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Abstract

The study of cameras and images has been a prominent subject since the beginning of
computer vision, one of the main focus being the pose estimation and 3D reconstruction.
The goal of this thesis is to tackle and study some specific problems and methods of the
structure-from-motion pipeline in order to provide improvements in accuracy, broad studies
to comprehend the advantages and disadvantages of the state-of-the-art models and useful
implementations made available to the public. More specifically, we center our attention
to stereo pairs and triplets of images and discuss some of the methods and models able to
provide pose estimation and 3D reconstruction of the scene.

First, we address the depth estimation task for stereo pairs using block-matching. This
approach implicitly assumes that all pixels in the patch have the same depth producing the
common artifact known as the “foreground fattening effect”. In order to find a more appro-
priate support, Yoon and Kweon introduced the use of weights based on color similarity
and spatial distance, analogous to those used in the bilateral filter. We present the theory
of this method and the implementation we have developed with some improvements. We
discuss some variants of the method and analyze its parameters and performance.

Secondly, we consider the addition of a third view and study the trifocal tensor, which
describes the geometric constraints linking the three views. We explore the advantages
offered by this operator in the pose estimation task of a triplet of cameras as opposed
to computing the relative poses pair by pair using the fundamental matrix. In addition,
we present a study and implementation of several parameterizations of the tensor. We
show that the initial improvement in accuracy of the trifocal tensor is not enough to have
a remarkable impact on the pose estimation after bundle adjustment and that using the
fundamental matrix with image triplets remains relevant.

Finally, we propose using a different projection model than the pinhole camera for
the pose estimation of perspective cameras. We present a method based on the matrix
factorization due to Tomasi and Kanade that relies on the orthographic projection. This
method can be used in configurations where other methods fail, in particular, when using
cameras with long focal length lenses. The performance of our implementation of this
method is compared to that given by the perspective-based methods, we consider that the
accuracy achieved and its robustness make it worth considering in any SfM procedure.

Keywords

computer vision; structure from motion; pose estimation; 3D reconstruction; stereovision;
disparity map; multi-view geometry; trifocal tensor; fundamental matrix; orthographic
projection; long focal length.
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Résumé Étendu

L’étude des caméras et des images a été un sujet prédominant depuis le début de la vision
par ordinateur, l’un des principaux axes étant l’estimation de pose et la reconstruction
3D. Au début, l’accent était mis sur l’estimation de la profondeur en stéréovision, plus
tard, l’extension aux vues N ≥ 3 a été de plus en plus explorée par des méthodes de
structure-from-motion (SfM). Il y a deux variantes principales du pipeline SfM : l’approche
incrémentale, où le processus d’estimation commence avec une paire de vues et continue
d’ajouter une par une les vues restantes ; et l’approche globale, qui vise à estimer toutes les
poses en même temps. Les deux s’appuient en grande partie sur l’étalonnage à deux vues.

Les applications de la SfM sont vastes et variées, de l’archéologie et l’urbanisme jusqu’au
cinéma et la réalité augmentée. Les problèmes rencontrés dans ce domaine sont aussi vastes
que ses applications. La précision et la robustesse sont essentielles pour assurer le succès
de la tâche d’estimation de pose dans n’importe quelle application. Dans cette optique,
nous cherchons à évaluer l’utilité et les avantages des différentes méthodes impliquées dans
le processus de la SfM, ainsi qu’à introduire de nouvelles approches pour surmonter les
obstacles spécifiques qui sont généralement difficiles à affronter avec les procédures standard.
Parmi les différentes étapes impliquées dans tout processus de reconstruction 3D, nous
nous concentrerons sur certaines des questions qui se posent dans les domaines suivants :
la correspondance stéréo des paires d’images et l’estimation de pose à trois vues à partir
des points correspondants.

La reconstruction 3D à deux vues peut être réduite à un calcul de profondeur lorsque
les images sont rectifiées. Pour résoudre le problème, il est nécessaire de faire correspondre
les pixels d’une image à l’autre, généralement en utilisant des patches et une distance de
similarité. Cette approche suppose implicitement que tous les pixels du patch ont la même
profondeur et crée l’artefact connu sous le nom de phénomène foreground-fattening.

Les contraintes géométriques reliant les points correspondants des N vues sont déduites
du modèle de la perspective, dérivé du modèle de caméra à sténopé, et elles constituent
la base de la plupart des méthodes d’estimation de pose. Pour exactement N = 3 vues,
les contraintes géométriques entre les points d’appariement sont plus fortes que lorsque
seulement deux vues sont considérées. Pour cette raison, il est raisonnable de supposer que
la prise en compte de ces contraintes à 3 vues pourrait avoir un impact positif sur la précision
et la robustesse des méthodes d’estimation de pose. Cependant, les contraintes basées sur la
projection en perspective s’affaiblissent lorsque l’objet reconstruit est éloigné par rapport
à la distance entre les caméras, du fait qu’elles reposent sur l’intersection de rayons qui
deviennent presque parallèles. Par conséquent, les méthodes basées sur des contraintes de
perspective sont instables dans ce type de situations, par exemple, lorsque l’on utilise des
caméras à longue distance focale. Dans de telles situations, un autre modèle de projection
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vaut la peine d’être étudié, de sorte qu’une méthode d’estimation de pose plus robuste
puisse être développée.

Le but de cette thèse est d’aborder et d’étudier ces problèmes et méthodes spécifiques
du pipeline de la structure-from-motion. Nos contributions consistent en des études appro-
fondies pour comprendre les avantages et les inconvénients des différentes méthodes, des
nouvelles approches pour améliorer la précision et la robustesse dans des scènes spéciales
et une attention particulière pour fournir des implémentations disponibles au public. Nous
précisons ci-dessous le contenu de cette thèse chapitre par chapitre.

Chapitre 2 Une brève introduction des fondements de la structure-from-motion et des
concepts et notations importants qui seront utilisés tout au long de la thèse sont présentés.
La tâche de reconstruction 3D à partir de photographies peut être divisée en plusieurs étapes
de la SfM : recherche de points de correspondance entre les paires d’images, élimination des
correspondances mal détectées, estimation de la pose et reconstruction 3D, et raffinement
final de la solution par optimisation.

Chapitre 3 Nous abordons la tâche d’estimation de la profondeur pour les paires stéréo-
scopiques à l’aide de la correspondance de blocs. Nous présentons un étude et implémen-
tation d’une méthode particulière d’estimation de profondeur par Yoon et Kweon [YK06].
Cette approche de comparaison de blocs utilise des poids basés sur la similarité des cou-
leurs et la distance spatiale, analogues à ceux utilisés dans le filtre bilatéral, pour éliminer
le foreground-fattening effect. Pour deux pixels p,q dans du même patch, le poids assigné
est

w(p,q) = wcol(p,q) · wpos(p,q) = exp
(
−
(∆cpq
γcol

+
∆gpq
γpos

))
.

où ∆cpq est la similarité des couleurs, ∆gpq est la distance spatiale et γcol et γpos sont de
paramètres positifs fixés.

Grâce à de nombreuses expériences, les paramètres utilisés dans cette méthode sont
analysés et des valeurs optimales sont trouvées en fonction de la précision des résultats.
Des variantes de la méthode ont été examinées et testées ainsi que d’autres méthodes
pour assigner des poids aux blocs ont été explorées. Nous avons mis à disposition notre
implémentation qui inclut quelques améliorations et toutes les variantes de la méthode.

Chapitre 4 Pour l’estimation de la position des vues, on dépend généralement de la
matrice fondamentale et des relations epipolaires entre deux vues pour obtenir un premier
étalonnage externe. Néanmoins, d’autres contraintes géométriques dérivent de la relation
entre plusieurs vues [HZ04]. Yi Ma et al. [MHV+04] prouvent que les relations entre plus
de trois images dépendent uniquement des relations entre triplets et paires d’images. De
ce fait, on s’intéresse aux contraintes géométriques qui lient trois vues de la même scène, à
savoir le tenseur trifocal et les équations trilinéaires. Avec ces relations on peut obtenir un
étalonnage initial de trois vues sans passer par la matrice fondamentale. Nous explorons les
avantages offerts par le tenseur trifocal dans la tâche d’estimation de pose d’un triplet de
caméras par opposition au calcul des poses relatives paire par paire.

Le tenseur trifocal est un tenseur 3× 3× 3, T = [T1, T2, T3], composé alors de 27 para-
mètres, mais avec seulement 18 degrés de liberté. Pour un triplet de points correspondants
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x1,x2,x3 dans les trois images, des contraintes sont données par le tenseur T,

[x̄2]×

(∑
i

(x̄1)iTi

)
[x̄3]× = 03×3

qui composent 9 équations trilinéaires dont seulement 4 sont indépendants.
Plusieurs façons d’estimer le tenseur trifocal à partir de triplets de points correspondants

existent dans la littérature, nous présentons une étude et implémentation de quatre de
ces paramétrisations minimales : les correlation slices de C. Ressl [Res02], les matrices
orthogonales de K. Nordberg [Nor09], les contraintes des déterminants des slices du tenseur
données par O. D. Faugeras et T. Papadopoulo [FP98] et les matrices Π de J. Ponce and
M. Hebert [PH14]. En étudiant la dernière des paramétrisations, nous avons proposé de
nouvelles contraintes pour surmonter certaines limitations.

Nous avons comparé les méthodes d’estimation de pose à 3 vues basées sur le tenseur
trifocal ainsi que l’estimation de pose à 2 vues avec la matrice fondamentale et testé leurs
performances dans différents contextes. Avec ces expériences, nous avons montré que l’amé-
lioration initiale offerte par l’avantage théorique du tenseur trifocal n’est pas suffisante pour
avoir un impact remarquable sur la précision de l’estimation de pose après le raffinement
avec ajustement de faisceaux. Pour sa simplicité et son temps de calcul plus court, l’option
recommandée est de ne considérer que les contraintes par paires et la matrice fondamen-
tale, à condition d’utiliser un ajustement de faisceau à la fin (ce qui est aussi fortement
recommandé, car cela peut réduire l’erreur par un facteur significatif).

Chapitre 5 Nous proposons d’utiliser un modèle de projection différent de celui de la
caméra à sténopé pour l’estimation de pose des caméras perspectives. Nous abordons le mo-
dèle de la projection orthographique comme une approximation du modèle de la perspective
pour des cameras loin de la scène photographiée. La projection orthographique suppose que
le centre de la camera est à l’infini, et donc la projection des points de l’espace est ortho-
gonale au plan de l’image. Pour un point de l’espace X ∈ R3 sa projection orthogonale x
est calculé

x = s

(
~i>

~j>

)
X +

(
a
b

)
, (1)

où s > 0 est un facteur d’échelle, ~i et ~j caractérisent la rotation et direction de projection
~k = ~i × ~j et (a, b)> est l’origine des coordonnées image. En particulier, nous utilisons le
modèle de projection orthographique avec échelle proposé par Poelman et Kanade [PK97],
qui définit les paramètres de la projection orthogonale a partir des paramètres d’une caméra
perspective pour émuler son comportent lorsque son centre est à l’infinie.

La méthode de factorisation matricielle de Tomasi et Kanade [TK92] nous permet d’ob-
tenir une méthode d’estimation de la rotation et de la translation des caméras même si
les observations obéissent au modèle perspectif central. Cette méthode s’avère comme une
approche robuste dans des configurations où d’autres méthodes échouent, en particulier
lorsque l’on utilise des caméras avec des objectifs à longue distance focale. L’estimation de
pose avec cette méthode a besoin d’un minimum deM = 3 vues et N = 4 points correspon-
dants visibles dans toutes les images. Nous prouvons aussi que les scènes plates ne peuvent
pas être reconstruites par le modèle orthographique.
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La performance de notre implémentation de cette méthode est comparée à celle des
méthodes fondées sur la perspective. Nos expériences prouvent que cette méthode a de
bonnes performances dans l’estimation de pose dans le cas de caméras avec des objectifs à
longue distance focale avec une grande robustesse au bruit. Nous montrons qu’en utilisant
cette estimation comme estimation initiale pour une procédure d’ajustement de faisceau, la
minimisation converge plus rapidement. Cette méthode basée sur le modèle orthographique
est bien adaptée à l’étalonnage externe de caméras en perspective avec des distances focales
relativement longues surpassant l’estimation de pose basée sur la perspective et étant com-
parable en complexité computationnelle au calcul linéaire de la matrice fondamentale. Nous
constatons alors que la méthode mérite être prise en considération dans toute procédure de
structure-from-motion.
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Chapter 1

Introduction

In Computer Vision, the field of 3D Pose Estimation and Reconstruction has been widely
studied for decades now. In the beginning, the focus was depth estimation in stereo-vision,
later on, the extension to N ≥ 3 views was more and more explored by structure-from-
motion (SfM) methods. There are two main variants of the SfM pipeline: the incremental
approach, where the estimation process starts with a pair of views and continues adding
one view at a time; and the global approach, which aims at estimating all poses at once.
Both rely substantially in the 2-view calibration.

The applications are broad and diverse, from Archeology and City Planning all the
way to Cinema and Augmented Reality. The problems faced in this field are as broad as
its applications. Accuracy and robustness are essential to ensure the success of the pose
estimation task in any application. With this in mind, we aim to evaluate the usefulness
and advantages of different methods involved in the SfM process as well as to introduce
new approaches to endure specific obstacles which are generally difficult to address with
the standard procedures.

From the several steps involved in any 3D reconstruction process, we will focus on some
of the issues that arise in the following areas:

• Stereo matching. The 3D reconstruction of two views can be reduced to depth
computation when the images are rectified. To solve the problem it is necessary to
match pixels from one image to the other, generally using patches and a similarity
distance. This approach implicitly assumes that all pixels in the patch have the same
depth and creates the artifact known as the foreground-fattening phenomena.

• 3-view pose estimation from matching points. The geometric constraints link-
ing matching points in N views are deduced from the perspective model, which is
derived from the pinhole camera model, and they are the base for most of the pose
estimation methods. For exactly N = 3 views, the geometric constraints between
the matching points are stronger than when only two views are considered. For this
reason, it is a reasonable assumption that taking these 3-view constrains into account
could have a positive impact in the accuracy and robustness of pose estimation meth-
ods. However, constraints based on the perspective projection become weak when the
object reconstructed is far away with respect to the distance between the cameras,
due to the fact that they rely on the intersection of projection rays which become al-
most parallel. In consequence, methods based on perspective constraints are unstable

13



14 Chapter 1. Introduction

in these kind of scenes, for instance, when taking long focal length cameras. In such
situations, another projection model is worth studying, so that a more robust pose
estimation method can be developed.

1.1 Thesis Contributions

In this thesis we address and study these specific problems and methods of the structure-
from-motion pipeline. Our contributions consist of extensive studies to comprehend the
advantages and disadvantages of different methods, the addition of new approaches to
improve accuracy and robustness in special scenes and a special focus on providing im-
plementations available to the public. We specify below the main contributions of this
thesis,

• A study and implementation of a particular depth estimation method by Yoon and
Kweon. The block-matching approach uses weights based on color similarity and spa-
tial distance, analogous to those used in the bilateral filter to eliminate the foreground
fattening effect. Through many experiments, the parameters used in this method were
analyzed and optimal values were found based on the accuracy of the results. Vari-
ants of the method were explored and tested. We made our implementation available
which includes some improvements and all the variants of the method.

• A broad review of different trifocal tensor parameterizations and the pose estimation
methods for three views. While studying one of the parameterizations we were able to
propose new constraints to overcome certain limitations. We have implemented the
3-view pose estimation methods based on the trifocal tensor as well as the 2-view pose
estimation with the fundamental matrix and tested their performances in different
settings. With these experiments we have shown that the theoretical advantage of
using the trifocal tensor does not translate on a remarkable impact in the accuracy
of the pose estimation.

• A robust approach for the pose estimation of cameras with long focal length lenses.
By using an orthographic projection model instead of the perspective one to repres-
ent pinhole cameras at “infinite” distance, we were able to implement a robust pose
estimation method based on the matrix factorization due to Tomasi and Kanade.
We evaluated the performance of our implementation of this method comparing it to
the perspective-based methods to show that the accuracy achieved and its robustness
make it worth considering in any SfM procedure.

The publications associated to the contributions of this thesis are listed below. For
some of the published work we specify where to find the available implementation that we
have developed.

1. On line Journal: Bilaterally Weighted Patches for Disparity Map Computation, Laura
F. Julià and Pascal Monasse, Image Processing On Line, 2015.

∗ C++ code and on line demo for Disparity Map Computation is available at the
same web page than the paper: https://doi.org/10.5201/ipol.2015.123

https://doi.org/10.5201/ipol.2015.123
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2. Colloque: Estimation de pose à trois vues: les mérites respectifs du tenseur trifocal
et du modèle orthographique, Laura F. Julià, Pascal Monasse and Marc Pierrot-
Deseilligny, comunication at Photogrammétrie Numérique et Perception 3D: les Nou-
velles Conquêtes organized by the SFPT on March 2016.

3. International Conference (Poster): A Critical Review of the Trifocal Tensor Estima-
tion. Laura F. Julià and Pascal Monasse, PSIVT’17, The Eighth Pacific-Rim Sym-
posium on Image and Video Technology, Nov 2017, Wuhan, China.

∗ Matlab code for pose estimation for triplets of views using trifocal tensor estim-
ation and fundamental matrix computation is available at the Github repository
https://github.com/LauraFJulia/TFT_vs_Fund.git

4. Submission to IPOL: The Orthographic Projection Model for Pose Calibration of Long
Focal Images, Laura F. Julià, Pascal Monasse and Marc Pierrot-Deseilligny.

∗ Matlab code is now available at the Github repository https://github.com/
LauraFJulia/OrthographicPE.git and will also appear along with an on line
demo in the IPOL web page once the paper is published.

1.2 Manuscript Organization

The structure of the manuscript of this thesis is the following. In Chapter 2 a brief intro-
duction of the basis of Structure-from-Motion and important concepts that will be used
throughout the thesis are presented. Then, in Chapter 3 we describe our implementation
an study of a block-matching algorithm for disparity map computation based on bilateral
weights. Chapter 4 presents our review of the trifocal tensor and the experiments to com-
pare it to the fundamental matrix in the pose estimation task. Finally, in Chapter 5 an
approach for pose estimation of long focal length images based on the orthographic model
is described and compared through synthetic and real experiments to the perspective model
approach.

https://github.com/LauraFJulia/TFT_vs_Fund.git
https://github.com/LauraFJulia/OrthographicPE.git
https://github.com/LauraFJulia/OrthographicPE.git
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Chapter 2

Introduction to
Structure-from-Motion

In this chapter we will introduce the notation used throughout, the main basic concepts
used in the thesis, as well as an overview of each step involved in the Structure from Motion
(SfM) process. The task of 3D reconstruction from photographs can be broken down into the
following SfM steps: search for matching points between image pairs (Section 2.7), discard
incorrectly detected matches (Section 2.8 and Section 2.9), estimation of pose (Section 2.4.1)
and 3D reconstruction (Section 2.4.2) and final refinement of the solution using optimization
(Section 2.6).
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2.1 Notation

X, X̄ 3D point in R3 and equivalent point in P3.
x, x̄ 2D point in R2 and equivalent point in P2.
∼ proportional, equality in homogeneous coordinates.

K (external) calibration matrix.
R, Q rotation matrices.
~i, ~j, ~k normal vectors in R3 representing rotation axes.
~t, ~l translation vectors in R3.
C camera center.
O center of the scene, i.e. centroid of the 3D points.

E essential matrix.
F fundamental matrix.
T trifocal tensor.

[v]× 3× 3-matrix form of the cross product on the left by vector v ∈ R3,
i.e. [v]×w = v × w for w ∈ R3.

|M | determinant of a matrix M .
‖v‖ L2-norm for a vector v ∈ R3.

‖M‖, ‖T‖ L2-norm of the vector built from the coefficients of the matrix or
tensor.
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2.2 Euclidean and Projective Space

Throughout the thesis, both Euclidean spaces Rn and projective spaces Pn will be used.
Projective geometry can be understood as an extension of Euclidean geometry, the basic
intuition being that projective space has more points than Euclidean space for the same
dimension, which are called points at infinity, and geometric transformations are allowed
to transform the extra points to Euclidean points, and vice versa.

In the projective space Pn, points are represented in homogeneous coordinates x̄ =
(x1, . . . , xn+1) ∈ Pn, that means that two points with proportional coordinates are con-
sidered the same,

(x1, . . . , xn+1) ∼ λ(x1, . . . , xn+1) ∀λ ∈ R− {0} (2.1)

which explains that points have n+ 1 coordinates in a space of dimension n. We will note
“∼” as the equality in this context to avoid confusion. The point 0 (represented by all
homogeneous coordinates to 0) does not exist in the projective space.

An explicit inclusion of the Euclidean space Rn to the projective space Pn can be done
by adding 1 as an extra coordinate at the end of each point coordinates,

x = (x1, . . . , xn) ∈ Rn −→ x̄ = (x1, . . . , xn, 1) ∈ Pn . (2.2)

In the same way, for any point in the projective space Pn with non-zero last coordinate,
the Euclidean equivalent can be recovered by dividing the homogeneous coordinates by the
last coordinate,

x̄ = (x1, . . . , xn+1) ∈ Pn s.t. xn+1 6= 0 −→ x =
( x1

xn+1
, . . . ,

xn
xn+1

)
∈ Rn . (2.3)

The projective points that have last coordinate zero, xn+1 = 0, are the points at infinity
and do not correspond to any Euclidean point.

From here onwards, we will work with points in the plane (R2 and P2) and in the 3D
space (R3 and P3).

2.3 Functioning of a general camera

A general photographic camera is an optical device able to capture an image of an object
or a scene and record it on a digital sensor or photographic film. In Figure 2.1 a simple
representation of its functioning is presented. The basic design of a camera consists of an
enclosed box where light enters through a lens and is recorded on a light-sensitive medium.

Lens are used to capture the light from the subject of the photograph and bring it to
a focus on the sensor. There is a wide range of types of lenses serving different purposes
(normal, long focus, wide angle, fisheye). In digital cameras, image sensors are composed
of cells measuring the light that hits them. Each cell corresponds to a pixel in the final
digital image. In computer vision, the focal length refers to the distance from the center
of the lens to the image plane, i.e. the sensor. This distance can be modified in most of
cameras with the optical zoom and it has an impact on the perspective deformation of the
image.
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The most commonly used model to explain the geometry of a standard camera is the
pinhole camera. In this ideal model the camera lens is omitted and the light is considered
to go through a tiny hole, a single point in space that we call the camera center. Due to
equivalence, this model is usually represented with the image plane between the space
points and the camera center, instead of behind the center. This way the image is no longer
upside-down, while the coordinates of the projected points remain unchanged.

Figure 2.1 – Basic sketch of the functioning and parts of a photographic camera.

The mathematical function linking the space points to the image points corresponds to
a central projection with center C, the center of the camera, and projection plane the
image plane (sensor), see Figure 2.2. When the coordinate frame is centered on C and the
camera axes, the projection equation for a 3D point X = (X,Y, Z)> ∈ R3 can be written,

x = ρP(X) =
f

Z
(X,Y ) (2.4)

where f is the focal length of the camera. The projection equation is not linear, the relative
depth of the point X appears dividing in the expression and it contributes to the perspective
effect. It is clear that from the image point x it is impossible to recover uniquely the space
point X, since the depth Z cannot be inferred even knowing f .

For other coordinate frames, X has to be expressed in the camera system coordinates.
Let us note the axes setting the image coordinates in the plane as ~i and ~j and ~k the
plane’s normal. Then, we call the rotation matrix of the camera to R = (~i,~j,~k)> and
the translation vector to ~t = −RC. Applying the change of coordinates to X we get
R(X−C) = RX+~t. After that, we can apply the central projection. This transformation
is better expressed in homogeneous coordinates as follows,

x̄ ∼ K [R ~t] X̄ (2.5)
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Figure 2.2 – Central projection of 3D points to a plane representing the pinhole model.

where K is the calibration matrix of the camera,

K =

f 0 cx
0 f cy
0 0 1

 (2.6)

c = (cx, cy) is called the principal point and it indicates the point where the principal
axis ~k meets the image plane, in image coordinates.

When the internal parameters of the camera, i.e. the calibration matrix, are unknown,
the common approach is to consider the projection matrix P = K [R ~t] usually written
P = (A a4) for the pose estimation, and working on the projective space instead of the
affine.

2.4 Geometry of Two Views

When two images of the same scene are considered, it is possible to recover the space points
from their respective projections in both images. Let us have two cameras with centers C1

and C2, and projection matrices P1 = K1 [R1 ~t1] and P2 = K2 [R2 ~t2]. Then for a point
X ∈ R3 its two projections are given by

x̄1 ∼ P1 X̄ , x̄2 ∼ P2 X̄ . (2.7)

Eliminating 3D points from this model we obtain the epipolar equations which define
the fundamental matrix F21 for the two views, a 3× 3 matrix verifying

x̄>2 F21x̄1 = 0 (2.8)

for any two projections x1, x2 of the same point X. This matrix is rank deficient,
rank(F21) ≤ 2, and up-to-scale [HZ04].

The line connecting the two camera centers intersects with the image planes in the
epipoles e1 and e2. For an image point x1, the line F21x̄1 in the second image represents
all the possible points corresponding to x1. It is called the epipolar line associated to x1.
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Figure 2.3 – Two views of the same scene and the two projections x1,x2 of space point X.

The fundamental matrix can be estimated from 7 or more pairs of image correspond-
ences. The matrix has 9 parameters up-to-scale and verifies det(F21) = 0, hence it has 7
degrees of freedom. Each pair of corresponding image points gives one equation (2.8) linear
on the fundamental matrix parameters. Therefore, F21 can be estimated algebraically with
7 points and taking into account the rank deficiency (7-point algorithm [HZ04]) or linearly
with 8 points imposing the rank deficiency to the matrix found by the linear system (8-point
algorithm [LH81]).

When using normalized coordinates for the image points, i.e. x̂ = K−1x̄, the equivalent
to the fundamental matrix in this case is the essential matrix E21,

x̂>2 E21x̂1 = 0 (2.9)

for corresponding points x1 and x2. It follows that the relationship between the essential
and fundamental matrices is E21 ∼ K>2 F21K1. Moreover, it can be seen that

E21 ∼ [t21]×R21 (2.10)

where R21 = R2R
>
1 and t21 = t2 − R2R

>
1 t1 describe the relative rotation and translation

between the two views.

2.4.1 Pose Estimation

The pose of the cameras can only be determined to some degree, only the relative rotation
R21 and translation t21 between them can be inferred. The reconstruction will be ambiguous
by global rotation, translation and scaling of the scene if no other real data (measurements
of the scene, control points, etc.) is given.

Once the fundamental matrix F21 has been estimated and if the calibration matrices K1

and K2 are known, the essential matrix can be computed as E21 = K>2 F21K1, from which
the relative orientation (R21, t21) can be retrieved by the singular value decomposition of
E21 (using property (2.10)), the translation vector being up to unknown scale. The overall
scale is commonly fixed by setting ‖t21‖ = 1, the first camera pose to (Id,0) and the second
camera to (R21, t21).
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2.4.2 Triangulation

With the camera poses estimated we can triangulate any 3D point X ∈ R3 from its pro-
jections in the two images x1, x2. Because of the noise in the measured points and the
inaccuracy in the estimation of the poses, the estimated 3D point will not exactly satisfy the
geometric relations. The linear triangulation can be done with the DLT algorithm [HZ04];
from the projection equations (2.7) the homogeneous scale factor can be eliminated by
applying a cross product,

0 = x̄i × x̄i = x̄i × (PiX̄)⇒


xi(p

3
i X̄)− p1

i X̄ = 0
yi(p

3
i X̄)− p2

i X̄ = 0
xi(p

2
i X̄)− yi(p1

i X̄) = 0
i = 1, 2. (2.11)

where pki is the k-th row of the projection matrix Pi. The three equations in (2.11) are
linear in X̄ coordinates but only two are independent, so taking the first two given by
each view we can compose a 4× 4 matrix A so that X̄ is the solution of the linear system
AX̄ = 0,

A =


x1 p

3
1 − p1

1

y1 p
3
1 − p2

1

x2 p
3
2 − p1

2

y2 p
3
2 − p2

2

 . (2.12)

Hence, the solution X̄ can be computed as the unit singular vector corresponding to the
smallest singular value of the matrix A.

This method can be generalized toM image points inM views by composing the 2M×4
matrix A with two equations for each view,

A =


x1 p

3
1 − p1

1

y1 p
3
1 − p2

1
...

xM p3
M − p1

M

yM p3
M − p2

M

 . (2.13)

2.5 Errors for Pose Estimation

To evaluate and compare the accuracy of pose estimation methods mainly the following
two kind of errors are used: the reprojection error and the angular error in rotations
and translations, since only translation direction can be estimated, not its norm.

The first does not depend on a known ground truth and can always be computed.
For one image point x, the reprojection error given the corresponding estimations for the
camera pose, P = K[R t] and 3D point X, is the distance from the original measured point
x to the projection of X using the estimated parameters, x̄r ∼ K[R t]X̄ (in homogeneous
coordinates). The total reprojected error would be then the mean of the reprojection errors
for all measured image points in all views, although the RMS is usually used instead for
computational purposes. For N correspondences and M cameras,

erepr =

√√√√ 1

N

N∑
j=1

(
1

M

M∑
i=1

‖xji − (xji )r‖2
)
. (2.14)
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For a configuration in which the 3D structure has not been estimated, or only the pose
estimation is being evaluated, the reprojection error is computed by triangulating the 3D
points (eq. (2.11)) using all the views available for each point.

On the other hand, the angular error compares the estimated poses to the ground
truth. To do the comparison one of the cameras is aligned with the known true position
and the scale is adjusted, then the rotations and translations defining the other cameras
are compared to the true ones and the angle of their differences is computed. For instance,
if the true poses for the cameras with respect to the first one are {[R0

i1, ~t
0
i1]}i=2,...,M and

the estimated poses are {[Ri1, ~ti1]}i=2,...,M , then the angular errors are

erot =
1

M − 1

∑
i=2,...,M

∠(R0
i1, Ri1) (2.15)

etrans =
1

M − 1

∑
i=2,...,M

~̂t0i1 ~ti1 (2.16)

where ∠(R,R′) denotes the angle of the rotation corresponding to the matrix RR′>. It can
be computed using the trace ∠(R,R′) = arccos((tr(RR′>)− 1)/2).

It is worth noting that while the angular error in rotations is usually proportional to
the reprojection error, the angular error in translations highly depends on the norm of the
translation vectors. This translates into having errors of different order even in images taken
with the same camera, of the same scene, which relative poses have been estimated in the
same way, and have similar reprojection errors. In Appendix A we present a computation
of the approximated pixel errors expected for a variation in the pose parameters to justify
this phenomena.

2.6 Bundle Adjustment

Usually, the estimation of the camera poses obtained by singular decomposition of the
essential matrix will not be very accurate and will leave much room for improvement. For
this reason a common last step in pose estimation is Bundle Adjustment, first introduced by
Triggs [TMHF00], a refinement of the camera orientations and structure using optimization.
It is generalized to M views, and it is used at each step of incremental methods and at the
end of global methods.

The optimization of Bundle adjustment minimizes the total reprojection error (2.14)
over the possible cameras orientations and space points, thus it solves the equivalent min-
imization problem,

min
{Ri,ti}i=1,...,M

{Xj}j=1,...,N

N∑
j=1

M∑
i=1

‖xji − (xji )r‖
2 . (2.17)

The Levenberg-Marquardt algorithm [Lev44] for non-linear least squares minimization
problems is the preferred method to solve the bundle adjustment. An initialization close
to the final solution is needed to launch the iterative process.
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2.7 Feature detection and Matching

Pose estimation is impossible without the knowledge of corresponding points between im-
ages. A minimum number of correspondences is needed to successfully estimate a relative
pose between two views. For this reason detection and matching algorithms are one of the
most important fields of computer vision and one of the most studied subjects in image
processing.

The search for correspondences is subdivided in three stages: feature detection, feature
description and feature matching. Since it is generally impossible or computationally too
expensive to find correspondences for every pixel of each image (except in specific well
posed scenes) the first step is to detect and select candidate pixels, called features, with
specific characteristics that make them easier to match (textured areas, edges, corners...).
Once the features have been selected they have to be described in order to be able to
define a measure for comparison. The descriptor, usually a real vector, encodes all the
relevant information around the feature and should be robust to light changes, rotation,
translation and scale. After a descriptor is defined and given for each feature, the similarity
between features in different images can be measured by computing the distance between
their descriptors. Then, different strategies exist to pick the optimal match, for example
the first nearest neighbor (FNN).

Earlier detection algorithms include Harris corners [HS88] and Harris-Laplace de-
tector [MS01], but the most commonly used and widespread method for detection and
description of features is D. G. Lowe’s SIFT [Low04], based on an image pyramid to rep-
resent image scales and Gaussian convolutions to compute invariant blob-like features. The
SIFT descriptor is a 128-float vector consisting in 16 histograms discretized into 8-bins.

2.8 Ransac

In feature matching we can find some noisy or completely false correspondences. Even
if they represent a small percentage of the total of correspondences found, taking them
into account when estimating the fundamental matrix will yield very inaccurate or simply
erroneous pose estimation. This is a general problem that appears in any kind of parameter
estimation where low precision or false data is present. In order to ensure a robust and
accurate estimation, the data that is too noisy or false, the outliers, needs to be rejected
so that only the data accurate enough, the inliers, are used by the estimation method.

RANSAC (RANdom SAmpling Consensus), first published by Fischler and
Bolles [FB81], is the widespread method in computer vision for outlier detection. It is an
iterative algorithm applicable to any estimation problem with the following characteristics:
a certain model M has to be estimated from noisy data D = {d1, . . . , dN} containing out-
liers, with a method E that estimates the model from data fitting the model, E(D0) = M0,
and an error distance can be defined to measure how much an observation from the data
fits a certain model, e(dj ,M0), so that the distance is low if it fits it and high otherwise.

In the case of the fundamental matrix estimation, the observations are the correspond-
ences between the two images found by a matching algorithm, the estimation method can be
either the 7-point algorithm [HZ04] or the 8-point algorithm [LH81] and the error distance
is defined by the distance to the epipolar lines given by the fundamental matrix.



26 Chapter 2. Introduction to Structure-from-Motion

The algorithm is described in Algorithm 1. It consists in repeating the same steps
for each iteration (until an established maximum of iterations max_it). First, a set of
nE observations Si is randomly selected from the observations dataset, where nE is the
minimal number of observations needed for the estimation E. Secondly, the model is
computed using this sample and the estimation method, Mi = E(Si). In third place, the
inliers Ii and outliers Oi for this model Mi are selected by computing the fitting error for
each observation with respect to the estimated model, e(dj ,Mi), if it surpasses the error
threshold δ it will be labeled as an outlier, otherwise it will be labeled as inlier. Finally, if
the total of inliers found for this model is higher than the highest found until this iteration,
we keep this model, subset of observations and inlier set as the optimal ones.

Algorithm 1: RANSAC algorithm
input : Observations dataset D = {d1, . . . , dN},
estimation method E and minimal number of observations needed nE ,
error distance e and threshold δ,
maximum iterations max_it.
output: Inliers set I, estimated model M .

1 Initialize Nmax ← 0.
2 foreach 1 ≤ i ≤ max_it do
3 Randomly select a sample of nE observations Si ⊆ D.
4 Compute estimated model Mi with this sample, Mi ← E(Si).
5 Initialize inliers Ii ← ∅.
6 foreach 1 ≤ j ≤ N do // find inliers for Mi and δ
7 if e(dj ,Mi) < δ then
8 dj → Ii

9 Count number of inliers Ni ← #Ii.
10 if Ni > Nmax then
11 Nmax ← Ni

12 I ← Ii
13 M ←Mi

The idea of the RANSAC algorithm is that by repeating this process many times, the
small subset of observations chosen randomly will eventually only contain observations
fitting the model to estimate, therefore giving an accurate estimation of the model that
will hopefully label as outliers only the false or too noisy data. It is to expect that the set
of inliers found by this model will be the largest one due to the fact that the outliers can
not be explained by any other model.

The algorithm has two parameters that have to be manually set, the maximum of iter-
ations and the error threshold. The number of iterations will directly affect the accuracy
of the model since the more iterations done, the higher the probability of finding the right
model. If the proportion of inliers present in the data ρ is known or can be roughly estim-
ated, an optimal number of iterations can be given with respect to the desired probability
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of success p of the RANSAC algorithm,

max_it =
log(1− p)

log(1− ρnE )
. (2.18)

On the other hand, the threshold δ is a parameter much more tricky to choose, it depends
on the error distance defined, the data, and the model. Moreover, the choice of threshold
can directly affect the possibility of estimating the right model and it is necessary to know
the amount of noise present in the data in order to be able to make a good choice. This can
be visualized with a basic example, fitting a line in 2D to a set of observations in Figure 2.4.
It becomes obvious that the problematic selection of the threshold δ is the main drawback
of the algorithm.

(a) input data (b) optimal δ

(c) δ too small (d) δ too large

Figure 2.4 – Different solutions found by the RANSAC algorithm for a line estimation
problem with the input data shown. The data is composed by 6 inliers corresponding to
noisy observations of points in the line, and 8 outliers. When an optimal value for δ is
chosen the two inliers are selected by the algorithm to estimate the line and only inlier
points lie inside the margin given by δ. When the threshold is too small or too large the
line estimated is incorrect as is the classification of inliers and outliers.

2.9 A Contrario Ransac

The a contrario (AC) methodology relies on the Helmholtz principle: “an observed strong
deviation from the background model is relevant information”, i.e. if a configuration is
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unlikely to arise by chance, it is notable. The first use of this theory was applied to
detection in images by Desolneux et al. in [DMM08].

For model estimation this methodology can be applied to measure the meaningfulness
of a certain estimated model, evaluating the likelihood of the data to fit such model under
the hypothesis of the data being random. Following this idea, Moisan and Stival [MS04]
proposed a variant of RANSAC for fundamental matrix estimation where the threshold δ is
chosen automatically. It has been applied to many model estimation problems ([RDGM10,
MMM16, MMM12a, MMM12b]) under many names, the most commonly used being AC-
RANSAC.

The a contrario RANSAC algorithm controls the Number of False Alarms (NFA). A
false alarm is a model due to chance and not really corresponding to the data. The NFA
for an estimated model M and a number of inliers k is defined

NFA(M,k) = nout(N − nE)

(
N
k

)(
k
nE

)
(ek(M)dα0)k−nE (2.19)

where

• N is the number of total data elements.

• nE minimum number of data necessary to estimate a model.

• nout is the number of solution models given by the estimation method.

• α0 probability of a random data having error ≤ 1.

• ek(M) the k-th lowest error to the model M among all data.

• d is the error dimension.

The optimal number of inliers k̂ will be found by minimizing NFA(M,k)

k̂ = argmin
k=nE+1,...,N

NFA(M,k) (2.20)

so that the chosen threshold will be ek̂(M). A model M will be considered valid if

NFA(M) = NFA(M, k̂) ≤ ε (2.21)

The parameter ε is usually set to 1.
The a contrario methodology for model estimation consists in finding the best model

with respect to the NFA, that is from all possible nE samples of data possibles, finding
the one that gives an estimated model minimizing NFA(M). While the complexity of
computing NFA(M) for a given model is O(N logN), the number of possible models to

be computed, however, is nout

(
N
nE

)
that is very large for nE > 2. For this reason, the

random sampling of RANSAC comes in hand to avoid computing all possible models.
The AC-RANSAC algorithm, described in Algorithm 2, follows the same steps than

standard RANSAC but searches the model M with lower NFA(M), instead of maximizing
the number of inliers with a fixed threshold δ. The advantage of such a strategy is that the
precision threshold ek(M) that replaces δ adapts to the data.
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This algorithm can be applied to the estimation of the fundamental matrix from N
corresponding pairs of points, by using the following parameters,

E 7-point or 8-point algorithm.
nE 7 or 8 respectively.
nout 3 or 1 respectively.
e(d,M) distance from image point to epipolar line.
d 1 (dimension of point-to-line distance).
α0

2D
A whereD and A are the diameter and area of the image (upper bound).

Algorithm 2: AC-RANSAC algorithm
input : Observations dataset D = {d1, . . . , dN},
estimation method E and minimal number of observations needed nE ,
error distance e, parameter ε,
maximum iterations max_it.
output: Inliers set I, estimated model M , final threshold δ.

1 Initialize NFAmin ←∞.
2 foreach 1 ≤ i ≤ max_it do
3 Randomly select a sample of nE observations Si ⊆ D.
4 Compute estimated model Mi with this sample, Mi ← E(Si).
5 Initialize inliers Ii ← ∅.
6 foreach 1 ≤ j ≤ N do // Compute error vector e
7 ei(j)← e(dj ,Mi)

8 Sort vector e.
9 foreach nE ≤ k ≤ N do // Find optimal k

10 nfak ← NFA(Mi, k) // with eq. (2.19)
11 if nfak < NFAi then
12 NFAi ← nfak
13 ki ← k

14 if NFAi < NFAmin then
15 NFAmin ← NFAi
16 I ← first ki observations as sorted by ei
17 M ←Mi

18 δ ← ei(ki)
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Chapter 3

Bilaterally Weighted Patches for
Disparity Map Computation

Visual correspondence is the key for 3D reconstruction in binocular stereovision. Local
methods perform block-matching to compute the disparity, or apparent motion, of pixels
between images. The simplest approach computes the distance of patches, usually square
windows, and assumes that all pixels in the patch have the same disparity. A prominent
artifact of the method is the “foreground fattening effect” near depth discontinuities. In
order to find a more appropriate support, Yoon and Kweon introduced the use of weights
based on color similarity and spatial distance, analogous to those used in the bilateral filter.
This chapter presents the theory of this method and the implementation we have developed.
Moreover, some variants are discussed and improvements are used in the final implementa-
tion. Several examples and tests are presented and the parameters and performance of the
method are analyzed.
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3.1 Introduction

From the many configurations that two different views could have, there is a particular
case that is specially interesting due to the simplified way to compute depth from two
corresponding points and the limited neighborhood where the matching points have to be
searched in: when cameras have same internal and external parameters but the position
varies, the relative translation between them being parallel to their image planes.

(a) Reference image. (b) Target image. (c) Ground-truth disparity map.

Figure 3.1 – Tsukuba image pair and its ground truth disparity map: the intensity is
proportional to the apparent horizontal displacement, the black border meaning “no data”.

When the camera makes a fronto-parallel motion between the two images, depth estim-
ation is done by estimating the disparity of each pixel, that is its apparent displacement
from the first image (reference image) to the second image (target image). This disparity
permits to recover the 3D position of the point that was photographed in this pixel since
disparity is inversely proportional to depth.Using the similarity between triangles in the
representation in Figure 3.2 we can see that the disparity d between two projections of the
same point X in space is inversely proportional to its relative depth, Z,

d := x1 + x2 =
X

Z
f +

D −X
Z

f =
Df

Z
(3.1)

since Df is a constant of the configuration, it is the product of the focal distance f and
the distance between the two camera centers D.

From any two-view configuration, an equivalent pair of transformed images can be found
that verify the fronto-parallel motion configuration by rectification of the images [LZ99]. In
such a configuration the line joining the camera centers does not intersect with the image
planes (in the affine world) so the epipolar lines become all parallel to each other in the
image planes. In a rectified image the displacement between cameras will be horizontal,
that is parallel to the x-axis of the image plane, so the epipolar lines will be too.

The core of disparity map computation methods is pixel correspondence. In order to
compute the disparity of a pixel in the reference image, the corresponding pixel in the target
image has to be found. With rectified pairs of images the search of the corresponding pixel is
limited to the pixels on the same horizontal line in the target image, since that corresponds
to the epipolar line of the pixel in the reference image. Therefore, the correspondence
search can be done measuring the similarity between pixels and their neighborhoods and
choosing the best match.

A key challenge in the correspondence search is image ambiguity, which results from
the ambiguous local appearances of image pixels due to image noise and insufficient (or
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Figure 3.2 – Geometric sketch representing two cameras, with centers C1 and C2, in rec-
tified position. The view of the scene is orthogonal to the plane parallel to the camera
displacement and perpendicular to the image planes. From the figure, one can notice two
pairs of similar triangles, from which we deduce x1

f = X
Z and x2

f = D−X
Z .

repetitive) texture. By using local support windows, called patches, the image ambiguity
is reduced efficiently while the discriminative power of the similarity measure is increased.
In this approach, it is implicitly assumed that all pixels in a patch are at a similar depth
in the scene and, therefore, that they have similar disparities. The artifact resulting from
the violation of this assumption is the “foreground-fattening” phenomenon.

This effect appears when a pixel is wrongly assigned the disparity corresponding to
other pixels in its patch. For this reason, although taking larger patches leads to smoother
results, it also increases the fattening effect, producing errors near the depth discontinuities
(this phenomenon occurring on the data of Figure 3.1 is illustrated in Figure 3.3). To avoid
this phenomenon, adaptive-window methods try to find an optimal support patch for each
pixel. Because of the advantages of this methods and their simplicity we decided to study
and implement the correspondence search method proposed by Yoon and Kweon [YK06].

Yoon and Kweon’s method consists in computing the support weights of the pixels in
a patch using color similarity and geometric proximity to the center. The weights permit
using larger patches, getting better results in homogeneous regions, while not provoking
the fattening effect near depth discontinuities.

(a) 3× 3 (b) 9× 9 (c) 20× 20 (d) 35× 35

Figure 3.3 – Resulting disparity maps for Tsukuba obtained with a simple block-matching
method (using SAD, sum of absolute differences, for patch similarity) for several patch
sizes. The visible dilation of foreground shapes appearing with the increase of the patch
size is the fattening phenomenon.
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The weights introduced by this method are analogous to the ones used in the bilateral
filter applied to image denoising [TM98]. Recall that the resulting image IBF obtained by
applying the bilateral filter to the original image I in a pixel p is computed as

IBF (p) =

∑
q∈Np∩I w(p,q) I(q)∑

q∈Np∩I w(p,q)
, (3.2)

where Np = [x − r, x + r] × [y − r, y + r] is a neighborhood of p = (x, y) and the weights
are parameterized by positive real numbers σd and σr

w(p,q) = exp
(
− ‖p− q‖2

2σ2
d

− ‖I(p)− I(q)‖2

2σ2
r

)
. (3.3)

We have slightly abused the notation in (3.2), by noting also I the rectangle domain of the
image I.

The Middlebury Datasets

Throughout this chapter, the images from the Middlebury 2001 [SSZ01] and 2003 [SS03]
datasets are used to illustrate the results and compare them to those provided in the
original article by Yoon and Kweon [YK06]. These datasets contain the four pairs of stereo
images: Tsukuba, Venus, Teddy and Cones shown in Figure 3.4 and their disparity range
and ground truth disparity maps are provided. Other Middlebury datasets released more
recently are tested at the end of the chapter in Section 3.8. The evaluation is generally
done in three different groups of pixels: non-occluded pixels, all pixels and pixels near depth
discontinuities. The pixels considered with a wrong disparity assignation are those with
disparity error strictly greater than a threshold (generally 1 pixel). The evaluation can be
done automatically submitting the resulting disparity maps in the Middlebury website and
an average error percentage along with a general ranking are given1.

Figure 3.4 – Left images and ground-truth disparity maps for the stereo pairs of Middlebury
datasets. From left to right: Tsukuba, Venus from the 2001 datasets, Teddy and Cones
from the 2003 datasets.

1The evaluation website used for the experiments of this Chapter is no longer available, we present the
results obtained at the time of the publication of the IPOL article associated with this work in 2015.
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3.2 The Method

Let us note I1 the reference image and I2 the target image of a rectified stereo pair. Then,
Ic1(p1) will be the color intensity in the color channel c (c = r for red, c = g for green, c = b
for blue) of the pixel p1 in the reference image I1. Also, given a pixel p1 = (x, y) in the
image I1 and a disparity d, then p2

d will be the pixel in I2 with coordinates p2
d = (x+d, y).

The method is composed of three parts: adaptive support-weight computation, dissim-
ilarity computation based on the support-weights and disparity selection.

3.2.1 Weight Assignation Based on Gestalt Grouping

Like in other block-matching methods, we take into account a support window of neighbor
pixels to compare it to another patch in the target image. But not all the pixels in these
patches may be relevant to do the comparison. Ideally, only pixels belonging to the same
object and at the same depth should be taken into account. Considering the difficulty
of explicitly segmenting an image, a pragmatic approach is adopted, assigning weights or
probabilities to the neighbor pixels, trying to imitate the human visual system mechanism
for grouping similar points. Therefore, the similarity of pixels in the patch is measured and
weights corresponding to the probability to be grouped with the central pixel are assigned.

The strongest Gestalt grouping principles of the visual system are the color similarity
and the spatial proximity [Met36]. Following these two principles, the support-weight of a
pixel p with respect to another pixel q can be written as

w(p,q) = f(∆cpq,∆gpq) = wcol(∆cpq) · wpos(∆gpq), (3.4)

where ∆cpq and ∆gpq are the color distance and the spatial distance between p and q,
respectively. The function f gives the strength of grouping by similarity and proximity,
and if we consider ∆cpq and ∆gpq as independent events, the strength can be measured
separately by wcol and wpos.

Yoon and Kweon [YK06] justify their choice of wcol with the perceptual difference
between two colors,

D(cp, cq) = 1− exp
(
− ∆cpq

14

)
, (3.5)

which is defined in the CIE Lab color space, and where ∆cpq is the Euclidean distance.
Based on this, they define the similarity strength as

wcol(∆cpq) = exp
(
− ∆cpq

γcol

)
, (3.6)

depending on a fixed positive parameter γcol.
In our implementation we used colors in the RGB space and the L1 distance

∆cpq =
1

3
‖I(p)− I(q)‖1 =

1

3

∑
c∈{r,g,b}

|Ic(p)− Ic(q)|. (3.7)

Working in the CIE Lab space implies extra computations and, in addition, our tests yield
better results using RGB and the L1 norm. The computation advantage of using the L1

norm comes from the fact that it is easy to tabulate: if color channels are integers between 0
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and 255, the L1 norm is an integer between 0 and 3 · 255, whose exponential values can
be tabulated. Our tests exhibit a huge impact on computation time when tabulating:
tabulation divides the running time by a factor 13.

Following the same strategy, the proximity strength is defined as

wpos(∆gpq) = exp
(
− ∆gpq

γpos

)
, (3.8)

where γpos should be the patch radius and ∆gpq is the Euclidean distance

∆gpq = ‖p− q‖2 =
√

(x− x′)2 + (y − y′)2 (3.9)

where p = (x, y) and q = (x′, y′). Putting (3.4), (3.6) and (3.8) together we have

w(p,q) = wcol(p,q) · wpos(p,q) = exp
(
−
(∆cpq
γcol

+
∆gpq
γpos

))
. (3.10)

In Figure 3.5 some examples of weighted patches are shown for the Tsukuba image.

(a) (b)

(c) (d)

Figure 3.5 – Resulting weights for four different 35× 35 patches in the Tsukuba left image,
with γcol = 12 and γpos = 17. The weights are represented as an intensity, white for high
weights, black for low weights.

3.2.2 Dissimilarity Computation and Disparity Selection

For the dissimilarity computation step of the method we have to take into account the
weights that we have just defined. In the computation of the matching cost between pixels,
a raw matching cost e based on the color similarity is combined with the corresponding
support-weights in both reference and target patches.

The dissimilarity between two pixels p1 (in the reference image) and p2
d (in the target

image with disparity d) is defined as

E(p1,p2
d) =

∑
q1∈N1,q2

d∈N2

comb(w(p1,q1), w(p2
d,q2

d)) e(q1,q2
d)

∑
q1∈N1,q2

d∈N2

comb(w(p1,q1), w(p2
d,q2

d))
(3.11)
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where N1 = Np1 ∩ I1 and N2 = Np2
d ∩ I2.

The function comb : R2 → R combines the weights of tentative corresponding pixels
q and q2

d. In the original article [YK06], comb is the product of its arguments, but we
consider variants later on. A faster algorithm is the asymmetric case, where comb(w1, w2) =
w1 because the weights in the target image need not be computed. Notice that the former
combination leads to a spatial weighting by exp(−‖p−q‖2/γpos)

2 = exp(−2‖p−q‖2/γpos),
while the latter gives a weight exp(−‖p−q‖2/γpos). To have consistent values in all cases,
we modified slightly the definition by pulling the proximity term outside the combination
function

E(p1,p2
d) =

∑
q1∈N1,q2

d∈N2

wpos(p1,q1)2 comb(wcol(p1,q1), wcol(p2
d,q2

d)) e(q1,q2
d)

∑
q1∈N1,q2

d∈N2

wpos(p1,q1)2 comb(wcol(p1,q1), wcol(p2
d,q2

d))
.

(3.12)
In (3.12), the raw matching cost e between pixels q1 and q2

d is defined as the truncated
(by a positive parameter τcol) absolute difference of color

e(q1,q2
d) = ec(q1,q2

d) = min
{1

3

∑
c∈{r,g,b}

|Ic1(q1)− Ic2(q2
d)| , τcol

}
. (3.13)

However, results improve by introducing another term in the raw matching cost taking into
account the similarity of the x-derivative value between both pixels [TM14]2. Analogously
to ec, define

eg(q1,q2
d) = min

{
|∇xI1(q1)−∇xI2(q2

d)| , τgrad
}
, (3.14)

where ∇xI is the x-derivative computed in the gray-level image IG as

∇xIG(x, y) =
IG(x+ 1, y)− IG(x− 1, y)

2
(3.15)

and τgrad is a threshold for the gradient difference. Hence, we redefine the total raw match-
ing cost as a linear combination of ec and eg,

e(q1,q2
d) = (1− α) · ec(q1,q2

d) + α · eg(q1,q2
d) (3.16)

with α ∈ [0, 1].
Several choices for the combination function comb (some symmetric, one asymmetric)

have been tested (see Section 3.7), but the choice for the implementation and general
experiments is the multiplication of its arguments.

Finally, a pixel’s final disparity is selected by the winner-takes-all method,

dp1 = argmin
d∈Sd

E(p1,p2
d), (3.17)

where Sd = {dmin, . . . , dmax} is the set of all possible disparities, which is assumed known.
2The use of the x-derivative, among other choices, is due to the horizontal apparent motion, since a

horizontal edge (with large y-derivative) is not discriminative because of the aperture problem.
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3.3 Implementation

The C++ implementation of this method is available as an article and demo in IPOL.
The pseudo-code for the disparity map computation using adaptive weights is presented

in Algorithm 3. The key to a fast algorithm is to compute only once the support weight
patches in the target image I2, based on the trivial observation

(x+ 1) + Sd = x+ (Sd ∪ {dmax + 1} \ {dmin}) . (3.18)

In other words, the patches in I2 that are compared to pixel (x+ 1, y) ∈ I1 are the same as
for pixel (x, y) ∈ I1, with the addition of the new patch centered on (x+ 1 + dmax, y) ∈ I2

and the subtraction of the one centered on (x + dmin, y). If the patches of I2 centered at
pixels {(x+ d, y) : d ∈ Sd} are stored in an array weights, we can simply update the array
to pixel x + 1 by storing at index x + dmin, whose patch centered on (x + dmin, y) is no
longer useful, the new patch centered on (x + 1 + dmax, y). This is why in Algorithm 3,
the lines 7-8 initialize the patches centered on pixels {(0 + d, y) : d ∈ Sd} (except for dmax,
computed in the x loop) that will be used for the pixel (0, y) of I1. Then, for each new x,
only the patch of I2 centered on (x+dmax, 0) needs be computed at line 11. Of course, this
storage is useless in the asymmetric case, when only the weights of I1 are used.

Another factor to accelerate the implementation is the tabulation of the similarity and
proximity strengths in order to accelerate the computation of weights in function support
(Algorithm 4). As observed above, this is possible only when we use the L1 color distance.
The same code is able to use different combinations of weights in the dissimilarity com-
putation3, the function costCombined applies Equation (3.12) for the chosen combination.
Also, the raw matching costs are computed only once for every pair of pixels. For every
possible disparity value the matching costs of pixels in the image are precomputed and
stored in a new image, as explained in Algorithm 5. These images form the layers of the
cost volume, defined as

cost[d](p1) = e(p1,p2
d). (3.19)

In the original article [YK06], the authors do not specify whether they use a post-
processing method to detect and fill occlusions and smooth the resulting disparity map, but
it seems that they do. In our implementation we have used the post-processing presented
and implemented by Tan and Monasse [TM14]. It proceeds by first detecting inconsistent
pixels in left-right disparity maps, replacing their disparity with a simple scan line based
filling, and finally applying a median filter with weights taken from the original image.

3This is a compile-time option, the dynamic use of a function pointer resulting in slower code.
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Algorithm 3: Disparity map computation, function disparityAW
input : Color images I1 and I2, disparity range Sd = {dmin, . . . , dmax}, patch radius r,

parameters γpos, γpol.
output : Disparity maps d1(·), d2(·) for images I1 and I2 respectively.

1 Tabulate color similarity strengths distC(·), array of size 3 · 255 + 1. // Eq.(3.6),(3.7)
2 Tabulate proximity strengths distP (·), array of size (2r + 1)2. // Eq.(3.8),(3.9)
3 Compute array cost of #Sd cost images for all disparities. // Alg. 5
4 E1(·)← +∞ E2(·)← +∞
5 foreach 0 ≤ y < height do
6 Create array weights of #Sd patches.
7 foreach d ∈ [dmin, dmax − 1] do // Weighted target patches
8 weights[d− dmin]← support(I2, d, y, distC). // Alg. 4

9 foreach 0 ≤ x < width do
10 W1 ← support(I1, x, y, distC). // Alg. 4
11 weights[x+ dmax − dmin (mod #Sd)]← support(I2, x+ dmax, y, distC).

// Alg. 4
12 foreach d ∈ Sd do
13 W2 ← weights[x+ d− dmin (mod #Sd)]
14 c← cost[d− dmin]
15 Compute dissimilarity E combining W1, W2, c, and distP . // Eq. (3.12)
16 if E < E1(x, y) then
17 E1(x, y)← E
18 d1(x, y)← d

19 if E < E2(x+ d, y) then
20 E2(x+ d, y)← E
21 d2(x+ d, y)← −d

// The blue lines are not executed in the asymmetric combination of
weights.

Algorithm 4: Weighted patch computation, function support
input : Color image I1, central pixel p, patch radius r, color similarity strength table

distC.
output : (2r + 1)× (2r + 1) image of color-based weights weight centered on p in I1.

1 weight(.)← 0
2 foreach pixel q ∈ Np ∩ I1 do
3 Compute δ ← ‖I1(p)− I1(q)‖1
4 weight(q) = distC[δ]
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Algorithm 5: Cost volume computation
input : Color images I1 and I2, disparity range Sd = {dmin, . . . , dmax}, parameters α,

τcol, τgrad.
output : Cost image vector cost.

1 Compute x-derivatives ∇xI1 and ∇xI2.
2 foreach d ∈ Sd do
3 Create cost image cost[d](·)
4 foreach p ∈ I1 do
5 costc ← τcol costg ← τgrad
6 if p2

d ∈ I2 then
7 costc ← min( 1

3∆cpp2
d , τcol) // Eq. (3.13)

8 costg ← min(|∇xI1(p)−∇xI2(p2
d)|, τgrad) // Eq. (3.14)

9 cost[d](p)← (1− α)costc + α costg // Eq. (3.16)

3.4 Study of Parameters

The parameters of the method are summed up in Table 3.1, where the default values used
in our experiments are also specified. The values that we have used are not the same as the
default parameters of Yoon and Kweon [YK06] since they had to be adapted to a different
color space and norm and the new matching cost formula. We chose the values that gave
the better results for the Middlebury benchmark images. Moreover, tuning the parameters
for each image individually can lead to better results in the final disparity map.

Parameter Value Description
α 0.9 Value in [0, 1] for the combination of the color and the gradient

similarity. The bigger α, the more important the gradient term
is with respect to the color term.

γcol 12 Positive parameter for the color similarity strength.
γpos 17.5 Positive parameter for the proximity strength.
r 17 Radius of the patch considered in the correspondence search.
τcol 30 Color threshold for the matching cost computation.
τgrad 2 Gradient threshold for the matching cost computation.

Table 3.1 – Default parameters of the algorithm.

We tested our implementation varying the parameters (one at a time) and studied the
error in the resulting disparity map. We compared the resulting disparity maps for the
Middlebury benchmark with their ground truth and computed the percentage of “bad”
pixels (pixels whose absolute disparity error is greater than 1) for all the pixels in the
image, the pixels in non-occluded areas and pixels near depth discontinuities.

Seeing that varying some parameters had a greater effect on the error near depth dis-
continuities than in other pixels, we show in Figure 3.6 the variation of this error for the
four Middlebury benchmark images when varying γpos, γcol and α. For γpos, we varied γpos
alongside the patch radius r to see the error evolution when we changed the size of the
patch. The error stabilizes for γpos > 15.5 (r = 15) so we preserved the default value of
Yoon and Kweon [YK06] γpos = 17.5 (r = 17) and patch size 35× 35.
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Figure 3.6 – Influence of the parameters γpos, γcol and α on the error percentage near depth
discontinuities for the four reference images.

5 10 20 30 40 50 55

τ
col

0

2

4

6

8

10

%
 e

rr
o
r 

in
 T

s
u
k
u
b
a

non-occluded

all

discontinuities

0 1 2 3 4 5

τ
grad

0

2

4

6

8

10

%
 e

rr
o

r 
in

 T
s
u

k
u

b
a

Figure 3.7 – Influence of the thresholds τcol and τgrad on the error percentage in Tsukuba
image.
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The essence of the method lies in a good choice for the parameter γcol. As we increase
γcol, we take less into account the color distance w.r.t. the central pixel, so we take more
pixels in the window into consideration for the comparison. This translates to the results in
a first improvement of the accuracy when γcol is increased, but the error grows eventually
when too many pixels with different disparities are taken into account for high γcol. As γcol
gets very large, we are using regular block matching. To find a compromise between all the
images we choose γcol = 12.

The addition of the gradient term proves to be very beneficial and choosing α = 0.9
we get the best results. Notice that although this term is highly helpful, we should not
disregard the color term, since the error increases sharply after α = 0.95. Figure 3.8 shows
the influence of α in the resulting disparity map. We can see that increasing α we erase
some of the errors in the background and recover the edges a lot better, with less fattening
effect.

Regarding the color and the gradient thresholds, their effect on the error is similar for all
four images, so we chose to illustrate their influence by showing in Figure 3.7 the results for
the Tsukuba image at all pixels, pixels near depth discontinuities and non-occluded pixels.
It is clear that while the error decreases when τcol increases and stabilizes after τcol = 20,
the influence of τgrad is greater and its optimal value is τgrad = 2.
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(a) α = 0, etotal = 5.18%. (b) α = 0.5, etotal = 4.82%. (c) α = 0.9, etotal = 4.46%.

Figure 3.8 – Disparity maps for Tsukuba for different values of α without the post-processing
step and the percentage of total error, etotal.
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3.5 Middlebury Benchmark Disparity Maps

The results for the Middlebury benchmark are presented and compared to those presented
in the original article in Figure 3.9 and Table 3.2. The parameters values used in all cases
are the default ones specified in Table 3.1. The disparity maps have been improved and
smoothed by a final post-processing step as in the article by Tan and Monasse [TM14].

We notice that whereas we get a few additional isolated errors compared to the original
method and we are not able to compute the disparity in some small regions, our imple-
mentation recovers the depth discontinuities much better and with less fattening effect. As
a result, our implementation achieves better results in general as it is shown in Table 3.2.

Left image Ground truth Our results Results from [YK06]

Figure 3.9 – Disparity maps and comparison with the results of Yoon and Kweon [YK06].



3.6. Weights at Error Pixels 45

Tsukuba Venus Teddy Cones
Rank non all disc non all disc non all disc non all disc

Original art. [YK06] 80.2 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26
Ours w/o post.-proc. 90.4 2.50 4.46 7.25 1.29 2.86 4.61 7.60 17.0 17.0 3.13 13.8 8.29
Ours with post.-proc. 63.7 1.86 2.27 6.61 0.65 1.02 3.15 6.56 14.4 15.5 2.48 8.81 6.91

Table 3.2 – Error percentages on Middlebury stereo benchmark (with tolerance of ±1 pixel
for disparity). The rank is the algorithm average rank in the Middlebury website. In bold
are the best (i.e., lowest) values of the three rows for each column. Our results overcome
the ones from [YK06] in most of the cases. The results are significantly improved by the
post-processing (p.p.).

3.6 Weights at Error Pixels

The adaptive weights method combined with the use of the gradient gives good results
and it has a good performance at disparity discontinuities. Nevertheless, it is not able to
overcome some of the usual problems of local methods. Indeed, most of the errors produced
by this method are found in repetitive areas, homogeneous regions or isolated points with
a very different color from their neighbors. Examples of these errors are presented in
Figures 3.10, 3.11 and 3.12, and the weights around the erroneous pixels are shown in order
to understand their cause.

Figure 3.10 is an example of repetition (stroboscopic effect). The binders in the shelf
are organized one after another and they look all similar. The method fails to find the good
correspondence in the case of some pixels in that region since it ignores the pixels that are
not part of the repetition. In fact, the pixels are assigned to the previous binder.

(a) Computed disparity map. (b) Left image. (c) Right image.

(d) w(pd, .) (e) w(pe, .) (f) w(pf , .) (g) w(pd, .)w(pe, .) (h) w(pd, .)w(pf , .)

Figure 3.10 – Example of repetition. The patch d of center pd in (b) is matched to patch e
of center pe in (c), but the true correspondence is in fact patch f of center pf . Images (d),
(e) and (f) show the weights in the patches. (g) is the combinations of the weights (d) and
(e). (h) is the combination of (d) and (f). The two combined weights are similar and since
the color distances in both correspondences are also similar because of the repetition, the
assignation fails to find the correct disparity.
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Figure 3.11 is an example of isolated point. Below the bust in Tsukuba image there
are some letters on the box that get a bad disparity. The problem in this case is the
presence of some points in that area that have a color really different from their neighbors
so the weights in the reference image (3.11a) are scattered. Consequently, the possible
combinations of weights are also scattered and the similarity measure takes into account
few pixels. Ultimately, the correspondence is assigned to a combination of weights that
consists in almost all the weight concentrated in the central pixel. This effect was observed
in a survey paper [HBG13].

(a) (b) (c)

Figure 3.11 – Example of isolated point. (a) Weighted patch of the reference pixel. (b)
Combined weights of the detected correspondence. (c) Combined weights of the true cor-
respondence.

Figure 3.12 shows that the method, even with its large 35× 35 windows, is not immune
to the aperture problem, that is, the window is not large enough to contain significant
horizontal gradient. In the background of the image there is a bookcase. The method
assigns significant weights only to those pixels on the shelf (3.12a), which is a homogeneous
region of the image. Because of that, the method fails to find the correct correspondence.

(a) (b) (c)

Figure 3.12 – Example of aperture problem, where the patch is not discriminative enough,
because it has no significant non-horizontal edge. (a) Weighted patch of the reference pixel.
(b) Combined weights of the detected correspondence. (c) Combined weights of the true
correspondence.

3.7 Variants of the Method

In our implementation we have modified the original color space used in the similarity
strength (3.6), but we can study how the method works in the original space. One could
also study other ways to combine the weights of the two patches when we compute the
dissimilarity (3.12) for a certain pair of pixels. These variants of the method are studied in
the following sections.
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3.7.1 CIE Lab Space

Using the CIE Lab color space takes more computations due to the conversion of the
values originally in RGB. Although we have not used this space in our implementation,
some results using the CIE Lab space are presented below. For the implementation of the
method in this space we used the following conversion:4 if we have a color c = (r, g, b) in
RGB coordinates, first we have to convert it to XYZ coordinates, X

Y
Z

 =

 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.950

 r/2.55
g/2.55
b/2.55

 (3.20)

and then to CIE Lab,
L = 116 · f(Y/Yn)− 16
a = 500 · (f(X/Xn)− f(Y/Yn))
b = 200 · (f(Y/Yn)− f(Z/Zn))

with f(t) =

{
t
1
3 if t > ( 6

29)3

1
3

(
29
6

)2
t+ 4

29 otherwise.
(3.21)

where (Xn, Yn, Zn) = (95.047, 100.00, 108.883) is the white point. The parameters used are
γcol = 3.5, τcol = 10, γpos = 17.5 and α = 0.9. We can observe in Figure 3.13 that the
results near discontinuities are a little worse than using RGB and we get inaccurate edges.
Apart from this, the numerical results are quite close to the ones using the RGB space
(Table 3.3), some of them being even better (non-occluded pixels of Venus image).

C
IE

La
b

R
G
B

Figure 3.13 – Comparison of color spaces for the Middlebury benchmark images.

Tsukuba Venus Teddy Cones
non all disc non all disc non all disc non all disc

RGB space 1.86 2.27 6.61 0.65 1.02 3.15 6.56 14.4 15.5 2.48 8.81 6.91
CIE Lab space 1.85 2.60 7.94 0.50 1.25 5.33 7.53 15.1 18.3 3.35 9.83 9.58

Table 3.3 – Error comparison between our implementation using CIE Lab and RGB color
spaces.

4Formula taken from http://www.cs.rit.edu/~ncs/color/t_convert.html

http://www.cs.rit.edu/~ncs/color/t_convert.html
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3.7.2 Combination of Weights

To compute each patch pair matching cost, the presented method computes the product of
weights of the target and reference patches, see Equation (3.12). Other possibilities are ex-
plored below. The simplest approach is to consider only the weights of one patch (asymmet-
ric weights), for example, those of the reference patch, which amounts to w(p2

d,q2
d) = 1

in Equation (3.12). Another approach, similar to taking the product is to take the sum of
weights

E(p1,p2
d) =

∑
q1∈N1,q2

d∈N2

wpos(p1,q1)2
(
wcol(p1,q1) + wcol(p2

d,q2
d)
)
e(q1,q2

d)

∑
q1∈N1,q2

d∈N2

wpos(p1,q1)2
(
wcol(p1,q1) + wcol(p2

d,q2
d)
) . (3.22)

The parameters that give the best results for these two approaches and used in our tests
are γpos = 18, γcol = 4 and τcol = 20. Finally, in order to take the union of supports and
penalize non-coincident regions, we can consider taking the maximum of weights

E(p1,p2
d) =

∑
q1∈N1,q2

d∈N2

wpos(p1,q1)2 max
(
wcol(p1,q1), wcol(p2

d,q2
d)
)
e(q1,q2

d)

∑
q1∈N1,q2

d∈N2

wpos(p1,q1)2 max
(
wcol(p1,q1), wcol(p2

d,q2
d)
) .

(3.23)
For this approach the best results are achieved by using r = 14, γpos = 14, γcol = 4 and
τcol = 15.

Figure 3.14 shows that near depth discontinuities, the best combination is the product:
it puts a tiny weight on the region occupied by the ear of the teddy bear in left or right
image. A program included in the source code archive, show_weights, permits to output
the weighted patches with different combinations.

Visually, the results for the other alternatives are really similar to the ones given by the
product (Figure 3.15). However, when considering the error (Table 3.4), the asymmetric
and maximum combinations are a little worse in the discontinuities than the product and
the sum (except for Tsukuba). Surprisingly, using asymmetric weights does not reduce the
accuracy as much as we could expect and it proves to be a good substitute if we need to
speed up computations. Nevertheless, the maximum has a worse performance than the
other two variants, giving many errors and low accuracy in depth discontinuities.

Tsukuba Venus Teddy Cones
non all disc non all disc non all disc non all disc

Product 1.86 2.27 6.61 0.65 1.02 3.15 6.56 14.4 15.5 2.48 8.81 6.91
Asymmetric 1.95 2.41 7.99 0.74 1.42 8.12 6.90 14.6 17.0 3.21 9.90 9.03
Sum 2.28 2.68 8.56 0.65 1.11 5.03 6.82 14.6 16.8 3.01 9.65 8.49
Maximum 2.74 3.14 10.8 1.62 2.23 11.7 7.72 15.2 18.6 3.38 9.72 9.35

Table 3.4 – Error percentages on Middlebury benchmark for different weight combination
functions.
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Patch and weights centered at pixel (307,44)
in Teddy left image.

Patch and weights centered at the corres-
ponding matching pixel (292,44) in Teddy
right image.

(a) Product. (b) Asymmetric. (c) Sum. (d) Maximum.

Figure 3.14 – Example of the resulting weights for the matching cost computation of two
patches using different combinations of weights.

(a) Product. (b) Asymmetric. (c) Sum. (d) Maximum.

Figure 3.15 – Disparity maps (with post-processing) comparison using diverse weights com-
binations for Venus and Teddy images.
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3.8 Other Examples

We have tested the algorithm using the default parameters with images from other Middle-
bury datasets and obtained satisfying results. Some examples for the images of Middlebury
2005 and 2006 datasets [SP07] are presented in Figure 3.16. The method is able to recover
fine structures, for instance, most of the bars, brushes and holes in Art image are respec-
ted. In addition, homogeneous and textured regions are not a problem in most of the cases
(Flowerpots and Baby3 images). Nonetheless, we get some errors in the Laundry image in
the region of the laundry basket.

Left image Ground truth Our result

Figure 3.16 – Resulting disparity maps for other images (from top to bottom: Art, Laundry
from Middlebury 2005; Flowerpots, Baby3 from Middlebury 2006).
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In Figures 3.17, 3.18 and 3.19 the resulting disparity maps for all training images of
the new Middlebury 2014 datasets [SHK+14] are shown. Both left and right images are
presented to visualize some changes and the resulting disparity map is shown as a colorized
depth map since it is the chosen representation for the provided ground truths. Most image
pairs of the dataset are not perfectly rectified (except PlaytableP) which makes the resulting
disparity maps have some errors. What is more, some of the images have changes in lighting
and exposure (ArtL, MotorcycleE, PianoL) which our algorithm does not account for. In
consequence the results are completely erroneous in those cases. For the rest of the images,
where no challenging light change is present, our algorithm is able to give a good estimation
of the disparity map. The different results obtained by Piano and PianoL or Motorcycle
and MotorcycleE exemplify how the change of lighting and exposure affects our algorithm
success.

Left image Right image Ground truth Our result

Figure 3.17 – Resulting disparity maps for new datasets (from top to bottom: Adirondack,
ArtL, Jadeplant, Motorcycle and MotorcycleE).
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Left image Right image Ground truth Our result

Figure 3.18 – Resulting disparity maps for new datasets (from top to bottom: Piano,
PianoL, Pipes, Playroom, Playtable, PlaytableP and Recycle).
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Left image Right image Ground truth Our result

Figure 3.19 – Resulting disparity maps for new datasets (from top to bottom: Shelves,
Teddy and Vintage).

3.9 Other Adaptive Windows for Stereo Matching

The good results of the bilateral weights inspired us to explore other adaptive windows and
weights for local stereo matching, with the goal of improving the accuracy or computational
time of Yoon and Kweon’s algorithm [YK06]. Several approaches were considered either to
define different weights from the ones in equation (3.4) or replace the taken neighborhood
altogether. On a first step, we turned to General Adaptive Neighborhoods as defined by
Debayle and Pinoli in [DP06]. The second approach was using the Tree of Shapes developed
by Ballester, Caselles and Monasse [BCM03] to define new distance between pixels in the
same image in order to describe new weights.

The weak General Adaptive Neighborhood (GAN) of a point p ∈ I of a gray image
is the path-connected set of points q ∈ I verifying |I(p) − I(q)| < m for a tolerance
m ∈ [0, 255], we note it V I

m(p) (a similar definition is given for color images). Three
different strategies using GANs were tested: GANs as an adaptive window, GAN-based
distance to compute new weights and GAN shape matching as dissimilarity measure. The
second one was the most successful obtaining similar accuracy results than the Bilateral
Weights (refer to Table 3.5 and Figure 3.20), but the computation time was multiplied by
a factor of 10. The new weights are defined using the weak GAN metric [PD11]

dV I(p,q) = inf
m∈[0,255]

{m | p ∈ V I
m(q)} (3.24)

which replaces the color distance ∆cpq in the similarity strength weight (3.6),

w(p,q) = exp
(
−
(dV I(p,q)

γcol
+

∆gpq
γpos

))
. (3.25)
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The Tree of Shapes of a gray image I is a graph representing the shapes of the image
and its relationships of inclusion. The nodes are the shapes, the connected components of
inferior or superior gray level sets, filling interior “holes”. The edges connect each shape
with the shapes that it contains in the image (children) and the shapes in which is con-
tained (parent). A distance dtree(S1, S2) between shapes can be defined by counting the
number of edges of the shortest path between the shapes in graph. With this distance, it
is straightforward to define a distance between points in the same image as the distance
between the smallest shapes containing each point, dtree(p,q) = dtree(S(p), S(q)). We used
this distance (a variation combining the distances in the three color channels) to substitute
the color distance ∆cpq in the similarity strength weight (3.6) for the disparity computation
using support-weights. The final weights are

w(p,q) = exp
(
−
(dtree(p,q)

γcol
+

∆gpq
γpos

))
. (3.26)

The accuracy results on the Middlebury images using this weights were slightly better,
specially in depth discontinuities, than the Bilateral Weighted patches (see Table 3.5 and
Figure 3.20). Moreover, the computation time of our implementation was comparable to
the implementation of the bilateral weights.

B
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Figure 3.20 – Comparison of different weights for the adaptive-support disparity computa-
tion for the Middlebury benchmark images. Bilateral weights, weights based on weak GAN
metric (GANs) and weights based on the Tree of Shapes distance (ToS).
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Tsukuba Venus Teddy Cones
non all disc non all disc non all disc non all disc

Bilateral Weights 1.86 2.27 6.61 0.650 1.020 3.15 6.56 14.4 15.5 2.48 8.81 6.91
GAN weights 1.82 2.18 6.79 0.580 1.040 3.30 6.50 14.2 15.9 2.26 8.71 6.26
Tree of Shapes 1.72 2.11 5.66 0.465 0.769 2.68 6.02 13.8 14.6 2.28 8.57 6.54

Table 3.5 – Error percentages on Middlebury benchmark for other adaptive weights methods
we have tried.

3.10 Conclusion

We have presented a study and implementation of Yoon and Kweon’s method [YK06] for
disparity map computation. This adaptive support-weight approach was the first published
block-matching method that put weights in the blocks. Others have followed, but a sur-
vey [HBG13] found that the method of Yoon and Kweon [YK06] yields the best results.
Very similar results, but with much faster computation, can be obtained using a guided
filter of the cost volume [TM14], which can also be tested in IPOL [TM14]. Hosni et
al. [HBG10] propose to use an explicit segmentation of the image in order to speed up com-
putations. Moreover, one of the best performing stereo matching methods [MSZ+11] uses
a faster approximation of the presented algorithm that selects cross-shaped neighborhoods.
However, it remains to be seen in what measure the better results are due to the adaptive
neighborhoods on their own.
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Chapter 4

Trifocal Tensor for 3-View Pose
Estimation

The natural extension after the study of the geometry of two views is to consider three views
and analyze the constraints between points to find a similar operator to the fundamental
matrix, the solution is the trifocal tensor. In this chapter we explore the advantages offered
by the trifocal tensor in the pose estimation of a triplet of cameras as opposed to computing
the relative poses pair by pair with the fundamental matrix. Theoretically, the trilinearities
characterize uniquely three corresponding image points in a tighter way than the three
epipolar equations and this translates in an increasing accuracy. However, we show that
this initial improvement is not enough to have a remarkable impact on the pose estimation
after bundle adjustment, and the use of the fundamental matrix with image triplets remains
relevant.
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4.1 Introduction

As seen in Section 2.4, the perspective projection induced by pinhole cameras gives the
constraints between the space points and their projections onto the images. Taking two
images, the fundamental matrix is an algebraic operator encoding the relation between cor-
responding image points, which gives a way to infer the relative orientations and positions
of a pair of camera viewpoints.

When taking three views of the same scene, there exists an equivalent operator to the
fundamental matrix describing the geometric constraints linking the three views: the tri-
focal tensor; the algebraic constraints relating three corresponding image points are known
as trilinearities. It was shown that a general multi-view matrix can be found for n views,
but that the relations given by these n views depend only on the constraints involving two
or three views at a time [MHV+04]. Theoretically, no extra geometric information about
three views comes from considering additional views at once. Therefore, multi-view struc-
ture from motion pipelines always rely on initial view pairs [MMM12b, SF16, Sna10] or
triplets [HTKP09, MMM13b].

The conventional wisdom advocates the use of the trifocal tensor with a triplet of views
rather than taking pairs and the fundamental matrix. We question this assumption with a
study of the trifocal tensor and its performance against the fundamental matrix. Moreover,
the main possible parameterizations of the tensor are described, analyzed and tested to find
the advantages and disadvantages offered by each one.

4.2 Definition of The Trifocal Tensor

The Trifocal Tensor (written TFT for short) associated to three views is a 3 × 3 × 3
tensor T = [T1, T2, T3] usually defined for three cameras in canonical1 configuration with
projection matrices P1 = (Id3|0), P2 = (A|a4), P3 = (B|b4) with each slice Ti the 3 × 3
matrix

Ti = aib
>
4 − a4b

>
i , (4.1)

where ai and bi are the columns of A and B. A more general definition for non canonical
cameras can be found in [HZ04].

From a trifocal tensor T we can extract the epipoles: the epipole e31 can be computed
as the common intersection of the lines represented by the right null-vectors of T1, T2 and
T3 and, analogously, epipole e21 can be computed as the common intersection of the lines
represented by the left null-vectors of T1, T2 and T3.

The TFT has 27 parameters, is unique up-to-scale for any 3-view configuration and
invariant by projectivity. Still, the degrees of freedom of a set of three projective cameras up-
to-projectivity is 18 [HZ04]. Hence, the parameters of the trifocal tensor must satisfy some
constraints reducing the 8 remaining degrees of freedom of the trifocal tensor. However, the
missing constraints are not obvious nor easily derivable. Section 4.3 focuses on presenting
and analyzing several minimal parameterizations and constraints developed over the years.

1Any triplet of projection matrices can be brought to canonical configuration by projectivity, that is a
transformation of the projective space.
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Trilinearities

At its origin, the TFT is derived from the relation between the projections of the same
3D line in the three images. Other incidence relations can be found for this tensor, in
particular, the following equation for triplets of corresponding image points x̄1, x̄2, x̄3 is
satisfied:

[x̄2]×

( 3∑
i=1

(x̄1)iTi

)
[x̄3]× = 03×3 . (4.2)

Among the 9 scalar equations in (4.2), only 4 are linearly independent. They are linear on
the trifocal tensor parameters and trilinear on the image coordinates.

Remark 1. Considering the views pairwise, the incidence relations given by the funda-
mental matrices for the same corresponding triplet x̄1, x̄2, x̄3 are the set of 3 epipolar
equations (2.8), linear on the fundamental matrices parameters and bilinear on the image
points

x̄>2 F21x̄1 = 0, x̄>3 F31x̄1 = 0, x̄>3 F32x̄2 = 0 . (4.3)

The involved fundamental matrices are F21 = [a4]×A, F31 = [b4]×B, F32 = [b4 −
BA−1a4]×BA

−1.

4.3 Minimal Parameterizations and Constraints

Many possible minimal characterizations for the trifocal tensor have been proposed in the
literature [Can00, FP98, Nor09, PF98, PH14, Res02, TZ97]. We chose to focus on four
representative ones that can be efficiently implemented in the pose estimation process.

4.3.1 Correlation Slices - C. Ressl

The minimal parameterization of the trifocal tensor proposed by Ressl in his thesis [Res02]
is based on algebraic constraints of the correlation slices. It involves 20 parameters and 2
constraints. With this parameterization it is possible to completely characterize the trifocal
tensor for three views. The three matrices of the trifocal tensor Ti can be parameterized in
the following minimal form:

Ti =
[
si, vsi +mie31, wsi + nie31

]>
i = 1, 2, 3 (4.4)

where si ∈ R3 are such that
∥∥(s1 s2 s3

)∥∥ = 1, e31 ∈ R3 with ‖e31‖ = 1, and v, w,mi, ni ∈
R.

This parameterization is directly related to the epipoles since e31 = b4 corresponds to
the epipole, projection of the first camera center in the third image, and the epipole in
the second image e21 = a4 is proportional to (1, v, w)>. It is also related to an equivalent
parameterization of three canonical projective matrices.

From a trifocal tensor T = [T1, T2, T3] we can find the parameters of Ressl by extracting
the epipoles e21 and e31 (with norm 1), then v and w are found by dividing e21 by its first
coordinate (1, v, w)> = e21

(e21)1
. The vectors si and the scalars mi, ni can be computed

s>i =
T 1·
i

λ
, mi = (

T 2·
i

λ
− v s>i ) e31, ni = (

T 3·
i

λ
− w s>i ) e31, i = 1, 2, 3 (4.5)
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where λ = ‖(T 1·
1 , T

1·
2 , T

1·
3 )‖ and T j·i is the j-th row of the i-th correlation slice.

4.3.2 Orthogonal Matrices - K. Nordberg

The trifocal tensor can also be parameterized by three 3× 3 orthogonal matrices U , V and
W that transform the original tensor into a sparse one, T̃, with only 10 non-zero parameters
up-to-scale [Nor09]:

T̃ = T(U ⊗ V ⊗W ) ⇒ T = T̃(U> ⊗ V > ⊗W>) (4.6)

where the tensor operation corresponds to the matrix operation on the slices T̃i =
V >(

∑
m Um,iTm)W . The scale can be fixed by imposing ‖T̃‖ = 1. For canonical cam-

eras, such orthogonal matrices can be computed as:

U0 = (A−1a4, [A−1a4]×
2
B−1b4, [A−1a4]×B

−1b4), U = U0(U>0 U0)−
1
2 (4.7)

V0 = (a4, [a4]×AB
−1b4, [a4]×

2AB−1b4), V = V0(V >0 V0)−
1
2 (4.8)

W0 = (b4, [b4]×BA
−1a4, [b4]×

2BA−1a4), W = W0(W>0 W0)−
1
2 (4.9)

and each one can be parameterized by 3 parameters. Therefore, the trifocal tensor T is
parameterized in this case by a total of 19 parameters and one constraint fixing the scale
of T̃.

A main disadvantage of this specific parameterization is that the matrices U0, V0 andW0

become singular when the three camera centers are collinear and, therefore, no orthogonal
matrix can be computed from them. It is then a parameterization only valid for non-
collinear centers.

4.3.3 Determinants on the Slices - O. D. Faugeras and T. Papadopoulo

In [FP98] a set of 12 algebraic equations are presented as sufficient constraints to char-
acterize a trifocal tensor. It consists of 3 constraints of degree 3 corresponding to the
determinant of the slices being zero, |Ti| = 0 for i ∈ {1, 2, 3}, and 9 more constraints of
degree 6 combining several determinants of the elements of T, for j1, j2, k1, k2 ∈ {1, 2, 3}
with j1 6= j2, k1 6= k2

|tj1k1. tj1k2. tj2k2. | |tj1k1. tj2k1. tj2k2. |−
|tj2k1. tj1k2. tj2k2. | |tj1k1. tj2k2. tj1k2. | = 0 (4.10)

where tjk. represents the vector
(
T jk1 , T jk2 , T jk3

)>.
This set is not minimal since only 9 constraints should be enough for the characteriz-

ation of a valid trifocal tensor. The authors give an outline of how to obtain a minimal
parameterization using the constraints that requires to solve a polynomial of degree 2, thus
giving two possible tensors. We considered best to use the minimization of the constraints
instead of the minimal parameters for a more straightforward implementation.
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4.3.4 Π matrices - J. Ponce and M. Hebert

A completely different approach to characterize the 3-view model has been explored
in [PH14]. Through the study on the incidence of three lines on space, a set of three
matrices (related to the principal lines) that give constraints on the correspondence of
three image points can be defined. These matrices have a total of 27 parameters and play
a role similar to the TFT.

Similarly to the parameterization of the trifocal tensor by Nordberg, the main drawback
of the Π matrices is that they are only valid for non-collinear camera centers. However,
Ponce and Hebert[PH14] also proposed equivalent matrices with one extra trilinear con-
straint for collinear camera centers. We describe both cases below working in the projective
space.

Non-Collinear Cameras

Given three cameras P1, P2, P3, with non-collinear centers we can consider, without loss
of generality, that the camera centers are positioned on the fundamental points of the
projective space, C̄1 = (1, 0, 0, 0)>, C̄2 = (0, 1, 0, 0)>, C̄3 = (0, 0, 1, 0). We can define the
following three 4× 3 matrices up-to-scale

Π1 =


♦>1
π>21

π>31

π>41

 Π2 =


π>12

♦>2
π>32

π>42

 Π3 =


π>13

π>23

♦>3
π>43

 such that PiΠi ∼ Id ∀i (4.11)

where ♦i ∈ R3 represent undetermined vectors and can all be fixed to (0, 0, 0)>.
These matrices uniquely characterize the triplets of corresponding image points. For

three image points x̄1, x̄2, x̄3, the following equations are verified if, and only if, they form
a triplet of corresponding points

x̄>1 (π41π
>
32 − π31π

>
42)x̄2 = 0 (4.12)

x̄>1 (π41π
>
23 − π21π

>
43)x̄3 = 0 (4.13)

x̄>2 (π42π
>
13 − π12π

>
43)x̄3 = 0 (4.14)

(π>21x̄1)(π>32x̄2)(π>13x̄3) = (π>31x̄1)(π>12x̄2)(π>23x̄3) . (4.15)

To reduce the parameters of the Π matrices, Ponce and Hebert propose the 6 homogen-
eous constraints:

π1
21 = π2

32 = π3
13 = 0, π2

31 = π3
41, π3

12 = π1
42, π1

23 = π2
43 (4.16)

that can be achieved by a projective transformation of the space. This reduces the paramet-
ers to 21 and with 3 norm constraints on the matrices, ‖Πi‖ = 1, the minimal representation
is attained.

However, the homogeneous constrains (4.16) cannot be achieved by all configurations of
non-collinear cameras. In fact, in [TPH16]-Lemma C1 a subset of 3-view configurations of
non-collinear cameras denoted as general configurations is defined to exclude all configur-
ations that cannot achieve the minimal parameterization. A configuration is general when
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none of the principal lines of each camera (three lines per camera, that go through the
center Ci with direction ~ii, ~ji and ~ki) intersect (in the projective space) with any principal
line from another camera.

The scenes excluded from this group are many and not unusual in the pose estimation
task. For instance, all three cameras pointing at the same point in space or a baseline
perpendicular to one of the camera planes are configurations not fulfilling the conditions
for the minimal parameterization of the Π matrices. For that reason we propose new
constraints to achieve a more inclusive minimal parameterization.

Proposition 1. The following 9 quadratic constraints are sufficient and restrict the 27
parameters of the Πi matrices to the theoretical 18 degrees of freedom, since they also fix
the scale of each Πi matrix:

‖π41‖ = 1 ‖π42‖ = 1 ‖π43‖ = 1 (4.17)

‖π21‖ = 1 π>21 · π41 = 0 (4.18)

‖π32‖ = 1 π>32 · π42 = 0 (4.19)

‖π13‖ = 1 π>13 · π43 = 0 (4.20)

Proof. Let Πi be three matrices as defined in (4.11). To prove Proposition 1 we need to
find a projectivity Q transforming the Πi matrices so that they verify the constraints. Such
a projectivity has to leave the camera centers invariants, given that they have to coincide
with the three first fundamental points for the definition of the Πi matrices to be still valid.
Any projectivity Q leaving the camera centers fixed on the fundamental points will have
the following form

Q =


α 0 0 κ
0 β 0 λ
0 0 γ µ
0 0 0 ν

 . (4.21)

The transformed matrices Q ·Πi,

Q ·Π1 =


X>1

βπ21 + λπ>41

γπ>31 + µπ>41

νπ>41

 Q ·Π2 =


απ>12 + κπ>42

X>2
γπ>32 + µπ>42

νπ>42

 Q ·Π3 =


απ>13 + κπ>43

βπ>23 + λπ>44

X>3
νπ>43


(4.22)

will be valid matrices verifying the definition (4.11) for the new camera matrices Pi ·Q−1.
We can first fix the scale of these matrices by scaling each one of them so that (4.17) is

verified. In addition, the scale of Q can be fixed by letting ν = 1 so that the norm of vectors
π4i does not change. Then, β and λ can be determined by imposing ‖βπ21 + λπ41‖ = 1
and (βπ21 + λπ41)>π41 = 0 so that Π′1 = QΠ1 verifies (4.18). γ and µ can be determined
by imposing ‖γπ32 + µπ42‖ = 1 and (γπ32 + µπ42)>π42 = 0, so that Π′2 = QΠ2 verifies
(4.19). And lastly, α and κ can be determined by imposing ‖απ13 + κπ43‖ = 1 and
(απ13 + κπ43)>π43 = 0 so that Π′3 = QΠ3 verifies (4.20).

Just like with the trilinearities (4.2) in the trifocal tensor case, these parameters give
4 equations describing the incidence relation for image points. Here, (4.12) to (4.14) are
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bilinear on the points and completely equivalent to the epipolar equations given by the
fundamental matrices. Equation (4.15) is trilinear on the image points and it is key to
the characterization of the correspondence of three points, which the fundamental matrices
fail to achieve when one of the points lies on the line joining two epipoles. This is pre-
cisely the geometric contribution of taking three views instead of individual pairs to the
characterization of matches.

Collinear Cameras

For three collinear cameras we can no longer position the centers onto the fundamental
points. In this case we transform the projective space so that two camera centers are
positioned in the two first fundamental points and the third one in the same line, C̄1 =
(1, 0, 0, 0)>, C̄2 = (0, 1, 0, 0)>, C̄3 = (1, 1, 0, 0)>. This fixes 7 of the 15 degrees of freedom
of the projective framework.

In such a projective space, we can define three 4× 3 matrices up-to-scale

Π1 =


♦>1
π>21

π>31

π>41

 Π2 =


π>12

♦>2
π>32

π>42

 Π3 =


♦>3

♦>3 + ω>3
π>33

π>43

 such that PiΠi ∼ Id ∀i (4.23)

where ♦i ∈ R3 are undetermined vectors that can all be fixed to (0, 0, 0)>.
These matrices uniquely characterize the triplets of corresponding image points. For

three image points x̄1, x̄2, x̄3, the following equations are verified if, and only if, they form
a triplet of corresponding points

x̄>1 (π41π
>
32 − π31π

>
42) x̄2 = 0 (4.24)

x̄>1 (π41π
>
33 − π31π

>
43) x̄3 = 0 (4.25)

x̄>2 (π42π
>
33 − π32π

>
43) x̄3 = 0 (4.26)

(π>31x̄1)(π>32x̄2)(ω>3 x̄3) + (π>33x̄3)[(π>31x̄1)(π>12x̄2)− (π>21x̄1)(π>32x̄2)] = 0 (4.27)

(π>41x̄1)(π>42x̄2)(ω>3 x̄3) + (π>43x̄3)[(π>41x̄1)(π>12x̄2)− (π>21x̄1)(π>42x̄2)] = 0 . (4.28)

To reduce the parameters of the Π matrices, Ponce and Hebert propose the 8 homogen-
eous constraints:

π1
21 = π2

31 = π1
12 = π2

42 = 0, π3
31 = π3

21, π3
32 = π3

42, ω1
3 = ω2

3 = ω3
3 (4.29)

that can be achieved by a projective transformation of the space. This reduces the para-
meters to a total of 19, and along with the three norm constraints, ‖Πi‖ = 1, the minimal
representation of 16 d.o.f. is attained.

Just like in the non-collinear case, a subset of collinear configurations is defined
in [TPH16]-Lemma D1 in order to exclude the configurations that cannot achieve the min-
imal parameterization. In the same way, this definition leaves out many configurations as
common as two cameras pointing at the same point in space or parallel axes in two image
planes. We propose new constraints to achieve a more inclusive minimal parameterization.
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Proposition 2. The following 11 quadratic constraints are sufficient and restrict the 27
parameters of the Πi matrices to the theoretical 16 degrees of freedom, since they also fix
the scale of each matrix:

‖w‖ = 1 ‖π33‖ = 1 ‖π43‖ = 1 (4.30)
‖π33‖ = 1 ‖π43‖ = 1 (4.31)

π>21 · π31 = π>21 · π41 = 0 (4.32)

π>12 · π32 = π>12 · π42 = 0 (4.33)

π>31 · π41 = π>32 · π42 = 0 (4.34)

Proof. Let Πi be three matrices as defined in (4.23). Similarly to the proof of Proposition 1
we need to find a projectivity leaving the camera centers invariant and transform the
matrices Πi to verify the constraints of the minimal parameterization. Any projectivity Q
leaving the camera centers fixed will have the following form

Q =


α 0 β γ
0 α κ λ
0 0 µ ν ′

0 0 δ′ τ

 =


1 0 0 0
0 1 0 0
0 0 µ 0
0 0 0 τ




α 0 β γ
0 α κ λ
0 0 1 ν
0 0 δ 1

 . (4.35)

All the parameters of the projectivity Q can be found by imposing the constraints of the
proposition to the matrices QΠi i = 1, 2, 3. First, the scale of Q can be fixed by imposing
α = 1. Then, imposing (4.32) is equivalent to imposing (π21 + κπ31 + λπ41)>π31 = 0 and
(π21 + κπ31 + λπ41)>π41 = 0 which is enough to specify κ and λ. Analogously, imposing
(4.33) is equivalent to imposing (π12+βπ32+γπ42)>π32 = 0 and (π12+βπ32+γπ42)>π42 = 0
which gives the values of β and γ. The parameters δ and ν are determined by imposing
(4.34), that give equations (π31 +νπ41)>(δπ31 +π41) = 0 and (π32 +νπ42)>(δπ32 +π42) = 0.
Finally, after fixing the scale of the matrices QΠi i = 1, 2, 3 by imposing (4.30) the final
parameters µ and τ can be determined by imposing (4.31).

4.4 Pose Estimation of 3 views

From a trifocal tensor T we can extract the epipoles e31 and e21, and then two fundamental
matrices of the triplet can be computed:

F21 = [e21]×[T1e31, T2e31, T3e31] , F31 = [e31]×[T>1 e21, T
>
2 e21, T

>
3 e21] . (4.36)

From F21, F31 and the calibration matrices K1, K2, K3 the two essential matrices can be
computed from which the relative orientations (R21, t21) and (R31, t31) (see Figure 4.1) can
be retrieved by the singular value decomposition. Each translation vector is up to unknown
scale. The overall scale is fixed by setting ‖t21‖ = 1 and the relative scale λ of t31 can be
computed by using a triangulation of the space points {Xn}n from the projections in the
first two cameras and minimizing the algebraic error with respect to the third image:

arg min
λ∈R

N∑
n=1

∥∥∥∥x̄n3 × (K3(R31X
n + λ

t31

‖t31‖
)
)∥∥∥∥2

, (4.37)

which admits a closed form solution.
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Figure 4.1 – Three views of the same scene and the relative motions of two pairs.

4.4.1 Linear Estimation of the Trifocal Tensor

The TFT can be estimated from a linear system given by the trilinearities of (4.2). From
each triplet we get 9 equations linear on the parameters of the tensor, from which only 4 are
linearly independent. At least 7 correspondences are needed to solve the linear system if
we also impose ‖T‖ = 1. If more triplets are available, a solution minimizing the algebraic
error can be found by SVD. The resulting trifocal tensor will not necessarily be a valid
tensor, i.e. it may not verify the internal constraints, not corresponding in consequence
to any projective triplet of views. A valid trifocal tensor can be computed from the one
found in the following way: extract the epipoles e21 and e31, find matrices A and B that
minimize (4.1) using the found tensor and epipoles (resulting in linear systems) and finally
compute the valid trifocal tensor from the triplet of canonical projection matrices using the
definition (4.1).

4.4.2 Optimization with Minimal Parameterization

Section 4.3 detailed four ways to parameterize minimally the 3-view model. All para-
meterizations involve non-linear constraints, so to be able to estimate the parameters an
initialization is necessary. The linear solution from Section 4.4.1 can be used as an ini-
tial guess to estimate the different initial minimal parameterizations. Once the correct
parameters of the initial model have been found they can be optimized by reinforcing the
constraints and minimizing the Gold standard error (maximum likelihood estimator) with
the Gauss-Helmert algorithm [Nei10]. The constrained least square problem to which we
find a local optimum is

minimize
x, p

‖x− x0‖2 subject to f(x, p) = 0, g(p) = 0 (4.38)

where the vector p contains the parameters to be optimized (parameters of the trifocal
tensor or fundamental matrix) and g are the constraints specific for each parameterization.
The vector of observations x0 corresponds to the triplets or pairs of matching points (con-
catenated) and the main constraints f are the trilinearities or epipolar equations where
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both the observation and parameters p are involved. In Table 4.1 the parameters and con-
straints to use for each minimal parameterization are summarized, as well as the ones to
use to optimize a fundamental matrix. A detailed description of the iterative method to
solve the Gauss-Helmert model can be found in Appendix B.

parameterization p # f g #

Ressl si, mi, ni
e31, v, w

20 (4.2) ‖(s1, s2, s3)‖ = 1,
‖e31‖ = 1

2

Nordberg T̃, U, V,W 19 (4.2) ‖T̃‖ = 1 1
Faug.-Papad. T 27 (4.2) |Ti| = 0, (4.10) 12
Ponce-Hebert Πi 21 (4.12)–(4.15) ‖Πi‖ = 1 3
Fundamental F21 9 (4.3) ‖F21‖ = 1, |F21| = 0 2

Table 4.1 – Parameters and constraints to use in the Gauss-Helmert algorithm for the
different minimal parameterizations of the 3-view model and the 2-view model.

4.4.3 Optimization with Bundle Adjustment

To refine the estimated orientations given by the trifocal tensor, the common last step of
Bundle Adjustment can be applied. It minimizes the square reprojection error over the
possible cameras orientations and space points (see Section 2.6 for more details). The
optimization can be carried out by the Levenberg-Marquardt algorithm [Lev44].

4.5 Experiments and Discussion

We implemented and evaluated the results of the pose estimation for synthetic and real
data using the trifocal tensor and also using the fundamental matrix. In the first case,
we compute the tensor linearly (TFT-L) and applying a Gauss-Helmert optimization with
the minimal parameterizations of Ressl (TFT-R), Nordberg (TFT-N), Faugeras and Papado-
poulo (TFT-FP) and Ponce and Hebert (TFT-PH). For the fundamental matrix we compute
it linearly (F-L), with the 8-point algorithm [LH81], and with a Gauss-Helmert optimiza-
tion (F-O). One last result is represented for the minimum found by the bundle adjustment
(BA) initialized by any of the other methods. Indeed, we found that all the initializations
gave the same final pose after the minimization in almost all our experiments, an important
observation of our tests that we discuss later.

A Matlab implementation for all these pose estimation methods has been developed
and is available at the GitHub repository https://github.com/LauraFJulia/TFT_vs_
Fund.git as well as the code to reproduce the experiments presented below.

4.5.1 Synthetic Scene

Pose estimation using the trifocal tensor and the fundamental matrix have been tested
on synthetic data for different configurations. The standard scene for our experiments is
composed of a set of space points contained in a cube of side 400 mm centered at the world’s
origin (see Figure 4.2). Points are projected onto three views and Gaussian noise is added

https://github.com/LauraFJulia/TFT_vs_Fund.git
https://github.com/LauraFJulia/TFT_vs_Fund.git
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to the image points with σ = 1 pixel, if not stated otherwise. A sample of 12 points is
used for the computations of the different models. The image size is 1800 × 1200 pixels,
corresponding to a 36 mm× 24 mm sensor and the focal length is set to 50 mm. The cameras
all point at the origin and have centers C1 = (0,−1400, 400), C2 = (−400,−1000, 0),
C3 = (600,−800,−200). Results are averaged over 20 simulations of data.

y

-800

-1000

-1400

600

-400

-200

400

C1

C2

C3

x

z

-200

200

200

Figure 4.2 – Synthetic data.

Varying Noise

The angular error in the estimated rotations and translation directions, as well as the repro-
jection error are shown in Figure4.3 against Gaussian noise level added to the data points.
The experiments reveal that the pose estimation based on the trifocal tensor is consistently
more accurate than the fundamental matrix pose estimation. All different methods optim-
izing the trifocal tensor with a minimal parameterization manage to improve the initial
linear solution and end up in the same minimum. In the same way, the optimization of
the fundamental matrix decreases the error of the linear solution. All these improvements,
while clear, have no consequence on the minimum found by the bundle adjustment, which
is reached even when initialized by the simplest method (F-L). Also in Figure 4.3, a plot
of the computational time spent on each initial estimation is shown.2 As expected, linear
methods (TFT-L, F-L) are faster than methods involving optimization, since the former are
prerequisites for initialization of the latter. However, from the latter group, the fastest one
is F-O, which involves two consecutive optimizations for two fundamental matrices.

Number of Correspondences

Figure 4.4 tests the effect of changing the number of corresponding points used for the
pose estimation. It shows how the fundamental matrix is much more affected by using
a minimal set of correspondences than any trifocal tensor estimators but TFT-FP. The

2based on the Matlab code run on an Intel Xeon E5-2643 CPU at 3.3 GHz with 192 GB of RAM.
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Figure 4.3 – Average errors (for rotations, -R, and translation directions, -t), reprojection
error and computational time, when varying the Gaussian noise added to the image points.

Faugeras-Papadopoulo minimal parameterization not only fails to improve the pose given
by the linear estimation of the tensor for the minimal set of 7 correspondences but it returns
a much worse estimation. For initial sets of more than 7 triplets, however, it performs as
well as the other TFT methods. For sets with more than 15 triplets, all models start to
stabilize. On the time plot in Figure 4.4 we can see that linear methods maintain a constant
computation time while optimization methods increase linearly with the number of initial
points used.

Focal Length

Long focal lengths are known to make difficult the camera pose estimation with the funda-
mental matrix [YF14]. We studied the effect of increasing the focal length of our synthetic
scene (while also proportionally getting the cameras farther away from the point cloud and
from each other). Figure 4.5 shows that even if all methods get worse results in a similar
way, the methods based on the fundamental matrix have an unstable higher increase of it-
erations for the bundle adjustment to converge after f = 200 mm. Still, the computational
time seems not to be affected by the iterations increase and the final estimation remains
the same, whatever the initialization method.

Collinear Cameras

In all these experiments, all TFT-based methods generally give the exact same results,
showing the equivalence of all parameterizations. However, there is a degenerate case
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Figure 4.4 – Average errors (for rotations, -R, and translation directions, -t), reprojection
error and computational time, when the number of corresponding points is varied.
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Figure 4.5 – For different focal lengths, the average angular errors (for rotations, -R, and
translation directions, -t), the average number of iterations needed in bundle adjustment
to reach a minimum and the computational time.
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specific for the Ponce-Hebert and Nordberg parameterizations: collinear camera centers.
Alongside all the previously presented methods, we implemented and tested the collinear
parameterization of the Πi matrices given by Ponce and Hebert in Section 4.3.4 (TFT-
PH(Col)). We tested all methods gradually moving the camera centers of the scene in
order to make them align. The measure of collinearity is the angle Ĉ2C1C3 (180◦ when
collinear). Figure 4.6 shows the reprojection error with the estimated poses, for 100 points
not used in the estimation. The results show an increasing accuracy on the collinear method,
starting to be comparable to the others at 176◦, the same point where the non-collinear
parameterizations suffer a jump on the error, much greater for TFT-N than for TFT-PH.
After 178◦ the initial poses given by the non-collinear parameterizations are no longer able
to find the right minimum through bundle adjustment.
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Figure 4.6 – On the left, average angular errors for rotations (-R) and on the right, average
reprojection error of the pose estimation, both when making camera centers collinear.

Based on these results and the instability of the Faugeras-Papadopoulo parameterization
with a minimal set of initial points, the trifocal tensor parameterization of Ressl seems to
be the most robust to degenerate scenes and the most recommended for pose estimation
using the TFT.

4.5.2 Real Datasets

AC-RANSAC

In order tot test this methods to real images, we implemented a variant of AC-Ransac based
on the linear estimation of the trifocal tensor. For each triplet of real images to test, we
can apply AC-RANSAC to the triplets of correspondences found by a matching algorithm
in order to discard outliers. The parameters for the algorithm 2 in this case will be

E linear estimation of the trifocal tensor.
nE 7.
nout 1.
e(d,M) distance from point to transferred point using the TFT and the two points

in the other images.
d 2 (dimension of point-to-point distance).
α0

π
A where A is the area of the image (upper bound).
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The error e(d,M) for an observation d, a triplet of corresponding points {x1,x2,x3},
and the estimated modelM , a trifocal tensor T, is defined in this case by the point transfer
using the trifocal tensor. From the incidence relationships between corresponding points
and lines given by the trifocal tensor we have the two following equations:

x̄3 ∼
(∑

i

(x̄1)iT
>
i

)
l2 x̄2 ∼

(∑
i

(x̄1)iTi

)
l3 (4.39)

where l2 and l3 are lines, represented as 3-vectors s.t. l>x̄ for all x ∈ l, in the second and
third images respectively such that x2 ∈ l2 and x3 ∈ l3. So given a point in the first image
and a corresponding line on the second or third image we can estimate a corresponding
point in the third or second image respectively. However, if the line l2 or l3 is chosen so it
happens to be the epipolar line corresponding to x1 the transferred point will be undefined
(the right side of both equations in (4.39) will be 0). For this reason a safe approach is
to use several lines, for example the three defined by the columns in [x̄2]× and in [x̄3]×,
compute the transferred points using all of them and choosing the result with largest norm.

Let us note xtransf
2 and xtransf

3 the two transferred points following this procedure. The
error is defined as the maximum of the two distances to the transferred points

e({x1,x2,x3},T) = max
{
‖x2 − xtransf

2 ‖, ‖x3 − xtransf
3 ‖

}
. (4.40)

Application to the EPFL datasets

To evaluate the performance of the 3-view methods in real settings, we chose to use two
scenes from the EPFL dense multi-view stereo test image datasets [SvHG+08] that come
with a reliable ground truth. These datasets consist of images of size 3072×2048 pixels
taken with a 35 mm equivalent focal length. For each triplet of images and method tested,
the pose estimation is computed from a set of Ninit = 100 triplets of correspondences
chosen randomly from the total N correspondences computed with the SIFT implement-
ation in [ROD14]. The bundle adjustment optimization is carried out using a subset of
NBA = 50 correspondences from the initial set. The reprojection error is evaluated on all
N inliers.

The first scene is the fountain-P11 dataset which has 11 images (see Figure 4.7). We
tested 50 of the possible image triplets and the averages of the results are shown in Table 4.2.
In this scene the inlier tracks are selected from the Ninit = 100 triplets of the initial set
using AC-RANSAC adapted to each method (trifocal tensor and fundamental matrix). In
the case of the fundamental matrix, the AC-RANSAC method is applied to each pair of
views separately and the common inliers in the three pairs are selected.

The second scene is the Herz-Jesu-P8 dataset which consists of 8 images (see Figure 4.8),
from which we tested 50 possible image triplets. The averages of the obtained errors are
shown in Table 4.3. For this scene, the initial set of Ninit = 100 tracks are selected from
the original SIFT matches after discarding the ones with reprojection error (using ground
truth poses) higher than 1 pixel.

On the one hand, the results confirm that Ressl’s parameterization is the most robust
and better performing of all TFT-based methods getting the smallest error in all metrics.
On the other hand, Nordberg’s parameterization fails to improve the linear estimation since
it gets a higher angular error in rotation. This might be due to the near-collinearity of some
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Figure 4.7 – Triplet of images of the EPFL fountain-P11 dataset.

erepr (px) erot (◦) etrans (◦) init. time (s) iter. BA
TFT-L 6.605 0.306 1.720 0.057 4.12
TFT-R 5.132 0.269 1.504 0.716 4.12
TFT-N 6.556 0.846 1.589 0.579 4.34
TFT-FP 6.547 0.312 1.733 0.642 4.12
TFT-PH 5.070 0.270 1.468 0.564 4.12
F-L 6.083 0.269 1.726 0.038 4.08
F-O 5.918 0.273 1.650 0.314 4.06
BA 0.280 0.061 0.086

Table 4.2 – Average results over 50 triplets of images from the EPFL fountain-P11 dataset.
In bold are the best results (lowest average error) over all the pose estimation methods
before bundle adjustment. The last row shows the final errors after bundle adjustment,
which are the same no matter the initial method used for pose estimation.

Figure 4.8 – Triplet of images of the EPFL Herz-Jesu-P8 dataset.

erepr (px) erot (◦) etrans (◦) init. time (s) iter. BA
TFT-L 4.806 0.459 0.871 0.062 4.06
TFT-R 3.479 0.397 0.668 1.591 4.00
TFT-N 4.093 0.540 0.692 1.480 4.04
TFT-FP 4.506 0.446 0.833 1.887 4.06
TFT-PH 4.306 0.421 0.672 1.249 4.00
F-L 3.762 0.414 0.772 0.040 4.00
F-O 3.650 0.420 0.765 0.858 4.02
BA 0.372 0.063 0.068

Table 4.3 – Average results over 50 triplets of images from the EPFL Herz-Jesu-P8 dataset.
In bold are the best results (lowest average error) over all the pose estimation methods
before bundle adjustment. The last row shows the final errors after bundle adjustment,
which are the same no matter the initial method used for pose estimation.
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triplets (2 triplets in fountain-P11 and 4 in Herz-Jesu-P8 have a maximum angle between
camera centers greater than 175◦) which can cause great instability in the pose estimation
of this methods as seen in the synthetic experiments (Figure 4.6).

We also notice how the fundamental-based methods get comparable results or even
outperform the TFT-based methods in both datasets. What is more, they achieve it with
less initial computation time and a similar average number of iterations to converge to the
minimum in the bundle adjustment (two last columns of Tables 4.2 and 4.3).

In fact, all methods manage to reach the same minimum in the bundle adjustment
optimization with around 4 iterations on average. The difference between the errors cor-
responding to the optimum reached and the errors from any method is much greater than
the difference in the errors of the optimization-based methods and the linear methods.
Therefore, one can conclude that the advantage of using an optimization to reinforce the
constraints or minimal parameterization of the model before carrying out a bundle adjust-
ment is negligible. The other lesson is that the bundle adjustment, even if performed with
a small subsets of points for reduced computation time, is highly beneficial according to all
error metrics.

Although not all known parameterizations of the trifocal tensor were covered by our
tests, they all involve non-linear constraints admitting no closed form solution. As a
consequence, they require also an initialization phase through the linear estimation of
Sect. 4.4.1 and the possible initial benefits in terms of reduced error are likely to be erased
by the bundle adjustment; the extra computation time would not make them advantageous
alternatives to the standard fundamental matrix computation.

4.6 Conclusion

We reviewed methods of estimation of trifocal tensor and of the pose of three views. Com-
pared with the pose estimation obtained by the fundamental matrices from the pairs of
views, our experiments show that the trifocal tensor does not offer enough improvement to
be considered the preferred choice. By its simplicity and lower computation time, the re-
commended option is to consider only pairwise constraints through the fundamental matrix,
provided some bundle adjustment is used at the end (which is also highly recommended, as
it can routinely decrease the error by a significant factor). In other words, the only usage of
points viewed in image triplets, in the initialization phase of that approach, is to determine
the relative scales of translations. Still, it would be interesting to study whether the use of
the trifocal tensor improves results when M > 3 views are considered. However, in such a
multi-view stereo pipeline, the way the image pairs and triplets are integrated is likely to
have a preponderant importance.



74 Chapter 4. Trifocal Tensor for 3-View Pose Estimation



Chapter 5

The Orthographic Projection for
Long Focal Images

Most stereovision and SfM methods rely on the pinhole camera model based on perspective
projection, from which the fundamental matrix and the epipolar constraints are derived.
In this chapter we present a method based on the matrix factorization due to Tomasi and
Kanade that relies on a simpler camera model, resulting in orthographic projection. This
method can be used for the pose estimation of perspective cameras in configurations where
other methods fail, in particular, when using cameras with long focal length lenses. We show
this projection is an approximation of the pinhole camera model when the camera is far away
from the scene. The performance of our implementation of this pose estimation method is
compared to that given by the perspective-based methods for several configurations using
both synthetic and real data. We show through some examples and experiments that the
accuracy achieved and the robustness of this method make it worth considering in any SfM
procedure.
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5.1 Introduction

The epipolar geometry relies on the pinhole camera model, which describes the generation
of photographic images as a perspective projection, but many other geometric projection
models exist that are of interest for their applications. For instance, the orthographic
model has been used in technical domains for its lack of perspective deformation so that
measurements can be taken from the orthographic images, proportional to the 3D object
dimensions. Real orthographic images (Figure 5.1a) can be obtained with a Telecentric
Lens system, a camera recreating the orthographic projection.

(a) orthographic image (b) perspective image

Figure 5.1 – Two photographs of the same object: one taken with telecentric lens system
(a), creating a visual illusion, and the other (b) taken with a normal lens. Note the lack
of perspective deformation on the left, where parallel lines remain parallel and the object
depth does not decrease its size, as opposed to the perspective image. Images from Donald
Simanek’s Pages (https://lockhaven.edu/~dsimanek/).

However, there are other cameras that can be modeled after the orthographic projec-
tion and our interest resides on seeing the orthographic camera as an approximation of a
perspective camera when the scene is far away with respect to its size. It is precisely in such
situations, generally generated by the use of long focal lengths, that the standard pose es-
timation approach based on the perspective model is badly suited and shows great errors in
the estimated rotations and translations [YF14]. For this reason, the use of other projection
models that are more robust in this kind of scenes becomes of interest and the orthographic
projection has been explored in several works in the literature [TK92, SF11, OH02].

The orientation of orthographic views has been discussed as early as 1962 [Art62] and
it is solvable when at least three views are considered. The factorization method by Tomasi
and Kanade [TK92] provides a simple method for pose estimation of orthographic image
streams and it can also be used to calibrate perspective images.

In this chapter we show the advantages of using the orthographic projection model
for pose estimation of perspective images. We investigate the types of scenes where the
orthographic model outperforms a perspective approach and test the robustness of the
method for degenerate scenes.

https://lockhaven.edu/~dsimanek/
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5.2 The Orthographic Model

The orthographic model consists of a projection of the space points onto a plane along its
orthogonal direction, the plane’s normal. Rotation, scaling and translation can be applied
to the points in the plane after the projection. We can parameterize the projection by the
plane’s axes, orthonormal vectors~i and ~j that will also characterize the rotation, the origin
of coordinates (a, b) in the plane and a scaling factor s > 0. The direction of the projection
is ~k =~i×~j. The orthographic projection can be defined by the affine function ρO:

ρO : R3 −→ R2

X 7−→ x = s

(
~i>

~j>

)
X +

(
a
b

)
.

(5.1)

5.2.1 Pinhole Camera at Infinity

It can be seen that the orthographic model is the result of taking a pinhole model and placing
the camera center at an infinite distance of the scene. In order to draw the connection
between the orthographic model and the standard pinhole camera, we take the projection
equation (2.5), x̄ ∼ K[R,~t]X̄, and rewrite it in Cartesian coordinates with the non-linear
function ρP:

ρP : R3 −→ R2

X 7−→ x =
f

~k>X + tz

[(
~i>

~j>

)
X +

(
tx

ty

)]
+

(
cx

cy

)
(5.2)

where R = (~i,~j,~k)>, ~t = (tx, ty, tz)>, f is the focal length (in pixels) and (cx, cy) the
principal point.

We study then the effect of increasing the distance from the camera center C to the
center of the scene O (concept defined later) in the direction orthogonal to the image plane,
d := ~k>(O−C) = ~k>O+ tz. In order to get the camera further away from the scene while
maintaining the projection of the scene inside the image, we fix the ratio α = f/d, and
we put the focal length as a function of distance to the scene f = αd. With this we can
compute the limit of the projection x = ρP(X) for X ∈ R3 when d approaches infinity:

lim
d→+∞

x = lim
d→+∞

αd

~k>(X−O) + d

[(
~i>

~j>

)
X +

(
tx

ty

)]
+

(
cx

cy

)
= α

(
~i>

~j>

)
X + α

(
tx

ty

)
+

(
cx

cy

)
.

(5.3)

This result indicates that the perspective projection with camera center at an infinite
distance from the scene is an orthographic projection with scale α = f

d , axes ~i, ~j and
translation α(tx, ty)> + (cx, cy)>. This happens because as the camera gets further away
from the scene, the rays arriving at the image plane become more and more parallel to each
other, almost orthogonal to the image plane (see Figure 5.2).
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Figure 5.2 – For the same scene, we can see how the projection lines of two points (the ones
in blue and green) get more and more parallel as we get the camera away from the scene. In
the image, we increased the distance d along with the focal length f so that f

d = f ′

d′ = f ′′

d′′ .

5.2.2 The Scaled-Orthographic Model

In Poelman and Kanade [PK97] a specific orthographic projection is defined to emulate
the pinhole camera at infinity: the Scaled-Orthographic Model, also known as the weak-
perspective camera. This model is defined by fixing the scaling factor to the ratio between
the focal length and the distance to the scene of the emulated pinhole camera, s = α. Also,
we will write the translation vector in terms of the camera parameters to match those of
the limit at infinity. In this case, the projection function will be a linear function ρSO:

ρSO : R3 −→ R2

X 7−→ x =
f

~k>O + tz

[(
~i>

~j>

)
X +

(
tx

ty

)]
+

(
cx

cy

)
(5.4)

Notice that this definition is the same as ρP except that the point X in the denominator
has been replaced by the center of the scene O so that it coincides with the perspective
model at infinity. The new parameter O will be defined as the centroid of all the observed
points of the scene, i.e. O = 1

N

∑
j X

j . For that, we make the assumption that only a finite
number N of space points is observed.

The fact that the perspective model is an orthographic projection at infinity is a good
indication that the scaled orthographic projection of a scene will be a good approximation
of the perspective projection for scenes far away from the camera. To further show this, we
can study the distance between the two projections ρP(X) and ρSO(X). Let the scene be a
set of space points {Xj} and the coordinates be centered on the centroidO = 1

N

∑
j X

j = 0.
We define a camera with center of projection C, axes~i, ~j and ~k, focal length f and principal
point (cx, cy) = (0, 0), to simplify. Using these parameters also for the scaled-orthographic
model we can compute both a perspective projection xP = ρP(X) and a scaled orthographic
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projection xSO = ρSO(X) for any point X = (X,Y, Z)>. The distance between these two
projections is

d(xP,xSO) = ‖ρP(X)− ρSO(X)‖ =

∣∣∣∣ f

Z + d
− f

d

∣∣∣∣ ∥∥∥∥(~i>~j>
)
X +

(
tx

ty

)∥∥∥∥ =

∣∣∣∣ Z

Z + d

∣∣∣∣ ‖xSO‖ .

(5.5)
Therefore, the difference between the orthographic and perspective images is propor-

tional to the image point distance to the “center” of the image and the ratio Z
Z+d . This term,

is the ratio between the relative depth of the space point to the center of the scene, Z, and
the mean depth of the scene with respect to the camera center, d, plus Z. When this ratio
decreases, so does the difference between the two projections. This proves that the scaled
orthographic model can be a good approximation of the perspective model in situations
where Z

Z+d is small. This is generally the case for long focal length images, where the scene
observed (and the matched points) are far away in comparison to the relative depth of the
scene. It is also the case for close-to-planar scenes, but we will see that those are not easy
to handle with the scaled-orthographic model.

5.3 Tomasi-Kanade Factorization of the Orthographic Model

Tomasi and Kanade [TK92] presented a method to factorize the matrix built from the image
measurements into two matrices representing shape and motion under the orthographic
model. Later, Poelman and Kanade [PK97] extended this work to the scaled-orthographic
model. We present the latter below.

Suppose we have a set of M scaled-orthographic cameras with parameters Ci, ~ii, ~ji, ~ki,
focal length fi and principal point (0, 0). Let the scene be a set of N space points {Xj}
and the origin of the world coordinates the centroid O = 1

N

∑
j X

j . Then, the projection
of the points {Xj} by each camera onto the image points {xji} is described by the following
equations:

xji =

(
~m>i
~n>i

)
Xj +

(
ai
bi

)
for i = 1, . . . ,M j = 1, . . . , N (5.6)

where, (
~m>i
~n>i

)
=
fi
tzi

(
~i>i
~j>i

)
,

(
ai
bi

)
=
fi
tzi

(
tx

ty

)
. (5.7)

We can gather all image points in a 2M × N measurement matrix W, all the scaled
axes on the 2M × 3 motion matrix R, all 3D points in the 3×N shape matrix S and the
translation vectors in a global translation vector T of length 2M . The projection equations
can be written then in matrix form:

 x1
1 x2

1 · · · xN1
...

...
...

x1
M x2

M · · · xNM


︸ ︷︷ ︸

W

=


~m>1
~n>1
...
~m>M
~n>M


︸ ︷︷ ︸
R

(
X1 . . . XN

)︸ ︷︷ ︸
S

+


a1

b1
...
aM
bM


︸ ︷︷ ︸
T

(
1 N. . . 1

)
(5.8)
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Notice that the global translation vector T can be computed from the mean of im-
age points thanks to the centroid being placed at the origin of space coordinates: if we
multiply (5.8) on the right by the vector 1

N (1 . . . 1)> of size N ,

1

N

N∑
j=1

 xj1
...

xjM

 = R

 1

N

N∑
j=1

Xj

+ T = R O + T = T . (5.9)

Therefore, we define the matrix W∗ := W − T (1 . . . 1) that can be computed from
image data only. This matrix will have, when no noise is present, at most rank three due
to the fact that W∗ = RS. This decomposition of W∗ is a rank factorization and it is the
key to Tomasi and Kanade [TK92] pose estimation method.

Remark 2. The rank factorization of any matrix A of rank r > 0 is not unique. However,
if we have two rank factorizations of the same matrix, A = A1A2 = A′1A

′
2, there always

exists an r × r invertible matrix Π s.t. A1 = A′1Π and A2 = Π−1A′2.

The matrix R from the factorization verifies several constraints given the fact that it is
the motion matrix. These constraints are about the norm and scalar products of its rows,
these are:

‖~mi‖ = ‖~ni‖ =

∣∣∣∣fitzi
∣∣∣∣ and ~m>i ~ni = 0 ∀i = 1, . . . ,M (5.10)

In addition, there is a rotation and scaling ambiguity. For any rotation matrix R
and scalar s, the matrices sRR> and 1

sRS give equally valid motion and shape matrices
respectively.

Minimal M For M ≤ 2 there is no unique reconstruction. The case M = 1 is obvious. In
the case of two views, M = 2, given a possible reconstruction, any rotation of one of
the views around the axis perpendicular to the projection direction of both views will
produce another valid reconstruction with different motion and shape. This means
that we need at least three views to proceed to unambiguous pose estimation.

Minimal N We can see by studying the rank of W∗ with respect to N that the minimal
number of correspondences is 4. We know that rank(W) ≤ 3 and the number of
correspondences N should not limit in any way this rank, otherwise we would not be
able to compute R and S from a degenerateW∗. If we write the measurement matrix
like W = (w1, . . . , wN ) and W∗ = (w∗1, . . . , w

∗
N ) we will have

w∗j = wj −
1

N

N∑
j′=1

wj′ ⇒
N∑
j=1

w∗j = 0 (5.11)

and then rank(W∗) < N since its N columns are linearly dependent. For N ≤ 3,
the matrix W∗ would have rank lower than 3, so we need N ≥ 4 in order to have a
non-deficient W∗ from which we can compute the motion and shape matrices.
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5.3.1 Planar Scene

If all the 3D points lie on a plane Π, the matrix S will no longer have full rank and RS will
no longer be a rank factorization of W. For this reason we consider this case a degenerate
scene for the orthographic pose estimation.

In the perspective case, it has been studied that when a planar scene is observed there
exists an homography transforming the projected points from one perspective image to the
another. It is through this homographic transformation that the relative pose between two
cameras can be extracted.

When orthographic cameras are considered, however, we show that there is no equival-
ent procedure to uniquely extract the poses. This is because given an initial scene with
M orthographic cameras and N points in a plane, we are able to find other scenes (not
equivalent by global translation, rotation or scaling) with the same projection points but
different poses and/or structure. Therefore, the poses can not be uniquely identified when
the 3D points all lie in a plane.

Scene

Let us have M orthographic cameras {si, Ri,~ti}i=1,...,M , defined by a scale si, rotation
R>i = (~ii,~ji,~ki) and translation ~t>i = (ai, bi). Let {Xj}j=1,...,N be N 3D points lying on a
plane Π. Without loss of generality we can fix Π = {Z = 0}, so that Xj = (Xj

1 , X
j
2 , 0)>

for all i. The projection equations will be

xji = siR
′
iX

j + ~ti ∀j = 1, . . . , N, ∀i = 1, . . . ,M (5.12)

where R′i
> = (~ii,~ji).

Les us suppose that there exists another scene with M orthographic cameras
{ri, Qi,~li}i=1,...,M and N points {Yj}j=1,...,N lying on a plane that has the same projections

xji = riQ
′
iY

j +~li ∀j = 1, . . . , N, ∀i = 1, . . . ,M . (5.13)

We can fix the plane to Π in the same way and without loss of generality so that Yj =
(Y j

1 , Y
j

2 , 0)>.

Remark 3. We will assume that no camera has a projection direction ~ki parallel to the
plane Π, otherwise the projections to this camera would lie on the same line.

Like before, we fix the world origin as the centroid of the 3D points in both scenes,
O = 1

N

∑N
j=1 X

j = 1
N

∑N
j=1 Y

j , from which follows (analogously to eq. (5.9)) that the
translation vectors in both scenes have to coincide

~ti =
1

N

N∑
j=1

xji = ~li ∀i = 1, . . . ,M .

We define the “centralized” image points as x∗ji = xji −~ti. Replacing this in the projection
equations (5.12) and (5.13),

x∗ji = siR
′
iX

j = riQ
′
iY

j (5.14)
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Let us suppose that there exist 3 × 3 invertible matrices {Ai}i=1,...,M such that for each
i = 1, . . . ,M we have

(siR
′
i)A
−1
i = riQ

′
i and AiX

j = Y j ∀j = 1, . . . , N (5.15)

so that equation (5.14) is verified. From these equalities we can deduce three conditions
that the matrices Ai have to satisfy

1. Ai Xj ∈ Π ∀i, j

2. Ai Xj = Ai′ X
j ∀j, i 6= i′

3. A−>i ~ii and A−>i ~ji are perpendicular vectors with the same norm for all i.

Determining Ai

From condition 1. we get that the last row of Ai must be proportional to (0 0 1). From
condition 2. we get that the upper-left 2 × 2 sub-matrix of each Ai should be equal to
the others. The same is true for A−1

i and we can establish the following notation, for
i = 1, . . . ,M

A−1
i =

λ1 λ2 ui
λ3 λ4 vi
0 0 wi

 with wi 6= 0,
λ1λ4 − λ2λ3 6= 0 .

(5.16)

Notice that the inverse of the matrix Λ =

(
λ1 λ2

λ3 λ4

)
describes the transformation on the

plane applied to the points Xj when multiplied by any Ai. For each camera i = 1, . . . ,M ,
the condition 3. translates to

(~i>i A
−1
i ) (A−>i

~ii) = r2
i /s

2
i

(~j>i A
−1
i ) (A−>i

~ji) = r2
i /s

2
i

(~i>i A
−1
i ) (A−>i

~ji) = 0

⇒


(~i′i)
> Λ Λ>~i′i +~i>i ~ui ~u

>
i
~ii = r2

i /s
2
i

(~j′i)
> Λ Λ>~j′i +~j>i ~ui ~u

>
i
~ji = r2

i /s
2
i

(~i′i)
> Λ Λ>~j′i +~i>i ~ui ~u

>
i
~ji = 0

(5.17)

where ~ui = (ui, vi, wi)
> and ~i′i = (i1i , i

2
i )
>, ~j′i = (j1

i , j
2
i )>. Written in matrix form,(i1i )

2 (i2i )
2 2i1i i

2
i

(j1
i )2 (j2

i )2 2j1
i j

2
i

i1i j
1
i i2i j

2
i i1i j

2
i + i2i j

1
i


︸ ︷︷ ︸

Ii

 λ2
1 + λ2

2

λ2
3 + λ2

4

λ1λ3 + λ2λ4


︸ ︷︷ ︸

Λ′

+

 (~u>i
~ii)

2

(~u>i
~ji)

2

(~u>i
~ii)(~u

>
i
~ji)


︸ ︷︷ ︸

Ui

=
r2
i

s2
i

1
1
0


︸ ︷︷ ︸

Si

(5.18)

from which we can deduce that Λ′ = (Ii)
−1(Si − Ui). (I ′i) is invertible as a consequence of

remark 3. After computations and using ~ki =~ii ×~ji we obtain the equations
λ2

1 + λ2
2 =

r2i
s2i

(
1 +

(k1i
k3i

)2)− ū2
i

λ2
3 + λ2

4 =
r2i
s2i

(
1 +

(k2i
k3i

)2)− v̄2
i

λ1λ3 + λ2λ4 = − r2i
s2i

(k1i
k3i

)(k2i
k3i

)
− ūiv̄i

for i = 1, . . . ,M (5.19)

where ūi = ui −
k1i
k3i
wi and v̄i = vi −

k2i
k3i
wi.
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The four unknowns of Λ do not depend on the camera i and the three equations (5.19)
only constrain its parameters in three degrees of freedom. If we consider (λ1, λ2) and
(λ3, λ4) as two vectors, we see that only their norms and relative angle are constrained. We
can rewrite Λ as

Λ =

(
m 0

n cos γ n sin γ

)(
cos θ sin θ
− sin θ cos θ

)
(5.20)

with m =
√
λ2

1 + λ2
2, n =

√
λ2

3 + λ2
4 and γ = arccos(λ1λ3+λ2λ4

mn ). The rotation determined
by θ is applied globally to all camera axes and inversely to the points in the plane, a trans-
formation that gives a completely equivalent configuration. Since we are only interested in
non-equivalent configurations we fix it to θ = 0. We get equations,

m2 =
r2i
s2i

(
1 +

(k1i
k3i

)2)− ū2
i

n2 =
r2i
s2i

(
1 +

(k2i
k3i

)2)− v̄2
i

mn cos γ = − r2i
s2i

(k1i
k3i

)(k2i
k3i

)
− ūiv̄i

for i = 1, . . . ,M . (5.21)

The system has a total of 3M quadratic equations and 3 + 3M unknowns. Therefore, the
three unknowns of the planar transformation, m, n and γ, can be fixed to any value giving
3M independent systems of equations that will determine the remaining 3M parameters,
ri, ūi and v̄i for i = 1, . . . ,M . Then, the vectors ~ui will not be completely determined. In
fact, if we rewrite ~ui as

~ui =

ūiv̄i
0

+
wi
k3
i

~ki

we notice that parameter wi is free and its value does not affect the transformations de-
scribed in (5.15), so we can fix wi = 1 without loss of generality.

So we have seen that for any transformation Λ−1 of the plane Π, where the {Xj}j lie, we
can find a transformation Ai for each scale-orthographic camera, giving a new configuration
of the scene, but with exactly the same projections in each image. As a result, we proved
that it is not possible to recover the camera poses of scaled-orthographic cameras only from
the images when all the projected points of the scene lie on the same plane. It is a result
independent of the number of cameras M and the number of points N .

Example. As a simple example we can take an orthographic camera positioned so that its
projection axis is perpendicular to the plane Π, with rotation matrix R = Id and scaling
s = 1. We choose the plane transformation described to be applied to the points Xj by the
matrix

Λ−1 =

(
1
2 0
1
2 2

)
so then, γ = 3π

4 , m = 2, n =
√

2
2 . Solving the system (5.21) and rejecting imaginary

solutions and negative r, we get two valid solutions which are equivalent by “depth ambiguity”
(this equivalence is described in the following Section, 5.3.2, with matrix in eq. (5.27)).
Therefore, we only study the resulting camera from the first solution,

r =

√
10 +

√
26

4
= 2.0653 ū =

(
√

65− 7)
√√

65 + 7

8
= 0.5153 v̄ =

√√
65 + 7

2
= 1.9405 .

(5.22)
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The scaling of the new camera, r, is already computed. The solution for the new camera
rotation axes is,

Q′ =
s

r
Id ′A−1 =

1

2.0653

(
0.5 0 0.5153
0.5 2 1.9405

)
=

(
0.9684 0 0.2495
−0.2421 0.2421 0.9396

)
. (5.23)

This solution can be visualized in Figure 5.3.

Figure 5.3 – Visualization of the example presented for a planar scene. The initial scene
corresponds to the red star formed by the 3D points X that lie onto the plane Π and the
camera represented by the red axes ~i, ~j, ~k. The plane transformation Λ−1 brings the red
points to the green points AX, the star being deformed into the green one. Then, the
green axes ~i, ~j, ~k represent the initial camera transformed by A−1 which will obtain an
orthographic image that will match exactly the one produce by the initial configuration.

5.3.2 The Pose Estimation Method

The factorization leads to the following pose estimation method. Let us have N ≥ 4
corresponding image points throughout M ≥ 3 images {xji} and the (estimated) focal
length of each view {fi}.

1. From the image data we can compute W̃∗ = W̃ − T̃ (1 . . . 1) (the tilde indicates that
noise is present in the measurements).

2. W̃∗ might have rank higher than three due to error and noise. We impose the rank
deficiency by using the singular value decomposition. For W̃∗ = UΣV >, we define
W∗ = U ′Σ′(V ′)>, where U ′ and V ′ are the first 3 columns of U and V respectively
and Σ′ is the upper-left 3 × 3 sub-matrix of Σ, formed by the three largest singular
values.

3. A first rank factorization W∗ = R̂Ŝ is given by R̂ = U ′(Σ′)
1
2 and Ŝ = (Σ′)

1
2 (V ′)>.
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4. We search for a 3× 3 invertible matrix Q such that the new rank factorization W∗ =
(R̂Q)(Q−1Ŝ) is a valid motion-shape decomposition. Hence, R = R̂Q should verify
the constraints in (5.10). They translate to:

m̂>i QQ
>m̂i − n̂>i QQ>n̂i = 0 and m̂>i QQ

>n̂i = 0 ∀i = 1, . . . ,M (5.24)

The numerical value of ‖m̂i‖ is unknown since we do not have tzi . In consequence, only
the equality of norms ‖m̂i‖ = ‖n̂i‖ can be imposed and we have a linear system of 2M
homogeneous equations on the coefficients of the matrix Π = QQ>. Since the matrix
Π is positive semi-definite, its coefficients are reduced to 6 unknowns and the 2M ≥ 6
equations are enough to determine the coefficients up-to-scale by finding the kernel
of the matrix of the homogeneous system (the matrix Π could also be estimated
imposing its positive semi-definiteness using convex optimization). Afterwards, we
recover Q through the Cholesky factorization of Π.

5. The final factorization of W∗ is R = R̂Q and S = Q−1Ŝ. From it we can compute
all camera parameters. For the axes,

~ii =
~mi

‖~mi‖
, ~ji =

~ni
‖~ni‖

, ~ki =~ii ×~ji (5.25)

and for the translation vector we estimate the value of fi/tzi using the mean of the
norms of both ~mi and ~ni (since they might not be exactly equal),

~ti =
2

‖~mi‖+ ‖~ni‖
(ai, bi, fi)

> . (5.26)

Rotation ambiguity Any rotation can be applied to the final result. The usual approach
is to bring ~m1 and ~n1 to (1, 0, 0)> and (0, 1, 0)>.

Depth ambiguity The final factorization obtained in step 4 can be transformed into a
new valid factorization W∗ = (RA)(AS) by using the matrix

A =

1 0 0
0 1 0
0 0 −1

 . (5.27)

This transformation gives an equivalent 3D reconstruction but the views are placed
“at the back” of the scene. For orthographic data this ambiguity cannot be solved. In
Figure 5.4 there is an example of two possible configurations of the same reconstruc-
tion.

5.3.3 Application to Perspective Cameras

As seen in Section 5.2.2 the scaled-orthographic model can be seen as an estimation of
the perspective model in some particular scenes like the images acquired with long focal
lengths. It turns out that the pose estimation of narrow-angle images is a difficult task for
perspective-based methods like the fundamental matrix and, therefore, we propose to use
the scaled-orthographic model which proves to be more robust.
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Figure 5.4 – Two possible configurations for the same image points in three orthographic
views. Notice that for each view the relative depth of the observed points swaps from one
configuration to the other.

To apply the method of the previous section to pose estimation of perspective cameras
we can use the image data as if it was produced by a scaled orthographic camera. Once we
estimate the camera parameters we can reinterpret them as perspective cameras instead
of orthographic and proceed with a bundle adjustment refinement if desired. The depth
ambiguity can be solved by two different approaches. We can manually choose between
the two possible solutions by identifying one image point from the correspondences in the
images that is closer to the camera (on the first plane of the scene). Otherwise, if no manual
help is intended, there is no other solution than to keep both solutions and to choose the
one that gives smaller reprojection error after the bundle adjustment step.

5.4 Implementation

The implementation of the pose estimation of perspective cameras based on the scaled-
orthographic method is in the Matlab function OrthographicPoseEstimation. For this
method, the input data are the matching points throughout M ≥ 3 views and the calibra-
tion parameters for each camera (calibration matrix K with the focal length and principal
point). The output are the two possible orientations in variables Sol1 and Sol2 that contain
a rotation matrix R and translation vector ~t for each view and also matrices R, S, T from
the Tomasi and Kanade factorization (S contains the 3D reconstruction of the matching
points passed as input). The general pipeline for pose estimation from images to a refined
solution would be the following:

Matching between pairs: For each pair of images the matching features should be found.
This step can be done with any available software and it is not implemented in our
code.

Extract tracks: From the couples of matching points of each pair of images, the consistent
tracks between three views are extracted by the function matches2tracks. At least
4 tracks are needed to follow the procedure.

AC-RANSAC: A set of inliers from the tracks between the three views can be chosen by
Random Sample Consensus. For our implementation we use the a contrario approach
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(adapted from [MMM13a]) with the scaled-orthographic model for three views. The
AC-RANSAC is programmed in function AC_RANSAC_Orthographic, where the set of
inliers is computed using the orthographic model with a minimal sample of 4 tracks.
The output is the set of maximal inliers. The parameters for the algorithm 2 in this
case are

E the Tomasi-Kanade factorization for the scaled-
orthographic model (to compute R and T ).

nE 4.
nout 2 due to the depth ambiguity.
e(d,M) distance from point to transferred point computed by the 3D

reconstruction given by the other two scaled-orthographic
cameras and the two corresponding image points.

d 2 (dimension of point-to-point distance).
α0

π
A where A is the area of the image (upper bound).

The error e(d,M) for an observation d, a triplet of corresponding points {x1,x2,x3},
and the estimated modelM , the scaled-orthographic cameras given byR, T , is defined
in this case by the point transfer using the the scaled-orthographic 3D reconstruction.
For two cameras i1 and i2, an estimation of the 3D points S̃i1i2 can be computed using
equation (5.8)

S̃i1i2 = R+
i1i2

(
Wi1i2 − Ti1i2

(
1 N. . . 1

))
(5.28)

whereRi1i2 , Ti1i2 andWi1i2 are the matrices composed only by the rows corresponding
to cameras i1 and i2 of R, T andW respectively. Then, the reconstructed points can
be projected onto the third image

W̃i3 = Ri3 S̃i1i2 + Ti3
(
1 N. . . 1

)
(5.29)

The error for an observation {x1,x2,x3} is defined as the maximum of the three
possible distances

e({x1,x2,x3}, {R, T }) = max
{
‖x1 − x̃1‖, ‖x2 − x̃2‖, ‖x3 − x̃3‖

}
. (5.30)

Initial pose estimation: Using all the inliers the scaled orthographic method is ap-
plied to get a first estimation of the pose for each camera. Calling the function
OrthographicPoseEstimation we will get two possible configurations of the cameras.
As seen in the description of this method in Section 5.3.2, the operations needed in
the pose estimation are computationally simple and they only involve the SVD and
the Cholesky decomposition.

Bundle Adjustment: The configurations obtained in the last step are used as two pos-
sible initializations for the orientations of perspective cameras in a bundle adjustment.
This method consists in minimizing the reprojection error over the possible cameras
orientations and space points:

min
{Ri,~ti}i, {Xj}j

N∑
j=1

M∑
i=1

‖xji − ρPi(X
j)‖2 (5.31)
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where ρPi is the perspective projection as in (5.2) associated to camera i. The op-
timization is carried out by the function BundleAdjustment using the Levenberg-
Marquardt algorithm [Lev44] (already implemented in Matlab). After using the two
possible initializations, the solution with lower reprojection error at the end of the
optimization is chosen as the correct final pose estimation.

In our implementation, the script pipeline_script.m carries out the four last steps
of the pipeline described above for a given set of matching points between the pairs of a
triplet of images and specified focal length value. For the experiments, the matches have
been computed by the SIFT implementation available in the IPOL publication [ROD14].

5.5 Experiments

To study the robustness and performance of this method we have evaluated its results when
applied to several and different scenes while comparing its results to the performance of
other algorithms based on the perspective model. Synthetic data has been used to test the
sensibility to different parameters such as noise, focal length and configuration of the space
points and cameras. Moreover, we also applied the method to real images taken with long
focal lengths to test its performance in real situations to evaluate its usefulness. Since the
minimum number of views needed in the orthographic pose estimation is three, we have
evaluated the results for scenes composed of three views. The errors used for evaluation
are the reprojection error (2.14) and the angular error in rotations and translations (2.15)
applied to a 3-view configuration.

For comparison with a perspective-based method, we evaluate the results given by the
pose estimation using the fundamental matrix on the same scenes. More specifically, the
two fundamental matrices F21 and F31 are computed from their correspondences by the
8-point algorithm [Har97]. Then, the relative orientations [R21, ~t21] and [R31, ~t31] are
extracted by singular value decomposition of the essential matrices [HZ04]. Finally, we
choose the global poses [Id 0], [R21, ~t21], [R31, λ~t31] with λ the solution of

arg min
λ∈R

N∑
j=1

‖x̄j3 ×
(
K3(R31X

j + λ~t31)
)
‖2 (5.32)

where the space points {Xj}j=1,...,N are reconstructed using only the image points in the
first two images and the camera matrices K1[Id 0], K2[R2, ~t2] and the notation x̄ is used
to indicate the homogeneous coordinates of x. This is not the minimization of a geometric
error but an algebraic one. The solution has the closed form:

λ =

∑N
j=1

(
x̄j3 × (K3R31X

j)
)>(

x̄j3 × (K3~t31)
)∑N

j=1 ‖x̄
j
3 × (K3~t31)‖

. (5.33)

We also compare the results to the final pose given after a bundle adjustment based
on the perspective model with the initial pose obtained by one of the previous methods.
The optimization is carried out by the Levenberg-Marquardt algorithm. In most of our
experiments, the same minimum is reached regardless of the method used as initialization,
so the results will be represented as one.
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5.5.1 Synthetic Data

For our experiments we take the same synthetic scene used in the previous Chapter in
Section 4.5. The standard scene (Figure 5.5) is composed of a set of space points contained
in a cube of 400 mm × 400 mm centered in the world’s origin. The points are projected
onto three cameras and Gaussian noise is added to the image points with σ = 1 pixel, if
not stated otherwise. A sample of 20 points is used for the computations of the different
models and a test set of 100 to evaluate the results. The image size is 1800×1200 pixels
that correspond to a 36 mm × 24 mm sensor. The cameras all point at the origin and their
placement depends on the chosen focal length, C1 = f · (0,−28, 8), C2 = f · (−8,−20, 0)
and C3 = f · (12,−16,−4), so that the ratio α is fixed, see Figure 5.5. Results are averaged
over 20 simulations of data.
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Figure 5.5 – Illustration of the configuration of the synthetic data scene for f = 50 mm.
When the focal length is increased, the camera centers move along the red lines a propor-
tional distance from the origin.

Focal Length

In a first approach, we look at the angular error for different focal lengths, f varying in
[20, 300] mm. This changes not only f but also the position of the cameras as stated
previously. We can see in Figure 5.6a that the initial pose given by the perspective-based
estimation loses accuracy linearly with the increase of the focal length. On the other hand,
the orthographic method has bad results for short lengths but rapidly gains accuracy and
gets better results than the perspective-based method for lengths starting at f = 60 mm.
For f ≥ 200 mm the orthographic solution is really close to the final solution given by the
bundle adjustment, both solutions getting less than 0.5◦ error.

Number of Correspondences

The orthographic method shows a good stability also in the number of correspondences used
for the pose estimation. Here we vary the cardinal M of the sample of image points used
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in the computation of the estimated pose for all methods. The fundamental matrix can be
computed with the 8-point algorithm for M ≥ 8 while the orthographic method only needs
M ≥ 4. Figure 5.6b shows how the fundamental matrix gets bad results when a minimal or
close to minimal set of correspondences is used and how the orthographic solution is not so
affected by M . This also means that when 4 ≤M ≤ 7 and the fundamental matrix cannot
be computed, the orthographic model can give a first pose estimation not so far from the
ground truth. The stability of the factorization method even with few correspondences can
be attributed to the strong rank-3 constraint, which prevents overfitting to the observations.

Perspective - R

Perspective - t

Orthographic - R

Orthographic - t

Bundle Adj. - R

Bundle Adj. - t

20 50 100 150 200 250 300

0

2

4

6

8

10

d
e

g
re

e
s 

(°
)

Focal length (mm)

Mean angular error in R and t

(a)

4 6 8 10 15 20 25 30

0

5

10

15

20

25

30

d
e

g
re

e
s 

(°
)

Number of correspondences

Mean angular error in R and t

(b)

Figure 5.6 – Angular errors for each method changing different parameters. Two lines are
drawn for each method, one for the mean angular error in rotations (-R) and another for
the mean error in translations (-t). In (a) the focal length is varied and in (b) the focal is
fixed at f = 50 mm while the number of correspondences is varied.

Robustness to Noise

Varying the Gaussian noise added to the image measurements with σ ∈ [0, 3] pixels, the
orthographic method proves to be much more robust to noise than a perspective-based
method. The angular error of rotation and translation stays almost constant in comparison
to the increasing error proportional to σ of the initial pose given by the perspective-based
method. Testing with f = 100 mm (Figure 5.7b) we see that the orthographic solution has
a constant error smaller than the perspective solution for σ ≥ 0.5 pixel. However, with a
shorter length f = 50 mm (Figure 5.7a) the performance of the orthographic method is not
as good, though still almost constant, and it is surpassed by the perspective solution when
noise is not high.

When we look at the reprojection error, for example with f = 50 mm and varying
the noise in Figure 5.8a, we can see that the error in the perspective solution is extremely
affected by increasing the noise while the orthographic solution has a smaller constant error
for σ ≥ 0.5 pixel. On the other hand, we have seen that the angular error for this focal
length is smaller in the perspective solution for noise with σ ≤ 1.5 pixels.
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Figure 5.7 – The angular errors in rotations and translations for varying Gaussian noise are
shown for two different fixed focal lengths.

Planar Case

There is a particular case where the orthographic method fails: the case of quasi planar
or planar scenes. We evaluated the failures of the orthographic and perspective methods
when the scene becomes planar. The planarity of a scene is measured with the percentage

planarity = 100 ·
(

1− v3

v1

)
(5.34)

where v1 and v3 are respectively the first and third eigenvalues of the matrix X>X formed
from the point cloud1.

We consider that a pose estimation is a valid solution when after applying bundle
adjustment it gets small angular errors, erot ≤ 5◦ and etrans ≤ 10◦. In Figure 5.8b it is
clear how the failures in the orthographic model rapidly rise for a planarity greater than
95%. The method based on the fundamental matrix is not robust to planarity either, but it
manages to give at least 50% of valid solutions. It is known that for a perspective camera
model observing a planar scene the homography between images should be used to compute
the pose [Zha96], so we also included the results with this perspective method.

The failures of the orthographic model for the planar scenes can be explained by the
fact that the situation is similar to having only N = 3 points. If all the points projected
onto the three orthographic cameras lie on the same 3D plane, the matrix S in (5.8) has
rank 2 which makes rank(W∗) ≤ 2. Therefore, the factorization W∗ = RS is no longer
a rank decomposition and there is no guarantee that the first factorization given by SVD
in step 3 of the pose estimation method will lead to the correct solution. This usually
translates into obtaining a non positive semi-definite matrix Q in step 4 or simply getting a
wrong pose estimation. Even if the planar hypothesis is assumed, the new pose estimation
problem is not solvable as seen in Section 5.3.1.

1X>X is the estimation of the covariance matrix of the point cloud.
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Figure 5.8 – In (a) the reprojection error in pixels for varying Gaussian noise for a short focal
length, f = 50 mm, is shown. In (b) the percentage of failures is shown for the orthographic
model and for two perspective methods (fundamental matrix and homography) in the case
of the space points lying on a quasi-planar surface, the focal length is fixed at 100 mm.

Parallel Camera Axes

The projection rays in the orthographic model are parallel to each other, no matter the
depth or position of the space points. For this reason, havingM orthographic cameras with
different position but same direction of projection (~ki) will, in fact, create M equivalent
orthographic images, i.e. related only by scaling, translation and rotation on the plane.
This translates into not having enough information for the depth recovery of the space
points since in Equation (5.8) the matrix R will have only rank 2. Even if we are working
with perspective data, this configuration generates ambiguous data for the proposed pose
estimation method.
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Figure 5.9 – The synthetic data scene to study parallel camera axes. The cameras ori-
entations are varied from the configuration in red (all cameras pointing at the origin) to
configuration in green, where all three camera axes are parallel and the cameras are directed
toward the green points.
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We analyzed the potential instability of the orthographic pose estimation on these type
of scenes by modifying the synthetic data used. In Figure 5.9 we can see the modified scene
where the cameras positions are fixed but the orientation varies from all cameras pointing
at the origin to three parallel camera axes. The experiments showed that the method starts
to fail as the camera axes get close to parallel (Figure 5.10a) and the angular error of the
obtained pose increases above 10◦ (Figure 5.10b). However, the pose estimation based on
the fundamental matrix is not at all affected by this special configuration.
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Figure 5.10 – The case of quasi-parallel camera axes is studied in (a) with the percentage
of failures and in (b) with the angular errors.

5.5.2 Real Data

We have evaluated the orthographic method along with the perspective method based
on the fundamental matrix on several real databases. Again, we test the two methods on
triplets of images and compare the errors and the failures of each method. We also show the
results for the solutions after applying a bundle adjustment (BA) step to both methods. In
these real experiments, we chose to use a small sample of 50 correspondences on the bundle
adjustment in order to improve the speed of the optimization.

To select the inlier tracks of each evaluated triplet, we use an a contrario RANSAC
adapted to each method. In the case of the fundamental matrix, the RANSAC method
is applied to each pair of views separately and the common inliers in the three pairs are
selected.

In Tables 5.1–5.4 we show, for each dataset, several statistics averaged over all evaluated
triplets: the resulting reprojection error (erepr), rotation and translation errors (erot and
etrans), the percentage of correspondences selected as inliers, the percentage of valid solu-
tions (VS), as described in the Planar Case of Section 5.5.1, and the number of iterations
of the bundle adjustment.

Reims This dataset is made out of a total of 55 images all acquired with a long focal
length (f = 400 mm) and it covers the main interior wall of the cathedral in Reims, France
(see Figure 5.11). We tested the 200 triplets of images with the most correspondences
and we compared the results to an “artificial” ground truth, the solution given by the SfM
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realized by MicMac [PD07] with not only the long focal length images but also with 16 other
images with shorter focal length (7 with f = 100 mm and 9 with f = 50 mm) to stabilize
the process. The internal calibration and distortion on the images was estimated by the
same MicMac process and used in our computations. For this particular dataset, most of
the scenes are quasi planar and the cameras are aligned. We can see in Table 5.1 that
while both methods have problems to estimate the translations, the orthographic model
gives a better estimate according to the lower number of mean iterations needed to reach
the minimum and the higher percentage of pose estimation success.

Figure 5.11 – Some images of the Reims dataset. The first four on the left were taken with
a focal length of 400 mm and used in our experiments. The last one on the right was taken
with a focal length of 100 mm and used in the computations of the MicMac SfM algorithm.

erepr erot etrans inliers VS # iter
Perspective 240.995 1.554 42.70 88.6% 75.5% 68.9
after BA 0.410 0.461 1.52

Orthographic 7.926 2.660 36.78 84.9% 82.0% 41.5
after BA 0.413 0.457 1.56

Table 5.1 – Statistics for 200 triplets of Reims dataset.

Figure 5.12 – Example of the reconstruction obtained by the orthographic model for one
triplet of the Reims dataset. On the left, a close up of the point cloud recovered. On the
right, a representation with the estimated camera poses (in green), so that the long distance
between cameras and photographed object becomes obvious.
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EPFL fountain-P11 [SvHG+08] In juxtaposition to the previous case, we tested our
algorithm in a short focal length dataset to evaluate its robustness. The fountain-P11
dataset is made out of a total of 10 images taken with a 35 mm equivalent focal length of
32.5 mm and has an available ground truth. We tested 70 of the possible triplets and the
results are shown in Table 5.2. The orthographic method does not manage to get similar
results to the perspective method; moreover, it has much higher reprojection and angular
errors. However, the orthographic model is able to give as much as 91.43% of valid results,
meaning that, even if the perspective method is the obvious choice for this kind of scenes,
the orthographic method would still be a viable option to get a first pose estimation to
proceed to bundle adjustment.

erepr erot etrans inliers VS # iter
Perspective 13.084 0.49 1.87 95.9% 100.0% 4.5
after BA 0.366 0.16 0.17

Orthographic 76.219 29.38 26.50 48.0% 91.4% 36.2
after BA 0.369 0.16 0.18

Table 5.2 – Statistics for 70 triplets of the EPFL fountain-P11 dataset.

Figure 5.13 – Example of the reconstruction obtained by the orthographic model for one
triplet of the EPFL fountain-P11 dataset. We can see the short distance between the
cameras and photographed object.

Statue To show the accuracy of the orthographic method for long focal lengths, we
acquired a new set of images with a focal of length approximately 1000 mm. The images
cover the face of a statue (Figure 5.14) positioned in the middle of one of the fountains of
Château de Champs-sur-Marne, France. The dataset consists of a set of 58 images and we
tested 150 possible triplets. Since there is no available ground truth only the reprojection
error can be computed. We can see in Table 5.3 how the mean reprojection error for the
perspective-based method is extremely high while for the orthographic model it is below 1
pixel in the initial pose estimation being very close to the final reprojection error achieved
by the bundle adjustment minimization. Looking at the number of iterations needed to
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reach the minimum it becomes clear that the orthographic method is more suited for the
long focal length case.

Figure 5.14 – A sample of 48 images of the Statue dataset.

erepr erepr-BA inliers # iter
Perspective 4977.959 0.648 98.8% 74.1
Orthographic 0.735 0.576 97.7% 11.2

Table 5.3 – Statistics for 150 triplets of Statue dataset.

Example. As an example, we show the results for one triplet of images from the Statue
dataset. In Figure 5.15 the images are shown along with the 1177 tracks between them.
The RANSAC based on the orthographic model gives a big enough set of inliers for the pose
estimation but leaves out some true tracks.

Figure 5.15 – A triplet of images from a statue in Château de Champs. The matches are
drawn in green if they are considered inliers by the orthographic AC-RANSAC and red
otherwise.

For this triplet of images, the solution found by the orthographic method is much closer
to the final refined solution than the initial pose given by the perspective method. We can see
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this quantitatively, in the number of iterations needed to reach the minimum in Table 5.4,
where the iterations taken by the perspective solution are much higher. Also qualitatively
in Figure 5.16, where we can see how the initial pose given by the orthographic method
is practically the same as the final refined solution, while the perspective method gives a
worse initial guess, which translates in incredibly high reprojection error. Looking at the
orthogonal views of the estimated poses in Figure 5.16, it becomes clear that the error of
the perspective-based method is mainly in the direction of the projection, which is related
to a bad estimation in the depth of the object with respect to the camera. In Figure 5.17
we show the resulting 3D reconstruction and the estimated camera poses after the bundle
adjustment.

erepr erepr-BA inliers # iter
Perspective 449.4004 0.1900 1116 29(+3)
Orthographic 0.3984 0.1900 1008 7(+3)

Table 5.4 – Results for the calibration of the triplet of images in Figure 5.15. The final
solution of the bundle adjustment was produced with an extra minimization step involving
all inliers that took 4 iterations in both cases. That is why it appears (+3) in the iterations
column.

Perspective

Orthographic

Bundle Adj.

Figure 5.16 – Pose estimation of the triplet of images in Figure 5.15 given by the ortho-
graphic and perspective methods along with the solution of the bundle adjustment. Differ-
ent views are shown for the configuration of the poses: a general view on the left and two
orthogonal views on the right; one perpendicular to the y-axis (top) and one perpendicular
to the z-axis (bottom).
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Figure 5.17 – Several views of the final reconstruction, after bundle adjustment, for the
inliers of triplet of images shown in Figure 5.15.

5.6 Conclusion

In this chapter we have described a non-perspective model for pose estimation of perspect-
ive cameras and we have provided our own implementation. The model is based on the
orthographic projection that we have theoretically shown to model a pinhole camera with
center at infinity. With the experiments we have proven that this translates into a good
performance in the pose estimation task in the case of cameras with long focal length lenses.
Moreover, the method robustness to noise is outstanding. Using this estimation as an ini-
tial guess for a bundle adjustment procedure we have seen that the minimization converges
faster. We conclude that this method based on the orthographic model is well suited for the
external calibration of perspective cameras with relatively long focal lengths outperforming
the perspective-based pose estimation and being comparable in computational complexity
to the linear computation of the fundamental matrix.



Chapter 6

Conclusion and Perspectives

6.1 Conclusion

In this thesis we aimed at improving and reviewing some of the methods involved in 3D
estimation and structure from motion. With accuracy in mind, we have analyzed different
models and methods in order to provide reliable conclusions about their usefulness, robust-
ness and advantages over others. Our research has yield to some improvements with small
modifications, theoretical analysis and new models. During the thesis, we have considered
essential to make publicly available the code we have developed with two objectives in
mind: transparency, since we think it is important to be able to reproduce the experiments
in any research work, and to contribute to the community with useful tools for the different
steps of the SfM process where we have worked.

In the first place, we have presented a study and implementation of Yoon and Kweon’s
method [YK06] for disparity map computation. Our implementation is a useful and efficient
tool for stereo vision. The study of this adaptive support method along with some variants
and other approaches has shown the importance of adaptive weights in block-matching
methods and its prevalent significance.

In the second place, we reviewed methods of estimation of trifocal tensor and of the
pose of three views. Compared with the pose estimation obtained by the fundamental
matrices from the pairs of views, our experiments demonstrate that the trifocal tensor does
not offer enough improvement to be considered the preferred choice. By its simplicity and
lower computation time, the recommended option is to consider only pairwise constraints
through the fundamental matrix, provided some bundle adjustment is used at the end
(which is also highly recommended, as it can routinely decrease the error by a significant
factor).

Finally, we have described a non-perspective model for pose estimation of perspective
cameras. The model is based on the orthographic projection that we have theoretically
shown to model a pinhole camera with center at infinity. Our experiments have proven that
this method has good performance in the pose estimation task in the case of cameras with
long focal length lenses with great robustness to noise. We have shown that when using this
estimation as an initial guess for a bundle adjustment procedure, the minimization converges
faster. We conclude that this method based on the orthographic model is well suited for the
external calibration of perspective cameras with relatively long focal lengths outperforming

99
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the perspective-based pose estimation and being comparable in computational complexity
to the linear computation of the fundamental matrix.

6.2 Future Work

Adaptive Supports for Stereo Matching

In the first part of the thesis we have looked at block-matching methods for disparity
estimation and we quickly explored other possible methods with adaptive weights. While
the results suggest that the accuracy limit for these methods might have been reached, the
positive results using the Tree of Shapes-based distance, lets us believe that there is still
room for improvement by testing other adaptive support weights. There are many ways to
try to define a “probability” with which two pixels in the same patch might be at the same
depth. We have seen that both spacial distance and color/intensity similarity are important
factors to consider. Yet we have seen that taking into account some kind of “connectivity”
can also be beneficial. We think that this is a lead worth exploring by investigating other
distances that take into consideration the topology of the image.

Bundle Adjustment Optimization

The bundle adjustment optimization has not been discussed in depth in this thesis. However
it is an essential step in any 3D reconstruction and pose estimation process. The research
we have carried out in the pose estimation has brought to our attention a very interesting
issue. We have observed both in Chapter 4 and Chapter 5 that the bundle adjustment
optimization is able to reach the correct minimum, even when starting from a far initial
solution. This motivates us to study in future research the possible extended local convexity
of the minimized energy.

Simplified Point Clouds for Bundle Adjustment

During this thesis we have not approached the pose estimation for M > 3 or the lasts steps
of the structure from motion, that being the application of a global bundle adjustment
optimization with many views and partial correspondences (points seen in only two or three
images). In the SfM process the bundle adjustment is applied multiple times in situations
where the relative poses for the pairs and/or triplets have already been computed and
optimized. We have become more and more interested in getting involved in this step
whose main issues are their high computational cost and time, since the bundle adjustment
optimization process increases in complexity with the number of views and 3D points
involved.

Our intuition is that we can reduce the complexity of the minimization by reducing the
parameters of the 3D reconstruction. This would be achieved by compacting all the pose
information held by the point cloud of a pair or triplet of views by simplifying the cloud
itself. The main geometric characteristics of a point cloud can be described by its principal
components or moments. The idea is that by representing the cloud with an equivalent
reduced set of 3D points and their projections onto the images, these could be used for a
global estimation of all the poses. We believe this minimization should be equivalent to the
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one taking all original correspondences with a small loss of information and would vastly
improve the speed of the optimization algorithm. A last bundle adjustment should still be
applied using the computed poses, for the original 3D points to be estimated.

We have started some experiments on this subject but realized it would be a much
bigger project than anticipated. It remains a very interesting approach that we plan to
continue studying in future research.



102 Chapter 6. Conclusion and Perspectives



Appendix A

Pixel Error on Calibration

In the pose estimation task the error of reference to evaluate the quality of any method is
the reprojection error. When ground truth is available we have more reliable options, the
angular errors in rotations and translations. To better understand the behavior of these
errors we address the question of how these two kinds of errors are connected. In order to
find an answer we study the propagation of an error in calibration to the projected points,
in terms of the displacement in pixels.

A.1 Perspective Camera

Let us take projection equation for the pinhole camera (2.5) and rewrite it in Cartesian
coordinates,

x = γ
(
K(RX + ~t)

)
X ∈ R3 (A.1)

where γ is a function transforming homogeneous vectors into Cartesian coordinates, γ(~v) =
(v1v3 ,

v2
v3

)>, for ~v ∈ R3 with v3 6= 0. We can parametrize the rotation matrix R by its three
Euler angles,

R(βx, βy, βz) =

cosβz − sinβz 0
sinβz cosβz 0

0 0 1

 cosβy 0 sinβy
0 1 0

− sinβy 0 cosβy

1 0 0
0 cosβx − sinβx
0 sinβx cosβx

 .

(A.2)
For a fixed X ∈ R3, we can define a function depending on all calibration parameters

x = ζP(ω) := γ
(
K(RX + ~t)

)
(A.3)

with ω = (f, c, β,~t), where β = (βx, βy, βz).
The effect of a small variation δω in the calibration parameters can be approximated

by the linear Taylor expansion around a point ω0,

ζP(ω0 + δω) ≈ ζP(ω0) + J(ζP)(ω0) · δω (A.4)
≈ ζP(ω0) + Jf (ζP)(ω0) · δf + Jc(ζP)(ω0) · δc (A.5)

+ Jβ(ζP)(ω0) · δβ + J~t(ζP)(ω0) · δ~t (A.6)
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where the Jacobian of ζP, J(ζP), has been separated in the second line into smaller matrices,
the Jacobians with respect to the different parameters. In this way, we can see that for
a small change in only one set of parameters, only the value in the initial point and the
corresponding Jacobian will intervene in the error.

Let ω0 be such that the camera center is at the origin of coordinates, ~t0 = (0, 0, 0)
and R0 = Id, which makes β0 = (0, 0, 0). We also center the image coordinates so that
c0 = (0, 0). The initial focal length is f0. Then, the Jacobian matrix evaluated in ω0 is as
follows

J(ζP)(ω0) =

(
X
Z 1 0 −XY

Z2 f0
X2+Z2

Z2 f0 −Y
Z f0

1
Z f0 0 − X

Z2 f0
Y
Z 0 1 −Y 2+Z2

Z2 f0
XY
Z2 f0

X
Z f0 0 1

Z f0 − Y
Z2 f0

)
. (A.7)

We can compute the approximate displacement of the original image point, x0 = ζP(ω),
for each kind of increment,

Increment in. . . Pixel displacement δx

focal length, δf δx ≈ δf

f0
x0 (A.8)

camera center, δc δx ≈ δc (A.9)

rotation angles, δβ δx ≈
(

1

f0
x0x

>
0 + f0Id2

)(
δβy
−δβx

)
+

(
0 −1
1 0

)
x0δβz (A.10)

translation vector, δ~t δx ≈ f0

Z

(
δtx
δty

)
− δtz

Z
x0 (A.11)

However, in order to be able to simulate an increment in the angular error in transla-
tions another parametrization for the translation vector ~t is needed. We can use spheric
coordinates to parametrize the angles and norm of the vector with respect to the origin of
coordinates,

~t(r, θ, φ) =

 r cos θ sinφ
r sin θ sinφ

r cosφ

 with r ∈ [0,∞], θ ∈ [0, 2π), φ ∈ [0, π] . (A.12)

We redefine our original function in terms of the new parameterization, setting ω =
(f, c, β,~t(r, θ, φ)) and the initial point as before but not fixing the camera center at the
origin, instead we put ~t0 = ~t(r0, θ0, φ0). Then, for a variation of the translation parameters
(δr, δθ, δφ), the pixel displacement can be approximated as

δx ≈
[
f0

Z ′
sinφ0

(
cos θ0

sin θ0

)
− x0 cosφ0

]
δr

+ r0

[
f0

Z ′
cosφ0

(
cos θ0

sin θ0

)
+ x0 sinφ0

]
δφ+ r0

[
f0

Z ′
sinφ0

(
− sin θ0

cos θ0

)]
δθ (A.13)

where Z ′ = Z + r0 cos θ0 is the depth of X, relative to the camera.
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We are interested in the effects of variations mainly in the angles of rotation and transla-
tion since we use them for evaluating the accuracy of an estimated pose. When the rotation
angles are varied the pixel error only depends on the angle variations, the original point
x0 and the focal length f0 (Equation (A.10)). On the other hand, note that the error of
an increment in the angles of translation δφ and δθ (Equation (A.13)) will depend on the
original angles, the ratio f0/Z

′, and also will be proportional to the translation’s norm r0.
The latter is specially relevant when evaluating the pose estimation of several images taken
with the same camera of the same scene. In such a case, and supposing that all cameras are
at a similar distance of the scene, all the initial parameters involved in the the increment
δx due to errors in rotation and translation angles, as we have computed, will be similar
but the translation norm r0. This means that, even though we might get very similar
reprojection errors for all images with the retrieved relative poses, the angular errors in
translations will not be proportional to those. In fact, they will be inversely proportional
to the norm of the translations which will depend entirely on the chosen origin (usually one
of the camera centers). We can better understand this effect with an example.

Application to Real Dataset

We take EPFL fountain-P11 dataset [SvHG+08] to study pixel displacement in a specific
case. The size of the images of this dataset is 3072×2048 and the principal point is situated
at c = (1520.7, 1006.8). The focal length is f ≈ 2761.8 pixels.

Let us take a test point in the middle of the first quadrant of each image, x0 =
(3

43072, 3
42048), that is (783, 529) when the coordinates are centered at the principal point.

We can already compute the approximation for some errors:

• Varying principal point has direct effect, δx = δc .

• Varying the focal length in δf pixels,

δx =
δf

2761.8

(
783
529

)
=

(
0.2781
0.1854

)
δf .

• Varying the rotation angles in δβx, δβy, δβz degrees,

δx =

(
−2.4849
−49.8595

)
δβx +

(
51.9302
2.4849

)
δβy +

(
−8.9361
13.4041

)
δβz .

For the variation on the translation vector we need an approximation of the depth Z of the
projected point X. For each image we can take the average depth of the point cloud with
respect to the camera. Also, we fix the origin of the space coordinates to the first camera
center. All the computations depend on the chosen camera, for this reason we present a
table with the approximated errors for each image. The camera positions are shown in
Figure A.1. In Table A.1 the pixel displacement corresponding to each increment of the
translation parameters (for both parameterizations) for the 11 images. Notice that the
error produced by an increment in the spherical angles of the translation, highly increases
for the cameras that are further away from the first camera.
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Figure A.1 – Representation of the camera centers positions in the fountain-P11 data-
set [SvHG+08] and the translation vectors relative to the first camera.

Increments in translation
Camera vector parameters spherical parameters

δtx δty δtz δr δφ δθ
1 δx 0.2729 0 -0.0774

δy 0 0.2729 -0.0523
2 δx 0.2912 0 -0.0826 0.2961 1.7792 -0.1547

δy 0 0.2912 -0.0558 0.0092 1.5715 8.2550
3 δx 0.3141 0 -0.0891 0.3214 2.9569 0.1843

δy 0 0.3141 -0.0602 0.0024 3.1111 16.1391
4 δx 0.3353 0 -0.0951 0.3292 9.2710 -0.7514

δy 0 0.3353 -0.0642 0.0056 5.2611 27.2240
5 δx 0.3613 0 -0.1025 0.3401 17.6485 -0.9753

δy 0 0.3613 -0.0692 -0.0023 7.7406 39.5592
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6 δx 0.3871 0 -0.1098 0.3417 29.9688 -1.3294
δy 0 0.3871 -0.0742 -0.0110 10.4494 52.5282

7 δx 0.4081 0 -0.1157 0.3375 43.3294 -1.8215
δy 0 0.4081 -0.0782 -0.0177 13.0053 64.1219

8 δx 0.4310 0 -0.1223 0.3255 60.0013 -2.2544
δy 0 0.4310 -0.0826 -0.0266 15.4596 74.5133

9 δx 0.4361 0 -0.1237 0.2634 83.0613 -2.4649
δy 0 0.4361 -0.0836 -0.0412 16.6814 76.7481

10 δx 0.4440 0 -0.1259 0.2257 98.1693 -3.6548
δy 0 0.4440 -0.0851 -0.0450 18.3652 76.7928

11 δx 0.4610 0 -0.1307 0.1828 114.2365 -5.3383
δy 0 0.4610 -0.0883 -0.0486 20.9220 73.7881

Table A.1 – Pixel displacement δx = (δx, δy) in the image point x0 for an increment of one
unit (degrees for angles, mm for distance) in the translation parameters. All the values are
shown for each one of the images in the fountain-P11 dataset [SvHG+08] but the first, since
its center is the origin of coordinates and the increment with spheric coordinates cannot be
computed.
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A.2 Orthographic Projection

As a comparison, we have also studied the pixel displacement for the orthographic pro-
jection. Let us take the scaled-orthographic projection equation (5.4) for a space point
X ∈ R3 and rewrite it in the following way,

x = α

((
1 0 0
0 1 0

)
RX +

(
tx

ty

))
+

(
cx

cy

)
with α =

f

~k>O + tz
(A.14)

where we will call α the focal ratio.
We can parametrize the rotation R by its three Euler angles as in eq. (A.2). Then, for

a fixed X ∈ R3, we can define a function depending on all calibration parameters

x = ζSO(ω) := α

((
1 0 0
0 1 0

)
RX +

(
tx

ty

))
+

(
cx

cy

)
. (A.15)

with ω = (α, c, β, t′), where β = (βx, βy, βz) and t′ = (tx, ty).
In the same way as in the perspective projection, the effect of a small variation δω in the

calibration parameters can be approximated by the linear Taylor expansion around point
ω0, separating the Jacobians as before,

ζSO(ω0 + δω) ≈ ζSO(ω0) + J(ζSO)(ω0) · δω (A.16)
≈ ζSO(ω0) + Jα(ζSO)(ω0) · δα+ Jc(ζSO)(ω0) · δc (A.17)

+ Jβ(ζSO)(ω0) · δβ + Jt′(ζSO)(ω0) · δt′ (A.18)

where we have also separated the Jacobian of ζSO in smaller matrices.
Setting ω0 so that the center of the camera is the origin of the space points, R0 = Id,

the initial focal ratio is α0 and the image coordinates are centered on the principal point
of the camera, we get the following Jacobian,

J(ζSO)(ω0) =

(
X 1 0 0 Zα0 −Y α0 α0 0
Y 0 1 −Zα0 0 Xα0 0 α0

)
(A.19)

We can compute the approximate displacement of the original image point, x0 = ζSO(ω),
for each kind of increment,

Increment in. . . Pixel displacement δx

focal ratio, δα δx ≈ δα

α0
x0 (A.20)

camera center, δc δx ≈ δc (A.21)

rotation angles, δβ δx ≈ α0Z

(
δβy
−δβx

)
+

(
0 −1
1 0

)
x0δβz (A.22)

translation vector, δt′ δx ≈ α0

(
δtx
δty

)
(A.23)
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Notice that this increments depend only on the parameter variations, the original point x0,
the ration α and the depth of the point, Z. Therefore, if we compare the pixel errors for
two equal sets of parameters ω0 but one with higher focal length and mean depth of the
points, O, (so that the ratio α is the same, as we do in our experiments), in particular Z
will be higher, then the increment δx will be the same for the variation of all parameters
but for δβx and δβy, that will be proportional to Z. This means that for a pose estimation
method for scaled-orthographic views, the angular errors of the rotation may decrease with
respect to the reprojection errors when getting far away from the scene with fixed α.

Using spheric coordinates (A.12) for the translation vector as before we can compute
the approximate increment for a variation of the translation parameters (δr, δθ, δφ),

δx ≈ α0 sinφ0

(
cos θ0

sin θ0

)
δr + r0α0 cosφ0

(
cos θ0

sin θ0

)
δφ+ r0α0 sinφ0

(
− sin θ0

cos θ0

)
δθ . (A.24)

We an see that the same effect as in the perspective projection appears, a variation in the
translation angle will make the pixel error increase proportionally to the translation norm.
Also, distancing the camera from the scene while keeping α fixed has no effect in the pixel
error due to variations in the translations.



Appendix B

Gauss-Helmert model

The Gauss-Helmert model [Nei10], also known as General Case of Least Squares Adjust-
ment, describes a functional model made up of condition equations f(x, p) = 0 ∈ Rc1 de-
scribing the relations between the model parameters p ∈ Ru and the observations x ∈ Rm,
an also additional constraints g(p, q) = 0 ∈ Rc2 , where q ∈ Rs are unknown additional para-
meters which do not take part in the condition equations. Then for given noisy observations
x0 ∈ Rm it proposes to solve the least-squares problem

minimize
x, p, q

‖x− x0‖2 subject to f(x, p) = 0, g(p, q) = 0 (B.1)

using an iterative approach to find a local optimum by linearizing at each iteration the
constraints f and g using Taylor. For xk, pk and qk the estimated parameters at iteration
k, the Taylor series to first order about the point (xk, pk, qk) provides an approximation of
the constraints,

f(x, p) ≈ f(xk, pk) + Jx(f)(xk, pk) (x− xk) + Jp(f)(xk, pk) (p− pk) (B.2)
= A∆p+B v − w (B.3)

with w = −f(xk, pk) − B (x0 − xk). The matrices A = Jp(f) and B = Jx(f) are the
Jacobian matrices of function f w.r.t. p and x respectively, ∆p = p − pk and v = x − x0

are the residuals.

g(p, q) ≈ g(pk, qk) + Jp(g)(pk, qk) (p− pk) + Jq(f)(pk, qk) (q − qk) (B.4)
= C ∆p+D∆q − t (B.5)

with t = −g(pk, qk). The matrices C = Jp(g) and D = Jq(g) are the Jacobian matrices of
function g w.r.t. p and q and ∆q = q − qk.

With these linearized constraints, the original minimization problem (B.1) can be ap-
proximated by

minimize
x, p, q

v>v subject to A∆p+B v − w = 0,
C ∆p+D∆q − t = 0

. (B.6)

Using Lagrange multipliers λ ∈ Rc1 and µ ∈ Rc2 we get the equivalent problem,

minimize
v,∆p,∆q, λ, µ

Ω = v>v + 2λ>(A∆p+B v − w) + 2µ>(C ∆p+D∆q − t) . (B.7)
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In order to find a local minimum of Ω we differentiate with respect to v, ∆p, ∆q, λ and
µ and set to zero the derivatives, obtaining the following linear system,A>WA 0 C>

0 0 D>

C D 0

∆p
∆q
µ

 =

A>Ww
0
t

 then λ = W (A∆p− w)
v = −B>λ (B.8)

where W = (BB>)−1. Therefore, by solving this system, the next iteration point can be
computed xk+1 = x0 + v, pk+1 = pk + ∆p, qk+1 = qk + ∆q. As any other iterative method,
an initial estimated point close enough to the minimum is necessary for initialization.

An example of the Gauss-Helmert model applied to the fundamental matrix optimiza-
tion is detailed below.

Application to Fundamental Matrix

In 2-view and 3-view models, as seen in Chapter 4, the extra parameters q are not necessary
in the minimization problem (B.1). Now we study the optimization of the fundamental
matrix parameters for the 2-view model. Let us have N pairs of matching points in two
images, {(xi1,xi2)}i=1,...,N , we suppose that there is some noise in the measurements. These
will form the vector of observations,

x0 = (x1
1,x

1
2, . . . ,x

N
1 ,x

N
2 ) ∈ R2N . (B.9)

The parameters to optimize p are the 9 parameters of the fundamental matrix,

p = (f1, f2, . . . , f9) where F21 =

f1 f4 f7

f2 f5 f8

f3 f6 f9

 . (B.10)

The constraints f will be the epipolar constraints (4.3) for each pair of matching points
and the two internal constraints of F21 (null determinant and fixed scale) will from g,

f(x0, p) =
(

(x̄1
2)>F21 x̄

1
1, (x̄2

2)>F21 x̄
2
1, . . . , (x̄N2 )>F21 x̄

N
1

)
(B.11)

g(p) =
(
|F21|, ‖F21‖2 − 1

)
(B.12)

The Jacobian matrices are,

A =

 x1
1 x

1
2 x1

1 y
1
2 x1

1 x1
2 y

1
1 y1

1 y
1
2 y1

1 x1
2 y1

2 1
...

...
...

...
...

...
...

...
...

xN1 xN2 xN1 yN2 xN1 xN2 yN1 yN1 yN2 yN1 xN2 yN2 1

 (B.13)

B =

 f3 + f1 x
1
2 + f2 y

1
2 f6 + f4 x

1
2 + f5 y

1
2 f7 + f1 x

1
1 + f4 y

1
1 f8 + f2x1

1 + f5 y
1
1

...
...

...
...

f3 + f1 x
N
2 + f2 y

N
2 f6 + f4 x

N
2 + f5 y

N
2 f7 + f1 x

N
1 + f4 y

N
1 f8 + f2xN1 + f5 y

N
1


(B.14)

C =

(
f5 f9 − f6 f8 f6 f7 − f4 f9 f4 f8 − f5 f7 f3 f8 − f2 f9 f1 f9 − f3 f7 . . .

2 f1 2 f2 2 f3 2 f4 2 f5 . . .

. . . f2 f7 − f1 f8 f2 f6 − f3 f5 f3 f4 − f1 f6 f1 f5 − f2 f4

. . . 2 f6 2 f7 2 f8 2 f9

)
(B.15)
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The matrix D does not exist since there are no extra parameters q.
The iterative process starts from an initial point, that would be the measured observa-

tions x0, and an initial estimation of the parameters of the fundamental matrix p0 verifying
the internal constraints g(p0) = 0. Then, from the point (xk, pk) at iteration k the matrices
Ak, Bk and Ck are computed, as well as the vector wk = −f(xk, pk)−Bk (x0−xk), matrix
Wk = (BkBk

>)−1 and tk = −g(pk). The system in eq. (B.8) is simplified due to the absence
of matrix D, (

Ak
>WkAk Ck

>

Ck 0

)(
∆pk
µk

)
=

(
Ak
>Wkwk
tk

)
(B.16)

and can be solved to find ∆pk and µk, with which we compute λk = Wk(Ak∆pk −wk) and
vk = −Bk>λk. With that, the next iteration point can be computed,

xk+1 = x0 + vk pk+1 = pk + ∆pk . (B.17)

Standard stopping criteria can be used to end the iterative algorithm. For instance, we
consider a threshold on the norm of the increments ∆pk and xk+1 − xk.
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