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Abstract

Surgical planning relies on the patient’s anatomy, and it is often based on medical
images acquired before the surgery. This is in particular the case for pelvic surgery
on children, for various indications such as malformations or tumors. In this par-
ticular anatomical region, due to its high vascularization and innervation, a good
surgical planning is extremely important to avoid potential functional damages to
the patient’s organs that could strongly affect their quality of life.

In clinical practice the standard procedure is still to visually analyze, slice by
slice, the images of the pelvic region. This task, even if quite easily performed
by the expert radiologists, is difficult and tedious for the surgeons due to the
complexity and variability of the anatomical structures and hence their images.
Moreover, due to specific anatomy depending on the age of the patient, all the
difficulties of the surgical planning are emphasized in the case of children, and
a clear anatomical understanding is even more important than for the adults.
For these reasons it is very important and challenging to provide the surgeons
with patient-specific 3D reconstructions, obtained from the segmentation of MRI
images.

In this work we propose a set of segmentation tools for pelvic MRI images of
pediatric patients. In particular, we focus on three important pelvic structures:
the pelvic bones, the pelvic vessels and the urinary bladder.

For pelvic bones, we propose a semi-automatic approach based on template reg-
istration and deformable models. The main contribution of the proposed method
is the introduction of a set of bones templates for different age ranges, which allows
us to take into account the bones variability during growth. For vessels segmen-
tation, we propose a patch-based deep learning approach using transfer learning,
thus requiring few training data. The main contribution of this work is the design
of a semi-automatic strategy for patches extraction, which allows the user to focus
only on the vessels of interest for surgical planning. For bladder segmentation, we
propose to use a deformable model approach that is particularly robust to image
inhomogeneities and partial volume effects, which are often present in pediatric
MRI images.

All the developed segmentation methods are integrated in an open-source plat-
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form for medical imaging, delivering powerful tools and user-friendly GUIs to the
surgeons. Furthermore, we set up a processing and portability workflow for visual-
ization of the 3D patient specific models, allowing surgeons to generate, visualize
and share within the hospital the patient specific 3D models.

Finally, the results obtained with the proposed methods are quantitatively and
qualitatively evaluated by pediatric surgeons, which demonstrates their potentials
for clinical use in surgical planning procedures.
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Chapter 1

Context and presentation

1.1 Pediatric pelvic surgery

The pelvis is an anatomical region that is highly complex, at the crossroad between
digestive, genital and urological tracts and with high vascularization and innerva-
tion. Its anatomical analysis is particularly difficult due to the complex 3D shapes
of the pelvic structures and to their complex spatial relationships. Moreover, in
the pelvis, the involved structures (except the bones) are soft and deformable,
leading to a strong anatomical inter-patient variability.
Pelvic anatomy is even more complex for children, where organs vary during
growth, both in terms of shapes and of relative spatial position. Moreover, all
these difficulties are strongly emphasized in case of rare tumors and malforma-
tions [3]. However, in the context of surgical planning, a clear understanding of
the patient’s pelvic anatomy is essential, considering that any lesion of vascular
and/or nervous structure may have a major impact on the quality of life.

Nowadays, in order to reduce as much as possible the surgical trauma while
maintaining the security and efficiency of gold standard treatments, minimally
invasive surgery (MIS) is widely used for pelvic and abdominal pediatric interven-
tions. In fact, while classical (or “open”) surgery requires large skin and muscle
incisions to allow for the access to the surgical field, MIS uses rigid, thin and long
tubular cameras (3 to 10 mm of diameter) in association with surgical instruments
inserted through tubular metallic or plastic ports (3 to 15 mm of diameter) trough
the skin. Thanks to these small incisions, this surgical technique has several ad-
vantages such as reduced post-operative pain, faster post-operative recovery and
better aesthetic outcomes for the patient.
One of the latest developments of MIS is robotic surgery (see Figure 1.1). The
main advantages of this technique are i) a magnified 3D visualization, which allows
the surgeon to keep the depth information while looking at the console screen and
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(a) (b) (c)

Figure 1.1: Example of MIS using a da Vinci Surgical System (Intuitive Surgical,
Mountain View, Calif). The surgeon performs the operation looking at a screen
(a), manipulating dedicated tools (b) that guide the movement of the robotic arms
(c) in contact with the patient. Images drawn from the material in [112].

ii) the presence of 360°articulated instruments, which aims to make robotic surgi-
cal experience as “smooth” as the open surgery one. However, this kind of surgery
lacks, as classical MIS, of haptic (force) feedback. This produces the loss of the
surgeon’s sense of touch, making the robotic interventions clearly more complex
than the open ones.

Therefore, due to the extreme complexity of the pelvic anatomy and of the
robotic interventions, surgical planning plays a crucial role on ensuring the best
possible outcome for the patients.

1.2 Surgical planning

Surgical planning relies on the patient’s anatomy and is based on medical images
acquired before the surgery. This is in particular the case for pelvic surgery on
children, for various indications such as malformations or tumors. As previously
mentioned, in this particular anatomical region, due to its high vascularization and
innervation, a good surgical planning is extremely important to avoid potential
functional damages to the patient’s organs that could strongly affect their quality
of life.
In clinical practice the standard procedure is still to visually analyze, slice by slice,
the images of the pelvic region. This task, even if quite easily performed by the
expert radiologists, is difficult and tedious for the surgeons due to the complexity
and variability of the anatomical structures and hence their images. Moreover, due
to specific anatomy depending on the age of the patient, all the difficulties of the
surgical planning are emphasized in the case of children, and a clear anatomical
understanding is even more important than for the adults. For these reasons it is
very important and challenging to provide the surgeons with patient specific three-
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dimensional (3D) models, obtained from the processing and analysis of anatomical
images.

1.2.1 Patient specific 3D models

3D patient specific modeling has been developed and proved useful in very few spe-
cific studies within the general surgical field, to reduce the time required for the
surgery giving to the surgeon a major awareness of the patient specific anatomy
and of the relationships between the target structures. As demonstrated by the
surgeon experience, the more complex the anatomy of the surgical region of in-
terest, the more complete a 3D reconstruction is useful. This gives the surgical
staff a powerful planning tool to improve the approach to critical interventions
during the pre-operative phase [39, 78, 96]. The advantages of the 3D models in
daily practice are especially obvious for surgical planning in oncology, allowing
the surgeon to better understand the spatial relationships between the tumor and
the surrounding structures. For anorectal malformations (ARM), the 3D models
of nerves and muscles may also be useful to better describe the anomalies of the
spinal cord and/or muscles frequently associated with such malformations. This
should be useful not only to refine the classification of these malformations, but
also to evaluate the impact of the different types of surgical approaches and of
potential rehabilitation techniques (neuromodulation, physiotherapy). More than
just the surgical planning, patients specific 3D models can also be useful during
the post operative follow-up (e.g. highlighting complications of the surgery, critical
spontaneous evolution, effects of treatments such as chemotherapies or radiother-
apies in tumors). Finally, 3D models could also be extremely important to better
inform patients and their parents about the pathology and its evolution.

These models can be obtained through processing of medical images. In par-
ticular magnetic resonance imaging (MRI), due to its good contrast between the
soft tissues and its non-ionizing nature, is the reference imaging modality for the
pelvis in pediatric patients [32, 108]. Moreover, with respect to other modalities,
MRI also allows obtaining images that represent the water diffusion properties of
the tissues. These images, called diffusion weighted images (DWI), are particularly
interesting since they allow obtaining 3D representations of the nerve fibers. For
a detailed description of the MRI principles, please refer to [49].

1.2.2 Pediatric MRI

MRI acquisitions in pediatrics raises several problems compared to the adults,
which have direct impact on the image quality.

During the acquisition, in order to obtain good quality images, the patient has
to stay as motionless as possible. This requirement, even if easily accomplished

3



with adult patients, is more difficult to fulfill with the non-cooperative child. In
fact, due to the narrow tube of the MRI machine and to the strong noise that the
machine produces during the acquisition, the child tends to move, compromising
the whole exam. In order to avoid multiple MRI acquisitions, a mild sedation of
the children could be performed (see Chapter 2). However, children’s motion can
not be totally avoided, which can produce images corrupted by motion artifacts,
as shown in Figure 1.2.

Figure 1.2: Example of motion artifact on a sagittal slice of a T2-w MRI, which
produces blurred and repeated structures borders (yellow arrows).

Another strong difference between the adult and the pediatric MR images is
given by the different sizes of the target structures. This produces higher par-
tial volume effects for children than for adults (using the same MRI acquisition
parameters), as shown in Figure 1.3. The partial volume effects are due to the
contribution of multiple tissues to the image intensity inside a single voxel. In
particular, the bigger the size of the voxel, in relation to the dimensional scale
of the structures of interest, the bigger will be the blur close to the structures
boundaries. This effect could be partially solved by using higher resolution images
for children than for adults. However, due to harder acquisition time constraints
in pediatrics than for adults, this is not usually done in clinical practice.

1.3 Research problem

Patients specific 3D modeling is an extremely powerful tool for a better under-
standing of the patient’s anatomy, hence improving the surgical planning pro-
cedure, especially for the pelvis in pediatric patients. These 3D models can be
obtained by processing the patient’s MRI, which is the reference image modality
for the pelvis. The reference procedure to obtain the 3D models is manual segmen-
tation. However, this procedure is extremely tedious and time consuming, which
clearly limits the routine use of 3D models in clinical practice. For this reason,
automated or semi-automated segmentation tools are essential in order to obtain

4



(a) (b)

Figure 1.3: Coronal T2-w MRI slices of (a) an adult patient and (b) a pediatric
patient, corresponding to the same anatomical pelvic region. The pediatric image
has stronger blur on structures boundaries than the adult image.

faster segmentation results. However, in the literature, there is a strong lack of
segmentation methods for pelvic structures applicable to pediatric populations.
This is mostly due to the strong complexity of the involved structures and to the
image acquisition constraints in pediatrics.

For this reason, in order to bridge the gap between adults and children treat-
ments, there is a strong need for novel segmentation tools for pediatric pelvic MRI.
Moreover, the developed methods should be user friendly, robust and should re-
spect the time constraints of the daily clinical practice. In this work we will focus
on three pelvic structures: i) the pelvic bones, which constitutes a core structure
of the pelvis and that serve as spatial reference for surgical planning, ii) the vessels,
whose preservation is essential in order to avoid potential functional damages to
the patient’s organ, and iii) the bladder, which has a central position in the pelvic
region. For each structure of interest, the proposed approach strongly relies on
prior knowledge on anatomy, including its variability.

Figure 1.4: Aim of this work: obtaining patient specific 3D models from MRI
images.
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1.4 Manuscript outline

This manuscript is structured around the design of a set of segmentation tools,
specific for pelvic structures in pediatric MRI, integrated in a complete framework
for surgical planning.
In Chapter 2, we describe the image dataset (patients population and imaging
sequences) used in this work.
In Chapter 3, we review the state of the art on pelvic segmentation, with a par-
ticular focus on the complexity of pediatrics.
In Chapter 4, we analyze and evaluate a set of 3D segmentation and visualiza-
tion platforms, which can be used for pelvic MRI images. This review is a major
contribution of this work, and it is, to the best of our knowledge, the first study
that takes also into account the segmentation performances on the software tools
evaluation.
In Chapter 5, we present a new method for pelvic bones segmentation, which is
the first study for their segmentation in pediatric MRI. The proposed method is
based on template registration and deformable models, and takes into account the
bones variability during growth.
In Chapter 6, we present a novel approach for the segmentation of the pelvic vessels
in pediatric MRI. The proposed method consists on a semi-automatic extraction
of a set of axial patches containing the vascular structures of interest, followed by
an automatic segmentation procedure based on CNN and transfer learning.
In Chapter 7, we present a method for bladder segmentation based on a modified
version of the Chan-Vese level set model, aiming to obtain a robust presegmenta-
tion, and on a parametric deformable model for segmentation refinement.
In Chapter 8, we present the developed GUIs, the novel workflow for surgical
planning based on the developed tools, and some interesting clinical applications
of patient specific 3D modeling.
In Chapter 9 we present our conclusions and an overview of potential future works.
Lastly, in Appendix A we present our preliminary work on the 3D modeling of the
pelvic nervous system, based on tractography.
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Chapter 2

Image dataset

Abstract

In this chapter we present the image dataset used in this study, describing the
patients population and the MRI acquisition protocol. Finally, we describe the
dataset of the manually annotated images and we present the evaluation measures
that will be used to validate the proposed segmentation methods.

Contents
2.1 Patients population . . . . . . . . . . . . . . . . . . . . . 8

2.2 MRI acquisition . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Manual segmentations and evaluation measures . . . . 11
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2.1 Patients population

From December 2015 onward, each pediatric patient hosted in Necker Enfants
Malades Hospital for a pelvic tumor or malformation was considered eligible for
a perspective clinical study called “Anatomie computationnelle dans la chirurgie
des tumeurs et malformations de l’enfant” (Computational anatomy for surgery of
tumors and malformations in pediatric patients).

The exclusion criteria for the study were:

• patient being younger than 3 months or older than 18 years;

• contra-indication to MRI exam (e.g. intraocular metallic foreign body, pace-
makers, mechanic cardiac valve, vascular clips for brain aneurysm);

• participation to a clinical trial demanding dosing of a new molecule in the
30 days before the MRI exam;

• MRI exam requiring general anesthesia.

All the socio-demographic, clinical and para-clinical data were collected in an
interactive anonymous database hosted at the Imagine Institute. All patients or
patient’s parents gave their informed consent according to ethical board committee
requirements (N°IMIS2015-04).

From December 2015 until October 2018, 88 patients were included in the
study:

• 38 patients affected by pelvic tumor;

• 47 patients affected by pelvic malformation;

• 3 control patients.

More details on the patients population are provided in Table 2.1.

2.2 MRI acquisition

The images acquisitions were performed with a 3T MRI scanner (GE Health-
care ®) hosted in the radiology service of the Necker-Enfants Malades hospital
(Pr. Nathalie Boddaert, Dr. Laureline Berteloot). In order to optimize the im-
ages signal-to-noise ratio (SNR), a cardiac coil (32 channels) was used for the
patients younger than 10 years old. An abdominal coil (16 channels) was used for
the other patients, which necessitated to increase the image field of view (FOV)
in order to cover the whole pelvic region.
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Pathology Type Number
Age

(median [min, max])

Tumor

Ovarian lesion 11

103.4 [3.0 - 195.8]

Sacrococcygeal teratoma 5

Rhabdomyosarcoma 4

Cystic lymphangioma 3

Abdominal or pelvic neurofibroma 3

Other 2

Nephroblastoma 2

Ganglioneuroblastoma 1

Ganglioneuroma 1

Vascular malformation 1

Sub-diaphragmatic pulmonary sequestration 1

Total 38

Malformation

Other 13

48.3 [3.0 - 175.4]

ARM with perianal fistula 9

ARM with recto-bulbar fistula 4

ARM with vestibular fistula 4

Cloacal malformation 3

Rectal atresia 2

ARM with recto-prostatic fistula 2

ARM with recto-vesical fistula 2

ARM without fistula 4

Rectal duplication 1

Bladder exstrophy 1

ARM with recto-vaginal fistula 1

Urogenital sinus malformation 1

Total 47

Table 2.1: Patients population and corresponding pathologies. Patients’ ages are
expressed in months.

A respiratory trigger, made possible by measuring the breathing frequency with a
dedicated belt, was sometimes used, in order to reduce the breathing movement
artifacts. However, this procedure increases the acquisition time, especially in case
of high breathing frequencies. For this reason, no respiratory trigger was normally

9



used for the youngest patients.
A glucagon injection, based on an already established acquisition protocol, was
performed in order to reduce the digestive peristalsis. The MRI exam is then
followed by an oral sugar administration to the patient. As already mentioned,
general anesthesia was never performed. However, a mild sedation with Pheno-
barbital (5mg/kg dose) was sometimes required. Asthma, pathological amygdale
and adenoids hypertrophy constitutes contra-indication to this sedation procedure.
The total duration of the exam is 30-45 minutes.

MRI sequences

The full MRI acquisition is composed by: i) a set of MRI sequences needed for
the clinical analysis of the patients (a well-established acquisition protocol of the
radiology department of the Necker Hospital), and ii) two research sequences,
added in the context of the 3D patient modeling. In particular, the two research
sequences are:

• CoroT2cube: the volumic images resulting from this sequence were chosen as
anatomical reference for the developed segmentation methods. This sequence
was chosen due to its overall good intensity contrast for the anatomical struc-
tures of interest (i.e. bones, bladder, vessels, rectum). Moreover, the spatial
resolution being quasi-isotropic, this image is particularly well suited for 3D
segmentation methods. Some acquisition examples are shown in Figure 2.1.

• DWI : the images resulting from this sequence, containing the tissues diffu-
sion information in several spatial directions, are essential in order to obtain
nerve fibers reconstruction through tractography algorithms [55]. More de-
tails on DWI, tractography and on how nerves reconstructions were included
into the patient 3D models are given in Appendix A.

The acquisition parameters of these two sequences were progressively optimized
since December 2015, in order to obtain a good compromise between the image
quality and the acquisition time. For this reason, the images of the patient dataset
have different acquisition parameters, which produces, for example, images differ-
ent spatial resolutions. Some details on the most up-to-date sequences parameters
are given in Table 2.2.

10



(a)

(b)

(c)

(d)

(e)

Figure 2.1: Examples of CoroT2cube MRI images of patients of (a) 1 year old,
(b) 2 years old, (c) 5 years old, (d) 8 years old and (e) 12 years old. Coronal,
sagittal and axial slices are depicted from left to right. Red, yellow and green lines
represent the slices interesections.

2.3 Manual segmentations and evaluation
measures

In order to validate the performances of the proposed segmentation methods (see
Chapters 5, 6 and 7), manual reference segmentations of the T2-w images need
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Sequence Acq. Plan
TR
[ms]

TE
[ms]

FA
[°]

N b
Voxel Size
[mm3]

Acq. time
[min]

CoroT2cube coronal 2000 68.36 90 - - 1x1x1 5-10
DWI axial 5893 57.4 90 25 600 1.25x1.25x3.5 5-10

Table 2.2: MRI sequences used in this work and most up-to-date acquisition pa-
rameters. TR, FA and TE stand for repetition time, flip angle and time echo,
respectively. N and b stand for the number of diffusion directions and the diffu-
sion b-value, respectively.

to be performed. However, this procedure is very time consuming (see Chap-
ter 4). Moreover, in order to evaluate the inter-user variability for each annotated
structure, each image was manually segmented by two different users. For these
reasons, a subset of the whole patients’ population was manually segmented. In
particular, manual segmentations of the bones and the bladder were performed
on 25 patients (12 tumors, 13 malformations) and manual segmentations of the
pelvis vessels were performed for 35 patients (22 tumors, 13 malformations). More
details on the two manually annotated subsets are given in Table 2.3.

Subset N_tot N_tum N_malf
Average voxel size

[mm3]
Average Image Size

[voxels]
Bones/Bladder 25 12 13 0.94x0.94x0.71 348x348x198

Vessels 35 22 13 0.92x0.92x0.73 346x346x197

Table 2.3: Description of the two T2-w MRI subsets used for the validation of the
proposed methods.

In order to quantitatively compare the reference manual segmentations with
the results obtained with the proposed methods, we use the DICE index (DC) [31]
and the Average Symmetric Surface Distance (ASSD) [52], defined as:

DC(A,B) =
2|A ∩B|
|A|+|B|

,

ASSD(A,B) =
1

|S(A)|+|S(B)|

( ∑
sA∈S(A)

min
sB∈S(B)

||sA−sB||2 +
∑

sB∈S(B)

min
sA∈S(A)

||sA−sB||2

)
,

where S(A) and S(B) are the sets of surface voxels of A and B, sA and sB are
points on S(A) and S(B) respectively, |.| denotes the cardinality and ||.||2 the
Euclidean distance.
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Figure 2.2: Dice score between two sample masks A and B [142].

13



Chapter 3

Literature review: pediatric image
segmentation

Abstract

This chapter reviews the main existing segmentation methods, focusing on the
anatomical structures of interest of this work: the pelvic bones, the vessels and
the bladder. Due to the lack of studies directly applied to pediatric images, we
also discuss methods applied to adults and we analyze the reasons that make them
difficult to be applied to the pediatric population.
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3.1 Introduction

Image segmentation is one of the most widely explored topics by the medical image
processing community. However, there is a huge gap in terms of research effort
between the adult and the pediatric field. Almost all the studies on pediatrics are
focused on specific anatomical structures, such as the brain in MRI [30, 58, 132]
(which is the most studied structure), the heart in ultrasound images [4, 86, 87] and
the kidneys in computed tomography (CT) [13] and ultrasound images [17, 82].
Other isolated studies on pediatric image segmentation are, for example, dedicated
to adipose tissue segmentation in MRI [41, 64].

As described in Chapter 1, the main structures of interest for pelvic surgical
planning are the pelvic bones, the vessels, the bladder and the rectum. To the
best of our knowledge, the only studies that address the problem of segmentation
of one of these structures, in pediatrics, are focused on the bone structures on CT
images [6, 7].

Considering the strong lack of studies on pelvic structure in pediatric images,
we will now investigate the methods that were successfully applied to adults (and
the few that were applied to pediatrics). Moreover, we will analyze the reasons
that make them difficult to be used for our pediatric application.

3.2 Pelvic bones segmentation

The most widely used imaging modality for the analysis of the bone structures is
CT. This is mostly due to the high density of the bones compared to the other
tissues, which produces images with high contrasted and hyperintense bones struc-
tures (see Figure 3.1). For this reason, many successful CT bones segmentation
methods were developed, especially for adult patients. However, some studies also
addressed the problem of bones segmentation in MRI images of adults patients.

Both for CT and MRI, it is possible to group the existing methods into two
macro categories: i) the methods that do not require shape priors on the bones
structure and ii) the ones that require shape priors in term of anatomical atlases
or statistical shape models (SSM). These methods are discussed in the following
sections.

3.2.1 Methods using only image information

Gray-levels thresholding is surely one of the most easy ways to segment an image,
when the structures to be segmented can be clearly identified and distinguished
from the others based on their intensity values. This condition, which cannot be
assumed for bones in MRI, can be somehow respected for bones in CT. However,
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(a) Axial CT slice (b) Axial MRI slice

Figure 3.1: Comparison between pelvic CT and MRI images.

even if global thresholding generally leads to a raw but coherent approximation of
the bones, this may not be sufficient to obtain accurate segmentations for clinical
applications. For this reason several studies on CT, even if still based on a strong
assumption on the bones gray-level intensities, proposed more complex method-
ologies. For instance, some methods have strongly focused on the pre-processing of
the CT images, in order to ease the following intensity-based segmentation proce-
dure. In particular, in [127] the authors propose to use a combination of high and
low pass filters, specifically designed for non isotropic images, in order to enhance
the bones regions while smoothing the other isolated hyperintense components of
the image. Global thresholding and morphological operations are then used for
final segmentation and separation between the femur and the pelvis. A similar ap-
proach was used in [118], in which the author propose to enhance the pelvic bones
using wavelets filtering and morphological operations and to use region growing
for segmentation.
Some other methods relied also on the image boundaries information. In [43],
the authors propose a level-set for the segmentation of the bones in 3D CT data,
with a particular focus on the femurs and the vertebral bodies. In particular,
they propose to use an energy formulation that incorporates both intensity and
boundaries features, and to use a mechanical-based model for automatic detection
of small spurious bridges between separated bones. A similar approach, focused
on the interface problem between the femurs and the acetabulum, was proposed in
[63]. In this case, a bone boundary enhancement filtering is followed by a graph-
cuts approach using intensity and boundary based terms. A final post-processing,
based on morphological erosion, is then used to identify and separate the femurs
and the pelvis.

While the previous studies were applied to adult patients, in [6] and [7] the
authors focused on pediatric patients. In particular, in [6] the authors propose to
segment the pelvic bones in pediatric CT using opening-by-reconstruction, thresh-
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olding and a final refinement using deformable models. The selection of the land-
marks needed for the reconstruction procedure requires the prior segmentation of
other anatomical structures, such as the peripheral fat, the peripheral muscles and
the spinal canal. A similar approach, based on multiple thresholdings and math-
ematical morphology operations, was proposed by the same authors in [7] for the
segmentation of the spinal canal, the ribs and the vertebrae.

If gray-level intensity information is extremely relevant in CT, this is not the
case in MRI. For this reason, some studies on MRI rely on texture information.
For instance, in [12] the authors propose to segment the knee bones in MRI using
an approach based on the extraction of bones features from the phase of the MRI
signal. The multiscale texture features are then combined together and classified
in a pixel-wise fashion using a support vector machines (SVM) classifier [117], in
order to obtain the final segmentation. Another example is given in [74], using a
texture-based geodesic active contour, the texture being represented as the local
intensity variance of the image, for the knee bones (femur and tibia) segmentation
in 2D MRI. For the same application, in [1] the authors propose a method based on
graph-cuts. In particular, a graph-cuts approach, opportunely initialized inside the
target bones, is used to obtain a pre-segmentation mask of the target structures.
This mask is then refined using mathematical morphology and priors on the bone
texture, in order to extract the final tibia and femur 2D masks. Graph-cuts were
also used in [16] for the segmentation of vertebral bodies on MRI. In this study, the
authors propose to pre-process the image using an anisotropic diffusion filtering
and an image intensity correction. Then, a graph-cuts approach is proposed to
segment the central sagittal 2D slice of the image.

3.2.2 Methods using shape priors

Atlas-based methods

An anatomical atlas is defined as a labeled image representing the standard anato-
my of a certain population. Each label can be either represented as binary mask
or a vector indicating the positions of each structure boundary. The basic idea of
atlas-based segmentation methods is to register the atlas volume to the target vol-
ume and, consequently, to transfer the atlas labels on the target volume, obtaining
the final segmentation. An example of the atlas-based methodology is depicted in
Figure 3.2.

Due to the shape complexity of the pelvic bones, the use of the prior anatomical
knowledge, expressed as anatomical atlases, was shown to be very effective. For
instance, in [94] the authors propose to segment the pelvic bones in 3D CT images
using the multiscale morphon algorithm [62] for the registration phase and to
obtain the segmentation mask by label propagation. A very similar strategy for
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Figure 3.2: Illustration of the atlas-based method principle for an abdominal CT
image. Image drawn from [45].

pelvic bones segmentation in 3D CT images was used in [36]. In particular, the
authors propose to initialize the registration fitting rigidly the atlas segmentation
to a rough segmentation of the target image, obtained by gray-level thresholding.
Then, the two images are non-rigidly registered, obtaining the final segmentation
by label propagation.

One of the main issues of these methodologies is that the segmentation results
are obviously highly dependent on the chosen atlas. Moreover, as the inter-subject
variability is not generally taken into account, such methods may give wrong re-
sults for structures with high variability or for patients with pathologies [45]. In
order to partially solve these problems, some authors propose to use multi-atlas
approaches [21, 128]. In [128], the authors propose to use several atlases, obtained
by different reference images, for the segmentation of pelvic bones in MRI images.
Each atlas of the dataset is first registered to the target image. Then, atlases that
generate the most accurate registrations (normalized mutual information is used
as similarity measure) are selected and the corresponding labels are propagated to
the target image. Finally, the labels are combined together in order to obtain the
final segmentation. A very similar approach was proposed in [21] for segmentation
of pelvic bones and femurs in CT images. In particular, the authors propose to
initialize the registration thanks to a set of automatically extracted landmarks and
to refine the final segmentation thanks to a graph-cuts method.

However, image registration, especially in 3D, could be very time consuming.
For this reason some authors proposed to substitute this procedure with deformable
models approaches. For instance, in [48] the authors propose to segment jointly
the pelvic bones, the femurs and the leg muscles in MRI starting from a mus-
coloskeletal template. In particular, the anatomical template is registered to the
image thanks to some user-selected landmarks, obtaining a 3D mesh which serves
as initialization for a deformable model approach which includes non-intersection
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constraints between the different structures. A very similar approach was proposed
in [5] for the femur segmentation in MRI images.

SSM-based methods

A statistical representation of an object is formed by identifying a set of landmark
points, or eventually a mesh, on an object boundary and by analyzing the variation
of each landmark across a set of training images. Constructing a statistical shape
model (SSM) basically consists in extracting, through principal component analysis
(PCA), the mean shape and a number of modes of variation from a collection of
training samples (see Figure 3.3). For further details, an extensive review on
statistical shape models can be found in [51].

Figure 3.3: Hip bone shape models built from the 3D models of 28 adult patients.
The color map illustrates the normalized variation of the primary mode: (a) the
bilateral hip SSM; (b) the unilateral hip SSM; (c) pelvic bone SSM; (d) femur
SSM. Image drawn from [128].

The ability of the SSMs to incorporate the anatomical shape variations is a
strong advantage with respect to the anatomical atlases, which often represent
only the mean shape of a given structure, and several application were developed
for pelvic bones segmentation.

The most usual segmentation strategy consists of a first registration of the mean
shape of SSM to the target image and on a deformable model, whose evolution
is constrained on the image space defined by the SSM. For instance, this kind of
approach was used in [65] for pelvic bones segmentation in 3D CT images. The
authors propose to manually register the SSM to the target image thanks to a set of
user selected landmarks. The final segmentation is obtained through a deformable
model, whose evolution is guided by a set of edge points obtained by thresholding
the CT image. A similar registration approach was proposed in [102] for pelvic
bones and femurs segmentation in 3D MRI images. However, in this study, the
authors propose a multi-stage deformable model, in which at each stage the forces
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that guide the deformable model evolution are modified by decreasing the SSM
contribution and increasing the image-based one. This kind of strategy, aiming to
reduce the shape constraints on the final segmentation step in order to have better
local results, was also employed in [104] for pelvic segmentation in CT and, by the
same authors, in [105] for knee bones segmentation in MRI.

While the previous studies were mostly focused on the final step of the segmen-
tation procedure (the deformable model evolution), some studies focused on more
complex ways of building the SSMs. For instance, in [136] the authors propose to
use a multi-object hierarchical SSM to jointly segment the pelvis and the femurs
in CT images, ensuring non overlapping constraints between the structures while
ensuring good local results. In [133], the authors propose to generate a SSM of
the pelvic bones that incorporate both shape and gray-level intensity variations in
CT images, in order to ease the registration with the target image. Finally, in [19]
the authors propose a modified version of a standard SSM which allows focusing
on the shape variations of predefined anatomical regions, by manually assigning
different weights to the SSM points.

3.2.3 Discussion

CT is the most widely used imaging modality for bones segmentation. Many
successful studies were developed for adults and, more rarely, for pediatric pa-
tients. Due to the hyperintense nature of the bones in CT, most of the studies
use intensity-based approaches and are very difficult to extend to MRI. For this
reason, studies on MRI generally rely on the texture information of the bones.
However, these approaches were applied to 2D images and to bones with easy
shapes, such as the knee and the vertebral bodies. Moreover, since these methods
are dedicated to adult patients, they do not take into account the bones texture
variability during growth.

Several methods based on anatomical shape priors, in terms of atlases of SSM,
were successfully applied to pelvic bones segmentation, both in CT and MRI.
In particular SSM-based methods, able to model shape variation within a given
population, were shown to be extremely efficient. However, in order to build a
proper SSM, a large number of manually annotated data is needed, which is not
easy to obtain in pediatrics. Moreover, due to the strong differences in shape
and connectivity of pelvic bones during growth, creating a single SSM could not
be trivial (a point to point correspondence between the annotated data have to
be ensured [65]) and it could not, eventually, well represent the different growing
phase of the children.
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3.3 Vessels segmentation

3.3.1 Segmentation methods

Most of the studies on vessels segmentation are applied to angiographic images,
such as CTA and MRA (an extensive review can be found in [61] and [69]). These
image modalities often rely on the injection of a contrast agent and specific ac-
quisition protocols, producing vessels enhanced images (see Figure 3.4a). In case
of MRA and CTA, acquisitions are often calibrated such that vessels gray-level
intensities correspond to predefined intensity ranges. This property was effectively
incorporated in various intensity-based methods. In [11], the author propose to
segment vessels in angiographic images through a region-growing technique based
on a fixed intensity threshold. Nevertheless, angiographic images often suffer from
non-uniformly distributed contrast agent inside the vessels, especially in small ves-
sels. Therefore, in badly conditioned images, the application of a global threshold
is not a sufficient approach for the segmentation of the vessels. In this context,
in [134] the authors propose a competitive region-growing method, which takes
into account both vessels and background intensity information and uses locally
adaptive thresholds for segmentation.

Many methods for vessels lumen segmentation also rely on active contour for-
mulations, both parametric [81, 84, 113, 135] and non-parametric [28, 75, 98, 119].
When using parametric active contours, the contour evolution is often constrained
by previously detected vascular centerlines, which are normally detected starting
from a set of user-selected seeds (e.g. using minimal paths techniques [72]). For
instance, in [84] the authors propose a 3D parametric active surface method, where
the surface evolution is axially constrained with respect to the vessels centerline
curve. A similar method is proposed in [135], introducing a deformable tubular
model, where a surface mesh is optimized with respect to the centerline curve.
Another example is given in [53], in which the authors propose to segment vessels
lumen in 3D images using 2D snakes evolving in perpendicular cross-sections of
the vessels centerlines.

A big amount of research work is also dedicated to the design of vessels en-
hancement filters for angiography images, mainly based on the anisotropic and
hyperintense nature of the vessels, which can be used to ease the segmentation
procedure. For instance, in [42] and [101], the authors propose to analyze the im-
age Hessian matrix, which incorporate the multi scale second order local structure
of the image. A measure of vessel likeliness is then extracted as a function of the
Hessian eigenvalues. Other popular vessels enhancement filters are based, for in-
stance, on the spatial covariance of image gradients vectors [66] and on anisotropic
diffusion schemes [47]. A comparative analysis of the effects of the vessel enhance-
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ment filters images on the segmentation accuracy of an intensity based algorithm
can be found in [95].

(a) MRA (b) Filtered MRA

Figure 3.4: Example of vesselness filtering [42] on a MRA volume (maximum
intensity projection). Images are based on material from [42].

The tubularity feature of the vessels was also used in many studies to post-
process the segmentation results. For instance, in [37], the authors propose to
generate, from a collection of 2D cross-sectional vessels segmentations, 3D sur-
faces as generalized cylinders. It is important to remark that this cylindrical
representation of the vessels could not be valid for big vessels, eventually highly
collapsed due to their non rigid musculature, such as the vena cava. Other kinds
of post-processing approaches rely, for example, on skeletonization techniques and
subsequent pruning strategies to remove spurious vessels branches.

3.3.2 Discussion

A large number of studies addresses the problem of vascular segmentation in an-
giography images. These image modalities often rely on the injection of a contrast
agent and on specific acquisition protocols, producing vessels-enhanced images.
However, the use of contrast agents is not always recommended in clinical practice,
especially for pediatric patients [111]. For this reason, standard MRI acquisitions
(see Chapter 2 for further details) are usually chosen for pediatric pelvis exams.
The use of standard MRI makes it difficult to apply the methods developed for
angiography images, since these images are specifically designed for strong ves-
sels enhanced images. Moreover, for pediatric patients, there are harder clinical
constraints on the scan acquisition time than for adults, which do not allow the
physicians to considerably increase the images resolution. This, coupled with a
smaller size of the vessels walls for pediatric patients, produces images with higher
partial volume effects compared to adults. Finally, most of the existing studies
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do not address the problem of labeling the vessels into vein and arteries, which is
essential for surgical planning applications.

(a) (b) (c) (d)

Figure 3.5: Examples of pediatric T2-w MRI slices, focused on the vessels regions.
White arrows indicate missing boundaries between the vessels and the surrounding
tissues (a, b) and between the veins and the arteries (c, d).

3.4 Bladder segmentation

3.4.1 Segmentation methods

Different successful methods for the segmentation of the bladder on CT images
have been reported in the literature. On the other side, only few studies on MRI
images were carried out. As an example, in [14] the authors propose an approach
based on watersheds with automatic marker extraction for the segmentation of
CT images. The watershed markers are based on the image intensity histogram.
In [109], the authors propose a method incorporating both shape and appearance
information in a 3D graph cuts framework for the simultaneous segmentation of
prostate and bladder. Another interesting approach for CT images is proposed
in [25]. In this study, the authors propose to identify first a region of interest
(ROI) that contains the bladder, starting from a model of the already segmented
pelvic bones. Secondly, a pre-segmentation mask is obtained using a modified
version of seeded region-growing that also incorporates mathematical morphology
operations. Finally a parametric deformable model, using the pre-segmentation as
initialization, is used to obtain the final segmentation result. The idea of region
growing for bladder segmentation was also proposed in [79] for CT images and
in [92] for MRI images. In [44] the authors propose to segment the bladder on
T1-w MRI images using deformable models and also relying, in their formulation,
on prior knowledge about the bladder intensity. In all the previous methods, the
bladder has been segmented considering only the border corresponding to the inner
wall of the bladder, assuming that the thickness of the wall is negligible. However,
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this assumption is only if the bladder is completely full of urine. Therefore, some
methods have been proposed to segment both the inner and outer walls of the
bladder, using active contours methods. In [35] a coupled level-sets framework for
segmentation of the bladder wall on T1-we MR images is proposed. Starting from
the inner bladder segmentation, the authors propose to segment the outer bladder
wall using a level-set, whose energy formulation is based on a regional adaptive
clustering algorithm. However, even if particularly interesting, this methodology
seems computationally expensive [44]. A similar segmentation strategy for 2D
T2-w was proposed in [76]. In particular, in this study some prior information on
the bladder wall thickness is incorporated, in order to segment the outer bladder
border.

3.4.2 Discussion

Several methods for bladder segmentation were developed, especially for CT im-
ages. However, even if these techniques led to promising results, they are not easy
to extend to MRI images, due to the different intensity representations of the two
modalities. For this reason, specific methods were developed for MRI. However,
intensity based methods, such as the ones that rely on region-growing techniques,
could be very sensitive to intensity inhomogeneities, such as the ones generated
by MR bias fields. Active contours, especially level sets methods, appears to be
the best solution for bladder segmentation in MRI. However, none of the existing
methods was tested on pediatric patients, which present higher intensity inhomo-
geneities and higher partial volume effects. Finally, segmentation methods for the
outer wall of the bladder were reported as computationally expensive or applied
to high resolution 2D images.

3.5 What about deep learning?

In the last years, deep learning methods and in particular convolutional neural
networks (CNN) have shown excellent performances in various medical imaging
tasks [23, 33, 60, 73, 83]. However, deep learning methods usually require a huge
number of manually annotated data, which is really difficult to obtain in the med-
ical field, and especially in pediatrics. To partially bypass this constraint, recent
studies [8, 77, 106, 131] have relied on transfer learning [90] from pre-trained net-
works on large datasets of natural images (e.g. ImageNet [27]). However, these
studies cannot be directly applied to volumic data, due to the nature of the training
dataset (e.g two-dimensional (2D) color images for ImageNet). Moreover, discard-
ing the 3D nature of medical images would result in a loss of useful information for
the segmentation task. For this reason, some studies [106, 131] successfully pro-
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posed to generate 2D pseudo-color images from volumeic gray-level images, aiming
to incorporate 3D information. This is the line adopted in Chapter 6 for vessels
segmentation.

3.6 Discussion

As reported in this chapter, very few segmentation methods were developed for
pelvic structures in pediatric images. In fact, the segmentation task is more diffi-
cult in pediatric images than in adult images because of the nature of the target
structures (e.g. shape variability during growth, high partial volume effect) and
harder constraints on the imaging acquisitions (e.g. no CT or angiography acqui-
sitions, low image resolution).

However, despite the strong lack in organ-specific segmentation methods for pe-
diatrics, several generic medical image processing platforms are freely distributed
as open-source software. These platforms, thanks to different segmentation tools
(e.g. region growing, active contours, graph-cuts), aim to speed up the segmenta-
tion procedure compared to the fully manual annotation of the images. In order
to understand whether these generic segmentation tools could fit to the time con-
straints required by the clinical practice (less than 2 hours for a full 3D segmen-
tation), a comprehensive review of these open source software is essential. This
will be the aim of Chapter 4, which will lead us to the choice of a specific software
and its associated programming environment, namely 3D Slicer. The new segmen-
tation methods proposed next, in Chapters 5-7, will be then implemented in this
environment.
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Chapter 4

3D segmentation and visualization
platforms analysis

Abstract

The medical imaging community was very active, in the last decades, on develop-
ing and on freely distributing software platforms for image processing and visual-
ization. In particular, generic segmentation tools, aiming the users to speed up
the segmentation tasks were implemented in these platforms. For this reason, a
comprehensive review of the these software tools, in order to evaluate their perfor-
mances on pelvic MRI segmentation, is essential. In this chapter, twelve software
tools, freely available on the Internet, were evaluated using T2-w volumic MRI and
diffusion-weighted MRI images. The software tools were rated accordingly to eight
criteria, evaluated by three different users: automatization degree, segmentation
time, usability, 3D visualization, presence of image registration tools, tractography
tools, supported OS, and potential extension (i.e. plugins). A ranking of software
tools for 3D modeling of MRI medical images, according to the set of predefined
criteria, is given. This ranking allowed us to elaborate guidelines for the choice
of software tools for pelvic surgical planning in pediatric patients. The best-ranked
software tools were Myrian Studio, ITK-SNAP and 3D Slicer, the latter being es-
pecially appropriate if nerve fibers should be included in the 3D patient model.
Finally, 3D Slicer was also chosen as core software platform for developing the
organ-specific segmentation methods for pediatric patients (Chapters 5, 6 and 7).
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4.1 Introduction

Our aim in this chapter is to evaluate existing segmentation software tools for
pediatric pelvic MRI segmentation. The evaluation is performed according to
our requirements in terms of daily surgical use of 3D modeling of children with
abdomino-pelvic tumors and malformations, e.g. with a limited number of image
processing steps. We present here the selected software tools (Section 4.2.1), we
propose a set of criteria (Section 4.2.3) for comparative analysis (Section 4.3),
and we provide surgeons and researchers with guidelines for choosing software
(Section 4.4).

4.2 Software tools evaluation

4.2.1 Software tools selected for evaluation

This survey focuses on the most generally used software tools in the medical im-
age community, in particular by radiologists. We only include the software tools
equipped with segmentation tools, 3D rendering tools and that are usable by a non
expert in image processing. All the analyzed software tools are freely available on
the Internet, except for two commercial software tools currently used at the Imag-
ing Department of the pediatric Hospital Necker-Enfants Malades of Paris. All free
software tools were tested on a Windows OS (CPU at 3.10 GHz, 16 GB RAM, 64
bit OS), except for the OsiriX DICOM Viewer that was tested on a Macintosh OS
(CPU at 2.7 GHz, 16 GB RAM, 64 bit OS). The possibility of running the software
tools on different operating systems, in particular Linux, was also analyzed. The
selected software tools and the corresponding releases are listed in Table 4.1.

3D Slicer 3D Slicer [38] is a free, multi-platform and open source software for im-
age analysis and visualization written in C++, Python and Qt1. The origin of this
software was a project between different laboratories of the Brigham and Women’s
Hospital and the MIT in 1998. In the following years, several improvements of the
software capabilities were achieved through the support of the National Institute
of Health (NIH). The main interface of 3D Slicer appears as a typical radiology
workstation, allowing for a large number of different visualization configurations
to analyze 2D, 3D and four-dimensional (4D) images. The platform also offers
a large set of processing tools for different imaging modalities and applications
(including segmentation, registration, quantification).

1https://www.qt.io/
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Software Release Cost URL

3D Slicer 4.5.0-1 free http://www.slicer.org/

Anatomist 4.0.0 free http://brainvisa.info/web/anatomist.html

AW-Server 3.2 $ http://www3.gehealthcare.com/en/products/categories/advanced_visualization/platforms/aw_server

Freesurfer 5.3.0 free http://surfer.nmr.mgh.harvard.edu/

FSL 4.0.1 free http://www.fmrib.ox.ac.uk/fsl

ImageJ 1.50b free http://imagej.net/

ITK-SNAP 3.4.0-beta free http://www.itksnap.org

Mango 4.0.1 free http://ric.uthscsa.edu/mango/

MedInria 2.2.3 free http://med.inria.fr/

MIPAV 7.2.0 free http://mipav.cit.nih.gov/

Myrian Studio 2.2.1 free http://studio.myrian.fr/

Olea Sphere 3-0 $ http://www.olea-medical.com/en/olea-sphere-3-0/

OsiriX 5.8 free http://www.osirix-viewer.com/

Seg3D 2.2.1 free http://www.sci.utah.edu/software/seg3d.html

Table 4.1: Selected softwares. Commercial tools are indicated with a $ in the cost
column.

Anatomist Anatomist [97] is the visualization software generally associated with
the software platform BrainVISA[46]. BrainVISA is an open-source software writ-
ten in Python, offering different tools dedicated to the neuroimaging research and
mainly developed by the French Alternative Energies and Atomic Energy Com-
mission (CEA). Although BrainVISA is devoted to brain MRI, Anatomist can be
used to visualize and segment other types of image volumes.

AW-Server AW-Server is the commercial visualization software developed by
GE Healthcare. The workstation, more than just allowing for the visualization
and annotation of the images, offers a large number of advanced post-processing
applications for different imaging modalities and clinical applications.

Freesurfer Freesurfer [40] is an open source software platform, written in C++,
developed by the Martinos Center for Biomedical Imaging of Boston. The soft-
ware is particularly devoted to the analysis and visualization of structural and
functional neuroimaging data, offering several tools for the automated segmenta-
tion of anatomical MRI images and the analysis of diffusion MRI data. Despite
the strong focus on brain MRI, Freesurfer can be used to visualize and analyze
through generic tools various types of multi-dimensional medical images.
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FSL FSL (the FMRIB Software Library) [59] is an open source software library,
written in C++, mainly developed by the FMRIB Analysis Group of the University
of Oxford. The software is strongly devoted to the analysis of functional, structural
and diffusion MRI brain imaging data. Similarly to Freesurfer, although FSL is
strongly devoted to the brain MRI data, it offers a generic viewer (FSLView) that
allows visualizing and manually segmenting 3D images.

ImageJ ImageJ [103] is a Java-based, open source platform for image processing,
developed by the NIH and constantly updated since 1997. Thanks to the collabo-
rative efforts of its developer community, ImageJ offers several functionalities for
performing a wide variety of image processing tasks. However, even if ImageJ
supports multidimensional data, it appears more focused on the processing of 2D
images.

ITK-SNAP ITK-SNAP [138] is an open source software application based on
ITK2 and VTK3 C++ libraries. It was developed by the University of Pennsylva-
nia and the University of Utah, first released in 2004 but under a constant updating
process. The platform allows for navigation within the images similarly to a ra-
diology workstation, and it was specifically developed for segmentation tasks, not
focusing on other kinds of processing (e.g. filtering, registration).

Mango Mango (Multi-image Analysis GUI) is a free Java-based viewer for medi-
cal images developed by the Research Imaging Institute of the University of Texas
Health Science Center at San Antonio. The software includes a graphical user
interface (GUI) for the visualization of 3D images as well as functionalities for
different tasks such as registration, filtering and segmentation. It can be extended
through dedicated plugins.

MedInria MedInria [114] is an open source platform for medical image process-
ing developed by Inria, the French National Institute for computer science and
applied mathematics. This platform manages the visualization of multidimen-
sional data, and it includes processing and analysis of diffusion MRI images (e.g.
to provide tractography). MedInria also offers basic segmentation, registration
and filtering tools based on the ITK library.

MIPAV MIPAV [80], acronym for Medical Image Processing Analysis and Visu-
alization, is a Java-based open source software supported by the NIH. It manages

2https://itk.org/
3http://www.vtk.org/
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multimodal and 3D images, even if its main interface appears better suited for the
processing and visualization of 2D images. MIPAV offers several functionalities
for different tasks such as filtering, registration and segmentation on both 2D and
3D images.

Myrian® Myrian® is a commercial software for medical image processing and
visualization developed by Intrasense. It supports multimodal images and offers
different functionalities for tasks such as segmentation, quantification and registra-
tion. A non-commercial version, Myrian® Studio, is freely available for research
purposes and can be extended through dedicated plugins.

Olea Sphere® Olea Sphere® is a commercial processing platform for CT and
MRI, developed by the company Olea Medical. The workstation includes a generic
DICOM viewer and offers different packages developed for specific medical appli-
cations (e.g. breast, head and neck, prostate).

OsiriX OsiriX [100] is one of the most widely used DICOM viewers in the med-
ical community. The OsiriX project started in 2003 at UCLA, Los Angeles, and
in 2010 the first commercial version of the software (OsiriX MD) was released.
OsiriX Lite is the free version of the commercial software OsiriX MD, intended for
research purposes and offering reduced computational performances, but it still in-
cludes the functionalities needed in our application domain. The platform appears
as a typical radiology workstation, supporting multimodal images and strongly
devoted to the visualization tasks, even if it includes also post-processing tools
such as registration and segmentation.

Seg3D Seg3D [22] is an open source software platform for image visualization
and segmentation of 3D images developed by the NIH Center for Integrative
Biomedical Computing at the University of Utah. The platform focuses on seg-
mentation tasks, even if some other functionalities such as filtering using several
methods from the ITK library are present.

4.2.2 Imaging dataset

Softwares were evaluated on imaging data issued from the complete patient’s co-
hort except for the segmentation time criteria, which is highly dependent on the
patients’ age and pathology. We have thus chosen two adolescent patients with
a normal pelvis anatomy, one female and one male of the same age (to take into
account gender variation) to evaluate this criterion. Segmentation was performed
with all softwares for these two referent patients. Finally, in order not to bias
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the segmentation time results, images having both the same acquisition parame-
ters were chosen for these two patients: echo time TE = 59ms, repetition time
TR = 5716ms, flip angle FA = 90°, image size 512× 512× 208 voxels, and voxel
size = 0.74× 0.74× 0.70mm3.

Diffusion-weighted (DW) MRI scans, acquired immediately after the T2-w ac-
quisitions were used to test the tractography algorithms, in order to minimize the
potential patient’s displacement between the two scans. The DW MRI was ac-
quired in the axial plan with a sequence of 25 directions, a b-value of 1000 and a
voxel size of 1.4× 1.4× 4mm3.

4.2.3 Evaluation criteria

In order to evaluate the performances of the software tools on the segmentation
of the abdominal and pelvic structures in pediatric MRI, we established a list
of eight criteria: automatization degree, usability, 3D visualization, segmentation
time, image registration functionalities, tractography functionalities, supported
system and potential addition of plugins. They are defined in this section.

Automatization degree This criterion was analyzed according to a score de-
fined by the amount of manual interaction required by the user. Score 1 was
assigned to a totally manual segmentation of the regions of interest, performed
slice by slice; score 2 to the presence of generic semi-automatic tools for the seg-
mentation of the 2D slices; score 3 to the presence of generic semi-automatic tools
for the segmentation of a 3D region; score 4 to the presence of semi-automatic
tools optimized for a specific anatomical structure. Note that thresholding-based
segmentation tools were present in all the analyzed software tools. In this study,
we did not consider them as segmentation tools due to the fact that they do not
provide suitable results for any structure of interest in the abdomen and the pelvis,
especially in MRI, where no equivalent of the CT Hounsfield units exists.

Segmentation time The time required for the segmentation of the pelvic struc-
tures of interest in T2 MRI of two test patients (one male and one female) was
evaluated for each analyzed software. The two images had the same features in
terms of contrast, size, resolution, and the patients had the same age and the same
anatomical complexity (see Section 4.2.2 for further details). Consequently, we can
assume that the only factor that could generate a relevant difference on the total
segmentation time is given by the different anatomy of the genital system. For
this reason the total segmentation time was evaluated for the male patient (bones,
bladder, vessels, rectum, prostate, seminal vesicles). For the female patient, only
the uterus was segmented and the segmentation time was compared to the one
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needed for the segmentation of the genital system of the male patient (prostate
and seminal vesicles). The segmentations were carried out using either manual or
semi-automatic tools depending on the availability in the software tools. In both
cases, the aim was to obtain a satisfying segmentation result. For this reason, in
case the segmentation was obtained through semi-automatic tools, the segmen-
tation time also includes the time needed for potential manual corrections of the
segmentation. In order to obtain a comparable segmentation among the different
software tools, our aim was to obtain results as close as possible to a reference
manual segmentation performed by an expert user. The similarity between the
different segmentations was evaluated through the DICE index [31] and the value
0.9 was set as lower limit for our application (a DICE index equal to 1 means exact
correspondence between the segmentations).

Usability In order to evaluate the usability of the different platforms, we fo-
cused on the ease of use of the GUIs (graphical user interfaces). This includes
the general functionalities of the GUI, the ease of use of the manual and semi-
automatic segmentation tools, the easiness of the management of the input and
output patients data, and the header access. This evaluation was qualitatively and
independently performed by three different users (two surgeons and a researcher
in image processing), by assigning a score from 1 to 4 (the higher the score, the
higher the user’s satisfaction). The median value of the scores was retained as the
single final score for each software.

3D visualization The quality of the 3D visualization tools was evaluated. The
aspects that mostly interest us are the generation of the 3D models starting from
the segmented images, the easy navigation within the 3D model and the availabil-
ity of tools for the improvement of the quality of the visual representation (e.g.
smoothing, lighting, colors and transparency management). Evaluation of 3D vi-
sualization, similarly to usability, was qualitatively and independently performed
by the same users, by assigning a score from 1 to 4 (the higher the score, the
higher the user’s satisfaction). The median value of the scores was retained the
single final score for each software.

Image registration The availability of automated registration tools, which are
needed to align different MRI scans, was evaluated for each software, assigning
a binary positive or negative score. The details of registration tools (e.g. rigid,
affine, thin-plate) within each software are not listed, being out of the scope of
this survey.
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Tractography An efficient way to reconstruct the 3D paths of the nerve fibers
is to apply tractography algorithms to diffusion MRI acquisitions. Availability of
tractography tools was noted for each software by a binary positive or negative
score.

Operating systems Considering that different operating systems (OS) are used
in the medical imaging community, the corresponding supported OS was reported
for each software and the possibility of running the software tools with different
OS was considered.

Potential extensions The ability of the software tools to be freely extended
by add-ons or plugins was considered as important criteria. For each software, in
order to understand the different development strategies to extend their capabil-
ities, we report whether they are open-source or not, the different programming
languages to use to eventually develop the extensions, and the availability of doc-
umentation (such as wiki pages or tutorials) and forums or mailing lists focused
on the development issues.

4.3 Results

The performances of 14 segmentation software tools (12 free software tools and
2 commercial software tools) described in Section 4.2.1 were analyzed. The re-
sults given by the analysis of the software performances, according to the criteria
described in the previous section, are summarized in Table 4.2 (7 first criteria), Ta-
ble 4.3 (comparison of the segmentation time for the different structures between
male and female patients), and Table 4.4 (last criterion on plugins).

Automatization degree In all the analyzed software tools, except for Anatomi-
st, FSL and Mango, different generic semi-automatic segmentation tools were
present. In particular the highest automatization degree score was assigned to
3D Slicer, AW-Server, ITK-SNAP, MedInria, Mipav, Myrian Studio, Olea Sphere
and OsiriX. This means that all these software tools include at least one semi-
automatic tool for the segmentation of a 3D region, 3D Slicer being the one that
offers the largest number of segmentation tools (both 2D and 3D). As shown in
Table 4.2, none of the software tools includes organ-specific tools dedicated to the
segmentation of the pelvic structures of interest in MRI. However it is important
to note that some of the software tools (e.g. 3D Slicer, Myrian Studio, Freesurfer,
FSL) have organ-specific segmentation tools for other anatomical structures (e.g.
brain, liver, lungs) or for other imaging modalities (e.g. CT, microscopy).
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(a) 3D Slicer (b) ITK-SNAP (c) Myrian Studio

Figure 4.1: Example of 3D pelvic reconstructions obtained through segmentation
of the volumetric T2-w MRI.

Usability Our analysis ranks ITK-SNAP and Seg3D as the best tools in terms of
usability. These software tools present a clear and intuitive GUI and the number of
user interactions (clicks or selection) generally needed to perform a given operation
is really limited. In particular they easily allow the user to import the patient data,
to access to its information, to perform the segmentation tasks, and to finally save
the processing results. The two software tools that obtained the lower score were
Anatomist and FSL. The main reason is that they are mostly dedicated to users
with a certain image processing background, and they actually do not focus on
generic segmentation tasks.

3D Visualization The software tools that obtained the best score were 3D
Slicer, ITK-SNAP, Myrian Studio, Olea Sphere and OsiriX. These software tools
allow the user to obtain, once the segmentation task is performed, the 3D models
of the segmented regions and to easily navigate in the 3D views. Moreover, these
software tools offer several tools for the management of the 3D surfaces such as
opacity and lighting, that clearly improve the visual quality of the visualization
of the 3D models. On the other side, the lowest score was assigned to Anatomist,
Freesurfer and ImageJ, mostly due to the not intuitive steps needed to obtain the
3D models from the segmented images.

Segmentation time As shown in Table 4.2, the time required for the segmen-
tation of the structures of interest of our male test patient (bones, colon, bladder,
main vessels, prostate) is always at least 9 hours. In particular, Myrian Studio is
the software that gave the best segmentation time. The complete reconstructions
of all the structures of interest were performed using only four of the analyzed soft-
ware tools (3D Slicer, ITK-SNAP, Myrian Studio, Seg3D) and, consequently, the
exact segmentation time is reported only for them. Using the other software tools,
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Software
Segmentation Time [min]

Male Female

3D Slicer 7 19

Anatomist 13 28

AW-Server 8 20

Freesurfer 11 28

FSL 12 26

ImageJ 10 25

ITK-SNAP 6 18

Mango 9 20

MedInria 10 20

MIPAV 11 26

Myrian Studio 4 11

Olea Sphere 9 21

OsiriX 8 18

Seg3D 8 19

Table 4.3: Segmentation time for the genital system.

due to the long time needed for the segmentation, only a few structures have been
segmented. In these cases, the time for the complete segmentation is estimated
(in Table 4.2 the lower bound is reported) by considering both the time needed
to fully segment the first structures and the time needed to partially segment the
other structures. As shown in Table 4.3, the segmentation time needed for the seg-
mentation of the female genital system was, for all the software analyzed, higher
than for the male one.

Registration tools All the software tools, except Anatomist, Seg3D and ITK-
SNAP, include image registration tools. In particular, 3D Slicer is the one that
offers the largest number of different image registration tools.

Tractography tools Tractography algorithms that allow to track the nerve
fibers from the diffusion MRI are present in 3D Slicer, AW-Server, Freesurfer,
FSL, MedInria, MIPAV and Olea Sphere. In Figure 4.1 the full pelvic 3D re-
constructions obtained using 3D Slicer, ITK-SNAP, Myrian Studio are shown.
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Additionally, the nervous pelvic network was added on the 3D Slicer segmentation
view since it could be obtained using this software.

Potential extensions As reported in Table 4.4, all the software tools, except the
two commercial software AW-Server and Olea Sphere, can be freely extended by
independent developers, in order to improve the performances of the basic versions
of the software. The development of extensions is, in most of the cases, supported
by specific documentation and forums, and different programming languages can
be used.

Software Extensible Open-source Documentation Forum Programming language

3D Slicer x x x x C++, Python, Matlab

Anatomist x x x x C++, Python

AW-Server - - - -

Freesurfer x x x x C++

FSL x x x x C++

ImageJ x x x x Java, Javascript, Python, Matlab, Ruby, Groovy, Lisp, R

ITK-SNAP x x x C++

Mango x x x Java, Python

MedInria x x x x C++

MIPAV x x x x Java

Myrian Studio x x x C++, Matlab

Olea Sphere - - - -

OsiriX x x x x Objective C

Seg3D x x x x C++, Python, Matlab

Table 4.4: Development features.

4.4 Discussion

The time required for the segmentation is surely the most important factor to con-
sider in our evaluation. Even if the segmentation time is obviously related with
the automatization degree of the software, it gives better information about the
real performances of the segmentation tools. In some cases, the semi-automatic
segmentation tools did not allow obtaining suitable results for all the structures of
interest, and time-consuming manual corrections had to be done. For example, us-
ing AW-Server, MedInria, MIPAV, OsiriX and Olea Sphere, the 3D semi-automatic
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tools had suitable performances only on the bladder segmentation and the rest of
the organs were manually segmented. None of the analyzed software tools re-
spected the segmentation time limits imposed by the clinical practice. However,
the fastest segmentation results were obtained using Myrian Studio and ITK-
SNAP. In particular Myrian Studio offers, within its various segmentation tools,
a powerful tool to interpolate several manual segmentations on the 2D slices to
obtain a 3D segmentation, strongly reducing the segmentation time of all the struc-
tures of interest. The segmentation time with ITK-SNAP was also shorter than
for the other software tools, although slightly higher than the former. It benefits
from a powerful and interactive 3D segmentation tool based on deformable models
implemented in level-set algorithms. Even if this tool was not suitable for all the
structures of interest, it allowed shortening the segmentation time for the bones
and the bladder.

Both ITK-SNAP and Seg3D appear really usable, thanks to clear interfaces
and to intuitive segmentation tools. The easy use is especially guaranteed by
the fact that these software tools have a limited number of functionalities and
that they are strictly dedicated to segmentation problems. Software tools such as
3D Slicer, AW-Server, Olea Sphere and Myrian Studio are also really usable but
slightly less than the formers, due to a larger number of screen configurations and
tools offered for various tasks (e.g segmentation, filtering, analysis, registration
and tractography tools). It is important to remark that, as our team did not
have previous experience of any of the software tools analyzed, the influence of
the learning curve for each software was not considered. However, we can expect
that all computation times would be reduced after user’s training. Regarding the
segmentation process, the main difficulties were strongly related to each anatomical
structure (see Figure 4.2):

• The structure that raises the biggest segmentation difficulties is the colon,
due to its complex 3D shape and the strong inhomogeneities induced by
the presence of both air and matter. Moreover, on T2-w images, there are
often unclear boundaries between the colon and the surrounding perirectal
fat (Figure 4.2a). Hence its segmentation is guided by a prior anatomical
knowledge in addition to the image information.

• The bones, even if not totally homogeneous, are better suited to be seg-
mented with semi-automatic tools than the colon. Anyway, due to the large
volume that they occupy on the image and the not totally suitable results
given by the semi-automatic tools (manual correction are needed), the bone
structure is the one that requires the longest segmentation time (Figure 4.2b).

• The bladder, appearing on the T2-w images as a homogeneous hyperintense
region, is the easiest organ to segment and the available semi-automatic tools
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.2: Example of organs segmentations in a few MRI coronal slices. From
top to bottom: (a) rectum, (b) bones, (c) bladder, (d) veins (blue) and arteries
(red), (e) prostate, and (f) uterus.

allow us to generally perform a fast and accurate segmentation. However,
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the automatic segmentation tools do not allow taking into account both the
bladder repletion (strongly hyperintense) and the bladder wall, that eventu-
ally have to be segmented (Figure 4.2c).

• The main pelvic vessels (aortal and vena cava bifurcation, iliac veins and
arteries) are not difficult to visually identify but the available semi-automatic
algorithms do not allow us to obtain suitable results. The main problems are
related to the low contrast between the vessels and the surrounding tissues,
and to the unclear boundaries between the veins and the arteries in the
regions in which they are partially in contact (Figure 4.2d).

• The segmentation of the prostate and the uterus is difficult due to a poor
contrast and not well defined boundaries with the surrounding tissues (Fig-
ure 4.2e and Figure 4.2f). The segmentation time for the uterus is higher
than for the prostate due to its more complex shape and its bigger volume
(67.5 cm3 for the uterus, against 15.7 cm3 for the prostate4). However, both
structures are relatively quickly segmented in comparison to the others due
to their limited size.

The problems encountered and the long time required to build the 3D models
are thus related to the lack of organ-specific segmentation tools for the structures of
interest in any of the software tools tested. For this reason, the extension criterion
is crucial in the evaluation of the software potential. The plugins, do not only
improve the segmentation performances, but can also be really useful in research
works to test and evaluate innovative methods and algorithms. Even if most of
the software tools can be extended by add-ons or plugins, as shown in Table 4.4,
the ones that appear easier to extend, thanks to their modularity, their extensive
documentation, tutorials and support provided for the developers, are 3D Slicer,
ImageJ, MIPAV and Myrian Studio.

To conclude this survey, we can sum up some guidelines for the choice of a
software for the pelvic surgical planning depending on the final result the user
wants to achieve.

If the aim of the user is to obtain the reconstruction of the organs of interest
(bones, bladder, colon, vessels, genital system) by segmenting (manually/semi-
automatically) the image volumes of the patient, the best-ranked tools, according
to our criteria, are ITK-SNAP and Myrian Studio. These two software tools are
the fastest in terms of segmentation time, are really usable and offer a good 3D
visualization of the segmentation results. Among these two software tools, the
advantage of ITK-SNAP is the easier management of the output segmentation
models, that can be easily exported in standard formats (e.g. .vtk, .stl) and

4Values estimated from the manual segmentations.
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eventually imported in other software environments. Moreover, ITK-SNAP is
multi-platform, while Myrian Studio runs only on Windows OS.

However, neither ITK-SNAP nor Myrian Studio offer tractography tools for
the 3D reconstruction of the nerve fibers that could be really useful to integrate in
the patient-specific 3D model. A possible solution, in order to obtain a complete
patient model, could be to generate the segmentation models of the structures of
interest within a software (e.g. ITK-SNAP), export the results and subsequently
import them in a software that offers tractography tools. However, this procedure
requires several steps and it would be clearly better for the user to have all the
needed tools in the same software platform. Therefore, if the user also wants to
consider the nerve fibers in the final 3D reconstruction, 3D Slicer is the software
that best fits our requirements. In fact, even if using 3D Slicer the segmentation
time is higher than with ITK-SNAP or Myrian Studio, and the GUI slightly less
easy to use than the one of ITK-SNAP, 3D Slicer has good 3D visualization fea-
tures and has the strong advantage of offering tractography tools. Note that recent
versions of 3D Slicer include a better GUI with useful interpolation and visualiza-
tion tools. Moreover in case of users willing to extend the software capabilities,
since 3D Slicer can be easily extended with plugins, the segmentation time could
be strongly reduced by implementing organ-specific segmentation methods.

As mentioned in Section 4.2.2, two 16 years old patients with a normal anatomy
of the structures of interest were chosen for the evaluation of the segmentation time
criterion, in order not to bias the software performances analysis with complex
image interpretation issues. Surely, strong malformations raise more difficulties
on the segmentation task, and the segmentation time would potentially increase
compared to our case. Moreover, in case the user wants also to segment a potential
tumor, this additional time has to be taken into account. The amount of the
additional segmentation time depends on different factors that cannot be easily
quantified, such as the anatomical experience of the user, the seriousness of the
malformation or the tumor extension.

Another factor that could impact the segmentation time is the age of the pa-
tient. On the one side, considering younger patients will potentially lead to an
additional time in the image-understanding task, due to a more complex anatomy.
On the other side, with the same acquisition protocol, younger patients also mean
less slices and smaller structures to segment. As in the case of pathological pa-
tients, the overall effect of these two opposite factors strongly depends on the user
anatomical experience.
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4.5 Conclusion

In this chapter, we highlighted the differences in performances of different software
tools, according to a set of criteria defined for our specific needs in 3D modeling of
abdomino-pelvic tumors and malformations in children, from MRI acquisitions. In
the literature, few papers reviewed the various software tools able to read DICOM
images with the aim of integrating clinical research and medical imaging [50, 71,
115]. In these studies, the authors distinguished open source, free and commercial
tools, and analyzed them according to several general criteria such as usability,
interface, data management and 2D and 3D viewing tools. In particular, Presti
et al. [96], focused on the issues of image-guided surgery, by reviewing different
software tools taking also into account the possibility of their integration in a
portability workflow till the operating room. However, none of the previous studies
considered the segmentation performances of the different software tools.

Thanks to our study we quantitatively demonstrated that none of the analyzed
software meets the time criteria for segmentation needed in clinical practice. This
clearly justifies the need of developing dedicated segmentation methods for pelvis
structures in pediatric MRI. Finally, this study led us to choose 3D Slicer as as
core software platform for developing these segmentation methods (Chapters 5, 6
and 7).
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Chapter 5

Pelvic bones segmentation

Abstract

This chapter presents a semi-automatic method for the segmentation of the pelvic
bones in T2-weighted MRI images. The proposed method consists of two main
steps: i) a semi-automatic registration of age-specific bones templates with the tar-
get MRI; ii) a segmentation refinement, based on deformable models, that takes
into account the local curvature of the pelvic bones. The performances of the pro-
posed approach, validated on a set of 25 T2-w MRI volumes of pediatric patients,
were quantitatively and qualitatively appreciated by medical experts. In order to
deliver the clinicians with a user-friendly segmentation tool, the proposed method
was implemented as a plug-in for the 3D Slicer platform. Finally, a part of this
work has been published in [122].
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5.1 Introduction

5.1.1 Context

Pelvic bones constitute a core structure of the pelvis, which serves as a spatial
reference for the surgical planning and 3D visualization. Moreover, due to the
large volume that they occupy in the pelvic region, pelvic bones are the structures
which require the highest time for segmentation when using manual segmentation
tools (see Chapter 4).

As pointed out in Section 3.2, most of the existing methods are applied to CT
images, using intensity-based approaches, or to adult images using strong shape
priors in term of atlases or SSM, without taking into account the bones variability
during growth. In this chapter we propose a new method for pediatric MRI and
taking this variability into account.

5.1.2 Outline

In order to overcome the problems of the existing methods, we propose a semi-
automatic approach for the segmentation of the pelvic bones in pediatric MRI.
In particular, we propose a multi-template based approach, in which the different
templates are representative of the different growing phases of the bone struc-
tures. The problem of variability in terms of connectivity is then solved by the
choice of the closest bone template, and the shape variability is managed by a
landmark-based user registration. A semi-automatic approach (user interaction
for the landmark selection and then automatic processing) was preferred to a fully
automatic one, giving to the user a better control on the final segmentation result
and avoiding potential unexpected results in case of strong abnormalities of the
patient anatomy.

To the best of our knowledge, this is the first study specifically addressing the
segmentation of pelvic bones in pediatric MRI, whatever the patient’s age.

5.2 Segmentation method: a template-based
approach

Due to the complexity of the bones in the pelvic regions and their high variabil-
ity during growth, we propose a multi-template based approach. The idea is to
build a set of 3D bone templates at different ages, and to segment images of a
patient by using the template corresponding to the closest age. The segmentation
is performed in two steps. First, a semi-automatic pre-segmentation is based on
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the registration of the chosen anatomical bones template to the target MRI. In the
second step, the pre-segmentation is refined through the evolution of deformable
models, in order to extract the final segmentation.

5.2.1 Generation of anatomical templates

In order to cope with the high variability in terms of connectivity of the children
bones structure during their growth, we propose to build bones templates from
pelvic CT exams of a few patients of different ages and sex. Although MRI is
often the preferred modality for children, CT data are available for enough cases,
and allow for an easy, accurate and fast segmentation of the bones. Note that
this was done only for a few cases at different ages based on existing data from
abdomino-pelvic CT performed for extrapelvian and extraosseous pathologies, and
no specific CT acquisition was done for this study. To segment the CT volumes,
we use the semi-automatic region competition method by Zhu and Yuille [141]
implemented in ITK-Snap software [137]. Potential errors on the segmentation
results are manually corrected.

Using this method, five anatomical templates (corresponding to 1, 2, 4, 9 and
15 years old children) were generated for each sex group, yielding a total of 10
templates. The different ages of the patients were chosen after analyzing a large
dataset of CT scans, to extract the age ranges corresponding to the most significant
anatomical changes during the ossification process and growth. Some 3D views
of some anatomical templates are shown in Figure 5.1. The variation in terms of
connectivity of the pelvic bones during the growth can be observed by the gradual
fusion of the three structures of the hip bone (ilium, ischium and pubis).

5.2.2 Pre-segmentation from closest template registration

The pre-segmentation of the MRI volumes is obtained through thin-plate spline
(TPS) registration [10, 99] between the chosen anatomical template and the target
MRI volume. For each target MRI, in order to have a good representation of the
bone connectivity, the template with the corresponding sex and the closest age
was chosen.

The TPS-based registration method [10, 99] formalizes the deformation of an
image M , considered as a grid structure, as an interpolation problem. Given two
sets of points Ps and Pt in the grid, the optimal non-linear transformation T is
obtained by ensuring the point-wise correspondence between the two sets [89]. The
propagation of the deformation to the rest of the image grid is defined by the thin-
plate interpolation model, that minimizes the bending energy [56]. An example
of the deformation produced by the TPS interpolation on a 2D grid is shown in
Figure 5.2.
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(a) (b)

Figure 5.2: Example of thin plate spline registration on a 2D grid. a) Original
grid. b) Transformed grid after applying the transformation. The small black
points mark the positions of the source landmarks, the big gray points mark the
target landmarks (drawn after image from [110]).

In our application the image M is the template image, the set Ps represents
manually selected landmarks on the template image and the set Pt represents the
anatomically corresponding landmarks manually selected on the target MRI image
I. The pre-segmentation of the bones is then the imageMt = T (M) resulting from
the registration.

5.2.3 Refined segmentation using deformable models

The final segmentation of the bone structures relies on a parametric deformable
model, initialized by the pre-segmentation Mt. An original feature of the pro-
posed approach is that the landmarks used for the registration also constrain the
evolution of the surface. We use the following notations: I is the MRI volume,
surfaces are parametrized by (s, r), v(s, r) denotes a point of the evolving surface,
and v0(s, r) the corresponding point on the initial surface given by Mt.

Deformable model

Given a parametric surface v(s, r) = [x(s, r), y(s, r), z(s, r)], the evolution of the
deformable model can be formulated starting from a force balance equation

Fint(s, r) + γFext(s, r) = 0, (5.1)
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where Fint(s, r) = αFel(s, r)+βFrig(s, r), Fel(s, r) and Frig(s, r) are the membrane
and the thin-plate forces, respectively [130]:

Fel(s, r) =
∂v(s, r)

∂s
+
∂v(s, r)

∂r
, (5.2)

Frig(s, r) =
∂2v(s, r)

∂s2
+ 2

∂2v(s, r)

∂s∂r
+
∂2v(s, r)

∂r2
(5.3)

We propose to make the parameters α and β locally dependent on the curvature
of the initial model v0(s, r) = v(s, r) |t=0, and then to keep these values during the
model evolution:

α(s, r) =
κα√(

∂v0(s,r)
∂s

)2

+
(
∂v0(s,r)
∂r

)2
(5.4)

β(s, r) =
κβ√(

∂2v0(s,r)
∂s2

)2

+ 2
(
∂2v0(s,r)
∂s∂r

)2

+
(
∂2v0(s,r)
∂r2

)2
(5.5)

where κα and κβ are two constant parameters. These formulations of the parame-
ters α and β allow us to maintain the shape of v(s, r) consistent with the shape of
v0(s, r), during its evolution. Since bones contain both regions with strong and low
curvature, this characteristic is taken into account in the proposed method, which
would not be possible with constant parameters. This approach assumes that,
having an initialization close enough to the desired final configuration, the points
of the evolving surface v(s, r) will converge to final points that anatomically corre-
spond to the ones of the initialization v0(s, r). This hypothesis is satisfied thanks
to the first template registration step, that provides a good initialization. This
allows defining α and β from the curvature on the initial surface v0.

The external force Fext is chosen classically as the GVF force field [129], but
computed from a filtered image volume Iop, resulting from a morphological open-
ing of the image I (using a sphere of radius r = 2 mm as structuring element).
This allows attenuating the image gradients generated by the small components
of adipose tissues close to the target bones regions.

Constraints on the surface evolution

In order to manage the TPS registration (see Section 5.2.2), the most efficient
approach for the selection of the landmarks Ps and Pt is to select them on the
external borders of the bones structures, as shown in the example in Figure 5.3, at
anatomical positions that are easy to identify. Therefore it is possible to assume
that the points Pt, being part of the initialization v0(s, r), are already at the correct
spatial positions for the final segmentation, and thus have to be considered as fixed
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(a) pre-deformation. (b) post-deformation.

Figure 5.3: Example of a couple of landmark points and the resulting deformation
on a MRI slice portion. The red region represents the current bone template mask.
The landmarks are represented by green (Ps) and blue (Pt) points in the images.

points during the evolution of v(s, r). Moreover, in order to cope with situations
where a point of Pt (manually selected landmark) could potentially not be exactly
in correspondence with a point of the surface v0(s, r), the fixed points are chosen
as the closest points of v0(s, r) to the points Pt.

5.3 Results

The proposed method was tested on 25 T2-weighted volumic MRI images, acquired
in the coronal plane, of patients between 1 and 18 years old (see Chapter 2).

5.3.1 Landmark selection

In our experiments, the selection of the landmarks was done in an iterative ap-
proach in which, for each new landmark selected, the user was able to visualize
the deformed template resulting from all the landmarks previously selected. In
this way the user, having no prior constraint on the number of landmarks and a
clear visualization of the deformation effects, was able to fully control the regis-
tration procedure in order to achieve the desired result. Moreover, the user was
able to select and to verify the position of the landmarks in the three different
anatomical views (axial, coronal and sagittal). This procedure (see Section 8.2 for
details about the GUI) was shown to be very efficient, and the feedback from the
users was very positive. On the tested cases, an average of 20 landmarks, selected
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as anatomically relevant points, were needed in order to manage the thin-plate
registration and to obtain a good initialization for the next step.

The interaction time needed for the registration step was variable in function
of the experience of the user: from around 5 min for an expert user to a maximum
of 30 min for a new user (less than 5 full registration experiences), and this time
decreases rapidly with more experience.

5.3.2 Qualitative evaluation of the segmentation results

Two examples of the complete segmentation pipeline on a 1 year old patient and
on a 16 years old patient are shown in Figure 5.4 and in Figure 5.5, respectively.
We can see from the results that the first thin-plate registration efficiently allows
us to obtain a deformed template, which maintains the connectivity features of
the original template. Moreover, thanks to the meaningful spatial positions of
the user-selected landmarks, the final model does not contain unexpected spatial
distortions. Such a registration allows us to obtain a pre-segmentation which is
already close to the target bones on the MRI volumes. Finally, the proposed
deformable model allows us to refine these results, obtaining a final segmentation
which was positively appreciated by medical experts. Other qualitative results are
shown in Figures 5.6-5.8.

5.3.3 Quantitative evaluation of the segmentation results

The performances of the proposed approach were validated through comparison
with manual segmentations performed by medical experts and with results pro-
vided by other tested methods (standard deformable models).

More precisely, the following comparisons, in terms of DC and ASSD (see
Section 2.3), have been performed:

• Pre-segmentation vs Manual : we estimated the DC and the ASSD between
the pre-segmentation results, obtained through registration of the bones tem-
plates (see Section 5.2.2), and the manual segmentations.

• Snake vs Manual : we estimated the DC and the ASSD between the segmen-
tation obtained with a standard parametric active contour (spatially constant
α and β parameters), using the pre-segmentation as initialization, and the
manual segmentations.

• Snake_local vs Manual : we estimated the DC and the ASSD between the
segmentation obtained with a parametric active contour using the proposed
locally dependent α and β parameters (see Equations 5.4 and 5.5), using the
pre-segmentation as initialization, and the manual segmentations.
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(a) Original template (b) Deformed template

(c) Pre-segmentation (d) Final segmentation

Figure 5.4: Example of segmentation results on a 1 year old patient. (a) Original
template and source landmarks (green spheres). (b) Deformed template and target
landmarks (blue spheres). (c) MRI slice with pre-segmentation (red contour).
(d) MRI slice with final segmentation (yellow contour) and manual segmentation
(blue mask).

• Snake_land vs Manual : we estimated the DC and the ASSD between the
segmentation obtained with a standard parametric active contour, using the
pre-segmentation as initialization and the user-selected landmarks as fixed
points during the surface evolution, and the manual segmentations.

• Snake_land_local vs Manual : we estimated the DC and the ASSD between
the complete proposed method, using the pre-segmentation as initialization,
the user-selected landmarks as fixed points during the surface evolution and
locally dependent parameters, and the manual segmentations.

The parameters for the evolution of the deformable model were experimentally
set to: κα = 0.018; κβ = 0.01; γ = 3. For the tests Snake vs Manual and
Snake_land vs Manual the constant α and β parameters were set, for each patient,
as the mean values of α(s, r) and β(s, r) along the initialization surface. The same
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(a) Original template (b) Deformed template

(c) Pre-segmentation (d) Final segmentation

Figure 5.5: Example of segmentation results on a 16 year old patient. (a) Original
template and source landmarks (green spheres). (b) Deformed template and target
landmarks (blue spheres). (c) MRI slice with pre-segmentation (red contour).
(d) MRI slice with final segmentation (yellow contour) and manual segmentation
(blue mask).

parameters were used for the full MRI dataset. Finally, in order to evaluate the
inter-user variability of the manual segmentation results, the DC and the ASSD
were also evaluated between the manual segmentations performed by two different
users.

The results in Figure 5.9 show that the user-guided template registration al-
ready provides a good initialization for the following segmentation. However, us-
ing a standard snake formulation does not significantly improve the results. More
relevant improvements were obtained using either the local parameters or the evo-
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Figure 5.6: Qualitative segmentation results on a 9 years old patient. Six coronal
views (left) and the 3D view (right) are displayed. The yellow contours represent
the segmentation obtained using the proposed method. The blue masks represent
the manual segmentation.

Figure 5.7: Qualitative segmentation results on a 15 years old patient. Six coronal
views (left) and the 3D view (right) are displayed. The yellow contours represent
the segmentation obtained using the proposed method. The blue masks represent
the manual segmentation.

lution constraints given by the fixed landmarks, with no significant differences
between the two approaches. The best results are obtained by combining these
two contributions (green boxplots in Figure 5.9).
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Figure 5.8: Qualitative segmentation results on a 2 years old patient. Six coronal
views (left) and the 3D view (right) are displayed. The yellow contours represent
the segmentation obtained using the proposed method. The blue masks represent
the manual segmentation.

As already mentioned, the previous results were obtained using an average
number of 20 user-selected landmarks, which was considered a good compromise
between the user interaction time and the accuracy of the initialization. In order to
analyze the effect on the final segmentation accuracy of the number of user-selected
landmarks, 15 images (a subset of the full patients dataset) were segmented using
different user-selected landmarks sets containing a different number of points. In
particular, the tests were performed using 4 sets of 10, 20, 30 and 40 landmarks,
respectively. These results are depicted in Figure 5.10. As expected, the higher
the number of the user-selected landmarks, the higher the segmentation accuracy.
However, there is not an extremely relevant performance increase using more than
20 landmarks, which is coherent with the user experience of the proposed tool.

In order to have a more consistent evaluation of the performances of the pro-
posed method, we also looked at the relation between the DC of the segmenta-
tion results (Snake_land_local) and the age of the corresponding patients. As
shown in Figure 6.7, there is not, qualitatively, a significant relation between the
performances and the patients’ age, which is very encouraging for our pediatric
application. However, it is important to remark that our dataset (25 patients) is
not large enough to test any statistical assumptions on the correlation between
DC and patients’ age.
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(a) Dice.

(b) ASSD [mm].

Figure 5.9: Quantitative evaluation of the segmentation results in terms of Dice
index and ASSD. Each boxplot represent the minimum and maximum values, the
1st and the 3rd quartile and the median value. The green boxplots represent the
results obtained using the proposed method. Comparisons are done with respect
to a first manual segmentation (M1). The red boxplots represent the comparisons
between the manual segmentations performed by two different users (M1,M2).
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Figure 5.10: Evaluation of the results of the proposed method in terms of DICE
index, for different numbers of user-selected landmarks.

Figure 5.11: Dice score in function of the patients’ age and corresponding linear
regression line (red).

5.4 Conclusion and discussion

5.4.1 Contributions

In this chapter, we proposed a semi-automatic method for 3D segmentation of
pelvic bones in pediatric MRI volumes. The method relies on two original features.
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First, a small series of templates is built from CT data, and are used to initialize
the segmentation under user’s control. This allows us i) to take into account
the variability in terms of connectivity of the children bones structure during their
growth and ii) to manage the bones shape variability thanks to the user-interaction.
Then a second automatic step refines the segmentation using a deformable model in
which regularization parameters depend on the local curvature of the bones. This
is relevant since pelvic bones contain both almost flat zones and strong curved ones.
Moreover, the user-selected landmarks, needed for the previous registration step,
are here used as fixed anchors during the deformable model evolution. Finally, the
proposed method was integrated as a plug-in for the software 3D Slicer, delivering
a powerful tool and a user-friendly GUI to the clinicians (see Section 8.2 for more
details).

The proposed method was evaluated on a varied database of 25 MRI volumes,
obtaining an average accuracy in term of DC and ASSD of DC = 0.80± 0.04 and
ASSD = 1.34 ± 0.55 mm. The qualitative results were also positively evaluated
by medical experts, who appreciated the first manual landmark selection, which
was not tedious while guaranteeing a good initialization.

5.4.2 Perspectives

As detailed in Section 5.2.2 our method requires a set of user-selected landmarks,
in order to manage the thin-plate registration. A potential improvement of the
proposed method could be to avoid the user-interaction, automatically detecting
meaningful landmarks in the MRI volume [20, 67]. However this approach, while
reducing the user interaction time, could lead to unexpected results in case of
wrong landmarks detection. This could consequently reduce the reliability of the
entire segmentation framework, which is essential in clinical applications.

As discussed in Section 5.2.3, the landmarks for the registration are manually
placed in correspondence of the external borders of the bones structure. However,
our method does not deal with potential inaccurate landmarks selection. For this
reason, a potential improvement to our method could be to automatically refine
the landmark position (e.g. based on local image features, such as the intensity
gradients).

Finally, a potential extension of this work could also concern the bones template
selection, choosing the anatomically closest template instead of the closest age, in
order to cope with potential abnormal child development. This would require to
define an appropriate similarity measure between a template and an image.
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Chapter 6

Pelvic vessels segmentation

Abstract

In this chapter, we propose a patch-based deep learning approach to segment pelvic
vessels in 3D MRI images of pediatric patients. For a given T2-weighted MRI vol-
ume, a set of 2D axial patches is extracted using a limited number of user-selected
landmarks. In order to take into account the volumetric information, successive
2D axial patches are combined together, producing a set of pseudo RGB color im-
ages. These RGB images are then used as input for a convolutional neural network
(CNN), pre-trained on the ImageNet dataset, which results into both segmentation
and vessel labeling as veins or arteries. The performances of the proposed method,
validated on a dataset of 35 T2-w MRI volumes of pediatric patients, were quanti-
tatively and qualitatively appreciated by medical experts (ASSD = 0.89±0.07mm,
DC = 0.79± 0.02). Moreover, in order to deliver a user-friendly tool to the clini-
cians, the proposed method was implemented as a plugin for the 3D Slicer platform.
A part of this work has been published in [120] and a more complete and extended
version has also been published in [121].
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6.1 Introduction

6.1.1 Context

Among all pelvic structures, the vessels are particularly important. Indeed, the
preservation of the vascular structures during surgery is essential in order to avoid
potential functional damages to the patient’s organs. As detailed in Section 3.3,
most of the existing studies are applied to angiography images, which present
strong vessels enhancement, and are not easy to extend to MRI images. In this
context, deep learning methods, which have shown excellent performances in vari-
ous medical imaging tasks, could be an interesting field to explore. However, deep
learning methods usually require large datasets of manually annotated data, which
could be a strong limit to their application, especially in pediatrics. Therefore, a
transfer learning approach is proposed in this chapter.

6.1.2 Outline

We propose a patch-based deep learning approach that is, to the best of our knowl-
edge, the first study on pelvic vessels segmentation in pediatric MRI. Starting from
a set of user-selected landmarks, a series of patches containing the structures of in-
terest is extracted. In this way, for each patient, the user can focus on the analysis
of the vascular structures of surgical interest. Similarly to [131], the patches are
generated by stacking the three successive slices (Section 6.2.1), forming pseudo-
RGB images. This approach allows us to take into account the 3D information
of the image while using a CNN pre-trained on ImageNet in a transfer learning
approach (Section 6.2.2). Results are discussed in Section 6.3.

6.2 Segmentation method: a patch-based deep
learning approach

The proposed method for the segmentation of the pelvic vessels consists of two
main steps: a semi-automatic extraction of a set of axial patches containing the
vascular structures of interest, followed by an automatic segmentation procedure
based on CNN and transfer learning. The pipeline of the proposed method is
depicted in Figure 6.1.

Preprocessing First, histogram equalization of each MRI volume is performed.
Then, in order to reduce the noise, an anisotropic diffusion filter [93] is applied,
taking into account the tubular structure of the vessels.
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Figure 6.1: Pipeline of the proposed method. A set of 2D pseudo-RGB patches are
extracted from the MRI volume and from a set of user-selected landmarks. Patches
are then segmented through a modified version [131] of the VGG16 network [107],
obtaining the 3D segmentation of the vessels.

6.2.1 Patches extraction

The definition of patches relies on three steps. First, some landmarks along the
vessels are provided by the user. The only constraint is that these points should
belong to the vessels. In particular, in case of bifurcations, the user can select
landmarks on vessel branches in any order. The other two steps, detailed next,
consist in reconstructing the vascular tree from the landmarks, and in defining
patches centered on the vessels branches in each slice of the image volume.

Vascular tree reconstruction

Let L = {ϕi = (xi, yi, zi) ∈ Ω, i ∈ {1...n}} be the set of user-selected landmarks,
where n = |L| is the number of landmarks, Ω ⊆ R3 is the image domain, and
L is ordered decreasingly in z (∀i ∈ {1...n − 1}, zi+1 ≤ zi), hence in the cranio-
caudal direction. The vascular tree is reconstructed iteratively by choosing, at
each step i, the best candidate landmark ϕc = (xc, yc, zc) to be connected with ϕi,
minimizing the following objective function, which combines shape and appearance
information:

f(ϕi, ϕc) = α||ϕi − ϕc||2 + βκ(ϕi, ϕc, ϕc−1) + γσ2
(ϕi,ϕc)

,

where ϕc−1 is the landmark already connected with ϕc, such that zc−1 > zc, κ is the
local curvature, estimated as 1

r
where r is the radius of the circle passing through

the three points, σ2 is the variance of the image intensity in a cylinder whose axis
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is the line joining ϕi and ϕc and whose circular basis has a fixed radius rc, and
α, β, γ are constant weight values. Minimizing f means that the path should be
formed by points as close as possible, forming a line as straight as possible, and
whose spatial context is homogeneous in terms of intensity.

At each iteration i, the candidates ϕc are chosen as the landmarks that have
zc > zi and that are already connected to at most one landmark. This candidates
selection allows us to take into account the fact that, in the pelvis, the different
vessels branches are descending along the cranio-caudal direction. Furthermore,
we can also automatically handle bifurcation points while avoiding anatomically
incoherent connections (i.e. trifurcations). This procedure, repeated for each
ϕi, results in an approximate reconstruction of the vascular tree, as shown in
Figure 6.2. Further details on the proposed algorithm are given in Algorithm 1.
The parameters for the reconstruction are experimentally set to α = 1, β = 200,
γ = 103, rc = 1 mm, producing a correct vascular tree reconstruction for all the
patients present in the dataset.

input : L = {ϕi = (xi, yi, zi) ∈ Ω, i ∈ {1...n}}
output: LC = {ϕconni = (xconni , yconni , zconni) ∈ Ω, i ∈ {1...n}}
for i← 1 to n do

if i=1 then
ϕconni ← {};

else
Ci ← L{ϕc | zc > zi, Nϕc < 2};
vi ← {};
k ← 0;
for k ← 1 to |Ci| do

ϕc ← Ci[k];
vi[k]← f(ϕi, ϕc);

end
ϕconni ← Ci[p] | vi[p] = min(vi);
Nϕ ← Nϕ + 1 | ϕ ∈ L, ϕ ≡ ϕconni

end
end

Algorithm 1: Pseudo-code of the vascular tree reconstruction algorithm. No-
tations: ϕ represents a generic point in the image domain Ω, L represents the
set of user-selected landmarks, ordered decreasingly in z, LC represents the set
of upper connections (zconni > zi) of each element of L, Ci represents the set of
candidate points for connection with the point ϕi, Nϕ represents the number
of upper connections of the point ϕ. Here, for any set A, A[x] denotes the xth
element of A.
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(a) i = 1 (b) i = 2 (c) i = 3

(d) i = 4 (e) i = 5 (f) Final result

Figure 6.2: Example of reconstruction of the vascular tree (fist five steps). In each
image each blue sphere is a generic landmark, the yellow sphere is the landmark ϕi
analyzed at step i and the green spheres are the candidate landmarks for connection
ϕc. The vessel paths are represented in red.

Pseudo-RGB patches extraction

Once the vascular tree is obtained, each vessel branch is approximated by a spline.
For every slice k, we first define pk as the point where the spline intersects slice
k. Then we extract a square patch (N ×N pixels) centered at pk. Every triple of
successive patches (k−1, k and k+1) is interpreted as a pseudo-RGB patch, where
each color channel is fed with a a gray-level patch as illustrated in Figure 6.3, that
incorporates the 3D information of successive patches. This procedure produces
a set of pseudo-RGB patches, containing the vascular structures, that will be
used as input for the segmentation method that follows. The patches dimensions
were set to 31× 31 pixels. Given the resolution of the images (average voxel size
0.92×0.92×0.74 mm3) and the thickness of the vessels, the patches largely include
the sections of the vessels.
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Figure 6.3: Pseudo RGB patches extraction for a given slice k.

6.2.2 Deep CNN for patches segmentation

In this section, we propose to use CNN to segment the patches into vessel and non-
vessel regions, and jointly classify the vessel regions into veins or arteries. To this
aim, a modified version of the VGG-16 network [107], pre-trained on the ImageNet
dataset [27] is employed.

The network is built by removing the final fully connected layers of the pre-
trained VGG-16 network, while preserving the 5 convolutional stages which con-
stitute the base network. Each of these stages consists of Convolutional layers
and Rectified Linear Unit layers. Each convolutional stage is connected with the
following one by a Max Pooling layer. Starting from this base network, a modi-
fied network is then added, similarly to [77, 131], where a specialized convolutional
layer (3×3 kernel size) with 16 features maps is inserted after the last convolutional
layer of each stage. These specialized layers are resized to the original image size
and concatenated together. Finally, the feature maps in the concatenated layers
are linearly combined through a final convolutional layer (1×1 kernel), in order to
produce the output segmented image. A graphical representation of the network
architecture is depicted in Figure 6.4.

As previously mentioned, the layers of the base network are already pre-trained
on the large ImageNet dataset of natural RGB images. For our application, the en-
tire network is then fine-tuned with a training set of manually segmented patches.
Each annotated patch consists of three labels, corresponding to vein, artery and
background pixels. The network is trained for 115k iterations, with a constant
learning rate lr = 10−6, using a multinomial logistic loss function. The loss func-
tion is minimized using a stochastic gradient descent with momentum m = 0.95.
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The analyzed patches, obtained as described in Section 6.2.1 and segmented
using the CNN previously described, are then restored to their original position
in the image domain Ω ∈ R3, thus providing a classification into veins, artery and
background of the whole image volume.

(a) Architecture of the VGG16 network.

(b) Architecture of the modified version of the VGG16 network.

Figure 6.4: CNN used in the proposed method. In our application the inputs
and the outputs are, respectively, the pseudo-RBG patches and the corresponding
segmentation result (each pixel is labeled as artery, vein, or background).

6.3 Results

The image dataset used in this study is composed of 35 T2-weighted MRI volumes,
of patients between 1 and 18 years old. Images have different sizes and resolutions
(average voxel size 0.92× 0.92× 0.74 mm3).

All pelvic vessels of interest were manually segmented by medical experts and
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labeled as veins or arteries. In particular, the following structures were segmented:
the abdominal aorta, the inferior vena cava, the iliac arteries and the iliac veins.

6.3.1 Landmark selection

On the tested cases, 12 landmarks were needed, in average, for the vessels paths
reconstruction (see Section 6.2.1), which required an interaction time of few min-
utes for each patient. The only guideline for the user was to select the landmarks
inside the vessels lumen, which is easier to achieve by navigating through the ax-
ial views. This type of interaction was found reasonable by medical experts, and
was considered as a good guarantee to obtain good results from the subsequent
automatic steps.

6.3.2 Qualitative results

Some qualitative results are shown in Figure 6.5. In order to correctly interpret
them, it is important to consider the anatomy of the vascular structures. The veins,
due to their non rigid internal musculature, tend to collapse more than the arteries.
This behavior usually leads to arteries that have a more circular shape in the axial
section than veins. As shown in Figure 6.5a and Figure 6.5b, this feature appears to
be effectively incorporated in our method, providing an overall good veins/arteries
classification. Furthermore, we also noticed that most of the misclassification cases
were locally confined to regions where this “shape feature" was not expressed. An
illustrative example is shown in Figure 6.5c, where a vein with a strong circular
shape is erroneously labeled as artery by our method. However, as can be seen in
the 3D model of Figure 6.5d, the overall classification is very satisfying and was
positively evaluated by medical experts.

6.3.3 Quantitative results

The performance of the proposed method was quantitatively evaluated using a
5-fold cross validation, which corresponds to a training and test set of 28 and 7
patients for each fold respectively. The segmentation accuracy was evaluated in
terms of ASSD [mm] and DC (see Section 2.3) between the proposed segmentation
and the corresponding manual segmentation provided by a medical expert. More
precisely, the following comparisons were performed:

• Gray-level (2D) segmentation vs Manual: we estimated the DC and the
ASSD between the segmentations obtained using the proposed method, but
exploiting gray-level patches, and the manual segmentations. For a given
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(a) (b) (c) (d)

Figure 6.5: Examples of segmentation results. In (a), (b) and (c) the results on
some axial sections are depicted. The red contours correspond to the arteries, and
the blue ones to the veins. The final 3D model obtained from the segmentation is
depicted in (d) with the same color conventions. The three patches in (a), (b) and
(c) are shown in (d) with three different colors. Some examples of misclassification
are indicated by white arrows.

slice k, a gray-level patch is defined as a pseudo-RGB image, in which each
color channel corresponds to the same squared patch in k (see Section 6.2.1).

• Pseudo-RGB (3D-like) segmentation vs Manual: we estimated the DC and
the ASSD between the segmentations obtained using the proposed method
(pseudo-RGB patches obtained from successive slices) and the manual seg-
mentations.

For each patient, these measures were evaluated for both the global vascular
segmentation (fusion of vein and artery) and for veins and arteries separately. The
average quantitative results for each fold are reported in Table 6.1. Finally, in order
to evaluate the inter-user variability of the manual segmentation results, the DC
and the ASSD were also evaluated between the manual segmentations performed
by two different users.

The results obtained using the proposed method, also taking into account the
images resolution, were considered satisfying by medical experts for surgical plan-
ning applications. As expected, results for a single structure (i.e. either artery
or vein) were less accurate compared to the overall segmentation. This is mostly
due to the additional classification task challenge. Nevertheless, the limited dif-
ferences between the DC of the three columns in Table 6.1 (3D-like case) indicate
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Arteries Veins Arteries&Veins
DC ASSD DC ASSD DC ASSD

Fold 1 2D 0.74 1.53 0.77 1.20 0.80 0.89
3D-like 0.77 1.45 0.78 1.04 0.80 0.88

Fold 2 2D 0.69 1.49 0.65 2.50 0.73 1.14
3D-like 0.71 1.38 0.72 2.21 0.79 0.96

Fold 3 2D 0.72 1.30 0.70 1.70 0.78 0.97
3D-like 0.74 1.33 0.72 1.42 0.78 0.84

Fold 4 2D 0.65 1.92 0.68 2.26 0.78 1.12
3D-like 0.74 1.31 0.78 1.46 0.81 0.80

Fold 5 2D 0.68 1.98 0.68 1.49 0.75 0.96
3D-like 0.71 1.58 0.72 1.30 0.76 0.95

Mean±std 2D 0.69±0.03 1.64±0.29 0.70±0.05 1.83±0.54 0.77±0.03 1.02±0.11
3D-like 0.73±0.02 1.41±0.11 0.75±0.03 1.49±0.44 0.79±0.02 0.89±0.07

Table 6.1: Quantitative evaluation of the segmentation results obtained with the
proposed method (3D-like) and using gray level patches (2D), in terms of DC and
ASSD [mm].

overall good classification performances. Moreover, as also shown in Figure 6.6,
better results are obtained using pseudo-RGB (3D-like) than using gray-level (2D)
patches. In particular, this effect is particularly relevant for the single veins and
artery segmentation results, which indicates that the use of the 3D information is
particularly important for the vein/artery classification task (more than just for
the overall segmentation accuracy).

In order to have a more consistent evaluation of the performances of the pro-
posed method, we also looked at the relation between the DC of the global seg-
mentation (arteries and veins) and the age of the corresponding patients. As it is
possible to see in Figure 6.7, the results do not appear to be strongly related with
the patients’ age, which is encouraging for our pediatric application. However, it
is important to remark that our dataset (35 patients) is not large enough to test
any statistical assumptions on the correlation between DC and patients’ age.

6.4 Conclusion and discussion

6.4.1 Contributions

In this chapter we presented, to the best of our knowledge, the first study on pelvic
vessels segmentation of pediatric MRI. We proposed a patch-based deep learning
approach using transfer learning.

A main contribution of this work was the design of a semi-automatic method for
the patches extraction, based on the structural information of the pelvic vascular
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tree. This approach allows the user to focus, for each patient, on the vascular
structures of surgical interest, while avoiding potential unexpected results. We also
propose to use pseudo-RGB color patches, that incorporate the 3D information
of successive slices. The use of these patches makes it possible to exploit a 2D
CNN pre-trained on the ImageNet dataset, which allows us to train the network
with a small training dataset. This is fundamental for medical applications where
the number of annotated images is limited. It is important to remark that the
same strategy, based on transfer learning, would have been difficult to employ
with 3D CNNs. In fact, even if efficient implementations of 3D CNNs have been
released [23, 33, 60, 83], there is a lack of publicly available 3D CNN models
pre-trained on large datasets of 3D images [139].

Finally, the proposed method was integrated as a plug-in for the software 3D
Slicer, delivering a powerful tool and a user-friendly GUI to the clinicians (see
Section 8.2 for more details).

6.4.2 Perspectives

As future work, we plan to post-process our results in order to improve the
vein/artery classification. This could be done, for instance, by analyzing the spa-
tial consistency of the classes along the entire 3D model. Moreover, we also plan to
investigate other methodologies that take into account the 3D information using
more than three successive slices.
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(a) Arteries&Veins (DC) (b) Arteries&Veins (ASSD [mm])

(c) Arteries (DC) (d) Arteries (ASSD [mm])

(e) Veins (DC) (f) Veins (ASSD [mm])

Figure 6.6: Quantitative evaluation of the segmentation results in terms of DC and
ASSD. Each boxplot represents the minimum and maximum values, the 1st and
the 3rd quartile and the median value. The blue boxplots represent the results ob-
tained using the proposed method on gray-level (2D) patches. The green boxplots
represent the results obtained using the proposed method on the pseudo-RGB
(3D-like) patches. Comparison are done with respect to a first manual segmen-
tation (M1). The red boxplots represent the comparisons between the manual
segmentations performed by two different users (M1,M2).
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Figure 6.7: Dice score (arteries and veins) in function of the patients’ age and
corresponding linear regression line (red).
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Chapter 7

Bladder segmentation

Abstract

This chapter presents a semi-automatic method for the segmentation of the uri-
nary bladder in T2-weighted MRI images. The proposed method is based on a
modified version of the Chan-Vese level-set model, aiming to obtain a robust pre-
segmentation inside the bladder region, and on a parametric deformable model for
the final segmentation refinement. The performances of the proposed approach,
validated on a set of 25 T2-w MRI volumes of pediatric patients, were quantita-
tively and qualitatively appreciated by medical experts. Moreover, the method was
implemented as a plug-in in the 3D Slicer platform, delivering a powerful and user-
friendly bladder segmentation tool to the clinicians. This part of the work was done
in collaboration with Luca De Masi (former research intern at IMAG2 laboratory,
Imagine Institute).
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7.1 Introduction

7.1.1 Context

The bladder, due to its central position in the pelvis region, is very important
to be integrated in the 3D patient’s model for surgical planning applications. As
detailed in Section 3.4, most of the existing methods were developed for CT images.
The few promising studies developed for MRI were based on deformable models
approaches. However, none of the proposed methods was evaluated on pediatric
populations, which generally presents higher intensity inhomogeneities and higher
partial volume effects. This chapter addresses these issues.

7.1.2 Outline

The proposed segmentation pipeline includes three main steps: (i) pre-processing
of the MRI images, (ii) pre-segmentation, and (iii) a final segmentation refine-
ment. In order to apply the method, the user is required to select one point inside
the bladder region. This is the only user interaction in the method and all the
subsequent steps are automatic.

7.2 Segmentation method: a deformable model
approach

7.2.1 Pre-processing

As first basic step of the processing, starting from one user-selected point inside
the bladder region, the T2-w MRI volumes are cropped in order to reduce the
amount of data to process in the following steps and the computational time.
After obtaining the image ROI, the next step is to prepare the image for the
segmentation by improving its quality. In particular, we propose to filter the
image with a non-linear bilateral filter [91]. Given a pixel p, with intensity I(p),
in the image domain Ω, its filtered value Ibf (p) is defined as:

(7.1)Ibf (p) =
1

W bf (p)

∑
q∈Ω

I(q)Gσs (‖p− q‖)Gσr (|I(p)− I(q)|),

where:
(7.2)Gσ =

1√
2πσ

e−
x2

2σ2 ,
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(7.3)W bf (p) =
∑
q∈Ω

Gσs (‖p− q‖)Gσr (|I(p)− I(q)|)

The parameter σs defines the size of the spatial neighborhood used to filter a pixel,
and σr controls how much the neighbor pixels are down-weighted because of their
intensity difference. The term W bf

p normalizes the sum of the weights.
This filtering was done in order to reduce the noisy components of the image

and to increase the intensity homogeneity in the structure of interest, while pre-
serving the edges. An example of the effect of the filter (σs = 5, σr = 20) is shown
in Figure 7.1.

(a) Original image (b) Filtered image

Figure 7.1: Example of bilateral filtering. One coronal slice of the volume is
displayed.

7.2.2 Pre-segmentation using level-sets

After the pre-processing, having a bladder that appears more homogeneous (see
Figure 7.1), the aim is to obtain a first segmentation using the intensity information
of the image, using a level-set formulation. The proposed method is based on the
Chan-Vese [18] formulation, but with the addition of an extra energy term:

(7.4)
E (C) = µ · Area(C) + λ1

∫
inside(C)

|I(x, y, z)− c1|2dxdydz

+ λ2

∫
outside(C)

|I(x, y, z)− c2|2dxdydz + η

∫
C

L(x, y, z)dxdydz ,

where C is the 3D surface, I is the filtered image, µ, η ≥ 0, λ1,λ2 > 0 are weights,
c1, c2 are the mean intensity values inside and outside C and L is a gradient-
enhanced image, obtained by subtracting the gradient magnitude from the filtered
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(a) I (b) |grad(I)|

(c) L = I − p · |grad(I)| (d) Pre-segmentation (white contour)

Figure 7.2: Gradient enhancement of the bladder: (a) original image, (b) image
gradient magnitude, (c) image L, obtained by subtraction (p = 8) of the gradients
to the original image, (d) Pre-segmentation result.

image (see Figure 7.2). The level set is initialized as a small sphere (r = 2)
centered at a user-selected point and the parameters of the energy formulation
were experimentally set to: µ = 0.1, λ1 = 1.2, λ2 = 1.2, η = 5.

The additional term locally emphasizes the energy contribution of the hyper-
intense interior region of the bladder while avoiding potential evolutions of the
moving contour in the outside region (e.g due to the contribution of small hyper-
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intense regions of adipose tissues surrounding the bladder).
Some examples of the pre-segmentation results are shown in Figure 7.2d and

in Figure 7.3b. The segmentation masks are forced to be smaller than the actual
bladder due to the effect of the energy term given by L, which indeed guarantees
that the pre-segmentation is inside the bladder region. This initial segmentation
is then refined, as described next.

7.2.3 Refined segmentation using parametric deformable
models

The proposed approach for the final segmentation is based on a 3D deformable
model, initialized using the pre-segmentation result and evolving under the effect
of edge information resulting from a Canny filtering [15]. The Canny filtering
produces an edge-map, denoted Icanny, of the image I. However, as can be seen in
Figure 7.3c, potential intensity discontinuities inside the bladder region may lead
to the detection of some extra edges. In order to eliminate the potential edges
inside the bladder region, the result of the Canny filtering is refined using the
pre-segmentation mask obtained in the previous steps, as shown in Figure 7.3.

Representing the parametric surface as υ(s, r) = [x(s, r), y(s, r), z(s, r)], the
evolution of the model can be formulated, similarly to Equation 5.1, starting from
a force balance equation:

Fint + Fext = 0, (7.5)
Fint = αFel + βFrig + Fball, (7.6)

where Fball = δ~n(s, r) is the balloon force [24], where ~n(s, r) is the normal to the
surface υ(s, r) in (s, r). In our experiments, the weights α, β and δ were set as
constants (i.e. independent of (s, r)).

The external force is defined as [70]:

(7.7)Fext = κ∇ (Gσ ∗ Icanny)

where Gσ is a Gaussian kernel with standard deviation σ, and κ is a constant
weight parameter.

The parameters that guide the evolution of the deformable model were exper-
imentally set to: α = 1.4, β = 1.4, δ = 0.6, κ = 5 and σ = 1.

7.3 Results

7.3.1 Qualitative results

Some qualitative examples of the segmentation results are depicted in Figures 7.4-
7.6, where it is possible to appreciate the good performance of the proposed method
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(a) MRI slice (b) Pre-segmentation

(c) Canny filter result (d) Refined canny result

Figure 7.3: Refinement of the canny filtering, eliminating the edge-map compo-
nents inside the pre-segmentation mask (inside the white contours in (b)).

even in case of strong image artifacts (i.e. motion artifacts, bias field and partial
volume effects). However, as shown in Figure 7.7, for one of the patients in the
image dataset, our method does not provide suitable results. This can mostly be
explained since our method does not take into account the configuration of partially
empty bladder. It is important to point out that this particular condition is very
difficult to address, due to the low contrast and the missing boundary information
between the outer wall of the bladder and the surrounding tissues.
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(a) Original image, sagittal view. (b) Original image, coronal view.

(c) Segmentation, sagittal view. (d) Segmentation,coronal view.

(e) 3D Segmentation result.

Figure 7.4: Example of segmentation results in case of motion artifacts and partial
volume effects. The green label represents the manual segmentation and light
brown contour the semi-automatic segmentation.
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(a) Original image, sagittal view. (b) Original image, coronal view.

(c) Segmentation, sagittal view. (d) Segmentation,coronal view.

(e) 3D Segmentation result.

Figure 7.5: Example of segmentation results in case of bias field and partial vol-
ume effects. The green label represents the manual segmentation and light brown
contour the semi-automatic segmentation.
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(a) Original image, sagittal view. (b) Original image, coronal view.

(c) Segmentation, sagittal view. (d) Segmentation,coronal view.

(e) 3D Segmentation result.

Figure 7.6: Example of segmentation results in case of slight intensity inhomo-
geneity of the bladder. The green label represents the manual segmentation and
light brown contour the semi-automatic segmentation.
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(a) Original image, sagittal
view.

(b) Original image, coronal
view.

(c) Segmentation, sagittal
view.

(d) Segmentation, coronal
view.

(e) 3D Segmentation result.

Figure 7.7: Example of segmentation results of the bladder, in case of partially
empty bladder. The green label represents the manual segmentation and light
brown contour the semi-automatic segmentation. The semi-automatic segmenta-
tion only provides the bright part of the bladder.
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7.3.2 Quantitative results

The performances of the proposed method were validated on a dataset of 25 T2-w
MRI volumes, through comparisons, in terms of DC and ASSD (see Section 2.3),
with manual segmentations performed by medical experts. More precisely, the
following comparisons have been performed:

• Pre-segmentation (η = 0) vs Manual: we estimated the DC and ASSD be-
tween the pre-segmentation results obtained as detailed in Section 7.2.2, but
discarding the effect of the image L (see Equation 7.4), and the manual
segmentations.

• Pre-segmentation vs Manual: we estimated the DC and ASSD between the
pre-segmentation results, obtained as detailed in Section 7.2.2, and the man-
ual segmentations.

• Segmentation (η = 0) vs Manual: we estimated the DC and ASSD between
the segmentation results obtained as detailed in Section 7.2.3, using the pre-
segmentation (η = 0) as initialization, and the manual segmentations.

• Segmentation vs Manual: we estimated the DC and ASSD between the
segmentation results obtained as detailed in Section 7.2.3, using the pre-
segmentation as initialization, and the manual segmentations.

Finally, in order to evaluate the inter-user variability of the manual segmen-
tation results, the DC and the ASSD were also evaluated between the manual
segmentations performed by two different users.

The quantitative evaluation in Figure 7.8 shows, on the one side, that the pre-
segmentation results, obtained either using the gradient-enhanced image L or not,
are relatively low. On the other side, the final segmentations obtained by refining
the pre-segmentation results are very accurate, both in terms of DC and ASSD. In
particular, the best average results are obtained with the proposed method (green
boxplot in Figure 7.8). However, even using our method, the results for one patient
are not good enough: it is the case of the partially empty bladder, described in
Section 7.3.1 and shown in Figure 7.7.

In order to have a more consistent evaluation of the performances of the pro-
posed method, we also looked at the relation between the DC and the age of the
corresponding patients. As it is possible to see in Figure 7.9, the results do not
appear to be strongly related with the patients’ age, which is encouraging for our
pediatric application. However, it is important to remark that our dataset (25
patients) is not large enough to test any statistical assumption on the correla-
tion between DC scores and patients’ age, as already mentioned in the previous
chapters.
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(a) Dice.

(b) ASSD [mm].

Figure 7.8: Quantitative evaluation of the segmentation results in terms of Dice
index and ASSD. Each boxplot represent the minimum and maximum values, the
1st and the 3rd quartile and the median value. The green boxplots represent the
results obtained using the proposed method. Comparison are done with respect
to a first manual segmentation (M1). The red boxplots represent the comparisons
between the manual segmentations performed by two different users (M1,M2).
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Figure 7.9: Dice score in function of the patients’ age and corresponding linear
regression line (red).

7.4 Conclusion

7.4.1 Contributions

In this chapter we presented a powerful segmentation tool for the segmentation
of the urinary bladder in T2-w MRI images. The proposed method is based on
a first pre-segmentation obtained using a modified version of the Chan-Vese [18]
level set formulation. In particular, an additional term in the Chan-Vese energy
formulation, allows us to give more importance to the large and hyperintense image
regions. The pre-segmentation is then used as initialization for a deformable model,
which evolves using the Canny edge map of the image, refined by eliminating non
meaningful detected contours. Finally, the proposed method was integrated as a
plug-in for the software 3D Slicer, delivering a powerful tool and a user-friendly
GUI to the clinicians (see Section 8.2 for more details).

The proposed method was evaluated on a varied database of 25 MRI volumes,
obtaining an average accuracy in terms of DC and ASSD of DC = 0.87±0.12 and
ASSD = 1.81± 1.56 mm. Moreover, the results were qualitatively appreciated by
medical experts and considered suitable for surgical planning applications.
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7.4.2 Limits and perspectives

Our method addresses the segmentation of the inner wall of the bladder. Given
the image resolution and the surgical planning application, in case of thin bladder
wall (i.e. in case of bladder containing a relevant quantity of urine), which is the
most frequent condition, our approach provides an accurate representation of the
bladder volume. However, in case of partially empty bladder, the thickness of the
bladder wall becomes relevant and the explicit segmentation of the outer wall of
the bladder needs to be addressed (see Figure 7.7). It is important to remark that
some existing methods already addressed this issue [35, 76]. However, these studies
were applied to high resolution images of adult patients, in which the bladder wall
is much easier to identify than for children.

Another improvement of the proposed method could concern the automatic
extraction of a marker inside the bladder region, in order to automate the full
procedure avoiding the needs of a user-selected landmark. An idea could be,
similarly to [25], to use the relatively stable spatial position of the pelvic bones to
extract a ROI containing the bladder. An intensity-based approach could then be
used to extract a meaningful landmark. However, this kind of approach could be
very sensitive is case of patients with strong tumors or malformations, which can
produce strong deformations and/or displacements of the bladder within the pelvic
region. Moreover, the selection of one point inside the bladder was not considered
a tedious task by the users.
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Chapter 8

3D modeling workflow and clinical
applications

Abstract

In this chapter we present the integration of the developed segmentation methods
into a complete workflow for surgical planning. First, we present the implementa-
tion of the developed methods, including GUIs, in the 3D Slicer platform. Secondly,
we present the proposed workflow for surgical planning, going from image acquisi-
tion to 3D visualization in mobile devices. Finally, we present some clinical cases
of patients affected by tumors and malformations, which are very interesting to
show the potentials of 3D modeling in a surgical context.
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8.1 Introduction

As discussed in Chapter 1, the aim of this work is to enhance surgical planning
for pediatric patients, thanks to the introduction of patients specific 3D models
in the clinical workflow. In this context, the generation of the patient 3D models,
through dedicated segmentation methods (Chapters 5-7), is the first crucial chal-
lenge. However, in order to efficiently introduce the 3D modeling in the clinical
workflow, two important considerations have to be done: i) the developed seg-
mentation methods have to be used by clinicians, not necessarily with an image
processing background, and ii) the generated 3D models have to be easily visu-
alized and shared within the surgical staff. For these reasons, i) we decided to
implement the developed methods as user friendly plug-ins in the 3D Slicer plat-
form [38] (Section 8.2), and ii) we set-up a few steps workflow for 3D modeling,
going from image acquisition to 3D visualization (Section 8.3).

Finally, in order to show the potential benefits of 3D modeling for surgical
planning, we present in Section 8.4 some clinical cases of patients affected by
tumors or malformations. Some of these examples also show the benefits of using
3D models during the post-operative phase.

8.2 Graphical user interfaces

As discussed in Chapter 4, 3D Slicer was chosen for the implementation of the
segmentation methods described in Chapters 5-7. This choice was motivated by
the modularity of the software architecture (please refer to [38] for further de-
tails), which allows us to easily extend the software capabilities with dedicated
tools. Moreover, extensive documentation and tutorials for developers are pro-
vided. Another advantage of 3D Slicer is that it offers several interesting tools,
such as easy-to-use manual segmentation tools and tractography tools. This al-
lows us to obtain, within the same platform, complete patient-specific 3D models,
including nerves fibers and structures for which dedicated methods have not been
developed yet (e.g. colon, muscles, tumors).

The main GUI of 3D Slicer, depicting also the developed plug-ins, is shown in
Figure 8.1. The patient’s MRI image (DICOM) is first loaded from this GUI. Then
the user can directly access to the developed plugins. The GUIs of the developed
plug-ins, which were kept as simple as possible, are depicted in Figures 8.2-8.4.

The main user interaction steps, for each developed plugin, are:

• Bones segmentation: the user is first asked to input the patient data
(age and sex). This information is used to automatically choose the closest
anatomical bones template (see Section 5.2.1) for the pre-segmentation pro-
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Figure 8.1: Main 3D Slicer [38] GUI. The dedicated methods for pelvic bones,
vessels and bladder segmentation were implemented as plug-ins in the software
platform.

cedure. Then the user performs interactively the template registration (see
Section 5.2.2). This mainly consists in placing couples of landmarks, one in
the template image and one in the MRI, at the corresponding anatomical
positions. This procedure is performed iteratively and, for each couple of
selected landmarks, the pre-segmentation is updated. This allows the user
to stop the landmark selection procedure when he is satisfied b the pre-
segmentation result. Then, by clicking "apply", the final segmentation is
performed (see Section 5.2.3) and the 3D model is generated. These steps
are automatic.

• Vessels segmentation: the user selects a set of landmarks inside the vessels
of interest. This procedure is normally performed by navigating through the
axial slices, where the vessels section are more clearly visible. Note that no
particular order is required during the landmark selection procedure. When
clicking on "apply", the vessels paths are reconstructed (Section 6.2.1), the
segmentation is performed (see Section 6.2.2) and the 3D model is generated.
No further interaction is required for these steps.

• Bladder segmentation: similarly to the vessels plugin, the user is asked
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to select one landmark inside the bladder region. When clicking on "apply",
the segmentation is performed (Section 7.2) and the 3D model is generated,
again automatically.

It is important to remark that, once the target structures are segmented using
the developed plug-ins, the user has the possibility to manually refine the segmen-
tation results. This can be done using several tools, such as "draw" or "paint",
already implemented in 3D Slicer.

The design of the proposed GUIs was the result of a strict collaboration with
the surgeons involved in the project, who particularly appreciated the usability of
the proposed solutions.
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Figure 8.2: Pelvic bones segmentation plug-in. i) The user inputs the patient’s
data. ii) The user performs the template registration, selecting iteratively couples
of landmarks (one in the template and one in the MRI). The pre-segmentation
(red label) is updated at each couple of landmarks selection. iii) When clicking on
"apply" the final segmentation is performed and the 3D model is generated.
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Figure 8.3: Pelvic vessels segmentation plug-in. i) The user selects a set of land-
marks inside the vessels of interest. ii) When clicking on "apply", the segmentation
is performed and the 3D model is generated. A new screen for eventual manual
corrections is also displayed.
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Figure 8.4: Bladder segmentation plug-in. i) The user selects one landmark inside
the bladder. ii) When clicking on "apply", the segmentation is performed and
the 3D model is generated. A new screen for eventual manual corrections (e.g.
partially empty bladder) is also displayed.
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8.3 3D patient specific modeling workflow

The adopted wokflow for patient-specific 3D modeling procedure, from image ac-
quisition to 3D visualization, is depicted in Figure 8.5. Once the MRI acquisition
is performed, the patient’s data and the clinical report are uploaded into the
PACS (picture archiving and communication system). The PACS can be accessed
from multiple dedicated workstations within the hospital, which allows surgeons
to download the patient’s MRI (DICOM) on the local workstation dedicated to
the creation of the 3D models. Once downloaded, the patient’s data are imme-
diately anonymized with a dedicated software. The anonymized DICOM images
are then processed by the surgeon within the 3D Slicer platform, opportunely ex-
tended with the developed segmentation plugins, in order to generate the patient
specific 3D models. These models are then saved (.obj, .stl or .vtk formats) on the
local server and are directly accessible for 3D visualization within the 3D Slicer
platform. However, using this configuration, the surgeon can access 3D models
only from the 3D modeling workstation. This could strongly limit the effective
integration of 3D modeling in the clinical workflow. For this reason, the patients
3D models (collected into a compressed folder exportable from 3D Slicer) are up-
loaded on a database hosted on the server of the Imagine Institute. This database
is accessible through the web platform “eCohorte” 1, developed by the Data Science
group of the Imagine Institute. In this way, the patients 3D models can be down-
loaded with any connected mobile device and visualized with several free mobile
applications (e.g. Emb3D2 and many others). This allows the clinicians to access
the 3D models remotely, without the need of a fixed workstation. This could be
particularly useful, for instance:

• during the patients and parents information phase, both in the pre-operative
and post-operative periods;

• during the surgical staff meetings, where the clinical case is discussed and
the surgical planning is established;

• during the intervention, by connecting the device to fixed screens (see Fig-
ure 8.6), in order to have an enhanced visualization of the patient’s anatomy.

1http://www.institutimagine.org/fr/la-recherche/8-plateformes-technologiques/260-data-
science.html

2https://www.emb3d.com/
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Figure 8.5: 3D modeling framework, from image acquisition to 3D visualization.

Figure 8.6: Integration of the patients specific 3D models in the surgical room,
here for a classical open intervention.
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8.4 Some clinical applications

As introduced in Chapter 1, patient specific 3D modeling can be extremely useful
for the two major fields of pediatric surgery: tumors and malformations.

In oncology, 3D modeling can be extremely useful in daily practice for surgi-
cal planning, allowing the surgeons to better understand the spatial relationships
between the tumor and the surrounding structures. In fact, a correct anatomical
understanding can help during the tumor resection procedure, preserving as much
as possible the surrounding structures. For instance, Figure 8.7 depicts the clini-
cal relevance of the 3D segmentation, notably of the pelvic vessels, in a pediatric
patient (8 years old) affected by ovarian teratoma. The patient specific 3D model
eases the analysis of the spatial relations between the tumor and the right iliac
vessels, which are essential for surgical planning.

Figure 8.8 depicts the 3D modeling of a 7 years-old patient with a rhab-
domyosarcoma of the right obturator muscle, which has complex interactions with
the surrounding structures (notably with the pelvic bones).

Another relevant clinical example, with particular focus on 3D modeling of the
pelvic nerves, is presented in Figure 8.9. It depicts the 3D modeling, obtained from
pre-operative and post-operative images, of a patient affected by neurofibroma.
In particular, the pre-operative 3D model shows the tumor, which was removed
through robotic surgery, in close contact with the sacral plexus. In the weeks
following the operation, the patient presented sensory deficits of the left leg calf
and of the plantar vault. The post-operative neurotractogram confirms partial
interruption of left S2 sacral root, which is consistent with the patient’s clinical
symptoms. First, this case validates the accuracy of the pelvic network anatomy
delivered by pelvic neurotractography. Secondly, it demonstrates its importance in
surgical planning in order to improve patients outcome (it is important to remark
that, for this case, both 3D models were performed during the post-operative
period).

Pelvic malformations, especially ARM [3], are another kind of diseases which
can particularly benefit from 3D modeling. In fact, these rare pediatric pathologies
strongly modify the standard patient’s anatomy, which becomes particularly com-
plex to analyze by visual analysis of the MRI images (slice by slice). A particularly
complex case of ARM is depicted in Figure 8.10. It depicts the 3D modeling of a
pediatric patient (9 years old) affected by cloacal malformation, which consists on
confluence of the rectum, vagina, and urethra into a single common channel. The
3D model helps understanding this complex anatomy and planning the surgery.

It is important to remark that these 3D models, even if strongly appreciated by
the surgeons, were used in a research context and that a rigorous clinical validation
will be necessary for their introduction in clinical practice.
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(a) (b)

(c) (d)

Figure 8.7: Example of 3D patient specific pelvic model of a 8 years old patient,
affected by ovarian teratoma (green). The arteries (red), the veins (blue), the
bladder (light brown) and the bones (yellow) are segmented with the proposed
methods. The other pelvic structures (sacrum, colon, and left ovary) are manually
segmented.

Figure 8.8: 3D modeling of a 7 years-old patient with a rhabdomyosarcoma of the
right obturator muscle (anterior and posterior views). Note the complex 3D shape
of the tumor and its spatial relations with the surrounding structures.
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(a) Pre-operative MRI slice. (b) Pre-operative 3D model.

(c) Surgery. (d) Surgery, potential nerve cut.

(e) Pre-operative 3D model. (f) Post-operative 3D model.

Figure 8.9: Pre-operative (e) and post-operative (f) 3D modeling of a patient
affected by pelvic neurofibroma. The tumor is indicated with a yellow arrow in
(a) and with the gray label in (b). Images in (c) and (d) were taken during the
robotic surgery intervention. In (c) the tumor is indicated with a yellow arrow
and the potential nerve with a white arrow. The tumor is not depicted in (e) for
better visibility of the left sacral roots.
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(a) (b)

(c)

Figure 8.10: 3D modeling of a 9 years old patient with a non repaired cloacal
malformation. (a) Coronal view integrating the sacral tractogram. Note the asym-
metry of levator ani muscles. (b) Coronal posterior view, showing the muscular
system and the common channel. (c) Left sagittal view. Note the compression by
the hydrocolpos (distension of the vagina caused by accumulation of fluid due to
the vaginal obstruction) on the left uretere.
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Chapter 9

Conclusion and future work

9.1 Conclusion

A clear understanding of the patient’s anatomy is essential for the surgical planning
procedure. This is especially the case for the pelvic region, in which most of the
involved structures are soft and deformable, leading to a strong anatomical inter-
patient variability. This variability is even more important in pediatrics, where the
anatomy varies with the patient’s age. Moreover, all these difficulties are clearly
emphasized in case of rare tumors and malformations.

In this context, patient specific 3D modeling, obtained from segmentation of
MRI images, can be an extremely powerful tool to enhance surgical planning,
which is the main aim of this work.

However, in the literature, there is a strong lack of segmentation methods
for pelvic structures in pediatric images. In fact, the segmentation task is more
difficult in pediatric images than in adult images, because of the nature of the
target structures (e.g. shape variability during growth, high partial volume effect)
and harder constraints on the imaging acquisitions (e.g. no CT or angiography
acquisitions, low image resolution).

For this reason, the first part of this work consisted on the evaluation of the
surgeons’ capabilities to obtain patient specific 3D models, using existing soft-
ware tools. We analyzed and extensively evaluated a set of 3D segmentation and
visualization platforms, which can be used for pelvic MRI images. This review
was a major contribution of this work, and it was the first review, to the best
of our knowledge, that took into account the segmentation performances in its
analysis. With this review, on the one hand, we provided generic guidelines for
the choice of the most suitable software tools for surgeons that would like to in-
troduce a 3D patient-specific pelvic model, obtained from MRI, in their surgical
planning routine. On the other hand, we quantitatively demonstrated that none
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of the analyzed software tools meets the time criteria for segmentation needed in
clinical practice for pelvic interventions in pediatric patients. This clearly justifies
the need of developing dedicated segmentation methods for pelvis structures in
pediatric MRI. Finally, this review allowed us to define the development strategy
for the novel segmentation methods: we chose 3D Slicer as core software platform
for developing the segmentation methods, as dedicated plugins.

In particular, in this work, we focused on three main pelvic structures: the
pelvic bones, the pelvic vessels and the bladder.

Concerning the pelvic bones, most of the existing methods were applied to CT
images, using intensity-based approaches, or to adult images using strong shape
priors in terms of atlases or statistical shape models, without taking into account
the bones variability during growth. In order to solve this issue, we proposed
a semi-automatic method, based on template registration and deformable mod-
els. The main contribution of this work was the introduction of a set of bones
templates, specific for different patients ages, in the segmentation pipeline. This
allowed us to take into account the variability in terms of connectivity of the bones
during growth. Moreover, using a user-guided landmark registration procedure,
we also handled the bones shape variability between patients. The final automatic
processing step refined the segmentation using a deformable model in which regu-
larization parameters depend on the local curvature of the bones. This is relevant
since pelvic bones contain both almost flat zones and strong curved ones. More-
over, the user-selected landmarks, needed for the previous registration step, were
used as fixed anchors during the deformable model evolution. The results obtained
with the proposed method were positively evaluated, both quantitatively and qual-
itatively, by pediatric surgeons for surgical planning applications. Potential limits
of our approach could concern cases of extreme pelvic bones malformations (e.g.
missing part of the bones). It could then be very difficult to register the anatomi-
cal templates (representing standard bones anatomy) to such complex cases, even
with a user-guided registration. However, it is important to remark that such cases
are very rare and that they were not present in our patients dataset.

Concerning the pelvic vessels, most of the existing studies were applied to an-
giography images, which present strong vessels enhancement, and they are not
easy to extend to MRI images. We proposed a patch-based deep learning ap-
proach using transfer learning. The main contribution of this work was the design
of a semi-automatic method for the patches extraction, based on the structural
information of the pelvic vascular tree. This approach allows the user to focus,
for each patient, on the vascular structures of surgical interest, while avoiding
potential unexpected results. We also propose to use pseudo-RGB color patches,
that incorporate the 3D information of successive slices. The use of these patches
makes it possible to exploit a 2D CNN pre-trained on the ImageNet dataset, which
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allows us to train the network with a small training dataset. This is fundamental
for medical applications where the number of annotated images is limited. The
results obtained with the proposed method were positively evaluated, even though
some local vein/artery classification errors, by pediatric surgeons for surgical plan-
ning applications. Potential limits of our work could concern cases of vessels with
complex 3D paths, such as the small pelvic vessels. In fact, the proposed method
relies on the hypothesis that the vessels branches are descending along the cranio-
caudal direction, which is the case for the main pelvic vessels (aorta, vena cava,
iliac arteries and veins) but not necessarily for small vessels. However, it is im-
portant to remark that these small vessels are not clearly visible in our images,
due to their limited spatial resolution, and that they are not extremely relevant
for surgical planning applications.

For the bladder, most of the existing segmentation methods were developed for
CT images. However, none of the proposed methods was evaluated on pediatric
populations, which generally present higher intensity inhomogeneities and higher
partial volume effects. We proposed to apply a simple method based on deformable
models. A first pre-segmentation is obtained using a modified version of the Chan-
Vese level set formulation. The pre-segmentation is then used as initialization for
a parametric deformable model, which evolves using the Canny edge map of the
image, refined by eliminating non meaningful detected contours. Also in this
case, the segmentation results were quantitatively and qualitatively evaluated,
and overall appreciated, by pediatric surgeons. The main limit of our approach
is that it does not take into account the outer wall of the bladder, which can
produce unsatisfying results for patients with partially empty bladder. However,
it is important to remark that, for most of the patients, the bladder wall thickness
is negligible, also due to the limited images resolution.

All these segmentation methods were integrated in 3D Slicer, delivering pow-
erful tools and user-friendly GUIs to the clinicians. Furthermore, we set up a
processing and portability workflow for visualization of the 3D patient-specific
models. This allowed surgeons to generate, visualize and share within the hos-
pital the 3D models, thus enhancing the patient’s anatomy understanding and,
consequently, the surgical planning.

Finally, we also proposed a preliminary approach for 3D modeling of the pelvic
nervous system, using DWI and tractography, which showed promising results for
the spine nerves of sacral plexus.

In conclusion, we developed a set of segmentation tools for pediatric MRI
images, which are fully integrated in a complete workflow for surgical planning,
from image acquisition to 3D visualization.
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9.2 Perspectives

Bones segmentation Concerning bones segmentation, potential improvements
could concern the landmarks selection procedure. First, a future work could con-
cern the automatic extraction (e.g. using machine learning methods) of meaningful
landmarks in the MRI volume, in order to reduce the user interaction time. These
landmarks could be used, for instance, to obtain a first rough template registration,
that could be eventually refined by the user (e.g. by manually placing additional
landmarks). Secondly, another potential improvement of the proposed method
could concern the refinement of the landmarks position (e.g. based on local image
features, such as the intensity gradients). This could allow dealing with potential
inaccurate landmark selection by the user.

Other relevant improvements could concern the anatomical bones templates.
First, it could be interesting to explore strategies to choose the anatomically closest
template instead of the closest age, in order to cope with potential abnormal
child development. This would require to define an appropriate similarity measure
between a template and an MRI image. Secondly, it will be interesting to take
the bones shape variability into account, in the segmentation framework, for given
ranges of ages. This could be done, for instance, by building a statistical shape
model for each range of ages, instead of choosing only one anatomical template.
However, this would need many annotated MRI images, which are not currently
available in pediatrics.

Vessels segmentation A potential improvement to the proposed methods could
be to post-process our results in order to improve the vein/artery classification.
This could be done, for instance, by analyzing the spatial consistency of the classes
along the entire 3D model. Moreover, it could be interesting to investigate other
methodologies that take into account the 3D information using more than three
successive slices (e.g. directly using efficient implementations of 3D CNN, once
more annotated data will be collected).

Bladder segmentation A potential improvement of the proposed bladder seg-
mentation method could concern the segmentation of the outer wall of the bladder,
which it was not addressed in our work. This could be done, similarly to other
proposed methods [35, 76], using the already segmented inner bladder wall as
initialization for a deformable model approach. However, in pediatrics, the ex-
tremely low contrast between the outer wall of the bladder and the surrounding
tissues should be taken into account in the segmentation framework.
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3D modeling of other pelvic structures This work addressed the segmenta-
tion of three pelvic structures: the bones, the vessels and the bladder. However,
in order to obtain a complete patient specific 3D model, specific tools still have to
be developed for other important structures, such as the colon, the genital system
and the eventual tumors. For this reason a future work could address the chal-
lenging issue of segmentation of these structures. Moreover, as already done for
the other structures, these methods should be implemented as 3D Slicer plugins,
in order to provide a full set of usable and integrated segmentation tools to the
user. Moreover, our preliminary work on the 3D modeling of nerve fibers has to
be opportunely extended, aiming to reduce false positives and to model also the
most peripheral nerves.

Non-overlapping constraints In this work, we decided to address indepen-
dently the segmentation of each pelvic structure, in order to give higher flexibility
to the segmentation pipeline. This is particularly important in case of patholo-
gies, such as tumors and malformations, which can strongly modify the patients
anatomy (e.g. missing structures or abnormal spatial relations between structures).
However, once generated the complete patient specific 3D model, the spatial re-
lations between the segmented structures could be extremely useful to refine the
segmentation results. For instance, a potential improvement of our work could con-
cern the introduction, in the segmentation pipeline, of non-overlapping constraints
between the segmented structures. This will result in a better consistency of the
segmentation results between the different target structures and, consequently, in
a more accurate patient specific 3D model.

Clinical evaluation Going further with the evaluation of the proposed segmen-
tation methods, results should be validated on a larger patients dataset, which will
require more manually annotated images. Moreover, in order to quantify the ben-
efits of patient specific 3D models for pediatric patients, affected by pelvic tumors
or malformations, a dedicated clinical study would be necessary. For instance, in-
teresting evaluations could concern the number of surgical strategy modifications
after visualizing the 3D models. The assessment of surgical outcome and patient’s
follow up could also benefit from 3D models, for instance by comparing patient’s
3D models before and after the surgery.

From surgical planning to image guided surgery In the long term, an
extremely interesting application could concern the integration of the 3D models
in the per-operative visualization, in order to guide the surgical act. For robotic
surgery, this would require a real time overlay of the pre-operative 3D models in
the screen of the robot console. This is particularly challenging for the pelvis, and
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even more in pediatrics, mainly because of the strong structures displacements
and deformations during the surgical procedure compared with their positions and
shapes in the pre-operative images.
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Appendix A

Pelvic tractography

Abstract

This appendix presents a preliminary work on the integration of nerve fibers, ob-
tained by tractography algorithms, into the patient specific pelvic 3D model. We
propose to rely on whole-pelvis tractography, which provides a large set of fiber
tracts within the pelvic region, and on a dedicated fiber segmentation approach.
In particular, we propose to extract the sacral plexus using the prior anatomical
knowledge on the nerves fiber paths respect to a set of predefined anatomical struc-
tures. This part of the work was done in collaboration with Alessandro Delmonte
(research engineer at IMAG2 laboratory, Imagine Institute) and Cécile Muller (pe-
diatric surgeon, PhD candidate at IMAG2 laboratory, Imagine Institute).
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A.1 Introduction

A.1.1 Context

The pelvic nervous system is extremely complex and difficult to observe. In the
literature, its anatomical description is based on ex-vivo analysis of adult patients.
The evolution of the pelvic nervous anatomy during growth and its modifications
in pathological cases (e.g. malformation) is currently poorly known.

In the context of pelvic surgery, preserving peripheral nerves is essential: any
lesion of the nervous system may have a major impact on the patients’ quality of
life, especially in children. Unfortunately, in clinical practice, the patient’s specific
nervous anatomy is generally not analyzed during surgical planning, due to the
lack of imaging techniques routinely available for its visualization. Indeed, due
to their small size, peripheral nerves are extremely difficult to see in CT or in
standard anatomical MRI images.

In the literature, studies on nerve fibers analysis are mostly focused on brain
white matter. They rely on tractography algorithms applied to diffusion MRI
images.

A.1.2 Diffusion MRI and tractography

Diffusion MRI is an imaging technique that estimates the water particles diffusion,
also called Brownian motion [54], in a tissue, along a certain spatial direction. One
of the mostly used extensions of Diffusion MRI is called Diffusion Tensor Imag-
ing (DTI) [68], which estimates the diffusion property of the tissues in multiple
directions, creating a diffusion matrix (a tensor) that characterizes the anisotropic
behavior of water particles in the 3D space. This diffusion tensor can be consid-
ered as a three-dimensional structure with three principal diffusivities (eigenvalues)
associated with three mutually perpendicular principal directions (eigenvectors).

The directional and magnitude information of the anisotropic diffusion of the
individual voxels can be combined together in order to reconstruct the paths of fiber
tracts. This technique, also known as tractography, relies on the assumption that
adjacent voxels with a similar orientation of their principal anisotropic diffusion
direction are likely to belong to the same fiber tract [57].

Several tractography algorithms exist, based either on deterministic or proba-
bilistic approaches [29]. The formers, which are the most intuitive ones, are based
on three main steps: i) initialization, ii) propagation and iii) termination. The ini-
tialization consists in choosing a set of points (or seeds), from which fibers will be
tracked. The propagation mainly consists in connecting image points based on the
diffusivity values along the principal diffusion direction. Finally, the termination
consists in stopping the fiber tracking under given conditions. The termination
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criteria are generally based on the values of anisotropic diffusion, the length and
the local curvature of the reconstructed fibers.

Depending on the intitalization approach, it is possible to divide tractography
methods in two groups:

• ROI-based tractography The most common method for isolating groups
of fibers (or bundles), based on tractography, is the manual placement of
regions of interest (ROIs) into the images, which are used as starting seeds
for the algorithm (e.g. in [116] for the pelvic nerves). Other inclusion or
exclusion ROIs can also be eventually selected to refine the tractography
results (e.g. in [85]). However the ROI selection procedure is tedious, time
consuming and the results are poorly reproducible [140].

• Whole-image tractography Different approaches create seed points with-
in the entire image, in order to generate a model of the whole fibers inside the
image. These methods generate a huge number of fiber tracts, which are very
difficult to analyze, both qualitatively and quantitatively (see Figure A.1a).
For this reason, in order to keep only the relevant (or to "segment") fiber
tracts, post-processing steps are usually required. The post processing could
rely, for instance, on clustering algorithms [88, 124, 125] or, similarly to
the ROI-based methods, on inclusion or exclusion criteria within predefined
ROIs [2, 123] (see Figure A.1).

(a) (b) (c)

Figure A.1: Example of segmentation of white matter tracts. (a) Whole-brain
tractography. (b) Tracts segmentation using the relation crossing (1). Tracts
segmentation using the relation {crossing (1) AND crossing (2)} OR {crossing
(1) AND crossing (3)}. Figure drawn from [2].

On the one hand, the drawback of clustering algorithms is that, while au-
tomatically grouping similar fibers, it is very difficult to incorporate meaningful
anatomical information in their formulation. On the other hand, manual selection
of ROIs is tedious, poorly reproducible and the inclusion/exclusion criteria could

111



not be sufficient for describing fiber tracts with convoluted paths (e.g. most of pe-
ripheral pelvic nerves). For this reason, in [126], the authors propose to describe
the different white matter fiber tracts by defining their spatial relations (e.g. cross-
ing, anterior, superior, endpoints in, ...) with predefined anatomical structures,
obtained from automated segmentation of the brain tissues (see Figure A.2). In
this way, the authors provide an easy way of describing (and segment) even com-
plex fiber tracts thanks to the clinicians anatomical knowledge, represented in a
near-to-English textual language.

Figure A.2: Schematic example of the work in [126], applied to white matter tracts
segmentation.

This approach, due to its flexibility, seems particularly interesting for pelvic
tractography applications. However, for the pelvis, there is a strong lack of periph-
eral nerves descriptions that could be directly used in a computational framework.
In fact, in the pelvis, the fiber paths descriptions often refer to anatomical regions
that are very difficult to identify in the MRI images (e.g. the great sciatic foramen,
which is a region defined by two pelvic ligaments which are extremely difficult to
see in MRI). For this reason a new set of definitions, which rely on structures that
can be identified and segmented from standard MRI images (in our application,
from T2-w MRI), is essential.

Another difficulty of the pelvic application is that the pelvis is composed of a
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large number of soft tissues with high diffusivity (e,g. the muscles), This is not the
case for the brain, where only the white matter, which is the structure of interest,
has diffusion properties. Moreover, the pelvic images are generally noisier than the
brain ones, especially in pediatrics, due to higher patients motion. An example of
whole-pelvis tractography is depicted in Figure A.3.

Figure A.3: Example of whole-pelvis tractography (coronal view).

A.2 Pelvic tractography segmentation

In order to extend the method in [126] to the segmentation of the pelvic nervous
system, we propose i) an alternative modeling for the spatial relations and ii) a
new set of definitions for the pelvic nerves paths.

A.2.1 Modeling the spatial relations

As it is possible to see in Figure A.2, in [126] the authors propose to model the
directional spatial relations (e.g. superior, inferior, ...) with standard bounding
boxes. One the one hand, this type of representation has the advantage to be very
easy to compute. On the other hand, it could not be optimal to represent spatial
relations with respect to small structures or with complex shape.

For this reason, we propose to model the spatial relations using a directional
cone, whose aperture Φ represents the strictness of the spatial relation, which can
be tuned by the user. A schematic representation of this modeling is shown in
Figure A.4. This is a simplification of the fuzzy relations defined in [9], which
proved to be sufficient in this preliminary application and it is faster to compute.

This way of modeling spatial relations was employed for the following defini-
tions: anterior, posterior, superior, inferior, medial and lateral. The medial and
lateral definitions were preferred to the right and left ones, since the former ones
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(a) (b) (c)

Figure A.4: Example of the modeling of the spatial relation right_of(Structure)
in a 2D plane. (a) Primitive cone, with axis directed along the right direction and
aperture angle Φ. (b) The primitive cone is translated in each border point (black)
of the reference structure (red). This can also be expressed as a dilation of the
reference structure, using the cone as structuring element. (c) Final spatial dilation
(blue), obtained as the union of all the border points dilations, representing the
right_of region of the reference structure.

are the mostly used in the medical terminology. Moreover, since the pelvic struc-
tures of interest are symmetric with respect to the sagittal plane, this avoid to
duplicate left and right relations.

Another contribution with respect to the study in [126], is the definition of two
other spatial relations: between and proximity. Concerning the between relation,
the axis of the directional cone is aligned with the segment joining the center of
mass of the two structures. The directional spatial dilations are then computed
separately for the two structures and their intersection is kept as final between
region (see Figure A.5). This is again a simplification of the dilation-based method
proposed in [9]. The proximity relation is represented by thresholding the distance
transform, in mm, of the reference structure (see Figure A.6).

(a) (b)

Figure A.5: Graphic representation of the between relation. (a) The spatial dila-
tions (light blue) are computed separately for the two reference structures (red).
(b) The between spatial dilation (blue), obtained as intersection of the single-
structure dilations. The structures centers of mass are depicted in yellow.
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Figure A.6: Graphic representation of the proximity relation. The reference struc-
ture is depicted in red, the proximity region is depicted in blue.

The complete list of spatial and pathway relations is detailed in Table A.1.
Note that the pathway relations are the same as the ones described in [126].

Relations

Spatial relations

anterior_of(Structure, Aperture, Percentage)
posterior_of(Structure, Aperture, Percentage)
superior_of(Structure, Aperture, Percentage)
inferior_of(Structure, Aperture, Percentage)
medial_of(Structure, Aperture, Percentage)
lateral_of(Structure, Aperture, Percentage)
between(Structure1, Structure2, Percentage)
proximity_of(Structure, Length ,Percentage)

Pathway relations

crossing(Structure, Percentage)
only_in(Structure)
not_in(Structure)
endpoints_in(Structure)
both_endpoints_in(Structure)

Table A.1: Structure represents the reference anatomical structure, from which
the spatial relation is computed. Aperture [0, π] represents angle of the directional
cone, tuning the strictness of the spatial relation. Percentage [0, 100] represents
the percentage of a given fiber tract that must lie inside a spatial dilation, in order
to satisfy the relation.
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A.2.2 Definition of the main pelvic nerves paths

The spatial and pathway relations detailed in Table A.1 can be combined together,
using AND, OR and NOT operators, in order to obtain the definitions (or queries)
of pelvic nerves paths of interest. In particular, the first nervous structures of
interest concern the sacral plexus: the sacral spine nerves S1, S2, S3, S4 and the
lumbar spinal nerve L5. For a detailed anatomical description of the sacral plexus
refer to [34].

From a detailed analysis of the sacral plexus anatomy, we define the following
queries (the input parameters, such as Aperture and Percentage, are here omitted
for better readability):

• L5 = crossing(VertebralCanalL5)
and (not posterior_of(Sacrum))
and posterior_of(Vein)
and posterior_of(Artery)
and posterior_of(Uretere)
and proximity_of(Uretere)
and posterior_of(Ovary
and proximity_of(Ovary))
and anterior_of(PiriformisMuscle)
and superior_of(IschialSpine)
and anterior_of(IschialSpine)
and posterior_of(ObturatorMuscle)
and not crossing(SacralHoleS1)
and not crossing(SacralHoleS2)
and not crossing(SacralHoleS3)
and not crossing(SacralHoleS4)
and not (anterior_of(LevatorAniMuscle)
or posterior_of(LevatorAniMuscle))
and anterior_of(L5Vertebra)
and posterior_of(L5Vertebra)

• S1 = crossing(SacralHoleS1)
and anterior_of(Sacrum)
and posterior_of(Vein)
and posterior_of(Artery)
and posterior_of(Ovary)
and superior_of(PiriformisMuscle)
and anterior_of(PiriformisMuscle)
and superior_of(IschialSpine)
and anterior_of(IschialSpine)
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and posterior_of(ObturatorMuscle)
and not crossing(SacralHoleS2)
and not crossing(SacralHoleS3)
and not crossing(SacralHoleS4)
and not crossing(VertebralCanalL5)
and not (anterior_of(LevatorAniMuscle)
or posterior_of(LevatorAniMuscle))
and anterior_of(L5Vertebra)
and posterior_of(L5Vertebra)

• S2 = crossing(SacralHoleS2)
and anterior_of(Sacrum)
and posterior_of(Vein)
and posterior_of(Artery)
and posterior_of(Ovary)
and lateral_of(Colon)
and lateral_of(Genital)
and superior_of(PiriformisMuscle)
and anterior_of(PiriformisMuscle)
and superior_of(IschialSpine)
and anterior_of(IschialSpine)
and posterior_of(ObturatorMuscle)
and not crossing(SacralHoleS1)
and not crossing(SacralHoleS3)
and not crossing(SacralHoleS4)
and not crossing(VertebralCanalL5)
and not (anterior_of(LevatorAniMuscle)
or posterior_of(LevatorAniMuscle))

• S3 = crossing(SacralHoleS3)
and anterior_of(PiriformisMuscle)
and medial_of(PiriformisMuscle)
and posterior_of(Vein)
and posterior_of(Artery)
and posterior_of(Ovary)
and lateral_of(Colon)
and lateral_of(Genital)
and superior_of(IschialSpine)
and anterior_of(IschialSpine)
and posterior_of(ObturatorMuscle)
and not crossing(SacralHoleS1)
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and not crossing(SacralHoleS2)
and not crossing(SacralHoleS4)
and not crossing(VertebralCanalL5)
and not (anterior_of(LevatorAniMuscle)
or posterior_of(LevatorAniMuscle,aperture=0))
S4 = crossing(SacralHoleS4)
and inferior_of(PiriformisMuscle)
and superior_of(CoccygealMuscle)
and posterior_of(Colon)
and lateral_of(Colon)
and posterior_of(Genital)
and lateral_of(Genital)
and posterior_of(Ovary)
and posterior_of(Uretere)
and superior_of(IschialSpine)
and anterior_of(IschialSpine)
and (not crossing(SacralHoleS1))
and (not crossing(SacralHoleS2))
and (not crossing(SacralHoleS3))
and (not crossing(VertebralCanalL5))
and not (posterior_of(LevatorAniMuscle)
or anterior_of(LevatorAniMuscle))

A.3 Preliminary results

We performed whole-pelvis tractography (see Figure A.3) for one control adult
patient and we segmented the sacral plexus using the queries previously defined.
The reference anatomical structures were segmented from T2-w MRI, either with
the developed semi-automatic tools (see Chapters 5, 6 and 7) or manually. The
patient specific 3D model including these structures is depicted in Figure A.7.
The choice of using one adult patient for this evaluation was mostly due to i) the
difficulties of segmenting all the structures needed for the queries (e.g. the muscles)
in pediatric patients, and ii) the need for images with low noise. With this test,
we wanted to show a first proof-of-concept of tractography segmentation using
spatial relations. The complete definition of queries and their use for pediatric
tracts recognition is still ongoing.

The proposed method, as depicted in Figure A.8, provides promising visual
results of the sacral plexus tracts from whole-pelvis tractography. However, the
segmented tractography contains a large number of false positives fiber tracts (in
particular for S4), which makes the results not yet sufficient for surgical planning
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(a) Anterior view (b) Posterior view

(c) Upper view (d) Lateral view

Figure A.7: Patient specific 3D model of a control adult patient, including all the
structures needed for the queries defined in Section A.2.2.

applications. For this reason, a refinement of the proposed queries is necessary to
address this issue. It is also important to remark that these results could also be
improved with a better tuning of the tractography algorithm parameters, such as
the termination criteria (see Section A.1.2 for details).

Even if the main objective of the introduction of the queries was the segmen-
tation of the whole-pelvis tractography, another interesting application is their
application for refinement (or filtering) of the results obtained by standard ROI-
based methods. In fact, even performing tractography starting from a set of user-
selected seeds, false positives are often present (see Figure A.9a). Moreover, the
filtering preocedure, not having to deal with the large number of tracts present in
whole-pelvis tractography, can be performed using very simple queries such as, for
the complete sacral plexus:
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(a) L5 (b) S1 (c) S2

(d) S3 (e) S4 (f) Complete sacral plexus

Figure A.8: Whole-pelvis tractography segmentation results for the sacral plexus.
Groups of false positive fiber tracks are indicated with red arrows.

• Sacral_Plexus = (crossing(VertebralCanalL5)
and not anterior_of(ObturatorMuscle))
or (crossing(SacralHoleS1)
and not (anterior_of(LevatorAniMuscle)
or posterior_of(LevatorAniMuscle)))
or crossing(SacralHoleS2)
or crossing(SacralHoleS3)

It is important to note that the S4 spinal nerve was not detected using the ROI-
based method, which motivates the absence of a corresponding query.

A.4 Conclusion

Pelvic nerves 3D modeling is nowadays a major challenge in order to enhance
surgical planning, both for pediatric and adult patients. In pediatrics, the 3D
models of nerves may also be useful to better describe the anomalies of the spinal
cord and/or muscles frequently associated, for instance, with ARM. This should
be useful not only to refine the classification of these malformations, but also to
evaluate the impact of the different types of surgical approaches and of potential
rehabilitation techniques (neuromodulation, physiotherapy).
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(a)

(b)

Figure A.9: Filtering of the ROI-based tractography thanks to the nerves paths
queries. (a) ROI-based tractography (yellow) with anatomically incoherent fiber
tracts (red arrows), (b) refined tractography (blue).

ROI-based tractography methods are the only ones that were previously applied
to the pelvic region (e.g. in [116]), leading to promising results for the sacral plexus
(from L4 to S3). However, the manual placement of the seeds is very tedious and
poorly reproducible. Moreover, the manual procedure is very complex, which lead
to discard the modeling of the most peripheral pelvic nerves (which are actually
the most relevant in the surgical context).

A potential solution to these problems could be to bypass the manual seeds
placement, by applying whole-pelvis tractography. For this reason, we proposed
a novel approach for extracting the sacral plexus from whole-pelvis tractography,
based on the anatomical description of the nerve fibers paths with respect to the
surrounding anatomical structures.

Due to the exploratory nature of this work, we tested our approach only on
one control adult patient and we obtained promising visual results on sacral plexus
3D modeling. However, due to the large number of false positives, these results
are not satisfying for surgical planning applications and a great research effort still
has to be done. Potential future work could concern: i) more accurate definitions
of the nerves fibers paths, and ii) the application of fuzzy spatial relationships [9]
in the paths definitions, as also done in [26], which would be extremely useful to
model their intrinsic imprecision.

Finally, our method also showed interesting results if used as a filtering ap-
proach for the ROI-based tractography, reducing anatomically incoherent false
positives fiber tracts.
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Titre : Segmentation 3D de structures pelviennes en IRM pédiatrique pour de applications de planification chirurgicale

Mots clés : IRM pédiatrique, chirurgie pelvienne, segmentation 3D, modélisation 3D

Résumé : La planification chirurgicale repose sur l’anatomie du
patient, et repose souvent sur l’analyse d’images médicales ac-
quises avant la chirurgie. En particulier, c’est le cas pour les inter-
ventions de chirurgie pelvienne en pédiatrie, pour de nombreuses
pathologies telles que des tumeurs et des malformations. Dans
cette zone anatomique, en raison de sa forte vascularisation et in-
nervation, une bonne planification chirurgicale est extrêmement im-
portante pour éviter des lésions fonctionnelles des organes du pa-
tient, qui pourraient nuire à sa qualité de vie. En pratique clinique, la
procédure standard repose sur l’analyse visuelle, coupe par coupe,
des images de la région pelvienne. Cette tâche, même si elle est fa-
cilement accomplie par des radiologues experts, est très complexe
et fastidieuse pour les chirurgiens, en raison de la complexité et
de la variabilité des structures anatomiques et, par conséquent, de
leurs images. De plus, en raison des variations anatomiques selon
l’âge du patient, toutes ces difficultés sont accentuées en pédiatrie
et une compréhension anatomique claire est encore plus impor-
tante que pour les adultes. Pour ces raisons, il est important et utile
d’être capable de fournir aux chirurgiens des modèles anatomiques
3D spécifiques aux patients, obtenus par traitement et analyse des
images IRM.
Dans cette thèse, nous proposons un ensemble de méthodes de
segmentation d’images IRM de patients pédiatriques. Nous nous
concentrons sur trois structures pelviennes importantes : les os du
bassin, les vaisseaux sanguins et la vessie. Pour les os, nous pro-
posons une méthode semi-automatique comportant une première
étape de recalage de modèles osseux puis une étape de segmen-

tation fine par modèles déformables. La principale contribution de la
méthode proposée est l’introduction d’un ensemble de modèles os-
seux pour différentes tranches d’âge, ce qui permet de prendre en
compte la variabilité des os pendant la croissance. Pour les vais-
seaux, nous proposons une méthode par patchs, apprentissage
profond et transfert d’apprentissage, donc ne nécessitant que peu
de donnes d’apprentissage. La principale contribution de ce travail
est la conception d’une procédure semi-automatique pour l’extrac-
tion des patchs, qui permet à l’utilisateur de se focaliser unique-
ment sur les vaisseaux d’intérêt pour la planification chirurgicale.
Pour la segmentation de la vessie, nous proposons d’utiliser une
approche par modèles deformables, particulièrement robuste aux
hétérogénéités de l’image et aux effets de volume partiel, souvent
présents dans les images IRM pédiatriques.
Toutes les méthodes proposées sont intégrées dans une plate-
forme logicielle libre pour le traitement d’images médicales, don-
nant aux chirurgiens des outils performants avec des interfaces
utilisateur faciles à utiliser. De plus, nous mettons en place une
stratégie de traitement et de portabilité pour la visualisation des
modèles 3D du patient, permettant aux chirurgiens de générer, vi-
sualiser et partager ces modèles au sein de l’hôpital.
En conclusion, les résultats obtenus avec les méthodes proposées
sont quantitativement et qualitativement évalués de manière très
posititive par des chirurgiens pédiatriques, démontrant leurs poten-
tialités pour l’utilisation en pratique clinique dans des procédures
de planification chirurgicale.
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Abstract : Surgical planning relies on the patient’s anatomy, and
it is often based on medical images acquired before the surgery.
This is in particular the case for pelvic surgery on children, for va-
rious indications such as malformations or tumors. In this particular
anatomical region, due to its high vascularization and innervation,
a good surgical planning is extremely important to avoid potential
functional damages to the patient’s organs that could strongly af-
fect their quality of life. In clinical practice the standard procedure
is still to visually analyze, slice by slice, the images of the pelvic
region. This task, even if quite easily performed by the expert ra-
diologists, is difficult and tedious for the surgeons due to the com-
plexity and variability of the anatomical structures and hence their
images. Moreover, due to specific anatomy depending on the age
of the patient, all the difficulties of the surgical planning are em-
phasized in the case of children, and a clear anatomical understan-
ding is even more important than for the adults. For these reasons,
it is very important and challenging to provide the surgeons with
patient-specific 3D reconstructions, obtained from the segmenta-
tion of MRI images.
In this work we propose a set of segmentation tools for pelvic MRI
images of pediatric patients. In particular, we focus on three impor-
tant pelvic structures: the pelvic bones, the pelvic vessels and the

urinary bladder. For pelvic bones, we propose a semi-automatic ap-
proach based on template registration and deformable models. The
main contribution of the proposed method is the introduction of a
set of bones templates for different age ranges, which allows us to
take into account the bones variability during growth. For vessels
segmentation, we propose a patch-based deep learning approach
using transfer learning, thus requiring few training data. The main
contribution of this work is the design of a semi-automatic strategy
for patches extraction, which allows the user to focus only on the
vessels of interest for surgical planning. For bladder segmentation,
we propose to use a deformable model approach that is particularly
robust to image inhomogeneities and partial volume effects, which
are often present in pediatric MRI images.
All the developed segmentation methods are integrated in an open-
source platform for medical imaging, delivering powerful tools and
user-friendly GUIs to the surgeons. Furthermore, we set up a pro-
cessing and portability workflow for visualization of the 3D patient
specific models, allowing surgeons to generate, visualize and share
within the hospital the patient specific 3D models. Finally, the results
obtained with the proposed methods are quantitatively and quali-
tatively evaluated by pediatric surgeons, which demonstrates their
potentials for clinical use in surgical planning procedures.
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