14),
d0 ∈ (−1, 0] ∅ Homogeneous of

degree d0

Φi Hölder (3.14),
d0 = −1 ? ?

Φi continuous ? ?

General
(3.19)

Φi Lipschitz
Ai bounded

(u, y) locally
regular High gain-Kalman

Φi continuous
? ? ?

Table 3.1: Normal forms and their associated observer design





Chapter 4

Observers for the continuous
triangular form

Chapitre 4 – Observateurs pour la forme triangulaire continue. Dans ce chapitre,
nous montrons qu’en l’absence de caractère Lipschitz et sous une condition de type Hölder, le
grand gain usuel donne au mieux une convergence pratique, c’est -à-dire avec une erreur finale
arbitrairement faible. Lorsque cette condition n’est pas satisfaite, nous proposons un nouvel ob-
servateur grand gain en cascade. Cependant, cette convergence pratique peut nécessiter l’emploi
de très grands gains, ce qui devient problématique en présence de bruit de mesure. Sous une
hypothèse un peu plus restrictive, nous montrons que des observateurs homogènes donnent par
contre une convergence asymptotique. Comme pour le grand gain, nous proposons une cascade
d’observateurs homogènes pour le cas où cette condition ne serait pas respectée. La convergence
asymptotique est alors prouvée sous la seule hypothèse de continuité. Dans un souci de complé-
tude, pour chaque observateur, des perturbations sur la dynamique et sur la mesure sont prises
en compte, et les résultats sont énoncés sous la forme stabilité entrée-sortie.
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In this chapter, we address the problem of designing observers for the continuous trian-
gular normal form (3.12). We will see in Chapter 6 that this form is useful for a certain category
of systems, namely those which are uniformly observable and differentially observable at an
order greater than the dimension of the system. Indeed, those systems may be transformed in
a triangular form but with nonlinearities which may not be locally Lipschitz.

The content of this chapter has been published in [BPA17a].
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In order to present results which are as complete as possible, we consider the continuous
triangular form (3.12), but unlike in the rest of this thesis, we add some disturbances on the
dynamics and on the measurement, namely1



ξ̇1 = ξ2 + Φ1(u, ξ1) + w1
...

ξ̇i = ξi+1 + Φi(u, ξ1, . . . , ξi) + wi
...

ξ̇dξ = Φdξ(u, ξ) + wdξ

, y = ξ1 + v (4.1)

where ξ is the state in Rdξ , y is a measured output in R, Φ is a continuous function which is
not assumed to be locally Lipschitz and (v, w) are time-functions which verify the Caratheodory
conditions. w can model either a known or an unknown disturbance on the dynamics and v is
an unknown disturbance.

We show in Section 4.1 that the classical high gain observer may still be used when the
nonlinearities Φi verify some Hölder-type condition. Nevertheless, the asymptotic convergence
is lost and only a convergence with an arbitrary small error remains.

On the other hand, according to Theorem 3.2.2, homogeneous observers enable to ensure
asymptotic convergence in presence of Hölder nonlinearities. In particular, the homogeneous
observer (3.16) with degree d0 in (−1, 0] is built in [APA08] following a Lyapunov design. We
show in Section 4.2 that the same Lyapunov design can be extended to the case where the
degree of homogeneity is d0 = −1. This is interesting since the Hölder constraints (3.14) on
the nonlinearities become less and less restrictive as the degree gets closer to −1. It turns out
that we recover with this method the exact differentiator presented in [Lev b] and which is
defined by an homogeneous differential inclusion. As opposed to [Lev b] where convergence is
established only for a phase-variable form via a solution-based analysis, in our case, convergence
is guaranteed by construction for the triangular form since the Lyapunov design provides a strict
homogeneous Lyapunov function which allows the presence of homogeneous disturbances on the
dynamics. Actually, many efforts have been made to get expressions of Lyapunov functions for
the output differentiator from [Lev b]. First limited to small dimensions (see [ORSM15]), it
was only recently achieved (simultaneously to our work) at any dimension in [CZM16]. This
approach is much harder since the authors look for a Lyapunov function for an already existing
observer (Lyapunov analysis), while in our work, the observer and the Lyapunov function are
built at the same time (Lyapunov design).

To face the unfortunate situation where the nonlinearities verify none of the above mentioned
Hölder type conditions, we propose novel observers made of a cascade of high gain observers
in Section 4.3.1 and of homogeneous observers in Section 4.3.2 of dimension less or equal to
dξ(dξ+1)

2 . We prove that the high gain version converges with an arbitrary small error, and the
homogeneous version converges asymptotically, all this without requiring anything but continuity
of the nonlinearities in the case where the system trajectories and the input are bounded.

All along this chapter, we sometimes use stronger assumptions than necessary in order to
simplify the presentation of our results. We signal them to the reader with a (☼) symbol as in
“the trajectories are complete (☼)”. We discuss how they can be relaxed later in Section 4.4, in
particular when we restrict our attention to compact sets.

Finally, we illustrate our observers with an example in Section 4.5.

Notations

1To simplify the computations in this chapter, we consider the case dy = 1, i-e each ξi is of dimension 1, but
everything still holds for a block triangular form (3.12) with ξi of dimension Rdy .
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For (ξ1, . . . , ξi) and (ξ̂1, . . . , ξ̂i) (resp. (ξ̂i1, . . . , ξ̂ii)) in Ri, we denote

ξi = (ξ1, . . . , ξi) , ξ̂i = (ξ̂1, . . . , ξ̂i) (resp. ξ̂i = (ξ̂i1, . . . , ξ̂ii))
eij = ξ̂ij − ξj , ej = ξ̂j − ξj , ei = ξ̂i − ξi .

(4.2)

To simplify the presentation, we assume that the solutions to (4.1) are defined for all t ≥ 0
(i.e. the trajectories are complete (☼) ). Besides, wanting to present the results in a unified
and concise way, we will say that the function Φ verifies the property H(α, a) or a positive real
number a, and a vector α in [0, 1]

dξ(dξ+1)
2 , if :

Property H(α, a) (☼)

For all i in {1, . . . , dξ}, for all ξa and ξb in Rdξ and u in U , we have2 :

|Φi(u, ξia)− Φi(u, ξib)| ≤ a
i∑

j=1
|ξja − ξjb|αij . (4.3)

This property captures many possible contexts. In the case in which αij > 0, it implies that
the function Φ is Hölder with power αij . When the αij = 0, it simply implies that the function
Φ is bounded.

It is possible to employ the degree of freedom given in (4.1) by the time functions w to
deal with the case in which the given function Φ(u, ξ) doesn’t satisfy H(a, α). In this case, an
approximation procedure can be carried out to get a function Φ̂ satisfying H(a, α) and selecting
w = Φ(u, ξ)− Φ̂(u, ξ) which is an unknown disturbance. The quality of the estimates obtained
from the observer will then depend on the quality of the approximation (i-e the norm of w).
This is what is done for example in [MV00] when dealing with locally Lipschitz approximations.
We will further discuss in Section 4.4 how to relax assumption H(a, α).

4.1 High gain observer ?
We consider in this section the standard high gain observer already presented in the previous

chapter 

˙̂
ξ1 = ξ̂2 + Φ1(u, ξ̂1) + ŵ1 − Lk1 (ξ̂1 − y)
˙̂
ξ2 = ξ̂3 + Φ2(u, ξ̂1, ξ̂2) + ŵ2 − L2 k2 (ξ̂1 − y)

...
˙̂
ξdξ = Φdξ(u, ξ̂) + ŵdξ − Ldξ kdξ (ξ̂1 − y)

(4.4)

where L and the ki’s are gains to be tuned, y is the measurement. The ŵi are approximations of
the wi. In particular, when wi represents unknown disturbances, the corresponding ŵi is simply
set to 0. In the following, we denote

∆w = ŵ − w .

When Φ satisfies the property H(α, a) with αij = 1 for all 1 ≤ j ≤ i ≤ dξ, we recognize
the usual triangular Lipschitz property for which the nominal high-gain observer gives an input
to state stability (ISS) property with respect to the measurement disturbance v and dynamics
disturbance w. Specifically, we have the following well known result (see for instance [KP13] for
a proof).

2Actually Φi can depend also on ξi+1 to ξm as long as (4.3) holds. It can also depend on time requiring
some uniform property (see Section 4.4).
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Theorem 4.1.1. Nominal high-gain

There exist real numbers k1, . . . , kdξ , L∗, λ, β and γ such that,
a) for all functions Φ satisfying(☼) for all i and for all ξia and ξib in Ri

|Φi(u, ξia)− Φi(u, ξib)| ≤ a
i∑

j=1
|ξja − ξjb|+ bi (4.5)

b) for all L ≥ max{aL∗, 1},
c) for all locally bounded time function (u, v, w, ŵ), all (ξ0, ξ̂0) in Rdξ × Rdξ ,
any solution Ξ̂(ξ̂0, ξ0; t;u, v, w, ŵ) of (4.4) verifies, for all t0 and t such that t ≥ t0 ≥ 0, and
for all i in {1, ..., dξ},

∣∣∣Ξ̂i(t)− Ξi(t)
∣∣∣ ≤ max

Li−1β
∣∣∣Ξ̂i(t0)− Ξi(t0)

∣∣∣ e−λL(t−t0), γ sup
1≤j≤m
s∈[t0,t]

{
Li−1 |v(s)|, |∆wj(s)|+ bj

Lj−i+1

}
(4.6)

where we have used the abbreviations Ξ(t) = Ξ(ξ0; t;u,w) and Ξ̂(t) = Ξ̂(ξ̂0, ξ0; t;u, v, w, ŵ).

Since the nominal high-gain observer gives asymptotic convergence for Lipschitz nonlineari-
ties, we may wonder what type of property is preserved when the nonlinearities are only Hölder.
In the following theorem, we show that the usual high-gain observer can provide an arbitrary
small error on the estimate provided the Hölder orders αij satisfy the restrictions given in Table
4.1 or Equation (4.7).

j 1 2 . . . dξ−2 dξ−1 dξ

i

1
dξ−2
dξ−1

2
dξ−3
dξ−2

dξ−3
dξ−2

... αij >
...

... . . .

dξ−2 1
2

1
2 . . . 1

2

dξ−1 0 0 . . . . . . 0

dξ αdξj ≥ 0 0 . . . . . . . . . 0

Table 4.1 : Hölder restrictions on Φ for arbitrarily small errors with a high gain observer.

Theorem 4.1.2.

Assume the function Φ verifies H(α, a) for some (α, a) in [0, 1]
dξ(dξ+1)

2 × R+ satisfying, for
1 ≤ j ≤ i

dξ−i−1
dξ−i < αij ≤ 1 for i = 1 . . . , dξ − 1 ,

0 ≤ αdξj ≤ 1
(4.7)

Then, there exist real numbers k1, . . . , kdξ , such that, for all ε > 0 we can find positive real
numbers λ, β, γ, and L∗ such that, for all L ≥ L∗, for all locally bounded time function
(u, v, w, ŵ) and all (ξ0, ξ̂0) in Rdξ ×Rdξ , any solution Ξ̂(ξ̂0, ξ0; t;u, v, w, ŵ) of (4.4) verifies, for
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all t0 and t such that t ≥ t0 ≥ 0, and for all i in {1, ..., dξ},

∣∣∣Ξ̂i(t)− Ξi(t)
∣∣∣ ≤ max

{
ε , Li−1β

∣∣∣Ξ̂i(t0)− Ξi(t0))
∣∣∣ e−λL(t−t0),

γ sup
1≤j≤dξ
s∈[t0,t]

{
Li−1 |v(s)|, |∆wj(s)|

Lj−i+1

} }

where we have used the abbreviation Ξ(t) = Ξ(ξ0; t;u,w) and Ξ̂(t) = Ξ̂(ξ̂0ξ0; t;u, v, w, ŵ).

Comparing this inequality with (4.6), we have now the arbitrarily small non zero ε in the right
hand side but this is obtained under the Hölder condition instead of the Lipschitz one.

Proof : With Young’s inequality, we obtain from (4.3) that, for all σij in R+ and all ξ̂ and ξ in Rdξ

∣∣Φi(u, ξ̂i)− Φi(u, ξi)
∣∣ ≤ i∑

j=1

aij |ξ̂j − ξj |+ bij , (4.8)

with aij and bij defined as
aij = 0 , bij = a , if αij = 0

aij = a
1
αij αijσ

1
αij

ij , bij = 1−αij

σ

1
1−αij
ij

if 0 < αij < 1

aij = a , bij = 0 if αij = 1

(4.9)

With (4.8), the assumptions of Theorem 4.1.1 are satisfied with bi =
∑i

j=1 bij . It gives k1, . . . , kdξ , L
∗,

λ, β and γ and, if L > maxi≥j {aijL∗, 1}, the solution satisfies the ISS inequality (4.6). The result will
follow if there exist L and σij such that

L > max
i≥j
{aijL∗, 1} , max

i,j

j∑
`=1

γbj`L
i−j−1 ≤ ε . (4.10)

At this point, we have to work with the expressions of aij and bj` given in (4.9). From (4.7), αij can be
zero only if i = dξ. And, when αdξ` = 0, we get

γbdξ`L
i−dξ−1 = γaLi−dξ−1 ≤ γa

L

Say that we pick σdξ` = 1 in this case. For all the other cases, we choose

σj` =
(2jγ

ε
(1− αj`)L(dξ−j−1)

)1−αj`
,

to obtain from (4.9)
γbj`L

i−j−1 ≤ ε
1
j

1
2Ldξ−i

.

So, with this selection of the σj`, the right inequality in (4.10) is satisfied for L sufficiently large. Then,

according to (4.9), the aij are independent of L or proportional to L(dξ−i−1)
1−αij
αij . But with (4.7) we

have
0 < (dξ − i− 1)1− αij

αij
< 1 .

This implies that aij
L

tends to 0 as L tends to +∞. We conclude that (4.10) holds if we pick L sufficiently
large. �

It is interesting to remark the weakness of the assumptions imposed on the last two compo-
nents of the function Φ. Indeed, (4.7) only imposes that Φdξ−1 be Hölder without any restriction
on the order, and that Φdξ be bounded (☼).

We have shown with Theorem 4.1.2 that one can hope to obtain an arbitrarily small error
when taking the high gain L sufficiently large. In the next section, we show that actually
asymptotic convergence can be achieved when considering homogeneous observers.
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j 1 2 . . . dξ−2 dξ−1 dξ

i

1
dξ−1
dξ

2
dξ−2
dξ

dξ−2
dξ−1

... αij =
...

... . . .

dξ−2 2
dξ

2
dξ−1 . . . 2

3

dξ−1 1
dξ

1
dξ−1 . . . . . . 1

2

dξ 0 0 . . . . . . . . . 0

Table 4.2 : Hölder restrictions on Φ for a homogeneous observer with d0 = −1.

4.2 Homogeneous observer

4.2.1 Main result

In this section, we consider the homogeneous observer (3.16) to which we add the estimation of
the perturbations ŵi :

˙̂
ξ1 = ξ̂2 + Φ1(u, ξ̂1) + ŵ1 − Lk1

⌊
ξ̂1 − y

⌉ r2
r1

˙̂
ξ2 = ξ̂3 + Φ2(u, ξ̂1, ξ̂2) + ŵ2 − L2 k2

⌊
ξ̂1 − y

⌉ r3
r1

...
˙̂
ξdξ = Φdξ(u, ξ̂) + ŵdξ − Ldξ kdξ

⌊
ξ̂1 − y

⌉ rdξ+1
r1

(4.11)

where r is the weight vector in Rdξ+1 defined by

ri = 1− d0(dξ − i) , (4.12)

and where L and the ki’s are gains to be tuned, d0 the degree to be chosen in [−1, 0]. We
have seen in Theorem 4.1.2 that the usual high-gain observer can provide an estimation with
an arbitrary small error provided the nonlinearity satisfies the property H(α, a) with the αij
verifying (4.7). But since [APA08] (see Theorem 3.2.2), we know that asymptotic estimation
may be obtained with homogeneous correction terms and when considering nonlinearities which
satisfies H(α, a) with the αij verifying

αij = 1− d0(dξ − i− 1)
1− d0(dξ − j)

= ri+1
rj

, 1 ≤ j ≤ i ≤ dξ . (4.13)

for some d0 in (−1, 0]. As announced in the introduction, we want to extend this result to the
extreme case where d0 = −1 i-e for nonlinearities satisfying H(α, a) with αij given in Table 4.2.

Theorem 4.2.1.

Assume that there exist d0 in [−1, 0] and a in R+ such that Φ satisfies H(α, a) with α veri-
fying (4.13) (☼) . There exist (k1, . . . , kdξ), such that for all wdξ > 0 there exist L∗ ≥ 1 and
a positive constant γ such that, for all L ≥ L∗ there exists a class KL function β such that
for all locally bounded time function (u, v, w, ŵ), and all (ξ0, ξ̂0) in Rdξ × Rdξ system (4.11)
admits absolutely continuous solutions Ξ̂(ξ̂0, ξ0; t;u, v, w, ŵ) defined on R+ and for any such
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solution the following implications hold for all t0 and t such that t ≥ t0 ≥ 0, and for all i in
{1, ..., dξ} :
If d0 > −1 :

|Ξ̂i(t)− Ξi(t)| ≤ max

 β(|Ξ̂(t0)− Ξ(t0)|, t− t0) ,

γ sup
1≤j≤i
s∈[t0,t]

Li−1|v(s)|
ri
r1 ,
|∆wj(s)|

ri
rj+1

Lµij


 (4.14)

where µij = (j − i + 1) r1
rj+1

, and we have used the abbreviation Ξ(t) = Ξ(ξ0; t;u,w) and
Ξ̂(t) = Ξ̂(ξ̂0, ξ0; t;u, v, w, ŵ).
Moreover, when d0 < 0 and v(t) = wj(t) = 0 for all t and j = 1, . . . , dξ, there exists t such
that Ξ̂(t) = Ξ(t) for all t ≥ t.

If d0 = −1 and |∆wdξ(t)| ≤ wdξ :

|Ξ̂i(t)− Ξi(t)| ≤ max

 β(|Ξ̂(t0)− Ξ(t0)|, t− t0) ,

γ sup
1≤j≤i−1
s∈[t0,t]

Li−1|v(s)|
ri
r1 ,
|∆wj(s)|

ri
rj+1

Lµij


 (4.15)

where µij , Ξ(t) and Ξ̂(t) are defined above.
Moreover, when v(t) = wj(t) = 0 for all t and j = 1, . . . , dξ, there exists t such that
Ξ̂(t) = Ξ(t) for all t ≥ t.

Note that j is in {1, . . . , i} in (4.14) whereas it is in {1, . . . , i− 1} in (4.15).
The proof of Theorem 4.2.1 for the case d0 ∈ (−1, 0] and without disturbances is given for

example in [APA08]. Actually [APA08] gives a Lyapunov design of a generalized version of
observer (4.11) with a recursive construction of both Lyapunov function and observer. Here we
are concerned with the case d0 = −1. In this limit case, observer (4.11) is a differential inclusion
corresponding to the exact differentiator studied in [Lev b], where convergence is established
in the particular case in which Φi = 0 for j = 1, . . . , dξ − 1 and Φdξ is bounded. We prove in
Lemma 4.2.2 that the Lyapunov design of [APA08] can be extended to this case. This allows us
to show that observer (4.11) still converges if, for each i, Φi is Hölder with order αij equal to
the values given in Table 4.2, where i is the index of Φi and j is the index of ej . We also recover
the same bound in presence of a noise v as the one given in [Lev b]. Note that knowing the
convergence of the exact differentiator from [Lev b], we could also have deduced the existence
of such a Lyapunov function via a converse theorem as in [NYN04]. But with only existence,
quantifying of the effect of the disturbances is nearly impossible.

Finally, it is interesting to remark that in the case d0 = −1, the ISS property between the
disturbance wdξ and the estimation error is with restrictions as defined in [Tee96, Definition 3.1].
If |∆wdξ(t)| ≤ wdξ and L is chosen sufficiently large, then asymptotic convergence is obtained.
However, nothing can be said when |∆wdξ | > wdξ . Moreover, it may be possible for a bounded
large disturbance to induce a norm of the estimation error which goes to infinity. We believe that
this problem could be solved employing homogeneous in the bi-limit observer as in [APA08]. It
is shown to be doable in dimension 2 in [CZMF11].

Proof : The set-valued function e1 7→ be1e0 = S(e1) defined in (3.17) is upper semi-continuous and has
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convex and compact values. Thus, according to [Fil88], there exist absolutely continuous solutions to
(4.11).
Let L = diag(1, L, ..., Ldξ−1). The error e = ξ̂ − ξ produced by the observer (4.11) satisfies

ė ∈ LAdξe+ δ + LLK(e1 + v) (4.16)

where Adξ is the shifting matrix of order dξ,

δ = Φ(u, ξ̂) + ŵ − Φ(u, ξ)− w ,

and K is the homogeneous correction term the components of which are defined as

(K(e1))i = −ki be1e
ri+1
r1

where (k1, . . . , kdξ ) are positive real number and ri is defined in (4.12). In the scaled error coordinates
ε = L−1e, those error dynamics read

1
L
ε̇ ∈ Adξε+DL + K(ε1 + v) (4.17)

with DL = L−1δ. With this mind, the proof consists in finding an ISS homogeneous Lyapunov function
for the L independent auxiliary system

˙̄e ∈ Adξ ē+ K(ē1) (4.18)

with state ē in Rdξ , then extending it to (4.17) by a robustness analysis, and finally deducing the result
on (4.16).
Let V : Rdξ → R+ be the function defined as

V (ē) =
dξ−1∑
i=1

∫ `iēi

bēi+1e
ri
ri+1

[
bτe

dV −ri
ri − bēi+1e

dV −ri
ri+1

]
dτ +

|ēdξ |
dV

dV
, (4.19)

where dV and `i are positive real numbers such that dV > 2dξ − 1. It is shown in [APA08, Theorem
3.1] that, in the case where d0 is in (−1, 0], and by appropriately selecting the parameters `i and ki,
V is a strict C1 Lyapunov function for the auxiliary system (4.18) and is homogeneous of degree dV
with weight vector r. In fact, the same construction is still valid for the case d0 = −1 as stated in the
following technical result, which is proved in the next subsection to ease the reading.

Lemma 4.2.1.

For all d0 in [−1, 0], the function V defined in (4.19) is positive definite and there exist positive
real numbers k1, . . . kdξ , `1, . . . `dξ , λ, cδ and cv such that for all ē in Rdξ , δ̄ in Rdξ and v̄ in R the
following implication holds :

|δ̄i| ≤ cδV (ē)
ri+1
dV , ∀i , and |v̄| ≤ cvV (ē)

r1
dV

=⇒ 3 max
{
∂V

∂ē
(ē)(Adξ ē+ δ̄ + K(ē1 + v̄))

}
≤ −λV (ē)

dV +d0
dV .

This Lemma says V is a ISS Lyapunov function for the auxiliary system (4.18). See [SW95, Proof of
Lemma 2.14] for instance. With this result in hand a robustness analysis can be carried out on a system
of the form (4.17).
Indeed, since Φ satisfies H(α, a), with (4.13) and ri+1

rj
≤ 1, we obtain, for all L ≥ 1

|DL,i| ≤
a

L

i∑
j=1

L
(j−1)

ri+1
rj
−i+1|εj |

ri+1
rj + |∆wi|

Li
,

≤ a

L

i∑
j=1

|εj |
ri+1
rj + |∆wi|

Li
,

≤ c

L
V (ε)

ri+1
dV + |∆wi|

Li
,

3Here the max is with respect to s in bē1 + v̄e0 = S(ē1 + v̄) appearing in the dξth component of
K(ē1 + v̄) when d0 = −1.
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where c is a positive real number obtained from Lemma A.1.2 in Appendix A.1. With Lemma 4.2.1,
where δ̄i plays the role of DL,i, v̄ the role of v and ē the role of ε, we obtain that, by picking L∗ sufficiently
large such that c

L∗ ≤
cδ
2 , we have, for all L > L∗,{ |∆wi|

Li
≤ cδ

4 V (ε)
ri+1
dV , ∀i

|v| ≤ cvV (ε)
r1
dV

=⇒ 1
L

max
{
∂V

∂e
(ε)ε̇
}
≤ −λV (ε)

dV +d0
dV . (4.20)

Now, when evaluated along a solution, ε gives rise to an absolutely continuous function t 7→ ε(t).
Similarly the function defined by t 7→ ν(t) = V (ε(t)) is absolutely continuous. It follows that its time
derivative is defined for almost all t and, according to [Smi01, p174], (4.20) implies, for almost all t,{ |∆wi|

Li
≤ cδ

4 ν(t)
ri+1
dV , ∀i

|v| ≤ cvν(t)
r1
dV

=⇒ 1
L
ν̇(t) ≤ −λν(t)

dV +d0
dV . (4.21)

Here two cases have to be distinguished.

1.If d0 is in ]− 1, 0], with Lemma A.1.4 in Appendix A.1 (see also [SW95]), we get the existence of
a class KL function βV such that4

V (ε(t)) ≤ max
i∈{1,...,dξ}

βV (V (ε(0)), λLt), sup
s∈[0,t]


(

4|∆wi(s)|
Licδ

) dV
ri+1

,
|v(s)|

dV
r1

cv


 .

The result holds since with Lemma A.1.2 there exist a positive real number c1 such that∣∣∣ ei
Li−1

∣∣∣ ≤ c1V (ε)
ri
dV .

Moreover, when v(t) = ∆wj(t) = bj = 0 for j = 1, . . . , dξ, (4.21) implies finite time convergence
in the case in which d0 < 0.

2.If d0 = −1, then rdξ+1 = 0. We choose L∗ sufficiently large to satisfy

w̄dξ

(L∗)dξ
≤ cδ

4 .

We obtain that the first condition in (4.21) is satisfied for i = dξ when L ≥ L∗. With Lemma
A.1.4 in Appendix A.1 (see also [SW95]), the implication (4.21) implies the existence of a class
KL function βV such that4

V (ε(t)) ≤ max
i∈{1,...,dξ−1}

βV (V (ε(0)), λLt), sup
s∈[0,t]


(

4|∆wi(s)|
Licδ

) dV
ri+1

,
|v(s)|

dV
r1

cv


 .

And the result holds as in the previous case.

�

4.2.2 Proof of Lemma 4.2.1

The proof is based on the following Lemma (4.2.2) which establishes that for a chain of integrator
it is possible to construct homogeneous correction terms which provide an observer and that it
is possible to construct a smooth strict homogeneous Lyapunov function.

Lemma 4.2.2.

For all d0 in [−1, 0], the function V defined in (4.19) is positive definite and there exists
positive real numbers k1, . . . kdξ , `1, . . . `dξ , λ̃ such that for all ē in Rdξ , the following holds :

max
{
∂V

∂ē
(ē)
(
Adξ ē+ K(ē1)

)}
≤ −λ̃V (ē)

dV +d0
dV . (4.22)

4according to Lemma A.1.4, βV (s, t) = max{0, s
−d0
dV − t}

dV
−d0
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Proof : [Case d0 = −1 (see [APA08] otherwise)]

We denote Ei = (ēi, ..., ēdξ ). Let dV be an integer such that dV > 2dξ−1 and the functions Ki recursively
defined by :

Kdξ (ēdξ ) = −
⌊
ēdξ
⌉0 = −S(ēdξ ) , Ki(ēi) =

 −b`iēie
ri+1
ri

Ki+1

(
b`iēie

ri+1
ri

)  .

Note that the jth component of Ki is homogeneous of degree rj+1 = dξ − j and, for any ēi in R, the set
Ki(ēi) can be expressed as

Ki(ēi) = {K̃i(ēi, s) , s ∈ S(ēi)} ,

where K̃i : R× [−1, 1]→ R is a continuous (single valued) function.

Let Vdξ (ēdξ ) =
|ēdξ |

dV

dV
and for all i in {1, . . . , dξ − 1}, let also V̄i : R2 → R and Vi : Rdξ−i+1 → R be the

functions defined by

V̄i(ν, ēi+1) =
∫ ν

bēi+1e
ri
ri+1

bxe
dV −ri
ri − bēi+1e

dV −ri
ri+1 dx ,

Vi(Ei) =
i∑

j=dξ−1

V̄j(`j ēj , ēj+1) + Vdξ (ēdξ ) .

With these definitions, the Lyapunov function V defined in (4.19) is simply V (e) = V1(e) and the
homogeneous vector field K(ē1) = K1(ē1) with

ki = `
ri+1
ri

i `

ri+1
ri−1
i−1 ... `

ri+1
r2

2 `

ri+1
r1

1 .

The proof of Proposition 4.2.2 is made iteratively from i = dξ toward 1. At each step, we show that Vi
is positive definite and we look for a positive real number `i, such that for all Ei in Rdξ−i+1

max
s∈S(ēi)

{
∂Vi
∂Ei

(Ei)(Adξ−i+1Ei + K̃i(ēi, s))
}
≤ −ciVi(Ei)

dV −1
dV , (4.23)

where ci is a positive real number. The lemma will be proved once we have shown that the former
inequality holds for i = 1.
Step i = dξ : At this step, Edξ = ēdξ . Note that we have

max
s∈S(ēdξ )

{
∂Vdξ
∂Edξ

(Edξ )K̃dξ (ēdξ , s)
}

= −|Edξ |
dV −1 = −cdξVdξ (Edξ )

dV −1
dV ,

with cdξ = d
dV −1
dV

V . Hence, equation (4.23) holds for i = dξ.
Step i = j : Assume Vj+1 is positive definite and assume there exists (`j+1, . . . , `dξ ) such that (4.23)

holds for j = i − 1. Note that the function x 7→ bxe
dV −rj
rj − bēi+1e

dV −rj
rj+1 is strictly increasing, is zero

if and only if x = bēj+1e
rj
rj+1 , and therefore has the same sign as x − bēj+1e

rj
rj+1 . Thus, for any ēj+1

fixed in R, the function ν 7→ V j(ν, ēj+1) is non negative and is zero only for v = bēj+1e
rj
rj+1 . Thus, V̄j

is positive and we have

Vj(Ej) = 0 ⇐⇒
{

Vj+1(Ej+1) = 0
V j(`j ēj , ēj+1) = 0 ⇐⇒

{
Ej+1 = 0

`j ēj = bēj+1e
rj
rj+1 = 0

so that Vj is positive definite.
On another hand, let Ṽj(ν,Ej+1) = Vj+1(Ej+1) + V̄j(ν, ēj+1) and let T1 be the function defined

T1(ν,Ej+1) = max
s∈S(ν)

{
T̃1(ν,Ej+1, s)

}
with T̃1 continuous and defined by

T̃1(ν,Ej+1, s) = ∂Ṽj
∂Ej+1

(Ej+1)(Adξ−i−1Ei+1 + K̃j+1(bνe
rj+1
rj , s)) + cj+1

2 Ṽj(ν,Ej+1)
dV −1
dV .
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Let also T2 be the continuous real-valued function defined by

T2(v,Ej+1) = −∂Ṽj
∂ν

(ν,Ei+1)(ēj+1 − bνe
rj+1
rj ) .

Note that T1 and T2 are homogeneous with weight rj for ν and ri for ēi and degree dV − 1. Besides,
they verify the following two properties :

-for all Ej+1 in Rdξ−j , ν in R

T2(ν,Ej+1) ≥ 0

(since (bνe
rj+1
rj − ēj+1) and (bνe

dV −rj
rj − bēj+1e

dV −rj
rj+1 ) have the same sign)

-for all (ν,Ej+1) in Rdξ−j+1 \ {0}, and s in S(ν), we have the implication

T2(ν,Ej+1) = 0 =⇒ T̃1(ν,Ej+1, s) < 0

since T2 is zero only when bνe
rj+1
rj = ēj+1 and

T̃1(bēj+1e
rj+1
rj , Ej+1, s) = ∂Vj+1

∂Ej+1
(Ej+1)(An−iEj+1 + K̃j+1(ēj+1, s))

+cj+1

2 Vj+1(Ej+1)
dV −1
dV ≤ − cj+1

2 Vj+1(Ej+1)
dV −1
dV ,

where we have employed (4.23) for i = j − 1.

Using Lemma A.1.3 in Appendix A.1, there exists `j such that

T1(ν,Ej+1)− `jT2(ν,Ej+1) ≤ 0 , ∀ (ν,Ej+1) .

Finally, note that

max
s∈S(ēi)

{
∂Vj
∂Ej

(Ej)(Am−j+1Ej + K̃j(ēj , s))
}

= T1(`j ēj)− `jT2(`j ēj , Ej+1)− cj+1

2 Vj(Ej)
dV −1
dV

Hence, (4.23) holds for i = j. �

We are now ready to finish the proof of Lemma 4.2.1. Let K̃(ē1, s) be the function defined as(
K̃(ē1, s)

)
i

= (K(ē1))i , i ∈ [1, dξ − 1] ,

and, (
K̃(ē1, s)

)
dξ

=
{
kdξs , when d0 = −1
(K(ē1))dξ , when d0 > −1 .

K̃ is a continuous (single) real-valued function which satisfies for all ē1 in R

K(ē1) = {K̃(ē1, s) , s ∈ S(ē1)} .

Consider also the functions

η̃(ē, δ̄, v̄, s) = ∂V

∂ē
(ē)(Adξ ē+ δ̄ + K̃(ē1 + v̄, s)) + λ̃

2V (ē)
dV +d0
dV ,

and

γ(δ̄, v) =
dξ∑
i=1
|δ̄i|

dV +d0
ri+1 + |v̄|

dV +d0
r1 .

With (4.22), we invoke Lemma A.1.3 to get the existence of a positive real number c1 satisfying
for all s in S(ē1 + v̄) :

∂V

∂ē
(ē)(Adξ ē+ δ̄ + K̃(ē1 + v̄, s)) ≤ − λ̃2V (ē)

dV +d0
dV + c1

dξ∑
i=1

δ̄

dV +d0
ri+1

i + c1|v̄|
dV +d0
r1 .
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This can be rewritten,

∂V

∂ē
(ē)(Adξ ē+ δ̄ + K̃(ē1 + v, s)) ≤ − λ̃

2(dξ + 2)V (ē)
dV +d0
dV

+
dξ∑
i=1

(
c1|δ̄i|

dV +d0
ri+1 − λ̃

2(dξ + 2)V (ē)
dV +d0
dV

)

+ c1|v̄|
dV +d0
r1 − λ̃

2(dξ + 2)V (ē)
dV +d0
dV .

Consequently, the result of Lemma 4.2.1 holds with λ = λ̃
2(dξ+2) , cδ = cv =

(
λ
c1

) r1
dV +d0 .

4.3 Cascade of observers

4.3.1 High gain cascade

According to Theorem 4.1.2, the classical high gain observer can provide an arbitrary small error
when the last nonlinearity is only bounded and when there is no disturbance. We exploit here
this observation by proposing the following cascaded high gain observer to deal with the case
where the functions Φi do not satisfy (4.7):

˙̂
ξ11 = ŵ1 − L1 k11 (ξ̂11 − y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂
ξ21 = ξ̂22 + Φ1(u, ξ̂11) + ŵ1 − L2 k21 (ξ̂21 − y)
˙̂
ξ22 = ŵ2 − L2

2 k22 (ξ̂21 − y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˙̂
ξdξ1 = ξ̂dξ2 + Φ1(u, ξ̂(dξ−1)1) + ŵ1 − Ldξ kdξ1 (ξ̂dξ1 − y)
˙̂
ξdξ2 = ξ̂dξ3 + Φ2(u, ξ̂(dξ−1)1, ξ̂(dξ−1)2) + ŵ2 − L2

dξ
kdξ2 (ξ̂dξ1 − y)

...
˙̂
ξdξdξ = ŵdξ − L

dξ
dξ
kdξdξ (ξ̂dξ1 − y)

(4.24)

with the gain kij chosen as in a classical high gain observer of dimension i, ŵi are estimations of wi
and Li are the high gains parameters to be chosen. It is important to notice that the arguments
of all the nonlinearities Φj in block i come from the block i − 1 (thanks to triangularity) and
that Φi is not present (because we saw that a bounded error is allowed on the last line of a high
gain observer).

Assuming the input function and the system solution are bounded, it is shown in the following
that estimation with an arbitrary small error can be achieved by the cascaded high-gain observer
(4.24).

Theorem 4.3.1.

Assume Φ is continuous. For any positive real numbers ξ and u, for any strictly posi-
tive real number ε, there exist a choice of (k11, . . . , kdξdξ) and of (L1, . . . , Ldξ), a class KL
function β and two class K∞ functions γ1 and γ2 such that, for all locally bounded time
function (u, v, w, ŵ), for all (ξ0, ξ̂0) in Rdξ ×Rdξ and for all t such that |Ξ(ξ0; s;u,w)| ≤ ξ and
|u(s)| ≤ u for all 0 ≤ s ≤ t, any solution

(
Ξ̂1(ξ̂0, ξ0; t;u, v, w, ŵ), ..., Ξ̂dξ(ξ̂0, ξ0; t;u, v, w, ŵ)

)
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of (4.24) verifies, for all i in {1, . . . , dξ},

|Ξ̂i(t)−Ξi(t)| ≤ max

ε , β
 i∑
j=1
|ξ̂j − ξj |, t

 , sup
s∈[0,t]

{
γ1(|v(s)|), γ2(|∆w(s)|)

}
where Ξ̂i is the state of the ith block (see Notation (4.2)) and we have used the abbreviation
Ξ̂i(t) = Ξ̂i(ξ̂0, ξ0; t;u, v, w, ŵ) and Ξi(t) = Ξi(ξ0; t;u,w).

Proof : This result is nothing but a straightforward consequence of the fact that a cascade of ISS systems
is ISS.
Specifically the error system attached to the high gain observer in block i has state ei (see Notation
(4.2)) and input v and δi` defined as5

δi` =
[
Φ`(u, ξ̂(i−1))− Φ`(u, ξ(i−1))

]
+ [ŵ` − w`]

δii = −ξi+1 − Φi(u, ξi) + ŵi − wi
with ξdξ+1 = 0. With Theorem 4.1.1, we have the existence of ki1, . . . , kii, λi, βi and γi such that we
have, for all Li ≥ 1, all t ≥ ti ≥ 0, all j in {1, . . . , i} and with eij(t) denoting the jth error in the ith
block evaluated along the solution at time t,

|eij(t)| ≤ max

Lj−1
i βi |ei(ti)| e−λiLi(t−ti), γi sup

1≤`≤j
s∈[ti,t]

{
Lj−1
i |v(s)|, |δi`(s)|

L`−j+1
i

} .

But according to Lemma A.2.1, the continuity of the Φ` implies the existence of a function ρ of class K
such that, for all ` in {1, . . . , dξ} and for all (ξ(i−1), ξ̂(i−1), u) in Ri−1 × Ri−1 × U satisfying |ξ(i−1)| ≤ ξ
and |u| ≤ u,

|Φ`(u, ξ̂(i−1))− Φ`(u, ξ(i−1))| ≤ ρ
(
|e(i−1)|

)
.

This implies

|δi`(s)| ≤ ρ(|ei−1(s)|) + |∆w`(s)| , ` = 1, . . . , j − 1 ,
|δii(s)| ≤ ξi+1 + Φi + |∆wi(s)| ,

where Φi = max
|u|≤u,|ξi|≤ξ

|Φi(u, ξi)| and ξi is a bound for |Ξi(ξ, s;u,w)| (which is less than ξ). Hence,
we have the existence of ci independent of Li such that

|ei(t)| ≤ ci max

{
Li−1
i |ei(ti)| e−λiLi(t−ti) , sup

s∈[ti,t]
Li−1
i |v(s)| ,

sup
s∈[ti,t]

ρ(|ei−1(s)|)
L2−i
i

, sup
1≤`≤i
s∈[ti,t]

|∆w`(s)|
L`−i+1
i

,
ξi+1 + Φi

Li

}
.

This makes precise what we wrote above that we have a cascade of ISS systems. Hence (see [Son89,
Prop. 7.2]), for each i in {1, . . . ,m}, there exist a class KL function β̄i and class K functions γvi and
γwi, each depending on L1 to Li and such that we have, for all t ≥ 0,

|ei(t)| ≤ max

{
β̄i

(
max

j∈{1,...,i}
{|ej(0)|}, t

)
, $i , sup

s∈[0,t]
{γvi(|v(s)|), γwi(|∆w(s)|)}

}
.

where $i is a positive real number defined by the sequences

$1 = c1
ξ2 + Φ1

L1
, $i = ci max

{
ξi+1 + Φi

Li
,
ρ($i−1)
L2−i
i

}
.

Then by picking Li ≥ L∗i where L∗i is defined recursively as :

εdξ = ε , εi = min
(
ε, ρ−1

(
εi+1

ci+1L
i−2
i+1

))
L∗dξ =

cdξΦdξ
εdξ

, L∗i =
ci[ξi+1 + Φi]

εi

5We write Φ`(u, ξ(i−1)) although ξ(i−1) is the state of the previous block of dimension i − 1, which can be
larger than `. We should rather have introduced a symbol for the `-first coordinates of ξ(i−1), but we thought
this would unnecessarily complexify the notations. Indeed, for the present proof, we only need to know that those
variables come from the previous block of dimension i− 1.
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we obtain $i ≤ ε for all i, hence the result. �

Note that unlike for the previous observers, we cannot state the result with "there exists
(L∗1, . . . , L∗dξ) such that for any (L1, . . . , Ldξ) satisfying Li ≥ L∗i for all i, [. . .]" because L∗i
depends on (Li+1, . . . , Ldξ) and not (L∗i+1, . . . , L

∗
dξ

).
This observer has the advantage of working without any assumption on the nonlinearities

besides their continuity. Note however that it requires the knowledge of a bound on the system
solution and on the input. Also we may not need to build dξ blocks, since according to Theorem
4.1.2, we need to create a new block only for the indexes i where Φi does not verify Property
H(α, a) for any a ≥ 0 and with α satisfying (4.7). Unfortunately, as it appears from the proof
of Theorem 4.3.1, the choice of (L1, ..., Ldξ) can be complicated. Besides, only a convergence
with an arbitrary small error is obtained. It may thus be necessary to take very large gains
which is problematic in terms of peaking (see [Kha02, Section 14.5] for instance) and most
importantly in presence of noise (see Section 4.5). In the following section, we design a similar
cascade observer, but with homogeneous correction terms, and show that it enables to obtain
asymptotic convergence.

4.3.2 Homogeneous cascade

When we cannot find d0 in [−1, 0] and a such that the nonlinearities satisfy H(α, a), with α
defined in (4.13), we may lose the convergence of observer (4.11), or the possibility of making
the final error arbitrarily small. In such a bad case, we can still take advantage of the fact that,
for α verifying (4.13) with d0 = −1, H(α, a) does not impose any restriction besides boundedness
of the last functions Φdξ (see Table 4.2).

From the remark that observer (4.11)

1. can be used for the system
ξ̇1 = ξ2 + ψ1(t)

...
ξ̇k−1 = ξk + ψk−1(t)
ξ̇k = ϕk(t)

provided the functions ψi are known and the function ϕk is unknown but bounded, with
known bound.

2. gives estimates of the ξi’s in finite time,

we see that it can be used as a preliminary step to deal with the system

ξ̇1 = ξ2 + ψ1(t)
...

ξ̇k−1 = ξk + ψk−1(t)
ξ̇k = ξk+1 + Φk(u, ξ1, . . . , ξk)

ξ̇k+1 = ϕk+1(u, ξ1, . . . , ξk+1)

Indeed, thanks to the above observer we know in finite time the values of ξ1, . . . , ξk, so that the
function Φk(u, ξ1, . . . , ξk) becomes a known signal ψk(t).

From this, we can propose the following observer made of a cascade of homogeneous ob-
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servers :

˙̂
ξ11 ∈ ŵ1 − L1 k11 S(ξ̂11 − y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂
ξ21 = ξ̂22 + Φ1(u, ξ̂11) + ŵ1 − L2 k21

⌊
ξ̂21 − y

⌉ 1
2

˙̂
ξ22 ∈ ŵ2 − L2

2 k22 S(ξ̂21 − y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˙̂
ξdξ1 = ξ̂dξ2 + Φ1(u, ξ̂11) + ŵ1 − Ldξ kdξ1

⌊
ξ̂dξ1 − y

⌉ dξ−1
dξ

...
˙̂
ξdξ(dξ−1) = ξ̂dξdξ + Φdξ−1(u, ξ̂(dξ−1)1, . . . , ξ̂(dξ−1)(dξ−1)) + ŵdξ−1 − L

dξ−1
dξ

kdξ(dξ−1)
⌊
ξ̂dξ1 − y

⌉ 1
dξ

˙̂
ξdξdξ ∈ ŵdξ − L

dξ
dξ
kdξdξ S(ξ̂dξ1 − y)

(4.25)
where the kij and Li are positive real numbers to be tuned.

As a direct consequence of Theorem 4.2.1 and following the same steps as in the proof of
Theorem 4.3.1, we have

Theorem 4.3.2.

Assume Φ is continuous. For any positive real numbers ξ, u, w, we can find positive real
numbers kij and L∗i , two class K functions γ1 and γ2 and a class KL function β such that,
for all (L1, . . . , Ldξ) verifying Li ≥ L∗i , for all locally bounded time function (u, v, w, ŵ),
and all (ξ0, ξ̂0) in Rdξ × Rdξ , the observer (4.25) admits absolutely continuous solutions(
Ξ̂1(ξ̂0, ξ0; t;u, v, w, ŵ), ..., Ξ̂dξ(ξ̂0, ξ0; t;u, v, w, ŵ)

)
which are defined on R+ and for any such

solution we have for all i in {1, ..., dξ} and for all t such that |Ξ(ξ0, s;u,w)| ≤ ξ, |u(s)| ≤ u
and |∆w(s)| ≤ w for all 0 ≤ s ≤ t:

|Ξ̂i(t)−Ξi(t)| ≤ max
{
β(|ξ0 − ξ̂0|, t), sup

1≤j≤i−1
s∈[t0,t]

{γ1(|v(s)|), γ2(|∆wj(s)|)}
}
.

where Ξ̂i is the state of the ith block (see Notation (4.2)) and we have used the abbreviation
Ξ̂i(t) = Ξ̂i(ξ̂0, ξ0; t;u, v, w, ŵ) and Ξi(t) = Ξi(ξ0; t;u,w).
Moreover, when v(t) = ∆wj = 0, there exists t such that Ξ̂i(t) = Ξi(t) for all t ≥ t.

Proof : This proof is very similar to that of Theorem 4.3.1 (but also much simpler). We give it all the
same for the sake of completeness. The error system attached to the homogeneous observer in block i
has state ei and input v and δi` defined as

δi` =
[
Φ̂`(u, ξ̂(i−1))− Φ`(u, ξ(i−1))

]
+ [ŵ` − w`]

δii = −zi+1 − Φi(u, ξi) + ŵi − wi

with zm+1 = 0. δii is bounded, thus Theorem 4.2.1 gives the existence of ki1, . . . , kii, L∗i , λi, βi and γi
such that we have, for all Li ≥ L∗i , all t ≥ 0, all j in {1, . . . , i} and with eij(t) denoting the jth error in
the ith block evaluated along the solution at time t,

|eij(t)| ≤ max

βi (|ei(0)| , t) , γi sup
1≤`≤j−1
s∈[0,t]

{
Lj−1|v(s)|

rj
r1 ,
|δi`(s)|

rj
r`+1

Lµj`

} .

But the continuity of the Φ` implies the existence of a function ρ of class K such that, for all ` in
{1, . . . , i} and for all (ξ(i−1), ξ̂(i−1), u) in Ri−1 × Ri−1 × U satisfying |ξ(i−1)| ≤ ξ and |u| ≤ u,

|Φ`(u, ξ̂(i−1))− Φ`(u, ξ(i−1))| ≤ ρ
(
|e(i−1)|

)
.
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This implies
|δi`(s)| ≤ ρ(|ei−1(s)|) + |∆w`(s)| , ` = 1, . . . , j − 1 .

Hence, we have the existence of two class K functions γiv, γiw such that

|ei(t)| ≤ max

βi (|ei(0)| , t) , sup
s∈[0,t]

γiv(|v(s)|) , sup
s∈[0,t]

ρ(|ei−1(s)|)
L2−i
i

, sup
1≤`≤i−1
s∈[0,t]

γiv(|∆w`(s)|)

 .

Hence, by recursion, for each i in {1, . . . , dξ}, there exist a class KL function β̄i and class K functions
γvi and γwi, each depending on L1 to Li and such that we have, for all t ≥ 0,

|ei(t)| ≤ max

{
β̄i

(
max

j∈{1,...,i}
{|ej(0)|}, t

)
, sup
s∈[0,t]

{γvi(|v(s)|), γwi(|∆w(s)|)}

}
.

�

Observer (4.25) is an extension of the cascaded high gain observer (4.24) presented in Section
4.3.1. The use of homogeneity enables here to obtain asymptotic convergence without demanding
anything but the knowledge of a bound on the input and on the system solution. A drawback of
a cascade of observers is that it gives an observer with dimension dξ(dξ+1)

2 in general. However,
as seen in Section 4.3.1, it may be possible to reduce this dimension since, for each new block,
one may increase the dimension by more than one, when the corresponding added functions Φi

satisfy H(α, a) for some α verifying (4.13) with d0 = −1 and for some a.
Finally, note that the result of Theorem 4.3.2 does not mean that the observer is ISS with

respect to ∆w. Indeed, ∆w must be bounded to obtain this ISS-like inequality : the system is ISS
with restrictions. Again, we believe that this problem could be solved employing homogeneous
in the bi-limit observer as in [APA08].

4.4 Relaxing the assumptions marked with (☼)
First, if System (4.1) is not complete, every ISS inequalities still holds for any solution Ξ(ξ0; t;u,w),
but only on [0, σ+(ξ0, u)[ where σ+(ξ0, u) is its maximal time of existence in Rdξ .

The global aspect of boundedness, Hölder, H(α, a), . . . , can be relaxed as follows. Let U be
bounded and letM be a given compact set. We define Φ̂ as6

Φ̂i(u, ξ1, ..., ξi) = satΦi
(Φi(u, ξ1, ..., ξi)) (4.26)

where
Φi = max

u∈U,ξ∈M
|Φi(u, ξ1, ..., ξi)| .

Now consider any compact set M̃ strictly contained7 in M. We have Φ̂ = Φ on M̃, so that if
the system trajectories remain in M̃, the model (4.1) with Φ̂ replacing Φ is still valid. Besides,
according to Lemma A.2.2 in Appendix A.2, there exists ã such that (4.3) holds for Φ̂ for all
(ξa, ξb) in Rdξ × M̃. Then, by taking Φ̂ instead of Φ in the observers, we can modify the
assumptions
- in Theorem 4.1.1, so that (4.5) holds only on the compact setM;
- in Theorems 4.1.2 and 4.2.1, so that Φ verifies H(α, a) only on the compact setM;
- Theorems 4.3.1 and 4.3.2 remain unchanged.
In this case, the results hold for the particular system solutions Ξ(ξ0; t;u,w) which are in the
compact set M̃ for t in [0, σ+

M̃(ξ0, u)). Precisely, for these solutions, the bounds on Ξ̂i(t)−Ξi(t)
given in these theorems hold for all t in [0, σ+

M̃(ξ0, u)).
6The saturation function is defined on R by satM (x) = max{min{x,M},−M} .
7By strictly contained, we mean that M̃ is contained in the interior ofM.
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Note also that if H(α, a) holds on a compact set, then for any α̃ such that α̃ij ≤ αij for
all (i, j), there exists ã such that H(α̃, ã) also holds on this compact set. It follows that the
constraints given by (4.13) or Table 4.2 in Theorem 4.2.1 can be relaxed to αij ≥

1−d0(dξ−i−1)
1−d0(dξ−j) ,

and the less restrictive conditions one may ask for are obtained for d0 = −1.
Finally, in Theorems 4.1.1, 4.1.2 and 4.2.1, it is possible to consider the case where Φ depends

also on time as long as any assumption made on Φ is satisfied uniformly with respect to time.

4.5 Illustrative example
As an example, we consider the triangular normal form of dimension 4 defined by

ξ̇1 = ξ2
ξ̇2 = ξ3
ξ̇3 = ξ4 + Φ3(u, ξ1, ξ2, ξ3)
ξ̇4 = Φ4(u, ξ)

, y = ξ1 , (4.27)

where
Φ3(u, ξ1, ξ2, ξ3) = 5u|ξ3 + ξ1|

4
5 bξ1e

1
5 , Φ4(u, ξ) = Ψ(u, ψ(ξ))

with Ψ : Rdu × R3 → R and ψ : R4 → R3 continuous function defined by :

Ψ(u, ψ) = ψ1−2ψ1ψ
5
3 +20ψ3

3ψ
3
1ψ

2
2−15ψ4

3ψ
2
2ψ1+5ψ4

3ψ
3
1−5ψ9

3ψ
3
1 +ψ10

3 ψ1+u(−20ψ3
3ψ

2
1ψ2+5ψ4

3ψ2)

ψ(ξ) =

ξ1 , ξ2 ,

(ξ3 + ξ1)ξ1 +
[
(ξ4 + ξ2) + 3|(ξ3 + ξ1) bξ1e

3
2 |

4
5 ξ2
]
ξ2

ξ2
1 + ξ2

2


1
5
 .

Those seemingly mysterious expressions do not make a lot of sense for now. We shall see how
they appear in an example in Chapter 6. In fact, they are given here for the sake of completeness
but only the expression of Φ3 and the fact that Φ4 is continuous matter here. We are interested
in estimating trajectories remaining in a given compact set which will be defined in Chapter 6.

The function Φ3 is not Lipschitz at the points on the hyperplanes ξ3 = −ξ1 and ξ1 = 0. The
function Φ4 is continuous and therefore bounded on any compact set. Besides, for ξ̂3 and ξ3 in
a compact set, and u bounded there exist8

|Φ3(u, ξ̂1, ξ̂2, ξ̂3)− Φ3(u, ξ1, ξ2, ξ3)| ≤ c1|ξ̂1 − ξ1|
1
5 + c3|ξ̂3 − ξ3|

4
5 .

This implies that Φ3 is Hölder with order 1
5 .

Hence the nonlinearities Φ3 and Φ4 verify the conditions of Table 4.1. It follows that for
L sufficiently large, convergence with an arbitrary small error can be achieved with the high
gain observer (4.4). However, Φ3 does not verify the conditions of Table 4.2. Thus, there is
no theoretical guarantee that the homogeneous observer (4.11) with d0 = −1 will provide exact
convergence.

4.5.1 An observer of dimension 4 ?

We consider a solution to System (4.27) which regularly crosses the Lipschitzness singularities
ξ3 = −ξ1 or ξ1 = 0, as illustrated in Figure 4.1. In the following, we use the same noisy

8 Let ∆Φ3(ξ1, ξ3, e1, e3) = |ξ3 +e3 +ξ1 +e1|
4
5 bξ1 + e1e

1
5 −|ξ3 +ξ1|

4
5 bξ1e

1
5 = |ξ3 +ξ1|

4
5

(
bξ1 + e1e

1
5 − bξ1e

1
5

)
+

bξ1 + e1e
1
5

(
|ξ3 + ξ1 + e3 + e1|

4
5 − |ξ3 + ξ1|

4
5

)
. By Lemma A.1.5, we have

∣∣∣bξ1 + e1e
1
5 − bξ1e

1
5

∣∣∣ ≤ 2 4
5 |e1|

1
5 and∣∣∣|ξ3 + ξ1 + e3 + e1|

4
5 − |ξ3 + ξ1|

4
5

∣∣∣ ≤ 2 1
5 (|e3| + |e1|)

4
5 ≤ 2 1

5 (|e3|
4
5 + |e1|

4
5 ). Besides, |ξ1 + e1|

1
5 ≤ |ξ1|

1
5 + |e1|

1
5 , so

that for ξ1 and ξ3 in compact sets, |∆Φ3(ξ1, ξ3, e1, e3)| ≤ c1|e1|
1
5 + c2|e3|

4
5 + c3|e1|

4
5 + c4|e1|

1
5 |e3|

4
5 + c5|e1|. By

Young’s inequality, |e1|
1
5 |e3|

4
5 ≤ 1

5 |e1| + 4
5 |e3|, and finally, for e1 and e3 in compact sets, |∆Φ3(ξ1, ξ3, e1, e3)| ≤

c̃1|e1|
1
5 + c̃3|e3|

4
5 .
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Time
0 1 2 3 4 5 6 7 8 9 10

-6

-4

-2

0

2

4

6

8

91
92
93
94
y

Figure 4.1: Trajectory of System (4.27), with initial condition ξ = (1, 1,−1,−1), with input
u = 5 sin(10 t) and with the noisy measurement y (filtered gaussian noise with standard deviation
σ = 0.03 and 1st order filtering parameter a = 50), used to test the observers.

measurement y, shown on Figure 4.1, in every simulation with noise.
We first implement a high gain observer of dimension 4, in the absence of noise, initialized

at ξ̂ = (0.1, 0.1,−0.1,−0.1), and with the gains k1 = 14, k2 = 99, k3 = 408, k4 = 833. As
an illustration of Theorem 4.1.2, the convergence with an arbitrary small error is achieved and
is illustrated in Table 4.3. However, we observe that the decrease of the errors, especially for
e4, is very slow compared to the increase of the peaking and a very high gain is needed to
obtain "acceptable" final errors. In presence of noise, the tradeoff between final error and noise
amplification becomes impossible : with the noisy measurement of Figure 4.1, the smallest
final error e4 is 200, achieved for L = 2. Of course, there might exist a choice of the gains
ki giving better results. But overall a high gain observer may not be a systematic solution in
practice for non-Lipschitz triangular systems, especially when the solution regularly crosses the
Lipschitz-singularities.

L e1 e2 e3 e4 max |e|
2 0.15 4 60 200 300
5 6 . 10−4 0.04 1.5 30 4000
8 5 . 10−5 4 . 10−3 0.25 7 1.5 . 104

10 8 . 10−6 1 . 10−3 0.1 4 3.5 . 104

15 1.5 . 10−6 3 . 10−4 0.03 2 1.2 . 105

Table 4.3: Decrease of the final error (ei = ξ̂i − ξi) with the gain L, with a high gain observer
and in the absence of noise. The last columns shows however that the peaking increases, i-e the
errors reach higher and higher values during the transient before converging.

Let us now implement an homogeneous observer of dimension 4 with an explicit Euler method
with fixed measurement and integration steps equaling 10−5, and with the Matlab sign function.
The degree is d0 = −1, and the gains are chosen according to [Lev05], i-e k1 = 5, k2 = 8.77,
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Time
0 1 2 3 4 5 6 7 8 9 10
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e3

e4

Figure 4.2: Convergence of an homogeneous observer with degree −1 in the absence of noise
(ei = ξ̂i − ξi)

k3 = 4.44, k4 = 1.1. For a gain L = 3, the convergence is achieved with a final error of
|e4| = 8 . 10−4, even though the Hölder restriction of Theorem 4.2.1 is a priori not satisfied
around ξ1 = 0. The results are given in Figure 4.2. Unfortunately, the final errors are heavily
impacted in presence of noise, as illustrated in Table 4.4. This may also come from a lack of ISS
property. Notice that the amplification of the noise by the gain L is not as rapid as expected
from the bound in Theorem 4.2.1. The final errors remain nonetheless too large, although, once
again, we did not optimize our choice of gains ki.

L e1 e2 e3 e4
2.5 0.15 3.5 30 18
3 0.15 3 35 25
4 0.1 2 25 50
5 0.1 2 30 80
6 0.1 2 35 120

Table 4.4: Final errors given by a homogeneous observer of degree −1 in presence of noise.

4.5.2 Cascaded observers

In the absence of noise, the cascaded observers presented in Sections 4.3.1 and 4.3.2 give similar
results to the corresponding observers in dimension 4, i-e arbitrary small asymptotic error and
finite time convergence respectively. However, they seem to provide better accuracies in presence
of noise.

In the case of a high gain cascade observer, the errors, although smaller than in the high
gain observer of dimension 4, remain too large to consider it a viable solution. On the other
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hand, the homogeneous cascade observer :

˙̂
ξ11 = ξ̂12 − L1 k11

⌊
ξ̂11 − y

⌉ 2
3

˙̂
ξ12 = ξ̂13 − L2

1 k12
⌊
ξ̂11 − y

⌉ 1
3

˙̂
ξ13 ∈ −L3

1 k13 S(ξ̂11 − y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂
ξ21 = ξ̂22 − L2 k21

⌊
ξ̂21 − y

⌉ 3
4

˙̂
ξ22 = ξ̂23 − L2

2 k22
⌊
ξ̂21 − y

⌉ 1
2

˙̂
ξ23 = ξ̂24 + sat(g3(ξ̂11, ξ̂12, ξ̂13))u− L3

2 k23
⌊
ξ̂21 − y

⌉ 1
4

˙̂
ξ24 ∈ −L4

2 k24 S(ξ̂21 − y)

with the coefficients k1j chosen, according to [Lev05], as k11 = 3, k12 = 2.6, k13 = 1.1, and k2j
as above, and with the gains L1 = 2.5 and L2 = 3, gives the following final errors :

e11 = 0.05, e12 = 0.4, e13 = 2.5, e24 = 12

Comparing to Table 4.4, we see that implementing an intermediate homogeneous observer of
dimension 3 enables to obtain much better estimates of the first three states ξi, which are then
used in the nonlinearity of the second block, thus giving a better estimate of ξ4.

4.6 Conclusion
To summarize the most important ideas, we provide in Table 4.6 a synthetic comparison of the
four observers proposed in this chapter, in the case where the system trajectories and the input
are bounded.

We have shown the convergence with an arbitrary small error of the classical high gain
observer (4.4) in presence of nonlinearities verifying some Hölder-like condition. Also, for the case
when this Hölder condition is not verified, we have proposed a novel cascaded high gain observer
(4.24). On the other hand, under slightly more restrictive Hölder-like conditions, we have made
a Lyapunov design of the homogeneous observer (4.11) and proved its asymptotic convergence
with the help of an explicit Lyapunov function. As for its cascaded version (4.25), asymptotic
convergence has been established under the only condition of continuity of the nonlinearities
and the fact that the trajectories (and input) are bounded. We conclude that a global observer
exists for the continuous triangular form (3.12).

Although it is an extremely important aspect, we have had no time to devote much attention
to the impact of disturbances on the behavior of the observers. Nevertheless, we have established
an ISS property with respect to dynamics and measurement noises. Our numerical experience
seems to indicate that it is very difficult to tune the gains of both high gain and homogeneous
observers in presence of measurement noise, although it is slightly simpler for the latter since
smaller gains are sufficient to ensure convergence. Simulations on our example suggest that
the situation may be more favorable with the cascaded homogeneous observer. Anyway, the
presented results are still unsatisfactory in presence of noise, and the question of the construction
of robust observers for non-Lipschitz triangular forms remains unanswered. Our theoretical ISS
bounds being far too conservative, it would be necessary to carry out a finer study if we wanted
to optimally tune the gains of the observers. It may also be appropriate to use on-line gain
adaptation techniques since large gains should be necessary only around the points where the
nonlinearities are not Lipschitz. About these two aspects, we refer the reader to the survey in
[KP13, Sections 3.2.2 and 3.2.3] and the references therein.
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Part II

Transformation into a normal form





Chapter 5

Review of existing transformations

Chapitre 5 – Bilan des transformations existantes. Tout au long de Partie I, nous avons
listé un certain nombre de formes normales pour lesquelles un observateur est connu. Afin
d’appliquer Théorème 2.2.1, il nous faut maintenant étudier comment transformer un système
non linéaire quelconque en l’une de ces formes. C’est l’objet de Partie II. Comme dans la
précédente, nous commencons par faire un rapide bilan des résultats existant dans la littérature
concernant ce problème en soulignant les points qui n’ont pas encore été étudiés. Ceci nous
permet de situer nos contributions qui seront ensuire détaillées dans les chapitres suivants.
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Throughout Part I, we have given a list of normal forms and their associated observers.
We now have to study how a nonlinear system can be transformed into one of those forms to
apply Theorem 2.2.1. This is the object of Part II. Using the same methodology as in the
previous part, we start by reviewing the literature concerning this problem in order to highlight
along the way the points which have not been addressed yet, and we situate our contributions
which will be detailed in the next chapters.

More precisely, we consider a general nonlinear system of the form

ẋ = f(x, u) , y = h(x, u) (5.1)

with x the state in Rdx , u an input function in U with values in U ⊂ Rdu , y the output in Rdy .
For each normal form presented in Part I of the form

ξ̇ = F (ξ, u,H(ξ, u)) , y = H(ξ, u) , (5.2)

we look for sufficient conditions on System (5.1) for the existence of a subset X and functions
Tu : X × [0,+∞[→ Rdξ for each u in U which transforms System (5.1) into the normal form
(5.2) in the sense of Theorem 2.2.1, i-e for all x in X and all t in [0,+∞)

L(f,1)Tu(x, t) = F (Tu(x, t), u(t), h(x, u(t)) , h(x, u(t)) = H(Tu(x, t), u(t)) .

Indeed, according to Theorem 2.2.1 and Corollary 2.2.1, the observer design problem is then
solved for System (5.1) if the solutions of System (5.1) which are of interest remain in X and
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- either for any u in U , x 7→ Tu(x, t) becomes injective on X uniformly in space and in time
after a certain time ;

- or C = X is a compact set, and for any u in U , Tu is a same stationary transformation T
injective on C.

5.1 Transformations into a state-affine normal forms

5.1.1 Linearization by output injection

Constant linear part

The problem of transforming a nonlinear system into a linear one of the form (3.5) i-e

ξ̇ = Aξ +B(u, ỹ) , ỹ = ψ(y) = C ξ (5.3)

with the pair (A,C) observable and ψ : Rdy → Rdy a possible change of output, has a very
long history. The first results appeared in [KI83, BZ83] for autonomous systems and were then
extended by [KR85] to multi-input multi-output systems. In those papers, the authors looked
for necessary and sufficient conditions on the functions f and h for the existence of a local
change of coordinates (and possibly change of output) which brings the system into the form
(5.3), which they called "observer form". [BRG89] then gave conditions for the existence of a
local (and global) immersion1 (instead of diffeomorphism) in the particular case of control affine
systems. A vast literature followed on the subject, either developing algebraic algorithms to
check the existence of a transformation or tools to explicitly find the transformation.

In [Jou03], the general problem of finding an immersion (rather than a diffeomorphism)
which transforms a nonlinear system of the form (5.3) is addressed. If such a transformation
exists, the system is said linearizable by output injection. The following result is proved :

Theorem 5.1.1. [Jou03, Theorem 2.3]

A system of the form
ẋ = f(x, u) , y = h(x)

is linearizable by output injection if and only if there exist a C+∞ function T and a diffeo-
morphism ψ : Rdy → Rdy transforming the system into the particular triangular form

ξ̇1 = ξ2 + Φ1(u, ξ1)
...

ξ̇i = ξi+1 + Φi(u, ξ1)
...

ξ̇dξ = Φdξ(u, ξ1)

, ỹ = ψ(y) = ξ1 .

Thus, the linearization problem reduces to the existence of a transformation into this latter
observable form. Note that if besides this transformation is required to be injective (like in
our context of observer design), then the system is necessarily uniformly observable2. Actually,
the class of systems considered here is even strictly smaller because for a uniformly observable
system, the functions Φi would be allowed to depend on ξ1, . . . , ξi, and not only on ξ1.

From this, it is possible to deduce :

1T : Rdx → Rdξ is an immersion if the rank of ∂T
∂x

is dx. Contrary to a diffeomorphism, this allows to take
dξ ≥ dx.

2See Definition 2.2.1.
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Theorem 5.1.2. [Jou03, Theorem 2.6]

An autonomous system
ẋ = f(x) , y = h(x)

is linearizable by output injection if and only if there exists a C∞ function ψ, an integer dξ
and dξ C∞ functions Φ1, ..., Φdξ such that

L
dξ
f h̃(x) = L

dξ−1
f Φ1 ◦ h̃+ L

dξ−2
f Φ2 ◦ h̃+ LfΦdξ−1 ◦ h̃+ Φdξ ◦ h̃

with h̃ = ψ ◦ h.

This is the so-called characteristic equation which extends the same notion for linear systems
and was introduced in [Kel87] originally with dξ = dx. This partial differential equation (PDE)
is important in practice because several results show that the linearization of a controlled system
first necessitates the linearization of its uncontrolled parts or drift dynamics3 ([KR85, BRG89,
Jou03] among others). A first difficulty thus lies in solving this PDE, which does not always
admit solutions ([Jou03, BS04]).

Along the history of linearization, we must also mention some generalizations such as [Kel87],
where the function B is allowed to depend on the derivatives of the input and later on the
derivatives of the output in [GMP96, PG97], or [Gua02, RPN04] where it is proposed to use an
output-depending time-scale transformation.

We conclude that linearizing both the dynamics and the output function is very demanding
and requires some very restrictive conditions on the system. The existence of the transformation
is difficult to check and involves quite tedious symbolic calculations which do not always provide
the transformation itself, and even when they do, its validity is often only local.

Time-varying linear part

In parallel, others allowed the linear part A to depend on the input/output, i-e looked for
conditions to transform the system in the state-affine form (3.7)

ξ̇ = A(u, y) ξ +B(u, y) , y = C(u)ξ .

The first to address this problem were [Fli82, FK83] but without allowing output injection
in the dynamics, namely requiring A(u) and B(u). This led to the very restrictive finiteness
criterion of the observation space, which roughly says that the linear space containing the suc-
cessive derivatives of the output along any vector field of the type f(·, u) is finite. Later,
[HK96, HC91, BB97] allowed A and B to depend on the output to broaden the class of con-
cerned systems. But it remains difficult to characterize those systems because there are often
many possible ways to parametrize the system via the output. Besides, even when the trans-
formation exists and is known, the input must satisfy an extra excitation condition to allow the
design of a Kalman observer (see Chapter 3).

5.1.2 Transformation into Hurwitz form

In a completely independent line of research, some researchers have tried to reproduce Luen-
berger’s original methodology presented in [Lue64] for linear systems on nonlinear systems. It
consists in finding a transformation into a Hurwitz form (3.3)

ξ̇ = Aξ +B(u, y) , y = H(ξ, u)
3Dynamics with u equal to a constant
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with A Hurwitz, for which a trivial observer (3.4) (made of a copy of the dynamics) exists. Note
that unlike in the previous section, this procedure is not a linearization of the system, since
the output function H can be any nonlinear function (see [KK98, Remark 4]). It is not even
necessary to know its expression since it is not needed in the observer. This crucial difference
leads to far less restrictive conditions on the system.

The extension to autonomous nonlinear systems of Luenberger’s original methodology ([Lue64])
was proposed and analyzed in a general context by [Sho92]. It was rediscovered later by [KK98]
who gave a local analysis close to an equilibrium point under conditions relaxed later on in
[KX03]. The localness as well as most of the restrictive assumptions were then by-passed in
[AP06]. As noticed in [KX06] and [AP06], this nonlinear Luenberger observer is also strongly
related to the observer proposed in [KE03].

In [AP06], the authors investigate the possibility of transforming an autonomous system

ẋ = f(x) , y = h(x)

into a Hurwitz autonomous form
ξ̇ = Aξ +B(y) .

This raises the question of finding, for some integer dξ, a continuous function T : Rdx → Rdξ
verifying

LfT (x) = AT (x) +B(h(x)) , ∀x ∈ X (5.4)

with A some Hurwitz matrix of dimension dξ and B : Rdy → Rdξ some continuous function.
The existence of such a transformation is shown for any Hurwitz matrix A and for some well-
chosen functions B under the only assumption that the system is backward-complete4 in X
([AP06, Theorem 2]). Of course, this is not enough since, as we saw in the introduction, it is
required that T be uniformly injective on X to deduce from the estimate of T (x) an estimate
of x. The authors show in [AP06, Theorem 3] that injectivity of T is achieved for almost any
diagonal complex Hurwitz matrix A of dimension5 (dx+1)dy on C and for any B verifying some
growth condition under the assumption that the system is backward S-distinguishable6 on X
for some open set S containing X , i-e for any (xa, xb) in X 2 such that xa 6= xb, there exists t in(
max

{
σ−S (xa), σ−S (xb)

}
, 0
]
such that yxa(t) 6= yxb(t).

In the case where X is bounded, the result simplifies into :

Theorem 5.1.3. [AP06]

Assume that X and S are open bounded subset of Rdx , such that cl(X ) is contained in S and
System (5.1) is backward S-distinguishable on X . There exists a strictly positive number `
and a setR of zero Lebesgue measure in Cdx+1 such that denoting Ω = {λ ∈ C : <(λ) < −`},
for any (λ1, . . . , λdx+1) in Ωdx+1 \ R, there exists a function T : Rdx → R(dx+1)×dy uniformly
injective on X and verifying (5.4) with

A =



Ã
. . .

Ã
. . .

Ã


, B(y) =



B̃
. . .

B̃
. . .

B̃


y

4Any solution exiting X in finite time must cross the boundary of X . See [AP06, Definition 1].
5Separating the real/imaginary parts, the observer is thus of dimension 2(dx + 1)dy on R.
6This notion is similar to the distinguishability defined in Definition 2.2.1 but in negative time and with the

constraint that t occurs when both solutions are still in S.
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and

Ã =

 λ1
. . .

λdx+1

 , B̃ =

 1
...
1

 .

Besides, if X is backward-invariant, the function T is unique on X and defined by:

T (x) =
∫ 0

−∞
e−AτB(h(X(x, τ))) dτ . (5.5)

We conclude from this result that it is possible to design an observer for an autonomous
nonlinear system under the weak assumption of backward-distinguishability. Note that with a
stronger assumption of strong differential observability7 of order m, and still in a bounded set,
it is also proved in [AP06, Theorem 4] that injectivity of (5.5) is ensured for any choice of m
real strictly negative λi smaller that −` with ` sufficiently large.

The difficulty lies in the computation of the function T , let alone its inverse. Even when X
is bounded and backward-invariant, the use of its explicit expression (5.5) is not easy since it
necessitates to integrate backwards the differential equation at each time step. Several examples
will be given in Chapter 7 or Chapter 11 to show how the function T can be computed without
relying on this formula. In particular, we will see in Chapter 7 how this task can sometimes be
made easier by allowing T to be time-varying.

The extension of this Luenberger methodology to controlled systems is not straight-forward.
First steps in this direction were made in [RZ13, Tru07] for linear time-varying systems, in
[Ham08] for nonlinear time-varying systems, and in [Eng07] for nonlinear controlled systems.
This is the object of Chapter 7.

5.2 Transformations into triangular normal forms

5.2.1 Lipschitz triangular form

The Lipschitz triangular form8 (3.12)

ξ̇1 = ξ2 + Φ1(ũ, ξ1)
...

ξ̇i = ξi+1 + Φi(ũ, ξ1, . . . , ξi)
...

ξ̇m = Φm(ũ, ξ)

, y = ξ1

is well-known because it is associated to the classical high gain observer (3.13). The idea
of transforming a nonlinear system into a phase-variable form9 (i-e with Φi = 0 except Φm)
appeared in [Zei84]. For an autonomous system,

ẋ = f(x) , y = h(x)

the function Hm defined by the output and its m− 1 first derivatives, namely

Hdξ(x) = (h(x), Lfh(x), . . . , Ldξ−1
f h(x)) ,

transforms the system into

ξ̇1 = ξ2 , . . . , ξ̇i = ξi+1 , . . . , ξ̇m = Lmf h(x) , y = ξ1 .

7See Definition 5.2.2 in the autonomous case.
8It is useful to denote here the input ũ because we will see that it can be for instance ũ = (u, u̇, ü, . . .).
9See Definition 3.2.1.
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This is a Lipschitz phase-variable form if and only if there exists a function Φm Lipschitz on Rdξ
such that

∀x ∈ X , Lmf h(x) = Φm(Hm(x)) ,

i-e the mth-derivative of the output can be expressed "in a Lipschitz way" in terms of its m− 1
first derivatives. This is possible for example if X is bounded and Hm is an injective immersion10

on some open set S containing cl(X ) (see Theorem 5.2.1 below for this result in the general
controlled case).

In the remaining of this section, we review the existing results in terms of transformation of
general controlled systems into a Lipschitz triangular form.

Time varying transformation

The first natural idea introduced in [Zei84] is to keep considering the transformation made of
the output and its m− 1 first derivatives, despite the presence of the input, and transform the
system into a phase-variable form in the same way as for autonomous systems. In order to
properly define this transformation, we need the following definition.

Definition 5.2.1.

Given an integer m, and using the notation

νm = (ν0, . . . , νm) ,

we call dynamic extension of order m of System (5.1) the extended dynamical system

ẋ = f(x, u(m+1)) , y = h(x) (5.6)

with input u(m+1) in Rdu , extended state x = (x, νm) in Rdx × Rdu(m+1), extended vector
field f defined by

f(x, u(m+1)) =
(
f(x, ν0) , ν1 , . . . , νm , u

(m+1)
)

and extended measurement function h defined by

h(x) = h(x, ν0) .

Note that for any solution x to System (5.1) with some input u, (x, um) is solution to the
dynamic extension (5.6), with the notation um = (u, u̇, . . . , u(m)). While νm is an element of
Rdu(m+1), um is a function defined on [0,+∞) such that um(s) = (u(t), u̇(t), ..., u(m)(t)) is in
Um ⊂ Rdu(m+1). The successive time derivatives of the output y are related to the Lie derivatives
of h along the vector fields f , namely for any j ≤ m and any (x0, t0) in X × [0,+∞)

∂jY

∂tj
(x0, t0; t;u) = Lj

f
h(X(x0, t0; t;u), um(t)) .

We are now ready to define the notion of differential observability.

Definition 5.2.2.

Consider the function Hm on Rdx × Rdu(m+1) defined by

Hm(x, νm) =
(
h(x, νm) , Lfh(x, νm) , . . . , Lm−1

f
h(x, νm)

)
. (5.7)

10Hm is injective and ∂Hm
∂x

(x) has full-rank on X
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- weakly differentially observable of order m on S if for any νm in Um, the function
x 7→ Hm(x, νm) is injective on S.

- strongly differentially observable of order m on S if for any νm in Um, x 7→ Hm(x, νm)
is an injective immersion on S.

The function Hm(·, νm) is equivalent to Hm for autonomous systems since it is made of the
successive derivatives of the output, but it now depends on the input and its derivatives. The
notion of differential observability of order m thus means that when knowing the current input
and its derivatives, the current state is uniquely determined by the current output and its first
m − 1 derivatives. With this in hand, a straightforward extension of the stationary case along
the idea presented in [Zei84] is :

Theorem 5.2.1.

If Um is a compact subset of Rdu(m+1) and there exists an integer m and a subset S of Rdx
such that System (5.1) is weakly (resp strongly) differentially observable of order m on S,
then, for any compact subset C of S and any u in U , the function defined by

T (x, t) = Hm(x, um(t))

transforms System (5.1) into a continuous (resp Lipschitz) phase-variable form of dimension
dξ = mdy on C and with input ũ = um. Besides, x 7→ T (x, t) is uniformly injective in space
and in time on C.

Proof : Assume first that the system is weakly differentially observable of order m, i-e for all νm in
Um, x 7→ Hm(x, νm) is injective on C. According to Lemma A.3.5, it is uniformly injective in space and
in time on C and for any νm, it admits a uniformly continuous left inverse i-e there exists a function
H−1
m : Rdξ × Rdu(m+1) → Rdx such that for all νm in Um and all x in C

x = H−1
m (Hm(x, νm), νm) .

Now define
Φm(ξ, νm) = Lm

f
h(H−1

m (ξ, νm), νm) .

T transforms System (5.1) into the continuous phase-variable form
ξ̇1 = ξ2

...
ξ̇m−1 = ξm
ξ̇m = Φm(ξ, um(t))

Assume now the system is strongly observable. Still with Lemma A.3.5, ξ 7→ H−1
m (ξ, νm) can now be

taken Lipschitz on Rdξ , with the same Lipschitz constant for all νm in Um. It follows that ξ 7→ Φm(ξ, νm)
is Lipschitz on any compact set of Rdξ containing the compact set of interest Hm(C×Um), with the same
Lipschitz constant for all νm in Um. According to Kirszbraun-Valentine theorem [Kir34, Val45], it can
be extended to a Lipschitz function on Rdξ with still the same Lipschitz constant. This new extended
function ξ 7→ Φm(ξ, νm) is globally Lipschitz uniformly in νm and has not changed on Hm(C × Um)
where the system solutions evolve, thus we have a Lipschitz phase-variable form. �

The assumptions given in Theorem 5.2.1 are sufficient to ensure the existence of the func-
tion Φm in the phase-variable variable form. But they are not necessary. The possibility of
finding such a function, namely to express Lm

f
h (the mth derivative of the output) in terms of

h, Lfh, . . . , L
m−1
f

h (the output and its m− 1 first derivatives) and um (the input and its m first
derivatives) is thoroughly studied in [JG96] through the so-called "ACP(m) condition". We refer
the reader to [JG96] (or [GK01]) for a more complete analysis of those matters.
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Remark 4 Note that as we saw in Chapter 4, for a high gain design, it is not necessary to have
global Lipschitzness of the function Φm with respect to ξ. It is sufficient to have

|Φm(ξ, νm)− Φm(ξ̂, νm)| ≤ a|ξ − ξ̂|

for all ξ̂ in Rdξ , all νm in Um and ξ in a compact set containing Hm(C ×Um) where the system
solutions evolve. Thus, the Lipschitz extensions made in the proof of Theorem 5.2.1 are not
necessary in practice : as suggested in Chapter 4, it is sufficient to take11

Φm(ξ, νm) = satM (Lm
f
h(H−1

m (ξ, νm), νm)) (5.8)

where M is a bound for |Lm
f
h| on C × Um and H−1

m is any locally Lipschitz function defined on
Rdξ × Um which is a left-inverse of Hm on Hm(C × Um). It follows that the only difficulty is
the computation of a globally defined left-inverse for Hm, which is needed anyway to deduce an
estimate x̂ from ξ̂ (see [RM04]).

Stationary transformation

We have seen that under an appropriate injectivity assumption, the function made of the suc-
cessive derivatives of the output transforms the system into a Lipschitz phase-variable form.
The drawback of this design is that the transformation depends on the derivatives of the input,
which we may not have access to, in particular if we are not in an output feedback configuration.
It turns out that under appropriate assumptions involving uniform observability, a control-affine
multi-input single-output system

ẋ = f(x) + g(x)u , y = h(x) ∈ R (5.9)

can be transformed into a Lipschitz triangular form (3.12) by a stationary transformation. This
famous result was first proved in [GB81] and then in a simpler way in [GHO92]. Before stating
the result, we need the following definition.

Definition 5.2.3.

We call drift system of System (5.9) the dynamics with u ≡ 0, namely

ẋ = f(x) , y = h(x) .

Applying Definition 5.2.2, we say that the drift system of System (5.9) is weakly (resp
strongly) differentially observable of order m on S if the function

Hm(x) = (h(x), Lfh(x), . . . , Lm−1
f h(x))

is injective (resp an injective immersion) on S.

Differential observability of the drift system is weaker than differential observability of the
system since it is only for u ≡ 012. In order to obtain a triangular form, it is necessary to add
an assumption of uniform observability :

Theorem 5.2.2. [GB81, GHO92]

Assume that there exists an open subset S of Rdx such that

11The saturation function is defined by satM (s) = min {M,max {s,−M}}.
12or any other constant value
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- System (5.9) is uniformly instantaneously observable13 on S ;

- The drift system of System (5.9) is strongly differentially observable of order dx on S.

Then, Hdx defined by

Hdx(x) = (h(x), Lfh(x), . . . , Ldx−1
f h(x)) (5.10)

which is a diffeomorphism on S by assumption, transforms System (5.9) into a Lipschitz
triangular form (3.12) of dimension dξ = dx on S.

Triangularity makes the form (3.12) instantaneously observable for any input. Since the
transformation Hdx itself is independent from the input and injective, this observability property
must necessarily be verified by the original System (5.9). Thus, the first assumption is necessary.
A usual case where this property is verified is when there exists an order p such that the system
is weakly differentially observable of order p.

It is crucial that the order of strong differential observability of the drift system be dx (the
dimension of the state) to ensure the Lipschitzness of the triangular form in order to use a high
gain observer. When this order is larger than dx, we will see in Chapter 6 that triangularity
is often preserved but the Lipschitzness is lost : the triangular form is only continuous and
observers from Chapter 4 must be used.

5.2.2 General Lipschitz triangular form

Consider a general multi-input single-output control-affine system

ẋ = f(x) + g(x)u , y = h(x) + hu(x)u ∈ R (5.11)

where g and hu are matrix fields with values in Rdx×du and R1×du such that for any u =
(u1, ..., udu) in Rdu ,

g(x)u =
du∑
k=1

gk(x)uk , hu(x)u =
du∑
k=1

huk(x)uk

with gk vector fields of Rdx and huk real-valued functions. We want to know under which condi-
tions this system can be transformed into a general Lipschitz triangular form (3.19)

ξ̇1 = A1(u, y) ξ2 + Φ1(u, ξ1)
...

ξ̇i = Ai(u, y) ξi+1 + Φi(u, ξ1, . . . , ξi)
...

ξ̇m = Φm(u, ξ)

, y = C1(u)ξ1

for which a Kalman-High gain observer (3.21) may exist14. Before stating the main result, we
need some definitions introduced in [HK77].

Definition 5.2.4.

The observation space of System 5.11, denoted O, is the smallest real vector space such that
- x 7→ h(x) and x 7→ huk(x) for any k in {1, . . . , du} are in O ;

- O is stable under the Lie derivative along the vector fields f , g1, ... , gdu , i-e for any
13see Definition 2.2.1.
14An additional excitation condition on the input is needed, see Chapter 3.
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element φ of O, Lfφ and Lgkφ for all k in {1, . . . , du} are in O.

We denote dO the codistribution of Rdx defined by

dO(x) =
{
dφ(x) , φ ∈ O

}
.

This leads to the following observability notion.

Definition 5.2.5.

System 5.11 is said to satisfy the observability rank condition at a point x in Rdx (resp on
S) if

dim(dO(x)) = dx (resp ∀x ∈ S) .

It is proved in [HK77] that the observability rank condition is sufficient to ensure the so-
called "local weak observability", which roughly means that any point can be instantaneously
distinguished from its neighbors via the output. In fact, this property is also necessary on a
dense subset of X . We refer the interested reader to [HK77] for a more precise account of those
notions.

In [BT07], the authors relate the observability rank condition to the ability of transforming
(at least locally) a system into a general Lipschitz triangular form.

Theorem 5.2.3. [BT07]

If System (5.11) satisfies the observability rank condition at x0 then there exists a neigh-
borhood V of x0 and an injective immersion T on V which transforms System (5.11) into a
general Lipschitz triangular form (3.19) on V with the linear parts Ai independent from the
output i-e Ai(u, y) = Ai(u).

This result is local because the rank condition is of local nature and does not say that we can
select the same immersion T around every point of X , let alone that this function is injective on
X . However, we give this result all the same because the idea of the construction of the function
T is the same whether we look for a global immersion or a local one. Here is the algorithm
presented in [BT07]:

1. Take T 1(x) = (h(x), hu1(x), . . . , hudu(x)) of dimension N1 = du + 1.

2. Suppose T 1, . . . , T i have been constructed in the previous steps, of dimension N1, . . . , Ni.
Pick among theirN1+...+Ni differentials a maximum number νi of differentials dφ1, . . . , dφνi
which generate a regular codistribution around x0, i-e there exists a neighborhood of x0
where dim(span{dφ1(x), . . . , dφνi(x)}) is constant and equal to νi.

- if νi = dx stop ;
- otherwise build T i+1 with every functions LfT ij and LgkT ij , with j in {1, . . . , Ni} and k
in {1, . . . , du}, except those whose differential already belongs to span{dφ1(x), . . . , dφνi(x)}
in a neighborhood of x0.

Finally, denoting m the number of iterations, take T (x) = (T 1(x), . . . , Tm(x)).

The observability rank condition ensures that the algorithm stops at some time because com-
puting the successive T i comes back to progressively generating all O which is of dimension dx
around x0. Besides, it is shown in [BT07], that when the differential dφ of some real valued
function φ is such that, in a neighborhood of x0, dφ(x) belongs to span{dφ1(x), . . . , dφνi(x)}
with dφ1(x), . . . , dφνi(x) independent, then φ can be locally expressed in a Lipschitz way in
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terms of φ1, . . . , φνi . Therefore, either the derivatives of the elements of T i are in T i+1 or they
can be expressed in terms of the previous T 1, . . . , T i. It follows that for any i, there exist a
matrix Ai(u) and a function Φi (linear in u and with Φ(u, ·) Lipschitz) such that

˙︷ ︷
T i(x) = LfT

i(x) +
du∑
k=1

uk LgkT
i(x) = Ai(u)T i+1(x) + Φi(u, T 1(x), . . . , T i(x)) ,

which gives the general triangular form (3.19).
Note that the transformation T thus obtained is a local immersion. If we are interested in

a global transformation, the same algorithm can be applied but everything must be checked
globally (and not in a neighborhood of x0) and we need to go on with this algorithm until
obtaining a global injective immersion. But there is no guarantee that this will be possible,
unless a stronger assumption is made. In particular, if the drift system (i-e with u ≡ 0) is
strongly differentially observable of some order p, the algorithm provides a global injective
immersion in a maximum of p iterations. Beware however, that it still remains to check that the
functions Φi exist globally. If this is not the case, it is always possible to put the corresponding
LfT

i
j (x) or LgkT ij (x) in T i+1, but this is bound to considerably increase the dimension of T (and

thus of the observer).
Finally, it is important to remark that this design enables to avoid the strong assumption

of uniform observability needed for the classical triangular form, by stuffing the LgkT ij (x) which
do not verify the triangularity constraint into the state. The first obvious setback is that it
often leads to observers of very large dimension. But mostly, unlike the classical Lipschitz
triangular form which admits a high gain observer without further assumption, the possibility
of observer design for the general Lipschitz triangular form is not automatically achieved as
seen in Chapter 3 : building the transformation is not enough, one need to check an additional
excitation condition on the input.

5.3 Conclusion
A lot of results exist in the literature concerning the characterization of systems which can
be transformed into a normal form and we have tried to give in this chapter as thorough an
account as possible. Those results are summed up in Table 5.1. However, some cases have not
been addressed yet. They are highlighted in the table with the sign ? and will be studied in the
following chapters :

- Chapter 6 : transformation into a continuous triangular form. We study what becomes
of Theorem 5.2.2 when the system has an order of differential observability larger than
dx. We show that using the same transformation, triangularity may be preserved but not
its Lipschitzness, i-e the system may be transformed into a continuous triangular form,
instead of a Lipschitz triangular form.

- Chapter 7 : transformation of time-varying/controlled systems into a Hurwitz form. We
extend the results presented in Section 5.1.2 for autonomous systems to controlled sys-
tems. We show that similar results can be obtained under the assumption of backward
distinguishability in finite time, or strong differential observability.
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Chapter 6

Transformation into a continuous
triangular form

Chapitre 6 – Transformation dans une forme triangulaire continue. Ce chapitre
étend le résultat présenté dans [GB81, GHO92] et rappelé dans Theorem 5.2.2, selon lequel tout
système instantanément uniformément observable et, pour u ≡ 0, fortement différentiellemment
observable d’ordre sa dimension dx, peut être transformé en une forme triangulaire Lipschitz
(3.12). En particulier, nous étudions le cas plus général où l’ordre d’observabilité différentielle est
quelconque, c’est-à-dire éventuellemment supérieur à la dimension du système. Nous montrons
que dans ce cas, la dynamique du système peut encore (au moins partiellemment) être décrite
par une forme triangulaire continue mais que cette forme n’est plus nécessairement Lipschitz.
Des conditions nécessaires et suffisantes pour que le caractère Lipschitz soit assuré sont établies,
et en particulier un lien étroit avec l’observabilité infinitésimale uniforme est mis en évidence.
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This chapter extends the result presented in [GB81, GHO92] and recalled in Theorem
5.2.2 which says that any uniformly instantaneously observable1 single-output control-affine
system whose drift system is strongly differentially observable2 of order its dimension dx, can be
transformed into a Lipschitz triangular form (3.12). In particular, we investigate what happens
in the more general case where the drift system is weakly differentially observable of some order,
namely of an order larger or equal to the dimension of the system. We shall see that, in this
case, the system dynamics may still be described by a (partial) continuous triangular form
but with nonlinear functions Φi which may not be locally Lipschitz. As we saw in Chapter 4,

1See Definition 2.2.1
2See Definition 5.2.3.
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this loss of Lipschitzness can prevent the use of a high gain observer, and we establish in this
chapter necessary and sufficient conditions on the system for the Lipschitzness to be ensured. In
particular, a tight link with uniform infinitesimal observability is revealed. The results presented
in this chapter have been published in [BPA17b].

6.1 Presentation of the problem
As in Section 5.2.1, we consider a single-output control-affine system of the form :

ẋ = f(x) + g(x)u , y = h(x) (6.1)

where x is the state in Rdx , u is an input in Rdu , y is a measured output in R and the functions f ,
g and h are sufficiently many times differentiable. As in the previous chapter, we go on denoting

Hi(x) = (h(x), Lfh(x), ..., Li−1
f h(x)) ∈ Ri . (6.2)

According to Definition 5.2.3, we say that the drift system of System (6.1) is weakly (resp.
strongly) differentially observable of order m on S if Hm is injective (resp. an injective immer-
sion) on S.

We are interested in solving :

Problem T

Given a compact subset C of Rdx , under which condition do there exist integers T and dξ,
a continuous injective function T : C → Rdξ , and continuous functions ϕdξ : Rdξ → R and
gi : Ri(or Rdξ)→ Rdu such that T transforms System (6.1) into the up-to-T-triangular form

ξ̇1 = ξ2 + g1(ξ1)u
...

ξ̇T = ξT+1 + gT(ξ1, . . . , ξT)u
ξ̇T+1 = ξT+2 + gT+1(ξ)u

...
ξ̇dξ = ϕdξ(ξ) + gdξ(ξ)u

, y = x1 (6.3)

on C.

Because gi depends only on ξ1 to ξi, for i ≤ T, but potentially on all the components of ξ
for i > T, we call this particular form up-to-T-triangular normal form and T is called the order
of triangularity. When dξ = T + 1, we say full triangular normal form. When the functions ϕdξ
and gj are locally Lipschitz we say Lipschitz up-to-T-triangular normal form.

According to Theorem 5.2.2, in the case where System (6.1) is instantaneously uniformly
observable and Hdx is a diffeomorphism on an open set S containing the given compact set,
T = Hdx transforms the system on C into a full Lipschitz triangular normal form of dimension
dξ = dx. However, in general, it is possible for the system not to be strongly differentially
observable of order dx everywhere. This motivates our interest in the case where the drift
system is strongly differentially observable of order m > dx, i-e Hm is an injective immersion
but not a diffeomorphism.

The specificity of the triangular normal form (6.3) is not so much in its structure but more in
the dependence of its functions gi and ϕdξ . Indeed, by choosing T = Hdξ , we obtain in general:

˙︷ ︷
Hdξ(x) =


0 1 0 . . . 0... . . . . . . . . . ...... . . . . . . 0
0 . . . . . . 0 1
0 . . . . . . . . . 0

Hdξ(x) +


0......
0

L
dξ
f h(x)

+ LgHdξ(x)u
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But, to get (6.3), we need further the existence of functions ϕdξ and gi satisfying, for i > T,

L
dξ
f h(x) = ϕdξ(Hdξ(x)) , LgL

i−1
f (x) = gi(Hdξ(x)) ∀x ∈ C (6.4)

and, for i ≤ T,
LgL

i−1
f (x) = gi(h(x), . . . , Li−1

f h(x)) ∀x ∈ C . (6.5)

Let us illustrate via the following elementary example what can occur.

Example 6.1.1 Consider the system defined as
ẋ1 = x2
ẋ2 = x3

3
ẋ3 = 1 + u

, y = x1

We get

H3(x) =

 h(x)
Lfh(x)
L2
fh(x)

 =

 x1
x2
x3

3

 , H5(x) =

 H3(x)
L3
fh(x)

L4
fh(x)

 =

 H3(x)
3x2

3
6x3


Hence H3 is a bijection and H5 is an injective immersion on R3. So the drift system is weakly
differentially observable of order 3 on R3 and strongly differentially observable of order 5 on R3.
Also the function (x1, x2, x3) 7→ (y, ẏ, ÿ) being injective for all u, it is uniformly instantaneously
observable on R3. From this we could be tempted to pick dξ = 3 or 5 and the compact set C
arbitrary in R3. Unfortunately, if we choose dξ = 3, we must have

ϕ3(H3(x)) = L3
fh(x) = 3x2

3 = 3(L2
fh(x))2/3

and there is no locally Lipschitz function ϕ3 satisfying (6.4) if the given compact set C contains
a point satisfying x3 = 0. If we choose dξ = 5, we must have

g3(H3(x)) = LgL
2
fh(x) = 3x2

3 = L3
fh(x) = 3(L2

fh(x))2/3

and there is no locally Lipschitz function g3 satisfying (6.5) if the given compact set C contains
a point satisfying x3 = 0. N

Following this example, we leave aside the Lipschitzness requirement for the time being, and
focus on the existence of continuous functions ϕdξ and gi verifying (6.4) and (6.5). It turns out
that (6.4) is easily satisfied as soon as Hdξ is injective :

Theorem 6.1.1.

Suppose the drift system of System (6.1) is weakly (resp. strongly) differentially observable
of order m on an open set S containing the given compact set C. For any dξ ≥ m, there exist
continuous (resp. Lipschitz) functions ϕdξ : Rdξ → R, gi : Rdξ → R satisfying (6.4).

Proof : There is nothing really new in this result. It is a direct consequence of the fact that a continuous
injective function, like Hm, defined on a compact set admits a continuous left inverse defined on Rdξ
(see Lemma A.3.3), and that when it is also an immersion, its left-inverse can be chosen Lipschitz on
Rdξ (see Lemma A.3.5 or [RM04]). �

We conclude that the real difficulty lies in finding triangular functions gi satisfying (6.5).

6.2 Existence of gi satisfying (6.5)

6.2.1 Main result

We will prove the following result :
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Theorem 6.2.1.

Suppose System (6.1) is uniformly instantaneously observable on an open set S containing
the given compact set C. Then,

- there exists a continuous function g1 : R→ Rdu satisfying (6.5).

- if, for some i in {2, . . . , dx}, H2, . . . ,Hi defined in (6.2) are open maps, then, for all
j ≤ i, there exists a continuous function gj : Rj → Rdu satisfying (6.5).

The rest of this section is dedicated to the proof of this result through a series of lemmas.
Note that, in the case where the drift system is strongly differentially observable of order dx, Hi

is a submersion and thus open for all i ≤ dx, and the result holds.
A first important thing to notice is that the following property must be satisfied for the

identity (6.5) to be satisfied (on S).

Property A(i)

LgL
i−1
f h(xa) = LgL

i−1
f h(xb) ∀(xa, xb) ∈ S2 : Hi(xa) = Hi(xb)

Actually the converse is true and is a direct consequence of Lemma A.3.3 :

Lemma 6.2.1.

If Property A(i) is satisfied with S containing the given compact set C, then there exists a
continuous function gi : Ri → Rdu satisfying (6.5).

Property A(i) being sufficient to obtain the existence of a function gi satisfying (6.5), we
study now under which conditions it holds. Clearly A(i) is satisfied for all i ≥ m if Hm is
injective. If we do not have this injectivity property the situation is more complex. To overcome
the difficulty we introduce the following property for 2 ≤ i ≤ dx + 1.

Property B(i)

For any (xa, xb) in S2 such that xa 6= xb and Hi(xa) = Hi(xb) , there exists a sequence
(xa,k, xb,k) of points in S2 converging to (xa, xb) such that for all k, Hi(xa,k) = Hi(xb,k) and
∂Hi−1
∂x

is full-rank at xa,k or xb,k.

As in this property, let xa 6= xb be such that Hi(xa) = Hi(xb). If ∂Hi−1
∂x is full-rank at either

xa or xb, then we can take (xa,k, xb,k) constant equal to (xa, xb). Thus, it is sufficient to check
B(i) around points where neither ∂Hi−1

∂x (xa) nor ∂Hi−1
∂x (xb) is full-rank. But according to [GK01,

Theorem 4.1], the set of points where ∂Hdx
∂x is not full-rank is of codimension at least one for a

uniformly observable system. Thus, it is always possible to find points xa,k as close to xa as we
want such that ∂Hi−1

∂x (xa,k) is full-rank. The difficulty of B(i) thus rather lies in ensuring that
we have also Hi(xa,k) = Hi(xb,k).

In Section 6.2.2, we prove :

Lemma 6.2.2.

Suppose System (6.1) is uniformly instantaneously observable on S.

- Property A(1) is satisfied.

- If, for some i in {2, . . . , dx + 1}, Property B(i) holds and Property A(j) is satisfied for
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all j in {1, . . . , i− 1}, then Property A(i) holds.

Thus, the first point in Theorem 6.2.1 is proved. Besides, a direct consequence of Lemmas
6.2.1 and 6.2.2 is that a sufficient condition to have the existence of the functions gi for i in
{2, . . . , dx + 1} is to have B(j) for j in {2, . . . , i}. The following lemma finishes the proof of
Theorem 6.2.1 by showing that B(j) is in fact satisfied when Hj is an open map.

Lemma 6.2.3.

Suppose that for some j in {2, . . . , dx}, Hj is an open map on S. Then, B(j) is satisfied.

Proof : Take (xa, xb) in S2 such that xa 6= xb and Hj(xa) = Hj(xb) = y0. Let Π be the set of points
of S such that ∂Hj

∂x
is not full-rank. According to Sard’s theorem, Hj(Π) is of measure zero in Rj .

Now, take p > 0 and consider Bp(xa) and Bp(xb) the open balls of radius 1
p
centered at xa and xb

respectively. Since Hj is open, Hj(Bp(xa)) and Hj(Bp(xb)) are open sets, both containing y0. Thus,
Hj(Bp(xa)) ∩Hj(Bp(xb)) is a non-empty open set. It follows that (Hj(Bp(xa)) ∩Hj(Bp(xb))) \Hj(Π)
is non-empty and contains a point yp. We conclude that there exist (xa,p, xb,p) in Bp(xa) × Bp(xb)
such that Hj(xa,p) = Hj(xb,p) = yp and ∂Hj

∂x
(and thus ∂Hj−1

∂x
) is full-rank at xa,p and xb,p. Besides

(xa,p, xb,p) converges to (xa, xb), and B(j) is satisfied. �

Note that the assumption that Hj is an open map is stronger than B(j) since it leads to the
full rank of ∂Hj

∂x , while, in B(j), we only need the full-rank for ∂Hj−1
∂x . We show in the following

example that the openness of Hj is not necessary.

Example 6.2.1 Consider the system defined as
ẋ1 = x2
ẋ2 = x3

3x1
ẋ3 = 1 + u

, y = x1 (6.6)

On S =
{
x ∈ R3 : x2

1 + x2
2 6= 0

}
, and whatever u is, the knowledge of the function t 7→ y(t) =

X1(x, t) and therefore of its three first derivatives

ẏ = x2 , ÿ = x3
3x1 ,

...
y = 3x2

3x1(1 + u) + x3
3x2

gives us x1, x2 and x3. Thus, the system is uniformly instantaneously observable on S. Besides,
the function

H4(x) =


x1
x2
x3

3x1
3x2

3x1 + x3
3x2


is injective on S, thus the system is weakly differentially observable of order 4 on S. Now,
although H2 is trivially an open map on S, H3 is not. Indeed, consider for instance the open
ball3 B 1

2
(0, x2, 0) in R3 for some x2 such that |x2| > 1

2 . B 1
2
(0, x2, 0) is contained in S. Suppose its

image by H3 is an open set of R3. It contains H3(0, x2, 0) = (0, x2, 0) and thus (ε, x2, ε) for any
sufficiently small ε. This means that there exist x in B 1

2
(0, x2, 0) such that (ε, x2, ε) = H3(x), i-e

necessarily x1 = ε and x3 = 1. But this point is not in B 1
2
(0, x2, 0), and we have a contradiction.

Therefore, H3 is not open. However, B(3) trivially holds because H2 is full-rank everywhere. N

6.2.2 Proof of Lemma 6.2.2

Lemma 6.2.2 is fundamental for the main result of this chapter. That is why we dedicate a
whole section to its proof. It is built in the same spirit as the one in [GHO92] but in a more

3Br(x) denotes the open ball centered at x and with radius r.
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detailed and complete way so that the reader can understand how the fact that Hdξ is no longer
a diffeomorphism makes a great difference.

Assume the system is uniformly instantaneously observable on S. We first show that property
A(1) holds. Suppose there exists (x∗a, x∗b) in S2 and k in {1, ..., du} such that x∗a 6= x∗b and

h(x∗a) = h(x∗b) , Lgkh(x∗a) 6= Lgkh(x∗b) .

Then, the control law u with all its components zero except its kth one which is

uk = − Lfh(xa)− Lfh(xb)
Lgkh(xa)− Lgkh(xb)

.

is defined on a neighborhood of (x∗a, x∗b). The corresponding solutions X(x∗a; t;u) and X(x∗b ; t;u)
are defined on some time interval [0, t) and satisfy

h(X(x∗a; t;u)) = h(X(x∗b ; t;u)) ∀t ∈ [0, t) .

Since x∗a is different from x∗b , this contradicts the instantaneous observability. Thus A(1) holds.
Let now i in {2, . . . , dx + 1} be such that Property B(i) holds and A(j) is satisfied for all j

in {1, . . . , i− 1}. To establish by contradiction that A(i) holds, we assume this is not the case.
This means that there exists (x∗a,0, x∗b,0) in S2 and k in {1, ..., du} such that Hi(x∗a,0) = Hi(x∗b,0)
but LgkL

i−1
f (x∗a,0) 6= LgkL

i−1
f (x∗b,0). This implies x∗a,0 6= x∗b,0. By continuity of LgkL

i−1
f and

according to B(i), there exists x∗a (resp x∗b) in S sufficiently close to x∗a,0 (resp x∗b,0) satisfying
x∗a 6= x∗b ,

Hi(x∗a) = Hi(x∗b) , LgkL
i−1
f (x∗a) 6= LgkL

i−1
f (x∗b) ,

and ∂Hi−1
∂x is full-rank at x∗a or x∗b . Without loss of generality, we suppose it is full-rank at

x∗a. Thus, ∂Hj

∂x is full-rank at x∗a for all j < i ≤ dx + 1. We deduce that there exists an open
neighborhood Va of x∗a such that for all j < i, ∂Hj

∂x is full-rank on Va. Since A(j) holds for all
j < i, according to Lemma A.3.4, Hj(Va) is open for all j < i and there exist locally Lipschitz
functions gj : Hj(Va)→ Rdu such that, for all xα in Va,

gj(Hj(xα)) = LgL
j−1
f h(xα) . (6.7)

Also, Hj(x∗a) = Hj(x∗b) implies that Hj(x∗b) is in the open set Hj(Va). Continuity of each Hj

implies the existence of an open neighborhood Vb of x∗b such that Hj(Vb) is contained in Hj(Va)
for all j < i. Thus, for any xβ in Vb, Hj(xβ) is in Hj(Va), and there exists xα in Va such that
Hj(xα) = Hj(xβ). According to A(j) this implies that LgLj−1

f h(xβ) = LgL
j−1
f h(xα) and with

(6.7),
LgL

j−1
f h(xβ) = LgL

j−1
f h(xα) = gj(Hj(xα)) = gj(Hj(xβ)) .

Therefore, (6.7) holds on Va and Vb.
Then, the control law u with all its components zero except its kth one which is

uk = −
Lifh(xa)− Lifh(xb)

LgkL
i−1
f h(xa)− LgkL

i−1
f h(xb)

is defined on a neighborhood of (x∗a, x∗b). The corresponding solutions X(x∗a; t;u) and X(x∗b ; t;u)
are defined on some time interval [0, t) where they remain in Va and Vb respectively. Let
Za(t) = Hi(X(x∗a; t;u)), Zb(t) = Hi(X(x∗b ; t;u)) and W (t) = Za(t) − Zb(t) on [0, t). Since, for
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all j < i, (6.7) holds on Va and Vb , (W,Za) is solution to the system :

ẇ1 = w2 + (g1(ξa,1)− g1(ξa,1 − w1))u
...

ẇj = wj+1 + (gj(ξa,1, ..., ξa,j)− gj(ξa,1 − w1, ..., ξa,j − wj))u
...

ẇi = 0
ξ̇a,1 = ξ2 + g1(ξa,1)u

...
ξ̇a,j = ξj+1 + gj(ξa,1, ..., ξa,j)u

...
ξ̇a,i = ũ

with initial condition (0,Hi(x∗a)), where ũ is the time derivative of Za,i(t). Note that the
function (0, Za) is also a solution to this system with the same initial condition. Since the
functions involved in this system are locally Lipschitz, it admits a unique solution. Hence, for
all t in [0, t[, W (t) = 0, and thus Za(t) = Zb(t), which implies h(X(x∗a, t)) = h(X(x∗b , t)). Since
x∗a is different from x∗b , this contradicts the uniform observability. Thus A(i) holds.

6.2.3 A solution to Problem T

With Theorems 6.1.1 and 6.2.1, we have the following solution to Problem T.

Theorem 6.2.2.

Let S be an open set containing the given compact set C. Suppose

- System (6.1) is uniformly instantaneously observable on S

- the drift system of System (6.1) is weakly differentially observable of order m on S.

With selecting T = Hm and dξ = m, we have a solution to Problem T if we pick either T = 1,
or T = i when Hj is an open map for any j in {2, . . . , i} with i ≤ dx.

Remark 5
- As seen in Example 6.2.1, the openness of the functions Hj is sufficient but not necessary.
We may ask only for B(j) for any j in {2, . . . , i} with i ≤ dx + 1. Besides, this weaker
assumption allows to obtain the existence of gi up to the order dx + 1.

- Consider the case where B(j) is satisfied for all j ≤ dx + 1 and m = dx + 2. Then we have
T = dx + 1 and it is possible to obtain a full triangular form of dimension dξ = T + 1 =
m = dx+2. Actually, we still have a full triangular form if we choose dξ > m. Indeed, Hm

being injective, A(i) is satisfied for all i larger than m, thus there also exist continuous
functions gi : Ri → Rdu satisfying (6.5) for all i ≥ m. It follows that T can be taken larger
than dx + 1 and dξ = T + 1 larger than m.

- If Problem T is solved with dξ = T + 1, we have a full triangular normal form of dimension
dξ. But, at this point we know nothing about the regularity of the functions gi, besides
continuity. As we saw in Example 6.1.1, even the usual assumption of strong differential
observability is not sufficient to make it Lipschitz everywhere. As studied in Chapter 4,
this may impede the convergence of a high gain observer. That is why, in the next section,
we look for conditions under which the Lipschitzness is ensured.
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- As explained in Section 5.2.1, another way of solving Problem T is to allow the transfor-
mation T to depend on the control u and its derivatives. In particular, if dξ > T + 1, a full
triangular form may still be obtained with T = (HT, T̃ ) where the components T̃i of T̃ are
defined recursively as

T̃1 = LT

fh , T̃i+1 = Lf+guT̃i +
i−2∑
j=0

∂T̃i
∂u(j)u

(j+1)

until (if possible) the map x 7→ T (x, u, u̇, ...) becomes injective for all (u, u̇, ...). The inter-
est of this approach is to ensure triangularity while reducing the order of differentiation of
u compared to Theorem 5.2.1.

Example 6.2.2 Coming back to Example 6.2.1, we have seen that H2 is open and that H3 is not
but B(3) is satisfied. Besides, the system is weakly differentially observable of order 4. We deduce
that there exists a full-triangular form of order 4. Indeed, we have Lgh(x) = LgLfh(x) = 0 and

LgL
2
fh(x) = 3x2

3x1 = 3(L2
fh(x))

2
3 (h(x))

1
3

so that we can take
g1 = g2 = 0 , g3(ξ1, ξ2, ξ3) = 3ξ

2
3
3 ξ

1
3
1 .

As for ϕ4 and g4, they are obtained via inversion of H4 i-e for instance on R4\{(0, 0, ξ3), ξ3 ∈ R}

H−1
4 (ξ) =

ξ1, ξ2,

(ξ4 − 3ξ
2
3
3 ξ

1
3
1 )2 + ξ2

3
ξ2

1 + ξ2
2


1
6
 .

6.3 Lipschitzness of the triangular form

6.3.1 A sufficient condition

We saw with Examples 6.1.1 and 6.2.1 that uniform instantaneous observability is not sufficient
for the functions gi to be Lipschitz. Nevertheless, we are going to show in this section that it
is sufficient except maybe around the image of points where ∂Hi

∂x
is not full-rank (x1 = 0 or

x3 = 0 in Example 6.2.1).
Consider the open set Ri of points in S where ∂Hi

∂x
has full rank. According to [Leb82,

Corollaire p68-69], if Hi is an open map, Ri is an open dense set. Anyway, assume Rdx ∩ C is
non empty. Then there exists ε0 > 0 such that, for all ε in (0, ε0], the set

Ki,ε =
{
x ∈ Ri ∩ C , d(x , Rdx\Ri) ≥ ε

}
.

is non-empty and compact, and such that its points are (ε)-away from singular points. The next
theorem shows that the functions gi can be taken Lipschitz on the image of Ki,ε, i-e everywhere
except arbitrary close to the image of points where the rank of the Jacobian of Hi drops.

Theorem 6.3.1.

Assume System (6.1) is uniformly instantaneously observable on an open set S containing
the compact set C. For all i in {1, ..., dx} and for any ε in (0, ε0], there exists a Lipschitz
function gi : Ri → Rdu satisfying (6.5) for all x in Ki,ε.

Proof : As noticed after the statement of Property B(i), since ∂Hi

∂x
has full rank in the open set Ri,

Property B(i) holds on Ri (i-e with Ri replacing S in its statement). It follows from Lemma 6.2.2
that A(i) is satisfied on Ri. Besides, according to Lemma A.3.4, Hi(Ri) is open and there exists a C1
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function gi defined on Hi(Ri) such that for all x in Ri, gi(Hi(x)) = LgL
i−1
f h(x). Now, Ki,ε being a

compact set contained in Ri, and Hi being continuous, Hi(Ki,ε) is a compact set contained in Hi(Ri).
Thus, gi is Lipschitz on Hi(Ki,ε). According to [McS34], there exists a Lipschitz extension of gi to Ri
coinciding with gi on Hi(Ki,ε), and thus verifying (6.5) for all x in Ki,ε. �

For a strongly differentially observable system of order m = dx on S, the Jacobian of Hi

for any i in {1, ..., dx} has full rank on S. Thus, taking dξ = T + 1 = m = dx a full Lipschitz
triangular form of dimension dx exists, i.e. we recover the result of Theorem 5.2.2.

Example 6.3.1 In Example 6.2.1, H3 is full rank on S \ {x ∈ R3 | x1 = 0 or x3 = 0}. Thus,
according to Theorem 6.3.1, the only points where g3 may not be Lipschitz, are the image of
points where x1 = 0 or x3 = 0. Let us study more precisely what happens around those points.
Take xa = (x1,a, x2,a, 0) in S. If there existed a locally Lipschitz function g3 verifying (6.5)
around xa, there would exist a > 0 such that for any xb = (x1,b, x2,a, x3,b) sufficiently close to xa
with x1,b 6= 0, |3x2

3,b| ≤ a|x3
3,b|, which we know is impossible. Therefore, there does not exist a

function g3 which is Lipschitz around the image of points where x3 = 0. Let us now study what
happens elsewhere, namely on S̃ = S \ {x ∈ R3 |x3 = 0}. It turns out that, on any compact set
C of S̃, there exists4 a such that we have for all (xa, xb) in C2,

|x2
3,ax1,a − x2

3,bx1,b| ≤ a(|x1,a − x1,b|+ |x3
3,ax1,a − x3

3,bx1,b|)

Therefore, the continuous function g3 found earlier in Example 6.2.2 such that g3(H3(x)) =
LgL

2
f (x) = 3x2

3x1 on S (and thus on C) verifies in fact

|g3(ξa)− g3(ξb)| ≤ a|ξa − ξb|

on H3(C) and can be extended to a Lipschitz function on R3 according to [McS34]. We conclude
that although H3 does not have a full-rank Jacobian everywhere on C (singularities at x1 = 0),
it is possible to find a Lipschitz function g3 solution to our problem on this set. N

6.3.2 A necessary condition

We have just seen that the condition in Theorem 6.3.1 that the Jacobian of Hi be full-rank, is
sufficient but not necessary. In order to have locally Lipschitz functions gi satisfying (6.5), there
must exist for all x a strictly positive number a such that for all (xa, xb) in a neighborhood of x,

|LgLi−1
f h(xa)− LgLi−1

f h(xb)| ≤ a |Hi(xa)−Hi(xb)| . (6.8)

We have the following necessary condition :

Lemma 6.3.1.

Consider x in S such that (6.8) is satisfied in a neighborhood of x. Then, for any non zero
vector v in Rdx , and any k in {1, . . . , du}, we have :

∂Hi

∂x
(x) v = 0 ⇒

∂LgkL
i−1
f h

∂x
(x) v = 0 . (6.9)

4 If x1,a and x1,b are both zero, the inequality is trivial. Suppose |x1,a| > |x1,b| and denote ρ = x1,b
x1,a

. If ρ < 0,

we have directly |x2
3,a − ρ x2

3,b| ≤ max{x2
3,a, x

2
3,b}|1 − ρ|. If now ρ > 0, x2

3,a − ρ x2
3,b =

(x3
3,a−ρ

3
2 x3

3,b)(x3,a+√ρx3,b)
x2

3,a+√ρx3,ax3,b+ρx2
3,b

and thus |x2
3,a − ρ x2

3,b| ≤ 2
√

2√
x2

3,a+ρx2
3,a

|x3
3,a − ρ

2
3 x3

3,b|. Besides, |x3
3,a − ρ

3
2 x3

3,b| = |x3
3,a − ρx3

3,b + ρ(1−√ρ)x3
3,b| ≤

|x3
3,a − ρx3

3,b|+
ρ|x3

3,b|
1+√ρ |1− ρ| which gives a on compact sets.



84 Chapter 6. Transformation into a continuous triangular form

Proof : Assume there exists a non-zero vector v in Rdx such that ∂Hi

∂x
(x) v = 0 . Choose r > 0 such

that Inequality (6.8) holds on Br(x), the ball centered at x and of radius r. Consider for any integer p
the vector xp in Br(x) defined by xp = x − 1

p
1
|v|v. This gives a sequence converging to x when p tends

to infinity. We have

0 ≤
|LgkL

i−1
f h(x)− LgkL

i−1
f h(xp)|

|x− xp|
≤ a

|Hi(x)−Hi(xp)|
|x− xp|

(6.10)

But, Hi(x)−Hi(xp)
|x−xp| tends to ∂Hi

∂x
(x) v which by assumption is 0 . Similarly 1

|x−xp| (LgkL
i−1
f h(x) −

LgkL
i−1
f h(xp)) tends to

∂LgkL
i−1
f h

∂x
(x) v which is also 0 according to (6.10). �

We conclude that when Hi does not have a full-rank Jacobian, it must satisfy condition (6.9)
to allow the existence of locally Lipschitz triangular functions gi. This condition is in fact about
uniform infinitesimal observability.

Definition 6.3.1.

See [GK01, Definition I.2.1.3]. Consider the system lifted to the tangent bundle ([GK01,
page 10]) {

ẋ = f(x) + g(x)u
v̇ =

[
∂f
∂x (x) + ∂gu

∂x (x)
]
v

,

{
y = h(x)
w = ∂h

∂x(x)v (6.11)

with v in Rdx and w in R and the solutions of which are denoted (X(x; t;u), V ((x, v); t;u)).
System (6.1) is uniformly instantaneously infinitesimally observable on S if, for any pair
(x, v) in S × Rdx \ {0}, any strictly positive number t, and any C1 function u defined on an
interval [0, t), there exists a time t < t such that ∂h

∂x
(X(x; t;u))V ((x, v); t;u) 6= 0 and such

that X(x; s;u) ∈ S for all s ≤ t.

We have the following result.

Theorem 6.3.2.

Suppose that System (6.1) is strongly differentially observable of order m (or at least that
Hm is an immersion on S) and that Inequality (6.8) is verified at least locally around any
point x in S for any i in {1, . . . ,m}. Then the system is uniformly infinitesimally observable
on S.

Proof : According to Lemma 6.3.1, we have (6.9). Now take x in S and a non-zero vector v and suppose
that there exists t > 0 such that for all t in [0, t),X(x; t;u) is in S and w(t) = ∂h

∂x
(X(x; t;u))V ((x, v); t;u) =

0. To simplify the notations, we denote X(t) = X(x; t;u) and V (t) = V ((x, v); t;u). For all integer i, we
denote

wi(t) =
∂Li−1

f h

∂x
(X(t))V (t) .

We note that for any function ψ : Rn → R, we have

˙︷ ︷
∂ψ

∂x
(X(t))V (t) = ∂Lfψ

∂x
(X(t))V (t) +

du∑
k=1

uk
∂Lgkψ

∂x
(X(t))V (t) .

We deduce for all integer i and all t in [0, t)

ẇi(t) = wi+1(t) +
du∑
k=1

uk
∂LgkL

i−1
f h

∂x
(X(t))V (t) .

Let us show by induction that wi(t) = 0 for all integer i and all t in [0, t). It is true for i = 1 by
assumption. Now, take an integer i > 1, and suppose wj(t) = 0 for all t in [0, t) and all j ≤ i,
i-e ∂Hi

∂x
(X(x; t;u))V ((x, v); t;u) = 0 for all t < t. In particular, ẇi(t) = 0 for all t < t. Besides,
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according to (6.9),
∂LgkL

i−1
f

h

∂x
(X(x; t;u))V ((x, v); t;u) = 0 for all k in {1, . . . , du} and for all t < t. Thus,

wi+1(t) = 0 for all t < t. We conclude that wi is zero on [0, t[ for all i and in particular at time 0,
∂Hm
∂x

(x)v = (w1(0), . . . , wm(0)) = 0. But Hm is an immersion on S, thus, necessarily v = 0 and we have
a contradiction. �

Example 6.3.2 We go on with Example 6.2.1. The linearization of the dynamics (6.6) yields
v̇1 = v2
v̇2 = x3

3v1 + 3x2
3x1v3

v̇3 = 0
, w = v1 (6.12)

Consider x0 = (x1, x2, 0) in S and v0 = (0, 0, v3) with v3 a nonzero real number. The solution
to (6.6)-(6.12) initialized at (x0, v0) and with a constant input u = −1 is such that X(x0; t;u)
remains in S in [0, t) for some strictly positive t and w(t) = 0 for all t in [0, t). Since v0 is
nonzero, System (6.6) is not uniformly instantaneously infinitesimally observable on S. But,
for System (6.6), H7 is an immersion on S. We deduce from Theorem 6.3.2 that Inequality
(6.8) is not satisfied for all i, i-e there does not exist Lipschitz triangular functions gi for all
i on S. This is consistent with the conclusion of Example 6.3.1. However, on S̃, i-e when we
remove the points where x3 = 0, the system becomes uniformly instantaneously infinitesimally
observable. Indeed, it can easily be checked that for x in S̃, w = ẇ = ẅ = w(3) = 0, implies
necessarily v = 0. Unfortunately, from our results, we cannot infer from this that the functions
gi can be taken Lipschitz on S̃. Nevertheless, the conclusion of Example 6.3.1 is that g3 can be
taken Lipschitz even around points with x1 = 0. All this suggests a possible tighter link between
uniform instantaneous infinitesimal observability and Lipschitzness of the triangular form. N

We conclude from this section that uniform instantaneous infinitesimal observability is re-
quired to have the Lipschitzness of the functions gi when they exist. However, we don’t know if
it is sufficient yet.

6.4 Back to Example 4.5 in Chapter 4

Consider the system 
ẋ1 = x2
ẋ2 = −x1 + x5

3x1
ẋ3 = −x1x2 + u

, y = x1 . (6.13)

It would lead us too far from the main subject of this thesis to study here the solutions behavior
of this system. We note however that, when u is zero, they evolve in the 2-dimensional surface
{x ∈ R3 : 3x2

1 + 3x2
2 + x6

3 = c6}. The equilibrium (0, 0, x3) being unstable at least for c > 1, we
can hope for the existence of solutions remaining in the compact set

Cr,ε =
{
x ∈ R3 : x2

1 + x2
2 ≥ ε , 3x2

1 + 3x2
2 + x6

3 ≤ r
}

for instance when u is a small periodic time function, except maybe for pairs of input u and
initial condition (x1, x2, x3) for which resonance could occur. An example is given in Figure 6.1.

On S =
{
x ∈ R3 : x2

1 + x2
2 6= 0

}
, and whatever u is, the knowledge of the function t 7→ y(t) =

X1(x, t) and therefore of its three first derivatives

ẏ = x2

ÿ = −x1 + x5
3x1...

y = −x2 − 5x4
3x

2
1x2 + x5

3x2 + 5x4
3x1u
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0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x2

x3

Figure 6.1: Solution of System (6.13) with initial condition x = (1, 1, 0) and input u =
5 sin(t/10).

gives us x1, x2 and x3. Thus, System (6.13) is uniformly instantaneously observable on S.
Besides, the function

H4(x) =


x1
x2

−x1 + x5
3x1

−x2 − 5x4
3x

2
1x2 + x5

3x2


is injective on S and admits the following left inverse, defined on

{
ξ ∈ R4 : ξ2

1 + ξ2
2 6= 0

}
:

H−1
4 (ξ) =


ξ1
ξ2 (ξ3+ξ1)ξ1+

[
(ξ4+ξ2)+3|(ξ3+ξ1)bξ1e

3
2 |

4
5 ξ2

]
ξ2

ξ2
1+ξ2

2


1
5


However, H4 is not an immersion because of a singularity of its Jacobian at x3 = 0. So the
drift system is weakly differentially observable of order 4 on S but not strongly. The reader
may check that it can be transformed into the continuous triangular normal form of dimension 4
given by (4.27). The trajectory given in Figure 4.1 on which the observers presented in Section
4.5 have been tested are in fact the image by H4 of the solution plotted in Figure 6.1.

6.5 Conclusion

Like for strongly differentially observable systems of order dx, uniform instantaneous observabil-
ity of systems whose drift system is weakly differentially observable systems of order m > dx,
may still imply the existence of an at least up-to-dx+1-triangular normal form (6.3) of dimension
m. But
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- we have shown this under the additional assumption that the functions Hi(x) = (h(x), Lfh(x), ..., Li−1
f h(x))

are open maps. Actually it is sufficient that the properties B(2), . . . ,B(dx + 1) hold.

- the functions in the triangular form are possibly non Lipschitz, but only close to points
where the rank of the Jacobian of Hi changes. Anyhow, uniform infinitesimal observability
is necessary to have Lipschitz functions.

- for a non Lipschitz triangular normal form, convergence of the regular high gain observer
may be lost, but, as we saw in Chapter 4, it is still possible to design asymptotic observers.

Although our result only gives a partial triangular form and with additional assumptions B(i),
we have no counter example showing that uniform instantaneous observability is not sufficient
to have a full continuous triangular form. The crucial point would be to prove Lemma 6.2.2
under this weaker condition, which unfortunately we have not managed to do.





Chapter 7

Transformation into a Hurwitz form:
nonlinear Luenberger observers

Chapitre 7 – Transformation dans une forme Hurwitz : observateurs de Luen-
berger non linéaires. Dans ce chapitre, nous montrons comment la méthodologie de Luen-
berger s’applique à des systèmes non linéaires commandés, i-e nous étendons ce qui a été fait
dans [AP06] pour les systèmes autonomes. Cette méthode consiste à transformer le système en
une forme Hurwitz par la résolution d’une EDP. Si cette transformation est injective, un obser-
vateur s’ensuit immédiatement. Le problème se résume donc à l’existence (et au calcul) d’une
solution injective à une EDP. Nous montrons entre autres que cette EDP admet toujours des
solutions dépendant du temps dont l’ injectivité est assurée si le système est fortement différen-
tiellement observable à un certain ordre et que les trajectoires sont bornées. Lorsque le système
est seulement distingable en temps rétrograde, nous montrons qu’au moins une des solutions est
injective pour presque tout choix de la matrice Hurwitz. Nous illustrons comment ces solutions
peuvent être calculées en pratique sur des exemples physiques. Enfin, nous ajoutons un résultat
concernant la possibilité d’utiliser une transformation stationnaire malgré la présence d’entrées
dans le cas d’un système uniformément instantanément observable.
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Consider a general system of the form

ẋ = f(x, u) , y = h(x, u) (7.1)

where x is the state in Rdx , y the measurement in Rdy , f and h sufficiently many times differen-
tiable functions and u : [0,+∞)→ Rdu in U , the set of considered inputs. Recall that we denote
X(x, t; s;u) the value at time s of the solution to System (7.1) with input u, initialized at x at
time t, and Y (x, t; s;u) the corresponding output function at time s.
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In this chapter, we investigate the possibility of transforming System (7.1) into a Hurwitz
form1

ξ̇ = Aξ +B y (7.2)

with A Hurwitz in Rdξ×dξ , B a vector in Rdξ×dy, for some strictly positive integer dξ, i-e for
each u in U , find a transformation2 T : Rdx × [0,+∞)→ Rdξ such that for any x in X and any
time t in [0,+∞),

∂T

∂x
(x, t)f(x, u(t)) + ∂T

∂t
(x, t) = AT (x, t) +B h(x, u(t)) . (7.3)

Indeed, since the Hurwitz form (7.2) admits a trivial observer made of a copy of its dynamics,
according to Theorem 2.2.1, it is sufficient that T becomes injective uniformly in time and in
space at least after a certain time to obtain an observer for System (7.1).

We have seen in Chapter 5 that this problem has been solved in [AP06] for autonomous
systems. Our goal is to extend those results to controlled/time-varying systems. Exactly as
we saw for the high gain design in Section 5.2.1, two paths are possible : either we keep the
stationary transformation obtained for some constant value of u (for instance the drift system
at u ≡ 0) and hope the additional terms due to the presence of u do not prevent convergence,
or we take a time-varying transformation taking into account (implicitly or explicitly) the input
u.

As far as we know, no result concerning this problem exists in the literature apart from
[Eng05, Eng07] which follows and extends [KE03]. The idea pursued in [Eng05] belongs to the
first path : the transformation is stationary and the input is seen as a disturbance which must
be small enough. Although the construction is extended in a cunning fashion to a larger class
of inputs, namely those which can be considered as output of a linear generator model with
small external input, this approach remains theoretic and restrictive. On the other hand, in
[Eng07], the author rather tries to use a time-varying transformation but its injectivity is proved
only under the so-called "finite-complexity" assumption, originally introduced in [KE03] for
autonomous systems. Unfortunately, this property is very restrictive and hard to check. Besides,
no indication about the dimension dξ is given and the transformation cannot be computed online
because it depends on the whole past trajectory of the output.

That is why, in this chapter, we endeavor to give results of existence and injectivity of
the transformation under more reasonable observability assumptions and keeping in mind the
practical implementation of this method. We start by exploring the path of a time-varying
transformation in Section 7.1. We show that the existence of the transformation itself is not a
problem. On the other hand, its injectivity can be ensured by observability assumptions, similar
to those presented in [AP06] for autonomous systems. Then, in Section 7.2, we show on practical
examples how an explicit expression for such a transformation can be computed. Finally, in Sec-
tion 7.3, we prove that, similarly to Theorem 5.2.2 for a high gain design, uniformly observable
input-affine systems whose drift system is strongly differentially observable of order dx, admit a
Luenberger-type observer built with a stationary transformation.

Notations

1. Since h (resp Y ) takes values in Rdy , we denote hi (resp Yi) its ith-component.

2. For some integer m, which will be chosen later in the chapter, we consider the dynamic
extension of order m introduced in Definition 5.2.1 and use the corresponding notations :

1We could have considered a more general Hurwitz form ξ̇ = Aξ + B(y) with B any nonlinear function, but
taking B linear is sufficient to obtain satisfactory results.

2The function T depends on u in U and we should write Tu as in Theorem 2.2.1. But we drop this too heavy
notation in this chapter to ease the comprehension. What is important is that the target Hurwitz form (7.2),
namely dξ, A and B, be the same for all u in U .
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um = (u, u̇, ..., u(m)), νm = (ν0, ..., νm), f̄ the extended vector field

f̄(x, νm, u(m+1)) =
(
f(x, ν0), ν1, . . . , νm, u

(m+1)
)

and the extended measurement function

h̄i(x, νm) = hi(x, ν0) .

We recall the reader that while νm is an element Rdu(m+1), um is a function defined on
[0,+∞) such that um(s) = (u(s), u̇(s), ..., u(m)(s)) is in Um ⊂ Rdu(m+1) for all s in [0,+∞).
For 1 ≤ i ≤ dy, the successive time derivatives of Yi are related to the Lie derivatives of
h̄i along the vector fields f̄ , namely for j ≤ m

∂jYi
∂sj

(x, t; s;u) = Lj
f̄
h̄i(X(x, t; s;u), um(s)) .

7.1 Time-varying transformation
The existence of a C1 time-varying solution to PDE (7.3) is achieved thanks to the following
lemma :

Lemma 7.1.1.

Consider dξ a strictly positive number, A a Hurwitz matrix in Rdξ∗dξ , B a matrix in Rdξ×dy ,
and u an input function in U . The function T 0 defined on S × [0,+∞) by

T 0(x, t) =
∫ t

0
eA(t−s)B Y (x, t; s;u) ds (7.4)

is a C1 solution to PDE (7.3).

Proof : First, for any u in U , and any s in [0,+∞), (x, t) 7→ Y (x, t; s;u) = h(X(x, t; s;u), s) is C1, thus
T 0 is C1. Take x in S and t in [0,+∞). For any τ in R,

X(X(x, t, t+ τ ;u), t+ τ ; s;u) = X(x, t; s;u).

Therefore,

T 0(X(x, t; t+ τ ;u), t+ τ) =
∫ t+τ

0
eA(t+τ−s)Bh(X(x, t, s;u), u(s))ds

= eAτ T 0(x, t) + eAτ
∫ t+τ

t

eA(t−s)B h(X(x, t; s;u), u(s))ds

and

T 0(X(x, t; t+ τ ;u), t+ τ)− T 0(x, t)
τ

= eAτ − I
τ

T 0(x, t)

+eAτ

τ

∫ t+τ

t

eA(t−s)B h(X(x, t, s;u), u(s))ds .

Making τ tend to 0, we get PDE (7.3). �

Note that extending directly what is done in [KE03, AP06] would rather lead us to the
solution

T∞(x, t) =
∫ t

−∞
eA(t−s)B Y (x, t; s;u) ds .

The drawback is that some assumptions about the growth of Y have to be made to ensure
its continuity, unless Y is bounded backward in time. As for the C1 property, and even if
the solutions are bounded backward in time, it is achieved only if the eigenvalues of A are
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sufficiently negative. In fact, it is not absolutely needed that the solution be C1, one could look
for continuous solutions to

L(f,1)T (x, t) = AT (x, t) +Bh(x, u(t))

as defined in Theorem 2.2.1 instead of PDE (7.3). The major disadvantage of this solution
is rather that T∞ is not easily computable since it depends on the values of u on (−∞, t].
Nevertheless, it may still be useful. For example, that is the solution chosen in [PPO08] for the
specific application of a permanent synchronous motor, where it is proved to be injective.

Unlike T∞, T 0 depends only on the values of the input u on [0, t]. Therefore, it is theoretically
computable online. However, for each couple (x, t), one would need to integrate backwards the
dynamics (7.1) until time 0, which is quite heavy. If the input u is known in advance (for instance
u(t) = t) it can also be computed offline. We will see in Section 7.2 on practical examples how
we can find a solution to PDE (7.3) in practice, without relying on the expression T 0.

We conclude that a C1 time-varying transformation into a Hurwitz form always exists, but
the core of the problem is to ensure its injectivity.

7.1.1 Injectivity with strong differential observability

Assumptions

There exists a subset S of Rdx such that :

1. For any u in U , any x in S and any time t in [0,+∞), X(x, t; s;u) is in S for all s in
[0,+∞).

2. The quantity
Mf = sup

x ∈ S
ν0 ∈ U

∣∣∣∣∂f∂x (x, ν0)
∣∣∣∣

is finite.

3. There exist dy integers (m1, . . . ,mdy) such that the functions

Hi(x, νm) =
(
h̄i(x, νm), Lf̄ h̄i(x, νm), . . . , Lmi−1

f̄
h̄i(x, νm)

)
(7.5)

defined on S × Rdu(m+1) with m = maximi and 1 ≤ i ≤ dy verify :

- for all u in U , Hi(·, um(0))) is Lipschitz on S.
- there exists LH such that the function

H(x, νm) =
(
H1(x, νm), . . . ,Hi(x, νm), . . . , Hdy(x, νm)

)
(7.6)

verifies for any (x1, x2) in S2 and any νm in Um

|x1 − x2| ≤ LH |H(x1, νm)−H(x2, νm)|

namely H is Lipschitz-injective on S, uniformly with respect to νm in Um.

4. For all 1 ≤ i ≤ dy, there exists Li such that for all (x1, x2) in S2 and for all νm in Um,

|Lmi
f̄
h̄i(x1, νm)− Lmi

f̄
h̄i(x2, νm)| ≤ Li|x1 − x2|

namely Lmi
f̄
h̄i(·, νm) is Lipschitz on S, uniformly with respect to νm in Um.
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We have the following result.

Theorem 7.1.1.

Suppose Assumptions 1-2-3-4 are satisfied. Consider Hurwitz matrices Ai in Rmi∗mi , withmi

defined in Assumption 3, and vectors Bi in Rmi such that the pairs (Ai, Bi) are controllable.
There exists a strictly positive real number k such that for all k ≥ k, for all input u in U ,
there exists tk,u such that any C1 solution T to PDE (7.3) on S × [0,+∞) with

- dξ =
∑dy
i=1mi

- A in Rdξ×dξ and B in Rdξ×dy defined by

A =



kA1
. . .

kAi
. . .

kAdy


B =



B1
. . .

Bi
. . .

Bdy


- T (·, 0) Lipschitz on S

is such that T (·, t) is injective on S for all t ≥ tk,u, uniformly in time and in space. More
precisely, there exists a constant Lk such that for any (x1, x2) in S2, any u in U and any time
t ≥ tk,u

|x1 − x2| ≤ Lk |T (x1, t)− T (x2, t)| .

Besides, for any t ≥ tk,u, T (·, t) is an injective immersion on S.

Note that the additional assumption "T (·, 0) Lipschitz on S" is not very restrictive because
the solution T can usually be chosen arbitrarily at initial time 0 (see examples in Section 7.2).
In particular, the elementary solution T 0 found in Lemma 1 is zero at time 0 and thus clearly
verifies this assumption.

Proof : Given the form of the matrices A and B, we have

T (x, t) =
(
T1(x, t), . . . , Ti(x, t), . . . , Tdy (x, t)

)
(7.7)

with
∂Ti
∂x

(x, t)f(x, u(t)) + ∂Ti
∂t

(x, t) = kAi Ti(x, t) +Bi hi(x, u(t)) . (7.8)

Take u in U , i in {1, . . . , dy}, x in S and t in [0,+∞). According to PDE (7.8), Ti satisfies for all s in
[0,+∞),

d

ds
Ti(X(x, t; s;u), s) = kAi Ti(X(x, t; s;u), s) +BiYi(x, t; s;u) .

Integrating between t and s, it follows that

Ti(X(x, t; s;u), s) = ekAi(s−t) Ti(X(x, t; t;u), t)︸ ︷︷ ︸
Ti(x,t)

+
∫ s

t

ekAi(s−τ)Bi Yi(x, t; τ ;u)dτ

and thus,

Ti(x, t) = ekAi(t−s) Ti(X(x, t; s;u), s) +
∫ t

s

ekAi(t−τ)BYi(x, t; τ ;u)dτ .

applying this inequality at s = 0, we get

Ti(x, t) = ekAit Ti(X(x, t; 0;u), 0) + T 0
i (x, t)

where T 0
i is such that T 0 defined in (7.4) is

T 0(x, t) =
(
T 0

1 (x, t), . . . , T 0
i (x, t), . . . , T 0

dy (x, t)
)
.
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But after mi successive integration by parts in (7.4), we get,

T 0
i (x, t) = −A−mii CiKiHi(x, um(t))

+A−mii ekAitCiKiHi(X(x, t; 0;u), um(0)) + 1
kmi

A−mii Ri(x, t)

where Ki = diag
(

1
k
, . . . , 1

kmi

)
, Ci is the invertible controllability matrix

Ci = [Ami−1
i Bi , . . . , AiBi , Bi] ,

Hi(x, νm) is defined in (7.5), and Ri is the remainder :

Ri(x, t) =
∫ t

0
ekAi(t−τ)Bi L

mi
f̄
hi (X(x, t; τ ;u), um(τ)) dτ

We finally deduce that

Ti(x, t) = A−mii CiKi

(
−Hi(x, um(t)) +K−1

i C−1
i

(
ekAit Ψi(X(x, t; 0;u), 0) + 1

kmi
Ri(x, t)

))
with Ψi(x, t) = Amii Ti(x, t) + CiKiHi(x, um(t)) .
Let us now consider x1 and x2 in S, and t in [0,+∞). We are interested in the quantity |T (x1, t)−T (x2, t)|,
and thus in |Ti(x1, t)− Ti(x2, t)|.
Thanks to Assumption 2, for any (x1, x2) in S, and (t, τ) in [0,+∞)2, we have (see for instance [RM82])

|X(x1, t; τ ;u)−X(x2, t; τ ;u)| ≤ eMf |τ−t||x1 − x2| . (7.9)

By assumption Ti(·, 0) and Hi(·, um(0))) are Lipschitz on S, thus there exists LΨi such that

|Ψi(X(x1, t; 0;u), 0)−Ψi(X(x2, t; 0;u), 0)| ≤ LΨi e
Mf t|x1 − x2| .

Then, Ai being Hurwitz, there exists strictly positive numbers ai and γi (see [RM82]) such that for all
τ in [0, t] ∣∣ekAi(t−s)∣∣ ≤ γi e−kai(t−s) . (7.10)

Using Assumption 4 and inequalities (7.9) and (7.10), we deduce that if k > Mf

ai
,

|Ri(x1, t)−Ri(x2, t)| ≤ Li|Bi|γi
∫ t

0
e−(kai−Mf )(t−τ)dτ |x1 − x2| ≤

Li|Bi|γi
kai −Mf

|x1 − x2| .

We finally deduce that

|Ti(x1, t)− Ti(x2, t)| ≥|A−mii CiKi|
(
|∆Hi| − |K−1

i C−1
i |
(∣∣ekAit∣∣ |∆Ψi|+

1
kmi
|∆Ri|

))
≥|A

−mi
i Ci|
kmi

(
|∆Hi| − kmi |C−1

i | γi LΨi e
−(kai−Mf )t |x1 − x2|

−|C−1
i | γi

Li|Bi|
kai −Mf

|x1 − x2|
)

where ∆Hi, ∆Ψi and ∆Ri denote the difference of the functions Hi(·, um(t)), Ψi(X(·, t; 0;u), 0) and
Ri(·, t) respectively, evaluated at x1 and x2. It follows (by norm equivalence), that there exists a
constant c such that

|T (x1, t)− T (x2, t)| ≥c
mini(|A−mii Ci|)

km

[
|H(x1, um(t))−H(x2, um(t))|

−

((
p∑
i=1

kmiγi|C−1
i |LΨi

)
e−(ka−Mf )t +

(∑p

i=1 Liγi|C
−1
i ||Bi|

)
ka−Mf

)
|x1 − x2|

]

≥cmini(|A−mii Ci|)
km

(
1
LH
− c1 km e−(ka−Mf )t − c2

1
ka−Mf

)
|x1 − x2|

where m a, c1, c2 are constants independent from k and t defined by

m = max
i
mi , a = min

i
ai , c1 =

p∑
i=1

γi|C−1
i |LΨi , c2 =

p∑
i=1

Liγi|C−1
i ||Bi| .

We deduce that for
k ≥ 1

a
(Mf + 4c2LH) , t ≥ ln(4kmc1LH)

ka−Mf
,
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we have
|T (x1, t)− T (x2, t)| ≥ c

mini(|A−mii Ci|)
km

1
2LH

|x1 − x2|

i-e
|x1 − x2| ≤ 2LH

km

cmini(|A−mii Ci|)
|T (x1, t)− T (x2, t)| (7.11)

and T (·, t) is injective on S, uniformly in time. We conclude that the result holds with

k = 1
a

(Mf + 4c2LH) , Lk = 2LH
km

cmini(|A−mii Ci|)
, tk,u = max

{
ln(4kmc1LH)
ka−Mf

, 0
}

Since Mf , LH and Li (and thus c2) are independent from u, k and Lk are the same for all u in U , while
tk,u depends on u through LΨi .
Now, take any x in S and t ≥ tk,u. For any v and any h such that x+ hv is in S, we have

Lk|v| ≤
|T (x+ hv, t)− T (x, t)|

|h|

and by letting h go to 0, we get
Lk|v| ≤

∣∣∣∂T
∂x

(x, t)v
∣∣∣ .

Hence, T (·, t) is an immersion on S. �

Applying successively Lemma 7.1.1, Theorem 7.1.1 and Theorem 2.2.1, we conclude that
under Assumptions 2, 3, 4, it is possible to write an observer for system (7.1) by choosing any
(Ai, Bi) controllable and k sufficiently large.

Remark 6 It is important to note that k does not dependent on u, thanks to the fact that LH ,
Mf and Li given by Assumptions 2-3-4 are the same for all νm in Um. However, the time tk,u
after which the solution becomes injective a priori depends on k and u. This is not a problem
in practice since we only want to be sure that for k sufficiently large, any solution will become
injective after a certain time. If we want this time tk,u to be uniform in u, the Lipschitz constants
of Hi(·, um(0))) and of T (·, 0) must be the same for all u in U .

Remark 7 If we choose m = maximi sufficiently large distinct strictly positive real numbers
λj , and take Ai = −diag(λ1, . . . , λmi) and Bi = (1, . . . , 1)>, then, the PDEs to solve are simply

∂Tλ,i
∂x

(x, t)f(x, u(t)) + ∂Tλ,i
∂t

(x, t) = −λTλ,i(x, t) + hi(x, u(t)) (7.12)

for each 1 ≤ i ≤ dy and λ in {λ1, . . . , λmi}. Then, one take

T (x, t) =
(
Tλ1,1, . . . , Tλm1 ,1, . . . , Tλ1,dy , . . . , Tλmdy ,dy

)
.

Remark 8 Under Assumption 3-4, the system could also be transformed into a Lipschitz phase-
variable form of dimension dy×maximi ≥

∑dy
i=1mi according to Theorem 5.2.1 and a high gain

observer could be used. If we wanted to use only mi derivatives for each input and obtain an
observer of same dimension

∑dy
i=1mi, each Lmif h would have to satisfy an additional triangularity

assumption. But in any case, the crucial difference with the Luenberger observer presented in
this chapter is that the latter does not require the computation of the derivatives of the input
(see examples in Section 7.2).

In order to check the assumptions of Theorem 7.1.1 more easily in practical cases, we have
the following result :
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Lemma 7.1.2.

Assume that S is compact and there exist dy integers (m1, ...,mdy) such that Um with
m = maximi is compact and for any νm in Um, H(·, νm) defined in (7.6) is an injective
immersion3 on S. Then, Assumptions 2, 3, 4 are satisfied.

In other words, since the additional assumption "T (·, 0) Lipschitz on S" made in Theorem
7.1.1 is automatically verified when S is compact, the result of Theorem 7.1.1 holds under the
only assumptions of Lemma 7.1.2 if S satisfies Assumption 1.

Proof : First, S and Um being compact, Assumptions 2 and 4 are satisfied. Besides, Hi(·, um(0)) is
clearly Lipschitz on S. The only thing to prove is the uniform Lipschitz-injectivity of H, which follows
directly from Lemma A.3.5. �

7.1.2 Injectivity with backward distinguishability ?

In the previous section, we have shown that finding an injective transformation into an Hurwitz
form was possible under a strong differential observability property, namely that the function
made of each output and a certain number of its derivatives was an injective immersion. We
investigate in this section if injectivity is still ensured when we have only a weak differential
observability or even only backward-distinguishability as in [AP06, Theorem 3] for autonomous
systems (recalled in Section 5.1.2).

Theorem 7.1.2.

Take u in U . Assume that for this input, System (7.1) is backward-distinguishable in time
tu on S, i-e for any t ≥ tu and any (xa, xb) in S2,

Y (xa, t; s;u) = Y (xb, t; s;u) ∀s ∈ [t− tu, t] =⇒ xa = xb .

There exists a set R of zero-Lebesgue measure in Cdx+1 such that for any (λ1, . . . , λdx+1) in
Ωdx+1 \R with Ω = {λ ∈ C , <(λ) < 0}, and any t ≥ tu, the function T 0 defined in (7.4) with

- dξ = dy × (dx + 1)

- A in Rdξ×dξ and B in Rdξ×dy defined by

A =



Ã
. . .

Ã
. . .

Ã


, B =



B̃
. . .

B̃
. . .

B̃


and

Ã =

 λ1
. . .

λdx+1

 , B̃ =

 1
...
1

 .

is such that T 0(·, t) is injective on S for t > tu.

Proof : Let us define for λ in C, the function T 0
λ : S × R+ → Cdy

T 0
λ(x, t) =

∫ t

0
e−λ(t−s)Y (x, t; s;u) ds . (7.13)

3H(·, νm) is injective on S and ∂H
∂x

(x, νm) is full-rank for any x in S
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Given the structure of A and B, and with a permutations of the components,

T 0(x, t) =
(
T 0
λ1(x, t), . . . , T 0

λdx+1(x, t)
)
.

We need to prove that T 0 is injective for almost all (λ1, . . . , λdx+1) in Ωdx+1 (in the sense of the Lebesgue
measure). For that, we define the function

∆T (xa, xb, t, λ) = T 0
λ(xa, t)− T 0

λ(xb, t)

on Υ× Ω with
Υ = {(xa, xb, t) ∈ S2 × (tu,+∞) : xa 6= xb} .

We are going to use the following lemma whose proof4 can be found in [AP06]:

Lemma 7.1.3. Coron’s lemma

Let Ω and Υ be open sets of C and R2dx+1 respectively. Let ∆T : Υ×Ω→ Cdy be a function which
is holomorphic in λ for all x in Υ and C1 in x for all λ in Ω. If for any (x, λ) in Υ × Ω such that

∆T (x, λ) = 0, there exists i in {1, . . . , dy} and k > 0 such that ∂
k∆Ti
∂λk

(x, λ) 6= 0, then the set

R =
⋃
x∈Υ

{
(λ1, . . . , λdx+1) ∈ Ωdx+1 : ∆T (x, λ1) = . . . = ∆T (x, λdx+1) = 0

}
has zero Lebesgue measure in Cdx+1.

In our case, ∆T is clearly holomorphic in λ and C1 in x. Since for every x in Υ, λ 7→ ∆T (x, λ) is
holomorphic on the connex set C, its zeros are isolated and admit a finite multiplicity, unless it is
identically zero on C. In the latter case, we have in particular for any ω in R∫ +∞

−∞
e−iωτg(τ) dτ = 0

with g the function

g(τ) =
{

Y (xa, t; t− τ ;u)− Y (xb, t; t− τ ;u) , if τ ∈ [0, t]
0 , otherwise

which is in L2. Thus, the Fourier transform of g is identically zero and we deduce that necessarily

Y (xa, t; t− τ ;u)− Y (xb, t; t− τ ;u) = 0

for almost all τ in [0, t] and thus for all τ in [0, t] by continuity. Since t ≥ tu, it follows from the
backward-distinguishability that xa = xb but this is impossible because (xa, xb, t) is in Υ. We conclude
that λ 7→ ∆T (x, λ) is not identically zero on C and the assumptions of the lemma are satisfied. Thus,
R has zero measure and for all (λ1, . . . , λdx+1) in Cdx+1 \R, T 0 is injective on S, by definition of R. �

Remark 9 The function T proposed by Theorem 7.1.2 takes complex values. To remain in the
real frame, one should consider the transformation made of its real and imaginary parts, and
instead of implementing for each i in {1, . . . , dy} and each lambda

˙̂
ξλ,i = −λξ̂λ + yi

in C, one should implement

˙̂
ξλ,i =

(
−<(λ) −=(λ)
=(λ) −<(λ)

)
ξ̂λ,i +

(
yi
0

)

in R. Thus, the dimension of the observer is 2× dy × (dx + 1) in terms of real variables.
4More precisely, the result proved in [AP06] is for Υ open set of R2dx instead of R2dx+1. But the proof turns

out to be still valid with R2dx+1 because the only constraint is that the dimension of Υ be strictly less than
2(dξ + 1).
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Remark 10 It should be noted that Theorem 7.1.2 gives for each u in U a set Ru of zero
measure in which not to choose the λi, but unfortunately, there is no guarantee that

⋃
u∈U
Ru is

also of zero-Lebesgue measure.

Remark 11 Unlike Theorem 7.1.1 which proved the injectivity of any solution T to PDE (7.3),
Theorem 7.1.2 proves only the injectivity of T 0. Note though that as shown at the beginning of
the proof of Theorem 7.1.1, any solution T writes

T (x, t) = eAt T (X(x, t; 0;u), 0) + T 0(x, t)

with A Hurwitz, and thus tends to the injective function T 0. We can thus expect T to become
injective after a certain time. In fact, a way of ensuring the injectivity is to take, if possible, a
solution T with the boundary condition

T (x, 0) = 0 ∀x ∈ S ,

because in that case, necessarily, T = T 0.

We conclude from this section that there always exists a time-varying solution to PDE (7.3)
which is injective under appropriate observability assumptions. It follows that the only remaining
problem to address is the computation of such a solution without relying on the expression (7.4).
This is done in the following section through practical examples.

7.2 Examples

7.2.1 Permanent Magnet Synchronous Motor (PMSM)

A first practical example which falls directly into the scope of this paper is the Luenberger
observer presented in [HMP12] for a PMSM. We reproduce here the minimal information needed
for comprehension, and we add the theoretical arguments which are not given in [HMP12]. The
system can be modeled by

ẋ = u−Ri , y = |x− Li|2 − Φ2 = 0 (7.14)

where x is in R2, the voltages u and currents i are inputs in R2, the resistance R, impedance L
and flux Φ are known scalar parameters and the measurement y is constantly zero. Here dy = 1,
so we can drop the subscript i. Since the dynamics are linear and the measurement quadratic
in x, one can look for Tλ of the form :

Tλ(x, t) = |x|2 + aλ(t)>x+ bλ(t)

where the dynamics of aλ and bλ are to be chosen so that Tλ is solution of PDE (7.12). We can
check that the dynamics

ȧλ = −λ aλ − 2(u−Ri) + 2Li
ḃλ = −λ bλ − a>λ (u−Ri) + L2|i|2 − Φ2 (7.15)

make Tλ follow the dynamics
ξ̇λ = −λξλ + y = −λξλ

and a trivial solution is thus ξλ = 0. Let us now check whether the assumptions of Theorem
7.1.1 are verified. We suppose that i,

︷̇︷
i ,
︷̈︷
i and u, u̇ are bounded, so that the state x also

remains bounded (since y = 0). Choosing m = 3, we have

H(x, u, i, u̇,
︷̇︷
i ,
︷̈︷
i ) =

 |x− Li|2 − Φ2

2η>(x− Li)
2η̇>(x− Li) + 2η>η
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where we denote η = u − Ri + L
︷̇︷
i . Thus, if we suppose besides that there exists c > 0 such

that the inputs verify |det(η, η̇)| ≥ c, every assumption of Lemma 7.1.2 is satisfied. In fact, the
inputs happen to be such that5 det(η , η̇) = w3Φ2, where ω is the rotor angular velocity. We
conclude that all the conditions are verified when the inputs and their derivatives are bounded
and the rotor angular velocity is away from zero.

Applying Theorem 7.1.1, it follows that for any three distinct and sufficiently large strictly
positive λj , the function

T (x, t) = (Tλ1(x, t), Tλ2(x, t), Tλ3(x, t))

becomes injective after a certain time (once the filters (7.15) have sufficiently converged). Imple-
menting (7.15) for each λj , one can obtain after a certain time an estimate x̂ of x(t) for instance
by :

x̂(t) = −
(
aλ1(t)> − aλ3(t)>
aλ2(t)> − aλ3(t)>

)−1(
bλ1(t)− bλ3(t)
bλ2(t)− bλ3(t)

)
.

Note that for this system, a classical gradient observer of smaller dimension exists ([LHN+10,
MPH12]). The Luenberger observer proposed here offers the advantage of depending only on
filtered versions of u and i, which can be useful in presence of significant noise. On the other
hand, no high gain design would have been possible for this system without computing the
derivatives of i, which is not desirable in practice.

7.2.2 Non-holomic vehicle

Another appropriate example is the celebrated non-holomic vehicle with dynamics
ẋ1 = u1 cos(x3)
ẋ2 = u1 sin(x3)
ẋ3 = u1u2

, y = (x1, x2) (7.16)

where the inputs u1 and u2 correspond to the norm of vehicle velocity and the orientation of
the front steering wheels respectively. A wide literature already exists on this system, and our
goal here is only to show on another example how to solve PDE (7.12) for each component of
the measurement. The dynamics and measurements being linear in x1, x2, cos(x3), sin(x3),
it is quite natural to look for a function T linear in those quantities. Besides, x1 and x2 are
independent so we look for Tλ,1 and Tλ,2, associated to measurement x1 and x2 respectively, of
the form :

Tλ,1(x, t) = aλ(t)x1 + bλ(t) cos(x3) + cλ(t) sin(x3)
Tλ,2(x, t) = ãλ(t)x2 + b̃λ(t) cos(x3) + c̃λ(t) sin(x3) .

By straightforward computations, we conclude that to satisfy PDE (7.12), we can take :

ãλ = aλ = 1
λ

, b̃λ = −cλ , c̃λ = dλ

ḃλ = −λ bλ − u1u2 cλ −
1
λ
u1

ċλ = −λ cλ + u1u2 bλ . (7.17)

Then, Tλ,1 and Tλ,2 are solutions of

ξ̇λ,1 = −λ ξλ,1 + x1

ξ̇λ,2 = −λ ξλ,2 + x2 (7.18)

5 η = Φω
(
− sin θ
cos θ

)
, with θ the motor angle, and ω = θ̇. See Chapter 12 for more information on this

system.
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respectively. Besides, computing the successive derivatives of the measurements (x1, x2), we can
see that H1 and H2 are injective immersions at the order m if at least u1 or one of its first m−2
derivatives is nonzero. Therefore, if the state, the inputs u1, u2 and their derivatives remain in
compact sets, and if there exist an integer m ≥ 2 and a real number c > 0 such that for all t
and all considered input u,

u1(t)2 + u̇1(t)2 + ...+ u
(m−2)
1 (t)2 ≥ c ,

then all the assumptions in Lemma 7.1.2 are verified withm1 = m2 = m. Therefore, by choosing
m strictly positive distinct real numbers λj , the function

T (x, t) = (Tλ1,1(x, t), ..., Tλm,1(x, t), Tλ1,2(x, t), ..., Tλm,2(x, t))

becomes injective after a certain time. Implementing (7.17)− (7.18) for each λj , we thus get an
observer of dimension 4m.

7.2.3 A time-varying transformation for an autonomous system ?

It was observed in [And05, Section 8.4] that it is sometimes useful to allow the transformation
to be time-varying even for an autonomous system. Only results concerning stationary transfor-
mations were available at the time, so that the framework of dynamic extensions had to be used.
This is no longer necessary thanks to Theorems 7.1.2 and 7.1.1. Indeed, consider for instance
the system {

ẋ1 = x3
2

ẋ2 = −x1
, y = x1 (7.19)

which admits bounded trajectories, the quantity x2
1 + x4

2 being constant along the trajectories.
This system is weakly differentially observable of order 2 on R2 since x 7→ H2(x) = (x1, x

3
2)

is injective on R2. It is thus a fortiori instantaneously backward-distinguishable and Theorem
5.1.3 holds. Applying Luenberger’s methodology to this system would thus bring us to look for
a stationary transformation Tλ into

ξ̇λ = −λ ξλ + x1 , (7.20)

for which a possible solution is

Tλ(x) =
∫ 0

−∞
eλ τY (x; τ)dτ .

Although the injectivity of T = (Tλ1 , Tλ2 , Tλ3) is satisfied for a generic choice of (λ1, λ2, λ3) in
{λ ∈ C : <(λ) > 0}3 according to Theorem 5.1.3, it is difficult to compute numerically and as
far as we are concerned, we are not able to find an explicit expression.

Instead, it may be easier to look for a time-varying transformation and apply either Theorem
7.1.1 or 7.1.2. Given the structure of the dynamics, one can try to look for a transformation of
the form

Tλ(x, t) = aλ(t)x3
2 + bλ(t)x2

2 + cλ(t)x2 + dλ(t)x1 + eλ(t) . (7.21)

It verifies the dynamics (7.20) if for instance

ȧλ = −λ aλ + dλ

ḃλ = −λ bλ + 3aλy
ċλ = −λ cλ + 2bλy
ḋλ = −λ dλ + 1
ėλ = −λ eλ + cλy
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Using Remark 11 and applying Theorem 7.1.2, we know that, by initializing the filters aλ, bλ,
cλ, dλ and eλ at 0 at time 0, x 7→ (Tλ1(x, t), Tλ2(x, t), Tλ3(x, t)) is injective on R2 for t > 0 and
for a generic choice of (λ1, λ2, λ3) in {λ ∈ C : <(λ) > 0}3.

To reduce the dimension of the filters, we can take dλ(t) = 1
λ and aλ(t) = 1

λ2 . In that case
Theorem 7.1.2 cannot be properly applied because Tλ is not T 0

λ . However, we have found at
least in simulations that injectivity is preserved after a certain time as shown in Figure 7.1.

Time
0 1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x̂1

Time
0 1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

x2

x̂2

Figure 7.1: Nonlinear Luenberger observer for System (7.19) : dynamics (7.20) and transforma-
tions (7.21) (with dλ(t) = 1

λ and aλ(t) = 1
λ2 ) for λ1 = 5, λ2 = 6, λ3 = 7. The transformation is

inverted by searching numerically the common roots of two polynomials of order 3.

Note that since the system is strongly differentially observable of order 4 on S = {(x1, x2) ∈
R2 : x2

1 + x2
2 6= 0}, i-e H4 is an injective immersion on S, Theorem 7.1.1 also says that, for

any compact subset C of S, by choosing 4 sufficiently large real strictly positive numbers λi,
and for any initial conditions for the filters, x 7→ (Tλ1(x, t), Tλ2(x, t), Tλ3(x, t), Tλ4(x, t)) becomes
injective on C after some time.

7.3 Stationary transformation ?
We have just seen that a time-varying transformation could be used for an autonomous system.
We investigate here the converse, i-e if a stationary transformation can be used for time-varying
systems. Consider a control-affine single-output system

ẋ = f(x) + g(x)u , y = h(x) ∈ R (7.22)

In the high gain framework, we saw with Theorem (5.2.2) that if System 7.22 is uniformly
instantaneously observable and its drift dynamics are differentially observable of order dx, it
is possible to keep the stationary transformation associated to the drift autonomous system,
because the additional terms resulting from the presence of inputs are triangular and do not
prevent the convergence of the observer. It turns out that, inspired from [AP06, Theorem 5],
an equivalent result exists in the Luenberger framework.

Theorem 7.3.1.

Let λ1, . . . , λdx be any distinct strictly positive real numbers, A the Hurwitz matrix
diag(−λ1, . . . ,−λdx) in Rdx×dx , B the vector (1, ..., 1)> in Rdx and S an open subset of Rdx .
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Assume that System (7.22) is uniformly instantaneously observable6 on S and its drift system
is strongly differentially observable7 of order dx on S. Then, for any positive real number u,
any bounded open subsets X , X ′ and X ′′ of Rdx , and any C∞ function χ : Rdx → R such
that

- cl(X ) ⊂ X ′ ⊂ cl(X ′) ⊂ X ′′ ⊂ cl(X ′′) ⊂ S,

- for any u in U , for all t in [0,+∞) and for all x0 in X0, |u(t)| ≤ u and X(x0; t;u) is in
X ,

- χ(x) =
{

1 , if x ∈ cl(X ′)
0 , if x /∈ X ′′

there exists a strictly positive number k such that for any k > k :

- the function T : Rdx → Rdx defined by

T (x) =
∫ 0

−∞
e−kAτB h(X̌(x, τ)) dτ

where X̌(x, τ) denotes the value at time τ of the solution initialized at x at time 0 of
the modified autonomous drift system

ẋ = χ(x)f(x) ,

is a diffeomorphism on X ′ and is solution to the PDE associated to the drift dynamics

∂T

∂x
(x)f(x) = k AT (x) +B h(x) ∀x ∈ X ′ . (7.23)

- there exists a Lipschitz function ϕ defined on Rdx verifying

ϕ(T (x)) = ∂T

∂x
(x)g(x) ∀x ∈ X ′ , (7.24)

and such that, for any function T : Rdx → Rdx verifying

T (T (x)) = x ∀x ∈ X ′ ,

the system
˙̂
ξ = k A ξ̂ +B y + ϕ(ξ̂)u , x̂ = T (ξ̂) (7.25)

is an observer for System 7.22 initialized in X0.

Remark 12 The function ϕ is defined on the open set T (X ′) by (7.24). If the trajectories of
the observer state ξ̂ remain in this set, there is no need to extend its domain of definition to
the whole Rdx . Otherwise, the only constraint is that the global Lipschitz constant a of the
extension be such that kmin |λi| > au, to ensure the convergence of the observer. In the proof
below, it is proved that such extensions exist for k sufficiently large (this is not trivial because
a could a priori depend on k).

Otherwise, instead of extending ϕ outside T (X ′), one could take

ϕ(ξ) = ∂T

∂x
(T (ξ))g(T (ξ))

6See Definition 2.2.1.
7See Definition 5.2.2.
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but the way T is defined outside T (X ) must be such that :

∃α > 0 : ∀k ≥ k , ∀ξ̂ ∈ Rdx , ∀x ∈ X , |T (x)− T (T (ξ̂))| ≤ α|T (x)− ξ̂| .

The constraint here is that α must be independent from k. For instance, the function

T (ξ) = Argminx∈X ′ |T (x)− ξ|

clearly works since
|T (x)− T (T (ξ̂))| ≤ |T (x)− ξ̂|+ |ξ̂ − T (T (ξ̂))|︸ ︷︷ ︸

≤|ξ̂−T (x)|

.

Another more regular candidate is the McShane extension

T (ξ) = min
x∈X ′

x+ |T (x)− ξ|

which also verifies the requirement.

Proof : According to [And14, Proposition 3.3], there exists k0 such that for all k ≥ k0, T is C1 and
verifies PDE (7.23). Now let us prove that it is injective on cl(X ′) for k sufficiently large8. The drift
system being strongly differentially observable of order dx, the function

Hdx(x) = (h(x), Lfh(x), . . . , Ldxf (x))

is an injective immersion on cl(X ′) and by Lemma A.3.5, there exists LH > 0 such that for all (xa, xb)2

in cl(X ′)2,
|Hdx(xa)−Hdx(xb)| ≥ LH |xa − xb| .

Besides, since χf = f on cl(X ′), after several integrations by parts, we obtain for all x in cl(X ′)

T (x) = A−dxC
(
−KHdx(x) + 1

kdx
R(x)

)
(7.26)

where K = diag
(

1
k
, ..., 1

kdx

)
, C is the invertible controllability matrix

C = [Adx−1B ... AB B] ,

and R the remainder

R(x) = C−1
∫ 0

−∞
e−kAτBLdxf (X̌(x, τ)) dτ .

This latter integral makes sense on cl(X ′) because :

-A being diagonal and denoting a = mini |λi| > 0, for all τ ∈ (−∞, 0],∣∣e−kAτ ∣∣ ≤ ekaτ .
-By definition of the function χ, for all x in cl(X ′), X̌(x, τ) is in cl(X ′) for all τ , i-e τ 7→
Ldxf (X̌(x, τ)) is bounded.

So now taking (xa, xb) in cl(X ′)2, and considering the difference |T (xa)−T (xb)|, from (7.26), we obtain

|T (xa)− T (xb)| ≥
|A−dxC |
kdx

(|Hdx(xa)−Hdx(xb)| − |R(xa)−R(xb)|) ,

and if R is Lipschitz with Lipschitz constant LR, we get

|T (xa)− T (xb)| ≥
|A−dxC |
kdx

(LH − LR)|xa − xb| .

In order to deduce the injectivity of T , we also need LR < LH and we are going to prove that this is
true for k sufficiently large. To compute LR, let us find a bound of

∣∣ ∂R
∂x

(x)
∣∣. By defining

c0 = max
x∈cl(X ′)

∣∣∣∣∣B∂Ldxf h

∂x
(x)

∣∣∣∣∣ , ρ1 = max
x∈cl(X ′)

∣∣∣∂f
∂x

(x)
∣∣∣ ,

8This proof is similar to that of [AP06, Theorem 4].
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we have for all τ in (−∞, 0] and all x in cl(X ′),

∣∣∣∣∣B∂Ldxf h

∂x
(X̌(x, τ))

∣∣∣∣∣ ≤ c0 and9

∣∣∣∣∂X̌∂x (x, τ)
∣∣∣∣ ≤ e−ρ1τ . (7.27)

We conclude that for k > ρ1
a
, R is C1 and there exists a positive constant c1 such that for all x in cl(X ′),∣∣∣∂R

∂x
(x)
∣∣∣ ≤ |C−1|

∫ 0

−∞

∣∣e−kAτ ∣∣ ∣∣∣∣∣B∂Ldxf h

∂x
(X̌(x, τ))

∣∣∣∣∣
∣∣∣∣∂X̌∂x (x, τ)

∣∣∣∣ dτ ≤ c1
ka− ρ1

.

We finally obtain
|T (xa)− T (xb)| ≥ LT |xa − xb| ∀(xa, xb) ∈ cl(X ′)2 (7.28)

where
LT = |A

−dxC |
kdx

(
LH −

c1
ka− ρ1

)
,

and T is injective on cl(X ′) if k ≥ k1 with

k1 = max
{
k0,

c1 + ρ1LH
aLH

}
.

Moreover, taking x in X ′, any v in Rm and h sufficiently small for x + hv to be in X ′, it follows from
(7.28) that ∣∣∣∣T (x+ hv)− T (x)

h

∣∣∣∣ ≥ LT |v| ,
and making h tend to zero, we get ∣∣∣∂T

∂x
(x)v

∣∣∣ ≥ LT |v|
and T is full-rank on X ′. So T is a diffeomorphism on X ′ for k ≥ k1.
Now, let us show that System (7.25) is an observer for System (7.22). Suppose for the time being that
we have shown that there exists a strictly positive number a such that for any k ≥ k1, there exists a
function ϕ such that (7.24) holds and

|ϕ(ξ̂)− ϕ(ξ)| ≤ a |ξ̂ − ξ| ∀(ξ̂, ξ) ∈ (Rdx)2 . (7.29)

Take u in U , x0 in X0 ξ̂0 in Rdx , and consider the solution X(x0; t;u) of System (7.22) and any corre-
sponding solution Ξ̂(ξ̂0; t;u, yx0) of System (7.25). Since X(x0; t;u) remains in X by assumption, the
error e(t) = Ξ̂(ξ̂0; t;u, yx0)− T (X(x0; t;u)) verifies

ė = kA e+
(
ϕ(Ξ̂(ξ̂0; t;u, yx0))− ϕ(T (X(x0; t;u))

)
u

and thus
˙︷ ︷

e>e ≤ −2(ka− au) e>e .
Defining k2 = max{k1,

au
a
}, we conclude that e asymptotically converges to 0 if k ≥ k2. Note that

for this conclusion to hold, it is crucial to have a independent from k. Now, consider an open set X̃
such that cl(X ) ⊂ X̃ ⊂ cl(X̃ ) ⊂ X ′. Since T (X(x0; t;u)) remains in T (X ) and cl(T (X )) = T (cl(X ))
is contained in the open set T (X̃ ), there exists a time t such that for all t ≥ t, Ξ̂(ξ̂0; t;u, yx0) is in
T (X̃ ). T = T−1 is C1 on the compact set cl(T (X̃ )) and thus Lipschitz on that set. It follows that
X̂((x0, ξ̂0); t;u) = T (Ξ̂(ξ̂0; t;u, yx0)) converges to X(x0; t;u).
It remains to show the existence of the functions ϕ. Since System (7.22) is uniformly instantaneously
observable and its drift system is strongly differentially observable of order dx on S, we know since
[GB81] or with Theorem 6.3.1, that for all i in {1, . . . , dx}, there exists a Lipschitz function gi such that

LgL
i−1
f h(x) = gi(h(x), . . . , Li−1

f (x)) ∀x ∈ cl(X ) . (7.30)

Consider the function

ϕ(x) = ∂T

∂x
(x)g(x)

= A−dxC

−K∂Hdx

∂x
(x)g(x)︸ ︷︷ ︸

ϕH (x)

+ 1
kdx

∂R

∂x
(x)g(x)︸ ︷︷ ︸

ϕR(x)

 .

9Because ψ(τ) = ∂X̌
∂x

(x, τ) follows the ODE dψ
dτ

(τ) = ∂f
∂x

(X̌(x, τ))ψ(τ), and ψ(0) = I.
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Let us first study ϕH . Notice that the ith-component of ϕH is ϕH,i = 1
ki
LgL

i−1
f h(x) and according to

(7.30), there exists Li such that

|ϕH,i(x̂)− ϕH,i(x)| ≤ Li
i∑

j=1

∣∣∣ 1
kj

(
Lj−1
f (x̂)− Lj−1

f (x)
)∣∣∣ ∀(x, x̂) ∈ cl(X )2

and thus L such that

|ϕH(x̂)− ϕH(x)| ≤ L|KHdx(x̂)−KHdx(x)| ∀(x, x̂) ∈ cl(X )2 .

But using (7.26), we get

|KHdx(x̂)−KHdx(x)| ≤ |AdxC−1||T (x̂)− T (x)|+ 1
kdx
|R(x̂)−R(x)| ∀(x, x̂) ∈ cl(X )2 .

We have seen that
|R(x̂)−R(x)| ≤ c1

ka− ρ1
|x̂− x| ∀(x, x̂) ∈ cl(X )2

and according to (7.28),

1
kdx
|R(x̂)−R(x)| ≤

c1
ka−ρ1

LH − c1
ka−ρ1

|AdxC−1||T (x̂)− T (x)| ∀(x, x̂) ∈ cl(X )2 .

We finally obtain, for any (x, x̂) in cl(X )2 and for any k ≥ k1,

|ϕH(x̂)− ϕH(x)| ≤ L|AdxC−1|
(

1 +
c1

ka−ρ1

LH − c1
ka−ρ1

)
|T (x̂)− T (x)|

≤ L|AdxC−1|
(

1 + c1

LH(k1a− ρ1)

)
|T (x̂)− T (x)| .

Let us now study the term ϕR(x). For (x, x̂) in cl(X )2,

ϕR(x̂)− ϕR(x) = 1
kdx

C−1
∫ 0

−∞
e−kAτB(D1(x, x̂, τ) +D2(x, x̂, τ) +D3(x, x̂, τ))dτ

where

D1(x, x̂, τ) =

(
∂Ldxf h

∂x
(X̌(x, τ))−

∂Ldxf h

∂x
(X̌(x̂, τ))

)
∂X̌

∂x
(x̂, τ)g(x̂)

D2(x, x̂, τ) =
∂Ldxf h

∂x
(X̌(x, τ))

(
∂X̌

∂x
(x̂, τ)− ∂X̌

∂x
(x, τ)

)
g(x̂)

D3(x, x̂, τ) =
∂Ldxf h

∂x
(X̌(x, τ))∂X̌

∂x
(x, τ) (g(x̂)− g(x))

Assuming that Ldxf h is C2 and g is C1, it follows from (7.27) and the fact that X̌(x, τ) is in the compact
set cl(X ′) for all τ in (−∞, 0], that for all (x, x̂) in cl(X )2 and for all τ in (−∞, 0],

|D1(x, x̂, τ)| ≤ c2e
−2ρ1τ |x− x̂|

|D3(x, x̂, τ)| ≤ c3e
−ρ1τ |x− x̂| .

As for D2, posing ϕ(τ) = ∂X̌
∂x

(x̂, τ)− ∂X̌
∂x

(x, τ), and differentiating ϕ with respect to time, we get

ϕ(0) = 0 , ϕ′(τ) = ∂f

∂x
(X̌(x̂, τ))ϕ(τ) +

(
∂f

∂x
(X̌(x̂, τ))− ∂f

∂x
(X̌(x, τ))

)
∂X̌

∂x
(x, τ) . (7.31)

Since for all τ in (−∞, 0] and for all (x, x̂) in cl(X )2,∣∣∣∂f
∂x

(X̌(x̂, τ))
∣∣∣ ≤ ρ1 ,

∣∣∣∣∂X̌∂x (x, τ)
∣∣∣∣ ≤ e−ρ1τ

and ∣∣∣∂f
∂x

(X̌(x̂, τ))− ∂f

∂x
(X̌(x, τ))

∣∣∣ ≤ c4e−ρ1τ |x− x̂| ,

we obtain by solving (7.31) in negative time and taking the norm

|D2(x̂, x, τ)| ≤
(
c5e
−ρ1τ + c6e

−2ρ1τ
)
|x− x̂| ≤ c7 e−2ρ1τ |x− x̂|
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for all τ in (−∞, 0] and all (x, x̂) in cl(X )2. Therefore, for all k ≥ k1,

|ϕR(x̂)− ϕR(x)| ≤ 1
kdx

c8
ka− ρ1

|x− x̂| ≤
c9

ka−ρ1

LH − c1
ka−ρ1

|T (x)− T (x̂)| ≤ c9

LH(k1a− ρ1)
|T (x)− T (x̂)| .

Finally, there exists a constant a such that for all k ≥ k1, and for all (x, x̂) in cl(X )2,

|ϕ(x̂)− ϕ(x)| ≤ a |T (x̂)− T (x)| . (7.32)

Consider now the function
ϕ(ξ) = ϕ(T−1(ξ))

defined on T (X ′). According to (7.32), ϕ is Lipschitz on T (X ′), and with Kirszbraun-Valentine Theorem
[Kir34, Val45], it admits a Lipschitz extension on Rdx with same Lipschitz constant a, i-e such that
(7.24) and (7.29) hold. This concludes the proof. �

7.4 Conclusion
We have shown how a Luenberger methodology can be applied to nonlinear controlled systems.
It is based on the resolution of a PDE, the solutions of which exist, transform the system into
a linear asymptotically stable one, and become injective after a certain time. This injectivity is
ensured if

- either the function made of the output and a certain number of its derivatives is Lipschitz-
injective : this is verified when the system is strongly differentially observable and the
trajectories are bounded.

- or the system is backward-distinguishable (uniformly in time), but in this case, injectivity
is ensured for "almost all" choice of a diagonal complex matrix A (of sufficiently large
dimension) in the sense of the Lebesgue measure in C.

This methodology relies on finding a time-varying solution to a PDE, which always exists but
may be difficult to compute. We have shown on practical examples how this can be done by a
priori guessing its "structure".

Also, it is interesting to remember that as in the high gain paradigm, for uniformly instanta-
neously observable control-affine systems, we may use the stationary transformation associated
to the autonomous drift system when it is strongly differentially observable of order dx. The
result does not stand for higher orders of differential observability, since it relies on the existence
of Lipschitz functions gi such that gi(Hi(x)) = LgL

i−1
f (x), and we have seen in Chapter 6 that

the Lipschitzness is lost when the drift system is differentially observable of higher order.



Part III

Expression of the dynamics of the
observer in the system coordinates





Chapter 8

Motivation and problem statement

Chapitre 8 – Motivation et énoncé du problème. Les Parties I-II montrent que l’on peut
sous certaines conditions construire un observateur pour un système non linéaire en transfor-
mant sa dynamique en une forme favorable pour laquelle un observateur global est connu. Il
s’ensuit que la dynamique du système et celle de l’observateur ne sont pas exprimées dans les
mêmes coordonnées et évoluent même souvent dans des espaces de dimension différente. Afin
d’obtenir une estimée de l’état du système, il est alors nécessaire d’inverser la transformation.
Or, cette opération peut se révéler compliquée en pratique, notamment lorsqu’une expression
explicite de l’inverse n’est pas connue, car elle repose alors sur la résolution d’un problème de
minimisation couteux en calculs. C’est pour cette raison que nous avons développé une méthode
permettant de ramener la dynamique de l’observateur dans les coordonnées initiales du système
afin d’éviter l’inversion de la transformation. Dans ce chapitre, nous motivons cette démarche à
l’aide d’exemples et donnons une première condition suffisante pour résoudre ce problème dans
le cas où la transformation est stationnaire. Les chapitres suivants 9-10-11 seront consacrés
à montrer comment remplir cette condition. De plus, la possible extension de ces résultats au
cas où la transformation est non-stationnaire sera étudiée dans le chapitre 11, principalement à
l’aide d’exemples tirés d’applications.
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Parts I-II have shown that it is possible, under certain conditions, to build an observer for
a nonlinear system by transforming its dynamics into a favorable form for which a global observer
is known. It follows that the dynamics of the system and of the observer are not expressed in
the same coordinates and often even evolve in spaces of different dimensions. In order to obtain
an estimate for the system state or even sometimes write the observer dynamics, it is necessary
to invert the transformation. But this step can be difficult in practice, mostly when an explicit
expression for the inverse is not available. Indeed, in this case, inversion usually relies on the
resolution of a minimization problem with a heavy computation cost. That is why we have
developed a methodology enabling to pull the dynamics of the observer back into the system
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coordinates in order to avoid the inversion of the transformation, namely design an observer
in the given coordinates1. In this chapter, we motivate and introduce this problem through
examples and give a first sufficient condition to solve this problem in the case of a stationary
transformation. The remaining chapters 9-10-11 will show how to satisfy this condition. Besides,
the possible extension of those results to the case where the transformation is time-varying will
be studied in Chapter 11 mainly through an example coming from an application. Note that we
have submitted most of the results presented in this part in [BPA15] and [BPAew].

8.1 Example
To motivate the problem we shall tackle in this part of the thesis, we consider a harmonic
oscillator with unknown frequency with dynamics

ẋ1 = x2
ẋ2 = −x1x3
ẋ3 = 0

, y = x1 (8.1)

with state x = (x1, x2, x3) in R2 × R>0 and measurement y. We are interested in estimating
the state x of this system from the only knowledge of the function t 7→ y(t) = X1(x, t). This
problem has been widely studied in the literature ([HOD99, OPCTL02, Hou05, Hou12] among
many others) and our goal is not to produce yet another observer for this system but rather to
illustrate our methodology and the problems encountered throughout its implementation. This
example is indeed sufficiently simple in terms of computations, but sufficiently rich in terms of
underlying observability issues to be interesting throughout this part of the thesis.

For any solution with initial condition x1 = x2 = 0, y does not give any information on x3.
We thus restrict our attention to solutions evolving in X of the type

X =
{
x ∈ R3 : x2

1 + x2
2 ∈

]1
r
, r

[
, x3 ∈]0, r[

}
, (8.2)

where r is some arbitrary strictly positive real number. This set is forward-invariant by (8.1).
Note also that System (8.1) is strongly differentially observable of order 4 on

S =
(
R2 \ {(0, 0)}

)
× R+

containing X , namely H4 defined by

H4(x) =


h(x)
Lfh(x)
L2
fh(x)

L3
fh(x)

 =


x1
x2
−x1x3
−x2x3


is an injective immersion on S.

8.1.1 High-gain design

According to Theorem 5.2.1 and Remark 4, we know that τ∗ defined by

τ∗(x) = H4(x) = (x1, x2,−x1x3,−x2x3) (8.3)

transforms System 8.1 into a phase-variable form of dimension 4 for which a high-gain observer
can be designed:

˙̂
ξ = F(ξ̂, y) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ξ̂ +


0
0
0

Φ4(ξ̂)

+


Lk1
L2k2
L3k3
L4k4

 [y − ξ̂1] , (8.4)

1See Definition 2.1.1
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where Φ4 is defined by2

Φ4(ξ) = satr3(L4
fh(τ(ξ)))

with τ any locally Lipschitz function defined on R4 verifying

τ(H4(x)) = x ∀x ∈ X ,

r3 may be replaced by any bound of L4
fh on X , and L is a sufficiently large strictly positive

number depending on the Lipschitz constant of Φ4, namely on the choice of τ and r. Wanting
to highlight the role of the computation of the left-inverse τ , we get in fact a “raw” observer
with dynamics

˙̂
ξ = ϕ(ξ̂, x̂, y) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ξ̂ +


0
0
0

satr3(x̂1x̂
2
3)

+


`k1
`2k2
`3k3
`4k4

 [y − ξ̂1] , x̂ = τ(ξ̂) . (8.5)

We deduce that the computation of the function τ (whose existence is guaranteed by the theorem)
is crucial in the implementation of this observer, of course to deduce x̂ from ξ̂ but also to define
the dynamics of the observer itself.

Although in this example an explicit and global expression3 for τ can easily be found due to
the simplicity of the transformation τ∗ = H4, it is not always the case in high gain designs for
more complex applications. To overcome this problem, we may go with solving an optimization
problem as

x̂ = τ(ξ̂) = Argmin
x̂

∣∣∣ξ̂ − τ∗(x̂)
∣∣∣2 .

8.1.2 Luenberger design

Instead of a high gain observer design as above, we may use a non linear Luenberger design. As
explained in Section 5.1.2, the idea is to find a transformation into a Hurwitz form of the type :

ξ̇ = Aξ + B y

with ξ in Rdξ , A a Hurwitz matrix and (A,B) a controllable pair. Indeed, this system admits
as global observer

˙̂
ξ = ϕ(ξ̂, y) = A ξ̂ + B y . (8.6)

Since the dynamics (8.1) are linear in (x1, x2), we can look for a transformation depending
linearly in (x1, x2). Straightforward computations give :

τ∗(x) = −(A2 + x3I)−1[ABx1 +Bx2] . (8.7)

In particular, for a diagonal matrix A = diag(−λ1, . . . ,−λdξ) with λi > 0, and B = (1, . . . , 1)>,
this gives for i in {1, . . . , dξ} :

τ∗i (x) = λix1 − x2
λ2
i + x3

. (8.8)

It is shown in [PMI06] that τ∗ is injective on S if dξ ≥ 4 for any distinct λi’s in (0,+∞). More
precisely, it is Lipschitz-injective on any compact subset of S and therefore, τ∗ is an injective
immersion4 on S. This is consistent with [AP06, Theorem 4] and the fact that the order of
strong differentiability of this system is 4.

2The saturation function is defined by satM (s) = min {M,max {s,−M}}.
3For instance, we can take τ(ξ) =

(
ξ1 , ξ2 , − ξ1ξ3+ξ4ξ2

max{ξ21+ξ22,
1
r2
}

)
.

4 Indeed, consider any x in S and V an open neighborhood of x such that cl(V) is contained in S. According
to the Lipschitz-injectivity of τ∗ on cl(V), there exists a such that for all v in R3 and for all h in R such that

x + hv is in V, |v| ≤ a |τ
∗(x+hv)−τ∗(x)|

|h| and thus by taking h to zero, |v| ≤ a
∣∣ ∂τ∗
∂x

(x)v
∣∣ which means that ∂τ

∗

∂x
(x)

is full-rank.
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Thus, since the trajectories of the system remain bounded, applying Corollary 2.2.1, there
exists an observer for System (8.1) which is given by (8.6) and any continuous function τ
satisfying

τ(τ∗(x)) = x ∀x ∈ X .

However, it is difficult to find an explicit expression of such a function, thus for this design, we
would have to solve online :

x̂ = τ(ξ̂) = Argmin
x̂

∣∣∣ξ̂ − τ∗(x̂)
∣∣∣2 .

Note that a difference with the high gain observer above is that x̂ is not involved in (8.6), i.e.
the observer dynamics do not depend on τ .

8.1.3 General idea

In the following, we propose a methodology to write the dynamics of the given observers (8.5)
and (8.6) directly in the x-coordinates5 in order to eliminate the minimization step. This has
been suggested by several researchers [DBGR92, MP03, AP13] in the case where the observer
state ξ̂ and the state estimate x̂ are related by a diffeomorphism. We remove this restriction
and complete the preliminary results presented in [AEP14].

In the example above, pulling the observer dynamics from the ξ-coordinates back to the
x-coordinates appears impossible since x has dimension 3 whereas ξ has dimension 4. We
overcome this difficulty by adding one component, say w, to x. Then, the dynamics of (x̂, ŵ)
can be obtained as an image of those of ξ if we have a diffeomorphism (x,w) 7→ ξ = τ∗e (x,w)
“augmenting” the function x 7→ τ∗(x) given in (8.3) or (8.7). We show in Chapter 9 that
this can be done by complementing a full column rank Jacobian into an invertible matrix.
Unfortunately, in doing so, the obtained diffeomorphism is rarely defined everywhere and we
have no guarantee that the trajectory in (x̂, ŵ) of the observer remains in the domain of definition
of the diffeomorphism. We show in Chapter 10 how this new problem can be overcome via a
diffeomorphism extension. The key point here is that the given observer dynamics (8.5) or (8.6)
remain unchanged. This differs from other techniques as proposed in [MP03, AP13], which
require extra assumptions such as convexity to preserve the convergence property.

8.2 Problem statement

8.2.1 Starting point

We consider a given system with dynamics :

ẋ = f(x, u) , y = h(x, u) , (8.9)

with x in Rdx , u a function in U with values in U ⊂ Rdu and y in Rdy . The observation problem
is to construct a dynamical system with input y and output x̂, supposed to be an estimate of
the system state x as long as the latter is in a specific set of interest denoted X ⊆ Rdx . As
starting point here, we assume this problem is (formally) already solved but with maybe some
implementation issues such as finding an expression of τ . More precisely,

Assumption O : Converging observer in the ξ-coordinates

There exist an open subset S of Rdx , a subset X of S, a C1 injective immersion τ∗ : S → Rdξ ,

5We will also refer to the x-coordinates as the "given coordinates" because they are chosen by the user to
describe the model dynamics.



8.2. Problem statement 113

and a set6 ϕT of pairs (ϕ, τ) of functions such that :

- τ : Rdξ → Rdx is a left-inverse of τ∗ on τ∗(X ), i-e

τ(τ∗(x)) = x ∀x ∈ X (8.10)

- for any u in U and any x0 in X0 such that σ+(x0, u) = +∞, the solution X(x0; t;u) of
(8.9) remains in X for t in [0,+∞) .

- for any u in U , any x0 in X0 such that σ+(x0, u) = +∞, and any ξ̂0 in Rdξ , any solution
(X(x0; t;u), Ξ̂((x0, ξ̂0); t;u)) of the cascade system :

ẋ = f(x, u) , y = h(x, u) ,
˙̂
ξ = ϕ(ξ̂, x̂, u, y) , x̂ = τ(ξ̂) , (8.11)

initialized at (x0, ξ̂0) and under the input u, is also defined on [0,+∞) and satisfies :

lim
t→+∞

∣∣∣Ξ((x0, ξ̂0); t;u)− τ∗(X(x0; t;u))
∣∣∣ = 0 . (8.12)

Remark 13

1. The convergence property given by (8.12) is in the observer state space only. Property
(8.10) is a necessary condition for this convergence to be transferred from the observer
state space to the system state space. But as we saw earlier, we may need the injectivity
of τ∗ to be uniform in space, or equivalently τ to be uniformly continuous on Rdξ , in order
to conclude about a possible convergence in the x-coordinates. In that case, the couple
(F , T ) defined by

F(ξ, u, y) = ϕ(ξ, τ(ξ), u, y) , T (ξ) = τ(ξ)

is an observer for System (8.9) initialized in X0. Note that as in Corollary 2.2.1, this is
achieved without further assumption in the case where X is bounded.

2. The reason why we make ϕ depend on x̂, instead of simply taking F(ξ, u, y) as before, is
that most of the time, and especially in a high gain design (see (8.5)), when expressing
the dynamics of τ∗(x) as function of ξ to compute F , we replace x by τ(ξ). Since we want
here to avoid the computation of τ , we make this dependence explicit in ϕ.

3. The need for pairing ϕ and τ comes from this dependence because it may imply to change
ϕ whenever we change τ . In the high-gain approach for instance, as in (8.5), when X is
bounded, thanks to the gain L which can be chosen arbitrarily large, ϕ can be paired with
any locally Lipschitz function τ provided its values are saturated whenever they are used
as arguments of ϕ. On another hand, if, as in (8.6), ϕ does not depend on x̂, then it can
be paired with any τ .

Example 8.2.1 For System (8.1), X given in (8.2) being bounded, a set ϕT satisfying Assump-
tion O is made of pairs of

- a locally Lipschitz function τ satisfying

x = τ(x1, x2,−x1x3,−x2x3) ∀x ∈ X (8.13)

and the function ϕ defined in (8.5), with L adapted to the properties of τ , if τ∗ is defined
by (8.3) ;

6The symbol ϕT is pronounced phitau.
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- or a continuous function τ satisfying

x = τ

(
λ1x1 − x2
λ2

1 + x3
,
λ2x1 − x2
λ2

2 + x3
,
λ3x1 − x2
λ2

3 + x3
,
λ4x1 − x2
λ2

4 + x3

)
∀x ∈ X (8.14)

and the function ϕ defined in (8.6) if τ∗ is defined by (8.8). N

Although the problem of observer design seems already solved under Assumption O, it can
be difficult to find a left-inverse τ of τ∗. In the following, we consider that the function τ∗ and
the set ϕT are given and we aim at avoiding the left-inversion of τ∗ by expressing the observer
for x in the, maybe augmented, x-coordinates.

8.2.2 A sufficient condition allowing the expression of the observer in the
given x-coordinates

For the simpler case where the raw observer state ξ̂ has the same dimension as the system state
x, i.e. dx = dξ, τ∗, in Assumption O, is a diffeomorphism on S and we can express the observer
in the given x-coordinates as :

˙̂x =
(
∂τ∗

∂x
(x̂)
)−1

ϕ(τ∗(x̂), x̂, u, y) (8.15)

which requires a Jacobian inversion only. However, although, by assumption, the system trajec-
tories remain in S where the Jacobian is invertible, we have no guarantee the ones of the observer
do. Therefore, to obtain convergence and completeness of solutions, we must find means to en-
sure the estimate x̂ does not leave the set S, or equivalently that τ∗(x̂) remains in the image set
τ∗(S). Observing that this problem obviously disappears if this set is the whole space Rdξ , we
address this point by modifying τ∗ “marginally” in order to get τ∗(S) = Rdξ .

In the more complex situation where dξ > dx, τ∗ is only an injective immersion. In [AEP14],
it is proposed to augment the given x-coordinates in Rdx with extra ones, say w, in Rdξ−dx and
correspondingly to augment the given injective immersion τ∗ into a diffeomorphism τ∗e : Sa →
Rdξ , where Sa is an open subset of Rdξ , which "augments" S, i-e its Cartesian projection on Rdx
is contained in S and contains cl(X ).

To help us find such an appropriate augmentation, we have the following sufficient condition.

Theorem 8.2.1.

Assume Assumption O holds and X is bounded. Assume also the existence of an open subset
Sa of Rdξ containing cl(X × {0}) and of a diffeomorphism τ∗e : Sa → Rdξ satisfying

τ∗e (x, 0) = τ∗(x) ∀x ∈ X (8.16)

and
τ∗e (Sa) = Rdξ . (8.17)

and such that, with let τex denoting the x-component of the inverse of τ∗e , there exists a
function ϕ such that the pair (ϕ, τex) is in the set ϕT given by Assumption O.

Under these conditions, for any u in U and any x0 in X0 such that σ+(x0, u) = +∞, any
solution (X(x0; t;u), X̂(x0, x̂0, ŵ0; t;u), Ŵ (x0, x̂0, ŵ0; t, u)), with initial condition (x̂0, ŵ0) in
Sa, of the cascade of System (8.9) with the observer :

˙︷ ︷[
x̂
ŵ

]
=
(

∂τ∗e
∂(x̂, ŵ)(x̂, ŵ)

)−1
ϕ(τ∗e (x̂, ŵ), x̂, u, y) (8.18)
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is also defined on [0,+∞) and satisfies :

lim
t→+∞

∣∣∣Ŵ (x0, x̂0, ŵ0; t;u)
∣∣∣+ ∣∣∣X(x0; t;u)− X̂(x0, x̂0, ŵ0; t;u)

∣∣∣ = 0 . (8.19)

In other words, System (8.18) is an observer in the given coordinates7 for System (8.9)
initialized in X0.

The key point in the observer (8.18) is that, instead of left-inverting the function τ∗ via τ as
in (8.10), we invert only a matrix, exactly as in (8.15).

Proof : Take u in U and (x0, (x̂0, ŵ0)) in X0 × Sa such that σ+(x0, u) = +∞. X(x0; t;u) remains in
X for t in [0,+∞) by assumption. Let [0, t[ be the right maximal interval of definition of the solution
(X(x0, t), X̂(x0, x̂0, ŵ0; t;u), Ŵ (x0, x̂0, ŵ0; t;u)) when considered with values in X × Sa. Assume for the
time being t is finite. Then, when t goes to t, either (X̂(x0, x̂0, ŵ0; t;u), Ŵ (x0, x̂0, ŵ0; t;u)) goes to
infinity or to the boundary of Sa. By construction t 7→ Ξ(t) := τ∗e

(
X̂(x̂0, ŵ0; t;u), Ŵ (x̂0, ŵ0; t;u)

)
is a

solution of (8.11) on [0, t[ with τ = τex. From assumption O and since (ϕ, τex) is in ϕT, it can be extended
as a solution defined on [0,+∞[ when considered with values in Rdξ = τ∗e (Sa). This implies that Ξ(t)
is well defined in Rdξ . Since, with (8.17), the inverse τe of τ∗e is a diffeomorphism defined on Rdξ , we
obtain limt→t

(
X̂(x̂0, ŵ0; t;u), Ŵ (x̂0, ŵ0; t;u)

)
= τe(Ξ(t)), which is an interior point of τe(Rdξ ) = Sa.

This point being neither a boundary point nor at infinity, we have a contradiction. It follows that t is
infinite.
Finally, with assumption O, we have :

lim
t→+∞

∣∣τ∗e (X̂(x̂0, ŵ0; t;u), Ŵ (x̂0, ŵ0; t;u)
)
− τ∗(X(x0; t;u))

∣∣ = 0 .

Since X(x0; t;u) remains in X , τ∗(X(x0; t;u)) equals τ∗e (X(x0; t;u), 0) and remains in the compact set
τ∗(cl(X )). So there exists a compact subset C of Rdξ and a time tC such that τ∗e

(
X̂(x̂0, ŵ0; t;u), Ŵ (x̂0, ŵ0; t;u)

)
is in C for all t > tC. Since τ∗e is a diffeomorphism, its inverse τe is Lipschitz on the compact set C. This
implies (8.19). �

With Theorem 8.2.1, we are left with finding a diffeomorphism τ∗e satisfying the conditions
listed in the statement :
• Equation (8.16) is about the fact that τ∗e is an augmentation, with adding coordinates, of the
given injective immersion τ∗. It motivates the following problem.

Problem 1. Immersion augmentation into a diffeomorphism

Given a set X , an open subset S of Rdx containing cl(X ), and an injective immersion
τ∗ : S → τ∗(S) ⊂ Rdξ , the pair (τ∗a ,Sa) is said to solve the problem of immersion augmen-
tation into a diffeomorphism if Sa is an open subset of Rdξ containing cl(X × {0}) and
τ∗a : Sa → τ∗a (Sa) ⊂ Rdξ is a diffeomorphism satisfying

τ∗a (x, 0) = τ∗(x) ∀x ∈ X .

We will present in Chapter 9 conditions under which Problem 1 can be solved via comple-
menting a full column rank Jacobian of τ∗ into an invertible matrix, i.e. via what we call
Jacobian complementation.
• The condition expressed in (8.17), is about the fact that τ∗e is surjective onto Rdξ . This

motivates us to introduce the surjective diffeomorphism extension problem

Problem 2. Surjective diffeomorphism extension

Given an open subset Sa of Rdξ , a compact subset K of Sa, and a diffeomorphism τ∗a :

7See Definition 2.1.1.
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extension problem if it satisfies

τ∗e (Sa) = Rdξ , τ∗e (x,w) = τ∗a (x,w) ∀(x,w) ∈ K.

This Problem 2 will be addressed in Chapter 10.
When AssumptionO holds and X is bounded, by successively solving Problem 1 and Problem

2 with cl(X×{0}) ⊂ K ⊂ Sa, we get a diffeomorphism τ∗e guaranteed to satisfy all the conditions
of Theorem 8.2.1 except maybe the fact that the pair (ϕ, τex) is in ϕT. Fortunately, pairing a
function ϕ with a function τex obtained from a left inverse of τ∗e is not as difficult as it seems, at
least for general purpose observer designs such as high gain observers or nonlinear Luenberger
observers. Indeed, we have already observed in point 3 of Remark 13 that if, as for Luenberger
observers, there is a pair (ϕ, τ) in the set ϕT such that ϕ does not depend on τ , then we can
associate this ϕ to any τex. Also, for high gain observers, we need only that τex, used as argument
of ϕ, make it globally Lipschitz. This is obtained by modifying, if needed, this function outside
a compact set, as the saturation function does in (8.5). We conclude from all this that our
problem reduces to solving Problems 1 and 2.

Throughout Chapters 9-10, we will show how, step by step, we can express in the x-
coordinates the high gain observer for the harmonic oscillator with unknown frequency intro-
duced in Section 8.1.1. We will also show that our approach enables to ensure completeness of
solutions of the observer presented in [GHO92] for a bioreactor. The various difficulties we shall
encounter on this road will be discussed in Chapter 11. In particular, we shall see how they can
be overcome thanks to a better choice of τ∗ and of the pair (ϕ, τ) given by Assumption O. We
will also see that the same tools apply to the Luenberger observer presented in Section 8.1.2 for
the oscillator. Finally, we will show in Chapter 11 that this methodology can be extended to
the case where the transformation is time-varying through a very practical application related
to aircraft landing.



Chapter 9

Around Problem 1 : augmenting an
injective immersion into a
diffeomorphism

Chapitre 9 – Autour du Problème 1 : augmenter une immersion injective en un
difféomorphisme. Une condition suffisante pour résoudre ce problème est de savoir compléter
continûment le Jacobien (de rang plein) de la fonction en une matrice inversible. En effet,
lorsque ceci est possible, une formule explicite de l’augmentation en un difféomorphisme est
proposée. Ce chapitre est donc consacré au problème de complémentation continue d’une matrice
rectangulaire de rang plein en une matrice carrée inversible. Plusieurs résultats sont donnés avec
dans chaque cas des formules explicites ou des algorithmes constructifs, et sont illustrés grâce à
l’exemple de l’oscillateur à fréquence inconnue.
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In [AEP14], we find the following sufficient condition for the augmentation of an immersion
into a diffeomorphism.

Lemma 9.0.1. [AEP14]

Let X be a bounded set, S be an open subset of Rdx containing cl(X ), and τ∗ : S → τ∗(S) ⊂
Rdξ be an injective immersion. If there exists a bounded open set S̃ satisfying

cl(X ) ⊂ S̃ ⊂ cl(S̃) ⊂ S

and a C1 function γ : S → Rdξ×(dξ−dx) the values of which are dξ × (dξ − dx) matrices
satisfying :

det
(
∂τ∗

∂x
(x) γ(x)

)
6= 0 ∀x ∈ cl(S̃) , (9.1)

then there exists a strictly positive real number ε such that the following pair1 (τ∗a ,Sa) solves
Problem 1

τ∗a (x,w) = τ∗(x) + γ(x)w , Sa = S̃ ×Bε(0) . (9.2)

1For a positive real number ε and z0 in Rp, Bε(z0) is the open ball centered at z0 and with radius ε.
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In other words, an injective immersion τ∗ can be augmented into a diffeomorphism τ∗a if we
are able to find dξ − dx columns γ which are C1 in x and which complement the full column
rank Jacobian ∂τ∗

∂x (x) into an invertible matrix.

Proof : The fact that τ∗a is an immersion for ε small enough is established in [AEP14]. We now prove
it is injective. Let ε0 be a strictly positive real number such that the Jacobian of τ∗a (x,w) in (9.2) is
invertible for any (x,w) in cl(S̃ × Bε0(0)). Since cl(S̃ × Bε0(0)) is compact, not to contradict the
Implicit function Theorem, there exists a strictly positive real number δ such that any two pairs (xa, wa)
and (xb, wb) in cl(S̃ ×Bε0(0)) which satisfy

τ∗a (xa, wa) = τ∗a (xb, wb) , (xa, wa) 6= (xb, wb) (9.3)

satisfies also
|xa − xb| + |wa − wb| ≥ δ .

On another hand, since τ∗ is continuous and injective on cl(S̃) ⊂ S, it has an inverse which is uniformly
continuous on the compact set τ∗(cl(S̃)) (see Lemma A.3.3). It follows that there exists a strictly
positive real number η such that

∀ (xa, xb) ∈ cl(S̃)2 : |τ∗(xa)− τ∗(xb)| < η , |xa − xb| <
δ

2 .

But if (9.3) holds with wa and wb in Bε(0) with ε ≤ ε0, we have

δ − 2ε ≤ |xa − xb| , |τ∗(xa)− τ∗(xb)| = |γ(xa)wa − γ(xb)wb| ≤ 2ε sup
x∈cl(S̃)

|γ(x)| .

We have a contradiction for all ε ≤ min
{

3δ
4 ,

η
2ε supx∈cl(S̃) |γ(x)|

}
. So (9.3) cannot hold for such ε’s, i.e.

τ∗a is injective on S̃ ×Bε(0). �

Remark 14 Complementing a dξ × dx full-rank matrix into an invertible one is equivalent to
finding dξ − dx independent vectors orthogonal to that matrix. Precisely the existence of γ
satisfying (9.1) is equivalent to the existence of a C1 function γ̃ : cl(S̃) → Rdξ×(dξ−dx) the
values of which are full rank matrices satisfying :

γ̃(x)>∂τ
∗

∂x
(x) = 0 ∀x ∈ cl(S̃) . (9.4)

Indeed, γ̃ satisfying (9.4) satisfies also (9.1) since the following matrices are invertible(
∂τ∗

∂x (x)>
γ̃(x)>

)(
∂τ∗

∂x
(x) γ̃(x)

)
=
(

∂τ∗

∂x (x)> ∂τ∗∂x (x) 0
0 γ̃(x)>γ̃(x)

)
.

Conversely, given γ satisfying (9.1), γ̃ defined by the identity below satisfies (9.4) and has full
column rank

γ̃(x) =
[
I − ∂τ∗

∂x
(x)

[
∂τ∗

∂x
(x)>∂τ

∗

∂x
(x)
]−1∂τ∗

∂x
(x)>

]
γ(x) .

9.1 Submersion case

When τ∗(cl(S̃)) is a level set of a submersion, we have the following complementation result
:

Theorem 9.1.1.

Let X be a bounded set, S̃ be a bounded open set and S be an open set satisfying

cl(X ) ⊂ S̃ ⊂ cl(S̃) ⊂ S .

Let also τ∗ : S → τ∗(S) ⊂ Rdξ be an injective immersion. Assume there exists a C2 function
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F : Rdξ → Rdξ−dx which is a submersion2 at least on a neighborhood of τ∗(S̃) satisfying:

F (τ∗(x)) = 0 ∀x ∈ S̃ , (9.5)

then, with the C1 function x 7→ γ(x) = ∂F
∂ξ

T (τ∗(x)), the matrix in (9.1) is invertible for all x
in S̃ and the pair (τ∗a ,Sa) defined in (9.2) solves Problem 1.

Proof : For all x in cl(S̃), ∂τ∗

∂x
(x) is right invertible and we have ∂F

∂ξ
(τ∗(x)) ∂τ

∗

∂x
(x) = 0. Thus, the

rows of ∂F
∂ξ

(τ∗(x)) are orthogonal to the column vectors of ∂τ∗

∂x
(x) and are independent since F is a

submersion. The Jacobian of τ∗ can therefore be completed with ∂F
∂ξ

T (τ∗(x)). The proof is completed
with Lemma 9.0.1. �

Remark 15 Since ∂τ∗

∂x is of constant rank dx on S, the existence of such a function F is
guaranteed at least locally by the constant rank Theorem.

Example 9.1.1 (Continuation of Example 8.2.1) Elimination of the x̂i in the 4 equations
given by the injective immersion τ∗ defined in (8.3) leads to the function F (ξ) = ξ2ξ3 − ξ1ξ4
satisfying (9.5). It follows that a candidate for complementing:

∂τ∗

∂x
(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2

 (9.6)

is
γ(x) = ∂F

∂ξ
(τ∗(x))> = (x2x3,−x1x3, x2,−x1)> .

This vector is nothing but the column of the minors of the matrix (9.6). It gives as determinant
(x2x3)2 + (x1x3)2 + x2

2 + x2
1 which is never zero on S.

Then, it follows from Lemma 9.0.1, that, for any bounded open set S̃ such that X ⊂ cl(S̃) ⊂
S the following function is a diffeomorphism on S̃ ×Bε(0) for ε sufficiently small

τ∗a (x,w) = (x1 + x2x3w, x2 − x1x3w,−x1x3 + x2w,−x2x3 − x1w) .

With picking τ∗e = τ∗a , (8.18) gives us the following observer written in the given x-coordinates
augmented with w :

˙︷ ︷
x̂1
x̂3
x̂2
ŵ

=


1 x̂3ŵ x̂2ŵ x̂2x̂3

−x̂3ŵ 1 −x̂1ŵ −x̂1x̂3
−x̂3 ŵ −x̂1 x̂2
−ŵ −x̂3 −x̂2 −x̂1


−1 


x̂2 − x̂1x̂3ŵ
−x̂1x̂3 + x̂2ŵ
−x̂2x̂3 − x̂1ŵ
satr3(x̂1x̂

2
3)

+


Lk1
L2k2
L3k3
L4k4

 [y − x̂1]

 (9.7)

Unfortunately the matrix to be inverted is non singular for (x̂, ŵ) in S̃ ×Bε(0) only and we have
no guarantee that the trajectories of this observer remain in this set. This shows that a further
modification transforming τ∗a into τ∗e is needed to make sure that τ∗e −1(ξ) belongs to this set
whatever ξ in R4. This is Problem 2. N

The drawback of this Jacobian complementation method is that it asks for the knowledge
of the function F . It would be better to simply have a universal formula relating the entries of
the columns to be added to those of ∂τ∗∂x .

2F : Rdξ → Rn with dξ ≥ n is a submersion on V if ∂F
∂ξ

(ξ) is full-rank for all ξ in V.
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9.2 The P̃ [dξ, dx] problem

Finding a universal formula for the Jacobian complementation problem amounts to solving the
following problem.

Problem P̃ [dξ, dx]

For a pair of integers (dξ, dx) such that 0 < dx < dξ, a C1 matrix function γ̃ : Rm×n →
Rdξ×(dξ−dx) solves the P̃ [dξ, dx] problem if for any dξ × dx matrix T = (Tij) of rank dx, the
matrix

(
T γ̃(T)

)
is invertible.

As a consequence of a theorem due to Eckmann [Eck06, §1.7 p. 126] and Lemma 9.0.1, we
have

Theorem 9.2.1.

The P̃ [dξ, dx] problem is solvable by a C1 function γ̃ if and only if the pair (dξ, dx) is in one
of the following pairs

(≥ 2, dξ − 1) or (4, 1) or (8, 1) . (9.8)

Moreover, for each of these pairs and for any bounded set X , any bounded open set S̃ and
any open set S satisfying

cl(X ) ⊂ S̃ ⊂ cl(S̃) ⊂ S ⊂ Rdx ,

and any injective immersion τ∗ : S → τ∗(S) ⊂ Rdξ , the pair (τ∗a ,Sa) defined in (9.2) with
γ(x) = γ̃

(
∂τ∗a
∂x (x)

)
solves Problem 1.

Proof : ["only if"] The following theorem is due to Eckmann.

Theorem 9.2.2. [Eck06]

For dξ > dx, there exists a continuous function γ̃1 : Rdξ×dx → Rdξ with non zero values and satisfying
γ̃1(T)T T = 0 for any dξ×dx matrix T = (Tij) of rank dx if and only if (dξ, dx) is in one of the following
pairs

(≥ 2, dξ − 1) or (even, 1) or (7, 2) or (8, 3) (9.9)

With Remark 14, any pair (dξ, dx) for which P̃ [dξ, dx] is solvable must be one in the list (9.9). The pair
(≥ 2, dξ − 1) is in the list (9.8). For the pair (even, 1), we need to find dξ − 1 vectors to complement the
given one into an invertible matrix. After normalizing the vector T so that it belongs to the unit sphere
Sdξ−1 and projecting each vector γi(T) of γ(T) onto the orthogonal complement of T, this complementation
problem is equivalent to asking whether Sdξ−1 is parallelizable (since the γi(T) will be a basis for the
tangent space at T for each T ∈ Sdξ−1). It turns out that this problems admits solutions only for dξ = 4
or dξ = 8 (see [BM58]). So in the pairs (even, 1) only (4, 1) and (8, 1) are in the list (9.8).

Finally, since P̃ [6, 1] has no solution, the pairs (7, 2) and (8, 3) cannot be in the list (9.8). Indeed, let T be

a full column rank (dξ− 1)× (dx− 1) matrix.
(

T 0
0 1

)
is a full column rank dξ×dx matrix. If if P̃ [dξ, dx]

has a solution, there exist a continuous (dξ − 1) × (dξ − dx) matrix function γ̃ and a continuous row

vector functions aT such that
(
γ̃(T) T 0
a(T)> 0 1

)
is invertible. This implies that

(
γ̃(T) T

)
is also invertible.

So if P̃ [dξ, dx] has a solution, P̃ [dξ − 1, dx − 1] must have one. �

2See Remark 14.
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Proof : ["if"] For (dξ, dx) equal to (4, 1) or (8, 1) respectively, possible solutions are

γ̃(T) =

−T2 T3 T4
T1 −T4 T3
−T4 −T1 −T2
T3 T2 −T1

 , γ̃(T) =



T2 T3 T4 T5 T6 T7 T8
−T1 T4 −T3 T6 −T5 −T8 T7
−T4 −T1 T2 T7 T8 −T5 −T6
T3 −T2 −T1 T8 −T7 T6 −T5
−T6 −T7 −T8 −T1 T2 T3 T4
T5 −T8 T7 −T2 −T1 −T4 T3
T8 T5 −T6 −T3 T4 −T1 −T2
−T7 T6 T5 −T4 −T3 T2 −T1


where Tj is the jth component of the vector T. For dx = dξ − 1, we have the identity

det (T γ̃(T)) =
m∑
j=1

γ̃j(Tij)Mj,m(Tij)

where γ̃j is the jth component of the vector-valued function γ̃ and the Mj,m, being the cofactors of
(T γ̃(T)) computed along the last column, are polynomials in the given components Tij . At least one of
the Mj,m is non-zero (because they are minors of dimension dx of T which is full-rank). So it is sufficient
to take γ̃j(Tij) = Mj,m(Tij). �

In the following example we show how by exploiting some structure we can reduce the
problem to one of these 3 pairs.

Example 9.2.1 (Continuation of Example 9.1.1) In Example 9.1.1, we have complemented
the Jacobian (9.6) with the gradient of a submersion and observed that the components of this
gradient are actually cofactors. We now know that this is consistent with the case dx = dξ − 1.
But we can also take advantage from the upper triangularity of the Jacobian (9.6) and com-
plement only the vector (−x1,−x2) by for instance (x2,−x1). The corresponding vector γ is
γ(x) = (0, 0, x2,−x1). Here again, with Lemma 9.0.1, we know that, for any bounded open set
S̃ such that cl(X ) ⊂ S̃ ⊂ cl(S̃) ⊂ S the function

τ∗a (x,w) = (x1 , x2 , −x1x3 + x2w , −x2x3 − x1w)

is a diffeomorphism on S̃ × Bε(0). In fact, in this particular case ε can be arbitrary since the
Jacobian of τ∗a is full rank on S̃ × Rdξ−dx . With picking τ∗e = τ∗a , (8.18) gives us the following
observer :

˙︷ ︷
x̂1
x̂3
x̂2
ŵ

=


1 0 0 0
0 1 0 0
−x̂3 ŵ −x̂1 x̂2
−ŵ −x̂3 −x̂2 −x̂1


−1 


x̂2

−x̂1x̂3 + x̂2ŵ
−x̂2x̂3 − x̂1ŵ
satr3(x̂1x̂

2
3)

+


Lk1
L2k2
L3k3
L4k4

 [y − x̂1]

 (9.10)

However, the singularity at x̂1 = x̂2 = 0 remains and equation (8.17) is still not satisfied. N

Given the very small number of cases where a universal formula exists, we now look for a
more general solution to the Jacobian complementation problem.

9.3 Wazewski’s theorem
Historically, the Jacobian complementation problem was first addressed by Wazewski in [Waz35].
His formulation was :

Wazewski’s problem

Given a continuous function T : S ⊂ Rdx → Rdξ×dx , the values of which are full-rank
dξ × dx matrices, look for a continuous function γ : S → Rdξ×(dξ−dx) such that the ma-
trix

(
T(x) γ(x)

)
is invertible for all x in S.
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The difference with the previous section, is that here, we look for a continuous function γ of
the argument x of T(x) instead of continuous functions of T itself.

Wazewski established that this other version of the problem admits a far more general
solution :

Theorem 9.3.1. [Waz35, Theorems 1 and 3]

If S, equipped with the subspace topology of Rdx , is a contractible space, then Wazewski’s
problem admits a solution. Besides, the function γ can be chosen C∞ on S.

Proof : The reader is referred to [Eck06, page 127] or [Dug66, pages 406-407] and to [Waz35, Theorems
1 and 3] for the complete proof of existence of a continuous function γ when S is contractible. We rather
detail here the constructive main points of the proof originally given by Wazewski in the particular case
where S is a parallelepiped, because it gives an insight on the explicit construction of γ. It is based on
Remark 14, noting that, if we have the decomposition

T(x) =
(

A(x)
B(x)

)
with A(x) invertible on some given subset R of S, then

γ(x) =
(

C(x)
D(x)

)
makes

(
T(x) γ(x)

)
invertible on R if and only if D(x) is invertible on R and we have

C(x) = −(AT (x))−1B(x)TD(x) ∀x ∈ R . (9.11)

Thus, C is imposed by the choice of D and choosing D invertible is enough to build γ on R.
Also, if we already have a candidate (

A(x) C0(x)
B(x) D0(x)

)
on a boundary ∂R of R and A(x) is invertible for all x in ∂R, then, necessarily, D0(x) is invertible
and C0(x) = −(AT (x))−1B(x)TD0(x) all x in ∂R. Thus, to extend the construction of a continuous
function γ inside R from its knowledge on the boundary ∂R, it suffices to pick D as any invertible matrix
satisfying D = D0 on ∂R. Because we can propagate continuously γ from one boundary to the other,
Wazewski deduces from these two observations that, it is sufficient to partition the set S into adjacent
sets Ri where a given dξ × dξ minor Ai is invertible. This is possible since T is full-rank on S. When S
is a parallelepiped, he shows that there exists an ordering of the Ri such that the continuity of each Di
can be successively ensured. We illustrate this construction in Example 9.3.1 below.
Finally, it remains to show how this continuous function γ can be modified into a smoother one giving
the same invertibility property. For this, we use a partition of unity. Let γi denote the ith column of
γ. We start with modifying γ1 into γ̃1. Since T, γ and the determinant are continuous, for any x in S,
there exists a strictly positive real number rx, such that, may be after changing γ1 into −γ1,

det
(
T(y) γ1(x) γ2:dξ−dx(y)

)
> 0 , ∀y ∈ Brx(x) , (9.12)

where γi:j denotes the matrix composed of the ith to jth columns of γ. The family of sets (Brx(x))x∈S
is an open cover of S. Therefore, by [Hir76, Theorem 2.1], there exists a subordinate C∞ partition of
unity, i.e. there exist a family of C∞ functions ψx : S → R≥0 such that

Supp (ψx) ⊂ Brx(x) ∀x ∈ S , (9.13)
{Supp (ψx)}x∈S is locally finite , (9.14)∑

x∈S

ψx(y) = 1 ∀y ∈ S . (9.15)

With this, we define the function γ̃1 on S by

γ̃1(y) =
∑
x∈S

ψx(y)γ1(x) .
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This function is well-defined and C∞ on S because the sum is finite at each point according to (9.14).
Using multi-linearity of the determinant, we have, for all y in S,

det
(
T(y) γ̃1(y) γ2:dξ−dx(y)

)
=
∑
x∈S

ψx(y) det
(
T(y) γ1(x) γ2:dξ−dx(y)

)
.

Thanks to (9.14), at each point y in S, there is a finite number of ψx(y) which are not zero. Also, the
right hand side is the sum of non negative terms because of (9.12) and the non negativeness of the ψx,
and one of these terms is strictly positive because of (9.12) and (9.15). Therefore, we can replace the
continuous function γ1 by the C∞ function γ̃1 as a first column of γ. Then we follow exactly the same
procedure for γ2 with this modified γ. By proceeding this way, one column after the other, we get our
result. �

The following corollary is a consequence of Lemma 9.0.1 and provides another answer to
Problem 1.

Corollary 9.3.1.

Let X be a bounded set, S be an open subset of Rdx containing cl(X ) and which, equipped
with the subspace topology of Rdx , is a contractible space. Let also τ∗ : S → τ∗(S) ⊂ Rdξ be
an injective immersion. There exists a C∞ function γ such that, for any bounded open set S̃
satisfying

cl(X ) ⊂ S̃ ⊂ cl(S̃) ⊂ S

we can find a strictly positive real number ε such that the pair (τ∗a ,Sa) defined in (9.2) solves
Problem 1.

Example 9.3.1 Consider the function

T(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2
∂℘
∂x1

x3
∂℘
∂x2

x3 ℘

 , ℘(x1, x2) = max
{

0, 1
r2 − (x2

1 + x2
2)
}4

.

T(x) has full rank 3 for any x in R3, since ℘(x1, x2) 6= 0 when x1 = x2 = 0. To follow Wazewski’s
construction, let δ be a strictly positive real number and consider the following 5 regions of R3

(see Figure 9.1)

R1 = ]−∞,−δ]× R2 , R2 = [−δ, δ]× [δ,+∞]× R,
R3 = [−δ, δ]2 × R , R4 = [−δ, δ]× [−∞,−δ]× R , R5 = [δ,+∞[×R2.

We select δ sufficiently small in such a way that ℘ is not 0 in R3.

−δ

−δ

δ

δ

R3

R5

R2

R4

R1

x1

x2

Figure 9.1: Projections of the regions Ri on R2.
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diffeomorphism

We start Wazewski’s algorithm in R3. Here, the invertible minor A is given by rows 1, 2
and 5 of T (full-rank lines of T) and B by rows 3 and 4. With picking D as the identity, C is
(AT )−1B according to (9.11). D gives rows 3 and 4 of γ and C gives rows 1, 2 and 5 of γ.
Then we move to the region R2. There the matrix A is given by rows 1, 2 and 4 of T, B by
rows 3 and 5. Also D, along the boundary between R3 and R2, is given by rows 3 and 5 of γ
obtained in the previous step. We extrapolate this inside R2 by keeping D constant in planes
x1 =constant. An expression for C and therefore for γ follows.
We do exactly the same thing for R4.
Then we move to the region R1. There the matrix A is given by rows 1, 2 and 3 of T, B by rows
4 and 5. Also D, along the boundary between R1 and R2, between R1 and R3 and between
R1 and R4, is given by rows 4 and 5 of γ obtained in the previous steps. We extrapolate this
inside R1 by kipping D constant in planes x2 =constant. An expression for C and therefore for
γ follows.
We do exactly the same thing for R5.

Note that this construction produces a continuous γ, but we could have extrapolated D in
a smoother way to obtain γ as smooth as necessary. N

Although Wazewski’s method provides a more general answer to the problem of Jacobian
complementation than the few solvable P̃ [dξ, dx] problems, the explicit expressions of γ given in
Section 9.2 are preferred in practice (when the couple (dξ, dx) is in the list (9.8)) to Wazewski’s
costly computations.

We have given several methods to solve Problem 1, but to apply Theorem 8.2.1, we also need
to solve Problem 2.



Chapter 10

Around Problem 2 : image extension
of a diffeomorphism

Chapitre 10 – Autour du Problème 2 : extension d’image d’un difféomorphisme.
Dans ce chapitre, nous étudions comment un difféomorphisme peut être étendu pour que son
image couvre l’espace Rdξ entier, c’est-à-dire pour qu’il devienne surjectif. Dans certains cas, la
construction de l’extension est explicite et est illustrée à partir d’exemples. En particulier, nous
montrons que la résolution du Problème 2 garantie la complétude des solutions de l’observateur
présenté dans [GHO92] pour un bioréacteur.
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We study now how a diffeomorphism can be augmented to make its image be the whole set
Rdξ , i.e. to make it surjective. In certain cases, the construction of the extension is explicit and is
illustrated on examples. In particular, we show that solving Problem 2 guarantees completeness
of solutions of the observer presented in [GHO92] for a bioreactor.

10.1 A sufficient condition
There is a rich literature reporting very advanced results on the diffeomorphism extension prob-
lem. In the following some of the techniques are inspired from [Hir76, Chapter 8] and [Mil65,
pages 2, 7 to 14 and 16 to 18](among others). Here we are interested in the particular aspect of
this topic which is the diffeomorphism image extension as described by Problem 2. A very first
necessary condition about this problem is in the following remark.

Remark 16 Since τ∗e , obtained solving Problem 2, makes the set S diffeomorphic to Rdξ , S
must be contractible.

One of the key technical property which will allow us to solve Problem 2 can be phrased as
follows.
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Property C

An open subset E of Rdξ is said to verify property C if there exist a C1 function κ : Rdξ → R,
a bounded1 C1 vector field χ, and a closed set K0 contained in E such that:

1. E =
{
z ∈ Rdξ : κ(z) < 0

}
2. K0 is globally attractive for χ

3. we have the following transversality property:

∂κ

∂z
(z)χ(z) < 0 ∀z ∈ Rdξ : κ(z) = 0.

The two main ingredients of this condition are the function κ and the vector field χ which,
both, have to satisfy the transversality property C.3. In the case where only the function κ is
given satisfying C.1 and with no critical point on the boundary of E, its gradient could play
the role of χ. But then for K0 to be globally attractive we need at least to remove all the
possible critical points that κ could have outside K0. This task is performed for example on
Morse functions in the proof of the h-Cobordism Theorem [Mil65]. We are in a much simpler
situation when χ is given and makes E forward invariant.

Lemma 10.1.1.

Let E be a bounded open subset of Rdξ , χ be a bounded C1 vector field , and K0 be a
compact set contained in E such that:

1. K0 is globally asymptotically stable for χ

2. E is forward invariant for χ.

For any strictly positive real number d, there exists a bounded set E such that

cl(E) ⊂ E ⊂ {z ∈ Rdξ , inf
zE∈E

|z − zE | ≤ d}

and E verifies Property C.

This Lemma roughly says that if E does not satisfy conditions C.1 or C.3 but is forward
invariant for χ, then Condition C is satisfied by an arbitrarily close superset of E. Its proof is
given in Appendix B.1.

Our main result on the diffeomorphism image extension problem is:

Theorem 10.1.1.

Let Sa be an open subset of Rdξ and τ∗a : Sa → Rdξ be a diffeomorphism. If
a) either τ∗a (Sa) verifies property C,
b) or Sa is C2-diffeomorphic to Rdξ and τ∗a is C2,

then for any compact set K in Sa, there exists a diffeomorphism τ∗e : Sa → Rdξ solving
Problem 2.

The proof of case a) of this theorem is given in Section 10.2. It provides an explicit construc-
tion of τ∗e . The proof of case b) can be found in Appendix B.3. For the time being, we observe
that a direct consequence is :

1If not replace χ by χ√
1+|χ|2

.
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Corollary 10.1.1.

Let X be a bounded subset of Rdx , Sa be an open subset of Rdξ containing K = cl(X ×{0})
and τ∗a : Sa → τ∗a (Sa) be a diffeomorphism such that
a) either τ∗a (Sa) verifies property C,
b) or Sa is C2-diffeomorphic to Rdξ and τ∗a is C2.

Then, there exists a diffeomorphism τ∗e : Sa → Rdξ , such that

τ∗e (Sa) = Rdξ , τ∗e (x, 0) = τ∗a (x, 0) ∀x ∈ X .

Thus, if besides the pair (τ∗a ,Sa) solves Problem 1, then (τ∗e ,Sa) solves Problems 1 and 2.

10.2 Proof of part a) of Theorem 10.1.1

We have the following technical lemma :

Lemma 10.2.1.

Let E be an open strict subset of Rdξ verifying Condition C. For any closed subset K of E,
lying at a strictly positive distance of the boundary of E, there exists a diffeomorphism φ:
Rdξ → E, such that φ is the identity function on K.

A constructive proof of this lemma is given in Appendix B.2 and provides an explicit expres-
sion for φ which will be used in Example 10.2.1 and Section 10.3. Its construction is illustrated
on Figure 10.1.

Eε

x1

φ(x1)

x2 = φ(x2)

x3

φ(x3)

E

Figure 10.1: Sketch of the construction of the diffeomorphism φ in Lemma 10.2.1 : one follow
the flow κ given by Condition C for a more or less long time depending on the initial point.
Eε denotes the set where φ is the identity. ε measuring the "width" of E \ Eε can be chosen
sufficiently small for K to be included in Eε.

In the case a) of Theorem 10.1.1, we suppose that τ∗a (Sa) satisfies C. Now, τ∗a being a
diffeomorphism on an open set Sa, the image of any compact subset K of Sa is a compact subset
of τ∗a (Sa). According to Lemma 10.2.1, there exists a diffeomorphism φ from Rdξ to τ∗a (Sa)
which is the identity on τ∗a (K). Thus, the function τ∗e = φ−1 ◦ τ∗a solves Problem 2 and the
theorem is proved.

Example 10.2.1 (Continuation of Example 9.1.1) In Example 9.1.1, we have introduced
the function

F (ξ) = ξ2ξ3 − ξ1ξ4 ,
1
2ξ
>Mξ
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as a submersion on R4\{0} satisfying

F (τ∗(x)) = 0, (10.1)

where τ∗ is the injective immersion given in (8.3). With it we have augmented τ∗ as

τ∗a (x,w) = τ∗(x) + ∂F

∂ξ

T

(τ∗(x))w = τ∗(x) +Mτ∗(x)w

which is a diffeomorphism on Sa = S̃×]− ε, ε[ for some strictly positive real number ε.
To modify τ∗a in τ∗e satisfying τ∗e (Sa) = R4, we let K be the compact set

K = cl(τ∗a (X × {0})) ⊂ τ∗a (Sa) ⊂ R4 .

With Lemma 10.2.1, we know that, if τ∗a (Sa) verifies property C, there exists a diffeomorphism
φ defined on R4 such that φ is the identity function on the compact set K and φ(R4) = τ∗e (Sa).
In that case, as seen above, the diffeomorphism τ∗e = φ−1 ◦ τ∗a defined on Sa is such that τ∗e = τ∗a
on X × {0} and τ∗e (Sa) = R4, i-e would be a solution to Problems 1 and 2. Unfortunately this
is impossible. Indeed, due to the observability singularity at x1 = x2 = 0, S̃ (and thus Sa) is
not contractible. Therefore, there is no diffeomorphism τ∗e such that τ∗e (Sa) = R4. We will see
in Section 11.1 how this problem can be overcome. For the time being, we show that it is still
possible to find τ∗e such that τ∗e (Sa) covers "almost all" R4. The idea is to find an approximation
E of τ∗a (Sa) verifying property C and apply the same method on E. Indeed, if E is close enough
to τ∗a (Sa), one can expect to have τ∗e (Sa) "almost equal to" R4.

With (10.1) and since M2 = I, we have,

F (τ∗a (x,w)) = |τ∗(x)|2w .

Since Sa is bounded, there exists δ > 0 such that the set

E =
{
ξ ∈ R4 : F (ξ)2 < δ

}
contains τ∗a (Sa) and thus the compact set K. Let us show that E verifies property C. We pick

κ(ξ) = F (ξ)2 − δ =
(1

2ξ
TMξ

)2
− δ .

and consider the vector field χ

χ(ξ) = −2∂κ
∂ξ

(ξ) = −[ξTMξ]Mξ or more simply χ(ξ) = −ξ .

The latter implies the transversality property C.3 is verified. Besides, the closed set K0 = {0}
is contained in E and is globally attractive for the vector field χ.

Then Lemma 10.2.1 gives the existence of a diffeomorphism φ : R4 → E which is the identity
on K and verifies φ(R4) = E. We obtain an expression of φ by following the constructive proof
of this Lemma (see Appendix B.2). Let Eε be the set

Eε =
{
ξ ∈ R4 :

(1
2ξ

TMξ

)2
< e−4ε δ

}
.

It contains K. Let also ν : [−ε,+∞[→ R and t : R4 \ Eε → R be the functions defined as

ν(t) = (t+ ε)2

2ε+ t
, t(ξ) = 1

4 ln

(
1
2ξ
TMξ

)2

δ
. (10.2)
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t(ξ) is the time that a solution of ξ̇ = χ(ξ) = −ξ with initial condition ξ needs to reach the
boundary of E i.e. e−t(ξ)ξ belongs to the boundary of E. From the proof Lemma 10.2.1, we
know the function φ : R4 → E defined as :

φ(ξ) =

 ξ , if
(

1
2ξ
TMξ

)2
≤ e−4εδ,

e−ν(t(ξ))ξ , otherwise,
(10.3)

is a diffeomorphism φ : R4 → E which is the identity on K and verifies φ(R4) = E.
As explained above, we use φ to replace τ∗a by the diffeomorphism τ∗e = φ−1 ◦ τ∗a also

defined on Sa. But, because τ∗a (Sa) is a strict subset of E, τ∗e (Sa) is a strict subset of R4, i.e.
equation (8.17) is not satisfied. Nevertheless, for any trajectory of the observer t 7→ ξ̂(t) in R4,
our estimate defined by (x̂, ŵ) = τ∗e

−1(ξ̂) will be such that τ∗a (x̂, ŵ) remains in E, along this
trajectory i-e |τ∗(x̂)|2 ŵ < δ. This ensures that, far from the observability singularity where
|τ∗(x̂)| = 0, ŵ remains sufficiently small to keep the invertibility of the Jacobian of τ∗e . But we
still have a problem close to the observability singularity, i.e. when (x̂1, x̂2) is close to the origin.
We shall see in Section 11.1 how to avoid this difficulty via a better choice of the initial injective
immersion τ∗. N

10.3 Application : bioreactor

As a less academic illustration we consider the model of bioreactor presented in [GHO92] :

ẋ1 = a1x1x2
a2x1 + x2

− ux1 , ẋ2 = − a3a1x1x2
a2x1 + x2

− ux2 + ua4 , y = x1

where the ai’s are strictly positive real numbers and the control u verifies : 0 < umin < u(t) <
umax < a1. This system evolves in the set S =

{
x ∈ R2 : x1 > ε1 , x2 > −a2x1

}
which is

forward invariant. A high gain observer design leads us to consider the function τ∗ : S → R2

defined as :

τ∗(x1, x2) = (x1, ẋ1|u=0) =
(
x1,

a1x1x2
a2x1 + x2

)
.

It is a diffeomorphism onto

τ∗(S) =
{
ξ ∈ R2 : ξ1 > 0 , a1ξ1 > ξ2

}
.

The image by τ∗ of the bioreactor dynamics is of the form

ξ̇1 = ξ2 + g1(ξ1)u , ξ̇2 = ϕ2(ξ1, ξ2) + g2(ξ1, ξ2)u

for which the following high gain observer can be built:

ξ̇1 = ξ2 + g1(ξ1)u− k1`(ξ1 − y) , ξ̇2 = ϕ2(ξ1, ξ2) + g2(ξ1, ξ2)u− k2`(ξ1 − y) , (10.4)

where k1 and k2 are strictly positive real numbers and ` sufficiently large. As in [GHO92], τ∗
being a diffeomorphism the dynamics of this observer in the x-coordinates are

˙̂x =

 a1x̂1x̂2
a2x̂1+x̂2

− ux̂1

−a3a1x̂1x̂2
a2x̂1+x̂2

− ux̂2 + ua4

+ `

 1 0

−1 (a2x̂1+x̂2)2

a1a2x̂2
1


 k1

k2

 (ξ1 − y) . (10.5)

Unfortunately the right hand side is singular at x̂1 = 0 or x̂2 = −a1x̂1. S being forward
invariant, the system trajectories stay away from the singularity. But nothing guarantees the
same property holds for the observer trajectories given by (10.5). In other words, since τ∗ is
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already a diffeomorphism, Problem 1 is solved with dξ = dx, τ∗a = τ∗ and Sa = S. But (8.17) is
not satisfied, i.e. Problem 2 must be solved.

To construct the extension τ∗e of τ∗a , we view the image τ∗a (Sa) as the intersection τ∗a (Sa) =
E1 ∩ E2 with :

E1 =
{

(ξ1, ξ2) ∈ R2, ξ1 > ε1
}

, E2 =
{

(ξ1, ξ2) ∈ R2, a1ξ1 > ξ2
}
.

This exhibits the fact that τ∗a (Sa) does not satisfy the property C since its boundary is not C1.
We could smoothen this boundary to remove its "corner”. But we prefer to exploit its particular
“shape” and proceed as follows :
1. We build a diffeomorphism φ1 : R2 → E1 which acts on ξ1 without changing ξ2.
2. We build a diffeomorphism φ2 : R2 → E2 which acts on ξ2 without changing ξ1.
3. Denoting φ = φ2 ◦ φ1 : R2 → E1 ∩ E2, we take τ∗e = φ−1 ◦ τ∗a : Sa → R2.

To build φ1 and φ2, we follow the procedure given in the proof of Lemma 10.2.1 since E1 and
E2 satisfy property C with :

κ1(ξ) = ε1 − ξ1 , κ2(ξ) = ξ2 − a1ξ1 , χ1(ξ) =
(
−(ξ1 − 1)

0

)
, χ2(ξ) =

(
0

−(ξ2 + 1)

)
.

By following the same steps as in Example 10.2.1, with ε an arbitrary small strictly positive real
number and ν defined in (10.2), we obtain :∣∣∣∣∣∣∣∣∣∣∣∣

t1(ξ) = ln 1−ξ1
1−ε

Eε,1 =
{

(ξ1, ξ2) ∈ R2, ξ1 > 1− 1−ε
eε

}
φ1(ξ) =

{
ξ , if ξ ∈ Eε,1
ξ1−1

eν(t1(ξ)) + 1 , otherwise

∣∣∣∣∣∣∣∣∣∣∣∣

t2(ξ) = ln ξ2+1
a1ξ1+1 ,

Eε,2 =
{

(ξ1, ξ2) ∈ R2, ξ2 ≤ a1ξ1+1
eε − 1

}
φ2(ξ) =

{
ξ , if ξ ∈ Eε,2
ξ2+1

eν(t2(ξ)) − 1 , otherwise

(10.6)

We remind the reader that, in the ξ-coordinates, the observer dynamics are not modified.
The difference between using τ∗ or τ∗e is seen in the x̂-coordinates only. And, by construction it
has no effect on the system trajectories since we have

τ∗(x) = τ∗e (x) ∀x ∈ S “− ε” .

As a consequence the difference between τ∗ and τ∗e is significant only during the transient,
making sure, for the latter, that x̂ never reaches a singularity of the Jacobian of τ∗e .

We present in Figure 10.2 the results in the ξ coordinates (to allow us to see the effects of
both τ∗ and τ∗e ) of a simulation with (similar to [GHO92]) :

a1 = a2 = a3 = 1 , a4 = 0.1
u(t) = 0.08 for t ≤ 10 , = 0.02 for 10 ≤ t ≤ 20 , = 0.08 for t ≥ 20

x(0) = (0.04, 0.07), x̂(0) = (0.03, 0.09), ` = 5.
The solid black curves are the singularity locus. The red curve represents the bioreactor

solution. The magenta curve represents the solution of the observer built with τ∗e . It evolves
freely in R2 according to the dynamics (10.4), not worried by any constraints. The blue curve
represents its image by φ which brings it back inside the constrained domain where τ∗−1 can
then be used. This means these two curves represent the same object but viewed in different
coordinates.

The solution of the observer built with τ∗ would coincide with the magenta curve up to the
point it reaches one solid black curve of a singularity locus. At that point it leaves τ∗(S) and
consequently stops existing in the x-coordinates.

As proposed in [MP03, AP13], instead of keeping the raw dynamics (10.4) untouched as
above, another solution would be to modify them to force ξ to remain in the set τ∗(S). For
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∂τ∗

∂x non invertible

∂τ∗

∂x invertible

Figure 10.2: Bioreactor and observers solutions in the ξ-coordinates

instance, taking advantage of the convexity of this set, the modification proposed in [AP13]
consists in adding to (10.4) the term

M(ξ) = −g S∞
∂h

∂ξ
(ξ)T h(ξ) , h(ξ) =

(
max{κ1(ξ) + ε, 0}2
max{κ2(ξ) + ε, 0}2

)
(10.7)

with S∞ a symetric positive definite matrix depending on (k1, k2, `), ε an arbitrary small real
number and g a sufficiently large real number. The solution corresponding to this modified
observer dynamics is shown in Figure 10.2 with the dotted black curve. As expected it stays
away from the the singularities locus in a very efficient way. But, for this method to apply, we
have the restriction that τ∗(S) should be convex, instead of satisfying the less restrictive property
C. Moreover, to guarantee that ξ is in τ∗(S), g has to be large enough and even larger when the
measurement noise is larger. On the contrary, when the observer is built with τ∗e , there is no
need to tune properly any parameter to obtain convergence, at least theoretically. Nevertheless
there maybe some numerical problems when ξ becomes too large or equivalently φ(ξ) is too close
to the boundary of τ∗(S). To overcome this difficulty we can select the "thickness" of the layer
(parameter ε in (10.6)) sufficiently large. Actually instead of “opposing” the two methods, we
suggest to combine them when possible. The modification (10.7) makes sure ξ does not go too
far outside the domain, and τ∗e makes sure that x̂ does not cross the singularity locus.

10.4 Conclusion
Joining Corollaries 9.3.1 and 10.1.1, we obtain the following answer to our problem :
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Corollary 10.4.1.

Let X be a bounded subset of Rdx , S be an open subset of Rdx and τ∗ : S → Rdξ be
an injective immersion. Assume there exists an open bounded contractible set S̃ which is
C2-diffeomorphic to Rdx and such that

cl(X ) ⊂ S̃ ⊂ cl(S̃) ⊂ S .

There exists a strictly positive number ε and a diffeomorphism τ∗e : Sa → Rdξ with
Sa = S̃ ×Bε(0), such that

τ∗e (x, 0) = τ∗(x) ∀x ∈ X , τ∗e (Sa) = Rdξ ,

namely (τ∗e ,Sa) solves Problems 1-2.

We conclude that if X , S and τ∗ given by Assumption O verify the conditions of Corollary
10.4.1, then Problems 1-2 can be solved and Theorem 8.2.1 holds, i-e an observer can be expressed
in the given x-coordinates.



Chapter 11

Generalizations and applications

Chapitre 11 – Généralisations et applications. Dans les chapitres 9 et 10, nous avons
donné (en particuliier à travers Corollaire 10.4.1) des conditions permettant de résoudre les
Problèmes 1 et 2 lorsque l’hypothèse O est vérifiée et X est borné. Cependant, il arrive que
ces conditions ne soient pas satisfaites et nous montrons dans ce chapitre comment résoudre les
Problèmes 1 et 2 grâce à un meilleur choix de τ∗ et ϕT, donnés par l’hypothèse O. En particulier,
ceci permet d’écrire un observateur dans les coordonnées x pour l’oscillateur à fréquence inconnue
(8.1), à la fois par la voie du grand gain (8.4) et de Luenberger (8.6). Enfin, nous montrons à
travers un exemple tiré d’une application, comment la méthodologie présentée dans cette Partie
III peut être étendue au cas où la transformation τ∗ dépend du temps.
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Throughout Chapters 9 and 10, we have given (in particular in Corollary 10.4.1 ) condi-
tions allowing to solve Problem 1 and Problem 2 when Assumption O holds and X is bounded.

However, it can happen that those conditions are not satisfied and we show in this chapter
how to solve both Problems 1 and 2 via a better choice of the data given by Assumption O,
namely τ∗ and ϕT. In particular, this enables to write an observer in the x-coordinates for
the oscillator with unknown frequency (8.1) both via the high gain (8.4) and Luenberger (8.6)
designs.

Finally, we show through an application in aircraft landing how the methodology presented
in this Part III can be extended to the case where the transformation τ∗ is time-varying.

11.1 Modifying τ ∗ and ϕT given by Assumption O

The sufficient conditions given in Chapters 9 and 10, to solve Problem 1 and Problem 2 in order to
fulfill the requirements of Theorem 8.2.1, impose conditions on the dimensions or on the domain
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of injectivity S which are not always satisfied : contractibility for Jacobian complementation
and diffeomorphism extension, limited number of pairs (dξ, dx) for the P̃ [dξ, dx] problem, etc.
Expressed in terms of our initial problem, these conditions are limitations on the data f , h and
τ∗ that we have considered. In the following, we show by means of examples that, in some cases,
these data can be modified in such a way that our various tools apply and give a satisfactory
solution. Such modifications are possible since we restrict our attention to system solutions
which remain in X . Therefore the data f , h and τ∗ can be arbitrarily modified outside this set.
For example we can add "fictitious" components to the measured output y as long as their value
is known on X .

11.1.1 For contractibility

It may happen that the set S attached to τ∗ is not contractible, for example due to an observ-
ability singularity. We have seen that Jacobian complementation and image extension may be
prevented by this (see Theorem 9.3.1 and Remark 16). A possible approach to overcome this
difficulty when we know the system trajectories stay away from the singularities is to add a
fictitious output traducing this information :

Example 11.1.1 (Continuation of Example 9.2.1) The observer (9.10) we have obtained
at the end of Example 9.2.1 for the harmonic oscillator with unknown frequency is not satisfac-
tory because of the singularity at x̂1 = x̂2 = 0. To overcome this difficulty we add, to the given
measurement y = x1, the following one

y2 = h2(x) = ℘(x1, x2)x3

with
℘(x1, x2) = max

{
0, 1
r2 − (x2

1 + x2
2)
}
. (11.1)

By construction this function is zero on X and y2 can thus be considered as an extra measurement
with zero as constant value. The interest of y2 is to give access to x3 even at the singularity
x1 = x2 = 0. Indeed, consider the new function τ∗ defined as

τ∗(x) = (x1 , x2 , −x1x3 , −x2x3 , ℘(x1, x2)x3) . (11.2)

τ∗ is C1 on R3 and its Jacobian is :

∂τ∗

∂x
(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2
∂℘
∂x1

x3
∂℘
∂x2

x3 ℘

 , (11.3)

which has full rank 3 on R3, since ℘(x1, x2) 6= 0 when x1 = x2 = 0. It follows that the singularity
has disappeared and this new τ∗ is an injective immersion on the entire R3 which is contractible.

We have shown in Example 9.3.1 how Wazewski’s algorithm allows us to get in this case a
C2 function γ : R3 → R4 satisfying :

det
(
∂τ∗

∂x
(x) γ(x)

)
6= 0 ∀x ∈ R3 .

This gives us τ∗a (x,w) = τ∗(x) + γ(x)w which is a C2-diffeomorphism on R3 × Bε(0), with
ε sufficiently small. Furthermore, Sa = R3 × Bε(0) being now diffeomorphic to R5, Corollary
10.1.1 applies and provides an extension τ∗e of τ∗a satisfying Problems 1 and 2. N



11.1. Modifying τ∗ and ϕT given by Assumption O 135

11.1.2 For a solvable P̃ [dξ, dx] problem
If we are in a case that cannot be reduced to a solvable P̃ [dξ, dx] problem, we may try to modify
dξ by adding arbitrary rows to ∂τ∗

∂x . We illustrate this technique with the following example.

Example 11.1.2 (Continuation of Example 11.1.1) In Example 11.1.1, by adding the fic-
titious measured output y2 = h2(x), we have obtained another function τ∗ for the harmonic
oscillator with unknown frequency which is an injective immersion on R3. In this case, we have
dx = 3 and dξ = 5 which gives a pair not in (9.8). But, as already exploited in Example 9.2.1,
the first 2 rows of the Jacobian ∂τ∗

∂x in (11.3) are independent for all x in R3. It follows that our
Jacobian complementation problem reduces to complement the vector (−x1,−x2, ℘(x1, x2))>.
This is a problem with pair (3, 1) which is still not in the list (9.8). Instead, the pair (4, 1) is,
so that the vector (−x1,−x2, ℘(x1, x2), 0)> can be complemented via a universal formula. We
have added a zero component, without changing the full rank property. Actually this vector is
extracted from the Jacobian of

τ∗(x) = (x1 , x2 , −x1x3 , −x2x3 , ℘(x1, x2)x3 , 0) . (11.4)

In the high gain observer paradigm, this zero we have added can come from another (ficti-
tious) measured output y3 = 0 . As we saw in the proof of Theorem (9.2.1), a complement of
(−x1,−x2, ℘(x1, x2), 0)> is 

x2 −℘(x1, x2) 0
−x1 0 −℘(x1, x2)

0 −x1 −x2
℘(x1, x2) x2 −x1


and thus a complement of ∂τ∗∂x (x) is

γ(x) =



0 0 0
0 0 0
x2 −℘(x1, x2) 0
−x1 0 −℘(x1, x2)

0 −x1 −x2
℘(x1, x2) x2 −x1


which gives with the formula (9.2)

τ∗a (x,w) =
(
x1 , x2 , [−x1x3 + x2w1 − ℘(x1, x2)w2] , [−x2x3 − x1w1 − ℘(x1, x2)w3] ,

[℘(x1, x2)x3 − x1w2 − x2w3] , [℘(x1, x2)w1 + x2w2 − x1w3)]
)
.

The determinant of the Jacobian of τ∗a thus defined is (x2
1 + x2

2 + ℘(x1, x2)2)2 which is nowhere
0 on R6. Hence τ∗a is locally invertible. Actually it is diffeomorphism from R6 onto R6 since we
can express ξ = τ∗a (x,w) as

(
x1
x2

)
=
(
ξ1
ξ2

)
,


−ξ1 ξ2 −℘(ξ1, ξ2) 0
−ξ2 −ξ1 0 −℘(ξ1, ξ2)

℘(ξ1, ξ2) 0 −ξ1 −ξ2
0 ℘(ξ1, ξ2) ξ2 −ξ1



x3
w1
w2
w3

 =


ξ3
ξ4
ξ5
ξ6

 ,

where the matrix on the left is invertible by construction. Since τ∗a (R6) = R6, there is no need
for an image extension and we simply take τ∗e = τ∗a . To have all the assumptions of Theorem
8.2.1 satisfied, it remains to find a function ϕ such that (τex, ϕ) is in the set ϕT, the function τex
being the x-component of the inverse of τ∗e . Since the first four components of τ∗ are the same
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as in (8.3), the first four components of ϕ are given in (8.5). It remains to define the dynamics
of ξ̂5 and ξ̂6. Exploiting the fact that, for x in X ,

y2 = 0 , ẏ2 =
˙︷ ︷

℘(x1, x2)x3 = 0 , y3 = 0 , ẏ3 = 0 ,

one can simply choose

˙̂
ξ5 = 0− a(ξ̂5 − y2) = −a ξ̂5 ,

˙̂
ξ6 = 0− b(ξ̂6 − y3) = −b ξ̂6

for some strictly positive numbers a and b, which finally leads to the function

ϕ(ξ, x̂, y) =



ξ2 + Lk1(y − x̂1)
ξ3 + L2k2(y − x̂1)
ξ4 + L3k3(y − x̂1)

satr3(x̂1x̂
2
3) + L4k4(y − x̂1)
−a ξ5
−b ξ6


With picking L large enough, ϕ can be paired with any function τ : R6 → R6 which is locally
Lipschitz, and thus in particular with τex. Therefore, Theorem 8.2.1 applies and gives the
following observer for the harmonic oscillator with unknown frequency



˙̂x1
˙̂x2
˙̂x3
˙̂w1
˙̂w2
˙̂w3


=



1 0 0 0 0 0
0 1 0 0 0 0

−x̂3 − ∂℘
∂x̂1

ŵ2 ŵ1 − ∂℘
∂x2

ŵ2 −x̂1 x̂2 −℘ 0
−ŵ1 − ∂℘

∂x̂1
ŵ3 −x̂3 − ∂℘

∂x2
ŵ3 −x̂2 −x̂1 0 −℘

∂℘
∂x1

x̂3 − ŵ2
∂℘
∂x2

x̂3 − ŵ3 ℘ 0 −x̂1 −x̂2
∂℘
∂x1

ŵ1 − ŵ3
∂℘
∂x2

ŵ1 + ŵ2 0 ℘ x̂2 −x̂1



−1

× (11.5)

×



x̂2 + Lk1(y − x̂1)
[−x̂1x̂3 + x̂2ŵ1 − ℘(x̂1, x̂2)ŵ2] + L2k2(y − x̂1)
[−x̂2x̂3 − x̂1ŵ1 − ℘(x̂1, x̂2)ŵ3] + L3k3(y − x̂1)

satr3(x̂1x̂
2
3) + L4k4(y − x̂1)

−a [℘(x̂1, x̂2)x̂3 − x̂1ŵ2 − x̂2ŵ3]
−b [℘(x̂1, x̂2)ŵ1 + x̂2ŵ2 − x̂1ŵ3)]


.

It is globally defined and globally convergent for any solution of the oscillator initialized in the
set X given in (8.2). Results of a simulation are given in Figure 11.1. Notice that the observer
converges despite the fact that x̂1 and x̂2 are initialized at the singularity. This would not have
been possible with observer (9.7), i-e without adding the fictitious output. By the way, observe
that w2 and w3 present a violent peak at t = 0. This is due to the fact that x̂1 and x̂2 are
around the singularity, where only the fictitious output (which has a very small but non zero
value) preserves the invertibility of the Jacobian. We used a step-variable integration scheme to
take this into account. N

Remark 17 It is interesting to notice that the manifold ξ̂5 = ξ̂6 = 0 is invariant. This implies
the existence of an observer with order reduced to 4. One could thus wonder if it could be
expressed with coordinates (x, w̄) in R4, instead of (x,w) in R6, i-e if maybe there existed a
diffeomorphism τ̄e = (τ̄ex, τ̄ew) such that

x = τ̄ex(ξ1, ξ2, ξ3, ξ4) = τex(ξ1, ξ2, ξ3, ξ4, 0, 0)
w̄ = τ̄ew(ξ1, ξ2, ξ3, ξ4)
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Figure 11.1: High gain observer (11.5) with x̂1 = x̂2 = x̂3 = 0 at the singularity, L = 3, k1 = 10,
k2 = 35, k3 = 50, k4 = 24. The simulation was done with a step-variable Euler algorithm.

But then its Jacobian would necessarily be of the form :

∂τ̄e
∂ξ

(ξ1, ξ2, ξ3, ξ4) =


1 0 0 0
0 1 0 0
∗ ∗ − ξ1

ξ2
1+ξ2

2+℘(ξ1,ξ2)2 − ξ2
ξ2
1+ξ2

2+℘(ξ1,ξ2)2

∗ ∗ ∗ ∗


which is singular for ξ1 = ξ2 = 0.

11.1.3 A universal complementation method

In the previous example, we have made the Jacobian complementation possible by increasing dξ
with augmenting the number of coordinates of τ∗. Actually if we augment τ∗ with dx zeros the
possibility of a Jacobian complementation is guaranteed. Indeed pick any C1 function B the
values of which are dξ × dξ matrices with positive definite symmetric part, we can complement(
∂τ∗

∂x (x)
0

)
which is full column rank with γ =

(
−B(x)
∂τ∗

∂x (x)>

)
. This follows from the identity

(Schur complement) involving invertible matrices(
∂τ∗

∂x (x) −B(x)
0 ∂τ∗

∂x (x)>

)(
0 I

I B(x)−1 ∂τ∗
∂x (x)

)
=
(
−B(x) 0
∂τ∗

∂x

>(x) ∂τ∗

∂x (x)>B(x)−1 ∂τ∗
∂x (x)

)
.

So we have here a universal method to solve Problem 1. Its drawback is that the dimension of
the state increases by dξ, instead of dξ − dx.

11.2 A global example : Luenberger design for the oscillator
Let us now come back to the Luenberger observer presented in Section 8.1.2 for the oscillator
with unknown frequency. Although an inversion of the transformation was proposed in [PMI06]
based on the resolution of a minimization problem, we want to show here how this step can be
avoided.

Recall that the transformation is given by

τ∗(x) =
(
λ1x1 − x2
λ2

1 + x3
,
λ2x1 − x2
λ2

2 + x3
,
λ3x1 − x2
λ2

3 + x3
,
λ4x1 − x2
λ2

4 + x3

)



138 Chapter 11. Generalizations and applications

and its Jacobian

∂τ∗

∂x
(x) =



λ1
λ2

1+x3
− 1
λ2

1+x3
− τ∗1 (x)
λ2

1+x3
λ2

λ2
2+x3

− 1
λ2

2+x3
− τ∗2 (x)
λ2

2+x3
λ3

λ2
3+x3

− 1
λ2

3+x3
− τ∗3 (x)
λ2

3+x3
λ4

λ2
4+x3

− 1
λ2

4+x3
− τ∗4 (x)
λ2

4+x3

 .

The complementation is quite easy because there is only one dimension to add : we could just
add a column γ(x) consisting of the corresponding minors as suggested in Section 9.2. However,
this would produce a diffeomorphism on X ×Bε(0) for some ε, where X defined in (8.2) is not
contractible due to the observability singularity at x1 = x2 = 0. Therefore, no image extension
is possible and it would be necessary to ensure that ŵ remains small and (x̂1, x̂2) far from (0, 0)
by some other means. Like for the high gain observer, we thus try to remove this singularity.

Again, we assume the system solutions remain in X and add the same fictitious output y2
as before, which vanishes in X and which is non zero when (x1, x2) is close to the origin namely
:

y2 = ℘(x1, x2)x3

where ℘ is defined in (11.1). Once again, it is possible to show1 that by adding y2 to τ∗, the
observability singularity disappears, namely the function

τ∗(x) =
(
λ1x1 − x2
λ2

1 + x3
,
λ2x1 − x2
λ2

2 + x3
,
λ3x1 − x2
λ2

3 + x3
,
λ4x1 − x2
λ2

4 + x3
, ℘(x1, x2)x3

)
is an injective immersion on

S̃ = R2 × R+ .

Although the Jacobian complementation problem is solvable for this τ∗ according to Wazewski’s
theorem 9.3.1 because S̃ is contractible, we want to avoid the lengthy computations entailed by
this method. We are going to see in the following that it is possible if one rather take (as before)

τ∗(x) =
(
λ1x1 − x2
λ2

1 + x3
,
λ2x1 − x2
λ2

2 + x3
,
λ3x1 − x2
λ2

3 + x3
,
λ4x1 − x2
λ2

4 + x3
, ℘(x1, x2)x3, 0

)
(11.6)

which is still an injective immersion on S̃. Although the utility of this zero seems questionable
at this point, we will point out its interest in the subsequent computations. The new Jacobian
takes the form

∂τ∗

∂x
(x) =



λ1
λ2

1+x3
− 1
λ2

1+x3
− τ∗1 (x)
λ2

1+x3
λ2

λ2
2+x3

− 1
λ2

2+x3
− τ∗2 (x)
λ2

2+x3
λ3

λ2
3+x3

− 1
λ2

3+x3
− τ∗3 (x)
λ2

3+x3
λ4

λ2
4+x3

− 1
λ2

4+x3
− τ∗4 (x)
λ2

4+x3

A(x) B(x) C(x)
0 0 0


.

1In [PMI06], it is shown that for any r > 0, there exists Lr > 0 such that for all (xa, xb) in R2 × (0, r),
|x1,a− x1,b|+ |x2,a− x2,b|+

x1,a+x1,b+x2,a+x2,b
2 |x3,a− x3,b| ≤ Lr|τ∗14(xa)− τ∗14(xb)| where τ∗14 denotes the first

four components of τ∗. Therefore, τ∗14(xa) = τ∗14(xb) implies that x1,a = x1,b and x2,a = x2,b : either one of
them is non zero and in that case, the inequality says that we have also x3,a = x3,b, or they are all zero but then
τ∗5(xa) = τ∗5(xb) implies that x3,a = x3,b. We conclude that τ∗ is injective on S̃. Now, applying the inequality
between x and x + hv and making h go to zero, we get that ∂τ∗14

∂x
(x)v = 0 implies that v1 = v2 = 0 and v3 = 0

if either x1 or x2 is nonzero. If they are both zero, ∂τ
∗

5
∂x

(x)v = 0 with v1 = v2 = 0 gives v3 = 0. Thus, ∂τ
∗

∂x
(x) is

full-rank.
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Let us first simplify the matrix to be complemented by noticing that

M(x3, λi)
∂τ∗

∂x
(x) =



1 0 m1(x)
0 1 m2(x)
0 0 m3(x)
0 0 m4(x)

A(x) B(x) C(x)
0 0 0


(11.7)

where M(x3, λi) is the invertible matrix

M(x3, λi) =
(

D−1(λi) 04×2
02×4 I2×2

)


λ2
1 + x3 0 0 0 0 0

0 λ2
2 + x3 0 0 0 0

0 0 λ2
3 + x3 0 0 0

0 0 0 λ2
4 + x3 0 0

0 0 0 0 1 0
0 0 0 0 0 1


and D(λi) is an appropriate Vandermonde matrix associated to the λi. So now we are left
with complementing the matrix given by (11.7). Observing that right-multiplying (11.7) by the

invertible matrix N(x) =

 1 0 −m1(x)
0 1 −m2(x)
0 0 1

 gives



1 0 0
0 1 0
0 0 m3(x)
0 0 m4(x)

A(x) B(x) m5(x)
0 0 0


, with

m5(x) = C(x)−m1(x)A(x)−m2(x)B(x) ,

we conclude first that the vector (m3(x),m4(x),m5(x), 0) in R4 is non-zero on S̃ and then that
(11.7) can be simply complemented by complementing the vector (m3(x),m4(x),m5(x), 0) into
an invertible 4×4 matrix. Note that this is the solvable problem P̃ [4, 1] from (9.8), and without
adding the 0 output y3, we would have obtained P̃ [3, 1] which is not solvable. An explicit solution
to P̃ [4, 1] is given in Section 9.2, but we can here also exploit the very particular structure of
the vector and use the remark made in Section 11.1.3 that the matrix

P (x) =


m3(x) −1 0 0
m4(x) 0 −1 0
m5(x) 0 0 −1

0 m3(x) m4(x) m5(x)


is invertible as soon as (m3(x),m4(x),m5(x)) is non-zero.

Reversing the transformations, we thus manage to extend the Jacobian of τ∗ into a matrix of
dimension 6 whose determinant is non-zero on S̃. Adding three state components to the system
state, we obtain a diffeomorphism τ∗a on Sa = S̃ ×Bε, with ε sufficiently small. All this leads to
the observer : (

˙̂x
˙̂w

)
=
(
∂τ∗a
∂x

(x̂, ŵ)
)−1

(Aτ∗a (x̂, ŵ) +By1) (11.8)

where B = [1, 1, 1, 1, 0, 0]>, A = diag(−λ1,−λ2,−λ3,−λ4,−µ,−γ) and µ and γ are two
strictly positive real numbers. The expression of the Jacobian of the extended function is omitted
here due to its complexity, but it can be obtained by straightforward symbolic computations.

The singularity at (x̂1, x̂2) = 0 has disappeared, but we still need to ensure that x̂3 remains
positive, or at least greater than −min{λ2

i }. Besides, unlike the high gain observer (11.5), the
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invertibility of the extended Jacobian is only guaranteed for w in Bε. To make sure the solutions
remain in Sa = S̃ × Bε, we should solve Problem 2 namely extend τ∗a into a diffeomorphism
τ∗e whose image of Sa covers R6. Since Sa is diffeomorphic to R6, we know it is theoretically
possible by Theorem 10.1.1 and replacing τ∗a by the new surjective diffeomorphism τ∗e in (11.8)
would give an observer whose solutions are ensured to exist for all t.

Unfortunately, due to the complexity of the expression of τ∗a , we are not yet able to achieve
such an extension. The consequence is that there may exist a set of initial conditions and
parameters such that the corresponding trajectory of observer (11.8) encounters a singularity of
the jacobian of τ∗a and thus diverges. A way of reducing this set is to approximate the image of
Sa by τ∗a , as proposed in Example 10.2.1. In the present case, we have (denoting τ∗14 the first
four components of τ∗ defined in (11.6)),

(ξ1, ξ2, ξ3, ξ4) = τ∗14(x) ⇐⇒


λ2

1 ξ1 −λ1 1 ξ1
λ2

2 ξ2 −λ2 1 ξ2
λ2

3 ξ3 −λ3 1 ξ3
λ2

4 ξ4 −λ4 1 ξ4




1
x1
x2
x3

 = 0

and thus
F (τ∗(x)) = F (τ∗a (x, 0)) = 0

where F is the quadratic function defined by

F (ξ) = det


λ2

1 ξ1 −λ1 1 ξ1
λ2

2 ξ2 −λ2 1 ξ2
λ2

3 ξ3 −λ3 1 ξ3
λ2

4 ξ4 −λ4 1 ξ4

 .

Therefore, replacing ξ>Mξ by F (ξ) in (10.2)-(10.3) gives a diffeomorphism (φ, Id) from R6 to

E =
{
ξ ∈ R6 : F (ξ)2 < δ

}
and taking τ∗e = φ−1 ◦ τ∗a instead of τ∗a ensures that for any observer solution t 7→ ξ̂(t), our
estimate defined by (x̂, ŵ) = τ∗e

−1(ξ̂) will be such that τ∗a (x̂, ŵ) remains in E. When δ goes to
zero, E gets closer to τ∗a (S̃ × {0}) and thus we can hope that ŵ will remain sufficiently small
to keep the invertibility of the Jacobian of τ∗e . We indeed observe in simulations that taking τ∗e
instead of τ∗a enables to ensure completeness of some of the solutions which otherwise diverge
with τ∗a . An example is given in Figure 11.2 : before t = 0.05, the observer trajectory is close to
a singularity, ŵ tends to become very large (see Figure 11.2(b)), so does F (ξ̂), but φ enables to
reduce F (ξ̂) (see Figure 11.2(d)) and thus prevent ŵ from becoming too large and encounter the
singularity. Unfortunately, although the set of initial conditions leading to uncomplete solutions
is reduced by this method, it does not completely disappears.

11.3 Generalization to a time-varying τ ∗

In Assumption O, it is supposed that the transformation τ∗ from the given x-coordinates to the
ξ-coordinates is stationary. But we have seen in Part II that it is sometimes easier/necessary to
consider a time-varying transformation which depends on the input, and apply Theorem 2.2.1.
It is thus legitimate to wonder if the methodology presented in this part is still useful. In fact,
the same tools can be applied in the sense that :

- Assumption O should now provide for each u in U a C1 function τ∗ : Rdx × R → Rdξ ,
subsets St and Xt of Rdx and a set ϕT made of couples (ϕ, τ) such that for all t in [0,+∞),
x 7→ τ∗(x, t) is an injective immersion on St, for all x0 in X0 and all all t in [0,+∞),
X(x0; t;u) is in Xt, for all x in Xt, τ(τ∗(x, t), t) = x and ϕ is such that the appropriate
convergence in the ξ-coordinates is achieved.
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- Problems 1 and 2 can then be solved applying the tools of Chapters 9 and 10 on x 7→ τ∗(x, t)
for each t. This leads to a function τ∗e : Rdx×Rdξ−dx×R→ Rdξ and open subsets Sa,t of Rdξ
containing X × {0} such that for all t in [0,+∞), (x,w) 7→ τ∗e (x,w, t) is a diffeomorphism
on Sa,t verifying :

τ∗e (x, 0, t) = τ∗(x, t) ∀x ∈ Xt (11.9)

and
τ∗e (Sa,t, t) = Rdξ . (11.10)

- In order to ensure
˙︷ ︷

τ∗e (x̂, ŵ, t)= ϕ(τ∗e (x̂, ŵ, t), x̂, u, y) ,

and conclude as before that

lim
t→+∞

∣∣∣τ∗e (X̂(x̂0, ŵ0; t;u), Ŵ (x̂0, ŵ0; t;u), t
)
− τ∗(X(x0; t;u), t)

∣∣∣ = 0 , (11.11)

we must take into account the dependence of τ∗e on t and take :

˙︷ ︷[
x̂
ŵ

]
=
(

∂τ∗e
∂(x̂, ŵ)(x̂, ŵ, t)

)−1 (
ϕ(τ∗e (x̂, ŵ, t), x̂, u, y)− ∂τ∗e

∂t
(x̂, ŵ, t)

)
. (11.12)

- Finally, to conclude from (11.11), that x̂ converges to x and ŵ to 0, we further need that
the injectivity of (x,w) 7→ τ∗e (x,w, t) be uniform in t. When the dependence on t of τ∗e
comes from the input (and its derivatives), this property is often satisfied, in particular
when those signals are bounded in time (see Lemma A.3.5). Note that a special attention
should also be given to the set Sa,t which could be of the form St×Bε(t) with ε going to 0
with t. Thus, it should be checked that ε is lower bounded. A justification as to why this
should be true in practice appears in the next section.

We give in the following section some elements of justification and then we illustrate this on
an example about aircraft landing.

11.3.1 Partial theoretical justification

Suppose that for all t in [0,+∞), x 7→ τ∗(x, t) is an injective immersion on some open set St.
Consider the extended system{

ẋ = f(x, u(t))
ṫ = 1 , y =

(
h(x, u(t))

t

)

with state x = (x, t). Then, the function

τ∗(x) = (τ∗(x, t), t)

is an injective immersion on

S = {(x, t) ∈ Rdx × [0,+∞) : x ∈ St}

and complementing its Jacobian

∂τ∗

∂x
(x) =

(
∂τ∗

∂x (x, t) ∂τ∗

∂t (x, t)
0 1

)

on S is equivalent to complementing that of x 7→ τ∗(x, t) on St for each t. Indeed, if γ(x, t) is

a complementation of ∂τ∗

∂x (x, t) on St for each t, γ(x) =
(
γ(x, t)

0

)
is a complementation for
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∂τ∗

∂x (x) on S. And conversely, if γ(x) =
(
γ(x, t)
α

)
complements ∂τ∗

∂x (x), then γ(x, t)− ∂τ∗

∂t (x, t)

complements ∂τ∗

∂x (x, t).
We conclude that it is not restrictive to look for a complementation of the Jacobian of

x 7→ τ∗(x, t) at each time t. Assume it has been done and take

γ(x) =
(
γ(x, t)

0

)
.

Following the methodology, we consider

τ∗a (x,w) = τ∗(x) + γ(x)w =
(
τ∗(x, t) + γ(x, t)w

t

)
=
(
τ∗a (x,w, t)

t

)
.

Beware that Lemma 9.0.1 does not apply directly because S is not bounded, thus we cannot
directly conclude that there exists ε > 0 such that τ∗a is a diffeomorphism on Sa = S × Bε.
However, the reader may check in the proof of [AEP14, Proposition 2] that if ∂τ∗

∂x (x, t), γ(x, t)
and ∂γ

∂x(x, t) are bounded on S, the Jacobian of τ∗a is full-rank on Sa for some ε sufficiently small.
This condition is often verified in practice when the inputs are bounded. It follows that we can
reasonably assume Problem 1 solved, and leaving aside Problem 2, this leads to an observer of
the type (denoting τ∗a (x,w, t) rather than τ∗a (x, t, w))

˙︷ ︷ x̂
ŵ
t̂

= (
∂τ∗a

∂(x,w, t)(x̂, ŵ, t̂)
)−1(

ϕ(τ∗a (x̂, ŵ, t̂), x̂, u, y)
ϕ1(t̂, y)

)

where ϕ1 should be an observer for t and we have

(
∂τ∗a

∂(x,w, t)

)−1

=
(

∂τ∗a
∂(x,w)

∂τ∗a
∂t

0 1

)−1

=

 (
∂τ∗a
∂(x,w)

)−1
−
(

∂τ∗a
∂(x,w)

)−1
∂τ∗a
∂t

0 1

 .

Of course, t being well known without any noise, we can replace t̂ by t and ϕ1 by the constant
function 1. This finally gives the "reduced order" observer (11.12).

11.3.2 Application to image-based aircraft landing

In [GBC+15a, GBC+15b], the authors use image-processing to estimate the deviations of an
aircraft with respect to the run-away during a landing operation thanks to vision sensors such
as cameras and inertial sensors embarked on the aircraft. The objective is to make landing
possible without relying on external technologies or any knowledge about the run-away. In order
to estimate the position of the plane, the idea is to follow the change of position of particular
points and/or particular lines on the images provided by the cameras. A strategic choice of
those points/lines must be made in order to guarantee observability during the whole duration
of the landing operation : for instance, a point may disappear from the image, and a line can
stop moving on the image in some particular alignment conditions, thus providing no (or only
partial) information about the movement of the aircraft. A full study of those methods can be
found in [Gib16]. A possible choice ensuring observability is to follow on the image the position
of the two lateral lines of the run-away and the reference point at the end of the run-away. It
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gives the following model :

θ̇1 = σ1(ρ1, θ1, t) + π1(ρ1, θ1, t)η
ρ̇1 = σ2(ρ1, θ1, t) + π2(ρ1, θ1, t)η
θ̇2 = σ1(ρ2, θ2, t) + π1(ρ2, θ2, t)η
ρ̇2 = σ2(ρ2, θ2, t) + π2(ρ2, θ2, t)η
ν̇1 = (VHν1 − VX)η
ν̇2 = (VHν2 − VY )η
η̇ = VHη

2

, y = (θ1, ρ1, θ2, ρ2, ν1, ν2)

where (θi, ρi) and (ν1, ν2) are the measured position on the image of the two lines and the point
respectively, the functions σ and π are defined by

σ1(ρ, θ, t) = −ω1ρ cos θ − ω2ρ sin θ − ω3

σ2(ρ, θ, t) = (1 + ρ2)(ω1 sin θ − ω2 cos θ)
π1(ρ, θ, t) = (a sin θ − b cos θ)(v1 cos θ + v2 sin θ − v3ρ)
π2(ρ, θ, t) = (aρ cos θ + bρ sin θ + c)(v1 cos θ + v2 sin θ − v3ρ)

where the aircraft velocities v and ω expressed in the camera frame, the aircraft velocities VX ,
VY and VH expressed in the runway frame, and camera orientations (a, b, c) are known input
signals.

Denoting xm = (θ1, ρ1, θ2, ρ2, ν1, ν2) the measured part of the state, we obtain a model with
state

x = (xm, η) ∈ R7

and dynamics of the form2

{
ẋm = Σ(xm, t) + Π(xm, t) η
η̇ = VH(t) η2 , y = xm , (11.13)

where the action of the input u = (a, b, c, v, w, VX , VY , VH) is represented by a time-dependence3

to simplify the notations in the rest of this section. This system is observable if and only if the
unmeasured state η can be uniquely determined from the knowledge of the measured state xm.
From the structure of the dynamics, we notice that this is possible if the quantity

δ(xm, t) = Π(xm, t)>Π(xm, t) (11.14)

never vanishes. It is the case in practice, thanks to a sensible choice of lines and point (see
[Gib16] for a thorough observability analysis during several landing operations).

A high-gain observer

Assumptions

- The input signal u = (v, w, VX , VY , VH) and its first derivative are bounded in time.

- There exists a strictly positive number ε and a compact subset C of R7 such that for
2Note that whatever the number of chosen lines and points in the image, the model can always be written in

this form, only the dimensions of xm and the input change.
3This comes back to choosing one particular input law, but the reader may check that the same design works

for any input such that the observability assumption and the saturation by Φ in (11.18) are valid.
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where for each time t, we define

St = {x ∈ R7 , δ(xm, t) ≥ ε} .

In other words, δ remains greater than ε along any solution of the system, making it observ-
able. Under this assumption, we know that the state x can be reconstructed from the measure-
ment xm and its first derivative. We thus consider the transformation τ∗0 : R7 × R→ R12 made
of y and its first derivative i-e :

τ∗0 (x, t) = H2(x, u(t)) =
(

xm
Σ(xm, t) + Π(xm, t) η

)
. (11.16)

For any t in R, τ∗0 (· , t) is an injective immersion on St. Since u, u̇ and the trajectories are
bounded, we deduce from Theorem 5.2.1 and Remark 4 that τ∗0 transforms the system into a
phase variable form {

ξ̇m = ξd
ξ̇d = Φ2(ξ, u(t), u̇(t)) , y = ξm (11.17)

where ξm denotes the first six components of ξ and ξd the six others, and Φ2 can be defined by

Φ2(ξ, ν0, ν1) = sat(L2
f
h(τ0(ξ, t), ν0, ν1),Φ) (11.18)

with f and h as defined in Definition 5.2.1, Φ a bound of L2
f
h(x, ν0, ν1) for x in C and (ν0, ν1)

bounded by the bound for (u, u̇), and ξ 7→ τ0(ξ, ·) any locally Lipschitz function defined on R12

such that it is a left-inverse4 of x 7→ τ∗0 (x, ·) for x in Xt.
We have the following observer for System (11.17):

˙̂
ξm = ξ̂d + Lk1(y − ξ̂m)
˙̂
ξd = Φ2(ξ̂, u, u̇) + L2k2(y − ξ̂m)

, y = ξm (11.19)

with k1, k2 > 0 and L sufficiently large. Although a left inverse τ0 of τ∗0 can be found in that
case, and an estimate x̂ of x could be computed by x̂ = τ0(ξ̂, t) as proposed by Theorem 2.2.1,
we would like to express the dynamics of this observer directly in the x-coordinates.

Observer in the given coordinates

Fictitious output Following the same idea as for the oscillator with unknown frequency, we start
by removing the injectivity singularity of τ∗0 outside of St, i-e we look for an alternative function
τ∗ which is an injective immersion on R7. Notice that the function

℘(xm, t) = max
{
ε− δ(xm, t), 0

}4
(11.20)

is zero in St and nonzero outside of St. According to (??), this function remains equal to 0 along
the solutions and therefore so does the fictitious output

y7 = ℘(xm, t)η .

It follows that y7 can be considered as an extra measurement traducing the information of
observability. Consider now the function

τ∗(x, t) = (τ∗0 (x, t) , ℘(xm, t)η) .

4Take for instance τ0(ξ, t) =
(
ξm,

Π(ξm)T (ξd−Σ(ξm,t))
max{δ(ξm,t),ε}

)
.
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Unlike τ∗0 (·, t), τ∗(·, t) is an injective immersion on the whole space R7 for all t. Indeed, Π(xm, t)
and ℘(xm, t) cannot be zero at the same time so that the new coordinate ℘(x, t)η enables to
have the information on η when Π is zero. Besides, its Jacobian

∂τ∗

∂x
(x, t) =

 I6×6 06×1

∗ Π(xm, t)
∗ ℘(xm, t)

 (11.21)

is full-rank everywhere.
Immersion augmentation into diffeomorphism by Jacobian complementation. Following the

methodology presented in this Part III, we extend the injective immersion τ∗(·, t) into a dif-
feomorphism. The first step consists in finding a C1 matrix γ(x, t) in R13×6 such that the
matrix (

∂τ∗

∂x
(x, t) , γ(x, t)

)
is invertible for any x and any t. In others words, we want to complement the full-rank rect-
angular matrix ∂τ∗

∂x (x, t) with 6 vectors in R13 which make it square and invertible. Thanks
to the identity block, it is in fact sufficient to find 6 independent vectors in R7 which comple-

ment the vector
(

Π(xm, t)
℘(xm, t)

)
. A first solution would be to implement Wazewski’s algorithm on

R6 which is contractible, like in Example 9.3.1, but this leads to rather tedious computations.
Since Problem P̃ [7, 1] is not in the list (9.8) of cases admitting universal formulas, we could
had another fictitious output y8 = 0 like we did for the oscillator to recover a solvable problem
P̃ [8, 1]. We present here another path which does not necessitate lengthy computations nor an

additional output. The idea comes from the remark made in Section 11.1.3 that when
(
∂τ∗

∂x
0

)

is full rank, it can always be complemented by
(
−I
∂τ∗

∂x

>

)
because the resulting matrix has a

determinant equal to det
(
∂τ∗

∂x

> ∂τ∗
∂x

)
6= 0. In our case, we remark that the determinant of the

matrix
(

Π(xm, t) −I6×6

℘(xm, t) Π(xm, t)>

)
is equal to ℘(xm, t) + Π(xm, t)TΠ(xm, t) which never vanishes

by definition. Thus, a possible candidate for complementation is :

γ(xm, t) =

 06×6

−I6×6

Π(xm, t)>

 .

As recommended by Lemma 9.0.1, we now introduce the extension of τ∗ defined on R7×R6×R
by

τ∗e (x,w, t) = τ∗(x, t) + γ(xm, t)w . (11.22)

Besides, thanks to the fact that γ does not depend on η, we have :

∂τ∗e
∂(x,w)(x,w, t) =

 Id6×6 06×1 06×6

∗ Π(xm, t) −Id6×6

∗ ℘(xm, t) Π(xm, t)>


which is invertible for any (x,w) in R13 and any time t. In fact, as for the high gain observer
for the oscillator, τ∗e (·, t) is a diffeomorphism on R13 such that τ∗e (R13, t) = R13 for any t. Thus,
we have managed to transform an injective immersion τ∗(·, t) : R7 → R13 into a surjective
diffeomorphism τ∗e (·, ·, t) : R13 → R13.
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Observer in the given coordinates As suggested at the beginning of this section, we consider
the observer :

˙︷ ︷[
x̂
ŵ

]
=
(

∂τ∗e
∂(x,w)(x̂, ŵ, t)

)−1 (
ϕ(τ∗e (x̂, ŵ, t), x̂, t, y)− ∂τ∗e

∂t
(x̂, ŵ, t)

)
(11.23)

where ϕ is defined on R13 × R7 × R× R6 by

ϕ(ξ̂, x̂, t, y) =

 ξ̂d + Lk1(y − ξ̂m)
sat(L2

f
h(x̂, u(t), u̇(t)),Φ) + L2k2(y − ξ̂m)

−aξ̂a


with ξ̂ = (ξ̂m, ξ̂d, ξ̂a) ∈ R6 × R6 × R, a any strictly positive number. A result of a simulation is
given in Figure 11.3.

11.4 Conclusion

We have presented a method to express the dynamics of an observer in the given system coor-
dinates, thereby avoiding the difficult left-inversion of an injective immersion. It assumes the
knowledge of an injective immersion and a converging observer for the immersed system through
Assumption O.

The idea is not to modify this observer dynamics but to map it back to the given coordinates
in a different way. Our construction involves two tools : the augmentation of an injective
immersion into a diffeomorphism through a Jacobian complementation (Chapter 9) and the
extension of the image of the obtained diffeomorphism to enlarge the domain where the observer
solutions can go without encountering singularities (Chapter 10).

For those tools to be usable, some assumptions on the domain of injectivity must be verified,
but we have seen how they can be fulfilled in practice through a wise choice of the transformation
τ∗, and how those tools also extend to the case where the transformation is time-varying.

To conclude from an implementation point of view, the tools presented in Chapter 9 to
augment an injective immersion into a diffeomorphism are sufficiently constructive and general
to be applicable in practice. We have even given a universal complementation method in this
chapter. The main limitation of this method rather appears when wanting to extend the image
of this diffeomorphism. Indeed, the only constructive result presented in Chapter 10 requires
this set to be precisely known and also to satisfy some extra conditions. Although we have
shown that it is sometimes possible to use an approximation, it lacks in generality and this
step constitutes a significant difficulty in practice. Other solutions may exist and need to be
developed, in particular to keep the amplitude of the extra coordinates ŵ small to preserve the
invertibility of the Jacobian.
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Figure 11.2: Luenberger observer (11.8) with x̂1 = 0.08, x̂2 = x̂3 = 0, λ1 = 6, λ2 = 9, λ3 = 14,
λ4 = 15, and τ∗e = φ−1 ◦ τ∗a instead of τ∗a . The simulation was done with a variable step Euler
algorithm.



148 Chapter 11. Generalizations and applications

Time
0 0.5 1 1.5 2 2.5 3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

e1

e2

e3

e4

e5

e6

e7

(a) ei = x̂i − xi

Time
0 0.5 1 1.5 2 2.5 3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ŵ1
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Figure 11.3: Observer (11.23) with L = 10 and k1 = k2 = 1. The simulation was run on
Simulink.
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Chapter 12

Short introduction to permanent
magnet synchronous motors

Chapitre 12 – Courte introduction aux moteurs synchrones à aimant permanent.
Dans ce chapitre, nous présentons rapidement le fonctionnement et le modèle d’un moteur syn-
chrone à aimant permanent (MSAP). En pratique, il est crucial de savoir estimer en ligne la
position du rotor et sa vitesse de rotation, ceci avec un minimum de capteurs pour des raisons
de coût et de contraintes mécaniques. En particulier, des chercheurs ont développé le contrôle
"sensorless", c’est-à-dire basé seulement sur les mesures des variables électriques (tensions et
intensités) et non mécaniques (angle du moteur, vitesse). En particulier, des observateurs de
type gradient ont été proposés et sont rappelés ici. Cependant, ces observateurs dépendent le plus
souvent de paramètres tels que la résistance et le flux de l’aimant, qui peuvent varier significa-
tivement avec la température. Il est donc important de trouver des observateurs de la position
du rotor qui sont indépendants de ces paramètres, voire qui en donnent une estimation : c’est
le problème considéré dans cette partie.

A Permanent Magnet Synchronous Motor is composed of a permanent magnet rotor
placed inside a stator made of windings whose repartition and currents are chosen in order
to create a rotating magnetic field in the airgap of the machine. A torque is then produced
on the permanent rotor magnet due to magnetic attraction, thus inducing the rotor to rotate.
Compared to other commonly used induction machines (see Figure 12.1), the absence of rotor
windings and external rotor excitation reduces the maintenance costs as well as losses in the
rotor, and makes PMSMs highly efficient.

Figure 12.1: Permanent Magnet vs Induction Motor
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Using Joule’s and Faraday’s laws, a PMSM model expressed in a fixed stator frame reads

Ψ̇ = u−R i (12.1)

where Ψ is the total flux generated by the stator windings and the permanent magnet, (u, i)
are the voltage and intensity of the current in the fixed stator frame and R the stator winding
resistance. The quantities u, i and Ψ are two dimensional vectors. The way the total flux Ψ is
related to the rotor angle θr differs depending on the geometry of the rotor and stator. When
the repartition of the windings and the profile of the magnet are perfectly symmetric, the motor
is said to be non-salient and the total flux may be expressed simply as

Ψ = L i+ Φ
(

cos θ
sin θ

)
(12.2)

where L is the stator inductance, Φ the magnet’s flux, and θ = npθr the electrical phase, with
np the number of poles (winding pairs) of the stator. This relation implies

|Ψ− L i|2 − Φ2 = 0 (12.3)
θ = arg(Ψ− L i) . (12.4)

This model may appear unorthodox to those who are rather used to models of the type

L
︷̇︷
i = u−R i− Φnp ωr

(
− sin(npθr)
cos(npθr)

)
θ̇r = ωr

J ω̇r = Φnp i
>
(
− sin(npθr)
cos(npθr)

)
− τL (12.5)

where J is the inertia of the rotor and τL the load torque. However, they should observe that
the electrical part of this model (first line) is actually obtained by plugging (12.2) into (12.1).
But this operation makes ωr appear and they are then forced to integrate it in the model with
the mechanical part (third line). The drawback is that it depends on two new parameters J and
τL which must be either known or estimated. That is why we rather keep the model made of
(12.1)-(12.2).

To minimize the cost and increase the reliability of PMSMs, it is strategic to make progress
on estimating online the rotor position θr and speed ωr = θ̇r, with a minimum of sensors and
fast algorithms. To this end, researchers have developed the so-called "sensorless" control which
uses no measurement of mechanical variables, only of electrical ones, namely (u, i). Indeed, cost
as well as mechanical constraints often render the integration of position sensors troublesome,
or even impossible.

According to (12.4), in the case where L and i are known, an estimate of θ can be simply
recovered from an estimate of the total flux Ψ. Thus, it is enough to design an observer for the
system

Ψ̇ = u−R i , y = |Ψ− Li|2 − Φ2 = 0 , (12.6)

with known inputs (u, i) and where the information given by (12.3) is used as a measurement.
A review of the first steps in that direction was given in [AW06]) and a Luenberger observer
was proposed in [PPO08]. More recently in [LHN+10], was proposed the very simple gradient
observer

˙̂Ψ = u−Ri− 2q (Ψ̂− Li)
(∣∣∣Ψ̂− Li∣∣∣2 − Φ2

)
, (12.7)

which turned out to be extremely effective in practice as rotor position estimator. However,
from a theoretical view point, it was proved in [OPA+11] to be only conditionally convergent
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: it may admit several equilibrium points depending on the rotation speed ω. In fact, later in
[MPH12], the author showed that the following minor modification

˙̂Ψ = u−Ri− 2q (Ψ̂− Li) max
(∣∣∣Ψ̂− Li∣∣∣2 − Φ2 , 0

)
(12.8)

enables to achieve global asymptotic stability thanks to convexity arguments.

All these observers typically require the knowledge of the resistance R, magnet flux Φ and
inductance L. Unfortunately while L may be considered known and constant (as long as there is
no magnetic saturation), R and Φ do vary significantly with the temperature and these variations
should be taken into account in the observer. For example, for a given injected current, when the
magnet’s temperature increases, its magnetic flux decreases, and the produced torque becomes
smaller. Therefore, an online estimation of the magnet’s flux enables to :

- adapt the control law in real time and thus ensure a torque control which is robust to the
machine’s temperature ;

- have an estimation of the rotor’s temperature

- have an estimation of the magnet’s magnetization degradation with time.

That is why efforts have been made to look for position observers which do not rely on
the knowledge of those parameters, or even better, which also estimates them. For instance,
[HMP12, BPO15a] have proposed observers which are independent from the magnet flux. We
complete this line of research in Chapter 13 by extending the gradient observer (12.7) with
the estimation of Φ : global convergence is established when the rotation speed stays away
from zero and its performances are compared to that of other existing observers. As for the
resistance, in [ROH+16], the authors propose and study via simulations an adaptive observer to
make the gradient observer previously mentioned independent from the resistance. However, the
convergence is not ensured and actually we show in Chapter 14 that the system is not observable
when R is unknown unless other informations are added. When those informations are available,
we propose a novel Luenberger observer.





Chapter 13

Rotor position estimation with
unknown magnet flux

Chapitre 13 – Estimation de la position d’un rotor lorsque le flux des aimants est
inconnu. Dans ce chapitre, nous proposons un nouvel observateur "sensorless" qui estime la
position du rotor sans avoir à connaître le flux des aimants : seules les mesures des intensités et
courants, et les valeurs de l’inductance et de la résistance sont nécessaires. Cet observateur étend
l’observateur gradient introduit dans [LHN+10] en ajoutant l’estimation du flux des aimants, et
le rend globalement convergent si la vitesse de rotation ne s’approche pas de zéro. Nous étudions
sa sensibilité aux incertitudes de résistance et inductance, ainsi qu’à la présence de saillance.
Ses performances en boucle ouverte sont illustrées par des simulations sur des données réelles et
comparées à d’autres observateurs indépendants du flux existant dans la littérature, à la fois en
terme de coût en calcul et de robustesse.
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In this chapter, we address the problem of estimating the rotor position of a PMSM
without relying on the knowledge of the magnet’s flux, i-e when only electrical measurements
and (approximate) knowledge of the resistance and inductance are available.

First steps in this direction are reported in [HMP12] with the design of a Luenberger observer
(see [Hen14] for a much more detailed analysis and Section 7.2.1), and in [BPO15a, BPO+15b,
BBP+16], with the design of an observer based on tools from parameter linear identification. In
fact, we will show that those two observers rely on the same regression equation but the former
solves it at each time whereas the latter solves it as time goes on with a gradient-like scheme.
Convergence comes under an assumption of invertibility of the regressor matrix for the former,
and on a persistent excitation condition for the latter.

In the same line of research, we propose here a new observer which extends the gradient ob-
server from [LHN+10] with the estimation of the magnet’s flux, and makes it globally convergent
provided the rotation speed remains away from zero. We study its sensitivity to uncertainties



156 Chapter 13. Rotor position estimation with unknown magnet flux

on the resistance and inductance and to the presence of saliency. Its performances in open-loop
are illustrated via simulations on real data and compared to the other previously mentioned
magnet flux independent observers in terms of computational cost and robustness.

The content of this chapter was presented in [BP17].

Notations The rotation matrix is denoted

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

13.1 Gradient observer
Since Φ is unknown in this chapter, we consider the system

Ψ̇ = u−Ri
Φ̇ = 0
y = |Ψ− Li|2 − Φ2

(13.1)

with inputs (u, i), known parameters (R,L), state (Ψ,Φ) and measurement y which is constantly
zero. We introduce the corresponding gradient observer

˙̂Ψ = u−Ri− 2q (Ψ̂− Li)
(∣∣∣Ψ̂− Li∣∣∣2 − Φ̂2

)
˙̂Φ = q Φ̂

(∣∣∣Ψ̂− Li∣∣∣2 − Φ̂2
) (13.2)

where q is an arbitrary strictly positive real number. It is a straightforward extension of observer
(12.7) with the estimation of Φ.

Theorem 13.1.1.

Consider (ψ,Φ) in R2 × (0,+∞) and inputs u, i : R → R2 such that there exists strictly
positive numbers ω0, ω0 and ω1 such that the solution (Ψ(ψ; t;u, i),Φ) of (13.1) verifies

0 < ω0 ≤ θ̇(t) ≤ ω0 , θ̈(t) ≤ ω1

with
θ(t) = arg(Ψ(ψ; t;u, i)− Li(t)) .

For any strictly positive real number q, for any (ψ̂, φ̂) in R2 × (0,+∞), the solution
(Ψ̂(ψ̂, φ̂; t;u, i), Φ̂(ψ̂, φ̂; t;u, i)) of (13.2) satisfies

lim
t→∞
|Ψ̂(t)−Ψ(t)|+ |Φ̂(t)− Φ| = 0 ,

where we have used the abbreviation Ψ̂(t) = Ψ̂(ψ̂, φ̂; t;u, i), Φ̂(t) = Φ̂(ψ̂, φ̂; t;u, i) and
Ψ(t) = Ψ(ψ; t;u, i).

In other words, System (13.2) is an observer for System (13.1) for the solutions with a bounded
rotation speed which remains away from zero. Of course, taking θ̂ as the argument of Ψ̂ − Li,
we also obtain

lim
t→∞

θ̂(t)− θ(t) = 0 .

Proof : The proof of Theorem 13.1.1 is lengthy and technical, so we only give here the most important
steps. The whole proof is available in Appendix C.
Consider a solution (Ψ,Φ) of (13.1), with Φ in (0,∞) and define

θ(t) = arg(Ψ(t)− Li(t)) ,
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so that

Ψ(t) = Li(t) + Φ
(

cos θ(t)
sin θ(t)

)
. (13.3)

Pick (ψ̂, φ̂) in R2 × (0,∞), and q > 0. To ease the notations, we denote the corresponding solution of
(13.2) (Ψ̂(t), Φ̂(t)). According to (13.3), it is enough to prove that

lim
t→∞

[
Ψ̂(t)− Li(t)

]
− Φ

(
cos θ(t)
sin θ(t)

)
= 0

and
lim
t→∞

Φ̂(t) = Φ .

To simplify our task, we transform the solution
(
Li+ Φ

(
cos θ(t)
sin θ(t)

)
, Φ
)

into an equilibrium. Thus,

we carry out the analysis in the coordinates(
Xd
Xq

)
= R(−θ) (Ψ− Li) ,

(
X̂d
X̂q

)
= R(−θ)

(
Ψ̂− Li

)
.

With (13.3), we obtain (
Xd
Xq

)
=
(

Φ
0

)
and it is enough to show that

lim
t→∞

X̂d(t) = Φ , lim
t→∞

X̂q(t) = 0 , lim
t→∞

Φ̂(t) = Φ .

In those coordinates, the dynamics of the observer reads :
˙̂
Xd = ωX̂q − 2qX̂d

(
X̂2
d + X̂2

q − Φ̂2)
˙̂
Xq = −ωX̂d + ωΦ− 2qX̂q

(
X̂2
d + X̂2

q − Φ̂2)
˙̂Φ = q Φ̂

(
X̂2
d + X̂2

q − Φ̂2) (13.4)

where ω(t) = θ̇(t). The set Ω = R2 × (0,+∞) being forward invariant for these dynamics, we study the
behavior of its solutions when they are in Ω. The proof consists in finding a Lyapunov function decreasing
along the solutions of (13.4), and proving convergence to (Φ, 0,Φ) which is the only equilibrium point
in Ω. More precisely :

1.The function

V (X̂d, X̂q, Φ̂) = Φ̂4

4 + 1
2Φ̂2(X̂2

d + X̂2
q )− ΦΦ̂2X̂d + Φ4

4
is a Lyapunov function. It satisfies :

V̇ = −q Φ̂2(Φ̂2 − (X̂2
d + X̂2

q ))2 ≤ 0 .

2.Any solution of (13.4) starting in Ω is bounded and is defined in Ω for all t in [0,+∞). Then,
thanks to Barbalat’s lemma,

lim
t→+∞

Φ̂(t)(Φ̂(t)2−(X̂d(t)2+X̂q(t)2)) = 0 , lim
t→+∞

Φ̂(t)X̂q(t) = 0 , lim
t→+∞

Φ̂(t)(X̂d(t)−Φ) = 0 .

3.It is not possible to have lim inf
t→+∞

Φ̂(t) = 0.

�

Theorem 13.1.1 tells us that unlike for observer (12.7), no convexification is needed to achieve
global convergence of the gradient observer (13.2). Hence, even when the parameter Φ is known,
we may prefer to use observer (13.2) instead of observer (12.8). In this way, although the
observer state is augmented with Φ̂, we get global convergence without knowing Φ.
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13.2 Alternative path
The observer presented in the previous section is based on System (13.1) which is nonlinear
because of its output function. Fortunately, this function is quadratic in (Ψ,Φ), and (Ψ̇, Φ̇) does
not depend on (Ψ,Φ). Hence linearity can be obtained by time derivation. Namely, we have

ẏ = 2 (Ψ− Li)T (u−Ri−
˙︷ ︷
Li)

which is linear in Ψ and independent from Φ. The new problem we face now is the presence of
the time derivative

˙︷ ︷
Li. A well known fix to this, is to use a strictly causal filter. Namely, let

η̇ = −λ(η + y) , yf = η + y (13.5)

with λ any complex number with strictly positive real part. It is easy to check that the evaluation
of yf + (c+ 2Li)TΨ− (z + L2|i|2), along any solution, decreases as exp(−λt) when c and z are
solutions of {

ċ = −λc− 2λLi− 2(u−Ri)
ż = −λz + cT (u−Ri)− λL2|i|2 . (13.6)

So, instead of the design model (13.1), we can use

Ψ̇ = u−Ri , yf = −(c+ 2Li)TΨ + (z + L2|i|2) (13.7)

with inputs (u, i, c, z), state Ψ and measurement yf . Also because of (13.5), we pick yf constantly
zero as we did above with y. System (13.7) can be seen as a linear time varying system and
therefore any observer design for such systems apply. It can be a Kalman filter or more simply
the following gradient observer

ċ = −λc− 2λLi− 2(u−Ri)
ż = −λz + cT (u−Ri)− λL2|i|2
˙̂Ψ = u−Ri+ γ (c+ 2Li)

(
−(c+ 2Li)T Ψ̂ + z + L2|i|2

)
.

(13.8)

where γ is an arbitrary strictly positive real number. In [BPO15a], the authors propose the
following non minimal version of this observer :

ξ̇14 = u−Ri
ξ̇5 = −λ(ξ5 − |ξ14 − Li|2)
ξ̇89 = γΩ

(
y − ΩT ξ89

) , y = −λ|ξ14 − Li|2 − λξ5 (13.9)

with

Ψ̂ = ξ14 + ξ89

Ω = −λ(c+ 2Li)

where c verifies the dynamics (13.8) and we have the relation

z = ξT14(c+ ξ14) + ξ5 .

with z satisfying (13.8).
Convergence of these observers (13.8) or (13.9) is guaranteed as long as Ω satisfies a persistent

excitation condition which, as proved in [BPO15a], holds when the rotation speed is sufficiently
rich.

Inspired from nonlinear Luenberger observers, another observer is proposed in [HMP12]. It
consists in using m filters of the type (13.6), with poles λk, with k in {1, . . . ,m}, to obtain m
equations in Ψ̂

(ck + 2Li)T Ψ̂− (zk + L2|i|2) = 0 (13.10)
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which are solved in a least square sense. It is proved in [Hen14] that the matrix of the ck + Li
is full column rank when ω stays away from 0, m ≥ 3 and the λk are chosen in a generic way.

Actually, observer (13.8), observer (13.9) of [BPO15a], or the one in [HMP12], are identical
except in their way of solving in Ψ̂ equations (13.10). The former two solve (13.10) with only
one λ (m = 1) but dynamically along time. The later solves them at each time, with at least
two λ (m ≥ 2).

In the remainder of the chapter, we intend to compare the performances of observer (13.2)
introduced in the previous section with those of this other family of observers, in particular
observer (13.8).

13.3 Performances

13.3.1 Computational cost

We already see that the smaller dimension of observer (13.2) and its great simplicity of imple-
mentation provides a significant advantage. Indeed, in our matlab simulations, CPU time was
found to be twice smaller than for the other observers presented in Section 13.2. This numerical
efficiency constitutes an important feature since those observers are intended to run online where
processing power is often limited.

13.3.2 Sensitivity to the presence of saliency when id is constant

According to [BC98], the simplest way to take saliency into account in the model of a PMSM is
to keep (12.1) but to replace the expression (12.2) of the total flux by

Ψ = L0i+ L1

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
i+ Φ

(
cos θ
sin θ

)
(13.11)

where L1 is a second order inductance. Thanks to the identity(
cos 2θ + 1 sin 2θ

sin 2θ − cos 2θ + 1

)(
cos θ − sin θ
sin θ cos θ

)
= 2

(
cos θ 0
sin θ 0

)

the above expression of Ψ can be rewritten as

Ψ− (L0 − L1)i = (Φ + 2L1id)
(

cos θ
sin θ

)
(13.12)

with the notation

idq =
(
id
iq

)
= R(−θ) i . (13.13)

This shows that, when id is constant, we recover exactly the design model (13.1) provided we
replace L and Φ by

Ls = L0 − L1 , Φs = |Φ + 2L1id| .

Hence Theorem 1 holds in the case with saliency at least when the signals obtained from the
motor are such that id is constant. Specifically, by implementing observer (13.2) with Ls instead
of L, we directly obtain :

lim
t→∞
|Ψ̂(t)−Ψ(t)|+ |Φ̂(t)− Φs| = 0 .

This means that Ψ̂ converges to Ψ and Φ̂ to the "equivalent flux" Φs. But this time, it is not
sufficient to compute the argument of Ψ̂ − Lsi to obtain an estimate of θ, since according to
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(13.12), it converges either to θ or θ + π depending on the sign of Φ + 2L1id. In fact, defining
θ0 as

θ0 = arg(Ψ− Lsi)
and idq,0 as

idq,0 =
(
id,0
iq,0

)
= R(−θ0) i

we have :

- if Φ + 2L1id > 0, then Φs = Φ + 2L1id, θ0 = θ, id,0 = id and Φs − 2L1id,0 = Φ > 0

- if Φ+2L1id < 0, then Φs = −Φ−2L1id, θ0 = θ+π, id,0 = −id and Φs−2L1id,0 = −Φ < 0.

Therefore, computing
θ̂0 = arg(Ψ̂− Lsi)

and îdq,0 defined by

îdq,0 =
(
îd,0
îq,0

)
= R(−θ̂0) i ,

and taking
θ̂ = θ̂0 if Φ̂− 2L1îd,0 ≥ 0
θ̂ = θ̂0 + π otherwise ,

we obtain
lim
t→∞

θ̂(t)− θ(t) = 0 .

This convergence is a clear argument in favor of observer (13.2) with respect to observer (12.8).
Indeed, the flexibility provided by the estimation of Φ enables to apply the same observer to
salient motors without losing convergence of θ. The same conclusions hold for the observers
presented in Section 13.2. Not to be forgotten, all this holds when id is constant.

13.3.3 Sensitivity to errors on R and L when (id, iq, ω) is constant
In Theorem 1, we claimed convergence for observer (13.2) assuming perfect knowledge of the
resistance and the inductance and the absence of saliency. Then, in the latter subsection, we
extended this result to salient models as long as the current in the dq frame id is constant.
Given the fact that the non salient models can easily be obtained from the salient ones by
taking L1 = 0, we keep here the more general model with saliency made of (12.1) and (13.11).

In this section, we study the possible consequences of using in the observers approximations
R̂ and L̂ of R and Ls. For this we restrict our attention to the case where R(−θ) i = idq and
ω are constant. This configuration is often considered in practice, since it corresponds to a
constant rotation speed with a constant load torque. In this case, the model has an asymptotic
behavior given by

u = R(θ)udq , i = R(θ)idq , Ψ = R(θ)Ψdq

where udq, idq and Ψdq are constants satisfying

ωJΨdq = udq −Ridq , Ψdq − Lsidq =
(

Φs

0

)
where

J =
(

0 −1
1 0

)
.

Let Ψeq be defined as
Ψeq = 1

ω
J−1R(θ)(udq − R̂idq)

It satisfies
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a) Ψ̇eq = u− R̂i

i-e the same dynamics as Ψ but with R̂ instead of R.

b) Ψeq − L̂i = R(θ)
( 1
ω
J−1

(
udq − R̂idq

)
− L̂idq

)
︸ ︷︷ ︸

constant

. (13.14)

Thus, with Φeq the constant real number defined as

Φeq =
∣∣∣ 1
ωJ
−1
(
udq − R̂idq

)
− L̂idq

∣∣∣
=

∣∣∣∣∣
(

Φs

0

)
+
(
[R− R̂]J−1

ω + Ls − L̂
)
idq

∣∣∣∣∣
we have

|Ψeq − L̂i|2 − Φ2
eq = 0 .

It follows that (Ψeq,Φeq) is solution of the model (13.1) if we replace (R,L) by (R̂, L̂). So,
according to Theorem 13.1.1, the observer (13.2), implemented with R̂ and L̂, gives

lim
t→∞
|Ψ̂(t)−Ψeq(t)|+ |Φ̂(t)− Φeq| = 0 .

Hence Φ̂ converges to
∣∣∣∣∣
(

Φs

0

)
+
(
[R− R̂]J−1

ω + Ls − L̂
)
idq

∣∣∣∣∣. And with θ̂ computed as the argu-

ment of Ψ̂− L̂i, we have asymptotically
∣∣∣Ψ̂− L̂i∣∣∣ (cos(θ̂ − θ)

sin(θ̂ − θ)

)
= R(−θ)

(
Ψeq − L̂i

)
= 1

ω
J−1

(
udq − R̂idq

)
− L̂idq

=
(

Φs

0

)
+
(

[R− R̂]J
−1

ω
+ Ls − L̂

)
idq , (13.15)

where we have used (13.14). In other words the error θ̂ − θ converges to the argument of(
Φs

0

)
+
(
[R− R̂]J−1

ω + Ls − L̂
)
idq. Up to the first order, this is exactly the same result as the

one obtained in [Hen14] for the Luenberger observer presented in [HMP12]. Of course we recover
the fact that, without any errors on R and L, the asymptotic value of Φ̂ is Φs and θ̂ converges
to θ.

We illustrate formula (13.15) via simulations with ideal data obtained for L = 0.65 mH,
R = 0.167 Ω, Φ = 7.3 mWb, id = −3.46 A, iq = 6 A, for two different regimes. The results
are given in Table 13.1 for observers (13.2) and (13.8). Both observers were implemented with
an Euler scheme with dt = 1.2 10−4 s and give similar results. The reader may check that the
absolute error on θ and the relative error on Φ correspond exactly to the expected theoretical
errors.

13.4 Tests with real data
To illustrate the results above about the sensitivity with respect to the parameters, to saliency,
but also to noise, we apply in open-loop (and offline) the observers (13.2) and (13.8) to real data
obtained from two PMSM used in test beds at IFPEN : Motor 1 and Motor 2. The available data
are the measurements of voltages um and currents im in the αβ fixed frame, the measurement
of the rotor position θm, the physical parameters given in Table 13.2.
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R+ 1%R L+ 1%L

ω Obs θ̃ (rad) Φ̃/Φ θ̃ (rad) Φ̃/Φ

500
rpm

(13.2) 0.015 2.6 % 5.4 10−3 0.3 %

(13.8) 0.015 2.6 % 5.2 10−3 0.3 %

2000
rpm

(13.2) 3.8 10−3 0.7 % 5.4 10−3 0.3 %

(13.8) 3.3 10−3 0.6 % 4.9 10−3 0.3 %

Table 13.1: Sensitivity of observers (13.2) and (13.8) with respect to R and L at two different
electrical rotation speeds with the notation θ̃ = |θ̂ − θ| and Φ̃/Φ = |Φ̂−Φ|

Φ .

Parameter Motor 1 Motor 2

Regime variable : Figure 13.1 constant : 2000 rpm

Ld 0.72 mH 0.142 mH

Lq 0.78 mH 0.62 mH

Φ 8.94 mWb 18.5 mWb

R 0.151 Ω 0.023 Ω

Pairs of poles (np) 10 2

Table 13.2: Parameters for Motor 1 and 2.

The norms of um and im for each motor are given in Figure 13.2. Note that unlike Motor 2,
Motor 1 is submitted consecutively to four regimes : around 150 rpm, 450 rpm, 1000 rpm and
finally 1500 rpm (see Figure 13.1).

The motors differ in terms of saliency. According to [BC98], L0 and L1 in (13.11) are given
by

L0 = Ld + Lq
2 , L1 = Ld − Lq

2 .

and therefore
Ls = L0 − L1 = Lq .

We conclude that saliency is weak for Motor 1 (L1
L0
≈ 4%), but dominant for Motor 2 (L1

L0
≈ 80%).

We have implemented the observers using the measured values um and im as u and i, and
an explicit Euler scheme with the sample time (dt1 = 10−4 s, dt2 = 2 10−5 s). We chose
the parameters of the observers to ensure the responses have all approximately the same time
constant (γ(13.2) = 20000, γ(13.8) = 50000, λ = 50) and so that convergence is obtained in
less than two rotations of the motor. The results are presented in Figures 13.3-13.4. The
performances are globally better for Motor 1 than Motor 2, but it is mainly due to the fact that
the data were noisier for the latter.

For θ (Figure 13.3), both observers provide similar results, with a final oscillatory error of
amplitude smaller than 0.05 rad for Motor 1 (0.09 rad for the last regime) and 0.12 rad for Motor
2. But (the mean value of) the estimation θ̂ does not converge to the measurement θm. There
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are static errors. They are likely due, in part at least, to an offset in the sensor for θm. But there
is more since, according to Figure 13.3(a), these biases depend on the regime. One explanation
comes from (13.15) where the regime ω appears explicitly. Another possible explanation has
been proposed and studied in [Hen14]. It is the effects of the dynamics of the sensors providing
the measurements um and im. When they are modelled simply by

i̇m = −τi(im − i) , u̇m = −τu(um − u)

the phase shift of these first order systems (depending on the regime) is directly translated in a
static error on θ̂ and consequently on Φ̂. We refer the reader to [Hen14] for more details.

Concerning Φ (Figures 13.4), although both observers provide again the same mean for the
final errors, the transient of observer (13.8) seems to be more oscillatory. This difference could
be explained by the fact that Φ̂ is directly estimated by observer (13.2) while it is reconstructed
from the norm of Ψ̂− Lqi for observer (13.8). Here again (the mean value of) Φ̂ does not tend
to Φ. Let us concentrate on the data from Motor 2 and from the first regime of Motor 1, where
the norm of the current is constant. Assuming that the offset θ̂ − θm mentioned above is only
due to the position of the sensor and therefore that θ̂ is actually the correct rotor position, we
compute id as the first component of R(−θ̂)i and find

Motor 1: id,1 = −4.2A
Motor 2: id,2 = −201A .

If the values of R, Ld, Lq and Φ in Table 13.2 are correct, we can expect Φ̂ to tend to Φs =
|Φ + 2L1id|, i-e

Motor 1: Φs,1 = 9.2mWb
Motor 2: Φs,2 = 115mWb .

This is verified for both motors on Figures 13.4(a) (first regime) and 13.4(b). We could conclude
that the values of R and L used in the observers are correct. Unfortunately we cannot go further
in the analysis since, for the other regimes in Figure 13.4(a), the steady state is not reached.

13.5 Conclusion
We have introduced a new rotor position observer for sensorless permanent magnet synchronous
motors (PMSM). It is designed from a non salient model and uses measurements of voltages and
current, and estimations of resistance and inductance. But it does not require the knowledge of
the magnet flux. We have claimed its convergence in an ideal context and for a rotating motor.

We have compared it with the equivalent observers proposed in [HMP12, Hen14] and [BPO+15b].
The main difference is that this new observer is less demanding in terms of computations. On the
other hand it gives qualitatively the same kind of performance, in terms of speed of convergence,
sensitivity to errors in the resistance or the inductance and also in presence of saliency.

At least three important issues remain to be addressed:
a) Sensitivity to measurement noise or more interestingly the definition of a tuning policy in

presence of such disturbances. This kind of study has been made in [Hen14] for the Lu-
enberger observer proposed in [HMP12] . The same kind of tools should be useful in our
context.

b) Use of the observer in closed loop. Tests via simulations or test beds for the observers in
[HMP12] and [BPO+15b] are reported in those papers. But as far as we know no theoretical
results are yet available.

c) Extension to non salient models. We are unaware of any observer for this case.
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Chapter 14

Rotor position estimation with
unknown resistance

Chapitre 14 – Estimation de la position du rotor lorsque la résistance est inconnue.
Nous montrons dans ce chapitre que contrairement à (Ψ,Φ), le couple (Ψ, R) n’est pas observable
avec la seule information que y(t) = 0 pour tout t. Cependant, lorsque ω et id sont non nuls, il
ne peut exister que six solutions indistingables maximum, la resistance étant l’une des racines
d’un polynôme de degré 6. De plus, dans le cas particulier où ω, id et iq sont constants, nous
prouvons que le nombre de solutions possibles est réduit à deux, avec deux valeurs bien identifiées
pour la résistance, qui sont distinctes sauf si iq est nul. Il apparaît alors que ces deux solutions
peuvent en fait être dissociées si le signe de iq (c’est-à-dire le mode d’utilisation du moteur)
est connu. Cette propriété nous permet de proposer une stratégie d’observation, basée sur une
synthèse de Luenberger. Ses performances sont testées et illustrées en simulation.
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We have seen in the previous chapter that it is possible to estimate both Ψ and Φ at the
same time. In this chapter, we suppose the magnet flux Φ known, but the resistance R unknown
and we wonder if it is possible to estimate both Ψ and R. So we consider the system

Ψ̇ = u−R i
Ṙ = 0
y = |Ψ− L i|2 − Φ2

(14.1)

with inputs (u, i), known parameters (Φ, L), state (Ψ, R) and the knowledge that y is constantly
zero.
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To ease the reading of this chapter, some of the proofs are summarized with only their most
important steps, or even omitted when they are of no particular interest. Their detailed version
is available in Appendix D.

14.1 Observability
Before looking for an observer, we need to check the observability of the system. To do that, we
consider the time-varying system 

ẋ = u− x3 i
ẋ3 = 0
y = |x− L i|2 − Φ2

(14.2)

with L and Φ given, and where u and i are time signals such that there exists a particular
solution (x = Ψ, x3 = R) of (14.2) verifying

y(t) = 0 ∀t .

This means that there exists a (unique) time-signal θ such that for all t,

Ψ(t) = L i(t) + Φ
(

cos(θ(t))
sin(θ(t))

)
. (14.3)

In the following, we denote

z =
(

cos θ
sin θ

)
, idq =

(
id
iq

)
= R(−θ) i , ω = θ̇ .

We want to know whether, given the time signals (u, i) and the parameters (L,Φ), the particular
solution (Ψ, R) is the unique solution to System (14.2) verifying y(t) = 0 for all t. Note that
this is somehow a weak notion of observability since it is for a particular trajectory of y.

14.1.1 A first observability result

We start from the following result :

Theorem 14.1.1.

If

a) for all t, ω(t) = 0

or

b) for all t such that ω 6= 0, id(t) = 0, iq(t) 6= 0 and ω
iq

is constant

there exists an infinite number of solutions to System (14.2) verifying y(t) = 0 for all t.
Otherwise, if besides |i(t)| 6= 0 for all t, there exist at most 6 solutions.

Proof : Consider a solution (x, x3) to System (14.2) verifying for all t

0 = y(t) = |x(t)− Li(t)|2 − Φ2 .

x is necessarily of the form

x(t) = x0 +
∫ t

0
u(τ)dτ − x3

∫ t

0
i(τ)dτ

with
ẋ0 = 0 , ẋ3 = 0 ,
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and finding (x, x3) is equivalent to finding (x0, x3). It follows that for all t

0 = |x(t)− Li(t)|2 − |x0 − Li(0)|2

= [x(t)− x0 − L(i(t)− i(0))]>[x(t) + x0 − L(i(t) + i(0))]
= η̃(x3, t)>[2(x0 − Li(0)) + η̃(x3, t)]

where we have defined

η̃(x3, t) =
∫ t

0
u(τ)dτ − x3

∫ t

0
i(τ)dτ − L(i(t)− i(0)) . (14.4)

We deduce that for any time t,

2η̃(x3, t)>(x0 − Li(0)) = −η̃(x3, t)>η̃(x3, t) = −|η̃(x3, t)|2 .

Therefore, unless x3 makes η̃(x3, t1) and η̃(x3, t2) colinear for any (t1, t2), there exits at most one possible
value of x0 for each x3.
The rest of the proof then consists in showing that1 :

1.for x3 such that η̃(x3, .) is not constant, there exist couples (t1, t2) such that η̃(x3, t1) and η̃(x3, t2)
are not colinear. x0 is then uniquely determined by the value of x3, which must be the root of a
polynomial of degree 6. Therefore, there are at most 6 solutions (x, x3) such that η̃(x3, .) is not
constant.

2.to the values of x3 such that η̃(x3, .) is constant, is associated an infinite number of solutions
(x, x3).

3.if x3 makes η̃(x3, .) constant, it must satisfy for all t

(R− x3)id(t) = 0
(R− x3)iq(t) = −ω(t)Φ . (14.5)

We can thus distinguish the following cases :

-if ω(t) = 0 for all t, there exists at least one constant value of x3 solution to System (14.5) for all
t. Thus, η̃(x3, ·) is constant and there is an infinite number of solutions (x, x3).
-if for all t such that ω(t) 6= 0, id(t) = 0, iq(t) 6= 0, and ω

iq
is constant, there exists a constant value

of x3 solution to System (14.5) for all t and thus an infinity of solutions (x, x3).
-otherwise, there exist no solutions to System (14.5). Therefore, η̃(x3, ·) cannot be constant and
there are at most 6 solutions (x, x3) to our observability problem.

�

We recover the fact that the system is not observable when the rotating speed is zero (this
is the case even when R is known). In the usual case where there exists at least a time t for
which ω(t)id(t) 6= 0, this result says that there exist maximum 6 possible solutions (x, x3), with
x3 given by the roots of a polynomial of order 6. In order to conclude that the system is not
observable, we need to know more about those roots. In particular, the polynomial may not
have 6 distinct real roots and even if it does, they may not be constant with time.

To get more information, one could study in detail this polynomial of order 6 obtained in
the proof. But its expression is too complex and the next section shows how a stronger notion
of differential observability enables to get a more precise idea of this polynomial.

14.1.2 Differential observability of order 3

Let us consider the stronger observability question : is (Ψ(t), x3) the only solution at time t
of y(t) = ẏ(t) = ÿ(t) = 0 ? Of course, in the cases of non observability identified in Theorem
14.1.1, the answer is no. But we want to study in more details what happens in the other cases,
in particular when there exists a time t such that

|i(t)| 6= 0 and ω(t) 6= 0 and id(t) 6= 0 or iq(t) = 0 ,
1See Appendix D.1.1.
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which is equivalent to
ω(t) 6= 0 and id(t) 6= 0 .

Consider the function H3 made of
(
y(t), ẏ(t), ÿ(t)

)
:

H3(x, x3, t) =


|x− L i(t)|2 − Φ2

2(x− L i(t))>(u(t)− x3 i− L
︷̇︷
i (t))

2(x− L i(t))>(u̇(t)− x3
︷̇︷
i (t)− L

︷̈︷
i (t) + 2|u(t)− x3 i(t)− L

︷̇︷
i (t)|2

 .

Our problem consists in looking for the solutions in (x, x3) of

H3(x, x3, t) = 0 .

We have the following result :

Theorem 14.1.2.

Consider a time t such that ω(t) 6= 0 and id(t) 6= 0. There are as many solutions (x, x3) to
the equation

H3(x, x3, t) = 0 ,

as the number of real roots of the following polynomial of order 6 :

P (x3, t) = ω(t)6Φ6


1− (R− x3)

ω(t)Φ

 ˙︷ ︷(
id
ω

)
(t)− 2iq(t)

+ (R− x3)2

ω(t)2Φ2 µ(t)|i(t)|2
2

−
(

1 + (R− x3)
ω(t)Φ 2iq + (R− x3)2

ω(t)2Φ2 |i(t)|
2
)3
 (14.6)

where2

µ(t) = 1
ω(t)

[
i(t)>J

˙︷ ︷
i(t)

]
|i(t)|2 , J =

(
0 1
−1 0

)
.

Proof : It is appropriate to introduce the following degree one polynomial of x3

η(x3, t) = u(t)− x3i(t)− L
︷̇︷
i (t) , (14.7)

so that H3 actually reads

H3(x, x3, t) =

 |x− L i(t)|2 − Φ2

2η(x3, t)>(x− L i(t))
2η̇(x3, t)>(x− L i(t)) + 2|η(x3, t)|2

 .

It is interesting to note that η(x3, t) = ˙̃η(x3, t), where η̃ is defined in (14.4), and what is done in this
proof is somehow the differential version of the proof of Theorem 14.1.1 To study how many solutions
in (x, x3) the equation H3(x, x3, t) = 0 has, we note that the second and third component is a linear
system in x−L i. So our approach is to solve this system and replace in the first component. This gives
a function of x3 only. Hence the first question is invertibility of the linear system, i.e. colinearity of
η(x3, t) and η̇(x3, t).
Assume that η(x3, t) is non zero and is colinear with η̇(x3, t), namely η̇(x3, t) = λη(x3, t). Then,
H3(x, x3, t) = 0 gives

η(x3, t)>(x− Li(t)) = 0 , λη(x3, t)>(x− Li(t)) = −|η(x3, t)|2

2µ is the ratio between ω and the rotation speed of i.
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and necessarily η(x3, t) = 0 which is impossible. Therefore, colinearity can only happen if η(x3, t) = 0.
But differentiating (14.3) with respect to time and combining this expression with (14.7), we get

η(x3, t) = −ω(t)ΦJz(t) + (R− x3)i(t) . (14.8)

By imposing η(x3, t) to be zero and multiplying by R(−θ), we recover System (14.5) which does not
admit any solution if ω(t) and id(t) are nonzero. We conclude that for all x3, η(x3, t) and η̇(x3, t) are
not colinear.
It follows that we can get x from the second and third components of H3, namely

(x− L i(t))>η(x3, t) = 0
(x− L i(t))>η̇(x3, t) = −|η(x3, t)|2 (14.9)

i-e
x− L i(t) = |η(x3, t)|2

η(x3, t)>Jη̇(x3, t)
Jη(x3, t) .

Inserting this expression in the first component of H3 gives

Φ2 =
∣∣∣∣ |η(x3, t)|2

η(x3, t)>Jη̇(x3, t)
Jη(x3, t)

∣∣∣∣2 = |η(x3, t)|6

[η(x3, t)>Jη̇(x3, t)]2

and x3 is a root of the following polynomial

P (x3, t) = Φ2[η(x3, t)>Jη̇(x3, t)]2 − |η(x3, t)|6 .

Differentiating (14.8), we get

η̇(x3, t) = −ω̇(t)ΦJz(t)− ω(t)2Φz(t) + (R− x3)
︷̇︷
i (t) , (14.10)

which yields

det
(
η(x3, t) , η̇(x3, t)

)
= η(x3, t)>Jη̇(x3, t)

= ω3Φ2 − (R− x3)Φ
[
ω2i>Jz − ω̇ i>z + ω

︷̇︷
i
>
z

]
+ (R− x3)2 i>J

︷̇︷
i

= ω3Φ2 − (R− x3)Φω2

[
−2iq +

︷̇︷
id
ω

]
+ (R− x3)2 i>J

︷̇︷
i (14.11)

where we have used the fact that i>z = id and i>Jz = −iq. Inserting those expressions in the expression
of P , we get the polynomial (14.6). The coefficient of degree 6 is |i|6 which is non zero by assumption.
We conclude that there are at most 6 possible values for x3, and since the value of x is imposed by that
of x3, we get the result. �

With this result, we are not much further advanced than with Theorem 14.1.1, but at least
we have a more precise expression of the polynomial. The reader may check in particular that
x3 = R is a possible root. But since the degree is even, there is at least another real root (which
can be equal to R too). In order to have a better idea of those roots, we study the usual case
where ω, id and iq are constant.

14.1.3 Particular case where ω, id and iq are constant

We have the following corollary :

Corollary 14.1.1.

Assume ω, id and iq are constants such that ω 6= 0 and id 6= 0. P has only two roots given
by

x3 = R , x3 = R+ 2Φω iq
|i|2

.

Therefore, the equation H3(x, x3, t) = 0 admits one solution if iq = 0 and two distinct
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solutions if iq 6= 0.

Proof : In this particular case, i>J
︷̇︷
i = ω|i|2 so that µ(t) = 1 and

P (x3) = −ω6Φ6
(

1 + (R− x3)
ωΦ 2iq + (R− x3)2

ω2Φ2 |i|2
)2 (R− x3)

ωΦ

(
2iq + (R− x3)

ωΦ |i|2
)
.

The polynomial |i|2X2 + 2iqX + 1 has a discriminant equal to −4i2d < 0 and does not admit any real
root. The conclusion follows. Note that in this case, according to (14.11), P also writes

P (x3) = −Φ2 det
(
η(x3) , η̇(x3)

)2 (R− x3)
ωΦ

(
2iq + (R− x3)

ωΦ |i|2
)
. (14.12)

�

The conclusion from this theorem is that the system is not differentially observable of order
3 unless iq = 0. This does not mean that the system is not observable because the solution
corresponding to x3 = R + 2Φω iq

|i|2 may not be admissible for System (14.2). Actually, it turns
out that both solutions are truly indistinguishable :

Theorem 14.1.3.

Assume ω, id and iq are constants such that ω 6= 0 and id 6= 0. There exist exactly two
indistinguishable solutions (x, x3) to System (14.2) verifying y(t) = 0 for all t. They are of
the form (Ψ, R) and (Ψδ, Rδ) with

Rδ = R+ 2Φω iq
|i|2

.

Proof : See Appendix D.1.2. �

We conclude that the system is not observable if iq 6= 0. However, the problem is well-
identified with only two possible solutions and the following result shows how they can be
dissociated by adding an extra information, namely the sign of iq.

Theorem 14.1.4.

Assume ω, id and iq are constants such that ω 6= 0 and id 6= 0. Consider both solutions
(Ψ, R) and (Ψδ, Rδ) given by Theorem 14.1.3, and their associated3 (θ, idq), (θδ, idq,δ). We
have

id,δ = id

iq,δ = −iq

so that both solutions can be distinguished by the sign of their corresponding iq.
Besides, if (R̂, θ̂) is is one of the solutions

{
(R, θ), (Rδ, θδ)

}
, then the other solution is4

R̂+ 2Φω̂
︷̂︷
iq

|i|2
, θ̂ + arctan2

(
2
︷̂︷
iq
︷̂︷
id , 1− 2

︷̂︷
iq

2) .

Proof : See Appendix D.1.3. �

3idq,δ =
(

id,δ
iq,δ

)
= R(−θδ) i .

4︷̂ ︷idq =

( ︷̂︷
id︷̂︷
iq

)
= R(−θ̂)i
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We conclude that the additional information of the sign of iq makes the system observable !
If fact, the sign of iq determines the mode of use of the machine : if iq > 0, the torque is positive
and the machine acts as a motor, whereas if iq < 0, the torque is negative and the machine acts
as a generator. In other words, both solutions can be distinguished if we know the mode of use
of the motor.

This result also says that if an estimation R̂ among {R,Rδ} is available (for instance thanks
to an observer), it is possible to find the other candidate, at least when the rotation speed ω
is known or estimated. Therefore, if the sign of iq is known or if an imprecise sensor gives an
idea of θ, the right solution can be picked online. Of course, the smaller iq the more difficult
to know its sign or to choose between θ and θδ, but also the smaller the error if we choose the
wrong one...

Remark 18 In fact, from a physical point of view, those two values of R correspond to two
systems with same total energy but with different energy repartition. Indeed, the dynamics of
a PMSM in the dq-coordinates can be modeled by

L
︷̇︷
id = −Rid + ωLiq + ud

L
︷̇︷
iq = −Riq − ωLid − ωΦ + uq
ω̇ = Φiq − τ

where τ is the external torque. The total energy of the system varies along
L

2
˙︷ ︷

i2d + i2q + ω2 = −R(i2d + i2q) + i>u− τω = −R|i|2 + i>u− τω .

Thus, an equilibrium with id, iq and ω constant is such that

−R|i|2 + i>u− τω = 0 , Φiq = τ .

Now, either τ = τ0 > 0, in which case R = u>i−τ0ω
|i|2 , either τ = −τ0, and R = u>i+τ0ω

|i|2 . The
two values of R differ by 2ωτ0

|i|2 , i-e 2ωΦ|iq |
|i|2 , which is exactly what we found in our observability

analysis. We conclude that both solutions have the same total energy, but in the first one energy
is produced by the motor and lost in friction, and in the second one external energy is given to
the motor and is dissipated in the motor by a larger resistance.

We conclude from this observability analysis that System (14.2) is not observable when ω or
id remains at 0. However, when ω and id are nonzero, the number of indistinguishable trajectories
is reduced to maximum 6 : the possible values of R are the roots of a polynomial P of order
6 given by (14.6). Unfortunately, we have not been able to say more about those roots unless
ω, id and iq are constant. In that case, there are exactly two indistinguishable trajectories and
they can be distinguished with additional information on the resistance or simply the sign of iq.
In the next section, we propose an algorithm to estimate those solutions based on a Luenberger
observer.

14.2 Observer design
For λ in R∗+, we define the function

Tλ(x, x3, t) = λ2 x>x+ λ cλ(t)>x+ λx3 bλ(t)>x+ aλ(t)x3 + dλ(t)x2
3 (14.13)

on R2 × R+ × R, with aλ, bλ, cλ, and dλ the outputs of the following filters :

ȧλ = λ(−aλ + c>λ i− b>λ u) (14.14)
ḃλ = λ(−bλ + 2i) (14.15)
ċλ = λ(−cλ − 2u− 2λLi) (14.16)
ḋλ = λ(−dλ + b>λ i) . (14.17)
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We have the following result :

Lemma 14.2.1.
For any λ in R∗+, for any initial conditions in the filters (14.14)-(14.17), any solution (Ψ, R)
to System (14.1) such that y(t) = 0 for all t, and any solution Zλ to the dynamics

żλ = λ(−zλ + c>λ u− λ2L2|i|2 + λ2Φ2) (14.18)

verify
lim
t→∞

Zλ(t)− Tλ(Ψ(t), R, t) = 0 .

Proof : Straightforward computations show that t→ Tλ(Ψ(t), R, t) follows the dynamics (14.18), hence
the result. �

This means that by implementing filters (14.14)-(14.17) and (14.18) with any initial con-
ditions, one can obtain an estimate of Tλ(Ψ(t), R, t). Since our goal is to estimate (Ψ, R), we
are interested in the injectivity of the function Tλ. Theorem 7.1.2 tells us that by choosing
a sufficiently large number m of eigenvalues λi, the function T = (Tλ1 , ..., Tλm) is injective if
the system is backward-distinguishable. We have seen that when ω, id and iq are constant,
two states (Ψ, R) and (Ψδ, Rδ) are not distinguishable by the dynamics, and thus necessarily
T (Ψ(t), R, t) = T (Ψδ(t), Rδ, t) for all t. This means that it is hopeless to prove the injectivity
of T , but it may still be possible to recover the (at most 6 !) possible values of (Ψ, R).

14.2.1 An algorithm for the inversion of T

Consider three strictly positive real numbers λ1, λ2, λ3. We deduce from Lemma 14.2.1 that by
defining the function

T (x, x3, t) =

 Tλ1(x, x3, t)
Tλ2(x, x3, t)
Tλ3(x, x3, t)

 = mλ x
>x+ Λ (c(t) + x3 b(t))x+ a(t)x3 + d(t)x2

3 (14.19)

on R2 × R× R, we have
lim
t→∞

Z(t)− T (Ψ(t), R, t) = 0 ,

where we have denoted

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 , Z =

 Zλ1

Zλ2

Zλ3

 , mλ =

 λ2
1
λ2

2
λ2

3



a =

 aλ1

aλ2

aλ3

 , b =


b>λ1

b>λ2

b>λ3

 , c =


c>λ1

c>λ2

c>λ3

 , d =

 dλ1

dλ2

dλ3

 .

Thus, implementing the filters (14.14)-(14.17) and (14.18) for three values of λ gives an estimate
of T (Ψ(t), R, t), and we would like to invert T , i-e find the possible candidates (x, x3) for a given
T (x, x3, t).

To do that, we consider the matrix

Mλ =
(
λ2

2 −λ2
1 0

0 λ2
3 −λ2

2

)
which is such that

Mλmλ = 0 . (14.20)
We have the following result :
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Theorem 14.2.1.

Consider any (λ1, λ2, λ3) in (R∗+)3, any initial conditions of the filters (14.14)-(14.17) and
(14.18), and define

M(x3, t) = MλΛ
(
c(t) + x3 b(t)

)
. (14.21)

Assume the input (u, i) is bounded. Then, any solution (Ψ, R) to System (14.1) such that
there exists δ such that for all t,

y(t) = 0 ,
∣∣∣det

(
M(R, t)

)∣∣∣ ≥ δ > 0 ,

verifies
lim

t→+∞
Ψ(t)− χ(R, t) = 0 , lim

t→+∞
J(R, t) = 0

where
χ(x3, t) =M(x3, t)−1

(
Mλ Z(t)−Mλa(t)x3 −Mλd(t)x2

3

)
(14.22)

and
J(x3, t) = m>λ

(
Z(t)− T (χ(x3, t), x3, t)

)
. (14.23)

Proof : Observe that

Mλ T (x, x3, t) = MλΛ
(
c(t) + x3 b(t)

)
x+Mλa(t)x3 +Mλd(t)x2

3

is linear in x. This means that for any x3 and any t such that the matrix M(x3, t) is invertible, x is
solution of :

x =M(x3, t)−1 (Mλ T (x, x3, t)−Mλa(t)x3 −Mλd(t)x2
3
)
.

Thus, (x, x3) = (Ψ(t), R) satisfies this equation for all t and we have

|Ψ(t)− χ(R, t)| ≤
∣∣M(R, t)−1∣∣ |Mλ||Z(t)− T (Ψ(t), R, t)| .

Lemma 14.2.1 gives the result if∣∣M(R, t)−1∣∣ = 1∣∣∣det
(
M(R, t)

)∣∣∣ |M∗(R, t)|
is upper-bounded in time, where M∗(R, t) is the comatrix of M(R, t). t 7→ M∗(R, t) is a continuous
function of the coefficients of c and b which are filtered versions of the bounded input (u, i) and which
are thus bounded. Since

∣∣∣det
(
M(R, t)

)∣∣∣ is lower-bounded away from 0, the conclusion follows. �

This leads us to introduce the following algorithm :

Algorithm

Implement filters (14.14)-(14.17) and (14.18) for three strictly positive real numbers λ1, λ2,
λ3, and at any time t, find an estimate R̂ of R with

R̂(t) = Argminx3∈R+ |J(x3, t)| , (14.24)

and an estimate Ψ̂ of Ψ with
Ψ̂(t) = χ(R̂(t), t) .

In fact, χ captures the information given by T in the direction of Mλ and the remaining
information along the orthogonal direction, i-e along mλ, is used in J to determine x3.

Theorem 14.2.1 says that (Ψ̂, R̂) = (Ψ, R) should be (asymptotically) a possible solution
of this algorithm whenever M(R, t) is invertible for all t. Its implementation thus raises two
questions :
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- Is the matrix M(R, t) invertible for any t, or, more precisely, is
∣∣∣det

(
M(R, t)

)∣∣∣ lower-
bounded ?

- Is R the only solution to the minimization problem at least after a certain time ? If no,
which are the other solutions ?

Note that at each time t, the determinant of M(x3, t) is a polynomial of order 2 in x3, so
that M(x3, t) is invertible for all x3 except maybe for two values {z1(t), z2(t)}. Then, χ(x3, t)
is a two-dimensional matrix made of rational fractions in x3 with numerator of degree 3 and
denominator of degree 2, defined everywhere except at {z1(t), z2(t)}. We conclude that J(x3, t)
is a rational fraction with numerator of degree 6 and denominator of degree 4 defined everywhere
except maybe at the two roots of the determinant ofM(x3, t).

Remark 19 Since x3 is one-dimensional and we often have a fairly good idea of the interval in
which lies the true value R, the resolution of the minimization problem can easily be managed
with a one-dimensional grid, which can either be fixed around the initial guess R̂(0) or placed
at each iteration around the previously found value R̂(t). This latter option enables to follow
the slow variations of R with the temperature. Also, since R is fairly constant, it may not be
necessary to update R̂ at each iteration.

Remark 20 This algorithm necessitates the implementation of 7 filters (bλ and cλ are of dimen-
sion 2, and aλ, dλ and zλ of dimension 1) for three values of λ, namely 21 filters. An alternative
solution with only 14 filters will be given in Section 14.2.3.

14.2.2 Link with observability

The following technical lemma shows that there is a tight link between the quantities of interest
for the observer, and those encountered during the observability study above.

Lemma 14.2.2.

We have the following relations :

det
(
M(x3, t)

)
= 4λ2

2(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)︸ ︷︷ ︸
O(λ5)

det
(
η(x3, t) , η̇(x3, t)

)
+O(λ4) , (14.25)

and if (x3, t) is such thatM(x3, t) and (η(x3, t), η̇(x3, t)) are invertible(
η(x3, t)>
η̇(x3, t)>

)
(χ(x3, t)− Li) =

(
0

−|η(x3, t|2

)
+O

( 1
λ

)
(14.26)

J(x3, t) = (λ4
1 + λ4

2 + λ4
3)︸ ︷︷ ︸

O(λ4)

P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2 +O(λ3) (14.27)

with η defined in (14.7), P in (14.6), and the notation O(λk) indicates a term

f(λ1, λ2, λ3, x3, t) such that
∣∣∣∣f(αλ1, αλ2, αλ3, x3, t)

αk

∣∣∣∣ is bounded when α goes to +∞.

Proof : This is done by developing the solutions of the filters with respect to λ. See Appendix D.2.1. �

It follows that when the λi are sufficiently large,M and J are closely related to
(
η(x3, t) , η̇(x3, t)

)
and P respectively. We can thus hope to transfer the known properties of those functions toM
and J .
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About Equation (14.25)

From (14.25), we get the impression that the invertibility of M(x3, t) is related to that of(
η(x3, t) , η̇(x3, t)

)
, at least for λi sufficiently large. Actually, we have a more precise result :

Theorem 14.2.2.

Consider (λ̃1, λ̃2, λ̃3) three distinct strictly positive real numbers and assume that the inputs
(u, i) and their derivatives are bounded.

Then, for any x3 and any d such that for all t,∣∣∣det
(
η(x3, t) , η̇(x3, t)

)∣∣∣ ≥ d > 0 ,

there exists α > 0 and δ > 0 such that for any α ≥ α,∣∣∣det
(
M(x3, t)

)∣∣∣ ≥ δ
for all t when choosing

(λ1, λ2, λ3) = (αλ̃1, αλ̃2, αλ̃3) .

In particular, if there exists ω > 0 such that |ω(t)| ≥ ω for all t, there exists α > 0 and
δ > 0 such that for all α ≥ α,

∣∣∣det
(
M(R, t)

)∣∣∣ ≥ δ for all t.

Proof : See Appendix D.2.2. �

We conclude that, if ω is lower-bounded away from zero, it is possible to guarantee the
invertibility ofM(R, t) for all t by taking the λi sufficiently large. In that case, any x3 making
M(x3, t) non invertible at some time t cannot be R and can be put aside in the algorithm.

About Equation (14.26)

(14.26) implies that χ(x3, t) is solution to the same system (14.9) (at the first order of 1
λ) as

x in the observability analysis. Therefore, whenever (η(x3, t), η̇(x3, t)) is invertible, χ(x3, t)
corresponds to x in the observability analysis, and further

∣∣|χ(x3, t)− Li|2 − Φ2∣∣ corresponds to
P (x3, t), still at the first order in 1

λ . Thus, in order to find x3, one could minimize J(x3, t) =∣∣|χ(x3, t)− Li|2 − Φ2∣∣ instead of (14.23). But the injection of the input i in the criteria increases
its sensitivity to noise. Note that this option is exploited in the next section 14.2.3.

About Equation (14.27)

(14.27) implies that, for large values of λi, the criteria J(x3, t) roughly behaves like
P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2

which is also a rational fraction with numerator of degree 6 and denominator of degree 4. There-
fore, we can hope that, by choosing λi sufficiently large, one can ensure that J does not have
more roots than P , and minimizing J is closely linked to finding the roots of P . Since P is
perfectly known with Corollary 14.1.1 when ω, id and iq are constant, it is possible to state the
following result :

Theorem 14.2.3.

Let (λ̃1, λ̃2, λ̃3) be any three distinct strictly positive real numbers.

Assume the inputs (u, i) are bounded, and ω, id and iq are constant such that ω 6= 0 and
id 6= 0. Then, for any initial conditions in the filters and for any 0 < ε < 1, there exists α > 0



178 Chapter 14. Rotor position estimation with unknown resistance

such that for all α ≥ α, by choosing

(λ1, λ2, λ3) = (αλ1, αλ2, αλ3) ,

we have :

- there exists δ > 0 such that
∣∣∣det

(
M(R, t)

)∣∣∣ ≥ δ for all t.

- for all t, the only two roots of det
(
M(x3, t)

)
are complex and situated in the annulus5

C(R, rε, rε) with

rε = ωΦ
|i|

(1− ε) , rε = ωΦ
|i|

(1 + ε)

In other words,M(x3, t) is invertible and J(x3, t) is defined for all x3 in R and all t.

- for all t, J(·, t) admits in [R− rε, R+ rε]

- only one zero R̂1(t) if iq > 1−ε
2 |i| ;

- two zeros (R̂1(t), R̂2(t)) if iq < 1−ε
2 |i|.

Proof : The proof of this result relies on Rouché’s theorem. See Appendix D.2.3 �

Remark 21 Unfortunately, we cannot say anything about the number of zeros of J(·, t) outside
of [R − rε, R + rε]. Indeed, J(·, t) admits (complex) poles outside of Brε(R) (the roots of
det(M(·, t))), and Rouché’s theorem would only tell us that it admits at most 6 zeros, which we
already know.

We conclude from this study, that when |ω| is lower-bounded away from zero, the invertibility
of M(R, t) (and lower-boundedness of

∣∣∣det
(
M(R, t)

)∣∣∣) can be ensured for all t by taking the
λi sufficiently large. According to Theorem 14.2.1, this means that limt→+∞ J(R, t) = 0 and R
should appear among the minimizers of |J(·, t)| at least after a certain time.

In particular, when ω, id and iq are constant with ω 6= 0 and id 6= 0, J has only one or two
zeros in the vicinity of R. Note that (Ψ, R) and (Ψδ, Rδ) identified in Corollary (14.1.1) are
both solution to the dynamics and are both such that y(t) = 0 for all t. Therefore, Theorem
14.2.1 apply to both and we have in fact :

lim
t→+∞

J(R, t) = lim
t→+∞

J(Rδ, t) = 0 .

This means that the two zeros of J expected with Theorem 14.2.3 are likely to be R and
Rδ = R+ 2ωΦiq

|i|2 asymptotically.
In fact, although we are not able to prove it theoretically at this point, simulations seem to

indicate that P (·, t) has always only two roots, as soon as id(t) 6= 0 and ω(t) 6= 0. Therefore,
J(·, t) has, at least after a certain time, also two roots, with one converging to R. The problem
of course is that a numerical minimization of |J(·, t)| might return the "wrong" root. So, how to
detect this situation, and how to deduce the "right" root ? Here are some elements of solution :

- most of the time, an interval for the value of R is known and the minimization can be
carried out on this interval. When both roots are far apart, there might be only one in
the interval of interest.

- in the case where ω and idq are constant, Theorem 14.1.4 shows how to detect whether the
solution is the "right" one, if the sign of iq is known. It also provides the exact expression
of the other candidate, which can be computed by estimating the rotation speed, i-e ˙̂

θ.
5The annulus C(a, r0, r1) is the set of points such that r0 < |x− a| < r1.
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- even in the general case, when ω and idq are not moving too fast, the two solutions may
still be associated to two values of iq of opposite sign. Therefore, the detection may still
be possible if this sign is known. As for computing the other candidate, although the value
given by Theorem 14.1.4 is not exact, it can enable to switch the basin of attraction and
obtain the right estimate at the following iteration.

An account on the efficiency of this strategy in simulations is provided in Section 14.3.

14.2.3 Alternate observer with a reduced number of filters

Before commenting some simulations, we want to signal to the reader the existence of an observer
involving a smaller number of filters, and thus a reduced computational cost.

Indeed, the dynamics (14.18) can be rewritten as

˙︷ ︷
zλ − λ2Φ2 = λ(−(zλ − λ2Φ2) + c>λ u− λ2L2|i|2) .

Therefore, we can take

T̃λ(x, x3, t) = Tλ(x, x3, t)− λ2Φ2

= λ2(|x− Li|2 − Φ2) + λ (cλ(t) + 2λLi)>x+ λx3 bλ(t)>x+ aλ(t)x3 + dλ(t)x2
3 − λ2L2|i|2

which is such that T̃λ(Ψ, R, t) is solution of

˙̃zλ = λ(−z̃λ + c>λ u− λ2L2|i|2) . (14.28)

Besides, since (|Ψ− Li|2 − Φ2) = 0 along the solutions of interest, we can even take

T̃λ(x, x3, t) = λ (cλ(t) + 2λLi+ λx3 bλ(t))>x+ aλ(t)x3 + dλ(t)x2
3 − λ2L2|i|2

= −λµλ(x3, t)>x+ aλ(t)x3 + dλ(t)x2
3 − λ2L2|i|2

which is linear in x and we have like before :

lim
t→∞

Z̃λ(t)− T̃λ(Ψ(t), R, t) = 0 .

The drawback of this solution is that we use the measurement i directly in T̃λ and thus the
estimation may be biased by noise. However, the fact that it is already linear in x suggests that
it is sufficient to implement the filters (14.14)-(14.17) and (14.28) for only two values of λ to
obtain x as a function of x3. Then, the value of x3 can be obtained by minimizing (|x−Li|2−Φ2).

So consider two strictly positive real numbers λ1 and λ2. By defining the function

T̃ (x, x3, t) =
(
T̃λ1(x, x3, t)
T̃λ2(x, x3, t)

)
= M̃(x3, t)x+ ã(t)x3 + d̃(t)x2

3 − L2|i|2m̃λ

on R2 × R× R, we have
lim
t→∞

Z̃(t)− T̃ (Ψ(t), R, t) = 0 ,

where we have denoted

Λ̃ =
(
λ1 0
0 λ2

)
, Z̃ =

(
Z̃λ1

Z̃λ2

)
, m̃λ =

(
λ2

1
λ2

2

)

ã =
(
ãλ1

ãλ2

)
, M̃(x3, t) = −Λ̃

(
µλ1(x3, t)>

µλ2(x3, t)>

)
, d̃ =

(
d̃λ1

d̃λ2

)
.

Since x can be simply deduced from T̃ by inversion of M̃, it is natural to try the following
simple algorithm :
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Alternate algorithm

Implement filters (14.14)-(14.17) and (14.28) for two strictly positive real numbers λ1 and
λ2, and at any time t, find an estimate R̂(t) of R by

R̂(t) = Argminx3∈R+ |J̃(x3, t)| ,

where
χ̃(x3, t) = M̃(x3, t)−1

(
Z̃(t)− ã(t)x3 − d̃(t)x2

3 + L2|i|2m̃λ

)
, (14.29)

J̃(x3, t) = |χ̃(x3, t)− Li|2 − Φ2 , (14.30)

and an estimate Ψ̂(t) of Ψ(t) by
Ψ̂(t) = χ̃(R̂(t), t) .

Once again, it leads to the questions of invertibility of the matrix M̃ and uniqueness of
solutions to the minimization problem. But in the same spirit as Lemma 14.2.2, it is possible
to show that

det(M̃(x3, t)) = 4 (λ2 − λ1)︸ ︷︷ ︸
O(λ)

det
(
η(x3, t), η̇(x3, t)

)
+O(1)

(
η(x3, t)>
η̇(x3, t)>

)
(χ̃(x3, t)− Li(t)) =

(
0

−|η(x3, t)|2

)
+O

( 1
λ

)

J̃(x3, t) = P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2 +O

( 1
λ

)
,

so that the same conclusions hold.
The main advantage of this algorithm is that the filters are implemented for only two λ

(instead of three), thus reducing the dimension of the state from 21 to 14. However, the mea-
surement i is used directly in the computation of χ̃ and J̃ , which, in presence of noise, can
significantly deteriorate the invertibility of χ̃ and the estimation of R̂ and Ψ̂.

14.3 Simulations

Model and scenario. The simulations presented in this chapter are based on ideal data
produced by a general PMSM model of the type (12.5), where the input u is chosen to follow a
desired rotation speed ωR. The details of this model and of the controller is of no interest here,
as long as the produced signals are solution to our model (12.6). The speed scenario chosen to
test our observer is shown on Figure 14.1. The corresponding signals (u, i) are given in Figure
14.2. Note that at t = 3, although the speed setpoint is constant, an external torque is added,
resulting in a transient behavior in the signals. This torque then remains constant throughout
the simulation.

Observer algorithm. Choose strictly positive real numbers G and dtR, a one-dimensional
grid G of the interval [−G,G], and three distinct strictly positive real numbers λ1, λ2, λ3. We
assume the machine is used as a motor, i-e that iq is positive. The observer consists of the
following modules :

- Implementation of filters (14.14)-(14.17) and (14.18).
- Computation of

Ψ̂(t) = χ(R̂, t) ,
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Figure 14.1: Rotation speed ω = θ̇ and estimated rotation speed ω̂ = ˙̂
θ. The estimation

algorithm starts at t = 0.5.
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Figure 14.2: Currents and voltages in the rotating frame.

θ̂(t) = arg(Ψ̂(t)− Li(t)) ,

at each time t, given the current value of R̂.

- Estimation of ω̂(t) = ˙̂
θ(t) at each time t (see below).

- Update of the value of R̂ every dtR > 0 with the following algorithm :
R̂1 = Argminx3∈R̂+G |J(x3, t)|
Ψ̂1 = χ(R̂1, t)
θ̂1 = arg(Ψ̂1 − Li(t))
iq,1 =

[
− sin(θ1) , cos(θ1)

]
i(t)

if iq,1 ≥ 0 then
R̂ = R̂1

else
R̂2 = R̂1 + 2Φω̂(t)iq,1

|i(t)|2
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δ = R̂2 − R̂1
if |δ| > G then
R̂ = R̂2

else if δ > 0 then
R̂ = Argminx3∈R̂+(G∩[ δ2 ,G]) |J(x3, t)|

else
R̂ = Argminx3∈R̂+(G∩[−G, δ2 ]) |J(x3, t)|

end if
end if

In other words, the minimum of J is computed on the grid R̂+ G centered at the current
value R̂ and, if the corresponding iq is positive, this value is kept. Otherwise, we take the
other candidate given by Theorem 14.1.3, or rather, if this other value is in the grid where
J has already been computed, the true minimum of J around this value is computed. This
latter step can be removed and postponed to the next iteration, but it offers the possibility
of correcting the estimate given by Theorem 14.1.3 when ω, id and iq are not constant
and/or when ŵ is not exact.

Note that instead of starting the estimation process right away, one can wait for the filters to
reach their steady-state, i-e "forget" their initial conditions. In the simulations presented here,
we waited for 0.5s.

Estimation of ω̂ = ˙̂
θ. In order to implement the previous algorithm, ω and thus ω̂ = ˙̂

θ
needs to be estimated. This can be done in numerous ways including dirty derivatives, exact
differentiators etc. A raw dirty derivative approach would be to take :{ ˙̂

θe = ω̂e − `(θ̂e − y)
˙̂ωe = −`2(θ̂e − y)

, y = θ̂

with ` sufficiently large to compensate for the neglected ˙̂ω. But the correction (θ̂e − y) is not
a good idea because it does not vanish at 2kπ. A possible solution is to take the correction
arctan2(sin(θ̂e − y), cos(θ̂e − y)) instead, but convergence is not guaranteed.

Another idea is to consider as measurements x1 = cos(θ̂) and x̃1 = sin(θ̂) and build a high
gain observer for (x1, ẋ1, x̃1, ˙̃x1), from which ω̂ can easily be deduced. This method offers the
advantage of making no approximation on ˙̂ω, but it leads to an observer of dimension 4.

An intermediate solution is to use a reduced order observer of dimension 3 of the form :
˙̂χ = −(γ̂ − k + `2) y − `χ̂
˙̃̂χ = −(γ̂ − k + `2) ỹ − ` ˆ̃χ
˙̂γ = 2k (χ̂+ ` y) y + 2k ( ˆ̃χ+ ` ỹ) ỹ

, y = cos θ̂ , ỹ = sin θ̂

and
ω̂e = χ̂2 + ˆ̃χ2 − `2 or ω̂e = ỹ χ− ỹ χ .

It is possible to prove6 that ω̂e converges to ω̂, at least when ω̂ is constant.
This latter observer is used for the estimation of ω̂ (and thus ω) shown in Figure 14.1 with

` = 1000 and k = 500.
6Take x2 = ẋ1 = −ŵ sin θ̂, x̃2 = ˙̃x1 = ω̂ cos θ̂, χ = x2 − `x1, χ̃ = x̃2 − `x̃1 and γ = ω̂2 + kx2

1 + kx̃2
1 = ω̂2 + k.

Denoting eχ = χ̂− χ, ẽχ = ˆ̃χ− χ̃ and eγ = γ̂ − γ, we get
·︷ ︷

ke2
χ + kẽ2

χ + 1
2e

2
γ = −2k`(e2

χ + ẽ2
χ), and thus lim eχ = 0

and lim ẽχ = 0. Hence the convergence of ω̂e.
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Results The results of the simulations are presented in Figure 14.3, for two grids with ampli-
tude G = 1 and G = 0.1 respectively.

Observe that with G = 1, the algorithm finds the right value of R in two iterations only,
whereas with G = 0.1, it takes a longer time before R can appear in the grid. In fact, for a
same precision, the broader the grid, the higher the chances of R appearing in it, but the larger
the number of points and computation time, and also the higher the chances of having several
minima in the grid. In practice, one know roughly well the initial value of the resistance, so
that a grid with small amplitude can be chosen, which is then going to follow R throughout the
experiment, in the case where it evolves due to temperature.

The evolution of the criteria J during the simulation with G = 1 is shown in Figure 14.4.
One can see that the minimum is well marked around R = 1.45.

As for the estimation of θ, it naturally converges once R̂ has converged. It is interesting to
observe the peak in the error around t = 3 (which in turn appears on ω̂). This is due to the
sudden addition of a torque which destabilizes id and ω and makes them go through 0. We
have seen that in this case, observability is lost andM(R, t) is likely to be non invertible (the
assumption of Theorem 14.2.2 is no longer verified). This event is not visible on R̂ because it is
not updated at those precise moments.

14.4 Conclusion
Unlike (Ψ,Φ), the couple (Ψ, R) is not observable from the only knowledge that y(t) = 0 for
all t. However, when ω and id are non zero, there are at most six indistinguishable solutions,
the resistance being one of the roots of a polynomial of degree 6. Besides, in the particular case
where ω, id and iq are constant, the number of possible solutions is reduced to two, with two
well-identified values for the resistance. But those solutions turn out to be distinguishable if
the sign of iq (i-e the mode of use of the machine) is known. This information has enabled us
to propose an observation strategy based on a Luenberger design. It remains now to test this
observer on real data, and to understand the affect of saliency on this algorithm.

Note that in this context of non observability, it would be impossible to write the dynamics of
the observer in the original coordinates (x, x3) as recommended in Part III (the transformation
is not even injective). Interestingly, the step of inversion of the transformation via minimization
is crucial to the design because it allows to incorporate the additional information about the
sign of iq and to use a discontinuous strategy, which has no influence on the dynamics of the
observer.

As a final remark, this example strongly advocates in favor of the Luenberger methodology.
Indeed, we are not aware of any other observer construction which could work in this case. In
particular, a high gain design is out of the question for two reasons : first, it would necessarily
involve the derivatives of (u, i) which is undesirable in practice, and also, the dynamics of the
observer depend on the inverse of the transformation.
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Figure 14.3: Results of the observer algorithm with λ1 = 20, λ2 = 30, λ3 = 40, dtR = 0.1, and
two grids with amplitude G = 1 and G = 0.1 respectively. The estimation starts at t = 0.5.
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Figure 14.4: Plot of the criteria J(·, t) on the grid with G = 1 at each iteration where R̂ is
updated, i-e every dtR = 0.1.
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Appendix A

Technical lemmas

In this appendix, we give the proof to some general technical lemmas used throughout this
thesis.

A.1 About homogeneity

Lemma A.1.1.

Let η be a continuous functions defined on Rn+1 and f a continuous function defined on Rn.
Let C be a compact subset of Rn. Assume that, for all x in C and s in S(f(x)),

η(x, s) < 0 .

Then, there exists α > 0 such that for all x in C and s in S(f(x))

η(x, s) < −α .

Proof : Assume that for all k > 0, there exists xk in C and sk in S(f(xk)) ⊂ [−1, 1] such that

0 > η(xk, sk) ≥ − 1
k
.

Then, η(xk, sk) tends to 0 when k tends to infinity. Besides, there exists a subsequence (km) such that
xkm tends to x∗ in C and skm tends to s∗ in [−1, 1]. Since η is continuous, it follows that η(x∗, s∗) = 0
and we will have a contradiction if s∗ ∈ S(f(x∗)). If f(x∗) is not zero, then by continuity of f , s∗ is
equal to the sign of f(x∗), and otherwise, s∗ ∈ [−1, 1] = S(f(x∗)). Thus, s∗ ∈ S(f(x∗)) in all cases. �

Lemma A.1.2.

Let η be a function defined on Rn homogeneous with degree d and weight vector r =
(r1, ..., rn), and V a positive definite proper function defined on Rn homogeneous of degree
dV with same weight vector r. Define C = V −1({1}). If there exists α such that for all x in C

η(x) < α ,

then for all x in Rn \ {0},
η(x) < αV (x)

d
dV .

Proof : Let x in Rn \ {0}. We have x̄ = xi

V (x)
ri
dV

in C. Thus η(x̄) < α and by homogeneity

1

V (x)
d
dV

η(x) < α

which gives the required inequality. �
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Lemma A.1.3.

Let η be a homogeneous function of degree d and weight vector r defined on Rn by

η(x) = max
s∈S(f(x))

η̃(x, s)

where η̃ is a continuous function defined on Rn+1 and f a continuous function defined on
Rn. Consider a continuous function γ homogeneous with same degree and weight vector such
that, for all x in Rn \ {0} and s in S(f(x))

γ(x) ≥ 0 ,
γ(x) = 0 ⇒ η̃(x, s) < 0 .

Then, there exists k0 > 0 such that, for all x in Rn \ {0},

η(x)− k0 γ(x) < 0 .

Proof : Define the homogeneous definite positive function V (x) =
n∑
i=1

|xi|
d
ri and consider the compact

set C = V −1({1}). Assume that for all k > 0, there exists xk in C and sk in S(f(xk)) such that

η̃(xk, sk) ≥ k γ(xk) ≥ 0

η̃ is continuous, and thus bounded on the compact set C × [−1, 1]. Therefore, γ(xk) tends to 0 when k
tends to infinity. Besides, there exists a subsequence (km) such that xkm tends to x∗ in C and skm tends
to s∗ in [−1, 1]. It follows that γ(x∗) = 0 since γ is continuous. But with the same argument as in the
proof of Lemma A.1.1, we have s∗ ∈ S(f(x∗)). It yields that η̃(x∗, s∗) < 0 by assumption and we have a
contradiction.
Therefore, there exists k0 such that

η̃(x, s)− k0 γ(x) < 0

for all x in C and all s in S(f(x)). Thus, with Lemma A.1.1 there exists α > 0 such that

η̃(x, s)− k0 γ(x) ≤ −α
so that

η(x)− k0 γ(x) < 0

for any x in C. The result follows applying Lemma A.1.2. �

Lemma A.1.4.

Consider a positive bounded continuous function t 7→ c(t) and an absolutely continuous
function t 7→ ν(t) both defined on [0, t) and such that

for almost all t in [0, t) such that ν(t) ≥ c(t) then ν̇(t) ≤ −ν(t)d

with d in ]0, 1[. Then, for all t in [0, t),

ν(t) ≤ max
{

0,max{ν(0)− c(0), 0}1−d − t
}1/(1−d)

+ sup
s∈[0,t]

c(s) .

Proof : Let t be in [0, t) and ct = sups∈[0,t] c(s). For almost all s ≤ t such that ν(s) ≥ νt, ν̇(s) ≤ −ν(s)d,
and thus

˙︷ ︷
max{ν(s)− ct, 0} ≤ −ν(s)d

≤ −max{ν(s)− ct, 0}d .

This inequality is also true when ν(s) < ct, therefore it is true for almost all s ≤ t. It follows that for all
s ≤ t

max{ν(s)− ct, 0}1−d ≤ max{ν(0)− ct, 0}1−d − s

≤ max{ν(0)− c(0), 0}1−d − s ,
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i-e
max{ν(s)− ct, 0} ≤ max

{
0,
{

max{ν(0)− c(0), 0}1−d − s
}} 1

1−d

and finally, for all s ≤ t

ν(s) ≤ max
{

0,
{

max{ν(0)− c(0), 0}1−d − s
}} 1

1−d + ct.

Taking this inequality at s = t gives the required result. �

Lemma A.1.5.

For any (xa, xb) in R2, for any p ≥ 1, we have

-
∣∣∣bxae 1

p − bxbe
1
p

∣∣∣ ≤ 21− 1
p |xa − xb|

1
p

- (|xa|+ |xb|)
1
p ≤ |xa|

1
p + |xb|

1
p .

Proof : The second inequality is just the definition of the concavity of x 7→ x
1
p on R+. As for the first

one, it is enough to prove it for |xa| ≥ |xb| (otherwise exchange them) and xa non negative (otherwise
take (−xa,−xb). Besides, since it clearly holds for xb = 0, we only have to prove (for x = xa

|xb|
),

x
1
p ± 1 ≤ 21− 1

p (x± 1)
1
p ∀x ≥ 1 .

First, by concavity of x 7→ x
1
p , 1

2x
1
p + 1

2 1
1
p ≤

(
x+1

2

) 1
p which gives the required inequality for the case

"+". Besides, still by concavity of x 7→ x
1
p , we have for x ≥ 1, x−1

x
x

1
p + 1

x
0

1
p ≤

(
x−1
x
x+ 1

x
0
) 1
p and

1
x
x

1
p + x−1

x
0

1
p ≤

(
1
x
x+ x−1

x
0
) 1
p . Adding those two inequalities gives the case "−". �

A.2 About continuity

Lemma A.2.1.

Let ψ : Rn → Rq be a continuous function on a compact subset C of Rn. There exists a
concave class K function ρ such that for all (xa, xb) in C2

|ψ(xa)− ψ(xb)| ≤ ρ(|xa − xb|) .

Proof : Define the function
ρ0(s) = max

x∈C,|e|≤s
|ψ(x+ e)− ψ(x)|

which is increasing and such that ρ0(0) = 0. Let us show that it is continuous at 0. Let (sn) a
sequence converging to 0. For all n, there exists xn in C and en such that |en| ≤ sn and ρ0(sn) =
|ψ(xn + en) − ψ(xn)|. Since C is compact, there exist x∗ in C, e∗ and subsequences of (xn) and (en)
converging to x∗ and e∗ respectively. But e∗ is necessarily 0 and by continuity of ψ, ρ0(sn) tends to 0.
Now, the function, defined by the Riemann integral

ρ1(s) =

 1
s

∫ 2s

s

ρ0(s)ds+ s , s > 0

0 , s = 0

is continuous, strictly increasing and such that ρ0(s) ≤ ρ1(s). Besides, taking s̄ = max(xa,xb)∈C2 |xa−xb|,
there exists a concave class K function ρ such that for all s in [0, s̄], ρ1(s) ≤ ρ(s) (see [McS34] for instance).
Finally, we have :

|ψ(xa)− ψ(xb)| ≤ ρ(|xa − xb|) ∀(xa, xb) ∈ C2 .

�
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Lemma A.2.2.

Consider a function ψ : Rn → R. Assume that there exist a compact set C of Rn and a
function ρ of class K such that for all (xa, xb) in C2

|ψ(xa)− ψ(xb)| ≤ ρ(|xa − xb|) .

Define the function ψ̂ : Rn → [−ψ,ψ] by1

ψ̂(z) = sat
ψ

(ψ(z))

with ψ = max
z∈C

ψ(z). Then, for any compact subset C̃ strictly contained2in C, there exists a

positive real number c such that for all (xa, xb) in Rn × C̃,

|ψ̂(xa)− ψ̂(xb)| ≤ cρ(|xa − xb|) (A.1)

Proof : Since C strictly contains C̃, we have :

δ = inf
(xa,xb)∈(Rn\C)×C̃

|xa − xb| > 0 .

First, for xb in C̃, ψ̂(xb) = ψ(xb). Now, if xa is in C, then we have ψ̂(xa) = ψ(xa) and consequently
(A.1) holds for c ≥ 1. If xa /∈ C, we have, for all xb in C̃,

|xa − xb| ≥ δ ,

|ψ̂(xa)− ψ̂(xb)| ≤ 2ψ ≤ 2ψ ρ(|xa−xb|)
ρ(δ) ,

and (A.1) holds for c ≥ 2ψ
ρ(δ) . �

A.3 About injectivity
In this appendix, we consider two continuous functions Ψ : Rn → Rr and γ : Rn → Rq and a
subset S of Rn such that

Ψ(xa) = Ψ(xb) ∀(xa, xb) ∈ S2 : γ(xa) = γ(xb) . (A.2)

In the particular case where Ψ is the identity function, (A.2) characterizes the injectivity of γ.

Lemma A.3.1.

There exists a function ψ defined on γ(S) such that

Ψ(x) = ψ(γ(x)) ∀x ∈ S . (A.3)

Proof : Define the map ψ on γ(S) as

ψ(z) =
⋃
x∈S

γ(x)=z

{Ψ(x)} .

For any z in γ(S), the set ψ(z) is non-empty and single-valued because according to (A.2), if z = γ(xa) =
γ(xb), then Ψ(xa) = Ψ(xb). Therefore, we can consider ψ as a function defined on γ(S) and it verifies
(A.3). �

1The saturation function satM (·) is defined by satM (x) = max{min{x,M},−M}
2By strictly contained, we mean that C̃ ⊂ C and the distance between C̃ and the complement of C, namely

Rn \ C, is strictly positive.
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Lemma A.3.2.

Consider any compact subset C of S. There exists a concave class K function ρ such that
for all (xa, xb) in C2

|Ψ(xa)−Ψ(xb)| ≤ ρ (|γ(xa)− γ(xb)|) . (A.4)

Proof : We denote D(xa, xb) = |γ(xa)− γ(xb)|. Let

ρ0(s) = max
(xa, xb) ∈ C2

D(xa, xb) ≤ s

|Ψ(xa)−Ψ(xb)|

This defines properly a non decreasing function with non negative values which satisfies :

|Ψ(xa)−Ψ(xb)| ≤ ρ0(D(xa, xb)) ∀(xa, xb) ∈ C2 .

Also ρ0(0) = 0. Indeed if not there would exist (xa, xb) in C2 satisfying :

D(xa, xb) = 0 , |Ψ(xa)−Ψ(xb)| > 0 .

But this contradicts Equation (A.2).
Moreover, it can be shown that this function is also continuous at s = 0. Indeed, let (sk)k∈N be a
sequence converging to 0. For each k, there exist (xa,k, xb,k) in C2 which satisfies D(xa,k, xb,k) ≤ sk
and ρ0(sk) = |Ψ(xa,k) − Ψ(xb,k)|. The sequence (xa,k, xb,k)k∈N being in a compact set, it admits an
accumulation point (x∗a, x∗b) which, because of the continuity of D must satisfy D(x∗a, x∗b) = 0 and
therefore with (A.2) also Ψ(x∗a)−Ψ(x∗b) = 0 . It follows that ρ0(sk) tends to 0 and ρ0 is continuous at
0. Proceeding with the same regularization of ρ0 as in the proof of Lemma A.2.1, the conclusion follows.
�

Lemma A.3.3.

Consider any compact subset C of S. There exists a uniformly continuous function ψ defined
on Rq such that

Ψ(x) = ψ(γ(x)) ∀x ∈ C .

Proof : Consider ψ and ρ given by Lemmas A.3.1 and A.3.2 respectively. For any (za, zb) in γ(C)2,
there exists (xa, xb) in C2 such that za = γ(xa) and zb = γ(xb). Applying (A.4) to (xa, xb) and using
(A.3), we have

|ψ(za)− ψ(zb)| ≤ ρ(|za − zb|) .
ρ being concave, we deduce from [McS34, Theorem 2] (applied to each of the r real-valued components
of ψ) that ψ admits a uniformly continuous extension defined on Rq. Note that the extension of each
component preserves the modulus of continuity ρ, so that the global extension has a modulus of continuity
equal to cρ for some c > 0 depending only on the choice of the norm on Rr. �

When q ≤ n and γ is full-rank on C, the function ψ is even C1:

Lemma A.3.4.

Assume that q ≤ n and ∂γ

∂x
is full-rank on S, namely γ is a submersion on S. Then, γ(S) is

open and there exists a C1 function ψ defined on γ(S) such that

Ψ(x) = ψ(γ(x)) ∀x ∈ S .

Proof : γ is an open map according to [Lee13, Proposition 4.28], thus γ(S) is open. Consider the
function ψ given by Lemma A.3.1 and take any z∗ in γ(S). There exists x∗ in S such that z∗ = γ(x∗).
γ being full-rank at x∗, according to the constant rank theorem, there exists an open neighborhood V
of x∗ and C1 diffeomorphisms ψ1 : Rn → V and ψ2 : Rq → γ(V) such that for all x̃ in Rn:

γ(ψ1(x̃)) = ψ2(x̃1, . . . , x̃q) .

It follows that for all z in γ(V)
γ(ψ1(ψ−1

2 (z), 0)) = z

namely γ admits a C1 right-inverse γri defined on γ(V) which is an open neighborhood of z∗. Therefore,
ψ = Ψ ◦ γri and ψ is C1 at z∗. �
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A direct consequence from those results is that any continuous function γ : Rn → Rq injective
on a compact set C admits a uniformly continuous left-inverse ψ defined on Rq (take Ψ = Id).
The previous lemma does not apply because γ cannot be a submersion. However, we will show
now that when γ is full-rank (i-e an immersion), this left-inverse can be taken Lipschitz on Rq.

Due to needs in Chapters 5 or 7, we generalize those results to the case where the function
γ depends on another parameter w evolving in a compact set:

Lemma A.3.5.

Let γ : Rn × Rp → Rq be a continuous function and compact sets Cx and Cw of Rn and Rp
respectively such that for all w in Cw, x 7→ γ(x,w) is injective on Cx.

Then, there exist a concave class K function ρ, such that for all (xa, xb) in C2
x and all w

in Cw,
|xa − xb| ≤ ρ(|γ(xa, w)− γ(xb, w)|) ,

and a function ψ defined on Rq × Rp and a strictly positive number c such that

x = ψ(γ(x,w), w) ∀(x,w) ∈ Cx × Cw

and
|ψ(za, w)− ψ(zb, w)| ≤ cρ(|za − zb|)

i-e z 7→ ψ(z, w) is uniformly continuous on Rq, uniformly in w.
If besides for all w in Cw, x 7→ γ(x,w) is an immersion on Cx , i-e for all w in Cw, and all

x in Cx,
∂γ

∂x
(x,w) is full-rank, then ρ is linear and z 7→ ψ(z, w) is Lipschitz on Rq, uniformly

in w.

Proof : The proof of the existence of ρ follows exactly that of Lemma A.3.2, but adding in the max
defining ρ0, w ∈ Cw. Since it is a compact set, ρ is well defined and the same ρ can then be used for
any w in Cw. Applying Lemma A.3.3 to every x 7→ γ(x,w) gives the result since it is shown there that
the extensions admit all the same modulus of continuity cρ for some c > 0 depending only on the norm
chosen on Rr.

Now suppose that x 7→ γ(x,w) is full-rank for all w in Cw. Let ∆ be the function defined on Cx×Cx×Cw
by

∆(xa, xb, w) = γ(xa, w)− γ(xb, w)− ∂γ

∂x
(xb, w)(xa − xb) .

Since ∂γ
∂x

(x,w) is full-rank by assumption, the function

P (x,w) =
(
∂γ

∂x
(x,w)> ∂γ

∂x
(x,w)

)−1 ∂γ

∂x
(x,w)>

is well-defined and continuous on Cx × Cw, and for any (xa, xb, w) in Cx × Cx × Cw, we have

|xa − xb| ≤ Pm(|γ(xa, w)− γ(xb, w|+ |∆(xa, xb, w)|)

with Pm = maxCx×Cw |P (x,w)|. Besides, the function |∆(xa,xb,w)|
|xa−xb|2

is defined and continuous on Cx×Cx×
Cw, thus there exists L∆ > 0 such that

|∆(xa, xb, w)| ≤ L∆|xa − xb|2 ≤
1

2Pm
|xa − xb|

for any (xa, xb) in C2
x such that |xa − xb| ≤ 2r with r = 1

4PmL∆
, and for any w in Cw. Now, define the

set
Ω = {(xa, xb) ∈ C2

x | |xa − xb| ≥ 2r}

which is a closed subset of the compact set C2
x and therefore compact. The function (xa, xb, w) 7→

|xa−xb|
|γ(xa,w)−γ(xb,w)| is defined and continuous on Ω× Cw since γ(·, w) is injective for any w in Cw. Thus, it
admits a maximum M on the compact set Ω× Cw.

Finally, take any (xa, xb) in C2
x and any w in Cw. There are two cases :
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-either (xa, xb) /∈ Ω, i-e |xa − xb| < 2r, and

|xa − xb| ≤
Pm
2 |γ(xa, w)− γ(xb, w)| .

-or (xa, xb) ∈ Ω, and
|xa − xb| ≤M |γ(xa, w)− γ(xb, w)| .

We conclude that ρ can be chosen linear with rate L = max{Pm2 ,M}. �





Appendix B

Proofs of Chapter 10

B.1 Proof of Lemma 10.1.1

The compact K0 being globally asymptotically attractive and interior to E which is forward
invariant, E is globally attractive. It is also stable due to the continuity of solutions with
respect to initial conditions uniformly on compact time subsets of the domain of definition. So
it is globally asymptotically stable. It follows from [Wil69, Theorem 3.2] that there exist C∞
functions VK : Rm → R≥0 and VE : Rm → R≥0 which are proper on Rm and a class K∞ function
α satisfying

α(d(z,K0)) ≤ VK(z) , α(d(z, E)) ≤ VE(z) ∀ z ∈ Rm ,

VK(z) = 0 ∀z ∈ K0 , VE(z) = 0 ∀ z ∈ E ,

∂VK
∂z

(z)χ(z) ≤ −VK(z) , ∂VE
∂z

(z)χ(z) ≤ −VE(z) ∀ z ∈ Rm .

With d an arbitrary strictly positive real number, the notations

vE = sup
z∈Rm: d(z,E)≤d

VK(z) , µ = α(d)
2vE

,

and since α is of class K∞, we obtain the implications

VE(z)+µVK(z)=α(d) ⇒ α(d(z, E))≤VE(z)≤α(d)
⇒ d(z, E) ≤ d ⇒ VK(z) ≤ vE .

With our definition of µ, this yields also

α(d)− µVK(z) = VE(z) ⇒ 0 <
α(d)

2 ≤ VE(z) ⇒ 0 < d(z, E) ≤ d .

On the other hand, with the compact notation V(z) = VE(z) + µVK(z), we have ∂V
∂z (z)χ(z) ≤

−V(z), for all z ∈ Rm. All this implies that the sublevel set E = {z ∈ Rm : V(z) < α(d)} is
contained in {z ∈ Rm : d(z, E) ∈ [0, d]} and that cl(E) is contained in E . Besides, E verifies
property C with the vector field χ and the function κ = V − α(d).

B.2 Proof of Lemma 10.2.1

We use the following notations:
The complementary, closure and boundary of a set S are denoted Sc, cl(S) and ∂S, respectively.
The Hausdorff distance dH between two sets A and B is defined by :
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dH(A,B) = max
{

sup
zA∈A

inf
zB∈B

|zA − zB| , sup
z∈A

inf
zB∈B

|zA − zB|
}
.

Z(z, t) denotes the (unique) solution, at time t, to ż = χ(z) going trough z at time 0 and
Σε =

⋃
t∈[0,ε]

Z(∂E, t).

Lemma B.2.1 Let E be an open strict subset of Rm verifying C, with a Cs vector field χ and
a Cs mapping κ. There exists a strictly positive (maybe infinite) real number ε∞ such that, for
any ε in [0, ε∞[, there exists a Cs-diffeomorphism φ: Rm → E, such that

φ(z) = z ∀z ∈ Eε = E ∩ (Σε)c , dH(∂Eε, ∂E) ≤ ε sup
z
|χ(z)| .

Proof : According to Condition C, χ is bounded and K0 is a compact subset of the open set E. It
follows that there exists a strictly positive (maybe infinite) real number ε∞ such that

Z(z, t) 6∈ K0 ∀(z, t) ∈ ∂E × [0, 2ε∞[ .

In the following ε is a real number in [0, ε∞[.
We introduce the notations

Σ2ε =
⋃

t∈[0,2ε]

Z(∂E, t) , E2ε = E ∩ (Σ2ε)c

and establish some properties.
– E is forward invariant for χ. This is a direct consequence of points C.1 and C.3.
– Σ2ε is closed. Take a sequence (zk) of points in Σ2ε converging to z∗. By definition of Σ2ε, there exists
a sequence (tk), such that :

tk ∈ [0, 2ε] and Z(zk,−tk) ∈ ∂E ∀k ∈ N .

Since [0, 2ε] is compact, one can extract a subsequence (tσ(k)) converging to t∗ in [0, 2ε], and by continuity
of the function (z, t) 7→ Z(z,−t), (Z(zσ(k), tσ(k))) tends to Z(z∗,−t∗) which is in ∂E, since ∂E is closed.
Finally, because t∗ is in [0, 2ε], z∗ is in Σ2ε by definition.
– Σ2ε is contained in cl(E). Since, E is forward invariant for χ, and so is cl(E) (see [Hah67, Theorem
16.3]). This implies

∂E ⊂ Σ2ε =
⋃

t∈[0,2ε]

Z(∂E, t) ⊂ cl(E) = E ∪ ∂E .

At this point, it is useful to note that, because Σ2ε is a closed subset of cl(E) and E is open, we have
Σ2ε ∩ E = Σ2ε\∂E. This implies :

E\E2ε = (E2ε)c ∩ E = (Ec ∪ Σ2ε) ∩ E = Σ2ε ∩ E = Σ2ε\∂E, (B.1)

and E = E2ε ∪6= (Σ2ε\∂E).
With all these properties at hand, we define now two functions t and θ. The assumptions of global
attractiveness of the closed set K0 contained in E open, of transversality of χ to ∂E, and the property
of forward-invariance of E, imply that, for all z in Ec, there exists a unique non negative real number
t(z) satisfying:

κ (Z(z, t(z))) = 0 ⇐⇒ Z(z, t(z)) ∈ ∂E.

The same arguments in reverse time allow us to see that, for all z in Σ2ε, t(z) exists, is unique and in
[−2ε, 0]. This way, the function z → t(z) is defined on (E2ε)c. Next, for all z in (E2ε)c, we define :

θ(z) = Z(z, t(z)).

Thanks to the transversality assumption, the Implicit Function Theorem implies the functions z 7→ t(z)
and z 7→ θ(z) are Cs on (E2ε)c.
Now we evaluate t(z) for z in ∂Σ2ε. Let z be arbitrary in ∂Σ2ε and therefore in Σ2ε which is closed.
Assume its corresponding t(z) is in ]−2εÃŁ, 0[. The Implicit Function Theorem shows that z 7→ t(z) and
z 7→ θ(z) are defined and continuous on a neighborhood of z. Therefore, there exists a strictly positive
real number r satisfying

∀y ∈ Br(z) , ∃ty ∈]− 2ε, 0[ : Z(y, ty) ∈ ∂E .
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This implies that the neighborhood Br(z) of z is contained in Σ2ε, in contradiction with the fact that z
is on the boundary of Σ2ε. This shows that, for all z in ∂Σ2ε, t(z) is either 0 or −2ε. We write this as

(∂Σ2ε)i = {z ∈ Σ2ε : t(z) = −2ε} , ∂Σ2ε = ∂E ∪ (∂Σ2ε)i .

Now we want to prove ∂E2ε ⊂ (∂Σ2ε)i. To obtain this result, we start by showing :

∂E2ε ∩ ∂E = ∅ and ∂E2ε ⊂ ∂Σ2ε . (B.2)

Suppose the existence of z in ∂E2ε ∩ ∂E. z being in ∂E, its corresponding t(z) is 0. By the Implicit
Function Theorem, there exists a strictly positive real number r such that,

∀y ∈ Br(z) , ∃ty ∈ ]−ε, ε[ : Z(y, ty) ∈ ∂E .

But, by definition, any y, for which there exists ty in ]− ε, 0], is in Σ2ε. If instead ty is strictly positive,
then necessarily y is in Ec, because E is forward-invariant for χ and a solution starting in E cannot reach
∂E in positive finite time. We have obtained : Br(z) ⊂ Σ2ε ∪Ec = (E2ε)c. Br(z) being a neighborhood
of z, this contradicts the fact that z is in the boundary of E2ε.
At this point, we have proved that ∂E2ε ∩ ∂E = ∅, and, because E2ε is contained in E, this implies
∂E2ε ⊂ E. With this, (B.2) will be established by proving that we have ∂E2ε ⊂ ∂Σ2ε. Let z be arbitrary
in ∂E2ε and therefore in E which is open. There exists a strictly positive real number r such that we
have :

∅ 6= Br(z) ∩ E2ε = Br(z) ∩ (E ∩ (Σ2ε)c) , ∅ 6= Br(z) ∩ (E2ε)c =
Br(z) ∩ (Ec ∪ Σ2ε) , Br(z) ⊂ E .

This implies Br(z) ∩ (Σ2ε)c 6= ∅ and Br(z) ∩ Σ2ε 6= ∅ and therefore that z is in ∂Σ2ε.
We have established ∂E2ε ∩ ∂E = ∅, ∂E2ε ⊂ ∂Σ2ε and ∂Σ2ε = ∂E ∪ (∂Σ2ε)i. This does imply :

∂E2ε ⊂ (∂Σ2ε)i = {z ∈ E : t(z) = −2ε} . (B.3)

This allows us to extend by continuity the definition of t to Rm by letting

t(z) = −2ε ∀z ∈ E2ε .

All the properties we have established for Σ2ε and E2ε hold also for Σε and Eε. In particular, we have

t(z) ∈ [−2ε,−ε] ∀z ∈ Eε \ E2ε . (B.4)

Thanks to all these preparatory steps, we are finally ready to define a function φ : Rm → E. Let
ν : R→ R be a function such that the function t 7→ ν(t)− t is a Cs (decreasing) diffeomorphism from R
onto ]0,+∞[ mapping [−ε,+∞[ onto ]0, ε] and being “minus” identity between ]−∞,−ε] and [ε,+∞[,
i.e.

ν(t)− t = −t ∀t ≤ −ε .

We have

ν(t) > t ∀t ∈ R , ν(t(z)) = 0 ∀z ∈ Eε \ E2ε . (B.5)
We let :

φ(z) =
{

Z (z, ν(t(z))) , if z ∈ (E2ε)c ,

z, if z ∈ E2ε .

The image of φ is contained in E since we have (B.5), E2ε ⊂ E and :

Z(z, t(z)) ∈ ∂E , Z(z, t) ∈ E ∀(z, t) ∈ ∂E × R>0 .

Like the functions Z, ν, and t, the function φ is Cs on the interior of (E2ε)c. Also, since (B.5) implies

φ(z) = z ∀z ∈ Eε \ E2ε , (B.6)

φ is trivially Cs on Eε and therefore on (E2ε)c ∪ Eε = Rm.
We now show that φ is invertible. Because of (B.6), this is trivial on Eε. Let y be arbitrary in
E ∩ (E2ε)c = E ∩ Σ2ε. To y corresponds t(y) in the interval [−2ε, 0[. Thus, −t(y) is in ]0, 2ε], image of
[−2ε,+∞[ by the Cs diffeomorphism t 7→ ν(t)− t. Hence there exists s(y) in [−2ε,+∞[ satisfying

ν(s(y)) − s(y) = −t(y) . (B.7)

Moreover, (B.4) implies that for y in Eε \ E2ε subset of E ∩ (E2ε)c, we have

s(y) = t(y)
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So with letting
s(y) = t(y) = −2ε ∀y ∈ E2ε

we have defined a function s : E → [−2ε,+∞[, which thanks to the implicit function theorem, is Cs and
satisfies (B.7).
This allows us to define properly φ−1 : Rm → E as :

φ−1(y) = Z (y,−ν(s(y))) .

By composition, this function is Cs and it is an inverse of φ in particular because, with (B.7), we have

t(Z(y,−ν(s(y)))) = t(Z(y, t(y)− s(y))) = s(y) ∀y ∈ E .

This gives

φ(Z(y,−ν(s(y))) = Z(Z(y,−ν(s(y))), ν(t(Z(y,−ν(s(y)))))) = Z(Z(y,−ν(s(y))), ν(s(y))) = y

All this implies φ is a Cs-diffeomorphism from Rm to E.
Finally, we note that, for any point zε in ∂Eε, there exists a point z in ∂E satisfying :

|zε − z| =
∣∣∣∣∫ ε

0
χ(Z(z, s))ds

∣∣∣∣ ≤ ε sup
ζ

|χ(ζ)| .

And conversely, for any z in ∂E, there exist zε in ∂Eε satisfying :

|zε − z| =
∣∣∣∣∫ ε

0
χ(Z(z, s))ds

∣∣∣∣ ≤ ε sup
ζ

|χ(ζ)| .

It follows that, with ε as small as needed,

dH(∂Eε, ∂E) ≤ ε sup
ζ

|χ(ζ)| (B.8) �

Lemma 10.2.1 is a direct consequence of Lemma B.2.1 if we pick ε∞, maybe infinite, satisfying

Z(z, t) 6∈ K ∀(z, t) ∈ ∂E × [0, 2ε∞[ .

ε∞ can be chosen strictly positive since d(K, ∂E) is non zero and χ is bounded.

B.3 Proof of case b) of Theorem 10.1.1
To complete the proof of Theorem 10.1.1, we use another technical result.

Lemma B.3.1 (Diffeomorphism extension from a ball) Consider a C2 diffeomorphism λ :
BR(0)→ λ(BR(0)) ⊂ Rm, with R a strictly positive real number. For any real number ε in ]0, 1[,
there exists a diffeomorphism λe : Rm → Rm satisfying

λe(z) = λ(z) ∀z ∈ cl(B R
1+ε

(0)) .

Proof : It sufficient to prove that [Hir76, Theorem 8.1.4] applies. We let

U = B R
1+ ε

2
(0) , A = cl(B R

1+ε
(0)) , I =

]
− ε2 , 1 + ε

2

[
,

and, without loss of generality we may assume that λ(0) = 0.
Then, consider the function F : U × I → Rm defined as

F (z, t) =
(
∂λ

∂z
(0)
)−1 λ(zt)

t
, ∀t ∈ I \ {0} , F (z, 0) = z .

We start by showing that F is an isotopy of U .
• For any t in I, the function z 7→ Ft = F (z, t) is an embedding from U onto Ft(U) ⊂ Rm. Indeed,

for any pair (za, zb) in U2 satisfying F (za, t) = F (zb, t), we obtain λ(zat) = λ(zbt) where (zat, zbt) is
in U2. The function λ being injective on this set, we have za = zb which establishes Ft is injective.
Moreover, we have:

∂Ft
∂z

(z) =
(
∂λ

∂z
(0)
)−1 ∂λ

∂z
(zt) ∀t ∈ I \ {0} ,

∂F0

∂z
(z) = Id.

Hence, Ft is full rank on U and therefore an embedding.
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• For all z in U , the function t 7→ F (z, t) is C1. This follows directly from the fact that, the function
λ being C2, and λ(0) = 0, we have

λ(zt)
t

= ∂λ

∂z
(0)z + z′

(
∂2λ

∂z∂z
(0)
)
z
t

2 + ◦(t) .

In particular, we obtain ∂F
∂t

(z, t) =
(
∂λ
∂z

(0)
)−1

ρ(z, t) where

ρ(z, t) = 1
t2

[
∂λ

∂z
(zt)zt− λ(zt)

]
∀t ∈ I \ {0} , ρ(z, 0) = 1

2z
′
(
∂2λ

∂z∂z
(0)
)
z .

Moreover, for all t in I, the function z 7→ ∂F
∂t

(z, t) is locally Lipschitz and therefore gives rise to an
ordinary differential equation with unique solutions.
Also the set

⋃
(z,t)∈U×I{(F (z, t), t)} is open. This follows from Brouwer’s Invariance theorem since the

function (z, t) 7→ (F (z, t), t) is a diffeomorphism on the open set U × I. With [Hir76, Theorem 8.1.4],
we know there exists a diffeotopy Fe from Rm × I onto Rm which satisfies Fe = F on A× [0, 1]. Thus,
the diffeomorphism λe = Fe(., 1) defined on Rm onto Rm verifies λe(z) = Fe(z, 1) = F (z, 1) = λ(z) for
all z ∈ A. �

We now place ourselves in the case b) of Theorem 10.1.1, namely we suppose that τ∗a is C2

and S is C2-diffeomorphic to Rm. Let φ1 : S → Rm denote the corresponding diffeomorphism.
Let R1 be a strictly positive real number such that the open ball BR1(0) contains φ1(K). Let R2
be a real number strictly larger than R1. With Lemma 10.2.1 again, and since BR2(0) verifies
property C, there exists of C2-diffeomorphism φ2 : Rm → BR2(0) satisfying φ2(z) = z for all z in
BR1(0). At this point, we have obtained a C2-diffeomorphism φ = φ2◦φ1 : S → BR2(0). Consider
λ = τ∗a ◦ φ−1 : BR2(0) → τ∗a (S) (= λ(BR2(0))). According to Lemma B.3.1, we can extend λ
to λe : Rm → Rm such that λe = τ∗a ◦ φ−1 on BR1(0). Finally, consider τ∗e = λe ◦ φ1 : S → Rm.
Since, by construction of φ2, φ = φ1 on φ−1

1 (BR1(0)) which contains K, we have τ∗e = τ∗a on K.





Appendix C

Proof of Theorem 13.1.1

In this appendix, we prove that Theorem 13.1.1, namely that System (13.2) is an observer
for System (13.1). We have seen that to do so, it is enough to show that

Lemma C.0.2.

Consider a strictly positive real number Φ and a function ω : [0,+∞) → R such that there
exists ω0 > 0, ω0 > 0 and ω1 > 0 such that for all t in [0,+∞)

ω0 ≤ ω(t) ≤ ω0 , ω̇(t) ≤ ω1 .

Then, (Φ, 0,Φ) is an asymptotically stable equilibrum point of the dynamics
˙̂
Xd = ωX̂q − 2qX̂d

(
X̂2
d + X̂2

q − Φ̂2
)

˙̂
Xq = −ωX̂d + ωΦ− 2qX̂q

(
X̂2
d + X̂2

q − Φ̂2
)

˙̂Φ = q Φ̂
(
X̂2
d + X̂2

q − Φ̂2
) (C.1)

with basin of attraction containing the forward invariant set Ω = R2 × (0,+∞) .

C.1 Lyapunov function

Our first step for the convergence analysis is to look for a Lyapunov function. To facilitate
this task, we do another change of coordinates aiming at getting the dynamics in a triangular
form, the so-called feedback form. Our motivation is that for this specific form, we have the
backstepping methodology allowing us in particular to build Lyapunov functions. This task is
easily achieved after noticing that we have, Φ̂ being non zero when the solution is in Ω,

˙̂
Xd + 2qX̂d

˙̂Φ
Φ̂

= ωX̂q

˙̂
Xq + 2qX̂q

˙̂Φ
Φ̂

= −ωX̂d + ωΦ

and therefore

˙︷ ︷
X̂dΦ̂

2 = ωX̂qΦ̂2

˙︷ ︷
X̂qΦ̂

2 = −ωX̂dΦ̂2 + ωΦ̂2Φ
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This leads us to the second set of coordinates

x̂1 = X̂dΦ̂2

x̂2 = X̂qΦ̂2

x̂3 = Φ̂4 .

As desired, the dynamics take the following feedback form

˙̂x1 = ωx̂2
˙̂x2 = −ωx̂1 + ωΦ

√
x̂3

˙̂x3 = −4q
(
x̂

3
2
3 − (x̂2

1 + x̂2
2)
)

which we can write compactly as :

˙̂x12 = f12(x̂12, x̂3)
˙̂x3 = −4q

(
x̂

3
2
3 − (x̂2

1 + x̂2
2)
)

with x̂12 = (x̂1, x̂2). Now, a necessary condition to have a Lyapunov function V such that

∂V

∂x̂12
(x̂12, x̂3)f12(x̂12, x̂3)− 4q ∂V

∂x̂3
(x̂12, x̂3)

(
x̂

3
2
3 − (x̂2

1 + x̂2
2)
)
≤ 0

is to have (just pick x̂
3
2
3 = x̂2

1 + x̂2
2)

∂V

∂x̂12
(x̂12, (x̂2

1 + x̂2
2)

2
3 )f12(x̂12, (x̂2

1 + x̂2
2)

2
3 )) ≤ 0 .

This suggests to find first a Lyapunov function for the system

˙̂x1 = ωx̂2
˙̂x2 = −ωx̂1 + ωΦ(x̂2

1 + x̂2
2)

1
3 .

The latter system admits periodic orbits which are level sets of

V1(x̂1, x̂2) = 3
4(x̂2

1 + x̂2
2)2/3 − Φx̂1 + Φ4

4

which is positive, 0 only at (x̂1, x̂2) = (Φ3, 0) and proper in (x̂1, x̂2).
Then, inspired by the backstepping methodology (see [PdNC91]), we look for a Lyapunov

function in the form
V (x̂) = V1(x̂1, x̂2) + V2(x̂3, r)

with
V2(x̂3, r) =

∫ x̂3

r2/3
ϕ(s, r)ds , r = x̂2

1 + x̂2
2

where ϕ is a C1 function satisfying

ϕ(x̂3, r)
(
x̂

3
2
3 − r

)
> 0 ∀r 6= x̂

3
2
3 . (C.2)

Along the solutions, we obtain

V̇ = ∂V1
∂x̂12

(x̂12, x̂3)f12(x̂12, x̂3)− 4q∂V2
∂x̂3

(x̂3, r)
(
x̂

3
2
3 − r

)
+ ∂V2

∂r
(x̂3, r)2Φωx̂2

√
x̂3

= Φωx̂2

(√
x̂3

r1/3 − 1
)

+
[∫ x̂3

r2/3

∂ϕ

∂r
(s, r)ds

]
2Φωx̂2

√
x̂3 − 4qϕ(x̂3, r)

(
x̂

3
2
3 − r

)
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In view of (C.2), V̇ is non positive if we select the function ϕ satisfying (C.2) and[∫ x̂3

r2/3

∂ϕ

∂r
(s, r)ds

]
2Φωx̂2

√
x̂3 = −Φωx̂2

(√
x̂3

r1/3 − 1
)

and thus [∫ x̂3

r2/3

∂ϕ

∂r
(s, r)ds

]
= 1

2

( 1√
x̂3
− 1
r1/3

)
.

It is necessary to have
∂ϕ

∂r
(x̂3, r) = −1

4
1
x̂

3/2
3

and finally

ϕ(x̂3, r) = 1
4

[
1− r

x̂
3/2
3

]
.

This gives us

V2(x̂3, r) = 1
4

[
x̂3 − r2/3 + 2

(
r

x̂
1/2
3
− r2/3

)]
and

V = V1 + V2 = 1
4 x̂3 + 1

2
r√
x̂3
− Φx1 + Φ4

4 .

Since for any r, the function ϕ(·, r) is strictly positive for x̂3 > r2/3 and strictly negative for
x̂3 < r2/3, V2(·, r) is positive and V2(x̂3, r) = 0⇔ x̂3 = r2/3. We deduce that V is positive and

V = 0⇔ V1 = 0 and V2 = 0⇔ (x̂1, x̂2) = (Φ3, 0) and x̂3 = r2/3 ⇔ (x̂1, x̂2, x̂3) = (Φ3, 0,Φ4) .

In the original coordinates, the expression of V is

V (X̂d, X̂q, Φ̂) = Φ̂4

4 + 1
2Φ̂2(X̂2

d + X̂2
q )− ΦΦ̂2X̂d + Φ4

4 .

For any (X̂q, Φ̂), X̂d 7→ (X̂2
d + X̂2

q − 2ΦX̂d) reaches its minimum for X̂d = Φ. Thus,

V ≥ 1
2Φ̂2X̂2

q + 1
4(Φ̂2 − Φ2)2 ≥ 0

and V vanishes only at the equilibrium. It satisfies

V̇ = −q Φ̂2(Φ̂2 − (X̂2
d + X̂2

q ))2 ≤ 0 . (C.3)

C.2 Analysis of convergence
Consider a solution (X̂q(t), X̂d(t), Φ̂(t)) maximally defined on [0, t[ in Ω. Because of (C.3), V is
bounded on [0, t[ when evaluated along the solution. V being proper in Φ̂, Φ̂ is also bounded on
[0, t[, let’s say by Φm. Besides,

˙︷ ︷
X̂

2
d + X̂

2
q = −4q(X̂2

d + X̂2
q )(X̂2

d + X̂2
q − Φ̂2) + 2ωΦXq

≤ −4q(X̂2
d + X̂2

q )2 + 4qΦ2
m(X̂2

d + X̂2
q ) + 2ω0Φ

√
X̂2
d + X̂2

q .

The negative term dominates for large values of (X̂2
d + X̂2

q ), which implies that (X̂d, X̂q) is also
bounded on [0, t[.
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Now assume that t is finite. Since the solution is bounded, it tends to the boundary of Ω
when t tends to t, i-e Φ̂ tends to 0 (in finite time). But this is impossible, because of uniqueness
of solution, knowing that Φ̂ = 0 is a solution. Therefore t is infinite and any solution is defined
on [0,+∞). Let us now show that it converges to (Φ, 0,Φ).

Note that (C.1) is time-varying because of ω and LaSalle invariance principle may not apply.
But since V decreases and is lower-bounded, it converges. Besides, the solution and ω being
bounded V̈ is bounded. It follows according to Barbalat’s lemma that

lim
t→+∞

V̇ = lim
t→+∞

Φ̂(Φ̂2 − (X̂2
d + X̂2

q )) = 0 .

Using again Barbalat’s lemma on V̈ (V̇ converges and V (3) is bounded because ω̇ is bounded)
gives lim

t→+∞
V̈ = 0 and thus

lim
t→+∞

ωΦΦ̂X̂q = 0 ,

which yields since ω is lower-bounded away from zero,

lim
t→+∞

Φ̂X̂q = 0 .

Finally, applying again Barbalat’s lemma to the derivative of this function, we end up with

lim
t→+∞

ωΦ̂(X̂d − Φ) = 0 ,

and again since ω is lower-bounded,

lim
t→+∞

Φ̂(X̂d − Φ) = 0 .

To sum up, we have established the following three limits

lim
t→+∞

Φ̂(Φ̂2 − (X̂2
d + X̂2

q )) = 0 , lim
t→+∞

Φ̂X̂q = 0 , lim
t→+∞

Φ̂(X̂d − Φ) = 0 .

This is not enough to conclude since we could have a priori lim inf
t→+∞

Φ̂ = 0. However, the following
points give the result :

1. The time function (X̂d, X̂q, Φ̂) is bounded and continuous. It follows that for any sequence
(tn) such that limn→∞ tn = +∞, the sequence (X̂d(tn), X̂q(tn), Φ̂(tn)) admits at least one
accumulation point.

2. Let P ∗ = (X̂∗d , X̂∗q , Φ̂∗) be such an accumulation point. Because of the limits we have
established, it verifies :

Φ̂∗(Φ̂∗2 − (X̂∗2d + X̂∗
2
q )) = 0

Φ̂∗X̂∗q = 0
Φ̂∗(X̂∗d − Φ) = 0 .

Thus P ∗ is either of the type (X̂∗d , X̂∗q , 0) with (X̂∗d , X̂∗q ) in R2 (type I) or equal to P0 =
(Φ, 0,Φ).

3. Assume that P0 is not an accumulation point. Then, any accumulation point is of type I
and the only possible accumulation value for Φ̂ is 0. Thus

lim
t→+∞

Φ̂(t) = 0 .
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To ease the notations let us denote the vector X̂ = (X̂d, X̂q). Solving the differential
equation ruling Φ̂2, there exists a0, b0 strictly positive such that

Φ̂2 = φ(t)
1 + b0 + 2q

∫ t
0 φ(s)ds

with
φ(t) = a0b0 exp

(
2q
∫ t

0
|X̂(s)|2ds

)
.

Since Φ̂ tends to 0, for any η > 0, there exists t > 0 such that for all t ≥ t, we have
Φ̂2(t) ≤ η

2 . This means that for all t ≥ t,

φ(t) ≤ η

2

(
1 + b0 + 2q

∫ t

0
φ(s)ds

)
︸ ︷︷ ︸

c0

+ ηq

∫ t

t
φ(s)ds

and by Gronwall’s lemma
φ(t) ≤ c0 exp (ηq(t− t)) .

We conclude that for any η > 0, there exists t > 0 such that∫ t

0
|X̂(s)|2ds ≤ η

2(t− t) + 1
2q log

(
c0
a0b0

)
. (C.4)

But we are going to prove the existence of t0, η > 0, and a sequence (tk) such that
limk→∞ tk = +∞ and ∫ tk

t0
|X̂(s)|2ds ≥ η(tk − t0) , (C.5)

which contradicts (C.4). Indeed, consider the dynamics of X̂ with inputs ω and Φ̂. ωΦ
being lower-bounded by ωΦ > 0, there exist a and b such that the conditions of Lemma
C.2.1 given below are satisfied for

x = X̂ , b = ωΦ
2 , t+ = +∞ , v =

(
0
1

)
.

First, assume that there exists t0 > 0 such that for all t ≥ t0, |X̂(t)| ≥ a
2 , then (C.5) is

true for any sequence (tk), and η = a2

4 . Assume now that this is not the case, i-e for any
t, there exists t ≥ t such that |X̂(t)| ≤ a

2 . Then, according to Lemma C.2.1, one can build
sequences (tk,1), (tk,2), (tk,3), each tending to +∞ such that for all k :

tk,1 < tk,2 < tk,3
|X̂(t)| ≤ a

2 ∀t ∈ [tk−1,3, tk,1]
a
2 ≤ |X̂(t)| ≤ a ∀t ∈ [tk,1, tk,2]

|X̂(tk,2)| = a

|X̂(t)| ≥ a
2 ∀t ∈ [tk,2, tk,3]

and
3a
b
≥ tk,2 − tk−1,3 , tk,2 − tk,1 ≥

a

2b
.

We denote

tk,1 = tk,1 − tk−1,3 , tk,2 = tk,2 − tk,1 , tk,3 = tk,3 − tk,2
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and tk = tk,3 − tk−1,3 = tk,1 + tk,2 + tk,3 the duration of the cycle k. Then, the mean over
a cycle

1
tk

∫ tk,3

tk−1,3
|X̂(s)|2ds ≥ a2

4
tk,2 + tk,3

tk,1 + tk,2 + tk,3
≥ a2

4

a
2b + tk,3
3a
b + tk,3

≥ a2

4 min
(
b

6b
, 1
)
.

is lower-bounded. Thus, (C.5) holds with η = a2

4 min
(
b

6b , 1
)
and tk = tk,3.

Finally, with (C.4) and η given above, there exists t such that

η(tk − t0) ≤ η

2(tk − t) + 1
2q log

(
c0
a0b0

)
for all k greater than some k0. This is impossible. Thus, P0 is accumulation point.

4. Assume that P1 = (X̂∗d , X̂∗q , 0) is another accumulation point. There exists an increasing
sequence of times (tn) such that

lim
n→∞

tn = +∞∣∣∣(X̂d(t2k), X̂q(t2k), Φ̂(t2k))− P0
∣∣∣ <

Φ
2∣∣∣(X̂d(t2k+1), X̂q(t2k+1), Φ̂(t2k+1))− P1

∣∣∣ <
Φ
2 .

Since |P0 − P1| ≥ Φ, by continuity of the solution, for all k ≥ 0, there exists τk > t2k such
that ∣∣∣(X̂d(τk), X̂q(τk), Φ̂(τk))− P0

∣∣∣ = Φ
2 .

But then, the sequence (X̂d(τk), X̂q(τk), Φ̂(τk)) admits an accumulation point P ′ verifying
|P ′ − P0| = Φ

2 . This is impossible because P ′ should be P0 or of type I, and for any P
of type I, |P − P0| ≥ Φ. Therefore, P0 is the only accumulation point and the solutions
converge to P0.

To complete the proof, it remains to show the following technical lemma :

Lemma C.2.1.

Let a, b and b be three strictly positive real numbers, v be a unit vector in Rn and f be a
continuous function such that1:

v>f(x, t) ≥ b , b ≥ |f(x, t)| ∀(x, t) ∈ Ba(0)× R .

Let x(t) be a solution of
ẋ = f(x, t)

defined on (t−, t+) with values in Rn. If there exists t0 in (t−, t+) such that |x(t0)| ≤ a
2 , then

there exist t1 and t2 both in (t−, t+) such that

|x(t1)| = a

2 , |x(t2)| = a ,
3a
b
≥ t2 − t0 , t2 − t1 ≥

a

2b

and |x(t)| ≥ a
2 for all t in [t1, t2].

Proof : Let t2 < t+ be the maximum time such that x(t) is in Ba(0) for all t in [t0, t2[. We have

v>ẋ(t) ≥ b , ∀t ∈ [t0, t2[
1We denote Ba(0) the open ball of Rn centered at the origin with radius a and Ba(0) its closure.
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and
v>x(t0) ≥ −|x(t0)| ≥ −a2 .

This yields
|a| > |x(t)| ≥ v>x(t) ≥ −a2 + b [t− t0] ∀t ∈ [t0, t2[ .

Thus t2 is finite and by continuity,

|x(t2)| = a ,
3a
2b ≥ t2 − t0 .

By continuity of solutions, there also exists t1 in [t0, t2[, satisfying :

|x(t1)| = a

2 ,
a

b
≥ t1 − t0 .

But we also have

x(t2) = x(t1) +
∫ t2

t1

f(x(t), t)dt

so that
|a| = |x(t2)| ≤ a

2 + b [t2 − t1]

and therefore
t2 − t1 ≥

a

2b
.

�





Appendix D

Proofs of Chapter 14

In this appendix, we prove most of the results presented in Chapter 14.

D.1 About observability

D.1.1 Proof of Theorem 14.1.1

Consider a solution (x, x3) to System (14.2) verifying for all t

0 = y(t) = |x(t)− Li(t)|2 − Φ2 .

x is necessarily of the form

x(t) = x0 +
∫ t

0
u(τ)dτ − x3

∫ t

0
i(τ)dτ

with
ẋ0 = 0 , ẋ3 = 0 ,

and finding (x, x3) is equivalent to finding (x0, x3). It follows that for all t

0 = |x(t)− Li(t)|2 − |x0 − Li(0)|2

= [x(t)− x0 − L(i(t)− i(0)]>[x(t) + x0 − L(i(t) + i(0)]
= η̃(x3, t)>[2(x0 − Li(0)) + η̃(x3, t)]

where we have defined

η̃(x3, t) =
∫ t

0
u(τ)dτ − x3

∫ t

0
i(τ)dτ − L(i(t)− i(0)) . (D.1)

We deduce that for any time t,

2η̃(x3, t)>(x0 − Li(0)) = −η̃(x3, t)>η̃(x3, t) = −|η̃(x3, t)|2 .

Therefore, unless x3 makes η̃(x3, t1) and η̃(x3, t2) colinear for any (t1, t2), there exits at most
one possible value of x0 for each x3.

Take x3 such that η̃(x3, .) is not constant. There exists t1 such that η̃(x3, t1) 6= 0. Thus,
for some t2 6= t1, η̃(x3, t2) colinear to η̃(x3, t1) implies that there exists λ such that η̃(x3, t2) =
λη̃(x3, t1). But then,we have

2λη̃(x3, t1)>(x0 − Li(0)) = −λ2|η̃(x3, t1)|2 = −λ|η̃(x3, t1)|2

and necessarily λ = 1 or λ = 0, i-e η̃(x3, t2) = η̃(x3, t1) or η̃(x3, t2) = 0. But, since η̃(x3, .) is
continuous and not constant, there exists t2 such that η̃(x3, t2) 6= η̃(x3, t1) and η̃(x3, t2) 6= 0.
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Actually, still by continuity, we can even say that there exist two intervals I1 and I2 such that for
all (t1, t2) in I1 × I2, we have η̃(x3, t1) 6= 0, η̃(x3, t2) 6= 0 and η̃(x3, t2) 6= η̃(x3, t1), i-e such that
η̃(x3, t1) and η̃(x3, t2) are not colinear. For each such couple (t1, t2), x0 is uniquely determined
by the value of x3. Indeed, denoting

J =
(

0 1
−1 0

)
,

we have η̃(x3, t1)>Jη̃(x3, t2) 6= 0 and necessarily

x0 = Li(0) + 1
2
J (η̃(x3, t1) , η̃(x3, t2))
η̃(x3, t1)>Jη̃(x3, t2)

(
|η̃(x3, t2)|2
−|η̃(x3, t1)|2

)
.

Replacing this expression in the constraint

|x0 − Li(0)|2 − Φ2 = 0 ,

we obtain a polynomial of degree 6 in x3 for each couple (t1, t2) in I1 × I2. In order to deduce
that there are at most 6 solutions x3 making η̃(x3, .) not constant, we need to prove that at
least one of these polynomials is not a constant. It is possible to show that the coefficient of
highest degree is given by I(t1)2I(t2)2(I(t1) − I(t2)) with I(t) =

∫ t
0 i(τ)dτ . If I(t1) = 0 for all

t1 in I1, then i is zero on I1 which is excluded by assumption, thus there exists t1 in I1 such
that I(t1) 6= 0. Now assume I(t2) = I(t1) or I(t2) = 0 for all t2 in I2. Again this means that
i is zero on I2, which is impossible. We conlude that there exists (t1, t2) in I1 × I2 such that
the corresponding polynomial is "truly" of order 6 (i-e with a nonzero coefficient of order 6) and
therefore, there are at most 6 solutions x3 making η̃(x3, .) not constant, and for each of these
values, there is a unique corresponding x0. This characterizes at most 6 solutions (x, x3).

Now take x3 such that η̃(x3, .) is constant. Since η̃(x3, 0) = 0, η̃(x3, t) = 0 for all t. It
follows that any x0 verifying |x0−Li(0)| = Φ is solution, and there exists an infinity of solutions
associated to this value of x3.

The only remaining question is therefore : does there exist a value of x3 making η̃(x3, .)
constant ? Assume such a value exists. Differentiating η̃(x3, .) with respect to time, we get for
all t

u(t)− x3i(t)− L
︷̇︷
i (t) = 0 .

But differentiating (14.3) with respect to time, we also know that

u(t)−Ri(t) = L
︷̇︷
i (t) + ωΦ

(
− sin(θ(t))
cos(θ(t))

)

so that, necessarily, by combining the two equations and multiplying by R(−θ(t)), the following
system must be satisfied for all t :

(R− x3)id(t) = 0
(R− x3)iq(t) = −ω(t)Φ . (D.2)

We distinguish the following cases :

- if ω(t) = 0 for all t, there exists at least one constant value of x3 solution to System (D.2)
for all t. Thus, η̃(x3, ·) is constant and there is an infinite number of solutions (x, x3).

- if for all t such that ω(t) 6= 0, id(t) = 0, iq(t) 6= 0, and ω
iq

is constant, there exists a constant
value of x3 solution to System (D.2) for all t and thus an infinity of solutions (x, x3).

- otherwise, there exist no solutions to System (D.2). Therefore, η̃(x3, ·) cannot be constant
and there are at most 6 solutions (x, x3) to our observability problem.
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D.1.2 Proof of Theorem 14.1.3

Consider a solution to System (14.2) verifying y(t) = 0 for all t. According to Corollary (14.1.1),
since y(t) = ẏ(t) = ÿ(t) = 0, it is necessarily (Ψ, R) or (Ψδ, Rδ) where Ψδ is given by :

Ψδ(t) = L i(t) + |η(Rδ, t)|2

η(Rδ, t)>Jη̇(Rδ, t)
Jη(Rδ, t) ,

with η defined in (14.7). It remains to show that (Ψδ, Rδ) is a solution to System (14.2).
Using (14.8), we get

|η(x3, t)|2 = ω2Φ2 + 2(R− x3)Φω iq + (R− x3)2 |i|2

and thus,
|η(Rδ, t)| = ωΦ .

It follows that there exists θδ such that

η(Rδ, t) = ωΦ
(
− sin θδ
cos θδ

)
= −ωΦJzδ

where we denote

zδ =
(

cos θδ
sin θδ

)
.

We deduce according to (14.8) that

−ωΦJzδ = −ωΦJz + (R−Rδ)i

= −ωΦJz − 2Φω iq
|i|2

i

and after a rotation of angle −θ, we have

J

(
cos(θδ − θ)
sin(θδ − θ)

)
=
(

0
−1

)
+ 2 iq
|i|2

idq . (D.3)

Therefore, θδ − θ is a constant and
wδ = θ̇δ = w .

It follows that xδ defined by
xδ = L i+ Φzδ

verifies the dynamics :

ẋδ = L
︷̇︷
i − ΦωδJzδ = L

︷̇︷
i − ΦωJzδ = L

︷̇︷
i + η(Rδ, t) = u−Rδ i

and
0 = y = |xδ − L i|2 − Φ .

Thus, (xδ, Rδ) is a solution to (14.2), which must appear among {(Ψ, R), (Ψδ, Rδ)}, i-e it is
necessarily (Ψδ, Rδ). Therefore, (Ψ, R) and (Ψδ, Rδ) are the only two indistinguishable solutions.
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D.1.3 Proof of Theorem 14.1.4

According to (D.3),

cos(θδ − θ) = 1− 2i2q
sin(θδ − θ) = 2iqid .

But after a rotation of −θδ instead of θ, we would have obtained :(
0
−1

)
= J

(
cos(θ − θδ)
sin(θ − θδ)

)
+ 2 iq
|i|2

idq,δ

i-e

cos(θδ − θ) = 1 + 2iqiq,δ
sin(θδ − θ) = 2iqid,δ ,

which gives the result.
Now, if R̂ = Rδ, one can find R by computing

R = R̂− 2Φω iq
|i|2

= R̂+ 2Φω̂
︷̂︷
iq

|i|2

and if R̂ = R, one can find Rδ by computing

Rδ = R̂+ 2Φω iq
|i|2

= R̂+ 2Φω̂
︷̂︷
iq

|i|2
.

This means that whatever the value of R̂ is, the value of the other candidate is R̂ + 2Φω̂
︷̂︷
iq

|i|2 .
Similarly, if θ̂ = θδ, then θ = θ̂ + ∆ with ∆ defined by

cos(∆) = 1− 2i2q = 1− 2
︷̂︷
iq

2

sin(∆) = −2iqid = 2
︷̂︷
iq
︷̂︷
id

and if θ̂ = θ, then θδ = θ̂ −∆ with −∆ defined by

cos(−∆) = 1− 2i2q = 1− 2
︷̂︷
iq

2

sin(−∆) = 2iqid = 2
︷̂︷
iq
︷̂︷
id .

Therefore, whatever the value of θ̂, the value of the other solution is θ̂+ arctan2(2
︷̂︷
iq
︷̂︷
id, 1− 2

︷̂︷
iq

2
).

D.2 Observer design

D.2.1 Proof of Lemma 14.2.2

The quantity
µλ(x3, t) = −(cλ + x3 bλ + 2λLi) (D.4)

verifies
˙︷ ︷

µλ(x3, t) = −λ(µλ(x3, t)− 2 η(x3, t)) (D.5)
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This means that µλ is a filtered version of 2η. Besides, denoting

µ =


µ>λ1

µ>λ2

µ>λ3


we have

Λµ(x3, t) = −(Λc+ x3 Λb+ 2Lmλi
>)

and thus since Mλmλ = 0,
M(x3, t) = −MλΛµ(x3, t) . (D.6)

Let us further investigate the link between µ and η. According to the dynamics (D.5), µλ can
be developed in the following way :

µλ = 2η − 2η̇
λ

+ 2rµ
λ2 (D.7)

where the rest rµ follows the dynamics :

ṙµ = −λ(rµ − η̈) . (D.8)

Thus, we have the development

µλ = 2η − 2η̇
λ

+O

( 1
λ2

)

so that µλ can be approximated by 2η − 2η̇
λ

for large values of λ. Therefore,

M = −2MλΛ


η − η̇

λ1
+O

(
1
λ2

1

)
η − η̇

λ2
+O

(
1
λ2

2

)
η − η̇

λ3
+O

(
1
λ2

3

)


= −2Mλ


λ1η − η̇λ1 +O

(
1
λ1

)
λ2η − η̇λ1 +O

(
1
λ2

)
λ3η − η̇λ1 +O

(
1
λ3

)


= −2
(
λ1λ2(λ2 − λ1) λ2

1 − λ2
2

λ2λ3(λ3 − λ2) λ2
2 − λ2

3

)(
η>

η̇>

)
+O(λ) , (D.9)

and straightforward computations give (14.25).
Let us now develop χ(x3, t) with respect to λ. To do that, we define ρλ with

ρλ(x3, t) = −(zλ − aλx3 − dλx2
3 + λLµ>λ i+ λ2L2|i|2 − λ2Φ2) , (D.10)

which follows the dynamics
ρ̇λ = −λ(ρλ − µ>λ η) . (D.11)

In other words, by denoting

ρ =

 ρλ1

ρλ2

ρλ3

 ,

we define
ρ(x3, t) = −(Z(t)− a(t)x3 − d(t)x2

3 + LΛµ i+mλL
2|i|2 −mλΦ2) . (D.12)
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WhenM is invertible, by definition of χ in (14.22), we have

M(x3, t)χ(x3, t) = Mλ(Z(t)− a(t)x3 − d(t)x2
3)

and thus since Mλmλ = 0 and (D.6),

M(x3, t)(χ(x3, t)− Li) = −Mλ ρ .

As we did above for µ, it is possible to develop ρ thanks to (D.11). Indeed, it is straightforward
to check that

ρλ = 2η>η + rρ
λ

= 2|η|2 + rρ
λ

with
ṙρ = −λ(rρ + 6η>η̇) .

In other words
ρλ = 2|η|2 +O

( 1
λ

)
(D.13)

and we have with (D.9)(
η>

η̇>

)
(χ(x3, t)− Li) = 1

2

(
λ1λ2(λ2 − λ1) λ2

1 − λ2
2

λ2λ3(λ3 − λ2) λ2
2 − λ2

3

)−1

Mλ ρ+O

( 1
λ

)

=
(
λ1λ2(λ2 − λ1) λ2

1 − λ2
2

λ2λ3(λ3 − λ2) λ2
2 − λ2

3

)−1

Mλ

(
|η|2
|η|2

)
+O

( 1
λ

)

=
(

0
−1

)
|η|2 +O

( 1
λ

)
.

Finally, according to the definitions (14.19), (D.4) and (D.12), it is straightforward to check
that

Z(t)− T (χ(x3, t), x3, t) = −mλ

(
|χ(x3, t)− Li|2 − Φ2

)
+ Λµ(x3, t) (χ(x3, t)− Li)− ρ(x3, t) .

It follows that for x3 and t making
(
η(x3, t) , η̇(x3, t)

)
invertible

J(x3, t) = −(λ4
1 + λ4

2 + λ4
3)
(
|χ(x3, t)− Li|2 − Φ2

)
+O(λ3)

= (λ4
1 + λ4

2 + λ4
3)

 P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2 +O

( 1
λ

)+O(λ3)

= (λ4
1 + λ4

2 + λ4
3) P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2 +O(λ3) .

D.2.2 Proof of Theorem 14.2.2

Assume
∣∣∣det

(
η(x3, t) , η̇(x3, t)

)∣∣∣ ≥ d. In order to deduce from (14.25) that
∣∣∣det

(
M(x3, t)

)∣∣∣ ≥ δ
for all t, if α is sufficiently large, we need to bound the term O(λ4) uniformly in time. Coming
back to (D.7)-(D.8), since η̈ is a polynomial in x3 with coefficients depending on the bounded
signals (ü,

︷̈︷
i , i(3)), rµ is too. Following this term in (D.9), and then in its determinant (14.25),

the reader can easily check that O(λ4) in (14.25) is also a polynomial in x3 with bounded (in
time) coefficients. Thus, there exists a polynomial R (time and α independent) such that for all
t and all α

1
α5

∣∣∣det
(
M(x3, t)

)∣∣∣ ≥ 4λ̃2
2(λ̃1 − λ̃2)(λ̃2 − λ̃3)(λ̃3 − λ̃1) d− R(|x3|)

α
(D.14)
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which is strictly positive when α is sufficiently large.
In particular, according to (14.11),∣∣∣det

(
η(R, t) , η̇(R, t)

)∣∣∣ = |ω3Φ2| ≥ ω3Φ2 > 0

for all t, hence the result.

D.2.3 Proof of Theorem 14.2.3

The first point of the result is a direct consequence of Theorem 14.2.2.
Then, remember that in the case where ω, id and iq are constant, η, η̇ and P are time

independent polynomials such that (see (14.12))

det
(
η(x3) , η̇(x3)

)
= ω3Φ2

(
1 + (R− x3)

ωΦ 2iq + (R− x3)2

ω2Φ2 |i|2
)

P (x3) = −Φ2 det
(
η(x3) , η̇(x3)

)2 (R− x3)
ωΦ

(
2iq + (R− x3)

ωΦ |i|2
)
.

Therefore, the roots of det
(
η(x3) , η̇(x3)

)
are the complex numbers Φω

|i|2 (−iq±j id), both situated
on the circle with center R and radius Φω

|i| , and

Q(x3) = P (x3)

det
(
η(x3) , η̇(x3)

)2 = −Φ2 (R− x3)
ωΦ

(
2iq + (R− x3)

ωΦ |i|2
)

is a polynomial of order 2, with the two roots (R,Rδ) =
(
R,R+ 2ωΦiq

|i|2
)
identified in Corollary

(14.1.1).
Now, take any ε > 0 and consider Γrε(R) and Γrε(R), the circles with center R and radius

rε and rε respectively. The polynomial det
(
η(x3) , η̇(x3)

)
has no root on those circles so that

it can be lower-bounded by some d > 0. Also, R introduced in (D.14) is continuous on those
compact sets and is bounded by some R. Choosing (λ1, λ2, λ3) as suggested in the theorem and
denoting γ = 4λ̃2

2(λ̃1 − λ̃2)(λ̃2 − λ̃3)(λ̃3 − λ̃1), we have for all t and all x3 in Γrε(R) ∪ Γrε(R),

∣∣∣∣ 1
α5 det

(
M(x3, t)

)
− γ det

(
η(x3) , η̇(x3)

)∣∣∣∣ ≤ R(|x3|)
α

≤ R

α
≤ γ d ≤

∣∣∣γ det
(
η(x3) , η̇(x3)

)∣∣∣
for α sufficiently large. Both functions being holomorphic (polynomials), according to Rouché’s
theorem, det

(
M(x3, t)

)
and det

(
η(x3) , η̇(x3)

)
have the same number of roots in1 Brε(R) (resp

Brε(R)), namely no roots in Brε(R) (resp 2 roots in Brε(R)). Since we know det
(
M(x3, t)

)
is a

polynomial of order 2, we deduce that its only two roots are situated in the annulus C(R, rε, rε).
Besides, since det

(
η(x3) , η̇(x3)

)
does not admit any real roots, its modulus is lower-bounded

on the real axis and according to (D.14), one can make det
(
M(x3, t)

)
strictly positive for x3 in

the compact set [R− rε, R− rε] ∪ [R+ rε, R+ rε] by choosing α sufficiently large. In that case,
its roots are in C(R, rε, rε), but not in C(R, rε, rε) ∩ R : they are necessarily complex.

As for the third point of the result, it can be proved by applying Rouché’s theorem on
(14.27) with path Γrε(R). To do this, we need to lower-bound |Q(x3)| and upper-bound the
term O(λ3) in (14.27). When |iq| 6= 1−ε

2 |i|, Q does not have any root on Γrε(R) and |Q|

1Br(a) denotes the ball with center a and radius r.
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can thus be lower-bounded in this set by some d2 > 0. As for the term O(λ3), by follow-
ing the proof of Lemma 14.2.2, the reader can check that it is actually a rational function in
x3 whose coefficients are bounded in time and whose denominator is necessarily of the form
det

(
M(x3, t)

)k1
det

(
η(x3) , η̇(x3)

)k2
(coming from the inversion of the corresponding matri-

ces). On Γrε(R), det
(
η(x3) , η̇(x3)

)
does not have any root and can be lower-bounded. The

same thing holds for det
(
M(x3, t)

)
(uniformly in time) by taking α sufficiently large accord-

ing to (D.14). Therefore, the term O(λ3) in (14.27) can be upper-bounded by a polynomial of
|x3|. More precisely, denoting γ2 = λ̃4

1 + λ̃4
2 + λ̃4

3, there exists a polynomial R2 (time and α
independent) such that for all t and all x3 in Γrε(R),

∣∣∣∣ 1
α4J(x3, t)− γ2Q(x3)

∣∣∣∣ ≤ R2(|x3|)
α

≤ R2
α
≤ γ2 d2 ≤ |γ2Q(x3)| .

Since M(·, t)−1 is defined on Brε(R) (where its determinant does not have any root), J(·, t) is
holomorphic on that set and according to Rouché’s theorem, it admits as many zeros as Q on
Brε(R), i-e either one or two depending on iq.





Résumé

Contrairement aux systèmes linéaires, il n’existe
pas de méthode systématique pour la synthèse
d’observateurs pour systèmes non linéaires. Cepen-
dant, la synthèse peut être plus ou moins sim-
ple suivant les coordonnées choisies pour exprimer
la dynamique. Des structures particulières, ap-
pelées formes normales, ont notamment été identifiées
comme permettant la construction facile et directe d’un
observateur. Une façon usuelle de résoudre le prob-
lème consiste donc à chercher un changement de co-
ordonnées réversible permettant l’expression de la dy-
namique dans l’une de ces formes normales, puis à
synthétiser l’observateur dans ces coordonnées, et en-
fin à en déduire une estimation de l’état du système
dans les coordonnées initiales par inversion de la trans-
formation. Cette thèse contribue à chacune de ces trois
étapes.
Premièrement, nous montrons l’intérêt d’une nouvelle
forme triangulaire avec des non linéarités continues
(non Lipschitz). En effet, les systèmes observables
pour toutes entrées, mais dont l’ordre d’observabilité
différentielle est supérieur à la dimension du système,
peuvent ne pas être transformables dans la forme trian-
gulaire Lipschitz standard, mais plutôt dans une forme
triangulaire "seulement continue". Le célèbre observa-
teur grand gain n’est alors plus suffisant, et nous pro-
posons d’utiliser plutôt des observateurs homogènes.
Une autre forme normale intéressante est la forme
linéaire Hurwitz, qui admet un observateur trivial. La
question de la transformation d’un système non linéaire
dans une telle forme n’a été étudiée que pour les
systèmes autonomes à travers les observateurs de
Kazantzis-Kravaris ou de Luenberger. Nous montrons
ici comment cette synthèse, consistant à résoudre
une EDP, peut être étendue aux systèmes instation-
naires/commandés.
Quant à l’inversion de la transformation, cette étape est
loin d’être triviale en pratique, surtout lorsque les es-
paces de départ et d’arrivée ont des dimensions dif-
férentes. En l’absence d’expression explicite et globale
de l’inverse, l’inversion numérique repose souvent sur
la résolution d’un problème de minimisation couteux en
calcul. C’est pourquoi nous développons une méth-
ode permettant d’éviter l’inversion explicite de la trans-
formation en ramenant la dynamique de l’observateur
(exprimée dans les coordonnées de la forme normale)
dans les coordonnées initiales du système. Ceci né-
cessite une extension dynamique, i-e l’ajout de nou-
velles coordonnées et l’augmentation d’une immersion
injective en un difféomorphisme surjectif.
Enfin, dans une partie totalement indépendante, nous
proposons des résultats concernant l’estimation de la
position du rotor d’un moteur synchrone à aimant per-
manent en l’absence d’informations mécaniques (sen-
sorless) et lorsque des paramètres tels que la résis-
tance ou le flux de l’aimant sont inconnus. Ceci est
illustré par des simulations sur données réelles.

Mots Clés

observabilité, formes normales, observateur grand
gain, observateur de Luenberger, extension dy-
namique, sensorless

Abstract

Unlike for linear systems, no systematic method exists
for the design of observers for nonlinear systems. How-
ever, observer design may be more or less straightfor-
ward depending on the coordinates we choose to ex-
press the system dynamics. In particular, some specific
structures, called normal forms, have been identified for
allowing a direct and easier observer construction. It
follows that a common way of addressing the problem
consists in looking for a reversible change of coordi-
nates transforming the exression of the system dynam-
ics into one of those normal forms, design an observer
in those coordinates, and finally deduce an estimate of
the system state in the initial coordinates via inversion
of the transformation. This thesis contributes to each of
those three steps.
First, we show the interest of a new triangular normal
form with continuous (non-Lipschitz) nonlinearities. In-
deed, we have noticed that systems which are observ-
able for any input but with an order of differential ob-
servability larger than the system dimension, may not
be transformable into the standard Lipschitz triangu-
lar form, but rather into an "only continuous" triangu-
lar form. In this case, the famous high gain observer
no longer is sufficient, and we propose to use homoge-
neous observers instead.
Another normal form of interest is the Hurwitz linear
form which admits a trivial observer. The question of
transforming a nonlinear system into such a form has
only been addressed for autonomous systems with the
so-called Lunberger or Kazantzis-Kravaris observers.
This design consists in solving a PDE and we show
here how it can be extended to time-varying/controlled
systems.
As for the inversion of the transformation, this step is
far from trivial in practice, in particular when the domain
and image spaces have different dimensions. When no
explicit expression for a global inverse is available, nu-
merical inversion usually relies on the resolution of a
minimization problem with a heavy computational cost.
That is why we develop a method to avoid the explicit
inversion of the transformation by bringing the observer
dynamics (expressed in the normal form coordinates)
back into the initial system coordinates. This is done
by dynamic extension, i-e by adding some new coor-
dinates to the system and augmenting an injective im-
mersion into a surjective diffeomorphism.
Finally, in a totally independent part, we also provide
some results concerning the estimation of the rotor
position of a permanent magnet synchronous motors
without mechanical information (sensorless) and when
some parameters such as the magnet flux or the resis-
tance are unknown. We illustrate this with simulations
on real data.
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