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Introduction

Integrable systems have fascinated physicist and mathematicians for centuries. Start-
ing from "simple" integrable models, as the Kepler problem [1], they already played a
fundamental role in the early development of physics and are still the first examples
physics students face in their curriculum.

A classically integrable model with N degrees of freedom possesses N constants
of motion. Theses constants of motion impose severe constraints on the system’s
time evolution and can lead to very particular behavior: Integrable systems lack er-
godicity and are completely determined by their initial values. One needs to take into
account the values of the N constants of motion to predict the properties of the sys-
tem. Consequently they lack the ability to thermalize which is a phenomenon that is
very far from our every day experience.

The concept of integrability can be extended to quantum systems. The precise
definition of quantum integrability is subject to scientific debates [2, 3]. In this thesis
I will refer to integrable quantum systems, as systems that are solvable by the Bethe-
Ansatz [4]. The Bethe-Ansatz is an analytic technique introduced 1931 by Hans Bethe
in the context of the one-dimensional (1D) Heissenberg model. It allows to calculate
the exact eigenvalues and eigenvectors and it has been subsequently generalized to
many different 1D systems. One example is the 1D system of Bosons with contact
interactions [5] which I will be studying in this thesis.

For a long time research of quantum integrable systems remained a theoretician’s
playground. This situation changed with the realization of isolated many-body in-
tegrable systems in cold atom experiments [6-13]. Apart from its experimental im-
portance and its use as a testbed for theoretical predictions [14], these experimental
realizations also stimulated new theoretical progress. One example is the recent the-
oretical breakthrough in the description of the out-of-equilibrium dynamics of quan-
tum integrable systems which is called Generalized HydroDynamics (GHD) [15-17].
This new GHD theory (2016) is one of the subject of this thesis (see Chap. 5).

In this thesis I experimentally study the integrable model of Bosons with repulsive
contact interactions in 1D, named the Lieb-Liniger model. For this purpose we use
an atomchip setup with magnetic microwire traps to strongly confine 8 Rubidium
atoms in two dimensions. We then freeze out these two dimensions to create a 1D
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Bose gas. Besides their theoretical motivation, 1D systems are interesting to study
on their own. 1D systems can exhibit phenomena that are very different from higher
dimensions: There is no Bose-Einstein condensation in 1D and interactions lead to
a new phenomena - the quasi-condensation. The experiments in this thesis focus
on clouds which are in the quasi-condensate regime. A particularly counter-intuitive
example of the difference of 1D is the regime of strong interactions. It is reached
for low densities and in the strongly interacting regime the bosonic atoms start to
behave as fermions. Additionally, 1D systems can also be interesting because of their
conceptual simplicity.

This thesis focuses on three experimental studies of the dynamics of bosons in
1D. The three studies are the following: the study of he out-of-equilibrium dynamics
after an interaction quench, the cooling by three-body losses and the first experi-
mental study of the theory of GHD. Each of these studies is presented in a different
chapter (Chap. 3-5) and the first two chapters introduce the theoretical and experi-
mental basis for those three studies.

The first chapter gives an introduction to the theoretical tools in the Lieb-Liniger
model; such as the Bethe-Ansatz and approximate theories inside quasi-condensate
regime. Furthermore, I discuss corrections arising from the 3D world. In contrast to
the theoretical toy model of the Lieb-Liniger model, experimental artifacts from the
3D world can not always be completely neglected. At the end of this chapter I intro-
duce the treatment of losses with the wavefunction Quantum Monte-Carlo (QMC)
method. Furthermore, I introduce the tools to study the out-of-equilibrium dynam-
ics, with a focus on GHD.

The second chapter introduces the experimental setup and highlights the exper-
imental difficulties encountered during my PhD. Furthermore it discusses experi-
mental analysis methods, such as the density ripple analysis and the Yang-Yang ther-
mometry.

The following three chapters (3-5) are mostly independent from each other, and
each chapter focusses on the detailled description of one of the previously men-
tioned experimental studies. The third chapter introduces an experimental attempt
to address the problem of thermalization in an integrable model. We therefore sud-
denly change the interaction parameter of the system and observe the subsequent
time evolution. Our results are in agreement with an approximated model of inde-
pendent harmonic oscillator — the Bogoliubov Hamiltonian [18]. We cannot establish
direct links to the integrability of Lieb-Liniger Hamiltonian, still the description in
terms of the the Bogoliubov Hamiltonian represents a "trivially" integrable model.

The fourth chapter focuses on energy-independent losses. At the beginning of
my PhD a surprising experimental and theoretical result was published in the atom-
chip group in Vienna [19, 20]. It was shown that energy-independent losses can lead
to a cooling of a 1D Bose gas. Inspired by these results, our group published several

4
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papers on this subject [21-24]. With these papers we developed different theoretical
approaches to the problem and I give a theoretical description of the problem with
the wavefunction Monte-Carlo method, which we introduced in [21]. These theo-
retical results are experimentally verified by the first experimental observation of the
cooling of a 1D Bose gas by three-body losses [24]. Special attention is payed to the
cooling limit of the energy-independent loss process which we observed for the first
time in [24]. According to the theoretical approaches, introduced at the beginning of
the chapter, the cooling mechanisms should also exist in higher dimensions. How-
ever, these cooling mechanism have never been observed in higher dimensions. This
difference is probably due to the integrability of the 1D system.

The last chapter describes the first experimental study of the previously men-
tioned GHD theory [25]. We therefore prepare 1D Bose gases at equilibrium inside
different initial trapping potentials and follow their time evolution after a sudden
modification of the longitudinal confinement. The obtained results can be well ex-
plained by the newly introduced theory of GHD which takes into account the com-
plete set of conserved charges of the integrable model. At the same time "older"
theories, such as the conventional hydrodynamics approach, fail to describe the ex-
perimental results. Additionnaly, we reproduce the famous Newton’s craddle exper-
iment [26] in which the theory of conventional hydrodynamics is unable to produce
results.
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Chapter 1

Theory

In this chapter I will introduce the theoretical tools necessary to describe the 1D
physics that will be studied in the following chapters. I will start with the transi-
tion from 3D to the 1D world by the freezing out of the transverse degrees of free-
dom. Most of the physics can be understood by considering a homogeneous system
of size L. For precise calculation, the effect of the slowly varying longitudinal poten-
tial needs be taken into account, while leading to the same overall physical picture.
Therefore, I will mainly focus on homogeneous 1D systems and take into account the
longitudinal trapping potential in a later step. In the homogeneous case our system
can be described by the Lieb-Liniger Hamiltonian, whose eigenstates, obtained by
Bethe-Ansatz, are discussed starting from a pedagogical example of two particles. Itis
followed by a discussion of the exact thermodynamics of the Lieb-Liniger model, the
Yang-Yang equation of state and the different regimes obtained from it. Then, I will
focus on the linearized model - the Bogoliubov approach — within the experimentally
important quasi-condensate regime. Furthermore, I explain how corrections to the
1D model, arising from the 3D world which are experimentally always present, can
be taken into account. In the last part I discuss out-of-equilibrium theories, the main
topic of this thesis.

1.1 1D Physics

Consider a single component Bose gas trapped in three dimensions in a harmonic
trapping confinement with trapping frequencies wy, wy, . and a many-body wave-
function denoted as ¥ (x;,Xp,...,Xy). In the following we will assume that wy = wy =
w, > w,. Then, if all the relevant energy scales, namely the chemical potential x and
the energy scale kg T given by the temperature T, are much smaller than the energy
gap to the first excited state in the transverse direction, i.e.

kBT,p«RwL, (1.1)

7



1.2. LIEB-LINIGER HAMILTONIAN CHAPTER 1. THEORY

the system can be treated as a 1D system: The transverse degrees of freedom are
frozen out and the dynamics is restricted to the longitudinal direction wj = w;. In
such a situation the wave function factorizes into its transverse and longitudinal part

N
Y(xy,Xp,...,.Xy) = ¥(zy,21,...,2N) H $o(xi, yi) (1.2)
n=1

and the system can be described as a 1D system with a longitudinal wave function
Y(z1,2,...,2n). The ground state wave function in the transverse directions ¢g (x;, y;)
is a Gaussian function! of width I, = \/A/mw | .

For 3D cold bosonic gases at low enough temperatures s-wave scattering dom-
inates [27, 28] and the scattering is completely characterized by the 3D scattering
length asp and the pseudo potential

U(x—x')‘P=g3963(x—x'];—r(r‘l’], (1.3)

where g3p = Ah?asp/m and m is the mass of the atoms. When the transverse de-
grees of freedom are frozen out, this can be related to an effective 1D interaction
parameter g with a 1D scattering potential.

Viz-z')=gbz-2), (1.4)
with ok
azpw |
L

The constant C can be calculated with the Riemann zeta function C = {(1/2) = 1.46... [29].
For experimentally relevant parameters azp < [, Eq. (1.5) reduces to

g=2?1a39wl. (1.6)

In situations where Cazp/l; = 1 a confinement induced resonance appears which
are for 8Rb experimentally out of reach. For Cesium atoms, where Feshbach resson-
nances can be used to tune azp, confinement induced resonances have been ob-
served [30].

1.2 Lieb-Liniger Hamiltonian

With Eq. (1.4) one can write the Hamiltonian describing the gas in the longitudinal

direction
A B2 N 52
H=——) —+ 26 i —Zi). 1.7
2m 4 0z2 gi«j Zi=2) -0

13D correlations between atoms at distances smaller than I; are neglected.



CHAPTER 1. THEORY 1.2. LIEB-LINIGER HAMILTONIAN

Equivalently, A writes in the second quantized version

2
H= j ¥i(z) §

‘Tﬁ +2 \P*(z}\p(z} ¥(z)dz, (1.8)

where the bosonic fields ¥ (z) fulfill the standard commutation relations
[(¥(2),¥(2Y1=6(z-2), [¥(a),¥)=1¥"(2),¥(z)=0. (1.9)

Since 1963 this Hamiltonian is well known in the literature when it was introduced
by Lieb and Liniger [5, 31]. Lieb and Liniger showed that the system was solvable
via the Bethe-ansatz. In 1969 C.N. Yang and C.P. Yang showed that the Bethe-ansatz
solution form a complete set of solutions and at the same time developed the exact
thermodynamic equations starting from the microscopic model of of Eq. (1.7). This
so-called Yang-Yang thermodynamics or Thermodynamic Bethe-ansatz (TBA) is dis-
cussed in Sec. 1.2.3.1. Note that in this manuscript I will always consider situations
where g > 0, leading to repulsive interactions between atoms.

1.2.1 Two particle problem

Before discussing the solution of Eq. (1.7) found by Lieb and Liniger [5, 31], let me
start for pedagogical reasons with the two-particle problem

02 02
_2 +

0z7 6z2

52
2m

+86(z1 — 2), (1.10)

which can be rewritten in the center of mass frame
hZ 9%
H——E—+g5(z), (1.11)

where z = z; — zp. Solutions to Eq. (1.11) are plane waves with a discontinuity in the
first derivative at z = 0 (see Fig. 1.1). For bosons ¥(z) must be even in z and up to a
normalization constant the solution can be written

W(z)=sin(k|z|+6(k)). (1.12)

Using the continuity condition on the first derivative

oV

ov
0+ 02:

0z

_mg

=72 —2¥(0) (1.13)

we obtain the scattering phase of the two particle problem

2%k

tan[8(k)] = (1.14)
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The phase shift (k) for free particles is 7/2 and interaction change 6(k) to lower
values. This phase shift is central to integrable models solved by the Bethe-ansatz. It
is worth to look at certain limits on this simple solution. In the limit g — co the phase
shift becomes zero and the wave function develops strong kinks at z = 0 with ¥ (0) =0
which resembles the Pauli exclusion principle of free Fermions (see Fig. 1.1). In the
limit weakly interacting limit g — 0 or in the high energy limit k — oo, the phase shift
become n/2 and the wave function becomes a pure sinusoidal.

m
s

b)
L_

\ /
—_ 0(k)=0 | ¥
— O(k)=7/2
—_— (k) =m/4

_— - 0

e 2 4 0 = L

¥(z)

Figure 1.1 — a) Wave function of the two particle problem: The wavefunction is sinu-
soidal for z # 0 and shows a kick at z = 0. The kink is the strongest for (k) = 0 with
W (0) = 0 (blue line) and vanishes for (k) = n/2 (green line). The red line shows the
intermediate behavior. b) Representation of the two particle problem Bethe-Ansatz.
The black line indicates the position of the discontinuity of the derivative. In the
green shaded region the plane wave solution for z; > z; applies and in the blue re-
gion z; > zp respectively.

Two-particle Bethe Ansatz The solution of the two-particle problem in relative co-
ordinates Eq. (1.12) can be rewritten, such that it can be later extended to N particles.
This is the so-called Bethe-Ansatz for two particles. The generic solution for bosons
can be written as

Y(z1,22) = f(21,22)0u(22 — 21) + [(22,21) 0 (21 — Z2) (1.15)

by dividing the space into the subspace z; < z» and zp < z; as shown in Fig. 1.1. The
Heaviside step function 6 5(z) of Eq. 1.15 is defined by:

QH[Z)={1 ¢>0 (1.16)
0 z<0.

10



CHAPTER 1. THEORY 1.2. LIEB-LINIGER HAMILTONIAN

Introducing the Bethe-Ansatz for two particles, the most general solution writes as a
superposition of plane waves

f(zerZ] — Aef(klzl‘”szz] +Bef(kzzl+k122}' (1.17)

Injecting the solution Eq. (1.17) together with Eq. (1.15) into the Hamiltonian of Eq. (1.10)
and using 0,0 (z) = 6(z) and f(2)0,0(z) = -0, f(2)6(z) (valid under integral), we ob-
tain a solution if mg

ﬂ= i(ki—k2)+ 57 =ei§(k1—kzl’ 118

B i(ki—ky) - 5E

with the phase shift 6(k)
. Rk
0(k) =2arctan|—|. (1.19)
mg

The phase shift introduced in Eq. (1.14) is related to the phase shift introduced above
with 6(k)/2 = 6(k/2). When considering periodic boundary conditions in a box of
length L, the wave-function needs to invariant under z; — L+ z;. Let us consider the
case W (0, zp) = W(L, z2) which implies

: A - B
eML_ " and etkl-", (1.20)
B A

Eq. (1.20) are called the Bethe equations which can be rewritten in logarithmic form
2nl, =Lk +6(ky—k,) and 2ml, = Lk, +6(ky — ky) (1.21)

which leads to the introduction of two integers, called the Bethe-integers I; and I»
2,32, 33].

1.2.2 N-particle Bethe ansatz

The main result of Lieb and Liniger [5] consists of a generalization of these previous
results from two particles to N-particles. For the N particle problem let us restrict to
the subspace z; < z2 < ...zxn which writes with the Bethe-Ansatz

W(z1,22...2N) = Z.sz{pei[kp‘l}z1+"'+kp‘”)zN) for z1<2o,...,2N (1.22)
p

where the sum is taken over all permutations p. <), is a prefactor which needs to be
determined. The complete solution can then be deduced by the corresponding per-
mutation of the {z;}. This wave-function is an eigenvector of the Lieb-Liniger Hamil-
tonian Eq. 1.7 with energy E = Y K2 k?i[z m). Note that the k; are not the true mo-
menta and are called rapidities or quasi-momenta. The sum P =i} ; k;j on the other
hand is the total momentum.

11
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The prefactor </, can be determined be considering two permutations p and p/,
interchanging the two rapidites k and k’ and in analogy to Eq. (1.18) one finds

o .5 /
p _ ezﬂ{k—k}_ (1.23)
dpf
This relation leads to
mg
dp=a [] [ ( p(n) = Kp(m) + 2 )] (1.24)
n<m

where a is a normalization factor. Again the periodic boundary conditions need to
be respected and we obtain in analogy to Eq. (1.20) the Bethe equations

el — ﬁ k= Kp) = 5 (1.25)
jep i (kj—kp) + 32

The Bethe equations are a non trivial set of N coupled non-linear equations which
can be rewritten by taken the logarithm. Thus we obtain a set of equations, where due
to the periodicity of the complex logarithm the Bethe integers? I ;j are introduced:

2nlj=Lkj+ Z 16 (kj—kn)]. (1.26)
n#j

The eigenstates of the Lieb-Liniger Hamiltonian are then uniquely characterized by
a set of Bethe integers {1, IZy---fN} and from which the quasi-momenta k; can be
numerically calculated. Since 6(k) is a odd function, the total momentum writes
P =2nhfLZj Ij.

Ground state The ground state of the system is given by the symmetrically dis-
tributed Bethe integers

(1} = { N- 1 N - l}

] . 2 !
with a total momentum P = 0. The ground state is also called the Fermi seain analogy
to condensed matter physics, while the use of this interpretation will become more

clear in the following; let us stick to this nomenclature. In the limit g — oo, these
Bethe integers correspond to the quasi-momenta

(1.27)

o 2n1;j
)
2The use of the name integers is abusive. For N even, the Bethe integers are half integers and for N
odd, they are integers.

(1.28)

12
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Excitations Starting from the ground state, the simplest excitations correspond in
changing one of the Bethe integers. Then, two types of excitations can be distin-
guished: Type I excitations correspond to the creation of a new particle to the Fermi
sea at k > kmay, the so-called particle excitations. In terms of the Bethe integers, this
corresponds to adding a new particle® above the edge of the Fermi sea

N N N N
{ﬂ“"”}={——,——+1,...,——1,—+s}, (1.29)
j 2" 2 2 72

with s> 0 and total momentum q = 2rhs/ L. For low values of g, it can be shown that
these collective modes are characterized by a sound-wave like dispersion relation
which becomes quadratic for higher g as shown in Fig. 1.2 b). In the case of weak
interactions, these excitations can be also obtained from Bogoliubov calculations as
introduced in Sec. 1.3.

2 B[ 2
18- s L sse*
E
@ y:0034 | 2. eafP i
1.8 @ yeo.121 a 3 BOGOLIUBDY r |
. @ r=0.405 YeoFar ’ |
s @ y=1234
i @ y=4526
| @ y=23.5
12+ © @ yeo
fT 10~ /_\
o8l
@
06~
o AL e
T 1S
oz —t 1® @
P i i _i | 1
o -LI-JQ - I_Jz . 1I e 4 Ll
(k/p) == P

Figure 1.2 — a) Quasi-momentum occupation f (k) for different y = % withn=N/L
the density. In the limit y — oo the quasi-momentum occupation corresponds to a
Fermi sea, while for y « 1 the Fermi sea gets deformed into an inverted parabola with
a smaller cut off momentum.

b) The excitation spectrum of the Lieb-Liniger model with type I and type II excita-
tions for y = 0.8. In the weakly interacting regime these excitation are very close to
the Bogoliubov spectrum, calculated in Sec. 1.3. Here p is the density in real space.
Both figures taken from [31].

Type II excitations are also called hole excitations, where within the Fermi sea one

3Note that adding a new particle tuns the half-integer Bethe numbers into integers

13
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Bethe integer is displaced just above the the Fermi sea

N N N N N N
{IT.weH}={——+l,——+l,...,——s—l,——s+1,...,——1,—}, (1.30)
j 2 2 2 2 2 2

creating a hole at % — s, again with total momentum g = 2z hs/ L. Type Il excitations
are not sound waves, and it has been argued that, in the weak interactions limit, they
correspond to dark solitons of the Gross-Pitaevskii equation [34]. Its dispersion rela-
tion can be seen in Fig. 1.2 b).

An excitation, i.e. a general eigenstate, is then a combination of the type I and
type II excitation with certain number of holes and particles, characterized by a set of
numbers {I;}. The corresponding k; can then be calculated by the solving the Bethe
equations Eq. (1.26).

1.2.3 Thermodynamic limit

RS k
AN NN N T NEE EhE .
k
Figure 1.3 — In the thermodynamic limit one can introduce the continuous function
of the particle density pp(k) as depicted above. A zoom into a small zone 6 k shows
the individual states which can be occupied with a particle (thick lines) or unoccu-
pied, leading to a hole (thin line). Note that the local density of state ps(k) depends
on the function p, (k).

In the thermodynamic limit of N, L — oo with n = N/L constant, the k; can be
represented with the quasi-momentum distribution as sketched in Fig. 1.3

pp(k)=1/L) 6k kj), (1.31)
i

where p stands for particle and which counts the number of particles p,(k)dk in the
interval dk. The quasi-momentum distribution is linked to the I(k) by

kopdk s
E+fge(k-k)pp(k)-zﬂk}. (1.32)
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In the strongly interacting limit g — oo and for the ground state, this corresponds to
a Fermi sea, where p (k) = 1/(2nn) for |k| < kmax = nr and zero everywhere else. For
finite g, the Fermi sea becomes deformed and turns into an inverted parabola in the
weakly interacting regime as shown in Fig. 1.2 a). In the thermodynamic limit we can
also introduce the density of state ps(k) which is defined as

1dI

k=——. 1.33
ps(k) I dk (1.33)

By differentiating Eq. (1.32) the integral equation

1 dk’ , ,
E+f§zs(k—k)pp(k)-ps(k) (134)
links ps(k) to pp(k) where the differential scattering phase

2mgh?
AKk)= ————F— 1.35
(k) (mg)?+ WK (1.35)

was introduced. In analogy to the density of quasi-particles, one can introduce the
density of holes
ps(k) = pp(k) + pp(k). (1.36)

Note that the density of state is a non-trivial function (Eq. (1.34)) of the particle den-
sity pp(k). The change of the particle density p (k) affects the density of state ps(k)
in the whole k space.

1.2.3.1 Yang-Yang equation of state

For generic physical systems only rare examples exists where the equilibrium ther-
modynamic properties can be exactly calculated starting from the microscopic prop-
erties. With the previously introduced exact solutions, Yang and Yang* showed how
the equilibrium properties at temperature T can be calculated in the Lieb-Liniger
model [35]. For this task, they calculated for a given p,(k) the number of possible
microstates and from which the entropy S of the system can be calculated. Further-
more, they calculated the maximum entropy under the constraints of fixed energy E
and particle numbers N. They maximized the quantity S— % - %, with the Lagrange
multiplier ¢ which is the chemical potential. From the maximization condition, they
obtain that the density of holes pp(k) and the density of particles p,(k) obey the fol-
lowing equation:

Pnk) _ pect

0, (k) , (1.37)
p

4Yang and Yang referes to C.N. Yang and C.P. Yang where the former is the nobel laureate, maybe
better known from the Yang-Mills theory.
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where 8 = 1/(kgT) is the inverse temperature and e(k) the so-called pseudo-energy.
The pseudo-energy €(k) depends on all the other states and can be calculated from
the implicit equation

212 /
e(k]=—u+ﬁ—’i——]ﬁzﬁ(k k’)ln(l+eﬂ£w}]. (1.38)

From Eq. (1.38) one can then calculate the particle density in a second implicit equa-
tion

1 [d¥
pp(h) (1+eB%) = j O A k=K, (K). (1.39)

Eq. (1.38) & (1.39) form the Yang-Yang equations and can be solved numerically by
iteration (see [36] or [14] for details of numerical implementation). The density in
real space n is then given by

n=fdkpp[k]. (1.40)

The Yang-Yang equations allow to calculate numerically in a reasonable time the
equation of state n(u, T), from which the thermodynamic quantities of interest can
be deduced. For the pressure P one can deduce the formula:

1 rdk
= Efaln [l+ e_ﬂdk]], (1.41)

which will be used in Chap. 4 [2, 32, 33, 35].

1.2.4 The equilibrium regimes

Depending on the temperature T, the density » and the interaction strength g, differ-
ent regimes of the Lieb-Liniger model can be distinguished. These different regimes
can be distinguished within the phase diagram spanned by the adimensional tem-
perature fyy® and the adimensional interaction parameter y

2h%kgT mg
mg? and Y= Zn (1.42)

Here, the use of the word phase diagram should not to be taken by the thermody-
namic sense of phase transitions. The Mermin-Wagner theorem forbids phase tran-
sitions for T > 0 in 1D [37-39] and so the different regimes at finite temperature
are separated by smooth cross-overs [40]. The boundaries between the regimes can
be calculated from the exact Yang-Yang thermodynamics. The values which will be
given in the following should be understood as typical values for which the cross-over
occurs.

lyy =

5The subscript YY stands for Yang-Yang and is introduced to not confuse with the time, usually
denoted ¢ in out-of-equilibrium experiments.
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Figure 1.4 — Equilibrium phase diagram with the three regimes and its subregimes.
The lines separating the regimes indicate the smooth crossovers.

The historical approach to distinguish the different regimes uses the normalized
two-body correlation function

(P1(2) 91 (0)¥(2)¥(0))

2
iy

gP(z) = (1.43)

at zero-distance g (0) where the mean density is given by ng = (¥7(2)¥(2)). The
two-body correlation function g (0) can be calculated via the Hellman-Feynman
theorem which relates the former to the free energy F=U—-TS

o Lng
3_1; = % f dz(¥T (2P 0P (2)¥(0) = %gm (0). (1.44)

From g?(0) three different main regimes can be distinguished [41]: the ideal
Bose gas regime (IBG) where g? (0) = 2, the strongly interacting regime, also known
as the Tonks-Giradeau gas (g? (0) <« 1), and the quasi-condensate regime (g® (0) =
1). Those regimes are show in Fig. 1.4 and their properties are discussed in more
detail in the following sections.

1.2.4.1 Ideal Bose gas

For y32tyy > 1 and t > 1 the gas is in the ideal Bose gas regime where g (0) = 2:
The particles bunch and a particle has twice the probability to be at the position of
another particle, than far apart. The occupation number of each momentum state g
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is given by the Bose-Einstein statistic for a non-interacting gas:

1

ﬁ(%—u]—l . (1.45)
e\2m )—

From latter one can obtain the equation of state, here expressed in the form n(u, T),
by integrating over dg

1
_ bu
n= 1 g%(e ), (1.46)

with the de-Broglie wave length Aqg = \/27mh2/(mkgT) and the Bose-Eisntein func-
tion gy (x) = % x/ j=12, Note that the 1D Bose-Einstein function does not show the
characteristics of condensation: The density n diverges when |u| approaches zero. In
contrast to 3D, no phase transition driven by degeneracy occurs.

The ideal Bose gas can be further divided in two sub-regimes: For y?fyy > 1 the
gas is in the classical regime where it is described by the Maxwell-Boltzmann statis-
tics, and the interparticle distance is larger than the thermal de Broglie wave length
Agg.- For y?tyy <« 1 the gas becomes a degenerate Bose gas.

1.2.4.2 Quasi-condensate regime

When decreasing the interactions or decreasing the temperature, interactions start
to prevent the bosonic bunching and gm (0) = 1. This crossover occurs at about
v3'2 tyy = 1 and is called the quasi-condensate cross-over®. Within the quasi-condensate
regime large density fluctuations are suppressed due to interactions, i.e. 6n < ny,
while, in contrast to 3D condensate, phase fluctuations are big and prevent true long
range order. Within the quasi-condensate the equation of state is well approximated
by

L=gn, (1.47)

which does not depend on the temperature.

The quasi-condensate can also be separated in two subregimes. When consid-
ering g®®(0), for ytyy > 1 thermal fluctuations dominate, while for yfyy < 1 quan-
tum fluctuations dominate. Within this thesis the scientific results are all obtained
around this crossover y tyy ~ 1. It turns out that for many observable of interest, such
as the one-body correlation function g (z), the quantum fluctuations do not play a
role around the cross-over y#yy ~ 1. See Sec. 1.2.4.4 and for a more detailed discus-
sion [42].

SThe cross-over condition ys‘fz tyy = 1 can be derived from the condition that density fluctuations
are small.
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1.2.4.3 Tonks gas

Fory > 1 and < 1 the gas is in the strongly interacting regime, also called Tonks(-
Giradeau) gas. In this regime the particles interact so strongly that they force the
many-body wave-function to vanish for z; = z; (see Fig. 1.1). This mimics the Pauli-
exclusions principle and leads to an almost vanishing two-body correlation func-
tion at zero distance g® (0). There exists a mapping of the many-body wavefunction
Y(zy,2,...,2y) onto the wave function of non-interacting fermions Wg(z,, 2o, ..., 2yN)

¥(z1,2p,...,2n) = VE(21,22,...,28) || sgn(zi-z;) (1.48)
1<i<j<N

called fermionization. The bosonic and the fermionic many-body wavefunction only
differ by a sign and therefore quantities which depends on the absolute value of the
many-body wavefunction, can be directly calculated by the fermionic wavefunctions.
This justifies the interpretation of the Tonks regime as the regime of free fermions in
certain situations. The energy and the thermodynamic quantities are the same as for
free fermions.

1.2.4.4 Correlation functions

Correlation functions are an important tool to characterize the equilibrium proper-
ties of a system. In this section I give a brief overview and summary of the correlation
functions. For the experimentally most relevant quasi-condensate regime, detailed
calculations are performed in Sec. 1.3.

One-body correlation The one-body correlation function
g12) = (¥ (0¥ (2) (1.49)

can be accessed experimentally in a homogeneous system via the Fourier transform
of the momentum distribution

RUNIONE f dz g (z)e'?, (1.50)
where
. 1 . .
W( ]=—jdz‘P[z)e‘qz. (1.51)
9 V2

In the following I discuss the one-body correlation function in different regimes.
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The one-body correlation function inside the ideal Bose gas regime The one-body
correlation function inside the ideal Bose gas regime can be calculated by using the
inverse relation of Eq. (1.50) and the Bose occupation Eq. (1.45). In the two sub-
regimes Maxwell-Boltzmann (M-B) and degenerate Bose gas (deg. Bose) analytical
formulas can be found and which are given by

2
_ ~4% deg. Bose ~2n 2
g B =noe a2 and g ° =nge  "tas?, (1.52)

The one-body correlation function inside the quasi-condensate regime In the quasi-
condensate (q.-C.) regime the one-body correlation function is given by

1zl

gl =nge ke, (1.53)
. 2i%n 2n03 .
where the phase correlation length [/, = ka;’, = —.% has been introduced. The
explicit calculation of Eq. (1.53) can be found in Sec. 1.3.1.2. Note that the behav-
ior in the degenerate ideal Bose gas, only differs by a factor of 1/2 from the quasi-
condensate regime. The crossover between the two regimes is however not a sim-
ple extrapolation [40]. It is important to note that Eq. (1.53) stays valid inside the
quasi-condensate up to very low temperatures where g»(0) is already dominated by
quantum fluctuations. The effect of quantum fluctuations on the g;(z) function for
distances larger than the thermal phonon wavelength I = Afm! ¢ leads to a reduction
by a prefactor (I7/&)~vVY'?™ where \/y/(27) is typically very small inside the quasi-
condensate-regime. Let us calculate this effect. The temperature Ty for which the
g1-function is decreased by a prefactor 1/2 from the quantum fluctuations is given by
% = 272%/VY, The temperature Tq correspond to experimentally unreached tem-
peratures [42].

Higher order correlation functions Higher order correlation functions at zero dis-
tance g/ (0) can be an important tool to characterize the Bose gas. As previously in-
troduced, the different regimes are characterized by the two-body correlation func-
tion at zero distance g(2J (0) and the the three-body loss rate depends on the three-
body correlation function at zero distance g® (0) (Sec. 4.4).

In the ideal Bose gas regime the interaction part of the Lieb-Liniger Hamiltonian
Eq. (1.8) can be neglected, making the Hamiltonian quadratic in W. At thermal equi-
librium this allows to use the Wick theorem, and calculate for example the second
order correlation function

8@ =1+1gV @)%, (1.54)

(2) (1

from which we obtain 8ipg(0) = 2, since gz (0) =1in all subregimes of the ideal Bose
gas (see Eq. (1.52)). Higher order correlation functions can be expressed similarly
which leads to e.g. gl(g)G(O) =6.
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In the quasi-condensate regime the field operator ¥ can be approximated by
N e'? where density fluctuations are neglected. This leads to higher order correla-
tion functions at zero distance which are close to one. Most importantly for Chap. 4
the normalized third order correlation function at zero distance is

v 0w (0))
@) _ g
8q.—c.(0)= 3 ~ 1. (1.55)

Concerning the Tonks-Giradeau regime, calculations of correlation functions can
be involved and I refer to the reviews [43, 44]. When approaching the Tonks-Giradeau
regime, the probability of finding more than one particl at the same place drops to
zero which can be used as an experimental signature [7].

1.3 Linearized theory in the quasi-condensate

1.3.1 Homogeneous system

Inside the quasi-condensate regime the Bogoliubov treatment can be applied, where
the Hamiltonian is rewritten as

N N
H=>~Hy+ ). Hk+AE=H0+ZHwka;'Cak+AE, (1.56)
k=1 k=1

where Hy is given by gN?/L. The creation (annihilation operators a}cﬂ fulfill the
standard bosonic commutation relations and AE is an energy shift which is nega-
tive in 1D. As it will be shown in the following Hp is the Gross-Pitaevskii mean field
Hamiltonian and the uncoupled harmonic oscillators Hy correpond to the Bogoli-
ubov Hamiltonian. In contrast to the derivation of the famous Bogoliubov theory for
superfluids in 3D [45], special attention needs to be payed to the subtleties in lower
dimension due to the absence of long-range order [46]: The Hamiltonian cannot be
expanded in terms of W(z) around (¥ (z)).

To overcome this problem we use the phase-density representation of ¥ in a
coarse-grained approach where microscopic length scales are avoided. The field op-

erator in the phase-density representation writes ¥ = \/ ng + 6 ne’? with density fluc-
tuations 61 = (A) — . This leading to the commutation relation’

[A(2),0(Z)] = i6(z-2), (1.57)
[A(z),n(Z)] = [0(2),0(z")] = 0. (1.58)

"Here the delta function 8 (z— z') should be understood as a notation for the discrete delta function
0z /1 where [ is the size of the grid.
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In principle the phase operator in a homogeneous system is ill-defined. This problem
is avoided by looking at the previously introduced coarse grained description with
many atoms per cell.
The Lieb-Liniger Hamiltonian Eq. (1.8) in phase-density representation writes
%fdzﬁ(z)z +,uf dzn(z)+AE

h2 2 .
ﬁfdz (é‘z\/ﬁ[z)J +V7(2) (002)° V@) | +
(1.59)

where the chemical potential u in the grand canonical ensemble was added. Inside
the quasi-condensate density fluctuations are small |6 1| < ng. Additionally we can
neglect very small wavelength excitations, such that the phase gradient is a second
small parameter |3,0| < ng. Note that latter is equivalent of having many particles
per considered wavelength N > L/A which is typically very well fulfilled. We expand
Eq. (1.59) with the two small parameters 16n|/ ng and |0,0|/ ng. At zeroth order this
leads to the Gross-Pitaevskii (GP) pseudo-Hamiltonian

o

K 0%
Hy= f‘P*(z) _2—6—2+ —I‘P[z]l u| ¥Y(z)dz, (1.60)
where W(z) is chosen such that is satisfies
K 0%
[—%@+gl‘l’(z’]l2—p ¥(z)=0. (1.61)

This choice of W(z) ensure that the first order terms in the expansion of H vanish.
Second order — Bogoliubov Hamiltonian At second order one obtains

n A N
n)’ + 5 [aze]zl + gjdz6n2. (1.62)

h? 1 .
= —jdz —(0z6
m 8ny

Introducing the Fourier components

on(z) = \/% Y fie,qcos(qz) + fts gsin(qz) (1.63)
q=0

0(z) = \/% Y b qc08(q2) + 05 4sin(q2) (1.64)
q=0

where the subscript s/c stands for sine/cosine-component and L is the size of the
system. The wavevector ¢ takes discrete values 27 n/L where n is a positive integer.
Introducing the Fourier components into Eq. (1.62) one obtains:

2 2 2 92
= q 2 I q ng »5
Hz_:zés}g (2 8mny )ﬁirq+ m Bi,q . (1.65)
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This is the Bogoliubov Hamiltonian in density-phase representation, frequently used
in this thesis [43, 46]. Its quadratic variables fulfill [#; 4,07 4] = i6; 64 ; and it rep-
resents N uncoupled harmonic oscillators. Frequently I will use the notation®

_ 2 A2
Hg = Agh + Byb? (1.66)

. . . g hZ q2 hZ q2 g
for the Bogoliubov Hamiltonian, where Ag = 3 + g7~ and Bg = —=. Each mode g
describes a collective mode at a wavevector g and mode frequency

R2q? (2 q?
hwg=\——|—+2 . 1.67
q 2m ( 2m gno) ( )
One can distinguish two different types of excitations by introducing the healing
length ¢! = vmgnglh. For gé < 1 the excitations are sound waves which travel
with the speed of sound ¢ = \/gny/m, also called hydrodynamic excitations. They

are characterized by their phononic dispersion relation
wq=cq. (1.68)
2 42
For g > ¢ the excitations resemble massive free particle with an energy hz;?; + ghy,
with the “rest mass” term gng = c?m.

Figure 1.5 — Dispersion relation of the Bogoliubov collective excitations Eq. (1.67)
(blue line). For small wave vectors ¢q < 1, the dispersion relation is linear (dashed
green) and for large wave vectors {q > 1 the dispersion relation resembles massive
free particles (dashed red).

Note that a rigrorous calculation of the energy shift AE is needed for the calcula-
tion of the ground state energy of the system. In this thesis we do not make reference
to the ground state and refer to [46] for a rigorous treatment of the problem.

8Here, the subscript for the sinus and cosinus modes has been dropped and it is left to the reader
to add it when necessary.
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The Bogoliubov Hamiltonian can be rewritten in the standard second quantized
form by introducing the creation and annihilation operators with the standard trans-
formation

N 1
A= Fo/T00.,  —ifl—p 1.69
q.r fq ovgqg,r fq 2\/n—0 q,r ( )
where
ﬁZqZ 1
fo= | (1.70)
Ll
2m §ho
This finally leads to the form
Hy = hwgalaq (1.71)

introduced in the beginning®.

1.3.1.1 Wigner representation

Let us consider a given Bogoliubov mode g. After tracing out all the other modes, the
system is described by the reduced density matrix p. Instead of p one can use the
Wigner representation. The Wigner function of the mode ¢ is given by

1 .
W(ng,04) = Ejdu<u+ nglplu—ngye2a, (1.72)

The Wigner function is a quasiprobability function which can take values W < 0 for
non-classical states. The Wigner function contains the full information of the system
and expectation values of an observable O(nq, 04) are calculated according to

(0) =f dngdfyW(ng,04)0(ng,04). (1.73)

For classical states, the Wigner function can be interpreted as a probability func-
tion. It gives the probability that the given mode takes the values n; and 64. For a
harmonic oscillator, as the Bogoliubov Hamiltonian for a mode ¢ in Eq. (1.66), the
time evolution of the Wigner function is the same as the classical time evolution'®. It
is given by the Liouville equation

OW(ng,0,  0W(ng604)0H; 0W(ng60,) 0H,
= — + .
ot ong 08, 06, ong

(1.74)

9Note that Eq. (1.71) differs by the constant %w/2 from Eq. (1.65) and which needs to be considered
for the definition of AE.
10Since the evolution is classical, I will drop in the following the operator notation” for ng and Bq.
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At thermal equilibrium the Wigner function is a Gaussian distribution with the same
energy in both quadratures

Eql2= Ag(n%) = B4(62). (1.75)

Experimentally we typically deal with excitations which are populated thermally kg T >
hwg. Such that we can write Eg = kg T for thermal states.
1.3.1.2 First order correlation function

The Bogoliubov approximation can be used to calculate the first order correlation
function inside the quasi-condensate regime g,(z) = (YT 0) ¥ (2)). Neglecting the
density fluctuations, one writes

g1(2) = ng (e" [3‘0"9“’]). (1.76)

Using the Wick theorem (e?2?) = ¢~1/2(A9%) yalid since the Bogoliubov Hamiltonian
is quadratic in 6, on obtains

§1(2) = nge~ {0 -0@F) (1.77)
which can be rewritten
2 2
(60 -0212) ==Y (62,) (cos(q2)-1)*+ = ¥ (62,) (sin(q2)*.  (1.78)
L q=0 ' Lq>0 '

Atthermal equilibrium the partition theorem states that the energy of the two quadra-
tures is

_ 2y _ 2

EqIZ—Aqwnq,j)—Bq(Bq’j). (1.79)

At high enough temperatures such that kg T >> hwg, the energy is given by kg T = E
which implies that (19?}r j> = ;B;TO and one obtains

% d
(16(0) - 0(2)]%) =4]0 24 (62) [1- cosiqz)] =

4kaTf°° dqg 1-cos(qz) 3 mkgT|z|
R2ng Jo 2m q? ~ R2ng

, (1.80)

where the sum was replaced by the integral over g. This implies that phase fluctu-

ations stay small on distances much smaller than the phase coherence length [, =

25; ;;L We finally obtain

m
1z]

g1(z) = nge . (1.81)
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1.3.2 Trapping potential

1.3.2.1 Local Density Approximation (LDA)

Until now, I considered homogeneous systems. Experimentally one typically uses
systems trapped in some longitudinal trapping potential V(z). At equilibrium the
Local Density Approximation (LDA) can be used when the potential and the density
vary slowly compared to the microscopic quantities, namely the phase coherence
length ;. In our experiment [, is typically of the order of a few hundreds of nanome-

ters'!. The LDA consists in a division of the system into small cells of size §z with

l,<dz<n (%]_1. In each of the cells the density n(z) is close to constant. Each cell
can be approximated by a small homogeneous system with a local chemical poten-
tial given by p(z) = up — V(z). Here, as for the whole thesis, we chose the convention

that the potential vanishes at the peak density V(0) = 0, where n(0) = .

Beyond the LDA approach the trapping potential Vj(z) needs to be added to Eq. (1.59)
as

Hy = f dz Vj(2)A(z). (1.82)

At zeroth order in the two small parameters the term Hy, = f dz V)V (2)* ¥ (z) needs
to be added to the Gross-Pitaevskii Hamiltonian (1.60). When neglecting the kinetic
energy one obtains the Thomas-Fermi approximation, where the density profile is
given by

(kp—V(2) |z| < R

np(z) = g
0 for|z| >R,

where u, = gn, is the peak chemical potential, with the peak density n, and the
Thomas Fermi radius such that V(R) = . The neglect of the kinetic energy term in
the GP-equation is equivalent to the previously introduced local density approxima-
tion.

1.3.2.2 Bogoliubov in a harmonic trap

In second order in the two small parameters the situation gets more complicated
and in order to obtain analytic results, let us restrict to a harmonic longitudinal con-
finement V(z) = 1!2mwﬁ z% and long wavelength excitations (hydrodynamic modes).
The density and phase fluctuations can be developed on the normalized Legendre

"n practice it is often sufficient to consider length-scales much larger than the interaparticle dis-
tance.
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polynomials [47, 48]

0(2)=Y 0,(2)py (1.83)
6n(z) =) ny(2)xy, (1.84)
where
1/4

9v(z)=i( mg) vevil % (1.85)

V2\#2np)  wiv+1)"* TR

B2, |14
ny(2) = “2V+1(v(v+1))”“(ﬂ P,). (1.86)

2R mg R

Here P, (z) are the Legendre polynomials of the first kind which can be approximated
by
2

1/2
— CcOS by, (1.87)
T(v+ 5) sina

Py (cosa) = (
for large v and small cos(a) where ¢, = [v + %] a— %. In Fig. 1.6 a) the mode fluctua-
tions n, are shown together with the approximation Eq. (1.87) which typically shows
a very good agreement already for v > 4.

With the previously introduced canonically conjugated variables x, and p, the
quadratic Bogoliubov Hamiltonian in a harmonic trap writes:

2 2
S.m

H, = hw
v V1D 2

. (1.88)

The dispersion relation in the harmonic trap is given by

v(iv+1)
Wy = 2 wy. (1.89)

Note that the dispersion relation in the harmonic trap is independent on the den-
sity. A description for other trapping potentials than harmonic ones, is given in our
paper [23].

1.3.3 High density 3D effects

For high linear densities ngasp =~ 1 interaction effects between atoms in the trans-
verse direction become important which leads to a broadening of the transverse ground
state. This effect can be experimentally important and is equivalent to the 1D con-
dition y <« hw not being fulfilled. For not too large nasp it has been shown that a
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2.0 7 47
v =2 v =10 F4 ] Wy = v/ V(V+1)/2 /
V= ® approx v =10 2 3 wy =~ /1/2(v +1/2)
g4 3
]__ . . . T T
1 2 3 4 5

Figure 1.6 — a) The Thomas-Fermi profile in a harmonic trap in black with the den-
sity fluctuations n, for different mode indices v. Already for v = 10, no difference
between the exact and the approximate formula is visible. In the center the den-
sity fluctuations are close to sinusoidal modes, as in the homogeneous case. b) The
dispersion relation w, for a harmonic confinement, compared to the linear approxi-
mation, with a very fast convergence.

Gaussian ansatz for the transverse wave function is a good approximation. The width
of the Gaussian is given by

I, =1, (1+2ngasp)i (1.90)

and depends on the linear density and on the width of the single particle ground state
1, =\/h/(mw,) [49]. We have checked numerically with Gross-Pitaevskii calcula-
tions, that the width of the ground state follows Eq. (1.90) up to a maximal deviation
of 20% for the experimentally relevant densities nasp < 1.3.

Beyond the Gaussian ansatz a heuristic equation for the chemical potential inside
the quasi-condensate regime can be found

ﬁi=ﬁwi[m—1]

which shows the correct asymptotic behavior in both the low and large density limit [50,
51].

These high density effects can be taken into account in the LDA u(z) = pp — V(2)
such that the mean density ng(z) in the Thomas-Fermi approximation is given by

1
np(z) = 1 {

asp

gny, (1.91)

npasp<xl

\/1+4Q3DHP—%
1

2
— 1}, (1.92)

Compare with Fig. 2.14 b) green curve, where the Thomas-Fermi profile is shown with
the modified equation of state.
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Although the previous parts suggest that even for ngasp ~ 1 an adapted 1D physics
can be implemented, I want to stress out, that these effects are corrections arising
from the 3D world and the physics at play cannot be considered as strictly 1D. Links
to the Lieb-Liniger model and to integrability need to be taken with care in these
situations.

1.3.3.1 Bogoliubov Hamiltonian with 3D effects

The Bogoliubov Hamiltonian for long wave-length modes g <« 1/¢ can be modi-
fied such that it takes into account these 3D effects. When rewriting the Bogoliubov
Hamiltonian Eq. (1.65) for g < 1/¢

m6262 R2q*ng

2ny 2m
(R —
Eint. Eiin.

Hy = 02, (1.93)

one realizes that the kinetic energy part Ey,. is independent of the density fluctua-
tions, since the phase fluctuations 93 are unaffected by the swelling of the transverse
wavefunction. Let us expand the energy of the system E(rng+ d n). The second order
term writes

on?, (1.94)

10
E@GQ2) =~ —“‘
Ny

2 0n

where y = aE . This allows to rewrite the Hamiltonian at quadratic order in ¢ n:

on® + hzqzng

2
q om Bq, (1.95)

where now the chemical potential of Eq. (1.91) is used. This directly leads to the
introduction of the modified speed of sound

2

_moul _ Gp (1.96)
m on|n, 1+4azpng )
where ch gno/ m is the expression in the purely 1D situation. Therefore we can

use the expression Eq. (1.93) with the modified speed of sound to describe our sys-
tem at high densities (azpn ~ 1). This Hamiltonian describes a situation, where the
the transverse shape follows adiabatically the density fluctuations arising from the
sound waves of the Bogoliubov Hamiltonian. A more formal approach is given in the
appendix of our paper [23] which also takes into account the longitudinal trapping
potential. Furthermore, in [52] it has been proposed to heuristically extend the GP
equation to take into account the broadening of the transverse ground state.
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1.3.4 Classical field

The Gross-Pitaevskii Hamiltonian Hp, introduced in Eq. 1.60, is a classical field equa-
tion where the quantum nature of the field has been neglected and the field is given
by a complex number W¥(z, ). For very degenerate gases it can be generalize to fi-
nite temperatures where the probability for the field configuration ¥ is given by the
Boltzmann factor e #H{¥}/ 7 The partition function Z is given by the path integral

Z=]e—ﬁHﬂ{‘P}@w. (1.97)

This classical problem can be mapped onto a quantum problem in zero dimensions,
where it is equivalent of solving a particle in a 2D harmonic potential. This can be
used for efficient numerical calculations. The classical field problem depends on a
single parameter
_ R*n’g
r= mk% T?
The classical field approach is valid within the quasi-condensate regime, for which
¥ < 1 and inside the degenerate ideal Bose gas regime, for which y > 1 [43]. This
approach fails in the Maxwell-Boltzmann regime. The discrete nature of the atoms
becomes important in the Maxwell-Boltzmann regime which is not captured by the
classical field approach.

= 12/(4&%). (1.98)

1.4 Dynamics of 1D Bose gases

1.4.1 Dynamics ofthelinearized theory in the quasi-condensate regime

After discussing the equilibrium properties of the 1D Bose gas, I will now turn to
its dynamical properties — the main subject of my thesis. Many previously intro-
duced concepts can be directly generalized to the dynamical situation. The dynam-
ical version of Gross-Pitaevskii Hamiltonian Eq. (1.60) and the Bogoliubov Hamilto-
nian (1.65) can be directly obtained from the Heisenberg equation of motion:

ih— =¥, H]. (1.99)

Gross-Pitaevskii Let us first ignore the quantum nature of ¥ and thus consider ¥
as a complex field. Then, Eq. (1.99) gives the Gross-Pitaevskii Equation (GPE)

0¥z 0 h? 0°¥(z,1)
or  2m 072

The GPE (1.100) also gives the time evolution of the classical field approach of Sec. 1.3.4.
It can be efficiently numerically implemented with the split-operator method [53].

i +g|‘P(z,t]|2‘~P(z, N+ V(2)¥(z,1). (1.100)
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Bogoliubov Hamiltonain In a homogeneous system the Bogoliubov Hamiltonian
for each mode g is quadratic. The evolution of the Wigner function is classical (see
Sec. 1.3.1.1) and the evolution of the quadratures n4 and 6 is captured by the classi-
cal dynamics of:

ong _ _OHq__,p (1.101)
ot~ 06, 7

06 _OHg_, 1.102)
or on, At '

For the unhomogeneous case, I refer the reader to [46].

1.4.2 Coarse grained description

In the following two sections (Sec. 1.4.4 and 1.4.3) we will consider the Lieb-Liniger
system in a coarse-grained approach, also called the hydrodynamic picture, or the
Euler scale. We consider length- and time scales that are large compared to the mi-
croscopic scales: The length scales are large compared to the healing length and
times large compared to the local relaxation time felax. Therefore, we divide the
system into small space-time boxes dz x df, such that the thermodynamic quanti-
ties varies slowly on those length scales'?. The system, inside such a small cell, is
assumed to be in an equilibrium state and the following two Sections differ in the
description of this state:

1. The Conventional'® Hydrodynamics (CHD) assumes that the system can be

locally described after a short relaxation time fe1ax by @ Gibbs ensemble

1 -
OGibbs = Ee‘ﬁ(H‘“’, (1.103)

with Z =Tr [e‘ﬁ(ﬁ_“] and the inverse temperature 1/ = kg T. The state inside

the small cell is completely defined by i and T and equivalently by the particle
density n and the energy per particle e.

2. The Generalized Hydrodynamics (GHD) assumes that, after a short relaxation
time frelax, the system is locally described by the Generalized Gibbs Ensemble
(GGE)

. (1.104)

1 A
PGGE = — exp (— Y BiQi
Z i

12Eor the space coordinate this is equivalent to the LDA (see Sec. 1.3.2.1).

13We use the word conventional hydrodynamics to highlight the difference to the Generalized Hy-
drodynamics (GHD) introduced in the next section.

14Gee Sec. 3.1 for further discussions of GGE.
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GGE is determined by the complete set of conserved quantities Q; that charac-
terize the integrable system. The partition function is Z = Tr [exp (— ¥ ; B Qi) ]
and f; are the Lagrange multipliers which maximize the entropy S. For the
time evolution, GHD takes into account the conservation of all the charges of
the Lieb-Linger model.

In an integrable system the CHD description represents, in most situations, an unjus-
tified approximation. As will be discussed in Sec. 3.1, an integrable system is expected
to relaxe towards a GGE.

1.4.3 Conventional Hydrodynamics (CHD)

The Conventional HydroDynamic (CHD) or simply the hydrodynamic equations are
widely used to describe the dynamics of cold atom systems. They arise from the as-
sumption that a system can be locally described by a Gibbs state, characterized by the
energy per particle e and the particle density n. One writes the continuity relations
associated to the conservation of total momentum, energy and atom number:

0 n+ 9 (n)=0 (1.105)
ot 0z - '
0 np+2 (mnv*+P)= V&0 (1.106)
ot P oz = 0z '
o ( mv? muv?
—|n——+ne+nV|+—|n|ln——+ne+nVvV|+nP| =0, (1.107)
at 2 0z 2

where v(z, t) is the hydrodynamic velocity of the fluid cell and P(z, f) the pressure.
In an external potential V|, the conservation of momentum is broken by the term
—nw—{g'ﬂ. These equations can be solved together with the equation of state, relating
P to n and e. This can be obtained from the Yang-Yang equation of state introduced
in Sec. 1.2.3.1. The CHD results in Chap. 5 are all based on the numerical implemen-
tation of Eq. (1.105) - (1.107), together with the Yang-Yang equation of state.

1.4.4 Generalized Hydrodynamics (GHD)

The Generalized HydroDynamics (GHD) is a recent theoretical approach (2016) to
describe the out-of-equilibrium dynamics of integrable systems [15, 16]. In contrast
to CHD, GHD takes into account all the conserved charges of the Lieb-Liniger model.
The operators of the conserved charges Q,-, for which [H, Q,-] = 0, are complicated
to construct and we focus on the expectation values of the conserved charges Q; =
(Q;). Additionally, we focus on a hydrodynamic description where the local charges
qi(z) = Q;/L depend on space. For the local charges ¢g;(z) we can write the continuity
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equation
04i(2) | 0ji _, (1.108)
ot 0z
where j;(z) is the current associated to the charge g;. In the Lieb-Liniger model the
local conserved quantities are the quasi-particle densities {gx} = {0, (k)} (see Eq. (1.32)).
The quasi-particle densities {p, (k)}, labeled by the quasi-momentum k, form a com-
plete set in the space of conserved charges, such that we can replace the label i with
k. In the hydrodynamics description, the quasi-particle density pp(k) becomes a
space dependent function pp(z, k). In each cell the state is equivalent to a GGE state
characterized by a quasi-particle density pp(k) [33].
The complexity lies in the calculation of the current ji which was solved in [15].
In this thesis, I present a phenomenological approach to GHD, starting from the
two-particle problem. In the following I refer explicitly to the Lieb-Liniger model,
although GHD can be applied to integrable models in general.

1.4.4.1 Collision of two wave-packets

Let us reconsider the two-particle problem with contact interactions of Sec. 1.2.1 and
study the collision of two wavepackets. The stationary solution of the two-particle
problem ¥ (z) = sin [k|z| + 8(k)] depends on the relative coordinate z = z; — zp and the
scattering phase (k). Starting from the stationary solution, we construct a wavepacket
with a function A(k) peaked around kyq:

() =]dkA(k) sin[klzl +0(k)] e~ 5 ¢, (1.109)

The position of the particles is given within the stationary phase approximation by
the condition

00 (k 2hkgt
(k) N of _,

+
S T Fi

(1.110)

Eq. (1.110) describes the collision of two particles. The particle trajectory can be
equivalently described by a free evolution and a jump in position by

00}
ok

2h’mg

Az= S—_————.
2
ke~ m2g2+4Rtkg

(1.111)

as shown in Fig. 1.7.

1.4.4.2 The GHD equations

At each collision, the particle jumps by a distance Az. For many collisions this jump
affects the particle motion, as if the interaction slowed down the particle. This moti-
vates the introduction, of an effective velocity.
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_hkgt/m
a) c)
§
=
b) akgt m+ Az
=
i T T T
-Az 0 Az

Figure 1.7 — a) Collision of two wave packets with rapidity ko = k1 — k2. b) After the
collision the distance between the particles is shifted by Az. c) Space-time diagram
of the collision: The blue line shows the trajectory of non-interacting particles. In-
teracting particles are shifted backwards at the collision by Az (green line). Note that
there is no second collision happening. The discontinuity in the position is arising
from the stationary phase approximation which cannot resolves distances smaller
than the size of the wavepacket.

The effective velocity For many collisions between particles one introduces the ef-
fective velocity veg. It can be calculated by considering the correction to the bare
velocity % These corrections are given by the number of collisions and the shift in
position at each collision:

hk 2K?
ver() ="~ [ K pp(k) [vek) = v (k) e (1.112)

. m2g2+ ht(k—k)2"

~

Collisions per unit time

Shift in position

The effective velocity veg(k) can thus be calculated with a similar implicit equation
as already seen for the Yang-Yang equation of state (Eq. (1.38) & (1.39)). Eq. (1.112)
can be rewritten in a more compact form

Veft(2, k) = % —fdk’pp(Z. K') (veft(z, k) — vett(z, K')) A(k — k'), (1.113)

with differential scattering phase A(k - k') introduced in Eq. (1.35). Additionally we
explicitly noted the space dependence.

The authors in [15] showed that the current associated to p,(k) is given by j(k) =
Vett(k)pp (k). This leads to the GHD equation

)
3PP B0+ o [veff(z k)pp(z, k)] = (1.114)
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In a semiclassical interpretation the effective velocity veg can be seen as the ve-
locity of the quasi-particle. Thus, Eq. (1.114) is simply the classically anticipated con-
tinuity equation. Note that although these heuristic arguments lead to a "simple"
result, these results are non-trivial from the point of view of the quantum many-
body problem. The full quantum problem contains additional correction terms to
Eq. (1.114) which arise in the form of a diffusion between different cells and were
calculated in [54].

External potential An external potential which varies slowly on the scale of a fluid
cell, can be taken into account in the inhomogeneous GHD equations [55]:

0pp(z,k) 0 _ 10V(z,1) 0pp(z,k)
a1tz V@ bppa k)] = g (115

The numerical results in Chap. 5 are based on the calculation of veg in Eq. (1.113)
and the GHD equation (1.115). Eq. (1.113) can be solved by numerically by iteration
— similarly to the Yang-Yang equations — and (1.115) can be numerically integrated.

1.5 Losses

In ultra-cold atom systems losses are always present at various rates. Consider for
example three-body losses due to three-body recombination or one-body losses by
collisions with the background gas.

Losses in general cannot be described by the unitary evolution of the Schréodinger
equation and a description by the density matrix ¢ with the master equation is nec-
essary

E _i[H ]+g[] (1.116)
dtp_ih P Al )

where £{p} is the non-hermitian Lindblad-operator given by

UV DUUU I
LpLT—EL"Lﬁ—EpLTL , (1.117)

L£{p} =fdz

with the non-hermitian jump operator L. This formalism is not restricted to losses.
The Lindblad operator represents a coupling to an environment where the environ-
ment is the vacuum state in the case of losses. In Chap. 4 we treat the problem of
j-body losses in more detail. j-body losses refer to a situation where the density
n =W evolves according to

%<n> =k ;(n) g (0) (1.118)
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where K ; is the j-body loss rate constant and g7 (0) the normalized j-body correla-
tion function at zero distance. For j-body losses the jump operators L takes the form

i:ﬂ%‘i’f[z], (1.119)

which leads to the Lindblad operator

Lip} fdz

It can be verified that this form of L. reproduces the correct time evolution of Eq. (1.118)
as shown in Appendix Sec. A.4.

Wiz)p ¥t () - lIﬂ‘"(z)\zh'(z)p % W Wiz, (1.120)

1.5.1 Quantum Monte-Carlo wave-function method

It can been shown that the time evolution given by the master equation Eq. (1.116) is
equivalent to a stochastic description of different realizations of wavefunctions [56,
57]. The expectation values predicted by the Lindblad evolution are recovered by a
sampling over many realizations. Considering the situation of losses within a short
time interval d#1°. If a loss occurs within d¢ the initial wave-function | ¥ (1)) is propa-
gated with

|P(r+dn) = LI (1)) (1.121)

and the probability that a loss occurs is given by

_(YOILTLIY (1)

1.122
@O (D) (1.122)

Note that here we choose unnormalized wavefunction which leads to the normaliza-
tion in the expression of the probability.

At the same time there exists a probability 1 — dp that no loss occurs. In that case
the wave function is propagated with

W(t+dn) = e 21T |w(p). (1.123)

The last equation represent the fact that, even when no loss occurs, we gain informa-
tion about the system. For example imagine that we observe a state with a non-zero
variance in N. When we do not observe any loss for a very long period, we know that
the system contains very few particles. The mean particle number is decreased by

I5The time interval d is chosen such that the probability dp of a loss occurring within the time dt
is small.
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Eq. (1.123). The probability of no loss occurring can be rewritten in first order in d¢

as
C(P(t+dD|Y(t+dD)

(PO (1)

Eq. (1.121) - (1.123) represent the Wavefunction Quantum Monte-Carlo method,
or in short Quantum Monte-Carlo (QMC). It can for example be implemented on a
computer, where after each time step dz, one of the two possible evolution of the
wavefunction is chosen with the corresponding probability. The repeated applica-
tion of this procedure on the wave-function is called a quantum trajectory. This pro-
cedure is then repeated in order to obtain many quantum trajectories. The physical
observable are obtained from averages over many trajectories.

Depending on the considered situation the QMC-method can have several ad-
vantageous over the Master equation: It allows to perform calculations for feedback
on a quantum state. In Sec. 4.7 we use the QMC approach for a feedback scheme
based on the atoms lost from a quasi-condensate. The stochastic approach of QMC
can also lead to numerical advantage [58]. Instead of calculating the time evolution
of a matrix with N x N entries, one calculates the time evolution of vectors with size
N.

1-d (1.124)

Summary:
* The Bethe-Ansatz is a powerful tool which solves the Lieb-Liniger model.

* Based on the Bethe-Ansatz an exact thermodynamics can be derived —
the Yang-Yang thermodynamics. It allows to identify three equilibrium
regimes of the Lieb-Linger model: the quasi-condensate, the ideal Bose
gas and the Tonks regime.

* Inside the quasi-condensate regime the Bogoliubov approach in density-
phase representation leads to a collection of uncoupled harmonic oscil-
lators:

2 2

* The Generalized HydroDynamics (GHD) is a powerful new tool to de-
scribe the out-of-equilibrium dynamics based on the Bethe-Ansatz.
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Chapter 2

The atomchip experiment

The atomchip experiment uses standard laser cooling and laser trapping techniques.
In a first stage it creates a cold cloud of 8Rb atoms which is magnetically trapped by
micro-wires deposited on the atomchip. For a more detailed describtion about the
experimental techniques I refer the reader to [36, 42, 59]. The working principles of
these creation stages were not modified during my PhD and rather standard tech-
niques for the cold atom community are used. The techniques which are particular
to the experiment, as the modulated guide (Sec 2.3.1.2), or the double-well potential
in the longitudinal direction (Sec 2.3.2.2), will be described in more details.

2.1 The experimental setup

gold mirror

15um E

AIN

Figure 2.1 — Experimental setup with a zoom on its structure.

The experiment is built around its central piece, the atomchip inside a vacuum
chamber at = 10" mBar. The atomchip is produced by means of nanofabrication
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techniques! and it consists of a principle layer of Aluminium-Nitride (AIN) which
serves as an isolating layer and shows at the same time good heat-conducting prop-
erties [60]. The copper wires are deposited on the AIN substrate and covered by an
insulating layer of benzocyclobutene (BCB). BCB is chosen for its properties to create
flat surfaces after spin-coating. On top of this structure, there is a thin layer of gold,
acting as a mirror for the MOT and the imaging system. The chip is mounted at an an-
gle of 45° inside the vacuum chamber as shown in Fig. 2.1. Three pairs of Helmholtz
coils outside of the vacuum chamber create homogeneous fields in the three spatial
direction and one pair of anti-Helmholtz coils creates the magnetic quadrupole for
the external MOT (see 2.2).

y |F' = 3)
a) SP:!IH-J _______________ . . b)
|F =2)
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|F" =0}
F =
" gl o
z =l B ImF)
b o =
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55, /2 _1
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Figure 2.2 —a) Level structure of 87Rb, with the different lasers used in the experiment.
The atoms are magnetically trapped in the 1°Sy,, F = 2, mp = 2). The master laser is
locked on the level crossing between |F' = 2) and |F’ = 3) which serves as a frequency
reference for the experiment. The Master 2 laser serves as the primary laser of the
experiment; used for the MOT, molasses, optical pumping and imaging. Its frequency
is locked using a beat-note with the Master laser, allowing to sweep its frequency of
about 300 MHz. Adapted from [59].

b) Photo of the atomchip mounted on its copper mount.

2.2 Preparation scheme

The preparation scheme can be summarized by the following steps:

!The production is led by Sophie Bouchoule at the Laboratoire Photonique et Nanostrucutres
(LPN), CNRS / UPSUD in Marcoussis, now renamed in Centre de Nanosciences et Nanotechnologies
(C2N).
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1. External MOT: A mirror Magneto-Optical Trap (MOT) is created with the two
beams reflecting on the chip surface. The magnetic quadrupole fields are pro-
vided by external coils outside the vacuum chamber. The use of the mirror
MOT configuration reduces the number of beams to four (instead of six) and
allows to create a MOT close (a few mm) to the chip surface.

2. Chip MOT: The atoms are loaded into a mirror MOT, whose magnetic quadrupole
field is created by wires on the chip and the distance to the chip is reduced to
500 - 800 um.

3. Compressed MOT: The compressed MOT is used to produce an elongated con-
figuration closer to the chip surface; more adapted for the following very elon-
gated trapping structures.

4. Optical Molasses: Optical Molasses are used to further cool and increase phase-
space density.

5. Optical Pumping: As a preparation of magnetic trapping the atoms are optical
pumped into the state 1°Sy,, F=2, mp = 2) (see Figure 2.2).

6. DC trap: The atoms are transfered into an elongated magnetic trap created by
a Z-shaped wire. This trap is initially at 500 um distance from the chip surface
and is then further compressed.

7. Evaporative cooling: Forced radio-frequency (RF) evaporative cooling is car-
ried out to obtain about 2 x 10° atoms at T ~ 1 uK.

8. Transfer to the science trap: To obtain high magnetic gradients and therefore
high trapping frequencies, the atoms are transferred into a position 6 um from
the chip surface on top of the three-wire guide which creates the final science
trap. In comparison to previous chip designs, this transfer can be performed
much easier due to the symmetric design of the chip: The new chip design
places the center of the DC-trap and the science trap at the same longitudinal
position, making the previously used longitudinal transfer obsolete. Catching
schemes as mentioned in [59] turned out to be unnecessary.

9. Science trap / Modulated guide: The final trap consist of a very elongated trap
geometry, whose principles are detailed in the following Sec. 2.3. We use a mag-
netic trap created by a fast modulated current where the atoms are sensitive to
the time-average potential. Amongst other advantages, the modulation tech-
nique allows to circumvent the problem of potential roughness [61]. In the sci-
ence trap, we initially trap about 8 x 10* atoms at f, ~ 1.5—-15kHz and fi=8Hz.
Besides the harmonic longitudinal traps, quartic and double well potential can
be realized (see Sec. 2.3.2.2).
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10. RF-cooling in the science trap: In the science trap a RF-outcoupling is used to
further cool down the gas into the 1D regime where we typically prepare some
hundreds to a few ten thousand atoms inside the quasi-condensate regime.
The cooling mechanism used in the science trap is discussed in more detail in
Chap. 4.

2.3 Magnetic trapping

Neutral atoms with a magnetic moment fi experience an energy shift in a magnetic
field B(x) according to the Zeeman Hamiltonian

Hy=-[i-B=upgrF-B, (2.1)

with the Bohr magneton up and gr the Landé g-factor of the atomic hyperfine state.
In the experiment we use the hyperfine state F = 2 where the Landé factor takes the
value gr = 1/2. The Zeeman effect can be used to create spatially varying poten-
tial V(x), under the condition that the direction of the magnetic field changes much
slower than the Larmor precession |dB/dt|/|B| < wr, with wy = ,uBBfRZ [28]. Then
mpg, the magnetic quantum number, is a constant of motion and the atom moves in
the potential

V(x) = gruupme| B(x)|. (2.2)

Depending on the sign of grmg (—/+) atoms get attracted towards the maximum/min-
imum of the magnetic field and are called high field seekers/ low field seekers [63]. Ac-
cording to Maxwell’s equation a magnetic field maximum in free space is forbidden
in a static situation [64]. Therefore only low field seekers are of practical interest and
we use the state |F = 2; mg = 2) in this experiment.

2.3.1 Wire geometries for trapping neutral atoms

This section introduces different trapping geometries which are used on the experi-
ment. Starting from the single wire, more complicated geometries are introduced.

2.3.1.1 Potential by a single wire

Let us consider a single, infinitely long, wire which carries the static current I. Ac-
cording to the Biot-Savart law, this wire creates a magnetic field By(r) as shown in
Fig. 2.3

I
B¢(r]=—'u0 8, (2.3)
nr

2This adiabaticity condition can be typically critical at the bottom of the trap which induces losses,
known as Majorana losses [62, 63].
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with the magnetic vacuum permeability po, the radial distance to the wire r and &
the unit vector in cylindrical coordinates. The single wire creates a 1/r potential in

a) 22X b)
— | Byl
= — |By+ B,|
= —— |By+ B, + By
)
1 2 3
z/d
- c) 2z
©B, I f/ A
4 Cb y x

Figure 2.3 — Single wire configuration:

a) Cut through the wire plane with magnetic fields. b) Norm of the magnetic field
along the x-axes. In blue magnetic field of the wire, in green with additional magnetic
field B, creating a potential minimum and in red together with magnetic field By to
lift the magnetic field and avoid a zero of the magnetic field. c) Orientation of the
wire on the chip

the radial direction which does not allow a trapping potential on its own. An addi-
tional perpendicular magnetic field B, needs to be added in order to create a mag-
netic minimum (see Figure 2.3): There exists a point on the x-axis where B, cancels
out the field created by the wire §¢[r}. The total magnetic field IB] + B, | obtains a
minimum at the distance d = uoI/(27B, ) and the potential in the x-direction is given

by
d 2
V(y=0)=ps Bi(;—l). (2.4)

where mpgr is dropped, since mrgr = 1 in the experimental implementation. How-
ever, since the magnetic field at the magnetic minimum at distance d is zero the adi-
abaticity condition cannot be fulfilled; the Larmor frequency w; = ugB/h becomes
strictly zero. To avoid this problem an additional magnetic field By along the wire di-
rection z is added. Then, the potential of a single wire, together with the two homo-
geneous magnetic fields® create a useful trapping potential (see Figure 2.3 b)). The
dominant field around the trapping minimum will always be given by By, since at the

3The homogeneous magnetic fields E’l and By can be created by external coils in Helmholtz con-
figuration. The creation of B . by wires on the chip is considered in the following section.
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magnetic field minimum B, cancels out the magnetic field of the wire B};,. We expand
the magnetic fields in the potential in terms of 1/ By around its minimum which leads

to:
1(Bs\% 1(By)\?
V =pp\/B2+B2+B2=gB 1+—(—x] +—(—J’)
HB X y 0 HBDg 2 BO 2 BO

where By, By are the x and y contributions of §¢ +B,.B,and By can be expanded in
terms of x/d and y/d from which we obtain the trapping frequency*

w, =, LB Hol _,, [HB Bi (2.6)

mBy 2nd? mBy ol
The single wire configuration provides a trapping potential in two direction (x, y). A
simple way to add a trapping potential in the remaining z-direction, can be obtained
by bending the wire in "Z"-shape. This allows for trapping in 3D and slightly tilts
the trap (for more details see [65]). The "Z"-shaped wire configuration is used in the
atomchip for the first magnetic trap where we perform evaporative cooling. This trap

isnamed DC-trap (see Sec. 2.2) and we typically use a current of I = 3A, together with
B; =38G and a bias field By =1.2G.

) (2.5)

2.3.1.2 Three wire geometry and modulated guide

Three wire configuration The experiment uses in the perpendicular direction a
three-wire configuration as the final science trapping potential®. First, consider a
single wire as previously introduced with current I. In the three-wire geometry, the
perpendicular magnetic field B, previously created by the external coils, is now cre-
ated by two parallel wires containing the same current in opposite direction (see Fig-
ure 2.4). The position of the potential minimum is located at the same distance d
from the central wire. This renders the trap center insensitive to current fluctua-
tions®. The trapping frequency is the same as in the single wire situation and given

by
1 up Mol
=—/— . 2.7
Ji 21\ mBy 2nd? (2.1)

In order to obtain high transverse trapping frequencies, either high currents I or
small distances d towards the wires, are necessary (f; o I/ d?). The maximal cur-
rent is fixed by the ohmic heat which the atomchip structure can absorb, leading to
a technological barrier. When getting closer to the chip surface new physical prob-
lems arise. Close to the current carrying wires the effect of inhomogeneities in the

4Due to VB = 0 the trapping frequency in x and y-direction are the same for constant B;.

Ssee Sec. 2.3.2 for the longitudinal confinement.

6Exactly the same current is flowing through the same wires due to inter-connections of the wires
in loops.
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Figure 2.4 — a) The three wire configuration where B, is created by the two outer wires
with currents in the opposite direction. b) Comparison of wire roughness of different
chip designs. Note that although our chip, denoted "Orsay-Chip", does not show the
best performance in terms of production quality, the problem of wire roughness does
not effect our experiment, due to the modulated guide technique.

wires can become very important. Due to imperfections during the wire growing
process, the wire cannot simply be described by perfect cuboids, with parallel planes
(see Fig. 2.5). The current inside the wire locally starts to point away from the z-
direction. This leads to a roughness of the potential induced by the current. In worst
case this leads to a fragmentation of the condensate [66-68]. Two types of production
defects were observed: wire edge imperfections and top surface imperfections. Both

Figure 2.5 — a) Wire inhomogeneity with a zoom b). Taken from [69].

show an unfavorable scaling as r~5/2 yith the distance towards the wire r [67]. There

exists two main directions to avoid this problem: Many groups focus on the quality
of the production process which can be improved in order to reduce the imperfec-
tion of the wires [70] (see Fig. 2.4 b)). In our group we choose a different approach. It
was observed that a reversed current creates a reversed potential [66] and as already
pointed outin [66] a fast modulated current might overcome the potential roughness.
Since 2007, our experiment uses this technique of a modulated guide to overcome the
problem of wire roughness [61, 71]. Until today no potential roughness arising from
wire defects was observed. The current implementation consists of the three-wire
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geometry, as introduced above, and instead of a direct current (DC), an alternating
current (AC) is used, modulated at a frequency wmeq/ (27) = 400kHz

I(t) = IpcoS(Wmedl). (2.8)

The atoms cannot follow this fast current modulation and are sensitive to the time
averaged potential

T
(V(r, 1) = %f V(r,thdr'. (2.9)

0

Figure 2.6 — a) Schematic representation of the effect of the wire roughness on the
current deviation 6 I and the magnetic field 6 B for a current flowing to the right. b)
The same current flowing to the left produces the opposite current deviation —6 I and
consequently the opposite magnetic field distortion —é B. c) RF-evaporative cooling
in the modulated guide with the principles knife of order 0 and the side bands of
order +1.

In the following I will calculate the time averaged potential {V(r, )} as in Eq. (2.5)
where an inhomogeneity as depicted in Fig. 2.6 a) & b) is taken into account. The
inhomogeneity creates a magnetic field distortion in the z-direction 6 B,. Going back
to Eq. (2.5) the potential writes

V(r) =pB\/(BO+6Bz}2+B§+B§. (2.10)
Expanding this equation in quadratic order in B;, leads to
RO

1+ —+—
By B

V(r,t)= ugBy B 2
0

5 . (2.11)

When modulating the current I(f) = Iycos(wmoegl), the term (6 B,/ By) averages out
over a full period and the time averaged potential writes

1(B%) 1(B})
— + —

1+ —1.
2 2
2 By 2 Bj

(V(r,0)=ugpBo (2.12)
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With the use of (B2, ) = B2, /2 where here By, y stands for the static case, one recov-

xly xly
ers the expression in the static case of Eq. (2.5), differing by a factor % This leads to
the trapping frequency 1€ in the modulated guide
1
AC
=—1f. (2.13)
1 \/Efl

Radio-frequency evaporative cooling inside the modulated guide In the DC trap,
RF forced evaporative cooling is performed by spin flips to an untrapped state (mg =
0). Consider a radio frequency (RF) field together with the previously introduced
modulated guide. The resonance condition then depends on space and leads to
spin-flips on the border of the trap. RF-induced spin flips in the modulated guide
can be seen as a RF-field which is frequency modulated at 2wmegq. This introduces
side bands in the spectrum at 2wmeq [72]. The resonance condition writes

b.'z r2
7‘”343 " 2 nhwmod, (2.14)

0

hwgre = upBo +

with b’ being the quadrupole gradient and r, the position where the n-th sideband
is resonant (see Fig. 2.6 c¢)). Experimentally one is interested in working with a single
RF-knife, for which we choose the order n = 0. This means that evaporative cool-
ing inside the modulated guide is only possible inside a window of AV = 2A®meq =
kp38 uK. Therefore, the cloud has to be precooled in the DC trap, before it can be
loaded into the modulated guide. This window has been increased at the begin-
ning of my PhD by changing the modulation frequency from wmyoq/(27) = 200kHz
10 Wmod/ (27) = 400kHz.

Stability of the trap In principle, one could be worried that the increase in @med
affects the stability of the trap. The modulated trap is stable under the condition
that wmeq is much greater than the transverse trapping frequency w; which is easily
fullfilled. On the other hand, it must be much slower than the Larmor frequency
wr; assuring that adiabaticity condition, such that the atomic spin can follow the
instantaneous magnetic field orientation:

W] K Wmod K WL. (2.15)

In [72] a detailed study showed that at the new modulation frequency 400 kHz losses
are still negligible.

2.3.2 Longitudinal trapping

The modulated guide only creates a transverse confinement and an additional con-
finement in the longitudinal direction is needed. As justified in the following, the
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longitudinal potential is independent of the transverse confinement and the total
confinement is given by the sum of the longitudinal and transverse confinement. For
the longitudinal confinement we use wires perpendicular to the ones for the trans-
verse confinement (see Fig. 2.7). These perpendicular wires are far from the atoms
and we can develop the longitudinal potential in powers of z around its minimum

Vz)= Y a;z'. (2.16)
i=1

Close to the potential minimum where the atoms are located, higher orders lead in
principle to smaller corrections. Each wire allows to control one current [;. This
directly fixes the maximal order in the powers series V(z) = ¥ ;_; a;z' which can be
independently controlled. In the current chip design four wires for the longitudinal
trapping geometry are implemented which we name Dy, D2, 61 and 62 (see Appendix
Fig. A.2). Those wires allow the creation of potentials up to order four (see Fig. 2.8).

To justify the decoupling between the longitudinal and transverse confinement
let us calculate the full potential arising from the magnetic fields of modulated guide
(three wire geometry) and the magnetic fields from the four wires for the longitudi-
nal trapping. The modulated guide contributes with magnetic fields oscillating with
B;"C coS(wmod ) in x and y direction. The DC currents in the longitudinal wires lead to
static magnetic fields B; and B,. In analogy to eq. (2.11) we expand the full potential
up to second order in B;/B where i = x, y and B!°' = By + By:

2

1 ( By + BACcos(@meqt) > 1
( x x (Wmod ]] + (2.17)

V=pugBP [1+=
z B;Ot

B?C coS(Wmod ) )2
2

tot
BZ

Taking the time average (...) over the fast modulation of the modulated guide, one
obtains

1 B2 1 ((BX)") 1 ((B39?)

V) =ugB' |1 += +— +— 2.18
V) =1pB; 2 (BY°Y2 4 (BYY2 4 (BPY2 249
N “ ~ /
longitudinal confinementVj transverse confinementV,

The second part on the rhs., named transverse confinement V, corresponds to the
expression already found for the transverse confinement in Eq. (2.12) where By is re-
placed by B! In most situations By strongly dominates over B, where B, is the con-
tribution from the longitudinal DC wires, and we exactly recover Eq. (2.13). The small
corrections arising from B, and leading to f, o I/+/By+ B; are typically smaller than
1%, except for the quartic and double well potential which are discussed in Sec 5.1.3.
When these corrections can be neglected, the transverse and the longitudinal con-
finement are independent and given by the sum of V and V, . The longitudinal con-
finement V| only varies with respect to z and the transverse confinement V; with
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respect to x and y. Note that the situation differs from the DC trapping schemes
where the longitudinal and the transverse confinement are not independent of each
other [42]. We make frequently use of this decoupling property in the modulated
guide to control both parts independently and many parts, such as the interaction
quench (Sec. 3.2) and GHD experiment (Chap. 5), heavily rely on his property.

Let us now calculate the longitudinal confinement Vj which writes” according to
Eq. (2.18) in second order in B;/By

2
l+%+l(%] ] (2.19)
Bo 2\Bpg

Vi =ugBo

We calculate V) starting from a single wire at distance b = L/2 = 0.945mm from the
trap center (see Fig. 2.7). The single wire creates a magnetic field

_ Mol b+z _ ol z (z 2_ z 3
Bx = oup NPPRPN P 1 b+[b] [b] (2.20)
_ Mol d 1 Mol d [z Z2\2  (Z)3 541
B =% b21+2§+[§]2+[%)2 = o B2 1 2b+3(b) 4(b] +5[b] , (2.21)

up to order (z/b)* in Vj. Small correction of order (dIb)? =104 ford = 15pum are
neglected.

a)

/

Figure 2.7 — a) Current configuration for the harmonic potential with both currents
flowing in the same direction. The magnetic fields By from both wires cancel in the
center at the potential minimum, while B; adds up. b) View on the chip with the
modulated guide in red and the wires responsible for the longitudinal confinement
in purple.

7In the following the notation {...) for the time average is dropped.
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2.3.2.1 Harmonic trapping potential

A harmonic trapping potential can be created by the use of two wires for which we
use the two wires named D, and D, on the chip design (see Appendix Fig. A.2). For
simplicity we assume a completely symmetric chip and the same currents I = I = I
in the wires D; & D3. Due to the symmetry of the problem, the magnetic field of the
second wire can obtained with Eq. (2.20) and By — — By with z — —z. This leads to a
total magnetic field of the wires in z-direction which only contains odd terms:

—22 —2(2]3 :

For B, the symmetry of the problem imposes B, — B, (and z — —z), leaving only
even terms in the expansion

_ ol

B. =
7 onb

(2.22)

wol d Z)2 z 4]
Bz;=——1|2+6(— 10(— 2.23
: anb[ +6(3) +10(3) (2:23)
This leads to a two-wire potential
uppol | 2d AV z\4 wol [[z)2 z\4 ]

V| = uBBo + — [1+3|—=| +5(—] |+ —| +2(— . 2.24
I=HEROT onb | b (5) +5(3) 7bBo 5) +2(3) } (=24

Cuntribl;trion of B; 60an By

In Eq. 2.24 two contributions can be identified: Arising from B, a uniform term, a
term in z2 and a term in z* is created, while the potential arising from B, does not
contain any uniform contribution. Comparing the two contributions for our chip
layout, one obtains that the By-contribution is dominant over the B;-contribution
(2d < uol/ (1 Byp)). This is equivalent to the magnetic field created by the longitudinal
trapping wires at the distance d is small compared to By (Bo < uol/(2nd) ) which
holds for the typical values of I = 1A and d = 15um. The harmonic trapping fre-
quency wy within this approximation is then given by

272
_ :uB;u(]I

This leads for the typical experimental parameters to a shallow confinement of wy/(27) =
0-150Hz.

As discussed before, the term B, introduces corrections to the transverse con-
finement f| o I/v/Bg+ B;. The strongest contribution to B, arises from the uniform
term

unif pold
gy = B (2.26)
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For the harmonic traps which are used in Chap. 3 & 4, the term B}Z’mf"”“ never exceeds
1% of By which makes this effect negligible. Corrections which are non-uniform in z
are even smaller. Depending on the direction of I; & I, with respect to By, this cor-
rection leads to a slightly increased or decreased transverse trapping frequency f .
Note that additionally small corrections arise from higher terms in the 1/Bp expan-
sion. Beyond second order in 1/ By the decoupling between the longitudinal and the
transverse direction is not valid anymore.

In this section we always assumed I = I,. In practice the wires on the chip are not
completely symmetric which displaces the trap center and leads to z3 terms. In prac-
tice we therefore chose slightly different values for I and I» (I; = I,). By controlling I;
and I, independently, we can displace the center of the trap or correct for potential z3
terms. Although, for detailed calculations the difference in I and I is important, the
model with I = I, still gives a good intuition of the creation of harmonic potentials.

Prior to my PhD the experimental potentials could be calculated numerically by
taking into account the finite size of the wires and the full wire geometry 8 [42]. Since
the beginning of my PhD the calculated potentials did not match the experimental
observations (center of the trap and w)). An agreement with the calculations has
been obtained by artificially adding an uniform® magnetic field By = 180mG. The
origin of this hypothetical magnetic field is unclear and several reasons are under
consideration: The unintended use of a magnetic piece inside the magnetic shielding
or a leaky current.

2.3.2.2 Double well potential

To create a potential controlled up to order four we use a second pair of parallel wires
carrying the current ¢ (see inner wires in Fig. 2.8 which correspond to the wire 6, &
0, in Fig. A.2). In contrast to the decoupling between the transverse confinement
and the longitudinal confinement, the second pair of wires does not simply add a
potential, due to the quadratic BJZC contribution of Eq. (2.17). The total potential is
calculated using the same symmetry arguments used for Eq. (2.22) & (2.23) and ap-

8See Figure A.2: the wires are not simply given by straight lines and bend further in the current
supply lines on the chip
9Adding a gradient A B, did not significantly increase the model quality
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proximating B* with By which leads to

UBHo L A
Vi =upBo+ 2d|—+ = |+6d|-—+—]|2°+10d —+—
I =HBR0T o ( 2 ( ﬁ4] ( 2
Contribuu‘on of B;
T R e
S +2 —+— 2.27
o (52 ﬁ2) 2t (v i) (220
Contribution of By

In order to create a double well potential, an anti-confining term in z and a confin-

Figure 2.8 — Top view on the chip with a second pair of wires together (compare with
Fig. 2.7) and a sketch of the double well potential V (z) with well separation A a bar-
rier height 6. The four green wires with the currents I and ¢ in opposite direction
create the longitudinal confinement, while the transverse confinement is created by
the three wires in red.

ing term in z* is needed. Concerning the z? part, the By contribution which strictly
creates a confining z2 potential, needs to be compensated by the B contribution.
With V(z) = a2? + as x* we get

04{55 ) [ ) 15 5

e o) s )

27
Let us consider I > 0. Then ax(t) is a polynomial of order two with ax(t) —
— 100

UBHo
21

as = > 0 (2.28)

ap = < 0. (2.29)

+00

and for b > B, there is always a negative part a, < 0 which occurs for ¢ < 0 (see Fig. 2.9
a)). Therefore the currents for a double-well potential are chosen in opposite direc-
tion (see Fig. 2.8). For more details see Appendix A.3. For the experimental relevant
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parameters By = 2.4G, I =5A, d = 15um, b = 0.945um and f = 0.722 um the nega-
tive zone, is quite small. Additionally. a4 needs to be positive (see Fig. 2.9 b)). Both
conditions restrict the zone into a small interval 1 = [-3.18A;2.98A]. Note however
that in practice a4 < 0 does not imply that the potential becomes anti-confining. For
larger distances higher terms (as,...) will always ensure that the potential stays con-
fining at larger distances. Again for a precise calculation the effects due to the finite

a) p— : b) 1500 7 1500

6 ool 3 — A —
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Figure 2.9 — a ) The quadratic coefficient of the potential expansion a, as a function
of ¢ for the experimentally relevant parameters By = 2.4G, [ =5A, d = 15um, b =
0.945um and f = 0.722um with a zoom around the negative area. The red shaded
area corresponds to the area where a double well potential is created with a4 > 0.
Note that the region for a double well potential is rather small. b) The width A and the
depth 6 of the double well potential (see Fig. 2.8) as a function of (. The dashed line
corresponds to a typical experimental realization, with A =200 um corresponding to
6 =63nkK.

size of the wires should to be taken into account [42]. However, due to the problems
previously explained it turned out that the calculations only gave a rough estimation
of the created potential and an adaption on the experiment was necessary. The pre-
viously established corrections with By = 180mG failed to produce a precise model
(also see discussion below about the sensitivity). Therefore, we developed the follow-
ing rule of thumb technique, based on the previous discussion: We start from a hot
cloud and create a harmonic trapping potential with the D, and D, wires, close to the
maximal current in D; & D, which is about I = 5A. Then, we decrease the currents
11,2 in the wires 6,,» from zero to negative values until we can observe the signature of
a odd term (z®) which manifests itself in an asymmetry in the cloud shape. By further
decreasing the currents (;,2, we counterbalance the asymmetry such that the cloud
shape stays symmetric and in the center until a double well structure appears. In the
typical parameter range a further decrease of the currents ty,» reduces the distance
between the two minima (see Fig. 2.9 b)). By further cooling the cloud into the quasi-
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condensate regime, we typically prepare double-well potentials with A = 200 ym and
a barrier of 6 =~ 60nk.

Quartic potentials With this procedure, we also reproduced quartic potentials with
a=0
Vi = as(x - xp)*. (2.30)

By increasing the currents (1,2 the coefficient a; approaches zero again and there
exists a point where az = 0 (see Fig.2.9 a)). An experimental density profile of the
quartic potential is shown in Fig 2.10 a). Quartic potentials have been previously
produced on the experiment [42].

a) b)
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Figure 2.10 — a) Insitu density profile in a quartic potential (blue line) inside the
quasi-condensate regime. In green the Thomas-Fermi profile obtained from a fit with
as =3 x 103% where high density corrections due to the swelling of the wavefunc-
tion are taken into account. In the flat region of the cloud the potential roughness
produced from adsorbed Rubidium atoms is visible. b) Sketch of the double well
potential together with a small perturbation Vg; lifting the degeneracy of the two

minima and creating on offset €.

Sensitivity of the double well potential The double well potential is experimen-
tally rather delicate due to its sensitivity to the experimental parameters. Already in
Fig. 2.9 b) one observes that a small change in ( directly leads to a very strong change
in 6 and A. In practice neither the chip layout is completely symmetric, nor the cur-
rents in the right and left wire can be perfectly controlled to be equal. Let us model
the effect of an experimental defect as a fifth wire carrying a small current 6 I. For
simplicity let us assume the fifth wire is at distance 3. In order to estimate the largest
contribution, let us compute at first order in z/b the contribution to the total poten-
tial from the fifth wire. The fifth wire introduces the linear perturbation V(;}l = mz.
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This lifts the degeneracy of the two minima as shown in Fig. 2.10 b) and creates a
potential which adds to Eq. (2.27):

X' _ MBHoOI | d o ( I 1
= — +—=+—=]| z. 2.31
ol np 28  mBy\b2 B2 (231)
——
from B; from Bx

Again the dominant contribution is given by B,. For the experimentally relevant pa-
rameters (see caption of Fig. 2.9), a small current of 67 = 100 uA leads to a shift of
the potential at the position of the minima of € = 22nK. This corresponds to one-
third of the barrier depth 6 = 60nK. Note that 61 = 100 uA corresponds to 0.003 % of
1 =—3A. We did not perform precision measurements of the current. Experimentally,
however, a strong sensitivity was observed.

Before discussing the experimental observations, let me remind that the experi-
ment works in a cycle of = 20s and two effects can be distinguished: The long time
stability of the trapping potential and the stability of the trapping potential within
the cycle. Remarkably, when looking at the same time in the sequence over a several
minutes to hours, no significant deviation was observable (see Fig. 2.11 b)). Taking
the previous estimation into account, this is rather surprising. Still, when considering
very long time scales of the order of several hours, a drift in the potential was observ-
able. Between different data sets the balance between the two wells was corrected
by small changes in (1 and 2. The previous statement hold when the atoms were al-
ways observed at the same time within the experimental cycle. When observing the
atoms for variable holding times in the trap, one observe a strong drift in the offset e
between the two wells (see Fig. 2.11 a)). This indicates that the experimental setup is
well in a stationary situation. After each experimental cycle (= 20s) the experimental
apparatus returns to its initial situation (heating, deformation, etc.). During a single
cycle however, the experimental apparatus experiences changes which lead to strong
reproducible drifts in the potential V (z).

Additionally problems arise from using currents up to 5A. This leads to consid-
erable heating effects on the chip. The heating leads to a thermal expansion which
can be observed via the imaging system. On the images the structure of the three
wires, responsible for the transverse trapping (see Figure A.2 green wires), can clearly
be distinguished. In order to maintain an image in focus of these wires, the position
of the camera needs be adapted. From the change in focus one can deduce that the
position of the chip surface changes by = 60 um'°. This expansion of the chip can not
be solely explained by an expansion of the BCB layer (= 6 um thick) and it is proba-
bly linked to a strong heating of the chip mount. The temperature expansion of the

10Here the conversion from the camera position to the focus position is obtained by a calibration
from time-of-flight images.
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Figure 2.11 — a) The potential V(z) obtained from the Thomas-Fermi approximation
and a polynomial fit of the linear insitu density (see dashed red line in b)) for different
waiting times f. The potential shows a significant deformation linked to the sensitiv-
ity of the double-well potential.

b) The single shot density rn(z) for the waiting time (¢ = 0ms in b)) for 15 different re-
alizations. For readability n(z) was smoothed (mean value over 12 pixel). The black
line is the average over the 15 realizations and the red line the polynomial fit used in
a).

c¢) First and last potential of figure a)
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cooper mount of a length of 3 cm, can be estimated at AT = 60K, to be of the same
order (30 um).

In summary: The heating of the chip and the sensitivity to small current devia-
tions lead to very sensitive experimental situation. In practice the previous estima-
tion of the offset between the right and the left well turned out to be too pessimistic.
A rebalancing of the wells was experimentally manageable by controlling the cur-
rents up to 0.01 %. This discrepancy arises most probably from the simplification in
the model, which neither takes into account the full geometry of the chip wires, nor
higher order corrections. Nevertheless, the double-well potential pushes the exper-
iment to its stability limits. A possible path to improve the situation could be the
increase of By. It leads to a smaller sensitivity to current imperfections (Eq. (2.31))
and at the same time the confining term of zZin Eq. (2.29) is reduced. This would be
paid by the price of a reduced transverse confinement (f, o< 1/4/Bp) which can be
compensated with a stronger current in the transverse wires. At the same time this
would also lead to a desired side effect of a reduced coupling between the transverse
and the longitudinal confinement (see previous discussion in this section).

2.3.2.3 Potential roughness

The chip surface is coated with a thin layer of gold. It turns out that Rubidium is ad-
sorbed by gold which leads to an accumulation of single Rubidium atoms on the chip
surface. The adsorption induces a charge transfer and leaves electropositive rubid-
ium atoms on the surface which creates an electrical stray field [73, 74]. The electric
field influences the trapping potential via the Stark effect and leads to a potential
roughness. The potential roughness is typically visible on the density profiles in the
quasi-condensate regime as for example shown in Fig. 2.14 b) & Fig. 2.10. There ex-
ists different approaches to remove these stray electric fields: In [75] a monolayer of
Rubidium on the chip surface in cryogenic environment was successfully used to cir-
cumvent the problem. Another approach at room temperature was used in [76] with
a quartz surface on the chip together with a nearby electron source. It also seems
that a silver mirror might bypass the problem by maintaining a high reflectivity and
avoiding the adsorbtion [77]. Previous work in the group tried to implement a dielec-
tric layer on top of the chip surface. Unfortunately, the dielectric layer cracked while
inside the vacuum chamber.

2.4 Genetic algorithms
A typical work of a PhD student in experimental cold atom physics consists of many

optimization tasks which do not always need a precise understanding of the under-
lying physics and equations. As a paradigmatic example consider the charging of a
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magnetic trap from a MOT: Even though the underlying equations are well-known, in
most practical situations theory does not predict the best choice of the parameter. Ei-
ther because the problem is too complicated, the initial conditions are not precisely
determined or the exact value of the magnetic fields etc. are not precisely enough
known. In such situations one typically performs a manual optimization task of the
final atom number. This corresponds to the optimization of a scalar function!! f(X)
where f is the atom number and X a vector containing the adjustable parameters. It
is of strong practical interest to automatize such a task. In many situations this is not
easily achievable, since the parameters of the problem are not controlled by a com-
puter (e.g. adjustment screw of a mirror). For a atomchip experiment this situation is
quite different compared with standard cold atom experiments. Most experimental
parameters are currents on the chip which are directly computer controlled. On our
experiment only the first stages from the external MOT to the molasses (see Sec. 2.2)
are sensitive to such non-computer-controlled parameters. Therefore atomchip ex-
periments are prime candidates for automatization.

Since there exists an immense variety of optimization algorithm, let me focus on
some practical aspects. Many algorithms used in computer science rely on the deter-
ministic nature of the function f(X) which excludes them from use in experimental
situations. There exists different approaches to deal with these noisy experimental
situations. Some examples from the cold atom community are machine learning ap-
proaches [78, 79] or genetic algorithms [80, 81]. In this section I focus on an imple-
mentation of an elitist genetic algorithm. This approach is widely used, but until
now has not been implemented on the atomchip experiment, nor in the atom optics
group at the institute. The motivation behind the choice of the algorithm is based on
simplicity of implication. We are well aware of much more involved and maybe more
efficient methods [80]. The aim of this section is to demonstrate, how an efficient
optimization method can be implemented with little effort.

2.4.1 The algorithm

Genetic algorithms are inspired by the Darwin principles of evolution of gene mixing
by reproduction, mutation and selection. Here, an individual is a set of parame-
ters X = {xy, X2,...X,}. The selection takes places by the outcome of the experiment,
namely the number of atoms of the set of parameters. The algorithm starts from
M randomly chosen individuals (typically 10 on the experiment). The experiment
then performs M runs where in each run a single individual is used (a different set of
parameters) and the outcome (the number of atoms) is saved. Then, the algorithm

In some situation several parameters e.g. as the final temperature and the final atom number
might be of interest. In such a situation a cost function can be created, mapping the problem back to
an optimization problem of a scalar function.

58



CHAPTER 2. THE ATOMCHIP EXPERIMENT 2.4. GENETICALGORITHMS

a) Lselection reproduction
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Figure 2.12 — a) Principles of the genetic algorithm.

b) Illustration of the reproduction process. Colors and numbers (genes) correspond
to exemplary values of the parameter of the individuals. Child 1 is created by ran-
domly choosing genes from the parents. Child 2 takes the previously unused genes.
¢) Experimental implementation of the genetic algorithm. The atom number (blue
points) as a function of the experimental cycle during the optimization process. One
generation corresponds to 10 experimental cycles. For guidance, the individual data
points are shown together with a smoothed green curve. After 20 generation the al-
gorithm converges with about eight times more atoms than initially.

performs its task with its three principles. First it selects the two-third of the best per-
forming individuals (highest atom number). It then reproduces the same amount of
children, by randomly choosing two parents. The reproduction process can be per-
formed as following (see Figure 2.12 b)): For each pair of parents two children are
created. For each parameter it is randomly chosen, if child 1 obtains the gene (pa-
rameter value) from parent 1 or from parent 2. If child 1 obtains the gene from parent
1, child 2 will obtain the gene from the parent 2 and vice versa. This method ensures
that no information is lost at this stage. One adds 1/3 of the best performing parents
to the children created by this process. This stage can be skipped, but adds an elitist
behavior to the algorithm which can speed up the optimization algorithm. At the fi-
nal step mutations are added, by randomly changing one of the parameter on each
individual. We perform mutations on a predefined interval around the original value
X, such that the new value is given by

X = X+ sD27"F, (2.32)

D defines the interval in which mutations are possible, s is the random sign of the
mutation, k is the mutation precision and u a uniformly distributed number in the
interval [0, 1]. This type of mutation is known as Miihlenbein’s mutation [81, 82]. At
the end of this three steps we end up with a new generation with the same number of

59



2.5. HEATING AND LOSSES CHAPTER 2. THE ATOMCHIP EXPERIMENT

individuals M and the process starts again where this new generation is tested on the
experiment. In our experimental implementation we did not predefine k and D and
instead imposed for each parameter a maximal and minimal value together with a
smallest step €. The parameter € was necessary to avoid infinitesimal small numbers
which can cause problems with the our hardware control of the experiment. From
the value of the maximal value, minimal value and €, the parameter k and D can be
calculated such that we obtain the same distribution as given in Eq. (2.32). We cre-
ated the initial generation by performing random mutations on a single individual.
The implementation of this algorithm has proven to be efficient in situations where
not much physical intuition was available. An example is shown in Fig. 2.12 c) where
the atom number is increased by a factor 8 after 300 experimental cycles. Still, hu-
man control was clearly outperforming the algorithm when a physical intuition was
available.

2.5 Heating and losses

In this section I summarize the main sources of losses and heating in the experiment:
Losses from the background gas and heating & losses from technical noise. Both
heating and loss effects were observed during my PhD and the elimination of those
processes was one of the most time consuming parts of my PhD work, at least on the
technical side.

2.5.1 Background gas losses

Collisions with the background gas are a source of losses. Due to the high kinetic
energy of the background gas atoms (room temperature) a collision with the back-
ground gas leads inevitably to a loss of the atom from the trap. The collision rate y is
then given by

Y = Nback Vback0 backs (2.33)

with npack the density of the background gas, vpacx the mean velocity of the back-
ground gas and op,ck the cross section of the collisions. In the current experimen-
tal situation, if one assumes solely collisions with hydrogen molecules, one obtains
I'=1/y=100s for a pressure P = 10~ mBar!? [63, 83]. Taking into account the mea-
sured lifetime of I = 7, we conclude that collisions with the background gas should
give a negligible contribution'3. Heating due to collisions with the background gas,

2During the experimental cycle the pressure increases compared to the inital mentioned
107! mBar due to the rubidium vapour. We roughly estimate the increased pressure to be a factor
10 higher.

13 Although collisions with different atomic species can contribute, the result for the tabled collisions
as Rb— Rband Rb— He in [83] do only differ by a few percent.
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can be neglected due to the shallow traps.

2.5.2 Technical noise

In contrast to magnetic traps created by coils, atomchip setups do no benefit from the
natural capacitive noise reduction of coils and thus may suffer from current noise. It
is interesting to note that this problem can be reversed and atomchip setups can be
used as very precise magnetic field sensors, combining high sensitivity with a high
spatial resolution [84, 85].

Heating Let me focus on the three wire configuration where the atoms are at d =
15um from the wires and therefore potentially most sensitive to current noise. In
the three-wire configuration the position of the trap center is fixed by the wire ge-
ometry (see Sec. 2.3.1.2) and it can be safely assumed that losses from a fluctuating
trap center can be neglected!4. Thus we assume that the dominant heating mecha-
nism comes from fluctuations of the trapping frequency w — w(1 + €(f)) where €(f)
are small fluctuations. The fluctuations can be characterized by a noise spectrum
Je(w) = f (e(0)e(D)) e td¢t, whose spectral width is assumed to be large compared to
w. The trapping frequency oscillations lead to a parametric driving process where
transitions from the quantum mechanical state |n) of the harmonic oscillator are
driven towards |n+ 2) and |n — 2). This leads to a heating process:

d(E) w?
—=—J.w . 2.34
T > JeQw)(E) ( )
Eq. (2.34) describes an exponential heating characterized with a time constant Theat.
Since in the three-wire geometry w o< I, we obtain

1 w?
Theat = ﬁhﬂw). (2.35)

where J;(w) = f (I(0)I(1))e *®tdt. A characteristic heating time Theat Which exceeds
10s under typical experimental situations with I =0.1A and w/(27) = 3kHz imposes
that J; < 500 uA? /Hz.

Losses For simplicity let us restrict this discussion to the DC trap- The strongest
contribution of the magnetic field seen by the atoms comes from By and polarizes

4Here it can be safely assumed that the current noise at each moment is the same in each of the
three wires. The cables which interconnect the three wires are of lengths of some meters. Uncor-
related noise is therefore suppressed up to several gigahertz where the atoms cannot follow the fast
movements.
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the atoms along the z axes. However, the magnetic fields By and B, couple the trap
state to the remaining Zeeman levels. This loss rate is given by

1 [#B#o

2
Tuoise = 575 (5 g ) J1(@D) (2.36)

where d is the distance to the wire and w; = ugB/h the Larmor frequency [63, 86]. In
the DC-trap the atoms are at a distance d =~ 150 um. Eq. (2.36) predicts that J;(w) <
15 uA? /Hz in order to maintain a lifetime of Tjggges > 105.

The loss process is sensitive to the noise spectrum around the Larmor frequency
which is typically on the order of w;/(2mr) = 3MHz. The heating process is sensitive
to the noise spectrum around twice the trap frequency which is on the order of a
few kHz. Experimentally both heating and losses were observed, with losses being in
most situations the dominant effect. Experimentally both effects cannot be well sep-
arated in shallow traps, since spill-overs from heating eventually also leads to losses.

A precise characterization of the electronic noise on the chip is not straightfor-
ward. In principal the electronic noise on the experiment can be lower than the es-
timations of the limiting values in this sections. The best experimentally measured
lifetime during my PhD was about I' = 7s which is probably still limited by electronic
noise.

2.5.3 Switching-mode power devices

It is well known that switching-mode power devices can be an important source of
electric noise. Their basic working principle consist in "cutting" the input voltage
(typically Vi, = 220V modulated at 50 Hz) by a switching regulator into short time in-
tervals and a subsequent filtering of the output voltage (typically Vo a few Volts).
Noise created by the switching-mode power device does not only affect the electrical
loop under consideration, but can propagate via the ground connections and affect
different parts of the experiment. Due their low costs, switching-mode power devices
became an industrial standard which in some practical cases make them almost im-
possible to avoid in laboratories. It is practically impossible to avoid switching-mode
power devices in standard equipment, such as computers and screens. It is however
worth to note, that good quality switching-mode power supplies can be of very low
noise. However it can be difficult to link the noise quality of a certain switching-mode
power device to its noise impact on the experimental setup from calculations. Exper-
imental testing of the noise impact can be tricky, since some switching-mode power
supplies only show a high noise level at certain moments. Even after a thorough test-
ing of the impact of a certain switching-mode power supply on the experimental cy-
cle, it is not exclude that after some time (even months later) the switching-power
device becomes a major source of electric noise in the experiment. At the same time
the noise of a switching-mode power device can also disappear for some while. The
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electric noise finally leads to losses and heating on the experimental setup which was
regularly observed on the experiment. During my PhD, problems due to switching-
mode power devices significantly slowed down the scientific progress. All the above
mentioned problems of noise appearing and disappearing randomly have been re-
peatedly observed. As a consequence almost all switching-mode power devices on
the experiment have been steadily replaced by linear power supplies which led to a
continuous improvement of the atom lifetime. Additionally, all the current carrying
wires which are used for atom trapping purposes, have been shielded by special wires
and connectors.

2.6 Technical instabilities

2.6.1 Mechanical instabilities

The scientific work of my PhD has been also significantly delayed due to technical
instabilities which where all related to a newly installed movable lens system. These
problems were all linked to the more general problem of maintaining a high me-
chanical stability of vertical moving massive object (some 200g) over a large number
of repetitions (some hundred of thousands repetitions).

a)

Additional stopper b)

Fixation ring
Linear actuator

P =
: O
P =
= g
()
o

lens mount

MOT beam lens |
MOT beam lens MOT mirror

Figure 2.13 - The MOT beam with its movable parts. Left: Picture from the side. Right:
Sketch from the top view. The MOT beam lens (the MOT beam mirror) are movable
part which will lifted up (sidewards) during the DC trap phase (see 2.2).

The introduction of the vertical moving lense originates from major changes on
the imaging system prior to my PhD!®. The change of the objective of the imaging
system required the use of an additional lens during the MOT-phase. This MOT-lens
is needed to collimate the MOT beam passing through the new objective in reverse
direction as shown in Fig. 2.13 b). Due to the high numerical aperture of the new

15For more details on the changes on the imaging system see [36, 59]).
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objective, the MOT-lens needed to be placed a few centimeters beyond the objective
to avoid a too large spreading of the MOT beam. Unfortunately, it is practically im-
possible to place the MOT-beam lens where the optical path of the imaging system
is separated from the MOT beams (see Fig. 2.13 b)). The additional MOT-beam lens
needs to be moved during the imaging, in order to not disturb the imaging part. Due
to space constraints on the optical table, it was decided to mount the MOT-beam lens
on a vertical moving platform (see Fig. 2.13 a)). This part of the experiment is inside
the magnetic shielding which required the use of a special non-magnetic platform
which strongly constrains the number of possible technical solutions. As a solution a
linear actuator from SmarAct GmbH was chosen'® based on a stick-slip motor. Due
to the operation in vertical position, an additional spring for gravity compensation
was added, after consultation with the producer (see Fig. 2.13). The whole setup is
fixed by a clamp ring (fixation ring) around a steel cylinder of diameter 30cm (see
Fig. 2.13 a).
During my PhD the following parts showed significant degradation:

* Spring: The additional spring broke twice. Since the whole setup is hidden
behind the magnetic shielding, this was not immediately realized. We do not
know how long the linear actuator was running without gravity assistance of
the spring.

* The linear actuator: Twice an early degradation was observed. Each time this
resulted in a replacement of the stick-slip motor. After a detailed inspection
with the producer, the cause of this early degradation remained unclear. Ac-
cording to the company these linear actuators are routinely used in similar
conditions (number of repetitions/weight) without significant signs of degra-
dation. It is unclear if this is linked to the broken spring mentioned above
which might have lead to an excessive stress on the actuator. Each replace-
ment was linked to several months of down-time of the experiment, due to the
reparation by the producing company.

* The clamp ring The clamp ring changed several times its position. This effect
was unexpected by several experienced technicians, although first observation
signs were at hand. The clamp ring withstands at least the weight of 70 kg
without any displacement and no displacement can be observed after several
movements of the linear actuator with its load. However the situation can dra-
matically change when considering hundred of thousands of movement of the
system!’. Then, the lens together with its mount acts like a small hammer of
about 200 g on the clamp ring. This led to a movement by several milimeters of

6The non-magnetic version of SLC-2460-D-NM: http://www.smaract.com/products/
linear- positioners/slc-series/slc-2460/
I7This is an estimation of the number of yearly movements of the linear actuator.
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the clamp ring'®. By adding metal spacers which are placed between the clamp
ring and a fixed basis, this mechanical instability was removed.

In summary: the vertical displacement of a lens with a high precision and high
reproducibility can be a more complicated task than anticipated and if possible a
horizontal displacement is preferable. Although the system is functional at the mo-
ment, a replacement system was prepared which is based on the block and tackle
technique with most of the parts outside of the magnetic shielding. It cannot be guar-
anteed that such a system does not show similar failures. However, all of its technical
components can be easily replaced outside the magnetic shielding and the compo-
nents are based on well known simple electric motors and "stone age" mechanics.
With this replacement system we expect to avoid lengthy time delays in the future.

2.6.2 Magnetic stability

During my PhD, I observed increased fluctuations and long term drifts (on the or-
der of hours), when working with low number of atoms (n, = 5 ,um‘l]. Its origin is
not clear, however there are hints that it might be linked to fluctuations of the mag-
netic fields. The whole vacuum chamber is protected from external magnetic fields
by a metallic shielding in two layers. The outer one out of mu-metal and the inner
one out iron. In [71] it has been estimated that the stability provided by this shield-
ing is better then 800 uG. Since this measurement the inner layer of iron started to
show signs of rust which changes the magnetic structure of the iron and probably its
shielding capacity. Taking the upper bound of [71] as an estimation for a magnetic
fluctuation 6 B = 800 uG and assuming this field aligned to be with By, this would re-
sult in a fluctuation of the potential offset of 7% compared to the chemical potential
u at fi =3kHz and ng = 5um~!. In principle fluctuations of the potential offset are
unimportant, unless working with RF-knifes as used for the evaporative cooling.

2.7 Imagingsystem

We use standard absorption imaging techniques, whose key points will be introduced
in the following. A more detailed description including the newly installed imaging
system can be found in [36, 59]. Absorption imaging is based on the Beer-Lambert
law

aq 200 (2.37)
dX - ;y. ] .

where in this paragraph x is the direction of light propagation through the atomic
cloud, I the imaging beam intensity, o(I) the absorption cross-section and n(x, y, z)

18This problem could be well summarized under the ancient Greek saying "Povt evdeAeyovo
xothouvel etpory” — "constant dripping wears the stone” (Choerilus of Samos 5th century BC)
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the 3D atomic density. In general o(/) in a multilevel atomic structure can not be
easily obtained (see [42] for detailed analysis of the problem in presence of a multi-
level structure). The situation changes drastically for a two-level system with light on
resonance where the cross section is given by

agl)=

(2.38)

with the low intensity cross section oo = 31%/(27), the saturation intensity Igy =
Iimhnc/(Aop) and the natural linewidth T'jp. A two-level system can be obtained
by applying a strong magnetic field (10G) to split the hyperfine structure in its mg
states and addressing the atoms with an imaging beam of ¢* polarization. We use the
two-level system on the closed transition between |F = 2, mg = 2) and |F' = 3, mp = 3)
which has natural linewidth Ty, = 27 6.069 MHz[87] for 8Rb. We shine a resonant
imaging beam at wavelength A = 780.24nm onto the atoms and an image is recon-
structed from the absorbed light. The x integrated atom number rn,; per pixel is then
obtained by comparison with a reference image taken without atoms 60 ms after the
first image:

A2 (NP
w(12) = ——1In|—2_|. 2.39
Nat (Y, 2) oD n(Nf’h) (2.39)

Nf'h is the number of photons in the i-th image where i = 1 is the image with atoms
and i = 2 is the reference image. The size of the pixel in the object place is A =
1.75 um. The imaging beam is shone on the atoms via the gold mirror on the surface
of the chip at45° (see Fig. 2.14). Without atoms this should lead to a flat image 7, =0
everywhere. In practice, however, a small residual unevenness can be observed and
areference image without atoms is subtracted. Since we are interested in 1D physics,
we use for almost all applications the integrated atomic density n(z) = f Rat(y, 2)dy;
the atomic profile integrated over the transverse direction (see profile Figure 2.14 b)).

2.7.1 Time-of-flight images

We use a time-of-flight imaging technique in order to obtain a situation where the
equation for the two-level system Eq. (2.38) is valid. We switch off the trapping poten-
tials and the atoms fall under gravity during a short time-of-flight ¢ = 8ms'?. During
the time-of-flight the imaging magnetic field B™ = 10G is switched on. The imaging
magnetic field B™ is orientated with respect to the imaging beam of polarization o™,
such that the only closed transition is given by | F = 2, mg = 2) and |F' = 3, mg = 3) (see
Fig. 2.14). After the short time-of-flight the atoms are placed at a position where light

19Eor this whole manuscript tr will be 8 ms, if not stated explicitly differently.
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Figure 2.14 — a) The imaging laser beam is shone on the atoms. The laser beam is
reflected from the chip surface into the imaging system b) Density profile n(z) (blue)
compared to Thomas-Fermi profil with the quasi-condensate equation of state u =
gn (red) and with corrections due to the swelling of ground state in the transverse
direction p = hw, (/T+4nasp — 1) (green). The bumps on the experimental profile
are due to the potential roughness which arises from rubidium atoms adsorbed on
the chip surface (see Sec. 2.3.2.3).

reflected from the chip surfaces does not recross the atomic cloud (see Fig. 2.14 a)).
During the time-of-flight the cloud expands quickly in the transverse direction and
a dilute cloud is imaged. This avoids problems of high densities as discussed below
in Sec. 2.7.2. We use time-of-flight images to record the density ripples images (see
Sec. 2.8.1) and to extract the momentum distribution (see Sec. 2.8.3). Additionally,
they are used to calibrate the insitu number of atoms, as discussed in the following
section.

2.7.2 Insituimages

In contrast to time-of-flight images, in situ images do not directly contain the cor-
rect atom number, and always need to be calibrated with time-of-flight images. Still,
in situ images can be very interesting for practical purposes when interested in the
atomic profile. In situ images inside the quasi-condensate regime only contain small
density fluctuations, in contrast to the large density ripples appearing after a time-of-
flight (see below Sec.2.8.1). Therefore, the atomic profile can be obtained in a single
shot with a relatively low level of noise and averaging over many realizations is un-
necessary. This advantage is exploited in the GHD project (see Chap. 5).

We acquire insitu images after a very short time-flight of 100 us, during which
neither the density profile nor the density fluctuations are modified. In such a sit-
uation, the atoms absorb twice the imaging beam: The first absorption takes place
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Figure 2.15 - Insitu imaging. a) Position of the atoms with respect to the imaging
beam and the chip. b) In situ absorption imaging of the atomic cloud and its mirror
image. Note that the transverse ground state is smaller than the pixel size A. The
atom number is calibrated with a time-of-flight image (see Fig. 2.14).

before the reflection on the chip surface and a second absorbtion after the reflection
on the chip surface as shown in Fig. 2.15 a). This leads to two images of the atomic
cloud: a real image and a mirror image of the atoms as shown in Fig. 2.15 b). A pri-
ori it is not directly possible to reconstruct n(z), since without well-defined magnetic
field the atoms cannot be described by a two level system (Eq. (2.38)). However, it
turns out that for practical considerations Eq. (2.38) still holds [42, 88], with o re-
placed with aogg. The correction coefficient is approximately a =~ 0.8 and the exact
value depends on the detuning. The applicability is routinely verified by comparing
the insitu profiles to the time-of-flight profiles and a is corrected for small variation
in each data set. For high atomic densities the validity of the Beer-Lambert law can
be lost and two effects can distinguished: First, when the interparticle distance is
smaller than the wavelength non-trivial reabsorption processes become important.
Second, when the size of the cloud becomes much smaller than the size of the pixel
A, the non-linearity of the logarithm leads to a under estimation of the atom num-
ber. Both effects can be observed on the experiment for high atomic densities in
the center of the trap and in previous works [36, 42, 59] correction techniques were
used. For the data presented in this thesis the atomic densities were chosen to be low
enough such that these corrections were unnecessary. Additionally, the short time-
flight of 100us leads to a transverse expansion, such that the transverse size of the
cloud becomes comparable to the pixel size. Note that it could be argued that only in
situ images allow to extract the correct atomic profile in contrast to time-of-flight im-
ages. This, however, does not apply to the experimental situations considered in this
thesis. Due to the shallow longitudinal trapping confinements and the short time-of-
flights 77 = 8ms, no change in the longitudinal atomic profile was observed. Consid-
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ering the data in this thesis the advantage of the insitu images over the time-of-flight
images solely consists in a lower statistics: The large density fluctuations inside the
quasi-condensate regime are removed and the signal to noise ratio is increased by
avoiding the large spread in the transverse direction.
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2.8 Analysis methods

2.8.1 Density ripple analysis

The method of the density ripple analysis was pioneered by [89] and later used in
the Vienna group [19, 90, 91]. Inside the quasi-condensate regime density ripples
appear after a short time-of-flight, during which initial phase-fluctuations are trans-
formed into density fluctuations?® §p(z). This method has been proven to be a very
useful tool for temperature measurements [19, 24]. Prior to my PhD the density rip-
ple method was not used in our group?! and the temperature measurements mainly
relied on in situ measurements of the atom number fluctuations [11, 92, 93]. Both
measurements methods have their strengths and weakness. The advantage of the
in situ atom number fluctuations method lies in its direct link to a thermodynamic
quantity via the fluctuation-dissipation theorem. It can thus be used in all regimes
of the phase diagram (Fig. 1.4). However, inside the quasi-condensate regime which
we predominantly investigate, density fluctuations are suppressed which makes its
observation technically difficult and requires a lot of statistics. In stark contrast, the
density ripple method relies on the thermal phase-fluctuations which develop into
large density fluctuations and which can be of the same order as the initial mean
atomic density ng(z). These density ripples are therefore very easily visible on a sin-
gle shot image as shown in Fig. 2.16 b) which drastically increases the signal to noise
ratio. They are of stochastic nature and the average profile over several experimen-
tal realization gives the mean profile {p(z)) = po(z). Both methods are sensitive to
excitation in the phononic regime. In the following I will show how the density rip-
ple analysis can be used to extract information about individual Bogoliubov modes
(see Sec 2.8.1.2) and how it can be used as a thermometry to extract the phononic
temperature (see Sec 2.8.1.3).

2.8.1.1 Density ripples power spectrum

In this section I will rederive expressions for the density ripples spectrum (Ip‘“(q]|2>,
first established in [90]. A more detailed derivation can be found in our paper [18],
whose derivation is closely followed. Let us consider a gas initially trapped whose
trapping potential is removed at ¢ = 0. The atoms then fall under gravity during a time
tr. The power spectrum of the density ripples {|6(q) %) after time-of-flight writes as

1p(@?y = f dz;dzze' 1“1 =22)(5p(21)6p(22)), (2.40)

2011 the following the letter p is used for the atomic density after time-of-flight, while the letter n
denotes the atomic density in the trap.
210ne example measurement can be found in [36]
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with 6p(z) = p(2) —(p(2)) the density fluctuation after 7r. When expanding eq. (2.40)
the term | f dzeiqz<p(z}> |2 appears. This term can be safely neglected, since we re-
strict ourselves to short time-of-flights, such that the cloud shape does not change
({p(2)) = ng(z) with ng(z) the insitu atomic density22 and at the same time we are
only interested in wavevectors smaller than the inverse cloud length such that the
term —| [ dze'9%(p(2))|? gives negligible contributions to {|3(q)|?). Then we obtain

Up(1? = f dzydzpe' 7%= (p(z)) p(22)). (2.41)

Due to the strong transverse confinement, the gas expands fast in the transverse di-
rection and interactions become almost immediately negligible (a more detailed dis-
cussion about the interactions follows in Sec. 2.8.1.7), such that one can calculate
p(z) = ¥ (z,t5)¥(z, tf) with the free-particle propagator

u 1 u jlza?
V(z,tr) = 7fda:\P(a:,0]e o, (2.42)

\HZJT.'ff

For readability, I use in this paragraph A= m = 1. This leads to

_jm=a?  @-p? (v

1 a e
<p[21)p(Zz)>=mﬂf dadfdyds(Vo VsV ¥se 7 2ty 2tf

+i

(2.43)
with the notation ¥, = ¥ (v, 0). Expanding the exponential, we obtain
1 B o2 Y P L B
(p(z1)p(2z2)) = mﬂf dadBdyds(V,Vs¥, Wse T 2 i %
(2.44)

Injecting into Eq. (2.41), and using fdze”‘z =216 (k) and 6 (x/a) = |a|6(x), we get

o N sy e il eean? 62
{(p(q)l >=ffdadﬁ(‘Pa\Pa+qtf‘P6+qtf‘P5)e e 2y @ 2 @ 2, (2.45)
Defining 6 = a + X, we finally obtain
Up(q? = f f dadXe' ™ Ve ¥ auq, Vg xqt Vasx)- (2.46)

Up to now the derivation is general and did neither assume a specific regime nor a
certain geometry of the cloud.

22This property has been experimentally verified as discussed in Sec. 4.4.3.
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Homogeneous gas in the quasi-condensateregime Letus consider ahomogeneous
system in order to obtain analytic results which can is helpful to obtain an intu-
ition. We will later come back to different trapping potentials. We introduce the in-
tensive quantity of a homogeneous system of length L which is given by (ngq]|2> =

(1p(q)>) /L. Inside the quasi-condensate regime ¥, can be written as \/79e??@ (see
Sec.1.3) where the density fluctuations bn(z) are neglected. Then Eq. 2.46 writes

L2 ) .
Up(R) = n j | axe® <e‘(9"‘9‘*‘f+g"+‘“f‘9"]> , (2.47)

where the translational invariance of the system was used to integrated out a and
again we used the simplified notation 6, = 6(z).

2.8.1.2 Filter for Bogoliubov modes

In Eq. (2.47) only pairs of 6(z1) — 0(z2) appear where z; — 23 is separated by g 5. When
restricting to wavevectors such that g5 < [, the difference 6(z;) — 6(z2) stays small
(see Sec.1.3) and we can expand the exponential in Eq. (2.47) which leads to

1/, . A~ A . .
1- 2 <(90 —Oqt; + Oxqte — 9}()2) eldX, (2.48)

(o(@P) =12 f dx

In the whole section we are not interested in the contribution at g = 0, and for sim-
plification of the calculation we drop all the terms which do not depend on X. Addi-
tionally (6(z,)0(z»)) only depends on the separation of | z; — z| which leads to

Ap@)® = n 2 (¢! +&174)]| [ ax 000 00) ™, (2.49)

where again the translation invariance was used. Let me now introduce the Fourier
transform of 6(z)

0= f e'7%0(z)dz, (2.50)

and we obtain

Up(@)2) = 4n2(16, %) sin? (q i ) 2.51)

The complex valued quantity Qq can be decomposed in its cosine and sine contribu-
tion with (|64[%) = % [(6;6) + (6%,5)]. For a system which is invariant under translation
both contributions are equal (93”) = (6%,5) and we finally obtain

hqt
(p(@)I?) = 4ng(65, ) sin® (%) (2.52)
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where m and h are reintroduced. The index r stands for r = ¢, s and will be dropped
in the following.

This implies that for low lying wavevectors hqts < I.m the density ripple spec-
trum resolves individual Bogoliubov modes. On the data analysis side, Eq. (2.52) con-
stitutes the central equation for the interaction quench which is introduced Chap. 3.

For a system at thermal equilibrium and thermally populated modes kg T >> hw,
where w4 is the Bogoliubov mode frequency of Eq. (1.67), the equipartition theorem
allows to write

(02) = mkg T/ (h* noq?). (2.53)

The prediction of Eq. (2.52) together with Eq. (2.53) is shown in Fig. 2.16.

2.8.1.3 Density ripple thermometry

Without the restriction to small wavevectors hqff < Iom and in equilibrium situa-
tions in a homogeneous system an analytic formula can be obtained [90]. For higher
q contribution different Bogoliubov wavevectors get mixed and the density ripple
spectrum cannot resolve individual Bogoliubov modes. Starting from Eq. (2.47), we
can use the fact that 8 is a Gaussian variable and apply the Wick theorem to rewrite
the exponential:

<|p[q} |2> — n{Z]]dXeine_%<[Q\D—éqtf+éx+qtf—é)(]2>.

(2.54)
The exponential can be further rewritten as

2 - . . - PO - ..
{p(@)1%) — ] dX el®Xe™ 3 <[30_3qtf]2 + (3)(+qtf—9xlz+ (Bo—Bx)*+ (gqtf_G)HqthZ— (30—3)(+qtf)2— (3qtf_8_‘.|()2>
— .

gy
(2.55)
Using the first order correlation function
g1(2) = (¥ (0)¥(2)) = nge (6@~ _ g o-lalilc, (2.56)
with I, = f 7>, one calculates
Hlatgl+XI | Xratgl , X—qtl
<|p(q f dXe'®e 2 e * etk (2.57)
0 o0
This Fourier transform of an even function on X can be rewritten
0 |qtf|+|X| [X+qtel | [X-qtgl
M =2 ] T YT cos(gX). (2.58)
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As previously, let us restrict to ¢ > 0 and we can distinguish the two cases X > qtr
and X < qtr. For X > gty Eq. (2.58) only gives an irrelevant contribution to g = 0. For
X < qtf Eq. (2.58) leads to

2 qtf
U@ _ 5 [ axe 2 cosax. (2.59)
no 0

The integral of Eq. (2.59) can be solved analytically which leads to

2hqt
2ql,—2e mkc (qic cos[m’thf} +25in[@))
2y=2n2 2.60
{p(@I) =2n; 14+ 2D (2.60)

where i and m are reintroduced. Eq. (2.60) represents the central results of this sec-

a) R b)
5 20 35 50 65 80 95 110 125

—— LDA

—— bhox

ghty
—_— . <1

025 050 075 1.00 _
haty/(ml) -
0.2 0.4

Figure 2.16 — a) Density ripple power spectrum. Green line corresponds to the pre-
diction for a homogeneous gas (|6(¢)|?) in a box of length L = 2R and a the mean
atomic density nop = N/(2R) (Eq. 2.60). The blue line corresponds the local density
prediction Eq. (2.64). The dots corresponds to a data set at f;, = 3.1kHz and the yel-
low line to the corresponding fit which takes into account the LDA and the imaging
resolution for which we obtain ¢ = 1.97 £0.04 um. All the plotted lines correspond
to the same temperature T = 53 £ 4nK which is obtained from the fit. Note that the
position of the first maximum of the density ripple is shifted to the left by the imag-
ing resolution which prevents to observe the oscillatory behavior. The upper axis
Jj = qR corresponds to the wavevector which is dominated by the v-th mode index
for Bogoliubov modes in a a harmonic trap. The red line corresponds to the small g
expansion (see Sec. 2.8.1.2) valid for g trlimly) < 1.

b) Single shot 2D image of the density ripple. The longitudinal z-axis is horizontal.

tion. In Fig. 2.16 it is shown for experimentally relevant parameters. Eq. (2.60) shows
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a damped oscillatory behavior where the height of the first maximum is approxi-
mately proportional to the temperature of the gas (see Eq. 2.52). The expression of
Eq. (2.60) solely depends on the temperature T, apart from the experimentally well
known density ng and the time-of-flight 7¢. It can be therefore used to fit the experi-
mental data to obtain the temperature.

2.8.1.4 Local density approximation

The expression for the filter of Bogoliubov modes Eq. (2.52) and for the thermom-
etry Eq (2.60) only holds for a homogeneous gas, while the gas in our experimental
realization is confined in an external potential. The conceptually most intuitive treat-
ment of the trapped gas, can be obtained by the LDA. Later in this section, we show
that corrections beyond the LDA approach can be neglected for the experimentally
relevant situations.

In order to derive the density ripple power spectrum within the LDA, let us rein-
troduce the term 28 = Ifdzefqz<p[z]> %, neglected in Eq. 2.41. Applying the free par-
ticle propagator 28 writes

B = ] f dadXe ™ (P Vo0 ) (U Warxay) (2.61)

Within the quasi-condensate where density fluctuations can be neglected, the field
operators in Eq. (2.46) & Eq. (2.61) write

i(éa—éaﬂp‘f +éa+X+qtf—éa+X]

(2.62)
The density is given by the Thomas-Fermi profile ng = np(a). Collecting Eq. (2.61) &
(2.62) one writes:

sy . .
Wawa+qtfwa+x+q;fq;a+X = \/na”a:+qtfna+X+qtfna+Xe

Ap(R = ] f dadXe' /ATy qriarqiars

l<ef[éa—éa+qtf+éa+X+q:f—éa+X]> _ <ef(éa—éa+qtf]> <ef[éa+)(+qtf—éa+)(]>

The LDA assumes that the size of the cloud L is much larger than /. and additionally
we can assume that Aqts/m < I.. This implies that at constant @ and for X > I,
the second term in Eq. (2.63) vanishes. The density profile n(z) varies only slowly on
scales z < L. As long as we consider wavevectors for which holds Lg < 1 we can
write

(2.63)

1B @R = f da{| Py (@12). (2.64)

The LDA result of Eq. (2.64) can be used to calculate the density ripple thermom-
etry the power spectrum {0(q)) in a trap. The numerical result of Eq. (2.60) together
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with Eq. (2.64) is shown in Fig. 2.17. The LDA results is also used to calculate the time
evolution of (5(q)) after the interaction quench in the small wavevectors hq [Flm<
. approximation (see Sec. 3.4).

qR
0 50 100 150 200 250

(17q|*)/ (Rnp kBT t/h)

g/ hity/m

Figure 2.17 — Test of LDA: Density ripple power spectrum calculated for experimen-
tally relevant parameters /./R = 0.2 and tf = 0.015mi2/h, with I, = 2h?n,/(mkgT)
the correlation length at the center. The blue lines show calculation based on Bogoli-
ubov calculations in trap which show excellent agreement with the LDA calculations
in red dashed line. The green dotted line is the small g expansion for hqtf < I.m
which shows similar to Fig. 2.16 a) good agreement up to gR = 50.

2.8.1.5 Bogoliubovin a trap

The validity of the LDA can be verified by the Bogoliubov treatment in a harmonic
trap with the Legendre-polynomials which was introduced in Sec.1.3.2. Starting from
Eq. (2.62) which holds in a trap, one can introduce the expansion of (z) in terms of
the orthogonal Legendre polynomials which leads to

R

161y = ff dadX e'9X Vo@)ng(a+qtg)ng(a+ X+ qtf)ng(a+ X) (2.65)
R o3 Tv(PD) (04 (@0, (a+q1p)+0y (@+ X+q1p)-0,(@+ X))

For hqtf/ m < I, the exponential can be expanded in analogy to Eq .(2.48).

For large v one can use the approximation Eq. (1.87) for which the Legendre-
polynomials behave approximately as cos((v+ 1/2)z+ m/4). Under this approxima-
tion the density ripple power spectrum {|p(q) 12) (Eq. (2.65)) for a single mode v is
peaked at approximately at v = gR. This justifies the use of the axis g R which directly
indicates the mode v = gR with the largest contribution at a given g.

As with the LDA, the Bogoliubov approach with its result Eq. (2.65) can be used
to calculate the equilibrium density ripple profile. We use the equilibrium prediction
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(pﬁ) = kg T/(hw,) and the result is shown in Fig. 2.17. For parameters close to the
relevant values on the experiment, the Bogoliubov approximation in a trap is in very
good agreement with the LDA calulations of Eq. (2.64). Since the integral of the LDA
is numerically less demanding, than Bogoliuobov calculations in a trap, we will use
the LDA Eq. (2.64) together with Eq. (2.60).

2.8.1.6 Imaging system

Experimentally the finite imaging resolution needs to be taken into account. It can
be modeled as a Gaussian response function in real space

22

oA (z)= e 202, (2.66)

2mo?

The measured density p™® is given by the convolution of the real density p™¥(z)

with &/ (z). This leads to a multiplication of the theoretical density ripple power spec-
trum {|p(q)[?) with e=9°7".

In principle the imaging resolution was measured with pinholes before installa-
tion of the imaging system. We found an imaging response function close to a Gaus-
sian with a resolution of o = 0.8 um. However, one can expect an increase of this value
since the atomic cloud expands by a few hundreds microns in the transverse direc-
tion during time-of-flight. This is considerable compared to the depth-of-focus along
the imaging beam which can be estimated to be on the order of 5 um. We thus expect
that the effective imaging resolution is larger than the measured value o = 0.8 um. By
fitting the experimental density ripple power spectrum with 7 and ¢ as free parame-
ters we typically obtain o = 2 um. This value depends on the transverse confinement
and slightly larger values are observed for data sets at the highest experimental trans-
verse confinements w /(2) > 6kHz.

In practice, we also correct for the photon shot-noise which gives a small correc-
tion independent of g and which writes:

(50> >—(A2 ]22( L ! (2.67)
shot o)) 5 th(y,z) Ngh(y,z) ’ '

In summary: The density ripple thermometry is based on the analytic function in
Eq. (2.60) together with the LDA of Eq. (2.64) and the imaging resolution which are
used as a fit function with T and o as free parameters. The density ripple analysis
which resolves individual Bogoliubov modes is based on Eq. (2.52) together with the
LDA of Eq. (2.64) and the effect of the imaging resolution can be taken into account
which will be explained in Sec. 3.4.2.
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2.8.1.7 Interactions during time-of-flight

In the previous derivations in this Sec. 2.8.1 it was always assumed that the inter-
actions can be neglected during the time-of-flight. In [94] the effect of interactions
during the time-of-flight were estimated. They consider a situation slightly different
from the situation studied in this thesis and in the following I will argue that their
results can still be used for our experimental data. Their derivation differs in two
points our experimental situation: First, they consider the transverse Thomas-Fermi
regime (u > hw ). Our data is in the harmonic oscillator regime y < hw | . It can be
assumed that interaction effects in the harmonic oscillator regime are smaller than
in the Thomas-Fermi regime, making the estimation in [94] an upper bound estima-
tion. Second, they use a Bogoliubov approach (as introduced in 1.3) which assumes
small density fluctuations and our clouds develop large density fluctuations during
time-of-flight. If we restrict ourselves to small wave vectors, (q < ml./ (ﬁtf)) the den-
sity fluctuations stay small®® and the Bogoliubov procedure still applies. Therefore
for small wavevectors we can give the pessimistic correction factor € which replaces

(|p(q]|2) — (|p(q)|2>c¢€
= (fﬂc ]
€ (LU| ff) . (2.68)

In all experimental situations € exceeds 0.95 where we used experimentally relevant
wavevectors ¢ of Chap. 3 and similar results hold for Chap. 4. This confirms that in
the small g zone of {|p(q) |2) interactions are negligible. Taking into account that our
calculations for (Ip[q]l2> match well our experimental data over the whole g-range
(see Fig. 2.16), it can be assumed that interactions during the time-of-flight can be
neglected for all wave-vectors q.

2.8.2 Yang-Yang thermometry

As introduced in Sec. 1.2.3.1 the equation of state of the 1D Bose gas with contact
interactions is exactly known and can be computed numerically. Using the equation
of state, together with the local density approximation in a trap pu(z) = up — V(2), it
can be used to extract the temperature of the gas [12, 92, 95]. If the potential is known,
as it is typically the case for harmonic traps (see below Sec. 2.9), a given mean density
profile n(z) can be fitted with u, and T as free parameters. For this purpose it is
advantageous to tabulate p(nyy, T) in the relevant parameter range®* and extrapolate
for the fitting purpose.

BHere g < ml./(h tr) should be understood in a stricter sense than in the previous derivation for
quantitative results, such that we are in the linear part of the small g expansion in Sec. 2.8.1.2. This
range of ¢ is visible in Fig. 2.16 where (Iﬁ[qllz} is linear in g and indeed density fluctuations stay small
in this g range.

24Courtesy to Karen Kheruntsyan and Giuseppe Carleo for numerical calculations.
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Figure 2.18 — The Yang-Yang thermometry in green compared with the modified
Yang-Yang thermometry in red. Both theories fit well the experimental data but lead
to different temperatures. For comparison the purple line is the Thomas-Fermi pro-
file (TF).

In the experiment the 1D conditions kg T < u is not strictly fulfilled and correc-
tions arising from the transverse excited states should?® be taken into account. The
few percent of atoms in the transverse excited states can be treated as ideal Bose
gases, with the chemical potential p(jx, jy) = p — (jx + jy)hw, for the excited states.
Here jy is the j-th excited state in the x direction and j, respectively. The corre-
sponding equation of state ntg(u(j), T) is given by

, 1 )
nre(u(j), T) = g1 (9"37], (2.69)
Adgg 2
with the de Broglie wave length Agg = i’;ﬁ? and the Bose-Einstein function g 1 (x) =

?‘;0 ﬁ—i;, also known as the polylogarithm Liy;»(x)[12, 93]. The total linear density is

then given by

o0
n(p, T)=nyy(u, T) + Z (j+ Dnte(p()), 1), (2.70)
j=1
with j = jy+ j,. The prefactor j+1 takes into account the degeneracy of the excited
states. For numerical purposes the sum is typically truncated at j = 20.

We typically apply the Yang-Yang thermometry to clouds which are in the quasi-
condensate regime at center of the trap and confined in a harmonic trap as shown
in Fig. 2.18. In such a situation the temperature obtained from the Yang-Yang ther-
mometry is mainly due to the shape in the wings where the gas is in the ideal Bose gas

25In Chap. 5 these corrections are not taken into account. The theory of Generealized HydroDynam-
ics (GHD) cannot take into account the corrections from the transverse excited state. See Sec. 5.2 for
more details.
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regime. The central part the profil is dominated by the quasi-condensate equation of
state u = gn which does not depend on temperature.

The phononic excitation of the Bogoliubov Hamiltonian are mainly confined to
the inverse parabola given by the Thomas-Fermi regime. Therefore, the Yang-Yang
thermometry is not an adapted thermometry to measure the temperature of the pho-
nons. Experimentally we typically observe different temperature between the Yang-
Yang thermometry and the density ripple thermometry (or different thermometries
which probe the temperature of the phonons) [22]. See Sec. 4.4.3 for more detail on
this observation.

2.8.3 Momentum space distribution

For atomchip experiments with 1D gases it is practically impossible to reach the far
field regime by standard time-of-flight techniques. Due to the very shallow confine-
ments in the longitudinal direction of typically a few Hertz, the far field is reached for
times and cloud sizes which exceed the typical apparatus parameter. To circumvent
this problem pionnering work was performed in Amsterdam with the introduction of
the magnetic lensing technique [96, 97]. This technique is now routinely used on our
setup [40, 98, 99] with a more detailed description given in [42]. The process resem-
bles the focusing of light with a lens where the lens is replaced by a tight harmonic
kick potential characterized by wyicx and applied during the a short time fi;cx. Let
us restrict the discussion to classical particles without interactions for the moment:
We chose a kick time ficx small enough such that atoms do not move inside the kick
potential. This gives the condition wyjck fxick < 1. The kick potential gives the atoms
a velocity proportional to the distance from the center of the trap. Immediately af-
terwards the confining potentials are switched off and the atoms fall under gravity
during a time 7

1
ff=—— 2.71)

@F 4 ek
The time-of-flight is chosen such that all the atoms collapse at the central position
when the initial velocity distribution is neglected. Taking into account the initial ve-
locity distribution the atoms focus in the center of the trap and their spatial distri-
bution is homothetic to the initial velocity distribution as illustrated in Fig. 2.19 a).
Interactions during the time-of-flight can typically be neglected due to the fast ex-
pansion in the transverse direction which removes interactions almost immediately.
In this thesis we typically use a kick potential with wyck/(27) = 51 Hz together with
a kick time fiick = 0.4ms which leads to 7y = 24ms. During this time the atoms fall
2.9 mm, for which the imaging system needs to correct its focus position in the hori-
zontal direction (we use the mirror image). This distance is the maximal distance for
which we are currently able to adapt the focus. The resolution of the measurement in
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momentum space is given by A, = A/(tf) = 73 um/s, depending on the precise value
of If.

The momentum focusing can be disturbed by several reasons, whose effects are
discussed in detail in [42]. Experimentally the condition wycy fiick < 1 is not always
well fulfilled and corrections to Eq. (2.71) need to be taken into account. Additionally
interactions during the kick can play a role. It can be however shown with the scaling
approach that for w) ek < 1 interactions are negligible. Additionally anharmonici-
ties in the kick potential needs to be minimized.

a) S~ — b)
N kick

T =30.3 nK —_— fit

> —04 —-02 00 02 04

13

Figure 2.19 —a) Scheme of the momentum focus technique. b) Experimental momen-
tum distribution together with a fit (green) taking into account the imaging response
function and the LDA (see Eq. (2.73)). This leads to a temperature T = 30.3nK.

Comparison with theory The theoretical momentum distribution can be calcu-
lated by the Fourier transform of the one-body function correlation g; (z). Inside the
quasi-condensate®® at equilibrium and in a homogeneous system (see Eq. (1.81)) this
corresponds to a Lorentzian of Full Width Half Maximum (FHWM) 2/ ..

1/1,

nq x m , (272]

2
where [, = %:%. Inside a trapping potential it can be calculated numerically with

the LDA and we obtain:

n ] M@ (2.73)
o . .
q q +112(2)

For comparison with the experiment, we convolute with a Gaussian of width o, to
mimic the imaging response function, as shown in Fig. 2.19 b) in blue. For very cold

26For different regimes see [42]
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clouds, for which /. is large, the bulk of n, is dominated by effects of the resolution
and the fits gives a good estimation of 0 4. The values of o4 corresponds to a width in
real space o = 2um (see Fig. 2.19 b)), in agreement with the value obtained from the
density ripple analysis. The temperature can be compared with the temperature ob-
tained from the density ripple analysis which agrees up to 20%, while both methods
are sensitive to slightly different wave vectors. For comparison, the corresponding
density ripple spectrum to Fig. 2.19 b) is peaked around g¢ = 0.05.

2.8.4 Comment about temperature measurements in the system

With our setup we are able to probe the temperature of the system with different
methods (density ripples analysis, momentum focusing and Yang-Yang thermom-
etry) and these methods not necessarily lead to the same values of the tempera-
ture [22, 36]. This is less surprising when considering that the 1D system is an in-
tegrable system. The equilibrium state of an integrable system is not described by a
thermal equilibrium, but by a more general equilibrium (see Sec. 3.1 for a more de-
tailed discussion). In our setup the fit of the profile with the Yang-Yang equation of
state typically leads to higher values than the temperature obtained from the density
ripple analysis or the momentum focusing technique. This is probably due to the
preparation process [22, 59] but further investigation is needed. More details about
this phenomenon are also discussed in Sec. 4.4.3.

2.9 Parameter calibration

Longitudinal trapping frequency In the case of a harmonic trapping potential its
trapping frequency can be measured directly by a displacement of trap center and the
recording of the subsequent oscillations of the center of mass around the potential
minimum as shown in Fig. 2.20 a).

Transverse trapping frequency In the transverse direction the trap center cannot
be easily displaced due to the three-wire geometry (see Sec. 2.3.1.2). To circumvent
this problem we use a parametric heating process to measure the trap frequency f; .
The trap frequency can be modulated at a frequency fpara by modulating the ampli-
tude of the AC-current with an additional signal generator

I=[Io+AIcos(27 fparat)]| COS(Wmodr)- (2.74)

This leads to resonances at fpara = 21 f) where atoms are excited to higher motional
states. The observable signal consists in a broadening of the atomic cloud in the
transverse direction after a short time-of-flight. Equivalently, on can observe the
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Figure 2.20 — a) Oscillation of the center of mass together with its sinusoidal fit.

b) First resonance of the parametric heating. The transverse width o, after a short
time of flight 75 = 8ms is obtained from a Gaussian fit. The center frequency flfm
leads to fi = 3.1kHz where the dashed line corresponds to a Gaussian fit for guid-
ance.

atom losses due to spill-overs. We typically used about 10 oscillations of the para-
metric heating signal with an amplitude 6 /1 = 10%. This method also allowed the
verification of the f| o« I dependence (see Eq. (2.7)) which was better than 1%.

Comment about uncertainties All the published scientific results in this thesis solely
depend on the values n(z), f|, fj and the measured times. The uncertainties on the
time is very small due to the technological standards of the clocks which are inte-
grated in the hardware control. Its precision can be independently verified with a
very high precision. The statistical error for f; and fj is very low (< 1% see Fig-
ure 2.20). And the statistical uncertainty in n(z) can easily be reduced by averaging
over several runs. The estimation of the systematic error for n(z), fi and fj is much
more tricky, since no independent measurement method is accessible within a rea-
sonable amount of work and reasonable precision?’. At the same time we expect the
systematic error to dominate over the statistic error. There exists however an indirect
method to verify the consistency of our parameters. In the quasi-condensate regime,
the shape of the cloud can be predicted by the Thomas-Fermi approximation (see
Sec. 1.3.2), starting from the values of f|, f| and the peak density n,. In Fig. 2.14 b)
the cloud shape and the Thomas-Fermi approximation is plotted with a high agree-
ment. One could deduce error estimations from the atomic shapes which would lead
to strong correlations between the uncertainties and we therefore decided to publish

2 f1 can be calculated from Eq. (2.7), however at the current situation no precise knowledge of the
exact parameters is available.
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the values without error estimations?®. Further indication that the statistical error
is not the dominant contribution can be recovered from the results in Chap. 3 and
Chap. 4. If one assumes that the theoretical models are correct, the statistical incer-
titude is much too small to explain the deviation from the theoretical results?®. This
indicates that further systematic errors should come into play. In general it can be
said that the systematic errors are expected to be of the order of a few percent.

Summary:

* We use an atomchip setup to create clouds of 8Rb which are strongly
confined in two dimensions. This allows to create 1D clouds inside the
quasi-condensate regime.

* The modulated guide technique eliminates the problem of wire rough-
ness and allows for an independent control of the longitudinal and trans-
verse directions. In the longitudinal direction we can control the first
terms of the Taylor expansion V(z) =Y5_, a;z".

* The density ripple analysis allows to access individual Bogoliubov modes
and to obtain the phonon temperature

28 Another indirect verification method for the atomic density n(z) can be obtained by verifying that
the cross-section is independent of the atom number [71].

25ee for example the statistical error bars in Fig. 3.5 b) or in Fig. 4.10 where the errorbars for
w, /(2m) = 1.6kHz would be too small to be visible.

84



Chapter 3

Interaction quench

This chapter first introduces the concept of quenches in isolated many-body quan-
tum systems. It then focuses on an interaction quench in a 1D Bose gas and intro-
duces its description in the quasi-condensate regime. I will present two experimental
methods to study the dynamics generated by an interaction quench. The first one an-
alyzes the evolution of momentum distribution which undergoes relaxation towards
a thermal distribution. The second one uses the density ripple analysis which allows
to access individual Bogoliubov modes. We show that the observed dynamics of the
Bogoliubov modes continues for times longer than the thermalization time of the
momentum distribution. These results are published in [18]. Finally, I will discuss
the difficulties of observing recurrences in 1D Bose gases in a harmonic trap which
indicates the presence of a damping of the Bogoliubov modes due to non-linear cou-
pling between modes.

3.1 Quenches in integrable systems

Before introducing the work published in [18], I give a short motivation and overview
of quenches in isolated quantum systems. It is a basic assumption in statistical phy-
sics that after some short time fe1ox @ macroscopic system can be described by a few
thermodynamic quantities and two systems described by the same thermodynamic
quantities differ only by microscopic fluctuations. In classical mechanics, this prop-
erty arises from the ergodicity of the system which ensures that the system can ex-
plore the whole configuration space and remove the memory of the initial state. After
lrelax the fundamental postulate of statistical mechanics becomes true: The system is
with equal probability in any accessible microstate. For an isolated quantum system
the situation is more complicated. For example consider an eigenstate |\¥;) of the
Hamiltonian A. Then, the system will stay under the unitary evolution of the H in
exactly the same state; up to an irrelevant phase factor e~*?i!, This situation clearly
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differs from an evolution towards a statistical ensemble.

The thermalization of an isolated many-body-quantum system is one of the key
questions in the field of out-equilibrium dynamics. Motivated by advances in recent
years, mainly in the field of cold atom experiments [100-108], theoretical research
was stimulated!. The sudden quench is thereby one of the standard setups, on which
we will focus in the following. The system is prepared in the initial density matrix po
(or state |Wp)). At t = 0 the system is brought out-of-equilibrium by sudden change
of a Hamiltonian parameter and time evolved with the new Hamiltonian A’

(1) = e i mH poeiiH, (3.1)

The thermalization of the system is typically defined by the expectation values of a
physical? variable (A). The system thermalizes if the expectation value tends in the
long time limit towards

(P(DIAIY(6)) —— Tr (Pcivbs A) (3.2)

with fgibbs = exp(— ﬁFI ") ITr(exp(—p H")), the density matrix predicted from statistical
mechanics.

Non-integrable systems For non-integrable systems it is widely assumed that the
Eigenstate Thermalization Hypothesis (ETH) explains why the system can be de-
scribed in the long-time limit by equilibrium statistical mechanics [109, 115]. The
time evolution of Eq. (3.2) can be written explicitly in the energy eigenbasis |i) with
eigenvalue Aw;:

(P(OIAIP(D) =Y (P O)i) (jIW(0) (i Alj) e @im@it, (3.3)
i,
In the long time limit the phase factor averages out for i # j which leads to

(POIAIPD) = (YOI <l AlD). (3.4)

ETH predicts that the expectation value of A in state |i) only depends on the energy
Ei = ﬁ(x)f

(| Ali) = (A)g, (3.5)
where the microcanonical average (A)g at energy E is the average over of all states
inside a small shell E,E+AE

. 1 .
(Mp=— Y (ElAIE). (3.6)
E'e[E,E+AE]

IThere exists a large number of theoretical studies with some of the most prominent results [109-
111] and the reviews [112-114] to cite a few.
2 A should be local or a few-body observable.
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Eq. (3.5) can be interpreted as follows: The expectation value of an operator is al-
most independent of the details of the state and only depends on the energy of the
state. This is the ETH statement. Note that no general proof of ETH exists, and mainly
numerical evidence was found [111]. In the thermodynamic limit the microcanoni-
cal and canonical ensemble are equivalent and if the initial coefficients (' (0)|i) are
sufficiently narrow in energy the system evolves towards the thermal Gibbs state of
Eq. (3.2).

Integrable systems and generalized eigenstate hypothesis In an integrable system
ETH is not valid. This can be illustrated with the example of the trivial integrable
model of a non-interacting gas and the observation of the momentum distribution
i(p). Two momentum distributions can share the same energy E = f n(p) pzf 2m)
and at the same time their expectation values (72 (p)) can be very different. In an in-
tegrable systems ETH can be naturally extended to the Generalized Eigenstate Ther-
malization Hypothesis (GETH). GETH assumes that the expectation value of (A) not
only depends on the energy, but on the expectation values of the conserved quanti-
ties® Q; = (Q;). The expectation value of Eq. (3.6) in the generalized microcanonical
ensemble becomes

1 R
(ilAlD) = % Z (slAls). (3.7)
[5),{s1Q:15)e{Q; +8Q;}

The sum runs over all states |s) whose quantum numbers (s| Q;— |s) fall in a narrow
range around Q;. All the states which share the same {Q;}, within a narrow range,
also share the same expectation values of A. Each of those states can be described
by some representative state |s). Equivalently this state can be characterized by the
General Gibbs Ensemble (GGE) density matrix.

1 A
PcE = — exp (—Zﬁfo], (3.8)

with the Lagrange multipliers ; imposed by the initial conditions and the partition
function Z = Tr [exp (- X; i Q;)|. One typically chooses the first Lagrange multiplier
to be the inverse temperature 8y = kg T with the conserved quantity Qp = H [116].
Experimentally a GGE was observed in [117].

Nearly integrable system A nearly integrable system is a system composed of a
Hamiltonian A = Hy + e A; where Hj is integrable and €H; a small non-integrable

3Note that the definition of the Q; is not trivial. All hermitian Hamiltonian posses a maximum
set of of independent commuting operators {Q;}. The choice of the meaningful set of {Q;} is very
important [3].
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perturbation with € < 1. In such a situation a prethermalized state is expected to
occur [118-121]. The dynamics at the beginning is mainly governed by the almost
conserved quantities and a non-thermal stationary state appears which is increas-
ingly long-lived with € approaching zero. At very long times the non-integrable part,
can lead to a thermalization. Experimentally non-integrable perturbations are al-
ways present. Some examples are the excited states in the transverse direction, the
coupling to the environment and the longitudinal trapping potential Vj(z).

Lieb-Liniger Within the class of integrable models the Lieb-Liniger model consti-
tutes one of the paradigmatic models studied by theoreticians and the study of the
quench dynamics in the Lieb-Liniger model attracts a lot of interest [122-132]. As
previously stated, it is expected that the system relaxes towards a representative state
which in the Lieb-Liniger model can be characterized by the quasi-momentum dis-
tribution pp (k).

On the experimental side, I specially want to highlight the result of the Vienna
group [103] which observed a light-cone-like behavior in a similar system. This light-
cone effect in the quasi-condensate regime will be described in detail in Sec. 3.2.1.
Furthermore, quenches in integrable models have been studied in [133].

3.2 The Experiment

In this chapter we investigate the dynamics generated by an interaction quench. We
prepare a few thousands to ten thousands of atoms in the quasi-condensate regime
with w, /(2r) = 1.5kHz or 3.1kHz, depending on the data set and wj = 8.5Hz. We
first increase the RF frequency by about 60 kHz, to provide a shielding for three-body
collisions residues and then let the system relax for about 150 ms. Then, we perform
a sudden quench of the interaction parameter g from its initial value g;, to its final
value gr = gi (1 +x), as depicted in Fig. 3.1 a) where « is the so called quench strength.
The interaction parameter g is directly proportional to the transverse trapping fre-
quency ], itself being proportional to the current Ip in the modulated guide (see
Eq. (2.7)). The interaction quench is performed by a linear current ramp during #,
during which g changes from g; to gr (see Fig. 3.1a)) The change of g needs to be fast
compared to the relevant longitudinal time scales 1/w4 = 10ms and slow compared
to the transverse time scales, such that no transverse excitation occur. Considering
the transverse confinement, the process needs to be slower than ;> Aw fwi to ful-
fill the adiabaticity condition for a linear ramp in w, . The Schrodinger equation for
a linear ramp in g leads to an analytic solutions in term of the Airy functions. Nu-
merical evaluation of these solutions show that the excitation to higher levels are less
than a few percent in all the experimental situations (f, = 0.7 ms). Experimentally we
could not observe any excitation to higher levels.
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The longitudinal confinement The longitudinal trapping potential is always har-
monic in this chapter. We created the longitudinal confinement Vj = %mwﬁzz, by
using the Dy & D, chip wires (see Sec. 2.3.2.1 and Fig. A.2). The interaction quench
modifies g which changes the equilibrium Thomas-Fermi profile. In order to main-
tain the same equilibrium profile, we modify the longitudinal trapping potential si-
multaneously to the interaction quench?. We adapt the longitudinal trapping fre-
quency such that the Thomas-Fermi profile stays constant during the quench. This
implies that the final trapping frequency ) is given by:

wﬁ = \/1+xw}|. (3.9)

This is obtained by a linear current ramp in the longitudinal wires from the corre-
sponding initial to the final currents. Since w) is not proportional to Iy,, in principal
the profile is not at equilibrium during the ramp. For fast ramps (7, < 1/w)) longitu-
dinal excitation can be neglected which was experimentally verified.

a) g ¢. gf b) C)
gi KRgi )
- < TR
> ¢ . _
t:o .'.I.°. —_ §:8+ . .
Mg 0 1 2 wgt/n

Figure 3.1 — The interaction quench: a) Scheme of the quench ramp for g for a ramp
of amplitude x and length #,. b) The Gaussian phase space distribution before the
quench (r = 07), immediately after the quench (f = 0%) and after an evolution time
wqt = m/2. c) Probability distribution for x = 3 with the subsequent breathing phe-
nomena, the color represents the phase space distribution. The dashed line corre-
sponds to a constant probability.

In Sec. 3.3.2 I present the observation after an interaction quench in momentum
space and in Sec. 3.4 the observation by the density ripple analysis. Before discussing
the experimental results I introduce the theoretical description of the evolution after
an interaction quench inside the quasi-condensate regime.

4Without the modification of the longitudinal trap, we would strongly excite the breathing mode,
whose physics has already been studied in detail in [98, 134].
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3.2.1 Interaction quench in the quasi-condensate regime

For the theoretical description of the interaction quench I start with the conceptually
simpler situation of a homogeneous system and an instantaneous quench 7, = 0. The
Bogoliubov Hamiltonian for a given mode writes

~2 A2
Ho= A n? +Bo6% = ho, | 4 i 3.10
q=Aghy+ b4V, = g 2"'7 (3.10)

where we introduced a symmetric form with the reduced variables 7ig = ng (Aq qu)m

and 04 = 6, (quAq]M. For this chapter, we restrict ourselves to phononic excita-
tions g < ¢ -1 and take into account high density effects, such that A, = mc?/(2ng)
and B, = h*q*ny/ (2m) as introduced in Sec. 1.3.3.

Wigner function For each mode ¢, the system can be described by a Wigner func-
tion as introduced in Sec. 1.3.1.1. Prior to the quench, the system is at thermal equi-
librium. The Wigner function is an isotropic Gaussian in the (éq, ng)-plane as de-
picted in Fig. 3.1 b) in green. The energy is equally distributed between the two
quadratures such that the equipartition theorem holds. For the considered high en-
ergies E; > hw, we can relate the initial energy to the initial temperature T

kBT
2

The instantaneous quench only effects A4, while ng and 64 cannot follow. This leads
to a squeezmg of the Gaussian state® in the 9 direction and the variances become
<92>:_0+ = (2 Di=o-/01 +x)'2 and (1% 1—o+ = (nq )t=0- (1 +%x)2. The anti-squeezing
in the 74 direction is compensated by the squeezing in the Qq direction. This ensures
the preservation of the phase space density. The subsequent time evolution is a rota-
tion in phase space with frequency wg4 = c¢q. Looking at the 6,; component this leads
to:

= Ag(ng) = By(62). (3.11)

(03) = (02) [1+xsint(cqn)]. (3.12)

For a thermal state the initial value is given by <6§>i = mkgT/(h?*q*ny). Eq. (3.12) is
the main theoretical prediction of this chapter and I will describe its experimental ob-
servation in Sec. 3.4. Before discussing the observation of the squeezed Bogoliuobov
modes I introduce the effect on the one-body correlation function of the interaction
quench. Thereby, I show that the one-body correlation function cannot be used to
observe the squeezed Bogoliubov modes.

5The word squeezing should not be interpreted in the quantum sense where one of the quadrature
obtains a width smaller than the ground state value. Although the presented equations apply for a
quantum squeezing, we do not observe a quantum squeezing in these experiments.
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3.3 Momentum space

The effect of the quench can be observed in momentum space. The momentum
distribution is the Fourier transform of the one-body correlation function g (z). The
g1(z) function shows a characteristic light-cone phenomena which I derive in the
following.

3.3.1 Light-cone like effect on the one-body correlation function

As introduced in Sec. 1.3, the one-body correlation at equilibrium writes
gl(z) — noe—%<[9(z]—8(0]]2> — n{]e_E, (3.13)

where [, = %. In the derivation we used Wick’s theorem. The use of Wick’s theo-
rem stays valid after the interaction quench, since the squeezing preserves the Gaus-
sian nature of . The time evolution after the interaction quench can be calculated
from [0(z) — 0(0)]%. In Eq. (1.80) we derived

0

(16(2)-0(0)1*)=4 | —=(6%)(1-cos(g2)). (3.14)
2m \ 1

Instead of using the equilibrium equation for (93), we inject the evolution of (6%)
according to Eq. (3.12) and obtain from integration
K+2

noe @2 z<2ct

gi(z, 1) = { (3.15)

noe 1@l zs2ct.

This behavior can be understood as a light-cone phenomena® where quasi-particles
travel with the speed of sound of the system and establish a new equilibrium situa-
tions for all distances z < 2ct. The new equilibrium situation is characterized by a
new correlation length lg = 2l./(x +2). For distances larger than 2cft the system is
still described by the initial equilibrium behavior with g;(z) = nge‘|z“ le, Fig. 3.2 a)
shows the g; function for different times after the quench. At z = 2ct a kink is visible.
The kink travels in space with at the position z = 2ct. This light-cone phenomena re-
flects the ongoing out-of-equilibrium dynamics of the Bogoliubov modes. For practi-
cal purposes, the out-of-equilibrium dynamics becomes exponentially suppressed in

5Let me stress out, that the use of the word light-cone, does not refer to the Lieb-Robinson
bound [135] which in principle only applies to finite dimensional Hilbert spaces, although extension
to continous systems exists [136]. Here, the word light-cone refers to the concept, borrowed from spe-
cial relativity where particles travel with the speed of light and the speed of light is replaced by the
speed of sound of the system.
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Figure 3.2 — The light-cone like effect in a homogeneous system for the g;(z) func-
tion shown in a) and its effect on the normalized momentum distribution shown in
b). The color codes for different times are the same in a) and b). Prior to the quench
the equilibrium g (z) function, shows an exponential decay characterized by [;. The
subsequent time evolution after the quench leads to a new exponential decay char-
acterized by IE = 21./(x + 2) for distance smaller than 2ct, while the prequench char-
acteristic decay survives for length exceeding 2ct. For times larger than a few tg}, the
g1 function has essentially reached its new steady-state form. Already for ¢/ ttgh‘ =2
no difference with the longtime limit is visible.

time which is characterized by the thermalization time of the g; function rf"h‘ = I{ /c.
For t = oo the g1 function corresponds to an exponential decay. From the relation
I, = 2h%no/ mkg T one could associated a new temperature Tr = T; (k +2) /2 to the
exponential decaying g1 function where T; is the initial temperature. This new ther-
mal behavior of the one-body correlation function does not reflect a thermal equilib-
rium situation. The underlying Bogoliubov modes continue undamped oscillations
as predicted by Eq. (3.12). As shown in Fig. 3.2 a) already for ¢ = 2t§1‘ essentially no
difference with the long-time limit is visible. The screening of the out-of-equilibrium
dynamics mathematically arises from the sum over all modes g which is taken in
Eq. (3.15) and which makes the oscillations of the Bogoliubov nontransparent in the
g1 function. When looking in momentum space — given by the Fourier transform of
g1 - the situation gets more complicated. The light-cone phenomena is not directly
transparent as it is shown in Fig. 3.2 b).

This illustrates the fact that the observation of a non-equilibrium dynamics can
strongly depend on the choice of the observable. In the following Sec. 3.3.2 T will
present this thermalization-like behavior of the one-body-correlation function by ex-
perimentally accessing the momentum distribution.
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3.3.1.1 Relation to the Vienna experiment

The light-cone like dynamics of the one-body correlation function was first observed
in the Vienna group [103] in a similar system. The authors used a 1D quasi-condensate
and split it into two uncoupled copies. By introducing the phase and the density fluc-
tuation of the two condensatesf 2, d ny/2(z), it can be shown that the dynamics of the
relative variables

0(z)=01(2)—02(2) and on(z) = % [0n1(2) —dny(2)] (3.16)

is governed in the linearized approximation by the Bogoliuobov Hamiltonian for phononic
excitations [137]:

52 l?2 o
4dm
This corresponds to the Bogoliubov Hamiltonian of Eq. (1.66) with a factor 2 differ-
ence in Ag. The definition of the Fourier coefficients follows the definition for the
single 1D gas. At 1 = 0 the quasi-condensate is split into two identical copies. Initially,
the phases of the two quasi-condensates are identical and the initial fluctuations of
the relative phase is zero’. Density fluctuations are created by the Poissonian noise
<5N12> = (Np) associated to the splitting process. Thus the splitting corresponds to

the creation of a squeezed state, as described in Sec. 3.2.1.

The authors of [103] access the phase correlation function of the relative phase

Hy=gn, + 0. (3.17)

C(z,7') =(cos(0(2) —0(2))). (3.18)
For small density fluctuations and Gaussian states C(z, z’) is equal to

1 2
Clz,7) = e 2 [6@-0)]

(3.19)
which corresponds to the normalized one-body correlation function. Eq. 3.19 can
be calculated with the same arguments as in Sec. 3.3.1, resulting in the same light-
cone phenomenon. The splitting can thus be interpreted as an interaction quench
from g; = 0 to the final value g of the 1D Bose gas. This light cone-phenomena was
experimentally observed in [103].

3.3.2 Experimental observation in momentum space

In this Section I experimentally study the evolution of the momentum distribution
after the interaction quench. This study is a complementary study which highlights

"Corrections from the Heisenberg uncertainty relation, as well as experimental imperfections are
neglected.
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the theoretical arguments which were presented in our article [18] and in the previ-
ous Sec. 3.3.1. We use the momentum focusing technique as introduced in Sec. 2.8.3
to measure the momentum distribution ng. Fig. 3.3 shows the experimental mo-
mentum distribution prior the quench and its post-quench evolution. In order to
compare with the theoretical predictions, we calculate the momentum distribution
via the Fourier transform of the one-body correlation function. We use the prediction
forlight-cone phenomena on the g; function in Eq. (3.15) and apply the LDA together
with the convolution of the imaging response function. We fit the initial equilibrium
distribution to obtain the temperature of the cloud. We compare in Fig 3.3 a) the
experimental data to the theoretical time evolution of the momentum distribution.
The asymptotic limit is expected to correspond to a new equilibrium shape of the
momentum distribution with T¢/T; = (x +2)/2. We fit the steady state distribution
with the equilibrium prediction and obtain the final temperatures Tr. The inset of
Fig. 3.3 b) shows T for different x.

a)
- 1/t =0.0
_ - 1/t =0.2
H — t/th =19
=
IS

—0.14 —007 000 007 014 05 0.0 05
49§ v [mm/s]

Figure 3.3 — The effect of the quench on the experimental normalized momentum
distribution n4. The equilibrium distribution in blue, is fitted with the temperature
and the width of the imaging resolution as a free parameter. We obtain a temperature
T =30nK, which corresponds to kg T/(gny,) = 0.51

a) The time evolution after a quench with x = 2. As expected, the light-cone dynam-
ics is difficult to observe. As shown in Fig. 3.2 for t/ tgl‘ =~ 2, the long time limit is
essentially reached. The theoretical prediction are the Fourier transform of Eq. (3.2)
together with the LDA and a convolution of the imaging resolution.

b) The long time distribution (¢ > 4.5tfh‘) for different quench strengths x. The
asymptotic limit is expected to correspond to a new equilibrium shape of the mo-
mentum distribution. The solid lines are fits of the equilibrium situation with the
temperature T as a free parameter. The inset shows the fitting results T¢/T;, com-
pared with its theoretical prediction T¢/T; = (x +2)/2.

As expected the momentum distribution rn4 reaches a steady state, while the dy-
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namics towards the steady state is barely resolved. This is related to a technical prob-
lem of the momentum focusing technique. The thermalization-like behavior of the
g1-function is of the order of tfh‘ =~ 1ms for typical samples. Such a fast dynamics
cannot be followed by the momentum focusing technique. The momentum focus-
ing technique contains the application of a short kick-potential which typically takes
half a millisecond. The momentum focusing technique can still be used to access the
asymptotic limit after the quench, as the experimental data in Fig. 3.3 b) shows.

3.4 Density ripple analysis

3.4.1 Squeezed Bogoliubov modes

The previous study of the post quench dynamics in momentum space, could not
reveal the dynamics of the Bogoliubov modes. First, due to technical reasons the
light-cone dynamics was not resolved. Second, even with an access to the light-cone
phenomena — as obtained in [103] — the underlying dynamics becomes exponentially
suppressed at long times. In order to reveal the ongoing dynamics of the Bogoliubov
modes, we use the density ripple analysis and the results of this study can also be
found in [18]. As introduced in Sec. 2.8.1.2 the density ripple analysis gives access
to the phase quadrature (93) of the Bogoliubov modes, from which we reveal the os-
cillatory behavior of (6%) as predicted in Eq. (3.12). For practical purposes we intro-

duce the quantity J(q,7) = :”;%}E;_ where (Ip‘“(q)|2>,- is the initial density ripple power

spectrum at ¢ = 0. The reduced time is given by T = cq and the speed of sound c is
calculated at the center of the trap. For a homogeneous system the quantity J(q,71)
oscillates as

J(g,7) = 1+xsin®(1), (3.20)

which is independent of g.

Before introducing the experimental observation of the oscillatory behavior of
Eq. 3.20 let me introduce two theoretical refinements to our model: the swelling of
the transverse wavefunction due to high densities and the longitudinal trapping po-
tential. Those effects are important for a quantitative comparison but do not change
the overall picture of creation of squeezed collective excitations by the interaction
quench.

Swelling of the transverse wavefunction Due to the high linear densities® nasp ~
1, 3D correction arise from the swelling of the transverse ground state. In the Ap-
pendix of our paper [18] these corrections are calculated explicitly for a harmonic

8Sec. 3.4.4 justifies the use of such high densities.
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trap. The speed of sound and the density is calculated with the modified equation
of state uu(n) = fuw | (y/I+4nazp—1). These corrections change the mode frequency
w4 = cq by approximately 30%, but have a small effect on the amplitude and the form
of the oscillations.

The trapping potential In a harmonically confined trap Eq. (3.20) is modified as
J(q,7)=1+xZ(1), (3.21)

where the function £ (1), calculated with (LDA), is

F = ] dzng(z) sin®(c(2)qt) /N. (3.22)
The local speed of sound is given by c(z) = %g—ﬁ @ For simplicity let me re-
NplZ

strict this discussion to the pure 1D case. Detailed calculation of the effect of high
densities in a trap are given in the Appendix or our article [18]. In the pure 1D case

Eq. (3.22) is
3 1
Fip = Ejo dz(1- z%)sin? (n/l —22|. (3.23)

In contrast to the homogeneous case, % p shows damped oscillations which leads to
a damping of the oscillations of the J. This damping is a pure dephasing effect, cap-
tured by the LDA argument below: In the LDA picture the system is described by local
harmonic oscillators at each point in space which oscillate according to Eqg. (3.12).
The oscillators at different points in space oscillate with a local speed of sound c(z)
which leads to a dephasing of the oscillator collections. This translates into a damp-
ing of the quantity J(q,T).

Beyond the LDA one can perform Bogoliubov calculations in a harmonic trap
(Sec. 1.3.2). The quench modifies the canonical variables x, and py according to

1/4
X, (t=0") = (ﬁ] X, (f=0), (3.24)
gi
\1/4
pv(t=0+)=[§] py(t=07). (3.25)
f

As in the homogeneous case, the initial Gaussian state is given by the equipartition
theorem (p2), = (x2), = %27 for the phononic modes and for kzT > fiw,. The evo-

lution of ( p2) is given by
(P2) (1) = (p?), (1 +Ksin(@y,D)]. (3.26)
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As in the LDA, the underlying modes perform undamped oscillations. In the Bogoli-
uov approach in a harmonic trap, the damping of J arises from the density ripple
analysis. In contrast to the homogeneous case, the Legendre polynomials are not
the good quantum number of the free evolution. Therefore, the free evolution of the
density ripple analysis mixes different modes in the harmonic trap. The mixing of
these modes leads to a damping effect in the density ripple power spectrum {|5(g)).
The effect can be calculated from Eq. (2.65) and it gives very similar predictions com-
pared to the LDA. The LDA calculations are numerically less demanding and we will
use the LDA predictions in the following.

In summary, a good understanding with a sufficient precision can be obtained
from the physical picture of a quench in a homogeneous system, together with the
dephasing effect predicted by the LDA, and a modification of the mode frequency by
high density effects.

3.4.2 Experimental realization

50
40

(15g|*)/N

[a—
=

]

0 20 40 60

Figure 3.4 — Density power spectra: a) density power spectrum before the quench at
thermal equilibrium with theoretical prediction in green (see Sec. 2.8.1.3), leading to
a temperature T =55nK and o =2 um.

b) Density power spectra after the quench for a quench strength of x = 2 at times
t=2.1ms (green), t = 2.6 ms (blue) and 7 = 4.6 ms (black). For comparison the initial
spectrum is shown in red line and the two black lines limit the range of g used for

J(q,7).

We typically record the density power spectrum before the quench at ¢ = 0 and
then every 0.5ms over a total time of up to 10 ms. For each individual density ripple
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power spectrum we use about 50 images and typical density ripple power spectra
(Ip‘“(q]|2> are shown in Fig. 3.4. At first glance the post-quench spectra seem erratic.
The oscillatory behavior of each Fourier component can be revealed by looking at the
previously introduced quantity J(q, 7). Since we expect that J(q, 1) is independent of
g we bin the data corresponding to different g values for a given interval in 7. The
binning is implemented by a smooth binning on an irregular spaced grid. We use a
numerical Gaussian convolution of a width A:

_ a1
YaJ(Ga,Ta)e 24°

_[ta —1)2

Zae 2A2

J(1) =

, (3.27)

where A = 0.17. The sum over a is done over the data set where q is restricted to
10 < gR < 40 in order to ensure both ghtf/m <« I and the validity of the LDA. The
optical resolution depends on the transverse confinement which is not equal before
and after the quench. We correct for this small effect by

D@12 — 1p(q)12yeT E-7), (3.28)

where the initial/final optical resolution oy is obtained from fits of the equilibrium
density ripples power spectra.

Fig. 3.5 a) shows the quantity /(1) where 7 = cqt is evaluated at the trap cen-
ter. It shows the expected oscillatory behavior. The frequency of J is in good agree-
ment with its predictions, when the 3D effects are taken into account. The oscilla-
tion shows the expected damping arising from the harmonic trap. The amplitude
of the oscillation is smaller than expected. An artificial rescaling of the amplitude
by x — x/2 gave an approximate agreement between theory and data (black line in
Fig 3.5 a)).

We repeat the experiment for different quench strengths x = -0.7, 2 and 4 and dif-
ferent initial trapping frequencies w, = 1.5kHz and 3.1 kHz as shown in Fig. 3.5 b). In
all the dataset the oscillator behavior can be observed. As in Fig. 3.5 a) the damping
and the frequency are in agreement with its theoretical prediction. The amplitude de-
pends on the dataset and is always smaller than the anticipated one. The origin of the
discrepancy is not entirely understood and in Sec. 3.4.5 different effects which lead to
areduced amplitude are discussed. These oscillations of the Bogoliubov modes after
an interaction quench have also been observed experimentally in [102] in 2D system.

3.4.3 Beyond the light-cone

As discussed in Sec. 3.3.1 one expects a light-cone behavior of the g; function which
exponentially suppresses the prequench information on a typical time scale ttgh‘ =

I,{ lc. At t = tgll the g function has reached its final value for all distances z < 2!{
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Figure 3.5 — Time evolution of the Bogoliubov modes after the interaction quench.
The normalized density ripples power spectrum is plotted versus the reduced time
T = cqt where the speed of sound c is calculated for the central density. a) The data
corresponds to an interaction quench with x = 2 and an initial f; = 1.5kHz. Each
data point corresponds to a measurement time ¢ and a discrete g value. Blue points
correspond to f < rtg}: and red points to ¢ > ttgh‘. The black line corresponds to the
resulting continuous averaged quantity /, together wits its error bars at an exemplary
positions. The red dashed-dotted is the theoretical prediction for x = 1. b) Time
evolution of the experimental smoothed quantity J for different data sets. The error
bars show the typical statistical uncertainty on J with 68% confidence interval. The
initial transverse oscillation frequency is 1.5kHz, except for the green curve for which
it is 3kHz. Quench strengths are ¥ = 4 (red), x = 2 (blue and green) and x = —0.7
(purple). Dashed lines are theoretical predictions for quench strengths is reduced
by a factor 0.5: (red: x = 2, blue and green: x = 1 and purple: x = —0.35). The grey
Gaussian corresponds to the smoothing function used for the data convolution. The
blue line corresponds to the same data set as in a).
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where the g; function has already dropped to g, = nge~2 and which corresponds to
14% of its value at z = 0 (see Fig. 3.2). In Fig. 3.5 a) we show the raw data points, each
corresponding to a single pair of g and ¢. Red points correspond to ¢ > tgll and blue
points to t < ttgh‘. In Fig. 3.5 a) the oscillations continue for times > rf’rh‘ which shows
that the density ripple analysis gives access to information which is exponentially
screened on the g; function.

3.4.4 Mode damping

The previous results are in agreement with the linearized approach of the Bogoliubov
model. In the following I present unpublished results which indicate physics beyond
the linearized approach.

Figure 3.6 — Dataset containing data points up to f = 16 ms which exceeds more than
three times tg}. Again the first oscillation is dominated by datapoints originating from

r< rgll. The third and forth periods are strongly damped and the oscillatory behavior
finally vanishes. This damping is not captured by the rescaled theoretical prediction
from the linearized model (black line).

In contrast to the previous result the following data set includes data points which
exceed several times tfh‘. Fig. 3.6 contains data points up to three times tgll and it
clearly shows a damping which is not predicted by the linearized model of Sec. 3.2.1.
It can be expected that theories beyond the linearized model predict further damp-
ing. Going beyond the Bogoliubov description with the full quantum treatment (Lieb-
Liniger Hamiltonian) is tremendously difficult. A simpler approach can be obtained
from the classical field equations (see Sec. 1.3.4). The classical field equations intro-
duce an additional damping phenomena for the time evolution of a squeezed modes:
They introduce coupling between different modes g and g’ and coupling between
the two quadratures 6, and 6 n,. The understanding of this damping is still work in
progress. Let me finish this section with some preliminary remarks:
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For simplicity let us restrict this discussion to a homogeneous systems. The clas-
sical field depends on a single parameter; the classical field parameter y = [2/(4¢2)
(see Sec. 1.3.4). Fig. 3.7 shows two classical field simulations of the evolution of
the density ripples spectrum after the quench. For higher y, the damping becomes
smaller. For larger y the system is deeper into the quasi-condensate regime and the
density fluctuations é n/ng are smaller. This leads to a smaller coupling between the
modes.

l/€ =125

Figure 3.7 — Classical field simulation of time evolution of the quantity J(q, 1) after
quench for different initial values of the classical field parameter 2,/y = [./¢. Higher
values of /. /¢ lead to a weaker damping. The mode index is given by j = gL/(2n). The
colors codes are the same in both figures.

Justification for data with azpn =~ 1. The mode damping is an interesting subject
on its own. Still, the first aim of this study was to observe the oscillatory behavior
of the Bogoliubov mode. Therefore, we are interested in situations where the mode
damping is small, such that the oscillatory behavior can be observed.

In a typical situation we prepare quasi-condensate at temperatures kg 7'/ (g np) =
Yoo Where Yo, is some numerical factor very close to 1 (see Chap. 4 for a justification
for this assumption). In such a situation y can be rewritten as

x= (3.29)

==
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As shown in Fig. 3.7 the mode damping decreases with y. Therefore we are interested
in working with small y. This can be obtained by high densities and small g. Due to
practical restrictions the value of g cannot be varied in a large range. Its value needs
to be large enough such that the system stays in the 1D regime and maintains a high
aspect ratio. We therefore choose to work with high densities n. Unfortunately, the
classical field simulations suggest that a low mode damping can only be obtained
by working with densities such that corrections from the swelling of the transverse
wavefunction become important. This was experimentally confirmed: When work-
ing with lower densities, compared to the previously presented results, we were un-
able to observe the oscillatory behavior of the Bogoliubov modes. We therefore raised
the density such that nasp did not stay very small. For example the corrections to the
speed of sound accounts for up to 30% (c/c;p = 0.7) in the data of Fig 3.5. A further
increase of ng is unfeasible due to experimental constraints and also due to three-
body losses which start become important.

3.4.5 Amplitude reduction

In the following, I briefly discuss different effects which lead to a reduction of the
oscillations in J(1) which stands in discrepancy with our theoretical prediction (see
Fig. 3.5). A more detailled discussion is given in the appendix of our paper [18].

Binning of the data The strongest effect comes from the smooth binning of our
data. The raw density ripple data before smooth binning shows a large spread which
requested a large A, in order to get rid of the noise in the data. The spread of the raw
data shown in Fig. 3.5 b) is not representative and shows our best dataset. A more
representative dataset is shown in Fig. 3.6. Assuming a pure sinusoidal behavior of
J = Asin?(1), the smoothing process of the Gaussian convolution Eq. (3.27) leads to
an amplitude reduction of A’ = Ae~2A* which corresponds to 18% for A = 0.17.

Finiteramp time In the previous analysis we assumed an instantaneous ramp with
aramp time £, = 0. In the experiments we typically used ¢, = 0.7 ms in order to ensure
the adiabatic following of the transverse state. For large wavevectors £, is not small
compared to the oscillation period of the modes which reduces the mode squeezing
produced by the quench. Assuming a linear ramp, one can calculate the squeezing
factor S, for each mode, with detailed calculations presented in the appendix of our
paper [18]. The amplitude reduction can be calculated by solving the equation of
motions of the Bogoliubov Hamiltonian (Eq. (1.101) & (1.102)) with a time dependent
variable A4 (f). The solution are given by the Airy-functions.

In Fig. 3.8 the experimentally observed amplitude reduction on the first oscilla-
tion is shown for different wavevectors q. The green line is the theoretical prediction
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of the reduced squeezing due to the finite ramp time. As expected the squeezing of
the mode decreases with g in agreement with the experimental data.
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Figure 3.8 — The Amplitude of the first oscillation for different wavevectors ¢g. The
amplitude is obtained from calculating /() for a narrow band of g, whose width is
represented by the horizontal errorbars. We then fit the first oscillation of J(r) with
a sinusoidal Agsin?(7) + 1. The vertical errorbar