
HAL Id: tel-02117812
https://pastel.hal.science/tel-02117812

Submitted on 2 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards more scalability and flexibility for distributed
storage systems

Guillaume Ruty

To cite this version:
Guillaume Ruty. Towards more scalability and flexibility for distributed storage systems. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLT006�. �tel-02117812�

https://pastel.hal.science/tel-02117812
https://hal.archives-ouvertes.fr

N
N

T
:2

01
9S

A
C

LT
00

6

Towards more scalability and flexibility for
distributed storage systems

Thèse de doctorat de l’Université Paris-Saclay
préparée à Télécom ParisTech

Ecole doctorale n◦580 Ecole Doctorale Sciences et Technologies de l’Information et de
la Communication (ED STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Paris, le 15 Février 2019, par

GUILLAUME RUTY

Composition du Jury :

André-Luc Beylot
Professeur, ENSEEIHT (IRIT) Rapporteur
Stefano Secci
Professeur, CNAM Rapporteur
Raouf Boutaba
Professeur, University of Waterloo Examinateur
Nadia Boukhatem
Professeur, Telecom ParisTech (LTCI) Président
Damien Saucez
Chargé de Recherche, INRIA Examinateur
Jean-Louis Rougier
Professeur, Telecom ParisTech (LTCI) Directeur de thèse
André Surcouf
Distinguished Engineer, Cisco Systems (PIRL) Co-encadrant de thèse
Mark Townsley
Fellow, Cisco Systems (PIRL) Invité

TELECOM PARISTECH

DOCTORAL THESIS

Towards more scalability and
flexibility for distributed storage

systems

Author:
Guillaume Ruty

Supervisor:
Dr. Jean-Louis Rougier

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Cisco Systems Paris Innovation and Research Lab (PIRL)
Laboratoire Traitement et Communication de l’Information

(LTCI)

May 1, 2019

https://www.telecom-paristech.fr/
https://ltci.telecom-paristech.fr/
https://ltci.telecom-paristech.fr/

i

Declaration of Authorship
I, Guillaume Ruty, declare that this thesis titled, “Towards more scalability
and flexibility for distributed storage systems” and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date: 01/05/2019

ii

“La maturité de l’homme est d’avoir retrouvé le sérieux qu’on avait au jeu quand on
était enfant.”

Alain Damasio, La Horde du Contrevent

iii

TELECOM PARISTECH

Abstract
Laboratoire Traitement et Communication de l’Information (LTCI)

Doctor of Philosophy

Towards more scalability and flexibility for distributed storage systems

by Guillaume Ruty

HTTPS://WWW.TELECOM-PARISTECH.FR/
https://ltci.telecom-paristech.fr/

iv

The exponentially growing demand for storage puts a huge stress on tra-
ditionnal distributed storage systems. While storage devices’ performance
keep improving over time, current ditributed storage systems struggle to
keep up with the rate of data growth, especially with the rise of cloud and
big data applications. Furthermore, the performance balance between stor-
age, network and compute devices has shifted and the assumptions that are
the foundation for most distributed storage systems are not true anymore.

This dissertation explains how several aspects of such storage systems
can be modified and rethought to make a more efficient use of the resource
at their disposal. It presents 6Stor, an original architecture that uses a dis-
tributed layer of metadata to provide flexible and scalable object-level stor-
age, then proposes a scheduling algorithm improving how a generic storage
system handles concurrent requests. Finally, it describes how to improve
legacy filesystem-level caching for erasure-code-based distributed storage
systems, before presenting a few other contributions made in the context of
short research projects.

Les besoins en terme de stockage, en augmentation exponentielle, sont
difficilement satisfaits par les systèmes de stockage distribué traditionnels.
Même si les performances des disques continuent à s’améliorer, les systèmes
de stockage distribué actuels peinent à suivre le croissance du nombre de
données requérant d’êtres stockées, notamment à cause de l’avènement des
applications de big data. Par ailleurs, l’équilibre de performances entre dis-
ques, cartes réseau et processeurs a changé et les suppositions sur lesquelles
se basent la plupart des systèmes de stockage distribué actuels ne sont plus
vraies.

Cette dissertation explique de quelle manière certains aspects de tels sys-
tèmes de stockages peuvent être modifiés et repensés pour faire une utilisa-
tion plus efficace des ressources qui les composent. Elle présente 6Stor, une
architecture de stockage nouvelle qui se base sur une couche de métadon-
nées distribuée afin de fournir du stockage d’objet de manière flexible tout
en passant à l’échelle. Elle détaille ensuite un algorithme d’ordonnancement
des requêtes permettant à un système de stockage générique de traiter les
requêtes de clients en parallèle de manière plus équitable. Enfin, elle décrit
comment améliorer le cache générique du système de fichier dans le con-
texte de systèmes de stockage distribué basés sur des codes correcteurs avant
de présenter des contributions effectuées dans le cadre de courts projets de
recherche.

v

Acknowledgements
The work presented here could not have been done without the help and
support of many people.

I would first and foremost like to thank my advisors, Jean-Louis Rougier
and André Surcouf for their continuous support and insight as well as for
their good company. They made these 3 years feel like 1 and really focused
my attention on the relevant topics when I started to feel lost in the diversity
of subjects at hand.

I would also like to thank Aloys Augustin and Victor Nguyen, who joined
the 6Stor project as developpers under a Cisco tech fund. Aloys really fleshed
out the crude code base that I wrote as a first prototype of 6Stor. We also had
lengthy discussions about certain design or implementation details of 6Stor
during which his insight helped me elaborate the global architecture. He
also implemented RS3 – our storage scheduler – in 6Stor’s storage servers.
Victor mainly worked on the 6Stor block device implementation and on the
erasure-code based storage system replica cache.

This section could not go without a hearty mention to Cisco and to Mark
Townsley, who founded and runs Cisco’s PIRL (Paris Innovation and Re-
search Lab), and recruited me first as a research intern then as a PhD student,
and without whom this work would simply not exist. He has consistently
been a driving force behind 6Stor, from the project’s origins to the end of my
PhD. The same mention goes to Jérome Tollet, who piqued my curiosity on
numerous occasions and subjects during our car rides or coffee breaks, and
participated to the elaboration of RS3 with Aloys and me, in addition of be-
ing a merry desk neighbour.

My final thanks go to my fellow PhD students and friends, namely Jacques
Samain, Yoann Desmouceaux, Marcel Enguehard, Mohammed Hawari and
Hassen Siad. Whether we gathered around the lunch table, the coffee ma-
chine or the babyfoot, they always kept the occasional dullness at bay and
heavily contributed to making these 3 years truly special.

vi

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

1 What you should know about distributed storage systems 6
1.1 The different types of distributed storage system architectures 6

1.1.1 Network Attached Storage (NAS) and Storage Area Net-
work (SAN) . 7

1.1.2 Peer-to-Peer (P2P) networks 7
1.1.3 Distributed Hash Tables (DHTs) 9
1.1.4 Master-Slaves architectures 13
1.1.5 Summarize . 16

1.2 Reliability in distributed storage systems 16
1.2.1 Mirroring . 16
1.2.2 Replication . 17
1.2.3 Erasure Codes . 19
1.2.4 Erasure codes and replication: what is the trade-off . . 20

1.3 Consistency and consensus . 22
1.3.1 Theoretical frameworks 22

Consistency and Availability: the CAP theorem 22
Database characteristics: ACID and BASE 24
Client-centric and data-centric consistency models . . . 25

1.3.2 Consensus and consistency: how to reach it 27
Consensus algorithms: Paxos and Raft 27
Latency and Consistency, the (N,W,R) quorum model . 28

1.4 Examples of distributed storage systems 31

2 6Stor 33
2.1 Why we built 6Stor from scratch 34

2.1.1 Software layering . 34
2.1.2 Architectural reasons . 34
2.1.3 Ceph . 34
2.1.4 GFS . 36
2.1.5 Scaling the metadata layer and embracing the hetero-

geneity . 37
2.2 6Stor architecture . 38

2.2.1 Architecture Description 38
2.2.2 Attributing IPv6 prefixes to MNs 39

vii

2.2.3 6Stor: An IPv6-centric architecture 40
2.2.4 Description of basic operations 42
2.2.5 Consistency . 45

2.3 Expanding or shrinking the cluster without impacting the clus-
ter’s performance . 47
2.3.1 Storage Nodes . 47
2.3.2 Metadata Nodes . 48
2.3.3 Availability and data transfer 48

2.4 Coping with failures: reliability and repair model 50
2.4.1 Reliability . 50
2.4.2 Reacting to failures . 50

Short failure . 50
Definitive failure . 51
Voluntary shutdown and maintenance 51
Maintaining reliability 52

2.5 Considerations on the Architecture 52
2.5.1 Client and Cluster Configuration 52
2.5.2 Layer of Indirection . 52
2.5.3 Scalability . 53
2.5.4 Metrology and Analytics 54
2.5.5 Limitations . 55

2.6 Experimental Evaluation . 55
2.6.1 Rationale . 55
2.6.2 Setup and Protocol . 55
2.6.3 Results . 57
2.6.4 Get Tests . 57
2.6.5 Post Tests . 59
2.6.6 CPU consumption analysis 60
2.6.7 Performance impact of HTTP 61

Protocol . 61
Results . 62

2.7 Conclusion . 62

3 6Stor extensions 65
3.1 Building a block device on 6Stor 65

3.1.1 Different implementations 65
3.1.2 A note on caching and consistency 67
3.1.3 Performance benchmark 68

3.2 Adapting 6LB to 6Stor . 71
3.2.1 Load balancing in distributed storage systems 71
3.2.2 Segment-routing load-balancing 73
3.2.3 Adapting 6LB to 6Stor 74
3.2.4 Consequences on consistency 75

3.3 Conclusion . 76

viii

4 Request Scheduler for Storage Systems (RS3) 78
4.1 Related work . 79

4.1.1 Packet scheduling . 80
4.1.2 I/O scheduling . 80
4.1.3 System-wide scheduling 81

4.2 Designing RS3 . 81
4.2.1 Typical storage server implementation 82
4.2.2 RS3’s rationales . 83
4.2.3 RS3’s batch budget allocation algorithm 84

4.3 First evaluation and analysis . 86
4.3.1 Experimental protocol 86
4.3.2 Throughput fairness results 87
4.3.3 Response time results 89
4.3.4 Throughput results . 89

4.4 Using Linux filesystem mechanisms to improve RS3 91
4.4.1 Sending hints to the kernel 92
4.4.2 Response time and throughput results 93

4.5 Going further with RS3 . 95
4.5.1 Evaluating batch budget’s impact on RS3’s performance. 95
4.5.2 Tweaking RS3 to enforce policies: Weighted-RS3 97
4.5.3 Considerations on RS3 and its current implementation 98

4.6 Conclusion . 100
4.6.1 Going further . 100

5 Caching erasure-coded objects 102
5.1 Related Work . 104
5.2 Caching and Popularity In Distributed Storage Systems 106

5.2.1 System Architecture . 106
5.2.2 Object Caching . 107

5.3 Theoretical Evaluation . 109
5.3.1 Popularity Model . 109
5.3.2 System Model . 110
5.3.3 Performance Evaluation 111
5.3.4 Results and evaluation 113

5.4 Experimental Evaluation . 113
5.4.1 Experimental setup . 114
5.4.2 Results and Evaluation 116

5.5 Conclusion . 117

A Predictive Container Image Prefetching 123
A.1 Motivations . 123
A.2 Storage and containers . 123
A.3 Some statistics about popular container images 124
A.4 Optimized Predictive Container Image Storage System (OPCISS)126

ix

B Vectorizing TCP data handling for file servers 129
B.1 Motivations . 129
B.2 State of the art . 130
B.3 Segment-oriented TCP in VPP 130
B.4 Zero-copy file server . 131

Bibliography 133

x

List of Figures

1 SSD and HDD cost evolution prediction 2
2 Network, Storage and Memory hardware throughput evolution. 3

1.1 NAS and SAN . 8
1.1a NAS . 8
1.1b SAN . 8

1.2 Example of an unstructured P2P network with ad hoc connec-
tions between nodes. 9

1.3 Example of a structured P2P network using a DHT to identify
nodes. 10

1.4 DHT illustration example . 11
1.5 DHT rebalancing . 14

1.5a DHT rebalancing . 14
1.5b DHT stable state . 14

1.6 GFS and HDFS SPOFs . 15
1.6a GFS Architecture . 15
1.6b HDFS Architecture . 15

1.7 Object-to-server mapping in Ceph 18
1.8 Inter-object erasure code . 19
1.9 Intra-object erasure code . 20
1.10 Hybrid erasure code . 21
1.11 CAP theorem: case of a partition 23
1.12 W > bN

2 c guarantees the impossibility of concurrent and dis-
tinct writes to be simultaneously successfull. 30
1.12a Conflict example . 30
1.12b Conflict solved . 30

1.13 Write deadlock situation . 30

2.1 Example of a routable object replica IPv6 address decomposition. 38
2.2 Example of metadata load imbalance 40
2.3 6Stor architecture example . 41
2.4 Object metadata example . 42
2.5 Sequence Diagrams of the 4 basic 6Stor operations. 46

2.5a Post . 46
2.5b Get . 46
2.5c Rename . 46
2.5d Delete . 46

2.6 MG redistribution when including a new MN in the cluster. . 49
2.6a 32 MGs, 7 MNs . 49
2.6b 32 MGs, 8 MNs . 49

2.7 Experimental setup . 56

xi

2.8 Test Results . 58
2.8a Gets . 58
2.8b Posts on SSD . 58
2.8c Posts on HDD . 58

2.9 Request per second per object size obtained with nginx and 6Stor 62

3.1 BUSE in Linux storage stack . 66
3.2 Illustration of the three 6Stor block device implementations

when reading two files in parallel. 67
3.3 I/O per second benchmark results for 6Stor’s block device . . 69

3.3a I/O per second, 3 servers, read 69
3.3b I/O per second, 3 servers, write 69
3.3c I/O per second, 16 servers, read 69
3.3d I/O per second, 16 servers, write 69

3.4 Throughput benchmark results for 6Stor’s block device 70
3.4a Throughput, 3 servers, read 70
3.4b Throughput, 3 servers, write 70
3.4c Throughput, 16 servers, read 70
3.4d Throughput, 16 servers, write 70

3.5 6LB hunting example . 74
3.6 6StorLB: MN . 75
3.7 6StorLB: SN . 76

4.1 Budget allocation example . 85
4.1a First allocation phase . 85
4.1b Second allocation phase 85

4.2 Average throughput per class 88
4.3 Average throughput per batch budget 88
4.4 Response time distribution of 4KB requests with and without

RS3 . 90
4.4a Standard, read size = 4KB 90
4.4b Standard, read size = 32KB 90
4.4c Standard, read size = 64KB 90
4.4d Standard, read size = 128KB 90
4.4e RS3, batch budget = 32KB 90
4.4f RS3, batch budget = 64KB 90
4.4g RS3, batch budget = 128KB 90
4.4h RS3, batch budget = 256KB 90

4.5 Average throughput with and without RS3 91
4.6 Blocking time during object fetching with and without posix_fadvise 93

4.6a Without posix_fadvise 93
4.6b With posix_fadvise . 93

4.7 Response time distribution of 4KB requests with and without
RS3 . 94
4.7a Standard, read size = 4KB 94
4.7b Standard, read size = 32KB 94
4.7c Standard, read size = 64KB 94
4.7d Standard, read size = 128KB 94

xii

4.7e RS3, batch budget = 32KB 94
4.7f RS3, batch budget = 64KB 94
4.7g RS3, batch budget = 128KB 94
4.7h RS3, batch budget = 256KB 94

4.8 Average throughput with and without RS3 95
4.9 Cumulative distribution function of 4KB requests reponse time

depending on the batch budget. 96
4.10 Total throughput and storage server CPU time for 40 concur-

rent classes per batch budget. 97

5.1 Client requesting object B from a (2, r) erasure coded distributed
object store (parity fragments not represented). 106

5.2 Fragments caching versus full replica caching. Caches repre-
sented in dotted lines. 108
5.2a Legacy filesystem caching: client 2 gets E1 from cache

but E2 from disk – the cache does not speed up object
fetching. 108

5.2b Full replica caching: client 2 gets E from storage node
4’s cache directly. 108

5.3 Cache hit ratio . 112
5.3a Cache capacity: 0.01, Class repartition: [1, 1, 4, 4] 112
5.3b Cache capacity: 0.01, Class repartition: [1, 1, 1, 1] 112
5.3c Cache capacity: 0.05, Class repartition: [1, 1, 4, 4] 112
5.3d Cache capacity: 0.05, Class repartition: [1, 1, 1, 1] 112
5.3e Cache capacity: 0.1, Class repartition: [1, 1, 4, 4] 112
5.3f Cache capacity: 0.1, Class repartition: [1, 1, 1, 1] 112

5.4 Cache waste ratio . 114
5.4a Class repartition: [1, 1, 4, 4] 114
5.4b Class repartition: [1, 1, 1, 1] 114

5.5 Storage server implementation: a single generic fragment and
object in memory, and enough generic fragments on disk to
cycle through them without ever hitting the disk cache. . . . 115

5.6 Cache hit ratio for a real testbed 117
5.7 Response time histograms . 118

5.7a Fragment cache, α = 0.0 118
5.7b Replica cache, α = 0.0 118
5.7c Fragment cache, α = 0.4 118
5.7d Replica cache, α = 0.4 118
5.7e Fragment cache, α = 1.0 118
5.7f Replica cache, α = 1.0 118
5.7g Fragment cache, α = 1.6 118
5.7h Replica cache, α = 1.6 118

A.1 Size and executable proportion distributions for 81 of the most
popular docker images. 125
A.1a Container size distribution 125
A.1b Distribution of the ratio of executables in container im-

ages . 125

xiii

A.2 OPCISS Architecture. 126
A.3 Comparison of spin up strategies for containers. 128

A.3a Full download . 128
A.3b Slacker lazy fetching . 128
A.3c OPCISS predictive prefecthing 128

B.1 VPP Architecture . 130
B.2 Application in VPP . 131
B.3 Pre-packetization of static files 132

xiv

List of Tables

1 Estimation of data stored and processed daily by big tech com-
panies. 3

1.1 Trade-off between degree and route length for DHTs. 11
1.2 Summarize of the different types of architectures and their char-

acteristics . 16
1.3 Overview of different distributed storage systems and their

characteristics. 32

2.1 CPU utilization efficiency average for Get requests 60
2.2 CPU utilization efficiency average for Post requests 60

4.1 Throuput per client without RS3, with RS3, and with W-RS3,
with batch budget= 24KB. 98

5.1 Simulation Parameters Settings 111
5.2 Functions performed by storage servers when receiving a re-

quest. 115
5.3 Benchmark Parameters Settings 116

xv

List of Abbreviations

ACID Atomicity, Consistency, Isolation and Durability
ACK Acknowledgment
ACL Access Control List
AFS Andrew File System
AFP Apple Filing Protocol
API Application Programmable Interface
BASE Basically Available, Soft state, Eventual consistency
BIER Bit Indexed Explicit Replication
BUSE Block device in User-space
CAP Consistency , Availability, Partition-resiliency
CBQ Class-Based Queuing
CDN Content Delivery Network
CFQ Completely Fair Queuing
COW Copy On Write
CPU Central Processing Unit
CRUSH Controlled Replication Under Scalable Hashing
CSI Container Storage Interface
DHT Distributed Hash Table
DPDK Data Plane Development Kit
DRAM Dynamic Random Access Memory
EC Erasure Codes/Erasure Coding
ECMP Equal Cost Multi-Path
FCP Fibre Channel Protocol
FIOS Flash I/O Scheduler
GFS Google File System or Global File System
HDD Hard-Disk Drive
HDFS Hadoop Distributed File System
HTTP Hyper Text Transfer Protocol
ICN Information Centric Networking
I/O Input/Output
I/Ops Input/Output per second
iSCSI internet Small Computer System Interface
LAN Local Area Network
LRU Least Recently Used
MDS Maximum Distance Separable
MG Metadata Group
MN Metadata Node
MRC Monotonic Read Consistency
MWC Monotonic Write Consistency
NAS Network Attached Storage

xvi

NBD Network Block Device
NFS Network File System
NoSQL Non SQL or Not only SQL (see SQL)
NVMe Non-Volatile Memory express
N2OS Network-Native Object Store
ON Orchestrator Node
OPCISS Optimized Predictive Container Image Storage System
OSD Object Storage Dæmon
PACELC Partition: Availability or Consistency, Else: Latency or Consistency
PCIe Peripheral Component Interconnect express
PG Placement Group
P2P Peer-to-Peer
QoS Quality of Service
QUIC Quick UDP Internet Connection Protocol
RADOS Reliable Autonomic Distributed Object Store
RAID Redundant Array of Independant Disks
RAM Random Access Memory
RDMS Relational Database Management System
RGC Regenating Codes
RPM Revolutions Per Minute
RS3 Request Scheduler for Storage Servers
RTT Round Time Trip
RYWC Read Your Writes Consistency
SaaS Storage as a Service
SATA Serial AT Attachment
SDS Software Defined Storage
SFQ Start-time Fair Queuing
SFQ(D) Depth-based Start-time Fair Queuing
SLA Service Level Agreement
SMB Server Message Block
SN Storage Node
SPDK Storage Plane Development Kit
SQL Structured Query Language
SR Segment Routing
SRLB Segment Routing Load Balancing
SSD Solid-State Drive
TCP Transmission Control Protocol
UDP User Datagram Protocol
VFS Virtual File System
VIP Virtual IP
VM Virtual Machine
VPP Vector Packet Processing
WFQ Weighted Fair Queuing
WFRC Write Follows Read Consistency
YFQ Yet another Fair Queuing algorithm

1

Introduction

Motivations

More than two decades ago, the first distributed storage systems were born in
an attempt to guarantee that important data would never be lost and would
always be available, in a more convenient way than just regular backups.

The vast majority of distributed storage systems follow the same pattern:
they are designed to run on numerous cheap, unreliable and generic devices,
composed of multiple storage disks, a processor, a network interface, and
sometimes some additional memory. The software of these systems orga-
nizes these devices in clusters, distributes data among servers, and generally
makes sure that failures have the least possible impact on the cluster’s per-
formance. However, the landscape of storage has shifted in numerous ways
in the last few years.

First, for more than a decade, storage hardware has lagged behind its
CPU, memory and network counterpart after Hard Disk Drives (HDDs) hit
their mechanical limitations at 15K Revolutions Per Minute (RPM). How-
ever, with flash memory becoming more and more available and perfor-
mant –even outpacing Moore’s Law [1]–, this physical bottleneck has been
removed. Unlike HDDs that are slow and have a high latency (∼ 5− 15ms)
as well as a low Input/Output per second (I/Ops) (∼ 50− 200 depending
on the rotational speed and bus type [2]) because of the spinning mechan-
ical parts, Solid State Drives (SSDs) provide a better throughput as well as
a much lower access latency (∼ 0.05 − 0.2ms [3]). This is even more true
for Non-Volatile Memory express (NVMe) – SSDs that are accessible through
PCI-express (PCIe) bus rather than Serial AT Attachment (SATA) – that can
yield multiple hundred thousands I/Ops for a throughput of several Giga-
bits per second (Gbps) [4].

Furthermore, the ever-increasing flash memory quality and affordability
means that the HDD and SSD price curves are expected to keep drawing
closer or even to cross in the next few years as shown in figure 1. Com-
bined to the DRAM throughput evolution compared in figure 2 to its storage
and network counterpart, the natural consequence is that the traditional stor-
age software – aimed at working around previous HDD bottlenecks – has
to evolve to adapt to shifting bottlenecks. Notably, new generation NVMe
makes traditional interrupt-driven I/O highly uneffective with regard to CPU
consumption [6]. Additionally, an increase in remote storage (accessed by the

2

Figure 1: SSD and HDD cost evolution prediction, as pre-
sented in [5].

network) performance will also come at the cost of dedicating more network-
ing hardware than what was traditionally deployed: where a 10GbE adapter
was enough to saturate tens of HDDs on dedicated storage servers, 2 NVMe
drives can more than saturate such an adapter [7].

Second, the way storage itself is organized and accessed has evolved
in the two last decades. Where applications were deployed on individual
servers and accessed local disks and filesystems, storage and compute are
now separate entities. Most storage devices are assembled in large-scale clus-
ters that run distributed databases, key-value stores or distributed filesys-
tems, that in turn are shared between many services and applications to
leverage economies of scale. These storage layers themselves have evolved
and range from highly consistent databases working on very structured data
to eventually consistent object stores storing data without any pattern.

Third, the amount of data to be stored grows exponentially, posing se-
rious scalability issues: 90 % of the data stored by humanity has been gen-
erated in the last two years [8], and big companies have been storing and
processing petabytes of data for years now (see table 1).

Furthermore, this exponential growth in quantity has been coupled with
an ever increasing demand for fast services, becoming a real business issue
for these companies: Amazon revealed that a 100ms increase in reponse time

3

Figure 2: Network, Storage and Memory hardware through-
put evolution, as illustrated in [1].

on their platform induces a 1% drop in associated sales [20]. Likewise, in-
creasing the load time of a page with 10 different google search results con-
taining 30 entries from 400 too 900ms decreased Google’s advertising rev-
enues by 20% [21]. The same has been shown to be true for every web-related
business company [22]. This rapid change of scale drove big tech companies
to develop their own storage backend during the mid-2000’s: Amazon with
DynamoDB [23], Google with GFS, BigTable and Spanner [24, 25, 26], Face-
book with Cassandra [27] and others like Ceph and Apache HDFS [28, 29].

However, these new architectures that bloomed in the 2000’s are showing
their limitations now that the order of magnitude of storage and performance
required has increased again [30, 31, 32]. There are two recurring issues in
these architectures:

Estimation of
data stored

Estimation of data
processed daily

Google [9, 10] 15 000 pb 100 pb
NSA [11, 12] 10 000 pb 29 pb

Baidu [13] 2 000 pb 10-100 pb
Facebook [14] 300 pb 600 Tb
eBay [15, 16] 90 pb 100 pb

Sanger (DNAsequencing) [17, 18] 45 pb 1,7 Tb
Spotify [19] 10 pb 64 Tb

Table 1: Estimation of data stored and processed daily by big
tech companies.

4

• Heavily layered software: A high number of software layers leads to
two undesirable consequences: the overhead in CPU utilization can ac-
tively impact performance on the storage server side and add latency to
transactions, and reduce the efficiency of data transfer between the stor-
age device and the network –for example because of unneeded mem-
ory copies. While this impact was almost negligible with HDDs, this is
not the case anymore. This is why, for instance, Ceph has launched its
project Crimson in 2018 to modernize its implementation and improve
its performance by reducing the computing and memory overhead of
different members of its architecture [33, 34].

• Architectural limitations: There are two – generally exclusive – types
of architectures that are generally at fault. On one side, DHTs – initially
used to avoid a central bottleneck and point of failure – are inherently
not flexible and not well-suited to store varied types of data in vari-
ous storage devices in the same cluster because they rely on pure flat
data addressing. Furthermore, they react poorly to topology changes
–which become common occurences when the number of participating
storage nodes increases to follow the data growth. On another side,
centralized architectures that rely on a central node and a master/slave
architecture do not scale for obvious reasons. In these architectures, a
single master has a full knowledge of the data placement, access control
... and is on the path of every storage request.

Thus we argue that storage systems must be rethought to overcome these
techonological evolutions.

Contributions

The present dissertation has two aims: to propose a distributed storage archi-
tecture overcoming the technical and structural limitations found in present
deployed software, and to optimize specific storage mechanisms in order to
improve scalability, performance, or flexibility of storage systems.

To this end, I initially give a broad description of the state of the art for
storage systems in chapter 1: how they evolved in the last decades, what
challenges they faced, what solution they proposed to tackle their issues as
well as what theoretical framework they put in place to describe their prob-
lematics.

In chapter 2, I describe in depth 6Stor, a distributed object store that we
created from the ground up during my Thesis and which architecture over-
comes traditionnal limitations of such distributed storage systems. The way
a 6Stor cluster functions is described, including its reaction to failures, its re-
liability mechanisms as well as its consistency schemes. A set of benchmark
is presented as well as an analysis of the performance impact of some design

5

decisions. The work presented in this chapter has been presented as a poster,
been published as a workshop paper, and is the object of an accepted jour-
nal journal paper not yet published. Moreover, a Cisco techfund project was
funded for a year to implement and improve 6Stor under the name Network-
Native Object Store (N2OS). Two related patents are currently pending in the
US patent office.

Chapter 3 presents two extensions made to the initial design of 6Stor dur-
ing the tech fund. The first section describes how we implemented a block
device on top of 6Stor’s object store. The second section presents mecha-
nisms leveraging 6Stor’s IPv6 capabilities and segment routing to improve
load balancing and latency. It is the object of a patent pending.

Chapter 4 describes a Request Scheduler for Storage Servers (RS3). RS3
adapts well-known network and compute scheduling algorithms to storage.
It is designed to help services and applications share storage in two ways: it
ensures that applications and services contending for storage are all allocated
a fair share of the throughput, and it suppresses a usual problem in shared
storage systems where small requests take a disproportionate amount of time
to complete when they are processed in parallel with larger requests. RS3’s
algorithm is described in details, and the throughput and response time of
several patterns of requests sent to two similar implementations of storage
servers –one incorporating RS3 and the other not– are analyzed to verify that
the aforementioned issues are tackled. A paper presenting RS3 is soon to be
submitted, and a related defensive publication was issued by Cisco.

Chapter 5 explains how to leverage the caching capabilities of regular
storage servers when they are used to deploy distributed storage systems
using erasure codes as their reliability mechanisms. Simulations show that
locally handling data fragment like traditionnal files on servers leads to un-
optimized cache usage. A straightforward way to handle this problem is
proposed and its impact evaluated. The work presented in this chapter is
soon to be submitted as a workshop paper and is the object of a patent pend-
ing.

Finally, appendix A describes work towards incremental improvements
with regard to container downloading and execution that was partially made
in the context of a research internship and is the object of a patent pending,
while appendix B describes how to build a storage server taking advantage of
a user-space network stack to deliver high performance. That work was also
the object of a research internship and is also the object of a patent pending.

https://www.tdcommons.org/dpubs_series/1427/

6

Chapter 1

What you should know about
distributed storage systems

The need for distributed storage systems has driven both industry and academia
to innovate on this subject for the last 30 years. This chapter presents a brief
overview of the different types of architectures that have been developped in
this context, and their strenghts and limitations. It also presents the different
issues and tradeoffs inherent to the distributed nature of those storage sys-
tems, what solutions exist to solve these. We also show how different systems
make different choices in order to provide some guarantees for applications
or filesystems running on top of them.

Section 1.1 describes the underlying architectures that serve as a backend
for most distributed storage systems, and the impact their inherent structure
has on their performance, reliability and flexibility. Section 1.2 explains how
distributed storage systems guarantee that data is not lost and is available,
even in case of failures, while section 1.3 explains how they deal with the pos-
sible inconsistency when multiple copies of same data objects do not match.
Finally, section 1.4 presents a non-exhaustive list of widely used distributed
storage system and their characteristics with regard to the previous sections.

1.1 The different types of distributed storage sys-
tem architectures

Distributed storage architectures are numerous and span widely different
scales, from a few servers to tens of thousands. Some storage systems are
composed of loosely connected anonymous servers while others are central-
ized organizations with a single master node that has full knowledge and
authority on the cluster. This section proposes a classification of storage clus-
ters in 5 main families. This categorization is in no way the only one and
some systems might even fit multiple families, but it has the merit of un-
derlining the strength and limitations of each family. Because the storage
systems adopting these architectures are varied (filesystems, SQL databases,
key-value stores, object stores ...), we call data object the basic piece of data on
which those systems operate (file, database entry, key-value pair, object ...)
for the remainder of this chapter.

Chapter 1. What you should know about distributed storage systems 7

1.1.1 Network Attached Storage (NAS) and Storage Area Net-
work (SAN)

A NAS is the most basic form of distribution with regard to storage. It is
simply a storage device accessible through a Local Area Network (LAN),
usually though an operating system on a host server. It is a commonly used
way to share data among users or computers and as a storage backend for de-
vices with small storage devices. The Network File System (NFS) [35], Server
Message Block (SMB) [36] and Apple Filing Protocol (AFP) [37] are the most
popular protocols used to interact with a NAS. Even though the first version
of NFS was developped in 1984, these protocols are still widely in use today.
NAS are often used by clients as remote filesystems with a local mount point.
More intricate versions of multi-NAS systems include the Andrew File Sys-
tem (AFS) [38] and other filesystems inspired by it such as OpenAFS [39], the
Coda File System [40], Intermezzo [41], etc.

While most NAS are regularly backed up, thus offering some kind of re-
liability in the face of hardware failure, they are still usually composed of a
single storage device or server, which is a throughput and capacity bottle-
neck. Furthermore, data transfers take place on the LAN and depending on
the use-case, it can take a large part of the available throughput.

Therefore, the 1990’s saw the emergence of Storage Area Network (SAN)
technologies. A SAN is a network purely dedicated to storage. It is com-
posed of several storage devices that are interconnected through dedicated
links. These links are most often fibre channel or ethernet, with the servers
running the Fibre Channel Protocol (FCP) or the internet Small Computer
System Interface (iSCSI) protocol. While SANs are performant, they are also
not flexible and require a dedicated infrastructure that is hard to scale. Un-
like a NAS, SANs operate at the block level (rather than filesystem).

Both NAS and SAN architectures are illustrated in figure 1.1.

1.1.2 Peer-to-Peer (P2P) networks

On the opposite spectrum of NAS and SANs that are local architectures, P2P
networks aim at regrouping a large number of anonymous nodes to store
and distribute data on a large scale. The first generation of P2P networks
that arose around 2000 –Freenet[42, 43], Gnutella [44], Kazaa [45] etc ... – is
composed of unstructured networks formed by nodes that randomly form
temporary connections to each other rather than follow a global structure, as
illustrated in figure 1.2. These systems are designed to be robust to a high
churn rate, notably by keeping data blocks on numerous users that in turn
share these blocks with new arriving users. However, they are typically not
performant as request for data are often flooded and are not sure to be met
with success [46]. Furthermore, while popular data can usually be found

Chapter 1. What you should know about distributed storage systems 8

(a) NAS

(b) SAN

Figure 1.1: NAS and SAN architectures.

Chapter 1. What you should know about distributed storage systems 9

Figure 1.2: Example of an unstructured P2P network with ad
hoc connections between nodes.

easily, cold data can often remain unreachable because the few nodes storing
it are unavailable. It it thus not very well-suited for high reliability.

The second generation of P2P systems revolves around specific topologies
that ensure that any node can efficiently route requests to files, even when
the resource is rare. Chord [47], Kademlia [48] and Pastry [49] are examples
of this approach, which use a Distributed Hash Table (see section 1.1.3) to
construct the network overlay assigning resource ownership by consistent
hashing (figure 1.3). The consequence of this architecture choice is that they
are less robust when the churn rate is high, because that implies frequent
rebalancings, as explained in the next section.

1.1.3 Distributed Hash Tables (DHTs)

Distributed Hash Tables (DHTs) are the core of many distributed systems. A
DHT is a decentralized distributed system associating pairs of (key,value). Re-
sponsibility for mapping key to values and storing the values themselves is
distributed amongst the nodes by assigning ranges of keys to specific nodes
as illustrated in figure 1.4. DHTs are not necessarily storage systems, and
should in a broader sense be viewed as a consistent way to map resource to
servers holding them. As such, DHTs are at the foundation of multiple dis-
tributed storage systems.

In a DHT, keys belong to a keyspace (usually n-bits strings or an equiv-
alent) that is partitioned to split the keys between the nodes. An overlay
network connects the nodes and allows them to find where keys belong.
Typically, each data object stored is associated with a name that is hashed

Chapter 1. What you should know about distributed storage systems 10

Figure 1.3: Example of a structured P2P network using a DHT
to identify nodes.

(for example using MD5 or any SHA hash function) to provide the key asso-
ciated with data itself.

This overlay network is not necessarily a full mesh and queries might
have to go through several nodes before reaching the relevant one. The av-
erage number of connections to other nodes per node of a DHT is called its
degree. A DHT composed of n nodes has a degree between 1 and n. A higher
degree means that each node has more knowledge of the whole DHT and
less redirections are needed for queries, but it also requires more synchroni-
sation and has more memory footprint for DHT nodes. A common trade-off,
used for example by Chord [47], is a degree of log(n) and an average number
of redirection per request of log(n), for n nodes in the DHT. Table 1.1 sum-
marizes the link between degree and average route length, as well as gives
several examples of DHTs.

DHTs are designed to scale effectively with the number of participating
nodes. However, the scalability of DHTs comes with negative consequences:

Unidimensionality: Because a standard DHT relies on a single-dimension
keyspace, it reduces the characterization of a participating node to a single in-
formation: the portion of the keyspace allocated to the node. In general, most
systems relying on DHTs try to correlate this portion to the storage capacity
of the node, so that every node is responsible for a portion of the keyspace
equal or close to the proportion of its own storage capacity compared to the
sum of the storage capacities of all participating nodes.

Chapter 1. What you should know about distributed storage systems 11

Figure 1.4: Example of the assignment of the Keyspace of 16-
bits strings for a DHT composed of 4 nodes storing 20 equally

distributed data objects.

Degree Average
Route Length Used in Comment

O(1) O(1) Longest lookup

O(log(n)) O(log(n)) Chord [47], Kademlia [48]
Pastry [49], Tapestry [50]

Common but
not optimal

O(log(n)) O(
log(n)

log(log(n))) Koorde
Complex to implement
and less flexibility
for neighbours choice

O(
√

n) O(1)
Requires constant
synchronisation and
more memory footprint

Table 1.1: Trade-off between degree and route length for
DHTs.

Chapter 1. What you should know about distributed storage systems 12

This approach doesn’t allow for more complex storage systems incorpo-
rating storage tiering (storage nodes with different type of storage devices
such as HDD,SSD or NVMe). To do that, the storage system has to use differ-
ent DHTs for different storage tiers and keep track of which object is stored
in which DHT. Furthermore, a simple DHT doesn’t accommodate the poten-
tial heterogeneity in the performance of devices (outside of pure capacity)
such as throughput and latency. Even though disparities between the same
models of storage devices are not expected to be too high initially, they are
expected to grow during the lifetime of a distributed storage system, when
failed devices have to be replaced and other devices age differently. This
issue has been raised for example in [51] and has led to developing fine-
grained load balancing techniques when data is stored as multiple replicas
in DHTs.

Finally, this uni-dimensionality also reduces the flexibility of storage sys-
tems using them. Namely, a replication or erasure-coded policy has to be
system-wide: it is not possible to store different objects under different rep-
resentations (for example some replicated and some erasure coded) in a DHT.

Re-balancing: In a DHT, servers are assigned key ranges. In general, key
ranges are evenly distributed among servers according to their capacity. Con-
sequently, when a new server joins a DHT, key ranges are redistributed so
that the new server takes its fair share of the load as illustrated in figure 1.1.3
when adding a node to the DHT of figure 1.1.3. This poses two difficulties.

First, when key ranges change server assignment, all the data objects be-
longing to these ranges have to be moved. In the ideal use case of perfect bal-
ance and perfect reassignment (the only data moved is the data that the new
node will serve), if we denote by c the capacity of the node, C the total capac-
ity of the cluster with the new node and D the total amount of data stored in
the DHT, an amount of c∗D

S data has to be transferred in average. Even worse,
this is often not possible if the DHT has constraints on the keyspace assign-
ment (for example contiguity requirements for DHT nodes): a key range re-
assignment can lead to some key ranges being passed between two servers
that were already in the DHT before, like illustrated in figure 1.5. The trade-
off is typically between aggregating the keyspace ranges assigned to nodes
–leading to more data to rebalance– and optimizing the keyspace rebalancing
–leading to keyspace disaggregation and more complexity.

Second, this re-balancing procedure has to be finished before the new
node can serve requests and has to happen in parallel with the regular work-
load of the DHT, if one doesn’t want to put it offline. This can lead to very
long bootstrap time: in [23], Amazon states that the early iterations of their
Dynamo key-value store had boostrap times as high as almost 24 hours when
the rebalancing process had to be run in background during periods with in-
tensive workloads. However, this can be prevented by a progressive key
reassignment, at the cost of having the joining nodes only slowly getting

Chapter 1. What you should know about distributed storage systems 13

to their stable state. This approach has recently been pursued for example
in Ceph since the Luminous release in 2017 with the upmap function, that
allows to progressively assign bundle of objects to new servers when boot-
straping [52].

Both these issues have been identified for a long time and can be attenu-
ated or circumvented by adopting more complex structures : separate DHTs
for different storage tiers, buckets in DHT-like architectures to isolate differ-
ent parts of the cluster and allow them to be unavailable for a short time for a
fast bootstrap etc... However, this adds complexity to systems implementing
these workarounds, that require complex management planes.

1.1.4 Master-Slaves architectures

Where DHTs provide a distributed and consistent way to assign data objects
to servers, master-slaves architectures put the burden of data placement and
indexing on a master server. Requests to write or read data from the sys-
tem must go through this master, either to decide where the data will be
written or to know where to find it. Because data placement is not tied to
consistent hash, it can be flexible and allow for more fine-grained policies
than DHTs. Furthermore, having a single master reduces the complexity of
concurrent operations, since the master can keep track of who is interacting
with which data object. For this reason, distributed filesystems often rely
on master-slaves architectures since operations on file can range from simple
file creation to random writes in different places of the file. The Google File
System (GFS) [24] and its open source counterpart, the Hadoop File System
(HDFS) [29] adopt this architecture, as shown in figure 1.6.

However, these single master architectures have an obvious scalability
limitation. While efforts can be made to increase the number of concurrent
client or amount of data that a single master server can handle, like in GFS
where numerous optimisations were made (such as very large filesystem
blocks – several MB instead of the traditionnal 4KB – and aggressive prefetch-
ing), a point comes where the master can not handle too many clients. More-
over, the single master is a Single Point Of Failure (SPOF). For this reason the
master is often replicated on inactive masters ready to serve as fallbacks, but
the transition period when a master fails can lead to cluster inactivity. These
limitations have been observed and discussed both for GFS and HDFS [30,
31], pushing Hadoop to develop a distributed master layer for HDFS [53]
and Google to develop a new distributed filesystem named Colossus [54] –
on which there is no public information. There are many other single-master
filesystems such as QFS [55], GPFS [56], the Global File System [57]...

For these reasons, some filesystems have begun resorting to multi-master
architectures. For instance, the Lustre file system [58] supports Distributed
Namespace (DNE) since its 2.4 release in 2013. DNE allows subdirectory

Chapter 1. What you should know about distributed storage systems 14

(a) Necessary rebalancing to match the new DHT Attribution.

(b) Stable state when rebalancing is done.

Figure 1.5: A rebalancing has to occur to ensure that data ob-
jects are stored on their key’s newly attributed storage node.

Chapter 1. What you should know about distributed storage systems 15

(a) GFS Architecture

(b) HDFS Architecture

Figure 1.6: GFS and HDFS both have a single node dealing
with all filesystem metadata operations: the GFS Master and

the HDFS Namenode.

Chapter 1. What you should know about distributed storage systems 16

inode trees to be located on separate servers. Other examples of such archi-
tectures include zFS [59], OrangeFS [60] or Farsite [61].

1.1.5 Summarize

Table 1.2 summarizes the characteristics of each type of architecture.

Architecture Type of Application Used in Comment

NAS Shared local storage
Backup

NFS [35]
AFS [38]

Easy to
use/deploy

SAN Enterprise storage
Used for performance

Requires dedicated
infrastructure

P2P Large scale file sharing
Decentralized storage

Chord [47]
Gnutella [44]
IPFS [62]

Weak guarantees
Low performance
Very large scale

DHT Scalable enteprise storage
Various consistency schemes

DynamoDB [23]
Cassandra [27]
Ceph [28, 63]

Low flexibility
Requires rebalancing
High scalability

Master-Slave
Mostly distributed filesystems
Constrained environments
Flexible

GFS [24]
HDFS [29]

Not scalable
Master bottleneck
Can enforce strong
constraints

Table 1.2: Summarize of the different types of architectures
and their characteristics

1.2 Reliability in distributed storage systems

Most distributed storage systems are used for scalability but also for reliabil-
ity: one advantage of deploying such systems on multiple servers is that one
of these servers failing is not necessarily equivalent to data being unavail-
able or worse, lost. There are multiple ways to ensure data remains available
when failures occur. This section presents the 3 main ones, that cover almost
every distributed storage system. For the remainder of this section, we call
reliability the capacity of a storage system to guarantee its data is available
even in the face of failures, and storage overhead the ratio between the amount
of data written on storage medium and the actual amount of data stored in
the system, higher than 1 for reliable systems.

1.2.1 Mirroring

Mirroring is the most basic approach for reliability. It consists in maintaining
copies of a full data set in several places. There are several approaches to
mirroring but the most common one is backups. Often used in conjonction
with NAS, regularly scheduled backups allow not to lose the bulk of data
when a storage server fails. However, even incremental backups do not con-
tain the data that has been generated/stored between the last backup and

Chapter 1. What you should know about distributed storage systems 17

the failure. Additionally, backups are used to restore systems, not for data
to remain available after a server failure. As such, they offer neither strong
reliability nor strong availability guarantees.

When stronger guarantees are required, which is usually the case in en-
terprise environments, the mirrors take part in every storage operation (data
write, change or deletion) that changes the data set so that the mirrors are
an exact copy of the original data set. This is the case, for example, of the
enterprise Microsoft Structured Query Language (SQL) Server [64], a Rela-
tional Database Management System (RDBMS), when used in “hot standby”
mode. In this mode, the mirror can – as its name implies – be hot swapped to
continue operations when the principal server fails. However, these guaran-
tees come at the cost of more latency for basic operations, since the mirrors
have to acknowledge every operation before they are acknowledged to the
clients rather than regularly lazily fetch the incremental changes.

Mirroring has the advantage of preserving the consistency inside a data
set when it is required. It is a desirable property, notably for some SQL
databases which have consistency rules between different data items that
make them inter-dependant. However, mirroring does not allow for much
flexibility since it is a straightforward one-to-one mapping between storage
servers.

1.2.2 Replication

Another very common approach for reliability in storage systems is replica-
tion: every data object is replicated on multiple storage nodes. The number
of times every object is replicated is called the replication factor r and is of-
ten configurable, with a replication factor of 3 being the industry standard.
Replication differs from mirroring by its granularity: where mirroring dupli-
cates an entire monolithic data set, replication duplicates copies of single data
objects. It is usually used in larger storage systems where data sets are split
on multiple storage nodes, whereas mirroring is generally used on databases
spanning only a single node.

While mirroring is mostly used as a backup and hot swap technique,
replication is sometimes used along with load balancing techniques to allow
for smoother performance [65, 66]. However, with a better granularity than
mirroring comes a more complex data placement management. Indeed, mir-
roring architectures only need to know the list of mirrors which is typically
just a few servers, whereas replication-based architectures must be able to
know the location of replicas for every object. This is why replication is often
used in DHT structures where every data object is associated with several
keys, generally through a consistent hash mechanism so that a data object
name is enough to know the locations of all its replicas. Furthermore, this
mapping from data object name to key sets is often constrained for reliability

Chapter 1. What you should know about distributed storage systems 18Background: 2-Step Placement

C
R
U
SH

R
A
N
D
O
M

Figure 1.7: Ceph object-to-server two-step mapping: objects
are uniformly mapped to PGs, themselves mapped to OSDs

following the rules of the CRUSH map

reasons.

For example, Ceph [28] assigns objects to Placement Groups (PGs) accord-
ing to object name hashes with the Reliable Autonomic Distributed Object
Store (RADOS) algorithm [63]. The number p of PGs of a storage pool is con-
figured at storage pool creation, and every PG is randomly is associated with
an ordered set of Object Storage Daemons (OSDs) following a Controlled
Replication Under Scalable Hashing (CRUSH) map [67], each OSD being in
charge of a disk partition on a storage node. Moreover, policies can be de-
fined in the CRUSH map to ensure that OSDs assigned to PGs are physically
located in different servers, racks, datacenters ... The first OSD assigned to
a PG is called primary and is the “master” OSD of this PG: it is responsible
for replicating data and is the one accessed for data retrieval (there is no load
balancing). This two-step object-to-server mapping is illustrated in figure 1.7.

Thus, the number of PGs is decorrelated from – and usually much lower
than – the number of possible combinations of n OSDs. This limits the num-
ber of different sets of servers storing the same data. As a consequence, when
r OSDs fail simultaneously, it is unlikely that any data is lost, since there is
only a chance p

n(n−1)...(n−r) that precisely those r OSDs are assigned to the
same PG. However, more data is lost when this unlikely occurence happens.
Augmenting p is thus a tradeoff between data loss probability in case of fail-
ures and amount of potential data loss. Most large-scale deployments con-
figure p << n(n− 1)...(n− r) since it is generally considered worse to often
lose a small amount of data than to rarely lose a lot of data.

Chapter 1. What you should know about distributed storage systems 19

A B A+B

Figure 1.8: Inter-object erasure code with storage overhead of
1.5 capable of withstanding 1 disk failure.

1.2.3 Erasure Codes

Erasure codes (EC) find their inspiration in network codes, used in network
transmissions in high loss rate or high latency environment to avoid packet
retransmission, at the cost of a fixed overhead. They are the distributed
storage system equivalent of local Redundant Array of Independant Disks
(RAID) [68], and guarantee a higher reliability than replication techniques
for a lower storage overhead. They are almost all derivations of the original
Reed-Solomon codes used in many settings [69]. There are three different
ways to erasure code data objects:

Inter-object erasure codes: In this approach, instead of purely replicating
data objects, linear combinations of objects are stored in addition to objects
themselves. When a disk fails and an object is lost, it is possible to rebuild it
from the linear combination and the other object(s). The example shown in
figure 1.8 shows an inter-object erasure code with a storage overhead of 1.5
able to withstand 1 disk failure.

There are three issues with this approach: objects in the linear combina-
tion have to be of the same size (or padding has to be added), objects have to
be stored at the same time for the linear combination to be done (although it
would be possible to initially store a pure replica of an object, then encode it
with another object when one is stored – but it adds complexity to deal with
the different possible “encoded states” of objects), and the linear combina-
tions of objects have to be updated when either of the objects is modified or
deleted from the system. Inter-object erasure codes are the equivalent of net-
work codes [70, 71] that combine data packets of same size to make sure the
recipients can reconstruct data even when some packets are lost in the way.

Intra-object erasure codes: In this approach, objects are split in k fragments
of same size that are used to generate k + r fragments of the same size as the
original ones in a way that any k of the k + r encoded fragments can be used

Chapter 1. What you should know about distributed storage systems 20

A2

B2

A1+A2

B1+B2

A1

B1

Figure 1.9: Intra-object (2, 1) erasure code with storage over-
head of 1.5 capable of withstanding 1 disk failure.

to reconstruct the object. In most cases, the k original fragments, called the
systematic fragments, are conserved in the k + r generated fragments – this is
however not always the case, and some encodings, such as the Mojette Trans-
form [72, 73], notably used in the distributed file system RozoFS [74], do not
store the systematic fragments directly. The r encoded fragments are called
parity fragments and such a code is called a (k, r) erasure code. It follows that
a (k, r) erasure code has a k+r

k storage overhead and can withstand up to r
failures. Figure 1.9 illustrates this approach with a (2, 1) erasure code. The
majority of distributed storage system using erasure codes choose this per-
object approach.

Hybrid erasure codes: There exist a variety of other codes that stripe dif-
ferent objects’ fragments and combine them to reduce the amount of data
required for reconstruction or for other purposes. For example, the Hitch-
hiker’s code [75], implemented in Facebook’s HDFS clusters, pairs different
object “stripes” (corresponding to encoded fragments) and encodes them to-
gether as proposed in [76] to reduce disk and network I/O for reconstruc-
tions when compared to traditional Reed-Solomon codes. A simple example
of such a hybrid code is illustrated in figure 1.10.

1.2.4 Erasure codes and replication: what is the trade-off

In previous section we saw why erasure codes have a lower storage overhead
than pure replication. However, they come with some drawbacks:

• The main drawback of erasure codes is the repair cost. In replicated
setups, when a b bytes object’s replica is lost, another replica can be
fetched to reconstruct it, effectively costing b bytes in both disk and
network I/O. This is not the case for erasure codes, that require more
bytes for reconstruction than the amount of data reconstructed. In the

Chapter 1. What you should know about distributed storage systems 21

A2

B2

A1

B1

A3

B3

A1+A2

B1+B2

A2+A3

B2+B3+
A1

Figure 1.10: Hybrid (3, 2) erasure code with storage overhead
of 5/3 capable of withstanding 2 disk failures.

examples of figures 1.8 and 1.9, twice as much data as what is lost is re-
quired when a disk fails (B and A+ B if A is lost in the first case, A2/B2
and A1 + A2/B1 + B2 if the first server fails in the second case).

This is why, in addition to the “k out of k + r” repairability property, it
is desirable for erasure codes to also have the Maximum Distance Sep-
arable (MDS) property, minimizing the amount of fragments required
to reconstructed missing fragments. Most of the work in the field aims
at designing codes that minimize the required disk I/O, network I/O
or both at the same time required for fragment reconstruction such as
Regenerating Codes (RGC) [77, 78, 79, 80], hierarchical codes [81], or
fountain codes [82, 83, 84].

• Storing data as encoded fragments requires computation. Most erasure
codes use simple XOR operations but this is not always the case [72].
Moreover, since all data is not located on a single server, k separate con-
nections usually have to be opened to retrieve the data, which is very
impactful on storage systems where the network stack usually amount
for a large portion of the CPU time used – more than 50% in some cases
[85].

• Furthermore, there is added complexity in handling object fragments
rather than replicas. First, it requires keeping track of more separate
data entities since there are more fragments than object replicas. Sec-
ond, every data operation requires the participation and synchroniza-
tion of more servers. Finally, it is impossible or inefficient to make rel-
evant local decisions since fragments represent only a fraction of the
data. This complicates, for example, the caching strategies of erasure
coded systems, as elaborated on further in chapter 5.

For these reasons, some work has been done on hybrid erasure code/replication
architectures [86] to obtain the best of both worlds. However, such approaches
can inherently not have a storage overhead lower than 2.

Chapter 1. What you should know about distributed storage systems 22

1.3 Consistency and consensus

The previous section presented how distributed storage systems guarantee
reliability in the face of failures. However, this comes with a significant draw-
back: when several copies of data are stored in a storage system, it is hard to
make sure that all replicas are consistent with each other. For the remainder
of this section, we will suppose that our storage system is reliable through
replication. However, most concepts discussed here could be translated in
erasure coded setups with additional encoding steps.

First, it is important to make a distinction between consensus and consis-
tency:

• A consensus is reached when all members of a storage system have the
same version for the object replicas they store. For mirroring-based
architectures, it is when all members store the exact same data. For
replicaton-based architectures, it is when all replicas of every object are
identical.

• Consistency is the ability of a distributed storage system to converge –
slowly or quickly – towards a consensus. A storage system with strong
consistency will quickly converge to a consensus whereas weak consis-
tency means that such a consensus might not even be reached.

Throughout the last decades, there have been multiple theorems, for-
mulations, acronyms ... describing consensus or consistency characteristics,
guarantees or algorithms. These definitions often come from different back-
grounds and sometimes even use the same words to describe different con-
cepts, which can be confusing. This section aims at describing the most well-
known definitions and concepts, what they entail and to what context they
apply.

1.3.1 Theoretical frameworks

Consistency and Availability: the CAP theorem

The CAP theorem – for Consistency Availability and Partition tolerance – is
one of the most well-known theoretical result on distributed system. It for-
mally formulates the intuitive fact that a distributed system that is split in
two (or more) parts unable to communicate with each other can not provide
availability for every operation on both sides of the separation and consis-
tency in the request answers. For example, a data object which would be
stored in a distributed storage system as multiple replicas either has all repli-
cas on the same “side” in which case it is unavailable on the other “side”
or has replicas on both sides in which case it is impossible to ensure that a
modification triggered on on side is propagated to the other, as illustrated in
figure 1.11.

Chapter 1. What you should know about distributed storage systems 23

Figure 1.11: Distributed storage system network partitioned
in 2 zones. In this case, the CAP theorem states that it is im-
possible to guarantee that object A is available in both zones

and that all replicas of A are identical.

This intuition has first been formally described in [87] in 1999, presented
as a conjecture in [88] in 2000, then proven, effectively becoming the CAP
theorem [89] in 2002.

Formally, it states that a distributed data store can’t simultaneously pro-
vide the three following guarantees:

• Consistency: Every data read receives either an error or the latest write.

• Availability: Every request receives a valid response (with no neces-
sary guarantee of being the latest version).

• Partition tolerance: The system keeps operating when a partition hap-
pens in the system. A partition is defined as an arbitrary number of
messages being dropped or delayed between nodes composing the clus-
ter.

Note that the consistency of the CAP theorem amounts to a consensus
on every data object as defined in this section’s introduction. Because fail-
ures are bound to happen, this theorem states that a distributed store has to
choose between consistency and availability in the event of a partition. As
explained in [90], this theorem has often been misinterpreted as the fact that
data stores can not guarantee consistency and availability simultaneously
under normal conditions. This is however not the case since a partition is
not “normal conditions” for such a storage system.

Chapter 1. What you should know about distributed storage systems 24

This theorem can be misunderstood to justify why some distributed stor-
age systems provide only eventual consistency instead of strong consistency
(the consistency of the CAP theorem). It is perfectly possible for a distributed
system to provide strong consistency and availability at the same time as long
as there is no network partition, which represent only a fraction of failures
[91]. However, systems providing only eventual consistency, even in normal
conditions, do so because of another intrinsic tradeoff of distributed systems
between consistency and latency.

This tradeoff has been explored in [92] and has led to an extension of
CAP called PACELC. This acronym states that in the case of a Partition, a
distributed system has to choose between Availability or Consistency (this is
the usual CAP formulation), but Else, it has to choose between Latency and
Consistency. This trade-off, while intuitive, will be further explained in sec-
tion 1.3.2.

Database characteristics: ACID and BASE

ACID (for Atomicity, Consistency, Isolation and Durability) is a set of prop-
erties initially described in [93] (in 1981, without Durability) then in [94] in
1983 that, when they are verified by a sequence of database operations, de-
fine a database transaction. A transaction can be perceived as a single logical
operation on data, a typical example being a fund transfer between banks.
These properties guarantee the following:

• Atomicity requires that the transaction either succeeds or fails. In other
termes, operations in the transaction either all succeed or all fail, even
in the case of errors, power failures or crashes.

• Consistency guarantees that a transaction changes the database from
a valid state to another. This means that any constraint (such as the
unicity of keys in a database) applying to the database can’t be violated
by a transaction.

• Isolation ensures that concurrent transactions have the same effect on
the database as if they were executed sequentially.

• Durability states that a committed transaction stays committed in the
event of power loss, crash or error. This is mostly obtained by recording
transactions on non-volatile memory before acknowledging the com-
mit.

Even though ACID properties were not created with distributed systems
in mind – ACID’s consistency derives from constraints between different ob-
jects, not from differences between a single object replicas –, they can still
apply to distributed databases. Moreover, I felt they were a worthwile inclu-
sion in the list both to avoid confusion on the different meanings of consis-
tency and because another set of properties – called BASE and more relevant

Chapter 1. What you should know about distributed storage systems 25

to distributed systems – was defined in opposition to ACID.

Typically, ACID’s properties are exhibited by relational databases. Be-
cause of the Consistency and Isolation properties, ACID operations can’t
complete when a database is partitioned (when some components of the
database can’t interact due to network failures on any other likewise event).
Therefore, distributed databases guaranteeing ACID transactions choose C
over A in the CAP theorem.

It follows that the drawback of a distributed database following these
principles is a reduced availability in the presence of failures or delays, as
well as generally low performance and high latency per operation because
inter-servers locking mechanisms are required. Some systems can accommo-
date less strict consistency, and for those, a set of semantics called BASE (for
Basically Available, Soft state, Eventual consistency) have been devised:

• Basically available means that any request to the system gets an an-
swer. However, that answer may be a failure to obtain the data or the
data may be inconsistent between requests.

• Soft state means that the state of the system can change over time, even
without input. The reason for this is that an input can be partially pro-
cessed and acknowledged to the emitter before the whole system up-
dates the corresponding state.

• Eventual consistency guarantees that if the system doesn’t receive in-
puts, it eventually becomes consistent when every soft state has been
propagated to the whole system.

Systems that follow the BASE semantics are generally more complex to
build upon since applications have to be designed knowing the potential
data inconsistency. However, the lack of strong consistency allows those
systems to generally provide better performances with regard to latency and
availability. Non-relational databases often (but not always) exhibit the BASE
properties to guarantee a high availability.

Client-centric and data-centric consistency models

We saw that the CAP theorem only describes the reaction of storage sys-
tems to partitions, while ACID and BASE are mostly used in the context of
databases. Therefore, two perspectives on consistency for generic storage
systems have emerged over the years [95]. Client-centric consistency models
view the storage system as a blackbox and describe the guarantees offered to
an external client, while data-centric consistency models refer to the internal
state of the system and the synchronization processes at stake. This section
describes the most used models of both approaches.

Chapter 1. What you should know about distributed storage systems 26

Client-centric consistency:

• Monotonic Read Consistency (MRC) guarantees that a client that has
read a version n of an object can only read ulterior versions of this object
afterwards (including the nth). This is useful for applications having
chronology consistency requirements. This guarantees, for instance,
that the following occurence can not happen: person A wires money
to person B who sees his account credited, B later tries to wire money
to C but can not because the account version he sees dates from before
A’s transfer was credited.

• Read Your Writes Consistency (RYWC) guarantees that a client that
has written a version n of an object can only read ulterior versions of
this object afterwards (including the nth). This is particularly useful
for applications in which a user could issue the same requests multiple
times because he is under the impression that the request has not been
registered, causing either superfluous load or sever inconsistencies: A
wires money to B. Later, A’s account does not reflect the transfer, so A
assumes the transaction has been lost and transfers the same amount
again.

• Monotonic Write Consistency (MWC) guarantees that two writes from
the same client will always happen in the same order that the client
submitted them. This is useful when working on different data objects
that are related. For example, the following can not happen with MWC:
A corrects B’s banking information, then wires him money. But the
transfer took the old B’s banking information as a reference and was
sent to the wrong person.

• Write Follows Read Consistency (WFRC) guarantees that a new ver-
sion of an object which version n was previously read will only execute
on ulterior replicas. This extends MWC to objects written from other
clients when their write has been read at least once.

Data-centric consistency:

• Weak consistency does not provide any guarantee. It is used to de-
scribe systems that might update from time to time but with no guar-
antee. The best of example of such a system is a browser cache.

• Eventual Consistency guarantees the same consistency as BASE. It is
the most adopted consistency scheme for distributed object stores be-
cause it allows for great scalability and performance while providing
consistency in the vast majority of cases.

• Causal Consistency is the strongest possible consistency model for sys-
tems aiming for availability rather than consistency with regard to the
CAP theorem. It ensures that requests that have a causal relationship
with one another are executed in the same order on all replicas. How-
ever, this requires a complex dependancy tree and thus adds a comput-
ing and complexity overhead.

Chapter 1. What you should know about distributed storage systems 27

• Sequential Consistency can not be achieved in always available sys-
tems. It extends causal consistency to all requests. All requests must
be executed in the same order on all replicas. Additionally requests
from the same client must be executed in the order they are received by
the storage system. Sequential consistency is typically a level of consis-
tency reached using the Paxos algorithm described next section.

• Linearizability extends sequential consistency to multiple clients: all
requests mut be executed in the order they arrived to the storage sys-
tem. With sequential consistency, it is possible for two clients request-
ing a read at the exact same time to have different data, for instance
if one of the clients overwrote the object in a precedent request but
the write was not acknowledged yet, in which case this client’s read
must wait for the write to complete whereas the other client has no
such blocking pending request. Linearizability is impossible to reach
in distributed systems but can be approached by precise clock synchro-
nization.

Client-centric and data-centric consistency models do not have a perfect
mapping from one to each other, but some work has been done to analyze the
impact data-centric models have on client-centric ones [96]. Furthermore,
multiple other consistency models have been proposed over the years [97,
98].

Finally, extensive work has been done to evaluate, measure and verify the
consistency of distributed storage systems [99, 100, 101, 102, 103, 104, 105].

1.3.2 Consensus and consistency: how to reach it

The two previous subsections explained how consensus and consistency prop-
erties can be described and what they mean for distributed storage systems.
This section describes two algorithmic tools used to either reach consensus
or guarantee custom levels of consistency.

Consensus algorithms: Paxos and Raft

Consensus protocols are a fundamental aspect of state machine replication
in distributed computing. They ensure a group of members of a distributed
system can reach a consensus on a value, even in the presence of failures and
delays. Paxos, firstly published in 1989 [106] and later republished as a jour-
nal article in 1998 [107], is the most well-known algorithm guaranteeing the
perfect consistency of states in an asynchronous network as long as certain
conditions are maintained (typically as long as a majority quorum of mem-
bers can be obtained to elect a leader). It has been proven that under the
following assumptions, consensus is guaranteed:

• Processors in the nodes operate at arbitrary speed, can fail, may re-join
the cluster after failures with their last version of the states (if they have
persistent storage), but do not actively lie or try to subvert the protocol.

Chapter 1. What you should know about distributed storage systems 28

• Processors can send message to any other processor, but messages are
sent asynchronously and may take an arbitrary time to reach their desti-
nation. They can also be lost, reordered or duplicated, but are delivered
without corruption.

Under these conditions, Paxos guarantees the three following safety prop-
erties for the distributed state machine:

• Only values proposed by a member of the quorum can be learned.

• Two different members can’t learn two different values.

• If a value is proposed, every member eventually learns it (if it joins the
cluster and enough members remain non-faulty).

However, the way Paxos is proven and described in the initial papers
[106, 107] makes it complex and difficult to understand and implement it, as
shown by several papers dedicated to either simplifying the explanations
[108, 109] or detailing specific implementations of variants of Paxos [110,
111]. To this end, other consensus algorithms such as Raft [112] have been
invented and designed with ease of implementation in mind. But even with
proven algorithms such as Paxos and Raft, it can be tricky for actual imple-
mentations to provide the guarantees provided by the theoretical algorithms
[113].

All these algorithms behave mostly in similar ways: they periodically
elect a leader that is in charge of proposing new values and making sure that a
majority of the participants agree on the value before commiting it. When the
leader changes, a replicated log ensures that what was previously committed
stays committed. Raft is the base for the widely-used ETCD [114] distributed
key-value store.

It is important to point out that most of these algorithms guarantee noth-
ing in case of byzantine-type failures – which is to say when nodes can vol-
untarily lie and messages can be corrupted.

Latency and Consistency, the (N,W,R) quorum model

Section 1.3.1 detailed the CAP theorem and its extension, PACELC. The (N, W, R)
quorum model is used in replication-based distributed storage systems to de-
termine when a read or write operation should be acknowledged as success-
ful to the client, depending on the number of individual replicas for which
the operation has been acknowledged.

The model goes as follows:

• Every data object is stored as N replicas;

• A write returns a success to the client when W ≤ N replicas have ac-
knowledged the write;

Chapter 1. What you should know about distributed storage systems 29

• A read returns the data to the client when R ≤ N identical replicas have
been fetched.

It has the following properties:

• Increasing W and R respectively increases the write and read opera-
tions latency, since more answers are required before the operations
return.

• If W + R > N, the system is fully read-after-write consistent: a read
sent after a write has returned will never return a stale version of a
data object. In that case, there is at least one replica overlap between a
write and read operation, which means the storage system can deter-
mine that there is a version conflict. Techniques exist to resolve such
version conflicts such as timestamps or vector clocks [115, 116].

• If W < dN
2 e, an additional mechanism is necessary to resolve concur-

rent writings conflicts. Indeed, if a quorum can be formed with only
half or less of the nodes, two distinct quorums can emerge for different
versions of the same object, as illustrated in figure 1.12. Again, vector
clocks and timestamps can help resolve such problems. On the con-
trary, when W > bN

2 c, it is impossible for multiple concurrent writes to
be acknowledged in the system.

However, such a system still requires a mechanism to resolve deadlock
situations, such as 3 concurrent writes, none of them obtaining a major-
ity like in figure 1.13. This kind of deadlock can be solved by random
timeouts triggering a failure return, as is done in Raft for the leader
election phase [112].

• Increasing N increases the reliability of the system but also its storage
overhead. At R and W fixed, it also increases its availability but reduces
its consistency.

• Increasing W increases the reliability of the system since it reduces the
probability that all storage nodes that have acknowledged a write si-
multaneously fail before the write is propagated to other replicas.

• Because R and W are separate parameters, the system can be available
for an operation but not for another. Typically, many storage systems
adopt a (N, N, 1) configuration. In that case, the system is always avail-
able for reads (if the client can communicate with at least one member
storing the desired object) but never for writes if there is a partition that
isolates at least one storage server storing one of the object’s replicas.

Most of the points made here are true when the replicas are indiscrimi-
nate. This is however not always the case. For example, Ceph’s writes re-
turn when the N replicas have been written but reads only target the primary
replica (the one stored on the first OSD of the object’s PG, as explained in

Chapter 1. What you should know about distributed storage systems 30

Client 2
Quorum 1 Quorum 2

Client 1

Concurrent writes: CONFLICT

??

ACK ACK

(a) N=5,W=2: Conflict during concurrent writes: one replica in undetermined state and two
different writes have returned.

Client 2
Full quorum Partial quorum

Client 1

Concurrent writes: NO CONFLICT

ACK NACK

NACK

NACK

(b) N=5,W=3: No conflict during concurrent writes: a write that succeeds guarantees that no
other simultaneous write does so.

Figure 1.12: W > bN
2 c guarantees the impossibility of concur-

rent and distinct writes to be simultaneously successfull.

Client 2
Quorum 1 Quorum 2

Client 1

Client 3

Concurrent writes: Deadlock

Quorum 3

Figure 1.13: N=5,W=3: three concurrent write requests, none
obtained a majority quorum.

Chapter 1. What you should know about distributed storage systems 31

section 1.2.2.

The N,W and R values are often parameters of storage systems, config-
ured to fit relevant use-case. For instance, Amazon states that they tune
Dynamo [23] differently depending on the use-case: (3, 3, 1) for many-reads-
few-writes applications, (3, 1, R) for applications that need a high write-availability
(such as the service hosting the shopping carts of clients), and (3, 2, 2) for
their average deployment. They also explain that they use timestamp-based
reconciliation when there are divergent object versions.

1.4 Examples of distributed storage systems

This section gives a non-exhaustive overview of different distributed storage
systems and their properties in table 1.3. They are sorted by type of storage
application. This classification is partly subjective – for instance, key-value
stores are a specific type of database that store non-relationnal data – and is
just supposed to give a hint into the use-cases for which they are used.

When explicitely described in available resource, reliability and consis-
tency mechanisms and guarantees are given. The nomenclature depends
on the use-cases and some systems fit different classification (such as BASE
and (N, W, R) quorumn since BASE describes consistency guarantees and
the quorum model is a tool to provide such guarantees). Most systems using
a (N, W, R) quorum model offer the possibility to configure N,W, and/or R.
When this is not the case, the fixed value for these parameters is given.

Chapter 1. What you should know about distributed storage systems 32

Type of
storage
system

Storage
System

Underlying
architecture

Reliability
mehanism

Type of
consistency
mechanism

Notes

Filesystem

GFS [24] Master-Slaves
Replication

Mirroring for
metadata

(N,N,1)
Relaxed consistency

model: tolerates
duplicate writes

HDFS [29] Master-Slaves
Masters-Slaves [53]

Replication
Mirroring for

metadata
(N,N,1)

Distributed metadata
layer ongoing

work, inspired from
GFS

GlusterFS [117] DHT
Mirroring

Replication
EC

(N,N,1)

LustreFS [58]
Master-Slaves
Masters-Slaves

(since 2.4)

Mirroring
Replication

(N,1,1)
(N,N,1)

IPFS [62] P2P
DHT NA NA

Possible to locally
store some objects

to ensure reliability

Database Aerospike [118] DHT Replication ACID

Cassandra [27] DHT Replication BASE
(N,W,R)

Key-value
store

Dynamo [23] DHT Replication BASE
(N,W,R)

Riak [119] DHT Replication BASE
(N,W,R)

Open-source, inspired
from Dynamo

Ceph [28] DHT Replication
EC

BASE
(N,N,1)

Reads issued only
to first replica

ETCD [114] Mirrors Mirroring Raft Used to propagate
configuration information

ZooKeeper [120] Mirrors Mirroring ZAB (Raft
equivalent)

Used to propagate
configuration information

Table 1.3: Overview of different distributed storage systems and their characteris-
tics.

33

Chapter 2

6Stor, an IPv6-based fully
distributed object store:
architecture and evaluation

As explained in the introduction, distributed storage systems are mostly de-
ployed on numerous generic servers that are organized in clusters to pro-
vide reliability, availabality, and sometimes some performance or consistency
guarantees. These clusters are generally organized in three layers.

The metadata layer has the role of distributing data objects amongst the
various storage devices and of keeping track of object location, and the data
layer is in charge of storing the objects themselves, of sending them to clients
when requested. Finally, the control plane organizes the cluster, configures
the servers, deploys the appropriate software, and in some cases detects
server failures and trigger appropriate repairs or rebalancing.

We saw in section 1.1 that every traditionnal storage architecture has strengths
and shortcomings. For this reason, we created 6Stor, a distributed object store
that adresses most of these shortcomings. 6Stor uses IPv6 addresses as a
means to improve its scalability and flexibility, and is composed of as few
software layers as possible.

Through this approach, our goal is twofold: first, we identify key tradi-
tional design points in distributed storage systems that affect their flexibil-
ity, performance and scalability. Secondly, from our previous considerations,
we build from scratch an architecture that circumvents these limitations and
evaluate the feasibility of this architecture.

The rest of this chapter is organized as follows. Section 2.1 explains in
more details the issues we are trying to solve with 6Stor. Then, section 2.2
thoroughly describes 6Stor’s architecture and how basic operations are pro-
cessed. Section 2.3 presents how 6Stor scales up and down without triggering
heavy rebalancing and thus long bootstraps. Reliability and reaction to fail-
ures is explored in section 2.4 before general considerations on 6Stor’s struc-
ture and architecture are pointed out in section 2.5. A set of benchmarking
results from various workloads is presented in section 2.6, showing how a
prototype of 6Stor fares when compared to a similar object store. Lastly, the

Chapter 2. 6Stor 34

performance impact of the HTTP protocol (and its absence in 6Stor’s data
plane) is evaluated before conclusions are drawn.

2.1 Why we built 6Stor from scratch

There are two main issues we try to tackle with 6Stor: software layering and
architectural limitations.

2.1.1 Software layering

Because the main bottleneck for storage systems has been disk I/Ops for a
long time, most distributed storage system were built assuming that com-
pute was not a problem and network a secondary problem. But as explained
in the introduction, the evolutions of storage technologies seen in figures 1
and 2 mean that this assumption does not hold true anymore [6, 7]. There-
fore, we wanted to build a storage system from scratch rather than iterate on
an already existing open-source architecture such as Ceph [28], which newly-
founded foundation [121] has started to look into in order to reduce the soft-
ware computing overhead [34, 33].

But layering can have more pernicious consequences and pose real issues
with system configuration. For example, Ceph OSDs that back their data on
a regular filesystem generally have very poor write performance because of
data journaling. In some extreme cases, data can be written on disk as much
as 13 times per object [32, 85] because of redundant journaling mechanisms
– from Ceph itself, the underlying filesystems etc...

2.1.2 Architectural reasons

Almost all distributed storage systems correspond either to DHT or master-
slaves architectures as depicted in section 1.1. These architectures come with
drawbacks that we wanted to avoid. In order to better understand both ar-
chitectures, we have chosen to describe in more details one widely deployed
and documented storage system of each category – Ceph [28], based on a
DHT and GFS [24], built as a master-slave system.

2.1.3 Ceph

Ceph [28] is a distributed object store, that can also provide a block device
and a distributed filesystem on top of its object store. Ceph is fault-tolerant
and self-repairing via replication and automated repairs. A Ceph cluster uses
three or four types of agents (the last one is only used whenever a filesystem
is needed):

• Cluster monitors, that maintain a representation of the topology of the
storage system (cluster map), detect node failures and start repairs when
required. It contains information regarding the IP addresses of storage

Chapter 2. 6Stor 35

nodes, their weight (used to distribute data according to each node ca-
pacity) and other similar information about these nodes.

• Object Storage Devices (OSDs), that store objects in Placement Groups
(PGs) on a local filesystem (usually XFS or btrfs) and communicate be-
tween each other for replication, repairing or rebalancing purposes.

• Proxy Gateways that are used to connect to the storage cluster. The
cluster monitors make sure that the gateways always have an up-to-
date cluster map in order to reach the cluster.

• A metadata agent, that stores filesystem inodes (metadata about files
and directories) when Ceph is used as a filesystem. 1

Ceph does not need object metadata thanks to the way data is balanced
across the cluster using the RADOS [63] and CRUSH [67] algorithms. Ra-
dos spreads data evenly among PGs, and CRUSH assigns each PG to sev-
eral OSDs, following numerous constraints such as OSD weights, failure do-
mains, replication rules etc... The weight is usually set based on the storage
capacity, so that a storage node with more capacity is assigned more PGs.
The cluster map, maintained by monitors, organizes storage devices in dif-
ferent buckets that usually correspond to some physical topology: buckets
can correspond to racks, rows, rooms ... and is used by CRUSH to map PGs
to OSDs. Different buckets are used to store replicas of objects to ensure that
not all replicas are unavailable at the same time in case of disaster or mainte-
nance.

To place an object, the gateway deterministically hashes the object name
to determine which PG will store the replicas by applying a placement pol-
icy to the cluster map. This provides a deterministic and independent way to
place and retrieve replicas and ensure that two replicas are not on the same
failure domain (i.e. buckets). The hash is designed such that every storage
node holds an average fraction equal to the node’s relative weight w

W of the
data, with w the node’s weight and W the total cluster’s weight. Ceph’s
placement algorithm was illustrated earlier in figure 1.7.

This deterministic placement has the benefit of allowing the system to
run in a fully decentralized manner. However, this comes with two draw-
backs. First, when the storage topology changes, for instance when nodes
are added to the cluster, or nodes are permanently removed from it, data has
to be moved to fit the new distribution of the hash function on the new clus-
ter map, as illustrated earlier in figure 1.5. If we suppose that the relative
weight w

W of a device is equal to the relative storage capacity of the device
c
C (c the storage device capacity and C the total capacity of the cluster), an
OSD has to store an average of cS

C of data, where S < C is the amount of

1Agents can be colocated on the same server. For example, monitors can also act as gate-
ways but don’t function properly when located with OSDs. There are typically multiple
OSDs per server corresponding to different storage devices.

Chapter 2. 6Stor 36

data stored in the cluster. This means that, for a cluster that is about half
full (S

C = 1/2), adding a new node of capacity c forces it to download half
its capacity of data. Furthermore, additional data transfers between other
nodes may be required to fit the new distribution, depending on the hash-
ing algorithm chosen as illustrated in figure 1.5 with a naive redistribution
algorithm. Even worse, the deeper the bucket hierarchy is, the more data po-
tentially needs to be transfered [67].

The fact that storage capacity increases much faster than network band-
width increases the overhead of this redistribution of data — raising scala-
bility issues. These transfers can saturate the cluster (or at least the bucket
involved) which makes the storage system temporarily unavailable or oper-
ating with degraded performance during the process. Workaround exists,
consisting of gradually increasing the weight of the new storage node (start-
ing from zero) to reduce the volume of data to be transferred and thus the
performance degradations. However this means that the re-distribution pro-
cess lasts hours or even days for large storage nodes, making the bootstrap
process last longer [23].

The other main drawback is that it is not possible to define a placement
policy other than by changing the cluster map. One must keep in mind that
the more complex the map is, the more difficult it is to balance the data. This
means that heterogeneity in the devices is possible but difficult to accommo-
date. Hot spots can also arise if, by mischance, multiple heavily accessed
objects have replicas stored on the same OSD [51]: a dynamic load-balancing
policy is not possible with this hash-based approach.

2.1.4 GFS

The Google File System [24] (GFS) is a distributed file system that provides
fault-tolerance while running on commodity hardware. It has been used by
Google for over a decade and is designed to accommodate their usual work-
loads. As such, each cluster is expected to store a few millions of big files
(typical size of 100MB or even GB), mostly serve large streaming reads and
small random reads, and mostly receive large sequential write-appends to
the end of files (but still supports small random writes). It is also expected
to serve multiple clients reading and writing at the same time. A priority is
also given to high bandwidth rather than low latency.

Like in every filesystem, files are divided in fixed-sized chunks. A GFS
cluster consists of a single active Master, some inactive fallback masters, and
multiple Chunkservers.

• The Master is responsible for the file system metadata (namespace, ac-
cess control information, location of files’ chunks, filesystem inodes and
directories etc...), garbage collection, chunk migration, maintenance of
the cluster’s health, and file chunk lease management.

Chapter 2. 6Stor 37

• ChunkServers store the different chunks as Linux files on their local
filesystem.

The introduction of a master node allows GFS to have sophisticated place-
ment and replication decisions. It is however an important bottleneck that
has gone through a fair share of optimizations with regard to scalability. In-
deed, any client accessing a file for a read or a write first has to interact with
the master to get the relevant chunk information, although the reads and
writes themselves don’t pass through the master.

To reduce the single master bottleneck, some design decisions have been
taken. First, the typical chunk size of GFS is 64 MB (compared to the typi-
cal 4 or 8KB chunk size of usual filesystems), which effectively reduces the
number of chunks. This design choice has several advantages: it reduces
the number of chunk locations the master has to keep up with — potentially
making it possible to store all the metadata in RAM. It also reduces the num-
ber of connections the clients have to establish with ChunkServers.

However, this comes at the cost of storing small files very inefficiently
(each file takes at least one chunk) — which is not an issue for GFS because
small files are expected to be very rare. Secondly, clients don’t receive the file
metadata one by one. They send requests in batch and the master answers
a request for a chunk with the information of the location of this chunk but
also those for the next chunks, that the client is likely to need in the near fu-
ture. However, these optimizations are not always possible for filesystems
built with more generic use-cases in mind.

Moreover, even with these optimizations, having a single master puts
a serious strain to the scalability of GFS [30], which explains why Google
has been developing a new distributed storage system called Colossus [54].
However, to the best of our knowledge, there is no public information avail-
able about this architecture at the time this chapter was written.

2.1.5 Scaling the metadata layer and embracing the hetero-
geneity

In the past few years, efforts have been made to tackle the issues previously
identified regarding the metadata layer. For example, since their 2.4 release
in May 2013, the Lustre file system (LustreFS) [58, 122] allows for horizon-
tal metadata scaling by using multiple Metadata Target Devices at the same
time. Similar work has been conducted in 2017 to allow HDFS to store meta-
data in distributed NewSQL Databases [53].

In parallel, some work has been done to understand how heterogeneity
affects cluster performance, and how to accommodate it while maintaining
near-optimal performance. Such heterogeneity can be created by hotspots
(objects heavily accessed) [51] or just by natural device heterogeneity [123],

Chapter 2. 6Stor 38

2001:DB8:1:1: 3:: 0123:4567:89ab/128

Figure 2.1: Example of a routable object replica IPv6 address
decomposition.

which increases over time in a cluster when new devices replace failed ones
and drives age differently.

Some new architectures that naturally distribute the metadata layer and
use fine-grained load-balancing such as OpenIO [124] have also appeared,
but it is hard to find precise documentation on these commercial solutions.

2.2 6Stor architecture

6Stor is a hybrid IPv6-centric distributed object storage system that borrows
ideas from the approaches described in 2.1.3 and 2.1.4 to alleviate their short-
comings. To interact with the cluster, clients first interact with a fully dis-
tributed metadata layer –addressed via a consistent hash– and are then redi-
rected towards the data layer.

The main characteristic of 6Stor is that it is “IPv6-centric”, as we use
routable IPv6 addresses to identify and reach objects replicas and their meta-
data replicas, and routable IPv6 prefixes to identify the servers of the storage
cluster. Specifically, an object in a 6Stor cluster is represented by two sets
of IPv6 addresses: its metadata replicas addresses and its object replicas ad-
dresses. The metadata addresses are obtained by a consistent hash that uses
the object name as an input and the replica addresses are assigned by storage
nodes storing the data, as illustrated in figure 2.1.

2.2.1 Architecture Description

We consider objects that are immutable but can be overwritten. For the sake
of clarity, we will also consider that fault-tolerance is obtained through sim-
ple replication2 for both the objects and their metadata. A 6Stor cluster is
composed of 3 types of nodes:

2Erasure Coding schemes are being investigated to greatly reduce the storage overhead
but are not yet fully integrated to our 6Stor prototype. However, most of the architecture
would work exactly the same way with encoded fragments instead of replicas.

Chapter 2. 6Stor 39

• Storage Node (SN): The SNs store the objects. Every SN is assigned an
IPv6 prefix from which it chooses IPv6 addresses to identify the objects
it stores. The prefix is assigned by an orchestrator and must be large
enough for the node to name all the objects it stores uniquely. Clients
interact directly with SNs when reading or writing objects.

• Metadata Node (MN): The MNs store objects’ metadata. The metadata
of an object contains at least the object name and the two sets of as-
sociated IPv6 addresses (for both the metadata replicas and the object
replicas). It can also contain all other kind of object-related information
that may be useful like Access Control Lists (ACLs), video metadata,
date of creation, version number...

Every metadata node is also assigned an IPv6 prefix by the Orchestra-
tor. MNs create and store metadata identified by IPv6 addresses be-
longing to their prefix. When a MN creates a metadata for an object, it
selects the SNs where replicas will be uploaded by the client.

• Orchestrator Node (ON): The ON is in charge of organizing the cluster,
and in particular of assigning IPv6 prefixes to SNs and MNs and of
making these prefixes routable. For instance, when a new SN joins the
system, the ON assigns a storage IPv6 prefix to it and advertises it to
MNs along with relevant informations (capacity, type of storage device
...). When a new MN joins the system, the ON reassigns others MNs
IPv6 prefixes, advertises them and triggers the routing changes.

2.2.2 Attributing IPv6 prefixes to MNs

A 6Stor cluster is identified by a single fixed IPv6 prefix. This prefix is split in
2n equal-length subprefixes, each subprefix defining a Metadata Group (MG).
At all point, each MG is assigned to a single MN with two requirements in
mind: the mapping has to be balanced and, to a latter extent, aggregated as
much as possible.

The trade-off incurred by this structure is between load balance and route
disaggregation. Increasing n provides a better load distribution by assigning
a larger number of smaller prefixes to nodes : 8 MGs assigned to 6 servers
mean that 2 servers have twice the load other servers have, as illustrated
in figure 2.2, whereas with 1024 MGs, this difference is reduced to ' 0.6%
but this comes at the price of an increase of the number of different routable
IPv6 prefixes that need to be injected in the cluster. Note that the potential
negative effects of disaggregation is limited to the storage cluster because
of subnetting: the cluster is seen as a single prefix from outside, and MG
prefixes can be aggregated at the MN level.

For example, let us imagine the 6Stor cluster depicted in Fig. 2.3, com-
posed of 4 SNs, 2 MNs and a single ON. This cluster is configured to use the
metadata IPv6 prefix 2001:DB8:1::/64 with 8 MGs. The orchestrator respec-
tively assigns prefixes 2001:DB8:1:1:0::/80,

Chapter 2. 6Stor 40

Figure 2.2: A 6 MN/6 SN 6Stor cluster with 8 MGs storing up
to 5 video streams frame by frame –at 30 FPS per stream– in
parallel. The MNs 6Stor3-1 and 6Stor3-5 are assigned 2 MGs

and thus receive in average twice as many Post requests.

2001:DB8:1:1:1::/80, 2001:DB8:1:1:2::/80 and
2001:DB8:1:1:3::/80 to the storage nodes. The metadata nodes are respec-
tively assigned the IPv6 prefixes 2001:DB8:1::/65 and 2001:DB8:1:0:8000::/65
(by aggregating 4 MGs in each MN), the concatenation of which is the fixed
metadata IPv6 prefix, as illustrated in figure 2.3.

2.2.3 6Stor: An IPv6-centric architecture

Why IPv6 addresses? The IPv6 prefixes assigned to SNs and MNs are routable
towards these nodes, and these nodes listen on the whole prefix 3. This
means that any request sent to an IPv6 address within a prefix assigned to
a SN or MN is routed to and answered by this node. When clients want to
post or get an object, they send their requests directly to the corresponding
IPv6 address.

Using specific IPv6 addresses for objects allows us to shifts a portion of
the cluster’s complexity to the network layer, providing efficient cluster elas-
ticity and repairability, as discussed in section 2.3 and 2.4. Furthermore, be-
ing able to integrate object-related information in specifically-assigned IPv6
addresses has some potential for optimizations of the network-storage stacks.
Efforts are already being made in user-space applications by using the Intel
DPDK and SPDK libraries [125, 126], and we envision that we could go fur-
ther by embedding storage- and network-stack related information (inode
number, size, video quality, necessary throughput ...) in the IPv6 addresses,
for instance to help on-path routers take better decisions based on the type
of data they are forwarding but also to help the gathering of statistics.

3In practice, the traditionnal linux network stack does not allow to listen on an arbitrary
prefix. So implementation-wise, we use the workaround of binding the socket to ANYADDR
and creating a local route redirecting the prefix to the loopback interface. This way, the
packet is sent to the loopback interface and matches the ANYADDR criteria. There are no
MAC resolution issues as the servers are seen as next-hop routers in the routing tables.

Chapter 2. 6Stor 41

Metadata Nodes (MNs)

Storage Nodes (SNs)

Orchestrator Node (ON)

Client
2001:DB8:1::/64

2001:DB8:1:1::/64

Figure 2.3: 6Stor architecture example

The idea of overloading IPv6 addresses with application-level meaning is
not new and has already been explored in work such as [127] for multiplex-
ing or locator-identifier routing, [128] for video delivery or [129] for content
distribution. The ICN (Information Centric Networking) [130] approach to
change the networking paradigm from host-centric to content-centric also
leverages such overload techniques in the hICN (hybrid ICN) project [131,
132].

Furthermore, providing a well-defined quality of service (QoS) at the net-
work level for specific flows or data has already been identified as a key point
[133, 134] to optimize the utilization of resource in datacenters.

Consequences of this design choice regarding scalabiliy, orchestration and
analytics are elaborated on further in section 2.5.

Determining IPv6 addresses There are two types of IPv6 addresses related
to an object: the metadata addresses identifying and locating the different
copies of the metadata, placed on different metadata servers, and the ad-
dresses of the replicas of the object, identifying and locating the object’s frag-
ments on the different storage nodes. These two sets of addresses are deter-
mined by different means.

Chapter 2. 6Stor 42

Metadata addresses

Replica addresses

2001:DB8:1:0: 4 012:3456:789a:bcde

2001:DB8:1:0: c fed:cba9:8765:4321

2001:DB8:1:0: 8 012:3456:7887:6543

Metadata prefix Hash(x,i)Metadata « quadrant »

2001:DB8:1:1: 0 :1111:2222:3333

2001:DB8:1:1: 1 :2222:3333:4444

2001:DB8:1:1: 3 :4444:5555:6666

Storage prefix Local identifierStorage Node identifier

Metadata Nodes

Storage Nodes

Figure 2.4: Object metadata example with Nm = Ns = 3. In
this case, Nq = 4.

For the replicas, the SNs themselves give a unique IPv6 address to the
replicas they store that belong to their assigned prefix and contains a locally
unique identifier to be able to retrieve the replica (which could for example
contain a 32-bit inode number of the file containing the replica on the local
filesystem).

For the metadata, addresses are obtained by a consistent and determinis-
tic mechanism. To obtain the metadata IPv6 addresses for an object named x
with Nm metadata replicas in a cluster with a given prefix, this prefix is firstly
split in Nq same-size subprefixes, identifying metadata quadrants, Nq being the
lowest power of 2 superior or equal to Nm, equal to 2dlog2 Nme. Secondly, Nm
distinct metadata quadrants are deterministically chosen among the Nq and
ordered, based on the object name through the use of a hash. Lastly, Nm IPv6
addresses matching the prefixes are generated by concatenating the prefixes
and hashes of the object name x seeded by the index of the metadata ad-
dress. An example of an object’s metadata with a metadata replication factor
Nm and a data replication factor Nd set to 3 is given in figure 2.4.

This mechanism ensures that the Nm metadata addresses for an object are:
(i) consistent no matter the time and cluster layout, (ii) belong to different
subprefixes to ensure they match with different MGs, for reliability purposes.

2.2.4 Description of basic operations

In the rest of this section, the different basic operations of 6Stor are described.
The corresponding sequence diagrams can be found in figure 2.5. We make

Chapter 2. 6Stor 43

use of a custom set of signaling messages that identify an operation (Post,
Get, Delete, Rename) and an interaction type (external, when the request
comes from a client, and internal, when the request comes from another node
inside the cluster) to obtain the desired behavior.

The general idea is to use the first metadata and replica for every object as
“masters” that are in charge of ensuring the operations return the expected
result and avoid basic consistency issues.

Post: To post an object with Nm metadata replicas and Nd object replicas,
the operation goes as follows:

1. The metadata addresses for the object are obtained through the algo-
rithm described in paragraph 2.2.3. A UDP 4 packet containing a Post
request identifier, the object name and its size is sent to the first meta-
data IPv6 address;

2. When the MN matching this address receives the packet, it creates a
metadata by selecting the appropriate SNs and generating the addi-
tional metadata addresses for the object. Temporarily, the metadata
contains generic addresses identifying the SNs assigned to store the
replicas (for example, the first address of their storage IPv6 prefix);

3. The same MN sends a UDP packet containing an internal Post request
identifier and the created metadata (containing the object name, its size
and the two sets of IPv6 addresses identifying the metadata and the
SNs) to the other metadata IPv6 addresses and to the SN chosen to store
the first replica;

4. The SN assigns a unique IPv6 address to the replica and sends it to the
MN;

5. When more than half of MNs (including the original one) have ac-
knowledged that they have stored the metadata, the IPv6 address for
the first replica is sent to the client;

6. The client opens a TCP connection with the first replica address, sends
an external Post request identifier and starts transmitting the corre-
sponding data;

7. The primary SN of the list accepts the TCP connection and use the meta-
data that the MN previously sent to open TCP connections (or use al-
ready opened ones) towards the alternate SNs of the list and forwards
them the metadata along with an internal Post request identifier. It then
receives the data, locally writes it and in parallel forwards it to the other
SNs;

4UDP is used for metadata exchanges because they fit in one packet. It provides bet-
ter latency and less computing overhead but requires a timeout to retransmit when losses
happen.

Chapter 2. 6Stor 44

8. When a SN has finished writing the object, it acknowledges it by send-
ing the unique IPv6 address identifying the object replica (within its
assigned prefix) to the object metadata addresses;

9. Once a SN receives Wm ≤ Nm number of acknowledgements from MNs
(including the first of the list) that testify that the write has been regis-
tered by enough metadata nodes for reliability purposes, it sends an
acknowledgement to the first SN of the list;

10. At the same time, once a MN receives the same parametrable Wm num-
ber of unique replica addresses, it locally commits the metadata (and
overwrites it if it previously existed). In addition, if the first MN has
overwritten previous metadata, it means that the operation is an over-
write of an existing object, and the MN thus triggers the deletion of the
previous version of the object on its corresponding SNs;

11. Once the first SN receives Wd ≤ Nd number of acknowledgements from
concerned SNs (including itself), it sends an acknowledgement to the
client and terminates the connection5.

Get: To get an object the client follows those steps:

1. The metadata addresses for the object are obtained through the hash,
described in 2.2.3. A UDP packet containing an external Get request
identifier and the object name is sent to the first metadata IPv6 address;

2. The MN matching this address receives the packet and sends the meta-
data back in a UDP packet to the client;

3. The client opens a TCP connection to one of the object’s replica ad-
dresses;

4. The SN matching this address accepts the TCP connection, uses the
unique identifier contained in the address to identify the local file stor-
ing the replica, and sends the data to the client. When all data has been
sent over TCP and acknowledged, it terminates the connection.

Delete: To delete an object:

1. The client sends a UDP packet containing an external Delete request
and the object name to its first metadata address;

2. The matching MN sends a UDP packet containing an internal Delete
request and the object name to the metadata and replica IPv6 addresses;

5the lower the parameters Wm and Wd, the lesser delay before the client receives an ac-
knowledgement that the object is written to the cluster but the lower reliability in case of
simultaneous failures during the operation, as explained earlier in section 1.3.

Chapter 2. 6Stor 45

3. When every MN has acknowledged to the first MN the deletion of the
metadata, the first MN acknowledges the deletion to the client. In par-
allel, the object is being deleted on SNs but the client doesn’t need con-
firmation since the object is not reachable anymore without its corre-
sponding metadata.

Rename: Due to the fact that only metadata addresses depend on the object
name, a 6Stor cluster offers the possibility to easily rename an object without
moving the data itself. This operation is not possible for purely DHT-based
architectures. To perform this operation:

1. The client sends a UDP packet containing an external Rename request
identifier, the current name of the object, and the new name to the first
metadata address;

2. The matching MN generates the new Nm addresses corresponding to
the new object name and sends a UDP packet containing an internal
Rename request identifier containing the modified metadata (with the
new object name and new metadata IPv6 addresses) to all those ad-
dresses;

3. When more than max(Wm, dNm/2e) of the new MNs have acknowl-
edged the new metadata creation, the first MN sends an internal Delete
request to the other old metadata addresses;

4. When every other old MN has acknowledged the metadata entry dele-
tion, the first MN deletes its own old metadata entry and acknowledges
the deletion to the client.

2.2.5 Consistency

As for any distributed system, consistency is an issue when an object has
replicas and metadata scattered across multiple nodes. As such, it is impor-
tant to clearly define the consistency that the client should expect for basic
operations.

6Stor uses a variation of the (N, W, R) model presented in 1.3. It is a
(N, W, 1) version, where consistency for metadata operations is granted by
the fact that every operation goes through the first MN every time (but still
requiring Wm acknowledgements for reliability reasons). Consistency on
data for reads is guaranteed by the fact that the first MN of an object knows
which SNs have a correct version and which SNs do not. This design choice
has been made to guarantee low latency while maintaining good consistency
levels.

Let us enumerate typical conflict cases and describe what would happen
in a 6Stor cluster:

Chapter 2. 6Stor 46

(a) POST

Client

Client

MN1

MN1

SNX

SNX

Get request (UDP)

Metadata (UDP)

Data (TCP)

(b) GET

(c) RENAME

(d) DELETE

Figure 2.5: Sequence Diagrams of the 4 basic 6Stor operations.

Chapter 2. 6Stor 47

• Simultaneous read/write: A client tries to get an object while another
one is overwriting it with an object with the same name. If the client
writing has received an ACK before the client getting the object sends
its request, the first MN has by definition updated its metadata so the
client reading will get the new version. However, it is possible for
the reading client to get the new version of the object before the writ-
ing client receives an ACK (because the ACK is sent by the SN when
enough MNs have ACKed the write. This means that at one point the
first MN has overwritten the old metadata but the first SN has not yet
sent the ACK to the writing client).

• Several clients are trying to post objects with the same name: because
Post operations pass through the first MN, a Post request arriving for
an object which is already currently being posted will immediately fail
for the second client;

• A client is trying to get an object that another client is deleting: the
delete ACK is sent when every MN containing the metadata has deleted
it. This means that a client will not be able to get the object after a delete
ACK has been received by the deleting client. However, it is possible
for a Get request to fail before the deleting client receives the ACK (it
can happen while the ACK is on the wire, and it can also happen that
SNs have deleted their local replica of the object before all the MNs
have deleted their local metadata).

These three cases encompass most of the usual potential consistency is-
sues in distributed storage systems. The consistency issues they can raise are
kept minimal and correspond to what is expected by most applications using
distributed storage backends.

2.3 Expanding or shrinking the cluster without im-
pacting the cluster’s performance

2.3.1 Storage Nodes

When a new SN is included in the cluster, it is assigned a storage IPv6 prefix.
This prefix is advertised to some MNs that will have it in their storage pool
along with relevant information (storage type, capacity ...). Once this prefix
has been advertised by the ON, the MNs can immediately assign incoming
post requests to the SN 6, making the bootstrap process almost instantaneous.

When a SN is scheduled to be excluded from the cluster, MNs holding
metadata for objects which have a replica on the excluded SN are notified
and place a new replica for each affected object on other SNs. Once every

6In the background, it is also possible to rebalance data from existing SNs to the new one.
However, this is absolutely not mandatory and can be done object by object, without making
any node or object replica unavailable as it is the case in DHT-based storage systems.

Chapter 2. 6Stor 48

affected object has a new replica posted on another SN, the excluded SN can
safely be removed from the cluster. The case where a SN unexpectedly fails
is treated later in section 2.4.2.

2.3.2 Metadata Nodes

When a new MN is included in the cluster, it will take responsibility of a
number of consecutive MGs (defined in section 2.2.2). These MGs are how-
ever currently assigned to other MNs so a transition is required. Let us de-
note by S the set of MGs assigned to the new MN by the Orchestrator.

Before making any change to the routing and to the other MNs MGs af-
fectation, the MNs that are presently assigned prefixes within the set S are
notified by the orchestrator. Once advertised, these MNs begin transferring
all the metadata corresponding to these MGs to the new MN. The routing is
also changed so that new requests matching the new MN’s MGs are routed
to the new MN. As a consequence, Post requests are dealt with by this new
MN as expected. Get requests for object which metadata have not yet been
transferred fail, and the clients retry with the next metadata address (remem-
ber that there is a redundancy of metadata), unless a Post has already been
committed on the the new MN for the object.

Note that during this transition period, consistency issues are avoided. A
Get request will be treated by another MN only in the case where metadata
has not yet been transferred and a post request has not yet occurred for this
object (i.e. the object has not changed meanwhile). The MG redistribution is
illustrated in figure 2.6 with 32 MGs and an expansion from 7 to 8 MNs.

When a MN leaves the cluster, the new MGs assignment is made and it
works exactly the same way. The operation finishes when the leaving MN
has transferred all its metadata to the MNs taking his MGs. Again, we do
not treat here the case of failure which is specifically covered later in section
2.4.2.

2.3.3 Availability and data transfer

An important feature of 6Stor is that none of the expansion or reduction op-
erations makes any part of the cluster unavailable. While the object and
metadata transfers happen, the cluster keeps working the same way even if
slightly lower performances may be observed since links are shared between
actual requests and data as well as metadata transfer.

In addition, when a MN is added to or removed from the cluster, a manda-
tory data transfer comparable to the Ceph case occurs. However, our ap-
proach has two advantages: as previously stated, there is no indeterminate
state for the objects and metadata since they are reached through natural
routing, so that no cluster part is unavailable even during the rebalancing.

Chapter 2. 6Stor 49

(a) 32 MGs, 7 MNs

(b) 32 MGs, 8 MNs

Figure 2.6: MG redistribution when including a new MN in
the cluster.

Chapter 2. 6Stor 50

Furthermore, the amount of data that has to be transferred is very small
compared to the amount of data stored in the cluster, since it only affects
metadata, which are expected to be of very small size (typically less than 1kB
for an object).

2.4 Coping with failures: reliability and repair model

2.4.1 Reliability

Like most distributed storage systems, we solve the problem of reliability via
replication, both at the metadata and object level. Note that erasure codes
[135] could also be used at the data level to reduce the storage overhead, but
this subject is not covered in this chapter. When a MN selects SNs to store an
object, it specifically chooses different SNs to store the different replicas. Fur-
thermore, exclusive failure domains containing different SNs can be defined
so that different replicas of an object are stored in different failure domains.

For metadata, the algorithm described in section 2.2.3 ensures that meta-
data replicas are stored on different MNs, as long as there are enough MNs.

2.4.2 Reacting to failures

Recent work [136] shows that failures come in different shapes and sizes, and
that it is not always optimal to immediately trigger a repair when a failure
occurs. It is an impactful decision to trigger a repair, as it degrades perfor-
mance and mobilizes a consequent amount of I/O and bandwidth resources.
Consequently, it is sometimes a better solution to wait for a temporary failure
to settle rather than to trigger a full data reconstruction.

In the following, we shall make a distinction between two types of failures
for our MNs and SNs: short and definitive failures. We differentiate them
by using a simple timer after a failure occurs: the default reaction after a
failure is a short failure reaction, and if a node does not rejoin the cluster
when the timeout occurs, the system falls back in definitive failure mode. We
distinguish these modes to avoid costly repairs and prefix reassignment for
nodes that are only temporarily down or in maintenance.

Short failure

For SNs, once a failure is detected, a SN is put in a failure state in the SN
maps held by MNs. MNs don’t select a SN in a failure state to store objects’
replicas. The on-going operations which were involving the failing SN will
of course not be successful. However, after a timeout, retries can be made
with the other SNs.

Chapter 2. 6Stor 51

For MNs, the associated MGs are not immediately re-affected in the case
of a short failure. The MGs assigned to the failed MN are temporarily as-
signed to another server (which can be a backup server or another MN) and
the routing tables are updated. This temporary MN will obviously not be
able to answer all get requests and will as such redirect clients to the next
metadata address. However, it will accept post requests and store the corre-
sponding generated metadata. If the failing MN rejoins the cluster before the
timeout occurs, the prefix will be routed back to it and the temporary MN
will transmit all newly created metadata to it.

Definitive failure

After the timeout occurs, the node is considered permanently disappeared.
For a SN, two repair modes exist: either a new server is available and is as-
signed the IPv6 prefix of the failed node or the prefix is not reassigned. In the
case where the prefix is re-assigned to a new SN, the other SNs storing the
replicas of the objects that were previously stored on this prefix transmit their
replicas 7 so that the effective replication factor (the real number of replicas
stored) for these objects can be increased back to Nd (the configured expected
replication factor Nd). This has the advantage of not requiring the MNs to
re-locate the lost replicas on other storage nodes, by keeping the same IPv6
addresses.

If the prefix is not reassigned, the MNs containing the primary metadata
replica for every object that had a replica on the failed SN have to assign the
repaired replica to a new SN, trigger the replication, and update the other
MNs.

In the case of MN failures, the reparation is triggered at the MG level.
Every MN maintains, for each MG they are assigned and each other MG in
the cluster, a list of the metadata that have a replica in both the MGs. When
a repair is triggered, each MN uses the relevant lists to send the metadata
requiring repair to the MN assigned the MG requiring repair.

Voluntary shutdown and maintenance

In some occasions, one can knowingly and voluntarily shutdown or restart
a machine that hosts a server in the storage cluster. When this occurs, one
knows in advance if the node is supposed to rejoin the cluster or not, and
when. As such, a voluntary shutdown operation allows the user to define
the timeout for the specific operation or to immediately trigger a modified
definitive failure, where the node (MN or SN) is in charge of its own repair
either on a new node or on the rest of the cluster before it shuts down.

7A quick handshake is being made before each replica transmission to avoid multiple
retransmissions for the same object.

Chapter 2. 6Stor 52

Maintaining reliability

Because of our model of delayed repair, it is possible for an object to simulta-
neously lose several replicas. For this reason, it is necessary to detect objects
which replication factor falls below a configured threshold and repair them,
even if the failed node’s repair is not triggered, so that a healthy reliability
is maintained. To that end, MNs keep track of the effective object and meta-
data replication factors of the objects they hold when they are made aware of
failures.

2.5 Considerations on the Architecture

2.5.1 Client and Cluster Configuration

Most of the cluster configuration is hidden from the client: the only infor-
mation it requires is the general IPv6 prefix for metadata. Due to this, a
6Stor cluster is dynamically reconfigurable and most configuration changes
or maintenance operations can be conducted online while the cluster keeps
working. This is not the case for most distributed storage systems, where
clients either need access to a single master or a precise, up to date map of
the cluster to operate.

2.5.2 Layer of Indirection

Having a layer of indirection is generally a trade-off with the following prop-
erties.
Cons :

• Layer overhead: Most operations require an interaction with the in-
termediate layer, which incurs a performance penalty (network Round
Time Trip (RTT), compute, increase of the number of potential failure
points ...);

• System complexity: Having an intermediate layer means that there are
different types of nodes in the cluster. Each type of node has a differ-
ent type of configuration and of interaction, and potentially different
hardware requirements. This is more complex to deploy and maintain
optimally.

Pros :

• Data plane flexibility: As we explained in section 2.3, having a layer
of indirection displaces the need for a redistribution when the cluster
changes from the data plane to the metadata plane. Because data repar-
tition is decided by the intermediate layer, it is not subject to redistri-
bution for causes external to explicit decisions from this intermediate
layer (unlike systems relying on consistent hashing like Ceph [28] or
GlusterFS [117]);

Chapter 2. 6Stor 53

• Time-inconsistent decision making: Because a layer of indirection keeps
track of where data is stored, there is no need for a consistent way to
place data. This allows the cluster to accommodate to current circum-
stances such as a temporarily heavily accessed nodes, unreachable (but
not flagged out of the cluster) servers ...

• Heterogeneity accommodation: When a cluster increases in size and
age, it is more and more probable to have nodes comprised of different
hardware and providing uneven performance. Managing this hetero-
geneity is nontrivial and efforts have been made to devise architectures
that take it into account [123, 137, 138], both for storage systems and
databases. It is impossible to incorporate this heterogeneity in consis-
tent data placement schemes. As such, a layer of indirection allows
to take this into account and adapt data distribution and access to the
different devices present in the cluster.

As such, 6Stor aims at optimizing the interactions with the intermediate
layer to reduce the overhead, but also at benefiting the maximum from what
it allows through the use of placement policies. Placement policies are ar-
bitrary policies that can be system-wide or user-defined and determine how
data objects are placed in the cluster. For example, a placement policy in a
heterogeneous cluster could be to place one replica for each object on a SN
with a SSD and the other replicas on SNs with HDDs. Another placement
policy could be to store some objects as replicas and others erasure coded
to save some storage space, based on application-defined parameters. Place-
ment policies are enforced by MNs and can also take into account specific SN
metrics – such as average SN I/O load, CPU load, bandwidth ...– to balance
the load.

Efforts have been made towards both static [139, 140] and dynamic [51]
data placement strategies in a datacenter environment, and this is still an
ongoing work in the context of 6Stor.

2.5.3 Scalability

The key contribution of the IPv6 addressing scheme is the scalability that it
naturally provides. Indeed, the most common issue with distributed storage
system with a layer of indirection is the non-distributability of this layer: a
unique master node deals with all metadata operations [24, 29, 58].

By design, a 6Stor cluster naturally distributes this metadata layer by ex-
posing a single IPv6 prefix that it internally splits and distributes between
different physical nodes. The consistency is dealt with at the object level de-
pending on its hash and objects’ metadata are uniformly distributed amongst
physical nodes by the means of a hashing function assigning objects to IPv6
addresses (and thus to the corresponding nodes).

A traditionnal property of DHTs is that they have to maintain an over-
lay network for each node to be able to know where to look for objects that

Chapter 2. 6Stor 54

they don’t store themselves. The immediate tradeoff is between the num-
ber of hops required to reach data and the amount of information about the
cluster that each node must maintain – linearly correlated with the nodes’
degrees, as defined in section 1.1 and illustrated in table 1.1. The more every
node knows about which node is where and stores what, the less hops are
required to reach data from any node. In resource management and perfor-
mance, this translates as a tradeoff between the memory footprint of storage
nodes and their ability to remain always reachable on one side versus the
latency of operations. The most common choice is the one made by Chord
[47] which has an average degree growing in O(log(n)), with n the number
of peers in the DHT. For Ceph [28] and its DHT-like structure, cluster overlay
metadata size grows in O(n) while the hop count stays in O(1).

On the contrary, in a 6Stor cluster, the knowledge of the clusters’ nodes
locations is contained in the routing tables and aggregated: MNs only need
to know how many MGs there are and SNs only need to know their configu-
ration to function properly. This means that there is no structural limitation
(other than orchestration itself) to the number of nodes that can participate
in a 6Stor cluster 8. Effectively, 6Stor maintains a hop count in O(1) and a
cluster overlay metadata in O(1). However, MNs have to maintain a list of
available SNs to place object replicas, but this list doesn’t have to include all
SNs. Additionally, this comes at the cost of increasing the size of routing ta-
bles, but current routers support multi-million-entries routing tables and, as
explained in section 2.2.2, this only affects routers close to the cluster.

Consequently, a 6Stor cluster scales linearly with the numbers of servers
both in the metadata and the data layers, and independently between these
two layers.

2.5.4 Metrology and Analytics

Because every object is identified by specifics IPv6 addresses, gathering ana-
lytics on objects is as simple as analyzing the network traffic. A simple and
common tool such as IPFIX or NetFlow [141, 142] systems allows a cluster
administrator to estimate the popularity of objects.

Furthermore, it is possible to use network policies to enforce QoS towards
certain objects. Actually, if the traffic characteristics of popular content are
known, the required mean and peak rates or usefull QoS characteristics to be
used for a new flow can be directly induced from the IP address of the object
requested, without any need for signaling.

8This is not totally true, as there need to be at most as many MNs as there are different
addresses in the cluster metadata prefix, but in practice this number can be as high as 1064.
It is hard to imagine a scale at which this limit would matter, since current single-master
architectures can already handle hundreds and in some cases thousands of SNs.

Chapter 2. 6Stor 55

2.5.5 Limitations

One of the main limitation of 6Stor is structural: to deploy a 6Stor cluster,
one must both be able to use IPv6 and to adequately route the traffic. These
are strong requirements that not every cloud yet provides and can make it
impossible (or at least inefficient) to deploy a 6Stor cluster in a public cloud.
However, 6stor has been designed for data centers as a first priority, where
IPv6 is becoming the norm.

Another current limitation is that a client must open a TCP connection per
object request (Post or Get). For clusters of moderate size where clients are
expected to connect multiple times to each server, this can be sub-optimimal
as the usual optimization is to keep a single connection open (as traditional
HTTP servers do). However, workarounds are actively being investigated
such as having the client keep partial knowledge of the architecture by caching
information about the prefixes of the servers it interacts with, and thus keep-
ing its connections towards these servers opened, or extending the TCP fast
open mechanism to use it towards a whole prefix instead of a single ad-
dress [143]. Furthermore, this limitation is less relevant when the number
of clients and of servers scale up, as single clients have less and less overall
importance and are less and less likely to connect multiple times to the same
server.

2.6 Experimental Evaluation

2.6.1 Rationale

Our assumption is that the complex software layering that currently exists in
distributed storage solutions limits their performance. We have developed
a prototype of 6Stor in order to validate this assumption. We subjected this
prototype to a simple benchmark. We also subjected Ceph, the most resem-
bling and available distributed object storage solution, to the same tests.

This benchmark is by no means a definite and fair comparison, since our
prototype does not yet implement some critical functionalities from the sys-
tem, such as failure and error detection, repairs, authentication ... We how-
ever believe that it gives indicative results of where our prototype stands
today and, thus, the potential gains than can be expected in the future.

2.6.2 Setup and Protocol

To make this experiment as relevant as possible, we disable every function-
ality that we can from our Ceph cluster, such as CRC checking and authenti-
cation — functionalities that are not yet available in our 6Stor prototype. We
deploy in parallel a Ceph and a 6Stor cluster on the same physical servers:

• 8 servers on a rack, each one of them equipped with a HDD (Toshiba
600 GB 2.5 inches 6G SAS 15K RPM HDD) and a SSD (Intel 480GB 2.5

Chapter 2. 6Stor 56

Cisco UCS B200 M4:
• 480 GB SSD
• 600 GB 15K RPM HDD
• 2 Intel Xeon 12 hyperthreaded cores @ 2.6 GHz
• 192 GB RAM

Ceph
partition

6Stor
partition

Ceph
OSD

Ceph
OSD

Ceph
partition

6Stor
partition

6Stor SN

6Stor MN

Full duplex 20 Gbps links

Nexus 9K

Ceph Mon

Ceph
Gateway

6Stor ON

6Stor Client

Figure 2.7: Experimental setup

inches Enterprise 6G SATA SSD) and hosting 2 Ceph OSDs (one per
disk), one 6Stor SN (managing both disks) and one 6Stor MN;

• 1 server in another rack, hosting a Ceph Monitor and Gateway (acting
as a client),a 6Stor ON and a 6Stor client;

• Both racks are connected by 20 Gbps links.

The setup is summarized in figure 2.7.
We evaluate Post and Get performance, on HDD and SSD respectively,

for different factors of replication and for varying number of parallel clients
threads. The tests are conducted on 3 different datasets: (i) 56662 small text
files obtained from a wikipedia dump, of average size 2,6KB; (ii) 21631 video
fragments of average quality and medium duration, of average size 306 KB
from the open movie project Big Buck Bunny [144]; (iii) 1164 video fragments
of high quality and high duration, of average size 2,3 MB from the open
movie project Valkaama [145].

This data, that reside in memory of the client server beforehand, is first
posted to the clusters then retrieved. For Post experiments, the dataset is
split in n subsets of roughly the same size, each given as input to 1 of the
n client threads. Thus, each thread actually writes 1/nth of the dataset in
average. For 6Stor, we mirror the metadata and the data replication factors.
Timestamps are collected by the client threads and analyzed after the Posts
are completed to compute the average latency.

For Get tests, a complete list of the objects to be retrieved is computed
then pseudo-randomly shuffled n times, n being the number of parallel client
threads, so that all threads do not fetch objects in the same order and at the

Chapter 2. 6Stor 57

same time. Because the shuffling is pseudo-random, the xth list, x ≤ n, is
always the same for the same dataset across all tests. The n client threads
are then launched, each one fetching the listed objects in the order given by
their respective shuffled list and writing timestamps for every operation on
separate .csv files. It should be noticed that each data set is fetched n times
with this set-up.

During these tests, the average CPU consumption is also measured on
servers to account for the CPU consumption of 6Stor Metadata and Storage
Nodes and Ceph OSDs. The results are presented and analyzed in section
2.6.3.

2.6.3 Results

As we stated before, the results presented below cannot be used for the sake
of comparaison. It does not represent a fair comparison as we compare a
prototype and a fully fledged and used-in-production solution, but allows
us to validate if our assumptions actually show promise and to analyse the
behavior of our prototype.

The results are shown in figure 2.8 and split in three graphics: the first
one for Get operations on both SSD and HDD clusters, the second graphic
for Post operations on SSD clusters, and finally for Posts on HDD clusters.
For each part, results are differentiated based on object types (small, medium,
big). For small objects, the average operation latency is displayed, as it repre-
sents the most relevant performance indicator. For medium and big objects,
the average throughput is provided. In the three cases, the test are repeated
for different replication number and client thread numbers. Each of the data
points shown here is the average of the repetition of the same experiment
repeated 10 times for Posts and 6 times for Gets.

2.6.4 Get Tests

For small objects, the latency is fortunately lower for 6Stor. 6Stor performs
better with SSD than with HDD, as expected. The difference is likely due to
the lighter implementation of 6Stor, and the fact that 6Stor doesn’t use HTTP
but directly TCP, which requires no computation for additional headers. This
also likely explains the absence of difference between SSD and HDD perfor-
mance for Ceph, because the disk latency has a less relative impact on the
total operation latency.

When increasing the number of client threads, one would expect the av-
erage latency to increase for HDDs because they have to serve more reads
in parallel. However, this is surprisingly not the case as the average latency
is consistently lower for 10 to 25 clients threads than for 5 clients threads.
The difference comes from two mechanisms: first, the SNs’ filesystems’ I/O
scheduler provides a better economy of scale when reordering parallel disk

Chapter 2. 6Stor 58

5 10 15 20 25 30 35 40
Number of clients

10 2

10 1
Av

er
ag

e
la

te
nc

y
(s

)
Small Objects

6Stor SSD
Ceph SSD
6Stor HDD
Ceph HDD

5 10 15 20 25 30 35 40
Number of clients

200

400

600

800

1000

1200

1400

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Medium Objects

5 10 15 20 25 30 35 40
Number of clients

400

600

800

1000

1200

1400

1600

1800

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Big Objects

(a) Gets

5 10 15 20 25 30 35 40
Number of clients

10 2

10 1

Av
er

ag
e

la
te

nc
y

(s
)

Small Objects
6Stor r=1 SSD
6Stor r=2 SSD
6Stor r=3 SSD
6Stor r=4 SSD
Ceph r=1 SSD
Ceph r=2 SSD
Ceph r=3 SSD
Ceph r=4 SSD

5 10 15 20 25 30 35 40
Number of clients

0

50

100

150

200

250

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Medium Objects - 6Stor

5 10 15 20 25 30 35 40
Number of clients

0

50

100

150

200

250

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Medium Objects - Ceph

5 10 15 20 25 30 35 40
Number of clients

0

50

100

150

200

250

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Big Objects - 6Stor

5 10 15 20 25 30 35 40
Number of clients

0

50

100

150

200

250

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Big Objects - Ceph

(b) Posts on SSD

5 10 15 20 25 30 35 40
Number of clients

10 2Av
er

ag
e

la
te

nc
y

(s
)

Small Objects
6Stor r=1 HDD
6Stor r=2 HDD
6Stor r=3 HDD
6Stor r=4 HDD
Ceph r=1 HDD
Ceph r=2 HDD
Ceph r=3 HDD
Ceph r=4 HDD

5 10 15 20 25 30 35 40
Number of clients

0

50

100

150

200

250

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Medium Objects - 6Stor

5 10 15 20 25 30 35 40
Number of clients

0

50

100

150

200

250

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Medium Objects - Ceph

5 10 15 20 25 30 35 40
Number of clients

0

100

200

300

400

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Big Objects - 6Stor

5 10 15 20 25 30 35 40
Number of clients

0

100

200

300

400

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

By
te

s/
s)

Big Objects - Ceph

(c) Posts on HDD

Figure 2.8: Test Results

Chapter 2. 6Stor 59

reads, resulting in much less time spent on disk seeks (during which the hard
drive head moves between physical sectors and thus doesn’t read anything)
on average. Secondly, the small objects remain in local filesystems caches
which means that the consecutive local reads after the first are much faster
than the first one, diminishing the average disk read overhead per client
thread. For more than 10 clients threads however, the increasing amount
of parallel requests counterbalances these economies of scale and increases
the average latency per operation.

For medium objects, we notice that Ceph peaks around 200 MB/s and
presents no difference between HDD and SSD. 6Stor performs only slightly
better on SSD than on HDD.

For big objects, we notice that both Ceph and 6Stor perform better on
SSDs as expected. After around 20 client threads, 6Stor reaches a point where
it is actually less efficient to have more clients in parallel. This can be ex-
plained by the fact that individual read operations are largely sequential for
big objects, but the I/O scheduler sometimes force a read in another part
of the disk for another request so as not to starve another concurrent Get
request. At the peak of 20 clients for big objects, the maximum network
throughput of 20 Gbps is almost reached.

A surprising and interesting result is the consequent drop in Ceph through-
put between 20 and 25 clients for both HDD and SSD and slow increase of
the performance after this drop. We did not investigate this result further as
it was not the focus of our work.

2.6.5 Post Tests

Surprisingly, 6Stor has virtually the same results on the HDD and on the SSD
clusters, except for small objects and a high number of client threads. This
is related to the current implementation lack of optimization and is currently
being worked on.

Even more surprisingly, Ceph actually performs better on the HDD clus-
ter than on the SSD cluster in our experiments. This is in contradiction to
the previous results (for Get operations), for which the SSD cluster performs
better or the same as the HDD cluster.

In both cases, multi-threading on the client side benefits more to Ceph
than to 6Stor. Furthermore, for big objects, Ceph performs better on HDD
cluster than 6Stor does (both on SSD and HDD cluster). This is likely due
to a crude implementation that lacks an optimized asynchronous threading
architecture on the server side for 6Stor, and that consequently scales less
well.

Chapter 2. 6Stor 60

CPU efficiency
Object size 6Stor Ceph

Small 0.86 0.27
Medium 48.59 18.76

Big 91.14 43.97

Table 2.1: CPU utilization efficiency average for Get requests

CPU efficiency
6Stor Ceph

Object size SSD HDD SSD HDD
Small 0.28 0.28 0.17 0.21

Medium 6.87 7.28 9.28 10.95
Big 12.57 12.86 16.82 16.28

Table 2.2: CPU utilization efficiency average for Post requests

2.6.6 CPU consumption analysis

During these tests, we measured the CPU time for each process involved on
the servers in the storage cluster and averaged it to deduce their average
CPU consumption (in %). For every test, we look at the CPU % time but also
at the CPU utilization efficiency that we define by dividing the average clus-
ter throughput by the average CPU % time (a higher value indicates a better
CPU utilization).

To account for the replication, we consider the effective cluster through-
put for each test, equal to the application-perceived throughput multiplied
by the replication factor. The results do not significantly vary with the num-
ber of client threads for both Gets and Posts, with the replication factor in the
case of Posts, and with the drive type in the case of Gets. Consequently, the
results are presented as average per object size class for Gets and average per
object size class and disk type for Posts in tables 2.1 and 2.2.

For Gets, 6Stor is around 2 times more efficient than Ceph for big objects,
between 2 and 6 times more efficient for medium objects (on average around
2.7 times). For small objects 6Stor is between 3 and 4 times more efficient than
Ceph. We suppose that this difference is at least partially due to the HTTP
overhead of Ceph. This assumption is explored below in section 2.6.7.

For Posts, Ceph performs overall slighly more efficiently (between 20%
and 25%) for medium and big objects, even when 6Stor actually has more
throughput. We expect the crudeness of our implementation to be the cause
for this slight performance. However, for small objects, 6Stor is more effi-
cient. Again, we suppose this is due to the HTTP overhead, that has more
relative weight for small objects.

Chapter 2. 6Stor 61

Overall, these results show that 6Stor has comparable performance with
regard to Ceph for medium and big objects – with slightly better and slightly
lesser cases, but performs way better for every metric for small objects, as we
expected since we did our best to reduce the fixed overhead per operation
partially due to intermediate layers such as HTTP.

2.6.7 Performance impact of HTTP

In this subsection, we try to measure the performance impact of the HTTP
protocol when compared to the simple protocol over TCP used by 6Stor to
transfer files. To measure this difference, we setup two systems to serve the
same set of test files, which contain random data.

Protocol

On one hand, the files are served by a nginx web server [146], and on the
other hand by a 6Stor SN. Special care is taken to make sure that both servers
perform the file transfer as similarly as possible, so that any difference in
performance between are related solely to the protocol differences, and not
to implementation differences. In particular, the same socket options are set
on the server sockets used by nginx and the 6Stor SN, and the same system
calls are used to transfer the file to the client. As the 6Stor protocol forces us
to open a new connection to the server for each request, we configured nginx
to close client connections after each request. Apart from this, the default
nginx configuration is used. Both servers were using one thread.

To generate load towards the HTTP server, we use the wrk HTTP bench-
marking tool [147]. To generate load towards the 6Stor SN, we write a tool
that reproduces the load generation model used by wrk with the 6Stor pro-
tocol (i.e. a certain number of threads, each maintaining a certain number of
concurrent requests open, all requesting the same object). In order to mini-
mize the impact of network events on the measurements, the benchmarking
clients are run on the same machine as the servers.

Given the high TCP connection opening rate, the following sysctls are set
to prevent the exhaustion of local ports by connections in TIME_WAIT state:

• net.ipv4.tcp_fin_timeout=5

• net.ipv4.tcp_tw_reuse=1

We measure the successful request rate attained by nginx and 6Stor for
varying object size. The results shown in figure 2.9 are obtained for 16 client
threads, 1 connection per thread, and each test run for 10 seconds. We found
out that changing the number of connections per thread has no measurable
effect, and increasing the number of threads beyond 16 does not significantly
change the results.

Chapter 2. 6Stor 62

0 1M 2M 3M 4M
0

10k

20k

30k

40k

50k

60k 6Stor

HTTP

Object size (bytes)

R
eq

u
es

ts
 p

er
 s

ec
on

d

Figure 2.9: Request per second per object size obtained with
nginx and 6Stor

Results

As expected, the difference is noticeable only for small objects, where the ex-
tra processing required to compute and transmit the headers is significant.
For objects bigger than 2MB, the server spends the majority of its time send-
ing the object, and the overhead of the HTTP protocol is negligible. For zero-
size objects, 6Stor is able to process twice as many requests as nginx.

To conclude, it seems HTTP does indeed imply a consequent overhead,
that is more noticeable for small objects. That validates our assumption but
does not explain the performance difference showed for medium and big
objects in our benchmark.

2.7 Conclusion

This chapter concentrated on distributed storage systems. We argued that
with the rapid deployment of SSDs and their expected evolutions with re-
gard to price and performance, existing storage systems must be reconsid-
ered. Actually, CPU and network capacities are expected to become bottle-
necks in the future, which poses a significant pressure on existing, heavily
layered, systems.

Chapter 2. 6Stor 63

We have described the characteristics of the two most common distributed
storage systems, illustrated by Ceph and GFS. We have then introduced a
new distributed storage architecture: 6Stor. This architecture uses a meta-
data layer accessed by consistent hashing and a flexible data layer to address
common bottlenecks and loss of efficiencies in those previous systems, no-
tably by shifting some of their complexity to the routing and network layers:
every metadata and object is routable and accessible through specific IPv6
addresses at the object/metadata granularity.

After having described in depth how this architecture works and achieves
resiliency, consistency and repairability, we presented an initial evaluation of
6Stor’s performance in a few sets of benchmarks and, for indicative mea-
sures, how another similar distributed object storage system -Ceph- behaved
for the same set of benchmark.

This benchmark consisted of bandwidth and latency measurements for
post and get requests for datasets comprised of objects of different sizes, dif-
ferent replication factors, and different storage devices. The results point at
the fact that our simple implementation, as expected due to the current lack
of some fundamental functionnalities as well as to some design decisions,
yields performance around at least as good as that of Ceph, and even better
overall for Gets and for small objects for both Gets and Posts.

To evaluate the impact of one of these design decisions –the use of spe-
cific IPv6 addresses for metadata and data– we decided to compare the per-
formance of a traditionnal HTTP server and a 6Stor Storage Node when dis-
tributing objects of specific size. As expected, using TCP rather than HTTP
provides performance as far as twice better for zero-size objects, and about
as good for objects of a size superior to 2 MB.

Through this work, we showed that it is possible to create an architecture
that leverages the network layer to provide the same guarantees as tradi-
tional distributed storage systems while remaining fully flexible and scal-
able. It remains to be seen as the implementation progresses and if we can
hold to the performance while providing all the required functionalities from
a distributed object store. Furthermore, the flexibility of our architecture will
have to be explored further to see how we can leverage it to improve its per-
formance and bring additional features.

To this end, we plan to develop a more rigorous consistency model to ad-
just to circumstances (for example by not necessarily going through the first
MN for an object every time, to allow for load balancing). The flexibility of-
fered by the architecture could also be further exploited, for instance with
placement and load balancing policies that integrate device heterogeneity,
erasure coding, adaptation to popularity, QoS, geographic placement...

Another promising area is the integration of the storage system with the

Chapter 2. 6Stor 64

networking stack. One direction is to optimize further the main operations
(Post and Get), for instance by utilizing network stack tools such as VPP [148]
to increase the overall resource utilization efficiency. We also investigate the
use of segment routing [149, 150] to reduce the number of RTTs for basic oper-
ations and improve the load balance, by redirecting requests directly towards
the SNs instead of having back and forth communication with the client. This
particular point is addressed in chapter 3.

Likewise, we are investigating the use of Bit Indexed Explicit Replication
(BIER) [151] for the replication operations to reduce the induced network
overhead in order to diminish the network footprint of distributed storage
systems by deduplicating replicated flows.

Contributions

This chapter contains work that has been disclosed in the form of a poster,
papers, and patents.

• 6Stor: A Scalable and IPv6-Centric Distributed Object Storage System,
poster in: 15th USENIX Conference on File and Storage Technologies
(FAST 17) [152]

• Collapsing the layers: 6Stor, a scalable and IPv6-centric distributed
storage system, workshop paper in: 2017 Fourth International Confer-
ence on Software Defined Systems (SDS) [153]

• An Initial Evaluation of 6Stor, a Dynamically Scalable IPv6-Centric Dis-
tributed Object Storage System, journal paper published in Springer’s
Cluster Computing Special Issue: “Software Defined Technologies for
Computng Systems and Networking” [154]

• Distributed object storage, in US Patent App. 15/408,129 [155]

• Delivering content over a network, patent, not yet issued [156]

The 6Stor architecture was also the object of a Cisco Tech Fund, allowing
us to hire two developpers for a period of one year to develop a working pro-
totype beyond what I was able to develop myself. The code base, including
all deployment and benchmarking tools as well as several APIs are currently
in the process of being open-sourced.

65

Chapter 3

Extending 6Stor

3.1 Building a block device on 6Stor

A lot of distributed object stores offer a block device API in addition to their
object API, because most applications rely on block or filesystem semantics
rather than object semantics. Since filesystems are usually deployed on block
devices, providing a block device is enough to satisfy the requirements of
both block- and filesystem-semantics applications.

Moreover, distributed storage systems are often used to store Virtual Ma-
chine (VM) disks that themselves are accessed by a hypervisor as a block
device. A similar use-case with containers is getting traction: individual
containers’ data is stored in storage systems accessed through a Container
Storage Interface (CSI) that implements a way to create and interact with a
logical block device in container platforms such as Google Kubernetes [157].
Consequently, the capacity to provide block storage is commonly expected
from distributed storage systems.

For this reason, we decided to implement a block device on top of 6Stor.

3.1.1 Different implementations

Our block device works by using BUSE1. BUSE runs a Linux Network Block
Device (NBD) client and server on the same machine and enables custom
code to run on the server side, thus providing a custom block device in user-
space. Our implementation is a translation layer in this custom user-space
NDB server between block and object semantics as illustrated in figure 3.1.

In the first version, the block device itself is implemented as an array of
blocks of equal size (by default 4KB) stored as objects in 6Stor. The name of
the corresponding objects is in the form \block_device_name:\block_index.
For I/O requests larger than one block, the driver sends parallel non-blocking
requests for the corresponding objects and returns when they have all re-
turned. When a read is unaligned, the whole object is retrieved and only the
relevant part is returned. This naive implementation performs badly since

1https://github.com/acozzette/BUSE

https://github.com/acozzette/BUSE
https://github.com/acozzette/BUSE

Chapter 3. 6Stor extensions 66

Figure 3.1: BUSE: using NDB as a kernel virtual driver send-
ing storage requests to a user-space custom 6Stor block driver.

handling a 6Stor request per block is very inefficient.

In the second version, we make two improvements:

• We use larger objects that contain multiple blocks at the same time;

• To avoid sequential I/O requests triggering multiple 6Stor requests for
the same object, we implement a cache.

The cache size is defined when the block device is created and consists of
a structure of block buffers that acts as a Least Recently Used (LRU) cache
for the block device. I/O requests are handled sequentially, split in blocks
and are only converted in 6Stor requests if the cache can not satisfy them.
When a dirty block is removed from the LRU, it is written in 6Stor. The same
thing occurs for every dirty block when the block device is closed. With this
approach, large I/O requests are handled much more efficiently. However,
obviously, the bigger the object size is, the lower the performance for small
random I/O requests since the whole object has to be retrieved.

The latest version of 6Stor’s block device allows parallel processing of
I/O requests to take advantage from the inherent parallel processing capa-
bilities from 6Stor. Indeed, while parallel requests can already benefit single
hard drives through smart I/O scheduling, the benefit is even greater for a
distributed architecture like 6Stor, since the parallel requests are dispatched
on different disks and servers that can work independantly from one another.

The difference between the three implementations is illustrated in figure
3.2.

Chapter 3. 6Stor extensions 67

(a) First version: each block request is a 6Stor request.

(b) Second version: 1 object = 4 blocks, for each file, only 1/4t̂h of the block requests are sent
as 6Stor requests.

(c) Third version: the I/O requests for the two files are processed in parallel.

Figure 3.2: Illustration of the three 6Stor block device imple-
mentations when reading two files in parallel.

3.1.2 A note on caching and consistency

Caching in distributed storage systems often comes at the price of inconsis-
tency: when a client caches data it just read, a posterior read fetches this data
directly from the cache even if it has changed in the storage backend, unless
the system integrates some update mechanisms like in AFS [38]. Likewise,
when a client caches a write, other clients issuing reads before the cache is
flushed see an outdated version of the data.

However, in the case of a block device, the expectation is in the vast ma-
jority of cases to be a single client: for VM disks, it is a single hypervisor
running the VM, for filesystems, it is the Virtual File System (VFS) layer of
the filesystem, for containers, it is a container interacting with the block de-
vice through its own filesystem. In these cases, there is a single cache through
which the single client goes for every I/O operation, and thus there is no ap-
parent inconsistency.

In the minority of other use-cases, either the applications running on top
of the block device must tolerate the potential inconsistencies, or they must
disable the cache and thus lose performance.

Chapter 3. 6Stor extensions 68

3.1.3 Performance benchmark

To test our early implementation, we benchmark it using Linux flexible I/O
tester 2, also called fio. fio is a tool that spawns a number of threads sending
read or write requests to a block device of a specific size and with a specific
pattern (random or sequential). With this benchmark, one of our goals is to
understand how the object size impacts the performance depending on the
I/O pattern.

fio is called with the following parameters:

• Read, write

• Random access pattern

• I/O request of size [4, 16, 64, 256, 1024, 4096, 16384]KB

From our storage system perspective, a random I/O request of large size
is strictly equivalent to several sequential requests of smaller size since the
large request is split in smaller 6Stor requests anyway. fio sends requests fol-
lowing the chosen pattern continuously for 60 seconds, for each parameter
set.

6Stor is configured in the following way:

• Nm = Nd = Wm = Wd = 3

• The cluster is composed of [3, 4, ..., 16] servers

• The 6Stor block device API sends as many as 10 6Stor requests in par-
allel

• The 6Stor object containing the blocks are of size [4, 16, 64, 256, 1024, 4096, 16384]KB

For the rest of this section, we call 6Stor object size the size of individual
6Stor objects containing the blocks (a 4MB 6Stor Object contains 1000 blocks)
and I/O request size the size of individual I/O requests that are sent by fio in
random patterns.

The cluster is the same as the one used in section 2.6 except that all drives
are SSDs. The client is on a different rack than all the MNs and SNs, and is
configured to have a cache of 64MB – similar to what most drives have as
internal caches. For each global parameter set, the throughput and I/Ops
obtained from the fio are registered. The results of this benchmark are pre-
sented in figures 3.3 and 3.4.

Chapter 3. 6Stor extensions 69

(a) I/O per second, 3 servers, read (b) I/O per second, 3 servers, write

(c) I/O per second, 16 servers, read (d) I/O per second, 16 servers, write

Figure 3.3: I/O per second benchmark results for 6Stor’s block
device

I/O per second results Figure 3.3 shows the I/O per second obtained by fio
for 3 and 16 servers, for the read and write operations. Each individual sub-
figure show the I/O per second obtained by fio I/O request size for different
6Stor object size. As expected, the graph is flat for each object size until the
I/O request size exceeds the object size: since the I/O request are random,
each I/O request corresponds to at least one 6Stor object request: a 4KB I/O
request correspond to a 4KB 6Stor object request for an object size of 4KB but
to a 16MB 6Stor object request for an object size of 16MB.

However, for I/O requests larger than the object size, large objects become
more efficient since they require less 6Stor object requests, each request corre-
sponding to larger sequential reads on the physical drives. Furthermore, less
6Stor object requests generate less metadata interactions and thus less dRTTs
and overhead. These graphs validate the intuitive fact that the optimal object
size is around the order of magnitude of the expected I/O requests.

Finally, as expected, there are more I/Ops for reads than for writes, since
writes must be replicated whereas reads just read from a single 6Stor object

2https://linux.die.net/man/1/fio

https://linux.die.net/man/1/fio

Chapter 3. 6Stor extensions 70

replica.

(a) Throughput, 3 servers, read (b) Throughput, 3 servers, write

(c) Throughput, 16 servers, read (d) Throughput, 16 servers, write

Figure 3.4: Throughput benchmark results for 6Stor’s block
device

Throughput results The throughput result shown in figure 3.4 show the
same story as figure 3.3 through a different lens: the throughput for large
6Stor objects increases with I/O request size because the I/O per second are
constant but the I/O request themselves increase in size. The throughput
for an object size reaches a plateau soon after the I/O request size order of
magnitude increases compared to the object size. Again, the throughput for
writes are between 2 and 3 times lower than for reads, as expected because
of the replication factor of 3.

Additional considerations There is however an unexpected result. Be-
cause of the parallelisation described in section 3.1.1, we expected the results
for 16 servers to be widely better than the results for 3 servers. Surprisingly,
our results are substantially the same for every number of servers in the clus-
ter, which is why we showed them only for 3 and 16 servers in the cluster.

Chapter 3. 6Stor extensions 71

We are currently investigating this result and think ther explanation might
lie in the number of concurrent 6Stor operations being too low: 10 concur-
rent 6Stor operations might not be enough to take advantage of the increased
capacity for parallelism when the cluster size increases.

We put a single SSD to the same fio benchmarks on a local server (obvi-
ously only varying the access patterns and I/O request size since 6Stor is not
involved) to compare our results to what a local disk could provide. The local
SSD has on average between 3 and 10 more I/O per second and throughput
than our block device. This can be partly explained by the network RTTs
triggered by metadata operations, taking several microseconds that highly
matter at this level of performance, but also by our first crude implementa-
tion for the block device client, that is probably not yet optimized to its full
potential. The order of magnitude we reached for both I/O per second and
throughput is comparable to what state of the art distributed storage systems
acting as block devices such as Ceph [28] or Cloudian [158] provide.

While we implemented this block device on 6Stor, almost none of what
we did is specific to 6Stor. One could go through the same steps to create
such a block device on top of any distributed storage systems providing a
generic object store API.

3.2 Decentralized dynamic load-balancing for dis-
tributed storage systems using Segment Rout-
ing

Distributed storage systems use replication or erasure coding to provide re-
liability for the data they store. Both these techniques consist of storing the
data on several storage nodes to ensure that even when a certain number of
storage nodes fail, data is not permanently lost. This means that when data
is uploaded to or retrieved from a storage system, there are several candidate
storage nodes between which to choose, and thus an opportunity to balance
the load of the different storage nodes in the cluster.

3.2.1 Load balancing in distributed storage systems

There are two different stages when distributed storage systems can balance
the load between storage servers. The first one is during data uploading,
when the multiple data replicas or fragments are written to storage nodes,
and the second one is when choosing which storage nodes to retrieve the data
from. The latter is mostly relevant in storage systems using replication rather
than erasure coding, where load balancing is more straightfoward since it
is only a matter of choosing which identical replica to fetch, whereas most
erasure-code-based systems rely on retrieving explicitely the k systematic

Chapter 3. 6Stor extensions 72

fragments as described in section 1.2.3, leaving no room for load-balancing
in read operations unless some additional replication is done3.

Writing data On most distributed storage systems, data placement is or-
ganized by a DHT-like mechanism. This is the case for Ceph, Cassandra
and Dynamo [28, 27, 23]. In those systems, the load is statically balanced –
usually with additional reliability constraints forcing replicas or fragments to
be on different storage nodes/racks/datacenters – between nodes according
to their storage capacity. However, as explained in chapter 1, DHTs do not
allow for dynamic load balancing. Because object popularity can often not
be predicted, this can lead to hot spots reducing the performance on some
storage nodes [161, 51].

Other distributed storage systems –mostly distributed file systems– use
a metadata layer that allows them not to have consistent data placement.
However, they mostly take into account storage capacity and reliability con-
straints, not the dynamic load of servers. This is expected since this load can
vary very quickly and it is not realistic to expect the nodes taking data place-
ment decisions to know the exact load of every storage node at every instant.
As such, it is possible for storage requests to be directed to storage nodes un-
der a high I/O, network or CPU load even though some other storage nodes
would be better candidates at that time.

Finally, some distributed systems move and replicate data constantly to
adapt to popularity and load variations [162, 51]. While these solutions pro-
vide an effective load balancing, they require heavy data transfers and can
not adapt to sudden changes of popularity since they require a constant syn-
chronization and analysis of the data access patterns.

Retrieving data We focus on the case of replicated distributed storage.
Because there are several replicas to choose from, it is possible to load bal-

ance between them when retrieving data. When combined with placement
policies, it is also possible to pick the best replica according to, for exam-
ple, geographical position. For instance, icks the replica closest to the reader
node, on the same rack/datacenter if possible.

Other systems such as Dynamo from Amazon send the get requests to all
nodes storing the replica and acknowledge the response when enough nodes
have sent back the same version of an object (“enough” being the R parame-
ter in (W, R, N) quorum systems described in chapter 1).

In other cases, requests are all sent to the same replica. This is the case
for Ceph, where all requests are sent to the replica corresponding to the first
placement group obtained from RADOS [63], as well as for GFS, where each

3However, some work explore the possibility of also fetching r′ ≤ r parity fragments and
choosing the first k out of k + r′ fragments to reconstruct the object, which is a form of load
balancing [159, 160]

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#HDFS.p

Chapter 3. 6Stor extensions 73

set of chunk replicas periodically elects a master replica that is the one clients
interact with.

None of these approaches takes into account the real-time load of storage
servers, either for writing or reading data. As explained before, this means
that requests can not always be steered out from hot spots when they occur
[161, 51]. Work has also been done to regularly redistribute data accord-
ing to popularity and application requirements, but this requires a constant
reshuffling of the data, and does not react to real-time load changes in storage
servers [162].

3.2.2 Segment-routing load-balancing

6LB [163] is a distributed, application load-aware, network-level load-balancer
that leverages Segment Routing (SR) [149] to allow applications to take load
balancing decision locally, based on their real-time, application-defined load.
It incurs a minimal network overhead (due to the usage of segment rout-
ing) and requires no out-of-band signaling. Furthermore, decisions are made
purely locally and do not depend on a centralized monitoring system – that
could limit scalability and not react quickly enough to load changes.

Segment routing is an IPv6 service that permits directing IP packets (re-
gardless of the protocol) through an ordered set of intermediaries, and in-
structing these intermediaries to perform specific function. In 6LB, this func-
tion is to process the query contained in the data packet if not too busy, to
forward it to the next intermediary otherwise. SR information is defined in
[164] and is expressed as an IPv6 Extension Header that comprises a list of
segments under the form of IPv6 adresses and a counter SegmentsLeft that
indicates the number of remaining segments to be processed.

6LB’s architecture works as follows: edge routers use Equal Cost Multi-
Path (ECMP) to assign incoming flows towards an application identified by
a single Virtual IP address (VIP) a to load-balancers. For each flow, its as-
signed load-balancer chooses an ordered list of candidate instances running
a, to which it forwards the flow’s first packet (usually a TCP syn) using SR.
Each intermediary in the list of candidates either accepts or forwards the
flow, based on its own real-time state information about itself. If the flow
reaches the last segment of the list, the candidate has to accept the flow. Once
the flow is accepted by an instance, it is assigned to it by the load-balancer so
that subsequent packets form the same flow are forwarded to the correct in-
stance. Additionally, packets from the instance to the client do not go through
the load-balancer. This architecture is illustrated in figure 3.5.

In this figure, a load balancer LB intercepts a TCP syn from a client c to
a VIP a identifying an application, selects 2 out of 3 running instances of ap-
plication a on servers S1 and S2, inserts a SR header containing S1’s and S2’s
addresses, and forwards the syn to S1. In this scenario, S1 is under a heavy

Chapter 3. 6Stor extensions 74

Figure 3.5: 6LB hunting example as found in [163].

load and thus chooses to refuse the connection. S2 accepts it and sends the
syn+ack back to c through LB, allowing LB to create an accurate flow-state.
For further traffic, packets coming from c go through LB while packets com-
ing from S2 are directly routed to c. This approach works very well when
few data is exchanged or when data flows mostly from a to c, because LB is
on the data-path only on the way from c to a.

3.2.3 Adapting 6LB to 6Stor

6LB has been designed for applications running several independent instances.
By essence, servers of a distributed storage system are not independent: when
data has been written on servers, it can only be retrieved from these servers.
Besides, 6Stor does not use a single VIP but rather a set of adresses per ob-
ject identifying data and metadata, as described in section 2.2. Therefore, we
adapt 6LB the following way to fit with 6Stor’s architecture.

Metadata Nodes As described in section 2.2, clients send post requests to
the first MN of the list obtained by hashing. This MN is then in charge of cre-
ating the metadata itself and replicating it to the other adresses. This task is
more CPU-intensive than the task of just receiving the metadata. Therefore,
an SR-enabled client can, instead of sending its initial packet to the first MN,
send it to an SR-list containing all the corresponding metadata adresses as
segments. Then, each MN on the list can accept or refuse the task depend-
ing on its instant load, forwarding it to the next segment when refusing. The
consequences on consisteny are explored in section 3.2.4.

Chapter 3. 6Stor extensions 75

Figure 3.6: 6StorLB metadata hunting. In this example, the
first MN refuses to create/get the metadata. The second MN
accepts. Before returning the metadata to client c, it either
waits for Ra

m metadata to be read or Wa
m metadata to be repli-

cated.

The same can be done for a Get request. However, the benefit is lower
since retrieving metadata is less computing-heavy than creating it. The mech-
anism is illustrated in figure 3.6.

Storage Nodes Instead of selecting Nd SNs when creating the metadata, the
MN in charge of the object post selects Nd lists of SNs and sends it back to the
client. The client sends a TCP SYN packet to the primary list. The first SN
in this list to accept the connection similarly sends TCP SYN packets to the
secondary lists. Every SN at every step (except the last of each list) is free to
refuse or accept the connection based on its real-time I/O, network and/or
CPU load. Thus, even temporary hot spots can be avoided, as illustrated in
figure 3.7.

Get requests work for SNs the same as they work for MNs. One of the
SNs accepts the responsibility of retrieving Ra

d replicas to answer to client c.

3.2.4 Consequences on consistency

The main difference in regular operations with what was described in sec-
tion 2.2 is that the first MN is not always answering to metadata requests. To
guarantee consistency for basic operations, we need to switch from a mod-
ified (N, W, 1) quorum model for metadata to a regular (N, W, R) quorum
model.

Since we have not yet implemented this algorithm, it is unclear whether
or not the benefit of the added load balancing counterbalances the obligation

Chapter 3. 6Stor extensions 76

Figure 3.7: 6StorLB storage hunting. In this example with
Nd = 2, Wa

d = 2, the first SN of the first list accepts to store
and replicate the object. The first SN of the second list is un-
der stress and refuses but the second SN of the second list
accepts. Once Wa

d SNs have accepted the connection, c begins
sending data to SN11.

to adapt to a (N, W, R) model for the metadata interactions. However, while
there is a trade-off involved for metadata operations, this trade-off does not
exist for interactions with SNs themselves. Because MNs are aware of which
SNs contain the up-to-date versions of objects, they can build an appropriate
SR-list to be used by clients when requesting objects without risk of incon-
sistency, thus benefitting from this load-balancing with no negative conse-
quences.

3.3 Conclusion

In this chapter, I presented some extensions made to 6Stor’s main archi-
tecture. Section 3.1 explained why implementing a block device on top of
6Stor’s object store was important, how we achieved it, and how it per-
formed, reaching throughput lower but with the same order of magnitude
than what was achieved on a local disk and comparable to state of the art
products. We also showed and explained the how the size of objects contain-
ing the blocks themselves and the I/O access patterns impacted the perfor-
mance of the block device. Our block device prototype showed unexpected
results when varying the number of servers in the clusters, which is currently
under our investigation.

Section 3.2 described how we leveraged IPv6 and segment routing tech-
nology to enable stateless, server-driven load-balancing. While the algo-
rithms presented in this section have not been implemented, we expect it

Chapter 3. 6Stor extensions 77

to yield similar improvements to what was showed in the paper describing
the original approach from which we took our inspiration [163]. Such an
implementation would allow us to determine if the benefits from load bal-
ancing counterbalance the need to fall back to a regular (N, W, R) model for
metadata operations. In any case, enabling it only for interactions with SNs
enables load-balancing without negative consequences on consistency.

Contributions

The block device described in this chapter was not presented nor patented,
although the results on the performance impact of object size and I/O re-
quest size are interesting. Furthermore, the block device implementation is a
part of the code base that is currently being open sourced.

The SRLB adaptation to 6Stor is the object of a patent pending.

• Reducing distributed storage operation latency using segment routing
techniques, patent, not yet issued [165]

78

Chapter 4

Guaranteeing low response time
for small requests and fair
throughput allocation: a Request
Scheduler for Storage Servers (RS3)

Storage servers are the elementary brick of many distributed systems: from
web servers (Nginx [146], Apache Traffic Server (ATS) [166]) to entire Con-
tent Delivery Networks (CDNs) (Akamai [167], Amazon Cloudfront [168],
Microsoft Azure [169]) and clusters of distributed storage systems storing
petabytes of data (Ceph [28], Amazon Dynamo [23], HDFS [29]). In all those
cases, storage servers are usually composed of commodity hardware and
only involved in storing and retrieving data.

With the increasing interest in hyper-converged architectures [170, 171], it
is more and more common for multiple applications or clients to simultane-
ously interact with a single, large-scale architecture spanning thousands of
storage servers. When that happens, every individual storage server has to
store and retrieve data exhibiting a high variance in size and/or access pat-
tern, corresponding to different types of data objects (VM disks, videos, log
files, small images, container layers...).

When applications handling very different data interact with the same
storage server, it is crucial to minimize the interference between them and to
enforce a fair access to the underlying storage resource. For similar reasons,
scheduling algorithms have been developed for various use cases, such as
sharing network resources (packet scheduling), computing resources (CPU
scheduling) or for efficient ordering of disk I/Os (I/O scheduling). They are
essential to limit the impact of such resource contention. However, existing
I/O schedulers are mostly designed for multiple processes sharing the same
resource on servers.

In the cloud architectures described earlier, it is common for storage servers
to run only one process per server or per disk. I/O schedulers remain es-
sential to reorder disk block requests and guarantee an efficient usage of
hard drives, but they do not have the necessary information to discriminate
between applications using the storage systems themselves. This leads to

Chapter 4. Request Scheduler for Storage Systems (RS3) 79

multiple applications or users contending for resources, possibly degrading
global performance and experiencing significant variance in the underlying
service response time [172].

This variance for individual requests in a storage system can quickly add
up and have a significant impact on the service level of applications running
on top of it. Indeed, such applications commonly translate end user requests
in several underlying storage requests, amplifying the variance of the storage
system itself [173]. This variance can, in turn, have disastrous economic con-
sequences [20, 21, 22], since it has been shown that increasing user requests’
latency significantly reduces the revenue of cloud-based services.

This chapter’s main focus is to provide a solution to the two following
issues that arise in storage systems:

• small requests are slowed down by concurrent large requests and thus
have a response time disproportionate with their size and with a high
variance, as shown later in section 4.3.3;

• users that request more data are rewarded with more resource usage
which can encourage bad behavior, as shown later in section 4.3.2.

This chapter presents RS3, a request scheduler that works at the storage
node granularity, and dynamically ensures that incoming requests from dif-
ferent users or services are handled in a fair manner. RS3 batches requests
and slices them according to a global budget allocation. Each request class is
allocated an equal share of the budget, which is reallocated to other classes
whenever it is not entirely consumed during a batch.

Section 4.1 describes related work on scheduling mechanisms in general,
notably in the context of packet switching and I/O schedulers, but also gives
examples of system-wide schedulers. Section 4.2 describes RS3’s batch al-
location algorithm, how it works and what it guarantees. Section 4.3 gives
a first set of results and interpretations. Section 4.4 describes optimizations
taking advantage of Linux filesystem mechanisms to reduce the negative im-
pact of RS3’s batching on the total throughput of storage servers. Finally,
section 4.5 presents further results aiming at fully understanding the impact
of RS3’s parameters, with a focus on CPU consumption. Moreover, this sec-
tion presents W-RS3 (Weighted-RS3), an extension to RS3 that can be used
to enforce service level agreements or quality of service contracts, and could
also be used to enforce system-wide fair scheduling with more granularity.

4.1 Related work

Various scheduling techniques are used to guarantee efficiency, enforce fair-
ness, or provide Quality of Service (QoS) with regard to specific resources,

Chapter 4. Request Scheduler for Storage Systems (RS3) 80

notably network and disk access.

4.1.1 Packet scheduling

A large literature exists on packet scheduling which has been used for decades.
They are essential component for insuring QoS (Quality of Service) for spe-
cific class of services or to enforce fair distribution of ressources between
classes (aggregated traffic) or flows, depending on the considered granular-
ity.

Weighted Fair Queuing (WFQ) [174], Class-Based Queuing (CBQ) [175]
and Start-time Fair Queuing (SFQ) [176] are well known approaches to this
problem, and have been improved upon by work such as [177]. These ap-
proaches define different traffic classes to enforce fairness or priority policies
based on this classification. However, our problem, while sharing similari-
ties, can not be solved by network level scheduling alone, since network itself
is not the bottleneck in a majority of cases.

4.1.2 I/O scheduling

I/O scheduling algorithms have been developed following the improvements
in disk technology, first for HDDs then for SSDs. Conventional I/O sched-
ulers are mostly designed to reduce the impact of disk seeks and rotations
with anticipation and I/O reordering techniques [178]. Some additionally
make use of deadlines to take into consideration latency issues and provide
QoS to applications, such as Facade [179], pClock [180] or others [181, 182,
183]. Those schedulers improve disk efficiency while maintaining acceptable
maximum latency for applications. However, they do not ensure fairness be-
tween different processes I/O requests on servers.

Besides, an other family of schedulers exists, that implement the same
mechanisms as their network counterpart to achieve fairness in addition to
good disk performance, like Depth-based Start-Time Fair Queuing (SFQ(D))
[184] or YFQ (for Yet another Fair Queuing algorithm) [185]. Some sched-
ulers also introduce the notion of per-task quanta to achieve fairness such as
Argon [186] or the standard Linux Completely Fair Queuing (CFQ) [187].

A lot of more recent work has been done to adapt these techniques to
SSDs, with specific I/O characteristics like read/write assymetry and chan-
nel parallelism. For example, Flash I/O Scheduler (FIOS) [188] uses I/O an-
ticipation and read/write separation to ensure fairness and performance for
flash devices. These characteristics are also leveraged by other work on the
subject [189, 190, 191, 192], for traditional SSDs and NVMe alike.

Chapter 4. Request Scheduler for Storage Systems (RS3) 81

Finally, mClock [193] provides fine-grained I/O scheduling specialized
for VM disks, notably with optional minimum and maximum boundries as
well as weighted throughput allocation. However, it requires precise alloca-
tion and configuration to function correctly, and by design works well with
few classes with well-defined requirements and behaviors that can easily be
modeled – corresponding to disk VMs, whereas our approach requires no
additional configuration and works for any number of classes.

4.1.3 System-wide scheduling

Some work has also been done on system-wide scheduling. For example,
[162] proposes a mechanism to ensure system-wide (rather than per-server)
efficient and fair resource distribution. However, the solution requires a con-
stant and costly rebalancing of data and relies on systematic evaluation and
extrapolation of object popularity per client . While this works for slow and
predictable changes of popularity, it does not work well for fast changes of
popularity. Furthermore, it does not scale with the number of different clients
and objects since it requires a centralized computation of the popularity esti-
mations.

In [194], an algorithm is designed to ensure fairness in cloud systems with
heterogeneous servers. The aim of this work is to optimize resource allo-
cation for applications requiring a variable amount of various resources on
pools of servers that are themselves highly heterogeneous with regard to the
resource they can provide. Their focus is more on centralized multi-resource
management and allocation rather than per-server scheduling specifically for
storage servers.

IOFlow [195] is a Software Defined Storage (SDS) architecture that enable
end-to-end policies between VMs and their associated backend storage by
creating a programmable data plane. However, this approach requires a spe-
cific provisioning and a knowledge of the I/O requirements and patterns of
the VMs, while this chapter aims at improving generic storage systems with
no further assumption about the users.

To conclude, all these system-wide approaches are complementary to the
approach we develop in the next sections: they ensure that requests are fairly
allocated between servers, while our algorithm guarantees the fair treatment
of these requests at the server level.

4.2 Designing RS3

For the remainder of this chapter, we define a fair storage system as having
these characteristics:

1. users whose received throughput is limited by the storage server should
all receive the same throughput;

Chapter 4. Request Scheduler for Storage Systems (RS3) 82

2. users’ received throughput should not depend on requests’ size;

This definition of fairness applies to a theoretical perfect storage system
with no fixed overhead per request. We already showed that such a fixed
overhead exists in section 2.6.7, but estimating this fixed overhead or the im-
pact of physical disk characteristics on service time is not in the scope of this
chapter. A discussion on the different possible adaptations of fairness and
how they would be implemented in RS3 can be found later in section 4.5.3.

With such a definition, a malicious user can not engineer its request pat-
terns to obtain more service throughput than other users when interacting
with a storage system. For example:

1. let us consider a fair storage server limited by disk I/O. A user con-
tinuously sends requests for 1MB objects. A second user continuously
sends in parallel two requests for 1MB objects. The fair storage server
should deliver the same throughput to both users;

2. let us again consider a storage server limited by disk I/O with two
users. The first user continuously sends requests for 4KB objects. The
second user continuously sends requests for 4MB objects. The first user
should be able to satisfy 1000 times more requests than the second one
in the same timeframe.

This definition of fairness – inspired from the max-min fairness concept
introduced in [196] and broadly used in communication networks – ensures
that the storage device capacity is equally allocated to all users, and that no
user can increase its share of access at the expanse of another user with an
equal or lower share.

4.2.1 Typical storage server implementation

Before introducing RS3, let us describe a baseline version of storage server,
which we aim to build upon. A typical implementation for a storage server
relies on several threads running an event-loop making sendfile1 calls to
read the data on a local file and copy it without additional superfluous user-
space copies of the data to be sent in a socket buffer as well as additional
system calls and costly context switches.

sendfile is typically called as soon as a socket is marked as writable in
the event loop. The size of the data read on the filesystem and sent by the
sendfile call is one of the fixed system parameters (called read size in the re-
mainder of this chapter), usually between 64 and 256KB. sendfile is a block-
ing call (on the disk I/O side) and thus when multiple sockets are writable,
the next one to be served is typically the first that marked itself as available.
The consequence is that sendfile is called in a round-robin-like fashion be-
tween all simultaneous connections. This is, for example, the way NGINX

1https://linux.die.net/man/2/sendfile

https://linux.die.net/man/2/sendfile

Chapter 4. Request Scheduler for Storage Systems (RS3) 83

2 [146], a widely-used high-performance open-source web server, is imple-
mented 3.

The average duration of a sendfile call getting its data from the disk
depends on the read size parameter. Therefore, the duration of such a round-
robin loop over every client socket grows in average linearly with the num-
ber of users. Because a new request has to wait an average of one such loop,
the response time for small requests (smaller than the fixed read size and thus
completed in a single loop) grows linearly with the number of users, even if
they request much less than the read size parameter. Furthermore, this also
means that users that aggressively send multiple requests in parallel usually
receive more data since they are served multiple time per loop, at the expense
of other users.

A simplified implementation of such a single-threaded storage server is
presented in algorithm 1.

Algorithm 1 Standard storage server implementation

sock f ds : Array containing active sockets
sock f dN : Number of active sockets
f dsock f d : File descriptor of the local file associated with socket number
sock f d
read_size : Fixed size of read calls to the filesystem
function STANDARD_REQUEST_LOOP

while sock f d = poll(sock f ds, sock f dN) do
send f ile(sock f d, f dsock f d, read_size)

end while
end function

RS3 aims at solving both these issues by sending data to users in fixed-
sized (in bytes) batches and defining classes that each receive a fair share of
the storage device access during each of these batches.

4.2.2 RS3’s rationales

RS3 is designed to be used in a multi-tenant or multi-classes distributed stor-
age system. For the remainder of this chapter, we discriminate requests based
on their class. A class can designate a tenant, a type of data stored, an appli-
cation, or any other imaginable way to differentiate between requests.

RS3 runs on every node in the storage cluster and does not rely on a cen-
tralized control plane, thus allowing it to scale horizontally with the number

2http://nginx.org/
3https://github.com/nginx/nginx/blob/4bf4650f2f10f7bbacfe7a33da744f18951d416d/

src/os/unix/ngx_linux_sendfile_chain.c, line 259, called at line 174.

http://nginx.org/
https://github.com/nginx/nginx/blob/4bf4650f2f10f7bbacfe7a33da744f18951d416d/src/os/unix/ngx_linux_sendfile_chain.c
https://github.com/nginx/nginx/blob/4bf4650f2f10f7bbacfe7a33da744f18951d416d/src/os/unix/ngx_linux_sendfile_chain.c

Chapter 4. Request Scheduler for Storage Systems (RS3) 84

of servers and to react dynamically to very fast workload changes. However,
RS3 only provides per-storage-server fairness.

4.2.3 RS3’s batch budget allocation algorithm

RS3 follows the same mechanism as traditional quanta-based I/O schedulers
[187, 186], by allocating a fixed budget to the different active classes. For each
batch, the budget is equally distributed to all classes. The budget left by
classes requesting less than their share (or limited by their network) is then
redistributed to other classes, as described in algorithm 2 and illustrated in
figure 4.1.

Algorithm 2 Batch budget allocation algorithm

1: B: batch budget
2: N: number of active classes
3: R[i]: pending cumulative size of requests made by active class i, ordered

from lowest to greatest
4: T[i]: size of the TCP send buffer associated with class i
5: Ba[i]: budget allocated to class i for the batch
6: Rb: Remaining budget for the batch
7: function BUDGET_ALLOCATION(B, N, R, T)
8: Rb ← B
9: for i = 0 to N − 1 do

10: Ba[i]← min(T[i], Rb
N−i , R[i])

11: Rb ← Rb − Ba[i]
12: end for
13: return Ba
14: end function

This algorithm has the following properties:

• the duration of a batch depends on the batch budget B, not on the num-
ber of active classes N;

• consequently, the lowest possible response time depends on the batch
budget B and not on the number of active classes;

• large requests are not throttled too much in the presence of numerous
small requests, as the budget not consumed by small requests is reas-
signed to them;

• classes that send large requests receive an equal share of the disk access
(if they have sufficient network capacity);

Chapter 4. Request Scheduler for Storage Systems (RS3) 85

(a) A first pass of the algorithm is done to allocate budget to classes (represented by different
colors). A second pass is done per class to allocate the budget per request.

(b) New requests have arrived during the first batch. They are added to the pending requests
queue and dealt with during the second iteration of the budget allocation algorithm.

Figure 4.1: An example of two batch budget allocations for a
batch budget of 100, with 3 classes.

• the algorithm scales in O(N) with the number of active classes if the
classes are already ordered by cumulative pending requests size at the
beginning of the allocation computation4, O(N log N) otherwise.

For classes that have several pending requests, a second pass of this al-
gorithm can be made to allocate the class budget to each individual request
of the class, to ensure that a class’s small and latency-sensitive requests don’t
have to wait for a large request from the same class to complete. This is only
optional and depends on how classes function. Depending on the types of
objects they request, they might prefer to fulfill their requests purely sequen-
tially. The example presented in figure 4.1 hierarchically reallocates budget
inside classes rather than treating requests sequentially.

After the budget allocated to each request is calculated, a single sendfile
call is made for each request with its allocated budget for size. After the last
sendfile returns, a new batch starts, containing all the requests that have not
yet been fulfilled and new requests that have arrived during the previous
batch.

4For example, a thread can be in charge of accepting incoming connections, assigning
requests to their classes and reordering them while another thread loops on the batches
themselves.

Chapter 4. Request Scheduler for Storage Systems (RS3) 86

4.3 First evaluation and analysis

In this section, we evaluate the impact of our algorithm on 3 factors: the
fairness of the disk usage repartition between classes, the response time for
small requests, and the overall throughput of the system. To this end, we
compare two implementations of a storage server working with a single disk,
with and without RS3. The regular implementation is based on algorithm 1:
it polls 5 active, non-blocking sockets and calls sendfile as soon as one is
writable. RS3’s implementation works by batching the requests before call-
ing sendfile towards non-blocking sockets once for each request in the batch
as illustrated in algorithm 3. To simplify comprehension, RS3’s algorithm is
presented in the case where each active class has a single pending request for
a single object, and thus the budget allocation phase is done in one pass.

These functions are performed by a thread while a separate thread ac-
cepts incoming connections, analyzes requests and opens corresponding file
descriptors.

Algorithm 3 RS3 storage server implementation

sock f d[i] : Active socket descriptor for class i
sock f dN : Number of active sockets
f dsock f d : File descriptor of the local file associated with socket number
sock f d
R[i]: pending cumulative size of requests made by active class i, ordered
from lowest to greatest
T[i]: size of the TCP send buffer associated with class i
B : Batch budget
function RS3_REQUEST_LOOP

while True do
Ba = Budget_allocation(B, sock f dN, R, T)
for i = 0 to N − 1 do

send f ile(sock f d[i], f dsock f d[i], Ba[i])
end for

end while
end function

4.3.1 Experimental protocol

Both a regular and RS3 version of storage server are implemented using a
basic custom protocol above TCP and tested on a storage node using a sin-
gle hard drive. The storage server is equipped with a Toshiba 600 GB 2.5
inches 6H SAS 15K RPM hard drive and two Intel Xeon E5 CPUs (2.60GHz,
14 hyper-threaded cores). A custom client able to act as multiple classes at

5https://linux.die.net/man/2/poll

https://linux.die.net/man/2/poll

Chapter 4. Request Scheduler for Storage Systems (RS3) 87

the same time is deployed on another identical server connected to the stor-
age server with a 10Gbps link. Both the client and the storage servers are
running on Ubuntu 18.04.1, kernel version 4.15.0.

The storage server is pre-populated with a set of objects of varying size.
To nullify the influence of the hard drive cache on the results, none of the ob-
jects is served more than once within an experiment. Furthermore, Linux’s
filesystem cache is emptied between each experiment. Each of the data points
used to create the graphs presented in the remainder of this chapter corre-
spond to a 60-second read test during which the response time of all requests
and the CPU consumption of the storage server are measured.

4.3.2 Throughput fairness results

Firstly, we test how our storage servers react when multiple classes continu-
ously send requests, with some of them sending multiple requests simultane-
ously. We want to verify that each class receives a throughput proportionnal
to their request rate with the standard implementation, and equal to what
other classes get with RS3. To that end, we use our client to simulate two
classes. The first class has 2 threads concurrently and continuously sending
requests for objects of size between 1 and 4MB. The second class has a vari-
able number of threads doing the same. The results with a batch budget of
24KB can be found in figure 4.2.

Results displayed in figure 4.2 show that RS3 is very effective at equaliz-
ing the throughput of both classes. Indeed, for the extreme case of 16 con-
current threads for class 2 and 2 threads for class 1, class 2 utilizes 88% of
the total throughput without RS3 and only 51.5% with RS3. However, there
is still a small discrepancy between both classes and a slightly lower overall
throughput for the storage system. The discrepancy comes from the “transi-
tion” batches between two requests: some batches are underutilized by class
1 if both the threads come at a request’s end and the class therefore underuti-
lizes its allocated budget. Furthermore, class 1’s threads do not always have
time to send new requests before a new batch begins. Moreover, because
class 1’s requests finish faster since there are less requests in parallel, there
are even more such transition batches that are underutilized.

To evaluate the impact of these transition batches, we test how fairness be-
tween classes varies with the batch budget, to verify that fairness decreases
when the batch budget increases. Thus, our client simulates 5 classes, each of
them having a different number of concurrent threads continuously sending
requests as described before, and we vary the batch budget. The results are
presented in figure 4.3.

It appears that a batch budget under 32KB ensures almost perfect fair-
ness with the current settings. As expected, the impact of transition batches

Chapter 4. Request Scheduler for Storage Systems (RS3) 88

Figure 4.2: Average throughput per class per number of con-
current threads for class 2. Plain lines correspond to results
with RS3 and dotted lines to results with the standard imple-

mentation.

Figure 4.3: Average throughput per class per batch budget.
Dotted lines correspond to the corresponding throughput

without RS3.

Chapter 4. Request Scheduler for Storage Systems (RS3) 89

is lower when batches themselves are shorter. However, higher budget al-
low for a slightly better overall throughput (68.64 MB/s for batches of 16KB,
70.74 MB/s for batches of 64KB).

4.3.3 Response time results

Secondly, we test how the storage servers react to an increase in the number
of active classes, to measure how the response time for small increases with
the number of classes, both with the standard implementation and with RS3
for different fixed read sizes and batch budgets. To test that, our client simulates
a variable number of independant classes continuously sending requests of
different sizes, following two specific request patterns:

• small requests (fetching 4KB objects) are sent following a Poisson pro-
cess, at an average rate of 10 per second;

• large requests (corresponding to objects of size varying between 1 and
4MB) are sent continuously like described above.

For each test, a single class sends small requests following this Poisson
process and a variable amount of classes send large requests. The continuous
arrival of large requests helps us simulate a case where disks are saturated
and thus RS3 can play its role of allowing small requests to complete rapidly
in spite of the saturation.

The results for response time tests are presented in figure 4.4. While a read
size parameter of 4KB is almost never used, we find that it is relevant to in-
clude this result since 4KB is the smallest granularity for I/O in most filesys-
tems, and thus a standard system with such a read size corresponds to a fair
system. For a read size of 4KB, the regular implementation maintains a good
distribution of response times for small requests, but still increases linearly
with the number of active classes. For read sizes above 4KB, we see a sharp
increase in response time, linearly or worse with the number of clients. This
is especially relevant since most implementations of storage servers have a
default parameter for read size between 64 and 256KB.

For RS3, as expected, the response time distribution increases slightly
with the batch budget but at a much slower pace than the standard imple-
mentation with the number of concurrent clients. In the worst case of a batch
budget of 256KB, the median is just over 40ms for 40 clients.

4.3.4 Throughput results

During the previous experiment, we also measured the total throughput of
our storage server for each parameter set. The results are shown in figure
4.5. The results corresponding to 1 and 2 classes are not shown here since
they correspond to irrelevant cases of either only 4KB requests (highly ran-
dom reads) or almost only sequential reads and are not representative of the

Chapter 4. Request Scheduler for Storage Systems (RS3) 90

(a) Standard, read size = 4KB (b) Standard, read size = 32KB

(c) Standard, read size = 64KB (d) Standard, read size = 128KB

(e) RS3, batch budget = 32KB (f) RS3, batch budget = 64KB

(g) RS3, batch budget = 128KB (h) RS3, batch budget = 256KB

Figure 4.4: Response time statistical distribution of 4KB re-
quests in function of the number of clients, without (a,b) and

with RS3 (c,d) for varying read and batch size.

Chapter 4. Request Scheduler for Storage Systems (RS3) 91

Figure 4.5: Average total throughput as a function of the num-
ber of clients with and without RS3 for different parameter

sets. RS3’s results in blue, standard’s in red.

typical workload sustained by storage servers. As expected, the standard
implementation displays a better total throughput for 32, 64 and 128KB read
sizes since they have a more sequential I/O pattern than RS3.

However, for 4KB, they perform about as well as RS3, providing no real
benefit over RS3 in spite of the higher reponse times for 4KB requests in most
cases. The difference of global throughput between the worst case for RS3
(32KB batches) and best case for the standard storage server (128KB reads) is
around 19%.

4.4 Using Linux filesystem mechanisms to improve
RS3

RS3’s goal is to improve fairness while maintaining the same throughput
overall. Even though RS3 makes smaller individual reads than the standard
implementation, the direct disk reads during the experiments from section
4.3 are still of average size almost 128KB. This is due to the Linux read-ahead
6. Read-ahead is used by Linux to increase disk read efficiency. The default
read-ahead parameter is 128KB, meaning that Linux only sends low-priority

6Configured in /sys/block/<dev>/queue/read_ahead_kb.

Chapter 4. Request Scheduler for Storage Systems (RS3) 92

read requests of 128KB to the disk if possible and when it assumes a sequen-
tial read pattern, so that subsequent read requests are served directly by the
filesystem cache rather than the disk. This explains that in spite of much
smaller reads, RS3’s implementation manages to have the same order of mag-
nitude of overall throughput as a standard implementation: most sendfile
reads are served directly by the filesystem cache rather than the disk itself.

However, this read-ahead is triggered only after the first read on a file:
4KB files are served directly from the disk because read-ahead does not have
time to occur. As sendfile is blocking with regard to disk I/O (although
non-blocking on the TCP socket side if called on a non-blocking socket), ev-
ery small request triggers a blocking sendfile for both implementations.
To maintain the overall throughput of the system while approaching per-
fect fairness as much as possible, we desynchronize disk reads and sendfile
calls as much as possible to reduce the time spent blocking on disk I/O.

4.4.1 Sending hints to the kernel

To this end, we use posix_fadvise7 to send hints to the kernel to trigger disk
reads before data is consumed by sendfile.

We use posix_fadvise at two different times:

• When a request arrives and the local file is opened, an immediate call
to posix_fadvise is made with the POSIX_FADV_SEQUENTIAL hint. This
hint doubles the size of linux read-ahead for the file descriptor. In our
case, the read patterns are always sequential since local files correspond
to stored objects that are fetched as a whole.

• For every opened file, we keep an offset pointing to the last byte of the
file that has been flagged as needed. This is used to call posix_fadvise
once every few batch when needed. More precisely posix_fadvise is
called with the POSIX_FADV_WILLNEED flag, that initiates a low priority
nonblocking read into the filesystem cache. This is done after the com-
putation of the batch budget allocated to the request whenever the dif-
ference between this offset and the file descriptor offset (pointing to the
last byte read by sendfile) is lower than the specific file descriptor’s
read-ahead value (twice the filesystem’s default parameter),

The sliding window mechanism we describe here is similar to what Linux’s
kernel uses for its own read-ahead mechanism at the filesystem level as de-
scribed in [197]. However, we noticed during our experiments that trigger-
ing the read-ahead through posix_fadvise ourselves yielded better overall
performance with regard to both global throughput and response time. We
believe that this is due to the fact that we make small reads, leading the ker-
nel to treat our requests as “not highly sequential” and thus maintaining very

7https://linux.die.net/man/2/posix_fadvise

https://linux.die.net/man/2/posix_fadvise

Chapter 4. Request Scheduler for Storage Systems (RS3) 93

(a) Read-ahead is done by the Linux kernel when data that is not yet in cache is requested
by sendfile. sendfile is non-blocking on the network

(b) Read-ahead is done ahead of time so that sendfile never or very rarely blocks on disk
I/O.

Figure 4.6: Blocking time for sendfile calls without or with
the use of posix_fadvise. Blocking disk reads are illustrated
by red blocks while asynchronous, non-blocking disk reads

are illustrated by green blocks.

small read-ahead sliding windows, leading to more blocking calls than if we
trigger the read-ahead ourselves. Our approach aims at increasing disk reads
efficiency by compensating the way we split I/O requests and letting the I/O
scheduler know in advance what data will be requested. The difference be-
tween this implementation and the previous one is illustrated in figure 4.6
for a case where the Linux read-ahead is not triggered early enough.

4.4.2 Response time and throughput results

We implemented this modification in both our prototypes and subjected them
to the same tests than in section 4.3.3. Response time tests results are pre-
sented in figure 4.7 and throughput tests in figure 4.8. Our modifications
have overall slightly increased the response time for small requests. This
was to be expected since the forced read-ahead mechanism tends to favor
long reads due to how I/O schedulers work. In compensation, the overall
throughput has been increased for both implementations, and the difference
of throughput between them has been reduced. The best case for the stan-
dard implementation (128KB reads) now outperforms the worst case for RS3
(32KB batches) by 14%. RS3’s throughput for 40 active classes has been in-
creased by 17 to 24% depending on the batch budget.

At the same time, the new implementation has also significantly reduced
the standard implementation’s response time for small requests for large read
sizes (64 and 128KB), but they remain much higher than with RS3 and still
scale linearly with the number of classes.

Chapter 4. Request Scheduler for Storage Systems (RS3) 94

(a) Standard, read size = 4KB (b) Standard, read size = 32KB

(c) Standard, read size = 64KB (d) Standard, read size = 128KB

(e) RS3, batch budget = 32KB (f) RS3, batch budget = 64KB

(g) RS3, batch budget = 128KB (h) RS3, batch budget = 256KB

Figure 4.7: Response time statistical distribution of 4KB re-
quests in function of the number of clients, without (a,b) and

with RS3 (c,d) for varying read and batch size.

Chapter 4. Request Scheduler for Storage Systems (RS3) 95

Figure 4.8: Average total throughput in function of the num-
ber of clients with and without RS3 for different parameter
sets and active classes numbers. RS3’s results in blue, stan-

dard’s in red.

Both with and without this optimization, we can also observe from fig-
ures 4.4, 4.5,4.7 and 4.8 that the batch budget only has a slight impact on the
total throughput and the response time distribution of small requests with
the parameters we chose.

4.5 Going further with RS3

4.5.1 Evaluating batch budget’s impact on RS3’s performance.

We observed in figure 4.3 that lowering the batch budget provides a much
better fairness, while also slightly increasing the response time for small re-
quests and the total throughput. However, lowering the batch budget me-
chanically increases the CPU consumption of a storage server for two rea-
sons:

• the batch budget allocation phase, that requires computation, has to
occur more often;

• sendfile is called more often, which requires CPU cycles.

Chapter 4. Request Scheduler for Storage Systems (RS3) 96

Figure 4.9: Cumulative distribution function of 4KB requests
reponse time depending on the batch budget.

Therefore, while reducing the batch budget has a positive impact on fairness,
it also has a negative impact on the overall system performance.

To evaluate this impact, we use the same setup that in section 4.3 for the
4KB requests response time. However, we set the number of concurrent
classes to 40 and vary the batch budget between 1KB and 64KB. For each
test, we look at the response time distribution for small requests, the overall
throughput of the system, and the CPU time used by our storage server. Re-
sults are presented in figure 4.9 for the response time distribution and figure
4.10 for the throughput and CPU time.

The results of figure 4.9 show that for very low batch budgets (1 or 2 KB),
the response time distribution corresponds to a very skewed long tail (80% of
the requests take less than 25ms to complete but 5% of them take more than
175ms to complete) while higher batch budgets have a less skewed, shorter
tailed response time distribution.

Figure 4.10 confirms that the batch budget has a significant impact on
CPU consumption. Moreover, this impact is directly correlated to the to-
tal throughput of the storage system. RS3 reaches its maximum throughput
(around 74 MB/s) only for batches larger than 32KB, when the CPU time
amounts to less than 40% of the total time elapsed. RS3’s throughput is as
low as 11 MB/s for a batch budget of 1KB.

Chapter 4. Request Scheduler for Storage Systems (RS3) 97

Figure 4.10: Total throughput and storage server CPU time for
40 concurrent classes per batch budget.

4.5.2 Tweaking RS3 to enforce policies: Weighted-RS3

The algorithm 2 presented in section 4.2 was aimed at guaranteeing perfect
fairness between all classes. However, in some cases, an orchestrator may
wish to assign different weights to different classes (classes can be clients
with different service level agreements, applications with different priorities
...) so that some classes get a higher throughput than others in the case of con-
tention. This can be obtained by introducing weights Wi for each class in the
previous algorithm, as described in algorithm 4. Furthermore, this weighted
version of RS3 could be dynamically configured by a control plane to enforce
cluster-wide scheduling like described in [162].

Note that when all active classes have the same relative weight, this al-
gorithm is strictly equivalent to the previous one. We have implemented
Weighted-RS3 (W-RS3) and have tested it on our benchmark, with 3 classes
having different weights and number of concurrent clients, each client thread
making continuous requests for big objects (between 1 and 4MB). The through-
put results can be found in table 4.1.

As expected, RS3 guarantees fairness while W-RS3 guarantees a through-
put distribution almost proportional to classes’ weights. W-RS3 is partic-
ularly useful, when the average global throughput of a storage system is
known, to guarantee a certain amount of throughput to certain users, even in
the event of network or disk saturation. For example, in the example shown
in table 4.1, if the throughput of a saturated system is of 100MB/s, class 3 is

Chapter 4. Request Scheduler for Storage Systems (RS3) 98

Algorithm 4 Weighted batch budget allocation algorithm

1: B: batch budget
2: N: number of active classes

3: wi =
Wi

N
∑

i=1
Wi

: relative weight of active class i,
N
∑

i=1
wi = 1

4: R[i]: pending cumulative size of requests made by active class i, ordered
by R[i]

wi
from lowest to greatest

5: T[i]: size of the TCP send buffer associated with class i
6: Ba[i]: budget allocated to class i for the batch
7: Rb: Remaining budget for the batch
8: function WEIGHTED_BUDGET_ALLOCATION(B, N, R, T)
9: Rb ← B

10: for i = 0 to N − 1 do
11: Ba[i]← min(T[i], Rb

wi N
N−i , R[i])

12: Rb ← Rb − Ba[i]
13: end for
14: return Ba
15: end function

Throughput(MB/s)
Class Threads Weight Standard RS3 W-RS3

1 4 1 30.88 23.15 12.47
2 3 2 23.48 22.9 23.48
3 2 3 16.05 21.97 30.97

Table 4.1: Throuput per client without RS3, with RS3, and
with W-RS3, with batch budget= 24KB.

guaranteed to have an available throughput of approximatively 50MB/s.

4.5.3 Considerations on RS3 and its current implementation

Fairness The definition of fairness given in section 4.2 is widespread but
simplistic. Some I/O schedulers [185, 182] introduce an additional fixed cost
to every I/O request to model the average latency of HDD seeks, so that the
I/O request cost is not directly proportionnal to the request size in bytes but
a linear function with a fixed term. This is relevant for HDDs, displaying a
high latency but low variance when serving requests, but much less for SSDs
that exhibit much more variance when dealing with I/O requests and even
between each others, as demonstrated in [188].

This could be adapted to RS3 by slightly modifying algorithms 2 and 4
to take into account not the cumulative size of requests in R[i], but rather
the cumulative cost of requests, with well-chosen cost functions depending
on the underlying storage device (HDD, SSD or NVMe). Such an approach

Chapter 4. Request Scheduler for Storage Systems (RS3) 99

would probably model the effective disk access time with more precision. We
decided against this approach in the current presentation for two reasons:

• Modeling the performance of HDDs is not in the scope of this work and
has already being extensively done [198, 199, 200, 201], even produc-
ing some disk drive performance simulator such as DiskSim [202, 203].
Thus we presented RS3 as is for the sake of simplicity. As explained, it
is totally straightforward to integrate a cost function to RS3.

• Cost functions are great tools to model HDD response time because
they exhibit high latency and low variance, whereas SSD response vary
much more between requests and even between drive models [188].

Similarly, some approaches like [204] also include the temporal locality
– the ability to hit the storage server’s cache and thus make a better use of
its resources – of applications in their definition of fairness, and reward such
them with more throughput. We argue that it is indeed relevant while the
disk is the limiting factor but not necessarily when the network is limiting.

Multi-disk RS3 A single-disk storage server is not a realistic scenario. How-
ever, running one RS3 scheduler per disk in parallel in the case of multiple
disks servers provides the same guarantees when disks are the same model
and RS3 configured the same way with the same batch budget:

• If the aggregate throughput of all disks is lesser than what the network
can handle, there is no contention between disks and thus RS3 works
as desired for every disk;

• If the aggregate throughput of all disks is higher than what the net-
work can handle, all disks have symmetric performance and thus they
naturally have access equal to the network device in average.

RS3 does not handle – in its present iteration – the case of inter-disk fair-
ness (for instance, a class that would spread its request for data stored on
multiple disks could get more throughput than another having all its data on
one disk): we leave that part to external orchestration and data placement
mechanisms.

Writes in RS3 The current implementation of RS3 only works for reads
requests, that amount for most of the data traffic in most cases. However,
write-support could be implemented the same way – with a cost function or
not – by handling both read and write requests in our batches. Such an im-
plementation would, however, order the I/O requests to separate write and
read requests as it has been shown that read and write interferences reduce
the effective throughput of SSDs [3, 205, 188].

Chapter 4. Request Scheduler for Storage Systems (RS3) 100

4.6 Conclusion

In this chapter, we described two recurrent problems for storage systems that
are shared between multiple users: the unfairness of the throughput distribu-
tion between clients that have different request rates, and the high response
time encountered by small requests when storage servers are under pressure.

To solve this problem, we described RS3, a request scheduler that fairly
allocates throughput between classes and sends data in fixed-size batches to
guarantee low response time for small requests. We showed that RS3 fulfills
the objectives of equalizing throughput between classes and allowing small
requests to be satisfied rapidly (in the most extreme cases, around 30 times
more rapidly than with a standard implementation), at the cost of a fraction
of the total throughput.

We then explained how we optimized RS3 by sending hints to the ker-
nel using posix_fadvise to reduce the time spent blocking on disk I/O.
This optimization increased the overall throughput for both implementations
and decreased the throughput discrepancy to around 15% between the best
throughput for the standard implementation and the worst throughput for
RS3 while maintaining approximatively the same response time for small re-
quests as without this optimization for RS3.

We also explored the impact of the batch size on several metrics, notably
throughput and CPU consumption. We observed that while guaranteeing a
near-perfect fairness, a low batch budget (≤ 32KB) also increases the CPU
consumption to a point where it can have a negative impact on throughput.
However, our experiments show that the batch budget only has a limited im-
pact on total throughput as well as on the reponse time distribution for small
requests (as long as the CPU does not become a bottleneck).

Finally, we described W-RS3, an extended version of RS3 that can be used
to enforce Service Level Agreements (SLAs), QoS requirements or storage-
system-wide resource allocation while maintaining its low-response time prop-
erties for small requests.

4.6.1 Going further

In the future, we intend to evaluate how RS3 performs in different settings,
such as with SSDs, for which the CPU consumption is more of a problem [6]
or under real-world workloads.

We also aim at adapting RS3 to efficiently include writes in its scheduling
algorithm or work above several disks sharing the same network interface
and/or CPU cores on the same server, following the leads shown in section

Chapter 4. Request Scheduler for Storage Systems (RS3) 101

4.5.3

Finally, we want to provide RS3 a way to adapt its batch budget to cur-
rent load conditions to always act optimally, notably by adapting the batch
budget to the number of concurrent classes in order for the CPU not to be-
come a bottleneck while also maintaining the best possible level of fairness
and throughput, the key element being not to saturate the CPU.

Contributions

This work has been the object of a defensive publication by Cisco and of a
paper submission.

• Fair Scheduling for low latency and high throughput storage systems,
in Technical Disclosure Commons, (August 21, 2018) [206]

• Guaranteeing low response time for small requests and fair through-
put allocation: a Request Scheduler for Storage Servers (RS3), paper, in
preparation for submission.

102

Chapter 5

Replica Caching for Erasure-Code
based Distributed Storage Systems

Distributed storage systems are widely used today to provide scalable and
reliable storage service for companies like Facebook with Cassandra and
HDFS [27, 29], Google with GFS, BigTable and Spanner [24, 25, 26], Amazon
with DynamoDB [23], and others with Ceph [28, 29]. Those storage systems
are deployed on generic hardware that is prone to failures and thus have to
incorporate reliability mechanism to guarantee data availability when servers
fail or are removed from the storage system.

Erasure codes to reduce the storage overhead To provide reliability against
failures, most storage systems simply replicate data on multiple storage nodes.
The standard is to replicate every data object 3 times across different disks/
servers/datacenters. However, this heavily increases the hardware cost of
such systems since the storage overhead of replication is high, as explained
in section 1.2.3. To reduce this cost, many distributed systems have been
transitionning in the last few years from replication to erasure codes to en-
sure data reliability.

A (k, r) erasure code splits the data into k equal-sized fragments, called
systematic fragments, creates independant linear combinations of these frag-
ments to generate r parity fragments, and stores them on different storage
nodes. The r parity fragments are encoded in a way that guarantees that
any k of the k + r fragments can be used to reconstruct the original data ob-
ject.

Thus, up to r failures are tolerated for a storage overhead of k+r
k , usually

lower than r+ 1 for a replication-based setup with a replication factor of r+ 1
also tolerating up to r failures. For example, a 3-way replication has a storage
overhead of 3 and tolerates up to any 2 simultaneous failures, while a (10, 4)
erasure code has a storage overhead of 1.4 and tolerates up to 4 failures.

Moreover, because data is retrieved in parallel from multiple nodes, era-
sure codes can speed up data retrieval compared to simple replication. How-
ever, they also induce a computation and networking overhead and thus can
lower the overall performance of storage clusters:

Chapter 5. Caching erasure-coded objects 103

• For every object retrieval, k TCP connections must be opened. This
means that (k − 1) times more TCP sessions must be negociated and
established in the cluster. If the data is encrypted on the wire, it has
an even bigger memory and computing footprint. Network stack com-
putation can already amount for more than 50% of the CPU time of
distributed storage systems in some cases when replication is enabled
rather than erasure coding [85].

• Of these k connections, the slowest one determines the completion time
for a storage request. If one of the storage nodes is saturated or the
network is congested for any reason, the whole request suffers from
it. While network congestion and resource saturation can also happen
with replication schemes, the likelihood of such an event occuring is
much higher when multiple storage participate to every request.

• Depending on the type of storage device and the request rate, the phys-
ical drives’ I/O rate can even decrease: a hard drive is much better at
handling a big I/O request than multiple small and uncorrelated I/O
requests in parallel.

How distributed storage systems cache Some distributed systems, like Ceph,
offer the possibility to define a separate cache tier, deployed on storage nodes
equipped with fast storage devices, e.g., NVMe or SSDs. When such a cache
tier is used, all storage requests are first handled by the cache. Only when
they fail are they sent to the slower storage backend. In these cases, cache
hits (i.e., the requested object can be found in the cache) are dealt with as fast
as possible, but cache misses (i.e. the object is not in the cache) drastically
increase the time required to fetch non-cached objects, making it worse than
if there was no cache tier at all because of the additional RTTs and lookups. It
is thus generally not advised to define a cache tier unless the data popularity
distribution is heavily skewed and the benefits of the cache counterbalance
its adverse effect on cache miss performance.

Most of the distributed storage previously mentioned consist of daemons
running in user-space on top of generic Linux filesystems such as XFS or ext4.
They store data or data fragments as files in specific directories. As such, even
when a separate caching layer is not defined, storage systems benefit from
the underlying filesystem’s caching mechanisms. The way filesystems cache
data utilizing the available memory is well-known and is usually a variation
of a LRU (Least Recently Used) cache, described later in section 5.3.2.

However, when erasure codes are used, these local files are only frag-
ments of data. Because nodes caches operate autonomously, it is possible for
some data fragments to be cached by their host’s filesystem while other frag-
ments from the same original data, stored on other storage nodes, are not.
Since the data request is fulfilled only when all k fragments are retrieved, it
benefits from caching only if all the fragments are simultaneously cached.

Chapter 5. Caching erasure-coded objects 104

Highly popular objects probably have their fragments cached on every
relevant storage node and highly unpopular objects probably have none of
their fragments cached. However, moderately popular objects can have sev-
eral fragments cached and others not. These cached fragments only have an
indirect benefitting impact on the cluster’s performance: they do not require
disk I/O to be fetched and thus free the drives for other tasks. Thus, they
amount mostly to cache pollution: they reduce the efficiency of caching at
the scale of the storage system.

The aim of this work is to evaluate the impact that a traditional filesystem-
level caching policy can have on an erasure-coded distributed storage sys-
tem, particularly in terms of cache hit, cache waste, and request response
time, then to propose a new caching algorithm taking into account the era-
sure coded nature of the fragments stored locally.

The rest of this chapter is organized as follow: section 5.1 gives an overview
of the work that has been done on the topic of erasure codes and specifically
what caching strategies have been developped to adapt to their characteris-
tics. Section 5.2 describes the problematic in depth as well as our proposed
caching policy. Simulation and experimental performance evaluations are
described in section 5.3 and section 5.4 respectively. Finally, a conclusion is
given in section 5.5.

5.1 Related Work

The topic of caching itself has been extensively researched for a long time
now in the context of generic storage systems as a means to increase system
performance [207, 208]. However, few research has been done on the specific
use-case of caching in erasure-coded systems, probably because they have
been deployed for only a few years.

The impact of erasure coding on latency and performance, however, has
been extensively studied. Research has been done to identify the impact of
interacting with multiple storage nodes – in erasure-coded setups – rather
than single ones – in replicated setups – with regard to latency [209, 210, 159,
160].

For example, the authors in [160] showed than when requests are flooded
to all servers storing a fragment of a (k, r)-erasure coded object –rather than
most approaches that only fetch the systematic fragments–, the expected
download time is reduced since it is enough to wait for the k fastest frag-
ments. They also showed that it is possible to quantify the trade-off between
storage overhead and download time. However, flooding requests to all stor-
age nodes storing an object fragment has the negative impact of further in-
creasing the number of active connections. Besides, it can trigger useless
disk reads when fragments are read on a storage server but not returned fast

Chapter 5. Caching erasure-coded objects 105

enough to be used for the object reconstruction.

Meanwhile efforts are still being carried out to predict more accurately the
latency of erasure-coded systems despite their inherent superior complexity
to replication-based systems [209].

As previously explained, using erasure coding in distributed storage sys-
tems raises new challenges. One of these is to guarantee that object segments
are either all available or all unavailable in storage nodes’ caches. To solve
this issue, the authors in [211] suggest a cooperative caching approach, where
each storage node communicates its local cache content to the other nodes.
Then, based on these informations, each node updates its local cache to en-
sure that all the object segments are available in cache nodes, or that none are.

While this solves the cache pollution problem, it requires extensive com-
munication and communication between nodes and is subject to race condi-
tions when caches update quickly, especially for large scale systems where
full-mesh inter-nodes communication does not scale. Furthermore, it does
not reduce the overhead of maintaining several connections when retrieving
all the cached fragments, which we saw reduces the benefit of the cache itself.

In [212], the authors describe a way to cache only a subset of fragments
from an object based on their geographical position. They focus on a storage
system spanning several continents and storing the data fragments for ev-
ery object on different continents. In this setup, they show the advantage of
caching only the most remote fragments relative to each region in the region’s
dedicated cache. On the contrary, our approach focuses on single-region stor-
age systems where there is no inherent heterogeneity in fragment access,
which makes such optimizations irrelevant. Moreover, it supposes the ex-
istence of a separate cache tiering in each region whereas our approach fo-
cuses on taking advantage of the default caching capabilities of every generic
storage server. However, both approaches are complementary when taken
region-per-region.

While the solutions described previously are based on caching only sys-
tematic segments, some research work [213, 214, 215] investigated how to
cache additionally generated parity segments in addition to systematic frag-
ments.

For example, the authors in [214] propose to cache d erasure coded seg-
ments to obtain a (d + k, r) code and cache the d coded segments in a caching
proxy. The object is then reconstructed form these d fragments in the proxy
and the fastest k− d fragments retrieved from the k storage nodes storing the
systematic fragments. However, this approach requires heavy computation
to optimize the fragments’ placement. Moreover, this approach also uses a
separate cache tier acting as a gateway between clients and storage servers
whereas ours just use generic storage server caching capabilities, and just

Chapter 5. Caching erasure-coded objects 106

Figure 5.1: Client requesting object B from a (2, r) erasure
coded distributed object store (parity fragments not repre-

sented).

acts on a regular LRU strategy with no synchronization or placement opti-
mization whatsoever.

The authors in [215] propose a way to provide resilient caching using era-
sure codes. They argue that high-performance, large-scale storage environ-
ments require resiliency even in their in-memory caching layer, and propose
to use erasure codes to provide this resiliency. They then propose to load bal-
ance between caches by reaching out to k+ δ in-memory fragments of objects
rather than k to fetch the fastest and reduce the tail latency of requests.

In addition, distributed object stores like Ceph [28] either use standard
filesystem caching mechanisms or dedicate a separate storage pool for stor-
age. While the performance are good for objects that are cached, this heavily
degrades the performance for objects that are not cached since requests have
to go through the entire request process for the cache before trying it again
in the storage backend.

5.2 Caching and Popularity In Distributed Storage
Systems

5.2.1 System Architecture

In this work, we consider an object-based distributed storage system using
a (k, r) erasure code to guarantee reliability. The way clients keep track of
where objects’ fragments are stored as well as the precise type of erasure
code used is out of the scope of this work.

We assume that the client itself interacts only with one storage node that
fetches all the necessary fragments before returning the whole object to the
client. While this is not optimal (it is more efficient for the client to directly
interact with all storage nodes), almost every distributed storage system uses

Chapter 5. Caching erasure-coded objects 107

a form of gateway acting as a proxy for clients. We merely here make the as-
sumption that every storage node can act as a gateway. Without loss of gen-
erality we assume for the remainder of this chapter that the client interacts
with the storage node storing the first fragment of an object when making
a request for this object. Furthermore, for the sake of simplicity, we will as-
sume for the remainder of this chapter that all objects – and thus fragments –
are of the same size.

Figure 5.1 describes an example of such a storage system using a (2, r)
erasure code. This basic setup, that we will use as an example for the re-
mainder of this chapter, consists of 4 storage nodes having a drive capacity
of 8 fragments. We note here that we do not represent the r parity fragments
that are also stored on the storage nodes but never accessed outside of repa-
ration purposes, which is out of the scope of our work.

In this example, the storage system stores 16 objects labeled A to P, which
fragments are randomly distributed on the storage nodes, with the only con-
straint that 2 fragments of the same object cannot be stored on the same node.
The figure illustrates how a client retrieves the object B in such a setup. The
client connects to the Node 2 (storing B1), which fetches the required frag-
ment B2 from Node 3 and then send the full object to the client.

5.2.2 Object Caching

In such a system, each storage node’s filesystem caches its most popular frag-
ments. This can lead to objects having a fraction only of their fragments
served by some storage nodes’ cache while the rest are served by other stor-
age node’s disk. This doesn’t benefit the client as the request is only com-
pleted when the slowest fragment is retrieved since all k fragments are re-
quired to reconstruct the object.

Thus, we propose that instead of caching objects as fragments, they should
be cached as full replica. To that end, we modify the filesystem’s caching
layer so that when the decision is taken to cache a local file corresponding to
a fragment, the following happens instead:

• If the fragment is the corresponding object’s first fragment, the storage
node retrieves the whole object as it normally would and caches it in
addition to sending it to the client 1. If required, it evicts a previously
cached object from the cache.

• If the fragment is not the corresponding object’s first fragment, it does
nothing more than just retrieving the fragment to send it to the storage
node requesting it.

1This can be done either by modifying the filesystem’s caching layer code, or disabling
the filesystem’s cache and developping a custom caching layer.

Chapter 5. Caching erasure-coded objects 108

(a) Legacy filesystem caching: client 2 gets E1 from cache but E2 from disk – the cache does
not speed up object fetching.

(b) Full replica caching: client 2 gets E from storage node 4’s cache directly.

Figure 5.2: Fragments caching versus full replica caching.
Caches represented in dotted lines.

Chapter 5. Caching erasure-coded objects 109

The difference between the legacy filesystem cache and our approach is
illustrated in figure 5.2, on the setup previously presented in figure 5.1. In
this example, we suppose that objects A to P are ordered by popularity, with
A the most popular and P the least one. The fragments are positioned ran-
domly since the system does not know how popular objects are before they
are stored. We also suppose that the storage nodes’ caches are perfect and
store exactly their 4 most popular fragments, or the 2 objects corresponding
to their two most popular primary fragments. In this example with tradi-
tionnal filesystem caching, fragments E1 and G1 are cached while E2 and G2

are not cached. As such, 1
8

th
of the cache of our storage system is wasted.

Instead, storage nodes 3 and 4 could respectively cache O1 and O2, or even
better, K1 and K2.

However, figure 5.2 also shows that our approach does not necessarily
caches only the most popular content: K is cached in spite of H,I and J being
more popular. This is unavoidable without more orchestration or rebalanc-
ing as long as objects’ popularity is unknown prior to them being stored.

Following this example, let us define what we mean for the remainder of
this chapter by cache hit ratio and cache waste ratio:

• Cache hit ratio: the cache hit ratio is the ratio of object requests that are
fully served by the storage system’s cache. When fragments are cached,
a request is counted as a cache hit only if all its fragments are cached,
since only then does it benefit the client in term of latency.

• Cache waste ratio: when fragments are cached, we define it as the ratio
between the number fragments cached from objects which do not have
all their fragments cached and the total number of fragments cached
in the system. It corresponds to the percentage of cache space that is
dedicated to fragments not benefitting the client in term of latency.

5.3 Theoretical Evaluation

In this section, we evaluate the impact of our full replica caching policy with a
simulation. To model objects’ popularity, we choose to use the modified Zipf-
law model described in section 5.3.1. Our simulation evaluates the cache hit
and cache waste ratios of both ours and the traditionnal approach to caching
for different parameter sets.

5.3.1 Popularity Model

A commonly observed popularity distribution for data access on the web is
the modified Zipf-law [216, 217, 218, 219, 220, 221]. Such a popularity distri-
bution describes several popularity classes that have different relative popu-
larities following a power law. Each class has a popularity weight of C

iα , with
i the index of the class, α the Zipf parameter identifying the skewness of the

Chapter 5. Caching erasure-coded objects 110

distribution, and C = 1
∑i

1
iα

. In each class, all objects have the same popu-

larity. Thus, the popularity of an object x is given by P(x) = C
i(x)α×N(i(x)) ,

with i(x) the class corresponding to object x and N(i) the number of objects
in class i. P(x) corresponds to the probability of randomly picking x when
following the given probability distribution, and is equivalent to picking a
class at random following an α modified Zipf-law and then picking an object
with a uniform probability distribution in that class. The higher the value
of α, the higher the popularity difference between popular and unpopular
classes, called the popularity distribution skewness.

5.3.2 System Model

For the remainder of this section, we simulate an environment with the fol-
lowing characteristics:

• No objects of same size are stored amongst Ns servers. Each object is
split in k systematic fragments. Each of these k fragments is randomly
assigned to a different storage server.

• The No objects follow a modified Zipf popularity law of parameter α
with Nc classes, each class i containing a Ni

c objects, with Ni
c > 0, ∑i Ni

c =
No. The objects are ordered by popularity.

• Each server has a cache of fixed size able to store Nc fragments or Nc
k

objects. These caches can be configured to be perfect or LRU.

Perfect Cache In a perfect cache, the popularity distribution of all objects
is perfectly known at any instant, which allows to explicitely cache the most
popular fragments/objects. Based on whether a full object is cached or a set
of fragments, we can distinguish two cases:

• If fragments are cached, every server’s cache is initially filled with its
most popular fragments.

• If full objects are cached, every server’s cache is initially filled with the
most popular objects for which they store the first fragment.

LRU Cache Each LRU cache is initially empty and is progressively filled as
requests come in. The objects are ordered in node caches by last request time.
The fragment/object with the oldest last request time is evicted when a new
fragment/object is cached. Similarly to the perfect cache, whether fragments
or objects are cached, the request process varies.

• If fragments are cached, the following happens when a fragment is re-
quested:

– If the fragment is already in the cache, it is moved at the beginning
of the queue.

Chapter 5. Caching erasure-coded objects 111

Parameter Value

Number of requests : Nr 106

Number of objects : No 105

Number of servers : Ns 100
Number of fragments : k 10
Cache capacity : Nc {0.01, 0.05, 0.1}
Number of class of popularity 4
Class repartitions [1, 1, 4, 4] , [1, 1, 1, 1]
Zipf exponent: α [0, 0.1, 0.2, . . . , 1.5]

Table 5.1: Simulation Parameters Settings

– If the fragment is not in the cache, the requested fragment is placed
at the beginning of the queue. Additionally, if the cache is already
full, the last fragment of the queue is removed from the cache.

• If full replicas are cached, the following happens when a fragment is
requested:

– If the fragment is not the first fragment of the corresponding ob-
ject, nothing happens.

– If it is the first fragment and the object is already in the cache, the
object is placed at the beginning of the queue.

– If it is the first fragment and the object is not in the cache, the object
is placed in the cache at the beginning of the queue. Additionally,
if the cache was already full, the last object of the queue is removed
from the cache.

5.3.3 Performance Evaluation

In this section, we evaluate by simulation the impact of our caching policy
on distributed storage systems in terms of cache hit ratio and cache waste ratio.
The simulation is carried out for a storage system storing 105 objects across
100 servers.

The different parameter sets used for our simulation are given in table
5.1. The cache capacity is given as a fraction of the average number of frag-
ments stored by a server: a cache capacity of 0.01 means that a server’s cache
can hold 0.01 × 105

100 = 10 objects – or 10 × k fragments depending on the
caching policy. For each parameter set, we simulate 106 consecutive requests
following a Zipf-like popularity distribution of variable class repartition and
skewness parameter α. A class repartition of [1, 1, 4, 4] corresponds to 10% of
the objects in the most popular class, 10% in the second most popular class,
40% in the third and 40% in the least popular one.

Chapter 5. Caching erasure-coded objects 112

(a) Cache capacity: 0.01, Class repartition:
[1, 1, 4, 4]

(b) Cache capacity: 0.01, Class repartition:
[1, 1, 1, 1]

(c) Cache capacity: 0.05, Class repartition:
[1, 1, 4, 4]

(d) Cache capacity: 0.05, Class repartition:
[1, 1, 1, 1]

(e) Cache capacity: 0.1, Class repartition:
[1, 1, 4, 4]

(f) Cache capacity: 0.1, Class repartition:
[1, 1, 1, 1]

Figure 5.3: Cache hit ratio for various class repartitions and
cache capacities. Results are shown for LRU and perfect

cache, and for regular fragment and full replica caching.

Chapter 5. Caching erasure-coded objects 113

5.3.4 Results and evaluation

The cache hit ratio obtained during these experiments is given in figure 5.3,
and the cache waste when the traditionnal fragment caching approach is
used is given in figure 5.4. As shown in figure 5.3, our approach has a better
cache hit ratio in every case. However, the magnitude of the improvement
depends on the parameters, and mostly on the cache capacity. As expected,
the cache hit ratio increases in all cases with the cache capacity and with the
Zipf skew parameter α. Furthermore, it is also higher for a [1, 1, 4, 4] repar-
tition than for a [1, 1, 1, 1] repartition, as expected again since there is less
dispersion between popular objects in such a repartition. Note that with
a repartition of [1, 1, 1, 1] and α = 0, all objects are equaly as popular, and
therefore the cache hit ratio at these points for a perfect cache is equal to the
cache capacity.

Our caching approach increases the cache hit ratio itself between ∼ 4% in
the worst case and ∼ 18% in the best case, with this value decreasing when
the cache capacity increases. The numbers show that the cache capacity is the
only real factor determining the cache hit ratio difference between a regular
fragment caching approach and our replica caching approach.

This correlation between cache capacity and cache hit ratio improvement
is easily explained: the only objects for which our policy matters is the ones
that are popular enough to have a few fragments cached but not all of them.
This does not apply either to very popular objects nor to very unpopular
objects. While the threashold popularity depends on the cache capacity, the
number of objects in this situation – and thus the cache hit gain from our al-
gorithm – does not. Thus, while the cache hit ratio increases with the cache
capacity for both approaches, the number of objects that are fully cached with
our approach and not with a regular fragment cache stays approximatively
the same, reducing the relative difference between both caching algorithms.

This fact is perfectly illustrated in figure 5.4: the cache waste ratio, de-
fined in section 5.2.2, diminishes when the cache capacity augments, but is
virtually unaffected by changes in popularity skewness (both when the class
repartition and when α changes). Note that the cache waste ratio does not de-
pend on α or the class repartition for the perfect cache, since the most popular
fragments are explicitely cached, regardless of the skewness of the distribu-
tion.

5.4 Experimental Evaluation

After running simulations, we wanted to test the impact of our caching scheme
on a real system. To do that, we implemented logical independant storage
servers on a single server managing 23 10K rpm HDDs –one per disk– and
submitted them to the same type of workload that we simulated in the pre-
vious section.

Chapter 5. Caching erasure-coded objects 114

(a) Class repartition: [1, 1, 4, 4] (b) Class repartition: [1, 1, 1, 1]

Figure 5.4: Cache waste ratio for various class repartitions
and cache capacities. Results are shown for LRU and perfect

cache, only when fragment caching.

5.4.1 Experimental setup

Our experimental setup has several characteristics:

• Since we only want to measure the impact of caching full replicas ver-
sus fragments and not the impact of the encoding and decoding of data
itself, we only store generic fragments and objects in the storage servers
instead of actual data.

• Each storage server stores precisely one generic fragment and one full
object in memory, and several generic fragments on disk. There are
more fragments on each disk than what the disk cache is able to hold.
The storage servers cycle through these on-disk fragments as illustrated
in figure 5.5 for each request so that we maintain a disk cache hit ratio
of 0, since we only want to measure the impact of the filesystem cache
layer.

• Each storage server maintains a virtual LRU structure that is updated
after every request and uses object or fragment name as identifier.

• On a cache hit, a storage server sends the generic fragment or object
(depending on the caching policy) to the client or storage node request-
ing it directly from memory.

• On a cache miss, a storage server sends a generic fragment from its
disk, cycling through them between requests. These interactions are
summarized in table 5.2.

Each storage server keeps track of the cache hit ratio for requests coming
through them. Like in the previous section, a request is considered a cache
hit only when all fragments are local cache hits on the corresponding storage
nodes when fragments are cached.

Chapter 5. Caching erasure-coded objects 115

Figure 5.5: Storage server implementation: a single generic
fragment and object in memory, and enough generic frag-
ments on disk to cycle through them without ever hitting the

disk cache.

Request from
Client

Request from
Storage Server

Fragment
Cache

• Gather generic fragments
from servers
• Send full generic object
to client
• Update local fragment
cache

• Send generic fragment
to server
• Update local fragment
cache

Replica
Cache

• If cached, send full generic
object to client
• Else, gather generic
fragments from servers
• Update local object cache

• Send generic fragment
to server

Table 5.2: Functions performed by storage servers when re-
ceiving a request.

Chapter 5. Caching erasure-coded objects 116

Parameter Value

Continuous sequential requests during : t 120 seconds
Number of objects : No 23× 103

Number of servers : Ns 23
Object size : Os 500KB
Number of fragments : k 5
Cache capacity : Nc 0.05
Number of class of popularity 4
Class repartitions [1, 1, 4, 4]
Zipf exponent: α [0, 0.2, 0.4, . . . , 1.6]

Table 5.3: Benchmark Parameters Settings

A client is implement and deployed on the same physical server. Like in
the previous section, the client send requests randomly following a modified
Zipf-law. In addition to the cache hit ratio measured by storage servers, the
client measures the time requests take to complete, to measure the perfor-
mance impact of our replica caching policy in addition to its cache hit ratio
improvement.

For each parameter set given in table 5.3, the client continuously sends
sequential requests until a fixed amount of time has elapsed.

5.4.2 Results and Evaluation

The evolution of the obtained cache hit ratio of both approaches in function
of α is displayed in figure 5.6. Our full replica caching policy has a slightly
better cache hit ratio. However, the difference appears to be slim and the ap-
parent variance prevents us from drawing additional conclusions.

Figure 5.7 presents response time histograms for all the experiments. These
histograms show not only the effect of increased skewness on cache hit ratio,
but also the effect of our caching policy on response time when cache hits
occur. While figure 5.6 displays only a slight difference in cache hit ratio, it
is apparent on figure 5.7 that caching full replicas has much more benefit in
terms of response time than caching all the fragments from an object.

Cache hits correspond to the leftest bins on the histograms (lowest re-
sponse time). For the histograms corresponding to our replica caching ap-
proach, the cache hits are clearly separated from the cache misses and dis-
play a reponse time of ∼ 8 ms on average, whereas the cache hits from the
fragment caching approach display an average response time of ∼ 10 ms,
equal to the fastest cache miss reponse times.

We think that comes from the additional network and computing over-
head and their effect on performance: the variance and delay introduced by

Chapter 5. Caching erasure-coded objects 117

Figure 5.6: Cache hit ratio for different values of α, with a LRU
cache.

fetching fragments – even cached – from other servers almost counterbal-
ances the positive effect of the cache itself.

5.5 Conclusion

In this chapter, we explained why relying on traditionnal filesystem caching
mechanism is not optimal for storage systems using erasure codes as a reli-
abilty mechanism. We presented a straightforward solution, which consists
of caching entire objects or nothing, thereby avoiding cases where only some
fragments of an object were cached.

A simulated setup showed that our solution improved the cache hit ratio
of such systems in every case (between 4 and 18% depending on the param-
eters). We also showed that our approach’s benefit depended monstly on the
cache capacity, not so much on other factors such as the popularity distribu-
tion skewness or the exact caching policy which have no visible effect on the
cache waste ratio of the traditionnal fragment caching solution.

In a second phase, our implementation not only validated the previous
result, but also showed that caching fragments on every node rather than
full replicas at once had an adverse effect on cache hit response time. Our
implementation showed that cache hits on full replicas had a better request
response time than cache hits on all fragments of an object, because of the

Chapter 5. Caching erasure-coded objects 118

(a) Fragment cache, α = 0.0 (b) Replica cache, α = 0.0

(c) Fragment cache, α = 0.4 (d) Replica cache, α = 0.4

(e) Fragment cache, α = 1.0 (f) Replica cache, α = 1.0

(g) Fragment cache, α = 1.6 (h) Replica cache, α = 1.6

Figure 5.7: Response time histograms for different values of
α.

Chapter 5. Caching erasure-coded objects 119

additional networking and computing delays suffered when retrieving the
fragments from other servers.

Contributions

The work presented in this chapter is the object of a patent and of a paper
submission.

• Hybrid distributed storage system to dynamically modify storage over-
head and improve access performance, patent, not yet issued [222]

• Replica Caching for Erasure-Code based Distributed Storage Systems,
paper, in preparation for submission.

120

Conclusion

The goal of this dissertation was twofold. First, to present the limitations of
existing distributed storage systems in chapter 1 and describe 6Stor, an ar-
chitecture inspired from their strengths to avoid their drawbacks in chapters
2 and 3. Second, to point out several specific interactions of such systems
and propose mechanisms to improve them, and thus their throughput and
latency guarantees in chapters 4 and 5. While the different chapters of this
dissertation might seem uncorrelated, they all gravitate towards the same
goal: to help distributed storage systems face the explosive growth of data
requiring storage and distribution.

• Chapter 1 gave a brief overview of the different types of distributed
storage systems. It described several architectures, their advantages
and drawbacks, and then explained how those systems dealt with node
failures by implementing reliability mechanisms. These same mech-
anisms introduce consistency issues that are dealt with in numerous
ways. Finally, this chapter presented a short list of widely used dis-
tributed storage systems and their reliability and consistency mecha-
nisms. Most distributed storage system limitations presented in this
chapter have something to do with scalability issues, whether it is the
single master bottleneck or the data redistribution spanning hours or
days when petabytes of data have to be moved between storage nodes.

• In chapter 2, I presented 6Stor, a distributed object store that combines
the distributed aspect of DHTs with the metadata layer offered by master-
slave storage systems. 6Stor also leverages IPv6 capabilities to provide
scalability and fast bootstraps for joining storage nodes. The architec-
ture was thoroughly described and its performance evaluated against a
similar object store – Ceph. 6Stor was also designed to limit the number
of software layers, which was evaluated through measurements show-
ing the overhead of using HTTP instead of simple TCP.

• Chapter 3 presented two extensions to 6Stor. Firstly, I explained why
distributed storage systems often implement a block device API since
many applications rely on them. I then described the process we went
through to implement such a block device on top of 6Stor, and pre-
sented a benchmark of its performance for different I/O size and pa-
rameters. Secondly, I explained how we could leverage 6Stor’s IPv6 ca-
pabilities through the use of segment routing to enable load-balancing,

Chapter 5. Caching erasure-coded objects 121

thus reducing the latency of 6Stor’s basic operations, especially when
under heavy load.

• In chapter 4, I explained why traditionnal I/O and packet schedulers
were not sufficient to ensure an efficient and fair repartition of storage
resources between different applications or users sending requests to
individual storage servers. I then introduced RS3, a request scheduler
deployed on storage servers using batching to fairly allocate storage
resources between request classes. I showed that RS3 allows small re-
quests to be handled much faster than without RS3 when faced with
concurrent large requests, and that RS3 almost equalizes the through-
put of classes simultaneously sending consecutive requests, even when
some of them sent them at a faster rate that others. Such scheduling
mechanisms are becoming essential in a time where hyper-convergence
becomes the norm and brings hundreds of containers, VMs and appli-
cations on the same servers, relying on the same storage backends.

• Finally, chapter 5 explained how to improve traditionnal filesystem’s
caching on individual distributed storage systems servers when era-
sure codes are used instead of replication to provide reliability. The ap-
proach presented requires no synchronization and uses the tradition-
nal LRU mechanisms used in most caching systems. I showed that it
increases the cache hit ratio of such storage systems by caching only
full replicas of data objects instead of only fragments. Furthermore,
experiments showed that cache hits were more beneficial when a full
replica was cached than when fragments were cached on different stor-
age servers. Erasure codes are becoming the norm as a reliability mech-
anism since the amount of data generated by humankind grows faster
than what the hardware can currently handle. It is therefore essential to
make sure that generic caching mechanisms are as efficient as possible
in this setup.

Through this work, I showed that there are several directions to explore
in order to improve the performance, scalability and flexibility of distributed
storage systems. There are obviously many more steps to take in everyone
of these directions, and in others. To this end, every chapter presented some
clues as to what these next steps in their respective directions could be.

A specific area worth further investigation is the use of DPDK and SPDK.
DPDK and SPDK are libraries used to build custom user-space network and
storage stacks respectively. Ceph is currently investigating how to use SPDK
in their custom data store named Bluestore that replaces the local filesystem
by custom user-space code providing only what is necessary for such a data
store (cutting the filesystem journaling, extended attributes, ACLs...), and
we believe that we could even leverage DPDK with 6Stor’s IPv6 capabilities
in addition to SPDK to create such an optimized user-space layer providing

Chapter 5. Caching erasure-coded objects 122

zero-copy storage directly from network with the least possible computing
overhead.

We also want to explore the possibility of custom placement policies al-
lowed by 6Stor’s metadata layer, allowing different objects from the same
cluster to have different storage representations (replication or erasure codes)
on different storage tiers.

Appendix A and B present work on containers and file servers carried
out in the PIRL in the context of the chairs with Telecom ParisTech and Ecole
Polytechnique. Both those appendix refer to contributions made during 5-
months research internships from Ecole Polytechnique’s students. While the
topics are not directly related to the rest of this PhD dissertation, I found that
they were still relevant to the subject at hand and thus were a worthwhile
inclusion in this manuscript.

123

Appendix A

Predictive Container Image
Prefetching

Disclaimer

This work presented here is currently the object of a patent application. The
container statistics presented here have been gathered and compiled by Maxime
Larcher in the context of a research internship.

A.1 Motivations

Containers are processes packaging code and dependancies used as stan-
dalone executable packages of software deployed to run applications. Con-
tainer images contain everything they need to run including libraries, code,
system tools, settings ... They are mainly used as more lightweight alter-
natives to VMs used to rapidly deploy, upscale or downscale applications
and services in cloud environments. Containers images are run on container
engines (such as Docker or Kubernetes) that play a similar role to an hyper-
visor for VMs. Their properties have made them the heart of cloud service
deployment innovation for the last few years. However, they are not always
exploited to the best of their capabilities.

A container must be pulled –fully downloaded– on a node before it can be
run. Therefore, containers are supposed to be as light as possible and package
only what they require. However, in reality, most popular container images
contain a lot of data not read during the container execution – and thus use-
less to download. This has the unfortunate consequence of slowing the start
time of most containers. This section presents a way to reduce this unnec-
essary download overhead and speed up the container start time. For the
remainder of this section, we take the specific example of docker containers.

A.2 Storage and containers

Docker containers have three ways to interact with storage:

https://www.docker.com/
https://cloud.google.com/kubernetes-engine/

Appendix A. Predictive Container Image Prefetching 124

• Users can mount a host directory within the container, for example the
source directory of code files for a compiler to provide binaries or some
access to data the container has to process;

• Users can also attach a separate Docker volume with persistent data to a
docker container when running it;

• The container’s root file system is mounted by the Docker storage driver
and is composed from several layers. All relevant layers are pulled with
a container, and assembled in a single read-only layer when a container
is run for the first time on a host. A non-persistent Copy-On-Write
(COW) layer – where directories and files created or modified are cre-
ated – is then created each time a container is run.

The two first storage interactions are optional and correspond to data that
is already on the sever. However, as explained before, the last one requires
every node on which the container is deployed to pull all layers and assemble
them. This is problematic for two reasons:

• Some containers are typically scheduled to be deployed on different
servers over time, and are run for a short time every time. Further-
more, the complete image is not necessarily kept on the server between
executions;

• One of the reasons containers are in use is the short time they take to
deploy. The pull phase artificially increases the “time to first byte” of
the container – which is the time between the docker run (or equiva-
lent) command and the time the container becomes functional – when
the image is not already on the server.

Docker containers themselves are composed of multiple hierarchicaly or-
ganized read-only layers and a single, temporary writeable layer that serves
as a root filesystem for the container during its execution.

A.3 Some statistics about popular container images

While the pull time is incompressible with regard to the data required by the
container to run, most container images are not optimally built and thus con-
tain a lot of never-accessed data that slows container pull time. Furthermore,
this useless data wastes storage space on servers themselves.

To evaluate the scale of this problem, we analyzed 81 of the 100 most
popular container images from Docker Hub 1 at the time (05/2017). We mea-
sured the size and number of executable files in those images as well as the
number of layers they are made of. The results are presented in figure A.1.

1https://hub.docker.com/

https://hub.docker.com/

Appendix A. Predictive Container Image Prefetching 125

(a) Container size distribution among the 81 of the most popular docker images.

(b) Distribution of the proportion of executable files among 81 of the most popular docker
images.

Figure A.1: Size and executable proportion distributions for
81 of the most popular docker images.

Appendix A. Predictive Container Image Prefetching 126

Figure A.2: OPCISS Architecture.

The results show that most containers are of size between 2 and 3GB.
On average, only 8% of this size is made of executables. Furthermore, it
has recently been shown [223] (albeit on an older range of containers) that
only 6.4% of the images’ data is actually read by these containers in average.
The same study shows that pulling a container’s image accounts for 76% of
the “time to first byte” in average. This work proposes a way to lazily pull
only the required data rather than the whole images. It also improves cache
sharing between container images having layers in common.

A.4 Optimized Predictive Container Image Stor-
age System (OPCISS)

In addition to the statistics presented in the previous section, [223] showed
that 99% of the reads incurred when a container is run can be serviced by
the cache if the container has been previously run on the same server. This
indicates a very high predictability during container execution. Therefore,
we propose the following architecture (see figure A.2) that adds a predictive
component to the lazy prefetching described in [223].

An Image Storage Node is deployed, that stores or pulls the full images of
containers to be executed in the environment. Containers are deployed on
Compute Nodes that do not pull full container images before running them.
Instead, they execute them and fetch the required data directly from a local
Image Storage Node storing full images for all the containers used in the envi-
ronment. There can be one or several such nodes per datacenter or compute
node sets depending on the number of compute nodes and/or containers.

OPCISS works as follows:

• The R/O layers are presented as a AUFS union mount on the image
storage node;

Appendix A. Predictive Container Image Prefetching 127

• On the compute node, each read request goes through a local cache and
then as a NFS request to the image storage node if there is no cache hit;

• On the image storage node, a predictive modules keeps track of what
blocks and files are requested per container image, and in what order;

• After sufficient training, this predictive module can send blocks to com-
pute nodes even before they are requested, further reducing the spin up
time for containers.

The difference between the traditionnal approach, Slacker’s approach [223]
and ours is illustrated in figure A.3. Because of the highly deterministic
nature of container execution shown in [223], we expect OPCISS’s predic-
tive module to highly efficiently prefetch the correct blocks for the compute
nodes.

Contributions

A patent describing OPCISS is currently being reviewed by the US Patent
Office

• Predictive container image storage system for fast container execution,
patent, not yet issued [224]

Appendix A. Predictive Container Image Prefetching 128

Central registryContainer host

Get Layer 1

Layer 1

START OF EXECUTION
Layer n

… …

(a) Traditionnal approach: all layers are fully downloaded.

Image storage nodeContainer host

Get Block 1

Block 1
Get Block 2

Block 2Get Block 3
Block 3

Get Block 4

Block 4

START OF EXECUTION

(b) Slacker’s approach: only requested blocks are downloaded from a local image storage
node.

Image storage nodeContainer host

Get Block 1

Blocks 1,2,3,4,…

START OF EXECUTION

(c) OPCISS’s approach: only requested blocks are downloaded from the image storage node.
Furthermore, blocks that have a high probability of getting requested next are also sent to

the Compute Node.

Figure A.3: Comparison of spin up strategies for containers.

129

Appendix B

Vectorizing TCP data handling for
file servers

Disclaimer

The work presented here is currently the object of a patent application. I
participated to the patent elaboration and to the idea of vectorizing TCP’s
packet handling by sharing a single memory copy of data segments between
connections. The precise segment-oriented architecture and implementation
in VPP, however, are mostly the work of Clément Durand in the context of a
research internship.

B.1 Motivations

Most Content Delivery Networks (CDNs) and storage systems use the HTTP
protocol to deliver data to clients. While HTTP can use UDP-based protocols
such as the Quick UDP Internet Connection protocol (QUIC), TCP amounts
for 90% of the Internet traffic [225]. Most applications use their choice OS’s
kernel implementation of TCP, but it has been shown that it is possible to
outperform the standard implementation [226, 227, 228, 229], notably by us-
ing Linux foundation’s (formerly Intel’s) DPDK [230]. Notably, it is possible
to make optimizations when the same content is being delivered to multiple
clients at once.

DPDK is a core component of FD.io’s VPP, a performant [231] virtual
switch/router running in user-space. VPP is an open source project that
has been used in Cisco products for fifteen years. It has been designed to
leverage the processor’s instruction cache by batching packets organized in
vectors. To this end, VPP is organized as a graph node, each node corre-
sponding to a function carried on the packets it receives. Each graphe node’s
code is written to fit into the instruction cache and vector of packet pointers
are passed between the graph nodes instead of packet per packet processing.
Packet themselves are initially put in buffers which indices are transmitted
from graph node to graph node to avoid memory copies. An example of VPP
graph is presented in figure B.1.

Appendix B. Vectorizing TCP data handling for file servers 130

Figure B.1: VPP Architecture. A Vector of packets come
through an input node, and are then handled by graph nodes

performing atomic network functions.

This work aims at applying the same concepts to build a custom TCP
stack optimized to distribute content to several clients without incurring
memory copies, by having every TCP connection for the same content shar-
ing data segments. This is not possible with the traditionnal byte-stream-
oriented TCP socket API.

B.2 State of the art

DPDK allowed work such as mTCP [227] to deploy an efficient TCP stack
in user-space. In [226], a dedicated web server is designed that generates all
the TCP packets (including TCP, IP and link-layer headers) associated with
an HTTP request as soon as the initial HTTP header is processed. However,
these packets are not shared between different connections for the same con-
tent, which incurs more memory footprint, memory copies and processing.

B.3 Segment-oriented TCP in VPP

This section describes how a segment-oriented TCP stack can be implemented
as VPP nodes to reduce the number of memory copies during TCP packet
handling.

POSIX TCP socket APIs echo the byte-stream nature of TCP. The user
sends and receives bytes rather than packets. The translation between a byte

Appendix B. Vectorizing TCP data handling for file servers 131

Figure B.2: Application as a VPP node, passing pointers to
data segments to the VPP TCP graph nodes.

stream and TCP packets require memory copies from user space data buffers
to kernel space packet buffers. A solution to this problem is to enable an ap-
plication to directly send pointers to data segments in a VPP graph contain-
ing TCP nodes, as illustrated in figure B.2. In this example, the application is
a graph node that, as any other VPP graph node, sends pointers to its data
segments that are handled by the VPP TCP nodes.

B.4 Zero-copy file server

Static file servers often directly map the delivered files to memory to send
them faster through TCP. However, this still requires memory copies since
the whole file is contiguous in memory and leaves no room for TCP headers.
Therefore, we propose to pre-compute the data similarly to what is done in
[226], except that the pre-computation splits the data in segments fit for the
TCP segment-oriented API presented previously, as illustrated in figure B.3.
Instead of a contiguous file in memory, the file is pre-packetized in a list of
segment buffers that can be moved without copy through a VPP graph. The
TCP API just has to chain the TCP headers to these segments when clients
require them, without copying the segments themselves for each TCP con-
nection. The combination of the segment-oriented TCP API and this imple-
mentation of file server require zero memory copies from disk to network.

Appendix B. Vectorizing TCP data handling for file servers 132

Figure B.3: File is pre-packetized in file segments. The file
server uses the same segments for every connection and just

has to chain the TCP header and compute the checksum.

Contributions

This appendix presented a way to create a zero memory copy TCP file server,
using a single memory copy of content to deliver it to all users. However, the
same mechanisms could be used in other, more complex storage systems.

A patent describing the zero-copy file server is currently being reviewed
by the US Patent Office.

• Data stream pipelining and replication at a delivery node of a content
delivery network, patent, not yet issued [232]

133

Bibliography

[1] Fritz Kruger SanDisk Fellow. CPU Bandwidth – The Worrisome 2020
Trend Guest Blog. 2016. URL: https://blog.westerndigital.com/
cpu-bandwidth-the-worrisome-2020-trend/.

[2] I Atkin. “Getting the Hang of IOPS, an Introduction to Disk Perfor-
mance”. In: Symantec Connect Whitepaper (2012).

[3] Feng Chen, David A Koufaty, and Xiaodong Zhang. “Understand-
ing intrinsic characteristics and system implications of flash memory
based solid state drives”. In: ACM SIGMETRICS Performance Evalua-
tion Review. Vol. 37. 1. ACM. 2009, pp. 181–192.

[4] Qiumin Xu et al. “Performance analysis of NVMe SSDs and their im-
plication on real world databases”. In: Proceedings of the 8th ACM In-
ternational Systems and Storage Conference. ACM. 2015, p. 6.

[5] Mark Hachman. Notebook hard drives are dead: How SSDs will dominate
mobile PC storage by 2018. 2015. URL: https://www.pcworld.com/
article/3011441/storage/notebook-hard-drives-are-dead-how-
ssds-will-dominate-mobile-pc-storage-by-2018.html.

[6] Mihir Nanavati et al. “Non-volatile Storage”. In: Queue 13.9 (Nov.
2015), 20:33–20:56. ISSN: 1542-7730. DOI: 10.1145/2857274.2874238.
URL: http://doi.acm.org/10.1145/2857274.2874238.

[7] Rob Davis. The Network is the New Storage Bottleneck. 2016. URL: https:
//www.datanami.com/2016/11/10/network-new-storage-bottleneck/.

[8] Bernard Marr. How Much Data Do We Create Every Day? The Mind-
Blowing Stats Everyone Should Read. 2018. URL: https://www.forbes.
com/sites/bernardmarr/2018/05/21/how- much- data- do- we-
create-every-day-the-mind-blowing-stats-everyone-should-
read/#3ce481e960ba.

[9] Kaushal Amin. Big Data Overview 2013-2014. URL: https : / / www .
slideshare.net/kmstechnology/big-data-overview-2013-2014.

[10] James Zetlen. Google’s datacenters on Punch cards. 2013. URL: https:
//what-if.xkcd.com/63/.

[11] Sean Gallagher. NSA "touches" more of Internet than Google. 2013. URL:
https://arstechnica.com/information-technology/2013/08/the-
1-6-percent-of-the-internet-that-nsa-touches-is-bigger-
than-it-seems/.

[12] Richi Jennings. NSA’s Huge Utah Datacenter: How Much Of Your Data
Will It Store? Experts Disagree... 2016. URL: https://www.forbes.com/
sites/netapp/2013/07/26/nsa-utah-datacenter/#53852dc45d9c.

https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://www.pcworld.com/article/3011441/storage/notebook-hard-drives-are-dead-how-ssds-will-dominate-mobile-pc-storage-by-2018.html
https://www.pcworld.com/article/3011441/storage/notebook-hard-drives-are-dead-how-ssds-will-dominate-mobile-pc-storage-by-2018.html
https://www.pcworld.com/article/3011441/storage/notebook-hard-drives-are-dead-how-ssds-will-dominate-mobile-pc-storage-by-2018.html
https://doi.org/10.1145/2857274.2874238
http://doi.acm.org/10.1145/2857274.2874238
https://www.datanami.com/2016/11/10/network-new-storage-bottleneck/
https://www.datanami.com/2016/11/10/network-new-storage-bottleneck/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#3ce481e960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#3ce481e960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#3ce481e960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#3ce481e960ba
https://www.slideshare.net/kmstechnology/big-data-overview-2013-2014
https://www.slideshare.net/kmstechnology/big-data-overview-2013-2014
https://what-if.xkcd.com/63/
https://what-if.xkcd.com/63/
https://arstechnica.com/information-technology/2013/08/the-1-6-percent-of-the-internet-that-nsa-touches-is-bigger-than-it-seems/
https://arstechnica.com/information-technology/2013/08/the-1-6-percent-of-the-internet-that-nsa-touches-is-bigger-than-it-seems/
https://arstechnica.com/information-technology/2013/08/the-1-6-percent-of-the-internet-that-nsa-touches-is-bigger-than-it-seems/
https://www.forbes.com/sites/netapp/2013/07/26/nsa-utah-datacenter/#53852dc45d9c
https://www.forbes.com/sites/netapp/2013/07/26/nsa-utah-datacenter/#53852dc45d9c

Bibliography 134

[13] Ren Wu. Deep learning meets heterogeneous computing. 2014.

[14] Pamela Vagata and Kevin Wilfong. Scaling the Facebook data warehouse
to 300 PB. 2014. URL: https://code.fb.com/core-data/scaling-
the-facebook-data-warehouse-to-300-pb/.

[15] Tom Fastner. Extreme Analytics at eBay. 2011.

[16] Liz Tay. Inside eBay’s 90PB data warehouse. 2013. URL: https://www.
itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-
342615.

[17] Richard Brueckner. Sanger Institute Deploys 22 Petabytes of Lustre-Powered
DDN Storage. 2013. URL: https://insidehpc.com/2013/10/sanger-
institute-deploys-22-petabytes-lustre-powered-ddn-storage/.

[18] Tim Cutts. Managing Genomics Data at the Sanger Institute. 2013.

[19] Adam Kawa. Hadoop Operations Powered By ... Hadoop. 2014.

[20] Ron Kohavi and Roger Longbotham. “Online experiments: Lessons
learned”. In: Computer 40.9 (2007).

[21] Greg Linden. “Geeking with Greg: Marissa Mayer at Web 2.0.(2006)”.
In: URL http://glinden. blogspot. com/2006/11/marissa-mayer-at-web-20. html.[Online
().

[22] Wolfgang Lehner and Kai-Uwe Sattler. “Data Cloudification”. In: Web-
Scale Data Management for the Cloud. Springer, 2013, pp. 1–12.

[23] Giuseppe DeCandia et al. “Dynamo: Amazon’s Highly Available Key-
value Store”. In: Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA:
ACM, 2007, pp. 205–220. ISBN: 978-1-59593-591-5. DOI: 10.1145/1294261.
1294281. URL: http://doi.acm.org/10.1145/1294261.1294281.

[24] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
File System”. In: SIGOPS Oper. Syst. Rev. 37.5 (Oct. 2003), pp. 29–43.
ISSN: 0163-5980. DOI: 10.1145/1165389.945450. URL: http://doi.
acm.org/10.1145/1165389.945450.

[25] Fay Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: ACM Trans. Comput. Syst. 26.2 (June 2008), 4:1–4:26.
ISSN: 0734-2071. DOI: 10.1145/1365815.1365816. URL: http://doi.
acm.org/10.1145/1365815.1365816.

[26] James C. Corbett. “Spanner: Google’s Globally-Distributed Database”.
In: ().

[27] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized
Structured Storage System”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr.
2010), pp. 35–40. ISSN: 0163-5980. DOI: 10.1145/1773912.1773922.
URL: http://doi.acm.org/10.1145/1773912.1773922.

https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://www.itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-342615
https://www.itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-342615
https://www.itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-342615
https://insidehpc.com/2013/10/sanger-institute-deploys-22-petabytes-lustre-powered-ddn-storage/
https://insidehpc.com/2013/10/sanger-institute-deploys-22-petabytes-lustre-powered-ddn-storage/
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
https://doi.org/10.1145/1165389.945450
http://doi.acm.org/10.1145/1165389.945450
http://doi.acm.org/10.1145/1165389.945450
https://doi.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
https://doi.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922

Bibliography 135

[28] Sage A. Weil et al. “Ceph: A Scalable, High-performance Distributed
File System”. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. OSDI ’06. Seattle, Washington: USENIX As-
sociation, 2006, pp. 307–320. ISBN: 1-931971-47-1. URL: http://dl.
acm.org/citation.cfm?id=1298455.1298485.

[29] K. Shvachko et al. “The Hadoop Distributed File System”. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).
2010, pp. 1–10. DOI: 10.1109/MSST.2010.5496972.

[30] Kirk McKusick and Sean Quinlan. “GFS: Evolution on Fast-forward”.
In: Commun. ACM 53.3 (Mar. 2010), pp. 42–49. ISSN: 0001-0782. DOI:
10.1145/1666420.1666439. URL: http://doi.acm.org/10.1145/
1666420.1666439.

[31] K.V. Shvachko. “HDFS scalability: The limits to growth”. In: 35 (Jan.
2010), pp. 6–16.

[32] Dong-Yun Lee et al. “Understanding write behaviors of storage back-
ends in Ceph object store”. In: Proceedings of the 2017 IEEE International
Conference on Massive Storage Systems and Technology. Vol. 10. 2017.

[33] Ceph Community Newsletter, October 2018 edition. 2018. URL: https://
ceph.com/community/ceph-community-newsletter-october-2018-
edition/.

[34] Ceph. Ceph-Crimson. URL: https://github.com/ceph/ceph/projects/
2.

[35] Spencer Shepler et al. Network file system (NFS) version 4 protocol. Tech.
rep. 2003.

[36] windows-sdk content. Microsoft SMB Protocol and CIFS Protocol Overview
- Windows applications. 2018. URL: https://docs.microsoft.com/fr-
fr/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-
protocol-overview.

[37] Apple Filing Protocol Programming Guide. 2012. URL: https://developer.
apple.com/library/archive/documentation/Networking/Conceptual/
AFP/Concepts/Concepts.html.

[38] John H Howard et al. An overview of the andrew file system. Carnegie
Mellon University, Information Technology Center, 1988.

[39] OpenAFS. URL: http://www.openafs.org/.

[40] Mahadev Satyanarayanan et al. “Coda: A highly available file system
for a distributed workstation environment”. In: IEEE Transactions on
computers 39.4 (1990), pp. 447–459.

[41] Peter Braam, Michael Callahan, Phil Schwan, et al. “The intermezzo
file system”. In: Proceedings of the 3rd of the Perl Conference, O’Reilly
Open Source Convention. 1999.

[42] Ian Clarke and Supervisor Dr Chris Mellish. A Distributed Decentralised
Information Storage and Retrieval System. Tech. rep. 1999.

http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dl.acm.org/citation.cfm?id=1298455.1298485
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/1666420.1666439
http://doi.acm.org/10.1145/1666420.1666439
http://doi.acm.org/10.1145/1666420.1666439
https://ceph.com/community/ceph-community-newsletter-october-2018-edition/
https://ceph.com/community/ceph-community-newsletter-october-2018-edition/
https://ceph.com/community/ceph-community-newsletter-october-2018-edition/
https://github.com/ceph/ceph/projects/2
https://github.com/ceph/ceph/projects/2
https://docs.microsoft.com/fr-fr/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://docs.microsoft.com/fr-fr/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://docs.microsoft.com/fr-fr/windows/desktop/FileIO/microsoft-smb-protocol-and-cifs-protocol-overview
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
http://www.openafs.org/

Bibliography 136

[43] Ian Clarke et al. “Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System”. In: Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues in Anonymity and Unobserv-
ability Berkeley, CA, USA, July 25–26, 2000 Proceedings. Ed. by Hannes
Federrath. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 46–
66. ISBN: 978-3-540-44702-3. DOI: 10.1007/3-540-44702-4_4. URL:
https://doi.org/10.1007/3-540-44702-4_4.

[44] Wikipedia. Gnutella — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Gnutella&oldid=837420609.
[Online; accessed 27-June-2018]. 2018.

[45] Wikipedia. Kazaa — Wikipedia, The Free Encyclopedia. http : / / en .
wikipedia.org/w/index.php?title=Kazaa&oldid=841649382. [On-
line; accessed 27-June-2018]. 2018.

[46] Xuemin Shen et al. Handbook of Peer-to-Peer Networking. 1st. Springer
Publishing Company, Incorporated, 2009, pp. 118–119. ISBN: 0387097503,
9780387097503.

[47] Ion Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Protocol for
Internet Applications”. In: IEEE/ACM Trans. Netw. 11.1 (Feb. 2003),
pp. 17–32. ISSN: 1063-6692. DOI: 10.1109/TNET.2002.808407. URL:
http://dx.doi.org/10.1109/TNET.2002.808407.

[48] Petar Maymounkov and David Mazières. “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric”. In: Peer-to-Peer Sys-
tems. Ed. by Peter Druschel, Frans Kaashoek, and Antony Rowstron.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 53–65. ISBN:
978-3-540-45748-0.

[49] Antony Rowstron and Peter Druschel. “Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-Peer Sys-
tems”. In: Middleware 2001. Ed. by Rachid Guerraoui. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 329–350. ISBN: 978-3-540-
45518-9.

[50] Ben Yanbin Zhao, John Kubiatowicz, Anthony D Joseph, et al. “Tapestry:
An infrastructure for fault-tolerant wide-area location and routing”.
In: (2001).

[51] R. R. Noel and P. Lama. “Taming Performance Hotspots in Cloud Stor-
age with Dynamic Load Redistribution”. In: 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD). 2017, pp. 42–49. DOI:
10.1109/CLOUD.2017.15.

[52] Using the pg-upmap. URL: http://docs.ceph.com/docs/mimic/rados/
operations/upmap/.

https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_4
http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=837420609
http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=837420609
http://en.wikipedia.org/w/index.php?title=Kazaa&oldid=841649382
http://en.wikipedia.org/w/index.php?title=Kazaa&oldid=841649382
https://doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/CLOUD.2017.15
http://docs.ceph.com/docs/mimic/rados/operations/upmap/
http://docs.ceph.com/docs/mimic/rados/operations/upmap/

Bibliography 137

[53] Salman Niazi et al. “HopsFS: Scaling Hierarchical File System Meta-
data Using NewSQL Databases”. In: 15th USENIX Conference on File
and Storage Technologies (FAST 17). Santa Clara, CA: USENIX Associ-
ation, 2017, pp. 89–104. ISBN: 978-1-931971-36-2. URL: https://www.
usenix.org/conference/fast17/technical-sessions/presentation/
niazi.

[54] Cade Metz. “Google Remakes Online Empire with ‘Colossus’”. In:
Wired [Online]. Available: http://www. wired. com/2012/07/google-colossus/
(2012).

[55] Michael Ovsiannikov et al. “The Quantcast File System”. In: Proc. VLDB
Endow. 6.11 (Aug. 2013), pp. 1092–1101. ISSN: 2150-8097. DOI: 10.14778/
2536222.2536234. URL: http://dx.doi.org/10.14778/2536222.
2536234.

[56] Frank Schmuck and Roger Haskin. “GPFS: A Shared-disk File System
for Large Computing Clusters”. In: Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies. FAST’02. Monterey, CA: USENIX
Association, 2002, pp. 16–16. URL: http://dl.acm.org/citation.
cfm?id=1973333.1973349.

[57] Steven R. Soltis, Thomas M. Ruwart, and Matthew T. O’Keefe. “The
Global File System”. In: The Fifth NASA Goddard Conference on Mass
Storage Systems and Technologies. Vol. 2. College Park. 1996, pp. 319–
342.

[58] The Lustre File System. URL: http://doc.lustre.org/lustre_manual.
xhtml.

[59] O. Rodeh and A. Teperman. “zFS - a scalable distributed file system
using object disks”. In: 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies, 2003. (MSST 2003). Proceedings.
2003, pp. 207–218. DOI: 10.1109/MASS.2003.1194858.

[60] S. Yang, W. B. Ligon III, and E. C. Quarles. “Scalable distributed di-
rectory implementation on orange file system”. In: IEEE International
Workshop for Storage Network Architecture and Parallel I/Os. 2011.

[61] Atul Adya et al. “Farsite: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment”. In: SIGOPS Oper. Syst.
Rev. 36.SI (Dec. 2002), pp. 1–14. ISSN: 0163-5980. DOI: 10.1145/844128.
844130. URL: http://doi.acm.org/10.1145/844128.844130.

[62] Juan Benet. “IPFS-content addressed, versioned, P2P file system”. In:
arXiv preprint arXiv:1407.3561 (2014).

[63] Sage A Weil et al. “Rados: a scalable, reliable storage service for petabyte-
scale storage clusters”. In: Proceedings of the 2nd international work-
shop on Petascale data storage: held in conjunction with Supercomputing’07.
ACM. 2007, pp. 35–44.

[64] Kalen Delaney. Inside Microsoft SQL Server 2000. Microsoft Press, 2000.

https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://doi.org/10.14778/2536222.2536234
https://doi.org/10.14778/2536222.2536234
http://dx.doi.org/10.14778/2536222.2536234
http://dx.doi.org/10.14778/2536222.2536234
http://dl.acm.org/citation.cfm?id=1973333.1973349
http://dl.acm.org/citation.cfm?id=1973333.1973349
http://doc.lustre.org/lustre_manual.xhtml
http://doc.lustre.org/lustre_manual.xhtml
https://doi.org/10.1109/MASS.2003.1194858
https://doi.org/10.1145/844128.844130
https://doi.org/10.1145/844128.844130
http://doi.acm.org/10.1145/844128.844130

Bibliography 138

[65] Theoni Pitoura, Nikos Ntarmos, and Peter Triantafillou. “Replication,
load balancing and efficient range query processing in DHTs”. In: In-
ternational Conference on Extending Database Technology. Springer. 2006,
pp. 131–148.

[66] John Byers, Jeffrey Considine, and Michael Mitzenmacher. “Simple
load balancing for distributed hash tables”. In: International Workshop
on Peer-to-Peer Systems. Springer. 2003, pp. 80–87.

[67] Sage A. Weil et al. “CRUSH: Controlled, Scalable, Decentralized Place-
ment of Replicated Data”. In: Proceedings of the 2006 ACM/IEEE Con-
ference on Supercomputing. SC ’06. Tampa, Florida: ACM, 2006. ISBN:
0-7695-2700-0. DOI: 10.1145/1188455.1188582. URL: http://doi.
acm.org/10.1145/1188455.1188582.

[68] Peter M Chen et al. “RAID: High-performance, reliable secondary
storage”. In: ACM Computing Surveys (CSUR) 26.2 (1994), pp. 145–185.

[69] Irving S Reed and Gustave Solomon. “Polynomial codes over certain
finite fields”. In: Journal of the society for industrial and applied mathemat-
ics 8.2 (1960), pp. 300–304.

[70] M Celebiler and G Stette. “On increasing the down-link capacity of a
regenerative satellite repeater in point-to-point communications”. In:
Proceedings of the IEEE 66.1 (1978), pp. 98–100.

[71] Rudolf Ahlswede et al. “Network information flow”. In: IEEE Trans-
actions on information theory 46.4 (2000), pp. 1204–1216.

[72] JeanPierre Guédon and Nicolas Normand. “The Mojette transform:
the first ten years”. In: International Conference on Discrete Geometry for
Computer Imagery. Springer. 2005, pp. 79–91.

[73] Nicolas Normand, Andrew Kingston, and Pierre Évenou. “A geome-
try driven reconstruction algorithm for the Mojette transform”. In: In-
ternational Conference on Discrete Geometry for Computer Imagery. Springer.
2006, pp. 122–133.

[74] SAS Fizians. “RozoFS: a fault tolerant I/O intensive distributed file
system based on Mojette erasure code”. In: Workshop Autonomic Oct.
Vol. 16. 2014, p. 17.

[75] KV Rashmi et al. “A hitchhiker’s guide to fast and efficient data recon-
struction in erasure-coded data centers”. In: ACM SIGCOMM Com-
puter Communication Review 44.4 (2015), pp. 331–342.

[76] KV Rashmi, Nihar B Shah, and Kannan Ramchandran. “A piggyback-
ing design framework for read-and download-efficient distributed stor-
age codes”. In: Information Theory Proceedings (ISIT), 2013 IEEE Inter-
national Symposium on. IEEE. 2013, pp. 331–335.

[77] Korlakai Vinayak Rashmi, Nihar B Shah, and P Vijay Kumar. “Opti-
mal exact-regenerating codes for distributed storage at the MSR and
MBR points via a product-matrix construction”. In: IEEE Transactions
on Information Theory 57.8 (2011), pp. 5227–5239.

https://doi.org/10.1145/1188455.1188582
http://doi.acm.org/10.1145/1188455.1188582
http://doi.acm.org/10.1145/1188455.1188582

Bibliography 139

[78] KV Rashmi et al. “Explicit construction of optimal exact regenerat-
ing codes for distributed storage”. In: arXiv preprint arXiv:0906.4913
(2009).

[79] Yunnan Wu, Alexandros G Dimakis, and Kannan Ramchandran. “De-
terministic regenerating codes for distributed storage”. In: Allerton
Conference on Control, Computing, and Communication. 2007, pp. 1–5.

[80] Dimitris S Papailiopoulos et al. “Simple regenerating codes: Network
coding for cloud storage”. In: INFOCOM, 2012 Proceedings IEEE. IEEE.
2012, pp. 2801–2805.

[81] Alessandro Duminuco and Ernst Biersack. “Hierarchical codes: How
to make erasure codes attractive for peer-to-peer storage systems”. In:
Peer-to-Peer Computing, 2008. P2P’08. Eighth International Conference on.
IEEE. 2008, pp. 89–98.

[82] David JC MacKay. “Fountain codes”. In: IEE Proceedings-Communications
152.6 (2005), pp. 1062–1068.

[83] M. Asteris and A.G. Dimakis. “Repairable Fountain codes”. In: Infor-
mation Theory Proceedings (ISIT), 2012 IEEE International Symposium on.
2012, pp. 1752–1756. DOI: 10.1109/ISIT.2012.6283579.

[84] Alexandros G Dimakis, Vinod M Prabhakaran, and Kannan Ramchan-
dran. “Distributed Fountain Codes for Networked Storage.” In: ICASSP
(5). 2006, pp. 1149–1152.

[85] Stig Telfer StackHPC. CEPH DAY BERLIN - CEPH ON THE BRAIN!
2018. URL: https://www.slideshare.net/Inktank_Ceph/ceph-day-
berlin-ceph-on-the-brain.

[86] Julio Araujo, Frédéric Giroire, and Julian Monteiro. “Hybrid approaches
for distributed storage systems”. In: International Conference on Data
Management in Grid and P2P Systems. Springer. 2011, pp. 1–12.

[87] Armando Fox and Eric A. Brewer. “Harvest, Yield, and Scalable Toler-
ant Systems”. In: Proceedings of the The Seventh Workshop on Hot Topics
in Operating Systems. HOTOS ’99. Washington, DC, USA: IEEE Com-
puter Society, 1999, pp. 174–. ISBN: 0-7695-0237-7. URL: http://dl.
acm.org/citation.cfm?id=822076.822436.

[88] Eric A. Brewer. “Towards Robust Distributed Systems (Abstract)”. In:
Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing. PODC ’00. Portland, Oregon, USA: ACM, 2000,
pp. 7–. ISBN: 1-58113-183-6. DOI: 10.1145/343477.343502. URL: http:
//doi.acm.org/10.1145/343477.343502.

[89] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasi-
bility of Consistent, Available, Partition-tolerant Web Services”. In:
SIGACT News 33.2 (June 2002), pp. 51–59. ISSN: 0163-5700. DOI: 10.
1145/564585.564601. URL: http://doi.acm.org/10.1145/564585.
564601.

https://doi.org/10.1109/ISIT.2012.6283579
https://www.slideshare.net/Inktank_Ceph/ceph-day-berlin-ceph-on-the-brain
https://www.slideshare.net/Inktank_Ceph/ceph-day-berlin-ceph-on-the-brain
http://dl.acm.org/citation.cfm?id=822076.822436
http://dl.acm.org/citation.cfm?id=822076.822436
https://doi.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

Bibliography 140

[90] E. Brewer. “CAP twelve years later: How the "rules" have changed”.
In: Computer 45.2 (2012), pp. 23–29. ISSN: 0018-9162. DOI: 10.1109/MC.
2012.37.

[91] Newer SQL. “Errors in Database Systems , Eventual Consistency , and
the CAP Theorem”. In:

[92] D. J. Abadi. “Consistency Tradeoffs in Modern Distributed Database
System Design: CAP is Only Part of the Story”. In: Computer 45 (Jan.
2012), pp. 37–42. ISSN: 0018-9162. DOI: 10.1109/MC.2012.33. URL:
doi.ieeecomputersociety.org/10.1109/MC.2012.33.

[93] Jim Gray. “The Transaction Concept: Virtues and Limitations (Invited
Paper)”. In: Proceedings of the Seventh International Conference on Very
Large Data Bases - Volume 7. VLDB ’81. Cannes, France: VLDB Endow-
ment, 1981, pp. 144–154. URL: http://dl.acm.org/citation.cfm?
id=1286831.1286846.

[94] Theo Haerder and Andreas Reuter. “Principles of Transaction-oriented
Database Recovery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), pp. 287–
317. ISSN: 0360-0300. DOI: 10.1145/289.291. URL: http://doi.acm.
org/10.1145/289.291.

[95] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems:
principles and paradigms. Prentice-Hall, 2007.

[96] David Bermbach and Jörn Kuhlenkamp. “Consistency in distributed
storage systems”. In: Networked Systems. Springer, 2013, pp. 175–189.

[97] Haifeng Yu and Amin Vahdat. “Design and evaluation of a conit-
based continuous consistency model for replicated services”. In: ACM
Transactions on Computer Systems (TOCS) 20.3 (2002), pp. 239–282.

[98] Francisco J Torres-Rojas and Esteban Meneses. “Convergence through
a weak consistency model: Timed causal consistency”. In: CLEI elec-
tronic journal 8.2 (2005).

[99] David Bermbach and Stefan Tai. “Eventual consistency: How soon is
eventual? An evaluation of Amazon S3’s consistency behavior”. In:
Proceedings of the 6th Workshop on Middleware for Service Oriented Com-
puting. ACM. 2011, p. 1.

[100] Eric Anderson et al. “What consistency does your key-value store ac-
tually provide?” In: HotDep. Vol. 10. 2010, pp. 1–16.

[101] Wojciech Golab, Xiaozhou Li, and Mehul A Shah. “Analyzing consis-
tency properties for fun and profit”. In: Proceedings of the 30th annual
ACM SIGACT-SIGOPS symposium on Principles of distributed comput-
ing. ACM. 2011, pp. 197–206.

[102] Swapnil Patil et al. “YCSB++: benchmarking and performance debug-
ging advanced features in scalable table stores”. In: Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM. 2011, p. 9.

[103] Muntasir Raihan Rahman et al. “Toward a Principled Framework for
Benchmarking Consistency.” In: HotDep. 2012.

https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.33
doi.ieeecomputersociety.org/10.1109/MC.2012.33
http://dl.acm.org/citation.cfm?id=1286831.1286846
http://dl.acm.org/citation.cfm?id=1286831.1286846
https://doi.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291

Bibliography 141

[104] Hiroshi Wada et al. “Data Consistency Properties and the Trade-offs in
Commercial Cloud Storage: the Consumers’ Perspective.” In: CIDR.
Vol. 11. 2011, pp. 134–143.

[105] Kamal Zellag and Bettina Kemme. “How consistent is your cloud ap-
plication?” In: Proceedings of the Third ACM Symposium on Cloud Com-
puting. ACM. 2012, p. 6.

[106] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565.
ISSN: 0001-0782. DOI: 10.1145/359545.359563. URL: http://doi.
acm.org/10.1145/359545.359563.

[107] Leslie Lamport. “The Part-time Parliament”. In: ACM Trans. Comput.
Syst. 16.2 (May 1998), pp. 133–169. ISSN: 0734-2071. DOI: 10.1145/
279227.279229. URL: http://doi.acm.org/10.1145/279227.279229.

[108] Leslie Lamport. “Paxos Made Simple”. In: (2001), pp. 51–58. URL: https:
//www.microsoft.com/en-us/research/publication/paxos-made-
simple/.

[109] L. Lamport and M. Massa. “Cheap Paxos”. In: International Conference
on Dependable Systems and Networks, 2004. 2004, pp. 307–314. DOI: 10.
1109/DSN.2004.1311900.

[110] Robbert Van Renesse and Deniz Altinbuken. “Paxos Made Moder-
ately Complex”. In: ACM Comput. Surv. 47.3 (Feb. 2015), 42:1–42:36.
ISSN: 0360-0300. DOI: 10.1145/2673577. URL: http://doi.acm.org/
10.1145/2673577.

[111] Roberto De Prisco, Butler Lampson, and Nancy Lynch. “Revisiting the
Paxos algorithm”. In: Distributed Algorithms. Ed. by Marios Mavron-
icolas and Philippas Tsigas. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1997, pp. 111–125. ISBN: 978-3-540-69600-1.

[112] Diego Ongaro and John Ousterhout. “In search of an understandable
consensus algorithm”. In: 2014 USENIX Annual Technical Conference
(USENIX ATC 14). 2014, pp. 305–319.

[113] Kyle Kingsbury. Jepsen: etcd and Consul. URL: https://aphyr.com/
posts/316-call-me-maybe-etcd-and-consul.

[114] etcd io. etcd-io/etcd. 2018. URL: https://github.com/etcd-io/etcd.

[115] Colin J. Fidge. “Timestamps in message-passing systems that preserve
partial ordering”. In: 10 (Feb. 1988), pp. 56–66.

[116] Friedemann Mattern. “Virtual Time and Global States of Distributed
Systems”. In: PARALLEL AND DISTRIBUTED ALGORITHMS. North-
Holland, 1988, pp. 215–226.

[117] GlusterFS. 2011. URL: https://redhatstorage.redhat.com/products/
glusterfs/.

[118] V Srinivasan et al. “Aerospike: architecture of a real-time operational
DBMS”. In: Proceedings of the VLDB Endowment 9.13 (2016), pp. 1389–
1400.

https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1109/DSN.2004.1311900
https://doi.org/10.1109/DSN.2004.1311900
https://doi.org/10.1145/2673577
http://doi.acm.org/10.1145/2673577
http://doi.acm.org/10.1145/2673577
https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
https://github.com/etcd-io/etcd
https://redhatstorage.redhat.com/products/glusterfs/
https://redhatstorage.redhat.com/products/glusterfs/

Bibliography 142

[119] Rusty Klophaus. “Riak core: Building distributed applications with-
out shared state”. In: ACM SIGPLAN Commercial Users of Functional
Programming. ACM. 2010, p. 14.

[120] Patrick Hunt et al. “ZooKeeper: Wait-free Coordination for Internet-
scale Systems.” In: USENIX annual technical conference. Vol. 8. 9. Boston,
MA, USA. 2010.

[121] Announcing The Ceph Foundation. 2018. URL: https : / / ceph . com /
community/announce-the-ceph-foundation/.

[122] Sorin Faibish et al. Lustre file system. US Patent 9,779,108. 2017.

[123] K. R. Krish, A. Anwar, and A. R. Butt. “hatS: A Heterogeneity-Aware
Tiered Storage for Hadoop”. In: 2014 14th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing. 2014, pp. 502–511. DOI:
10.1109/CCGrid.2014.51.

[124] OpenIO. URL: https://www.openio.io/wp-content/uploads/2016/
12/OpenIO-CoreSolutionDescription.pdf.

[125] NVFUSE: a NVME user-space filesystem. URL: https://github.com/
nvfuse/nvfuse.

[126] Ilias Marinos et al. “Disk, Crypt, Net: Rethinking the Stack for High-
performance Video Streaming”. In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. SIGCOMM ’17. Los
Angeles, CA, USA: ACM, 2017, pp. 211–224. ISBN: 978-1-4503-4653-5.
DOI: 10.1145/3098822.3098844. URL: http://doi.acm.org/10.
1145/3098822.3098844.

[127] Marcelo Bagnulo Braun and Jon Crowcroft. SNA: Sourceless Network
Architecture. Tech. rep. University of Cambridge, Computer Labora-
tory, 2014.

[128] Glenn Deen et al. Using Media Encoding Networks to address MPEG-
DASH video. Internet-Draft draft-deen-naik-ggie-men-mpeg-dash-00.
Work in Progress. Internet Engineering Task Force, July 2016. 8 pp.
URL: https://datatracker.ietf.org/doc/html/draft-deen-naik-
ggie-men-mpeg-dash-00.

[129] Suman Srinivasan and Henning Schulzrinne. “IPv6 Addresses as Con-
tent Names in Information-Centric Networking”. In: ().

[130] Bengt Ahlgren et al. “A survey of information-centric networking”.
In: IEEE Communications Magazine 50.7 (2012).

[131] Luca Muscariello et al. Hybrid Information-Centric Networking. Internet-
Draft draft-muscariello-intarea-hicn-00. Work in Progress. Internet En-
gineering Task Force, June 2018. 21 pp. URL: https://datatracker.
ietf.org/doc/html/draft-muscariello-intarea-hicn-00.

[132] G Carofiglio. Mobile video delivery with Hybrid ICN. Tech. rep. Cisco,
Tech. Rep, 2016.

https://ceph.com/community/announce-the-ceph-foundation/
https://ceph.com/community/announce-the-ceph-foundation/
https://doi.org/10.1109/CCGrid.2014.51
https://www.openio.io/wp-content/uploads/2016/12/OpenIO-CoreSolutionDescription.pdf
https://www.openio.io/wp-content/uploads/2016/12/OpenIO-CoreSolutionDescription.pdf
https://github.com/nvfuse/nvfuse
https://github.com/nvfuse/nvfuse
https://doi.org/10.1145/3098822.3098844
http://doi.acm.org/10.1145/3098822.3098844
http://doi.acm.org/10.1145/3098822.3098844
https://datatracker.ietf.org/doc/html/draft-deen-naik-ggie-men-mpeg-dash-00
https://datatracker.ietf.org/doc/html/draft-deen-naik-ggie-men-mpeg-dash-00
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00

Bibliography 143

[133] T Bonald, S Oueslati-Boulahia, and J Roberts. “IP traffic and QoS con-
trol: the need for a flow-aware architecture”. In: World Telecommunica-
tions Congress. Citeseer. 2002.

[134] Weibin Zhao, David Olshefski, and Henning Schulzrinne. “Internet
quality of service: An overview”. In: Columbia University, New York,
New York, Technical Report CUCS-003-00 (2000).

[135] Alexandros G Dimakis et al. “A survey on network codes for dis-
tributed storage”. In: Proceedings of the IEEE 99.3 (2011), pp. 476–489.

[136] Daniel Ford et al. “Availability in Globally Distributed Storage Sys-
tems.” In: Osdi. Vol. 10. 2010, pp. 1–7.

[137] Tian Luo et al. “hStorage-DB: Heterogeneity-aware Data Management
to Exploit the Full Capability of Hybrid Storage Systems”. In: Proc.
VLDB Endow. 5.10 (June 2012), pp. 1076–1087. ISSN: 2150-8097. DOI:
10.14778/2336664.2336679. URL: http://dx.doi.org/10.14778/
2336664.2336679.

[138] S. Kaneko et al. “A Guideline for Data Placement in Heterogeneous
Distributed Storage Systems”. In: 2016 5th IIAI International Congress
on Advanced Applied Informatics (IIAI-AAI). 2016, pp. 942–945. DOI: 10.
1109/IIAI-AAI.2016.162.

[139] Y. Qin et al. “Data placement strategy in data center distributed stor-
age systems”. In: 2016 IEEE International Conference on Communication
Systems (ICCS). 2016, pp. 1–6. DOI: 10.1109/ICCS.2016.7833566.

[140] C. F. Wu et al. “File placement mechanisms for improving write through-
puts of cloud storage services based on Ceph and HDFS”. In: 2017 In-
ternational Conference on Applied System Innovation (ICASI). 2017, pp. 1725–
1728. DOI: 10.1109/ICASI.2017.7988272.

[141] Benoit Claise et al. “Ipfix protocol specification”. In: Interrnet-draft,
work in progress (2005).

[142] Wikipedia. NetFlow — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=NetFlow&oldid=847024174.
[Online; accessed 27-June-2018]. 2018.

[143] Mohammed HAWARI. TCP Fast Open Cookie for IPv6 prefixes. Internet-
Draft draft-hawari-tcpm-tfo-ipv6-prefixes-00. Work in Progress. Inter-
net Engineering Task Force, July 2015. 5 pp. URL: https://datatracker.
ietf.org/doc/html/draft-hawari-tcpm-tfo-ipv6-prefixes-00.

[144] Sacha Goedegebure. Big Buck Bunny. URL: https://peach.blender.
org/.

[145] Tim Baumann. Valkaama project. URL: http://www.valkaama.com/.

[146] Will Reese. “Nginx: the high-performance web server and reverse proxy”.
In: Linux Journal 2008.173 (2008), p. 2.

[147] wrk - a HTTP benchmarking tool. URL: https://github.com/wg/wrk.

[148] What is VPP? https://wiki.fd.io/view/VPP/What_is_VPP%3F.

https://doi.org/10.14778/2336664.2336679
http://dx.doi.org/10.14778/2336664.2336679
http://dx.doi.org/10.14778/2336664.2336679
https://doi.org/10.1109/IIAI-AAI.2016.162
https://doi.org/10.1109/IIAI-AAI.2016.162
https://doi.org/10.1109/ICCS.2016.7833566
https://doi.org/10.1109/ICASI.2017.7988272
http://en.wikipedia.org/w/index.php?title=NetFlow&oldid=847024174
http://en.wikipedia.org/w/index.php?title=NetFlow&oldid=847024174
https://datatracker.ietf.org/doc/html/draft-hawari-tcpm-tfo-ipv6-prefixes-00
https://datatracker.ietf.org/doc/html/draft-hawari-tcpm-tfo-ipv6-prefixes-00
https://peach.blender.org/
https://peach.blender.org/
http://www.valkaama.com/
https://github.com/wg/wrk

Bibliography 144

[149] C. Filsfils et al. “The Segment Routing Architecture”. In: 2015 IEEE
Global Communications Conference (GLOBECOM). 2015, pp. 1–6. DOI:
10.1109/GLOCOM.2015.7417124.

[150] Segment Routing. URL: http://www.segment-routing.net/.

[151] IJsbrand Wijnands et al. Multicast Using Bit Index Explicit Replication
(BIER). RFC 8279. Nov. 2017. DOI: 10.17487/RFC8279. URL: https:
//rfc-editor.org/rfc/rfc8279.txt.

[152] Guillaume Ruty, Andre Surcouf, and Jean-Louis Rougier. “6Stor: A
Scalable and IPv6-Centric Distributed Object Storage System”. In: 15th
USENIX Conference on File and Storage Technologies (FAST 17). 2017.
URL: https://www.usenix.org/conference/fast17/poster-sessions.

[153] G. Ruty, A. Surcouf, and J. L. Rougier. “Collapsing the layers: 6Stor, a
scalable and IPv6-centric distributed storage system”. In: 2017 Fourth
International Conference on Software Defined Systems (SDS). 2017, pp. 81–
86. DOI: 10.1109/SDS.2017.7939145.

[154] Guillaume Ruty et al. “An initial evaluation of 6Stor, a dynamically
scalable IPv6-centric distributed object storage system”. In: Cluster
Computing (2019). ISSN: 1573-7543. DOI: 10.1007/s10586-018-02897-
8. URL: https://doi.org/10.1007/s10586-018-02897-8.

[155] Andre Surcouf, Guillaume Ruty, and William Mark Townsley. Dis-
tributed object storage. US Patent App. 15/408,129. 2018.

[156] Andre Surcouf et al. Delivering content over a network. 2016.

[157] Eric A Brewer. “Kubernetes and the path to cloud native”. In: Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing. ACM. 2015,
pp. 167–167.

[158] Object Storage for Capacity-Intensive Workloads, Exabyte Scale. URL: https:
//cloudian.com/.

[159] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. The MDS
queue: Analysing latency performance of codes and redundant requests. Tech.
rep. Technical Report, 2013.

[160] Gauri Joshi, Yanpei Liu, and Emina Soljanin. “On the delay-storage
trade-off in content download from coded distributed storage sys-
tems”. In: IEEE Journal on Selected Areas in Communications 32.5 (2014),
pp. 989–997.

[161] David Karger et al. “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web”.
In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing. ACM Press. DOI: 10.1145/258533.258660.

[162] David Shue, Michael J Freedman, and Anees Shaikh. “Performance
Isolation and Fairness for Multi-Tenant Cloud Storage.” In: OSDI. Vol. 12.
Hollywood, CA. 2012, pp. 349–362.

https://doi.org/10.1109/GLOCOM.2015.7417124
http://www.segment-routing.net/
https://doi.org/10.17487/RFC8279
https://rfc-editor.org/rfc/rfc8279.txt
https://rfc-editor.org/rfc/rfc8279.txt
https://www.usenix.org/conference/fast17/poster-sessions
https://doi.org/10.1109/SDS.2017.7939145
https://doi.org/10.1007/s10586-018-02897-8
https://doi.org/10.1007/s10586-018-02897-8
https://doi.org/10.1007/s10586-018-02897-8
https://cloudian.com/
https://cloudian.com/
https://doi.org/10.1145/258533.258660

Bibliography 145

[163] Yoann Desmouceaux et al. “6LB: Scalable and Application-Aware Load
Balancing with Segment Routing”. In: IEEE/ACM Transactions on Net-
working 26.2 (2018), pp. 819–834.

[164] Clarence Filsfils et al. Segment Routing Architecture. RFC 8402. July
2018. DOI: 10.17487/RFC8402. URL: https://rfc-editor.org/rfc/
rfc8402.txt.

[165] Guillaume Ruty et al. Reducing distributed storage operation latency us-
ing segment routing techniques. 2018.

[166] Apache Traffic Server - Overview. URL: http://trafficserver.apache.
org/.

[167] Learn - Akamai Documentation. URL: https://learn.akamai.com/en-
us/products/media_delivery/index.html.

[168] AWS CloudFront. “Amazon cloudfront”. In: URL: http://aws. amazon.
com/cloudfront (2014).

[169] Marshall Copeland et al. “Microsoft azure and cloud computing”. In:
Microsoft Azure. Springer, 2015, pp. 3–26.

[170] Kerrie Meyler et al. Microsoft Hybrid Cloud Unleashed with Azure Stack
and Azure. Sams Publishing, 2017.

[171] Sara Davis. The Era Of Hyperconvergence: Simplifying Your Data Center
Operations. 2017. URL: https://www.forbes.com/sites/forbesagencycouncil/
2017/09/08/the-era-of-hyperconvergence-simplifying-your-
data-center-operations/#339f5a612a01.

[172] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. “On the perfor-
mance variability of production cloud services”. In: Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM International Sympo-
sium on. IEEE. 2011, pp. 104–113.

[173] Jeffrey Dean and Luiz André Barroso. “The tail at scale”. In: Commu-
nications of the ACM 56.2 (2013), pp. 74–80.

[174] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and
simulation of a fair queueing algorithm”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 19. 4. ACM. 1989, pp. 1–12.

[175] Sally Floyd and Van Jacobson. “Link-sharing and resource manage-
ment models for packet networks”. In: IEEE/ACM transactions on Net-
working 3.4 (1995), pp. 365–386.

[176] Pawan Goyal, Harrick M Vin, and Haichen Chen. “Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switching
networks”. In: ACM SIGCOMM Computer Communication Review. Vol. 26.
4. ACM. 1996, pp. 157–168.

[177] Ali Ghodsi et al. “Multi-resource fair queueing for packet process-
ing”. In: ACM SIGCOMM Computer Communication Review 42.4 (2012),
pp. 1–12.

https://doi.org/10.17487/RFC8402
https://rfc-editor.org/rfc/rfc8402.txt
https://rfc-editor.org/rfc/rfc8402.txt
http://trafficserver.apache.org/
http://trafficserver.apache.org/
https://learn.akamai.com/en-us/products/media_delivery/index.html
https://learn.akamai.com/en-us/products/media_delivery/index.html
https://www.forbes.com/sites/forbesagencycouncil/2017/09/08/the-era-of-hyperconvergence-simplifying-your-data-center-operations/#339f5a612a01
https://www.forbes.com/sites/forbesagencycouncil/2017/09/08/the-era-of-hyperconvergence-simplifying-your-data-center-operations/#339f5a612a01
https://www.forbes.com/sites/forbesagencycouncil/2017/09/08/the-era-of-hyperconvergence-simplifying-your-data-center-operations/#339f5a612a01

Bibliography 146

[178] Sitaram Iyer and Peter Druschel. “Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in synchronous
I/O”. In: ACM SIGOPS Operating Systems Review. Vol. 35. 5. ACM.
2001, pp. 117–130.

[179] Christopher R Lumb, Arif Merchant, and Guillermo A Alvarez. “Façade:
Virtual Storage Devices with Performance Guarantees.” In: FAST. Vol. 3.
2003, pp. 131–144.

[180] Ajay Gulati, Arif Merchant, and Peter J Varman. “pClock: an arrival
curve based approach for QoS guarantees in shared storage systems”.
In: ACM SIGMETRICS Performance Evaluation Review. Vol. 35. 1. ACM.
2007, pp. 13–24.

[181] Robert Abbott and Hector Garcia-Molina. Scheduling real-time transac-
tions with disk resident data. Princeton University. Department of Com-
puter Science, 1989.

[182] Anna Povzner et al. “Efficient guaranteed disk request scheduling
with fahrrad”. In: ACM SIGOPS Operating Systems Review. Vol. 42. 4.
ACM. 2008, pp. 13–25.

[183] AL Reddy and Jim Wyllie. “Disk scheduling in a multimedia I/O sys-
tem”. In: Proceedings of the first ACM international conference on Multi-
media. ACM. 1993, pp. 225–233.

[184] Wei Jin, Jeffrey S Chase, and Jasleen Kaur. “Interposed proportional
sharing for a storage service utility”. In: ACM SIGMETRICS Perfor-
mance Evaluation Review 32.1 (2004), pp. 37–48.

[185] John Bruno et al. “Disk scheduling with quality of service guaran-
tees”. In: Multimedia Computing and Systems, 1999. IEEE International
Conference on. Vol. 2. IEEE. 1999, pp. 400–405.

[186] Matthew Wachs et al. “Argon: Performance Insulation for Shared Stor-
age Servers.” In: FAST. Vol. 7. 2007, pp. 5–5.

[187] Jens Axboe. “Linux block IO—present and future”. In: Ottawa Linux
Symp. 2004, pp. 51–61.

[188] Stan Park and Kai Shen. “FIOS: a fair, efficient flash I/O scheduler.”
In: FAST. 2012, p. 13.

[189] Kai Shen and Stan Park. “FlashFQ: A Fair Queueing I/O Scheduler
for Flash-Based SSDs.” In: USENIX Annual Technical Conference. 2013,
pp. 67–78.

[190] Matias Bjørling et al. “Linux block IO: introducing multi-queue SSD
access on multi-core systems”. In: Proceedings of the 6th international
systems and storage conference. ACM. 2013, p. 22.

[191] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. “NVMeDirect: A
User-space I/O Framework for Application-specific Optimization on
NVMe SSDs.” In: HotStorage. 2016.

Bibliography 147

[192] Byunghei Jun and Dongkun Shin. “Workload-aware budget compen-
sation scheduling for NVMe solid state drives”. In: Non-Volatile Mem-
ory System and Applications Symposium (NVMSA), 2015 IEEE. IEEE.
2015, pp. 1–6.

[193] Ajay Gulati, Arif Merchant, and Peter J Varman. “mClock: handling
throughput variability for hypervisor IO scheduling”. In: Proceedings
of the 9th USENIX conference on Operating systems design and implemen-
tation. USENIX Association. 2010, pp. 437–450.

[194] W. Wang, B. Li, and B. Liang. “Dominant resource fairness in cloud
computing systems with heterogeneous servers”. In: IEEE INFOCOM
2014 - IEEE Conference on Computer Communications. 2014, pp. 583–591.
DOI: 10.1109/INFOCOM.2014.6847983.

[195] Eno Thereska et al. “IOFlow: A Software-defined Storage Architec-
ture”. In: Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles. SOSP ’13. Farminton, Pennsylvania: ACM,
2013, pp. 182–196. ISBN: 978-1-4503-2388-8. DOI: 10.1145/2517349.
2522723. URL: http://doi.acm.org/10.1145/2517349.2522723.

[196] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data net-
works. Vol. 2. Prentice-Hall International New Jersey, 1992.

[197] Fengguang Wu et al. “Linux readahead: less tricks for more”. In: Pro-
ceedings of the Linux Symposium. Vol. 2. Citeseer. 2007, pp. 273–284.

[198] C. Ruemmler and J. Wilkes. “An introduction to disk drive modeling”.
In: Computer 27.3 (1994), pp. 17–28. ISSN: 0018-9162. DOI: 10.1109/2.
268881.

[199] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. “A detailed
simulation model of the HP 97560 disk drive”. In: (1994).

[200] Keith Muller and Joseph Pasquale. “A high performance multi-structured
file system design”. In: ACM SIGOPS Operating Systems Review. Vol. 25.
5. ACM. 1991, pp. 56–67.

[201] Chandramohan A Thekkath, John Wilkes, and Edward D Lazowska.
“Techniques for file system simulation”. In: Software: Practice and Ex-
perience 24.11 (1994), pp. 981–999.

[202] Greg Ganger, B Worthington, and Y Patt. “The DiskSim simulation en-
vironment (v4. 0)”. In: Parallel Data Lab, http://www. pdl. cmu. edu/DiskSim/Online-
document (2009).

[203] Vijayan Prabhakaran and Ted Wobber. “SSD extension for DiskSim
simulation environment”. In: Microsoft Reseach (2009).

[204] Ajay Gulati, Irfan Ahmad, Carl A Waldspurger, et al. “PARDA: Pro-
portional Allocation of Resources for Distributed Storage Access.” In:
FAST. Vol. 9. 2009, pp. 85–98.

[205] Shimin Chen. “FlashLogging: exploiting flash devices for synchronous
logging performance”. In: Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data. ACM. 2009, pp. 73–86.

https://doi.org/10.1109/INFOCOM.2014.6847983
https://doi.org/10.1145/2517349.2522723
https://doi.org/10.1145/2517349.2522723
http://doi.acm.org/10.1145/2517349.2522723
https://doi.org/10.1109/2.268881
https://doi.org/10.1109/2.268881

Bibliography 148

[206] Guillaume Ruty, Jerome Tollet, and Aloys Augustin. “FAIR SCHEDUL-
ING FOR LOW LATENCY AND HIGH THROUGHPUT STORAGE
SYSTEMS”. In: (2018). URL: https://www.tdcommons.org/dpubs_
series/1427.

[207] Atul Adya et al. “Fragment reconstruction: Providing global cache co-
herence in a transactional storage system”. In: Distributed Computing
Systems, 1997., Proceedings of the 17th International Conference on. IEEE.
1997, pp. 2–11.

[208] Miguel Castro et al. “HAC: Hybrid adaptive caching for distributed
storage systems”. In: ACM SIGOPS Operating Systems Review. Vol. 31.
5. ACM. 1997, pp. 102–115.

[209] Yu Xiang et al. “Joint latency and cost optimization for erasure-coded
data center storage”. In: IEEE/ACM Transactions on Networking (TON)
24.4 (2016), pp. 2443–2457.

[210] Longbo Huang et al. “Codes can reduce queueing delay in data cen-
ters”. In: Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on. IEEE. 2012, pp. 2766–2770.

[211] Shripad J Nadgowda et al. “C2P: Co-operative Caching in Distributed
Storage Systems”. In: International Conference on Service-Oriented Com-
puting. Springer. 2014, pp. 214–229.

[212] Raluca Halalai et al. “Agar: A caching system for erasure-coded data”.
In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on. IEEE. 2017, pp. 23–33.

[213] Tianqiong Luo, Vaneet Aggarwal, and Borja Peleato. “Coded caching
with distributed storage”. In: arXiv preprint arXiv:1611.06591 (2016).

[214] Vaneet Aggarwal et al. “Sprout: A functional caching approach to
minimize service latency in erasure-coded storage”. In: IEEE/ACM
Transactions on Networking 25.6 (2017), pp. 3683–3694.

[215] KV Rashmi et al. “EC-Cache: Load-Balanced, Low-Latency Cluster
Caching with Online Erasure Coding.” In: OSDI. 2016, pp. 401–417.

[216] Lee Breslau et al. “Web caching and Zipf-like distributions: Evidence
and implications”. In: INFOCOM’99. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE. Vol. 1. IEEE. 1999, pp. 126–134.

[217] Bernardo A Huberman et al. “Strong regularities in world wide web
surfing”. In: Science 280.5360 (1998), pp. 95–97.

[218] Lada A Adamic and Bernardo A Huberman. “Zipf’s law and the In-
ternet.” In: Glottometrics 3.1 (2002), pp. 143–150.

[219] Mark E Crovella, Murad S Taqqu, and Azer Bestavros. “Heavy-tailed
probability distributions in the World Wide Web”. In: A practical guide
to heavy tails 1 (1998), pp. 3–26.

https://www.tdcommons.org/dpubs_series/1427
https://www.tdcommons.org/dpubs_series/1427

Bibliography 149

[220] Ganesh Ananthanarayanan et al. “Scarlett: coping with skewed con-
tent popularity in mapreduce clusters”. In: Proceedings of the sixth con-
ference on Computer systems. ACM. 2011, pp. 287–300.

[221] Qi Huang et al. “An analysis of Facebook photo caching”. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples. ACM. 2013, pp. 167–181.

[222] Andre Surcouf et al. Hybrid distributed storage system to dynamically
modify storage overhead and improve access performance. 2018.

[223] Tyler Harter et al. “Slacker: Fast Distribution with Lazy Docker Con-
tainers.” In: FAST. Vol. 16. 2016, pp. 181–195.

[224] Guillaume Ruty et al. Predictive container image storage system for fast
container execution. 2017.

[225] DongJin Lee, Brian E Carpenter, and Nevil Brownlee. “Media stream-
ing observations: Trends in udp to tcp ratio”. In: International Journal
on Advances in Systems and Measurements 3.3-4 (2010).

[226] Ilias Marinos, Robert NM Watson, and Mark Handley. “Network stack
specialization for performance”. In: ACM SIGCOMM Computer Com-
munication Review. Vol. 44. 4. ACM. 2014, pp. 175–186.

[227] EunYoung Jeong et al. “mTCP: a Highly Scalable User-level TCP Stack
for Multicore Systems.” In: NSDI. Vol. 14. 2014, pp. 489–502.

[228] Oliver Spatscheck et al. “Optimizing TCP forwarder performance”.
In: IEEE/ACM Transactions on Networking (TON) 8.2 (2000), pp. 146–
157.

[229] R Rajesh, Kannan Babu Ramia, and Muralidhar Kulkarni. “Integra-
tion of LwIP Stack over Intel (R) DPDK for High Throughput Packet
Delivery to Applications”. In: Electronic System Design (ISED), 2014
Fifth International Symposium on. IEEE. 2014, pp. 130–134.

[230] Home. URL: https://www.dpdk.org/.

[231] David Barach et al. “High-Speed Software Data Plane via Vectorized
Packet Processing”. In: IEEE Communications Magazine (2018).

[232] Pierre Ppfister et al. Predictive container image storage system for fast con-
tainer execution. 2017.

https://www.dpdk.org/

Titre :Vers un meilleur passage à l’échelle et une plus grande flexibilité pour les systèmes de stockage dis-
tribué

Mots clés : Stockage Distribué, Datacenters, Cloud

Résumé : Les besoins en terme de stockage, en
augmentation exponentielle, sont difficilement sa-
tisfaits par les systèmes de stockage distribué tra-
ditionnels. Même si les performances des disques
continuent à s’améliorer, les systèmes de stockage
distribué actuels peinent à suivre le croissance du
nombre de données requérant d’êtres stockées, no-
tamment à cause de l’avènement des applications
de big data. Par ailleurs, l’équilibre de performances
entre disques, cartes réseau et processeurs a changé
et les suppositions sur lesquelles se basent la plupart
des systèmes de stockage distribué actuels ne sont
plus vraies.

Cette dissertation explique de quelle manière cer-
tains aspects de tels systèmes de stockages peuvent

être modifiés et repensés pour faire une utilisation
plus efficace des ressources qui les composent. Elle
présente 6Stor, une architecture de stockage nouvelle
qui se base sur une couche de métadonnées dis-
tribuée afin de fournir du stockage d’objet de manière
flexible tout en passant à l’échelle. Elle détaille en-
suite un algorithme d’ordonnancement des requêtes
permettant à un système de stockage générique de
traiter les requêtes de clients en parallèle de manière
plus équitable. Enfin, elle décrit comment améliorer
le cache générique du système de fichier dans le
contexte de systèmes de stockage distribué basés
sur des codes correcteurs avant de présenter des
contributions effectuées dans le cadre de courts pro-
jets de recherche.

Title : Towards more scalability and flexibility for distributed storage systems

Keywords : Distributed Storage, Datacenters, Cloud

Abstract : The exponentially growing demand for
storage puts a huge stress on traditionnal distributed
storage systems. While storage devices’ performance
keep improving over time, current ditributed storage
systems struggle to keep up with the rate of data
growth, especially with the rise of cloud and big data
applications. Furthermore, the performance balance
between storage, network and compute devices has
shifted and the assumptions that are the foundation
for most distributed storage systems are not true any-
more.

This dissertation explains how several aspects of such

storage systems can be modified and rethought to
make a more efficient use of the resource at their dis-
posal. It presents 6Stor, an original architecture that
uses a distributed layer of metadata to provide flexible
and scalable object-level storage, then proposes a
scheduling algorithm improving how a generic storage
system handles concurrent requests. Finally, it des-
cribes how to improve legacy filesystem-level caching
for erasure-code-based distributed storage systems,
before presenting a few other contributions made in
the context of short research projects.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Declaration of Authorship
	Abstract
	Acknowledgements
	What you should know about distributed storage systems
	The different types of distributed storage system architectures
	Network Attached Storage (NAS) and Storage Area Network (SAN)
	Peer-to-Peer (P2P) networks
	Distributed Hash Tables (DHTs)
	Master-Slaves architectures
	Summarize

	Reliability in distributed storage systems
	Mirroring
	Replication
	Erasure Codes
	Erasure codes and replication: what is the trade-off

	Consistency and consensus
	Theoretical frameworks
	Consistency and Availability: the CAP theorem
	Database characteristics: ACID and BASE
	Client-centric and data-centric consistency models

	Consensus and consistency: how to reach it
	Consensus algorithms: Paxos and Raft
	Latency and Consistency, the (N,W,R) quorum model

	Examples of distributed storage systems

	6Stor
	Why we built 6Stor from scratch
	Software layering
	Architectural reasons
	Ceph
	GFS
	Scaling the metadata layer and embracing the heterogeneity

	6Stor architecture
	Architecture Description
	Attributing IPv6 prefixes to MNs
	6Stor: An IPv6-centric architecture
	Description of basic operations
	Consistency

	Expanding or shrinking the cluster without impacting the cluster's performance
	Storage Nodes
	Metadata Nodes
	Availability and data transfer

	Coping with failures: reliability and repair model
	Reliability
	Reacting to failures
	Short failure
	Definitive failure
	Voluntary shutdown and maintenance
	Maintaining reliability

	Considerations on the Architecture
	Client and Cluster Configuration
	Layer of Indirection
	Scalability
	Metrology and Analytics
	Limitations

	Experimental Evaluation
	Rationale
	Setup and Protocol
	Results
	Get Tests
	Post Tests
	CPU consumption analysis
	Performance impact of HTTP
	Protocol
	Results

	Conclusion

	6Stor extensions
	Building a block device on 6Stor
	Different implementations
	A note on caching and consistency
	Performance benchmark

	Adapting 6LB to 6Stor
	Load balancing in distributed storage systems
	Segment-routing load-balancing
	Adapting 6LB to 6Stor
	Consequences on consistency

	Conclusion

	Request Scheduler for Storage Systems (RS3)
	Related work
	Packet scheduling
	I/O scheduling
	System-wide scheduling

	Designing RS3
	Typical storage server implementation
	RS3's rationales
	RS3's batch budget allocation algorithm

	First evaluation and analysis
	Experimental protocol
	Throughput fairness results
	Response time results
	Throughput results

	Using Linux filesystem mechanisms to improve RS3
	Sending hints to the kernel
	Response time and throughput results

	Going further with RS3
	Evaluating batch budget's impact on RS3's performance.
	Tweaking RS3 to enforce policies: Weighted-RS3
	Considerations on RS3 and its current implementation

	Conclusion
	Going further

	Caching erasure-coded objects
	Related Work
	Caching and Popularity In Distributed Storage Systems
	System Architecture
	Object Caching

	Theoretical Evaluation
	Popularity Model
	System Model
	Performance Evaluation
	Results and evaluation

	Experimental Evaluation
	Experimental setup
	Results and Evaluation

	Conclusion

	Predictive Container Image Prefetching
	Motivations
	Storage and containers
	Some statistics about popular container images
	Optimized Predictive Container Image Storage System (OPCISS)

	Vectorizing TCP data handling for file servers
	Motivations
	State of the art
	Segment-oriented TCP in VPP
	Zero-copy file server

	Bibliography

