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General Introduction

Scientific background and motivation

The heart has four chambers, the left atrium, the left ventricle, the right atrium and the
right ventricle, and four valves that ensure unidirectional blood flow during the cardiac
cycle. A cardiac cycle consists of two phases : diastole and systole. In the diastole phase,
heart ventricles are relaxed and atria and ventricles fill with blood. In the systole phase,
the ventricles contract and eject blood into the arteries. Throughout the cardiac cycle,
blood pressure increases and decreases.

Valves are passive tissues that open and close under blood pressure forces. Anatomically,
they are divided into two types, the semilunar (pulmonary and aortic) and the atrio–
ventricular (mitral or bicuspid and tricuspid) valves. The semilunar valves are circular
and composed of three similarly sized leaflets. Leaflets are attached to the wall at the
so–called basal attachment and move freely on their opposite edge. The highest points of
the basal attachment meet the other leaflets to form commissures. The atrio–ventricular
valves are more complex from a morphological point of view, with unsymmetrical geome-
tries. The mitral valve is composed of two leaflets whereas tricuspid valve is composed
of three leaflets, all with different shapes and sizes and continuous basal attachment
all around the valves. To prevent the valves from turning over, leaflets are attached to
the inner walls of the ventricles by wired structures called chordae tendineae. Semilu-
nar valves prevent the reverse blood flow into the ventricles during diastole while the
atrio–ventricular valves prevent the reverse blood flow from ventricles to the atria during
systole. The loading cycle of the valves is repeated every second so that, during a lifetime
period, they will open and close nearly three billion times [Sacks et al. 2009]. A heart
blood flow diagram is shown on fig. 1.

In the USA in 2010, the number of deaths directly attributable to valvular heart diseases
was 23 141 [Roger et al. 2012]. Taking into account valvular diseases as underlying cause
of the death or being otherwise mentioned on the death certificate, the mortality number
increases to 47 830. From two studies on 16 501 and 11 911 participants, the prevalence
of any valve diseases adjusted to the entire US population range from 1.8 to 2.5%. This
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prevalence also increases with ages : 0.3–0.7% from 18 to 44 years, 0.4–0.7% from 45 to
54 years, 1.6–0.9% from 55 to 64 years, 4.4–8.5% from 65 to 74 years and 11.7–13.3%
over 75 years.

Fig. 1 – Heart circulation diagram : ¶ deoxygenated blood returns from the body to fill the
right atrium of the heart creating a pressure against the tricuspid valve ; · contracting the right
atrium blood pressure forces the ticuspid valve to open filling the right ventricle ; ¸ contracting
the right ventricle the pressure forces the tricuspid valve to close and the pulmonary valve to
open sending deoxygenated blood toward the lungs ; ¹ oxygenated blood returns from the lungs
and fills the left atrium creating a pressure against the mitral valve ; º contracting the left
atrium blood pressure forces the mitral valve to open filling the left ventricle ; » contracting the
left ventricle the pressure forces the mitral valve to close and the aortic valve to open sending
oxygenated blood toward the body (retrieved from http://biology-forums.com)

Two kinds of diseases can affect heart valves : insufficiency (or regurgitation) when the
valve does not close completely, allowing a blood leak backward, and stenosis, which
is more dangerous, when the tissues become stiffer (due to calcification for instance)
preventing the complete opening of the valve. Depending on the severity, treatment
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may be with medication but often involves valve repair or replacement with an artificial
valve. More than 280 000 prosthetic valves are implanted annually worldwide [Pibarot
et al. 2009] and this number will drastically increase in the next decades with population
growth and aging.

We subsequently focus on the Aortic Valve (AV). Among the different valves, AV presents
indeed the highest mortality. Aortic valvular diseases were directly responsible of 15 576
deaths in 2010 in the USA and considered as an underlying cause of death in 31 746
cases [Roger et al. 2012]. When valvular replacement is needed, two artificial solutions
are currently available : the mechanical and the biological prostheses (fig. 2). They are
designed to mimic the function of natural valves.

(a) Mechanical model (b) Biological model

Fig. 2 – Examples of prosthetic AVs (retrieved from http://ctsurgerypatients.org)

Mechanical prostheses Three basic types of mechanical valve design exist : bileaflet,
monoleaflet and caged ball (no longer implanted) valves. They are entirely manufactured
from artificial materials. Modern prostheses are made of pyrolytic carbon or titanium
coated with pyrolytic carbon. The sewing ring used to suture the valve to the walls is
usually made of Teflon (polytetrafluoroethylene) or polyester. Mechanical prostheses have
a good durability (usually much greater than 20 years). However, they suffer from major
issues. They produce a unphysiological flow that requires a lifelong anticoagulation
treatment. Their rigid leaflet structure can also be responsible of cavitation leading
sometimes to failure. Finally, the implantation requires an open–heart surgery. A picture
of the suture of a mechanical prosthesis is shown on fig. 3.

Biological prostheses Unlike mechanical prostheses, bioprostheses mimic the anatomy
of the native valves. They are made of treated (glutaraldehyde) porcine valvular tissues or
bovine pericardium mounted on a supporting structure or stent. Biological prostheses of-
fer a better biocompatibility. Due to their improved hemodynamics, the risk of thrombus
formation is low and usually does not require the use of anticoagulant drugs. However,
their durability is limited. They last between 10 to 15 years, sometimes less, and clinical
follow–ups indicate that more than 50% of patients develop complications within 10 years
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[Mohammadi et al. 2011]. Indeed, as bioprostheses lack living cells, degenerative processes
induced by mechanical fatigue, enzymes, and calcium deposition slowly deteriorate the
structural components and lead to progressive valve degeneration [Simionescu 2004]. The
implantation often requires an open–heart surgery but percutaneous implantation also
exists when the patient is considered to be at high or prohibitive operative risk. In that
case, a percutaneous transfemoral approach is usually chosen. Nowadays, approximately
55% of the implanted prostheses are mechanical and 45% are biological [Bezuidenhout
et al. 2013]. Autografts and allografts which are natural valves respectively obtained
from the patient or a cadaver donor, represent together a small percentage due to their
limited availability and specific surgical skills. In order to prevent or minimize the impact
of the implantation, Pibarot et al. [2009] worked on a patient specific optimal selection
method of the prosthesis.

Fig. 3 – AV replacement surgery with a mechanical prosthesis (retrieved from http://
biology-forums.com)
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Context

Context

The heart valves research and development area is of particular importance and currently,
none of the mechanical or biological solutions are optimal. Thus, for several decades soft
tissues biomechanical research has been focused on tissues mechanical characterization
and numerical modeling for a better understanding of their physiological and patholog-
ical behaviors. One of the main purpose of these studies was the design of engineered
soft tissues with mechanical properties as close as possible to those of natural ones.
Readers can refer for instance to Mohammadi et al. [2011] for a review on the model-
ing and design of prosthetic aortic heart valves. Among others, Amoroso et al. [2012],
Rong Fan et al. [2013] and Courtney et al. [2006] worked on scaffold for tissue engineering.

Polymeric prostheses represent a promising alternative. They can have a similar geometry
to natural valves since they are made of flexible polymer films. This design ensure the
ability to closely reproduce natural hemodynamics and generally do not require anti-
coagulant treatment. It is also expected that polymeric biomaterials can be treated to
improve their biocompatibility, mainly hemocompatibility (minimum of inflammation
and thrombogenicity) and biostability (resistance to oxidation and hydrolysis). However,
polymeric prostheses currently suffer from insufficient material properties to be suitable
for long–lasting implantation. After 40 years of development, results are still unsatisfac-
tory. No polymeric valve has been clinically successful yet to be permanently implanted.
They remain relegated to use in temporary ventricular assist devices for bridging heart
failure to transplantation [Bezuidenhout et al. 2013]. Improving durability while keeping
a good biocompatibility would allow polymeric prosthetic valves to become a clinical
reality for surgical implantation and suitable for minimally invasive use (transfemoral ap-
proach for instance). Bezuidenhout et al. [2013] propose a review of the different types of
polymeric replacement heart valves currently available and identify the needs to provide
longterm durability and biocompatibility. A vast literature exists on biocompatibility
of polymeric materials. Reader can refer for instance to Ghanbari et al. [2009] and Ki-
dane et al. [2009] for recent advances and emerging hopes in polymers, nanomaterials
and surface modification techniques that can lead together to the emergence of novel
biomaterials for prosthetic heart valves with improved biocompatibility and biostability.
In addition, progresses in manufacturing techniques can be expected and could lead to
acceptable material durability.

Objectives and outlines of the document

The design of polymeric valves may be split into a structural design and material prob-
lem. This work is part of a Carnot M.I.N.E.S (Méthodes InNovantes pour l’Entreprise
et la Société) project which aims to develop polymeric biomaterials for prosthetic heart
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valves following a biomimetic approach. Biomimetism is a promising approach in the
field of tissue engineering in order to obtain better mechanical properties from complex
polymeric materials inspired from real valvular tissues. Engineered polymer materials
should tend toward natural tissues mechanical properties. Thus, the objectives of this
PhD thesis were essentially focused on the material problem, namely the mechanical
characterization of reference natural tissues and their finite element modeling at the
tissue level using relevant material models, since the development of new implants can
greatly benefit from finite element modeling coupled with relevant experimental results.
Due to the difficulty to obtain healthy human AV, we worked on porcine tissues.

This document consists of four chapters. Chapter 1 is dedicated to the mechanical
characterization of porcine valvular tissues through biaxial tensile tests. For the purpose
of this study, a custom biaxial tensile device has been designed and built at Cemef
MINES ParisTech (Centre de Mise en Forme des Matériaux). The device is coupled with
a digital image correlation system. Mechanical tests are performed on both frozen and
fresh samples. The microstructure which is responsible for the mechanical behavior of the
tissues is also studied using confocal microscopy. Chapter 2 is devoted to the numerical
modeling and the implementation of three material models of the literature in a custom
laboratory version of the finite element software FORGE® NXT1. A phenomenological
approach is chosen in order to represent the tissue at the macroscopic level. However,
selected models are able to take into account some structural information through angular
integration or generalized structure tensor approaches. Hence, an algorithm is developed
in order to transpose experimentally observed microstructural information into finite
element models. From numerical models of chapter 2 and experimental results of chapter
1, a material model parameters identification is carried out in chapter 3. An inverse
analysis approach using a metamodel–assited evolutionary algorithm developed at Cemef
MINES ParisTech is chosen. This allows to select the most accurate model for predicting
the mechanical behavior of the tissues with its associated set of material parameters.
Finally, in chapter 4, firsts elements of a fluid–structure interaction model in FORGE®

are introduced. The fluid part is intended to model bloodstream and interactions between
blood and valvular tissues. A smoothed particle hydrodynamic method is chosen for its
relative simplicity and its Lagrangian formulation. The implemented fluid solver is then
weakly coupled with the finite element solver used for the solid material. The last part of
the document summarizes the main developments and achievements of the current work.
Suggestions of improvement and future work are also presented.

1http://transvalor.com
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Chapter 1. Aortic valve tissues

1.1 Introduction

Soft tissues consist of protein fiber networks and cells immersed into a ground substance.
They can grow and remodel reacting to their environment (i.e. chemical and mechanical
changes). Protein fibers refer to collagen and elastin while the ground substance includes
all the other components of the extracellular matrix,mainly water and glycosaminoglycans
(GAGs). Collagen is the main structural protein, responsible for the tissue stiffness and
cohesion. It consists of multiple tropocollagen molecules that form collagen fibrils via
crosslinks. Multiple fibrils form fibers, which create a network. Several types of collagen
can be defined depending on the arrangement of the protein molecules. Elastin is a highly
elastic protein that contributes to the tissue cohesion and confer its elasticity. These
elastic properties result from the ability of proteins to unfold reversibly allowing the tissue
to go back to its original shape after stretching or contracting. Elastin is synthesized and
secreted in the extracellular matrix during the growth period. With aging, the amount of
available elastin decreases and is gradually replaced by collagen, making the tissue stiffer.
Glycosaminoglycans consist of long unbranched polysaccharides, usually attached to a
protein to form proteoglycans (PGs). Highly hydrated, they may facilitate the diffusion
of nutrients and oxygen across tissues. Microscopy images of some constituents that can
be found in soft tissues are shown on fig. 1.1.

a

b

c

d

Fig. 1.1 – Microscopy images of some constituents : (a) confocal image of wavy collagen fiber
bundles ; scanning electron microscopy images of (b) individual type I collagen fibers (c) elastin
structure isolated from AVs using NaOH digestion [Vesely 1997] (d) AV interstitial cell on collagen
fiber showing long cellular extensions [Taylor et al. 2003]

AV leaflets are tri–layered structures mostly composed of wavy type I collagen, elastin
and GAGs [Sacks et al. 2009]. They contain about 50% of collagen and 13% elastin on
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a dry weight basis. Stella and Sacks worked on the characterization of the mechanical
properties of the layers [Stella and Sacks 2007] and Buchanan and Sacks on the interlayer
micromechanics [Buchanan et al. 2013]. From these studies, the fibrosa which constitutes
the upper part of the leaflet, appears to be the main layer regarding the mechanical
behavior. The fibrosa is the thickest layer (∼ 40% of the total thickness) and is essentially
composed of undulated and strongly oriented collagen fibers. This layer is composed of
50% collagen (from which 90% of type I collagen) and 10% elastin on a dry weight
basis [Mohammadi et al. 2011]. The fibrosa is considered to be the primary structural
layer due to its amount of collagen organized into large fibers. The bottom layer (∼
30% of the total thickness) is called ventricularis. Mainly composed of elastin (20%)
and collagen fibers (almost 50%) this layer is highly elastic and appears to assist in
reducing large radial strains [T. C. Lee et al. 2001; Vesely 1997]. Because of its high
elastin concentration, the ventricularis carries slight compressive preload on the fibrosa
layer at rest [Vesely 1997]. The central spongiosa layer contains a high concentration of
GAGs. Its physiological function is believed to be a damping of the leaflet structure and
to lubricate the fibrosa and ventricularis as they shear and deform [Eckert et al. 2013;
Lovekamp et al. 2006]. The presence of collagen and elastin fibers confer to the spongiosa
a good resistance to delamination through collagen fiber interconnections between the
fibrosa and the ventricularis layers. Some authors distinguish a fourth layer, the lamina
arterialis, closely related to the fibrosa and located on the outflow side of the leaflet (fig.
1.2). A population of interstitial cells with characteristics of myofibroblasts also resides
in AV tissues [Mulholland et al. 1997]. Their role is to maintain tissue structural integrity
through protein synthesis and enzymatic degradation. Being attached to the surrounding
matrix, they transmit load at the cellular level but does not contribute significantly to
the leaflet mechanical behavior [Merryman et al. 2006].

12

3

4

1 – leaflet
2 – muscle
3 – sinus wall
4 – aortic trunk

arterialis
fibrosa
spongiosa
ventricularis

Fig. 1.2 – Illustration of the AV displaying the leaflet structure [Schenke-Layland et al. 2009]
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During a cardiac cycle AV cusps are submitted to three physiological loading modes :
tension, shear and flexure. However, for feasibility issues, most of the characterization
work that can be found in the literature are carried out on tension testing. Biaxial ten-
sile tests are usually performed for valve leaflets because uniaxial loadings are known
to lead to non–physiologic deformation due to fibers rotations allowed by the uncon-
strained specimen edges. Also, the small strain domain of uniaxial tensile tests may lead
to non–unique solutions during inverse analysis procedure. In order to estimate relevant
material parameters numerous experiments over a wide range of mechanical solicitations
are commonly made [Sacks 1999]. Billiar et al. [2000b] have studied the multi–protocol
biaxial mechanical behavior of AV fresh and glutaraldehyde–treated cusps (chemical
treatment of biological tissues widely used for bioprosthetic heart valves). The leaflets
time–dependent mechanical properties were investigated by Stella, Liao, et al. [2007] and
Borghi et al. [2013]. AV tissues appears to be quasi–elastic materials under physiological
planar biaxial loading states, with negligible time-dependent effects, unlike most of soft
tissues that exhibit vicoelastic behavior. The authors speculate that this specific behavior
results from the interactions between the collagen fibers and the surrounding matrix at
the molecular level, especially the stabilizing effect of glycosaminoglycans. However, as
the study of soft biological materials presents many theoretical and practical difficulties
especially due to their highly heterogeneous structure, optical techniques are occasionally
used to measure two– or three–dimensional angular fiber distributions. For instance,
Billiar and Sacks developed a method using Small Angle Light Scattering (SALS) on a
tensile device to quantify the fiber kinematics of tissues under biaxial stretching [Billiar
et al. 1997; Billiar et al. 2000b].

As biological soft tissues usually present significant regional heterogeneity due to their
local fibers arrangement, local composition and their geometrical non–uniformity, they
remain challenging to be accurately characterized. Thus, the use of non–invasive video
analysis systems for local full–field surface measurements, widely used in engineering re-
search, seems to have a great potential. However, the reported biomechanical applications
of these methods are still rather limited. Among them, the most popular technique is the
Digital Image Correlation (DIC). This is an optical method which uses high resolution
cameras to measure surface strain fields and displacements by tracking grey level intensity
values on the sample surface during the deformation. D. Zhang et al. [2004] present the
fundamentals of DIC with advanced applications to biological materials. Among exam-
ples of DIC use for biomechanical applications Deplano et al. [2016], for instance, used
biaxial tensile tests and three–dimensional DIC (3D–DIC or stereoscopic DIC) on porcine
ascending aorta. Badel et al. [2012] used 3D–DIC coupled with a material model for the
mechanical identification of layer–specific properties of mouse carotid arteries. Sutton,
Ke, et al. [2008] used a microscopic 3D–DIC system for strain field measurements on
mouse carotid arteries. Luyckx et al. [2014] studied human tendon tissue using 3D–DIC,
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and Boyce et al. [2008], bovine cornea through inflation tests.

In this chapter a mechanical characterization of porcine AV leaflet tissues was performed
using biaxial tensile experiments coupled with DIC measurements. The mechanical behav-
ior of soft tissues being closely related to their fibrous architecture, confocal microscopy
was also used to obtain local planar angular collagen fiber distributions in the fibrosa
layer. These material and structural information will allow to accurately calibrate valvu-
lar tissue models through inverse analysis procedures (see chapters 2 and 3). In section
1.2 we introduce the biaxial device and the experimental protocol used for the mechanical
characterization of the tissues. The structural characterization, with local collagen fiber
orientations measurements using confocal microscopy is detailed in section 1.3. Finally,
results are presented and discussed in section 1.4. A summary concludes the chapter
(section 1.5).

1.2 Mechanical characterization

In this section we present the mechanical characterization of AVs through biaxial tensile
tests coupled with full–field surface measurements. Due to the difficulty to obtain healthy
human AV samples, we have worked on porcine tissues.

1.2.1 Specimen preparation

Two frozen (stored at −20 °C) and two fresh porcine hearts (about 5 months, 80 kg)
were obtained from a local provider. AV leaflets were excised using a bistoury (fig. 1.3).
For each specimen, one square sample of about 10 mm side length was isolated from the
central (lower belly) region of the leaflet. Similarly to Billiar et al. [2000b], samples were
stored into 0.9% isotonic saline (NaCl) at room temperature during the preparation of
the experiment.

Fig. 1.3 – Porcine AV leaflet excised

1.2.2 Biaxial device

A custom biaxial tensile test device, funded by MAT XPER1 company, was designed and
built in our laboratory for the purpose of this study (fig. 1.4). The device is equipped

1http://mat-xper.com
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with four synchronized motorized arms, allowing a maximum displacement of 25 mm
each and a minimum step of 0.05 µm. Speed ranges from 0.07 µm/s to 26 mm/s. Each
arm comprise a 50 N load cell with a sensitivity of 0.001 N. Following Sun et al. [2005]
who studied the effect of boundary conditions on the estimation of the planar biaxial
mechanical properties of soft tissues, specimens are maintained with a rake of five hooks
on each side (at initial distance of 1 mm from each other). These boundary conditions
appear to provide a better stress uniformity than clamps. The minimum area between the
hooks is 7×7 mm2. Two cameras are placed above the specimen in order to measure full–
field surface strain using a high contrast speckle pattern and 3D–DIC software. It consists
of 5 Mp resolution PIKE® cameras from Allied Vision Technologies1, with a maximum
acquisition frequency of 14 fps. Low distortion fifty millimeter Schneider–Kreuznach2

photographic lenses are mounted. In order to constantly and uniformly illuminate the
sample’s surface, two coherent light sources are placed above. Arms are controlled in
displacement with a custom LabVIEW software (National Instruments3). Each axis
stops independently when imposed force threshold is reached in order to prevent tissue
degradation. During the experiment, samples are immersed into a bath of 0.9% isotonic
saline at room temperature. See appendix A for further information.

Fig. 1.4 – The biaxial tensile device

1http://alliedvision.com
2http://schneiderkreuznach.com
3http://ni.com
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1.2.3 Digital image correlation method

As stated in the introduction, DIC is an non–invasive optical technique that uses im-
age recognition to analyze and compare grey levels of pixels from digital images of the
sample’s surface. The basic principle is to build a displacement field from pictures in
the initial and a deformed configurations by tracking similar points in both images (fig.
1.5). In practice, its a local collection of pixel values (called “subset”) with a signature
that maximizes a similarity function which is tracked. The subset displacements and
deformations are tracked by checking possible matches at several locations. Each location
is graded depending on a similarity score calculated using a correlation function (clas-
sically a sum of squared differences of the pixel values). High resolution and low noise
cameras need to be used to take pictures of the sample during deformation. In order to
make the tracking procedure possible, the surface of the sample has to be randomly and
highly contrasted. If the surface does not naturally allow tracking, a high contrast speckle
pattern (paint, ink, powder, . . . ) is usually applied. The method has a large number of
applications for two– and three–dimensional deformation measurements for a large size
of scales and a large range of time scales. To have more detailed information, the reader
is highly encouraged to refer to the book written by Sutton, Orteu, et al. [2009].

Fig. 1.5 – Example of subset tracking during deformation

1.2.4 Experimental protocol

First of all, the 3D–DIC system was set up. The focus of each camera was made using
the maximum aperture size. Then the opening of the aperture was reduced in order
to increase the depth of field during image recording. The depth of field is important
to maintain focus in case of out–of–plane displacements. The system was calibrated
using a standard calibration grid (a panel with a regular points grid) provided with
the DIC system. The accuracy of the whole procedure is highly dependent of the qual-
ity of the calibration which ensures the dimensional coherence of the system. During
this process the distance from the system to the sample and the orientation of the
cameras are determined. We used the VIC–3D™ software from Correlated Solutions1

for the image acquisition and the DIC processing over a selected finite area of observation.

In order to capture local strain using full–field surface measurement, a speckle pattern
was made on the samples surfaces. We experienced many difficulties to find a paint

1http://correlatedsolutions.com
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or ink able to adhere to the tissue ones immersed into the isotonic saline. In order to
preserve there mechanical properties, AV tissues, which contain a lot of water, have to
remain moist during the application time of the paint. However, the moisture of the
leaflet surface prevents a fast drying of the paint.

After several attempts, we selected the black “Bombay India ink”, suggested in Genovese
et al. [2011], which is a waterproof and quick–drying ink. Moreover, following the same
authors, this ink appears to not affect the tissue mechanical behavior. To facilitate the
application of the ink, the surface of the sample was quickly dried with a jet of compressed
air at room temperature. Then, the ink was sprayed over the sample using an airbrush
at low pressure (0.5 bar with a 0.5 mm pipe) until the speckle pattern uniformly covers
the surface. The specimen dried for less than five minutes at ambient air before being
mounted on the biaxial device and immersed into isotonic saline (fig. 1.6).

(a) Sample immersed (b) Speckle pattern

Fig. 1.6 – Sample mounted on the biaxial tensile devise

A small pre–load of 0.01 N was initially applied to slightly stretch the samples. From this
loading state, specimens were preconditioned1 for three monotonic loadings at 0.01 mm/s
with a force threshold of 0.5 N on each axis. Samples were submitted to seven loading
conditions (Fx : Fy) = {(1 : 1), (1 : 0.5), (1 : 0.25), (1 : 0.1), (0.1 : 1), (0.25 : 1), (0.5 : 1)}
at 0.01 mm/s, where the couple (Fx : Fy) represents the force threshold ratio on each
axis depending on the loading protocol. The maximum force threshold is fixed to 0.5
N. This value was chosen to correspond to the in vivo membrane tension peak of 60–80
N/m which occurs during diastole [Sacks et al. 2009]. This means for instance that for a
(1 : 0.5) loading Fx = 0.5 N and Fy = 0.25 N. Thus, each axis stops independently when
it reaches its own force threshold. As aortic leaflet tissues showed negligible sensitivity to
strain rates ranging from quasi–static to physiologic [Stella, Liao, et al. 2007], only one
displacement velocity was used for the experiments. Finally, once the sample has been

1Preconditioning is usually essential in biomechanics is order to stabilize the mechanical response of
the tissue (softening) and tend toward the in vivo mechanical behavior.
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removed five thickness measurements at different locations were made using a micrometer
(with a resolution of 2 µm) and averaged. Thickness measurements were made after the
experiment in order to avoid damaging of the tissues and to take into account the loss
of water induced by the deformation.

For the post–processing on the 3D–VIC™ software, subset size and subset overlapping
(in px) were chosen with respect to the speckle pattern size, distribution and contrast
(fig. 1.7) in order to obtain the best compromise between accuracy and analysis time
[Candau et al. 2016]. Note that the equivalence is of about 73 px for 1 mm. Three
virtual extensometers were placed and averaged on each axis in order to measure real
displacements of the sample’s boundaries. Strain was averaged in the central area of the
specimen. The preconditioned state was used as reference state for strain computation.

(a) Selection of the area of interest (b) Subset grid size (29 px)

Fig. 1.7 – Example of subset choice on 3D–VIC™

1.3 Fibers orientation measurement

In this section we study the collagen network structure in the fibrosa layer of porcine
AVs. The objective was to get information on local fibers orientation.

1.3.1 Specimen preparation

Two fresh samples were observed using confocal laser scanning microscopy. The first
sample was a square excised from the central (lower belly) region and previously tested
on the biaxial tensile device. The second sample was a whole leaflet which did not
undergo any ex vivo mechanical loading. The surface of the samples was carefully dried
with a fabric in order to stuck them in a Petri dish, in their undeformed state, using a
cyanoacrylate adhesive. The glue was applied on the ventricularis side so that the fibrosa
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layer can be observed. Finally, the Petri dish was filled with 0.9% isotonic saline and fixed
on the microscope stage. After a few minutes, the tissue was rehydrated and stabilized.

1.3.2 Confocal laser scanning microscopy and experimental setup

Confocal microscopy is based on the fluorescence principle, usually with a laser as light
source. The laser beam goes through a pinhole, is reflected by a mirror and is finally
focused on the specimen thanks to an objective lens. The surface of the specimen is
scanned by moving the pinhole in an optically conjugate plane in front of a detector.
Thus, only light produced by fluorescence coming from the focal plane can be detected
and participates to the image formation. Out–of–focus light is optically eliminated by the
confocal pinhole. Moreover, confocal microscopy allows to reconstruct three–dimensional
data by recording a stack of two–dimensional images taken at successive focal planes
through the sample. This is called “optical sectioning”. Readers may refer for instance
to the work of Laurent et al. [1992] for further information on the working principle of
confocal microscopes.

The experiments were made at the Hubert Curien laboratory (Saint–Étienne, France) on a
Leica TCS SP2 SE confocal microscope (fig. 1.8). The laser used was a Chameleon Vision
from COHERENT®. A ×40 water immersion objective was mounted on the microscope
and the zoom was set to ×1.7 to get closer to the optimal pixel size (fig. 1.9). Resulting
images were 12–bit images with a total size of 220× 220 µm2 and a pixel resolution of
1024× 1024. In order to excite collagen fibers in all directions, a laser beam of circularly
polarized light at 830 nm was used.

Fig. 1.8 – Confocal microscope Leica TCS SP2 SE form Hubert Curien Laboratory (Saint–
Étienne, France)
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1.3. Fibers orientation measurement

(a) Laser and optical system (b) Water immersion objective (×40)

Fig. 1.9 – Optical system and objective

1.3.3 Experimental protocol

For both samples, the reference point was taken on a grid placed below the Petri dish
aside from the sample. From this point, a series of images were made knowing the planar
coordinates of each measurement and displacements were applied using a micrometric
xy travel stage. Due to the waviness of the samples’ surfaces and the spacing between
successive acquisitions, the focus had often to be made manually making the overall
protocol time consuming.

On the squared sample, images acquisitions were made each millimeter in the circumfer-
ential direction and half millimeter in the radial direction (fig. 1.10). An area of 5 × 5
mm2 located at the center of the sample was scanned. On the leaflet sample, images
acquisitions were made with a measuring interval of 2 millimeters in both directions (fig.
1.10). An area of approximately 26× 12 mm2 was scanned.

0.5

1
2

2

Fig. 1.10 – Scheme of the observation areas positions (mm) on both samples
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1.4 Experimental results

In this section we present experimental results obtained from biaxial tensile tests with
full–field surface measurements and collagen fibers observations from confocal images of
AV samples. Local fiber orientations information provided by confocal images and the
mechanical response of the tissue will be later use for the identification of material models
parameters using inverse analysis procedures (chapter 3). To the best of our knowledge,
3D–DIC has not previously been applied to the measurement of local biomechanical
properties of AVs.

1.4.1 Biaxial tensile tests results and discussion

Conventions

Hereinafter, we define the radial and circumferential axes of tension as stated on fig. 1.11.
They respectively correspond to the direction of the radius from the center of the valve
and the direction following the circumference.

circumferential

radial

free edge

basal attachment

commissure commissure

Fig. 1.11 – Scheme of an excised AV leaflet

Thickness measurements

The averaged thickness measurements of the samples are presented on fig. 1.12. Each bar
of the histogram represents the averaged thickness of the three leaflets of a valve with
the maximum and minimum dispersion of leaflets’ averaged thickness from the mean.
No significant dispersion between the valves samples was found, with an average value
of 0.525 mm. The dispersion between the average thickness of each sample of a valve
ranges from 45 to 97 µm difference with the mean value.

However, this measurements should be taken with caution due to the difficulty to obtain
accurate and repeatable thickness values using a micrometer for practical reasons (softness
of the tissues, heterogeneous thickness, . . . ).
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Fig. 1.12 – Averaged thickness of the samples with dispersion for each valve

Tissue preservation

In order to ensure that the tissue was stabilized after preconditioning and did not yet
damaged during the experiments, a (1 : 1) loading was repeated after the complete loading
protocol. In fig. 1.13, the first (1 : 1) loading condition of the protocol and the last one
are superimposed for one sample. No significant differences in the mechanical response
were found.
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Fig. 1.13 – (1 : 1) curves at be beginning and at the end of a complete loading protocol on a
sample

3D–DIC measurements on immersed samples

The sample being immersed, the 3D–DIC measurements can be affected by optical re-
fraction at the interface between the media (i.e. isotonic saline for the sample and air for
the cameras). A few people have studied this effect. In Sutton and McFadden [1999], the

19



Chapter 1. Aortic valve tissues

authors showed that increasing errors are introduced as the angle between the optical axis
and the optical interface changes. They conclude that carefully control of the rotation
angle between the specimen and the viewing system during underwater experiments is
sufficient to minimize the effects of orientation variations on full–field surface measure-
ments. Results also indicated that slow fluid motion does not significantly affect these
measurements. However, some authors have developed optimization–based or correction
methods to calibrate cameras. This is the case for instance for Ke et al. [2008] who
present a stereo vision and calibration methodology improving 3D–DIC measurements
accuracy on submerged objects.

No correction were applied to our correlation system. However, to be sure of the mea-
surements accuracy despite of the isotonic saline bath, a 3 mm displacement rigid body
motion of a steel plate was captured. The strain field was measured and the displacement
from DIC and the device arm were compared (fig. 1.14). No significant differences were
observed between the device and the DIC measurements of the displacement. Strain
fields had also negligible noise showing that results are not significantly affected by the
samples immersion.
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(a) Displacements comparison (b) Nominal strain εxx

Fig. 1.14 – 3D–DIC error measurement on an immersed plate submitted to a rigid body motion

3D–DIC strain fields

Correlation parameters can significantly affect the strain field. In order to chose relevant
parameters, the influence of the subset size, subset overlapping (or its opposite “step”)
and filter size values was evaluated. The filter size corresponds to the number of data
points used to interpolate the deformation gradient. Hence, the smoothing area is of
dimension step × filter size pixels.

It is known that small subset size associated with large step values results in a strong
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underestimation of the calculated strain [Candau et al. 2016]. Moreover, low step values
improve the strain estimation but also significantly increase the analysis time, and too
low filter size can lead to noisy strain flied. Thus, choosing a subset value adapted to the
speckle pattern size and distribution, it is mandatory to select a suitable combination of
step and filter size. On fig. 1.15, an example of evolution of the averaged strain in a small
area as a function of the smoothing area is presented for a subset size fixed to 21 px. The
step ranges from 1 to 13 px and the filter size from 9 to 25. It appears that the calculated
strain decreases drastically when the smoothing area increases, with a significant loss of
information. A combination of step and filter size product giving the same result also give
equivalent estimation of the strain. Hence we placed at the beginning of the decreasing
slope with a step of 3 px and a filter size of 9 in this example. This area offers the best
compromise between accuracy of the results and analysis time.

101 102

0.28

0.30

0.32

0.34

step × filter size

ε x
x

Fig. 1.15 – Example of nominal strain evolution function of the smoothing area for a subset size
of 21 px

Examples of 3D–DIC strain fields ε on frozen and fresh samples are presented respectively
on tab. 1.1 and tab. 1.2. On those pictures, the strain in the radial direction corresponds to
εxx and the strain in the circumferential direction corresponds to εyy. Nominal strain was
used. On both frozen and fresh samples, results showed highly heterogeneous strain fields
in all directions (with also shear) for all loading conditions. Local strain concentrations
generated by the boundary conditions can be observed around the rakes and at the
sample’s corners. However, these local strain concentrations appear to not strongly affect
the 25% central area. Indeed, the boundary conditions used do not allow large shear
deformations resulting in a relatively uniform load distribution. Due to the anisotropic
mechanical behavior of the tissue and the high tensile stiffness of the collagen fibers,
circumferential direction deforms less than the radial direction.
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Tab. 1.1 – Nominal strain and norm of the planar displacement field at the end of several loading
conditions on a frozen leaflet
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Tab. 1.2 – Nominal strain and norm of the planar displacement field at the end of several loading
conditions on a fresh leaflet
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Tension–strain data

As samples are thin, a plane stress state is assumed. The classic membrane stress (or
tension) in N/m was used in order to avoid the use of ambiguous thickness measurements
in the stress calculations as for instance in Billiar et al. [2000b]. The strain along each
direction was averaged in a circular area at sample’s center. An example of the influence
of the size of this area on the strain value is shown on fig. 1.16 and fig. 1.17 respectively
for frozen and fresh tissues. In both cases, the averaged strain increases with the surface
area getting closer to the boundary conditions. However, in the 25% central region the
effect of the surface area on the measurements remains low. Tension–strain results for
frozen and fresh samples are shown on fig. 1.18 and fig. 1.19 for a single loading. A
significant dispersion of the results in both, radial and circumferential directions can be
observed. Furthermore, fresh samples present meaningful differences in their mechanical
response in comparison to frozen samples, such as lower strain and stress levels and a
stronger coupling between the tension axes (fig. 1.20). In order to avoid the ambiguous
calculation of an averaged behavior, one representative sample for each frozen and fresh
tissues was chosen to present results of a full loading protocol respectively on fig. 1.21
and fig. 1.22.
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Fig. 1.16 – Example of averaged strain on a frozen sample on three different areas
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Fig. 1.17 – Example of averaged strain on a fresh sample on three different areas
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Fig. 1.18 – Tension–strain results for the (1 : 1) loading condition on six frozen samples for both
circumferential and radial axes
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Fig. 1.19 – Tension–strain results for the (1 : 1) loading condition on six fresh samples for both
circumferential and radial axes
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Fig. 1.20 – Example of superposition of the tension–strain results for a representative frozen
(blue) and fresh (red) sample using (1 : 1) loading condition

25



Chapter 1. Aortic valve tissues

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(1 : 1)

cir
rad

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(1 : 0.5)

cir
rad

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(1 : 0.25)

cir
rad

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(1 : 0.1)

cir
rad

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(0.1 : 1)

cir
rad

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(0.25 : 1)

cir
rad

0 0.2 0.40

50

100

Nominal strain

T
(N

/m
)

(0.5 : 1)

cir
rad

Fig. 1.21 – Tension curves on one representative frozen sample for the seven loading conditions
of the experimental protocol
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Fig. 1.22 – Tension curves on one representative fresh sample for the seven loading conditions
of the experimental protocol
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Discussion

Like most soft tissues, the AV tissue structure with a collagen fibers network embedded
in an elastin matrix is responsible for their anisotropic behavior. Results presented above
are consistent with literature data, highlighting the well–known highly non–linear me-
chanical behavior of these tissues. This behavior is imputable to the increasing number of
initially crimped collagen fibers which are activated with deformation, starting to carry
a load. Liao et al. [2007] have investigated the relation between collagen fibril kinemat-
ics (rotation and stretch) and tissue–level mechanical properties of mitral valves tissues
under biaxial loading using SALS. According to their findings, collagen fibrils remain in
their unstrained configuration until the beginning of the highly non–linear region of the
tissue–level stress–strain curve. From tension–strain curves (fig. 1.21 and fig. 1.22), it can
be clearly observed that the tissue is much more compliant in the radial direction than in
the circumferential one, inducing large extensibility disparities. This mechanical response
has to be compared to the fibrous structure. However, from an histology point of view
it is known that collagen fibers in the fibrosa are mainly oriented in the circumferential
direction (fig. 1.11), making the tissue very stiff. In the fibrosa, elastin plays a minor role
and is only predominant in terms of mechanical response at low stretch, when most of
the collagen is crimped. In the ventricularis, elastin fibers are predominately oriented in
the radial direction. According to Vesely [1997], in this layer elastin participates equally
with collagen during initial circumferential stretches but dominates the radial behavior,
making the tissue response more compliant. This radial extensibility is important during
valve closure phase, in order to prevent retrograde flow by ensuring leaflets’ co–adaptation.

For both, frozen and fresh samples 3D–DIC measurements showed highly heterogeneous
strain fields (tab. 1.1 and tab. 1.2). Thus, a complete inverse procedure on the force–
displacement is required to exploit the experimental results. However, the strain and
stress levels were significantly lower for fresh tissues. A strong coupling between the axes
can also be observed. When one axis stops moving, the displacement on the other axis
is responsible for fibers rotations. These fibers rotations induce significant realignments
and decreasing strains can occur on the immobile axis. Thus, decreasing strain appears
in the circumferential direction for conditions with low circumferential strain and large
radial strain ((0.1 : 1) for instance). This phenomenon is much more visible on fresh
samples showing that the freezing of the tissue probably damages the fibrous structure.
Experimental results showed an important scattering of the mechanical response between
the samples, for both fresh and frozen conditions, but no significant difference between
the leaflets of a same valve (or from different valves) was observed. The last observation
should be taken with caution due to the limited number of specimens. For instance, in
a recent study on the mechanical properties of aged human cardiac valves (70.1 ± 3.7
years old) some differences between non–coronary, left coronary and right coronary aortic
leaflets’ mechanical response were highlighted [Pham et al. 2017]. A good agreement was
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found when superposing (1 : 1) loading conditions at the beginning and at the end of
the protocol showing that the overall protocol did not affect the mechanical properties of
the samples, i.e. tissue integrity is preserved during the experiments and the mechanical
behavior is repeatable after preconditioning (fig. 1.13). Thus, the scattering observed
does not likely come from sample deterioration during the experiment. However, it can
be related to tissue variability, and more importantly to the alignment of the sample
with respect to the stretch axes. Indeed, small misalignment errors could significantly
modifies fibers reorientation and stretch which consequently affect the overall mechanical
response of the tissues. However, the conservation time after excision (from 0 to 48
hours depending on the test) is variable from one leaflet to another and could also affect
the tissue behavior. As significant change in the mechanical behavior between frozen
and fresh tissues was observed, we will subsequently focus our work on fresh samples,
especially for the inverse analysis procedure (see chapter 3).

Limitations

We have limited our study to in vitro experiments of planar biaxial tensile tests that
cannot be directly compared to the complex loading encountered by the leaflets in
vivo. Tension experiments only partially reproduce diastole loading, but not systole.
Moreover, tensile results were obtained in the central region of the leaflet and should not
be generalized to all areas. Other regions, like commissural regions for instance, probably
exhibit a very different mechanical behavior due to their specific fiber arrangement.
Regarding the DIC measurements, the speckle pattern quality varies from one sample
to another due to the difficulty of applying the ink on the surface of AV and may affect
the full–field surface measurements. Moreover, variability induced by the positioning of
the sample with respect to the stretch axes makes the interpretation of mechanical data
harder, as well as the heterogeneous strain field averaged in the central region. Finally,
this study was carried out on porcine tissues that may differ significantly from human
ones. Indeed, it is known that aged human AV tissues exhibit a higher level of stiffness
than young porcine AV tissues [Stephens et al. 2009; Martin et al. 2012; Oomen et al.
2016; Pham et al. 2017]. However, both thickness and stiffness increase with age and the
literature lacks of experimental data on the mechanical behavior of young human AV
tissues to be compared to the results presented above.

1.4.2 Confocal laser scanning microscopy results and discussion

Histological observations

From an histological point of view a distinct layer above the fibrosa, also highlighted by
some authors [Schenke-Layland et al. 2009], can be observed. This layer, called arterialis,
is composed of a sparse network of heterogeneously oriented collagen and elastin fibers as
well as cells. These microconstituants were observed using two detectors. The channel 1
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with a wave lengths λ = 830 nm revealed specifically collagen fibers, whereas the channel
2 detecting all the wave lengths between 530 nm and 700 nm showed elastin fibers and
cells (fig. 1.23). A superposition of the two channels is shown on fig. 1.24 with channel 1 in
green and channel 2 in red. However, this layer is not considered as meaningful regarding
the overall mechanical behavior of the tissue and will not be considered hereafter.

(a) Channel 1 with λ = 830 nm (b) Channel 2 with 530 < λ < 700 nm

Fig. 1.23 – Collagen fibers (channel 1) and elastin fibers and cells (channel 2) in the arterialis

Fig. 1.24 – Superposition of channel 1 and channel 2

Confocal microscopy results showed that collagen fibers orientations considerably evolve
with depth in the first ∼100 µm from the surface. From a randomly oriented state close
to the surface, collagen fibers changes to an highly aligned state in the fibrosa layer (fig.
1.25). An example of images from a stack of 140 µm depth is shown on fig. 1.26. Once the
fibrosa layer is reached, the orientation of the collagen fibers becomes quite stable with
small orientation changes between 110 and 140 µm depth. Moreover, fibers are mainly
oriented in the focal plane. Thus, assuming negligible orientations change, a single image
was taken in the fibrosa layer for each location instead of a stack.
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(a) Close to the surface (b) In the fibrosa

Fig. 1.25 – Pictures of collagen fibers

(a) 50 µm depth (b) 80 µm depth

(c) 110 µm depth (d) 140 µm depth

Fig. 1.26 – Four pictures of collagen fibers from a total stack of 140 µm depth
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Identification of the collagen orientations

Due to the specific collagen fibers structure of the fibrosa layer, the identification of the
local fiber orientations in an automated way presents many practical difficulties. The
quasi–continuous structure of uniformly crimped fibers makes very challenging the use of
a segmentation algorithm to identify the preferred fibers orientations (see an example fig.
1.28a). Thus, the orientation measurement was made manually using ImageJ1 software.
Ten measured angles were averaged on each confocal image in order to obtain a local
principal fiber direction (fig. 1.27). Despite the low number of measurements, the highly
aligned fibrous structure in the fibrosa makes them relatively accurate. Moreover, this
method allows to only select the fibers in fibrosa layer without pre–treatment when two
layers are visible on an confocal image (fig. 1.28b).

Fig. 1.27 – Illustration of angles measurements with respect to the picture frame

(a) Example of dense fibrous structure (b) Example of layers transition

Fig. 1.28 – Examples of principal orientation identification issues encountered while processing
confocal images

1http://imagej.net
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Locally averaged angles were then interpolated on a fine regular grid using cubic spline
(a Python script presented subsection 2.5.4 was developed to interpolate or extrapolate
angle values on the whole sample). Results are respectively presented on fig. 1.29 for the
square sample and fig. 1.30 for the whole leaflet. Preferred fiber directions were mainly
oriented in the circumferential direction 0 ± 10°. However, regional disparities can be
observed with maximum angles of approximately ±50°.

Fig. 1.29 – Angles (°) interpolated on a real scale grid (mm) for the square sample

Fig. 1.30 – Angles (°) interpolated on a real scale grid (mm) for the whole leaflet
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Discussion

Histological observations showed a thin superficial layer on the outlet side of the leaflet.
This layer, the lamina arterialis, reported in the literature by several authors [Schenke-
Layland et al. 2009; Misfeld et al. 2007; Gross et al. 1931] is mainly composed of a sparse
network of collagen fibers with interstitial cells. However, there is some confusion about
the nomenclature of the layers and only three main layers are usually distinguished : the
fibrosa, the spongiosa and the ventricularis.

On the outlet side of the leaflet, collagen fibers evolve from approximately randomly
oriented close to the surface to highly aligned in depth. In agreement with the literature,
we found collagen fibers mainly oriented in the circumferential direction (±10°) in the
fibrosa layer. However, interpolated results of the local principal angle measurements (fig.
1.29 and fig. 1.30) showed heterogeneously distributed regional variations from −50° to
+50° maximum around the circumferential direction.

Limitations

Due to the important spacing between the images in comparison to the size of the
measurement area, the continuity of the local angular information is not ensured. Thus,
the cubic interpolation on the samples’ surface is a rough approximation and may not
accurately capture angles evolution, especially discontinuities. The highly heterogeneous
samples’ geometry also induced difficulties. The large variations of the thickness did not
allow to acquire images at a constant depth. Moreover, the image quality was affected by
the relief of the samples’ surface. The laser beam can be partially blocked by the relief of
the tissue surrounding the measurement area, in a valley for instance. In that case, images
were usually not usable to identify fibers orientations. Finally, despite the precautions
taken, the angle measurement can be affected by the positioning of the sample on the
microscope stage.

1.5 Summary of Chapter 1

The mechanical characterization of soft tissues often require the use of biaxial tensile
tests, especially in the case of anisotropic behavior. Hence, a biaxial tensile device was
designed and built in the laboratory for the purpose of this study. The mechanical tests
were associated with DIC in order to allow full–field surface measurements. The ex-
perimental protocol consist of a preconditioning stage followed by seven force loadings
carried out with a constant velocity. Four porcine valves, two frozen and two fresh, were
used for mechanical tests. Samples were excised in the central region of the leaflets and
kept hydrated in a 0.9% isotonic saline bath during the experiments. Observed strain
fields are highly heterogeneous for both, frozen and fresh samples. However, these het-
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erogeneities are mainly localized around the gripping system. Experimental results show
an anisotropic hyperelastic behavior with a strong mechanical coupling between the
tensile axes. Moreover, meaningful differences in the mechanical behavior of the two type
of samples is observed, with higher stress and strain levels for the frozen tissues. The
freezing having a detrimental effect on the mechanical properties of the leaflets, we focus
hereinafter on fresh tissue behavior.

In order to determine the local principal collagen fibers direction, the main layer from
a mechanical point of view, the fibrosa, was observed using a confocal microscope. The
study was made at the Hubert Curien laboratory (Saint–Étienne, France) on two fresh
samples. One sample was previously mechanically tested and the other one is an entire
leaflet never tested. A series of images were taken at several locations on the samples’
surface, allowing for each picture to extract a principal fibers direction. Measurements
were then interpolated on the whole sample’s surface. Results show that collagen fibers
in the fibrosa are mainly oriented along the circumferential direction with large local
disparities.

1.6 Résumé en français

La caractérisation mécanique des tissus mous nécéssite souvent de recourir à des essais de
traction biaxiale, en particulier lorsque ces tissus présentent un comportement anisotrope.
Ainsi, une machine de traction biaxiale a été conçue et construite au laboratoire pour
les besoins de cette étude. Les essais mécaniques ont été associés à un système de cor-
rélation d’images numériques afin de mesurer les champs de déplacements surfaciques
des éprouvettes. Le protocole expérimental comporte un préconditionnement suivi de
sept chargements en force effectués à vitesse de déplacement constante. Quatre valves
de porc, deux congelées et deux non–congelées, ont ainsi été testées. Les éprouvettes ont
été excisées dans la région centrale du feuillet et maintenues hydratées dans un bain de
solution saline à 0.9% pendant toute la durée de l’essai. Les champs de déformations ob-
servés sont fortement hétérogènes pour les deux types d’éprouvettes. Ces hétérogénéités
sont néanmoins principalement concentrées proche des zones d’attache des échantillons.
Les résultats expérimentaux montrent un comportement hyperélastique anisotrope et
un fort couplage mécanique entre les directions de traction. En outre, d’importantes
différences de comportement entre valves congelées et non–congelées sont observées, avec
des niveaux de contraintes et de déformations significativement plus élevés dans le cas
des tissus congelés. La congélation ayant un effet néfaste sur le comportement mécanique
des feuillets, on se concentrera pour la suite uniquement sur les résultats des tissus non–
congelés.

Afin de connaître les orientations préférentielles locales des fibres de collagène, la prin-
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cipale couche au regard du comportement mécanique, la fibrosa, a été observée à l’aide
d’un microscope confocal. L’étude a été réalisée au laboratoire Hubert Curien (Saint–
Étienne, France) sur deux échantillons de tissus non–congelés, l’un étant une éprouvette
préalablement testée mécaniquement, l’autre un feuillet complet non testé. Une série
d’images a été prise sur la surface des échantillons, permettant pour chacune d’entre elles
d’extraire une direction principale. Les différentes mesures ont ensuite été interpolées sur
la totalité de la surface des échantillons. Les résulats montrent que les fibres de collagène
dans la fibrosa sont principalement orientées suivant la direction circonférentielle avec
néanmoins d’importantes disparités locales.
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Chapter 2. Mechanical framework and models

2.1 Introduction

A large literature exists on the numerical modeling of soft tissues which are known to be
non–homogeneous multiphased highly non–linear materials (see chapter 1). Regarding
cardiovascular soft tissues, aortic and valvular tissue modeling has been widely studied
through several approaches, from macroscopic phenomenological approach to multi–scale
approach using homogenization methods. A lot of current studies are based on the work
of Lanir [Lanir 1979; Lanir 1983] on a general theory for the constitutive modeling of
fibrous connective tissues. This theory assumes that the overall tissue response is the
sum of contributions of its constituents, such as collagen and elastin fibers. In the initial
configuration, collagen fibers are wavy and soft while elastin is pre–stretched. Upon
deformation the fibers rotate and stretch gradually, until they are completely stretched
and oriented in the direction of the deformation. Several other major assumptions are
made : each fiber is perfectly flexible, has no compressive strength and deforms affinely
with the macroscopic deformation.

From this work, many constitutive models were introduced. Among the macroscopic
phenomenolocical models with statistical distribution of collagen fibers, one can cite the
work of Gasser et al. [2006] (based on Holzapfel, Gasser, et al. [2000]) and extended
in Holzapfel, Niestrawska, et al. [2015] to non–symmetric collagen fiber dispersion (see
also Pandolfi et al. [2012] or Freed et al. [2005] for instance). As collagen fibers do
not support compressive load, Holzapfel and Ogden discussed the tension–compression
switch in soft fibrous solids in Holzapfel and Ogden [2015] showing that the mechanical
response is often significantly overestimated by not excluding all the fibers under com-
pression. To describe the change between the free and deformed configuration of collagen
fibers during deformation, Grillo et al. [2014] studied the remodelling in statistically
oriented fiber–reinforced materials. One can also refer to Karšaj et al. [2009] and Kuhl
et al. [2007]. Recently, a lot of efforts have been undertaken to improve models accuracy
with structurally motivated material models considering several scales. One can refer for
instance to Billiar et al. [2000a], Sacks [2003] or Martufi et al. [2011] and Weisbecker
et al. [2015] taking into account fiber recruitment and fiber distribution density functions.

Since the mechanical behavior of soft collagenous tissue depends primarily on the re-
sponse of its constituents, their structure and the nature of the crosslinks that affect
constituents interactions play a very important role in constitutive modeling. Thus, small
scale modeling that can capture microstructural changes during the deformation is be-
coming increasingly popular. Recently, W. Zhang et al. [2015] presented a meso–scale
layer–specific structural constitutive model of the mitral heart valve leaflets and Oren
et al. [2013] proposed an analytical and numerical micromechanics–motivated approach
for soft fibrous connective tissues modeling using homogenization methods. Moreover,
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Pence et al. [2012] explore the connection between transversely isotropic and mixture
theory models for fiber reinforced hyperelastic materials. However, these models are still
not able to reproduce the overall response of a tissue at the organ level, mainly for com-
putational efficiency reason as well as for the difficulty to accurately define representative
elementary volumes.

In this study, since the whole AV has to be modeled, a phenomenological approach was
chosen for numerical modeling. The tissue was assumed to be a monolayer material
structurally close to the fibrosa, with a strongly oriented network of collagen fibers
responsible for the leaflet hyperelastic and anisotropic behavior (see chapter 1). Thus,
non–linear transverse isotropic constitutive equations with statistical fiber distribution
were used, assuming macroscopically identifiable preferred fiber directions. In section
2.2 we recall some important concepts and definitions of the continuum mechanics,
and especially the hyperelasticity framework. The implemented Finite Element (FE)
variational formulation of the mechanical problem is then presented in section 2.3 as
well as the space and time discretizations and the problem resolution (see 2.4). The
material models implemented are detailed in section 2.5. Finally, in section 2.6, the solver
implementation is discussed and validated. A short summary concludes the chapter (2.7).

2.2 Continuum mechanical framework

In this section some basics of the general continuum mechanical framework of elasticity
are introduced with subsequently used notations. We focus on important mechanical
concepts for hyperelastisity mainly referring to Holzapfel [2006b].

2.2.1 Kinematics

Description of motion

We define the stress free reference configuration Ω0 initially occupied by a deformable
body B and Ω its current configuration (fig. 2.1). Following standard notations we
consider the function χ which is a bijection of Ω0 on Ω. The deformation χ : Ω0 −→ R3

transforms a reference point X ∈ Ω0 at time t0 into a material point x = χ(X, t) ∈ Ω
at time t. The new particle position is then described by the vector x(X, t) and the
displacement vector U(X, t) links the initial position to the current one :

U(X, t) = x(X, t)−X. (2.1)

In index notation, Ui = xi−XI with i = 1, 2, 3 and I = 1, 2, 3. The Cartesian coordinate
system EI , I = 1, 2, 3 is used.
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E1

E2

E3

Ω0

Ω

X

xU(X, t)

χ

Fig. 2.1 – Lagrangian description of the motion

With this approach, the motion of a material point of B is totally defined by its initial
and current states as translation, rotation and deformation are included in U . If the
motion of B is described using XI coordinates, the description is said to be Lagrangian
or material1. In contrast, if the motion of B is described with respect to the current
position using xi coordinates, the description is said to be Eulerian or spatial2. In that
case we define the displacement vector u(x, t) = x−X(x, t) of a particle at time t. Both
descriptions are equivalent and it is possible to switch from one to another by means of
the motion χ. Hence, by change of variables,

U(X, t) = U(χ−1(x, t), t) = u(x, t). (2.2)

During a motion χ, the material velocity is defined by

V (X, t) = ∂χ(X, t)
∂t

, (2.3)

where X is fixed. The material velocity represents the time rate of change of the position
of a particle X at time t. The spatial velocity of a fixed location x at time t is given by

v(x, t) = V (χ−1(x, t), t) = V (X, t). (2.4)

To make the notations less cluttered, time is omitted hereinafter.

Deformation

We introduce deformation tensors, which describe the transformation of a body B from
the reference configuration to the current one, and strain tensors, which describe the
relative displacement between particles excluding rigid–body motions.

1Uppercase letters are used for Lagrangian notations
2Lowercase letters are used for Eulerian notations
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2.2. Continuum mechanical framework

An infinitesimal length dX in the initial configuration is transformed into an infinitesimal
length dx in the current configuration following

dxi = ∂xi
∂XJ

dXJ , (2.5)

thus

dx = F · dX, (2.6)

where F = ∂x/∂X = I +∇XU1 (FiI = ∂xi/∂XI with indicial notations) quantifies the
local deformation gradient. I is the identity tensor in R3. The deformation gradient is
always invertible. Notice that F−1 = ∂X/∂x = I − ∇u. We define J as the (strictly
positive) Jacobian determinant of F. J represents the infinitesimal volume ratio which
characterizes the volume change between the current and the reference configurations re-
spectively, dv = det(F)dV therefore J = det(F) = dv/dV > 0 (J = 1 for incompressible
materials). The relation between the deformed and the initial volume is given by

dv = JdV. (2.7)

We define the boundary ∂Ω0 ⊂ R2 of Ω0, and similarly the boundary ∂Ω ⊂ R2 of Ω, and
we consider a deformed body element surface da ⊂ ∂Ω and the normal unit vector n of
da (da = nda). Just like for (2.7), da can be linked with the element surface dA ⊂ ∂Ω0

of normal unit vector N (dA = NdA) using Nanson’s formula

nda = JF−T ·NdA, (2.8)

where (•)T denotes the transpose of a tensor. We also define the surface Jacobian Js as
the area ratio between the current and the reference configurations

da = JsdA = J
∥∥∥F−T ·N∥∥∥ . (2.9)

Thus, the evolution of the normal vector in the current configuration can be rewritten

n = J

Js
(F−T ·N). (2.10)

Following Holzapfel [2006b] we consider the well known multiplicative decomposition

F = J
1
3 F̄ (2.11)

of the deformation gradient into a volumetric (or spherical) part F̂ = J
1
3 I and an iso-

choric (or unimodular) part F̄ = J−
1
3 F, with det(F̄) = 1. This decomposition comes

1∇X(•) denotes derivative with respect to the reference configuration Xi while∇(•) denotes derivative
with respect to the current configuration xi
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from the determinant properties applied to F, such as det(F) = det(F̂) · det(F̄) and
det(F̂) = det(αI) = α3 with α > 0. Finally, one can obtain α = J

1
3 . According to Weiss

et al. [1995], the decomposition allows a separate numerical treatment of the dilational
and deviatoric parts of the deformation gradient which tends to prevent numerical diffi-
culties like ill–conditioning of the tangent stiffness matrix due to the larger contributions
from the dilational stiffness on the diagonal, or incorrect pressures and locking of the
mesh due to overconstrainted displacement field (see section 2.4).

We introduce the right and left Cauchy–Green tensors, respectively C = FT · F and
b = F · FT as a deformation measure respectively in the Lagrangian and Eulerian
description. Following the same decomposition we have

C = J
2
3 C̄ with C̄ = F̄T · F̄,

b = J
2
3 b̄ with b̄ = F̄ · F̄T

.
(2.12)

Notice that C, b and their multiplicative decomposition are positive definite and sym-
metrical tensors, unlike F, respectively for each X ∈ Ω0 and x ∈ Ω. According to the
polar decomposition theorem, the deformation gradient F can also be decomposed using
symmetrical dilatation tensors U, v and a rotational tensor R. This decomposition is
unique. Thus, F = R ·U = v ·R, where U = RT · v ·R and v = R ·U ·RT . U, v are
positive definite and R is orthogonal, so that det(R) = 1, R ·RT = I. From equations
(2.12) we can write

C = U2, b = v2. (2.13)

Notice that U and v tensors can also be written as functions of F :

U =
√

FT · F, v =
√

F · FT . (2.14)

We finally define the (Lagrangian and symmetric) Green-Lagrange strain tensor E

E = 1
2(C− I) = 1

2(∇XU +∇XUT +∇XUT · ∇XU), (2.15)

and the linearised strain tensor

ε = 1
2(∇XU +∇XUT ). (2.16)

This last tensor is an approximation that implies the small perturbation assumption,
‖∇XU‖ � 1. In that case, geometrical non–linearities are neglected. Notice that E (and
ε) vanishes for rigid–body motions (C = I and ∇XU is null), i.e. motions which preserve
angles and lengths.
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Deformation rate

We define below some Eulerian tensors which depend on the velocity, and in particular,
the deformation rate tensor. These tensors can be useful in the context of mechanical
law with a rate sensitivity.

The spatial velocity gradient is the derivative of the spatial velocity v with respect to
the spatial coordinates :

∇v = ∂v

∂x
. (2.17)

The material velocity gradient is the material time derivative of the deformation gradient
F, which gives :

Ḟ = ∂V

∂X
= ∇XV . (2.18)

They are both generally non–symmetric second–order tensors. One can notice that ∇v =
Ḟ · F−1. The spatial velocity gradient can be additively decomposed into a symmetric
and an antisymmetric part according to

∇v = d + w, (2.19)

where

d = 1
2
(
∇v +∇vT

)
= dT , (2.20)

w = 1
2
(
∇v −∇vT

)
= −wT . (2.21)

Notice that in the small perturbation assumption, d ≈ ε̇ is the (symmetric) Eulerian
deformation rate tensor. In index notation,

ε̇ij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (2.22)

2.2.2 Stress and objectivity

Stress tensors

The concept of stress is used to describe mathematically surface forces acting on a body.
They can be boundary or internal forces. We denote df an element force acting on the
element surface da defined above, and similarly the fictive element force dF initially
acting on the element surface dA following the relation dF = F−1 · df . We subsequently
present several second–order stress tensors.
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The Cauchy stress tensor σ is defined following

df
da = σ · n. (2.23)

σ represents the state of stress at a material point in the deformed configuration Ω
(Eulerian tensor). If the continuum body is in static equilibrium, according to the princi-
ple of conservation of linear and angular momentum, it can be demonstrated that σ is
symmetrical, so that σ = σT and in index notation σij = σji.

However, in large deformations (also called finite deformations) the deformed surface
da is usually unknown due to geometry variations over time. Tensors defined in the
reference configuration Ω0 are then more appropriate. We define the first Piola–Kirchhoff
stress tensor P which relates forces in the current configuration to areas in the reference
configuration as

df
dA = P ·N , (2.24)

and the second Piola–Kirchhoff stress tensor S which relates forces transposed in the
reference configuration to areas in the reference configuration as

dF
dA = S ·N . (2.25)

The (generally not symmetric) tensor P describes the configuration of the body in both
current or reference states. This is neither a Lagrangian nor an Eulerian tensor. In
comparison, the (symmetric) tensor S has no physical meaning but is Lagrangian, and
thus very useful. From these three tensors we can write the relations

P = Jσ · F−T , (2.26)
S = F−1 ·P = JF−1 · σ · F−T , (2.27)
σ = J−1P · FT = J−1F · S · FT . (2.28)

Finally, for every elementary surface df = tda = TdA, t and T respectively represent
the Cauchy (or “true”) and first Piola–Kirchhoff (or “nominal”) traction vectors and are
defined as (fig. 2.2) :

t = σ · n,
T = P ·N .

(2.29)
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χ

da
dA

t

T
n

N

ΩΩ0

∂Ω∂Ω0

x
X

Fig. 2.2 – Traction vectors acting on infinitesimal surface elements

Objectivity

Objectivity (or frame indifference) is a very important concept in mechanics. The macro-
scopic mechanical behavior of a material does not depend on the observer and thus, the
mathematical representation of this behavior must be invariant by referential changing.
Therefore, distances between arbitrary points in space and time intervals are preserved
with a change of observer. If this principle is not observed, constitutive equations are
affected by rigid–body motions. The description of the motion depends on the observers
which can be located at different places and move at different velocities. Consequently,
time derivatives like velocity or acceleration are generally not–objective. Because they
are defined in the reference frame, Lagrangian quantities are naturally objective. In
the case of Eulerian quantities, referential changes formula, which can be interpreted as
rigid–body motions, must be used. The reader can refer to Holzapfel [2006b] for further
details.

2.2.3 Hyperelastic framework

Hyperelasticity

We subsequently focus on the phenomenological approach, relative to the macroscopic
behavior of material as continua. This approach is widely used and particularly successful
in solid mechanics. It consists in using mathematical equations which are fitted to repro-
duce an experimentally observed behavior. However, phenomenological modeling does not
take into account the physical microscopic mechanisms responsible for the transformation.

For our purpose, we use the non–linear constitutive theory of hyperelasticity. This theory
is suitable to describe a wide range of physical phenomena, especially for materials which
undergo large strains. A material is hyperelastic if several criteria are achieved :

1. existence of a stress–free reference configuration (no residual stress) ;

2. no energy dissipation ;
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3. the material behavior is described by an Helmholtz free–energy function W defined
per unit of reference volume, depending on the strain and the temperature.

This strain–energy function vanishes in the reference configuration. This can be expressed
with the normalization condition

W = W (I) = 0. (2.30)

Another physical requirement is that the strain–energy function increases with deforma-
tion, thus

W = W (F) > 0. (2.31)

The strain–energy function is assumed to have only one global minimum for F = I, with
no other stationary point.

Stress and elasticity tensors

For hyperelastic materials, the second Piola–Kirchhoff stress tensor S and the (fourth–
order) material elasticity tensor C derives from the strain–energy functionW with respect
to the Green–Lagrange strain tensor E (or right Cauchy–Green tensor C)

S = ∂W

∂E = 2∂W
∂C , C = ∂S

∂E = ∂2W

∂E2 = 4∂
2W

∂C2 . (2.32)

The Cauchy stress σ and the spatial elasticity tensor c are obtained from equations
(2.32) by mean of a push–forward operation denoted χ?(•), times a factor J−1. This
transformation, called “inverse Piola transform”, is a correspondence between vector and
tensor fields respectively defined over the reference and the deformed configuration. In
return, we denote χ?−1(•) the pull–back operation and Jχ?

−1(•) the Piola transform.
Therefore

σ = J−1χ?(S), c = J−1χ?(C), (2.33)

and using index notations

σij = J−1FiIFjJSIJ , cijkl = J−1FiIFjJFkKFlLCIJKL. (2.34)

The elasticity tensor C (and equally for c in the Eulerian description) always possesses
minor symmetries for elastic materials. These minor symmetries directly result from the
symmetries of the second Piola–Kirchhoff and right Cauchy–Green (or Green–Lagrange)
tensors. Thus,

CIJKL = CJIKL = CIJLK . (2.35)
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Additionally, for hyperelasticity, C also possesses the major symmetries C = CT , or in
index notation

CIJKL = CKLIJ . (2.36)

The condition (2.36) is necessary and sufficient for a material to be hyperelastic. The
number of independent tensor components at each strain state is reduced from 36, after
minor symmetries, to 21.

We adopt the classical decoupled form of the elastic strain–energy function into a purely
volumetric part Wvol(J) and an isochoric contribution Wiso(C̄) :

W (J, C̄) = Wvol(J) +Wiso(C̄). (2.37)

This formulation is only appropriate for incompressible or nearly incompressible materials.
From this decoupled potential, the second Piola–Kirchhoff stress can be split into its
volumetric and deviatoric parts

S = Svol + Siso with Svol = 2∂Wvol

∂C , Siso = 2∂Wiso

∂C . (2.38)

One can notice that det(C) = J2, so that ∂J
∂C = 1

2JC−1 after developments. From the
standard results that can be found for example in Holzapfel [2006b],

Svol = −pJC−1, Siso = J−
2
3 P : S̄, (2.39)

where p = −∂Wvol/∂J is the hydrostatic pressure (which is an indeterminate Lagrange
multiplier in the incompressible case), P = I − 1

3(C−1 ⊗ C) is the physically correct
deviatoric operator in the Lagrangian description (so that [P : (•)] : C = 0) and
S̄ = 2∂Wiso/∂C̄ the fictitious second Piola–Kirchhoff stress tensor. We define I the
symmetric fourth–order identity tensor defined in index notation as

IIJKL = 1
2(δIKδJL + δILδJK), (2.40)

δ being the Kronecker delta. The inverse Piola transform of equation (2.39) leads to the
decoupled Cauchy stress tensor form

σ = σvol + σiso with σvol = −pI, σiso = J−
2
3 p : σ̄, (2.41)

where p = I − 1
3(I ⊗ I) is the physically correct deviatoric operator in the Eulerian

description (so that [p : (•)] : I = 0) and σ̄ = J−1χ?(S̄) = 2J−1F(∂Wiso/∂C̄)FT the
fictitious Cauchy stress tensor. The material elasticity tensor may also be written in
the decoupled form C = Cvol + Ciso with Cvol = 2∂Svol/∂C and Ciso = 2∂Siso/∂C. The
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details of the derivatives can be found in Holzapfel [2006b]. However, we remind below its
inverse Piola transform which defines the decoupled form of the spatial elasticity tensor
c = cvol + ciso with

cvol = p̃(I⊗ I) + 2pI, (2.42a)

ciso = J−
4
3 p : c̄ : p + 2

3
[
J−

2
3 tr(σ̄)p− (I⊗ σiso + σiso ⊗ I)

]
, (2.42b)

where the scalar function p̃ = −(J∂p/∂J + p). The fictitious spatial elasticity tensor
c̄ijkl = J−1FiIFjJFkKFlLC̄IJKL is the inverse Piola transform of C̄ = 2J−

4
3∂S̄/∂C̄ and

the spatial trace operator tr(•) = (•) : I is used.

2.3 Lagrangian variational formulations of the problem

Remark – Developments presented in this chapter were made on the basis of the
source code of FORGE® NXT software (mainly written in FORTRAN 90). FORGE®

is a massively parallel commercial FE software developed at the laboratory and
industrialized by TRANSVALOR company. The software was initially dedicated to
the modeling of large plastic deformation for hot and cold–forming processes. Due to
its core applications, FORGE® uses a mixed velocity–pressure formulation and not
a displacement–pressure formulation which is much more suitable in the particular
case of hyperelasticity since hyperelastic material models do not depend on strain
rate. Moreover, the software is exclusively based on an updated Lagrangian approach
in the framework of infinitesimal strain assumption meaning that the current dis-
crete mechanical equations are integrated on the previous geometry configuration,
assuming small body deformations between the two configurations. This assumption,
that considerably simplifies the continuum mechanics’ equations, is often used for
the modeling of small elastic strain materials but is not suitable for soft materials
that can undergo very large deformations. In the context of this work, the velocity–
pressure formulation was adapted to the hyperelastic framework and an updated
Lagrangian approach was implemented in finite strain.

This section introduces the formalism for the resolution of the mechanical problem in
the large deformation framework. A two–field velocity–pressure variational formulation
is presented to solve incompressible or quasi–incompressible problems. Our description
is mainly based on A. Fortin et al. [2013].
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2.3.1 Boundary conditions

E1

E2

E3

Ω

Ωc

∂Ωf
∂Ωc

∂Ωd ∂Ωp∂Ωn

n

v vc

v0 h
Pn

Fig. 2.3 – Illustration of the different types of boundary conditions

Boundary conditions apply on the outer surface ∂Ω of the domain volume Ω. The domain
surface can be decomposed following ∂Ω = ∂Ωf +∂Ωd +∂Ωn +∂Ωp +∂Ωc for the different
types of boundary conditions with (fig. 2.3) :

1. the stress free boundary condition σ · n = −→0 on ∂Ωf ,

2. the prescribed velocity Dirichlet condition v = v0 on ∂Ωd (or displacement u = u0),

3. the Neumann load condition σ · n = h on ∂Ωn,

4. the normal pressure condition σ · n = Pn on ∂Ωp (particular case of 3),

5. the contact condition with or without friction σ · n = σnn + σt on ∂Ωc, from
another (deformable or undeformable) body or itself, where σnn is the normal
stress vector and σt is the tangential stress vector. The non–penetration condition
is ensured by the equations system

(v − vc) · n ≤ 0,
σn = (σ · n) · n ≤ 0,
σn(v − vc) · n = 0.

(2.43)

The physics of contact is very complex as well as its numerical treatment, and will
not be developed in this work.
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2.3.2 Weak formulation of balance equations

The strong form of the momentum equilibrium equation in the deformed configuration
Ω is

−∇ · σ = r in Ω, (2.44)

where r represents the body forces. Multiplying equation (2.44) by the test function1 v∗

and integrating on the whole domain Ω using Green’s theorem, it becomes :∫
Ω
− (∇ · σ) · v∗dv =

∫
Ω
σ : ∇v∗dv −

∫
∂Ω

(σ · n) · v∗da =
∫

Ω
r · v∗dv. (2.45)

We subsequently use a quasi–static approach, which means that inertial terms are ne-
glected. For sake of simplification, we do not consider hereinafter the free boundary
and contact conditions in the formulation developments (respectively on ∂Ωf and ∂Ωc).
The strong form of the mechanical problem is then defined with the following set of
equilibrium equations, 

−∇ · σ = −→0
v = v0

σ · n = h

σ · n = Pn

in Ω,
on ∂Ωd,

on ∂Ωn,

on ∂Ωp,

(2.46)

Equation (2.45) can be rewritten as :∫
Ω
σ : ∇v∗dv −

∫
∂Ω

(σ · n) · v∗da = 0. (2.47)

with ∂Ω = ∂Ωd + ∂Ωn + ∂Ωp. Knowing that test functions v∗ vanish on the boundary
∂Ωd of the Dirichlet conditions we get :∫

Ω
σ : ∇v∗dv −

∫
∂Ωn
h · v∗da−

∫
∂Ωp

Pn · v∗da = 0. (2.48)

Using the decomposition (2.41) of the stress tensor σ into a deviatoric part σiso and a
volumetric part σvol = −pI, the weak formulation becomes :∫

Ω
σiso : ε̇(v∗)dv −

∫
Ω
p(∇ · v∗)dv −

∫
∂Ωn
h · v∗da−

∫
∂Ωp

Pn · v∗da = 0. (2.49)

However, the use of a single–field varational principle is not always a good choice. In
particular, in the incompressible case, equation (2.49) is not the most appropriate formu-
lation to solve the mechanical problem. A suitable choice is to add another fundamental
balance equation in order to write a two–field varational principle (see Simo et al. [1991]

1FORGE® uses a mixed velocity–pressure formulation (with velocity and pressure test functions).
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for an example of a three–field varational principle).

The strong form of the mass conservation equation, assuming a body B that possesses a
continuously distributed mass m in the current configuration Ω, is

∂ρ

∂t
+∇ · (ρv) = 0 in Ω, (2.50)

where ρ is the mass density. In the case of incompressibility, ρ does not depends on time
so we obtain the equation

∇ · v = 0. (2.51)

We use a velocity–pressure mixed formulation, with an additional pressure test function
p∗. Assuming incompressibility the equations system (2.46) becomes

−∇ · σ = −→0
∇ · v = 0
v = v0

σ · n = h

σ · n = Pn

in Ω,
in Ω,
on ∂Ωd,

on ∂Ωn,

on ∂Ωp,

(2.52)

and after multiplying equation (2.50) by the test function p∗ as for (2.44), we finally
obtain the weak mixed formulation



∫
Ω
σiso : ε̇(v∗)dv −

∫
Ω
p(∇ · v∗)dv −

∫
∂Ωn
h · v∗da−

∫
∂Ωp

Pn · v∗da = 0,∫
Ω
− p∗(∇ · v)dv = 0,

∀(v∗, p∗) ∈ V∗ ×P.

(2.53)

Solve the above equations means to find the couple (v, p) ∈ V×P that satisfies equation
(2.53). We define the spaces of kinematically admissible velocity field V, V∗, and the
functional pressure space P as following

V =
[
v ∈ (H1(Ω))3,v |∂Ωd= v0

]
, (2.54)

V∗ =
[
v ∈ (H1(Ω))3,v |∂Ωd= −→0

]
, (2.55)

P = L2(Ω), (2.56)

where H1 and L2 are respectively the Sobolev and the Lebesgue spaces.
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2.3.3 Total Lagrangian formulation

The weak formulation (2.53) is expressed in the usually unknown deformed configuration.
In practice, the use of this equation implies the small perturbation assumption1 because
σ is integrated on the last updated geometrical configuration. Thus, it is useful to rewrite
the variational formulation in the reference frame Ω0. Using tensor algebra and some of
the relations between the initial and the current domain presented above, (2.53) can be
expressed in the reference configuration using


∫

Ω0
S : (FT · ∇Xv∗)dV −

∫
∂Ωn

0

H · v∗dA−
∫
∂Ωp

0

Pv∗ · (F−T ·N)JdA = 0,∫
Ω0
− p∗(J − 1)dV = 0,

(2.57)

whereH = Jsh with Js = da/dA from equation (2.9). Notice that the mass conservation
is expressed as ρ0 = Jρ leading to J = 1 in the case of incompressibility. Using the
decomposition of the stress tensor S from equation (2.39) we obtain



∫
Ω0

Siso : (FT · ∇Xv∗)dV −
∫

Ω0
pJF−T : ∇Xv∗dV −

∫
∂Ωn

0

H · v∗dA

−
∫
∂Ωp

0

Pv∗ · (F−T ·N)JdA = 0,∫
Ω0
− p∗(J − 1)dV = 0.

(2.58)

Equation (2.58) is the total Lagrangian formulation, integrated on the initial domain Ω0.
The set of equilibrium equations (2.52) to be solved becomes

−∇ ·P = −→0
J − 1 = 0
V = V0

P ·N = H

P ·N = PJ(F−T ·N)

in Ω0,

in Ω0,

on ∂Ωd
0 ,

on ∂Ωn
0 ,

on ∂Ωp
0 .

(2.59)

2.3.4 Updated Lagrangian formulation

In the total Lagrangian formulation, results obtained on the current balanced configura-
tion Ω are calculated from the initial reference configuration Ω0. However, if the material
undergoes very large deformations, it can be suitable to use intermediate deformed config-
urations for which the solution is known in order to avoid potential numerical problems.

1This assumption is made in the original solver of FORGE®.
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In the updated Lagrangian formulation, an intermediate known configuration becomes
the new reference configuration. Thus, at each step of the calculation the new solution is
related to the transformation between the reference domain Ωm and the current one Ωn.
Naturally, Ωm not being stress free, it is necessary to take into account the history of the
transformation. Total Lagrangian and updated Lagrangian formulations are intrinsically
equivalent.

We consider, χm→n the bijection of Ωm on Ωn. We denote Xm the material point co-
ordinate in the configuration Ωm and Um→n the displacement vector from Ωm to Ωn.
Thus,

χm→n(Xm) = xn = Xm +Um→n
= Xm +Um→m+1 + · · ·+Un−1→n.

(2.60)

Rewriting equation (2.60) from the initial reference configuration Ω0 :

χm→n(Xm) = xn = X +U0→n (2.61)
= X +U0→1 + · · ·+Um−1→m︸ ︷︷ ︸

Xm

+Um→m+1 + · · ·+Un−1→n︸ ︷︷ ︸
Um→n

.

Moreover, following derivative rules, the deformation gradient Fm→n between Ωm and
Ωn can be decomposed as

Fm→n = ∂xn
∂Xm

= ∂xn
∂Xn−1

· · · ∂Xm+2
∂Xm+1

∂Xm+1
∂Xm

= Fn−1→n · · ·Fm+1→m+2 · Fm→m+1.

(2.62)

The determinant of Fm→n can be decomposed similarly

Jm→n = Jn−1→n · · · Jm+1→m+2Jm→m+1. (2.63)

For clarity reasons, we subsequently consider three consecutive steps 0, 1 and 2. The
total Lagrangian formulation (2.58) to go directly from the configuration Ω0 to the
configuration Ω2 is

53



Chapter 2. Mechanical framework and models



∫
Ω0

(Siso)0→2 : (FT
0→2 · ∇X0v

∗)dV −
∫

Ω0
pJ0→2F−T0→2 : ∇X0v

∗dV

−
∫
∂Ωn

0

H0 · v∗dA−
∫
∂Ωp

0

Pv∗ · (F−T0→2 ·N0)J0→2dA = 0,∫
Ω0
− p∗(J0→2 − 1)dV = 0,

(2.64)

where N0 is the normal vector of the domain Ω0, F0→2 and J0→2 are respectively the
deformation gradient and the Jacobian of the transformation from Ω0 to Ω2 and (Siso)0→2

the second Piola–Kirchhoff stress tensor evaluated using C0→2 = FT
0→2 ·F0→2. However,

assuming that it is difficult to move from Ω0 to Ω2 because of large deformations it is better
to solve an updated Lagrangian problem instead of the total Lagrangian problem (2.64).
In that case, the intermediate known configuration Ω1 is used as reference configuration.
To do this, the right Cauchy–Green tensor is decomposed following the rules presented
above

C0→2 = FT
0→2 · F0→2 = (F1→2 · F0→1)T · (F1→2 · F0→1) = FT

0→1 ·C1→2 · F0→1 (2.65)

where u1→2, therefore F1→2 and C1→2, are unknowns. Also notice that

∇Xmv∗ = ∇Xnv∗ · Fm→n. (2.66)

Rewriting equation (2.64) using relations (2.65) and (2.66) on Ω1 (see A. Fortin et al.
[2013] for further developments), the mixed updated Lagrangian formulation is



∫
Ω1

(S̃iso)0→2 : (FT
1→2 · ∇X1v

∗)dV1 −
∫

Ω1
pJ1→2F−T1→2 : ∇X1v

∗dV1

−
∫
∂Ωn

1

H1 · v∗dA1 −
∫
∂Ωp

1

Pv∗ · (F−T1→2 ·N1)J1→2dA1 = 0,∫
Ω1
− p∗(J0→2 − 1)J−1

0→1dV1 = 0,

(2.67)

where (S̃iso)0→2 = J−1
0→1F0→1 · Siso(C0→2) · FT

0→1, the Neumann condition vector H1 =
(Js)−1

0→1H0 and the unit vector N1 = J0→1(Js)−1
0→1F

−T
0→1 ·N0. Finally, considering the

arbitrary reference domain Ωm and the unknown domain Ωn we get
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∫
Ωm

(S̃iso)0→n : (FT
m→n · ∇Xmv∗)dVm −

∫
Ωm
pJm→nF−Tm→n : ∇Xmv∗dVm

−
∫
∂Ωn

m

Hm · v∗dAm −
∫
∂Ωp

m
Pv∗ · (F−Tm→n ·Nm)Jm→ndAm = 0,∫

Ωm
− p∗(J0→n − 1)J−1

0→mdVm = 0.

(2.68)

2.3.5 Quasi–incompressiblility

Multi–field variational formulations can be insufficient to ensure unique solvability, con-
vergence and robustness in the case of incompressibility, especially using low order finite
elements, producing solutions which are locked by the incompressibility constraint. To
overcome volumetric locking phenomena a penalty term can be added in order to approx-
imate an incompressible material as slightly compressible. In that case, the volumetric
strain–energy function becomes Wvol(J) = τU(J) where penalty function U(J) is math-
ematically motivated and the penalty parameter τ > 0 is adjusted depending on the
compressibility allowed. From a physical point of view U(J) must fulfill an energy and
stress free reference configuration, so that U(1) = 0 and U ′(1) = 0 (global minimum).
Furthermore, convexity (see 2.5.3) requires U(J) −→∞ for J −→ 0 and J −→∞.

Some penalty functions from the literature are summarized in tab. 2.1.

U(J) U ′(J) U ′′(J)

1
2(J − 1)2 J − 1 1

1
4
(
(J − 1)2 + (ln J)2

) 1
2

(
J − 1 + 1

J
ln J

)
1

2J2

(
1 + J2 − ln J

)
1
2(ln J)2 1

J
ln J 1

J2 (1− ln J)

1
4
(
J2 − 1− 2 ln J

) 1
2

(
J − 1

J

) 1
2

(
1 + 1

J2

)
J − ln J − 1 1− 1

J

1
J2

J ln J − J + 1 ln J 1
J

Tab. 2.1 – Some penalty functions of the literature [Hartmann et al. 2003]

The simplest penalty functions U(J) = 1
2(J−1)2, which is also the most used in practice

was implemented in this work. The penalty parameter τ may be viewed as the bulk
modulus
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τ = E

3(1− 2υ) , (2.69)

where E and υ are respectively a fictive Young’s modulus and Poisson’s ratio. Notice
that for τ −→∞ the volumetric constraint is exactly enforced. The resulting volumetric
strain–energy function is Wvol(J) = τ

2 (J − 1)2. This mathematical function does not
respect the U(0) limit but is sufficient in the case of nearly–incompressible materials.
The hydrostatic pressure p is then simply obtained from

p = −∂Wvol

∂J
= −τ(J − 1). (2.70)

The unforced pressure Lagrangian weak equation becomes∫
Ω0
− p∗

[
(J − 1) + p

τ

]
dV = 0. (2.71)

Thus, the unforced updated Lagrangian formulation (2.68) is rewritten as



∫
Ωm

(S̃iso)0→n : (FT
m→n · ∇Xmv∗)dVm −

∫
Ωm
pJm→nF−Tm→n : ∇Xmv∗dVm

−
∫
∂Ωn

m

Hm · v∗dAm −
∫
∂Ωp

m
Pv∗ · (F−Tm→n ·Nm)Jm→ndAm = 0,∫

Ωm
− p∗

[
(J0→n − 1) + p

τ

]
J−1

0→mdVm = 0.

(2.72)

2.4 Finite element discretization

In this section the FE discretization is presented, with an application to the stabilized
MINI–element used in this work. The Newton–Raphson algorithm is recalled and applied
to the mechanical problem resolution.

2.4.1 Spatial discretization

Spatial discretization and stability

Equations (2.72) are solved using the FE method, firstly introduced in Courant [1943] but
developed in a more proper sense in Argyris et al. [1954] and Turner [1956]. This is a widely
used method for approximating solutions for partial differential or integral equations in
a wide range of engineering problems. FE method implies a spatial discretization of the
problem that consists in subdividing a large domain Ω into sub–domains (elements) Ωe

with e ∈ E ⊂ N, where E is the set of elements. Thus, we define the discretized domain

Ωh =
⋃
e∈E

Ωe, (2.73)
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where the h index is related to the mesh size. We write (vh, ph) ∈ Vh×Ph the discretized
velocity and pressure solutions of (v, p) ∈ V × P. The discrete spaces Vh and Ph are
usually included into their solution spaces V and P, thus

Vh ⊂ V with lim
h→0

Vh = V,

Ph ⊂ P with lim
h→0

Ph = P.
(2.74)

The choice of approximation spaces Vh and Ph is directly related to the efficiency and
accuracy of the velocity and pressure results from solving the discrete problem. Moreover,
both interpolation spaces cannot be chosen independently and must verify the Brezzi–
Babǔska [Babuska 1971] (also called “inf–sup”) compatibility condition which insures
the existence, uniqueness and stability of the solution :

inf
ph∈Ph

sup
vh∈Vh

∫
Ωh
ph∇.vhdΩh

‖ph‖Ph
‖vh‖Vh

> α, (2.75)

where α > 0 is a constant. The non–compliance of this condition leads to huge numer-
ical difficulties and unacceptable solutions, such as locking or oscillating solutions. For
example the P1/P1 element, with both linear velocity (or displacement) and pressure
unknowns, does not satisfy the inf–sup condition. However, a vast literature exits on
stabilization methods in order to achieve the Brezzi–Babǔska condition for incompatible
elements. The reader can refer among others to “bubble”, Streamline–Upwind Petrov–
Galerkin (SUPG) and Algebraic/Orthogonal Subgrid Scale (ASGS/OSGS) methods
[Pierre 1988; Brezzi, Bristeau, et al. 1992; Hughes 1995].

The MINI–Element

Linear tetrahedron elements are very attractive because they are simple, which makes
the mesh generation and mesh adaptation processes robust and fast even on complex
geometries. In this work, the so–called MINI–element (or P1+/P1 element) is used. The
MINI–element was firstly introduced as a bidimensional (triangular) element in Arnold
et al. [1984] for Stokes flow modeling, then extended to tridimensional problems (tetra-
hedron) in Coupez [1995] (fig. 2.4). It is a mixed linear element (O(h)). Two kinds of
variables are defined on the element, P1 and P0. P1 variables are the unknowns of the
mechanical problems (i.e. velocity and pressure in that case). They are computed and
stored at the elements’ nodes. P0 variables are calculated and stored at the center of the
elements (stress tensor, velocity gradient, . . . ).

The pressure discretization is continuous and the velocity discretization is enriched with
an additional degree of freedom in the center of the element in order to verify the Brezzi–
Babǔska compatibility condition between velocity and pressure discretization spaces.
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Fig. 2.4 – P1+/P1 tetrahedron element with velocity (left) and pressure (right) degree of freedom

Thus, respectively 15 and 4 velocity and pressure degrees of freedom are available for
each element in the tridimensional case. This small number of degrees of freedom makes
it relatively computationally inexpensive but the counterpart of its minimalistic prop-
erties is its poor accuracy (smallest interpolation degree among the compatible elements).

The shape function of the additional velocity degree of freedom, commonly called “bub-
ble”, is equal to unity at element center and zero at element borders. The interpolated
velocity field vh on the P1+/P1 element follows the unique decomposition

vh = vl + vb, with vh ∈ Vh = Lh ⊕Bh (2.76)

where vl is the linear part of the velocity field vh and vb its bubble part. Lh and Bh are
respectively the approximation spaces of the linear and bubble functions. The bubble
interpolation function can be constructed in the reference (or canonical) element as a
fourth–order polynomial [M. Fortin 1981],

N b(ξ, η, ζ) = 256(1− ξ − η − ζ)ξηζ, (2.77)

where (ξ, η, ζ) is reference element space. However, following Coupez [1995] the Bh space
is defined with a piecewise linear function on four sub–tetrahedrons to avoid the difficulty
in integrating a fourth–degree polynomial (fig. 2.5). Discrete spaces are defined as :

Vh = Lh ⊕Bh,

Lh =
[
vl ∈ (C0(Ωh))3,vl |Ωe∈ (P1(Ωe))3,vl |∂Ωe= v0,∀e ∈ E

]
,

L∗h =
[
vl∗ ∈ V∗ ∩ (C0(Ωh))3,vl∗ |Ωe∈ (P1(Ωe))3,vl∗ |∂Ωe= −→0 , ∀e ∈ E

]
,

Bh =
[
vb ∈ (C0(Ωh))3,vb |∂Ωe= −→0 ,vb |Ωei

∈ (P1(Ωei))3,∀e ∈ E, i = 1, . . . , 4
]
,

Ph =
[
L2(Ωh) ∩ C0(Ωh), ph |Ωe∈ (P1(Ωe))3, ∀e ∈ E

]
,

(2.78)

where C0(Ωh) is the space of continuous functions on Ωh and P1(Ωe) is the space of linear
functions on element Ωe.
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Ωe1

Ωe2

Ωe3

Ωe4

Fig. 2.5 – Decomposition of the P1+/P1 element into 4 sub–tetrahedrons

At a material point x, the velocity and pressure fields can be expressed as a function of
the linear shape functions as

vh(x) =
NbNo∑
i=1

N l
i (x)vli +

NbElt∑
j=1

N b
j (x)vbj ,

ph(x) =
NbNo∑
i=1

N l
i (x)pi,

(2.79)

where NbNo is the number of nodes and NbElt is the number of elements. N l
i (x) ∈ Lh

with i = 1, . . . ,NbNo are the interpolation functions of the linear velocity and pressure
fields associated with each node i. N b

j (x) ∈ Bh with j = 1, . . . ,NbElt is the interpolation
function of bubble velocity associated with the element j. vli , pi and vbj are respectively
the linear velocity, pressure and bubble velocity associed with node i and element j.
From equations (2.79), velocity and pressure fields can be obtained for each element Ωe

following

vh(x) =
4∑
i=1

N l
i (x)vli +N b(x)vb,

ph(x) =
4∑
i=1

N l
i (x)pi.

(2.80)

The shape functions associated with the reference element are defined as



N l
1 = ξ

N l
2 = η

N l
3 = ζ

N l
4 = 1− ξ − η − ζ

and



N b = 4ξ
N b = 4η
N b = 4ζ
N b = 4(1− ξ − η − ζ)

in Ωe1

in Ωe2

in Ωe3

in Ωe4

(2.81)

The bubble has some useful properties as velocity vb = −→0 on ∂Ωe, which allows elimi-
nating the bubble on the borders. Another property is for all constant tensor k
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∫
Ωh

k : ∇vbdΩh = 0, (2.82)

with in particular, ∫
Ωh
∇vl : ∇vbdΩh = 0, (2.83)

∀(vl,vb) ∈ Lh ×Bh, which is called orthogonal property [Aliaga 2000; Perchat 2000].

The problem (2.72) can be written on the discretized space Ωhm , using the decomposition
(2.76) of vh and the orthogonal property (2.83), as



∫
Ωhm

(S̃iso)0→n : (FT
m→n · ∇Xmvl∗)dVhm −

∫
Ωhm

phJm→nF−Tm→n : ∇Xmvl∗dVhm

−
∫
∂Ωn

hm

Hm · vl∗dAhm −
∫
∂Ωp

hm

Pvl∗ · (F−Tm→n ·Nm)Jm→ndAhm = 0,∫
Ωhm

(S̃iso)0→n : (FT
m→n · ∇Xmvb∗)dVhm

−
∫

Ωhm

phJm→nF−Tm→n : ∇Xmvb∗dVhm = 0,∫
Ωhm

− p∗h
[
(J0→n − 1) + ph

τ

]
J−1

0→mdVhm = 0,

∀(vl∗,vb∗, p∗h) ∈ L∗h ×Bh ×Ph,

(2.84)

where S̃iso depends on the linear displacement U l and the bubble displacement U b,
that can be linked with the velocities (vl,vb) ∈ Lh ×Bh through time. Due to the non–
linearity of S̃iso and J , the system (2.84) is a coupled system of several unknown fields.
By analogy to the subgrid–scale methods [Brezzi, L. P. Franca, et al. 1996; Hughes and
Stewart 1996; Hughes 1995] and considering an interval time discretization ∆t between
increments m and n, a Taylor series expansion is used to keep only linear bubble terms.
We note U l

0→n = U l
0→m+vl∆t and U b

m→n = vb∆t the displacements respectively for the
linear and the bubble part. Following Hughes and Pister [1978] directional derivatives
are used for the linearization, so that

S(U l
0→n +U b

m→n) ≈ S(U l
0→n) + d

dε

[
S(U l

0→n + εU b
m→n)

]∣∣∣∣
ε=0

= S(U l
0→n) + C0→n : d

dε

[
E(U l

0→n + εU b
m→n)

]∣∣∣∣
ε=0

= S(U l
0→n) + C0→n : 1

2
[
(∇XU b)T · F0→n + FT

0→n · ∇XU b
]

= S(U l
0→n) + C0→n :

[
FT

0→n · ∇vb · F0→n
]

∆t,

(2.85)
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where we used the minor symmetries of C0→n = ∂S(U l
0→n)/∂E(U l

0→n) from (2.32) and
(2.35). Also,

J(U l
0→n +U b

m→n) ≈ J(U l
0→n) + d

dε

[
J(U l

0→n + εU b
m→n)

]∣∣∣∣
ε=0

= J(U l
0→n) + J(U l

0→n)∇ · vb∆t.
(2.86)

Residual equations (2.84) can be rewritten using linearizations (2.85) and (2.86), and
the orthogonal property (2.83), into the compact form


Rle = Rlle + −→0 + Rlpe = −→0 ,
Rbe = −→0 + Rbbe + Rbpe = −→0 ,
Rpe = Rple + Rpbe + Rppe = −→0 ,

(2.87)

where Rle, Rbe and Rpe respectively are the linear velocity, bubble velocity and pressure
residuals calculated at the element level, and

Rlle =
∫

Ωhm

(S̃iso)0→n :
(
FT
m→n · ∇Xmvl∗

)
dVhm −

∫
∂Ωn

hm

Hm · vl∗dAhm

−
∫
∂Ωp

hm

Pvl∗ ·
(
F−Tm→n ·Nm

)
Jm→ndAhm , (2.88a)

Rlpe = −
∫

Ωhm

phJm→nF−Tm→n : ∇Xmvl∗dVhm , (2.88b)

Rbbe =
∫

Ωhm

(C̃iso)0→n :
[
FT
m→n · ∇vb · Fm→n

]
∆t :

(
FT
m→n · ∇Xmvb∗

)
dVhm , (2.88c)

Rbpe = −
∫

Ωhm

phJm→n∇ · vb∆t
(
F−Tm→n : ∇Xmvb∗

)
dVhm , (2.88d)

Rple = −
∫

Ωhm

p∗h(J0→n − 1)J−1
0→mdVhm , (2.88e)

Rpbe = −
∫

Ωhm

p∗hJm→n∆t∇ · vbdVhm , (2.88f)

Rppe = −
∫

Ωhm

p∗h
ph
τ
J−1

0→mdVhm , (2.88g)

where (C̃iso)0→n = J−1
0→mχ

?
0→m ((Ciso)0→n) and (Ciso)0→n = ∂(Siso)0→n

∂E0→n
. The standard

Galerkin method is adopted, where the shape functions are identical to the test functions,
using (2.79) and
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∇vlxy =
NbNo∑
i=1

∂N l
i

∂xy
vlx,i, (2.89)

∇vbxy = ∂N b

∂xy
vbx, (2.90)

where i ∈ {1, . . . , 4} is the node number and x, y ∈ {1, 2, 3} are vector components index.

For further details, a vast literature exists on the bubble concept and its similarities
with other stabilization methods [Pierre 1988; Brezzi, L. P. Franca, et al. 1996; Brezzi,
Bristeau, et al. 1992; Hughes and Stewart 1996; Hughes 1995; Hughes, Feijoo, et al. 1998].
Also, Franca et al. highlight bubble limitations in some specific cases [Leopoldo P. Franca
et al. 1994; Leopoldo P. Franca et al. 1995].

2.4.2 Temporal discretization

The Newton–Raphson method

Due to non–linearities of the mechanical problem, an iterative method is required to
solve the system (2.87). The Newton–Raphson method is used to reduce the residual
terms R to zero and to reach the equilibrium between internal and external forces.
We subsequently consider a time discretization between [t, t + ∆t] corresponding to
the consecutive increments n and n + 1. At the instant t, the problem is supposed
to be at equilibrium. The Newton–Raphson method uses the first order Taylor series
expansion to linearize the equations and find the velocity and pressure fields that respect
the equilibrium at the instant t + ∆t when updating the external forces (see fig. 2.6).
Knowing a solution xn,

R(xn + δx) ≈ R(xn) + dR

dxn

∣∣∣∣
xn

· δx = −→0 . (2.91)

We define the tangent stiffness matrix (or Hessian matrix) as

H = dR

dxn

∣∣∣∣
xn

. (2.92)

The system to be solved becomes

H(xn) · δx = −R(xn). (2.93)

Notice that δx is an iterative correction of the solution field, xn+1 = xn + δx.
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x0x1x2xk

Fig. 2.6 – Illustration of the Newton–Raphson algorithm where x0 = xn is the initial (known)
solution at t and xk = xn+1 is the converged solution at t+ ∆t

Application of the Newton–Raphson method

From equations (2.87), (2.92) and (2.93), the linear system to be solved at each Newton–
Raphson iteration takes the form

Hll
e 0 Hlp

e
0 Hbb

e Hbp
e

Hpl
e Hpb

e Hpp
e




δvle
δvbe
δphe

 = −


Rle
Rbe
Rpe

 (2.94)

with

Hxy
e = ∂Rxe

∂αy
, (2.95)

where (xy) ∈ {(ll), (lp), (bb), (bp), (pl), (pb), (pp)} and αy ∈ {vle,vbe, phe}. The Hessian
matrix is generally symmetric, so that Hpl

e = (Hlp
e )T and Hpb

e = (Hbp
e )T . Notice that

for an incompressible material Hpp
e = 0.

The Hessian matrix

The Hessian matrix terms can be obtained from (2.88) and (2.95). However, for imple-
mentation purpose, only the following derivatives were considered

Hll
e = ∂Rlle

∂vle
, Hlp

e = ∂Rlpe
∂phe

, Hbb
e = ∂Rbbe

∂vbe
, Hbp

e = ∂Rbpe
∂phe

,

Hpl
e = ∂Rple

∂vle
, Hpb

e = ∂Rpbe
∂vbe

, Hpp
e = ∂Rppe

∂phe
.
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For instance, ∂R
lp
e

∂vle
and ∂Rbpe

∂vbe
were not taken into account in the Hessian matrix, respec-

tively in the Hll
e and Hbb

e terms. Hence,

Hll
e =

∫
Ωhn

(C̃iso)0→n+1 :
(

FT
n→n+1 ·

∂∇vl

∂vl
∆t
)

:
(
FT
n→n+1 · ∇Xnvl∗

)
dVhn

+
∫

Ωhn

(S̃iso)0→n+1 :

(∂∇vl
∂vl

)T
∆t · ∇Xnvl∗

dVhn

−
∫
∂Ωp

hn

Pvl∗ ·
[
F−Tn→n+1 ·

∂∇vl

∂vl
∆t
]
·
(
F−Tn→n+1 ·Nn

)
Jn→n+1dAhn

+
∫
∂Ωp

hn

Pvl∗ ·

F−Tn→n+1 ·
(
∂∇vl

∂vl

)T
∆t · F−Tn→n+1 ·Nn

 Jn→n+1dAhn , (2.96a)

Hlp
e = −

∫
Ωhn

Jn→n+1F−Tn→n+1 : ∇Xnvl∗dVhn , (2.96b)

Hbb
e =

∫
Ωhn

(C̃iso)0→n+1 :
[
FT
n→n+1 ·

∂∇vb

∂vb
· Fn→n+1

]
∆t

:
(
FT
n→n+1 · ∇Xnvb∗

)
dVhn , (2.96c)

Hbp
e = −

∫
Ωhn

Jn→n+1∇ · vb∆t
(
F−Tn→n+1 : ∇Xnvb∗

)
dVhn , (2.96d)

Hpl
e = −

∫
Ωhn

p∗hJn→n+1∆t
(

F−Tn→n+1 : ∂∇v
l

∂vl

)
dVhn , (2.96e)

Hpb
e = −

∫
Ωhn

p∗hJn→n+1∆t∂∇ · v
b

∂vb
dVhn , (2.96f)

Hpp
e = −

∫
Ωhn

p∗h
1
τ
J−1

0→ndVhn , (2.96g)

where

∂∇vlxy
∂vlz

=
NbNo∑
i=1

∂N l
i

∂xy
δxz, (2.97)

∂∇vbxy
∂vbz

= ∂N b

∂xy
δxz, (2.98)

with i ∈ {1, . . . , 4} is the node number, x, y, z ∈ {1, 2, 3} are vector components index
and δ the Kronecker delta. The reader can refer to A. Fortin et al. [2013] for additional
information.
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Bubble elimination

Since the bubble is locally defined, it is possible to reduce the system (2.94) using the
well known static condensation process. From (2.94), one can obtain

δvbe = −(Hbb
e )−1 · (Rbe + Hbp

e · δphe). (2.99)

Replacing (2.99) in (2.94), and after some manipulations, the system becomes

(
Hll

e Hlp
e

(Hlp
e )T Hpp

e − (Hbp
e )T (Hbb

e )−1Hbp
e

)(
δvle
δphe

)
= −

(
Rle

Rpe − (Hbp
e )T (Hbb

e )−1Rbe

)
.

The terms Rbbe , Rpbe beeing linear with respect to the bubble velocity and Rbpe linear
with respect to the pressure, one can write Rbbe = Hbb

e · vbe, Rpbe = (Hbp
e )T · vbe and

Rbpe = Hbp
e · phe, so that

Rbe = Hbb
e · v

b
e + Hbp

e · phe,
Rpe = Rple +Rppe + (Hbp

e )T · vbe.
(2.100)

Finally, defining Ce = (Hbp
e )T · (Hbb

e )−1 ·Hbp
e , the system to be solved at each iteration

becomes(
Hll

e Hlp
e

(Hlp
e )T Hpp

e −Ce

)(
δvle
δphe

)
= −

(
Rle

Rple +Rppe −Ce · phe

)
. (2.101)

Using PETSc1 (Portable Extensible Toolkit for Scientific Computation) library, the linear
system (2.101) is preconditioned with an incomplete LU factorization and solved with a
conjugate residual method. A relative residual is used ‖R−H · δx‖ 6 α ‖R‖ with the
tolerance criterion α set to 10−8.

2.5 Material models

In this section, two different approaches for the modeling of hyperelastic fiber reinforced
materials are presented, the Angular Integration (AI) and the Generalized Structure
Tensors (GST). Three material transversely isotropic models belonging to these categories
were implemented in the context of this work. They are detailed and we briefly explain
the concept of polyconvexity of the strain energy function.

2.5.1 Fiber distribution

As shown in chapter 1, the collagen fiber network is the main component providing
the mechanical properties of the tissues. However, if collagen fibers are loaded under

1http://mcs.anl.gov/petsc
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tension, they buckle under compression. Therefore, to capture the right behavior of the
tissue, only the stiffness of each individual fiber in tension should be taken into account
depending on the fibers orientations, their waviness and the loading conditions. In soft
tissue constitutive modeling, due to the complexity of the fibers organization, simplified
orientations and traction–compression switch are usually considered using a statistical
distribution of fibers. Two main constitutive frameworks are commonly used in order
to take into account this statistical distribution, the Angular Integration (AI) and the
Generalized Structure Tensors (GST).

We consider an arbitrary fiber orientation represented by the unit vector M , with
‖M‖ = 1, in the reference configuration Ω0. The fibers orientation are defined into
the current configuration with m = F ·M , and the stretch in the direction of the fiber
is λ = ‖m‖. In both method, AI and GST, the relative density of fibers in a specific
direction is described by the orientation distribution function ρ(N) assumed to fulfill
the normalization condition

1
4π

∫
ω
ρ(N)dω = 1 with N =


sin θ cosφ
sin θ sinφ

cos θ

 (2.102)

where θ ∈ [0, π] and φ ∈ [0, 2π] are Eulerian angles according to fig. 2.7, ‖N‖ = 1, ω
is the unit sphere and dω = sin(θ)dθdφ. Furthermore, ρ(N) ≡ ρ(−N) for symmetry
requirement. In that case, we consider the current vector n = F ·N and the stretch
ratio λ = ‖N‖ in the direction of the fiber. Basically, N represents the direction of an
infinitesimal fraction of fibers and ρ(N) give the probability to find a fiber aligned with
the direction N . We subsequently assume fibers distributed with rotational symmetry
with respect to the preferred fiber direction N according to Gasser et al. [2006] and Fed-
erico et al. [2010] for example. Holzapfel, Niestrawska, et al. [2015] recently introduced
a non–symmetric fiber dispersion model in order to capture more complex structural
behaviors.

E1

E2

E3 = M

N

θ

φ

Fig. 2.7 – Characterization of the fiber direction vector in the tree–dimensional Cartesian
coordinate system {E1, E2, E3}
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Angular Integration

In the first approach, the fiber distribution is obtained by angular integration of infinites-
imal fractions of fibers. From a numerical point of view, the distributed fiber orientation
is implemented by summing the individual fibers contribution in all directions. This
method was originally introduced by Lanir [Lanir 1983], then followed by others (see for
instance Billiar et al. [2000a] and Driessen [2006] with application to valvular tissues and
Federico et al. [2010] with application to articular cartilages).

In this method, the strain–energy function of the fibers W f takes the form

W f =
∫
ω
ρ(N)W fidω, (2.103)

where W fi is the strain–energy function of a single fiber of a bundle of fibers.

Thus, the total strain–energy function results from the independent contribution of all
individual fibers. The method leads to relatively accurate results but requires a large
number of calculations to evaluate the angular integration.

Generalized Structure Tensors

In the GST approach, the fiber distribution is represented by a second order (symmetric)
generalized structure tensor H introduced in Gasser et al. [2006] and also used in Gizzi et
al. [2014] for instance. The structure tensor is assumed to represent the three–dimensional
distribution of fibers and takes the form

H = 1
4π

∫
ω
ρ(N)N ⊗Ndω. (2.104)

According to Gasser et al. [2006], in the transversely isotropic case, H is given by the
compact form

H = κI + (1− 3κ)M ⊗M (2.105)

where the dispersion parameter κ represents the “degree of anisotropy”.

The GST method is computationally efficient and easy to implement in a FE framework.
However this method is less accurate than the AI approach, because based on an average
of stretch of all fibers rather than the actual stretch of each fiber depending on its
orientation. This simplification leads to important errors in some cases, especially in the
case of non–tensile loading. A comparison of both approaches can be found in Cortes
et al. [2010] and Skacel et al. [2014] for example.
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2.5.2 Strain–energy functions

From previous assumption, we consider an hyperelastic material reinforced by one family
of fibers. Fibers are embedded in an isotropic matrix and deform affinely with this matrix.
The strain–energy function W for a transversaly isotropic material is

W = W (C,M ⊗M) = W (I1, I2, I3, I4, I5) (2.106)

where I1, I2, I3 are the three first invariants and I4, I5 are pseudo–invariants related to
the anisotropic behavior. They are defined as

I1 = tr C, I2 = 1
2
[
(tr C)2 − tr C2

]
, I3 = det C, (2.107a)

I4 = C : M ⊗M , I5 = C2 : M ⊗M . (2.107b)

In order to obtain the second Piola–Kirchhoff stress tensor S, equation (2.32) is used :

S = 2∂W
∂C = 2

5∑
i=1

∂W

∂Ii

∂Ii
∂C , (2.108)

and from (2.28)

σ = 2J−1F
5∑
i=1

∂W

∂Ii

∂Ii
∂CFT . (2.109)

The invariants derivative with respect to C have the forms

∂I1
∂C = I, ∂I2

∂C = I1I−C, ∂I3
∂C = I3C−1, (2.110a)

∂I4
∂C = M ⊗M ,

∂I5
∂C = C · (M ⊗M) + (M ⊗M) ·C. (2.110b)

Finally, equations (2.108) and (2.109) can be rewritten with respect to the invariants :



S = 2[W1I +W2(I1I−C) +W3I3C−1 +W4M ⊗M
+W5(C · (M ⊗M) + (M ⊗M) ·C)]

σ = 2J−1[W1b +W2(I1b− b2) +W3I3I +W4m⊗m
+W5(m⊗ b ·m+ b ·m⊗m)]

(2.111)

where Wi = ∂W

∂Ii
for i = {1, 2, . . . , 5}.
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The material elasticity tensor C = 2∂S/∂C = 4∂2W/∂C2 is obtained from

C = 4
5∑
i=1
j=1

∂2W

∂Ii∂Ij

∂Ii
∂C ⊗

∂Ij
∂C . (2.112)

Using the decoupled form of the elastic strain–energy function from (2.37), equation
(2.106) is simply rewritten as

W = W (C,M ⊗M) = Wvol(J) +Wiso(Ī1, Ī2, Ī4, Ī5), (2.113)

where Īi are obtained by replacing C by C̄ in (2.107b). Thus, respectively from equations
(2.108) and (2.109) we obtain

Siso = 2∂Wiso

∂C = 2

 5∑
i=1
i 6=3

∂Wiso

∂Īi

∂Īi

∂C̄

 : ∂C̄
∂C , (2.114)

and

σiso = 2J−1F̄ ·


 5∑
i=1
i 6=3

∂Wiso

∂Īi

∂Īi

∂C̄

 : ∂C̄
∂C

 · F̄T
, (2.115)

with ∂C̄/∂C = J−
2
3

(
I− 1

3C̄⊗ C̄−1
)
. Svol and σvol are respectively obtained with

equations (2.39) and (2.41). According to Holzapfel [2006b], the isochoric and volumetric
parts Ciso = 2∂Siso/∂C and Cvol = 2∂Svol/∂C of the material elasticity tensor are

Ciso = P : C̄ : PT − 2
3

[
J−

2
3 (S̄ : C)

(
∂C−1

∂C + 1
3C−1 ⊗C−1

)
+ C−1 ⊗ Siso + Siso ⊗C−1

]
, (2.116a)

Cvol = 2C−1 ⊗
(
p
∂J

∂C + J
∂p

∂C

)
+ 2Jp∂C−1

∂C , (2.116b)

with

S̄ = 2
5∑
i=1
i 6=3

∂Wiso

∂Īi

∂Īi

∂C̄
and C̄ = 4J−

4
3

5∑
i,j=1
i,j 6=3

∂2Wiso

∂Īi∂Īj

∂Īi

∂C̄
⊗ ∂Īj

∂C̄
. (2.117)

Finally the spatial elasticity tensors ciso and cvol result from equations (2.42) using (2.115)
and (2.117). One can refer to Weiss et al. [1995] for further details. In the following, three
strain energy functions from the literature were selected and implemented.
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Weisbecker (AI model)

The material model introduced in Weisbecker et al. [2015] is a structurally motivated
constitutive law that captures three different scales : a single collagen fiber, a bundle of
collagen fibers and the collagen network within the tissue. It belongs to the family of AI
models. As the collagen fibers are crimped in the reference configuration, they do not
carry load until they are stretched. Thus, when a fiber is uncrimped, one can say that it
becomes active and contributes to the strain–energy function. The potential W fi

iso of a
fiber is defined as

W fi
iso = cf

2
(
λ̄− λr

)2
, (2.118)

where λ̄ =
√

C̄ : N ⊗N and λr are respectively the stretch and the recruitment stretch
of a particular fiber. cf is a material parameter. When λ̄ < λr the fibers are crimped or
in compression and cf is set to zero. Considering a bundle composed of several fibers
with varying waviness, a probability density function for the recruitment stretch ρr is
used. The potential W b

iso of a bundle of fibers is then defined as

W b
iso =

∫ λ̄

1
ρr(λr)W fi

iso(λ̄, λr)dλr (2.119)

with

ρr(λr) = (λr − λ1)a1−1(λ2 − λr)a2−1

β(a1, a2)(λ2 − λ1)a1+a2−1 . (2.120)

ρr is a modified beta distribution, where β(a1, a2) is a beta function and a1 and a2 are
shape parameters whose values allow to take into account symmetric and non–symmetric
distributions (fig. 2.8). Equation (2.120) is defined on the interval λ1 ≤ λr ≤ λ2, where
λ1 and λ2 are the stretches at which respectively the first and the last fibers are recruited.
Parameters a1, a2, λ1 and λ2 must be experimentally determined or identified using an
inverse approach.

Assuming a biphasic material with only collagen and elastin, the total strain–energy for
the collagen fibers per unit of reference volume is

W f
iso = ν

∫
Ω
ρ(N)W b

iso(λ̄)dΩ, (2.121)

where ν is the volume fraction of the fiber bundles and ρ(N) is the orientation distribution
function in the direction N . A suitable function to describe the orientation distribution
ρ(N) is the von Mises distribution also used in Gasser et al. [2006] and Federico et al.
[2010] for instance. Furthermore, for a transversely isotropic probability distribution with
respect to M , ρ(N(θ, φ)) simplifies into ρ(θ). The normalized (2.102) and π–periodic
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1 1.1 1.2 1.3 1.4 1.50

2

4

6

λr

ρ
r

Symmetric distributions

ai = 1
ai = 2
ai = 4
ai = 8

1 1.1 1.2 1.3 1.4 1.50

5

10

λr

ρ
r

Non–symmetric distributions

a1 = 2 a2 = 2
a1 = 2 a2 = 4
a1 = 2 a2 = 8
a1 = 2 a2 = 16

Fig. 2.8 – Examples of probability density functions ρr for 1 < λr < 1.5

von Mises distribution centered at θ = 0 is

ρ(θ) = 4

√
b

2π
eb(cos(2θ)+1)

erfi(
√

2b)
, (2.122)

where b ∈ ]0,∞[ is the concentration parameter, and erfi(x) = −i erf(ix) denotes the
imaginary error function at x, with the error function erf defined as

erf(x) = 2√
π

∫ x

0
e−t2dt. (2.123)

Notice that b −→ 0 represents isotropy with fibers equally distributed in all directions and
b −→∞ describes fibers all aligned in one direction. Following the additive decomposition
of the strain–energy function into a (neo–Hookean) matrix contribution and a fibers
contribution, the material strain–energy function Wiso becomes

Wiso = (1− ν)cg(Ī1 − 3) + ν

∫
Ω
ρ(N)W b

iso(λ̄)dΩ, (2.124)

where cg = µg
2 is the groundmatrix material parameter (µg is the matrix bulk modulus).

See appendix B for further details. Finally, adding the volumetric strain energy function
from subsection 2.3.5, the total strain–energy function is W = Wiso + τ

2 (J − 1)2.

From an implementation point of view, integrals of a function f on the interval [a, b] are
evaluated using a trapezoidal rule

∫ b

a
f(x)dx ≈ b− a

n

[
f(a) + f(b)

2 +
n−1∑
k=1

f

(
a+ k

b− a
n

)]
, (2.125)

71



Chapter 2. Mechanical framework and models

with n the number of intervals determined recursively. To solve integrals over the unit
sphere surface S2, an efficient method suggested in Weisbecker et al. [2015] and initially
proposed in Bazant et al. [1986] was used. In this method, the integral of a tensor–valued
function A(N) is approximated with the formula

∫
S2

A(N)dS ≈ 4π
n∑
k=1

A(Nk)qk, (2.126)

whereNk are vectors in specific directions of the sphere and qk their associated integration
weights, with k = {1, . . . , n}. Choosing n = 42, only 21 weights are required due to the
symmetry of the integration scheme multiplying the weights by two. Values of Nk and
qk can be found in Bazant et al. [1986]. The beta function is computed using Stirling’s
approximation given by the formula

β(a1, a2) ≈
√

2π a
a1− 1

2
1 a

a2− 1
2

2

(a1 + a2)a1+a2− 1
2
, (2.127)

and the imaginary error function with the locals power series developments at 0,

erfi(x) = 2√
π

(
x+ x3

3 + x5

10 + x7

42 + x9

216 +O(x11)
)
, (2.128)

and at ∞,

erfi(x) = ex2

√
π

(
x−1 + 1

2x
−3 + 3

4x
−5 + 15

8 x
−7 + 105

16 x
−9 +O(x−11)

)
. (2.129)

The algorithm is illustrated in alg. 1.

Algorithm 1 FE implementation of the Weisbecker model
procedure Weisbecker(M , F̄, cg, cf , ν, b)

S̃iso ← initialization
C̃iso ← initialization
load spherical design Nk with k = {1, . . . , 21}
for all direction k do

compute fiber direction nk
compute isochoric stretch λ̄k
compute angle θk
if λ̄k ≥ λ1 then

compute fiber bundle strain energy derivative (W b
isok

)′ . trapezoidal rule
compute orientation density ρk
compute stress tensor (S̃iso)k . sphere integration
compute elasticity tensor (C̃iso)k . sphere integration

S̃iso ← S̃iso + (S̃iso)k
C̃iso ← C̃iso + (C̃iso)k
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Holzapfel Gasser Ogden (GST model)

The Holzapfel Gasser Ogden (HGO) model was introduced first in Holzapfel, Gasser,
et al. [2000] for the description of the mechanical response of arterial tissues. It was then
extended to distributed fiber orientations in Gasser et al. [2006] using a GST formulation.
This is a transversely isotropic model defined in terms of the invariants Ī1 and Ī4 and its
strain–energy function W results from the superposition of the isotropic potential W g

iso

of the non–collagenous groundmatrix and the transversely isotropic potential W f
iso of the

embedded collagen fibers. Hence,

Wiso = W g
iso +W f

iso (2.130)

and from subsection 2.3.5

W = Wiso + τ

2 (J − 1)2 (2.131)

with τ −→ ∞ for an incompressible material. The non–collagenous groundmatrix is
modeled by mean of an incompressible neo–Hookean model W g

iso = c0(I1 − 3), with
c0 = µg

2 where µg is the bulk modulus of the groundmatrix. For the fibers contribution,
Gasser et al. [2006] replaced the classical structure tensor M ⊗M of the HGO model
[Holzapfel, Gasser, et al. 2000] by the generalized structure tensor (2.105). Thus, Ī4−1 =
M ⊗M : C̄ − 1 becomes H : C̄ − 1, which characterize the strain of the fibers in the
principal orientation M :

W f
iso = c1

2c2

[
ec2(κĪ1+(1−3κ)Ī4−1)2

− 1
]
. (2.132)

Finally, the isochoric contribution of the strain–energy function is

Wiso = c0(Ī1 − 3) + c1
2c2

[
ec2(κĪ1+(1−3κ)Ī4−1)2

− 1
]
, (2.133)

where ci with i = {0, 1, 2} are positive material parameters and κ ∈
[
0, 1

3

]
is the fiber

structure dispersion parameter as defined in Gasser et al. [2006], to be obtained from
experimental data. In the transversely isotropic case,

κ = 1
4

∫ π

0
ρ(θ) sin3(θ)dθ (2.134)

where ρ(θ) is the same normalized π–periodic von Mises distribution as defined previously
(2.122). Using equations (2.134) and (2.122) and the trigonometric function cos(2θ) =
1− 2 sin2(θ), we obtain the relation between κ and b
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κ =

√
b

2π
e2b

erfi(
√

2b)

∫ π

0
e−2b sin2(θ) sin3(θ)dθ

= 1
2 + 1

8b −
1
4b

√
2b
π

e2b

erfi(
√

2b)
. (2.135)

The relation between the dispersion and the concentration parameters is plotted on fig.
2.9.
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0.3

0.4

b

κ

Fig. 2.9 – Relation between κ and b according to equation (2.135)

Notice that κ = 1/3 corresponds to isotropy (i.e. b −→ 0) with fibers equally distributed
in all directions and κ = 0 corresponds to the case where fibers are all aligned in one
direction (i.e. b −→ ∞). Representations of fibers orientations and fibers distributions
are respectively shown on fig. 2.10 and fig. 2.11 for several κ values.

κ = 1
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Fig. 2.10 – Three–dimensional graphical representation of the collagen fibers orientation for
several κ values [Gasser et al. 2006]
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Fig. 2.11 – Two–dimensional representation of the distribution ρ(θ) of the collagen fibers for
several κ values

From the physically and numerically (stability) motivated assumption that collagen fibers
cannot support any compressive load, the anisotropic part contributes only if the strain
in the direction M is positive i.e. H : C̄ > 1. Otherwise, the parameter c1 is set to zero.

Using above equations, the spatial stress and elasticity tensors can be computed using
an efficient FE implementation. One can refer to appendix B for further details.

Modified Holzapfel Gasser Ogden (GST model)

A slightly modified transversely isotropic HGO model was also implemented. The neo–
Hookean matrix potential W g

iso was remplaced by Fung type exponential strain–energy
function in order to better capture high non–linearity groundmatrix behavior. Thus,

W g
iso = c0

c1

[
ec1(Ī1−3) − 1

]
(2.136)

and

Wiso = c0
c1

[
ec1(Ī1−3) − 1

]
+ c2

2c3

[
ec3(κĪ1+(1−3κ)Ī4−1)2

− 1
]

(2.137)

where ci with i = {0, . . . , 3} are positive material parameters and κ ∈
[
0, 1

3

]
is the fiber

structure dispersion parameter like for the HGO model presented above. This constitutive
law was for example used in Wang et al. [2014] for the modeling of the human left ventricle
in diastole. One can refer to appendix B for further details.
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2.5.3 Polyconvexity

Polyconvexity, in the sense of Ball [Ball 1976], is a very important concept for hyperelastic
constitutive models in order to guarantee the existence of minimizers of the potential
(while strict convexity implies the existence of an unique global minimum). In other words,
polyconvexity of a strain–energy function implies material stability. A vast literature
exists on polyconvexity. For definitions and several important results on polyconvexity
for hyperelastic anisotropy, see for instance Balzani et al. [2006], Schröder, P. Neff, et al.
[2005], Schröder and Patrizio Neff [2003], Itskov et al. [2004], and Hartmann et al. [2003]
for nearly–incompressibility. One can also refer to the work of Ebbing [Edding 2010]
on the design of polyconvex energy functions for anisotropic materials for definitions
and remarks about the generalized convexity conditions. However, a general proof of
convexity for AI and GST approaches in the case of complex orientation distributions
remains to be provided.

2.5.4 Fibers orientation

Principal collagen fibers orientations are assumed to be correlated with the models macro-
scopic directions of anisotropy. In order to reproduce the planar tissue network in the
FE model, a vector anisotropy M has to be defined on each element from experimental
measurements of a locally averaged collagen orientations. Confocal laser scanning micro-
scope images of the collagen fibers in the fibrosa layer were used to identify this local
preferred orientation as well as the local fiber distribution parameter (chapter 1). Since
the material is assumed locally transversely isotropic, only one direction of anisotropy
oriented in the focal plan, and one fiber distribution parameter, were identified for each
picture. The confocal measurements were firstly pre–treated to be projected on a 3D FE
mesh as initial (i.e. unloaded) fiber configuration as shown on fig. 2.12.

Fig. 2.12 – Illustration of the projection of a fiber direction (in red) from a 2D measurement to
a 3D geometry
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Knowing the image planar coordinates from a reference point of the sample, anisotropy
directions and fiber distribution parameters are interpolated and extrapolated on a fine
regular grid. A cubic polynomial function was used for the interpolation while the ex-
trapolation, if required, was linear. To easily link the sample to the model geometry, the
coordinates of the interpolation grid points are normalized between 0 and 1 taking the
reference point as origin.

A Dijkstra’s algorithm was implemented in order to compute the minimum distance
between the reference element (corresponding to the reference point of the sample) and
all other elements barycenter by finding the shortest paths on the FE mesh. The element
barycenter Γ is defined as

Γ = 1
NbNo

NbNo∑
i

xi. (2.138)

where NbNo is the number of nodes of an element. In order to use the Dijkstra’s algo-
rithm, the table of neighbors was built considering element’s faces (i.e. maximum of four
neighbors per element). Knowing the neighborhood of each element, the mesh can be
seen as a graph where the elements barycenter are nodes. Hence, the minimum distance
was computed on the mesh, through the other elements in order to give not a real but a
relative value of the distance (fig. 2.13).

d

reference elt.

current elt.

Fig. 2.13 – Illustration of the Djikstra’s algorithm on a 2D mesh to compute a minimum distance
d between the reference and current elements

The geometry, is then virtually “unfolded” in order to project elements’ barycenter
coordinates into a plan. In other words, for each element the computed distance is
virtually stretched into a plane defined by two vectors, a predefined vector of the Cartesian
coordinate system and the vector from the reference element to the current element. The
projection is made along the latter direction (fig. 2.14). Hence, coordinates corresponding
to elements’ barycenter are obtained in a plane. These coordinates were normalized with
respect to the reference element in order to be linked with the geometrically closest
experimental interpolated grid values. Note that the geometry has to be open.
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reference p.

current p.
projected p.

projection plane

Fig. 2.14 – Illustration of the projection method from a 3D geometry into a plane

Finally, a rotation was applied to the anisotropy vectors defined on the elements to
make them perpendicular to the closest outward normal surface vector. Thus, fibers
vectors and fibers distribution parameters in the unloaded configuration obtained from
confocal microscope images are reproduced on the FE model. A brief summary of the
finite element algorithm is illustrated in alg. 2.

Algorithm 2 Initial anisotropy directions from experimental data
procedure Orient(reference element, experimental normalized grid)

initialization
build elements neighbors table
for all element do

compute element barycenter
compute shortest distance between element barycenter and reference element

. Dijkstra’s algorithm
store distance

build planar grid from elements barycenter 3D coordinates
normalize FE grid coordinates
link FE and experimental normalized grids
for all element do

interpolate closest experimental value and FE grid
find element closest outward normal vector from surface geometry
compute rotation matrix
rotate anisotropy vector in the tissue plan
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2.6 Solver validation

In this section the convergence and stability of the hyperelastic solver is discussed, as
well as the accuracy of the material models implementation.

2.6.1 Convergence and stability

Pressure field

In order to make sure that the bubble is correctly implemented ensuring a stable element,
a compression test was performed on FORGE®. It has been observed that compression
loadings are more subjected to numerical instabilities in case of incompatible elements. A
deformable cube with a length of 10 mm was modeled using 0.5 mm structured tetrahedral
mesh. A pressure of 1 kPa along the vertical direction was applied on a 5 mm × 5 mm
area at the center of the deformable body (fig. 2.15). Both incompressible and quasi–
incompressible formulations were used with a neo–Hookean material model. The material
parameter was set to c0 = 100 kPa. In the quasi–incompressible case, the fictive Young’s
modulus was defined following E = 4c0(1 + υ) and the fictive Poisson’s ratio was set to
υ = 0.4995. On fig. 2.16, a comparison of the pressure field in the quasi–incompressible
case for both non–stabilized (P1/P1) and stabilized (P1+/P1) elements is shown. It
clearly appears that the P1/P1 element presents a noisy pressure field accountable to
non–consistent interpolation while it is significantly smoother for the P1+/P1 element.
This phenomenon is highlighted in the fully incompressible case with non–stabilized
elements while it is very similar to the quasi–incompressible case using MINI–elements
(fig. 2.17). Thus, the bubble formulation proposed in section 2.4 is suitable for dealing
with incompressibility and quasi–incompressibility using linear tetrahedral elements.

(a) σ33 boundary condition area in red

σ33 (kPa)
1

0.05

0
(b) σ33 field

Fig. 2.15 – Pressure applied on one–fourth of the geometry
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(a) No stabilization (b) Bubble stabilization

p (kPa)
0.2

−0.4

−1

Fig. 2.16 – Pressure field in the quasi–incompressible case without and with stabilization

(a) No stabilization (b) Bubble stabilization

p (kPa)
0.2

−0.4

−1

Fig. 2.17 – Pressure field in the incompressible case without and with stabilization

Volume conservation

The volume conservation accuracy of the implemented formulation was checked in both
incompressibility and quasi–incompressibility cases. Similar geometry and material pa-
rameters as presented above were used. In this example, the geometry was submitted to
a compression loading with a compression ratio ranging from 0 to 80%. On fig. 2.18 is
shown the evolution of the normalized volume during the compression. The volume is
perfectly preserved in the case of the fully incompressible formulation, while a slight but
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expected loss is observed with the quasi–incompressible formulation.
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Fig. 2.18 – Evolution of the normalized volume with compression in incompressible and quasi–
incompressible formulations

2.6.2 Models implementation

Validation on isotropic cases

The models implementation was validated on isotropic analytic cases. Results are pre-
sented on fig. 2.19a and fig. 2.19b. Like before, a 10 mm width cube geometry with a 0.5
mm structured tetrahedral mesh was used.

On these figures, the uniaxial tension in the direction E3 until 400% stretch is respectively
shown for a neo–Hookean model with c0 = 100 kPa (isotropic part of HGO andWeisbecker
models) and a Fung–Demiray model with c0 = 10 kPa and c1 = 0.1 (isotropic part of the
modified HGO model). In both cases the material was considered as fully incompressible.

1 2 3 4 50

2

4

Stretch

σ
33

(M
Pa

)

Analytic
FE model

(a) Neo–Hookean model validation

1 2 3 4 50

2

4

Stretch

σ
33

(M
Pa

)

Analytic
FE model

(b) Fung–Demiray model validation

Fig. 2.19 – Isotropic models validation on uniaxial tension tests
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For the neo–Hookean model the analytic equation of the stress along E3 is given by

σ33 = 2c0

(
λ2 − 1

λ

)
, (2.139)

and for the Fung–Demiray model by

σ33 = 2c0

(
λ2 − 1

λ

)
ec1( 2

λ
+λ2−3), (2.140)

where λ = 1 + ∆l
l0

with l0 = 10 mm. A perfect agreement was found between the FE
implementation and the analytical results.

Anisotropy

To illustrate the anisotropy effect of the fibers, an inflation test of a spherical balloon with
circumferentially arranged fibers subjected to an internal pressure was performed (fig.
2.20). The pressure evolves linearly from 0 to 0.1 kPa. Since the problem is axisymmetric,
one–eighth of the structure was modeled and mirror symmetries were used. The sphere
has a radius of 10 mm and a thickness of 0.5 mm. A 0.25 mm unstructured mesh was used.
In the following example, an HGO material model was used with c0 = 1 kPa, c1 = 10
kPa, c2 = 1. Several values for the fibers dispersion parameter κ were tested, κ = 0.333
(isotropic), κ = 0.2 and κ = 0 (transversely isotropic). After inflation, the initially
spherical balloon took an elongated shape for κ 6= 0.333 due to the circumferential fibers
stiffness and stayed spherical for κ = 0.333 (fig. 2.21).

Fig. 2.20 – Circular fiber arrangement on one–eighth of a spherical balloon (arrows indicate the
orientation of the fibers)
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‖d‖ (mm)
2

1

0

‖d‖ (mm)
2

1

0

‖d‖ (mm)
3

1.5

0
Fig. 2.21 – Inflation of the spherical balloon submitted to internal pressure with κ = 0.333,
κ = 0.2 and κ = 0 from top to bottom (the norm of the displacement field ‖d‖ is shown)
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Quasi–static energy conservation and full recovery

To check the energy conservation, the elastic springback was tested in two cases. In the
first case (fig. 2.22), a normal pressure was applied at the free tip of an embedded beam
(50 mm × 10 mm × 10 mm with a 1 mm structured mesh). The normal pressure evolved
linearly with time from 0 to 1 kPa. When the threshold value is reached, the normal
pressure is removed. In the second case (fig. 2.23), the deformation was induced by a
rigid (undeformable) object assuming a free–slip contact. The indentation of a 10 mm
width cube (0.5 mm structured mesh) using a spherical rigid object with a radius of 2.5
mm was modeled. The spherical object goes down to a fixed depth of 3 mm and then goes
back to its initial position. In both cases, an incompressible hyperelastic neo–Hookean
model with c0 = 100 kPa was used. After unloading the deformed meshes return to their
original shape showing that the energy is conserved. However, the remaining displacement
is higher in the second case due to the large elements deformation locally induced by the
sphere.

‖d‖ (mm)
4

2

0
(a) Initial mesh with deformed geometry

‖d‖ (mm)
0.005

0.0025

0
(b) Initial mesh with final geometry after elastic springback

Fig. 2.22 – Energy conservation on a bending test (the norm of the displacement field ‖d‖ is
shown)
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‖d‖ (mm)
3

1.5

0
(a) Initial mesh with deformed geome-
try

‖d‖ (mm)
0.07

0.035

0
(b) Initial mesh with final geometry af-
ter elastic springback

Fig. 2.23 – Energy conservation during an indentation test on one–fourth of the deformable
cube (the norm of the displacement field ‖d‖ is shown)

2.6.3 Fibers orientation algorithm

Fibers orientation

The fibers orientation algorithm was tested on artificial data. A sinusoidal fibers angle
distribution was used to be interpolated on a fine planar grid. The interpolated values
were then projected on a planar FE mesh in the software to be used as initial fibers angle
distribution (fig. 2.24). Results show a good accuracy between the interpolated and the
projected orientation values. However, this accuracy directly depends on the mesh size
that must be adapted to the complexity of the distribution (i.e. a fine mesh is required
in the areas of complex fibers distribution).

(a) Interpolation on a normalized fine grid (b) Projection on a planar mesh

Fig. 2.24 – Example of sinusoidal θ (°) interpolation and projection corresponding to fiber
orientation vectors
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To qualitatively demonstrate the proper functioning of the algorithm on a complex three–
dimensional geometry, the same distribution was projected on a bimaterial prosthetic
aortic valve geometry (fig. 2.25). On fig. 2.25, the leaflet tissues are represented in red
while the rigid support structure is in blue. Once again, a good accuracy was found.

Fig. 2.25 – Orientation projection on a complex 3D geometry of prosthetic valve (from left to
right : top, side and bottom views)

Fibers dispersion or concentration

As for the fibers angle distribution, fiber dispersion (or concentration) parameter inter-
polation and projection was checked. A random κ ∈

[
0, 1

3

]
distribution was chosen. The

projection of the interpolated random κ distribution on a planar FE mesh and on a pros-
thetic aortic valve geometry are respectively shown on fig. 2.26 and fig. 2.27. Similarly
to above observations, results were satisfying.

(a) Interpolation on a normalized fine grid

κ
0.333

0.165

0
(b) Projection on a planar mesh

Fig. 2.26 – Example of random κ interpolation and projection
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κ
0.333

0.165

0
Fig. 2.27 – κ on a complex 3D geometry of prosthetic valve (from left to right : top, side and
bottom views)

2.7 Summary of Chapter 2

According to the literature, mechanical tensile tests presented in chapter 1 highlighted
the hyperelastic anisotropic behavior of aortic valves tissues. Hence, the modeling of
such materials requires the implementation of relevant numerical methods and models.
Developments were made in a custom laboratory version of the finite element software
FORGE®. Due to the software constraints, an hyperelastic solver in mixed velocity–
pressure formulation was implemented. The assumption of infinitesimal strains used
in FORGE® was not made in this work. An updated Lagrangian method in the finite
strain framework, more suitable for the modeling of soft tissues, was developed. Moreover,
both incompressible and quasi–incompressible formulations were implemented. Since the
software uses linear tetrahedron elements with bubble stabilization, the bubble was also
adapted to the hyperelastic framework.

Three hyperelastic orthotropic material models from the literature were implemented. A
phenomenological approach was chosen in order to model the tissues at the valve’s scale.
However, these models are able to take into account some structural information, like
a local statistical fibers distribution that confer anisotropic properties to the material.
Assuming that local principal fibers orientations can be correlated to the macroscopic
directions of anisotropy of the models, an algorithm was developed to transpose orienta-
tions measured by confocal microscopy in the chapter 1 to a complex finite element mesh.
Thus, this algorithm used at the beginning of the finite element computation allows to
define an initial direction of anisotropy and a dispersion (or concentration) parameter
on each element from experimental data.

Finally, the stability and accuracy of the implementation were checked through several
numerical tests.
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2.8 Résumé en français

Les essais mécaniques présentés dans le chapitre 1 ont montré, en accord avec la littéra-
ture, que les tissus de valves aortiques ont un comportement hyperélastique anisotrope.
La modélisation numérique de tels matériaux nécessite donc le choix d’une méthode
de résolution et l’implémentation de modèles de comportement adaptés. Les développe-
ments ont été réalisés dans une version laboratoire du logiciel éléments finis FORGE®.
En raison de contraintes inhérentes au logiciel, un solveur hyperélastique en formulation
mixte vitesse–pression a été implémenté. L’hypothèse des déformations infinitésimales
utilisée dans FORGE® n’a pas été choisie pour ce travail. Une méthode Lagrangienne
actualisée dans le formalisme des grandes déformations, plus adaptée à la modélisation
des tissus mous, a été développée. En outre, une formulation incompressible et une for-
mulation quasi–incompressible ont été implémentées. Le logiciel utilisant des éléments
tétraédriques linéaires avec une stabilisation bulle, celle–ci a aussi été adaptée au formal-
isme hyperélastique.

Trois modèles de comportement hyperélastiques orthotropes de la littérature ont été
implémentés. Une approche phénoménologique a été choisie de manière à pouvoir mod-
éliser les tissus à l’échelle de la valve. Ces modèles sont néanmoins capables de prendre
en compte un certain nombre d’informations structurelles, notamment une distribution
statistique locale de fibres de collagène conférant son anisotropie au matériau. En sup-
posant que les orientations préférentielles locales des fibres de collagène puissent être
corrélées aux directions d’anisotropies macroscopiques des modèles, un algorithme a été
développé afin de transposer les orientations mesurées par microscopie confocale dans
le chapitre 1 à un maillage éléments finis de géométrie complexe. Cet algorithme utilisé
au début du calcul éléments finis, permet de définir la direction initiale d’anisotropie
ainsi que la valeur du paramètre de dispersion (ou concentration) des fibres pour chaque
élément à partir de données expérimentales.

Finalement, la stabilité et la validité de l’implémentation ont été vérifiées à travers
plusieurs tests numériques.
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3.1 Introduction

Identification of physical models parameters allowing to reproduce experimental ob-
servations has been an important research area for a long time, with a wide range of
applications in many fields. An accurate parameter identification on a proper model
calibrated on proper experiments should confer a good consistency and predictability. In
order to find these parameters, an inverse analysis procedure is often used. It usually
involves the minimization of an objective function, also called error or cost function,
that ensures the agreement between experimental data and theoretical model results. In
other words, an experiment is simulated and the model parameters are adjusted until
the model matches the experiment.

In the mechanical field, inverse analysis is based on mechanical experiments where the
reference state, the deformed state, and the applied boundary conditions are known and
can be numerically reproduced. Thus, material parameters identification requires ro-
bust inverse analysis procedures conducted on relevant material models and an accurate
modeling of the experimental boundary conditions, while containing experimental error
within acceptable limits. In case of complex materials such as biomaterials, the inverse
analysis procedure may deal with additional practical difficulties such as for instance
multi–scale properties, non–linearity, anisotropy, remodeling, complex geometries and
local heterogeneity (regionally varying stiffness, fiber reorientation, . . . ).

A vast literature exists on inverse analysis applied to biomaterials. Readers can refer
for instance to Harb et al. [2014] who introduced a method based on genetic algorithms
and analytical optimization for complex models with numerous material parameters. An-
other approach based on a successive response surface method was used in Einstein et al.
[2005] to fit hyperelastic anisotropic constitutive equations on aortic wall and AV tissue
properties. Kroon et al. [2009] proposed an inverse method applied to non–linear elastic
membrane such as cerebral aneurysms. Krishnamurthy et al. [2008] used finite element
inverse analysis to find material properties of mitral valve leaflets based on in vivo ex-
periments involving tracking of miniature radiopaque markers. Abbasi et al. [2016] used
inverse analysis on planar biaxial tensile tests of bioprosthetic valve tissues followed by a
second–step optimization on a 3D finite element model coupled with in vitro experiments
for validation. One can also refer to Fehervary et al. [2016] who proposed a parameter opti-
mization procedure improving fitting results on soft tissue planar biaxial tests using rakes.

In this chapter, biaxial experiments results and fibrous structure information from chapter
1 were used together with finite element models implemented in chapter 2 to setup an
inverse analysis procedure. In section 3.2, we first remind some concepts of inverse analysis
and briefly introduce two optimization algorithms. Then, our inverse analysis software
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and strategy are presented. In section 3.3 the inverse analysis results are discussed and
the different implemented constitutive models are compared to determine which one
better fits AV tissues behavior. Finally, a summary concludes the chapter (section 3.4).

3.2 Inverse analysis approach

In this section we present generalities on optimization, as well as the inverse analysis
strategy used to identify material models’ parameters from experimental observations.

3.2.1 Generalities on inverse analysis

An inverse problem is a constrained non–linear optimization problem that seeks to
minimize an objective function f(x) where x is the vector of the optimization variables
xi. For a n dimensional optimization problem x ∈ Ψ with Ψ ⊂ Rn the optimization
domain. The inverse problem is the process of computing from a set of observations
the causal factors that produced them. It is called “inverse” because it starts from the
output results and then calculate input parameters. Non–linear inverse problems are
often solved using either gradient or evolutionary optimization methods.

Gradient methods

Gradient descent is the most used procedure among gradient methods. It is a first–order
iterative optimization algorithm based on the gradient of objective function ∇f with
f ∈ C0(Ψ). C0(Ψ) is the space of continuous functions on the optimization domain Ψ.
Thus, the optimal solution condition is ∇f = 0. This optimal solution is achieved using

d · ∇f < 0, (3.1)

where d is the descent direction. One can refer for instance to Roux [2011] for more
information about the choice of d and the resolution methods.

These algorithms are widely used but suffer from two major drawbacks : the objective
function must be continuous on Ψ, and the optimal solution found do not ensure conver-
gence to the global solution but only to a local minimum (except if f is convex). Hence,
the optimal solution depends on the initial values of the optimization variables.

Evolutionary algorithms

Evolutionary algorithms are inspired by the evolution theory, using mechanisms such as
selection, recombination and mutation for instance. Since the sixties, they experienced
a wide development in the optimization field. These algorithms are usually robust and
efficient for all types of problems because they do not make any assumption but are

91



Chapter 3. Inverse analysis procedure

generally more time consuming than gradient methods. In evolutionary algorithms, an
initial population is generated in the optimization domain Ψ. This generation can be
random or follow specific rules. The population is then evaluated and a selection allows
best individuals to reproduce for next generation using recombinations (information
exchange between individuals) and mutations (permanent alteration). The process is
repeated as long as the convergence criterion is not reach. Thus, evolutionary algorithms
can efficiently solve complex (non convex) optimization problems avoiding convergence
towards local minima. Two types of evolutionary algorithms are commonly used in
optimization problems :

1. genetic algorithms, initially introduced in Holland [1962] and Holland [1975], are
often based on a binary representation of the individuals ;

2. evolution strategies, introduced in Rechenberg [1965], are quite similar to genetic
algorithms but based on a real valued representation of the individuals.

A functional diagram of these algorithms is illustrated on fig. 3.1. Further information
on genetic operators like selection, crossing, mutation and recombination, can be found
in Roux [2011] for instance.

initial population x

evaluate objective
function

convergence
criterion ?

genetic operators
(selection, mutation, . . . )

new population x

best individuals

no

yes

Fig. 3.1 – Evolutionary algorithm diagram
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3.2.2 Inverse analysis method

The Levenberg—Marquardt algorithm, which uses a modified gradient descent approach,
is often used to solve non–linear least squares problems in biomechanics. However, this
method can encounter numerical difficulties and sometimes require to be combined with
a multi–step approach decomposing the initial problem in smaller ones. This gradual
procedure allows to progressively determine all the material parameters but is time con-
suming and requires adapted experiments (see for instance Holzapfel [2006a]). On the
other hand, global stochastic methods have demonstrated their robustness for solving
complex optimization problems and should perform well in single–step inverse analysis.
Thus, we decided to use a metamodel–assisted evolutionary algorithm based on the latter
procedure. The algorithm, developed in our laboratory, is called MOOPI for MOdular
software dedicated to Optimization and Parameters Identification [Roux 2011]. The
MOOPI platform was coupled with the FE software FORGE®.

MOOPI uses a kriging metamodel for the construction and the exploitation of the re-
sponse surface. The metamodel gives an estimate of an unknown solution based on
observations of previous ones. It allows to quickly obtain an approximation of the ob-
jective function at every points of the (continuous) optimization domain Ψ. Another
important aspect is to ensure the global nature of the optimum search exploring un-
known areas of the domain in order to iteratively enrich the solutions database. Thus,
MOOPI uses an evolution strategy optimization algorithm that maximize the “expected
improvement” criterion introduced in Jones et al. [1998]. The objective function f to
minimize is defined as a least mean squares function following the equation

f(x) =

√√√√√√√√√
m∑
i=1

(yexpi − ynumi (x))2

m∑
i=1

(yexpi )2
. (3.2)

We denote m the number of experimental points, yexpi the experimental points values
and ynumi the corresponding (interpolated) numerical values. In counterpart of their
robustness, global methods requires a large number of evaluation of the objective function.
For further information on MOOPI the reader can refer to Roux [2011].

3.2.3 Fibers dispersion and concentration parameters

Fully automated methods for quantification of the local fiber dispersion (or concentra-
tion) parameters from two–dimensional collagen fibers images are increasingly popular.
For instance, Schriefl et al. [2012] used an automated fitting process based on Fourier
power spectrum analysis to find preferred fibers directions and fibers dispersion on mul-
tiphoton images. However, from section 1.4 we consider a series of k independent angle
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measurements θi with i = {1, . . . , k}. According to Banerjee et al. [2005], the maximum
likelihood estimate of b can be obtain following the equations

R̄ =
I d

2
(b)

I d
2−1(b) = 1

k

∥∥∥∥∥
k∑
i=1

θi

∥∥∥∥∥ , (3.3)

and

b ≈ R̄(d− R̄2)
1− R̄2 , (3.4)

where d = 2 is the dimension and In(b) is the modified Bessel function of the first kind
defined as

In(b) = 1
π

∫ π

0
eb cos(θ) cos(nθ)dθ. (3.5)

The dispersion parameter κ is then computed from (2.135).

3.2.4 Numerical setup and inverse analysis procedure

For the inverse analysis procedure, experimental data from the representative fresh sample
presented in section 1.4 were used. Thus, both mechanical behavior and collagen fiber
information, were known on a same specimen. The numerical setup reproduces the biaxial
experiment on a 5 × 5 mm2 area between the rakes. Fiber orientations and dispersion
(or concentration) parameters obtained from fibers confocal measurements presented in
section 1.4 were transposed to the finite element mesh (0.25 mm structured mesh) using
alg. 2 in order to approximate the actual fibrous structure of the sample (fig. 3.2).

Fig. 3.2 – Interpolation of measured fibers directions on the undeformed finite element mesh

Some assumptions were made for the numerical modeling of the sample. First, an homo-
geneous thickness of 0.5 mm was chosen. In practice, a thickness of 0.25 mm was used
with a mirror symmetry. Secondly, material parameters are assumed to be homogeneous
in the tissue while structural parameters are locally imposed. The local concentration
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parameters b on the sample were obtained from equations (3.3) and (3.4) where θi are
the measured angles on each confocal image. The dispersion parameters κ were obtained
using b and (2.135). Finally, dispersion and concentration parameters were interpolated
using the algorithm presented in subsection 2.5.4. Results are shown on fig. 3.3.

(a) b interpolation (b) κ interpolation

Fig. 3.3 – Interpolation on the sample of the local concentration and dispersion parameters

Since the numerical modeling of the experiments must be accurately reproduced, dis-
placements measured from DIC (virtual extensometers) at the 5×5 mm2 area boundaries
were imposed. Hooks were not modeled. Hence, only the area of interest was represented
and area borders stay straight during deformation as illustrated on fig. 3.4. Radial and
circumferential axes of tension as defined in chapter 1 are recalled on fig. 3.5. The opti-
mization was made on force data versus time. Displacements and forces measurements
for all the experimental protocol loadings on a representative fresh sample are presented
on fig. 3.6, fig. 3.7, fig. 3.8 and fig. 3.9. An inverse analysis procedure was performed on
each implemented material model (see chapter 2) in order to select the most relevant
one. The influence of the number of loading conditions and fiber orientation angles (free
or imposed) on the inverse analysis results were also investigated.

(a) Initial area (b) Deformed area

Fig. 3.4 – Illustration of the modeled area at the initial and deformed states
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free edge
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commissure commissure

Fig. 3.5 – Scheme of an excised AV leaflet with radial and circumferential axes definition
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Fig. 3.6 – Superposition of displacements from all the experimental loading conditions on a
representative fresh sample (DIC measurements)
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Fig. 3.7 – Superposition of forces from all the experimental loading conditions on a representative
fresh sample

96



3.2. Inverse analysis approach

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(1 : 1)

cir
rad

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(1 : 0.5)

cir
rad

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(1 : 0.25)

cir
rad

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(1 : 0.1)

cir
rad

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(0.1 : 1)

cir
rad

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(0.25 : 1)

cir
rad

0 50 1000

0.5

1

1.5

Time (s)

D
isp

la
ce
m
en
t
(m

m
)

(0.5 : 1)

cir
rad

Fig. 3.8 – Displacements from DIC measurements imposed on the modeled geometry
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Fig. 3.9 – Forces from experimental measurements to be compered to computed results
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3.3 Inverse analysis results

In this section we present inverse analysis results with a comparison of the three imple-
mented material models. Influence of input data, such as the number of observables or
information on fibers orientations, on parameters identification is also discussed.

3.3.1 Models comparison

As presented in section 2.5, hyperelastic anisotropic strain–energy function are usually a
sum of two terms : an isotropic potential for the groundmatrix behavior and a transversaly
isotropic potential for the collagen fibers response. In first instance this study aims to
select among the implemented models the one that best fits biaxial experiments results
presented in section 1.4, in both circumferential and radial directions. Since several
observables are used for each evaluation step of the inverse analysis procedure, a mean
objective function was used, defined as

f̄(x) = 1
obs

obs∑
i=1

fi(x), (3.6)

where obs is the number of observables. It is equal for instance to 14 in case of a
complete experimental protocol, which corresponds to 7 loading conditions and 2 axes
each. However, for determining which of the models best fits the experimental results,
only the (1 : 1) loading was used. At this stage, the idea was to check the ability of the
models to reproduce the shape of the experimental curves, not to identify accurate sets
of parameters. In the particular case of the Weisbecker model, a symmetric recruitment
stretch distribution was assumed, so that a1 = a2 from equation (2.120). The stretch
λ1 at which the first fiber is activated was set to 1 and fiber volume fraction ν to 0.5
[Weisbecker et al. 2015; Billiar et al. 2000b]. For all models, the fictive Poisson ratio
v was set to 0.4995 considering the material as quasi–incompressible. Large admissible
optimization domains were defined for all other models parameters. Depending on the
number of unknowns, from 32 to 64 sets of parameters were initially generated. Models
with many unknown parameters require a large initial population in order to ensure an
optimization search toward a global optimum. Each new generation was composed of four
offspring. The inverse analysis procedure was stopped once the objective function reached
an arbitrary convergence criterion set to 0.01 or if no improvement was observed after
more than 10 consecutive generations. Results are presented on fig. 3.10 and tab. 3.1. For
both, Weisbecker and HGO models, the neo–Hookean contribution of the groundmatrix
behavior seems not to be able to capture the tissue non–linearity, leading to inaccurate
inverse analysis results. On the other hand, the modified HGO model composed of
two exponential strain–energy functions gave satisfying fitting results both in radial
and circumferential directions. Hence, only the latter model was used for parameters
identification.
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Fig. 3.10 – Forces from experimental (1 : 1) result (blue) and inverse analysis results (red) for
each model

Weisbecker HGO Modified HGO

c0/cg 65 kPa 55.3 kPa 2.5 kPa

c1/cf 220 kPa 210.7 kPa 10.3

c2 – 26 190 kPa

c3 – – 29.7

a1 = a2 2.6 – –

λ1 1 – –

λ2 1.2 – –

ν 0.5 – –

v 0.4995 0.4995 0.4995

f̄ 0.379 0.307 0.036
Tab. 3.1 – Sets of parameters identified by inverse analysis on the (1 : 1) experiment
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3.3.2 Influence of input data

One experimental loading is usually not enough for a relevant inverse analysis procedure.
The uniqueness of the identified set of parameters can be insured by increasing the
quantity of experimental data. On tab. 3.2 are shown several parameters identification
results depending on the number of loading conditions used (on a modified HGO model).
For these parameters identifications, force threshold ratios (Fx : Fy) are respectively :

• {(1 : 1)} for the 1 loading protocol ;

• {(1 : 1), (1 : 0.25), (0.25 : 1)} for the 3 loadings protocol ;

• {(1 : 1), (1 : 0.5), (1 : 0.25), (0.25 : 1), (0.5 : 1)} for the 5 loadings protocol ;

• {(1 : 1), (1 : 0.5), (1 : 0.25), (1 : 0.1), (0.1 : 1), (0.25 : 1), (0.5 : 1)} for the 7 loadings
protocol.

It can be seen from the model’s mathematical function (2.137) that c0 and c2 are scaling
parameters multiplying the exponential functions while c1 and c3 are parameters of this
exponential functions. Thus, parameters {c0, c1} and {c2, c3} are respectively coupled,
and each couple evolve independently as a function of the loading conditions applied in
the inverse analysis procedure.

Modified HGO 1 loading 3 loadings 5 loadings 7 loadings

c0 2.5 kPa 6.2 kPa 5.5 kPa 5.9 kPa

c1 10.3 7.9 8.3 8

c2 190 kPa 152 kPa 145.6 kPa 131 kPa

c3 29.7 33.2 34 34.7

v 0.4995 0.4995 0.4995 0.4995

f̄ 0.036 0.087 0.078 0.1
Tab. 3.2 – Modified HGO model parameters identification depending on the number of experi-
mental loading conditions used

The complete experimental protocol was chosen as reference. Results of the inverse
analysis procedure are shown on fig. 3.11. The model with identified parameters was
able to efficiently reproduce most of experimental observations. Globally similar results
quality were obtained for the other inverse analysis procedures on their respective loading
conditions. However, identified parameters considerably evolved from the single loading
inverse analysis procedure with respect to the reference one. In order to assess the
predictability of the model depending on the number of observables available for the
parameters identification, the model responses for the (1 : 0.1) and (0.1 : 1) loading
conditions were superimposed for all identified set of parameters (fig. 3.12).
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Fig. 3.11 – Forces from experimental (blue) and inverse analysis (red) results with fixed angles
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Fig. 3.12 – Forces from experimental results (blue), 7 loadings identification (red), 5 loadings
identification (green), 3 loadings identification (cyan) and 1 loading identification (magenta)

As expected, results accuracy increases with the number of observables used. Neverthe-
less, if one loading condition is clearly insufficient, the improvement between the 3 and
5 loading conditions is quite low. The complete inverse analysis procedure, with (1 : 0.1)
and (0.1 : 1) loading conditions as observables, gave the best results. This observation
confirms the need to perform inverse analysis procedure on a large experimental database
in order to get a reliable predictability for complex materials.

A second inverse analysis procedure on a 7 loading conditions protocol was carried out,
letting free the fiber orientation angle in the tissue plan. The fiber dispersion parameter κ
was set to 0 everywhere assuming perfectly aligned fibers. Hence, four material parameters
and a global fiber orientation θ were identified. Results are presented on tab. 3.3 and fig.
3.13.

Modified HGO 7 loadings 7 loadings (ref.)

c0 4 kPa 5.9 kPa

c1 9.6 8

c2 138 kPa 131 kPa

c3 29.4 34.7

θ 13.1° –

v 0.4995 0.4995

f̄ 0.124 0.1
Tab. 3.3 – Modified HGO model parameters identification with unknown fibers orientation
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Fig. 3.13 – Forces from experimental (blue) and inverse analysis (red) results with free angles
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Once again, the model was able to efficiently reproduce the tissue mechanical response.
However, the modeled area have a relatively distinct preferred fibers direction along the
circumferential direction (fig. 3.2) and a global fiber orientation seems to not disrupt
the fitting process. A less arranged fibrous structure may significantly affect the inverse
analysis results.

3.3.3 Limitations of the inverse analysis procedure

The inverse analysis was carried out on a geometry corresponding to a perfect monolayer
material with an homogeneous thickness and a simplified fibrous structure. Moreover,
the displacements imposed on the mesh boundaries come from an average of three
virtual extensometers for each axis. Hence, these displacements are homogeneous on
the mesh sides and borders stay straight during the deformation. These assumptions
produce errors on the tension and strain computation in comparison to the experimental
measurements. A comparison of the numerical and experimental tension–strain results
for the (1 : 1) loading condition using identified modified HGO parameters is shown on
fig. 3.14. An overestimation of both strain and tension can be observed, especially in the
circumferential direction. However, on this figure the numerical strain is not averaged in
a circular area like it is experimentally done, but computed on a single node located at
the center of the mesh.
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Fig. 3.14 – Comparison of the experimental (blue) and numerical (red) tension curves for a
(1 : 1) loading condition

3.4 Summary of Chapter 3

An inverse analysis procedure was carried out in order to select and calibrate a material
model among those implemented in the chapter 2 using experimental data from chapter
1. A kriging metamodel–assisted evolutionary algorithm developed at the laboratory was
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used. Hence, a biaxial tensile test was numerically reproduced with a simplified geometry
of the central area of a sample. Local principal orientations and dispersion (or concentra-
tion) parameters of the fibers, obtained by treatment of the confocal microscopy images,
were interpolated and transposed on the finite element mesh. Displacements measured
with the digital image correlation system were imposed as boundary conditions and the
inverse analysis procedure was made on the measured force on each axis.

A first inverse analysis procedure performed on a single loading condition allowed to
select a model among the three implemented (the modified HGO model). Then, several
other inverse analysis procedures were carried out on the selected model to evaluate the
influence of the number of observables on the results. In each case, a good correlation
was obtained between numerical and experimental results despite important variations of
the identified parameters. However, in accordance with the literature, an improvement of
the predictability of the model was noticed while increasing the number of observables.

3.5 Résumé en français

Afin de sélectionner et de calibrer l’un des modèles de comportement implémentés dans
le chapitre 2 à partir des données expérimentales du chapitre 1, une méthode d’analyse
inverse a été mise en place. L’algorithme utilisé pour le problème d’optimisation a été
développé au laboratoire. Il s’agit d’un algorithme évolutionnaire faisant appel à une
méthode de krigeage. Un essai de traction biaxiale a donc été reproduit numériquement
en utilisant une géométrie simplifiée de la zone utile de l’échantillon. Les orientations
principales ainsi que les paramètres de dispersion (ou concentration) locaux des fibres
de collagène obtenus à partir des images de microscopie confocale ont été interpolés et
transposés sur le maillage éléments finis. Les déplacements mesurés avec le système de
corrélation d’images ont été imposés comme conditions aux limites du modèle numérique
et l’analyse inverse a été effectuée sur la force mesurée pour chaque axe.

Une première analyse inverse sur un chargement a permis de selectionner un modèle
numérique parmis les trois implémentés (le modèle de HGO modifié). Plusieurs anal-
yses inverses ont ensuite été menées sur le modèle retenu afin d’évaluer l’influence du
nombre d’observables sur les résultats. Les résultats des identifications ont systématique-
ment montré une bonne corrélation entre résultats numériques et expérimentaux malgré
d’importantes variations des paramètres optimaux. Néanmoins, en accord avec la littéra-
ture, une amélioration de la prédictibilité du modèle a été constatée avec l’augmentation
du nombre d’observables.
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4.1 Introduction

Fluid—Structure Interaction (FSI) formulations are increasingly used in biomechanics.
One of the most challenging FSI problem in the body is the heart valves dynamics when
submitted to blood pressure variations during diastole and systole. The complex material
behavior of both, blood and valvular tissues, coupled with complex topological change
with self–contact of leaflets during opening and closing, makes the problem extremely
difficult to model. However, several methods have been proposed in the literature. The
most common one is the FE Arbitrary Lagrangian–Eulerian (ALE) formulation. But
this method suffers from numerical issues in case of large displacements or deformations
because of degenerate (ill–shaped) elements without adaptive meshing and numerical
diffusion due to interpolation errors with adaptive meshing. Readers can for instance
refer to De Hart, Peters, et al. [2003] and De Hart, Baaijens, et al. [2003] who worked
on the three–dimensional FSI modeling of AVs using a combined fictitious domain/ALE
formulation. One can also cite the Immersed Boundary Method (IBM) that involves
Eulerian and Lagrangian variables, linked by the Dirac delta function [Peskin 2002].
Eulerian variables are computed on a fixed mesh and Lagrangian variables on a mov-
ing curvilinear one. Borazjani [2013] used a FE solver with an anisotropic Fung–type
non–linear constitutive law coupled with a sharp–interface IBM for the FSI modeling of
bioprosthetic heart valves. Hsu et al. [2014] used an hybrid ALE/immersed–boundary
approach, also for the FSI modeling of bioprosthetic heart valves.

Another promising possibility for FSI modeling is the use of meshfree particle methods,
like for instance Smoothed Particle Hydrodynamics (SPH) or Immersed Particle Method
(IPM). They differ from FE formulations in that the fluid model is Lagrangian with
a domain subdivided into a set of particles without connectivity. Consequently, these
methods can easily handle large fluid–structure interface displacement and deformation
as the particles move with the flow. One can refer for instance to the work of Z. Li et
al. [2015] on an SPH–FE methods for transient FSI problems with large interface motion.

Another major difficulty is the blood rheology modeling itself. Blood is a complex non–
Newtonian fluid composed of various cellular constituents and active substances reacting
to biomechanical and chemical stimuli from their environment. These constituents are
mainly plasma, red blood cells, white blood cells and platelets. Hence, the flow behavior
can be significantly affected by properties change at the cellular level. Various compu-
tational methods have been applied to blood flow modeling, from a macroscopic to a
multiscale point of view. Among these, Lagrangian particle–based methods have been
widely used for mesoscopic hemodynamics. With such methods, plasma which is essen-
tially an aqueous solution is modeled as a Newtonian fluid using particles and cells
components as solid deformable aggregate of particles. Reader can refer for instance to
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Yamaguchi et al. [2010] and Fedosov et al. [2014] for reviews on multiscale blood flow
modeling.

However, as a first approximation and as far as a macroscopic modeling is acceptable,
a continuum approach can be chosen even if it is not sufficient to capture the complex
blood flow behavior. An incompressible Newtonian fluid was considered in this chapter.
Blood flow is usually laminar in the body and was considered as such in this study.
Nevertheless, depending on the location, the size and shape of the blood vessels, it can
become turbulent (e.g. in the case of aneurysm) especially in the ascending aorta due
to its high flow rate. The process is also assumed to be adiabatic, so that no heat
transfer occurs. In this chapter, a 3D–SPH solver was implemented and coupled with our
FE hyperelastic solver (chapter 2). In section 4.2, we first remind governing equations
of incompressible flows. In section 4.3, the SPH method and its implementation are
introduced. Then, first developments of a fluid–structure coupling are explained (section
4.4) and the overall implementation is validated and discussed (section 4.5). Finally, a
summary concludes the chapter (section 4.6).

4.2 Governing equations

This section aims to introduce Navier—Stokes equations in the particular case of incom-
pressible flows.

4.2.1 Navier–Stokes equations for incompressible flows

Navier–Stokes equations are governing equations that describe the motion of viscous
fluids. It consists of two equations, the continuity and the momentum equations. We
adopt the Eulerian configuration and define the domain Ω ∈ Rd with d = {1, 2, 3} the
dimension. The continuity equation which represents the mass conservation in the domain
Ω can be written in its most general form as

∂ρ

∂t
+∇ · (ρv) = 0, (4.1)

where ρ denotes the density of the fluid, v the velocity of the fluid and t the time.
Furthermore, the Cauchy momentum equation is

∂v

∂t
+ (v · ∇)v = 1

ρ
∇ · σ + g, (4.2)

where σ represents the Cauchy stress tensor and g the body accelerations per unit mass
acting on the continuum (gravity for instance). In the particular case of an incompressible
Newtonian fluid, σ can be expressed as
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σ = 2µε̇− pI, (4.3)

where µ is the dynamic viscosity, p the hydrostatic pressure and ε̇ denotes the strain
rate tensor as defined in 2.2. Thus, ∇ · σ = µ∇2v and (4.2) becomes

∂v

∂t
+ (v · ∇)v = ν∇2v − 1

ρ
∇p+ g, (4.4)

where ν = µ

ρ
is the kinematic viscosity and ∇2(•) is the Laplacian operator. Also, since

the fluid is incompressible its density remains constant with time and equation (4.1)
simplifies into

∇ · v = 0. (4.5)

Equation (4.4) can be written in the Lagrangian configuration. The system to be solved
becomes



∇ · v = 0,
Dv
Dt = ν∇2v − 1

ρ
∇p+ g,

Dx
Dt = v,

(4.6)

where

D(•)
Dt = ∂(•)

∂t
+ v · ∇(•), (4.7)

denotes the material time derivative of a spatial field with v · ∇(•) the advection term
(for an incompressible flow).

4.2.2 Boundary conditions

In order to solve the system (4.6), boundary conditions must be considered. These
boundary conditions can be of three types : free–surface, walls and inflow–outflow. Thus,
the boundary ∂Ω of the domain Ω can be decomposed as ∂Ω = ∂Ωf + ∂Ωw + ∂Ωi + ∂Ωo

(fig. 4.1). For free–surface boundary conditions (on ∂Ωf) the external environment (air for
instance) and the surface tension have to be taken into account. The pressure boundary
condition on ∂Ωf should be p = patm with patm the atmospheric pressure (often chosen
null). The position of the free–surface is an unknown of the problem. Wall boundary
conditions (on ∂Ωw) can be of two kinds : free–slip (inviscid flow) or no–slip (viscous
flow) conditions. Considering a viscous flow, the velocity Dirichlet condition imposed
on ∂Ωw is v = vw with vw the velocity of the wall. Finally, inflow–outflow conditions
(acting on ∂Ωi and ∂Ωo) consist of imposing desired velocity or pressure at the inlet or
outlet boundaries. Usually, a velocity Dirichlet condition is imposed on ∂Ωi as v = vi
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with vi the inlet velocity, and a pressure boundary condition is imposed on ∂Ωo through
p = po with po the outlet pressure.

Ω

∂Ωf

∂Ωw

∂Ωi ∂Ωo

Fig. 4.1 – Illustration of the different boundary conditions

4.3 SPH : method and implementation

Remark – The SPH solver presented below was implemented from scratch for the
purpose of this work as a preliminary step to FSI modeling in our FE software
FORGE®. The code is written in FORTRAN 90 for straightforward compatibility
with the FE solver. A VTK format is used for output data allowing a visualization
of the results using ParaView1 software.

1http://paraview.org

In this section SPH method and its implementation are presented. The reader can refer
to Liu et al. [2010] for a more detailed review of SPH method and developments.

4.3.1 Generalities on SPH

SPH is a numerical technique used to model a large variety of mechanical problems. It is a
Lagrangian meshless method initially developed by Gingold et al. [1977] and Lucy [1977]
for astrophysical problems. Over the years SPH method has evolved, being extended to
the simulation of a wide range of mechanical and thermodynamical phenomena. Its main
applications are currently the dynamics of continua in fluid and solid mechanics.

In the mechanical field, SPH method approximates numerical solutions of the continuum
equations by discretizing the material domain into a set of particles without fixed topolog-
ical connectivity. These particles form interpolation points where the physical properties
of the material can be calculated using a kernel estimation technique to derive continuum
equations. The initial applications were the modeling of gas dynamic problems and in-
compressible flow problems by treating them as slightly compressible with an appropriate
pressure equation of state [Monaghan 1994]. Nowadays the scope of mature applications
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of SPH in continuum mechanics is relatively wide, from turbulent free–surface flows prob-
lems to dynamic fracture. Another benefit of this method is its (often) trivial treatment
of interface problems and its ability to intrinsically handle complex topological changes.
Thus, multi–phase or free–surface problems do not require explicit interface tracking due
to particles motion. Moreover, advection is treated implicitly since particles carry their
properties with them and the formulation can be exactly conservative (i.e. guarantees
conservation of momentum and energy).

Disadvantages of the approach mostly concern accuracy and stability issues partly due
to the fact that particles are not constrained in a well ordered configuration.

4.3.2 SPH interpolation

Continuous interpolation

We consider an arbitrary scalar field f defined on the domain Ω ⊂ Rd, with d = {1, 2, 3}
the dimension of the problem. An exact estimation of the function f at a point can be
obtained through the convolution between this function and the delta Dirac distribution.
The value of f at position x is given by the equation

f(x) =
∫

Ω
f(x′)δ(x− x′)dx′, (4.8)

where δ is the Dirac distribution and x′ is an arbitrary position. We remind the following
property of the Dirac delta function

δ(x) =
∏
i

δ(xi) (4.9)

and for a scalar x,

δ(x) =
{

+∞, x = 0
0, x 6= 0

(4.10)

with ∫ +∞

−∞
δ(x)dx = 1. (4.11)

As Dirac distribution can not be defined numerically we introduce a so–called smoothing
kernel function w with a characteristic width h (or smoothing length) such that

lim
h→0

w(x, h) = δ(x). (4.12)

Thus, smoothing kernel function is defined on a non–null interval of space and the
smoothing length h can be seen as a measure of the domain of influence of a point
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x. Consequently, f is evaluated at x through a continuous interpolation that involves
its values at surrounding points. The continuous kernel estimation of f from (4.8) is
obtained following

fc(x) =
∫

Ωh
f(x′)w(x− x′, h)dx′. (4.13)

where Ωh is the domain of finite support around a point x. The smoothing kernel function
should satisfy some other conditions as the normalization condition

∫
Ωh
w(x− x′, h)dx′ = 1, (4.14)

so that the area under the curve is unity, and the zero mean condition

∫
Ωh

(x− x′)w(x− x′, h)dx′ = 0. (4.15)

In the literature most of the kernel approximations are of second order accuracy. This
observation can be obtained by expanding equation (4.13) as a Taylor series. Hence,
f(x) = fc(x) +O(h2). Readers can refer for instance to Liu et al. [2010] for more details.

Discrete interpolation

In order to discretize the continuous equations, the domain Ωh is decomposed into n ∈ N

particles. The continuous interpolation is then approximated by a discrete sum over the
particles. Rewriting equation (4.13) as

fc(x) =
∫

Ωh

f(x′)
ρ(x′)w(x− x′, h)ρ(x′)dx′, (4.16)

and noting that an element of mass m = ρ(x′)dx′, one can obtain the discretized form

fd(x) =
n∑
i

f(xi)w(x− xi, h)Vi, (4.17)

where Vi = mi/ρi is the volume of a particle i, mi its mass and ρi its density. For a
specific particle i the scalar field f is obtained by summing on the surrounding particles
j ∈ N ⊂ N where N is the set of neighbors fluid particles, so that

fd(xi) =
∑
j∈N

f(xj)w(xi − xj , h)Vj . (4.18)
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4.3.3 First order differential operators

Gradient

In order to solve the system (4.6) it is necessary to build discrete differential operators.
The gradient of a scalar field f is given by

∇fc(x) =
∫

Ωh
∇f(x′)w(x− x′, h)dx′. (4.19)

Using an integration by part, equation (4.19) becomes

∇fc(x) =
∫

Ωh
∇
(
f(x′)w(x− x′, h)

)
dx′ −

∫
Ωh
f(x′)∇w(x− x′, h)dx′. (4.20)

Then, applying the Stokes–Cartan theorem one can obtain

∇fc(x) =
∫
∂Ωh

(
f(x′)w(x− x′, h)

)
ndS −

∫
Ωh
f(x′)∇w(x− x′, h)dx′, (4.21)

where n is the normal vector to ∂Ωh pointing outward. Since the kernel function w is
null ∀x′ ∈ ∂Ωh, equation (4.21) becomes

∇fc(x) = −
∫

Ωh
f(x′)∇w(x− x′, h)dx′ (4.22)

if the support domain is not truncated. Finally, knowing that the kernel gradient is
antisymmetric

∂w(x− x′, h)
∂x′

= −∂w(x− x′, h)
∂x

(4.23)

one can obtain

∇fc(x) =
∫

Ωh
f(x′)∇w(x− x′, h)dx′, (4.24)

and its discretized form

∇fd(xi) =
∑
j∈N

f(xj)∇w(xi − xj , h)Vj . (4.25)

Applied to a vector field f , equation (4.25) becomes

∇fd(xi) =
∑
j∈N
f(xj)⊗∇w(xi − xj , h)Vj . (4.26)

From previous results, one can notice that the gradient of a field can be approximated
directly from the field values themselves and the derivative of a kernel function which is
computationally effective since no ∇f(xj) (or ∇f(xj)) evaluation is required. However,
the gradient of a constant field is not null using equation (4.25) (or (4.26)). Hence,
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following Monaghan [1992] another estimator commonly used in the literature arises
from the expression

∇f = 1
ρ

[∇(ρf)− f∇ρ] , (4.27)

yielding to

∇fd(xi) = 1
ρi

∑
j∈N

mj(f(xj)− f(xi))∇w(xi − xj , h). (4.28)

Equation (4.28) is often used in SPH to compute velocity gradient for instance, ensuring
a better stability. However, this formulation of the gradient is no longer antisymmetric
which is a required property to ensure conservation of momentum (i.e. opposite mutual
action–reaction forces induced by particles i and j). Thus, using the expression from
Monaghan [1992]

∇f = ρ∇
(
f

ρ

)
+ f

ρ
∇ρ, (4.29)

the following antisymmetric gradient estimator can be obtained

∇fd(xi) = ρi
∑
j∈N

mj

(
f(xi)
ρ2
i

+ f(xj)
ρ2
j

)
∇w(xi − xj , h). (4.30)

Equation (4.30) is often used in SPH to evaluate pressure gradient. Like for (4.26),
equations (4.28) and (4.30) can be applied to vector fields.

Divergence

Using the same method as for the gradient, the discrete divergence estimator of a vector
field f is

∇ · fd(xi) =
∑
j∈N
f(xj) · ∇w(xi − xj , h)Vj . (4.31)

From equations (4.27) and (4.29), one can respectively obtain the following additional
expressions

∇ · fd(xi) = 1
ρi

∑
j∈N

mj(f(xj)− f(xi)) · ∇w(xi − xj , h), (4.32)

and

∇ · fd(xi) = ρi
∑
j∈N

mj

(
f(xi)
ρ2
i

+ f(xj)
ρ2
j

)
· ∇w(xi − xj , h). (4.33)
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4.3.4 Second order differential operator

The discrete Laplacian operator can also be estimated following the same approach by
differentiating twice equation (4.25). Thus, one can obtain for a scalar field f

∇2fd(xi) =
∑
j∈N

f(xj)∇2w(xi − xj , h)Vj . (4.34)

However, this formulation that involves second derivative of the kernel function presents
numerical issues like a high sensitivity to particle disorder or may switch sign on its
support domain inducing a poor estimation [Monaghan 1992]. Several improved Laplacian
estimators have been proposed in the literature. Among other, readers can refer for
instance to Shao et al. [2003] or Colin et al. [2006]. A formulation commonly used was
proposed in Morris et al. [1997a] and follows

∇2fd(xi) = 2
∑
j∈N

(f(xi)− f(xj))
xi − xj
‖xi − xj‖2

· ∇w(xi − xj , h)Vj . (4.35)

Applied to a vector field f , one can obtain

∇2fd(xi) = 2
∑
j∈N

(f(xi)− f(xj))
xi − xj
‖xi − xj‖2

· ∇w(xi − xj , h)Vj . (4.36)

Notice that only the first derivative of the kernel function is used in order to avoid stability
issues. In counterpart, if this formulation conserves exactly the linear momentum, the
angular momentum is not fully conserved.

4.3.5 Accuracy of SPH differential operators

Accuracy of discrete operators presented above directly depends on the particle distribu-
tion. SPH estimation improves increasing the number of particles within the smoothing
kernel but also reducing the smoothing length according to equation (4.12). Hence, a
balance between computational efficiency and accuracy must be found.

Moreover, SPH discrete differential operators are not first–order accurate. It is possible to
increase their order of accuracy through a renormalization method initially proposed in
Randles et al. [1996]. In order to reach first–order consistency for gradient and divergence
operators, the following equality must be verified

−
∑
j∈N

Vj(xi − xj)⊗ (Li · ∇w(xi − xj , h)) = I, (4.37)

where Li is the renormalization matrix of size d × d for a particle i and I the second
order identity tensor. This matrix is given by
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Li =

∑
j∈N

Vj(xj − xi)⊗∇w(xi − xj , h)

−T . (4.38)

Finally, the renormalized kernel gradient becomes

∇̃w(xi − xj , h) = Li · ∇w(xi − xj , h). (4.39)

Hereinafter, the renormalized kernel gradient ∇̃w is used but to make notation less
cluttered the tilde symbol is dropped. Several other methods can be found in the literature
to improve accuracy of first and second order differential operators. Readers can refer
for instance to Fatehi et al. [2011] who proposed an improved second derivative scheme.
However, they are usually computationally expensive and were not considered in this
work.

4.3.6 Definition of the kernel function

Kernel functions are usually bell–shaped functions that monotonically decrease with
the distance to the interpolation point, so that the interpolation is smooth (fig. 4.2).
By analogy with FE method, kernel functions can be seen as shape functions without
connectivity. They must be at least C1, where C1 is the space of continuously differentiable
functions, in order to compute interpolation of the fields derivatives. In SPH method
both kernel function with infinite and finite (or compact) support can be used. However,
for computational efficiency reasons only kernels with compact support are considered
in practice. The size of the compact support Ωh is defined by the smoothing length
h. Thus kernels are locally defined and for two points x and x′, w(x − x′, h) = 0 for∥∥x− x′∥∥ > kh where k ∈ R. They are also radial w(x − x′, h) = w(

∥∥x− x′∥∥ , h) and
symmetric w(x− x′, h) = w(x′ − x, h). This means in practice that particles from same
distance but different positions have equal effect on a given particle.

Fig. 4.2 – Example of bell–shaped function

On fig. 4.3, a two–dimensional scheme of kernel compact support of radius kh for a
particle i is shown. We denote xij = ‖xi − xj‖ the distance from the particle i to its
neighbor j.
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i

j

xij

khi

Fig. 4.3 – Neighbors of a particle i with its kernel support

We define the following notations

w(x, h) = α

hd
ψ(q) with q = ‖x− x

′‖
h

, (4.40)

where α is a normalization constant and, for the record, d = {1, 2, 3} is the dimension of
the problem. One of the first and most intuitive choice for the kernel was the Gaussian
function, such that

ψ(q) =
{

e−q2
, 0 6 q 6 3

0, q > 3
(4.41)

and α = 1
π
d
2
.

The Gaussian kernel is not a exactly compact support kernel because even approaching
zero rapidly, it never becomes null theoretically. Hence, in practice its compact support is
usually fixed to 3h (k = 3). A modified Gaussian function with compact support, called
super–Gaussian, also exists in the literature [Liu et al. 2010]. However, it is also possible
to build polynomial functions having the required properties and a lower computational
cost. One of the most used polynomial kernel is the cubic spline kernel introduced in
Monaghan [1992] as

ψ(q) =


1− 3

2q
2 + 3

4q
3, 0 6 q 6 1

1
4(2− q)3, 1 < q 6 2
0, q > 2

(4.42)

and α =
{2

3 ,
10
7π ,

1
π

}
respectively for d = {1, 2, 3}.

The compact support size is 2h (k = 2). However, the second derivative of the cubic
spline is a piecewise linear function, and consequently the stability properties can be
inferior to those of smoother kernels. Thus, higher order polynomial functions, as quartic
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and quintic, approximate more closely the Gaussian function and are more stable [Morris
1995]. In particular the quintic spline kernel is defined as

ψ(q) =


(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 6 q 6 1
(3− q)5 − 6(2− q)5, 1 < q 6 2
(3− q)5, 1 < q 6 2
0, q > 2

(4.43)

and α =
{ 1

120 ,
7

478π ,
3

359π

}
respectively for d = {1, 2, 3}.

The compact support size is 3h (k = 3). Many other kernel functions exist in the literature.
Several kernel functions were implemented in this work including Gaussian and cubic
spline but we exclusively use in the following the 5th order Wendland kernel introduced
in Wendland [1995]. This kernel function is defined as

ψ(q) =


(

1− q

2

)4
(1 + 2q) , 0 6 q 6 2

0, q > 2
(4.44)

and α =
{3

4 ,
7

4π ,
21

16π

}
respectively for d = {1, 2, 3}.

The compact support size is 2h (k = 2). The quintic Wendland kernel is known to be
computationally efficient and shows very good performances and stability [Dehnen et al.
2012].

The derivative of a kernel function is defined following

∇w(x− x′, h) = ∂w(x− x′, h)
∂x

= x− x′

‖x− x′‖
α

hd
∂ψ(q)
∂q

. (4.45)

For the above Wendland function we obtain

∂ψ(q)
∂q

=

 −5q
(

1− q

2

)3
, 0 6 q 6 2

0. q > 2
(4.46)

Plots of the non–normalized 5th order Wendland kernel and its first derivative are shown
on fig. 4.4.
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Fig. 4.4 – Plot of the non–normalized 5th order Wendland kernel and its derivative

4.3.7 Fluid discretization

In order to make notation less cluttered we denote hereinafter for two particles i and
j, xij = ‖xi − xj‖, wij = w(xi − xj , h), ∇wij = ∇w(xi − xj , h) and for any scalar or
vector field respectively fij = fi − fj and fij = fi − fj .

Smoothing length

Smoothing length can be constant and equal for all particles or vary with time and
location. In case of a variable smoothing length, h is usually symmetrized according to
Benz [1990] such as, for two particles i and j

hij = 1
2(hi + hj), (4.47)

with the smoothing kernel which becomes wij = w(xij , hij). Another approach, computa-
tionally more expensive because it involves the evaluation of two kernel functions, would
be wij = 1

2(w(xij , hi) + w(xij , hj)). The smoothing length hi is obtained from

4
3πh

3
i ρi = n̄m̄, (4.48)

where m̄ is the average particle mass and n̄ the number of expected neighbors to be
defined. Using variable smoothing length, time derivative of h may be incorporated for
exact energy and entropy conservation. Readers can for instance refer to Benz [1990] for
further information. However, a constant smoothing length was used in this work since
fluid density is constant.

Density

The fluid density can be computed directly from the continuum equations using the
mass conservation (4.1) and the divergence estimator (4.32). The time derivative of the
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density for a particle i gives

∂ρi
∂t

=
∑
j∈N

mjvij · ∇wij . (4.49)

This equation, that can be approximated using a finite difference scheme in a time step
interval, does not exactly conserve mass due to numerical errors. Density can also be
approximated directly from SPH interpolation (4.18). Hence, one can obtain the simple
expression

ρi =
∑
j∈N

mjwij . (4.50)

However, this equation suffers from major issues close to fluid interfaces and especially
to free surface, induced by the truncated kernel support (i.e. lack of neighbors particles
in the kernel support). In case of a truly incompressible fluid, density computation may
be avoided.

Viscous stress

The viscous stress term for a particle i can be obtained from the Laplacian estimator
(4.36), which gives

ν∇2vi = 2µ
ρi

∑
j∈N
vij
xij
x2
ij

· ∇wijVj . (4.51)

Another approach avoiding the low accuracy Laplacian estimation can be used by applying
directly the divergence operator to gradient operator since ∇2(•) = ∇ · (∇(•)), so that
using equation (4.33)

ν∇2vi = µ
∑
j∈N

mj

(
∇vi
ρ2
i

+ ∇vj
ρ2
j

)
· ∇wij , (4.52)

with the velocity gradient that can be obtained from (4.28). However, this method involves
two sums over the neighbors which is computationally expensive. For a multiphase flow
or more generally a varying viscosity, µ should be replaced by µi + µj

2 .

Pressure gradient

The pressure gradient can be computed from the symmetric expression (4.30) as

∇pi
ρi

=
∑
j∈N

mj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇wij . (4.53)
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4.3.8 Incompressible SPH

Two incompressible SPH schemes were implemented, with an implicit and an explicit
resolution of the pressure Poisson equation.

Semi–implicit

The classical ISPH (Incompressible SPH) scheme was initially proposed by Cummins et al.
[1999]. ISPH uses a projection method introduced by Chorin [1968] to solve the discretized
equations and keep a divergence–free velocity. The projection method is divided into
two parts, a prediction step and a correction step. The prediction step computes the
viscous and body forces when the correction step corrects them adding the pressure
force. We subsequently consider a time discretization between [t, t+ ∆t] corresponding
to the consecutive increments n and n+ 1. The intermediate fields corresponding to the
prediction step are denoted (•)∗. A general form of the algorithm is given by alg. 3. The
predictor–corrector scheme is based on Euler method, so that

vn+1 − v∗

∆t = −1
ρ
∇pn+1, (4.54)

and by applying the divergence operator using the incompressiblity condition∇·vn+1 = 0,

∇ ·
(1
ρ
∇pn+1

)
= ∇ · v

∗

∆t . (4.55)

From equation (4.35), the Laplacian operator of the pressure Poisson equation (4.55) can
be discretized for all particles i following

∇2pn+1
i = 2

∑
j∈N

xij
x2
ij

· ∇wijpijVj . (4.56)

Algorithm 3 ISPH solver at increment n
procedure ISPH(xn, vn, pn)

while t < tend do
v∗ ← vn + ∆t(ν∇2vn + g) . using (4.51)
x∗ ← xn + ∆tvn
pn+1 ← from equation (4.55) . using (4.56)

vn+1 ← v∗ − ∆t
ρ
∇pn+1 . using (4.53)

xn+1 ← xn + ∆t
2 (vn+1 + vn)

t ← t+ ∆t
n ← n+ 1

return xn+1, vn+1, pn+1

The linear system to solve can be written as
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4.3. SPH : method and implementation

Mp = R, (4.57)

where M is the system matrix, p is the pressure vector of unknowns and R is the residual
vector. From equation (4.56), one can obtain the following matrix terms

Mii = 2
∑
j∈N

xij
x2
ij

· ∇wijVj ,

Mij = −2xij
x2
ij

· ∇wijVj .
(4.58)

According to (4.55) and using the divergence operator (4.32), the residual vector terms
are obtained from

Ri = 1
∆t
∑
j∈N

mjv
∗
ji · ∇wij . (4.59)

The matrix M is built using a compressed sparse row format in order to save processing
time and storage memory. The system (4.57) is preconditioned with an incomplete LU
factorization (ILU(0) preconditioner) and solved iteratively with a generalized minimal
residual method. A relative residual is used with a tolerance criterion set to 10−6. The
use of ISPH scheme requires an explicit treatment of boundary conditions and especially
free–surface in order to avoid instabilities and ill conditioned matrix (see subsection
4.3.9). The ISPH scheme presented by alg. 3 is the most commonly used method, but
other schemes can be found in the literature. Readers can refer for instance to Xu et al.
[2009].

Explicit

The EISPH scheme for Explicit Incompressible SPH, initially introduced by Barcarolo
[2013], has shown a good stability and computational efficiency [Nomeritae et al. 2016].
EISPH is very similar to the ISPH scheme, with however an explicit evaluation of the
pressure Poisson equation (4.55) using a Jacobi method. According to Barcarolo [2013],
using the pressure Laplacian estimator (4.56) and divergence operator (4.32) of the field
v∗, the pressure of a particle i can be obtained from

pn+1
i =

Ri −
∑
j∈N

Mijp
n
j

−
∑
j∈N

Mij

(4.60)

with Mij and Ri as defined respectively in (4.58) and (4.59). Instead of the classical
first–order Euler numerical procedure, a Velocity Verlet method which is one order better
was chosen. A general form of the algorithm is given by alg. 4.
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Algorithm 4 EISPH solver at increment n
procedure EISPH(xn, vn, an, pn)

while t < tend do
a∗ ← ν∇2vn + g . using (4.51)

v∗ ← vn + ∆t
2 (an + a∗)

xn+1 ← xn + ∆tvn + ∆t2

2 an

pn+1 ← from equation (4.55) . using (4.56)

an+1 ← a∗ − ∇p
n+1

ρ
. using (4.53)

vn+1 ← vn + ∆t
2 (an+1 + an)

t ← t+ ∆t
n ← n+ 1

return xn+1, vn+1, an+1, pn+1

Since the pressure Poisson equation is explicitly solved using a Jacobi–like approach,
several iterations are needed to converge through a stable solution. However, explicit for-
mulations present some advantages in comparison to semi–implicit ones. Indeed, EISPH
does not require the resolution of a large linear system, saving computational time, and
can automatically handle free–surface conditions (subsection 4.3.9).

Displacement correction

It is known that irregular particles arrangement is responsible for numerical errors,
causes instabilities and can lead to non–physical predictions. Several methods exist in
the literature to improve the uniformity of the particle distribution. Two of them were
implemented in this work. In the approach proposed by Monaghan [1989], the velocity of
a particle i is corrected taking into account velocity of the neighboring particles such as

dxi
dt = vi + 2ε

∑
j∈N

mj

ρi + ρj
vjiwij , (4.61)

where ε is a constant parameter to be calibrated (usually between 0.01 and 1). At the
end of a time increment the velocity field is updated using (4.61). Another method has
been propped in Xu et al. [2009] based on shifting projection. In this method, a variable
φ is corrected by the Taylor series expansion such as

φt+δti = φti + δxi · ∇φi +O(δx2
i ), (4.62)

where δxi is the distance vector between the particle’s i old and new positions, respectively
at time t and t+ δt. The distance δxi is obtained from
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δxi = εδt ‖vmax‖
∑
j∈N

x̃2
i

x2
ij

nij , (4.63)

with

x̃i = 1
ni

∑
j∈N

xij . (4.64)

ε is a constant parameter to be calibrated (usually between 0.01 and 0.1), δt is the time
interval, ‖vmax‖ is the maximum particle velocity, nij is the normalized distance vector
between two particles i and j, and ni is the number of neighbors of i. The shifting distance
must be correctly calibrated in order to prevent instability or inaccuracy that could be
induced by a too small or a too large value. This value is always much lower than the
smoothing length h [Xu et al. 2009]. At the end of a time increment the particles are
shifted by equation (4.63) and the velocity field is corrected by equation (4.62).

4.3.9 Boundary conditions treatment

Near the boundaries particles’ kernel support domain is truncated and properties (4.14)
and (4.15) are not satisfied. Hence, errors are introduced and inconsistencies or penetra-
tion of fluid particles into the solid domain may occur.

Wall boundary conditions

Several methods exist in the literature for wall boundary treatment. Three main tech-
niques are commonly used : ghost particles, repulsive force and dynamic particles (fig.
4.5).

Fig. 4.5 – Illustration of three classic wall boundary conditions with from left to right : ghost
particles, repulsive force and dynamic particles boundaries

The ghost (or mirror) particles method was introduced in Takeda et al. [1994]. Readers
can also refer to Randles et al. [1996], Morris et al. [1997b] and more recently Bierbrauer
et al. [2009], for instance. In this method, when a fluid particle is sufficiently close to a
boundary to have its kernel truncated, a mirror virtual particle with same density and
pressure is generated. This particle is placed at the same distance to the boundary but
outside the domain, so that the kernel of the particles near the walls is not truncated
anymore. Moreover, free–slip and no–slip conditions can be exactly enforced by imposing
respectively an identical and an opposite velocity to the mirror particle (fig. 4.6). The
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implementation of this method is however complicated since the number of mirror particles
varies at each time step and complex geometries are very difficult to model.

v

−v

v v

Fig. 4.6 – No–slip and free–slip wall boundary conditions from left to right

The repulsive force method was initially proposed by Monaghan [1994] in order to prevent
fluid particles from penetrating walls. In this method one layer of regularly distributed
solid particles with identical physical properties to the fluid part is used to model the
boundaries. These wall particles exert an artificial repulsive force on the fluid particles
proportional to the distance between them and in the normal direction to the solid
boundary. However, if this method is computationally efficient and easy to implement
even for complex geometries, kernel truncation of the fluid particles is not corrected and
it is not possible to exactly enforce slipping conditions.

The dynamic particles method was introduced by Dalrymple et al. [2001]. In this method
several layers of particles are used to model the walls. These additional layers allow to
fill, at least partially, the truncated kernel support domain of boundary fluid particles
and improve SPH interpolation consistency. Solid particles generally behave like fluid
particles, with same physical properties (reference density, . . . ), but their position re-
mains unchanged or is externally imposed. Thus, solving the pressure Poisson equation
for all the particles generates a repulsive force near the walls. This method is also very
attractive for its simplicity and computational efficiency since solid particles can be
treated in same loops than fluid particles. However the number of particles increases, and
once again, it is not possible to exactly enforce slipping conditions using dynamic particles.

Several improvements of these methods can be found in the literature. This list of classic
wall boundary conditions is not exhaustive. Other methods exist like dummy particles
(see for instance Adami et al. [2012]) or more recently boundary integrals which are
semi–analytical methods to complete the kernel support domain near boundaries (one
can for instance refer to Ferrand et al. [2013]). In this work dynamic boundary conditions
were used due to the simplicity and efficiency of the method.
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Free–surface boundary conditions

In the particular case of free–surface flow, truncation of the kernel support domain also
occurs for boundary particles. Moreover, using an ISPH scheme, free–surface detection
algorithms are required since a null pressure must be imposed (when the air effect and
surface tension are not considered) on fluid particles belonging to the surface in order to
solve the pressure Poisson equation. The main approach commonly used in the literature
is to detect the free–surface by evaluating the particles density that drops due to the
kernel support truncation. Thus, a density fluctuation over 1% below inner fluid value
is often used as threshold (see for instance Shao et al. [2003]). Some other methods
exit, like for instance a surface detection algorithm simply depending on the number of
neighboring particles or more sophisticated approaches as proposed by Marrone et al.
[2010] involving a level–set function.

In this work two surface detection algorithms were implemented, depending on the
number of neighboring particles (in comparison to the maximum number of neighbors)
and on the divergence of the position vectors [E. S. Lee et al. 2008; Bøckmann et al.
2012]. In the last method the divergence, which is evaluated by

∇ · xi = 1
ρi

∑
j∈N

mjxji · ∇wij , (4.65)

will be smaller near the surface. Thus, a particle j belongs to the surface if ∇ · xj <
αmax (∇ · xi) with α ∈ ]0, 1[ a constant parameter to be calibrated.

4.3.10 Time–stepping and numerical stability

The choice of a relevant time–step in an important numerical stability condition. The
time–step can be constant in case of constant smoothing length but is usually computed
following

∆t = min
(
ccfl

h

‖vmax‖
, cvisq

h2

ν

)
, (4.66)

where ccfl is the parameter of the Courant–Friedrichs–Lewy condition (usually around
0.1) and cvisq is the parameter due to viscous diffusion constraint (also around 0.1) [Shao
et al. 2003].

4.3.11 Reduction of the computational time

In order to improve the computational efficiency a multi–list data structure in which
the SPH particles are stored is of prime importance. The SPH algorithm needs to find
and browse nearby particles of each particle to compute its variables. The objective of
multi–list data structures is to easily access to each particle spatial neighborhood and
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keep the memory used clustered together to improve performance. Most of the 3D–SPH
code use tree structures such as octree or k–d tree (short for k–dimensional tree). These
tree structures are used at the beginning of each time increment to build tables containing
neighboring particles j related to each particle i (i.e. if ‖rij‖ < kh). For n particles, tree
structures have performance which scales as O(n logn), in comparison with the O(n2)
complexity without any list–like structure.

In this work a k–d tree algorithm was implemented. This is a binary tree firstly introduced
in Bentley [1975] in which every node is k–dimensional, representing a subdivision of
the space. The space is split using lines in 2D or planes in 3D, along one axis initially
and changing the axis in a cyclic way at each level of depth. Optimally, each subdivision
step should split the previous space into two subspaces containing the same number of
particles in order to build a globally balanced tree. Hence, splitting entities are chosen
with a normal vector corresponding to one axis of the coordinate system and going
through the median of the current subspace of particles. The median is computed using
particles’ coordinates in the splitting entity normal direction. For each subdivision step,
a signed distance from each particle to the splitting entity is computed in the normal
direction to the splitting entity. All particles on one side of a splitting entity (negative
signed distance) will be placed in a left subtree, and all nodes on the other side (positive
signed distance) in a right subtree from the current node. Thus, each node contains
a splitting entity and two subtrees. The tree is built recursively until one of the two
subtrees contains the other on each branch. An example of a simple k–d tree is shown
on fig. 4.7.

l1

l2

l3

l4

l5

l6

p1
p2

p3 p4

p5

p6

p7 l1

l2

l4

p1 p2

l5

p3 p4

l3

p5 l6

p6 p7

Fig. 4.7 – Illustration of k–d tree algorithm functioning in 2D where li represents the splitting
lines and pi the particles
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Using tree properties, nearest neighbor particles can be found efficiently by quickly elimi-
nating large areas of the search space. Reading the tree, related neighbors of each particle,
i.e. particles located in a kh radius, are stored in lists (squared distances are used to avoid
computing square roots). The neighbor search for each particle moves down the tree
recursively from the root. The signed distance from current node to the stored splitting
entity is computed. If the distance is lower than −kh, search back in the left subtree
and if it is greater than kh, search back in the right subtree. Since particles located on
the splitting entity are in both left and right subtrees, duplicates can occur. A recursive
quicksort algorithm (O(n logn) complexity) is used to classify neighbor particles and
remove duplicates choosing the middle index of the neighbor list as pivot. The tree is
built at the beginning and destroyed at the end of each time increment.

Massively parallel implementation that allows to divide the domain into several sub-
domains affected to different CPUs (Central Processing Unit) was not considered here.
However, parallelization cannot be avoided in order to perform high resolution simulations
using a large number of particles and should be implemented in a future work.

4.4 SPH–FE coupling

In this section a first attempt of SPH–FE coupling between the SPH solver presented in
this chapter and the FE solver of chapter 2 is introduced.

4.4.1 FSI algorithm

Considering a viscous flow and according to 4.3.9, the following Dirichlet and Neumann
conditions at fluid–structure interface ∂Ωw must be satisfied

v = vw, (4.67a)
σ · n = σw · n, (4.67b)

where n is the interface outward normal vector. FSI modeling may be categorized into
“monolithic” approaches and “partitioned” approaches [Hou et al. 2012]. In the mono-
lithic approach, fluid and solid computations are made from a single system of equations
solved simultaneously for the whole problem. However, even if potentially very accurate
this method presents substantial implementation difficulties such as the definition of an
efficient global preconditioner, and especially in an existing structural FE code since the
formulation must be completely changed. In the partitioned approach, fluid and solid
are treated separately by two distinct algorithms and interface information are explicitly
exchanged between fluid and solid solutions. This approach offers much more flexibility
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and scalability but is usually less accurate. Since, in our case, two different numerical
methods are used for the FSI modeling and for feasibility reason, the latter approach
was chosen.

One can also distinguish strongly and weakly coupled algorithms. If equations (4.67) are
exactly satisfied at each time step the method is strongly coupled. If they are not, the
method is weakly coupled. Monolithic approaches are strongly coupled while partitioned
approaches often use a weakly coupled scheme, but they can also enforce equations
(4.67) by using multiple sub–iterations. In case of a weakly coupled scheme, the FSI
problem is explicitly solved and only a first order accuracy can be reached independently
of the accuracy of the distinct solvers. Due to the explicit resolution, numerical stability
highly depends on the time step and energy conservation is not ensured. However, a
weakly coupled scheme was chosen in the first instance for simplicity reasons. The general
principle of the implemented FSI is presented by alg. 5.

Algorithm 5 SPH–FE weak coupling
procedure FSI

while t < tend do
generate dynamic boundary particles from solid FE mesh
compute fluid and move particles
transfer forces from fluid computation to surface FE
compute solid and move FE mesh
t ← t+ ∆t
n ← n+ 1

4.4.2 Interface coupling

Since no specific interface algorithm has been implemented, FE nodes are directly used as
boundary particles locations for the SPH computation (fig. 4.8). This operation requires
to generate a finite element mesh with an (almost) equivalent size to the fluid initial
inter–particle distance. Hence, high resolution FSI modeling would lead to prohibitive
computational time since the number of both particles and finite elements increases
simultaneously. Another problem may appear in case of large solid deformation (without
remeshing) due to the increasing node spacing. These issues must be addressed in a
future work.

Ω
∂Ωw

Fig. 4.8 – 2D illustration of FSI interface with fluid particles (blue) and dynamic boundary
particles generated from finite element nodes (gray)
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4.5 Solver validation

In this section the SPH solver implementation and its coupling with the FE hyperelastic
solver presented in chapter 2 is validated and discussed.

4.5.1 SPH implementation validation

Hydrostatic pressure

In order to make sure that pressure calculation is correctly implemented on both ISPH
and EISPH solvers, the pressure in a still water column was checked. Dimensions of the
rectangular fluid part were 5 mm × 5 mm × 10 mm with a 0.25 mm initial particle
spacing. The fluid was composed of approximately 17600 regularly arranged particles.
Since the fluid was supposed to be water, a constant density ρ = 1000 kg.m−3 and a
dynamic viscosity µ = 1.002 mPa.s were used. The hydrostatic pressure can be simply
calculated according to formula

p = ρgz + p0, (4.68)

where g is the gravitational acceleration along the vertical direction, z is the height of
water above (from the surface) and p0 is the surface pressure. In the example presented
fig. 4.9, g was set to 1 m.s−2 and p0 = 0. We denote H = 10 mm the total height of the
liquid column. The pressure at z = 10 mm as a function of time and the pressure at t = 1
s as a function of depth are respectively shown on fig. 4.10 and fig. 4.11. For both ISPH
and EISPH solvers, a good agreement with the theoretical solution was found at the end
of the simulation. However, the pressure explicitly computed in the EISPH solver needs
more iterations to stabilize as it can be seen on fig. 4.10.

(a) Initial configuration

p (Pa)
10

5

0
(b) Pressure gradient at t = 1 s

Fig. 4.9 – Illustration of the hydrostatic pressure in a water column (dynamic boundary particles
are represented in transparent gray)
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Fig. 4.10 – Evolution of the hydrostatic pressure versus time for z = 10 mm
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Fig. 4.11 – Evolution of the pressure along the vertical direction

Poiseuille flow

The velocity calculation was checked considering a Poiseuille flow. A portion of tube of
5 mm length and with an internal diameter of 5 mm too was modeled. The fluid part
was composed of 6500 regularly arranged particles with an initial particle spacing of 0.25
mm. Same fluid properties as presented above were chosen. The laminar flow through a
pipe was induced by a constant body force g oriented along the tube axis. The steady
velocity field as a function of the radius is given by the formula

v = 1
4µ

∆p
∆z (R2 − r2), (4.69)

where R is the pipe radius and r ∈ [0, R] the radius of the lamina from the center of the
tube. One can notice that v = vmax for r = 0. The imposed body force g was defined as
a function of the Reynolds number following
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g = 8µ2Re
ρ2R3 , (4.70)

where Re = ρlv̄

µ
is the Reynolds number with v̄ the mean flow velocity and l the

characteristic length. In the case of a Poiseuille flow, v̄ = vmax
2 and l = R. An illustration

of the Poiseuille flow modeling is presented on fig. 4.12 showing the norm of the velocity
field for Re = 0.5. An example of the evolution of the maximum velocity as a function
of time is presented on fig. 4.13. In that example, position of fluid particles was not
actualized at the end of each time step since only a small portion of tube is modeled. A
comparison of the analytic and computed steady velocity profiles is shown fig. 4.14 for
several Reynolds numbers. ISPH and EISPH solvers showed similar results and a good
agreement with the theoretical solution at the end of the simulation.

(a) Initial configuration

‖v‖ (mm/s)
0.4

0.2

0
(b) Velocity profile at t = 10 s

Fig. 4.12 – Illustration of a Poiseuille flow for Re = 0.5 (dynamic boundary particles are
represented in transparent gray)
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Fig. 4.13 – Evolution of the maximum Poiseuille velocity flow along E3 versus time for Re = 0.5
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Fig. 4.14 – Velocity profiles for a Poiseuille flow at several Re and comparison with the theoretical
solution

4.5.2 SPH–FE coupling validation

The convergence of the FSI modeling was tested on a simple case. In this simulation,
blood flows in a deformable artery modeled with a pipe geometry containing a strip in
the middle (supposed to represent a kind of leaflet). The pipe has a diameter of 20 mm,
a length of 50 mm and a thickness of 2 mm. The strip has a length and width of 10
mm and a thickness of 2 mm. Both were modeled with 0.5 mm elements. For the solid
part, a quasi–incompressible neo–Hookean constitutive model was used with a material
parameter set to c0 = 2 kPa and a fictive Poisson’s ratio to υ = 0.4995. Blood, in its
initial position was modeled using a cylinder with a diameter of 20 mm and a length of 24
mm. The fluid was discretized using about 5 ·104 particles with an initial particle spacing
of 0.5 mm. A Newtonian fluid was used with a density of 1060 kg.m−3 and a viscosity of 3
mPa.s which is a reasonable approximation for large arteries [J. K. J. Li 1988; Borazjani
2013]. The flow was assumed with a Reynolds number of 1553 as indicated in J. K. J. Li
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[1988] for a man of 70 kg. The fluid was initially positioned on one side of the strip
(fig. 4.15). Hence, when blood flows, the strip deforms under fluid pressure. The EISPH
solver was used for its simplified treatment of free–surface conditions. For each solid
time step ∆t, a constant number of 100 sub–iterations was chosen in the fluid solver (i.e.
with a time step of ∆t · 10−2). Moreover, despite the loss of accuracy, only a single layer
of elements nodes was used as solid dynamic boundary particles in order to reduce the
computational time (corresponding to about 28000 particles). Steps of the FSI simulation
are shown on fig. 4.16 and fig. 4.17, respectively at t = 0.4 s and t = 0.6 s.

(a) Oblique view (b) Front view

Fig. 4.15 – Representation of the initial configuration with blood particles in blue and dynamic
boundary particles in transparent gray
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(a) Norm of the fluid velocity field ‖v‖
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(b) Norm of the solid displacement field ‖d‖

Fig. 4.16 – FSI illustration at t = 0.4 s (longitudinal cutting plane view)
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Fig. 4.17 – FSI illustration at t = 0.6 s (longitudinal cutting plane view)

Due to the monolayer dynamic boundary, penetration of fluid particles into the solid
domain occurs in areas with high particle concentration and pressure as shown on fig.
4.18. This issue should be addressed by adding solid particles layers in order to increase
the wall repulsive force.

Fig. 4.18 – Fluid–structure interface issues
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4.6 Summary of Chapter 4

In order to simulate the opening and closing kinetic of a prosthetic heart valve, the blood
flow must be accurately modeled. Thus, a fluid solver was implemented and coupled to
the finite element solver presented in chapter 2. A Lagrangian meshless method, called
Smoothed Particle Hydrodynamics (SPH), was chosen for its relative simplicity and its
flexibility. In this method, the domain is discretized into a set of particles where the
physical properties are estimated using a kernel function. The solver presented in this
chapter is dedicated to the modeling of incompressible Newtonian fluids and laminar
flows. Two formulations of the literature were implemented, a semi–implicit formulation
(ISPH) and an explicit formulation (EISPH). Finally, the fluid and solid solvers were
weakly coupled and the implementation was checked trough several numerical tests.

However, this work is a preliminary study that should be improved and enriched in
the future. In particular, even though a data structure (k–d tree) was implemented to
optimize the neighbor search and to reduce computational time, it remains prohibitive
due to the sequential implementation of the SPH solver. High computational time re-
quires to decrease the number of particles and consequently to decrease resolution of the
modeling. Hence, a parallelization of the existing code is necessary. Another limitation
is the fluid–structure coupling formulation that should be improved to ensure a better
energy conservation and computational robustness.

Due to these limitations, the modeling of a complete valve prosthesis subjected to a
blood flow could not be carried out. Nevertheless, most of the necessary elements are
now available.

4.7 Résumé en français

Afin de simuler la cinétique d’ouverture et de fermeture d’une prothèse de valve car-
diaque en fonctionnement, le flux sanguin doit être modélisé. Ainsi, un solveur fluide
a été implémenté et couplé au solveur éléments finis présenté dans le chapitre 2. Le
choix s’est porté sur une méthode sans maillage Lagrangienne appelée Smoothed Particle
Hydrodynamics (SPH) pour sa relative simplicité et sa grande flexibilité. Dans cette
méthode, le domaine modélisé est discrétisé en particules sur lesquelles les propriétés
physiques sont estimées à l’aide d’un noyau. Le solveur présenté dans ce chapitre est
dédié à la modélisation des fluides Newtoniens incompressibles en écoulement laminaire.
Deux formulations de la littérature ont été implémentées, l’une semi–implicite (ISPH) et
l’autre explicite (EISPH). Finalement, un couplage faible a été réalisé entre les solveurs
fluide et solide et l’implémentation a été vérifiée à travers plusieurs tests numériques.
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Ce travail demeure néanmoins un travail préliminaire et devra être amélioré et enrichi
par la suite. En particulier, bien qu’une structure de données (arbre k–d) ait été im-
plémentée pour optimiser la recherche de voisins et ainsi diminuer les temps de calcul,
ceux–ci restent prohibitifs du fait de l’implémentation séquentielle du solveur SPH. Les
temps de calcul trop importants imposent de diminuer le nombre de particules avec
pour conséquence de baisser la résolution de la modélisation. Ainsi, une parallélisation
du code existant s’impose. Une autre limitation est le couplage fluide–structure dont la
formulation devra être améliorée afin d’assurer une meilleure conservation de l’énergie à
l’interface et une plus grande robustesse.

Ces limitations font que la modélisation d’une prothèse de valve complète soumise à un
flux sanguin n’a pas pu être réalisée. Néanmoins, la plupart des éléments nécessaires
pour y parvenir sont à présent disponibles.
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Achievements

This work aims to develop experimental and numerical tools for the mechanical charac-
terization and the numerical modeling of aortic valve tissues. These tools are intended to
be used for the development of new biomimetic polymeric films for prosthetic valves. Ex-
perimental tools are necessary to better understand the mechanical behavior of valvular
tissues at a macroscopic level in order to be able to produce adapted synthetic materials,
while numerical tools are intended to assist the design phase of new implants by pre-
dicting their mechanical in–use properties. To reach these objectives, several tasks were
achieved.

Mechanical characterization Treated porcine valvular tissues are commonly used
for biological prostheses and have proven their excellent hemodynamic properties despite
their limited durability. Hence, mechanical properties of engineered polymeric films should
tend toward natural ones improving durability in comparison to treated tissues. The
first part of this work aims to provide an experimental protocol and relevant tissue–level
results for future developments. Biaxial mechanical tensile tests are performed on six
frozen and six fresh porcine aortic valve leaflets using a custom device designed at the
laboratory for the purpose of this study. The experiments are associated to a digital
image correlation system for full–field surface measurements on samples excised from the
central region of the leaflets. In accordance with the literature, results show an anisotropic
hyperelastic mechanical behavior with a strong coupling between the tensile axes (i.e.
circumferential and radial). Measured strain fields are highly heterogeneous near the
rakes but relatively homogeneous in the 25% central area of the samples. Moreover,
freezing appears to substantially damage the tissues with a meaningful impact on their
mechanical properties. Hence, the rest of this work focuses on fresh leaflets.

Fibers orientation measurement The second part of this work aims to provide
microstructural information to be related to the macroscopic behavior of the tissues.
According to the literature, the stiffness of the tissues is mainly induced by the collagen
structure. Thus, collagen fibers arrangement is of prime importance to better understand
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the overall tissue behavior and for the development of biomimetic materials. Collagen
fibers from the fibrosa layer, which is the main layer responsible for the mechanical
behavior of the leaflet, are observed using a confocal microscope. The study is made at
the Hubert Curien laboratory (Saint–Étienne, France). A series of images are taken at
several locations on two samples. The highly aligned fibrous arrangement allows to extract
a preferred fibers orientation in the tissue plane for each picture. These measurements
are then interpolated on the whole surface. In accordance with the literature, collagen
fibers in the fibrosa are found mainly oriented along the circumferential direction with
however large local disparities.

Structure solver The first requirement for the modeling of valvular tissues is the
implementation of relevant numerical methods and constitutive models. Developments
are made in a custom laboratory version of the finite element software FORGE®. An
hyperelastic solver is implemented using an updated Lagrangian method in the finite
strain framework and a mixed velocity–pressure formulation. Moreover, the bubble sta-
bilization of the linear tetrahedron elements is adapted to the hyperelastic framework.
Three hyperelastic orthotropic material models of the literature are implemented and
validated. These models are able to take into account some structural information, like
a local statistical fibers distribution that confers anisotropic properties to the material.
Both incompressible and quasi–incompressible formulations are also available.

Orientation algorithm The proper modeling of complex materials requires an ac-
curate modeling of its fibrous structure. Assuming that observed local principal fibers
orientations can be correlated to the anisotropy directions of the models, an algorithm
is developed to transpose measured planar orientations to a complex 3D finite element
mesh. This algorithm is used at the beginning of the finite element computation to define
an initial (i.e. in the unloaded state) statistical fibers distribution on each element from
experimental measurements.

Parameters identification In order to assess the ability of the implemented models
to reproduce the mechanical response of valvular tissues, an inverse analysis procedure
is carried out using a kriging metamodel–assisted evolutionary algorithm developed at
the laboratory. Thus, the biaxial tensile test is modeled using a simplified geometry
of a sample. The fibers distribution measured from confocal images is transposed on
the finite element mesh using the orientation algorithm. Finally, displacements obtained
from digital image correlation are imposed at the boundary conditions and the inverse
analysis procedure is carried out on measured forces on each axis. A first inverse analysis
procedure is conducted to select the most relevant model. A second one studies the
influence of the number of observables on the model calibration and predictability. The
proposed constitutive model demonstrate its ability to fit a large number of experimental
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loadings, and therefore its ability to model such materials.

Fluid solver The simulation of the opening and closing kinetics of prosthetic valves
is intended to predict their mechanical response in operation. Hence, this part aims
to provide a fluid solver for modeling blood flow. A smoothed particle hydrodynamics
Lagrangian meshless method is chosen for its relative simplicity and its flexibility. This
method is particularly interesting for its ability to intrinsically handle complex interface
problems, such as leaflets opening and closing movements. As a first approximation,
blood is supposed to be an incompressible Newtonian fluid and blood flow is assumed to
be laminar. Two formulations of the literature, a semi–implicit and an explicit one, are
implemented and validated.

Fluid–structure interaction In the last part of this work, a first attempt of fluid–
structure interaction is proposed with the coupling of the implemented solvers. For
feasibility reasons, a weakly coupled approach is chosen. Fluid–structure interaction
results are obtained but several improvements remain to be done for the modeling of a
whole prosthetic heart valve subjected to blood flow.

Future work

Several improvements of the present work should be considered. Some possible perspec-
tives are subsequently proposed. These suggestions do not pretend to be exhaustive.

Short–term suggestions Several aspects should be improved to be able to simulate
a prosthetic valve in–use. In particular, the inflow–outflow conditions of the smoothed
particle hydrodynamics solver require improvements, especially the application of pressure
conditions. Indeed, pressure conditions from the Wiggers diagram should be imposed at
inlet–outlet boundaries to accurately model the blood stream into an artery. Another
important aspect is the fluid–structure interaction formulation that should be enhanced
to ensure a better energy conservation and computational robustness. Moreover, the
implementation of the fluid solver is currently sequential and must be parallelized to
improve computational efficiency and allow large scale computation.

Mid–term suggestions An interesting prospect, in the case of mimetic development
of polymeric materials, would be the implementation of multiscale material models. Mul-
tiscale approaches require the definition of a representative elementary volume, which is
very challenging with natural tissues but could be potentially easier with engineered ones.
Such physically based methods could considerably improve the modeling accuracy and
predictability if coupled with relevant homogenization techniques. Another suggestion
would be the modeling of multilayer materials inspired from natural tissues. However,
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if a multilayer modeling do not requires additional developments, it requires a deeper
understanding of valvular tissues and to perform additional experiments for mechani-
cal characterization of each layer. Finally, a non–Newtonian blood rheology should be
implemented in order to better capture its complex behavior.
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Appendix A
Device protocol

A.1 Introduction

This appendix explains the mounting of a tissue sample on the biaxial tensile test device
presented in chapter 1.

A.2 Protocol

An aortic valve leaflet is excised from a porcine heart and immersed into 0.9% isotonic
saline (NaCl) during the preparation of the experiment (fig. A.1a). Shortly before the
experiment the sample is taken out of the isotonic saline. The surface of the sample is
quickly dried with a jet of compressed air and black ink is sprayed using an airbrush at
low pressure (0.5 bar with a 0.5 mm pipe) until the speckle pattern uniformly covers the
surface (fig. A.1b). The specimen is then dried for less than five minutes at ambient air
before being mounted on the biaxial device.

(a) Excised leaflet (b) Speckle pattern

Fig. A.1 – Leaflet excision and application of the ink

For each leaflet, a square sample of about 10 mm side length was isolated from the central
region. The sample was placed on a support device to be mounted on the device (fig.
A.2). The support is composed of four comb–shaped guides for rakes positioning and a
foam stand.
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Fig. A.2 – Positioning of the sample on the support device

The sample is then positioned on the biaxial tensile test device using the support and
hooked with the rakes thanks to a piston system which makes it possible to move vertically
the tray (fig. A.3).

Fig. A.3 – Mounting of the sample on the biaxial device

Finally, the support is removed without damaging the sample using the same piston
system. The sample is then immersed into a 0.9% isotonic saline bath at room temperature
(fig. A.4). After a few minutes, the tissue is rehydrated and the experiment can start.

Fig. A.4 – Sample mounted on the biaxial device
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Material models derivatives

B.1 Introduction

This appendix details the implementation of the hyperelastic models presented in chapter
2, with in particular the calculations of derivatives of the isochoric strain–energy functions.
First derivatives are used for the stress tensors calculation, while second derivative are
used for the elasticity tensors calculation, using equations presented in subsection 2.5.2.

B.2 Weisbecker model

As a remainder, the isochoric contribution of the Weisbecker strain–energy function is

Wiso = (1− ν)cg(Ī1 − 3) + ν

∫
Ω
ρ(N)

∫ λ̄

1
ρr(λr)

cf
2 (λ̄− λr)2dλrdΩ, (B.1)

where cg = µg
2 is the groundmatrix material parameter (µg is the matrix bulk modulus),

ρr is a modified beta distribution and λ̄ = (C̄ : N ⊗N)
1
2 , λr and cf are respectively

the stretch, the recruitment stretch and a material parameter of a particular fiber. From
equation (B.1) and using (2.120) introduced in chapter 2, one can obtain

Wiso = (1− ν)cg(Ī1 − 3) + ν

∫
Ω
ρ(N)

∫ λ̄

1
ϕdλrdΩ, (B.2)

with ϕ defined as

ϕ = γ(λr − λ1)a1−1(λ2 − λr)a2−1(λ̄− λr)2, (B.3)

and the constant γ as

γ = cf
2β(a1, a2)(λ2 − λ1)a1+a2−1 , (B.4)
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where β(a1, a2) is a beta function and a1 and a2 are shape parameters. λ1 and λ2 are
the stretches at which respectively the first and the last fibers are recruited. The first
derivative of Wiso with respect to the invariant Ī1 is

∂Wiso

∂Ī1
= (1− ν)cg. (B.5)

Moreover, one can obtain

∂

∂C̄

∫ λ̄

1
ϕdλr = ∂

∂λ̄

∫ λ̄

1
ϕdλr ·

∂λ̄

∂C̄
, (B.6)

yielding to

∂

∂C̄

∫ λ̄

1
ϕdλr =

∫ λ̄

1

∂ϕ

∂λ̄
dλr ·

1
2N ⊗N · λ̄

− 1
2 . (B.7)

Hence, the first derivative of ϕ with respect to the stretch λ̄ is

∂ϕ

∂λ̄
= 2γ(λr − λ1)a1−1(λ2 − λr)a2−1(λ̄− λr). (B.8)

The second derivative of ϕ with respect to the stretch λ̄ is

∂2ϕ

∂λ̄∂λ̄
= 2γ(λr − λ1)a1−1(λ2 − λr)a2−1. (B.9)

B.3 Holzapfel Gasser Ogden model

As a remainder, the isochoric contribution of the Holzapfel Gasser Ogden strain–energy
function is

Wiso = c0(Ī1 − 3) + c1
2c2

[
ec2(κĪ1+(1−3κ)Ī4−1)2

− 1
]
, (B.10)

where ci with i = {0, 1, 2} are positive material parameters and κ ∈
[
0, 1

3

]
is the fiber

structure dispersion parameter. The first derivatives ofWiso with respect to the invariant
Ī1 and the pseudo–invariant Ī4 are

∂Wiso

∂Ī1
= c0 + c1κ

(
κĪ1 + (1− 3κ)Ī4 − 1

)
ec2(κĪ1+(1−3κ)Ī4−1)2

, (B.11)

∂Wiso

∂Ī4
= c1(1− 3κ)

(
κĪ1 + (1− 3κ)Ī4 − 1

)
ec2(κĪ1+(1−3κ)Ī4−1)2

. (B.12)

The second derivatives are
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∂2Wiso

∂Ī1∂Ī1
= c1κ

2
[
1 + 2c2

(
κĪ1 + (1− 3κ)Ī4 − 1

)2
]

ec2(κĪ1+(1−3κ)Ī4−1)2
, (B.13)

∂2Wiso

∂Ī1∂Ī4
= c1κ(1− 3κ)

[
1 + 2c2

(
κĪ1 + (1− 3κ)Ī4 − 1

)2
]

ec2(κĪ1+(1−3κ)Ī4−1)2
, (B.14)

∂2Wiso

∂Ī4∂Ī4
= c1(1− 3κ)2

[
1 + 2c2

(
κĪ1 + (1− 3κ)Ī4 − 1

)2
]

ec2(κĪ1+(1−3κ)Ī4−1)2
. (B.15)

B.4 Modified Holzapfel Gasser Ogden model

As a remainder, the isochoric contribution of the modified Holzapfel Gasser Ogden strain–
energy function is

Wiso = c0
c1

[
ec1(Ī1−3) − 1

]
+ c2

2c3

[
ec3(κĪ1+(1−3κ)Ī4−1)2

− 1
]

(B.16)

where ci with i = {0, . . . , 3} are positive material parameters and κ ∈
[
0, 1

3

]
is the fiber

structure dispersion parameter. The first derivatives ofWiso with respect to the invariant
Ī1 and the pseudo–invariant Ī4 are

∂Wiso

∂Ī1
= c0ec1(Ī1−3) + c2κ

(
κĪ1 + (1− 3κ)Ī4 − 1

)
ec3(κĪ1+(1−3κ)Ī4−1)2

, (B.17)

∂Wiso

∂Ī4
= c2(1− 3κ)

(
κĪ1 + (1− 3κ)Ī4 − 1

)
ec3(κĪ1+(1−3κ)Ī4−1)2

. (B.18)

The second derivatives are

∂2Wiso

∂Ī1∂Ī1
= c0c1ec1(Ī1−3) + c2κ

2
[
1 + 2c3

(
κĪ1 + (1− 3κ)Ī4 − 1

)2
]

ec3(κĪ1+(1−3κ)Ī4−1)2
, (B.19)

∂2Wiso

∂Ī1∂Ī4
= c2κ(1− 3κ)

[
1 + 2c3

(
κĪ1 + (1− 3κ)Ī4 − 1

)2
]

ec3(κĪ1+(1−3κ)Ī4−1)2
, (B.20)

∂2Wiso

∂Ī4∂Ī4
= c2(1− 3κ)2

[
1 + 2c3

(
κĪ1 + (1− 3κ)Ī4 − 1

)2
]

ec3(κĪ1+(1−3κ)Ī4−1)2
. (B.21)
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Résumé

L’objectif de cette thèse de doc-
torat est de développer des outils
expérimentaux et numériques pour
la caractérisation mécanique et la
modélisation des tissus, naturels ou
artificiels, de valve aortique. Ces
outils sont destinés à être util-
isés pour l’élaboration de nouveaux
implants biomimétiques en matéri-
aux polymères. Chaque année, près
de 300 000 prothèses de valves
sont implantées à travers le monde.
Ces implants peuvent être de deux
types : mécaniques ou biologiques.
Les deux solutions souffrent cepen-
dant d’inconvénients majeurs. Dans
ce contexte, les prothèses en matéri-
aux polymères représentent une
alternative prometteuse même si
elles ne disposent pas encore de
propriétés mécaniques suffisantes.
Dans ce travail, un protocole expéri-
mental combinant essais de trac-
tion biaxiale, mesure de champs et
microscopie confocale est proposé.
La mise au point de nouveaux im-
plants peut aussi largement béné-
ficier de la modélisation numérique
afin d’étudier leur comportement
mécanique. Ainsi, un solveur struc-
ture et un solveur fluide ont été im-
plémentés et couplés. À partir des
résultats expérimentaux, les mod-
èles de comportements ont été cal-
ibrés en utilisant une procédure
d’analyse inverse.

Mots Clés

Valve aortique, mesure de champs,
hyperélasticité, analyse inverse

Abstract

This PhD thesis aims to develop
experimental and numerical tools
for the mechanical characterization
and the numerical modeling of nat-
ural or artificial aortic valve tis-
sues. These tools are intended to
be used for the development of
new biomimetic polymeric implants.
Nowadays, almost 300 000 pros-
thetic valves are implanted every
year worldwide. Two families of
prosthetic valves are currently avail-
able : mechanical and biological
prostheses. However, both solutions
suffer from major drawbacks. In
this context, polymeric prostheses
represent a promising alternative
but currently suffer from insuffi-
cient material properties to be suit-
able for a long–lasting implantation.
In this work, an experimental pro-
tocol using biaxial tensile tests to-
gether with full–field surface mea-
surement and confocal microscopy
is proposed. Since numerical simula-
tion is intended to assist the design
phase of new implants by predicting
their mechanical behavior, a struc-
ture and a fluid solver are devel-
oped and coupled. Using experimen-
tal results, implemented constitu-
tive models are calibrated through
an inverse analysis procedure.

Keywords

Aortic valve, full–field measure, hy-
perelasticity, inverse analysis
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