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Abstract

This thesis develops optimization methods for Supply Chain Management and is focused on the
flexibility defined as the ability to deliver a service or a product to a customer in an uncertain
environment. The research was conducted throughout a CIFRE agreement between Argon
Consulting, which is an independent consulting firm in Supply Chain Operations and the Ecole
des Ponts ParisTech. In this thesis, we explore three topics that are encountered by Argon
Consulting and its clients and that correspond to three different levels of decision (long-term,
mid-term and short-term).

When companies expand their product portfolio, they must decide in which plants to produce
each item. This is a long-term decision since once it is decided, it cannot be easily changed.
More than an assignment problem where one item is produced by a single plant, this problem
consists in deciding if some items should be produced by several plants and by which ones. This
is motivated by a highly uncertain demand. So, in order to satisfy the demand, the assignment
must be able to balance the workload between plants. We call this problem the multi-sourcing of
production. Since it is not a repeated problem, it is essential to take into account the risk when
making the multi-sourcing decision. We propose a generic model that includes the technical
constraints of the assignment and a risk-averse constraint based on risk measures from financial
theory. We develop an algorithm and a heuristic based on standard tools from Operations
Research and Stochastic Optimization to solve the multi-sourcing problem and we test their
efficiency on real datasets.

Before planning the production, some macroscopic indicators, such as the quantity of raw
materials to order or the size of produced lots, must be decided at mid-term level. Continuous-
time inventory models are used by some companies but these models often rely on a trade-off
between holding costs and setup costs. These latters are fixed costs paid when production is
launched and are hard to estimate in practice. On the other hand, at mid-term level, flexibility of
the means of production is already fixed and companies easily estimate the maximal number of
setups. Motivated by this observation, we propose extensions of some classical continuous-time
inventory models with no setup costs and with a bound on the number of setups. We used
standard tools from Continuous Optimization to compute the optimal macroscopic indicators.

Finally, planning the production is a short-term decision consisting in deciding which items
must be produced by the assembly line during the current period. This problem belongs to the
well-studied class of Lot-Sizing Problems. As for mid-term decisions, these problems often rely
on a trade-off between holding and setup costs. Basing our model on industrial considerations,
we keep the same point of view (no setup cost and a bound on the number of setups) and
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propose a new model. Although these are short-term decisions, production decisions must
take future demand into account, which remains uncertain. We solve our production planning
problem using standard tools from Operations Research and Stochastic Optimization, test the
efficiency on real datasets, and compare it to heuristics used by Argon Consulting’s clients.

Key words: Assignment Problem, Heuristics, Lot-Sizing, Operations Research, Risk Measure,
Stochastic Optimization, Supply Chain Management.
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Résumé

Cette thése développe des méthodes d’optimisation pour la gestion de la Supply Chain et a
pour theme central la flexibilité définie comme la capacité a fournir un service ou un produit
au consommateur dans un environnement incertain. La recherche a été menée dans le cadre
d’une convention CIFRE entre Argon Consulting, une société indépendante de conseil en Supply
Chain, et I'Ecole des Ponts ParisTech. Dans cette thése, nous étudions trois sujets rencontrés par
Argon Consulting et ses clients et qui correspondent a trois différents niveaux de décision (long
terme, moyen terme et court terme).

Lorsque les entreprises élargissent leur portefeuille de produits, elles doivent décider dans
quelles usines produire chaque article. Il s’agit d'une décision a long terme, car une fois qu’elle
est prise, elle ne peut étre facilement modifiée. Plus qu'un probleme d’affectation o1 un article
est produit par une seule usine, ce probleme consiste a décider si certains articles doivent étre
produits par plusieurs usines et par lesquelles. Cette interrogation est motivée par la grande
incertitude de la demande. En effet, pour satisfaire la demande, I'affectation doit pouvoir
équilibrer la charge de travail entre les usines. Nous appelons ce probléme le multi-sourcing de
la production. Comme il ne s’agit pas d'un probleme récurrent, il est essentiel de tenir compte
du risque au moment de décider le niveau de multi-sourcing. Nous proposons un modele
générique qui inclut les contraintes techniques du probléme et une contrainte d’aversion au
risque basée sur des mesures de risque issues de la théorie financiére. Nous développons un
algorithme et une heuristique basés sur les outils standard de la Recherche Opérationnelle et de
I’Optimisation Stochastique pour résoudre le probléme du multi-sourcing et nous testons leur
efficacité sur des données réelles.

Avant de planifier la production, certains indicateurs macroscopiques doivent étre décidés
a moyen terme tels la quantité de matieres premieres a commander ou la taille des lots pro-
duits. Certaines entreprises utilisent des modeles de stock en temps continu, mais ces modeles
reposent souvent sur un compromis entre les cofits de stock et les cofits de lancement. Ces
derniers sont des cofits fixes payés au lancement de la production et sont difficiles a estimer
en pratique. En revanche, a moyen terme, la flexibilité des moyens de production est déja fixée
et les entreprises estiment facilement le nombre maximal de lancements. Poussés par cette
observation, nous proposons des extensions de certains modeles classiques de gestion de stock
en temps continu, sans cofit de lancement et avec une limite sur le nombre de lancements.
Nous avons utilisé les outils standard de I'Optimisation Continue pour calculer les indicateurs
macroscopiques optimaux.

Enfin, la planification de la production est une décision a court terme qui consiste a décider



quels articles doivent étre produits par la ligne de production pendant la période en cours. Ce
probléme appartient a la classe bien étudiée des problemes de Lot-Sizing. Comme pour les
décisions a moyen terme, ces problémes reposent souvent sur un compromis entre les cotits
de stock et les cofits de lancement. Fondant notre modele sur ces considérations industrielles,
nous gardons le méme point de vue (aucun cofit de lancement et une borne supérieure sur
le nombre de lancements) et proposons un nouveau modele. Bien qu’il s’agisse de décisions
a court terme, les décisions de production doivent tenir compte de la demande future, qui
demeure incertaine. Nous résolvons notre probleme de planification de la production a I'aide
d’outils standard de Recherche Opérationnelle et d’Optimisation Stochastique, nous testons
I'efficacité sur des données réelles et nous la comparons aux heuristiques utilisées par les clients
d’Argon Consulting.

Mots-clés : Heuristique, Lot-Sizing, Mesure de Risque, Optimisation Stochastique, Probleme
d’affectation, Recherche Opérationnelle, Supply Chain Management.
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Introduction

The research made in this CIFRE thesis deals with Supply Chain Management. It was funded by
Argon Consulting which is an independent consulting firm whose mission is to help its clients
improve every part of their Supply Chain (from the procurement of raw materials to the delivery
of final products) and conducted throughout an industrial partnership with the Ecole des Ponts
ParisTech. The goal is to model and develop methods to manage specific parts of the Supply
Chain in an optimal way.

The common thread of the three topics developed in this thesis is the flexibility. We define
the flexibility as the ability to deliver a service or a product to a customer in an uncertain
environment. Depending on the level of decision, the flexibility is either a constraint (like the
ability of an assembly line to easily switch from the production of one item to another) or a
decision variable (like deciding between specialization and versatility). In general, the flexibility
of a system relies on long-term (and sometimes mid-term) decisions.

In order to help to the global understanding of these topics, we choose to introduce the three
topics beginning by the long-term decisions, then the mid-term decisions, and finally the
short-term decisions. However, this manuscript follows a different order prescribed by the
introduction of notions and results reused in following parts. The long-term decisions studied
in this thesis (Part III) deal with multi-sourcing of production that aims at deciding the flexibility
of means of production at a reasonable cost. The mid-term decisions (Part I) and the short-term
decisions (Part II) both deal with the reduction of inventories subject to flexibility decisions
that were already made. More specifically, the mid-term decisions we are interested in aim at
computing indicators that drive several Supply Chain processes whereas short-term decisions
aim at deciding the production that must be launched.

The three topics of this thesis and other examples are placed on Figure 1.1 depending on their
decision horizon.

1.1 Multi-sourcing of production

Multi-sourcing of production is a strategic decision in Supply Chain Management (i.e., a long-
term decision). It consists in deciding if a plant should have the ability to produce an item. For
example, in Figure 1.2, the first plant can produce items A, B and C while the second one can
produce items B, C and D. Then, items A and D are said to be mono-sourced since each can



Chapter 1. Introduction
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Assignment models Discrete-time inventory models

Figure 1.1 — Decision horizon

be produced by only one plant whereas items B and C are said to be multi-sourced since they
can be produced by at least two plants. The first characteristic of multi-sourcing decisions is
their horizon. They take time to be implemented and have long-term impact on Supply Chain
Management. Second, multi-sourcing decisions are taken in a highly uncertain environment.
Among others, the future customer demand, the reliability of means of production and the
future availability of raw materials are imperfectly known. Finally, multi-sourcing decisions will
constrain future production decisions (i.e., mid-term decision). Precisely, they determine the
flexibility of the plants and the ability to balance the workload between them.

(mono-sourced)

production of |1
A B,c LIIIED

(multi-sourced)

(multi-sourced)

production of |1
(== -
B,C,D D — item D (mono-sourced)

Figure 1.2 — Multi-sourcing of production of four items in two plants

Considering its applications, Argon Consulting chooses to model the demand as the main
source of uncertainty with a fixed and known total volume of demand. (In its applications,
Argon Consulting is interested by the ability to face variations in the product mix and not in
the volume of demand.) In Chapter 9, we model the problem as a stochastic program with
recourses where first-stage variables are the assignment of items to plants and second-stage
variables are the production decisions. In order to deal with randomness and to capture the
long-term impact and the risk of assignment decisions, we rely on risk measures, which are
tools from financial theory used to quantify the risk of a financial position. We choose to use
the Average-Value-at-Risk (AV@R) applied to the inventory level of items. To the best of our
knowledge, it is almost the first time that such a tool is used in Supply Chain applications. High
inventory level is expensive but enables an easy satisfaction of the demand. Reducing inventory
is then risky and Average-Value-at-Risk aims at quantifying the risk of this decision.

The Average-Value-at-Risk at a% (also known as Expected Shortfall or Conditional-Value-at-
Risk) can be interpreted as the expectation restricted to the a% worst cases, i.e., a% lowest
values of inventory. It enables the decision maker to have an indicator that captures both the
shortfall probability and the undelivered quantity (which are strongly linked to two indicators

2



1.2. Continuous-time inventory models

used to measure service level: the cycle service level and the fill rate service level). Moreover, the
parameter a provides a simple way to address the control of the risk level and the Average-Value-
at-Risk can be linearized. We apply a classical approximation scheme to solve the stochastic
program by doing first a two-stage approximation and then a sampling of scenarios in order to
get a mixed integer linear program (MILP), which leads to a tractable formulation.

Real datasets given by Argon Consulting’s clients contain only historical values of production
and sales. Since we do not know the actual demand, we propose in Chapter 7 a probabilistic
model to generate possible realizations of demand from historical values. This model is based
on Dirichlet distributions and aims at being easy to use while being reasonable. Its only input is
a forecast demand (which can be the historical sales or the historical forecast) and a volatility
which is a percentage standing for the accuracy of the forecast. (The smallest the volatility the
most accurate the forecast.) Our probabilistic model provides scenarios of demand such that the
total volume of demand is the same in each scenario, such that the expectation of a realization
is equal to the forecast and such that the standard deviation divided by the expectation is close
to the volatility. This model meets the assumption made by Argon Consulting on the demand,
has few parameters and is easy to simulate (even conditionally to the past).

Finally, on real datasets, computation times may be long. Up-to-date solvers are often unable to
find a feasible solution of the problem. Then, we propose a heuristic that enables us to quickly
find a feasible solution of the multi-sourcing problem. The returned solution can be directly
used by Argon Consulting’s clients or as an initial solution of a generic solver.

The experimentations made in Chapter 10 already prove that the company that provides the
datasets can reduce its proportion of multi-sourced items (thus reduce its costs) while keeping a
good ability to satisfy demand. However, computer performances and real dataset sizes prevent
us from dealing with more than a hundred of scenarios. Thus, the method is dependent on the
sampling methods and the choice of a representative set of scenarios is critical. We propose a
concrete way to reduce this dependence on the sampling methods based on clustering methods
(such as K-means).

1.2 Continuous-time inventory models

Argon Consulting uses continuous-time inventory models to compute macroscopic parameters
at a tactical level (mid-term decisions). Classical examples are the lot-size and the cover-size. The
lot-size gives the quantity of a same item produced at each production launch. The cover-size
gives the number of time units following a production launch during which inventory must be
positive. These parameters are used as input for other decision processes in Supply Chain such
as the Material Requirement Planning (MRP). For example, having an estimate of the lot-sizes
or the cover-sizes allows to decide the quantity of raw materials that must be ordered. They
are also used as input to plan the production since they give the sizes of produced lots. (When
studying discrete-time models, we will propose to remove this constraint from the models.)

Continuous-time inventory models assume a continuous vision of time. The seminal model
known as the Economic Order Quantity (EOQ) model from Harris (1913) gives the optimal trade-
off between ordering and holding costs. In practice, EOQ formula is hard to use since ordering
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and holding costs are difficult to compare. Argon Consulting aims at finding the optimal lot-
sizes (or cover-sizes) from the flexibility of its assembly lines, which is considered as fixed and
defined by previous Supply Chain processes. An assembly line can produce several items but
loses time when switching from the production of one item to another. Considering a constant
demand rate, Figure 1.3 shows the consequences of several lengths of production cycles. Too
short production cycles lead to stock-out since too much time is spent switching between the
production of two items whereas too long production cycles lead to unnecessary high inventory
and unproductive time. In real datasets, assembly lines produce a lot of items and time lost due
to switching between different items is modeled by a maximal number of setups.

short production cycles

inventory level

5 = 5
? ? ?
- < ]
Q Q Q
=) = 2
w %] 2} .
| > time
[ Eaa——— | | | ]
inventory level -
y long production cycles ‘
production item A
Il production item B
| > time . o
' T— T— ‘ [] time for switching
inventory level - : unproductive time
o optimal production cycles‘
w > time
[ Eaaa—— | T T ]

Figure 1.3 — Continuous-time inventory model for a line producing two items

Replacing the ordering costs by an upper bound on the number of setups, we propose in
Chapter 3 generalizations of the classical EOQ formula for multiple items. They have already
been useful for Argon Consulting. Specifically, we study continuous and integer numbers
of setups in deterministic and stochastic settings. Moreover, we also study in Chapter 4 an
extension that considers several parallel assembly lines and show that the problem can be
stated as a concave minimization problem over a polyhedron (for which it exists an extensive
literature).

1.3 Discrete-time inventory models

Discrete-time inventory models (also called dynamic lot-sizing problems) assume that time
is decomposed into discrete periods. They are used by companies to plan their short-term
production. A classical model is the Capacitated Lot-Sizing Problem (CLSP). It considers an
assembly line producing several items during a finite number of periods. The demand for each
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1.3. Discrete-time inventory models

item is deterministic and given for each period. It aims at minimizing the sum of the holding
costs (due to inventory carried from a period to the following) and the setup costs (fixed cost
due to launch of the production) subject to the capacity of the assembly line.

As already mentioned in Section 1.2, the drawback of this formulation according to Argon
Consulting and its clients is the difficulty to estimate the value of the setup costs. On the
other hand, estimating the maximal number of setups for a period is an easy task for Argon
Consulting’s clients. We propose in Chapter 5 a model derived from the Capacitated Lot-Sizing
Problem that replaces the setup costs by an upper bound on the number of setups. Figure 1.4
shows an example of production planning of four items when at most two items can be produced
during a period. To the best of our knowledge, this model is new and has not been studied in the

literature.
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Figure 1.4 — Production planning of four items for five weeks

Our lot-sizing problem can be written as a mixed integer linear program (MILP). We get several
theoretical results in the deterministic setting that show the difficulties of the problem. As ex-
pected, this problem is NP-hard. A classical method to help solve mixed integer linear programs
consists in relaxing some constraints to get a bound on the optimal value of the problem. We
show that several natural formulations all yield the same continuous relaxation. Finally, we were
left with the following question: what is the complexity status of our lot-sizing problem when
there is no capacity constraints and when the maximal number of setups per period is equal to
1? Mathematically, it can be formulated as follows. Consider the problem

T . .
min Y Y h's;

I=1ieZ S
s.t. sj=s,_,+q;—d; Vtel[Tl], Viel,
gl < Mx! Vte(T), Viel, ®
Y xi<1 Viel[T],
i€eZ
x;€1{0,1} Viel[T], VieZ,
g, st>0 Vte(T), Viel,

where M is a big positive number, and for each period ¢ and each item i, the demand d! and
the holding cost k' are given nonnegative real numbers, and the inventory s;, the produced
quantity g; and the setup indicator xf are the decision variables.
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Open question. What is the complexity status of (P)?

In practice, the demand is not always deterministic. We propose in Chapter 6 a stochastic version
of our lot-sizing problem based on Stochastic Programming (see Section 1.1). The difference is
that we do not use a risk-averse constraint (AV@R) but stick to the classical risk-neutral vision
(the expectation). Indeed, production is a repeated decision and a failure at one period is easy
to compensate with another period.

Moreover, in a stochastic setting, we must allow backorder because production resources are
limited and it may be impossible to cover every single possible realizations of demand. Here, they
come with costs in the objective function. Except when they are enshrined through contracts
with the customers, backorder costs can be hard to estimate. We adapt from the literature a
method based on the news-vendor problem (one of the oldest stochastic models) to link the
backorder cost and the desired portion of satisfied demand.

As in Section 1.1, our stochastic lot-sizing problem is also solved by doing first a two-stage
approximation and then a sampling of scenarios in order to get a mixed integer linear program.
Since scenarios were not provided by our partner, we generate them using the probabilistic
model mentioned in Section 1.1.

The experimentations made in Chapter 7 seem to show that the company that provides the
datasets can reduce its inventory costs while keeping a good ability to satisfy the demand.
However, as in Section 1.1, computer performances, real dataset sizes and limited time to
return a production planning prevent from dealing with more than twenty scenarios. Since the
method is dependent on the sampling methods, we propose again a concrete way to reduce this
dependence on the sampling methods based on clustering methods (such as K-means).

1.4 Extensions

In Part IV, we present two extensions of our work. The first is an alternative version of the
multi-sourcing problem addressed in Part III. The difference is that the company has a limited
budget to invest in flexibility. In this case, the company aims at deciding an assignment which
maximizes the demand that can be satisfied. We model this alternative problem and show that
it is NP-hard in several simple cases.

The second is an extension of the inventory models addressed in Part I and II. We aim at
computing the cover-sizes at mid-term horizon using a model relying on production planning
at short-term. We model this alternative problem and experimentally show that it has many
drawbacks compared to the continuous-time inventory models.



Introduction (version francaise)

La recherche effectuée dans le cadre de cette these CIFRE porte sur la gestion de la Supply Chain.
Elle a été financée par Argon Consulting, cabinet de conseil indépendant dont la mission est
d’aider ses clients a améliorer 'ensemble de leur Supply Chain (de I'approvisionnement en
matieres premieres a la livraison des produits finis) et est menée dans le cadre d'un partenariat
industriel avec I'Ecole des Ponts ParisTech. Lobjectif est de modéliser et de développer des
meéthodes pour gérer de maniére optimale certaines fonctions spécifiques de la Supply Chain.

Le point commun des trois sujets développés dans cette these est la flexibilité. Nous définissons
la flexibilité comme la capacité a fournir un service ou un produit a un client dans un environ-
nement incertain. Selon le niveau de décision, la flexibilité est soit une contrainte (comme la
capacité d'une ligne de production a passer facilement de la production d'un article a un autre)
soit une variable de décision (comme décider entre spécialisation et polyvalence). En général,
décider de la flexibilité d'un systéme est une décision a long terme (et parfois a moyen terme).

Afin d’aider a la compréhension globale des sujets, nous avons choisi d’introduire les trois sujets
en commencant par les décisions a long terme, puis les décisions a moyen terme, et enfin les
décisions a court terme. Cependant, ce manuscrit suit un ordre différent d a I'introduction de
notions et de résultats réutilisés d'une partie sur I'autre. Les décisions a long terme étudiées
dans cette these (Partie III) portent sur le multi-sourcing de la production qui vise a décider de la
flexibilité des moyens de production tout en gardant un cofit raisonnable. Les décisions a moyen
terme (Partie I) et les décisions a court terme (Partie II) traitent toutes deux de la réduction
des stocks sous la contrainte des décisions de flexibilité déja prises. Cependant, les décisions
a moyen terme qui nous intéressent visent a calculer des indicateurs qui pilotent plusieurs
processus de la Supply Chain alors que les décisions a court terme qui nous intéressent visent a
décider de la production qui doit étre lancée.

Les trois sujets de cette thése et d’autres exemples sont placés sur la Figure 1.1 en fonction de
leur horizon de décision.

1.1 Multi-sourcing de la production

Le multi-sourcing de la production est une décision stratégique dans la gestion de la Supply
Chain (i.e. une décision a long terme). Elle consiste a décider si une usine doit avoir la capacité
de produire un article. Par exemple, dans la Figure 1.2, la premiére usine peut produire les
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Figure 1.1 — Horizon de décision

articles A, B et C tandis que la seconde peut produire les articles B, C et D. Les articles A et D sont
dits mono-sourcés puisque chacun peut étre produit par une seule usine alors que les articles
B et C sont dits multi-sourcés puisqu’ils peuvent étre produits par au moins deux usines. La
premiere caractéristique des décisions de multi-sourcing est leur horizon. Leur mise en ceuvre
prend du temps et a un impact along terme sur la gestion de la Supply Chain. Deuxiemement, les
décisions de multi-sourcing sont prises dans un environnement trés incertain. Entre autres, les
demandes futures des clients, la fiabilité des moyens de production ou la disponibilité future des
matieres premiéres sont mal connues. Enfin, les décisions de multi-sourcing contraignent les
décisions de production futures (décision a moyen terme). Plus précisément, elles déterminent
la flexibilité des usines et la capacité a équilibrer la charge de travail entre elles.

(mono-sourceé)

production de A
A B C LIIEY

(multi-sourcé)

(multi-sourcé)

production de Ve
[ (= -
B,C,D | article D (mono-sourcé)

Figure 1.2 — Multi-sourcing de la production de quatre articles sur deux usines

Considérant ses applications, Argon Consulting choisit de modéliser la demande comme princi-
pale source d’incertitude avec un volume total de demande fixe et connu. (Dans ses applications,
Argon Consulting s’intéresse a la capacité de faire face aux variations du mix produit et non
du volume de la demande.) Dans le Chapitre 9, nous modélisons le probléme comme un pro-
gramme stochastique avec recours ol les variables de premiere étape sont 'affectation des
articles aux usines et les variables de deuxiéme étape sont les décisions de production. Afin
d’intégrer le caracteére aléatoire et de prendre en compte I'impact a long terme et le risque des
décisions d’affectation, nous nous appuyons sur les mesures de risque, qui sont des outils de la
théorie financiére utilisés pour quantifier le risque lié a une position financiére. Nous choisis-
sons d'utiliser I'Average-Value-at-Risk (AV@R) appliquée au niveau de stock des articles. A’ notre
connaissance, un tel outil a rarement été utilisé dans des applications Supply Chain. Un niveau
de stock élevé est coliteux mais permet de satisfaire facilement la demande. La réduction des
stocks est alors risquée et '’ Average-Value-at-Risk vise a quantifier le risque lié a cette décision.

L'Average-Value-at-Risk a a% (aussi connue sous le nom d’Expected Shortfall ou de Conditionnal-
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Value-at-Risk) peut étre interprétée comme I'espérance restreinte aux a% pires cas, i.e. au a%
plus basses valeurs du stocks. Elle permet au décideur de disposer d'un indicateur qui saisit a la
fois la probabilité de rupture et la quantité non livrée (qui sont fortement liés a deux indicateurs
utilisés pour mesurer le niveau de service : le cycle service level et le fill rate service level). De
plus, le parametre a fournit un moyen simple de controler le niveau de risque et I’Average-
Value-at-Risk peut étre linéarisée. Nous appliquons un schéma d’approximation classique pour
résoudre le programme stochastique en faisant d’abord une approximation en deux étapes,
puis un échantillonnage de scénarios afin d’obtenir un Programme Linéaire en Nombres Entiers
(PLNE) menant a une formulation tractable.

Les jeux de données réelles fournies par les clients d’Argon Consulting ne contiennent que
les valeurs historiques de production et de ventes. Comme nous n’avons pas la demande
réelle, nous proposons dans le Chapitre 7 un modele probabiliste pour générer des réalisations
possibles de la demande a partir de valeurs historiques. Ce modele est basé sur les distributions
de Dirichlet et vise a étre facile a utiliser tout en gardant une certaine vraisemblance. Sa seule
entrée est une demande prévisionnelle (qui peut étre I'historique des ventes ou I'historique des
prévisions) et une volatilité qui est un pourcentage représentant I’exactitude de la prévision.
(Plus la volatilité est faible, plus la prévision est précise.) Notre modele probabiliste fournit
des scénarios de demande de sorte que le volume total de la demande soit le méme dans
chaque scénario, de sorte que I’espérance de chaque réalisation soit égale a la prévision et que
I'écart type divisé par I’espérance soit proche de la volatilité. Ce modéle répond aux hypotheses
faites par Argon Consulting sur la demande, a peu de parametres et est facile a simuler (méme
conditionnellement au passé).

Enfin, sur des jeux de données réelles, les temps de calcul peuvent étre longs. Les solveurs
modernes sont souvent incapables de trouver une solution réalisable au probléme. Nous pro-
posons une heuristique qui permet de trouver rapidement une solution réalisable au probleme
du multi-sourcing. La solution retournée peut étre utilisée directement par les clients d’Argon
Consulting ou comme solution initiale d'un solveur générique.

Les expérimentations faites dans le Chapitre 10 prouvent d’ores et déja que I'entreprise qui
fournit les jeux de données peut réduire sa proportion d’articles multi-sourcés (réduisant ainsi
ses colits) tout en conservant une bonne capacité a satisfaire la demande. Cependant, les
performances des ordinateurs et la taille réelle des jeux de données empéchent de traiter plus
d’une centaine de scénarios. La méthode dépend donc de I'échantillonnage et le choix d'un
ensemble représentatif de scénarios est essentiel. Nous proposons une facon concrete de réduire
cette dépendance vis-a-vis de ’échantillonnage basées sur les méthodes de clustering (telles
K-means).

1.2 Modeles de stock en temps continu

Argon Consulting utilise des modeéle de stock en temps continu pour calculer des parametres
macroscopiques au niveau tactique (décisions a moyen terme). Les exemples classiques sont
la taille de lot et 1a taille de la couverture. La taille de lot donne la quantité d'un méme article
produite a chaque lancement de production. La taille de la couverture indique le nombre
d’unités de temps suivant un lancement de production pendant lequel le stock doit étre positif.
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Ces parameétres sont utilisés comme entrée pour d’autres processus de décision dans la Supply
Chain comme pour la planification des besoins en composants (MRP). Par exemple, avoir une
estimation des tailles de lot ou des tailles de couverture permet de décider de la quantité de
matieres premieres qui doit étre commandée. Ils sont également utilisés comme entrées pour
planifier la production puisqu’ils donnent les tailles de lot a produire. (Lors de I'étude des
modeles en temps discret, nous proposerons de supprimer cette contrainte des modeles.)

Les modele de stock en temps continu présupposent une vision continue du temps. Le modéle
fondateur connu sous le nom de Formule de Wilson et développé par Harris (1913) permet
de calculer le compromis optimal entre les cotits de commande et les cotits de stockage. En
pratique, la formule de Wilson est difficile a utiliser car les cofits de commande et de stockage
sont difficiles a comparer. Argon Consulting cherche a trouver les tailles de lot (ou tailles de
couverture) optimales a partir de la flexibilité de ses lignes de production, qui est considérée
comme fixe et définie par les processus amont de la Supply Chain. Une ligne de production peut
produire plusieurs articles mais perd du temps lorsqu’elle change de la production d'un article a
un autre. En considérant un taux de demande constant, la Figure 1.3 montre les conséquences
de plusieurs longueurs de cycles de production. Des cycles de production trop courts entrainent
des ruptures de stock car trop de temps est perdu dans les changements de production, alors
que des cycles de production trop longs entrainent des sur-stocks et des temps improductifs.
Dans les jeux de données réelles, les lignes de production produisent beaucoup d’articles et le
temps perdu dii au changement entre différents éléments est modélisé par un nombre maximal
de changements.

cycles de production courts
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Figure 1.3 — Modéle de stock en temps continu pour une ligne produisant deux articles

En remplacant les cotits de changement par une borne supérieure sur le nombre de change-
ments, nous proposons dans le Chapitre 3 des généralisations de la formule classique de Wilson
pour des cas avec plusieurs articles. Elles sont désormais utilisées par Argon Consulting. En
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particulier, nous étudions les cas ot les tailles de couverture sont continues ou entieres dans des
contextes déterministes et stochastiques. De plus, nous étudions également dans le Chapitre 4
une extension qui prend en compte plusieurs lignes de production paralléles et montre que le
probléeme peut étre décrit comme un probleme de minimisation concave sur un polyedre (pour
lequel il existe une vaste littérature).

1.3 Modeles de stock en temps discret

Les modeles de stock en temps discret (également appelés dynamic lot-sizing problem) sup-
posent que le temps est décomposé en périodes discretes. Ils sont utilisés par les entreprises
pour planifier leurs productions a court terme. Un modele classique est le Capacitated Lot-Sizing
Problem (CLSP). 1l s’agit d'une ligne de production produisant plusieurs articles pendant un
nombre fini de périodes. La demande pour chaque article est déterministe et donnée pour
chaque période. Il vise a minimiser la somme des cotts de stockage (dus aux stocks reportés
d’une période a I'autre) et des cotits de lancement (cofits fixes liés au lancement de la production)
sous contrainte de capacité de la ligne de production.

Comme déja mentionné en Section 1.2, 'inconvénient de cette formulation selon Argon Con-
sulting et ses clients est la difficulté d’estimer la valeur des cofits de lancement. D’autre part,
I'estimation du nombre maximal de lancements pour une période donnée est une tache facile
pour les clients d’Argon Consulting. Nous proposons dans le Chapitre 5 un modele dérivé du
Capacitated Lot-Sizing Problem qui remplace les cotts d’installation par une borne supérieure
sur le nombre de lancements. La Figure 1.4 montre un exemple de planification de la production
de quatre articles sous contrainte qu’au plus deux éléments peuvent étre produits pendant une
période. A notre connaissance, ce modele est nouveau et n'a pas été étudié dans la littérature.

. 0 e\ D o e'(L . 0 6{5 D o e m . 0 66
Q’e‘\ Qé‘\ Qé‘x Q'@‘\ Qé‘x

production article A

production article B

production article C

Capacité
BO0N

production article D

Figure 1.4 — Planification de la production de quatre articles sur cinq semaines

Notre probleme de taille de lot peut étre écrit comme un Programme Linéaire en Nombres
Entiers (PLNE). Nous obtenons plusieurs résultats théoriques dans le cadre déterministe qui
montrent les difficultés du probleme. Comme prévu, ce probleme est NP-hard. Une méthode
classique pour aider a résoudre les programmes linéaires en nombres entiers consiste a relacher
certaines contraintes pour obtenir une borne sur la valeur optimale du probléeme. Nous mon-
trons que plusieurs formulations naturelles produisent toutes la méme relaxation continue.
Enfin, nous n’avons pas pu répondre a la question suivante : quelle est la complexité de notre
probleme de Lot-Sizing lorsqu’il n'y a pas de contraintes de capacité et que le nombre maximal
de changements par période est égal a 1 2 Mathématiquement, il peut étre formulé comme suit.
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Considérons le probleme

T . .
min Y Y h's;

t=1iel . .
s.t. s;=s,_,+q;—d; Vte|[T], VieZ,
g < Mx! Vtel[T), Viel, ®)
Y xi<1 Vte(T],
i€l
x;€{0,1} Vte[T], VieT,
ql,si>0 Vie(T], Viel,

ou M est un grand réel positif et pour chaque période t et chaque article 7, la demande d; et
le cotit de stockage h’ sont des nombres réels positifs et le stock s,’;, la quantité produite qi et
I'indicateur de lancement xi sont les variables de décision.

Question ouverte. Quelle est la complexité de (P) ?

En pratique, la demande n’est pas toujours déterministe. Nous proposons dans le Chapitre 6 une
version stochastique de notre probleme de taille de lot basée sur la programmation stochastique.
(voir Section 1.1). La différence est que nous n’utilisons pas une contrainte d’aversion au risque
(AV@R) mais nous nous en tenons a la vision classique de neutralité au risque (I’espérance). En
effet, la production est une décision répétée et un échec lors d'une période est facile a compenser
par une autre période.

De plus, dans un contexte stochastique, nous devons autoriser le backorder (i.e. les commandes
livrées en retard) parce que les capacités de production sont limitées et qu’il peut étre impossible
de couvrir toutes les réalisations possibles de la demande. Ici, le backorder vient avec des cofits
dans la fonction d’objectif. A moins qu’ils ne soient contractualisés avec les clients, les cotits de
backorder peuvent étre difficiles a estimer. Nous adaptons une méthode de la littérature basée
sur le probléme du vendeur de journaux (I'un des plus anciens modeles stochastiques) pour lier
le cotit de backorder et le niveau souhaité de la demande satisfaite.

Comme dans la Section 1.1, notre probleme de taille de lot stochastique est également résolu
en faisant d’abord une approximation en deux étapes, puis un échantillonnage de scénarios
afin d’obtenir un programme linéaire en nombres entiers. Comme les scénarios de demande
n’ont pas été fourni par notre partenaire, nous les générons en utilisant le modele probabiliste
mentionné en Section 1.1.

Les expérimentations faites dans le Chapitre 7 tendent a montrer que I'entreprise qui fournit les
jeux de données peut réduire ses cotts de stockage tout en conservant une bonne capacité a
satisfaire la demande. Cependant, comme dans la Section 1.1, les performance des ordinateurs,
la taille réelle des jeux de données et le temps limité pour retourner un plan de production
empéchent de traiter plus de vingt scénarios. Puisque la méthode dépend de I’échantillonnage,
nous proposons encore une fois une fagon concrete de réduire cette dépendance, fondée sur les
méthodes de clustering (comme K-means).
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1.4 Extensions

Dans la Partie IV, nous présentons deux extensions de notre travail. La premiere est une version
alternative du probléeme de multi-sourcing abordé dans la Partie IIl. La différence est que
I'entreprise a un budget limité a investir dans la flexibilité. Dans ce cas, 'entreprise cherche a
décider d'une affectation qui maximise la demande qui peut étre satisfaite. Nous modélisons ce
probleme alternatif et montrons qu'il est NP-difficile dans plusieurs cas simples.

La seconde est une extension des modeles de stock abordés dans la Partie I et II. Notre objectif
est de calculer les tailles de couverture a moyen terme a I’aide d'un modele s’appuyant sur la
planification de la production a court terme. Nous modélisons ce probleme alternatif et mon-
trons expérimentalement qu’il présente de nombreux inconvénients par rapport aux modeles
de stock en temps continu.
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Business context

A Supply Chain is a system of organizations, people, activities, information, and resources in-
volved in producing, transforming or moving a product or a service from suppliers to customers.
It can be considered for a subsidiary, a whole company or for multiple companies working
together. Its activities extend from the procurement of raw materials to their transformation
into finished products and their delivery to the costumer.

Supply Chain can fulfill several functions. Most common are procurement, production, distri-
bution, storage, shipping, sales and billing, and customer relationship. The work of this thesis
deals with production and storage optimization within companies.

2.1 Supply Chain objectives

Supply Chain management consists in finding the right balance between conflicting objectives.
They can be classified into three categories: costs, stocks and service.

Costs are the expenses paid by companies as a part of their activities. It can be fixed or variable
and direct or indirect. Fixed costs, like rent, insurance and investment costs (such as buying ma-
chines), do not depend on the volume of the business activity. On the other hand, variable costs,
like shipping or energy costs, directly increase with the volume of the business activity. Direct
costs concern resources entirely dedicated to the product manufacturing like procurement of
raw materials or worker salaries. Indirect costs support functions that are not directly involved
in production like marketing or administration.

Stocks, also called inventory, induce costs for storage space, insurance, broken or stolen goods,
and work time to keep registered stock accurate. The main characteristic of inventory is that
itis locked-in money until it is transformed (for raw materials) or sold (for finished products).
Thus, it prevents from investing this capital in developments like R&D or geographic expansion.
Stocks are more comparable to working capital and because of this specificity, they must form
their own category in optimization process.

Service or service level measures the ability of the Supply Chain to deliver the right product to
the customer while respecting the deadlines. There are many indicators to measure the service
level but we can identify two main ones: the cycle service level and the fill rate service level. Both
rely on stock-out (i.e., the unavailability of a product at a given time) and on the replenishment
cycle which is the time between two consecutive replenishments of the stock. The cycle service
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level is the probability of not hitting a stock-out during the next replenishment cycle, and thus,
also the probability of not losing sales. The fill rate service level represents the fraction of the
demand that is delivered without delays or lost sales. The choice of the indicator depends on
the industry. Indeed, in the case of complex products like in aeronautics, if one component is
missing in the command, it can delay the whole project. Thus delivering the whole command is
more important and this makes the cycle service level more relevant. In case of simple products
like in mass distribution, it is more relevant to measure the part of demand delivered at due date
and this makes the fill rate service level more relevant.

Automotive and luxury industries are good examples of these conflicting objectives. In auto-
motive industry, high stock is impossible because of depreciation and diversity of products.
However, the service level must be high due to high competition. In luxury industry, availability
of the right product in the right store is more critical than production costs but high stocks are
still impossible.

In general, industrial agility, which is the ability to face variations in customers’ demand is an
efficient way to be competitive if two conditions are satisfied. First, the cost of agility should stay
reasonable and second, agility should not be achieved thanks to high stocks. For a company,
defining its agility is therefore finding a balance between cost, stock and service.

Industrial agility can be split in two parts: capacitative reactivity and flexibility. Capacitative
reactivity is the ability to face variations of the global volume, by being able to produce more
products than the estimated demand for example. This concerns over-capacitated industries
or industries being able to outsource part of the production. Capacitative reactivity is more
critical in sector like process industry since adding overcapacity is extremely expensive and
outsourcing can be extremely hard. Flexibility is the ability to face variations of the product mix.
Multi-sourcing the production, which means giving to several plants the ability to produce the
same product, enables more flexibility but decreases productivity. Increasing stocks would be
another way to increase flexibility. Among other, flexibility enables to adapt to an unexpected
cannibalization of a product by another. Luxury industry and mass distribution are probably
the sectors where being flexible is the most critical due to the vast number of products.

The exact definition of the agility depends on the industrial context but also on the decision
level: strategic (long-term), tactical (mid-term) or operational (short-term). At the strategic level,
the executive committee has expressed the desired agility and wants to decide an investment in
production capacities. Thus, agility is a constraint, cost is an objective to minimize and stock is
not really considered. Just between strategic and tactical levels, capacitative reactivity cannot be
changed, S&OP (Sales and Operations Planning) process has expressed a desired service level
and wants to decide multi-sourcing. Thus, service level is a constraint and cost is an objective. At
the tactical and operational levels, service level is an input for the production planning and stock
and production are the lever. Thus, service level is a constraint, stock is an objective to minimize
and production are the decisions. At very short term horizon, e.g., for scheduling decisions,
last-minute optimizations can still be made in order to reach the service level objectives.
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2.2 Supply Chain organizations

Supply Chain organizations can be classified into four main models described by Arnold et al.
(2007) (among others). They are represented in Figure 2.1.

» Engineer-To-Order (ETO). The customer is involved in the design and gives engineering
requirements and specifications which enables a lot of customization and a specific design.
Due to purchasing of raw materials and to designing, the consequences are long delivery
lead times. Classical domains are aeronautic or aerospace industries.

* Make-To-Order (MTO). Products are made from standard components but with custom-
designed components. Therefore, inventory are only composed of raw materials and
delivery lead time are still long. For example, marine energy turbines can be produced
with a MTO organization.

e Assemble-To-Order (ATO). Customer involvement is limited to selection of component
options. Thus, inventory is only composed of semi-finished products ready for assembly
components and delivery lead time are short. Production of laptops partially follows this
organization.

* Make-To-Stock (MTS). Customer has very little involvement in the design. Products are en-
gineered and manufactured to fill stocks which supply clients demand. This organization
enables the shortest delivery lead time. The majority of mass distribution products uses
this organization.

For some products, the best organization is obvious due to size of series. For example, a French
aeronautic company produces engines of an aircraft carrier with an ETO organization, but
turboshafts of choppers with MTO organization. For other industries, identifying the best
organization also depends on the commercial strategy (laptops may also be produced with MTS
organization) and it is critical to define which decisions are short-term, mid-term or long-term
and to know when costs, stock and service can be impacted.

2.3 Presentation of Argon Consulting

Argon Consulting is an international, independent consulting firm whose mission is to help its
clients achieve sustainable competitive advantages through operational excellence. It began
its consultancy activity in 2001 and employs over 230 consultants in six offices: Paris, London,
Atlanta, Singapore, Melbourne and Mumbai.

Argon Consulting has supported many companies in operational transformation projects (R&D,
Procurement, Manufacturing, Supply Chain, Distribution, Services, SG&A, Performance Man-
agement, Change Management). Industries served cover Aerospace & Defense (Latécoére, Safran,
Thales) and Discrete Manufacturing (Alstom, SNCE DCNS) which have small-series and large
program logic as well as Retail (ADEO, Carrefour, Cdiscount) which sells products or services
to large number of customers through multiple channels of distribution. In the mid of these
extremes, we also find Automotive (Michelin, PSA, Valeo) where innovation performance and
diversity of products are challenging, Consumer Packaged Goods (Bel, Danone, L'Oréal) where
decreasing consumption and fluctuation of production costs reduce profitability, and Textile
(Galeries Lafayette, Camaieu, Kiabi) where fast product renewal and fast evolution of sourcing
are critical at an operational level. Among other sectors with specific rules, Luxury Goods has a
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Delivery lead time
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INVENTORY MANUFACTURE ASSEMBLE SHIP | ASSEMBLE-TO-ORDER

« Delivery lead time —

MANUFACTURE INVENTORY ASSEMBLE SHIP | ASSEMBLE-TO-STOCK
Delivery lead time —>‘ r—
MANUFACTURE ASSEMBLE INVENTORY SHIP | MAKE-TO-STOCK

Figure 2.1 — Supply Chain organizations and lead times (from Arnold et al. (2007))

highly erratic demand and is extremely competitive, Pharmaceutical Industry (Merck, Sanofi,
Servier) has an economic pressure applied by state authorities due to imbalance of the health
insurance systems and Energy & Utilities (EDF, ENGIE) is capital-intensive, highly cyclical, fully
globalized and at the heart of geostrategic issues.

Argon Consulting began as a consultancy company specialized in logistic. Growing, it acquired
expertise in every level of the Supply Chain. Argon Consulting describes itself as a multi-
specialized firm whose competitive advantage comes from its ability to quantify their studies.
Through this thesis, the objective is to find an unified framework for some recurrent problems.
Moreover, Argon Consulting wants to test scientifically the accuracy and the efficiency of the
developed models.

2.4 Argon Consulting’s clients cases

Argon Consulting’s clients cases considered in this thesis fall into Assemble-To-Order and Make-
To-Stock organizations. We study two cases in this thesis. The first case is both tactical and
operational. It occurs when flexibility of means of production is already defined and we aim at
deciding which stocks and production levels would enable the company to achieve the desired
service level. The second case is more strategic. It occurs when capacity reactivity is already
defined and we aims at deciding the multi-sourcing of production which will ensure enough
flexibility at tactical and operational levels.

2.4.1 Production planning

Production planning is part of the production function of the Supply Chain and occurs at
tactical and operational levels when the flexibility of means of production is already defined. In
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Assemble-To-Order and Make-To-Stock organizations, stocks are the last levers on flexibility and
there must be enough of them to serve the demand at due dates. Then, production planning
problem consists in deciding the orders of production, i.e., when production starts and how
much is produced, which defines stocks and allows to achieve the desired service level.

Difficulties of this problem come from the many constraints that prevent last minute production.
First, production capacities are limited. Thus, production must be anticipated in order to deliver
during peak selling season, promotion program, vacation shutdown, etc. It leads to inventory
called anticipation inventory. Second, demand and lead time have random variations. If demand
or lead time are greater than forecast, a stock-out can occur. To prevent it, safety stocks are kept
as areserve. Finally, since the flexibility of the means of production is limited, lot-size inventories
also called cycle stocks are needed. They form the portion of stocks that varies over time due
to production and demand fulfillment. The different parts of the inventory are represented in
Figure 2.2.

STOCK

Anticipation

inventory

Cycle stock

Safety stock

< - . TIME
1st cycle 2nd cycle 3rd cycle

In the first cycle, cycle stock enables the company to satisfy perfectly the demand. In the second
cycle, an increase in the demand is announced. So, an anticipation inventory is produced in addition
to the cycle stock. In the third cycle, the demand is bigger than expected. Thus part of the demand
is satisfied using the safety stock.

Figure 2.2 — Inventory decomposition

Production planning aims at minimizing cumulative stocks subject to constraints defined at a
higher level.

Service level is the first constraint. In our case, Argon Consulting’s clients want to reach a desired
service level which depends on the strategy of the company. It is a trade-off between several
objectives as loss of reputation, intended costs, risk, benefits, etc. Production planning problems
take it as an input since service level is a long-term decision whereas production decisions are
mid-term decisions. Since we are interested in Assemble-To-Order and Make-To-Stock models,
we will consider mainly the fill rate service level as defined in Section 2.1.

Most of industrial costs are already fixed. In our case, they are modeled by the capacity and
the flexibility. Indeed, capacities of plants or assembly lines and their flexibility are strategic
decisions whereas production decisions are tactical or operational decisions. Thus, when
production planning problems occur, they cannot be changed. Capacity constraints are easy to
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model. Conversely, the literature addresses several models for flexibility. A standard way is setup
costs, that is costs induced by the transition from one product type to another. The drawback of
this formulation is that it leads to a multi-objective optimization problem since stocks is already
an objective. Moreover, discussions with Argon Consulting’s clients show that it is difficult to
quantify the setup costs. Another option would be to decrease the capacity by the time loss at
each new setup. However, the time needed for a new setup often depends on the previous and
the next items produced. Thus, scheduling must also be optimized which is not possible since
these are short-term decisions. Another way of dealing with scheduling at the tactical level is
to define an average setup time. In practice, industrials prefer to define and use a number of
setups per period rather than an average setup time although it is computed from the average
setup and the loss capacity. We propose to model flexibility by following their recommendation
and by adding a constraint on the number of setups.

We address two models for the production planning problem in this thesis. In Part I, we pro-
pose continuous-review inventory models whose main objective is to optimize the cycle stock.
And in Part II, we propose lot-size models which use a discretization of the time and which
simultaneously optimize the three parts of the inventory.

2.4.2 Production multi-sourcing

Production multi-sourcing also concerns the production function of the Supply Chain. Its
objective is to define the flexibility level of means of production by deciding if a plant should
have the ability to produce a product. Note that several plants may be able to produce the
same product which explains why this problem is called multi-sourcing. This decision is made
between the strategic and tactical levels — depending on the industry — typically when companies
expand their product portfolio or when they have expanded their productions capacities.

Multi-sourcing enables the company to face variability of the product mix. When there are many
products, there may be a cannibalization between the products, i.e., demand for some products
may decrease while demand for others increases. In this case, a mono-sourced production
(i.e., a product is produced by only one plant) would lead not to use the full capacity of some
plants while other plants would be unable to satisfy demand. On the other hand a multi-sourced
production allows to produce the exceeding demand in a plant whose activity has decreased.
Moreover, even if the production sourcing currently in use by the company allows to satisfy the
demand, a higher multi-sourcing may allow to balance the production between plants. Indeed,
to face randomness at tactical and operational levels, it is better to have two plants using 80%
of their capacities than one plant using 100% and the other only 60%. Thus, multi-sourcing
decisions have a high impact on competitiveness once we get into production planning (tactical
and operational decisions) and scheduling (very short-term decisions).

Considering all the advantages of production multi-sourcing, one could think than every plant
should be able to produce every products. Indeed, this complete flexibility of plants is the
safest solution to ensure the future satisfaction of the demand. However, multi-sourcing the
production of every products leads to unnecessary high assignment costs. First, giving a plant
the ability to produce a product would require to buy new means of production and to pay for
employees training. It has a monetary cost. Moreover, it is also a loss of time. Indeed, when
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employees are trained, they do not produce and after the training, they need time to be fully
efficient. This is why specialization of plants also has advantages.

In industries where demand is close to the production capacity, wisely choosing the new assign-
ment is a critical problem since increasing the current production multi-sourcing may decrease
short-term production capacity and demand may be hard to satisfy at short term. However, on a
long-term horizon, it will help to satisfy the demand. Thus, multi-sourcing decisions must be
made while considering long-term impacts.

Due to the characteristics of multi-sourcing, its objective is to minimize the costs and the time
loss when giving plants the ability to produce new products, while satisfying the demand on a
long-term horizon. Since multi-sourcing decisions have a long-term impact, the worst possible
realizations of demand can matter. Indeed, unlike production planning decisions which have a
mid-term impact and for which one bad realization of demand can be compensated by every
next realizations, there are few multi-sourcing decisions. In this case, values of one bad outcome
may have a huge impact on costs and must be controlled.

In this thesis, we propose in Part IIl a model to decide multi-sourcing while satisfying a long-term
service level and controlling the loss in the worst realizations of demand.

2.5 Assumption of the models

In this thesis we propose models that aim at minimizing stocks while taking into account
flexibility and capacitative reactivity. However, the latter do not play the same role in each
problem. In production planning problems (Parts I and II), both are considered as constraints:
flexibility is represented by the number of setups and capacitative reactivity is represented by
the production capacity of the assembly line. But in multi-sourcing problems (Part III), flexibility
is a decision variable (product assignment to plants) whereas capacitative reactivity remains a
constraint (production capacity of plants). Capacity decisions are long-term decisions whereas
multi-sourcing decisions are between long and mid-term decisions and production decisions
are mid-term or short-term decisions.

Since we do not have any control on capacities in our model, an increase of the demand may lead
to infeasible problems. Companies would reconsider their capacity decisions and our models
would become irrelevant. In order to avoid this issue in the considered models, the global
volume of demand is assumed constant in each possible outcome and the only randomness in
demand comes from the product mix.

Even if it seems to be a strong hypothesis, it is realistic for this horizon of decisions. Indeed,
in many cases, there is a cannibalization between products, i.e., if demand for some products
increases, demand for other decreases. Promotions, seasonality or simply offsets between error
can cause cannibalization. For example, the average consumption of desserts is the same at any
time of the year but ice cream demand will represent a bigger part in Summer.
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Production on a single line

As explained in Section 2.4.1, the objective is to reduce cumulative inventory. This chapter
presents a model which aims at deciding the optimal cycle stocks.

3.1 Motivations

Cycle stocks form the portion of inventory that varies over time due to production and demand
satisfaction. Low cycle stocks contribute to globally decrease inventory but it requires a high
flexibility of means of production. For mid-term decisions, flexibility is already fixed and
companies aim at deciding the values of cycle stocks of each item which minimize the global
inventory.

Many production systems are managed using (r, ) policies or similar ones like (s, S) policies as
explained for example by Arrow et al. (1951). (r, g) policies are based on a continuous review
of inventory. It defines for each item a level r and a quantity g called lot-size such that: when
inventory level of item reaches level r, a quantity g is produced. A common variation, (s, S)
policy are based on a periodic review of the inventory. In this case, replenishments occur at
discrete intervals of time and only if inventory level of item is below level s. Then, inventory is
completed in order to reach level S.

Argon Consulting and part of its clients also use policy based on cover-sizes. This policy is a
mix between the two previous policies. When inventory level of item i reaches level r, quantity
produced is the cumulative demand of the 7; next units of time. This quantity 7; is called the
cover-size of item i. Both cover-size and (r, g) policies are used by companies (and are equivalent
when demand does not depend on time).

Since we are more interest in the values of the cover-sizes and of the lot-sizes rather than the
level r, in the following, we refer to (r, ) policies as lot-size policies to clearly differentiate the
two policies. In this chapter, we show how to compute lot-sizes and cover-sizes minimizing
inventory subject to a flexibility constraint. We propose a method in both deterministic and
stochastic settings.

3.2 Deterministic settings

In this section, data are assumed to be deterministic.
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3.2.1 Problem

The problem described by Argon Consulting considers an assembly line producing a set Z of
items over an infinite horizon. The internal production time of item i (i.e., the quantity of
item i produced in one time unit) is v;. Inventory of item i must satisfy a demand, known in
advance. This is modeled by a continuous decrease of d; < v; units per time unit when there is
no production and a continuous increase of v; — d; units per time unit when item i is produced.
Demand d; is assumed positive for each item i.

We introduce now the decision variables 7; and ¢; of the problem. For each item i, the first time
itis produced is t;. Then, the production is launched at every t; + k7; where k€ Z,. Each ¢; + kt;
is called a setup. This 1; is called the cover-size of item i. Each production lasts %T ; in order
to produce exactly the demand for the next 7; units of time. The productions of several items
can be launched simultaneously (like in model developed by Ohno and Ishigaki (2001) where
authors assume the immediate replenishment of the order with lead time). The production
decisions and the demand give the inventory of item i which is denoted s;.

Thus, for each item i, inventory s;(#) is continuous, right and left differentiable, nonnegative
and follows the dynamic

d:
) vi—d; ifte U ti+kTi,ti+(k+—lTi),
NOE keZ, Vi @.1)
—-d; otherwise.

As explained in Section 2.4.1, in this thesis, the flexibility is modeled by a constraint and not by
setup costs. In average over the infinite horizon, the number of setups per unit time for all items
must be smaller than N which can be written as

1 T-t;
limsup — Z { tlJ < N. (3.2)

T—+00 ezl Ti

Indeed, during the interval [0, T), setups occurs with period 7; from ¢;. Then, the number of

setups during [0, T) is {T;lt’J

T

For each item i, there is an initial inventory s;(0) € R, given in input.

Since inventory varies over times, the cycle stock is measured using its average value over an
infinite horizon. Storing one unit of item i incurs a unit holding cost k; > 0 per unit time.
The objective is to find the cover-sizes 7; which minimize the average cycle stock over infinite
horizon

1 T
limsup — > h,-f si(Hdt (3.3)
0

T—+o00 i€l
while satisfying nonnegative inventory, constraint (3.1) and constraint (3.2).
The notations and a corresponding inventory profile is representing in Figure 3.1.

Since this model is a variation of the Economic Production Quantity (EPQ) model, we call it
Economic Production Quantity model with Bounded number of Setups (EPQ-BS). We will consider
two versions of this problem:
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Average inventory

» TIME

cover-size 7; cover-size T; cover-size T;

Figure 3.1 — Inventory of item i depending on time for a given cover-size ;

* the cover-sizes can be any nonnegative real numbers,
* the cover-sizes have to be inverses of integers.

In other words, since a cover-size is a time period, the production frequencies are unconstrained
in the first version, while there are constrained to be integers in the second one. We qualify the
first version of being unconstrained and the second of being integer.

The integer version relies on practical reasons. For decision makers, it is sometimes easier to use
frequencies and thus to know that an item is produced once a month, twice a month, etc.

When using lot-sizes instead of cover-sizes, EPQ-BS can be simply adapted. Indeed, the lot-size
¢; is the quantity produced to satisfy the demand for the next 7; units of time. Thus, we have
¢ i= d,"[ i

3.2.2 Bibliography

Continuous review inventory models have been studied for more than a century. They aim
at deciding when ordering (or producing) and which quantity must be ordered (or produced)
making a trade-off between inventory holding costs and ordering (or producing) costs. They are
the first models developed for production and assume a continuous vision of time.

These models are mostly developed for ordering. Then, our review is mostly centered on ordering
rather than production. However, extensions for production is often simple like the Economic
Production Quantity (EPQ) (see Taft (1918)) but may lead to new issues like the holding cost of
raw materials as proposed by Lin and Su (2013).

The first model was developed by Harris (1913) and gives the famous Economic Order Quantity
(EOQ) (also known as Wilson Formula) which consists in finding a trade-off between average
holding cost (proportional to the inventory) and fixed reordering cost. It is a model for a single
item and demand is assumed stationary. Multiple extensions of this model have been studied. A
first consists in considering time varying demand, as proposed by Resh et al. (1976), Donaldson
(1977) or Barbosa and Friedman (1978) where they show polynomial time algorithms for demand
of the form d(t) = at+yor d(t) = atP. However, in general, finding the optimal solution is
challenging. For example Padmanabhan and Vrat (1990) assumed that the demand is a function
of the inventory when stock-out occurs and they proposed a method from numerical analysis to
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solve the non-linear equations characterizing the optimal solution. Another extension considers
a time varying holding cost due to inflation (see Vrat and Padmanabhan (1990)) for which they
also propose a method from numerical analysis to find the optimal solution.

Although they are deterministic, many authors models lost sales like Salameh et al. (2003) who
introduce a shortage cost or Park (1982) who considers that a prefixed percentage of unsatisfied
demand is lost while the remaining is backordered.

The models we just presented all deal with a single item problem. In many real case, an assembly
line can produce more than one item. A first multi-item model was proposed by Hadley and
Whitin (1963) which also note that perhaps the most important real world constraint is budget
restriction on the amount that can be invested in inventory. Since inventory is often controlled
by a trade-off with other costs, some models add upper bounds on inventory to prevent it from
becoming to high.

As explained in Eynan and Kropp (2007), when many items are produced on a single line,
using periodic review instead of continuous review may ease the coordination between the
production of various items. (See Section 3.1 for the distinction between the two policies.) A
similar approach was also studied by Madigan (1968) who adds scheduling constraints between
productions of items and propose a heuristic to find the optimal lot-sizes and when produce
them. Finally, Bomberger (1966) and Goyal (1974) impose that every replenishment cycle (cover-
size) be a multiple of a unit cover-size (which can be a variable in the optimization process like
in Silver (1976)). In real applications, it may enable to reduce ordering costs if many items are in
the same batch.

Finally, even if the interpretation of its coefficient is different from our, Ziegler (1982) proposes a
production model which has a formulation close to the one found in Section 3.2.3. However,
since its objective function keeps a linear term, he was not able to propose a closed-form formula
and propose a polynomial approximation algorithm.

3.2.3 Unconstrained EPQ-BS

We address the following alternative mathematical problem. We are going to show that it models
the unconstrained EPQ-BS.

1 -
min Y =h;d;t; (3.4a)
i€l
1
s.t. Y —<N (3.4b)
iez Ui
7;>0 VieTl, (3.4¢)

where d; = (1 - %)di for each item i.

Theorem 1. Problem (3.4) has a unique optimal solution (T;f‘),-ez with

Yjery/ hjd;
o TSV yieT (3.5)

T.
N/ h;d;

1
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2
and an optimal cost equal to %\/ (Ziez \/ h,-d}) .

Moreover, the optimal solution of Problem (3.4) is the optimal solution of unconstrained EPQ-BS.

Formulation (3.4) has many advantages. First, it is much simpler than the original formulation
of Section 3.2.1. Second, it removes from the formulation the first production setups (#;); which
confirms that the ¢; are not relevant to find the optimal cover-sizes.

The link between both problems is however not necessarily immediate. As we will see, the proof
will show that the optimal policy is Zero-Inventory-Ordering (ZI0). We recall that a policy is said
to be ZIO if an order can only occur when the inventory is zero. Due to flexibility constraint (3.2),
production should have to be anticipated before inventory reaches zero.

Lemma 2. Problem (3.4) has a unique optimal solution (T;‘) ieT given by Equation (3.5).

Proof. Since Problem (3.4) is a convex problem with qualified constraints, solving it is straight-
forward using the Karush-Kuhn-Tucker conditions which gives the unique solution given by

2
Equation (3.5) and the optimal cost of Problem (3.4) is %\/ (Ziez \/ h,-d}) . O

Lemma 3. For any nonnegative fixed values of the t;'s, we have

limsup lZ{T_tiJ :Zi (3.6)

T—+oo 1 ezl Ti ez Vi
Proof. Let t3,..., tj7; be |Z] nonnegative real numbers. Let T be a real number greater than every
t;. For each i, we have
I(T—ti 1)<1LT—tiJ<1(T—ti) (3.7)
T\ 71 =T T =T T; '

and then, % L%J converges to Ti when T goes to infinity. O

Note that this formulation is independent of the first production setups #;. Then, the choice of
the ;s is only constrained by nonnegative inventory.

Lemma 4. Let (t;,7;);e7 be a feasible solution of unconstrained EPQ-BS. Then, its cost is at least

1 d;
Z Ehi(l——l_)dﬂi. (3.8)
ieZ 1

Proof. Let (t;,T;);e7 be a feasible solution of unconstrained EPQ-BS. Using the dynamic (3.1),
we have for each item i

t; 1
Si0 :fo si(dt = 5(281'(0)— tid;)t;, (3.9)

and foreach ke Z,

ti+(k+1)71; 1
Si,k:f sidt = (si0) = dity)Ti + 5
I

+kTi

d;
1——l)dir;‘2. (3.10)
vi
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Let T be a real number greater than #;. Splitting the integral, we get

e =

1T 1 d
=Siot= Y, Si,ké—f sidt< =Sio+= Y. Sik (3.11)
and the average cycle stock on infinite horizon for item i follows:
1T 1 d;
lim — si(t)dtzs,~(0)—d,~t,~+—(1——l)diri. (3.12)
T—oo T Jo 2 Vi

Equation (3.1) implies that s;(t;) = s;(0) — d;¢t;. Since inventory is nonnegative in a feasible
solution, we have s;(0) — d; t; > 0. Finally, the average holding cost of all items over infinite
horizon is greater than or equal to }_;c7 %h,- (1 - f}l—;)diri. O

Proof of Theorem 1. Lemma 3 and Lemma 4 prove that every feasible solution of unconstrained
EPQ-BS is a feasible solution of Problem (3.4) with greater or equal cost. Conversely, a feasible
solution of Problem (3.4) can be completed in a solution of unconstrained EPQ-BS with the
same cost setting the first production setup ¢; of item i equal to %?). Then, the unique optimal
solution of Problem (3.4) (Lemma 2) is the optimal solution of unconstrained EPQ-BS. O

Note that this model simply adapts to the case where production is considered instantaneous
(i.e., v; — 00). In this case, just use the real demand d; instead of the modified demand cii =

n

3.2.4 Integer EPQ-BS

In some cases, it is easier for companies to use integer frequencies. We address the following
alternative mathematical problem. As in Section 3.2.3, we are going to show that it models the
integer EPQ-BS.

1. -1

min ) —hidi— (3.13a)
ier2 n;

s.t. Y mi<N (3.13b)
iel
niez: VieZ, (3.13¢)

where n; = Ti is the average number of setups per time unit over the infinite horizon and
d;=(1-%)d.

Proving that the optimal solutions of Problem (3.13) are the optimal solutions of integer EOQ-BS
is very similar to the unconstrained case since proofs of Lemma 3 and of Lemma 4 do not rely
on the nature of the cover-sizes (7;);. Moreover, as explained in Section 3.2.3, dealing with finite

or infinite internal production time v; is very similar since, it is sufficient to use the demand d;
in infinite case instead of the modified demand d; in Problem (3.13).
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3.3. Stochastic settings

This formulation is a special case of the integer simple resource allocation problem:

max{ Y filn)

i€

Y ni=N, nezi} (3.14)
i€l

where the f; are concave.

The fastest algorithm known has a O(II |log %) running time and was proposed by Frederick-
son and Johnson (1982) and then simplified by Hochbaum (1994). Implementation of these
algorithms is not easy. Dynamic programming might be used instead, but its complexity is only
O(IZIN?) which is pseudo-polynomial.

3.3 Stochastic settings
3.3.1 Problem

However, in real life, many parameters are not known in advance. An obvious example is demand
which can change due to forecast errors, marketing promotions, passing fads. Randomness can
also comes from production means. Failures, holidays or strikes can affect internal production
time.

Here, production means are assumed to be reliable and we only consider randomness on
demand. The problem becomes an assembly line still producing a set Z of items over an infinite
horizon. The internal production time of item i is v;. Inventory of item i must satisfy a random
demand. This is modeled by a continuous decrease d; < v; units per time unit when there is
no production and a continuous increase v; — d; units per time unit when item i is produced.
Moreover, d, is assumed to be almost surely positive and smaller than v;. Once d; is revealed, it
is fixed forever.

We introduce now the decision variables 7; and #; of the problem. For each item i, the first time
item 7 is produced is ¢;. Then, the production is launched for every ¢, + k7; where k € Z.. Each

production lasts j—fti in order to produce exactly the demand for the next 7; unit of time. In the
stochastic case, cover-sizes (7;); are decided before the demand is revealed and thus are called
first-stage decisions since they are decided before demand realization. On the other hand, first
production setups (tl.)l. and produced quantities are called second-stage decisions (or recourse)
since they can be decided knowing the demand realization. The production decisions and the
demand give the inventory of item i which is denoted s;,.

Thus, for each item i, inventory s, (¢) is continuous, right and left differentiable, nonnegative
and follows the dynamic

vi—d. ifte
s; (=4 ngr
—di otherwise.

d.
t+ktit+ (k+ V—l)ri),

i

(3.15)

As in deterministic settings, flexibility is modeled by a constraint. In average over the infinite
horizon, the number of setups per time unit for all items must be smaller than N which can be

31



Chapter 3. Production on a single line

written as

limsup — Z

T—+o0 €T

1 T — L
{ J < N almost surely. (3.16)
Ti

For each item i, there is an initial inventory s;(0) € R...

Storing one unit of item i incurs a unit holding cost k; > 0 per time unit. The objective is to find
the cover-sizes which minimize the average cycle stock over infinite horizon

E (3.17)

1 T
limsup—Zhif s;(ndt
0

T—+0c0 i€l

while satisfying almost surely nonnegative inventory, constraint (3.15) and constraint (3.16).

We call this problem stochastic Economic Production Quantity model with Bounded number of
Setups (stochastic EPQ-BS) and will consider the same two versions as in deterministic case:

* the cover-sizes can be any nonnegative real numbers (called unconstrained),
* the cover-sizes have to be inverses of integers (called integer).

When using lot-sizes instead of cover-sizes, one needs to pay more attention to the measurability
of variables. Indeed, the lot-size £, is the quantity produced to satisfy the demand for the next
7; units of time. Thus, in stochastic settings, if cover-sizes are first-stage variables, then lot-sizes
are second-stage variables and are given by ¢; = d,7,. Conversely, using lot-size variables as
first-stage variables would lead to use cover-sizes as second-stage variables.

3.3.2 Bibliography

As for deterministic cases, literature about ordering is larger than literature about production.
However, in many cases, it is easy to adapt ordering models to production cases. One of the first
stochastic ordering problems is the news-vendor problem which is for example addressed by
Edgeworth (1888). The goal is to order a quantity g to satisfy an unknown future demand d. The
challenge is to find a trade-off between expected remaining inventory and expected shortage.

Many deterministic continuous time inventory models (like those presented in Section 3.2.2)
have been extended to a stochastic setting. Yano and Lee (1995) and more recently Ziukov (2015)
propose a complete review of these extensions. By essence, stochastic problems in literature
often include backorder costs.

A distinction between models can first be made on the source of randomness. For example,
Friedman (1984) models lead times as random variables whereas Eynan and Kropp (2007) chose
to model demand as a random variable. However, both aim at minimizing holding, shortage
and ordering cost. Another example is proposed by Sana (2011) who address extensions of the
news-vendor problem adding an uncertainty on sales price. Some of these extensions allow
sales price to be correlated to the demand.

Finally, Gallego (1998) shows how to adapt (r, q) policies to the robust case. He models lead-time
as random variable but he assumes that the only available information on the distribution is
the expectation and the variance. Solving the resulting problem against the worst possible
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3.3. Stochastic settings

distribution in this class, he shows that the (r, ) policy found in the robust case has a cost which
is no more than 6% from the cost of optimal (r, g) policy if the distribution was known.

Another class of continuous time inventory models is based on discrete arrivals of demand. A
simple model is proposed by Gavish and Graves (1980) where the demand arrivals of a single item
follow a Poisson process. They reformulate their problem as a single-server queueing problem
in order to solve it. More recently, Gayon et al. (2009) propose an extension still considering one
item but with several customers. Each customer has not the same demand arrival rate neither
the same price for lost sales. Thus, in optimal policies it may be better to not satisfy a customer
demand in order to satisfy the future unknown demand of another one.

Note that there exists another trend to study stochastic continuous-review inventory models
namely fuzzy set theory. A fuzzy set is a set whose elements have degrees of membership.
The fuzzy set theory enables to model the partial information and can be understood as a
“possibility”. Each parameter like ordered quantity, ordered cost, holding cost or annual demand
can be represented with a fuzzy set instead of a unique value. Park (1987) was the first to propose
fuzzy production inventory models and gives an interpretation of economic order quantity in a
fuzzy framework. Among other models, we can cite Hsieh (2002) which introduces two fuzzy
production inventory models with fuzzy parameters: the first with crisp production quantity
(i.e., a production in a set in the classical sense) and the second with production quantity in
a fuzzy set. Contrary to most of the literature, Lee and Yao (1999) propose a model for the
economic order quantity in a fuzzy framework but without backorder.

3.3.3 Unconstrained stochastic EPQ-BS

We address the following alternative mathematical problem. We are going to show that it models
the stochastic unconstrained EPQ-BS.

1,

min Z —h;d;T; (3.18a)
iez 2
1

s.t. Y —<N (3.18b)
iez Ti

7;,>0 VieZ, (3.18¢)

. E|d.
where d; = (1 - %) Eld,]- U%Var[dl.].
Theorem 5. Problem (3.18) has a unique optimal solution (t7) ez with

iy hjdj

: vieT (3.19)
N/ h;d;

2
and an optimal cost equal to ﬁv (Z ieT \/ hld,-) .

Moreover, the optimal solution of Problem (3.18) is the optimal solution of unconstrained stochas-
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Chapter 3. Production on a single line

tic EPQ-BS.

Suppose that program (3.18) is a correct formulation of the unconstrained stochastic EPQ-
BS. Then, adaptation of results from deterministic cases to stochastic cases is straightforward.
Moreover, when the only randomness comes from the demand, we also show that the optimal
solution is completely determined by the expectation and the variance of the demands d;. Note
that the optimal solution is not obtained by replacing the demand by its expectation.

Lemma 6. Problem (3.18) has a unique optimal solution (t7) ez given by Equation (3.19).

Proof. Since Problem (3.18) is a convex problem with qualified constraints, solving it is straight-
forward using the Karush-Kuhn-Tucker conditions which give the unique solution given by

2
Equation (3.19) and optimal cost of Problem (3.18) is ﬁ (Z ieT \/ h,-ci,-) . O

Lemma 7. For any almost surely finite random variables t;, we have

1 T-t 1
limsup — Z { ’J = Z — almost surely. (3.20)
T—+oo 1 jczl Ti iez Ti

Proof. We can apply Lemma 3 to each finite realization of the #,’s. Since #; is assumed to be
almost surely finite, the result follows. O

Lemma8. Let(t,,7;)
is at least

.7 be a feasible solution of unconstrained stochastic EPQ-BS. Then, its cost

;. (3.21)

> [(1 - %)[E[di] - Uliv.ar[di]

ieZ 1

Proof. Let (t;,7;), ; be a feasible solution of unconstrained EPQ-BS. Let (d;); be a positive
and finite realization of (d;).. For each realization of (¢;),, according to Lemma 4, the average

holding cost over infinite horizon is greater than or equal to }_;c7 %hi (1 - %) d;t;. Since demand
d. is assumed to be almost surely finite, the expectation of the average holding cost over infinite
horizon is greater than or equal to

E

1 d.
Z —hi(l - —l)di‘[l'
jez 2 Vi

:Z%hi[(l—[E[di])[E[di]—var[di]]Ti (3.22)

ieZ Vi Vi

O

Proof of Theorem 5. Lemma 7 and Lemma 8 prove that every feasible solution of unconstrained
EPQ-BS is a feasible solution of Problem (3.18) with the same cost. Conversely, a feasible solution
of Problem (3.18) can be completed in a solution of unconstrained EPQ-BS with the same cost

setting the first production setup #; of item i equal to %. (We recall that demand is almost

1
surely finite.) Then, the unique optimal solution of Problem (3.18) (Lemma 6) is the optimal
solution of unconstrained EPQ-BS. O
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3.3. Stochastic settings

3.3.4 Integer stochastic EPQ-BS

When dealing with integer frequencies, we use the following formulation.

1, .1
min ) —hidi— (3.23a)
i€Z n;
s.t. Y n<N (3.23b)
i€l
nez; Viel, (3.23¢)

where n; = TL is the average number of setups per time unit over the infinite horizon and
1

=28l - e
Proving that the optimal solutions of Problem (3.23) are the optimal solutions of stochastic inte-
ger EOQ-BS is very similar to the unconstrained case since proofs of Lemma 7 and of Lemma 8
do not rely on the continuities of the cover-sizes (t;);. Moreover, like in the deterministic case,
dealing with a finite or infinite internal production time v; is very similar since, it is enough to
use demand’s expectation E [dl.] instead of the modified demand d,- in Problem (3.23).

Finally, adaptation of results proved in deterministic case is straightforward since program (3.23)
is a correct formulation of the stochastic integer EPQ-BS.
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Production on several lines

Chapter 3 was about to decide the optimal cycle stocks when only a single line was involved. In
this chapter, several lines are involved in production and we aim at deciding for each line the
part of demand assigned and the cycle stocks for each item.

4.1 Motivations

The context is almost the same as in Chapter 3. A company aims at reducing its cycle stocks
(which globally helps decrease the inventory) subject to flexibility constraints of the assembly
lines. In many applications, a company has many assembly lines and production of a single
item may be done on several lines. This kind of configuration is very common and is the
consequence of multi-sourcing decisions previously made (see Section 2.4.2 for a description of
multi-sourcing issues). These lines might be in the same plants or in different ones. But, in both
cases, it enables to increase flexibility of production and to balance the workload between lines.

As in the single-line case, assembly lines are managed using (r, ¢) policies or similar ones (like
policies using cover-sizes). The challenge of the multi-line case is that the company must decide
the part of the demand assigned to each line and the lot-sizes (or cover-sizes) used for the
production of each item on each line.

In this chapter, we show how to compute the assignment of the demand to lines and the lot-sizes
and cover-sizes minimizing inventory subject to flexibility constraints.

4.2 Problem

The problem described by Argon Consulting considers a set £ of assembly lines producing a
set Z of items over an infinite horizon. Each line is managed using the same policy than in
Chapter 3. The parameters for each line ¢ are then the same (with an index depending on the
line) and we recall them for the sake of completeness. The internal production time of item i
on line ¢ (i.e., the quantity of item i produced in one time unit) is l/f . Inventory of item i must
satisfy a demand, known in advance. The whole demand of item i is modeled by a continuous
decrease d; of the inventory, which is assumed positive.

We introduce now the decision variables df , T; and t; of the problem. The part of demand
for item i assigned to line ¢ is denoted df . It implies that the inventory of item i produced
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Chapter 4. Production on several lines

by line ¢ continuously decreases by df < vf units per time unit when line ¢ does not produce

item i and continuously increases by vf - df units per time unit when item i is produced. If
item i is assigned to line ¢, the first time it is produced on line ¢ is tf and the production is
launched for every tf + krf where k€ Z, and Tf is the cover-size of item i for the line ¢. Each

l

. . a . . .
production on line ¢ lasts ST in order to produce exactly the demand assign to line ¢ for the

next Tf unit of time. (Each of these quantities is not defined if item i is not assigned to line ¢.)
Like in the single-line case, the productions of several items can be launched simultaneously.
The assignment decisions, the production decisions and the demand give the inventory of item
i produced by line ¢ which is denoted sf .

Thus, if item i is assigned to line ¢, inventory sf (1) generated by line ¢ is continuous, right and
left differentiable, nonnegative and follows the dynamic

df
l 2R l v 0 i l
vi—-dt ifre t;+kti,t; v k+— |13 ],
Sl[(t): i i kg+ i % ( vl[) l) (41)
—df otherwise.

Since the whole demand must be satisfied, we have

Y di=d; Viel. 4.2)
lel

Contrary to the single-line case, each line has a limited capacity. In average over the infinite
horizon, the percentage of time spent for production of all items assigned to line £ must be
smaller than C? < 1 which can be written as

4

d;
i 4
i;_v.” <C velel. (4.3)
1

. . Lo >
Indeed, each production of item i on line ¢ lasts U—;Tf (in order to produce exactly the demand

. . d’ L
for the next 7; unit of time) and then uses —7 percents of the production time.

Like single-line case, in average over the infinite horizon, the number of setups per unit time for
all items must be smaller than N? which can be written as

1 T—t!
limsup — Z 7 LN (4.4)
T—+o00 ieTt Ti

where Z¢ is the set of items produced by line ¢.
For each item i, there is an initial inventory s;(0) € R, given in input.

Storing one unit of item i produced by line ¢ incurs a unit holding cost hf > 0 per unit time. The

objective is to find the part df of the demand for item i assigned to line ¢ and the cover-sizes Tf
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which minimize the average cycle stock of every lines over infinite horizon

1 T
limsup — ) ) h,-f s(ndt (4.5)
T—+o0 TZEZieZ 0

while satisfying nonnegative inventory, constraints (4.2) to (4.4).

We call this model the multi-line Economic Production Quantity model with Bounded number of
Setups (the multi-line EPQ-BS).

Like for the single-line case, when using lot-sizes ¢ f instead of cover-sizes, the multi-line EPQ-BS
can be simply adapted using ¢ f = df Tf .

4.3 Bibliography

In the literature, our problem is often formulated as the decision of the assignment of production
between many suppliers, the ordered quantities and the time at which they are ordered. For
example, Hong and Hayya (1992) propose a model with a unique item produced by many
suppliers which have not the same production costs neither the same production qualities.
They aim at minimizing the holding cost subject to an upper bound on production cost and a
lower bound on production quality. Their approach consists in formulating a multiple-sourcing
model and they solve a mathematical programming problem to obtain the optimal selection of
suppliers and the size of the split orders.

More recently, Rosenblatt et al. (1998) propose a model considering one item and multiple
suppliers. Each order to a supplier follows the classical assumptions of the EOQ model (as
described by Harris (1913)) but they have a capacity constraint. They prove that the problem is
NP-hard but that it can be efficiently solved with dynamic programming. Chang (2006) proposes
an extension to adapt the model to real world constraints. Other models, which also use ordering
costs, are proposed by Kim et al. (2005) or Park et al. (2006).

Another important single item model comes from Chauhan and Proth (2003). It considers
multiple suppliers delivering to one or multiple plants. The main difference is that each ordering
cost is a concave function of the ordered quantity which models the advantage of mono-sourcing
the production. They propose an heuristic for their formulation.

The most recent model which is the closest to ours is proposed by Nobil et al. (2016). They
consider a set of lines producing a set of items. Each line is managed using classic EPQ model (as
described by Taft (1918)). However, contrary to our case, the production of one item cannot be
split between two lines. By deciding the assignment and the cover-sizes, they aim at minimizing
total cost of the inventory system, setups, production, holding and disposal costs.
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Chapter 4. Production on several lines

4.4 Solving the multi-line EPQ-BS

We address the following alternative mathematical problem. We are going to show that it models
the multi-line EPQ-BS.

2
dé
. ¢ ! l 4
min i§€I2'N (;EI, ht ( f)d ) (4.6a)

s.t. Y df=d, Viel, (4.6b)
lel
d’
Y =< c’ VleL, (4.6c)
ieZ U;
df >0 Viel. (4.6d)

Proposition 9 proves that the objective function is concave. Minimization of a concave function
over a polyhedron is NP-hard since it contains Zero-One Linear Programming (see Raghavachari
(1969)) which is known to be NP-hard (see Garey and Johnson (1979)). However, there are
many efficients algorithms to solve this kind of problems (see Tuy (1964) for the first proposed
algorithm and Benson (1998) for a review) and it is well known that when the polyhedron is a
polytope, at least one optimal solution is an extreme point (see Benson (1985)).

Proposition 10 gives the formulas of the optimal cover-sizes when an optimal assignment
(df *) ez s has been found. Note that Equation (4.11) is well-defined. Indeed, C’ is smaller
than 1. Thus, the constraint (4.6c) and the definition of the cover-sizes only for the items

. . as
assigned to a line ensure that (1 - #)df *>0.

Proposition 9. The objective function

g: I [O,Uf] - R,
lel, i€l

d’
dl). hé|l1-—%df
0. = ozl -2

2 4.7)

1

of Problem (4.6) is concave.

Proof. Let F:xeRL — (Tier \/x_,)2 € R, be amap. F is continuous on RZ and differentiable on
(IRE:&)I and we have for all x and y in (IRDI

g—(x) VFx)yx; VieZ, (4.8)

and

(VF(y) -VF(x),y —x)

3L

zEI]EI

<0 (4.9

2 2
Vi Yj Xj Xj
(5= 50) +{if5 5
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4.4. Solving the multi-line EPQ-BS

Thus, F is concave on (R*)%

x"in IRE, the inequality x < x’ implies that F(x) < F(x'). Since the maps ff : df €0, Uf | —

. Since F is continuous on RZ, it is concave on RZ. For each x and

d’ . . .
hf(l - v—;)df are concave and since F is concave and monotone (i.e., z < 2. = F(z) < F(Z)),

1

we have that
g [O,Uf]X---X[O,vf] - Ry

2
¢ ¢ of_di) e (4.10)

(dfr.dl) (z,-ez 0 (1— U—i)dl.)
is concave for each line ¢ € L. Thus the objective function g of Problem (4.6) is concave as linear
combination with nonnegative coefficients of concave functions. O

Proposition 10. An optimal solution (d! ) iez ver
mal solution of multi-line EPQ-BS by setting

dat* ¢
Ty -5

. @.11)
04
N hi(l—d" )df*

Vi

of Problem (4.6) can be completed in an opti-

when item i assigned to line .

Proof. Let (df ) ; ¢ be afeasible solution of Problem (4.6). We have now | £| independent problems
(one for each line) that correspond to the single-line case. Consider a line ¢ € £ and the set
T of the items assigned to ¢. According to Theorem 1, the cover-sizes which minimize the
average holding cost over infinite horizon and satisfy nonnegative inventory constraint (4.1) and
constraint (4.4) are given by Equation (4.11) and the corresponding cost is equal to

(4.12)

This expression is one term of the sum in the objective function (4.6a) and the cover-sizes are
feasible to the multi-line EPQ-BS. Indices in this sum expressing the holding costs (4.12) can be
extend to Z (since assigned demand is equal to zero). Thus, a feasible solution of Problem (4.6)
can be completed in a feasible solution of multi-line EPQ-BS with same cost.

Conversely, let (df,7¢ ); , be a feasible solution of multi-line EPQ-BS. It is clearly feasible for
Problem (4.6). According to Theorem 1, for each line ¢, average holding cost over infinite horizon
is greater than or equal to (4.12). Thus, a feasible solution of multi-line EPQ-BS can be completed
in a feasible solution of Problem (4.6) whose cost is greater than or equal to (4.12). O
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Deterministic CLSP-BS

5.1 Introduction

5.1.1 Motivations

Fixing the production level for the forthcoming period is a basic decision to be taken when
managing an assembly line. Usually, a demand has to be satisfied at due dates but the limited
capacity of the line prevents last minute production. On the other hand, too early productions
may lead to unnecessary high inventory costs. The challenge of this kind of problems, known
as lot-sizing problems in the Operations Research community, consists in finding a trade-off
between demand satisfaction and holding costs. When several items can be produced on a same
line — the so-called multi-item lot-sizing problem —, the capacity of the assembly line is often
all the more reduced as the number of distinct items produced over the current period is high.
Indeed, changing an item in production stops the line for a moment. This additional capacity
reduction is usually modeled by setup costs contributing to the total cost.

As explained in Chapter 2, we choose not to model the capacity reduction due to production
setups by setup costs but instead by an explicit upper bound on the total number of items that
can be produced over a period. Indeed, according to Argon Consulting, many clients aim at
minimizing mainly their inventory costs while keeping the number of distinct items produced
over each periods below some threshold. This is essentially because, contrary to inventory costs,
setup costs are hard to quantify and a maximal number of possible setups per period is easy to
estimate.

We are interested in short-term decisions and consider lot-sizing problem and not scheduling
problem which are very short-term decisions. At this level of decision, we do not consider the
exact scheduling of the item production and approximate the number of setups by the number
of items produced over the period.

To the best of our knowledge, the problem addressed in this chapter is original and such a bound
on the number of distinct items produced over a period has not been considered by academics
yet, with the notable exception of the model proposed by Rubaszewski et al. (2011) but, contrary
to our problem, their bound is an overall bound for the whole horizon and they still consider
setup costs.
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Chapter 5. Deterministic CLSP-BS

5.1.2 Problem

The problem considers an assembly line producing a set Z of items over T periods. The number
of distinct items produced over a period ¢ cannot exceed N; > 0. There is also an upper bound
C; on the total period production (summed over all items) and an upper bound Cf on the
production of item i at period t. The capacity needed (in time units) to produce one unit of i in
period ¢ is Uf; > 0.

The production and the inventory of item i must satisfy a demand d;' at the end of period t.
When production of item i is not used to satisfy the demand, it can be stored but incurs a unit
holding cost h} > 0 per period. For each item i, there is an initial inventory sé eR;.

The goal is to satisfy the whole demand at minimum cost.

Since this problem is a variation of the Capacitated Lot-Sizing Problem (CLSP) with a new
flexibility constraint expressed as an upper bound on the number of setups, we call it the
Capacitated Lot-Sizing Problem with Bounded number of Setups (CLSP-BS).

In many of our applications, holding costs h’ and internal production times v! do not depend
on the period and the upper bounds C;' and C; and the maximal number N; of setups do
not depend on the item nor the period. Then, we get a simpler version called the Uniform
Capacitated Lot-Sizing Problem with Bounded number of Setups (Uniform CLSP-BS) where

hi=h', vi=v', C'=C,=C, N;=N. (5.1)

This special case captures the essential part and the difficulty of the problem namely the lim-
ited flexibility of the assembly line. Most results are true for the CLPS-BS, but we will give
counterexamples when results only stand for the Uniform CLSP-BS.

5.1.3 Main results

This chapter presents in Section 5.2 a short review of the seminal lot-sizing models, in Section 5.3
a formulation of the CLSP-BS as a mixed integer program and in Section 5.4 results showing the
theoretical difficulty of the CLSP-BS. We briefly describe in Section 5.5 possible way to solve it.

5.2 Bibliography

While there are many variations of lot-sizing problems in industry, they often minimize a
combination of holding costs, production costs and setup costs. However, production can
concern a single or multiple items and be made on single or several assembly lines. It can be
constrained by capacity or setup times. Backlog, safety stock, minimal productivity, setup times
can be considered. Review of models are abundant like those proposed by Geunes (2014) for
single-item models, by Gicquel et al. (2008) for multi-item models or by Karimi et al. (2003) for
both models. A proposition of classification of lot-sizing models is proposed by Pochet and
Wolsey (2006, Chapter 4 and 12).

We do not propose a complete review of the models and only consider some seminal models on
a single assembly line.
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5.3. Model formulation

The first model was proposed by Wagner and Whitin (1958). It is an uncapacitated, single-item
model over T periods. The demand d; is dynamic (i.e., time-dependent) and storage is possible
between periods. The objective is to minimize holding and setup costs. This model was solved in
polynomial time. Its generalization with production cost (proportional to the quantity produced)
depending on period is called Uncapacitated Economic Lot-Sizing Problem (UELSP) and was
solved in polynomial time by Federgruen and Tzur (1991), Wagelmans et al. (1992) and Aggarwal
and Park (1993).

The Capacitated Economic Lot-Sizing Problem (CELSP) is the same model with production
capacities depending on time. It is one of the simplest lot-sizing problem which is NP-hard as
shown by Florian et al. (1980) but has a fully polynomial approximation scheme given by van
Hoesel and Wagelmans (2001).

In many applications, a line can produce more than one item. These problems are said to be
multi-item. Two sub-classes are often considered: big bucket models and small bucket models.
In big bucket models, several items can be produced during a period. The Capacitated Lot-Sizing
Problem (CLSP) is a natural multi-item extension of the CELSP and therefore is NP-hard. In
small bucket models, only one item per period can be produced. The problem is said to be
continuous when production can be a fractional part of capacity and discrete when production
must be done at full capacity. The Capacitated Setup Lot-sizing Problem (CSLP) is an example
of continuous small bucket model and Discrete Lot sizing and Scheduling Problem (DLSP) an
example of discrete one (see the review of Gicquel et al. (2008) for the complete description of
these models).

Flexibility of the assembly line is often modeled as a cost and included in setup costs. Another
way of modeling flexibility consists in adding capacity reduction to the formulation. Each time a
setup is placed, the capacity is reduced by a fixed quantity like in the Kellogg’s case described by
Pochet and Wolsey (2006, Chapter 4). Some lot-sizing and scheduling problems (see for example
Guimaraes et al. (2014)) model sequence dependent capacity reduction but keep setup costs.

5.3 Model formulation

In this section, we introduce a mixed integer program that models the problem. We introduce
the following decision variables. The quantity of item i produced at period ¢ is denoted by qi
and the inventory at the end of the period is denoted by si. We also introduce a binary variable
xi which takes the value 1 if the item i is produced during period t.
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The CLSP-BS can be written as

T . .

min ) ) his; (5.2a)
t=1ieZ

s.t. si=sl  +qgl-d! Vie(T], Viel, (5.2b)
Y vigi<c, Vie[T], (5.2¢)
i€eZ
vigl <Cix! Vte[T], Viel, (5.2d)
Y <N, Yrel[T], (5.2e)
i€eZ
xlef0,1} Vte [T, Viel, (5.20)
g, st>0 Vte[T], Viel. (5.28)

Objective (5.2a) minimize the holding costs. Constraint (5.2b) is the inventory balance. Capacity
of the assembly line is ensured by constraint (5.2c). Constraint (5.2d) is both a “big-M” constraint
and a capacity of the production of a single item. Constraint (5.2e) limits the number of setups
at each period. Note that without loss of generality, we can suppose that Cf < C; for each period
t and each item i.

In the uniform case, holding costs h; and internal production times vi of item 7 do not depend
on time and production capacities C; and C; depend neither on time nor on item and are equal
to C > 0. Then, we normalize production variables setting Zyi = uqu;
the other variables and parameters setting ’s“t = VICS ;, c?; = vlcdé and h! = CU—},’l For the purpose of
notation, the hats are omitted and the optimization problem can then be written as

and replace accordingly

T . .

min Z Z h's; (5.3a)
t=1ieZ

s.t. si=si  +qgl-d! Vie[T], Viel, (5.3b)
Y <1 Vee(T], (5.30)
i€eZ
gl <x! Vte[T], Viel, (5.3d)
Y xl<N Vie(T), (5.3€)
i€eZ
xlef0,1} Vte[T), Viel, (5.30)
g, st>0 Vte[T], Viel. (5.3g)

5.4 Theoretical results

In this section, we show that our problem is theoretically hard and that classical methods do not
seem to be easily applicable. After showing the NP-completeness in Section 5.4.1, we show that
the number N of setups is not captured by the continuous relaxation (Section 5.4.2) nor by a
natural valid inequality (Section 5.4.3) nor by natural extended formulations (Section 5.4.4).
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5.4.1 NP-completeness
For any fixed values of the hi’s, the CLSP-BS is NP-hard.

Theorem 11. Deciding if there is a solution of the Uniform CLSP-BS is NP-complete in the strong
sense.

Reducing 3-partition problem to the Uniform CLSP-BS, we show that deciding if there is a
solution of the Uniform CLSP-BS is NP-complete. We remind that the 3-partition problem
consists in deciding whether a given multiset of integers can be partitioned into triples that all
have the same sum. This problem is known to be NP-complete in the strong sense (see Garey
and Johnson (1979)).

Proof. Let{a,...,asn} be an instance of the 3-partition problem. We reduce polynomially this
problem to an instance of the Uniform CLSP-BS. Without loss of generality, we can assume that
the sum of the a;’s is positive. We set

3m j
Zj:] aj

T=1{1,...3m}, T=m, N=3, d =
0 otherwise,

0. (5.4)

M4 ifr=T, .
S0

Thus, we have a solution for the 3-partition problem if and only if there is a solution to the
Uniform CLSP-BS with these parameters. The conclusion follows from the fact that the 3-
partition problem is NP-complete in the strong sense. O

The complexity of the following case is the open problem mentioned in Section 1.3.

Open question. What is the complexity status of the uncapacitated Uniform CLSP-BS with
N=12

The complexity of the case with N = 2 is also a challenging question.

5.4.2 Relaxations
Continuous relaxation

The goal of this section is to show that, unless the capacity production of one item is smaller
than the production of the line at each period, continuous relaxation is not a good way to get
bound on the CLSP-BS. It leaves open the question whether it would be possible to find valid
inequalities improving the value of the relaxation.

Proposition 12. Assume N; > 0 for all period t. If C;' = C; for all item i and all period t, then the
continuous relaxation of formulation (5.2) does not depend on Ny.

The immediate corollary of this proposition is that the continuous relaxation of formulation (5.3)
never depends on N.
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The following example shows that the conclusion of the proposition does not hold when we
relax the condition C;' > Cy for all i, t. Consider the instance of CLSP-BS with

I={1,2}, T=2, N,=1, C,=2, Ci=1,

. (5.5)
{ 1 ifr=2, =h 5=0.

vi =1, d,f =
This instance enables only one item to be produced at each period (N; = 1) whereas the assembly
line capacity at one period is equal to the sum of capacities for each item (C; = C} + Cf). Then,
the optimal solution of the continuous relaxation of formulation (5.2) with these parameters is
h whereas the optimal solution of the continuous relaxation of the formulation (5.2) without the
flexibility constraint (5.2€) is 0.

‘We now prove Proposition 12.

Proof of Proposition 12. Consider an instance of CLSP-BS where C ; = C; for all periods ¢ and
all items i. Let v denote the optimal value of the continuous relaxation of formulation (5.2)
and 7 the optimal value of the continuous relaxation of formulation (5.2) without the flexibility
constraint (5.2e). Obviously, we have v > 7. Let us show that v < 7.

Let (xI,3!,51) .,; be a feasible solution of the continuous relaxation of formulation (5.2) without
the flexibility constraint (5.2e). For each period ¢ and each item i, we define

Vid e i

| ML sfciso, ;L

=y G ' 9:=Gqp  St=5 (5.6)
0 ifCi=o,

We now prove that (xi, qi, si)t ;isa feasible solution of the continuous relaxation of formula-
tion (5.2).
By definition of qi and si, constraints (5.2b) and (5.2¢) of formulation (5.2) are satisfied.

If Cf > 0, by definition of xi and qi constraint (5.2d) of formulation (5.2) is satisfied. If C ; =0,
since (55;, E];, 3\;)[ ;18 feasible, we have ﬁ; = 0 and constraint (5.2d) is satisfied.

We have
C Y xi< Y Clxl (CI>Cyp (5.7a)
i€ i€eZ
<) vigh (definition of x?) (5.7b)
i€
<Cy. (feasibility of (%}, 4},5}), ;) (5.7¢)

If C; >0, then ¥_jez x; < 1< N;. Otherwise, if C; = 0, since (%}, 7}, 5}) , ; is feasible, we have g; = 0
for each item i and by definition of xé, we have Y ;7 x§ = 0 < N;. In both cases, constraint (5.2€)
is satisfied.

vid;

If C! > 0, we have x! = o S %! < 1. Otherwise, if C! = 0, we have by definition x’ = 0. In both

t
cases, continuous relaxation of constraint (5.2f) is satisfied.

By definition of qi and si, constraint (5.2g) is satisfied.
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Thus, we get a feasible solution of the continuous relaxation of formulation (5.2). Sov < 7. O

5.4.3 Valid inequalities

A classical valid inequality relies on the absence of backorder and is given by Proposition 13. The
statement for the Capacitated Economic Lot-sizing Problem (CELSP) is given by Geunes (2014).

i

c, ..
and assume that it is

L
vi
t

Proposition 13. For all period t and all item i, we define K! = maxy¢[y

positive. Then,
ro. 1 (L . .
Xz || X di—s (5.8)
=1 K;\i=1

is a valid inequality for Equation (5.2).

Proof. Atperiod t, initial inventory and cumulative production must at least cover the cumula-
tive past demand. So

. t . t .
ot 2 dr=> ). dy (5.9)
=1 =1
Constraint (5.2d) gives
, xi,Ci, ..
dp < ——— < x,K; (5.10)
vy,
and then
. 1 Uz . .
IEED) (th - sb). (5.11)
t'=1 r t'=1
The conclusion comes from the integrity of Zi,zl xi,. O

Note that we can be more precise when writing valid inequality (5.8). It is easy to show that we
can remove from the sum Z;,zl x;', every index ¢’ such that C f, =0.

5.4.4 Extended formulations

Two natural extended formulations come to mind. Unfortunately, their continuous relaxations
are equal to the one of the formulation (5.2) as we will show in this section.

Model formulations

The first extended formulation is given by the mixed integer program (5.12). We introduce binary
variables yf defined for each period 7 € [T] and each choice p € ( 1%{) of items. The variable yf is
equal to 1 if items in p are allowed to be produced at periods .
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min

s.t.

T . .

1.1
DIPI
t=1iel
i_ i i
;=8 tq,—d;

Y viq; <G
i€l
Lo )
viqr <C; Y. ¥y
pe(y) liep

Y.y <1
pe(y)

yfel\l

q;, 51 >0

Vtel[T], Viel,
Ytel[T],

Vte[T], VieZ,

Vtel[T],

Vte[T], pe z
;P Nt)

Vte[T], Viel,

(5.12a)

(5.12b)
(5.12¢)

(5.12d)

(5.12¢)

(5.12f)

(5.129)

The second extended formulation is given by the mixed integer program (5.13). We introduce
binary variables zé defined for each item i € 7 and each choice ¢ < [T] of periods. The variable

zé is equal to 1 if item i is produced during the periods of ¢.

T . .
min ) ) his;

S.t.

t=1ieZl
i_ i i
=8+t q,—d;

Z vy < Cy
i€l

Y Y EsN
1€L0<|T] | tel

Yy Z <1
0<[T)

i
zgel\l

qp, 5,20

Vtel[T], Viel,
Yte[T],

Vtel[T], Viel,
Vte[T],
VieZ,

VYtel[T], ¢<|[T],
Vtel[T], Viel,

(5.13a)

(5.13b)
(5.13¢)

(5.13d)
(5.13e)
(5.13f)

(5.13g)
(5.13h)

It is easy to see that the extended formulations (5.12) and (5.13) also model the CLSP-BS.

Relaxations of extended formulation (5.12)

Proposition 14. The compact formulation (5.2) of CLSP-BS and the extended formulation (5.12)

of CLSP-BS have the same continuous relaxations.

In order to prove Proposition 14, we need the following lemma.

Lemmal5. LetI e N* andlet N € [I]. Let (x1,...,x5) € [0, 11 be such thatzgzlxi = N. Then, there

exists (J’P)pe([”) €0, 1]([1(/]) suchthat ) yp=1and foreach i€ [I], we have x; <
N
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Remark 1. In case N =2, Lemma 15 gives the following result on a graph. If (x;); represents the
weights of the vertices of a complete graph such that 0 < x; < 1 and ) ; x; = 2, then there exists
weights () » of the edges such that the total sum of the weights of the edges is equal to 1 and
for each vertex, the sum of the weights of its incident edges is greater or equal to its weight.

Proofof Lemma 15. Let I e N* and let N € [I]. Let (x1,...,x1) € [0, 1] be such that Z{zl x;j = N.
To prove the lemma, it is sufficient to prove that the linear program (5.14) is feasible and that its
optimum is equal to 1.

min Z Vp (5.14a)
pe(y)
s.t. Y oy Vie(ll (5.14b)
pe([jf}) | iep
Vp =0 Vpe L (5.14¢)
P N

So it is sufficient to prove that the dual (5.15) of program (5.14) is feasible and that its optimum
vp isequal to 1.

I

max Z XiA; (5.15a)
i=1
(1]
s.t. Y Ai<1 Vpe (5.15b)
iep N
Ai=0 Viel[l] (5.15¢)

First, note that vp > 1. Indeed, (11,...,A7) = (%, e %) is feasible and provides the value 1 to the
objective function. Let us show that vp < 1.

We assume without loss of generality that x; > --- > x;. Let A* be an optimal solution of
program (5.15). It is easy to show that we can require

N
A== 2A7and ) AF=1. (5.16)
i=1

Moreover, since )_ ;¢ p /1:‘ is maximal when p = [N], we can also require that

Ay=--=A% (5.17)

Finally, among all 1* satisfying these requirements, we choose one with maximal 1}, which
exists by compactness. We deal with two cases.

First case: A} < 1. Suppose first for a contradiction that A; > A}. Then, denote ¢ the largest

index such that 1; = A;. The fact that 1, = --- = 1] implies that £ < N. Increasing 1} by a
smalle =A; — A7 | >0and decreasing A; by the same amount provides a new optimal solution

(feasible because } ;¢ /1;‘ is maximal when p = [N]), with a larger A,. This is in contradiction
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with the definition of A*. We have thus 1] =--- = A} and vp is upper bounded by the optimal
value of
max xjA;+ (XI: x,-)lz (5.18a)
i=2
st. M+(N=DA=1 (5.18b)
A=A +2=0 (5.18c)
A1, A2, 220 (5.18d)

The variable z is introduced so that the program is in standard form. Let (;11 , /12, Z) be an optimal
basic solution. If the optimal basis is {11, 12}, then Z = 0 and we have A1 = A, = 1/N, which gives
avalue 1 to the objective function of problem (5.18). If the optimal basis is {1, z}, then 1, = 0
and we have ;11 = 1, which gives a value x; to the objective function of problem (5.18). The basis
{12, z} being not feasible, we get vp < max(x;,1) = 1.

Second case: A} = 1. We have obviously A5 =--- =1} =0, and thus vp = x; < 1.
In both cases, vp < 1, as required. Hence vp = 1 which concludes the proof. O

Proof of Proposition 14. Let (si, q;', yf ) tip be a solution of the continuous relaxation of (5.12).

For each period f and each item i, we set

xi= Y b (5.19)
pe(y,) | iep

Since (si,gi,y), . isafeasible solution of the continuous relaxation of (5.12), we have

t,i,p
xi= Y yP< Y Y1 VrelT) VieZ, (5.20)
pe(y) liep pe(y)
and
Yoxi=Y Y y=Y Nyl=N Y YN VrelTl (5.21)
i€l €1 pe(y) | iep re(y) pe(y)

So (si, qf, x;) . ; is asolution of the continuous relaxation of (5.2) with the same cost as (si, qi, yf).

Let (si, qi, x;) ti be a solution of the continuous relaxation of (5.2). Without loss of generality,
we can suppose that for each period ¢, we have }_;c7 x;' = N;. For each period ¢, according to

z
Lemma 15, there exists (yf)pe(z) € 10,1]%) such that
Nt
Y y’=1landforeachie(ll,xi< Y  y/. (5.22)
re(y) p(y) liep

Since (s, g!,x!), , is a solution of the continuous relaxation of (5.2), we have

vigt<cixi<cl Y  yP  vre[T), Viel. (5.23)
pe(y) liep
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So (st g, y!), p 18 a solution of the continuous relaxation of (5.12) with the same cost as
(st @t xt) - -

Relaxations of extended formulation (5.13)

Proposition 16. The compact formulation (5.2) of CLSP-BS and the extended formulation (5.13)
of CLSP-BS have the same continuous relaxations.

Proof. Let (sf, qf, zj,) ; 1 o e asolution of the continuous relaxation of (5.13). For each period ¢
and each item i, we set

xi= Y 2. (5.24)
(<S[T) | tel
Since (sé, qi, z;) . is a feasible solution of the continuous relaxation of (5.13), we have
xi= Y Z< Y Zi<1 Vre[T)VieZ, (5.25)
¢C[T) | tel ¢<[T)
and
Yxi=Y Y ZL<N,  VtelTl (5.26)
ieT i€Llc[T] | tel

So (si, g, x1) ;,; is asolution of the continuous relaxation of the compact formulation (5.2) with
the same cost as (S;., qi, Z;)t,i,f'
Let (si, qi, xi) 1 be a solution of the continuous relaxation of the compact formulation (5.2). For
each item i, we define the sequence (ﬁ ﬁ,)p of subsets of [T] and the associated sequence (z;;;.) )p

of integers as follow
i ={eermy|xi>o},

i ‘ i . (5.27)
Zpi =m1n{xt ’ te(l},
and for p > 1, while Z;, Z9,
. A
£;+1={te[T] Xp= ) 2y >0},
9=t (5.28)

teﬁfg}.

The sequence (¢ ;)p is finite and strictly decreasing. Note that zé is now defined for each ¢
occurring in the sequence (¢ ﬁ,) p- For the others, we set zé = 0. An example for the definition of
the (z}), is given on Figure 5.1.

. P

[ — mi i_ Z i
ZW = mln{ Xy Zﬂi

p+1 g=1 p

Then, we have xi =Y rc(T] | tel zé and (si, qi, zé)t ioisa solution of continuous relaxation of the

extended formulation (5.13). O
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X
1%%
A e E R N
i
Zli»
t
0T T 2 3 1
0i=1{1,3,4}
— 0 =13}

Figure 5.1 — Example of definition of the variables (zé) , for four periods

5.5 Solving the CLSP-BS

We present in this section different ways to solve the CLSP-BS.

5.5.1 Off-the-shelf solver

In the data provided by Argon Consulting from its clients, we have at most 30 items and 13
periods. So the number of binary variables is always smaller to 400, which is very small for the
up-to-date solvers. We succeed in getting the optimal solution in less than 20 seconds.

5.5.2 Dynamic programming with fixed 7

For a fixed set Z of items, CLSP-BS with infinite capacities is polynomial.

Theorem 17. For a fixed set L of items, CLSP-BS with infinite capacities (C; = C = +00) is polyno-
mial.

We first prove that, when there are no initial inventory, there exists an optimal solution such that
a production can occurs only if inventory is equal to zero. Then, using dynamic programming,
we prove that CLSP-BS with infinite capacities can be solved in O(T2Z1*1).

Lemma 18. Consider an instance of CLSP-BS with infinite capacities (C; = C = +oo) and no initial
inventory (sé =0, Vi € Z). Then, there exists an optimal solution that is ZIO (Zero-Inventory-
Ordering).

Proof. Let (g, s, x) be an optimal solution of the CLSP-BS with infinite capacity and no initial
inventory. Suppose thgt thgre exists a period ¢ and an item j such that si_l q{ # 0. We choose the
smallest ¢ such that si_l q{ # 0. Since inventory at time ¢ is positive and since there is no initial
inventory, there exists a period f in {1,...,t — 1} such that qio > 0 and we choose ) maximal.
Then, decreasing qio by si_l and increasing q{ by s{_l give a feasible solution (since capacities
are infinite) whose cost is at least as good as the cost of the initial solution (g, s, x). Using this

transformation for each period ¢ and item j such that s{_l q[ # 0, we get a solution which is ZIO
and at least as good as the initial optimal solution. O
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Proof of Theorem 17. Let us first note that solving the problem with initial inventory is the same
as solving the problem with no initial inventory and with the demand decreased from the first
period to the last by the amount that can be satisfied by the initial inventory. It can be done in
O(T|Z|) operations. Thus, we can assume than there is no initial inventory.

Lemma 18 implies that there exists an optimal solution that is ZIO and we can use the dynamic
programming as follow. At period ¢, the inventory level si of item i is necessarily of the form
! df for some 7. We define the set S; of possible inventory levels of items as

r'=t
[
St = { (Z dll.r)
=t Jiez

For a period ¢ € [T — 1], a transition from s; € S; to s;11 € Sy is feasible if and only if 5§+1 #

s;—d,,, for at most N indices i. Then, the cost of a transition from s; € S; t0 541 € Sp41 is

ie{t,...,T}I} Ve [T). (5.29)

YieT hés; if the transition is feasible,

5.30
+00 otherwise. ( )

Ct(St, S¢41) = {

Let V;(s;) be the minimal holding cost for times ¢ to T with inventory s; at period ¢. We have

St41€S141 (531)

min  {c; (s, Se+1) + Vira (se41)} if £ € [T -1,
Vi(se) = ;o .
Yierhis; otherwise.

There exists an optimal solution such that inventory is equal to zero at the end of the horizon T.
Thus, we can compute the cost V(0) of an optimal solution in O(T2|I|+1). O
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Stochastic CLSP-BS

6.1 Motivations and problem

In Chapter 5, data are deterministic. In practice, part of data is uncertain. Depending on the
industry or on the planning horizon, uncertainty can be on demand forecast, production rate,
capacities or any other part of the supply chain. When making a production planning, the
main uncertainty in cases given by Argon Consulting comes from demand forecast. Thus, in
this chapter, we only consider this source of randomness in the model to get the stochastic
counterpart of the Uniform CLSP-BS.

As for the Uniform CLSP-BS in Chapter 5, we consider an assembly line producing a set Z of
items over T periods. The number of distinct items produced over a period cannot exceed
N. There is also an upper bound on the total period production (summed over all items). We
remind that we normalize all quantities so that this upper bound is equal to 1.

The production must satisfy a random demand as well as possible. However, because of uncer-
tainty, backorder (i.e., late delivery) is allowed. Part of demand satisfied on time must meet a
fill rate service level f as defined in Chapter 2. The demand of item i over period ¢ is a random
parameter df , whose realization is known at the end of period ¢. When production of an item
i is not used to satisfy the demand, it can be stored but incurs a unit holding cost h’ > 0 per
period. For each item i, there is an initial inventory sé eER,.

Regarding randomness, we assume that for any i and ¢, realizations of (d}, ..., d’) have finite

expectation and can be efficiently sampled, knowing a realization of (dlj Yooy d{_l) o
JE

Decisions can be made at the beginning of each period knowing past realizations of the demand.

In particular, decisions for the current period are definitive decisions, but decisions for the

following periods may change depending on the realization of the demand at the end of the

period. This kind of formulation is called multi-stage.

Finally, the model must always be feasible. Indeed, in real applications, the model must always
return a production planning. That’s why some constraints are “soft constraints”. For example,
in case of capacity issue, production must be planned in such a way as to best approach service
level even if it cannot reach it.

Adding uncertainty in the formulation makes the description of the problem incomplete. We
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propose two closely related formulations of the problem in Section 6.3. We discuss some of the
modeling assumptions in Section 6.5.

6.2 Bibliography

Most of deterministic models - like those presented in Section 5.2 — have been extended to deal
with uncertainty. A review of old models is presented by Yano and Lee (1995) in the second
part of their paper that looks at the models where the yields (e.g., ordered quantity may differ
from received quantity) are uncertain and where the others parameters may depend on these
randomness. More recently, we can cite the reviews of Mula et al. (2006) and of Diaz-Madrofiero
et al. (2014). One of the most complete reviews for the post 2000 publications dealing with
stochastic lot-sizing is proposed by Aloulou et al. (2014). This review shows that uncertainty is
mostly represented in a first approach with probabilistic and stochastic programming formu-
lations and to a lesser extend, with fuzzy logic or scenario formulations. Likewise, we see that
the first source of uncertainty in the models is mostly the demand, then the costs and finally
other parameters like yields or lead-times. Latest works present other sources of uncertainty like
uncertainty on setup-times (Tas et al. (2018)).

Integrating uncertainty in models allow to apply lot-sizing models to new fields. For example,
Mukhopadhyay and Ma (2009) and Macedo et al. (2016) deal with remanufacturing where the
main uncertainty comes from the quantity and the quality of returned pieces which impact the
quantity of required raw materials. We also find it in automotive industry where composition of
the product mix is highly uncertain (see Gyulai et al. (2015)). Stochastic production planning
also deals with huge size problems like electricity production (see Rozenknop et al. (2013)) and
it requires to develop special heuristics to solve them.

Since we consider uncertainty, demand may not be satisfied. In order to control backorder,
many methods exist. A classical one consists in using backorder costs (see Zangwill (1969) and
Absi and Kedad-Sidhoum (2009)) that is paid for undelivered quantities. However, as explained
by Tempelmeier (2013), backorder costs may be hard to quantify due to indirect consequences
of undelivered quantities and he propose several service level measures that can be used as
a substitute. Chance constraints, which are quite close to cycle service levels, are also used
(see Tarim and Kingsman (2004) and Gicquel and Cheng (2018)). Non-satisfied demand is also
controlled using robust optimization like in the models proposed by Gyulai et al. (2017) or by
Minoux (2018) who obtains better results than classical stochastic optimization when targeting
very low risk levels. Since backorder costs remain in many cases the easiest way of dealing
with undelivered quantity, van Houtum and Zijm (2000) propose for the stochastic single-item
inventory systems a method to link backorder costs to several service level measures. They
provide conditions for which pure cost models can be transform into to service models and give
examples as for the single-stage periodic-review inventory system. A similar approach is used in
Section 6.3.2 to compute backorder costs in case of fill rate service level.

Finally, to the best of our knowledge, we observe than, like in deterministic cases, problems use
setup costs and not a bound on the number of setups.
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6.3. Model

6.3 Model

In order to formalize the stochastic counterpart of the Uniform CLSP-BS, we introduce the
following decision variables. The quantity of item i produced at period ¢ is denoted by qf and
the inventory at the end of the period is denoted by si. We also introduce a binary variable xi
which takes the value 1 if the item i is produced during period t. All these variables are random
and may depend on the past realizations of the random demand (dlj een) d{_l)

JjeZ )
6.3.1 Model with service level constraint

For each period ¢ and each item i, we introduce the decision variable ti;' which is the part of
demand d! satisfied at the end of period ¢. We decide to model the service level constraint for
all items by

E

T 7i i
Zw”—zf:l ! h 6.1)

ir Yl d Yjer W
The fill rate service level is taken on average over items and each item is weighted by its holding
cost.

> B where w' =

Then, we can write the mathematical program corresponding to our problem at time ¢

T . .
min E|) Y h's) (6.2a)
t'=tiel
st. sh=s,_ +q,-d, vi'eft,..., T} Vied, (6.2b)
Y q.<1 vi'eft,..., T}, (6.2¢)
i€Z
q, <x, vi'e(t,..., T}, VieT, (6.2d)
Y xL<N vi'eft,..., T}, (6.2€)
i€
T d;
E|Y wSE="t > p 6.20)
fex Xl,d!
i, <d vi'elt,..., T}, VieZ, (6.2g)
xl, €{0,1} vi'elt,..., T, Vi€, (6.2h)
q., s, d >0 vi'elt,..., T, VieT, (6.2i)
qi, is 0((d1i,...,d;,_l)iez)—measurable vt elt,..., T}, Viel. (6.2j)

Objective (6.2a) minimizes the future expected holding costs. Constraints (6.2b), (6.2c), (6.2d)
and (6.2e) have the same meaning than their deterministic counterparts (5.3b), (5.3c), (5.3d)
and (5.3e). Constraint (6.2f) ensures the service level. Constraint (6.2g) means that we cannot
satisfy more than the demand. Last constraint (6.2j) of the program, written as a measurability
constraint, means that the values of the variables q;', can only depend on the values taken by the
demand before time ¢’ (the planner does not know the future). Every constraint of the problem,
except the service level constraint (6.2f), holds almost surely.
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One may expect that the satisfied part Jg of demand is also bounded by the sum of the previ-
ous inventory and the production of the period, but such a constraint can be deduced from
constraints (6.2b) and (6.2i).

This formulation perfectly matches Argon Consulting objectives. Indeed, the objective is sim-
ple (only holding costs) and does not weigh hardly comparable indicators. Moreover, every
parameter is easily provided by clients.

The drawback of this formulation is the feasibility. Because of the service level constraint (6.2f),
program (6.2) may be infeasible. In this cases, heuristics must be developed to create a produc-
tion planning which violates as few as possible the constraints.

6.3.2 Model with backorder costs

Service level constraint is a main issue since it may lead to infeasibility of the model. Thus,
we remove this constraint and penalize backorder quantities. We introduce new decisions
variables. When a demand for item i is not satisfied by the production of the current period
or by inventory, it can be satisfied later but incurs a unit backorder cost y’ per period for some
coefficient y? > 0 and the backorder of item i at the end of the period ¢ is denoted by bi. We also
used the inventory level § which is the relative value of the inventory of item i at the end of
period ¢ (i.e., the inventory minus the backorder).

The problem at time ¢ can be written as follow.

T . . . .
min £ Y Y (h'sh+y'b}) (6.3)
t'=tiel
s.t. §,=8,_,+q,-d, vi'elt,...,TLVieT, (6.3b)
Y qi<1 vi'elt,..., T}, (6.30)
i€l
q, < xl, vi'elt,..., T)Vie, (6.3d)
Y xL<N vi'elt,..., T}, (6.3€)
i€l
§,=s,-b vt'elt,..., T}, Viel, (6.3
x!, €{0,1} vi'elt,..., T}, VieZ, (6.3g)
g, s, b, >0 vi'elt,..., T}, Viel, (6.3h)
q. is a((df,...,d;,_l)ieI)—measurable vi'elt,...,T}, Viel. (6.3i)

In contrast to model (6.2), objective (6.3a) minimizes the sum of inventory and backorder at the
end of each period and service level constraint (6.2f) is replaced by constraint (6.3f) which links
real inventory and backorder quantities.

An interesting feature of this model is that there always exists a feasible solution, which makes
it more amenable to real-world applications. However, it cannot guarantee a specified service
level. Moreover, parameters of the first model were easy to get whereas in practice, except when
they are enshrined through contracts with the clients, backorder costs can be hard to estimate.
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6.3. Model

Finally, note that the models (6.2) and (6.3) are not equivalent since the service level constraint
does not make a difference between a one-period delay and a two-period delay whereas the
backorder costs increase with the length of the delay.

When backorder costs are not given by the clients, we propose a way to “price” backorder
coefficients y' for each item i before the first period, with the idea to heuristically entice it to
choose solutions satisfying service level constraint (6.2f). We set

i Pld'<q'(P)] B

it 6.4)
P[d' > q(B)]

min(d’, q)
di

E

g () := inf{ geR, > ,6} (6.5)
where d’ = Zthl df is the demand of item i aggregated over time. Since d'’ is non-negative, g*(f)
is well-defined (we set % = f so that items with no demand would not impact the constraint).
Computing an approximate value of g’ (B) at an arbitrary precision can easily be performed by
binary search.

To justify this choice, consider the second problem (6.3) with only one item and for a horizon
of one period. Assuming no initial inventory, it takes then the form of the famous newsvendor
problem (see e.g., Shapiro et al. (2009, Chapter 1))

min E|h(g-d) +yid - q 7|, (6.6)
q>0

where y' is a unit backorder cost specific to item i. The next proposition means that with the
right choice for y, the formulation Equation (6.2) (which takes the form of Problem (6.5) since
h' > 0) is equivalent to the second one (6.6). Of course, it holds only for the case with one item
and a horizon of one period.

Proposition 19. Definey' as in (6.4). Then q' () is the smallest optimal solution to (6.6).

Proof. The aggregated production problem (6.6) is known to have the optimal solution

O 6.7)

where F;ll is the left-inverse of the cumulative distribution function of di, i.e., , F{;ll (x) =

Pld'<q ()]

: * = i< q) >
P> (6 we have g inf{g | P(d' < q) 2

inf{q | P(d’ < q) >«}. Since we have set y' =
P(d’ < g'(B)}, which implies that g'* < g*(B).

Now if this inequality were strict, then it would mean that Pl e (qi*, qi (8))) =0, which contra-
dicts the minimality assumption in the definition of qi (B) (Equation (6.5)). O

Note that this formulation does not take into account the capacity constraint. It is therefore
probably better suited to overcapacited production lines.
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Remark 2. If instead of controlling the fill rate service level, we want to control the cycle service
level, defined as the probability of satisfying the whole demand, then we can choose

yi = by (6.8)

1-p
Indeed, in this case, the optimal solution g** of (6.6) satisfies P(g** > d’) = B. This corresponds
to the formula given by van Houtum and Zijm (2000). Interestingly, Equation (6.8) does not
depend on the distribution of the demand, which contrasts with Equation (6.4).

6.4 Solving method and theoretical results

6.4.1 Solving method

As explained in Section 5.4, the deterministic version of CLSP-BS is hard. Therefore, we cannot
expect a quick algorithm solving exactly the problem, and this holds especially for the full
stochastic version. Indeed, consider than |Z| =10, T = 10 and that at each period ¢, the demand
d! of item i can take 2 different values. Then, we get 2Z!17 = 103 possible realizations of the
demand, which gives as many new indices. Thus, a frontal solving is not tractable.

Moreover, one of the requests of the partner was to have an easy to understand method, which
can be used and maintained in practice, with short computation times. We propose a two-stage
approximation consisting in replacing the measurability constraint (6.3i) by

{ qlis a((df,...,d;_l)id)—measurable Viel 6.9)

qiso((d],...,d}), ;)-measurable V¢ >1+1,VieT,

which provides a relaxation of the initial program: the production decisions for the current
period ¢ can still not depend on the future, but now the subsequent production decisions depend
on the future demand. We denote this relaxation by (2SA).

This approximation is a two-stage approximation as we distinguish between two levels of in-
formation over the uncertainty: production decisions for the first period are the first stage
variables, while all other decisions are second stage variables. Three-stages or more generally
multistage approximation would give better approximations of stochastic Uniform CLSP-BS but
increases exponentially the number of variables. We chose for practicability reasons to stick to
the two-stage approximation.

The (2SA) relaxation is then solved by a classical sample average approximation (see Kleywegt
etal. (2002) for a presentation of the method). We build a set Q of m scenarios sampled uniformly
at random. Each of these scenarios is a possible realization of (d!, df T d%) for each item i.
The parameter m is fixed prior to the resolution.

Figure 6.1 gives a scheme of the two steps involved in the reduction of the scenario space.
The complete multi-stage problem is represented by a scenario tree. In this case, even if the
realization 1 occurs, there remain random events which can take the values 1.1 or 1.2. The
two-stage approximation consists in removing these remaining random events and considering
that, if the realization 1 occurs, the remaining events are deterministic. The sampling consists in
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choosing a finite number of first stage realizations (two in Figure 6.1).

Complete
scenario space

Two-stage
approximation

Sampling

Randomness

Present

Present

Realization 2

"

Realization 3

Realization 2 Future 2 <

Future 1

Future 2

Future 3

Present <

Randomness

Realization 1.1
Realization 1.2
Realization 2.1
Realization 2.2
Realization 3.1

Realization 3.2

i

Future 1.1

Future 1.2

Future 2.1

Future 2.2

Future 3.1

Future 3.2

Future 1.x

Future 2.x

Future 3.x

Future 1.x

Future 2.x

Figure 6.1 — Scheme of the reduction of the scenario space

We get the following mixed integer program (2SA-m), solved by any standard MIP solver.

. 1
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M yeQit=tiez
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At period t, the production is then set to be the solution (q;'),-ez found by the solver.

The validity of this method for solving (2SA) is supported by the following proposition.

Proposition 20. The following three properties hold when m goes to infinity.

(6.10a)

(6.10b)
(6.10¢)

(6.10d)
(6.10e)

(6.10f)
(6.10g)
(6.10h)

(6.10i)

(6.10j)
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(i) The optimal value of (2SA-m) converges almost surely to the optimal value of (2SA).

(ii) For every m, we consider the values (5]? m )Aci’m) ieT Of the decision variables for period t of
an optimal solution of (2SA-m). Any limit point of these values is an optimal solution of
(2SA).

(iii) Lete > 6 > 0. Assume that the random demand (d;,) ¢'>1ieT 1S such that

3AC,K, VueR, E[e“l4l] < ce?’K, 6.11)

Denote by Q% (resp. QF) the set of all possible values of(c?fym),-ez in a 6 -optimal solution
of (2SA-m) (resp. in an e-optimal solution of (2SA)). Then for every a € (0,1), we have
P[Q%, < Of] > 1 - a for m large enough.

Item (i) is a result on the convergence of the optimal values of (2SA-m) toward the optimal value
of (2SA).

Item (ii) is a result on the convergence of the optimal solutions of (2SA-m) toward an optimal
solution of (2SA). However, it requires the existence of the limits of the optimal solutions of
(2SA-m).

Item (iii) is a result on the convergence of the set of §-optimal solutions of (2SA-m) toward
the set of e-optimal solutions of (2SA). Equation (6.11) is a technical condition. It just means
than distributions are not heavy-tailed. If the random demand d is bounded or positive part of
Gaussian then it satisfies (6.11). Conversely, exponential distributions does not satisfied (6.11).

The proof of Item (iii) relies on the following technical lemma.

Lemma 21. Consider g(d) = infyey G(y,d), where Y is non-empty and where the function G is
non-negative and x -Lipschitz with respect to d. If the random variable d satisfies (6.11), then
g(d) also satisfies (6.11) with C' = max{1,e®YYC} and K' = Kx + G(yy,0), for yp€ Y.

Proof. For u > 0 we take y, € Y yielding g(d) < G(3,0) +«|/d|. We then have E[e*8@)] <
E[e“CU00 gkuldl} < C'eK'v* For 1 < 0, by non-negativity of G we have g(d) > 0, hence E[e*8®)] <
1. O

Proof of Proposition 20. Let Q; be the (bounded) set of feasible values for the first-stage variables
q: = (qi) ie7 in (2SA). Denote by F(g;, d) the minimal cost of (2SA) that can be reached when
the first stage-variables are fixed to g; € Q; and the realization of the demand is d = (d i,) f>1ieT-
We introduce the map f: g; — E[F(q;,d)], which associates to a given choice of g; € Q; the
expected minimal cost, and similarly the map fm, which associates to a g; € Q; the minimal cost
of (2SA-m) when the first-stage variables are set to this q;.

The map f is continuous and Q; is compact. Thus f is bounded, and, by Shapiro et al. (2009,
Theorem 7.48), we have that ( fm(qt))mez+ converges to f(q;) uniformly on Q;. Then Item (i)
and Item (ii) are direct consequences of Shapiro et al. (2009, Theorem 5.3).

By Lemma Lemma 21, there exist K and C such that for any q; € Q;, F(q;,d) satisfy (6.11).
Consequently there exists o > 0 such that for all q;, g} € Q;, the random variable [F(q;,d) —
flg)1—-[F(q},d) - f(g})] is o-subgaussian, (see e.g., Vershynin (2010)). Furthermore, for any
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demand d, the map F(:,d) is Lipschitz-continuous on Q;. Then, according to Shapiro et al.
(2009, Theorem 5.18), for every a € (0,1), there exists M € Z, such that for m > M, we have
P(Q% c Q) >1-a. O

6.4.2 Bounds

The following proposition proposes bounds on formulation Equation (6.3) in order to evaluate
the quality of a solution. It relies on classical stochastic results (see for example Shapiro et al.
(2009)).

Proposition 22. For each m € Z7%, we have the following inequalities on the optimal values:

E[v35a-m] SE[V3sa-(men)] S V3sa < V7, (6.12)

where vy, is the optimal value of (25A-m), v} , is the optimal value of (25A) and v* is the
optimal value of formulation Equation (6.3).

Proof. The two-stage approximation (2SA) being a relaxation of the original problem, we get
Uys4 < U*. The other inequalities are proved in Shapiro et al. (2009, Proposition 5.6). O

6.5 Discussion about modeling

In the way we formulate the stochastic counterpart of Uniform CLSP-BS, we made some choices.
The first one is the information structure i.e., the time when randomness is revealed. Relying on
the denominations used by Carpentier et al. (2015), there can in principle be two versions for
each period: decision-hazard where decisions are made before the information is revealed and
hazard-decision which is the opposite. Both make sense in industrial applications but we choose
the decision-hazard version, which suppose that the demand of period ¢ is revealed at the end of
the period after the production decisions were made. This version is more pessimistic than the
hazard-decision version. However, the methods developed in this thesis can be easily adapted
to the hazard-decision case where the demand is revealed at the beginning of the period.

The second one concerns the feasibility of the planning. In Argon’s applications, covering every
possible realizations of the demand often leads to too expensive production planning or to
infeasible planning. For example, if the demand is the positive part of a Gaussian distribution,
then the set of feasible solutions is empty because of the possible high demand realizations.
When it occurs, a part of the demand is not satisfied and the model must return a production
planning satisfying every other constraints and reaching an objective service level.

Thus we have to model the undelivered quantities. In many cases, serving only 95% of the
demand is less critical than serving only 80%. Thus, Argon aims at reaching a service level for
delivered quantities. The fill rate service level, which is the proportion of demand satisfied on
time, is considered. As previously explained in Chapter 2, the cycle service level, which is the
proportion of command entirely satisfied, could have also been considered but in most of our
application, it is less relevant. When used in practice, the decision-maker can choose the service
level requirement depending on the criticality of the item. (100% service level is the robust case.)

Another non-obvious question is the mesh considered for the service level constraint. It can be
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extremely focused as a service level on each pair (item, period) or extremely general as a global
service level for all items and all periods simultaneously. The aggregation of the KPI's can also
be done in many ways (e.g., average of the service level over items, sum of the satisfied demand
over all items and all periods divided by sum of demand over all items and all periods). We were
not able to get a precise formulation from our partner and from its clients since it depends on
the industry or the strategic objectives. However, the methods developed in this thesis can be
easily adapted to the different modeling of the fill rate service level. We choose to model the fill
rate service level taking the average of the service level of each item. Each service service level is
weighted by the holding cost of the item.
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In this chapter, we test the practical efficiency of our approach. We will simulate realizations of
the demand and planning decisions, updated week after week with the help of various heuristics.

7.1 Simulation

In this chapter, each method used to compute a production planning is called a heuristic since it
cannot guarantee to reach the optimum. Moreover, we are not able to prove that one heuristic is
theoretically better than another. Thus, in order to compare their practical efficiency, we use
simulation.

A simulation requires:

« the characteristics of the items (holding costs 4/, initial inventory) and the characteristics
of the assembly line (capacity C and upper bound N on the number of setups),

¢ the forecast demand (value and reliability). This forecast demand may depend on time
and on past realizations of the demand,

¢ the choice of the heuristic used to compute the production planning,

¢ the number 7 of runs.

A run of the simulation starts at period ¢t = 1. Then, for each period ¢, we observe the current
inventory level of each item, i.e., the inventory at the end of the previous period. Using the
forecast demand function and the chosen heuristic, we compute the production planning and
fix the decision for the current period t. At the end of the period, we observe the demand
outcome for period ¢ and update the inventory level. At the end of a run, we get several Key
Performance Indicators (KPI) measuring the efficiency of the heuristic for a particular realization
of the demand. A scheme of a typical run of the simulation is given in Figure 7.1.

After the n runs of the simulation, we compute other KPI's from the KPI of all runs like the
average over all runs or the standard deviation.

C++11 has been chosen for the implementations and Gurobi 6.5.1 (see Gurobi Optimization,
LLC (2018)) was used to solve the model on a PC with 8 processor Intel® Xeon™ E5-2667 @
3.30GHz and 48Go RAM.
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Demand realization

|

Simulator
- Key Performance
Heuristic = . y
Start at period £ =1 Indicators
For each period t Objective function
Forecast —> current Holding costs

,I, Backorder costs
Data ——> B¢ Fil e service vl
Observe inventory level
Use heuristic and forecast to com-
pute the production planning
Decide production for current week

Return KPI

Figure 7.1 — Scheme of the run of the simulation

7.2 Heuristics

Our heuristic consists drawing m new scenarios of demand knowing the past realizations of the
demand. Then we solve (2SA-m), as defined in Problem (6.10), at the beginning of each period ¢
with a MIP solver. We compare it with three other heuristics:

* deterministic approximation,
¢ lot-size,
* cover-size.

The first heuristic is the deterministic version of Problem (6.3), where the random demand is
replaced by its expectation. Note that it is not the CLSP-BS described in Chapter 5 since there
are backorder costs. When backorder costs are not given by the client, we used the method
described in Section 6.3.2 to compute them.

The second one, the lot-size heuristic, consists in determining before the first week once and for
all a value ¢ for each item i € Z. At time ¢, if the inventory of item i is below a precomputed
safety stock (see Equation (7.1)), the quantity qé is chosen so that the inventory of item i exceeds
the safety stock of exactly £;. In case of capacity issues, the production is postponed and
thus backorder costs appear. In addition, if some capacity issues are easily anticipated, the
production of an item i can be activated even if the inventory is not below the safety stock.

The third one, the cover-size heuristic, is almost the same, but instead of precomputing a fixed
quantity for each item, a duration 77 is fixed before the first week. When the inventory of item i
is below the safety stock, the quantity g; is computed so that the inventory of item i exceeds the
safety stock of the expected demand for the next 77 weeks. An example is given on Figure 7.2b.

The values ¢ ;‘ and T;.“ are determined using results of Chapter 3. (T;‘),-Ez is actually chosen to be
the optimal solution to Program (3.4), which somehow considers the problem at a “macroscopic”
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Figure 7.2 — Computation of produced quantities using lot-size and cover-size heuristics

level where the demand d' is chosen equal to E[Y.T_, d!].

For each item i, the parameter ¢ f of the lot-size heuristic is then set to d iT;‘.

There is no universal formula for the safety stocks (sl"nin)l.. Thus we turn to the formula used
in practice by most of Argon Consulting’s clients (see Arnold et al. (2007, Chapter 11)) where
the underlying model assumes that the demand has a Gaussian distribution. Production being
decided at the beginning of the period and the demand being revealed at the end of the period,
the lead time is one period (and is certain). Thus, for each item i, the safety stock used to reach

cycle service level a is
sfnin:za\/\/ar[di] (7.1)

where di = Zthl d; and z, is the inverse distribution function of a standard normal distribu-
tion with cumulative probability a. When fill rate service level f is used, an abacus gives the
coefficient kg which must be used instead of z,.

The cover-size heuristic adapts the production to the realization of the demand, contrary to the
lot-size heuristic. According to Argon Consulting, it makes the cover-size heuristic more suitable
for situations with low short term volatility of demand or for overcapacitated lines, while the
lot-size heuristic is expected to behave better with high short term volatility of demand or for

71



Chapter 7. Numerical experiments

undercapacitated lines. Lot-sizes and cover-sizes heuristics are used in practice.

Note that the backorder costs are not taken into account at all for determining the values of the
parameters ¢ and 7. But playing with safety stocks allows to prevent too large backorder costs.
However, in real life it is usually the other way round: the company does not associate costs to
backorder and plays with the safety stock to address directly the service level.

7.3 Instances and probabilistic model

7.3.1 Datasets

The instances used are realistic and have been provided by a client of Argon Consulting. The
client gave the data of seven assembly lines and the demand for each week over a full quarter.
The horizon T is the typical one used in practice by this client, namely T = 13 weeks.

The historical demands are denoted by d lf

The initial inventory is set to sé = %(d{ + ag + ag).

The other parameters are provided in Table 7.1. The parameter C is the capacity of the line
before the normalization leading to formulation (5.3). (Recall that the problem and the model
have been formulated in Section 6.3 after normalization.) In the column fzi, we indicate the

range of the holding costs before normalization. We obtain the /'’s by dividing these costs by C
since internal production times v’ are unitary.

We also add the loading characteristic « ; at period ¢, only given as an indication of the hardness
of the instance, and defined as follows.

_ Liez (Z?:l dﬁ/) _Sé
Y= Co

Ky (7.2)

It is the ratio of cumulative forecast demand up to period ¢ minus the initial inventory over
cumulative capacity up to period ¢. If there were no flexibility constraints and if the holding
costs were not an issue, then for a period ¢, the inequality x; < 100% would imply that it
is possible to supply the whole demand. As shown in Table 7.1, the lines Ly, Ly, Ly, L3 and

L, experience overcapacity: the loading indicator is smaller than 100%. The lines L5 and Lg
experience undercapacity: the loading indicator is larger than 100% at some periods.

The number m of scenarios used to solve (25A-m) is fixed to 20, determined by preliminary
experiments showing that it is a good trade-off between accuracy and tractability. The time limit
of the solver has been set to 120 seconds.

7.3.2 Demand distribution

For the purpose of notation, in this section, we use index k € [K] to represent a pair (¢,i) € [T] xZ.
We choose to model the distribution of demand (Ell, ....d K) using the “expanded Dirichlet”
distribution defined as follow.

Let y € (0,1) and let dy,...,dx be K positive real numbers. We denote by D(y, Jl,...,dK) the
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Instances Instance characteristics
|Z| max(cff) C N ht max (k) KT

Ly 21 3780 8518 7 45-88 91% 74%
L 30 4122 13326 12 52-82 66% 52%
L, 21 4992 10562 7 35-61 61% 61%
L3 13 6220 10394 5 22-30 80% 65%
Ly 18 10584 62164 8 12-14 40% 35%
Ly 12 11772 7902 6 15-17 126% 98%
Lg 22 8640 13299 8 16-23 118% 98%

Table 7.1 — Instance characteristics

probability distribution of (;i e .d «) on RX when

1 - ~ .
dT(dl,...,dK)~D1r(a1,...,a1<)
~ 0 . (7.3)
with dozzllf:ldk, ao:%—l, and ak:%ao, Vke [K].
0

(We remind that Dir (a4, ..., ax) designates the Dirichlet distribution and recall its definition
and the main results in Appendix A.1.) We call it the “expanded Dirichlet” distribution.

The “expanded Dirichlet” distribution has the following properties.

Proposition 23. Lety be a real number in (0,1) and let d], . CZK be K positive number (with
K >2). Let (dl,...,dK) be a random vector following an “expanded Dirichlet” distribution
D(y, di,..., d}). Then, the following properties hold.

1. Expectation

Eld,])=dx Vke[K]. (7.4)
2. Variance
Var[d,] =ydi(do—dx)  VYkel[K]. (7.5)
3. Sum
K ~
dk =d almost surely. (7.6)
k=1

4. Let k be an integer in {l,...,K —1}. We denote by d,,, = (dl,...,dk), d, = (dk+1"-"d1<)
and d = (dy, ..., dy) a fixed realization ofd(l). Then, (d(z)
Dirichlet” distribution D(y’, st ) ciK) wherey' is the unique positive solution of

1 1 Yk d;
ﬁ—lz(ﬁ—l)(l——’% ) (7.7)

‘d(l) = d(l)) has an “expanded

Proposition 23 is proved Appendix A.2.

The parameters of the “expanded Dirichlet” distribution used to generate the demand are the
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historical forecast demands d;' for the dj. and y is set equal to

K [do _
Yio d.

1% X d .
T (21

(7.8)

The parameter y is defined from another parameter v which we call volatility and whose
interpretation is easier. Volatility gives the ratio between standard deviation and expectation of
arandom variable. Defining y as in Equation (7.8) enables the volatility of each demand to be as
close to v as possible and is justified in Appendix A.3.

Using “expanded Dirichlet” distributions has many advantages. First, Item 1 ensures that
demand expectation is equal to the historical forecast demand and Item 3 ensures that, as
explained in Chapter 2, total volume Y, ; d; of the forecast demand is constant over every
possible outcomes. Second, Item 4 ensures that the demand distribution keeps its properties
when part of the demand is revealed.

Moreover, random variables with an “expanded Dirichlet” distribution can easily be generated
using Algorithm 1 since most of modern programming languages have a generator of gamma
distributed variables.

Algorithm 1: Generator of “expanded Dirichlet” distribution D(y, dj, ..., dk)

Input: v, dl, ceey JK
Output: Random realization (d, ..., dk) of D(y, d,..., JK)

~ K ~
d() = Z dk
k=1
! 1
ag.=— —
YZ

d
fork=1,..., Kdo aj:= Tka()
0
fork=1,...,Kdo

| draw a number y; from Gamma distribution I'(a, 1)
end

fork=1,...,Kdod:= Yk

0
K
/=1 Ye

Return (dy,...,dg)

Proposition 24. Foranyy € (0,1) and any d,, ..., dx positive real numbers, Algorithm 1 samples
the “expanded Dirichlet” distribution D(y,dy, ..., dx).

Proposition 24 is proved Appendix A.2.

Finally, Algorithm 1 and Item 4 of Proposition 23 enable to generate easily a realization of the
demand when part of the demand is already revealed.
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7.4 Use of K-means algorithm

As explained in Section 7.3.1, we use a small number of scenarios to represent every possible
outcomes. Thus, using only Algorithm 1 gives results which may be very dependent of the
generating scenarios. In this section, we propose to use a K-means algorithm on a bigger set of
scenarios to get a small set of representative scenarios.

We refer to Hastie et al. (2009, Chapter 14) for a detailed presentation of the method. Roughly, K-
means clustering aims at partitioning n observations into K clusters in which each observation
belongs to the cluster with the nearest mean. The mean of each cluster can be used as a prototype
(i.e., a representative element) of the cluster.

K-means algorithm is easy to implement but its simplest version have some well-known lim-
itations. First, it uses Euclidean distance as a metric and variance is used to measure cluster
scatter. In some cases, other distances might be more relevant and choosing a more appropriate
one may not be an easy task. Second, the number of clusters K is an input parameter. Thus, an
inappropriate choice of K may yield poor results. Last, results depend of the initialization of
the first K prototypes and may lead algorithm to converge to local optimum. Some variations
of K-means algorithms exist to deal with these points (see Jain (2010) for a review of K-means
algorithm and its extensions).

Due to time constraints, we have not implemented K-means algorithm. However, a straightfor-
ward way to use it would consists in:

 using Algorithm 1 to generate a sample of M scenarios which can be seen as real vectors
of RTXI

* initializing K with m = 20,

* using K-means algorithm to classify the M scenarios into m clusters.

Then, our set Q of representative scenarios used in Equation (6.10) would be composed of the
prototype of each cluster, with a probability equal to the number of scenarios in its cluster
divided by M.

7.5 Numerical results

We run tests on lines described in Table 7.1. Complete tables of results are given in Appendix B
and the results for line L, is given in Table 7.2. (We choose line L; because it does not suffer
from undercapacity like L5 and Lg, and it is not a line that is clearly overcapacitated like Ly.)

The table is composed as follows. In the column Input, we give the characteristic of the inputs.
The sub-column Vol. gives the volatility of the demand as defined in Section 7.3.2. The sub-
column Heur. gives the heuristic used to make production decisions (see Section 7.2). The
abbreviation det stands for the deterministic heuristic, sto for (2SA-m) heuristic, cover for cover-
size and lot for lot-size. Finally, the sub-column f gives the service level used to compute
backorder costs as explained in Section 6.3.2.

The outputs are composed of the following KPI's. They are all averaged over the 30 runs of the
simulation. In the column Obj., we write the objective value (6.10a) of the solution found by the
heuristic (in k€).
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In the column LB, we write the best lower bound on the objective value (6.10a) (in k€). This
lower bound is computed by solving Program (6.10) at time ¢ = 1 with m = 5000 scenarios and a
computing time limit equal to 24 hours.

The column Inventory gives several KPI relative to stocks. The sub-column Av. gives the average
of the positive part of the inventory over periods, i.e.,

(s)7 = % Ty (n'sf)". (7.9

t=1ieT

The sub-column Max gives the maximum of the positive part of the inventory over periods, i.e.,

.o\t
max(s) =max| 3" ('sf] | (7.10)

T e\ o7
The sub-column Cover gives the average cover-size of items, i.e., the average number of periods
covered when a production occurrs. This KPI is taken on average over items and each item is
weighted by its holding cost. For each item i, denoting by 7 the subset of [T] of periods where
item i is produced, the KPI is computed by

(M=) —Wi > —qi where w' i and (d’) ! XT: d (7.11)
= - — = " T=— . .
iel |Tl| teT? <dl>T ZjeI hi T t=1 t

The column Service gives the KPI relative to service level with the two classical measure. The
sub-column Fill rate gives the average fill rate service level of items. This KPI is taken on average
over items and each item is weighted by its holding cost. It is given by

YT min((s’_ )++qi, dl _ i
Brr=) w' = ( - ' [) where w'= h

- -, (7.12)
ieT Yy, d Yjer

The sub-column Cycle give the average cycle service level of items. This KPI is taken on average
over items and each item is weighted by its holding cost. It is given by

i e VY i i
1if(sj_ ) +q;>d;
0 otherwise.

T i
(a)I:Zwiﬂ where w'= (7.13)

- and yi=
i€l T ZjeIh] : {

Note that these two KPI give priority to satisfy current demand rather than backorder.

In the column Workload, we compute the average workload of the assembly line. This KPI is
taken on average over periods. It is given by

1 T . i
(Workload)r = — ) M

7.14
s (7.14)

In the column Flex., we compute the average number of setups used on the assembly line. This
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KPI is taken on average over periods. It is given by

S 1 L Yier x;
(Flexibility) r = T ; N (7.15)
Input Obj;. LB Inventory Service Work- | Flex.

Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% || 12320 495 948 | 1125 7.6 94% 95% 62% 92%
95% || 14087 504 | 1080 | 1353 7.2 94% 95% 64% 94%
98% || 15516 560 | 1161 | 1520 7.2 94% 95% 65% 96%
go cover | 85% || 10719 495 824 | 1024 4.4 100% | 100% 58% 95%
T 95% || 11833 504 910 | 1051 4.3 100% | 100% 59% 98%
= 98% || 12397 560 953 | 1075 4.3 100% | 100% 60% 99%
E det 85% 709 495 54 313 2.8 78% 62% 51% 99%
E 95% 839 504 54 313 2.8 81% 63% 44% 99%
g 98% 1485 560 69 313 3.0 86% 68% 51% 99%
sto 85% 506 495 39 300 2.6 68% 55% 49% 96%
95% 725 504 42 300 2.6 77% 59% 43% 97%
98% 1451 560 62 305 3.0 84% 67% 51% 98%
lot 85% || 12316 518 946 | 1142 8.9 93% 94% 61% 92%
95% || 14450 634 | 1082 | 1353 8.6 94% 95% 64% 94%
98% || 16454 759 | 1171 | 1515 8.8 94% 95% 65% 95%
Ié\i cover | 85% | 11083 518 851 | 1045 4.7 99% 99% 58% 94%
Ll? 95% || 12403 634 948 | 1092 4.6 99% 99% 59% 98%
= 98% || 13148 759 996 | 1137 4.6 99% 99% 60% 98%
E det 85% 1089 518 79 340 3.1 76% 64% 40% 98%
E 95% 2006 634 102 340 3.4 84% 70% 51% 99%
g 98% 3179 759 154 346 3.7 90% 78% 52% | 100%
sto 85% 696 518 43 307 2.7 62% 56% 37% 95%
95% 1869 634 78 318 3.0 79% 66% 51% 98%
98% 3140 759 151 345 3.5 90% 77% 52% 99%
lot 85% || 12597 629 960 | 1160 48.1 92% 93% 61% 91%
95% || 15173 | 1081 | 1091 | 1381 46.8 93% 94% 64% 94%
98% || 18567 | 1330 | 1196 | 1556 47.6 93% 94% 65% 95%
go cover | 85% | 11068 629 848 | 1054 12.1 99% 97% 58% 94%
°|? 95% || 12497 | 1081 943 | 1100 12.1 99% 97% 59% 97%
= 98% || 13525 | 1330 992 | 1158 12.1 99% 97% 60% 99%
E det 85% 1743 629 114 360 8.5 77% 69% 48% 98%
E 95% 3290 | 1081 163 361 9.0 84% 75% 52% 99%
g 98% 5059 | 1330 213 365 9.2 88% 80% 53% 99%
sto 85% 1185 629 55 323 29 62% 60% 47% 94%
95% 3123 | 1081 126 342 5.9 79% 71% 52% 98%
98% 4947 | 1330 220 387 7.3 88% 81% 53% | 100%

Table 7.2 — Results for L;
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Table 7.2 and the others presented in Appendix B first show that the best objective values for
the problem are always reach by the (2SA-m) heuristic. Then the deterministic heuristic also
gives good objective values. On the other hand, the objective values returned by the lot-size
and cover-size heuristics are about 10 times greater than the objective values returned by the
(2SA-m) heuristic. Regarding the real inventory, we see that it represents the main part of the
objective value for each heuristic. Naturally, the average cover-sizes for each item are greater for
lot-size and cover-size heuristics than for the deterministic and the (2SA-m) heuristics.

Backorder is strongly linked to fill rate service level. As expected for heuristics with such huge
inventory, lot-size and cover-size heuristics have the best fill rate service level. However, it is
the same for any value of the tested desired service level. On the other hand, deterministic
and (2SA-m) heuristics adapt to the desired service level but they are too optimistic about their
ability to satisfied uncertain demand.

By looking at the values of the backorder cost, we can see that the values computed by method
proposed in Section 7.3.2 are very small. It is especially visible for small desired service level
like B = 85%. Thus, the method to compute the backorder cost is too optimistic and must be
improved. A simple way might be to skew the method. A more sophisticated one might be to
use extensions of the news-vendor problem like the multi-stage extension.

Comparing results between undercapacitated lines (L, to L4) and overcapacitated lines (L5 and
Lg) does not show clear difference on the behaviors of the heuristics. However, we simply see that
the GAP between the different KPI is smaller in undercapacitated case than in overcapacitated
case.

Finally, we recall that the lot-size and cover-size heuristics are used in practice. However, we do
not know every technical detail of the implementation. Thus, the results that can be obtained by
the planners may be slightly better that those we have obtained.
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Deterministic multi-sourcing

8.1 Introduction

8.1.1 Motivations

Deciding which plants should have the ability to produce a (new) item is a long-term decision
that companies have to answer when expanding their product portfolio. Note that several plants
may be able to produce the same item that is why this problem is called multi-sourcing. Because
of their costs and of the time needed to implement them, multi-sourcing decisions cannot be
easily changed. Thus, they have a high impact on competitiveness when deciding production
planning (mid-term decision) and scheduling (short-term decision). One could think that
giving to each plant the ability to produce every item is the safest solution to ensure future high
service level. However, multi-sourcing the production of every item leads to unnecessary high
assignment costs. The challenge is to find a trade-off between assignment cost and demand
satisfaction.

In multi-sourcing problems, we consider a centralized inventory. In practice, this can take
several forms. One consists in many plants located in different places but whose productions go
to a unique warehouse before being sent to the stores. This is the case for one client of Argon
Consulting in the luxury industry. Another one consists in several assembly lines in one big
plants. In this cases, it is the lines which are given the ability to produce an item.

Moreover, logistic costs are not considered in the problem. In practice, in the cases we just
presented, logistic costs are not a big issue compared to multi-sourcing costs. In more complex
cases, deciding the best logistic network relies on many more constraints and due to size of the
problem, it has to be optimized in its own process.

Argon Consulting meets multi-sourcing problems with clients from different industries. Thus,
Argon Consulting aims at getting a versatile model which can be used in many situations and
should be not to too dependent on the industry. We propose a model which captures the essence
of the multi-sourcing problem and which can be easily adapted to particular client cases.

8.1.2 Problem statement

We consider a set P of plants producing a set Z of items over T periods. There is an upper bound
Cp¢ on the total period production of plant p at period ¢ (summed over all items). This upper
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bound is expressed in time unit since it correspond to available working hours.

Giving a plant p the ability to produce an item i has a cost c;,. This cost is paid once and for all
for the whole horizon. When a plant p is able to produce item i, there is an upper (resp. lower)
bound u; ;=0 (resp. ¢ ;t > 0) on the production of item i in plant p at perioq t. The capacity
needed (in time units) to produce one unit of item 7 in plant p in period ¢ is v;ﬂ > 0.

The production and the inventory of item i (summed over all plants) must satisfy a demand d ;
at the end of period ¢. When production of an item i is not used to satisfy the demand, it can be
stored and incurs no cost. For each item i, there is an initial inventory s{) eER,.

The goal is to satisfy the whole demand at minimum cost.

We call this problem the deterministic multi-sourcing problem.

Let’s give some explanations. First, when a company gives a plant p the ability to produce an
item 7, some of them impose that production of item i must not be under some threshold ¢ ;;r at
period ¢. It is often to train the workers and in this particular case, these thresholds are usually
constant and positive during the first periods after assignment and equal to zero during the last
periods. Second, the capacity needed to produce one item may depends on time. It is often the
case when people are involved in production since they become more skilled as time goes by.
Finally, since multi-sourcing is a long-term decision and since deciding inventory levels is a
mid-term decision, comparing assignment costs to holding costs does not make sense. Thus,
we do not consider holding costs although it is easy for an industrial to extend the model we
propose here after by adding a constraint keeping inventory below some threshold.

8.1.3 Main results

We model the deterministic multi-sourcing problem as a mixed integer program in Section 8.3
and prove that deterministic multi-sourcing problem is NP-hard in the strong sense and give
some polynomial cases in Section 8.4.

8.2 Bibliography

Production multi-sourcing can be viewed as a lot-sizing problem on several parallel machines.
Although it is typically a long-term decision and for this reason, uncertainty is often taken into
account, a vast literature exists for the deterministic case. Reviews are proposed by Sethi and
Sethi (1990), Koste and Malhotra (1999) and Stevenson and Spring (2007) even if they deal with
more topics than the only multi-sourcing problem. They are interested in every types of flexibility
whereas we focus our research on mix flexibility (ability to produce different combinations of
products given certain capacity).

As explained by Fiorotto et al. (2018), deterministic settings may appear in real life. For example,
in semi-conductor manufacturing, pharmaceutical production, packing for yogurt or textile
industry, demand is know but machines must be qualified to produce items. They develop a
deterministic lot-sizing problem on multiple parallel machines aiming at minimizing the sum of
setup, production, holding and backlog costs. One main constraint is the maximal flexibility of
the configuration. Their work is based on “chains”, which is a group of products and plants which

82



8.3. Model formulation

are all connected, directly or indirectly, by product assignment decisions. The key idea behind
chaining is that excess capacity can be shifted along the chain and hence decrease amount of
lost sales. They show than “long chains” configurations give results almost as good as complete
flexibility. A previous work by Ignizio (2009) aiming at minimizing the balance between the use
of the machines shows similar results. An extensive study of this chains based on simulations
was made by Muriel et al. (2006).

In previous papers, flexibility is upper bounded and this bound is an input of the model. The
following models address a complete flexibility but the trade-off is made thanks to the different
costs in the objective function. In the model proposed by Rezaei and Davoodi (2008), each
supplier have a part of imperfect items and a trade-off must be found between the revenue of
selling goods and imperfect items and the other costs (like purchase cost or holding cost).

Finally, Snyder et al. (2006) do not directly address a multi-sourcing problem. However, their
work aims at anticipating a disruption in the Supply Chain and controlling bad cases values.
They consider multiple facilities and multiple clients. Each facility has a known probability of
disruption. They aims at minimizing the weighted sum of assignment and reassignment if one
or many disruption occurs.

Our model is very close to the existing models. The main difference is that our model often has
much less parameters and constraints. However, to the best of our knowledge, it is not a special
case of existing models since our minimal production constraint due to assignment decisions is
not considered in the literature.

8.3 Model formulation

In this section, we introduce a mixed integer program which models the deterministic multi-
sourcing problem. We introduce the following decision variables. The quantity of item i pro-
duced at period ¢ by plant p is denoted by q;;t and the inventory at the end of the period is
denoted by si . We also introduce a binary variable y;, which takes the value 1 if plant p is given
the ability to produce item i.

The deterministic multi-sourcing problem can be written as

min Z Z c,igy;, (8.1a)
i€Z peP

stoSsp=si+ ) qy—d, Vte[T), VieT, (8.1b)

peP

> vpidh < Cpi Vie(T), VpeP, (8.1¢)
ieZ
Oyl < Vb, < by, Vie[Tl, VpeP,Viel, (8.1d)
Shr Ayt =0 Vte[T), VpeP,Viel. (8.1e)
v €10,1} VpeP,Viel, (8.19)

Obijective (8.1a) minimizes the assignment costs. Constraint (8.1b) is the inventory balance.
Capacity of each plant is ensured by constraint (8.1c). Constraint (8.1d) is both a “big-M”
constraint and a bound on the production of each item in each plant. Note that without loss of
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generality, we can suppose that ufn < Cp; for each period £, each plant p and each item i.

8.4 NP-completeness

For any fixed values of the cfg s, the deterministic multi-sourcing problem is NP-hard. Moreover,
looking at the special cases which remain NP-hard and at the polynomial cases, we see that the
difficulty of the multi-sourcing problem is due either to the lower bounds ¢ ;)t on production or
to the assignment cost c,"g.

Theorem 25. Deciding if there is a solution of the deterministic multi-sourcing problem is NP-
complete in the strong sense.

Reducing the 3-partition problem to the deterministic multi-sourcing problem, we show that
deciding if the deterministic multi-sourcing problem has a solution is NP-hard in the strong
sense. We remind that the 3-partition problem consists in deciding whether a given multiset
{ay,..., a3} of integers can be partitioned into triples that all have the same sum. This problem is
known to be NP-complete in the strong sense (see Garey and Johnson (1979)) even if % <a;< g
foreach i with B= L ¥y3" g,

Proof. Let{a,,...,asn,} be an instance of the 3-partition problem such that % <a;< g for each
iwith B= % Zf"znl a;. We reduce polynomially this problem to an instance of the deterministic
multi-sourcing problem. We set

T=1 P={,...m}, IT=1{1,...,3m}

i i_ @ '
Vp,l_l’ =%,

i (8.2)
p,1

_ ai i _ _
=5 up'l—prl—l.

Thus, if we have a solution for the 3-partition problem, finding a solution of the deterministic
multi-sourcing problem is straightforward assigning each triple to a plant.

Conversely, if we have a solution of the deterministic multi-sourcing problem, since d{ = % >0
for each item i, each item is assigned to at least one plant (otherwise, solution is infeasible).
Since iprl = i < % =/ ;,1 ensures that there are at most three items per plant, then each plant
produces exactly 3 items. Plants having the same capacity and sum of plant capacities being
equal to sum of demands, each triple has the same sum. Thus, we get a solution of the 3-partition
problem.

The conclusion follows from the fact that the 3-partition problem is NP-complete in the strong
sense even if% <a;< g for each i. O

Theorem 25 prove the strong NP-hardness but the proof requires instances of the deterministic
multi-sourcing problem with many plants and uses the lower bound on production which may
be equal to zero in some real instances. One can ask for simpler cases. Proposition 26 gives
some special cases which remain NP-hard and Proposition 27 gives some polynomial cases.

Proposition 26. The following special cases of the deterministic multi-sourcing problem are
NP-hard:

1. the deterministic multi-sourcing problem without lower bounds on production,
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2. the deterministic multi-sourcing problem with only one period and only two plants.

Proof of Proposition 26 (Item 1). Let{ay,...,as,} be an instance of the 3-partition problem such
that % <a;< g for each i with B = %Z?ﬂ a;. We reduce polynomially this problem to an
instance of the deterministic multi-sourcing problem without lower bounds on production. We
set

T=1 P=1{,...m}, I=A{1,...,3m},

cp=1 di=F, v, =1 £,;=0, u,;=Cp=1 (6.3

Thus, if we have a solution for the 3-partition problem, finding a solution with cost |Z]| of the
deterministic multi-sourcing problem is straightforward assigning each triple to a plant.

Conversely, suppose that we have a solution with cost |Z| of the deterministic multi-sourcing
problem. Since d{ = % > 0 for each item i, each item is assigned to at least one plant (otherwise,
solution is infeasible). Assignment costs being equal to 1 and solution cost being equal to
the number of item, each item is assigned to at most one plant, hence to exactly one plant.
Since iCp'] = }‘ < % = d{ ensures that there are at most three items per plant, then each plant
produces exactly 3 items and we get a collection of m triples. Plants having the same capacity
and sum of plant capacities being equal to sum of demands, each triple has the same sum. Thus,
we get a solution of the 3-partition problem.

The conclusion follows from the fact that the 3-partition problem is NP-complete in the strong
sense even if% <a;< g for each i. O

Reducing the partition problem to the deterministic multi-sourcing problem, we show that
the deterministic multi-sourcing problem with only one period and only two plants remains
NP-hard. We remind that the partition problem is the task of deciding whether a given set of
positive integers can be partitioned into two subsets that have the same sum. This problem is
known to be NP-complete (see Garey and Johnson (1979)).

Proof of Proposition 26 (Item 2). Let {a,,..., a;} be an instance of the partition problem. We
reduce polynomially this problem to an instance of the deterministic multi-sourcing problem.
We set

T=1 P={1,2}, I={1,...,m}

i _ i _2a i — i — i —C =
¢, =1, dl_ZE’illai’ V=1 £,,=0, u, =Cp=1

(8.4)

Thus, if we have a solution for the partition problem, finding a solution with cost |Z]| of the
deterministic multi-sourcing problem is straightforward.

Conversely, if we have a solution with cost |Z| of the deterministic multi-sourcing problem,
positivity of the a; ensures that each item is assigned to at least one plant. Cost of the solution
being equal to |Z], each item is assigned to exactly one plant. Plants having the same capacity and
sum of plant capacities being equal to sum of demands, each subset define by the assignment
has the same sum. Thus, we get a solution of the partition problem.

The conclusion follows from the fact that the partition problem is NP-complete. O

We now gives the polynomial cases.

85



Chapter 8. Deterministic multi-sourcing

Proposition 27. The following special cases of the deterministic multi-sourcing problem are
polynomial:

1. deterministic multi-sourcing problem with a single plant (P = {1}),

2. deterministic multi-sourcing problem without lower bound on production and without
assignment cost (f;g[ =0and c;, =0),

3. deterministic multi-sourcing problem with infinite capacities (u;)t = Cpr = +00).

Proof. Case 1: deterministic multi-sourcing problem with a single plant.
For each item i, we set

(8.5)

; | lifthere exists t € [T] such that df >0,
Y17 0 otherwise.

Then, we solve the resulting linear program to get an optimal solution of the deterministic
multi-sourcing problem. (It may return that the problem is infeasible.)

Case 2: deterministic multi-sourcing problem without lower bound on production and without
assignment cost.

For each plant p and each item i, we set y,f, = 1. These decisions do not affect the cost in the
objective function and do not lead to infeasibility since they relax the constraints on inventory
and production variables. Then, we solve the resulting linear program to get a feasible solution
of the deterministic multi-sourcing problem. (It may return that the problem is infeasible.)

Case 3: deterministic multi-sourcing problem with infinite capacity.

For each item i we choose a plant p(i) among argmin ,cp (c,"g). Then, we set

i:{ Lif p=p(@), 8.6)

Ip 0 otherwise.

Then, we solve the resulting linear program to get an optimal solution of the deterministic
multi-sourcing problem. (It may return that the problem is infeasible.) O
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Stochastic multi-sourcing

9.1 Introduction

9.1.1 Motivations

In Chapter 8, data are deterministic. In practice, part of data is uncertain. Indeed, multi-sourcing
decisions are long-term decisions and it is unlikely that forecast demand is perfectly accurate.
As for production planning decisions, uncertainty may come from efficiency of machines (and
affect time needed for the production of one item), capacities (due to breakdown, strike) or
any other part of the supply chain like the procurement of raw materials. For multi-sourcing
decisions, Argon Consulting has identified uncertainty on forecast demand as the main issue for
its clients. Since the multi-sourcing problem addresses the question of flexibility (see Chapter 2),
the relevant uncertainty comes from variation in the product mix and neither from variations of
the global volume of demand nor from other sources.

Dealing with uncertainty leads to consider possible unsatisfied demand. Methods to face un-
certainty goes from the most conservative, which does not allow stock-out in any outcome,
to methods controlling stock-out probability, stock-out quantity or other relevant indicators.
Discussions with Argon Consulting raise two characteristics of unsatisfied demand. First, multi-
sourcing decisions should lead to “high long term service level”. Indeed, multi-sourcing deci-
sions take time to be implemented. Thus, service level on the first periods can be low due to
augmentation of capabilities and should be less relevant than service level in steady state. The
measure used for service level should not be too sensitive to sparse failure at the beginning. Sec-
ond, worst cases must be “not too bad”. Multi-sourcing decisions are long-term decisions which
impact the company competitiveness for long periods since they cannot be easily changed.
Thus, while remaining not too expensive, multi-sourcing decisions should be efficient enough
to control the loss when bad outcomes occur.

9.1.2 Problem statement

For the sake of completeness, we present the problem in full details but it is very close to the
deterministic one. We consider a set P of plants producing a set Z of items over T periods. There
is an upper bound C,; on the total period production of plant p at period ¢ (summed over all
items). This upper bound is expressed in time units since it correspond to available working
hours.
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Giving a plant p the ability to produce an item i has a cost C;' This cost is paid once and for all
for the whole horizon. When a plant p is able to produce item i, there is an upper (resp. lower)
bound u; ;=0 (resp. ¢ ; ; = 0) on the production of item i in plant p at period . The capacity
i

pe > 0. For each

needed (in time units) to produce one unit of item i in plant p in period ¢ is v
item i, the average value of v; , over plants and periods is denoted vl

The production must satisfy a random demand as well as possible. However, because of un-
certainty, backorder (i.e., late delivery) is allowed. We introduce a parameter § € (0,1) which
controls the part of demand delivered on time. It first defines the proportion of cases for
which demand has to be satisfied. Second, in the remaining cases (i.e., the “worst cases”), the
expectation of the sum of inventory and backorder must be nonnegative.

The demand of item i over period ¢ is a random parameter df , whose realization is known at the
end of period ¢. When production of an item i (summed over all plants) is not used to satisfy the
demand, it can be stored and incurs no cost. For each item i, there is an initial inventory sé eER,.

Regarding randomness, we assume that for any i and ¢, realizations of (df, cee d;) have finite
expectation and can be efficiently sampled, knowing a realization of (dlj eens d{_l) jez. Multi-
sourcing decisions are made before knowing any realizations of the demand. Production de-
cisions can be made at the beginning of each period knowing past realizations of the demand.
This kind of formulation is called multi-stage.

The goal is to satisfy the service level constraint at minimum cost.

We call this problem the stochastic multi-sourcing problem.

9.1.3 Main results

We propose a model for the stochastic multi-sourcing problem in Section 9.3 using the Average-
Value-at-Risk denoted by the acronym AV@R. In Section 9.4, we develop a method to solve it by
linearizing the AV@R, and a heuristic to speed up the resolution on big dataset. In Section 9.5,
we discuss the choices we made to model the uncertainty.

9.2 Bibliography

Deciding multi-sourcing is a long term decision and often comes with stochastic considerations.
An extensive review is proposed by Yao and Minner (2017).

A seminal model about stochastic multi-sourcing is given by Jordan and Graves (1995). In
automotive industry, they aim at deciding which plant (or which line) should have the ability to
produce each item. This is a single-period model which aims at minimizing the shortfall subject
to limited flexibility. As in the deterministic case, they conclude that a long chain configuration
enables to have results almost as good as a complete flexibility. A similar model is proposed by
Tomlin and Wang (2005) that consider risk-neutral and risk averse objectives. In order to deal
with more complicated cases (multi-item and multi-market), Garavelli (2003) uses simulations
to quantify impact of flexibility configurations. Again, a limited flexibility seems sufficient to
achieve very good results.

One goal of stochastic multi-sourcing is to deal with risk. In literature, production, ordering or
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multi-sourcing problems taking risk into account are often single-item problems. Risk aversion
extension of the news-vendor problem was extensively studied (see Agrawal and Seshadri (2000)
and Choi and Ruszczynski (2008)). More recently, Arikan and Fichtinger (2017) propose a
classification of existing extensions (included those with AV@R). Ahmed et al. (2007) are one
of the rare authors using coherent risk measure for a multi-period inventory problem. Their
objective is to minimize a risk averse function (like AV@R) instead of a risk neutral function (like
expectation). However, these are production decisions and not multi-sourcing decisions.

A single-item single-period multi-sourcing problem is also addressed in Meena et al. (2011).
In this paper, each supplier has a different rate of failure (i.e., to produce nothing) but de-
mand is equally divided between suppliers. They studied different cases and in particular, the
minimization of the expected total cost for a pre-determined service level.

9.3 Model formulation

To model the constraint on the backorder, we first introduce the Average-Value-at-Risk and then
present the model. Choices made to model the risk will be discussed in Section 9.5.

9.3.1 Average-Value-at-Risk

In order to measure and control the service level, we use the Average-Value-at-Risk (AV@R)
which is a widely studied coherent risk measure (see for example Artzner et al. (1999) and
Rockafellar and Uryasev (2000, 2002)) and chose the definition given in Féllmer and Schied
(2004). In financial context, risk measures are used to quantify the risk of a position.

Fix some level A € (0,1). For a random variable X : Q — R, its Value-at-Risk at level A is defined
as
V@R, (X) =inf{m e R|P{X + m <0} <A} 9.1)

For the inventory, V@R, _g (s) might correspond to the safety stock in the case of a cycle service
level 8. More precisely, adding this quantity to the inventory keeps the probability of a stock-out
below 1 — B. The main drawback of the Value-at-Risk is that it only controls the probability of a
stock-out and not its size. Thus, we use the following coherent risk measure defined from the
Value-at-Risk.

Fix some level A € (0,1). For arandom variable X : Q — R, its Average-Value-at-Risk at level A is
defined as

A
AV@R, (X) = % f V@R, (X)dy. 9.2)
0

For the inventory, AV@R;_g (s) looks like the safety stock in the case of a fill rate service level f.
More precisely, AV@R;_g (s) < 0 means that the average of safety stocks needed to ensure cycle
service level from f to 1 is negative (i.e., no safety stocks is required).

Figure 9.1 represents the Value-at-Risk and the Average-Value-at-Risk in the case of a Gaussian
distribution of the stock s!.
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density of s’

—V@Rsg, (s) = g2y, (s) = inf{m e R|P [s] < m] >5%}.

i
t

S

—AV@Rs5g, (si) = “Mean over the 5% worst cases”

Figure 9.1 — Example of risk measures for the inventory

9.3.2 Model

In order to solve the stochastic multi-sourcing problem, we introduce the following decision
variables. The quantity of item i produced at period t by plant p is denoted by q,’;t and the
inventory at the end of the period is denoted by s; . We also introduce a binary variable y;] which
takes the value 1 if plant p is given the ability to produce item i. All these variables are random
and may depend on the past realizations of the random demand (df, e d{_l) jeT-

We model the stochastic multi-sourcing problem as

min Z Z c;y;; (9.3a)
i€Z peP

stosi=s;_,+ ) qy—d, Yiel[T], Viel, (9.3b)

peP

> vhidh < Cpi Vte(T), VpeP, 9.3¢)
ieZ
(;ty;;g v;;tq,igtgufgtyli, Vtel[T]l, VpeP,Viel, (9.3d)
AV@R,_4(s] <0 Vie[T), VieT, 9.3¢)
yhei0,1} VpeP, Viel, (9.3f)
q,’;t is a((dli,..., f_l)iez)—measurable Vte[T], VpeP, Viel. (9.3g)

Objective (9.3a) still minimizes the assignment costs. Constraints (9.3b), (9.3c), (9.3d) have the
same meaning than their deterministic counterpart (8.1b), (8.1c) and (8.1d). Constraint (9.3e)
enables to control the service level using Average-Value-at-Risk. Last constraint (9.3g) of the
program, written as a measurability constraint, means that the values of the variables q;t can
only depend on the values taken by the demand before time ¢ (the decision maker does not know
the future). Every constraint of the problem, except the Average-Value-at-Risk constraint (9.3e),
holds almost surely.

9.4 Solving method and theoretical results

Due to the obvious hardness of program (9.3), we turn to an approximate method.
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9.4.1 Linearization of Average-Value-at-Risk

Linearization of AV@R constraint can be efficiently achieved in case of a finite probability space
Q. Lemma 28, based on results by Rockafellar and Uryasev (2000), gives the complete definition
of the polyhedron defined by AV@R constraint in case of a finite probability space.

Lemma 28. Consider a random variable X taking its values in a finite set {X,,: w € Q} with
probability {p,: v € Q}. For A € (0,1), the inequality AV@R, (X) < 0 holds if and only if the
following polyhedron is nonempty:

1
1]

prawgﬂtp and aw>p—wa0rallw€Q}.

weQ)

{(a,,u)c—:ﬂ%f}xl]%

Proof. We have the following equalities.

1
AV@R; (X) = inf (E[(-x)"| - 2u) (9.4a)
_1. X))
=7 ,thlelé (w%;’) pw(,u Xw) /1/.1) (9.4b)

Equality (9.4a) is given by Follmer and Schied (2004, Proposition 4.37). Equality (9.4b) holds
because the space probability Q is finite. Since Q is finite, AV@R, (X) < 0 is equivalent to the
existence of a u € R such that

1
;( Y polp—Xo)" - Mt) <0, (9.5)
weQ

which in turn is equivalent to the existence of (a, u) € Rf} x R such that

1
Z “aul<
1 ( Z PoQw AH) <0, 9.6)

weQ)

ay =2 pu—Xy YweQ.

9.4.2 Solving method

As shown in Section 8.4, the deterministic multi-sourcing problem is hard. Therefore, we
cannot expect a quick algorithm solving exactly the problem, and this holds especially for the
full stochastic version. Like stochastic production planning problems (see Part II), stochastic
multi-sourcing problems are hard to solve.

We use the same approximation method than for solving Stochastic CLSP-BS (see Section 6.4.1).
We propose a two-stage approximation consisting in replacing the measurability constraint (9.3g)

by
q;t is U((dli,...,d})id)—measurable Vte[T],Viel 9.7)

which provides a relaxation of the initial program: the assignment decisions can still not depend
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on the future, but now the production decisions depend on the future demand. (Relaxing the
measurability constraint means that once the y’r7 has been chosen, the demand over the whole
horizon is supposed to be revealed.) We denote this relaxation by (2SA).

This approximation is a two-stage approximation as we distinguish between two levels of infor-
mation over the uncertainty: assignment decisions are the first stage variables, while all other
decisions are second stage variables.

The (2SA) relaxation is then solved by a classical sample average approximation (see Kleywegt
etal. (2002) for a presentation of the method). We build a set Q of m scenarios sampled uniformly
at random. Each of these scenarios is a possible realization of (d i d;) for each item i. The
parameter m is fixed prior to the resolution.

In order to linearize AV@R constraint (9.3e), we introduce for each period ¢ and each item i
auxiliary variables p € R and (a’;’ ), € RS Thanks to Lemma 28, we get the following mixed
integer program (2SA-m).

min ) Y ¢,y (9.82)
i€Z peP

St Ste=Si1wt X Ghrw—diy VYweQ, Vte[T], VieT, (9.8b)

peP
> Vpilpiw < Cpt VweQ, Vie[T], VpeP, 9.8¢)
i€l
Oy S Ve < UbyVh YweQ, Vte[T], VpeP,VieT, (9.8d)
1 . .

— > a;, <(0-P Vte[T], Viel, 9.8¢)
|Q| we) '
al,>ph-st, YoeQ, Yte[T), VieZ, (9.8f)
Tyt Xy =0 YoeQ, Yte[T), VieZ, (9.8g)
ypei0,1 VpeP,Viel. (9.8h)

This mixed-integer program can be solved by any linear solver for small datasets but needs
heuristics or decomposition methods for big datasets.

9.4.3 Heuristic to solve mixed integer program (9.8)

When working on big datasets, LP solvers are unable to find feasible solutions (see Section 10.3).
Thus, we propose a simple heuristic to find a solution in reasonable time.

As explained in Chapter 2, randomness comes from the variations of product mix and not from
the global volume which is assumed to be constant. The basic idea of the heuristic is to scale
the demand of every item at every period with a factor a > 1 and to solve the deterministic
version (8.1) obtained with this demand. We obtain an assignment ( j/,i,) p,i- By binary search,
we look for a small a in order to minimize the assignment costs but large enough so that
Problem (9.8) with the assignment (}7;,) p,i fixed is feasible.

The details of the heuristic are given by Algorithm 2. It has two parameters:

* N, which is the number of iterations of the binary search,
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* 7, which is the time limit to solve the Problem (8.1) with its demand scaled by a.

Algorithm 2: Heuristic to solve mixed integer program (9.8)

Input: Sets Z, P and Q,.parameters c;;, v;',t, Cpt Z;t, u;,t and f, and demand df,w
Output: Assignment (y,,) p,i
Parameters: N, 7

forpe’PandieZ do y,‘; =1 // current assignment
cost:=+oo // cost of current assignment
forte[TlandieZ do di:= ﬁzweg dl, // average demand
W= ZieIZthl vid}'. // cumulative sum of working hours
C:=YpepXi_i Cpr. // cumulative capacity of plants

if C < W then
‘ Return assignment ( y;,) pi
end

Binary searchon a € [1, & | with N iterations
forte[Tlandie€Z do d;:=ad; // demand in Problem (8.1)
Solve Problem (8.1) with a time limit 7
if Problem (8.1) is infeasible then
‘ Decrease a
else
( )7,"0) p,i := solution of Problem (8.1)
new_cost := cost of assignment (y;?)p,,-
Solve Program (9.8) with assignment ( 37;,) p,i fixed
if Program (9.8) with assignment ( }7;;) p,i is infeasible then
‘ Increase a
else
if new_cost < cost then
V)i = Fp,i
cost:=new_cost

end
Decrease a
end
end
end

Return assignment ( y,’;) p.i

The rational idea of the heuristic is the following. Solving Problem (8.1) with a higher demand
enables to find a multi-sourcing which faces an augmentation of the demand of every item. In
practice, it is too conservative since not every demand can increase in the same scenario (the
cumulative sum of working hours is constant). For the binary search, the upper bound on « is
chosen equal % where W is the cumulative sum of working hours which is assumed constant
over every scenarios and C is the cumulative capacity of plants over periods. Scaling the demand
by % gives a model where capacity is almost equal to working hours needed to satisfy demand.
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Thus, every « greater than % is unlikely to produce a feasible program. The lower bound on « is

chosen equal to 1. If we cannot satisfy the demand in the case where it is equal to its average on
scenarios, then program (9.8) is likely to be infeasible.

A binary search algorithm on « is justified by the following proposition.

Proposition 29. Denote by (P,) the Problem (8.1) with its demand scaled by a.. Let ay and a, be
two positive real numbers such that a1 < az. Then, the optimal value of (Py,) is lower than or
equal to the optimal value of (Py).

Proof. Let a; and a; be two positive real numbers such that a; < ay. If (Pg,) is feasible, it has
an optimal solution ( y;, *) p,i» which is also a solution of program (P,,) and has the same cost. [

In Algorithm 2, the condition comparing the value of current multi-sourcing to the value of
the new one is necessary in the case where the solver has not enough time to find the optimal
solution of program (P). That is why, finding the smallest a such that (Pg) is feasible and such
that Problem (9.8) with assignment equal to the optimal solution of (P,) is feasible gives the
best assignment that the heuristic can return.

We end this section with limits on Algorithm 2. The algorithm may not find a feasible solution
even if the problem is feasible. Indeed, in general, the set of a such that (P,) is feasible and such
that problem (9.8) with fixed assignment equal to the optimal solution of (P,) is not an interval.

Consider the following example. We have two items, two plants with capacities C; = 100 and
C, =55, one period, and two scenarios with same probability. The parameter f is chosen equal
to 100% preventing from any stock-out. The other parameters of the multi-sourcing problem
are given in Table 9.1.

plant1 plant2 scenariol scenario 2 V;M =1
item 1 1 20 item 1 60 40 ¢ ;),1 =0
item 2 1 10 item 2 40 60 w, | =100
(a) Assignment costs c,’;, (b) Demand d{ © (c) Other parameters

Table 9.1 — Parameters of the counterexample

As shown in Table 9.2, program (P,) is feasible for a € {1,1.1,1.2}. However, if Problem (9.8)
with the optimal assignments of (P;) and of (P ») is feasible, it is infeasible with the optimal
assignments of (Pj ).

9.4.4 Bender decomposition

Formulation (9.8) has a structure which fit with Bender decomposition. We refer to Birge and
Louveaux (2011, Chapter 5) for a presentation of the method. Indeed, introducing the vector z
of first-step variables (assignment variables ( y;,) p,i and auxiliary variables (,ui) 1,;) and for each
scenario w, the vector w,, of second-step variables (inventory variables (s;w) 1,i,w» Production
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Optimal assignment of (Py) Cost Feasible MIP (9.8)
plant1 plant2
a=1 item 1 1 0 2 true
item 2 1 0
plant1 plant2
a=1.1 item 1 1 0 11 false
item 2 0 1
plant1 plant2
a=1.2 item 1 1 0 12 true
item 2 1 1

Table 9.2 - Solutions returned by an iteration of Algorithm 2 for a € {1,1.1,1.2}

variables (q;, t,w) p,t,i and auxiliary variables (a?w) 1,i,w>» We get the following program

min f(z) (9.9a)
s.t. Alz,u)=a YweQ, (9.9b)
Tz+Wug, = hy YweQ, (9.90)

z€ Z, (9.9d)

where constraint (9.9b) is the coupling constraint (9.8e), constraint (9.9¢) regroups constraints (9.8b),
(9.8¢), (9.8d), (9.8f) and (9.8g) and Z is binary constraint on part of first-step variables. Thus,
the constraints have the following block structure.

A

T W ©

T w (9.10)
T © w

We did not try to implement this method, but it might be a promising way to speed up the
resolution of formulation (9.8).

9.5 Discussion on expectation, robust, probabilistic and Average-Value-
at-Risk constraints

As explained in Section 9.1.1, multi-sourcing decisions must lead to “high long term service level”
and to good controls on “worst cases”. These constrains are ill-defined. Many way of modeling
them are possible. We chose to use the Average-Value-at-Risk. In this section, we compare its
pros and cons to the ones of expectation, robust and probabilistic constraints.

In the case of multi-sourcing problems, these three constraints are defined as follows. For each
item i and each period t, the expectation constraint on the inventory s;' is written as “E [s;] =07
the probabilistic constraint as “P [s! > 0] > §” and the robust constraint as “si > 0, almost
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surely”. We consider the most rough version of robustness. Note moreover that this robust
constraint coincide with the extreme cases of probabilistic and AV@R constraints with = 1.

9.5.1 Small example

To illustrate discussions about the different constraints, we propose the following example.
Consider a company producing a single item for one period. Consider that the company
may open up to 4 identical plants to produce the item and when it opens one, it must use its
full capacity which is equal to 100. The random demand for the item is uniformly drawn in
{50,100,200,250,350} and the parameter § to control the service level is equal to 60%. Opening
a plant (i.e., assigning the item to a plant) has a unit cost. The parameters of the multi-sourcing
problem are then set as follow

T=1 P={1,...,4}, I={1}, dli~Z/I{50,100,200,250,350}, p=60%,

cl =1, ! 1, ¢! .= u;%l = Cp,1 = 100.

_ (9.11)
P Up1= pl

Since the plants are identical, we simply use the number 7 of open plants as a decision variable
and denote by s the inventory at the end of the period. Table 9.3 gives the values of the left part
of each constraint depending on the number of open plants. Orange values correspond to cases
where the constraint is satisfied. The two last lines correspond to the expected fill rate service

level
1 min(d, 100n)
X —

= (9.12)
de150,100,200,250,350} © d
and to the expected number of lost sales
1
— max (d — 1007, 0) (9.13)
de{50,100,200,250,350}
depending on the number # of open plants.
Number 7 of open plants 0 1 2 3 4
E[s!] -190 -90
P[si>0] 0% 40%
AV@R;_g(s) 300 200 100
s; > 0, almost surely false false false false
Expected fill rate service level 0% 64% 87% 97% 100%
Expected number of lost sales 190 100 40 10 0

Table 9.3 — Indicator values depending the number of open plants

To satisfy expectation or probabilistic constraints, the company must open at least 2 plants. To
satisfy AV@R constraint, the company must open at least 3 plants. To satisfy robust constraint,
the company must open at least 4 plants. As expected by the theory, robust constraint is more
conservative than AV@R which is more conservative than probabilistic constraint.
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9.5.2 Discussion

Table 9.4 summarizes the comparison between the expectation, robust, probabilistic and
Average-Value-at-Risk constraints. We do not pretend to state general truth but rather gen-
eral trend on common cases. (+) means that the constraint formulation satisfies the property, &
means that the constraint formulation has difficulties to satisfy the property and ~ means that
the constraint formulation is between these two extremes.

Properties Constraints
AV@R Expectation Robust Probabilistic

Easy linearization )

Easy interpretation ~ )

Control proportion of worst cases © ©

Control value of worst cases S S
Control increase of objective function © )

Few feasibility issues ~ ©) ~
Computational complexity ~ S

Table 9.4 — Comparison of constraint properties

We propose seven criteria to compare the constraints. First, the ease to linearize the constraint
may be a good property of a formulation since it enable to use linear programming. Expectation
constraint is already linear making it easy to use. On the other hand, probabilistic constraint
may be hard to linearize since it may not be convex and thus may require additional binary
variables. Robust and AV@R constraints are convex. Then, using scenarios often enables to get
linear formulations of robust constraints of reasonable size and as shown in Section 9.4.1, AV@R
can also be linearized.

Interpretation of robust and probabilistic constraints are quite easy. Robust constraint, in its
vanilla form, consists in satisfying the constraint in every possible outcome. In multi-sourcing,
demand distribution is bounded. Thus satisfying the robust constraint consists in having enough
stock to satisfy the highest possible demand. Probabilistic constraint at level % consists in
satisfying the constraint in f% of the cases. In multi-sourcing, this means that in % of the
cases, stock is high enough to satisfy the demand but in the remaining cases demand can as
well be fully, partially or not satisfied at all. It perfectly matches with the cycle service level.
Even though expectation constraint seems easy to interpret, in practice, knowing the behavior
of the mean does not give much information on the behavior of the outcomes. For example,
if the demand has an all-or-nothing distribution, expectation is far from any outcome. More
generally, as soon as variance of distribution is high, it is hard to interpret from expectation
behavior. Understanding AV@R constraint at level 1% is not straightforward. However, it means
that (100 — 1)% of the cases satisfies the constraint and that the mean over the remaining cases
also satisfies the constraint. Thus, it includes the interpretations of a probabilistic constraint at
(100 - 1)% and of an expectation constraint on the bad cases. If there are not too many bad cases
(i.e., if A is small), we might expect a small variance in their distribution (while nothing ensure
it). Note that, for a same level, AV@R constraint is more strict than the probabilistic constraint
since AV@R constraint implies that the probabilistic constraint is satisfied (see Rockafellar and
Uryasev (2000, 2002)).

97



Chapter 9. Stochastic multi-sourcing

Thus, we easily see that the AV@R constraint enables to control the proportion of bad cases and
their value. On the other extreme, expectation constraint does not control any of them. Being
very conservative, the robust constraint does not enable to control the proportion of bad case:
you must cover every outcome but it ensures that every outcome value satisfies the constraint.
On the other hand, the probabilistic constraint enables to choose the proportion of worst cases
but it is done at costs of control on their value.

Another advantage of the AV@R and probabilistic constraints is the possibility to choose the
level of conservativeness. Indeed, the company can easily see the price implied by the service
level constraint and possibly relax partially this constraint with a single parameter. On the other
hand, there is no way to control the level of risk acceptance with the robust and expectation
constraints.

Feasibility issues of each of these constraints are directly linked to their levels of conservativeness.
The robust constraint is the most conservative and a single very bad outcome lead to an infeasible
model. At the other extreme, the expectation constraint is much easier to satisfy. Choice of the
type of constraints for this criterion is strongly related to the distribution of the random variable.

Finally, as expected, the flexibility offered by the AV@R and probabilistic constraints leads to
computational complexity. On the other hand, the expectation and robust constraints are often
easier to deal with.

We choose AV@R constraint because of its linearization properties. Moreover, as wanted by
Argon Consulting, AV@R enables to control the acceptable proportion of bad cases and their
values. For Argon Consulting, the real issue remains the computational complexity.
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We test our method on datasets from Argon Consulting’s clients. Moreover, we compare the
multi-sourcing currently in use by the client to the multi-sourcing computed from our method.
In addition to comparing their cost, several Key Performance Indicators (KPI) will be used as the
service level (fill rate and cycle), the proportion of multi-sourced items, etc.

10.1 Simulation

Simulation is based on real datasets from Argon Consulting’s clients. We first retrieve the
historical data and the current multi-sourcing to establish a comparison point.

First, we define plants data (capacities, internal production times, eligibility or not to be given
the ability to produce items) and a forecast demand which is a function of the current period
and of the past outcomes. Then, we construct our model defined in Chapter 9. Finally, we solve
it and get a multi-sourcing decision.

The question of whether this solution is feasible or not (i.e., satisfies th AV@R constraint) remains
open, since, due to dataset sizes, the number of scenarios is small (100 in our experiments). In
order to show the validity of the obtained assignment, we fix it and compute Problem (9.8) with
alarger number of scenarios (typically 10000). This problem is a big linear program but has no
integer variables. If the solver succeeds in finding a feasible solution, it is likely that the AV@R
constraint is satisfied and we then compute other KPI’s like the fill rate or the cycle service level,
or the multi-sourcing level. If the solver proves the problem is infeasible, it is likely that the
AV@R constraint is not satisfied and that the assignment is infeasible. Finally, no conclusion
can be drawn if time limit is reached before finding a solution.

10.2 Instances
10.2.1 Datasets

We use two instances provided by Argon Consulting’s clients: Mel and Lux.

The Mel dataset is a toy problem. It is a simplified dataset created by a client to enable the
students from Ecole des Ponts to train and propose new approaches to multi-sourcing.

The Lux dataset comes from the luxury industry. In the original dataset, there were 500 different
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items. However, we keep only 100 items of Lux dataset, which represent 80% of the production
(and of the sales). Due to limited computational resources, the client prefers that the 400 items
excluded from Lux dataset be mono-sourced to concentrate our effort on potential multi-sourced
items.

Table 10.1 summarizes the characteristics of the two instances used for tests.

Instances characteristics Instances
Mel Lux
Number of plants |P| 4 27
Number of items |Z| 11 100
Number of time steps T 3 6
Historical demand d_§ 4884 - 19959 0 - 16996
Capacity of plants Cp 6156 - 28969 2213 - 43416
Capacity for an item ufg 1539 - 7242 721 - 12753
Internal production time v;ﬂ 0.4 - 1.1 0.4 - 9.0
Assignment cost cf, 8392 - 82196 3516 - 62234

Table 10.1 — Instance characteristics

The parameter 3, which controls the service level is chosen in {70%, 85%, 95%}. The number m
of scenarios used to solve (2SA-m) is fixed to 100 due to tractability restrictions. The time limit to
return a solution has been set to 20 minutes because the client wants to try several service levels.
Thus, the parameters for the heuristic defined in Section 9.4.3 are N = 10 and 7 = 120 seconds.

10.2.2 Demand distribution

As explained in Chapter 2, we study the ability to face variations of the product mix and assume
that we already know the cumulative working hours of production ¥.7_, ¥ ;.7 v'd_.

We generate randomness from historical data using “expanded Dirichlet” distributions as in
Chapter 7. But this time, we assume that (vid;) follows an “expanded Dirichlet” distribution.
We refer to Section 7.3.2 for the properties of this distribution and to Algorithm 1 to sample it.

The parameters of the “expanded Dirichlet” distribution used to generate the working hours of
production are computed from the historical forecast demand and v is set equal to

Zleziez\/pfg—l
Pt

v — .
Z;:l ZieI(pT? - 1)
Pi

(10.1)

The parameter y is defined from another parameter v which we call volatility and which rep-
resents the ratio between standard deviation and expectation of a random variable. It can be
easily interpreted. Justification of such a choice for y can be found in Appendix A.3.

As in Chapter 7, results may depend on the number of generated scenarios. If we had the time to
implement method of Section 7.4, we would like to apply the same scheme, that is:

* use Algorithm 1 to generate a sample of M scenarios,
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¢ initialize K with m =100,
* use K-means algorithm to classify the M scenarios into m clusters.

Then, our set Q of representative scenarios used in Equation (9.8) would be composed of the
prototype of each cluster, with a probability equal to the number of scenarios in its cluster
divided by M.

10.3 Numerical results

C++11 has been chosen for the implementations and Gurobi 6.5.1 Gurobi Optimization, LLC
(2018) was used to solve the model on a PC with 32 processor Intel® Xeon™ E5-2667 @ 3.30GHz
and 192Go RAM.

There are two ways of measuring the KPI’s. First, they can be measured in-sample (i.e., with
the m = 100 scenarios used to decide multi-sourcing). In this case, the obtained solution of
Problem (9.8) is used to compute the KPI as if it stood for the whole possible realizations of the
randomness. On the other hand, they can be measured out-of-sample. We generate m = 10000
new realizations of the demand. Then, we solve Problem (9.8) with the assignment obtained
from this optimization and these m new realizations of the demand.

Simulation results for Mel dataset with a frontal resolution with a solver are given in Table 10.2
and with the use of the Algorithm 2 in Table 10.3. Simulation results for Lux dataset with the use
of the Algorithm 2 are in Table 10.4.

The inputs are decomposed as follows. The parameter f is the value used to control the desired
service level, i.e., the risk level used in the AV@R constraint. The volatility v is the value used in
the “expanded Dirichlet” distribution that generates the random realizations of the demand (see
Section 10.2.2).

The outputs are decomposed as follows. The row Solver Objective (resp. Heuristic Objective) gives
the assignment costs returned by the solver (resp. the heuristic) at the end of the time allowed
to find a solution. This is the objective (9.8a) and it is expressed in k€. The row Multi-sourcing
gives the percentage of multi-sourced families (i.e., families produced on two plants or more)
and the row Multi-sourcing (max) gives the maximal number of plants producing one item.

The row P [s > 0] measures in-sample the probability (in %) that inventory of a random item at a
random time is positive.

1

T
Pls>0=—— Ty (10.2)
2O T ) 5 2 e

The rows GAP, Solver LB Cont. relax., and Time for bound are measured in-sample. The row GAP
is the gap (in %) between the objective value and the best known lower bound on the problem.
The row Solver LBis the lower bound (in k€) found by the solver when the solver is frontally used
to solve Problem (9.8). The row Cont. relax. is the value (in k€) of the continuous relaxation of
Problem (9.8). The row Time for bound is the time (in seconds) needed to get the bound written
on the previous row of the table.

The row Feasibility says whether Problem (9.8) with the fixed obtained assignment and m =

101



Chapter 10. Numerical experiments

10000 scenarios is feasible (Yes), infeasible (No), or whether time limit was reached Limit).
The rows Cycle service level and Fill rate service level are measured out-of-sample. They are

computed using Equation (7.12) and Equation (7.13) by replacing w'’ by

Ul

Yjer V)

wi

(10.3)

In this case, the item are weighted by their internal production time. These two KPI’s are averaged
over the m = 10000 scenarios and are expressed in %.

The row Evaluation time gives the time (in seconds) needed to solve Problem (9.8) with the fixed
obtained assignment and m = 10000 scenarios. The time limit of the solver is set equal to 24
hours.

B Volatility v Output
1% 5% 10% 30% 50% 80%
70% 953 967 1011 1034 1134 1381 Solver Objective
45.5 54.5 54.5 63.6 100.0 72.7 Multi-sourcing
2 2 3 3 4 3 Multi-sourcing (max)
93.8 93.5 93.3 91.2 90.1 91.4 P[s>=0]
Yes |  Yes | Yes | Yes| No | Yes | ] Feasibility =~
71.2 74.4 73.4 78.2 - 82.8 Cycle service level
90.5 96.0 94.8 94.1 - 92.4 Fill rate service level
22 28 86 34 61 38 Evaluation time
85% 957 957 1000 1087 1188 o) Solver Objective
54.5 54.5 54.5 72.7 63.6 - Multi-sourcing
3 2 2 3 3 - Multi-sourcing (max)
98.5 98.1 97.6 96.5 95.9 - P[s > 0]
175 150 181 177 | 113 - GaP
790 813 819 895 1054 - Solver LB
1200 1200 1200 1200 1200 - Time for bound
S Yes | Yes | Yes | Yes | Yes | - | Feasibility =~
75.1 67.6 61.9 80.4 - - Cycle service level
94.1 94.2 94.3 95.3 - - Fill rate service level
17 21 40 25 43 - Evaluation time
95% 954 956 997 1173 1371 00 Solver Objective
54.5 54.5 72.7 72.7 81.8 - Multi-sourcing
3 3 2 3 3 - Multi-sourcing (max)
99.6 99.6 99.3 99.0 99.0 - P[s>0]
Yes |  Yes | Yes | No| No| - Feasibility =~
72.1 76.6 inf. - - - Cycle service level
95.5 95.6 inf. - - - Fill rate service level
16 18 1204 863 1880 - Evaluation time

Table 10.2 — Results for Mel dataset (frontally solved with the solver)

102



10.4. Discussion

B Volatility v Output
1% 5% 10% 30% 50% 80%
70% 1152 1176 1156 1136 1541 1640 Heuristic Objective
90.9 100.0 100.0 100.0 100.0 100.0 Multi-sourcing
4 3 4 4 4 4 Multi-sourcing (max)
95.5 93.8 92.7 89.7 88.8 90.1 Ps>0]
CYes | Yes | Yes | Yes | Yes | Yes |  Feasibility =~
83.6 83.4 72.1 82.7 88.7 85.3 Cycle service level
96.5 97.5 96.2 95.9 96.6 94.0 Fill rate service level
77 25 40 29 32 36 Evaluation time
85% 1152 1134 1146 1112 1230 00 Heuristic Objective
90.9 81.8 81.8 63.6 81.8 100.0 Multi-sourcing
4 4 4 3 4 4 Multi-sourcing (max)
97.7 97.2 96.6 96.2 95.7 - P[s>0]
314 | 283 285 | 195 | 143 - GaP
673 707 686 797 900 1144 Cont. relax.
3.8 13.8 3.5 2.4 13.7 3.6 Time for bound
CYes | Yes | Yes | Yes | No | Yes | Feasibility
79.4 75.0 91.0 82.7 - 86.5 Cycle service level
95.2 96.3 98.4 95.7 - 95.1 Fill rate service level
42 35 33 27 55 27 Evaluation time
95% 1152 968 1021 1210 1396 0o Heuristic Objective
90.9 63.6 54.5 72.7 72.7 100.0 Multi-sourcing
4 2 2 4 3 4 Multi-sourcing (max)
99.2 99.8 99.8 99.0 99.1 - P[s>0]
CYes | Yes | Yes | No | No | No |  Feasibility
76.2 76.7 72.7 - - - Cycle service level
95.0 97.1 93.9 - - - Fill rate service level
25 30 24 2333 2394 6739 Evaluation time

Table 10.3 — Results for Mel dataset (solved with Algorithm 2)

10.4 Discussion

First, note that we do not provide results for Lux dataset without the heuristic. Indeed, we were
not able to find a solution in the allowed time (20 minutes). Moreover, for the Lux dataset, it is
even impossible to compute the continuous relaxation in less than 24 hours for a volatility equal
to 1%, 50% and 80%.

Second important point, on small datasets, the frontal use of a solver always gives better results
than Algorithm 2 even if this gap decreases with the increase of volatility. However, on huge
datasets, the solver was never able to get a feasible solution.

Although it is not a proof, the values returned by P [s >> 0] show on some examples that the
satisfaction of the AV@R constraint implies the satisfaction of the probabilistic constraint.

As shown by the computational times, evaluating the quality solution with fixed assignments is
hard. It may take up to two hours while the problem has no integer variables.
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B Volatility v Output
1% 5% 10% 30% 50% 80%
70% 1392 1409 1420 1476 1624 1861 Heuristic Objective
18.0 23.0 18.0 19.0 22.0 25.0 Multi-sourcing
3 3 3 4 4 3 Multi-sourcing (max)
99.4 99.3 99.2 98.7 98.6 98.5 P[s>0]
""" Yes| Yes| Yes| Yes|  Yes|  Yes| Feasibility =
77.9 77.3 82.9 72.0 88.2 92.0 Cycle service level
86.2 85.9 88.7 80.6 91.9 94.0 Fill rate service level
4703 4293 3892 2212 2363 2154 Evaluation time
85% 1392 1409 1407 1516 1708 1997 Heuristic Objective
18.0 23.0 16.0 21.0 24.0 31.0 Multi-sourcing
3 3 3 3 3 4 Multi-sourcing (max)
99.9 99.8 99.8 99.6 99.5 99.4 P[s>0]
""" - | 241 223 247 - | - | P
- 1070 1084 1142 - - Cont. relax.
86400 28728 31277 51399 86400 86400 Time for bound
""" Yes | Limit|  Yes|  Yes|  Yes|  Yes| Feasibility =
77.8 - 82.0 85.2 90.5 92.7 Cycle service level
86.1 - 87.7 89.4 94.0 94.6 Fill rate service level
4262 86402 5148 3692 3652 3044 Evaluation time
95% 1392 1420 1421 1624 1900 2382 Heuristic Objective
18.0 18.0 19.0 22.0 26.0 34.0 Multi-sourcing
3 3 3 4 4 5 Multi-sourcing (max)
100.0 100.0 99.9 99.9 99.9 99.9 P[s>0]
""" Yes| Yes| Yes| Yes|  Yes|  Yes| Feasibility =
77.8 80.3 81.1 86.4 90.6 92.7 Cycle service level
85.9 87.2 87.1 90.1 93.1 94.5 Fill rate service level
4025 5146 5209 5448 5716 5428 Evaluation time

Table 10.4 — Results for Lux dataset (solved with Algorithm 2)

On Mel instances, we see that solving on a small set of scenarios is too optimistic when comput-
ing the multi-sourcing. Indeed, several assignments prove to be infeasible of the larger set of
scenarios.

Regarding results on Lux instances, we see that Algorithm 2 is not that bad. When we succeed in
finding the continuous relaxation of Problem (9.8) with m = 100 scenarios, the GAP to optimality
is at most 25%. For small values of the volatility v, playing with the value of § has little impact
on the objective value and on service level. For greater values of the volatility, playing with the
values of § enables us to reach the desired service levels. However, when § becomes close to
100%, our method becomes very sensitive to the sampling and approaches like robust ones may
be more appropriate.
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10.5 Comparison with the current multi-sourcing of Argon Consult-
ing’s client

Regarding the whole items list (i.e., the 500 families), Argon Consulting’s client has almost 25%
of multi-sourced items. In the 100 considered items, it is about 80% of the items. With our
approach, we show that we can drastically reduce the number of multi-sourced items (and thus
the multi-sourcing costs) while keeping a high service level. As mentioned in Section 10.4, some
complementary implementations can be made in order to improve the method and ensure the
validity of the approach.
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Production planning using cover-sizes

11.1 Introduction

11.1.1 Motivations

As seen in Part I and Part II, assembly lines may be managed using (r, ) policies (i.e., production
when the safety stock is reached) or directly making the production planning for the next week.
The choice depends partially on the complexity of the production, on the variation of demand
over time. Sometimes, companies compute the cycle stocks of items and use them as an input
of their production planning tools.

(r,¢) policies are easy to compute and to use but they do not take into account part of the
available information when making their optimization process. On the other hand, production
planning algorithms are more sophisticated and sometimes less convenient to use but they take
into account much more information to find the optimal production (variation of demand over
time, uncertainty). Thus, their output is likely to be more accurate.

In this chapter, we aim at considering the variations of demand in our computation of the
optimal cover-sizes defined in Chapter 3. Context and modeling choices are quite the same
as in Chapter 5. A company aims at minimizing its inventory subject to flexibility constraint.
As explained in Chapter 2, when deciding cover-sizes, flexibility is already fixed and many
companies express it with an upper bound on the number of items produced during a period.
At mid-term, it matches with the number of setups since scheduling is not taken into account.
However, contrary to Chapter 5, we do not look for production levels but to find the optimal
cover-sizes.

11.1.2 Problem statement

For the sake of completeness, we recall every parameters including those which are identical
to those of the Uniform CLSP-BS (see Section 5.1.2). The problem considers an assembly line
producing a set Z of items over T periods. The number of distinct items produced over a period
t cannot exceed N > 0. There is also an upper bound C on the total period production (summed
over all items). The capacity needed (in time units) to produce one unit of i is vi>0.

The production of item i must satisfy a demand d;' at the end of period . When production
of a item i is not used to satisfy the demand, it can be stored but incurs a unit holding cost
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hi>0 per period. For each item i, there is an initial inventory sé € Ry. Since we use cover-
sizes, the production of item i is made periodically and thus, the time interval between two
consecutive setups of i is identical over the planning horizon and belong to a set 7; < [T] of
possible cover-sizes. These cover-sizes are integers, which makes them easier to use for planners.

The goal is to satisfy the whole demand at minimum cost.

Since this problem is a variation of the Uniform CLSP-BS with the use of cover-size instead
of production levels, we call it the Uniform Capacitated Cover-Sizing Problem with Bounded
number of Setups (Uniform CCSP-BS).

11.1.3 Main results

In this chapter, we model the Uniform CCSP-BS as a mixed integer program and show that this
problem is NP-hard (Section 11.2). Then, we present the method used to test the efficiency and
the reasons for which we do not make further investigations (Section 11.3).

11.2 Model formulation

In this section, we introduce a mixed integer program which models the problem. We introduce
the following decision variables. The quantity of item i produced at period ¢ is denoted by qf
and the inventory at the end of the period is denoted by si. We introduce a binary variable xi
which takes the value 1 if the item i is produced over week ¢. Finally, we introduce a binary
variable y! which takes the value 1 if the cover-size 7 is chosen for item i.

We normalize the production variables by setting cA]; = ch t and replace accordingly the other
. . . g igi ~ i .
variables and parameters by setting §} = %, d; = - ctand h' = CU—’? For the purpose of notation,

hats are omitted and the Uniform CCSP-BS can be written as

T . .

min ) ) h's; (11.1a)
t=1iel

s.t. si=sl  +qgl-d! VieZ, Vte[T), (11.1b)
Y i< Vte(T), (11.1¢)
i€l
gL < xi VieZ, YtelT], (11.1d)
Y xl<N Vte(T), (11.1e)
i€l
Y yp=1 VieZ, (11.19
T€T;
2xi, =xl+yt VieZ VreT;, Vte[T 1] (11.1g
T . .
Y <1+M Yyl VieZ VTeT], (11.1h)
t=1 (T'eT;1T'<T1)
yle0,1) VieT VTeT;, (11.1i)
xl € {0,1} VieT, Vte[T), (11.1j)
gl,si>0 VieZ, Vte[T), (11.1K)
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where M is a big positive real number.

Inventory balance (11.1b), capacity constraints (11.1c¢) and (11.1d), and the upper bound on
the number of setups (11.1e) have the same meaning than their counterparts (5.3b), (5.3c),
(5.3d) and (5.3e) in the Uniform CLSP-BS. We add three other constraints to the model. Con-
straint (11.1f) ensures that we choose exactly one cover-size 7 for each item i. Constraint (11.1g)
ensures that production of item i at period ¢ + 7 is allowed only if production of item i is allowed
at period t and if the cover-size of item i is equal to 7. Constraint (11.1h) ensures that, if cover-
size 7 is chosen for item i, there is at most one setup of the production of i during the first 7
periods. (Note that with constraint (11.1g), it ensures that there is exactly one setup.)

Like the Uniform CLSP-BS, the Uniform CCSP-BS is NP-hard for any fixed values of the hi’s.

Theorem 30. Deciding if there is a solution of the Uniform CCSP-BS is NP-complete in the strong
sense.

The proof is very close to proof of NP-hardness of CLSP-BS since it uses reduction of 3-partition
problem to the Uniform CCSP-BS.

Proof. Let{ay,...,asn} be an instance of the 3-partition problem. We reduce polynomially this
problem to an instance of the Uniform CCSP-BS. Without loss of generality, we can assume that
sum of the a;’s is positive. We set

ma; . _
, - ifr="T, .
I=1,...3m}, T=m, Ti={m}, N=3, d;= =14 s0=0. (11.2)
0 otherwise,

Thus, we have a solution for the 3-partition problem if and only if there is a solution to the
Uniform CCSP-BS with these parameters. The conclusion follows from the fact that the 3-
partition problem is NP-complete in the strong sense. O

11.3 Numerical experiments
The efficiency of this approach is also tested using simulations. (See Chapter 7.)

This new heuristic, called MIP-cover-size heuristic, is very close to the cover-size heuristic. It
also consists in determining before the first week once and for all a value 7; for each item i € Z,
from Problem (11.1) where the deterministic demand is taken equal to the demand expectation.
Then, like in the cover-size heuristic, at time ¢, if the inventory of item i is below a precomputed
safety stock (see Equation (7.1)), the quantity qf is computed so that the inventory of item i
exceeds the safety stock of the expected demand for the next 77 weeks. In addition, if some
capacity issues are easily anticipated, the production of an item i can be activated even if the
inventory is not below the safety stock.

Tests with MIP-cover-size heuristic show that this approach does not seem to improve cover-size
heuristic described in Section 7.2. Inventory holding costs and service level are not better than
with the cover-size heuristic. Moreover, computing cover-sizes from Problem (11.1) requires a
solver contrary to the closed-form formula of Section 3.2.3. Since this method uses a solver, one
might as well use the (2SA-m) heuristic which also relies on a solver and give better results.
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constraint

12.1 Introduction

12.1.1 Motivations

As explained in Part III, multi-sourcing decisions consist in deciding which plants should have
the ability to produce an item. They are long-term decisions and are piloted by company’s
strategy. When making multi-sourcing decisions, companies have already defined the desired
service level and want to reach it at a minimal cost. However, because they deal with long-
term decisions, we use a risk constraint to control stock-out and ensure service level. Finally,
company’s strategy is a trade-off between service level and costs to ensure it.

In this chapter, we propose an alternative version of the multi-sourcing problem described
in Chapter 8 reversing the roles of service level and cost of multi-sourcing. Like in Fiorotto
et al. (2018), we suppose that we have a limited budget for the flexibility (i.e., to multi-source
production of items) and that the demand is deterministically known. Thus, companies are
likely to not satisfy the whole demand and aim at minimizing their backorder.

12.1.2 Problem statement

For the sake of completeness, we recall every parameters including those which are identical to
those of the multi-sourcing problem. We consider a set P of plants producing a set Z of items
over T periods. There is an upper bound C,; on the total period production of plant p at period
t (summed over all items). This upper bound is expressed in time units since it corresponds to
available working hours.

Giving a plant p the ability to produce an item i has a cost c;;. This cost is paid once and for
all for the whole horizon and the cumulative assignment cost must not exceed a quantity K.
When a plant p is able to produce item i, there is an upper (resp. lower) bound u; ; = 0 (resp.
4
to produce one unit of item i in plant p in period ¢ is v; . >0.

> 0) on the production of item i in plant p at period ¢. The capacity needed (in time units)

The production and the inventory of item i (summed over all plants) should satisfy a demand dl’;
at the end of period ¢. When production of an item i is not used to satisfy the demand, it can be
stored and incurs no cost. When a demand for item i is not satisfied by the production of the
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current period or by inventory, it can be satisfied later but incurs a unit backorder cost y’ > 0 per
period. For each item i, there is an initial inventory s(i) ER,.

The goal is to minimize the backorder cost.

We call this problem the multi-sourcing problem with budget constraint.

12.1.3 Main results

In this chapter, we model the multi-sourcing problem with budget constraint as a mixed integer
program (Section 12.2). Then, we show that the multi-sourcing problem with budget constraint
is NP-hard even in many simple cases (Section 12.3).

12.2 Model formulation

In this section, we introduce a mixed integer program which models the multi-sourcing problem
with budget constraint. We introduce the following decision variables. The quantity of item i
produced at period ¢ by plant p is denoted by ql’; ; and the inventory at the end of the period is
denoted by si. The backorder of item i at the end of the period ¢ is denoted by bi. We also use
the inventory level §§ that is the relative value of the inventory of item i at the end of period ¢
(i.e., the inventory minus the backorder). We also introduce a binary variable y;; which takes the
value 1 if plant p is given the ability to produce item i.

The multi-sourcing problem with budget constraint can be written as

T . .

min ) Y y'b} (12.1a)
t=1ieZ

st §=5_,+) q,-d Vie[T], Viel, (12.1b)

peP

> vhidh < Cpy Vte(T], VpeP, (12.1¢)
i€eZ
Oy < Vbl < Uy, Vte([T], VpeP, Viel, (12.1d)
Y Y oy <K (12.1e)
i€eZ peP
st=sl-b! Vte[T), Viel, (12.1f)
st bty G =0 Vie|[T], VpeP, Viel, (12.1g)
yhei0,1} VpeP, Viel. (12.1h)

Objective (12.1a) minimizes the cumulative backorder over periods. Constraint (12.1b) is the
inventory balance. Capacity of each plant is ensured by constraint (12.1c). Constraint (12.1d) is
both a “big-M” constraint and a bound on the production of each item in each plant. Capital
invested in assignment is limited by constraint (12.1e). Constraint (12.1f) is the decomposition
of the inventory in its positive and negative parts.
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12.3 NP-completeness

The multi-sourcing problem with budget constraint is NP-hard in the strong sense but contrary
to the deterministic multi-sourcing problem introduced in Section 8.3, it always has a feasible
solution. (It is sufficient to give to no plants the ability to produce any item.) Moreover, as in
the deterministic multi-sourcing problem, the combinatorial difficulty of the multi-sourcing
problem with budget constraint is due either to the lower bounds ¢ ;,t on production, or to the
upper bound K on the cumulative assignment cost.

Theorem 31. The multi-sourcing problem with budget constraint is NP-hard in the strong sense.

The proof is very close to the proof of NP-hardness of the deterministic multi-sourcing of
problem Chapter 8 since it uses a reduction of 3-partition problem to the multi-sourcing problem
with budget constraint.

Proof. Let{ay,...,asn} be an instance of the 3-partition problem such that % <a;< g for each
i with B = % Zf’i"l a; (it is known to be NP-complete according to Garey and Johnson (1979)).
We reduce polynomially this problem to an instance of the multi-sourcing problem with budget
constraint. We set

T=1, P={1,...m}, I={1,...3m}, K=3m,

. . . . a , .
lel’ ct =1, vt 1:1, di:é, L 0, u;J:Cp_l:l«

_ (12.2)
p P pl =

Thus, if we have a solution for the 3-partition problem, finding a solution of the multi-sourcing
problem with budget constraint that satisfies the whole demand is straightforward.

Conversely, suppose that we have a solution of the multi-sourcing problem with budget con-
straint which satisfies the whole demand. Since d{ = % > 0 for each item i, each item is assigned
to at least one plant (otherwise, there would be backorder). Assignment costs being equal to 1
and the cumulative assignment cost being upper bounded by the number of items, each item is
assigned to exactly one plant. Moreover, %prl = % < % = d{' ensures that there are at most three
items per plant. Then, we get a collection of m triples. Plants having the same capacity and the
sum of plant capacities being equal to the sum of demands, each triple has the same sum. Thus,

we get a solution of the 3-partition problem.

The conclusion follows from the fact that the 3-partition problem is NP-complete in the strong
sense even if% <a;< g for each i. O

Proposition 32 gives some special cases that are still NP-hard.

Proposition 32. The following special cases of the multi-sourcing problem with budget constraint
are NP-hard:

1. with only one period and only two plants (T =1 P ={1,2}),
2. with no budget constraint (K = +00),
3. with one plant and infinite capacities (Cp; = +00).
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Proof of Proposition 32 (Item 1). Let {ay, ..., an} be an instance of the partition problem (it is
known to be NP-complete according to Garey and Johnson (1979)). We reduce polynomially this
problem to an instance of the multi-sourcing problem with budget constraint. We set

T=1, P=1{1,2}, I=1,....m}, K=m,
£h,=0, ul,=Cp=1. (12.3)

Thus, if we have a solution for the partition problem, finding a solution of the multi-sourcing
problem with budget constraint that satisfies the whole demand is straightforward.

Conversely, suppose that we have a solution of the multi-sourcing problem with budget con-
straint that satisfies the whole demand. The positivity of the a; ensures that each item is assigned
to at least one plant. (Otherwise, there would be positive backorder.) The assignment cost being
equal to 1 and the sum of assignment cost being upper bounded by the number of items, each
item is assigned to exactly one plant. Plants having the same capacity and sum of plant capaci-
ties being equal to sum of demands, each subset define by the assignment has the same sum.
Thus, we get a solution of the partition problem.

The conclusion follows from the fact that the partition problem is NP-complete. O

Looking at the proofs of Theorem 31 and of Proposition 32 (Item 1), we see that they can be
easily adapted to the case of infinite upper bound on the sum of assignment cost.

Proof of Proposition 32 (Item 2). In the proofs of Theorem 31 and of Proposition 32 (Item 1), the
lower bounds ¢ ;t on production must be taken equal to d{ and the capacities of plants and
demand satisfaction imply that each item is produced in exactly one plant. Hence, we have the
desired result. a

Reducing the knapsack problem to the multi-sourcing problem with budget constraint and
infinite capacities, we show that this latter is NP-hard. We remind that the knapsack problem
consists in choosing a subset of a set of n items, each with a positive value v; and a positive
weight w; >, which maximizes the sum of their cumulative value and whose cumulative weight
is lower than W > 0. This problem is known to be NP-complete (see Garey and Johnson (1979)).

Proof of Proposition 32 (Item 3). Let ((vi, Wi)iemn)» W) be an instance of the knapsack problem.
We reduce polynomially this problem to an instance of the multi-sourcing problem with budget
constraint. We set

T=1, P=1{1}, I=1{,...,n}, K=W,
Y =1, ci,zw,-, d{:mjax{vj}—vi, v,’l,tzl, l;,t:O, u;t:Cpt=+oo. (12.4)
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12.3. NP-completeness

Thus, the multi-sourcing problem with budget constraint can be written as

n .
max Y v;y' (12.5a)
i=1
n .
st Y wiy'<w (12.5b)
i=1
yi e 0,1} Viel, (12.5¢)

and ( v i) _is an optimal solution solution of the multi-sourcing problem with budget constraint
l

if and only if ( y* i ) _is an optimal solution of the knapsack problem. The conclusion follows from
1
the fact that the knapsack problem is NP-hard. O
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Conclusion

This thesis develops optimization methods for Supply Chain Management and is focused on
flexibility. Argon Consulting was our partner during this thesis and we applied our work to the
cases of its clients.

The first part deals with mid-term decisions. It aims at computing lot-sizes and cover-sizes
which are used in several Supply Chain processes as MRP (to decide the quantity of raw materials
to order) or production planning (to decide the size of produced lots). At this level of decision,
the objective for Argon Consulting is to reduce future inventory and the main constraint is the
flexibility. Motivated by industrial considerations, we propose extensions of classical continuous-
time inventory models by replacing setup costs by a bound on the maximal number of setups.
We find closed-form formulas in the single-line cases and proposed efficient methods for multi-
line cases. Argon Consulting was very enthusiastic about this formula because unlike the setups
costs, the bound on the number of setups captures the interaction between items and is easy
to estimate. Moreover, the closed-form formula makes it easier to use and is already used by
practitioners.

The second part deals with short-term decisions. It aims at deciding the production for the
following periods in an uncertain environment. (Indeed, even if the data may be reliable for
the current period, it is often uncertain for the next periods and must be anticipated.) As in
mid-term decisions, our study was motivated by industrial considerations. Argon Consulting
aims at minimizing the inventory subject to flexibility constraint modeled by an upper bound on
the number of setups per period. We propose a new model based on the classical Capacitated
Lot-Sizing Problem in both deterministic and stochastic settings. In order to solve it in reason-
able time, we use a classical approximation scheme (two-stage approximation and a sampling
method). However, Argon Consulting’s clients were not able to provide us with a set of scenarios
for the demand. Thus, we develop a probabilistic model to generate the set of scenarios, which
is easy to use while being reasonable. Our experimentations already prove that the company
that provides the datasets can reduce its inventory costs while keeping a good service level.

The last part deals with long-term decisions. Its aims at deciding the multi-sourcing of produc-
tion, i.e., if some items should be produced by several plants and by which ones. These decisions
are made in a highly uncertain environment and contrary to short-term decision, they are not
repeated. In order to take into account the risk in multi-sourcing decision, we introduce the
Average-Value-at-Risk in our model to quantify the risk of an assignment. This risk measure
can be interpreted by the decision makers since it captures some characteristics of cycle service
level and of fill rate service level and it has good computational properties. However, the size of
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Chapter 12. Multi-sourcing problem with budget constraint

the problem prevents us from frontally using up-to-date solvers. Instead, we develop a heuristic
to find a feasible solution which can be used by practitioners or as an initial solution for a solver.
Our experimentations already prove that the company that provides the datasets can reduce its
multi-sourcing (thus its costs) while keeping a good service level.

First extensions of our work must be done on the sampling method. We propose a concrete
way to reduce the dependence on the sampling based on clustering methods but, for lack of
time, we have not implemented it yet. Secondly, to accelerate the solving of the mixed integer
linear program, we propose decomposition methods (such as Bender decomposition) but again,
for lack of time, we have not implemented it yet. Finally, our work uses expectation for the
short-term decisions and Average-Value-at-Risk for the long-term decisions. A natural evolution
would be to compare them to robust optimization to quantify the savings made and the price of
robustness.
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Probabilistic model for scenarios gen-

eration

A.1 Reminders on Gamma and Dirichlet distributions

A.1.1 Gamma distributions

The gamma distribution denoted by I'(k, 8) is a family of continuous two-parameter probability
distributions. Its definition can be found in Delmas and Jourdain (2006, Appendix A). It is
parametrized by a shape parameter k > 0 and a scale parameter 6 > 0. Its support is R;.

The gamma distribution has a probability density function with respect to the Lebesgue measure
on R, given by

k-1,-%
x¥emo
x,k,0) = ——— Al
f( ) ORI () (A1)
where the gamma function is expressed for any z € R} by
[e.0]
I'(z) = f x* e dx. (A.2)
0

A.1.2 Dirichlet distributions

We refer to Kotz et al. (2000, Chapter 49) for the details of the proofs of classical results about
Dirichlet distributions.

Definition

The Dirichlet distribution denoted by Dir(a) is a family of continuous multivariate probability
distributions. It is parametrized by a number K > 2 of categories and a vector a = (ay,...,ak) €
(Rj)K of positive real numbers called concentration parameters. Its support is the (K — 1)-
dimensional simplex {(xl, ..o, XK) € IRIf | Zlk(:l xp=1 }

The Dirichlet distribution has a probability density function with respect to the Lebesgue
measure on the Euclidean space RX~! given by

K

- -1
fla) =g g:[lxk : (A.3)
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Appendix A. Probabilistic model for scenarios generation

The normalizing constant is the multivariate beta function, which can be expressed in terms of
the gamma function
I, Tap)

B(a) = .

(A.4)

Moments

Letx = (xl, . xK) ~ Dir (a). Setting ay = ZIk(:l a, the moments of the Dirichlet distribution are

E[x,] = 2 Vke (K], (A.52)
(3 R
Var [x, ] = % Vke[K], (A.5b)
Cov|[x,,x,] = %’;iﬂ) Vi #¢. (A.5¢)
0

Aggregation property
The Dirichlet distribution has the aggregation property given by Proposition 33.
Proposition 33. Letx = (xl, s xK) ~Dir(ay,...,ak). Suppose that the random variables with

indices k and ¢ are dropped from the vector and replaced by their sum. Then, this new random
vector satisfies

X =(%,.., X +X,,..., %) ~Dir(ay,...,ax + ap, ..., ak). (A.6)

Conditional Dirichlet distribution

The distribution of part of the variables of a Dirichlet conditionally to the other variables is a
scaled Dirichlet distribution.

Proposition 34. Let x = (x,,...,%;) ~ Dir(ay,...,ax) and m € {1,...,k—1}. We denote x;, =

1)
(x),...,%,) and x, = (X,p417---» X ). Then, we have

1
——— (X, X,y = X(1)) ~ Dir (a e, XKD A7
1 _Z?’il xi( (2)| 1) (1)) (@m+1 K) ( )

Generating Dirichlet distributed variables

Realizations of the random vector x = (xl,...,xK) ~ Dir(a;,...,ak) can be obtained from a
source of Gamma distributed random variables using Algorithm 3 described in Frigyik et al.
(2010).

Proposition 35. For any a,,...,ak positive, Algorithm 3 samples the Dirichlet distribution
Dir(a).

Other methods exist to generate random variables following a Dirichlet distribution. But this
one is easy to understand and to implement because the C++ standard library has a gamma
generator since the 2011 edition.
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A.2. Proofs of Section 7.3.2

Algorithm 3: Generator of Dirichlet distribution Dir (a3, ..., ak)
Input: ay,...,ax
Output: Random realization (xy, ..., xg) of Dir(ay,...,ak)
fork=1,...,Kdo

| draw a number y; from Gamma distribution I'(a, 1)
end

fork=1,...,Kdo x:=

Yk

Yr Ve

Return (a,,...,ak).

A.2 Proofs of Section 7.3.2

In this section, we prove Proposition 23 and that Algorithm 1 gives a vector with an “expanded
Dirichlet” distribution.

Proof of Proposition 23. Lety be areal number in (0,1) and let d}, s, JK be K positive numbers
(with K > 2). Let (d,,...,d;) be a random variable with an “expanded Dirichlet” distribution

D(y,ds, ..., dx). We recall that dy = Zlk(:l dy., that ag = # —1andthat a; = %ao, for each k € [K].
0

Item 1. Since dL (dl, .. .,dK) has a Dirichlet distribution, we have for each k € [K]
0

. [d -
Eld.]=doE|-X|= do 2k (expectation of Dirichlet distribution) (A.8a)
k d() Ao

= dy. (definition of ay) (A.8b)

Item 2. Since + (d,,...,dy) has a Dirichlet distribution, we have for each k € [K]

do
d -
Var [d, ] = d2Var | = | = dgw (variance of Dirichlet distribution)  (A.9a)
d aglap+1)
1
- ci,zc(@ —1)— (definition of ) (A.9b)
af ap+1
d
= d?c(de - 1))/2 (definition of y) (A.9¢)
= y?dx(do - di)- (A9d)

d
Item 3. Since dL (dp . dK) has a Dirichlet distribution, we have Zlk(:l 7’“ =1 almost surely and
0 0
the result follows.

Item 4. Let k be an integer in {1,..., K — 1} and let d(;) be a vector of k positive real numbers such

that ¥*_ d; < do. We denote d, =(d,....d)andd, =(d d
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Appendix A. Probabilistic model for scenarios generation

Since dl (d,,...,dy) has a Dirichlet distribution and thanks to Proposition 34, we have

1 ) d() _dw .
_ —— | ~Dir(« yeeo, AK) (A.10)
1_ (do do do m+1 K
do
and then )
—(d,,\|d,, =d; ) ~Dir(a Yooy XKD (A.11)
do—Zledz( (2)| €)) (1)) m+1 K

kg
Wet set ¥’ as the unique positive solution of Equation (7.7), i.e., y' =1/ ﬁ with a= Z’;—ldl.
0
The parameter y' is well-defined and belong to (0, 1) since 7/2, a€ (0,1). Thus, the random vector

(d(z) )d(l) = d(l)) follows an “expanded Dirichlet” distribution D(y’ , de, . ..,JK). Indeed, we
have

dy = Z dk—do—Zd (A.12)
k=m+1
Moreover,
k 71 71
£ d; d d
agz(%—l)z(%—l) i :(%—1)7" 2ay (A.13)
Y Y do Y dy do
and _
@y =—ap=ap Yke{m+l,..,Kl. (A.14)
0
O

We now prove that Algorithm 1 samples the “expanded Dirichlet” distribution.

Proof of Proposition 24. Algorithm 3 is a subroutine of Algorithm 1 and Proposition 35 gives
that, if yx ~ I'(ag,1), then the random vector —&— oK (y1, ,yK) ~ Dir(ay,...,ak). Thus, the

last step produces a vector d such that < - (dy,..., dK) ~ Dir(ay,...,ax) with dy = ZIk(_l (fk and
A =

oy = 7% —1land a; = %ao, for k € [K]. So Algorithm 1 returns a vector with an “expanded
0 ~ ~
Dirichlet” distribution D(y, di, ..., dk). O

A.3 Fitting the parameters to the probabilistic model

When proposing a probabilistic model for demand distribution, we face many objectives. First
it is desirable that the demand expectation be equal to its historical forecast, which is ensured
by Item 1 of Proposition 23. Second, a main hypothesis of the model is that the total sum of
demand does not depend of the realization. The chosen distribution ensures this properties
thanks to Item 3. Last, every company does not have the same uncertainty on forecast demand.
For example, some companies may have more historical data to rely on to produce forecast or
some sectors may rely on firm command whereas other may not. Thus our model should be
able to take into account this reliability.

For the sake of simplicity, we choose a unique parameter v which represents the ratio between
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A.3. Fitting the parameters to the probabilistic model

standard deviation and expectation of a random variable and which can be easily interpreted by
companies. For (d,,...,d,) ~D(y, dy,..., dK), we decide to look for y € (0, 1) which minimizes

il

where e (y) = E [dk] and o (y) = ,/Var[dk]. Note that the norm || . ||, has been chosen. An
interesting feature of | . ||, is the closed-form formula for the value of y (see Proposition 36). If
.1 or | .|l had been chosen, finding the best y would be done with classical linearization
methods and the use of a linear solver.

(A.15)

(01 ) ox(y)

eens )—(v,...,v)
ei1(y) ex(y)

2

Proposition 36. Forany v € (0,1) and any Jl, . d~K positive,
K d
Y-t \/ 72 -1
y—.
K d
£ (3-1)

1) )
(‘;(%,..., ‘;’;(%)—(v,..., v) ”2 where ex(y) =E[d,] and o = \/Var[d,].

(A.16)

minimize the quantity |

Proof. Let v be areal number in (0,1) and d,... JK be positive real numbers. For each index k,
Proposition 23 gives

ﬂ_vvar[dk]_y do A.17)
€k E [dk] Czk . .
Then, finding y’ € (0, 1) which minimizes | (‘;1((%) eens (;I: (()T)) ) —(v,...,1) “2 is equivalent to look for

the minimizer on (0, 1) of the function

K A ?
f(Y')=Z(Y’ di—l—v) (A.18a)
k=1
K (7 K 7
- (@_1)Y'Z_zy SR )y ek (A.18b)
k=1\dk k=1 dk

f is a quadratic function and reach its minimum for

K d,
Lo \/ ,72_1

=y— (A.19)
S (-
k=113,
(%, e %K) being in the interior of the simplex, according to Lemma 37, we have
0 0
K fdo_
ZIc:l dy 1
0< < (A.20)
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Appendix A. Probabilistic model for scenarios generation

Since v € (0, 1), we have y € (0,1) and the result follows. O

Lemma 37. Let K be an integer non-smaller than 2. We define

oK1 = {(xl,...,xm e (0,nDK

K
Y xp = 1} (A.21)
k=1

and
g: 61 - R

+
DIV (A.22)

L
g Z’k‘l(,% )

Then, g reaches its supremum, which is I;_ -
Proof. For each index k € [K], we set
xik -1 K K
Vi(x) = A with A(x) = Z (— - 1) and p(y)= ). Ve (A.23)
0=1 /=1
Then we get
K VA0 SUp e sk-
(0= PN ye(x) p(y@) _ SUPyesr () ‘ (A24)

A(x) VAR /infrepra AX)

The map p being concave and symmetric (i.e., its value does not depend of the order of its
arguments), we get

1 1
su =ul=,...,—|=VK. A.25
yeﬁglu(y) u(K K) (A.25)
A being convex and symmetric, we get
inf A(x) A(l 1) K(K-1) (A.26)
in XN=A—,....,—=|= -1). .
xedk-1 K K
Then, we have for each x € 65!
1
8(x) < . (A.27)
K-1
Since g(,..., +) = \/%, the result follows. O
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Complete computational experiments
on discrete-time inventory models

In this chapter, we give the complete results of the simulations made in Chapter 7. The char-
acteristics of each line is given in Section 7.3.1 and the meaning of each column of Tables B.1
to B.7 as well as the way of computing the KPI's are given in Section 7.5.
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Appendix B. Complete computational experiments on discrete-time inventory models

Input Ob;. LB Inventory Service Work- | Flex.
Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% 6668 158 | 512 | 1011 5.3 79% 83% 89% 96%
95% 7644 237 | 576 | 1279 5.6 81% 84% 93% 98%
98% 8481 638 | 603 | 1397 5.6 81% 85% 95% | 100%
go cover | 85% 5277 158 | 404 550 4.1 87% 85% 79% 88%
T 95% 5654 237 | 419 562 4.1 87% 85% 79% 89%
= 98% 6265 638 | 427 575 4.2 87% 85% 80% 89%
E det 85% 310 158 24 137 3.2 68% 57% 73% | 100%
E 95% 476 237 25 136 2.8 72% 59% 57% | 100%
g 98% 1331 638 39 150 34 78% 65% 73% | 100%
sto 85% 172 158 13 126 3.3 59% 51% 72% | 100%
95% 400 237 16 128 2.8 67% 55% 56% | 100%
98% 1345 638 38 147 3.5 76% 63% 73% | 100%
lot 85% 6949 200 | 528 | 1000 5.1 81% 85% 89% 96%
95% 8237 655 | 584 | 1235 5.2 81% 86% 92% 99%
98% 9841 | 1109 | 621 | 1359 5.2 82% 87% 94% | 100%
Igo cover | 85% 5560 200 | 416 562 4.2 86% 86% 79% 88%
Lﬂ’ 95% 6530 655 | 441 589 4.2 86% 86% 80% 88%
; 98% 8000 | 1109 | 450 602 4.3 86% 86% 80% 88%
= det 85% 659 200 46 164 2.8 68% 59% 58% | 100%
Es' 95% 1679 655 63 172 3.5 75% 66% 73% | 100%
g 98% 3147 | 1109 | 129 244 3.8 86% 74% 74% | 100%
sto 85% 324 200 16 133 2.8 55% 52% 55% 98%
95% 1616 655 50 159 34 72% 62% 73% | 100%
98% 3188 | 1109 | 139 275 4.0 85% 74% 74% | 100%
lot 85% 7565 314 | 566 | 1048 5.7 82% 86% 89% 96%
95% 9127 973 | 621 | 1258 5.8 82% 87% 93% 98%
98% || 11296 | 1330 | 660 | 1376 5.9 83% 87% 94% 99%
130 cover | 85% 6056 314 | 440 580 44 83% 84% 79% 88%
°|? 95% 7480 973 | 460 608 4.4 83% 85% 80% 89%
; 98% 9958 | 1330 | 468 628 4.5 83% 85% 80% 89%
= det 85% 1179 314 71 179 3.3 71% 63% 61% | 100%
E 95% 2847 973 | 118 214 4.3 79% 71% 74% | 100%
g 98% 4648 | 1330 | 211 399 4.6 88% 80% 75% | 100%
sto 85% 743 314 24 135 3.0 55% 55% 59% 97%
95% 2710 973 96 207 3.6 74% 68% 74% | 100%
98% 4610 | 1330 | 209 415 4.0 86% 79% 75% | 100%
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Input Ob;. LB Inventory Service Work- | Flex.

Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% || 12320 495 948 | 1125 7.6 94% 95% 62% 92%
95% || 14087 504 | 1080 | 1353 7.2 94% 95% 64% 94%
98% || 15516 560 | 1161 | 1520 7.2 94% 95% 65% 96%
go cover | 85% | 10719 495 824 | 1024 4.4 100% | 100% 58% 95%
Cﬁ] 95% || 11833 504 910 | 1051 4.3 100% | 100% 59% 98%
> 98% || 12397 560 953 | 1075 4.3 100% | 100% 60% 99%
E det 85% 709 495 54 313 2.8 78% 62% 51% 99%
E 95% 839 504 54 313 2.8 81% 63% 44% 99%
g 98% 1485 560 69 313 3.0 86% 68% 51% 99%
sto 85% 506 495 39 300 2.6 68% 55% 49% 96%
95% 725 504 42 300 2.6 77% 59% 43% 97%
98% 1451 560 62 305 3.0 84% 67% 51% 98%
lot 85% || 12316 518 946 | 1142 8.9 93% 94% 61% 92%
95% || 14450 634 | 1082 | 1353 8.6 94% 95% 64% 94%
98% | 16454 759 | 1171 | 1515 8.8 94% 95% 65% 95%
gc cover | 85% | 11083 518 851 | 1045 4.7 99% 99% 58% 94%
Ll? 95% || 12403 634 948 | 1092 4.6 99% 99% 59% 98%
; 98% || 13148 759 996 | 1137 4.6 99% 99% 60% 98%
= det 85% 1089 518 79 340 3.1 76% 64% 40% 98%
E 95% 2006 634 102 340 3.4 84% 70% 51% 99%
g 98% 3179 759 154 346 3.7 90% 78% 52% | 100%
sto 85% 696 518 43 307 2.7 62% 56% 37% 95%
95% 1869 634 78 318 3.0 79% 66% 51% 98%
98% 3140 759 151 345 3.5 90% 77% 52% 99%
lot 85% || 12597 629 960 | 1160 48.1 92% 93% 61% 91%
95% || 15173 | 1081 | 1091 | 1381 46.8 93% 94% 64% 94%
98% || 18567 | 1330 | 1196 | 1556 47.6 93% 94% 65% 95%
§ cover | 85% | 11068 629 848 | 1054 12.1 99% 97% 58% 94%
°|? 95% || 12497 | 1081 943 | 1100 12.1 99% 97% 59% 97%
; 98% || 13525 | 1330 992 | 1158 12.1 99% 97% 60% 99%
= det 85% 1743 629 114 360 8.5 77% 69% 48% 98%
E 95% 3290 | 1081 163 361 9.0 84% 75% 52% 99%
g 98% 5059 | 1330 213 365 9.2 88% 80% 53% 99%
sto 85% 1185 629 55 323 2.9 62% 60% 47% 94%
95% 3123 | 1081 126 342 5.9 79% 71% 52% 98%
98% 4947 | 1330 220 387 7.3 88% 81% 53% | 100%

Table B.2 — Results for L;
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Appendix B. Complete computational experiments on discrete-time inventory models

Input Ob;. LB Inventory Service Work- | Flex.
Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% 7764 241 | 597 796 6.2 93% 95% 77% 92%
95% 9243 299 | 708 991 6.4 93% 95% 80% 92%
98% 9998 589 | 757 | 1133 6.5 94% 95% 82% 93%
go cover | 85% 6784 241 | 521 666 4.6 94% 96% 71% 89%
T 95% 7418 299 | 566 720 4.5 94% 96% 73% 91%
= 98% 7983 589 | 597 784 4.5 94% 96% 75% 92%
E det 85% 415 241 32 180 3.1 75% 64% 61% | 100%
E 95% 514 299 32 180 3.0 78% 67% 59% | 100%
g 98% 1095 589 39 190 3.3 82% 70% 63% | 100%
sto 85% 252 241 19 173 2.9 63% 58% 60% 97%
95% 419 299 22 175 2.8 73% 63% 58% 99%
98% 1076 589 37 190 3.3 82% 70% 63% | 100%
lot 85% 7669 273 | 588 783 7.0 93% 95% 76% 91%
95% 9280 579 | 701 994 7.1 93% 95% 79% 92%
98% || 10257 813 | 748 | 1119 7.2 94% 95% 82% 94%
Igo cover | 85% 6868 273 | 523 666 5.0 92% 94% 71% 89%
Lﬂ’ 95% 7820 579 | 571 732 4.9 92% 95% 73% 91%
; 98% 8928 813 | 594 761 4.9 92% 95% 74% 92%
= det 85% 760 273 55 199 3.2 73% 66% 45% | 100%
Es' 95% 1481 579 65 205 3.6 80% 71% 63% | 100%
g 98% 2622 813 | 121 262 4.2 89% 79% 65% | 100%
sto 85% 387 273 22 183 2.5 58% 59% 42% 96%
95% 1367 579 48 204 3.3 75% 69% 63% | 100%
98% 2553 813 | 116 279 4.1 88% 79% 64% | 100%
lot 85% 7999 371 | 610 840 9.9 93% 94% 77% 91%
95% 9633 782 | 713 | 1003 10.0 93% 95% 80% 92%
98% || 10780 | 1023 | 751 | 1129 10.1 93% 95% 82% 95%
130 cover | 85% 7265 371 | 545 698 6.8 91% 92% 72% 88%
°|? 95% 8532 782 | 594 771 6.8 91% 93% 73% 91%
; 98% || 10221 | 1023 | 622 823 6.8 91% 93% 74% 91%
= det 85% 1316 371 86 215 4.5 75% 71% 62% | 100%
E 95% 2570 782 | 116 230 5.3 82% 77% 64% | 100%
g 98% 4114 | 1023 | 186 370 6.3 89% 83% 65% | 100%
sto 85% 739 371 29 195 3.3 56% 63% 60% 95%
95% 2352 782 88 230 4.5 75% 73% 64% | 100%
98% 3924 | 1023 | 181 379 5.4 87% 83% 65% | 100%
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Input Ob;. LB Inventory Service Work- | Flex.
Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% || 3991 78 | 307 392 4.9 97% 97% 64% 91%
95% || 4492 119 | 345 | 434 5.0 98% 97% 66% 90%
98% || 4850 244 | 370 | 460 5.1 98% 98% 67% 91%
go cover | 85% || 3391 78 | 261 345 4.2 100% 99% 66% 92%
Cﬁ] 95% || 3755 119 | 289 384 4.2 100% 99% 68% 94%
> 98% || 4088 244 | 314 | 416 4.1 100% 99% 68% 96%
E det 85% 135 78 10 60 3.6 65% 53% 59% 97%
E 95% 229 119 10 60 2.8 67% 57% 40% 97%
g 98% 562 244 21 61 3.2 79% 66% 61% 97%
sto 85% 84 78 6 57 3.5 57% 47% 57% 95%
95% 215 119 8 58 2.8 65% 55% 39% 97%
98% 553 244 19 59 3.4 78% 63% 60% 97%
lot 85% || 4008 105 | 308 | 400 6.5 97% 95% 64% 89%
95% || 4481 290 | 341 436 6.5 97% 96% 66% 90%
98% | 4883 392 | 363 466 6.6 97% 96% 67% 91%
gc cover | 85% || 3321 | 105s | 255 351 54 99% 97% 66% 93%
Ll? 95% || 3804 290 | 292 387 5.4 99% 98% 68% 94%
; 98% || 4218 392 | 321 425 5.5 99% 97% 68% 94%
= det 85% 285 105 18 66 4.2 66% 58% 38% 97%
E 95% 741 290 31 71 4.5 77% 66% 61% 98%
g 98% || 1285 392 60 96 4.6 89% 77% 61% 100%
sto 85% 187 105 8 60 2.8 53% 51% 37% 95%
95% 707 290 25 64 4.0 73% 63% 60% 97%
98% || 1256 392 56 91 4.9 88% 75% 61% 100%
lot 85% || 3981 163 | 305 | 404 24.3 95% 93% 63% 89%
95% || 4598 358 | 344 | 443 24.3 96% 95% 66% 91%
98% || 5188 428 | 374 | 487 24.4 97% 96% 68% 91%
§ cover | 85% || 3401 163 | 260 356 19.7 97% 94% 66% 94%
°|? 95% || 3982 358 | 298 | 403 19.8 97% 95% 68% 94%
; 98% || 4543 428 | 327 | 440 19.8 98% 96% 68% 94%
= det 85% 524 163 29 73 18.6 66% 62% 51% 97%
E 95% || 1263 358 60 94 18.8 80% 74% 61% 100%
g 98% || 2036 428 83 129 19.1 87% 80% 62% 100%
sto 85% 397 163 13 65 9.6 50% 55% 48% 94%
95% || 1181 358 42 82 10.3 73% 68% 60% 100%
98% 1964 428 82 129 28.9 86% 80% 62% 100%

Table B.4 — Results for L3
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Appendix B. Complete computational experiments on discrete-time inventory models

Input Obj. | LB Inventory Service Work- | Flex.
Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% || 6383 | 241 | 491 587 4.6 96% 96% 40% 90%
95% || 8168 | 252 | 627 722 5.2 96% 96% 11% 89%
98% || 9284 | 388 | 706 853 5.8 96% 96% 43% 91%
go cover | 85% | 6420 | 241 | 494 579 3.2 100% | 100% 39% 93%
T 95% || 8044 | 252 | 619 741 3.7 100% | 100% 40% 91%
= 98% || 8807 | 388 | 677 789 4.4 100% | 100% 41% 91%
E det 85% 339 | 241 26 206 2.2 77% 62% 34% 98%
E 95% 353 | 252 25 206 2.1 77% 61% 31% 98%
g 98% 657 | 388 31 206 2.8 85% 67% 35% 98%
sto 85% 248 | 241 19 201 2.1 72% 56% 34% 98%
95% 292 | 252 20 201 2.1 75% 58% 30% 98%
98% 632 | 388 27 204 2.7 83% 65% 35% 98%
lot 85% || 6377 | 244 | 490 587 6.2 95% 96% 40% 91%
95% || 8292 | 364 | 630 731 6.8 96% 96% 11% 90%
98% || 9481 | 409 | 699 838 7.5 96% 96% 43% 90%
Igo cover | 85% | 6322 | 244 | 486 592 4.4 100% 99% 38% 92%
Lﬂ’ 95% || 8125 | 364 | 625 764 4.9 100% 99% 40% 91%
; 98% || 8931 | 409 | 686 814 5.4 100% 99% 11% 90%
= det 85% 468 | 244 35 216 2.5 72% 62% 28% 98%
Es' 95% 830 | 364 44 216 3.7 83% 68% 35% 98%
g 98% 1420 | 409 62 218 3.9 89% 74% 35% 99%
sto 85% 284 | 244 20 203 2.5 63% 52% 26% 95%
95% 755 | 364 32 208 3.3 80% 65% 34% 98%
98% 1404 | 409 63 227 3.9 89% 74% 35% 98%
lot 85% || 6474 | 270 | 496 596 6.9 95% 95% 40% 91%
95% || 8372 | 516 | 625 730 7.4 95% 96% 11% 90%
98% || 9946 | 658 | 692 822 8.3 95% 96% 43% 90%
130 cover | 85% | 6110 | 270 | 470 601 4.9 98% 97% 38% 93%
°|? 95% || 7942 | 516 | 609 764 5.2 99% 98% 40% 92%
; 98% || 8809 | 658 | 669 807 5.7 99% 98% 40% 92%
= det 85% 714 | 270 50 227 2.9 76% 66% 33% 98%
E 95% 1364 | 516 65 228 4.3 83% 71% 35% 98%
g 98% || 2316 | 658 | 105 258 4.3 90% 78% 35% 100%
sto 85% 416 | 270 22 209 2.8 62% 57% 32% 95%
95% 1287 | 516 50 220 3.5 77% 68% 35% 98%
98% || 2269 | 658 | 105 253 4.5 89% 79% 35% 100%
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Input Obj. | LB Inventory Service Work- | Flex.
Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% 711 80 | 55 131 2.3 81% 78% 98% 100%
95% 749 93 | 54 131 2.3 81% 78% 97% 100%
98% 1015 | 204 | 54 132 2.3 81% 78% 97% 100%
go cover | 85% 373 80 | 29 78 3.4 69% 59% 90% 78%
Cﬁ] 95% 561 93 | 29 78 34 69% 59% 90% 78%
> 98% 1233 | 204 | 29 78 3.4 69% 59% 90% 78%
E det 85% 126 80 10 70 2.2 74% 59% 95% 95%
E 95% 155 93 10 70 2.0 81% 63% 62% 97%
g 98% 331 | 204 12 74 2.1 86% 65% 96% 97%
sto 85% 82 80 6 69 2.0 66% 52% 93% 97%
95% 127 93 7 69 1.8 77% 57% 61% 97%
98% 321 | 204 11 73 2.1 85% 63% 96% 98%
lot 85% 823 87 | 61 136 2.4 81% 79% 98% 100%
95% 1093 | 192 | 62 138 2.4 81% 79% 98% 100%
98% || 2005 | 515 | 63 139 2.4 81% 79% 98% 100%
gc cover | 85% 472 87 | 29 81 3.4 67% 60% 91% 78%
Ll? 95% 1213 | 192 | 29 81 34 67% 60% 91% 78%
; 98% || 3225 | 515 | 29 81 3.4 67% 60% 91% 78%
= det 85% 239 87 17 76 2.0 78% 65% 64% 97%
E 95% 433 | 192 | 20 82 2.2 83% 68% 94% 99%
g 98% 988 | 515 | 28 85 2.2 88% 74% 98% 99%
sto 85% 122 87 7 70 1.7 63% 54% 58% 96%
95% 400 | 192 15 79 2.0 79% 63% 94% 99%
98% 974 | 515 | 27 91 2.1 87% 72% 98% 99%
lot 85% 947 | 108 | 66 139 2.4 80% 79% 97% 100%
95% 1532 | 322 | 68 145 2.4 80% 78% 98% 100%
98% || 2846 | 797 | 68 144 2.4 80% 79% 97% 100%
§ cover | 85% 763 | 108 | 36 86 3.3 65% 61% 91% 77%
°|? 95% || 2111 | 322 | 36 86 3.3 65% 61% 91% 77%
; 98% || 4628 | 797 | 36 86 3.3 65% 61% 91% 77%
= det 85% 413 | 108 | 28 82 2.2 76% 68% 66% 97%
E 95% 833 | 322 | 34 89 2.3 82% 73% 97% 99%
g 98% 1668 | 797 | 39 91 2.4 84% 75% 98% 99%
sto 85% 232 | 108 10 74 1.7 60% 56% 59% 97%
95% 760 | 322 | 26 89 2.1 78% 68% 96% 99%
98% 1592 | 797 | 36 96 2.2 82% 74% 98% 100%

Table B.6 — Results for L5
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Appendix B. Complete computational experiments on discrete-time inventory models

Input Ob;. LB Inventory Service Work- | Flex.
Vol. ‘ Heur. ‘ B Av. ‘ Max ‘ Cover | Fillrate | Cycle | load
lot 85% || 1499 140 | 115 312 3.0 76% 72% 97% 97%
95% || 1729 244 | 115 312 3.0 76% 72% 97% 97%
98% || 2583 833 | 117 317 3.0 77% 72% 97% 98%
go cover | 85% | 1409 140 | 107 322 3.4 73% 67% 94% 83%
T 95% || 1753 244 | 108 322 34 73% 67% 94% 83%
= 98% || 2921 833 | 108 322 3.4 73% 67% 94% 84%
E det 85% 233 140 18 94 2.6 67% 58% 90% 100%
E 95% 400 244 18 94 2.3 72% 61% 91% 100%
g 98% || 1194 833 46 243 2.3 80% 65% 95% 100%
sto 85% 145 140 11 86 2.6 59% 51% 87% 99%
95% 364 244 13 87 2.3 68% 58% 90% 100%
98% || 1170 833 42 235 2.4 79% 64% 95% 100%
lot 85% || 1759 181 | 125 314 3.1 75% 73% 97% 98%
95% || 2692 818 | 127 315 3.1 75% 73% 98% 98%
98% || 4594 | 1382 | 130 322 3.1 76% 73% 98% 98%
Igo cover | 85% || 1811 181 | 122 330 3.6 72% 68% 94% 84%
Lﬂ’ 95% || 3107 818 | 122 330 3.6 72% 68% 94% 84%
; 98% || 5750 | 1382 | 123 330 3.6 72% 68% 94% 84%
= det 85% 492 181 33 114 2.4 69% 62% 82% 100%
Es' 95% || 1429 818 54 216 2.5 77% 67% 95% 100%
g 98% || 2576 | 1382 92 319 2.6 84% 73% 97% 100%
sto 85% 291 181 14 93 2.2 56% 54% 79% 98%
95% || 1365 818 48 233 24 74% 64% 94% 100%
98% || 2504 | 1382 87 318 2.6 83% 72% 97% 100%
lot 85% || 2087 367 | 135 309 3.3 75% 74% 97% 98%
95% || 3594 | 1187 | 135 310 3.3 76% 74% 97% 98%
98% || 6624 | 2083 | 141 314 3.3 76% 74% 98% 98%
130 cover | 85% | 2300 367 | 134 323 3.7 71% 70% 93% 84%
°|? 95% || 4547 | 1187 | 135 323 3.7 71% 70% 93% 84%
; 98% || 8983 | 2083 | 135 323 3.7 71% 70% 93% 84%
= det 85% 992 367 54 137 2.6 68% 65% 92% 100%
E 95% || 2424 | 1187 | 103 313 2.7 78% 72% 97% 100%
g 98% || 4298 | 2083 | 115 318 2.8 80% 74% 98% 100%
sto 85% 680 367 21 110 2.4 55% 58% 90% 98%
95% || 2262 | 1187 89 316 2.6 75% 70% 96% 100%
98% || 4063 | 2083 | 107 316 2.8 78% 73% 98% 100%
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