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Abstract

The goal of machine learning is to learn a model from some data that will make accurate
predictions on data that it has not seen before. In order to obtain a model that will generalize
on new data, and avoid overfitting, we need to constrain the model, e.g., by using some a
priori knowledge of the structure of the model. Classical approaches to constraining the model
include regularization methods such as ridge regression or Lasso regularization. The latter
induces sparsity in the solution. Parsimony, which is also called sparsity, has emerged as
a fundamental concept in machine learning. Parsimonious models are appealing since they
provide more interpretability and better generalization (avoid overfitting) through the reduced
number of parameters.

Beyond general sparsity and in many cases, models are constrained structurally so they
have a simple representation in terms of some fundamental elements, consisting for example of
a collection of specific vectors, matrices or tensors. These fundamental elements are called
atoms. In this context, atomic norms provide a general framework for estimating these sorts of
models. The goal of this thesis is to use the framework of convex sparsity provided by atomic
norms to study a form of matrix sparsity.

First, we develop an efficient algorithm based on Frank-Wolfe methods that is particularly
adapted to problems with an atomic norm regularization. Then, we focus on the structure
estimation of Gaussian graphical models, where the structure of the graph is encoded in
the precision matrix and study the case with unobserved variables. We propose a convex
formulation with an algorithmic approach and provide a theoretical result that states necessary
conditions for recovering the desired structure.

Finally, we consider the problem of signal demixing into two or more components via the
minimization of a sum of norms or gauges, encoding each a structural prior on the corresponding
components to recover. In particular, we provide general exact recovery guarantees in the
noiseless setting based on incoherence measures.
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Résumé

En apprentissage automatique on a pour but d’apprendre un modèle, à partir de données,
qui soit capable de faire des prédictions sur des nouvelles données (pas explorées aupara-
vant). Pour obtenir un modèle qui puisse se généraliser sur les nouvelles données, et éviter
le sur-apprentissage, nous devons restreindre le modèle. Ces restrictions sont généralement
une connaissance a priori de la structure du modèle. Les premières approches considérées
dans la littérature sont la régularisation de Tikhonov et plus tard le Lasso pour induire
de la parcimonie dans la solution. La parcimonie fait partie d’un concept fondamental en
apprentissage automatique. Les modèles parcimonieux sont attrayants car ils offrent plus
d’interprétabilité et une meilleure généralisation (en évitant le sur-apprentissage) en induisant
un nombre réduit de paramètres dans le modèle.

Au-delà de la parcimonie générale et dans de nombreux cas, les modèles sont structurelle-
ment contraints et ont une représentation simple de certains éléments fondamentaux, comme
par exemple une collection de vecteurs, matrices ou tenseurs spécifiques. Ces éléments fonda-
mentaux sont appelés atomes. Dans ce contexte, les normes atomiques fournissent un cadre
général pour estimer ce type de modèles. périodes de modèles. Le but de cette thèse est
d’utiliser le cadre de parcimonie convexe fourni par les normes atomiques pour étudier une
forme de parcimonie matricielle.

Tout d’abord, nous développons un algorithme efficace basé sur les méthodes de Frank-
Wolfe et qui est particulièrement adapté pour résoudre des problèmes convexes régularisés
par une norme atomique. Nous nous concentrons ensuite sur l’estimation de la structure
des modèles graphiques gaussiens, où la structure du modèle est encodée dans la matrice
de précision et nous étudions le cas avec des variables manquantes. Nous proposons une
formulation convexe avec une approche algorithmique et fournissons un résultat théorique qui
énonce les conditions nécessaires pour récupérer la structure souhaitée.

Enfin, nous considérons le problème de démixage d’un signal en deux composantes ou plus
via la minimisation d’une somme de normes ou de jauges, encodant chacune la structure a priori
des composants à récupérer. En particulier, nous fournissons une garantie de récupération
exacte dans le cadre sans bruit, basée sur des mesures d’incohérence.
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Chapter 1

Introduction

In machine learning we want to learn a model, that can be a set of parameters, from some data
that will make accurate predictions on data that it has not seen before. The ability of model
to be effective on data that it has not seen before is called generalization. In order to obtain a
model that will generalize on new data, and avoid overfitting, we need to make assumptions
on the model. This idea is called inductive bias and states that without constraining the
class/structure of the models considered, the learned model will completely overfit the data
and will perform poorly on new data. Inductive bias can be introduced in several ways. First,
by restricting the complexity of the model directly by making hypothesis on the class of models
we consider. Second, by encouraging simple solutions through regularization for example.
A classical example of inductive bias that illustrates both forms is ridge regression as first
proposed Tikhonov (1963) where we assume the model to be linear in the features and also
add an `2 regularization to avoid too large parameters. Later in the literature, Tibshirani
(1996) considered Lasso regularization (`1) to induce that only a few parameters are non zero.

Sparsity, also known as parsimony, has emerged as a fundamental concept in machine
learning. It derives from Occam’s razor principle that assumes that the simplest explanation
tends to be the right one. Parsimonious models are appealing since they provide more inter-
pretability and better generalization through the reduced number of parameters. Parsimony is
particularly suited for problems in high dimension setting, when the number of parameters
to estimate is of the order or larger than the number of samples. Beyond plain sparsity,
some a priori knowledge on the structure of the model can be incorporated. It is known as
structured sparsity. A first form of structured sparsity, usually employed for vectors, consists in
constraints on the support (Yuan and Lin, 2006a; Jenatton et al., 2011a; Obozinski et al., 2011).

In applications, data comes in various forms such as images, videos, genetic microarrays and
in some of these cases, data is not naturally represented by vectors but is inherently represented
by a matrix or a tensor. When working with matrices, another form of sparsity arises: low
rank. A matrix can also be considered from a linear operator (or linear transformation) point
of view. The structure of the operator is linked to its singular value decomposition and a
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2 CHAPTER 1. INTRODUCTION

natural new definition of sparsity in this context is to add a low rank a priori on the matrix.
Since a low rank constraint is a non convex constraint, a convex surrogate that can be viewed
as a counterpart of the `1 norm, namely the trace norm, has been introduced in the literature
as a regularizer to induce low-rank matrix. Low rank models are widely used in machine
learning going from classical techniques such as Principal Component Analysis (PCA) to other
approaches such as multi-task learning (Obozinski et al., 2010; Argyriou et al., 2008) and
matrix completion (Candès and Recht, 2009). PCA can suffer from noisy observations as
well as from low interpretability since each principal component is a linear combination of all
the original variables. Combining plain sparsity and low-rank can lead to more robust and
interpretable solutions and appeared relevant in a number of models and formulations. There
are different ways to combine these two types of sparsity, by either requiring that a matrix
decomposes as the sum of a low rank plus a sparse matrix, by requiring that the matrix should
be simultaneously low rank and sparse, or by constraining or inducing that the matrix is
low-rank with structured factors. A sparse + low-rank decomposition (Chandrasekaran et al.,
2011; Candès et al., 2011) has proven to lead to more robustness in PCA, known as robust
PCA. Richard et al. (2013) introduced a convex nonsmooth regularizer encouraging multiple
structural effects simultaneously like simultaneously sparse and low-rank matrices. A number
of structured low rank models appear in the literature. In these models, a low-rank matrix has
factors with additional structure, such as sparsity. Among instances of such models we can cite
sparse PCA (Zou et al., 2006; d’Aspremont et al., 2008a) and subspace clustering (Vidal, 2011).
Note that dictionary learning(Elad and Aharon, 2006; Mairal et al., 2014) and non-negative
matrix factorization(Lee and Seung, 1999) correspond also to structure factorization models in
which the factors have some specific structure, but the number of factors can be higher and
the obtained matrix is therefore not necessarily low rank.

In many cases, models are constrained structurally so they have a simple representation
in terms of some elementary pieces, consisting for example of a collection of specific vectors,
matrices or tensors. These elementary pieces are called atoms and the mathematical object
that induces sparse representations in terms of these atoms is called an atomic norm.. Atomic
norms provide a general framework for convex sparsity. In a number of formulations, sparsity
in enforced through regularization. In this thesis we contribute to this general approach and
methodology by proposing new atomic norms, new algorithms, new uses of these norms in
models and new theoretical results.

From a computational perspective, optimizing problems with sparse regularizations can
be challenging. There has been a significant amount of research on structured convex regu-
larizations and a number of algorithms have been proposed, in particular based on proximal
methods. However proximal operators can be difficult to compute and may require to solve
a complex optimization problem in itself. In the last five years there has been a regain of
interest for a family of algorithm known as the Frank-Wolfe algorithm and variants which do
not require to compute the proximal operator and can reveal to be powerful. In this thesis
we develop efficient algorithms based on active-set strategies to optimize quadratic problems
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regularized by atomic norms.

Probabilistic graphical models provide a language to construct structured models. An
application in biology is to help infer the network of regulatory relationships among genes from
data on their expression levels (Friedman, 2004). The graphical model encodes the structure
of the problem considered but unfortunately very often the structure is not known or only
partially known so that the structure of the model has to be learned too. This is called
structure learning. For an undirected Gaussian graphical model, the graph structure and the
parameters of the model are simultaneously encoded in the inverse covariance matrix. Two
parameters of the model are conditionally independent given the others if and only if the
corresponding entry on the inverse covariance matrix is zero. Hence, learning the structure
of the graph boils down to learning a matrix (the inverse covariance matrix). The choice of
structure of the underlying graphical model is often combinatorial. Two general classes of
methods have been considered in the literature: greedy methods such as neighborhood selection
(Meinshausen and Bühlmann, 2006), and convex relaxation with sparse regularization such
as graphical lasso proposed by Banerjee et al. (2008). A major difficulty too often ignored in
structure learning is the fact that if some variables are not observed, the marginal dependence
graph over the observed variables will possibly be significantly more complex and no longer
reflect the direct dependences that are potentially associated with causal effects. Unobserved
variables are also called confounders and the problem of assesing causal effects of confounding
factors is a subject of increasing interest in the past few years. In this thesis we focus on
the problem of structure learning for Gaussian graphical models with unobserved variables.
We use a convex sparse formulation based on an atomic norm that allows at the same time
to regularize and leads to a convex relaxation of the problem. The approach boils down to
approximate the empirical precision matrix by a superposition of components: a sparse matrix
and low-rank sparse factors. We provide theoretical conditions for identifiability of the different
components of the decomposition.

From a theoretical aspect, a more general question that arises is the problem of identifying
a decomposition of multiple structured signals from an observation. This problem is known as
the demixing problem. Given a signal y that is a linear combination of signals x∗i and some
prior information on the characteristics or structure of the x∗i , can we identify the components
x∗i unambiguously? We consider the problem of signal demixing into two or more components
via the minimization of a sum of norms or gauges, encoding each a structural prior on the
corresponding components to recover. The analysis is done in the context of atomic gauges.
In particular, we provide general exact recovery guarantees in the noiseless setting based on
incoherence measures.

1.1 Outline and contributions

The plan of this thesis is presented below. Chapter 2, Chapter 3 and Chapter 5 are introductory
chapters while Chapter 4, Chapter 6 and Chapter 7 present our contributions.
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Chapter 2 This chapter reviews useful concepts in optimization, and defines the concept
of gauge also known as Minkowski functionnal that is a generalization of a norm. Next, the
more recent concept of atomic gauges first introduced by Chandrasekaran et al. (2012) is
explained and the properties of gauges and atomic gauges are presented. This will be essential
throughout the thesis to understand how algorithms and optimality proofs of Chapter 6 and 7
are derived.

Chapter 3 This chapter describes the general framework of convex sparsity with atomic
gauges. In particular we describe convex formulation for problems where the a priori structure
is encoded as an atomic norm and review optimization algorithms in the literature that address
similar formulations with a focus on the connections between different methods and their
application to atomic norm regularization. Different methods are presented: proximal splitting
methods, coordinate descend algorithms, Frank Wolfe and its variants and column generation
algorithms, that sometimes appear in machine learning literature under the name of working
set. A particular focus is done in describing active-set algorithm for quadratic programming
which, in the case of simple constraints, turns out to be very efficient.

Chapter 4 This chapter is our first contribution and is based on our paper Vinyes and
Obozinski (2017). We consider optimization problems that consist in minimizing a quadratic
function under an atomic norm regularization or constraint. In the line of work on conditional
gradient algorithms, we show that the fully corrective Frank-Wolfe (FCFW) algorithm - which
is most naturally reformulated as a column generation algorithm in the regularized case - can
be made particularly efficient for difficult problems in this family by solving the simplicial
or conical subproblems produced by FCFW using a special instance of a classical active
set algorithm for quadratic programming (Nocedal and Wright, 2006) that generalizes the
min-norm point algorithm (Wolfe, 1976a).

Chapter 5 This chapter presents an overview of probabilistic graphical models, focusing in
particular in undirected Gaussian graphical models. The edge structure of the graph defining
an undirected graphical model describes precisely the structure of dependence between the
variables in the graph. In many applications, the dependence structure is unknown and it is
desirable to learn it from data, often because it is a preliminary step to be able to ascertain
causal effects. This problem, known as structure learning, is a hard problem in general, but
for Gaussian graphical models it is slightly easier because the structure of the graph is given
by the sparsity pattern of the precision matrix. This Chapter reviews different methods of
structure learning that exist in the literature for undirected and directed graphs. As it will be
the object of 6, methods for learning the structure of Gaussian graphical models are reviewed
in more detail.
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Chapter 6 This chapter is also one of our contributions and is based on our paper Vinyes
and Obozinski (2018). We focus on the case of gaussian graphical models with unobserved
variables and propose a convex optimization formulation based on structured matrix sparsity
to estimate the complete connectivity of the original complete graph including unobserved
variables, given the knowledge of the number of missing variables, and a priori knowledge of
their level of connectivity. Our formulation is supported by a theoretical result of identifiability
of the latent dependence structure for sparse graphs in the infinite data limit.

Chapter 7 This chapter is another contribution of this thesis and aims to generalize the
theoretical results of previous chapter. We consider the problem of signal demixing into two or
more components via the minimization of a sum of norms or gauges, encoding each a structural
prior on the corresponding components to recover. In particular, we provide general exact
recovery guarantees in the noiseless setting based on local cumulative coherence measures that
are related to the cumulative coherence measures introduced in Tropp (2004), for combinations
of norms, that satisfy a decomposition property of the subgradient. In the case of demixing of
two components, we provide finer recovery result applicable to general coercive gauges. Our
general results subsume specific results from the literature for Basis Pursuit, Morphological
Component Analysis, sparse+ low rank matrix decomposition and others.
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Chapter 2

Atomic norms to induce structure

In many machine learning applications, and particularly for ill-posed problems, models are
constrained structurally so they have a simple representation in terms of some fundamental
elements, consisting for example of a collection of specific vectors, matrices or tensors. In this
chapter we present the concept of gauge (extension of a norm) that can be used to impose
structure on a problem. First, we review useful concepts in optimization and properties of
gauges. This will be essential throughout the thesis to understand how we derive algorithms
and optimality proofs of Chapter 6. Second, we introduce the concept of atomic gauges and
explain how they leverage structure. Finally we present some examples of such gauges.

2.1 Concepts in convex optimization
In a purpose of of self-containedness, we present in this section important tools to study
non-smooth convex optimization problems related to structured sparse methods. Most of them
can be found in classical convex optimization books (Boyd and Vandenberghe, 2004; Bertsekas,
1999; Nocedal and Wright, 2006; Borwein and Lewis, 2006). Let us briefly remind the concept
of smooth function. f is called smooth if it is differentiable and its gradient is L-Lipschitz

∥∇f(x) −∇f(y)∥ ≤ L∥x − y∥ ∀(x, y) ∈ Rp ×Rp. (2.1)

Throughout this thesis, whenever not specified, x belongs to the ambient vector space Rp.

2.1.1 Subgradients and polar gauges

The subgradient is an extension of the concept of gradient for non-differentiable convex
functions. This concept will prove useful in our analysis since usually sparsity-inducing
regularizers are not differentiable.

Definition 1. (subgradient) Let f ∶ Rp ↦ R be a convex function. A vector z ∈ Rp is called a
subgradient of f at point x0 ∈ Rp if for any x ∈ Rp we have

f(x) ≥ f(x0) + ⟨z, x − x0⟩

7



8 CHAPTER 2. ATOMIC NORMS TO INDUCE STRUCTURE

The set of all subgradients of f at x0 is called subdifferential and is written ∂f(x0).

Any subgradient z in ∂f(x0) defines a linear function x↦ f(x0)+⟨z, x − x0⟩ that is tangent
to the graph of function f . Subgradients are a key object in nonsmooth optimization problems
since they characterize optimality conditions as illustrated in the following proposition. The
proof can be found on Chapter 3 of Bertsekas (2015).

Proposition 1. (subgradients at optimality) For any convex function f ∶ Rp ↦ R, a point x∗
in Rp is a global minimizer of f if and only if 0 ∈ ∂f(x∗).

In particular, for a convex and differentiable function f , the subdifferential at point x0
is a singleton that reduces to the gradient ∇f(x0). The subgradient of a gauge has a nice
characterization that will be extensively used in our analysis. Before introducing it, we need to
introduce the concepts of gauge and polar gauge which are central objects throughout this thesis.

Gauges are interesting to consider since, unlike norms, they allow to introduce non-
symmetric regularizers. Two enlightening cases are: the fact that a subspace constraint
combined with a norm regularization can be formulated concisely as a gauge whose domain is
the corresponding subspace; the fact that when working on cones (like cones of matrices), it is
natural to define a regularizer only on the cone and which is therefore not necessarily symmetric.

We first introduce the concept of gauge on a convex set.

Definition 2. (gauge) Let C be a bounded convex set containing the origin. The gauge of C is

γC(x) ∶= inf{t ∣ x ∈ tC}

In the next definition we introduce the concepts of closed, finite and coercive gauge.

Definition 3. (closed, finite, coercive gauge) Let γC be a gauge.

• γC is a closed gauge if and only if the convex set C is closed.

• γC is a finite gauge if and only if ∀x ∈ Rp, γC(x) takes a finite value.

• γC is a coercive gauge if and only if (γC(x) = 0)⇒ (x = 0).

All gauges considered in this thesis are closed gauges unless specified. A norm is a particular
instance of a gauge when C is a bounded closed centrally symmetric set with non empty
interior. In that case C is simply the unit ball of the norm. Figure 2.1 illustrates a norm (a
gauge on a closed bounded symmetric set C) and a gauge on a closed bounded non-symmetric
set C.

In the following proposition we present some elementary properties of gauges: the fact that
the sum of two gauges is a gauge and the infimal convolution1 of two gauges is also a gauge.

1The infimal convolution of two functions f and g is denoted by f ◻g and writes f ◻g(x) = infy f(x−y)+g(y)
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Figure 2.1: Illustration of a norm(left) and a gauge(right) defined form a convex set C.

Proposition 2. (some properties of gauges) Let γC1 and γC2 be two gauges from convex sets
C1 and C2.

(i) the sum of two gauges is a gauge and γC1 + γC2 = γC ♯D, where C1 ♯C2 ∶= ⋃λ∈[0,1] λC1 ∩
(1 − λ)C2 is the inverse sum defined in Section 3, Part 1 of Rockafellar (1970)2.

(ii) the infimal convolution of two gauges is a gauge and γC1 ◻ γC2 = γConv(C1∪C2)

Proof. Let x ∈ Rp, we have

(γC1 + γC2)(x) = inf
s,t∈R+

{s + t ∣ x ∈ tC1 ∩ sC2}

= inf
s,t∈R+

{s + t ∣ x ∈ (t + s)C1 ♯C2}

For the infimal convolution we have

(γC1 ◻ γC2)(x) = inf
z1,z2∈Rp

{γC1(x1) + γC2(x2) ∣ x = z1 + z2}

= inf
s,t∈R+

{s + t ∣ x = sx1 + tx2, x1 ∈ C1, x2 ∈ C2}

= inf
s+t∈R+

{s + t ∣ x ∈ (s + t)Conv(C1 ∪C2)}

= γConv(C1∪C2)(x)

where Conv designates the convex hull of a set.

In a number of cases (cf section 2.2.3 about atomic norm examples) it is much easier to
handle the polar gauge. The concept of polar gauge is presented in the following definition.
The same concept applied to norms is called dual norm.

Definition 4. (polar gauge) Let γ ∶ Rp ↦ R+ be a gauge. The polar gauge is denoted γ○ and
is defined as

γ○(y) ∶= sup
x∈Rp
γ(x)≤1

⟨x, y⟩ ,

for all y ∈ Rp.
2If C1, C2 are convex cones containing the origin C1 ♯C2 = C1 ∩C2 (Section 3, Part 1 of Rockafellar (1970))
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The subdifferential of a gauge has a handy characterization involving the polar gauge
stated in the following lemma.

Lemma 1. (subdifferential of a gauge) Let γ ∶ Rp ↦ R+ be a gauge. A characterization of the
subdifferential of γ at the point x0 in Rp is

∂γ(x0) = {z ∈ Rp; ⟨z, x0⟩ = γ(x0) and γ○(z) ≤ 1} . (2.2)

Proof. First we define the set G(x0) ∶= {z ∈ Rp; ⟨z, x0⟩ = γ(x0) and γ○(z) ≤ 1}. We will
prove that G(x0) equals ∂γ(x0). If z ∈ G(x0) then

γ(x0) + ⟨z, x − x0⟩ = ⟨z, x⟩ ≤ γ(x)γ○(z) ≤ γ(x)

where the first inequality comes from the definition of polar gauge.
To prove the other direction let us take z ∈ ∂γ(x0), then for any x,

⟨z, x⟩ − γ(x) ≤ ⟨z, x0⟩ − γ(x0).

By taking the supremum over all x we obtain

γ∗(z) ≤ ⟨z, x0⟩ − γ(x0), (2.3)

where γ∗(z) is the fenchel conjugate (definition 5) of γ and equals 0 if γ○(z) ≤ 1 and +∞
otherwise, accordind to lemma 4. Since right hand side of 2.3 cannot be +∞ for any z, we
must have γ○(z) ≤ 1. As a consequence, equation 2.3 gives us γ(x0) ≤ ⟨z, x0⟩. On the other
hand

⟨z, x0⟩ ≤ γ(x0)γ○(z) ≤ γ(x0)

where first inequality comes from the definition of polar gauge.

2.1.2 Fenchel conjugate and duality gap

Duality is a central concept in optimization. A convex optimization problem may be viewed
from either of two perspectives, a primal problem or a dual problem. Fenchel conjugation
is a transform that applies to any function and can be used to transform some optimization
problems, mainly when the problem is composed by a sum of two convex functions, into a
corresponding dual problem , which can sometimes be simpler to solve.

Definition 5. (Fenchel conjugate) Let f ∶ Rp ↦ R be a function, the Fenchel conjugate f∗ of
f is

f∗(y) = sup
x∈Rp

⟨x, y⟩ − f(x)

for all y ∈ Rp.

The Fenchel conjugate of a function f is always convex, regardless of the nature of function
f , as a pointwise supremum of linear functions. Another useful property that comes directly
from Definition 5 is the Fenchel-Young inequality:
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Lemma 2. (Fenchel-Young inequality) For any function f ∶ Rp ↦ R and its Fenchel conjugate
f∗ ∶ Rp ↦ R, Fenchel–Young inequality holds for every x,α in Rp

⟨x,α⟩ ≤ f(x) + f∗(α).

When f is convex, equality holds if and only if α ∈ ∂f(x) 3.

Proof. If equality holds, by applying the definition 5 on the equality we get that for all y ∈ Rp,
⟨x,α⟩ ≤ f(x)+ ⟨y,α⟩−f(y), which is a characterization of the subgradient of a convex function
and α ∈ ∂f(x).

Now, let α ∈ ∂f(x). Fenchel-Young inequality holds, we only need to proove ⟨x,α⟩ ≥
f(x) + f∗(α). By applying the characterization of the subgradient of a convex function, we
have for all y ∈ Rp, f(y) ≥ f(x) + ⟨α, y − x⟩. Taking the suppremum on all y gives us the
desired inequality ⟨α,x⟩ ≥ f(x) + f∗(x).

Another important property, stated in the next lemma, is that a closed convex function
equals its biconjugate. The proof can be found in Theorem 12.2, page 104 of (Rockafellar,
1970).

Lemma 3. (biconjugate) A function f equals its biconjugate, i.e. f∗∗ = f if and only if f is
a closed convex function.

The Fenchel conjugate of a gauge γ is directly related to the polar gauge. It is in fact the
indicator function of the convex set {y ∈ Rp ∶ γ○(y) ≤ 1}. The indicator function of a set C
is denoted as ιC and equals 0 on C and +∞ otherwise.

Lemma 4. (Fenchel conjugate of a gauge) The Fenchel conjugate of a gauge γ ∶ Rp ↦ R is

γ∗(y) = { 0 if γ○(y) ≤ 1
+∞ otherwise = ιγ○(y)

for all y ∈ Rp.

Proof. By definition 5, γ∗(y) = supx∈Rp ⟨x, y⟩−γ(x). We distinguish two cases: either γ○(y) ≤ 1,
then ⟨x, y⟩ ≤ γ(x) for all x ∈ Rp and equality holds if x = 0; or γ○(y) > 1 and there exists an x
with γ(x) ≤ 1, and ⟨x, y⟩ > 1. Therefore, for any t > 0

γ∗(y) ≥ ⟨tx, y⟩ − tγ(x) = t (⟨x, y⟩ − γ(x))

and γ∗(y)→∞ when t→∞

In this work we will focus on optimization problems that are a sum of a smooth and a
non-smooth convex function. Now that all technical concepts have been introduced, we make
explicit a dual problem in the following lemma.

3Note that it may happen that the subgradient is empty, in which case equality is never reached.
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Lemma 5. (dual problems) Let g ∶ Rp ↦ R and h ∶ Rp ↦ R be two functions, and X ∈ Rp×n a
linear operator. The following two problems

P (x) ∶= arg min
x∈Rp

g(X⊺x) + h(x),

D(α) ∶= arg max
α∈Rp

−g∗(α) − h∗(−Xα),

are duals of each other, where g∗ and h∗ are the Fenchel conjugates of f and g respectively.

During the optimization, sequences of primal variables x are available, and duality gaps
give an upper bound on the difference between the objective value of the current solution
and the optimal value, that is P (x) − P (x∗), where x∗ is an optimum of the primal problem.
Therefore, computing duality gaps is a meticulous way of checking the accuracy of the current
solution. Given any primal variable x and dual variable α in Rp, the Fenchel duality gap is
defined as the difference between primal and dual objectives, that is P (x) −D(α) with the
notations of lemma 5. The duality gap can be decomposed in two terms,

P (x) −D(α) = g(X⊺x) + h(x) + g∗(α) + h∗(−Xα) (2.4)
= g(X⊺x) + g∗(α) − ⟨x,α⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

+h(x) + h∗(−Xα) + ⟨x,α⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

(2.5)

where the positiveness of the two terms is given by Fenchel-Young inequality. A duality gap is
always positive and for convex problems, primal and dual objectives are equal at an optimum,
hence the duality tends to zero while approaching an optimum. Fenchel duality gap defines an
upper bound on P (x) − P (x∗),

P (x) −D(α) ≥ P (x) − P (x∗) ≥ 0.

Assuming that Fenchel conjugates are easy to compute, we still need to choose a "good" dual
variable α such that P (x) −D(α) is as small as possible. An appropriate choice would be
α ∶= ∇g(X⊺x) as it would set to zero the expression g(X⊺x)+ g∗(α)− ⟨x,α⟩, and simplify the
duality gap expression to

P (x) −D(α) = h(x) + h∗(−∇g(X⊺x)) − ⟨x,∇g(X⊺x)⟩ . (2.6)

In this thesis, we are interested in the specific case where h ∶= γ is a gauge. Hence, h∗ ∶= ιγ○ is
its fenchel conjugate, and we scale the dual variable to ensure the constraints imposed by the
indicator function, that is {α ∶ γ○(α) ≤ 1}, are satisfied. We define a dual variable as

α̂ ∶= min(1, 1
γ○ (∇g(X⊺x))

)∇g(X⊺x),

and derive the corresponding duality gap

P (x) −D(α̂) = g(X⊺x) + g∗(α̂) + h(x). (2.7)
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2.2 Atomic norms for leveraging structure
In many machine learning applications, and particularly for ill-posed problems, models are
constrained structurally so they have a simple representation in terms of some fundamental
elements, consisting for example of a collection of specific vectors, matrices or tensors. Examples
of such elements include sparse vectors for many sparsity inducing norms, rank-one matrices
for the trace norm or low-rank tensors as used in the nuclear tensor norm (Liu et al., 2013).
We call atoms these elements and atomic set A their (possibly uncountable) collection. In this
section we remind usefull concepts and results of atomic norms that can be found in classical
literature (Rockafellar, 1970; Chandrasekaran et al., 2012). We describe a model as "simple" if
it can be written as a nonnegative combination of a "few" elements from an atomic set. In
other words, the model is "simple" if it is a sparse combination of atoms. Parsimonious models
are useful in machine learning for three main reasons: they lead to a better generalization of
the model (avoid overfitting); they give interpretability through atom selection (extension of
variable selection) and in some cases they are computationally cheaper both to learn at to
perform predictions. The computational advantage depends on how hard is to find the atoms
since the problem can be NP-hard.

2.2.1 Definition from a collection of atoms

We define now atomic gauges. Let A be a subset of Rp, defined as a collection of atoms. These
atoms can be sparse vectors, rank-one matrices and multiple other choices. The penalty of an
element x in Rp is the minimum sum of non-negative weights ci such that x writes as a linear
combination of atoms (ai)i ∈ A, x = ∑i ciai. Therefore, an atomic gauge is defined from its
set of atoms A as the norm defined on the convex envelope of A, denoted CA. The formal
definition of atomic gauge is stated below.

Definition 6. (atomic gauge) A is bounded and closed, and provided its convex hull CA has
non empty interior, we can define an atomic gauge γA as the gauge of CA.

γA(x) ∶= inf{t ∣ x ∈ tConv(A)}

When CA is also centrally symmetric, γA is in fact an atomic norm and CA is its unit ball.
Chandrasekaran et al. (2012) show that the atomic gauge induced by the atomic set A is
indeed a gauge and can be rewritten in a simple form. This characterization is stated in the
next lemma,

Lemma 6. Let γA be an atomic gauge induced by atomic set A. In a finite dimensional space,

γA(x) ∶= inf{∑
a∈A

ca ∣ ∑
a∈A

caa = x, ca ≥ 0, a ∈ A}.

Proof. By applying Carathéodory’s theorem, stated just below, we know that any point x in
Rp writes a a convex combination of at most p + 1 atoms in A. Thus, we can write

γA(x) ∶= inf{t ∣ x = t∑
a∈A

waa s.t. ∑
a

wa = 1}



14 CHAPTER 2. ATOMIC NORMS TO INDUCE STRUCTURE

where all the sums are in fact finite sums. By making the simple change of variable ca ∶= twa
we get the result.

Theorem 1. (theorem of Carathéodory) If a point x of Rd lies in the convex hull of a set P ,
then x can be written as the convex combination of at most d + 1 points in P .

2.2.2 Polar gauge and subgradient

In some cases polar gauges of atomic gauges have a simple expression and can be much easily
computed than the gauge itself. In the following lemma we state the a characterization of the
polar of an atomic gauge.

Lemma 7. (polar of an atomic gauge) The polar gauge of an atomic gauge induced by the
atomic set A is

γ○A(x) = sup
a∈A

⟨x, a⟩ .

Proof. Following the definition 4 of polar gauge

γ○A(x) = sup
y∈Rp; γA(y)≤1

⟨x, y⟩ = sup
ca≥0; a∈A
∑a∈A ca≤1

∑
a∈A

ca ⟨x, a⟩ = sup
a∈A

⟨x, a⟩

where in the second equality we use the characterization of an atomic gauge of lemma 6 and
the last equality uses the fact that maximum value of a linear function over a convex set occurs
at an extreme point of the region, i.e. an atom in this case.

Subsequently, we obtain the following characterization of the subgradient of an atomic
gauge,

Lemma 8. (subdifferential of an atomic gauge) Let γA be the atomic gauge induced by atomic
set A. A characterization of the subdifferential of Ω at the point x0 in Rp is

∂γA(x0) = {z ∈ Rp; ⟨z, x0⟩ = γA(x0) and ∀a ∈ A, ⟨x, a⟩ ≤ 1} . (2.8)

2.2.3 Examples of gauges

In this section we present some examples of gauges.

Indicator of cone

Indicator of a convex cone, like cones4 of matrices, is a gauge. Let C be a convex cone,
γC(x) ∶= inf{t ∣ x ∈ tC}. We distinguish two cases: either x ∈ C, and we have x ∈ tC for any
t > 0, taking t → 0 we get γC(x) = 0; or x /∈ C, and by definition of a cone there is no t ≥ 0
such that x /∈ tC, so γC(x) =∞. For instance, the indicator function of the cone of positive
semidefinite matrices is a gauge.

4A set C is a convex cone if it is convex and a cone, i.e., ∀x1, x2 ∈ C and θ1, θ2 ≥ 0, θ1x1 + θ2x2 ∈ C.
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Atomic gauges of union of atomic sets

For a number of atomic gauges we have A = ⋃Jj=1Cj where Cj are convex sets. As a consequence
γ○A(s) = maxj γ○Cj and γA = γC1 ◻ . . . ◻ γCJ where ◻ denotes the infimal convolution5 with
f ◻ g(x) = infy f(x − y) + g(y). We thus have

γA(x) = inf{γC1(z1) + . . . + γCJ (zJ) ∣ z1 + . . . + zJ = x}.

.

Lasso and Group Lasso

The Lasso is a natural example of atomic norm, whose atoms are

A ∶= (±ei)i∈[[p]],

where the (ei)i∈[[p]] is the canonical basis of Rp. The Lasso polar norm is defined as Ω○
Lasso(s) =

maxi∈[[p]] ∣si∣. More generally, given G a partition of [[p]] and fixed positive weights δG (usually√
∣G∣) for each set G ∈ G, the Group Lasso norm is the atomic norm whose atoms are the

vectors of Euclidean norm δ−1
G and support in G,

A ∶= ⋃
G∈G

{u ∈ Rp ∣ supp(u) ⊂ G, ∥u∥2 ≤ δ−1
G }.

The Group Lasso polar norm is defined as Ω○
GL(s) = maxG∈G δ−1

G ∥sG∥2.

Trace norm

The trace norm is an atomic norm induced by the set of atoms

Atr ∶= {uv⊺, ∥u∥2 = ∥v∥2 = 1}

consisting of rank-one matrices. The polar norm is the nuclear norm. Note that when the
matrix is positive semidefinite then the trace norm is just the trace. Hence, the trace norm
plus the indicator cone of the positive semidefinite matrices defines a gauge which is the atomic
gauge associated with the rank of a symmetric positive semidefinite matrix.

"Non-atomic" gauges

From a technical point of view all gauges are atomic, with the atoms being all the elements of
the generating set of the gauge. What we mean by "non-atomic" gauges are gauges with a non
sparse atomic set, and consequently their atomic structure cannot be exploited efficiently. The
key property that we exploit in this thesis is related to conditional gradient algorithms: the
gauges that we like to view as atomic gauges, are the ones whose polar gauge can be computed

5The infimal convolution is clearly commutative and associative.
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efficiently, which corresponds to the LMO6 in conditional gradient algorithm as we will explain
in Chapter 3.

Some useful norms in machine learning do not have a sparse atomic set. In particular
norms inducing multiple sparsity patterns at the same time like the ones introduced in Richard
et al. (2013). Another example of a norm with non sparse atomic set is an extention of the
`1/`2-norm introduced by (Jenatton et al., 2011b). The proposed norm induces supports that
arise as intersections of a sub-collection of groups defining the norm. Given a collection of sets
B covering [[p]] and which can overlap, and fixed positive weights wB for each set B ∈ B, the
norm is defined as Ω(s) ∶= ∑B∈BwB∥sB∥2.

In (Obozinski and Bach, 2012) authors show that all the norms that are the best relaxation
of combinatorial penalties are naturally defined as "atomic" norms. In particular, authors show
that there is implicitly a combinatorial function associated with the norms of (Jenatton et al.,
2011b) and that the norm used (Jenatton et al., 2011b) is not the tightest relaxation, and
that there is one that is better, and which is defined as an "atomic" norm.

6Linear Minimisation Oracle



Chapter 3

Optimization for convex sparsity

In machine learning we want to approach a distribution but we only have a finite set of
examples. In particular in high dimension setting when the number of parameters to estimate
is of the order or larger than the number of samples there is no unique solution. We call these
problems ill-posed problems. These ambiguities in the solution can be reduced by incorporating
some a priori knowledge on the structure of the objects to estimate. This a priori information
can be applied as a regularization as first proposed Tikhonov (1963) for ridge regression or
later by Tibshirani (1996) for inducing sparsity in the solution. A general framework for
convex sparsity is provided by atomic norms. We review a convex formulation for problems
where the a priori structure is encoded as an atomic norm and review optimization algorithms
in the literature that address similar formulations with a focus on the connections between
different methods and their application to atomic norm regularization. We briefly present
proximal splitting methods and coordinate descend algorithms. We describe Frank Wolfe
and its variants for a constrained problem with a note on how to extend these methods to
the regularized problem. Finally we describe column generation algorithms, that sometimes
appear in machine learning literature under the name of working set. We focus on active-set
algorithm for quadratic programming where, in the case of simple constraints turns out to be
very efficient.

3.1 Convex formulation

In a number of problems in machine learning, we seek for a "simple explanation" of the
data leading to better interpretation and better generalization. This approach is particularly
important in high dimensional setting where the number of variables p is larger than the
number of samples n, p ≫ n leading to an ill-posed problem. This is usually achieved by
imposing a priori knowledge on the structure of the objects to estimate (Chandrasekaran et al.,
2010; Obozinski et al., 2011; Richard et al., 2014; Argyriou et al., 2012; Obozinski and Bach,
2012). Imposing the desired structure explicitly often leads to an intractable optimization
problem, but in many cases we can define a convex formulation that yields a useful solution.
The approach corresponds to minimizing some smooth convex function f ∶ Rp ↦ R which is

17
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typically an empirical risk in machine learning or another data fitting term, and a regularization
term ψ ∶ Rp ↦ R+, which is usually non-differentiable, that promotes the desired structure.
The optimisation problem writes

arg min
x∈Rp

f(x) + ψ(x). (3.1)

Throughout this thesis we mainly focus on regularized problem where the desired structure
can be encoded in an atomic gauge γA, ψ ∶= γA. A constrained formulation where the sparsity
is enforced via a constraint is also possible

arg min
x∈Rp

f(x) s.t ψ(x) ≤ ρ, (3.2)

Problems (3.1) and (3.2) are non differentiable optimization problems, and so could be
resolved by subgradient descent. However subgradient methods are usually very slow. Moreover
in many cases ψ is a simple function in the sense that its structure is well understood and can
be exploited to compute its proximal operator.

3.2 Proximal splitting methods
Proximal splitting methods arise in the context of a minimization of a sum of two convex
functions: a smooth function (with Lipshitz gradient constant L) and a convex non-smooth
function with a "simple" structure. What we call "simple" structure is the fact that the proximal
operator can be easily computed. The proximal operator was introduced by Moreau (1962)

Definition 7. (proximal operator) The proximal operator of a proper closed convex function
ψ ∶ Rp ↦ R is the function denoted Proxψ and defined as

Proxψ(x) ∶= arg min
y∈Rp

{1
2
∥x − y∥2 + ψ(y)} .

Note that Proxψ(x) is well defined since is the solution to a strongly convex probem.
If ψ∗ is the Fenchel conjugate of ψ, then an important and well known result is Moreau’s
identity (Moreau, 1965), which says that

∀x, Proxψ(x) +Proxψ∗(x) = x.

This shows that computing the proximal operator of a function ψ or its conjugate is equally hard.

Let us consider problem in (3.1). The main proximal splitting algorithm is the forward-
backward algorithm (also known as proximal gradient algorithm), presented in Algorithm 1
and consits of two alternating steps:

• the forward step: a gradient step with stepsize η : x̃t+1 ← xt − η∇f(xt)

• the backward step: a proximal step: xt+1 ← Proxηψ(x̃t+1).
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Algorithm 1 forward-backward
1: Initialization: x0 = 0, t = 0
2: repeat
3: xt+1 ← Proxηψ(xt − η∇f(xt))
4: until convergence

For any 0 < η < 2/L the algorithm converges. See Combettes and Pesquet (2011) for a review
on proximal operators and proximal splitting methods.

A well-known example is when ψ is the indicator of a convex set C where the algorithm
reduces to projected gradient descent (Bertsekas (1999), Chapter 2). Obozinski and Bach
(2012) present methods to compute proximal operators for submodular functions.

For some optimization problems instead of performing an update of the whole vector of
parameters we only update a subset of coordinates.

3.3 Coordinate descent
Coordinate descend methods optimize, either exatly or approximately, at each iteration the
objective with respect to a single variable at a time while others are kept fixed. They all
extend naturally to block coordinate descend where the optimization step is done on a block
of variables while keeping the others fixed.

Coordinate descent algorithms have many variants. The update applied to each variable in
the optimization step can take different forms of approximate updates such as: one or a few
gradient descent steps; one or a few projected gradient descent steps; one or a few proximal
gradient steps; acceleration steps etc. We focus on presenting proximal coordinate descent.

Let us consider problem in (3.1). When ψ is separable, meaning that it can be written

ψ(x) =
p

∑
i=1
ψi(xi),

and if for each ψi a proximal operator is easily computable, coordinate descent is particularly
adapted in this case. The algorithm is presented in Algorithm 2.

Algorithm 2 Coordinate proximal descend
1: repeat
2: Select a coordinate i ∈ [[p]]
3: xt+1

i ← Proxηtψi(xti − ηt[∇f(xt)]i)
4: until stopping criterion

In a number of cases, the regularization term is not separable but it writes as an infimal
convolution (Jalali et al., 2010; Jacob et al., 2009; Richard et al., 2014) and the optimization
problem can be reformulated into a problem where the non-differentiable term is separable.
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For instance when the regularization term is an atomic gauge that is an infimal convolution of
the form

γA(x) = inf{γC1(z1) + . . . + γCJ (zJ) ∣ z1 + . . . + zJ = x}, (3.3)

the formulation of the optimization problem is particularly amenable to coordinate descent.
Indeed, problem (3.1) can be reformulated as

min
z1,...,zJ

f (z1 + . . . + zJ) + γ1(z1) + . . . + γJ(zJ),

where the non-differentiable term is now separable. Note that this formulation is not necessarily
strongly convex, even if f is strongly convex, which can result in slow convergence.

Friedman et al. (2010) introduce fast coordinate descent algorithms that apply to a broad
set of problems: linear regression, logistic regression, and multinomial regression problems
with lasso regularization (`1), ridge regression (`2) or mixtures of the two (Zou and Hastie,
2005). They can be applied to large datasets and they appear to be much faster than other
methods. Convergence proofs of block coordinate descent in convex problems that are a sum
of a smooth function and a separable function are established in Tseng (2001) for the cyclic
scheme. Convergence of randomized schemes has been studied in Nesterov (2012) and Karimi
et al. (2016). See Wright (2015) for a review on coordinate descend algorithms.

3.4 Frank-Wolfe methods
The Frank-Wolfe algorithm, also known as conditional gradient, was initially proposed by
Frank and Wolfe (1956) for solving quadratic programming problems with linear constraints.
They apply in the context where we can easily solve the Linear Minimization Oracle (LMO), a
linear problem on a convex set of constraints defined as

LMOC(x) ∶= argmina∈C⟨a, x⟩,

where C is a convex set of constraints. The principle of the algorithms is to build a sequence
of approximations of the solution of the problem as a convex combination of extreme points
of the constraint set C. In the past years it has captured the interest of machine learning
community to solve the constrained problem. Subsequently, we describe the application of
Frank-Wolfe algorithm to the constrained problem (3.2) and its application to the regularized
problem (3.1).

3.4.1 Applying Frank-Wolfe to the constrained problem

Note that in the constrained formulation 3.2 the constraint set is simply the convex hull of A.
Hence, the extreme points of the constraint set correspond to atoms of A, an approximate
solution x take the form of a convex combination of atoms, that is x = ∑ti=1 ciai with ∑ti=1 ci = 1.
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This procedure guarantees a feasible sequence. At each iteration, the algorithm considers
the linearization of the objective function around the current point xt, and moves towards a
minimizer at+1 of this linear function. This minimizer is the extreme point of the constraint
set obtained by the LMO at −∇f(xt),

at+1 ∶= LMOA(−∇f(xt)).

{at+1 − xt} is called Frank-Wolfe direction or forward direction. The Frank-Wolfe algorithm is
described in algorithm 3, where ηt ∈ [0,1] is a scalar stepsize and x0 = 0. It can be set to 1

1+t
or found by line search.

Algorithm 3 Classical Frank-Wolfe
1: repeat
2: Compute at+1 ∶= argmaxa∈A⟨a,−∇f(xt)⟩
3: xt+1 = (1 − ηt)xt + ηtat+1

4: until ⟨−∇f(xt), at+1 − xt⟩ ≤ ε

Note that we get a bound on the duality gap for free. Convexity of f implies that the
linear tangent of f at a given x, y ↦ f(x) + ⟨−∇f(x), y − x⟩ lies below f(y). Thus for all
y ∈ Conv(A),

f(y) ≥ f(xt) + ⟨−∇f(xt), y − xt⟩

and by minimizing both sides over y ∈ Conv(A) we get an f(x∗) ≥ f(x) + ⟨−∇f(xt), at+1 − xt⟩.
Rearranging the inequality we get an upper bound on the duality gap f(xt) − f(x∗). It is in
fact a special case of the Fenchel duality gap described in Chapter 2.

Other variants of Franke-Wolfe (FW) algorithms have been proposed, notably, FW with
away steps (AFW) introduced in Wolfe (1970), pairwise FW (PWFW) (Lacoste-Julien and
Jaggi, 2015) and fully corrective Frank-Wolfe (FCFW). We summarize hereafter the form
of the different updates for AFW, PWFW and FCFW. The active set of atoms At at time
t is recursively defined by At+1 = Ãt ∪ {at+1} with Ãt the set of active atoms of At at the
end of iteration t, i.e. the ones that contributed with a non-zero coefficient in the expansion of xt.

AFW makes use of a backward direction also called away atom, that is the active atom of
largest projection on the gradient direction and formally defined as

Definition 8. (backward direction) Let xt be the approximate solution at iteration t, written
as a convex combination of atoms and Ãt ⊂ A the set of active atoms. An away atom is defined
as

at+1
B ∶= arg max

a∈Ãt
⟨a,∇f(xt)⟩

and the backward direction is at+1
B − xt.
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AFW is stated in Algorithm 4. At each iteration we choose between progressing on the
forward direction

xt+1 = (1 − ηt)xt + ηtat+1

or the backward direction
xt+1 = (1 + η̃t)xt − η̃tat+1

B

by taking the one that leads to more progress, i.e. the one more correlated with −∇f(xt). ηt
and η̃ are chosen by line search in [0, 1] with an additional constraint on η̃t to make sure that
xt+1 is feasible.

Algorithm 4 Away steps Frank-Wolfe
1: repeat
2: Compute at+1 ∶= argmaxa∈A⟨a,−∇f(xt)⟩
3: Compute at+1

B = argmaxa∈Ãt⟨a,∇f(x
t)⟩

4: if ⟨−∇f(xt), at+1 − xt⟩ ≥ ⟨−∇f(xt), at+1
B − xt⟩

5: xt+1 = (1 − ηt)xt + ηtat+1

6: else
7: xt+1 = (1 + η̃t)xt − η̃tat+1

B with η̃t such that xt+1 remains feasible
8: until ⟨−∇f(xt), at+1 − xt⟩ ≤ ε

The idea in PWFW is to move by transferring weight from the away atom at+1
B to the FW

atom at+1:

xt+1
PWFW = xt + ηt (at+1 − at+1

B ),

where ηt ∈ [0, ctB], with ctB ≥ 0 the weight attributed to atom at+1
B at iteration t, and ηt is

found by line search. PWFW is stated in Algorithm 5.The optimal step sizes ηt ∈ R for FW
and PWFW are easily obtained in closed form when f is quadratic. When we have a general
f we can use Armijo’s line search.

Algorithm 5 Pairwise Frank-Wolfe
1: repeat
2: Compute at+1 ∶= argmaxa∈A⟨a,−∇f(xt)⟩
3: Compute at+1

B = argmaxa∈Ãt⟨a,∇f(x
t)⟩

4: xt+1 = xt + ηt (at+1 − at+1
B )

5: until ⟨−∇f(xt), at+1 − xt⟩ ≤ ε

In FCFW, all weights are reoptimized at each iteration:

xt+1
FCFW = argminxf(x) s.t. x ∈ Convhull(At+1).
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Algorithm 6 describes FCFW. If At = {a1, ..., akt}, where kt ≤ t is the number of atoms in At,
the subproblem that has to be solved at each iteration t rewrites

min
c≥0

f(
kt

∑
i=1
ciai) s.t.

kt

∑
i=1
ci = 1. (3.4)

Algorithm 6 Fully corrective Frank-Wolfe
1: repeat
2: Compute at+1 ∶= argmaxa∈A⟨a,−∇f(xt)⟩
3: At+1 ← Ãt ∪ {at+1}
4: xt+1 ← argminxf(x) s.t. x ∈ Convhull(At+1).
5: until ⟨−∇f(xt), at+1 − xt⟩ ≤ ε

Lacoste-Julien and Jaggi (2015) show that PWFW and FCFW converge linearly for strongly
convex objectives when A is finite. Locatello et al. (2017a) show sublinear convergence results
on general smooth and convex objectives for a non-empty bounded set of atoms. Locatello
et al. (2017b) extend this convergence result to any conic hull of a generic atom set.

3.4.2 Applying Frank-Wolfe to the regularized problem

Beyond constrained optimization problems, the basic conditional gradient algorithm (corre-
sponding to plain FW when f is quadratic) has been generalized to solve problems of the
form minx f(x) + ψ(x) where the set constraint CA is replaced by a proper convex function ψ
for which the subgradient of ψ∗ can be computed efficiently (Bredies et al., 2009; Yu et al.,
2014). Bach (2015) shows that the obtained algorithm can be interpreted as a dual mirror
descent algorithm. Yu et al. (2014); Bach (2015) and Nesterov et al. (2015) prove sublinear
convergence rates for these algorithms. Corresponding generalizations of PWFW and FCFW
are however not obvious. As exploited in Yu et al. (2014); Harchaoui et al. (2015), if ψ = h○γA,
with h a nondecreasing convex function and γA an atomic norm, and if an upper bound ρ can
be specified a priori on γA(x⋆) for x⋆ a solution of the problem, it can reformulated as

min
x,τ

f(x) + τ s.t. γA(x) ≤ τ, τ ≤ ρ, (3.5)

and it is natural to apply the different variants of Frank-Wolfe on the variable (x, τ). Note that
ρ can be chosen arbitrarily large as long as γA(x⋆) ≤ ρ, we can choose for instance ρ = γA(x0).
FW are part of column generation algorithms that we describe in the next section. In fact
we can derive the Frank-Wolfe algorithm for regularized problems from column generation
perspective in a more natural way that does not need to introduce the constant ρ.
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3.5 Column generation

Column generation(CG) methods are a family of methods that are well known in the opti-
mization literature. Some of the first working set algorithms (although called active set then)
in the literature on sparsity inducing norms were introduced in Obozinski et al. (2006) and
Roth and Fischer (2008). The design of increasingly more sophisticated methods to prune the
set of possibly active variables at the optimum has been the object of a significant amount of
research until this day (see Ndiaye et al., 2017; Bach et al., 2012b, and reference therein).

Column generation algorithms proceed by solving a sequence of small subproblems of the
master problem, referred to as restricted master problems. After computing a solution to the
restricted master problem, global optimality conditions are checked. If not satisfied, the inner
approximation of the feasible set is improved by some rule that has to be defined.

To explain the precise form of CG for regularized form we first need to discuss optimality
conditions.

3.5.1 Optimality conditions and dual problem

We consider the case of atomic gauge regularization, when ψ ∶= γA. With the technical results
introduced in Chapter 2, at Equation (2.8), we can derive the optimality conditions for
optimization problem (3.1). The next theorem states first order optimality conditions for
problem (3.1).

Proposition 3. Let f be a convex differentiable function and γA an atomic norm induced by
the set of atoms A. Then x0 ∈ Rp is an optimum of problem (3.1) if and only if

−∇f(x0) ∈ ∂γA(x0).

Proof. Let us introduce F ∶= f + γA. By Proposition 1, x0 ∈ Rp is an optimum of problem (3.1)
if and only if 0 ∈ ∇F (x0).

Let us denote x0 an optimum of problem (3.1) and z ∶= −∇f(x0). By further using the
characterization of the subgradient of an atomic norm of Equation (2.8), the optimality
conditions become

⟨z, x0⟩ = γA(x0) and ∀z ∈ Rp ∀a ∈ A, ⟨x, a⟩ ≤ 1. (3.6)

It is useful to derive the dual of problem (3.1), which is

arg min
x∈Rp

f∗(−s) s.t. ⟨s, a⟩ ≤ 1, ∀a ∈ A, (3.7)

where f∗ is the Fenchel conjugate of f .
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3.5.2 Deriving the algorithm

Focusing on the formulation regularized by an atomic gauge, that is problem (3.1), the column
generation conceptual algorithm follows three steps.

• (restricted master problem) An approximation of the original problem is constructed,
and solved, wherein the original set of atoms A is replaced by a subset At. We compute
the solution of the problem restricted to a subset of atoms At,

arg min
x∈Rp

f(x) + γAt(x), (3.8)

where γAt is the atomic norm induced by the restricted set of atoms At. As shown in
Figure 3.5.2 γAt is a polyhedral function whose graph is the convex cone generated by
rays at − x. γAt is an inner approximation of γA.

Figure 3.1: Inner approximation of γA by γAt

• (optimality conditions) We check optimality conditions for the master problem by using
the characterization of Equation (3.6)

∀a ∈ A, ⟨x, a⟩ ≤ 1.

If satisfied, the solution has been found and the algorithm stops.

• (column generation problem). If optimality conditions are not satisfied, an auxiliary
problem is used to guide the search for a solution to the original problem. Its solution or
column, here a new atom, is used to improve the inner approximation of the atomic set.
A new atom enters current approximation of the atomic set set At following some rule.
For instance, an atom at+1 that violates optimality condition, i.e.

⟨x, at+1⟩ > 1,

is added to the current approximation of the atomic set. At this step it is also possible
to remove from At atoms that have zero weight on the current solution x. This option is
called column dropping and convergence of the algorithm is still guaranteed (Larsson
et al., 2015).
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The algorithm we just described corresponds to FW applied to the regularized problem.
Frank-Wolfe and its variants are an instance of column generation method where the column
generation problem is the linear minimization oracle and the restricted master problem is a
linear step size update in the case of classical FW and the exact minimization of the objective
function over a restricted set of atoms in the case of fully corrective Frank-Wolfe.

3.5.3 Dual problem and cutting planes

Column generation algorithms correspond to cutting plane algorithms in the dual. Cutting
planes have extensively been studied in the literature, we refer the reader to Boyd and Van-
denberghe (2004) for detailed explanations and Franc et al. (2011) for a review of its use
in machine learning. The principle of cutting plane algorithms is to solve a sequence of
constrained optimization problems that are relaxations of the original problem, where the
constraints introduced are gradually tightening the relaxation in the neighborhood of the
optimum. The new constraint introduced at each iteration is called a cut since it cuts the
previous relaxed constraint set in order to reduce it. A new cut is typically determined as a
constraint of the original problem which is violated by a current solution st to the relaxed
problem. Such a new constraint is called a deep cut.

Dual problem of optimization problem (3.1) is of the form

min
s∈C○
A

f∗(s)

where C○
A = {s ∣ ⟨s, a⟩ ≤ 1, a ∈ A} and f∗ is the Fenchel conjugate of f . A most violated

constraint by a dual variable s can be computed as the inequality ⟨s, a⟩ ≤ 1 for the atom a
which is a direction conjugate to s, that is a solution to maxa∈A⟨s, a⟩. Indeed, this yields an
atom a such that ⟨a, s⟩ is maximal. After t iterations the relaxed problem to solve in the dual
is of the form

min
s

f∗(−s) s.t. ⟨ai, s⟩ ≤ 1, ∀i ∈ [[t]], (3.9)

for At ∶= (ai)i∈[[t]] a sequence of atoms of A. Note that for all a ∈ A, {s ∣ ⟨ai, s⟩ = 1} is the
hyperplane tangent to C○

A at all points in arg max{⟨ai, s⟩ ∣ s ∈ C○
A}.

3.5.4 Active set methods for quadratic programming

Active-set algorithms are also an instance of column generation methods. Active-set methods
are usually applied in the context of general convex quadratic problems with linear constraints
and efficient implementations have been studied (see Nocedal and Wright (2006), Chapter
16 and Forsgren et al. (2015)). Before introducing active-set algorithm we review optimality
conditions for inequality constrained quadratic problems. Then we present its application
to the well known algorithm of min-norm point (Wolfe, 1976b) and we clarify how it can be
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applied to the setup of atomic norm regularization.

Consider the following convex quadratic problem

min
x

1
2
x⊺Hx + g⊺x (3.10)

s.t. Ax = b
Cx ≥ d

where H is positive semidefinite. We can derive a set of optimality conditions by applying
KKT1 conditions as stated in the following proposition (proof in Nocedal and Wright (2006),
Chapter 16, Theorem 16.4).

Proposition 4. (optimality conditions) Consider the convex quadratic problem (3.10). If
there exists a pair (x∗, λ∗) verifying the conditions

Hx∗ + g −∑
i

λ∗i ci = 0 (3.10 a)

Ax∗ = b (3.10 b)
Cx∗ ≥ d (3.10 c)
λ∗i ≥ 0 ∀i s.t. c⊺i x

∗ = di, (3.10 d)

then, x∗ is a global solution of (3.10). λ∗i are the Lagrangian multipliers.

We now introduce active set method for quadratic programming. We describe the primal
active-set method where the iterates remain primal feasible while infeasibilities of the dual
inequalities tend to zero. The goal is to predict the optimal active-set S∗ ⊂ [[p]] that only
contains the constraints that are satisfied with equality at the solution of the problem. Active-
set algorithm solves a sequence of equality constrained quadratic programs

min
x

1
2
x⊺Hx + g⊺x (3.11)

s.t. Ax = b
c⊺i xi = d ∀i ∈ S.

where S is a subset of indexes.

We start at a feasible point of main problem (3.10) with an empty set S of indexes. S is
called the active set and its complementary is called the working set. At each iteration we
update the active-set S by performing the following steps:

• We compute x̃, the solution to the restricted problem (3.11).
1Karush–Kuhn–Tucker
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• If the solution x̃ is primal feasible, we perform a full-step and update {x← x̃}. Then, we
check dual feasibility condition (3.10 d). If dual feasibility is also satisfied we terminate
and if not we remove one of the blocking constraints from S (an index i such that λ∗i < 0).

• If the solution x̃ is not primal feasible, we compute the most blocking constraint i∗
(index i such that {c⊺i xi − di} is minimized). Then we update xt+1 as the closest point to
x̃ in the segment [xt, x̃] such that it remains primal feasible. Finally we add the blocking
constraint i∗ to S (we remove it from the working set), which is called a drop-step.

The previous algorithm terminates in a finite number of iterations because it strictly
decreases the quadratic cost function at each iteration. Appart from primal active-set methods,
other classes of active-set algorithms have been proposed. Forsgren et al. (2016) describes in
detail dual and primal-dual versions of active-set.

Example of min-norm point

As an example, we describe the well known algorithm of min-norm point presented by
Wolfe (1976b) as an instance of active-set algorithm. Minimum norm point algorithm is
used for finding the minimum-norm point in the convex hull of a given finite set of points
P ∶= {p1, p2, ..., pk} in Rp. The optimization problem writes

min 1
2
∥x∥2

2 s.t. x ∈ CP ,

where CP is the convex hull of P

CP ∶= {x ∈ Rp∣x =
k

∑
i=1
ηipi s.t.

k

∑
i=1
ηi = 1 and η ≥ 0}.

The principle of minimum-norm-point algorithm is to solve a sequence of constrained opti-
mization problems that are relaxations of the original problem, where CP is replaced by an
inner approximation, a simplex of a subset of P. Updating such a simplex requires a solution
of a linear optimization problem over the convex hull CP . In most cases we do not want to
evaluate the functions at all points as there can be exponential number of points compared to
the dimensions of the problem. The algorithm is applicable if the LMO

LMOP(x) ∶= arg min
pi∈P

⟨x, pi⟩

can be solved efficiently, which can be done for flow constraints or generally for submodular
polytope constraints. We describe the min-norm point in Algorithm 7.

Application to regularization by atomic gauges

In this part we anticipate somewhat the result present in next chapter. We clarify why convex
quadratic problems with linear constraints are relevant in the context of regularization by
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Algorithm 7 Minimum-norm point algorithm
1: Initialization: x0 ∶= ∑j∈J0 ηjpj feasible point, J0 ⊂ {1, . . . , k}
2: for t = 1, ...
3: η̃ ← 1

2 arg minx ∥∑j∈Jt ηipi∥2
2 s.t. 1⊺ηJt = 1

4: if η̃Jt ≥ 0,
5: ηt+1 ← η̃ ▷ full-step
6: xt+1 ← ∑j∈Jt ηipi
7: pk∗ ← LMOP(xt+1)
8: if xt+1⊺pk∗ ≥ ∥xt+1∥2

2, then stop, ▷ optimality check
9: else Jt+1 ← Jt⋃{k∗} end

10: else
11: τ ← arg max{τ ∣ η̃Jt + τ(xtJt − η̃Jt) > 0}
12: K ← arg max{i ∣ η̃i + τ(xti − η̃i) = 0}
13: Jt+1 ← Jt\{K} ▷ drop-step
14: ηt+1 ← η̃Jt + τ(xtJt − η̃Jt)
15: end

atomic gauges. Let us consider a fixed set A with a finite number of atoms. What we explain
in this section does not apply for general(possibly infinite) A. The application to that case will
be discussed in the next chapter. Provided that f is quadratic, the regularized problem (3.1)
can be rewritten

min f (∑
a∈A

caa) + ∑
a∈A

ca s.t. ∀a ∈ A, ca ≥ 0 (3.12)

by applying a simple change of variable x = ∑a∈A caa. Hence we obtain a quadratic problem
with positivity constraints. More explicitly, if A denotes the matrix where the columns are the
atoms2 a ∈ A and parameters (Q, b) define the quadratic function f , i.e. f(x) ∶= 1/2x⊺Qx+b⊺x,
the problem (3.12) is reformulated as

min 1
2
c⊺A⊺QAc + (b + 1)⊺c s.t. c ≥ 0, (3.13)

which is a convex quadratic problems with positivity constraints.

2if atoms are matrices or tensors we can vectorize them
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Chapter 4

Fast column generation for atomic
norm regularization

This Chapter is based on our paper Vinyes and Obozinski (2017). We consider optimization
problems that consist in minimizing a quadratic function under an atomic norm regularization
or constraint. In the line of work on conditional gradient algorithms, we show that the
fully corrective Frank-Wolfe (FCFW) algorithm - which is most naturally reformulated as a
column generation algorithm in the regularized case - can be made particularly efficient for
difficult problems in this family by solving the simplicial or conical subproblems produced by
FCFW using a special instance of a classical active set algorithm for quadratic programming
(Nocedal and Wright, 2006) that generalizes the min-norm point algorithm (Wolfe, 1976a).
Our experiments show that the algorithm takes advantages of warm-starts and of the sparsity
induced by the norm, displays fast linear convergence, and clearly outperforms the state-of-
the-art, for both complex and classical norms, including the standard group Lasso.The code
for experiments is available at https://github.com/vinyesm/fcgan.

4.1 Introduction and related work

A number of problems in machine learning and structured optimization involve either struc-
tured convex constraint sets that are defined as the intersection of a number of simple convex
sets or dually, norms of sets that are defined as convex hull of either extreme points or of a
collection of sets. A broad class of convex regularizers that can be used to encode a priori
knowledge on the structure of the objects to estimate have been described as atomic norms
and atomic gauges by Chandrasekaran et al. (2012). The concept of atomic norm has found
several applications to design sparsity inducing norms for vectors (Jacob et al., 2009; Obozinski
et al., 2011), matrices (Richard et al., 2014; Foygel et al., 2012) and tensors (Tomioka and
Suzuki, 2013; Liu et al., 2013; Wimalawarne et al., 2014).

A number of these norms remain difficult to use in practice because it is in general not
possible to compute the associated proximal operator or even the norm itself at a reasonable
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cost. However, the dual norm which is defined as a supremum of dot products with the atoms
that define the norm can often be computed efficiently because of the structure of the set of
atoms. Also a number of atomic norms are actually naturally defined as infimal convolution
of other norms (Jacob et al., 2009; Tomioka and Suzuki, 2013; Liu et al., 2013) and this
structure has been used to design either block-coordinate descent approaches or dual ADMM
optimization schemes (Tomioka and Suzuki, 2013) involving latent variables associated with
the elementary norms convolved.

In this chapter, we propose to solve problems regularized or constrained by atomic norms
using a fully corrective Frank-Wolfe algorithm—which can be reformulated as simple column
generation algorithm in the regularized case—combined with a dedicated active-set algorithm
for quadratic programming. Our experiments show that we achieve state-of-the-art perfor-
mance. We also include a formal proof of the correspondance between the column generation
algorithm and Fully Corrective Frank-Wolfe.

After a review of the concept of atomic norms, as well some illustrations, we present a
number of the main algorithmic approaches that have been proposed. We then present the
scheme we propose and finally some experiments on synthetic and real datasets.

4.1.1 Notations

[[p]] denotes the set {1, . . . , p}. If x ∈ Rp, xG denotes the subvector of x whose entries are
indexed by a set G ∈ [[p]]. Given a function ψ, ψ∗ denotes its Fenchel conjugate ψ∗(s) ∶=
maxx⟨s, x⟩ − ψ(x). ∥M∥tr denotes the trace norm of the matrix M defined as the `1-norm of
its singular values.

4.2 Atomic norms

In many machine learning applications, and particularly for ill-posed problems, models are
constrained structurally so they have a simple representation in terms of some fundamental
elements. Examples of such elements include sparse vectors for many sparsity inducing norms,
rank-one matrices for the trace norm or low-rank tensors as used in the nuclear tensor norm
(Liu et al., 2013). We call atoms these elements and atomic set A their (possibly infinite)
collection. Assuming A is bounded and centrally symmetric, and provided its convex hull CA
has non empty interior, we can define an atomic norm γA as the norm of unit ball CA. It can be
shown that (in a finite dimensional space) γA(x) ∶= inf{∑a∈A ca ∣ ∑a∈A caa = x, ca ≥ 0, a ∈ A}.
The polar norm or dual norm is defined as: γ○A(s) ∶= supa∈A⟨s, a⟩. If A is not symmetric, or
if CA is empty, as long as A contains the origin and is closed, γA can still be defined as a
gauge instead of a norm and the theory and algorithms presented in this chapter still apply.
We restrict the discussion to norms for simplicity. For a reference on gauges, see Rockafellar
(1970).

We consider in this chapter formulations in which an atomic norm is used as a regularizer,
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and which lead to an optimization problem of the form

min
x∈Rp

f(x) + γA(x), (4.1)

where f is a quadratic function. The case where f is more generally twice differentiable is
obviously of interest, but beyond the scope of this work.

4.2.1 Examples of atomic norms

Lasso. The Lasso is a natural example of atomic norm, whose atoms are the (±ei)i∈[[p]], where
the (ei)i∈[[p]] is the canonical basis of Rp. The Lasso polar norm is defined as Ω○

Lasso(s) =
maxi∈[[p]] ∣si∣.

Latent group lasso (LGL)

The norms introduced in Jacob et al. (2009) are a strong motivating example. For instance
Obozinski and Bach (2012) show that a broad family of tight relaxations for structured sparsity
can be written in LGL form. Given a collection of sets B covering [[p]] and which can overlap,
and fixed positive weights δB for each set B ∈ B, the atoms of LGL norm are the vectors of
norm δ−1

B and support in B. The polar LGL norm is defined as Ω○
LGL(s) = maxB∈B δ−1

B ∥sB∥2. In
the particular case where B form a partition of [[p]] we recover the group Lasso norm. Maurer
and Pontil (2012) consider a generalization to a broader family of atomic norms with dual
norms of the form supM∈M ∥Ms∥2, whereM is a collection of operators. Matrix counterparts
of the latent group Lasso norms are the latent group trace norms (Tomioka and Suzuki, 2013;
Wimalawarne et al., 2014).

Additive decompositions

There has been interest in the literature for additive matrix decompositions (Agarwal et al.,
2012), the most classical example being “sparse+low rank decompositions” which have been
proposed for robust PCA and multitask learning (Candès et al., 2011; Chandrasekaran et al.,
2011). This formulation leads to a problem of the form minL,S f(L+S)+µ∥L∥tr+λ∥S∥1, which
under the form minM f(M)+ γA(M) with γA the atomic norm where A ⊂ Rp1×p2 is defined as

A ∶= λA1 ∪ µAtr, where
A1 ∶= {± eie⊺j , (i, j) ∈ [[p1]] × [[p2]]},
Atr ∶= {uv⊺, ∥u∥2 = ∥v∥2 = 1}.

As a consequence, C○
A = 1

λC
○
1 ∩ 1

µC
○
tr with C○

1 a unit `∞ ball and C○
tr a unit spectral norm ball.
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Convex sparse SVD and PCA

A third example are the norms introduced in Richard et al. (2014), including the (k, q)-trace
norm for which

A ∶=⋃{AI,J ∣ (I, J) ⊂ [[p1]] × [[p2]], ∣I ∣ = k, ∣J ∣ = q},

with AI,J ∶= {uv⊺ ∈ Atr ∣ ∥u∥0 ≤ k, ∥v∥0 ≤ q},

and the sparse-PCA norm1 for which

A ∶=⋃{AI,⪰ ∣ I ⊂ [[p1]], ∣I ∣ = k},

with AI,⪰ ∶= {uu⊺ ∣ u ∈ AI}, and AI defined like AB for LGL.
Beyond these examples a number of structured convex optimization problems encountered

in machine learning and operations research that involve combinatorial or structured tasks such
as finding permutations or alignments, convex relaxation of structured matrix factorization
problems (Bach et al., 2008; Ding et al., 2010), Procrustes analysis, etc, involve difficult convex
constraint sets such as elliptope, the Birkhoff polytope, the set of doubly nonnegative matrices
that are naturally written (themselves or their polar) as intersections of simpler sets such as
the p.s.d. cone, the positive orthant, simplices, hypercubes, etc, and which lead to optimization
problems whose duals are regularized by associated atomic norms.

4.3 Previous approaches
Conditional gradient algorithms

For many2 of these norms, it is assumed that an efficient algorithm is available to compute
argmaxa∈A⟨a, s⟩. For the case of the constrained problem

min
x
f(x) s.t. x ∈ CA, (4.2)

this has motivated a number of authors to suggest variants of the conditional gradient algorithm,
also known as the Frank-Wolfe algorithm when the objective is quadratic, as a tool of choice
to solve problems with atomic norm constraints. Indeed, the principle of conditional gradient
algorithms is to build a sequence of approximations to the solution of the problem as convex
combinations of extreme points of the constraint sets, which here correspond to atoms, so
that the expansion take the form x = ∑ti=1 ciai with ∑ti=1 ci = 1. This procedure guarantees a
feasible sequence. At each iteration a new atom, also called Frank-Wolfe direction or forward
direction, is added in the expansion. This atom is the extreme point of the constraint set
defined by at+1 ∶= argmaxa∈A⟨a,−∇f(xt)⟩. The Frank-Wolfe (FW) algorithm writes

xt+1
FW = (1 − ηt)xt + ηtat+1,

1In fact this is not a norm but only a gauge.
2This is not true for the norms introduced in Richard et al. (2014) whose dual are NP-hard to compute, but

for which reasonable heuristic algorithms or relaxations are available.
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where ηt ∈ [0,1] is a scalar stepsize and x0 = 0. It can be set to 1
1+t or found by line search.

Other variants of FW algorithms have been proposed, notably, FW with away steps (which
we do not describe here), pairwise FW (PWFW) and fully corrective Frank-Wolfe (FCFW). We
refer the reader to Lacoste-Julien and Jaggi (2015) for a detailed presentation and summarize
hereafter the form of the different updates for PWFW and FCFW. The active set of atoms At
at time t is recursively defined by At+1 = Ãt∪{at+1} with Ãt the set of active atoms of At at the
end of iteration t, i.e. the ones that contributed with a non-zero coefficient in the expansion of xt.

PWFW makes use of a backward direction also called away atom, and defined as at+1
B =

argmaxa∈Ãt⟨a,∇f(x
t)⟩, i.e. it is the active atom of largest projection on the gradient direction.

The idea in PWFW is to move by transferring weight from the away atom at+1
B to the FW

atom at+1:

xt+1
PWFW = xt + ηtp (at+1 − at+1

B ),

where ηt ∈ [0, ctB], with ctB ≥ 0 the weight attributed to atom at+1
B at iteration t, and ηt is

found by line search. The optimal step sizes ηt ∈ R for FW and PWFW are easily obtained in
closed form when f is quadratic.

In FCFW, all weights are reoptimized at each iteration:

xt+1
FCFW = argminxf(x) s.t. x ∈ Convhull(At+1).

If At = {a1, ..., akt}, where kt ≤ t is the number of atoms in At, the subproblem that has to be
solved at each iteration t of FCFW rewrites

min
c≥0

f(
kt

∑
i=1
ciai) s.t.

kt

∑
i=1
ci = 1. (4.3)

Lacoste-Julien and Jaggi (2015) show that PWFW and FCFW converge linearly for strongly
convex objectives when A is finite.

Rao et al. (2015) propose a variant of FCFW to solve (4.2) for f smooth and specifically for
atomic norm constraints, with an enhancing “backward step” which applies hard-thresholding
to the coefficients ct. To solve (4.3) they use a projected gradient algorithm.

Beyond constrained optimization problems, the basic conditional gradient algorithm (cor-
responding to plain FW when f is quadratic) has been generalized to solve problems of the
form minx f(x) + ψ(x) where the set constraint CA is replaced by a proper convex function ψ
for which the subgradient of ψ∗ can be computed efficiently (Bredies et al., 2009; Yu et al.,
2014). Bach (2015) shows that the obtained algorithm can be interpreted as a dual mirror
descent algorithm. Yu et al. (2014); Bach (2015) and Nesterov et al. (2015) prove sublinear
convergence rates for these algorithms. Corresponding generalizations of PWFW and FCFW
are however not obvious. As exploited in Yu et al. (2014); Harchaoui et al. (2015), if ψ = h○γA,
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with h a nondecreasing convex function and γA an atomic norm, and if an upper bound ρ can
be specified a priori on γA(x⋆) for x⋆ a solution of the problem, it can reformulated as

min
x,τ

f(x) + h(τ) s.t. γA(x) ≤ τ, τ ≤ ρ, (4.4)

and it is natural to apply the different variant of Frank-Wolfe on the variable (x, τ), because
the FW direction is easy to compute (see Section 4.4.1).

Proximal block-coordinate descent

In the context where they are applicable, proximal gradient methods provide an appealing
alternative to Frank-Wolfe algorithms. However, the former require to be able to compute
efficiently the proximal operator of the norm γA appearing in the objective, which is typically
more difficult to compute than the Frank-Wolfe direction.

For a number of atomic norms, we have A = ⋃Jj=1Cj where Cj are convex sets. As a
consequence the polar norm takes the form γ○A(s) = maxj γ○Cj , with γCi the atomic norm (or
gauge) associated with the set Ci, and it is a standard result that

γA(x) = inf{γC1(z1) + . . . + γCJ (zJ) ∣ z1 + . . . + zJ = x}.

Technically, γA is called the infimal convolution of the norms (γCi)i (see Rockafellar, 1970).
In fact most of the norms that we presented in section 4.2.1 are of this form, including LGL
norms, latent group trace norms, norms arising from additive decomposition (obviously by
construction), and the norms for sparse SVD and sparse PCA.

For all these norms, problem (4.1) can be reformulated as

min
z1,...,zJ

f(z1 + . . . + zJ) + γC1(z1) + . . . + γCJ (zJ).

Since the objective is then a sum of a smooth and of a separable function, randomized proximal
block-coordinate descent algorithm are typical candidates. These algorithms have attracted
a lot of attention in the recent literature (see Hong et al., 2013, and reference therein) and
have been applied successfully to a number of formulations involving convex sparsity inducing
regularizers (Friedman et al., 2010; Shalev-Shwartz and Tewari, 2011; Gu et al., 2016), where
they achieve state-of-the-art performance. Such BCD algorithms where the ones proposed for
the norms proposed in Jacob et al. (2009) and Richard et al. (2014).

Unfortunately these algorithms are slow in general even if f is strongly convex because of
the composition with the linear mapping (z1, . . . , zJ)↦ z1 + . . .+ zJ . Intuitively if the atoms of
the different norms are similar, then the formulation is badly conditioned. If they are different
or essentially decorrelated, BCD remains one of the most efficient algorithms (Shalev-Shwartz
and Tewari, 2011; Gu et al., 2016).



4.4. PIVOTING FRANK WOLFE 37

4.4 Pivoting Frank Wolfe
After reviewing the form of the corrective step of FCFW and reformulating FCFW in the
regularized case as a column generation algorithm, we introduce active-set algorithms to solve
efficiently sequences of corrective steps.

4.4.1 Simplicial and conical subproblems

We focus on the sequence of subproblems that need to be solved at the corrective step of
FCFW. Let kt ∶= ∣At∣ be the number of selected atoms at iteration t, and At ∈ Rp×kt , the matrix
whose columns are the atoms At, then, for the constrained problem (4.2), the subproblem is
the simplicial problem:

min
c
f(Atc) s.t. c ∈ ∆kt , (4.5)

with ∆k ∶= {c ∈ Rk+ ∣ ∑ki=1 ci = 1} the canonical simplex. The regularized problem (4.1) can be
reformulated as the constrained optimization problem (4.4) on a truncated cone, provided
the truncation level ρ is an upper bound of the value of γA at the optimum. Actually, if ρ is
sufficiently large, several Frank-Wolfe algorithms do not depend any longer on the value of ρ and
can be interpreted as algorithms in which whole extreme rays of the cone {(x; τ) ∣ γA(x) ≤ τ}
enter the active set via the linear minimization oracle, and where the original cone is locally
approximated from inside by the simplicial cone obtained as their conical hull. In particular
in the case of FCFW, the subproblem considered at the t-th iteration takes the form of the
conical problem

min
c
f(Atc) +∑

i

ci s.t. c ≥ 0, (4.6)

which is simply a Lasso problem with positivity constraints when f is quadratic. The fact that
problem (4.1) can be solved by as sequence of problems of the form (4.6) is shown in Harchaoui
et al. (2015, Sec. 5), who argue that this leads to an algorithm no worse and possibly better.
We formally show that the simple column generating scheme presented as Algorithm 8 is in
fact exactly equivalent to FCFW applied to the truncated cone formulation as soon as ρ is
large enough:

Proposition 5. If f is assumed lower bounded by 0 and if ρ > f(0), or more generally if
the level sets of x ↦ f(x) + γA(x) are bounded and ρ is sufficiently large, then the sequence
(x̄t)t produced by the FCFW algorithm applied to the truncated cone constrained problem (4.4)
and initialized at (x̄0; τ0) = (0; 0) is the same as the sequence (xt)t produced by Algorithm 8
initialized with x0 = 0, with equivalent sequences of subproblems, active sets and decomposition
coefficients.

See the appendix for a proof.

Figure 4.4.1 illustrates Algorithm 8, where the atomic gauge γA is inner approximated by a
gauge on a subset of atoms γAt . As discussed as well in the appendix, a variant of Algorithm 8
without pruning of the atoms with zero coefficients (at step 7) is derived very naturally as the
dual of a cutting plane algorithm.
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Figure 4.1: Illustration of column generation Algorithm 8

Algorithm 8 Column generation
1: Require: f convex differentiable, tolerance ε
2: Initialization: x0 = 0, A0 = ∅, k0 = 0, t = 1
3: repeat
4: at ← arg maxa∈A⟨−∇f(xt−1), a⟩
5: At ← [At−1, at]
6: ct ← arg minc≥0 f(Atc) + ∥c∥1
7: I ← {i ∣ cti > 0},
8: ct ← ctI
9: At ← At⋅,I

10: xt ← Atct

11: t← t + 1
12: until maxa∈A⟨−∇f(xt−1), a⟩ ≤ ε

4.4.2 Leveraging active-set algorithms for quadratic programming

Problems (4.5) and (4.6) can efficiently be solved by a number of algorithms. In particular, an
appropriate variant LARS algorithm solves both problem in a finite number of iterations and
it is fast if the solution in sparse, in spite of the fact that it solves exactly a sequence of linear
systems. Interior point algorithms can always be used, and are often considered to be a natural
choice to solve this step in the literature. For larger scale problems, and if f has Lipschitz
gradients (which is obviously the case for a quadratic function), the forward-backward proximal
algorithm can be used as well, since the projection on the simplex for (4.5) and the asymmetric
soft-thresholding for (4.6) can be computed efficiently. For the constrained case, this is the
algorithm used by Rao et al. (2015).

In our case, we need to solve a sequence of problems of the form (4.5) or (4.6), that differ
each from the previous one by the addition of a single atom. So being able to use warm-starts is
key! If the simplicial problems remains of small size, and if the corresponding Hessians can be
computed efficiently, using second order algorithms is likely to outperform first order methods.
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But the LARS and interior point methods cannot take advantage of warm-starts. Thus, when f
is quadratic, we propose to use active set algorithms for convex quadratic programming (Nocedal
and Wright, 2006; Forsgren et al., 2015). In particular, following3 Bach (2013, Chap. 7.12),
we propose to apply the active-set algorithm of Nocedal and Wright (2006, Chap. 16.5) to
iteratively solve (4.5) and (4.6). This algorithm takes the very simple4 form of Algorithm 9. In
fact, as noted in Bach (2013, Chap. 9.2), this algorithm is a generalization of the famous min-
norm point algorithm (Wolfe, 1976a), the latter being recovered when the Hessian is the identity.

Algorithm 9 is illustrated in Figure 4.2. The obtained iterates always remain in the positive
orthant (i.e. primal feasible). Each update of c in Algorithm 9 is called a pivot, which is either
full-step or drop-step. Given a collection of active atoms indexed by a set J , the solution d of the
non-constrained quadratic program restricted to this set of atoms and obtained by removing the
positivity constraints is computed (line 4). If d lies in the positive orthant, we set c = d, and we
say that we perform a full-step. In that case, the index of an atom that must become active (if
any), based on gradients, is added to J . If d ∉ R∣J ∣

+ , a drop-step is performed: c is updated as the
intersection between segment [cold, d] and the positive orthant, and the index i such that ci = 0
is dropped from J (line 13). The algorithm stops if after a full-step, no new index is added in J .

Figure 4.2: Illustration of Algorithm 9. Here, it converges after a drop-step (variable c2 is
dropped) leading to c1 followed by a full-step (along c1) leading to c2.

4.4.3 Connection with cutting plane algorithms

It is well known that the Frank-Wolfe algorithm is an instance of a column generation
algorithm (Forsgren et al., 2015). We explain in this section how Algorithm 1 is naturally

3Bach (2013) proposed to use this active-set algorithm to optimize convex objectives involving the Lovász
extension of a submodular function.

4Despite the fact that, in the context of a simplicial algorithms, the polyhedral constraints sets of (4.5)
and (4.6) as convex hulls, the algorithm of Nocedal and Wright (2006, Chap. 16.5) actually exploits their
structure as intersections of half-spaces, and thus the active constraints of the algorithm actually correspond
counter-intuitively to dropped atoms.
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Algorithm 9 [c, J]=Active-set(H, b, c0, J0)
1: Solves: P ∶= minc c⊺Hc + b⊺c, s.t. c ≥ 0
2: Initialization: c = c0 , J = J0,
3: repeat
4: d←HJ,J

−1bJ
5: if d ≥ 0,
6: c← d ▷ full-step
7: g ←Hc + b
8: k ← arg mini∈J0/J gi
9: if gk ≥ 0, then break, else J ← J ⋃{k} end

10: else
11: i∗ ← arg mini ci

ci−di
s.t. ci − di > 0, di < 0

12: τ ← ci∗
ci∗−di∗

13: J ← J\{i∗} ▷ drop-step
14: c← c + τ(d − c)
15: end
16: until gJ0/J ≥ 0
17: return c, J

derived as such.
Column generation algorithms correspond to cutting plane algorithms in the dual. The

principle of the latter algorithms is to solve a sequence of constrained optimization problems
that are relaxations of the original problem, where the constraints introduced are gradually
tightening the relaxation around the optimum. The new constraint introduced at each iteration
is called a cut since it cuts the previous relaxed constraint set in order to reduce it. A new cut
is typically determined as a constraint of the original problem which is violated by a current
solution st to the relaxed problem. Such as new constraint is called a deep cut. For problems
of the form mins∈C○

A
f∗(s) and given that C○

A = {s ∣ ⟨s, a⟩ ≤ 1, a ∈ A}, a most violated constraint
by a dual variable s can be computed as the inequality ⟨s, a⟩ ≤ 1 for the atom a which is a
conjugate direction to s, that is a solution to maxa∈A⟨s, a⟩. Indeed, this yields an atom a such
that ⟨a, s⟩ is maximal.

After t iterations the relaxed problem to solve in the dual is of the form

min
s

f∗(−s) s.t. ⟨ai, s⟩ ≤ 1, ∀i ∈ [[t]], (4.7)

for At ∶= (ai)i∈[[t]] a sequence of atoms of A.
It is immediate to check that the corresponding primal algorithm is a version of Algo-

rithm 1 in which all atoms are stored. The classical constrained version of Frank-Wolfe
correspond a cutting plane algorithm in the dual problem regularized by the dual norm, where
this regularization is reformulated as a conic constraint like in formulation (4) in the main paper.
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4.5 Convergence and computational cost

In this section, we discuss first the convergence of the algorithm and the number of pivots
needed for convergence, and the the cost of each pivot.

Algorithm 9 is an instance of min-norm point (MNP) with a general quadratic instead
of Euclidean distance, but the algorithm is affine invariant, so the convergence is the same.
MNP is known to be finitely convergent. The positive orthant in dimension kt has at most 2kt
faces which is a naive bound on the number of pivots in the active-set at iteration t of FCFW.
But, Lacoste-Julien and Jaggi (2015) prove that MNP is linearly convergent. In practice, the
solution is most of the time either strictly inside the orthant or in one of the k − 1 dimensional
faces in which case it is in fact found in just 1 or respectively 2 iterations! The number of
pivots per call is illustrated in Figure 4.6.2 upper left.

Let s = maxa∈A ∥a∥0 be the sparsity of the atoms, k the number of active atoms at iteration
t and Ht = At⊺QAt the Hessian of the quadratic problem in the active set, where Q is the
Hessian of the quadratic function f .

The cost of one pivot is the cost of computing the Hessian Ht and its inverse, which is
O(min(k2s2, kps + k2s)) for building the Hessian and an extra O(k3) for the inversion. In
the active-set with warm starts we only add or remove one atom at a time. We can take
advantage of this to efficiently update the Hessian Ht and its inverse with rank one updates.
The computational cost for updating the Hessian is O(min(ks2, ps + ks)) when an atom is
added and O(k) when removing an atom. The additional cost to update (Ht)−1 is then just
O(k2) in both cases. See the appendix for more details on the rank one updates.

4.6 Experiments

In this section, we report experiments that illustrate the computational efficiency of the
proposed algorithm. We consider linear regression problems of the form of (4.1) with f(w) =
1/2∥Xw−y∥2, where X is a design matrix and γA the LGL or the sparse-PCA norms described
in Section 4.2. We also considered the constrained version for LGL, minx f(x) s.t.ΩLGL(w) ≤ ρ,
in section 4.6.2.

Section 4.6.1 compares the performance of our proposed algorithm with state-of-the-art
algorithms for the group Lasso. Section 4.6.2 presents comparisons with the variants of Frank-
Wolfe and with COGEnT on problem involving the latent group Lasso. Section 4.6.3 provides
a comparison with a version of FCFW relying on interior-point solver on larger scale problems.
Sections 4.6.3 and 4.6.4 provide comparisons with randomized block proximal coordinate
descent algorithms. Most experiments are on simulated data to control characteristics of the
experiments, except in section 4.6.3.
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4.6.1 Classical group Lasso

We consider an example with group Lasso regularization with groups of size 10,

B = {{1, . . . ,10},{11, . . . ,20}, . . .}.

We choose the support of the parameter w0 ∈ R1000 of the model to be {1, . . . , 50} and all non
zero coefficients are set to 2. We generate n = 200 examples (yi)i=1,..,n from y = x⊺w + ε. Block
Coordinate Descent (BCD) algorithms are the standard method for this problems but they
suffer slow convergence when the design matrix is highly correlated. In this experiment we
choose a highly correlated design matrix (with singular values in {1, 0.92, .., 0.92(p−2), 0.92(p−1)})
to highlight the advantages of our algorithm for the harder instances. We compared our
algorithm to our own implementation of BCD and an enhanced BCD from Qin et al. (2013)
(hyb-BCD). Figure 4.3 shows that we outperform both methods.
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Figure 4.3: Experiment for classical group Lasso. log-log plot of progress of the duality gap.

4.6.2 k-chain latent group Lasso

We consider a toy example involving latent group Lasso regularization where the groups
are chains of continuous indices of length k = 8, that is where the collection of group is
B = {{1, . . . , k},{2, . . . , k + 1}, . . . ,{p − k + 1, . . . , p}}. We choose the support of the parameter
w0 of the model to be {1, . . . ,10}. Hence, three overlapping chains are needed to retrieve
the support of w0. We generate n = 300 examples (yi)i=1,..,n from y = x⊺w + ε where x is a
standard Gaussian vector and ε ∼ N (0, σ2Ip). The noise level is chosen to be σ = 0.1. In
upper Figure 4.6.2 we show a time comparison of our algorithm on the regularized problem.
We implemented Algorithm 1 and three Frank-Wolfe versions: simple FW, FW with line
search (FW-ls) and pairwise FW (FW-pw). We compare also with a regularized version of the
forward-backward greedy algorithm from Rao et al. (2015)(CoGEnT). In the bottom plot of
Figure 4.6.2 we show a comparison on the constrained problem. All codes are in Matlab and
we used Rao et al.’s code for the forward-backward greedy algorithm.
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Figure 4.4: Experiments for k-chain group Lasso, where X is a generated random design
matrix.log-log plot of progress of the duality gap during computation time. CoGEnT truncation
parameter is set to η = 0.5.
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Figure 4.5: Experiment for the k-chain group Lasso. Left: number of pivots, i.e., drop/full
step in active set. Middle the number of pivots per active set call and right plot shows the
total number of pivots during iterations. Right: evolution of the number of active atoms in
our algorithm.

Figure 4.6.2 illustrates complexity and memory usage of our algorithm for the same
experiment. Top plots show that each call to the active-set algorithm has low cost. Indeed less
than two pivots in average, i.e. drop or full steps, are needed to converge. This is clearly due
to the use of warm starts. Bottom plot shows the number of active atoms during iterations.

4.6.3 Hierarchical sparsity

In high-dimensional linear models that involve interaction terms, statisticians usually favor
variable selection obeying certain logical hierarchical constraints. In this section we consider a
quadratic model (linear + interaction terms) of the form

y =
p

∑
i=1
βixi +∑

i≠j

βijxixj .
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Strong and weak hierarchical sparsity are usually distinguished (see Bien et al., 2013, and
reference therein). The Weak Hierarchical (WH) sparsity constraints are that if an interaction is
selected, then at least one of its associated main effects is selected, i.e., βij ≠ 0⇒ βi ≠ 0 or βj ≠ 0.
We use the latent overlapping group Lasso formulation proposed in Yan and Bien (2015) to
formulate our problem. The corresponding collection of groups B thus contains the singletons
{i} and contains for all pairs {i, j} the sets {i,{i, j}} and {j,{i, j}} (coupling respectively
the selection of βij with that of βi or that of βj). We focussed on WH sparsity which is
more challenging here because of the group overlaps, but the approach applies also to the
counterpart for strong hierarchical constraints.

Simulated data We consider a quadratic problem with p = 50 main features, which entails
that we have p × (p − 1)/2 = 1225 potential interaction terms and simulate n = 1000 samples.
We choose the parameter β to have 10% of the interaction terms βij equal to 1 and the rest
equal to zero. In order to respect the WH structure, the minimal number of necessary unary
terms βi possible given the WH constrains are included in the model with βi = 0.5. We compare
our algorithm with FCFW combined with an interior point solver (FCFW-ip) instead of the
active-set subroutine, and with a degraded version of our algorithm not using warm starts.
Figure 4.6 shows that FCFW-ip becomes slower than our algorithm only beyond 200 seconds.
A plausible explanation is that at the begining the subproblems being solved are small and
time is dominated by the search of the new direction; when the size of the problem grows,
the active-set with warm start is faster, meaning that the active-set exploits the structure of
positivity constraints better than IP, which has to invert bigger matrices. Full corrections of
FCFW-ip call the quadprog function of Matlab, which is an optimized C++ routine, whereas
our implementation is done in Matlab. An optimized C implementation of our active-set
algorithm, in particular leveraging the rank one updates on the inverse Hessian described in
sections 4.5 should provide an additional significant speedup.

California housing data set We apply the previous hierarchical mode to the California
housing data (Pace and Barry, 1997). The data contains 8 variables, so with interaction
terms the intial model contains 36 variables. To make the selection problem more challenging,
following She and Jiang (2014), we add 20 main nuisance variables, generated as standard
Gaussian random variables corresponding to 370 additional noisy interaction terms. We
compare our algorithm to the greedy Forward-Backward algorithm with a truncation parameter
η = 0.5 and with Block Coordinate Descent (BCD). Table 4.1 shows running time for different
levels of regularization λ. λ = 10−3 is the value selected by 10-fold cross validation on the
validation risk. Figure 4.7 shows the running time for the different algorithms.

4.6.4 Sparse PCA

We compare our method to the block proximal gradient descent (BCD) described in Richard
et al. (2014). We generate a sparse covariance matrix Σ⋆ of size 150 × 150 obtained as the
sum of five overlapping rank one blocks 111111⊺ of size k × k with k = 10. We generate a noisy
covariance with a noise level σ = 0.3. We consider an `2 loss and a regularization by the gauge
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Figure 4.6: Experiments on simulated data for WH sparsity. log-plot of progress of the duality
gap as a function time in seconds.

Table 4.1: Computation time in seconds needed to reach a duality gap of 10−3 on California
housing data set. Time is not reported when larger than 103 seconds.

λ 10−5 10−4 10−3 10−2 10−1

BCD - - 585 73 5
CoGEnT - - 1300 14 0.2

ours 27 1.4 0.4 0.06 0.02

γAk,⪰ described in Section 4.2 with k = 10. The regularization parameter is λ. Figure 4.9 shows
a time comparison with BCD.

4.7 Discussion

In this chapter, we have shown that to minimize a quadratic function with an atomic norm
regularization or constraint, the fully corrective Frank-Wolfe algorithm, which in the regularized
case corresponds exactly to a very simple column generating algorithm that is not well known,
is particularly efficient given that sparsity make the computation of the reduced Hessian
relatively cheap. In particular, the corrective step is solved very efficiently with a simple
active-set methods for quadratic programming. The proposed algorithm takes advantage
of warm-starts, and empirically outperforms other Frank-Wolfe schemes, block-coordinate
descent (when applicable) and the algorithm of Rao et al. (2015). Its performance could be
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Figure 4.7: Experiments on California House data set. Left: log-log plot of progress of the
duality gap during computation time. Right: the obtained interaction matrix between the 8
variables.

enhanced by low-rank updates of the inverse Hessian. In future work we intend to generalize
the algorithm to smooth loss functions using sequential quadratic programming.

In this chapter we have focused in the general atomic norm case, with possibly uncountable
number of atoms. It is worth noting that for specific instances of atomic norms as Lasso, Elastic
Net or group Lasso other efficient algorithms exist. The idea of using active set algorithm to
speed up an inner loop solver is well known from the prior literature (Roth and Fischer, 2008;
Kowalski et al., 2011). In Bach et al. (2012a), authors show that active set method provide
significant speedup for problems regularized by sparsity-inducing norms. In You et al. (2016)
the active set algorithm is combined with LARS where several variables are added at each
round of active set. In our case, since there is a continuum of atoms, we can only add one
atom at a time because adding k atoms most violating the optimality conditions would result
in adding k very similar atoms. Indeed, since there is a continuum of atoms, the second most
violating atom is infinitesimally close to the previous one. In our case, using LARS in the
inner loop would not accelerate the algorithm since we add only one variable at a time which
is redundant with what LARS does. It would be interesting doing research in this direction in
order to be able to add several atoms at a time but this goes beyond the scope of this work.
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Chapter 5

Learning structure in probabilistic
graphical models

Probabilistic graphical models are a powerful tool for modeling multivariate distributions
in statistical learning. They capture interaction between variables, such as conditional
independence and are useful to provide meaningful information about interactions. Graphical
models have been applied to a large number of fields, including bioinformatics, social science,
image processing, among others. However, structure learning for graphical models remains an
open challenge, since the space of all possible structures is exponentially large. In this chapter
we present an overview of graphical models, focusing in particular in undirected Gaussian
graphical models. We briefly review the framework of exponential families. We also present the
different methods of structure learning that exist in the literature for undirected and directed
graphs. Finally, as it will be the object of the next chapter, we review in more detail methods
for learning the structure of Gaussian graphical models.

5.1 Graphical models
A graphical model represents a family of distributions (Lauritzen, 1996). Each model is
associated to a graph G = (V,E), where the vertex set V indexes the variables and the edge
set E reflects stochastic dependencies among random variables Xv, v ∈ V . The random
variables Xv can either be discrete or continuous. The edge set E encodes allowed conditional
dependencies among the variables

Definition 9. (conditional independence) Two sets of variables XA and XB are said to be
conditionally independent given a set of variables XC ∶= {Xu ∣ u ∈ C} if and only if

p(xA, xB ∣xC) = p(xA∣xC)p(xB ∣xC).

It is denoted by the expression XA áXB ∣XC .

We distinguish two classes of graphical models: undirected graphical models, also known as
Markov random fields, and directed graphical models such as a Directed Acyclic Graphs(DAG).
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5.1.1 Undirected graphical models

In an undirected graph the conditional independence of sets of variables XA and XB given
the set of variables XS is encoded by the fact that every path between any node in A and
any node in B contains a node from S. Such a path is called a blocked path. Conditional
independence structure determined by a graph is called global Markov property and defined
below.

Definition 10. (global Markov property) We say that probability distribution p satisfies the
global Markov property with respect to graph G if and only if for all A, B, S ⊂ V disjoint
subsets:

(all paths between A and B are blocked by S) ⇒ (XA áXB ∣XS).

A fundamental result in graphical models is the Hammersley–Clifford theorem that states
equivalence between conditional independence and factorization of the probability distribution.
The proof can be found in Koller and Friedman (2009).

Theorem 2. (Hammersley–Clifford). Let X =X1, . . . ,Xn be a multivariate random variable
and p a positive distribution, i.e. p(x) > 0 for all x. The distribution p satisfies the conditional
independence structure captured by G = (V,E) if and only if it factorizes over the maximal
cliques of G as

p(x) = ∏
C∈cliques(G)

φC(xC), (5.1)

where each φC is called potential function, and xC denotes the subvector of x indexed by C.

Thus, the graphical model G is a family of distributions satisfying the factorization (5.1).

5.1.2 Directed graphical models

In a directed graphical models, also known as Bayesian network, edges are oriented. If there
is an edge Ei,j from vi to vj , then vi is a parent of node vj and vj is a child of node vi. πi
denotes the set of parents of vertex vi. If there is no cycle, we call it a Directed Acyclic Graph
(DAG). The Markov property for DAG is equivalent to the existence of a factorization of
the joint distributions into child-given-parents conditional distributions, stated in the next
theorem.

Theorem 3 (Factorisation DAG). The probability distribution p satisfies the conditional
independence structure captured by G = (V,E) if and only if

∀x, p(x) =
n

∏
i=1
p(xi∣xπi). (5.2)
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5.2 Exponential families

An exponential family is a set of probability distributions of a certain form that unifies many of
the most important and widely-used statistical models such as the Normal, Binomial, Poisson,
and Gamma into one framework. A probability distribution on a set X (typically a finite set
of values or Rp) is part of an exponential family if it can be written of the form

p(x; θ)dµ(x) = h(x) exp{b(θ)Tφ(x) − Ã(θ)}dµ(x),

where:

• h(x) is the ancillary statistic, a statistic whose sampling distribution does not depend
on the parameters of the model.

• h(x)dµ(x) is the reference measure or base measure (in many cases it is equal to 1).

• φ(x) ∶ X ↦ Rp the sufficient statistic, also called feature vector, where p is some fixed
integer. Sufficient statistics summarize the relevant information in a sample about the
desired parameter.

• θ is the parameter of the model.

• η = b(θ) is the canonical parameter of the model and weights the sufficient statistic.
When b is the identity, the family is called a flat exponential family, and a curved
exponential family otherwise.

• Ã(θ) = A(η) is the log-partition function

A(η) = log∫
X
h(x) exp{ηTφ(x)}dµ(x),

and it ensures that we obtain a probability distribution, i.e. 1 = ∫X p(x∣η)dµ(x). The set
of admissible parameters is {η∣A(η) <∞} and is called domain.

The different terms are illustrated in the next examples.

Multinomial model Let X be a random variable on X = {0, 1}K . X follows a multinomial
distribution of parameter π ∈ [0,1]K . The probability distribution writes p(x;π) =∏K

k=1 π
xk
k

and the canonical parameterization is given by p(x;η) = h(x) exp(ηTφ(x) −A(η)) where

η = (logπ1, logπ2,⋯, logπK)T , φ(x) = x and A(η) = log (
K

∑
k=1

exp(ηk)).

Next we use the canonical parameterization of an exponential familiy in the context of
Gaussian graphical models to shows the link between the sparsity pattern of the inverse
covariance matrix and the structure of the graphical model.
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5.2.1 Gaussian graphical models and zeros of the precision matrix

When X = (X1,X2, ...,Xp) follows a multivariate Gaussian distribution with mean µ ∈ Rp and
covariance Σ ∈ Rp×p, Σ ⪰ 0, the density is defined by

p(x; Σ, µ) = 1
(2π)p/2(detΣ)1/2 exp(−1

2
(x − µ)⊺Σ−1(x − µ)) .

Using the canonical parameterization, the probability distribution writes

p(x; Λ, η) = exp [η⊺x − 1
2
x⊺Λx −A(η,Λ)] ,

where canonical parameters are η = Σ−1µ and Λ = Σ−1. The inverse of the covariance matrix is
also called precision matrix or concentration matrix. The log-partition is A(η,Λ) = −1

2η
⊺Λ−1η+

p
2 log 2π − 1

2 logdet(Λ). More precisely, the distribution is proportional to exp (η⊺x − 1
2x

⊺Λx)
and

exp [η⊺x − 1
2
x⊺Λx] =

p

∏
i=1

exp(ηixi)
p

∏
i=1

p

∏
j=1

exp [−1
2
xiΛijxj] ,

which proves that non zero coefficients in Λ correspond to edges in the underlying graphical
model.

5.3 Learning structure of graphical models
The problem of structure selection states as follows: given a collection {x(1), ..., x(n)} of n i.i.d.
samples from a graphical model, we want to retrieve the unknown underlying graph structure.
This problem is NP-hard and has been solved only under special assumptions on the graphical
model structure. Concretely, we find two main topics of interest graphical models with discrete
variables and Gaussian graphical models for continuous variables. We review different methods
for undirected graphs and directed graphs. The special case of undirected Gaussian graphical
model, where there is a direct link the nonzeros of the inverse of the covariance matrix and
edges of the graph, is detailed in Section 5.4. The content of this section is based on the two
reviews Zhou (2011) and Drton and Maathuis (2017).

5.3.1 Undirected graphical models structure learning

We distinguish greedy methods and convex optimization methods.
In greedy algorithms we learn the structure of the graph by sequentially adding nodes

and edges to the graph while trying to maximizes a likelihood, information criterion (such as
BIC the Bayesian Information Criterion) or a structure criterion (such as MDL the Minimum
Description Length). Greedy methods involve local search to perform edge addition/deletion.
In some simple structure cases such as trees, exact maximization is possible (Chow and Liu,
1968). Greedy methods are adapted to decomposable graphs such as Gaussian models or
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discrete models where maximum likelihood estimator admits closed form solution.

More recently, greedy search has been applied in a framework of neighborhood selection.This
avoids the need for iterative computation of MLEs when dealing with nondecomposable graphs.
Neighborhood selection has been proposed for learning discrete graphical model (Jalali et al.,
2011; Ray et al., 2015). Meinshausen and Bühlmann (2006) propose an approach for Gaussian
graphical models that is explained in Section 5.4.

We can also consider convex optimization based algorithms by applying `1-regularization
to the joint distribution. The first works to explore this in undirected graphical models over
discrete variables are Lee et al. (2007); Ravikumar et al. (2009) and Dahinden et al. (2007).
Most of the work has considered the special case of pairwise undirected graphical models
with discrete variables. It has also been applied to Gaussian graphical models (Yuan and Lin,
2006b; Banerjee et al., 2008).

5.3.2 Directed graphical models structure learning

Structure learning problems for directed graphical models is out of the scope of this thesis
but for completness purposes we briefly review main methods used for structure learning
in directed graphical models. Contrarily to general undirected graphical models where one
must cope with the normalization constant, in DAGs log-Likelihood separates into a set of
independent problems. Thus it is possible to perform many operations (ie. computing the
probability of a vector, computing marginals) exactly or approximately in DAG models in
polynomial time whereas it is intractable for general undirected models.

In search and score methods, we use some criterion to assess the quality of a particular
structure (such as the BIC or validation set likelihood), and we optimize this criterion by
using a local search on the space of DAGs (Lam and Bacchus, 1993; Heckerman et al., 1995).
Usually a greedy local search is performed where at each iteration an edge is added/removed.
Another class of methods are constraint-based methods that prune the set of possible edges by
selecting pairs of variables that satisfy a conditional independence hypothesis test(Geiger et al.,
1990; Spirtes and Glymour, 1991). In practice, conditional independencies need to be tested
based on data. Standard tests are available for multivariate Gaussian and multinomial data.
The disadvantages of the constraint-based methods and the search and score methods have
led to the development of hybrid methods. In hybrid methods, constraint-based reasoning is
used to prune the set of edges to consider within a search and score method. This can lead to
an enormous reduction in the number of possible graphs to search over.

Another line of work involves `1-regularization. In DAGs, a not necessarily topological
ordering of the nodes can always be defined according to edge distribution (Kahn, 1962).
Identifying this ordering is known to be a challenging problem (Cook, 1985). Because the
graph must be acyclic, we can not simply regress each node on all other nodes. Subsequently,
we need to consider searching through the space of topological orderings, or directly searching
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through the space of directed acyclic graphs. Previous work on structure learning in DAG
models with `1-regularization has considered the case of a known ordering (Huang et al., 2006;
Li and Yang, 2005; Levina et al., 2008) and more recently Champion et al. (2018) propose a
method without assuming known ordering.

5.4 Inverse covariance estimation in Gaussian graphical mod-
els

We now turn to the case of fitting Gaussian graphical models. In undirected Gaussian graphical
models, the problem of structure learning reduces to the estimation of the precision matrix
and is also known as inverse covariance selection. We describe the two main classes of methods
for graph selection that have been proposed in the literature: neighborhood selection and
penalized likelihood. In order to obtain a parsimonious model, i.e. control the number of
edges, it makes sense to impose an `1 penalty for the estimation of Λ. We also mention other
types of regularization

Neighborhood selection

Meinshausen and Bühlmann (2006) propose a simple approach based on neighborhood selection.
The conditional distribution of Xs given the other variables, denoted X−s, is also Gaussian
and is expressed as a combination of the other variables, that is

xs = βs⊺x−s + ε, (5.3)

where βs ∈ Rp−1 is the parameter vector and ε ∼ N (0, σ2I) is the noise. Thus, the support
of the regression vector βs is equal to the neighbours of variable s. Neighborhood selection
estimates individually the neighborhood of each given variable s = 1, ..., p as a Lasso regression
problem

β̂s ∈ arg min
βs∈Rp−1

{ 1
2n

n

∑
i=1

(x(i)s − βs⊺x(i)−s )2 + λ∥βs∥1} . (5.4)

Finally the neighborhood estimates are combined to obtain the final set of edges of the
graph. Neighborhood selection is computationally attractive since many efficient Lasso
implementations exist.

Graphical Lasso

Yuan and Lin (2006b) and Banerjee et al. (2008) proposed the graphical lasso (glasso) estimator,
that is the minimization of the `1-penalized log-likelihood,

Λ̂ ∈ arg min
Λ⪰0

{log det Λ − trΣ̂Λ + λ∥Λ∥1} (5.5)
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where Σ̂ is the empirical covariance. Contrarily to neighborhood selection methods, the penal-
ized likelihood formulation allows model selection and parameter estimation simultaneously.
Yuan and Lin (2006b) used the interior-point algorithm to compute the estimator. Banerjee
et al. (2008) propose an efficient semi-definite programming algorithm based on Nesterov’s
method for interior point optimization and also block coordinate descent method. A faster
implementation using a pathwise-coordinate-descent approach to solve the modified lasso
problems at each stage, and for a decreasing series of values of the regularization parameter λ
was proposed by Friedman et al. (2008). Rothman et al. (2008) introduce the SPICE (Sparse
Permutation Invariant Covariance Estimator) estimator where only the off-diagonal elements
are penalized in (5.5) and propose an algorithm.

Score Matching loss

In undirected graphical models, the probability density function is known only up to a
multiplicative normalization constant which is often intractable. Hyvärinen (2005) propose a
score matching loss for estimating non-normalized statistical models. For Gaussian models,
score matching loss takes a very simple quadratic form

f(Λ) = 1
2

tr(Λ2Σ̂) − tr(Λ).

Other penalties

A conditional independence graph is sometimes expected to have particular structure. In the
context of graphs with ‘hub’ nodes with many neighbors, Tan et al. (2014) present a convex
formulation that involves a row-column overlap norm penalty. Defazio and Caetano (2012)
use a convex penalty adapted for a scale-free network in which the degree of connectivity of
the nodes follows a power law distribution. Tao et al. (2017) impose an overlapping group
structure on the concentration matrix.

Another useful problem is finding the structure of graphical models with unobserved
variables. Chandrasekaran et al. (2010) propose a convex formulation to find the number of
latent components and learn the structure of on the entire collection of variables. In the next
chapter we present our contributions on learning graphical models with unobserved variables.
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Chapter 6

Learning the effect of latent
variables in Gaussian Graphical
models with unobserved variables

This chapter is based on our paper Vinyes and Obozinski (2018). The edge structure of the
graph defining an undirected graphical model describes precisely the structure of dependence
between the variables in the graph. In many applications, the dependence structure is unknown
and it is desirable to learn it from data, often because it is a preliminary step to be able to
ascertain causal effects. This problem, known as structure learning, is a hard problem in
general, but for Gaussian graphical models it is slightly easier because the structure of the
graph is given by the sparsity pattern of the precision matrix of the joint distribution, and
because independence coincides with decorrelation.

A major difficulty too often ignored in structure learning is the fact that if some variables
are not observed, the marginal dependence graph over the observed variables will possibly be
significantly more complex and no longer reflect the direct dependences that are potentially
associated with causal effects. This is the problem of confounding variables. In this work, we
consider a family of latent variable Gaussian graphical models (LVGGM) in which the graph of
the joint distribution between observed and unobserved variables is sparse, and the unobserved
variables are conditionally independent given the others. Prior work (Chandrasekaran et al.,
2010) was able to recover the connectivity between observed variables, but could only identify
the subspace spanned by unobserved variables, whereas we propose a convex optimization
formulation based on structured matrix sparsity to estimate the complete connectivity of the
original complete graph including unobserved variables, given the knowledge of the number
of missing variables, and a priori knowledge of their level of connectivity. Our formulation
is supported by a theoretical result of identifiability of the latent dependence structure for
sparse graphs in the infinite data limit. We propose an algorithm leveraging recent active set
methods, which performs well in the experiments we ran on synthetic data.
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6.1 Introduction

Graphical models provide a sound theoretical framework to model a joint probability distribu-
tion with complex interdependences between a potentially large number of random variables,
with applications in several fields including genomics and finance among others.

In the Gaussian Graphical Models (GGM) literature, a central problem is to estimate the
inverse covariance matrix, also known as the precision or concentration matrix. The sparsity
pattern of the concentration matrix in Gaussian models corresponds to the structure of the
graph; more precisely, the nonzeros of the concentration matrix correspond to the edges of the
underlying undirected graphical model, which encode pairs of variables that are conditionally
dependent given all the others. Identifying the structure of the graph is important since the
number of parameters of the model grows linearly with the number of edges in the graph.

The main formulation for edge selection in the GGM setting is based on `1-regularized
maximum-likelihood (Yuan and Lin, 2007; d’Aspremont et al., 2008b; Friedman et al., 2008;
Banerjee et al., 2008), for which several algorithms have been proposed. The `1 regularization
provides convex formulation which induces the selection of some edges while implicitly removing
others in the graph.

A serious practical difficulty is that applications in which all variables potentially relevant
for the problem considered have been identified and measured are extremely rare. This entails
the possible presence of confounding variables. More precisely, some of the relevant variables
may be latent and induce correlations between observed variables that can be misleading and
can only be explained correctly if the presence of the latent variables that produce confounding
effects is explicitly modeled. More precisely, when latent variables are missing, the marginalized
precision matrix may not be sparse even if the full precision matrix is sparse. Imposing sparsity
on the complete model results in a marginal precision matrix of the Latent Variable Gaussian
Graphical Model (LVGGM) that has a sparse plus low-rank structure. Chandrasekaran et al.
(2010) consider a regularized maximum likelihood approach, using the `1-norm to recover the
sparse component and the trace norm to recover the low-rank component and show that they
consistently estimate the sparsity pattern of the sparse component and the number of latent
variables. Their method identifies the low-rank structure corresponding to the effect of latent
variables but, in general, it does not allow us to identify the covariance structure of each latent
variable individually, or which observed variables are directly dependent on which unobserved
ones.

In this work, we propose to impose more structure on the low rank matrix using a variant
of the norms introduced in Richard et al. (2014) as a regularizer. This leads to formulations
which yields estimates of the structure of the complete graphical model, and, in particular,
make it possible to identify which observed variables are affected by which latent variables.

The paper is structured as follows: In Section 6.2 we review the relevant prior literature.
In Section 6.3, we formulate the LVGGM estimation problem as a regularized convex problem
that imposes a sparsity structure on the latent variables. In Section 6.5, we propose a convex
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formulation with a quadratic loss function, and an algorithm to solve this problem efficiently.
In Section 6.6, we show that different parts of the complete graph are identifiable by our
convex formulation, under appropriate conditions. We finally present experimental results in
Section 6.8.

6.2 Related Work

To construct an interpretable graph in high-dimensional regimes, many authors have proposed
applying an `1 penalty to the parameter associated with each edge, in order to encourage
sparsity. For instance such an approach is taken by Yuan and Lin (2007) and Banerjee et al.
(2008) in the context of Gaussian graphical models. Later, Krishnamurthy et al. (2011) propose
an algorithm to compute a full regularization path of solutions to this problem. The first
works to explore `1 regularization in undirected graphical models over discrete variables are
Lee et al. (2007); Ravikumar et al. (2009) and Dahinden et al. (2007). In another line of work,
authors have considered `1-regularization for learning structure in directed acyclic graphs
given an ordering of the variables (Huang et al., 2006; Li and Yang, 2005; Levina et al., 2008)
and Schmidt et al. (2007); Champion et al. (2018) propose methods without assuming known
ordering.

A conditional independence graph is sometimes expected to have particular structure. In
the context of graphs with hub nodes, that is nodes with many neighbors, Tan et al. (2014)
present a convex formulation that involves a row-column overlap norm penalty. Defazio and
Caetano (2012) use a convex penalty adapted for a scale-free network in which the degree
of connectivity of the nodes follows a power law distribution. Tao et al. (2017) impose an
overlapping group structure on the concentration matrix.

Another useful problem, that is the focus of this paper, is finding the structure of Gaussian
graphical models with unobserved variables. Chandrasekaran et al. (2010) introduced a
convex formulation to find the number of latent components and learn the structure of on the
entire collection of variables. Meng et al. (2014) also studied regularized maximum likelihood
estimation and derive Frobenius norm error bounds in the highdimensional setting based
on the restricted strong convexity. In order to speed up the estimation of the sparse plus
low-rank components, Xu et al. (2017) propose a sparsity constrained maximum likelihood
estimator based on matrix factorization, and an efficient alternating proximal gradient descent
algorithm with hard thresholding to solve it. Hosseini and Lee (2016) present a bi-convex
formulation to jointly learn both a network among observed variables and densely connected
and overlapping groups of variables, revealing the existence of potential latent variables. These
methods identify the low-rank structure corresponding to the effect of latent variables but
it does not allow us to identify the structure of the full model. In this work, we propose to
impose more structure on the low rank matrix in order to obtain a decomposition that gives
the structure of the complete graphical model.
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Notations

[[p]] denotes the set {1, ..., p} and Gpk denotes the set of subsets of k elements in [[p]]. ∣I ∣ denotes
the cardinality of a set I. If v ∈ Rp is a vector, Supp(v) denotes its support. If M ∈ Rp×p is a
matrix, I ⊂ [[n]] , MII ∈ R∣I ∣×∣I ∣ is the submatrix obtained by selecting the rows and columns
indexed by I in M . For a symmetric matrix M , λ+max(M) is the largest positive eigenvalue
and zero if they are all nonpositive. If S is a set, ∣S∣ denotes its cardinality.

6.3 Gaussian Graphical Models with Latent Variables
We consider a multivariate Gaussian variable (XO,XH) ∈ Rp+h where O and H are respectively
the set of indices of observed variables, with p = ∣O∣, and of latent variables, with h = ∣H ∣. We
denote Σ ∈ R(p+h)×(p+h) the complete covariance matrix andK = Σ−1 the complete concentration
matrix or precision matrix. Let Σ̂ ∈ R(p+h)×(p+h) denote the empirical covariance matrix, based
on a sample of size n. We only have access to the empirical marginal covariance matrix Σ̂OO.
It is well known that the marginal concentration matrix on the observed variables can be
computed from the full concentration matrix as

Σ−1
OO =KOO −KOHK

−1
HHKHO. (6.1)

We assume that the original graphical model is sparse and that there is a small number of latent
variables. This implies that KOO is a sparse matrix and that KOHK

−1
HHKHO is a low-rank

matrix, of rank at most h. Note that Σ−1
OO is typically not be sparse due to the addition of the

term KOHK
−1
HHKHO. Figure 6.1 shows an example of an LVGGM structure where variables

{1,2,3} are hidden variables and Figure 6.2(a) shows the structure of its corresponding complete
concentration matrix K. Figure 6.2(b) shows an approximation of Σ−1

OO as “sparse + low rank”
matrix.

1 2 3

4 5 6 7 8 9 10 11

Figure 6.1: Example of an LVGGM structure where the variables {1, 2, 3} are hidden variables

Chandrasekaran et al. (2010) show that under appropriate conditions, namely if KOO is suf-
ficiently sparse and KOHK

−1
HHKHO is low rank and cannot be approximated by a sparse matrix,

these two terms are identifiable and can be estimated, via an estimator of Σ−1
OO of the form S−L,

where S is sparse, L is low rank, and S −L, S and L are p.s.d. matrices in order to match the
structure of (6.1), and guarantee that the estimate of the original matrix K is p.s.d. Moreover
the authors show that S and L can be estimated via the following convex optimization problem:
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(a) (b)

Figure 6.2: (a) Structure of complete concentration matrix K of graph in Figure 6.1. (b)
approximation of Σ−1

OO as "sparse + low rank”

min
S,L

f(S −L) + λ (γ∥S∥1 + tr(L)) (6.2)

s.t. S −L ⪰ 0, L ⪰ 0,

where f is a convex loss function, and λ, γ are regularization parameters. The positivity
constraint on S has been dropped since it is implied by S − L ⪰ 0 and L ⪰ 0. Typically, in
GGM selection, f is the negative log-likelihood.

fML(M) ∶= − log det(M) + tr(M Σ̂). (6.3)

Two other natural losses, that have the advantage of being quadratic, are the second order
Taylor expansion around the identity matrix of the log-likelihood fT and the score matching
loss fSM , introduced by Hyvärinen (2005) and used for GGM estimation in Lin et al. (2016),

fT (M) ∶= 1
2
∥Σ̂1/2M Σ̂1/2 − I∥2

2 (6.4)

fSM(M) ∶= 1
2

tr(M2Σ̂) − tr(M). (6.5)

Chandrasekaran et al. (2010) show that under appropriate technical conditions, the
regularized maximum log-likelihood formulation (6.2) provides estimates (Sn, Ln) that have
respectively the same sparsity pattern and rank as KOO and KOHK

−1
HHKHO. The obtained

low rank component Ln retrieves the latent variable subspace.
Note first that, in general, KHH and KOH are not identifiable and cannot be estimated

from Ln. Therefore the connectivity between the latent variables and the connectivity between
latent and observed variables cannot be recovered. However, under the assumption that the
sources are conditionally independent given observed nodes, KHH is diagonal, and, when the
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groups of observed variables associated with each latent variables are moreover disjoint, the
columns of KOH have disjoint support and are therefore orthogonal. This necessarily implies
that they are proportional to the eigenvectors of KOHK

−1
HHKHO as soon as the coefficients of

the diagonal matrix KHH are all distinct, by uniqueness of the SVD. In that case, they are
thus identifiable, and it makes sense to estimate the columns of KOH by the eigenvectors of
the estimated L.

However, if the columns of KOH are sparse, it would seem relevant to encode this in the
model, as this is potentially a stronger prior than orthogonality. Moreover, it might be relevant
to allow the groups of observed variables associated with each given latent variable to overlap.

In this work, assuming that the latent variables are independent, we propose a formulation
allowing to estimate the columns of KHO up to a constant, based on an assumption on its
relative sparsity, that we encode as a prior using a matrix norm introduced by Richard et al.
(2014).

6.4 Spsd-rank(k) and a convex surrogate

Richard et al. (2014) proposed matrix norms and gauges1 that yield estimates for low-rank
matrices whose factors are sparse. One variant, which is actually a gauge2, specifically suited
to the estimation of p.s.d. matrices, induces a decomposition into with sparse rank one p.s.d.
factors. In this section, we introduce the k-spsd-rank of a p.s.d. matrix relate it to this
gauge, which assumes that the sparsity of the factors is known and fixed. We then discuss a
generalization for factors of different sparsity levels.

The following definition is a generalization of the rank for p.s.d. matrices,

Definition 11 (k-spsd-rank). For a p.s.d. matrix Z ∈ Rp×p and for k > 1 we define its
k-spsd-rank as the optimal value of the optimization problem:

min ∥c∥0

s.t. Z =∑
i

ciuiu
⊺
i , ci ∈ R

+, ui ∈ Rp ∶ ∥ui∥0 ≤ k, ∥ui∥2 = 1.

Note that not all p.s.d. matrices admit such a decomposition, in which case the k-spsd-rank
is by convention infinite. This is in particular the case for low-rank non sparse matrices like
11⊺(see Richard et al. (2014) for a proof). A natural convex relaxation of the k-spsd-rank
is based on the concept of atomic norm proposed in Chandrasekaran et al. (2012). Atomic
norms are norms (or gauges) whose unit ball is the convex hull of a reduced set of elements of

1We will use the word gauge in the paper to mean closed gauge. We remind the reader that a closed gauge
is simply a proper closed convex positively homogeneous function, and that a gauge γ which is symmetric
(γ(x) = γ(−x)), takes finite values, and such that (γ(x) = 0) ⇒ (x = 0) is a norm. Gauges are thus natural
generalizations of norms, that share many properties including the triangle inequality and the same Fenchel
duality theory. We refer the reader to Friedlander et al. (2014) or Rockafellar (1970) for a more detailed
presentation of gauges.

2See Chandrasekaran et al. (2012) for a discussion.
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the ambient space A called atoms. Here we consider the atomic gauge associated with the
set A = {uu⊺ ∣ ∥u∥2 ≤ 1, ∥u∥0 ≤ k}. In particular, it follows from basic results on atomic norms
that we can write this one as follows

Definition 12 (Ω, convex relaxation of k-spsd-rank). For Z ∈ Rp×p,

Ω(Z) ∶= min ∥c∥1

s.t. Z =∑
i

ciuiu
⊺
i , ci ∈ R

+, ui ∈ Rp ∶ ∥ui∥0 ≤ k, ∥ui∥2 = 1.

Note that we can have Ω(Z) = +∞ even when Z is p.s.d., if Z cannot be decomposed in
k-sparse, rank-1 p.s.d. factors, as it is the case for 11⊺. The polar gauge of Ω is characterized
as follows:

Lemma 9. Let Y ∈ Rp×p be a symmetric matrix. The polar gauge to Ω writes

Ω○(Y ) = max
I∈Gp

k

λ+max(YII). (6.6)

Unfortunately, the polar gauge Ω○ is a priori NP-hard to compute, since it is the largest
sparse eigenvalue associated with a sparse eigenvector with k non zero coefficients:

min
u
u⊺XX⊺u s.t. ∥u∥0 ≤ k, ∥u∥2 = 1,

which is known to be an NP-hard problem to solve (Moghaddam et al., 2006). However, a
recent literature proposed quite a number of algorithms to solve sparse PCA approximately or
heuristically, among others via convex relaxations (d’Aspremont et al., 2005, 2008a; Zhang
et al., 2012), which can be leveraged to approximately solve the corresponding problems. Yuan
and Zhang (2013) propose a Power Method type algorithm.

6.4.1 A variant for factors with different sparsity levels

Ω can be generalized to allow each rank one factor have a different sparsity level. A simple
way to do this is to consider a gauge of the form

Ωw(Z) ∶= inf∑
i

p

∑
k=1

wkc
k
i

s.t. Z =∑
i

p

∑
k=1

cki u
k
i u

k⊺
i , c

k
i ∈ R+, uki ∈ Rp ∶ ∥uki ∥0 ≤ k, ∥uki ∥2 = 1,

where k ↦ wk is an increasing function that penalizes each sparsity level k by wk. Via a simple
change of variable, we can rewrite Ωw

Ωw(Z) ∶= inf∑
i

p

∑
k=1

cki

s.t. Z =∑
i

p

∑
k=1

cki u
k
i u

k⊺
i , c

k
i ∈ R+, uki ∈ Rp ∶ ∥uki ∥0 ≤ k, ∥uki ∥2 = wk,
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which shows that it is a standard atomic gauge in which the rank one atoms with k2 non-zero
coefficients have weight wk. If we choose wk = 1 for all k, then it can be shown that only
the non-sparse atoms will appear in the expansion and so Ωw(Z) = tr(Z) + ι{Z⪰0}. If k ↦ wk
accelerates quickly, the gauge will favor sparser factors, but since some p.s.d. matrices cannot
be expressed as positive combinations of very sparse p.s.d. rank-one factors, the behavior of the
gauge is not trivial for any weights of the form wk = km, m > 0, even when m is large. Although
a detailed analysis of Ωw is beyond the scope of this work, we illustrate this generalization in
the experiments.

6.5 Convex Formulation and Algorithm

We use Ω to impose structure on the low rank component and consider the following convex
optimization problem,

min
S,L

f(S −L) + λ(γ∥S∥1 +Ω(L)) s.t. S −L ⪰ 0. (6.7)

Note that the nonnegativity constraint on L is no longer necessary since the gauge Ω only
provides symmetric p.s.d. matrices, as a sum of p.s.d. rank-one matrices.

In order to rewrite our problem as a simple convex regularized by Ω, we drop3 the
nonegativity constraint on S −L and consider the optimization problem

min
S,L

f(S −L) + λ(γ∥S∥1 +Ω(L)). (6.8)

We propose the alternating optimization scheme presented in Algorithm 10. First, we
update the sparse factor S by optimizing problem (6.8) with L fixed, then we update L by
solving problem (6.8) with S fixed.

• to update the sparse factor S we apply a fixed number of soft-thresholding iterations, i.e
several steps of iterative shrinkage-thresholding algorithm (ISTA). In the experiments
we perform 10 soft-thresholding iterations when updating S

• to update the low rank factor L we apply an efficient algorithm for quadratic losses
recently proposed by Vinyes and Obozinski (2017) called Fast Column Generation
algorithm (FCG). This algorithm is well adapted to the quadratic losses fT and fSM
introduced in Section 6.3

FCG consists in applying a Fully Corrective Frank Wolfe (Lacoste-Julien and Jaggi, 2015)
to a regularized optimization problem. Frank Wolfe (FW) algorithm (Frank and Wolfe,
1956), also known as conditional gradient, is particularly well suited for solving quadratic
programming problems with linear constraints. They apply in the context where we can easily

3It would be possible to still enforce S − L ⪰ 0, with approach proposed in this paper using Lagrangian
techniques with an increase of computational costs.
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solve the Linear Minimization Oracle (LMO), a linear problem on a convex set of constraints
C defined as

LMOC(y) ∶= arg min
z∈C

⟨y, z⟩ . (6.9)

In particular C can be the convex hull of a set of atoms A. At each iteration FW selects a new
atom at from C querying the LMO and computes the new iterate as a convex combination of
at and the old iterate xt. The convex update can be done by line search. FCFW, discussed
in Lacoste-Julien and Jaggi (2015), is a variant of FW that consists in finding the convex
combination of all previously selected atoms (ai)i<t. When using the algorithm proposed in
Vinyes and Obozinski (2017) we need to compute the following LMO

LMOΩ(M) ∶= arg max
u

u⊺Mu s.t. ∥u∥0 = k, ∥u∥2 = 1. (6.10)

at each iteration, and subsequently use a working set algorithm to solve the fully corrective step.

We propose to use the Truncated Power Iteration (TPI) heuristic introduced by Yuan and
Zhang (2013) to obtain an approximation to the oracle LMOΩ(M).

Algorithm 10 Alternate minimization
1: Require: f quadratic, maximum iterations T
2: Initialization: S0 = 0, L0 = 0, t = 0
3: for t = 1..T do
4: Compute St applying a fixed number of ISTA iterations on problem (6.8) with Lt−1

fixed
5: Compute Lt applying FCG on problem (6.8) with St fixed
6: end for
7: return St, Lt

6.6 Identifiability of S∗ and of the sparse factors of L∗

For formulation (6.8) to yield good estimators, a necessary condition is that, if M is a marginal
precision matrix with decomposition M = S∗ + L∗ with L∗ = ∑i siuiui

⊺, Supp(ui) ⊂ Ii and
∣Ii∣ = k, this decomposition can be recovered from perfect knowledge of M (which corresponds
to the case where we have an infinite amount of data with no noise). We therefore consider in
this section the decomposition problem of a known precision matrix M . For the estimator
obtained from (6.8) to provide reasonable estimates, a necessary condition is that it returns
correct estimates in the limit of an infinite amount of data.

We will provide sufficient conditions on S∗ and L∗ so that if M = S∗ +L∗ and (Ŝ, L̂) is an
optimum of the problem

min γ∥S∥1 +Ω(L) s.t. M = S +L, (6.11)
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then Ŝ = S∗, L̂ = L∗ and the decompositions of L̂ and L∗ are the same. Our approach is based
on the work of Chandrasekaran et al. (2011) but several of our results and proofs are tighter
than the original analysis.

We will make the simplifying assumption that the sets Ii are disjoint, so that part of the
analysis decomposes on each of the blocks Ii × Ii and on the complement of ⋃i Ii × Ii.

Assumption 1. Let L∗ = ∑i siuiui
⊺, with Supp(ui) = Ii. We assume that the sets Ii are all

disjoint and that ∣Ii∣ = k.

In particular, this assumption entails implicitly that if L∗ = ∑iL∗i with Li the component
supported on block Ii × Ii, then L∗i is of rank one.

In order to be able to decompose M as M = S∗ +L∗, we need to make assumptions on S∗
and L∗. Indeed, there are a number of scenarios in which the possible decompositions of M
into psd rank-one matrices and sparse parts may not be uniquely defined. For instance if the
low-rank matrix is itself sparse, or the sparse part not sufficiently sparse, the decomposition
might not be identifiable.
Two quantities are key: let τ be an upper bound such that

τ ≥ kmax
i∈[[r]]

∥ui∥2
∞ and k0 ∶= max

i
∥S∗i⋅∥0, where ∥S∗i⋅∥0 ∶= ∣{j ∣ S∗ij ≠ 0}∣.

On one side, k0 measures the sparsity of S∗, it is the maximal degree of the graph on the
observed variables. S∗ will be sufficiently sparse if k0 ≪ k. On the other, τ ≥ 1 measures the
flatness (vs spikiness) of L∗: again L∗ be sufficiently flat if τ ≪ k.

The interpretation behind an assumption of the form k0 ≪ k is that, in the precision matrix
of the joint distribution over observed and latent variables, all the neighbors of a latent node i
form a clique, and in this clique, each node has k neighbors. If k0 ≪ k, then the connections
explained by this clique cannot be attributed to individual connections between observed
nodes, and can only be attributed to the presence of a latent variable.

Second, the interaction strength of each hidden node i with its observed neighbors in the
graph should be of a similar order of magnitude. Symmetrically, an assumption of the form
τ ≪ k just imposes an upper bound on the interaction strength between a hidden node and its
observed neighbors. Indeed, if latent node i had very strong interactions with j and j′, in the
marginalized graph the interaction between j and j′ induced by i might be difficult to tell
appart from a direct interaction between j and j′.

In the next theorems, we will either assume that α ∶= k0
√

2τ
k , which combines both

quantities, is small, or, that k0 ≤ 1
7
√
k and τ ≤ 2.

To be able to position our general result w.r.t. to the literature, we first state a counterpart
for the decomposition into a sparse and a (non necessarily) sparse rank-one p.s.d. matrix,
which is very close but improves Corollary 3 of Chandrasekaran et al. (2011).

Theorem 4 (sparse + one rank-one block). Let M = S∗ +L∗.
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Consider the optimization problem

min γ∥S∥1 + tr(L) s.t. M = S +L, L ⪰ 0. (6.12)

Under the assumption that L∗ is p.s.d., rank one and symmetric, if, for the pair (S∗, L∗)
the quantities k0, p and τ are such that α ∶= k0

√
2τ
p satisfies α+ α2

2k0
< 1

3 , where p is the ambient
dimension, there exist values of γ, such that

τ̄

p

1
1 − 3α

≤ γ < 1
k0

1 − k0τ/p
1 + α

, (6.13)

(i.e. the interval is non empty), and, for any such value of γ, the pair (S∗, L∗) is the unique
optimum of problem (6.11).

The result we obtained here provides an improvement over the main result in Chan-
drasekaran et al. (2011) as stated in Corollary 3. Indeed, in our setting (a single rank one
component), the quantities appearing in that result can be computed: degmax(S∗) = k0 and
inc(L∗) =

√
τ
k . Thus Corollary 3 of Chandrasekaran et al. (2011) requires α <

√
2

12 when
α < 2

7 is sufficient in our case, and even smaller values of α are allowed for sufficiently large
k0; also, the interval allowed for γ in Chandrasekaran et al. (2011) is, with our notations,
(2

√
τ
k(1 − 8α/

√
2)−1, 1

k0
(1 − 6k0

√
τ
k)), where both the upper bound and the lower bound have

a dependence in
√

τ
k , while we obtain a dependance in τ

k . Given that Chandrasekaran et al.
(2011) show that there always exist a value of γ that is valid under the assumption that α <

√
2

12 ,
this improvement might seem minor, but since γ depends on quantities that are not known in
practice and need to found by trial and error, knowing that a larger interval is allowed might
help finding a correct value of γ in practice. Note that this improvement is not due to the
fact that we restricted ourselves to the rank one case, but to the use of sharper incoherence
measures (see Definition 13) and improvements in the bounding scheme for the subgradients.

In fact, the possibility of choosing a value of γ which is an order of magnitude smaller is
crucial for the theorem that we present next, and which extends this type of result to the
recovery of several sparse p.s.d. rank one terms, using the gauge Ω.

Theorem 5 (sparse + multiple sparse rank-one blocks). Let α ∶= k0
√

2τ/k and let µ ∶=
(1 − 3α)−1. Under Assumption 1, if k0 ≤ 1

7
√
k, and if there exists κ > 16µ and τ , τ > 0 such

that τ + τ = 2, with

κτ2k0
k

< τ ≤ 1 and ∀j ∈ Ii,
τ

k
≤ (uij)2 ≤ τ̄

k
, (6.14)

then there exists a constant C > 0 such that if k > Ck0, the pair (S∗, L∗) is the unique optimum
of problem (6.11) for a regularization parameter γ ∶= µ τk .

Note that τ is essentially the same upper bound as before, except that it is now tied with
a lower bound τ ; these constrained are however relaxed when C is sufficiently large, and τ can
then be chosen sufficiently small to allow for all lower bounds to hold.
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6.6.1 An informal motivation for the tangent space based analysis

As first discussed in Chandrasekaran et al. (2011) and later in Negahban et al. (2012), specific
subspaces play a natural role in the analysis of this type of decomposition problem.

Consider first a simple sparse + low-rank decomposition of a matrix M = S∗ + L∗. If
the decomposition is unique, then by definition there is no perturbation (∆S,∆L) so that
(a) S∗ + ∆S has the same sparsity pattern as S∗, (b) L∗ + ∆L is of rank r, and (c) M =
S∗+∆S+L∗+∆L. Note that we then have ∆S+∆L = 0. We continue this discussion informally
to provide intuition. A particular case occurs is if this equality holds for an infinitesimal
pair (∆S,∆L), in which case ∆S and ∆L must each belong respectively to a certain tangent
set: indeed, since L∗ +∆L belongs to the manifold of matrices of rank k, then in the limit
of small ∆L, it belongs to the tangent space to the manifold of rank k matrices at L∗, a
space which we will denote Tr(L∗); for S∗ the assumption that S∗ has s non zero coefficients
is equivalently reformulated as the constraint that S belong the union of all the subspaces
spanned by s elements of the canonical basis, which is a union of manifolds. In particular, if
S∗ has exactly s non zero coefficients, this fixes the support, which has to contain the support
of ∆S. Since S∗ is in a manifold which is simply a linear subspace, then ∆S must belong
to that subspace as well, which we can denote Ts(S∗) and call the tangent space for S∗. To
exclude the existence of non trivial pairs (∆S,∆L) such that ∆S +∆L = 0, it seems relevant
to impose that Ts(S∗) ∩ Tr(L∗) = {0}, i.e. the subspaces are in direct sum. If this equality
holds, Chandrasekaran et al. (2011) say that the subspaces are transverse.

The previous discussion is non-rigorous because we reasoned informally about infinitesimal
(∆S,∆L). What Chandrasekaran et al. (2011) have shown is that if we solve min(S,L) ∥S∥1 +
∥L∥tr s.t. M = S + L, then, for a solution (Ŝ, L̂), the first order optimality conditions of
this optimization problem naturally decompose onto Ts(Ŝ), Tr(L̂) and their orthogonal
complements. This type of decomposition of optimality condition on a tangent space and
its complement motivated the introduction the term decomposable norm in Negahban et al.
(2012).

In our case, L is not simply low rank, it is a sum of p.s.d. matrices Li of rank ri each with
support in Ii × Ii. We will therefore have to consider the tangent subspaces to the manifolds
associated with each Li.

6.6.2 Definition of tangent spaces and associated projections

For a symmetric sparse matrix S, let Ts(S) be the tangent space at S with respect to the set
of symmetric sparse matrices:

Ts(S) = {M ∈ Rp×p ∣ M =M⊺, Supp(M) ⊂ Supp(S)}.

Next, let TI(u) be the tangent space at uu⊺ to the manifold of rank one matrices, restricted
to the space of matrices with support in I × I. If we first define T̄I , the subspace of matrices
with support included in I × I with

T̄I ∶= {M ∈ Rp×p ∣M =M⊺, Supp(M) ⊂ I × I},
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then, as in Chandrasekaran et al. (2011), we can express concisely TI(u) as

TI(u) ∶= {M ∈ T̄I ∣ M = uv⊺ + vu⊺, v ∈ Rp}.

Let T cs (A) denote the orthogonal complement of Ts(A) in Rp×p and T cI (u) denote the orthogonal
complement4 of TI(u) in T̄I .

The projections on the defined subspaces are respectively PTs(A)(M) = MSupp(A) and
PTI(u)(M) = Pu(MII) with

Pu(M) ∶=M − (I − uu⊺)M(I − uu⊺).

In order to simplify notations we introduce

T0 ∶= Ts(S∗), Ti ∶= TIi(u
i), T̄i ∶= T̄Ii , T̄00 ∶= T0 ∩ span((T̄i)i∈[[r]])

�
.

6.6.3 First order optimality conditions

Since (6.11) is a convex optimization problem, its minima are characterized by first order
subgradient conditions. The pair (S∗, L∗) with L = ∑i siuiui

⊺ is an optimum of (6.11) if and
only if an only if there exists a dual Q satisfying first order optimality conditions

Q ∈ γ∂∥.∥1(S∗) and Q ∈ ∂Ω(L∗).

With the introduced tangent spaces, we state the following proposition that provides
sufficient conditions for the existence of a unique optimum of (6.11).

Proposition 6. The pair (S∗, L∗) is the unique optimum of (6.11) if

(T) ∀i ∈ [[r]], T0 ∩ Ti = {0},

and there exists a dual Q ∈ Rp×p such that:

(S.1) PT0(Q) = γ sign(S∗)

(S.2) ∥PT c0 (Q)∥∞ < γ

(L.1) ∀i ∈ [[r]], PTi(Q) = uiui⊺

(L.2) ∀i ∈ [[r]], λ+max(PT ci (Q)) < 1

(L.3) ∀J ∈ Gpk/{I1, . . . , Ir}, λ+max(QJJ) < 1

Note that the optimality condition decompose on the subspaces of matrices with support
in the sets Ii × Ii and in the remaining set of indices, the complement of ⋃i Ii × Ii. Indeed,
we can write Q = ∑ni=1QIiIi +Q0,0 where Q0,0 is the matrix whose non-zero coefficients are
the coefficients of Q that are not indexed by any pair in ⋃ri=1 Ii × Ii. If Q ∈ span(T0, . . . ,Tr),
then, we necessarily have QIiIi ∈ span(T0,Ti) and if T0 ∩ Ti = {0} then QIiIi admits a unique
decomposition QIiIi = Qi +Qi,0 with Qi ∈ Ti and Qi,0 ∈ T0 ∩ T̄i.

4Note in particular that it is not the orthogonal complement in the entire space.
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6.6.4 Transversality and incoherence conditions

Since we consider a convex formulation, transversality is not sufficient: we need more than an
assumption that T0 ∩ Ti = {0} for all i. In fact, it will be necessary to assume that T0 and Ti
are not too far from being orthogonal subspaces, a property which is usually called incoherence
(Tropp, 2004; Candès and Recht, 2009; Chandrasekaran et al., 2011). And furthermore, it
will be necessary that elements of one subspace do not have a too large norm for the norm
associated w.r.t. to another subspace.

Definition 13 (Incoherence measures). For i in [[r]], let

ζi→0 = max{∥M∥∞ ∣M ∈ Ti, ∥M∥op ≤ 1},
ζ0→i = max{∥Z∥op ∣ Z ∈ T0, ∥Z∥∞ ≤ 1},
ζ ′i→0 = max{∥PT0(M)∥∞ ∣M ∈ Ti, ∥M∥op ≤ 1},
ζ ′0→i = max{∥PTi(Z)∥op ∣ Z ∈ T0, ∥Z∥∞ ≤ 1}.

Note that by definition ζ ′i→0 ≤ ζi→0 and ζ ′0→i ≤ 2ζ0→i. For this reason Chandrasekaran
et al. (2011) only introduced quantities of the type ζi→j . However, given that they involve the
projection of one subspace on another, the quantities ζ ′i→j are the ones that really capture that
the subspaces are incoherent, whereas ζi→j is an measure of incoherence between a subspace
and a norm. The quantity ζ ′i→j can be much smaller than ζi→j , so the distinction is useful.

Lemma 10 (Bounds on ζ).

ζ ′i→0 ≤ ζi→0 ≤
√

2τ̄
k
, ζ ′0→i ≤ 2k0

√
k0τ̄

k
and ζ ′0→i ≤ ζ0→i ≤ k0.

We then have

Lemma 11 (Transversality). Let α ∶= k0
√

2τ
k . If α < 1, then, for all i ∈ [[r]], T0 ∩ Ti = {0}.

6.7 Proofs of main theorems
We will first prove Theorem 5 and then use some of the intermediate results to prove the
restricted case of Theorem 4. For proofs of the different lemmas and propositions we refer the
reader to the supplementary material.

6.7.1 Proof of Theorem 5

Notice that the assumptions that k0 < 1
6
√
k and that τ ≤ 2 together imply that we have

α < 1/3. In order to prove this theorem we aim to construct a dual Q ∈ span{T0,T1, ...,Tr}
satisfying (S.1), (S.2), (L.1), (L.2) and (L.3) of Proposition 6. We can write any matrix
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Q ∈ span(T0,T1, ...,Tr) as Q = ∑ni=1QIiIi + Q0,0 where Q0,0 is the matrix whose non-zero
coefficients are the coefficients of Q that are not indexed by any pair in ∪ri=1Ii × Ii. But by
Lemma 11, ∀i ∈ [[r]], T0 ∩ Ti = {0}, which entails that QIiIi admits a unique decomposition
QIiIi = Qi +Qi,0 with Qi ∈ Ti and Qi,0 ∈ T0. Finally, given the difference of supports, Q0,0 is
clearly orthogonal to span{T1, ...,Tr} which entails that Q0,0 ∈ T0. As a consequence, if we
define Q0 ∶= Q0,0 +∑ri=1Qi,0, then Q = ∑ri=0Qi provides the unique decomposition of Q such
that Qi ∈ Ti for all i.

In the next part of this proof, we consider a number of projectors and other linear
transformations operating on the Qis. Since some of these calculations are naturally written in
matrix form, it is most natural to view the Qis as vectors. For the sake of clarity, we therefore
switch notations and write qi for a vectorization of Qi, and q for a vectorization of Q. We
slightly abuse notation and still say that qi belongs to Ti, identify it with the corresponding
matrix, etc. We also write PTi the matrix of the projector PTi in the same basis as the one in
which qi is written.

With this change of notation, q is uniquely decomposed onto T0 ⊕ T1 ⊕ ...⊕ Tr and we can
write

q =
r

∑
i=0

(q∗i + εi), (6.15)

where q∗0 = γ sign(S∗), q∗i = uiui
⊺ for i ∈ [[r]] and εi ∈ Ti for i ∈ {0,1, . . . , r}. Conditions (S.1)

and (L.1) are satisfied if and only if PTiq = q∗i for all 0 ≤ i ≤ r, which is true if and only if
(εi)1≤i≤r solves the following system of equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε0 +∑ri=1 PT0q
∗
i + PT0εi = 0,

PTiq
∗
0 + PTiε0 + εi = 0, ∀i ∈ [[r]].

Denote ε0,i ∶= PT̄Ii (ε0) the projection of ε0 on the set of matrices with support in Ii × Ii.
Note that we always have PTiε0 = PTiε0,i, because Ti is a subspace of T̄Ii . Finally, note that
we have ε0 = ∑ri=1 ε0,i because, by projecting the first equation above onto the subspace T̄00 of
matrices with zero entries on ⋃ri=1 Ii × Ii., we get PT̄00

ε0 = 0.
Since the sets Ii are disjoint, by projecting on the each of the spaces of matrices with

support in Ii × Ii the previous system of equations, we get the equivalent set of systems:

∀i ∈ [[r]], [ I PT0

PTi I
] [ε0,i

εi
] = [η0

ηi
] where [η0

ηi
] = [−PT0q

∗
i

−PTiq∗0
] , (6.16)

The following lemma provides conditions for the invertibility of (6.16) and the form of the
inverse matrix.

Lemma 12. Let A ∶= [ I PT0

PTi I
].

Then, with Definition 13, if ζ0→iζi→0 ≤ α < 1, A is invertible and its inverse is

A−1 = [ I −PT0

−PTi I
] [(I − PT0PTi)−1 0

0 (I − PTiPT0)−1] .
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Moreover,
⎧⎪⎪⎨⎪⎪⎩

∀v ∈ Ti, ∥(I − PTiPT0)−1v∥op ≤ 1
1−α∥v∥op,

∀v ∈ T0, ∥(I − PT0PTi)−1v∥∞ ≤ 1
1−α∥v∥∞.

But if we let α ∶= k0
√

2τ
k , then by Lemma 10, we have 1 − ζ0→iζi→0 ≥ 1 −α and the assump-

tion that k0 < 1
6
√
k entails that α < 1

3 < 1, so, by the previous lemma, each of the systems in
(6.16) has a unique solution, and the obtained (εi)i∈[[r]] together with ε0 = ∑ri=1 ε0,i thus yield
in (6.15) a value of q that satisfies conditions (S.1) and (L.1).

We now prove that this value of q satisfies (S.2) and (L.2), which requires to bound
∥PT c0 q∥∞ and Ω○(PT ci q). Since Ω○(PT ci q) ≤ ∥PT ci q∥op, we bound this latter quantity.

Lemma 13 (Bounds on ∥PT c0 q∥∞ and ∥PT ci q∥op). Assume ζ0→i ζi→0 ≤ α < 1, and let q be
defined by (6.15), with ε0 = ∑i∈[[r]] ε0,i and the pairs (ε0,i, εi) the unique solution of (6.16).
Then

∥PT c0 q∥∞ ≤ max
i∈[[r]]

∥q∗i ∥∞ + ζi→0∥εi∥op and ∥PT ci q∥op ≤ ∥q∗0∥op + ζ0→i∥ε0∥∞.

The following lemma provides upper bounds for the quantities ∥ε0∥∞ and ∥εi∥op.

Lemma 14 (Bounds on εi). If ζ0→i ζi→0 ≤ α < 1, and (εi)i∈[[r]] be defined as in the previous
lemma, then

∥ε0∥∞ ≤ 1
1−α(

τ̄

k
+ ζ ′i→02γk0) and ∥εi∥op ≤ 1

1−α(2γk0 + ζ ′0→i
τ̄

k
).

Finally we obtain simplified bounds on ∥PT c0 q∥∞ and ∥PT ci q∥op.

Lemma 15 (Simplified bounds on ∥PT c0 q∥∞ and ∥PT ci q∥op). Let α ∶= k0
√

2τ
k . If α < 1, for q

as in Lemma 13, we have

∥PT c0 q∥∞ ≤ τ̄
k

1 − α + α2√2/k0
1 − α

+ γ 2α
1 − α

, ∥PT ci q∥op ≤ γk0
1 + α
1 − α

+ τ̄
k

k0
1 − α

.

Note that the previous lemmas provide better bounds that the ones used in the proof
of Theorem 2 from Chandrasekaran et al. (2011), which allows for the slightly sharper
characterization:

Lemma 16. Let α ∶= k0
√

2τ
k , if α + α2

2k0
< 1

3 then Γ ∶= [ τ̄
k

1
1−3α ,

1
k0

1−k0τ/k
1+α ) is a non empty

interval, and for any γ ∈ Γ, the dual matrix q defined in Lemma 13 satisfies conditions (S.2)
and (L.2).

To conclude the proof of Theorem 5, note that the assumptions k0 ≤ 1
7
√
k and τ ≤ 2 implies

α+ α2

2k0
< 1

3 . Indeed it implies α < 2
7 and so α+ α2

2 < 2
7+

2
49 = 16

49 < 1
3 . As a consequence, Lemmas 12

and 16 apply. The last thing we need to prove is then that q satisfies condition (L.3), which
we prove in Appendix B.2 as

Proposition 7. Under the assumptions of Theorem 5, ∀J ∈ Gpk , λ
+
max(QJJ) < 1.
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6.7.2 Proof of Theorem 4

Note first that the optimization problem stated in the theorem is equivalent to

min γ∥S∥1 +Ωp(L) s.t. M = S +L,

with Ωp the gauge associated with the p-spsd-rank.
Note that we have just removed the p.s.d. constraint and replaced the trace of L by its

trace norm, which should be equivalent if the obtained matrix is p.s.d.
In order to prove this theorem we need to construct a dual q ∈ span{T0,T1, ...,Tr} satisfying

(S.1), (S.2), (L.1), (L.2) of Proposition 6. Note that condition (L.3) is void in this context,
since we are considering a unique low rank block of rank-one and with full support [[p]], and
so it is trivially satisfied. But given the assumptions of the theorem, Lemma 16 applies
immediately with k = p, which yields the result.

6.8 Experiments
We first perform experiments on relatively small synthetic graphs and then on a larger one.

6.8.1 First experiment

First, we consider three different LVGGM with p = 45 observed variables. In each case, we
chose the restriction of the graph on observed variables to be a tree (with maximal degree
≤ 5), and the graph structure corresponds to latent variables that are independent given all
observed variables. The interactions between latent variables and observed variables are chosen
as follows :

• model 1 has h = 3 latent variables; we split observed variables in three groups of size 15
and connect each group to a single latent variable.

• model 2 : has h = 3 latents variables; we split observed variables in three groups of
different sizes (20,15 and 10) and connect each group to a single latent variable.

• model 3 : has h = 4 latent variables; we select four overlapping groups of size 15 with 5
variables shared between each pair of consecutive groups (see Fig. B.5.(b)).

The scheme used to construct a sparse precision matrix K for a given graph is described
in Appendix B.4. For each mode, we draw 50p random vectors from the corresponding p
dimensional multivariate normal distribution and compute the associated marginal empirical
covariance matrix from these observations.

We then estimate the original concentration matrix K by minimizing the score matching
loss regularized either in `1-norm and Ω-gauge as in (6.8) or with the `1-norm+trace-norm
(`1 + tr), as proposed by Chandrasekaran et al. (2010). As discussed in Section 6.3, for the
`1 + tr regularization, the sources are a priori only identified up to a rotation matrix. However,
under the assumption that the sources are conditionally independent given observed nodes,
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KHH is diagonal, and when the groups of observed variables associated with each latent
variables are disjoint, the columns of KOH are orthogonal, and are thus proportional to the
eigenvectors of KOHK

−1
HHKHO as soon as the coefficients of the diagonal matrix KHH are all

distinct, by uniqueness of the SVD. They are thus identifiable, and it makes sense to estimate
the columns of KOH by the eigenvectors of the estimated matrix L. Obviously, for model 3,
we cannot hope to recover KOH with this estimator.

Figure B.5 shows the different estimated concentration matrices obtained, for the choice
of hyperparameters γ and λ, that produced matrices S with the correct sparsity level and L
with the correct rank.

For models 1 and 2, the size of the blocks is fixed. For model 3, we use the gauge Ωw

introduced in Section 6.4.1 which estimates as well the size of the different blocks, based on
prior specified via the vector of weights w, which penalizes differently different block sizes. We
use wk =

√
k which we found performs reasonably well empirically. The result show clearly that

even for models 1 and 3, where, in theory the different columns of KOH could be estimated
with an SVD based on the formulation of Chandrasekaran et al. (2010), these columns are
not so well estimated and their support would not be estimated correctly by thresholding
the absolute value of the estimated coefficients (with perhaps the exception of the smallest
component in model 3).

These results show empirically that the proposed formulation performs well beyond the
regime for which we provide theoretical guarantees in Section 6.6: first, the experiments are in
a finite data setting, so in a sense with noise; then the settings considered are of relatively low
dimension with ratio k0/k and k0/

√
k larger than in the theoretical analysis; and we obtained

also convincing results for the case where blocks overlap (model 3), or the size of the blocks is
estimated as well (model 2).

6.8.2 Second experiment

We consider a graph which is somewhat larger, with 160 nodes, corresponding to an empirical
covariance matrix which is 12 times larger than the previous ones. In this case, the part of the
graph corresponding to the observed variables is drawn from an Erdös-Rényi model, where
each edge has a fixed appearance probability ps = 0.01. We add 4 latent variables connected to
non overlapping groups of 35 observed variables and we generate 2000 observations from the
full graph. We compute the marginal covariance matrix as before (see Appendix B.4) and again
solve (6.8) with the score matching loss to compute our estimator. Figure 6.8.2 shows the low
rank component of the ground truth covariance and the low rank component obtained by our
method. We clearly recover the latent structure of the graph, i.e., the four groups of 35 variables.

6.9 Conclusion
We considered a family of latent variable Gaussian graphical models whose marginal concentra-
tion matrix over the observed variables decomposes as a sparse matrix plus a low-rank matrix
with sparse factors. We introduced a convex regularization to specifically induce this structure
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Figure 6.3: Estimated ∣Kij ∣, for K the complete concentration matrices where the three (resp.
four) first rows and columns correspond to the latent variables of model 1 and model 3 (resp.
model 2 ) : for model 1 in (a) ours and (d) `1 + tr regularization; for model 2 in (b) ours and
(e) `1 + tr regularization; for model 3 in (c) ours and (f) `1 + tr regularization
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Figure 6.4: Experiment on on model with p = 160 observed variables and 4 unobserved.
n = 2000 and k = 35. (left) low rank component of the ground truth covariance (right) low
rank component obtained by our method.

on the low rank component, proposed a convex formulation to estimate both components,
based on a regularized score matching loss, and proposed an efficient algorithm to solve it. We
provided as well an identifiability result, that guarantees that, in the limit of an infinite amount
of data, and when the blocks associated with each latent variable are disjoint, the graph
structure of the whole graph, including connectivity between latent and observed variables is
recovered by the proposed formulation.

Our experiments show promising results in terms of recovery of the structure of the whole
graph, including when there is overlap or when cliques associated with latent variables have
different sizes. Future work could study more precisely the formulations that allows for different
clique sizes, and extend identifiability/recovery results in different directions.

In this chapter we considered the problem of learning the structure of Gaussian Graphical
models with unobserved variables. It is worth noting that the same kind of formulation used
in this work could be applied to k-sparse representative problem(Elhamifar et al., 2012). One
can reformulate the k-sparse representative problem as a graphical model and define the latent
structure as being the k representative, and all other data points are connected only to the
representatives. In future work it would be interesting to consider this application. This would
need improvements of our method Vinyes and Obozinski (2017) to scale, as discussed at the
end of Chapter 4.



Chapter 7

Convex demixing by gauge
minimization

In this work, we consider the problem of signal demixing into two or more components via the
minimization of a sum of norms or gauges, encoding each a structural prior on the corresponding
components to recover. In particular, we provide general exact recovery guarantees in the
noiseless setting based on local cumulative coherence measures that are related to the cumulative
coherence measures introduced in Tropp (2004), for combinations of norms (possibly coupled
with a subspace constraint), that satisfy a decomposition property of the subgradient. In the
case of demixing of two components, we provide finer recovery result applicable to general
coercive gauges. Our general results subsume specific results from the literature for Basis
Pursuit, Morphological Component Analysis, sparse+ low rank matrix decomposition and
others.

7.1 Introduction

A common problem in the signal processing literature which is also highly relevant in the
machine learning and statistics communities is the decomposition or demixing problem: given a
signal y obtained as a linear combination of signals x∗i , that is y = ∑mi=1 x

∗
i , with all x∗i belonging

to a finite1 dimensional vector space that we identify with Rd and some prior information
on the characteristics or structure of the x∗i , under what conditions are they identifiable
unambiguously?

7.1.1 Formulation

We are in particular interested by the case where each x∗i is “simple” for a given measure of
complexity which is a norm or gauge νi, and which encourages properties such as sparsity, low

1All general results could be extended to infinite dimensional vector spaces without difficulties other than
notational.

77



78 CHAPTER 7. CONVEX DEMIXING BY GAUGE MINIMIZATION

rankness and, more generally, the fact that x∗i belongs to a union of subspaces or submanifolds
associated with the gauge.

The motivation for considering norms (or gauges) is that it is common to consider underly-
ing structures that are combinatorial, like sparsity, and that would a priori lead to untractable
formulations for the characterization of x∗i , but for which it is possible to construct convex
relaxations that typically take the form of a gauge. More precisely, as we will illustrate by
several examples in Section 7.1.2, in a number of settings, it is natural to assume that x∗i is a
combination of a small number of elements of the ambient vector space, called atoms, and
picked from a collection Ai, and a gauge naturally associated with this type of structure is the
atomic gauge associated with Ai (Chandrasekaran et al., 2012).

We formulate the problem of recovering the components x∗i as a that of finding a minimal
complexity decomposition, as follows

min
x1,...,xm∈Rp

m

∑
i=1
νi(xi) s.t. y =

m

∑
i=1
xi, (7.1)

where for all i, νi is either a norm of more generally a (closed) gauge2. In particular, our main
theorem applies to symmetric coercive gauges3. Considering gauges that are not norms is
motivated by the fact that a symmetric coercive gauge γ can always be written under the
form γ(x) = ω(x) + ι{x∈Eγ}, where ω is a norm and ι{x∈Eγ} = 0 if x ∈ Eγ and ι{x∈Eγ} = ∞ else,
with Eγ a subspace associated with γ. Proving the result for these gauges thus allows us to
cover a fairly natural setting in which the xi are explicitly constrained to live in a subspace Ei.

Notations

For any set C ⊂ Rd, we denote by span(C) the subspace spanned linearly by elements in C,
and we will denote by ri(C) the relative interior of C, that is the interior of C for the topology
of the affine hull of C.

7.1.2 Examples

A number of problems that can either be formulated as (7.1) or as variants accounting for
the presence of noise or of an additional linear map combining the elements x∗i to form y
have been considered in the literature. We provide hereafter a certain number of examples,
illustrated in Figures 7.1 to 7.4, focussing for the most on the noiseless and design-less case,
which correspond to the setting we will study.

Sparse + low rank. The most emblematic example of this type of decomposition in the
recent literature is probably the sparse + low rank matrix decomposition problem studied in

2A closed gauge is a positively homogeneous proper lower semi-continuous convex function
3A gauge γ is said to be coercive if (γ(x) = 0)⇒ (x = 0). It is symmetric if γ(x) = γ(−x). Note that although

the main theorem requires symmetry, Theorem 7, which is specialized version of the main theorem for just two
subspaces, has an immediate generalization to the case of non-symmetric coercive gauges.
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Chandrasekaran et al. (2011). The decomposition is illustrated in Figure 7.1. To decompose a
matrix M = S +L into its sparse part S and low rank part L, Chandrasekaran et al. (2011)
solve (7.1) with ν1(S) = γ∥S∥1, where γ is a scalar, and ν1(L) = ∥L∥tr, where ∥ ⋅ ∥tr is the trace
norm.

Robust PCA. Low rank + sparse matrix decomposition has extensively been studied by
Candès et al. (2011) for the problem of robust PCA. Xu et al. (2010) focus on the PCA
problem where some data points are outliers: given a matrix of n observations X ∈ Rn×p, some
rows of X are outliers. The authors propose a decomposition of X ≈ L + C, ilustrated in
Figure 7.2, where L is low rank and C is row sparse. The penalty used is a combination of the
trace norm and the `1/`2 norm, that writes

λ∥L∥tr + µ∥C∥1,2,

and corresponds to ν1 ∶= λ∥.∥tr and ν2 ∶= µ∥.∥1,2 with our notations.

Morphological Component Analysis. MCA (Elad et al., 2005) was introduced as the
problem of decomposition of a signal onto the union of two (or more) orthogonal bases capturing
each different morphological components of the signal. The original example is the sine and
spike model applied to the separation of wispy galaxies from a starry sky background, using a
discrete Fourier or DCT basis and the canonical basis in a discretized image. If the matrix of
the cosines basis is denoted U then MCA can be formulated as

min
x1,x′2

∥x1∥1 + ∥x′2∥1 s.t. y = x1 +Ux′2,

given that U is orthonormal

min
x1,x2

∥x1∥1 + ∥U⊺x2∥1 s.t. y = x1 + x2,

where we recognize (7.1) with ν1 = ∥ ⋅ ∥1 and ν1 = ∥U⊺ ⋅ ∥1.

Low rank tensors. Two notions of rank are classically associated to tensors: the canonical
rank and the n-rank, the latter being the list of the mode k rank for all k ∈ [[K]], i.e., the list
of the ranks of the mode-k matricizations of the tensor (Kolda and Bader, 2009). The mode k
matricization of a tensor W ∈ Rn1×...×nK is the nk by ∏i≠k ni matrix whose columns are all the
mode-k fibers4 of W. For large tensors, one way to control the complexity is to penalize the
sum (or the product) of the ranks of the mode k matricization, and some convex relaxation
have been considered (Tomioka and Suzuki, 2013). Wimalawarne et al. (2014, 2016) take a
different point of view and propose to learn a tensor W that decomposes as sum of K tensors
W = ∑Kk=1W(k) such that W(k) has low mode-k rank. Since the trace-norm provides a convex
relaxation of the rank constraint, the authors consider a formulation with a regularization by

4The mode-k fibers are the nk dimensional vectors obtained by fixing all the indices but the kth index.
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the sum of the trace norms of the matrices W (k)
(k)

, which are the mode k matricization of the
tensor W(k). This induces a regularization on W which they call the latent trace norm. The
corresponding demixing problem matching our framework would be

min
(W (k))k=1..K

K

∑
k=1

∥W (k)
(k)

∥
tr

s.t. W =
K

∑
k=1
W(k).

where W
(k)
(k)

is the mode-k matricization of the tensor W(k). Figure 7.4 illustrates the
decomposition of a tensor in R3 in three tensors W(k) of mode-k rank one. Haeffele and
Vidal (2015) use gauge functions for tensor factorization to show, in a certain framework, the
existence of multiple equivalent local minima in deep networks.

Shared and individual variable selection in multitask linear regression. Jalali et al.
(2010) consider the problem of simultaneous variable selection for a group of linear regressions
sharing the same variable space, in which one assumes that some variable are relevant to all
regressions and some variables are only relevant to one or a few of the regressions. In this
setting, each regression indexed by k ∈ [[K]] is based on nk observations of the form (x(k)i , y

(k)
i ).

To couple variable selection between the different regressions, if X(k) ∈ Rnk×p and y(k) ∈ Rnk
are respectively the design matrix and the vector of labels for the kth linear regression, Jalali
et al. (2010) propose to solve a problem of the form

min
M,S,R∈Rp×K

K

∑
k=1

∥y(k) −X(k)M∶,k∥2
2 + ν1(S) + ν2(R) s.t. M = S +R,

where ν1(S) ∶= µ∥S∥1 and ν2(R) = λ∑pj=1 ∥Rj,∶∥∞, so that M is decomposed as the sum of a
row-sparse and of a sparse matrix (see Figure 7.3). Jalali et al. (2010) call this type of model
“dirty statistical model”.

The question that we investigate in this paper is under what conditions on x∗i and νi the
components x∗i are the unique solution of problem (7.1).

7.2 Related work
McCoy and Tropp (2014) consider optimization problems of the form

min
x1,x2

ν1(x1) s.t. ν2(x2) ≤ α, y = x1 +Qx2,

with y = x∗1 +Qx∗2 , and for Q an orthonormal basis matrix drawn uniformly at random from
the Haar measure one the Stiefel manifold, and show results for successful demixing when
α = ν2(x∗2). More precisely, their work is based on a characterization for successful demixing
that generalizes the null space property (Cohen et al., 2009), and which essentially specifies that
the Minkowski sum of the tangent cones should be a direct sum. Considering intrinsic volumes
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Figure 7.1: low rank + sparse matrix decomposition for a symetric matrix

Figure 7.2: low rank + row sparse matrix decomposition for PCA with noisy outliers

Figure 7.3: row sparse + sparse for dirty statistical models

Figure 7.4: low rank tensors
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of these cones, they characterize regimes in which these do or do not shrink exponentially
quickly as a function of the ambient dimension, which allows them to characterize the regimes
in which, asymptotically, in large dimension, with high probability, the cones are in direct sum
or not, so that demixing with the convex formulation is successful or not.

Amelunxen et al. (2014), in a paper that makes several other contributions, sharpen these
results by providing guarantees for fixed ambient dimension d, based on the value of the sum
of the statistical dimensions (a.k.a. Gaussian complexities) of each of the cones. McCoy et al.
(2014) focusses specifically on demixing and provides an accessible account of similar results.
Foygel and Mackey (2014) consider again a similar formulation, in which however Q is now a
rectangular sensing matrix, and provide also non-asymptotic demixing guarantees, including
in the noisy setting, based on Gaussian complexity measures of the tangent cones and scaled
subdifferentials.

Few papers study the case of more than two components: McCoy and Tropp (2013), who
generalize the results of McCoy and Tropp (2014) to more than two components, consider a
compressed sensing setting in which y = A∑mi=1Uix

∗
i + ξ, where A ∈ RN×d is a fixed sensing

matrix, Ui ∈ Rd×d is a random orthogonal matrix drawn at random from the Haar measure on
the orthogonal group, and ξ ∈ RN is a noise vector, one particular case being the case where A
is the identity. The x∗i are estimated by solving

min
(xi)i=1..m

∥A†(y −A
m

∑
i=1
Uix

∗
i )∥

2
2 s.t. fi(xi) ≤ fi(x∗i ), (7.2)

where (fi)i=1..m are convex functions. Note that solving the optimization problem requires to
know the values fi(x∗i ). The authors argue that the solution of this problem is the same as
the minimizer of a Lagrangian in which the smooth part of the above objective is penalized by
a term of the form ∑mi=1 λifi(xi), for some unknown multipliers λi.

The constrained formulation above has the advantage that its optimality conditions are
easier to analyze. In particular, when A = I and ξ = 0, the problem reduces to a feasibility
problem, which has a unique solution under a condition on the tangent cones5 Ci associated
with each of the fi at x∗i .

More precisely a necessary and sufficient condition for the uniqueness of the decomposition
y = ∑mi=1Uix

∗
i is that the rotated cones C′i ∶= Ui Ci are such that there is no non null element

(h1, . . . , hm) ∈ C′1 × . . . × C′m such that ∑mi=1 hi = 0, or equivalently that −C′i ∩∑j≠i C′j = {0}, ∀i =
1..m.

Based on this characterization, the authors establish a phase transition in the probability
of exact or stable demixing, as a function of N, d and the Gaussian complexity measures
(statistical dimensions) of the tangent cones Ci associated with each of the fi at x∗i . Their
approach relies crucially on the use of the random orientation model based on the Ui, which
places the cones C′i in general position, and makes it possible to develop elegant arguments to
bound the probabilities of cones intersection just as a function of their volumes, the latter being
measured by Gaussian complexities. However, this random orientation model does not match

5The tangent cone of νi at x∗i is the closure of the descent cone defined by {hi ∈ Rd ∣ ∃ε0 > 0, ∀ε ≤
ε0, fi(x∗i + εhi) ≤ fi(x∗i )}
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the setting of a number of applications; and the computation of good bounds for Gaussian
complexities is potentially difficult. Gu and Banerjee (2016) consider a similar setting, without
the random orientation model and with a subgaussian sensing and noise, but they assume a
structural coherence condition on the cones Ci, which guarantees that the decomposition is
unique when A = I and ξ = 0, while our work is precisely concerned with means to establish
this type of result from properties of the x∗i and the νi.

The work that is closest to ours is Ong and Lustig (2016), which studies a particular matrix
decomposition as a sum of several low rank matrices supported by sets of rows indexed by
dyadic intervals. In particular, the analysis proposed in that work in the noiseless case is
close to ours and introduces similar coherence measures between norms and tangent spaces;
it is also similar to an analysis in Wright et al. (2013), which however introduced coherence
measures between subspaces as measured by the classical operators norms, while in our work
and in Ong and Lustig (2016), norms or gauge on operators induced by the νi are used.

Our work generalizes the exact demixing guarantees based on cumulative coherence measures
in the noiseless setting, first by showing that it is applicable to a broader set of gauges, then
by distinguishing several incoherence measures (between pairs of tangent spaces equipped with
gauges, between tangent spaces and norms, and between subgradients and tangents spaces)
that yield sharper conditions, and finally by proving an improved condition in the case of two
components (see the discussion at the end of Section 7.4).

7.3 Subspace associated with a gauge at a point
If the gauges νi were simply indicators of linear subspaces Ti of Rd, it would be sufficient for
problem (7.1) to have a unique solution that the collection of subspaces Ti are in direct sum,
which can be stated as the assumption that for any i, Ti ∩ span(Tj)j≠i = {0}.

In fact, we will show that, under some appropriate hypotheses, each of the gauges νi
naturally associates to the corresponding element x∗i ∈ Rd a subspace Ti containing x∗i , and
that these subspaces plays a key role in the analysis of problem (7.1). In particular, it is
necessary that these associated subspaces Ti are in direct sum for (7.1) to have a unique
solution, and we will sufficient conditions for uniqueness based on incoherence assumptions on
the subspace.

Examples of such spaces Ti are the tangent spaces used in Chandrasekaran et al. (2011)
and one of the subspaces introduced in Negahban et al. (2012) to formalize the concept of
separable (a.k.a. decomposable) norms. This association of a tangent space Tx to a point x and
for a norm ν, was also discussed for separable norms in Candès and Recht (2013); Wright et al.
(2013) and Foygel and Mackey (2014) and extended to gauges in Vaiter et al. (2015a) (see also
Fadili et al., 2013; Vaiter et al., 2015b).

This is best formalized based on a notion of decomposability of the subgradient (Foygel
and Mackey, 2014; Vaiter et al., 2015a), as follows:

Definition 14. We say that the gauge ν has an orthogonally decomposable subdifferential
(o.d.s.) at x ∈ Rd if the projection of the origin 0 on the affine span of ∂ν(x) is in ri(∂ν(x)).
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Indeed, Vaiter et al. (2015a) show the following characterization:

Proposition 8. If ν has an o.d.s. at x then, denoting the projection of the origin 0 on
the affine span of ∂ν(x) by qx, letting Qx ∶= ∂ν(x) − qx, and Tx ∶= span(Qx)

� the subspace
orthogonal 6 to Qx then

• x, qx ∈ Tx,

• ∂ν(x) decomposes orthogonally on (Tx,T �x ) in the sense that we have

∂ν(x) = {qx + q′ ∣ q′ ∈ Qx}.

In other words, if ν�,○x denotes the gauge of Qx, then ν�,○x is finite and we have

∂ν(x) = {q ∣ PTxq = qx, ν�,○x (q − qx) ≤ 1}.

Proof. By definition we have ⟨qx, q′⟩ = 0 for all q′ ∈ Qx, and so we have qx ∈ (T �x )�, and since
Qx ⊂ T �x , then ∂ν(x) decomposes orthogonally on Tx and T �x , with PTx∂ν(x) = {qx} and
PT �x ∂ν(x) = Qx. Then, we can write any q ∈ ∂ν(x) as q = qx + q′ with q′ ∈ Qx and, since
⟨x, qx⟩ = ν(x) = ⟨x, q⟩ = ⟨x, qx⟩ + ⟨x, q′⟩, this entails ⟨x, q′⟩ for any q′ ∈ Qx, so that we also have
x ∈ Tx. The fact that qx ∈ ri(∂ν(x)) (vs qx ∈ ∂ν(x)) or equivalently 0 ∈ ri(Qx) entails that the
gauge ν�,○x is finite.

Note that in general ν�,○x has no simple expression in terms of ν○. The reason why the
o.d.s. definition assumes that qx ∈ ri(∂ν(x)) (vs qx ∈ ∂ν(x)) is that it entails that ν�x is
coercive, which is a property that will be needed to be able to certify uniqueness of the
solution of (7.1) with the characterization of Proposition 10. Note that if ν(x) = 0, then
∂ν(x) = {q ∣ ⟨q, x⟩ = 0, ν○(q) ≤ 1} ∋ 0, so that qx = 0. So in particular, if x = 0, then
∂ν(x) = {q ∣ ν○(q) ≤ 1} and ν�,○x = ν○x.

Natural examples of gauges with o.d.s. are provided by separable/decomposable norms (Ne-
gahban et al., 2012).

Definition 15. A gauge is said to be separable on a pair of subspaces (M,T ⊥) if

ν(x + y) = ν(x) + ν(y) ∀(x, y) ∈M × T ⊥.

Separable gauge are typical examples of gauge with an o.d.s. property.

Proposition 9. If ν is a separable coercive gauge on (M,M⊥) and x ∈M is a point at which
the restriction of ν toM is differentiable, then ν has an o.d.s. at x with qx = ∇(ν∣M)(x) and
Qx = ∂(ν∣M⊥)(0) = {q ∈M� ∣ ν○(q) ≤ 1}. In general M ⊂ T , and if ν is coercive on M, then
T =M.

6If the gauge ν has a domain (i.e. {x ∣ ν(x) <∞}) which is included in a strict subspace E of Rd then Tx
can also be defined as the orthogonal complement of span(Qx) in E and not in Rd.
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Proof. It follows immediately from the rules of subdifferentiable calculus that ∂ν(x) = {qx}×Qx
with qx = ∇(ν∣M)(x) and Qx = ∂(ν∣M⊥)(0). By definition qx ∈M and Qx ⊂M�. So that in
general, T �x ⊂M� andM ⊂ T . We prove in Lemma 27 in the appendix, that if ν is separable
on (M,M�), this entails that ∀(p, q) ∈ (M,M�), ν○(p + q) = max (ν○(p), ν○(q)). But this
entails that Qx = {q′ ∈M� ∣ ν○(q′) < 1}. Finally, if ν is coercive onM, then ν○ must be finite
onM, and Qx has non-empty interior inM�.

There are many examples of norms separable on a couple (M,M⊥), including the Lasso
and the group-Lasso. The trace norm is also separable but for a pair of spaces (M,T ⊥) that
are not the orthogonal complement of each other; however, given the form of the subdifferential
of the trace norm, it is easy to see that it satisfies the o.d.s. property as well.

Note that separability at x alone is not sufficient to obtain an o.d.s. property, and vice-versa,
the o.d.s. property does not imply separability. In particular, it is easy to see that a number of
norms that are not separable have the o.d.s. property: we can cite among others some OWL
norms like SLOPE and more generally the locally separable norm considered in Obozinski and
Bach (2016).

This mismatch of concepts has led different authors to make assumptions that are hybrid
between the o.d.s. property above and separability (Candès and Recht, 2013; Fadili et al.,
2013; Vaiter et al., 2015a).

The o.d.s. property that we defined, while convenient, is in fact not necessary for the rest
of our analysis and could be relaxed, to generalize our results to any (coercive) gauge. What
is actually key is the fact that for any qx ∈ ∂ν(x), the subspace Tx ∶= span(q − qx)� is the same
and that we have x ∈ Tx, which is true for any gauge. The o.d.s. assumption could therefore be
generalized by replacing the orthogonal projection in the definition by an oblique projection.
This would be relevant for example in the case of the total variation on vectors associated with
an undirected graph G = (V,E) and defined by ν(x) = ∑{i,j}∈E ∣xi−xj ∣. Indeed, in that case the
subdifferential at x is not orthogonally decomposable but since ν(x) = ∥Dx∥1, where D ∈ Rm×d
is the matrix computing all pairwise differences on each edge, ∂ν(x) =D⊺∂∥ ⋅ ∥1(Dx), and so
the subdifferential of x is the image by a non-orthogonal transformation of a subdifferential of
the `1-norm which itself is orthogonally decomposable. So changing the metric based on D
would be relevant here.

7.3.1 Examples of gauges with an o.d.s.

Basic examples of norms with the o.d.s. property are the trace norm for inducing low rank
structure and `1 norm for inducing sparsity

`1 norm in Rp. For any x ∈ Rp, we define the support of x as the set Supp(x) ∶= {i ∈ [[p]] ∣
xi ≠ 0}. Let S be any particular subset of indices, and Sc = [[p]]∖S, then ∥.∥1 is separable with
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respect to (T (S),T (S)�) with T (S) ∶= {x ∈ Rp ∣ Supp(x) ⊂ S}. In particular, for any x, we
have Tx = T (Supp(x)).

Trace norm for matrices in Rp1×p2. If X ∈ Rp1×p2 is a rank r matrix with X = USV ⊺

its reduced singular decomposition (i.e. with U ∈ Rp1×r), V ∈ Rp2×r), S ∈ Rr×r, with U,V
orthonormal and S diagonal, then the trace norm ∥.∥tr is separable with respect toM(X) ∶=
{UDV ⊺ ∣D ∈ Rr diagonal} and T (X)� ∶= {N ∈ Rp1×p2 ∣ U⊺N = 0 and NV = 0} or equivalently

T (X)� ∶= {(Ip1 −UU
⊺)M(Ip2 − V V

⊺) ∣M ∈ Rp1×p2} .

As a consequence we have TX = T (X).

Trace norm with p.s.d. constraints. On the set of symmetric matrices (that can be
viewed as Rp(p+1)/2), the natural restriction of the trace norm on p.s.d. matrices is the gauge
ν defined by ν(X) = tr(X) + ι{X⪰0}, where tr denotes the trace. The polar gauge is ν○ with
ν○(B) = λ+max(B) where λ+max is the largest nonnegative eigenvalue and 0 if all eigenvalues
are negative. If X is a rank r p.s.d. matrix and X = USU⊺ its reduced eigenvalue decompo-
sition, with S ∈ Rr×r, S ⪰ 0, S diagonal and U ∈ Rpr orthonormal, then one can check that
∂ν(X) = {UU⊺ +B ∣ BU = 0, λ+max(B) ≤ 1}. We also have that ν is separable with respect
toM(X) ∶= {UDU⊺ ∣D diagonal} and T (X)� ∶= {M ∈ Rp×p ∣M =M⊺, MU = 0}. Again, we
have TX = T (X).

Atomic gauge. Consider the gauge ΩA defined by

ΩA(x) = inf { ∑
a∈A

ca ∣ x = ∑
a∈A

caa, ca ≥ 0}.

It is a standard result that the polar gauge satisfies Ω○
A(s) = maxa∈A⟨a, s⟩ (see e.g., Chan-

drasekaran et al., 2012).
Let Ax be the set of elements of A that enter with a non-zero coefficient at least one of

the optimal decompositions of x for the gauge ΩA and Ax the matrix whose columns are the
elements of Ax.

Then it is immediate to verify that ∂ΩA(x) = {q ∣ Axq = 1, Ω○
A(q) ≤ 1}. But if qx and Qx

are as in Proposition 8, then we must have Axqx = 1 and Qx ⊂ {q′ ∣ Axq′ = 0}, which entails
that span(Ax) ⊂ Tx. We however do not have span(Ax) = Tx in general, as illustrated by
the case of the group Lasso, or even more simply by the `2-norm. Indeed, in this last case
Ax = {qx} = ∂ν(x) with qx = x

∥x∥2
and Tx is the entire space. Also, since any gauge can be

written as an atomic gauge, atomic gauges do not necessarily satisfy the o.d.s. property.

7.4 Identifiability conditions
Without appropriate assumptions, Problem (7.1) is in general not well posed and even if the
solution is unique there is no guarantee that the obtained decomposition yields the x∗i .
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However, under some incoherence conditions on tangent spaces we prove that the decom-
position is exactly recovered. Proposition 10 states existence and uniqueness of the solution of
(7.1) and Theorem 6 states simple conditions that guarantee exact decomposition for problem
(7.1).

For all i, we consider the subdifferential of the gauge νi evaluated at x∗i . We introduce
again a number of the notations introduced in Proposition 8 but for each (νi, x∗i ) pair. In
particular, assuming that νi has an o.d.s. at x∗i , we will note q∗i the projection of the origin
on ∂νi(x∗i ), Qi = ∂νi(x∗i ) − q∗i , Ti ∶= span(Qi)�. Note that, as before, we have by construction
x∗i , q

∗
i ∈ Ti, ⟨x∗i , q∗i ⟩ = νi(x∗i ). For short, we will also denote ν̃○i ∶= ν

�,○
xi the gauge of Qi and Pi

the projector on Ti.

Proposition 10. Let y ∶= ∑mi=1 x
∗
i . Let S = {i ∣ x∗i ≠ 0} and Sc = [[m]]/S.

If, for all i, νi is coercive7 and has an o.d.s. at x∗i , and if, with the above notations,

(i) the subspaces (Ti)i∈S are in direct sum8, i.e., ∀i ∈ S, Ti ∩ span((Tj)j∈S/i) = {0},

(ii) there exists a dual q such that

• ∀i ∈ S, Piq = q∗i and ν̃○i (P ⊥i q) < 1,
• ∀j ∈ Sc, ν○j (q) < 1.

then (x∗i )i=1..m is the unique optimum of problem (7.1).

Proof. We start by showing that (x∗i )i=1..m is an optimum before proving uniqueness. The
objective can be rewritten f(x) + g(x) with f(x) = ∑mi=1 νi(xi) and g(x) = ι{y=∑i xi}. Since f
is separable, its subdifferential is the Cartesian product ∂f(x) = ∂ν1(x1) × . . . × ∂νm(xm), and
since g is the indicator of a convex set (in fact a subspace), its subdifferential is the normal cone
to that set at x (in fact the orthogonal subpsace), which for any x satisfying the inequality is
the subspace ∂g(x) = {(q⊺, . . . , q⊺)⊺ ∈ Rm×p ∣ q ∈ Rd}. Since f and g are convex, x∗ = (x∗i )i=1..m
is a minimum of f + g if and only if 0 ∈ ∂(f + g)(x∗), but by the previous characterization,
0 ∈ ∂(f + g)(x∗) if and only if there exists q ∈ Rd such that q ∈ ∂νi(x∗i ), for all 1 ≤ i ≤ m.
Finally, by Proposition 8, for i ∈ S, q ∈ ∂νi(x∗i ) if and only if Piq = q∗i and ν̃○i (P ⊥i q) ≤ 1, and for
j ∈ Sc, q ∈ ∂νj(0) if and only if ν○j (q) ≤ 1. It is thus clear that if there exists q satisfying the
set of assumptions (ii), then (x∗i )i=1..m is an optimum.

To prove uniqueness, suppose there is another solution (x∗i +ni)i=1..m. Then (x∗i +ni)i=1..m
is also a minimizer . Given the equality constraints we must have ∑mi=1 ni = 0 since ∑mi=1 x

∗
i =

y = ∑mi=1 x
∗
i + ni. Applying the subdifferential definition at (x̂i)i=1..m, we have that for any

(q1, ..., qm) with qi ∈ ∂νi(x∗i ),

m

∑
i=1
νi(x∗i + ni) ≥

m

∑
i=1

(νi(x∗i ) + ⟨qi, ni⟩ )

7We say that a gauge ν is coercive if (ν(x) = 0) ⇒ (x = 0).
8For a pair of subspaces, Chandrasekaran et al. (2011) use the expression “transverse subspaces”.
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Note that we can apply this decomposition for indices j ∈ Sc, for which Tj = {0} and we can
let q∗j = 0, which is consistent with it definition. Decomposing the subdifferentials on Ti and
T ⊥i , yields qi = q∗i + P ⊥i (qi) and q = q∗i + P ⊥i (q). Using this decompositions we have,

⟨qi, ni⟩ = ⟨q∗i + P ⊥i (qi), ni⟩ = ⟨q − P ⊥i (q) + P ⊥i (qi), ni⟩ = ⟨P ⊥i (qi − q), ni⟩ + ⟨q, ni⟩ .

Thus,
m

∑
i=1

⟨qi, ni⟩ =
m

∑
i=1

⟨P ⊥i (qi − q), ni⟩ =
m

∑
i=1

⟨P ⊥i (qi) − P ⊥i (q), P ⊥i ni⟩ ,

where in the first equality we use the fact that ∑mi=1 ni = 0. We can select any subgradient
(q1, ..., qm). Let qci ∈ Argmaxq′∈Qx∗

i

⟨P ⊥i ni, q′⟩ where Qx∗i = P ⊥i ∂νi(x∗i ) as in Proposition 8,
and let qi = q∗i + qci . Note that, by definition, qci ∈ T ⊥i , so that P ⊥i qi = qci , which entails that
⟨P ⊥i ni, P ⊥i qi⟩ = ν̃i(P ⊥i ni) and ν̃○i (P ⊥i qi) = 1. Finally, by the Fenchel-Young inequality, we have
⟨P ⊥i ni, P ⊥i q⟩ ≤ ν̃○i (P ⊥i q) ν̃i(P ⊥i ni), and so we have

m

∑
i=1

⟨qi, ni⟩ ≥
m

∑
i=1

(1 − ν̃○i (P ⊥i q)) ν̃i(P ⊥i ni). (7.3)

But by assumption, 1 − ν̃○i (P ⊥i q) > 0 for all i = 1..m (in particular, this is true for j ∈ Sc,
because ν̃○j = ν○j ). So, ∑mi=1 ⟨qi, ni⟩ is strictly positive unless ν̃i(P ⊥i ni) = 0 for all i = 1..m. For
all j ∈ Sc, P �

j is the identity and (ν̃j(nj) = νj(nj) = 0)⇒ (nj = 0). For i ∈ S, the o.d.s. property
implies (by Proposition 8) that ñu○i is finite which equivalently means that ν̃ is coercive and
so (ν̃i(P ⊥i ni) = 0) ⇒ P ⊥i ni = 0, which entails that ni ∈ Ti for all i. Finally since ∑i∈S ni = 0, we
have that ni = −∑j∈S/i nj so that ni ∈ Ti ∩ span((Tj)j≠i) = {0} by assumption (i). So ni = 0 for
all i ∈ S as well and this completes the proof of uniqueness of the decomposition.

Our main theorem essentially states that if the subspaces Ti equipped with the gauge νi
are sufficiently incoherent (and in particular if each the vectors q∗i dually associated with x∗i
are themselves sufficiently incoherent with the other subspaces (Tj)j≠i, then Problem (7.1) has
a unique solution, which is (x∗i )i=1..m.

This requires to introduce measures of coherence: we introduce measure of coherence similar
to the ones defined in Chandrasekaran et al. (2011), and cumulated coherence that generalize
the notion essentially introduced in Tropp (2004) (see the discussion after Theorem 6).

Definition 16. (Generalized simple and cumulative coherences) Let ν○i ,Ti, ν̃○i , Pi and P ⊺
i be

defined as in Proposition 10. We define the coherences ζij , ζ�ij between pairs of subspaces, the
coherence between a subgradient and a subspace ζ∗ij , ζ

∗,�
ij and the corresponding cumulative

coherences α,α∗, α�i , α
∗,�
i as follows:

• ζij ∶= max {ν○i (Piuj) ∣ uj ∈ Tj , ν○j (uj) ≤ 1} and α = maxi∑j≠i ζij ,

• ζ�ij ∶= max {ν̃○i (P �
i uj) ∣ uj ∈ Tj , ν○j (uj) ≤ 1} and α�i = ∑j≠i ζij ,

• ζ∗ij ∶= ν○i (Piq∗j ) and α∗ = maxi∑j≠i ζ∗ij,
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• ζ∗,�ij ∶= ν̃○i (P �
i q

∗
j ) and α∗,�i = ∑j≠i ζ

∗,�
ij .

Theorem 6. Let y = ∑mi=1 x
∗
i and (νi)i=1..m be a collection of symmetric gauges such that νi is

coercive and has an o.d.s. at x∗i . Let Ti be defined as before. Let Pi be the projector on Ti. Let
q∗i be the unique element in ∂νi(x∗i ) ∩ Ti. With the cumulative coherences from Definition 16:

If α < 1 and max
i

α∗

1−α α
�
i + α

∗,�
i < 1, then (x∗i )i=1..m is the unique solution to (7.1).

As before, let S ∶= {i ∣ x∗i ≠ 0}. Note that ζij = ζ∗ij = 0 unless i, j ∈ S, and that ζ�ij = ζ
∗,�
ij = 0

for j ∈ Sc, but that α�j and α∗,�j are non zero in general for j ∈ Sc.

Proof. The proof consists in showing that the assumptions of Proposition 10 hold. First, by
applying Lemma 24 in Appendix C.1 with Ωi = ν○i for i = 1..m, we get that α < 1 implies that
the spaces Ti are in direct sum.

Second we show that there exists q ∈ span(Ti)i=1..m such that for all i = 1..m, Pi q = q∗i . In
particular, we show that we can write q = ∑i∈S(qi+εi) with εi ∈ Ti. With this parameterization,
and assuming, without loss of generality that S = [[s]], the previous equality constraints yield a
linear system of equations that can be written in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q∗1
q∗2
⋮
q∗s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1 P1P2 . . . P1Ps
P2P1 P2 . . . P2Ps

⋮
PsP1 PsP2 . . . Ps

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q∗1 + ε1
q∗2 + ε2

⋮
q∗s + εs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the constraint that εi ∈ Ti for all i = 1..m. To express subspace constraints, and assuming
that Ti is a subspace of dimension di, let Ti ∈ Rd×ri be the matrix whose columns forms an
orthonormal basis of Ti. Then there exists unique bi, ci ∈ Rri such that q∗i = Tibi and εi = Tici.
Moreover, we must have Pi = TiT ⊺i . The previous linear with subspace constraints is thus
equivalent to the problem without constraints:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
⋮
bs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ir1 T ⊺1 T2 . . . T ⊺1 Ts
T ⊺2 T1 Ir2 . . . T ⊺2 Ts

⋮
T ⊺s T1 T ⊺s T2 . . . Irs

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1 + c1
b2 + c2

⋮
bs + cs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (7.4)

Now, the matrix A above is naturally partitioned into A = (Aij)1≤i,j≤s with for all i, Aii =
Iri ∈ Rri×ri the identity matrix and in general Aij = T ⊺i Tj .

By associating to vi ∈ Rri the norm ωi(vi) ∶= ν○i (Tivi), we precisely have that ωi(Aijvj) =
ν○i (TiT ⊺i Tj vj), so that

max
vj∈Rrj , ωj(vj)≤1

ωi(Aijvj) = max
uj∈Tj , ν○j (uj)≤1

ν○i (Piuj) ≤ ζij .

Let b ∶= (b1⊺, . . . , bs⊺)⊺ and similarly c ∶= (c⊺1 , . . . , c
⊺
s)⊺.
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Given that α < 1, by Lemma 25, A is invertible and if we let B ∶= A−1 and consider
the partitioning of B into (Bij)1≤i,j≤s, with same dimensions respectively as the blocks of
(Aij)1≤i,j≤s, then

max {ωi(Bijvj) ∣ vj ∈ Rrj , ωj(vj) ≤ 1} ≤ 1
1 − α

. (7.5)

We can thus invert the system (7.4) to get the unique solution

b + c = A−1b so that c = A−1(I −A)b.

But if we let b̃ ∶= (A− I)b, then b̃i = ∑j≠iAijbj so that ωi(b̃i) ≤ ∑j≠i ζ∗ij ωj(bj) = ν○j (q∗j ) ≤ α∗.
Then, since by definition we have εi = Ti ci, using inequality (7.5), we have

max
i
ν○i (εi) = max

i
ωi(ci) ≤

1
1 − α

max
j
ωj(−b̃j) ≤

α∗

1 − α
.

Finally, we have P �
i q = ∑

j∈S/i

P �
i εj + ∑

j∈S/i

P �
i q

∗
j , so that, for all i ∈ [[m]],

ν̃○i (P �
i q) ≤ ∑

j∈S/i

ν̃○i (P �
i εj) + ∑

j∈S/i

ν̃○i (P �
i q

∗
j )

≤ ∑
j∈S/i

ζ�ij ν
○
j (εj) + ∑

j∈S/i

ζ∗,�ij ν○j (q∗j )

≤ ∑
j∈S/i

ζ�ij
α∗

1 − α
+ ∑
j∈S/i

ζ∗,�ij ≤ α�i
α∗

1 − α
+ α∗,�i ,

which concludes the proof.

In this theorem, we chose to introduce four different quantities α,α�i , α∗ and α�,∗i . These
quantities can be viewed as generalizations of the cumulative coherence parameters discussed
in Tropp (2004) and introduced in slightly earlier work by the same author. This line of work
however sought to obtain uniform results over all possible signals expressed as any combination
of a small number of atoms (each of the latter corresponding to one of our subspaces), while in
our context the subspaces depend in general on the signal, which motivates several non-uniform
definitions. For a more precise discussion of the connection with the results in Tropp (2004), see
Section 7.5.1. The distinction between α�i and α is necessary since Ti and T �i are not equipped
with the same gauge in general, and even if they do, taking into account the projection is
important since the spaces are incoherent. Note that by definition α∗ ≤ α and α∗,�i ≤ α�i .
However, α and α�i are defined over entire subspaces Ti, which are potentially large, and have
unfavorable worst case elements, when q∗i is an element that can have itself a very small
projection over all other subspaces Tj .

7.4.1 Special case of two blocks

In the special case where there are only two blocks, we can exploit the structure of A−1, to
obtain more precise bounds.
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Theorem 7. Consider the same setting and the same definitions for ζij , ζ∗ij , ζ�ij , ζ
∗,�
ij as in

Theorem 6 in the particular case where m = 2, but without assuming that the gauges νi are
symmetric. Let ζ∗,−ij ∶= ν○i (−Piq∗j ). A sufficient condition for (x∗1 , x∗2) to be the unique solution
of Problem (7.1) when y = x∗1 + x∗2 , is that, for (i, j) ∈ {(1,2), (2,1)},

ζjiζij < 1 and ζ∗,�ij + ζ�ij
ζjiζ

∗
ij + ζ

∗,−
ji

1 − ζjiζij
< 1.

Note that, if νi is symmetric, we have ζ∗,−ij = ζ∗ij .

Proof. First, note that if 0 ≤ ζ12 ζ21 < 1 and if M ∈ T1 ∩ T2 then the inequalities

ν○1(M) = ν○1(P1P2M) ≤ ζ12 ζ21 ν
○
1(M),

show that we must have M = 0, i.e. T1 ∩ T2 = {0}. Second, ζ12 ζ21 < 1 entails that I − P1P2 is
invertible. Indeed, for any x1 ∈ T1,

(1 − ζ12ζ21)ν○1(x1) ≤ ν○1(x1) − ζ12ν
○
2(P2x1)

≤ ν○1(x1) − ν○1(P1P2x1) ≤ ν○1((I − P1P2)x1),

so if x1 ∈ T1/{0} then by Lemma 26, with ν○1(x1) > 0 or ν○1(−x1) > 0 which entails that
(I −P1P2)x1 ≠ 0. This shows that I −P1P2 is invertible on T1 and that for all x1 ∈ T1, ν

○
1((I −

P1P2)x1) ≤ (1 − ζ12ζ21)−1ν○1(x1).
Finally, if we project the equality q = q∗1 + ε1 + q∗2 + ε2 on T1 and T2, we obtain respectively

ε1 = −P1q
∗
2 − P1ε2 and ε2 = −P2q

∗
1 − P2ε1.

But substituting one equation in the other and solving for the remaining εi yields

ε1 = (I − P1P2)−1(P1P2q
∗
1 − P1q

∗
2) and ε2 = (I − P2P1)−1(P2P1q

∗
2 − P2q

∗
1),

and we have, using the symmetry of the gauge, that

ν○1(ε1) ≤
ν○1(P1P2q

∗
1 − P1q

∗
2)

1 − ζ12ζ21
≤
ζ12ζ

∗
21 + ζ

∗,−
12

1 − ζ12ζ21
and symmetrically ν○2(ε2) ≤

ζ21ζ
∗
12 + ζ

∗,−
21

1 − ζ21ζ12
.

Finally, for (i, j) ∈ {(1,2), (2,1)},

ν̃○i (P �
i q) = ν̃

○
i (P �

i q
∗
j + P �

i ε
∗
j ) ≤ ζ

∗,�
ij + ζ�ij

ζjiζ
∗
ij + ζ

∗,−
ji

1 − ζjiζij
,

hence the result.

Note that this result could easily be extended to the case of asymmetric gauges by
introducing ζ∗,−ij ∶= ν○i (−Piq∗j ), in which case, the condition simply becomes

ζ∗,�ij + ζ�ij
ζjiζ

∗
ij + ζ

∗,−
ji

1 − ζjiζij
< 1.
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7.5 Illustrative examples

7.5.1 Basis Pursuit

As a first illustration we consider the case of Basis Pursuit. Consider the classical `1 minimiza-
tion problem

min
β∈Rm

m

∑
i=1

∣βi∣ s.t. y =
m

∑
i=1
βiui, (7.6)

with ui ∈ Rm and ∥ui∥ = 1, and where y = ∑mi=1 β
∗
i ui. If we let xi = βiui and νi(xi) =

∥xi∥ + ι{∣⟨xi,ui⟩∣=∥xi∥} then (7.1) is equivalent to (7.6).
We clearly have x∗i = β∗i ui or equivalently β∗i = ⟨ui, x∗i ⟩. We also have ν○i (q) = ∣⟨ui, q⟩∣, and,

as a consequence,

∂νi(x∗i ) = {q∗i + qci ∣ q∗i = sign(β∗i )ui, ⟨ui, qci ⟩ = 0} and Ti = span(β∗i ui).

Computation of ζij and ζ∗ij. Clearly, for all (i, j) ∈ S × S, we have

ζij = max{∣⟨ui, xj⟩∣ ∣ ∥xj∥ ≤ 1, xj ∈ Tj} = ∣⟨ui, uj⟩∣ = ζ∗ij .

Computation of ζ�ij and ζ∗,�ij . We should distinguish the case i ∈ S and i ∈ Sc.

• If i ∈ S, then Qx∗i = {u ∣ ⟨ui, u⟩ = 0} so that ν̃○i (q) = ι{⟨ui,q⟩=0}. As a consequence
ν̃○i (P �

i q) = 0 for any q, which entails that ζ∗,�ij = ζ�ij = 0 and α∗,�i = α�i = 0, for all i ∈ S.

• But if i ∈ Sc, then ν̃○i (q) = ν○i (q) = ∣⟨ui, q⟩∣ and P �
i = I so that, for all j ∈ S, ζ∗,�ij = ζ�ij =

∣⟨ui, uj⟩∣.

Finally, we get α∗ = α = maxi∈S∑j∈S/i ∣⟨ui, uj⟩∣, and, ∀j ∈ Sc, α∗,�j = α�j = ∑i∈S ∣⟨ui, uj⟩∣. With
these notations, Theorem 6 states that (β∗i )i=1..m is the unique solution of (7.6) if α < 1 and
∀j ∈ Sc, α�j

α
1−α +α

�
j < 1, which is equivalent to α+α�j < 1. This leads to the sufficient condition:

Proposition 11. A sufficient condition for exact recovery of (β∗i )i=1..m in Problem (7.6) is

max
j∈S

∑
i∈S/j

∣⟨ui, uj⟩∣ +max
j∈Sc

∑
i∈S

∣⟨ui, uj⟩∣ < 1. (7.7)

This condition is stronger than a classical condition based on the coherence or mutual
coherence. The concept of coherence of a matrix U was original introduced by Donoho and
Elad (2003) as the quantity µ ∶= ∥U⊺U∥∞, where ∥ ⋅ ∥∞ is the entrywise `∞ norm and U is
the matrix whose columns are dictionary elements ui that match the ones appearing in our
problem. An immediate consequence of Proposition 11 is that a sufficient condition for exact
recovery in (7.6) is that µ(2s − 1) < 1, where s = ∣S∣, which is a classical result first appearing
as Theorem 7 in Donoho and Elad (2003).

In fact an even closer result is stated in Tropp (2004): Indeed, Tropp introduced cumulative
coherence which is defined as µ1(k) ∶= max∣S′∣≤k,S′⊂[[m]] maxj∈S′c∑i∈S′ ∣⟨ui, uj⟩∣. Since µ1(k) is a
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uniform upper bound over all choices of support of size k, we clearly have α ≤ µ1(s − 1) and
α�j ≤ µ1(s), which leads to a less stringent sufficient condition then the one based on mutual
coherence and which is

µ1(s − 1) + µ1(s) < 1,

a condition which is discussed in Proposition 3.7 in Tropp (2004). The quantities α,α∗, α�i
and α∗,�i that we introduced can thus be viewed as non-uniform generalizations of cumulative
coherence, that are appropriate in our general setting.

7.5.2 MCA

We can treat the case or Morphological Component Analysis in two ways. First, it can be
viewed as a particular case of Basis Pursuit. In that case, the support is composed of S1
the non-zero coefficients of x1 and of S2 the non-zero coefficients of x′2. Let I1 and I2 be
respectively the index sets associated to the coefficients on Φ1 and Φ2. So that S1 = S ∩ I1 and
S2 = S ∩ I2.

With µ1(S1) ∶= ∑i∈S1 ∣⟨φ1
i , φ

2
j ⟩∣ and µ2(S2) ∶= ∑j∈S2 ∣⟨φ1

i , φ
2
j ⟩∣,

∀j ∈ S1, ∑
i∈S/j

∣⟨ui, uj⟩∣ = µ2(S2) and ∀j ∈ S2, ∑
i∈S/j

∣⟨ui, uj⟩∣ = µ1(S1),

∀j ∈ I1/S1, ∑
i∈S

∣⟨ui, uj⟩∣ = µ2(S2) and ∀j ∈ I2/S2, ∑
i∈S

∣⟨ui, uj⟩∣ = µ1(S1),

so that condition (7.7), can be rewritten

2 max (µ1(S1), µ2(S2)) < 1. (7.8)

A uniform version of this condition in which, for i ∈ {1,2}, µi(Si) is replaced by its uniform
upper bound over all subsets Si of size ki of Ii has appeared as the cluster coherence condition.

But we can obtain a slightly improved condition using Theorem 7: Indeed, let νi(xi) ∶=
∥Φi⊺xi∥1, i ∈ {1,2}; since ζ∗ij ≤ ζij and ζ

∗,�
ij ≤ ζ�ij , the condition

∀(i, j) ∈ {(1,2), (2,1)}, ζ�ij
1 + ζji

1 − ζjiζij
< 1 (7.9)

is sufficient for the condition of Theorem 7 to hold. But here, it is immediate to check that
ζ12 = ζ�12 = µ

2(S2) and ζ21 = ζ�21 = µ
1(S1). So that (7.9) holds if and only if

max (µ1(S1), µ2(S2)) + 2µ1(S1)µ2(S2) < 1, (7.10)

which is strictly weaker than (7.8) since if y < x then x + 2xy < x + 2x2 and, for x > 0,
x + 2x2 < 1 is equivalent to 2x < 1, which shows the result for x ∶= max (µ1(S1), µ2(S2)) and
y ∶= min (µ1(S1), µ2(S2)).
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7.6 Conclusion
Spaces defined as direct sum of subspaces immediately associate to signals a canonical decom-
position into components, and thus demixing is well-posed. In general demixing problems are
ill-posed unless appropriate complexity measures are introduced to favor simple decomposition.

Natural scale invariant complexity measures that lead to convex formulations of the
demixing problems are norms or more generally gauges. In particular, sparsity inducing norms
yield decompositions with a small number of elementary components. In has been shown
in the literature that many very natural sparsity inducing norms are naturally associated
with subspaces, and that if these subspaces are not too far from being pairwise orthogonal,
or, stated slightly differently, if these spaces are incoherent for an appropriate measure of
coherence associated with the norms, then it can be shown that the spaces supporting the
true decomposition are in direct sum and that a convex optimization problem both identifies
those subspaces containing the solution and yields the unique decomposition.

In this work, we show that this type of results generalizes to combinations of two or more
symmetric coercive gauges (which includes the case of two or more norms). In particular, we
propose a simple condition under which such a norm can be associated a pair of complementary
orthogonal subspaces, and provide simple condition under the form of an inequality on
a combination of cumulated coherences associated with individual subspaces to guarantee
that a optimal decomposition can be recovered uniquely as a solution of a convex demixing
optimization problem.

Our results recover known results for several particular cases and also produce novel
results. In particular, we recover exactly recovery results for Basis Pursuit based on cumulative
coherence, we obtain results based on cluster coherence that are slightly better than those
reported in the literature.



Chapter 8

Conclusion and perspectives

In this thesis we considered machine learning problems in which the parameter is a structured
matrix and formulations in which the structure is induced via convex regularization. In
particular, we considered structured problems where the parameter is an additive combination
of different components. In terms of the convex regularizers, we consider the general family of
atomic norms. They have the advantage that they cover a broad family of norms, they have
been studied and have associated theoretical guarantees, and they are relevant in the context
of additive combination, because when considering two signals that are added, each one with
a structure that is encoded by an atomic norm, their structure is naturally encoded by the
atomic assiciated with the union of the atoms form the two original norms.

The first part of the work contributed by this thesis, considers the problem of solving
efficiently empirical risk minimization problem when an atomic norm is used as a regularizer
or as a constraint. There has been a significant amount of research on structured convex
regularizations. From an algorithmic point of view, a number of algorithms have been pro-
posed, in particular based on proximal methods. However there are many norms for which
either the computation of a proximal operator is too costly or there is no efficient algorithm
known to compute it. Another family of algorithms, the conditional gradient algorithms or
Frank-Wolfe methods are well matched to the structure of atomic norms: indeed the LMO
amounts to solve a maximization over all atoms of the dot product of an atom and the current
gradient of the loss function, which correspond to the computation of a dual norm. There-
fore, as soon as the dual norm can be computed efficiently Frank-Wolfe methods are well suited.

When there was a regain of interest for Frank-Wolfe methods in machine learning around
2012 (Bach et al., 2012c; Jaggi, 2013; Lacoste-Julien et al., 2012), one of the motivations was
that these algorithms produced a sequence of sparse approximations to a solution and therefore
seemed well matched to some optimization problems in which precisely a sparse solution is
sought. However, a big gap in terms of convergence speed and sparsity of the solution re-
mained between problems solved Frank-Wolfe methods and problems where proximal methods
could be applied with Frank-Wolfe methods often showing sublinear convergence rate and not
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necessary yielding sparse solution because of the large number of steps needed to converge. In
recent work (Lacoste-Julien and Jaggi, 2015), with the use of away steps, the variant method
pairwise Frank-Wolfe was proven to have a linear convergence when the set of atoms is bounded.

In this thesis (Chapter 4) we proposed to use a fully corrective Frank-Wolfe algorithm
that can perform well in practice and keeps a sparse solution at every step but which needs to
solve a complete optimization problem at each step. When considering sparse solutions, these
intermediary problems remain relatively small and can be efficiently solved. The advantage is
that the solution remains sparse along the optimization and the use of active-set for quadratic
programming allows us to take advantage of warm start, which would not be possible with other
techniques such as interior point methods. Our proposed algorithm in Chapter 4 performs
well in practice as long as the final solution is sparse enough. We have considered a linear
regression problem but our algorithm can be generalized to smooth loss functions. A recent
paper of Locatello et al. (2017a) derives an extension of fully corrective Frank-Wolfe algorithm
for smooth loss functions and derives convergence rates in the case of a bounded set of atoms.
Later this year Locatello et al. (2017b) extended the convergence analysis to convex cones and
derive sublinear (O(1/t)) convergence on general smooth and convex objectives, and linear
convergence (O(e−αt)) on strongly convex objectives.

With the algorithm developed in the first part of this thesis(Chapter 4), we can efficientlty
solve problems regularized by complex matricx norms, for example the norms proposed in
(Richard et al., 2014) which induce a decomposition with factors that are simultaneously low
rank and sparse. This work on martix norms was inspired by a line of search on sparse + low
rank models where several variants of these models were considered, among others, robust
sparse PCA(Candès et al., 2011; Xu et al., 2010; Liu et al., 2010), and sparse subspace clustering
with outliers (Elhamifar and Vidal, 2013). An important application the problem of recovering
the structure of probabilistic graphical models, whith applications in genetics. In particular, a
challenging problem is the one of confounding factors, corresponding to unobserved variables
that have influence on observed variables. The work of Chandrasekaran et al. (2010) allowed
to identify the sparse part of the model and the subspace spanned by unobserved variables but
it did not allow to identify which observed variables were affected by each unobserved variable.
From an algorithmic perspective, the proposed approach is an alternated algorithm that uses
the algorithm proposed in Chapter 4 to update the component with complex structure and
uses proximal steps to update the plain sparse component. From a theoretical perspective, we
show that by using the norm of Richard et al. (2014) it is possible to identify this connectivity
under specific assumptions and in the asymptotic setting. Our theoretical result suggests that
in order to retrieve the full connectivity, the unobserved variables need to be connected to a
certain number of observed variables. Indeed, a sufficient condition is the incoherence between
the different matrix components that suggests that the effect of latent variables needs to be
well spread over observed variables, so that it is possible to demix the sparse and low rank
components. In the experiments we considered a variant of the regularization for graphical
model where latent variables are associated with overlapping blocks of variables or blocks of
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different sizes. For such graphs, the preliminary results show that we are able to recover the
structure which would motivate further analysis.

In Chapter 7 we try to show how the previous recovery result can be extended to more
than components and for general atomic norms. We consider the problem of signal demixing
into two or more components via the minimization of a sum of norms or gauges, encoding each
a structural prior on the corresponding components to recover. This work is motivated by the
fact that a number of problems can be formulated this way: sparse + low rank decomposition
Chandrasekaran et al. (2011), robust PCA (Candès et al., 2011; Xu et al., 2010), low rank
tensors (Wimalawarne et al., 2014, 2016) among others. The conditions proposed are fairly
simple, based on a notion of cumulative incoherence that generalizes the concepts introduced
in Chapter Tropp (2004). Our results recover known results for several particular cases, for
example Basis Pursuit, and also produce slightly better results than those reported in the
literature for the case of two components.

In this thesis, we considered convex matrix sparsity problems by using the framework
provided by atomic norms, which naturally allow to consider underlying structures that are
combinatorial and are a relevant tool for demixing problems.
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Appendix A

Column generation for atomic
regularization

A.1 Proof of Proposition 1

Proposition 12. If f is assumed lower bounded by 0 and if ρ > f(0), or more generally if
the level sets of x ↦ f(x) + γA(x) are bounded and ρ is sufficiently large, then the sequence
(x̄t)t produced by the FCFW algorithm applied to the truncated cone constrained problem (4)
and initialized at (x̄0; τ0) = (0; 0) is the same as the sequence (xt)t produced by Algorithm (1)
initialized with x0 = 0, with equivalent sequences of subproblems, active sets and decomposition
coefficients.

Proof. :
Notations: 1k (rep. 0k) denotes the vector in Rk with all entries equal to 1 (resp. 0).
We being by showing that the Frank-Wolfe directions computed for the regularized and the

constrained problems are related via a simple relation, already discussed in Yu et al. (2014);
Harchaoui et al. (2015).

First note that, the set of extreme points of the truncated cone {(x, τ) ∣ γA(x) ≤ τ ≤ ρ} is

Ā = {(0; 0)} ∪ {(ρa;ρ) ∣ a ∈ A}.

so that all its non zero extreme points are in bijection with those of A. Then, for a given point
x, the Frank-Wolfe directions computed respectively by FCFW in problems (5) and (4) are

⎧⎪⎪⎨⎪⎪⎩

a∗ ∶= arg maxa∈A ⟨∇f(x), a⟩
ā∗ ∶= arg max(ρa;ρu)∈Ā ⟨∇f(x), a⟩ + u,

and we have

ā∗ =
⎧⎪⎪⎨⎪⎪⎩

(0; 0) if γ○A(∇f(x)) ≤ 1
(ρa∗;ρ) otherwise,
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which shows that unless the atom (0; 0) is selected in Ā, it is the image of the regular FW
direction mapped via a↦ (ρa;ρ). Note also that the atom (0; 0) is special in Ā in that it is
the only one for which the second component is different than ρ.

We now prove, by induction on t, the following statement:
Pt ∶ Letting (x̄t, Āt, c̄t) denote the triple of values of x, the matrix of active atoms of Ā and
the vector of coefficients c̄ of decomposition of x on these atoms, all generated by the FCFW
algorithm, then (a) the first column of Āt is a column of zeroes corresponding to the atom
(0; 0), so that we can write

Āt = (0 ρAt

0 ρut
) ∈ R(d+1)×(1+kt) and c̄t = (d

t
0
dt

) ∈ R1+kt ,

(b) setting xt ∶= x̄t, and ct = ρdt we have that (xt,At, ct) is the t-th corresponding triple produced
by Algorithm (1) and (c) τ t = ρ(1−dt0) < ρ so that the truncation constraint {τ ≤ ρ} is inactive.

To prove P0, note that if (x0; τ0) = (0; 0), then we trivially have Ā0 = (0; 0) and Ā0 has
the desired form, we have x̄0 = c0

0 ⋅ 0d = x0 with c̄0 = d0
0 = 1 so that c̄0 satisfies the simplex

constraints; finally τ0 < ρ.
We now assume Pt−1 is true and prove that so is Pt. In the FCFW algorithm, the new

direction chosen cannot be (0; 0) since dt−1
0 > 0, which entails this atoms is already in the

active set and because the algorithm is fully corrective (which prevents the forward direction
to be an atom already in the active set), so that it must be of the form (ρat, ρ) which, given
that by induction x̄t−1 = xt−1, entails that at is indeed the same direction as the one chosen by
Algorithm (1) .

Letting Āt is the matrix whose columns are the atoms used in the expansion of xt, then
x̄t = Atct and letting xt = x̄t, then the triple (xt,At, ct) is the one generated by Algorithm (1) .
This entails that Āt is indeed of the announced form and that the sub-matrix At is indeed the
one used by Algorithm (1) .

Now the optimization problem solved in the corrective step of FCFW is thus

min
x,τ,d

f(x) + τ s.t.

x = ρAtd, τ = ρutd, c̄ = (c0;d) ∈ ∆kt+1,

with ut = 1⊺kt and kt the number of currently active atoms.
Eliminating x and τ we obtain

min
d≥0

f(ρAtd) + ρ1⊺ktd s.t. 1⊺ktd ≤ 1,

and with the change of variable c = ρd, we get

min
c≥0

f(Atc) + ∥c∥1 s.t. ∥c∥1 ≤ ρ

But, since γAt(x) = inf {∥c∥1 ∣ c ∈ Rkt+ , x = Atc}, we can rewrite the previous problem
equivalently as

min
x
f(x) + γAt(x) s.t. γAt(x) ≤ ρ.
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We first conclude the argument assuming f ≥ 0 and ρ > f(0). In that case, we have

γAt(xt) ≤ f(xt) + γAt(xt) ≤ f(0) + γAt(0) = f(0) < ρ,

so that the inequality constraint is inactive for all t at the optimum in the two last problems
above and can be removed. We thus showed that the optimization problem of the corrective
step of the FCFW algorithm on problem (4) is equivalent to the problem solved at step 6 of
Algorithm (1) , and that ∥ct∥1 < ρ which entails that dt0 = 1 − ∥dt∥1 = 1 − 1

ρ∥c∥1 > 0 and so that
the atom (0; 0) remains in Āt+1. The induction step is completed which thus proves the result.

Now, if we do not assume that f is lower bounded, but we assume instead that the level
sets of f + γA are bounded, then Algorithm (1) generates a sequence xt which is bounded
since the sequence (f(xt) + γAt(xt))t is a monotonically decreasing sequence. But since for
all x, f(x) + γAt(x) ≥ f(x) + γA(x), the monotonicity also implies that the sequence (xt)t
remains in the bounded set {x ∣ f(x) + γA(x) ≤ f(0)}. Since f is assumed continuous this
entails that (f(xt))

t
is bounded which entails that so is (γAt(xt))t so if ρ is chosen such that

ρ > supt γAt(xt) then the FCFW algorithm applied on problem (4) will generate the same
sequence as Algorithm (1) . This value of ρ is not known a priori, but is required by neither
algorithms.

A.2 Rank one updates of the Hessian and its inverse in active-
set

Let Ht be the Hessian of the quadratic problem in active-set algorithm and Bt its inverse.
Let Q be the Hessian of the quadratic function f . We have Ht = At⊺QAt. We use the
Sherman–Morrison–Woodbury matrix inversion formula in the following equations.

When we add an atom at+1, we have updates

Ht+1 = [H
t v

v⊺ a⊺t+1Qat+1
]

and
Bt+1 = [B

t + αBtvv⊺Bt −αBtv
−α(Btv)⊺ α

]

where v = At⊺Qat+1 and α = (a⊺t+1Qat+1 − v⊺Bv)−1.

When removing an atom, Ht+1 is obtained removing the corresponding column and row.
For clarity, let us assume that we want to remove the last atom. We have

Ht = [H̃
t v

v⊺ ν
]

and
Bt+1 = [B̃

t w
w⊺ β

] .
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Then,

Ht+1 = H̃t,

Bt+1 = B̃t

+ βB̃
tvv⊺B̃t − (w⊺v − 1)(wv⊺B̃t + B̃tvw⊺) + v⊺B̃vww⊺

(w⊺v − 1)2 − βv⊺B̃tv
.



Appendix B

Learning the effect of latent
variables in Gaussian Graphical
models with unobserved variables

Proof of Lemma 9

Claim 1. Let Y ∈ Rp×p be a symmetric matrix. The polar gauge of Ω writes

Ω○(Y ) = max
I∈Gp

k

λ+max(YII). (B.1)

Proof. Ω○(Y ) = max
Ω(X)≤1

tr(Y ⊺X) = max
∥u∥0=k
∥u∥2=1

u⊺Y u = max
I∈Gp

k

λ+max(YII).

Lemmas charactering the subgradients

In the following lemmas we express the subgradients of the `1 norm and Ω as decomposed on
the tangent subspaces. The result for the `1-norm is well known.

Lemma 17. (Characterization of `1 subgradient) Q ∈ γ∂∥.∥1(S∗) if and only if

(A.1) PT0(Q) = γ sign(S∗)

(A.2) ∥PT c0 (Q)∥∞ ≤ γ

We then characterize the subgradient of the gauge we have introduced.

Lemma 18. (Characterization of the subgradient of Ω)
If L∗ is of the form L∗ = ∑ri=1 siu

iui
⊺, with Supp(ui) ⊂ Ii and Ii ∩ Ij = ∅ for all i ≠ j, we have

that Q ∈ ∂Ω(L∗) if and only if

(B.1) ∀i ∈ [[r]], PTi(Q) = uiui⊺

103
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(B.2) ∀i ∈ [[r]], λ+max(PT ci (Q)) ≤ 1

(B.3) ∀J ∈ Gpk/{I1, . . . , Ir}, λ+max(QJJ) ≤ 1

Proof. By the characterization of the subgradient of a gauge we have Q ∈ ∂Ω(L∗) if and only if

max
I∈Gp

k

λ+max(QII) ≤ 1 and ⟨Q,L∗⟩ = Ω(L∗). (B.2)

The inequality implies immediately (L.3) and that u⊺Qu ≤ 1 for any unit vector u such that
∥u∥0 ≤ k. By definition of L∗, the equality becomes ∑Ii∈I si(u

i⊺Qui − 1) = 0. Since all terms
of the sum are non negative we must have ui⊺Qui = 1. Since 1 = ui⊺Qui = ui⊺QIiIiui and we
have λ+max(QIiIi) ≤ 1, ui must be an eigenvector of QIiIi with eigenvalue 1. Given that QIiIi
as a real symmetric matrix, admits an orthonormal basis of eigenvectors, we can thus write
QIiIi = uiui

⊺ +Wi with Wi ∈ T ci and λ+max(Wi) ≤ 1. Since the previous decomposition shows
that Wi = PT ci (Q) and PTi(Q) = uiui⊺ we have shown (L.1) and (L.2).

Proof of Proposition 6

Claim 2. The pair (S∗, L∗) is the unique optimum of (6.11) if

(T) ∀i ∈ [[r]], T0 ∩ Ti = {0},

and there exists a dual matrix Q ∈ Rp×p such that:

(S.1) PT0(Q) = γ sign(S∗)

(S.2) ∥PT c0 (Q)∥∞ < γ
(L.1) ∀i ∈ [[r]], PTi(Q) = uiui⊺

(L.2) ∀i ∈ [[r]], λ+max(PT ci (Q)) < 1

(L.3) ∀J ∈ Gpk/{I1, . . . , Ir}, λ+max(QJJ) < 1.

Proof. The (S.1), (S.2), (L.1), (L.2) and (L.3) clearly imply that there exist a dual matrix
Q such that Q ∈ (γ∂∥ ⋅ ∥1(S∗)) ∩ ∂Ω(L∗), which is the first order subgradient condition that
characterizes the optima of (6.11).

To show that the solution is unique we show that (S∗, L∗) must be obtained as the
unique solution of an equivalent minimization problem. Indeed, consider the gauge γI(M) =
tr(M) + ι{M⪰0} + ι{Supp(M)⊂I×I}. It is immediate to verify that the polar gauge is γ○I such that
γ○I (Q) = λ+max(QII). Thus Ω○(Q) = maxI∈Gp

k
γ○I (Q) and, taking polars, we get that

Ω(M) = inf { ∑
I∈Gp

k

γI(M (I)) ∣M = ∑
I∈Gp

k

M (I)}. (B.3)

As a consequence, problem (6.11) is equivalent to

min
S,(L(I))

I∈G
p
k

γ∥S∥1 + ∑
I∈Gp

k

γI(L(I)) s.t. M = S + ∑
I∈Gp

k

L(I). (B.4)
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In particular, if (S∗, (L(I)∗)I∈Gp
k
) is an optimal solution of (B.4), and if L∗ = ∑I∈Gp

k
L(I)∗, then

(S∗, L∗) is an optimal solution of (6.11). Conversely, (S∗, L∗) is an optimal solution of (6.11),
then any optimal decomposition of L∗ obtained from (B.3) yields an optimal solution of (B.4).

So clearly, if the solution to (B.4) is unique, then so must be that of (6.11).

Let’s then assume that (S∗ +N0, (L(I)∗ +N (I))I∈Gp
k
) is another optimal solution to (B.4).

Since matrices in both solutions sum to M , we must necessarily have

N0 + ∑
I∈Gp

k

N (I) = 0. (B.5)

Let Q(I) ∈ ∂γI(L(I)∗) and Q0 ∈ ∂∥ ⋅ ∥1(S∗). Then, by convexity, we have

γ∥S∗∥1 + ∑
I∈Gp

k

γI(L(I)∗) = γ∥S∗ +N0∥1 + ∑
I∈Gp

k

γI(L(I)∗ +N (I)) (B.6)

≥ γ∥S∗∥1 + ∑
I∈Gp

k

γI(L(I)∗) + ⟨Q0,N0⟩ + ∑
I∈Gp

k

⟨Q(I),N (I)⟩.

Consistently with previous notations, we denote by I = {Ii, . . . , Ir} the set of blocks such that
L(I)∗ ≠ 0, and Qi ∶= QIi , Ni ∶= NIi .

Now, γI is a decomposable gauge in the sense of Negahban et al. (2012): in particular
if L(Ii)∗ = L∗i ∶= U iDiU i

⊺, with U i an orthonormal matrix and Di a diagonal matrix, then
∂γIi(L∗i ) = {Q∗

i +Qci ∣ Qci ∈ T ci , γ○Ii(Q
c
i) ≤ 1}, with Q∗

i = U iU i
⊺
. Note that, since Ti and T ci are

orthogonal, for all i ∈ [[r]], any Qi ∈ γIi(L∗i ) is such that PTi(Qi) = Q∗
i . In the rest, of the proof,

we choose Qi = Q∗
i +Qci with Qci ∈ T ci such that

γIi(PT ci (Ni)) = ⟨PT ci (Ni),Qci ⟩ = ⟨PT ci (Ni),Qi⟩ (B.7)

(this is clearly possible because for M ∈ T ci , we have precisely that γIi(M) = max{⟨M,Z⟩ ∣
Z ∈ T ci , γ○Ii(Z) ≤ 1}).

Given that there exists, by assumption of the theorem, Q such that conditions (S.1),(S.2),(L.1),(L.2),(L.3)
are satisfied, we have in particular that PTi(Q) = Q∗

i , ∀i ∈ {0} ∪ [[r]], with Q∗
0 = γ sign(S∗).
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So, we have

0
(B.6)
≥ ⟨Q0,N0⟩ + ∑

I∈Gp
k

⟨Q(I),N (I)⟩

=
r

∑
i=0

(⟨Q∗
i ,Ni⟩ + ⟨PT ci (Qi),Ni⟩) + ∑

I∈Gp
k
/I

⟨Q(I),N (I)⟩

=
r

∑
i=0

(⟨Q,Ni⟩ + ⟨PT ci (Qi −Q),Ni⟩) + ∑
I∈Gp

k
/I

⟨Q(I),N (I)⟩

(B.5)=
r

∑
i=0

⟨Qi −Q,PT ci (Ni)⟩ + ∑
I∈Gp

k
/I

⟨Q(I) −Q,N (I)⟩

(B.7)
≥ γ∥PT c0 (N0)∥1(1 − 1

γ ∥PT c0 (Q)∥∞) +
r

∑
i=1
γIi(PT ci (Ni))(1 − γ○Ii(PT ci (Q)))

+ ∑
I∈Gp

k
/I

γI(N (I))(1 − γ○I (Q)),

where the last inequality is an instance of the Fenchel-Young inequality. But this last expression
is non negative and, as a consequence of conditions (S.2),(L.2) and (L.3), can only be equal
to zero if,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥PT c0 (N0)∥1 = 0,
∀i ∈ [[r]], γIi(PT ci (Ni)) = 0,
∀I ∈ Gpk/I, γI(N (I)) = 0.

So ∀I ∉ I, N (I) = 0, and for all 0 ≤ i ≤ r, Ni ∈ Ti. Finally by (B.5), we have ∑ri=0Ni = 0, and
by projecting this equality on T̄i we get N0,i +Ni = 0 with N0,i ∶= PT̄i(N0) ∈ T0 and Ni ∈ Ti.
But, by (T), T0 ∩ Ti = {0}, i.e. the two spaces are in direct sum, in which case the fact that
N0,i +Ni = 0 implies N0,i = 0 and Ni = 0. We clearly have N0 = PT̄00

(N0) +∑ri=1Ni,0 = 0, since
PT̄00

(N0) = 0 by projection of ∑ri=0Ni = 0 on T̄00. And so finally, for all 0 ≤ i ≤ r, Ni = 0, which
shows that the solution is necessarily unique.

Proof of Lemma 10

Claim 3. (Bounds on ζ) Let us consider the elements of Definition 13. Given the definitions
of k0 and τ , we have

(1) ζi→0 ≤
√

2τ̄
k

(2) ζ0→i ≤ k0

(3) ζ ′i→0 ≤
√

2τ̄
k

(4) ζ ′0→i ≤ 2k0
√

k0τ̄
k
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Proof. (1) LetM be any matrix in Ti such that ∥M∥op ≤ 1. We know that ∃v with Supp(v) ⊂ Ii
such that M = uiv⊺ + vui⊺. The condition ∥M∥op ≤ 1 imposes in particular ∣ui⊺Mv/∥v∥∣ ≤ 1
which becomes ∥ui∥2∥v∥ ≤ 1 − (ui⊺v)2/∥v∥. Hence ∥v∥ ≤ 1, and

∥M∥∞ = ∥uiv⊺ + vui⊺∥∞

≤ max
k,l

[∣uik∣∣vl∣ + ∣uil ∣∣vk∣]

≤ ∥ui∥∞ max
k,l

[∣vl∣ + ∣vk∣] ≤ ∥ui∥∞
√

2
√
v2
l + v

2
k ≤

√
2τ̄
k
,

since ∥ui∥2
∞ ≤ τ̄

k .
(3) Since ∥PT0(M)∥∞ ≤ ∥M∥∞, we have ζ ′i→0 ≤ ζi→0 .

For the other two inequalities, let Z be any matrix in T0 such that ∥Z∥∞ ≤ 1. Then we know
that Supp(Z) ⊂ Supp(S∗). Let us introduce variables δ such that δij = 1 if S∗ij ≠ 0 and δij = 0
otherwise. We notice that, for any v ∈ Rp,

∥Zv∥2 = max
w∶∥w∥2≤1

∣w⊺Zv∣

= max
w∶∥w∥2≤1

∑
i,j

∣vi∣∣wj ∣∣Zij ∣

≤ ∥Z∥∞ max
w∶∥w∥2≤1

∑
i,j

∣vi∣∣wj ∣δij

≤ ∥Z∥∞ max
w∶∥w∥2≤1

√
∑
i,j

δij

√
∑
i,j

v2
iw

2
j δij ≤ ∥Z∥∞

√
∥Z∥0∥v∥2, (B.8)

where the second inequality uses Cauchy-Schwarz and the last inequality uses the fact that
∑i,j δij = ∥Z∥0 ≤ k2

0 and the fact that ∣δij ∣ ≤ 1.
It follows immediately from (B.8) that

∥Z∥op ≤ ∥Z∥∞
√

∥Z∥0. (B.9)

Inequality (2) follows from (B.9) and the fact that ∥Z∥2
0.

To prove (4), note that since PTi(Z) = uiui⊺Z − uiui⊺Zuiui⊺ +Zuiui⊺,

∥PTi(Z)∥op = ∥uiui⊺Z(I − uiui⊺)∥op + ∥Zuiui⊺∥op ≤ 2∥Zui∥2.

But then using the same derivation as the one leading to (B.8), we have

∥Zui∥2 ≤ ∥Z∥∞ max
w∶∥w∥2≤1

√
∑
j,j′
δjj′

√
∑
j,j′
uij

2
w2
j′δjj′

≤ ∥Z∥∞ k0 ∥ui∥∞
√
∑
j′
w2
j′(∑

j

δjj′) ≤ 2∥Z∥∞ k0

√
k0τ̄

k
.
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Proof of Lemma 11

Claim 4 (Transversality condition). Let α ∶= k0
√

2τ
k . If α < 1, then, for all i ∈ [[r]], T0∩Ti = {0}.

Proof. Let M ∈ T0 ∩ Ti, then by definition of ζ0→i and ζi→0 we have

∥M∥∞ = ∥PT0 ○PTi(M)∥∞ ≤ ζi→0 ζ0→i∥M∥∞.

Hence, if ζi→0 ζ0→i < 1 the only possible solution is M = 0. But given the upper bounds on ζi→0

and ζ0→i established in Lemma 10 we get the result as soon as
√

2τ̄
k k0 < 1.

B.1 Technical lemmas from the proof of Theorem 5

Proof of Lemma 12

Claim 5. Let A ∶= [ I PT0

PTi I
]. Then, with Definition 13, if (1 − ζ0→i ζi→0) > 0, then A is

invertible and its inverse is

B ∶= [ I −PT0

−PTi I
] [(I − PT0PTi)−1 0

0 (I − PTiPT0)−1] .

Proof. Clearly, AB = I. We need to show that (I − PT0PTi) and (I − PTiPT0) are invertible.
Let x be any matrix in Rp×p. From Definition 13, we have

∥(I − PT0PTi)x∥∞ ≥ ∥x∥∞ − ∥PT0PTix∥∞
≥ ∥x∥∞ − ζi→0∥PTix∥op ≥ ∥x∥∞ − ζi→0 ζ0→i∥x∥∞.

Hence, if x ≠ 0, ∥(I −PT0PTi)x∥∞ ≥ (1−α)∥x∥∞ > 0 which shows that (I −PT0PTi) is invertible.
Moreover if we let x = (I − PT0PTi)−1v in this inequality, we get the last inequality at the end
of the theorem. The case of I − PTiPT0 is exactly symmetric.

Proof of Lemma 13

Claim 6. (Bounds on ∥PT c0 q∥∞ and ∥PT ci q∥op)

∥PT c0 q∥∞ ≤ max
i∈[[r]]

∥q∗i ∥∞ + ζi→0∥εi∥op,

∥PT ci q∥op ≤ ∥q∗0∥op + ζ0→i∥ε0∥∞

Proof. By Equation (6.15),

∥PT c0 q∥∞ = ∥
r

∑
i=1
PT c0 q

∗
i + PT c0 εi∥∞

≤ max
i∈[[r]]

∥PT c0 q
∗
i + PT c0 εi∥∞

≤ max
i∈[[r]]

∥q∗i + εi∥∞ ≤ max
i∈[[r]]

(∥q∗i ∥∞ + ∥εi∥∞) ≤ max
i∈[[r]]

(∥q∗i ∥∞ + ζi→0∥εi∥op),
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where the first inequality is due to the fact that for each i ∈ {1, . . . , r}, PT c0 q
∗
i + PT c0 εi has its

support in Ii × Ii and Ii are disjoint. The second inequality comes from the fact that for any
matrix A, ∥PT c0 A∥∞ = maxi,j∉supp(S∗) ∣Aij ∣ ≤ ∥A∥∞.
For ∥PT ci q∥op, we have

∥PT ci q∥op ≤ ∥q∥op ≤ ∥q∗0 + ε0∥op ≤ ∥q∗0∥op + ∥ε0∥op ≤ ∥q∗0∥op + ζ0→i∥ε0∥∞,

where the first inequality is due to the fact that for any matrix Z,

∥PT ci Z∥op = ∥(I − uiui⊺)Z(I − uiui⊺)∥op ≤ ∥Z∥op.

Proof of Lemma 14

Claim 7. (Bounds on εi) If ζ0→i ζi→0 ≤ α < 1, and (εi)i∈[[r]] be defined as in the previous lemma,
then

∥ε0∥∞ ≤ 1
1−α(

τ̄

k
+ ζ ′i→02γk0) and ∥εi∥op ≤ 1

1−α(2γk0 + ζ ′0→i
τ̄

k
).

Proof. By Lemma 12, we have

[ε0,i
εi

] = [ I −PT0

−PTi I
] [(I − PT0PTi)−1 0

0 (I − PTiPT0)−1] [
η0
ηi

] (B.10)

So, if, for i ∈ [[r]], we let η̃0,i ∶= (I − PT0PTi)−1η0 and η̃i ∶= (I − PTiPT0)−1ηi, then ε0, . . . , εr
are uniquely defined by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε0 = ∑ri=1 ε0,i where ε0,i = η̃0,i − PTi η̃i,

εi = η̃i − PT0 η̃0,i for i ∈ [[r]].

In the rest of the proof, we use the fact that ζ0→i ζi→0 ≤ α. First, using the inequalities proved
in Lemma 12, we have, for i ≥ 1,

∥η̃0,i∥∞ ≤ 1
1−α∥η0∥∞ and ∥η̃0,i∥op ≤ 1

1−α∥ηi∥op.

Then, we can bound ∥ε0,i∥∞ as follows

∥ε0,i∥∞ = ∥η̃0,i − PT0 η̃i∥∞
≤ ∥η̃0,i∥∞ + ∥PT0 η̃i∥∞ ≤ ∥η̃0,i∥∞ + ζ ′i→0∥η̃i∥op ≤ 1

1−α(∥η0∥∞ + ζ ′i→0∥ηi∥op),

and since all ε0,i have disjoint supports, ∥ε0∥∞ ≤ 1
1−α max

i∈[[r]]
(∥η0∥∞ + ζ ′i→0∥ηi∥op).

On the other hand,

∥εi∥op = ∥η̃i − PTi η̃0,i∥op

≤ ∥η̃i∥op + ∥PTi η̃0,i∥op ≤ ∥η̃i∥op + ζ ′0→i∥η̃0∥∞ ≤ 1
1−α(∥ηi∥op + ζ ′0→i∥η0∥∞).
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Finally,

∥η0∥∞ = ∥PT0(u
iui

⊺)∥∞ ≤ ∥uiui⊺∥∞ ≤ ∥ui∥2
∞ ≤ τ̄

k
,

∥ηi∥op = γ∥PTi( sign(S∗))∥op ≤ 2γ∥ sign(S∗)ui∥2 ≤ 2γk0,

where we used the fact that ∥PTi(M)∥op ≤ ∥M∥op + ∥PT ci (M)∥op ≤ 2∥M∥op (see the end of the
proof of Lemma 13). This concludes the proof.

Proof of Lemma 8

Claim 8 (Simplified bounds on ∥PT c0 q∥∞ and ∥PT ci q∥op). Let α ∶= k0
√

2τ
k . If α < 1, for q as

in Lemma 13, we have

∥PT c0 q∥∞ ≤ τ̄
k

1 − α + α2√2/k0
1 − α

+ γ 2α
1 − α

, ∥PT ci q∥op ≤ γk0
1 + α
1 − α

+ τ̄
k

k0
1 − α

.

Proof. First note that, by Lemma 10, we have ζ0→i ζi→0 ≤ α, so that the results of previous
lemmas apply.

We thus start from results of Lemma 13. From definitions, we have

∥q∗i ∥∞ = ∥uiui⊺∥∞ ≤ max
k,l

∣uik∣∣u
i
l ∣ ≤

τ̄

k
.

and from Lemma 10, we have ∥q∗0∥op = ∥γ sign(S∗)∥op ≤ γζ0→i ≤ γk0.

Then, applying results from Lemma 14, we get

∥PT c0 q∥∞ ≤ τ̄
k
+ ζi→0

1 − α
(2γk0 + ζ ′0→i

τ̄

k
)

= τ̄
k
(1 + ζ

′
0→iζi→0
1 − α

) + γ 2k0ζi→0
1 − α

,

∥PT ci q∥op ≤ γk0 +
ζ0→i
1 − α

( τ̄
k
+ ζ ′i→02γk0)

= γk0 (1 + 2ζ0→i ζ
′
i→0

1 − α
) + τ̄

k

ζ0→i
1 − α

,

and then, using agin bounds on ζ from Lemma 10,

∥PT c0 q∥∞ ≤ τ̄
k

⎛
⎝

1 +
α2√2/k0

1 − α
⎞
⎠
+ γ 2α

1 − α
,

∥PT ci q∥op ≤ γk0 (1 + 2α
1 − α

) + τ̄
k

k0
1 − α

.
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Proof of Lemma 16

Claim 9. Let α ∶= k0
√

2τ
k . If α +

α2

2k0
< 1

3 , then the interval Γ ∶= [ τ̄
k

1
1−3α ,

1
k0

1−k0τ/k
1+α ) is not

empty, and for any γ ∈ Γ, the dual matrix q defined in Lemma 13 satisfies conditions (S.2)
and (L.2).

Proof. Given the inequalities of the previous lemma, a sufficient condition for the inequality
∥PT c0 q∥∞ < γ to hold is if

τ̄

k

1 − α + α2√2/k0
1 − α

< γ(1 − 2α
1 − α

).

Note that α
√

2
k0

≤
√

2
3 < 1. As a consequence the previous inequality is implied by the simpler

τ̄

k

1
1 − α

< γ(1 − 2α
1 − α

).

Clearly, we have 1 − 3α > 0, so that multiplying the last inequality by 1−α
1−3α , the last inequality

is equivalent to

γ > τ̄
k

1
1 − 3α

. (B.11)

Similarly, the condition ∥PT ci q∥op < 1 is satisfied if

γk0
1 + α
1 − α

< 1 − τ̄
k

k0
1 − α

, or equivalently γ < 1
k0

1 − k0τ/k
1 + α

. (B.12)

Finally combining (B.12) and (B.11), we obtain the sufficient condition

τ̄

k

1
1 − 3α

≤ γ < 1
k0

1 − k0τ/k
1 + α

.

For k0 ≥ 1, this interval is non empty if and only if 2τx0(1 − α)/(1 − 3α) < 1, with x0 ∶= k0/k.
But 2τx0 = α2

k0
, and 3α + 3α2

2k0
< 1 implies that (1 − 3α)−1 < 2k0

3α2 . So that 2τx0(1 − α)/(1 − 3α) ≤
2
3(1 − α) < 1, which shows the desired result.

The final step of the proof of Theorem 5 is to prove Proposition 7, which is more involved.
The next appendix is devoted to its proof.

B.2 Proof of Proposition 7
Let m ∶= ∣{i ∣ Ii ∩ J ≠ ∅}∣ denote the number of blocks of the support that are intersecting J .
Let ki ∶= ∣Ii ∩J ∣. We assume here w.l.o.g. that, for the set J we consider, {i ∣ Ii ∩J ≠ ∅} = [[m]]
and that k1 ≥ k2 ≥ . . . ≥ km. In the rest of the proof we will let x0 ∶= k0

k and xi ∶= ki
k . We will

also write Ĩi ∶= (I1 ∪ . . . ∪ Ii−1)c.



112 APPENDIX B. LEARNING THE EFFECT OF LATENT VARIABLES IN GGM

A A recursive decomposition of each submatrix QJJ

We consider a recursive decomposition of this matrix in four blocks

QJJ = [QJ∩I1,J∩I1 QJ∩I1,J∩Ic1
QJ∩Ic1 ,J∩I1 QJ∩Ic1 ,J∩Ic1

] ,

then, we redecompose the lower right block as follows

QJ∩Ic1 ,J∩Ic1 = [ QJ∩I2,J∩I2 QJ∩I2,J∩(I1∪I2)c

QJ∩(I1∪I2)c,J∩I2 QJ∩(I1∪I2)c,J∩(I1∪I2)c
] .

etc, see Figure B.1.
In particular, we will construct upper bounds λ(i) and λ̃(i) such that

λmax(QJ∩Ii,J∩Ii) ≤ λ
(i) and λmax(QJ∩Ĩi,J∩Ĩi) ≤ λ̃

(i).

To construct an upper bound of λmax(QJ∩Ii,J∩Ii) it is necessary to take into account the
structure of QJ∩Ii,J∩Ii and in particular the fact that, for the operator norm, the component
of QIi,Ii on Ti will contribute most strongly to the largest eigenvalue of QJ∩Ii,J∩Ii , especially
when the overlap J ∩ Ii is large.

Let P �

ui
∶= I−ui(ui)⊺ for short. Note that since PT ci (Q) = P �

ui
QIiIi P

�

ui
and P �

ui
is idempotent,

we have PT ci (Q) = P �

ui
PT ci (Q)P �

ui
.

With these notations and remarks, we have

QIi∩J,Ii∩J = u
i
Ju

i
J
⊺ + [P �

uiPT ci (Q)P �

ui]JJ . (B.13)

Let ǔiJ = uiJ
∥uiJ∥

and [ǔiJ , U iJ] be an orthormal basis matrix, obtained from ǔiJ by Gram-
Schmidt orthonormalization. Since the matrix [ǔiJ , U iJ]⊺QIi∩J,Ii∩J[ǔiJ , U iJ]⊺, has the same
largest eigenvalue as QIi∩J,Ii∩J , we consider the four blocks of the former matrix, bound
separately the operator norms of each of the blocks and then construct the upper bound λ(i)
from these.

Indeed, using (B.13) and the fact that Supp(ǔiJ) ⊂ J, we have

∣(ǔiJ)⊺QIi∩J,Ii∩J ǔ
i
J ∣ ≤ ∥uiJ∥2

2 + ∥P �

ui ǔ
i
J∥2∥PT ci (Q)∥op∥P �

ui ǔ
i
J∥2, (B.14)

∥(U iJ)⊺QIi∩J,Ii∩J ǔ
i
J∥2 ≤ ∥PT ci (Q)∥op∥P �

ui ǔ
i
J∥2, (B.15)

∥(U iJ)⊺QIi∩J,Ii∩J U
i
J∥op ≤ ∥PT ci (Q)∥op. (B.16)

We will discuss in the next section how we can leverage these bounds to obtain a bound
λ(i). We first discuss how the various terms appearing in the right hand sides can be bounded
based on the assumption and previous results.

As a consequence of the assumed inequalities (6.14) on ui, we have xi τ ≤ ∥uiJ∥2
2 ≤ xi τ , and,

using the same formula for uiJ/Ii and combining,

∥uiJ∥2 ≤ min(xiτ ,1 − τ + xiτ). (B.17)
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Note that we have xiτ < 1 − τ + xiτ if and only if 2ki < k.
We have ∥P �

ui
ǔiJ∥2

2 = ∥ǔiJ − uiui
⊺
ǔiJ∥2

2 = 1 − (ui⊺ǔiJ)2 = 1 − ∥uiJ∥2
2, so that

∥P �

ui ǔ
i
J∥2

2 ≤ min (1 − τxi, τ(1 − xi)). (B.18)

Again, which of the two elements in the upper bound is smaller depends on whether xi ≤ 1
2 .

As in the statement of the theorem, we set γ ∶= µτ
k with µ ∶= (1 − 3α)−1 and, as before,

α = k0
√

2τ
k .

Using this value of γ in the upper bound obtained in Lemma 8, we have

∥PT ci (Q)∥op ≤ r ∶=
µτ

k
k0

1 + α
1 − α

+ τ̄
k

k0
1 − α

= 2µτx0. (B.19)

We need to upper bound also the off-diagonal blocks. For this, note that all off-diagonal
blocks are in T0 and that, given that∥S∗i⋅∥0 ≤ k0, for any sets J ′, J ′′ with ∣J ′∣ = k′ and ∣J ′′∣ = k′′,
it follows from (B.9) that

∀Z ∈ T0, ∥ZJ ′J ′′∥op ≤ ∥Z∥∞
√

∥Z∥0 ≤ ∥Z∥∞
√

min(k′, k0)min(k′′, k0). (B.20)

In particular, we have

∥QJ∩Ii,J∩Ĩi+1
∥op ≤ γk

√
min(xi, x0)min(x̃i, x0). (B.21)

with x̃i = 1 −∑i−1
j=1 xj . Letting ž ∶= min(x0,1 − x1), this entails

∥QJ∩Ii,J∩Ĩi+1
∥op ≤ γk0 and ∥QJ∩I1,J∩Ic1

∥op ≤ γ
√
k0kž. (B.22)

B Bounding eigenvalues of different blocks within QJJ

To write concisely various bounds we introduce several notations. First, given a two-by-two
matrix M of the form

M = [a b
c d

] with a, b, c, d ≥ 0,

we denote its largest eigenvalue λmax(a, b, c, d).
For 0 ≤ x ≤ 1/2, with η ∶= τ − rτ , and using r defined in (B.19), we denote

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

al(x) = τx + (1 − τx)r = ηx + r
bl(x) = r = cl(x)
dl(x) = r

and we write λl(x) = λmax(al(x), bl(x), cl(x), dl(x)). Note that x↦ λl(x) is clearly an increas-
ing function.
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QJ∩I2,J∩I2

QJ∩Ic1 ,J∩I1

QJ∩I1,J∩Ic1

QJ∩I1,J∩I1

λ̃4

γk0

γk0

λ3

γk0

γk0

λ(2)

γ
√
k0kž

γ
√
k0kž

λ(1)

. . .
γk0

γk0

d3b3
c3a3

γk0

γk0

d2b2

c2a2

γ
√
k0kž

γ
√
k0kž

d1b1

c1a1

Figure B.1: Matrix blocks and corresponding upper bounds on largest singular values: (top
left) Recursive partitioning of blocks of QJJ introduced in Section A (top right and bottom)
Upper bounds on the operator norms of (sub)blocks introduced in inequalities (B.22), (B.23)
and in Proposition 13.
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Combining inequalities (B.14) to (B.19) we get that, for all i ∈ [[m]], if xi ∈ (0, 1
2], we let

ai ∶= al(xi), bi ∶= bl(xi), ci ∶= cl(xi), di ∶= dl(xi), we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣(ǔiJ)⊺QIi∩J,Ii∩J ǔiJ ∣ ≤ ai,
∥(U iJ)⊺QIi∩J,Ii∩J ǔiJ∥2 ≤ bi = ci,
∥(U iJ)⊺QIi∩J,Ii∩J U iJ∥op ≤ di.

(B.23)

(We could get a smaller value for bi = ci based on (B.18), but this us not useful for our proof)
Symmetrically, for 1 > x > 1/2, then if z = 1 − x, and with η ∶= τ − rτ , we define

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

au(z) = 1 − τz + τzr = 1 − ηz
bu(z) = r

√
τz = cu(z)

du(z) = r.

We will denote again λu(z) = λmax(au(z), bu(z), cu(z), du(z)).
Combining again inequalities (B.14) to (B.19), we get that, for x1 ∈ [1

2 ,1), if a
1 ∶= al(1 −

x1), b1 ∶= bl(1 − x1), c1 ∶= cl(1 − x1), d1 ∶= dl(1 − x1), then the set of inequalities (B.23) holds
again. Note that, since by definition ∑mi=1 xi ≤ 1, only x1 can possibly be larger than 1

2 .

Proposition 13. If for all i ∈ [[m]], we let λ(i) ∶= λ+max(ai, bi, ci, di), then

∥QIi∩J,Ii∩J∥op ≤ λ(i).

Proof. The result follows from Lemma 23 and the fact that, for a, b, c, d ≥ 0, if we have
a′≥a, b′≥b, c′≥c, d′≥d, then λ+max(a, b, c, d) ≤ λ+max(a′, b′, c′, d′).

Proposition 14. For i ≥ 2, ∥QĨi∩J,Ĩi∩J∥op ≤ λ̃(i) ∶= λ(i) + γk0.

Proof. To keep notations as simple as possible we prove the result for λ̃(2). The proof is the
same for larger values of i.

∥QJ∩Ic1 ,J∩Ic1∥op ≤ max
2≤i≤m

∥QJ∩Ii,J∩Ii∥op + ∥Q(J∩Ic1×J∩I
c
1)/⋃2≤i≤m Ii×Ii∥op

≤ max
2≤i≤m

λ(i) + γk0 ≤ λ(2) + γk0,

where the second inequality is a variant of (B.22) due to (B.20), and because we have
λ(2) ≥ . . . ≥ λ(m) given that z ↦ λl(z) is non-decreasing.

Note that by Lemma 22, we have λl(x) ≤ al(x)+
√
bl(x)cl(x) ≤ τx+2r and λu(z) ≤ 1−ηz+r,

since r < 1 − ηz for z ≤ 1
2 .
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C Some technical lemmas to quantify eigenvalue bounds

We first derive a bound applicable to λ(1) if x1 ≤ 1
2 and to all (λ(i))2≤i≤m since, for i ≥ 2,

0 < xi ≤ 1
2 . First note that, k0 ≤ 1

7
√
k entails that µ ≤ 7, for C ≥ 182, we have x0 ≤ 1

182 , and so
r ≤ 2µτx0 ≤ 1

4 and γk0 ≤ µτx0 ≤ 1
8 .

Lemma 19. For 0 < x ≤ 1
2 , we have λl(x) < 1 − 2γk0.

Proof. We show that (1 − 2γk0 − al(x))(1 − 2γk0 − dl(x)) ≥ bl(x)cl(x). In the calculation, we
will write η = τ − τr for short.

We have r ≤ 1
4 and γk0 ≤ 1

8 , which, given that τ ≥ 1, entails that τ − 2r − 2ηγk0 + r2τ ≥
τ(1 − 2γk0) − 2r ≥ 1

4 > 0.
As a consequence,

(1 − 2γk0 − al(x))(1 − 2γk0 − dl(x)) − bl(x)cl(x)
= (1 − 2γk0 − ηx − r)(1 − 2γk0 − r) − r2

= (1 − r − 2γk0)2 − ηx(1 − r − 2γk0) − r2

= (1 − r − 2γk0)2 − (τ − τr)x(1 − r) − r2 + 2ηγk0x

= (1 − r − 2γk0)2 − (τ − τr − τr + τr2)x − r2 + 2ηγk0x

= (1 − 2r) − 4(1 − r)γk0 + 4γ2k2
0 − (τ − 2r − 2ηγk0 + r2τ)x

≥ (1 − 2r) − 4(1 − r)γk0 − 1
2τ + r + ηγk0 − 1

2r
2τ

≥ 1
2τ(1 − 4γk0 − r2) − r ≥ 1

2τx0(κτ(1 − 1
2 −

1
16) − 4µ) > 0,

The last equality and the second inequality use τ + τ = 2, the first inequality uses that the
expression is a decreasing function of x on (0, 1

2], the penultimate inequality uses that, by
assumption, the inequalities (6.14) hold, and in particular τ ≥ κτ2x0 and again that r ≤ 1

4 and
γk0 ≤ 1

8 , and, the final positivity stems from the assumption, made in the statement of the
theorem, that κ > 16µ.

Corollary 8. We have, for all i ≥ 2, λ̃(i) ≤ 1 − γk0.

Proof. Immediate from the previous result since λ̃(i) ≤ λ(i) + γk0

We now upper bound λ(1) in the case where x1 > 1
2 . Indeed, in that case we have

λ(1) = λu(1 − x1) and the bound is provided by the following result.

Lemma 20. For 0 < z < 1
2 ,

λu(z) < 1 − (η − ξ)z with η ∶= τ − τr and ξ ∶= 2τr2/(τ − 2r).

Proof. First note that

η − ξ = τ − τr − 2τr2

τ − 2r
= ττ − τ

2r − 2τr
τ − 2r

≥ τ

τ − 2r
(τ − τr − 2r)

≥ (κ − 6µ)τx0 > 0.
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We clearly have (1−(η−ξ)z)−au(z) = ξz > 0 and (1−(η−ξ)z)−du(z) ≥ 1
2 −r > 0. Moreover,

we have

((1 − (η − ξ)z) − au(z))((1 − (η − ξ)z) − du(z)) − bu(z)cu(z)
= ξz(1 − (η − ξ)z − r) − τr2z = ξz(1 − r) − ξz2(η − ξ) − τr2z > 0

because

ξ(1 − r) − ξz(η − ξ) − τr2 > ξ(1 − r) − ξ τ2 − τr
2 ≥ ξ(1 − r) − ξ τ2 − ( τ2 − r)ξ = 0,

where the first strict inequality is obtained using η−ξ > τ and the fact that, given that η−ξ > 0,
z = 1

2 must minimize the expression. This proves the result by application of Lemma 21.

D Combining bounds on eigenvalues of sublocks of QJJ

We can finally prove the claim of Proposition 7:

Claim 10. Under the assumptions of Theorem 5, and setting C in the statement of the
theorem to C = 182, then for all J ∈ Gpk/{Ii}1≤i≤m, we have λ+max(QJJ) < 1.

Proof. Note first that, as discussed at the beginning of the previous section, under these
assumptions, we have r ≤ 1

4 and γk0 ≤ 1
8 .

To prove the result, we distinguish four cases:
1st case: 0 ≤ x1 ≤ 1

2 . If 0 ≤ x1 ≤ 1
2 , then by the same argument as in Corollary 8, we have

λ+max(QJJ) ≤ λ̃(1) ≤ (1 − γk0) < 1.

2nd case: 1
4 ≤ z ∶= 1 − x1 ≤ 1

2 .
If x1 > 1

2 , then we let z = 1−x1, and we can upper bound the largest eigenvalue of the upper
left block in Figure B.1 by λ(1) = λu(z) and the lower right block by λ̃(2) = λ̃l(z) ∶= λl(z) + γk0,
given Proposition 14.

First, we consider the case z ∶= 1 − x1 with 1
4 ≤ z ≤ 1

2 . In that case, we have λ+max(QJJ) ≤
λ+max(λ(1), γk0, γk0, λ̃

(2)). But by Lemma 20 and Corollary 8, we have

(1 − λu(z))(1 − λ̃l(z)) − γ2k2
0 ≥ (η − ξ)1

4
γk0 − γ2k2

0,

and η − ξ − 4γk0 > (κ − 6µ − 4µ)τx0 > 0, using the same lower bound for η − ξ as the one
established in Lemma 20.

3rd case: x0 ≤ z = 1 − x1 ≤ 1
4 . We have

λu(z) ≤ au(z) +
bu(z)cu(z)
au(z) − du(z)

= 1 − ηz + r2τz

1 − ηz − r
and λ̃l(z) ≤ τz + 2r + γk0.

As a consequence the function f defined by

f(z) ∶= (ηz − r2τz

1 − ηz − r
)(1 − τz − 2r − γk0)



118 APPENDIX B. LEARNING THE EFFECT OF LATENT VARIABLES IN GGM

provides the lower bound f(z) ≤ (1 − λu(z))(1 − λ̃l(z)).
We first show that this function is increasing on the interval [x0,

1
4]. Indeed, given that,

for z ≤ 1
4 , we have ηz + r ≤ 1

2 , we have

f ′(z) = (η − r2τ

1 − ηz − r
−

ηr2τz

(1 − ηz − r)2 )(1 − τz − 2r − γk0) − ηzτ +
r2τ2z

1 − ηz − r

= (η − r2τ

1 − ηz − r
−

ηr2τz

(1 − ηz − r)2 )(1 − 2τz − 2r − γk0) −
ηr2τ2z2

(1 − ηz − r)2

≥ (η − 2r2τ − ηr2τ)(τ
2
− 2r − γk0) −

1
4
ηr2τ2

≥ ((κ − 2µ) − µ − 1
2
µ)1

2
(κ − 8µ − µ)τ3x2

0 − µ2τ4x2
0

≥ τ3x2
0

2
[(κ − 4µ)(κ − 9µ) − 4µ2] > 0.

Therefore the minimal value of f is attained for z = x0. Note that
η(1 − ηx0 − r) − r2τ = τ − rτ − η2x0 − rτ = τ − 2r − η2x0 ≥ τ(1 − x0) − 2τr

which entails
(1 − ηx0 − r)[f(x0) − γ2k2

0] ≥ (1 − ηx0 − r)f(x0) − γ2k2
0

≥ x0(τ(1 − x0) − 2τr)(1 − τx0 − 2r − µτx0) − µ2τ2x2
0

≥ τ2x2
0[(κ(1 − x0) − 4µ)3

4 − µ
2] ≥ 4 τ2x2

0 µ > 0,

since µ ≤ 7 and since, the assumption x0 ≤ 1
182 entails that τx0 + 2r + µτx0 ≤ 1

4 .
But this shows that f(x0) − γ2k2

0 > 0 and since this is a lower bound on
(1 − λu(z))(1 − λ̃l(z)) − γ2k2

0

on the interval x0 ≤ z ≤ 1
4 we again have that λ+max(QJJ) < 1 by Lemma 21.

4th case: 0 < z = 1−x1 ≤ x0.When z becomes very small, the off-diagonal block QJ∩I1,J∩Ic1
becomes a very thin vertical block. As a consequence the bound ∥QJ∩I1,J∩Ic1

∥op ≤ γk0 is no
longer sufficient, but using Equation (B.20) we also have that ∥QJ∩I1,J∩Ic1

∥op ≤ b̃(z) with
b̃(z) = γ

√
k0kz. As a consequence, we have

λ+max(QJJ) ≤ λ+max(λ(1), b̃(z), b̃(z), λ̃(2)),

with λ(1) = λu(z), λ̃(2) = λ̃l(z) and z = 1 − x1. Reasoning like for the 3rd case, since f(z) −
γ2k0kz ≤ (1 − λu(z))(1 − λ̃l(z)) − b̃(z)2, it is sufficient to prove that f(z) − γ2k0kz > 0. But
since 0 < z ≤ x0, we simply have

x0
z

(f(z) − γ2k0kz) = x0(η −
r2τ

1 − ηz − r
)(1 − τz − 2r − γk0) − γ2k2

0

≥ x0(η −
r2τ

1 − ηx0 − r
)(1 − τx0 − 2r − γk0) − γ2k2

0

= f(x0) − γ2k2
0 > 0,
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where the last inequality was proven in the analysis of the 3rd case. This shows that for all
0 < z ≤ x0, we have

0 < f(z) − γ2k0kz ≤ (1 − λu(z))(1 − λ̃l(z)) − b̃(z)2,

so that λ+max(QJJ) < 1 by Lemma 21.

B.3 Lemmas to control eigenvalues
In this section, we establish general bounds on eigenvalues of two-by-two matrices and of
matrices that can be partitioned in two-by-two blocks.

Consider a two-by-two matrix M of the form

M = [a b
c d

] with a, b, c, d ≥ 0.

We denote its largest eigenvalue λmax.
Since λmax + λmin = a + d and λmaxλmin = ad − bc, the eigenvalues are the roots of x2 − (a +

d)x + ad − bc, and by the quadratic formula, we have

2λmax = a + d +
√

(a − d)2 + 4bc.

Given that a, b, c, d ≥ 0, we must have (a − d)2 + 4bc > 0 and the eigenvalues of M are real.
Lemma 21. λmax < ν ⇔ max(a, d) < ν and bc < (ν − a)(ν − d).

Proof. Indeed we clearly have λmax < ν ⇒ max(a, d) < ν. And conversely, if max(a, d) < ν,
using the quadratic formula, we have

λmax < ν ⇔ a + d +
√

(a − d)2 + 4bc < 2ν
⇔ (a − d)2 + 4bc < (2ν − (a + d))2

⇔ −2ad + 4bc < 4ν2 − 4ν(a + d) + 2ad
⇔ bc < ν2 − 2(a + d) + ad.

where the second equivalence uses that max(a, d) < ν ⇒ 2ν − a − d > 0.

Lemma 22. If a > d, we have λmax ≤ a +
bc

a − d
and λmax ≤ a +

√
bc.

Proof. Indeed, if a > d,
√

(a − d)2 + 4bc ≤ (a − d)
√

1 + 4bc
(a − d)2 ≤ (a − d)(1 + 2bc

(a − d)2 ) ≤ a − d +
2bc
a − d

.

So that by the quadratic formula, we have

2λmax = a + d +
√

(a − d)2 + 4bc ≤ a + d + a − d + 2bc
a − d

= 2a + 2bc
a − d

.

To prove the second inequality, note that
√

(a − d)2 + 4bc ≤ a−d+ 2
√
bc which yields the result.
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Lemma 23.
λmax ([A B

C D
]) ≤ λmax ([λmax(A) ∥B∥op

∥C∥op λmax(D)])

Proof. Since, for y1 = ∥x1∥ and y2 = ∥x2∥, we have

x⊺1Ax1 + x⊺1Bx2 + x⊺2Cx1 + x⊺2Dx2 ≤ λmax(A) y2
1 + (∥B∥op + ∥C∥op) y1y2 + λmax(D) y2

2,

maximizing on both sizes of the inequality under the constraint y2
1 +y2

2 = 1 yields the result.

B.4 Construction of sparse precision matrices
In this appendix, we provide details on the construction of the precision matrices used in the
experiments.

Constructing valid concentration matrices for a sparse Gaussian graphical model associated
with a given graph is not completely immediate. In our synthetic experiment, we generate
random concentration matrices from a model that yields sparse counterparts to Wishart
matrices.

Given a graph G = (V,E), where V and E are the set of vertices and edges respectively,
we first build an incidence matrix B ∈ Rn×m for G (where n = ∣V ∣ and m = ∣E∣, and with
Bi,j = 1 if the vertex vi and edge ej are incident and 0 otherwise). We then compute a sparse
random matrix B̃ with sparsity pattern given by B, and with its nonzero coefficients drawn
i.i.d. standard Gaussian. Finally, the matrix K = B̃B̃⊺ is a random concentration matrix with
the imposed sparse structure: indeed, by construction, the non-zero pattern of K matches
exactly the adjacency structure E of the graph G, and the obtained matrix K is clearly p.s.d.
.

B.5 Experiments
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Figure B.2: Structures of graphical models for the synthetic experiments
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Appendix C

Convex demixing by gauge
minimization

C.1 Lemmas for the main theorem

We provide in this appendix the technical results needed to prove the main theorem.
First, given a collection of subspaces Ti, each equipped with a norm (or symmetric coercive

gauge) Ωi, and given the projectors Pi each of the subspaces, we provide a sufficient condition
on a collection of operator-norms of the Pi that are induced by the subspace norms, that
guarantee that the subspaces are in direct sum.

Lemma 24. Let (Ωi)i=1..m be a collection of norms (or symmetric coercive gauges). Let ζij ∶=
maxuj∈Tj ,Ωj(uj)≤1 Ωi(Piuj), with Pi the projector on the subspace Ti. Let α ∶= maxi∑j≠i ζij . If
α < 1, then ∀i, Ti ∩ span((Tj)j≠i) = {0}.

Proof. We reason by contradiction. Assume that there exist (ui)1≤i≤m, with ui ∈ Ti and
∑mj=1 uj = 0. Then, if Ωi(ui) = Ω(u) ∶= maxj Ωj(uj), we have

Ω(u) = Ωi(ui) = Ωi(−Piui) = Ωi(∑
j≠i

Piuj) ≤∑
j≠i

Ωi(Piuj) ≤∑
j≠i

ζijΩj(uj) ≤ αΩ(u).

Since α < 1 this entails Ω(u) = 0 and so ui = 0 for all i.

The following lemma generalizes a classical upper bound on ∣∣∣A−1∣∣∣∞ discussed in Varga
(1976) for diagonally dominant matrices, where ∣∣∣ ⋅ ∣∣∣∞ is the operator `∞ norm (equal to the
maximal `1-norm of all rows), not to be confused with the `∞ norm of the vectorized matrix,
also known as the max-norm that we denote with ∥ ⋅ ∥∞ throughout the paper.

Lemma 25. Let A = (Aij) a matrix defining a linear operator from Rr1×. . .×Rrm to itself, with
Aii = Idri . Consider a collection of norms ωi each defined on Rri and define ω(x) = maxi ωi(xi).
Define the matrix operator norm ∣∣∣A∣∣∣ω,ω = maxx∶ω(x)≤1 ω(Ax) and consider the quantities:
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ζij = maxxj ∶ωj(xj)≤1 ωi(Aijxj). Then if

α ∶= max
i
∑
j≠i

ζij

is such that α < 1, then A is invertible and ∣∣∣A−1∣∣∣ω,ω < 1
1−α .

Proof. Consider a vector x and assume that i = argmaxk ωk(xk) then

(1 − α)ω(x) = (1 − α)ωi(xi) ≤ ωi(xi) −∑
j≠i

ζij ωi(xi) ≤ ωi(xi) −∑
j≠i

ζij ωj(xj)

≤ ωi(Idrixi) −∑
j≠i

ωi(Aijxj) ≤ ωi(Aiixi) − ωi(∑
j≠i

Aijxj)

≤ ωi(
p

∑
j=1

Aijxj) ≤ max
i
ωi(Ai⋅x) = ω(Ax)

Since this inequality is true for all x, it proves that for all x, Ax ≠ 0 which entails that A
is invertible. Furthermore,

(1 − α) ≤ inf
x≠0

ω(Ax)
ω(x)

= inf
y≠0

ω(y)
ω(A−1y)

,

given that y is invertible, and so supy≠0
ω(A−1y)
ω(y) ≤ 1

1−α which is the announced result.

C.2 Technical results on gauges
Lemma 26. (Partial coercivity of ν○ on Tx) Let ν be a gauge with an o.d.s. (cf Definition 14)
and let Tx be defined as in Proposition 8. Then, for any x ∈ Rd, the largest subspace of Tx on
which ν○ ≡ 0 is {0}, or equivalently, for any q ∈ Tx/{0}, either ν○(q) > 0 or ν○(−q) > 0.

Proof. Before we prove the result, we discuss the equivalence of the two statements: clearly, if,
for all q ∈ Tx with q ≠ 0, either ν○(q) > 0 or ν○(−q) > 0, then ν○ cannot be identically 0 on the
span of q for any q which entails that there are no non trivial subspaces of Tx on which ν○ is
zero. Conversely, if there exists q ∈ Tx with q ≠ 0, such that ν○(q) = 0 and ν○(−q) = 0, then by
positive homogeneity of gauges, we must have ν○(λq) for all λ ∈ R.

To then prove the result, first, note that there exists a unique maximal subspace T0 for the
inclusion such that, ∀q ∈ T0, ν

○(q) = 0. Indeed, assuming that T0 and T ′0 are two distinct such
maximal subspaces, then, by convexity, span(T0,T ′0 ) would be a strictly larger subspace with
the same property. Now, note that, for all q0 ∈ Rd and q ∈ T0, we must have ν○(q0 + q) = ν○(q0).
Indeed ν○(q0) ≤ ν○(q0 + q) + ν○(−q) = ν○(q0 + q) ≤ ν○(q0) + ν○(q) = ν○(q0).

Now we show that, for all x, Tx ∩ T0 = {0}. First, if x is not in the domain of ν, i.e., if
ν(x) = ∞, then ∂ν(x) = Rd and, as a consequence, Tx = {0}. We now consider x such that
ν(x) < ∞; note that the domain of ν must be included in T �0 ∶ indeed, for any x, we have
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ν(x) ≥ maxq∈T0⟨x, q⟩, which entails that, if x ∉ T �0 , we must have ν(x) = ∞. But then, if
x ∈ T �0 , and if qx is the orthogonal projection of the origin on ∂ν(x), then for all q ∈ T0, we
have ⟨q, x⟩ = 0 so that ⟨qx + q, x⟩ = ν(x) and ν○(qx + q) = ν○(qx) by the previous point so that
qx + q ∈ ∂ν(x), which entails that q ∈ Qx ⊂ T �x , and we have T0 ⊂ T �x or equivalently Tx ⊂ T �0 ,
which entails Tx ∩ T0 = {0}. This proves the result because, by maximality of T0, the largest
subspace of Tx on which ν○ ≡ 0 must be exactly Tx ∩ T0.

Note that, in general, we do not have ν○(q) > 0 for any q ∈ Tx/{0}: clearly, this is only true
if ν is symmetric.

Lemma 27 (Polar of a separable gauge). If ν is a separable gauge with respect to M and
M⊥, then

ν○(x + y) = max(ν○(x), ν○(y)) ∀(x, y) ∈M ×M⊥.

Proof. Let (x, y) ∈M ×M⊥.

ν○(x + y) = max
ν(p)+ν(q)≤1

⟨x, p⟩ + ⟨x, q⟩

= max
ν(p)≤η,ν(q)≤η′,η+η′≤1

⟨x, p⟩ + ⟨x, q⟩

= max
η+η′≤1

η ν○(x) + η′ ν○(y)

= max(ν○(x), ν○(y))

where in the first equality we use the decomposability of the gauge with respect toM and
M⊥.
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