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Introduction

Integrable systems have fascinated physicist and mathematicians for centuries. Start-
ing from "simple" integrable models, as the Kepler problem [1], they already played a
fundamental role in the early development of physics and are still the first examples
physics students face in their curriculum.

A classically integrable model with N degrees of freedom possesses N constants
of motion. Theses constants of motion impose severe constraints on the system’s
time evolution and can lead to very particular behavior: Integrable systems lack er-
godicity and are completely determined by their initial values. One needs to take into
account the values of the N constants of motion to predict the properties of the sys-
tem. Consequently they lack the ability to thermalize which is a phenomenon that is
very far from our every day experience.

The concept of integrability can be extended to quantum systems. The precise
definition of quantum integrability is subject to scientific debates [2, 3]. In this thesis
I will refer to integrable quantum systems, as systems that are solvable by the Bethe-
Ansatz [4]. The Bethe-Ansatz is an analytic technique introduced 1931 by Hans Bethe
in the context of the one-dimensional (1D) Heissenberg model. It allows to calculate
the exact eigenvalues and eigenvectors and it has been subsequently generalized to
many different 1D systems. One example is the 1D system of Bosons with contact
interactions [5] which I will be studying in this thesis.

For a long time research of quantum integrable systems remained a theoretician’s
playground. This situation changed with the realization of isolated many-body in-
tegrable systems in cold atom experiments [6-13]. Apart from its experimental im-
portance and its use as a testbed for theoretical predictions [14], these experimental
realizations also stimulated new theoretical progress. One example is the recent the-
oretical breakthrough in the description of the out-of-equilibrium dynamics of quan-
tum integrable systems which is called Generalized HydroDynamics (GHD) [15-17].
This new GHD theory (2016) is one of the subject of this thesis (see Chap. 5).

In this thesis I experimentally study the integrable model of Bosons with repulsive
contact interactions in 1D, named the Lieb-Liniger model. For this purpose we use
an atomchip setup with magnetic microwire traps to strongly confine 8 Rubidium
atoms in two dimensions. We then freeze out these two dimensions to create a 1D
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Bose gas. Besides their theoretical motivation, 1D systems are interesting to study
on their own. 1D systems can exhibit phenomena that are very different from higher
dimensions: There is no Bose-Einstein condensation in 1D and interactions lead to
a new phenomena - the quasi-condensation. The experiments in this thesis focus
on clouds which are in the quasi-condensate regime. A particularly counter-intuitive
example of the difference of 1D is the regime of strong interactions. It is reached
for low densities and in the strongly interacting regime the bosonic atoms start to
behave as fermions. Additionally, 1D systems can also be interesting because of their
conceptual simplicity.

This thesis focuses on three experimental studies of the dynamics of bosons in
1D. The three studies are the following: the study of he out-of-equilibrium dynamics
after an interaction quench, the cooling by three-body losses and the first experi-
mental study of the theory of GHD. Each of these studies is presented in a different
chapter (Chap. 3-5) and the first two chapters introduce the theoretical and experi-
mental basis for those three studies.

The first chapter gives an introduction to the theoretical tools in the Lieb-Liniger
model; such as the Bethe-Ansatz and approximate theories inside quasi-condensate
regime. Furthermore, I discuss corrections arising from the 3D world. In contrast to
the theoretical toy model of the Lieb-Liniger model, experimental artifacts from the
3D world can not always be completely neglected. At the end of this chapter I intro-
duce the treatment of losses with the wavefunction Quantum Monte-Carlo (QMC)
method. Furthermore, I introduce the tools to study the out-of-equilibrium dynam-
ics, with a focus on GHD.

The second chapter introduces the experimental setup and highlights the exper-
imental difficulties encountered during my PhD. Furthermore it discusses experi-
mental analysis methods, such as the density ripple analysis and the Yang-Yang ther-
mometry.

The following three chapters (3-5) are mostly independent from each other, and
each chapter focusses on the detailled description of one of the previously men-
tioned experimental studies. The third chapter introduces an experimental attempt
to address the problem of thermalization in an integrable model. We therefore sud-
denly change the interaction parameter of the system and observe the subsequent
time evolution. Our results are in agreement with an approximated model of inde-
pendent harmonic oscillator — the Bogoliubov Hamiltonian [18]. We cannot establish
direct links to the integrability of Lieb-Liniger Hamiltonian, still the description in
terms of the the Bogoliubov Hamiltonian represents a "trivially" integrable model.

The fourth chapter focuses on energy-independent losses. At the beginning of
my PhD a surprising experimental and theoretical result was published in the atom-
chip group in Vienna [19, 20]. It was shown that energy-independent losses can lead
to a cooling of a 1D Bose gas. Inspired by these results, our group published several

4
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papers on this subject [21-24]. With these papers we developed different theoretical
approaches to the problem and I give a theoretical description of the problem with
the wavefunction Monte-Carlo method, which we introduced in [21]. These theo-
retical results are experimentally verified by the first experimental observation of the
cooling of a 1D Bose gas by three-body losses [24]. Special attention is payed to the
cooling limit of the energy-independent loss process which we observed for the first
time in [24]. According to the theoretical approaches, introduced at the beginning of
the chapter, the cooling mechanisms should also exist in higher dimensions. How-
ever, these cooling mechanism have never been observed in higher dimensions. This
difference is probably due to the integrability of the 1D system.

The last chapter describes the first experimental study of the previously men-
tioned GHD theory [25]. We therefore prepare 1D Bose gases at equilibrium inside
different initial trapping potentials and follow their time evolution after a sudden
modification of the longitudinal confinement. The obtained results can be well ex-
plained by the newly introduced theory of GHD which takes into account the com-
plete set of conserved charges of the integrable model. At the same time "older"
theories, such as the conventional hydrodynamics approach, fail to describe the ex-
perimental results. Additionnaly, we reproduce the famous Newton’s craddle exper-
iment [26] in which the theory of conventional hydrodynamics is unable to produce
results.
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Chapter 1

Theory

In this chapter I will introduce the theoretical tools necessary to describe the 1D
physics that will be studied in the following chapters. I will start with the transi-
tion from 3D to the 1D world by the freezing out of the transverse degrees of free-
dom. Most of the physics can be understood by considering a homogeneous system
of size L. For precise calculation, the effect of the slowly varying longitudinal poten-
tial needs be taken into account, while leading to the same overall physical picture.
Therefore, I will mainly focus on homogeneous 1D systems and take into account the
longitudinal trapping potential in a later step. In the homogeneous case our system
can be described by the Lieb-Liniger Hamiltonian, whose eigenstates, obtained by
Bethe-Ansatz, are discussed starting from a pedagogical example of two particles. Itis
followed by a discussion of the exact thermodynamics of the Lieb-Liniger model, the
Yang-Yang equation of state and the different regimes obtained from it. Then, I will
focus on the linearized model - the Bogoliubov approach — within the experimentally
important quasi-condensate regime. Furthermore, I explain how corrections to the
1D model, arising from the 3D world which are experimentally always present, can
be taken into account. In the last part I discuss out-of-equilibrium theories, the main
topic of this thesis.

1.1 1D Physics

Consider a single component Bose gas trapped in three dimensions in a harmonic
trapping confinement with trapping frequencies wy, wy, . and a many-body wave-
function denoted as ¥ (x;,Xp,...,Xy). In the following we will assume that wy = wy =
w, > w,. Then, if all the relevant energy scales, namely the chemical potential x and
the energy scale kg T given by the temperature T, are much smaller than the energy
gap to the first excited state in the transverse direction, i.e.

kBT,p«RwL, (1.1)

7



1.2. LIEB-LINIGER HAMILTONIAN CHAPTER 1. THEORY

the system can be treated as a 1D system: The transverse degrees of freedom are
frozen out and the dynamics is restricted to the longitudinal direction wj = w;. In
such a situation the wave function factorizes into its transverse and longitudinal part

N
Y(xy,Xp,...,.Xy) = ¥(zy,21,...,2N) H $o(xi, yi) (1.2)
n=1

and the system can be described as a 1D system with a longitudinal wave function
Y(z1,2,...,2n). The ground state wave function in the transverse directions ¢g (x;, y;)
is a Gaussian function! of width I, = \/A/mw | .

For 3D cold bosonic gases at low enough temperatures s-wave scattering dom-
inates [27, 28] and the scattering is completely characterized by the 3D scattering
length asp and the pseudo potential

U(x—x')‘P=g3963(x—x'];—r(r‘l’], (1.3)

where g3p = Ah?asp/m and m is the mass of the atoms. When the transverse de-
grees of freedom are frozen out, this can be related to an effective 1D interaction
parameter g with a 1D scattering potential.

Viz-z')=gbz-2), (1.4)
with ok
azpw |
L

The constant C can be calculated with the Riemann zeta function C = {(1/2) = 1.46... [29].
For experimentally relevant parameters azp < [, Eq. (1.5) reduces to

g=2?1a39wl. (1.6)

In situations where Cazp/l; = 1 a confinement induced resonance appears which
are for 8Rb experimentally out of reach. For Cesium atoms, where Feshbach resson-
nances can be used to tune azp, confinement induced resonances have been ob-
served [30].

1.2 Lieb-Liniger Hamiltonian

With Eq. (1.4) one can write the Hamiltonian describing the gas in the longitudinal

direction
A B2 N 52
H=——) —+ 26 i —Zi). 1.7
2m 4 0z2 gi«j Zi=2) -0

13D correlations between atoms at distances smaller than I; are neglected.



CHAPTER 1. THEORY 1.2. LIEB-LINIGER HAMILTONIAN

Equivalently, A writes in the second quantized version

2
H= j ¥i(z) §

‘Tﬁ +2 \P*(z}\p(z} ¥(z)dz, (1.8)

where the bosonic fields ¥ (z) fulfill the standard commutation relations
[(¥(2),¥(2Y1=6(z-2), [¥(a),¥)=1¥"(2),¥(z)=0. (1.9)

Since 1963 this Hamiltonian is well known in the literature when it was introduced
by Lieb and Liniger [5, 31]. Lieb and Liniger showed that the system was solvable
via the Bethe-ansatz. In 1969 C.N. Yang and C.P. Yang showed that the Bethe-ansatz
solution form a complete set of solutions and at the same time developed the exact
thermodynamic equations starting from the microscopic model of of Eq. (1.7). This
so-called Yang-Yang thermodynamics or Thermodynamic Bethe-ansatz (TBA) is dis-
cussed in Sec. 1.2.3.1. Note that in this manuscript I will always consider situations
where g > 0, leading to repulsive interactions between atoms.

1.2.1 Two particle problem

Before discussing the solution of Eq. (1.7) found by Lieb and Liniger [5, 31], let me
start for pedagogical reasons with the two-particle problem

02 02
_2 +

0z7 6z2

52
2m

+86(z1 — 2), (1.10)

which can be rewritten in the center of mass frame
hZ 9%
H——E—+g5(z), (1.11)

where z = z; — zp. Solutions to Eq. (1.11) are plane waves with a discontinuity in the
first derivative at z = 0 (see Fig. 1.1). For bosons ¥(z) must be even in z and up to a
normalization constant the solution can be written

W(z)=sin(k|z|+6(k)). (1.12)

Using the continuity condition on the first derivative

oV

ov
0+ 02:

0z

_mg

=72 —2¥(0) (1.13)

we obtain the scattering phase of the two particle problem

2%k

tan[8(k)] = (1.14)
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The phase shift (k) for free particles is 7/2 and interaction change 6(k) to lower
values. This phase shift is central to integrable models solved by the Bethe-ansatz. It
is worth to look at certain limits on this simple solution. In the limit g — co the phase
shift becomes zero and the wave function develops strong kinks at z = 0 with ¥ (0) =0
which resembles the Pauli exclusion principle of free Fermions (see Fig. 1.1). In the
limit weakly interacting limit g — 0 or in the high energy limit k — oo, the phase shift
become n/2 and the wave function becomes a pure sinusoidal.

m
s

b)
L_

\ /
—_ 0(k)=0 | ¥
— O(k)=7/2
—_— (k) =m/4

_— - 0

e 2 4 0 = L

¥(z)

Figure 1.1 — a) Wave function of the two particle problem: The wavefunction is sinu-
soidal for z # 0 and shows a kick at z = 0. The kink is the strongest for (k) = 0 with
W (0) = 0 (blue line) and vanishes for (k) = n/2 (green line). The red line shows the
intermediate behavior. b) Representation of the two particle problem Bethe-Ansatz.
The black line indicates the position of the discontinuity of the derivative. In the
green shaded region the plane wave solution for z; > z; applies and in the blue re-
gion z; > zp respectively.

Two-particle Bethe Ansatz The solution of the two-particle problem in relative co-
ordinates Eq. (1.12) can be rewritten, such that it can be later extended to N particles.
This is the so-called Bethe-Ansatz for two particles. The generic solution for bosons
can be written as

Y(z1,22) = f(21,22)0u(22 — 21) + [(22,21) 0 (21 — Z2) (1.15)

by dividing the space into the subspace z; < z» and zp < z; as shown in Fig. 1.1. The
Heaviside step function 6 5(z) of Eq. 1.15 is defined by:

QH[Z)={1 ¢>0 (1.16)
0 z<0.

10



CHAPTER 1. THEORY 1.2. LIEB-LINIGER HAMILTONIAN

Introducing the Bethe-Ansatz for two particles, the most general solution writes as a
superposition of plane waves

f(zerZ] — Aef(klzl‘”szz] +Bef(kzzl+k122}' (1.17)

Injecting the solution Eq. (1.17) together with Eq. (1.15) into the Hamiltonian of Eq. (1.10)
and using 0,0 (z) = 6(z) and f(2)0,0(z) = -0, f(2)6(z) (valid under integral), we ob-
tain a solution if mg

ﬂ= i(ki—k2)+ 57 =ei§(k1—kzl’ 118

B i(ki—ky) - 5E

with the phase shift 6(k)
. Rk
0(k) =2arctan|—|. (1.19)
mg

The phase shift introduced in Eq. (1.14) is related to the phase shift introduced above
with 6(k)/2 = 6(k/2). When considering periodic boundary conditions in a box of
length L, the wave-function needs to invariant under z; — L+ z;. Let us consider the
case W (0, zp) = W(L, z2) which implies

: A - B
eML_ " and etkl-", (1.20)
B A

Eq. (1.20) are called the Bethe equations which can be rewritten in logarithmic form
2nl, =Lk +6(ky—k,) and 2ml, = Lk, +6(ky — ky) (1.21)

which leads to the introduction of two integers, called the Bethe-integers I; and I»
2,32, 33].

1.2.2 N-particle Bethe ansatz

The main result of Lieb and Liniger [5] consists of a generalization of these previous
results from two particles to N-particles. For the N particle problem let us restrict to
the subspace z; < z2 < ...zxn which writes with the Bethe-Ansatz

W(z1,22...2N) = Z.sz{pei[kp‘l}z1+"'+kp‘”)zN) for z1<2o,...,2N (1.22)
p

where the sum is taken over all permutations p. <), is a prefactor which needs to be
determined. The complete solution can then be deduced by the corresponding per-
mutation of the {z;}. This wave-function is an eigenvector of the Lieb-Liniger Hamil-
tonian Eq. 1.7 with energy E = Y K2 k?i[z m). Note that the k; are not the true mo-
menta and are called rapidities or quasi-momenta. The sum P =i} ; k;j on the other
hand is the total momentum.

11
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The prefactor </, can be determined be considering two permutations p and p/,
interchanging the two rapidites k and k’ and in analogy to Eq. (1.18) one finds

o .5 /
p _ ezﬂ{k—k}_ (1.23)
dpf
This relation leads to
mg
dp=a [] [ ( p(n) = Kp(m) + 2 )] (1.24)
n<m

where a is a normalization factor. Again the periodic boundary conditions need to
be respected and we obtain in analogy to Eq. (1.20) the Bethe equations

el — ﬁ k= Kp) = 5 (1.25)
jep i (kj—kp) + 32

The Bethe equations are a non trivial set of N coupled non-linear equations which
can be rewritten by taken the logarithm. Thus we obtain a set of equations, where due
to the periodicity of the complex logarithm the Bethe integers? I ;j are introduced:

2nlj=Lkj+ Z 16 (kj—kn)]. (1.26)
n#j

The eigenstates of the Lieb-Liniger Hamiltonian are then uniquely characterized by
a set of Bethe integers {1, IZy---fN} and from which the quasi-momenta k; can be
numerically calculated. Since 6(k) is a odd function, the total momentum writes
P =2nhfLZj Ij.

Ground state The ground state of the system is given by the symmetrically dis-
tributed Bethe integers

(1} = { N- 1 N - l}

] . 2 !
with a total momentum P = 0. The ground state is also called the Fermi seain analogy
to condensed matter physics, while the use of this interpretation will become more

clear in the following; let us stick to this nomenclature. In the limit g — oo, these
Bethe integers correspond to the quasi-momenta

(1.27)

o 2n1;j
)
2The use of the name integers is abusive. For N even, the Bethe integers are half integers and for N
odd, they are integers.

(1.28)

12
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Excitations Starting from the ground state, the simplest excitations correspond in
changing one of the Bethe integers. Then, two types of excitations can be distin-
guished: Type I excitations correspond to the creation of a new particle to the Fermi
sea at k > kmay, the so-called particle excitations. In terms of the Bethe integers, this
corresponds to adding a new particle® above the edge of the Fermi sea

N N N N
{ﬂ“"”}={——,——+1,...,——1,—+s}, (1.29)
j 2" 2 2 72

with s> 0 and total momentum q = 2rhs/ L. For low values of g, it can be shown that
these collective modes are characterized by a sound-wave like dispersion relation
which becomes quadratic for higher g as shown in Fig. 1.2 b). In the case of weak
interactions, these excitations can be also obtained from Bogoliubov calculations as
introduced in Sec. 1.3.

2 B[ 2
18- s L sse*
E
@ y:0034 | 2. eafP i
1.8 @ yeo.121 a 3 BOGOLIUBDY r |
. @ r=0.405 YeoFar ’ |
s @ y=1234
i @ y=4526
| @ y=23.5
12+ © @ yeo
fT 10~ /_\
o8l
@
06~
o AL e
T 1S
oz —t 1® @
P i i _i | 1
o -LI-JQ - I_Jz . 1I e 4 Ll
(k/p) == P

Figure 1.2 — a) Quasi-momentum occupation f (k) for different y = % withn=N/L
the density. In the limit y — oo the quasi-momentum occupation corresponds to a
Fermi sea, while for y « 1 the Fermi sea gets deformed into an inverted parabola with
a smaller cut off momentum.

b) The excitation spectrum of the Lieb-Liniger model with type I and type II excita-
tions for y = 0.8. In the weakly interacting regime these excitation are very close to
the Bogoliubov spectrum, calculated in Sec. 1.3. Here p is the density in real space.
Both figures taken from [31].

Type II excitations are also called hole excitations, where within the Fermi sea one

3Note that adding a new particle tuns the half-integer Bethe numbers into integers

13
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Bethe integer is displaced just above the the Fermi sea

N N N N N N
{IT.weH}={——+l,——+l,...,——s—l,——s+1,...,——1,—}, (1.30)
j 2 2 2 2 2 2

creating a hole at % — s, again with total momentum g = 2z hs/ L. Type Il excitations
are not sound waves, and it has been argued that, in the weak interactions limit, they
correspond to dark solitons of the Gross-Pitaevskii equation [34]. Its dispersion rela-
tion can be seen in Fig. 1.2 b).

An excitation, i.e. a general eigenstate, is then a combination of the type I and
type II excitation with certain number of holes and particles, characterized by a set of
numbers {I;}. The corresponding k; can then be calculated by the solving the Bethe
equations Eq. (1.26).

1.2.3 Thermodynamic limit

RS k
AN NN N T NEE EhE .
k
Figure 1.3 — In the thermodynamic limit one can introduce the continuous function
of the particle density pp(k) as depicted above. A zoom into a small zone 6 k shows
the individual states which can be occupied with a particle (thick lines) or unoccu-
pied, leading to a hole (thin line). Note that the local density of state ps(k) depends
on the function p, (k).

In the thermodynamic limit of N, L — oo with n = N/L constant, the k; can be
represented with the quasi-momentum distribution as sketched in Fig. 1.3

pp(k)=1/L) 6k kj), (1.31)
i

where p stands for particle and which counts the number of particles p,(k)dk in the
interval dk. The quasi-momentum distribution is linked to the I(k) by

kopdk s
E+fge(k-k)pp(k)-zﬂk}. (1.32)
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In the strongly interacting limit g — oo and for the ground state, this corresponds to
a Fermi sea, where p (k) = 1/(2nn) for |k| < kmax = nr and zero everywhere else. For
finite g, the Fermi sea becomes deformed and turns into an inverted parabola in the
weakly interacting regime as shown in Fig. 1.2 a). In the thermodynamic limit we can
also introduce the density of state ps(k) which is defined as

1dI

k=——. 1.33
ps(k) I dk (1.33)

By differentiating Eq. (1.32) the integral equation

1 dk’ , ,
E+f§zs(k—k)pp(k)-ps(k) (134)
links ps(k) to pp(k) where the differential scattering phase

2mgh?
AKk)= ————F— 1.35
(k) (mg)?+ WK (1.35)

was introduced. In analogy to the density of quasi-particles, one can introduce the
density of holes
ps(k) = pp(k) + pp(k). (1.36)

Note that the density of state is a non-trivial function (Eq. (1.34)) of the particle den-
sity pp(k). The change of the particle density p (k) affects the density of state ps(k)
in the whole k space.

1.2.3.1 Yang-Yang equation of state

For generic physical systems only rare examples exists where the equilibrium ther-
modynamic properties can be exactly calculated starting from the microscopic prop-
erties. With the previously introduced exact solutions, Yang and Yang* showed how
the equilibrium properties at temperature T can be calculated in the Lieb-Liniger
model [35]. For this task, they calculated for a given p,(k) the number of possible
microstates and from which the entropy S of the system can be calculated. Further-
more, they calculated the maximum entropy under the constraints of fixed energy E
and particle numbers N. They maximized the quantity S— % - %, with the Lagrange
multiplier ¢ which is the chemical potential. From the maximization condition, they
obtain that the density of holes pp(k) and the density of particles p,(k) obey the fol-
lowing equation:

Pnk) _ pect

0, (k) , (1.37)
p

4Yang and Yang referes to C.N. Yang and C.P. Yang where the former is the nobel laureate, maybe
better known from the Yang-Mills theory.
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where 8 = 1/(kgT) is the inverse temperature and e(k) the so-called pseudo-energy.
The pseudo-energy €(k) depends on all the other states and can be calculated from
the implicit equation

212 /
e(k]=—u+ﬁ—’i——]ﬁzﬁ(k k’)ln(l+eﬂ£w}]. (1.38)

From Eq. (1.38) one can then calculate the particle density in a second implicit equa-
tion

1 [d¥
pp(h) (1+eB%) = j O A k=K, (K). (1.39)

Eq. (1.38) & (1.39) form the Yang-Yang equations and can be solved numerically by
iteration (see [36] or [14] for details of numerical implementation). The density in
real space n is then given by

n=fdkpp[k]. (1.40)

The Yang-Yang equations allow to calculate numerically in a reasonable time the
equation of state n(u, T), from which the thermodynamic quantities of interest can
be deduced. For the pressure P one can deduce the formula:

1 rdk
= Efaln [l+ e_ﬂdk]], (1.41)

which will be used in Chap. 4 [2, 32, 33, 35].

1.2.4 The equilibrium regimes

Depending on the temperature T, the density » and the interaction strength g, differ-
ent regimes of the Lieb-Liniger model can be distinguished. These different regimes
can be distinguished within the phase diagram spanned by the adimensional tem-
perature fyy® and the adimensional interaction parameter y

2h%kgT mg
mg? and Y= Zn (1.42)

Here, the use of the word phase diagram should not to be taken by the thermody-
namic sense of phase transitions. The Mermin-Wagner theorem forbids phase tran-
sitions for T > 0 in 1D [37-39] and so the different regimes at finite temperature
are separated by smooth cross-overs [40]. The boundaries between the regimes can
be calculated from the exact Yang-Yang thermodynamics. The values which will be
given in the following should be understood as typical values for which the cross-over
occurs.

lyy =

5The subscript YY stands for Yang-Yang and is introduced to not confuse with the time, usually
denoted ¢ in out-of-equilibrium experiments.
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10° 1
10° 1

10* 4
-

ty

1U2 4

1[]IJ 4

10t - 10 101 10"

Figure 1.4 — Equilibrium phase diagram with the three regimes and its subregimes.
The lines separating the regimes indicate the smooth crossovers.

The historical approach to distinguish the different regimes uses the normalized
two-body correlation function

(P1(2) 91 (0)¥(2)¥(0))

2
iy

gP(z) = (1.43)

at zero-distance g (0) where the mean density is given by ng = (¥7(2)¥(2)). The
two-body correlation function g (0) can be calculated via the Hellman-Feynman
theorem which relates the former to the free energy F=U—-TS

o Lng
3_1; = % f dz(¥T (2P 0P (2)¥(0) = %gm (0). (1.44)

From g?(0) three different main regimes can be distinguished [41]: the ideal
Bose gas regime (IBG) where g? (0) = 2, the strongly interacting regime, also known
as the Tonks-Giradeau gas (g? (0) <« 1), and the quasi-condensate regime (g® (0) =
1). Those regimes are show in Fig. 1.4 and their properties are discussed in more
detail in the following sections.

1.2.4.1 Ideal Bose gas

For y32tyy > 1 and t > 1 the gas is in the ideal Bose gas regime where g (0) = 2:
The particles bunch and a particle has twice the probability to be at the position of
another particle, than far apart. The occupation number of each momentum state g

17



1.2. LIEB-LINIGER HAMILTONIAN CHAPTER 1. THEORY

is given by the Bose-Einstein statistic for a non-interacting gas:

1

ﬁ(%—u]—l . (1.45)
e\2m )—

From latter one can obtain the equation of state, here expressed in the form n(u, T),
by integrating over dg

1
_ bu
n= 1 g%(e ), (1.46)

with the de-Broglie wave length Aqg = \/27mh2/(mkgT) and the Bose-Eisntein func-
tion gy (x) = % x/ j=12, Note that the 1D Bose-Einstein function does not show the
characteristics of condensation: The density n diverges when |u| approaches zero. In
contrast to 3D, no phase transition driven by degeneracy occurs.

The ideal Bose gas can be further divided in two sub-regimes: For y?fyy > 1 the
gas is in the classical regime where it is described by the Maxwell-Boltzmann statis-
tics, and the interparticle distance is larger than the thermal de Broglie wave length
Agg.- For y?tyy <« 1 the gas becomes a degenerate Bose gas.

1.2.4.2 Quasi-condensate regime

When decreasing the interactions or decreasing the temperature, interactions start
to prevent the bosonic bunching and gm (0) = 1. This crossover occurs at about
v3'2 tyy = 1 and is called the quasi-condensate cross-over®. Within the quasi-condensate
regime large density fluctuations are suppressed due to interactions, i.e. 6n < ny,
while, in contrast to 3D condensate, phase fluctuations are big and prevent true long
range order. Within the quasi-condensate the equation of state is well approximated
by

L=gn, (1.47)

which does not depend on the temperature.

The quasi-condensate can also be separated in two subregimes. When consid-
ering g®®(0), for ytyy > 1 thermal fluctuations dominate, while for yfyy < 1 quan-
tum fluctuations dominate. Within this thesis the scientific results are all obtained
around this crossover y tyy ~ 1. It turns out that for many observable of interest, such
as the one-body correlation function g (z), the quantum fluctuations do not play a
role around the cross-over y#yy ~ 1. See Sec. 1.2.4.4 and for a more detailed discus-
sion [42].

SThe cross-over condition ys‘fz tyy = 1 can be derived from the condition that density fluctuations
are small.

18



CHAPTER 1. THEORY 1.2. LIEB-LINIGER HAMILTONIAN

1.2.4.3 Tonks gas

Fory > 1 and < 1 the gas is in the strongly interacting regime, also called Tonks(-
Giradeau) gas. In this regime the particles interact so strongly that they force the
many-body wave-function to vanish for z; = z; (see Fig. 1.1). This mimics the Pauli-
exclusions principle and leads to an almost vanishing two-body correlation func-
tion at zero distance g® (0). There exists a mapping of the many-body wavefunction
Y(zy,2,...,2y) onto the wave function of non-interacting fermions Wg(z,, 2o, ..., 2yN)

¥(z1,2p,...,2n) = VE(21,22,...,28) || sgn(zi-z;) (1.48)
1<i<j<N

called fermionization. The bosonic and the fermionic many-body wavefunction only
differ by a sign and therefore quantities which depends on the absolute value of the
many-body wavefunction, can be directly calculated by the fermionic wavefunctions.
This justifies the interpretation of the Tonks regime as the regime of free fermions in
certain situations. The energy and the thermodynamic quantities are the same as for
free fermions.

1.2.4.4 Correlation functions

Correlation functions are an important tool to characterize the equilibrium proper-
ties of a system. In this section I give a brief overview and summary of the correlation
functions. For the experimentally most relevant quasi-condensate regime, detailed
calculations are performed in Sec. 1.3.

One-body correlation The one-body correlation function
g12) = (¥ (0¥ (2) (1.49)

can be accessed experimentally in a homogeneous system via the Fourier transform
of the momentum distribution

RUNIONE f dz g (z)e'?, (1.50)
where
. 1 . .
W( ]=—jdz‘P[z)e‘qz. (1.51)
9 V2

In the following I discuss the one-body correlation function in different regimes.
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The one-body correlation function inside the ideal Bose gas regime The one-body
correlation function inside the ideal Bose gas regime can be calculated by using the
inverse relation of Eq. (1.50) and the Bose occupation Eq. (1.45). In the two sub-
regimes Maxwell-Boltzmann (M-B) and degenerate Bose gas (deg. Bose) analytical
formulas can be found and which are given by

2
_ ~4% deg. Bose ~2n 2
g B =noe a2 and g ° =nge  "tas?, (1.52)

The one-body correlation function inside the quasi-condensate regime In the quasi-
condensate (q.-C.) regime the one-body correlation function is given by

1zl

gl =nge ke, (1.53)
. 2i%n 2n03 .
where the phase correlation length [/, = ka;’, = —.% has been introduced. The
explicit calculation of Eq. (1.53) can be found in Sec. 1.3.1.2. Note that the behav-
ior in the degenerate ideal Bose gas, only differs by a factor of 1/2 from the quasi-
condensate regime. The crossover between the two regimes is however not a sim-
ple extrapolation [40]. It is important to note that Eq. (1.53) stays valid inside the
quasi-condensate up to very low temperatures where g»(0) is already dominated by
quantum fluctuations. The effect of quantum fluctuations on the g;(z) function for
distances larger than the thermal phonon wavelength I = Afm! ¢ leads to a reduction
by a prefactor (I7/&)~vVY'?™ where \/y/(27) is typically very small inside the quasi-
condensate-regime. Let us calculate this effect. The temperature Ty for which the
g1-function is decreased by a prefactor 1/2 from the quantum fluctuations is given by
% = 272%/VY, The temperature Tq correspond to experimentally unreached tem-
peratures [42].

Higher order correlation functions Higher order correlation functions at zero dis-
tance g/ (0) can be an important tool to characterize the Bose gas. As previously in-
troduced, the different regimes are characterized by the two-body correlation func-
tion at zero distance g(2J (0) and the the three-body loss rate depends on the three-
body correlation function at zero distance g® (0) (Sec. 4.4).

In the ideal Bose gas regime the interaction part of the Lieb-Liniger Hamiltonian
Eq. (1.8) can be neglected, making the Hamiltonian quadratic in W. At thermal equi-
librium this allows to use the Wick theorem, and calculate for example the second
order correlation function

8@ =1+1gV @)%, (1.54)

(2) (1

from which we obtain 8ipg(0) = 2, since gz (0) =1in all subregimes of the ideal Bose
gas (see Eq. (1.52)). Higher order correlation functions can be expressed similarly
which leads to e.g. gl(g)G(O) =6.
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In the quasi-condensate regime the field operator ¥ can be approximated by
N e'? where density fluctuations are neglected. This leads to higher order correla-
tion functions at zero distance which are close to one. Most importantly for Chap. 4
the normalized third order correlation function at zero distance is

v 0w (0))
@) _ g
8q.—c.(0)= 3 ~ 1. (1.55)

Concerning the Tonks-Giradeau regime, calculations of correlation functions can
be involved and I refer to the reviews [43, 44]. When approaching the Tonks-Giradeau
regime, the probability of finding more than one particl at the same place drops to
zero which can be used as an experimental signature [7].

1.3 Linearized theory in the quasi-condensate

1.3.1 Homogeneous system

Inside the quasi-condensate regime the Bogoliubov treatment can be applied, where
the Hamiltonian is rewritten as

N N
H=>~Hy+ ). Hk+AE=H0+ZHwka;'Cak+AE, (1.56)
k=1 k=1

where Hy is given by gN?/L. The creation (annihilation operators a}cﬂ fulfill the
standard bosonic commutation relations and AE is an energy shift which is nega-
tive in 1D. As it will be shown in the following Hp is the Gross-Pitaevskii mean field
Hamiltonian and the uncoupled harmonic oscillators Hy correpond to the Bogoli-
ubov Hamiltonian. In contrast to the derivation of the famous Bogoliubov theory for
superfluids in 3D [45], special attention needs to be payed to the subtleties in lower
dimension due to the absence of long-range order [46]: The Hamiltonian cannot be
expanded in terms of W(z) around (¥ (z)).

To overcome this problem we use the phase-density representation of ¥ in a
coarse-grained approach where microscopic length scales are avoided. The field op-

erator in the phase-density representation writes ¥ = \/ ng + 6 ne’? with density fluc-
tuations 61 = (A) — . This leading to the commutation relation’

[A(2),0(Z)] = i6(z-2), (1.57)
[A(z),n(Z)] = [0(2),0(z")] = 0. (1.58)

"Here the delta function 8 (z— z') should be understood as a notation for the discrete delta function
0z /1 where [ is the size of the grid.

21



1.3. LINEARIZED THEORY IN THE QUASI-CONDENSATE = CHAPTER 1. THEORY

In principle the phase operator in a homogeneous system is ill-defined. This problem
is avoided by looking at the previously introduced coarse grained description with
many atoms per cell.
The Lieb-Liniger Hamiltonian Eq. (1.8) in phase-density representation writes
%fdzﬁ(z)z +,uf dzn(z)+AE

h2 2 .
ﬁfdz (é‘z\/ﬁ[z)J +V7(2) (002)° V@) | +
(1.59)

where the chemical potential u in the grand canonical ensemble was added. Inside
the quasi-condensate density fluctuations are small |6 1| < ng. Additionally we can
neglect very small wavelength excitations, such that the phase gradient is a second
small parameter |3,0| < ng. Note that latter is equivalent of having many particles
per considered wavelength N > L/A which is typically very well fulfilled. We expand
Eq. (1.59) with the two small parameters 16n|/ ng and |0,0|/ ng. At zeroth order this
leads to the Gross-Pitaevskii (GP) pseudo-Hamiltonian

o

K 0%
Hy= f‘P*(z) _2—6—2+ —I‘P[z]l u| ¥Y(z)dz, (1.60)
where W(z) is chosen such that is satisfies
K 0%
[—%@+gl‘l’(z’]l2—p ¥(z)=0. (1.61)

This choice of W(z) ensure that the first order terms in the expansion of H vanish.
Second order — Bogoliubov Hamiltonian At second order one obtains

n A N
n)’ + 5 [aze]zl + gjdz6n2. (1.62)

h? 1 .
= —jdz —(0z6
m 8ny

Introducing the Fourier components

on(z) = \/% Y fie,qcos(qz) + fts gsin(qz) (1.63)
q=0

0(z) = \/% Y b qc08(q2) + 05 4sin(q2) (1.64)
q=0

where the subscript s/c stands for sine/cosine-component and L is the size of the
system. The wavevector ¢ takes discrete values 27 n/L where n is a positive integer.
Introducing the Fourier components into Eq. (1.62) one obtains:

2 2 2 92
= q 2 I q ng »5
Hz_:zés}g (2 8mny )ﬁirq+ m Bi,q . (1.65)
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This is the Bogoliubov Hamiltonian in density-phase representation, frequently used
in this thesis [43, 46]. Its quadratic variables fulfill [#; 4,07 4] = i6; 64 ; and it rep-
resents N uncoupled harmonic oscillators. Frequently I will use the notation®

_ 2 A2
Hg = Agh + Byb? (1.66)

. . . g hZ q2 hZ q2 g
for the Bogoliubov Hamiltonian, where Ag = 3 + g7~ and Bg = —=. Each mode g
describes a collective mode at a wavevector g and mode frequency

R2q? (2 q?
hwg=\——|—+2 . 1.67
q 2m ( 2m gno) ( )
One can distinguish two different types of excitations by introducing the healing
length ¢! = vmgnglh. For gé < 1 the excitations are sound waves which travel
with the speed of sound ¢ = \/gny/m, also called hydrodynamic excitations. They

are characterized by their phononic dispersion relation
wq=cq. (1.68)
2 42
For g > ¢ the excitations resemble massive free particle with an energy hz;?; + ghy,
with the “rest mass” term gng = c?m.

Figure 1.5 — Dispersion relation of the Bogoliubov collective excitations Eq. (1.67)
(blue line). For small wave vectors ¢q < 1, the dispersion relation is linear (dashed
green) and for large wave vectors {q > 1 the dispersion relation resembles massive
free particles (dashed red).

Note that a rigrorous calculation of the energy shift AE is needed for the calcula-
tion of the ground state energy of the system. In this thesis we do not make reference
to the ground state and refer to [46] for a rigorous treatment of the problem.

8Here, the subscript for the sinus and cosinus modes has been dropped and it is left to the reader
to add it when necessary.
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The Bogoliubov Hamiltonian can be rewritten in the standard second quantized
form by introducing the creation and annihilation operators with the standard trans-
formation

N 1
A= Fo/T00.,  —ifl—p 1.69
q.r fq ovgqg,r fq 2\/n—0 q,r ( )
where
ﬁZqZ 1
fo= | (1.70)
Ll
2m §ho
This finally leads to the form
Hy = hwgalaq (1.71)

introduced in the beginning®.

1.3.1.1 Wigner representation

Let us consider a given Bogoliubov mode g. After tracing out all the other modes, the
system is described by the reduced density matrix p. Instead of p one can use the
Wigner representation. The Wigner function of the mode ¢ is given by

1 .
W(ng,04) = Ejdu<u+ nglplu—ngye2a, (1.72)

The Wigner function is a quasiprobability function which can take values W < 0 for
non-classical states. The Wigner function contains the full information of the system
and expectation values of an observable O(nq, 04) are calculated according to

(0) =f dngdfyW(ng,04)0(ng,04). (1.73)

For classical states, the Wigner function can be interpreted as a probability func-
tion. It gives the probability that the given mode takes the values n; and 64. For a
harmonic oscillator, as the Bogoliubov Hamiltonian for a mode ¢ in Eq. (1.66), the
time evolution of the Wigner function is the same as the classical time evolution'®. It
is given by the Liouville equation

OW(ng,0,  0W(ng604)0H; 0W(ng60,) 0H,
= — + .
ot ong 08, 06, ong

(1.74)

9Note that Eq. (1.71) differs by the constant %w/2 from Eq. (1.65) and which needs to be considered
for the definition of AE.
10Since the evolution is classical, I will drop in the following the operator notation” for ng and Bq.
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At thermal equilibrium the Wigner function is a Gaussian distribution with the same
energy in both quadratures

Eql2= Ag(n%) = B4(62). (1.75)

Experimentally we typically deal with excitations which are populated thermally kg T >
hwg. Such that we can write Eg = kg T for thermal states.
1.3.1.2 First order correlation function

The Bogoliubov approximation can be used to calculate the first order correlation
function inside the quasi-condensate regime g,(z) = (YT 0) ¥ (2)). Neglecting the
density fluctuations, one writes

g1(2) = ng (e" [3‘0"9“’]). (1.76)

Using the Wick theorem (e?2?) = ¢~1/2(A9%) yalid since the Bogoliubov Hamiltonian
is quadratic in 6, on obtains

§1(2) = nge~ {0 -0@F) (1.77)
which can be rewritten
2 2
(60 -0212) ==Y (62,) (cos(q2)-1)*+ = ¥ (62,) (sin(q2)*.  (1.78)
L q=0 ' Lq>0 '

Atthermal equilibrium the partition theorem states that the energy of the two quadra-
tures is

_ 2y _ 2

EqIZ—Aqwnq,j)—Bq(Bq’j). (1.79)

At high enough temperatures such that kg T >> hwg, the energy is given by kg T = E
which implies that (19?}r j> = ;B;TO and one obtains

% d
(16(0) - 0(2)]%) =4]0 24 (62) [1- cosiqz)] =

4kaTf°° dqg 1-cos(qz) 3 mkgT|z|
R2ng Jo 2m q? ~ R2ng

, (1.80)

where the sum was replaced by the integral over g. This implies that phase fluctu-

ations stay small on distances much smaller than the phase coherence length [, =

25; ;;L We finally obtain

m
1z]

g1(z) = nge . (1.81)
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1.3.2 Trapping potential

1.3.2.1 Local Density Approximation (LDA)

Until now, I considered homogeneous systems. Experimentally one typically uses
systems trapped in some longitudinal trapping potential V(z). At equilibrium the
Local Density Approximation (LDA) can be used when the potential and the density
vary slowly compared to the microscopic quantities, namely the phase coherence
length ;. In our experiment [, is typically of the order of a few hundreds of nanome-

ters'!. The LDA consists in a division of the system into small cells of size §z with

l,<dz<n (%]_1. In each of the cells the density n(z) is close to constant. Each cell
can be approximated by a small homogeneous system with a local chemical poten-
tial given by p(z) = up — V(z). Here, as for the whole thesis, we chose the convention

that the potential vanishes at the peak density V(0) = 0, where n(0) = .

Beyond the LDA approach the trapping potential Vj(z) needs to be added to Eq. (1.59)
as

Hy = f dz Vj(2)A(z). (1.82)

At zeroth order in the two small parameters the term Hy, = f dz V)V (2)* ¥ (z) needs
to be added to the Gross-Pitaevskii Hamiltonian (1.60). When neglecting the kinetic
energy one obtains the Thomas-Fermi approximation, where the density profile is
given by

(kp—V(2) |z| < R

np(z) = g
0 for|z| >R,

where u, = gn, is the peak chemical potential, with the peak density n, and the
Thomas Fermi radius such that V(R) = . The neglect of the kinetic energy term in
the GP-equation is equivalent to the previously introduced local density approxima-
tion.

1.3.2.2 Bogoliubov in a harmonic trap

In second order in the two small parameters the situation gets more complicated
and in order to obtain analytic results, let us restrict to a harmonic longitudinal con-
finement V(z) = 1!2mwﬁ z% and long wavelength excitations (hydrodynamic modes).
The density and phase fluctuations can be developed on the normalized Legendre

"n practice it is often sufficient to consider length-scales much larger than the interaparticle dis-
tance.
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polynomials [47, 48]

0(2)=Y 0,(2)py (1.83)
6n(z) =) ny(2)xy, (1.84)
where
1/4

9v(z)=i( mg) vevil % (1.85)

V2\#2np)  wiv+1)"* TR

B2, |14
ny(2) = “2V+1(v(v+1))”“(ﬂ P,). (1.86)

2R mg R

Here P, (z) are the Legendre polynomials of the first kind which can be approximated
by
2

1/2
— CcOS by, (1.87)
T(v+ 5) sina

Py (cosa) = (
for large v and small cos(a) where ¢, = [v + %] a— %. In Fig. 1.6 a) the mode fluctua-
tions n, are shown together with the approximation Eq. (1.87) which typically shows
a very good agreement already for v > 4.

With the previously introduced canonically conjugated variables x, and p, the
quadratic Bogoliubov Hamiltonian in a harmonic trap writes:

2 2
S.m

H, = hw
v V1D 2

. (1.88)

The dispersion relation in the harmonic trap is given by

v(iv+1)
Wy = 2 wy. (1.89)

Note that the dispersion relation in the harmonic trap is independent on the den-
sity. A description for other trapping potentials than harmonic ones, is given in our
paper [23].

1.3.3 High density 3D effects

For high linear densities ngasp =~ 1 interaction effects between atoms in the trans-
verse direction become important which leads to a broadening of the transverse ground
state. This effect can be experimentally important and is equivalent to the 1D con-
dition y <« hw not being fulfilled. For not too large nasp it has been shown that a
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2.0 7 47
v =2 v =10 F4 ] Wy = v/ V(V+1)/2 /
V= ® approx v =10 2 3 wy =~ /1/2(v +1/2)
g4 3
]__ . . . T T
1 2 3 4 5

Figure 1.6 — a) The Thomas-Fermi profile in a harmonic trap in black with the den-
sity fluctuations n, for different mode indices v. Already for v = 10, no difference
between the exact and the approximate formula is visible. In the center the den-
sity fluctuations are close to sinusoidal modes, as in the homogeneous case. b) The
dispersion relation w, for a harmonic confinement, compared to the linear approxi-
mation, with a very fast convergence.

Gaussian ansatz for the transverse wave function is a good approximation. The width
of the Gaussian is given by

I, =1, (1+2ngasp)i (1.90)

and depends on the linear density and on the width of the single particle ground state
1, =\/h/(mw,) [49]. We have checked numerically with Gross-Pitaevskii calcula-
tions, that the width of the ground state follows Eq. (1.90) up to a maximal deviation
of 20% for the experimentally relevant densities nasp < 1.3.

Beyond the Gaussian ansatz a heuristic equation for the chemical potential inside
the quasi-condensate regime can be found

ﬁi=ﬁwi[m—1]

which shows the correct asymptotic behavior in both the low and large density limit [50,
51].

These high density effects can be taken into account in the LDA u(z) = pp — V(2)
such that the mean density ng(z) in the Thomas-Fermi approximation is given by

1
np(z) = 1 {

asp

gny, (1.91)

npasp<xl

\/1+4Q3DHP—%
1

2
— 1}, (1.92)

Compare with Fig. 2.14 b) green curve, where the Thomas-Fermi profile is shown with
the modified equation of state.
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Although the previous parts suggest that even for ngasp ~ 1 an adapted 1D physics
can be implemented, I want to stress out, that these effects are corrections arising
from the 3D world and the physics at play cannot be considered as strictly 1D. Links
to the Lieb-Liniger model and to integrability need to be taken with care in these
situations.

1.3.3.1 Bogoliubov Hamiltonian with 3D effects

The Bogoliubov Hamiltonian for long wave-length modes g <« 1/¢ can be modi-
fied such that it takes into account these 3D effects. When rewriting the Bogoliubov
Hamiltonian Eq. (1.65) for g < 1/¢

m6262 R2q*ng

2ny 2m
(R —
Eint. Eiin.

Hy = 02, (1.93)

one realizes that the kinetic energy part Ey,. is independent of the density fluctua-
tions, since the phase fluctuations 93 are unaffected by the swelling of the transverse
wavefunction. Let us expand the energy of the system E(rng+ d n). The second order
term writes

on?, (1.94)

10
E@GQ2) =~ —“‘
Ny

2 0n

where y = aE . This allows to rewrite the Hamiltonian at quadratic order in ¢ n:

on® + hzqzng

2
q om Bq, (1.95)

where now the chemical potential of Eq. (1.91) is used. This directly leads to the
introduction of the modified speed of sound

2

_moul _ Gp (1.96)
m on|n, 1+4azpng )
where ch gno/ m is the expression in the purely 1D situation. Therefore we can

use the expression Eq. (1.93) with the modified speed of sound to describe our sys-
tem at high densities (azpn ~ 1). This Hamiltonian describes a situation, where the
the transverse shape follows adiabatically the density fluctuations arising from the
sound waves of the Bogoliubov Hamiltonian. A more formal approach is given in the
appendix of our paper [23] which also takes into account the longitudinal trapping
potential. Furthermore, in [52] it has been proposed to heuristically extend the GP
equation to take into account the broadening of the transverse ground state.
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1.3.4 Classical field

The Gross-Pitaevskii Hamiltonian Hp, introduced in Eq. 1.60, is a classical field equa-
tion where the quantum nature of the field has been neglected and the field is given
by a complex number W¥(z, ). For very degenerate gases it can be generalize to fi-
nite temperatures where the probability for the field configuration ¥ is given by the
Boltzmann factor e #H{¥}/ 7 The partition function Z is given by the path integral

Z=]e—ﬁHﬂ{‘P}@w. (1.97)

This classical problem can be mapped onto a quantum problem in zero dimensions,
where it is equivalent of solving a particle in a 2D harmonic potential. This can be
used for efficient numerical calculations. The classical field problem depends on a
single parameter
_ R*n’g
r= mk% T?
The classical field approach is valid within the quasi-condensate regime, for which
¥ < 1 and inside the degenerate ideal Bose gas regime, for which y > 1 [43]. This
approach fails in the Maxwell-Boltzmann regime. The discrete nature of the atoms
becomes important in the Maxwell-Boltzmann regime which is not captured by the
classical field approach.

= 12/(4&%). (1.98)

1.4 Dynamics of 1D Bose gases

1.4.1 Dynamics ofthelinearized theory in the quasi-condensate regime

After discussing the equilibrium properties of the 1D Bose gas, I will now turn to
its dynamical properties — the main subject of my thesis. Many previously intro-
duced concepts can be directly generalized to the dynamical situation. The dynam-
ical version of Gross-Pitaevskii Hamiltonian Eq. (1.60) and the Bogoliubov Hamilto-
nian (1.65) can be directly obtained from the Heisenberg equation of motion:

ih— =¥, H]. (1.99)

Gross-Pitaevskii Let us first ignore the quantum nature of ¥ and thus consider ¥
as a complex field. Then, Eq. (1.99) gives the Gross-Pitaevskii Equation (GPE)

0¥z 0 h? 0°¥(z,1)
or  2m 072

The GPE (1.100) also gives the time evolution of the classical field approach of Sec. 1.3.4.
It can be efficiently numerically implemented with the split-operator method [53].

i +g|‘P(z,t]|2‘~P(z, N+ V(2)¥(z,1). (1.100)
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Bogoliubov Hamiltonain In a homogeneous system the Bogoliubov Hamiltonian
for each mode g is quadratic. The evolution of the Wigner function is classical (see
Sec. 1.3.1.1) and the evolution of the quadratures n4 and 6 is captured by the classi-
cal dynamics of:

ong _ _OHq__,p (1.101)
ot~ 06, 7

06 _OHg_, 1.102)
or on, At '

For the unhomogeneous case, I refer the reader to [46].

1.4.2 Coarse grained description

In the following two sections (Sec. 1.4.4 and 1.4.3) we will consider the Lieb-Liniger
system in a coarse-grained approach, also called the hydrodynamic picture, or the
Euler scale. We consider length- and time scales that are large compared to the mi-
croscopic scales: The length scales are large compared to the healing length and
times large compared to the local relaxation time felax. Therefore, we divide the
system into small space-time boxes dz x df, such that the thermodynamic quanti-
ties varies slowly on those length scales'?. The system, inside such a small cell, is
assumed to be in an equilibrium state and the following two Sections differ in the
description of this state:

1. The Conventional'® Hydrodynamics (CHD) assumes that the system can be

locally described after a short relaxation time fe1ax by @ Gibbs ensemble

1 -
OGibbs = Ee‘ﬁ(H‘“’, (1.103)

with Z =Tr [e‘ﬁ(ﬁ_“] and the inverse temperature 1/ = kg T. The state inside

the small cell is completely defined by i and T and equivalently by the particle
density n and the energy per particle e.

2. The Generalized Hydrodynamics (GHD) assumes that, after a short relaxation
time frelax, the system is locally described by the Generalized Gibbs Ensemble
(GGE)

. (1.104)

1 A
PGGE = — exp (— Y BiQi
Z i

12Eor the space coordinate this is equivalent to the LDA (see Sec. 1.3.2.1).

13We use the word conventional hydrodynamics to highlight the difference to the Generalized Hy-
drodynamics (GHD) introduced in the next section.

14Gee Sec. 3.1 for further discussions of GGE.
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GGE is determined by the complete set of conserved quantities Q; that charac-
terize the integrable system. The partition function is Z = Tr [exp (— ¥ ; B Qi) ]
and f; are the Lagrange multipliers which maximize the entropy S. For the
time evolution, GHD takes into account the conservation of all the charges of
the Lieb-Linger model.

In an integrable system the CHD description represents, in most situations, an unjus-
tified approximation. As will be discussed in Sec. 3.1, an integrable system is expected
to relaxe towards a GGE.

1.4.3 Conventional Hydrodynamics (CHD)

The Conventional HydroDynamic (CHD) or simply the hydrodynamic equations are
widely used to describe the dynamics of cold atom systems. They arise from the as-
sumption that a system can be locally described by a Gibbs state, characterized by the
energy per particle e and the particle density n. One writes the continuity relations
associated to the conservation of total momentum, energy and atom number:

0 n+ 9 (n)=0 (1.105)
ot 0z - '
0 np+2 (mnv*+P)= V&0 (1.106)
ot P oz = 0z '
o ( mv? muv?
—|n——+ne+nV|+—|n|ln——+ne+nVvV|+nP| =0, (1.107)
at 2 0z 2

where v(z, t) is the hydrodynamic velocity of the fluid cell and P(z, f) the pressure.
In an external potential V|, the conservation of momentum is broken by the term
—nw—{g'ﬂ. These equations can be solved together with the equation of state, relating
P to n and e. This can be obtained from the Yang-Yang equation of state introduced
in Sec. 1.2.3.1. The CHD results in Chap. 5 are all based on the numerical implemen-
tation of Eq. (1.105) - (1.107), together with the Yang-Yang equation of state.

1.4.4 Generalized Hydrodynamics (GHD)

The Generalized HydroDynamics (GHD) is a recent theoretical approach (2016) to
describe the out-of-equilibrium dynamics of integrable systems [15, 16]. In contrast
to CHD, GHD takes into account all the conserved charges of the Lieb-Liniger model.
The operators of the conserved charges Q,-, for which [H, Q,-] = 0, are complicated
to construct and we focus on the expectation values of the conserved charges Q; =
(Q;). Additionally, we focus on a hydrodynamic description where the local charges
qi(z) = Q;/L depend on space. For the local charges ¢g;(z) we can write the continuity
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equation
04i(2) | 0ji _, (1.108)
ot 0z
where j;(z) is the current associated to the charge g;. In the Lieb-Liniger model the
local conserved quantities are the quasi-particle densities {gx} = {0, (k)} (see Eq. (1.32)).
The quasi-particle densities {p, (k)}, labeled by the quasi-momentum k, form a com-
plete set in the space of conserved charges, such that we can replace the label i with
k. In the hydrodynamics description, the quasi-particle density pp(k) becomes a
space dependent function pp(z, k). In each cell the state is equivalent to a GGE state
characterized by a quasi-particle density pp(k) [33].
The complexity lies in the calculation of the current ji which was solved in [15].
In this thesis, I present a phenomenological approach to GHD, starting from the
two-particle problem. In the following I refer explicitly to the Lieb-Liniger model,
although GHD can be applied to integrable models in general.

1.4.4.1 Collision of two wave-packets

Let us reconsider the two-particle problem with contact interactions of Sec. 1.2.1 and
study the collision of two wavepackets. The stationary solution of the two-particle
problem ¥ (z) = sin [k|z| + 8(k)] depends on the relative coordinate z = z; — zp and the
scattering phase (k). Starting from the stationary solution, we construct a wavepacket
with a function A(k) peaked around kyq:

() =]dkA(k) sin[klzl +0(k)] e~ 5 ¢, (1.109)

The position of the particles is given within the stationary phase approximation by
the condition

00 (k 2hkgt
(k) N of _,

+
S T Fi

(1.110)

Eq. (1.110) describes the collision of two particles. The particle trajectory can be
equivalently described by a free evolution and a jump in position by

00}
ok

2h’mg

Az= S—_————.
2
ke~ m2g2+4Rtkg

(1.111)

as shown in Fig. 1.7.

1.4.4.2 The GHD equations

At each collision, the particle jumps by a distance Az. For many collisions this jump
affects the particle motion, as if the interaction slowed down the particle. This moti-
vates the introduction, of an effective velocity.
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_hkgt/m
a) c)
§
=
b) akgt m+ Az
=
i T T T
-Az 0 Az

Figure 1.7 — a) Collision of two wave packets with rapidity ko = k1 — k2. b) After the
collision the distance between the particles is shifted by Az. c) Space-time diagram
of the collision: The blue line shows the trajectory of non-interacting particles. In-
teracting particles are shifted backwards at the collision by Az (green line). Note that
there is no second collision happening. The discontinuity in the position is arising
from the stationary phase approximation which cannot resolves distances smaller
than the size of the wavepacket.

The effective velocity For many collisions between particles one introduces the ef-
fective velocity veg. It can be calculated by considering the correction to the bare
velocity % These corrections are given by the number of collisions and the shift in
position at each collision:

hk 2K?
ver() ="~ [ K pp(k) [vek) = v (k) e (1.112)

. m2g2+ ht(k—k)2"

~

Collisions per unit time

Shift in position

The effective velocity veg(k) can thus be calculated with a similar implicit equation
as already seen for the Yang-Yang equation of state (Eq. (1.38) & (1.39)). Eq. (1.112)
can be rewritten in a more compact form

Veft(2, k) = % —fdk’pp(Z. K') (veft(z, k) — vett(z, K')) A(k — k'), (1.113)

with differential scattering phase A(k - k') introduced in Eq. (1.35). Additionally we
explicitly noted the space dependence.

The authors in [15] showed that the current associated to p,(k) is given by j(k) =
Vett(k)pp (k). This leads to the GHD equation

)
3PP B0+ o [veff(z k)pp(z, k)] = (1.114)
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In a semiclassical interpretation the effective velocity veg can be seen as the ve-
locity of the quasi-particle. Thus, Eq. (1.114) is simply the classically anticipated con-
tinuity equation. Note that although these heuristic arguments lead to a "simple"
result, these results are non-trivial from the point of view of the quantum many-
body problem. The full quantum problem contains additional correction terms to
Eq. (1.114) which arise in the form of a diffusion between different cells and were
calculated in [54].

External potential An external potential which varies slowly on the scale of a fluid
cell, can be taken into account in the inhomogeneous GHD equations [55]:

0pp(z,k) 0 _ 10V(z,1) 0pp(z,k)
a1tz V@ bppa k)] = g (115

The numerical results in Chap. 5 are based on the calculation of veg in Eq. (1.113)
and the GHD equation (1.115). Eq. (1.113) can be solved by numerically by iteration
— similarly to the Yang-Yang equations — and (1.115) can be numerically integrated.

1.5 Losses

In ultra-cold atom systems losses are always present at various rates. Consider for
example three-body losses due to three-body recombination or one-body losses by
collisions with the background gas.

Losses in general cannot be described by the unitary evolution of the Schréodinger
equation and a description by the density matrix ¢ with the master equation is nec-
essary

E _i[H ]+g[] (1.116)
dtp_ih P Al )

where £{p} is the non-hermitian Lindblad-operator given by

UV DUUU I
LpLT—EL"Lﬁ—EpLTL , (1.117)

L£{p} =fdz

with the non-hermitian jump operator L. This formalism is not restricted to losses.
The Lindblad operator represents a coupling to an environment where the environ-
ment is the vacuum state in the case of losses. In Chap. 4 we treat the problem of
j-body losses in more detail. j-body losses refer to a situation where the density
n =W evolves according to

%<n> =k ;(n) g (0) (1.118)
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where K ; is the j-body loss rate constant and g7 (0) the normalized j-body correla-
tion function at zero distance. For j-body losses the jump operators L takes the form

i:ﬂ%‘i’f[z], (1.119)

which leads to the Lindblad operator

Lip} fdz

It can be verified that this form of L. reproduces the correct time evolution of Eq. (1.118)
as shown in Appendix Sec. A.4.

Wiz)p ¥t () - lIﬂ‘"(z)\zh'(z)p % W Wiz, (1.120)

1.5.1 Quantum Monte-Carlo wave-function method

It can been shown that the time evolution given by the master equation Eq. (1.116) is
equivalent to a stochastic description of different realizations of wavefunctions [56,
57]. The expectation values predicted by the Lindblad evolution are recovered by a
sampling over many realizations. Considering the situation of losses within a short
time interval d#1°. If a loss occurs within d¢ the initial wave-function | ¥ (1)) is propa-
gated with

|P(r+dn) = LI (1)) (1.121)

and the probability that a loss occurs is given by

_(YOILTLIY (1)

1.122
@O (D) (1.122)

Note that here we choose unnormalized wavefunction which leads to the normaliza-
tion in the expression of the probability.

At the same time there exists a probability 1 — dp that no loss occurs. In that case
the wave function is propagated with

W(t+dn) = e 21T |w(p). (1.123)

The last equation represent the fact that, even when no loss occurs, we gain informa-
tion about the system. For example imagine that we observe a state with a non-zero
variance in N. When we do not observe any loss for a very long period, we know that
the system contains very few particles. The mean particle number is decreased by

I5The time interval d is chosen such that the probability dp of a loss occurring within the time dt
is small.
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Eq. (1.123). The probability of no loss occurring can be rewritten in first order in d¢

as
C(P(t+dD|Y(t+dD)

(PO (1)

Eq. (1.121) - (1.123) represent the Wavefunction Quantum Monte-Carlo method,
or in short Quantum Monte-Carlo (QMC). It can for example be implemented on a
computer, where after each time step dz, one of the two possible evolution of the
wavefunction is chosen with the corresponding probability. The repeated applica-
tion of this procedure on the wave-function is called a quantum trajectory. This pro-
cedure is then repeated in order to obtain many quantum trajectories. The physical
observable are obtained from averages over many trajectories.

Depending on the considered situation the QMC-method can have several ad-
vantageous over the Master equation: It allows to perform calculations for feedback
on a quantum state. In Sec. 4.7 we use the QMC approach for a feedback scheme
based on the atoms lost from a quasi-condensate. The stochastic approach of QMC
can also lead to numerical advantage [58]. Instead of calculating the time evolution
of a matrix with N x N entries, one calculates the time evolution of vectors with size
N.

1-d (1.124)

Summary:
* The Bethe-Ansatz is a powerful tool which solves the Lieb-Liniger model.

* Based on the Bethe-Ansatz an exact thermodynamics can be derived —
the Yang-Yang thermodynamics. It allows to identify three equilibrium
regimes of the Lieb-Linger model: the quasi-condensate, the ideal Bose
gas and the Tonks regime.

* Inside the quasi-condensate regime the Bogoliubov approach in density-
phase representation leads to a collection of uncoupled harmonic oscil-
lators:

2 2

* The Generalized HydroDynamics (GHD) is a powerful new tool to de-
scribe the out-of-equilibrium dynamics based on the Bethe-Ansatz.
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Chapter 2

The atomchip experiment

The atomchip experiment uses standard laser cooling and laser trapping techniques.
In a first stage it creates a cold cloud of 8Rb atoms which is magnetically trapped by
micro-wires deposited on the atomchip. For a more detailed describtion about the
experimental techniques I refer the reader to [36, 42, 59]. The working principles of
these creation stages were not modified during my PhD and rather standard tech-
niques for the cold atom community are used. The techniques which are particular
to the experiment, as the modulated guide (Sec 2.3.1.2), or the double-well potential
in the longitudinal direction (Sec 2.3.2.2), will be described in more details.

2.1 The experimental setup

gold mirror

15um E

AIN

Figure 2.1 — Experimental setup with a zoom on its structure.

The experiment is built around its central piece, the atomchip inside a vacuum
chamber at = 10" mBar. The atomchip is produced by means of nanofabrication
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techniques! and it consists of a principle layer of Aluminium-Nitride (AIN) which
serves as an isolating layer and shows at the same time good heat-conducting prop-
erties [60]. The copper wires are deposited on the AIN substrate and covered by an
insulating layer of benzocyclobutene (BCB). BCB is chosen for its properties to create
flat surfaces after spin-coating. On top of this structure, there is a thin layer of gold,
acting as a mirror for the MOT and the imaging system. The chip is mounted at an an-
gle of 45° inside the vacuum chamber as shown in Fig. 2.1. Three pairs of Helmholtz
coils outside of the vacuum chamber create homogeneous fields in the three spatial
direction and one pair of anti-Helmholtz coils creates the magnetic quadrupole for
the external MOT (see 2.2).

y |F' = 3)
a) SP:!IH-J _______________ . . b)
|F =2)
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|F" =0}
F =
" gl o
z =l B ImF)
b o =
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55, /2 _1
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Figure 2.2 —a) Level structure of 87Rb, with the different lasers used in the experiment.
The atoms are magnetically trapped in the 1°Sy,, F = 2, mp = 2). The master laser is
locked on the level crossing between |F' = 2) and |F’ = 3) which serves as a frequency
reference for the experiment. The Master 2 laser serves as the primary laser of the
experiment; used for the MOT, molasses, optical pumping and imaging. Its frequency
is locked using a beat-note with the Master laser, allowing to sweep its frequency of
about 300 MHz. Adapted from [59].

b) Photo of the atomchip mounted on its copper mount.

2.2 Preparation scheme

The preparation scheme can be summarized by the following steps:

!The production is led by Sophie Bouchoule at the Laboratoire Photonique et Nanostrucutres
(LPN), CNRS / UPSUD in Marcoussis, now renamed in Centre de Nanosciences et Nanotechnologies
(C2N).
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1. External MOT: A mirror Magneto-Optical Trap (MOT) is created with the two
beams reflecting on the chip surface. The magnetic quadrupole fields are pro-
vided by external coils outside the vacuum chamber. The use of the mirror
MOT configuration reduces the number of beams to four (instead of six) and
allows to create a MOT close (a few mm) to the chip surface.

2. Chip MOT: The atoms are loaded into a mirror MOT, whose magnetic quadrupole
field is created by wires on the chip and the distance to the chip is reduced to
500 - 800 um.

3. Compressed MOT: The compressed MOT is used to produce an elongated con-
figuration closer to the chip surface; more adapted for the following very elon-
gated trapping structures.

4. Optical Molasses: Optical Molasses are used to further cool and increase phase-
space density.

5. Optical Pumping: As a preparation of magnetic trapping the atoms are optical
pumped into the state 1°Sy,, F=2, mp = 2) (see Figure 2.2).

6. DC trap: The atoms are transfered into an elongated magnetic trap created by
a Z-shaped wire. This trap is initially at 500 um distance from the chip surface
and is then further compressed.

7. Evaporative cooling: Forced radio-frequency (RF) evaporative cooling is car-
ried out to obtain about 2 x 10° atoms at T ~ 1 uK.

8. Transfer to the science trap: To obtain high magnetic gradients and therefore
high trapping frequencies, the atoms are transferred into a position 6 um from
the chip surface on top of the three-wire guide which creates the final science
trap. In comparison to previous chip designs, this transfer can be performed
much easier due to the symmetric design of the chip: The new chip design
places the center of the DC-trap and the science trap at the same longitudinal
position, making the previously used longitudinal transfer obsolete. Catching
schemes as mentioned in [59] turned out to be unnecessary.

9. Science trap / Modulated guide: The final trap consist of a very elongated trap
geometry, whose principles are detailed in the following Sec. 2.3. We use a mag-
netic trap created by a fast modulated current where the atoms are sensitive to
the time-average potential. Amongst other advantages, the modulation tech-
nique allows to circumvent the problem of potential roughness [61]. In the sci-
ence trap, we initially trap about 8 x 10* atoms at f, ~ 1.5—-15kHz and fi=8Hz.
Besides the harmonic longitudinal traps, quartic and double well potential can
be realized (see Sec. 2.3.2.2).
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10. RF-cooling in the science trap: In the science trap a RF-outcoupling is used to
further cool down the gas into the 1D regime where we typically prepare some
hundreds to a few ten thousand atoms inside the quasi-condensate regime.
The cooling mechanism used in the science trap is discussed in more detail in
Chap. 4.

2.3 Magnetic trapping

Neutral atoms with a magnetic moment fi experience an energy shift in a magnetic
field B(x) according to the Zeeman Hamiltonian

Hy=-[i-B=upgrF-B, (2.1)

with the Bohr magneton up and gr the Landé g-factor of the atomic hyperfine state.
In the experiment we use the hyperfine state F = 2 where the Landé factor takes the
value gr = 1/2. The Zeeman effect can be used to create spatially varying poten-
tial V(x), under the condition that the direction of the magnetic field changes much
slower than the Larmor precession |dB/dt|/|B| < wr, with wy = ,uBBfRZ [28]. Then
mpg, the magnetic quantum number, is a constant of motion and the atom moves in
the potential

V(x) = gruupme| B(x)|. (2.2)

Depending on the sign of grmg (—/+) atoms get attracted towards the maximum/min-
imum of the magnetic field and are called high field seekers/ low field seekers [63]. Ac-
cording to Maxwell’s equation a magnetic field maximum in free space is forbidden
in a static situation [64]. Therefore only low field seekers are of practical interest and
we use the state |F = 2; mg = 2) in this experiment.

2.3.1 Wire geometries for trapping neutral atoms

This section introduces different trapping geometries which are used on the experi-
ment. Starting from the single wire, more complicated geometries are introduced.

2.3.1.1 Potential by a single wire

Let us consider a single, infinitely long, wire which carries the static current I. Ac-
cording to the Biot-Savart law, this wire creates a magnetic field By(r) as shown in
Fig. 2.3

I
B¢(r]=—'u0 8, (2.3)
nr

2This adiabaticity condition can be typically critical at the bottom of the trap which induces losses,
known as Majorana losses [62, 63].
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with the magnetic vacuum permeability po, the radial distance to the wire r and &
the unit vector in cylindrical coordinates. The single wire creates a 1/r potential in

a) 22X b)
— | Byl
= — |By+ B,|
= —— |By+ B, + By
)
1 2 3
z/d
- c) 2z
©B, I f/ A
4 Cb y x

Figure 2.3 — Single wire configuration:

a) Cut through the wire plane with magnetic fields. b) Norm of the magnetic field
along the x-axes. In blue magnetic field of the wire, in green with additional magnetic
field B, creating a potential minimum and in red together with magnetic field By to
lift the magnetic field and avoid a zero of the magnetic field. c) Orientation of the
wire on the chip

the radial direction which does not allow a trapping potential on its own. An addi-
tional perpendicular magnetic field B, needs to be added in order to create a mag-
netic minimum (see Figure 2.3): There exists a point on the x-axis where B, cancels
out the field created by the wire §¢[r}. The total magnetic field IB] + B, | obtains a
minimum at the distance d = uoI/(27B, ) and the potential in the x-direction is given

by
d 2
V(y=0)=ps Bi(;—l). (2.4)

where mpgr is dropped, since mrgr = 1 in the experimental implementation. How-
ever, since the magnetic field at the magnetic minimum at distance d is zero the adi-
abaticity condition cannot be fulfilled; the Larmor frequency w; = ugB/h becomes
strictly zero. To avoid this problem an additional magnetic field By along the wire di-
rection z is added. Then, the potential of a single wire, together with the two homo-
geneous magnetic fields® create a useful trapping potential (see Figure 2.3 b)). The
dominant field around the trapping minimum will always be given by By, since at the

3The homogeneous magnetic fields E’l and By can be created by external coils in Helmholtz con-
figuration. The creation of B . by wires on the chip is considered in the following section.
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magnetic field minimum B, cancels out the magnetic field of the wire B};,. We expand
the magnetic fields in the potential in terms of 1/ By around its minimum which leads

to:
1(Bs\% 1(By)\?
V =pp\/B2+B2+B2=gB 1+—(—x] +—(—J’)
HB X y 0 HBDg 2 BO 2 BO

where By, By are the x and y contributions of §¢ +B,.B,and By can be expanded in
terms of x/d and y/d from which we obtain the trapping frequency*

w, =, LB Hol _,, [HB Bi (2.6)

mBy 2nd? mBy ol
The single wire configuration provides a trapping potential in two direction (x, y). A
simple way to add a trapping potential in the remaining z-direction, can be obtained
by bending the wire in "Z"-shape. This allows for trapping in 3D and slightly tilts
the trap (for more details see [65]). The "Z"-shaped wire configuration is used in the
atomchip for the first magnetic trap where we perform evaporative cooling. This trap

isnamed DC-trap (see Sec. 2.2) and we typically use a current of I = 3A, together with
B; =38G and a bias field By =1.2G.

) (2.5)

2.3.1.2 Three wire geometry and modulated guide

Three wire configuration The experiment uses in the perpendicular direction a
three-wire configuration as the final science trapping potential®. First, consider a
single wire as previously introduced with current I. In the three-wire geometry, the
perpendicular magnetic field B, previously created by the external coils, is now cre-
ated by two parallel wires containing the same current in opposite direction (see Fig-
ure 2.4). The position of the potential minimum is located at the same distance d
from the central wire. This renders the trap center insensitive to current fluctua-
tions®. The trapping frequency is the same as in the single wire situation and given

by
1 up Mol
=—/— . 2.7
Ji 21\ mBy 2nd? (2.1)

In order to obtain high transverse trapping frequencies, either high currents I or
small distances d towards the wires, are necessary (f; o I/ d?). The maximal cur-
rent is fixed by the ohmic heat which the atomchip structure can absorb, leading to
a technological barrier. When getting closer to the chip surface new physical prob-
lems arise. Close to the current carrying wires the effect of inhomogeneities in the

4Due to VB = 0 the trapping frequency in x and y-direction are the same for constant B;.

Ssee Sec. 2.3.2 for the longitudinal confinement.

6Exactly the same current is flowing through the same wires due to inter-connections of the wires
in loops.
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Figure 2.4 — a) The three wire configuration where B, is created by the two outer wires
with currents in the opposite direction. b) Comparison of wire roughness of different
chip designs. Note that although our chip, denoted "Orsay-Chip", does not show the
best performance in terms of production quality, the problem of wire roughness does
not effect our experiment, due to the modulated guide technique.

wires can become very important. Due to imperfections during the wire growing
process, the wire cannot simply be described by perfect cuboids, with parallel planes
(see Fig. 2.5). The current inside the wire locally starts to point away from the z-
direction. This leads to a roughness of the potential induced by the current. In worst
case this leads to a fragmentation of the condensate [66-68]. Two types of production
defects were observed: wire edge imperfections and top surface imperfections. Both

Figure 2.5 — a) Wire inhomogeneity with a zoom b). Taken from [69].

show an unfavorable scaling as r~5/2 yith the distance towards the wire r [67]. There

exists two main directions to avoid this problem: Many groups focus on the quality
of the production process which can be improved in order to reduce the imperfec-
tion of the wires [70] (see Fig. 2.4 b)). In our group we choose a different approach. It
was observed that a reversed current creates a reversed potential [66] and as already
pointed outin [66] a fast modulated current might overcome the potential roughness.
Since 2007, our experiment uses this technique of a modulated guide to overcome the
problem of wire roughness [61, 71]. Until today no potential roughness arising from
wire defects was observed. The current implementation consists of the three-wire
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geometry, as introduced above, and instead of a direct current (DC), an alternating
current (AC) is used, modulated at a frequency wmeq/ (27) = 400kHz

I(t) = IpcoS(Wmedl). (2.8)

The atoms cannot follow this fast current modulation and are sensitive to the time
averaged potential

T
(V(r, 1) = %f V(r,thdr'. (2.9)

0

Figure 2.6 — a) Schematic representation of the effect of the wire roughness on the
current deviation 6 I and the magnetic field 6 B for a current flowing to the right. b)
The same current flowing to the left produces the opposite current deviation —6 I and
consequently the opposite magnetic field distortion —é B. c) RF-evaporative cooling
in the modulated guide with the principles knife of order 0 and the side bands of
order +1.

In the following I will calculate the time averaged potential {V(r, )} as in Eq. (2.5)
where an inhomogeneity as depicted in Fig. 2.6 a) & b) is taken into account. The
inhomogeneity creates a magnetic field distortion in the z-direction 6 B,. Going back
to Eq. (2.5) the potential writes

V(r) =pB\/(BO+6Bz}2+B§+B§. (2.10)
Expanding this equation in quadratic order in B;, leads to
RO

1+ —+—
By B

V(r,t)= ugBy B 2
0

5 . (2.11)

When modulating the current I(f) = Iycos(wmoegl), the term (6 B,/ By) averages out
over a full period and the time averaged potential writes

1(B%) 1(B})
— + —

1+ —1.
2 2
2 By 2 Bj

(V(r,0)=ugpBo (2.12)
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With the use of (B2, ) = B2, /2 where here By, y stands for the static case, one recov-

xly xly
ers the expression in the static case of Eq. (2.5), differing by a factor % This leads to
the trapping frequency 1€ in the modulated guide
1
AC
=—1f. (2.13)
1 \/Efl

Radio-frequency evaporative cooling inside the modulated guide In the DC trap,
RF forced evaporative cooling is performed by spin flips to an untrapped state (mg =
0). Consider a radio frequency (RF) field together with the previously introduced
modulated guide. The resonance condition then depends on space and leads to
spin-flips on the border of the trap. RF-induced spin flips in the modulated guide
can be seen as a RF-field which is frequency modulated at 2wmegq. This introduces
side bands in the spectrum at 2wmeq [72]. The resonance condition writes

b.'z r2
7‘”343 " 2 nhwmod, (2.14)

0

hwgre = upBo +

with b’ being the quadrupole gradient and r, the position where the n-th sideband
is resonant (see Fig. 2.6 c¢)). Experimentally one is interested in working with a single
RF-knife, for which we choose the order n = 0. This means that evaporative cool-
ing inside the modulated guide is only possible inside a window of AV = 2A®meq =
kp38 uK. Therefore, the cloud has to be precooled in the DC trap, before it can be
loaded into the modulated guide. This window has been increased at the begin-
ning of my PhD by changing the modulation frequency from wmyoq/(27) = 200kHz
10 Wmod/ (27) = 400kHz.

Stability of the trap In principle, one could be worried that the increase in @med
affects the stability of the trap. The modulated trap is stable under the condition
that wmeq is much greater than the transverse trapping frequency w; which is easily
fullfilled. On the other hand, it must be much slower than the Larmor frequency
wr; assuring that adiabaticity condition, such that the atomic spin can follow the
instantaneous magnetic field orientation:

W] K Wmod K WL. (2.15)

In [72] a detailed study showed that at the new modulation frequency 400 kHz losses
are still negligible.

2.3.2 Longitudinal trapping

The modulated guide only creates a transverse confinement and an additional con-
finement in the longitudinal direction is needed. As justified in the following, the
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longitudinal potential is independent of the transverse confinement and the total
confinement is given by the sum of the longitudinal and transverse confinement. For
the longitudinal confinement we use wires perpendicular to the ones for the trans-
verse confinement (see Fig. 2.7). These perpendicular wires are far from the atoms
and we can develop the longitudinal potential in powers of z around its minimum

Vz)= Y a;z'. (2.16)
i=1

Close to the potential minimum where the atoms are located, higher orders lead in
principle to smaller corrections. Each wire allows to control one current [;. This
directly fixes the maximal order in the powers series V(z) = ¥ ;_; a;z' which can be
independently controlled. In the current chip design four wires for the longitudinal
trapping geometry are implemented which we name Dy, D2, 61 and 62 (see Appendix
Fig. A.2). Those wires allow the creation of potentials up to order four (see Fig. 2.8).

To justify the decoupling between the longitudinal and transverse confinement
let us calculate the full potential arising from the magnetic fields of modulated guide
(three wire geometry) and the magnetic fields from the four wires for the longitudi-
nal trapping. The modulated guide contributes with magnetic fields oscillating with
B;"C coS(wmod ) in x and y direction. The DC currents in the longitudinal wires lead to
static magnetic fields B; and B,. In analogy to eq. (2.11) we expand the full potential
up to second order in B;/B where i = x, y and B!°' = By + By:

2

1 ( By + BACcos(@meqt) > 1
( x x (Wmod ]] + (2.17)

V=pugBP [1+=
z B;Ot

B?C coS(Wmod ) )2
2

tot
BZ

Taking the time average (...) over the fast modulation of the modulated guide, one
obtains

1 B2 1 ((BX)") 1 ((B39?)

V) =ugB' |1 += +— +— 2.18
V) =1pB; 2 (BY°Y2 4 (BYY2 4 (BPY2 249
N “ ~ /
longitudinal confinementVj transverse confinementV,

The second part on the rhs., named transverse confinement V, corresponds to the
expression already found for the transverse confinement in Eq. (2.12) where By is re-
placed by B! In most situations By strongly dominates over B, where B, is the con-
tribution from the longitudinal DC wires, and we exactly recover Eq. (2.13). The small
corrections arising from B, and leading to f, o I/+/By+ B; are typically smaller than
1%, except for the quartic and double well potential which are discussed in Sec 5.1.3.
When these corrections can be neglected, the transverse and the longitudinal con-
finement are independent and given by the sum of V and V, . The longitudinal con-
finement V| only varies with respect to z and the transverse confinement V; with
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respect to x and y. Note that the situation differs from the DC trapping schemes
where the longitudinal and the transverse confinement are not independent of each
other [42]. We make frequently use of this decoupling property in the modulated
guide to control both parts independently and many parts, such as the interaction
quench (Sec. 3.2) and GHD experiment (Chap. 5), heavily rely on his property.

Let us now calculate the longitudinal confinement Vj which writes” according to
Eq. (2.18) in second order in B;/By

2
l+%+l(%] ] (2.19)
Bo 2\Bpg

Vi =ugBo

We calculate V) starting from a single wire at distance b = L/2 = 0.945mm from the
trap center (see Fig. 2.7). The single wire creates a magnetic field

_ Mol b+z _ ol z (z 2_ z 3
Bx = oup NPPRPN P 1 b+[b] [b] (2.20)
_ Mol d 1 Mol d [z Z2\2  (Z)3 541
B =% b21+2§+[§]2+[%)2 = o B2 1 2b+3(b) 4(b] +5[b] , (2.21)

up to order (z/b)* in Vj. Small correction of order (dIb)? =104 ford = 15pum are
neglected.

a)

/

Figure 2.7 — a) Current configuration for the harmonic potential with both currents
flowing in the same direction. The magnetic fields By from both wires cancel in the
center at the potential minimum, while B; adds up. b) View on the chip with the
modulated guide in red and the wires responsible for the longitudinal confinement
in purple.

7In the following the notation {...) for the time average is dropped.
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2.3.2.1 Harmonic trapping potential

A harmonic trapping potential can be created by the use of two wires for which we
use the two wires named D, and D, on the chip design (see Appendix Fig. A.2). For
simplicity we assume a completely symmetric chip and the same currents I = I = I
in the wires D; & D3. Due to the symmetry of the problem, the magnetic field of the
second wire can obtained with Eq. (2.20) and By — — By with z — —z. This leads to a
total magnetic field of the wires in z-direction which only contains odd terms:

—22 —2(2]3 :

For B, the symmetry of the problem imposes B, — B, (and z — —z), leaving only
even terms in the expansion

_ ol

B. =
7 onb

(2.22)

wol d Z)2 z 4]
Bz;=——1|2+6(— 10(— 2.23
: anb[ +6(3) +10(3) (2:23)
This leads to a two-wire potential
uppol | 2d AV z\4 wol [[z)2 z\4 ]

V| = uBBo + — [1+3|—=| +5(—] |+ —| +2(— . 2.24
I=HEROT onb | b (5) +5(3) 7bBo 5) +2(3) } (=24

Cuntribl;trion of B; 60an By

In Eq. 2.24 two contributions can be identified: Arising from B, a uniform term, a
term in z2 and a term in z* is created, while the potential arising from B, does not
contain any uniform contribution. Comparing the two contributions for our chip
layout, one obtains that the By-contribution is dominant over the B;-contribution
(2d < uol/ (1 Byp)). This is equivalent to the magnetic field created by the longitudinal
trapping wires at the distance d is small compared to By (Bo < uol/(2nd) ) which
holds for the typical values of I = 1A and d = 15um. The harmonic trapping fre-
quency wy within this approximation is then given by

272
_ :uB;u(]I

This leads for the typical experimental parameters to a shallow confinement of wy/(27) =
0-150Hz.

As discussed before, the term B, introduces corrections to the transverse con-
finement f| o I/v/Bg+ B;. The strongest contribution to B, arises from the uniform
term

unif pold
gy = B (2.26)
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For the harmonic traps which are used in Chap. 3 & 4, the term B}Z’mf"”“ never exceeds
1% of By which makes this effect negligible. Corrections which are non-uniform in z
are even smaller. Depending on the direction of I; & I, with respect to By, this cor-
rection leads to a slightly increased or decreased transverse trapping frequency f .
Note that additionally small corrections arise from higher terms in the 1/Bp expan-
sion. Beyond second order in 1/ By the decoupling between the longitudinal and the
transverse direction is not valid anymore.

In this section we always assumed I = I,. In practice the wires on the chip are not
completely symmetric which displaces the trap center and leads to z3 terms. In prac-
tice we therefore chose slightly different values for I and I» (I; = I,). By controlling I;
and I, independently, we can displace the center of the trap or correct for potential z3
terms. Although, for detailed calculations the difference in I and I is important, the
model with I = I, still gives a good intuition of the creation of harmonic potentials.

Prior to my PhD the experimental potentials could be calculated numerically by
taking into account the finite size of the wires and the full wire geometry 8 [42]. Since
the beginning of my PhD the calculated potentials did not match the experimental
observations (center of the trap and w)). An agreement with the calculations has
been obtained by artificially adding an uniform® magnetic field By = 180mG. The
origin of this hypothetical magnetic field is unclear and several reasons are under
consideration: The unintended use of a magnetic piece inside the magnetic shielding
or a leaky current.

2.3.2.2 Double well potential

To create a potential controlled up to order four we use a second pair of parallel wires
carrying the current ¢ (see inner wires in Fig. 2.8 which correspond to the wire 6, &
0, in Fig. A.2). In contrast to the decoupling between the transverse confinement
and the longitudinal confinement, the second pair of wires does not simply add a
potential, due to the quadratic BJZC contribution of Eq. (2.17). The total potential is
calculated using the same symmetry arguments used for Eq. (2.22) & (2.23) and ap-

8See Figure A.2: the wires are not simply given by straight lines and bend further in the current
supply lines on the chip
9Adding a gradient A B, did not significantly increase the model quality
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proximating B* with By which leads to

UBHo L A
Vi =upBo+ 2d|—+ = |+6d|-—+—]|2°+10d —+—
I =HBR0T o ( 2 ( ﬁ4] ( 2
Contribuu‘on of B;
T R e
S +2 —+— 2.27
o (52 ﬁ2) 2t (v i) (220
Contribution of By

In order to create a double well potential, an anti-confining term in z and a confin-

Figure 2.8 — Top view on the chip with a second pair of wires together (compare with
Fig. 2.7) and a sketch of the double well potential V (z) with well separation A a bar-
rier height 6. The four green wires with the currents I and ¢ in opposite direction
create the longitudinal confinement, while the transverse confinement is created by
the three wires in red.

ing term in z* is needed. Concerning the z? part, the By contribution which strictly
creates a confining z2 potential, needs to be compensated by the B contribution.
With V(z) = a2? + as x* we get

04{55 ) [ ) 15 5

e o) s )

27
Let us consider I > 0. Then ax(t) is a polynomial of order two with ax(t) —
— 100

UBHo
21

as = > 0 (2.28)

ap = < 0. (2.29)

+00

and for b > B, there is always a negative part a, < 0 which occurs for ¢ < 0 (see Fig. 2.9
a)). Therefore the currents for a double-well potential are chosen in opposite direc-
tion (see Fig. 2.8). For more details see Appendix A.3. For the experimental relevant
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parameters By = 2.4G, I =5A, d = 15um, b = 0.945um and f = 0.722 um the nega-
tive zone, is quite small. Additionally. a4 needs to be positive (see Fig. 2.9 b)). Both
conditions restrict the zone into a small interval 1 = [-3.18A;2.98A]. Note however
that in practice a4 < 0 does not imply that the potential becomes anti-confining. For
larger distances higher terms (as,...) will always ensure that the potential stays con-
fining at larger distances. Again for a precise calculation the effects due to the finite

a) p— : b) 1500 7 1500

6 ool 3 — A —
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c) L[A] = ; =
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Figure 2.9 — a ) The quadratic coefficient of the potential expansion a, as a function
of ¢ for the experimentally relevant parameters By = 2.4G, [ =5A, d = 15um, b =
0.945um and f = 0.722um with a zoom around the negative area. The red shaded
area corresponds to the area where a double well potential is created with a4 > 0.
Note that the region for a double well potential is rather small. b) The width A and the
depth 6 of the double well potential (see Fig. 2.8) as a function of (. The dashed line
corresponds to a typical experimental realization, with A =200 um corresponding to
6 =63nkK.

size of the wires should to be taken into account [42]. However, due to the problems
previously explained it turned out that the calculations only gave a rough estimation
of the created potential and an adaption on the experiment was necessary. The pre-
viously established corrections with By = 180mG failed to produce a precise model
(also see discussion below about the sensitivity). Therefore, we developed the follow-
ing rule of thumb technique, based on the previous discussion: We start from a hot
cloud and create a harmonic trapping potential with the D, and D, wires, close to the
maximal current in D; & D, which is about I = 5A. Then, we decrease the currents
11,2 in the wires 6,,» from zero to negative values until we can observe the signature of
a odd term (z®) which manifests itself in an asymmetry in the cloud shape. By further
decreasing the currents (;,2, we counterbalance the asymmetry such that the cloud
shape stays symmetric and in the center until a double well structure appears. In the
typical parameter range a further decrease of the currents ty,» reduces the distance
between the two minima (see Fig. 2.9 b)). By further cooling the cloud into the quasi-
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condensate regime, we typically prepare double-well potentials with A = 200 ym and
a barrier of 6 =~ 60nk.

Quartic potentials With this procedure, we also reproduced quartic potentials with
a=0
Vi = as(x - xp)*. (2.30)

By increasing the currents (1,2 the coefficient a; approaches zero again and there
exists a point where az = 0 (see Fig.2.9 a)). An experimental density profile of the
quartic potential is shown in Fig 2.10 a). Quartic potentials have been previously
produced on the experiment [42].

a) b)

80
T 60
‘: _—
— 40 1 2
g b’

20

01 0
T T T T E
0 100 200 300 400
z  [pum] I A I

Figure 2.10 — a) Insitu density profile in a quartic potential (blue line) inside the
quasi-condensate regime. In green the Thomas-Fermi profile obtained from a fit with
as =3 x 103% where high density corrections due to the swelling of the wavefunc-
tion are taken into account. In the flat region of the cloud the potential roughness
produced from adsorbed Rubidium atoms is visible. b) Sketch of the double well
potential together with a small perturbation Vg; lifting the degeneracy of the two

minima and creating on offset €.

Sensitivity of the double well potential The double well potential is experimen-
tally rather delicate due to its sensitivity to the experimental parameters. Already in
Fig. 2.9 b) one observes that a small change in ( directly leads to a very strong change
in 6 and A. In practice neither the chip layout is completely symmetric, nor the cur-
rents in the right and left wire can be perfectly controlled to be equal. Let us model
the effect of an experimental defect as a fifth wire carrying a small current 6 I. For
simplicity let us assume the fifth wire is at distance 3. In order to estimate the largest
contribution, let us compute at first order in z/b the contribution to the total poten-
tial from the fifth wire. The fifth wire introduces the linear perturbation V(;}l = mz.
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This lifts the degeneracy of the two minima as shown in Fig. 2.10 b) and creates a
potential which adds to Eq. (2.27):

X' _ MBHoOI | d o ( I 1
= — +—=+—=]| z. 2.31
ol np 28  mBy\b2 B2 (231)
——
from B; from Bx

Again the dominant contribution is given by B,. For the experimentally relevant pa-
rameters (see caption of Fig. 2.9), a small current of 67 = 100 uA leads to a shift of
the potential at the position of the minima of € = 22nK. This corresponds to one-
third of the barrier depth 6 = 60nK. Note that 61 = 100 uA corresponds to 0.003 % of
1 =—3A. We did not perform precision measurements of the current. Experimentally,
however, a strong sensitivity was observed.

Before discussing the experimental observations, let me remind that the experi-
ment works in a cycle of = 20s and two effects can be distinguished: The long time
stability of the trapping potential and the stability of the trapping potential within
the cycle. Remarkably, when looking at the same time in the sequence over a several
minutes to hours, no significant deviation was observable (see Fig. 2.11 b)). Taking
the previous estimation into account, this is rather surprising. Still, when considering
very long time scales of the order of several hours, a drift in the potential was observ-
able. Between different data sets the balance between the two wells was corrected
by small changes in (1 and 2. The previous statement hold when the atoms were al-
ways observed at the same time within the experimental cycle. When observing the
atoms for variable holding times in the trap, one observe a strong drift in the offset e
between the two wells (see Fig. 2.11 a)). This indicates that the experimental setup is
well in a stationary situation. After each experimental cycle (= 20s) the experimental
apparatus returns to its initial situation (heating, deformation, etc.). During a single
cycle however, the experimental apparatus experiences changes which lead to strong
reproducible drifts in the potential V (z).

Additionally problems arise from using currents up to 5A. This leads to consid-
erable heating effects on the chip. The heating leads to a thermal expansion which
can be observed via the imaging system. On the images the structure of the three
wires, responsible for the transverse trapping (see Figure A.2 green wires), can clearly
be distinguished. In order to maintain an image in focus of these wires, the position
of the camera needs be adapted. From the change in focus one can deduce that the
position of the chip surface changes by = 60 um'°. This expansion of the chip can not
be solely explained by an expansion of the BCB layer (= 6 um thick) and it is proba-
bly linked to a strong heating of the chip mount. The temperature expansion of the

10Here the conversion from the camera position to the focus position is obtained by a calibration
from time-of-flight images.
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Figure 2.11 — a) The potential V(z) obtained from the Thomas-Fermi approximation
and a polynomial fit of the linear insitu density (see dashed red line in b)) for different
waiting times f. The potential shows a significant deformation linked to the sensitiv-
ity of the double-well potential.

b) The single shot density rn(z) for the waiting time (¢ = 0ms in b)) for 15 different re-
alizations. For readability n(z) was smoothed (mean value over 12 pixel). The black
line is the average over the 15 realizations and the red line the polynomial fit used in
a).

c¢) First and last potential of figure a)
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cooper mount of a length of 3 cm, can be estimated at AT = 60K, to be of the same
order (30 um).

In summary: The heating of the chip and the sensitivity to small current devia-
tions lead to very sensitive experimental situation. In practice the previous estima-
tion of the offset between the right and the left well turned out to be too pessimistic.
A rebalancing of the wells was experimentally manageable by controlling the cur-
rents up to 0.01 %. This discrepancy arises most probably from the simplification in
the model, which neither takes into account the full geometry of the chip wires, nor
higher order corrections. Nevertheless, the double-well potential pushes the exper-
iment to its stability limits. A possible path to improve the situation could be the
increase of By. It leads to a smaller sensitivity to current imperfections (Eq. (2.31))
and at the same time the confining term of zZin Eq. (2.29) is reduced. This would be
paid by the price of a reduced transverse confinement (f, o< 1/4/Bp) which can be
compensated with a stronger current in the transverse wires. At the same time this
would also lead to a desired side effect of a reduced coupling between the transverse
and the longitudinal confinement (see previous discussion in this section).

2.3.2.3 Potential roughness

The chip surface is coated with a thin layer of gold. It turns out that Rubidium is ad-
sorbed by gold which leads to an accumulation of single Rubidium atoms on the chip
surface. The adsorption induces a charge transfer and leaves electropositive rubid-
ium atoms on the surface which creates an electrical stray field [73, 74]. The electric
field influences the trapping potential via the Stark effect and leads to a potential
roughness. The potential roughness is typically visible on the density profiles in the
quasi-condensate regime as for example shown in Fig. 2.14 b) & Fig. 2.10. There ex-
ists different approaches to remove these stray electric fields: In [75] a monolayer of
Rubidium on the chip surface in cryogenic environment was successfully used to cir-
cumvent the problem. Another approach at room temperature was used in [76] with
a quartz surface on the chip together with a nearby electron source. It also seems
that a silver mirror might bypass the problem by maintaining a high reflectivity and
avoiding the adsorbtion [77]. Previous work in the group tried to implement a dielec-
tric layer on top of the chip surface. Unfortunately, the dielectric layer cracked while
inside the vacuum chamber.

2.4 Genetic algorithms
A typical work of a PhD student in experimental cold atom physics consists of many

optimization tasks which do not always need a precise understanding of the under-
lying physics and equations. As a paradigmatic example consider the charging of a
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magnetic trap from a MOT: Even though the underlying equations are well-known, in
most practical situations theory does not predict the best choice of the parameter. Ei-
ther because the problem is too complicated, the initial conditions are not precisely
determined or the exact value of the magnetic fields etc. are not precisely enough
known. In such situations one typically performs a manual optimization task of the
final atom number. This corresponds to the optimization of a scalar function!! f(X)
where f is the atom number and X a vector containing the adjustable parameters. It
is of strong practical interest to automatize such a task. In many situations this is not
easily achievable, since the parameters of the problem are not controlled by a com-
puter (e.g. adjustment screw of a mirror). For a atomchip experiment this situation is
quite different compared with standard cold atom experiments. Most experimental
parameters are currents on the chip which are directly computer controlled. On our
experiment only the first stages from the external MOT to the molasses (see Sec. 2.2)
are sensitive to such non-computer-controlled parameters. Therefore atomchip ex-
periments are prime candidates for automatization.

Since there exists an immense variety of optimization algorithm, let me focus on
some practical aspects. Many algorithms used in computer science rely on the deter-
ministic nature of the function f(X) which excludes them from use in experimental
situations. There exists different approaches to deal with these noisy experimental
situations. Some examples from the cold atom community are machine learning ap-
proaches [78, 79] or genetic algorithms [80, 81]. In this section I focus on an imple-
mentation of an elitist genetic algorithm. This approach is widely used, but until
now has not been implemented on the atomchip experiment, nor in the atom optics
group at the institute. The motivation behind the choice of the algorithm is based on
simplicity of implication. We are well aware of much more involved and maybe more
efficient methods [80]. The aim of this section is to demonstrate, how an efficient
optimization method can be implemented with little effort.

2.4.1 The algorithm

Genetic algorithms are inspired by the Darwin principles of evolution of gene mixing
by reproduction, mutation and selection. Here, an individual is a set of parame-
ters X = {xy, X2,...X,}. The selection takes places by the outcome of the experiment,
namely the number of atoms of the set of parameters. The algorithm starts from
M randomly chosen individuals (typically 10 on the experiment). The experiment
then performs M runs where in each run a single individual is used (a different set of
parameters) and the outcome (the number of atoms) is saved. Then, the algorithm

In some situation several parameters e.g. as the final temperature and the final atom number
might be of interest. In such a situation a cost function can be created, mapping the problem back to
an optimization problem of a scalar function.
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a) Lselection reproduction

N
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Figure 2.12 — a) Principles of the genetic algorithm.

b) Illustration of the reproduction process. Colors and numbers (genes) correspond
to exemplary values of the parameter of the individuals. Child 1 is created by ran-
domly choosing genes from the parents. Child 2 takes the previously unused genes.
¢) Experimental implementation of the genetic algorithm. The atom number (blue
points) as a function of the experimental cycle during the optimization process. One
generation corresponds to 10 experimental cycles. For guidance, the individual data
points are shown together with a smoothed green curve. After 20 generation the al-
gorithm converges with about eight times more atoms than initially.

performs its task with its three principles. First it selects the two-third of the best per-
forming individuals (highest atom number). It then reproduces the same amount of
children, by randomly choosing two parents. The reproduction process can be per-
formed as following (see Figure 2.12 b)): For each pair of parents two children are
created. For each parameter it is randomly chosen, if child 1 obtains the gene (pa-
rameter value) from parent 1 or from parent 2. If child 1 obtains the gene from parent
1, child 2 will obtain the gene from the parent 2 and vice versa. This method ensures
that no information is lost at this stage. One adds 1/3 of the best performing parents
to the children created by this process. This stage can be skipped, but adds an elitist
behavior to the algorithm which can speed up the optimization algorithm. At the fi-
nal step mutations are added, by randomly changing one of the parameter on each
individual. We perform mutations on a predefined interval around the original value
X, such that the new value is given by

X = X+ sD27"F, (2.32)

D defines the interval in which mutations are possible, s is the random sign of the
mutation, k is the mutation precision and u a uniformly distributed number in the
interval [0, 1]. This type of mutation is known as Miihlenbein’s mutation [81, 82]. At
the end of this three steps we end up with a new generation with the same number of
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individuals M and the process starts again where this new generation is tested on the
experiment. In our experimental implementation we did not predefine k and D and
instead imposed for each parameter a maximal and minimal value together with a
smallest step €. The parameter € was necessary to avoid infinitesimal small numbers
which can cause problems with the our hardware control of the experiment. From
the value of the maximal value, minimal value and €, the parameter k and D can be
calculated such that we obtain the same distribution as given in Eq. (2.32). We cre-
ated the initial generation by performing random mutations on a single individual.
The implementation of this algorithm has proven to be efficient in situations where
not much physical intuition was available. An example is shown in Fig. 2.12 c) where
the atom number is increased by a factor 8 after 300 experimental cycles. Still, hu-
man control was clearly outperforming the algorithm when a physical intuition was
available.

2.5 Heating and losses

In this section I summarize the main sources of losses and heating in the experiment:
Losses from the background gas and heating & losses from technical noise. Both
heating and loss effects were observed during my PhD and the elimination of those
processes was one of the most time consuming parts of my PhD work, at least on the
technical side.

2.5.1 Background gas losses

Collisions with the background gas are a source of losses. Due to the high kinetic
energy of the background gas atoms (room temperature) a collision with the back-
ground gas leads inevitably to a loss of the atom from the trap. The collision rate y is
then given by

Y = Nback Vback0 backs (2.33)

with npack the density of the background gas, vpacx the mean velocity of the back-
ground gas and op,ck the cross section of the collisions. In the current experimen-
tal situation, if one assumes solely collisions with hydrogen molecules, one obtains
I'=1/y=100s for a pressure P = 10~ mBar!? [63, 83]. Taking into account the mea-
sured lifetime of I = 7, we conclude that collisions with the background gas should
give a negligible contribution'3. Heating due to collisions with the background gas,

2During the experimental cycle the pressure increases compared to the inital mentioned
107! mBar due to the rubidium vapour. We roughly estimate the increased pressure to be a factor
10 higher.

13 Although collisions with different atomic species can contribute, the result for the tabled collisions
as Rb— Rband Rb— He in [83] do only differ by a few percent.
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can be neglected due to the shallow traps.

2.5.2 Technical noise

In contrast to magnetic traps created by coils, atomchip setups do no benefit from the
natural capacitive noise reduction of coils and thus may suffer from current noise. It
is interesting to note that this problem can be reversed and atomchip setups can be
used as very precise magnetic field sensors, combining high sensitivity with a high
spatial resolution [84, 85].

Heating Let me focus on the three wire configuration where the atoms are at d =
15um from the wires and therefore potentially most sensitive to current noise. In
the three-wire configuration the position of the trap center is fixed by the wire ge-
ometry (see Sec. 2.3.1.2) and it can be safely assumed that losses from a fluctuating
trap center can be neglected!4. Thus we assume that the dominant heating mecha-
nism comes from fluctuations of the trapping frequency w — w(1 + €(f)) where €(f)
are small fluctuations. The fluctuations can be characterized by a noise spectrum
Je(w) = f (e(0)e(D)) e td¢t, whose spectral width is assumed to be large compared to
w. The trapping frequency oscillations lead to a parametric driving process where
transitions from the quantum mechanical state |n) of the harmonic oscillator are
driven towards |n+ 2) and |n — 2). This leads to a heating process:

d(E) w?
—=—J.w . 2.34
T > JeQw)(E) ( )
Eq. (2.34) describes an exponential heating characterized with a time constant Theat.
Since in the three-wire geometry w o< I, we obtain

1 w?
Theat = ﬁhﬂw). (2.35)

where J;(w) = f (I(0)I(1))e *®tdt. A characteristic heating time Theat Which exceeds
10s under typical experimental situations with I =0.1A and w/(27) = 3kHz imposes
that J; < 500 uA? /Hz.

Losses For simplicity let us restrict this discussion to the DC trap- The strongest
contribution of the magnetic field seen by the atoms comes from By and polarizes

4Here it can be safely assumed that the current noise at each moment is the same in each of the
three wires. The cables which interconnect the three wires are of lengths of some meters. Uncor-
related noise is therefore suppressed up to several gigahertz where the atoms cannot follow the fast
movements.
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the atoms along the z axes. However, the magnetic fields By and B, couple the trap
state to the remaining Zeeman levels. This loss rate is given by

1 [#B#o

2
Tuoise = 575 (5 g ) J1(@D) (2.36)

where d is the distance to the wire and w; = ugB/h the Larmor frequency [63, 86]. In
the DC-trap the atoms are at a distance d =~ 150 um. Eq. (2.36) predicts that J;(w) <
15 uA? /Hz in order to maintain a lifetime of Tjggges > 105.

The loss process is sensitive to the noise spectrum around the Larmor frequency
which is typically on the order of w;/(2mr) = 3MHz. The heating process is sensitive
to the noise spectrum around twice the trap frequency which is on the order of a
few kHz. Experimentally both heating and losses were observed, with losses being in
most situations the dominant effect. Experimentally both effects cannot be well sep-
arated in shallow traps, since spill-overs from heating eventually also leads to losses.

A precise characterization of the electronic noise on the chip is not straightfor-
ward. In principal the electronic noise on the experiment can be lower than the es-
timations of the limiting values in this sections. The best experimentally measured
lifetime during my PhD was about I' = 7s which is probably still limited by electronic
noise.

2.5.3 Switching-mode power devices

It is well known that switching-mode power devices can be an important source of
electric noise. Their basic working principle consist in "cutting" the input voltage
(typically Vi, = 220V modulated at 50 Hz) by a switching regulator into short time in-
tervals and a subsequent filtering of the output voltage (typically Vo a few Volts).
Noise created by the switching-mode power device does not only affect the electrical
loop under consideration, but can propagate via the ground connections and affect
different parts of the experiment. Due their low costs, switching-mode power devices
became an industrial standard which in some practical cases make them almost im-
possible to avoid in laboratories. It is practically impossible to avoid switching-mode
power devices in standard equipment, such as computers and screens. It is however
worth to note, that good quality switching-mode power supplies can be of very low
noise. However it can be difficult to link the noise quality of a certain switching-mode
power device to its noise impact on the experimental setup from calculations. Exper-
imental testing of the noise impact can be tricky, since some switching-mode power
supplies only show a high noise level at certain moments. Even after a thorough test-
ing of the impact of a certain switching-mode power supply on the experimental cy-
cle, it is not exclude that after some time (even months later) the switching-power
device becomes a major source of electric noise in the experiment. At the same time
the noise of a switching-mode power device can also disappear for some while. The
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electric noise finally leads to losses and heating on the experimental setup which was
regularly observed on the experiment. During my PhD, problems due to switching-
mode power devices significantly slowed down the scientific progress. All the above
mentioned problems of noise appearing and disappearing randomly have been re-
peatedly observed. As a consequence almost all switching-mode power devices on
the experiment have been steadily replaced by linear power supplies which led to a
continuous improvement of the atom lifetime. Additionally, all the current carrying
wires which are used for atom trapping purposes, have been shielded by special wires
and connectors.

2.6 Technical instabilities

2.6.1 Mechanical instabilities

The scientific work of my PhD has been also significantly delayed due to technical
instabilities which where all related to a newly installed movable lens system. These
problems were all linked to the more general problem of maintaining a high me-
chanical stability of vertical moving massive object (some 200g) over a large number
of repetitions (some hundred of thousands repetitions).

a)

Additional stopper b)

Fixation ring
Linear actuator

P =
: O
P =
= g
()
o

lens mount

MOT beam lens |
MOT beam lens MOT mirror

Figure 2.13 - The MOT beam with its movable parts. Left: Picture from the side. Right:
Sketch from the top view. The MOT beam lens (the MOT beam mirror) are movable
part which will lifted up (sidewards) during the DC trap phase (see 2.2).

The introduction of the vertical moving lense originates from major changes on
the imaging system prior to my PhD!®. The change of the objective of the imaging
system required the use of an additional lens during the MOT-phase. This MOT-lens
is needed to collimate the MOT beam passing through the new objective in reverse
direction as shown in Fig. 2.13 b). Due to the high numerical aperture of the new

15For more details on the changes on the imaging system see [36, 59]).
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objective, the MOT-lens needed to be placed a few centimeters beyond the objective
to avoid a too large spreading of the MOT beam. Unfortunately, it is practically im-
possible to place the MOT-beam lens where the optical path of the imaging system
is separated from the MOT beams (see Fig. 2.13 b)). The additional MOT-beam lens
needs to be moved during the imaging, in order to not disturb the imaging part. Due
to space constraints on the optical table, it was decided to mount the MOT-beam lens
on a vertical moving platform (see Fig. 2.13 a)). This part of the experiment is inside
the magnetic shielding which required the use of a special non-magnetic platform
which strongly constrains the number of possible technical solutions. As a solution a
linear actuator from SmarAct GmbH was chosen'® based on a stick-slip motor. Due
to the operation in vertical position, an additional spring for gravity compensation
was added, after consultation with the producer (see Fig. 2.13). The whole setup is
fixed by a clamp ring (fixation ring) around a steel cylinder of diameter 30cm (see
Fig. 2.13 a).
During my PhD the following parts showed significant degradation:

* Spring: The additional spring broke twice. Since the whole setup is hidden
behind the magnetic shielding, this was not immediately realized. We do not
know how long the linear actuator was running without gravity assistance of
the spring.

* The linear actuator: Twice an early degradation was observed. Each time this
resulted in a replacement of the stick-slip motor. After a detailed inspection
with the producer, the cause of this early degradation remained unclear. Ac-
cording to the company these linear actuators are routinely used in similar
conditions (number of repetitions/weight) without significant signs of degra-
dation. It is unclear if this is linked to the broken spring mentioned above
which might have lead to an excessive stress on the actuator. Each replace-
ment was linked to several months of down-time of the experiment, due to the
reparation by the producing company.

* The clamp ring The clamp ring changed several times its position. This effect
was unexpected by several experienced technicians, although first observation
signs were at hand. The clamp ring withstands at least the weight of 70 kg
without any displacement and no displacement can be observed after several
movements of the linear actuator with its load. However the situation can dra-
matically change when considering hundred of thousands of movement of the
system!’. Then, the lens together with its mount acts like a small hammer of
about 200 g on the clamp ring. This led to a movement by several milimeters of

6The non-magnetic version of SLC-2460-D-NM: http://www.smaract.com/products/
linear- positioners/slc-series/slc-2460/
I7This is an estimation of the number of yearly movements of the linear actuator.
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the clamp ring'®. By adding metal spacers which are placed between the clamp
ring and a fixed basis, this mechanical instability was removed.

In summary: the vertical displacement of a lens with a high precision and high
reproducibility can be a more complicated task than anticipated and if possible a
horizontal displacement is preferable. Although the system is functional at the mo-
ment, a replacement system was prepared which is based on the block and tackle
technique with most of the parts outside of the magnetic shielding. It cannot be guar-
anteed that such a system does not show similar failures. However, all of its technical
components can be easily replaced outside the magnetic shielding and the compo-
nents are based on well known simple electric motors and "stone age" mechanics.
With this replacement system we expect to avoid lengthy time delays in the future.

2.6.2 Magnetic stability

During my PhD, I observed increased fluctuations and long term drifts (on the or-
der of hours), when working with low number of atoms (n, = 5 ,um‘l]. Its origin is
not clear, however there are hints that it might be linked to fluctuations of the mag-
netic fields. The whole vacuum chamber is protected from external magnetic fields
by a metallic shielding in two layers. The outer one out of mu-metal and the inner
one out iron. In [71] it has been estimated that the stability provided by this shield-
ing is better then 800 uG. Since this measurement the inner layer of iron started to
show signs of rust which changes the magnetic structure of the iron and probably its
shielding capacity. Taking the upper bound of [71] as an estimation for a magnetic
fluctuation 6 B = 800 uG and assuming this field aligned to be with By, this would re-
sult in a fluctuation of the potential offset of 7% compared to the chemical potential
u at fi =3kHz and ng = 5um~!. In principle fluctuations of the potential offset are
unimportant, unless working with RF-knifes as used for the evaporative cooling.

2.7 Imagingsystem

We use standard absorption imaging techniques, whose key points will be introduced
in the following. A more detailed description including the newly installed imaging
system can be found in [36, 59]. Absorption imaging is based on the Beer-Lambert
law

aq 200 (2.37)
dX - ;y. ] .

where in this paragraph x is the direction of light propagation through the atomic
cloud, I the imaging beam intensity, o(I) the absorption cross-section and n(x, y, z)

18This problem could be well summarized under the ancient Greek saying "Povt evdeAeyovo
xothouvel etpory” — "constant dripping wears the stone” (Choerilus of Samos 5th century BC)
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the 3D atomic density. In general o(/) in a multilevel atomic structure can not be
easily obtained (see [42] for detailed analysis of the problem in presence of a multi-
level structure). The situation changes drastically for a two-level system with light on
resonance where the cross section is given by

agl)=

(2.38)

with the low intensity cross section oo = 31%/(27), the saturation intensity Igy =
Iimhnc/(Aop) and the natural linewidth T'jp. A two-level system can be obtained
by applying a strong magnetic field (10G) to split the hyperfine structure in its mg
states and addressing the atoms with an imaging beam of ¢* polarization. We use the
two-level system on the closed transition between |F = 2, mg = 2) and |F' = 3, mp = 3)
which has natural linewidth Ty, = 27 6.069 MHz[87] for 8Rb. We shine a resonant
imaging beam at wavelength A = 780.24nm onto the atoms and an image is recon-
structed from the absorbed light. The x integrated atom number rn,; per pixel is then
obtained by comparison with a reference image taken without atoms 60 ms after the
first image:

A2 (NP
w(12) = ——1In|—2_|. 2.39
Nat (Y, 2) oD n(Nf’h) (2.39)

Nf'h is the number of photons in the i-th image where i = 1 is the image with atoms
and i = 2 is the reference image. The size of the pixel in the object place is A =
1.75 um. The imaging beam is shone on the atoms via the gold mirror on the surface
of the chip at45° (see Fig. 2.14). Without atoms this should lead to a flat image 7, =0
everywhere. In practice, however, a small residual unevenness can be observed and
areference image without atoms is subtracted. Since we are interested in 1D physics,
we use for almost all applications the integrated atomic density n(z) = f Rat(y, 2)dy;
the atomic profile integrated over the transverse direction (see profile Figure 2.14 b)).

2.7.1 Time-of-flight images

We use a time-of-flight imaging technique in order to obtain a situation where the
equation for the two-level system Eq. (2.38) is valid. We switch off the trapping poten-
tials and the atoms fall under gravity during a short time-of-flight ¢ = 8ms'?. During
the time-of-flight the imaging magnetic field B™ = 10G is switched on. The imaging
magnetic field B™ is orientated with respect to the imaging beam of polarization o™,
such that the only closed transition is given by | F = 2, mg = 2) and |F' = 3, mg = 3) (see
Fig. 2.14). After the short time-of-flight the atoms are placed at a position where light

19Eor this whole manuscript tr will be 8 ms, if not stated explicitly differently.
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Figure 2.14 — a) The imaging laser beam is shone on the atoms. The laser beam is
reflected from the chip surface into the imaging system b) Density profile n(z) (blue)
compared to Thomas-Fermi profil with the quasi-condensate equation of state u =
gn (red) and with corrections due to the swelling of ground state in the transverse
direction p = hw, (/T+4nasp — 1) (green). The bumps on the experimental profile
are due to the potential roughness which arises from rubidium atoms adsorbed on
the chip surface (see Sec. 2.3.2.3).

reflected from the chip surfaces does not recross the atomic cloud (see Fig. 2.14 a)).
During the time-of-flight the cloud expands quickly in the transverse direction and
a dilute cloud is imaged. This avoids problems of high densities as discussed below
in Sec. 2.7.2. We use time-of-flight images to record the density ripples images (see
Sec. 2.8.1) and to extract the momentum distribution (see Sec. 2.8.3). Additionally,
they are used to calibrate the insitu number of atoms, as discussed in the following
section.

2.7.2 Insituimages

In contrast to time-of-flight images, in situ images do not directly contain the cor-
rect atom number, and always need to be calibrated with time-of-flight images. Still,
in situ images can be very interesting for practical purposes when interested in the
atomic profile. In situ images inside the quasi-condensate regime only contain small
density fluctuations, in contrast to the large density ripples appearing after a time-of-
flight (see below Sec.2.8.1). Therefore, the atomic profile can be obtained in a single
shot with a relatively low level of noise and averaging over many realizations is un-
necessary. This advantage is exploited in the GHD project (see Chap. 5).

We acquire insitu images after a very short time-flight of 100 us, during which
neither the density profile nor the density fluctuations are modified. In such a sit-
uation, the atoms absorb twice the imaging beam: The first absorption takes place
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Figure 2.15 - Insitu imaging. a) Position of the atoms with respect to the imaging
beam and the chip. b) In situ absorption imaging of the atomic cloud and its mirror
image. Note that the transverse ground state is smaller than the pixel size A. The
atom number is calibrated with a time-of-flight image (see Fig. 2.14).

before the reflection on the chip surface and a second absorbtion after the reflection
on the chip surface as shown in Fig. 2.15 a). This leads to two images of the atomic
cloud: a real image and a mirror image of the atoms as shown in Fig. 2.15 b). A pri-
ori it is not directly possible to reconstruct n(z), since without well-defined magnetic
field the atoms cannot be described by a two level system (Eq. (2.38)). However, it
turns out that for practical considerations Eq. (2.38) still holds [42, 88], with o re-
placed with aogg. The correction coefficient is approximately a =~ 0.8 and the exact
value depends on the detuning. The applicability is routinely verified by comparing
the insitu profiles to the time-of-flight profiles and a is corrected for small variation
in each data set. For high atomic densities the validity of the Beer-Lambert law can
be lost and two effects can distinguished: First, when the interparticle distance is
smaller than the wavelength non-trivial reabsorption processes become important.
Second, when the size of the cloud becomes much smaller than the size of the pixel
A, the non-linearity of the logarithm leads to a under estimation of the atom num-
ber. Both effects can be observed on the experiment for high atomic densities in
the center of the trap and in previous works [36, 42, 59] correction techniques were
used. For the data presented in this thesis the atomic densities were chosen to be low
enough such that these corrections were unnecessary. Additionally, the short time-
flight of 100us leads to a transverse expansion, such that the transverse size of the
cloud becomes comparable to the pixel size. Note that it could be argued that only in
situ images allow to extract the correct atomic profile in contrast to time-of-flight im-
ages. This, however, does not apply to the experimental situations considered in this
thesis. Due to the shallow longitudinal trapping confinements and the short time-of-
flights 77 = 8ms, no change in the longitudinal atomic profile was observed. Consid-
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ering the data in this thesis the advantage of the insitu images over the time-of-flight
images solely consists in a lower statistics: The large density fluctuations inside the
quasi-condensate regime are removed and the signal to noise ratio is increased by
avoiding the large spread in the transverse direction.
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2.8 Analysis methods

2.8.1 Density ripple analysis

The method of the density ripple analysis was pioneered by [89] and later used in
the Vienna group [19, 90, 91]. Inside the quasi-condensate regime density ripples
appear after a short time-of-flight, during which initial phase-fluctuations are trans-
formed into density fluctuations?® §p(z). This method has been proven to be a very
useful tool for temperature measurements [19, 24]. Prior to my PhD the density rip-
ple method was not used in our group?! and the temperature measurements mainly
relied on in situ measurements of the atom number fluctuations [11, 92, 93]. Both
measurements methods have their strengths and weakness. The advantage of the
in situ atom number fluctuations method lies in its direct link to a thermodynamic
quantity via the fluctuation-dissipation theorem. It can thus be used in all regimes
of the phase diagram (Fig. 1.4). However, inside the quasi-condensate regime which
we predominantly investigate, density fluctuations are suppressed which makes its
observation technically difficult and requires a lot of statistics. In stark contrast, the
density ripple method relies on the thermal phase-fluctuations which develop into
large density fluctuations and which can be of the same order as the initial mean
atomic density ng(z). These density ripples are therefore very easily visible on a sin-
gle shot image as shown in Fig. 2.16 b) which drastically increases the signal to noise
ratio. They are of stochastic nature and the average profile over several experimen-
tal realization gives the mean profile {p(z)) = po(z). Both methods are sensitive to
excitation in the phononic regime. In the following I will show how the density rip-
ple analysis can be used to extract information about individual Bogoliubov modes
(see Sec 2.8.1.2) and how it can be used as a thermometry to extract the phononic
temperature (see Sec 2.8.1.3).

2.8.1.1 Density ripples power spectrum

In this section I will rederive expressions for the density ripples spectrum (Ip‘“(q]|2>,
first established in [90]. A more detailed derivation can be found in our paper [18],
whose derivation is closely followed. Let us consider a gas initially trapped whose
trapping potential is removed at ¢ = 0. The atoms then fall under gravity during a time
tr. The power spectrum of the density ripples {|6(q) %) after time-of-flight writes as

1p(@?y = f dz;dzze' 1“1 =22)(5p(21)6p(22)), (2.40)

2011 the following the letter p is used for the atomic density after time-of-flight, while the letter n
denotes the atomic density in the trap.
210ne example measurement can be found in [36]
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with 6p(z) = p(2) —(p(2)) the density fluctuation after 7r. When expanding eq. (2.40)
the term | f dzeiqz<p(z}> |2 appears. This term can be safely neglected, since we re-
strict ourselves to short time-of-flights, such that the cloud shape does not change
({p(2)) = ng(z) with ng(z) the insitu atomic density22 and at the same time we are
only interested in wavevectors smaller than the inverse cloud length such that the
term —| [ dze'9%(p(2))|? gives negligible contributions to {|3(q)|?). Then we obtain

Up(1? = f dzydzpe' 7%= (p(z)) p(22)). (2.41)

Due to the strong transverse confinement, the gas expands fast in the transverse di-
rection and interactions become almost immediately negligible (a more detailed dis-
cussion about the interactions follows in Sec. 2.8.1.7), such that one can calculate
p(z) = ¥ (z,t5)¥(z, tf) with the free-particle propagator

u 1 u jlza?
V(z,tr) = 7fda:\P(a:,0]e o, (2.42)

\HZJT.'ff

For readability, I use in this paragraph A= m = 1. This leads to

_jm=a?  @-p? (v

1 a e
<p[21)p(Zz)>=mﬂf dadfdyds(Vo VsV ¥se 7 2ty 2tf

+i

(2.43)
with the notation ¥, = ¥ (v, 0). Expanding the exponential, we obtain
1 B o2 Y P L B
(p(z1)p(2z2)) = mﬂf dadBdyds(V,Vs¥, Wse T 2 i %
(2.44)

Injecting into Eq. (2.41), and using fdze”‘z =216 (k) and 6 (x/a) = |a|6(x), we get

o N sy e il eean? 62
{(p(q)l >=ffdadﬁ(‘Pa\Pa+qtf‘P6+qtf‘P5)e e 2y @ 2 @ 2, (2.45)
Defining 6 = a + X, we finally obtain
Up(q? = f f dadXe' ™ Ve ¥ auq, Vg xqt Vasx)- (2.46)

Up to now the derivation is general and did neither assume a specific regime nor a
certain geometry of the cloud.

22This property has been experimentally verified as discussed in Sec. 4.4.3.
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Homogeneous gas in the quasi-condensateregime Letus consider ahomogeneous
system in order to obtain analytic results which can is helpful to obtain an intu-
ition. We will later come back to different trapping potentials. We introduce the in-
tensive quantity of a homogeneous system of length L which is given by (ngq]|2> =

(1p(q)>) /L. Inside the quasi-condensate regime ¥, can be written as \/79e??@ (see
Sec.1.3) where the density fluctuations bn(z) are neglected. Then Eq. 2.46 writes

L2 ) .
Up(R) = n j | axe® <e‘(9"‘9‘*‘f+g"+‘“f‘9"]> , (2.47)

where the translational invariance of the system was used to integrated out a and
again we used the simplified notation 6, = 6(z).

2.8.1.2 Filter for Bogoliubov modes

In Eq. (2.47) only pairs of 6(z1) — 0(z2) appear where z; — 23 is separated by g 5. When
restricting to wavevectors such that g5 < [, the difference 6(z;) — 6(z2) stays small
(see Sec.1.3) and we can expand the exponential in Eq. (2.47) which leads to

1/, . A~ A . .
1- 2 <(90 —Oqt; + Oxqte — 9}()2) eldX, (2.48)

(o(@P) =12 f dx

In the whole section we are not interested in the contribution at g = 0, and for sim-
plification of the calculation we drop all the terms which do not depend on X. Addi-
tionally (6(z,)0(z»)) only depends on the separation of | z; — z| which leads to

Ap@)® = n 2 (¢! +&174)]| [ ax 000 00) ™, (2.49)

where again the translation invariance was used. Let me now introduce the Fourier
transform of 6(z)

0= f e'7%0(z)dz, (2.50)

and we obtain

Up(@)2) = 4n2(16, %) sin? (q i ) 2.51)

The complex valued quantity Qq can be decomposed in its cosine and sine contribu-
tion with (|64[%) = % [(6;6) + (6%,5)]. For a system which is invariant under translation
both contributions are equal (93”) = (6%,5) and we finally obtain

hqt
(p(@)I?) = 4ng(65, ) sin® (%) (2.52)
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where m and h are reintroduced. The index r stands for r = ¢, s and will be dropped
in the following.

This implies that for low lying wavevectors hqts < I.m the density ripple spec-
trum resolves individual Bogoliubov modes. On the data analysis side, Eq. (2.52) con-
stitutes the central equation for the interaction quench which is introduced Chap. 3.

For a system at thermal equilibrium and thermally populated modes kg T >> hw,
where w4 is the Bogoliubov mode frequency of Eq. (1.67), the equipartition theorem
allows to write

(02) = mkg T/ (h* noq?). (2.53)

The prediction of Eq. (2.52) together with Eq. (2.53) is shown in Fig. 2.16.

2.8.1.3 Density ripple thermometry

Without the restriction to small wavevectors hqff < Iom and in equilibrium situa-
tions in a homogeneous system an analytic formula can be obtained [90]. For higher
q contribution different Bogoliubov wavevectors get mixed and the density ripple
spectrum cannot resolve individual Bogoliubov modes. Starting from Eq. (2.47), we
can use the fact that 8 is a Gaussian variable and apply the Wick theorem to rewrite
the exponential:

<|p[q} |2> — n{Z]]dXeine_%<[Q\D—éqtf+éx+qtf—é)(]2>.

(2.54)
The exponential can be further rewritten as

2 - . . - PO - ..
{p(@)1%) — ] dX el®Xe™ 3 <[30_3qtf]2 + (3)(+qtf—9xlz+ (Bo—Bx)*+ (gqtf_G)HqthZ— (30—3)(+qtf)2— (3qtf_8_‘.|()2>
— .

gy
(2.55)
Using the first order correlation function
g1(2) = (¥ (0)¥(2)) = nge (6@~ _ g o-lalilc, (2.56)
with I, = f 7>, one calculates
Hlatgl+XI | Xratgl , X—qtl
<|p(q f dXe'®e 2 e * etk (2.57)
0 o0
This Fourier transform of an even function on X can be rewritten
0 |qtf|+|X| [X+qtel | [X-qtgl
M =2 ] T YT cos(gX). (2.58)
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As previously, let us restrict to ¢ > 0 and we can distinguish the two cases X > qtr
and X < qtr. For X > gty Eq. (2.58) only gives an irrelevant contribution to g = 0. For
X < qtf Eq. (2.58) leads to

2 qtf
U@ _ 5 [ axe 2 cosax. (2.59)
no 0

The integral of Eq. (2.59) can be solved analytically which leads to

2hqt
2ql,—2e mkc (qic cos[m’thf} +25in[@))
2y=2n2 2.60
{p(@I) =2n; 14+ 2D (2.60)

where i and m are reintroduced. Eq. (2.60) represents the central results of this sec-

a) R b)
5 20 35 50 65 80 95 110 125

—— LDA

—— bhox

ghty
—_— . <1

025 050 075 1.00 _
haty/(ml) -
0.2 0.4

Figure 2.16 — a) Density ripple power spectrum. Green line corresponds to the pre-
diction for a homogeneous gas (|6(¢)|?) in a box of length L = 2R and a the mean
atomic density nop = N/(2R) (Eq. 2.60). The blue line corresponds the local density
prediction Eq. (2.64). The dots corresponds to a data set at f;, = 3.1kHz and the yel-
low line to the corresponding fit which takes into account the LDA and the imaging
resolution for which we obtain ¢ = 1.97 £0.04 um. All the plotted lines correspond
to the same temperature T = 53 £ 4nK which is obtained from the fit. Note that the
position of the first maximum of the density ripple is shifted to the left by the imag-
ing resolution which prevents to observe the oscillatory behavior. The upper axis
Jj = qR corresponds to the wavevector which is dominated by the v-th mode index
for Bogoliubov modes in a a harmonic trap. The red line corresponds to the small g
expansion (see Sec. 2.8.1.2) valid for g trlimly) < 1.

b) Single shot 2D image of the density ripple. The longitudinal z-axis is horizontal.

tion. In Fig. 2.16 it is shown for experimentally relevant parameters. Eq. (2.60) shows
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a damped oscillatory behavior where the height of the first maximum is approxi-
mately proportional to the temperature of the gas (see Eq. 2.52). The expression of
Eq. (2.60) solely depends on the temperature T, apart from the experimentally well
known density ng and the time-of-flight 7¢. It can be therefore used to fit the experi-
mental data to obtain the temperature.

2.8.1.4 Local density approximation

The expression for the filter of Bogoliubov modes Eq. (2.52) and for the thermom-
etry Eq (2.60) only holds for a homogeneous gas, while the gas in our experimental
realization is confined in an external potential. The conceptually most intuitive treat-
ment of the trapped gas, can be obtained by the LDA. Later in this section, we show
that corrections beyond the LDA approach can be neglected for the experimentally
relevant situations.

In order to derive the density ripple power spectrum within the LDA, let us rein-
troduce the term 28 = Ifdzefqz<p[z]> %, neglected in Eq. 2.41. Applying the free par-
ticle propagator 28 writes

B = ] f dadXe ™ (P Vo0 ) (U Warxay) (2.61)

Within the quasi-condensate where density fluctuations can be neglected, the field
operators in Eq. (2.46) & Eq. (2.61) write

i(éa—éaﬂp‘f +éa+X+qtf—éa+X]

(2.62)
The density is given by the Thomas-Fermi profile ng = np(a). Collecting Eq. (2.61) &
(2.62) one writes:

sy . .
Wawa+qtfwa+x+q;fq;a+X = \/na”a:+qtfna+X+qtfna+Xe

Ap(R = ] f dadXe' /ATy qriarqiars

l<ef[éa—éa+qtf+éa+X+q:f—éa+X]> _ <ef(éa—éa+qtf]> <ef[éa+)(+qtf—éa+)(]>

The LDA assumes that the size of the cloud L is much larger than /. and additionally
we can assume that Aqts/m < I.. This implies that at constant @ and for X > I,
the second term in Eq. (2.63) vanishes. The density profile n(z) varies only slowly on
scales z < L. As long as we consider wavevectors for which holds Lg < 1 we can
write

(2.63)

1B @R = f da{| Py (@12). (2.64)

The LDA result of Eq. (2.64) can be used to calculate the density ripple thermom-
etry the power spectrum {0(q)) in a trap. The numerical result of Eq. (2.60) together
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with Eq. (2.64) is shown in Fig. 2.17. The LDA results is also used to calculate the time
evolution of (5(q)) after the interaction quench in the small wavevectors hq [Flm<
. approximation (see Sec. 3.4).

qR
0 50 100 150 200 250

(17q|*)/ (Rnp kBT t/h)

g/ hity/m

Figure 2.17 — Test of LDA: Density ripple power spectrum calculated for experimen-
tally relevant parameters /./R = 0.2 and tf = 0.015mi2/h, with I, = 2h?n,/(mkgT)
the correlation length at the center. The blue lines show calculation based on Bogoli-
ubov calculations in trap which show excellent agreement with the LDA calculations
in red dashed line. The green dotted line is the small g expansion for hqtf < I.m
which shows similar to Fig. 2.16 a) good agreement up to gR = 50.

2.8.1.5 Bogoliubovin a trap

The validity of the LDA can be verified by the Bogoliubov treatment in a harmonic
trap with the Legendre-polynomials which was introduced in Sec.1.3.2. Starting from
Eq. (2.62) which holds in a trap, one can introduce the expansion of (z) in terms of
the orthogonal Legendre polynomials which leads to

R

161y = ff dadX e'9X Vo@)ng(a+qtg)ng(a+ X+ qtf)ng(a+ X) (2.65)
R o3 Tv(PD) (04 (@0, (a+q1p)+0y (@+ X+q1p)-0,(@+ X))

For hqtf/ m < I, the exponential can be expanded in analogy to Eq .(2.48).

For large v one can use the approximation Eq. (1.87) for which the Legendre-
polynomials behave approximately as cos((v+ 1/2)z+ m/4). Under this approxima-
tion the density ripple power spectrum {|p(q) 12) (Eq. (2.65)) for a single mode v is
peaked at approximately at v = gR. This justifies the use of the axis g R which directly
indicates the mode v = gR with the largest contribution at a given g.

As with the LDA, the Bogoliubov approach with its result Eq. (2.65) can be used
to calculate the equilibrium density ripple profile. We use the equilibrium prediction
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(pﬁ) = kg T/(hw,) and the result is shown in Fig. 2.17. For parameters close to the
relevant values on the experiment, the Bogoliubov approximation in a trap is in very
good agreement with the LDA calulations of Eq. (2.64). Since the integral of the LDA
is numerically less demanding, than Bogoliuobov calculations in a trap, we will use
the LDA Eq. (2.64) together with Eq. (2.60).

2.8.1.6 Imaging system

Experimentally the finite imaging resolution needs to be taken into account. It can
be modeled as a Gaussian response function in real space

22

oA (z)= e 202, (2.66)

2mo?

The measured density p™® is given by the convolution of the real density p™¥(z)

with &/ (z). This leads to a multiplication of the theoretical density ripple power spec-
trum {|p(q)[?) with e=9°7".

In principle the imaging resolution was measured with pinholes before installa-
tion of the imaging system. We found an imaging response function close to a Gaus-
sian with a resolution of o = 0.8 um. However, one can expect an increase of this value
since the atomic cloud expands by a few hundreds microns in the transverse direc-
tion during time-of-flight. This is considerable compared to the depth-of-focus along
the imaging beam which can be estimated to be on the order of 5 um. We thus expect
that the effective imaging resolution is larger than the measured value o = 0.8 um. By
fitting the experimental density ripple power spectrum with 7 and ¢ as free parame-
ters we typically obtain o = 2 um. This value depends on the transverse confinement
and slightly larger values are observed for data sets at the highest experimental trans-
verse confinements w /(2) > 6kHz.

In practice, we also correct for the photon shot-noise which gives a small correc-
tion independent of g and which writes:

(50> >—(A2 ]22( L ! (2.67)
shot o)) 5 th(y,z) Ngh(y,z) ’ '

In summary: The density ripple thermometry is based on the analytic function in
Eq. (2.60) together with the LDA of Eq. (2.64) and the imaging resolution which are
used as a fit function with T and o as free parameters. The density ripple analysis
which resolves individual Bogoliubov modes is based on Eq. (2.52) together with the
LDA of Eq. (2.64) and the effect of the imaging resolution can be taken into account
which will be explained in Sec. 3.4.2.
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2.8.1.7 Interactions during time-of-flight

In the previous derivations in this Sec. 2.8.1 it was always assumed that the inter-
actions can be neglected during the time-of-flight. In [94] the effect of interactions
during the time-of-flight were estimated. They consider a situation slightly different
from the situation studied in this thesis and in the following I will argue that their
results can still be used for our experimental data. Their derivation differs in two
points our experimental situation: First, they consider the transverse Thomas-Fermi
regime (u > hw ). Our data is in the harmonic oscillator regime y < hw | . It can be
assumed that interaction effects in the harmonic oscillator regime are smaller than
in the Thomas-Fermi regime, making the estimation in [94] an upper bound estima-
tion. Second, they use a Bogoliubov approach (as introduced in 1.3) which assumes
small density fluctuations and our clouds develop large density fluctuations during
time-of-flight. If we restrict ourselves to small wave vectors, (q < ml./ (ﬁtf)) the den-
sity fluctuations stay small®® and the Bogoliubov procedure still applies. Therefore
for small wavevectors we can give the pessimistic correction factor € which replaces

(|p(q]|2) — (|p(q)|2>c¢€
= (fﬂc ]
€ (LU| ff) . (2.68)

In all experimental situations € exceeds 0.95 where we used experimentally relevant
wavevectors ¢ of Chap. 3 and similar results hold for Chap. 4. This confirms that in
the small g zone of {|p(q) |2) interactions are negligible. Taking into account that our
calculations for (Ip[q]l2> match well our experimental data over the whole g-range
(see Fig. 2.16), it can be assumed that interactions during the time-of-flight can be
neglected for all wave-vectors q.

2.8.2 Yang-Yang thermometry

As introduced in Sec. 1.2.3.1 the equation of state of the 1D Bose gas with contact
interactions is exactly known and can be computed numerically. Using the equation
of state, together with the local density approximation in a trap pu(z) = up — V(2), it
can be used to extract the temperature of the gas [12, 92, 95]. If the potential is known,
as it is typically the case for harmonic traps (see below Sec. 2.9), a given mean density
profile n(z) can be fitted with u, and T as free parameters. For this purpose it is
advantageous to tabulate p(nyy, T) in the relevant parameter range®* and extrapolate
for the fitting purpose.

BHere g < ml./(h tr) should be understood in a stricter sense than in the previous derivation for
quantitative results, such that we are in the linear part of the small g expansion in Sec. 2.8.1.2. This
range of ¢ is visible in Fig. 2.16 where (Iﬁ[qllz} is linear in g and indeed density fluctuations stay small
in this g range.

24Courtesy to Karen Kheruntsyan and Giuseppe Carleo for numerical calculations.
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Figure 2.18 — The Yang-Yang thermometry in green compared with the modified
Yang-Yang thermometry in red. Both theories fit well the experimental data but lead
to different temperatures. For comparison the purple line is the Thomas-Fermi pro-
file (TF).

In the experiment the 1D conditions kg T < u is not strictly fulfilled and correc-
tions arising from the transverse excited states should?® be taken into account. The
few percent of atoms in the transverse excited states can be treated as ideal Bose
gases, with the chemical potential p(jx, jy) = p — (jx + jy)hw, for the excited states.
Here jy is the j-th excited state in the x direction and j, respectively. The corre-
sponding equation of state ntg(u(j), T) is given by

, 1 )
nre(u(j), T) = g1 (9"37], (2.69)
Adgg 2
with the de Broglie wave length Agg = i’;ﬁ? and the Bose-Einstein function g 1 (x) =

?‘;0 ﬁ—i;, also known as the polylogarithm Liy;»(x)[12, 93]. The total linear density is

then given by

o0
n(p, T)=nyy(u, T) + Z (j+ Dnte(p()), 1), (2.70)
j=1
with j = jy+ j,. The prefactor j+1 takes into account the degeneracy of the excited
states. For numerical purposes the sum is typically truncated at j = 20.

We typically apply the Yang-Yang thermometry to clouds which are in the quasi-
condensate regime at center of the trap and confined in a harmonic trap as shown
in Fig. 2.18. In such a situation the temperature obtained from the Yang-Yang ther-
mometry is mainly due to the shape in the wings where the gas is in the ideal Bose gas

25In Chap. 5 these corrections are not taken into account. The theory of Generealized HydroDynam-
ics (GHD) cannot take into account the corrections from the transverse excited state. See Sec. 5.2 for
more details.
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regime. The central part the profil is dominated by the quasi-condensate equation of
state u = gn which does not depend on temperature.

The phononic excitation of the Bogoliubov Hamiltonian are mainly confined to
the inverse parabola given by the Thomas-Fermi regime. Therefore, the Yang-Yang
thermometry is not an adapted thermometry to measure the temperature of the pho-
nons. Experimentally we typically observe different temperature between the Yang-
Yang thermometry and the density ripple thermometry (or different thermometries
which probe the temperature of the phonons) [22]. See Sec. 4.4.3 for more detail on
this observation.

2.8.3 Momentum space distribution

For atomchip experiments with 1D gases it is practically impossible to reach the far
field regime by standard time-of-flight techniques. Due to the very shallow confine-
ments in the longitudinal direction of typically a few Hertz, the far field is reached for
times and cloud sizes which exceed the typical apparatus parameter. To circumvent
this problem pionnering work was performed in Amsterdam with the introduction of
the magnetic lensing technique [96, 97]. This technique is now routinely used on our
setup [40, 98, 99] with a more detailed description given in [42]. The process resem-
bles the focusing of light with a lens where the lens is replaced by a tight harmonic
kick potential characterized by wyicx and applied during the a short time fi;cx. Let
us restrict the discussion to classical particles without interactions for the moment:
We chose a kick time ficx small enough such that atoms do not move inside the kick
potential. This gives the condition wyjck fxick < 1. The kick potential gives the atoms
a velocity proportional to the distance from the center of the trap. Immediately af-
terwards the confining potentials are switched off and the atoms fall under gravity
during a time 7

1
ff=—— 2.71)

@F 4 ek
The time-of-flight is chosen such that all the atoms collapse at the central position
when the initial velocity distribution is neglected. Taking into account the initial ve-
locity distribution the atoms focus in the center of the trap and their spatial distri-
bution is homothetic to the initial velocity distribution as illustrated in Fig. 2.19 a).
Interactions during the time-of-flight can typically be neglected due to the fast ex-
pansion in the transverse direction which removes interactions almost immediately.
In this thesis we typically use a kick potential with wyck/(27) = 51 Hz together with
a kick time fiick = 0.4ms which leads to 7y = 24ms. During this time the atoms fall
2.9 mm, for which the imaging system needs to correct its focus position in the hori-
zontal direction (we use the mirror image). This distance is the maximal distance for
which we are currently able to adapt the focus. The resolution of the measurement in
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momentum space is given by A, = A/(tf) = 73 um/s, depending on the precise value
of If.

The momentum focusing can be disturbed by several reasons, whose effects are
discussed in detail in [42]. Experimentally the condition wycy fiick < 1 is not always
well fulfilled and corrections to Eq. (2.71) need to be taken into account. Additionally
interactions during the kick can play a role. It can be however shown with the scaling
approach that for w) ek < 1 interactions are negligible. Additionally anharmonici-
ties in the kick potential needs to be minimized.

a) S~ — b)
N kick

T =30.3 nK —_— fit

> —04 —-02 00 02 04

13

Figure 2.19 —a) Scheme of the momentum focus technique. b) Experimental momen-
tum distribution together with a fit (green) taking into account the imaging response
function and the LDA (see Eq. (2.73)). This leads to a temperature T = 30.3nK.

Comparison with theory The theoretical momentum distribution can be calcu-
lated by the Fourier transform of the one-body function correlation g; (z). Inside the
quasi-condensate®® at equilibrium and in a homogeneous system (see Eq. (1.81)) this
corresponds to a Lorentzian of Full Width Half Maximum (FHWM) 2/ ..

1/1,

nq x m , (272]

2
where [, = %:%. Inside a trapping potential it can be calculated numerically with

the LDA and we obtain:

n ] M@ (2.73)
o . .
q q +112(2)

For comparison with the experiment, we convolute with a Gaussian of width o, to
mimic the imaging response function, as shown in Fig. 2.19 b) in blue. For very cold

26For different regimes see [42]
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clouds, for which /. is large, the bulk of n, is dominated by effects of the resolution
and the fits gives a good estimation of 0 4. The values of o4 corresponds to a width in
real space o = 2um (see Fig. 2.19 b)), in agreement with the value obtained from the
density ripple analysis. The temperature can be compared with the temperature ob-
tained from the density ripple analysis which agrees up to 20%, while both methods
are sensitive to slightly different wave vectors. For comparison, the corresponding
density ripple spectrum to Fig. 2.19 b) is peaked around g¢ = 0.05.

2.8.4 Comment about temperature measurements in the system

With our setup we are able to probe the temperature of the system with different
methods (density ripples analysis, momentum focusing and Yang-Yang thermom-
etry) and these methods not necessarily lead to the same values of the tempera-
ture [22, 36]. This is less surprising when considering that the 1D system is an in-
tegrable system. The equilibrium state of an integrable system is not described by a
thermal equilibrium, but by a more general equilibrium (see Sec. 3.1 for a more de-
tailed discussion). In our setup the fit of the profile with the Yang-Yang equation of
state typically leads to higher values than the temperature obtained from the density
ripple analysis or the momentum focusing technique. This is probably due to the
preparation process [22, 59] but further investigation is needed. More details about
this phenomenon are also discussed in Sec. 4.4.3.

2.9 Parameter calibration

Longitudinal trapping frequency In the case of a harmonic trapping potential its
trapping frequency can be measured directly by a displacement of trap center and the
recording of the subsequent oscillations of the center of mass around the potential
minimum as shown in Fig. 2.20 a).

Transverse trapping frequency In the transverse direction the trap center cannot
be easily displaced due to the three-wire geometry (see Sec. 2.3.1.2). To circumvent
this problem we use a parametric heating process to measure the trap frequency f; .
The trap frequency can be modulated at a frequency fpara by modulating the ampli-
tude of the AC-current with an additional signal generator

I=[Io+AIcos(27 fparat)]| COS(Wmodr)- (2.74)

This leads to resonances at fpara = 21 f) where atoms are excited to higher motional
states. The observable signal consists in a broadening of the atomic cloud in the
transverse direction after a short time-of-flight. Equivalently, on can observe the
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Figure 2.20 — a) Oscillation of the center of mass together with its sinusoidal fit.

b) First resonance of the parametric heating. The transverse width o, after a short
time of flight 75 = 8ms is obtained from a Gaussian fit. The center frequency flfm
leads to fi = 3.1kHz where the dashed line corresponds to a Gaussian fit for guid-
ance.

atom losses due to spill-overs. We typically used about 10 oscillations of the para-
metric heating signal with an amplitude 6 /1 = 10%. This method also allowed the
verification of the f| o« I dependence (see Eq. (2.7)) which was better than 1%.

Comment about uncertainties All the published scientific results in this thesis solely
depend on the values n(z), f|, fj and the measured times. The uncertainties on the
time is very small due to the technological standards of the clocks which are inte-
grated in the hardware control. Its precision can be independently verified with a
very high precision. The statistical error for f; and fj is very low (< 1% see Fig-
ure 2.20). And the statistical uncertainty in n(z) can easily be reduced by averaging
over several runs. The estimation of the systematic error for n(z), fi and fj is much
more tricky, since no independent measurement method is accessible within a rea-
sonable amount of work and reasonable precision?’. At the same time we expect the
systematic error to dominate over the statistic error. There exists however an indirect
method to verify the consistency of our parameters. In the quasi-condensate regime,
the shape of the cloud can be predicted by the Thomas-Fermi approximation (see
Sec. 1.3.2), starting from the values of f|, f| and the peak density n,. In Fig. 2.14 b)
the cloud shape and the Thomas-Fermi approximation is plotted with a high agree-
ment. One could deduce error estimations from the atomic shapes which would lead
to strong correlations between the uncertainties and we therefore decided to publish

2 f1 can be calculated from Eq. (2.7), however at the current situation no precise knowledge of the
exact parameters is available.
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the values without error estimations?®. Further indication that the statistical error
is not the dominant contribution can be recovered from the results in Chap. 3 and
Chap. 4. If one assumes that the theoretical models are correct, the statistical incer-
titude is much too small to explain the deviation from the theoretical results?®. This
indicates that further systematic errors should come into play. In general it can be
said that the systematic errors are expected to be of the order of a few percent.

Summary:

* We use an atomchip setup to create clouds of 8Rb which are strongly
confined in two dimensions. This allows to create 1D clouds inside the
quasi-condensate regime.

* The modulated guide technique eliminates the problem of wire rough-
ness and allows for an independent control of the longitudinal and trans-
verse directions. In the longitudinal direction we can control the first
terms of the Taylor expansion V(z) =Y5_, a;z".

* The density ripple analysis allows to access individual Bogoliubov modes
and to obtain the phonon temperature

28 Another indirect verification method for the atomic density n(z) can be obtained by verifying that
the cross-section is independent of the atom number [71].

25ee for example the statistical error bars in Fig. 3.5 b) or in Fig. 4.10 where the errorbars for
w, /(2m) = 1.6kHz would be too small to be visible.
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Chapter 3

Interaction quench

This chapter first introduces the concept of quenches in isolated many-body quan-
tum systems. It then focuses on an interaction quench in a 1D Bose gas and intro-
duces its description in the quasi-condensate regime. I will present two experimental
methods to study the dynamics generated by an interaction quench. The first one an-
alyzes the evolution of momentum distribution which undergoes relaxation towards
a thermal distribution. The second one uses the density ripple analysis which allows
to access individual Bogoliubov modes. We show that the observed dynamics of the
Bogoliubov modes continues for times longer than the thermalization time of the
momentum distribution. These results are published in [18]. Finally, I will discuss
the difficulties of observing recurrences in 1D Bose gases in a harmonic trap which
indicates the presence of a damping of the Bogoliubov modes due to non-linear cou-
pling between modes.

3.1 Quenches in integrable systems

Before introducing the work published in [18], I give a short motivation and overview
of quenches in isolated quantum systems. It is a basic assumption in statistical phy-
sics that after some short time fe1ox @ macroscopic system can be described by a few
thermodynamic quantities and two systems described by the same thermodynamic
quantities differ only by microscopic fluctuations. In classical mechanics, this prop-
erty arises from the ergodicity of the system which ensures that the system can ex-
plore the whole configuration space and remove the memory of the initial state. After
lrelax the fundamental postulate of statistical mechanics becomes true: The system is
with equal probability in any accessible microstate. For an isolated quantum system
the situation is more complicated. For example consider an eigenstate |\¥;) of the
Hamiltonian A. Then, the system will stay under the unitary evolution of the H in
exactly the same state; up to an irrelevant phase factor e~*?i!, This situation clearly
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differs from an evolution towards a statistical ensemble.

The thermalization of an isolated many-body-quantum system is one of the key
questions in the field of out-equilibrium dynamics. Motivated by advances in recent
years, mainly in the field of cold atom experiments [100-108], theoretical research
was stimulated!. The sudden quench is thereby one of the standard setups, on which
we will focus in the following. The system is prepared in the initial density matrix po
(or state |Wp)). At t = 0 the system is brought out-of-equilibrium by sudden change
of a Hamiltonian parameter and time evolved with the new Hamiltonian A’

(1) = e i mH poeiiH, (3.1)

The thermalization of the system is typically defined by the expectation values of a
physical? variable (A). The system thermalizes if the expectation value tends in the
long time limit towards

(P(DIAIY(6)) —— Tr (Pcivbs A) (3.2)

with fgibbs = exp(— ﬁFI ") ITr(exp(—p H")), the density matrix predicted from statistical
mechanics.

Non-integrable systems For non-integrable systems it is widely assumed that the
Eigenstate Thermalization Hypothesis (ETH) explains why the system can be de-
scribed in the long-time limit by equilibrium statistical mechanics [109, 115]. The
time evolution of Eq. (3.2) can be written explicitly in the energy eigenbasis |i) with
eigenvalue Aw;:

(P(OIAIP(D) =Y (P O)i) (jIW(0) (i Alj) e @im@it, (3.3)
i,
In the long time limit the phase factor averages out for i # j which leads to

(POIAIPD) = (YOI <l AlD). (3.4)

ETH predicts that the expectation value of A in state |i) only depends on the energy
Ei = ﬁ(x)f

(| Ali) = (A)g, (3.5)
where the microcanonical average (A)g at energy E is the average over of all states
inside a small shell E,E+AE

. 1 .
(Mp=— Y (ElAIE). (3.6)
E'e[E,E+AE]

IThere exists a large number of theoretical studies with some of the most prominent results [109-
111] and the reviews [112-114] to cite a few.
2 A should be local or a few-body observable.
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Eq. (3.5) can be interpreted as follows: The expectation value of an operator is al-
most independent of the details of the state and only depends on the energy of the
state. This is the ETH statement. Note that no general proof of ETH exists, and mainly
numerical evidence was found [111]. In the thermodynamic limit the microcanoni-
cal and canonical ensemble are equivalent and if the initial coefficients (' (0)|i) are
sufficiently narrow in energy the system evolves towards the thermal Gibbs state of
Eq. (3.2).

Integrable systems and generalized eigenstate hypothesis In an integrable system
ETH is not valid. This can be illustrated with the example of the trivial integrable
model of a non-interacting gas and the observation of the momentum distribution
i(p). Two momentum distributions can share the same energy E = f n(p) pzf 2m)
and at the same time their expectation values (72 (p)) can be very different. In an in-
tegrable systems ETH can be naturally extended to the Generalized Eigenstate Ther-
malization Hypothesis (GETH). GETH assumes that the expectation value of (A) not
only depends on the energy, but on the expectation values of the conserved quanti-
ties® Q; = (Q;). The expectation value of Eq. (3.6) in the generalized microcanonical
ensemble becomes

1 R
(ilAlD) = % Z (slAls). (3.7)
[5),{s1Q:15)e{Q; +8Q;}

The sum runs over all states |s) whose quantum numbers (s| Q;— |s) fall in a narrow
range around Q;. All the states which share the same {Q;}, within a narrow range,
also share the same expectation values of A. Each of those states can be described
by some representative state |s). Equivalently this state can be characterized by the
General Gibbs Ensemble (GGE) density matrix.

1 A
PcE = — exp (—Zﬁfo], (3.8)

with the Lagrange multipliers ; imposed by the initial conditions and the partition
function Z = Tr [exp (- X; i Q;)|. One typically chooses the first Lagrange multiplier
to be the inverse temperature 8y = kg T with the conserved quantity Qp = H [116].
Experimentally a GGE was observed in [117].

Nearly integrable system A nearly integrable system is a system composed of a
Hamiltonian A = Hy + e A; where Hj is integrable and €H; a small non-integrable

3Note that the definition of the Q; is not trivial. All hermitian Hamiltonian posses a maximum
set of of independent commuting operators {Q;}. The choice of the meaningful set of {Q;} is very
important [3].
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perturbation with € < 1. In such a situation a prethermalized state is expected to
occur [118-121]. The dynamics at the beginning is mainly governed by the almost
conserved quantities and a non-thermal stationary state appears which is increas-
ingly long-lived with € approaching zero. At very long times the non-integrable part,
can lead to a thermalization. Experimentally non-integrable perturbations are al-
ways present. Some examples are the excited states in the transverse direction, the
coupling to the environment and the longitudinal trapping potential Vj(z).

Lieb-Liniger Within the class of integrable models the Lieb-Liniger model consti-
tutes one of the paradigmatic models studied by theoreticians and the study of the
quench dynamics in the Lieb-Liniger model attracts a lot of interest [122-132]. As
previously stated, it is expected that the system relaxes towards a representative state
which in the Lieb-Liniger model can be characterized by the quasi-momentum dis-
tribution pp (k).

On the experimental side, I specially want to highlight the result of the Vienna
group [103] which observed a light-cone-like behavior in a similar system. This light-
cone effect in the quasi-condensate regime will be described in detail in Sec. 3.2.1.
Furthermore, quenches in integrable models have been studied in [133].

3.2 The Experiment

In this chapter we investigate the dynamics generated by an interaction quench. We
prepare a few thousands to ten thousands of atoms in the quasi-condensate regime
with w, /(2r) = 1.5kHz or 3.1kHz, depending on the data set and wj = 8.5Hz. We
first increase the RF frequency by about 60 kHz, to provide a shielding for three-body
collisions residues and then let the system relax for about 150 ms. Then, we perform
a sudden quench of the interaction parameter g from its initial value g;, to its final
value gr = gi (1 +x), as depicted in Fig. 3.1 a) where « is the so called quench strength.
The interaction parameter g is directly proportional to the transverse trapping fre-
quency ], itself being proportional to the current Ip in the modulated guide (see
Eq. (2.7)). The interaction quench is performed by a linear current ramp during #,
during which g changes from g; to gr (see Fig. 3.1a)) The change of g needs to be fast
compared to the relevant longitudinal time scales 1/w4 = 10ms and slow compared
to the transverse time scales, such that no transverse excitation occur. Considering
the transverse confinement, the process needs to be slower than ;> Aw fwi to ful-
fill the adiabaticity condition for a linear ramp in w, . The Schrodinger equation for
a linear ramp in g leads to an analytic solutions in term of the Airy functions. Nu-
merical evaluation of these solutions show that the excitation to higher levels are less
than a few percent in all the experimental situations (f, = 0.7 ms). Experimentally we
could not observe any excitation to higher levels.
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The longitudinal confinement The longitudinal trapping potential is always har-
monic in this chapter. We created the longitudinal confinement Vj = %mwﬁzz, by
using the Dy & D, chip wires (see Sec. 2.3.2.1 and Fig. A.2). The interaction quench
modifies g which changes the equilibrium Thomas-Fermi profile. In order to main-
tain the same equilibrium profile, we modify the longitudinal trapping potential si-
multaneously to the interaction quench?. We adapt the longitudinal trapping fre-
quency such that the Thomas-Fermi profile stays constant during the quench. This
implies that the final trapping frequency ) is given by:

wﬁ = \/1+xw}|. (3.9)

This is obtained by a linear current ramp in the longitudinal wires from the corre-
sponding initial to the final currents. Since w) is not proportional to Iy,, in principal
the profile is not at equilibrium during the ramp. For fast ramps (7, < 1/w)) longitu-
dinal excitation can be neglected which was experimentally verified.

a) g ¢. gf b) C)
gi KRgi )
- < TR
> ¢ . _
t:o .'.I.°. —_ §:8+ . .
Mg 0 1 2 wgt/n

Figure 3.1 — The interaction quench: a) Scheme of the quench ramp for g for a ramp
of amplitude x and length #,. b) The Gaussian phase space distribution before the
quench (r = 07), immediately after the quench (f = 0%) and after an evolution time
wqt = m/2. c) Probability distribution for x = 3 with the subsequent breathing phe-
nomena, the color represents the phase space distribution. The dashed line corre-
sponds to a constant probability.

In Sec. 3.3.2 I present the observation after an interaction quench in momentum
space and in Sec. 3.4 the observation by the density ripple analysis. Before discussing
the experimental results I introduce the theoretical description of the evolution after
an interaction quench inside the quasi-condensate regime.

4Without the modification of the longitudinal trap, we would strongly excite the breathing mode,
whose physics has already been studied in detail in [98, 134].

89



3.2. THE EXPERIMENT CHAPTER 3. INTERACTION QUENCH

3.2.1 Interaction quench in the quasi-condensate regime

For the theoretical description of the interaction quench I start with the conceptually
simpler situation of a homogeneous system and an instantaneous quench 7, = 0. The
Bogoliubov Hamiltonian for a given mode writes

~2 A2
Ho= A n? +Bo6% = ho, | 4 i 3.10
q=Aghy+ b4V, = g 2"'7 (3.10)

where we introduced a symmetric form with the reduced variables 7ig = ng (Aq qu)m

and 04 = 6, (quAq]M. For this chapter, we restrict ourselves to phononic excita-
tions g < ¢ -1 and take into account high density effects, such that A, = mc?/(2ng)
and B, = h*q*ny/ (2m) as introduced in Sec. 1.3.3.

Wigner function For each mode ¢, the system can be described by a Wigner func-
tion as introduced in Sec. 1.3.1.1. Prior to the quench, the system is at thermal equi-
librium. The Wigner function is an isotropic Gaussian in the (éq, ng)-plane as de-
picted in Fig. 3.1 b) in green. The energy is equally distributed between the two
quadratures such that the equipartition theorem holds. For the considered high en-
ergies E; > hw, we can relate the initial energy to the initial temperature T

kBT
2

The instantaneous quench only effects A4, while ng and 64 cannot follow. This leads
to a squeezmg of the Gaussian state® in the 9 direction and the variances become
<92>:_0+ = (2 Di=o-/01 +x)'2 and (1% 1—o+ = (nq )t=0- (1 +%x)2. The anti-squeezing
in the 74 direction is compensated by the squeezing in the Qq direction. This ensures
the preservation of the phase space density. The subsequent time evolution is a rota-
tion in phase space with frequency wg4 = c¢q. Looking at the 6,; component this leads
to:

= Ag(ng) = By(62). (3.11)

(03) = (02) [1+xsint(cqn)]. (3.12)

For a thermal state the initial value is given by <6§>i = mkgT/(h?*q*ny). Eq. (3.12) is
the main theoretical prediction of this chapter and I will describe its experimental ob-
servation in Sec. 3.4. Before discussing the observation of the squeezed Bogoliuobov
modes I introduce the effect on the one-body correlation function of the interaction
quench. Thereby, I show that the one-body correlation function cannot be used to
observe the squeezed Bogoliubov modes.

5The word squeezing should not be interpreted in the quantum sense where one of the quadrature
obtains a width smaller than the ground state value. Although the presented equations apply for a
quantum squeezing, we do not observe a quantum squeezing in these experiments.
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3.3 Momentum space

The effect of the quench can be observed in momentum space. The momentum
distribution is the Fourier transform of the one-body correlation function g (z). The
g1(z) function shows a characteristic light-cone phenomena which I derive in the
following.

3.3.1 Light-cone like effect on the one-body correlation function

As introduced in Sec. 1.3, the one-body correlation at equilibrium writes
gl(z) — noe—%<[9(z]—8(0]]2> — n{]e_E, (3.13)

where [, = %. In the derivation we used Wick’s theorem. The use of Wick’s theo-
rem stays valid after the interaction quench, since the squeezing preserves the Gaus-
sian nature of . The time evolution after the interaction quench can be calculated
from [0(z) — 0(0)]%. In Eq. (1.80) we derived

0

(16(2)-0(0)1*)=4 | —=(6%)(1-cos(g2)). (3.14)
2m \ 1

Instead of using the equilibrium equation for (93), we inject the evolution of (6%)
according to Eq. (3.12) and obtain from integration
K+2

noe @2 z<2ct

gi(z, 1) = { (3.15)

noe 1@l zs2ct.

This behavior can be understood as a light-cone phenomena® where quasi-particles
travel with the speed of sound of the system and establish a new equilibrium situa-
tions for all distances z < 2ct. The new equilibrium situation is characterized by a
new correlation length lg = 2l./(x +2). For distances larger than 2cft the system is
still described by the initial equilibrium behavior with g;(z) = nge‘|z“ le, Fig. 3.2 a)
shows the g; function for different times after the quench. At z = 2ct a kink is visible.
The kink travels in space with at the position z = 2ct. This light-cone phenomena re-
flects the ongoing out-of-equilibrium dynamics of the Bogoliubov modes. For practi-
cal purposes, the out-of-equilibrium dynamics becomes exponentially suppressed in

5Let me stress out, that the use of the word light-cone, does not refer to the Lieb-Robinson
bound [135] which in principle only applies to finite dimensional Hilbert spaces, although extension
to continous systems exists [136]. Here, the word light-cone refers to the concept, borrowed from spe-
cial relativity where particles travel with the speed of light and the speed of light is replaced by the
speed of sound of the system.
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Figure 3.2 — The light-cone like effect in a homogeneous system for the g;(z) func-
tion shown in a) and its effect on the normalized momentum distribution shown in
b). The color codes for different times are the same in a) and b). Prior to the quench
the equilibrium g (z) function, shows an exponential decay characterized by [;. The
subsequent time evolution after the quench leads to a new exponential decay char-
acterized by IE = 21./(x + 2) for distance smaller than 2ct, while the prequench char-
acteristic decay survives for length exceeding 2ct. For times larger than a few tg}, the
g1 function has essentially reached its new steady-state form. Already for ¢/ ttgh‘ =2
no difference with the longtime limit is visible.

time which is characterized by the thermalization time of the g; function rf"h‘ = I{ /c.
For t = oo the g1 function corresponds to an exponential decay. From the relation
I, = 2h%no/ mkg T one could associated a new temperature Tr = T; (k +2) /2 to the
exponential decaying g1 function where T; is the initial temperature. This new ther-
mal behavior of the one-body correlation function does not reflect a thermal equilib-
rium situation. The underlying Bogoliubov modes continue undamped oscillations
as predicted by Eq. (3.12). As shown in Fig. 3.2 a) already for ¢ = 2t§1‘ essentially no
difference with the long-time limit is visible. The screening of the out-of-equilibrium
dynamics mathematically arises from the sum over all modes g which is taken in
Eq. (3.15) and which makes the oscillations of the Bogoliubov nontransparent in the
g1 function. When looking in momentum space — given by the Fourier transform of
g1 - the situation gets more complicated. The light-cone phenomena is not directly
transparent as it is shown in Fig. 3.2 b).

This illustrates the fact that the observation of a non-equilibrium dynamics can
strongly depend on the choice of the observable. In the following Sec. 3.3.2 T will
present this thermalization-like behavior of the one-body-correlation function by ex-
perimentally accessing the momentum distribution.
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3.3.1.1 Relation to the Vienna experiment

The light-cone like dynamics of the one-body correlation function was first observed
in the Vienna group [103] in a similar system. The authors used a 1D quasi-condensate
and split it into two uncoupled copies. By introducing the phase and the density fluc-
tuation of the two condensatesf 2, d ny/2(z), it can be shown that the dynamics of the
relative variables

0(z)=01(2)—02(2) and on(z) = % [0n1(2) —dny(2)] (3.16)

is governed in the linearized approximation by the Bogoliuobov Hamiltonian for phononic
excitations [137]:

52 l?2 o
4dm
This corresponds to the Bogoliubov Hamiltonian of Eq. (1.66) with a factor 2 differ-
ence in Ag. The definition of the Fourier coefficients follows the definition for the
single 1D gas. At 1 = 0 the quasi-condensate is split into two identical copies. Initially,
the phases of the two quasi-condensates are identical and the initial fluctuations of
the relative phase is zero’. Density fluctuations are created by the Poissonian noise
<5N12> = (Np) associated to the splitting process. Thus the splitting corresponds to

the creation of a squeezed state, as described in Sec. 3.2.1.

The authors of [103] access the phase correlation function of the relative phase

Hy=gn, + 0. (3.17)

C(z,7') =(cos(0(2) —0(2))). (3.18)
For small density fluctuations and Gaussian states C(z, z’) is equal to

1 2
Clz,7) = e 2 [6@-0)]

(3.19)
which corresponds to the normalized one-body correlation function. Eq. 3.19 can
be calculated with the same arguments as in Sec. 3.3.1, resulting in the same light-
cone phenomenon. The splitting can thus be interpreted as an interaction quench
from g; = 0 to the final value g of the 1D Bose gas. This light cone-phenomena was
experimentally observed in [103].

3.3.2 Experimental observation in momentum space

In this Section I experimentally study the evolution of the momentum distribution
after the interaction quench. This study is a complementary study which highlights

"Corrections from the Heisenberg uncertainty relation, as well as experimental imperfections are
neglected.
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the theoretical arguments which were presented in our article [18] and in the previ-
ous Sec. 3.3.1. We use the momentum focusing technique as introduced in Sec. 2.8.3
to measure the momentum distribution ng. Fig. 3.3 shows the experimental mo-
mentum distribution prior the quench and its post-quench evolution. In order to
compare with the theoretical predictions, we calculate the momentum distribution
via the Fourier transform of the one-body correlation function. We use the prediction
forlight-cone phenomena on the g; function in Eq. (3.15) and apply the LDA together
with the convolution of the imaging response function. We fit the initial equilibrium
distribution to obtain the temperature of the cloud. We compare in Fig 3.3 a) the
experimental data to the theoretical time evolution of the momentum distribution.
The asymptotic limit is expected to correspond to a new equilibrium shape of the
momentum distribution with T¢/T; = (x +2)/2. We fit the steady state distribution
with the equilibrium prediction and obtain the final temperatures Tr. The inset of
Fig. 3.3 b) shows T for different x.

a)
- 1/t =0.0
_ - 1/t =0.2
H — t/th =19
=
IS

—0.14 —007 000 007 014 05 0.0 05
49§ v [mm/s]

Figure 3.3 — The effect of the quench on the experimental normalized momentum
distribution n4. The equilibrium distribution in blue, is fitted with the temperature
and the width of the imaging resolution as a free parameter. We obtain a temperature
T =30nK, which corresponds to kg T/(gny,) = 0.51

a) The time evolution after a quench with x = 2. As expected, the light-cone dynam-
ics is difficult to observe. As shown in Fig. 3.2 for t/ tgl‘ =~ 2, the long time limit is
essentially reached. The theoretical prediction are the Fourier transform of Eq. (3.2)
together with the LDA and a convolution of the imaging resolution.

b) The long time distribution (¢ > 4.5tfh‘) for different quench strengths x. The
asymptotic limit is expected to correspond to a new equilibrium shape of the mo-
mentum distribution. The solid lines are fits of the equilibrium situation with the
temperature T as a free parameter. The inset shows the fitting results T¢/T;, com-
pared with its theoretical prediction T¢/T; = (x +2)/2.

As expected the momentum distribution rn4 reaches a steady state, while the dy-
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namics towards the steady state is barely resolved. This is related to a technical prob-
lem of the momentum focusing technique. The thermalization-like behavior of the
g1-function is of the order of tfh‘ =~ 1ms for typical samples. Such a fast dynamics
cannot be followed by the momentum focusing technique. The momentum focus-
ing technique contains the application of a short kick-potential which typically takes
half a millisecond. The momentum focusing technique can still be used to access the
asymptotic limit after the quench, as the experimental data in Fig. 3.3 b) shows.

3.4 Density ripple analysis

3.4.1 Squeezed Bogoliubov modes

The previous study of the post quench dynamics in momentum space, could not
reveal the dynamics of the Bogoliubov modes. First, due to technical reasons the
light-cone dynamics was not resolved. Second, even with an access to the light-cone
phenomena — as obtained in [103] — the underlying dynamics becomes exponentially
suppressed at long times. In order to reveal the ongoing dynamics of the Bogoliubov
modes, we use the density ripple analysis and the results of this study can also be
found in [18]. As introduced in Sec. 2.8.1.2 the density ripple analysis gives access
to the phase quadrature (93) of the Bogoliubov modes, from which we reveal the os-
cillatory behavior of (6%) as predicted in Eq. (3.12). For practical purposes we intro-

duce the quantity J(q,7) = :”;%}E;_ where (Ip‘“(q)|2>,- is the initial density ripple power

spectrum at ¢ = 0. The reduced time is given by T = cq and the speed of sound c is
calculated at the center of the trap. For a homogeneous system the quantity J(q,71)
oscillates as

J(g,7) = 1+xsin®(1), (3.20)

which is independent of g.

Before introducing the experimental observation of the oscillatory behavior of
Eq. 3.20 let me introduce two theoretical refinements to our model: the swelling of
the transverse wavefunction due to high densities and the longitudinal trapping po-
tential. Those effects are important for a quantitative comparison but do not change
the overall picture of creation of squeezed collective excitations by the interaction
quench.

Swelling of the transverse wavefunction Due to the high linear densities® nasp ~
1, 3D correction arise from the swelling of the transverse ground state. In the Ap-
pendix of our paper [18] these corrections are calculated explicitly for a harmonic

8Sec. 3.4.4 justifies the use of such high densities.
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trap. The speed of sound and the density is calculated with the modified equation
of state uu(n) = fuw | (y/I+4nazp—1). These corrections change the mode frequency
w4 = cq by approximately 30%, but have a small effect on the amplitude and the form
of the oscillations.

The trapping potential In a harmonically confined trap Eq. (3.20) is modified as
J(q,7)=1+xZ(1), (3.21)

where the function £ (1), calculated with (LDA), is

F = ] dzng(z) sin®(c(2)qt) /N. (3.22)
The local speed of sound is given by c(z) = %g—ﬁ @ For simplicity let me re-
NplZ

strict this discussion to the pure 1D case. Detailed calculation of the effect of high
densities in a trap are given in the Appendix or our article [18]. In the pure 1D case

Eq. (3.22) is
3 1
Fip = Ejo dz(1- z%)sin? (n/l —22|. (3.23)

In contrast to the homogeneous case, % p shows damped oscillations which leads to
a damping of the oscillations of the J. This damping is a pure dephasing effect, cap-
tured by the LDA argument below: In the LDA picture the system is described by local
harmonic oscillators at each point in space which oscillate according to Eqg. (3.12).
The oscillators at different points in space oscillate with a local speed of sound c(z)
which leads to a dephasing of the oscillator collections. This translates into a damp-
ing of the quantity J(q,T).

Beyond the LDA one can perform Bogoliubov calculations in a harmonic trap
(Sec. 1.3.2). The quench modifies the canonical variables x, and py according to

1/4
X, (t=0") = (ﬁ] X, (f=0), (3.24)
gi
\1/4
pv(t=0+)=[§] py(t=07). (3.25)
f

As in the homogeneous case, the initial Gaussian state is given by the equipartition
theorem (p2), = (x2), = %27 for the phononic modes and for kzT > fiw,. The evo-

lution of ( p2) is given by
(P2) (1) = (p?), (1 +Ksin(@y,D)]. (3.26)

96



CHAPTER 3. INTERACTION QUENCH 3.4. DENSITY RIPPLE ANALYSIS

As in the LDA, the underlying modes perform undamped oscillations. In the Bogoli-
uov approach in a harmonic trap, the damping of J arises from the density ripple
analysis. In contrast to the homogeneous case, the Legendre polynomials are not
the good quantum number of the free evolution. Therefore, the free evolution of the
density ripple analysis mixes different modes in the harmonic trap. The mixing of
these modes leads to a damping effect in the density ripple power spectrum {|5(g)).
The effect can be calculated from Eq. (2.65) and it gives very similar predictions com-
pared to the LDA. The LDA calculations are numerically less demanding and we will
use the LDA predictions in the following.

In summary, a good understanding with a sufficient precision can be obtained
from the physical picture of a quench in a homogeneous system, together with the
dephasing effect predicted by the LDA, and a modification of the mode frequency by
high density effects.

3.4.2 Experimental realization

50
40

(15g|*)/N

[a—
=

]

0 20 40 60

Figure 3.4 — Density power spectra: a) density power spectrum before the quench at
thermal equilibrium with theoretical prediction in green (see Sec. 2.8.1.3), leading to
a temperature T =55nK and o =2 um.

b) Density power spectra after the quench for a quench strength of x = 2 at times
t=2.1ms (green), t = 2.6 ms (blue) and 7 = 4.6 ms (black). For comparison the initial
spectrum is shown in red line and the two black lines limit the range of g used for

J(q,7).

We typically record the density power spectrum before the quench at ¢ = 0 and
then every 0.5ms over a total time of up to 10 ms. For each individual density ripple
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power spectrum we use about 50 images and typical density ripple power spectra
(Ip‘“(q]|2> are shown in Fig. 3.4. At first glance the post-quench spectra seem erratic.
The oscillatory behavior of each Fourier component can be revealed by looking at the
previously introduced quantity J(q, 7). Since we expect that J(q, 1) is independent of
g we bin the data corresponding to different g values for a given interval in 7. The
binning is implemented by a smooth binning on an irregular spaced grid. We use a
numerical Gaussian convolution of a width A:

_ a1
YaJ(Ga,Ta)e 24°

_[ta —1)2

Zae 2A2

J(1) =

, (3.27)

where A = 0.17. The sum over a is done over the data set where q is restricted to
10 < gR < 40 in order to ensure both ghtf/m <« I and the validity of the LDA. The
optical resolution depends on the transverse confinement which is not equal before
and after the quench. We correct for this small effect by

D@12 — 1p(q)12yeT E-7), (3.28)

where the initial/final optical resolution oy is obtained from fits of the equilibrium
density ripples power spectra.

Fig. 3.5 a) shows the quantity /(1) where 7 = cqt is evaluated at the trap cen-
ter. It shows the expected oscillatory behavior. The frequency of J is in good agree-
ment with its predictions, when the 3D effects are taken into account. The oscilla-
tion shows the expected damping arising from the harmonic trap. The amplitude
of the oscillation is smaller than expected. An artificial rescaling of the amplitude
by x — x/2 gave an approximate agreement between theory and data (black line in
Fig 3.5 a)).

We repeat the experiment for different quench strengths x = -0.7, 2 and 4 and dif-
ferent initial trapping frequencies w, = 1.5kHz and 3.1 kHz as shown in Fig. 3.5 b). In
all the dataset the oscillator behavior can be observed. As in Fig. 3.5 a) the damping
and the frequency are in agreement with its theoretical prediction. The amplitude de-
pends on the dataset and is always smaller than the anticipated one. The origin of the
discrepancy is not entirely understood and in Sec. 3.4.5 different effects which lead to
areduced amplitude are discussed. These oscillations of the Bogoliubov modes after
an interaction quench have also been observed experimentally in [102] in 2D system.

3.4.3 Beyond the light-cone

As discussed in Sec. 3.3.1 one expects a light-cone behavior of the g; function which
exponentially suppresses the prequench information on a typical time scale ttgh‘ =

I,{ lc. At t = tgll the g function has reached its final value for all distances z < 2!{
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Figure 3.5 — Time evolution of the Bogoliubov modes after the interaction quench.
The normalized density ripples power spectrum is plotted versus the reduced time
T = cqt where the speed of sound c is calculated for the central density. a) The data
corresponds to an interaction quench with x = 2 and an initial f; = 1.5kHz. Each
data point corresponds to a measurement time ¢ and a discrete g value. Blue points
correspond to f < rtg}: and red points to ¢ > ttgh‘. The black line corresponds to the
resulting continuous averaged quantity /, together wits its error bars at an exemplary
positions. The red dashed-dotted is the theoretical prediction for x = 1. b) Time
evolution of the experimental smoothed quantity J for different data sets. The error
bars show the typical statistical uncertainty on J with 68% confidence interval. The
initial transverse oscillation frequency is 1.5kHz, except for the green curve for which
it is 3kHz. Quench strengths are ¥ = 4 (red), x = 2 (blue and green) and x = —0.7
(purple). Dashed lines are theoretical predictions for quench strengths is reduced
by a factor 0.5: (red: x = 2, blue and green: x = 1 and purple: x = —0.35). The grey
Gaussian corresponds to the smoothing function used for the data convolution. The
blue line corresponds to the same data set as in a).
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where the g; function has already dropped to g, = nge~2 and which corresponds to
14% of its value at z = 0 (see Fig. 3.2). In Fig. 3.5 a) we show the raw data points, each
corresponding to a single pair of g and ¢. Red points correspond to ¢ > tgll and blue
points to t < ttgh‘. In Fig. 3.5 a) the oscillations continue for times > rf’rh‘ which shows
that the density ripple analysis gives access to information which is exponentially
screened on the g; function.

3.4.4 Mode damping

The previous results are in agreement with the linearized approach of the Bogoliubov
model. In the following I present unpublished results which indicate physics beyond
the linearized approach.

Figure 3.6 — Dataset containing data points up to f = 16 ms which exceeds more than
three times tg}. Again the first oscillation is dominated by datapoints originating from

r< rgll. The third and forth periods are strongly damped and the oscillatory behavior
finally vanishes. This damping is not captured by the rescaled theoretical prediction
from the linearized model (black line).

In contrast to the previous result the following data set includes data points which
exceed several times tfh‘. Fig. 3.6 contains data points up to three times tgll and it
clearly shows a damping which is not predicted by the linearized model of Sec. 3.2.1.
It can be expected that theories beyond the linearized model predict further damp-
ing. Going beyond the Bogoliubov description with the full quantum treatment (Lieb-
Liniger Hamiltonian) is tremendously difficult. A simpler approach can be obtained
from the classical field equations (see Sec. 1.3.4). The classical field equations intro-
duce an additional damping phenomena for the time evolution of a squeezed modes:
They introduce coupling between different modes g and g’ and coupling between
the two quadratures 6, and 6 n,. The understanding of this damping is still work in
progress. Let me finish this section with some preliminary remarks:

100



CHAPTER 3. INTERACTION QUENCH 3.4. DENSITY RIPPLE ANALYSIS

For simplicity let us restrict this discussion to a homogeneous systems. The clas-
sical field depends on a single parameter; the classical field parameter y = [2/(4¢2)
(see Sec. 1.3.4). Fig. 3.7 shows two classical field simulations of the evolution of
the density ripples spectrum after the quench. For higher y, the damping becomes
smaller. For larger y the system is deeper into the quasi-condensate regime and the
density fluctuations é n/ng are smaller. This leads to a smaller coupling between the
modes.

l/€ =125

Figure 3.7 — Classical field simulation of time evolution of the quantity J(q, 1) after
quench for different initial values of the classical field parameter 2,/y = [./¢. Higher
values of /. /¢ lead to a weaker damping. The mode index is given by j = gL/(2n). The
colors codes are the same in both figures.

Justification for data with azpn =~ 1. The mode damping is an interesting subject
on its own. Still, the first aim of this study was to observe the oscillatory behavior
of the Bogoliubov mode. Therefore, we are interested in situations where the mode
damping is small, such that the oscillatory behavior can be observed.

In a typical situation we prepare quasi-condensate at temperatures kg 7'/ (g np) =
Yoo Where Yo, is some numerical factor very close to 1 (see Chap. 4 for a justification
for this assumption). In such a situation y can be rewritten as

x= (3.29)

==
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As shown in Fig. 3.7 the mode damping decreases with y. Therefore we are interested
in working with small y. This can be obtained by high densities and small g. Due to
practical restrictions the value of g cannot be varied in a large range. Its value needs
to be large enough such that the system stays in the 1D regime and maintains a high
aspect ratio. We therefore choose to work with high densities n. Unfortunately, the
classical field simulations suggest that a low mode damping can only be obtained
by working with densities such that corrections from the swelling of the transverse
wavefunction become important. This was experimentally confirmed: When work-
ing with lower densities, compared to the previously presented results, we were un-
able to observe the oscillatory behavior of the Bogoliubov modes. We therefore raised
the density such that nasp did not stay very small. For example the corrections to the
speed of sound accounts for up to 30% (c/c;p = 0.7) in the data of Fig 3.5. A further
increase of ng is unfeasible due to experimental constraints and also due to three-
body losses which start become important.

3.4.5 Amplitude reduction

In the following, I briefly discuss different effects which lead to a reduction of the
oscillations in J(1) which stands in discrepancy with our theoretical prediction (see
Fig. 3.5). A more detailled discussion is given in the appendix of our paper [18].

Binning of the data The strongest effect comes from the smooth binning of our
data. The raw density ripple data before smooth binning shows a large spread which
requested a large A, in order to get rid of the noise in the data. The spread of the raw
data shown in Fig. 3.5 b) is not representative and shows our best dataset. A more
representative dataset is shown in Fig. 3.6. Assuming a pure sinusoidal behavior of
J = Asin?(1), the smoothing process of the Gaussian convolution Eq. (3.27) leads to
an amplitude reduction of A’ = Ae~2A* which corresponds to 18% for A = 0.17.

Finiteramp time In the previous analysis we assumed an instantaneous ramp with
aramp time £, = 0. In the experiments we typically used ¢, = 0.7 ms in order to ensure
the adiabatic following of the transverse state. For large wavevectors £, is not small
compared to the oscillation period of the modes which reduces the mode squeezing
produced by the quench. Assuming a linear ramp, one can calculate the squeezing
factor S, for each mode, with detailed calculations presented in the appendix of our
paper [18]. The amplitude reduction can be calculated by solving the equation of
motions of the Bogoliubov Hamiltonian (Eq. (1.101) & (1.102)) with a time dependent
variable A4 (f). The solution are given by the Airy-functions.

In Fig. 3.8 the experimentally observed amplitude reduction on the first oscilla-
tion is shown for different wavevectors q. The green line is the theoretical prediction
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of the reduced squeezing due to the finite ramp time. As expected the squeezing of
the mode decreases with g in agreement with the experimental data.

< 1.0
T
g
2
09
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0'8_ T T T
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Figure 3.8 — The Amplitude of the first oscillation for different wavevectors ¢g. The
amplitude is obtained from calculating /() for a narrow band of g, whose width is
represented by the horizontal errorbars. We then fit the first oscillation of J(r) with
a sinusoidal Agsin?(7) + 1. The vertical errorbars correspond to 68% uncertainty ob-
tained from the fit. The green line is the theoretical prediction rescaled by 0.5 as in
for the previous theoretical predictions. The quench strength is x = 3 and the ramp
duration f, = 0.7 ms.

In the previously presented data sets, a whole range of g contribute to J (). In
the experimental data, all the data points arise from a total observation time fmax.
Different modes g contribute up to a maximal time T max = ¢ fmax. Small wavevectors
q contribute to data points at smaller 7, while larger wavevectors g can contribute to
higher 7. The quantity J (q,7) is dominated by smaller wavevectors g at small 7 and
by larger wavevectors q at larger® g. Taking into account the weights of the different
q, it can be estimated that this effect reduces the amplitude by typically 10% for the
first oscillation.

In summary the two effects which arise from the finite ramp time and the data
binning reduce the overall amplitude by approximately 75% while we observe an am-
plitude reduction by about 50%. The remaining 25% are not understood. It can be
speculated that this discrepancy may arise from mode coupling or from effects due
to atoms in the transversely excited states.

9INote that this effect cannot explain the additional damping observed in 3.6.
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3.4.6 Recurrences in a harmonic trap

In [133] recurrence after the splitting process of a quasi-condensate into two were
observed. During my PhD, we aimed to achieve similar results with a single quasi-
condensate after an interaction quench. This section details why a recurrence in a
single quasi-condensate was not observed and clarifies the difference to the obser-
vation in [133].

Homogeneous system For alinear dispersion relation after a time .. all the modes
acquire the same phase. Let us start with box potential where the mode frequencies
are given by w; = cn j/L. The density ripple analysis is sensitive to the phase mod-
ulo!® 7. After a time f;oc = L/c, all the modes acquire the same phase. The first mode
performed half of a turn and acquires the phase #. The j-th mode acquires a phase
jm. Consequently, the density ripple power spectrum at the recurrence time is iden-
tical to its initial distribution at £ = 0*.

Harmonictrap Asalreadyshown inFig. 1.6 b) the dispersion relation in a harmonic
trap is very close to linear, when excluding the first modes. This suggests that recur-
rence phenomena could also be expected in a harmonic trap. For large v the disper-
sion relation in a trap can be expanded as

o= #‘v(v+l]w ~L

Again, the observable of interest (Ip‘"(q)|2> resolves the modes modulo 7. The first
recurrence occurs when the phase difference 6,,,, - 6, = (wy;1 — w,)1 is equal to 7.
With the linear approximation of Eq. (3.30) one obtains the recurrence time in a trap:

1
V+E - (3.30)

froe = ——/2. (3.31)
)
At the first recurrence the first mode has approximately turned by 37/2 and the v-th
mode by (v+ 1/2)x as shown in Fig. 3.9 a). In contrast to a homogeneous system,
the state at the recurrence time does not correspond to the initial situation at t = 0%.
All the modes acquire the same phase, but shifted by 7/2 from the initial situation.
For v > 3, this recurrence predicted from the large v expansion turns out to be almost
perfect. We therefore expect to observe an almost perfect recurrence when looking at
the density ripple power spectrum (|3(q)[?) as shown in Fig. 3.9 b). The first modes,
for which the recurrence is not perfect, can easily be excluded in the density power
spectrum, as already performed in Sec 3.4.1.

10We are sensitive to <9§>
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Figure 3.9 — a) The normalized expectations value of the Bogoliubov modes { pf,) after
the quench. At f = £ first recurrence is visible, as predicted by the large v approxi-
mation. Already for v = 3 the modes almost perfectly acquire the same phase where
the agreement increases with the mode index v.

b) The normalized density power spectrum vs. the dimensionless time 7’ = w4 (f —
lrec) around the recurrence time. The black line shows the theoretical prediction from
the LDA. Note that in principle the LDA does not predict a recurrence. Still, it can be
used predict the oscillation behavior around ¢ = frec Which is the same as at £ = 0 with
a phase shift of 7/2. Calculations are done for [c/R =0.0033 and 77/l =0.2.

3.4.6.1 Experimental realization

We experimentally investigated the recurrence phenomena after an interaction quench.
One experimental challenge consists in a precise knowledge of the recurrence time
lrec- In order to apply the density ripple analysis and reveal how all the modes oscil-
late in phase around frec as seen in Fig. 3.9 b), the correct recurrence time needs to be
chosen. Due to the high linear densities n, the equation of state is modified which
modifies the spectrum in the trap. From numerical calculation of the Bogoliubov
modes with the modified equation of state, one can show that the new dispersion
relation is given approximately by

v(iv+1)
wy = a(mn) Twu. (3.32)

where 1 = u,/w, and a(n) can be calculated numerically as show in Fig. 3.11 a).
Unfortunately, it was impossible to produce a significant experimental observa-
tion of the recurrence phenomena in the harmonic trap. In Fig. 3.11 an exemplary
dataset for the previously introduced quantity /() is shown for different choices of
lrec. The reason why we could not observe the recurrence phenomena is most prob-
ably the damping of the Bogoliubov modes introduced in Sec. 3.4.4. The recurrence
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Figure 3.10 - 3D effects from the swelling of the transverse wavefunction at high den-
sities. The figure shows the dependence of the coefficient a(n) on the density given

byn=uplw,=./1+4azpny—1.

time is typically t =~ 60ms. As already visible in Fig. 3.6 the damping leads to a de-
creased oscillation amplitude at shorter times. The oscillations at the recurrence time
are damped beyond the experimental resolution.

Comparison with recurrences after the splitting of a quasi-condensate In [133]
recurrences were observed after the splitting of a quasi-condensate in two (see Sec. 3.3.1.1).
For the observation a box potential was used. In [138] the same group showed that
with their method the observation of recurrences in a harmonic potential was not
possible. This is mainly due to the first mode v = 1 which smears out the signal on
the phase correlation function (or on the g; function). This problem can be eas-
ily avoided with the density ripple analysis method where one can exclude the first
modes. Still, we could not observe the recurrence signal. This is most probably due
to the difference in temperature. The splitting of the initial quasi-condensate leads to
an effective temperature of the anti-symmetric modes below the initial temperature
of the quasi-condensate. The authors of [133] performed classical field simulation for
the evolution of the two quasi-condensates in a box potential after the splitting. Their
simulations indicate that the recurrence signal can only be observed for classical field
parameters which are higher than the one of our system. Due to the splitting process
their system obtains an effective temperature which is much lower than the one of
a typical single quasi-condensate. The lower temperature leads to a higher classi-
cal field parameter which explains the reduced damping of the squeezed modes. We
expect that the same qualitative arguments hold in a harmonic trap.

In summary: In principle the observation of a recurrence in a harmonic trap
should be possible with the density ripple method. The method allows to exclude
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Figure 3.11 — The smooth quantity J(r) around the expected recurrence shown at
different offset which correspond to different fo.. Note that the variation in J(7) is
significantly smaller than the previously observed oscillations at short times.

the non equally spaced first modes which hinder its observation on different ob-
servables, as the g function. The damping of the squeezed Bogoliubov modes most
probably prevented the observation of a recurrence with the density ripple method.
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Summary:

* We realize an interaction quench by suddenly changing the transverse
confinement.

* The observation in momentum space does not allow to resolve the sub-
sequent dynamics.

e The density ripple analysis is a useful tool to study the out-of-
equilibrium dynamics following the interaction quench.

* The publisehd results are in good agreement with the linearized model
(Bogoliubov Hamiltonian) and the out-of-equilibrium dynamics outlasts
the dynamics observable on the first order correlation function gi)(z).

» [ present data sets that indicate effects which go beyond the Bogoliubov
analysis: We observe an additional damping which is not in the Bogoli-
ubov analysis. Such an effect is also seen in numerical classical field sim-
ulations.

* The observation of recurrences was not possible due to the mode damp-
ing.
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Chapter 4

Losses in a Bose gas

The work presented in this chapter was originally triggered by the unexpected result
that energy-independent losses can lead to the cooling of quasi-condensates. These
results were first obtained by the Vienna group with a theoretical work [20] and an
experimental verification [19]. These results led to several theoretical and an experi-
mental work in our group [21-24]. In this chapter I will first introduce the theoretical
tools to treat energy-independent losses (Sec. 4.1 - Sec. 4.3). The theoretical studies
of our group [21-23] focus on different aspects and also use different approaches to
describe the energy-independent losses. In Sec. 4.2 the losses are introduced with the
wavefunction Monte-Carlo method, as used in [21]. In difference to [21] the method
is extended from one-body losses to j-body losses. I advise a more experimental or
an unpatient reader to directly read Sec. 4.3 where the same theoretical results, as in
Sec. 4.2, are obtained in a more intuitive way. It should be noted that the simplified
approach of Sec. 4.3 cannot justify all of its approximation without referring to a more
sophisticated approach as QMC.

The two different theoretical approaches suggest that a cooling should be ex-
pected from three-body losses. In Sec. 4.4 experimental results are presented which
confirm the cooling by three-body losses and which are published in [24]. The end of
the chapter collects different side aspects of the energy-independent cooling process.
I present the three-body loss cooling observed by the Yang-Yang thermometry 4.4.3,
for which theoretical predictions are difficult to obtain. Furthermore, I present a the-
oretical study based on the QMC approach which allows to cool a Bogoliubov mode
to the ground state via a feedback loop. This work is published in [21].

The physical origin of the cooling At first hand a cooling introduced by energy-
independent losses could seem contradictory. Especially when considering the well
established evaporative cooling which specifically relies on the energy selectivity. A
cooling induced by losses can be understood in the following way: Let us consider a
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Bogoliubov mode g whose Hamiltonian is given by

Hy = Agni+ B0, (4.1)
——
Eint Eyin

as introduced in Sec. 1.3. When considering phonons, the first term on the r.h.s is
the interaction energy Ejy: and the second term the kinetic energy Eyin. The losses
reduce the amplitude of the density modulations (nﬁ) and consequently remove in-
teraction energy from the mode. This is an effect which can be understood from a
mean field approach. It is important to note that the origin of this cooling effect is
unrelated to the commonly used evaporative cooling, although its practical imple-
mentation might be very similar!. The losses in the evaporative cooling process are
selective in the kinetic energy and reduce the temperature by a thermalization pro-
cess. Considering that the energy-independent losses decrease the interaction en-
ergy, it might be tempting to interpret the energy-independent loss process as the
equivalent of the evaporative cooling where the kinetic energy is replaced by the in-
teraction energy. This is however a strong oversimplification. The cooling induced
by the energy-independent losses does not rely on thermalization, as I will show in
this chapter.

The cooling by energy-independent losses also introduces a competing heating
process. This second effect is due to the discrete nature of the atom losses. The loss of
individual atoms is associated with a shot-noise which increases the density fluctua-
tions. Thus it increases the energy per mode. This heating effect can not be captured
by a mean-field approach.

In summary, a competition of these two processes leads to a stationary value of
the ratio

ks T/(gnp) = Yoo (4.2)

The parameter yo is of the order of one and depends on the type of losses and the
trapping geometry. This stationary value corresponds to the crossover between the
quasi-condensate regime dominated by quantum fluctuations and the quasi-condensate
regime dominated by thermal fluctuations (see Sec. 1.2.4).

4.1 j-body lossin a quasi-condensate

Let me first define the notion of j-body losses: It refers to a situation where the time
evolution of the atomic density is given by

d ) .
(M=K (Y g?(0), (4.3)

IMore about this aspect in Sec. 4.5.
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with the event rate constant X; and the normalized j-body correlation function at
zero distance

G (P 0w (0)
g’ 0)= o . (4.4)
The normalized j-body correlation function at zero distance gives the probability of
having j particles at the same place, normalized to (n)J - the value for uncorrelated
atoms.
For the whole chapter, we will consider j-body losses in the quasi-condensate
regime where g'/)(0) is close to one (also see Eq. (1.55))

g0 =1. (4.5)

This motivates the introduction of a new constant x ; = ;g (0) where the depen-
dence on the temperature and the regime is recast into « ;.

In the following two sections I will calculate the effects of j-body losses on the en-
ergy of a Bogoliubov mode g with two different methods. The first method in Sec. 4.2
uses the Quantum-Monte Carlo (QMC) method. The second method in Sec. 4.3 uses
a simplified approach. Both sections are complementary and can be read indepen-
dently of each other. The results of the QMC method give a deeper understanding
of the process and form the basis of the feedback process of Sec. 4.7. The simplified
approach of Sec. 4.3 gives a more intuitive access to the process.

4.2 Quantum Monte-Carlo

In this section we apply the wavefunction Quantum Monte-Carlo (QMC) method in-
troduced in Sec. 1.5.1 to j-body losses.

In a small cell We discretize space into Q cells of length 6z. These cells contain
a large mean atom number Ny with small fluctuations 6 N = N — N, since the gas
lies in the quasi-condensate regime. Furthermore we assume that 6 z is large enough
such that the fluctuations are large compared to unity 6 N > 1. Both can be fulfilled
at length smaller than the healing length ¢. The small cell contains N atoms and its
time evolution is given by

d i
SN=-K;N, (4.6)

where K; =« ;62" /.

QMC method During the small time df the QMC method of Sec. 1.5.1 is based on
two possibilities: Either a loss event occurs or no loss event occurs.
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1. Loss event If a loss event occurs the initial state | ¥ (t)) evolves as?

W (t+dp) = al |¥(D), 4.7)

where a annihilates a particle in the cell. The probability for this loss event is
given by

K.
dp=(¥()ILTLIw (1) = Tf'<\P(t+ dt)|¥Y(t+dt)dt. (4.8)

The factor 1/ j arises from the fact that we look at the number of loss events and
not at the number of lost atoms.

2. No loss event With the probability 1 —dp no loss events occurs and the state
evolves according to

aadr

[\W(t+dp) —32; [\W(1)). (4.9)

The probability of for no loss event is given

(W(t+dn|¥Y(t+dD))
1-dp= . 4.10
p RIGRA0) (.10

Jlostatoms
||I||$|||||I|||////||I||||| t
0 ta tm At

Figure 4.1 — A typical loss sequence during the time interval Af. At each loss event,
indicated by the arrows, j atoms are lost and the total number of lost atoms during
the sequence is jM.

Loss sequence Let us look at a loss sequence during a small time interval At where
atoms are lost from the cell at times 1 < Iz < ... < fpr as depicted in Fig. 4.1. The final
state after this loss sequence is obtained by the successive application of Eq. (4.7) &
(4.9) which leads to

t7 _ tJ _
|\P(t+At>_eZ}a a"’(f-l—ﬂ.t fM]aj Z_J‘i ﬁ}(fM In— 1) ajezja d (51 ﬂ|‘P(t)) [411

2Note that we work with unnormalized states.
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The probability of the loss sequence is given by
V()Y (1)) Kjdt (W (5 +d D)W (5 +di)) (W(t+AD|IY(t+ AL

Pl = gy (P ()Y (1) "'<‘P(rM+de|‘WM+dr& 12)

which leads to

K;dr\M
j ] (W(t+ADIY(t+ AL 4.13)

dp“”_( j (POI¥ (D)
For the calculation of the loss sequence probability d py;;; we choose to work in
the Fock state basis |¥ (1)) =)y cn(f)|N). The loss sequence changes the Fock state
coefficients cy(f + Af) = (N|W(f + At)). They are given by

eN(E+AD = fieg(N+ JM) ey ju(t) 4.14)

where the function fis;(IN) depends on the loss sequence. The time interval At is
chosen such that the number of lost atoms is much smaller than the total number of
atoms N in the cell. Then, the function fi,;(IN) becomes almost independent on the
time sequence {f;} for a given number of loss events M. The function fi;; () can be
approximated by

. Kj .
fiad (N) = fur(N) = NIMI2e~ 2 VA, (4.15)
where we used M « N and neglected the commutator [a,a’] = 1. The last approxi-
mation is valid as long as the atom number inside the considered cell is large N > 1.
Itis equivalent to Eq. (4.5). With the Fock state coefficients we can calculate the prob-
ability for the given sequence

Kj o YW _Sinias
dpiey = ) lenl? (TNJCU] e 7 (4.16)
N

Statistics of the trajectories A single loss sequence corresponds to a quantum tra-
jectory. The probability of the quantum trajectory dpy;,; only depends on the number
of loss events M. The loss events are random events and one needs to take into ac-
count all possible quantum trajectories. Let us calculate the probability of having M
events: We sum all the possible sequences by integrating over Eq. (4.16)

oM Ky
Swlenl?(FNiae) e VA
P(M) = ff dpiy = Vi . (4.17)

O<th<br...<At

For a given initial atom number N we recover the expected Poissonian distribution
K. .
which can be approximated by a Gaussian with mean A = T."N JAt and variance A

Kj j 2
) (M)_/lme_,l R [M—TN At] a1s
N B M! /l;l 2T A P zﬂNj ' '
]
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With the Gaussian approximation the mean number of loss events is
Kj i K i j-1
(M) = 7(N1>At= TNOAt"'KjNo (ON)AL. (4.19)

In the second step we expanded N = Ny+ 0 N in first order in 6 N. The variance of the
Gaussian is given by:

K: . K: .
(M%) —(M)? = 7j'u\rfmrz TFN{{M (4.20)

where in the second step we expanded the expression in zeroth order in 5 N. As ex-
pected, for a fixed N, the number of events M obeys a Poissonian statistics, while the
number of lost atoms jM only obeys a Poissonian statistics for j = 1.

Inside the quasi-condensate density fluctuations are small N «< Ny and the num-
ber of events M is close to ?Ng At with small fluctuations K J,-Ng _l<6N)At around
Bp_is value. This motivates the introduction of a new random variable M’ = M —
T"N{{ At. Inside the quasi-condensate regime M’ shows small fluctuations compared

K .j
to T?Na' At. Tts mean and variance for different trajectories are given by

. K: .
(M'y= K;N]"M6Ny)At  and <M’2>—<M>2=73'Ngm. (4.21)

Calculation of the function f3,;(N): Foragiven M the function fjs(N) in Eq. (4.15) is
a sharply peaked function close to a Gaussian (see Fig. 4.2). We calculate the Gaussian
function by expanding log ( fas(N)) around its maximum N:

_ 1 8%log(fm(N) N
log [fM(N}] =~log (fM(N)] +— L (N - N)2. (4.22)
2 ONZ 5
. o - jm i .
The maximum is given by N = (m) and which leads to
1 (N-N)?
JM(N) = Apexp |—-——— (4.23)
2
with the normalization factor Ay; and
2iM 2/j
2__2UM) (4.24)

 2M(KjAD2T
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a) b) No —jM
—_— fn(M) — len()? === lenjm(t+ AP === len(t)]
=== Gaussian P
e N
F A P
f’ A} o
— S N
RV T VN
Vil H HEAN \\
id E \\ S~
—-"” a . “""'-_ I“"“"'-..
0 N Ny N

Figure 4.2 — a) The initial Fock state coefficients cy(f) are peaked around Ny. The
function fjs(N) (blue line) is close to a Gaussian (dashed green line) and centered
around N.

b) The new Fock state coefficients cy_ ja (1 +At) = fyr(N)en(?) are shifted by jM. Its
width is reduced due to the gain in knowledge on N.

Let us now introduce calculate N by introducing M’: We use the fact that inside the
Kj . j
quasi-condensate regime M’ shows small fluctuations (M’ « TJ’N{;'A ). We approxi-

mate N at first order in jM’f(KjNgA t) which leads to:

2
M
1 (6N KjN[‘;_lﬂ.t]

fu(N)= Ayexp | = 53 (4.25)

With the same arguments we can approximate the variance of the Gaussian Z. The
variable M at zeroth order in AN is typically close to M == %N&' At which leads to:

2-j
2N,

2~ )
jKjAt

(4.26)

4.2.1 Generalization to all cells

The sole effect of losses does not introduce correlations between different cells and
the result of Eq. (4.25) can directly be generalized to several cells. We introduce the
variable M; in each cell and the Fock state [Ny, Ny, ... Ng) in several cells. Then the
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probability amplitude up to a global normalization factor writes:

2
M’ iKi
¢ (+AD) = Cry s i o (OTT Ay exp | —= [ 6N; — i N2t .
Ni,...Ng ( ) = CNy+jM,...No+jMg ]1:1 M; €Xp 2 ( i KjNé_lAr) 5 Mo
(4.27)
Losses in different cells are uncorrelated which let us write
' Kf i
(M}Mm>—<M;><Mm> = 7N06;,mAt (4.28)

with the Kronecker Delta 6; .

Fourier decomposition In order to take into account the free evolution by the Bo-
goliubov Hamiltonian we introduce the Fourier decomposition of the atom number
and the atom losses

| Q | Q :
Ngc= E;cos[qzj)é‘Nj and Ngs= E;sm(qzijj (4.29)
Mg .= &Zcos(qz-]M’. and Mg 5= &Zsm(qz-)M’. (4.30)
@ 2025 I b 202 177

where g takes the values g = Z—}f‘ with i€ [1,...,(N—1)/2] and L = Q6z. The variable
My r represents the Fourier-transform of the loss events in mode ¢, r. The previously
introduced Fock state |ny, ny,... ng) is also an eigenstate of the operator 2,5, where

the subscript r stands for c or s:

|ny, N, ... nQ) = |Nox ¢ M2niL,s) PaniL,cr ManiLs - RQ-Dn/Le» MQ-Da/Ls) = {Ngr1),
(4.31)
where we introduced the short notation |{n4,}). Equivalently, we write Cing,,} = Cny,...ng-
With this notation and the introduction of the Fourier decomposition, we rewrite
Eq. (4.27) as

2
1 Mg,r JXj j2
_E(n,q,r_ f—]. ] 2 HO At
Kjng At

E{Hq,r}[f+Af] = E{Hq,r+Mq,r}(r] l_[ Am, €xp
q

(4.32)
In Eq. (4.32) we used the orthogonality of the Fourier decomposition and the fact that
the variances are independent of g and r. For readability let me rewrite this as

Cing) (1+ A1) =€ O] — lrarcgee)” (4.33)
Cing, (L + A1) = Cing,r+ My s} e w5, .
" e Vano?
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where
M
figr = —1— (4.34)
KJHO ‘At
2 2
0" =———. (4.35)
jKJHO ’At

as given by Eq. (4.32). Using the definition of the Fourier transform Eq. (4.29) - (4.30)
and the statistics of M; Eqg. (4.21) and (4.28) we obtain the statistics of the different
quantum trajectories for Mg ,:

(M) =k ;n) ng At (4.36)

(M2 ) = (Mg »)* = jKnlAt (4.37)

Wigner function The effect of the losses can be conveniently described with the
Wigner function. The effect of the losses does not introduce correlations between

modes and we will focus on a given mode g where we will omit the subscript r. The
Wigner function of the given mode ¢ is:

W(ng,0,) = %fdu(u +nglplu—ng) e ?0a, (4.38)

According to Eq. (4.33) the Wigner function after the loss sequence W’(nq, 04) writes
as

(nq—ﬁq+u)2 (nq—ﬁq—u}z

W'(ng,04) = oy 2]du<u+nq+Mq|p(t ) u—ng - Mq>e_2‘”9qe 202 e 202
) (4.39)
Injecting (u+ nglplu—ngy = [dB,W(ng,04)e*®" leads to
(ng— Hq)z
W'(ng,09) = 537 j A0, W (ng+Mg,0)e " 002 o (4.40)

The losses introduces a shift in n,. At the same time it changes the width in ng
and 64. The squeezing in n, reflects the gain of knowledge acquired on rn4 by the
losses. The associated anti-squeezing in 6, ensures the preservation of the Heis-
senberg uncertainty-relation (see Fig. 4.3 for a Gaussian Wigner function).

Gaussian Wigner function Let us consider a situation where initially the distribu-
tion is given by a Gaussian state:

1 - - -
W(ng,0q) = ———¢ 2| X-R'BE-R)] (4.41)

2mv/det(C)
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_— W(”q:gq:t)
— W(ng,0,,t + At)

Figure 4.3 — The Wigner function under the effect of losses: The ellipses represent
the RMS of the Gaussian Wigner functions at time ¢ (blue) and ¢ + At (green). The
corresponding dots are the center of the Gaussian Wigner functions. The losses effect
both the center and the shape of the Gaussian: The center is shifted towards smaller
ng. Atthe same time the width in n, is decreased and the width in 64 increased, such
that the uncertainty relation is respected.

where X = ( 0 ) R is the center of the distribution and C is the covariance matrix
k

with B = C~1. The transformation in Eq. (4.40) transforms the initial Gaussian state
into a new Gaussian state centered on R’ with a new covariance matrix C’. The details
of the calculation for this new Gaussian state are given in Appendix Sec. A.4.2. The
calculation of the new covariance matrix C’ in first order in At gives

. i— C? Ci11Cr2
C'=C- jx;Atn’ 2( 11 (4.42)
L I (Yo Ch -1
For the new center R’ we obtain in first order in At:
* el
R=R+ |19 jx:nl?An 9. 4.43

For practical purposes let us replace the variable M, with a new random variable
dé centered around 0:

with )
(d&?) = jx jn}At, (4.45)
which leads to o
1- &
R=R-x;n} AI(OB‘?))—dé( _C_;’;]. (4.46)
ng
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The two equation Eq. (4.42) & (4.46) are the main results so far. They described how
the initial Gaussian state evolve under the effect of losses.

4.2.2 Effect of the Bogoliubov Hamiltonian

A single trajectory of a Gaussian Wigner function evolves under the sole effect of
losses according to Eq. (4.42) and Eq. (4.46). Additionally, the intrinsic dynamics
of the system needs to be taken into account with the Bogoliubov Hamiltonian (see
Sec. 1.3.1). Its evolution corresponds to a rotation in phase space with the matrix

cos(wgt) V B/ Asin(wgf)

Rlwgt) = —VAIBsin(wg)  cos(wgt)

(4.47)

Evolution of the covariance matrix C Let us first focus on the evolution of the co-
variance matrix under the combined effect of losses and the intrinsic evolution un-
der the Bogoliubov Hamiltonian: The evolution of the covariance matrix C is inde-
pendent of the trajectory. For an initial thermal state, the energy associated to the
covariance matrix E¢ is equally distributed between the two quadratures and given
by
Ec

5 = AgCi1 = BgCao, (4.48)
Additionally, let us focus on a situation where the free evolution for the considered
mode ¢ is fast compared to the losses x ; ni-!« wq. Then, C stays isotropic at each
moment. Eq. (4.48) stays valid, together with Cy» = 0 at all times.

Asingle trajectory The evolution of R depends on the trajectory. The center R per-
forms a random motion depending on d¢. The effect on the center R and on the
covariance matrix are shown in Fig. 4.4 with numerical simulations. The losses lead
to arandom motion of the center in the (74, éq]-plane and, as expected, the Gaussian
stays isotropic3

4.2.3 Average over different trajectories

If one does not record losses, only averages over different trajectories are meaningful.
Let us first investigate the evolution of a a given single quantum trajectory, i.e. a given
value of d¢. If the Wigner distribution is initially centered around zero, it will stay

3Note that the reason, that the Gaussian stays in a thermal state, namely the same width in both
quadratures, is not due to a thermalization progress. It is due to the fast rotation of the Bogoliubov
modes which avoids the creation of a squeezing in ng.
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30 : _ t=8/T

‘ single trajectory

Figure 4.4 — The figure shows the evolution of the phase-space distribution for a single
trajectory and j = 1. The time evolution goes from ¢ = 0 to ¢ = 8/x,. We consider a
phononic mode with {g = 0.1 and an initial temperature T; = 1.1gng. The loss rate is
K1 = wgq/400. Scattered blue points give the evolution of the center R. The evolution
is given by the numerical implementation of Eq. (4.46), (4.42) & (4.47). We verified
that Cy» stays small while, at any time with A;Cyy = B4Cy = E./2, as expected for
wq > k1. The black solid-circle, of radius Vv Ec, represents the final RMS width of
the Wigner function. For comparison, the red dashed-circle, of radius V'E where E
is the final energy obtained after averaging over 100 trajectories, gives the rms width
of the averaged phase space distribution. The coordinates are given in the frame

rotating according to the free evolution: namely, the plotted quantity is R= (ﬁq,éq) =
R (wgDR.
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centered around zero. For a given trajectory, initially centered at R(0) = 0, the center
acquires a random displacement according to Eq. (4.46):

L L [1-=
R’:R—( ”ﬂ)dcf. (4.49)

_Go2
g

Considering the two contribution of a random shift of the center and the modifica-
tion of the covariance matrix according to Eq. (4.42) one obtains

) 2
(nZ(t+ A1) = (5 (1) — jxjna'_chl +dé? (1 - @) (4.50)

- 1 Ciz\?
(634 200w = 6300 - jrynd 2 (Ch - 5]+t 22

(4.51)

where the subscript st stands for single trajectory. Then, we compute the average

over the different trajectories with the use of (dé%y s = IS jn{‘;A and Cy2 = 0 for a fast
free evolution. From Eq. (4.50) & (4.51) we obtain

(M3 (t+ At — (nE(0) = =2 jxjnl (n2)At+ jxjn]At (4.52)
) ) JjK n(’;_zAt
(07 (¢ + MDY~ (B5 (1) = 1 —. (4.53)

The subscript tr stands for trajectories. As expected Eq. (4.52) & (4.53) are identical to
the ones obtained from the master equation and found in [20, 22]. The derivation in
this Sec. 4.2 corresponds to the one we described in [21] for j = 1.

Evolution of the mode energy Let us now calculate the time evolution of the mode
energy E; = Aqmﬁ) + Bq<6§>. Again we assume slow losses, such that the equiparti-
tion of energy holds for all time. The losses changes the Hamiltonian parameters A,
and B, according to

qu ﬁz q2 j-1

— = Kin 4.54
dt 8mng 0 (4.54)

o —KjBgny . (4.55)

The quadratures evolve according to Eq. (4.52) & (4.53) which write in differential
notation:

d(nﬁ) ' 1, 5 ' )
T = —2;ané (nq>+ﬁ<jné (4.56)
o2 jxnl”
= . 4.57
dt 4 ( )
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Using the equipartiton of energy, one obtains

dE -
q _ j-2
at '

2 2 i
1 1 B
Eqng( T - '——)+jngAq+j4—q : (4.58)

8mng 2A4 2

Eq. (4.58) could have been equivalently derived from the master equation and the
Lindbladian in Eq. (1.120). Nevertheless, the Lindblad approach can not be used for
the feedback scheme which will be introduced in Sec. 4.7. The feedback scheme re-
lies on the results for the individual trajectories obtained in Eq. (4.42) & (4.46). Fur-
thermore, compared to the master equation approach, the QMC approach provides
interesting physical insights into the loss process.

In the phononic limit {g <« 1 of Eq. (4.58) the phase diffusion term can be ne-
glected and Eq. (4.58) turns into Eq. (4.71) which will be derived independently in the
following Sec. 4.3. The following Sec. 4.3 gives detailed discussion about Eq. (4.58) for
phonons.

4.3 Simplified approach

In this section I introduce a complementary approach which leads to the same result
as the Quantum Monte-Carlo (QMC) approach for phonons. This derivation is inde-
pendent from the QMC appraoch and it follows the derivations in [23, 24]. As in the
previous section, we consider j-body losses in a quasi-condensate . The evolution of
the linear density 7 is given by:

an _ ind (4.59)
de '
The atom number in a small cell of size 6z evolves according to %—T =-K;N J where
Kj =« ;6z'J. The atom number inside the small cell is N = Ny + 6 N, with § N small
compared to Ny (quasi-condensate regime). During a small time interval* dr the
losses are stochastic and the number of events M is close to a Poissonian distribution

AM =2
M!

p(M) = (4.60)

K . -~
with variance and mean A = T."NJ'A t. The mean number of lost atoms M = jM is

(M) = K;N’dt (4.61)

and its variance _
(M%) —(M)* = jK;N’dt. (4.62)

“The small time intervall d¢ in this section would correspond to At in the quantum Monte-Carlo
approach of Sec. 4.2.
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The prefactor j represents the fact that at each loss event j atoms are lost.
Let us now calculate the evolution of the density during d¢ which is given by:

dN=N-M=-K;N/dt+dn. (4.63)

In the last step, we replaced the random variable M by the shifted random variable
dn of vanishing mean and the same variance (dn?) = jK iN jdt. The mean density up
to first order in 6 N evolves as

dNo = —K; N/ dt. (4.64)
The density fluctuations up to first order in 6 N evolve according to
d6N = —jK;NJ "6 Ndt +dn. (4.65)

The first term corresponds to a decrease of density fluctuations by losses. This contri-
bution can be obtained from a mean field approach which ignores the quantification
of atoms, i.e. their discrete nature. The second term increases density fluctuations
due to the shot noise of the losses. The shot noise of the losses can not be captured
in a mean field approach.

In the next step let us approximate the variance by (dn?) = jKijdt = jKjNgdt
and assume that losses in different cells are uncorrelated. Going to the continuous
limit this leads to: _

(dn(z)dn(2)) = jKjN38(z— 2")dt. (4.66)

Introducing the Fourier components ng,r according to Eq. (1.63), one obtains in first
order in dt the following time evolution:
d(nz,r>
dt

Here again r = c, s stands for the cosine and sine modes. Since the sine and cosine
modes obey the same equations and share the same initial value, I will drop the index
r in the following.

= —2jKk;jnl (nf )+ jxjn}, (4.67)

Evolution of the Hamiltonian Let us consider the time evolution of the energy for
a given mode E4 = (Hyg) that lies in the phononic regime, i.e. g¢ <« 1. The Bogoliubov
Hamiltonian of this mode is
2 2.2
_ 2 o _mc” , h°qng ,
Hg= Agng+ Bgtg = g ng + om P (4.68)

The system is initially at thermal equilibrium. At thermal equilibrium the energy is
equally distributed between the quadratures, such that

(Hg)12 = Ag(ng) = By(62). (4.69)
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Let us compute the evolution of (H;) under the effect of losses®. The Hamiltonian
parameter A, = g/2 stays unmodified by the losses and B, changes according to

dt
Moreover, the density fluctuations (né) are modified according to Eq. (4.67). In prin-

ciple one should also consider the effect of losses on the phase quadrature (92). In
Sec. 4.2.3 it was shown that this effect is negligible for the phononic modes which
we consider in this approach. Furthermore, we assume that the losses rate x ; ni~lis
slow compared to the mode frequency w, = 2,/A4B,/h. Then, the equipartition in
Eq. (4.69) holds for all times. Summing up the two contributions of Eq. (4.67) & (4.70)
and using the equipartition one obtains:

d(Hg) B
dt
The mode energy in (4.71) tends to zero in the long time limit. Instead of consider-

ing the mode energy, let us focus on the ratio y = (Hg)/(gng). This ratio obeys the
differential equation

= —KkjBgnl . (4.70)

i1
—Kjny

1 .
(Hyg) (Jf+E —gjxjn;;. (4.71)

dy j-1 o1

a=1'<J,-no —y(;—i +§ , (4.72)
which is independent of g. From Eq. (4.72) one deduces that y converges in the long
time limit to

J

1

S 2-1/j°
In the long time limit, the mode energy H; decreases in the same way as the den-
sity decreases and the quantity y = (Hg)/(gno) becomes a constant. Assuming that
we initially start from y(f = 0) > y», we have that y(f) = y,Vf, which implies that
(Hg) > gny. For phononic modes we have gng > hw,. Those two condition imply
that the phonon occupation number stays large at any time. We can thus introduce
the phononic ‘[emperature6 as kpT = (Hy).

In summary, we obtain that in the long term limit a homogeneous quasi-condensate
under the influence of one-body losses tends towards the temperature kg T = gHhy.
For three-body losses, it tends to kg T = 0.6gny. For any j it tends to kg T = Yoo g Ho
where yoo € [1/2,1].

For further use it is advantageous to rewrite Eq. (4.72) as

dy 1 1)

dng no y\J 2] 2

5For the moment we neglect 3D correction due to the transverse swelling of the transverse ground
state such thatc = ¢p.

Eq. (4.72) does not depend on g. Thus the definition of the temperature does not depend on 4.
Note that this does not hold anymore, when considering particle excitation [22].

Yoo (4.73)

, (4.74)
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which is independent of k ;. A numerical integration of Eq.(4.74) is shown in Fig. 4.5
forj=1,2,3.

kpT/(gno)

Figure 4.5 — The time evolution of the ratio y = kg T/ g np for different j, together with
its long time limit (dashed lines). The x-axis npasp decreases as time increases.
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4.4 Cooling by three body losses

In the previous sections (Sec. 4.2 & Sec. 4.3), it was shown that that j-body losses
are expected to cool a 1D Bose gas in the quasi-condensate regime. This results is
important, since it contradicts "common believe" in our domain. This is particularly
true for the case j = 3. Within the community of cold atom physicist three-body
losses have been generally considered as "bad" losses. They are considered to be
linked to undesired heating effects. For thermal gases, they predominantly occur
in regions of high atomic densities and lead to an "anti-evaporation" process. In
BECs confined in deep traps, it was predicted that three-body collisions produce a
heating through secondary collisions with high energy excitations formed by the loss
process [139]. Apart from its conceptional interest, the case j = 3 is experimentally
relevant. As I will describe later, our cold atomic gases can be dominated by three-
body losses.

In this Section I present the experimental data which shows that three-body losses
indeed cool a 1D Bose gas in the quasi-condensate regime. The experimental data is
in agreement with the previously presented theory of Sec. 4.2 & Sec. 4.3. Before de-
scribing those results, I will introduce the concept of three-body losses.

Three-bodylosses Ultracold atom gases are metastable systems. Their ground state
is typically a solid. They are thus plagued with intrinsic recombination processes,
that limit their lifetime. The main process is the three-body recombination. In a
three-body recombination, a molecule (a dimer) is formed and its binding energy is
released in the form of kinetic energy of the molecule and the remaining atom. After
the three-body recombination process both final constituents are typically lost from
the trap. Their energy is typically much larger than the trap depth which we inten-
tionally limit by a radio-frequency field. Additionally, it can be assumed that they do
not cause any secondary collisions: The considered process is a 3D process. There
is only a very low chance that the leaving constituents collide again with a trapped
atom. These arguments justify that the three-body recombination process should
lead to the loss of all the three initial atoms involved in the collision. In the following
step, we verify this assumption experimentally.

4.4.1 The evolution of the peak density 7, under three-body lossses

The aim of this section is to experimentally demonstrate that three-body losses can
cool clouds that lie in the quasi-condensate regime. For this purpose, let me ar-
gue that in absence of RF-outcoupling, our system should be dominated by three-
body losses: Two-body losses are negligible for spin-polarized 8’Rb [7, 140]. One-
body losses from the background gas and from technical noise are small on our ex-
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periment (see Sec. 2.5.1 & Sec. 2.5.2) and they have been measured to be smaller
than 0.14s~L. In order to observe clouds dominated by three-body losses’, we pre-
pare quasi-condensates by RF-evaporative cooling in a harmonic trapping potential
V(z) = 1f2mw||z2. We then increase the RF-field by several kHz and verify that after
a long waiting time the number of atoms is independent of the frequency of the RF-
field. We then investigate the evolution during the time . We present five different
data set with different transverse trapping frequencies w1 , initial temperatures T and
peak densities n,. The peak density n, as a function of the waiting time ¢ is shown
in Fig. 4.6. To verify that these clouds are dominated by three-body losses, we calcu-
late the evolution of n, under the sole effect of three-body losses. Three-body losses
decrease the 3D density p3p according to

dpsp _
dt
with the 3D three-body loss constant k3P which is known from literature: x3P = (1.8+
0.5) x 1074 m®/s for 87Rb [140]. Inside the quasi-condensate g (0) ~ 1 (see Sec. 4.1).
The 3D density factorizes into (see Sec. 1.1)

-x*Pg®(0)p3,, (4.75)

p3,(x,y,2) = no(2)pap(x, y), (4.76)

where pap(x,y) = |po(x, y)l2 is the transverse density with a Gaussian shape as in-
troduced in Eq. (1.2). The 1D three-body rate k3 is given by % = —Kgng, and it is

obtained by integrating dﬁi” over the transverse shape of the cloud:
3(x2+y%) 2 2
_ 3 _ K3p 2 _KgDm LUJ_
K3 —K3D] dJCdJ/PzD(x. _V] = Wf dXdye 1L = W, (4.77)

In the last step we used the fact that the atoms are in the harmonic oscillator ground
state. Since we are interested in having strong three-body losses, we typically work
with high densities where 3D effects lead to the swelling of the transverse ground
state. As discussed in Sec. 1.3.3 these effects can be taking into account by modify-
ing the width of the Gaussian by fi = Ii\/%. This leads to x3(z) = k3/(1 +
2ngasp). The change of the total atom number Ny is then given by

dN o0
dt‘“ =— f K5(2)ng(2)3dz. (4.78)

In these experiments, we use loss rates which are small enough, such that the cloud
profiles follow the equilibrium profiles. Inside the quasi-condensate regime the equi-
librium profiles can be approximated by the Thomas-Fermi profile

mm:uﬁz2
4hw, |’

gz]—np 2gmw"z 1 (4.79)

“To my knowledge, j-body losses with j > 3 have never been observed.
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2up
mw"g

ified equation of state (see Sec. 1.3.3). The total atom number N, and the profile
no(z) are completely determined by nj, and Eq. (4.78) can be rewritten as a differen-
tial equation on n,. We use for this Eq. (4.79) & Eq. (4.78) which we integrate nu-
merically. The result of this numerical integration is shown in Fig. 4.6. The evolution
of np is in good agreement with the sole effect of three-body losses. Note that these
calculations do not contain any fitting parameter.

which extends over 2R = 2 and 3D effects are taken into account by the mod-

e w;/(2m)=1.6kHz

,_,200 | v w,/(27) =2.3kHz

71001 B w;/(2m) =3.1kHz

%_ ] A w,/(27) =4.7kHz

— 907 b wy /(27) =9.3kHz
= 304 v

' 3 4

Figure 4.6 — The peak density n,, in log scale versus the waiting time ¢. Solid lines are
ab-initio calculations of the effect of three-body losses for initial peak densities equal
to the of the experiment.

Limitations of themodel It should be noted that the calculation for ,, assume that
the cloud lies completely inside the quasi-condensate regime. This approximation
fails in the wings of the cloud where the cloud enters the ideal Bose gas regime. The
calculation of this section cannot take into account the atoms which are in the wings.
This is the reason why we plot n,, instead of Ny. The total atom number Ny is more
sensitive to those effects in the wings. Another limitation is the value of g (0) which
changes from 1 in the quasi-condensate to 6 in the ideal Bose gas regime. The ex-
act dependence is complicated to evaluate. Again, this effect is less important when
looking at n, instead of Ny. Finally, it should be noted that the value of x3p is only
known by a precision of 27% [140].

4.4.2 The phonon temperature

The temperature of the gas is obtained by the density ripple thermometry as intro-
duced in Sec. 2.8.1.3 and a typical spectrum is shown in the inset of Fig. 4.7. The main
graph of Fig. 4.7 shows the time evolution of the temperature T for the same data sets
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Figure 4.7 — Evolution of the temperature for the five data sets with the same color
code as in a). The inset shows a typical density ripple power spectrum which cor-
responds to the encircled point. The solid line is the fit from which we obtain the
temperature T.

as shown in Fig. 4.6. For all data sets the temperature drops and for w, /(27) = 2.3kHz
the temperature drops by a factor as large as 4. Note that the density ripple thermom-
etry is sensitive to phononic excitations. The temperature obtained from the density
ripple thermometry can be compared to the predictions of the QMC approach of
Sec. 4.3 for phononic modes or equivalently to the simplified approach of Sec. 4.2.

Comment about the fitting procedure The density ripple thermometry is based on
a fit with the temperature T and the imaging resolution ¢ as a free parameter. The
imaging resolution o is a parameter of the the optical imaging system. For the data
sets in this chapter it only depends on the transverse width of the cloud and thus on
the transverse trapping frequency w, . For each data set (same w ) we fit at f = 0 the
density ripple spectrum with T and o as a free parameter. For all the other data points
we fit the density ripple spectrum with T as a free parameter and use the value for o
obtained at ¢t = 0. The assumption of this procedure can be experimentally verified
by fitting every data point with 7 and o as a free parameter. The imaging resolution o
shows a very small dispersion for the same w , except for data at low densities where
the signal to noise ratio is low.

The statistical uncertainty on the temperature T, obtained from the fit, is typically
very low (a few percent) and hardly visible in Fig. 4.7. As discussed in Sec. 2.9, we do
not expect the statistical error to be dominant and we do not show error bars.

4.4.2.1 Comparison to theory

Before comparing the experimental data to theoretical predictions, let me introduce
two theoretical refinements of the theoretical model introduced in Sec. 4.2 and equiv-
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alently in Sec. 4.3. Those refinements are important for a quantitative comparison
with the experimental results. The two refinements correspond to the effect of the
trapping potential and the effect of the swelling of the transverse wavefunction due
to high densities. These corrections modify the equations, but do not modify the
overall picture of the cooling induced by three-body losses, as presented up to now.

High density effects We explicitly choose experimental situations where the three-
body losses rate is large enough to be the dominant process. At low w; this directly
imposes to use high densities and 3D corrections due to the transverse swelling of
the transverse ground state cannot be neglected. As detailled in Sec. 1.3.3 in a lin-
earized approach, the Bogoliubov Hamiltonian can be written as in Eq. (4.68) where

02
N . 2 _ 1D . N _
the speed of sound is given by ¢~ = Wir Tt The time evolution of B, stays unmod

ified (Eq. (4.70)), and the modification of A, is given by:

2npasp
— = AgK1png———"—. 4.80
dt a=1Db 01+4£I3DH0 ( )
Following the same arguments as in Sec. 4.3, we obtain

dy 1+2a 3
= ipn _y[s-—””“ ]+—] (4.81)

dt 2(1+4aspng) 2
where we introduced the quantity y = %. The quantity y is the natural general-

ization of y = kLﬂf and as we will see later, it is the most relevant quantity. In the

asymptotic limit ny tends to zero and we recover the same expression as in Eq. (4.73)
& (4.72). This leads to J» = 0.6 for three-body losses. The effect of the transverse
broadening allows the system to reach transiently slightly lower scaled temperatures
than the final y, = 0.6, even for y(¢ = 0) > 0.6. The minimal value that y(¢) can reach

for y(0) > yo is
3(1+4aspng)

Vinin(@aphg) = ——————. 4.82
Vmin(a@3pnop) 5+ 22asp o ( )

This value stays in the interval [0.6,0.54]. The coldest temperatures thus never devi-
ates by more than 10% from the asymptotic value 0.6 as shown in Fig. 4.8. This situ-
ation is different when considering the scaled temperature T/u or kg T/(gng) where
much larger deviations would appear. This justifies the previous introduction of the
quantity y. Detailed calculations for any j, can be found in [23].

Trapping potential For the treatment of the trapping potential let us come back
to a pure 1D situations (nasp < 1) and let us restrict the discussion to a harmonic
potential. Then, the wave functions of the Bogoliubov modes are the Legendre poly-
nomials as introduced in Sec. 1.3.2. In a trap, the additional condition that the loss
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Figure 4.8 — Three-body cooling of a homogeneous quasi-condensate. The initial
densities are high, such that the transverse broadening is relevant. The blue curves
correspond to different initial values. The red line shows the function ymin which
gives the values of ymin during the cooling process.

rate is small compared to the mode frequency difference Aw, = %\/Ew” needs to hold,
such that the losses do not introduce coupling between different modes®. The sys-
tem follows adiabatically the effect of the losses such that equipartition of the energy
holds at all times and the ratio A, = (H,)/(w,) is unaffected by the modification of
ng. The dynamics of A, is then given by the modifications of 6 n(z) and 6(z) induced
by the losses and we have

(4.83)

Ay l[d<X3>+d<p$>)
dt — 2\ dt dt )’

Here x, and p, are the canonically conjugated variables introduced in Sec. 1.3.2. The

2 2
time evolution of % and d(gt"> is calculated in [23]. For a harmonic trap, we replaced

the ratio yby y = kg T/ (mcf,] where cp is the speed of sound at the center of the trap.
When using the asymptotic expansion of the Legendre polynomials of Eq. (1.87) one
can show that the asymptotic value is given by

3 pmi2 B
~Jo da sin®a

Voo = =0.701. (4.84)
=8 [M24q sinta - [T'?dasin” a

8This condition was already imposed by the calculation for the peak density np in Sec. 4.4.1. Since

in Fig 4.6 the experimental data is in good agreement with those calculations, one can assume that
this condition is verified.
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Thus the asymptotic value evaluated at the trap center only differs by 15% from the
one in the homogeneous case. Detailed calculation in a trap are given in our pa-
per [23] which also considers correction due the transverse swelling in a trap.

Comparison with the two theoretical refinements In order to compare the ob-
served drop in temperature due to three-body losses of Fig. 4.7, we show the same
data in Fig. 4.9. The temperature is replaced by the quantity y = kg T/ [mcf,] for which
all data sets should reach the same asymptotic value. Additionally, the data is shown
as a function of n,, such that the underlying differential equation (Eq. (4.74)) is in-
depnandentEl of k3. While n, explores more than one order of magnitude, kg T/ (mcf,]
shows a small dispersion and stays close to the predicted asymptotic value j,. The
data qualitatively agrees with numerical calculations that take into account the trans-
verse swelling and the trapping potential (shown in grey lines) for typical initial situ-
ations.
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Figure 4.9 — a) Evolution of the ratio kp Tf(mcf,) during the three-body loss process
for the five data sets (same color codes and data sets as in Fig. 4.6). The solid line
corresponds to the asymptotic ratio for a 1D homogeneous gas. The dashed line
corresponds to the asymptotic ratio for a 1D gas confined in a harmonic trap. The
dotted lines are numerical calculations that take into account the transverse swelling
and the trapping potential for two different initial situations.

4.4.2.2 Evolution towards the asymptotic ratio

Already at the beginning of the observed time-evolution the ratio kg T'/ (mcf,] is close
to its asymptotic one. In principle, one could expect that initially the cloud would
be hotter (y > Jo), as shown in the theoretical predictions of Fig. 4.8. We do not

9The same holds in a trap, as shown in Eq. (32) in [23].
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attribute a fundamental reason to the lack of values of y much larger than y,,. We in-
terpret this situation as a technical artifact. Data was only taken for gases which were
already sufficiently cooled by evaporative cooling so that the gas lies in the quasi-
condensate regime, where both the thermometry and theoretical description apply.
It occurs that, in our experiment, when the gas enters the quasi-condensate regime,
the ratio kg Tf(mcf,] is already close t0 Joo.

Quenching towards different values of § We did not take any data with the inten-
tion to study this effect of the evolution towards j,. However, a reanalysis of old data
sets, taken with the purpose to study the recurrence phenomena, turned out to show
the expected behavior.

A gas with a value of y different than y,, can be realized after an interaction
quench (see Chap. 3). A short time (some milliseconds) after the quench the sys-
tem evolves towards a new equilibrium situation. This was observed on the density
ripple spectrum as discussed in (see Sec. 3.4.4). The new equilibrium temperature
after the quench with quench strength « is given by T’ = (k +2) T;/2. The new ratio'®
y = ’;‘?—:{: = %% decreases for a quench to higher g’ (x > 0).

Even though it does not corresponds to the paradigmatic situation of cooling
from high y towards its final value y,, let us consider the situation of a quench with
kK = 4 where we expect j to increase to its asymptotic value y,. The increased value
of g’ accelerates the three-body losses and Fig. 4.10 shows how the gas evolves from
an initial value y < y to its final value not far from j., = 0.7. Since this data set
was not taken with the purpose of studying this phenomena, the uncertainty is quite
high and we show the statistical uncertainty in Fig. 4.10. The initial value y, prior to
quench, is already below its asymptotic value for three-body losses. This is due to the
preparation scheme with RF-outcoupling (see Sec. 4.5)'1.

In principle one could observe the cooling towards yo from higher values of y by
a quench to lower g’ (k < 0). This method is however not very practical. A decrease
of g’ leads to a reduced three body-losses rate which makes it difficult to create situ-
ations which are dominated by three body-losses.

4.4.2.3 The phase diagram

In Fig. 4.9 the data was presented as a function of the linear density 7, which is not
the most relevant quantity. Pure 1D gases are described by the Lieb-Liniger model
which is parameterized by the dimensionless quantities fyy and y (see Sec. 1.2.4).

10The same arguments hold for ¥ when corrections due the swelling of the transverse wave function
are taken into account.

n principle it could be argued that it is sufficient to observe the ratio starting from the preparation
y = 0.3. In practice it turned out, that in such a situation the density was already too low and not
dominated by three-body losses.
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Figure 4.10 — The evolution of the ratio kg T/ (mcf,] during the three-body losses after
an interaction quench of x = 4 shown in pale blue dots. The other data points are the
previously presented data presented in Fig. 4.9 (same color codes). After the quench
we wait for £ = 60ms to let the system thermalize. The quench reduces the initial
parameter y and the temperature evolves towards a value close to its expected final
value ., = 0.7. Note that this set of data was not taken on purpose for this task which
explains the large error bars for the last points. The error bars represent 68% confi-
dence interval are fitting errors which are shown in order to highlight the uncertainty
on the last data points.

Here, we generalize those quantities to situations where the swelling of the transverse
wavefunction is important. This leads to

. h*kpTn* q __m*c®
W= T3l an Y= hZn?’

(4.85)

In the case of the harmonically confined gas, we evaluate those quantities at the
center of the trap. The asymptotic limit then corresponds to kg T/ [mcf,) = yiyy =
0.7. The evolution of the gas in the phase diagram is shown in Fig. 4.11. All the data
collapse on the line 7 fyy =~ 0.7, with a maximum deviation of 36%, while Zyy explores
more than 2 orders of magnitude. Fig. 4.11 suggests that the system would enter
the Tonks regime, as the density further decreases by three-body losses. This is not
guaranteed. Close to the Tonks regime the three-body loss coefficient drops to zero
and the dynamic starts to take place on very long time scales. Additionally, the theory
presented in Sec. 4.2 (or equivalently Sec. 4.3) is valid inside the quasi-condensate
regime. The effect of losses in the crossover towards the Tonks regime remains an
open questions and is worth further investigation.
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Figure 4.11 — The experimental data in the Lieb-Liniger phase diagram (see
Sec. 1.2.4). The data collapses on the line yfyy = 0.7 which corresponds to the
crossover between the thermal and quantum quasi-condensate (and which corre-
sponds at the same time to the asymptotic limit in a harmonic trap). The data sets
and colors codes are the same as in Fig. 4.6.

4.4.3 Yang-Yang thermometry

The previous part of this chapter focused on the phonon temperature deduced by the
density ripple analysis. As observed in [22, 36] the phonon temperature, deduced by
the insitu density fluctuations, can significantly differ from the temperature deduced
by the fit of the density profile with the Yang-Yang equation of state (see Sec. 2.8.2).
One can expect a similar difference in the temperature deduced from the density
ripple analysis and the temperature deduced from the density profile. In this section I
apply, in a preliminary study, the Yang-Yang thermometry on the profile of the clouds
and study the effect of the fitted temperature under the effect of three-body losses.

It turns out that for this study no new data is necessary and we apply the analy-
sis on the data sets studied in this section: Indeed, we verified that the longitudinal
profile does not change for the short time-of-flight of = 8 ms which was used for the
density ripple analysis. We thus fit the mean density profile of the data sets used for
the density ripple analysis with the Yang-Yang thermometry. More precisely, we use
the modified Yang-Yang equation of state which takes into account the transverse
excited states and we apply the LDA. The fitting algorithm with two free parameters:
the temperature Tyy and the peak chemical potential y,. Since we are interested in
a high atomic density, such that the three-body loss rate is large, 3D corrections due
to the transverse swelling of the quasi-condensate in the center of the trap can be
important in these data sets. The Yang-Yang thermometry cannot take into account
these corrections and the fits are applied in a zone where aspn(z) < 1 and trans-
verse swelling is negligible. In practice we chose the condition aspn(z) < 0.3 (see
Fig. 4.12). This procedure excludes a zone of the central part of the cloud for the
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- MYY

Tyy =21TnK

300

Figure 4.12 — A typical density profile together with the modified Yang-Yang (MYY)
(see Sec. 1.2.3.1). In comparison the Thomas Fermi (TF) profile obtained from the
modified equation of state Eq. (1.91). The Yang-Yang fits are restricted to zones of low
atomic density (agpn < 0.3), such that correction due the swelling of the transverse
wavefunction are small.

fitting routine (see Fig. 4.12). The width of the this zone depends on the peak den-
sity. For very high peak densities the part of the cloud which is used for the fit can
completely lie in the ideal Bose gas regime. This leads to unstable fit results: The in-
formation for i, is mainly contained in the zone which lies in the quasi-condensate
regime (see Thomas-Fermi (TF) profile in Fig. 4.12). When the quasi-condensate re-
gion is not contained in the fitting data, the result for u, started to deviate from the
expected value pp = howy (\/T+4npasp — 1) and showed strong dependence on the
initial value. Therefore, we restrict our analysis to data sets where, at least, a part
of the cloud followed the Thomas-Fermi in the zone nasp < 0.3. This effectively re-
stricted the analysis to the previous data sets with w, /(271) = 4.7kHz. The result of
the Yang-Yang thermometry is presented in Fig. 4.13. For all data sets the tempera-
ture drops during the three-body losses. The ratio between the phonon temperature,
measured with the density ripple analysis method and the temperature measured by
the modified Yang-Yang fits, Tyy/ Tphonon increases up to a factor of 5.

As expected from the results of [22, 36] the temperature deduced from density
fluctuations and the temperature deduced from a fit of the profile (Yang-Yang ther-
mometry) are different. The authors of [22, 36] observed that Tyy is typically a factor
two higher than the phonon temperature. In 4.13 the initial ratio Tyy/ Tphonon is also
close to 2. Subsequently, the three-body losses even increase the ratio Tyy/ Tphonon
to a maximal value of 5. This clearly indicates that we observe an out-of-equilibrium
situation.

In contrast to the density ripple thermometry the Yang-Yang thermometry does
not measure the phonon temperature. It is typically sensitive to the part of the cloud
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Figure 4.13 — a )The modififed Yang-Yang temperature Tyy obtained from fitting the
density profile (see Fig. 4.12) under the influence of three-body losses. In both cases
the temperature drops. b) The ratio between the phonon temperature and the mod-
ified Yang-Yang temperature Tyy which increases during the three-body losses.

which is in the ideal Bose gas regime. The theoretical considerations introduced in
the beginning of this chapter (Sec. 4.2 & 4.3) are only valid in the quasi-condensate
regime and cannot be directly compared to Tyy.

4.5 Cooling by one-body losses

The results of Sec. 4.2 (or equivalently Sec. 4.3) show that one-body losses should cool
a 1D Bose gas in the quasi-condensate regime. One-body losses can be implemented
by RF-outcoupling scheme (see Sec. 2.3.1.2). In the following section 4.5.1 I give an
overall description how the RF-outcoupling is thought to cool a single cloud on the
atomchip experiment. In the next section 4.5.2 I discuss where this simplified picture
stands in contradiction to the current experimental observations.

4.5.1 Cooling a single cloud into the 1D regime

On the atomchip experiment we start with a hot 3D cloud on which we apply forced
evoparative cooling with RF-outcoupling (see Sec. 2.3.1.2). The RF-outcoupling steadily
removes the most energetic atoms of the cloud and the subsequent thermalization
leads to a reduction of the temperature, as sketched in Fig.4.14. This outcoupling
therefore relies on an energy-selective process.

Failure of evaporative cooling in 1D Once the cloud enters the 1D regime, the
evaporative cooling is expected to drop drastically in efficiency. This is due to the
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Figure 4.14 — The transverse direction during evaporative cooling into the ground
state. a) At the beginning the most energetic atoms are removed. The loss occurs by
an adiabatic following of the states dressed by RF-field: the low field seeking state is
adiabatically transformed into the high field seeking state as the resonance is crossed.
b) Once all the atoms are in the ground state, the loss process is not selective in energy
in the transverse direction. A small RF-amplitude leads to a coupling of the trapped
state to the untrapped state.

a)

following effects:

* No energy selectivity in the transverse direction: Let us for the moment re-
strict ourselves to the transverse directions: Once the atoms enter the 1D regime,
almost all the atoms populate the transverse ground state and the losses cannot
be selective in energy anymore (see sketch of Fig. 4.14).

* Suppressed cooling rate in shallow traps: Concerning the longitudinal direc-
tion the efficiency of the evaporative cooling is expected to be strongly reduced.
In the experiment we use shallow traps whose oscillation frequency is of the or-
der of a few Hertz. Cooling due to evaporative cooling is expected to occur on
time scales larger than a 1/w). Observed cooling rates are much faster. Addi-
tionally, thermalization in an integrable system is not guaranteed, while it is
required for evaporative cooling.

One therefore expects that the evaporative cooling scheme gradually stops working
once the cloud approaches the 1D regime.

Energy-independent cooling by one-body losses When the cloud enters the 1D
regime in the quasi-condensate regime the cooling scheme induced by energy-independent
losses becomes important. The RF-outcoupling produces approximately homoge-
neous one-body losses (j = 1). Note that this is a simplification. The atoms are
trapped in a longitudinal magnetic potential which makes the loss process a priori
space dependent, since the resonance condition for spin-flips depends on z. In [19,
138] it is argued that in typical situations the losses are almost homogeneous in the
longitudinal direction. For homogeneous losses one can use the theoretical predic-
tion of this chapter (see Sec. 4.3 or Sec. 4.2 equivalently) which leads to further cool-
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ing. The temperature is expected to decrease'? with the peak density np

kgT oc mc,=gny,. (4.86)

et

1D-limit
In the view of the experimental implementation the difference between evaporative
cooling due to RF-outcoupling and cooling by energy-independent RF-outcoupling

might appear very technical. The physical concepts of both cooling mechanisms are,
however, very different.

4.5.2 Experimental results for j =1
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Figure 4.15 — Cooling with one-body losses induced by RF-outcoupling (black points)
in comparison with the previously presented data from three-body losses (same data
as in Fig. 4.9). The observed temperatures are clearly below the expected limiting
temperature kg T = 0.75mcf, inside a harmonic trap (black dashed line).

Asin Sec. 4.4 for three-body losses the theoretical predictions for one-body losses
can be tested experimentally. Again, we use the density ripple analysis to observe the
temperature evolution of a cloud dominated by one-body losses. A cloud dominated
by one-body losses is produced by lowering the RF-frequency, such that a strong out-
coupling of atoms occur. This ensure that the losses by RF-outcoupling occur on
timescales much faster than the three-body losses. The result for a cloud dominated
by one-body losses is shown in Fig. 4.15. In a harmonic trap one expects thatfor j =1
the limiting temperatureis kg T = 0.75mcf, [23]. The experimental data (black points)
clearly differs from this expectation and drops to much lower temperatures. In [19]

12Three-body losses may also play a role in the current experimental setup. This does not change the
picture of the cooling process. The system follows kg T = yoomcf, where y is close to 1 and depends
on j and the trapping geometry. See also Sec. 4.6 for a different trapping geometry.
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the cooling by RF-outcoupling was also observed. Similarly to the results in Fig. 4.15,
the temperature dropped to values as low as kg T = 0.25g hy.

In summary, the experimental results for j = 1 do not correspond to the theoret-
ical expectation and the limiting temperature for one-body losses (kg T = 0.75mcf,]
is not observed. This differs from the situation for j = 3 where precisely this limiting
temperature was observed. This discrepancy is not understood: A non-homogeneous
outcoupling might be behind this observation, but further investigation is needed.
Still, we observe a cooling which cannot be explained by evaporative cooling. Note
that three-body losses rely on the intrinsic atomic properties where such technical
problems are not present.

4.6 Quartic potentials

(Ia(@)?)/(npR)

ko [pm™]

Figure 4.16 — Density ripple spectrum for a quartic longitudinal trapping potential,
together with a fit of the temperature

The density ripple thermometry can also be performed in different longitudinal
trapping geometries, as the double well potential and the quartic trapping potential.
In Fig. 4.16 a density spectrum inside the quartic trapping potential is shown. Its
structure resembles the ones obtained in the harmonic confinement. The density
ripple thermometry inside the quartic potential and inside the double-well potential
always led to temperatures close to kg T/ [mcf,] = Joo Where y,, was always close and
smaller than 1. This corresponds to the anticipation from!3 [23]. A detailed study
of the effect of losses on the temperature in the quartic trap was not possible. The

13 Although no explicit calculation for a quartic potential are performed in [23], the introduced the-
ory applies to any smooth potential. The results differs only on the numerical factor .

140



CHAPTER 4. LOSSES IN A BOSE GAS 4.7. QUANTUM FEEDBACK

quartic potential is not stable in time'* due to drift in the potentials as detailed in
Sec. 2.3.2.2.

4.7 Quantum Feedback

This section is based on our paper [21] which extends the previously introduced cool-
ing by losses. It contains a proposal to cool one collective mode of a 1D Bose gas to
its ground state via a feedback loop. For this task, we imagine position resolved de-
tectors together with a 1D lattice whose amplitude is controlled by the feedback loop
as shown in Fig. 4.17. Depending on the losses in the 1D Bose gas, the amplitude is
adapted and a cooling of the phononic mode of wavevector equal to the one of the
lattice can be achieved, as I will detail in the following. Its theoretical description
relies on the Quantum Monte-Carlo approach introduced in Sec. 4.2 and cannot be
understood by the simplified approach introduced in Sec. 4.3. In principle this sec-
tion could be generalized to j-body losses. For simplicity I will restrict myself to the
case j =1 and to a homogeneous system.

V@ B lattice potential
Bose gas 6z

“ Iost atoms ) .

YYYYYYYYYYYYYYY

M, M,

feedback - lattice amplitude

Figure 4.17 — The 1D Bose gas with atom losses and a spatially resolved single atom
detector system. The information on the losses can be used to create a feedback
loop on the atoms via a lattice potential. The amplitude of the lattice potential is
controlled by a processing unit which uses the information gained from the atom
losses.

As previously shown the phononic excitations reach an asymptotic temperature
ks T = gnp. This asymptotic temperature is the result of the competition of a heat-
ing and a cooling process, mentioned in the introduction. The idea of this section
is to overcome this limit by compensating the heating process via the feedback loop.

14The stability arguments presented in Sec. 2.3.2.2 for the double-well, directly apply to the quartic
trap.
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If the number of lost atoms'® M; inside a small cell during the time interval At are
recorded, the trajectory followed of the center the Wigner distribution R can be fol-
lowed exactly. The feedback process then forces R to stay in the center of the phase-
space (ng,04).

Modification of g It turns out that the cooling of the phonons to the ground state
can only be achieved, when g is adapted in time as

g(t)=g(t=0)e", (4.87)

where I' = k; is the one-body loss rate. As detailed in [21], without this modifica-
tion of g an initial phononic excitation is already promoted to the particle regime
before approaching the ground state iw4/2. When considering the modification of
Eq. (4.87) the dispersion relation is unmodified by the losses. The change in g also
modifies the long time limit into kg T = gno/2.

The feedback hamiltonian Let us now follow a given phononic mode ¢, ¢ and con-
sider the effect of the feedback lattice given by the periodic potential

V(z) = A(t) cos(qz). (4.88)

This potential could be implemented by an optical lattice or a spatial light modulator.
The Hamiltonian of this lattice is given by Hy, = A[t)\/mﬁq,c. In order to counteract
the diffusion process of the center of the Gaussian R, one could adjust A(f) such that
the feedback Hamiltonian is given by

Hypy = —Fiv(0,0) g c. (4.89)

At each time interval {6, .) is computed by integrating the equation of motion in-
cluding the effect of losses, the free evolution and the feedback process. The feed-
back Hamiltonian then acts as an active damping which prevents (6, ¢) to drift from
the phase space center. The free evolution of the Bogoliubov Hamiltonian ensure
that neither 64, nor ng drift away from the center. For a large enough damping rate
v the contribution of R to the energy of the mode is expected to be negligible com-
pared to the contribution of the covariance matrix C. It can be shown that the co-
variance matrix reaches the ground state (for details of calculation see [21]). Fig. 4.18
shows numerical calculations of the energy evolution averaged over quantum trajec-
tories. Without feedback (v = 0) the system evolves towards the asymptotic limit'®
kg T = gng/2. For a strong enough feedback strengths v, the system evolves towards

>For j =1, we have M} = M;.
16The factor two arises from the modification in g(z).
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Figure 4.18 — Simulation of the loss process for different feedback strengths v: The
energy in the mode g is obtained from 550 quantum trajectories and the parame-
ters are the same as in Fig. 4.4. Without feedback the mode energy evolves to gng/2
(dotted line). With a sufficiently large feedback strength, the system evolves into its
ground state ﬁwqr’ 2 (dashed line).

its ground state E = hwg. The drift of the center is almost completely prohibited and
the mode is cooled to its ground state. The feedback does not represent a Maxwell’s
demon. Close to the ground state effects as the spontaneous emission in the lattice
laser becomes important, such that the second law of thermodynamics is not vio-
lated.

Note that this proposal is not brought to full maturity. Its practical implemen-
tation is not straightforward. For a cooling of the whole system, as many lattices as
modes would necessary. Furthermore, we did not perform any calculations on the
sensitivity of the parameters. Probably a very precise knowledge of the mode fre-
quency would necessary.

A theoretical generalization to j-body losses should be straightforward. Since the
practical interest is not very strong, we leave the generalization to j-body losses to
further work.

4.8 Outlook

Higher dimensions As long as one considers the linear Bogoliubov approach, the
theoretical arguments for the cooling by energy independent-losses also hold in higher
dimensions (d = 2,3) [23]. Taking into account that three-body losses are a common
phenomena in ultra-cold atom physics and until now, no observation of a cooling by
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three-body losses was observed!”, these theoretical arguments should be taken with
caution. Let me finish this aspect with some more speculative arguments: One pos-
sible explanation to this puzzle might be the role of integrability. As shown in [22]
the one-body outcoupling process creates an out-of-equilibrium situation where all
the Bogoliubov modes are cooled and the particle excitations (g¢ >> 1) obtain higher
temperatures than the phonons. This situation is stable in time and we expect the
same to hold for three-body losses. Again in [22] we show that this out-of-equilibrium
situations vanishes by a coupling to a second 1D system with a different mass'®. The
energy of the phononic modes starts to increase due to a coupling to the hotter parti-
cle like excitations. Note that this coupling breaks the integrability of the system. The
same arguments could be expected to hold in higher dimensions, since in higher di-
mensions the system is not integrable anymore. The coupling to the particle-like
excitation reduce the cooling effect.

An additional effect which could screen the cooling effect in higher dimensions
is due the difference in the density of states. The density of states D4(E) in d dimen-
sions for particle like excitations scales like

Dg4(E) o E27L, (4.90)

For d > 1 there exists more states for higher energies than for d = 1. This might make
the effect of an "heating" of the phonons by the particles more pronounced than in
higher dimensions. Note that we expect that the loss process still cools the particle
like excitations, however less than the phonons. It can therefore be speculated that
the cooling still exists in higher dimensions, but it is strongly suppressed. Its effect
might be too small for observation.

Out-of-equilibrium state The observation of Sec. 4.4.3 shows that the three-body
losses create an equilibrium situation with Tyy # Tphonon. Similar results were also
obtained in [22, 36] for one-body losses. This observation challenges the description
of the clouds on the atomchip setup. Both the Yang-Yang thermometry and the den-
sity ripple thermometry are based on the assumption of a thermal equilibrium. It
is unclear how these two temperature (Tyy and Tphonon) should be related to an un-
derlying quasi-momentum distribution p, (k). Losses are central to the creation of
1D clouds in the quasi-condensate regime. We cool the cloud with one-body and/or
three-body losses into the 1D regime where at least one of the two loss-types are
always present. Therefore, it has to be assumed that this out-of-equilibrium states
exists in all the realizations of a quasi-condensate.

7The observation of the phonon temperature in higher dimensions is experimentally challenging.
For a system which thermalizes, one could still expect to observe a cooling of the temperature of the
system.

18The coupled system consists of two homogeneous 1D Bose gases with contact interactions and
different masses m and m’'. The system is simulated by classical field simulations.
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GHD with losses The theoretical approach in this chapter is based on the Bogoli-
ubov description inside the quasi-condensate regime. It would be interesting to study
the effect of losses in different regimes. Ideally, such a theory is based on the Bethe-
Ansatz such that it can be applied to all 1D regimes. In the next chapter we study the
theory of Generalized Hydrodynamics (GHD) which is based on the Bethe-Ansatz
solution. GHD faithfully predicts the dynamics of the density profile, but cannot
take into account particle losses. In collaboration with Benjamin Doyon and Jérome
Dubail we are working on a Quantum-Monte Carlo approach (Sec. 4.2) applied to
GHD. Such an approach could predict the evolution of the density profile due to
losses and a comparison to the results in Sec. 4.4.3 could be interesting.

Summary:

* We compute the cooling of collective modes produced by j-body losses
inside the quasi-condensate regime. For phonons we find that at large
times T is proportionally to mc? where c is the speed of sound of the
system which decreases in time and we compute the stationary ratio of
kg T/(mc?).

* We experimentally verify this prediction for j = 3 and observed the ex-
pected cooling which is in agreement with the expected stationary value.

* Based on a Quantum-Monte Carlo approach we propose a feedback
scheme to cool a Bogoliubov mode to its ground state.
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Chapter 5

Generalized Hydrodynamics (GHD)

This chapter presents the first experimental study of the recent theory of Generalized
HydroDynamics (GHD) [15, 16]. The aim of the chapter is to show that GHD predicts
the correct out-of-equilibrium dynamics of 1D Bose gases. Moreover, we are able to
show that the "standard" theories fail to describe the experimental results. For those
standard theories we take into account:

¢ Ideal Bose Gas (IBG)

¢ Gross-Pitaevskii (GP)

¢ (Classical Field (CF)

¢ Conventional HydroDynamics (CHD).
Of course such a list is never complete and we restrict ourselves to theories which
are widely used to model cold atom experiments. Special emphasize is put on the
comparison with CHD which is the counterpart of GHD in a non-integrable system.

We created three different experimental setups with increasing experimental com-
plexity. In each setup we start from an equilibrium situations and follow the evolu-
tion of the density profile after a quench of the longitudinal potential. In the first
setup, we show that GHD gives a very accurate descriptions of the experimental re-
sults. At the same time we show that, already at equilibrium, most previously men-
tioned standard theories fail to reproduce the density profile. In the second one, we
show that the prediction of CHD fails, while GHD gives the correct description. In
the last setup CHD does not produce a meaningful result, since it develops a shock
on the experimental timescale. At the same time GHD shows reasonable good agree-
ment with the experimental data . The work in this chapter can be found in [25].

5.1 GHD experiment

The GHD equations can be seen as a dynamical extension of the Yang-Yang equation
of state. As shown in [12] the Yang-Yang equations have proven to be a very power-
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ful and elegant tool to describe the equilibrium profiles of the Lieb-Liniger model in
atomchip experiments. The Yang-Yang equations are exact and apply to the whole
Lieb-Linger phase diagram. In the same way GHD applies to the whole phase dia-
gram and offers an elegant description of the out-of-equilibrium dynamics based on
the Bethe-ansatz.

GHD and the Yang-Yang equations are based on the quasi-particle density pp (k).
As introduced in Sec. 1.4.4 the quasi-particle distribution p, (k) evolves according to
the GHD dynamics by

0 0 _10V(z,1) 0pp(z,k)
app(z.kng[veﬁ(z,kmp(z,k)]-E 32 T (5.1)

where the effective velocity is given by:
_ hk ' / / '
veri(2,K) =~ — | dK'pp(2, K [vetr(2, k) = vete(z, K) | A (k= k). (5.2)

In absence of an external potential Eq. 5.1 is a conservation equation and expresses
the fact that the Lieb-Liniger posses an infinity of conserved charges. In the follow-
ing sections we use the GHD equation to model the dynamics of a 1D Bose gas. We
compare the GHD results to the experimental in situ linear density by calculating

n(z) =]dkpp(z, k). (5.3)

Phase-space occupation The phase-space occupation is a practical quantity for
this study:
Pp(z, k)

)k = ’
V[z ) IOS(ZD k}

(5.4)

where p(z, k) is the density of states (see Eq.(1.34)). At T = 0 the phase-space occu-
pation v(z, k) resembles a Fermi distribution with v(z, k) = 1 inside a certain range
of k and outside v(z, k) = 0. Inside the quasi-condensate regime and at T = 0, the
rectangular function v(z, k) extends up to [-2&71 2671 in k. At finite temperature
the two sides of the rectangle are rounded off (see Fig. 5.5).

It can be shown that the GHD evolution of ps(z, k) is the same as Eq. (5.1), where
pp(z, k) is replaced by p;(z, k). From the GHD equations for ps(z, k) and p,(z, k) one
obtains directly the GHD equation for the phase-space occupation:

9 V(z, V) + Vef(2Z, V) 9 v(z,v) = 1 0V(z, 1) 0v(z,v) (5.5)
or ez T T m oz ov '

where the bare velocity v = hk/m was introduced.
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5.1.1 The experiments

The aim of this project is to verify that GHD provides a good description of the dy-
namics of 1D cold atom experiments. For this purpose we compare the GHD pre-
dictions to the out-of-equlibrium dynamics of the atomic density. We start with a
cloud at thermal equilibrium which is longitudinally confined in harmonic trapping
potential. We initiate the dynamics by suddenly switching off the longitudinal poten-
tial. Further experiments use more involved protocols that permit to exclude CHD.
The CHD calculations are based on Eq. (1.105) - (1.107) together with the Yang-Yang
equation of state (see Eq. 1.41).

5.1.2 Expansion from harmonic trap

n[pm=!

=200 0 200

z[pm)

Figure 5.1 — Initial cloud before the expansion. The experimental data is the blue
noisy line. The blue solid line is obtained from the Yang-Yang (YY) fit which gives
T =0.043 uK and pp = 0.307hw ;. The following theoretical predictions are based on
those values of yj, and T: The dashed-dotted line is the Gross-Pitaevskii (GP) pre-
diction which corresponds to the Thomas-Fermi profile. The dashed line is the Ideal
Bose Gas (IBG) prediction and the solid the classical field prediction (CF).

The initial profile We prepare a cloud with N, = 4600 atoms whose central region
lies in the quasi-condensate regime. The longitudinal potential V(z) = %mw"zz is
harmonic with w = 27 x 8.8 Hz and the transverse confinement is given by w | =27 x
7.75kHz. The initial density profile is shown in Fig. 5.1 (blue noisy line). The density
profile is fitted with the Yang-Yang thermometry! (solid blue line), from which we
obtain T = 0.43 uK

!In this chapter we use the Yang-Yang thermometry without the corrections from the excitated
states (modified Yang-Yang). GHD is not able to takes those effect into account. A discussion follows
in Sec. 5.2.

149



5.1. GHD EXPERIMENT CHAPTER 5. GENERALIZED HYDRODYNAMICS (GHD)

= Exp. 1
- Exp. 2
Exp. 3

tyy
I

= quasi-condensate

strongly
| 1071 interacting
| | |
10-2 107! 100 ¥

Figure 5.2 — The three different data sets in the Lieb-Liniger phase diagram (see
Sec.1.2.4 for a discussion of the phase diagram). The horizontal lines reflect the
change in density throughout the trap. The lines extend up to the point which corre-
sponds to n,/10. In all data sets the peak density lies in the quasi-condensate. In the
wings the data sets extend into the ideal Bose gas regime. Exp. 1 is the experimen-
tal setup of Sec. 5.1.2 (expansion from harmonic trap), Exp. 2 is the experimental
setup of Sec. 5.1.3 (expansion from double-well) and Exp. 3 the experimental setup
of Sec. 5.1.4 (the Newton’s cradle experiment).

Failure of most approximate theories at equilibrium The density of the trapped
cloud changes throughout the trapping potential (see Fig. 5.1). Consequently, the in-
teraction parameter y = mg/(h?n) changes throughout the cloud which corresponds
to a horizontal line in Fig. 5.2. Typically, the center of the cloud lies inside the quasi-
condensate regime, while the wings explore the ideal Bose gas. Let us turn to the
standard theories mentioned at the beginning of this chapter and whose predictions
are shown in Fig. 5.1. The prediction of the equation of state of the IBG Eq. (1.46),
together with the LDA, is shown by the solid line, with T and u, obtained from the
Yang-Yang fit. As expected the IBG prediction gives the correct description of the
wings and fails in the central part. As y approaches zero the density n diverges (see
Sec. 1.2.4.1). The dashed-dotted line shows the Thomas-Fermi profile? which ap-
proximately corresponds to the experimental data in the central part of the cloud
(same up as Yang-Yang). The classical field theory is capable to describe the quasi-
condensate regime and degenerate ideal Bose gas regime. The prediction from the
equation of state of the classical field theory together with the LDA is shown by the
solid line (same T and p, as the Yang-Yang fit). As expected, the prediction of the
classical field agrees with the experimental data in the central region and in a larger
region of the wings than the Thomas-Fermi profile. When the gas starts to enter the
Maxwell-Boltzmann regime, the classical field equation fails to predict the density
profile due to the quantized nature of the atoms.

In summary: Neither the ideal Bose gas equation of state, nor the equation of

2The Thomas-Fermi profile is the equilibrium prediction of the Gross-Pitaevskii equation.
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state of the quasi-condensate regime, nor the classical field prediction can describe
the equilibrium profile in our system3. This result was expected. Compared to the
atomic clouds typically studied in Chap. 3 and Chap. 4, we use a cloud with larger
wings to increase the effects. This is obtained by a lower peak density n, and a higher
transverse confinement. Both changes lead to an increased y. The gas in the har-
monic trap extends in the phase diagram from its peak value on a horizontal line as
shown in Fig. 5.2. At increased 7y, the region inside the quasi-condensate becomes
more narrow. Therefore a substantial part of the cloud lies in the cross-over regime
to the ideal Bose gas, and even in the Maxwell-Boltzmann regime (also see in Fig. 1.4).

Expansion In the first setup, we study the expansion form the harmonic trap. At =
0 we suddenly switch off the longitudinal trapping potentials and let the cloud freely
expand in 1D for f = 40ms. We compare the GHD prediction with the experimental

a) b)

density
(atom/pm)

30

20 —
t =30ms GHD
— 0l -- CHD||
10 IE
=
10} ]
0 e
10
oL A A A -
20 —200 0 200
30 z [pm)]

time 200 400

(ms) 40 _ 00 -200 0 position (um)

Figure 5.3 — a) Expansion from the a harmonic potential. Initial profile is shown in
Fig. 5.1. The data is the noisy line and the solid line are the calculation from GHD. b)
Situation at f = 30 ms. The data is shown together with GHD and CHD.

data as shown in Fig. 5.3 a). The GHD predictions are shown in solid lines and show
a very good agreement with the experimental data.

3We are aware of refined theories, based on classical field which include a cut-off above which the
excitation are treated as a quantum gas [141, 142]. We decided to exclude those theories from the
discussion. Already in the equilibrium situation the Yang-Yang thermodynamics offers a much more
powerful, elegant and reliable description. Their dynamical extension is not trivial. In the dynamical
situation, we expect that GHD supersede those refined theories in the same way as Yang-Yang in the
equilibrium situation.
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Comparison with Conventional HydroDynamics (CHD) The standard theories, men-
tioned in the beginning of this chapter, all failed to describe the experimental data,
except the Conventional HydroDynamics (CHD). CHD is based on the Yang-Yang
equation of state (see Sec. 1.4.3 for an introduction). Therefore the initial equilib-
rium state does not differs from the Yang-Yang prediction. In Fig. 5.3 b) the evolution

of the cloud after the release from the harmonic potential is compared to both GHD
and CHD. There is no visible difference between the prediction of CHD a GHD. At the
same time both theories are in very good agreement with the experimental data.

We attribute this coincidence of GHD and CHD to the initial harmonic trapping
potential. It can be argued that in the asymptotic regime (Gross-Pitaevskii regime at
T = 0 and ideal Bose gas at T = co) GHD and CHD coincide for the release from a
harmonic trap. In the intermediate regime it can be shown that both theories give
very similar results. It turns out that both theories start to clearly differ for a release
from a trapping potential with significant contribution from terms in z* or higher. A
more detailed discussion of this coincidence is given in the Supplementary Material
of our paper [25].

5.1.3 Expansion from double well

In order to discriminate between GHD and CHD, we chose to work with a double-
well potential V(z) = apz% + asz* with ap < 0. At t = 0 we switch off the longitudinal
trapping potentials. The evolution of the density profile is shown in Fig. 5.4 a). Again
we obtain a very good agreement between the GHD prediction and the experimental
data (noisy line).

Creation of the double-well potential on the atomchip experiment For the double-
well potential we use the four longitudinal wires D,, D, 6, and 65 (see Fig. A.2). The

double-well potential is implemented according to the considerations of Sec. 2.3.2.2.

The creation of the double-well potential demands high currents which create a small,
but non-negligible B, contribution. This changes the transverse confinement ac-

cording to w, o Iy/v/Bg+ B;. To maintain the same transverse confinement before

and after the release from the longitudinal confinement, we adapt the current Iy,

such that w stays constant.

GHD vs. CHD In Fig. 5.4 b) we show the prediction of GHD and CHD for the same
initial state. At r = 40 ms both theories clearly differ. GHD shows a very good agree-
ment with the experimental data, while CHD differs from the experimental profile
by several standard deviations. The CHD simulation develops a large density wave
which is a precursor of the shock which develops at later times.
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Figure 5.4 — a) Expansion from the double-well potential compared to GHD (smooth
line). b) Comparison between GHC and CHD. The error bar shown in the inset for

t = 40ms corresponds to 68% confidence interval and is representative for all the
data sets.

153



5.1. GHD EXPERIMENT CHAPTER 5. GENERALIZED HYDRODYNAMICS (GHD)

More insights can be obtained from the phase-space occupation v(z, v) (see Eq. 5.4).
Fig. 5.5 a) shows the evolution of v(z, v, t) obtained from the GHD calculations. Ini-
tially, at each slice in z, the distribution is close to a rectangle with smoothed edges
due to temperature effects. This results in a peanut like structure in the (z, v)-plane.
The time evolution distorts the initial structure. At ¢ = 25ms the phase-space oc-
cupation is far from an equilibrium distribution with the appearance of two max-
ima for the central slices in z. Such a distribution with several maxima is clearly
far from a thermal equilibrium situation which could be described by CHD. In com-
parison Fig. 5.5 b) shows the phase-space occupation obtained from the CHD cal-
culations. The CHD calculations are based on the Yang-Yang equation of state and
Fig. 5.5 shows the phase-space occupation which corresponds to the Yang-Yang state
in CHD. At each moment CHD enforces a thermal equilibrium situation. At f = 25ms
the central part of the cloud clearly differs from the GHD distribution. The difference
between GHD and CHD continues to increase for larger times.

t =0 ms t =25 ms t =bbms

= 10
s
ZmE 0
O3

. —10

=

= 10
Qﬁ,
ZE 0
3

- _10

=

—500 —250 250 —500 —250 250 —500 —250 0 250

z  [pm] um z  |pm]

Figure 5.5 — Phase space occupation v(z, v, t) for the expansion from the double well.
The first line shows the phase space occupation v(z, v, ) obtained from GHD and the
second line shows the phase space occupation v(z, v, f) obtained from CHD.

The initial temperature In the previous setup (Sec. 5.1.2) we fitted the initial profile
with the Yang-Yang equation of state together with the LDA. The use of the LDA de-
pends on a precise knowledge of the trapping potential. In the harmonic trap we use
the precise values obtained from the measurement of the oscillations of the center-
of-mass (see Sec. 2.9). For the double-well potential we cannot use this method and
rely on more indirect methods. For example, one could fit the profile using the Yang-
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Yang equation of state with 6 fitting parameters: T, y, and four parameters of the
Taylor expansion* of V(z). However, such a high number of fitting parameters gave
unreliable results for the temperature. To circumvent this problem, we decided to
proceed as follows:

+ v T=0.01 pK |/ 30l t=10 ms v+ T=0.01 pK |/
T=0.2 uK
T=0.3 uK
T=0.4 K |1
T=1 pK

w
=3

w
(=]

density (atom/um)
=
=]

density (atom/um)

density (atom/um)
density (atom/um)

density (atom/um)

L L L
=200 o 200

Figure 5.6 — Comparison of experimental data with GHD simulations for different
temperatures T. Around T = 0.3 uK the GHD results are almost independent on T.
For very high (T = 1uK) and very low (T = 0.01 uK) temperatures the GHD results
clearly differ from the experimental observation.

First, we postulate an initial temperature T and construct the initial quasi-momentum
distribution pg(z, v), such that pg(z, v) is the thermal equilibrium quasi-momentum
distribution at temperature T and density n(z, f = 0). We then calculate the time evo-
lution ngyp(z, t) with GHD which we compare with the experimental data. We per-
form these calculations for different initial temperatures T and calculate the distance
h to the experimental data

Zt

_ 1 _ 2
h - \/Ndata Z [ndata [Zr t] nGHD [z) t}] H (5-6]

4Although, we intend to create a potential V(z) = apz> + asz*, in practice an asymmetry is always
present and all the four terms needs to be taken into account.
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with the total number of data points Ngaa. Simulating the time evolution from ¢ =
0 — 50ms takes about 10 hours on a laptop with our code. Thus the GHD code is not
suited for a fitting algorithm. We calculated ngyp for a few temperatures between T =
10nK and ¢ = 1 uK. The minimum value of £ is found for T = 0.3 uK. The uncertainty
for this value is large. The GHD results for T = 0.2uK and T = 0.4 uK do not differ
much (see Fig. 5.6). However, for temperatures very different (7 = 10nK and T =
10 uK) the GHD prediction clearly differ from the observed data (see Fig. 5.6). We
verified that the potential which corresponds to this quasi-momentum distribution
pf;(x, v), is close to the anticipated double-well potential.

f
U

0 400 800 0 400 800 -400 0 400 O 400 800
z [pm) z [pm] z [pm) z [um]

Figure 5.7 — GP simulation for the expansion from the double-well potential. The
initial density distribution is equal to the experimental one. The appearance of the
central peak strongly differs from the experimental profile.

Gross-Pitaevskii Although it was shown in Fig. 5.1 that the Gross-Pitaevskii (GP)
theory cannot predict the equilibrium profile, a comparison with the GP dynamics
(Eq. (1.100)) can still be interesting. We simulated the GP equation with the split-
operator method [53] and the results are shown in Fig. 5.7. The results clearly differ
from the experimental situation (see Fig. 5.4). At the same time, the GP results are
close to the GHD results at low® T, when the fast oscillations are averaged out (see
Fig. 5.6). GHD is a classical description of the system. Thus, it does not predict inter-
ference phenomena.

5.1.4 Release from double-well into harmonic potential

In the third experimental realization we mimic the famous quantum Newton’s cra-
dle [26, 143, 144]. In contrast to these previous realizations, our cloud is in the weakly
interacting regime.

5Compare to T =0.01 uK

156



CHAPTER 5. GENERALIZED HYDRODYNAMICS (GHD)  5.1. GHD EXPERIMENT

40
1 density

30 1 (atom/um)

20

10

—
T /
140 i o 200
time (ms) 180 —200
position (um)

Figure 5.8 — Quench from double-well to harmonic potential compared to the GHD
prediction. The noisy lines are the experimental data.

We prepare a cloud in a double-well potential and at ¢ = 0 we replace the double
well potential with a harmonic potential with frequency w = 27 x 6.5Hz. We obtain
the temperature with the same method as used for the expansion from the double-
well potential (see Sec. 5.1.3), and which leads to T = 0.15 uK. For the Newton’s cradle
experiment, CHD develops shocks at earlier times (# = 30 ms) and can not give useful
predictions for the time evolution of Fig. 5.8. The experimental data in Fig.. 5.8 is
shown together with the GHD prediction. For this setup, the agreement between
GHD and the experimental data is less striking.

Periodicity The motion in Fig. 5.8 is approximately periodic, with a period slightly
longer than 27/w). At a quarter of a period, and at three quarters of a period, the
density distribution shows a single thin peak®. This approximate period is not an ex-
perimental artifact. The phase-space distribution calculated by GHD does not show
a strict periodic behavior (see Fig. A.3 in Appendix for more details). The distribution
does not exactly come back to its initial distribution and only shows an approximate
periodicity. The interactions between the atoms distort the phase-space distribution
during the evolution. This is in contrast to the IBG regime and the strongly interact-
ing regime where the motion is periodic with the frequency of the trapping potential.

61f the initial cloud was completely symmetric under z — —z, the period would be divided by two.
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Figure 5.9 — Modified Yang-Yang thermometry for the same data set as in Fig. 5.1. In
red the fitting results from the modified Yang-Yang equations (MYY) compared to the
Yang-Yang equations in red (YY). While both theories agree well with the experimen-
tal data, the temperature differs by 30%.

5.2 Summary and Outlook

The presented study revealed that GHD is the only theory which can faithfully predict
the out-of-equilibrium dynamics of the density profile in the experiment. The stan-
dard approximate theories (IBG, GP and CF) already fail to describe the equilibrium
situation. The failure of the "older" theory (CHD) is directly related to the integrabil-
ity of the system. We therefore demonstrated that these experimental observations
are directly linked to the integrability of the underlying system.

At longer times (see Fig. 5.8) the experimental data shows small deviations from
the GHD prediction. We attribute this deviations to experimental effects beyond the
GHD description and identified two main effects:

1. Atom losses: During the 180ms shown in Fig. 5.8, 15% of the atoms are lost,

mainly due to three-body losses.

2. Transverse excited states: If the initial profile in Fig. 5.1 is fitted with the modi-
fied Yang-Yang equation of state (see Sec. 2.8.2), we obtain a temperature which
is 30% lower than the temperature we obtained from the pure Yang-Yang fit
(see Fig. 5.9). This indicates that the transverse excite states might play a non-
negligible role.

These two effects can in principle be overcome in future experiments. As shown in
Sec. 4.4.3 the temperature decreases with fewer atoms. At lower temperatures effects
from atom the transverse excited states become smaller and at the same time three-
body losses are reduced due to the decreases linear density. Nevertheless, working
with low atomic densities is experimentally challenging (see Sec. 2.6.2). Addition-
ally, we collaborate with Benjamin Doyon and Jérome Dubail, on a theoretical ap-
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proach which combines the Quantum-Monte Carlo approach introduced in Sec. 4.2
and GHD.

Summary:

» This chapter presents the first experimental comparison with the Gen-
eralized HydroDynamics (GHD) approach. GHD is a new theory (2016)
based on the conserved quantities of the integrable Lieb-Liniger system.

* We create three different experimental setups where we initiate an out-
of-equilibrium dynamics by suddenly changing the longitudinal trap-
ping potential at = 0. We follow the evolution of the density of the cloud
which we compare to different theoretical approaches.

* A similar and older theory, the Conventional Hydrodynamics (CHD), fail
to describe the experimental observation. CHD only takes into account
the conservation of energy, particles and momentum in contrast to GHD
which takes into account all the conserved quantities of the integrable
model.

* Moreover, GHD is the only "simple" theoretical approach which can
faithfully describe the evolution of the density in all setups.
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Conclusion

This thesis contains three main studies on the dynamics of 1D Bose gases. Those
studies are the realization of an interaction quench in Chap. 3, the cooling by three-
body losses in Chap. 4 and an experimental study of the theory of Generalized Hy-
drodynamics (GHD) in Chap. 5. Each of these studies calls for further investigations
on its own. Let me summarize in the following some of the most important aspects
and perspectives:

This thesis focuses on the out-of-equilibrium dynamics of integrable systems. An
important and widely accepted assumptions for the out-of-equilibrium dynamics
of integrable systems is the appearance of a new equilibrium situation after some
short relaxation time fo1ax. This new equilibrium state is characterized by a Gener-
alized Gibbs Ensemble (GGE). The appearance of a GGE state is far from trivial and
no proof of its appearance exists. In the Lieb-Liniger model the set of mean values
of the conserved quantities entering GGE completely defines the quasi-momentum
distribution p,(k). The concept of GGE, derived from the generalized eigenstate hy-
pothesis, states that all microstates of some p,(k) are identical. Thus, the system
is completely defined by the distribution p,(k). In Chap. 3 we investigated the dy-
namics which occurs before the appearance of a new equilibrium situation. For the
published data [18] presented in Sec. 3.4.2 this dynamics is in good agreement with
the linearized approach given by the Bogoliubov description. The Bogoliubov model
is a "trivially" integrable model. However, its conserved charges are not the con-
served quantities of the underlying Lieb-Liniger model. One therefore expects that
the dynamics of the Bogoliubov modes should relax at some point and not persist
for long times. In Sec. 3.4.4 1 presented data which shows indication of this relax-
ation phenomena with the observation of a mode damping. Further indication of
this phenomena is given in Sec. 3.4.6 where the recurrence phenomenon could not
be observed due to the damping of the modes. For further studies a characterization
of the relaxation time te1ox and the new equilibrium state would be very interesting.
In general, it can be expected that in an integrable system such a state is not a Gibbs
ensemble. Most ideally such a state should be characterized by its quasi-momentum
distribution p (k) to which I will come back later.

In Chap. 5 we leave out this question of how, and on which timescale, the system
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relaxes towards the new equilibrium situations. GHD assumes the validity of the gen-
eralized eigenstate hypothesis and the appearance of a GGE on timescales short com-
pared to the experimental timescales. The GHD results showed a very good agree-
ment with the experimental data which indirectly justifies the assumption of the re-
laxation phenomena. Chap. 5 showed that GHD is a very important tool to faithfully
describe the out-of-equilibrium dynamics of 1D gases in cold atom setups. It opens
many directions of new research: For example, it could be interesting to study exper-
imentally transport phenomena between two reservoirs in 1D and compare those to
the GHD prediction. Furthermore, it would be interesting to extend GHD such that
it can predict the evolution of the quasi-momentum distribution p,(k) under the
effect of losses. In Sec. 4.4.3 I presented experimental indications that the effect of
losses probably has a non-trivial effect on the quasi-momentum distribution. The
effect of three-body losses on the phonon temperature is in good agreement with a
linearized description by the Bogoliubov modes (see Sec. 4.4). When analyzing the
density profile by using the Yang-Yang equation of state, we obtained temperatures
which differed by up to a factor of 5 from the phonon temperature. This indicates that
we observe an out-of-equilibrium state which should be described by a non-thermal
distribution of the quasi-momentum distribution p, (k).

In general, a tool which could access the quasi-momentum distribution p,(k)
would be very helpful for the investigation of the out-of-equilibrium situations. The-
oretically, pp(k) could be obtained in the far field from an expansion in 1D [145]. In
practice, the far field cannot be attained due to the limited size of the atomchip. GHD
might be able to circumvent this problem and reconstruct the initial p (k) from the
density at different times during the expansion. This method could be used to char-
acterize the out-of-equilibrium state due to atom losses. The same approach could
be used, to characterize p,(k) after an interaction quench.

Another natural extension of studies in integrable systems is the controlled break-
ing of integrability, as for example realized in [143] to study the Newton’s cradle ex-
periment. The breaking of integrability could be achieved in several different ways:
One could couple a second gas, as realized in [10], or add an optical lattice which
creates a periodic potential varying on distance short to the microscopical quanti-
ties. Another possibility is to add a new internal state. By controlling the interactions
between different species, the system can be tuned to the integrable point of sym-
metric interactions [146].

For future experiments it would be interesting to perform studies in a regime of
higher interaction parameters y = mg/(h? n). Most preferable in the strongly interac-
tion regime, characterized by y > 1 and ¢ « 1. This would allow to study interaction
quenches in a new regime and show the universality of GHD in all regimes. Addition-
ally, itwould allow to study how the loss cooling process extends towards the strongly
interacting regime. Is it even possible to enter the strongly interacting regime with
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this energy-independent cooling process?

Higher values of y are in principle achievable and y = 3 was already achieved on
the experimental apparatus in [42]. Even higher values of y could be expected with
an optimized chip design which allows to increase the current I for the transverse
confinement.

Finally, the cooling process of Chap. 4 leaves two main open questions: Why was
the cooling limit for one-body losses not observed? Can we expect a cooling by losses
in 3D (2D)?
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Appendix A

Appendix

A.1 Values of ’Rb

Name Symbol Value

3D scattering length in |[F=2,mg=2) asp 5.311 £ 0.005nm [147]
Mass of rubidium 87 m 1.44316 x 107%° kg
Three-body loss coefficient k3D (1.8 40.5) x 1041 mb/s [140]
Bohr magnetic moment B 9.274x 10724/ T
magnetic vacuum permeability Lo 4r10~"H/m

Table A.1 — Physical values used in this thesis (for 8’Rb).

A.2 Chip layout

165



A.2. CHIP LAYOUT APPENDIX A. APPENDIX

Figure A.1 — Chip layout. Black b% 6shmfvs zoomed region of Fig. A.2.



APPENDIX A. APPENDIX A.2. CHIP LAYOUT

Dl 61 52 D2

Figure A.2 — Zoom of on the center region of fig. A.1 with the parts of the wires colored,
which are used in the model description of the trapping potentials introduced in this
thesis (see Section 2.3). In the model description, wires are infinitely long and the
supply part, which connects the pin of the chip to the considered wire (see Figure A.1
on the top and lower end of the chip) is neglected. The transverse confinement is
obtained by the three small green wires with the modulated guide technique (see
Section 2.3.1.2). The four blue wires are used to create the longitudinal confinement.
The outer dark blue wires D; & D, are used to create a harmonic confinement. With
the use of the D; & D, together with the §; and 6, wires, polynomial potentials are
created which can be controlled up to order four (see Section 2.3.2).
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A.3 Longitudinal anti-confining term

ay is a polynomial of degree two in ¢

HBHo [ 2 Mo 6d  po2l ] 6dl  pol? }
= +ti|—+ + ’ Al
2= "on {‘ BBy ‘(ﬁf* Botb?f2) " b " Bonh? (A-1
whose discriminant is given
36d%? 24pedI (1 1
Adiscr = ﬁg + Boﬂ.'b254 ? - ? . (AZ]

For I > 0, this leads to the condition b > f in order to assure two roots and therefore
ay < 0. For I <0 the situations gets more complicated and a, < 0 can practically not
be attained with the geometry of our chip experiment (b > f3).
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A.4 Atom losses

A.4.1 The Lindblad operators

While the choice of the Lindblad jump operators L is not unique, let me justify the
choice of the operators. Therefore, I will show that this choice reproduces the ex-
pected time evolution of the density operator for j-body losses [148]. Let us consider
a coarse grained description as in 4.2, in which case we write:

K
i= j’ al, (A.3)

where a destroys a particle in the small cell and K; = kj6z'7/. Let us calculate the
time evolution of the mean atom number N = a'a

d, . cd ) -
O (N)= T‘I(Nap) =Tr(L{PIN) (A.4)

with the density matrix p. The Lindblad operator £{p} given by Eq. 1.120 rewritten
for losses in a small cell is given by:

f{. i1 . 1 .
eipt=—"Llalpat! - a7l alp-—pat’al (A.5)
j 2 2
The Hamiltonian commutes with the total atom number, which leads to
1
(N)_— Tr[alp at’' N ] 2Tr(a”afﬁN] [p a’“’alN] (A.6)
Using the commutation relation [N, a/] = —ja/, the cyclic property of the trace and
Tr(A") = Tr(A) one obtains
d, . ot i
S (W) ==Ky (pa’ a). A7)
Going back to the continuous limit, this leads to
d - j (1)
—(n)y =—-kj{n)! g""(0), (A.8)
dt
with the normalized j-body correlation function at zero distance
g =¥ ¥ ) 1(m). (A.9)

This confirms that this choice of L leads to the anticipated evolution of the atom
number for j-body losses as predicted by Eq. (4.3).
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A.4.2 New Gaussian state
Let us compute this new Gaussian state: First, the convolution on the axis 8 does not

change R and only changes C in C according to

é=c+(g i] (A.10)

20

Second, the multiplication by a Gaussian centered around 7 = [g) gives the following

condition:
—~—~T~—~—~—~—_~T%0—~—_~—~—~,—~T,—~—~,—~
(X-RB) BR-R)+(X-7)" (7 ) (X~7)= (X~ (R - 80)}" B (X~ (R - 1)),
(A.11)
with the notation Mq = (qu]. Eq. (A.11) needs to hold for V¥ X, implying
s (& O)\_ .
o =
B+(0 O] B, (A.12)
which leads in first order in At to
C=B"'=|1+¢C z 0 _1("7~ 1— i 2ae (S0 Y| (A.13)
B 0 0 A A Cr 0/ :
where we used Cj; = C1; and Cj2 = C12 and which let us write
. 2 C? CnCr2
C'=C— jkiAtn] 2( 11 . (A.14)
L I (Yo Ch -1
From eq. (A.11) we get a second condition on R
BR+ oz 0 i=p |7+ [Ma (A.15)
0 0 0| '
Using Eq. (4.42) we can write
2
S| o apai-2[C1 O ~(oz O)z| (Mg
R = |1- jkjAtn (CIZ O) R+C(0 0]:1 (O . (A.16)
Expanding in first order in At we finally obtain
= = [IMg . 2 (Cll] (M)
R'=R+|——jxinl “At{(n - 9], A17
o jKjng <q>c12 0 (A.17)
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A.5 Phase space occupation

pasition « L) pasition « ()

t =20 ms
" hsstioncimy
t =100 ms
position = () " ootz im
t = 160 ms t =180 ms

Figure A.3 — Phase space occupation v(z, v, t) for the Newton’s Cradle experiment ob-
tained from GHD (see Sec. 5.1.4). The motion is approximately periodic. The period
of the harmonic trap is 154 ms and the approximate period is 165 ms.
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Annexe B

Résumeé en francais

Ce manuscrit présente les résultats de ma these, effectués dans I’équipe Puce Ato-
mique. Nous utilisons un systeme de type « puce atomique » pour créer des pieges
magnétique trés allongés dans lesquels nous chargeons des atomes bosoniques (8Rb).
Nous gelons les degrés de liberté transverses et créons un gaz 1D avec des interac-
tions de contact. Le modele qui décrit ce systéme est connu sous le nom « modele
de Lieb-Liniger » et il a la particularité d’étre un modele intégrable. Ce manuscrit
contient trois études expérimentales sur la dynamique dans ce systeme Lieb-Liniger.

Le premier chapitre introduit les outils théoriques qui ont été utilisés pour décrire
les expériences. Premierement, j'introduis le modele qui décrit le gaz qui a été étudié.
Il s’agit des bosons avec des interaction de contact en 1D ; le modéle de Lieb-Liniger.
Il peut étre résolu par la technique de I'ansatz de Bethe qui permet de calculer les
états propres d'une maniére exacte. Basé sur cette technique j'introduis une thermo-
dynamique exacte, dite « thermodynamique de Yang-Yang ». La thermodynamique
de Yang-Yang permet de distinguer différents régimes du modele de Lieb-Liniger no-
tamment le régime quasi-condensat. La plupart des expériences de cette these ont
été effectuées dans ce régime et j'introduis des méthodes approximatives qui s’ap-
pliquent a I'intérieur du régime quasi-condensat. La méthode Bogoliubov retient
particulierement notre attention. Dans I'approximation de Bogoliubov le systeme est
décrit par un ensemble d’oscillateurs harmoniques indépendants. Dans la suite j'in-
troduis des théories qui décrivent la dynamique hors-équilibre des gaz 1D. Notam-
ment une nouvelle théorie de 2016, baptisé hydrodynamique généralisée (en anglais
generalized hydrodynamics). Al'inverse de ’hydrodynamique conventionnelle qui se
base sur la conservation de I'énergie, de I'impulsion et du nombre de particule, cette
théorie prend en compte un nombre infini de charges conservées du systéme inté-
grable. Je motive cette nouvelle théorie avec un approche simple qui considére des
collisions a deux particules.

Le deuxieme chapitre contient la description de notre expérience de type puce
atomique. Les parties principales de refroidissement n’'ont pas été modifiées pendant
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ma these et un résumé des étapes les plus importantes est donné. Le piégeage ma-
gnétique est décrit avec plus de détails. Notamment la création d’'un piege en forme
de double puits dans la direction 1D. Dans la suite j'introduis I'utilisation des algo-
rithmes génétiques comme méthode d’optimisation de I'’expérience et je discute les
problemes techniques observés pendant la thése. Ensuite, les méthodes d’analyse
des données de I'expérience sont décrites et je me concentre sur I'analyse des franges
de densité (en anglais density ripples). Je présente une formule centrale qui permet de
déterminer la température des phonons, qui sont les modes de Bogoliubov de basse
fréquence. Ensuite, je montre que cette analyse des franges de densité permet de ré-
soudre les modes de Bogoliubov et d’accéder a la variance de la quadrature « phase »
des premiers modes.

Le troisieme chapitre contient des études sur la dynamique suite a une trempe
(modification rapide) des interactions. Une premiere étude non-publiée mesure la
distribution d’impulsion ce qui permet d’accéder a la fonction de corrélation d'un
corps g1. On s'attend a un phénomene du type « cone de lumiere » sur la fonction g,
en revanche la méthode expérimentale n'est pas adaptée pour mesurer ce phéno-
meéne dynamique. Seul le comportement a temps long pouvait étre mesuré. Ensuite,
j'introduis une méthode plus adaptée pour observer la dynamique suite a la trempe
des interaction qui est basée sur I'analyse des franges de densité. Cette analyse per-
met d’observer expérimentalement la dynamique du gaz avec un phénomeéne de
respiration des modes collectifs. Nous montrons que cette dynamique se poursuit
sur des échelles de temps qui ne pourraient pas étre observés par des observables
basées sur la fonction g;. La fin du chapitre détaille les raisons qui rendent diffi-
cile, avec ce dispositif expérimental, I'observation des phénomeénes de récurrence.
A cause du au couplage entre les modes collectifs, la dynamique est déja trop amor-
tie avant le temps de récurrence. Le quatrieme chapitre contient les résultats sur le
refroidissement par des pertes. Ce processus initialement inattendu a été découvert
par le groupe de Vienne Rauer, et al. Cooling of a one-dimensional Bose gas. PRL, 116.3
(2016) : 030402 [19]. 1l permet de refroidir un gaz unidimensionnel en régime quasi-
condensat par des pertes homogenes qui ne dépendent pas de I'énergie. Premiere-
ment, je présente deux approches théoriques différentes qui décrivent I'effet des ces
pertes. La premiere approche utilise une méthode de type Monte-Carlo quantique et
qui consiste en une généralisation de la dérivation de notre papier Schemmer, et al.
Monte Carlo wave-function description of losses in a one-dimensional Bose gas and
cooling to the ground state by quantum feedback PRA, 95.4 (2017) : 043641 [21]. La
deuxiéme approche est une approche simplifiée permettant d’expliquer I'effet sur
les phonons. Dans la suite je teste expérimentalement ces prédictions pour le cas
des pertes a trois corps et la température des phonons. Ce cas est particulierement
intéressant car les pertes a trois-corps étaient généralement associées a un effet de
chauffage. Les résultats expérimentaux reproduisent bien la limite de ce refroidisse-
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ment qui consiste en un équilibre entre le refroidissement introduit par les pertes et
le chauffage introduit par I'effet de bruit de grenaille due aux pertes d’atomes dis-
crets Schemmer, and Bouchoule. Cooling a Bose gas by three-body losses. PRL 121.20
(2018) : 200401 [24].

Le quatriéme chapitre contient un test expérimental de la théorie hydrodyna-
mique généralisée. Pour ce test nous créons différentes situations expérimentales qui
montrent que '’hydrodynamique généralisée est la seule théorie capable d’expliquer
I’ensemble des données expérimentales. La premiere situation consiste au relache-
ment d'un gaz piégé a I’équilibre dans un potentiel harmonique et I'observation de
I’expansion dans la direction 1D. Déja a I'équilibre les théories approximées ne par-
viennent pas a décrire le profil de densité et seule une théorie basée sur la thermody-
namique de Yang-Yang décrit correctement le profile. La dynamique prédite par I’hy-
drodynamique généralisée décrit tres bien nos résultats expérimentaux. Cependant,
pour cette expérience, la prédiction de I'hydrodynamique généralisée coincide avec
la prédiction de I'hydrodynamique conventionnelle. Pour différencier ces deux théo-
ries nous préparons un nuage doublement piqué (réalisé dans un double puits de
potentiel) et nous observons I'expansion dans la direction 1D suite au relachement
du piége. Dans ce cas, la prédiction de 'hydrodynamique conventionnelle dévie des
données expérimentales et des prédictions de ’hydrodynamique généralisée, toutes
les deux en trés bon accord. Cette déviation s’accentue avec le temps d’évolution et
la théorie hydrodynamique conventionnelle développe des divergences a un temps
fini (un choc). La derniére expérience est I'expérience dite du pendule de Newton. Il
s’agit d'un relachement d’'un nuage doublement piqué dans un piege harmonique.
Dans ce cas I’hydrodynamique conventionnelle développe des chocs a temps courts
et est donc incapable de fournir des prédictions a temps longs et I'’hydrodynamique
généralisée est la seule théorie capable d’expliquer les résultats expérimentaux.
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Monte Carlo wave-function description of losses in a one-dimensional Bose gas and cooling
to the ground state by quantum feedback

M. Schemmer, A. Johnson, R. Photopoulos, and 1. Bouchoule
Laboratoire Charles Fabry, Institut d’Optique, Centre National de la Recherche Scientifique, Université Paris Sud 11,
2 Avenue Augustin Fresnel, F-91127 Palaiseau Cedex, France
(Received 13 February 2017; published 28 April 2017)

The effect of atom losses on a homogeneous one-dimensional Bose gas lying within the quasicondensate
regime is investigated using a Monte Carlo wave-function approach. The evolution of the system is calculated,
conditioned by the loss sequence, namely, the times of individual losses and the position of the removed atoms.
We describe the gas within the linearized Bogoliubov approach. For each mode, we find that, for a given quantum
trajectory, the state of the system converges towards a coherent state, i.e., the ground state, displaced in phase
space. We show that, provided losses are recorded with a temporal and spatially resolved detector, quantum
feedback can be implemented and cooling to the ground state of one or several modes can be realized.

DOI: 10.1103/PhysRevA.95.043641

In [1], the effect of atom losses on a one-dimensional
quasicondensate was investigated. The authors have shown
that, within a linearized approach and for a large enough initial
temperature, one expects the temperature of the low-lying
modes to decrease in time, in agreement with recent experi-
mental results [2]. The fluctuation induced by the loss process
due to the discrete nature of atoms is, however, responsible for a
heating, limiting the temperature which can be achieved. More
precisely, one expects that the temperature asymptotically
converges towards gpo(t) where g is the coupling constant and
p is the linear atomic density [1,3]. In particular, excitations
in the phononic regime, i.e., of frequency much smaller
than gp(t)/h, never enter the quantum regime: their mean
occupation number stays very large such that they lie in the
Raighley-Jeans regime. This heating only occurs if one ignores
the results of the losses or, equivalently, if one takes the partial
trace on the state of the reservoir in which losses occur, ending
up with the master equation for the system’s density matrix. If,
on the other hand, one records the losses, more information is
gained on the system and the analysis made in [1] is no longer
sufficient.

In this paper, we assume the losses are monitored with a
spatially and temporally resolved detector and we describe the
evolution of the system using a Monte Carlo wave-function
analysis. The measurement back action leads to an evolution
of the system conditioned by the result of the loss process,
namely, a given history of losses. Averaging over the different
possible histories, the results of [1] are recovered. The
analysis proposed in this paper, however, not only presents
an alternative picture conveying more physical insight but
also opens the road to the realization of measurement based
quantum feedback: controlled dynamics, conditioned on the
monitored losses, allows one to reach lower temperatures. In
this paper, we show that feedback on a given mode of the
system could in principle allow one to cool this mode to the
ground state. In particular we show that phononic excitations
can be brought to the quantum regime. State preparation using
information inferred from losses has already been used to
prepare a well-defined phase between two condensates [4],
with a Monte Carlo wave-function approach providing a very
clear understanding of the mechanism [5]. Manipulation of
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cold atomic clouds by quantum feedback has been proposed in
many theoretical papers using dispersive light-atom interaction
[6,7], while feedback has been implemented for internal
degrees of freedom [8-10].

I. DISCRETIZATION OF THE PROBLEM

We consider a one-dimensional Bose gas with contact
repulsive interactions of coupling constant g, such that the
Hamiltonian writes, in second quantization,

ﬁ2
H=—— [ dxyta%y/0x>
me Yty /o

+§ f dxyr YT Y@V ().

We assume the gas is submitted to atom losses, the loss
mechanism being a single atom process described by a loss
rate I'. For instance, magnetically trapped atoms could be
submitted to a radio-frequency field that would transfer atoms
to an untrapped state, as realized experimentally in [2]. Atoms
could also be ionized by laser fields [11], or expelled by
collision with fast electrons [12]. We moreover assume the
lost atoms are detected one by one with position-resolved
detectors, as sketched in Fig. 1. We denote p the mean linear
density and we assume the gas lies within the quasicondensate
regime such that the atomic density fluctuations are small and
their characteristic length scale, equal to the healing length
Iy = h//mgp, is much larger than the mean interparticle
distance [13]. We discretize space in N cells of length §x,
containing a large mean atom number 77 = éx p and with small
relative fluctuations. We furthermore assume that éx is large
enough such that the fluctuations are large compared to unity
[14]. The state of the gas may be expanded (as long as one
is not interested in length scales smaller than x) on the Fock

basis of each cell:
§ cﬂ[,!’lg,m‘ﬂﬂlnlyn29 ..

V) = JIN)- 6}

Time is also discretized in intervals At small compared to
the time scales involved in the longitudinal dynamics of the
gas. This allows one to consider, during At, the sole effect of

©2017 American Physical Society
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FIG. 1. A one-dimensional Bose gas with atom losses and a
spatially resolved single atom detectors system. The information on
the atom loss can be used to create a feedback loop on the atoms via
a lattice potential. The amplitude of the lattice potential is controlled
by a processing unit which uses the information gained from the atom
losses.

losses first and then the effect of the free evolution. We will
first concentrate on the effect of losses. Since losses do not
introduce correlations between different cells, it is relevant to
consider the case of a single cell first.

II. MONTE CARLO DESCRIPTION OF LOSSES
IN A SINGLE CELL

Considering a single cell, the initial state writes [{(¢)) =
Y . caln). Let us split At in elementary time steps of length
dt, small enough so that the probability to have an atom
lost during dt is small. According to the Monte Carlo wave-
function procedure [15], if no atoms are detected during a
time step dt, then the state of the system evolves according
to the non-Hermitian Hamiltonian Hey = —iAl'ata/2, which
ensures the decrease of the probability of highly occupied
states. If on the other hand a lost atom has been detected,
the new state is obtained by the application of the jump
operator a, which annihilates an atom in the cell. Let us now
assume M atoms have been lost from the cell between time ¢
and time ¢t + At, at times f; < f» < --- < fy, as sketched in
Fig. 2. By successively applying the procedure described
above, we construct the quantum trajectory followed by the
system and we find

—iHep (t+ At —tm)[h g ,—i Hemr(tm—tu—1)/R

ae™ Ha =Dy (1)), 2

[U(t+Af) = e

With the normalization chosen here, the probability of the

loss sequence is (dt )M (Y (t + AD)|Yr(t + ADY/ (Y ()| ().
From Eq. (2), we find that the Fock state coefficients

di
||I|I§|||I|I§|I|| ||I§|I||| !
0 ta tm Al

FIG. 2. A typical loss sequence during a time interval Af, for
a single cell. The associated quantum trajectory followed by the
system’s wave function is given by Eq. (2).
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cn(t + At) = (n|yr(t + At)) write
et + At) = fiiy(n + M)cpy (1), 3)

where the function fi;)(n) depends on the loss sequence.
Assuming At is small enough so that M is much smaller
than the mean atom number in the cell, itself much larger than
1, fi;)(n), for a given M, becomes almost independent on the
time sequence {t;} and can be approximated by

fiy(n) = fu(n) = nMZe= T2, 4)

Within this approximation, the probability of the sequence
is 3, [cal*(Cndt)Me~T"A" Summing over all possible se-
quences with M lost atoms, we find that the probability to
have M lost atoms is P(M) =Y, |ca|>(TnAr)yMe=Tra /11,
For a given initial atom number n, we recover the expected
Poissonian distribution. In the limit 7' At >> 1, the typical
number of losses is much larger than 1 and the function fjs(n)
can be approximated by the Gaussian

Fuulm) = Ayye™ = s)
where 4, is the normalization factor. Using the fact that the
number of lost atoms M is typically equal to nl" At and presents
small relative fluctuations, Eq. (5) further approximates to

[n—MAT AN T AL

fun) ~ Aye™ = . 6

The same approximations lead to a mean number of lost atoms
(M) = (n)T'At, with a variance (M?2), — (M)2 =T Atq,
where the symbol tr indicates that averaging is done here over
many different quantum trajectories.

III. GENERALIZATION TO ALL CELLS
AND BOGOLIUBOV DECOMPOSITION

The results above can immediately be generalized to the
case of several cells. If M; denotes the number of lost atoms
in the cell i, the probability amplitude of the Fock state
|n1,n2, ... ,ny) is, up to a global normalization factor,

Cﬂ[,ﬂz,“.,ﬂﬂ(t + Af)
nj—M; (T AT At

= oMyt My ibty @ [ [ (D)

]
Since the atom number per cell is typically very large
and presents fluctuations large compared to unity, one can
approximate discrete sums on n; by continuous integrals and

treat the n; as continuous variables.

Since the gas lies in the quasicondensate regime, its Hamil-
tonian is well approximated by the Bogoliubov Hamiltonian
[13]. For a homogeneous system, the Bogoliubov modes are
obtained from the Fourier decomposition. More precisely, let
us introduce the Fourier quantities

[2
Moo =1~ ;cos(k; jéx)n;

[2 o
ks = F;Sln(kjjax)nj. ®)

Here k; = i2n /L, wherei is an integer taking values between 1
and (N — 1)/2. We introduce in the same way the operator i,
and iy, 5. The Bogoliubov Hamiltonian acts independently on
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each Fourier mode and, for a given mode (k,r), where r stands
for ¢ or s, it writes, up to a constant term,

Hy, = Ak&%,, + Bkéf‘r, &)

where the phase operator ék,, is the operator conjugated to
A [16], Ax = [g/2 + h*k>/(8mp)]/5x, By = hk*pdx/(2m),
and the mean particle density p = 7i/éx. The frequency of the
mode is Wy = 2«/ AkBk,-“h.

Let us now investigate the effect of losses in the Bogoliubov
basis. The state |ny,n2, ... ,ny) is also an eigenstate of each op-
erator fiy, ,, where r stands for c or s, with eigenvalue n;, .. We
thus use the notation |ny,ny, ... ,ny) = |{ny, (}), where {n;,  }
is a short notation for n, c,Rk, s, Rk, ,c:Mky,s - - - Mky,coPky,s- 1NE
state of the system then writes

) = f [Tdn.rum, 10, (10)

where &in, .} = Cn, n,,....n,- Lhe modification of the state of the
system after a time At due to atom losses is then, according to

Eq. (7),

_ _ Ing; —My. f(TAD]T As
Cing )+ A =Ciay om O] [, (D

where My, . = /Z/N Zj M;cos(kix;) and My, s = /Z]N
> j M sin(k;x ;). We used the facts that, here, on one hand
the variances of each Gaussian in Eq. (7) are all equal and
on the other hand the density profiles of Bogoliubov modes
are orthogonal, namely, the transformation between the basis
n; and ng, is orthogonal. The statistics of the different
quantum trajectories gives a Gaussian distribution for My, ,
with (My, )i = DAt (ni. ;) and (M ) — (M, ,)f = T Ath.
Equation (11) shows that the losses affect each Fourier
component, i.e., each Bogoliubov mode, independently.

If the initial state is at thermal equilibrium, different
Bogoliubov modes are uncorrelated. The free evolution, under
the Bogoliubov Hamiltonian, as well as the effect of losses, do
not introduce correlations between modes and one can consider
each mode independently. In the following, we consider a
given mode of momentum k and we will omit the subscript ¢
or s, since the upcoming considerations apply for both.

IV. EVOLUTION OF A GIVEN BOGOLIUBOV MODE:
WIGNER REPRESENTATION

Here we consider a given mode, described by the two
conjugate variables n; and 6. A convenient representation
of the state of the system is its Wigner function W, a
two-dimensional real function, the expression of which, as
a function of the density matrix D of the state, is

l . . o
W(ng,6:) = = f dadbe' @ T p(Del—iam+ibl)y — (12)

The effect of losses during At¢, in the n; representation, is
given by Eq. (11), and this effect transforms W into the new
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Wigner function function W' according to

W (ni,6) = fdi(nk + M;.0)

27325

e~ B lm—M/TANP ,— @0y (13)

The multiplication by a Gaussian function along the nj axis
shifts the distribution towards M} /(I" At), the value for which
{M,), is equal to the recorder value M;. It also decreases the
width in ny, which reflects the gain of knowledge acquired on
ny by the detection of the number of lost atoms. The associated
convolution along the axis 6; increases the width in 6, and
ensures preservation of uncertainty relations.

The thermal state of the Bogoliubov Hamiltonian has a
Gaussian Wigner function. Since the Gaussian character is
preserved by Eq. (13) and by the free evolution, the state of
the system stays Gaussian. W is then completely determined
by its center R = ({n},{(6)) and its covariance matrix:

(n3) — (ni)? (nBk) — (ni) (6k)
- L4
(nkbk) — (nk) (Bk) (62) — (6)?

As shown in Appendix A, to first order in Az, the transforma-
tion in Eq. (13) changes R and C to R’ and C’ with

rat{ —C} —CnCn
4+ = 11 R I (15)
n \-CCpn —Cjh+g

. (FAt(nk)) g (1 — C“{‘E)_ 16
0 —Cip/i

Here we introduced d§ = My — I' At(n;). According to the
statistic of trajectories, d£ is a Gaussian variable centered on
zero and of variance (d&%), = I'Atii. The above equations
account for the evolution of the state under the sole effect of
atom losses. One should then implement the evolution under
the Hamiltonian (9), which amounts to a simple rotation of the
Wigner function in phase space and acts independently on C
and R [17]. Finally, one can compute the long term evolution
iteratively following the procedure above, knowing, at each
time interval Af, the number of atoms lost in each cell, M;,
from which d£ is computed.

C'=cC

and

V. EVOLUTION OF THE CORRELATION MATRIX

Equation (15) shows that the evolution of the correlation
matrix is the same for all possible quantum trajectories, and
general statements can be made. Let us first consider a very
slow mode such that one can ignore the free evolution. Then
C, stays at zero during the evolution and time integration of
Eq. (15) on long times gives

Cuzi(t)/(1—e™ ), Cp~(1—e)/[4a®)]  (17)

where 7i(t) = ii(t = 0)e~T! is the time-dependent mean atom
number per cell. The system thus goes towards a state
of minimal uncertainty, as expected, since more and more
information is acquired on the system. Let us now consider
the other limit of a mode of very high frequency. Then the
free evolution of the system ensures, at any time, Cj» >~ 0
and the equipartition of the energy between the two degrees
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of freedom. Thus A;Cy; =~ ByCyp =~ (E.}/2 where (E;) =
ArCyy + BiCy is the contribution of the correlation matrix
to the energy. We then find

dl{Ec) /(hex)]
dt

where I'egs = I'/+/1 +4mgp/ (h2k2). Togr depends on time via
the exponential decrease of p due to losses. At long times,
(E¢)/(hay) goes to 1/2, such that the state of the system,
as long as only the matrix C is concerned, evolves towards
the ground state. If one assumes the excitation is initially in
the phononic regime, however, we show in Appendix B that
(E.) approaches hw, only once the decrease of p has already
promoted the excitation to the particle regime. Thus phononic
excitations cannot reach the quantum regime. The situation is
different if the decrease of 5 is compensated by the following
time dependence of g:

g(t) =gt =0)e"". 19)

Then I'y; and @, are constant and an excitation lying in the
phononic regime stays in the phononic regime during the whole
loss process and, as long as the C matrix is concerned, is
cooled to the ground state. In the following, we will assume g
is modified according to Eq. (19).

= Cen{~[(Ec)/(ho)* +1/4},  (18)

VI. AVERAGING OVER TRAJECTORIES

If the loss events are not recorded, then only the quantities
averaged over all possible trajectories are meaningful. If the
Wigner distribution is initially centered around zero, it will
stay centered at zero. Let us investigate its evolution over a
time At. For a given quantum trajectory, i.e., a given value d§,
the losses modify the correlation matrix according to Eq. (15)
as well as the center R, which acquires the nonzero value
R = —d&(1 — Cyy/n; —Cy2/R). One then has

2 2
(), (t + A1) = (nF)(t) — T At/aCPy + dg2(1 _ (”__*))

n
(20)
and
(62)(t+A1) = (B3\O)+T At/ii(1/4 — C) + (d&Cra /i),
(21

where the subscript st specifies that this holds for a single
trajectory. Averaging over all possible trajectories, we then
find, using (d&?),, = ' Atii, that losses modify the variances
according to

(ng)t + At) — (ng)(t) = —2T At{ng)(t) + T Ata(t)  (22)
and
(02)( + Ar) — (67)() = T At/ (4n). (23)

As expected, Egs. (22) and (23) are equal to those obtained
using a master equation description of the loss process [1,18].
Due to the diffusive process experienced by R, an increased
rate in both equations limits the decrease of the mode energy.
For phonons, and assuming the loss rate is small compared
to the mode frequency, we show in Appendix C that the
temperature asymptotically goes towards gpg(t)/2.
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This value of the asymptotic temperature T, is particular
to the case of a homogeneous gas with a coupling constant
evolving according to Eq. (19). For constant g the asymptotic
temperature is T, = gp [1,18]. For a gas trapped in a harmonic
potential we expect T, to scale as gp,, where p, is the peak
density. The proportionality factor has not been derived yet,
but since the averaged density is smaller than p,, one naively
expects that T, is smaller than gp,. Experimentally 7, has
not been identified, while temperatures as low as 0.25 gp, have
been reported for a harmonically confined gas [2].

VII. USING INFORMATION RETRIEVED FROM LOSSES
DETECTION: QUANTUM FEEDBACK

If the losses are recorded, such that at each time interval
At the values M; are recorded, the trajectory followed by the
center of the Wigner distribution, R, can be computed exactly,
and the heating associated to the diffusion process seen in
Eqgs. (23) and (22) can be compensated for. One strategy
is to perform, during the whole time evolution, a quantum
feedback on the system, based on the knowledge acquired via
the atom losses, in order to prevent the center of the Wigner
distribution from drifting away from the phase-space center.
Let us here, as an illustration, assume one is interested in a
given mode k,c. The most simple back action is to submit
the atomic cloud to a potential V(x) = A(t)cos(kx), where
the computed amplitude A(¢) depends on the recorded history
of the losses. Such a potential could be realized, for instance,
using the dipole potential experienced by atoms in a laser field.
The cosine modulation of the laser intensity can be realized
using an optical lattice, or using a spatial light modulator.
The contribution to the Hamiltonian of this potential is
Hy, = A(t)\/N /2 .. In order to counteract the diffusion
process of R due to the loss process, one could adjust A(t)
such that the feedback Hamiltonian is

Hp = —hv(Bi.c)fike (24)

where, at each time interval, (6 ) is computed by integrating
the equations of motion including the effect of losses, the free
evolution, and the feedback process. This Hamiltonian acts
as an active damping, the damping rate v preventing &; from
drifting far from the phase-space center. The free-evolution
Hamiltonian, by coupling the two degrees of freedom, will
ensure that neither & nor ny drifts away. For a large enough
damping rate v, the contribution of R to the energy of the
mode is expected to be negligible compared to the contribution
of the covariance matrix C and, according to Eq. (18), one
expects to reach the ground state. We present numerical results
illustrating such a scenario below.

Before presenting numerical results, let us identify the
relevant quantities governing the dynamics. Introducing the
reduced variable 7i; = i~ 1/2n; and 8, = 7i'/26y, as shown in
Appendix D, we find as expected that the cell size §x drops
out of the problem and, provided time is rescaled by 1/T,
the dynamics of the mode of wave vector k is solely governed
by the dimensionless parameters wy / T, i*k?/(mgp)and v/ T.
The relevant measurement signal, for the time interval Az, is
then My = ,/Z,INmfdxm(x)cos(kx), where Ny is the total
atom number and m(x) is the number of lost atoms per
unit length. Figure 3 shows the phase-space evolution of a
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FIG. 3. Evolution of the phase-space distribution for a single
trajectory from time ¢+ =0 to 8/T in the absence of feedback.
The mode k = 0.1./mgp/# is considered, with the initial temperature
T; = 1.1gp and a loss rate I' = a;/400. Scattered blue points give
the evolution of the center R. We verified that Cj; stays small while,
at any time, A,Cy; ~ ByCy» =~ E_/2, as expected for such a large
ay. The black solid circle, of radius ./Ec, represents the final rms
width of the Wigner function. For comparison, the red dashed circle,
of radius +/E, where E is the energy obtained after averaging over
100 trajectories, gives the rms width of the averaged phase-space
distribution. The coordinates are given in the frame rotating according
to the free evolution: namely, the plotted quantity is R = (i,0;)
= RN )R [17].

single quantum trajectory, for a mode lying in the phononic
regime, in the absence of quantum feedback. Figure 4 shows
the time evolution of the energy in this mode, averaged over
quantum trajectories, both in the absence and in the presence
of feedback. In the absence of feedback, the energy converges
towards the expected value gp/2. If the feedback scheme is
implemented, we observe that the energy in the mode reaches
much smaller values. For a large feedback strength v, the drift
of the center is almost completely prohibited and the mode is
cooled to its ground state.

VIII. DISCUSSION

In conclusion, we proposed a description of the effect of
losses in a many-body system through a Monte Carlo wave-
function approach, and we showed that quantum feedback by
monitoring losses could be used to cool down selected modes
of a quasicondensate to vanishing temperatures. This work
could be extended in many directions. In view of practical
implementation, the sensitivity of the feedback mechanism
on the exact knowledge of the system parameters should be
investigated. Assuming, as is done in this paper, the system
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FIG. 4. Simulation of the loss process for different feedback
strengths v. Plotted is the time evolution of the energy in the mode &,
averaged over 500 quantum trajectories, the parameters being those
of Fig. 3. Without feedback the energy converges to g5 /2 (horizontal
dotted line); lower energies are obtained with feedback, and the
ground state, of energy fiw,/2 (horizontal dashed line), is reached
for large enough v.

parameters are known exactly, the larger the feedback strength
the better the cooling. In the presence of uncertainties, a
too large feedback strength will induce heating as it will
not match the exact dynamics. Additionally, in most exper-
imental situations the quasicondensates, trapped in a shallow
longitudinal potential, are nonhomogeneous. Then, the effect
of losses depends on the spatial coordinate. Moreover, the
linearized description should use, instead of the sinusoidal
modes, the spatial density profiles of the Bogoliubov modes,
which are not necessarily orthogonal. These issues complicate
the picture. Losses might then induce correlations between
modes [7]. Another concern is the coupling between modes,
which exists beyond the linearized approach considered here.
Such coupling is present, for instance, in the Gross-Pitaevskii
equation, which is a classical field approximation of the Lieb-
Liniger model. However, long-lived nonthermal states with
different Bogoliubov modes experiencing long lifetimes [19]
have been reported, which indicates small coupling between
modes and the possibility to cool down a particular Bogoliubov
mode. Finally, note that this cooling process is not limited to
one-dimensional systems.
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APPENDIX A: EFFECT OF LOSSES ON
THE WIGNER REPRESENTATION

Here we consider a given mode and we will omit the
subscripts k,r to make our notations lighter. We also introduce
ot = n/(I'At) and go = My /(I't). Equation (12) writes, in
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representation n,

W(n,0) = 1 f du(u + n|D|u — n)e= 49, (A1)
g

The effect of losses given by Eq. (11) transforms the Wigner
function of the mode to

Win+ Mi0) = 55—

« g~ (1—dotw)?/(da?) ,—(n—go—u)*/(40*)_

fdu(u + n|D|u — n)e %"
(A2)
Injecting (u + n|D|u —n) = [ d6W(n,6)e’?*, we then find
Eq. (13).

Let us now consider a Gaussian state. Its Wigner function

writes

o~ 3[(X—RYB(X—R)]

W(n,0) = = (A3)

et

where X = (;), R is the center of the distribution, C is

the covariant matrix, and B = C~!. The transformation in
Eq. (13) transforms the Gaussian state into a new Gaussian
state centered on R’ and of covariance C’. The convolution on
the axis 8 does not change R and changes C in C according to

) 0 0
C=C+ )
0 =

Let us now consider the effect of the multiplication of W by
1
e~ 5T~ a5 well as the shift along n by M. From Eq. (A3),

we find
B 1/62 0 v B
~\o 0

o) =l 67)

where B = C~! and B’ = C’~!. From Eq. (A5), we obtain

c=|1ave(M° _]c
=10 o >

Injecting o = /i /(I' At) and expanding to first order in Az,

one gets
; At C]] 0 -
C ~|Id— — C.
n C]g 0

Here we used the fact that Cy; = Cy; and Cy, = Cy5. This
equation also takes the form of Eq. (15). Let us now consider
the center of the distribution. Multiplying the left- and

(A4)

(AS)

and

(A6)

(A7)

(AB)
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right-hand parts of Eq. (A6) by C’ and injecting Eq. (A8),
we deduce

= ra-TR(Cn ][ ()] ()

(A9)

Neglecting terms beyond first order in At, we obtain

R=R+ (ﬂ - Em) (g“) - (”g") (A10)
n n 12

Injecting My = ' A{ny) + d&, we recover Eq. (16).

APPENDIX B: EVOLUTION OF E; FOR CONSTANT g

We assume @y > I' such that Eq. (18) is valid. Note that the
condition ey > I' also ensures adiabatic following, namely,
the time evolution of the Hamiltonian parameters A; and By
preserves the ratio E¢/(hwy), such that Eq. (18) holds both
for a constant g and a time-varying g. Let us introduce the
variable y = % and rewrite Eq. (18) in the form

Th2k2
8mgp
(BI)

&
2gp + h*k2/(2m)

y’(r)zyrll - (1+y)] +

For y = 1 we see that y'(#) = 0 and therefore y(t) has to be
an increasing function at y = 1. It follows that for all initial
conditions y(0) = 1 the energy E stays greater than g . This
implies in particular that, as long as an excitation stays in
the phononic regime (i.e., its frequency stays much smaller
than gp/h), it stays in the high-temperature regime, namely,
Ec/(hoy) > 1.

APPENDIX C: ASYMPTOTIC TEMPERATURE
FOR NONRECORDED LOSSES

We consider a mode k (we omit the index r for simplicity)
and we assume averaging is done over trajectories. Then
evolution of the variances of n; and 6; due to the loss process
is given in Egs. (22) and (23). Let us consider the quantity
E = (H,)/(hey). We assume the loss rate is small enough
so that the free evolution under the Hamiltonian (9) ensures
equipartition of the energy between the two quadratures,
namely, at each time Ay (n?) = By(6?) = E /2. Note that this
is equivalent to the condition of adiabatic following. Then the
modification of £ under the loss process is

1dE
—— =—E+(K+1/K)/4

I' dt €D

where K = 4n Ay /wy = 2n./ A/ Bg. The evolution under the
Hamiltonian (9), provided the adiabatic following condition is
satisfied, does not modify E. Thus Eq. (C1) gives the total time
evolution of E, and it is valid both when A, and By depend on
time and when they do not depend on time. In this paper, we
consider the situation given by Eq. (19), where the exponential
decrease of p is compensated by a time dependence of g such
that K is time independent. Then Eq. (C1) evolves at long
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times to

E T (K +1/K)/4. (C2)

For phononic modes, for which k* « gp, one has K ~

2./gp/k. Then E goes to ./gp/(2k) at long times, which
gives

1
E — —gp. (C3)

t—oo 2
This energy is very large compared to wy. Thus the excitation
lies in the high-temperature limit and its temperature is T ~
E ~ gp/2. Note that, in the case g is constant, then K depends

on time and solving Eq. (C1) with the time-dependant value of
K gives that E converges to gp = gpoe ', as derived in [1].
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APPENDIX D: EQUATIONS IN REDUCED VARIABLES

Here we derive the evolution equations for the reduced
variables iy = ny " *ny and 6 = ngy/*6. We denote R and €
the associated mean vector and covariant matrix. Taking into

account the exponential decrease of ng, Egs. (15) and (16) give
_C‘Izj +_C“ _2_6“1612 i ®1)
€ —Ch+37—Cn

B — Bt dE Cn—1 1 30 At{fig) D2)
=R+ds Cs 2\-rat@) )

Here d€ = My — " At (fix) where My = M/ /no. The statis-
tic of trajectory implies that H} follows a Gaussian statistic
with (M) = " At{fix) and VarMy = I"6t.
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Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates
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‘We investigate the cooling produced by a loss process nonselective in energy on a one-dimensional (1D) Bose
gas with repulsive contact interactions in the quasicondensate regime. By performing nonlinear classical-field
calculations for a homogeneous system, we show that the gas reaches a nonthermal state where different modes
have acquired different temperatures. After losses have been turned off, this state is robust with respect to
the nonlinear dynamics, described by the Gross-Pitaevskii equation. We argue that the integrability of the
Gross-Pitaevskii equation is linked to the existence of such long-lived nonthermal states and illustrate this by
showing that such states are not supported within a nonintegrable model of two coupled 1D gases of different
masses. We go beyond a classical-field analysis, taking into account the quantum noise introduced by the
discreteness of losses, and show that the nonthermal state is still produced and its nonthermal character is even
enhanced. Finally, we extend the discussion to gases trapped in a harmonic potential and present experimental
observations of a long-lived nonthermal state within a trapped 1D quasicondensate following an atom-loss

process.
DOI: 10.1103/PhysRevA.96.013623

L. INTRODUCTION

Ultracold temperatures are routinely obtained in dilute
atomic gas experiments using evaporative cooling. Here, an
energy-selective loss process removes the most energetic
atoms; provided these atoms have a high enough energy,
rethermalization of the remaining atoms leads to a lower
temperature [1]. Naively, one expects evaporative cooling to be
highly inefficient in (quasi-)one-dimensional (1D) geometries
where the transverse degrees of freedom are suppressed and the
atoms mainly populate the transverse ground state. Evapora-
tive cooling then only relies on longitudinal dynamics, and we
expect its efficiency to be poor, particularly for the very shallow
longitudinal confinements realized experimentally. Despite
this issue, cooling deep in the 1D regime to temperatures
as low as one-tenth of the transverse energy gap has been
reached experimentally in Bose gas experiments [2,3]. This
has allowed the realization of 1D quasicondensates, where
the repulsive interactions between atoms strongly suppress
the density fluctuations and low excitations of the gas are
collective density waves, also called phonons [4]. The nature
of the cooling mechanism in such 1D geometries is still not
well understood. However, its investigation is essential in
order to properly characterize both the equilibrium and out-
of-equilibirum properties of these atomic clouds, especially
with a view towards their application in quantum simulation
experiments [5].

Recently, Ref. [6] theoretically considered a 1D quasicon-
densate subject to a simple energy-independent loss process
and showed, within a linearized approach where excitations
are treated independently, that cooling was possible. More
precisely, for a given mode, losses amount to a decrease of the
mode’s energy due to the decrease of both the mean density
and the amplitude of density fluctuations. Free evolution,
if fast enough, ensures equipartition of energy between the
mode’s two quadratures, such that one can assign an effective
temperature to the mode, so losses consequently amount
to a reduction of the mode’s temperature. The temperature

2469-9926/2017/96(1)/013623(9)
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decrease predicted by this linearized theory was observed in an
experiment probing the low-energy modes of a quasiconden-
sate undergoing a continuous and homogeneous outcoupling
process [7]. However, studies for homogeneous systems show
that the cooling rate is expected to depend on the mode energy,
with higher-energy modes cooled at a slower rate than low-
energy excitations. Thus, as long as the linearized approach
is trusted, losses should produce a nonthermal state (i.e., a
state that is not described by the Gibbs ensemble). Typically,
this state is not guaranteed to be long lived, since coupling
between modes a priori redistributes energy, leading to global
thermal equilibrium. However, 1D Bose gases with repulsive
contact interactions are peculiar since they are described by
the Lieb-Liniger Hamiltonian, which belongs to the class of
integrable models. Relaxation of observables towards their
values predicted by the Gibbs ensemble is not granted in such
systems [8,9]. Consequently, the nonthermal nature of the state
produced by the loss process could be robust against coupling
between modes. This might be the origin of the nonthermal
nature of the long-lived 1D quasicondensates produced by
evaporative cooling and reported in [10,11].

In this article, we go beyond the linearized approach and
show that a simple uniform loss process realizes long-lived
nonthermal states of 1D quasicondensates. We numerically
investigate the simple case of homogeneous gases and describe
the quasicondensate within a classical-field approach, its
dynamics being governed by a nonlinear partial differential
equation: the Gross-Pitaevskii equation with an additional
term taking losses into account. We believe the realization
of long-lived nonthermal states is related to the integrability
of the system, supported by numerical simulations showing
that the system thermalizes towards the Gibbs ensemble when
integrability is violently broken. We then present numerical
studies showing that long-lived nonthermal states are also
produced if one incorporates the shot noise associated with
the loss process, due to the discreteness of losses, namely the
quantum nature of the atomic field operator.

©2017 American Physical Society



JOHNSON, SZIGETI, SCHEMMER, AND BOUCHOULE

Finally, we discuss the case of a gas trapped in a harmonic
potential. Both the excitation spectrum and the form of
the excitations differ from that of a homogeneous system,
and hence one cannot directly extend the results for the
homogeneous system to the trapped case. We nevertheless
argue that we still expect a nonthermal state to be produced by
the loss process. We present recent observations of long-lived
out-of-equilibrium states on our experimental atom-chip setup
that could be related to the conclusions of our theoretical study.

II. LINEARIZED APPROACH FOR HOMOGENEOUS
SYSTEMS WITHIN THE CLASSICAL-FIELD APPROACH

We first recall results obtained within the linearized
approach in the classical-field framework. For this purpose,
consider the simple case of a 1D Bose gas confined in
a box of length L that is initially at thermal equilibrium
at temperature 7; and mean density p;. We use the
density-phase representation of the atomic field ¥ = ,/p e’
and denote p, the (time-dependent) mean density. Density
fluctuations ép = p — pp are small in the quasicondensate
regime and phase fluctuations occur on long wavelengths;
therefore, as a first approximation one can linearize the
equations of motion. Expanding # and Jp on sinusoidal
modes, 8 = Y ;.o v/2/L[0 cos(kz) + B sin(kz)] and §p =
> k-0 2/ L8pcx cos(kz) + Spsi sin(kz)], we find that 8;; and
8pji are conjugate variables (i.e., [8pjk,04] = 18j-6¢4) and
that each mode is governed by its own Hamiltonian

Hji = Aidpjy + Bibj. (1)

where the coefficients Ay = g/2 + i%k%/(8mpo) and By =
hzkzpo,f@m) depend on py. Here j = ¢ or s and k takes
discrete values 2nm /L, where n is a positive integer. Within
the classical-field approach, the thermal state of the mode jk
corresponds to a Gaussian distribution of 6 and p . satisfying
the equipartition relation A (8p%) = By (67,) = kpT /2.

Now consider the uniform loss of atoms at rate I" and its
effect on a given mode jk. Losses decrease pp at the rate I'
and, ignoring at first evolution under the Hamiltonian (1), 8o jx
is decreased at the same rate—i.e., ddpji/dt|L = —T'8pjy,
where the symbol L indicates that we are only considering
the effect of losses. Thus the losses decrease the energy
in each quadrature, due both to the decrease of dpj; and
the modification of A; and B;. If the loss rate is small
compared to the mode frequency wy = 2+/ Ay By, one expects
adiabatic following under the modification of Ay and By. In
particular, equipartition of energy between the two conjugate
variables holds at all times. Then, the quantity £ = E /(fay)
is unaffected by the modification of A; and B; due to the
decrease of pp, and its modification comes solely from the
decrease of épj due to losses. We finally find

dE
dt
Our assumption of energy equipartition allows us to associate

a temperature kpT; = E; to the mode, and so Eq. (2) can be
rewritten as

=-TE. (2

Ti(t)  _ppex(t)

T w0y )
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Note that the form of Hamiltonian (1) is not particular to
the case of a homogeneous gas, provided 3o, ; and 6 ; are
replaced by the proper quadratures of the Bogoliubov mode,
corresponding to density and phase fluctuations, respectively,
and Ay and By take values which depend on the Bogoliubov
wave functions [12]. Thus Egs. (2) and (3) are general,
provided the adiabatic following condition is fulfilled. Note
that, in Eq. (3), changes of the parameters A; and By only
contribute to the temperature evolution via the ratio ‘;’:—((’0)),
while the exponential prefactor amounts to the extra cooling
due to the loss-induced squeezing of the density-fluctuation

quadrature. For the particular case of a homogeneous gas,

Eq. (3) gives
dTy 3 + K2k2/(2pomg)
TR/ 2pema)

dt

Losses thus lead to the cooling of each mode, but at different
rates explicitly dependent on k. In the phononic regime
k <« /mgpo/h, the cooling rate is 3I'/2, compared to I’
in the particle regime k 3> ,/mgpo/h. Therefore, within the
linearized approximation, a uniform loss process produces a
nonthermal state, where different modes correspond to differ-
ent temperatures. Such a state can be viewed as a generalized
Gibbs ensemble [13], where the different conserved quantities
are the energies in each linearized mode.

(C)}

III. NONLINEAR CLASSICAL-FIELD APPROACH

Beyond the linearized approximation, but still within the
classical-field approach, the system’s evolution in the absence
of loss is given by the Gross-Pitaevskii equation for the atomic
field ¢

_ haw " %y

N T 2m 022
This equation contains coupling between the linearized modes
studied above, which acquire a finite lifetime [14,15]. In a
generic system, such coupling redistributes the energy between
the modes such that the system reaches the Gibbs ensemble
where all modes share the same temperature. However, the
Gross-Pitaevskii equation for a 1D homogeneous gas leads to
integrable dynamics and relaxation towards thermal equilib-
rium is not granted. Consequently, the out-of-equilibrium state
produced by the atom-loss process might be robust against this
nonlinear mode coupling.

To check whether the nonthermal state survives coupling
between modes, we numerically evolved stochastic samples of
{v¥r(z)} from an initial thermal state at temperature 7; and den-
sity p; according to the dissipative Gross-Pitaevskii equation
[Eq. (5) with the additional loss term 3 /3t = —i["vr/2]. Each
sample [i.e., each single stochastic realization of the initial field
{¥(z)}] was constructed using the linearized approach above
and the associated thermal Gaussian distribution of the conju-
gate variables 8, and §p jx. Normalizing ¥ by ,/p; and lengths
by & = h/,/mgpj, the initial statistical properties of y» depend
on the single parameter y = T;/ T,,, where T., = hip;/pig/m
[16,17], while the subsequent time evolution only depends
on I'/(p;g), provided time is normalized to £ /(p;g). After a
certain time ¢, the quantities 6p;; and 6 are extracted, from

+ gy Py ()
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FIG. 1. Time evolution of the mode energy during the loss process
('t < 1), and subsequent dynamics after the loss rate is set to zero,
for modes of wave vectors k& = 0.5 (red, lowest curve), 2.5 (black),
and 6 (green, highest curve). The dashed and dotted lines are the
expected behavior for phonons (e~*"/2) and high-energy excitations
(e~™™), respectively. Here x = T; /(p;/ipig/m) = 0.05 and the loss
rateis T =2 x 1073 p; g /h.

which we compute the energy in each mode. Figure 1 shows
the time evolution of the mean energy, using an ensemble of
10 stochastic samples, in three different Bogoliubov modes of
wave vectors k = 0.5/&;,6/&;,and 2.5 /§;, lying respectively in
the phononic regime, the particle regime, and an intermediate
regime. Here x = 0.05 and the loss rate I’ = 2 x 1073 p; g is
small compared to the frequencies of the modes analyzed.
We verified that equipartition between the two quadratures is
fulfilled within a few percent during the whole time evolution,
confirming that the energy in each mode can be associated
with a temperature. We find that, for modes lying in the
phononic regime and in the particle regime, the results are
in good agreement with the linearized prediction given by
Eq. (4) and the different modes reach different temperatures.
This nonthermal situation produced by atom loss is stable over
long times; after the loss process has stopped, the temperature
of each mode is stationary over times as large as 103/ /p; g.

Such long-lived nonthermal states are probably only possi-
ble due to the integrability of the 1D Gross-Pitaevskii equation.
Nevertheless, the long-lived nature of the state is not obvious,
since the energies in the linearized modes are not conserved
quantities. Lifetimes of the linearized modes are finite [14]
and nonthermal distributions inside the phononic regime show
good thermalization [18]. The long lifetime of the nonthermal
state generated here is probably due to the poor coupling
between modes lying in the phononic and particle regimes,
respectively. The quantum counterpart might be viewed as a
form of many-body localization in momentum space.

IV. EFFECT OF INTEGRABILITY ON NONTHERMAL
STATE LIFETIME

We investigated the role integrability plays in supporting
these long-lived nonthermal states by considering a closely
related nonintegrable system. Specifically, we coupled a
second atomic field ¢, consisting of particles with mass
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m’' #£ m, to the first field via coupling constant g, which is
described by the evolution equations

ayr B 2‘;,

ihar = —ga— +@loP +glvPy,  (6a)
dp B .

it =~ Gl + 2P, (D)

As before, we constructed samples of an initial thermal state
by identifying the two Bogoliubov modes for each wave vector
k, and stochastically sampling Gaussian distributions of these
modes (for details, see Appendix A). We then evolved the
system in the presence of losses at the same rate I" for both
species until a substantial fraction of atoms was lost, and
subsequently evolved the system further without the loss term.
The energy in each mode was then extracted via the linearized
approach. As illustrated in Fig. 1, when the two fields are
coupled (g # 0) the modes evolve towards an equipartition of
energy over a long propagation time scale. In contrast, within
the uncoupled system (g = 0) the energies of the modes remain
distinct.

There are many ways to break the integrability of the
system. In the model of two gases with different masses,
the integrability is violently broken since a two particle
collisional event does not preserve the set of momenta. A
gentler way to break the integrability would be to consider two
gases with atoms of the same mass, but with an interspecies

0.18 T T T T T
&.‘ﬂh A f""‘\, AT Wby =T
012 A A ‘Mu-n“.‘.-:.—m."ﬂ-'.*v« ay -‘M\».a‘».
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FIG. 2. Time evolution of the mean energy of modes of wave
vectors k = 0.3, /mgp; /h (solid lines) and k = 6.0, /mgp; /h (dashed
lines), where p; is the initial density of each species, in the coupled
(fat blue lines, § = 0.4g) and uncoupled (thin red lines, § = 0) cases.
The loss process is turned off at time t+ = 2/T" and shown is the
subsequent evolution of the isolated system. The modes in the two
uncoupled gases retain their respective energies after dissipation has
been turned off to form a long-lived nonthermal state as above, while
the modes in the coupled system relax towards an equipartition of
energy. This highlights the role of integrability in the establishment
of the long-lived nonthermal configuration. Here results are obtained
by averaging over 10 samples, and for each sample we average the
mode energy over a k interval of 0.2, /mgp; /h. The parameters of the
simulation are T; /(p;/figp; /m) = 0.04, m’/m = 3, and AT /(p; g) =
4 %1073

013623-3



JOHNSON, SZIGETI, SCHEMMER, AND BOUCHOULE

coupling Z different from the intraspecies coupling g. Here,
any two-particle collision does preserve the set of momenta.
This system is nevertheless nonintegrable. However, our
simulations of the classical-field version of this system did
not show any relaxation on the time scales shown in Fig. 2.

V. EFFECT OF QUANTUM FLUCTUATIONS
ASSOCIATED WITH THE ATOM-LOSS PROCESS

The above treatment does not take into account the
quantized nature of the atomic field, i.e., the discreteness of the
atoms. In particular, it ignores the shot noise in the loss process,
which introduces additional heating and therefore limits the
lowest attainable temperature. A description that accounts for
the discreteness of the losses is provided by the stochastic
Gross-Pitaevskii equation
2 32

r
thdy = (—ﬁa—zzlé’erglwlzw—fEW)dﬂrdé, (M

where (d&*(z)d&(z")) = I'dt 6(z — 7')/2. This equation can
be derived by converting the master equation for the system
density operator to a partial differential equation for the Wigner
quasiprobability distribution. After the third- and higher-order
derivatives associated with the nonlinear atomic interaction
term are truncated (an uncontrolled approximation, but one that
is typically valid for weakly interacting Bose gases, provided
the occupation per mode is not too small over the simulation
time scale), evolution of the Wigner distribution takes the
form of a Fokker-Planck equation, which can be efficiently
simulated via Eq. (7). There exists a formal correspondence
between the quantum field v¥/(z) and ¥ (z): averaging over
solutions to Eq. (7) correspond to symmetrically ordered
expectations (for more details, see Appendix B; an alternative
derivation is provided in [6]).

As shown in Appendix B, linearizing Eq. (7) in density
fluctuations and phase gradient gives an independent evolution
of each mode. Modes with frequencies much larger than
the loss rate remain thermal; however, their temperatures
depend on the mode energy and have the following long-time
behavior: Tpnonon , ;_voo po(t)g/kp for phononic modes and

242
Tparl t—»zoo %ﬁ
to pure classical-field predictions, the temperature within the
particle regime depends on k. Moreover, the ratio between Tp,
and Tphonon-:

for particle modes. Note that, in contrast

T R o
Tphonon =00 2gp; I't '

is much larger than the one predicted by a pure classical-field
theory. Thus the effect of the shot noise associated with the
discreteness of lost atoms amplifies the nonthermal nature of
the state.

In order to test whether the above predictions including
quantum noise are robust beyond the linearized approach,
we numerically simulated the evolution given by Eq. (7).
The initial thermal state, deep in the quasicondensate regime,
was sampled stochastically by using the linearized approach
and taking into account quantum fluctuations (which is
equivalent to sampling the Wigner function for a thermal
state [19,20]). These samples were then evolved according to
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FIG. 3. Temperature of each mode, obtained from the stochastic
Gross-Pitaevskii equation, as a function of the wave vector k of
the mode, for different evolution times: I't = 0 (dotted green line),
't = 2.5 (dashed blue line), and I't = 5.3 (solid fat red line).
The initial temperature is kg T;/(p;g) = 3. As atoms are lost, the
gas is driven out of equilibrium and 7; acquire a k dependence.
For phononic particles, we observe that T, tends towards gpy(t),
as expected from the linearized approach. The smooth red solid
line is the asymptotic result of Eq. (8), valid at long times for
excitations in the particle regime, computed for I't = 5.3. Parameters
of the simulation are kzT;/(fipin/gpi/m) =3 x 1073, kT /(gpi) =
2 x 1073, and mg /(5% p;) = 1075,

Eq. (7) and the energy E} of each Bogoliubov mode computed
at each time (with averages over trajectories yielding (Ey)
and the corresponding temperature T = fwy/{kp In[(E; +
howy [2)/(Ey — hay /2)]}). Figure 3 shows T as a function of
k at three distinct times and reveals that a nonthermal state is
realized with a k-dependent temperature. At small k£ we find, in
agreement with the linearized approach, that the temperature
converges towards pp(f)g at long times. At long times and
large k, predictions from Eq. (8) are recovered.

VI. LONG-LIVED NONTHERMAL STATES
IN HARMONICALLY CONFINED 1D GASES

The generation of a state which is out of equilibrium raises
concerns about experiments probing one-dimensional Bose
gases, where this nonselective cooling scheme is expected
to occur. In standard experiments, atoms are confined in a
harmonic potential, which complicates the picture. To zeroth
order in fluctuations, the density profile of the gas is given
by the Thomas-Fermi inverted parabolic shape [21,22]. At
finite temperature, excitation modes above this Thomas-Fermi
profile get populated. If the loss rate is sufficiently small,
one expects that each mode adiabatically follows the changes
of the Thomas-Fermi shape, such that each mode can be
treated independently and, within the pure classical-field
approximation, Eq. (3) is still valid, where k is now a positive
integer that indexes the mode. The frequency of phononic
modes, i.e., modes of energy much smaller than the chemical
potential p, are well approximated by w; = v /k(k + 1)/2,
where v is the harmonic trapping frequency [23]. Thus, for
modes which stay within the phonon regime during the entire
loss process, Eq. (3) predicts that their temperature decreases
ase 1,
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FIG. 4. Results of the two thermometries we performed on the experiment. (a) Atom number fluctuations. Fitting the central region of the
cloud, i.e., the high atom-number part, (red line) gives a first temperature T, = 80 nK. However, the expected profile from this temperature
[also the red curve on (b)] lies well below the experimental data. A second temperature 7,,, = 140 nK is found by fitting the profile with the
equation of state (solid green line). By plotting the expected atom number fluctuations from 7T, on (a), the prediction is in good agreement
with the small atom number region. That is, the center of the cloud appears to be at a different temperature than the edges. The close to
50% discrepancy is well beyond the uncertainty we have on the temperature measurements, which is around 10%. (c) Data showing that this
temperature difference is stationary over time: we observed a long-lived nonthermal state.

The description of higher-energy modes, called particle
modes, is not simple since they explore regions where the
Thomas-Fermi density vanishes and the quasicondensate
approximation fails. It is reasonable, however, to believe that
the energy spectrum at energies much larger than p is close
to the energy spectrum of free particles, so that frequencies
of these modes are equally spaced, separated by v. Since the
chemical potential decreases during the loss process, many
excitations initially in the phononic regime are transferred to
the particle regime. Let us consider such an excitation. Its
frequency goes from w; =~ kv/ /2 before the loss process [24]
to about kv at the end of the loss process when it lies in
the particle regime. The ratio w(#5)/wi(0) is thus larger than
one. According to the classical-field prediction of Eq. (3),
one therefore expects these excitations to attain a higher
temperature than those lower excitations staying within the
phonon regime.

The effect of shot noise on the loss process is not easy to
treat for a trapped gas. However, we expect that, as in the
case of a homogeneous gas, the quantum noise will amplify
the nonthermal behavior of the system, so the temperature
differences between modes could be even larger.

VII. EXPERIMENTAL OBSERVATION
OF A LONG-LIVED NONTHERMAL STATE

Observing the nonthermal nature of the gas experimentally
requires the ability to address modes of different energies
independently. This is a priori not an easy task for gases
confined in a box since all modes overlap spatially. However,
since the atomic clouds in typical experiments are confined
longitudinally in a slowly varying harmonic potential, there
is some spatial separation of modes of different energy. At
very low temperatures, thermal excitations of energy larger
than ppg give the density profile “wings” that extend beyond
the Thomas-Fermi inverted parabola of peak density p,. In
contrast, low-energy excitations lying in the phononic regime

do not extend beyond the Thomas-Fermi profile, but are
responsible for long-wavelength density fluctuations in the
central region of the cloud. The density profile of the gas is
thus most sensitive to high-energy excitations. Low-energy
excitations, on the other hand, can be probed by investigating,
within the Thomas-Fermi profile, atom-number fluctuations
(8N?), in pixels of length A much larger than the healing
length & [25].

Experimentally, we prepare clouds of ®’Rb atoms by
radio-frequency evaporation in our atom-chip experiment, as
described in [26], and we record a set of density profiles taken
under the same experimental conditions. The longitudinal
trapping frequency is 6.2 Hz, while the transverse confinement
is 1.9 kHz. Atoms are polarized in the |F = 2,m = 2) hy-
perfine ground state, where the interactions are characterized
by the s-wave scattering length a = 5.2 nm. Since the local
density approximation is well fulfilled longitudinally, the
equilibrium profile can be computed using the equation of
state for longitudinally homogeneous gases, p(u,T), where pt
is the chemical potential. Using the well-established modified
Yang-Yang equation of state [26,27], where the effective 1D
coupling constant is g = 2hw, a, the experimental density
profile is fitted for a temperature T,, = 140 nK (see Fig. 4).
We also extract atom-number fluctuations (8 N?) in each pixel
from the same data set, giving an independent temperature
measurement. Since A is both much smaller than the cloud
size and much larger than the healing length, the physics of
homogeneous gases is locally probed and thermodynamics
predicts (§N?) = kpT Adp/du [26]. In Fig. 4, we plot (§N?)
versus the mean atom number in the pixel. Fitting the large
atom-number region, corresponding to pixels lying inside
the Thomas-Fermi profile, with the fluctuation-dissipation
relation and the quasicondensate equation of state, we extract
a temperature 7y = 80 nK (as summarized in Fig. 4). The
difference between T, and Tj is a signature that the cloud is
out of equilibrium. We also confirmed that, after the radio-
frequency loss mechanism has been removed, this situation
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is stable over the cloud lifetime of about 1 s (Fig. 4). Since
the profile is more sensitive to high-energy excitations while
the density fluctuations are more sensitive to low-energy
excitations, the fact that Tj,; > Ty could be related to the above
quantitative study of homogeneous gases and the qualitative
arguments given for the trapped system. In the experiments
presented in [7], only low-energy excitations were probed and
consequently this nonthermal character was not revealed.

To conclude, we theoretically investigated the long-lived
nonthermal state produced by the nonselective removal of
atoms in order to cool a uniform one-dimensional Bose gas.
This dissipation drives the system out of equilibrium, with
different excitation modes losing energies at different rates.
This out-of-equilibrium character is robust against coupling
between modes introduced in the Gross-Pitaevskii equation
and is related to the integrable nature of the considered system.
We performed simulations of a two-species Bose mixture with
different masses, a nonintegrable system, and confirmed a
slow relaxation towards an equipartition of energy between
excitations. Truncated Wigner simulations that go beyond
the pure classical-field description and include the shot-noise
associated to the loss process due to the quantized nature of
the atomic field further confirmed the nonthermal nature of
the state produced by dissipation. Finally, we discussed the
relevance of our findings for experimental realizations of 1D
Bose gases trapped in a harmonic potential. From a theoretical
point of view, in the linearized classical-field approach, a small
temperature difference between modes of different energies is
indeed expected, and this effect could be amplified by the
presence of quantum noise. In our quasicondensate experi-
ments, we indeed have signatures of a nonthermal character
since different thermometries that probe different parts of the
excitation spectrum give substantially different temperatures.
However, a more careful and quantitative description in the
trap, perhaps via finite-temperature classical-field simulations
[28], is still required in order to draw firm conclusions on
the relation between these experimental long-lived nonthermal
states and our theoretical findings.

The study performed in this paper is particularly important
for experiments that use 1D gases for quantum simulations
and the investigation of out-of-equilibrium gases, which both
require a high degree of control over the initial system state.
The nonthermal character of the gas may not be visible if
observables do not access the high-energy part of the energy
spectrum, and so an experimenter may incorrectly believe the
gas to be in thermal equilibrium. Nevertheless, the nonthermal
nature of the gas may impact the subsequently observed
physics, and therefore must be accounted for in order to derive
correct conclusions from such experiments.
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APPENDIX A: BREAKING INTEGRABILITY:
TWO COUPLED 1D BOSE GASES

An example of a nonintegrable system is two quasiconden-
sates of different masses m and m’ coupled via an interaction
term of coupling constant g. Here integrability is broken by
two-body collisions involving an atom of each species, which
does not preserve the set of two initial momenta. Within the
classical-field approximation, this system is described by the
Hamiltonian

52
H= fdz—
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which yields the equations of motion (6). Within the density-
phase representation, we can write ¥ = ,/pe® and ¢ =
N/ . For sufficiently low temperatures, the repulsive in-
teractions result in very small density fluctuations and long-
wavelength phase fluctuations, such that one can linearize the
equations of motion in 8p, 873, 39/8z, and 38/3z, or equiv-
alently retain only second-order terms in the Hamiltonian,
which can then be diagonalized using a standard Bogoliubov
procedure. We give more details on this approach below.

Since Egs. (6) do not explicitly depend on z, different
Fourier components evolve independently of each other. Let us
consider the Fourier components of wave vector k = 2nw /L,
where n is a positive integer and L is the length of the box that
confines the gases. As for the single component case, we in-
troduce Fourier coefficients 8pcx = +/2/L [ dz 8p(z) cos(kz)
and 8ps; = V2/L [ dz 8p(z) sin(kz), and similarly for 83, 6,
and 6,. Each mode jk evolves independently according to the
quadratic Hamiltonian

g EZkZ ) 2 5
232 232
g, ko \c o  Wkipor
A Y 0
+(2 +8m’p0) Pﬂ;"‘ m Jjk

+20pjk6pPjks

(A2)

where j = c ors. This gives the following linearized equation
of motion:

2./Pobjk 2./Pabjk
9| dp; 8p;
ind p;x;’«_/po _r p;xh_/po , (A3)
at 2@9};‘ 24/,()09);;
8Pjk/ /Po 8okl \/Po
where
0 2mg+ZE 0 280
. e 0 0 0
=1
0 22 po 0 2pg+Lik
2k
0 0 _re 0
(A4)
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Symmetry properties of £ show that this operator has two
eigenvectors,

Ff Ff

. iF; iFy (45)

= ),
Ef ‘| B
iFy iFy
and

GY Gf

. iGy iGy 46)
i |~ 6|
iGy iGy

where F|",F; ,F, F; ,G7,G7,G5,G5 are real and satisfy
the normalization condition:

GG +G;Gf =1, (A7a)

FiF+FF=1. (A7b)
The vectors (F;",—iF; ,Fy,—iF;)T and (Gf,—iGy,
G§,—iG3)T are eigenvectors of £ of eigenergies —w, and
—wyp, respectively, which complete the basis. Expanding the

state (2,/Pofjk,8pjk//Po»2+/P0fjk:8fjk/+/Po)" on these the

eigenbasis of £ gives

2/pobjx = —F;Ti(a —a*)— Gfi(b — b*), (A8a)
8pjk//Po = Fy (a+a*)+ G (b+b"), (A8b)
2/pobjk = —F; i(a —a*)— GJi(b — b*), (AS8c)
8pjk//Po = F; (@ +a*) + G; (b +b"), (A8d)

where a and b are complex numbers satisfying
ihda/ot = hw,a, (A9a)
ihdb/dt = hwpb. (A9b)

Inserting into Eq. (A2), we find that the Hamiltonian H; can
be written as

Hjx = hwglal* + hayp|b. (A10)
Although the above procedure utilizes the classical-field
approach, a quantum version yields similar results, with a and
b replaced by bosonic operators and Hjx = E} + hw,a'a +
hbiTfJ, where E,? is the contribution of the modes @ and b to
the vacuum energy.

We use the linearization above to sample the initial state
according to a thermal distribution. For this purpose, for
each jk Fourier component, we diagonalize £ and we then
sample the complex numbers a and & according to the thermal
Gaussian law kpT = hiw,{|al?) and kpT = hewy(|b|?). From
this, we can compute the fields yr and ¢, subsequently evolve
according to Eqgs. (6), and extract the energy Hj; of each
Fourier component at each time point.
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APPENDIX B: STOCHASTIC GROSS-PITAEVSKII
EQUATION

1. Derivation via truncated Wigner

Here we present a derivation of Eq. (7) from a Wigner
distribution formalism and the truncated Wigner approxima-
tion. This methodology has had great success in the numerical
modeling of weakly interacting Bose gases in regimes where
quantum fluctuations are important [29-32], and furthermore
underpins the classical-field methodology used for both zero
and finite temperature simulations [28]. Since the Bose gas
is described by a quantum field, the derivation should strictly
rely upon functional calculus (for details see, for example,
Ref. [33]). However, since we are primarily concerned with
numerical simulation on discrete grids with a finite number
of points, for simplicity of presentation we will discretize the
problem. That is, we divide space into cells of length §x, and
discretize the field operator such that 1,?/, annihilates an atom
in the cell r, and satisfies [{,, -] = 8. Furthermore, we
introduce the per-cell interaction energy g = g/8x and the
operator 3 = 32/87, which must be interpreted as 32{f}|, =
(fre1 + fr—1 — 2£,)/8x? when applied to a discrete function
fr» where integer r indexes the cell.

A homogeneous 1D Bose gas undergoing a nonselective
loss process can be described by the master equation

dp

i -

o (B1)

where p is the system density operator, D[L]p = LpLT —
$L'Lp — 3pL'L, and H is the Lieb-Liniger Hamiltonian

H:Z(

The system density operator can be equivalently described by
the Wigner quasiprobability distribution, W, which is a real
function of a complex field ¥(z):

tmwwn—fﬂﬁu

Gt 52 4 Bty
rmi@+2%m%%) 82)

e~ VALY

x({2r, A7), (B3)

where x({A,,A}}) is the characteristic function

mudﬂhﬂﬂpu4éjaw—ﬁ&q} (B4)

Averages of functions of v, ,¥; over W correspond to expec-
tations of the corresponding symmetrically ordered operators.
Using the operator correspondences [28,33]

- 1

Yrp — (1}’& + = 3 aw*)W({'ﬁr,% b, (B5a)

- 1
h»@fia)mmmn (BSb)
- 1

pYr — (U’fr 33 )W({'ﬁn'ﬁr Ds (B5¢)
- 1

T * _ *
P r - (‘I)&r + 2 31}/, ) W({'ﬁra'ﬁr })s (BSd)
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we can map the master equation (B1) to the following partial
differential equation for the Wigner function:

oW oW ow ow

—_—= —_— —_— B6
at at IKin dt |nonlin ot loss’ ( )
where
aw ih a 5 a 5
—_— = — —30 — —— YW B7
at lkin mnzr:[aw, ad ayr "””] (B7)

corresponds to the kinetic-energy term,

1 onin ?Z [5(821&,81&: VT e, ‘&’)
a
* (mw ayr 1)4’/f)(|1,&r| — 1)]W (B8)

corresponds to the nonlinear atom-atom collisional term, and

aw r ] a ., %
B o =7 2 i_m‘”’ AT ]W
(B9)

corresponds to the loss term. This is currently no easier
to simulate than the master equation (B1). However, if we
truncate the third-order derivatives in term Eq. (B8) that arise
due to the nonlinearity, then Eq. (B6) takes the form of a
Fokker-Planck equation with positive definite diffusion. It
can therefore be efficiently simulated via a set of stochastic
differential equations. We also replace (||> — 1) in Eq. (B8)
with |y|? since this corresponds to a simple shift in energy and
is thus irrelevant. We then find that the differential equations
are just the stochastic Gross-Pitaevskii equation, Eq. (7). The
truncation of these third-order derivatives is an uncontrolled
approximation, but is typically valid for weakly interacting
Bose gases, provided the occupation per mode is not too
small over the simulation time scale. Note that the truncated
Wigner approximation applied here concerns the treatment of
interactions between atoms in the quasicondensate. The sole
effect of losses is captured in a exact way by this procedure at
the quantum level.

2. Linearized approach

In the quasicondensate regime density fluctuations and
phase gradients are small. A linearized approach can there-
fore be used to identify independent modes, following the
procedure below. Separating the real and imaginary parts of
Eq. (7) and linearizing in density fluctuations and the phase
gradient gives the stochastic equations

h?,
dép, = ——'00839 dt —'ép.dt + \/podn;, (B10a)
m
b i 82 |6p,dt + L 4 (B10b)
= — — —_—dVy,
r g dmpy T Pr ) ‘/% r
where dv, and dn, are random Gaussian variables
with zero mean and variances (dn,dn,) = {(dv,dv,) =
8, I'dt. Expanding 6, and dJp, on sinusoidal
modes, 8 =) ;. o~/2/LI6ck cos(kz) + O sin(kz)]  and
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8p =Y 10 V2T L[8pck cos(kz) + Spg sin(kz)] gives

2k2
dap_”( = E'jkdf — F(Spjkdf + Jpgdl}ih (Blla)
22 1
doi, =—| 8 — Spjrdt dv; B1lb
ik (3 4mp0) 0 jk +2‘\/E Vik, ( )

where dvj; and dnj are random Gaussum variables of van-
ishing mean and variances (dn ;k) = (dv? vj +) = ['dt. An initial
centered Gaussian Wigner distribution (such as a thermal state)
remains Gaussian under the above linearized stochastic evo-
lution. Moreover, after averaging over stochastic trajectories,
it remains centered on {§pji} = (fjx) = 0. Consequently the
Wigner distribution for each mode is entirely determined by
variances and covariances of the variables—explicitly, entirely
determined by the following coupled differential equations:

d R2k%py
o0 =222

d
dt

R2k2py
(bpjk@jk) = p (9) (E’—

The link between these classical averages over 8pj; and
80, and the expectations over the corresponding quantum
operators is not immediate. Strictly, averages over various
combinations of the c-number fields v, and ¥ correspond
to expectations of symmetric orderings of the corresponding
quantum operators—for example,

(@ + 90 ¥))/2) = Vi,

However, since in the quasicondensate regime correlation
lengths are much larger than the mean interparticle distance
and density fluctuations are small, one can use a coarse-grained
approximation where the atom number in each cell is large,
yielding small relative fluctuations. Then the atomic density
(1,?/: ;) and its higher-order moments are well approximated
simply by classical averages over ¥*y and its powers.
Put another way, those corrections that arise due to the
noncommutativity of the operators are small and can be
neglected. A similar argument holds for the phase operator.
Consequently, we are justified in interpreting those classical
averages within Egs. (B12) as quantum expectations.

Let us focus on the evolution of a given mode of wave vector
k and assume the loss rate is very small compared to the mode
frequency g = /h%k%/(2m)[h%k2/(2m) + 28 po]. Then, the
free evolution ensures equipartition of the energy between
the two conjugate variables dpj; and 6 at any time, which
corresponds to thermal equilibrium. The Wigner function is
then solely determined by the mean energy in the mode Ej
and one finds, from Eq. (B12),

(0jx8pjk) — 2T(80% ) + pol, (B12a)

h2k? r
92 —2(z— O i8pi — B12b
( ) (g 4mp0)( k. j P;k) + 4p0s ( )

h2k2
4mpy

d
dt

)(efk). (B12c)

d . _ - -

il =T (—E + (A} + 1/A})/4), (B13)
where Ay = {[h%k%/(2m) + 2gpol/[h*k*/(2m)]}/* and E =
Ey/ex. For phonons, A; = [4mgpo/(h*k?)]V/* and is much
larger than 1. Using this time-dependant approximation of Ay
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to solve Eq. (B13), we find that E; asymptotically goes towards
gpo(t). Since gpp(t) is much larger than the ground-state energy
for phonons, the Rayleigh-Jeans limit is attained, and this
corresponds to a thermal equilibrium at temperature

kg Tphonon r—%‘oo polt)g. (B14)
In contrast, for modes with k > ,/mpyg/h, an expansion of
Ay in powers of gpo/(hi*k%/m) gives

2
¢~ (%) eIl — &) + Zpe T, (B15)
where & = (E — 1/2)/wy is the mean quantum occupation
number of the mode. At large times, € becomes much
smaller than one. This corresponds to a temperature kpT ~

PHYSICAL REVIEW A 96, 013623 (2017)

—[H%k2 /(2m)] In(€), much smaller than wy. At large times, we
find

(B16)

The temperature of those modes depends on k and takes much
larger values than Tphonon-

Finally, note that, while in this appendix we start from
the truncated Wigner stochastic equation to derive the above
linearized approach, an alternative approach is to linearize the
Lieb-Liniger Hamiltonian and then consider, for a given mode,
the effect of losses. Thus the validity of the linearized approach
does not require that the mode occupation number be large. It
is valid even in the quantum regime, the approximation here
being that the gas lies deeply enough in the quasicondensate
regime.
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‘We investigate the out-of-equilibrium dynamics following a sudden quench of the interaction strength in a
one-dimensional quasicondensate trapped at the surface of an atom chip. Within a linearized approximation,
the system is described by independent collective modes and the quench squeezes the phase-space distribution
of each mode, leading to a subsequent breathing of each quadrature. We show that the collective modes are
resolved by the power spectrum of density ripples which appear after a short time of flight. This allows us to
experimentally probe the expected breathing phenomenon. Our results are in good agreement with theoretical
predictions which take the longitudinal harmonic confinement into account.

DOI: 10.1103/PhysRevA.98.043604

I. INTRODUCTION

The out-of-equilibrium dynamics of isolated quantum
many-body systems is a field attracting a lot of interest [1],
triggered in part by progress in cold atom experiments. A
particular focus has been devoted to the case of sudden
quenches where the system is brought out of equilibrium by a
sudden change of a Hamiltonian parameter, and in particular
the case of an interaction quench, both theoretically [2] and
experimentally [3-7]. Whether and how the system relaxes
towards an equilibrium state is the subject of intense theoreti-
cal work. The role of integrability, not completely elucidated,
is the focus of many studies. Within this context, the case
of a one-dimensional (1D) Bose gas with contact repulsive
interactions, described by the integrable Lieb-Liniger model,
is a prime theoretical candidate to uncover the underlying
physics, studied in, e.g., [8—11].

This paper constitutes an experimental study of the out-of-
equilibrium dynamics following a sudden quench of the inter-
action strength in a 1D Bose gas with repulsive interactions.
Within a linearized approximation, the evolution following a
splitting of a 1D Bose gas in two copies, studied in [6], can
be interpreted as an interaction quench in an effective 1D
Bose gas. Investigating the first-order correlation function, the
authors observed an apparent thermalization, taking the form
of a light cone effect. This observation may however conceal
underlying nonequilibrium dynamics, as revealed recently by
the observation of recurrences in a similar experiment [12].
Finding appropriate observables revealing these dynamics is
thus a key point for investigating out-of-equilibrium phenom-
ena. In this paper, by investigating the density ripples appear-
ing after short time of flight, the behavior of collective modes
is probed, rather than a global quantity such as the first-order
correlation function, allowing for a better understanding of
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the physics at play after an interaction quench. The dynamics
is revealed by the oscillatory behavior of each component
of the density-ripple power spectrum, observed for times
that go beyond the apparent thermalization time seen on the
first-order correlation function. We show that these oscillatory
dynamics are the signature of squeezed collective modes:
for each collective mode, the quench produces a squeezed
phase-space distribution, leading to a subsequent oscillation
of the width of its quadratures—a breathing behavior. As well
as improving the understanding of the effect of an interaction
quench, this work constitutes an observation of squeezed
collective modes, a result interesting on its own.

II. INTERACTION QUENCH WITHIN THE LINEARIZED
APPROACH

The physics at play can be understood by considering a 1D
homogeneous Bose gas, of length L, temperature T', and den-
sity ng, with particles of mass m interacting with a two-body
repulsive contact interaction gé(z), where z is the distance
between the two particles. At ¢+ = 0, g is suddenly changed
from g; to g = (1 + k)g;, where « is the quench strength.
While the complete treatment of an interaction quench is
tremendously difficult the problem is greatly simplified if

a b c
@ 2, © (©)
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—ry
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FIG. 1. Squeezing of each collective mode after an interaction
strength quench from g; to g,. The Gaussian phase-space distribu-
tions before the quench (+ = 07), just after the quench (r = 07), and
after an evolution time 7 /(2w,) (dashed ellipse) are represented in
(b), where lines correspond to a given probability density (here we
chose ¥ = 3). The subsequent breathing is seen in (c), where the time
evolution of the phase distribution is shown in color plot.

©2018 American Physical Society
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one can rely on a linearized approach, as presented below.
Within the quasicondensate regime, density fluctuations are
strongly reduced (|6n(z)| < no) and phase fluctuations occur
on large length scales, such that the Hamiltonian of the system
can be diagonalized using the phase-density representation
of the field operator W(z) = /ng + on(z)exp[if(z)] and the
Bogoliubov procedure [13]. The obtained linearized modes
correspond to Fourier modes. For each wave vector ¢, the
dynamics is governed by the harmonic oscillator Hamiltonian
[14]

Hy = Agn + B0} = hoy (72 /2 + 6;/2), (1)

where the canonically conjugated Hermitian operators n, and
6, are the Fourier components [15] of én and € and where
the reduced variables are defined by i, = ng(A,/B,)"/* and
6, = 6,(B,/A4)"*. For wave vectors ¢ much smaller than the
inverse healing length £ ! = /mgno/h, the excitations are of
hydrodynamic nature [16]. Their frequency is w, = cq, where
the speed of sound is ¢ = +/npd, e/ m, and the Hamiltonian’s
coefficients are B, = h’q’ng/(2m) and A, = mc?/(2ny).
Here p(n) is the equation of state of the gas relating the chem-
ical potential w to the linear density, which reduces to u = gn
for pure 1D quasicondensate. For a given ¢, the dynamics
of the quenched harmonic oscillator is represented in Fig. 1.
Before the quench the phase-space distribution is the one of a
thermal state: an isotropic Gaussian in the (éq, iig) plane. The
quench affects A, while &, and n,; do not have time to change.
The variances thus become (67)—o+ = (67)i—o0-/(1+ )"/

and (3542};={}+ = (3;1,;2)&0-(1 + «)1/2 [17]. The subsequent
evolution is a rotation in phase space at a frequency w, leading
to a breathing of each quadrature. In particular

(02) = (62),11 + « sin*(cq1)], )

where the initial value (67); is the thermal prediction (67) =
mkpT /(h*nog?) [18].

Probing the nonequilibrium dynamics following a quench
is not straightforward, especially concerning the choice of the
observable. Since density fluctuations are very small within
the quasicondensate regime, it is more advantageous to probe
the phase fluctuations [19]. One way is to investigate the
one-body correlation function g;(z) = (¥T(z)¥(0)), which,
for z > £ and in the quasicondensate regime, writes g1(z) ~
noe~1P@—0OF)/2 [13] However since phase fluctuations are
large in a quasicondensate, the exponential cannot be lin-
earized and g;(z) mixes contributions from all Bogoliubov
modes [20], preventing the observation of the squeezed dy-
namics. In fact, the linearized model above predicts the light-
cone effect on the g; function: g;(z) changes from its initial
exponential decay exp(—|z|/1’), where I! = 2hnq/(mkpT),
to an exponential decay with a new correlation length 1l =
2!2 /(k +2) for z < 2ct. The breathing of each squeezed
Bogoliubov mode is not transparent here. Moreover, for times
larger than a few t,i’ = l,;f /c, the g; function essentially
reaches the form expected for a thermal state at a temperature
Ty =T(x +2)/2, and the ongoing dynamics is hidden. In
this paper we use the density-ripple analysis to reveal the
nonequilibrium dynamics of the gas by probing the breathing
of each mode.

III. RESOLVING BOGOLIUBOY MODES WITH
DENSITY RIPPLES

Density ripples appear after switching the interactions off
and waiting for a free evolution time #; (time of flight),
during which phase fluctuations transform into density fluc-
tuations [21-24]. Consider the power spectrum of den-
sity ripples (| p(¢)%), where p(q) = (1/~/L) [ dzl(n(z, t5) —
nple'?*. Propagating the field operator during the time of flight
and assuming translational invariance we obtain [25]

Iom(@)P) = f dxe (g x) -], @)

where

£(q, x) = n2(PO—0Chat/m+6G—hgt/m=6ly. (4)

averages in Eq. (4) are taken before the time of flight. The
function f involves only pairs of points separated by iigts/m.
For small wave vectors ghity/m < I, the phase difference
between those points is small and one can expand the expo-
nential. To lowest order, assuming uncorrelated distributions
for each mode g and vanishing mean values, we then find

(|0ns (@)I?) = 4n(67) sin’[hg s /(2m)], )

showing that, for low-lying g, the density-ripple spectrum
directly resolves the phase quadrature {9‘3) of individual Bo-
goliubov modes [26]. The proportionality between (| pp, (g B)
and (67) implies that (|, (¢)|*) oscillates according to Eq. (2)
when varying the time ¢ after the quench. Density ripples are
thus an ideal tool to investigate the quench dynamics. Note
that in the following we are interested, for each wave vector
g, in the evolution of (| pno(q)|2) with the evolution time ¢,
such that the proportionality factor 4n} sin’[hig%ts/(2m)] is
irrelevant for our data analysis.

In typical experiments, atoms are confined by a smooth
potential V(z). For weak enough confinement and for wave-
lengths much smaller than the system’s size, one can how-
ever use the above results for homogeneous systems within
a local-density approximation (LDA) [27]. Then g(g) =
[dzén(z, tp)e'? fulfills 5(q) =~ [ dz{|puy)(q)|*) where
no(z) is the density profile, which can itself be evaluated
within the LDA using the gas equation of state and the local
chemical potential p(z) = o — V(z). Injecting Eq. (2) and
Eq. (5) into the LDA integral, we find

1@ /1@ =1+ kF(cqt), (©6)

where ¢ is the speed of sound after the quench evaluated at
the trap center and F only depends on the shape of V(z).
For a boxlike potential, one recovers previous results and
F(t) = sin’(z). The expression of F is given in Appendix D
in the case of a harmonic potential: The oscillatory behavior is
preserved, although the spread in frequencies originating from
the inhomogeneity in ng introduces damping, which is a pure
dephasing effect.

IV. EXPERIMENTAL REALIZATION

The experiment uses an atom-chip setup [28] where ®’Rb
atoms are magnetically confined using current-carrying mi-
crowires. The transverse confinement, acting in a vertical
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plane, is provided by three parallel wires carrying ac current
modulated at 400 kHz, which renders the magnetic potential
insensitive to wire imperfections and allows for independent
control of the transverse and longitudinal confinements. We
perform radio frequency (rf) forced evaporative cooling until
we reach the desired temperature. We then increase the rf fre-
quency by 60 kHz, providing a shield for energetic three-body
collision residues and wait during 150 ms relaxation time. The
clouds contain a few thousand atoms, in a trap with a trans-
verse frequency w, /27 = 1.5 or 3.1 kHz, depending on the
data set, and a longitudinal frequency w;/2mw = 8.5 Hz. The
samples are quasi-1D, the temperature and chemical potential
satisfying ., kpT < hw, . The temperature is low enough so
that the gas typically lies well within the quasicondensate
regime [29]. The equation of state is well described by u =
hw, (/1 +4na — 1), where @ = 5.3 nm is the 3D scattering
length [30]. While, for na <« 1, one recovers the pure 1D
expression u = gn, where g = 2hw, a, this equation of state
takes the broadening of the transverse size at larger na into
account. The longitudinal density profile, well described by
the LDA, extends over twice the Thomas-Fermi radius Rrp =
20/ m/w). The speed of sound derived from the equation
of state is ¢ = cip/(1 + 4na)'/* where c\p = /Zhw,na/m
is the pure 1D expression. For data presented in this paper,
c/e1p is close to 0.7. Since the effective interaction strength is
proportional to ¢2, it is proportional to @, .

The interaction strength quench is performed by ramping
the transverse trapping frequency w, from its initial value
@) ; to its final value @, r = (1 + k)w, ; within a time f,,
typically of the order of 1 ms. This time is long enough for
the transverse motion of the atoms to follow adiabatically
but short enough so that the quench can be considered as
almost instantaneous with respect to the probed longitudinal
excitations (see Appendix H 1). We simultaneously multiply
w) by +/1 + k, to avoid modification of the mean profile and
of the Bogoliubov wave functions (see Appendix E).

In order to probe density ripples, we release the atoms from
the trap and let them fall under gravity for a time ¢#; = 8 ms
before taking an absorption image. The transverse expansion,
occurring on a time scale of 1/w,, ensures the effective
instantaneous switching off of the interactions with respect
to the probed longitudinal excitations. The density ripples
produced by the phase fluctuations present before the free
fall are visible in each individual image, as seen in Fig. 2(a).
From the image, we record the longitudinal density profile
p(z,t7) and its discrete Fourier transform [31] 5(g). We
acquire about 40 images taken in the same conditions with
atom number fluctuations smaller than 10%. From this data
set, we then extract the power spectrum (|5(g)|?). The power
spectrum obtained before the quench is noted {| 5(¢)|?);, and a
typical spectrum is shown in Fig. 2(b). We chose to normalize
the momenta by RT_F]: since the Fourier distribution of the
ith Bogoliubov mode of a 1D quasicondensate is peaked at
k; ~ i/ Rtp (see Appendix E), the x axis roughly corresponds
to the mode index. The predicted power spectrum (| 5(¢)|*)m
is computed using the LDA and analytical solution of Eq. (3)
for thermal equilibrium (see Appendixes B and C) . This ex-
pression is peaked around k Rtg >~ ,/rm/(#itf) Rt ~ 50. For
comparison with experimental data, we take the imaging res-
olution into account by multiplying (|5(g)|?)y with e=*"0*/2

50 pm 0.4
0
so® ©
5 40}
= 30[
= 20l A
=Y g
= 10 ¢
[ P— . . . . .
0 20 40 60 0 20 40 60
qRryp qRry

FIG. 2. Density ripples analysis. (a) Typical absorption image
(optical density shown) taken after a time of flight ¢ = 8 ms. (b)
Power spectrum of density ripples, obtained by averaging over
about 50 images, for a cloud at thermal equilibrium containing
16 000 atoms confined in a trap with frequencies w_/(27) = 8.5 Hz
and w, /(2r) = 1.5 kHz, yielding a Thomas-Fermi radius Ry =
75 pm. The dashed (green) line is a theoretical fit (see text), yielding
a temperature T = 55 nK and an optical resolution & = 2.9 pm. (c)
Power spectra after a quench of strength « = 2, at times t = 2.1 ms
(crosses, green), t = 2.6 ms (circles, blue) and ¢t = 4.6 ms (squares,
black), the solid (red) curve being the initial power spectrum.

where ¢ is the rms width of the impulse imaging response
function, assumed to be Gaussian (Appendix F discusses the
effect of this finite optical resolution). The experimental data
ultimately compared well with the theoretical predictions, as
shown in Fig. 2(b), where T and ¢ are obtained by fitting the
data [32,33]. Finally we obtain kpT/uo = 0.4, close to the
lowest value obtained in similar setups [24,34].

We investigate the dynamics following the quench of the
interaction strength by acquiring power spectra of density
ripples at different evolution times ¢ after the quench. We
typically acquire power spectra every 0.5 ms, over a total time
of 5 ms. A few raw spectra are shown in Fig. 2(b), for a quench
strength « = 2.0. At first sight the power spectra seem erratic.
In order to reveal the expected oscillatory behavior of each
Fourier component we introduce, for each wave vector g of
the discrete Fourier transform, and each measurement time ¢,
the reduced time T = cgt, where c is evaluated for the central
density, and compute J(g, 7) = (|5(¢)I*)(1)/(15(q)I*)i- We
restrict the range of ¢ values to 10 < g Rtg < 40, to ensure
both the condition g /ity /m < I and the validity of the LDA.
On the resulting set of spare data, shown in the inset of
Fig. 3, an oscillatory behavior appears, despite noise on the
data. To combine all the data in a single graph, we perform
a “smooth” binning in 7, i.e., we compute, for any given re-
duced time 7, the weighted averaged of the data with a Gaus-
sian weight function in 7 of width A = 0.31: namely we com-
pute J(t) =Y, J(qas Ta )e—(ta—r)z,-’(Zﬂz)}; 3. e—(ta—r)z,-’(Zﬂz),
where the sum is done on the data set. The function J(1),
shown in Fig. 3, shows a clear oscillatory behavior.

We repeat the experiment for different quench strengths
k = (w1 /o, ; —1)=1{0.3, 3,5}, and initial trapping oscil-
lation frequencies w; = {3, 1.5} kHz. The oscillatory behav-
ior is present in all cases as shown in Fig. 3. We compared
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FIG. 3. Time evolution of squeezed collective modes produced
by an interaction quench. The normalized density-ripple power spec-
trum is plotted vs the reduced time t = cqt, where the speed of
sound c¢ is calculated for the central density. Inset shows the data
corresponding to each measurement time and discrete g values, fora
data set corresponding to x = 2 and w, ; = 27 x 1.5kHz, together
with the resulting continuous averaged quantity J (see text). Orange
crosses correspond to ¢ < #; and blue circles to ¢ > #;'. The main
graph shows the evolution of the experimental smoothed quantity
J for different data sets. The error bars show the typical statistical
uncertainty on J. The initial transverse oscillation frequency is 1.5
kHz, except for the thick dark grey (blue) curve for which it is
3 kHz. Quench strengths are x = 4 [light gray (orange)], x = 2 [dark
gray (blue)] data, and ¥ = —0.7 (black). Dashed lines are theoretical
predictions for quench strengths « = 2 [light gray (orange)], 1 (light
gray), and —0.35 (black).

the observed oscillations with the theoretical predictions from
the linearized model, Eq. (6). The temporal behavior of the
data is in good agreement with the predicted one: both the fre-
quency and the observed damping are in agreement with the
predictions. The amplitude of the experimental oscillations on
the other hand are significantly smaller than the predictions,
and in Fig. 3 we plot the theoretical predictions for quench
strengths twice as small as the experimental ones. Moreover,
for a given quench strength, the observed amplitude depends
on the initial transverse frequency, in contradiction with the
theoretical model. Several effects leading to a decrease of
the oscillation amplitude are discussed in Appendix H. How-
ever, they only partially account for the observed amplitude
reduction.

V. DISCUSSION

In conclusion, analyzing density ripples, we revealed the
physics at play after a sudden quench of the interaction
strength in a quasi-1D Bose gas, namely the breathing as-
sociated to the squeezing of each collective mode. The ob-
served out-of-equilibrium dynamics continues for times larger
than rl'f]’, for which the g; function essentially reached its
asymptotic thermal behavior [35] This can be seen in the
inset of Fig. 3 where data corresponding to ¢ > #;', shown as
blue circles, still present an oscillatory behavior. This clearly
underlines the power of the density-ripple analysis to unveil
out-of-equilibrium physics. The observed damping is com-
patible with the sole dephasing effect due to the longitudinal
harmonic confinement. At later times, the discreteness of the
spectrum and its almost constant level spacing is expected to

produce a revival phenomenon. Its observation might however
be hindered by a damping of each collective mode due to non-
linear couplings. Such a damping occurs, despite the integra-
bility of the 1D Bose gas with contact repulsive interactions,
because the Bogoliubov collective modes do not correspond
to the conserved quantities. A long-lived nonthermal nature
of the state produced by the interaction strength might be
revealed either by observing excitations in both the phononic
regime and the particle regime of the Bogoliubov spectrum
[36], or, ideally, in finding a way to access the distribution of
the Bethe-ansatz rapidities.
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APPENDIXES

These appendixes gives technical information and details
of calculations. In Appendix A we give a general derivation
of the density-ripple power spectrum, which does not a priori
assume a homogeneous system. Appendix B gives the result
for a homogeneous system and the analytical prediction for
thermal equilibrium [37]. Appendix C details the derivation of
the density-ripple power spectrum for a trapped gas, computed
using the results for homogeneous gases and the local-density
approximation. Appendix D provides the explicit calculation
of the postquench evolution of the power spectrum for a har-
monically trapped gas, namely the calculation of the function
JF of the main text. In Appendix E we verify the validity of
the local-density approximation for the parameters of the data
presented in the main text. For this purpose, we compute the
density-ripple power spectrum using the Bogoliubov modes
of the trapped gas. In Appendix F, we investigate the effect of
finite resolution on the measured density-ripple power spec-
trum. We also make the link between the power spectrum and
the autocorrelation function, which permits us to compare our
data at thermal equilibrium with previously published work.
In Appendix G, we justify that interactions play a negligible
role during time of flight, so that the calculations of the
density-ripple power spectrum, which assume instantaneous
switch-off of the interactions, are valid. In Appendix H, we
investigate two effects responsible for a reduction of the
oscillation amplitude of the quantity J(t), extracted from
the data, as compared to the simple theoretical predictions
Eq. (6) of the main text: First the finite ramp time of the
interaction strength decreases the squeezing of the collective
modes, and second the finite resolution in 7 resulting from
data binning is responsible for a decrease of the expected
oscillation amplitude on the processed data.
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APPENDIX A: DERIVATION OF THE DENSITY-RIPPLE
POWER SPECTRUM

The power spectrum of density ripples has been first investi-
gated in the limit of small density ripples and for a gas initially
in the 3D Thomas-Fermi regime (i.e., i > hw,) [22,38]. It
was then computed assuming instantaneous switching off of
the interactions in [21]. Here, for consistency, we rederive
Egs. (4) and (5) of the main text. Since we will later consider
trapped gases, let us first assume a general scenario where we
do not restrict ourselves to the homogeneous case. We let the
gas evolve freely for a time #; after interactions have been
switched off. The power spectrum of the density fluctuations
after t; writes

1B@P) = f f d21dz695 = ($n(zy, 1,)on(za, 17)-

(A1)
Writing én(z) = n(z) — (”.(Z)) and expanding the above
equation, the term | f a'z,‘z”i'zl{n(z,A'Jf))|2 appears. Here we

consider times of flight short enough so that the shape
of the cloud barely changes during time of flight, so that
(n(z,t5)) = {n(z, 0)). We moreover consider wave vectors g
much larger than the inverse of the cloud length, such that
| [ dze'9%(n(z, 0))|* is a negligible quantity. We then have

15@)P) ~ f f 4212675 (21, tn(z 1)) (A2)

To compute n(z,t5) = Wt(z, tr)W(z,tf) we evolve the
atomic field with the free-particle propagator, which leads to

dayr(a, O)ef[(Z—ﬂ ) 12-‘;],

Yz, 1) = (A3)

7=l

where for simplicity we use a unit system in whichm = h =
1. We then have

(n(z1, t5)n(z2, 15)) = —(2::; 7 f f f f dadﬁdydaW;,;,ﬁ,ﬁ;%}e—x'[(z.—ufmles[(al—ﬁ)ﬁfzrf]e—x’[(n—ymrflei[(z;—5)212:,«1, (A4)
f

where we use the simplified notation vy, = yr(v, 0). Expanding the exponentials, the above expression writes

1

(n(z1, t5)n(z2, t5)) = W

f f f f dadBdyds (b s )@ PG~ 21 L5ty IE-YI2 (A5

Injecting into Eq. (A2), and using fdze”‘z = 2 8(k) and 8(x /a) = ad(x), we get

- a2 : 2 _; 2 a2
{|p(q)|2) — ff dad‘s(w:wﬂ_wtf 'ﬁé:—qtf wa)e ila ﬂff]e*[(ﬂ+qf) ﬁff]e i[(84qt) a‘?If]e![f‘ a‘?If]_

Defining § = @ + X, we obtain

1p@P) = [ [ dadXe ™ (s, Vixa Vi)

(A6)

(A7)

For gases lying deep in the quasicondensate regime, one can neglect density fluctuations when estimating the expectation value

in the above equation, such that

(15(@)*) = ff dadX e [n(@)n(a + gtp)n(a + X + gtp)n(a + X) (' @@ -0@tain)+bletXtqln=0@+X))y = (AB)

The following section applies this result to homogeneous
systems. This equation is however not restricted to homoge-
neous systems and we will use it to treat the effect of the trap
beyond the local-density approximation.

APPENDIX B: POWER SPECTRUM OF THE DENSITY
RIPPLES FOR A HOMOGENEOUS GAS

For a homogeneous gas, the relevant quantity is an inten-
sive variable which relates to the expression {|5(g)|*) of the
previous section by

1
(lo(@))?) = Euﬁ(qn%, (B1)

where L is the length of the box. Injecting Eq. (A8) into
Eq. (B1), we recover Egs. (3) and (4) of the main text, up
to an irrelevant term in 8(g) [39]. In fact, Wick’s theorem
is applicable since # is a Gaussian variable [40], which
leads to

(le(@)P)

ng

f d X 19X —(1/2)[6©0)~6(gty +0(X+qt1)~8(OF)

(B2)
To compute the power spectrum of density ripples for a
thermal equilibrium state, we follow the calculation made
in [21] and expand the exponential term in Eq. (B2) as
a function of the first-order correlation function g(I'(z) =
nge—/DMEO-6@F)  which fulfils gW(z) = npe /% where
l. = 2h2n0,z‘(k3T) [21]. Calculation of the integral in Eq. (B2)
then leads to
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FIG. 4. Density ripples power spectrum for a homogeneous gas.
The exact formula Eq. (B3) (dashed curve) is compared to the small
g approximation given Eq. (5) of the main text, where {|p(g)|?)
is proportional to {93} (solid curve). The only relevant parameter
is ht;/(mi®). Results are shown for ht,/(mi%) = 0.05, a value
corresponding to the data depicted in Fig. 2(b) of the main text,
the correlation length I. = 2/i%ng/(mksT) being computed for the
central density. The effect of the imaging resolution is to multiply
this theoretical power spectrum with ¢~ where o is the rms width
of the imaging pulse response function, assumed to be Gaussian.
For our data, o,/m/(ht;) = 0.85 and only the first maximum of
{1p(g))?) remains visible.

(p@P) _ 4ql
n3 q(4+12q%)
| de2au/me (gl cos (ML) + 2sin (2210))
a(4+129%) '
Note that we corrected the formula given in [21]. The power
spectrum computed with this equation is compared in Fig. 4

to the approximated formula valid for small ¢, namely Eq. (5)
of the main text.

(B3)

APPENDIX C: DENSITY RIPPLE POWER SPECTRUM FOR
A HARMONICALLY CONFINED GAS UNDER THE LDA

Let us investigate the density-ripple power spectrum in
the case of a gas trapped in a longitudinal potential smooth
enough so that the cloud size L is much larger than the typical
phase correlation length /. and much larger than figts/m:
L > I, hqty/m. As in Appendix A, we moreover consider
the power spectrum for wave vectors g > 1/L. Let us start
with the general expression Eq. (A1) that we write

5@ = f dz f du(3p(z. 1180z + u, 1)), (C1)

Consider (8p(z,t5)8p(z + u, t5)) for a given z. This expres-
sion vanishes over a length much smaller than L, so values of
u significantly contributing to the integral are much smaller
than L. Moreover the region of the initial cloud contributing
most to (8p(z, tf)8p(z + u, 1)) is much smaller than L for
sufficiently large L. Then, to compute (8p(z, t7)8p(z + u, t5))
one can perform a local density approximation and use the
result of a homogeneous gas at a density ny(z). We then obtain

15@P) = f d2{lprocey (@), ©

where the subscript ng(z) specifies that one considers the
result for a homogeneous gas of density ny(z). This expression
is referred to as the local-density approximation expression
(LDA) of the power spectrum. We have tested this approxima-
tion, for conditions close to the experimental data presented
in the main text, by comparing it with calculations based
on the Bogoliubov excitations of the trapped system (see
Appendix E).

APPENDIX D: TIME EVOLUTION OF THE
DENSITY-RIPPLE POWER SPECTRUM FOR A
HARMONICALLY CONFINED GAS

Here we give an explicit derivation of Eq. (6) of the main
text, for a gas harmonically confined in a longitudinal trap
of frequency ). Injecting Egs. (5) and (2) of the main text
into Eq. (C2), and using the local initial power spectrum of
6 which writes (62) = mkpT/(h”noq®), we derive Eq. (6) of
the main text with

F = [ dzm@sintc@an)/N, ®1)
where N is the total atom number. The density profile ny(z)

is estimated itself within the LDA, using the local chemical
potential

n(z) = ppll — (z/R1e)*],

where Ryg is the Thomas-Fermi radius of the density profile

and pp is the chemical potential at the trap center. For a
transverse harmonic confinement of frequency @, , it has been
checked, by comparing with predictions of the 3D Gross-
Pitaevskii equation, that the equation of state of the gas is very
well described by the heuristic formula [30]

u(n) =ho,(v1+4na —1),

where a is the 3D scattering length between atoms. For small
linear densities, we recover the 1D expression p = 2hw, an,
valid far from the confinement-induced resonance [41]. Using
Egs. (D3) and (D2), we obtain the density profile

no(z) = [(n(1 —2%) + 1)> — 11/(4a),

(D2)

(D3)

(D4)

where we introduced Z = z/Ryr and n = pp/(hiw,). This
yields N = (4/3n + 8n%/15)Rr/(2a). The local speed of
sound on the other hand, obtained from the thermodynamic

relation ¢ = /n(dp/3n)/m, writes

@)= ¢, | LEMIL 400 -2 -1
PV 4+ =21 + 52— 11

(D5)
where ¢, is the speed of sound computed for the central
density. Injecting into Eq. (D1), we then find
1
F e —————————
4n/3 + 85n%/15

. 9 T+l +n(1 —29)]> -1}
o r\/[l+n(l—22)][(l+n)2—l])' ®o

1
f dz([1 + (1 — )P — 1)
0
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FIG. 5. Oscillation of each spectral component of the power
spectrum for a harmonically confined gas in the LDA. The function
JF is shown as thick solid lines (green), for 5 = p,/(Awy) = 1.0.
The pure 1D limit, corresponding to < 1 is shown as dashed (red)
lines. The undamped oscillations expected for a homogeneous gas
are shown as dotted (blue) line. In all the cases, T = cqt where c is
the central sound velocity.

When the gas is deeply 1D, namely for n < 1, this expression
reduces to

1
Fip = % f dz(1 — z%)sin®(ry/1 — 72). (D7)
0

Experimentally, values of »n are in the range [0.6;1.3]. Fig-
ure 5 shows the function F, computed for n = 1. We compare
it to Fip and to the expression expected for a homogeneous
gas, namely sin’(1).

APPENDIX E: BEYOND THE LDA: CALCULATION USING
BOGOLIUBOV MODES OF A HARMONICALLY
CONFINED 1D GAS

Here we consider a 1D gas confined longitudinally in a
harmonic trap of frequency w). In opposition to the calcu-
lations done in the previous appendix we do not rely on the
local-density approximation but use the Bogoliubov modes of
the trapped gas to compute the postquench evolution and the
density-ripple power spectrum. The relevant collective modes
lie deep in the phononic regime. The Bogoliubov modes,
indexed by an integer v, then acquire an analytical dispersion
relation and analytical wave functions that one can use for
calculations. For each mode, the dynamics are accounted for

by the harmonic oscillator Hamiltonian

2 2
H, :hwu(x—u +&),

> > (ED)

where w, :w"«/viv—l— 1)/2 and x, and p, are canoni-
cally conjugate variables. The phase and density fluctuation
operators write

0(z) = Zv 6u(2)py
, E2
LH(Z) =2, m(@)xy =
where
me \'4 T
0,(z) = %(Pf;) [v(fl—l_i)—llu" P"(ﬁ:) (E3)

1/4 :
m@ = S + D17 (2ee) b ()
Here n, and Ryg are the central density and radius of the
Thomas-Fermi profile no(z) = np[l — (z,fRn:)z] and P, are
the Legendre polynomials. The interaction quench consists
of a sudden change of the interaction parameter g from g;
to g = (1 +«)g; at t = 0, while changing the longitudinal
oscillation frequency by a factor /1 + x so that Ryg stays
constant. Then the interaction quench preserves the shapes
of the wave functions 8, and n,, and it simply changes the
canonical variables x,, and p, according to

Wt =01) = )Vix,(t =0
xu( - +)_(gffg)”4x( - _)_ E4)
po(t=07)=(gi/gr) " pu(t =07)

Under such a transformation, the initial thermal state, an
isotropic Gaussian, becomes a squeezed state and its subse-
quent evolution under the Hamiltonian Eq. (E1) leads to a
breathing of each quadrature. In particular

(p?) = (p2);[1 + & sin*(w,1)]. (E5)

The initial value (pf),v is given by the thermal expectation
value, which reduces to

(p2), = keT/(he,)

for the low-lying modes for which kgT > fiw,.
Injecting Eq. (E2) into Eq. (A8), using Wick's theorem and
the fact that different modes are uncorrelated, we get

(E6)

1B = ff dadXx€' " /no(@no(a + gtp)no(a + X + gt pno(a + X)
~(1/2) I, (P})B. (@) —Bu(etqty +6, @+ X+qt )6, (et X

e

For hqts/m < l., where [ is the phase correlation length,
one can expand the exponential and (|5(g)|?) is obtained
by summing the contribution of each mode. Since the
Legendre polynomials behave as cos[(v + 1/2)x + /4] at
small x, the contribution of the mode v is peaked at
q ~v/Rrg.

The predictions of Eq. (E7) may be compared to
the one obtained within the local-density approximation.

(E7)

Here we focus on the case of thermal equilibrium. We
compute the density-ripple spectrum injecting the thermal
equilibrium value Eq. (E6) and the mode wave function
Eq. (E3) into Eq. (E7). Figure 6 shows the result for a cloud
whose Thomas-Fermi radius fulfills /. / Rtg = 0.2, where [, =
2h%n p/(mkpT) is the correlation length of the first-order
correlation function at the center of the cloud, and for a time
of flight 15 = 6 x 10~*mR%/h. These parameters are close
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FIG. 6. Test of the local-density approximation (LDA). The plot
shows the density-ripple spectrum of a gas at thermal equilibrium
confined in a harmonic potential. The complete calculation, based
on the expansion on the Bogoliubov modes, whose wave functions
are given by the Legendre polynomial, is shown as solid line (blue).
It is in excellent agreement with the spectrum computed within
the local-density approximation (LDA) shown as dashed line (red).
The further approximation of small wave vectors, Eq. (5) of the
main text, injected into the LDA, shown as dotted line (green),
is also in good agreement, for wave vectors fulfilling g Rtr < 50.
Calculations are done for a Thomas-Fermi radius /. /Rt = 0.2 and
and time-of-flight ¢, = 0.015mi2/h, where I, = 2ﬁ2np,z’(mk3 T) is
the correlation length at the center of the cloud. These parameters
are close to those of the experimental data.

(|pg|*)/ (RrEnpkpTts /h)

Lo,

to the experimental ones. We compared the results with the
LDA together with the analytical formula for homogeneous
gases Eq. (B3) and we find excellent agreement. We also
compare with the LDA but using, instead of Eq. (B3), the
approximation Eq. (5) of the main text. We find very good
agreement as long as g Rtg < 50.

APPENDIX F: EFFECT OF A FINITE OPTICAL
RESOLUTION AND AUTOCORRELATION FUNCTION

The effect of the imaging resolution is to multiply the
theoretical power spectrum of density ripples with e‘”z‘!‘z,
where o is the rms width of the imaging pulse response func-
tion, assumed to be Gaussian. The resulting power spectrum,
for a harmonically confined cloud at thermal equilibrium, is
shown in Fig. 7 for o,/m/(hts) = 0.85, a value typical for
our experiments. The large g behavior of the power spectrum
is highly dominated by the effect of resolution and only the
first maximum of (| p(q)|*) remains visible. Fitting the exper-
imental power spectrums for clouds at thermal equilibrium,
we extract both the temperature and the imaging resolution
(see Fig. 2 of the main text). The obtained rms widths o,
close to 3 um, are compatible with the expected values if one
takes into account the depth of focus of our imaging system
(=5 pm) and the fact that after the expansion time ¢y the
cloud explores several tens of um along the imaging axis.
Note finally that the imaging resolution is irrelevant for the
investigation of the dynamics following an interaction quench,
since, for each Fourier component g, we investigate the time
behavior of the normalized quantity {|5(q)I*)(t)/{|5(q)I%)i
(see main text): the imaging resolution has no effect on this
normalized quantity.

gRtr

0 50 100 150 200 250
1.6 : ' . :

14} (b) A

0.8 | -
0.6 .
04 | AT A

0.2 / . R
“'-H.._\____

0 0.5 1 1.5 2 2.5 3

qy/htg/m

FIG. 7. Effect of the finite resolution. We consider a cloud at
thermal equilibrium in a harmonic potential with the same param-
eters as in Fig. 6. The power spectrum for infinite resolution (blue
dashed curve) is compared to the power spectrum expected for a
finite imaging resolution (red solid curve). The effect of the imaging
resolution is to multiply the power spectrum with e’ where o is
the rms width of the imaging pulse response function, assumed to be
Gaussian. Here we took o ,/m/(ht;) = 0.85, a value close to that of
experimental data.

(|5q*}/ (RrenpkpTts/h)

In our paper, we extract from the data the density-
ripple power spectrum since it is the relevant quantity that
enables us to resolve the collective Bogoliubov modes. Al-
ternatively, one could consider the autocorrelation function
of the density ripples C(u) = fdz(ﬁn(z)ﬁn(z + u))dz, which
is the Fourier transform of the density-ripple power spec-
trum: C(u) = 1{(2n)qu(|,6(q)|2)e—f‘f“. In [23], the authors
introduced the normalized autocorrelation function g;(u) =
1—|—C(u),ffdu(n(z)} (n(z +u)). Figure 8 shows go(u) for
the data at thermal equilibrium (before the quench) shown
in Fig. 2 of the main text. A behavior very similar to that
observed in [23] is recovered.

APPENDIX G: BEYOND INSTANTANEOUS
INTERACTION SWITCH OFF: FINITE TRANSVERSE
EXPANSION TIME

In the data presented in the main text, the frequency of the
probed longitudinal modes, of the order of cq, is no more than

= theor. predict.
1.05 —e— oxpt. data
S 1.00 a—a
0.95
00 05 10 15 20 25
w [pm]

FIG. 8. Normalized autocorrelation function of the density rip-
ples. The data set used is the same as that of Fig. 2(b) of the main text.
Experimental data are shown in green and the theoretical prediction
for a cloud at a temperature 7 = 55 nK and an optical resolution
o = 2.9 pm is shown in blue.
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0.15 x @, . Then, due to the rapid transverse expansion, inter-
actions during time of flight become almost instantaneously
negligible and are expected to give only minor corrections
to the density-ripple spectrum computed for an instantaneous
switching off of the interactions. It is nevertheless interesting
to estimate their effect. This has already been computed in
[38], in the limit x > hw, and using time-dependent Bogoli-
ubov equations, i.e., equations of motion linearized in density
fluctuations and phase gradient. The linearized calculations a
priori require that density fluctuations stay small. Although in
our case density ripples at the end of the time of flight have
large amplitudes, the Bogoliubov calculations hold for the
small g components, which fulfill g < ml./(ft;) and which
are considered in our paper. The condition i >> hw, on the
other hand is not verified for the data shown in the main text.
We nevertheless believe that the calculations of [38] give a
relevant estimation of the effect of interactions during the time
of flight for our data. From results of [38], we find that the
density-ripple power spectrum for the small g wave vectors,
given by Eq. (5) of the main text, should be corrected by the
factor

C = (w,1,) o, (G1)
In all experimental situations C > 0.95, which confirm
that the effect of interactions during the time of flight is
small.

APPENDIX H: EFFECTS WHICH MAY REDUCE THE
OSCILLATION AMPLITUDE

In this section we investigate two effects responsible for
a reduction of the amplitude of the oscillations of J (see
main text), as compared to the theoretical prediction given
by Eq. (6) of the main text. We first consider the effect of
the finite ramp time of the interaction strength, which reduces
the squeezing of the Bogoliubov modes, as compared to an
instantaneous quench. This effect contributes to the reduction
of the amplitude on the order of 10%. We then investigate
the reduction of the amplitude induced by the binning of the
data with a finite resolution in t. This effect amounts to an
additional reduction of the amplitude by 18%.

1. Beyond the instantaneous quench: Finite ramp time

In the experiment, the change of the effective interaction
strength is not instantaneous: to ensure the adiabatic following
of the transverse motion, we perform a ramp of the transverse
oscillation frequency during a time #,. The finite value of
t, is responsible for a decrease of the induced squeezing
of each mode. In the asymptotic limit of very large ¢,, the
squeezing vanishes since then the modes follow adiabatically
the modification of the interaction strength. In the following
we compute the effect of the ramp on the squeezing of each
mode and we use this result to compute the resulting decrease
of the oscillation amplitude of J.

In order to estimate the effect of the finite ramp time,
we will consider a homogeneous gas for simplicity. The
Bogoliubov modes are then described by the Hamiltonian of

&

7 1
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FIG. 9. Effect of the interaction strength ramp on the squeezing
of longitudinal modes. The time sequence is shown in (a). An
example of the phase-space distribution at the end of the ramp is
shown in (b): the 1/./€ line of the Gaussian distribution is plotted.
The squeezing factor § is the ratio between the rms widths along the
antisqueezed and the squeezed directions. The curved arrow shows
the direction of rotation under free evolution. Quantitative results
are shown in (c) and (d) for a quench strength x = w{ Jo —1=
2 (solid lines) and x = 4 (dashed lines). (c) shows /x + 1(5% —
1)/(8k), which gives the amplitude of the resulting breathing os-
cillations normalized to the amplitude for an instantaneous quench
(see text), vs a){ t, where m{ is the final frequency of the mode. The
squeezing angle is shown in (d), normalized by w;; t. /2.

Eq. (1) of the main text, namely

H, = Agn] + B,6;. (H1)

We regard the effect of a ramp of @w,; between the time t =0
and the time #,: w, goes from &), to o] = (k + )&, as
depicted in Fig. 9. The coefficient B; = noh’q?/(2m) is time
independent, while the coefficient A, evolves linearly during
the ramp ( i.e., during time interval 0 < t < t,), since it is
proportional to ¢2, itself proportional to e, . Then, the solution
of the second-order equations describing the evolution of 6,
and ng during the ramp is given in terms of the Airy functions.
In order to investigate the squeezing, it is natural to introduce
the reduced variables

[9} =6,/ gq (H2)

fig =ngfig

where 0, = [A4(t)/B,1"* and fg = [By/Ag(1)]'/* are the
time-dependent widths of the ground state. For given initial
values, the values of #; and 7i; at the end of the ramp are

Gy (1) 9,;(0))
(ﬁq(fr)) (ﬁq(o) ' H
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where the matrix M has the following components:

My = (k + 1) VAr (= Bi (=673 All—(k + 1)87231 + A (=823 B/[—(k + 1)5§72/3])

My = (k + D)/ (Bi(—572) Ail—(k + 15721 —
My = [673(c + DIVA2 {—Bi(=8 ") Ai[—6 B (e + D] + Ai(—=8 ) B,[-572P (i + D]}

AL(—82P)B[—862P (ke + DI} )

Mz =[5~ + DI VAr {B{(—8"2*)Al[—83 (i + 1)] — AL(=8"2P)B[—872P(kc + 1]}

Here A;, B; are the first and second kind Airy functions and
A}, B;, their derivatives and 6 = x,f(:,w;) the quench speed
normalized to the initial mode frequency (we recall that the
quench strength is ¥ = w{ ,.f‘wi — 1). Under this transforma-
tion, the initial isotropic Gaussian distribution transforms into
a squeezed distribution, i.e., a Gaussian elliptical distribution
with a squeezing angle « and ratio between the rms width
of the two eigenaxes equal to the squeezing factor S. In
order to find « and §, let us compute, for any angle B, the
width along the quadrature g = cos(ﬁ)gq + sin(B)ii,. Using
the fact that the initial state is a thermal equilibrium state
fulfilling (92)( = (n )i =V and {6‘ fig)i = 0, and using the
transfonnatlon above we find

(%) = V{ cos®(B)(M7, + M3,) + sin®(B) (M3, + M3,)
+2 cos(a) sin(a)(M1 My + My Myy)}. (H5)
The squeezing angle « is found by imposing d (iﬁ) /dB |,8=u =
0, which leads to

MMz + My Mp

tan(2e) = —2 . (H6)
M3, + M3, — M}, — M3,

The most squeezed quadrature is ¥, while %,/ is the
most antisqueezed quadrature. The squeezing factor is § =

VED /&

Xyimy2)- It also writes S = (¥2)/V since the con-

servation of the phase-space area ensures H'(J.fc%}(.fc% . J,2}1 =

V, and it is evaluated injecting 8 = o in Eq. (H5). Results
are shown in Fig. 9 for quench amplitudes x =2 and ¥ = 4
as a function of a;q t, where w{ is the final frequency of the
mode. For very slow modes w{ t, < 1, one recovers the results
expected for an instantaneous quench: o ~ 0 and (5% — 1) ~
k. For modes of larger frequency, the effect of the ramp is to
reduce the squeezing and also to rotate its axis.

The postquench dynamics results in a breathing of the 9}
quadrature: (67) oscillates with an amplitude V(S* — 1)/S.
Coming back to the variable ,, the evolution at times ¢ > ¢,
writes

(62)0) = (62), 2T

[l +( — 1) sin? [a;f(r—tr)-l-aq]]

(H7)
where the indice g in S and « indicates these quantities depend
on g. As seen in Fig. 9, the angle «, is very close to w{ /2,
for moderate values of w{ t,. Injecting this value into Eq. (H7),
we find that it amounts to shifting the time reference to #, /2.
We perform this shift when analyzing the data; in other terms
the reduced variable t is T = cq(t — t,/2).

Let us now consider the evolution of the density-
ripple power spectrum (|,|%)(¢). For small g, (|54|?)(¢) is

proportional to (67)(t) such that the evolution of (|5,|*)(r)
is given by Eq. (H7). This leads to

i+ 1
S,

q

J(g, )= [1+ (S; — 1) sin*(7)]. (H8)
Let us now investigate the quantity J(t), defined in the main
text for experimental data. Here we will assume that the
measurement times are spread over [t,, fy] and we denote
h(t)dt the number of points in the time interval [z, 1 + dt].
The ¢ values are assumed to be equally spaced, as in the case
of a fast Fourier transform, and only g values in the interval
[gm, gar] are considered. We assume that J(z) is obtained by
binning in t the collection of data with a bin size A small
enough so that, for all measurement times ¢, J(gq, t) is about
constant in the interval g € [t/(ct), (t + A)/(ct)]. Then,
one has

J(x) = h(t)dtJ[g = t/(ct), T]A/(ct),

(H9)
where the integrals are evaluated between ¢, and #,, where t; =
Max[t,,, t/(cqm)] and to = Min[ty, T/(cqn)]. Typically, in
the experiment small times are sampled more densely than
large times. Taking & proportional to 1/¢, we obtain

1
[ h(t)dtA/(ct) f

o1 Jlg=t/(ct),r]  [dqJ(q,7)
J(r)_fd‘ﬁzfdr 12 @) —qi(@)
(H10)

where g; = max[t/(c)ty, gm] and go = min[z/(c)ty, gu].
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FIG. 10. Effect of the finite ramp time of the interaction strength
for a homogeneous gas. The expected behavior of J (solid line)
is compared to the case of an instantaneous ramp (dashed line).
Here we consider a gas of rubidium atoms at conditions close to
the experimental ones. More precisely, the linear density is ng =
630 atoms per pm, the initial transverse oscillation frequency is
w; = 2w x 1.5kHz, the quench strength is ¥ = 2, and the ramp
time is #, = 0.7 ms. The range of g values used to compute J is
g €[0.1,0.5] um™" and the range of measurement times is ¢ €
[t,/2, 6 ms].
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The predicted time evolution of J is shown in Fig. 10 for
parameters close to that of the experimental data shown in the
main text. The amplitude of the first oscillation is decreased
by about 10%.

2. Finite width of the convolution function used
in data processing

The data shown in the inset of Fig. 3 of the main text
correspond to a data set with an exceptionally good signal over
noise. In general, the spread of the data points corresponding
to a given value of t (and thus corresponding to different
times ¢+ and wave vectors g) is as large as about 50%. In
such conditions, a binning of the data as a function of the
reduced time 7 = cqt with a bin size sufficiently large to
accommodate many data points is required in order to increase

the signal over noise. As describe in the main text, we use a
“smooth” binning: we compute the weighted average of the
data, J, with a Gaussian cost function of rms width A. For
a very dense data set, we can define the local average value
J(r)= > ine[r.r+ar) Ji/dT, where the sum is done on the
data set and dt is much smaller than A. Then J corresponds
to the convolution of J with a convolution width A. This
convolution reduces the amplitude of the oscillations. To
estimate this amplitude reduction, let us disregard the small
damping of the oscillations coming from the cloud in-
homogeneity (see Sec. III) and thus consider data which
would follow the oscillatory behavior J = Asin?(z). The
smoothing J(7) = [ dt'J(z") e~ @=1°12A) 1( /2 A?) re-
duces the amplitude to A’ = Ae=22", For A = 0.1, as used
for the data analysis shown in the main text, the amplitude is
reduced by 18%.
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We report the demonstration of cooling by three-body losses in a Bose gas. We use a harmonically
confined one-dimensional (1D) Bose gas in the quasicondensate regime and, as the atom number decreases
under the effect of three-body losses, the temperature T drops up to a factor of 4. The ratio k5 T/ (mc?) stays
close to 0.64, where m is the atomic mass and ¢ the speed of sound in the trap center. The dimensionless 1D
interaction parameter y, evaluated at the trap center, spans more than 2 orders of magnitudes over the
different sets of data. We present a theoretical analysis for a homogeneous 1D gas in the quasicondensate
regime, which predicts that the ratio kzT/(mc?) converges towards 0.6 under the effect of three-body
losses. More sophisticated theoretical predictions that take into account the longitudinal harmonic
confinement and transverse effects are in agreement within 30% with experimental data.

DOL 10.1103/PhysRevLett.121.200401

The identification and understanding of cooling proc-
esses, both on the theoretical and the experimental side, is
crucial to the development of cold atom physics [1,2]. It can
help to elaborate strategies to enter new regimes and it can
also improve the control over state preparation in experi-
ments where cold atoms are used as quantum simulators of
many body systems. Ultracold atom gases are metastable
systems, their ground state being a solid phase. They are
thus plagued with intrinsic recombination processes, that in
practice limit their lifetime. Such processes are mainly
three-body collisions during which a strongly bound dimer
is formed. It amounts to three-body losses because the
dimer is typically no longer trapped and the remaining atom
escapes because of its large kinetic energy. These losses are
known to produce an undesired heating in cold gases. In the
case of a thermal gas, since they occur predominantly in the
regions of high atomic density, where the potential energy
is low, these losses increase the energy per remaining
particle, leading to an antievaporation process [3]. In Bose-
Einstein condensates (BEC) confined in deep traps, it was
predicted that three-body collisions produce a heating of
the BEC through secondary collisions with high energy
excitations formed by the loss process [4]. This Letter
constitutes a breakthrough since we identify a cooling
associated with three-body losses in a cold Bose gas.

A similar counterintuitive cooling was recently inves-
tigated in [5-8] where the effect of one-body losses in
quasicondensate regime [9] is considered. Although one-
body losses are also central for evaporative cooling, here
the losses are energy independent and the cooling origi-
nates from a very different physics. Those works were
recently extended [11] to any j-body loss process, for Bose
gases in the BEC or quasicondensate regime, in any
dimension d, and for homogeneous gases as well as gases

0031-9007/18/121(20)/200401(5)
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confined in a smooth potential. These studies focus on the
effect of losses on low energy excitations in the gas, the
phononic modes, which correspond to density waves
propagating in the condensate. On the one hand, the energy
in these modes is reduced by losses since the amplitude of
density modulations is decreased, removing interaction
energy from the mode. On the other hand, the discrete
nature of the loss process comes with accompanying shot
noise which induces density fluctuations, increasing the
energy per mode. It has been shown that the competition
between these processes leads to a stationary value of the
ratio kzT /(mc?) where m is the atom mass and ¢ the speed
of sound. This value, of the order of one, depends on j, d,
and on the confining potential [11]. For three-body losses
in a 1D quasicondensates (j =3, d =1) confined in a
harmonic potential one expects kzT/(mc3) to converge to
0.70 [11], where ¢, is evaluated at the peak density.
In contrast to evaporative cooling, this loss-induced cool-
ing does not rely on a thermalization mechanism in the
gas [12].

In this Letter, we show experimentally that three-body
losses induce a cooling and we identify the stationary value
of kgT/(mc3) associated with the three-body process.
More precisely, investigating the time evolution of a 1D
quasicondensate, we observe a decrease of the temperature
as the atom number decreases under the effect of three-
body losses. Moreover, on the whole observed time
interval, the ratio kzT/(mc3) stays about constant, at a
value close to 0.64, which indicates that the stationary value
of kT /(mc}) imposed by the loss process is reached. We
took several data sets for different parameters. In terms of
the 1D dimensionless parameter y [13] characterizing the
strength of the interactions [14], our data span more than 2

© 2018 American Physical Society
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orders of magnitude. We compare the experimental data
with numerical calculations based on the results of [11],
which take into account the harmonic longitudinal confine-
ment of the gas and the swelling of the transverse wave
function under the effect of interactions. The experimental
results are close to those predictions. In order to present the
underlying physics, we derive in this Letter the evolution of
the temperature under three-body losses, in the more simple
case of a homogeneous purely 1D quasicondensate.

The experiment uses an atom-chip setup [15] where 8’Rb
atoms are magnetically confined using current-carrying
microwires. An elongated atomic cloud is prepared using
radio frequency forced evaporative cooling in a trap of
transverse frequency ®,. Depending on the data set,
@, /(2x) varies between 1.5 and 9.2 kHz and the atomic
peak linear densities n vary between 22 and 257 ym~!. The
temperature fulfills k3T < fiw, and the gas mostly behaves
as a 1D Bose gas [17]. It, moreover, lies in the quasicon-
densate regime [18], characterized by weak correlations
between atoms, as in Bose-Einstein condensates [19], and
in particular small density fluctuations [20]. As long as the
atoms are in the ground state of the transverse potential,
interactions between atoms are well described by a 1D
effective coupling constant g = 2A® ; a, where a = 5.3 nm
is the 3D scattering length [21], and the chemical potential
is given by g = gn. This is valid only as long as § < fiw | ,
which requires na < 1. In the presented data na takes
values as large as 1.3 and the broadening of the transverse
wave function due to interactions has to be taken into
account for quantitative analysis. In particular, the equation
of state becomes y = hw, (v/1 + 4na — 1) [23]. The qua-
sicondensates are confined in the longitudinal direction
with a harmonic potential V(z) of trapping frequency
@,/(2x) = 8.5 Hz, weak enough so that the longitudinal
profile ny(z) is well described by the local density
approximation (LDA), with a local chemical potential
#(z) = pp = V(z), where u,, is the peak chemical potential.
It extends over 2R where the Thomas-Fermi radius R
fulfills V(R) = p,,. Once the quasicondensate is prepared,
we increase the frequency of the radio-frequency field, by
several kHz, a value sufficient so that it no longer induces
losses. We then investigate the evolution during the waiting
time ¢. Five different data set are investigated, differing in
the value of the transverse confinement and the initial
temperature and peak density.

Using absorption images we record the density profile of
the gas, from which we extract the peak density n,,.
Figure 1 shows the evolution of n, with the waiting time
t for the different data sets. The observed nonexponential
decrease of n, is neither due to one-body losses (whose rate
is smaller than about 0.14 s~! in our experiment), nor to
inelastic two-body collisions, negligible for spin polarized
87Rb [24,25]. Its origin is three-body recombinations, as
justified by calculations presented below. In a three-body
recombination, a molecule (a dimer) is formed and its
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FIG. 1. Peak density, in log scale, versus the waiting time ¢, for
the five different data sets. Solid lines are ab initio calculations of
the effect of three-body losses, for initial peak densities equal to
that of the experimental data.

binding energy is released in the form of kinetic energy of
the molecule and the remaining atom. They both leave the
trap since their energy is typically much larger than the trap
depth, limited by the radio-frequency field. Thus, the effect
of the three-body process is to decrease the gas density
according to dp/dt = —p3g®)(0)x, where p is the three
dimensional atomic density, g (0) is the normalized three-
body correlation function at zero distance, and ¥ = (1.8 +
0.5) x 10~* mS/s is the three-body loss rate for *7Rb [24].
In a quasicondensate, correlations between atoms are small
and ¢ (0) ~ 1 [26]. Moreover, integrating dp/dt over the
transverse shape of the cloud, we obtain a one-dimensional
rate of density decrease dng(t)/dt = —Kng(t)®, where
K = (x/ng) [[dxdyp(x,y)*. Taking into account the trans-
verse broadening of the wave function using the Gaussian
ansatz results of [27], we obtain K = K°/(1 + 2nya),
where K® = km?@? /(372h%) [28]. Finally, the rate of
variation of the total atom number N is

= [ azk@me )
dt -R

At any time, the measured profile is very close to an
equilibrium profile, which indicates the loss rate is small
enough to ensure adiabatic following of ng(z). Then N and
ny(z) are completely determined by n, and Eq. (1) can be
transformed into a differential equation for n,. We solve it
numerically for the parameters of the experimental data,
namely the frequency w | and the initial peak density, using
the LDA to relate N and ny(z) to n,. Calculations, shown in
Fig. 1, are in good agreement with the experimental data,
which confirms that losses are largely dominated by three-
body losses. In contrast to [5], where losses are dominated
by engineered large one-body losses, we rely here on
intrinsic collisional properties of the gas.

The temperature of the gas is determined analyzing the
large density ripples that appear after a time of flight ¢,
[5,29-32]. Interactions are effectively quickly turned off by
the transverse expansion of the gas and the subsequent free
evolution transforms longitudinal phase fluctuations into
density fluctuations. Using an ensemble of images taken in
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FIG. 2. Evolution of the temperature for the five data sets (same
color code and symbols as in Fig. 1). Inset: density ripples power
spectrum corresponding to the encircled point, with the fit in solid
line yielding the temperature.

the same experimental condition, we extract the density
ripple power spectrum
2
) @

We choose t; small enough so that the density ripples
occurring near the position z are produced by atoms which
were initially in a small portion of the cloud, located near z.
We can thus use, within a LDA, the analytic predictions for
homogeneous gases to compute the expected power spec-
trum of the trapped gas [32]. We take into account the finite
resolution of the imaging system modeling its impulse
response function by a Gaussian of rms width . For a
given data set the density ripple power spectrum recorded at
t =0 is fitted with the temperature T and o, the latter
depending on the transverse width of the cloud and thus on
@, . We then fit (|p,[|*) at larger values of ¢ with T as a
single parameter (see inset Fig. 2). The time evolution of T
is shown in Fig. 2 for the five different data sets investigated
in this Letter. The temperature decreases with ¢, which
indicates a cooling mechanism associated with the three-
body losses. Note that this thermometry probes phononic
collective modes since the experimentally accessible wave
vectors are much smaller than the inverse healing
length &' = | /mgng /.

Figure 3 shows the same data, with the temperature

2
p'l

)P = | [ dente.t) - e

normalized to mcj, where ¢, = 1#np6,,,u|,,p/m is the

sound velocity at the center of the cloud, shown versus
the peak density n,,. While n,, explores more than one order
of magnitude, remarkably kBT/(mcf,) shows small
dispersion and is close to its mean value 0.64, the standard
deviation being 0.02 [33].

The absolute linear density is, however, not the most
relevant quantity. A 1D gas at thermal equilibrium is
characterized by the dimensionless quantities y =
mg/(h*n) and tyy = A*kgT/(mg?) [18]. In particular,
the quantum degeneracy condition corresponds to the line
y’tyy = 1. Moreover, the crossover between the ideal Bose
gas regime and the quasicondensate regime occurs, within

FIG. 3. Evolution of the ratio kzT/(mc3), in the course of the
three-body loss process, for the five data sets (same color code
and symbols as in Fig. 1). The temperature decreases with cff,,
which is approximately proportional to n,. Solid (respectively,
dashed) lines: asymptotic ratio for a 1D homogeneous (respec-
tively, harmonically confined) gas. Dotted lines: numerical
calculation, that takes into account the transverse swelling, for
two different initial situations close to that of experimental data.

the region y < 1, along the line y/?ty, ~ 1. Finally, within
the quasicondensate regime, the line yfyy =~ 1 separates the
high temperature regime, where the zero distance two- and
three-body correlations functions ¢‘¥(0) and ¢ (0) are
dominated by thermal fluctuations and are larger than 1
from the low temperature regime, where g'? (0) and ¢ (0)
are dominated by quantum fluctuations and are smaller than
1 [34]. Here, we generalize these 1D parameters to quasi-
ID gases introducing Fyy = A’kgTn?/(m3c*) and 7 =
m?c?/(#*n?). For a harmonically confined gas, we refer
in the following to the values of 7yy and 7 evaluated at the
trap center. The evolution of the state of the gas during the
three-body loss process is shown in Fig. 4 in the (Zyy, 7)
space. All data collapse on the line Jfyy = kT /(mc3) =
0.7, with a maximum deviation of 36%, while 7,y explore
more than 2 orders of magnitude.

The physics at the origin of the observed behavior can be
understood by considering the simple case of a pure 1D
homogeneous quasicondensate. We give here a simplified
analysis and refer the reader to [11] for a more complete
study. At first, let us solely consider the effect of three-body
losses, during a time interval dt, in a small cell of the gas of
length A. The density is n = ng + dn, where ng is the mean
density and én < ny since we consider a quasicondensate.

— Atyy =07

-.._,_H —— Py =1

1041078 102 10! 10°

v

FIG. 4. The data collapse on the line jiyy = 0.7. The lower
right comer corresponds to the strongly interacting Tonks-
Girardeau regime. The data sets and color (symbols) codes are
the same as in all other figures.
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The density evolves according to dn = —Kn3dt + dn,
where dy is a random variable of vanishing mean
value reflecting the stochastic nature of the loss process.
During dt the loss process is close to Poissonian and
(dn?) = 3Kn3dt/ A ~3Kn3dt/A, where the factor 3 comes
from the fact that each loss event amounts to the loss of 3
atoms. To first order in énm, the mean density evolves
according to dny = —Knjdt, and the expansion of dn
yields

dén = —=3Kn3éndt + dn. (3)

The two terms of the right-hand side correspond to the
two competing effects of losses. The first term, a drift
term, reduces the density fluctuations: it thus decreases
the interaction energy, leading to a cooling. The second
term, a stochastic term due to the discrete nature of the
atom losses, increases the density fluctuations and thus
induces a heating. Going to the continuous limit, one
has (dn(z)dn(z)) = 3Knydtd(z - 2').

Let us now consider the intrinsic dynamics of the gas.
Within the Bogoliubov approximation, valid in the quasi-
condensate regime, one identifies independent collective
modes and, up to a constant term, the Hamiltonian of the
gas writes H = ), H;, where

is the Hamiltonian of the collective mode of wave vector k
[8]. Here, the conjugate quadratures én; and @, are the
Fourier components of én and @, By, = #*k*ny/(2m), and,
as long as phononic modes are considered, A; = g/2. At
thermal equilibrium the energy is equally distributed
between the quadratures so that (H)/2 = Ay(én2) =
B;(6%). Let us compute the evolution of (H;) under the
effect of losses, assuming the loss rate is small compared to
the mode frequency @, such that the equipartition holds
for all times. First, the Hamiltonian parameter B
changes according to dB; = —Kn2B,dt. Second, accord-
ing to Eg. (3), the losses modify the distribution on the
quadrature n; and we obtain d(én?)/dt = —6Kn3(6n?) +
3Kn3 [35]. Summing this two contributions leads to

d(H}) 7 3
L D Knd(H,) + 5 Kndg. (5)
From this equation, and using dn,/dt = —Knj, we derive

the evolution of the ratio y = (H,)/(mc?), where ¢ =

\/ gng/m is the speed of sound. We find that y converges at
long times towards the stationary value y_ = 0.6.
Phononic modes typically have large occupation numbers
for values of y of the order of or larger than 1 so that
(Hy) ~kgT, where T is the mode temperature, and
y = kzT/(mc?).

In the presence of a harmonic longitudinal potential,
calculations which assume that the loss rate is small enough

to neglect nonadiabatic coupling between modes, predict a
stationary value of the ratio kpT/(mc3) equal © y, =
0.70(1) [11], a value close to experimental data. For a more
precise comparison of data with theory, we compute the
time evolution of y according to the formula derived in
[11], that takes into account the transverse swelling of the
wave function which occurs in our data at large na. The
results, shown in Fig. 3 for two different initial situations, is
close to experimental data. Even at the beginning of the
observed time evolution, the ratio kzT/(mc3) in our gases
is close to its asymptotic value. Data are taken only for
gases that were sufficiently cooled by evaporative cooling
to be in the quasicondensate regime, where both our
thermometry and the theoretical description of the effect
of losses are applicable. It occurs that, in our experiment,
when the gas enters the quasicondensate regime the ratio
kpT/(mc3) is already close to 0.7.

In conclusion, we showed in this Letter that, under a
three-body losses process, the temperature of a quasicon-
densate in the quasi-1D regime decreases in time. The ratio
kpT/(mc3) stays close to the predicted stationary value,
which results from the competition between the cooling
effect of losses and the heating due to the stochastic nature
of losses. This work raises many different questions. First,
the cooling mechanism presented in this Letter is not
restricted to 1D quasicondensates and it would be interest-
ing to investigate it in other regimes and dimensions, in
particular as one approaches the Tonks regime of 1D gases.
Second, while results presented in this Letter concern only
the phononic modes, it would be interesting to study the
effect of losses on higher energy modes. They might reach
higher temperatures than phononic modes, as predicted for
one-body losses [7], and the stability of such a nonthermal
situation might be particular to the case of 1D gases.
Finally, it is interesting to compare the three-body losses
cooling to the commonly used evaporative cooling mecha-
nism, which occurs via the removal of atoms whose energy
is larger than the trap depth. Its efficiency drops drastically
for temperatures lower than mc?/kp: the relevant excita-
tions are then phonons, which do not extend beyond the
condensate, and are thus very difficult to “evaporate.” Thus,
obtaining, by means of evaporative cooling, temperatures
lower than the asymptotic temperature imposed by three-
body losses is not guaranteed.
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Abstract

We present a general analysis of the cooling produced by losses on condensates or quasi-
condensates. We study how the occupations of the collective phonon modes evolve in
time, assuming that the loss process is slow enough so that each mode adiabatically
follows the decrease of the mean density. The theory is valid for any loss process whose
rate is proportional to the jth power of the density, but otherwise spatially uniform. We
cover both homogeneous gases and systems confined in a smooth potential. For a low-
dimensional gas, we can take into account the modified equation of state due to the
broadening of the cloud width along the tightly confined directions, which occurs for
large interactions. We find that at large times, the temperature decreases proportionally
to the energy scale mc2, where m is the mass of the particles and c the sound velocity.
We compute the asymptotic ratio of these two quantities for different limiting cases: a
homogeneous gas in any dimension and a one-dimensional gas in a harmonic trap.
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1 Introduction

Despite their extensive use as quantum simulators or for quantum sensing, the temperatures
reached in ultracold gases are not fully understood. Careful analyses of the cooling mecha-
nisms have a long tradition in the cold atoms community, and the corresponding temperature
limits constitute important benchmarks. The role of atom losses, however, is not yet eluci-
dated, although such processes often play a role in quantum gas experiments. Different loss
processes may occur. One-body processes are always present, their origin could be for instance
a collision with a hot atom from the residual vapour. The familiar method of evaporative cool-
ing involves losses that depend on the particle energy, a case we exclude in this paper. For
clouds trapped in an internal state which is not the lowest energy state, such as low-field seek-
ers in a magnetic trap, two-body (spin flip) collisions may provide significant loss. Finally,
three-body processes where atoms recombine into strongly bound dimers are always present
and are often the dominant loss mechanism. The effect of one-body losses for an ideal Bose gas
was investigated in [1]. Loss processes involving more than one body are a source of heating
for trapped thermal clouds, since they remove preferentially atoms in dense regions where the
potential energy is low [2]. Here we are interested in the effect of losses in Bose condensates
or quasi-condensates, and we focus on low energy collective modes, whose physics is governed
by interactions between atoms.

One-body losses have recently been investigated for one-dimensional (1D) quasi-conden-
sates [3-6]. Quasi-condensates characterise weakly interacting 1D Bose gases at low enough
temperature: repulsive interactions prevent large density fluctuations such that the gas re-
sembles locally a Bose Einstein condensate (BEC), although it does not sustain true long-range
order [7,8]. The above studies have focussed on low-energy excitations in the gas, the phonon
modes. These correspond to hydrodynamic waves propagating in the condensate, where long-
wavelength phase (or velocity) modulations are coupled to density modulations. On the one
hand, losses reduce density fluctuations and thus remove interaction energy from each phonon
mode. This decrease in energy, and thus of quasiparticle occupation, amounts to a cooling of
the modes. On the other hand, the shot noise due to the discrete nature of losses feeds addi-
tional density fluctuations into the gas. This increases the energy per mode and amounts to
heating. Theoretical studies [4-6], valid for one-body losses in 1D homogeneous gases, pre-
dict that as a net result of these competing processes, the system is cooling down in such a way
that the ratio between temperature kz T and the chemical potential u becomes asymptotically
a constant (equal to 1). Many questions remain open. For instance, the role of longitudi-
nal confinement has not been elucidated. Moreover, theoretical predictions for higher-body
loss processes are lacking, although cooling by three-body losses was recently demonstrated
experimentally [9].

In this paper, we generalise the theoretical results for one-body losses in homogeneous
1D gases and extend the analysis to a BEC or a quasicondensate in any dimension, for any
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j-body loss process, and for homogeneous gases as well as clouds confined in a smoothly vary-
ing trapping potential. We concentrate on phonon modes and the loss rate is assumed small
enough to ensure adiabatic following of each mode. Low-dimensional systems are realised
experimentally by freezing the transverse degrees of freedom with a strong transverse con-
finement. However, in many experiments the interaction energy is not negligible compared
to the transverse excitation frequencies such that the freezing is not perfect. The interactions
then broaden the wave function in the transverse directions, and phonon modes in the weakly
confined directions are associated with transverse breathing [10-12]. Our theory can take
this into account with a modified equation of state: the quantities u and mc?, where m is the
atomic mass and c the sound velocity, equal for a strong transverse confinement, no longer
coincide. We find that the evolution produced by losses is better described by a constant ratio
kgT /(mc?) instead of kzT/u. The asymptotic ratio kzT/(mc?) is computed for a few exam-
ples. Predictions from this paper have been tested successfully against recent experimental
results obtained at Laboratoire Charles Fabry on the effect of three-body losses in a harmoni-
cally confined 1D Bose gas [9].

2 Model

We consider a condensate, or quasi-condensate, in dimension d = 1,2 or 3. The gas is either
homogeneous or trapped in a smoothly varying potential V(r). We assume it is subject to
a j-body loss process of rate constant x;: the number of atoms lost per unit time and unit
volume is k; n’ where n is the density. This density includes fluctuations of quantum and
thermal nature, and its average profile is denoted ny(r, t). Instead of using involved powerful
theoretical techniques such as the truncated Wigner approach [13,14], we compute the effect
of losses in this paper with a spatially coarse-grained approach that does not rely on involved
theory and in which the approximations are made transparent. For the same pedagogical
reason, we explicitly construct the phase-density representation of the collective excitations of
the gas, in a similar way as is done for instance in [15].

2.1 Stochastic dynamics of the particle density

Let us first consider the sole effect of losses and fix a cell of the gas of volume A, small enough
so that the density of the (quasi)condensate is about homogeneous in this volume, but large
enough to accommodate many atoms. The atom number in the cell is N = N, + 6N where
Ny = npA and 6N < N, since the gas lies in the (quasi)condensate regime. (We drop the
position dependence ny = ng(r) for the moment.) Since typical values of §N are much smaller
than N, one can assume without consequence that 6N is a variable that takes discrete values
between —oo and co. Hence, one can define a phase operator 8, whose eigenvalues span the
interval [0, 2n[ and that is canonically conjugate to 6N. Losses will affect both the density
fluctuations and the phase fluctuations.

We first concentrate on the effect of losses on density fluctuations. Consider a time step dt,
small enough that the change dN in atom number is much smaller than N, but large enough
such that dN is much larger than 1. After the time step, we have

dN =—K;N'dt +dE, (1)

where K; = «;/ A7, Here, d£ is a random number with vanishing mean value that translates
the shot noise associated with the statistical nature of losses. The number of loss events during
the small step dt is Poisson distributed so that the variance of d§ relates to the mean number
of lost atoms by .

(d&?) = jK;N/dt ~ jK;Njdt, (2)

3
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the factor j coming from the fact that at each event, j atoms are lost. The evolution of fluctu-
ations in the atom number is obtained from d6N = dN —dN,, where dN, is the change of the
mean number, equal to dNy = —KjNéd t in the lowest order in 6N. Expanding N’ in Eq.(1) to
first order in 6N, we obtain the following evolution for the density fluctuation 6n= 6N /A:

d5n:—jr\‘jné—]5ndt+dn, (3)

where dn) = d&/A is a random variable of variance (dn?) = jx'jnédt/A. The first term in
the r.h.s, the drift term, decreases the density fluctuations. It will thus reduce the interaction
energy associated to fluctuations in the gas and produce cooling. The second term on the other
hand increases the density fluctuations in the gas which leads to heating.

2.2 Shot noise and phase broadening

We now compute the effect of losses on the phase fluctuations, following an approach similar to
Ref. [16]. For this purpose, one imagines that one records the number of lost atoms during d¢.
This measurement increases the knowledge about N, and thus 6 N. To quantify this increase
of knowledge, we use the Bayes formula

P(6N)
[ d(8N")P(N;|6N")

P(6N|N;) = P(N;|6N), 4)

where P(6N) is the initial probability of having an atom number N = N, + 6N, and P(N;|6N)
is the probability that a number N; of atoms will be lost, given that the initial atom number was
Ny + 6N. Finally, P(6N|N;) is the probability that the final number is N, — N; + 6N, knowing
the fact that N; atom have been lost. As argued above, the Poissonian nature of the loss process
and the assumption that the number of lost atoms is large compare to one, imply the Gaussian
distribution )
j 2 2
P(N 5NJ ~ 76—(NE—KJ:NJdt) ;"(20’1)’ (5)
4 V21O

where N = N, + 6N and Uf = jKjNg dt. Expanding N’ around Ng and introducing
5N = Ny/(jK;N]'dt)—Np/j, one has

(N, —K;N7dt)? (6N — 5N )?
— Y~ ——, (6)

5N

I

where N
o= )
JK;Ny ~dt

Thus, according to Eq.(4), the width of the distribution in 6N is multiplied by a function of rms
width oy after recording the number of lost atoms. This narrows the number distribution
and must be associated with a broadening in the conjugate variable, 6, lest the uncertainty

relations are violated. The phase broadening must be equal to
1
(do?) = —— =22
40’ 5N 4n0A

dt. (8)

This spreading of the phase results from the shot noise in the loss process.
In the following, keeping in mind that only length scales larger than the interparticle dis-
tance have to be considered, we go to the continuous limit. The factors 1/A in the variance
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for dn in Eq.(3) and in the phase diffusion of Eq.(8) then turn into

(dn(@)dn(r)) = jx;n)s(r—r)dt, (9)
(dB(r)de(r)) = ix‘jné_zéi(r—r’}dr. (10)

Both diffusion terms are due to the quantised nature of the bosonic field, namely the discrete-
ness of atoms. Their effects become negligible compared to the drift term in Eq. (3) in the
classical field limit, i.e. ny — oo at fixed typical density fluctuations 6n/n,. Note finally that
these results could also have been obtained using a truncated Wigner approach [13,14], using
approximations based on the relation 6n < ny.

Before going on, let us make a remark concerning gases in reduced dimension. An effec-
tive 1D (resp. 2D) gas is obtained using a strong transverse confinement in order to freeze the
transverse degree of freedom: the atoms are in the transverse ground state of the confining
potential, of wave function v(x, ). In the case of j-body losses with j > 1, the loss process
a priori modifies the transverse shape of the cloud since it occurs preferentially at the center,
where the density is the highest. In other words, it introduces couplings towards transverse ex-
citations. We assume here the loss rate to be much smaller than the frequency gap «w; between
the transverse ground and first excited states. Then the coupling to transverse excitations has
negligible effects, and the above analysis of the effect of losses also holds for the effective 1D
(resp. 2D) gas, provided k; = K?Dfdlehj)(xl)ﬁj (resp. k; = K?Dfdxlhjr(xﬂﬁj), where

23D

ki is the rate constant coefficient for the 3D gas.

2.3 Collective excitations

Let us now take into account the dynamics of the gas. Under the effect of losses the profile
ny(r, t) evolves in time and, except for a homogeneous system, a mean velocity field appears,
generated by a spatially dependent phase 6,(r, t). Here we assume the loss rate is small enough
so that, at any time, ny(r) is close to the equilibrium profile. We moreover assume the potential
varies sufficiently smoothly such that the equilibrium profile is obtained with the local density
approximation. Then, at any time, ngy(r) fulfills

wu(no(r)) = pp — V(r), (an

where u(n) is the chemical potential of a homogeneous gas of density n and u, is the peak
chemical potential, which fixes the total atom number . In most cases 4 = gn where g is
the coupling constant. In 3D condensates, g = 4nfiZa/m where a is the scattering length
describing low-energy collisions. In situations where two (resp. one) degrees of freedom are
strongly confined by a transverse potential of frequency w,, u depends on a, on the linear
(resp. surface) density n, and on w,. As long as fiw; > u, the transverse cloud shape is
close to that of the transverse ground state 2, and one recovers the expression y = gn where
the effective 1D (resp. 2D) coupling constant g depends only on a and on w; [17,18]. At
large densities, ficw| ~ u, the transverse degrees of freedom are no longer completely frozen:
interactions broaden the transverse wave function, and p is no longer linearinn [11,12]. We
discuss one example in Sec.3.2.

To treat the dynamics around the average density ny(r, t), a Bogoliubov approximation
is valid since the gas is in the (quasi)condensate regime: one can linearise the equations of
motion in the density and phase fluctuations én(r) and ¢(r) = 6 —6,[15,19]. These equations

'The peak density is reached at the position r, where V reaches its minimum value. We impose V(r,) = 0.

2We assume here that the transverse width of the cloud fulfills I, 3> a such that the effect of interactions is well
captured treating the gas as a 3D gas.
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involve the mean velocity field "'V 6,/ m. Here we assume the loss rate is small enough so that
such terms are negligible. We moreover consider only length scales much larger than the
healing length. Then, as detailed in Appendix A, the dynamics of én(r) and ¢(r) is governed
by the hydrodynamic Hamiltonian

AL (Vo) + 1 S 5 (12)
hdyn =5 olVY 2 ng

Here the speed of sound ¢ = c(r) is related to the local compressibility, mc? = nyd,u, eval-
uated at ny(r). At a given time, Hygyy, can be recast as a collection of independent collective
modes. The collective modes are described by the eigenfrequencies w, and the real functions
2, [details in Appendix B]. They obey

c2
v- (nov(n—ogv)) =—wy gy, (13)

and are normalised according to

Sy = m ddrﬁg (r)g,.(r). 14)
Y fw, ng®”
Then Hygyn = 2, H, Where
flw
H,= 2”(x§+p§). (15)

The dimensionless canonically conjugate quadratures x,, and p, are related to én and  re-
spectively. More precisely,

on(r) = 25, x,8,(r)

mc? g,(r) (16)
e =" va .
which inverts into
PO ddrfﬁn(r) (r)
v fiw, g & an

Py= f ddrtp(r)g,,(r).
At thermal equilibrium, the energy in the mode v is equally shared between both quadratures
and, for temperatures T > fiw,,, one has (H,) =T.

3 Cooling dynamics

3.1 Evolution of the excitations

Let us consider the effect of losses on the collective modes. The loss process modifies in time
the mean density profile and thus the two functions of r, ny and c, that enter into the Hamilto-
nian Eq. (12). We however assume the loss rate is very low compared to the mode frequency
and their differences w, —w,,, so that the system follows adiabatically the effect of these mod-
ifications. As a consequence, equipartition of the energy holds at all times for any collective
mode v, and the adiabatic invariant A, = (H,)/(fiw, ) is unaffected by the slow evolution of
ny. The dynamics of A, is then only due to the modifications of 6n(r) and ¢(r) induced by the
loss process (subscript 1), namely

dA, _ l(d(xf): N d(Pﬁ)t)
dt 2\ dt dt 7

(18)

6
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Injecting Eq. (3) into Eq. (17), we obtain for the ‘density quadrature’

(dvaI =

2
m d.c = |
oo, j d rn—og,,(r) (—]r\jno én(r)dt + d'r,l(r)). (19)
Using the mode expansion (16) for 6n(r) in the first term, we observe the appearance of
couplings between modes. In the adiabatic limit (loss rate small compared to mode spacing),
the effect of these couplings is however negligible. Then, Eq. (19) leads to

d(x2), 2jK;m g jijm? .
d: =—— () | dirc?*nd g2 + o) dirc*n) 2. (20)
v v

Let us now turn to the phase diffusion associated with losses. It modifies the width of the
conjugate quadrature p,,, according to

dp2 ki (4 e
d: =0 d rnf) g2. 21

The hydrodynamic modes are characterised by low energies, fiw, < mc?, when the speed of
sound is evaluated in the bulk of the (quasi)condensate. Then d(pi)l /dt gives a contribution
that scales with the small factor (fiw, /mc?)? compared to the second term of Eq. (20). In other
words one expects that the phase diffusion associated to the loss process gives a negligible
contribution to the evolution of A, [Eq.(18)] for phonon modes °.

We see from Eq.(20) that the adiabatic invariant A, is actually changed by j-body losses.
We now show that the decrease in the energy per mode (H,) is better captured by the energy
scale associated with the speed of sound, as their ratio will converge towards a constant during
the loss process. More precisely, we introduce

(j 1 v) kB I v
Y mc;;’ mc;;’ ’ ( )

where ¢, is the speed of sound evaluated at the peak density n,. The second expression is
valid as long as the phonon modes stay in the classical regime, (H,) > fiw,. From Eq. (18)
and (20), neglecting the contribution of Eq.(21), we immediately obtain

d - . . .
ayv:"‘jnél[_(]‘d_(g)yv"i'}%]: (23)

where the dimensionless parameters .«/, 8 and ¢ are

m czné_2
o = P jddr 1 g2(r), (24)
v n
P
m d C4”£_2
_ 2
» = 2ﬁcovj L 2
_ dln(mcﬁ/ﬁco,,) 4 ﬂé
€ = N d%r 1 (26)
tot np

In general, all of them depend on v but we omit the index v for compactness. The term ./ is
the rate of decrease of y, induced by the reduction of the density fluctuations under the loss

3At the border of the (quasi)condensate, where the density becomes small, the condition ficw, < mc? breaks
down, however. The effect of phase diffusion is more carefully evaluated in Sec.3.3.
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process, normalised to k; nﬂ_]. The term 93 originates from the additional density fluctuations
induced by the stochastic nature of the losses. The term % arises from the time dependence
of the ratio mc;‘;/ﬁcu,,. It is computed using the dependence of mc;‘;/ﬁcu,, on the total atom
number, the latter evolving according to

%:—jddrx‘jné. 27
Egs. (23-26) constitute the main results of this paper. They have been solved numerically for
the experimental parameters corresponding to the data of [9] (j = 3 and anisotropic harmonic
confinement) and their predictions compare very well with experimental results.

We would like at this stage to make a few comments about these equations. First, the factor
fi, although it appears explicitly in the equations, is not relevant since it is canceled by the &
contained in the normalisation (14) of the mode functions g,. Second, we note that .«/, 98 and
% are intensive parameters: they are invariant by a scaling transformation V(r) — V(Ar) and
depend only on the peak density n, and on the shape of the potential. Finally, Egs. (23-26)
depend on v and it is possible that the lossy (quasi-)condensate evolves into a non-thermal
state where different modes acquire different temperatures. Such a non-thermal state of the
gas is permitted within the linearised approach where modes are decoupled. In the exam-
ples studied below, however, it turns out that all hydrodynamic modes share about the same
temperature*. In the following, we investigate the consequences of Eq. (23-26), considering
different situations.

3.2 Example: homogeneous gas

In this case, density ny and speed of sound c are spatially constant. The collective modes are
sinusoidal functions, labelled by v and of wave vector k,, °. The frequencies are given by the
acoustic dispersion relation w, = c|k, | and the mode functions g, ((r) are normalised to

few
d _
j d rg;‘:(r) = mc;nﬂ. (28)
Then Eqgs.(23-26) reduce to
d 1 [ ( . Jdlogc ) ) :I
ac” =M | YU~ Glogng jl2 |, (29)

which is the same for all modes v. Let us consider the limit u = gng, valid in 3D gases, or
in low-dimensional gases with strong transverse confinement (negligible broadening of the
transverse wave function). Then ¢ o< né” 2 and Eq. (29) shows that y tends at long times

towards the asymptotic value
1

- (30)

Yoo

independent of the mode energy*. For one-body losses, one recovers the result y, = 1[4,5].
In the case of 3-body losses, one finds y., = 3/5.

Let us now consider a quasi-low-dimensional gas, where transverse broadening of the wave

function cannot be neglected. The logarithmic derivative in Eq.(29) is then no longer constant.

4 In the case of one-body losses, theories that go beyond the hydrodynamic approximation predict non-thermal
states to appear, where the high-frequency modes reach higher temperatures than the phonon modes [4,5].

SFor 1D gases, ¥ = (p, o) where p is a positive integer and o = ¢ or 5 depending wether we consider cosine
or sine modes. The wave-vector is k, = 2pm/L where L is the length of the box, assuming periodic boundary
conditions. This generalises to higher dimensions with v = (p,, 0, p,, 04, P3,03) in 3D for instance.
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Figure 1: Cooling a quasi-1D gas, homogeneous along the axial direction, by three-
body losses. The density is initially so high that transverse broadening is relevant [ the
chemical potential does not fulfill u < fiw | ]. Left: time evolution of the temperature
(thick blue), shown versus the time decreasing density. Black dashed and thin red
lines show the intrinsic energy scales u and mc2. The system rapidly evolves into
a dynamical state where the temperature follows the energy scale mc?, rather than
the chemical potential. Right: evolution of the ratio y = kzT/mc? vs. the density.
The curves correspond to different initial values (marked with dots, the white dot
corresponding to the parameters on the left). The thick red line shows the function
Ymin that gives the positions of lowest values taken by y in the course of cooling. In
this system (homogeneous along the axial direction), all hydrodynamic modes evolve
with the same temperature.

We will focus on the case of a quasi-1D gas, as realised experimentally for instance in [9]. The
effect of the transverse broadening is well captured by the heuristic equation of state [11,12]

,u:ﬁcoL(\/l+4n0a—1), (31

where w | is the frequency of the transverse confinement and a the 3D scattering length.
Inserting into Eq. (29), one can compute the evolution of y. The transverse broadening also
modifies the rate coefficient x;, making it density-dependent. However, re-scaling the time

according to u = for Kj(’r)nf,_ld'r = In(ny(0)/ny(t)), Eq. (29) transforms into

ng(0)ae™
1+4ny(0)ae

d
—y:—y(j—1/2+

o ) +/2 (32)

and no longer depends on ;. Fig.1 shows the solution of this differential equation in the case
of 3-body losses, and for a few initial situations, namely different values of y and nga (right
plot). The asymptotic value y = y., is always reached at long times since the transverse
broadening then becomes negligible. Note that in distinction to pure 1D gases, the effect
of transverse broadening allows the system to reach transiently lower scaled temperatures
¥ < Yoo, €ven when starting at values of y larger than y.,. More precisely, let us denote
Ymin(o) =j/2/(j—1/2+any/(1 + 4ang)). When starting with y > y..,, the lowest value of
y is reached for some (non-vanishing) density, and it falls on the curve y,,;,. For j = 3, one
find that y,,;, varies between y,, = 0.6 and 6/11 ~ 0.55. Thus, the coldest temperatures in
the course of the loss process never deviate by more than 10% from the asymptotic value 0.6:
the impact of transverse swelling is relatively small. Note that, if one considered the scaled
temperature T /u rather than y, much larger deviations would appear.

9
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Figure 2: Asymptotic ratio y., = kzT/mc? for hydrodynamic collective modes
of a 1D quasi-condensate confined in a harmonic trap, for 1-body (red), 2-body
(blue) and 3-body (green) losses. The modes are labeled by their eigenfrequen-
cies w, = w+/ v(v+1)/2 and we only consider v > 2. Symbols: calculation based
on the Legendre polynomials of Eq.(34), inserted into Egs. (24, 25). Solid lines:
large-v approximation given by Eq. (36) with values y., = 3/4,45/56,525/748 for
j=1,2,3.

3.3 Example: 1D harmonic trap

We consider a 1D gas confined in a harmonic potential of trapping frequency «w. We assume
for simplicity a pure 1D situation with u = gn = mc2. In the Thomas-Fermi approximation,

the mean density profile is

no(z) =n,(1—(z/R)*), |2| <R, (33)

where n,, is the peak density and R = ,/2gn,/(mw?) is the axial radius of the quasicondensate.
From Eq.(13), we recover the known result that the hydrodynamic modes are described by the

Legendre polynomials P,, and the eigenfrequencies are w, = w+/ v(v+1)/2[7,20]. A trivial

calculation using N, = %npR o< cg and the substitution z = Rcosa gives

€ = foﬁfzda sin?*tl q = 2/3,8/15,16/35 for j = 1,2,3. To compute .¢f and 98, one needs
the exact expression of g,, which according to the normalisation (14) can be written

‘ flw,
g,(z)= 2R v2v+1P,(z/R). (34)

Inserting this expression, together with Eq. (33), into the integrals (24) and (25), we find that
@/, B, and ¢ are time-independent. Thus y tends at long times towards the asymptotic value
Yoo = jB/(j.o/ —€). For large v, one can use the asymptotic expansion [21]

) 1/2
P,(cosa) ~ (—) cos ¢, (35)

(v + %)sina

with ¢, = (v+ %}a - %TE. Moreover the fast oscillations of P, (cosa) can be averaged out in
the calculation of the coefficients ./ and 8. Then ./ and 2 no longer depend on v, so that

Yoo is identical for all modes, and we find

1 (™2 44 sin?
Hfo da sin® a

~— : : . (36)
2;} foﬁﬁda sin? 2 — f;ﬁzda sin®i+l g

Yoo

10
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Figure 3: Diffusion of density and phase quadratures associated with many-body
loss in a one-dimensional gas trapped in a harmonic potential. We plot the dimen-
sionless coefficients j% [Eq.(25)] and j2, [Eq.(37)] that are proportional to the
shot noise projected onto the corresponding quadratures. Symbols: numerically
computed mode functions, improving upon the hydrodynamic approximation. Solid
lines: approximate results based on the Legendre modes (34). Dashed lines: guide
to the eye. Parameters: strictly 1D equation of state u = gn, peak chemical potential
pp ~ gn, = 100hw.

For one- and three-body losses, this gives y., = 3/4 = 0.75 and y., = 525/748 ~ 0.701,
respectively. This asymptotic result is compared to calculations using the expression Eq. (34)
in Fig. 2. We find very good agreement as soon as the mode index is larger than 5.

To conclude this example, we come back to the diffusive dynamics of the ‘phase quadra-
tures’ p,, we neglected so far. In the case of one-body losses, however, it happens that the
integral (21) does not converge: while the mode function g,(z) [Eq.(34)] remains finite at
the condensate border z — %R, the integrand n“’o_z(z)gf(z) is not integrable for j = 1. This is
actually an artefact of the hydrodynamic approximation, which breaks down at the border of
the condensate.

We have performed numerical calculations of the collective excitations by solving the Bo-
goliubov equations . The mode functions g,(z) are defined according to Eq.(61): they extend
smoothly beyond the Thomas-Fermi radius and match well with the Legendre polynomials (34)
within the bulk of the gas. The resulting values for the parameter % [Eq.(25)] are shown in
Fig.3: they depend very weakly on the mode index v and are well described by the approxi-
mate calculation based on the Legendre modes mentioned after Eq.(35) (solid lines). In the
lower part of the figure, the corresponding values for the diffusion coefficient originating from
phase noise are shown, namely the parameter

ﬁwv d né_z 2
B, = 8mc? d r?gv(r). 37
p Mp

They remain at least one order of magnitude below. For losses involving more than one parti-
cle, the approximation, under which the functions g, are given by the Legendre polynomials,

SFor the condensate wave-function, we also went beyond the Thomas-Fermi approximation by allowing for a
‘spill-over’ of the condensate density beyond the inverted parabola.
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gives a convergent integral in Eq.(37). The result is shown as solid lines for two- and three-
body losses, where we made the additional approximation Eq. (35) on the Legendre functions
and we averaged out the oscillating part. We find that the Legendre approximation performs
better for three-body losses than for 2-body losses, which is expected since a stronger weight
is given to the bulk rather than the edge of the condensate. In conclusion of this numerical
study, we verified the validity of the assumption that, for phonon modes, the phase diffusion
term gives negligible contribution to the evolution of y. This term becomes noticeable when
one leaves the phonon regime fiw, < mc2. Then, one should go beyond the hydrodynamic
Hamiltonian Eq.(12) to properly compute the mode dynamics.”

4 Conclusion

In this paper, we construct a stochastic model to describe the effect of losses on the hydro-
dynamic collective modes of condensates or quasicondensates. Explicit formulas for cooling
and diffusion of the density and phase quadratures are derived. They provide the behaviour
of the mode temperature T with time. We show that T becomes proportional to the energy
scale mc? where c is the hydrodynamic speed of sound. The asymptotic ratio kg T /(mc?) is
computed explicitly in different situations and for different j-body processes. These results
are in good agreement with recent experiments performed in Laboratoire Charles Fabry [9]
where three-body losses provided the dominant loss channel.

This work raises many different questions and remarks. First, it is instructive to investigate
the evolution of the ratio D = h2n%/4/(mkgT), where d is the gas dimension, since D quanti-
fies the quantum degeneracy of the gas.® Let us focus for simplicity on a homogeneous system
and use mc? = gn. Once the ratio kz T /(mc?) has become stationary, we find that D increases
in time for 3-dimensional gases, while it decreases for one-dimensional gases. Starting with a
1D Bose gas in the quasi-condensate regime, losses let the quantity Dy reach a stationary value
of order one, but increase the dimensionless interaction parameter y = mg/ (h%n). When 7,
from values much smaller, approaches 1, the gas lies at the crossover between four regimes:
the quasi-condensate (y < 1, D,/y > 1), the quantum-degenerate ideal Bose gas (D /Y < 1,
D > 1), the non-degenerate ideal Bose gas (D Tz < 1, D < 1) and the Tonks-Girardeau regime
(y > 1, Dy? > 1). At later times, one expects the cloud to leave the quasi-condensate regime
and we believe it becomes a non-degenerate ideal Bose gas. Second, the effect of losses on
high-frequency modes, not described by our hydrodynamic model, leads a priori to higher tem-
peratures; this was investigated for 1D gases subject to one-body losses [5]. The gas is then
described by a generalised Gibbs ensemble where different collective modes experience differ-
ent temperatures. This non-thermal state is even long lived in 1D quasicondensates [5]. While
the calculations presented here are formally valid for higher dimensions, efficient coupling be-
tween modes may reduce their relevance, since such coupling favours a common temperature.
It is an open question whether our methods could be extended to the case of evaporative cool-
ing where the one-body loss rate is energy- or position-dependent. This mechanism may play
a role in experiments where temperatures as low as kg T ~ 0.3 mc? have been observed, lower
than the predicted temperatures for uniform losses [3]. Finally, it would be interesting to ex-
tend this work to different regimes of the gas. For instance, one may ask how the effect of
losses transforms as one goes from a quasi-condensate to the ideal gas regime. The approxi-
mation of weak density fluctuations then clearly becomes invalid. One could also investigate
losses at even lower densities, where the 1D gas enters the fermionised (or Tonks-Girardeau)

7A full treatment going beyond the hydrodynamic approximation has been performed for one-body losses in
homogeneous 1D quasi-condensates [4,5].
8Note however that the temperature used in the definition of D refers to the phononic modes only.
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regime. Here, ones expects that the losses act in a similar way as in a non-interacting Fermi
gas. One-body losses, for example, should then produce heating, since the temperature in-
creases as the degeneracy of an ideal Fermi gas decreases. Finally, it would be interesting to
investigate whether the results presented here may also cover interacting Fermi gases in the
superfluid regime.
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A Reduction to low-dimensional hydrodynamics

As mentioned in the main text, we assume the loss process is slow enough so that, first, the
mean profile at each time is very close to the equilibrium profile with the same atom number,
and second, we can safely neglect any mean velocity field when computing the time evolution
of the fluctuating fields é6n, . The evolution equations d 6n/dt and d¢/dt are thus, at a
given time, equal to those for a time-independent quasi-condensate. In the purely 3D, 2D and
1D cases, for contact interactions, we can use the well known results based on Bogoliubov
theory. We then find that the equation of state takes the form y = gn and dén/dt and dyp/dt
derive from Eq. (12) for the long-wavelength modes.

Let us now consider the case where the gas is confined strongly enough in 1 or 2 dimen-
sions, such that the relevant low-lying excitations are of planar or axial nature. We allow,
however, for a transverse broadening of the wave function under the effect of interactions.
We show below that the equations of motion for the slow phononic modes, for which the
transverse shape adiabatically follows the density oscillations, also derive from Eq. (12). The
proof given here is complementary to Refs. [10,11] because it does not need an explicit model
about the shape of the transverse wave function. In order to simplify the notations, we re-
strict ourselves to the quasi-1D situation. The derivation can be easily translated to quasi-2D
situations.

We thus consider a gas confined in a separable potential consisting of a strong transverse
confinement and a smooth longitudinal confinement. The equilibrium density distribution of
the quasi-condensate is |¢o(x, y,2z)[? where the real function ¢q(x, y,z) obeys the stationary
Gross-Pitaevskii equation

h2 f2
(—ﬁazz— EAL +Vi(x,y)+V(z)+ g|¢0|2_“p) $o=0. (38)

Here g = 4nhZa/m is the 3D coupling constant with a the zero-energy scattering length.
Within the Bogoliubov theory, the evolution of excitations is governed by the equations [19]

. h2 h -
iho f* = (_2_522__AJ_+V1(x:y)+V(ZJ+g|¢’OI2_Mp)f
m 2m (39)
iho,f~ = —ﬁaz—ﬁa +V(x,y)+V(2)+3¢g|pol* —up |
iho f~ = om* ~ 2m 1+ Vil y z gldo pp |f-

The field operators are half sum and difference of the fluctuating field operators 6 and & YT
f* is linked to density fluctuations and f~ to phase fluctuations.
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Since we assume that the axial variation is slow compared to the transverse one, the solu-
tion ¢o can be approximated by a function 1 that depends on the axial coordinate z only via
a local chemical potential

Golx,y,2) =P(x,y;u),  p=pp,—V(z). (40)

Here, 1) solves the Gross-Pitaevskii equation for an axially homogeneous system:

ﬁ2
(—EALJFVL(XJ)WHQWJF—:U) Y =0. (41)

This procedure is consistent, e.g., with making the Thomas-Fermi approximation in the axial
direction. Solving this equation yields the local chemical potential as a function of the axial
(average) density u = u(ng) with

no(z) = jdxdy |po(x,y,2)I” =~ jdxdy I (x, s w2 (42)
This motivates the following separation Ansatz for the Bogoliubov functions in Eq.(39):

{ f+ = 5pujamUF+
fr=ipoF .
where the functions F* and F~ depend only on z and the derivative d,u is evaluated at the
local density ng. Inserting this into the second line of Eq.(39), we find

(43)

n? i
_¢Oﬁ5rF_ = (_ﬁaﬁ_ EAJ_ + VJ_(X: y) + V(Z) + 3g|¢’0|2_“p) (5p1!)5n,[lF+) . (44)

The action of this operator on J,3 can be worked out by differentiating Eq. (41) versus u:
this gives

ﬁZ
(_EAL +V¢(X,Jf)+3g|‘1’|2—ﬂ) oY =Y =~ ¢y. (45)

Eq.(44) thus simplifies into
—pold,F~ = —%az (8uBuuF ™) + poduuF ™. (46)
To find a closed equation for the axial dynamics, we multiply with y(x, y;u) and integrate

over the transverse coordinates. Using Eq.(42) and its derivatives with respect to u and z, we
find the identities

1 1 1
dedy (,‘5{]5“'4? = Ea_u,ﬂ{] = —25]1“ s jdxdy fi’oazf‘bo = Eazno . (47)
Using the first one, Eq.(46) becomes:
#2
—ho,F~ = gr— 32F* + OuF* ~—3,uF*, (48)

where in the second step, we took the long-wavelength limit.
Let us now insert the Ansatz (43) into the first line of Eq.(39):

2 2
"Gy a0, F* = (—ﬁaf — S AL+VI(%,Y)+V(2)+ glhol? - ,up) (6oF7). (49
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The action of the operator in parentheses on ¢, simply vanishes because this is the Gross-
Pitaevskii equation (38). Since F~ does only depend on the axial coordinate, we are left with:

n _ h _
0, Y Onu0, F* = - (8,¢0) 8,F — ﬂqsoajlr . (50)

We again project out the transverse coordinates and use the identities (47). Combining the
axial derivatives, we then have

o,Ft= —gaz(nﬂazr). (51)

These calculations illustrate that the Ansatz of Eq.(43) captures well the axial and transverse
dependence of the collective excitations in the low-dimensional gas. Note in particular how
the density fluctuations (f*) are accompanied by density-dependent changes in the transverse
wave function.

To make contact with the hydrodynamic Hamiltonian (12), we need to relate F* and F~
to the low-dimensional density and phase fields, 6n and ¢. Bogoliubov theory tells us that
three-dimensional density fluctuations are linked to f *via 6p = 2¢, Fr. Integrating & p over
the transverse plane, replacing f * by its Ansatz (43) and using Eq. (47), we obtain

=én=n—ny. (52)

Phase fluctuations on the other hand are linked to f~ according to f~ = i¢op. [Recall that
the ansatz (43) assumes a uniform phase in the x, y plane.] Comparison with Eq. (43) gives
immediately

F=p. (53)

Then Eq.(48) and Eq.(51) are precisely the evolution equations derived from the Hamilto-
nian (12).

B Hydrodynamic Bogoliubov modes

Here we consider low-energy modes of either a three-dimensional gas or low-dimensional
gas, whose dynamics is described by the hydrodynamic approximation. More precisely, we
diagonalize the Hamiltonian (12), for a given, time-independent, equilibrium profile ny(r).
From Eq.(12) we derive the evolution equations

2 5n/¢n—a): (51'1/\/”_0)
ac( /7o < Jioe ) (54)

where

¢ = ( 0 —mmV (”‘JV( ) ) (55)

—mc?/n

The factors ,/m, are convenient to give the two components the same dimension and to sym-
metrize the differential operator that appears in .#. The two equations derived from Eq.(54)
correspond to the hydrodynamic equations provided we identify iV /m with the velocity:
the first one is the continuity equation, the second one gives the Euler equation.

We build the mode expansion on pairs of real functions that form right eigenvectors of ¥:
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Due to symmetry properties of ¢, Eq.(56) entails the following properties: (a) (f,7,—if,)
is a right eigenvector of £ of eigenvalue —iw,; (b) (if, ,f,") is a left eigenvector of same
eigenvalue; and (c) different right eigenvectors of & verify fddr f, f,; = 0. It is convenient

to consider those eigenvectors of ¥ which are normalized according to fddr f, f,)=1. This
yields the expansions

)R ()
(mw _,/zzv: W\ —ify )T\ i ) G7)

which invert into

a,= % jddr(ﬁji_?f;(r) + f\/”_n‘aﬂ(l')f:(l')) : (58)

The normalisation of the eigenvectors and the relation [6n(z), p(2’)] = i6(z — 2’) ensure
[a‘I/J a;r,r] = 51/_,1"'
We introduce the function

&=+ f), (59)

and use the relation f = = mc? f,7/(w,) that follows from the eigenvalue problem (56). Then
the normalisation of g, [Eq.(14)] follows from that of (f,",if ). Defining the quadratures
x, = (a, + a’;)/w/f and p, = —f(a,,—a’;)/w/f, the expansions (57) give Egs.(16) of the main
text.

C Numerical calculation

For the numerical results shown in Fig.3, we have solved the Gross-Pitaevskii equation in a
1D harmonic trap by minimising the corresponding energy functional: this gives a smooth
density profile ny(z). The Bogoliubov equations are solved with a finite-difference scheme on
a non-uniform grid. We get a frequency spectrum that coincides to better than one percent
with the Legendre spectrum for all modes with fiw, < 0.1gn, (n, is the peak density). The
traditional Bogoliubov modes u,, and v, are related to the eigenfunctions of Eq.(56) by

f-:— = ‘/E(uv + Vv): (60)
fyo= (wy=v)/V2. (61)
Inserting this into Eq.(59) gives the modes g,. We have checked for phonon excitations with

frequencies iw, < gn,, that the proportionality between f* and f~ [see after Eq.(59)] is an
excellent approximation in the bulk of the condensate.
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The emergence of a special type of fluidlike behavior at large scales in one-dimensional (1D) quantum
integrable systems, theoretically predicted in O. A. Castro-Alvaredo et al., Emergent Hydrodynamics in
Integrable Quantum Systems Out of Equilibrium, Phys. Rev. X 6, 041065 (2016) and B. Bertini et al.,
Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett.
117, 207201 (2016), is established experimentally, by monitoring the time evolution of the in situ density
profile of a single 1D cloud of ¥Rb atoms trapped on an atom chip after a quench of the longitudinal
trapping potential. The theory can be viewed as a dynamical extension of the thermodynamics of Yang and
Yang, and applies to the whole range of repulsive interaction strength and temperature of the gas. The
measurements, performed on weakly interacting atomic clouds that lie at the crossover between the
quasicondensate and the ideal Bose gas regimes, are in very good agreement with the theory. This contrasts
with the previously existing “conventional” hydrodynamic approach—that relies on the assumption of
local thermal equilibrium—which is unable to reproduce the experimental data.

DOL 10.1103/PhysRevLett.122.090601

The emergent hydrodynamic behavior of many interact-
ing particles is a fascinating phenomenon: at the atomic
level, all quantum (classical) systems are described by the
Schrodinger (Newton) equation, yet these unique micro-
scopic descriptions give rise to a wealth of different liquid
and gas phases at larger scales, from the ideal gas to liquid
water to plasmas to superfluid helium to Bose-Einstein
condensates, to name but a few. Inferring the correct
hydrodynamic behavior directly from the microscopic
constituents of a many-body system is, in general, a very
ambitious task that typically involves extensive numerical
simulations and a hierarchy of different modelings on
intermediate scales [1,2].

However, there exist a few simpler systems where the
emergence of a special kind of hydrodynamics can be
linked directly to the underlying microscopic rules [3]. One
such system is the one-dimensional (1D) classical billiard,
or hard-rod gas [3-5], whose hydrodynamic behavior, as
seen below, is similar to that of the quantum system studied
in this Letter. The hard-rod gas consists of N identical
impenetrable rods of fixed diameter A that move along a
line, and exchange their momenta upon colliding elasti-
cally. At large N, the 1D billiard admits a hydrodynamic
description: in the limit of density variations of very long
wavelength, the billiard can be described by a continuous
distribution p(x, v) of rods moving at velocity » around a
position x and this distribution satisfies an exact evolution
equation which resembles the Liouville equation for phase
space densities, up to a renormalization of the bare velocity

0031-9007/19/122(9)/090601(7)
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v [see Eq. (2)]. The latter renormalization encodes the
following microscopic mechanism: when one rod with
velocity » hits another one with velocity w < v from the
left, they exchange their momenta. Equivalently, because
all the rods are identical, one can think of the collision as an
instantaneous exchange of their positions, as if the rod with
bare velocity v jumped instantaneously by a distance A to
the right. Thus, the time needed by that rod to travel a
distance £ is not #/v, but rather (£ — A)/v. For a finite
density of rods, this results in each rod with bare velocity v
moving at an effective velocity v (v), that depends on the
distribution p(x,v) [3-5]. In distributions of long wave-
lengths, the evolution equation for p(x,v) becomes a
hydrodynamic flow controlled by the local effective veloc-
ity +°F. The 1D billiard thus exhibits an interesting hydro-
dynamic behavior that is straightforwardly related to its
microscopics. Slight generalizations of that model exist,
where the jumping distance A depends on the relative
velocity v —w, which possess a similar hydrodynamic
description [6].

Remarkably, the same emergent hydrodynamics was
rediscovered in 2016 in the context of 1D quantum
integrable models [7,8]—the resulting theoretical frame-
work is now dubbed generalized hydrodynamics (GHD).
Cold atom experiments offer a unique platform to test the
validity of this theoretical breakthrough. Indeed 1D clouds
are well described by the 1D Bose gas with contact
repulsion [9-11], a paradigmatic integrable system known
as the Lieb-Liniger model [12] whose large-scale dynamics

© 2019 American Physical Society
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is argued to be given by GHD [7,13-22]. Many other
integrable models are argued to be described by GHD,
leading to intense research activity in the past two years
[8,23-32].

The goal of this Letter is to establish experimentally
GHD as the correct hydrodynamic description of the 1D
Bose gas. To do so, we measure the in situ density profiles
of a time-evolving 1D atomic cloud trapped on an atom
chip, and compare the data with predictions from GHD. We
contrast those predictions with the ones of the conventional
hydrodynamic (CHD) approach—based on the assumption
of local thermal equilibrium [33]—that has been frequently
used [34-39]. Starting from a cloud at thermal equilibrium
in a longitudinal potential V(x), dynamics is triggered by
suddenly quenching V(x). We consider three types of
quenches. The first is a 1D expansion of the cloud from
an initial harmonic potential (Fig. 1); the second is a 1D
expansion from a double-well potential (Fig. 3); the third is
a quench from double-well to harmonic potential (Fig. 4).
We find that only GHD is able to accurately describe the
time evolution of the cloud beyond the harmonic case.

Generalized hydrodynamics.—The Hamiltonian that
describes our atomic gas of N bosons of mass m confined
in a potential V(x) with contact repulsion is

"= _;_m.z_:ai +g) 8(xi—x)+ ) V(x), (1)

i<j i=

which reduces to the model solved by Lieb and Liniger [12]
when V(x) = 0. As in any hydrodynamic approach, the
idea is to trade that microscopic model for a simpler, long-
wavelength, description in terms of continuous densities.
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FIG. 1. (i) In situ density profile after longitudinal expansion

from a harmonic trap of a 1D cloud of N = 4600 & 100 *’Rb
atoms; the smooth curve is the theoretical prediction of GHD and
the noisy one is the experimental data. (ii) Initial profile obtained
from the Yang-Yang equation of state (YY), Gross-Pitaevskii,
ideal Bose gas, and classical field [40], with the same temperature
and chemical potential as for YY. (iii) Evolution from the YY
initial profile with GHD and conventional hydrodynamics.

The fluid consists of local “fluid cells” of size &x, with éx
very short compared to the wavelength of density varia-
tions, but very long compared to microscopic lengths in the
gas. The state inside each local fluid cell [x, x + dx] is a
macrostate of the Lieb-Liniger model that is entirely
characterized by its distribution p(x, v) of rapidities v,
similarly to the celebrated thermodynamic Bethe ansatz of
Yang and Yang [46,47] (as explained in Refs. [7,8], that
these are the correct local macrostates can be seen as a
consequence of recent results on “generalized thermal-
ization” [48,49]). Semiclassically, one may view the
rapidity v as the bare velocity of a quasiparticle. As in
the 1D billiard, the velocity v gets renormalized in the
presence of other quasiparticles, resulting in an effective
velocity that is the solution of an integral equation [3,5,7,8],

v (v)=v+ / dwp(w)A(v—w)[v™ (v) =T (w)]. (2a)

However, while in the classical billiard the jumping
distance A(v —w) at each collision is a constant—the
length of the rods—in the Bose gas it corresponds to the
time delay resulting from the two-body scattering phase
¢(v—w) through differentiation [12], A(v—w)=—(h/m)x
{[d(v—w))/[d(v—w)]}. This gives A(v—w)=—{(2g/
m)/[(g/h)*+(v—w)?]} for the Dirac delta potential (see
Ref. [6] for an extended discussion). The effective velocity
enters the evolution equation for the distribution p(x, v) as
follows [7.8,13]:

o,V
Aup + 0, [vp| = ( — )Byp. (2b)

This resembles a Liouville equation for phase space
densities of quasi-particles, although it is to be stressed
that it is a Euler hydrodynamic equation, determining the
evolution of the degrees of freedom emerging at large
wavelengths. GHD consists of Egs. (2a) and (2b).
In practice, for a given initial distribution p(x,v), the
GHD equations can be efficiently solved numerically
[6,14,17,19]; in this Letter we rely on a finite-difference
method similar to the one discussed in Ref. [19].
Importantly, for our purposes, the atomic density n(x) is
obtained from the distribution p(x, v) by integrating locally
over all rapidities, n(x) = [ dvp(x,v).

The atom chip.—Our experimental setup is described in
detail in Ref. [50]. 3Rb atoms are confined in a magnetic
trap produced by microwires deposited on the surface of a
chip. The transverse confinement is provided by three
1.3 mm long parallel wires (red wires in Fig. 2), which
carry ac currents modulated at 400 kHz: atoms are guided
along x, at adistance of 12um above the central wire, with a
transverse frequency @, which lies between 5 and 8 kHz.
The modulation technique permits an independent control
of the longitudinal potential V(x), which is realized by two
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(a) (b) ml-= 1wt 00y

FIG. 2. (a) The atom chip setup with the four wires (blue)
creating the longitudinal potential and the three wires (red)
creating the strong transverse confinement. (b) Position of our
three data sets in the thermal equilibrium phase diagram of the
Lieb-Liniger gas with y = mg/(h*n) and @ = 2h%*yxT/(mg?)
[51]. At the center of the cloud y is of order 1072, but it increases
in the wings as the density decreases; we display the segments
[¥min» ¥min/ 10] corresponding to a local density n(x) not smaller
than a tenth of the maximal density in the cloud. The asymptotic
regimes of the Lieb-Liniger gas, separated by smooth crossovers,
are shown in colors. Our data sets lie at the crossover between the
quasicondensate and the ideal Bose gas regimes.

pairs of wires perpendicular to x, running dc current (blue
wires in Fig. 2). The atomic cloud is far from those wires, in
a region where V(x) is well approximated by its Taylor
expansion at small x. By tuning the currents in the four
wires, we effectively control the coefficients of the x, x2, x3,
and x* terms in that expansion: we can thus produce
harmonic potentials, but also double-well potentials.

Using radio-frequency evaporative cooling we produce
cold atomic clouds in the 1D regime, with a typical energy
per atom smaller than the transverse energy gap: the
temperature and chemical potential fulfill kzT, p < hw, .
The gas is then well described by the 1D model (1), with
the effective 1D repulsion strength g = 2fiaw, [52], where
the 3d scattering length of 3Rb is ¢ = 5.3 nm, and the
massism = 1.43 x 10725 kg. Moreover the length scale on
which n(x) varies is much larger than microscopic
lengths—the phase correlation length at thermal equilibrium,
which is the largest microscopic length in the quasiconden-
sate regime, is of order nh?/(mkgT) [53,54], typically
0.1 ym for our clouds—so the hydrodynamic description
applies. At equilibrium, the latter is equivalent to the local
density approximation (LDA), and the local properties of the
gas are parametrized by the dimensionless repulsion strength
y = mg/(A%*n) and the dimensionless temperature 6 =
2h%kgT /(mg?) [51]. The range (y,8) explored by our data
sets is displayed in Fig. 2(b). In this Letter we analyze the
density profiles n(x), which we measure using absorption
images [50], averaging over typically ten images, with a
pixel size of 1.74 pm in the atomic plane.

The Yang-Yang initial profilee—We start by trapping a
cloud of N = 4600 + 100 atoms, with @, = 27 x (7.75+
0.02) kHz, in a harmonic potential V(x) = mmﬁxgﬂ with
| =27 x (8.8 + 0.04) Hz, and measure its density pro-
file [Fig. 1(b)]. To evaluate the temperature of the cloud, we
fit the experimental profile with the one predicted by the
Yang-Yang equation of state [9-11,46], relying on LDA

and on the assumption that the cloud is at thermal
equilibrium; we find T = (0.43 £ 0.013) xK. This gives
0= (3.5+0.1) x 102, while the interaction parameter is
y=(2.8+0.1) x 1072 at the center.

As the density varies from the center of the cloud to the
wings, the gas locally explores several regimes [51], from
quasicondensate to highly degenerate ideal Bose gas (IBG)
to nondegenerate IBG; see Fig. 2(b). The Yang-Yang
equation of state [46] is exact in the entire phase diagram
of the Lieb-Liniger model, and thus faithfully describes the
density profile within LDA. We stress that this is the most
natural and powerful method to describe the initial state of
the gas [9-11], and that no simpler approximate theory [40)]
can account for the whole initial density profile; see
Fig. 1(b). The Gross-Pitaevskii (GP) theory works in the
central part—because it is close to the quasicondensate
regime, but not in the wings. The opposite is true for the
IBG model: it correctly describes the wings, but not the
center of the cloud—the chemical potential is positive in
the center, so the density diverges in the IBG. The classical
field theory captures the quasicondensation transition for
gases deep in the weakly interacting regime but it fails to
reproduce faithfully the wings of our cloud since the latter
are not highly degenerate.

Expansion from harmonic trap: Agreement with both
GHD and CHD.—At t = 0, we suddenly switch off the
longitudinal harmonic potential V(x), and let the cloud
expand freely in one dimension. We measure the in situ
profiles at times ¢ = 10, 20, 30 and 40 ms; see Fig. 1(a).

Two theories are able to give predictions for the
expansion starting from the locally thermal initial state.
One is GHD, presented above, where the full distribution of
quasiparticles p(x, v) is evolved in time [55]. The other is
the conventional hydrodynamics (CHD) of the gas which,
contrary to GHD, assumes that all local fluid cells are at
thermal equilibrium, and keeps track only of three quan-
tities that entirely describe the local state of the gas:
the density n(x), the fluid velocity u(x), and the internal
energy e(x) [40]. We calculate the evolution of the density
profile with both theories, and find that both of them
are in excellent agreement with the experimental data, see
Fig. 1(c) for the result at t = 30 ms.

GHD and CHD thus appear to be indistinguishable in
that situation, at least for the expansion times that we probe
here. We attribute this coincidence to the initial harmonic
potential, which is very special. In this case it is simple to
see that the GHD and CHD predictions coincide in the ideal
Bose gas regime, and they can be shown to stay relatively
near even beyond that regime [56].

Discussion: GHD vs CHD.—We wish to identify a setup
where the theoretical predictions of both theories clearly
differ, in order to experimentally discriminate between them.
This will be the case if GHD predicts, for some time # and at
some position x, that the distribution of rapidities p(x, v) will
differ strongly from a thermal equilibrium one.
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FIG. 3. (i) Longitudinal expansion of a cloud of N = 6300 +
200 atoms initially trapped in a double-well potential, compared
with GHD. (ii) Even though the initial state is the same for GHD
and CHD, both theories clearly differ at later times. CHD
wrongly predicts the formation of two large density waves.
The error bar shown at the center at t = 40 ms corresponds to a
68% confidence interval, and is representative for all data sets.

Such a situation occurs during the expansion of a cloud
that initially has two well separated density peaks (Fig. 3).
The reason can be captured by the following argument. The
fluid cells [x, x + &x] that are around either of the two peaks
contain more quasiparticles, including quasiparticles of
large rapidities, than the fluid cells near the center at
x = 0. Under time evolution, the quasiparticles from the
left peak that have a large positive rapidity +u soon meet the
ones coming from the right peak that have a large negative
rapidity —u, around x = 0. Then, the distribution of rap-
idities near x = 0 is double peaked, with maxima at v >~ +u,
so it is clearly very far from a thermal equilibrium distri-
bution, which would be single peaked. This phenomenon is
obvious for noninteracting particles, Eq. (2) reducing to the
standard Liouville equation, and GHD calculations indicate
that this is true also for interacting particles [17,57].

Expansion from a double well—To realize the above
scenario, we prepare a cloud of N = 6300+ 200 atoms,
with @, = 27 x (8.1 £0.03) kHz, at thermal equilibrium
in a longitudinal double-well potential V(x), such that the
atomic density presents two well separated peaks, the peak
density corresponding toy = (2.45 £+ 0.07) x 1072. Then at
t = 0 we suddenly switch off the potential V(x) and measure
the in situ profiles at time ¢ = 10, 25, 40, 55 ms (Fig. 3).

To compare with theoretical predictions, we need to know
the initial temperature T of the cloud. However, we cannot
estimate T from fitting the initial density profile ny(x) with
the Yang- Yang equation of state and LDA because we do not
have a good knowledge of the initial potential V(x) that we
create on the chip. Instead, we proceed as follows. First we
postulate an initial temperature 7 and construct the initial
rapidity distribution pr(x, ») such that, for a given x,
pr(x, v) is the Yang-Yang thermal equilibrium rapidity
distribution [46] at temperature T and density ny(x). We

density

30 4 (atomfum)

20

10

position (ura)

FIG. 4. Quench from double-well to harmonic potential,
compared to the GHD prediction, with an atomic cloud that
contains N = 3500 =+ 140 atoms initially. The main features of
the experimental data are well reproduced by GHD. One
experimental effect, not modeled in GHD, that appears to be
particularly important, are the three-body losses: after 180 ms, the
number of atoms drops by approximately 15%.

then evolve pr(x, ) using GHD and compute nz(x,1).
While, by construction, nr(x,0) = ng(x), nr(x,f) may
differ from the data at later times. We repeat this procedure
for several initial temperatures and we select the value of T
whose time evolution isin best agreement with the data [58].
We obtain T =~ 0.3 uK, corresponding to 6 ~2 x 102, see
Fig. 2(b).

The comparison between the expansion data and GHD is
shown in Fig. 3(a); the agreement is excellent. We also
simulate the time evolution of the cloud with CHD, for the
exact same initial state. As we expected, expanding from a
double-well potential reveals a clear difference between
CHD and GHD, see Fig. 3(b). Two large density waves
emerge in CHD and large gradients develop, eventually
leading to shocks [14], features which are not seen in
GHD [57].

Quench from double-well to harmonic potential.—
Finally, we trap N = 3500 £ 140 atoms, with @, =27x
(5.4%+0.02)kHz, in a double-well potential, and we study
the evolution of the cloud after suddenly switching off the
double well and replacing it by a harmonic potential of fre-
quency w = 2z X (6.5 £ 0.03) Hz. We measure the in situ
profiles at time ¢ = 0, 20,40, ..., 180 ms; see Fig. 4. The
initial peak density corresponds to y=(2.13£0.07) x 1072.
To estimate the temperature of the cloud, we proceed as in
the previous case [58]; we find T~ 0.15 uK, corresponding
to § ~2.2 x 10? [Fig. 2(b)].

This quench protocol mimics the famous quantum
Newton’s Cradle experiment [59]—see also Refs. [60,61]
for recent realizations—which is realized here in a weakly
interacting gas. Exactly like in the previous paragraph, thisis
a situation where GHD predicts the appearance of non-
thermal rapidity distributions [17,62], and must therefore
differ strongly from CHD. In fact, we have observed that
CHD develops a shock at short times (around # =2 30 ms), so
it is simply unable to give any prediction for the whole
evolution time investigated experimentally [63].
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Importantly, the motion is not periodic, contrary to what
would be seen purely in the IBG or in the strongly
interacting fermionized regime. Nevertheless, the motion
of the cloud preserves an approximate periodicity, with
a period close to, but slightly longer than, 27/w) [62]
(of course, if the cloud was symmetric under x — —x, the
period would be divided by two). At a quarter of the
period—and three quarters of the period—the density
distribution shows a single thin peak located near x = 0.
We find good agreement with the GHD predictions, with
the initial temperature T as the only free parameter [58].
However, experimental effects not taken into account by
the GHD equations (2) appear to be more important in this
setup than in the previous ones of Figs. 1-3, where shorter
times were probed. For instance, the number of atoms N is
not constant in our experimental setup: it decreases with
time and drops by approximately 15% after 180 ms,
probably because of three-body losses that occur at large
density. This might partially explain the difference between
the experimental density profile and the GHD one. We also
suspect the small residual roughness of the potential V(x)
of affecting the experimental profiles.

Conclusion.—The results presented in this Letter are the
first experimental check of the validity of GHD for 1D
integrable quantum systems. We have shown that GHD—
which predicts the time evolution of the distribution of
rapidities—accurately captures the motion of 1D cold
bosonic clouds made of N ~ 10? atoms, on timescales of
up to ~0.2s. We probed situations where the GHD
predictions significantly differ from the ones of the conven-
tional hydrodynamic approach, even at short times. We
stress that GHD is applicable to all regimes of the 1D Bose
gas, and it would therefore be particularly interesting to
probe the strongly interacting regime. More generally,
GHD is applicable to all Bethe ansatz solvable models,
including multicomponent mixtures of fermions and
bosons with symmetric interactions [64—67], so it would
be very exciting to use it to describe the dynamics of more
complex gases that can be realized in experimental setups
different from ours [68.,69].
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FIG. 1. Position of the three sets of data shown in the text in the (-, #) space. The thin solid line is the line corresponding
to a vanishing chemical potential, computed using Yang-Yang equation of state, which indicates the crossover from the Ideal
Bose gas to the quasi-condensate. The dashed line is the line nAgg = 1 which indicates the crossover from a non-degenerate to
a highly degenerate gas. The horizontal fat lines correspond to the experimental data investigated in the main text (from top
to bottom data of Fig.1, data of Fig.3 and data of Fig. 4).

I. REGIMES OF THE LIEB-LINIGER GAS AT THERMAL EQUILIBRIUM

Properties of the Lieb-Liniger gas at thermal equilibrium have been studied extensively. The gas at thermal equilib-
rium is entirely parametrized by the dimensionless parameters « and §. Three main regimes have been identified, which
correspond to different asymptotic value of the normalized zero-distance two-body correlation function g(?(0) [50].
The region in the (-,6) plane corresponding to v < 1 and 0 < =32 is that of the quasicondensate regime. In this
regime, correlations between particles are small and ¢(?)(0) ~ 1. Thus locally, the gas ressembles a Bose-Einstein
condensate, although quantum and thermal fluctuations associated to long wavelength phonons prevent true long
range order. The region 6 > max(1,7%/2) is that of the ideal Bose gas regime, characterized by g(®)(0) ~ 2. In this
regime repulsive interactions are not strong enough to prevent the thermally activated large density fluctuations asso-
ciated to the bosonic bunching phenomenon. Finally, the region # < 1 and - > 1 is that of the strongly interacting
regime, also called Tonks-Girardeau or fermionized regime. There, interactions are strong enough to almost prevent
two atoms to sit at the same position so that ¢ (0) < 1.

The above-mentioned regimes are all separated by smooth crossovers. Quantitative values for the position of these
transitions depend on the quantity that is considered and on the criteria used. One possible criterion to locate the
transition from the IBG to gBEC regime is the condition g = 0, where p is the chemical potential: in the IBG regime,
4 < 0 while g > 0 in the ¢BEC regime (p ~ gn in the ¢BEC regime). In Fig. 1, we plot the line g = 0, found using
the Yang-Yang equation of state. This line follows the expected scaling 8 oc ¥—3/2 of the crossover between the IBG
and the qBEC regime. It lies however substantially above the line § = y—3/2 [50].

The IBG regime can be divided into two subregimes: the highly non-degenerate regime corresponding to 8 >
and the highly degenerate regime corresponding to 7~%/2 < 6 > y~1/2. The crossover between these two subregimes
is very wide and in fig. 1, we signal this transition with the line corresponding to nAsg = 1, where A\yg = i/v/2mmkgT
is the de Broglie wavelength.

—1/2

II. APPROXIMATE THEORIES THAT WE COMPARE TO GHD

A. Conventional hydrodynamics based on Yang-Yang thermodynamics (or Thermodynamic Bethe Ansatz)

What we call ‘conventional’ hydrodynamics (CHD) in the main text is simply the Euler equations that hold in
normal fluids that are locally at thermal equilibrium, that govern the variation of the particle density n(z,t), the fluid
velocity u(z,t), and the internal energy per particle e(z, t):

On+ 8:(un) = 0

Ou+udpu+ =80, P = -8,V (1)
Oie +ube + ~0,u = 0.



Here P(n,e) is the pressure, which is given by the equation of state of the fluid. One can put these three equations
in a form that expresses conservation of mass, momentum—broken by the external potential V' (z)—, and energy,

On+ 0.(un) = 0
Oy(mnu) + Oz (u(mnu) + P) = —nd,V (2)
ﬁt(an“.z +ne+nV)+ ﬁz(u{an“g +ne+nV)+uP) = 0.

These are the evolution equations we solve to obtain the Conventional HydroDynamics (CHD) curves in the main
text. The pressure P(n,e) is obtained from the thermodynamic Bethe Ansatz, also known as the Yang-Yang equation
of state [40].

One convenient way to calculate the pressure is to observe that it is the momentum current, and then to use the
formula from [7] for the latter,

m2 [ dv dr
P = ?/gvv(t}}v . (3)

Here v(v) € [0, 1] is the occupation function, which, for the thermal Gibbs state at inverse temperature § = 1/(kgT'),
satisfies the integral equation of Yang and Yang [40],

1_7]7(1}}_ d_w v — w) 1o — rviw
S| - [ K- w)log [t - v(w)] @

m'v2

b= =log[

where K(v —w) = G ﬁf)” ;‘;’3{ TD) is the differential scattering phase, or Lieb-Liniger kernel. The superscript 'dr’ in

(3) stands for ’dressing’, and is defined as follows for a function f(v),
dr dw dr
1) = 1)+ [ oK@ - w)w)* w) ®)

(and by a slight abuse of notation, we write v9* for id"(v) where id(v) = v is the identity function). The occupation
function v(v) and the distribution p(v) used in the main text are related by

p(v) = 5= v(©) 1" () (6)

where 1(v) = 1. The function v(v) gives the occupation fraction of the rapidities, which are the fermionic quantities
defining a Bethe-Anstaz eigenstate [40].

B. Gross-Pitaevskii approach

The Gross-Pitaevskii description (GP) assumes that the gas is Bose-condensed : all the atoms are in the same single-
particle wave function v(z). It describes a Bose gas at zero temperature in the limit of weak repulsion v — 0, as long
as their extension is much smaller than £e™/v7, where £ = h/\/mp is the healing length. The latter condition, usually
fulfilled in experiment with weakly interacting gases, ensures that quantum fluctuations do not break long-range order.
At equilibrium the wavefunction 1 obeys

2
= (—gm02 +alvP+V (@) ¥ ")

where p is the chemical potential. After modification of the potential, the time evolution of ¥ is given by the
Gross-Pitaevskii equation

52
it0s = (~5-02+ oIV +V(2) ) ®
Here ¥(z,t) is the wavefunction of the condensate at time ¢, normalized such that

[ astoaop = . 9)



Separating the phase and the amplitude of the wavefunction of the condensate,

P(z,t) = Vn(z,t)e =), (10)

and introducing the velocity field u = % (0, one gets GP in Madelung form,

On+0.(un) = 0

Oyu + ubu —ﬁ@x [gn—l—V{m) - %y—%q] . (11)

The first equation expresses conservation of mass, the second is the Euler equation for a fluid with the equation of state

2
4 = gn in an external potential V(z), with an additional quantum pressure term %gﬂ%. In the Euler limit of long

wavelengths for density variations, the quantum pressure term can be neglected. Then Eq. (11) reduces to the Euler
equation with a pressure term P = gn?/2, which is indeed the pressure of a condensate or a quasicondensate. Note
however that the GP equation goes beyond this Euler limit of long wavelength variation of . For instance, it would
capture correctly the “quantum Newton craddle” experiment presented in the main text, for a weakly interacting cloud
at T'=0. At the “collision-time” where the two initial clouds are on top of each other, GP predicts fast oscillations of
the density reflecting interference phenomena. Of course such fast oscillations, which, in terms of Bethe- Ansatz states,
would imply interference between different states (of very similar quasi-momentum distribution), is not accounted for
by GHD. However we expect that predictions of GHD (for a weakly interacting gas at 7' = 0) would coincide with
the GP ones, if one perform a spatial coarse-grained approximation of the GP solution, smearing out the interference
fringes. It is an open question under which precise conditions and coarse-graining procedure the predictions of GHD
coincide with the coarse-grained GP predictions.

C. The classical field approximation

In the domain characterized by 7_1 < 6 < 2, the typical occupation number of the relevant modes (either the
one-particle states for § > 73/2, or the Bogolioubov collective modes for f§ < y~/2) is much larger than one: in
particular the correlation functions are mainly dominated by the contribution of highly populated modes. In such
a condition, a theory that neglects the quantification of the atomic field 1,5 and treat it as a complex classical field
—or equivalently, that considers statistical fluctuation of the condensate’s single-particle wave function— is expected
to provide the relevant physics. This is the so-called classical field approximation [67]. At thermal equilibrium the
complex field ¥(z) obeys the probability distribution

P{(z)}) = Z~ LB de(/@m)I0ay® +9 /2l +(V (@) -m)Ib1?) (12)

where § = 1/(kgT), p is the chemical potential, and the partition function Z ensures the correct normalization.
At sufficiently shallow confining potential, a local density approximation is valid and the external potential V(z) is
not very relevant. Note that while two parameters are required to describe a Lieb-Liniger gas, only one parameter,
which can be taken as n = u(h%/(mg?k%T?))/? in terms of the temperature and chemical potential, is sufficient to
characterize the classical field, providing lengths and densities are correctly rescaled [67, 68]. One way of sampling
the field ¥ according to Eq. (12) is to numerically evolve 1 under a stochastic differential equation.

In contrast to the GP approach above, the classical field takes into account thermal fluctuations in the system.
In particular it captures the quasicondensation crossover, which occurs, for v < 1, around the line § = ~%/2,
although very large values of § are required for an accurate description of the gas [69]. On the other hand, it ignores
the quantification of atoms. This leads to an overestimation of the population in high energy modes: within CF
theory the mode population is kg7 /e, , regardless of the mode energy ¢,, a value much larger, for modes of energy
€r > kpT, than the expected exponential behavior e~¢*/(*5T) (this is a similar phenomenon as that of the well-known
UV catastrophe of thermal ensembles of electromagnetic fields). This explains why the equilibrium profile predicted
by the classical field model strongly overestimate the wings of the atomic clouds, see Fig. 1(ii) in the main text. We
are aware of refined theories, based on classical field, that include a well-chosen cutoff above which the excitations
are treated as a quantum gas, see [?7 7 | and references therein. They permit to reproduce the equilibrium density
profiles of trapped weakly interacting gases [? |. However, expanding such theories to time-dependent problems is a
priori not trivial. We also think that, in the same way as Yang-Yang thermodynamics offers a much more powerful,
reliable and elegant way of describing the equilibrium profiles [9-11], GHD would supersede complicated and ad-hoc
theories based on the classical field approximation.



III. RELATION BETWEEN GHD AND CHD FOR AN EXPANSION FROM A HARMONIC
POTENTIAL

As we observed in the main text, the one-dimensional expansion of the gas starting from a state where it is confined
by harmonic potential is well described both by GHD and CHD. This is surprising, as GHD takes into account
infinitely many conservation laws, while CHD only takes into account three: mass, momentum and energy. Of course,
the initial state is, in both cases, obtained by a Gibbs local density approximation, according to which in every
mesoscopic cell the gas is a Gibbs state, thermalized with respect to the energy and number of particles (with zero
average momentum). Nevertheless, one generically expects that under the GHD evolution, other conservation laws
become involved, the fluid being, after some time, locally a generalized Gibbs ensemble — involving higher conserved
charges — instead of a Gibbs ensemble.

There are two limits where one can show that the GHD evolution is, in fact, the same as the CHD evolution.

The first is the zero-temperature limit. It was shown in Ref. [14] that if the initial state is at zero temperature,
where, in every cell z, the quasi-particle occupation function v(z,v) takes the value 1 on an interval v € [v(z), v,-(z)]
and 0 elsewhere, then, at least for small enough times, a GHD evolution is completely equivalent to a CHD evolution,
and the state stays at zero temperature. This holds from any initial potential, harmonic or not. The equivalence
between the evolutions breaks down when in CHD shocks develop; in GHD, large gradients are temporary, and the
fluid passes to a higher-dimensional space of states afforded by the higher conservation laws.

The other limit is that of the free gases - either the ideal Fermi gas (at strong coupling) or the ideal Bose gas (IBG)
(at large temperatures). Let us consider the latter, as it is more relevant to the present experiment. In the free limit,
the effective velocity becomes equal to the velocity, and the initial fluid’s Bosonic occupation function 7(z,v) (note
that this is related to, but not the same as, the quasi-particle — or fermionic — occupation function v(z,v)) is of the
form

v(z,v) = e{mv2/2+mw;fi2/2—p)/1" 1 (13)
The GHD evolution during the expansion is very simple,
v +v0,v =0, (14)
and thus the solution is obtained as
5(z,t,v) = ! L (15)

(/2 m a2 /2-w)/T _{ | (m(v—u(z0)?/D(1+i)/T (muf/(I+wi )22 /2-w)/T _ |’

where u(z,t) = wﬁ /(1 —|—wﬁt2) xt. Eq. (15) shows that the distribution of v at a given z is that of a Gibbs ensemble for

a gas whose center of mass moves at velocity u(z,t). Hence, all currents obtained after GHD evolution are evaluated
within Gibbs states, completely determined by the first three conserved densities. Therefore, it is sufficient to restrict
to the evolution described by the first three conservation laws, and we recover CHD.

These two limits, however, only partially explain the observation we have made: the parameters of the experiment,
the full range of regimes covered by the gas (see Fig. 2b in the main text), imply that there are regions where the
occupation function is both relatively far from the zero-temperature form (see typical initial quasi-particle occupation
functions in section IV) and from the IBG form.

We provide below a calculation that shows that, more generally, one may expect the GHD solution to stay relatively
near to CHD solution in an expansion from a harmonic potential, even away from the two limits described above. The
main result is that under GHD evolution from a harmonic potential, the occupation function has the same asymptotics
at large v, of the form e~F(*) with P(v) a polynomial of degree 2, as that obtained from a CHD evolution. That is, the
“wings” in quasi-momentum space are not drastically affected by the presence of higher conservation laws. Further,
at finite v, the discrepancies must stay bounded. If the occupation function is near enough to the zero-temperature
form, with a region relatively near to 1 at small velocities, surrounded by wings where it tends towards 0, then a
combination of the zero-temperature result recalled above, and the asymptotic results derived below, suggests that
indeed the GHD and CHD solutions should stay near. Typical initial occupation functions shown in section IV indeed
have this form, and thus these arguments explain our observation.

In terms of the quasi-particle occupation function »(v), related to the quasi-particle density p(z,v) via (6), it turns
out that Eq. (2b) in the main text becomes

Ow + v o, = 0. (16)
The pseudoenergy e, defined via v = 1/(1 + e%), hence satisfies the same equation,

Ore + v, = 0. (17)



In order to describe the macrostate, it is convenient to use the energy function e(v), in terms of which the pseudoenergy
can be expressed as the solution to the non-linear integral equation [40]

€(v) = e(v) — f g_:’ K (v —w) log(1 + e=<(®)). (18)

Like the quasi-particle density, the energy function e(v), in GHD, becomes space-time dependent, and we can re-write
(17) using (18). One can show that [13]

(0ye) ™ + v (8,e) =0 (19)

where the dressing operation is defined in (5). Note that the effective velocity (Eq. 2a in the main text) can be
written as

Ueff — UCI[‘ 1l:11' (20)

where v is the dressed of the function v (the identity function), and 19" is the dressed of the constant function 1 (19
and all dressed quantities are functions of v, as well as, of course, the space-time position z,t). Therefore, we have
dr

(ate)clr + v

ﬁ(rfi‘ze)dr =0 (21)

In the initial state, at t = 0, for each position z the state of the gas is given by the Gibbs ensemble, with a chemical
potential p — 'er.aﬁ:cEI and a temperature T', and the energy function reduces to [40]

1 [ mv? mwﬁa:?
e{I’O’U)_?(T—FT_# . (22)

‘We propose that an approrimate solution to the evolution equation from a harmonic potential is of the form
e(z,t,v) = f(t)v? + g(t)vz + h(t)2? — p. (23)

This approximate solution holds if the following condition is approximately satisfied,

(v%7)? m (u2)2% (24)
Indeed inserting (23) in (19) gives
PO + g (02 + K (0221 + g(8)(087)? /19 + ()0’ ~ 0 (25)
And so we have
K (t) =0, ¢'(t)=—h(t), f(t)0")"~—g(t)w")*/1%. (26)
If the approximation (24) holds, then the last (approximate) equation becomes
f'(t) = —g(t) (27)
and we find
h(t)=a, g(t)=b—at, f(t)=c—bt+at?/2. (28)

The initial condition is satisfied, with a = mwﬁ/ (2T), b =0 and ¢ = m/(2T").

We now note that the approximate solution (23) with (28) is exactly the form we would obtain (under (24)) from
CHD: in all cells it is a boosted Gibbs state, completely determined by the mass, momentum and energy densities,
hence we can restrict to these conservation laws. The validity of CHD thus reduced to the investigation of the validity
of the approximation (24).

From (18), we see that e(v) has the same leading large-|v| asymptotics as e(v). Hence, in states with power-law
growing e(v), the occupation function decays as an exponential of a power at large |v|. From the dressing operation
(5), it is then clear that, in any such state, the dressed f9"(v) of any function f(v) has exactly the same asymptotic
expansion in powers of 1/v up to powers 1/v?: the corrections coming from the occupation function are exponentially
decaying, hence the main corrections come from integrating the differential scattering kernel around finite regions of



the integration variable w (the size of the finite region being controlled by the exponential decay of the occupation
function). These give the power law 1/v2. That is, assuming f%(v) stays finite for finite values of v, we have

() = f(v) +O(1/v*). (29)
Therefore
(v9)? = ()1 + O(1/v) (30)

and the condition (24) is satisfied up to vanishing terms at large v. This fully justifies that the approximate solution
(23) indeed holds as written, up to vanishing terms, and shows that CHD reproduces the correct non-vanishing large-v
asymptotics of e(v), and thus (by a similar asymptotic analysis as above) of e(v).

At small velocities, the effective velocity v is different from v due to transport within its local environment:
for instance, a quasi-particle of bare velocity v = 0 acquires a nonzero effective velocity v°f # 0 if its surrounding
environment carries nonzero currents. However, these differences are bounded, and tend to be relatively small. Similar
effects occur for the dressing of any function, and therefore the approximation (24) has an error that stays bounded
at finite v.

Finally, we note from the above calculations and especially from (29) that the free evolution (with trivial dressing)
generically (that is, in all situations where the occupation function decays at least exponentially) describes correctly
the first three leading powers of the large-v asymptotics of the source term e(v) under the one-dimensional expansion
(recall that in the case of the initial harmonic potential, the free evolution agrees with CHD, but that in general it
does not). Ome could for instance consider an initial potential with higher powers, say up z*. Then we see that an
approximate solution of similar type, valid at large v, would have powers of v up to v%, with the coefficients of the
powers v2, v? and v? correctly described by a free evolution equation. This is definitely very far from a CHD solution,
as powers of v3 and v?* are forbidden in CHD. That is, when starting from non-harmonic potentials, CHD does not
describe the correct large-v asymptotics of the distribution, hence is quite far for all v — the maximal deviation for
the function e(v) is in fact is unbounded. It is these effects that are seen in section IV.

IV. GHD VS. CHD: COMPARISON OF THE PHASE-SPACE OCCUPATION FUNCTIONS v(z,v)

Here we display the phase-space occupation v(z,v) for the expansion from a double-well potential shown in Fig.
3 in the main text. At each x, the occupation function v(v) is related to the density p(v) used in the main text by
Eq. (6). At thermal equilibrium, one can think of it as a Fermi distribution: at zero temperature, it is exactly a
rectangular function, with support [—2 \/% , 2@] in the limit of weak repulsion. At finite temperature the two sides
of the rectangle are rounded off. The GHD evolution equation can be written directly in terms of the occupation
function v(v), see Eq. (16).

On the phase-space pictures in Fig. 2, one clearly sees why CHD must differ from GHD. Indeed, initially the phase-
space occupation is the equilibrium one at temperature T' = 0.3 pK, obtained from LDA in the double-well potential
V(z), see the main text. Because the atomic density increases near the two minima of the potential V' (z), the interval
[v1,v2] in which the occupation function is close to 1 is larger near these points. This results in the support of v(z,t)
looking like a peanut at ¢t = 0. By definition, the initial distribution is the same for GHD and CHD.

At later times, the distribution gets distorted. GHD predicts that the top of the support of v(z,v) moves to the right,
while the bottom of the support moves to the left. At ¢ ~ 25 ms we already see that, for a fixed z in the central region
around x = 0, the occupation function v(v) does not look like a thermal equilibrium distribution anymore: instead of
being a rounded rectangular function, it is now a function that has two maxima. This gets worse as time increases:
the distribution v(v), for fixed position z, differs more and more from an equilibrium one.

CHD, on the contrary, enforces an equilibrium occupation function at all positions and all times. Therefore, it
must differ significantly from GHD. Indeed, this is what we see in the phase-space occupation at t = 25 ms, where
the occupation function of CHD is distorted in the central region, compared to the GHD one, in order to maintain a
thermal state. The discrepancy between GHD and CHD then keeps increases at later times.

The density profiles of Fig. 3 in the main text are obtained from these phase-space occupation function v(z, ) by
Eq. (6) and then integrating over all rapidities at fixed position z, n(z) = [ p(z,v)dv.
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FIG. 2. Phase-space occupation v(z,v) at time ¢ for the parameters of Fig. 3 in the main text, simulated with GHD and CHD.
Since CHD does not allow non-thermal local distributions of rapidities, we see that the distribution gets quickly distorted,
compared to the GHD one. This results in the two in situ density profiles being clearly different, see Fig. 3 in the main text.

V. GROSS PITAEVSKII PREDICTIONS FOR EXPANSION FROM A DOUBLE WELL

We performed a Gross Pitaevskii calculation for the situation considered in Fig.3. In this calculation, the initial
wavefunction is ¥(z) = v/no(z), where no(z) is the initial experimental profile. We then evolve this initial profile
according to the time-dependant Gross-Pitaevskii equation Eq. (8). The resulting time evolution, shown in Fig.(3),
is very different from that observed experimentally. This indicates that thermal excitations initially present in the
cloud play an important role in the time-evolution shown in Fig.3. Note that GHD calculations performed at a very
low temperature are in agreement with these Gross-Pitaevskii calculations, provided fast oscillations shown in the
Gross-Pitaevski profiles are averages out (see section VI).
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FIG. 3. Expansion of a cloud whose initial density distribution is equal to that of the experimental data of Fig. 3 in the main
text, according to the Gross-Pitaevskii equation. The evolution is very different from that observed experimentally, with the
appearance of a central peak, not seen experimentally.

VI. RUNNING THE GHD SIMULATION WITHOUT GOOD KNOWLEDGE
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FIG. 4. Comparison between the experimental data of Fig. 3 in the main text, and the GHD simulation assuming three different
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temperatures of the initial state. For Fig. 3 in the main text, we selected the results corresponding to T' = 0.3 pK.

The creation of a double-well potential on the chip is experimentally tricky, and, as a result, we do not have a very
good knowledge of this potential. It should be close to a polynomial potential of fourth degree, V (z) ~ Zi:l] a,z?,
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but we do not know the coefficients a,. One could extract them from a fit, but then we would have 6 adjustable
parameters in total: the five coefficients a,, and the temperature of the initial state.

On the other hand, the initial potential V' (z) is needed only to reconstruct the initial distribution p(z,v). So,
instead of trying to reconstruct first the potential V(z) and then the initial distribution p(z,v), we find it more
satisfying to construct directly that distribution, assuming that it is given by a thermal Gibbs state in every fluid
cell at position z. When we do that, there is a single adjustable parameter: the initial temperature, assumed to be
initially homogeneous throughout the cloud.

We proceed as follows. First, we take a convolution of the experimental density at time ¢ = 0 with a gaussian,
in order to get a smooth initial density profile n(z). Then we fix arbitrarily a temperature 7', and, assuming that
the gas is locally at equilibrium at temperature T', we reconstruct the occupation function v(z,#)—or equivalently
the distribution p(z,§)—using the Yang-Yang equation of state (4). Let us emphasize that, at this point, we have
reconstructed a density profile, which corresponds to some potential V(z), and the latter potential is not independent
of the choice of the temperature T. What we then want, of course, is to identify the correct T' corresponding to the
correct experimental V() which, unfortunately, we do not know a priori. We then run the GHD simulation, which
allows us to compute the density profiles at later times . Those density profiles at later times depend on the initial
state, therefore they depend on T'.
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FIG. 5. Comparison between the experimental data of Fig. 4 in the main text, and the GHD simulation assuming three different
temperatures of the initial state. For Fig. 4 in the main text, we selected the results corresponding to T' = 0.1 uK.

We do this for several values of the initial temperature T'. In Fig. 4 we display the results for the data set shown in
Fig. 3 in the main text, for initial temperatures 0.2 pK, 0.3 pK and 0.4 uK. We see that the results do not strongly
dependent on the temperature. More quantitatively, for each T' we measure the mean distance between the experi-

mental data and the GHD prediction defined as \/ ﬁ >z ¢[Mdata(z,t) — neup(2,1)]?, where the sum is done over

all the data points for different positions = and times t and Nggt, is the total number of data points. For temperatures
T = 0.01,0.2,0.25,0.3,0.35,0.4,1 uK, we find that the distance is respectively 1.21,0.66,0.62,0.61,0.64,0.63,1.26
(atom/pm). In the main text, we have selected the GHD results with T' = 0.3 4K, corresponding to the minimum of
that distance for the set of temperatures simulated.
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We have proceeded in the same way for the quench from a double-well to harmonic potential, corresponding to the
data set shown in Fig. 4 in the main text. In Fig. 5 we display the GHD curves for initial temperatures 0.05 uK,
0.1pK and 0.2pK, up to time £ = 100 ms after the quench. We have performed the GHD simulation for tem-
peratures For temperatures T' = 0.05,0.75,0.1,0.125,0.15,0.2, 0.3 pK, we find that the mean distance is respectively
2.69,2.19,1.88,1.71,1.64,1.72,2.08 (atom/pm). In the main text, we have selected the GHD results with 7" = 0.15 pK,
corresponding to the minimum of that distance for the set of temperatures simulated.

VII. APPROXIMATE PERIODICITY OF THE GHD SOLUTION FOR THE QUENCH FROM
DOUBLE-WELL TO HARMONIC POTENTIAL

In Fig. 6 we display the phase-space occupation v(z,v) for the quench from double-well to harmonic potential,
corresponding to the GHD data shown in Fig. 4 in the main text. We recall that v(z, v) is the phase-space occupation,
and that it is related to the phase-space density used in the main text by Eq. (6). One can roughly think of v(z,v)
as a Fermi dstribution, see App. III above. The GHD evolution equation can be written directly in terms of the
occupation function v(v), see Eq. (16).

It is clear from these plots that, after one period of the harmonic trap (the period is 154 ms), the distribution is only
approximately similar to the initial one. So, even though our atomic clouds are weakly interacting, the behavior that
is predicted by GHD is clearly different from the one of non-interacting particles, since the latter would be exactly
periodic.
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FIG. 6. Phase-space occupation v(z,v) obtained from GHD for the quench from double-well to harmonic potential shown in
Fig. 4 in the main text. The motion is approzimately periodic, although one clearly sees that the distribution does not come
back exactly to its initial shape after one period; instead, it gets slightly distorted by the interactions between the atoms. The
period of the harmonic trap is 154 ms, and we see that the approximate period is roughly 165 ms.
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Titre : Dynamique hors équilibre des gaz bosoniques unidimensionels

Résumé : Cette these contient plusieurs études expérimentales centrées sur la dynamique
des bosons dans une dimension (1D). En utilisant une expérience de type puce atomique, nous
créons des géométries de piégage trés allongées pour des atomes de 8’Rb. Cela conduit a ge-
ler deux dimensions et a créer un gaz 1D avec des interactions de contact qui est décrit par le
modele de Lieb-Liniger. Le manuscrit contient trois études expérimentales indépendantes : La
premiere étude traite de la dynamique hors équilibre suite a une trempe des interactions. Nous
observons I’évolution temporelle des modes de Bogoliubov comprimés et montrons que cette
dynamique continue sur des temps qui ne seraient pas observable sur la fonction de corréla-
tion d’ordre un. La deuxieme étude montre que les pertes a trois-corps refroidissent un gaz de
Bose 1D dans le régime quasi-condensat. Ce travail est accompagné d’'une étude théorique qui
prédit ce refroidissement pour les pertes a j-corps. La troisieme étude est la premiere étude
expérimentale d'une nouvelle théorie des systemes intégrables, nommé HydroDynamics Gé-
néralisé (HDG). Nous montrons que HDG est la seule théorie «simple»qui décrit correctement
les résultats expérimentaux. En particulier, 'approche de I'HydroDynamique Conventiennelle
(HDC) ne reproduit pas I'observation expérimentale. Contrairement au HDG, HDC ne prend
pas en compte I'intégrabilité du systeme.
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Title : Out-of-equilibrium dynamics in 1D Bose gases

Abstract : This thesis contains several experimental studies centered around the dynamics
of bosons in one dimension (1D). With the use of an atomchip setup we create very elongated
trapping geometries for 8 Rb. This leads to the freeze-out of two dimensions and the creation of
a 1D gas with contact interactions, described the Lieb-Liniger model. The manuscript contains
three independent experimental studies : The first one investigates the out-of-equilibrium dy-
namics after an interaction quench. We observe the time evolution of squeezed Bogoliubov
modes and show that this dynamics continues on times which cannot be observed on the first
order correlation function. The second study shows that three-body losses cool a 1D Bose gas
in the quasi-condensate regime. This work is accompanied by a theoretical study, which pre-
dicts this cooling for j-body losses. The third study consists of the first experimental study of
a new theory in integrable systems — the Generalized HydroDynamics (GHD). We show that
GHD is the only "simple" theory which correctly describes the experimental results. In parti-
cular, the Conventional HydroDynamics (CHD) approach fails to reproduce the experimental
observation. In contrast to GHD, CHD does not take into account the integrability of the sys-
tem.
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