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Abstract

The goal of this thesis is to design algorithms that enable robust detection of objects
and events in videos through joint audio-visual analysis. This is motivated by humans’
remarkable ability to meaningfully integrate auditory and visual characteristics for
perception in noisy scenarios. To this end, we identify two kinds of natural associations
between the modalities in recordings made using a single microphone and camera,
namely motion-audio correlation and appearance-audio co-occurrence.

For the former, we use audio source separation as the primary application and
propose two novel methods within the popular non-negative matrix factorization
framework. The central idea is to utilize the temporal correlation between audio and
motion for objects/actions where the sound-producing motion is visible. The first
proposed method focuses on soft coupling between audio and motion representations
capturing temporal variations, while the second is based on cross-modal regression.
We segregate several challenging audio mixtures of string instruments into their
constituent sources using these approaches.

To identify and extract many commonly encountered objects, we leverage
appearance–audio co-occurrence in large datasets. This complementary association
mechanism is particularly useful for objects where motion-based correlations are not
visible or available. The problem is dealt with in a weakly-supervised setting wherein
we design a representation learning framework for robust AV event classification,
visual object localization, audio event detection and source separation.

We extensively test the proposed ideas on publicly available datasets. The experi-
ments demonstrate several intuitive multimodal phenomena that humans utilize on a
regular basis for robust scene understanding.
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Résumé

L’objectif de cette thèse est de concevoir des algorithmes qui permettent la détection
robuste d’objets et d’événements dans des vidéos en s’appuyant sur une analyse
conjointe de données audio et visuelle. Ceci est inspiré par la capacité remarquable
des humains à intégrer les caractéristiques auditives et visuelles pour améliorer leur
compréhension de scénarios bruités. À cette fin, nous nous appuyons sur deux
types d’associations naturelles entre les modalités d’enregistrements audiovisuels
(réalisés à l’aide d’un seul microphone et d’une seule caméra), à savoir la corrélation
mouvement/audio et la co-occurrence apparence/audio.

Dans le premier cas, nous utilisons la séparation de sources audio comme applic-
ation principale et proposons deux nouvelles méthodes dans le cadre classique de
la factorisation par matrices non négatives (NMF). L’idée centrale est d’utiliser la
corrélation temporelle entre l’audio et le mouvement pour les objets / actions où le
mouvement produisant le son est visible. La première méthode proposée met l’accent
sur le couplage flexible entre les représentations audio et de mouvement capturant
les variations temporelles, tandis que la seconde repose sur la régression intermodale.
Nous avons séparé plusieurs mélanges complexes d’instruments à cordes en leurs
sources constituantes en utilisant ces approches.

Pour identifier et extraire de nombreux objets couramment rencontrés, nous
exploitons la co-occurrence apparence/audio dans de grands ensembles de données.
Ce mécanisme d’association complémentaire est particulièrement utile pour les objets
où les corrélations basées sur le mouvement ne sont ni visibles ni disponibles. Le
problème est traité dans un contexte faiblement supervisé dans lequel nous proposons
un framework d’apprentissage de représentation pour la classification robuste des
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événements audiovisuels, la localisation des objets visuels, la détection des événements
audio et la séparation de sources.

Nous avons testé de manière approfondie les idées proposées sur des ensembles de
données publics. Ces expériences permettent de faire un lien avec des phénomènes in-
tuitifs et multimodaux que les humains utilisent dans leur processus de compréhension
de scènes audiovisuelles.

Abstract’s french translation revised by Martin Engilberge.
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1
Introduction

1.1 Objective and motivation

Humans invariably perceive the world multimodally. From a piece of cloth to a car,
from a conversation to a concert, each object and event around us is discovered
through perceptual senses of vision, sound, touch, smell and taste. Among our
many innate abilities is the one to associate and use information from these different
modalities (or senses) to understand and interact with our surroundings (Smith and
Gasser, 2005). Specifically, with regard to audition and vision, humans are adept
at meaningfully integrating auditory and visual characteristics of many real-world
objects, events and actions. Let us imagine ourselves in the position of a person
trying to cross the street depicted in Fig. 1.1. Among other things, we would like our
audio-visual (AV) sensory systems to identify and locate the vehicles in our vicinity,
listen to our neighbour amid the background noise, recognize occluded events from
audio or inaudible objects from their appearance. It is noteworthy how we carry out
these and many other related tasks with ease. Taking inspiration from this remarkable
human capability, our objective in this thesis is to design algorithms that enable
machines to describe and extract such objects and events from videos using joint AV
analysis.
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1 INTRODUCTION

Figure 1.1. Navigating through a busy town, as a pedestrian, a cyclist or a driver leverages
our ability to conduct audio-visual analysis of complex, dynamic scenes.

Robust scene understanding, as in our previous example, is achieved through
both similarity and differences between what the audio and visual signals capture.
Similarity allows enhancement of one signal using the other and complementarity
enables compensating for one in the presence of the other. To illustrate this, note
that temporal variations in sound are also indicated through visual motion for certain
sources. Indeed, humans subconsciously use the lip movements to “enhance” what
someone says in noisy environments (Krishnan et al., 2014). On the other hand,
object or event identification through audio (or vision) is not hindered by noise or
changes in the other modality. These are interesting phenomena that we wish to
utilize and highlight in this thesis.

Research on this topic is not only interesting intellectually but also with regard
to its practical applicability. The ubiquity of AV data opens up several application
areas where jointly analyzing audio and visual signals could help both humans and
machines alike. A few of them are listed below:

• Joint processing can be utilized for film post–production and more generally video
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1.1 OBJECTIVE AND MOTIVATION

content creation and manipulation in the entertainment industry. Specifically,
audio-visual speech analysis could aid the painstaking process of dubbing, mixing
or automated dialogue replacement (ADR). The latter involves re-recording dia-
logues in a studio after filming due to issues such as synchronization, dramatic
effects, line corrections, etc. (Woodhall, 2011). More recently it has found an inter-
esting application for virtual character animation (Zhou et al., 2018; Shlizerman
et al., 2018).

• Video content explosion on the Internet is now common knowledge. This research
will find significant use in structuring and indexing this data for efficient storage
and better content-based retrieval.

• Surveillance cameras capturing both audio and visual signals are becoming increas-
ingly popular. However, these recordings are often of low quality (Ramakrishnan,
2018). This presents the perfect use case for joint processing to improve speech
intelligibility, detect anomalous events for e.g. gunshots or enhance signals. Ap-
plication to biometrics is also well-known (Bredin and Chollet, 2007).

• Assisting hearing/sight impaired people by using joint models to automatically
go from audio to video synthesis and vice versa.

• Such research should find immediate applications in assisting unimodal approaches
in provably important tasks such as video object segmentation and audio source
separation.

• Translating multimodal sensory capabilities to algorithms will be a boon to the area
of robotics. Robust AV analysis would not only support machine understanding
but also interaction with surroundings and people (Karras et al., 2017).

3



1 INTRODUCTION

1.2 Challenges

Promising research directions often come with equally daunting challenges and the
topic under consideration is no exception. It is noteworthy that the mechanism and
location where AV signals are bound in the brain to create multimodal objects still
remain unknown to neuroscientists (Atilgan et al., 2018). With particular regard
to this thesis, we must (i) define AV objects/events to decide what we want to look
for; (ii) hypothesize ways of associating the modalities to discover the said objects;
and (iii) deal with limited annotations, noise and scale of datasets we wish to use for
training and testing. Some of these main difficulties are explained below. We tackle
several of them in this thesis.

What is an AV object? Providing a general definition for the so called AV object is
not straight-forward (Kubovy and Schutz, 2010). A recent study (Bizley et al., 2016)
defines them as a perceptual construct which occurs when a constellation of stimulus
features are bound within the brain. Such a definition encompasses correlated AV
signals like the link between a speaker’s lip movement and voice. However, whether
the definition takes into account objects like cars where such relations are not visible,
is a question of interpretation. In this thesis, for all practical purposes, we simply
focus on the class of sounds which have an identifiable visual source. These would
typically fall into one of the following sub-categories: (1) objects such as musical
instruments with unique distinguishable sound characteristics, (2) objects such as
vehicles which produce multiple sounds possibly from different sub-parts such as
wheels, engine, etc. and (3) sounds like air horns which are produced by multiple
visual sources. We rely on underlying tasks, data annotations and/or our formulations
to evade the ambiguity and subjectivity associated with our definition. Also, we avoid
commonly encountered visual objects such as television, tape recorder as these devices
essentially re–produce sound and only add to the complexity of source identifiability
and differentiability.

4



1.2 CHALLENGES

Intra–class audio and visual variations. Audio and visual characteristics of
objects (events) can vary widely even within a single class. For a class like motorcycle
the instance-level characteristics could be as diverse as the number of bike models.
Other common sources of visual diversity are illumination, lighting, viewpoint and
color variations.

Scarcity of annotated datasets. We wish to use videos from real-world events.
While large amounts of such data can be obtained from websites like YouTube,
its annotation is usually limited to a few, usually unreliable/noisy textual tags as
provided by the user at upload time. This requires developing algorithms capable of
learning and performing several complex tasks at scale with minimal supervision.

(a) Poor quality video where the audio event
‘screaming’ is not actually seen on–screen.

(b) Video modified to include irrelevant static
frames

Figure 1.2. Some typical noise examples from user–generated YouTube videos.

Noise in data. Amateurish quality and unconstrained nature of user–generated
videos result in different types of noise in both the modalities. Standard sources of
noise include background audio and poor microphone or camera quality. Many videos
are artificially altered to suit the content generator’s needs. Specifically, the original
audio track could be overlaid or completely replaced with music. In other cases, the
content is modified or created with static, sometimes irrelevant images. Moreover,

5



1 INTRODUCTION

the appearance of salient cues in both the modalities, like the visual appearance of
a car and the sound of its engine may be asynchronous. This is to say that audio
and visual cues appear at different times in the video. This is also referred to as
the problem of alignment in some other works using visual and textual modalities
(Alayrac et al., 2016). Some of these are shown in Fig. 1.2.

1.3 Contributions and outline

Having specified our focus on sounds produced by visual sources in the previous
section, we are interested in investigating the following aspects of the problem:

1. Exploring AV fusion strategies;

2. Learning representations and analyzing their usefulness for scene understanding
tasks, for instance audio source separation, visual object localization, etc.

3. Identifying the AV object.

In practice, audio and visual object extraction can be understood as performing audio
source separation and spatio-temporal image/video segmentation, respectively.

While several factors could influence AV perception in humans, for this study we
only have at our disposal generic videos acquired using single microphone and camera,
as seen in Fig. 1.3. In such a scenario, two AV association mechanisms naturally
emerge. The first, termed motion–audio correlation is motivated by the following
observation: when playing an instrument or scratching a surface, motion used to excite
objects and surfaces often dictates the temporal variations in sound. We use this fact
to propose two novel non-negative matrix factorization (NMF) based motion-assisted
audio source separation methods. Specifically, our initial approach couples sound–
producing motion with audio through a soft ℓ1 constraint. This provides encouraging
separation results over a challenging multimodal music instrument dataset. To our
best knowledge, this was the first study to use motion-capture data for audio source
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1.3 CONTRIBUTIONS AND OUTLINE

separation. We overcome some limitations of this work, including application to videos
with our next approach called cross-modal regression. Herein, we regress motion from
temporal variations in audio within the NMF framework. The method gives as a
by-product the ability to visually localize the sound–producing motion. Both the
foregoing methods are shown to be particularly useful in challenging scenarios where
multiple acoustically similar objects like violins in string quartets, “move” differently.

While such correlations have proved to be useful for source disambiguation, they
are not explicitly visible in a variety of commonly encountered objects such as auto-
mobiles, washing machines, etc. They are non-existent for digital sounds emitted
by objects like mobile phones. To tackle this case, we exploit appearance–audio
co–occurence. This refers to associating general appearance (shape and/or color)
of objects with their sounds based on co-occurrence in large datasets. To this end,
we propose a weakly supervised deep representation learning framework based on
multiple instance learning (MIL) to perform several tasks such as event classification,
visual object localization and temporal localization of audio events simultaneously.
The basic idea is to generate audio and visual proposals that may potentially contain
the cues of interest. These are then scored according to relevance for a particular
class. Building upon this work, we suggest a new audio proposal design to incorporate
audio source separation capability and make classification more robust to interfering
sounds.

1.3.1 Publications

The work discussed in this thesis has been a part of the following book chapter,
patent, conference and workshop publications:

Book Chapter

• Slim Essid, Sanjeel Parekh, Ngoc Duong, Romain Serizel, Alexey Ozerov, Fabio
Antonacci and Augusto Sarti, Multiview approaches to event detection and scene
analysis. In T. Virtanen, M. Plumbley and D. Ellis (Eds.), Computational Ana-
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1 INTRODUCTION

lysis of Sound Scenes and Events, Springer 2018.

Conference and Workshop Papers

• Sanjeel Parekh, Alexey Ozerov, Slim Essid, Ngoc Duong, Patrick Pérez and Gaël
Richard. Identify, Locate and Separate: Audio–visual object extraction in large
video collections using weak supervision. IEEE WASPAA 2019 [To be submitted]

• Sanjeel Parekh, Slim Essid, Alexey Ozerov, Ngoc Duong, Patrick Pérez and Gaël
Richard. Weakly supervised representation learning for unsynchronized audio–
visual events, 2018. Extended abstract in CVPR Workshop on Sight and Sound
2018.

• Sanjeel Parekh, Slim Essid, Alexey Ozerov, Ngoc Duong, Patrick Pérez and Gaël
Richard. Guiding audio source separation by video object information. IEEE
WASPAA 2017.

• Sanjeel Parekh, Slim Essid, Alexey Ozerov, Ngoc Duong, Patrick Pérez and Gaël
Richard. Motion informed audio source separation. IEEE ICASSP 2017.

Patents

• Sanjeel Parekh, Slim Essid, Alexey Ozerov, Ngoc Duong, Patrick Pérez and Gaël
Richard. Weakly supervised learning for unsynchronized audio-visual events.
Patent Application Filed, 2018.

• Sanjeel Parekh, Slim Essid, Alexey Ozerov, Ngoc Duong, Patrick Pérez and Gaël
Richard. New approaches to motion informed audio source separation. US Patent
Application 15956021, 2018.

1.3.2 Outline

In chapter 2 we review literature on audio-visual fusion techniques. This is followed by
a discussion on ideas relevant to this thesis, namely source separation, non–negative
matrix factorization and weakly supervised learning.

8



1.3 CONTRIBUTIONS AND OUTLINE

Figure 1.3. Thesis overview: The arrows between different chapters indicate dependencies.
The colored dots under chapter 5 and 6 correspond to application bullet points and denote
the ones we tackle in each.

9



1 INTRODUCTION

In chapters 3 and 4 we detail soft motion coupled NMF and cross–modal regression,
respectively. These are novel audio source separation algorithms utilizing motion–
audio correlations.

In chapter 5 we put forth our weakly supervised deep learning framework for event
classification and audio/visual cue localization. This is based on appearance audio
co–occurrence in large datasets. We make the event/object classification more robust
and incorporate source separation capabilities through a novel use of NMF for audio
proposal design in chapter 6.

In chapter 7, we provide a summary of our contributions and future research perspect-
ives, while throwing light on some recent developments in this area of multimodal
analysis.

10



2
Related works and background

A generic pipeline to tackle different problems through joint audio-visual analysis
typically involves early/intermediate or late fusion of extracted modality–specific
representations and decisions, respectively. This simplified view is depicted in Fig.
2.1. Referring the reader to comprehensive review texts on commonly used hand–
crafted/learnt audio (Serizel et al., 2018) and visual (Maragos et al., 2008) features, in
this chapter we focus on important multimodal fusion strategies related to this thesis.
Towards the end, we also briefly describe some relevant ideas that are repeatedly
alluded to in the upcoming chapters.

2.1 Techniques for joint audio–visual analysis

2.1.1 Feature-space transformation methods

A number of techniques have been suggested to map the observed feature vectors from
two modalities to a low dimensional space where a measure of “dependency” between
them can be computed. Let us assume the N observed feature vectors from two
modalities, y1,n ∈ RJ1 and y2,n ∈ RJ2 (n = 1, . . . , N), are assembled column-wise in

11



2 RELATED WORKS AND BACKGROUND
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Figure 2.1. General system architectures for joint audio–visual analysis.

matrices Y1 ∈ RJ1×N and Y2 ∈ RJ2×N respectively.1 The methods we describe here
aim to find two mappings f1 and f2 (that reduce the dimensions of feature vectors in
each modality), such that a dependency measure S12(f1(Y1), f2(Y2)) is maximized.
Various approaches can be described using this formalism. The advantages of doing so
are two-fold: (i) it appropriately modifies the feature spaces to uncover relationships
between modalities specified by the measure of dependency and (ii) by projecting data
into the same space, dimensionality difference is eliminated and direct comparison
across modalities is made possible. Fisher et al. (2001) choose the mutual information
as a dependency measure and seek single-layer perceptrons f1 and f2 projecting the
audiovisual feature vectors to a 2-dimensional space i.e. f1 and f2 each map their
input to a 1-D space. Other more popular approaches (for which closed-form solutions
can be found) use linear mappings to project the feature streams:

1 The underlying assumption is that the (synchronized) features from both modalities are
extracted at the same rate. In the case of audio and visual modalities this is often obtained by
downsampling the audio features or upsampling the video features, or by using temporal integration
techniques (Joder et al., 2008).

12



2.1 TECHNIQUES FOR JOINT AUDIO–VISUAL ANALYSIS

• Canonical correlation analysis (CCA), first introduced by Hotelling (Hotelling,
1936), aims at finding pairs of unit-norm vectors t1 and t2 such that

(t1, t2) = argmax
(t1,t2)∈RJ1 ×RJ2

corr
(
tT
1 Y1, tT

2 Y2
)

. (2.1)

CCA can be considered equivalent to mutual information maximization for the
particular case where the underlying distributions are elliptically symmetric (Kay,
1992). Several variants have been proposed to incorporate sparsity and non-
negativity into the optimization problem to resolve issues with interpretability
and ill-posedness, respectively (Kidron et al., 2005; Sigg et al., 2007). In the
context of multimodal neuronal data analysis, temporal kernel CCA (Bießmann
et al., 2010) has been proposed to take into account the temporal dynamics.

• An alternative to the previous methods (expected to be more robust than CCA)
is co-inertia analysis (CoIA). It consists in maximizing the covariance between
the projected audio and visual features:

(t1, t2) = argmax
(t1,t2)∈RJ1 ×RJ2

cov
(
tT
1 Y1, tT

2 Y2
)

. (2.2)

A possible reason for CoIA’s stability is that it is a trade-off between CCA and
PCA, thus it benefits from advantages of both (Bredin and Chollet, 2006).

• Yet another configuration known as cross-modal factor analysis (CFA), and found
to be more robust than CCA in (Li et al., 2003), seeks two matrices T1 ∈ RJ×J1

and T2 ∈ RJ×J2 where J is the dimensionality of the shared space, such that

(T1, T2) = argmax
(T1,T2)

(
1− ∥T1Y1 −T2Y2∥2

F

)
= arg min

(T1,T2)
∥T1Y1 −T2Y2∥2

F , (2.3)

with T1TT
1 = I and T2TT

2 = I. ∥V∥F denotes the Frobenius norm of matrix V.

Note that all the previous techniques can be kernelized to study non-linear coupling
between the modalities considered (see for instance (Hardoon et al., 2004)). The
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interested reader is referred to (Hotelling, 1936; Hardoon et al., 2004) for further
details on these techniques, and to (Goecke and Millar, 2003) for a comparative study.

These methods have been primarily applied to the task of AV object localization
and extraction which refers to the problem of identifying sources visually and/or
aurally. The general approach is to first associate the two modalities using one of the
discussed transformation techniques. The parameters learned during the former step
can then be utilized for object localization and segmentation in both modalities. In
particular, various approaches have leveraged the audio modality to better perform
this task with the central idea of associating visual motion and audio. Fisher et al.
(2001) proposed to use joint statistical modeling to perform this task using mutual
information. Izadinia et al. (2013) consider the problem of moving-sounding object
segmentation, using CCA to correlate audio and visual features. The video features
consisting of mean velocity and acceleration computed over spatio-temporal segments
are correlated with audio. The magnitude of the learned video projection vector
indicates the strength of association between corresponding video segments and the
audio. Several other works have followed the same line of reasoning while using
different video features to represent motion (Kidron et al., 2005; Sigg et al., 2007).

2.1.2 Co-factorization techniques

Matrix factorization techniques can be profitably used to extract meaningful repres-
entations for the data being analyzed. Owing to multimodal data, one may resort
to so-called co-factorization techniques, that is techniques performing two (or more)
factorizations in parallel, which are linked in a particular way. Because of the dif-
ferent nature of the modalities, this link is usually characterized through temporal
dependencies between them.

Hereby we focus on non–negative versions of co-factorization which are naturally
used as such features commonly appear in audio and image applications (please refer
to section 2.5 for justification regarding their usefulness for audio). Assuming that
appropriate nonnegative features have been extracted at the same rate from the
two modalities being analyzed—say the audio and images of a video—so that two
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observation matrices V1 ∈ RJ1×N
+ and V2 ∈ RJ2×N

+ are available 2, for the audio and
visual data. One may seek a model (W1, W2, H), such that:


V1 ≈W1H

V2 ≈W2H

W1 ≥ 0, W2 ≥ 0, H ≥ 0 .

(2.4)

Here W1, W2 refer to modality–specific basis vectors and H to their temporal activa-
tions which are same for both modalities. This is referred to as hard co-factorization,
an approach that has been followed in a number of works (see e.g. (Fitzgerald et al.,
2009; Yoo and Choi, 2011; Yokoya et al., 2012)). Clearly, this approach is limited
in that it does not account for possible local discrepancies across the modalities.
This happens for example when there is a mismatch between the audio and the
images information, say because of a visual occlusion in video analysis scenarios. This
motivates the soft co-factorization model of Seichepine et al. (2014a), which merely
encourages the temporal activations corresponding to each modality to be close, as
opposed to equal, according to:



V1 ≈W1H1

V2 ≈W2H2

H1 ≈ H2

W1 ≥ 0, W2 ≥ 0, H1 ≥ 0, H2 ≥ 0.

(2.5)

The model (2.5) is estimated by solving the following optimization problem:


min

ϑ
Cc(ϑ) ; ϑ

∆= (W1, H1, W2, H2)

W1 ≥ 0, W2 ≥ 0, H1 ≥ 0, H2 ≥ 0 ;
(2.6)

2 To simplify, we consider the case of two modalities, but clearly the methods described here can
be straightforwardly generalized to more than two data views by considering the relevant pairwise
associations.
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Cc(ϑ) ∆= D1(V1 |W1H1) + γD2(V2 |W2H2) + δP (H1, H2) ; (2.7)

where:

• D1(. | .) and D2(. | .) are the measures of fit respectively relating to the first and
second modalities; note that they may be chosen to be different divergences, each
well suited to the corresponding feature space;

• P (., .) is a penalty on the difference between (properly rescaled) activation values
occurring at the same instant; they can be for instance the ℓ1 or ℓ2-norm of the
difference between the rescaled activations;

• γ and δ are regularization parameters controlling, respectively, the relative im-
portance of each modality and the coupling penalty.

The interested reader is referred to (Seichepine et al., 2014a) for more details on
the algorithms.

2.1.3 Joint AV codebook learning

These methods have been quite popular for the task of multimedia concept classi-
fication.3 In essence, each element of these multimodal codebooks captures some
part of a salient AV event. Work on short-term audiovisual atoms (S-AVA) (Jiang
et al., 2009a) aims to construct a codebook from multimodal atoms which are a
concatenation of features extracted from tracked short-term visual-regions and audio.
An example S-AVA is illustrated in Fig. 2.2. To tackle the problem of video concept
classification, this codebook is built through multiple instance learning.

Following this work, AV grouplets (AVG) (Jiang and Loui, 2011) were pro-
posed, where separate dictionaries are constructed from coarse audio and visual
foreground/background separation. Subsequently, AVGs are formed based on the
mixed-and-matched temporal correlations. For instance, an AVG could consist of
frames where a basketball player is seen in the foreground with the audio of the crowd
cheering in the background.

3 Here the term “concept classification” refer to generic categorization in terms of scene, event,
object or location (Jiang et al., 2009a).

16
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Figure 2.2. Example of an S-AVA taken from (Jiang et al., 2009a). The cake region track
and the background birthday music form a salient multimodal atom for this event.

As an alternative, Jhuo et al. (2014) determine the relations between audio
and visual modalities by constructing a bi-partite graph from their bag-of-words
representation. Subsequently, spectral clustering is performed to partition and obtain
bi-modal words. Unlike S-AVA and bimodal words, AVG has the advantage of
explicitly tackling temporal interactions. However, like S-AVA, it relies on video
region tracking, which is quite difficult for unconstrained videos.

2.1.4 Multimodal deep learning

Lately, rapid progress in the application of deep learning methods to representation
learning has motivated researchers to use them for fusing multimodal data.

The use of artificial neural networks for AV fusion can be traced back to Yuhas
et al. (1989). The authors proposed to estimate acoustic spectral shapes from lip
images for audio-visual speech recognition. In a later work, Becker and Hinton (1992)
laid down the ideas for self organizing neural networks, where modules receiving
separate but related inputs aim to produce similar outputs. Around the same time,
ideas for self–supervised learning using different sensing modalities for classification of
unlabeled data were put forth (de Sa, 1994). These foundational ideas are illustrated
in Fig. 2.3.

Owing to the advent of large scale datasets and training capabilities, each of these
formulations have recently emerged in broader contexts for audio-visual fusion in
generic videos. Notably, Owens et al. (2016a) train a convolutional neural network
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(a) Illustration from (Yuhas et al., 1989) depict-
ing acoustic spectral envelope estimation from lip
images using ANN

(b) Learning by maximizing agree-
ment between representations of two
modalities. Figure from (Becker and
Hinton, 1992)

(c) Self-supervised label using multimodal
co-occurence. Illustration from (de Sa,
1994).

Figure 2.3. A depiction of early ideas for multimodal fusion and use of artificial neural
networks (ANN).
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Figure 2.4. AV embedding network as depicted in (Arandjelović and Zisserman, 2017b)

(CNN) and recurrent neural network (RNN) based architecture to predict audio using
visual input. In another work, this idea is extended to predict the audio category
of static images (Owens et al., 2016b). Transfer learning experiments on image
classification confirm that ambient audio assists visual learning (Owens et al., 2016b).
This is reversed by (Aytar et al., 2016) to demonstrate how audio representation
learning could be guided through visual object and scene understanding using a
teacher-student learning framework. Herein the authors use trained visual networks
to minimize the Kullback-Leibler divergence between the outputs of visual and audio
networks. The resulting features are shown to be useful for audio event detection
tasks. Subsequently, these ideas were extended to learning shared audio-visual-text
representations (Aytar et al., 2017).

In some very recent works, useful AV representations are learnt through the auxil-
iary task of training a network to predict audio-visual correspondence (Arandjelović
and Zisserman, 2017a,b). Indeed, the learnt audio representations in (Arandjelović
and Zisserman, 2017a) achieve state-of-the-art results on audio event detection ex-
periments. By design, such systems do not deal with the case of unsynchronized AV
events as discussed earlier. Other notable approaches include multimodal autoencoder
architectures (Ngiam et al., 2011) for learning shared representations even for the
case where only a single view of data is present at training and testing time. Another
interesting work extends CCA to learning two deep encodings, one for each view,
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such that their correlation is maximized (Andrew et al., 2013). Interestingly, the
structure of the network operations performed before the penultimate fully-connected
layer in the architecture employed by (Arandjelović and Zisserman, 2017b), as seen
in Fig. 2.4, is reminiscent of deep CCA. In particular, Kidron et al. (2005) showed
that minimizing Euclidean distance between linearly transformed modality features
with appropriate normalization is equivalent to maximizing their correlation. This is
indeed the case for Arandjelović and Zisserman’s system where the Euclidean distance
between ℓ2 normalized deep modality specific representations must be minimized for
training.

Needless to say, the advent of deep learning, in particular end-to-end learning has
blurred hard distinctions between feature extraction, fusion and model parameter
learning stages (as seen in Fig. 2.1) and provided the flexibility to modify and model
the inter–dependence between these.

2.2 A primer on some relevant problems and concepts

In this section we give a brief introduction to some relevant tasks and techniques that
we repeatedly refer to or leverage in this thesis.

2.2.1 Source separation and non-negative matrix factorization

We directly delve into the problem of separating audio sources present in a single
mixture. As in the case of AV objects, the definition of an audio source is application
dependent. For a more general introduction to source separation we refer the reader
to (Comon and Jutten, 2010; Vincent et al., 2018).

In its most general form the problem of single–channel audio source separation
consists in obtaining an estimate for each of the J sources sj forming the observed
mixture x(t) given by:

x(t) = f(s1(t), s2(t), . . . , sJ(t)), (2.8)
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where f can be any linear or non-linear function and t denotes time indices. In this
thesis, we assume that the mixing process is linear wherein the mixture x(t) can be
simply expressed as:

x(t) =
J∑

j=1
sj(t). (2.9)

Among several approaches developed to solve this under–determined problem,
we mainly concern ourselves with a popular matrix decomposition method known
as the non–negative matrix factorization (NMF) (Lee and Seung, 2001). Denoting
by X ∈ CF ×N the mixture short–time Fourier transform (STFT) consisting of F

frequency bins and N STFT frames, NMF can be used to decompose the magnitude
|X| or power spectrogram |X|2, denoted by V ∈ RF ×N

+ such that,

V ≈WH, (2.10)

where W ∈ RF ×K
+ and H ∈ RK×N

+ are interpreted as the nonnegative audio spectral
patterns composing the mixture V and their activation matrices, respectively. Here
K is the total number of spectral patterns. Nonnegativity of the activation matrix H
permits only additive combinations of the columns of W. This encourages part-based
decomposition which is essential for problems such as source separation. The idea
is well depicted in Fig. 2.5 where we see how the time-frequency representation is
broken down into constituent spectral templates and their temporal activation vectors.
The NMF optimization problem to find suitable matrices (W, H) can be written as:

minimize D(V|WH)

subject to W ≥ 0, H ≥ 0,
(2.11)

where D(V|WH) = ∑
f

∑
n d(Vfn|[WH]fn) is a separable measure of fit. Functions

from the β–divergence family are a popular choice for the scalar cost function d(x|y):
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Figure 2.5. Schematic example of NMF applied to time-frequency audio representation.
The blue and green columns depict unmixed source spectra that are correctly discovered as
template vectors in W with H giving their mixing proportions. Illustration from (Févotte
et al., 2018).

d(x|y) ≜


x log x

y
− x + y, β = 1

x
y
− log x

y
− 1, β = 0

1
β(β−1)(x

β + (β − 1)yβ − βxy(β−1)), β ∈ R \ {0, 1}.

(2.12)

Here β = 1 and β = 0 correspond to popular Kullback-Leibler (KL) and Itakura-
Saito (IS) divergence functions. Note that the cost function is jointly non–convex in W
and H. Iterative algorithms for estimating W and H commonly employ multiplicative
updates. For the β–divergence these updates can be given by:

H← H⊙
W⊺((WH)(β−2) ⊙V)

W⊺(WH)(β−1) (2.13)

W←W⊙
((WH)(β−2) ⊙V)H⊺

(WH)(β−1)H⊺
. (2.14)

Here products ⊙, divisions [.]
[.] and exponents are element-wise operations. W and H

are initialized with random non–negative matrices. NMF is sensitive to initialization
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and it is usually advised to run from multiple starting points (Févotte et al., 2018).
Alternate initialization strategies, for instance using singular value decomposition
(SVD) have also been considered (Boutsidis and Gallopoulos, 2008).

The updates given in equations (2.13) and (2.14) can be obtained using the
following heuristic (Févotte and Idier, 2011): the derivative of the β–divergence with
respect to a particular coefficient γ of W or H can be written as a difference of
two nonnegative functions, ∇D(γ) = ∇D+(γ)−∇D−(γ). The update can then be
written as:

γ ← γ
∇D−(γ)
∇D+(γ) (2.15)

A more principled approach to arrive at a solution for such optimization problems
is provided by the majorization–minimization technique (Hunter and Lange, 2004;
Févotte and Idier, 2011). This requires construction and minimization of an auxiliary
function that is an upper–bound of the original cost function, tight at the current value
of the iterate (W or H). By construction, this ensures that the objective function
decreases in each iteration. Interestingly, the resulting updates are multiplicative and
same as those given in equation for β ∈ [1, 2] (Févotte and Idier, 2011).

For single channel audio source separation, after performing NMF decomposition
one needs to group together specific components for source reconstruction. We
mention below some standard audio-only methods of doing this:

• Supervised NMF (Wang and Plumbley, 2006): Herein, source–specific dic-
tionaries, denoted by W1, W2, . . . , WJ are pre–computed from labeled training
data. During test time, H = (H⊺

1, H⊺
2, . . . , H⊺

J)⊺ is estimated for any mixture by
holding the learnt spectral patterns W = (W1, W2, . . . , WJ) fixed, and applying
the multiplicative update procedure given in equation 2.13. A variant called
semi–supervised NMF (Mysore and Smaragdis, 2011) assumes that only a subset
of source dictionaries are pre–learnt. The remaining are estimated together with
source activation matrices H during test time.

• Unsupervised NMF (Spiertz and Gnann, 2009): This method involves no
training phase. After performing NMF decomposition on a mixture, the basis
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vectors are grouped into sources by performing clustering over their Mel–spectra.
We discuss other unsupervised strategies in the forthcoming chapters.

Once the components are grouped into source basis vector and activation sub–
matrices Wj and Hj, each source STFT can be reconstructed using soft masking
as:

Sj = WjHj

WH
⊙X (2.16)

When considering power spectrograms for filtering, the above equation is equivalent to
standard Wiener filtering. Lately, researchers have found soft masking with amplitude
spectrograms to work better in practice (Liutkus and Badeau, 2015). Some theoretical
justification has also been provided for such generalized soft masking (Liutkus and
Badeau, 2015). The time domain signal can be obtained through inverse STFT
operation on Sj.

2.2.2 Weakly supervised learning

As already discussed in the previous chapter, fully annotated training data for AV
tasks is seldom available. This has led to use and development of alternative non-
supervised learning approaches such as reinforcement learning, self-supervised and
weakly supervised learning. In this thesis, we primarily focus on weakly supervised
learning which is an umbrella term used to refer to training strategies that only have
at their disposal incomplete, possibly noisy information with regard to one or more
tasks. For instance, it is often easier to simply indicate the presence or absence of
an object in a large number of images. This paradigm allows precisely localizing the
said object in these images with only such binary information.

Multiple instance learning (MIL) (Dietterich et al., 1997a) is a popular framework
to achieve this. Different from supervised learning, herein, the data is given as bags
with associated labels, where each bag could possibly contain multiple instances. In
our running example, each image could be considered a bag, with different regions
as the constituent instances. In addition to building a model for bag classification,
an important goal of MIL approaches is to discover the key instances that lead to
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the bag label. This is extremely important for interpretability. Several problems
in bioinformatics (Kraus et al., 2016), medical imaging (Ilse et al., 2018), computer
vision (Oquab et al., 2015) have been adapted to fit such a formulation. This is also
key to our system discussed in chapters 5 and 6.

Broadly speaking, MIL approaches can be categorized into bag-space and instance-
space methods (Amores, 2013). Bag space methods usually aim to solve the bag–level
classification problem either by using supervised classification techniques over a global
bag-level embedding vector (Dong, 2006) or through distance–based classifiers such
as k-NN (Wang and Zucker, 2000). On the other hand, instance–space methods
aggregate local information from instance–level classifiers or features to train models
for bag–level classification. This has the added advantage of revealing key instances
responsible for classification. Several support vector machine (SVM) and neural
network based methods (Ilse et al., 2018; Oquab et al., 2015) have taken this path.
We defer the discussion of relevant MIL literature for computer vision and audition
to chapter 5.
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3
Motion-informed audio source

separation

Synopsis
In this chapter we tackle the problem of single channel audio source separation driven by
descriptors of the sounding object’s motion. As opposed to previous approaches, motion
is included as a soft coupling constraint within the non–negative matrix factorization
framework. The proposed method is applied to a multimodal dataset of instruments in
string quartet performance recordings where bow motion information is used for separation
of string instruments. We show that the approach offers better source separation results
than an audio-based baseline and the state-of-the-art multimodal-based approaches on these
very challenging music mixtures.

3.1 Introduction

Consider the scene of a busy street or a music concert: what we hear in these scenarios
is a mix of sounds coming from multiple sources. However, information received
from the human visual apparatus in terms of movement of these sources over time
is very useful for decomposing and associating them with their respective audio
streams (Chen et al., 2002). Indeed, when performing any action or interacting
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with sound-producing objects such as musical instruments, motion often dictates the
temporal evolution of the produced sounds. In this chapter, we are interested in using
this correlation between audio and motion to perform the challenging task of single
channel audio source separation.

Several approaches have been proposed for monaural source separation in the
unimodal case, i.e., methods using only audio (Wang and Plumbley, 2006; Durrieu
et al., 2011; Huang et al., 2014; Févotte et al., 2018), in which NMF has been
among the most popular ones. Typically, source separation in the NMF framework is
performed in a supervised manner (Wang and Plumbley, 2006), where the magnitude
or power spectrogram of an audio mixture is factorized into nonegative spectral
patterns and their activations. In the training phase, spectral patterns are learnt over
clean source examples and then factorization is performed over test examples while
keeping the learnt spectral patterns fixed. In the last few years, several methods have
been proposed to group together appropriate spectral patterns for source estimation
without the need for the above mentioned dictionary learning step. Spiertz and
Gnann (2009) proposed a promising generic basis vector clustering approach using
Mel-spectra (Davis and Mermelstein, 1990). Subsequently, methods based on shifted-
NMF, inspired by western music theory and linear predictive coding were proposed
(Jaiswal et al., 2011; Guo et al., 2015). While the latter has been shown to work well
with harmonic sounds, its applicability to percussive sounds will be limited.

In the single channel case, it is possible to improve system performance and avoid
the spectral pattern learning phase by incorporating auxiliary information about
the sources. The inclusion of side information to guide source separation has been
explored within task-specific scenarios such as text informed separation for speech
(Le Magoarou et al., 2015) or score-informed separation for classical music (Fritsch
and Plumbley, 2013). Recently, there has also been much interest in user-assisted
source separation where the side information is obtained by asking the user to hum,
speak or provide time-frequency annotations (Smaragdis and Mysore, 2009; Liutkus
et al., 2013; Duong et al., 2014). For brevity, here we only elaborate on methods
utilizing motion data as auxiliary information.

In most cases, information about motion is extracted from the video images. Early
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work by Fisher et al. (2001) sought to learn a multimodal embedding through mutual
information (MI) maximization. This is then used to tackle the task of user-assisted
audio enhancement. However, the method used for computing MI i.e. Parzen window
estimation is complex and may suffer in quality when the data used to perform the
estimation is limited. A different technique that aims to extract AV independent
components (Smaragdis and Casey, 2003) does not work well with dynamic scenes
containing moving objects. Later, work by Barzelay and Schechner (2007) considered
onset coincidence to identify AV objects and subsequently perform source separation.
They delineate several limitations of their work, including: setting multiple parameters
for optimal performance on each example and possible performance degradation in
dense audio environments. AV source separation has also been attempted using
sparse representations (Casanovas et al., 2010). However, the method’s application is
limited due to its dependence on active-alone regions to learn source characteristics.
It is also assumed that all the audio sources are seen on-screen, which is not always
realistic. A recent work proposes to perform AV source separation and association for
music videos using music score information (Li et al., 2016a). Some prior work on AV
speech separation has also been carried out (Nakadai et al., 2002; Rivet et al., 2007),
primary drawbacks being the large number of parameters and hardware requirements.

In this work we improve upon several limitations of earlier methods. Our approach
utilizes motion information within the NMF parameter estimation procedure through
soft coupling rather than a separate step after factorization. This not only pre-
serves flexibility and efficiency of the NMF system, but unlike previous motion-based
approaches, significantly reduces the number of parameters to tune for optimal per-
formance (to effectively just one). Particularly, we show that in highly non-stationary
scenarios, information from motion related to the causes of sound vibration from each
source can be very useful for source separation. With the exception of a recently pub-
lished study (Sedighin et al., 2016), to the best of our knowledge no previous work has
incorporated motion into the NMF-based source separation systems. Moreover, as we
demonstrate in Section 3.3, the applicability of methods proposed in (Sedighin et al.,
2016) is limited. Our method is applied to musical instrument source separation in
string trios using bow motion information. To the best of our knowledge this chapter
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describes the first study to use motion capture data for audio source separation.

Chapter outline. We begin by describing the problem and the proposed co-
factorization approach tying temporal evolution of audio to motion in section 3.2.
Experimental results for the task of source separation are presented in section 3.3
while limitations and future work are discussed in section 3.4.

3.2 Soft motion coupled NMF

3.2.1 Problem formulation

As already discussed in section 2.2.1, the problem of single channel audio source
separation consists in obtaining an estimate for each of the J sources sj forming the
observed linear mixture x(t) (equation 2.9).

Using NMF we can decompose the mixture magnitude or power spectrogram
V ∈ RF ×N

+ consisting of F frequency bins and N short-time Fourier transform (STFT)
frames, into two nonnegative matrices W ∈ RF ×K

+ and H ∈ RK×N
+ interpreted as the

nonnegative audio spectral patterns and their activation matrices, respectively

Additionally, here we assume that information about the causes of sound vibration
of each source is known in the form of motion activation matrices Hmj

∈ R
Kmj ×N

+ ,
vertically stacked into a matrix Hm ∈ RKm×N

+ :

Hm =


Hm1

...

HmJ

 , where Km =
J∑

j=1
Kmj

. (3.1)

Thus, our objective is to cluster the K spectral patterns into J audio sources using
the motion activation matrix Hm.
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3.2.2 Approach

Following Seichepine et al. (2014b), our central idea is to couple Hm with the audio
activations, i.e., to factorize V such that H is “similar” to Hm. With such a constraint,
the audio activations for each source Hj would automatically be coupled with their
counterparts in the motion modality Hmj

and we would obtain basis vectors clustered
into audio sources. For this purpose, we propose to solve the following optimization
problem with respect to W, H and S:

minimize
W,H,S

[
DKL(V|WH) + α∥ΛaH− SHm∥1 + β

K∑
k=1

N∑
n=2

(λa,khkn − λa,khk(n−1))2
]

subject to W ≥ 0, H ≥ 0.

(3.2)

In equation (3.2), the first term is the standard generalized Kullback-Leibler (KL)
divergence cost function (equation 2.12). The second term enforces “similarity”
between audio and motion activations, up to a scaling diagonal matrix S, by penalizing
their difference with the ℓ1 norm. The last term is introduced to ensure ℓ2 temporal
smoothness of the audio activations (Virtanen, 2007). The influence of each of the
last two terms on the overall cost function is controlled by the hyperparameters α

and β, repectively. Λa is a diagonal matrix with kth diagonal coefficient given by
λa,k = ∑

f wfk which simply scales H (or equivalently, normalizes the columns of W
(Essid and Févotte, 2013)).

The cost function is minimized using a block coordinate majorization-minimization
(MM) algorithm where W and H are updated sequentially (Seichepine et al., 2014b).
Our formulation is a simplified variant of the previously proposed soft non-negative
matrix co-factorization (sNMcF) algorithm (Seichepine et al., 2014b), wherein two
modalities are factorized jointly with a penalty term soft-coupling their activations.
However, here we do not factorize the second modality (i.e., the motion modality)
and its activations are held constant in the update procedure. Note that, from the
model’s perspective, H and Hm need not contain the same number of components.
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So if K ̸= Km, then we can readily ignore some components when coupling. However,
for this work we maintain K = Km. The reader is referred to (Seichepine et al.,
2014b) for details about the algorithm. Reconstruction is done by performing soft
masking as detailed in equation 2.16.

In the following section, we will discuss the procedure for obtaining motion
activation matrices Hmj

for each source.
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Figure 3.1. An example of bow inclination and velocity data for violin from the multimodal
EEP dataset (Marchini, 2014).

3.2.3 Motion modality representation

While for audio, the classic magnitude spectrogram representation is used, motion
information must be processed to obtain a representation that can be coupled with
audio activations. The question now being: What motion features will be useful?

We work with a multimodal dataset of instruments in string quartet performance
recordings. In this dataset (see section 3.3.1), the motion information exists in the
form of tracking data (motion capture or MoCap data) acquired by sensors placed
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3.2 SOFT MOTION COUPLED NMF

Figure 3.2. A visualization for bow inclination: the angle between the instrument plane
and the bow.

on each instrument and the bow (Marchini, 2014). Now we immediately recognize
that information about “where” and “how” strongly the sound-producing object is
excited will be readily conveyed by bowing motion velocity and orientation in time.
In this light, we choose to use bow inclination (in degrees) and bow velocity (cm/s)
as features (as shown in Fig. 3.1), which can be easily computed from the raw motion
capture data described in (Maestre, 2009; Marchini, 2014). These descriptors have
been pre-computed and provided with the dataset. The bow inclination is defined as
the angle between the instrument plane and the bow, as depicted in Fig. 3.2. The
bow velocity is the time derivative of the bow transversal position. We refer the
reader to Maestre’s thesis work (Maestre, 2009) for a mathematical definition of these
quantities. The motion activation matrix, Hmj

for j ∈ (1, J) is then built using the
following simple strategy:

1. In the first step, we uniformly quantize the bow inclination for each instrument
into 4 bins based on the maximum and minimum inclination values. A binary
encoded matrix of size 4×N is then created where the row corresponding to the
active bin is set to 1 and the rest to 0 for each time frame.
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Figure 3.3. Motion representation.
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3.3 EXPERIMENTAL VALIDATION

2. With such a simple descriptor we already have information about the active
string within each time window. We then do a pointwise multiplication of each
component with the absolute value of the bow velocity. Intuitively, this gives us
information about string excitation. Fig. 3.3 visualizes the effectiveness of this
step, where Fig. 3.3a depicts the quantized bow inclination vector components,
overlapped for two sources. Notice, especially in the third subplot, that there are
several places where the components overlap and the contrast between the motion
of these sources is difficult to see. However, once it is multiplied with the bow
velocity (in Fig. 3.3b) the differences are much more visible.

3.3 Experimental validation

We conduct several tests over a set of challenging mixtures to judge the performance
of the proposed approach.

3.3.1 Dataset

We use the publicly available Ensemble Expressive Performance (EEP) dataset1

(Marchini et al., 2014). This dataset contains 23 multimodal recordings of string
quartet performances (including both ensemble and solo). These recordings are
divided into 5 excerpts from Beethoven’s Concerto N.4, Op. 18. Four of these, labeled
from P1 to P4 contain solo performances, where each instrument plays its own part
in the piece. We use these solo recordings to create mixtures for source separation.
Note that due to unavailability of microphone recording for the solo performance of
the second violin in the quartet we consider mixtures of three sources, namely: Violin
(vln), Viola (vla) and Cello (cel). The acquired multimodal data consists of audio
tracks and motion capture for each musician’s instrument performance.

1 http://mtg.upf.edu/download/datasets/eep-dataset
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3.3.2 Experimental setup

For evaluating the performance of the proposed methods in different scenarios we
consider the following three different mixture sets:

1. Set 1 – 4 trios of violin, viola and cello, one for each piece denoted by P1, P2,
P3, P4 in Table 3.1.

2. Set 2 – 6 two-source combinations of the three instruments for pieces P1 and P2.
3. Set 3 – 3 two-source combinations of the same instrument from different pieces,

e.g., a mix of 2 violins from P1 and P2.

Our approach is compared with the following baseline and state-of-the-art methods:

1. Mel NMF (Spiertz and Gnann, 2009) – This is a unimodal approach where basis
vectors learned from the mixture are clustered based on the similarity of their
Mel-spectra. We take help of the example code provided online for implementation
of this baseline method.2

2. MM Initialization (Sedighin et al., 2016) – This is a multimodal method where
the audio activation matrix is initialized with the motion activation matrix during
the NMF parameter estimation.

3. MM Clustering (Sedighin et al., 2016) – Here, after performing NMF on audio,
basis vectors are clustered based on the similarity between motion and audio
activations. The basic idea behind the clustering algorithm is that if an audio
activation vector, hk belongs to source sj, then the rank of the matrix obtained
after stacking together hk and bow velocity of the corresponding source should be
close to 1. For more details the reader is referred to (Sedighin et al., 2016).

Note that, for the latter two methods, as done by the authors, we utilize the
Itakura-Saito (IS) divergence cost function. Code provided by Févotte and Idier
(2011) is used for standard NMF algorithms.

The audio is sampled at 44.1 kHz. We compute the spectrogram with a Hamming
window of size 4096 (92 ms) and 75% overlap for each 30 sec excerpt. Thus, we have
a 2049×N matrix. Here N is the number of STFT frames. Since the MoCap data

2 http://www.ient.rwth-aachen.de/cms/dafx09/
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is sampled at 240 Hz, each of the selected descriptors is resampled to match the N

STFT audio frames. For all the runs the proposed method hyperparameters were set
at α = 10 and β = 0.3 after preliminary testing. As discussed in section 3.2.3, the
number of components for each instrument is set to 4. NMF for each of the methods
is run for 100 iterations. For each mixture, all the methods are run 5 times due to
random initialization and the reconstruction is performed using a soft mask. The
average of each evaluation metric over these runs is displayed in Table 3.1.

Evaluation metrics: We report the Signal to Distortion Ratio (SDR) computed
using the BSS_EVAL Toolbox version 3.0 (Vincent et al., 2006). This standard
quantitative performance metric for source separation is defined as:

SDR := 10 log10
starget

einterf + enoise + eartif
(3.3)

where starget is the projection of estimated source onto the reference source signal and
einterf, enoise, eartif are the interference, noise and artifact error terms, respectively.

3.3.3 Results and discussion

The results are as presented in Table 3.13, where the best SDR for each mixture is
displayed in bold. Our method clearly outperforms the baselines and the state-of-
the-art methods for highly challenging cases of trios (Set 1) and duos involving the
same instrument (Set 3). For the third set of mixtures, where we compose mixtures
of similar instruments, audio only methods would not be able to cluster the spectral
patterns well as the timbral features would be very similar. Motion information clearly
plays a crucial role for disambiguation and indeed the proposed method outperforms
all the others by a large margin.

Particularly, notice that the multimodal baselines do not perform well. The MM
3 Please note that in chapters 3 and 4 we fixed two issues with our STFT–ISTFT code: (1)

corrected edge processing by zero-padding the input and (2) used a periodic window to make sum of
overlapping windows constant for overlap-add scheme. These changes and random initialization
lead to slight differences in values when compared with their published versions. However, our
conclusions remain unchanged.
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3 MOTION-INFORMED AUDIO SOURCE SEPARATION

initialization relies on setting to zero the coefficients where there is no motion. This
might not prove to be the best strategy with such a dataset because even during the
inactive period of the audio there is some motion of the hand. On the other hand,
multimodal clustering depends on the similarity between source motion activation
centroids and audio activations. As we observe during the experiments, such a
similarity is not very obvious for the data we use and the method ends up assigning
most vectors to a particular cluster.4

Despite its overall good performance it is worth noting that for trio mixtures the
proposed method performs poorly with P2. In fact, all the mixtures involving the
viola from the second piece seem to have worse performance than others. We note
that the separation for the viola suffers. One possible reason for this could be that,
for P2, the motion descriptors of the viola with respect to the violin and the cello
overlap in parts. As a consequence, the estimation of W for such cases is poor.

Note that the optimal value for α, which is held constant here, would differ for
each recording. Thus, it should be possible to tune that parameter to gain the best
performance, as could be achieved by an audio engineer through a knob controlling
α, in a real world audio production setting. Also, note that we work with a limited
number of components which is probably not well suited for some of these cases.

3.4 Conclusion

We have proposed a method for coupling motion and audio activations through soft
ℓ1 constraint within the NMF framework. This allows us to jointly factorize and
cluster the audio spectral components. The results obtained on the multimodal string
instrument dataset are encouraging and serve as a proof-of-concept for using motion
as auxiliary information for NMF-based source separation. Moreover, motion is
shown to be particularly useful for mixtures of acoustically similar sources that “move”
differently. However, as we discuss next, this method’s applicability to unconstrained

4 We also observed that MM methods with KL divergence did not yield better results than IS.
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3 MOTION-INFORMED AUDIO SOURCE SEPARATION

videos where no explicit motion information is provided is not straightforward. This
leads us to our second approach termed cross-modal regression.
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4
Cross-modal regression for

separating visually-indicated
sounds

Synopsis
We introduce novel joint and sequential multimodal approaches for the task of single
channel audio source separation in videos. Specifically, we present methods that utilize the
non-negative least squares formulation to couple motion information extracted from video
with audio. The proposed techniques generalize work discussed in the previous chapter and
easily extend to video data. Experiments with two distinct multimodal datasets of string
instrument performance recordings illustrate their advantages over the existing methods.

4.1 Introduction

Several sounds in the real world are visually indicated through their relation to the
sound-producing motion. This chapter focuses on single channel audio source separa-
tion in audiovisual recordings of such sound mixtures by leveraging the accompanying
motion information in the visual stream. While the previous chapter provided a
proof-of-concept for coupling motion and audio, its straightforward application to

41



4 CROSS-MODAL REGRESSION

generic videos is difficult. In particular, we explicitly constructed a motion activation
matrix using specific inputs such as bow inclination. It is difficult to obtain precise
information about quantities such as inclination in real world scenarios. Moreover,
the formulation makes it difficult to flexibly modify the number of audio basis vectors.
These factors limit the method’s applicability and performance. In this chapter,
we extend and improve upon these shortcomings by proposing joint and sequential
NMF-based approaches for linking motion and audio through cross-modal regression.

The intuition behind this work is as follows: motion features such as velocity,
obtained from visual analysis, encode information about the physical excitation of
a sounding object. On the other hand, for the audio modality, a representation of
this excitation can be found in the spectral component activation matrix obtained
after NMF decomposition. Thus, our hypothesis is that a set of audio activations
would be “similar” to the velocity of sound-producing motion. We establish the idea’s
effectiveness for audio source separation through experiments on two very challenging
multimodal string quartet performance datasets involving video and motion capture
data.

Chapter outline. In section 4.2 we discuss various components of our approach
such as motion processing and the proposed NMF parameter estimation strategies.
This is followed by experimental results for source separation on two music perform-
ance datasets in section 4.3. We also show qualitative results for visual localization
of the sound-producing motion, which is obtained as a by-product of our method.

4.2 Proposed approach

As already discussed, when dealing with only a single mixture, without a training
step as in the supervised case (Wang and Plumbley, 2006), the source separation
problem in the NMF framework reduces to assigning the appropriate spectral patterns,
i.e., each of the K components in the columns of W, to the J sources. Here we
propose methods to guide this assignment by using the associated source-specific
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4.2 PROPOSED APPROACH

motion information through cross-modal regression. We discuss next each building
block of our approach depicted in Fig. 4.1. We take as input the audio mixture and
a set of video frames. The input frames are processed to extract motion features
(section 4.2.1), while a time-frequency representation is computed from the audio
mix. These are then used for estimating model parameters (section 4.2.2) and source
reconstruction (section 4.2.3).

motion
processing

(A)

STFT |.| (or |.|2)

proposed parameter estimation
methods

Sequential
NMF–NNLS (or Sparse NNLS)

Joint NMF–Sparse NNLS

(B)

audio component assignment
and

source reconstruction
(C)

Image sequence

Audio

Figure 4.1. Overview of our approach. The image sequence is processed to extract
average velocities over motion clusters (A). This information is used together with audio
for clustering NMF spectral components in the parameter estimation block (B). Finally, we
reconstruct each source based on the estimated clusters (C).

4.2.1 Motion processing unit

The motion data must be suitably processed to establish meaningful cross-modal
relations. To begin with, for image sequences extracted from videos we assume that
the spatial location of each moving AV object is known (in a user-assisted manner
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4 CROSS-MODAL REGRESSION

or otherwise), as shown through the bounding boxes in Fig. 4.2. Note that J audio
sources correspond to the same number of visual objects in the images. For each such
moving region we proceed as follows:

• First, motion trajectory segmentation is performed on the image sequence using a
state-of-the-art multicuts-based formulation (Keuper et al., 2015). As shown in
Fig. 4.2, here the idea is to cluster point trajectories with respect to their motion
similarity.

• Next, for each trajectory, we compute the velocity by taking differences over
consecutive frames in x-y directions.

• In the final step, average magnitude velocities over all trajectories in each cluster
are computed frame-wise.

Thus, we get Cj motion clusters per audio source (each source being associated to a
different performer’s bounding box). Their velocity vectors are resampled in time
to match the N STFT frames and arranged in the columns of a matrix M ∈ RN×C

+

where C = ∑J
j=1 Cj.

4.2.2 Model parameter estimation

To illustrate the central idea of the methods given below, assume that the magnitude
trajectory of a violinist’s bow velocity, given by mvbow ∈ RN

+ is known for a string
quartet performance recording, along with the NMF decomposition of the input audio
mixtures’s magnitude spectrogram, V ≈WH. We can then try to determine a linear
transformation αvbow ∈ RK

+ of the activation matrix H such that H⊤αvbow is similar
to mvbow with respect to ℓ2-norm based reconstruction error. This can be formulated
as a non-negative least squares (NNLS) cost function. The nonnegativity of αvbow

allows for part-based decomposition of mvbow. This can be interpreted as the strength
of the contribution of each spectral pattern activation vector, hk for reconstruction.
We use this later for assigning NMF components to audio sources. Ideally, we expect
αvbow to be sparse. In other words, to be concentrated on a few coefficients which
indicate that few activations of spectral patterns are linked to bow velocity.
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t

v

Motion

segmentation

Average cluster

velocities

Figure 4.2. Motion Processing Unit: For each bounding box in the video (left), we
compute motion segmentation using the multicuts algorithm (Keuper et al., 2015) (centre)
and finally, average velocities over each cluster (right). Some clusters in pink, green, blue
(foreground) and red (background) are visible. The graph on the right is only a sketch.

Thus, at this step of the algorithm, we determine this linear transformation,
denoted by αc, for each velocity vector mc ∈ RN

+ in M, where c = 1 · · ·C, with the
expectation that the ones corresponding to the sound-producing motion would be
sparse as stated in the illustrative example above.

Defining the nonnegative linear combination coefficient matrix as A =
[α1, . . . , αC ], the following joint and sequential pathways could be taken for de-
termining A while minimizing the Frobenius reconstruction error between M and
H⊤A:

Sequential estimation. Two alternative schemes are considered here:

1. NMF + NNLS: After obtaining a blind NMF decomposition of the audio
mixture, we perform NNLS where the objective is to determine A that best recon-
structs M from the given audio activations H. This can be written mathematically
as:

45



4 CROSS-MODAL REGRESSION

minimize ∥M−H⊤A∥2
F

subject to A ≥ 0,
(4.1)

where A ≥ 0 denotes nonnegative entries of matrix A. The above formulation is
equivalent to solving the NMF problem with H held constant.

2. NMF + Sparse NNLS: Within the previous formulation, concentration of αc

on a few coefficients can be achieved by incorporating a sparsity constraint. This
can be achieved through an ℓ1-regularization term as follows:

minimize ∥M−H⊤A∥2
F + µ∥A∥1

subject to A ≥ 0,
(4.2)

where µ is a positive constant. Equation (4.2) can be looked at as a sparse-NMF
formulation where the basis vectors (here H⊤) are held constant.

Joint NMF-Sparse NNLS. Here we propose a novel joint formulation where the cost
functions for audio factorization and sparse-NNLS are simultaneously minimized:

C(W, H, A)= DKL(V|WH) + λ∥M−H⊤A∥2
F + µ∥A∥1, (4.3)

where DKL(.|.) is the Kullback-Leibler divergence and λ is a regularization parameter.
Note that it is trivial to minimize the cost function in absence of scaling constraints:
C(γW, H/γ, Aγ) < C(W, H, A). Taking γ close to zero would lead to degenerate
solutions. Therefore, we constrain the columns of W = [w1, . . . , wK ] to have unit
norm (Eggert and Korner, 2004):

minimize DKL(V|WH) + λ∥M−H⊤A∥2
F + µ∥A∥1

subject to W ≥ 0, H ≥ 0, A ≥ 0

∥wk∥ = 1, ∀k

(4.4)

Details regarding the update rules for each variable and implementation are
summarized in Algorithm 4.1. Specifically, we use multiplicative update heuristics,
as explained by equation 2.15, to derive rules for H, W and A given on line (8),
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(10) and (13) of Algorithm 1 respectively.1 The update rule for W is derived as
in (Le Roux et al., 2015). Computationally, in each iteration, updating W costs
O(FKN), whereas H and A updates require O(FKN + CKN) and O(CKN),
respectively. Thus, the global per iteration complexity is O(FKN + CKN). Since,
usually C < F this is comparable to per iteration cost of NMF i.e. O(FKN).

To avoid confusion and clutter in Algorithm 4.1, we use Λ = WH. Product ⊙,
division and exponents denote element-wise operations, 1 denotes a matrix with all
entries equal to one and size given by context.

4.2.3 Audio spectral pattern assignment and reconstruction

Once we obtain A, which contains αc for each of the C velocity clusters, the k-th
basis vector is assigned to the jth source if argmaxc αkc belongs to the jth source
cluster. Once these assignments are made, we perform soft mask reconstruction for
each source (equation 2.16) using Wj and Hj, the submatrices for spectral patterns
and their activations assigned to the jth source by the above-mentioned scheme.

4.3 Results and discussion

The performance of the proposed method is evaluated through tests with two distinct
multimodal datasets. General implementation details common to all experiments
are detailed below. Some separation results and supplementary material is made
available on our companion web page.2 We evaluate with the following techniques
(See Section 4.2.2):

• LS: NMF + NNLS;
• spLS: NMF + Sparse-NNLS with µ = 5;
• JLS Rand: Joint NMF-Sparse NNLS with W and H initialized randomly, λ =

0.01 and µ = 0.1;
1 Parameter updates are derived in appendix A.
2 https://goo.gl/y7A5az
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Algorithm 4.1. Joint NMF-Sparse NNLS .

1: Input: V, M, K, λ ≥ 0, µ ≥ 0

2: W, H, A initialized randomly

3: H← diag(∥w1∥, . . . , ∥wK∥)H

4: A← diag(∥w1∥−1, . . . , ∥wK∥−1)A

5: W←Wdiag(∥w1∥−1, . . . , ∥wK∥−1) ▷ Normalize

6: Λ = WH

7: repeat

8: H← H⊙
W⊤ (V⊙Λ−1) + λAM⊤

W⊤1 + λAA⊤H
9: Λ = WH

10: W←W⊙
(Λ−1 ⊙V)H⊤ + W⊙

(
1(W⊙ (1H⊤)

)
1H⊤ + W⊙ (1(W⊙ ((Λ−1 ⊙V)H⊤)))

11: W←Wdiag(∥w1∥−1, . . . , ∥wK∥−1)

12: Λ = WH

13: A← A⊙
λHM

λHH⊤A + µ
14: until convergence

15: return W, H, A
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• JLS NMF: Joint NMF-Sparse NNLS with W and H initialized using the output
obtained after applying NMF to the mixture, λ = 0.01 and µ = 0.1.

General Implementation Details. For all the experiments, audio spectrograms
are computed with a Hamming window of size 4096 and 75% overlap. Thus, we
have a 2049×N matrix where N is the number of STFT frames. Code provided by
Févotte and Idier (2011) is used for the standard NMF algorithms. LS and spLS
formulations are implemented using publicly available sparse-NMF code (Le Roux
et al., 2015), with sparsity set to zero for LS.

Evaluation metrics. We report Signal to Distortion Ratio (SDR) expressed in dB
(see equation 3.3), computed using the BSS_EVAL Toolbox version 3.0 (Vincent
et al., 2006). NMF for each of the methods is run for 200 iterations. For each
mixture, all methods are run 5 times with different random initializations and the
reconstruction is performed using a soft mask. SDR is averaged over all runs and
mixtures of each set.

Table 4.1. MoCap Dataset (Marchini et al., 2014): SDR for different methods averaged
over mixtures of each set. Best SDR is displayed in bold.

Methods Mixtures

Set 1 (trios) Set 2 (duos–diff) Set 3 (duos–same)

LS 1.0 3.8 0.9
spLS 1.0 3.7 0.8
JLS Rand 1.0 3.8 0.7
JLS NMF 2.1 4.7 1.1

sMcNMF 1.3 3.8 2.2
Mel NMF 1.0 5.3 −0.8
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4.3.1 Experiments with motion capture data

These experiments are performed with the EEP dataset. Bow velocity descriptor for
each source is used as a substitute for the velocities extracted from moving regions.
This is meant to validate the proposed factorization schemes with “ideal” motion
features before considering the more challenging video scenario as described in Sec
4.2.1. Thus in this simple case, the total number of clusters in M is equal to the
number of sources in each mixture (C = J). For all the proposed methods the number
of audio components is set to (15× J), e.g. K = 30 for mixtures with 2 sources.

Table 4.2. URMP Video (Li et al., 2016b): SDR for different methods averaged over
mixtures of each set. Best SDR is displayed in bold.

Methods Mixtures

Duos Trios Quartet

LS 7.0 3.0 0.4
spLS 7.1 2.8 0.4
JLS Rand 5.8 1.6 −1.9
JLS NMF 6.9 2.8 0.3

Mel NMF 5.5 1.6 −1.1

We compare with audio-only Mel NMF clustering (Spiertz and Gnann, 2009) and
our previous approach, Soft Motion Coupled NMF (sMcNMF).

Discussion: From Table 4.1 we see that the joint approach with audio-NMF initial-
ization outperforms all the other methods for the first set and achieves competitive
performance for the second. We observe that for Set 2, the JLS NMF approach
outperforms the baseline in 4 out of 6 mixtures. When compared with its random
version, it seems to converge both faster and better. Moreover, it appears that
sparsity for sequential NNLS does not provide significant improvements over LS.
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As expected, spLS attempts to concentrate weight on a few coefficients, but these
are not very different from those yielded by LS. Also, as we are only interested in
maximum values for component assignment, any existing differences are not visible
in the reconstruction.

When confronted with sources having similar motion, the performance of the pro-
posed methods is deemed to degrade. In this respect, the EEP dataset is particularly
challenging, as we find multiple mixture segments with similar motion. In such cases
information such as bow inclination (used by sMcNMF) proves to be quite useful. It
is worth mentioning that for some mixtures, all the proposed methods outperform
the baselines by a large margin.

4.3.2 Experiments with videos

In this second series of experiments, we apply the proposed methods to videos. As
no standard dataset exists for such a task, we consider the only publicly available
example video from the URMP dataset (Li et al., 2016b).3 We are provided with
video recording of a string quartet performance and the separate audio tracks for
each player. We consider a 5s excerpt from 30-35s and compute the motion trajectory
segmentation for each moving region bounding box (as depicted in Fig. 4.2) using
publicly available binary from (Keuper et al., 2015) with default parameter setting.
The calculated velocity trajectories are resampled to match N STFT frames. We
consider all two, three and four source combinations, denoted by Duos (6 mixtures),
Trios (4 mixtures) and Quartet (1 mixture) in Table 4.2. We compare only with
Mel-NMF as sMcNMF or the other NMF-based methods are not designed to deal
with generic videos. As in the previous case, K is set to (15× J) for all methods.

Discussion: The efficacy of the proposed methods is seen from the results in Table
4.2, with particular emphasis on good initialization for the joint approach. The

3 The full dataset is yet to be released. Sample video 32- The Art of the Fugue can be found at
http://www.ece.rochester.edu/projects/air/projects/datasetproject.html
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4 CROSS-MODAL REGRESSION

Figure 4.3. Localization results for the first frame of cello and violin. The clusters
corresponding to the hand i.e. the bowing motion (in white) have been identified in both
cases.

quartet is a particularly difficult case where we observed that none of the methods
work consistently well over all five runs and the SDR variance is high.

Unlike the previous experiment, here we have multiple velocity clusters to choose
from, which makes the problem considerably more difficult. We note that the meth-
ods deal reasonably well with low velocity unrelated/noisy clusters as they are not
strongly related to any audio activation. Interestingly, it is possible to identify motion
trajectory clusters responsible for the sound of each source using A. As indicated by
argmaxc αkc, for each source we can determine the velocity cluster with maximum
audio component assignments. These localization results are illustrated in Fig. 4.3
for a mixture of violin and cello. This provides additional evidence for our hypothesis
and the proposed estimation methods.
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4.4 Conclusion

To summarize, we have proposed novel motion-assisted methods for audio source
separation. This was done by exploiting features encoding physical excitation inform-
ation in both modalities. We aim to determine non-negative coefficients to regress
motion from audio activations. In addition to demonstrating the usefulness of this
idea through sequential techniques, we present and derive algorithm for an original
joint formulation. While the extension to audio denoising is straightforward, in their
current form, the methods cannot deal with high amplitude noisy visual motion.

For the particular case of musical mixtures, score information would prove to be
very beneficial in guiding source separation. It can certainly be incorporated within
the present framework, which will be a topic for further study. Several other loss
functions and non-linear methods for establishing similarity could be experimented
with for better performance and wider applicability.

We have shown the usefulness of motion–audio correlation in the context of audio
source separation. Its contribution to robust source disambiguation for acoustically
similar objects is worth highlighting. These developments complement the use of
other types of auxiliary information such as score (Fritsch and Plumbley, 2013),
audio timbre (Spiertz and Gnann, 2009), text (Le Magoarou et al., 2015), humming
(Smaragdis and Mysore, 2009), etc. A source of side information that is particularly
relevant to this thesis and readily available to visual systems is object appearance.
In the chapters that follow, we aim to develop methods that use audio–appearance
co-occurrence to tackle various AV scene understanding tasks.
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5
Weakly supervised representation

learning for AV events

Synopsis
Audio-visual representation learning is an important task from the perspective of designing
machines with the ability to understand complex events. To this end, we propose a novel
multimodal framework that instantiates multiple instance learning. We show that the
learnt representations are useful for classifying events and localizing their characteristic
audio-visual elements. The system is trained using only video-level event labels without
any timing information. An important feature of our method is its capacity to learn from
unsynchronized audio-visual events. We achieve state-of-the-art results on a large-scale
dataset of weakly-labeled audio event videos. Visualizations of localized visual regions
and audio segments substantiate our system’s efficacy, especially when dealing with noisy
situations where modality-specific cues appear asynchronously.

5.1 Introduction

In this chapter, we propose a framework to learn AV representations from large
unconstrained video collections involving generic AV objects. As we show later, such
representations are particularly useful for identifying and characterizing events that
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can be perceived via distinct audio and visual cues, for e.g. a ringing phone or a
car passing by. This complements work discussed in earlier chapters wherein we
exploited motion-audio correlation for tackling visually-indicated sounds. While such
correlations prove to be effective for audio source disambiguation and visual motion
localization, they do not suffice for tackling problems such as object classification
and localization. For instance, two music instruments such as a guitar and mandolin
that are visually and acoustically very different may be “struck” in a similar fashion.
Consequently, motion–audio relations cannot be used for detecting these objects
in either of the modalities. Moreover, they may not always exist or be visible in
“in-the-wild” videos. This is particularly true for objects such as car, phone etc., thus
requiring a complementary multimodal association mechanism, namely appearance–
audio co-occurrence. We leverage this in large datasets to build a more comprehensive
AV analysis system capable of performing classification, localization and separation.

Obtaining precisely annotated data for performing the forgoing tasks is an ex-
pensive endeavor, made even more challenging by multimodal considerations. The
annotation process for object localization in both the modalities is not only error
prone and time consuming but also subjective to an extent. Often, event boundaries
in audio, extent of video objects or even their presence is ambiguous. Thus, we opt for
a weakly-supervised learning approach using data with only global video-level event
labels, that is labels given for whole video documents without timing information.

Problem description. To motivate our tasks and method, consider a video
labeled as “train horn”, depicted in Fig. 5.1. Assuming that the train is both visible
and audible at some time in the video, in addition to identifying the event, we are
interested in learning representations that help us answer the following1:

• Where is the visual object or context that distinguishes the event? In this case it
might be the train (object) or tracks, platform (context) etc. We are thus aiming
for their spatio-temporal localization in the image sequence (this chapter).

1 The parentheses at the end of each bullet point indicate the chapter in which we tackle the
corresponding question
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Figure 5.1. Pictorial representation of the problem: Given a video labeled as
“train horn”, we would like to: (i) identify the event, (ii) localize both, its visual presence
and the temporal segment(s) containing the characteristic sound, and (iii) segregate the
characteristic audio cue from the background. Note that the train horn may sound before
the train is visible. Our model can deal with such unsynchronized AV events.

• When does the sound event occur? Here it is the train horn. We thus want to
temporally localize the audio event (this chapter).

• Where is the audio object? Here we are interested in audio source extraction i.e.
segregating the source of interest from the background sounds (next chapter).

The variety of noisy situations that one may encounter in unconstrained environ-
ments or videos adds to the difficulty of this very challenging problem. Apart from
modality-specific noise such as visual clutter, lighting variations and low audio signal-
to-noise ratio, in real-world scenarios the appearance of audio and visual elements
characterizing the event are often unsynchronized in time. This is to say that the
train horn may sound before or after the train is visible, as in previous example. In
the extreme, not so rare case, the train may not appear at all. The latter is also
commonly referred to as “off–screen” audio. We are interested in designing a system
to tackle the aforementioned questions and situations.

Prior research has utilized audio and visual modalities for classification and localiz-
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ation tasks in various contexts. Fusing modality-specific hand-crafted or deep features
has been a popular approach for problems such as multimedia event detection and
video concept classification (Jiang et al., 2009b; Chang et al., 2007; Jiang et al., 2018,
2013). On the other hand, AV correlations have been utilized for localization and
representation learning in general, through feature space transformation techniques
such as canonical correlation analysis (CCA) (Izadinia et al., 2013; Kidron et al.,
2005) or deep networks (Owens et al., 2016a,b; Arandjelović and Zisserman, 2017a,b;
Andrew et al., 2013). However, a unified multimodal framework for our task, that is
learning data representations for simultaneously identifying real world events and the
AV cues depicting them has not been extensively studied in previous works.

Chapter outline. We begin by briefly mentioning connections and distinctions
with related works in Section 5.2. This is followed by a description of the proposed
framework and its instantiations for tackling classification and localization in Section
5.3. Finally, we validate the usefulness of the learnt representations for these tasks
with a thorough analysis in Section 5.4.

5.2 Related work

To position our work, we briefly discuss some relevant literature that employs weakly
supervised learning for object localization and event detection in computer vision and
machine listening, respectively. We also dileneate several distinctions between the
present study and recent multimodal deep learning approaches.

5.2.1 Visual object localization and classification

There is a long history of works in computer vision applying weakly supervised learning
for object localization and classification. MIL techniques have been extensively used
for this purpose (Zhang et al., 2006; Bilen et al., 2014b; Oquab et al., 2015; Kantorov
et al., 2016; Bilen and Vedaldi, 2016; Zhou et al., 2016; Cinbis et al., 2017). Typically,
each image is represented as a set of regions. Positive images contain at least one
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region from the reference class while negative images contain none. Latent structured
output methods, e.g., based on support vector machines (SVMs) (Bilen et al., 2014a)
or conditional random fields (CRFs) (Deselaers et al., 2010), address this problem by
alternating between object appearance model estimation and region selection. Some
works have focused on better initialization and regularization strategies (Kumar et al.,
2010; Song et al., 2014; Cinbis et al., 2017) for solving this non-convex optimization
problem.

Owing to the exceptional success of convolutional neural networks (CNNs) in
computer vision, recently, several approaches have looked to build upon CNN archi-
tectures for embedding MIL strategies. These include the introduction of operations
such as max pooling over regions (Oquab et al., 2015), global average pooling (Zhou
et al., 2016) and their soft versions (Kolesnikov and Lampert, 2016). Another line
of research consists in CNN-based localization over class-agnostic region proposals
(Gkioxari et al., 2015; Bilen and Vedaldi, 2016; Kantorov et al., 2016) extracted using a
state-of-the-art proposal generation algorithm such as EdgeBoxes (Zitnick and Dollár,
2014), Selective Search (Uijlings et al., 2013), etc. These approaches are supported
by the ability to extract fixed size feature maps from CNNs using region-of-interest
(Girshick, 2015) or spatial pyramid pooling (He et al., 2015). Our work is related to
such techniques. We build upon ideas from the two-stream architecture (Bilen and
Vedaldi, 2016) for classification and localization.

State-of-the-art end-to-end object detection networks such as Faster RCNN (Ren
et al., 2015) and its instance segmentation extension Mask RCNN (He et al., 2017)
incorporate proposal generation as part of the system (region proposal network)
instead of a separate stage. Nonetheless, these approaches require label annotations
for different regions. It is also worth mentioning that some works have extended
class-agnostic proposal generation from 2D images to video tube proposals for tasks
such as action localization (Van Gemert et al., 2015) and object detection (Oneata
et al., 2014). However, these involve a computationally expensive pipeline preventing
large-scale usage.
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5.2.2 Audio event detection

A significant amount of literature exists on supervised audio event detection (AED)
(Mesaros et al., 2015; Zhuang et al., 2010; Adavanne et al., 2017; Bisot et al., 2017).
However, progress with weakly labeled data in the audio domain has been relatively
recent. An early work (Kumar and Raj, 2016) showed the usefulness of MIL techniques
to audio using SVM and neural networks.

The introduction of the weakly-labeled audio event detection task in the 2017
DCASE challenge (Mesaros et al., 2017)2, a challenge on Detection and Classification
of Acoustic Scenes and Events (DCASE), along with the release of Google’s AudioSet
data3 (Gemmeke et al., 2017), has led to accelerated progress in the recent past.
AudioSet is a large-scale weakly-labeled dataset of audio events collected from You-
Tube videos. A subset of this data was used for the DCASE 2017 task on large-scale
AED for smart cars.4 Several submissions to the task utilized sophisticated deep
architectures with attention units (Xu et al., 2017), as well as max and softmax
operations (Salamon et al., 2017). Another recent study introduced a CNN with
global segment-level pooling for dealing with weak labels (Kumar et al., 2017). While
we share with these works the high-level goal of weakly-supervised learning, apart
from our multimodal design, our audio sub-module, as discussed in the next section,
is significantly different.

5.2.3 Differences with recent AV deep learning studies

We formulate the problem as a MIL task using class-agnostic proposals from both
video frames and audio. This allows us to simultaneously solve the classification
and localization problems. Finally, by construction, our framework deals with the
difficult case of asynchronous AV events. This is significantly different from recent
multimodal deep learning based studies on several counts: Contrary to prior works,
where unsupervised representations are learnt through audio–image correlations (tem-

2 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
3 https://research.google.com/audioset/
4 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
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Figure 5.2. High level view of the proposed approach: Given a video captured
using a single microphone and camera, we propose the depicted framework for weakly
supervised representation learning.

poral co-occurrence), we adopt a weakly-supervised learning approach using event
classes. Unlike (Arandjelović and Zisserman, 2017b; Owens et al., 2016a,b), we focus
on localizing both, discriminative audio and visual components for real-world events.

5.3 Proposed framework and its instantiation

The tasks under consideration can be naturally interpreted as MIL problems (Diet-
terich et al., 1997b). MIL is typically applied to cases where labels are available over
bags (sets of instances) instead of individual instances. The task then amounts to
jointly selecting appropriate instances and estimating classifier parameters. In our
case, a video can be seen as a labeled bag, containing a collection of visual and audio
proposals. The term proposal refers to image or audio “parts” that may potentially
constitute the object of interest. This step is at the core of our approach.

The key idea, as illustrated in Fig. 5.2, is to extract features from generated
proposals and transform them for: (1) scoring each according to their relevance for
class labels; (2) aggregating these scores in each modality and fusing them for video-
level classification. This not only allows us to train both the sub-modules together
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Figure 5.3. Module design: Given a video, we consider the depicted pipeline for going
from audio and visual proposals to localization and classification. Here Wcls and Wloc

refer to the fully-connected classification and localization streams respectively; σ denotes
softmax operation over proposals for each class, ⊙ refers to element-wise multiplication;
Σ to a summation over proposals and ℓ2 to a normalization of scores. During training we
freeze the weights of blocks denoted in blue.

through weak-supervision but also enables localization using the proposal relevance
scores. Moreover, use of both the modalities with appropriate proposals makes the
system robust against noisy scenarios. In the current and following chapters, we
present different task-specific variants of this general framework.

We now formalize the design of each building block to specifically tackle event
classification, visual object and audio event localization. An overview is provided
in Fig. 5.3. We model a video V as a bag of M selected image regions, R =
{r1, r2, . . . , rM}, obtained from sub-sampled frames and T audio segments, S =
{s1, s2, . . . , sT}. Given N such training examples, V = {V (n)}N

n=1, organized into C

classes, our goal is to learn a representation to jointly classify and localize image
regions and audio segments that characterize a class. Each block from proposal
generation to classification is discussed below in detail.
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5.3.1 Generating proposals and extracting features

Visual Proposals. Generating proposals for object containing regions from images
is at the heart of various visual object detection algorithms (Wang et al., 2013;
Girshick et al., 2014). As our goal is to spatially and temporally localize the most
discriminative region pertaining to a class, we choose to apply this technique over
sub-sampled video frame sequences. In particular, we sub-sample the extracted frame
sequences of each video at a rate of 1 frame per second. This is followed by class-
agnostic region proposal generation on the selected frames using EdgeBoxes (Zitnick
and Dollár, 2014). This proposal generation method builds upon the insight that the
number of contours entirely inside a box is indicative of the likelihood of an object’s
presence. Its use in our pipeline is motivated by experiments confirming better
performance in terms of speed/accuracy tradeoffs over most competing techniques
(Hosang et al., 2014). EdgeBoxes additionally generates a confidence score for each
bounding box which reflects the box’s “objectness”. To reduce the computational
load and redundancy, we use this score to select the top Mimg proposals from each
sampled image, I, and use them for feature extraction. Hence, given a 10 second
video, the aforementioned procedure would leave us with a list of M = 10 ×Mimg

region proposals.
A fixed-length feature vector, xv(rm; V ) ∈ Rdv is obtained from each image region

proposal, rm in V , using a convolutional neural network altered with a region-of-
interest (RoI) pooling layer. An RoI layer works by computing fixed size feature
maps (e.g. 6× 6 for caffenet (Krizhevsky et al., 2012)) from regions of an image
using max-pooling (Girshick, 2015). This helps to ensure compatibility between
convolutional and fully connected layers of a network when using regions of varying
sizes. Moreover, unlike Region-based CNN (RCNN) (Girshick et al., 2014), the shared
computation for different regions of the same image using Fast-RCNN implementation
(Girshick, 2015) leads to faster processing. In Fig. 5.3 we refer to this feature extractor
as the base visual network. In practice, feature vectors xv(·) are extracted after RoI
pooling layer and passed through two fully connected layers, which are fine-tuned
during training. Typically, standard CNN architectures pre-trained on ImageNet
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(Deng et al., 2009) classification are used for the purpose of initializing network weights.

Audio Temporal Segment Proposals. We first represent the raw audio wave-
form as a log-Mel spectrogram (Davis and Mermelstein, 1990). Each proposal is then
obtained by sliding a fixed-length window over the obtained spectrogram along the
temporal axis. The dimensions of this window are chosen to be compatible with the
audio feature extractor. For our system we set the proposal window length to 960ms
and stride to 480ms.

We use a VGG-style deep network known as vggish for base audio feature ex-
traction. Inspired by the success of CNNs in visual object recognition Hershey et al.
(2017) introduced this state-of-the-art audio feature extractor as an audio parallel to
networks pre-trained on ImageNet for classification. vggish has been pre-trained on a
preliminary version of YouTube-8M (Abu-El-Haija et al., 2016) for audio classification
based on video tags. It stacks 4 convolutional and 2 fully connected layers to generate
a 128 dimensional embedding, xa(st; V ) ∈ R128 for each input log-Mel spectrogram
segment st ∈ R96×64 with 64 Mel-bands and 96 temporal frames. Prior to proposal
scoring, the generated embedding is passed through a fully-connected layer that is
learnt from scratch.

5.3.2 Proposal scoring network and fusion

So far, we have extracted base features for each proposal in both the modalities and
passed them through fully connected layers in their respective modules. Equipped with
this transformed representation of each proposal, we use the two-stream architecture
proposed by Bilen and Vedaldi (2016) for scoring each of them with respect to the
classes. There is one scoring network of the same architecture for each modality as
depicted in Fig. 5.3. Thus, for notational convenience, we generically denote the
set of audio or visual proposals for each video by P and let proposal representations
before the scoring network be stacked in a matrix Z ∈ R|P|×d, where d denotes the
dimensionality of the audio/visual proposal representation.

The architecture of this module consists of parallel classification and localiza-
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tion streams. The former classifies each region by passing Z through a linear fully
connected layer with weights Wcls, giving a matrix A ∈ R|P|×C . On the other hand,
the localization layer passes the same input through another fully-connected layer
with weights Wloc. This is followed by a softmax operation over the resulting matrix
B ∈ R|P|×C in the localization stream. The softmax operation on each element of B

can be written as:

[σ(B)]pc = ebpc∑|P|
p′=1 ebp′c

, ∀(p, c) ∈ (1, |P|)× (1, C). (5.1)

This allows the localization layer to choose the most relevant proposals for each
class. Subsequently, the classification stream output is weighted by σ(B) through
element-wise multiplication: D = A⊙σ(B) . Class scores over the video are obtained
by summing the resulting weighted scores in D over proposals. Note that the dataset
we use, by construction, allows a region or segment to belong to multiple classes.
Hence, we do not opt for softmax on the classification stream, as done in (Bilen and
Vedaldi, 2016).

After performing the above stated operations for both audio and visual sub-
modules, in the final step, the global video-level scores are ℓ2 normalized and added.
In preliminary experiments we found this to work better than addition of unnormalized
scores. We hypothesize that the system trains better because ℓ2 normalization ensures
that the scores being added are in the same range.

5.3.3 Classification loss and network training

Given a set of N training videos and labels, {(V (n), y(n))}N
n=1, we solve a multi-label

classification problem. Here y ∈ Y = {−1, +1}C with the class presence denoted
by +1 and absence by −1. To recall, for each video V (n), the network takes as
input a set of image regions R(n) and audio segments S(n). After performing the
described operations on each modality separately, the ℓ2 normalized scores are added
and represented by φ(V (n); w) ∈ RC , with all network weights and biases denoted by
w. All the weights, including and following the fully-connected layer processing stage
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for both the modalities, are included in w. Note that both sub-modules are trained
jointly. The network is trained using the multi-label hinge loss on a batch of size B:

L(w) = 1
CB

B∑
n=1

C∑
c=1

max
(

0, 1− y(n)
c φc(V (n); w)

)
. (5.2)

5.4 Experimental validation

Dataset. We use the recently introduced dataset for the DCASE challenge on
large-scale weakly supervised sound event detection for smart cars (Mesaros et al.,
2017). This is a subset of Audioset (Gemmeke et al., 2017) which contains a collection
of weakly-annotated unconstrained YouTube videos of vehicle and warning sounds
spread over 17 classes. It is categorized as follows:

• Warning sounds: Train horn, Air horn, Truck horn, Car alarm, Reversing beeps,
Ambulance (siren), Police car (siren), Fire engine/fire truck (siren), Civil defense
siren, Screaming.

• Vehicle sounds: Bicycle, Skateboard, Car, Car passing by, Bus, Truck, Motorcycle,
Train.

This multi-label dataset contains 51,172 training, 488 validation and 1103 testing
samples. Despite our best efforts, due to YouTube and video downloader issues, some
videos were unavailable, not downloadable or contained no audio. This left us with
48,719 training, 462 validation and 1030 testing clips. It is worth mentioning that the
training data is highly unbalanced with the number of samples for the classes ranging
from 175 to 24K. We provide details regarding different classes and the number of
samples in each in appendix B. To mitigate the negative effect of this imbalance on
training, we introduce some balance by ensuring that each training batch contains
at least one sample from some or all of the under-represented classes. Briefly, each
batch is generated by first randomly sampling labels from a specific list, followed
by fetching examples corresponding to the number of times each label is sampled.
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This list is generated by ensuring higher but limited presence of classes with more ex-
amples. We use a publicly available implementation for this purpose (Xu et al., 2017).5

Baselines. To our best knowledge, there is no prior work on deep architectures
that perform the task of weakly supervised classification and localization for unsyn-
chronized AV events. Our task and method are substantially different from recently
proposed networks like L3 (Arandjelović and Zisserman, 2017a,b) which are trained
using synchronous AV pairs on a large collection of videos in a self-supervised manner.
However, we designed several strong baselines for comparison and an ablation study.
In particular, we compare against the following networks:

1. AV One-Stream Architecture: Applying MIL in a straight-forward manner, we
could proceed only with a single stream. That is, we can use the classification
stream followed by a max operation for selecting the highest scoring regions and
segments for obtaining global video-level scores. As done in (Bilen and Vedaldi,
2016), we choose to implement this as a multimodal MIL-based baseline. We
replace the max operation by the log-sum-exponential operator, its soft approx-
imation. This has been shown to yield better results (Bilen et al., 2014b). The
scores on both the streams are ℓ2 normalized before addition for classification.
This essentially amounts to removing from Fig. 5.3 the localization branches
and replacing the summation over proposals with the soft-maximum operation
described above. To avoid any confusion, please note that we use the term ‘stream’
to refer to classification and localization parts of the scoring network.

2. Visual-Only and Audio-Only Networks: These networks only utilize one of the
modalities for classification. However, note that there are still two streams for
classification and localization, respectively. For a fair comparison and ablation
study we train these networks with ℓ2 normalization. In addition, for completeness
we also implement Bilen et al.’s architecture for weakly supervised deep detection
networks (WSDDN) with an additional softmax on the classification stream. As

5 https://github.com/yongxuUSTC/dcase2017_task4_cvssp/blob/master/data_

generator.py
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the scores are in the range [0,1], we train this particular network with C binary
log-loss terms (Bilen and Vedaldi, 2016). When discussing results we refer to this
system as WSDDN-Type.

3. CVSSP Audio-Only (Xu et al., 2017): This state-of-the-art method is the DCASE
2017 challenge winner for the audio event classification sub-task. The system is
based on Gated convolutional RNN (CRNN) for better temporal modeling and
attention-based localization. They use no external data and training/evaluation
is carried out on all the samples. We present results for both their winning fusion
system, which combines prediction of various models and Gated-RCNN model
trained with log-Mel spectrum.

Implementation details. All systems except that of (Xu et al., 2017), including
variants, are implemented in Tensorflow. They were trained for 25K iterations using
Adam optimizer (Kingma and Ba, 2014) with a learning rate of 10−5 and a batch
size of 24. We use the matlab implementation of EdgeBoxes for generating region
proposals, obtaining approximately 100 regions per video with Mimg = 10 and a
duration of 10s. The implementation is used with default parameter setting. Base
visual features, xv ∈ R9216 are extracted using caffenet (Krizhevsky et al., 2012)
with pre-trained ImageNet weights and RoI pooling layer modification (Girshick,
2015). With 6× 6 RoI pooling we get a 9216 (= 256× 6× 6) dimensional feature
vector. For this, the Fast-RCNN Caffe implementation is used (Girshick, 2015). The
fully connected layers, namely fc6 and fc7, each with 4096 neurons, are fine-tuned,
with 50% dropout during training.

For audio, each recording is resampled to 16 kHz before processing. Log-Mel
spectrum over the whole file is computed with a window size of 25ms and 10ms hop
length. The resulting spectrum is chunked into segment proposals using a 960–ms
window with a 480–ms stride. For a 10–second recording, this yields 20 segments of
size 96× 64. We use the official Tensorflow implementation of vggish.6 The base
audio features extracted from vggish are run through a fully connected layer with

6 https://github.com/tensorflow/models/tree/master/research/audioset
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128 neurons. This layer is learnt from scratch along with the scoring networks during
training.

Metrics. The baselines and proposed systems are evaluated on the micro-averaged
F1 score. The term micro-averaging implies that the F1 score is computed using
a global count of total true positives (TP), false negatives (FN) and false positives
(FP). This was the official metric used by DCASE 2017 smart cars task for ranking
systems (Mesaros et al., 2017). It is mathematically defined as:

F1 = 2P ×R

P + R
, where P = TP

TP + FP , R = TP
TP + FN (5.3)

Here, P and R are the precision and recall measures, respectively. The score thresholds
for each system are determined by tuning over validation data to maximize F1 score
for each class. They are then applied to the test data for final predictions. For further
insight, we also report here the F1 scores for each class.

To quantify sound event detection performance, in addition to the segment-wise
aggregated F1 score, the error rate (ER) is computed. This measure compares the
ground truth and estimated output using one second long sub–segments. For each
sample, ER is computed as:

ER = S + D + I

Ne
, (5.4)

where Ne denotes total number of reference events in all segments and S, D, I cor-
respond to substitution, deletion and insertion errors, respectively. For more details,
please see (Mesaros et al., 2016).7

Results and discussion

Quantitative results. We show in Table 5.1 the micro-averaged F1 scores for
each of the systems described in this chapter. In particular, system (a) in Table 5.1
is the proposed AV system and (b)-(e) present its variants which are also treated

7 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/metrics
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as baselines, (f)-(g) denote results from CVSSP team (Xu et al., 2017), winners of
the DCASE AED for smart cars audio event tagging task. We outperform all the
approaches by a significant margin. Among the multimodal systems, the two-stream
architecture performs much better than the one-stream counter-part, designed with
only a classification stream and soft-maximum for region selection. On the other hand,
the state-of-the-art CVSSP fusion system, which combines predictions of various
models, achieves a better precision than the other methods. Several important and
interesting observations can be made by looking at these results in conjunction with
the class-wise scores reported in Table 5.2.

Most importantly, the results emphasize the complementary role of visual and
audio sub-modules for this task. To see this, we could categorize the data into two
sets: (i) classes with clearly defined AV elements, for instance car, train, motorcycle;
(ii) some warning sounds such as, e.g., reverse beeping, screaming, air horn, where the
visual object’s presence is ambiguous. The class-wise results of the video only system
are a clear indication of this split. Well-defined visual cues enhance the performance
of the proposed multimodal system over audio-only approaches, as video frames
carry vital information about the object. On the other hand, in the case of warning
sounds, video frames alone are insufficient as evidenced by results for the video-only
system. In this case, the presence of audio assists the system in arriving at the correct
prediction. The expected AV complementarity is clearly established through these
results.

Note that for some warning sounds the CVSSP method achieves better results. In
this regard, we believe better temporal modeling for our audio system could lead to
further improvements. In fact, we currently operate with a coarse temporal window
of 960ms, which might not be ideal for all audio events. RNNs could also be used
for further improvements. We think such improvements are orthogonal and were not
the focus of this study. We also observe that results for under-represented classes in
the training data such as air horn and reversing beeps are relatively lower. This can
possibly be mitigated through data augmentation strategies.

Finally, we show the sound event detection performance in Table 5.3. The results
are computed by simply thresholding the two–stream output from the audio sub–
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Table 5.1. Results on DCASE smart cars task test set. We report here the micro-averaged
F1 score, precision and recall values and compare with state-of-the-art. TS is an acronym
for two-stream.

System F1 Precision Recall

(a) Proposed AV Two Stream 64.2 59.7 69.4
(b) TS Audio-Only 57.3 53.2 62.0
(c) TS Video-Only 47.3 48.5 46.1
(d) TS Video-Only WSDDN-Type (Bilen and Vedaldi, 2016) 48.8 47.6 50.1

(e) AV One Stream 55.3 50.4 61.2

(f) CVSSP - Fusion system (Xu et al., 2017) 55.6 61.4 50.8
(g) CVSSP - Gated-CRNN-logMel (Xu et al., 2017) 54.2 58.9 50.2

module at τ = 0 for the predicted label(s). We note that the results are comparable
with the best performing CVSSP system. Note that the winning system for this
subtask from Lee et al. (2017) employs an ensemble method to optimally weigh
multiple learned models, using ER as the performance metric to make the final
selection. No such fine tuning is performed in our case.

Qualitative results. Fig. 5.5 displays several video frames from different eval-
uation videos where we achieve good visual localization for various objects. The
heatmaps shown below the images denote image region (top) and audio segment
detection scores (bottom) for the reference class in sub-figure captions. The x-axis for
the former denotes all the proposals from the subsampled images (in temporal order),
whereas for audio it denotes the overlapping segment time-stamps. The display uses
‘hot’ colormap where black is 0 and white is 1, as depicted in Fig. 5.7. We see that the
most discriminative proposals are found at different time instants for each modality.
Some more positive examples and typical failure modes are shown in Fig. 5.6.

A by-product of our design is the ability to deal with asynchronous AV events.
We present in Fig. 5.7 two examples to demonstrate this. In the first case A, the
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Figure 5.4. Bar graph illustration of class-wise F1 scores from Table 5.2

Table 5.3. F1 score and error rate for sound event detection task

System F1 ER

(a) Proposed AV Two Stream 51.0 0.76
(b) TS Audio-Only 48.5 0.78

(c) CVSSP - Fusion system (Xu et al., 2017) 51.8 0.73
(d) CVSSP - Gated-CRNN-logMel (Xu et al., 2017) 47.5 0.78

(e) SNU - Ensemble method (Lee et al., 2017) 55.5 0.66

sound of a car’s engine is heard in the first two seconds followed by music. The
normalized audio localization heatmap at the bottom displays the scores assigned
to each temporal audio segment, st by the car classifier. The video frames placed
above are roughly aligned with the audio temporal axis to show the video frame at
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the instant when the car sounds and the point where the visual network localizes.
The localization is displayed through a yellow bounding box. To better understand
the system’s output, we modulate the opacity of the bounding box according to the
system’s score for it. Higher the score, more visible the bounding box. As expected,
we do not observe any yellow edges in the first frame. Clearly, there exists temporal
asynchrony, where the system locks onto the car, much later, when it is completely
visible. B depicts an example, where due to extreme lighting conditions the visual
object is not visible. Here too, we localize the audio object and correctly predict the
‘motorcycle’ class.8

5.5 Conclusion

We have proposed a novel approach based on a deep multimodal architecture for
AV events localization and classification. A particular strength of our system is its
capability to deal with asynchronous AV events for which typical visual and audio
cues appear at different time instants. The proposed experiments have demonstrated
the merits of our approach compared to several benchmark methods but have also
shown that a more accurate audio temporal modeling would be needed to better cope
with situations where the visual modality is unavailable.

Elaborating on temporal modeling more generally, we note that in the discussed
instantiation of our framework, each proposal (in both the modalities) is considered
independent of the others. Modeling temporal dependency could help identify re-
peating structures in specific cases such as warning sounds. Incorporating multi-scale
analysis could provide better representation for short and long duration audio cues.
Similarly, for the image sequence, analyzing temporal structure could reveal important
discriminatory motion patterns.

A convenient attribute of our framework is that it can be used in a plug-and-play
fashion i.e. the component design can be flexibly altered. Of particular interest to
us is the proposal design that can be made task-specific. For example, to perform

8 Localization examples with audio can be found at https://youtu.be/C-jrZ9SDMDY
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(a) Train

(b) Bicycle

(c) Car

Figure 5.5. Examples of localization on video frames for a few categories from the test
data. The localization results are shown in green. Below each image we display the scaled
region proposal (top) and audio segment scores for labels referred to in the caption. The
visual heatmap is a concatenation of proposals from all the sub-sampled frames, arranged
in temporal order.

video object segmentation and tracking, one can incorporate spatio-temporal tube
proposals. To this end, it will be interesting to explore the use of recently introduced
tube proposal networks (Vu et al., 2018) - a fully convolutional network (Long et al.,
2015) that takes as input a set of consecutive frames and outputs class-agnostic tube
proposals. However, the method requires object presence or absence supervision for
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(a) Truck

(b) Motorcycle

(c) Failure cases

Figure 5.6. Examples of visual localization (continued). The last row shows typical failure
cases (in red) which include multiple instance grouping and focus on discriminative regions

training and due to their large number proposals it only considers those corresponding
to uniform linear motion. These considerations will need to be appropriately revised
for incorporation within our framework.

In the next chapter, we explore one such possibility with the audio modality where
we modify the proposals for robust classification and incorporating source separation
in noisy scenarios.
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Figure 5.7. Qualitative results for unsynchronized AV events. For both the cases A and
B, the heatmap at the bottom denotes audio localization over segments for the class under
consideration. For heatmap display, the audio localization vector has been scaled to lie
between [0,1]. The top row depicts video frames roughly aligned to the audio temporal axis.
(A) Top: Here we show a video where the visual object of interest appears after the audio
event. This is a ‘car’ video from the validation split. The video frames show bounding
boxes where edge opacity is controlled by the box’s detection score. In other words, higher
score implies better visibility (B) Bottom: This is a case from the evaluation data where
due to lighting conditions, the visual object is not visible. However the system correctly
localizes in audio and predicts the ‘motorcycle’ class.
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6
Robust AV event classification and
audio source separation using weak

supervision

Synopsis
In this chapter, we build upon our AV representation learning framework to perform
object classification in noisy acoustic environments and integrate audio source enhancement
capability. This is made possible by a novel use of non-negative matrix factorization for
the audio modality. Our approach is founded on the multiple instance learning paradigm.
Its effectiveness is established through experiments over a challenging dataset of music
instrument performance videos. We also show encouraging visual object localization results.

6.1 Introduction

In our efforts to build a unified framework to deal with the challenging problem of
automatic AV scene analysis, we presented a first system tackling event identifica-
tion and AV object localization in the previous chapter. Continuing to build upon
that study, in this chapter we focus on making event/object classification robust to
noisy/multisource acoustic environments and incorporating the ability to enhance or
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separate the object in the audio modality. Specifically, while our earlier approach
yields promising results, its audio proposal design has two shortcomings with respect
to our goals: it is (i) prone to erroneous classification in noisy acoustic conditions
and (ii) limited to temporal localization of the audio event or object, thus does not
allow for time-frequency segmentation in order to extract the audio source of interest.
To address these limitations, we propose to generate audio proposals using NMF (Lee
and Seung, 2001).

As already discussed, NMF is a popular unsupervised audio decomposition method
that has been successfully utilized in various source separation systems (Virtanen,
2007; Ozerov and Févotte, 2010; Durrieu et al., 2011) and as a front-end for audio
event detection systems (Heittola et al., 2011; Bisot et al., 2017). The obtained
part-based decomposition is analogous to breaking up an image into constituent
object regions (Ren and Malik, 2003). This motivates its use in our system. It makes
it possible not only to de-noise the audio, but also to appropriately combine the
parts for separation. An interesting work which has appeared recently uses NMF
basis vectors with weak supervision from the visual modality to perform audio source
separation (Gao et al., 2018). There are three key differences with our approach: (i)
The authors of that proposal use the NMF basis vectors and not their activations
for training the system. Hence no temporal information is utilized. (ii) Unlike us,
they perform a supervised dictionary construction step after training to decompose a
test signal (iii) Finally, they do not consider the task of visual localization. Another
related audio-only approach uses global average pooling and its variants, prevalent in
early studies for visual object localization using CNNs (Zhou et al., 2016), to perform
source separation and classification from weak labels (Kong et al., 2018). Other recent
approaches for deep learning based vision-guided audio source separation methods
utilize ground-truth source masks for training (Zhao et al., 2018; Ephrat et al., 2018).
It is worth noting that our enhancement technique is significantly different as we do
not use separated ground truth sources at any stage and only rely on weak labels.
This makes the problem considerably more challenging.

Novelty. We show how our deep MIL framework can be flexibly used to robustly
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Figure 6.1. Proposed approach: Given a video, we consider the depicted pipeline to go
from audio and visual proposals to localization and classification. For the visual modality
box proposals are considered, while for audio temporal segments and/or NMF component
proposals are utilized. Weights for each module are either trained from scratch (in yellow),
fine-tuned (in green) or frozen (in blue) during training.

perform several AV scene understanding tasks using just weak labels. In particular, in
addition to temporal audio proposals, we propose to use NMF components as audio
proposals for improved classification and to allow source enhancement. We demon-
strate the usefulness of such an approach on a large dataset of unconstrained musical
instrument performance videos. As the data is noisy, we expect NMF decomposition
to provide additional, possibly “cleaner” information about the source of interest.
Moreover, scores assigned to each component by the MIL module to indicate their
relevance for classification can be reliably used to enhance or separate multiple sources.

Chapter outline. In Section 6.2 we detail various modules of the proposed approach
and source enhancement strategy. This is followed by qualitative and quantitative ex-
perimental results on classification, audio source enhancement and visual localization
tasks in Section 6.3.
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6.2 Proposed approach

The proposed approach is depicted in Fig. 6.1. The problem is formulated within
the deep MIL framework discussed in Chapter 5 (Sec. 5.3). We only make changes
to the audio branch, keeping all the other components intact. In what follows, we
discuss these modifications and for completeness briefly recall the design of other
components.

6.2.1 System details

Visual Proposals. We opt for the same visual sub-module as in the previous
chapter. Briefly, bounding box proposals are extracted using EdgeBoxes (Zitnick and
Dollár, 2014), which are passed through a CNN with RoI pooling layer to obtain
fixed length feature vectors, xv.

Audio Proposals. We study two kinds of proposals:

1. Temporal Segment Proposals (TSP): Herein the audio is simply decomposed
into T temporal segments of equal length, S = {s1, s2, . . . , sT}, as done previously.
These proposals are obtained by transforming the raw audio waveform into log-Mel
spectrogram and subsequently chunking it by sliding a fixed-length window along
the temporal axis.

2. NMF Component Proposals (NCP): Using NMF (see equation 2.10) we
decompose audio magnitude spectrogram V ∈ RF ×N

+ consisting of F frequency
bins and N short-time Fourier transform (STFT) frames into characteristic audio
spectral patterns W ∈ RF ×K

+ and their temporal activations H ∈ RK×N
+ , respect-

ively. Here K is the total number of spectral patterns.

We now apply soft mask based filtering as discussed previously in section 2.5,
to an audio recording to decompose it into K tracks (also referred to as NMF
components) each obtained from wk, hk for k ∈ [1, K], where wk and hk denote
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spectral pattern and activation vectors corresponding to the kth component, re-
spectively. The primary reason for performing NMF decomposition is the hope
that each of the K tracks would represent a part of just one source.

They can now be considered as proposals that may or may not belong to the class
of interest. Specifically, we chunk each NMF component into temporal segments,
which we call NMF Component proposals or NCPs. We denote the set of NCPs
by D = {dk,t}, where each element is indexed by the component, k ∈ [1, K]
and temporal segment t ∈ [1, T ]. As the same audio network is used for both
kinds of audio proposals, for each NMF component or track we follow the TSP
computation procedure. However, this is done with a non-overlapping window for
reducing computational load.

Proposals generated by both the aforementioned methods are passed through
vggish network (Hershey et al., 2017) for base audio feature extraction. We fine-tune
all its layers during training.

Other blocks. The proposal scoring, fusion and classification blocks are left un-
changed from our previous study. To recall, for each video V (n), the network takes
as input a set of image regions R(n) along with audio TSP S(n), NCP D(n) or both.
After passing features of each proposal through two-stream scoring architecture (Bilen
and Vedaldi, 2016), the ℓ2 normalized scores are added and used for training with
multi-label hinge loss given by Equation 5.2. Both audio and visual sub-networks are
trained jointly.

6.2.2 Source enhancement

As noted earlier, a by-product of training the proposed system with NCPs is the
ability to perform source enhancement. This can be done by aggregating the NMF
component proposal relevance scores as follows:

• Denoting by βk,t the score for kth component’s tth temporal segment, we compute
a global score for each component as

83



6 ROBUST AV EVENT CLASSIFICATION AND AUDIO SOURCE SEPARATION USING WEAK SUPERVISION

αk = max
t∈T

βk,t.

• We apply min-max scaling between [0,1]:

α′
k = αk − αl

αu − αl
, where αl = min

k′
(α′

k), αu = max
k′

(α′
k)

• This is followed by soft mask based source and noise spectrogram reconstruction
using complex-valued mixture STFT X. Note that we can optionally apply a
hard threshold τ on α′

k to choose the top ranked components for the source. This
amounts to replacing α′

k by the indicator function 1[α′
k ≥ τ ] in the following

reconstruction equations:
S =

∑
k α′

kwkhk

WH
X (6.1)

N =
∑

k(1− α′
k)wkhk

WH
X (6.2)

Here S and N are the estimates of source of interest and of background noise,
respectively. These can be converted back to the time domain using inverse STFT.

6.3 Experiments

6.3.1 Setup

Dataset. We use Kinetics-Instruments (KI), a subset of the Kinetics dataset (Kay
et al., 2017) that contains 10-s YouTube videos from 15 music instrument classes.
From a total of 10,267 videos, we create training and testing sets that contain 9199
and 1023 videos, respectively. The details regarding different classes and the number
of samples in each is provided in appendix B. For source enhancement evaluation,
we handpicked 45 “clean” instrument recordings, 3 per class. Due to their uncon-
strained nature, the audio recordings are mostly noisy, i.e. videos are either shot
with accompanying music/instruments or in acoustic environments containing other
background events. In that context, “clean” refers to solo instrument samples with
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minimal amount of such noise.

Systems. Based on the configuration depicted in Fig. 6.1, we propose to evaluate
audio-only, A, and audio-visual (multimodal), V + A, systems with different audio
proposal types, namely:

• A (TSP): temporal segment proposals,
• A (NCP): NMF component proposals,
• A (TSP, NCP): all TSPs and NCPs are put together into the same bag and fed

to the audio network.

While systems using only TSP give state-of-the-art results (Parekh et al., 2018), they
serve as a strong baseline for establishing the usefulness of NCPs in classification.
For source enhancement we compare with the following NMF related methods:

• Supervised NMF (Wang and Plumbley, 2006; Févotte et al., 2018): We use the
class labels to train separate dictionaries W of size K = 100 for each music
instrument with stochastic mini-batch updates. A supervised NMF variant (as
discussed in section 2.5) where the background basis vectors estimated along with
activation matrix during test time, while holding the pre–learnt music instrument
dictionary (corresponding to the label) fixed.

• NMF Mel-Clustering (Spiertz and Gnann, 2009): This blind audio-only method
reconstructs source and noise signals by clustering mel-spectra of NMF compon-
ents. We take help of the example code provided online for implementation in
matlab.1

Implementation Details. All proposed systems are implemented in Tensorflow.
They were trained for 10 epochs using Adam optimizer with a learning rate of
10−5 and a batch size of 1. We use the matlab implementation of EdgeBoxes for
generating image region proposals, obtaining approximately 100 regions per video
with Mimg = 10. Base visual features xv ∈ R9216 are extracted using caffenet with
pre-trained ImageNet weights and 6 × 6 RoI pooling layer modification (Girshick,

1 http://www.ient.rwth-aachen.de/cms/dafx09/
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2015). The fully connected layers, namely fc6 and fc7, are fine-tuned with 50%
dropout.

For audio, each recording is resampled to 16 kHz before processing. We use the
official Tensorflow implementation of vggish.2 The whole audio network is fine-tuned
during training. For TSP generation we first compute log-Mel spectrum over the
whole file with a window size of 25ms and 10ms hop length. The resulting spectrum
is chunked into segment proposals using a 960-ms window with a 480-ms stride. For
log-Mel spectrum computation we use the accompanying vggish code implementation.
For a 10 second recording, this yields 20 segments of size 96 × 64. For NCP, we
consider K = 20 components with KL divergence and multiplicative updates (Lee
and Seung, 2001). As stated in Sec. 6.2.1, each NMF component is passed through
the TSP computation pipeline with a non-overlapping window, giving a total of 200
(20× 10) NCPs for a 10s audio recording.

Testing Protocol

• Classification: Kinetics-Instruments is a multi-class dataset. Hence, we consider
argmaxc sc of the score vector s to be the predicted class and report the overall
accuracy computed as the percentage of correct predictions.

• Source enhancement: We corrupt the original audio with background noise corres-
ponding to recordings of environments such as bus, busy street, park, etc. using
one audio file per scene from the DCASE 2013 scene classification dataset (Stowell
et al., 2015).3 The system can be utilized in two modes: label known and label
unknown. For the former, where the source of interest is known, we simply use
the proposal ranking given by the corresponding classifier for reconstruction. For
the latter, the system’s classification output is used to infer the source.

2 https://github.com/tensorflow/models/tree/master/research/audioset
3 For these experiments, we (randomly) chose scene files with suffix 06. The file was appropriately

trimmed to match original audio length.
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6.3.2 Classification results

In Table 6.1 we show classification results on KI for all systems explained previously.
For methods using NMF decomposition, the accuracy is averaged over 5 runs to
account for changes due to random initialization of matrices W and H. We observe
that the accuracies are consistent across runs i.e. the standard deviation does not
exceed 0.5 for any of the proposed systems.

Table 6.1. Classification results on KI test set. Here, (d) adds the classification scores of
systems (a) and (b) at test time [resp. for (h)]

System Accuracy (%)

(a) A (TSP) 75.3
(b) A (NCP) 71.1
(c) A (NCP, TSP) 76.7
(d) (a) + (b) 77.3

(e) V + A (TSP) 84.5
(f) V + A (NCP) 80.9
(g) V + A (NCP, TSP) 84.6
(h) (e) + (f) 84.6

First, we note an evident increase in performance for all the AV systems when
contrasted with audio-only methods. Indeed, the image sequence provides strong
complementary information about an instrument’s presence when audio is noisy. We
also see that using NCP in conjunction with TSP results in a noticable improvement
over using just TSP for the audio-only systems. In comparison, this relative difference
is negligible for multimodal methods. A possible explanation is that NCPs are
expected to provide complementary information in noisy acoustic conditions. Thus,
their contribution in assisting TSP is visible for audio-only classification. On the
other hand, vision itself serves as a strong supporting cue for classification, unaffected
by noise in audio and its presence limits the reliance on NCP. The accuracy drop
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when using NCP alone is expected as original audio segments, not split by NMF,
could often be easier to classify than individual components.

Table 6.2. Classification accuracy on KI dataset for different levels of noise in the test
audio

SNR (dB) V + A (TSP) V + A (NCP, TSP)

0 73.9 75.6
−10 63.2 65.2
−20 58.7 59.2

To further test the usefulness of NCP, we corrupt the test set audio with additional
noise at different SNRs using samples from DCASE 2013 scene classification data.
Average classification scores over this noisy test set are reported in Table 6.2. We
observe a clear improvement even for the multimodal system when used with NCPs.

6.3.3 Source enhancement results

Following the testing protocol stated in Sec. 6.3.1, we report, in Table 6.3, average
Source to Distortion Ratio (SDR) (Vincent et al., 2006) over 450 audio mixtures
created by mixing each of the 45 clean samples from the dataset with 10 noisy audio
scenes. The results look promising but not state-of-the-art. This performance gap
can be explained by noting that the audio network is trained for the task of audio
event detection and thus does not yield optimal performance for source enhancement.
The network focuses on discriminative components, failing to separate some source
components from the noise by a larger margin, possibly requiring some adaptive
thresholding for best results. In other words, as the component scores vary for each
example, a single threshold for all cases proves to be sub-optimal. It is worth noting
that performance for the proposed systems does not degrade when used in “Label
Unknown” mode, indicating that despite incorrect classification the system is able to
cluster acoustically similar sounds. Performance of supervised NMF seems to suffer
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due to training on a noisy dataset. The training data contains noise in the form of
multiple, possibly overlapping instrument and other environmental sounds.

6.3.4 Visual localization examples

We present some promising visual localization examples in Fig. 6.2. The second row
of the figure illustrates typical failure cases resulting from multiple object instances,
occlusion/object size and intra class variations, respectively. Incorrect localizations
due to visual clutter can possibly be remedied at the cost of increasing computational
load by considering larger number of proposals or changing their generation method all
together (He et al., 2017). Other examples and supplementary material are available
on our companion website.4

Table 6.3. Average SDR over mixtures created by combining clean instrument examples
with environmental scenes.

System Label Known Label Unknown

Supervised NMF 2.3 –
NMF Mel-Clustering – 4.3
V + A (NCP), soft 3.3 3.3
V + A (NCP), τ = 0.1 3.8 3.9
V + A (NCP), τ = 0.2 3.6 3.6
V + A (NCP, TSP), soft 2.1 2.2

6.4 Conclusion

We have presented a novel system for robust AV object extraction under weak super-
vision. Unlike previous multimodal studies, we only use weak labels for training. The

4 https://perso.telecom-paristech.fr/sparekh/ile2019_supp.html
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6 ROBUST AV EVENT CLASSIFICATION AND AUDIO SOURCE SEPARATION USING WEAK SUPERVISION

Figure 6.2. Visual localization examples. Top row: correct localization for different
instruments (left to right: accordion, bagpipes, trombone and saxophone) from the test set.
Max. scoring bounding box shown in green. Bottom row: typical failure cases (in red) such
as multiple object instance grouping (bagpipes), small, occluded object (harmonica) and
intra-class variation (xylophone) and visual clutter.

central idea is to perform MIL over a set of audio and visual proposals. In partic-
ular, we propose the use of NMF for generating audio proposals. Its advantage for
robust AV object classification in noisy acoustic conditions and source enhancement
capability is demonstrated over a large dataset of musical instrument videos.

While we show encouraging qualitative visual localization results, we do not
evaluate for this task quantitatively, in both current and the previous chapter, due
to lack of ground-truth in the used datasets. We discuss some strategies in the next
chapter to overcome this limitation in the future.

Two research directions worth exploring for further improving source enhancement
and the system’s performance as a whole are: (i) devising adaptive thresholding
strategies for source reconstruction (ii) joint training of NMF or NMF-like deep
decompositions with rest of the network such as variational autoencoders, as done in
concurrent work (Karamatlı et al., 2018).
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7
Conclusion and perspectives

In this chapter we summarize the contributions of this thesis and provide our per-
spective on future research avenues in light of recent developments in the area of
audio-visual analysis.

7.1 Summary of contributions

Taking inspiration from psychology and neuroscience and building upon a rich set of
algorithmic investigations, we first identified two broad kinds of joint audio-visual
(AV) processing mechanisms for single microphone and camera recordings, namely
motion–audio correlation and appearance–audio co-occurrence. The following novel
techniques were proposed and explored under each heading, with the goal of perform-
ing one or more scene understanding tasks such as event classification, audio source
separation, visual object and audio event localization more robustly.

Motion–Audio Correlation
We began by demonstrating the usefulness of jointly processing motion and audio

for sound source disambiguation within the popular non–negative matrix factorization
(NMF) framework. The novelty lies in our motion-coupled NMF formulation where
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the sound producing motion is tied to NMF audio activations through a soft ℓ1 penalty
in the standard Kullback-Leibler divergence cost function. We showed the method’s
efficacy on string trio recordings using instrument player’s motion capture data.

Subsequently, we presented an algorithm to visually assist audio source separation
regressing motion from audio. Specifically, we hypothesized that the sound-producing
motion’s velocity vector can be approximated using a few NMF audio activations –
those that correspond to the source. We also suggested an original joint formulation
of the problem and derived multiplicative updates. These methods alleviate several
shortcomings of the soft–coupling approach referred to earlier, including applicability
to generic videos. These constributions are described in chapters 3 and 4.

Appearance–Audio Co-occurrence

Next, we focused on large–scale weakly supervised learning to leverage co-
occurrence of audio and appearance characteristics of objects. Our main contributions
can be summarized as follows: (1) we presented a new multimodal framework to
jointly classify videos and localize both audio and visual cues responsible for this clas-
sification; (2) our approach, by construction, allowed dealing with difficult cases when
those cues are not synchronized in time; (3) the system’s performance was validated,
both quantitatively and qualitatively over a weakly-labeled video dataset containing
vehicle and warning sound events. State-of-the-art performance was achieved on
the task of event classification. We also showed, through a careful analysis of each
sub-module, the useful complementary information held in each modality. Qualitative
localization results confirmed our technique’s ability to identify event-specific AV
cues.

Finally, we posited the use of NMF-based audio proposals for allowing our deep
multiple instance learning framework to perform audio source separation and robust
classification in noisy scenarios. Several experiments were presented on a large dataset
of musical instrument videos to substantiate our case.

92



7.2 FUTURE PERSPECTIVES

7.2 Future perspectives

We discuss several future research avenues below.

Linking motion and audio
In chapters 3 and 4 we introduced NMF-based formulations with hand-crafted

motion representations. A promising next step would be to build an end-to-end
system that automatically extracts and models complex non-linear relationships
between motion and audio using techniques such as deep CCA (Andrew et al., 2013).
With particular focus on string instruments, a curious follow-up question is: how
subtler visual cues such as bow orientation and articulations made using the violin
hand (for e.g. hand vibrato) can be used for injecting finer details about the produced
sound in source separation algorithms?

Another possible extension will be to employ deep generative models for audio
decomposition, building upon recent success of variational autoencoders (Karamatlı
et al., 2018) and deep unrolling of NMF iterations (Wisdom et al., 2017).

Linking appearance and audio
An interesting future work would be to determine ways of fusing audio and visual

modalities at early or intermediate stages within the framework discussed in chapter
5. It will be equally important to extensively explore the use of attention modules
(Bahdanau et al., 2014) at different stages – for e.g. attending to features of one
modality using the other, also called multimodal attention (Lu et al., 2016) or auto-
matically focusing on one of the modalities during classification due to noise in the
other. While our preliminary experiments for the latter did not yield better results
than the current ones, it is certainly a direction worth delving into deeper.

Combining motion, appearance and audio
A natural next step towards building a more robust, complete system is to put

together motion, appearance and audio. A principled way of combining them would
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be to learn disentangled audio and visual representations by taking into account
motion–audio and appearance–audio relations, as discussed in this thesis.

Another exploratory idea that pertains to the foregoing and current point is the
construction of multimodal proposals i.e. audio-visual parts that potentially represent
different objects in a recording. These could either be fed to a system as input
or generated as an intermediate or final output. While their efficacy over current
methods is an open question, it would certainly be closer to the human experience
of a multimodal object. Bipartite graph clustering for audio-visual signals could be
useful in this regard (Ye et al., 2012).

Datasets
Datasets posed a recurring challenge during the course of this thesis. Though

available in abundance, the data is largely noisy and unannotated. This is problem-
atic for both training and evaluation. While a long-term effort, there is a need to
systematically create a taxonomy, clean and annotate this data, even if only partially,
for better performance, benchmarking and progress in this field. AudioSet (Gemmeke
et al., 2017) is a commendable start in this direction. Designing efficient audio-visual
annotation tools, possibly by extending existing softwares like VATIC (Vondrick
et al., 2012), will be of great support in crowd–sourcing the annotation effort. A little
explored alternative is the use of synthetic data (Zhang et al., 2017). On the bright
side, the described dataset limitation has allowed development of several inspiring
non-supervised training procedures, for instance, auxiliary tasks (Arandjelović and
Zisserman, 2017a; Owens et al., 2016b).

Audio-visual synthesis
An interesting direction is to use AV relations for synthesis, both as an end

goal and a tool for analysis. Here we refer to synthesis of both sounds and visuals.
Generating audio for image sequences could happen at different spatial scales - from
actions and interactions between two surfaces to generic street or market scenes. Not
only is the end result interesting for artists/animators but the process of achieving
it requires good understanding of how and which sounds are produced by objects,

94



7.2 FUTURE PERSPECTIVES

materials and actions, learnt as latent representations (Zhang et al., 2017). This
is true other way around too i.e. generating visuals from audio. Some preliminary
work goes in these directions for speaking face (Suwajanakorn et al., 2017) and pose
(Shlizerman et al., 2018) and cross-modal synthesis (Chen et al., 2017).
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Appendix A
Derivation of Joint NMF-Sparse

NNLS algorithm

Derivation of Joint NMF-Sparse NNLS algorithm introduced in chapter 4 for cross-
modal regression.

Notations

• V ≈ WH, where W = (wfk)f,k ∈ RF ×K
+ and H = (hkn)k,n ∈ RK×N

+ are inter-
preted as the nonnegative audio spectral patterns and their activation matrices
respectively.

• M ∈ RN×C
+ : Velocity matrix with each velocity vector arranged into columns as

[m1 m2 . . . mC ]
• A ∈ RK×C

+ : Nonnegative weight vector for taking linear combinations of H, with
each column denoted by αc where c ∈ {1, C}

Details

We formulate the following cost function as:
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A DERIVATION OF JOINT NMF-SPARSE NNLS ALGORITHM

C(W, H, A) = DKL(V|WH) + λ∥M−H⊺A∥2
2 + µ∥A∥1

Since it is trivial to minimize the cost function we constrain the columns of W to
have unit norm i.e. we construct W̃ =

[
w1

∥w1∥
w2

∥w2∥ . . . wK

∥wK∥

]
and incorporate this into

the cost function as:

minimize
W,H,A

DKL(V|W̃H)︸ ︷︷ ︸
Audio Factorization

+ λ

2∥M−H⊺A∥2
2 + µ∥A∥1︸ ︷︷ ︸

Sparse NNLS

(A.1)

For convenience we will use Λ = W̃H.

Update for H. Referring to the factorization part of the cost function in equation
A.1 as CNMF and the sparse regression part as CSLS, the derivative with respect to H
gives us the following negative [.]− and positive [.]+ components:

[∇HCNMF]+ = W̃⊺1

[∇HCNMF]− = W̃⊺
(
V⊙Λ−1

)
[∇HCSLS]+ = AA⊺H

[∇HCSLS]− = AM⊺

(A.2)

Using the heuristic rule explained in section 2.5 (equation 2.15), we can write the
update as:

H← H⊙ W̃⊺ (V⊙Λ−1) + λAM⊺

W̃⊺1 + λAA⊺H
(A.3)

Update for W. For this we follow (Le Roux et al., 2015). The update can be
written as:

W←W⊙
(Λ−1 ⊙V)H⊺ + W̃⊙

(
1(W̃⊙ (1H⊺)

)
1H⊺ + W̃⊙

(
1(W̃⊙ ((Λ−1 ⊙V)H⊺))

) (A.4)

Update for A. Similar to updates for H, for A they are easily derived by using
CSLS and applying equation 2.15:
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A← A⊙ λHM
λHH⊺A + µ

(A.5)
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Appendix B
Dataset details

I. DCASE Smart Cars Challenge Data (Mesaros et al., 2017) - Chapter 5
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Figure B.1. This highly imbalanced dataset contains 17 different classes shown on the
y–axis with the total number of samples indicated by the number at the end of each bar.
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This dataset was first introduced for the DCASE smart cars challenge in 2017
(Mesaros et al., 2017).1 It is a subset of AudioSet (Gemmeke et al., 2017) that consists
of weakly labeled YouTube videos (i.e. with global video-level event labels) of vehicle
and warning sounds. For the purpose of this challenge a few samples were manually
annotated with temporal audio event labels. (see Fig. B.1 for more details)

II. Kinetics–Instrument Data (Kay et al., 2017) - Chapter 6
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Figure B.2. This dataset contains 15 different instrument classes shown on the y–axis
with the total number of samples indicated by the number at the end of each bar.

This subset, taken from the Kinetics action data (Kay et al., 2017) comprises of 15
instrument classes as seen in Fig. B.2. The parent dataset 2 was originally compiled

1 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
2 https://deepmind.com/research/open-source/open-source-datasets/kinetics/
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with the aim of human action classification and encompasses human–object/human–
human interactions. It comes with video–level action category labels.
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Acronyms

A
AV audio-visual

C
CCA canonical correlation analysis
CNN convolutional neural network

D
DCASE Detection and Classification of Acoustic Scenes and Events

K
KL Kullback-Leibler

M
MIL multiple instance learning

N
NMF non-negative matrix factorization
NNLS non-negative least squares

R
RNN recurrent neural network

S
STFT short–time Fourier transform
SVM support vector machine
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Titre : Apprentissage de représentations pour l’analyse robuste de scènes audiovisuelles

Mots clés : Apprentissage automatique, apprentissage de répresentation, traitement du signal audio, vision
par ordinateur, analyse de scènes audiovisuelles, séparation de sources

Résumé : L’objectif de cette thèse est de concevoir
des algorithmes qui permettent la détection robuste
d’objets et d’événements dans des vidéos en s’ap-
puyant sur une analyse conjointe de données audio et
visuelle. Ceci est inspiré par la capacité remarquable
des humains à intégrer les caractéristiques auditives
et visuelles pour améliorer leur compréhension de
scénarios bruités. À cette fin, nous nous appuyons sur
deux types d’associations naturelles entre les moda-
lités d’enregistrements audiovisuels (réalisés à l’aide
d’un seul microphone et d’une seule caméra), à savoir
la corrélation mouvement/audio et la co-occurrence
apparence/audio.
Dans le premier cas, nous utilisons la séparation de
sources audio comme application principale et pro-
posons deux nouvelles méthodes dans le cadre clas-
sique de la factorisation par matrices non négatives
(NMF). L’idée centrale est d’utiliser la corrélation tem-
porelle entre l’audio et le mouvement pour les ob-
jets / actions où le mouvement produisant le son est
visible. La première méthode proposée met l’accent
sur le couplage flexible entre les représentations au-
dio et de mouvement capturant les variations tempo-

relles, tandis que la seconde repose sur la régression
intermodale. Nous avons séparé plusieurs mélanges
complexes d’instruments à cordes en leurs sources
constituantes en utilisant ces approches.
Pour identifier et extraire de nombreux objets
couramment rencontrés, nous exploitons la co-
occurrence apparence/audio dans de grands en-
sembles de données. Ce mécanisme d’association
complémentaire est particulièrement utile pour les ob-
jets où les corrélations basées sur le mouvement
ne sont ni visibles ni disponibles. Le problème est
traité dans un contexte faiblement supervisé dans le-
quel nous proposons un framework d’apprentissage
de représentation pour la classification robuste des
événements audiovisuels, la localisation des objets
visuels, la détection des événements audio et la
séparation de sources.
Nous avons testé de manière approfondie les idées
proposées sur des ensembles de données publics.
Ces expériences permettent de faire un lien avec des
phénomènes intuitifs et multimodaux que les humains
utilisent dans leur processus de compréhension de
scènes audiovisuelles.

Title : Learning representations for robust audio-visual scene analysis

Keywords : Machine learning, representation learning, audio processing, computer vision, audio-visual scene
analysis, source separation

Abstract : The goal of this thesis is to design al-
gorithms that enable robust detection of objects and
events in videos through joint audio-visual analysis.
This is motivated by humans’ remarkable ability to
meaningfully integrate auditory and visual characte-
ristics for perception in noisy scenarios. To this end,
we identify two kinds of natural associations between
the modalities in recordings made using a single mi-
crophone and camera, namely motion-audio correla-
tion and appearance-audio co-occurrence.
For the former, we use audio source separation as
the primary application and propose two novel me-
thods within the popular non-negative matrix facto-
rization framework. The central idea is to utilize the
temporal correlation between audio and motion for
objects/actions where the sound-producing motion is
visible. The first proposed method focuses on soft
coupling between audio and motion representations

capturing temporal variations, while the second is ba-
sed on cross-modal regression. We segregate several
challenging audio mixtures of string instruments into
their constituent sources using these approaches.
To identify and extract many commonly encoun-
tered objects, we leverage appearance–audio co-
occurrence in large datasets. This complementary
association mechanism is particularly useful for ob-
jects where motion-based correlations are not visible
or available. The problem is dealt with in a weakly-
supervised setting wherein we design a representa-
tion learning framework for robust AV event classifica-
tion, visual object localization, audio event detection
and source separation.
We extensively test the proposed ideas on publicly
available datasets. The experiments demonstrate se-
veral intuitive multimodal phenomena that humans uti-
lize on a regular basis for robust scene understanding.
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