
HAL Id: tel-02134163
https://pastel.hal.science/tel-02134163v1

Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized optimization for energy efficiency under
stochasticity
François Pacaud

To cite this version:
François Pacaud. Decentralized optimization for energy efficiency under stochasticity. Optimization
and Control [math.OC]. Université Paris-Est, 2018. English. �NNT : 2018PESC1147�. �tel-02134163�

https://pastel.hal.science/tel-02134163v1
https://hal.archives-ouvertes.fr

école doctorale : mathématiques et sciences
et technologies de l’information et de la communication

Thèse de doctorat

Spécialité : Mathématiques appliquées

présentée par

François PACAUD

Decentralized Optimization Methods for Efficient
Energy Management under Stochasticity

Thèse préparée au CERMICS, École des Ponts ParisTech

Soutenue le 25 Octobre 2018 devant le Jury composé de :

JURY

Rapporteurs : Frédéric Bonnans École Polytechnique
Andy Philpott University of Auckland

Directeurs : Pierre Carpentier ENSTA ParisTech

Michel De Lara École des Ponts ParisTech

Examinateurs : Nadia Oudjane EDF R&D
Nicolas Petit Mines ParisTech
R. Tyrrell Rockafellar University of Washington
Andrzej Ruszczyński Rutgers University

Abstract

New energy systems are designed to absorb a large share of renewable energy in a decentralized
fashion. Their optimized management raises specific issues. We study mathematical formulation as
large scale multistage stochastic optimization problems. We focus on time and space decomposition
methods in a stochastic setting.

In the first part of this manuscript, Time decomposition in optimization and management of
home microgrids, we apply stochastic optimization algorithms to the management of small scale
microgrids. We compare different optimization algorithms on two examples: a domestic microgrid
equipped with a micro Combined Heat and Power generator and a battery; a domestic microgrid
equipped with a battery and solar panels.

In the second part, Mixing time and spatial decomposition in large-scale optimization problems,
we extend the previous studies to larger microgrids, where different units and storage devices are
connected together. As a direct resolution by Dynamic Programming of such large scale systems
is not tractable, we propose original algorithms mixing time decomposition on the one hand, price
and resource spatial decompositions on the other hand.

In the third part, Contributions to Stochastic Dual Dynamic Programming, we focus on the
Stochastic Dual Dynamic Programming (SDDP) algorithm, a well-known algorithm to solve mul-
tistage stochastic optimization problems. We present a new stopping criteria based on a dual
version of SDDP which gives a deterministic upper-bound for the primal problem.

3

Résumé

Les réseaux électriques doivent absorber une production d’énergie renouvelable croissante, de façon
décentralisée. Leur gestion optimale amène des problèmes spécifiques. Nous étudions dans cette
thèse la formulation mathématique en tant que problèmes d’optimisation stochastique à plusieurs
pas de temps. Nous analysons plus spécifiquement la décomposition en temps et en espace de tels
problèmes.

Dans la première partie de ce manuscrit, Décomposition temporelle pour l’optimisation de la
gestion de microgrids domestiques, nous appliquons les méthodes d’optimisation stochastique à la
gestion de microgrids de petite taille. Nous comparons différents algorithmes d’optimisation sur
deux exemples : le premier considère une microgrid domestique équipée avec une batterie et une
centrale de micro-cogénération ; le deuxième considère quant à lui une autre microgrid domestique,
cette fois équipée avec une batterie et des panneaux solaires.

Dans la seconde partie, Décomposition temporelle et spatiale de problèmes d’optimisation de
grande taille, nous étendons les études précédentes à des microgrids de plus grande taille, combinant
ensemble différentes unités et moyens de stockage. La résolution frontale par Programmation
Dynamique de tels problèmes de grande taille s’avère généralement impraticable. Nous proposons
deux algorithmes originaux pour pallier ce problème en mélangeant une décomposition temporelle
par programmation dynamique avec une décomposition spatiale — par les prix ou par les ressources.

Dans la dernière partie, Contributions à l’algorithme Stochastic Dual Dynamic Programming,
nous nous concentrons sur l’algorithme Stochastic Dual Dynamic Programming (SDDP) qui est
actuellement une méthode de référence pour résoudre des problèmes d’optimisation stochastique à
plusieurs pas de temps. Nous étudions un nouveau critère d’arrêt pour cet algorithme basé sur une
version duale de SDDP, qui permet d’obtenir une borne supérieure déterministe pour le problème
primal.

5

Remerciements

La route a été longue, et nombreuses sont les personnes sans qui je n’aurais pu arriver au bout du
chemin.

Tout d’abord, j’adresse mes plus vifs remerciements à mes deux encadrants de thèse, Pierre
Carpentier et Michel De Lara, ainsi qu’à Jean-Philippe Chancelier. Sans leurs précieux conseils —
allant des mathématiques à la psychologie comportementale en passant par la preuve formelle de
programme — il est évident que je n’aurais pu mener ce travail à bien. Leur soutien indéfectible
et leur grande rigueur auront permis de mâtiner mes travaux de cette indispensable touche ento-
mologiste. Je tiens aussi à remercier l’ensemble des chercheurs que j’ai eu la chance de côtoyer
durant ces trois années de thèse. Tout d’abord, je remercie Frédéric Bonnans et Andy Philpott
qui m’ont fait l’honneur de rapporter cette thèse. J’accorde toute ma gratitude à l’ensemble des
membres du jury pour avoir été présents le jour de ma soutenance, ainsi que pour leur fructueuses
remarques. Je tiens à remercier particulièrement Vincent Leclère pour ses conseils prodigués tout
au long de la thèse : il fût auprès de moi un âıné avisé qui su me guider à travers les méandres
marécageux de l’optimisation stochastique. Je voudrais aussi saluer Nadia Oudjane et Arnaud
Lenoir du département OSIRIS d’EDF R&D pour leurs discussions mathématiques et les échanges
instructifs que nous avons pu avoir autour de l’application des méthodes d’optimisation dans le
monde de l’énergie. De surcrôıt, je ne peux que tirer humblement mon chapeau aux anciens doc-
torants de l’équipe optimisation et systèmes pour avoir éclairé le chemin devant moi. Je salue aussi
Pierre Haessig dont la thèse a été un sujet d’inspiration. Enfin, je remercie Lionel et Nicolas pour
avoir su me convaincre de faire une thèse à une époque où le monde de la recherche était encore
pour moi une vaste contrée inexplorée.

J’aimerais remercier la communauté open-source pour avoir développé les outils informatiques
sans lesquels cette thèse n’aurait été que l’ombre d’elle-même. Je remercie notamment l’ensemble
des développeurs ayant contribués au projet GNU/Linux, ainsi que Donald Knuth pour avoir
développé un outil aussi performant que LaTeX. Par ailleurs, j’adresse ma vive reconnaissance
à l’ensemble de la communauté gravitant autour du langage Julia. Je pense en particulier à
la communauté JuliaOpt : un grand merci aux développeurs de JuMP sans qui la plupart des
algorithmes présentés ci-après n’auraient pu être implémentés aussi rapidement. Je remercie
notamment Oscar Dowson et Benôıt Legat pour les nombreuses et fructueuses discussions que
nous avons pu avoir au sujet de de l’algorithme SDDP.

Je remercie l’ensemble du personnel du CERMICS pour l’atmosphère studieuse de ce laboratoire.
Je remercie notamment Isabelle et Fatna pour leur aide précieuse en matière d’administration,
ainsi que Frédéric Meunier et Bernard Lapeyre pour m’avoir permis d’enseigner dans leurs cours
respectifs. Mes pensées vont aussi à l’ensemble des doctorants, du 2e comme du 3e étage. Je pense
notamment à Alexandre, Étienne, Marion, Grégoire, Julien, sans oublier mon frère de thèse Henri.

Du côté Bienvenuë, je souhaite remercier chaleureusement l’ensemble des camarades transi-
tants pour m’avoir accompagnés au cours de cette thèse. Je remercie Romain pour nos exercices
prospectifs communs, Emmanuel pour ses suggestions musicales éclairées, Alessio pour son calme
inébranlable, Mathieu A. pour savoir rester en décalage. Je remercie dans la même veine les lurons
Pierre et Pimpin, ainsi que Marina pour ses judicieux conseils d’ex-doctorante chevronnée. Enfin,
j’adresse une pensée spéciale pour mon compagnon de bureau Tristan : que ce soit autour d’une
bière ou d’un terminal, nous aurons passé nos trois années de thèse à nous épauler mutuellement.

J’adresse une pensée à l’ensemble des amis qui m’ont accompagné durant ces trois années. Je
remercie Claire, Hella et Mathieu B. pour les d̂ıners et nos débats transdisciplinaires. Je remercie

7

Jean, avec qui il est possible de filtrer le post-modernisme par ce bon vieux Kalman. Je remercie
Mike pour les pigeons, les picons et pour son indéfectible soutien pendant la rédaction de cette
thèse. Je pense aussi à Clément, Hélène, Jean Bernard, Julien, Löıc, Ricardo et Thibaut pour les
nombreuses soirées passées ensemble. J’ai une pensée particulière pour Paul, fidèle compagnon de
route, pour Grégoire et nos nombreuses discussions à tiroir ainsi que pour Thomas qui a toujours
su rester à mes côtés au cours de mes nombreuses élucubrations aériennes.

Finalement, je souhaite remercier du fond du coeur ma famille pour toute l’aide qu’elle a pu
m’apporter pendant mes nombreuses années d’études. Je remercie mes frères Benôıt et Vincent
pour leur soutien fraternel. Enfin, et surtout, je remercie mon père pour avoir ouvert mon horizon,
et ma mère pour m’avoir donné la force de garder le cap.

8

Contents

1. Introduction (version française) 13

2. Introduction 21

I. Time decomposition in optimization and management of home micro-
grids 27

3. A template to design online policies for multistage stochastic optimization problems 29

4. Background on the modelling of energy flows and stocks in microgrids 53

5. Optimal management of a home microgrid with a CHP 67

6. Optimal management of a home microgrid with solar panels 83

II. Mixing time and spatial decomposition in large-scale optimization prob-
lems 97

7. Upper and lower bounds for Bellman functions by spatial decomposition 99

8. Optimal management of district microgrids 121

9. Stochastic decomposition applied to large-scale hydro valleys management 153

III. Contributions to Stochastic Dual Dynamic Programming 175

10.Exact converging bounds for Stochastic Dual Dynamic Programming via Fenchel duality177

11.A complement on Fenchel duality and Dynamic Programming 211

Conclusion 218

9

Contents detailed

1. Introduction (version française) 13
1.1. Contexte . 13
1.2. Gestion optimale des microgrids . 14
1.3. À propos de l’optimisation stochastique . 16
1.4. Contributions . 18

2. Introduction 21
2.1. Context . 21
2.2. Management of microgrids . 22
2.3. Background on stochastic optimization . 23
2.4. Contributions . 25

I. Time decomposition in optimization and management of home micro-
grids 27

3. A template to design online policies for multistage stochastic optimization problems 29
3.1. Introduction . 29
3.2. Multistage stochastic optimization problems . 30
3.3. A template for lookahead policies . 38
3.4. A template for cost-to-go policies . 43
3.5. Assessment of online policies . 47
3.6. Discussion . 49

4. Background on the modelling of energy flows and stocks in microgrids 53
4.1. Introduction . 53
4.2. Modelling uncertainties . 54
4.3. Modelling production . 57
4.4. Modelling storage . 58
4.5. Discussion . 61

5. Optimal management of a home microgrid with a CHP 67
5.1. Introduction . 67
5.2. Problem statement . 68
5.3. Resolution methods . 73
5.4. Numerical results . 76
5.5. Discussion . 81

6. Optimal management of a home microgrid with solar panels 83
6.1. Introduction . 83
6.2. Problem statement . 84
6.3. Resolution methods . 88
6.4. Numerical resolution . 90
6.5. Discussion . 96

11

Contents detailed

II. Mixing time and spatial decomposition in large-scale optimization prob-
lems 97

7. Upper and lower bounds for Bellman functions by spatial decomposition 99
7.1. Introduction . 99
7.2. Bounds for an optimization problem under coupling constraints via decomposition 100
7.3. Decomposition of local value functions by Dynamic Programming 106
7.4. Improving bounds . 117
7.5. Discussion . 120

8. Optimal management of district microgrids 121
8.1. Introduction . 121
8.2. Stocks and flows global optimization problem on a graph 122
8.3. Mixing nodal and time decomposition . 126
8.4. Algorithmic implementation . 129
8.5. Numerical applications . 133
8.6. Beyond price and resource decompositions . 142
8.7. Discussion . 147
Appendix . 149

9. Stochastic decomposition applied to large-scale hydro valleys management 153
9.1. Introduction . 154
9.2. Mathematical formulation . 157
9.3. Dual Approximate Dynamic Programming . 161
9.4. Numerical experiments . 165
9.5. Conclusion . 173

III. Contributions to Stochastic Dual Dynamic Programming 175

10.Exact converging bounds for Stochastic Dual Dynamic Programming via Fenchel duality177
10.1. Introduction . 178
10.2. Linear Bellman operators . 181
10.3. Primal and dual SDDP . 188
10.4. Inner-approximation strategy . 194
10.5. Numerical results . 197
10.6. Conclusion . 204

11.A complement on Fenchel duality and Dynamic Programming 211
11.1. Introduction . 211
11.2. Alternating forward and backward passes . 211
11.3. A proof of convergence of abstract SDDP . 212
11.4. Conclusion . 217

Conclusion 218

12

Chapter 1.

Introduction (version française)

Contents

1.1. Contexte . 13

1.2. Gestion optimale des microgrids . 14

1.2.1. Gestion de l’énergie . 14

1.2.2. Optimisation de la gestion de l’énergie 15

1.3. À propos de l’optimisation stochastique 16

1.3.1. Programmation Stochastique . 16

1.3.2. Contrôle optimal stochastique . 16

1.3.3. Décomposition des problèmes d’optimisation stochastique à plusieurs pas
de temps. 17

1.4. Contributions . 18

Cette thèse se situe à l’intersection entre l’optimisation mathématique et le domaine de l’énergie.
Pour commencer, nous donnons des éléments de contexte autour du travail présenté dans ce
manuscrit, puis nous présentons une revue concernant les systèmes de gestion optimisés de l’énergie
ainsi qu’une revue de littérature sur les méthodes d’optimisation stochastique. Enfin, nous détaillons
la structure du manuscrit.

1.1. Contexte

Une fois le courant continu (défendu par Edison) remplacé par le courant alternatif (défendu par
Tesla), la structure des réseaux électriques a évolué d’une structure décentralisée — avec des
centrales situées proches des consommateurs — vers une structure centralisée — avec des centrales
de plus en plus puissantes situées à l’écart des villes. Cette centralisation s’est poursuivie pendant
le 20e siècle, avec l’extension des réseaux de transmission de l’électricité.

Avec la diffusion croissante des énergies renouvelables, le débat entre réseau centralisé et réseau
décentralisé refait surface. Un premier groupe considère que l’extension croissante des réseaux —
jusqu’à des échelles continentales — permettra de distribuer plus efficacement l’électricité vers
les consommateurs finaux — tout en permettant de mutualiser les risques. D’un autre côté,
un deuxième groupe pense qu’il faudrait revenir à un réseau plus décentralisé, où l’énergie est
consommée localement, directement sur le lieu de production. Ceci permettrait, selon eux, de
diminuer les pertes induites par le transport de l’électricité sur de longues distances, tout en ayant
une structure plus résiliente en cas de panne.

Nous étudions ici des petits réseaux de distribution, tels que défendus par le deuxième groupe.
Ces réseaux rassemblent un ensemble de consommateurs et de producteurs pouvant produire leur
propre énergie (par exemple via des panneaux solaires). De tels réseaux sont appelés microgrids,
pour les distinguer des smart grids. L’étude de tels réseaux décentralisés connâıt un regain d’interêt

13

Chapter 1. Introduction

en France depuis un changement legislatif paru en janvier 2017, permettant à différents produc-
teurs locaux de mutualiser leurs moyens de production. Malgré leur petite taille, ces microgrids
urbaines restent des systèmes complexes sujets à de nombreux aléas (demandes locales, productions
renouvelables) pouvant rassembler un nombre potentiellement importants de systèmes physiques
différents.

Ce travail s’inscrit au sein d’une collaboration entre Efficacity — institut français pour la tran-
sition énergétique — et le CERMICS (Centre d’Enseignement et de Recherche en Mathématiques
et Calcul Scientifique), le laboratoire de mathématiques appliquées de l’école des Ponts. Cette
collaboration cherche plus particulièrement à étudier la gestion optimale des microgrids urbaines.

Nos contributions principales portent avant tout sur la gestion des incertitudes au sein des
microgrids urbaines, afin d’améliorer la résilience de tels systèmes. Nous étudions les aspects
mathématiques posés par la gestion optimale des microgrids. Nous étudions dans un premier
temps des microgrids de petite taille, dont le réseau regroupe une seule maison, avant d’étendre
ce travail à des microgrids de plus grande taille, rassemblant jusqu’à une cinquantaine de maisons.
Nous cherchons à utiliser des méthodes d’optimisation stochastique pour gérer le système de façon
optimale.

HOUSE

HOUSE

HOUSE

HOUSE

HOUSE

HOUSE

Figure 1.1.: Autoconsommation collective à l’échelle du quartier

1.2. Gestion optimale des microgrids

Un nombre conséquent de travaux ont été consacrés récemment à la gestion optimale des flux
énergétiques dans les microgrids. Nous détaillons ci-après les différents défis posés par la gestion
optimale de tels systèmes, en détaillant les travaux de référence sur le sujet.

1.2.1. Gestion de l’énergie

Nous nous intéressons avant tout à l’energy management system (EMS) des microgrids urbaines. À
un instant donné, l’EMS doit gérer les différents flux énergétiques transitant au sein de la microgrid
tout en cherchant à minimiser un certain nombre de coûts opérationnels. Les flux énergétiques
optimaux calculés par l’EMS sont ensuite utilisés comme référence par un contrôle plus fin qui doit
gérer de manière effective les différentes puissances électriques au sein de la microgrid.

Les principaux défis posés par la gestion optimale des EMS sont les suivants.

14

1.2. Gestion optimale des microgrids

• L’EMS ne connâıt pas à l’avance les futures réalisations des incertitudes (que ce soit les
demandes ou les productions renouvelables), ce qui complique le calcul des flux optimaux
permettant une adéquation parfaite entre la production et la demande.

• Plus les incertitudes sont importantes, plus la microgrid est sujette à un risque de panne.
L’EMS doit prendre des décisions robustes par rapport aux événements extrêmes (par exemple
une demande électrique élevée).

• Les microgrids peuvent rassembler une dizaine de stocks, potentiellement de nature hétérogènes.
Les problèmes peuvent ainsi avoir une dimension très élevée, ce qui complique la résolution
par les solveurs d’optimisation classiques.

• Les systèmes énergétiques sont naturellement complexes. La production d’énergie peut ne pas
être modulable, ou les différents équipements peuvent avoir des contraintes opérationnelles
complexes.

1.2.2. Optimisation de la gestion de l’énergie

La gestion optimale des microgrids a soulevé beaucoup d’intérêt récemment. Dans (Olivares
et al., 2014), les auteurs donnent ainsi une revue détaillée de l’optimisation de la gestion des
flux énergétiques au sein des microgrids. Les microgrids sont actuellement surtout utilisées pour
gérer des réseaux isolés ou des systèmes auto-suffisants (Olivares et al., 2011)-(Heymann et al.,
2015). Même si les approches stochastiques ou robustes sont de plus en plus étudiées, les méthodes
de référence pour le contrôle des EMS restent des méthodes déterministes, comme l’algorithme
Model Predictive Control (MPC) (Garcia et al., 1989).

En dehors des systèmes isolés, le contrôle des microgrids urbaines est aussi un champ de recherche
en pleine extension. Les systèmes peuvent être très hétérogènes, MPC étant aussi bien utilisé pour
contrôler des bâtiments résidentiels (Oldewurtel et al., 2012) que pour contrôler des bâtiments de
bureaux (Lamoudi, 2012). Dans (Parisio et al., 2015), les auteurs utilisent le même algorithme MPC
pour contrôler cette fois-ci un ensemble de bâtiments résidentiels, cette étude ayant été étendue à
des groupements conséquents de maisons par des méthodes de décomposition-coordination (Pflaum
et al., 2014).

Gérer les incertitudes par l’optimisation stochastique. À l’échelle locale, les demandes électriques
et les productions peuvent être très variables, d’autant plus que les microgrids peuvent produire
une grande part de leur énergie par des moyens renouvelables, par nature intermittents. Le
développement récent des méthodes de prévision probabiliste des incertitudes (Morales et al.,
2013) a conduit à un intérêt croissant pour appliquer les méthodes d’optimisation stochastique à
la gestion des microgrids. Dans (Oldewurtel, 2011), les auteurs utilisent ainsi une version stochas-
tique de l’algorithme MPC pour gérer le système en considérant différents scénarios d’incertitudes.
D’autres approches utilisent des méthodes d’optimisation robuste pour gérer les incertitudes en
considérant des scénarios correspondant à un pire des cas. Nous faisons référence à (Paridari et al.,
2016) pour un cas d’étude portant sur des bâtiments résidentiels, et à (Wytock et al., 2017) pour
l’application d’une version robuste de MPC à la gestion de bâtiments intelligents.

Avec l’actuel engouement pour les méthodes d’apprentissage automatique, les méthodes d’apprentissage
par renforcement commencent aussi à être étudiées pour le contrôle des EMS. Nous faisons référence
à (Ernst et al., 2009) pour une comparaison de MPC avec des méthodes d’apprentissage par ren-
forcement.

En dehors de la gestion des microgrids, les méthodes d’optimisation stochastique ont été utilisées
par ailleurs pour la gestion des systèmes énergétiques (De Lara et al., 2014). Historiquement,
l’optimisation stochastique a d’abord été appliquée à la gestion de vallées hydrauliques (Pereira
and Pinto, 1991). D’autres applications ont ensuite été trouvées, comme l’intégration optimale de

15

Chapter 1. Introduction

l’énergie éolienne (Haessig, 2014) ou encore la gestion de microgrids isolées (Heymann et al., 2016).
Les méthodes d’affectation de production ont aussi pendant longtemps été un cas d’application
classique de l’optimisation stochastique (Carpentier et al., 1996). Plus globalement, nous faisons
référence à (Wallace and Fleten, 2003) pour une revue concernant l’application des méthodes
d’optimisation stochastique aux systèmes énergétiques.

1.3. À propos de l’optimisation stochastique

Les méthodes d’optimisation stochastique cherchent à minimiser un critère dont l’expression dépend
explicitement de variables aléatoires. Ces méthodes se situent à l’intersection entre l’optimisation
et la théorie des probabilités.

Il existe plusieurs manières de prendre des décisions dans un cadre incertain. Dans l’optimisation
en boucle ouverte, le preneur de décision prend ses décisions une fois pour toute, sans aucun recours
possible par rapport aux incertitudes futures. Au contraire, les méthodes d’optimisation en boucle
fermée cherchent à adapter leurs décisions au fur et à mesure de la réalisation des incertitudes.

Dans les EMS, la plupart des problèmes se formulent comme un problème d’optimisation stochas-
tique à plusieurs pas de temps (Carpentier et al., 2015), où les incertitudes arrivent à différent
instants. Nous nous concentrons ici sur la résolution de tels problèmes d’optimisation.

1.3.1. Programmation Stochastique

Les méthodes de programmation stochastique modélisent les futures réalisations des incertitudes
comme un arbre de scénarios, où chaque nœud représente la réalisation d’un aléa donné. Une
décision optimale est affectée à chacun des nœuds de l’arbre, de manière à minimiser un certain
critère. Nous faisons référence à (Shapiro et al., 2009) et à (Kall et al., 1994) pour une introduction
plus large de ces méthodes.

Cependant, le nombre de scénarios et de noeuds peut augmenter de manière exponentielle avec le
nombre de pas de temps. Les méthodes de réduction de scénarios (Dupačová et al., 2003)-(Heitsch
and Römisch, 2003) ou de décomposition (Rockafellar and Wets, 1991a) peuvent permettre de
réduire la complexité de la résolution.

1.3.2. Contrôle optimal stochastique

Au contraire des méthodes de programmation stochastique, les méthodes de contrôle optimal
stochastique se formulent en fixant un certain horizon (possiblement infini) ainsi qu’un ensemble
de contrôles, d’états et d’incertitudes. Si les incertitudes sont indépendantes, pas de temps par
pas de temps, un résultat connu permet de résoudre le problème par programmation dynamique
(Bellman, 1957) en calculant un ensemble de fonctions valeurs (les fonctions de Bellman) de manière
récursive. Une fois ces fonctions valeurs obtenues, nous pouvons construire une politique de contrôle
optimal pour chaque pas de temps. Nous faisons référence à (Bertsekas, 2012)-(Puterman, 1994)
pour une description des équations de la programmation dynamique dans un contexte stochastique,
en temps discret. Ici, nous nous plaçons avant tout dans le formalisme introduit dans (Carpentier
et al., 2015) pour décrire des problèmes de contrôle optimal stochastique.

Nous détaillons dans la suite les principaux algorithmes pouvant être utilisés pour résoudre les
équations de Bellman.

Stochastic Dynamic Programming (SDP). SDP est un algorithme classique pour calculer les
fonctions de Bellman de manière récursive. L’espace des états est discrétisé de façon à obtenir un
nombre fini de points à explorer, ce qui autorise le calcul d’une approximation des fonctions de
Bellman par recherche exhaustive. Cette procédure est équivalente à modéliser le problème originel
comme un processus décisionnel de Markov (Puterman, 1994).

16

1.3. À propos de l’optimisation stochastique

Stochastic Dual Dynamic Programming (SDDP). SDDP est un algorithme qui utilise des
résultats classiques en analyse convexe permettant d’approximer toute fonction convexe comme
un supremum de fonctions d’appui affines.

SDDP calcule itérativement une approximation des fonctions de Bellman comme un supremum
de fonctions affines. À chaque itération, l’algorithme calcule de manière forward un ensemble de
trajectoires où il serait judicieux de raffiner l’approximation courante. Ensuite, SDDP améliore
l’approximation des fonctions de Bellman de manière backward, en calculant un sous-gradient en
chacun des points des trajectoires précédemment calculées pendant la phase forward. Ce sous-
gradient permet ensuite de construire une nouvelle borne inférieure affine.

Nous nous référons à (Van Slyke and Wets, 1969) pour l’idée originelle résidant derrière SDDP,
et à (Pereira and Pinto, 1991) pour une première description de l’algorithme SDDP en tant que
tel. Une preuve de convergence dans le cas linéaire existe (Philpott and Guan, 2008), preuve
qui a ensuite été étendue dans le cas convexe (Girardeau et al., 2014). Nous faisons référence à
(Shapiro, 2011) pour une description récente de l’algorithme SDDP. Des travaux ont récemment
étendu SDDP à des problèmes avec variables entières (Zou et al., 2017).

Autres méthodes de résolution.

Approximate Dynamic Programming (ADP). Tandis que SDDP approxime les fonctions
valeurs comme un supremum de fonctions affines, ADP approxime les fonctions valeurs par d’autres
classses de fonctions, appropriées au problème étudié.

Nous faisons référence à (Bertsekas and Tsitsiklis, 1996)-(Powell, 2007) pour une description de
l’algorithme ADP.

Reinforcement learning (RL). Les précédents algorithmes (de SDP à ADP) ont besoin d’une
fonction dynamique pour décrire l’évolution temporelle des variables d’état. Au contraire, les
méthodes d’apprentissage par renforcement fonctionnent sans dynamique connu. Elles considèrent
uniquement un ensemble d’échantillons qui associent un ensemble de paires d’états et de décisions
à des gains, ces échantillons pouvant être observés en ligne ou hors ligne. L’apprentissage par
renforcement approxime alors des fonctions valeurs qui associent chaque paire état-décision à un
coût donné.

Nous faisons référence à (Sutton and Barto, 1998) pour une revue des méthodes d’apprentissage
par renforcement.

Méthodes particulaires. Tandis que les algorithmes précédents requièrent le calcul (exact ou
approximé) de fonctions valeurs, d’autres algorithmes utilisent quant à eux des principes varia-
tionnels — comme le principe du maximum de Pontryagin (Pontryagin, 1962) — pour calculer
directement les décisions optimales satisfaisant les conditions d’optimalité au premier ordre.

Nous faisons référence à (Dallagi, 2007) pour une application du principe du maximum de Pon-
tryagin aux problèmes d’optimisation stochastique à plusieurs pas de temps, ainsi qu’à (Carpen-
tier et al., 2015) pour une présentation plus large des outils théoriques sur lesquels s’appuient les
méthodes particulaires.

1.3.3. Décomposition des problèmes d’optimisation stochastique à plusieurs
pas de temps.

La performance des algorithmes reposant sur la résolution des équations de Bellman est directement
liée au nombre de dimensions de l’état sous-jacent. Ces algorithmes sont confrontés à la malédiction
de la dimension : plus la dimension de cet état est grand, plus la résolution des équations de Bellman
devient (exponentiellement) difficile.

17

Chapter 1. Introduction

Pour pallier ce problème, il est possible, dans certains cas, de décomposer le problème originel
en sous-problèmes de plus petite taille. L’objectif devient alors de coordonner les sous-problèmes
entre eux via une variable de coordination (par exemple un prix ou une resource) jusqu’à retrouver
l’optimum global du problème originel. Nous faisons référence à Carpentier and Cohen (2017) pour
une description générique des méthodes de décomposition-coordination.

La décomposition des problèmes d’optimisation stochastique à plusieurs pas de temps est un
champ de recherche encore actif. La principale difficulté réside dans le fait que, dans ce cas,
les variables de coordination deviennent des processus stochastiques (possédant éventuellement
une certaine dynamique), compliquant ainsi la résolution des sous-problèmes par programmation
dynamique. L’idée devient alors d’approximer les processus de coordination en utilisant un autre
processus dont la dynamique est connue (Barty et al., 2010a). Cette idée a été appliquée avec succès
à la résolution de problèmes d’optimisation stochastique à plusieurs pas de temps de grande taille,
par exemple des problèmes d’affectation de la production (Girardeau, 2010) ou des problèmes
de gestion de vallées hydrauliques (Alais, 2013). Des développements théoriques concernant les
méthodes de décomposition stochastique peuvent être trouvés dans Leclère (2014).

1.4. Contributions

Nous détaillons maintenant les principales contributions de ce manuscrit. La thèse est divisée en
trois parties.

Décomposition temporelle pour l’optimisation de la gestion de microgrid domestique. Dans
la première partie, nous appliquons les méthodes d’optimisation stochastique à plusieurs pas de
temps à la gestion de microgrids de petite taille. Nous cherchons à obtenir les stratégies de gestion
optimale afin de prendre des décisions en ligne au sein du système de gestion de l’énergie.

• Dans le Chapitre 2, nous introduisons un cadre générique pour classifier différentes stratégies
de gestion en ligne. Nous distinguons deux classes de stratégies en ligne. Les stratégies re-
posant sur une fonction valeur minimisent un problème d’optimisation avec un horizon d’un
pas de temps afin d’obtenir une décision en ligne. Cette méthode voit le futur uniquement
à travers la fonction valeur donnée en entrée. Au contraire, les méthodes lookahead min-
imisent directement un problème d’optimisation à plusieurs pas de temps. Dans ce premier
chapitre, nous définissons par ailleurs formellement la variable d’état comme une réduction
des décisions et des incertitudes précédentes. Enfin, nous proposons une méthode d’évaluation
générique pour comparer différentes stratégies entre elles.

• Dans le Chapitre 3, nous présentons les modèles physiques utilisés pour construire les problèmes
d’optimisation dans les chapitres 4 et 5. Ces modèles physiques sont un compromis entre
précision physique et solvabilité du problème d’optimisation sous-jacent. Nous distinguons
les modèles purement physiques (pour les stockages et les unités de production) des modèles
statistiques utilisés pour représenter les aléas futurs.

• Dans le Chapitre 4, nous considérons une maison équipée avec une centrale de micro-cogénération
et une batterie. Nous modélisons le problème de gestion de l’énergie comme un problème
d’optimisation stochastique à plusieurs pas de temps, et nous comparons trois stratégies en
ligne — une heuristique, une stratégie reposant sur Model Predictive Control et une stratégie
reposant sur la programmation dynamique.

• Dans le Chapitre 5, nous considérons un nouveau problème de gestion d’une microgrid
résidentielle, cette fois-ci équipée avec des panneaux solaires et une batterie. Contrairement
au Chapitre 4, nous nous intéressons ici avant tout à la modélisation des aléas dans la
conception des stratégies en ligne.

18

1.4. Contributions

Décomposition temporelle et spatiale de problèmes d’optimisation de grande taille. Tandis
que la première partie traite surtout de problèmes de petite taille, la seconde partie cherche à
étendre les algorithmes présentés durant cette première partie à des problèmes stochastiques de
grande taille.

• Dans le Chapitre 6, nous présentons deux méthodes de décomposition utilisant respective-
ment des prix ou des resources comme variables de coordination. Ces méthodes permet-
tent d’obtenir des bornes inférieures et supérieures pour le problème originel. Sous des hy-
pothèses adéquates, nous pouvons résoudre les sous-problèmes (obtenus par décomposition
du problème global) par programmation dynamique. Nous pouvons prouver de surcrôıt
que les sommes des fonctions de Bellman locales permettent de borner inférieurement et
supérieurement les fonctions de Bellman globales, et ce à chaque pas de temps.

• Dans le Chapitre 7, nous appliquons les méthodes de décomposition stochastique présentées
dans le Chapitre 6 à la gestion de microgrids de grande taille, pouvant rassembler jusqu’à
48 bâtiments. Nous illustrons numériquement l’intérêt des algorithmes de décomposition en
comparant les algorithmes de décomposition par les prix et par les ressources avec une version
de SDDP qui résout globalement les équations de Bellman du problème initial.

• Dans le Chapitre 8, nous étudions un autre problème portant cette fois-ci sur la gestion
de vallées hydrauliques de grande taille. Nous présentons une nouvelle étude numérique,
comparant cette fois-ci la décomposition par les prix avec l’algorithme SDDP.

Contributions à l’algorithme Stochastic Dual Dynamic Programming. Enfin, nous abordons
dans la dernière partie des considérations portant essentiellement sur l’algorithme Stochastic Dual
Dynamic Programming (SDDP).

• Dans le Chapitre 9, nous présentons une nouvelle méthode pour calculer une borne supérieure
déterministe pour des problèmes d’optimisation stochastique à plusieurs pas de temps, en
exploitant la dualité au sens de Fenchel. Cette méthode permet d’obtenir un critère d’arrêt
déterministe pour SDDP. Nous illustrons ces considérations théoriques avec des résultats
numériques montrant la pertinence de la méthode proposée.

• Dans le Chapitre 10, nous incluons un complément pour le Chapitre 9 en présentant une
preuve de convergence pour la nouvelle version de SDDP présentée dans le chapitre précédent.

19

Chapter 2.

Introduction

Contents

2.1. Context . 21

2.2. Management of microgrids . 22

2.2.1. Energy management systems . 22

2.2.2. Optimization of energy management systems. 23

2.3. Background on stochastic optimization 23

2.3.1. Stochastic Programming . 24

2.3.2. Stochastic Optimal Control . 24

2.3.3. Decomposition of multistage stochastic optimization problems. 25

2.4. Contributions . 25

By applying mathematical optimization methods to energy systems, this thesis is at a crossroad
between two domains. We first give in Section 2.1 some elements to situate the context of the
work presented in this document, and then present overviews of energy management systems in
Section 2.2 and of stochastic optimization methods in Section 2.3. Then, we will detail in Section 2.4
the structure of this dissertation.

2.1. Context

Once Tesla’s AC power overcame Edison’s DC power at the end of the 19th century, the electricity
grid moved from an assembly of decentralized producing units to an interconnection of large
centralized units. The transmission grids have pursued their centralization further during the
20th century, as transmission networks extended.

However, with the recent democratization of renewable energies, the feud between centralized
and decentralized grids is regaining interest. Whereas some argue that large regional networks
would allow to dispatch more efficiently the renewable energies to final consumers — as back-up
costs would be mutualized across a large panel of consumers — others reply that it would be more
effective to consume the energy directly where it is produced. In fact, decentralized distribution
grids would allow to decrease the energy losses — occurring when electricity is transported through
large distance — and would allow to build a more resilient grid being less sensitive to transmission
outages.

Here, we will consider small networks of electricity users having their own local sources of
supply. Such small networks are called microgrids, to distinguish them from larger smart grids.
Urban microgrids gain interest recently since a change in the French legislation that allows local
producers to share energy between themselves, as depicted in Figure 2.1. Urban microgrids
remain complex systems confronted with external uncertainties (local demands, renewable energy
production) and gathering potentially large amount of heterogeneous stocks. This work is part of a

21

Chapter 2. Introduction

collaboration between Efficacity — a French institute for the energy transition — and CERMICS
— a mathematical laboratory — to study the optimal management of urban microgrids.

Our main contributions lie in the management of uncertainties to improve the resilience of
microgrid systems. As explained in §2.2, we focus on the optimal management of urban microgrids
from a mathematical point of view. We will first tackle small scale microgrids, with a single
building, and extend our study to large-scale microgrids gathering up to 48 buildings. We will
adapt some existing stochastic optimization algorithms, presented in §2.3, to control effectively
urban microgrids. In parallel, we will extend the decomposition algorithms to other energy systems,
such as large scale dams-valleys.

HOUSE

HOUSE

HOUSE

HOUSE

HOUSE

HOUSE

Figure 2.1.: Collective self-consumption at district level

2.2. Management of microgrids

Lots of works have been devoted recently to the design of energy management systems in microgrids.
We detail hereafter the different challenges that arise in energy management systems, and then
point out a survey concerning the optimization of the control of energy management systems.

2.2.1. Energy management systems

We focus here on the energy management system (EMS) of local microgrids. At a given moment,
the energy management system manages the different energy flows in the microgrid, so as to
minimize the operational costs. Then, the energy flows returned by the energy management system
are used as a reference by a primary controller managing the power flows inside the microgrid.

The main challenges that fall out in the optimization of EMS are the following.

• The EMS cannot know the exact realization of the future energy demands and energy
production, thus increasing the difficulty to ensure the adequacy between production and
demand.

• The more uncertainties, the more likely failures become. The design of EMS must be robust
to extreme events.

• Microgrids can gather dozens of heterogeneous stocks, giving large-scale optimization prob-
lems. Classic optimization algorithms may become irrelevant to solve problems of this size.

22

2.3. Background on stochastic optimization

• Energy systems are complex. Sometimes, the energy production cannot be modulated,
or devices might have complex operational constraints. These constraints may introduce
uncommon optimization approaches to deal with integer or binary variables, thus increasing
the complexity of the resolution.

2.2.2. Optimization of energy management systems.

The design of EMS for microgrids has raised much interest in recent years. In Olivares et al.
(2014), the authors give a survey of application of optimization methods to the design of EMS.
Even if stochastic methods are gaining interest, the reference method remains the well-known Model
Predictive Control (MPC) (Garcia et al., 1989) and deterministic methods to control EMS. The
main application of microgrids remains for insulated and self-sufficient systems. We refer to Olivares
et al. (2011) for an application of MPC in the EMS of an insulated microgrid. In Heymann et al.
(2015) the authors study an insulated microgrid in Chile and compute optimal solutions for the
EMS by solving the deterministic Hamilton-Jacobi-Bellman equations.

Apart of insulated microgrids, the control of residential microgrids is also a vivid research
area. We refer to Oldewurtel et al. (2012) for an application of MPC to residential buildings
and to Lamoudi (2012) for an application of MPC to office buildings. In Parisio et al. (2015), the
authors extend MPC to control a panel of residential buildings. In a similar manner, Pflaum et al.
(2014) applied decomposition methods to decompose the resolution of MPC.

Tackling uncertainties with stochastic optimization. At local scale, electrical demands and pro-
ductions are highly variable, especially as microgrids are expected to absorb renewable energies.
The recent development in probabilistic forecasts (Morales et al., 2013) leads to pay a growing
attention to stochastic optimization approaches. In Oldewurtel (2011), the author presents a
Stochastic MPC scheme relying on stochastic programming to handle different forecast scenarios.
In Olivares et al. (2015), the authors use stochastic unit-commitment to compute the setpoints and
then use MPC as a second level controller to refine online the dispatch of the unit-commitment
algorithm. Other approaches use robust optimization algorithms to handle uncertainties by con-
sidering worst-case scenarios. We refer to Paridari et al. (2016) for a given use case in residential
buildings, and to Wytock et al. (2017) for an application of scenario-based robust MPC to the
management of smart-home.

With the growing interest in machine learning, reinforcement learning algorithms are also in-
vestigated for the control of EMS. We refer to Ernst et al. (2009) for a comparison of MPC with
reinforcement learning methods.

Aside from microgrid management, stochastic optimization has found numerous applications
in energy systems (De Lara et al., 2014). Historically, stochastic optimization has been widely
applied to dams-valley management (Pereira and Pinto, 1991). Other applications have arisen
recently, such as integration of wind energy and storage (Haessig, 2014) or insulated microgrids
management (Heymann et al., 2016). Apart from microgrid management, other applications
arise in the resolution of unit-commitment problems (Carpentier et al., 1996) or hydro-thermal
scheduling (Philpott and De Matos, 2012). We refer to Wallace and Fleten (2003) for a review of
applications of stochastic optimization in energy systems.

2.3. Background on stochastic optimization

Stochastic optimization methods aim at minimizing a criterion over random variables. Such
methods are at the intersection between optimization and probability theory.

There exists two manners to combine decisions with uncertainties in stochastic optimization. In
open-loop stochastic optimization, the decision maker computes his decision once and for all, by
considering a single stage and compute a solution without recourse w.r.t. the future realization of

23

Chapter 2. Introduction

uncertainties. On the contrary, in closed-loop stochastic optimization the decision-maker is able
to adapt his decisions to previous realization of uncertainties.

In energy management systems, most problems formulate as multistage stochastic optimization
problems (Carpentier et al., 2015) where uncertainties arise at different time steps. We focus
hereafter on multistage stochastic optimization resolution methods.

2.3.1. Stochastic Programming

Stochastic programming encodes the realization of the future uncertainties with a finite scenario
tree. Then, it aims to find the optimal decisions attached to every node in the tree, so as to
minimize the average cost. We refer to Shapiro et al. (2009) and Kall et al. (1994) for a broader
introduction.

However, the number of scenarios and nodes grows exponentially with the number of time steps.
It pays to use scenario reduction algorithms (Dupačová et al., 2003)-(Heitsch and Römisch, 2003)
or decomposition algorithms (Rockafellar and Wets, 1991a) to reduce the numerical burden.

2.3.2. Stochastic Optimal Control

On the contrary of stochastic programming, Stochastic Optimal Control (SOC) is a class of prob-
lems formulated with time, controls, states and uncertainties. Provided that the uncertainties are
stagewise independent, the problem satisfies the recursive Dynamic Programming equations (Bell-
man, 1957) that allow to compute a set of Bellman functions in a backward manner. Once these
Bellman functions are obtained, we are able to compute the optimal decisions at each time step.
We refer to Bertsekas (2012)-Puterman (1994) for a description of the theory lying behind the
resolution of Dynamic Programming equations in discrete time. We follow all along this thesis the
formalism of Carpentier et al. (2015) to describe multistage stochastic optimization problems.

In the sequel, we detail the main algorithms devoted to the resolution of the Bellman recursive
equations.

Stochastic Dynamic Programming (SDP). SDP is a classical method to compute the Bellman
functions backward in time. In the algorithmic version, one discretizes the state space to obtain a
finite number of features and then computes the (approximate) Bellman equations by exhaustive
search. This is equivalent to model the original problem as a Markov decision process (MDP) (Put-
erman, 1994) before solving it exhaustively.

Stochastic Dual Dynamic Programming (SDDP). SDDP is an algorithm that use a classical
results in convex analysis stating that any convex function can be approximated below by a
supremum of affine functions. SDDP applies to convex multistage problems.

SDDP computes iteratively an approximation of the Bellman functions as a supremum of affine
functions. At each iteration, it computes forward a set of trajectories where it would be wise
to refine the approximated value functions. Then, SDDP refines its approximated Bellman value
functions during a backward pass, by computing the subgradients of each incumbent state.

We refer to Van Slyke and Wets (1969) for the original idea lying behind SDDP, and to Pereira
and Pinto (1991) for a first description of the SDDP algorithm. A proof of convergence in the
linear case was given in Philpott and Guan (2008) and extended in the convex case in Girardeau
et al. (2014). We refer to Shapiro (2011) for an up-to-date description of the SDDP algorithm.
Recent works extend the SDDP algorithm to the integer case (Zou et al., 2017).

Other resolution methods.

24

2.4. Contributions

Approximate Dynamic Programming (ADP). Whereas SDDP approximates the value func-
tions as supremum of affine functions, ADP approximates the value functions with generic functions
having suitable properties for the problem under study.

We refer to (Bertsekas and Tsitsiklis, 1996)-(Powell, 2007) for a comprehensive description of
Approximate Dynamic Programming algorithms.

Reinforcement learning (RL). All previous algorithms (from SDP to ADP) rely on a dynamics
to describe the evolution of the state variables. On the contrary, reinforcement learning methods
do not require any dynamics. They only handle a set of samples that associate decisions to rewards,
these samples being observed offline or online. Then, the RL approximates a value function that
associates each peer of state and decision to a given cost.

We refer to Sutton and Barto (1998) for an exhaustive review of reinforcement learning methods.

Particle methods. Whereas the previous algorithms rely on the computation of some cost-to-
go, some other algorithms use variational principles — as the Pontryagin maximum principle (Pon-
tryagin, 1962) — to compute the optimal decisions satisfying the first order optimality conditions,
without need of any cost-to-go.

We refer to Dallagi (2007) for an application of the Pontryagin maximum principle to multistage
stochastic optimization methods, and to Carpentier et al. (2015) for a broader description of the
theory lying behind the so-called particle methods.

2.3.3. Decomposition of multistage stochastic optimization problems.

The main drawback of the algorithms relying on the resolution of the Bellman recursive equations
is that they are confronted by the curse of dimensionality: the larger the dimension of the state,
the more cumbersome the resolution becomes.

To overcome this issue, there are cases where the original problem can be decomposed in smaller
subproblems with a more tractable state size. Then, the algorithm coordinates the subproblems via
a given coordination variable (e.g. a price or a ressource) till a global optimum is found. We refer
to Carpentier and Cohen (2017) for a generic description of decomposition-coordination methods.

The decomposition of multistage stochastic optimization problem remains under study. The
main difficulty lies in the fact that the coordination variable are stochastic processes possibly ex-
hibiting a given dynamics thus complicating the resolution of the local subproblems by Dynamic
Programming. The idea is then to approximate the coordination variable with another process,
whose dynamics is known (Barty et al., 2010a). This idea was successfully applied to the reso-
lution of multistage stochastic optimization problem, starting from a unit-commitment problem
(Girardeau, 2010) to a dams-valley management problem (Alais, 2013). Theoretical insights con-
cerning stochastic decomposition methods are given in Leclère (2014).

2.4. Contributions

We now emphasize the different contributions presented in this manuscript. The manuscript
comprises three parts.

Time decomposition in optimization and management of home microgrids. In the first part,
we focus on the application of stochastic optimization algorithms to the management of small-scale
microgrids (e.g. residential microgrids). We aim at finding optimal policies to take online decisions
in energy management systems.

• In Chapter 3, we introduce a common framework to frame online policies relying on stochastic
optimization methods. We distinguish two classes of online policies. The cost-to-go policies

25

Chapter 2. Introduction

minimize a one-step optimization problem to yield an online decision, the future being hid-
den inside a given cost-to-go. The lookahead policies solve instead a multistage optimization
problem. We define the state as a reduction of a history gathering past decisions and un-
certainties at any moment. Eventually, we propose a generic assessment method to compare
different stochastic optimization policies.

• In Chapter 4, we present the physical models we use to build optimization problems. Such
models are a trade-off between the physical accuracy and the tractability of the resolution
by optimization algorithms. We distinguish the physical models (for stocks and producing
units) from the statistical models used to represent the future uncertainties and from the
economic model to represent costs.

• In Chapter 5, we consider a residential building equipped with a micro-combined Heat-and-
Power generator and a battery. We frame the energy management system problem as a
multistage stochastic optimization problem and compare three online policies (a heuristic,
MPC and SDDP policies).

• In Chapter 6, we consider another residential microgrid problem, this time being equipped
with solar panels and a battery. Comparing to Chapter 5, we improve the modeling of
uncertainties in the design of the online policies. Then, we compare SDDP with MPC.

Mixing time and spatial decomposition in large-scale optimization problems. Whereas the first
part deals with small-scale systems, the second part deals with large-scale stochastic systems.

• In Chapter 7, we present price and resource decomposition methods, to compute decomposed
upper and lower bounds for the original problem. Under some assumptions, we are able to
solve the decomposed subproblems by Dynamic Programming. We then prove that the sums
of local Bellman value functions give lower and upper bounds for the global Bellman value
functions.

• In Chapter 8, we apply the decomposition methods introduced in Chapter 7 to the manage-
ment of a large-scale microgrid, gathering up to 48 interconnected buildings. We emphasize
the relevance of the decomposition algorithms with numerical results comparing price and
resource decomposition with a version of SDDP that tackles the resolution of Dynamic Pro-
gramming equations globally.

• In Chapter 9, we study large scale dams-valley problems and present another numerical
comparison of price decomposition methods with SDDP.

Contributions to Stochastic Dual Dynamic Programming. Eventually, the third part deals with
more theoretical considerations concerning the Stochastic Dual Dynamic Programming algorithm.

• In Chapter 10, we introduce a novel method to compute a deterministic upper-bound of a
multistage stochastic optimization problem, by exploiting Fenchel duality. That allows to
design a deterministic stopping criterion for SDDP. We illustrate these theoretical results
with numerical results showing the effectiveness of the method.

• In Chapter 11, we give a complement for Chapter 10 with a proof of convergence of the
so-called abstract SDDP algorithm.

26

Part I.

Time decomposition in optimization
and management of home microgrids

Abstract. In this first part, we focus on the control of small scale units, such as encoun-
tered in residential microgrids. The main challenge of the energy management system is
to ensure, at least cost, that supply matches demand for all time while handling the in-
herent uncertainties of such systems (demand, renewable energy production). Hereafter,
we use optimization algorithms to design online policies that will handle the available
information to take a decision at a given moment. We will compare different methods to
design policies, and provide benchmarks on two use-cases.
We first describe in Chapter 3 a generic framework to design online policies, and introduce
a classification of different existing methods to frame online policies. Then, we detail in
Chapter 4 the physical modelling of the devices we look at in residential microgrids, as
well as a statistical modelling of the different uncertainties we usually encounter (e.g.
the energy demands and the renewable productions). Then, we present two case studies.
In Chapter 5 we handle a residential microgrid equipped with a micro-Combined Head
and Power generator (µCHP) — producing electricity and heat — and a battery. We
compare different online policies and show the effectiveness of optimization algorithms
to compute optimal policies by comparing the performance of each policy over one year.
In Chapter 6, we examine a new case study consisting of another residential microgrid,
this time equipped with solar panels and a battery. We put emphasis on the online
information used by the online policies and give a benchmark for three representative
days in a year.

27

Chapter 3.

A template to design online policies for
multistage stochastic optimization problems

Contents

3.1. Introduction . 29

3.2. Multistage stochastic optimization problems 30

3.2.1. Stochastic dynamic programming with history feedback policies 30

3.2.2. Compressing history in a state process 35

3.2.3. A template to design online policies 36

3.3. A template for lookahead policies . 38

3.3.1. Design of lookahead policies . 38

3.3.2. Classical lookahead methods . 39

3.4. A template for cost-to-go policies . 43

3.4.1. A general sketch to design cost-to-go policies 43

3.4.2. Classical cost-to-go methods . 44

3.5. Assessment of online policies . 47

3.5.1. Simulating the flow induced by a policy along a scenario 47

3.5.2. Comparing policies . 48

3.6. Discussion . 49

3.1. Introduction

In multistage stochastic optimization problems, the decision maker makes, at every stage, a decision
that depends at most upon past uncertainties. Once a decision taken, he has to wait till the next
realization of uncertainty to take a new decision.

Such problems naturally arise in the management of energy systems (see De Lara et al. (2014))
where systems are often confronted to external uncertainties (e.g. renewable productions or elec-
trical demands). Mathematically, they formulate as multistage stochastic optimization problems
whose solutions are indexed both by stages and by uncertainties. However, the resolution of such
problems proves to be difficult. On the one hand, stochastic programming methods (see Shapiro
et al. (2009)) handles the resolution by writing a scenario tree corresponding to realizations of all
uncertainties, hence potentially (very) large. On the other hand, stochastic control methods rely
on the Dynamic Programming principle and look for solutions as feedback on previous history,
but are naturally confronted by the curse of dimensionality. We refer to Bellman (1957)-Bertsekas
(2012)-Puterman (1994) for an overview of stochastic dynamic programming methods.

Because exact solutions are out of reach, there is ongoing interest in the design of approximate
resolution algorithms designed to tackle the shortfalls of the different exact resolution methods.
In (Bertsekas, 2012, Chapter 6), a whole chapter is dedicated to approximate dynamic programming

29

Chapter 3. A template to design online policies

methods. This work was detailed in Bertsekas (2005b) where the emphasis is put on the well-
known Model Predictive Control. More recently, Powell (2014) proposes a framework to categorize
different resolution algorithms in four different classes, with a stress being put on approximate
dynamic programming and reinforcement learning methods. The common point between these
two works is that the authors do not solve the original multistage problem all in once but choose
instead to take decisions with online policies that are refined as time goes on and uncertainties
accumulate.

We follow the approach introduced in Carpentier et al. (2018a) and formulate multistage stochas-
tic programming over a history space in Section 3.2. We introduce two classes of history feedback
policies: the so-called cost-to-go policies and lookahead policies. In Section 3.3, we focus on
lookahead policies and frame three existing algorithms in this class. In Section 3.4, we describe
the cost-to-go methods and detail the offline computation of cost-to-go. Finally, we present in
Section 3.5 a method to compare different online policies together, in a fair manner.

3.2. Multistage stochastic optimization problems

We reconsider in §3.2.1 the framework introduced in Carpentier et al. (2018a) to frame multistage
stochastic optimization problems with history. This framework allows to write explicitly the
solution of multistage stochastic problems via Bellman recursive equations. Then, we define
formally a state as a reduction of the history in §3.2.2, and describe the compatibility assumptions
existing between the history and the state process. Eventually, we introduce in §3.2.3 two schemes
to describe online policies: the cost-to-go policies and the lookahead policies.

3.2.1. Stochastic dynamic programming with history feedback policies

Consider the time span {0, 1, 2 . . . , T − 1, T}, with horizon T ∈ N∗. At the end of the time
interval [t − 1, t[, an uncertainty variable wt is produced. Then, at the beginning of the time
interval [t, t + 1[, a decision-maker takes a decision ut. The interplay between uncertainty and
decision is as follows

w0 u0 w1 u1 . . . wT−1 uT−1 wT .

We present a mathematical formalism to handle such type of problems.

3.2.1.1. Histories, feedback and flows

We first define the basic and the composite spaces that we will need to formulate multistage
stochastic optimization problems. Then, we introduce a class of solutions called history feedback
and the associated notion of flow.

Histories and history spaces. For each time t = 0, 1, 2 . . . , T−1, the decision ut takes its values in
a measurable set Ut equipped with a σ-field Ut. For each time t = 0, 1, 2 . . . , T , the uncertainty wt
takes its values in a measurable set Wt equipped with a σ-field Wt.

For t = 0, 1, 2 . . . , T , we define the history space Ht equipped with the history field Ht by

Ht = W0 ×
t−1∏
s=0

(Us ×Ws+1) and Ht =W0 ⊗
t−1⊗
s=0

(Us ⊗Ws+1) , t = 0, 1, 2 . . . , T , (3.1)

with the particular case H0 = W0, H0 =W0. The notation
⊗

denotes the usual product between

30

3.2. Multistage stochastic optimization problems

σ-fields. A generic element ht ∈ Ht is called a history :

ht = (w0, (us, ws+1)s=0,...,t−1) = (w0, u0, w1, u1, w2, . . . , ut−2, wt−1, ut−1, wt) ∈ Ht . (3.2a)

We introduce the notations

Wr:t =

t∏
s=r

Ws , 0 ≤ r ≤ t ≤ T , (3.2b)

Ur:t =

t∏
s=r

Us , 0 ≤ r ≤ t ≤ T − 1 , (3.2c)

Hr:t =

t−1∏
s=r−1

(Us ×Ws+1) = Ur−1 ×Wr × · · · × Ut−1 ×Wt , 1 ≤ r ≤ t ≤ T . (3.2d)

Let 0 ≤ r ≤ s ≤ t ≤ T . From a history ht ∈ Ht, we extract the (r :s)-history uncertainty part

[ht]
W
r:s = (wr, . . . , ws) = wr:s ∈Wr:s , 0 ≤ r ≤ s ≤ t , (3.2e)

the (r :s)-history control part (notice that the indices are special)

[ht]
U
r:s = (ur−1, . . . , us−1) = ur−1:s−1 ∈ Ur−1:s−1 , 1 ≤ r ≤ s ≤ t , (3.2f)

and the (r :s)-history

[ht]r:s = (ur−1, wr, . . . , us−1, ws) = hr:s ∈ Hr:s , 1 ≤ r ≤ s ≤ t , (3.2g)

so that we obtain, for 0 ≤ r + 1 ≤ s ≤ t,

ht = (w0, u0, w1, . . . , ur−1, wr︸ ︷︷ ︸
hr

ur, wr+1, . . . , ut−2, wt−1, ut−1, wt︸ ︷︷ ︸
hr+1:t

) = (hr, hr+1:t) . (3.2h)

Feedbacks and flows. Let r and t be given such that 0 ≤ r ≤ t ≤ T .

History feedback policies. When 0 ≤ r ≤ t ≤ T − 1, we define a (r : t)-history feedback policy
as a sequence {γs}s=r,...,t of measurable mappings

γs : (Hs,Hs)→ (Us,Us) . (3.3)

We call Γr:t the set of (r : t)-history feedback policies.

Flows. When 0 ≤ r < t ≤ T , for a (r : t− 1)-history feedback γ = {γs}s=r,...,t−1 ∈ Γr:t−1, we

define the flow Φγr:t by

Φγr:t : Hr ×Wr+1:t → Ht (3.4a)

(hr, wr+1:t) 7→ (hr, γr(hr), wr+1, γr+1(hr, γr(hr), wr+1), wr+2, · · · , ut−1, wt) , (3.4b)

that is,
Φγr:t(hr, wr+1:t) = (hr, ur, wr+1, ur+1, wr+2, . . . , ut−1, wt) , (3.4c)

31

Chapter 3. A template to design online policies

with hs = (hr, ur, wr+1, . . . , us−1, ws) , r < s ≤ t and us = γs(hs) , r < s ≤ t − 1. When
0 ≤ r = t ≤ T , we put

Φγr:r : Hr → Hr , hr 7→ hr . (3.4d)

With this convention, the expression Φγr:t makes sense when 0 ≤ r ≤ t ≤ T for a (r : t− 1)-history
feedback γ = {γs}s=r,...,t−1 ∈ Γr:t−1 (when r = t, no (r :r − 1)-history feedback exists, but none is
needed).

The mapping Φγr:t gives the history at time t as a function of the initial history hr at time r
and of the history feedback policies {γs}s=r,...,t−1 ∈ Γr:t−1. An immediate consequence of this
definition are the two following flow properties:

Φγr:t+1(hr, wr+1:t+1) =
(

Φγr:t(hr, wr+1:t), γt
(
Φγr:t(hr, wr+1:t)

)
, wt+1

)
, 0 ≤ r ≤ t ≤ T − 1 , (3.5a)

Φγr:t(hr, wr+1:t) = Φγr+1:t

(
(hr, γr(hr), wr+1), wr+2:t

)
, 0 ≤ r < t ≤ T . (3.5b)

3.2.1.2. Optimization with stochastic kernels

In the sequel, we suppose we are given a sequence of stochastic kernels. Then, given a history
feedback and a sequence of stochastic kernels from partial histories to uncertainties, we will build
a new sequence of stochastic kernels, but from partial histories to sequences of uncertainties. With
this construction, we are able to introduce a family of optimization problems with stochastic
kernels. Then, we show how such problems can be solved by stochastic dynamic programming.

In what follows, we say that a function is numerical if it takes its values in [−∞,+∞] (also
called extended or extended real-valued function) (Loève, 1977).

Stochastic Kernels.

Definition of stochastic kernels. Let (X,X) and (Y,Y) be two measurable spaces. A stochastic
kernel from (X,X) to (Y,Y) is a mapping ρ : X× Y → [0, 1] such that

• for any Y ∈ Y, ρ(·, Y) is X -measurable;

• for any x ∈ X, ρ(x, ·) is a probability measure on Y.

By a slight abuse of notation, a stochastic kernel (on Y knowing X) is also denoted as a mapping ρ :
X → ∆(Y) from the measurable space (X,X) towards the space ∆(Y) of probability measures
over Y, with the property that the function x ∈ X 7→

∫
Y
ρ(x, dy) is measurable for any Y ∈ Y.

Building new stochastic kernels from history feedback policies and stochastic kernels.

Definition 3.2.1. Let r and t be given such that 0 ≤ r ≤ t ≤ T .

• For 0 ≤ r < t ≤ T , let be

1. a (r : t− 1)-history feedback γ = {γs}s=r,...,t−1 ∈ Γr:t−1,

2. a family {ρs−1:s}r+1≤s≤t of stochastic kernels

ρs−1:s : Hs−1 ×Ws → [0, 1] , s = r + 1, . . . , t , (3.6)

that we note also
ρs−1:s : Hs−1 → ∆(Ws) , s = r + 1, . . . , t . (3.7)

32

3.2. Multistage stochastic optimization problems

We define a stochastic kernel
ργr:t : Hr → ∆(Ht) (3.8a)

by, for any ϕ : Ht → [0,+∞], measurable nonnegative numerical function,1∫
Ht
ϕ(h′r, h

′
r+1:t)ρ

γ
r:t(hr,dh

′
t) =∫

Wr+1:t

ϕ
(
Φγr:t(hr, wr+1:t)

) t∏
s=r+1

ρs−1:s

(
Φγr:s−1(hr, wr+1:s−1),dws

)
. (3.8b)

• When 0 ≤ r = t ≤ T , we define

ργr:r : Hr → ∆(Hr) , ργr:r(hr,dh′r) = δhr (dh
′
r) . (3.8c)

The stochastic kernels ργr:t on Ht, given by (3.8), are of the form

ργr:t(hr,dh
′
t) = ργr:t(hr,dh

′
rdh
′
r+1:t) = δhr (dh

′
r)⊗ %

γ
r:t(hr,dh

′
r+1:t) , (3.9)

where, for each hr ∈ Hr, the probability distribution %γr:t(hr,dh
′
r+1:t) only charges the histories

visited by the flow from r + 1 to t.

Proposition 3.2.2 (Flow property). The family {ργs:t}r≤s≤t of stochastic kernels. given in Defi-
nition 3.2.1, has the flow property, that is, for s < t,

ργs:t(hs,dh
′
t) =

∫
Ws+1

ρs:s+1

(
hs,dws+1

)
ργs+1:t

((
hs, γs(hs), ws+1

)
,dh′t

)
. (3.10)

Family of optimization problems with stochastic kernels. To build a family of optimization
problems over the time span {0, . . . , T − 1}, we need two ingredients:

• a family {ρs−1:s}1≤s≤T of stochastic kernels

ρs−1:s : Hs−1 → ∆(Ws) , s = 1, . . . , T , (3.11)

• a numerical function, playing the role of a cost to be minimized,

j : HT → [0,+∞] , (3.12)

assumed to be nonnegative2 and measurable with respect to the field HT .

We define, for any {γs}s=t,...,T−1 ∈ Γt:T−1,

V γt (ht) =

∫
HT

j(h′T)ργt:T (ht,dh
′
T) , ∀ht ∈ Ht , (3.13)

1We could also consider any ϕ : Ht → R, measurable bounded function, or measurable and uniformly bounded
below function. However, for the sake of simplicity, we will deal in the sequel with measurable nonnegative
numerical functions.

2See Footnote 1. When j(hT) = +∞, this materializes joint constraints between uncertainties and controls.

33

Chapter 3. A template to design online policies

where ργt:T is defined by (3.8). We consider the family of optimization problems, indexed by
t = 0, . . . , T − 1 and parameterized by ht ∈ Ht:

inf
γt:T−1∈Γt:T−1

∫
HT

j(h′T)ργt:T (ht,dh
′
T) . (3.14)

For all t = 0, . . . , T − 1, we define the minimum value of Problem (3.14) by

Vt(ht) = inf
γt:T−1∈Γt:T−1

∫
HT

j(h′T)ργt:T (ht,dh
′
T) (3.15a)

= inf
γt:T−1∈Γt:T−1

V γt (ht) , ∀ht ∈ Ht , (3.15b)

and we also define

VT (hT) = j(hT) , ∀hT ∈ HT . (3.15c)

The last notation is consistent with (3.14) by the definition (3.8c) of the stochastic kernel ργT :T .
The numerical function Vt : Ht → [0,+∞] is called value function at time t.

Resolution by Stochastic Dynamic Programming. Now, we show that the value functions in (3.15)
are Bellman functions, in that they are solution of the Bellman or Dynamic Programming equation.

The following two assumptions will be made throughout the whole chapter.

Assumption 3.2.3 (Measurable function). For all t = 0, . . . , T − 1 and for all nonnegative
measurable numerical function ϕ : Ht+1 → [0,+∞], the numerical function

ht 7→ inf
ut∈Ut

∫
Wt+1

ϕ(ht, ut, wt+1)ρt:t+1(ht, dwt+1) (3.16)

is measurable3 from (Ht,Ht) to [0,+∞].

Assumption 3.2.4 (Measurable selection). For all t = 0, . . . , T − 1, there exists a measurable
selection,4 that is, a measurable mapping

γ]t : (Ht,Ht)→ (Ut,Ut) (3.17a)

such that

γ]t (ht) ∈ arg min
ut∈Ut

∫
Wt+1

Vt+1(ht, ut, wt+1)ρt:t+1(ht,dwt+1) , (3.17b)

where the numerical function Vt+1 is given by (3.15).

Bellman operators. For t = 0, . . . , T , let L0
+(Ht,Ht) be the space of nonnegative measurable

numerical functions over Ht.

Definition 3.2.5. For t = 0, . . . , T − 1, we define the Bellman operator

Bt+1:t : L0
+(Ht+1,Ht+1)→ L0

+(Ht,Ht) (3.18a)

3This is a delicate issue, treated in Bertsekas and Shreve (1996).
4See Bertsekas and Shreve (1996) and Rockafellar and Wets (1998) for a precise definition of a measurable selection.

34

3.2. Multistage stochastic optimization problems

such that, for all ϕ ∈ L0
+(Ht+1,Ht+1) and for all ht ∈ Ht,(

Bt+1:tϕ
)
(ht) = inf

ut∈Ut

∫
Wt+1

ϕ(ht, ut, wt+1)ρt:t+1(ht, dwt+1) . (3.18b)

Since ϕ ∈ L0
+(Ht+1,Ht+1), we have that Bt+1:tϕ is a well defined nonnegative numerical function

and, by Assumption 3.2.3, we know that Bt+1:tϕ is a measurable numerical function, hence belongs
to L0

+(Ht,Ht).

Bellman equation and optimal history feedback policies. We are able to state the main
result of §3.2.1.2, that is, a Dynamic Programming equation without any independence between
the uncertainties.

Theorem 3.2.6. The value functions in (3.15) satisfy the Bellman equation, or (Stochastic)
Dynamic Programming equation

VT = j , (3.19a)

Vt = Bt+1:tVt+1 for t = T−1, . . . , 0 . (3.19b)

Moreover, a solution to any Problem (3.14) — that is, whatever the index t = 0, . . . , T − 1 and
the parameter ht ∈ Ht — is any history feedback γ] =

{
γ]s
}
s=t,...,T−1

defined by the collection of

mappings γ]s in (3.17).

Proof. We refer to Carpentier et al. (2018a) for the proof. �

3.2.2. Compressing history in a state process

It is possible that there exists a state reduction xt = θt(ht) carrying enough information to compute
the Bellman value functions (3.19).

History and reduction mappings. For t ∈ {0, .., T}, let Xt be a measurable set equipped with a
σ-field Xt. We suppose that there exists measurable reduction mappings

θt : (Ht,Ht)→ (Xt,Xt) , ∀t ∈ {0, .., T} , (3.20a)

and measurable dynamics

ft:t+1 : Xt × Ut ×Wt+1 → Xt+1 , ∀t ∈ {0, .., T − 1} , (3.20b)

such that for all t ∈ {0, .., T − 1}

θt+1(ht, ut, wt+1) = ft:t+1

(
θt(ht), ut, wt+1

)
, ∀(ht, ut, wt+1) ∈ Ht+1 . (3.20c)

We define formally the state xt ∈ Xt as

xt = θt(ht) . (3.20d)

Figure 3.1 illustrates the link between the history ht and the state xt across the different time-
steps.

35

Chapter 3. A template to design online policies

xt ∈ Xt

ht ∈ Ht

xt+1 ∈ Xt+1

ht+1 ∈ Ht+1

(ht, ut, wt+1)

ft:t+1(xt, ut, wt+1)

θt θt+1

Figure 3.1.: Linking history ht with the state xt.

Compatibility of states with stochastic kernels. Let {ρt:t+1}t∈{0,..,T−1} be the family of stochas-
tic kernels as in Equation (3.11).

Definition 3.2.7. The state reductions {θt}t∈{0,..,T} in (3.20a) are compatible with the family of
stochastic kernels {ρt:t+1}t∈{0,..,T−1} in (3.11) if there exists reduced stochastic kernels

ρt:t+1 : Xt → ∆(Wt+1) , (3.21)

such that for all t ∈ {0, .., T − 1} we have

ρt:t+1(ht, dwt+1) = ρt:t+1

(
θt(ht), dwt+1

)
, ∀ht ∈ Ht . (3.22)

Reduced Bellman operators. Let {θt}t∈{0,..,T} be a family of state reduction mappings compati-
ble with the stochastic kernels {ρt:t+1}t∈{0,..,T−1}. Then, using (Carpentier et al., 2018a, Theorem
2), we know that there exists, for all time t ∈ {0, .., T − 1}, a reduced Bellman operator

Bt+1:t : L0(Xt+1,Xt+1)→ L0(Xt,Xt) , (3.23)

such that for any real valued function ψt+1 : Xt+1 → R, we have

(Bt+1:tψt+1) ◦ θt+1 = Bt+1:t(ψt+1 ◦ θt+1) , (3.24)

where Bt+1:t is the Bellman operator defined in Equation (3.18).

3.2.3. A template to design online policies

The exact resolution of Bellman equations (3.19) is generally out of reach, as is the exact compu-

tation of the optimal Bellman policies {γ]t}t∈{0,..,T−1} given by Theorem 3.2.6. Practitioners use
Equations (3.17) and (3.19) as templates to design online policies {γt}t∈{0,..,T−1}.

3.2.3.1. Cost-to-go policies

Cost-to-go policies use Equation (3.17) as a template to compute a decision ut at time t. At
time t ∈ {0, .., T − 1}, cost-to-go policies write as solution of a one-stage problem:

γt(ht) ∈ arg min
ut∈Ut

∫
Wt+1

Ṽt+1(ht, ut, wt+1)ρ̃t:t+1(ht, dwt+1) . (3.25)

Cost-to-go policies have two ingredients: a cost-to-go Ṽt+1 : Ht+1 → R and a stochastic ker-
nel ρ̃t:t+1 : Ht → ∆(Wt+1).

36

3.2. Multistage stochastic optimization problems

3.2.3.2. Lookahead policies

Whereas cost-to-go policies take inspiration from Equation (3.17), lookahead policies use directly
Equation (3.15) as a template. Lookahead policies write as solution of a multistage problem:

γt(ht) ∈ arg min
ut∈Ũt

min
γ̃t+1:T̃−1

∫
HT̃

ṼT̃ (hT̃)ρ̃γ̃
t:T̃

(ht,dhT̃)

s.t. hT̃ = (ht, ut, wt+1, γ̃t+1(ht+1), wt+2, · · · , γ̃t+1(hT̃−1), wT̃) ,

γ̃t+1:T̃−1 ∈ Γ̃t+1:T̃−1 .

(3.26)

We detail hereafter the different ingredients appearing in Equation (3.26). The procedure is as
follows.

• Set an horizon T̃ ∈ {t+ 1, .., T}.

• Set a future cost-to-go ṼT̃ : HT̃ → R. We note that by setting T̃ = T and ṼT̃ = j, we recover
the original setting introduced in (3.15).

• Set two sequences of σ-fields:

1. a sequence of noise fields {W̃s}s∈{t+1,..,T̃};

2. a sequence of lookahead fields {H̃s}s∈{t+1,..,T̃−1}.

By definition, stochastic kernels (3.8) depend on two σ-fields: the σ-field that restrain the
measurability w.r.t. the first argument (here corresponding to the history ht) and the σ-field
defining the input space of the second argument (that is, the sets we are able to measure
with the stochastic kernel). Thus, we are able to use the two sequences of lookahead fields
and noise fields to define accordingly each stochastic kernel ρ̃s:s+1 in ρ̃γ

t:T̃
(3.8b), such as

ρ̃s:s+1 : Hs × W̃s+1 → [0, 1] , ∀s ∈ {t, .., T̃ − 1} , (3.27)

where, for all W ∈ W̃s+1, ρ̃s:s+1(·,W) is measurable w.r.t. H̃s, and for all hs ∈ Hs,
ρ̃s:s+1(hs, ·) is a probability measure on W̃s+1.

• Set a space of admissible history feedback policies Γ̃t+1:T̃−1 as

Γ̃t+1:T̃−1 =
{

(γ̃t+1, · · · , γ̃T̃−1) | γ̃s : (Hs, Ĩs)→ (Us,Us) , ∀s ∈ {t+ 1, .., T̃ − 1}
}
, (3.28)

where {Ĩs}s∈{t+1,..,T̃−1} is a sequence of information σ-fields. To ensure that the admissible

history feedbacks γs in Γ̃t+1:T̃−1 are compatible with the stochastic kernels (3.27), we impose
that

Ĩs ⊂ H̃s , ∀s ∈ {t+ 1, .., T̃ − 1} . (3.29)

Discussion

We introduced two classes of online policies: the cost-to-go based policies and the lookahead policies.
One salient difference between these two templates is the time span considered. The distinction
between cost-to-go policies and lookahead is similar to the distinction between explicit cost-to-go
approximation and implicit cost-to-go approximation introduced in Bertsekas (2005b).

37

Chapter 3. A template to design online policies

3.3. A template for lookahead policies

In Sect. 3.2, we have presented an overview of the different ingredients required to solve stochastic
optimization problems and have introduced two templates to design online policies: the class of
cost-to-go policies and the class of lookahead policies. We focus in this section on lookahead policies.
We first depict the general structure of lookahead policies in §3.3.1, and then frame three classical
algorithms (Model Predictive Control, Open-Loop Feedback Control and Stochastic Programming)
with the lookahead template in §3.3.2.

3.3.1. Design of lookahead policies

We detailed in §3.2.3 the four ingredients of lookahead policies.

1. A horizon T̃ ∈ {t+ 1, .., T}.

2. A final cost-to-go ṼT̃ : HT̃ → R measurable w.r.t. H̃T̃ .

3. A sequence of σ-fields {W̃s}s∈{t+1,..,T̃}: and a sequence of lookahead fields {H̃s}s∈{t+1,..,T̃}
parameterizing the measurability of the stochastic kernels {ρ̃s:s+1}s∈{t+1,..,T̃}

ρ̃s:s+1 : Hs × W̃s+1 → [0, 1] , s ∈ {t+ 1, .., T̃ − 1} , (3.30)

such that for all s ∈ {t+ 1, .., T̃ − 1} and W ∈ W̃s+1, hs → ρ̃s:s+1(hs,W) is H̃s-measurable.

4. A sequence of information fields Ĩt+1:T̃ = {Ĩs}s∈{t+1,..,T̃−1} parameterizing the admissible

history feedbacks
γs : (Hs, Ĩs)→ (Us,Us) , s = t+ 1, · · · , T̃ − 1 . (3.31)

We now discuss these four ingredients more in detail.

Choosing the horizon. The horizon T̃ belongs to {t+ 1, .., T}.

Choosing the stochastic kernels family. The sequence of lookahead fields H̃t+1:T̃ and the asso-
ciated stochastic kernels {ρ̃s:s+1}s∈{t+1,..,T̃} models the views of the decision-maker regarding the

uncertainties after state t+ 1. We present hereunder three classes of stochastic kernels.

Constant noise process. The noise fields write

W̃s = {∅, σ({ws}),Ws} , ∀s ∈ {t+ 1, .., T̃} . (3.32a)

and the lookahead fields {H̃s}s∈{t+1,..,T̃−1} write accordingly

H̃cs =

s−1⊗
r=t

{∅,Ur} ⊗ W̃r+1 , ∀s ∈ {t+ 1, .., T̃} . (3.32b)

By doing so, we disregard information from previous controls because we only consider the
control σ-fields {∅,Ur}. The stochastic kernels defined with the noise fields (3.32) are able
to attach a probability only to the singletons {ws}s∈{t+1,..,T̃−1}.

Finite scenario tree. This class extends the constant case by considering finite noise fields

W̃s = {∅, σ({w1
s}, · · · , {wNs }),Ws} , ∀s ∈ {t+ 1, .., T̃} , (3.33a)

38

3.3. A template for lookahead policies

from which we build the corresponding lookahead fields

H̃ds =

s−1⊗
r=t

{∅,Ur} ⊗ W̃r+1 , ∀s ∈ {t+ 1, .., T̃} . (3.33b)

The lookahead fields (3.33b) disregard information from previous controls.

Generic noise scenario. In this case, the noise fields W̃s are not necessarily finite and can encode
any information structure for the noise. The lookahead fields write

H̃ws =

s−1⊗
r=t

{∅,Ur} ⊗Wr+1 , ∀s ∈ {t+ 1, .., T̃} . (3.34)

Again, we disregard in (3.34) information from previous decisions.

Choosing the set of policies. Let W̃t+1, · · · , W̃T̃ be noise fields and H̃t+1, · · · , H̃T̃ lookahead

fields. We introduce the information fields Ĩt+1, · · · , ĨT̃−1 to define admissible history feedback
policies. We introduce two different information structures.

• Open-loop policies handle as information fields:

Ĩs =

s−1⊗
r=t

{∅,Ur} ⊗
s⊗

r=t+1

{∅,Wr} , ∀s ∈ {t+ 1, .., T̃} . (3.35)

Any policy γ̃s : (Hs, Ĩs)→ (Us,Us) is a constant policy.

• Closed-loop policies take advantage of all information available at time t:

Ĩs = H̃s , ∀s ∈ {t+ 1, .., T̃} . (3.36)

Choosing a final cost-to-go. Lookahead policies deal with any final cost-to-go ṼT̃ : HT̃ → R.

3.3.2. Classical lookahead methods

The design of lookahead policies depend on two ingredients: the σ-fields H̃t+1:T̃ used to restrain

the stochastic kernels ρ̃s:s+1 in Equation (3.30) and the σ-fields Ĩt+1:T̃−1 used to restrain the
measurability of policies γt+1:T̃−1 in Equation (3.31).

We enumerate different combinations of stochastic kernels and policies spaces in Table 3.1. We
discuss further the different possible choices detailing Model Predictive Control (MPC), Open-loop
Feedback Control (OLFC) and Stochastic Programming (SP) in the sequel.

Open-loop Closed-loop
H
HHH

HHH̃s
Ĩs ⊗s−1

r=t{∅,Ur} ⊗
⊗s
r=t+1{∅,Wr} H̃s

Constant (3.32) (
⊗s−1
r=t{∅,Ur} ⊗ {∅, σ({wr+1}),Wr+1}) MPC ∅

Scenario (3.33b) (
⊗s−1
r=t{∅,Ur} ⊗ W̃r+1) OLFC SP

Generic (3.34) (
⊗s−1
r=t{∅,Ur} ⊗Wr) OLFC ?

Table 3.1.: Classification of online policies as function of stochastic kernels and policy spaces

39

Chapter 3. A template to design online policies

3.3.2.1. Model Predictive Control

Model Predictive Control (MPC) (see Garcia et al. (1989) and Bertsekas (2005b)) is a well-known
algorithm that tackles uncertainties by using deterministic forecasts.

Ingredients.

• Horizon. T̃ ∈ {t+ 1, .., T} is given.

• Stochastic kernels. MPC selects the constant information noise and lookahead fields (3.32):

H̃cs =

s−1⊗
r=t

{∅,Ur} ⊗
s⊗

r=t+1

{
∅, σ({wr}),Wr

}
, ∀s ∈ {t+ 1, .., T̃} .

Then, MPC takes stochastic kernels that are Dirac measures on a given value ws+1 ∈Ws+1:

ρ̃s:s+1(hs, ·) = δws+1
(·) ,∀s ∈ {t, .., T̃ − 1} . (3.37)

• Policy space. We use open-loop policies (3.35) γ̃s : (Hs, Ĩs)→ (Us,Us), where

Ĩs =

s−1⊗
r=t+1

{∅,Ur} ⊗
s⊗

r=t+1

{∅,Wr} , ∀s ∈ {t+ 1, .., T̃} , (3.38)

so that the history feedback policies can be identified with constant values {us}s=t+1,...,T̃ .

• Final cost. The final cost is given.

We depict the information scheme used by MPC in Figure 3.2.

u0 u1 u2 ut ut+1 ut+2 uT̃−1 xT̃

w1 w2 wt+1 wt+2 wT

Past Future

ht

Figure 3.2.: MPC envisages the future with a deterministic forecast

Online problem formulation. Problem (3.26) rewrites

γt(ht) ∈ arg min
ut∈Ut

min
ut+1:T̃−1∈Ut+1:T̃−1

ṼT̃ (ht, ut, wt+1, . . . , uT̃−1, wT̃) . (3.39)

Problem (3.39) is a deterministic optimization problem, possibly solvable by proper mathemat-
ical programming methods.

3.3.2.2. Open Loop Feedback Control

Open Loop Feedback Control (OLFC) (see (Bertsekas, 2012, Chapter 6)) is another well-known
control method. We detail hereby the features of OLFC.

40

3.3. A template for lookahead policies

Ingredients

• Horizon. T̃ ∈ {t+ 1, .., T} is given.

• Stochastic kernels. OLFC selects generic noise and lookahead fields (3.34), with

H̃ws =

s−1⊗
r=t

{∅,Ur} ⊗ W̃r , ∀s ∈ {t+ 1, .., T̃} .

The stochastic kernels {ρ̃s:s+1}s∈{t+1,..,T̃−1} do not depend on previous decisions. There

exist stochastic kernels ρs:s+1 : Wt+1:s × W̃s → [0, 1] such that

ρ̃s:s+1(hs, ·) = ρs:s+1([hs]
W
t+1:s, ·) , ∀s ∈ {t+ 1, .., T̃ − 1} , (3.40)

where [hs]
W
t+1:s is the history uncertainty part defined in Equation (3.2e):

[hs]
W
t+1:s = (wt+1, · · · , ws) .

• Policy space. OLFC uses open-loop policies (3.35), that is, γ̃s : (Hs, Ĩs)→ (Us,Us) with

Ĩs =

s−1⊗
r=t+1

{∅,Ur} ⊗
s⊗

r=t+1

{∅,Wr} , ∀s ∈ {t+ 1, .., T̃} ,

so that any history feedback policies γ̃t+1, · · · , γ̃T̃−1 can be identified with a sequence of
constant values {us}s∈{t+1,..,T̃−1}.

• Final cost. The final cost is given.

We depict OLFC information scheme in Figure 3.3.

u0 u1 u2 ut

ut+1

ut+2

w1 w2

Past Future

ht

Figure 3.3.: OLFC depicts the future as a collection of scenarios (in this picture, the kernels are
discrete so that the noise structure is a tree)

Online problem formulation. Problem (3.26) becomes

γt(ht) ∈ arg min
ut∈Ut

min
ut+1:T̃−1∈Ut+1:T̃−1

∫
Wt+1:T̃

ṼT̃ (ht, ut, wt+1, . . . , uT̃−1, wT̃) ρ̃
ut+1:T̃−1

t+1:T̃
(ht, dwt+1:T̃) .

(3.41)

41

Chapter 3. A template to design online policies

3.3.2.3. Stochastic Programming

Stochastic Programming (Shapiro et al., 2009) makes use of finite partitions to model the noise

fields {W̃s}s∈{t+1,..,T̃}. Then, it introduces stochastic kernels compatible with the finite partitions,

thus enconding a scenario tree. A decision is attached to every node of the tree. The procedure
has the following features.

Ingredients

• Horizon. T̃ ∈ {t+ 1, .., T} is given.

• Stochastic kernels. Stochastic Programming selects finite noise and lookahead fields (3.33b),
with

H̃ds =

s−1⊗
r=t

{∅,Ur} ⊗ W̃t+1:s , ∀s ∈ {t+ 1, .., T̃} .

Every stochastic kernel has discrete support depending on previous noises:

ρ̃s:s+1(hs, ·) =

S∑
i=1

πi([hs]
W
t+1:s)δwi([hs]Wt+1:s)

(·) , (3.42)

where [hs]
W
t+1:s is the history uncertainty part defined in Equation (3.2e):

[hs]
W
t+1:s = (wt+1, · · · , ws) .

• Policy space. Stochastic Programming considers closed-loop policies as in Equation (3.36), a
that is,

Ĩs = H̃ds , ∀s ∈ {t+ 1, .., T̃ − 1} . (3.43)

Thus, the policies depend only on previous uncertainties.

• Final cost. The final cost is given.

We depict Stochastic Programming information structure in Figure 3.4.

u0 u1 u2 ut
u2
t+1

u1
t+1

u3
t+1

...

...

...

...

...

...

w1 w2

Past Future

ht

Figure 3.4.: Stochastic Programming represents the future as an arborescent tree with a decision
at each node.

42

3.4. A template for cost-to-go policies

Discussion

We have detailed in this section a general structure for lookahead policies and have presented
Stochastic Programming method as a generalization of Open-Loop Feedback Control, itself a
generalization of the Model Predictive Control algorithm.

Lookahead algorithms correspond to the implicit cost-to-go approximation presented in Bertsekas
(2005b), where the future cost Ṽt+1 is estimated online by restricting the set of admissible policies
γs. Most algorithms that rely on forecasts are lookahead algorithms. For instance, we are able to
frame the Stochastic Model Predictive Control algorithm either as a Open-Loop Feedback Control
or as Stochastic Programming method, depending on the information structures that define the
set of future policies.

In the following section, we will focus on the cost-to-go policies, corresponding to the explicit
cost-to-go approximation of Bertsekas (2005b).

3.4. A template for cost-to-go policies

We focus in this section on cost-to-go policies (3.25). We first describe the generic template of
cost-to-go policies in §3.4.1 and then frame in §3.4.2 three classical algorithms (Stochastic Dynamic
Programming, Stochastic Dual Dynamic Programming and Approximate Dynamic Programming)
with the template of cost-to-go policies.

3.4.1. A general sketch to design cost-to-go policies

We saw in §3.2.3 that the two ingredients of cost-to-go policies are:

1. a stochastic kernel ρ̃t:t+1 : Ht → ∆(Wt+1);

2. a cost-to-go Ṽt+1 : Ht+1 → R.

The first ingredient has been discussed in the description of lookahead policies (see §3.3), and the
procedure to design the stochastic kernel is similar for cost-to-go policies. However, cost-to-go
policies require an explicit cost-to-go Ṽt+1 : Ht+1 → R as input.

In Bertsekas (2005b), two solutions are investigated to compute explicitly such a family of cost-

to-go {Ṽt+1}t∈{0,..,T}:

a) Compute online cost-to-go with a parametric approximation tuned by some heuristic or
systematic methods. Such methods encompass those used in the reinforcement learning
community.

b) Solve offline backward recursive equations mimicking the Bellman equations (3.19), that is,

choosing Bellman operators B̃t+1:t such that

Ṽt = B̃t+1:tṼt+1 , ∀ t = T − 1, · · · , 0 , (3.44)

with a given ṼT . Then, we plug the cost-to-go Ṽt+1 given by (3.44) in Equation (3.25).

We choose here to focus on the second method. The choice of the pseudo-Bellman operators
B̃t+1:t in the resolution of Equation (3.44) frames the cost-to-go algorithm.

43

Chapter 3. A template to design online policies

3.4.2. Classical cost-to-go methods

We focus here on the resolution of the recursive Equation (3.44) with proper operators B̃t+1:t.
We will show that we are able to frame well-known algorithms (Stochastic Dynamic Program-
ming, Stochastic Dual Dynamic Programming and Approximate Dynamic Programming) only by

describing their corresponding operators B̃t+1:t.

3.4.2.1. Obtaining Bellman-like equations for cost-to-go

The design of the operator B̃t+1:t is done in three steps.

Choosing offline stochastic kernels. First, we choose offline stochastic kernels {ρ̃oft:t+1}t∈{0,..,T−1}
such that

ρ̃oft:t+1 : Ht → ∆(Wt+1) , ∀t ∈ {0, .., T − 1} . (3.45)

Choosing the Bellman backward operator. Then, we use the stochastic kernels in Equation (3.45)

to define the corresponding offline Bellman operators Boft+1:t : L0(Ht+1,Ht+1)→ L0(Ht,Ht)
defined, for all t, for all ϕ ∈ L0(Ht+1,Ht+1) and for all ht ∈ Ht, by:

(
Boft+1:tϕ

)
(ht) = inf

ut∈Ut

∫
Wt+1

ϕ(ht, ut, wt+1)ρ̃oft:t+1(ht, dwt+1) . (3.46)

We note that the functions defined recursively as V oft = Boft+1:tV
of
t+1 satisfy the Bellman

recursive equations (3.19) associated to the stochastic kernels {ρ̃oft:t+1}t∈{0,..,T−1}. However,

the numerical computation of the offline Bellman functions {V oft }t∈{0,..,T} is generally out
of reach.

Choosing an operator domain. To ease the resolution of the backward recursive equations (3.44),
we introduce the operator domain

Ṽt ⊂ L0(Ht,Ht) , ∀t ∈ {0, .., T − 1} . (3.47)

and aim to compute a sequence of value functions {Ṽt}t∈{0,..,T} such that, for all t ∈ {0, .., T},
Vt ∈ Ṽt. To do so, we look for Bellman operators in (3.44) such that

B̃t+1:t : Ṽt+1 → Ṽt . (3.48)

Then, we are able to compute the cost-to-go {Ṽt}t∈{0,..,T} in a backward manner with the
recursive equations (3.44).

We note that the operator domain Ṽt is often generated as a finite linear combination of basis
functions Φ1, · · · ,ΦN , such as

Ṽt = span(Φ1, · · · ,ΦN) =
{ N∑
i=1

γiΦi | γi ∈ R , N ∈ N?
}
. (3.49)

3.4.2.2. Stochastic Dynamic Programming

In the algorithmic implementation of Stochastic Dynamic Programming (SDP) (see Bertsekas
(2012)-Puterman (1994)) one usually approximates the offline Bellman operators (3.46) with step
functions. If we denote by H1, · · · , HN the subsets (atoms) of a partition of the space Ht+1, the

44

3.4. A template for cost-to-go policies

operator domain Ṽt+1 (3.47) writes

Ṽt+1 =
{
V : Ht+1 → R | ∃(γk)k∈{1,..,N} , γk ∈ R , s.t. V =

N∑
k=1

γk1Hk
}
, (3.50)

that is,
Ṽt+1 = span(1H1

, · · · ,1HN) ,

where 1Hk is the indicator function of the subset Hk:

1Hk(x) =

{
1 if x ∈ Hk

0 otherwise.
(3.51)

Then, the SDP algorithm computes backward a set of value functions using a discretization of
the history space Ht with a grid {hit}i∈{1,..,N} ∈ HNt with size N ∈ N?. Its procedure is as follows.

• We define the trace operator

TNt : L0
t (Ht,Ht)→ HNt × RN , (3.52)

as the operator that associates the finite dimensional representation {(hit, φt(hit))}i∈{1,..,N}
of a function φt ∈ L0(Ht,Ht). Stochastic Dynamic Programming apply the trace operator

TNt to the offline Bellman operator Boft+1:t (3.46).

• We define the regression-interpolation operator

RṼt
: HNt × RN → Ṽt (3.53)

as the operator that interpolates the values in the grid with a function in the operator
domain Ṽt.

We compute Ṽt in (3.44) as

Ṽt = (RṼt
◦ TNt ◦ B

of
t+1:t)Ṽt+1 . (3.54)

In Equation (3.44), the backward operators B̃t+1:t : Ṽt+1 → Ṽt are given by

B̃t+1:t = RṼt
◦ TNt ◦ B

of
t+1:t , ∀t ∈ {0, .., T − 1} . (3.55)

3.4.2.3. Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) mixes Stochastic Dynamic Programming with
convex analysis. The idea behind SDDP was first introduced in Van Slyke and Wets (1969) and
extended further in Pereira and Pinto (1991). We refer to Shapiro (2011) for a recent overview of
the algorithm. We detail hereafter the SDDP procedure in the history framework.

SDDP takes advantage of a well known result in convex analysis that allows to represent any
convex l.s.c. function as a supremum of affine functions. We suppose that the future cost-to-go
Ṽt+1 in (3.44) is convex w.r.t. ht+1. Then, SDDP approximates iteratively the offline Bellman
operators (3.46) by a supremum of affine functions. The operator domain (3.47) writes

Ṽt+1 =
{
V : Ht+1 → R | ∃(λi, βi)i∈{1,..,N} , such that V (h) = max

i=1···N

〈
λi , h

〉
+ βi

}
. (3.56)

SDDP computes the approximation of the Bellman value functions defined in (3.44) iteratively,
by running an alternation of forward and backward passes as follows. At iteration k, we suppose

45

Chapter 3. A template to design online policies

given a family of value functions {Ṽ (k)
t }t∈{0,..,T}. Then, SDDP refines the value functions as

follows:

• Forward pass: Let w(k) = (w
(k)
0 , · · · , w(k)

T) ∈ W0 × · · · ×WT be a noise scenario. SDDP

computes a history trajectory h(k) = (h
(k)
0 , · · · , h(k)

T) along the scenario w(k) by using the
cost-to-go policies corresponding to Equation (3.25). For time t = 0, · · · , T − 1, do

γ
(k)
t (h

(k)
t) ∈ arg min

ut∈Ũt

∫
Wt+1

Ṽ
(k)
t+1(h

(k)
t , ut, wt+1)ρ̃t:t+1(h

(k)
t , dwt+1) . (3.57)

and set h
(k)
t+1 = (h

(k)
t , γ

(k)
t (h

(k)
t), w

(k)
t+1).

• Backward pass: Then, SDDP refines the approximation along the history trajectory h(k), in

a backward manner. Let Ṽ
(k+1)
T = K. For time t = T − 1, · · · , 0, the algorithm computes

a new affine function at point hkt , being a minorant of Boft+1:t(Ṽ
(k+1)
t+1) with a linearization

operator St, and set

Ṽ
(k+1)
t = max

{
Ṽ

(k)
t , St ◦ Boft+1:t(Ṽ

(k+1)
t+1)(hkt)

}
. (3.58)

We observe that at iteration k, the update of the value function (3.58) writes as a maximum of the

previous value function and an affine function. Thus, the value function Ṽ
(k+1)
t remains piecewise

linear, provided that the previous value function Ṽ
(k)
t was piecewise linear.

3.4.2.4. Approximate Dynamic Programming

Approximate Dynamic Programming (ADP) is an algorithm that approximates the cost-to-go by
a sequence of basis functions. We refer to Bertsekas and Tsitsiklis (1996) and Powell (2007) for
extensive overviews of ADP. We describe hereafter ADP in the history framework.

Approximate Dynamic Programming encodes the offline Bellman operator Boft+1:t in Equation (3.46)

by a parametrized operator domain Ṽt (3.47) spanned by a functional basis φ1, · · · , φN :

Ṽt+1 = span{φ1
t+1, · · · , φNt+1} . (3.59)

The functions φkt+1 : Ht+1 → R form a finite basis (e.g. spline or quadratic functions).

Then, cost-to-go are computed backward, in the following manner:

Ṽt = projṼt
◦ Boft+1:t(Ṽt+1) , (3.60)

with, for any φ ∈ L0(Ht,Ht),

projṼt
(φ) ∈ arg min

f∈Ṽt

‖f − φ‖2 . (3.61)

The projection computes parameters {γkt }k∈{1,..,N} parameterizing the cost-to-go Ṽt in the op-

erator domain Ṽt = span{φ1
t , · · · , φNt } as

Ṽt(ht) =

N∑
k=1

γkt φ
k
t (ht) , ∀ht ∈ Ht . (3.62)

46

3.5. Assessment of online policies

In Equation (3.44), the backward operators B̃t+1:t : Ṽt+1 → Ṽt are such that

B̃t+1:t = projṼt
◦ Boft+1:t . (3.63)

3.4.2.5. Difference between offline algorithms

The only difference between the algorithms that compute a set of cost-to-go offline are the backward
operators B̃t used. The different choices are summarized in Table 3.2.

Algo B̃t+1:t

SDP RṼt
◦ TNt ◦ B

of
t+1:t Dicretize then interpolate

SDDP sup ◦ SN
t ◦ B

of
t+1:t Linearize then take supremum

ADP projṼt
◦ Boft+1:t Project directly

Table 3.2.: The approximate Bellman operators of SDP, SDDP and ADP.

Extension to the state case. Using the reduced Bellman operators {Bt+1:t}t∈{0,..,T−1} defined
in Equation (3.24), we are able to adapt the different cost-to-go algorithms detailed in §3.4.2 to
the state case.

By using the notation introduced in §3.2.2, the offline Bellman operators (3.46) rewrite, for any
φ ∈ L0(Xt+1,Xt+1), for all xt ∈ Xt, as

(
Boft+1:tϕ

)
(xt) = inf

ut∈Ut

∫
Wt+1

ϕ(ft:t+1(xt, ut, wt+1))ρoft:t+1(xt, dwt+1) . (3.64)

Then, by defining operator domains adapted to the state functional classes

Vt ⊂ L0(Xt,Xt) , ∀t ∈ {0, .., T} , (3.65)

we are able to adapt the different algorithms presented in §3.4.2 in a straightforward manner.

3.5. Assessment of online policies

Policies γt : Ht → Ut are mappings that take as argument, at each time t, the history ht ∈ Ht
to return a decision ut ∈ Ut. Depending on the ingredients chosen as explained in §3.2.3, the
performances of policies differ. We detail hereafter a procedure to compare the performances of
different policies.

3.5.1. Simulating the flow induced by a policy along a scenario

Let γ = (γ0, · · · , γT−1) ∈ Γ0:T−1 be a family of history feedback policies, and ws = (ws0, · · · , wsT) ∈
W0 × · · · ×WT be an uncertainty scenario.

The simulator computes stage by stage the value of the flow Φγ0:T (cf Equation (3.4)) along
scenario ws:

Φγ0:T (ws0, · · · , wsT) =
(
ws0, γ0(ws0), ws1, γ(ws0, γ0(ws0), ws1), · · · , γT−1(hsT−1), wsT

)
= hsT ∈ HT . (3.66)

Then, the cost of policy γ along scenario ws is

j(hsT) = j ◦ Φγ0:T (ws) , (3.67)

47

Chapter 3. A template to design online policies

Algorithm 3.1: Simulation

Data: Policy γ, assessment scenario ws

Result: Flow Φγ0:T (ws)
hs0 = ws0 ;
for t ∈ {0, .., T − 1} do

ust = γt(h
s
t) ;

hst+1 = (hst , u
s
t , w

s
t+1);

end
Return the flow (ws0, u

s
0, w

s
1, u

s
1, · · · , usT−1, w

s
T)

where j : HT → R is the cost to minimize, as in Equation (3.12).

3.5.2. Comparing policies

Once the flow of a given policy γ computed, we can attach a cost to the policy γ that allows to
compare it with other policies.

3.5.2.1. Assessment of a single policy

By computing the flow Φγ0:T for a given policy γ along a single scenario ws, we are able to associate
a cost j ◦ Φγ0:T (ws).

By iterating the procedure along multiple scenarios w1, · · · , wN we are able to obtain different
samples j(h1

T), · · · , j(hNT) usable to estimate the expected value of the policy costs. We describe
the assessment procedure in Algorithm 3.2.

Algorithm 3.2: Assessment of a policy γ with N scenarios

Data: Policy γ, assessment scenarios w1, · · · , wN
Result: Samples

(
j(h1

T), · · · , j(hNT)
)

for ws ∈ (w1, · · · , wN) do
j(hsT) = j ◦ Φγ0:T (ws);

end

The assessment procedure yields a cost vector (j(h1
T), · · · , j(hNT)) ∈ RN . With this, we can

assess the policy γ with different metrics µN : RN → R — e.g. the average, the median, the
variance, etc — to obtain a real value characterizing the performance of the policy:

µN
(
j(h1

T), · · · , j(hNT)
)
∈ R .

Law of Large Number and Central Limit Theorem. We now consider the special case where µN

is the sample average

µN (x1, · · · , xN) =
1

N

N∑
i=1

xi . (3.68)

As the number of simulation N grows, we get closer and closer to the expected value of the
policy’s performance by using the law of large numbers. The procedure is as follows.

1. Draw a large number N of independent scenarios ws.

48

3.6. Discussion

2. Compute the sample cost average

m =
1

N

N∑
s=0

j ◦ Φγ0:T (ws) , (3.69)

and the sample cost standard deviation

σ2 =
1

N − 1

N∑
s=0

(j ◦ Φγ0:T (ws)−m)2 . (3.70)

3. Use the Central Limit Theorem to obtain a confidence interval for E
[
j ◦ Φγ0:T (HT)

]
.

Figure 3.5 describes the whole assessment procedure applied to a given policy γ.

γ0:T−1 ∈ Γ0:T−1

ws ∈W

j ◦ Φγ0:T (ws) ∈ R

(w1, · · · , wN) ∈WN

µ
(
(j ◦ Φγ0:T (ws))s=1,··· ,N

)
∈ R

Figure 3.5.: Assessment procedure of a policy with N scenarios

3.5.2.2. Comparing different policies

We are able to assess S different policies γ1, · · · , γS along the same set of scenarios w1, · · · , wN
and compare them altogether with the same metrics µN . The best policy is the policy that yields
the minimum cost in the vector(

µN
[
(j ◦ Φγ

s

0:T−1(wi))i∈{1,..,N}
])
s∈{1,..,S}

. (3.71)

Usually, the decision maker uses a sample Wopt = {w1
opt, · · · , wMopt} of uncertainty scenarios to

design the online policies (for instance to infer the probability laws of the future uncertainties).
We call the scenarios in Wopt optimization scenarios, whereas the scenarios Wass = {w1, · · · , wN}
used during the assessment procedure in §3.5.2.1 are called assessment scenarios.

To ensure that the comparison of different policies remains fair, we must ensure that the set of
optimization scenarios is distinct from the set of assessment scenarios. The assessment procedure
is out-of-sample as soon as

Wopt ∩Wass = ∅ . (3.72)

3.6. Discussion

We have presented in this chapter two classes of online history feedback policies: the lookahead
policies in Sect. 3.3 and the cost-to-go policies in Sect. 3.4. Then, we have described in Sect. 3.5
a method to compare the performances of different history feedback policies. We sketch hereafter
two other classifications — the classifications introduced in Bertsekas (2005b) and in Powell (2014)
— and compare them with our own taxonomy. We note that our classification is written with a
generic information structure depending on history, whereas the two other classifications rely on a
state process.

49

Chapter 3. A template to design online policies

A comparison with Bertsekas’ classification. In Bertsekas (2005b), the author introduced a
unifying suboptimal control framework, in which rollout algorithms and Model Predictive Control
stand as a special case of Approximate Dynamic Programming methods. The author framed
existing algorithms in two main classes as follows.

• Explicit cost-to-go methods compute offline a sequence of cost-to-go {Ṽt} and solve online a
problem similar to (3.25). The author outlines two main classes of algorithms among these
methods:

– Get cost-to-go Ṽt by applying Dynamic Programming on a simpler problem. This is
equivalent to define an operator B̃t+1:t mimicking the Bellman operators of the original
problem.

– Use a parametric approximation to approximate the cost-to-go Ṽt, then tune the ap-
proximation by some systematic methods.

• Implicit cost-to-go methods compute online a cost-to-go by solving a problem similar to (3.26).
The author distinguishes three classes of algorithms:

– Rollout algorithm computes Problem (3.26) by using suboptimal/heuristic policies γt+1, · · · , γT̃−1

up to a given horizon T̃ .

– Open-loop feedback control (OLFC) solves Problem (3.26) with open-loop policies.

– Model Predictive Control (MPC) is a variant of OLFC where the future scenario is
deterministic. MPC is equivalent to use constant stochastic kernels in Problem (3.26).

A comparison with Powell’s classification. We exhibit hereafter the link existing between the
cost-to-go and lookahead policies we introduced earlier and the classification introduced by Powell
(2014).

Powell stated that there exists four classes of algorithms to design online policies. We frame
these four classes as cost-to-go methods or lookahead methods.

1. The policy functions approximation (PFA) directly parameterizes the online policy γt with
a fixed rule or a parametric model depending on history. For instance, γt may encode a PI
discrete controller or a (s,S) policy.

2. The cost function approximation (CFA) minimizes a parametrized cost as follows

γt(ht) ∈ arg min
ut∈Ũt

∫
Wt+1

(∑
f∈Ṽ

γfΦft (ht, ut, wt+1)
)
ρt+1(ht, dwt+1) , (3.73)

with {Φf}f∈Ṽ a set of basis functions. That corresponds to the Approximate Dynamic
Programming cost-to-go policies, which use a parametric approximation of the cost-to-go
Ṽt+1 : Ht+1 → R, as described in §3.4.2.4.

3. The value function approximation (VFA) approximates the cost-to-go Ṽt+1 and defines the
corresponding online policies as

γt(ht) ∈ arg min
ut∈Ũt

∫
Wt+1

Ṽt+1(ht+1)ρt+1(ht, dwt+1) . (3.74)

This is exactly the template of cost-to-go policies introduced in Sect. 3.4.

4. The lookahead policies optimize a multistage problem over a given horizon T̃ , yielding exactly
the template of the lookahead policies described in Sect. 3.3.

50

3.6. Discussion

We recover Powell’s framework, with the exception of the policy function approximations scheme.
Powell described also different ingredients to frame online policies. We hereby establish a link

between his ingredients and the parameters introduced earlier in Sect. 3.2.3:

• Limiting the horizon: that is equivalent to set a horizon T̃ ≤ T .

• State aggregation: that equate to choose properly a reduction mapping θt, as in §3.2.2.

• Outcome aggregation or sampling: that corresponds to a given parameterization of the
stochastic kernels ρ̃t+1(ht, ·).

51

Chapter 4.

Background on the modelling of energy
flows and stocks in microgrids

Contents

4.1. Introduction . 53

4.2. Modelling uncertainties . 54

4.2.1. Weather conditions as outer uncertainties 54

4.2.2. Energy demands as inner uncertainties 54

4.3. Modelling production . 57

4.3.1. Combined heat and power generator 57

4.3.2. Solar panel . 57

4.3.3. Thermal boiler . 58

4.4. Modelling storage . 58

4.4.1. Electrical battery . 58

4.4.2. Hot water tank . 59

4.4.3. Thermal envelope . 59

4.5. Discussion . 61

4.5.1. R6C2 model . 63

4.5.2. Specification of Stirling engine . 63

4.5.3. Models of solar irradiance . 63

4.1. Introduction

A microgrid is a local energy network that produces part of its energy and controls its own demand.
Because of the different stocks and interconnections, such systems are often complex to control.
Furthermore, at local scale, electrical demands and weather conditions (heat demand and renewable
energy production) are highly variable and hard to predict; their stochastic nature adds uncertainty
to the system.

We distinguish the electrical system from the thermal system. Depending on the microgrid’s
configuration, these two systems can be independent or coupled. The electrical system assembles
the different devices using electricity as energy source, whereas the thermal system combines the
devices using heat as energy. In France, the heating consumption account for up to 63% of the
energy consumption in the residential sector (ADEME (2017)) Thus, the choice of the heating
technology (electrical or thermal heaters) deeply impacts the costs structure in microgrids.

In this chapter, we depict the physical equations governing local microgrids. These equations
are naturally written in continuous time. Such physical models will be at the heart of the decision
process used by the Energy Management System (EMS). Uncertainties are viewed as exogenous
variables impacting the different elements of the microgrid. We make use of statistical methods to
model such uncertainties as random variables in the optimization model.

53

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

This chapter is organized as follows. First, we describe the uncertainties w we are facing in §4.2,
then the different controls u we can act upon to control microgrids in §4.3, and eventually we detail
the different stocks x in the microgrids in §4.4.

4.2. Modelling uncertainties

Local microgrids are naturally confronted by two kind of uncertainties. First, the weather impacts
the microgrids with outer uncertainties: wind and solar radiation impact the production of local
renewable productions, outdoor temperature affects the inner temperatures in buildings. Second,
the energy demands are inner uncertainties, depending on the behavior of the different inhabitants.
The outer and inner uncertainties do not have the same nature, and rely on different statistical
models.

We first begin to describe the outer uncertainties, and then focus on inner uncertainties.

4.2.1. Weather conditions as outer uncertainties

We view weather conditions as outer uncertainties. Generally, we rely on weather forecast to
predict the future evolution of the outdoor temperature and the solar irradiation. Most forecasts
give the evolution of weather as deterministic values. However, probabilistic forecasts are gaining
interest as they give a more complete representation of the uncertainties (Morales et al., 2013).

4.2.1.1. Solar radiation

The solar radiation impacts different systems inside the microgrid: it heats the buildings and it
can be recovered by a solar panel to produce energy.

The solar radiation depends on the date (radiation is higher during summer than during winter),
the hour in the day, the geoposition of the microgrid (high latitudes receive less radiation than low
latitudes) and the nebulosity (the cloud coverage).

Apart from nebulosity, all parameters are deterministic. However, the cloud coverage is hardly
predictable, especially during windy days. That is why we choose to model the solar radiations as
an outer uncertainty.

The global horizontal irradiation is function of two kinds of radiations: the direct radiation Φb

(b for beam) and the diffuse radiation Φd (d for diffuse). The direct radiation arrives to the surface
considered and depends on the position of the sun in the sky, whereas the diffuse radiation results
from the diffusion of the sun lightning through the sky. The more cloudy is the weather, the
higher the diffusion. We refer to Annex 4.5.3 for a broader description of the computation of solar
irradiation.

Figure 4.1 displays the evolution of temperature and solar radiation for one week in summer.

4.2.1.2. Outdoor temperature

With the thermal losses through windows and walls, the outdoor — or outer — temperature θe

affects the temperatures of the different buildings. If we consider short time horizons (less than
two days) the temperature’s forecasts are relatively accurate enough, and the buildings’ thermal
inertia limits the impact of forecasts’ errors. Thus, we do not consider the outdoor temperature
as an uncertainty, but rather as an exogeneous parameter with known value.

4.2.2. Energy demands as inner uncertainties

Energy demands depend mainly on the occupancy of the inhabitants. On the contrary to outer
uncertainties, we do not have forecasts available to predict the future demands.

54

4.2. Modelling uncertainties

12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5

Ou
td

oo
r t

em
pe

ra
tu

re
 [°

C]

0 24 48 72 96 120 144 168
Time [h]

0.0

0.2

0.4

0.6

0.8

Ra
di

at
io

n
[k

W
 /

m
2]

GHI
Clear Sky GHI

Figure 4.1.: Evolution of outdoor temperature and solar radiation between July 20th and July
27th, 2015 in Orly, France.

4.2.2.1. Modelling occupancy and demands with Markov Chain

In local microgrid, the two main energy demands are the electrical demand (gathering the lightning
load, the consumption of the different electronic devices and other home appliances) and the
domestic hot water demand (DHW) (the consumption of hot water in the bathroom or the washing
machine). These demands depend on the number of inhabitants inside the building.

In Page et al. (2008), the authors present a probabilistic modelling of the occupancy Nocc via an
inhomogeneous Markov chain, whose probability weights are estimated from real data. In Baetens
and Saelens (2016), the authors extend this procedure to generate electrical and thermal loads from
an occupancy Markov chain. Their Markov chains are calibrated with data issued from Belgium
buildings. They developed an open-source library, StRoBe 1, to generate demand scenarios in a
flexible manner.

We use the library StRoBe to generate scenarios for electrical and thermal loads. We modify
the library to take as input the number of inhabitants and the sociological profile, the number of
scenarios to generate, and the number of days to consider.

Figure 4.2 displays 10 scenarios of demands during one week, sampled at a 15mn time step.
We observe peaks in electrical demands during mornings and evenings, and lower demands during
night. The change of pattern during the fifth and sixth days is due to the week-end.

4.2.2.2. Fitting probability laws on demands scenarios

We now suppose given a set of N demand scenarios, corresponding to previous history of demands.
We aim at fitting a statistical model to these scenarios.

Identifying marginal laws. We first present a model that disregards the time correlation between
the different time steps and identifies discrete marginal probability distributions. At a given
moment, we suppose available N samples w1, · · · , wN .

1Available at https://github.com/open-ideas/StROBe

55

https://github.com/open-ideas/StROBe

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

0 24 48 72 96 120 144 168
Time [h]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
El

ec
 d

em
an

d
[k

W
]

Average demand

Figure 4.2.: Displaying 10 scenarios of electrical demand for one week, at 15mn time step

A first model looks at the discrete distribution corresponding to the N samples:

µ(·) =
1

N

N∑
s=1

δws(·) , (4.1)

with δws the Dirac measure centered at ws. However, that could lead to large size distribution as
N is potentially large.

We use quantization algorithms to reduce the size N of the discrete probability distribution (4.1).
Let 1 ≤ S ≤ N be a quantization size. The quantization algorithm finds a partition Ξ =
(Ξ1, · · · ,ΞS) of the N samples (w1, · · · , wN) as solution of the optimal quantization problem

min
Ξ

S∑
s=1

(∑
wi∈Ξs

∥∥wi − w̃s∥∥2

2

)
, (4.2)

where w̃s = 1
card(Ξs)

∑
wi∈Ξs

wi is the centroid of Ξs.

Problem (4.2) is NP-hard. We use as heuristic the Lloyd-Max quantization algorithm (Lloyd,
1982) (or k-means algorithm) to solve (4.2). This procedure may be viewed as a scenario reduction
methods, as explained in Rujeerapaiboon et al. (2017).

Once the optimal partition obtained, we define the quantized distribution

µq(·) =

S∑
s=1

psδw̃s(·) , (4.3)

where δw̃s is the Dirac measure at point w̃s and ps = card(Ξs)/N is the associated probability
weight.

56

4.3. Modelling production

Identifying a Markov Chain. Another approach would consist in fitting a Markov Chain to the
optimization scenarios, so as to catch the time interdependence between to consecutive time steps.
We refer to Bally et al. (2003) for a description of the procedure and to Löhndorf and Shapiro
(2017) for an application to multistage stochastic programming.

4.3. Modelling production

We describe now the different devices used to produce energy inside microgrids. As we control
these devices, their production will be part of the decision vector u.

4.3.1. Combined heat and power generator

A Combined Heat and Power Generator (CHP) is a generator that produces electricity with a
thermal engine and recovers the heat produced during the process. Small-scale CHP, called micro-
CHP or µCHP, are small generators suitable for use in local microgrids. The main technologies
for µCHP are internal combustion engines, Stirling engines, and fuel cell technology (see Thomas
(2008)). We refer to Bonabe de Rougé (2018) and to Parisio et al. (2015) for a description of the
physical modelling of µCHP and the calibration of the parameters with experimental data. Here,
we consider Stirling engine µCHP.

Let pgas be the thermal power of the gas injected into the µCHP, and ηchp its yield. The power
generated by the µCHP at a given time t is

pchp(t) = ηchp × pgas × y(t) , (4.4a)

where y(t) ∈ {0, 1} denotes if the µCHP is either ON or OFF. The gas is burnt to run the external
combustion engine, and we produce an amount fge(t) of electricity and fgh(t) of heat. The energy
balance of the µCHP writes:

fge(t) + fgh(t) = pchp(t) . (4.4b)

The Stirling technology does not allow to modulate the share of energy produced by the generator.
If we denote γ ∈ [0, 1] this share, Equation (4.4b) now becomes

fge(t) = γ × pchp(t) , (4.4c)

fgh(t) = (1− γ)× pchp(t) . (4.4d)

4.3.2. Solar panel

A photovoltaic system gathers photovoltaic solar cells that transform light into electricity. Let ppv

be the energy production of such panels; it depends linearly on the solar radiation Φpv received by
the solar panel

ppv(t) = ηs ×As × Φpv(t) , (4.5)

where ηs is the yield of the solar panel (between 5% and 20%), As its surface in m2.
The solar radiation Φpv

t is function of the direct and diffuse horizontal radiation

Φpv(t) = gpv

(
Φb(t),Φd(t)

)
, (4.6)

with gpv a function depending on the inclination and the orientation of the solar panel (see
Annex 4.5.3). Thus, it is also greatly impacted by varying nebulosity.

Remark 4.3.1. Some solar panel technologies allow to modulate the power generated by the solar
panel. In this case, the EMS is able to control the power output of the solar panel within a given

57

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

range:
Φpv(t) = ηs ×As × Φpv(t)× um(t) , (4.7)

with um(t) ∈ [um, um] ⊂ [0, 1] the modulation control. ♦

4.3.3. Thermal boiler

The thermal boiler burns gas to generate heat. We model the thermal boiler with a balance
equation stating that the power of the thermal boiler is proportional to the power of gas burnt by
the boiler:

pburn(t) = ηburn × pgas(t) , (4.8)

with pgas(t) ∈ [0, pgas] an adjustable power and ηburn a given yield, that we suppose independent
of the outer temperature and pressure.

4.4. Modelling storage

After uncertainties and production, we now describe the different stocks used to store energy in
local microgrids. The storage’s dynamics introduce a time coupling. The stocks are gathered inside
a state x.

4.4.1. Electrical battery

There exists different technologies to store energy: water storage, flywheels, chemical batteries.
Here, we consider only electro-chemical batteries. Two technologies dominate the market: lead-
acid batteries and lithium-ion batteries. The former is widely used in industrial context, where
the size of the battery is of importance. The later has gathered a lot of attention recently with the
democratization of energy storage in electronic appliances and with the rise of interest in electrical
cars and domestic batteries. We consider here only lithium-ion batteries.

Dynamics. The evolution of the energy stored in the battery b(t) is modeled with a stock dynamic:

db

dt
= ρc(f

b(t))+ − 1

ρd
(fb(t))− , (4.9)

with ρc and ρd being the charge and discharge efficiency and fb(t) denoting the power exchange
with the battery. We use the convention f+ = max(0, f) and f− = max(0,−f).

Constraints. A battery has a maximal allowable charge that depends upon the technology and
the age of the battery. With lithium-ion battery, it is recommended to ensure that the energy
stored inside the battery ranges between 30% and 90% of the maximal nominal charge. We write
this constraint as:

b ≤ b(t) ≤ b . (4.10a)

As we cannot withdraw an infinite power from the battery at time t, we bound the power exchanged
with the battery:

− fb ≤ fb(t) ≤ fb
. (4.10b)

Remark 4.4.1. Some models consider battery aging, as the nominal charge of a chemical battery
decreases with the number of cycles. We refer to Haessig et al. (2015) for a broader introduction
to that subject, which is not treated here. ♦

58

4.4. Modelling storage

4.4.2. Hot water tank

The thermal system uses a hot water tank to store heat. We use here a simplified modelling by
considering that the temperature of the hot water inside the tank is homogeneous.

Dynamic. We use a simple linear model for the hot water tank. At time t, we denote by θh(t)
the temperature inside the hot water tank. We suppose that this temperature is homogeneous,
that is, no stratification occurs inside the tank.

At time t, we define the energy h(t) stored inside the tank as the difference between the tank’s
temperature θh(t) and a reference temperature θref

h(t) = ρVhcp
(
θh(t)− θref

)
, (4.11)

where Vh is the tank’s volume, cp the calorific capacity of water and ρ the density of water. The
energy h(t) is bounded:

0 ≤ h(t) ≤ h . (4.12)

The enthalpy balance equation is written

dh

dt
= qin(t)− qout(t)− khAh

(
θh(t)− θenv

)
, (4.13)

where qin(t) is the power injected inside the tank, qout(t) the output power to satisfy the different
heating needs, and the term khAh(θh(t)−θenv) stands for the heat losses due to conduction through
the hot water tank surface Ah, with kh a convection coefficient and θenv the temperature of the
tank environment.

A more accurate representation would model the stratification inside the hot water tank. How-
ever, this would greatly increase the number of states in the system, rendering the numerical
resolution more cumbersome. We refer to Schütz et al. (2015) and Beeker et al. (2016) for discus-
sions about the impact of the tank’s modelling on the performance of the control algorithms. The
first approach uses a finite layers model to model the stratification of temperatures inside the tank,
at the expense of having as many state variables as layers. The second approach models electrical
hot water tank as a mix between a hot fluid and a cold fluid. This model considers three state
variables: the temperature of the hot water, the temperature of the cold water and the position of
the interface between these two fluids (the hot water is always above cold water). However, such
model introduces a Boolean variables to avoid simultaneous thermal exchanges between the hot
fluid and the cold fluid. That is why we decide to simplify the model and use a single state variable
to characterize the energy stored inside the tank. This is equivalent to consider that temperatures
are homogeneous inside the tank.

4.4.3. Thermal envelope

Heaters ensure that the indoor temperature remains greater than a given set-point. The power
injected through the heaters heats the rooms and compensates the energy losses that occur through
the walls and windows. There exist two main methods to model the thermal dynamics of a house.

• Electrical analogy methods assimilate the thermal system to an electrical circuit: one views
temperatures as voltages, thermal flows as currents thermal stocks and walls as capacitors
and resistances. We refer to Berthou (2013) for an application of such models to the control
of buildings.

• Reduction methods (singular uncertainties, identification methods, balanced truncation) iden-
tifies a linear model on experimental data. The use of this kind of methods in optimal control
is studied in Malisani (2012).

59

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

To compute efficiently the heating needs, we introduce a model of the house’s thermal envelope
based upon an electrical analogy (see Figure 4.3 for an illustration). Berthou (2013) shows that a
model with 6 resistances and 2 capacitors (also called R6C2 model) is a good compromise between
complexity and accuracy for such a modelling. Such model considers two state variables at each
time t:

• the inner temperature θi(t),

• the walls’ temperature θw(t),

and it assumes that the inner (resp. the wall) temperature is homogeneous inside the building
(resp. the walls).

Radiation

Convection

Conduction

Figure 4.3.: Different energy exchanges inside a building

Ri inner convection resistance
Rs resistance of isolation
Rm wall’s resistance
Re external convection resistance
Rv ventilation’s resistance
Rw windows’ resistance
Ci inner capacitance
Cw wall’s capacitance

Table 4.1.: Thermal resistances and capacitors

We denote by fh the thermal flow injected into the heaters. A proportion γ of this power is
dissipated through the wall by conduction, and a proportion 1−γ is dissipated by convection in the
main room. We give in Equation (4.14) the continuous equations of the R6C2 model corresponding

60

4.5. Discussion

Ci Cw

Ri Rs Rm Re

Rv

Rw

Figure 4.4.: Modelling of the thermal behavior of a house with a R6C2 analogy

to Figure 4.4:

Cw
dθw

dt
=
θi(t)− θw(t)

Ri +Rs︸ ︷︷ ︸
Exchange

Indoor/Wall

+
θe(t)− θw(t)

Rm +Re︸ ︷︷ ︸
Exchange

Outdoor/Wall

+ γfh(t)︸ ︷︷ ︸
Heater

+
Ri

Ri +Rs
Φint(t)︸ ︷︷ ︸

Radiation
through windows

+
Re

Re +Rm
Φext(t)︸ ︷︷ ︸

Radiation
through wall

, (4.14a)

Ci
dθi

dt
=
θw(t)− θi(t)

Ri +Rs︸ ︷︷ ︸
Exchange

Indoor/Wall

+
θe(t)− θi(t)

Rv︸ ︷︷ ︸
Ventilation

+
θe(t)− θi(t)

Rw︸ ︷︷ ︸
Windows

+ (1− γ)fh(t)︸ ︷︷ ︸
Heater

+
Rs

Ri +Rs
Φint(t)︸ ︷︷ ︸

Radiation
through windows

. (4.14b)

The parameters used in these equations are given in Table 4.1. Φint and Φext account for the solar
heating through the windows and the walls, and depend on the direct and diffuse radiations:{

Φint(t) = gint
b

(
Φb(t),Φd(t)

)
Φext(t) = gext

b

(
Φb(t),Φd(t)

) (4.15)

where gint
b and gext

b are two functions depending on the size of the building, its orientation and the
proportion of windows (see Annex 4.5.3).

Remark 4.4.2. The drawback of such models is that the coefficients in (4.14) must be calibrated
to correspond to the description of the thermal envelope of a house. Furthermore, these coefficients
have to be recalibrated to account for the evolution of the thermal envelope (for instance, the model
is sensitive to weather’s wetness; a wet wall does not have the same behavior as a dry wall). We
refer to Berthou (2013) for an analysis of models calibration. ♦

4.5. Discussion

We described in this chapter the physical and uncertainties models used to described local micro-
grids. We write the physical equations in continuous time. In Chapter 5 and Chapter 6, we will
use these models to design optimization models written in discrete time.

In Chapter 5, we present a first case study. The system is a domestic microgrid, equipped with a
micro combined heat and power generator (µCHP). We compare the performance of optimization
algorithms with existing approaches and show the benefit of optimization methods to control such

61

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

systems. Then, we compare two different optimization algorithms: the so-called model predictive
control (MPC) and a stochastic optimization algorithm based upon SDDP.

In Chapter 6, we focus on a second case study. The system produces its own energy with
solar panels rather than a µCHP. This chapter encompasses a comparison of the two stochastic
optimization algorithms we introduced earlier in Chapter 3, and quantifies the sensitivity of these
two algorithms w.r.t. the level of uncertainty.

62

4.5. Discussion

Appendix

We detail in this section the different numerical values used in the models previously introduced.
We thank Romain Bonabe de Rougé for his help concerning the calibration of models.

4.5.1. R6C2 model

We give in Table 4.2 the parameters of the different R6C2 model. RT12, RT05 and RT88 are
French specification for buildings.

RT 12 RT 05 RT 88
Uwall 0.130 0.280 0.821
Uwindow 1.226 2.040 2.285
Ci 2953500 2587720 5852180
Cw 77488500 88875200 82980800
Gs 3685 4690 3393
Fv 0.553 0.78 0.585

Table 4.2.: RT specifications for a single house

4.5.2. Specification of Stirling engine

We give in Table 4.3 the parameters corresponding to a Stirling CHP engine.

Numerical values
Pchp 7 kW
ηchp 0.93
γ 0.13

Table 4.3.: Specification of Stirling engine

4.5.3. Models of solar irradiance

We now detail the irradiance model used to model the production of the solar panels and the solar
heating inside the buildings.

The solar irradiance depends on the position of the sun in the sky, the current date, the
atmospheric opacity (depending on pollution, humidity, etc.) and the nebulosity (depending on
cloud cover).

Notation. We use in the next sections the notations introduced in Table 4.5.3.

Φg GHI Global Horizontal Irradiation
Φb BHI Beam (Direct) Horizontal Irradiation
Φd DHI Diffuse Horizontal Irradiation

Φ
g

GTI Global Tilted Irradiation

Φ
b

BTI Beam (Direct) Tilted Irradiation

Φ
d

DTI Diffuse Tilted Irradiation

63

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

4.5.3.1. Beam horizontal irradiation

Let Φatm be the solar radiation at top of atmosphere. It depends on the distance between Earth
and the sun, and is equal to

Φatm(t) = Gsc

[
1 + 0.0334 cos

(
2π

(n− 4)

Tearth

)]
, (4.16)

where Gsc is the solar constant, corresponding to the average solar irradiation at the top of the
atmosphere — whose value is given by the black body irradiation of the sun — Tearth ≈ 365.25 day
is the duration of the year, n the day considered.

We recall that the aphelion arises around July 5th, and the perihelion between January 3rd and
January 4th.

At the surface of the earth, the direct horizontal irradiation Φb is an attenuation of the solar
radiation at top of atmosphere Φatm. The Kasten model gives a relation between these via the
Beer-Lambert law:

Φb(t) = Φatm(t) exp
(
− 0.8662× TL ×mA × τR

)
, (4.17)

where mA is the atmospheric mass, τR the optical depth of the atmosphere and TL the Linke
turbidity factor. We detail hereafter each of these parameters.

Atmospheric mass. The atmospheric mass mA is the ratio between the air mass crossed by the
light beam and the air mass crossed by a light beam coming from the zenith down to a point at sea
level. This value depends on the beam’s orientation and the altitude of the current point. Kasten
and Young (1989) give the relation:

mA =
patm
p0
× 1

cos θz +K0(θ0 − θz)−α
, (4.18)

where

• patm is the atmospheric pressure,

• p0 is the reference pressure,

• θz is the zenith angle,

• K0 = 0.50572,

• θ0 = 96.07995◦,

• α = 1.6364.

Optical depth. The optical depth characterizes the transparency degree of the layer crossed by
the light beam. The higher the diffusion in the layer, the higher the optical depth. The optical
depth τR satisfies:

dτR = −κρdz , (4.19)

where κ is the opacity of the atmosphere at point z, and ρ the air density. If we denote by L the
trajectory followed by the beam, we have:

τR =

∫
L
κρdz . (4.20)

Linke turbidity factor. This factor corresponds to the number of ideal atmospheres that would
be crossed by the light beam to obtain the same attenuation as in the realistic atmosphere studied.
This factor is given, and depends on the weather condition (see Table 4.4).

64

4.5. Discussion

TL Type
2 dry and cold atmosphere
3 dry and warm atmosphere

4-6 wet and warm atmosphere
7 polluted atmosphere

Table 4.4.: Linke turbidity factor

4.5.3.2. Global horizontal irradiation

The clear-sky horizontal radiation Φg depends on the direct solar irradiation and the diffuse solar
irradation:

Φg = Φb cos θz + Φd , (4.21)

with

• Φb the direct solar irradiation (BHI);

• Φd the diffuse solar irradiation (DHI) corresponding to the diffusion of light through atmo-
sphere (it is consider isotropic if the sky is cloudy). The value of Φd is given by empirical
relations (Noorian et al., 2008);

• θz is the angle between the sun direction and the normal vector of the horizontal surface.

Zenith angle. Let δ be Earth declination w.r.t. the ecliptic:

δ = δ0 × sin
(

2π
284 + n

365

)
, (4.22)

with δ0 = 23.45◦.

We note ω the hour angle (between −π and π) and φ the latitude. The zenith angle is given by
the trigonometric relation:

cos θz = cosφ cos δ cosω + sinφ sin δ . (4.23)

4.5.3.3. Cloud cover solar radiation

The cloud cover solar radiation is a correction of the clear-sky solar radiation, taking into account
the attenuation of light through the cloud.

The total irradiation Φtot is given by

Φtot = κ× Φg , (4.24)

where κ is the cloud attenuation factor.

Kasten gives a model to compute κ as function of the nebulosity N :

κ = (1− 3

4

(N
8

)3.4

) . (4.25)

N is the proportion of the sky covered by clouds, between 0 and 8.

Other models (Bacher et al., 2009) rely on statistical model to estimate the attenuation κ.

65

Chapter 4. Background on the modelling of energy flows and stocks in microgrids

4.5.3.4. Global tilted solar radiation

We now consider a tilted surface, with an angle β w.r.t. the horizontal. The global tilted solar
radiation is:

Φ
g

= Φ
b

+ Φ
d

+ Φ
r
, (4.26)

with Φ
b

the beam titled irradiation, Φ
d

the diffuse tilted irradiation and Φ
r

the reflected tilted
irradiation.

4.5.3.5. Beam tilted irradiation

The beam tilted irradiation Φ
b

satisfies

Φ
b

= Φb cos θ , (4.27)

with Φb the beam horizontal irradiation and θ the angle between the normal of the solar panel and
the direction of the sun in the sky, satisfying:

cos θ = cos θz cosβ + sin θz sinβ cos
(
γs − γ

)
, (4.28)

with γ is the azimuth of the panel (that is, the angle w.r.t. the south).

4.5.3.6. Diffuse tilted irradiation

Φ
d

is the diffuse titled irradiation. Different models exist to compute Φ
d
. We detail hereafter the

Liu&Jordan model and the Perez model.

Liu&Jordan model. If the diffuse irradation is isotropic, the diffuse tilted irradiation is function
of the diffuse horizontal irradiation:

Φ
d

= Φd × 1 + cosβ

2
. (4.29)

Perez model. Perez model is considered as the reference model to compute the diffuse tilted
radiation (Noorian et al., 2008). It writes

Φ
d

= Φd
[
(1− F1)

1 + cosβ

2
+ F1

a

b
+ F2 sinβ

]
. (4.30)

where F1 is the coefficient of circumsolar irradiation, F2 is the horizontal illumination coefficient,
and a and b take into account the incidence angle of the sun:{

a = max
(
0, cos θ

)
b = max

(
cos 85◦, cos θz

)
.

(4.31)

4.5.3.7. Reflected radiation

Φ
r

is the irradiation reflected by the soil and depends on the albedo αs of the surrounding surface:

Φ
r

= αs × Φg × 1− cosβ

2
. (4.32)

66

Chapter 5.

Optimal management of a home microgrid
with a CHP

Contents

5.1. Introduction . 67

5.2. Problem statement . 68

5.2.1. Electrical and thermal load balance equations 68

5.2.2. Uncertainties, controls and states . 69

5.2.3. Writing down the optimization problem 71

5.3. Resolution methods . 73

5.3.1. (s, S) policy . 74

5.3.2. Model Predictive Control (MPC) 74

5.3.3. Stochastic Dual Dynamic Programming (SDDP) 74

5.4. Numerical results . 76

5.4.1. Case study . 76

5.4.2. Numerical implementation . 76

5.4.3. Results . 76

5.5. Discussion . 81

5.1. Introduction

This chapter details a first case study, where we compare different methods to control the Energy
Management System (EMS) of a domestic microgrid. We consider a building equipped with a
micro-Combined Heat and Power generator (µCHP) and a battery. The heat produced by the
µCHP is stored inside a hot water tank. Then, the heat is dispatched between thermal heaters
— to heat the house — and the demand of domestic hot water. An auxiliary burner produces
heat when the production of the µCHP is not sufficient to fulfill the thermal heating demand. The
microgrid is connected to an distribution grid to import electricity when necessary.

We consider a horizon of one year. We suppose that the EMS updates its decisions every
15 minutes, yielding 35,040 time steps. The EMS views domestic hot water and electrical demands
as uncertainties, whose future realizations are unknown. We aim at minimizing the operational
cost of the microgrid.

The reference method to tackle uncertainties in microgrid is the well-known Model Predictive
Control (MPC) algorithm. We first exhibit numerically that MPC gives better results than a (s, S)
policy to manage stocks inside the microgrid. Then, we compare MPC with another algorithm,
Stochastic Dual Dynamic Programming (SDDP). We show that MPC is almost as good as SDDP
in terms of the out-of-sample performance.

The insertion of µCHP in local microgrids has been widely studied in the literature. We refer
to Houwing et al. (2011) for an application of MPC to the control of a µCHP to improve the

67

Chapter 5. Optimal management of a microgrid with a µCHP

µCHP’s flexibility. An extension to the stochastic case was studied in Mohammadi et al. (2014)
and in Liu et al. (2014), where stochastic programming based methods were applied to the control
of microgrids equipped with batteries and µCHP. However, to the best of our knowledge, handling
uncertainties with Dynamic Programming based methods such as SDDP has not been studied in
the literature.

The author thanks Romain Bonabe de Rougé for his fruitful help concerning the modeling of
the problem. We refer to Bonabe de Rougé (2018) for a broader description of the model and data
used in this chapter.

The structure of this chapter is as follows. In §5.2 we describe the modeling of the system. Then,
we present the resolution methods used to compute the optimal policies in §5.3. Eventually, we
give in §5.4 numerical results, and we compare the different algorithms.

G

fge

fgh

f b

del

fne

fhf burn

ELECTRICAL
DEMAND

NETWORK

BATTERY

TANK
BOILER

THERMAL
DEMAND

Figure 5.1.: The µCHP G connects together the thermal and electrical subsystems. The electrical
system is equipped with a battery. The thermal system stores the heat produced by
the µCHP with a hot water tank, and satisfies the heating and domestic hot water
demands.

5.2. Problem statement

We describe in this section the optimization model corresponding to the local microgrid. We first
write the electrical and thermal load balances in continuous time in §5.2.1 and then discretize the
equations in §5.2.2.

5.2.1. Electrical and thermal load balance equations

The configuration of the microgrid is detailed in Figure 5.1. The domestic microgrid is equipped
with a µCHP, denoted G, a battery, denoted B, and a hot water tank, denoted H. We consider
also the house’s thermal inertia. The continuous dynamics of these devices were described in §4.4.
The balance equations of the electrical and the thermal systems are as follows.

68

5.2. Problem statement

Electrical load balance. The electrical load balance states that the production must equal the
demands:

fne(t) + fge(t) = fb(t) + del(t) . (5.1)

We now comment the different terms. In the left hand side of Equation (5.1), the load produced
consists of

• the import into the microgrid from the distribution network fne(t) (in kW),

• the electrical production of the µCHP fge(t) (in kW).

In the right hand side of Equation (5.1), the electrical demand is the sum of

• the power sent to the battery fb(t) (in kW),

• the inflexible demands (lightning, cooking...), aggregated in a single demand del(t) (in kW).

Thermal load balance. We now detail the input and the output of the hot water tank at a given
time t. The input of the tank is equal to

qin(t) = βghfgh(t) + βburnfburn(t) , (5.2a)

where fgh is the heat produced by the µCHP and fburn the heat produced by the auxiliary burner
(we denote by βchp and βburn the transmission yields). The tank’s output is

qout(t) = dhw(t) + fh(t) , (5.2b)

with dhw the hot water demand and fh the heating demand. All flows are given in kW.

5.2.2. Uncertainties, controls and states

We now take into account the different load balance equations stated in §5.2.1 to define a discrete
time stochastic model. We use a fixed time step ∆T = 15 mn, and we discretize the different
continuous equations described in Chapter 4. We describe hereafter the uncertainties, the decisions
and the states vectors we will consider.

We adopt the following convention for discrete processes: for t ∈ {0, 1, · · · , T = T0

∆T }, we set
xt = x(t∆T). That is, xt denotes the value of the variable x at the beginning of the interval
[t∆T, (t+1)∆T [. Otherwise stated, we will denote by [t, t+1[the continuous time interval [t∆T, (t+
1)∆T [.

5.2.2.1. Modeling uncertainties as random variables

Let (Ω,F ,P) be a probability space.
Due to the unpredictable nature of electrical and domestic hot water demands we model the

uncertainties as random variables on the space (Ω,F ,P). We adopt the following convention: a
random variable will be denoted by an uppercase bold letter Z and its realization will be denoted in
lowercase z = Z (ω) for ω ∈ Ω. For each discrete time step t ∈ {1, .., T}, we define the uncertainty
vector W t : Ω→Wt as

W t = (Del
t ,D

hw
t) . (5.3)

The uncertainty takes value in the set Wt = R2.

Remark 5.2.1. The solar radiations Φb, Φd and the external temperature θe (see §4.2.1) are
supposed deterministic in this chapter. ♦

69

Chapter 5. Optimal management of a microgrid with a µCHP

5.2.2.2. Taking decisions to satisfy energy balances

The randomness of uncertainties contaminates the decision variables, as they will depend on
previous history.

At time t, the EMS takes four decisions: how much energy to charge/discharge with the bat-
tery F b

t , how much energy to heat the thermal heater F ht , do we switch on the µCHP or not Yt
and how many energy we produce with the auxiliary burner F burn

t . The decision vector writes

U t = (F b
t ,F

h
t ,F

burn
t) , (5.4)

taking values in Ut = R3. We consider the Boolean variable Yt ∈ {0, 1} separately.

Electrical load balance. The load balance equation (5.1) rewrites in discrete time:

F ne
t+1 = Del

t+1 + F b
t − F

ge
t . (5.5)

That is, the importation from the distribution network F ne
t+1 plays the role of the recourse variable

to ensure that the production is equal to the demand whatever the realization of the uncertainty
Del
t+1 between t and t + 1. The importation F ne

t+1 is unconstrained, and depends linearly on the

uncertainties W t+1 = (Del
t+1,D

hw
t+1) and on the decision U t = (F b

t ,F
h
t ,F

burn
t).

Thermal balance. In a discrete time setting, the thermal balance (5.2) rewrites

Qin
t = βghF gh

t + βburnF burn
t , (5.6a)

for the input, and
Qout
t+1 = F ht +Dhw

t+1 , (5.6b)

for the output, with F ht the heating need and Dhw
t+1 the hot water demand between time t and t+1.

5.2.2.3. States and dynamics

For time t ∈ {0, .., T}, the state gathers the stock in the battery Bt, the level of the hot water

tank Ht and the two temperatures of the thermal envelope (θw
t ,θ

i
t). The state random variable

Xt writes
Xt = (Bt,Ht,θ

w
t ,θ

i
t) , (5.7)

taking values in Xt = R4.

We saw in §4.4 that the stocks satisfy the ordinary differential equation

dx

dt
= Ax(t) +Bu(t) + Cw(t) , (5.8)

with A,B,C dynamics matrix corresponding to equations (4.9)-(4.13)-(4.14).

Thus, the state equation of the system writes:

Xt+1 = ft
(
Xt,U t,Yt,W t+1

)
= AdXt +BdU t + CdW t+1 , (5.9)

with ft : Xt × Ut × Yt ×Wt+1 → Xt+1 the linear dynamics corresponding to the integration of
Equation (5.8) over a time ∆T . We have:

Ad = exp(A∆T) , Bd =

∫ ∆T

0

exp(As)Bds , Cd =

∫ ∆T

0

exp(As)Cds . (5.10)

70

5.2. Problem statement

5.2.2.4. Non-anticipativity constraints

The future realizations of uncertainties are unpredictable, as we do not know the future demands.
The current decisions are functions only of the previous history, that is, the realization of uncer-
tainties between time 0 up to time t. The so-called non-anticipativity constraint writes

σ(U t) ⊂ Ft , (5.11)

where σ(U t) is the σ-algebra generated by U t and

Ft = σ(W 1, · · · ,W t) , (5.12)

is the σ-algebra associated to the previous history (W 1, . . . ,W t). If Constraint (5.11) holds true,
the Doob lemma ensures that there exists a function πt such that

U t = πt(x0,W 1, . . . ,W t) . (5.13)

This is how we turn an (abstract) algebraic constraint (5.11) into a more practical functional
constraint (5.13). The function πt is an example of policy depending on previous history, as
described in Section 3.2.

5.2.2.5. Bounds constraints

Using Equations (4.10a)—(4.12), we know that the stocks in the battery and in the hot water tank
are bounded.

In Equation (5.9), the control F b
t must ensure that the next state Bt+1 is admissible, that is,

b ≤ Bt+1 ≤ b by Equation (4.10a), which rewrites,

b ≤ Bt + ∆T
[
ρc(F

b
t)+ +

1

ρd
(F b

t)−
]
≤ b . (5.14)

Thus, the constraints on F b
t depends on the stock Bt. The same reasoning applies for the tank.

Furthermore, we set bound constraints on controls, that is,

− fb ≤ F b
t ≤ f

b
, 0 ≤ F ht ≤ f

h

t , 0 ≤ F burn
t ≤ fburn

t . (5.15)

Finally the load-balance equation (6.5) also acts as a constraint on the controls. We gather
constraints (5.14)-(5.15) in an admissible set depending on the current state Xt:

U t ∈ Uadt (Xt) . (5.16)

5.2.3. Writing down the optimization problem

We have stated in §5.2.2 the different physical equations governing the system. We now focus on
the costs we consider in the optimization model.

5.2.3.1. Objective

We consider two kinds of costs: the operational cost — corresponding to the price we pay to import
and produce energy — and a virtual discomfort cost, added to ensure that the temperatures inside
the house remains higher than a given setpoint.

Energy costs. At time t, we pay:

71

Chapter 5. Optimal management of a microgrid with a µCHP

• the cost to use gas in auxiliary burner: pg × F burn
t+1 ,

• the cost to use gas in µCHP generator: pchp × Yt.

The electricity bill corresponds to the difference between importation and exportation of electricity
from the network:

− pinj
t max{0,−F ne

t+1}︸ ︷︷ ︸
selling

+ pel
t max{0,F ne

t+1}︸ ︷︷ ︸
buying

.

Remark 5.2.2. We assume that pelt ≥ pinjt . Otherwise, it would become possible to import
electricity at a given price and to sell it immediately at a greater price, which is economically
inconsistent. As a consequence, the electricity costs is convex. ♦

Cost of discomfort. We penalize the inner temperature if it is below a given setpoint θ̄i
t, so as

to ensure a minimal comfort for the inhabitants. The setpoint θ̄i
t depends on time t, and is fixed

by the inhabitants according to their preference. The indoor temperature is penalized by the
piecewise-linear function:

κth(θi
t) = pth

t ×max{0, θ̄i
t − θ

i
t} , (5.17)

where pth
t is a virtual cost of discomfort.

Operational cost. The operational cost Lt : Xt×Ut×Yt×Wt+1 → R gathers all costs and writes
at time t:

Lt(Xt,U t,Yt,W t+1) = pchpYt + pgF burn
t

− pinj
t max{0,−F ne

t+1}+ pel
t max{0,F ne

t+1}+ pth
t ×max{0, θ̄i

t − θ
i
t} . (5.18)

Remark 5.2.3. In Equation (5.18), we mix a virtual price pth with real prices pchp, pg and pel.
The price pth is chosen by the decision maker, so as to heat the house effectively. Another method
would consist to use multi-criteria optimization to find the relative penalization of thermal comfort
w.r.t. the energy costs. ♦

5.2.3.2. Building an optimization problem

Now that we have made explicit the dynamics and the different costs, we write a global optimization
problem:

V] = min
X,U ,Y

E
[T−1∑
t=0

Lt(Xt,U t,Yt,W t+1) +K(XT)
]
, (5.19a)

s.t. Xt+1 = ft
(
Xt,U t,Yt,W t+1

)
, X0 = x0 , (5.19b)

Yt ∈ {0, 1} , (5.19c)

U t ∈ Uadt (Xt) , (5.19d)

σ(U t) ⊂ Ft . (5.19e)

We suppose that measurability and integrability assumptions hold, so that the expression in (5.19a)
makes sense. Problem (5.19) induces two challenges:

1. The Boolean constraint (5.19c) renders the problem non-convex.

2. The number T of stages is too large to keep Problem (5.19) numerically tractable. Indeed,
we want to minimize the costs over one year at a 15 minutes time-step, giving T = 35, 040
time-steps.

72

5.3. Resolution methods

To render Problem (5.19) tractable, we propose to decompose it in time to obtain smaller sub-
problems.

5.2.3.3. Time decomposition

We split the initial problem in daily subproblems, as the system allows to fill the battery and the
water tank completely between midnight and 6am. Thus, we obtain 365 subproblems. For all day
d ∈ {0, · · · , 364}, we define:

Jd(x
d) = min

X,U ,Y
E
[96(d+1)−1∑

t=96d

Lt(Xt,U t,Yt,W t+1)
]
, (5.20a)

s.t. Xt+1 = ft
(
Xt,U t,Yt,W t+1

)
, X96d = xd , (5.20b)

Yt ∈ {0, 1} , (5.20c)

U t ∈ Uadt (Xt) , (5.20d)

σ(U t) ⊂ Ft . (5.20e)

To ensure that Problem (5.20) remains coherent with Problem (5.19), we set

xd+1 = E[X96(d+1)] . (5.21)

To ease the notation, we define the daily horizon of day d:

Td = 96(d+ 1) . (5.22)

We note that each day subproblem has 96 time steps and has not a final cost. The reason is that
we are able to refill the tank between midnight and 6am, when the inhabitants start using the
heating and the domestic hot water. In a similar manner, the battery can be refilled in four hours,
thus avoiding the need to keep energy stocks at midnight.

By imposing constraint (5.21), we add a new constraint to Problem (5.19). Thus, we have

V] ≤
D∑
d=0

Jd(x
d) , ∀(x0, · · · , xD) ∈ XD+1 , (5.23)

where D = 364 and V] is the optimal value of Problem (5.19).

In §5.3, we will present different algorithms to solve the different subproblems in (5.20), consid-
ering the coupling defined in the equation (5.21).

5.3. Resolution methods

We look for online policies πt : X0 ×W1 × · · · ×Wt → Ut that map the available information at
time t to a decision ut, as introduced in Section 3.2. We present three algorithms to design such
policies: the first based on a (s, S) policy, the second on Stochastic Dual Dynamic Programming
(SDDP), and the third based on Model Predictive Control (MPC).

As Problems (5.20) are now decomposed day by day, the main challenge is to tackle the Boolean
switch Yt.

In the following, we detail the different policies for a given day d ∈ {0, .., 364}.

73

Chapter 5. Optimal management of a microgrid with a µCHP

5.3.1. (s, S) policy

The (s, S) policy is a simple heuristic, widely used to control the levels of stocks. The algorithm
is the following.

• We consider the setpoint θi defined in (5.17) for the inner temperature.

• If the temperature is below this setpoint minus a given threshold ∆θi,

θi ≤ θi −∆θi , (5.24)

then we set the heating to Fht = Kp × (θi −∆θi − θi). Kp is a parameter of the algorithm
that is hand tuned.

• If the level of the tank is below a given threshold hs, we switch on the µCHP (Yt = 1) till
the tank is filled.

• We use the auxiliary burner as a recourse if the thermal tank is empty.

In the sequel, we will denote by πsS this policy.

5.3.2. Model Predictive Control (MPC)

We reconsider the MPC online policy introduced in §3.3.2. Let w be a forecast for future uncer-
tainties W t+1, · · · ,W Td . The policy πmpc

t writes at time t ∈ {0, .., Td − 1}:

πmpc
t (xt) ∈ arg min

x,u,y

[Td−1∑
j=t

Lj(xj , uj , yj , wj+1)
]
, (5.25)

s.t. xj+1 = fj(xj , uj , yj , wj+1) ,
yj ∈ {0, 1} ,

uj ∈ Uadj (xj) ,

with Td = 96(d+ 1)− 1 the daily horizon of the subproblem corresponding to day d.
In Problem (5.25), dynamics ft is linear and cost Lt is piecewise-linear for all t. However, due

to the Boolean constraint (5.20c), the problem (5.25) is a Mixed-Integer Linear Problem (MILP),
thus complicating the resolution.

5.3.3. Stochastic Dual Dynamic Programming (SDDP)

We reconsider the framework introduced in Section 3.3 to describe SDDP policy as a cost-to-go
based policy. The procedure of SDDP has two distinct stages: an offline stage to compute value
functions and an online stage to compute decisions on the fly.

5.3.3.1. Offline stage

We reconsider the notation introduced in Section 3.2. Let {ρoft+1}t∈{0,..,T−1} be a family of stochas-
tic kernels that do not depend on previous history

ρoft+1(ht, ·) = µoft (·) , ∀t ∈ {0, .., T} , (5.26)

where µoft ∈ ∆(Wt+1) is a discrete probability measure defined on Wt+1 (see §3.2.1.2).

Let W =
∏T
t=1 Wt and (w1, · · · , wN) ∈ WN be N optimization scenarios (see §3.5.2.2) defined

as
wi = (wi1, · · · , wiTd) ∈W , ∀i ∈ {1, .., N} . (5.27)

74

5.3. Resolution methods

We fix a quantization size S and compute for all time t ∈ {1, .., Td} the marginal distributions µoft
by quantization using the procedure described in §4.2.2 upon the samples (w1

t , · · · , wNt) ∈ WN
t

defined by the N optimization scenarios (5.27).

Once the marginal distributions {µoft }t∈{1,..,Td} are computed, we are able to compute offline a
sequence of value functions corresponding to day d, using the procedure described in Section 3.4.
Let {Vt}t∈{0,..,Td} be a sequence of value functions, defined by the recursive equations

VTd(x) = 0 , (5.28a)

Vt(xt) = min
u,y

∫
Wt+1

[
Lt(xt, u, y, wt+1) + Vt+1

(
ft(xt, u, y, wt+1)

)]
µoft+1(dwt+1)

s.t. y ∈ {0, 1} , u ∈ Uadt (xt) .

(5.28b)

The value functions (5.28) are the optimal Bellman value functions of Problem (5.20) when the un-
certainties (W 0, · · · ,W Td) are stagewise independent and the distribution ofW t is the probability

measure µoft .

We aim to solve the recursive equations (5.28) by SDDP. However, the one-step problem (5.28b)
is non-convex, because of the switch y ∈ {0, 1}. Let {V t}t∈{0,..,Td} be another sequence of value
functions that satisfies instead the following recursive equations:

V Td(x) = 0 , (5.29a)

V t(xt) = min
u,y

∫
Wt+1

[
Lt(xt, u(wt+1), y, wt+1) + V t+1

(
ft(xt, u(wt+1), y, wt+1)

)]
µoft+1(dwt+1)

s.t. y ∈ [0, 1] , u(wt+1) ∈ Uadt (xt) , u ∈ L0(Ω,F ,P,Ut) ,
(5.29b)

where L0(Ω,F ,P,Ut) is the space of F measurable functions φ : Ω → Ut. Problem (5.29) is
of wait-and-see type 1 (Wets, 2002), as we allow decisions to depend on the realizations of the
uncertainty W t+1 between time t and t+ 1. Thus, the decision u becomes a measurable function
in (5.29).

In Problem (5.29), the costs Lt are convex w.r.t. (x, u), the dynamics ft is affine w.r.t. (x, u), the

probability distribution µoft+1 is finite and the admissible set is convex (because of the relaxation
y ∈ [0, 1]. Thus, we recover the seminal hypotheses of SDDP and we know that the computation
of the value functions (5.29) by the SDDP algorithm converges (Girardeau et al., 2014).

As Problem (5.29) is a relaxation of Problem (5.28), we are able to prove by induction that the
value functions {V t}t∈{0,..,Td} are lower-bounds of the value functions {Vt}t∈{0,..,Td}:

V t ≤ Vt , ∀t ∈ {0, .., Td} . (5.30)

5.3.3.2. Online stage

During the online stage, we suppose given a set of value functions {V t}t∈{0,..,Td} and a sequence
of discrete distributions {µont }t∈{1,..,T} such that

µont (·) =

S∑
s=1

psδwst (·) , ∀t ∈ {1, .., T} , (5.31)

where (w1
t , · · · , wSt) ∈WS

t are the support size of the online distribution µont+1 and (p1, · · · , pS) are
associated probability weights.

1 Or Hazard-Decision.

75

Chapter 5. Optimal management of a microgrid with a µCHP

Then, we are able to compute decisions at each time t ∈ {0, .., T − 1} with the strategy πsddp

πsddp
t (xt) ∈ arg min

u,y

S∑
s=1

ps
[
Lt(xt, u, y, w

s
t+1) + V t+1

(
ft(xt, u, y, w

s
t+1)

)]
w.r.t. y ∈ {0, 1} , u ∈ Uadt (xt) .

(5.32)

The cost Lt in Equation (5.32) is piecewise-linear, so is the dynamics ft. We note that, as the
constraint (5.20c) is handled explicitly, the problem is a MILP.

5.4. Numerical results

We now apply the three algorithms introduced in §5.3 to a specific case study.

5.4.1. Case study

Prices. We consider on and off-peak hours tariffs for electricity: we set pel
t = 0.15 e/kWh during

day (between 7h and 23h) and pel
t = 0.09 e/kWh during night. We consider fixed prices for gas

pg = 0.06 e/kWh and pth = 0.4 e/◦C for comfort.

Model’s parameters. The different parameters of the thermal model of §4.4.3 correspond to the
RT 88 specifications (see Annex 4.5.1). The µCHP is a Stirling engine, whose specifications are
given in Annex 4.5.2. We use a Lithium-Ion battery, with a size of 3 kWh. The hot water tank
has a volume of 500 l.

The solar radiations and the external temperatures are provided by a data-set given by the
IFPEB2, and correspond to the evolution of weather in Orly, France, during the year 2015.

Out-of-sample assessment. We consider 1,000 optimization scenarios and 1,000 assessment sce-
narios of demands. These scenarios are weekly periodic, to take into account the fact that electricity
consumption decreases during week-ends.

5.4.2. Numerical implementation

We implement MPC and SDDP in Julia 0.6, using JuMP as a modeler, StochDynamicProgramming.jl
as a SDDP solver, and CPLEX 12.5 as a MILP solver. The exact resolution of the MILP problems
is generally out-of-reach, and we use a MIPGAP equal to 1% to solve both Problem (5.25) and
Problem (5.32). All computations run on a Core i7 2.5 GHz processor, with 16 Go RAM.

5.4.3. Results

We first compare in §5.4.3.1 MPC with the (s, S) policy, and then compare in §5.4.3.2 MPC with
SDDP. These two comparisons are performed on the same case study, on the same set of 1,000
assessment scenarios. We use the assessment procedure described in Section 3.5.

5.4.3.1. Comparing MPC with (s, S) policy

We first compare MPC with the (s, S) policy. We present here the results obtained upon assessment
scenarios, over one year. Figure 5.2 displays the average daily costs for each day. Table 5.1 details
the different costs we pay to operate the system.

2Institut Français pour la performance du bâtiment

76

5.4. Numerical results

0 50 100 150 200 250 300 350
Day

0

1

2

3

4

5

Co
st

 d
iff

er
en

ce
 [

]

Figure 5.2.: Difference between MPC’s daily costs and heuristic’s daily costs over one year. As the
difference is above 0, MPC beats the heuristics.

Euros/year %

A(πsS) 2,075 ref
A(πmpc) 1,627 - 28.3%

Table 5.1.: Comparing MPC with a (s, S) policy.

We observe that MPC outperforms the current heuristic in assessment, achieving up to 450 e
costs savings. In Figure 5.2, we observe that the cost savings are more important in winter, when
we are using the µCHP to heat the building, than in summer, when the µCHP is off. This first
study illustrates that it pays to use optimization algorithms such as MPC.

5.4.3.2. Comparing MPC with SDDP

We now compare MPC with SDDP. We consider the same parameters as in the previous compar-
ison.

Comparing the numerical performance. Table 5.2 shows the offline and online execution times
of MPC and SDDP. We observe that the time to take a decision online is almost similar between
SDDP and MPC. It takes approximately 2’ to compute the value functions by SDDP for one day.

MPC SDDP
Offline . 110s
Online 0.010s 0.004s

Table 5.2.: Comparison of SDDP and MPC execution time

Computing cuts offline with SDDP. SDDP is a powerful method to compute value functions
as a supremum of affine hyperplanes. The stopping criterion of SDDP relies only on statistical
upper-bound, and is renowned for its lack of precision (Shapiro, 2011).

77

Chapter 5. Optimal management of a microgrid with a µCHP

We analyze how many iterations are required for SDDP convergence. We consider a particular
day in winter (d = 10) and compare the evolution of SDDP’s lower bound with the evolution of
SDDP’s upper bound, estimated every 10 iterations with 1,000 scenarios. Results are given in
Figure 5.3. We observe that SDDP converges quickly: the gap between the lower and the upper
bounds is less than 0.5 % in about 42 iterations (around 5s execution time), and we observe that
the upper bound remains stable after 120 iterations (around 20s execution time).

50 100 150 200 250 300
Iterations

4.20

4.22

4.24

4.26

4.28

4.30

Co
st

 [
]

SDDP LB
SDDP UB
Confidence (95.0%)

Figure 5.3.: Illustrating the convergence of SDDP, on the linear relaxation of the stochastic MIP,
for d = 10 (January, 10th).

Comparing the operational results. We detail the operational costs in Table 5.3. In term of
energy savings, SDDP shortly beats MPC, by a discrepancy of 0.6%. We observe in Table 5.3
that SDDP consumes less electricity than MPC, and uses the µCHP more (comparing the µCHP
uptime), whereas MPC uses more the auxiliary burner to produce heat.

Figure 5.5 displays the average µCHP use over year, for both MPC and SDDP (the darker, the
heavier µCHP usage is). We observe that the µCHP runs mostly during winter, when outdoor
temperature is low, but is not used during summer. The µCHP trajectories are almost similar for
MPC and SDDP. It starts around 5am to fulfill the heating needs and is switched off after 9pm.

Figure 5.4 compares the relative difference between MPC and SDDP daily operational costs.
We observe that SDDP beats MPC during winter, whereas the performance of SDDP and MPC
are similar during summer, when the µCHP is off. We observe that MPC shortly beats SDDP by
a discrepancy being less than 1 % for some days in spring and fall, although the discrepancy is
small.

unit MPC SDDP

Cost e 1627 1617
Electricity bill e 682 668
µCHP cost e 833 865
Burner cost e 101 76
Discomfort . 11 11

µCHP uptime h 1984 2059

Table 5.3.: Operational costs for MPC and SDDP. Total electricity consumption is 6,379 kWh.

78

5.4. Numerical results

0 50 100 150 200 250 300 350
Day

0.00

0.05

0.10

0.15

0.20

0.25

Co
st

 d
iff

er
en

ce
 [

]

Figure 5.4.: Difference between SDDP’s and MPC’s daily costs, in percentage. When the difference
is greater than 0, SDDP beats MPC, otherwise MPC is better.

SDDP MPC

0 4 8 12 16 20 24

Time [h]

0

50

100

150

200

250

300

350

D
ay

0 4 8 12 16 20 24

Time [h]

0

50

100

150

200

250

300

350

D
ay

Figure 5.5.: µCHP use over one year, for both SDDP (left) and MPC (right).

Comparing the optimal trajectories. We display on Figure 5.6 the trajectories of battery stocks,
and on Figure 5.7 the trajectories of the hot water tank. We observe that SDDP uses less the
battery than MPC on the assessment trajectories, and that MPC has a higher use of the hot water
tank during the morning.

5.4.3.3. Comparing different microgrid configurations

Finally, we compare different configurations for the microgrid. As we have seen in §5.4.3.2 that
the performances of SDDP and MPC are almost equivalent, we compute the operational costs over
one year with MPC.

We test different battery’s sizes (0, 1.5, 3 and 4.5kWh) and two injection prices: pinj = 0
corresponds to the case when no injection is allowed, pinj = 0.088 e/kWh corresponds to EDF’s
reinjection tariff (Bonabe de Rougé, 2018). The goal of this comparison is too emphasize the
impact of the battery’s size upon the controller’s performance. The results obtained with MPC are

79

Chapter 5. Optimal management of a microgrid with a µCHP

0 3 6 9 12 15 18 21 24
Hours

0.5

1.0

1.5

2.0

2.5

3.0
Ch

ar
ge

 [k
W

h]
SDDP

0 3 6 9 12 15 18 21 24
Hours

0.5

1.0

1.5

2.0

2.5

3.0
MPC

Figure 5.6.: Battery charge trajectories for SDDP and MPC during one day in winter.

0 3 6 9 12 15 18 21 24
Hours

0

2

4

6

8

10

12

Ch
ar

ge
 [k

W
h]

SDDP

0 3 6 9 12 15 18 21 24
Hours

0

2

4

6

8

10

12
MPC

Figure 5.7.: Thermal hot water tank charge trajectories for SDDP and MPC during one day in
winter.

shown in Table 5.4. As the performance of SDDP is close to that of MPC, we choose to present
the comparison only for MPC.

We comment further the results in Table 5.4.

• If pinj = 0e, using a battery allows to increase the µCHP’s uptime by 30%, and decrease
operational costs by up to 4% (the bigger the battery, the lower the cost).

• If pinj = 0.088e, the battery’s size has less impact in term of cost savings, as the decision
maker can sell the surplus of electricity onto the external grid. The self-production is
higher than the case without injection, and remains almost constant w.r.t. the battery’s
size. However, we observe that increasing the battery’s size allows to reduce the burner’s
cost.

• In term of operational cost, it is equivalent to have a system with a 3kWh battery and no
injection cost and a system with no battery and injection cost.

80

5.5. Discussion

unit 0kWh 1.5kWh 3kWh 4.5kWh

pinj = 0 e/kWh

Cost e 1703 1630 1627 1604
Electricity bill e 775 705 682 678
µCHP cost e 628 805 833 812
Burner cost e 286 108 101 102
Discomfort v.a 14 12 11 12

µCHP uptime h 1497 1917 2059 1935
Self-production % 19.9 25.4 27.3 25.7

pinj = 0.088 e/kWh

Cost e 1621 1602 1586 1575
Electricity bill e 690 670 653 643
µCHP cost e 859 880 883 884
Burner cost e 61 41 39 37
Discomfort v.a 11 11 11 11
µCHP uptime h 2045 2097 2102 2106
Self-production % 27.1 27.8 27.9 28.0

Table 5.4.: Comparison of yearly operational costs obtained with different configurations. The
annual electricity consumption for the considered household is 6,379 kWh.

5.5. Discussion

The contributions of Chapter 5 are twofold. First, we have showed in §5.4.3.1 that using optimiza-
tion algorithms substantially increases the economic performance. Second, a comparison of MPC
with SDDP showed that it does not pay too much to use stochastic optimization algorithms: SDDP
policy is only 0.6% better than MPC policy during assessment. We observed in Figure 5.4 that
SDDP policy beats MPC policy mostly during winter and fall, when heating is on. In this period,
SDDP policy is in average 1% better than MPC policy. Otherwise, in summer, their performances
are equivalent, as the µCHP is off and the problem becomes almost deterministic.

We will consider a new case study in Chapter 6, with a residential microgrid equipped with solar
panels and a battery. The presence of solar panels increases the stochasticity of the system, as
it adds a new perturbation in the electrical load balance equation. We aim at improving MPC
and SDDP online policies. SDDP will compute its cuts in Decision-Hazard, and MPC will use a
statistical model to update its forecast online. We will observe that during sunny day, when the
production of the solar panels is nominal, SDDP policy beats MPC policy by up to 5% in term of
cost savings.

81

Chapter 6.

Optimal management of a home microgrid
with solar panels

Contents

6.1. Introduction . 83

6.2. Problem statement . 84

6.2.1. Load balance . 84

6.2.2. Uncertainties, controls and states . 85

6.2.3. Stochastic optimal control formulation 87

6.3. Resolution methods . 88

6.3.1. Model Predictive Control (MPC) . 88

6.3.2. Stochastic Dual Dynamic Programming (SDDP) 88

6.4. Numerical resolution . 90

6.4.1. Case study . 90

6.4.2. Numerical implementation . 91

6.4.3. Results . 93

6.5. Discussion . 96

6.1. Introduction

In Chapter 5, we have used two algorithms designed to tackle uncertainties: Model Predictive
Control (MPC) and Stochastic Dual Dynamic Programming (SDDP). The previous study showed
that the performance of these two algorithms were close on the particular example studied in Sec-
tion 5.4. We want to emphasize in this chapter the sensitivity w.r.t. uncertainties of these two
classes of algorithms. This chapter proposes a new case study where we replace the µCHP with
solar panels. We follow the same procedure as in Chapter 5.

Even if the procedure remains the same, the present case study differs from those of Chapter 5
in several crucial points. The building is still equipped with a battery, but the electrical system
becomes more complex. Besides the solar panel, we suppose here that the building is equipped
with electrical heating and electrical hot water tank, thus rendering the thermal system inherently
different from the one studied in Chapter 5. Thus, we no longer have to deal with Boolean
constraints, as those induced by the CHP’s switch. The two main sources of uncertainties become
the energy demands (electrical and hot water) and the production of the solar panel.

As in Chapter 5, we take decisions every 15 minutes. However, we do not study the system over
one year, but we focus on three particular days in summer, in spring and in winter. We make also
the following assumptions.

• The external temperature θe is supposed deterministic.

83

Chapter 6. Optimal management of a home microgrid with solar panels

• Electrical and domestic hot water demands are supposed stochastic. Here, these demands
correspond to a single family with two kids.

We first give in Section 6.2 a description of the microgrid, present in Section 6.3 the different
resolution methods and give, in Section 6.4, numerical results on three different cases.

6.2. Problem statement

As in Chapter 5, we consider a domestic microgrid, where the electrical and thermal demands must
be satisfied. Figure 6.2 displays the configuration of the microgrid we study in this chapter.

fh

f b del

fne

dhw

f t

φpv

ELECTRICAL
DEMAND

NETWORK

BATTERY

SOLAR PANEL

TANKTHERMAL
DEMAND

DOMESTIC
HOT WATER

Figure 6.1.: Microgrid’s configuration: the electrical system has a battery, and must satisfy the
electrical demand. The electrical hot water tank uses electricity to heat water, in
order to satisfy the domestic hot water demand. Electrical heaters are used to heat
the house.

6.2.1. Load balance

Electrical load balance. Based on Figure 6.2, the electrical load balance equation of the microgrid
writes, at each time t:

φpv(t) + fne(t) = f b(t) + f t(t) + fh(t) + del(t) . (6.1)

In the left hand side of Equation (6.1), the load produced consists of

• the production of the solar panel φpv(t),

• the importation from the network fne(t), supposed nonnegative (we do not export electricity
to the network).

In the right hand side of Equation (6.1), the electrical demand is the sum of

• the power exchanged with the battery f b(t),

• the power injected in the electrical heater f t(t),

84

6.2. Problem statement

• the power injected in the electrical hot water tank fh(t),

• the inflexible demands (lightning, cooking...), aggregated in a single demand del(t).

Thermal load balance. We now focus on the thermal load balance, corresponding to the energy
balance of the electrical hot water tank. At time t, the input of the tank is equal to

qin(t) = βhfh(t) , (6.2a)

where fh is the electrical power used in the hot water tank’s resistors (we denote by βh is a
transmission yields) . Tank’s output is

qout(t) = dhw(t) , (6.2b)

with dhw the domestic hot water demand.

6.2.2. Uncertainties, controls and states

The EMS takes decisions every 15 minutes to control the system. Thus, we take decisions in
discrete time.

We set ∆ = 15mn, and we consider an horizon T0 = 24h. We adopt the following convention for
discrete processes: for t ∈ {0, 1, · · · , T = T0

∆ }, we set xt = x(t∆). That is, xt denotes the value of
the variable x at the beginning of the interval [t∆, (t+ 1)∆[. Otherwise stated, we will from now
on denote by [t, t+ 1[the continuous time interval [t∆, (t+ 1)∆[.

6.2.2.1. Modeling uncertainties as random variables

Let (Ω,F) be a measurable space.
Because of their unpredictable nature, we cannot anticipate the realizations of the electrical

and the thermal demands. A similar reasoning applies to the production of the solar panel. We
choose to model these quantities as random variables over the space (Ω,F). We adopt the following
convention: a random variable will be denoted by an uppercase bold letter Z and its realization will
be denoted in lowercase z = Z (ω) for ω ∈ Ω. For each t = 1, . . . , T , we introduce the uncertainty
vector

W t = (Del
t ,D

hw
t ,Φpv

t) , (6.3)

modeled as a random variable. The uncertainty W t takes value in the set Wt = R3.

6.2.2.2. Modeling controls as random variables

As decisions depend on the previous uncertainties, the control is a random variable. We recall
that, at each discrete time t, the EMS takes three decisions:

• how much energy to charge/discharge the battery F bt ,

• how much energy to store in the electrical hot water tank F ht ,

• how much energy to inject in the electrical heater F tt .

We write the decision vector (random variable) at time t (at the beginning of [t∆, (t+ 1)∆[)

U t = (F bt ,F
h
t ,F

t
t) , (6.4)

taking values in Ut = R3.

85

Chapter 6. Optimal management of a home microgrid with solar panels

Electrical load balance. Then, between two discrete time indexes t and t+ 1, the EMS imports
an energy F ne

t+1 from the external network to satisfy the load balance equation (6.1) whatever the

demand Del
t+1 and the production of the solar panel Φpv

t+1, unknown at time t. Hence F ne
t+1 is a

recourse decision taken at time t+ 1. The load balance equation (6.1) now writes as

F ne
t+1 = F bt + F tt + F ht + Del

t+1 −Φpv
t+1 P− a.s. , (6.5)

where P − a.s. indicates that the constraint is fulfilled in the almost sure sense. As the decision
F ne
t+1 is completely determined by other decisions F bt ,F

t
t ,F

h
t and uncertainties Del

t+1,Φ
pv
t+1, we do

not include it in the decision vector U t. Later, we will aggregate the solar panel production Φpv
t+1

with the demands Del
t+1 in Equation (6.5), as these two quantities appear only by their sum.

The need of a recourse variable is a consequence of stochasticity in the supply-demand equation.
The choice of the recourse variable depends on the modeling. Here, we choose the recourse F ne

t+1

to be provided by the external network, that is, the external network mitigates the uncertainties
in the system.

Thermal balance. In a discrete time setting, the thermal balance (6.2) rewrites

Qin
t = βhF ht , (6.6a)

for the input, and
Qout
t+1 = Dhw

t+1 , (6.6b)

for the output, with Dhw
t+1 the hot water demand between time t and t+ 1.

6.2.2.3. States and dynamics

The state gathers the stock in the batteryBt, the energy stored in the electrical hot water tankHt,

and the two temperatures of the thermal envelope (θw
t ,θ

i
t). The state random variable Xt writes

Xt = (Bt,Ht,θ
w
t ,θ

i
t) . (6.7)

Thus, the state vector Xt takes values in Xt = R4.
In §4.4, we have detailed the continuous dynamics of the battery, the hot water tank and the

thermal inertia of the buildings. We follow the same procedure as in §5.2.2 to get a discrete
dynamics writing

xt+1 = ft(xt, ut, wt+1) , (6.8)

with ft corresponding to the discretization of the continuous dynamics (4.9)-(4.13)-(4.14). By doing
so, we suppose that the control ut and the uncertainty wt+1 are constant over the interval [t, t+∆[.

The dynamics (6.8) rewrites as an almost-sure constraint:

Xt+1 = ft
(
Xt,U t,W t+1

)
P− a.s. . (6.9)

We suppose that we start from a given position x0, thus adding a new initial constraint: X0 = x0.
In (6.9), the future state Xt+1 depends on the current state Xt, the decision U t taken at time

t and the realization of the uncertainties W t+1 between time t and t+ 1 (that is, during the time
interval [t∆, (t+ 1)∆[).

6.2.2.4. Bounds constraints

By Equations (4.10a) and (4.12), the stocks in the battery Bt and in the tank Ht are bounded.

At time t, the control F bt must ensure that the next state Bt+1 is admissible, that is, b ≤ Bt+1 ≤ b

86

6.2. Problem statement

by Equation (4.10a), which rewrites,

b ≤ Bt + ∆
[
ρc(F

b
t)+ +

1

ρd
(F bt)−

]
≤ b . (6.10)

Thus, the constraints on F bt depends on the stock Bt. The same reasoning applies for the tank
power F ht . Furthermore, we set bound constraints on controls, that is,

− f b ≤ F bt ≤ f
b
, 0 ≤ F ht ≤ f

h

t , 0 ≤ F tt ≤ f
t

t . (6.11)

Finally the load-balance equation (6.5) also acts as a constraint on the controls. We gather all
these constraints in an admissible set on control U t depending on the current state Xt:

U t ∈ Uadt (Xt) P− a.s. . (6.12)

6.2.2.5. Objective

At time t, the operational cost Lt : Xt × Ut ×Wt+1 → R aggregates two different costs:

Lt(xt, ut, wt+1) = πet × fne
t+1 + πdt ×max(0, θit − θi

t) . (6.13)

First, we pay a price πet to import electricity from the network between time t and t + 1. Hence,
electricity cost is equal to πet ×F ne

t+1. Second, if the indoor temperature is below a given threshold,

we penalize the induced discomfort with a cost πdt ×max(0, θit − θ
i
t), where πdt is a virtual price of

discomfort. The cost Lt is a convex piecewise linear function, which will prove important for the
SDDP algorithm in §6.3.2.

We add a final cost K : XT → R to ensure that stocks are non empty at final time T

K(xT) = κ×max(0, x0 − xT) , (6.14)

where κ is a positive penalization coefficient, calibrated by trials and errors.

As decisions U t and states Xt are random, the costs Lt(Xt,U t,W t+1) become also random
variables. We choose to minimize the expected value of the daily operational cost, yielding the
criterion

E
[T−1∑
t=0

Lt(Xt,U t,W t+1) +K(XT)
]
, (6.15)

yielding an expected value of a convex piecewise linear cost. We suppose that measurability and
integrability assumptions hold, so that the expected value in Equation (6.15) makes sense.

6.2.3. Stochastic optimal control formulation

Finally, the EMS problem translates to a generic stochastic optimal control (SOC) problem

min
X,U

E
[T−1∑
t=0

Lt(Xt,U t,W t+1) +K(XT)
]
, (6.16a)

X0 = x0 , (6.16b)

Xt+1 = ft
(
Xt,U t,W t+1

)
P− a.s. , (6.16c)

U t ∈ Uadt (Xt) P− a.s. , (6.16d)

σ(U t) ⊂ Ft . (6.16e)

87

Chapter 6. Optimal management of a home microgrid with solar panels

Problem (6.16) states that we want to minimize the expected value of the costs while satisfying
the dynamics, the control bounds and the non-anticipativity constraints.

6.3. Resolution methods

The exact resolution of Problem (6.16) is out of reach in general. We propose two different
algorithms that provide online policies πt : X0 ×W1 × · · · ×Wt → Ut that map available infor-
mation x0, w1, . . . , wt at time t to a decision ut. This section revisits Section 3.2 by adapting
the policies to the current application, embodied by Problem (6.16). In particular, Model Pre-
dictive Control §6.3.1 is a lookahead policy (see Section 3.3), whereas Stochastic Dual Dynamic
Programming §6.3.2 is a cost-to-go policy (see Section 3.4).

6.3.1. Model Predictive Control (MPC)

MPC is a classical algorithm commonly used to handle uncertainties in energy systems. Its
procedure was described in Section 3.3. At time t, we regard the current state xt and a deterministic
forecast (wt+1, . . . , wT) of the future uncertainties (W t+1, . . . ,W T) and we solve the deterministic
problem

min
(ut,··· ,uT−1)

T−1∑
j=t

[
Lj(xj , uj , wj+1)

]
+K(xT) , (6.17a)

xj+1 = fj
(
xj , uj , wj+1

)
, (6.17b)

uj ∈ Uadj (xj) . (6.17c)

At time t, we solve Problem (6.17), retrieve the optimal decisions (u
]

t , . . . , u
]

T−1) and only keep the

first decision u
]

t to control the system between time t and t+ 1. Then, we restart the procedure at
time t+ 1.

As Problem (6.17) is linear and the number of time steps remains not too large, we are able to
solve it exactly for every t.

6.3.2. Stochastic Dual Dynamic Programming (SDDP)

SDDP computes a set of value functions by solving a set of recursive Bellman equations. Then,
we use these value functions to build a policy to take decisions online.

6.3.2.1. Dynamic Programming and Bellman principle

The Dynamic Programming method (Bellman, 1957) looks for solutions of Problem (6.16) as state-
feedbacks πt : Xt → Ut. Dynamic Programming computes a serie of value functions backward in
time by setting VT (xT) = K(xT) and solving the recursive equations

Vt(xt) = min
u∈Uadt (xt)

∫
Wt+1

[
Lt(xt, u, wt+1) + Vt+1

(
ft(xt, u, wt+1)

)]
µoft+1(dwt+1) , (6.18)

where µoft+1 ∈ ∆(Wt+1) is an offline probability distribution on Wt+1 (see §3.2.1.2).

Once these functions are computed, we compute a decision at time t as a state-feedback:

πt(xt) ∈ arg min
u∈Uadt (xt)

∫
Wt+1

[
Lt(xt, u, wt+1) + Vt+1

(
ft(xt, u, wt+1)

)]
µont+1(dwt+1) , (6.19)

88

6.3. Resolution methods

where µont+1 ∈ ∆(Wt+1) is an online probability distribution on Wt+1. This method proves to be
optimal for Problem (6.16) when the uncertainties W 1, . . . ,W T are stagewise independent and

when µont = µoft is the probability distribution of W t in (6.18).

6.3.2.2. Description of Stochastic Dual Dynamic Programming

Dynamic Programming suffers from the well-known curse of dimensionality (Bertsekas, 2005a):
its numerical resolution fails for state dimension typically greater than 4 when value functions are
computed on a discretized grid. As the state Xt in §6.2.2.3 has 4 dimensions, SDP would be too
slow to solve numerically Problem (6.16). Under proper assumptions, the Stochastic Dual Dynamic
Programming (SDDP) can bypass the curse of dimensionality by approximating value functions
by polyhedral functions. It is optimal for solving Problem (6.16) when uncertainties are stagewise
independent, costs Lt and K are convex and dynamics ft are linear (Girardeau et al., 2014).

SDDP provides an outer approximation V kt of the value function Vt in (6.18) with a set of
supporting hyperplanes {(λjt , β

j
t)}j=1,··· ,k by

V t(xt) = min
θt∈R

θt , (6.20a)〈
λjt , xt

〉
+ βjt ≤ θt , ∀j = 1, · · · , k . (6.20b)

We now describe the SDDP algorithm in our formalism. Each iteration k of SDDP encompasses
two passes.

• During the forward pass, we draw a scenario wk1 , . . . , w
k
T of uncertainties, and compute a

state trajectory
{
xkt
}
t=0···T along this scenario. Starting from position x0, we compute xkt+1

in an iterative fashion: i) we compute the optimal control at time t using the available V kt+1

function

ukt ∈ arg min
u∈Uadt (xt)

∫
Wt+1

[
Lt(x

k
t , u, wt+1) + V kt+1

(
ft(x

k
t , u, wt+1)

)]
µoft+1(dwt+1) , (6.21)

and ii), we set xkt+1 = ft(x
k
t , u

k
t , w

k
t+1) where ft is given by (6.8).

• During the backward pass, we update the approximated value functions
{
V kt
}
t=0,··· ,T back-

ward in time along the trajectory
{
xkt
}
t=0,··· ,T . At time t, we solve the problem

θk+1
t = min

u∈Uadt (xt)

∫
Wt+1

[
Lt(x

k
t , u, wt+1) + V k+1

t+1

(
ft(x

k
t , u, wt+1)

)]
µoft+1(dwt+1) , (6.22)

and we obtain a new cut (λk+1
t , βk+1

t) where λk+1
t is a subgradient of optimal cost (6.22)

evaluated at point xt = xkt and βk+1
t = θk+1

t −
〈
λk+1
t , xkt

〉
. This new cut allows to update

the function V k+1
t : V k+1

t = max{V kt ,
〈
λk+1
t , .

〉
+ βk+1

t }.

Otherwise stated, SDDP only explores the state space around “interesting” trajectories (those
computed during the forward passes) and refines the value functions only in the corresponding
space regions (backward passes).

6.3.2.3. Obtaining online controls with SDDP

In order to compute implementable decisions, we use the following procedure.

• The approximated value functions
{
V t
}
t∈{0,..,T} are computed with the SDDP algorithm

described in §6.3.2.2. These computations are done offline.

89

Chapter 6. Optimal management of a home microgrid with solar panels

• The approximated value functions
{
V t
}
t∈{0,..,T} are then used to compute online a decision

at any time t for any state xt by using Equation (6.19).

We obtain a cost-to-go based policy, as introduced in Section 3.4. More precisely, we compute the
SDDP policy πsddp

t by

πsddp
t (xt) ∈ arg min

u∈Uadt (xt)

∫
Wt+1

[
Lt(xt, u, wt+1) + V t+1

(
ft(xt, u, wt+1)

)]
µont+1(dwt+1) , (6.23)

which corresponds to replacing the value function Vt+1 in Equation (6.19) with its approximation

V t+1. The decision πsddp
t (xt) is used to control the system between time t and t + 1. Then, we

resolve Problem (6.23) at time t+ 1.
To solve numerically Problem (6.23) at time t, we will consider online distributions with fi-

nite support w1
t , . . . , w

S
t . The online distribution µont+1 in Equation (6.23) now writes: µont+1 =∑S

s=1 psδwst+1
where δwst+1

is the Dirac measure at wst+1 and (p1, . . . , pS) are probability weights.

The same reasoning applies to the online distribution µont+1. For instance, Problem (6.23) reformu-
lates as

πsddp
t (xt) ∈ arg min

u∈Uadt (xt)

S∑
s=1

ps
[
Lt(xt, u, w

s
t+1) + V t+1

(
ft(xt, u, w

s
t+1)

)]
. (6.24)

6.4. Numerical resolution

We apply the two algorithms described in §6.3 to a specific case study.

6.4.1. Case study

We consider a building equipped with solar panels, a electrical hot water tank and a battery.

6.4.1.1. Settings

We aim to solve the stochastic optimization problem (6.16) over one day, with 96 time steps. The
battery’s size is 3 kWh, and the hot water tank has a capacity of 120 l. We suppose that the house
has a surface Ap = 20 m2 of solar panel at disposal, oriented south, and with a yield of 15%. We
penalize the recourse variable Fne

t+1 in (6.13) with on-peak and off-peak tariff, corresponding to

Électricité de France’s (EDF) individual tariffs. The building’s thermal envelope corresponds to
the French RT2012 specifications (Journal Officiel, 2013). Meteorological data comes from Meteo
France measurements corresponding to the year 2015.

6.4.1.2. Demands scenarios

We have scenarios of electrical and domestic hot water demands at 15 minutes time steps, obtained
with StRoBe (Baetens and Saelens, 2016). Figure 6.2 displays 100 scenarios of electrical and hot
water demands. We observe that the shape of these scenarios is consistent: demands are almost
null during night, and there are peaks around midday and 8 pm. Peaks in hot water demands
corresponds to showers. We aggregate the production of the solar panel Φpv and the electrical
demands Del in a single variable Del to consider only two uncertainties (Del

t ,D
hw
t).

6.4.1.3. Out of sample assessment of strategies

To obtain a fair comparison between SDDP and MPC, we use an out-of-sample validation following
the procedure introduced in Section 3.5. We generate 2,000 scenarios of electrical and hot water

90

6.4. Numerical resolution

0 3 6 9 12 15 18 21 24
Hours

0

1

2

3

4

5

El
ec

. [
kW

h]

0 3 6 9 12 15 18 21 24
Hours

0

2

4

6

8

10

DH
W

 C
on

so
. [

kW
h]

Figure 6.2.: Electrical (left) and domestic hot water (right) demand scenarios.

demands, and we split these scenarios in two distinct parts: the first Nopt scenarios are called
optimization scenarios, and the remaining Nsim scenarios are called assessment scenarios. We
made the choise Nopt = Nsim = 1, 000.

First, during the offline phase, we use the optimization scenarios to build models for the un-
certainties, under the mathematical form required by each algorithm. Second, during the online
phase, we use the assessment scenarios to compare the strategies produced by these algorithms. At
time t during the assessment, the algorithms obviously cannot use the future values of the assess-
ment scenarios, but can take advantage of the observed values up to t to update their statistical
models of future uncertainties.

6.4.2. Numerical implementation

We detail hereafter the numerical implementation of MPC, SDDP and the heuristics.

6.4.2.1. Implementing the algorithms

We implement MPC and SDDP in Julia 0.6, using JuMP (Dunning et al., 2017) as a modeler,
StochDynamicProgramming.jl as a SDDP solver, and Gurobi 7.02 (Gurobi Optimization Inc,
2014) as a LP solver. All computations run on a Core i7 2.5 GHz processor, with 16 GB RAM.

6.4.2.2. MPC procedure

Electrical and thermal demands are naturally correlated in time (Widén and Wäckelg̊ard, 2010).
To take into account such a dependence across the different time-steps, we chose to model the
process W 1, . . . ,W T with an auto-regressive (AR) process.

Building offline an AR model for MPC. The procedure to fit the parameters of the AR is as
follows.

We fit an AR(1) model upon the optimization scenarios (we do not consider higher order lag for
the sake of simplicity). For i ∈ {el, hw}, the AR model writes

dit+1 = αitd
i
t + βit + εit , (6.25a)

91

Chapter 6. Optimal management of a home microgrid with solar panels

where the non-stationary coefficients (αit, β
i
t) are, for all time t, solutions of the least-square problem

(αit, β
i
t) = arg min

a,b

Nopt∑
s=1

∥∥∥di,st+1 − ad
i,s
t − b

∥∥∥2

2
. (6.25b)

The points (di,1t , . . . d
i,Nopt
t) correspond to the optimization scenarios. The AR residuals (εel

t , ε
hw
t)

are assumed to be a white noise process.

Updating the forecast online. Once the AR model is calibrated, we use it to update the forecast
during assessment (see §6.3.1). The update procedure is threefold:

i) we observe the demands wt = (del
t , d

hw
t) between time t− 1 and t,

ii) we update the forecast wt+1 at time t+ 1 with the AR model

wt+1 =
(
d

el

t+1, d
hw

t+1

)
=
(
αel
t d

el
t + βel

t , α
hw
t dhw

t + βhw
t

)
,

iii) we set the forecast between time t+ 2 and T by using the average values of the optimization
scenarios:

wτ =
1

Nopt

Nopt∑
i=1

wiτ ∀τ = t+ 2, · · · , T .

Once the forecast (wt+1, . . . , wT) is available, it is fed into the MPC algorithm to solve Prob-
lem (6.17).

6.4.2.3. SDDP procedure

Even if electrical and thermal demands are naturally correlated in time (Widén and Wäckelg̊ard,
2010), the SDDP algorithm only relies upon marginal distributions.

Building offline probability distributions for SDDP. Rather than fitting an AR model like done
with MPC, we use the optimization scenarios to build marginal probability distributions µoft that
will feed the SDDP procedure in (6.18). We follow the procedure introduced in §4.4 to quantize
the optimization scenarios in S representative points. We choose here S = 20 to have enough
precision.

Computing value functions offline. Then, we use these probability distributions as an input to
compute a set of value functions with the procedure described in §6.3.2.2.

Using the value functions online. Once the value functions have been computed by SDDP, we
are able to compute online decisions with Equation (6.24) In practice, the quantization size of µont
is larger than those of µoft , to have a greater accuracy online (we discuss further the impact of
the quantization size of µont on the performance of SDDP policy in Remark 6.4.1). SDDP, on the
contrary of MPC, does not update the online probability distribution µont during assessment to
consider the information brought by the previous observations.

6.4.2.4. Heuristic procedure

We choose to compare the MPC and SDDP algorithms with a basic decision rule. This heuristic is
as follows: the battery is charged whenever the solar production Φpv is available, and discharged
to fulfill the demand if there remains enough energy in the battery; the tank is charged (F ht > 0)

92

6.4. Numerical resolution

if the tank energy Ht is lower than H0, the heater F tt is switched on when the temperature is

below the setpoint θit and switched off whenever the temperature is above the setpoint plus a given
margin.

6.4.3. Results

We compare the policies on three different days, corresponding to different meteorological condi-
tions.

6.4.3.1. Assessing on different meteorological conditions

We assess the algorithms on three different days, with different meteorological conditions (see
Table 6.1). Therefore, we use three distinct sets of Nsim assessment scenarios of demands, one for
each typical day.

Date Temp. (◦C) PV Production (kWh)
Winter Day February, 19th 3.3 8.4
Spring Day April, 1st 10.1 14.8
Summer Day May, 31st 14.1 23.3

Table 6.1.: Different meteorological conditions

These three different days corresponds to different heating needs. During Winter day, the heating
is maximal, whereas it is medium during Spring day and null during Summer day. The production
of the solar panel varies accordingly.

6.4.3.2. Comparing the algorithms performances

During assessment, we use MPC (see (6.17)) and SDDP (see (6.23)) strategies to compute online
decisions along Nsim assessment scenarios. Then, we compare the average electricity bill obtained
with these two strategies and with the heuristic. The assessment results are given in Table 6.2:
means and standard deviation σ are computed by Monte Carlo with the Nsim assessment scenarios;

the notation ± corresponds to the interval ±1.96
σ√
Nsim

, which is a 95% confidence interval.

SDDP MPC Heuristic

Offline time 50 s 0 s 0 s
Online time 1.5 ms 0.5 ms 0.005 ms

Electricity bill (e)

Winter day 4.38 ± 0.02 4.59 ± 0.02 5.55 ± 0.02
Spring day 1.46 ± 0.01 1.45 ± 0.01 2.83 ± 0.01
Summer day 0.10 ± 0.01 0.18 ± 0.01 0.33 ± 0.02

Table 6.2.: Comparison of MPC, SDDP and heuristic strategies

We observe in Table 6.2 that MPC and SDDP exhibit close performance, and do better than the
heuristic. If we consider mean electricity bills, SDDP achieves better savings than MPC during
Summer day and Winter day, but SDDP and MPC display similar performances during Spring
day.

In addition, SDDP achieves better savings than MPC for the vast majority of scenarios. Indeed,
if we compare the difference between the electricity bills scenario by scenario, we observe that

93

Chapter 6. Optimal management of a home microgrid with solar panels

SDDP is better than MPC for about 93% of the scenarios. This can be seen on Figure 6.3 that
displays the histogram of the absolute gap savings between SDDP and MPC during Summer day.
The distribution of the gap exhibits a heavy tail that favors SDDP on extreme scenarios. Similar
analyses hold for Winter and Spring day. Thus, we claim that SDDP outperforms MPC for the
electricity savings. Concerning the performance on thermal comfort, temperature trajectories are
above the temperature setpoints specified in §6.2.2.5 for both MPC and SDDP.

In term of numerical performance, it takes less than a minute to compute a set of cuts as
in §6.3.2.2 with SDDP on a particular day. Then, the online computation of a single decision takes
1.5 ms on average, compared to 0.5 ms for MPC. Indeed, MPC is favored by the linearity of the
optimization Problem (6.17), whereas, for SDDP, the higher the quantization size S, the slowest is
the resolution of Problem (6.23), but the more information the online probability distribution µont
carries. We discuss further the impact of the quantization size in Remark 6.4.1.

0.8 0.6 0.4 0.2 0.0
Absolute gap []

0

50

100

150

200

250

300

Nu
m

be
r o

f o
cc

ur
en

ce
s

Figure 6.3.: Absolute gap savings between MPC and SDDP during Summer day

6.4.3.3. Analyzing the value functions

We now analyse the value functions after convergence. Figure 6.4 displays the value functions at
different moment of the day for Summer day. We observe that if both the level of the battery or
the hot water tank are sufficiently above their lower bound, the value function is equal to 0.

Battery level [kWh]
0.51.01.52.02.53.0

Tank level [kWh]

0.0
0.5

1.0
1.5

2.0
2.5

Value function [
]

0.044010

0.044015

0.044020

0.044025

0.044030

0.044035

Battery level [kWh]
0.51.01.52.02.53.0

Tank level [kWh]

0.0
0.5

1.0
1.5

2.0
2.5

Value function [
]

0.05
0.10

0.15

0.20

0.25

0.30

0.35

Battery level [kWh]
0.51.01.52.02.53.0

Tank level [kWh]

0.0
0.5

1.0
1.5

2.0
2.5

Value function [
]

0.05

0.10

0.15

0.20

0.25

0.30

8am 12pm 9pm

Figure 6.4.: Approximated value functions at 8am, 12pm and 21pm during Summer day.

94

6.4. Numerical resolution

6.4.3.4. Analyzing the trajectories

We analyze now the trajectories of stocks in assessment, during Summer day. The heating is off,
and the production of the solar panel is nominal at midday.

Figure 6.5 displays the state of charge of the battery along a subset of assessment scenarios,
for SDDP and MPC. We observe that SDDP charges earlier the battery at its maximum. On the
contrary MPC charges the battery later, and does not use the full potential of the battery. The
two algorithms discharge the battery to fulfill the evening demands. We notice that each trajectory
exhibits a single cycle of charge/discharge, thus decreasing battery’s aging.

Figure 6.6 displays the charge of the domestic hot water tank along the same subset of assessment
scenarios. We observe a similar behavior as for the battery trajectories: SDDP uses more the
electrical hot water tank to store the excess of PV energy, and the level of the tank is greater at
the end of the day than in MPC.

0 3 6 9 12 15 18 21 24
Hours

0.5

1.0

1.5

2.0

2.5

3.0

Ch
ar

ge
 [k

W
h]

SDDP

0 3 6 9 12 15 18 21 24
Hours

0.5

1.0

1.5

2.0

2.5

3.0
MPC

Figure 6.5.: Battery charge trajectories for SDDP and MPC during Summer day

0 3 6 9 12 15 18 21 24
Hours

2

3

4

5

6

7

8

9

Ch
ar

ge
 [k

W
h]

SDDP

0 3 6 9 12 15 18 21 24
Hours

2

3

4

5

6

7

8

9

MPC

Figure 6.6.: Hot water tank trajectories for SDDP and MPC during Summer day

This analysis suggests that SDDP makes a better use of storage capacities than MPC.

Remark 6.4.1. SDDP policy (6.24) requires a discrete probability distribution µont+1 defined on
Wt+1 to compute a decision ut at time t. However, the higher the quantization size, the larger the
number of constraints are in Problem (6.24), but the richer is the representation of the uncertainty.
The decision-maker has to find a trade-off between the computation time and the performance of
the SDDP policy. We consider the problem corresponding to the 1st April (see Table 6.1), and

95

Chapter 6. Optimal management of a home microgrid with solar panels

assess SDDP policy with different quantization size S. Results are given in Figure 6.7. We observe
that for a quantization size bigger than 7, the results are almost similar, leaving apart the statistical
noise.

1 2 3 5 7 10 15 20
Quantization size

1.45

1.46

1.47

1.48

1.49

1.50

Co
st

 [
]

Figure 6.7.: Evolution of assessment costs against quantization size S. The bar indicates the
confidence interval of the average cost along the 1,000 assessment scenarios.

♦

6.5. Discussion

We have presented a domestic microgrid energy system, and compared different optimization
algorithms to control the stocks with an Energy Management System.

The results show that optimization based strategies outperform the proposed heuristic procedure
in term of money savings. Furthermore, SDDP outperforms MPC during Winter and Summer day
— achieving up to 35% costs savings — and displays similar performance as MPC during Spring
day. Even if SDDP and MPC exhibit close performance, a comparison scenario by scenario shows
that SDDP beats MPC most of the time (more than 90% of scenarios during Summer day). Thus,
we claim that SDDP is better than MPC to manage uncertainties in such a microgrid, although
MPC gives also good performance. SDDP also makes a better use of storage capacities.

Our study can be extended in different directions. First, we could mix SDDP and MPC to re-
cover the benefits of these two algorithms. Indeed, SDDP is designed to handles the uncertainties’
variability but fails to capture the time correlation, whereas MPC ignores the uncertainties’ vari-
ability, but considers time correlation by means of a multistage optimization problem. Second, we
will study in Chapter 8 the optimization of larger scale microgrids — with different interconnected
buildings — by decomposition methods.

96

Part II.

Mixing time and spatial
decomposition in large-scale

optimization problems

Abstract. In Part I, we have applied optimization methods and have designed online
policies to manage small scale systems, that is, with a limited number of stocks. We have
proved the relevance of optimization methods to frame online policies. We have sorted
existing algorithms in two classes: the first class represents future uncertainties as scenarios,
the other by a set of value functions representing the average cost-to-go to start from a given
position. The computation of such cost-to-go relies on Dynamic Programming. However,
the resolution of Dynamic Programming equations is confronted by the well-known curse
of dimensionality that limits the number of stocks we are able to deal with.
We introduce hereafter spatial decomposition methods in the perspective to overcome the
curse of dimensionality. We handle large scale systems gathering small scale units coupled
together via a set of coupling constraints. The decomposition breaks apart the coupling
constraints to obtain decoupled small scale units, depending on global coordination vari-
ables. Once subproblems decoupled, we are able to solve them locally and in parallel by
Dynamic Programming by handling only the local stocks and the coordination variables.
We study in Chapter 7 a generic stochastic multistage problem with different subsystems
coupled together via a set of coupling constraints, and introduce price and resource de-
composition schemes. We prove that we are able to bound the global Bellman functions
above by the sum of local resource-decomposed value functions, and below by the sum
of local price-decomposed value functions. In Chapter 8, we apply the price and resource
decomposition schemes to a problem where the coupling constraints are set on a graph. We
analyze a case study consisting of a large scale district microgrid coupling up to 48 small
scale units together. In Chapter 9 we show that this study corroborates with another study
focusing on the management of hydro-dams valleys instead of microgrids. This chapter is
a joint work with Pierre Carpentier, Jean-Philippe Chancelier and Vincent Leclère, and
has led to a publication (Carpentier et al., 2018b).

97

Chapter 7.

Upper and lower bounds for Bellman
functions by spatial decomposition

Contents

7.1. Introduction . 99

7.2. Bounds for an optimization problem under coupling constraints via
decomposition . 100

7.2.1. Global optimization problem formulation from local data 100

7.2.2. Local price and resource value functions. Upper and lower bounds . . . 101

7.2.3. The special case of multistage stochastic optimization problem 102

7.3. Decomposition of local value functions by Dynamic Programming . 106

7.3.1. Decomposed value functions by means of deterministic coordination pro-
cess . 107

7.3.2. Decomposed value functions by means of Markovian coordination process 108

7.3.3. Producing admissible policies . 112

7.3.4. Discussing the impact of the information constraints 114

7.3.5. Hazard decision information structure 115

7.4. Improving bounds . 117

7.4.1. Selecting a class of designs for global price processes 117

7.4.2. Selecting a class of designs for global resource processes 119

7.5. Discussion . 120

7.1. Introduction

We consider a multistage stochastic optimization problem where different units are connected
together via a coupling constraint. Each unit is a (small) control system. Static constraints couple
all units at each time. We propose two decomposition methods, whether decoupling the coupling
constraints by prices or by resource. We show that the global Bellman function can be bounded
above by a sum of local resource-decomposed value functions, and below by a sum of local price-
decomposed value functions. We provide conditions under which these local value functions can
be computed by Dynamic Programming.

This chapter is part of a larger work aiming at mixing spatial decomposition methods with
stochastic optimization. We refer to (Carpentier and Cohen, 2017) for a generic description of
decomposition methods. Recent developments allow to mix spatial decomposition with Dynamic
Programming to solve effectively large scale multistage stochastic optimization problems. This
work lead to the introduction of the Dual Approximate Dynamic Programming algorithm (Barty
et al., 2010a). This algorithm was applied to problems with a single central coupling constraint (Gi-
rardeau, 2010) or on coupling cascade constraints, as in hydro-dams valley where the flows of an

99

Chapter 7. Upper and lower bounds for Bellman functions

upstream dam enters the next downstream dam downstream (Alais, 2013). Theoretical insights
concerning stochastic decomposition methods were given in Leclère (2014). We extend in this
chapter the previous contributions by tackling more generic coupling constraints where a mix of
local functions must belong to a given global admissible set. This framework takes inspiration from
the extended monotropic approaches introduced in Bertsekas (2008).

We focus in Section 7.2 on a generic decomposable optimization problem and present the price
and resource decomposition schemes. We then apply the two decomposition methods to a multi-
stage stochastic optimization problem by decomposing a global coupling constraint time step by
time step with a price and with a resource processes. Then, in Section 7.3 we provide conditions
under which the decomposed local price and resource value functions are computable by Dynamic
Programming. We thus obtain a mix of spatial and time decompositions. Under proper assump-
tions, the sum of the local value functions computed by Dynamic Programming bounds the global
value functions of the original problem. Eventually, we detail in Section 7.4 methods to obtain
tighter bounds by choosing appropriately the price and resource processes among a given design.

7.2. Bounds for an optimization problem under coupling
constraints via decomposition

We first introduce a generic unit optimization problem under coupling constraints in §7.2.1 and
show in §7.2.2 that, by decomposition, we are able to bound the optimal solution of the generic
problem. Then, we focus in §7.2.3 on the special case of multistage stochastic optimization
problems.

7.2.1. Global optimization problem formulation from local data

We describe a generic optimization problem coupling different local subproblems. We borrow the
abstract duality formalism of Rockafellar (1974), which allows to write duality conditions in a
generic setting.

Let Z1, . . . , ZN be N sets and

J i : Zi → (−∞,+∞] , i ∈ {1, .., N} , (7.1)

be a local criteria. Let Ξ1, . . . , ΞN be N vector spaces paired with (Ξ1)?, . . . , (ΞN)? by duality
pairings 〈

· , ·
〉

: Ξi × (Ξi)? → R
(ri, λi) 7→

〈
λi , ri

〉
.

(7.2)

We consider N mappings
ϑi : Zi → Ξi , i ∈ {1, .., N} . (7.3)

From these local data, we formulate a global minimization problem under constraints as follows.
We introduce the product set

Z = Z1 × · · · × ZN , (7.4)

and the product spaces

Ξ = Ξ1 × · · · × ΞN , Ξ? = (Ξ1)? × · · · × (ΞN)? , (7.5)

Let
C ⊂ Ξ , (7.6)

be a set included in Ξ that will capture the coupling constraints between the N units.

100

7.2. Bounds for an optimization problem under coupling constraints via decomposition

We define the global optimization problem as

V] = inf
(z1,··· ,zN)∈Z

N∑
i=1

J i(zi) , (7.7a)

under the global coupling constraint(
ϑ1(z1), · · · , ϑN (zN)

)
∈ −C . (7.7b)

We note that without Constraint (7.7b), Problem (7.7) would decompose into N independent
subproblems in a straightforward manner.

7.2.2. Local price and resource value functions. Upper and lower bounds

Let us introduce local price value functions V i : (Ξi)? → R by

V i[λi] = inf
zi∈Zi

J i(zi) +
〈
λi , ϑi(zi)

〉
, ∀λi ∈ (Ξi)? , (7.8)

and local resource value functions V
i

: Ξi → R by

V
i
[ri] = inf

zi
J i(zi) , ∀ri ∈ Ξi

s.t. ϑi(zi) = ri .
(7.9)

We denote by
C? =

{
λ ∈ Ξ? |

〈
λ , r

〉
≥ 0 , ∀r ∈ C

}
, (7.10)

the dual cone of C.

Proposition 7.2.1. For all λ = (λ1, · · · , λN) ∈ C? and r = (r1, · · · , rN) ∈ −C, we have the
following upper and lower estimates of the global minimum of Problem (7.7):

N∑
i=1

V i[λi] ≤ V] ≤
N∑
i=1

V
i
[ri] . (7.11)

We call λ ∈ C? an admissible price vector and r ∈ −C an admissible resource vector.

Proof. The dual function associated to Problem (7.7) writes

V [λ] = inf
z∈Z

N∑
i=1

J i(zi) +
〈
λi , ϑi(zi)

〉
, ∀λ = (λ1, · · · , λN) ∈ C? . (7.12)

For all λ ∈ C?, r ∈ −C, we have
〈
λ , r

〉
≤ 0 by definition of C? in (7.10), thus we deduce that∑N

i=1

〈
λi , ϑi(zi)

〉
≤ 0 for all z = (z1, · · · , zN) ∈ Z such that

(
ϑ1(z1), · · · , ϑN (zN)

)
∈ −C. Hence,

we have V [λ] ≤
∑N
i=1 J

i(zi) for all z ∈ Z satisfying (7.7b). By taking the inf in the right hand side,

and as (7.12) and (7.8) are related by V [λ] =
∑N
i=1 V

i[λi], we obtain the lower bound in (7.11).

The upper bound arises directly, as Problem (7.7) is equivalent to V] = infr∈−C
∑N
i=1 V

i
[ri] we

obtain the upper bound in (7.11). �

Restricting the search spaces for bounds. It may prove useful to restrict the admissible set C in
Problem (7.7) to ease the resolutions of the price (7.8) and resource value functions (7.9). Thus,
we are prone to replace the admissible set C by a smaller set C ⊂ C to ease the resolution of the

101

Chapter 7. Upper and lower bounds for Bellman functions

primal value function (7.9) in the primal and by a smaller cone C
? ⊂ C? to ease the resolution of

the dual value function (7.8). By doing so, we prove that the bounds in (7.11) are preserved.

For all C ⊂ Ξ, we adopt the notation

V]C = inf
(z1,··· ,zN)∈Z

N∑
i=1

J i(zi) (7.13a)(
ϑ1(z1), · · · , ϑN (zN)

)
∈ −C . (7.13b)

Let C and C be two sets such that
C ⊂ C ⊂ C . (7.14)

Then, the following inequalities holds

max
λ∈C?

N∑
i=1

V i[λi] ≤ V]
C
≤ V]C ≤ V

]
C ≤ inf

r∈−C

N∑
i=1

V
i
[ri] , (7.15)

where the first inequality holds as maxλ∈C?
∑N
i=1 V

i[λi] is the dual problem of V]
C

. By restricting

Problem V]C , we obtain a looser bound in the primal, and by relaxing Problem V]C , we obtain a
looser bound in the dual, as illustrated in Figure 7.1.

C ⊂ C C⊂

C
? ⊂ C?C? ⊂

Figure 7.1.: Restricting the search spaces in the primal and in the dual

7.2.3. The special case of multistage stochastic optimization problem

Now, we turn to the case where the global optimization problem (7.7) is a multistage stochastic
optimization problem elaborated from local data (local state and control spaces) with global
coupling constraints at each time step.

We consider a probability space (Ω,F ,P), a time span {0, . . . , T} — where T ∈ N? is a finite
horizon — and a number N ∈ N? of local stochastic control problems.

7.2.3.1. Local data for local stochastic control problems

We detail hereafter the local data describing local stochastic control problem, for i ∈ {1, .., N}.

Local state, control and uncertainty spaces. For any time t ∈ {0, .., T−1}, let (Wi
t,Wi

t), (Xit,X it)
and (Uit,U it) be measurable spaces, and (Ξit, T i) be an Euclidian space, equipped with the usual
Euclidian scalar product λi · ri for all λi ∈ (Ξit)

? and ri ∈ Ξit.

Local dynamics. Let

git : Xit × Uit ×Wi
t+1 → Xit+1 , ∀t ∈ {0, .., T − 1} , ∀i ∈ {1, .., N} , (7.16)

be measurable local dynamics.

102

7.2. Bounds for an optimization problem under coupling constraints via decomposition

Local coupling. Let

Θi
t : Xit × Uit → Ξit , ∀t ∈ {0, .., T − 1} , ∀i ∈ {1, .., N} , (7.17)

be measurable local coupling functions.

Local criteria. Let

Lit : Xit × Uit ×Wi
t+1 → R , ∀t ∈ {0, .., T − 1} , ∀i ∈ {1, .., N} (7.18)

be the local instantaneous cost and

Ki : XiT → R , ∀i ∈ {1, .., N} (7.19)

be the local final cost.

We incorporate possible constraints coupling the control with the state directly in the instan-
taneous costs Lit, since they are extended-real valued functions which can possibly take the value
+∞.

Local uncertainties. Let

W i = {W i
t}t∈{0,..,T} , W

i
t : Ω→Wi

t , (7.20)

be the local noise process, defined on the probability space (Ω,F ,P).

7.2.3.2. Global data for the global stochastic control problem

From local data given above, we are going to define the global data.

Global state and control spaces. We define the global measurable spaces as products (over units)
of the local measurable spaces:

Xt =

N∏
i=1

Xit , Ut =

N∏
i=1

Uit , ∀t ∈ {0, .., T − 1} . (7.21)

Global coupling constraints. Let

Ξt =

N∏
i=1

Ξit , St ⊂ Ξt , ∀t ∈ {0, .., T − 1} , (7.22)

be the global coupling spaces Ξt and the global coupling sets St. We define also

Ξ =

T−1∏
t=0

Ξt , S =

T−1∏
t=0

St . (7.23)

The global coupling constraints writes as a combination of the local couplings Θi
t introduced in

(7.17), such that for all t ∈ {0, .., T − 1},(
Θ1
t (x

1
t , u

1
t), · · · ,ΘN

t (xNt , u
N
t)
)
∈ −St , ∀(x1

t , · · · , xNt) ∈ Xt , ∀(u1
t , · · · , uNt) ∈ Ut . (7.24)

103

Chapter 7. Upper and lower bounds for Bellman functions

Global uncertainties. We note (W 1, · · ·W T) the global noise process, where

W t = (W 1
t , · · · ,W

N
t) , ∀t ∈ {1, .., T} . (7.25)

For all t ∈ {1, .., T − 1}, W t takes values in the measurable space

Wt =

N∏
i=1

Wi
t . (7.26)

Global information structure. We will only consider two possible information structures.

• The global information structure captures the information provided by all uncertainties:

Ft = σ(W 1, · · · ,W t) , ∀t ∈ {0, .., T − 1} . (7.27a)

• The local information structure captures only the information provided by the local uncer-
tainties:

F it = σ(W i
1, · · · ,W

i
t) , ∀t ∈ {0, .., T − 1} , ∀i ∈ {1, .., N} . (7.27b)

Of course, we have that F it ⊂ Ft, for all i ∈ {1, .., N}.

We recall the notion of A-adapted stochastic processes hereafter.

Definition 7.2.2. Let Z =
∏T−1
t=0 Zt be a product of measurable spaces, and A = {At}t∈{0,..,T} be a

filtration on (Ω,A). We say that the stochastic process Z = (Z0, · · · ,ZT−1) — where Zt : Ω→ Zt
for all t ∈ {0, .., T − 1} — is A-adapted if for all t ∈ {0, .., T − 1} Zt is measurable w.r.t. At. We
note L0(Ω,A,P,Z) the space of A-adapted process with image in the space Z.

7.2.3.3. Global stochastic control problem

With the local data detailed in §7.2.3.1 and the global data detailed in §7.2.3.2, we formulate a
global optimization problem

V]0 (x0) = min
X,U

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (7.28a)

w.r.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t , (7.28b)

σ(U i
t) ⊂ Git , ∀i , ∀t , (7.28c)(

Θ1
t (X

1
t ,U

1
t), · · · ,ΘN

t (XN
t ,U

N
t)
)
∈ −St , ∀t , (7.28d)

where

• x0 = (x1
0, · · · , xN0) ∈ X0 is the initial position.

• The stochastic processes {Xi
t}t∈{0,..,T} and {U i

t}t∈{0,..,T−1} are called local state and local
control processes.

• The stochastic processes X = {Xt}t∈{0,..,T} and U = {U t}t∈{0,..,T−1} — taking values
respectively in Xt and in Ut — are called global state and control processes,

• Decisions U i
t are measurable w.r.t. given σ-fields Git , that is,

σ(U i
t) ⊂ Git , ∀t ∈ {0, .., T − 1} , (7.29)

with Git = F it or Git = Ft (see Equations (7.27b) and (7.27a)),

104

7.2. Bounds for an optimization problem under coupling constraints via decomposition

• The global coupling constraints(
Θ1
t (X

1
t ,U

1
t), · · · ,ΘN

t (XN
t ,U

N
t)
)
∈ −St , ∀t ∈ {0, .., T − 1} , (7.30)

have to be taken in the P-almost sure sense.

Problem (7.28) is parameterized by the family of admissible sets {St}t∈{0,..,T−1}, the initial
position x0 ∈ X0 and the measurability constraints (7.29) defined by the σ-field Git .

7.2.3.4. Local price and resource value functions

Following the decomposition schemes introduced in §7.2.2, we will now obtain lower and upper
bounds of the global multistage stochastic problem (7.28).

Let i ∈ {1, .., N} be a local unit, and λi = (λi0, · · · ,λiT−1) ∈ L0(Ω,F ,P, (Ξi)?) be a local price
process. The local price value function, defined in Equation (7.8), writes here

V i0[λi](xi0) = min
Xi,Ui

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) + λit ·Θ

i
t(X

i
t,U

i
t) +Ki(Xi

T)
]
, (7.31a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀t , (7.31b)

σ(U i
t) ⊂ Git , ∀t . (7.31c)

We suppose that measurability and integrability assumptions hold, so that the expression in (7.31)

(and by extension the expression E[
∑T−1
t=0 λ

i
t ·Θi

t(X
i
t,U

i
t)]) makes sense 1.

Let Ri = (Ri
0, · · · ,Ri

T−1) ∈ L0(Ω,F ,P,Ξi) be a local resource process. The local resource value
function, defined in Equation (7.9), writes here

V
i

0[Ri](xi0) = min
Xi,Ui

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (7.32a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀t, (7.32b)

σ(U i
t) ⊂ Git , ∀t, (7.32c)

Θi
t(X

i
t,U

i
t) = Ri

t , ∀t. (7.32d)

In Equations (7.31) and (7.32), the (parametric) dependency w.r.t. the local price process λi

and the local resource process Ri are denoted inside brackets to set it apart from the dependency
w.r.t. the local position xi0.

We call the global processes λ ∈ L0(Ω,F ,P,Ξ?) and R ∈ L0(Ω,F ,P,Ξ) coordination processes.

7.2.3.5. Global upper and lower bounds

Applying Proposition 7.2.1 to the local price value function (7.31) and resource value function (7.32)
makes it possible to bound the global problem (7.28). We first define the notion of admissible price
and resource processes.

Definition 7.2.3. We define the admissible set associated to the almost-sure constraints (7.28d)
by

S = {Y = (Y0, · · · ,YT−1) ∈ L0(Ω,F ,P,Ξ) | Yt ∈ St P− a.s.} . (7.33)

1 We could consider for instance that for all t ∈ {0, .., T − 1}, λi
t ∈ L2(Ω,Ft,P, (Ξi

t)
?) and that Θi

t(X
i
t,U

i
t) ∈

L2(Ω,Ft,P,Ξi
t) are square integrable random variables. Another possibility is to consider that Θi

t(X
i
t,U

i
t) ∈

L∞(Ω,Ft,P,Ξi
t) is a bounded random variable, and that λi

t ∈ L1(Ω,Ft,P,Ξi
t). We refer to Leclère (2014) for a

discussion of the duality in the (L1, L∞) pairing.

105

Chapter 7. Upper and lower bounds for Bellman functions

Its dual cone writes

S? = {Z = (Z0, · · · ,ZT−1) ∈ L0(Ω,F ,P,Ξ?) |
〈
Y ,Z

〉
≥ 0 , ∀Y ∈ S} . (7.34)

We say that λ ∈ L0(Ω,F ,P,Ξ?) is an admissible coordination price process if

λ ∈ S? . (7.35)

In a similar manner, R ∈ L0(Ω,F ,P,Ξ) is an admissible coordination resource process if

R ∈ −S . (7.36)

By considering admissible price and resource coordination processes, we are able to bound up
and down Problem (7.28).

Proposition 7.2.4. For any admissible price process λ = (λ1, · · · ,λN) ∈ S? and for any admis-
sible resource process R = (R1, · · · ,RN) ∈ −S, we have that

N∑
i=1

V i0[λi](xi0) ≤ V]0 (x1
0, · · · , xN0) ≤

N∑
i=1

V
i

0[Ri](xi0) , ∀(x1
0, · · · , xN0) ∈ X0 . (7.37)

Proof. Application of Proposition 7.2.1 to Problem (7.28) with the value functions (7.31) and (7.32).
�

We draw a parallel between the data of Problem (7.7) and of Problem (7.28) in Table 7.1.

Problem Generic Stochastic

Local decision space Zi Ui =
∏T−1
t=0 Uit , Xi =

∏T−1
t=0 Xit

Local decision variables zi Xi,U i

Local couplings ϑ : Zi → Ξi Θi
t : Xit × Uit → Ξit

Admissible set C S
Dual cone C? S?
Resource r R = (R0, · · · ,RT−1)
Price λ λ = (λ0, · · · ,λT−1)

Table 7.1.: Comparing the generic problem in §7.2.1 with the multistage stochastic problem
in §7.2.3

7.3. Decomposition of local value functions by Dynamic
Programming

We have seen in Section 7.2 that we are able to obtain upper and lower bounds of optimization
problems by spatial decomposition. We now show that spatial decomposition schemes can be made
compatible with time decomposition (Dynamic Programming) if price and resource processes are
deterministic or Markovian. Furthermore, we even obtain bounds for the Bellman value functions
of the original problem.

We focus in §7.3.1 on deterministic price and resource processes, and then study the Markovian
case in §7.3.2. Eventually, we discuss in §7.3.4 the impact of the non-anticipativity constraint (7.29)
on the resolution of the Dynamic Programming equations and extend the results to the hazard-
decision information structure in §7.3.5.

106

7.3. Decomposition of local value functions by Dynamic Programming

In the sequel, we make the following key assumption for Dynamic Programming.

Assumption 7.3.1. The global uncertainties W 1, · · · ,W T in (7.25) are a sequence of independent
random variables.

We note that, at a fixed time t, the local uncertainties (W 1
t , · · · ,W

N
t) are not necessarily

independent between units.

Global value functions. We define the global value functions Vt : Xt → R for all t ∈ {0, .., T − 1}
as

Vt(xt) = min
X,U

EW
[N∑
i=1

T−1∑
s=t

Lis(X
i
s,U

i
s,W

i
s+1) +Ki(Xi

T)
]
, (7.38a)

w.r.t. Xi
s+1 = gis(X

i
s,U

i
s,W

i
s+1) , Xi

t = xit , ∀i , ∀t, (7.38b)

σ(U i
s) ⊂ Gis , ∀i , ∀t, (7.38c)(

Θ1
s(X

1
s,U

1
s), · · · ,ΘN

s (XN
s ,U

N
s)
)
∈ −Ss , ∀t. (7.38d)

In the global value function (7.38), the expected value is taken w.r.t. the global uncertainty
process (W t+1, · · · ,W T). We suppose that measurability and integrability assumptions hold,
so that the expected value in (7.38) is well defined.

7.3.1. Decomposed value functions by means of deterministic coordination
process

We prove in the sequel that if the admissible coordination price λ and resource R processes
are deterministic, the local Problems (7.31) and the local Problems (7.32) satisfy local Dynamic
Programming equations, provided that Assumption 7.3.1 holds. Furthermore, the Dynamic Pro-
gramming equations are valid whether the information Git is global (7.27a) or local (7.27b).

7.3.1.1. Price and resource value functions satisfy a Dynamic Programming equation

We first study the local price value function (7.31).

Proposition 7.3.2. Let λi = (λi0, · · · , λiT−1) ∈ (Ξi)? be a deterministic time process. We have
that

V i0[λi](xi0) = V i0(xi0) , (7.39)

where the function V i0 (which depends on λi, despite the notation) is given by the recursive Dynamic
Programming equations

V iT (xiT) = Ki(xiT) , (7.40a)

V it(x
i
t) = min

uit∈Uit
EW i

t+1

[
Lit(x

i
t, u

i
t,W

i
t+1) + λit ·Θi

t(x
i
t, u

i
t) + V it+1

(
git(x

i
t, u

i
t,W

i
t+1)

)]
. (7.40b)

Proof. Let λi = (λi0, · · · , λiT−1) ∈ (Ξi)? be a deterministic price vector. Then, the price value
function (7.31) rewrites

V i0[λi](xi0) = min
Xi,Ui

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) + λit ·Θi

t(X
i
t,U

i
t) +Ki(Xi

T)
]
, (7.41a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀t , (7.41b)

σ(U i
t) ⊂ Git , ∀t . (7.41c)

107

Chapter 7. Upper and lower bounds for Bellman functions

Then, provided that Assumption 7.3.1 holds true, Problem (7.41) satisfies the local Dynamic
Programming equations (7.40) (Bertsekas, 2005a). �

A similar result holds for the local resource value function (7.32).

Proposition 7.3.3. Let ri = (ri0, · · · , riT−1) ∈ Ξi be a deterministic time process. We have that

V
i

0[ri](xi0) = V
i

0(xi0) , (7.42)

where the function V
i

0 (which depends on ri, despite the notation) is given by the following Dynamic
Programming equations

V
i

T (xiT) = Ki(xiT) , (7.43a)

V
i

t(x
i
t) = min

uit∈Uit
EW i

t+1

[
Lit(x

i
t, u

i
t,W

i
t+1) + V

i

t+1

(
git(x

i
t, u

i
t,W

i
t+1)

)]
,

s.t. Θi
t(x

i
t, u

i
t) = rit .

(7.43b)

Proof. Adaptation of the proof of Proposition 7.3.2. �

7.3.1.2. Relations between global and local value functions

As just proved, local price (7.31) and resource value functions (7.32) satisfy local Dynamic Pro-
gramming equations (7.40) and (7.43), with associated local Bellman value functions {V it}t∈{0,..,T}
and {V it}t∈{0,..,T} for all units i ∈ {1, .., N}. If the local price and resource processes are admissible,
the local Bellman value functions bound the global value functions {Vt}t∈{0,..,T}, thus extending
the result obtained in Proposition 7.2.4 to all time t ∈ {0, .., T − 1}.

Bounding the global value functions with local ones.

Proposition 7.3.4. Let λ = (λ0, · · · , λT−1) ∈ S? and r = (r0, · · · , rT−1) ∈ −S be two ad-
missible deterministic coordination processes. Then the local price and resource value functions

{V it}t∈{0,..,T} and {V it}t∈{0,..,T} defined by Equations (7.40) and (7.43) satisfy, for all t ∈ {0, .., T−
1}

N∑
i=1

V it(x
i
t) ≤ Vt(x1

t , · · · , xNt) ≤
N∑
i=1

V
i

t(x
i
t) , ∀(x1

t , · · · , xNt) ∈ Xt , (7.44)

where Vt(xt) is the global value function defined by Equation (7.38).

Proof. Adaptation of the proof of Proposition 7.3.10. �

7.3.2. Decomposed value functions by means of Markovian coordination
process

We extend the results obtained in §7.3.1 by moving from deterministic to Markovian price and
resource processes. To the contrary of §7.3.1, we will be able to bound the global value func-
tions (7.38) in a straightforward manner if the information structure is global, that is, if Git sat-
isfies Equation (7.27a): Git = σ(W 1, · · · ,W t) for all t ∈ {0, .., T − 1}. We will handle the local
information case in §7.3.4.

108

7.3. Decomposition of local value functions by Dynamic Programming

7.3.2.1. Introducing Markovian design

In what follows, we suppose that the global price and resource processes in (7.31) and in (7.32)
depend on extended states Y and Y whose dynamics are Markovian. For this purpose, we define
the notion of price and resource Markovian designs.

Definition 7.3.5. Let Y0, · · · ,YT−1 be measurable spaces. Let λ ∈ L0(Ω,F ,P,Ξ?) be a stochastic
process. We say that λ is Dy

0
,h,φ-Markovian if there exists y

0
∈ Y0 and, for all t ∈ {0, .., T − 1},

Markovian dynamics ht : Yt ×Wt+1 → Yt+1, and mappings φt : Yt → Ξ?t such that

λt = φt(Y t) , ∀t ∈ {0, .., T − 1} , (7.45)

where Y = (Y 0, · · · ,Y T−1) ∈ L0(Ω,F ,P,Y) is a Markovian process satisfying{
Y 0 = y

0
,

Y t+1 = ht(Y t,W t+1) , ∀t ∈ {0, .., T − 1} .
(7.46)

Definition 7.3.6. Let Y0, · · · ,YT−1 be measurable spaces. Let R ∈ L0(Ω,F ,P,Ξ) be a stochastic
process. We say that R is Dy0,h,ψ-Markovian if there exists y0 ∈ Y0 and, for all t ∈ {0, .., T − 1},
Markovian dynamics ht : Yt ×Wt+1 → Yt+1 and mappings ψt : Yt → Ξt such that

Rt = ψt(Y t) , ∀t ∈ {0, .., T − 1} , (7.47)

where Y = (Y 0, · · · ,Y T−1) ∈ L0(Ω,F ,P,Y) is a Markovian process satisfying{
Y 0 = y0 ,

Y t+1 = ht(Y t,W t+1) , ∀t ∈ {0, .., T − 1} .
(7.48)

7.3.2.2. Price and resource local value functions satisfy a Dynamic Programming equation

Let i ∈ {1, .., N} be a local unit. We prove that if the local price process λi is Dy0,h,φi -Markovian,
the local value function (7.31) satisfies local Dynamic Programming equations.

Proposition 7.3.7. For t ∈ {0, .., T − 1}, let ht : Yt ×Wt+1 → Yt+1 and φit : Yt → (Ξit)
? be

two functions, with Yt given measurable space. If the local price process λi = (λi0, · · · ,λiT−1) is
Dy0,h,φ-Markovian, we have that

V i[λi](xi0) = V i0(xi0, y0
) , ∀y

0
∈ Y0 , (7.49)

where the function V i0 (which depends on λi, despite the notation) is given by the following Dynamic
Programming equations

V iT (xiT , yT) = Ki(xiT) ,

V it(x
i
t, yt) = min

uit∈Uit
EW t+1

[
Lit(x

i
t, u

i
t,W

i
t+1) + φit(yt) ·Θ

i
t(x

i
t, u

i
t)+

V it+1

(
git(x

i
t, u

i
t,W

i
t+1), ht(yt,W t+1)

)]
.

(7.50)

109

Chapter 7. Upper and lower bounds for Bellman functions

Proof. If the process λi is such that λit = φit(Y t), the local price function (7.31) rewrites:

V i[λi](xi0) = min
Xi,Ui

EW
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +

〈
φit(Y t) ,Θ

i
t(X

i
t,U

i
t)
〉

+Ki(Xi
T)
]
,

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t,
Y t+1 = ht(Y t,W t+1) , Y 0 = y

0
, ∀i , ∀t,

σ(U i
t) ⊂ σ(W 1, · · · ,W t) , ∀i , ∀t.

(7.51)
Then, as the random variables W 1, · · · ,W T are supposed time independent, Problem (7.51)
satisfies the local Dynamic Programming equations (7.50) with the extended Markovian state
(Xi

t,Y t). �

Whereas the Dynamic Programming equations (7.40) depend only on the local noise W i, the
Dynamic Programming equations (7.50) depend on the global noise W because the dynamics of
the process Y in (7.46) depend on the global noise W .

The extension of Proposition 7.3.7 to the case of the local resource value function (7.32) by
Dynamic Programming is straightforward.

Proposition 7.3.8. For t ∈ {0, .., T − 1}, let ht : Yt ×Wt+1 → Yt+1 and ψit : Yt → Ξit be two
functions, with Yt given measurable space. If the local resource Ri = (Ri

0, · · · ,Ri
T−1) is Dy0,h,ψ-

Markovian, we have

V
i

0[Ri](xi0) = V 0(xi0, y0) , ∀y0 ∈ Y0 , (7.52)

where the function V
i

0 is given by the following Dynamic Programming equations

V
i

T (xiT , yT) = Ki(xiT) , (7.53a)

V
i

t(x
i
t, yt) = min

uit∈Uit
EW t+1

[
Lit(x

i
t, u

i
t,W

i
t+1) + V

i

t+1

(
git(x

i
t, u

i
t,W

i
t+1), ht(yt,W t+1)

)]
s.t. Θi

t(x
i
t, u

i
t) = ψit(yt) .

(7.53b)

Proof. If the local resource process Ri writes Ri
t = ψit(Y t) for all t ∈ {0, .., T − 1}, the local

resource function (7.32) rewrites:

V
i

0[Ri](xi0) = min
Xi,Ui

EW
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,Wt+1) +Ki(Xi

T)
]
, (7.54a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t, (7.54b)

Y t+1 = ht(Y t,W t+1) , Y 0 = y0 , ∀t, (7.54c)

Θi
t(X

i
t,U

i
t) = ψit(Y t) , ∀i , ∀t, (7.54d)

σ(U i
t) ⊂ σ(W 1, · · · ,W t) , ∀i , ∀t. (7.54e)

Then, as uncertainties W 1, · · · ,W T are supposed time independent, Problem (7.54) satisfies the
local Dynamic Programming equations (7.53) by considering the extended Markovian state (Xt,Y t).

�

We note that, in the expressions of the Dynamic Programming equations (7.50) and (7.53)
appears the global noise W (and not the local noise W i).

110

7.3. Decomposition of local value functions by Dynamic Programming

7.3.2.3. Relations between global and local value functions

We prove in the sequel that if the resource and the price designs are chosen appropriately, we are
able to bound the global value functions (7.38) up and down for all time t ∈ {0, .., T − 1}.

First, we must ensure that the price and resource Markovian designs are admissible.

Definition 7.3.9.

• We say that the price design Dy
0
,h,φ (defined in Definition 7.3.5) is dual admissible if

im(φt) ⊂ S?t , ∀t ∈ {0, .., T − 1} . (7.55)

• We say that the resource design Dy0,h,ψ (defined in Definition 7.3.6) is primal admissible if

im(ψt) ⊂ −St , ∀t ∈ {0, .., T − 1} . (7.56)

Proposition 7.3.10. Let Dy
0
,h,φ be a dual admissible design, and Dy0,h,ψ be a primal admissible

design. We assume that the information Git is global:

Git = Ft = σ(W 1, · · · ,W t) , ∀t ∈ {0, .., T − 1} , ∀i ∈ {1, .., N} . (7.57)

Then the local price and resource value functions {V it}t∈{0,..,T} and {V it}t∈{0,..,T} defined by Equa-

tions (7.50) and (7.53) satisfy, for all t ∈ {0, .., T − 1}, (x1
t , · · · , xNt) ∈ Xt and (y

t
, yt) ∈ Yt × Yt,

N∑
i=1

V it(x
i
t, yt) ≤ Vt(x

1
t , · · · , xNt) ≤

N∑
i=1

V
i

t(x
i
t, yt) , (7.58)

where Vt(xt) is the global value function defined by Equation (7.38).

Proof. We prove the proposition by induction.

The global value functions (7.38) satisfy the global Dynamic Programming equations (Bertsekas,
2005a).

VT (xT) = K(xT) ,

Vt(xt) = min
ut∈Ut

EW
[N∑
i=1

Lit(x
i
t, u

i
t,W

i
t+1) + Vt+1

(
X1
t+1, · · · ,X

N
t+1

)]
s.t. Xi

t+1 = git(x
i
t, u

i
t,W

i
t+1) , ∀i ∈ {1, .., N} ,(

Θ1
t (x

1
t , u

1
t), · · · ,ΘN

t (xNt , u
N
t)
)
∈ −St .

(7.59)

For t ∈ {0, .., T − 1}, we define V t[λ] the dual global value function associated to Problem (7.38):

V t[λ](xt, yt) := min
X,U

EW
[N∑
i=1

T−1∑
s=t

Lis(X
i
s,U

i
s,W

i
s+1) + φis(Y s) ·Θi

s(X
i
s,U

i
s) +Ki(Xi

T)
]
,

s.t. Xi
s+1 = gis(X

i
s,U

i
s,W

i
s+1) , Xi

t = xit , ∀i , ∀s,
σ(U i

s) ⊂ σ(W t+1, · · · ,W s) , ∀i , ∀s,

(7.60)

Using Proposition 7.2.1, we know that for all admissible price process satisfying λs ∈ S?s for all
s ∈ {t, .., T − 1}, we have

V t[λ](·, y
t
) ≤ Vt(·) , ∀y

t
∈ Yt . (7.61)

111

Chapter 7. Upper and lower bounds for Bellman functions

We now prove by induction that for all t ∈ {0, .., T − 1}, we have:

V t[λ](xt) =

N∑
i=1

V it(x
i
t, yt) , ∀xt = (x1

t , · · · , xNt) ∈ Xt , yt ∈ Yt . (7.62)

• The property (7.62) holds at time t = T .

• Let t < T such that the property (7.62) holds at time t+ 1, by induction hypothesis. For all
xt ∈ Xt and y

t
∈ Yt, we have

V t[λ](xt, yt) = min
ut∈Ut

EW
[N∑
i=1

[
Lit(x

i
t, u

i
t,W

i
t+1) + φit(yt) ·Θ

i
t(x

i
t, u

i
t)+

Vt+1[λ]
(
gt(xt, ut,W t+1),Y t+1

)]]
by Dynamic Programming equation (7.59)

= min
ut∈Ut

EW
[N∑
i=1

[
Lit(x

i
t, u

i
t,W

i
t+1) + φit(yt) ·Θ

i
t(x

i
t, u

i
t)+

N∑
i=1

V it+1

(
git(x

i
t, u

i
t,W

i
t+1),Y t+1

)]]
by induction hypothesis (7.62)

=

N∑
i=1

min
uit∈Uit

EW
[
Lit(x

i
t, u

i
t,W

i
t+1) + φit(yt) ·Θ

i
t(x

i
t, u

i
t)+

V it+1

(
git(x

i
t, u

i
t,W

i
t+1),Y t+1

)]
=

N∑
i=1

V it(x
i
t, yt) using Equation (7.50).

Thus we have proven the induction hypothesis at time t.

This ends the proof.
We adapt the proof for the upper bound. �

We note that by choosing dynamics ht : Yt ×Wt+1 → Yt+1 satisfying

ht(yt, wt+1) = (y
t
, wt+1) , ∀t ∈ {0, .., T − 1} , (7.63)

we have y
t

= (y
0
, w1, · · · , wt) for all t ∈ {0, .., t}. Thus, the Markovian process Y embeds all

previous uncertainties. However, the size of Y becomes quickly intractable to solve local value
functions V i0[λi] by Dynamic Programming. Therefore we usually use dynamics ht that embed
less information.

7.3.3. Producing admissible policies

We suppose that we have computed every local value functions {V it}t∈{0,..,T} and {V it}t∈{0,..,T} by
using Equations (7.40) or (7.50) for the price value functions and Equations (7.43) or (7.53) for
the resource value functions.

We are able to recover global admissible policies by using the sum of the value functions

{V it}t∈{0,..,T} and {V it}t∈{0,..,T}.

112

7.3. Decomposition of local value functions by Dynamic Programming

We obtain a global price policy πt : Xt → Ut

πt(x
1
t , · · · , xNt) ∈ arg min

u1
t ,··· ,uNt

E
[N∑
i=1

Lit(x
i
t, u

i
t,W t+1) + V it+1

(
Xi
t+1

)]
,

s.t. Xi
t+1 = git(x

i
t, u

i
t,W t+1) , ∀i ∈ {1, .., N} ,(

Θ1
t (x

1
t , u

1
t), · · · ,ΘN

t (xNt , u
N
t)
)
∈ −St ,

(7.64)

and a global resource policy πt : Xt → Ut

πt(x
1
t , · · · , xNt) ∈ arg min

u1
t ,··· ,uNt

E
[N∑
i=1

Lit(x
i
t, u

i
t,W t+1) + V

i

t+1

(
Xi
t+1

)]
,

s.t. Xi
t+1 = git(x

i
t, u

i
t,W t+1) , ∀i ∈ {1, .., N} ,(

Θ1
t (x

1
t , u

1
t), · · · ,ΘN

t (xNt , u
N
t)
)
∈ −St .

(7.65)

For all time t ∈ {0, .., T − 1}, the expected cost of a given policy πt, · · · , πT−1 starting from
position x at time t writes

V πt (x) = E
[N∑
i=1

T−1∑
s=t

Lis(X
i
s, π

i
s(xs),W

i
t+1) +Ki(Xi

T) |Xt = x
]
. (7.66)

We prove hereafter that we are able to bound the performance of the global resource policy (7.65).

Proposition 7.3.11. Let t ∈ {0, .., T} and xt = (x1
t , · · · , xNt) ∈ Xt be a given state. Then, we

have the following upper bound on the expected value of the global resource policy (7.65)

V πt (xt) ≤
N∑
i=1

V
i

t(x
i
t) . (7.67)

Proof. We prove the result by backward induction. At time t = T , the result is straightforward as

for all i ∈ {1, .., N}, V it = Ki.

Let t ∈ {0, .., T − 1} such that the result holds at time t+ 1: we have V πt+1 ≤
∑N
i=1 V

i

t+1. Then,
we deduce that, for all xt ∈ Xt,

V πt (xt) = E
[N∑
i=1

(
Lit(x

i
t, π

i
t(xt),W

i
t+1)

)
+ V πt+1(Xt+1)

]
, (7.68a)

by definition of V πt in (7.66). As, by induction hypothesis, V πt+1 ≤
∑N
i=1 V

i

t+1, we have

V πt (xt) ≤ E
[N∑
i=1

Lit(x
i
t, π

i
t(xt),W

i
t+1) + V

i

t+1(Xi
t+1)

]
. (7.68b)

By using the definition of the global resource policy in Equation (7.65), we obtain

V πt (xt) ≤ min
u1
t ,··· ,uNt

E
[N∑
i=1

Lit(x
i
t, u

i
t,W

i
t+1) + V

i

t+1(Xi
t+1)

]
s.t.

(
Θ1
t (x

1
t , u

1
t), · · · ,ΘN

t (xNt , u
N
t)
)
∈ −St

(7.68c)

113

Chapter 7. Upper and lower bounds for Bellman functions

By restraining the problem with an admissible allocation (r1
t , · · · , rNt) ∈ −St, we have

V πt (xt) ≤ min
u1
t ,··· ,uNt

E
[N∑
i=1

Lit(x
i
t, u

i
t,W

i
t+1) + V

i

t+1(Xi
t+1)

]
s.t. Θi

t(x
i
t, u

i
t) = rit ,

(7.68d)

that is,

V πt (xt) ≤
N∑
i=1

min
uit,Θ

i
t(u

i
t)=r

i
t

E
(
Lit(x

i
t, u

i
t,W

i
t+1) + V

i

t+1(Xi
t+1)

)
, (7.68e)

as we do not have any coupling left in (7.68d). Thus V πt (xt) ≤
∑N
i=1 V

i

t(x
i
t) by using Equa-

tion (7.43) and by choosing the admissible allocation (r1
t , · · · , rNt) used to define the local value

functions V
i

t in (7.43). Hence the result at time t. �

Furthermore, we know that for all policy π, we have Vt ≤ V πt as the global Bellman function
gives the optimal cost starting at any point xt ∈ Xt. Combining this lower bound with the upper
bound given by Equation (7.67), we are able to bound the expected value of the global resource
policy at any time t, as

Vt(xt) ≤ V πt (xt) ≤
N∑
i=1

V
i

t(x
i
t) , ∀xt = (x1

t , · · · , xNt) ∈ Xt . (7.69a)

Concerning the global price policy (7.64) obtained with the price value functions {V it}t∈{0,..,T}, we
get only a lower bound, as

N∑
i=1

V it(x
i
t) ≤ Vt(xt) ≤ V

π
t (xt) . (7.69b)

7.3.4. Discussing the impact of the information constraints

In Problem (7.28), the local decision processes {U i
t}t∈{0,..,T−1} satisfy the non-anticipativity con-

straints (7.29) constraining their measurability with the σ-fields Git . We discuss here the impact
of the choice of σ-field Git on price and resource decompositions. We sum up the different possible
choices in Table 7.2 and state when we are able to bound the global Bellman functions (7.38) for
all time t ∈ {0, .., T − 1}.

σ-field Local Global

Information Git σ(W i
1, · · · ,W

i
t) σ(W 1, · · · ,W t)

Deterministic DP minui EW i
t+1

minui EW i
t+1

Bounds on Vt Yes Yes
Bounds on V0 Yes Yes

Markovian DP minui EW i
t+1

minui EW t+1

Bounds on Vt No Yes
Bounds on V0 Yes Yes

Table 7.2.: Summing up the differences between local and global information structure w.r.t. the
bounds obtained in decomposition.

114

7.3. Decomposition of local value functions by Dynamic Programming

Local information structure. If the information structure is local, the local decisions U i
t are

measurable with the previous local uncertainties: Git = σ(W i
1, · · · ,W

i
t). In that case,

• The expected value in local Dynamic Programming equations (7.40)-(7.43)-(7.50)-(7.53) is
taken w.r.t. the local noise W i

t.

• We are able to write locally the recursive Dynamic Programming equations (7.40)-(7.43)
with deterministic price λ and resource r processes. The global Bellman functions (7.38)
are bounded up and down by the sum of the local Bellman functions, as stated in Proposi-
tion 7.3.4.

• As the Markovian designs defined in Definition 7.3.5 and Definition 7.3.6 depend on the
global uncertainty W , in Equation (7.50) (resp. (7.53)) the local decisions depend on the
global extended states Y (resp. Y).

• If instead of a global extended state Y we consider a local extended state Y i with associated
initial position yi

0
and dynamics hit : Yit × Wi

t+1 → Yit+1, the local decisions would be
measurable w.r.t. the local previous uncertainties, but we are generally unable to ensure that

(φ1
t (y

1
t
), · · · , φNt (yN

t
)) ∈ S?t , (7.70)

holds globally for all y1
t
, · · · , yNt (apart if yit are constant). However, if St has simple structure,

we would be able to ensure that (7.70) holds true for all time t (consider for instance St = {0}
with associated dual cone S?t = Ξt).

Global information structure. By choosing the global information structure, the decisions are
measurable w.r.t. the past local global uncertainties: Git = σ(W 1, · · · ,W t). In that case,

• The expected value is taken w.r.t. the local noise W i
t in the deterministic case (7.40)-(7.43),

and w.r.t. the global noise W i
t in the Markovian case (7.50)-(7.53).

• If the price and resource processes are deterministic, the local value functions (7.31) and
(7.32) satisfy local Dynamic Programming equations depending on the local uncertainties
W i

t. We are able to bound the global Bellman value functions (7.38) for all time t.

• If the price and resource processes are Markovian, the local value functions (7.31) and (7.32)
satisfy local Dynamic Programming equations depending this time on the global uncertainties
W t as the dynamics of the extended states Y and Y in (7.46) and in (7.48) depend on the
global uncertainties. We are also able to bound the global Bellman value functions (7.38) for
all time t.

7.3.5. Hazard decision information structure

Until now, we have handled only the decision-hazard2 as information structure. However, we are
able to extend the results to other information structures, namely hazard-decision3.

In hazard-decision, decisions are taken knowing the realization of the global uncertainties between
time t and t+ 1. In this case, the σ-field in (7.29) writes either

Git = σ(W 1, · · · ,W t,W t+1) , ∀i ∈ {1, .., N} , ∀t ∈ {0, .., T − 1} . (7.71a)

for the global information case, or

Git = σ(W i
1, · · · ,W

i
t,W

i
t+1) , ∀i ∈ {1, .., N} , ∀t ∈ {0, .., T − 1} . (7.71b)

2Or here-and-now in the stochastic programming terminology
3Or wait-and-see in the stochastic programming terminology

115

Chapter 7. Upper and lower bounds for Bellman functions

for the local information case. As decisions are measurable w.r.t. W t+1, we are able to handle
more generic coupling constraints than in Problem (7.28), namely ones depending on the local
uncertainties:

Θi
t : Xit × Uit ×Wi

t+1 → Ξit , ∀i ∈ {1, .., N} , ∀t ∈ {0, .., T − 1} . (7.72)

We obtain a new global problem:

V]0 (x0) = min
X,U

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (7.73a)

w.r.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t, (7.73b)

σ(U i
t) ⊂ Git , ∀i , ∀t, (7.73c)(

Θ1
t (X

1
t ,U

1
t ,W

1
t+1), · · · ,ΘN

t (XN
t ,U

N
t ,W

N
t+1)

)
∈ −St , ∀t. (7.73d)

We adapt the results of Section 7.3.1 and Section 7.3.2 to the hazard-decision case.

Dynamic Programming equations with price processes. The Dynamic Programming equations
in Proposition 7.3.2 and in Proposition 7.3.7 rewrite in the following manners, for all units i ∈
{1, .., N}.

• If the local price process λi = (λi0, · · · , λiT−1) is deterministic, we look at the following
Dynamic Programming equations

V it(x
i
t) = EW i

t+1

[
min
Uit∈Uit

Lit(x
i
t,U

i
t,W

i
t+1) + λit ·Θi

t(x
i
t,U

i
t,W

i
t+1)

+ V it+1

(
git(x

i
t,U

i
t,W

i
t+1)

)]
. (7.74)

• If the local price process λi = (λi0, · · · ,λiT−1) is generated by a price Markovian designDy0,h,ψ
(see Definition 7.3.5), we deal with the following Dynamic Programming equations

V it(x
i
t, yt) = EW t+1

[
min
Uit∈Uit

Lit(x
i
t,U

i
t,W

i
t+1) + φit(yt,W t+1) ·Θi

t(x
i
t,U

i
t,W

i
t+1)+

V it+1

(
git(x

i
t,U

i
t,W

i
t+1), ht(yt,W t+1)

)]
. (7.75)

Dynamic Programming equations with resource processes. We adapt similarly the Dynamic
Programming equations detailed in Proposition 7.3.3 and in Proposition 7.3.8.

• If the local resource process ri = (ri0, · · · , riT−1) is deterministic, we look at the following
Dynamic Programming equations

V
i

t(x
i
t) = min

Uit∈Uit
EW i

t+1

[
Lit(x

i
t,U

i
t,W

i
t+1) + V

i

t+1

(
git(x

i
t,U

i
t,W

i
t+1)

)]
,

s.t. Θi
t(x

i
t,U

i
t,W

i
t+1) = rit .

(7.76)

• If the local resource process is generated by a resource Markovian design Dy0,h,ψ (see Defi-

116

7.4. Improving bounds

nition 7.3.6), we look at the following Dynamic Programming equations

V
i

t(x
i
t, yt) = min

Uit∈Uit
EW t+1

[
Lit(x

i
t,U

i
t,W

i
t+1) + V

i

t+1

(
git(x

i
t,U

i
t,W

i
t+1), ht(yt,W t+1)

)]
s.t. Θi

t(x
i
t,U

i
t,W

i
t+1) = ψit(yt,W t+1) .

(7.77)

With the above notations, the results stated in Proposition 7.3.4 and Proposition 7.3.10 hold
true in the hazard-decision information structure.

7.4. Improving bounds

We have seen in Proposition 7.3.10 that, for a given design, we are able to obtain upper and
lower bounds for the global Bellman functions (7.38). By choosing properly the price and resource
Markovian designs, we will obtain tighter bounds in Equation (7.58). We will exhibit classes of
designs that we can interpret in term of a relaxation (for price design) or a restriction (for resource
design) of the original primal problem (7.28), so as to preserve the global bounds (7.15).

7.4.1. Selecting a class of designs for global price processes

Viewing admissible feedbacks as a restriction in the dual. Let Dy0,h,φ be an admissible price
design (see Definition 7.3.9), with fixed dynamics ht : Yt ×Wt+1 → Yt+1 and initial position
y

0
∈ Y0. We aim at finding the mappings φs : Ys → S?s as solutions of the following problem:

max
φ0,··· ,φT−1

min
X,U

E
[N∑
i=1

T−1∑
t=0

(
Lit(X

i
t ,U

i
t ,W

i
t+1) + φit(Y t) ·Θi

t(X
i
t,U

i
t)
)

+Ki(Xi
T)
]
,

w.r.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t,
Y t+1 = ht(Y t,W t+1) , Y0 = y0 , ∀t,
σ(U i

t) ⊂ Git , φt(Y t) ∈ S?t , ∀i , ∀t.

(7.78)

By solving Problem (7.78), we will obtain the tightest lower bounds in Equation (7.58), for given
dynamics ht : Yt ×Wt+1 → Yt+1 and initial position y

0
. Furthermore, we are able to interpret

Problem (7.78) as the dual of a primal problem corresponding to a relaxation of the original
problem (7.28).

We suppose that for all t the set St in (7.78) is a closed convex cone — as we will deal with
conditional expectations. We introduce the following set:

P = {λ ∈ L2(Ω,F ,P,Ξ?) | λ ∈ S? , E[λt | Y t] = λt , ∀t ∈ {0, .., T − 1}} . (7.79)

In (7.79), we restrict to square-integrable stochastic processes to ensure that conditional expecta-
tions work fine.

As the proof of the next proposition relies on the Doob lemma, the result holds true only for
measurable feedback mappings φs : Ys → S?s .

Proposition 7.4.1. Let λ ∈ L2(Ω,F ,P,Ξ?) be a Dy0,h,φ-Markovian design. We suppose that
the mappings φ0, · · · , φT−1 of Dy0,h,φ are measurable, the spaces Ξ0, · · · ,ΞT−1 and S0, · · · , ST−1

defined in (7.22) are respectively separable complete metric spaces and closed convex cones. We
suppose also that for all t ∈ {0, .., T − 1}, the random variable Θt(Xt,U t) ∈ L2(Ω,F ,P,Ξt) is

117

Chapter 7. Upper and lower bounds for Bellman functions

square integrable. Then, Problem (7.78) is equivalent to

max
λ∈S?

min
X,U

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) + λit · E[Θi

t(X
i
t,U

i
t) | Y t] +Ki(Xi

T)
]
,

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0, ∀i , ∀t,
Y t+1 = ht(Y t,W t+1) , Y 0 = y0, ∀t,
σ(U i

t) ⊂ Git , ∀i , ∀t.

(7.80)

Proof. For all t ∈ {0, .., T −1} we have λt = φt(Y t). Thus, the process λ is measurable by Y , and
we have

λt = E[λt | Y t] , ∀t ∈ {0, .., T − 1} . (7.81)

We consider the set P , as defined in Equation (7.79). Then, by replacing the measurable mappings
φ0, · · · , φT−1 by random variables λ0, · · · ,λT−1 measurable w.r.t. Y , Problem (7.78) rewrites as

max
λ∈P

min
X,U

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) + λit ·Θ

i
t(X

i
t,U

i
t) +Ki(Xi

T)
]
, (7.82a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t, (7.82b)

Y t+1 = ht(Y t,W t+1) , Y 0 = y0 , ∀t, (7.82c)

σ(U i
t) ⊂ Git , ∀i , ∀t. (7.82d)

Furthermore, we know that, for all t ∈ {0, .., T − 1}, as the process λi is Y measurable:

E
[
λit ·Θ

i
t(X

i
t,U

i
t)
]

= E
[
E[λit | Y t] ·Θi

t(X
i
t,U

i
t)
]

= E
[
λit · E[Θi

t(X
i
t,U

i
t) | Y t]

]
.

(7.83)

The second equality holds true because the conditional expectation is self-adjoint on L2(Ω,F ,P,Ξ).
We replace E

[
λit·Θi

t(X
i
t,U

i
t)
]

by its expression (7.83) in Problem (7.82). We deduce that an optimal
solution of (7.82) allows to find an admissible solution λ0, · · · ,λT−1 of Problem (7.80).

Conversely, let λ ∈ L2(Ω,F ,P,Ξ?) be a solution of Problem (7.80). By using the relation (7.83),
we deduce that the process

E[λ0 | Y 0], · · · ,E[λT−1 | Y T−1] (7.84)

is also an optimal solution of Problem (7.80). Thus, we are able to find an optimal solution that
is Y -measurable. We note by µ the process defined by

µt = E[λt | Y t] , ∀t ∈ {0, .., T − 1} . (7.85)

By applying Doob-Dynkin lemma (Dellacherie and Meyer, 1975, Chapter 1, p. 18) to the process µ,
there exist measurable mappings φ0, · · · , φT−1 such that

µt = φt(Y t) , φt(Y t) ∈ S? , ∀t ∈ {0, .., T − 1} . (7.86)

Then, the mappings φ0, · · · , φT−1 are an admissible solution of Problem (7.78).

Hence the equivalence, as Problems (7.78) and (7.80) have the same objective. �

Remark 7.4.2. Under proper assumptions, Problem (7.80) can be interpreted as the dual problem

118

7.4. Improving bounds

of:

min
X,U

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (7.87a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , ∀i , ∀t, (7.87b)

Y t+1 = ht(Y t,W t+1) , Y 0 = y0 , ∀t, (7.87c)

σ(U i
t) ⊂ Git , ∀i , ∀t, (7.87d)(

E[Θ1
t (X

1
t ,U

1
t) | Yt], · · · ,E[ΘN

t (XN
t ,U

N
t) | Yt)]

)
∈ −St , ∀t. (7.87e)

We note that Problem (7.87) is a relaxation of Problem (7.28). We refer to (Leclère, 2014, Chapter
8) for a proof. ♦

7.4.2. Selecting a class of designs for global resource processes

We proceed in a similar manner to optimize the admissible Markovian design of resource pro-
cesses R. We look for admissible mappings ψs : Ys → −Ss minimizing the problem:

min
ψ0,··· ,ψT−1

min
Xi,Ui

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (7.88a)

w.r.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0, ∀i , ∀t, (7.88b)

Y t+1 = ht(Y t,W t+1) , Y 0 = y0, ∀i , ∀t, (7.88c)

σ(U i
t) ⊂ Git , ψt(Y t) ∈ −St, ∀i , ∀t, (7.88d)

Θi
t(X

i
t,U

i
t) = ψit(Y t), ∀i , ∀t. (7.88e)

By solving Problem (7.88), we will obtain the tightest upper bound in Equation (7.58), for given
dynamics ht : Yt ×Wt+1 → Yt+1 and initial position y0. We are able to interpret Problem (7.88)
as a restriction of the original problem (7.28).

Proposition 7.4.3. Let R be a Dy0,h,ψ-Markovian design. We suppose that the mappings ψ0, · · · , ψT−1

of Dy0,h,ψ are measurable, the spaces Ξ0, · · · ,ΞT−1 and S0, · · · , ST−1 defined in (7.22) are respec-
tively separable complete metric spaces and closed convex cones. Then, Problem (7.88) is equivalent
to

min
R∈−S

min
X,U

E
[N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (7.89a)

w.r.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0, ∀i , ∀t, (7.89b)

Y t+1 = ht(Y t,W t+1) , Y 0 = y0 , ∀t, (7.89c)

σ(U i
t) ⊂ Git , ∀i , ∀t, (7.89d)

Θi
t(X

i
t,U

i
t) = Ri

t, ∀i , ∀t, (7.89e)

with
S = {R ∈ S | E[Rt | Y t] = Rt , ∀t ∈ {0, .., T − 1}} . (7.90)

Proof. Let ψ0, · · · , ψT−1 be the solution of Problem (7.88) and R the corresponding Dy0,h,ψ-
Markovian design. The stochastic process R is measurable w.r.t. Y :

Rt = E[Rt | Y t] . (7.91)

119

Chapter 7. Upper and lower bounds for Bellman functions

Thus, R is an admissible solution for Problem (7.89).
By using the Doob lemma (Dellacherie and Meyer, 1975, Chapter 1, p. 18), we prove that for R

solution of Problem (7.89), there exists measurable mappings ψ0, · · · , ψT−1 such that Rt = ψt(Y t)
for all t ∈ {0, .., T − 1}. As R ∈ −S, we have that for all t, im(ψt) ⊂ −St. Thus, the mappings
ψ0, · · · , ψT−1 are an admissible solution of Problem (7.88).

Hence the equivalence, as Problems (7.88) and (7.89) have the same objective. �

As S ⊂ S, we note that Problem (7.89) is a restriction of Problem (7.28).

7.5. Discussion

We have presented in Section 7.2 a formalism to decompose optimization problems by prices and
by resources. Depending on the decomposition scheme, we have obtained upper and lower bounds
for the original problem. We have applied this formalism to multistage stochastic problems, and
proved in Section 7.3 that, under some assumptions, we were able to bound the Bellman value
functions of the original problem up and down for all time t. In Section 7.4 we have been able to
obtain tighter bounds by choosing appropriately the Markovian designs used to fetch the price and
resource processes. As we considered multistage stochastic problems, the information structure
played a key role in the design of the decomposition schemes.

The question of the choice of the dynamics ht : Yt×Wt+1 → Yt+1 in the price Markovian design
(see Definition 7.3.5) and in the resource Markovian design (see Definition 7.3.6) remains open.
In Strugarek (2006), the author gets a closed-form dynamics for the optimal price processes for a
particular problem. However, the result was not extended to more generic problems.

In Chapter 8, we will describe a case study to apply the theoretical results presented in this
chapter. We will prove that the formalism introduced in Section 7.2 allows to apply decomposition
algorithms onto problems formulated on a graph, where the local problems are set both on nodes
and on edges. We will illustrate the effectiveness of price and resource decompositions with
numerical applications.

120

Chapter 8.

Optimal management of district microgrids

Contents

8.1. Introduction . 121

8.2. Stocks and flows global optimization problem on a graph 122

8.2.1. Exchanging flows through edges . 122

8.2.2. Local costs on nodes and edges . 123

8.2.3. Formulating a global optimization problem on the graph 124

8.3. Mixing nodal and time decomposition 126

8.3.1. Decomposition of the global problem 126

8.3.2. Temporal decomposition of nodal value functions 128

8.4. Algorithmic implementation . 129

8.4.1. Price decomposition . 129

8.4.2. Resource allocation . 131

8.5. Numerical applications . 133

8.5.1. Problem . 133

8.5.2. Resolution algorithms . 136

8.5.3. Numerical results . 137

8.6. Beyond price and resource decompositions 142

8.6.1. A new look on price and resource decompositions 142

8.6.2. Interaction prediction principle . 144

8.6.3. Towards proximal methods . 146

8.7. Discussion . 147

Appendix . 149

8.7.1. Background on graph theory . 149

8.7.2. Extracting sensitivity in resource allocation. 150

8.1. Introduction

Whereas the presence of stocks implies a temporal coupling in energy systems, the presence of
different interconnected units induces a spatial coupling between different units. Spatial decompo-
sition methods aim at breaking the spatial coupling to obtain local decoupled subproblems, easier
to solve. Once the subproblems decomposed, we are able to solve them locally by temporal decom-
position, that is, by Dynamic Programming. The spatial decomposition of large-scale optimization
problems was studied in Cohen (1980), and extended to open-loop stochastic optimization prob-
lems in Cohen and Culioli (1990). This study was extended to the closed-loop stochastic case
in Barty et al. (2010b), giving a new algorithm called Dual Approximate Dynamic Programming
(DADP). DADP was applied to distributed unit-commitment problems in Girardeau (2010), where
a unique spatial coupling constraint was considered. Then, DADP was applied with more complex

121

Chapter 8. Optimal management of district microgrids

coupling constraints in Alais (2013) and Leclère (2014), where the authors considered large-scale
dams-valley problems, each dam being affected by the dams upstream via their turbinated flows.
We have handled in Chapter 7 generic coupling constraints, and we now aim at applying the
theoretical results to a particular microgrid problem.

We tackle here a district microgrid with different prosumers exchanging energy via a local
network. A broad overview of the emergence of consumer-centric electricity markets is given
in Pinson et al. (2018). Some local units are able to produce their own energy with some solar
panels, so as to satisfy their needs and export the surplus to other consumers. Other prosumers
are equipped with batteries to store energy when necessary. The exchanges through the network
are modeled as a network flow problem on a graph. We suppose that the system is impacted
by uncertainties, either in production (e.g. renewable units) or in demands (e.g. local electrical
demands).

Thus, the global problem formulates naturally as a sum of local multistage stochastic optimiza-
tion subproblems coupled together via a global network constraint. We refer to Mahey et al. (2017)
for a previous application of decomposition methods to such problems.

In this chapter, we write a global optimization problem on a graph in Section 8.2 and detail
how to decompose the problem node by node and edge by edge in Section 8.3. Once the problem
decomposed, we apply price and resource decomposition algorithms to find the most appropriate
price and resource process among a given design in Section 8.4. We apply these decomposition
algorithms to the district microgrid problem. We give numerical results comparing the price and
resource decomposition algorithms with the well-known Stochastic Dual Dynamic Programming
in Section 8.5. Eventually, we sketch some hints to extend the decomposition schemes beyond the
classical price and resource decomposition algorithms in Section 8.6.

8.2. Stocks and flows global optimization problem on a graph

Let G = (V, E) be a graph, with V the set of nodes and E the set of edges. We denote by N the
number of nodes, and by L the number of edges.

We first detail in §8.2.1 the different flows occurring in the graph and the coupling existing
between edges and nodes flows. Each node comprises local stocks, and one can formulate a local
multistage stochastic optimization problem, as explained in §8.2.2. In §8.2.3 we handle the global
coupling constraints induced by the graph and gather the local nodal subproblems inside a global
optimization problem.

8.2.1. Exchanging flows through edges

Flows are transported through the graph via the edges, each edge ` transporting a flow q` and
each node i ∈ {1, .., N} importing a flow f i.

Figure 8.1.: A graph G = (V, E).

122

8.2. Stocks and flows global optimization problem on a graph

The node injection f i and the edge flows q` are related via a balance equation. The sum of the
algebraic edge flows arriving at a particular node i is equal to the injection flow f i:

f i =
∑
`∈Ei+

q` −
∑
`∈Ei−

q` , ∀i ∈ {1, .., N} , (8.1)

where E i+ indexes the edges arriving to node i and E i− indexes the edges departing from node i.

Equation (8.1) is Kirchhoff’s Current Law, relating the nodal flows f = (f1, · · · , fN) with the
algebraic edge flows q = (q1, · · · , qL). It writes in matrix form as

Aq + f = 0 , (8.2)

where A ∈ RN×L is the node-edge incidence matrix of the graph G = (V, E) (see Annex 8.7.1 for
further details).

8.2.2. Local costs on nodes and edges

We first detail the nodal subproblems corresponding to each node i ∈ {1, .., N}, and then give the
costs on the edges ` ∈ {1, .., L}.

8.2.2.1. Local cost on each node

The graph G = (V, E) connects N nodal subproblems. For node i ∈ {1, .., N}, the nodal sub-
problem is the minimization of a functional J iV(F i) depending on the injection flow process
F i = (F i0 , · · · ,F iT−1) arriving at node i between time 0 and T − 1.

Let {Xit}t∈{0,..,T}, {Uit}t∈{0,..,T−1} {Wi
t}t∈{1,..,T} and {Git}t∈{0,..,T−1} be sequences of measurable

spaces.

The optimal nodal cost J iV is given by:

J iV(F i) = min
Xi,Ui

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (8.3a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , (8.3b)

∆i
t(X

i
t,U

i
t,W

i
t+1,F

i
t) ∈ Γt , (8.3c)

σ(U i
t) ⊂ σ(W 1, · · · ,W t,W t+1) , (8.3d)

with Xi,U i local state and control processes, W i local uncertainty process, Lit : Xit×Uit×Wi
t+1 →

R local instantaneous costs and git : Xit ×Uit ×Wi
t+1 → Xit+1 local dynamics (see §7.2.3 for further

details). We note by ∆i
t : Xit × Uit ×Wi

t+1 × Fit → Git the constraint between the state xit, the
control uit, the injection flow f it and by Γt ⊂ Git a given admissible set.

Throughout this chapter, we will suppose that all decisions follow the hazard-decision information
structure, as specified in §7.3.5:

8.2.2.2. Local transportation cost on each edge

We now consider the edge cost arising at each edge ` ∈ {1, .., L}. The edge cost J`E(Q
`) depends

on the flows process Q` = (Q`
0, · · · ,Q`

T−1) transported through edge ` between time 0 and T − 1,
and writes

J`E(Q
`) = E

[T−1∑
t=0

l`t(Q
`
t)
]
, (8.4)

123

Chapter 8. Optimal management of district microgrids

where l`t : R → R are real valued functions (e.g. quadratic). The cost l`t can be engendered by a
difference in pricing, a fixed toll between the different nodes, or by the energy losses through the
network.

8.2.3. Formulating a global optimization problem on the graph

Each nodal problem (8.3) formulates as a multistage stochastic optimization problem whose solu-
tion depends on a nodal flow process

F i = (F i0 , · · · ,F
i
T−1) , (8.5)

corresponding to the energy exchanges with the graph. We now aim to couple all nodal subproblems
together by considering the coupling constraints induced by the graph.

8.2.3.1. Nodal global cost

We aggregate all nodal subproblems (8.3) in a single criterion. Let

F = (F 1, · · · ,FN) , (8.6)

be the global injection flows at nodes. The nodal global cost writes as the sum of all nodal costs

JV(F) =

N∑
i=1

J iV(F i) + I
F i≤·≤F i(F

i) , (8.7)

where I
F i≤·≤F i is the characteristic function of the set [F i, F

i
], added to ensure that all incidence

flows are bounded:
F i ≤ F it ≤ F

i
, ∀t ∈ {0, .., T − 1} . (8.8)

8.2.3.2. Edges global cost

The edges global cost aggregates the exchange costs (8.4) through the different edges in the graph

JE(Q) = E
[L∑
`=1

J`E(Q
`) + I−Q`≤·≤Q`(Q

`)
]
, (8.9)

where the characteristic function I ensures that grid flows are bounded

−Q` ≤ Q`
t ≤ Q

`
, ∀t ∈ {0, .., T − 1} . (8.10)

The global edge cost JE is decomposable w.r.t. time and edges

8.2.3.3. Global optimization problem

We have stated a global nodal criterion (8.7) and a global edge criterion (8.9), both depending on
flows processes coupled by the coupling (8.2).

We are now able to formulate a global optimization problem as

V] = min
F ,Q

JV(F) + JE(Q) (8.11a)

s.t. AQt + Ft = 0 , ∀t ∈ {0, .., T − 1} , (8.11b)

where

124

8.2. Stocks and flows global optimization problem on a graph

• JV : RNT → R is the criterion (8.7), aggregating all nodal costs,

• JE : RLT → R is the criterion (8.9), aggregating all edges costs,

• A ∈ RN×L is the node-edge incidence matrix of the graph G = (V, E),

• F = (F 1, · · · ,FN) are the exchange flows at the different nodes of the graph,

• Q = (Q1, · · · ,QL) are the flows through the different edges of the graph.

Problem (8.11) couples two criteria which were initially independent through the coupling con-
straint (8.11b). As the resulting criterion is additive and the coupling constraint (8.11b) is affine,
this problem has a nice form to use decomposition-coordination methods.

8.2.3.4. Introducing the decomposition formalism

We introduced in Chap. 7 a generic framework to bound a global problem by decomposing it in
smaller local subproblems, easier to solve. The global problem (7.28) displayed global coupling
constraints (7.28d). We prove here that Problem (8.11) follows the same formalism.

Proposition 8.2.1. Problem (8.11) is equivalent to Problem (7.28), with the global constraints

(Ft,Qt) ∈ St P-a.s. , ∀t ∈ {0, .., T − 1} , (8.12)

with the convex cone St of RN × RL

St = {(ft, qt) ∈ RN × RL | Aqt + ft = 0} . (8.13)

Proof. The injection flow F i are a local decision for all nodes i ∈ {1, .., N}, thus the local node
problems (8.3) formulate in a similar fashion as in §7.2.3. Similarly, the edge problems (8.4) are
local multistage stochastic problems without stocks with local decisions corresponding to the edge
flow Q` for all edge ` ∈ {1, .., L}.

Thus, the convex cone St defined in (8.13) is the coupling set between the local node prob-
lems (8.3) and edge problems (8.4). The coupling equation AQt + Ft = 0 becomes a special case
of the generic coupling constraint (7.28d) introduced in §7.2.3. �

It can easily be seen that the dual cone of the cone St defined in (8.13) writes for all time
t ∈ {0, .., T − 1}:

S?t = {(λt, µt) ∈ RN × RL | A>λt − µt = 0} . (8.14)

We have the following relation.

Proposition 8.2.2. For all (λ, µ) ∈ S?t , we have

λ · f + µ · q = λ · (Aq + f) , ∀(f, q) ∈ St , (8.15)

where (u, v) 7→ u · v is the usual Euclidian scalar product on RN .

Proof. Let (λ, µ) ∈ S?t . We have

λ · f + µ · q = λ · f + (A>λ) · q = λ · (Aq + f) . (8.16)

Hence the result. �

125

Chapter 8. Optimal management of district microgrids

8.3. Mixing nodal and time decomposition

The direct resolution of Problem (8.11) is generally out of reach, as it writes as a sum of coupled
multistage stochastic optimization subproblems. However, its structure renders it suitable for the
decomposition schemes introduced in Chapter 7.

The decomposition of Problem (8.11) arises in two steps: first, in §8.3.1 we decouple Prob-
lem (8.11) spatially into nodal and edge subproblems; then we decompose in §8.3.2 the nodal
subproblems (8.3) temporally by Dynamic Programming, as explained in Section 7.3.

8.3.1. Decomposition of the global problem

We follow the procedure introduced in Section 7.3 and decompose the coupling constraint (8.11b)
spatially by fixing a global price process λ or a global resource process R.

8.3.1.1. Decomposition of the price value function

Let λ = (λ0, · · · ,λT−1) ∈ L0(Ω,F ,P,RN) (see Definition 7.2.2 for the definition of F-adapted

stochastic processes space L0(Ω,F ,P,RN)) be a nodal price process and µ = (µ1, · · · ,µN) ∈
L0(Ω,F ,P,RL) be a edge price process. We reconsider the admissible sets S and S? defined in
Definition 7.2.3.

We define the global price value function:

V [λ,µ] = min
F ,Q

JV(F) + JE(Q) +
〈
λ ,F

〉
+
〈
µ ,Q

〉
, (8.17)

with
〈
· , ·
〉

being a scalar product between stochastic processes, writing, for all λ ∈ L0(Ω,F ,P,RN)
and F ∈ L0(Ω,F ,P,RN), 〈

λ ,F
〉

= E
[T−1∑
t=0

λt · Ft
]
, (8.18)

where (u, v) ∈ RN × RN 7→ u · v is the usual Euclidian scalar product on RN . We suppose that
measurability and integrability assumptions hold, so that the expression in (8.18) makes sense 1.

Proposition 8.3.1. Let λ ∈ L0(Ω,F ,P,RN) be a nodal price process and µ ∈ L0(Ω,F ,P,RL) be
a edge price process. The global price value function (8.17) is equal to

V [λ,µ] = min
F ,Q

JV(F) + JE(Q) +
〈
λ , AQ + F

〉
, (8.19)

which decomposes naturally in a nodal problem

V V [λ] = min
F

{
JV(F) +

〈
λ ,F

〉}
, (8.20a)

and a edge problem
V E [λ] = min

Q

{
JE(Q) +

〈
λ , AQ

〉}
. (8.20b)

Proof. Using Proposition 8.2.2, we have〈
λ ,F

〉
+
〈
µ ,Q

〉
=
〈
λ , AQ + F

〉
, ∀(F ,Q) ∈ −S , ∀(λ,µ) ∈ S? . (8.21)

1 Such assumptions hold for instance if λ ∈ L2(Ω,F ,P,RN) and F ∈ L2(Ω,F ,P,RN), or if λ ∈ L1(Ω,F ,P,RN)
and F ∈ L∞(Ω,F ,P,RN).

126

8.3. Mixing nodal and time decomposition

Thus, we are able to get rid of the process µ and consider only the price process λ in (8.17) (which
is unconstrained). The global price value function (8.17) rewrites

V [λ] = min
F ,Q

JV(F) + JE(Q) +
〈
λ , AQ + F

〉
. (8.22)

Then, we decompose the global price value function (8.19) w.r.t. nodes and edges as

V [λ] = V V [λ] + V E [λ] , (8.23)

with V V [λ] and V E [λ] defined by Equation (8.20). �

We are able to define the nodal price value functions corresponding to Equation (7.31):

V iV [λi] = min
F i

J iV(F i) +
〈
λi ,F i

〉
, ∀i ∈ {1, .., N} , (8.24)

so that the price nodal problem rewrites

V V [λ] =
N∑
i=1

V iV [λi] . (8.25)

8.3.1.2. Decomposition of the resource value function

Let R = (R0, · · · ,RT−1) ∈ L0(Ω,F ,P,RN) be a global resource process. We decompose the
global constraints (8.11b) w.r.t. the nodes and the edges as, for all time t ∈ {0, .., T − 1},{

Ft = Rt ,

AQt = −Rt .
(8.26)

We define the global resource value function as:

V [R] =
[

min
F

JV(F) + min
Q

JE(Q)
]

(8.27a)

s.t. AQ +R = 0 , (8.27b)

F −R = 0 . (8.27c)

Proposition 8.3.2. Let R ∈ L0(Ω,F ,P,RN) be a resource process. The global resource value
function (8.27) decomposes w.r.t. the nodes and the edges:

V [R] = V V [R] + V E [R] , (8.28)

with the resource nodal problem

V V [R] = min
F−R=0

JV(F) , (8.29)

and the resource edge problem
V E [R] = min

AQ+R=0
JE(F) . (8.30)

Proof. Straightforward, by definition of the global resource value function (8.27). �

We note that, if R /∈ im(A), we have V [R] = +∞ as the constraint AQ + R = 0 is not
admissible.

127

Chapter 8. Optimal management of district microgrids

We are able to define the nodal resource value functions corresponding to Equation (7.32):

V
i

V [Ri] = min
F i

J iV(F i) , ∀i ∈ {1, .., N}

s.t. F i −Ri = 0 ,

(8.31)

so that the resource nodal problem rewrites

V [R] =

N∑
i=1

V
i

V [Ri] . (8.32)

Remark 8.3.3. Another resource allocation scheme would be to fix the allocations on edges rather
than on nodes. Let R ∈ L0(Ω,F ,P,RL) be a resource process. We decompose Problem (8.11) as,
for all t ∈ {0, .., T − 1}, {

Ft = −ARt ,

Qt = Rt .
(8.33)

By doing so, we obtain the global resource value function

V [R] =
[

min
F

JV(F) + min
Q

JE(Q)
]

(8.34a)

s.t. Q = R , (8.34b)

F +AR = 0 . (8.34c)

that is, V [R] = JV(−AR) + JE(R). ♦

8.3.1.3. Upper and lower bounds by spatial decomposition

Applying Proposition 7.2.4 to the price value functions (8.19) and resource value functions (8.27),
we obtain that

V V [λ] + V E [λ] ≤ V] ≤ V V [R] + V E [R] . (8.35)

By computing the global price and resource value functions, we are able to bound up and down
the optimal value V] of Problem (8.11).

8.3.2. Temporal decomposition of nodal value functions

We decomposed Problem (8.11) spatially by introducing a global price process and a global resource
process. We now adapt the results of §7.3 to compute the price value function (8.19) and resource
value function (8.27) by Dynamic Programming.

8.3.2.1. Time decomposition of each nodal price value function

Considering the definition of J iV in Equation (8.3), the nodal price value function (8.24) is written
in a expended manner:

V iV [λi](xi0) = min
Xi,Ui,F i

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +

〈
λit ,F

i
t

〉
+Ki(Xi

T)
]
, (8.36a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , (8.36b)

∆i
t(X

i
t,U

i
t,W

i
t+1,F

i
t) ∈ Γt , (8.36c)

σ(U i
t) ⊂ Git . (8.36d)

128

8.4. Algorithmic implementation

By Proposition 7.3.7, we know that V iV [λi] satisfies a Dynamic Programming equation, provided
that the nodal price process λi is Dy0,h,φi -Markovian (see Definition 7.3.6).

8.3.2.2. Time decomposition of each nodal quantity value function

The nodal resource value function (8.31) is rewritten in an expended manner:

V
i

V [Ri](xi0) = min
Xi,Ui,F i

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +Ki(Xi

T)
]
, (8.37a)

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 , (8.37b)

∆i
t(X

i
t,U

i
t,W

i
t+1,F

i
t) ∈ Γt , (8.37c)

σ(U i
t) ⊂ Git , (8.37d)

F it −R
i
t = 0 . (8.37e)

In a similar manner, we know by Proposition 7.3.8 that V
i

V [Ri] satisfies a Dynamic Programming
equation, provided that the nodal resource process Ri is Dy0,h,ψi-Markovian.

8.4. Algorithmic implementation

In Section 8.3 we decomposed Problem (8.11) spatially, then temporally. We now detail how to
obtain tighter bounds in Equation (8.35), by following the procedure introduced in §7.4. We will
observe that improving optimal feedbacks φ0, · · · , φT−1 and ψ0, · · · , ψT−1 in the price and resource
Markovian designs turn to implement a gradient-like algorithm.

We first detail in §8.4.1 the price decomposition algorithm, and then present in §8.4.2 the resource
decomposition algorithm.

8.4.1. Price decomposition

First, we detail how to improve the lower bound given by the price value functions in Equa-
tion (8.35).

8.4.1.1. Lower bound improvement

Let λ be a Dy0,h,φ-Markovian price process. We consider the price value function V [λ], whose
expression is given by Equation (8.19).

We aim at solving Problem (7.78), which rewrites as

max
φ0,··· ,φT−1

min
F ,Q

JV(F) + JE(Q) +
〈
φ(Y) , AQ + F

〉
(8.38)

We reformulate Problem (8.38) as explained in §7.4.1. We know by Proposition 7.4.1 that
Problem (8.38) is equivalent to the relaxed problem

max
λ

min
F ,Q

JV(F) + JE(Q) +
〈
λ ,E[AQ + F | Y]

〉
. (8.39)

The price value function now writes:

V [λ] = min
F ,Q

JV(F) + JE(Q) +
〈
λ ,E[AQ + F | Y]

〉
. (8.40)

Proposition 8.4.1. We suppose that

129

Chapter 8. Optimal management of district microgrids

• Each local noise W i
t in (8.3) has a finite support;

• The costs Lit : Xit × Uit ×Wi
t+1 → R in (8.3) are strongly convex w.r.t. (xi, ui);

• The edge costs l`t in (8.4) are strongly convex w.r.t. q`;

• The local dynamics git in (8.3) are affine w.r.t. (xi, ui);

• There exists an admissible solution (F ,Q) for Problem (8.40).

Then the functions JV in (8.7) and JE in (8.9) are differentiable w.r.t. the processes F and Q and
the price value function V [λ] is differentiable w.r.t. the price process λ, with gradient

∇V [λ] = E[AQ](λ) + F](λ) | Y] , (8.41)

where (F](λ),Q](λ)) is solution of Problem (8.40).

Proof. As the uncertainties have finite supports and the processes F and Q are measurable w.r.t.
the uncertainties W , we deduce that F and Q have only a finite number of values. Thus, the
discrete values of F andQ lie in finite dimensional Euclidian spaces that we will denote respectively
by R|F | and R|Q|.

As local costs Lt and lt are strongly convex, we deduce that JV and JE are differentiable w.r.t.
the finite support coordination processes F and Q.

Let g : R|F | × R|Q| × R|F | → R

g(F ,Q,λ) = JV(F) + JE(Q) +
〈
λ ,E[AQ + F | Y]

〉
,

be a convex-concave mapping. We have that:

• The mappings JV and JE are coercive functions.

• For all λ, (F ,Q) 7→ g(F ,Q,λ) is continuous w.r.t. F and Q.

• For all F ,Q, the mapping λ → g(F ,Q,λ) is convex, differentiable.

• V [λ] in (8.39) is finite valued.

• As the local costs Lit are strongly convex, the costs JV and JE are strongly convex. Thus,
the mapping g(·, ·,λ) is minimized at a unique point (F](λ),Q](λ)).

Then, applying (Hiriart-Urruty and Lemaréchal, 2012, Corollary 4.4.5, p.191), we know that V [λ]
is differentiable at λ, and

∇V [λ] = E[AQ](λ) + F](λ) | Y] . (8.42)

Hence the result. �

8.4.1.2. Price decomposition algorithm

Using Proposition 8.4.1, we are able to solve Problem (8.39) with a gradient ascent algorithm.

At iteration k, we suppose given a price process λ(k) and a sequence {ρ(k)
t }t∈{0,..,T−1} of gradient

steps. The algorithm is given by:

F (k+1) = arg min
F

JV(F) +
〈
λ(k) ,F

〉
, (8.43a)

Q(k+1) = arg min
Q

JE(Q) +
〈
λ(k) , AQ

〉
, (8.43b)

λ
(k+1)
t = λ

(k)
t + ρ

(k)
t E

[
AQ

(k+1)
t + F

(k+1)
t | Yt

]
, ∀t ∈ {0, .., T − 1} . (8.43c)

130

8.4. Algorithmic implementation

Let us describe Algorithm (8.43) step by step.

• The resolution of Equation (8.43a) and Equation (8.43b) decomposes spatially w.r.t. nodes
and edges, as explained in §8.3.1. We solve the local nodal problems (8.24) by Dynamic Pro-
gramming, as the local price process λi are Dy0,h,φi-Markovian. The local edge subproblems
are solved directly by standard mathematical programming methods.

• For all time t, updating λt requires the computation of a conditional expectation

E
[
AQ

(k+1)
t + F

(k+1)
t | Yt

]
(8.44)

that we usually perform by Monte-Carlo. The gradient ∇V [λ] can be used in more sophis-
ticated descent methods (BFGS, Nesterov accelerated gradient) than the classical gradient
algorithm presented in (8.43c).

Convergence. Under proper assumptions, Algorithm (8.43) converges.

Proposition 8.4.2. We assume that:

• Each local noise W i in (8.3) has a finite support;

• The costs Lit : Xit × Uit ×Wi
t+1 → R in (8.3) are strongly convex w.r.t. (xi, ui);

• The edge costs l`t in (8.4) are strongly convex w.r.t. q`;

• The local dynamics git in (8.3) are affine w.r.t. (xi, ui);

• There exists an admissible solution (F ,Q) for Problem (8.40).

Then, the sequence of processes (F (k),Q(k))k∈N given by Algorithm (8.43) converges toward the

optimal processes (F],Q]) solution of the relaxed problem (8.39).

Proof. See Leclère (2014). �

8.4.2. Resource allocation

We now focus on the improvement of the upper bound given by the resource value functions in
Equation (8.35).

8.4.2.1. Upper bound improvement

Let R be a Dy0,h,ψ-Markovian process, as defined in Definition 7.3.5. We consider the resource
value function V [R], defined in Equation (8.27). Problem (7.88) rewrites

min
ψ0,··· ,ψT−1

V [ψ(Y)] . (8.45)

Using the interpretation introduced in §7.4.2, we know that Problem (8.45) interprets as

min
R

min
F ,Q

JV(F) + JE(Q)

s.t. F = E[R | Y]

AQ = −E[R | Y] .

(8.46)

131

Chapter 8. Optimal management of district microgrids

The resource value function associated to Problem (8.46) is:

V [R] = min
F ,Q

JV(F) + JE(Q)

s.t. F = E[R | Y]

AQ = −E[R | Y] .

(8.47)

We note that V [R] = +∞ if E[R|Y] /∈ im(A), P-a.s..

Proposition 8.4.3. We suppose that

• Each local noise W i in (8.3) has a finite support;

• The costs Lit : Xit × Uit ×Wi
t+1 → R in (8.3) are strongly convex w.r.t. (xi, ui);

• The edge costs l`t in (8.4) are strongly convex w.r.t. q`;

• The local dynamics git in (8.3) are affine w.r.t. (xi, ui);

• There exists an admissible solution (F ,Q) for Problem (8.47).

Then the functions JV (8.7) and JE (8.9) are differentiable w.r.t. the processes F and Q and the
resource value function V [R] (8.47) is differentiable w.r.t. the resource process R. Its gradient
writes

∇V [R] = E[λ + µ | Y] , (8.48)

with λ ∈ ∇V V [R] and µ ∈ ∇V E [R].

Proof. The reasoning is similar to the proof of Proposition 8.4.1. �

We detail the computation of the processes λ ∈ ∇V V [R] and µ ∈ ∇V E [R] in §8.7.2.

8.4.2.2. Resource allocation algorithm

We solve Problem (8.45) with an iterative method. At iteration k we suppose given the allocation

R(k) and a sequence {ρ(k)
t }t∈{0,..,T−1} of gradient steps.

The gradient descent update writes:

R
(k+1)
t = projim(A)

(
R

(k)
t − ρ

(k)
t E

[
λ

(k+1)
t + µ

(k+1)
t | Yt

])
, (8.49)

where projim(A) is the projection onto the subspace im(A). We note that the computation of the
update (8.49) requires also the computation of a conditional expected value, usually estimated by
Monte-Carlo.

Remark 8.4.4. If the graph G = (V, E) is connected, the projection operator projim(A) is the

projection onto the hyperplane with equation 1>x = 0.

We are also able to handle the boxed constraint F ≤ F ≤ F in the projection operator rather
tha in the cost function, by using the projection on the intersection of the hyperplane with equation
1>x = 0 with the boxed set F ≤ · ≤ F . ♦

Convergence. We refer to (Mataoui, 1990, Theorem IV.4, p.46) for a proof of convergence of
Algorithm (8.49).

132

8.5. Numerical applications

8.5. Numerical applications

We apply the price and resource decomposition algorithms described in Section 8.4 to a microgrid
management problem, where different buildings are connected together. The energy management
system (EMS) controls the different energy flows inside the microgrid, so as to ensure that the
production meets the demand at all time at least cost.

8.5.1. Problem

We look at a local distribution network connecting different buildings together. We model the
distribution network as a directed graph G = (V, E), with buildings set on nodes and distribution
lines set on edges. The buildings exchange energy between each other via the distribution network,
and if the local production is unable to fulfill the local demand, energy can be imported from an
external regional grid.

The buildings configurations correspond to heterogeneous domestic buildings. All buildings are
equipped with electrical hot water tanks, some have solar panels and some others have batteries.
As batteries and solar panels are expensive, they are mutualized across the distribution grid.
Furthermore, we suppose that all agents are benevolent and share their devices across the network.

We look at a given day in summer. We consider a one day horizon, discretized using a 15mn
time step. We view the batteries and the electrical hot water tank as energy stocks. Each house
has its own electrical and domestic hot water demands profile. The mathematical modeling of the
buildings is similar to the one of Chapter 6. However, we do not consider the thermal inertia of
the buildings in the modeling as thermal heating is off during summer.

8.5.1.1. Nodal dynamics

We model the stock dynamics with the models introduced in Chapter 4. Each building has the
same modeling as the building described in Chapter 6, but without capturing the thermal inertia.

Let i ∈ {1, .., N} be a node of the graph. We denote by ∆T the discretization step, and by T
the horizon. We set ∆T = 15 mn combined with a horizon of one day, which gives T = 96.

Nodal state equation. Batteries are modeled with the discrete dynamics

Bi
t+1 = αbB

i
t + ∆T

(
ρc(U

b,i
t)+ − 1

ρd
(U b,i

t)−
)
, ∀t ∈ {0, .., T − 1} (8.50a)

where Bi
t is the energy stored inside the battery at time t, αb is the auto-discharge rate, U b,i

t is
the power exchanged with the battery, and (ρd, ρc) are given yields.

The electrical hot water tanks are modeled with the stock dynamics

Hi
t+1 = αhH

i
t + ∆T

(
βhU

t,i
t −D

hw,i
t+1

)
, ∀t ∈ {0, .., T − 1} , (8.50b)

where Hi
t is the energy stored inside the tank at time t, αh is a discharge rate corresponding to

the losses by conduction, U t,i
t is the power used to heat the tank, and Dhw,i

t+1 is the domestic hot
water demand between time t and t+ 1.

Depending on the presence of battery inside the building, the nodal state Xi
t has dimension 2

or 1.

• If node i has a battery, its states is Xi
t = (Bi

t,H
i
t);

• otherwise, its state is Xi
t = Hi

t .

133

Chapter 8. Optimal management of district microgrids

Nodal uncertainty. At node i, the uncertainty has the expression

W i
t+1 = (Del,i

t+1,D
hw,i
t+1) , ∀t ∈ {0, .., T − 1} , (8.51)

with Del,i
t+1 the local electricity demand between time t and t + 1, and Dhw,i

t+1 the domestic hot
water demand. We choose to aggregate the production of the solar panels with the local electricity
demands as described in Chapter 6.

We model the distributions of the local energy demands process {W i
t}t∈{1,..,T} with discrete

probability distributions {µit}t∈{1,..,T} defined on Wi. We note by S the size of its finite support.

Assumption 8.5.1. For all time t ∈ {0, .., T − 1}, the nodal uncertainties W 1
t , · · · ,W

N
t are

spatially independent.

Assumption 8.5.1 assumes that the electrical and hot water demands are independent between
the different buildings.

Nodal balance equation. At node i ∈ {1, .., N}, the load balance equation between production
and demand corresponds to the mapping ∆t in Problem (8.3), and writes for all time t ∈ {0, .., T−1}

∆t(X
i
t,U

i
t,W

i
t+1,F

i
t) = Une,i

t −Del,i
t −U b,i

t −U
t,i
t − F it , (8.52)

and we suppose that production must be greater than the demand at all time

∆t(X
i
t,U

i
t,W

i
t+1,F

i
t) ≥ 0 . (8.53)

We suppose that the buildings cannot export electricity: if the global production exceeds the sum
of local demands, then the energy surplus is wasted.

Nodal production costs. For all time t ∈ {0, .., T − 1}, we pay a price pelt to import electricity
from the external regional network. The price pelt corresponds to on-peak and off-peak tariffs.

Let
Lit(X

i
t,U

i
t,W

i
t+1) = pelt ×max{0,Une,i

t }+ ε1(F it)2 , ∀t ∈ {0, .., T − 1} , (8.54)

be the nodal costs. We add a small quadratic term on F it to ensure that the function JV(·) in (8.7)
is strongly convex.

We add a final penalization K : XT → R to avoid empty stock at midnight for the electrical hot
water tank:

K(xT) = κhw ×max{0, h0 − hT } , ∀xT = (bT , hT) , (8.55)

with h0 ∈ R the initial tank position.

8.5.1.2. Transportation costs

For all edge ` ∈ {1, .., L}, the transportation cost l`t : R → R in (8.9) is a quadratic function,
modeling the losses through the distribution line `:

l`t(q
`
t) =

1

2
a1(q`t)

2 . (8.56)

We note that we use a simplified modeling for the distribution network, as we consider only
energy exchanges without considering the power flow equations. We refer to Kargarian et al.
(2016) for an application of distribution and decentralized optimization methods to DC optimal
power flow problems. However, the extension to the stochastic case remains to be done.

134

8.5. Numerical applications

8.5.1.3. Test-cases

We consider six different problems with growing dimension. Table 8.1 displays the different
dimensions considered. We note that the support size of the global noises W t grows exponentially
with the number of nodes, as we suppose that the uncertainties {W i

t}i∈{1,..,N} are independent
node by node and time by time (see Assumption 8.5.1).

Problem N (nodes) L (edges) dim(Xt) dim(Wt) supp(W t)

2-Nodes 2 1 3 4 102

3-Nodes 3 3 4 6 103

6-Nodes 6 7 8 12 106

12-Nodes 12 15 16 24 1012

24-Nodes 24 15 32 48 1024

48-Nodes 48 30 64 96 1048

Table 8.1.: The problems have growing dimensions

Graphs topology. We depict the topology of the different graphs in Figure 8.2.

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes

Figure 8.2.: Topology of the different graphs

A description of the 12-Nodes problem. We detail the configuration of the 12-Nodes problem
as an example, the configurations of the others problems having a similar structure. 12-Nodes
problem gathers twelve buildings, connected via a local distribution network whose topology is
given in Figure 8.2. Four buildings are equipped with a 3kWh battery, and four other buildings
are equipped with 16m2 of solar panels. We dispatch the equipments in the different buildings so
that each building equipped with solar panels is connected to at least one building with a battery.

135

Chapter 8. Optimal management of district microgrids

8.5.2. Resolution algorithms

We reconsider the two decomposition algorithms introduced in Section 8.4 and apply them to each
problem described in Figure 8.2. We will denote by DADP the price decomposition algorithm
described in §8.4.1 and by PADP the resource decomposition algorithm described in §8.4.2. We
compare DADP and PADP with the well-known Stochastic Dual Dynamic Programming (SDDP)
algorithm applied to the global problem.

Each algorithm returns a set of value functions that allow to build a global control policy.

8.5.2.1. Resolution by nodal decomposition

We detailed the nodal decomposition algorithms in Section 8.4. We provide here additional details
on the numerical resolution of the nodal subproblems (8.24) and (8.31).

Choosing an appropriate design. We saw in Section 7.3 that if the price process is Dy0,h,φ-

Markovian and resource process isDy0,h,ψ-Markovian, we are able to solve the nodal problems (8.24)
and (8.31) by Dynamic Programming.

Here, the price process λ = (λ0, · · · , λT−1) and the resource process r = (r0, · · · , rT−1) are
chosen deterministic, hence easing the Dynamic Programming resolution of the nodal subproblems
(as we do not have to extend the state of each node).

Resolution of nodal subproblems by Dynamic Programming. Once the global problem decom-
posed into nodal subproblems, we solve each subproblem locally by Dynamic Programming.

Gradient-like algorithms. By Proposition 8.4.2, we know that the gradient-like algorithm con-
verges to the optimal solution of Problem (8.39). However, it is well known that the usual gradient
descent algorithm may be slow to converge to the optimum. To overcome this issue, we use a
Quasi-Newton algorithm to approximate numerically the Hessian of the global value functions
V [λ] and V [R]. The gradient (Equation (8.41)) is used to build the Hessian approximation.

Remark 8.5.2. Once Problem (8.11) has been decomposed with a fixed allocation or a fixed price,
we solve the local Dynamic Programming equations with SDDP. As the nodal state Xi

t exhibits
small dimension (1 or 2), SDDP converges in few iterations (less than 30). However, we may have
chosen as well SDP to solve the local problems. ♦

8.5.2.2. Resolution by Stochastic Dual Dynamic Programming

To assess the performance of the nodal decomposition algorithms, we compute aside the global
Bellman value functions (7.38) by SDDP.

However, the global problem (8.11) exhibits large dimensions — both in the state and in the
noise spaces (see Table 8.1)— slowing down the performance of SDDP. SDDP requires the exact
computation of an expected value at each time step during the backward pass, which proves to be
impossible for the global problem (8.11). To make tractable the global resolution, we resample the
finite distribution of the noise process.

Noise resampling. By Assumption 8.5.1, the nodal uncertainties are independent node by node.
Thus, the probability distribution µgt of the global uncertainty W t writes as a product of the local
distributions

µgt = µ1
t ⊗ · · · ⊗ µNt , (8.57)

and its support size is equal to SN , where S is the support’s size of the local uncertainty W i
t. The

support size of the global distribution grows exponentially with the number of nodes. Without

136

8.5. Numerical applications

resampling, the exact computation of the expected values during SDDP’s backward passes become
intractable as the size of the problem increases.

To overcome this issue, we resample the probability distribution µgt (supported by SN points)
by quantization to obtain a more tractable size S′ << SN . We use the k-means algorithm as a
continuous scenario reduction method, as described in Rujeerapaiboon et al. (2017). By using the
Jensen inequality w.r.t. the noises, we know that the optimal quantization a finite distribution
yields a new optimization problem whose optimal value is a lower-bound of the optimal value of
the original problem, provided that the local problems are convex w.r.t. the noises W i

1, · · · ,W
i
T−1

(Löhndorf and Shapiro, 2017).

In the sequel, we fix the resampling size to S′ = 100.

Cuts selection. We use a level-one cut selection method (de Matos et al., 2015a) to remove
redundant cuts along SDDP’s iterations. We know from (Guigues, 2017) that removing cuts with
the level-one cut selection algorithm does not impact the convergence of SDDP.

8.5.2.3. Recovering a control policy

Once convergence achieved, all algorithms return a collection of global value functions {V∞t }t∈{0,..,T}
approximating the original value functions, where the cost-to-go V∞t is defined by

• V∞t = V t for SDDP,

• V∞t =
∑N
i=1 V

i
t for price decomposition,

• V∞t =
∑N
i=1 V

i

t for resource decomposition.

We use these global value functions to build a global control policy for all time t ∈ {0, .., T − 1}.
Such control policy is an admissible strategy usable in simulation. The control policy writes, for
all global state xt ∈ Xt and global noise wt+1 ∈Wt+1, as solution of a one-step DP problem:

π(xt, wt+1) ∈ arg min
ut

min
ft,qt

N∑
i=1

Lit(x
i
t, u

i
t, w

i
t+1) +

L∑
`=1

l`t(q
`
t) + V∞t+1

(
x1
t+1, · · · , xNt+1

)
s.t. xit+1 = git(x

i
t, u

i
t, w

i
t+1) , ∀i ∈ {1, .., N} ,

∆i
t(x

i
t, u

i
t, w

i
t+1, f

i
t) ≥ 0 , ∀i ∈ {1, .., N} ,

Aqt + ft = 0 .

(8.58)

As the strategy induced by (8.58) is admissible, the expected value of its cost is an upper bound
of the optimal value V] of the original problem (8.11).

8.5.3. Numerical results

We first compare the time taken by each algorithm to compute the value functions, and evaluate
in a second time the quality of the strategy (8.58) obtained.

8.5.3.1. Algorithms parameters

We detail hereafter the different parameters of the algorithms.

137

Chapter 8. Optimal management of district microgrids

Decomposition ingredients. The algorithm uses Nmc = 500 Monte Carlo samples to estimate
the conditional expected gradient E[AQ(k+1) +F (k+1) | Y] by Monte-Carlo in Algorithm (8.43) as

1

Nmc

Nmc∑
s=1

(AQ(k+1)(ws) + F (k+1)(ws)) , (8.59)

where (w1, · · · , wNmc) is a fixed set of scenarios used at each iteration of the price and resource
decomposition algorithms.

Globally, the gradient-like algorithm is performed with L-BFGS-B 3.0 (Zhu et al., 1997). The
algorithm stops when no descent direction is found. The number of iterations depends on the
number of nodes considered.

Each nodal subproblem (8.3) is solved by a DP-like method (SDDP algorithm in this application,
as it converges in a few iterations).

Global SDDP ingredients. Global SDDP uses a level-one cut selection algorithm (Guigues, 2017)
and keeps only the 100 most relevant cuts. By doing so, we divide almost by three the global
SDDP’s computation time.

We stop SDDP when the gap between its lower bound and its upper bound (estimated statisti-
cally every 10 iterations by using a fixed set of 1,000 scenarios) is lower than 1%. That corresponds
to the standard SDDP’s stopping criterion described in Shapiro (2011), which is reputed to be
more consistent than the first stopping criterion introduced in Pereira and Pinto (1991) (we refer
to §10.1.2 for a discussion on the relevance of the different stopping criteria of SDDP).

8.5.3.2. Computation of Bellman value functions.

We solve Problem (8.11) by global SDDP, resource allocation (PADP) and price decomposition
(DADP). Table 8.2 details the number of iterations and execution time taken before reaching
convergence.

Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes
|Xt| 4 8 16 32 64

SDDP time 1’ 3’ 10’ 79’ 453’
SDDP Nit 30 100 180 500 1500

DADP time 6’ 14’ 29’ 41’ 128’
DADP Nit 27 34 30 19 29

PADP time 3’ 7’ 22’ 49’ 91’
PADP Nit 11 12 20 19 20

Table 8.2.: Optimization results for SDDP, DADP and PADP.

We note that for the 24-Nodes and 48-Nodes problems, DADP and PADP are almost three
times faster than SDDP. However, for small-scale problem like 3-Nodes, SDDP remains faster
than DADP and PADP.

SDDP convergence. Figure 8.3 displays the convergence of SDDP for the 12 nodes problem.
The approximate upper-bound is estimated every 10 iterations, with 1,000 scenarios. We observe
that the gap between the upper and lower bounds is below 1% after 180 iterations. The lower
bound remains stable after 250 iterations.

138

8.5. Numerical applications

0 50 100 150 200 250 300
Iterations

8.5

8.6

8.7

8.8

8.9

9.0

9.1

9.2

Co
st

 [
]

SDDP LB
SDDP UB
Confidence (95.0%)

Figure 8.3.: Evolution of SDDP lower and upper bounds for the 12-Nodes problem

DADP and PADP convergence. We exhibit in Figure 8.4 the convergence of DADP’s price
process and PADP’s resource process along iterations, for the 12-Nodes problem. We depict the
convergence only for the first node, the evolution of price process and resource process in other
nodes being similar. As we consider a one day horizon combined with a 15mn time step, we get
96 different stages for each nodal subproblem. Thus, the price and resource processes have 96
different values.

On the left-hand side, we plot the evolution of the 96 different values of the price process λ1 =
(λ1

0, · · · , λ1
T−1) for each iteration of DADP. We observe that most of the prices start to stabilize

after 15 iterations, and do not exhibit sensitive variation after 20 iterations.

On the right-hand side, we plot the evolution of the 96 different values of the resource process r1 =
(r1

0, · · · , r1
T−1), for each iteration of PADP. We observe that the convergence of resources is quicker

than for prices, as the evolution of most resources starts to stabilize after only 10 iterations.

0 5 10 15 20 25 30
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ice

0 4 8 12 16 20
Iteration

0.4

0.2

0.0

0.2

0.4

0.6

In
je

ct
io

n
flo

w
[k

W
]

(a) (b)

Figure 8.4.: Convergence of DADP’s prices (a) and PADP resources (b) for the 12-Nodes problem.

139

Chapter 8. Optimal management of district microgrids

Optimal DADP’s multipliers and PADP’s flows. We display on Figure 8.5 the optimal prices
λ and resources R obtained by DADP and PADP in the 12-Nodes problem. As we have twelve
nodes, we obtain twelve different curves in each subfigure, corresponding respectively to the price
process (on the left) and to the resource process (on the right). The positioning of the different
devices is depicted in Figure 8.6. We comment hereafter Figure 8.5 in detail.

• On the left-hand side (a), we observe that the shape of the multipliers reflects on-peak/off-
peak electricity tariffs (0.125e between 23pm and 7am, 0.165e the remaining time). The
values of the multipliers are always lower than the electricity tariffs.

• On the right-hand size (b), we observe that during day, the exporting node are nodes equipped
with solar panels (green curves). During night, the nodes equipped with batteries (blue
curves) export the energy they stored during day.

• Combining the results from (a) and (b), we observe that the exporting node exhibits a lower
λ than importing nodes. Here, the price λ is an information depicting the marginal price to
export a given amount of energy at a given node, and the decision maker has to choose to
import electricity from the nodes with the lowest marginal prices.

0 3 6 9 12 15 18 21 24
Time [h]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ul

tip
lie

rs
 [

]

Battery
None
PV
Tariff

0 3 6 9 12 15 18 21 24
Time [h]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

In
je

ct
io

n
flo

w
[k

W
]

Battery
None
PV

(a) (b)

Figure 8.5.: DADP optimal prices (b) and PADP optimal resources (b).

8.5.3.3. Simulation results

We now compare the performance of the different algorithms in simulation, using the control
strategy induced by (8.58).

Lower bounds. We first give the lower and upper bounds given by DADP, PADP and SDDP in
Table 8.3. The lower bound of the SDDP algorithm is the classical lower bound of SDDP, whereas
DADP and PADP lower and upper bound are given by Equation (8.35).

We observe that:

• The lower-bound returned by DADP with deterministic coordination price process is better
than SDDP’s lower bound (which uses a poorer representation of the uncertainties distribu-
tions) for problems with more than 12 nodes.

• Whereas SDDP and DADP lower-bounds are close to each other, the upper-bound given by
PADP is looser.

140

8.5. Numerical applications

Problem 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP LB 2.252 4.559 8.897 17.528 33.103
DADP LB 2.137 4.473 8.967 17.870 33.964
PADP UB 2.521 5.285 10.523 21.007 40.166

Table 8.3.: Upper and lower bounds given by SDDP, DADP and PADP.

Simulation values. We give the results obtained by simulation in Table 8.4. SDDP, DADP and
PADP values correspond to the values obtained by simulating the strategies induced by (8.58) on

Nsim = 5, 000 scenarios. The notation ± corresponds to the 95% interval ±1.96
σ√
Nsim

. We use as

a reference the cost obtained by the SDDP strategy (a positive gap meaning that the decomposed
strategies are better than SDDP’s strategy).

Problem 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP value 2.26 ± 0.006 4.71 ± 0.008 9.36 ± 0.011 18.59 ± 0.016 35.50 ± 0.023

DADP value 2.28 ± 0.006 4.64 ± 0.008 9.23 ± 0.012 18.39 ± 0.016 34.90 ± 0.023
Gap - 0.8 % + 1.5 % +1.4% +1.1% +1.7%

PADP value 2.29 ± 0.006 4.71 ± 0.008 9.31 ± 0.011 18.56 ± 0.016 35.08 ± 0.022
Gap -1.3% 0.0% +0.5% +0.2% +1.2%

Table 8.4.: Simulation results for SDDP, DADP and PADP.

We make the following observations.

• If the number of nodes is greater than 6, DADP and PADP strategies beat SDDP strategy.

• The DADP strategy gives better results than the PADP strategy.

• Comparing with Table 8.3, the upper bounds obtained by the three strategies in simulation
are closer to SDDP and DADP lower-bounds than PADP upper-bounds. By assuming that
the resource allocation is constant in PADP, we obtain constant importation flows for every
possible realization of uncertainties, thus impairing the accuracy of the PADP algorithm.
We believe that using a non-constant allocation process in PADP would greatly enhance the
quality of the upper-bound.

Simulation trajectories. We now analyze the average flows through the network, as returned by
DADP’s admissible strategy (8.58).

Figure 8.6 displays the average flows for the 12-Nodes problem. The colors of the nodes denote
the devices in each node, and follow the same color legend as in Figure 8.5 (blue for the node
equipped with a battery, green for the node equipped with solar panels and black for the node
without any device). The width of the edges is proportional to the intensity of the average flow
through the edges: the wider, the larger is the average flow. The arrow gives the sense of the flow,
from the exporting node to the importing node.

We give the average flows at two different moments in the day: (a) displays the average flows
at midday — where the production of the solar panels is maximal — whereas (b) displays the
average flows at 9pm, during twilight. We observe that at midday the nodes equipped with solar
panels export their energy surplus to adjacent nodes. On the contrary, at 9pm, the exporting
nodes become the nodes equipped with battery, as they are able to export the energy they stored
during day. Thus, the directions of the flows at different moments in the day are coherent.

141

Chapter 8. Optimal management of district microgrids

(a) (b)

Figure 8.6.: Average exchanges through the 12-Nodes problem at 12am (a) and 9pm (b)

Impact of self-consumption. Eventually, we are able to assess the impact of self-consumption on
the local network. We compare the electricity importation from the regional distribution grid. We
display the average importation in Figure 8.7. for two different cases.

1. First, in blue, we depict the importation observed in the case previously described, where
the different buildings exchange energy between each others.

2. Second, in red, we depict the importation observed without local network, that is, without
exchange between the different buildings. The second case is a simplification of the former
by considering a network without edges.

We observe the following points.

• By allowing exchange, the importations from the regional distribution grid are minimized
(the blue curve is always lower than the red curve when importation is greater than 0).

• The energy losses during day, corresponding to negative importations, are also minimized by
allowing buildings to exchange energy locally.

Thus, we deduce that self-consumption allows to decrease both the importation from the regional
distribution grid and the energy losses.

8.6. Beyond price and resource decompositions

We have presented in §8.4 the price and resource decomposition algorithms and applied them
succesfully on a practical problem in §8.5. The aim of this last section is solely to give some hints
concerning the extension of price and resource decomposition schemes to other decomposition
schemes. We will sketch primal-dual decomposition in §8.6.2 and stochastic proximal methods
in §8.6.3. Such decomposition schemes will allow to design new resolution algorithms to solve
Problem (8.11).

8.6.1. A new look on price and resource decompositions

We reframe the algorithms introduced in Section 8.4 by using the Fenchel conjugate.
Let (X,Y) be two spaces paired by a bilinear form

〈
· , ·
〉
. For all function f : X → R, we define

the Fenchel conjugate as
f?(y) = sup

x∈X

〈
y , x

〉
− f(x) , ∀y ∈ Y . (8.60)

142

8.6. Beyond price and resource decompositions

0 3 6 9 12 15 18 21 24
Time [h]

1

0

1

2

3

Av
er

ag
e

im
po

rta
tio

n
[k

W
]

No exchange
Exchange

Figure 8.7.: Impact of self-consumption onto energy importation. Negative importation corre-
sponds to losses, as we cannot export electricity onto the distribution grid.

Price decomposition. First, we have seen that the price value function in (8.19) writes, for all
λ ∈ L0(Ω,F ,P,RN),

V [λ] = min
F ,Q

JV(F) + JE(Q) +
〈
λ , AQ + F

〉
.

By using the Fenchel conjugates (8.60) of JV and JE , we obtain

V [λ] = −J?V(−λ)− J?E (−A>λ) . (8.61)

We suppose that J?V and J?E are differentiable w.r.t. λ. Then, V [λ] is differentiable, with

∇V [λ] = ∇J?V(−λ) +A∇J?E (−A>λ) , (8.62)

which is similar to Equation (8.41) by setting

F = ∇J?V(−λ) , Q = ∇J?E (−A>λ) . (8.63)

That allows to rewrite price decomposition in a more compact manner.

Resource decomposition. Resource decomposition is a symmetric version of price decomposition,
but in the primal. The resource value function (8.27) rewrites in a compact manner, for all resource
process Q ∈ L0(Ω,F ,P,RL),

V [Q] = JV(−AQ) + JE(Q) . (8.64)

We suppose, as in Proposition 8.4.3, that the mappings JV and JE are differentiable. Then, V [Q]
is differentiable w.r.t. Q, and its gradient is

∇V [Q] = −A>∇JV(−AQ) +∇JE(Q) , (8.65)

which is similar to Equation (8.48) by setting

λ = ∇JV(−AQ) , µ = ∇JE(Q) . (8.66)

We highlight the symmetry behind the primal and the dual decomposition algorithms in Fig-
ure (8.8).

143

Chapter 8. Optimal management of district microgrids

∇J?V
−λ(k) F (k+1)

∇J?E
−A>λ(k) Q(k+1)

∇JV
−AQ(k) λ(k+1)

∇JE
Q(k) µ(k+1)

Figure 8.8.: Illustrating the symmetry between price and resource decomposition

8.6.2. Interaction prediction principle

We want now to mix the primal and dual decomposition schemes together, to combine the respec-
tive quality of these two algorithms. We recover the interaction-prediction algorithms described
in Cohen (2004).

We define the Lagrangian L : L2(Ω,F ,P,RN) × L2(Ω,F ,P,RL) × L2(Ω,F ,P,RN) → R corre-
sponding to Problem (8.11):

L(F ,Q, λ) = JV(F) + JE(Q) +
〈
λ , AQ + F

〉
. (8.67)

L(·, ·, ·) is convex w.r.t. (F ,Q), concave w.r.t. λ. We aim at finding a possible saddle point

(F],Q],λ]) of the Lagrangian L.

We propose here a mix between the price and resource decomposition algorithms.

We solve one of the problem (the nodal or the edge problem) in the dual and the other in the
primal. That yields two possible primal-dual algorithms:

• The first algorithm dualizes the nodal problem (8.7) and considers as criterion

V1(Q,λ) = min
F
L(F ,Q,λ) = −J?V(−λ) + JE(Q) +

〈
λ , AQ

〉
. (8.68)

This scheme considers the couple (Q,λ) as decomposition variables.

• The second scheme dualizes the edge problem (8.9) and considers as criterion

V2(F ,λ) = min
Q
L(F ,Q,λ) = JV(F)− J?E (−A>λ) +

〈
λ ,F

〉
. (8.69)

This scheme considers the couple (F ,λ) as decomposition variables.

We detail hereunder the two algorithms that work respectively with V1 and V2.

As explained in Cohen and Miara (1990), the primal-dual algorithms can be solved either with
a fixed point algorithm or with the Arrow-Hurwicz algorithm (Arrow and Hurwicz, 1958).

8.6.2.1. Dualizing the nodal problem

We consider the function V1 defined in Equation (8.68). We fix a resource Q(k) and a price λ(k).

Fixed point algorithm. The fixed point algorithm takes into account the couple (Q(k),λ(k)) and
computes

F (k+1) = ∇J?V(−λ(k)) , µ(k+1) = ∇JE(Q(k)) . (8.70)

But the update of Q(k),λ(k) is not straightforward, as we do not have necessarily F (k+1) ∈ im(A).

144

8.6. Beyond price and resource decompositions

Arrow-Hurwicz algorithm. To overcome the issue encountered in the fixed point algorithm, we
use an Arrow-Hurwicz algorithm (Arrow and Hurwicz, 1958). The gradient of V1 at (Q(k),λ(k))
writes: {

∇qV1(Q(k),λ(k)) = ∇JE(Q(k)) +A>λ(k)

∇λV1(Q(k),λ(k)) = ∇J?V(−λ(k)) +AQ(k) .
(8.71)

We are able to find a saddle point with the Arrow-Hurwicz algorithm. By setting µ(k+1) =
∇JE(Q(k)) and F (k+1) = ∇J?V(−λ(k)) we define

Q(k+1) = Q(k) − ρ1∇qV1(Q(k),λ(k)) (8.72a)

= Q(k) − ρ1

(
µ(k+1) +A>λ(k)

)
, (8.72b)

and

λ(k+1) = λ(k) + ρ2∇λV1(Q(k),λ(k)) (8.72c)

= λ(k) + ρ2

(
F (k+1) +AQ(k)

)
. (8.72d)

We note that we are able to extend the Arrow-Hurwicz algorithm (8.72) by using implicit scheme
and over and under relaxation. We refer to Cohen and Miara (1990) for a broader description.

8.6.2.2. Dualizing the edge problem

We now consider the function V2 defined in Equation (8.69). We fix a resource F (k) and a price λ(k).

Fixed point algorithm. The fixed point algorithm looks at the couple (F (k),λ(k)), computes

λ(k+1) = ∇JV(F (k)) , Q(k+1) = ∇J?E (−A>λ(k)) , (8.73)

and sets F (k+1) = −AQ(k+1).

Arrow-Hurwicz algorithm. We now adapt the Arrow-Hurwicz algorithm. The algorithm com-
putes the gradient of V2 at (F (k),λ(k)):{

∇fV2(F (k),λ(k)) = ∇JV(F (k)) + λ(k)

∇λV2(F (k),λ(k)) = A∇J?E (−A>λ(k)) + F (k) .
(8.74)

By setting µ(k+1) = ∇JV(F (k)) and Q(k+1) = ∇J?E (−A>λ(k)) we obtain the following algorithm:

F (k+1) = F (k) − ρ1∇qV1(Q(k),λ(k)) (8.75a)

= F (k) − ρ1

(
µ(k+1) +A>λ(k)

)
, (8.75b)

and

λ(k+1) = λ(k) + ρ2∇λV1(F (k),λ(k)) (8.75c)

= λ(k) + ρ2

(
F (k) +AQ(k+1)

)
. (8.75d)

Again, we are able to solve this primal-dual decomposition scheme with the Arrow-Hurwicz algo-
rithm.

145

Chapter 8. Optimal management of district microgrids

8.6.3. Towards proximal methods

We supposed in Proposition 8.4.2 that the costs Lt were strongly convex to ensure the convergence
of the algorithms. By relaxing this assumption, proximal decomposition methods are more generic
than the classical price and resource decomposition. We give here a short description of proximal
decomposition algorithms and frame the well-known ADMM algorithm (see Boyd et al. (2011) for
a survey) to decompose Problem (8.11). We refer to Lenoir and Mahey (2017) for a survey on
operator splitting and decomposition.

We define the prox operator applied to a convex function f as, for all c > 0,

proxcf (x) = arg min
y

f(y) +
c

2
‖x− y‖2 . (8.76)

We aim to compute the prox of the function JV . We have the following result.

Proposition 8.6.1. Let R be a Dy0,h,ψ-Markovian process. Then,

proxcJV (R) = arg min
F

JV(F) +
c

2

∥∥F −R∥∥2
, (8.77)

decomposes node by node and is computable by Dynamic Programming.

Proof. We have that:

JV(F) +
c

2

∥∥F −R∥∥2
=

N∑
i=1

(
J iV(F i) +

c

2

∥∥F i −Ri
∥∥2)

, (8.78)

hence the straightforward spatial decomposition.

We now aim to compute the local prox

min
F i

J iV(F i) +
c

2

∥∥F i −Ri
∥∥2

, (8.79)

by Dynamic Programming with the D-Markovian process Ri. We have that

arg min
F i

J iV(F i) +
c

2

∥∥F i −Ri
∥∥2

= min
Xi,Ui,F i

E
[T−1∑
t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) +

c

2

∥∥F it −Ri
t

∥∥2
+Ki(Xi

T)
]
,

s.t. Xi
t+1 = git(X

i
t,U

i
t,W

i
t+1) , Xi

0 = xi0 ,

Yt+1 = ht(Yt,W t+1) , Y0 = y0

Ri
t = ψit(Yt)

∆i
t(X

i
t,U

i
t,F

i
t) ∈ Γt ,

σ(U i
t) ⊂ σ(W 0, · · · ,W t) .

(8.80)
As noises {W t}t∈{0,T} are time independent, we can solve Problem (8.80) with the Dynamic
Programming equations

V iT (xiT , yT) = Ki(xiT) , (8.81a)

V it (xit, yt) = min
ui, fi

E
[
Lit(x

i
t, u

i
t,Wt+1)+

c

2

∥∥f it − ψit(yt)∥∥2
+ V it+1(f(xit, u

i
t,W

i
t+1), ht(yt,W t+1))

]
. (8.81b)

146

8.7. Discussion

Hence the results. �

Example. ADMM is a splitting method related to the Douglas-Rachford algorithm. It solves
iteratively two subproblems in the primal and updates the multiplier corresponding to the coupling
constraint with a constant step-size. The main advantage of ADMM is that the problems are
decoupled during the resolution. We refer to Boyd et al. (2011) for an extended overview of the
ADMM method.

At step k, the algorithm solves iteratively

F (k+1) = arg min
F

JV(F) +
〈
λ(k) ,F

〉
+
c

2

∥∥∥E[AQ(k) |Y
]

+ F
∥∥∥2

(8.82a)

Q(k+1) = arg min
Q

JE(Q) +
〈
λ(k) , AQ

〉
+
c

2

∥∥∥AQ + E
[
F (k+1) | Y

]∥∥∥2

(8.82b)

λ
(k+1)
t = λ

(k)
t + c (AQ

(k+1)
t + F

(k+1)
t) . (8.82c)

The update defined in Equations (8.82) follows a Gauss-Seidel scheme. 4

8.6.3.1. Shortcoming of proximal methods

We reconsider the relaxed problem (8.39) with the relaxed coupling constraint:

E
[
AQt + Ft | Yt

]
= 0 . (8.83)

A well-known result states that if we consider any multiplier µt we have:

E
[
µt · E

[
AQt + Ft | Yt

]]
= E

[
E
[
µt | Yt

]
· E
[
AQt + Ft | Yt

]]
= E

[
E
[
µt | Yt

]
·
(
AQt + Ft

)]
,

(8.84)

as the conditional expected value is self-adjoint. However, we fail to interpret in a similar manner

the expected value of the quadratic term E
[∥∥E[AQt + Ft | Yt

]∥∥2]
in Equation (8.82). We refer to

(Girardeau, 2010, Chapter 3, p.59) for a description of how to linearize the augmented Lagrangian
in a multistage stochastic optimization problem.

8.7. Discussion

We have presented in this chapter a way to decompose spatially optimization problems where
coupling constraints correspond to interaction exchanges on a graph. We have presented two
decomposition algorithms in Section 8.4, the first relying on price decomposition and the second on
resource. The decomposition algorithms work in a decentralized manner and are fully parallelizable.
We apply these algorithms on a specific case study in Section 8.5, considering a district microgrid
with different prosumers exchanging energy altogether. Numerical results show the relevance
of the approach, as the decomposition algorithms beat the reference Stochastic Dual Dynamic
Programming (SDDP) for large-scale problems with more than 12 nodes. The decomposition
algorithms were applied to problems with up to 48 nodes, and we observed that their performance
scaled well as the number of nodes grew.

This study can be extended in several directions. First, we considered only deterministic price
and resource processes. We believe that using more complex processes would allow to improve the
performance of the algorithm. However, it remains to find a proper way to find an information
scheme being a good trade-off between accuracy and numerical performance. Second, we consid-
ered in Section 8.5 an easy-to-solve edges subproblem. The decomposition approach should be

147

Chapter 8. Optimal management of district microgrids

extended to more complex network problems, such as those encountered in optimal power flow.
Eventually, an extension of stochastic decomposition to more complicated decomposition schemes
remains under study, as Section 8.6 just provide sketches for new decomposition methods relying
on proximal splitting methods.

148

8.7. Discussion

Appendix

8.7.1. Background on graph theory

Introducing the incidence matrix.

Definition 8.7.1 (Directed graph). A directed graph G = (V, E) consists of a set of nodes V and
a set of edges E, such as:

• arcs are ordered pairs (i, j) of nodes,

• there is at most one arc from node i to node j,

• there are no loops (arc (i, i)).

Definition 8.7.2. The node-arc incidence matrix of a directed graph (V, E) is the matrix A ∈
RN×L, where N is the number of nodes and L the number of edges, such that:

Aij =

 1 arc j leaves node i,
−1 arc j enters node i,

0 otherwise.
(8.85)

The adjacency matrix M ∈ RN×N of a graph G is the matrix such that

Mij =

{
1 node i is connected to node j
0 otherwise.

(8.86)

The degree matrix D ∈ RN×N is the diagonal matrix such that

D = diag(deg(v1), · · · ,deg(vN)) (8.87)

where deg(vi) is the number of edges connected to node i.

The Laplacian L ∈ RN×N of the graph G is defined as

L = D −M . (8.88)

Proposition 8.7.3. Let A be the node-arc incidence matrix of the directed graph G = (V, E). The
Laplacian L is equal to

L = AA> . (8.89)

Proposition 8.7.4. If the graph G = (V, E) is connected, the rank of the incidence matrix A is
rank(A) = N − 1.

We illustrate on an electrical network example how these different matrix relate.

Example (Incidence matrix and Kirchoff’s laws.). Let G = (V, E) be an electrical network, and A
its node-arc incidence matrix.

Let iL (resp. vL) be the current (resp. the voltage) through the edges and iN (resp. vN) be the
current (resp. the voltage) through the nodes. Then, the Kirchhoff’s Current Law (KCL) writes

iN = AiL , (8.90)

and the Kirchhoff’s Voltage Law (KVL) writes

vL = A>vN . (8.91)

149

Chapter 8. Optimal management of district microgrids

Let Y ∈ RN×N be the node admittance matrix of the network. The Ohm’s law relates the node
voltages vN with the nodes currents iN , such as

iN = Y vN . (8.92)

The bus admittance matrix is related to the incidence matrix as follows

Y = AYdA
> , (8.93)

where Yd ∈ RL×L is the primitive admittance matrix, that is, a diagonal matrix with the admittance
of each line in its diagonal

Yd = diag
(
y1, · · · , yL

)
. (8.94)

Y is a weighted Laplacian matrix for graph G. 4

8.7.2. Extracting sensitivity in resource allocation.

We now detail the numerical computation of the sensitivities λ and µ in Equation (8.49).

The computation of the sensitivity µ associated to the edge resource problem V E is straightfor-
ward, as JE is quadratic. However, the computation of the sensitivity process λ = (λ0, · · · ,λT−1)

associated to the nodal resource problem V V is more cumbersome. We detail in the sequel the
associated procedure.

Let i ∈ {1, .., N} be a node in the graph, and let us detail the computation of the sensitivity λit
for all time t.

At time t ∈ {0, .., T − 1}, the Dynamic Programming equations (7.53) satisfied by the nodal

resource value functions {V it}t∈{0,..,T} writes

V
i

t(x
i
t, yt) = min

uit,f
i
t ,X

i
t+1

E
[
Lit(x

i
t, u

i
t,W

i
t+1) + V

i

t+1(Xi
t+1,Yt+1)

]
s.t. Xi

t+1 = git(x
i
t, u

i
t,W

i
t+1) δit+1

Yt+1 = ht(yt,W t+1)

∆i
t(x

i
t, u

i
t, w

i
t+1, f

i
t) ≤ 0 νit

f it − rit = 0 λit .

(8.95)

The sensitivity λit at point xit corresponds to the multiplier of the constraint f it − rit = 0 in
Problem (8.95). By dualizing the constraints in Problem (8.95), we obtain the dual problem:

V
i

t(x
i
t, yt) = max

λit,δ
i
t+1,ν

i
t

min
uit,f

i
t ,X

i
t+1

E
[
Lit(x

i
t, u

i
t,Wt+1) + V

i

t+1(Xi
t+1,Yt+1)+

〈
νit ,∆

i
t(x

i
t, u

i
t, w

i
t+1, f

i
t)
〉
+〈

λit , r
i
t − f it

〉
+
〈
δit+1 , g

i
t(x

i
t, u

i
t,W

i
t+1)−Xi

t+1

〉]
.

(8.96)

We write the first-order necessary conditions for Problem (8.96):

• The optimal control u]t satisfies

E
[
∇uLit(xit, u

]
t,W

i
t+1)> +∇ugit(xit, u

]
t,W

i
t+1)>δit+1

]
= −∇u∆i

t(x
i
t, u

]
t, w

i
t+1, f

]
t)>νit , (8.97)

150

8.7. Discussion

• The optimal allocation f]t satisfies

∇f∆i
t(x

i
t, u

]
t, w

i
t+1, f

]
t)>νit = λit . , (8.98)

• The optimal future state Xi
t+1 satisfies

δit+1 ∈ ∂V
i

t+1(Xi
t+1) . (8.99)

Proposition 8.7.5. The sensitivity w.r.t. an injection flow R = (R0, · · · ,RT−1) satisfies, for all

t ∈ {0, .., T − 1}, for all xit ∈ Xit

λit = ∇f∆i
t(x

i
t, u

]
t, w

i
t+1, f

]
t)>νit , (8.100)

with u]t, f
]
t solutions of Problem (8.95) and νit multiplier associated to the coupling constraint

between controls and injection flows.

Remark 8.7.6. The multiplier δt+1 is the co-state associated to the state Xt+1. ♦

151

Chapter 9.

Stochastic decomposition applied to
large-scale hydro valleys management

This chapter is a transcription of the article Carpentier et al. (2018b). The author thanks his
co-authors Pierre Carpentier, Jean-Philippe Chancelier and Vincent Leclère.

Contents

9.1. Introduction . 154

9.1.1. Large-scale systems and energy applications 154

9.1.2. Standard resolution methods . 154

9.1.3. Decomposition approach . 155

9.1.4. Contents of the chapter . 156

9.1.5. Notations . 156

9.2. Mathematical formulation . 157

9.2.1. A generic formulation . 157

9.2.2. Dams management problem . 157

9.2.3. Dynamic Programming like approaches 159

9.2.4. Spatial coupling and approach by duality 159

9.3. Dual Approximate Dynamic Programming 161

9.3.1. DADP core idea and associated algorithm 161

9.3.2. DADP interpretations . 163

9.3.3. Admissibility recovery . 164

9.3.4. Theoretical and practical questions 165

9.4. Numerical experiments . 165

9.4.1. Application of DADP to a hydro valley 166

9.4.2. SDDP implementation . 167

9.4.3. Results obtained for academic valleys 168

9.4.4. Challenging the curse of dimensionality 171

9.4.5. Results for two realistic valleys . 172

9.5. Conclusion . 173

We are interested in optimally controlling a discrete time dynamical system that can be influ-
enced by exogenous uncertainties. This is generally called a Stochastic Optimal Control (SOC)
problem and the Dynamic Programming (DP) principle is one of the standard ways of solving
it. Unfortunately, DP faces the so-called curse of dimensionality: the complexity of solving DP
equations grows exponentially with the dimension of the variable that is sufficient to take optimal
decisions (the so-called state variable). For a large class of SOC problems, which includes impor-
tant practical applications in energy management, we propose an original way of obtaining near

153

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

optimal controls. The algorithm we introduce is based on Lagrangian relaxation, of which the ap-
plication to decomposition is well-known in the deterministic framework. However, its application
to such closed-loop problems is not straightforward and an additional statistical approximation
concerning the dual process is needed. The resulting methodology is called Dual Approximate
Dynamic Programming (DADP). We briefly present DADP, give interpretations and enlighten the
error induced by the approximation. The chapter is mainly devoted to applying DADP to the
management of large hydro valleys. The modeling of such systems is presented, as well as the
practical implementation of the methodology. Numerical results are provided on several valleys,
and we compare our approach with the state of the art SDDP method.

9.1. Introduction

9.1.1. Large-scale systems and energy applications

Consider a controlled dynamical system over a discrete and finite time horizon. This system may
be influenced by exogenous noises that affect its behavior. Assume that, at every instant t, the
decision maker designs a control based on all the observations of noises available up to time t. We
are thus looking for strategies (or policies), that is, feedback functions that map every instant and
every possible history of the system to a decision to be made.

We can find typical applications in the field of energy management. Consider a power producer
that owns a certain number of power units. Each unit has its own local characteristics such as
physical constraints that restrain the set of feasible decisions, and induces a production cost or a
revenue. The power producer controls the power units so that an overall goal is met. A classical
example is the so-called unit commitment problem (see Takriti et al. (1996)) where the producer
has to satisfy a global power demand at every instant. The power demand, as well as other
parameters such as unit breakdowns, are random. The producer is looking for strategies that
minimize the overall expected production cost, over a given time horizon. Another application,
which is considered in this chapter, is the management of a large-scale hydro valley: here the power
producer manages a cascade of dams, and maximizes the revenue obtained by selling the energy
produced by turbinating the water inside the dams. Both natural inflows in water reservoirs and
energy prices are random. In all these problems, the number of power units and the number of
time steps are usually large (see de Matos et al. (2015b)).

9.1.2. Standard resolution methods

One classical approach when dealing with stochastic dynamic optimization problems is to discretize
the random inputs of the problem using a scenario tree. Such an approach has been widely studied
within the stochastic programming community (see Heitsch and Römisch (2009), Shapiro et al.
(2009)), and used to model and solve energy problems, e.g. by Pflug and Pichler (2014). One
of the advantages of such a technique is that, as soon as the scenario tree is drawn, the derived
problem can be treated by classical mathematical programming techniques. Thus, a number of
decomposition methodologies have been proposed (see for instance Rockafellar and Wets (1991b),
Carpentier et al. (1996), Ruszczyński (1997), (Ruszczyński and Shapiro, 2003, Chap. 3) and applied
to energy planning problems (see Bacaud et al. (2001)). Ways to combine the discretization of
the expected value together with the discretization of information in a general setting have been
presented in Heitsch et al. (2006), Pflug and Pichler (2014) and Carpentier et al. (2015)). However,
in a multi-stage setting, this methodology suffers from the drawback that arises with scenario trees:
as it was pointed out by Shapiro (2006), the number of scenarios needed to achieve a given accuracy
grows exponentially with the number of time steps of the problem.

The other natural approach to solve SOC problems is to rely on the Dynamic Programming (DP)
principle (see Bellman (1957), Puterman (1994)). The core of the DP approach is the definition of

154

9.1. Introduction

a state variable that is, roughly speaking, the variable that, in conjunction with the time variable,
is sufficient to take an optimal decision at every instant. It does not have the drawback of the
scenario trees concerning the number of time steps since strategies are, in this context, depending
on a state variable whose space dimension does not grow with time (usually linked to the number
of power units in the case of power management). However, DP suffers from another drawback
which is the so-called curse of dimensionality : the complexity of solving the DP equation grows
exponentially with the state space dimension. Hence, solving the DP equation by brute force is
generally intractable when the state space dimension goes beyond several units. In Vezolle et al.
(2009), the authors were able to solve DP on a 10 state variables energy management problem,
using parallel computation coupled with adequate data distribution, but the DP limits are around
5 state variables in a straightforward use of the method.

Another popular idea is to represent the value functions (solutions of the DP equation) as a linear
combination of a priori chosen basis functions (see Bertsekas and Tsitsiklis (1996)). This approach,
called Approximate Dynamic Programming (ADP) has become very popular and the reader is
referred to Powell (2007) and Bertsekas (2012) for a description of ADP. This approximation
drastically reduces the complexity of solving the DP equation. However, in order to be practically
efficient, such an approach requires some a priori information about the problem, in order to
define a well suited functional subspace. Indeed, there is no systematic means to choose the basis
functions and several choices have been proposed in the literature (see Tsitsiklis and Van Roy
(1996)).

Last but not least is the popular DP-based method called Stochastic Dual Dynamic Programming
(SDDP). Starting with the seminal work of Van Slyke and Wets (1969), the SDDP method has
been designed in Pereira and Pinto (1991). It has been widely used in the energy management
context and lately regained interest in the Stochastic Programming community (see Shapiro (2011)
and references therein). The idea is to extend Kelley’s cutting plane method to the case of
multi-stage stochastic problems. Alternatively it can be seen as a multistage Benders (or L-
shaped) decomposition method with sampling. It consists of a succession of forward (trajectory
computation) and backward (Bellman function refining) passes that ultimately aims at approaching
the Bellman function as the supremum of affine hyperplanes (cuts) generated during the backward
passes.

9.1.3. Decomposition approach

When dealing with large-scale optimization problems, the decomposition-coordination approach
aims at finding a solution to the original problem by iteratively solving subproblems of smaller
dimension. In the deterministic case, several types of decomposition have been proposed (e.g. by
prices, by quantities or by interaction prediction) and unified in Cohen (1980) using a general
framework called Auxiliary Problem Principle. In the open-loop stochastic case, i.e. when controls
do not rely on any observation, it is proposed in Cohen and Culioli (1990) to take advantage of
both decomposition techniques and stochastic gradient algorithms. The natural extension of these
techniques to the closed-loop stochastic case (see Barty et al. (2009)), i.e. when the control is
a function of the available observations, fails to provide decomposed state dependent strategies.
Indeed, the optimal strategy of a subproblem depends on the state of the whole system, and not
only on the local state.

We recently proposed a way to use price decomposition within the closed-loop stochastic case.
The coupling constraints, namely the constraints preventing the problem from being naturally
decomposed, are dualized using a Lagrange multiplier (price). At each iteration, the price decom-
position algorithm solves each subproblem using the current price, and then uses the solutions to
update it. In the stochastic context, the price is a random process whose dynamics is not avail-
able, so the subproblems do not in general fall into the Markovian setting. However, in a specific
instance of this problem (see Strugarek (2006)), the author exhibited a dynamics for the optimal

155

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

multiplier and showed that these dynamics were independent from the decision variables. Hence
it was possible to come down to the Markovian framework and use DP to solve the subproblems.
Following this idea, it is proposed in Barty et al. (2010b) to choose a parameterized dynamics for
these multipliers in such a way that solving subproblems using DP becomes possible. While the
approach, called Dual Approximate Dynamic Programming (DADP), showed promising results on
numerical examples, it suffered from the fact that the induced restrained dual space is non-convex,
leading to some numerical instabilities. Moreover, it was not possible to give convergence results
for the algorithm. The method has then been improved both from the theoretical and from the
practical point of view. The core idea is to replace the current Lagrange multiplier by its condi-
tional expectation with respect to some information process, at every iteration. This information
process has to be a priori chosen and adapted to the natural filtration. Moreover, if the informa-
tion process is driven by a dynamics, the state in each subproblem then consists of the original
state augmented by the information process, making the resolution of the subproblem tractable
by DP. Interestingly, approximating the multipliers by their conditional expectations is equivalent
to solving a relaxed primal problem where the almost-sure coupling constraint has been replaced
by its conditional expectation with respect to the information variable, yielding a lower bound of
the true optimal cost. Further, the solutions obtained by the DADP algorithm do not necessarily
satisfy the initial almost-sure coupling constraint, so we must rely on a heuristic procedure to
produce a feasible solution to the original problem.

9.1.4. Contents of the chapter

The main contribution of the chapter is to give a practical algorithm aiming at solving large
scale stochastic optimal control problems and providing closed-loop strategies. The numerous
approximations used in the algorithm, and especially the one allowing for feasible strategies, make
it difficult to theoretically assess the quality of the solution finally adopted. Nevertheless, numerical
implementation shows that the method is promising to solve large scale stochastic optimization
problems such as those encountered in the field of energy management.

The chapter is organized as follows. In §9.2, we present the hydro valley management problem,
the corresponding general SOC formulation and the DP principle. We then focus on spatial
decomposition of such a problem and the difficulties of using DP at the subproblem level. In
§9.3, we present the DADP method and give different interpretations. We then propose a way
to recover an admissible solution from the DADP results and we briefly discuss the theoretical
and practical questions associated to the convergence and implementation of the method. Finally,
in §9.4, we apply the DADP method to the management of hydro valleys. Different examples,
corresponding to either academic or realistic valleys, are described. A comparison of the method
with SDDP is outlined.

9.1.5. Notations

We will use the following notations.

• Ji, jK is the set of integers between i and j;

• (Ω,A,P) is a probability space;

• bold letters are used for random variables, normal font for their realizations;

• X � Ft (resp. X � Y) means that the random variable X is measurable with respect to
the σ-algebra Ft (resp. with respect to the σ-algebra generated by Y , denoted by σ(Y));

• x generally stands for the state, u for the control, w for an exogeneous noise, and z for the
controlled inputs from upstream releases and spills;

156

9.2. Mathematical formulation

• ft stands for a dynamics, that is, a transition function modeling the system evolution along
time, Lt stands for a cost function at time t, K stands for a final cost function;

• Vt represents a Bellman’s value function at time t;

• the notation Xi (resp. U i and Zi) stands for the discrete time state process (Xi
0, . . . ,X

i
T)

(resp. the two control processes (U i
0, . . . ,U

i
T−1) and (Zi0, . . . ,Z

i
T−1)).

9.2. Mathematical formulation

In this section, we present the modeling of a hydro valley and the associated optimization frame-
work.

9.2.1. A generic formulation

We are interested in solving a multistage stochastic optimal control problem over a discrete-time
horizon J0, TK. In this problem we consider multiple stochastic systems indexed by i ∈ J1, NK,
that follow independent dynamics but that must satisfy a coupling constraint.

More precisely, we address the following problem

min
(Xi,Ui)i∈J1,NK

E
(N∑
i=1

(T−1∑
t=0

Lit(X
i
t ,U

i
t ,Wt) +Ki(Xi

T)
))

, (9.1a)

s.t. Xi
t+1 = f it (X

i
t ,U

i
t ,Wt) , Xi

0 given , (9.1b)

U i
t � σ(W0, . . . ,Wt) , (9.1c)

N∑
i=1

Θi
t(X

i
t ,U

i
t ,Wt) = 0 . (9.1d)

Constraints (9.1b) represent the dynamics and constraints (9.1c) are the non-anticipativity con-
straints, that is, the fact that each control U i

t at time t, considered as a random variable, has to be
measurable with respect to the sigma-field σ(W0, . . . ,Wt) generated by noises up to time t. The
last constraints (9.1d) express the interactions between the production units i. They represent
an additive coupling with respect to the different production units, which is termed the “spatial
coupling of the problem”. Such a general modeling covers other cases than the cascade problem,
such that the unit commitment problem, or the problem of exchanging energy on a smart grid.

9.2.2. Dams management problem

We consider a hydro valley constituted of N cascaded dams as represented in Figure 9.1. The
water turbinated at a dam produces energy which is sold on electricity markets, and then enters
the nearest downstream dam. The overall goal of the decision maker is to maximize the profit
obtained by selling the produced energy on a market. We consider that the hydro valley manager
acts as a price follower, in the sense that the energy prices are independent of the energy produced
by the hydro valley. Note that the valley geometry may be more complicated than a pure cascade:
see for example the valleys represented at Figure 9.4.

The representative variables of dam i at time t are uit for the turbinated water, xit for the current
water volume, ait for the natural water inflow entering dam i, pit for the market value of the water
at dam i. The randomness is given by wit = (ait, p

i
t). The modeling of a dam takes into account a

possible overflow: the spilled water does not produce electricity, but enters the next downstream
dam.

157

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

x3t

Dam 1

Dam 2

Dam 3

a1t

x1t
u1t a2t

u2tx2t a3t

u3t

Figure 9.1.: Operating scheme of a hydro valley with 3 dams.

We now cast the problem in the generic framework presented at §9.2.1, with a slight abuse of
notation (U i

t stands for (U i
t ,Z

i
t) here).

• The dam dynamics (corresponding to Equation (9.1b)) reads

xit+1 = xit − uit + ait + zit − sit = f it (x
i
t, (u

i
t, z

i
t), w

i
t) , (9.2a)

where sit is the volume of water spilled by overflowing the dam:

sit = max
{

0, xit − uit + ait + zit − xi
}
. (9.2b)

The constant value xi stands for the maximal capacity of dam i. The outflow of dam i, that
is, the sum of the turbinated water and of the spilled water, is denoted by zi+1

t :

zi+1
t = uit + sit = git(x

i
t, (u

i
t, z

i
t), w

i
t) . (9.2c)

This last equation corresponds to Equation (9.1d) in the general framework. Note that the
dynamic equations (9.2a) are nonlinear because of the max operator in the definition (9.2b)
of the spilled water volume. We assume the Hazard-Decision information structure: the
control uit applied at time t is chosen once the noise wit at time t has been observed. It is
thus possible to ensure that the dam always remains above its minimal admissible volume xi

by limiting the control range: ui ≤ uit ≤ min
{
ui, xit + ait + zit − xi

}
.

Remark 9.2.1. As will be seen in §9.4, the typical time step length we use is the month (with
a time horizon of one year). It is thus reasonable to assume the Hazard-Decision framework,
the control applied for a given month being in fact implemented each day taking into account
the observed information on a daily basis. ♦

• The objective function of dam i is the sum of different terms.

– The cost at each time t ∈ J0, T − 1K is Lit(x
i
t, (u

i
t, z

i
t), w

i
t) = −pituit + ε(uit)

2 . The first
linear term corresponds to the opposite of the profit when selling the energy produced
by the turbinated water on the energy market. The second term ε(uit)

2 models the
operating cost of the turbine as a quadratic term, and is usually small. This last term
ensures the strong convexity of the cost function.

158

9.2. Mathematical formulation

– The final cost at time T is Ki
(
xiT
)

= αi min{0, x̂i−xiT }2 . It corresponds to a quadratic
penalization around a target value x̂i representing the desired water volume in the dam
at the end of the time horizon.

Both functions appear in the cost (9.1a) in the generic problem formulation.

9.2.3. Dynamic Programming like approaches

In the remainder of the chapter, we assume that we are in the so-called white noise setting.

Assumption 9.2.2. Noises W0, . . . ,WT−1 are independent over time.

This assumption can be alleviated, in the case where it is possible to identify a dynamics in the
noise process (such as an ARMA model), and by incorporating this new dynamics in the state
variables (see Maceira and Damazio (2006) on this topic).

Under Assumption 9.2.2, Dynamic Programming (DP) applies to Problem (9.1): there is no
optimality loss to seek each control U i

t at time t as a function of both the state and the noise
at time t. Then, the Bellman functions Vt are obtained by solving the Dynamic Programming
equation backwards in time

VT (xT) =

N∑
i=1

Ki(xiT) , (9.3a)

Vt(xt) = E
(

min
u1
t ,...,u

N
t

N∑
i=1

Lit(x
i
t, u

i
t,Wt) + Vt+1

(
ft(xt, ut,Wt))

))
. (9.3b)

where xt = (x1
t , . . . , x

N
t), ut = (u1

t , . . . , u
N
t) and ft(xt, ut,Wt) is the collection of new states

f it (x
i
t, u

i
t,Wt).

The DP equation is agnostic to whether the state and control variables are continuous or discrete,
whether the constraints and the cost functions are convex or not, etc. However, in order to
exhaustively solve the DP equation, we need to have discrete state, and to be able to solve each
equation to optimality. In practice, the method is subject to the curse of dimensionality and cannot
be used for large-scale optimization problems. For example, applying DP to dams management
problems is practically untractable for more than five dams (see the results given at §9.4.3).

Another way to compute the Bellman functions associated to Problem (9.1) is to use the Stochas-
tic Dual Dynamic Programming (SDDP) method. The method has been first described in Pereira
and Pinto (1991), and its convergence has been analyzed in Philpott and Guan (2008) for the
linear case and in Girardeau et al. (2014) for the general convex case. SDDP recursively constructs
an approximation of each Bellman function as the supremum of a number of affine functions,
thus exploiting the convexity of the Bellman functions (arising from the convexity of the cost and
constraint functions and the linear dynamics). SDDP has been used for a long time for solving
large-scale hydrothermal problems (see de Matos et al. (2015b) and the references therein) and
allows to push the limits of DP in terms of state dimension (see the results given at §9.4.4).

9.2.4. Spatial coupling and approach by duality

A standard way to tackle large-scale optimization problems is to use Lagrange relaxation in order to
split the original problem into a collection of smaller subproblems by dualizing coupling constraints.
As far as Problem (9.1) is concerned, we have in mind to use DP for solving the subproblems and
thus we want to dualize the spatial coupling constraints (9.1d) in order to formulate subproblems,

159

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

each incorporating a single dam. The associated Lagrangian L is accordingly

L
(
X ,U ,λ

)
= E

(
N∑
i=1

(T−1∑
t=0

Lit(X
i
t ,U

i
t ,Wt) +Ki(Xi

T)

+

T−1∑
t=0

λt ·Θ
i
t(X

i
t ,U

i
t ,Wt)

))
,

where the multiplier λt associated to Constraint (9.1d) is a random variable. From the mea-
surability of the variables Xi

t , U
i
t and Wt, we can assume without loss of optimality that the

multipliers λt are σ(W0, . . . ,Wt)-measurable random variables.
In order to be able to apply duality theory to the problem (which is mandatory for algorithmic

resolution), we make the two following assumptions.

Assumption 9.2.3. A saddle point of the Lagrangian L exists.

Assumption 9.2.4. The Uzawa algorithm applies to compute a saddle-point of L (see (Ekeland
and Temam, 1999, Chap. VII) for a complete presentation).

Assumption 9.2.3 corresponds to a Constraint Qualification condition and ensures the existence
of an optimal multiplier. Assumption 9.2.4 allows to use a (dual) gradient ascent algorithm to
compute the optimal multiplier. An important question in order to be able to satisfy these two
assumptions is the choice of the spaces where the various random variables of the problem are living
in. Duality theory and associated algorithms have been extensively studied in the framework of
Hilbert spaces (see Ekeland and Temam (1999)), but the transition to the framework of stochastic
optimal control poses difficult challenges (Rockafellar (1968, 1971)), which will be briefly presented
at §9.3.4. One way to get rid of these difficulties is to assume that the space Ω is finite, assumption
also needed for the convergence of SDDP.1

When using the Uzawa algorithm to compute a saddle-point of the Lagrangian, the minimization
step with respect to (Xi,U i)i∈J1,NK splits in N independent subproblems each depending on a
single pair (Xi,U i), and therefore allows for a dam by dam decomposition. More precisely, the k-th
iteration of the Uzawa algorithm consists of the two following steps.

1. Solve Subproblem i, i ∈ J1, NK, with fixed λ(k):

min
Xi,Ui

E
(T−1∑
t=0

Lit(X
i
t ,U

i
t ,Wt) + λ

(k)
t ·Θi

t(X
i
t ,U

i
t ,Wt) +Ki(Xi

T)
)

(9.4a)

s.t. Xi
t+1 = f it (X

i
t ,U

i
t ,Wt) ,X

i
0 given (9.4b)

U i
t � σ(W0, . . . ,Wt) , (9.4c)

whose solution is denoted
(
U i,(k),Xi,(k)

)
.

2. Use a gradient step to update the multipliers λt:

λ
(k+1)
t = λ

(k)
t + ρt

(N∑
i=1

Θi
t

(
X
i,(k)
t ,U

i,(k)
t ,Wt

))
. (9.5)

Note that even if Subproblem (9.4) only involves the “physical” state variableXi
t and the control

variable U i
t , a situation which seems favorable to DP, it also involves two exogenous random

1Recall that the aim of the present chapter is mainly to present numerical results. The reader is referred to Leclère
(2014) for these difficult theoretical questions.

160

9.3. Dual Approximate Dynamic Programming

processes, namely W and λ(k). The white noise Assumption 9.2.2 applies for the first process W ,
but not for the second one λ(k), so that the state of the system cannot be summarized by the

physical state Xi
t ! Moreover if we just use the fact that λ

(k)
t is measurable with respect to the

past noises, the state of the system must incorporate all noises prior to time t, that is, (W0, . . . ,Wt).
The state size of the subproblem increases with time. Without some additional knowledge on the
process λ(k), DP cannot be applied in a straightforward manner: something has to be compressed
in order to use Dynamic Programming.

9.3. Dual Approximate Dynamic Programming

In Strugarek (2006), for a very specific instance of Problem (9.1), the author exhibited the dynamics
of the optimal multiplier of the coupling constraint (9.1d). Hence it was possible to come down to
the Markovian framework and to use DP to solve the subproblems (9.4) with an augmented space,
namely the “physical” state Xi

t and the state associated with the multiplier’s dynamics. Following
this idea for a general Problem (9.1), Barty et al. (2010b) proposed to choose a parameterized
dynamics for the multiplier: then solving the subproblems using DP became possible, the param-
eters defining the multiplier dynamics being updated at each iteration of the Uzawa algorithm.
This new approach, called Dual Approximate Dynamic Programming (DADP), has then largely
improved through a series of PhD theses (Girardeau (2010), Alais (2013) and Leclère (2014)) both
from the theoretical and from the practical point of view. We give here a brief overview of the
current DADP method.

9.3.1. DADP core idea and associated algorithm

In order to overcome the obstacle explained at §9.2.4 concerning the measurability of random

variables λ
(k)
t , we choose a random variable Yt at each time t, each Yt being measurable with

respect to the noises
(
W0, . . . ,Wt

)
up to time t. We call Y =

(
Y0, . . . ,YT−1

)
the information

process associated to Problem (9.1).

9.3.1.1. Method foundation

The core idea of DADP is to replace the multiplier λ
(k)
t by its conditional expectation E(λ

(k)
t | Yt)

with respect to Yt. From an intuitive point of view, the resulting optimization problem will be a

good approximation of the original one if Yt is close to the random variable λ
(k)
t . Note that we

require that the information process is not influenced by controls because introducing a dependency
of the conditioning term with respect to the control would lead to very serious difficulties for
optimization.

Using this core idea, we replace Subproblem (9.4) by:

min
Xi,Ui

E
(T−1∑
t=0

(
Lit(X

i
t ,U

i
t ,Wt) +Ki(Xi

T)
)

+ E(λ
(k)
t | Yt) ·Θ

i
t(X

i
t ,U

i
t ,Wt)

)
, (9.6a)

s.t. Xi
t+1 = f it (X

i
t ,U

i
t ,Wt) , Xi

0 given , (9.6b)

U i
t � σ(W0, . . . ,Wt) . (9.6c)

According to the Doob property (Dellacherie and Meyer, 1975, Chapter 1, p. 18), the Yt-measurable

161

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

random variable E(λ
(k)
t | Yt) can be represented by a measurable mapping µ

(k)
t , that is,

µ
(k)
t (y) = E

(
λ

(k)
t

∣∣ Yt = y
)
, (9.7)

so that Subproblem (9.6) in fact involves the two fixed random processes W and Y . If the
process Y follows a non-controlled Markovian dynamics driven by the noise processW , i.e. if there
exist functions ht such that Yt+1 = ht(Yt,Wt) then (Xi

t ,Yt) is a valid state for the subproblem
and DP applies.

9.3.1.2. DADP algorithm

We assume that the process Y follows the dynamics Yt+1 = ht(Yt,Wt).

• The first step of the DADP algorithm at iteration k consists of solving all the subprob-

lems (9.6) with λ
(k)
t fixed, that is, with µ

(k)
t (·) given. It is done by solving the Bellman

functions associated to each subproblem i, that is,

V
i,(k)
T (xi, y) = Ki(x) ,

V
i,(k)
t (xi, y) = E

(
Q
i,(k)
t (xi, y,Wt)

)
,

where Q
i,(k)
t (xi, y, wt) is the value of

min
ui

Lit(x
i, ui, wt) + µ

(k)
t (y) ·Θi

t(x
i, ui, wt) + V

i,(k)
t+1

(
xit+1, y

i
t+1

)
s.t. xit+1 = f it (x

i, ui, wt) ,

yt+1 = ht(y, wt) .

Storing the argmin obtained during the Bellman resolution, we obtain the optimal feedback

laws γ
i,(k)
t as functions of both the state (xi, y) and the noise wt at time t. These functions

allow to compute the optimal state and control processes
(
U i,(k),Xi,(k)

)
of subproblem i at

iteration k. Starting from X
i,(k)
0 = Xi

0 the optimal control and state variables are obtained
by applying the optimal feedback laws from t = 0 up to T − 1:

U
i,(k)
t = γ

i,(k)
t (X

i,(k)
t ,Yt,Wt) ,

X
i,(k)
t+1 = f it (X

i,(k)
t ,U

i,(k)
t ,Wt) .

• The second step of the DADP algorithm consists of updating the multiplier process λ(k).
Instead of updating the multipliers themselves by the standard gradient formula

λ
(k+1)
t = λ

(k)
t + ρt

(N∑
i=1

Θi
t

(
X
i,(k)
t ,U

i,(k)
t ,Wt

))
, (9.8)

it is sufficient to deal with their conditional expectations w.r.t. Yt. Using the optimal pro-
cesses Xi,(k) and U i,(k) obtained at the previous step of the algorithm for all subproblems,
the conditional deviation from the coupling constraint is represented by a measurable map-

ping ∆
(k)
t :

∆
(k)
t (yt) = E

(N∑
i=1

Θi
t

(
X
i,(k)
t ,U

i,(k)
t ,Wt

) ∣∣∣∣ Yt = yt

)
. (9.9)

162

9.3. Dual Approximate Dynamic Programming

Gathering the functional representations (9.7) and (9.9) of the conditional multiplier and of
the conditional deviation, the gradient update reduces to the following functional expression:

µ
(k+1)
t (·) = µ

(k)
t (·) + ρt∆

(k)
t (·) . (9.10)

This last equation is equivalent to the multipliers conditional expectation update:

E
(
λ

(k+1)
t

∣∣ Yt) = E
(
λ

(k)
t

∣∣ Yt)+ ρt E
(N∑
i=1

Θi
t

(
X
i,(k)
t ,U

i,(k)
t ,Wt

) ∣∣∣ Yt) . (9.11)

From a practical point of view, computing the gradients using Formula (9.9), instead of (9.8)
opens the way to important numerical improvements in the DADP algorithm. Indeed,
instead of a gradient formula in a large space, we can use more sophisticated direction
descent algorithms: as a matter of fact, if the support of the random variable Yt is finite,
it becomes possible to efficiently implement a quasi-Newton method, thus obtaining a much
faster convergence than the one of the standard gradient ascent method (see §9.4.3.2 for
details).

DADP algorithm is depicted in Figure 9.2.

Multiplier
function
µ

(k)
t (y)

· · ·

Solving
subproblem 1:

DP on
(X1

t ,Yt)

Solving
subproblem N :

DP on
(XN

t ,Yt)

E
(N∑
i=1

Θi
t

(
·
) ∣∣∣∣ Yt = y

)
︸ ︷︷ ︸

∆
(k)
t (y)

= 0 ?

µ
(k+1)
t (·) = µ

(k)
t (·) + ρt∆

(k)
t (·)

Θi
t

(
X
i,(k)
t ,U

i,(k)
t ,Wt

)

Information Process
Yt+1 = ht(Yt,Wt)

Figure 9.2.: DADP flowchart.

9.3.2. DADP interpretations

The DADP method, as it has been presented up to now, makes use of an approximation of the
optimal multiplier, that is, the multiplier λt is replaced by its conditional expectation E

(
λt
∣∣ Yt).

Such an approximation is equivalent to a decision-rule approach for the dual problem (see also
Kuhn et al. (2011)), obtained by imposing that the dual variable λt is measurable with respect to
Yt.

163

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

DADP may also be viewed as a relaxation of the constraints in the primal problem. More
precisely, we replace the almost sure coupling constraint (9.1d) by the following conditional expec-
tation constraint

E
(N∑
i=1

Θi
t(X

i
t ,U

i
t ,Wt)

∣∣∣ Yt) = 0 . (9.12)

Proposition 9.3.1. Assume that the Lagrangian associated with this relaxed problem has a saddle
point. Then the DADP algorithm on Problem (9.1) can be interpreted as the Uzawa algorithm
applied to the relaxed Problem.

Proof. Consider the duality term E
(
E(λ

(k)
t | Yt) ·Θi

t(X
i
t ,U

i
t ,Wt)

)
which appears in the cost func-

tion of subproblem i in DADP. This term can be written equivalently E
(
λ

(k)
t ·E(Θi

t(X
i
t ,U

i
t ,Wt) |

Yt)
)
, which corresponds to the dualization of the coupling constraint handled in the relaxed prob-

lem. �

DADP thus consists of replacing an almost-sure constraint by its conditional expectation w.r.t.
the information variable Yt. From this interpretation, we deduce that the optimal value provided
by DADP is a guaranteed lower bound of the optimal value of Problem (9.1).

9.3.3. Admissibility recovery

Solving the relaxed problem, that is, Problem (9.1) where constraints (9.1d) are replaced by the
less binding constraints (9.12), does not necessarily yield a solution admissible for Problem (9.1).
Nevertheless it produces at each time t a set of N local Bellman functions V i,∞t , each depending
on the extended state (xit, yt). We use these functions to produce an approximation V∞t of the
“true” Bellman function Vt of the global state

(
x1
t , . . . , x

N
t

)
by simply summing the local Bellman

functions:

V∞t
(
x1
t , . . . , x

N
t , yt

)
=

N∑
i=1

V i,∞t
(
xit, yt

)
.

We then obtain an admissible feedback policy for Problem (9.1): for any value of the state
(
x1
t , . . . , x

N
t

)
,

any value of the information yt and any value of the noise wt at time t, the control value is obtained
by solving the following one-step DP problem

min
(u1
t ,...,u

N
t)

N∑
i=1

Lit
(
xit, u

i
t, w

i
t

)
+ V∞t+1

(
x1
t+1, . . . , x

N
t+1, yt+1

)
,

s.t. xit+1 = f it
(
xit, u

i
t, w

i
t

)
, i ∈ J1, NK ,

yt+1 = ht
(
yit, w

i
t

)
,

N∑
i=1

Θi
t(x

i
t, u

i
t, wt) = 0 .

In this framework, DADP can be viewed as a tool allowing to compute approximated Bellman
functions for Problem (9.1) which in turns yields an online admissible feedback policy for Prob-
lem (9.1).

Applying this online feedback policy along a bunch of noises scenarios allows to compute a Monte
Carlo approximation of the cost, which is accordingly a stochastic upper bound of the optimal value
of Problem (9.1).

164

9.4. Numerical experiments

9.3.4. Theoretical and practical questions

Theoretical questions linked to DADP are addressed in Leclère (2014), and practical ones in
Girardeau (2010) and Alais (2013).

9.3.4.1. Theoretical questions

In the DADP approach, we treat the coupling constraints of a stochastic optimization problem by
duality methods and solve it using the Uzawa algorithm. The Uzawa algorithm is a dual ascent
method which is usually described in an Hilbert space such as L2(Ω,A,P,Rn), but we cannot
guarantee the existence of an optimal multiplier in such a space. To overcome the difficulty, the
approach consists of extending the setting to the non-reflexive Banach space L∞(Ω,A,P,Rn), to
give conditions for the existence of an optimal multiplier in L1

(
Ω,A,P;Rn

)
(rather than in the

dual space of L∞) and to study the Uzawa algorithm convergence in this space.

9.3.4.2. Practical questions

An important practical question is the choice of the information variables Yt. We present here
some possibilities.

1. Perfect memory : Yt =
(
W0, . . . ,Wt

)
.

From the measurability properties of λ
(k)
t , we have E(λ

(k)
t | Yt) = λ

(k)
t , that is, there is no

approximation! Indeed a valid state for each subproblem is
(
Xt,W0, . . . ,Wt

)
: the state is

growing with time.

2. Minimal information: Yt = 0.

Here λ
(k)
t is approximated by its expectation E(λ

(k)
t). The information variable does not

deliver any online information, and a valid state for subproblem i is Xi
t .

3. Dynamic information: Yt+1 = ht
(
Yt,Wt+1

)
.

This choice corresponds to a number of possibilities, as mimicking the state of another unit,
or adding a hidden dynamics. A valid state for subproblem i is

(
Xi
t ,Yt

)
.

The question of accelerating the DADP algorithm by using a more sophisticated method than
the simple gradient ascent method in the multiplier update step has been discussed at the end of
§9.3.1.2. Numerical experiments have shown that it has a great impact on the convergence speed
of the method (see §9.4.3.2). Another improvement would be to replace the standard Lagrangian
by an augmented Lagrangian.

9.4. Numerical experiments

In this section, we present numerical results obtained on a large selection of hydro valleys. Some of
these valleys (see Figure 9.4) correspond to academic examples, in the sense that their characteris-
tics (size of dams, range of controls, inflows values) do not rely on existing valleys. These examples
allow us to quantify the performance of different optimization methods (DP, DADP and SDDP)
on problems of increasing size, from a valley incorporating 4 dams, and thus solvable by DP, up
to a valley with 30 dams, and thus facing the curse of dimensionality (§9.4.3 and §9.4.4). We also
present two instances corresponding to more realistic hydro valleys, where the models respect the
orders of magnitude of the dam sizes of existing valleys (§9.4.5).

All the results presented here have been obtained using a 3.4GHz, 4 cores – 8 threads Intelr
Xeonr E3 based computer.

165

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

9.4.1. Application of DADP to a hydro valley

We go back to the problem formulation presented at §9.2.2. In order to implement the DADP
algorithm, we dualize the coupling constraints

Zi+1
t − git(Xi

t ,U
i
t ,W

i
t ,Z

i
t) = 0 , (9.13)

and we denote by λi+1
t the associated multiplier (random variable).

When minimizing the dual problem at iteration k of the algorithm, the product of (9.13) with

a given multiplier by λ
i+1,(k)
t is additive with respect to the dams, that is, the term −λi+1,(k)

t ·
git
(
Xi
t ,U

i
t ,W

i
t ,Z

i
t

)
pertains to dam i subproblem, whereas the term λ

i+1,(k)
t · Zi+1

t pertains to
dam i+ 1 subproblem, hence leading to a dam by dam decomposition for the dual problem

maximization in (X ,U ,Z) at λ
i+1,(k)
t fixed. This decoupling is illustrated in Figure 9.3.

Dam i

xit

ait

sit

zit

uit

zi+1t

Dam i + 1

Figure 9.3.: Decomposition by dam.

9.4.1.1. DADP implementation

The DADP method consists of choosing a multiplier process Y and then replacing the coupling
constraints by their conditional expectations with respect to Yt. Here we adopt the choice Yt = 0
(minimal information), so that Constraints (9.13) are replaced in the approximated problem by
their expectations:

E
(
Zi+1
t − git(Xi

t ,U
i
t ,W

i
t ,Z

i
t)
)

= 0 . (9.14)

The expression of Subproblem (9.6) attached to dam i reads

min
Ui,Zi,Xi

E
(T−1∑
t=0

(
Lit
(
Xi
t ,U

i
t ,W

i
t ,Z

i
t

)
+ E

(
λ
i,(k)
t

)
·Zit (9.15a)

− E
(
λ
i+1,(k)
t

)
· git
(
Xi
t ,U

i
t ,W

i
t ,Z

i
t

))
+Ki

(
Xi
T

))
, (9.15b)

s.t. Xi
t+1 = f it (X

i
t ,U

i
t ,Wt) , Xi

0 given (9.15c)

U i
t � σ(W0, . . . ,Wt) . (9.15d)

Because of the crude relaxation due to a constant Y i
t , the multipliers λ

i,(k)
t appear only in the sub-

problems by means of their expectations E(λ
i,(k)
t), so that all subproblems involve a 1-dimensional

state variable, that is, the dam stock Xi
t , and hence are easily solvable by Dynamic Programming.

We denote by
(
U i,(k),Zi,(k),Xi,(k)

)
the optimal solution of each subproblem i, and by V

i,(k)
t (xi)

166

9.4. Numerical experiments

the Bellman function obtained for each dam i at time t.
With the choice of constant information variables Y i

t , the coordination update step (9.11) reduces
to

E
(
λ
i,(k+1)
t

)
= E

(
λ
i,(k)
t

)
+ ρtE

(
Z
i+1,(k)
t − git

(
X
i,(k)
t ,U

i,(k)
t ,W i

t ,Z
i,(k)
t

))
, (9.16)

that is, a collection of deterministic equations involving the expectation of (9.13) which is easily
estimated by a Monte Carlo approach.

Assume that DADP converges, leading to Bellman functions V i,∞t . We know that the initial
almost-sure coupling constraints (9.13) are not satisfied. To recover admissibility, we use the
heuristic rule proposed at §9.3.3, solving the following deterministic one-step DP problem:

min
(u1,...,uN)

N∑
i=1

Lit
(
xi, ui, wit, z

i
)

+ V∞t+1

(
x1
t+1, . . . , x

N
t+1

)
, (9.17a)

s.t. xit+1 = f it
(
xi, ui, wit, z

i
)
∀i , (9.17b)

zi+1 = git(x
i, ui, wit, z

i) ∀i . (9.17c)

9.4.1.2. Complete process

We can summarize the whole process as follows. In the optimization stage, we first compute the
local Bellman functions V i,∞t and form the approximate global Bellman functions V∞t by summing
the local ones. In the simulation stage, we evaluate by Monte-Carlo the strategy induced by V∞t .
We draw a large number of noise scenario, and compute the admissible control values along each
scenario by solving Problem (9.17), from t = 0 to t = T − 1, and storing payoffs.

9.4.2. SDDP implementation

As explained in §9.4.3, the controls of the original problem are discrete, which is a difficulty for
SDDP implementation (although a recent extension has been proposed in Zou et al. (2017)). In the
optimization stage we relax the integrity constraints to obtain relaxed Bellman value functions V∞t .
Furthermore, we consider that the spillage is a control variable, so as to render the dynamics linear
(convex framework of SDDP). Then, in the simulation stage, we use these relaxed Bellman value
functions to design policies taking into account the discrete controls by solving problems akin to
Problem (9.17).

The whole process of SDDP is as follows. In the optimization stage, lower approximations of
Bellman functions Vt are built iteratively. At iteration k, the procedure consists of two passes.

• During the forward pass, we sample a scenario of noise. We then simulate a stock trajectory
by using the current approximation of the Bellman functions. This is done by successively
solving one-step DP problem, akin to Problem (9.17), where V∞t+1 is replaced by its current
piecewise linear outer-approximation, to determine the next stock value. Note that each of
these one-step DP problem is a continuous quadratic programming (QP) problem.

• In the backward pass, duality theory allows to find subgradient of lower approximations of
the Bellman functions. This subgradients are computed along the trajectory obtained during
the forward pass, and used to construct valid cuts, that is, hyperplanes that are lower than
the Bellman functions. Those cuts are then added to the current outer-approximations of
the Bellman functions.

In order to assess the convergence of the SDDP algorithm, we compute (say every 20 iterations of
SDDP) a Monte Carlo approximation of the expected cost value with its associated 95% confidence
interval, and we compare the upper value of the confidence interval with the lower bound provided
by SDDP up to a given threshold in order to stop the algorithm (see Shapiro (2011)). In our

167

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

experiments, the Monte Carlo simulation has been made using 10,000 scenarios, and the relative
convergence threshold was around 0.5%. The simulation stage is identical to the one described at
§9.4.1.2 using the global Bellman’s value function obtained by SDDP .

We have used a version of SDDP implemented in Julia (StochDynamicProgramming package2)
built on top of the JuMP package used as a modeler (see Dunning et al. (2017)). The QP problems
are solved using CPLEX 12.5. Every 10 iterations, redundant cuts are removed thanks to the
limited memory level-1 heuristic described in Guigues (2017). Indeed, without cuts removal, the
resolution of each QP becomes too slow as the number of cuts increases along iterations.

9.4.3. Results obtained for academic valleys

We model a first collection of hydro valleys including from 4 to 12 dams, with arborescent geome-
tries (see Figure 9.4).

dam 2

dam 1

dam 3

dam 4

dam 1

dam 2 dam 3

dam 5

dam 6

dam 4

dam 5

dam 3 dam 4

dam 2

dam 6

dam 7

dam 8

dam 5

dam 3dam 1 dam 5

dam 3 dam 4

dam 2

dam 6

dam 5

dam 3

dam 7

dam 1

dam 8

dam 9

dam 10

4-Dams 6-Dams 8-Dams 10-Dams

Figure 9.4.: Some academic examples of hydro valleys.

The optimization problem is stated on a time horizon of one year, with a monthly time step
(T = 12). All the dams have more or less the same maximal volume. The maximal amount of
turbinated water for each dam varies with the location of the dam in the valley (more capacity
for a downstream dam than for an upstream dam), as well as the random inflows in a dam (more
inflow for an upstream dam than for a downstream dam). We assume discrete probability laws with
finite supports for the inflows, and deterministic market prices. We also assume that the available
turbine controls are discrete, so that each dam is in fact modeled using a discrete Markov chain.
These valleys do not correspond to realistic valleys, in the sense that a true valley incorporates
dams of very heterogeneous size.

9.4.3.1. SDDP convergence

We first illustrate the convergence of the SDDP algorithm for the 8-Dams valley on Figure 9.5
(note that most of the valleys display a similar convergence pattern). As explained at §9.4.2, the
exact lower bound given by SDDP (black curve) increases along the iterations, and the gap between
this lower bound and the upper value of the confidence interval (red curve) is less than 0.5% at
iteration 140.

2See the github link https://github.com/JuliaOpt/StochDynamicProgramming.jl.

168

https://github.com/JuliaOpt/StochDynamicProgramming.jl

9.4. Numerical experiments

Figure 9.5.: Convergence of SDDP for the 8-Dams valley

Note that, in our experiments, this stopping criterion approximately matches the classical SDDP
convergence stopping criterion proposed in Pereira and Pinto (1991) corresponding to the fact that
the lower bound provided by SDDP becomes greater than the lower value of the confidence interval.

9.4.3.2. DADP convergence

Let us first detail the method used for the update of the multipliers involved by DADP. Thanks
to the choice of constant information variables, the gradient expression involved in the update
formula (9.16) is an expectation, that can be approximated by a Monte Carlo approach. We
draw a collection of statistically independent scenarios of {Wt} and then compute at iteration

k of DADP the optimal solutions
{
X
i,(k)
t ,U

i,(k)
t ,Z

i,(k)
t

}
of Subproblem (9.15) along each sce-

nario. One has to note that this collection of scenarios is independent of the one used during
the simulation stage of the complete process described at §9.4.1.2. We thus obtain realizations of(
Z
i+1,(k)
t − git(X

i,(k)
t ,U

i,(k)
t ,W i

t ,Z
i,(k)
t)

)
, whose arithmetic mean gives the (approximated) gra-

dient component at time t for the coupling between dam i and dam i+1. This gradient can be
used either in the standard steepest ascent method such as in (9.16), or in a more sophisticated
algorithm such as the conjugate gradient or the quasi-Newton method. We use in our numerical
experiments a solver (limited memory BFGS) of the MODULOPT library from INRIA by Gilbert
and Jonsson (2007). For all the valleys we studied, the convergence was fast (around 100 iterations
regardless of the problem size). Figure 9.6 represents the evolution of the multipliers λit for the
8-Dams valley along the iterations of the algorithm.

The order of magnitude of the optimal multipliers decreases with the geographical position of
the link in the hydro valley. Nevertheless, the convergence rate is very similar for all links: this
practical consideration remains true for almost all valleys, and it explains why the number of
iterations required for the DADP convergence does not vary too much with the size of the valley.

9.4.3.3. Methods comparison

We solve Problem (9.1) for the first collection of academic valleys by 3 different methods:

1. the standard Dynamic Programming method (DP), when possible,

2. the SDDP presented at §9.4.2,

3. the DADP method.

169

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

Figure 9.6.: 8-Dams multipliers: dam1→dam2 , dam3-4→dam5 , dam2-5→dam6 , dam7→dam8

All these methods produce Bellman functions (optimization stage described at §9.4.1.2), whose
quality is evaluated by the simulation stage of §9.4.1.2. The obtained results are given in Table 9.1.
The lines “CPU time” correspond to the time (in minute) needed to compute the Bellman functions
(optimization stage only), whereas the lines “value” indicate the cost obtained by Monte Carlo
on the initial model (simulation stage, performed using a 100,000 scenarios sample, except for the
12-Dams valley for which a smaller sample set was used in order to reduce the computational load).
The comparisons between the different cost values for the same valley are thus relevant. For both
SDDP and DADP, we also give the lower bound corresponding to the Bellman value obtained at
the end of the optimization stage.

Valley 4-Dams 6-Dams 8-Dams 10-Dams 12-Dams

DP CPU time 1600 ’ ∼ 10 8 ’ ∼ ∞ ∼ ∞ ∼ ∞
DP value −3743 N.A. N.A. N.A. N.A.

SDDP CPU time 6 ’ 10 ’ 13 ’ 50 ’ 97 ’
SDDP value −3742 −7027 −11830 −17070 ∼ −17000
SDDP lower bound −3754 −7050 −11960 −17260 −19490
DADP CPU time 7 ’ 12 ’ 18 ’ 24 ’ 22 ’
DADP value −3667 −6816 −11570 −16760 ∼ −17000
DADP lower bound −3996 −7522 −12450 −17930 −20480
Gap DADP/SDDP 2.0% 3.0% 2.2% 1.8% ?

Table 9.1.: Results obtained by DP, SDDP and DADP

We first note that a direct use of DP is only possible for the 4-Dams valley: it corresponds to the
well-known curse of dimensionality inherent to DP. The value given by DP is the true optimal cost
value for the 4-Dams valley and can be used as the reference value. The SDDP method, although
relying on the integrity constraints relaxation in the optimization stage (hence a not so tight

170

9.4. Numerical experiments

lower bound), gives excellent results for the 4-Dams valley: we thus elect SDDP as the reference
method in order to evaluate the DADP method. Note that the CPU time remains reasonable, the
optimization problems inside SDDP corresponding to a continuous linear-quadratic formulation
(here solved using the CPLEX commercial solver).

Remark 9.4.1. Note however that all the methods we are comparing face the curse of dimen-
sionality associated to the combinatorics of the control during the simulation stage, as the controls
associated to the whole valley have to be enumerated at each time t along each scenario. This is the
reason why the values obtained for the 12-Dams valley have been computed using 1, 000 scenarios
(100, 000 for the others valleys) and hence are not so accurate. ♦

We now turn to the DADP method. We first notice that the lower bound given by the method
is rather bad (as a consequence of solving a problem with relaxed coupling constraints in the
optimization stage), but the values obtained in the simulation stage are reasonable compared to
the ones given by SDDP (as indicated by the last line of Table 9.1). The most noticeable point is
that the CPU time needed for the optimization stage seems to grow more slowly for DADP than
for SDDP. This aspect will be highlighted in §9.4.4.

Let us finally materialize more finely the difference in the results between SDDP and DADP.
Beyond average values given in Table 9.1, Figure 9.7 represents the payoff empirical probability
laws (optimal cost over the time horizon), obtained by the simulation stage using 100,000 scenarios,
for both SDDP and DADP. We observe that, although the expectations are fairly close, the shapes
of the two distributions differ significantly.

Figure 9.7.: 4-Dams payoff distributions: SDDP (left) — DADP (right)

9.4.4. Challenging the curse of dimensionality

The experiments made in §9.4.3 seem to indicate that DADP is less sensitive to the size of the
valley than the SDDP method. In order to validate this observation, we design a new collection of
academic hydro valleys incorporating from 14 up to 30 dams. It is of course no longer possible to
perform the simulation stage for these instances: the combinatorics induced by the set of possible
values of the controls is too large to allow simulation of the valley behavior along a large set of
scenarios. We thus limit ourselves to the computation of the Bellman functions (optimization
stage). The corresponding results are reported in Table 9.2.

It appears that the CPU time required for the DADP method grows linearly with the number of
dams, while the growth rate of SDDP is more or less exponential. Figure 9.8 shows how the CPU
time varies for the three methods. As expected, DP is only implementable for small instances, say

171

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

Valley 14-Dams 18-Dams 20-Dams 25-Dams 30-Dams

SDDP CPU time 210 ’ 585 ’ 970 ’ 1560 ’ 2750 ’
SDDP lower bound −32024 −46917 −61454 −79440 −100430
DADP CPU time 40 ’ 50 ’ 75 ’ 140 ’ 150 ’
DADP lower bound −32981 −48095 −62802 −80993 −101990

Table 9.2.: SDDP and DADP comparison for large academic valleys

up to 5 dams. Eventually, the limits of SDDP and DADP have not really be reached, but DADP
displays a near linear rate of CPU time allowing to tackle instances of even greater size.

Figure 9.8.: CPU time comparison

9.4.5. Results for two realistic valleys

We finally model two hydro valleys corresponding to existing systems in France, namely the
Vicdessos valley and the Dordogne river (see Figure 9.9).

The optimization problem is stated again on a one year horizon, with a monthly time step. What
mainly differs here from the academic examples used at §9.4.3 are the characteristics of the dams.
For example, the Dordogne river valley encompasses large dams (as “Bort” whose capacity is, say,
400) and small dams (as “Mareges” the capacity of which is equal to 35, that is, ten times smaller).
This heterogeneity induces numerical difficulties, for example the requirement to have a wide range
of possible controls for the small downstream reservoirs, or the need to use a fine discretization for
the state grid in DP-like methods. We again assume discrete probability laws with finite support
for the inflows, and we also assume that the available turbine controls are discrete.

The comparison results of SDDP and DADP are given in Table 9.3. As for the academic
examples, SDDP displays the best results and is therefore used as the reference. The large number
of possible discrete controls penalizes the CPU time of DADP, although the gap between SDDP
and DADP remains limited.

172

9.5. Conclusion

SoulcemGnioure Izourt

Auzat

Sabart

Chastang

Bort

Mareges

Aigle

Sablier

Vicdessos Dordogne

Figure 9.9.: Two realistic hydro valleys

Valley Vicdessos Dordogne

SDDP CPU time 9 ’ 17 ’
SDDP value −2244 −22150
SDDP lower bound −2258 −22310

DADP CPU time 9 ’ 210 ’
DADP value −2238 −21650
DADP lower bound −2286 −22990

Gap DADP/SDDP 0.3% 2.2%

Table 9.3.: Results obtained by SDDP and DADP

9.5. Conclusion

In this article, we have depicted a method called DADP which allows one to tackle large-scale
stochastic optimal control problems in discrete time, such as the ones found in the field of energy
management. We have presented the practical aspects of the method, without deepening in
the theoretical issues arising in the foundations of the method. Lots of numerical experiments
have been presented on hydro valley problems (“chained models”), which complements the ones
already made on unit commitment problems (“flower models”) Barty et al. (2010b). The main
conclusions are that DADP converges fast and gives near-optimal results even when using a “crude”
relaxation (here a constant information process Y). More precisely, DADP allows one to deal with
optimization problems that are out of the scope of standard Dynamic Programming, and beats
SDDP for very large hydro valleys in terms of CPU time. We thus hope to be able to implement
DADP for very large stochastic optimal control problems such as the ones encountered in smart
management of urban districts, involving hundreds of houses and thus hundred of states variables.
Such problems are formulated on a short-term time scale (typically a one day horizon with 15
minutes time steps), and incorporate on/off devices. In that new context, controls will have to
be modeled using discrete variables (whereas this assumption was not mandatory for the study
presented in this chapter). Moreover, on a short-term time scale, the randomness of the markets

173

Chapter 9. Stochastic decomposition applied to large-scale hydro valleys management

prices plays an important role, and it will thus be necessary to take them into account as a noise
in the problem.

We plan to extend this study in two directions. First to implement the DADP method for general
spatial structures (not only “flower models” or “chain model”, but “smart-grid models” involving
a generic graph). The second direction is to implement more sophisticated decomposition methods
than price decomposition. On the one hand we want to use decomposition schemes such that
resource allocation or interaction prediction principle Cohen (1978). On the other hand we want
to use augmented Lagrangian based methods such as alternating direction method of multiplier
(ADMM) and proximal decomposition algorithm (PDA) for decomposition in order to obtain the
nice convergence properties of this kind of methods (see Lenoir and Mahey (2017) for a survey).

Finally, let us mention that a theoretical work has begun in order to provide foundations of
the method (Leclère (2014)). It includes conditions for existence of a multiplier in the L1 space
when the optimization problem is posed in L∞ and conditions for convergence of the Uzawa
algorithm in L∞. A lot of work remains to be done on these questions, mainly to relax the
continuity assumption in order to be able to deal with extended functions, and to obtain more
general assumptions ensuring the convergence of the Uzawa algorithm.

174

Part III.

Contributions to Stochastic Dual
Dynamic Programming

Abstract. In Part I, we applied Stochastic Dual Dynamic Programming (SDDP) to
compute Bellman functions corresponding to small scale microgrid systems. In Part II,
we studied the behavior of SDDP when applied to large scale systems, and illustrated its
limits in term of convergence and computation time.
However, one of the main drawbacks of SDDP is the lack of proper stopping criterion:
the algorithm usually stops when the lower bound becomes close to the upper bound,
ordinarily estimated statistically. We propose in Chapter 10 a new algorithm to compute
a deterministic upper bound by considering a dual version of SDDP. An abstract version
of SDDP is presented, that allows to extend the classical SDDP algorithm. We give in
Chapter 11 a proof of convergence for the abstract SDDP algorithm.
Chapter 10 is a copy of Leclère et al. (2018). The author is deeply indebted to his co-
authors for this work. Chapter 11 is a joint work with Maël Forcier. The author thanks
him warmly for his precious help.

175

Chapter 10.

Exact converging bounds for Stochastic Dual
Dynamic Programming via Fenchel duality

This chapter is a transcription of the article Leclère et al. (2018). The author thanks his
co-authors Pierre Carpentier, Jean-Philippe Chancelier, Arnaud Lenoir and Vincent Leclère.

Contents

10.1. Introduction . 178

10.1.1. Stochastic optimization problem in discrete time 178

10.1.2. Stochastic Dual Dynamic Programming and its weaknesses 179

10.1.3. Contents of the paper . 180

10.1.4. Notations . 181

10.2. Linear Bellman operators . 181

10.2.1. Linear Bellman operator . 181

10.2.2. Fenchel transform of a LBO . 184

10.2.3. An abstract SDDP algorithm . 186

10.3. Primal and dual SDDP . 188

10.3.1. Primal SDDP . 189

10.3.2. Dual SDDP . 191

10.4. Inner-approximation strategy . 194

10.4.1. Inner approximation of value functions 195

10.4.2. A bound on the inner approximation strategy value 196

10.5. Numerical results . 197

10.5.1. Description of the problem . 198

10.5.2. Numerical implementation . 200

10.5.3. Results . 200

10.6. Conclusion . 204

10.6.1. Recalls on convex analysis . 206

10.6.2. Omitted proofs . 206

10.6.3. Numerical settings . 207

10.6.4. Exhaustive primal-dual SDDP algorithm 208

10.6.5. Compatibility of the primal and dual Bellman operators 208

The Stochastic Dual Dynamic Programming (SDDP) algorithm has become one of the main
tools to address convex multistage stochastic optimal control problem. Recently a large amount of
work has been devoted to improve the convergence speed of the algorithm through cut-selection and
regularization, or to extend the field of applications to non-linear, integer or risk-averse problems.
However one of the main downside of the algorithm remains the difficulty to give an upper bound

177

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

of the optimal value, usually estimated through Monte Carlo methods and therefore difficult to
use in the algorithm stopping criterion.

In this chapter we present a dual SDDP algorithm that yields a converging exact upper bound for
the optimal value of the optimization problem. Incidently we show how to compute an alternative
control policy based on an inner approximation of Bellman value functions instead of the outer
approximation given by the standard SDDP algorithm. We illustrate the approach on an energy
production problem involving zones of production and transportation links between the zones. The
numerical experiments we carry out on this example show the effectiveness of the method.

10.1. Introduction

In this paper, we consider a risk neutral multistage stochastic optimization problem, with contin-
uous decision variables. We adopt the stochastic optimal control point of view, that is, we work
with explicit control and state variables in order to deal with an explicit dynamics of the system
and to obtain an interpretation of the multipliers associated to the dynamics.

10.1.1. Stochastic optimization problem in discrete time

Let (Ω,A,P) be a probability space, where Ω is the set of possible outcomes, A the associated σ-field
and P the probability measure. We denote by {0, .., T} the discrete time span {0, 1, . . . , T}, and we
define upon it three processes X =

{
Xt

}
t∈{0,..,T}, U =

{
U t

}
t∈{1,..,T−1} and W =

{
W t

}
t∈{1,..,T}

where for all t, Xt : Ω→ Rnx , U t : Ω→ Rnu andW t : Ω→ Rnξ are random variables representing
respectively the state, the control and the noise variables. The state processX is assumed to follow
the linear dynamics

X0 = x0 ,

Xt+1 = AtXt +Bt+1U t+1 + Ct+1ξt+1 ∀t ∈ {0, .., T − 1} ,

where x0 is the given initial state at time 0 and where At ∈ Rnx×nx , Bt+1 ∈ Rnx×nu and Ct+1 ∈
Rnx×nξ are given deterministic matrices. We moreover assume that both the control and the state
variables are subject to bound constraints, that is, for all t ∈ {0, .., T − 1}, ut+1 ≤ U t+1 ≤ ut+1,
and xt+1 ≤Xt+1 ≤ xt+1 and satisfy a linear coupling constraint

DtXt + Et+1U t+1 +Gt+1ξt+1 ≤ 0 ∀t ∈ {0, .., T − 1} .

where Dt ∈ Rnc×nx , Et+1 ∈ Rnc×nu and Gt+1 ∈ Rnc×nξ are given matrices. In particular, state
and control variables take values in compact subsets of Rnx and Rnu respectively.

We assume that the problem has a Hazard-Decision1 information structure, that is, the decision
at time t is taken knowing the noise that affects the system between t and t+ 1. Accordingly, the
decision U t+1 is a function of the uncertainties up to time t+ 1, which means that U t+1 has to
be measurable with respect to the σ-field Ft+1 generated by the uncertainties (ξ1, · · · , ξt+1). We
write this non anticipativity constraint as, U t+1 � Ft+1, for all t ∈ {0, .., T − 1}.

Finally, the cost incurred at each time t ∈ {0, .., T − 1} is a linear function a>t Xt + b>t+1U t+1

with at ∈ Rnx and bt+1 ∈ Rnu , and the cost incurred at the final time T is K(XT) where K is
polyhedral, hence a convex lower semi-continuous function. Note that the results obtained in this
paper for a polyhedral final cost function can be adapted to the case where K is a convex lower
semi-continuous function, Lipschitz-continuous on its domain.

1Wait-and-see in the Stochastic Programming terminology

178

10.1. Introduction

Gathering all these elements, we get the following stochastic optimization problem:

min
X,U

E
[T−1∑
t=0

(a>t Xt + b>t+1U t+1) +K(XT)

]
, (10.1a)

s.t. X0 = x0 , (10.1b)

Xt+1 = AtXt +Bt+1U t+1 + Ct+1ξt+1 ∀t ∈ {0, .., T − 1} , (10.1c)

ut+1 ≤ U t+1 ≤ ut+1 ∀t ∈ {0, .., T − 1} , (10.1d)

xt+1 ≤Xt+1 ≤ xt+1 ∀t ∈ {0, .., T − 1} , (10.1e)

DtXt + Et+1U t+1 +Gt+1ξt+1 ≤ 0 ∀t ∈ {0, .., T − 1} , (10.1f)

U t+1 � Ft+1 ∀t ∈ {0, .., T − 1} . (10.1g)

We make the following assumption throughout the paper.

Assumption 10.1.1 (discrete white noise). The noise sequence
{
ξt
}
t∈{1,..,T} is assumed to be a

sequence of independent variables with finite support.

As it is well known, independence is of paramount importance to obtain Dynamic Programming
equation, while finiteness of the support is required both to be able to compute exactly the
expectation and for theoretical convergence reasons.

10.1.2. Stochastic Dual Dynamic Programming and its weaknesses

Thanks to white noise Assumption 10.1.1, we can solve Problem (10.1) by the Dynamic Program-
ming approach (see the two reference books Bellman (1957) and Bertsekas (2005a) for further
details). This approach leads to the so-called Bellman’s value functions Vt, such that Vt(x) is the
optimal value of the problem when starting at time t with state Xt = x. These functions are
obtained by solving the following recursive Bellman equation:

VT (x) =K(x) ,

Vt(x) =E
[

inf
ut+1,xt+1

a>t x+ b>t+1ut+1 + Vt+1(xt+1)
]
,

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1ξt+1 ,

ut+1 ≤ ut+1 ≤ ut+1 ,

xt+1 ≤ xt+1 ≤ xt+1 ,

Dtx+ Et+1ut+1 +Gt+1ξt+1 ≤ 0 .

When the state variable takes a finite number of possible values, we can solve the Bellman
equation by exhaustive exploration of the state, yielding the exact solution of the problem. In
the continuous linear-convex case, we can rely on polyhedral approximations. The Stochastic Dual
Dynamic Programming algorithm (SDDP) builds polyhedral approximations V t of the functions Vt
by using a sampled nested Benders decomposition (see Philpott and Guan (2008), Girardeau et al.
(2014), Guigues (2016) and Guigues (2017) for the convergence of this approach). The polyhedral
value functions V t computed by SDDP are outer approximations of the functions Vt at each stage,
that is, V t ≤ Vt, so that the value v0 = V 0(x0) is an exact (deterministic) lower bound on the
optimal value v0 = V0(x0) of Problem (10.1).

Functions V t can also be used to derive an admissible strategy, whose associated expected cost v0

gives an upper bound of the optimization problem value. Unfortunately, computing the expectation
is usually out of reach, and we need to rely on some approximate computation. The most common
way to perform that task is based on the Monte Carlo approach: it consists in simulating the control

179

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

strategy induced by functions V t along a (large) number M of noise scenarios, and then computing
the arithmetic mean v̂M0 of the scenarios cost and the associated empirical standard deviation σ̂M0 .
The value v̂M0 is an approximate (statistical) upper bound of the optimal value of Problem (10.1).
Moreover, it is easy to obtain an asymptotic α-confidence interval [v̂M0 − zασ̂M0 , v̂M0 + zασ̂

M
0]. Here

1−α ∈ [0, 1] is a chosen confidence level and zα = Φ−1(1−α), Φ being the cumulative distribution
function of the standard normal distribution.

The classical way to use this statistical upper bound in SDDP, as presented in Pereira and Pinto
(1991), consists in testing at each iteration of the algorithm if the available exact lower bound v0

is greater than the α-confidence lower bound v̂M0 − zασ̂M0 , and to stop the algorithm in that case.
Such a stopping criterion raises at least two difficulties: the Monte Carlo simulation increases the
computational burden of SDDP, and the stopping test does not give any guarantee of convergence
of the algorithm.

The first difficulty can be tackled by parallelizing the M simulations involved in the evaluation
of the upper bound, and also by calculating the empirical mean v̂0 over the last k iterations of
the algorithm, thus enlarging the sample size from M to kM without additional computation
(see (Shapiro et al., 2012, §3.2)). The second difficulty induced by this stopping criterion has been
analyzed in Shapiro (2011): the larger the standard deviation σ̂0 and the confidence (1 − α) are,
the sooner the algorithm will be stopped. The author proposes another criterion based on the
difference between the α-confidence upper bound v̂0 + zασ̂0 and the exact lower bound v0 up to a
prescribed accuracy level ε. Note that this stopping test is not necessarily convergent, in the sense
that the stopping criterion might not be met in finite time, for example if ε < zασ̂0. An interesting
view on the class of stopping criteria in terms of statistical hypothesis tests has been given in
Homem-de Mello et al. (2011): the authors compare different hypothesis tests of optimality2 and
so they find the stopping criteria proposed by Pereira and Pinto (1991), Shapiro (2011), as well as
another one which ensures an upper bound on the probability of incorrectly claiming convergence
(type II error). Moreover, the simulation scenarios are obtained using Quasi-Monte Carlo or Latin
Hypercube Sampling rather than raw Monte carlo, so that the accuracy of the upper bound is
increased. Nevertheless, all these stopping criteria are based on a statistical evaluation and thus
give a probabilistic guarantee that the gap is smaller than some ε, not an almost sure one.

A different approach consists in building polyhedral inner approximations V t of the Bellman
functions Vt at each stage, that is, V t ≥ Vt. A deterministic upper bound V 0(x0) of the optimal
value of Problem (10.1) thus becomes available, and it is then possible to perform a stopping
test of SDDP on the almost-sure gap V 0(x0) − V 0(x0). Such a test, giving a guarantee on the
algorithm convergence has been investigated in Philpott et al. (2013). More precisely, starting from
a polyhedral inner approximation V t+1 at time t+ 1, and choosing an arbitrary sequence of points
x1
t , . . . , x

Jt
t , the authors show how to compute a value qjt at each point xjt such that qjt ≥ Vt(x

j
t).

The inner polyhedral approximation V t is then obtained from the pairs {(xjt , q
j
t)}j∈{1,..,Jt}. A

delicate issue when devising the inner approximations is the choice of the points xjt defining the
polyhedral functions V t. The authors suggest to use points generated by some other algorithm, such
as SDDP. Another approach involving inner and outer approximations of the Bellman functions
is described in Baucke et al. (2017), whose main feature is that the algorithm presented herein is
fully deterministic.

10.1.3. Contents of the paper

In Section 10.2, we introduce the formalism of linear Bellman operators for a large class of opti-
mization problem, we define its dual linear Bellman operator and we enlighten the relationships
between them thanks to the Fenchel conjugate. We also present the SDDP algorithm that applies
to a sequence of function recursively defined through linear Bellman operators. We apply in Sec-
tion 10.3 the conjugacy results obtained in Section 10.2 to obtain a recursion on the dual value

2such as: (H0: v0 = v0) against (H1: v0 6= v0)

180

10.2. Linear Bellman operators

functions, on which we can apply the abstract SDDP algorithm, yielding a dual SDDP algorithm
for solving Problem (10.1). The main result of this section is that we eventually obtain an exact
upper bound over the value of Problem (10.1). In Section 10.4, we show how to build inner ap-
proximations of Bellman functions associated to Problem (10.1) thanks to outer approximations
computed by the dual SDDP algorithm. This inner-approximation induces a control strategy con-
verging toward an optimal one (see Theorem 10.4.3). Furthermore, the expected cost incurred by
this strategy is shown to be lower than the exact upper bound obtained in Section 10.3. Ultimately,
in Section 10.5, we illustrate all the presented methodology on an energy management problem
inspired by Électricité de France, at the European scale. The results show, on the one hand that
having at disposal an exact upper bound in SDDP allows to devise a more efficient stopping test
for SDDP than the usual ones based on a Monte Carlo approach, and on the other hand that the
strategy based on the inner approximation of the Bellman functions outperforms the usual strategy
obtained using standard outer approximations.

10.1.4. Notations

• {i, .., j} denotes the set of integer between i and j.

• Ω denotes a finite set of cardinality |Ω| supporting a probability distribution P:
Ω = {ω1, . . . , ω|Ω|} and P = (π1, . . . , π|Ω|).

• Random variables are denoted using bold uppercase letters (such as Z : Ω → Z), and their
realizations are denoted using lowercase letters (z ∈ Z).

• X : Ω→ X corresponds to the state, U : Ω→ U to the control, ξ : Ω→ Ξ to the noise.

• [R]
?

denotes the Fenchel transform of an extended real-valued function R.

• Vt : Xt → R is the Bellman value function associated to Problem (10.1) at time t.

• Dt = [Vt]
?

is the dual value function associated to Problem (10.1) at time t.

• B is the Bellman operator associated to a generic linear problem, with associated solution
operator S, and dual operator denoted B‡.

• T is the Bellman operator associated to Problem (10.1), its dual being denoted T ‡.

• Underlined notation (e.g. V) corresponds to a lower approximation of a function (e.g V).
Overlined notation (e.g. V) denotes an upper approximation.

10.2. Linear Bellman operators

This self-contained section is devoted to the definition and properties of linear Bellman operators
(LBOs). In §10.2.1 we present the abstract formalism of LBOs that allows to write Dynamic
Programming equations in a compact manner. In §10.2.2 we show that the Fenchel transform of a
LBO is also a LBO. In §10.2.3 we present an abstract version of the SDDP algorithm adapted to
the LBO formulation.

10.2.1. Linear Bellman operator

We first introduce the notion of linear Bellman operator, which is a particular class of Bellman
operators (see Bertsekas (2005a)) associated to stochastic optimal control problems where costs
and constraints are linear.

181

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

We consider an abstract probability space (Ω,A,P). Recall that Ω is a finite set (see As-
sumption 10.1.1) and assume that the σ-field A is generated by all the singletons of Ω. We
denote by L0(Rnx ;R) the set of functions defined on Rnx and taking values in [−∞,+∞], and by
L0(Ω,A;Rnx) the space of Rnx -valued measurable functions defined on (Ω,A,P).

Remark 10.2.1. Since we suppose that the set Ω is finite, every function defined on Ω is measur-
able and a property that holds almost surely is a property that holds for every ω ∈ Ω. In particular
L0(Ω,A;Rn) is a finite-dimensional space whathever n ∈ N. ♦

Definition 10.2.2. An operator B : L0(Rnx ;R) → L0(Rnx ;R) is said to be a linear Bellman
operator (LBO) if it is defined as follows

B : L0(Rnx ;R)→ L0(Rnx ;R)

R 7→ B(R) : x 7→ inf
(U ,Y)∈L0(Ω,A;Rnx)×L0(Ω,A;Rnu)

E
[
C>U +R(Y)

]
, (10.2a)

s.t. Tx+Wu(U) +Wy(Y) ≤H , (10.2b)

where Wu : L0(Ω,A;Rnu) → L0(Ω,A;Rnc) and Wy : L0(Ω,A;Rnx) → L0(Ω,A;Rnc) are two
linear operators. Here, U and Y are two decision random variables respectively defined on Rnu
and Rnx . The two random variables C : Ω→ Rnu and H : Ω→ Rnc are exogenous uncertainties
in Problem (10.2) and we note W = (C ,H). Deterministic matrix T ∈ Rnc×nx is given data.

We denote by S(R) the set valued mapping giving, for a given x ∈ Rnx , the set of optimal
solutions Y of Problem (10.2):

S(R) : Rnx → L0(Ω,A;Rnx) (10.3a)

x 7→ arg min
Y ∈L0(Ω,A;Rnx)

(
inf

U∈L0(Ω,A;Rnu)
E
[
C>U +R(Y)

])
, (10.3b)

s.t. Tx+Wu(U) +Wy(Y) ≤H . (10.3c)

Let G : Rnx ⇒ L0(Ω,A;Rnu)× L0(Ω,A;Rnx) be the set valued mapping defined by

G(x) :=
{

(U ,Y) | Tx+Wu(U) +Wy(Y) ≤H
}
. (10.4a)

With domain dom(G) =
{
x ∈ Rnx | G(x) 6= ∅

}
. Further, we say that B is compact if G is

compact-valued with non-empty compact domain.

Note that, using the definition of the set valued mapping G, we have that

B(R)(x) = inf
(U ,Y)∈L0(Ω,A;Rnx)×Rnu)

E
[
C>U + χG(x)(U ,Y)

]
+ E

[
R(Y)

]
,

where χ
A

is the characteristic function of a set A:

χ
A

(x) =

{
0 if x ∈ A,

+∞ otherwise.
(10.5)

Example. We give some classical examples of operators Wu and Wy involved in Definition 10.2.2
of B. We stress that W is a linear operator over a space of random variables, and we describe the
associated adjoint operator, that is, the linear operatorW† such that

〈
X ,W(Y)

〉
=
〈
W†(X) ,Y

〉
,

with
〈
X ,Y

〉
= E

[
X>Y

]
.

• Linear point-wise operator:

W : L0(Ω,A;Rnx) → L0(Ω,A;Rnc)(
ω 7→ Y (ω)

)
7→

(
ω 7→ AY (ω)

)
.

182

10.2. Linear Bellman operators

Such an operator allows to encode an almost sure constraint, and W†(X) = A>X.

• Linear expected operator:

W : L0(Ω,A;Rnx) → L0(Ω,A;Rnc)(
ω 7→ Y (ω)

)
7→

(
ω 7→ A E(Y)

)
.

Such an operator allows to encode a constraint in expectation, and W†(X) = A>E(X).

• Linear conditional operator: given a sub σ-field F of A,

W : L0(Ω,A;Rnx) → L0(Ω,A;Rnc)(
ω 7→ Y (ω)

)
7→

(
ω 7→ A E[Y |F](ω)

)
,

Such an operator allows to encode, for example, measurability constraints and W†(X) =
A>E[X |F].

Of course, any linear combination of these three kinds of operator is also linear. 4

We define the key notion of relatively complete recourse, introduced in Rockafellar and Wets
(1976).

Definition 10.2.3. Let Q ∈ L0(Rnx ;R) and B a LBO. We say that the pair (B, Q) satisfies a
relatively complete recourse (RCR) assumption if dom(B(Q)) = dom(G), that is, if

∀x ∈ dom(G) , ∃(U ,Y) ∈ G(x) such that P
(
Y ∈ dom(Q)

)
= 1 . (10.6)

Remark 10.2.4. Note that if B is compact and (B, Q) satisfy the RCR assumption, then B(Q) is
finite at some point x0. ♦

We now turn to properties of LBOs and polyhedral functions, proven in Appendix 10.6.2.

Proposition 10.2.5. Let R be a function of L0(Rnx ;R) and let B be a LBO. Then we have the
following properties.

1. If R is convex, then B(R) is convex.

2. If R is polyhedral, then B(R) is polyhedral.

3. If R ≥ R̃, then B(R) ≥ B(R̃).

Proof. The probability set Ω being finite, we denote by u (resp. y, c, h) the vectors concatenating
all possible values of U (resp. Y , C , H) over the set Ω, that is u = (u1, . . . , u|Ω|). Then the
extensive formulation of Constraint (10.2b) is

T̃ x+ W̃uu+ W̃yy ≤ h ,

where T̃ , W̃u and W̃y are adequate matrices deduced from T ,Wu andWy. Problem (10.2) rewrites

B(R)(x) = inf
u,y

J(R)(x, u, y) ,

with

J(R)(x, u, y) =

|Ω|∑
ω=1

πω

(
c>ωuω +R(yω)

)
+ χ

{T̃x+W̃uu+W̃yy≤h}
(x, u, y) .

1. If R is convex, then J(R) is jointly convex in (x, u, y) so that B(R) is a convex function.

183

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

2. If R is polyhedral, then J(R) is polyhedral in (x, u, y), and thus B(R) is a polyhedral function
(see (Borwein and Lewis, 2010, Prop 5.1.8)).

3. From R ≥ R̃, we deduce that J(R) ≥ J(R̃), and thus B(R) ≥ B(R̃).

The proof is complete. �

Remark 10.2.6. Assume that function R is proper and polyhedral. Then, under relatively complete
recourse (see Definition 10.2.3), and if B(R) is finite at some point, B(R) is a proper polyhedral
function. Furthermore, if B(R)(x) is finite, solving its (linear programming) dual generates a
supporting hyperplane at point x of the function B(R), that is, a pair (λ, β) ∈ Rnx × R such that{〈

λ , ·
〉

+ β ≤ B(R)(·)〈
λ , x

〉
+ β = B(R)(x) .

Such hyperplanes, or cuts, are of paramount importance for the SDDP algorithm. ♦

The following proposition establish a link between the Lipschitz constants of R and B(R).

Proposition 10.2.7. Let R be a proper polyhedral function of L0(Rnx ;R) and let B be a LBO.
Assume that (B, R) satisfies the RCR assumption and that B(R) is finite at some point. If R is
Lipschitz (for the L1-norm) with constant LR, then B(R) is also Lipschitz on its domain (which is
dom(G)) with constant φ(LR) = (‖C‖∞ +LR)κW ‖T‖∞, where κW is a constant associated to the
linear operator (Wu,Wy).

Proof. Consider x1 (resp. x2) an element in dom(B(R)), and denote by Z1 (resp. Z2) the
polyhedron of optimal solutions of Problem (10.2). These polyhedrons are non-empty thanks
to the RCR assumption. Let (U1,Y1) ∈ Z1 be fixed, from (Shapiro et al., 2009, Theorem 7.12),
there exists a positive constant κW such that

inf
(U2,Y2)∈Z2

‖(U1,Y1)− (U2,Y2)‖1 ≤ κW ‖T (x1 − x2)‖1 ≤ κW ‖T‖∞‖x1 − x2‖1 .

Let (U]
2 ,Y

]
2) ∈ Z2 be an optimal solution of the above minimization problem. Then we have that

B(R)(x1) = E
[
C>U1 +R(Y1)

]
≤ E

[
C>U]

2 +C>(U1 −U
]
2) +R(Y]

2) + LR‖Y]
2 − Y1‖1)

]
≤ B(R)(x2) + ‖C‖∞‖U1 −U

]
2‖1 + LR‖Y1 − Y

]
2 ‖1

≤ B(R)(x2) + (‖C‖∞ + LR)κW ‖T‖∞‖x1 − x2‖1 .

Exchanging x1 and x2 in the previous majoration leads to the reverse inequality, combining both
leads to the desired Lipschitz property. �

10.2.2. Fenchel transform of a LBO

We now define the dual linear Bellman operator B‡ of a linear Bellman operator B.

Definition 10.2.8. Let B be a LBO (see Definition (10.2.2)). We denote by B‡ the dual LBO of

184

10.2. Linear Bellman operators

B, defined, for a given function Q ∈ L0(Rnx ;R) and for any λ ∈ Rnx , by

B‡(Q)(λ) = inf
µ∈L0(Ω,A;Rnx),ν∈L0(Ω,A;Rnc)

E
[
− µ>H +Q(ν)

]
(10.7a)

s.t. T>E
[
µ
]

+ λ = 0 (10.7b)

W†u(µ) = C (10.7c)

W†y(µ) = ν (10.7d)

µ ≤ 0 , (10.7e)

where W†u (resp. W†y) is the adjoint operator of Wu (resp. Wy). We define the dual constraint set
valued mapping

G‡(λ) =
{

(µ,ν) ∈ Rnx+nc | T>E
[
µ
]

+ λ = 0 , W†u(µ) = C , W†y(µ) = ν , µ ≤ 0
}
. (10.8)

Note that straightforward computations show that (B‡)‡ = B.

Calling B‡ the dual of B is justified by the following Theorem.

Theorem 10.2.9. Let R be a proper polyhedral function, B be a compact LBO (see Defini-
tion 10.2.2), such that the pair (B, R) satisfies the RCR assumption. Then B(R) is a proper
polyhedral function and we have

[B(R)]
?

= B‡
(

[R]
?)

. (10.9)

Proof. First note that as B is compact, G has non-empty compact domain, and thus B(R) is finite
at some point by the RCR assumption.

During the proof we denote
〈
X ,Y

〉
= E

(
X>Y

)
, R(Y) = E

(
R(Y)

)
, and

K(x,Y) = min
U

{ 〈
C ,U

〉
| Tx+Wu(U) +Wy(Y) ≤H

}
.

By definition, we have B(R)(x) = infY K(x,Y) +R(Y). Thus, for any x? ∈ Rnx , we have

[B(R)]
?

(x?) = sup
x∈Rnx

{
x>x? − inf

Y

{
K(x,Y) +R(Y)

}}
= − inf

Y

{
R(Y)− sup

x∈Rnx
x>x? −K(x,Y)︸ ︷︷ ︸

:=Φ(Y)

}

As R is a proper polyhedral function, so is R. By construction, K is polyhedral. Since B is a
compact LBO, the minimization in U is over a compact, so that function K is never equal to
−∞. Furthermore, K is proper as dom(B(R)) = dom(G) 6= ∅. Note that for x /∈ dom(G) we
have K(x,Y) = +∞, thus Φ(Y) = supx∈dom(G)

{
x>x? − K(x,Y)

}
. Consequently, as dom(G) is

a compact set, we deduce that −Φ is a proper polyhedral function.Finally, the RCR assumption
ensures that dom(−Φ)∩dom(R) 6= ∅. Now, using Fenchel duality (see Proposition 10.6.1) we have
that

[B(R)]
?

(x?) =− sup
Y ?

Φ?(Y
?)−R?(Y ?) = inf

Y ?
R?(Y ?)− Φ?(Y

?)

185

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

where R?(Y ?) = E
(
R?(Y ?)

)
and

Φ?(Y
?) = inf

Y

〈
Y ? ,Y

〉
− Φ(Y)

= inf
Y

〈
Y ? ,Y

〉
− sup

x

{
x>x? −K(x,Y)

}
= inf
x,Y ,U

〈
Y ? ,Y

〉
− x>x? +

〈
C ,U

〉
+ sup
λ≥0

{〈
λ , Tx+Wu(U) +Wy(Y)−H

〉 ∣∣∣ Tx+Wu(U) +Wy(Y) ≤H
}

As dom(G) 6= ∅, there exists a primal feasible solution to the above linear program, and by duality
we have

Φ?(Y
?) = sup

λ≥0
−
〈
λ ,H

〉
+ inf

x

{
− x>x? +

〈
T>λ , x

〉 }
+ inf

Y

{ 〈
Y ? ,Y

〉
+
〈
W†y(λ) ,Y

〉 }
+ inf

U

{ 〈
C ,U

〉
+
〈
W†u(λ) ,U

〉 }
= sup
λ≥0

{
−
〈
λ ,H

〉
| W†y(λ) = −Y ?, W†u(λ) = −C , T>E(λ) = x?

}
Finally,

[B(R)]
?

(x?) = inf
Y ?,λ≥0

{
E
(
H>λ +R?(Y ?)

) ∣∣∣ T>E
(
λ
)

= x?, W†y(λ) = −Y ?, W†u(λ) = −C
}

which is equivalent to (10.7) with the correspondence x? → λ, λ → µ and Y ? → ν . �

10.2.3. An abstract SDDP algorithm

We now consider a sequence of functions
{
Rt
}
t∈{0,..,T} that follows the Bellman recursion{

RT = K

Rt = Bt(Rt+1) ∀t ∈ {0, .., T − 1} ,
(10.10)

where K is a proper polyhedral function, and a sequence of LBOs
{
Bt
}
t∈{0,..,T−1} given by

Bt(R)(x) = inf
U ,Y

E
[
C>t U +R(Y)

]
s.t. Ttx+Wu

t (U) +Wy
t (Y) ≤Ht ,

with associated set valued mappings
{
Gt
}
t∈{0,..,T−1}:

Gt(x) :=
{

(U ,Y) | Ttx+Wu
t (U) +Wy

t (Y) ≤Ht

}
,

and associated solution operators
{
St
}
t∈{0,..,T−1}:

St(R)(x) = arg min
Y

inf
U

E
[
C>t U +R(Y)

]
s.t. Ttx+Wu

t (U) +Wy
t (Y) ≤Ht .

We now give an extension of the RCR Definition 10.2.3.

186

10.2. Linear Bellman operators

Definition 10.2.10. Let
{
Bt
}
t∈{0,..,T−1} be a sequence of LBOs, with dom(Gt) 6= ∅, and

{
Rt
}
t∈{0,..,T}

be defined by the Bellman recursion (10.10). We say that the sequence
{
Bt
}
t∈{0,..,T−1} is K-

compatible if,

∀t ∈ {0, .., T − 1}, ∀x ∈ dom(Gt), ∀(Ut+1,Yt+1) ∈ Gt(x), P
(
Yt+1 ∈ dom(Gt+1)

)
= 1 ,
(10.11)

where by convention dom(GT) = dom(K).

Remark 10.2.11. The relatively complete assumption (see Definition 10.2.3) applied to a sequence
of pairs {(Bt, Rt+1)}t∈{0,..,T−1} would be asking that, for all t ∈ {0, .., T − 1}, the pair (Bt, Rt+1)
satisfies the RCR assumption, that is,

∀t ∈ {0, .., T − 1}, ∀x ∈ dom(Gt), ∃(Ut+1,Yt+1) ∈ Gt(x), P
(
Yt+1 ∈ dom(Gt+1)

)
= 1 .
(10.12)

At first glance, assuming K-compatibility of LBOs seems to be stronger than this assumption.
Indeed, we require that every admissible control leads to an admissible future state, instead of only
assuming the existence of at least one such control.

In fact, under the RCR assumption, the constraint Yt+1 ∈ dom(Gt+1) P-a.s. is implicit in the
definition of Bt(Rt+1): a control (Ut+1,Yt+1) such that Yt+1 /∈ dom(Gt+1) leads to an infinite
value of Bt(Rt+1)(x) since Yt+1 /∈ dom(Rt+1).

More precisely, consider a sequence of LBOs
{
Bet
}
t∈{0,..,T−1}, with associated operators

{
Get
}
t∈{0,..,T}

satisfying (10.12), and define {
RT = K

Rt = Bet (Rt+1) ∀t ∈ {0, .., T − 1} .

Then, we can define a new sequence of LBOs
{
Bt
}
t∈{0,..,T−1}, where Bt is equal to Bet with the

additional constraint that Yt+1 ∈ dom(Get+1) P-a.s.. In this case we can easily see that the sequence{
Bt
}
t∈{0,..,T−1} is K-compatible, and that

{
Rt
}
t∈{0,..,T} follows the Bellman recursion (10.10).

Finally, note that constructing Bt from Bet does not require multistage constraint propagation.
Without loss of generality, we will assume K-compatibility instead of (10.12). This is useful to
ensure that all states generated in the forward pass of the SDDP algorithm are admissible states.

♦

SDDP is an algorithm that iteratively constructs finite lower polyhedral approximations of the
sequence of functions

{
Rt
}
t∈{0,..,T−1} given by Equation (10.10). Starting from an initial point

x0 ∈ Rnx , the algorithm determines in a forward pass a sequence of states (xkt)t∈{0,..,T} at which

the approximations of the sequence
{
Rt
}
t∈{0,..,T−1} will be refined in the backward pass. More

precisely, a pseudo-code describing the abstract SDDP algorithm is given in Algorithm 10.1.

Lemma 10.2.12. Assume that R0(x0) is finite and that (Bt)t∈{0,..,T−1} is a K-compatible sequence
of LBO. Then, the (abstract) SDDP Algorithm 10.1 is well defined and there exists a sequence

(Lt)t∈{0,..,T−1} such that Rt is Lt-Lipschitz on its domain, and ‖λ(k)
t ‖∞ ≤ Lt.

Proof. We prove by induction that the points x
(k)
t is well defined during the forward passes of

SDDP. Let t = 0. By assumption, xk0 ∈ dom(G0). So xk1 = X
(k)
1 (ωk) exists as a solution of a finite

valued LP. Let t ≥ 1. By the induction hypothesis, we suppose that xkt is well defined and belongs

to dom(Gt). We set xkt+1 = X
(k)
t+1(ωk), which is well defined as a solution of a finite value LP. By

assumption the sequence
{
Bt
}
t∈{0,..,T−1} is K-compatible, hence xkt+1 ∈ dom(Gt+1), thus proving

the result at time t+ 1.

187

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

Algorithm 10.1: Abstract SDDP algorithm

Data: Initial point x0

Set R
(0)
t ≡ −∞

for k = 0, 1, . . . do
// Forward Pass : compute a set of trial points

{
xkt
}
t∈{0,..,T}

Randomly select ωk ∈ Ω;

Set xk0 = x0;
for t : 0→ T − 1 do

select Xk
t+1 ∈ St(R

k
t+1)

(
xkt
)
; // see Definition 10.2.2

set xkt+1 = Xk
t+1(ωk);

end
// Backward Pass : refine the lower-approximations at the trial points

Set Rk+1
T = K;

for t : T − 1→ 0 do

θk+1
t = Bt(Rk+1

t+1)(xkt) ; // cut coefficients (see Remark 10.2.6)

λk+1
t ∈ ∂Bt(Rk+1

t+1)(xkt) ;

βk+1
t := θk+1

t −
〈
λk+1
t , xkt

〉
;

set Ck+1
t : x 7→

〈
λk+1
t , x

〉
+ βk+1

t ; // new cut

Rk+1
t := max

{
Rkt , Ck+1

t

}
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end

We now prove by backward induction that λ
(k)
t is well defined during the backward passes of

SDDP, and that there exists Lt such that ‖λ(k)
t ‖∞ ≤ Lt. As K is a given LT Lipschitz-continuous

function, the property holds true for t = T . Let t ≤ T − 1. Assume that induction hypothesis
holds for t + 1. Then, by proposition 10.2.7, we know that Bt(Rk+1

t+1) is Lt-Lipschitz. We set

λk+1
t ∈ ∂Bt(Rk+1

t+1)(xkt), which is well defined as subgradient of a finite-valued polyhedral function.

As Bt(Rk+1
t+1) is Lt-Lipschitz on its domain, we are able to choose λk+1

t such that ‖λ(k+1)
t ‖∞ ≤ Lt.

�

From Lemma 10.2.12, proven in Appendix 10.6.2, we have the boundness of λ
(k)
t , from which we

can easily adapt the proof of Girardeau et al. (2014), to obtain the following convergence result.

Proposition 10.2.13. Assume that R0(x0) is finite and that (Bt)t∈{0,..,T−1} is a K-compatible
sequence of LBO. Further assume that, for all t ∈ {0, .., T} there exists compact sets Xt such that,
for all k, xkt ∈ Xt. In particular this is the case if Bt is compact for all t.

Then, the abstract SDDP algorithm generates a non-decreasing sequence (R
(k)
t)k∈N of lower

approximation of Rt, and limk R
(k)
0 (x0) = R0(x0).

This algorithm is abstract in the sense that it only requires a sequence of LBOs. In the following
section we show how it can be applied to approximate the Bellman value functions

{
Vt
}
t∈{0,..,T},

or to approximate the Fenchel transform of these functions.

10.3. Primal and dual SDDP

In this section we recall the usual SDDP algorithm applied to Problem (10.1). Next, leveraging
the results of Section 10.2, we introduce a dual SDDP algorithm, which is the abstract SDDP

188

10.3. Primal and dual SDDP

algorithm applied to the dual value functions. This eventually gives an exact upper bound over
the value of Problem (10.1). In this section, we denote by Vt the primal value functions, and by
Dt = [Vt]

?
the dual value functions.

10.3.1. Primal SDDP

10.3.1.1. Primal Dynamic Programming equations

Thanks to the discrete white noise Assumption 10.1.1, we can solve Problem (10.1) through
Dynamic Programming, computing backward the value functions

{
Vt
}
t∈{0,..,T} given by{

VT = K + χ
xT≤·≤xT

,

Vt = T et
(
Vt+1

)
,

(10.13)

where the primal Bellman operator T et : L0(Rnx ;R)→ L0(Rnx ;R) is defined as follows:

T et (R) : x 7→ inf
U t+1,X t+1

E
[
a>t x+ b>t+1U t+1

+R(X
t+1

)
]
, (10.14a)

s.t. X
t+1

= Atx+Bt+1U t+1
+ Ct+1ξt+1 , (10.14b)

Dtx+ Et+1U t+1
+Gt+1ξt+1 ≤ 0 , (10.14c)

ut+1 ≤ Ut+1 ≤ ut+1 , (10.14d)

xt ≤ x ≤ xt . (10.14e)

Constraint (10.14e) ensures that if x does not satisfies xt ≤ x ≤ xt, then T et (R)(x) = +∞. By
Definition 10.2.2, the operator T et is a LBO. The associated set valued mapping Get is defined by

Get (x) :=
{

(Ut+1,Xt+1) , s.t. constraints (10.14b)—(10.14e) are satisfied
}
.

We make the following assumptions.

Assumption 10.3.1.

1. The function K is polyhedral.

2. For all t ∈ {0, .., T − 1}, and all x ∈ dom(Get), there exists (U t+1,Xt+1) ∈ Get (x), such that
Xt+1 ∈ dom(Get+1), where by convention dom(GeT) = dom(K).

3. Problem (10.1) is finite valued.

Remark 10.3.2. Point 2 of Assumption 10.3.1, is equivalent to asking that for all t ∈ {0, .., T−1},
the pair (T et , Vt+1) follows the RCR assumption as stated in Definition 10.2.3. Note that this
assumption can be checked t by t, that is, without requiring backward constraint propagation. ♦

Following Remark 10.2.11, we define a more constrained sequence of primal LBOs
{
Tt
}
t∈{0,..,T−1}

by adding in each Problem (10.14) the constraint

Xt+1 ∈ dom(Get+1) , (10.14f)

so that the following Bellman recursion holds true:{
VT = K ,

Vt = Tt
(
Vt+1

)
.

(10.15)

189

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

The set valued mapping Gt associated to Tt is thus defined by

Gt(x) :=
{

(Ut+1,Xt+1) , s.t. constraints (10.14b)—(10.14f) are satisfied
}
, (10.16)

and is compact valued with compact domain.

Remark 10.3.3. For the sake of notational simplicity, we assume from now on that constraints (10.14d)-
(10.14e)-(10.14f) are embedded in Constraint (10.14c) (see an example of such an embedding in
Appendix 10.6.5). ♦

Lemma 10.3.4. Under Assumption 10.3.1, the sequence
{
Tt
}
t∈{0,..,T−1} is a K-compatible se-

quence of compact LBOs. Further, for any t ∈ {0, .., T − 1}, we have

Tt(R) : x 7→ E
(
T̂t(R)(x, ξt+1)

)
, (10.17)

where

T̂t(R) : (x, ξ) 7→ inf
ut+1,xt+1

a>t x+ b>t+1ut+1 +R(xt+1) , (10.18a)

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1ξ , (10.18b)

Dtx+ Et+1ut+1 +Gt+1ξ ≤ 0 , (10.18c)

where we used the change of notation given in Remark 10.3.3.

Proof. As Problem (10.1) is finite valued, the domain of each set valued mapping Gt is non empty.
Further, as Gt is compact valued with compact domain, each LBO Tt is compact (see Defini-
tion 10.2.2). The K-compatibility of

{
Tt
}
t∈{0,..,T−1} is a direct consequence of Remark 10.2.11.

Then, the reformulation as Equations (10.17) and (10.18) is the direct consequence of the
measurability properties of the pair (Ut+1,Xt+1) allowing the interchange between minimization
and expectation. �

To recover the optimal state and control trajectories from Bellman functions, we introduce the
set valued mappings:

Ŝt(R) : (x, ξ) 7→ arg min
xt+1

inf
ut+1

a>t x+ b>t+1ut+1 +R(xt+1) , (10.19a)

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1ξ (10.19b)

Dtx+ Et+1ut+1 +Gt+1ξ ≤ 0 . (10.19c)

10.3.1.2. Primal SDDP

We now apply the abstract SDDP algorithm presented in §10.2.3 to the primal Bellman operator
given by Equations (10.14). We denote, for all t ∈ {1, .., T}, and πξt := P(ξt = ξ) for all ξ ∈ supp(ξ).
The pseudocode is given in Algorithm 4.

Remark 10.3.5. Note that, the primal Bellman operator (10.14) is a specialized version of the
abstract Bellman operator used in Equation (10.10), which only involves pointwise operator in the

constraints. Hence, in the forward pass we just have to compute T̂t(V kt+1)(xkt , ξ
k
t+1) and do not need

to compute Tt(V kt+1)(xkt) which would involve a larger linear problem. Similarly, in the backward

pass at time t we solve |supp(ξt+1)| linear problem of the form T̂t(V k+1
t+1)(xkt , ξ

s
t+1) (instead of the

larger linear problem Tt(V k+1
t+1)(xkt)) and then perform an expectation. We will show in the sequel

that this is no more the case in the dual SDDP algorithm. ♦

190

10.3. Primal and dual SDDP

Algorithm 10.2: Primal SDDP algorithm

Data: Initial point x0, initial lower bounds V 0
t on Vt

for k = 0, 1, . . . do
Draw a noise scenario

{
ξkt
}
t∈{0,..,T};

// Forward Pass : compute a set of trial points
{
xkt
}
t∈{0,..,T}

Set xk0 = x0;
for t : 0→ T − 1 do

select xkt+1 ∈ Ŝt(V
k
t+1)(xkt , ξ

k
t+1) ; // see (10.19)

end
// Backward Pass : refine the lower-approximations at the trial points

Set V k+1
T = K;

for t : T − 1→ 0 do
for ξ ∈ supp(ξt+1) do

solve the linear program T̂t(V k+1
t+1)(xkt , ξ);

yielding θξ,k+1
t := T̂t(V k+1

t+1)(xkt , ξ) and λξ,k+1
t ∈ ∂T̂t(V k+1

t+1)(xkt , ξ) ;

end

λk+1
t :=

∑
ξ∈supp(ξt+1)

πξt+1λ
ξ,k+1
t ; // taking expectation

βk+1

t
:=

∑
ξ∈supp(ξt+1)

πξt+1(θξ,k+1
t −

〈
λξ,k+1
t , xkt

〉
);

V k+1
t := max

{
V kt (·) ,

〈
λkt , ·

〉
+ βk+1

t

}
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end

Proposition 10.3.6. Under Assumptions 10.1.1 and 10.3.1, the primal SDDP algorithm yields a

converging lower bound for the value of Problem (10.1). Further, the strategy induced by V
(k)
t is

converging toward an optimal strategy.

Proof. By Assumption 10.1.1 the sequence of value functions {Vt}t∈{0,..,T} can be obtained by
Dynamic Programming and follows the recursion (10.15). By Lemma 10.3.4, we have the K-
compatibility of the sequence of LBOs {Tt}t∈{0,..,T−1}. Further, as Tt is a compact LBO for any

t ∈ {0, .., T − 1}, the sequence {xkt }k∈N generated by the algorithm remains in a compact set.
Hence, we can apply Proposition 10.2.13.

Proof of the convergence of the strategy obtained can be found in Girardeau et al. (2014). �

10.3.2. Dual SDDP

We present here a dual SDDP algorithm, which leverages the conjugacy results of §10.2.2. We show
that the Fenchel conjugates of the primal value functions (Vt)t∈{0,..,T} follow a recursive equation
on which we apply the abstract SDDP algorithm 10.1.

191

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

10.3.2.1. Dual Dynamic Programming equations

By Definition 10.2.8, a straightforward computation shows that the dual LBO of Tt, is given by

T ‡t (Q) : λt 7→ inf
Λt+1,Nt+1≥0

E
[
− (C>t+1Λt+1 +G>t+1Nt+1)>ξt+1 +Q(Λt+1)

]
(10.20a)

s.t. at +A>t E
[
Λt+1

]
+D>t E

[
Nt+1

]
− λt = 0 (10.20b)

bt+1 +B>t+1Λt+1 + E>t+1Nt+1 = 0 , (10.20c)

where Λt+1 : Ω→ Rnx and Nt+1 : Ω→ Rnc are two ξt+1-measurable random variables.
In Equation (10.20), the function Q is a cost-to-go at time t+ 1 for the dual linear problem, λt

is a state variable, and (Λt+1,Nt+1) are control variables. Equations (10.20b) and (10.20c) define
the admissible control set of the problem.

Theorem 10.3.7. We assume that K is a polyhedral function and that Assumption 10.3.1 holds
true. For any t ∈ {0, .., T}, we denote Dt := V ?t , where Vt are the Bellman value functions obtained
by (10.15). Let, for all t ∈ {0, .., T}, Lt > 0 be such that Vt is Lt-Lipschitz (for the L1-norm) on its
domain. Then the sequence of dual value functions

{
Dt
}
t∈{0,..,T} satisfies the following backward

recursion:

DT = K? , (10.21a)

Dt = T ‡t,Lt+1
(Dt+1) ∀t ∈ {0, .., T − 1} , (10.21b)

where T ‡t,Lt+1
is defined by Equation (10.20), with the additional constraint ‖Λt+1(ω)‖∞ ≤ Lt+1.

Proof. From Lemma 10.3.4, we have that
{
Tt
}
t={0,..,T−1} is a K-compatible sequence of com-

pact LBOs, with the associated sequence
{
Vt
}
t={0,..,T} of Bellman functions defined by Equa-

tion (10.15). Let t ∈ {0, .., T − 1}. Consider the Lt-Lipschitz regularization of Vt defined by
V Ltt := Vt�(Lt‖ · ‖1) (see section 10.6.1 for details). The Bellman function Vt is Lt-Lipschitz
continuous on its domain (see proposition 10.2.7 for the existence of Lt), so that V Ltt coincides
with Vt on its domain, and is Lt-Lipschitz continuous everywhere. The K-compatibility property

implies that what only matters is the restriction of Vt+1 to dom(Gt+1), and thus Vt = Tt
(
V
Lt+1

t+1

)
.

Theorem 10.2.9 applies, so that

[Vt]
?

= T ‡t
([
V
Lt+1

t+1

]?)
.

As Vt+1 and Lt+1‖·‖1 takes values in (−∞,+∞], we have ((Bauschke et al., 2017, Corollary 13.24))[
V
Lt+1

t+1

]?
= [Vt+1]

?
+ χ

B∞(0,Lt+1)
,

where B∞(0, Lt+1) is the L∞-ball of radius Lt+1 centered in 0. Thus we have

Dt = T ‡t
(
Dt+1 + χ

B∞(0,Lt+1)

)
,

which precisely matches the backward recursion (10.21). �

Remark 10.3.8. Lemma 10.2.12 shows how to find such a sequence of Lipschitz constants
{
Lt
}
t∈{0,..,T}.

But in some cases we can directly derive Lipschitz constant on the value functions, and plug it into
Equation (10.21). ♦

10.3.2.2. Dual SDDP

From now on we assume that

192

10.3. Primal and dual SDDP

Assumption 10.3.9.
{
T ‡t,Lt+1

}
t∈{0,..,T−1} is K?-compatible.

This is ensured for example if all At in Problem (10.1) are square invertible matrices (see
Appendix 10.6.5).

The dual value functions
{
Dt
}
t∈{0,..,T} are solutions of a Bellman recursion (Theorem 10.3.7)

involving linear Bellman operators
{
T ‡t,Lt+1

}
t∈{0,..,T−1}, thus opening the door to the computation

of outer approximations
{
Dkt
}
t∈{0,..,T} by SDDP, as shown in Algorithm 5.

Algorithm 10.3: Dual SDDP algorithm

Data: Initial primal point x0, Lipschitz bounds
{
Lt
}
t∈{0,..,T}

for k = 0, 1, . . . do

// Forward Pass : compute a set of trial points
{
λ

(k)
t

}
t∈{0,..,T}

Compute

λk0 ∈ arg max‖λ0‖∞≤L0

{
x>0 λ0 −Dk0(λ0)

}
; // Fenchel transform

for t : 0→ T − 1 do

select λkt+1 ∈ arg min T ‡t,Lt+1
(Dkt+1)(λkt) ;

and draw a realization λkt+1 of λkt+1;

end
// Backward Pass : refine the lower-approximations at the trial points

Set DkT = K?. ;
for t : T − 1→ 0 do

θ
k+1

t := T ‡t,Lt+1
(Dk+1

t+1)(λkt) ; // computing cut coefficients

xk+1
t ∈ ∂T ‡t,Lt+1

(Dk+1
t+1)(λkt);

β
k+1

t := θ
k+1

t −
〈
λkt , x

k+1
t

〉
;

Ck+1
t : λ 7→

〈
xk+1
t , λ

〉
+ β

k+1

t ;

Dk+1
t = max

{
Dkt , Ck+1

t

}
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end

Lemma 10.3.10. For all t ∈ {0, .., T − 1}, (Dkt)? is a decreasing sequence of upper bounds of the
primal value function Vt: (Dkt)? ≥ Vt.

Proof. The sequence of functions Dkt is obtained by applying SDDP to the dual recursion (10.21),
which is an increasing sequence of lower-bounds of the function Dt by Proposition 10.2.13. By
conjugacy property, we obtain a decreasing sequence of functions (Dkt)∗ that are upper bounds of
the function D∗t = Vt. �

We have the following convergence theorem.

Theorem 10.3.11. Under assumptions 10.1.1, 10.3.1 and 10.3.9, (Dk0)?(x0) is a converging upper
bound to the value V (x0) of Problem (10.1), that is limk(Dk0)?(x0) = V0(x0).

Proof. We add a fictive time step t = −1, in order to approximate the Fenchel transform of Dk0 at

x0. More precisely, we define T ‡−1,L0
as follows

T ‡−1,L0
(R) := min

λ0:‖λ0‖∞≤L0

−x>0 λ0 +R(λ0) .

193

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

Then Algorithm 5 is the abstract SDDP Algorithm 10.1 applied to the Bellman recursion Dt =
T ‡t,Lt+1

(Dt+1) for t ∈ {−1, .., T − 1} and DT = K?. The initial point λ−1 is arbitrarily set to the
value 0 as D−1 is the constant function.

We check that, by definition of T ‡t,Lt , ‖λ
k
t ‖∞ ≤ Lt. Further, as V0 is L0 Lipschitz for the L1-norm,

the supremum of xT0 λ−V ?0 (λ) is attained for some λ0 such that ‖λ0‖∞ ≤ L0, thus we deduce that

D−1(0) = − [V]
??

(x0) = −V (x0) ∈ R. Finally, note that
{
T ‡t,Lt+1

}
t∈{−1,..,T} is a K?-compatible

sequence of LBOs.

Lemma 10.3.10 shows that, for any k ∈ N, −Dk−1(0) = [D0(x0)]
?

is an upper bound of V0(x0).
Finally, the convergence of the abstract SDDP algorithm and the lower semi-continuity of V0 at x0

yields the convergence of the upper bound. �

Remark 10.3.12. Recall that, in order to obtain an upper bound of the optimal value of Prob-
lem (10.1), the seminal method consists in computing the expected cost of SDDP’s strategy with a
Monte-Carlo approach (see discussion in §10.1.2). This approach has two weaknesses: it requires a
large number M of forward pass (simulation), and the obtained bound is only an upper bound with
(asymptotic) probability α, where the bound increases with α as well. Furthermore, the statistical
upper-bound is not converging toward the actual problem value, unless we also increase the number
of Monte Carlo simulations along the iterations.

In contrast to the Monte Carlo method, Theorem 10.3.11 shows that we obtain a converging
sequence of exact upper bounds for Problem (10.1). ♦

Remark 10.3.13. In the forward pass of Algorithm 5, we need to solve T ‡t,Lt+1
(Dkt+1)(λkt), which

in extended form reads

{
λk,ξt+1

}
ξ∈supp(ξt+1)

∈ arg min{
λξt+1

}
ξ∈supp(ξt+1)

inf
νt+1≥0

∑
ξ∈supp(ξt+1)

πξt+1

[
−
(
C>t+1λ

ξ
t+1

+G>t+1ν
ξ
t+1

)>
ξξt+1 +Dkt+1(λξt+1)

]
(10.22a)

s.t.
∑

ξ∈supp(ξt+1)

πξt+1(A>t λ
ξ
t+1 +D>t+1ν

ξ
t+1) = λkt (10.22b)

ct+1 +B>t+1λ
ξ
t+1 + E>t+1ν

ξ
t+1 = 0 ∀ξ , (10.22c)

‖λξt+1‖∞ ≤ Lt+1 . (10.22d)

Then drawing a random realization of λkt+1 consists in drawing ξ with respect to the law of ξt+1

and selecting λk,ξt+1.

In contrast with primal SDDP algorithm (see Remark 10.3.5), here we need to solve a linear
problem coupling all possible outcomes of the random variable ξt+1, both in the forward and in the
backward pass. In particular it means that we can also compute cuts during the forward pass, thus
rendering the backward pass optional. ♦

10.4. Inner-approximation strategy

In Section 10.3, we detailed how to use the SDDP algorithm to get an outer approximation{
Dt
}
t∈{0,..,T} of the dual value functions

{
Dt
}
t∈{0,..,T}. We now explain how to build an inner

approximation of the primal value functions
{
Vt
}
t∈{0,..,T} using this dual outer approximation.

Assume that,
{
Lt
}
t∈{0,..,T−1} is given by Lemma 10.2.12.

194

10.4. Inner-approximation strategy

10.4.1. Inner approximation of value functions

Let
{
Dkt
}
t∈{0,..,T} be the outer approximation of the dual value functions

{
Dt
}
t∈{0,..,T} obtained

at iteration k of the dual SDDP algorithm. We denote by
{

(xκt , β
κ

t)
}
κ∈{1,..,k} the cuts coefficients

computed by the dual SDDP algorithm:

Dkt (λ) = min
θ

θ , (10.23a)

s.t. θ ≥
〈
xκt , λ

〉
+ β

κ

t ∀κ ∈ {1, .., k} . (10.23b)

We define the linear inner approximation V
k

t of the primal value functions
{
Vt
}
t∈{0,..,T} as the

Lipschitz regularization of the Fenchel conjugate of the dual outer approximation.

Definition 10.4.1. We define V
k

t by

V
k

t =
[
Dkt
]?
�(Lt‖ · ‖1) ∀t ∈ {0, .., T} . (10.24)

From proposition 10.6.2 in appendix we have the following properties of V
k

t .

Proposition 10.4.2. For all t ∈ {0, .., T − 1} we have

i) V
k

t ≥ Vt on Xt.

ii) We have

V
k

t (x) = min
y∈Rnx ,σ∈∆

Lt‖x− y‖1 −
k∑
κ=1

σκβ
κ

t (10.25a)

s.t.

k∑
κ=1

σκx
κ
t = y , (10.25b)

where ∆ =
{
σ ∈ Rk | σ ≥ 0 ,

∑k
κ=1 σκ = 1

}
is the simplex of Rk.

iii) The inner approximation can be computed by solving

V
k

t (x) = sup
λ,θ

x>λ− θ (10.26a)

s.t. θ ≥
〈
xit , λ

〉
+ β

κ

t ∀κ ∈ {1, .., k} (10.26b)

‖λ‖∞ ≤ Lt . (10.26c)

iv) The Fenchel transform of the inner approximation is given by
[
V
k

t

]?
= Dkt + χ

B∞(0,Lt)
.

Proof. Let Xt be dom(Gt).

i) lemma 10.3.10 proves that
[
Dkt
]?
≥ Vt for all t ∈ {0, .., T}. Thus V

k

t ≥ Vt�(Lt‖ · ‖1), which is

equal to Vt on Xt as Vt is Lt-Lipschitz on its domain.

ii) Furthermore, the Fenchel conjugate
[
Dkt
]?

reads

[
Dkt
]?

(x) = sup
λ,θ

{
x>λ− θ | θ ≥

〈
xit , λ

〉
+ β

κ

t ∀κ ∈ {1, .., k}
}
,

195

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

[
Dkt
]?

(x) = sup
λ,θ

x>λ− θ

s.t. θ ≥
〈
xit , λ

〉
+ β

κ

t ∀κ ∈ {1, .., k} ,

which is a linear program admitting an admissible solution, hence by strong duality

[
Dkt
]?

(x) = min
σ∈∆

{
−

k∑
κ=1

σκβ
κ

t |
k∑
κ=1

σκx
κ
t = x

}
.

Taking the inf-convolution with Lt‖ · ‖ yields Problem (10.25).

iii) The right hand side of Equation (10.26) is simply
[
Dkt + χ

B∞(0,Lt)

]?
(x), which is equal to[

Dkt
]?
�
[
χ
B∞(0,Lt)

]?
(x) by finite polyhedrality, hence the result.

iv) Finally,
[
V
k

t

]?
=
[
Dkt
]??

+ χ
B∞(0,Lt)

.

�

Figure 10.4.1 illustrates how to interpret the dual outer approximation as a primal inner approx-
imation of the original value function (in black). The slopes x1, x2, x3 computed for the dual outer
approximation (blue curve, right) are breakpoints for the primal problem and we can consider the
value of the dual value function at these points to build a primal inner approximation (blue curve,
left).

x1 x2 x3

λ3

λ2
λ1

x

Primal

x1
x2

x3

λ

Dual

Figure 10.1.: Primal SDDP computes an outer approximation (in red) of the original value func-
tion (in black). Dual SDDP computes an outer approximation in the dual, whose
(regularized) Fenchel-transform (in blue) yields an inner approximation of the primal
problem.

10.4.2. A bound on the inner approximation strategy value

Hence, we have obtained inner approximations of the primal value functions. Such approximations
can be used to define an admissible strategy for the initial problem. We now study the properties
of such a strategy, proven in Appendix 10.6.2.

Theorem 10.4.3. Let
{
XIA
t ,U IA

t

}
t∈{0,..,T−1} be the state and control processes obtained by

applying the strategy induced by the inner approximation
{
V
k

t

}
t∈{0,..,T}, that is, (XIA

t+1,U
IA
t+1) ∈

196

10.5. Numerical results

St
(
V
k

t+1

)
(XIA

t). Consider the expected cost of this strategy when starting from state x at time t:

CIAt (x) = E
(T−1∑
τ=t

a>τ X
IA
τ + b>τ+1U

IA
τ+1 +K(XIA

T)
∣∣∣ XIA

t = x
)
.

Then,

CIAt (x) ≤ V kt (x) . (10.27)

Further, the inner approximation strategy is converging in the sense that limk→+∞ CIA,k0 (x0) =
V0(x0).

Proof. We proceed by backward induction on time t. The property holds for t = T .

Assume that CIAt+1 ≤ V
k

t+1. We have

CIAt (x) = E
[
a>t x+ b>t+1U

IA
t+1 + CIAt+1(XIA

t+1)
]

≤ E
[
a>t x+ b>t+1U

IA
t+1 + V

k

t+1(XIA
t+1)

]
by induction

= Tt
(
V
k

t+1

)
(x) by definition of U IA

t+1

≤ V kt (x) by Lemma 10.6.4

hence the result.
Finally, the convergence of the strategy is easily obtained. By definition of V0(x0), we have

CIA,k0 (x0) ≥ V0(x0). Furthermore, V0(x0) ≤ CIA,k0 (x0) ≤ V
k

0(x0). By Theorem 10.3.11, we know

that limk(V
k

0)(x0) = V0(x0). Hence the result. �

Remark 10.4.4. A similar result on the performance of an inner approximation is given in
Philpott et al. (2013). As already explained in §10.1.2, the authors construct polyhedral inner
approximations V t of the Bellman functions Vt. They then prove that the expected cost of the
policy based on the functions V t is always less than or equal to the deterministic upper bound given
by the inner approximation algorithm. ♦

We sum up the available inequalities for the values obtained when implementing the primal and
dual SDDP algorithms.

V 0(x0) ≤ V0(x0) ≤ V 0(x0) , (10.28a)

V 0(x0) ≤ CIA0 (x0) ≤ V 0(x0) , (10.28b)

V 0(x0) ≤ COA0 (x0) . (10.28c)

Equation (10.28a) corresponds to the deterministic bounds of the optimal value of Problem (10.1),
whereas Equations (10.28b) and (10.28c) are of statistical nature.

10.5. Numerical results

In this section, we present some numerical results applying dual SDDP and inner strategy eval-
uation to a stochastic operation planning problem inspired by Électricité de France (EDF, main
European electricity producer). The problem is about the energy production planning on a multi-
period horizon including a network of production zones, like in the European Market for electricity.
It results in a large-scale stochastic multi-stage optimization problem, for which we need to de-
termine strategies for the management of the European water dams. Such strategies cannot be

197

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

computed via Dynamic Programming because of the state variable size, so that SDDP is the
reference method to compute the optimal Bellman functions.

10.5.1. Description of the problem

We consider an operation planning problem at the European scale. Different countries are con-
nected together via a network, and exchange energy with their neighbors. We formulate the
problem on a graph, where each country is modeled as a node and each interconnection line be-
tween two countries as an edge (see Figure 10.2). Every country uses a reservoir to store energy,

FRA

SPAPT

UK

BEL

GER

SWI

ITA

Figure 10.2.: Schematic description of the European network

and must fulfill its own energy demand. To do so, it can produce energy from its reservoir, with
its local thermal power plant, or it can import energy from the other countries. A very similar
problem has already been studied by Mahey et al. (2017). Its formulation is close to the one given
in Shapiro et al. (2012) concerning the Brazilian interconnected power system.

Let G = (N , E) the graph modeling the European network. The number of nodes in N is denoted
by n and the number of edges in E by `. For each node i ∈ {1, .., n}, we denote by vit the energy
stored in the reservoir at time t. The reservoir’s dynamics is given by

vit+1 = vit + ait+1 − qit+1 − sit+1 , (10.29)

where ait+1 is the (random) water inflow in the reservoir and qit+1 is the water turbinated between
time t and t+1 in order to produce electricity. We add a spillage sit+1 as recourse variable to avoid
to overthrow the reservoir. Still at node i, the load balance equation at stage t writes

qit + git +
∑
j∈Ni

f jit + rit = dit , (10.30)

where git is the thermal production, Ni ⊂ N is the set of nodes connected to node i and f jit is the
energy exchanged between nodes j ∈ Ni and node i, dit is the (random) demand of the node and
rit ≥ 0 is a recourse variable added to ensure that the load balance is always satisfied. The thermal
production git and the exchanges f jit between node i and nodes j ∈ Ni induce linear costs, and
the cost of the recourse variable rit is taken into account through a linear penalization. Hence the
total cost attached to node i at time t writes

citg
i
t + δitr

i
t +

∑
j∈Ni

pjit f
ji
t , (10.31)

where cit is the thermal price, δit is the recourse price and pjit is the transportation price between
nodes j and i. To avoid empty stocks at the end of the time horizon, we penalize the final stock

198

10.5. Numerical results

at each node i if it is beyond a threshold vi0 using a piecewise linear function:

Ki(viT) = κiT max(0, vi0 − viT) . (10.32)

Stocks and controls are bounded:

• 0 ≤ vit ≤ vi, reservoir volume upper bound,

• 0 ≤ qit ≤ qi, reservoir generation upper bound,

• 0 ≤ git ≤ gi, thermal generation upper bound,

• 0 ≤ rit, recourse control lower bound,

• f ji ≤ f jit ≤ f
ji

, energy flow lower and upper bound.

This problem is formulated as a stochastic optimal control problem, where for all t,

• the state is vt = (v1
t , · · · , vnt) (denoted xt in §10.3),

• the control is ut = (qt, st, gt, rt, ft), with qt = (qit)i∈{1,..,n} and likewise for st, gt, rt and ft,

• the uncertainty is ξt = (ait, d
i
t)i∈{1,..,n}.

The state has dimension n, the control ut dimension 4n+ ` and the uncertainty ξt dimension 2n.
We assume that the random variables ξt have a discrete finite support. For a given realization

(at+1, dt+1) of the uncertainty, the primal Bellman operator T̂t, defined by (10.18), writes

T̂t(Vt+1)
(
vt, (at+1, dt+1)

)
= min
vt+1,qt+1,st+1,gt+1,rt+1,ft+1

n∑
i=1

(cit+1g
i
t+1 + δit+1r

i
t+1+∑

j∈Ni

pjit+1f
ji
t+1) + Vt+1(vt+1) , (10.33a)

s.t. vit+1 = vit − qit+1 − sit+1 + ait+1 , (10.33b)

qit+1 + git+1 +
∑
j∈Ni

f jit+1 + rit+1 = dit+1 , (10.33c)

0 ≤ vit+1 ≤ vi , 0 ≤ qit+1 ≤ qi , 0 ≤ rit+1 , (10.33d)

0 ≤ git+1 ≤ gi , f
ji ≤ f jit+1 ≤ f

ji
. (10.33e)

We rewrite Problem (10.33) in the standard form (10.1) with matrices (A,B,C) for the dynamics
and (D,E,G) for the constraints. We note that A is the identity matrix In. The expressions of

these matrices are given in §10.6.3. Then the expression (10.20) of the dual Bellman operator T ‡t
is obtained in a straightforward manner, namely

T ‡t,Lt+1
(Dt+1)(λt) = inf

λξt+1,ν
ξ
t+1≥0

∑
ξ∈supp(ξt+1)

πξ
[
− (ξξt+1)>C>λξt+1 − g>t+1ν

ξ
t+1 +Dt+1(λξt+1)

]
(10.34a)

s.t.
∑

ξ∈supp(ξt+1)

πξ(λ
ξ
t+1 +D>νξt+1) = λt (10.34b)

c̄t+1 +B>λξt+1 + E>νξt+1 = 0 ∀ξ , (10.34c)∥∥∥λξt+1

∥∥∥
∞
≤ Lt+1 , (10.34d)

199

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

where Lt a Lipschitz constant of Vt+1.

10.5.2. Numerical implementation

The forward and backward passes of dual SDDP are independent from the forward and backward
passes of primal SDDP. Accordingly, a first “natural” implementation of the whole algorithm runs
primal and dual SDDP in two independent processes, and thus enables to compute primal and
dual value functions in parallel.

However, each backward pass of the primal SDDP algorithm computes a set of cuts whose slopes
are

{
λt
}
t∈{0,..,T}. As explained in Figure 10.4.1, these slopes can be considered as trajectories for

the dual problem. If primal SDDP has converged, they are even the optimal co-state of the problem,
because of the Fenchel-Young equality. Thereby, it may prove useful to view these sequences of
slopes as trajectories for the dual problem, along which we run afterward a backward pass producing
cuts for the dual problem. In this implementation, each iteration of the algorithm consists of four
steps (the complete algorithm is given in §10.6.4):

1. Run a forward pass of primal SDDP Algorithm 4 and get trajectories
{
xt
}
t∈{0,..,T}.

2. Run a backward pass of primal SDDP Algorithm 4 along
{
xt
}
t∈{0,..,T} and obtain new

slopes
{
λt
}
t∈{0,..,T}.

3. Run a backward pass of dual SDDP Algorithm 5 along
{
λt
}
t∈{0,..,T}, thus updating the sets

of cuts for the dual problem.

4. Run a forward pass of dual SDDP Algorithm 5 and update the cuts along the obtained
trajectories.

The last step of this iteration ensures that we recover the convergence hypotheses of SDDP,
as given in Girardeau et al. (2014), by having one set of cuts computed at point sampled along
uncertainty drawn independently from the past. This algorithm has the same number of forward
and backward passes as the original one (one forward pass and one backward pass in both the
primal and the dual space). However, this scheme proves to be numerically more efficient, both
in term of convergence and computation time. That is why we use this implementation in all the
numerical experiments.

From the computational point of view, we implement primal and dual SDDP in Julia 0.6, with
the StochDynamicProgramming.jl package built on top of the JuMP modeler of Dunning et al.
(2017). We use Gurobi 7.02 to solve the LP subproblems. All experiments are run on a Intel Core
i7-5500 CPU @2.4GHz, 64bit computer.

10.5.3. Results

We consider the problem described at §10.5.1, which exhibits a 8-dimensional state. We aim to
compute the value functions

{
Vt
}
t∈{0,..,T} with monthly time steps, and we consider different time

horizons T , depending on the desired goal (illustration of convergence, comparison of bounds. . .).
The uncertainties in the model are the inflows at in the reservoir and the demands dt in every
considered countries. Inflows and demands trajectories are simulated using a software provided by
EDF, so that these data are realistic enough. From these simulated samples, we use quantization
methods to obtain the marginal laws of the uncertainty ξt at each t ∈ {0, .., T}. The support of
the quantized probability laws is limited to 10 possible values for ξt at each timestep t.

To solve the problem, we run primal and dual SDDP on 1,000 iterations, with a single forward
pass in the primal and in the dual.

200

10.5. Numerical results

10.5.3.1. Assessing convergence

To ease the description of the results, we denote by Primal LB the primal lower bound V 0(x0)
obtained by primal SDDP, and by Dual UB the upper bound [D0]

?
(x0) given by dual SDDP. The

Monte Carlo cost evaluation obtained by simulating the outer (resp. inner) strategy uses the
procedure described in §10.3.1.2, and is denoted by MC OA (resp. MC IA). Confidence intervals
(with a confidence level α = 97.5%) are associated to these Monte Carlo approximations, and we
denote by MC OA UB and MC IA UB the associated upper bounds of these intervals. Whereas Primal
LB and Dual UB are deterministic bounds, MC OA, MC IA MC OA UB and MC IA UB are statistical
quantities.

Solving the problem over a one-year time horizon. First, we run dual and primal SDDP on a
twelve months problem, that is, with T = 12. Convergence of the optimal costs given by dual and
primal SDDP is detailed in Figure 10.3. The two last columns in the table give the cumulative

0 200 400 600 800 1000
Iterations

870000

875000

880000

885000

890000

895000

900000

905000

910000

Dual UB
Primal LB
MC OA
MC IA

Iter. LB UB Gap Time LB Time UB

Unit ×105 ×105 % s s

50 8.861 9.577 8.08 2. 8.
100 8.874 8.969 1.06 3. 22.
200 8.890 8.910 0.21 8. 72.
300 8.891 8.904 0.14 13. 153.
400 8.891 8.900 0.09 20. 275.
500 8.891 8.898 0.08 29. 443.
600 8.891 8.897 0.06 38. 651.
700 8.891 8.896 0.05 49. 888.
800 8.891 8.896 0.04 61. 1191.
900 8.891 8.895 0.04 74. 1534.
1000 8.891 8.895 0.03 89. 1928.

Figure 10.3.: Convergence of primal and dual SDDP for T = 12. Time corresponds to cumulated
time along iterations.

computation times needed to run both primal and dual SDDP algorithms. We observe that the
upper bound Dual UB [D0]

?
(x0) given by dual SDDP converges towards the primal lower bound

Primal LB V 0(x0) given by primal SDDP, with a relative gap close to 0.03% after 1,000 iterations.
For this specific (with few time steps) example, the convergence of dual SDDP proves to be effective.
As noticed at Remark 10.3.13, running dual SDDP is much more time consuming than running

201

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

primal SDDP.

The outer and inner strategies are evaluated by Monte Carlo. An evaluation is performed every
50 iterations with an once for all given set of 10,000 scenarios, that is, a “large” sample. Both
evaluations MC OA and MC IA converge to the optimal value. We notice that MC IA is below Dual

UB, thus illustrating the result stated by Theorem 10.4.3.

Solving the problem over a three years time horizon. We now consider the same problem, but
over a three years horizon, that is, with T = 36. The convergence of primal and dual SDDP is
shown in Figure 10.4. Compared to Figure 10.3, we have materialized the confidence intervals

0 200 400 600 800 1000
Iterations

2980000

3000000

3020000

3040000

3060000

3080000

3100000

Dual UB
Primal LB
MC OA
MC IA
Confidence (97.5%)

Iter. LB UB Gap Time LB Time UB

Unit ×106 ×106 % s s

50 2.837 3.917 38.1 5. 20.
100 2.980 3.151 5.7 11. 74.
200 3.029 3.070 1.4 27. 267.
300 3.039 3.059 0.67 46. 592.
400 3.040 3.055 0.46 75. 1113.
500 3.041 3.051 0.34 108. 1783.
600 3.041 3.049 0.25 144. 2601.
700 3.041 3.048 0.21 187. 3585.
800 3.041 3.047 0.18 235. 4751.
900 3.041 3.046 0.15 296. 6140.
1000 3.041 3.046 0.13 360. 7545.

Figure 10.4.: Convergence of primal and dual SDDP for T = 36. Time corresponds to cumulated
time along iterations.

(here very thin) of the inner and outer strategies Monte Carlo simulations, both estimated every
50 iterations with an once for all given set of 10,000 scenarios. A first observation is that both dual
and primal SDDP exhibit a slower convergence than in the first example: after 1,000 iterations,
the gap between the primal lower bound Primal LB and the dual upper bound Dual UB is equal
to 0.13%. This well-known behavior of SDDP arises from the increasing number of time-steps (36
instead of 12). Moreover, Dual UB is still significantly decreasing after iteration 500, and it seems
that it converges more slowly than Primal LB.

A second observation is that the dual upper bound Dual UB is better than the statistical cost
value MC OA up to iteration 500. After the first 500 iterations, MC OA is better that Dual UB and

202

10.5. Numerical results

slightly fluctuates above the primal lower bound Primal LB (the remaining gap being around 0.1%
after 1,000 iterations).

Finally, on this example, the value of MC OA is greater than the value of MC IA at every iteration.
Surprisingly enough, the value of MC IA exhibits a more stable behavior than the one given by MC

OA. It would be interesting to be able to assess such behaviors.

10.5.3.2. Using the dual upper bound in a stopping criteria

Consider the problem over a three years time horizon. The gap between the two deterministic
bounds (primal lower bound Primal LB and dual upper bound Dual UB) against the number of
iterations is given in Figure 10.4. To complete these results, we give the evolution of the statistical
upper bound MC OA UB obtained by the outer strategy in Table 10.1. We aim at comparing two
stopping tests.

Iter. Primal LB (×106) Gap Dual UB (%) MC OA UB (×106) Gap MC OA UB (%)

50 2.837 38.1 3.392 19.6
100 2.980 5.7 3.310 11.1
200 3.029 1.4 3.137 3.6
300 3.039 0.67 3.069 1.0
400 3.040 0.46 3.059 0.62
500 3.041 0.34 3.046 0.18
600 3.041 0.25 3.046 0.18
700 3.041 0.21 3.046 0.15
800 3.041 0.18 3.046 0.16
900 3.041 0.16 3.045 0.14
1000 3.041 0.13 3.044 0.08

Table 10.1.: Statistical upper bound for T = 36.

Statistical stopping test: it is the stopping test proposed in Shapiro (2011) and which has been
detailed at §10.1.2. We choose a confidence level α = .975, and we estimate the statistical
upper bound MC OA UB every 50 iterations with a given set of 10,000 scenarios.

Dual stopping test: this stopping test is just based on the gap between the available deterministic
upper and lower bounds, namely Dual UB and Primal LB.

For different accuracy levels ε, as described by Shapiro (2011) we compare the CPU times taken
by these two tests in order to stop the SDDP algorithm. Results are given in Table 10.2. The

Dual stopping test Statistical stopping test

ε (%) n it. CPU time n it. CPU time

2.0 156 183s 250 618s
1.0 236 400s 300 787s
0.5 388 1116s 450 1429s
0.1 > 1000 . 1000 5519s

Table 10.2.: Comparing dual and statistical stopping criteria for different accuracy levels ε.

given times correspond to the total time required to run SDDP (including both the computation
of cuts and the computation of the stopping test). We notice that the dual stopping test gives
better results than the statistical stopping test: for ε ≥ 0.45%, it stops SDDP earlier and require
less computation time. Compared with the statistical test, the speed-up is between 3.3 for ε = 2%

203

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

and 1.3 for ε = 0.5%. However, the dual stopping test is penalized by the slow convergence of dual
SDDP. Indeed it cannot achieve a gap lower than 0.1 %, thus penalizing the performance of the
dual stopping test for high accuracy levels ε.

As a conclusion of these numerical experiments, the deterministic dual stopping test seems to
be better that the statistical stopping test, especially if restrictions on the CPU time impose to
perform a limited number of SDDP iterations (less than 500 in our case). Such a situation exists
in the energy field, as shown by the description of the Brazilian interconnected power system in
Shapiro et al. (2012).

Remark 10.5.1. We can also use the statistical upper bound MC IA UB obtained by evaluating
the inner strategy for the statistical stopping test designed by Shapiro. Indeed, in our numerical
experiments, this upper bound is always lower than the one given by the outer strategy. However,
this would require much longer computational time, as this approach combines the computation of
the dual cuts together with a Monte-Carlo estimation. ♦

10.5.3.3. Strengths and weaknesses of dual SDDP

Dual SDDP allows us to obtain a deterministic stopping criterion, which proves to be effective
compared to the standard statistical stopping test. Furthermore, dual SDDP computes cuts that
can be used to design an inner approximation strategy, which appears to be better than the outer
strategy whenever primal SDDP has not exactly converged.

However, we observe that the convergence of dual SDDP is penalized by different considerations.

• It is well-known from Shapiro (2011) that the convergence of SDDP is impacted by the
number of stages in the problem. This issue impacts both primal and dual SDDP.

• Furthermore, we notice that dual SDDP exhibits a slower convergence than primal SDDP.
In fact, primal SDDP computes its trajectories from a fixed initial point x0, whereas, as
explained at §10.3.2.2, dual SDDP updates its initial point λ0 at each iteration, with

λk0 ∈ arg max
‖λ0‖≤L0

{
x>0 λ0 −Dk0(λ0)

}
. (10.35)

• One iteration of dual SDDP takes longer than one iteration of primal SDDP. Indeed, dual
SDDP solves bigger LP problems than primal SDDP, as it has to consider explicitly a coupling
constraint (10.34b) between all samples. Dual SDDP would greatly benefit from a cuts
selection algorithm, which would limit the number of constraints added in the problem.

10.6. Conclusion

In this paper, we have described a new method to obtain an exact upper bound when using the
SDDP algorithm, the computation of which relies on applying SDDP to the Fenchel transform of
Bellman’s value functions. We thus have built a sequence of inner approximations

{
V t
}
t∈{0,..,T}

of the primal value functions
{
Vt
}
t∈{0,..,T}, and proved that the policy induced is converging to

an optimal policy, with guaranteed performance of the associated expected cost.
We have shown that under classical assumptions the sequence of upper bounds generated by the

algorithm converges to the problem optimal value.
We have taken advantage of the dual value functions to build a sequence of inner approximations

of the primal value functions. We proved that the policy induced by these inner approximations is
converging to an optimal policy, with guaranteed performance of the associated expected cost. We
tested dual SDDP and presented numerical results on a realistic stochastic production planning
problem, proving the effectiveness of dual SDDP and the underlying inner strategy. Furthermore,

204

10.6. Conclusion

we showed on this particular problem that using a dual stopping test outperforms the classical
statistical stopping test of SDDP, both in term of number of iterations and in term of computational
burden.

We plan to extend this study in several directions. First, an extension of dual SDDP to risk
averse or distributionally robust problems remains to be investigated. Second, the dual SDDP
algorithm does not decompose the computation of the dual LBOs uncertainty by uncertainty A
proper way to effectively decompose the dual subproblems is under study. Finally we want to
explore the interactions between primal and dual SDDP. For example, we think that the upper
bounds given by dual SDDP might be effective to regularize SDDP, for instance with the method
introduced by Van Ackooij et al. (2017).

205

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

Appendix

10.6.1. Recalls on convex analysis

We quickly recall some results that can be found in any convex analysis book. We follow the
definitions of Rockafellar (1970).

A convex extended real-valued function is proper if it never takes the value −∞ and is not
identically equal to +∞. A polyhedral subset of Rn is the finite intersection of closed half spaces,
and a polyhedral function is a function whose epigraph is a polyhedral set. In particular a polyhedral
function is convex l.s.c., but not necessarily proper. A non-proper polyhedral function takes value
−∞ on a polyhedral set, and +∞ elsewhere.

Let f : Rn → R be an extended real-valued function. By definition its Fenchel conjugate f? and
concave conjugate f? are defined as

f?(x?) := sup
x∈Rn

〈x? , x〉 − f(x) f?(x
?) := inf

x∈Rn
〈x? , x〉 − f(x) . (10.36)

Let f and −g be proper polyhedral functions. Then we have the following duality result
(see (Rockafellar, 1970, § 31))

Proposition 10.6.1 (Fenchel-Duality). If dom(f) ∩ dom(−g) 6= ∅, we have

inf
x
f(x)− g(x) = sup

x?
g?(x

?)− f?(x?) .

We end these recalls by results on Lipschitz regularization. For any proper functions f and g of
Rn we define the infimal convolution as

f�g : x 7→ inf
y∈Rn

f(y) + g(x− y) . (10.37)

Let f be a proper function of Rn, we denote fL its L-Lipschitz regularization – or Pasch Hausdorff
regularization – with respect to the L1-norm defined has

fL := f�(L‖ · ‖1) . (10.38)

We have the following properties (see (Bauschke et al., 2017, Corollary 12.19))

Proposition 10.6.2. Let f be a proper function of Rn, and L be a positive number. Then, fL is
the largest L-Lipschitz function that is lower than f . In particular we have

• fL is a lower approximation of f : fL ≤ f ,

• fL is L-Lipschitz with respect to the L1 norm,

• if f is L-Lipschitz on its domain, then for all x ∈ dom(f), fL(x) = f(x).

10.6.2. Omitted proofs

Lemma 10.6.3. We have,

T ‡t,L
(
Dkt+1

)
≥ Dkt ∀t ∈ {0, .., T} . (10.39)

Proof. Equation (10.39) is satisfied for k = 0. Assume that Equation (10.39) holds at iteration

k. By definition of Ck+1 in Algorithm 5, we have Ck+1 ≤ T ‡t,Lt+1
(Dk+1

t+1). On the other hand,

by monotonicity of T ‡t,Lt+1
, since Dk+1

t+1 ≥ D
k
t+1, we have T ‡t,Lt+1

(
Dk+1
t+1

)
≥ T ‡t,Lt+1

(
Dkt+1

)
which is

greater than Dkt by induction hypothesis. Thus, T ‡t,Lt+1

(
Dk+1
t+1

)
≥ max

{
Dkt , Ck+1

}
= Dk+1

t .

206

10.6. Conclusion

�

Lemma 10.6.4. Let V
k

t be the inner approximation of the value function Vt generated at iteration k
of the dual SDDP algorithm. Then,

Tt(V
k

t+1)(x) ≤ V kt (x) ∀t ∈ {0, .., T} . (10.40)

Proof. We have[
Tt(V

k

t+1)
]?

= T ‡t
([
V
k

t+1

]?)
by Theorem 10.2.9

= T ‡t
(
Dkt+1 + χ

B∞(0,Lt+1)

)
by Proposition 10.4.2

= T ‡t,L
(
Dkt+1

)
≥ Dkt by Lemma 10.6.3

Furthermore, as Tt(V
k

t+1) is polyhedral, we have

Tt(V
k

t+1) =
[
Tt(V

k

t+1)
]??
≤
[
Dkt
]?

,

and as V
k

t+1 is Lt+1-Lipschtiz, then Tt(V
k

t+1) is Lt-Lipschtiz, thus Tt(V
k

t+1) ≤
[
Dkt
]?
�(Lt‖ · ‖)

which ends the proof. �

10.6.3. Numerical settings

We describe the problem in §10.5 with dynamics and constraint matrix.

A = In , B = −(In In 0n 0n 0qn) , C = (In 0n) , (10.41)

where In is the identity matrix and 0n the square null matrix with size n. The costs vector becomes
at = 0 and bt = (0 0 ct tt pt)

>. The constraints matrix write

D =
(
0n 0n 0n 0n 0n 0n 0qn 0qn A −A

)>
, (10.42)

and

E =

In 0n 0n 0n 0qn
−In 0n 0n 0n 0qn
0n −In 0n 0n 0qn
0n 0n In 0n 0qn
0n 0n −In 0n 0qn
0n 0n 0n −In 0qn
0qn 0qn 0qn 0qn Iq
0qn 0qn 0qn 0qn −Iq
In 0n In In R

B
−B

, (10.43)

and
gt+1 =

(
q 0 0 g 0 0 f f dt+1 dt+1 (v − at+1) at+1

)>
(10.44)

207

Chapter 10. Exact converging bounds for SDDP via Fenchel duality

10.6.4. Exhaustive primal-dual SDDP algorithm

Algorithm 10.4: Primal-Dual SDDP algorithm

Data: Lipschitz bounds {Lt}t∈{0,..,T}
for k = 0, 1, . . . do

Draw a noise scenario
{
ξk
t

}
t∈{0,..,T};

begin
Primal Forward Pass : compute a set of trial points

{
xkt
}
t∈{0,..,T};

Primal Backward Pass: refine primal value functions V kt along
{
xkt
}
t∈{0,..,T};

Fetch computed cuts
{
λk+1
t

}
t∈{0,..,T};

Dual Backward Pass: refine dual value functions
{
Dk+ 1

2
t+1

}
t∈{0,..,T}

along
{
λk+1
t

}
t∈{0,..,T};

end

Draw a new noise scenario
{
ξ
k

t

}
t∈{0,..,T};

begin

Compute λk0 ∈ arg max‖λ0‖≤L0

{
x>0 λ0 −Dk0(λ0)

}
;

Dual Forward Pass: compute a set of trial points
{
λ
k

t

}
t∈{0,..,T} and update directly

dual value functions
{
Dk+1
t+1

}
t∈{0,..,T};

end

end

10.6.5. Compatibility of the primal and dual Bellman operators

We consider Problem (10.1) and its associated recursive Bellman equation. Ignoring the constant
term a>t x, this equation rewrites as a linear Bellman operator

Bt(Vt+1)(x) = inf
U ,Y

E
[
b>t+1U + Vt+1(Y)

]
,

s.t. Tx+Wu(U) +Wy(Y) ≤H ,

with the notation T = [At − At 0 0 0 0 Dt]
>, Wu = [Bt+1 −Bt+1 I − I 0 0 Et+1]>, Wy =

[−I I 0 0 I −I 0]> and H = [−Ct+1ξt+1 Ct+1ξt+1 ut+1 −ut+1 xt+1 −xt+1 −Gt+1ξt+1]>.

Denoting by µ = (µ1, . . . ,µ7) the multiplier associated to the constraint of this problem, the
Fenchel conjugate of Bt(Vt+1) writes

B‡t (V ?t+1)(λ) = inf
µ,ν

E
[
(µ1 − µ2)>Ct+1ξt+1 − µ

>
3
ut+1 + µ>

4
ut+1 − µ>5 xt+1

+ µ>
6
xt+1 + µ>

7
Gt+1ξt+1 + V ?t+1(ν)

]
,

s.t. A>t E
[
µ1 − µ2

]
+D>t E

[
µ7

]
= −λ ,

B>t+1

(
µ1 − µ2

)
+
(
µ3 − µ4

)
+ E>t+1µ7 = bt+1 ,

−
(
µ1 − µ2

)
+
(
µ5 − µ6

)
= ν ,

µ1 ≤ 0 , µ2 ≤ 0 , µ3 ≤ 0 , µ4 ≤ 0 , µ5 ≤ 0 , µ6 ≤ 0 , µ7 ≤ 0 .

208

10.6. Conclusion

We make the following assumption:

∀λ ∈ Rn, ∃µa ∈ Rn, ∃µb ∈ Rp, µb ≤ 0 such that A>t µa +D>t µb + λ = 0 .

Note that this assumption is fulfilled if At is a (square) full rank matrix. Then, with any arbitrary
non positive random variables µ5 and µ6, the pair of random vectors (µ,ν) defined by

• µ =
(

(µa)−,−(µa)+, (bt+1 −B>t+1µa − E>t+1µb)
−,−(bt+1 −B>t+1µa − E>t+1µb)

+,µ5,µ6, µb

)
,

• ν = −µa + (µ5 − µ6),

satisfies the constraints of the optimization problem associated to the computation of B‡t (V ?t+1)(λ).
Such a pair (µ,ν) exists for all possible values of λ. Moreover, ν linearly depends on the difference
µ5−µ6, µ5 and µ6 being any arbitrary negative random variables, so that ν can take any possible

value in Rn. We thus deduce that the domain of the dual constraint set valued mapping G‡t , defined
by Equation (10.8), is equal to the whole space Rn, so that the sequence of dual linear Bellman

operators
(
B‡t
)
t∈{0,..,T−1} is compatible.

209

Chapter 11.

A complement on Fenchel duality and
Dynamic Programming

This chapter is a joint work with Maël Forcier. The author thanks him warmly for his precious
help.

11.1. Introduction

This chapter is a complement of Chapter 10. It gives a proof of convergence for the abstract
SDDP algorithm and some interpretation concerning the dual version of the algorithm. We refer
to Philpott and Guan (2008) for the first proof of SDDP, in the linear case, and to Girardeau et al.
(2014) for an extension of the proof in the convex case.

11.2. Alternating forward and backward passes

We reconsider the notation introduced in Chapter 10. SDDP approximates the original value
functions {Rt} as a supremum of affine cuts {Rkt }

Rkt (x) = max
κ=1,··· ,k

{
〈
λκt , x− xκt

〉
+ θκt } , ∀x ∈ Xt , (11.1)

where the parameters {θκt , xκt , λκt }κ=1,··· ,k are computed iteratively. We view x→
〈
λκt , x−xκt

〉
+θκt

as an affine cut.

At iteration k, SDDP updates the set of value functions {Rkt } by sampling a new set of param-
eters (θkt , x

k
t , λ

k
t) to refine the piecewise approximation.

Forward pass. SDDP samples iteratively primal points by considering the value functions {Rkt }

xk0 xk1 · · · xkT ,

such that
ωkt ∈ Ωt

Xk
t+1 = St(Rkt+1)(xkt)

xkt+1 = Xk
t+1(ωkt) .

(11.2)

Backward pass. SDDP updates the cost-to-go by considering new cuts computed backward:

λk+1
T λk+1

T−1 · · · λk+1
0 ,

211

Chapter 11. A complement on Fenchel duality and Dynamic Programming

and new values θk+1
t satisfying {

θk+1
t = Bt(Rk+1

t+1)(xkt)

λk+1
t = ∂Bt(Rk+1

t+1)(xkt) .
(11.3)

Then, it updates the value function Rkt by

Rk+1
t (·) = max{Rkt (·),

〈
λk+1
t , · − xkt

〉
+ θk+1

t } . (11.4)

We note that for all iteration k, the approximated value functions {Rkt } depends on parame-
ters {θκt , xκt , λκt }κ=1,··· ,k, computed during previous iterations. To ease the notation, we define the
cuts operator Ct:

Ct(x1:k
t , θ1:k

t , λ1:k
t)(x) = max

κ=1,··· ,k
{
〈
λκt , x− xκt

〉
+ θκt } . (11.5)

11.3. A proof of convergence of abstract SDDP

We adapt the proof of SDDP presented in Girardeau et al. (2014).

Q-value function. We define the intermediate Q value function by, for all functions R

Qt(R)(U ,Y) = E
[
C>t U +R(Y)

]
=

|Ω|∑
i=1

πi
[
Ct(ωi)

>Ut(ωi) +R
(
Y (ωi)

)]
. (11.6)

By definition the Bellman operator Bt satisfies

Bt(R)(xt) = inf
(U ,Y)∈Gt(xt)

Qt(R)(U ,Y) , ∀xt ∈ Xt . (11.7)

We recall basic facts about the SDDP algorithm.

Fact 11.3.1. Let t ∈ {0, .., T − 1} and {Rkt }k∈N value functions generated by the above procedure.
Then, the value functions are lower-bounds of the original value function Rt

Rkt ≤ Rt , ∀k ∈ N . (11.8)

Fact 11.3.2. Let t ∈ {0, .., T − 1}, Rkt and Rkt+1 the approximated value function at time t and
t+ 1, and Bt the Bellman operator. Then, we have, at iteration k ∈ N and xkt sampled during the
forward pass:

Rkt (xkt) = Bt(Rkt+1)(xkt)

Rkt (x) ≤ Bt(Rkt+1)(x) , ∀x ∈ Xt .
(11.9)

Sketching the proof in three steps. The proof of abstract SDDP is divided in three steps:

1. First, we prove that the value functions converge along the sampled trajectories;

2. Then, we prove the convergence along all state process generated by the noise process;

3. Finally, we state the final theorem.

212

11.3. A proof of convergence of abstract SDDP

11.3.1. Convergence along sampled trajectories

We first prove that SDDP converges along the state trajectories corresponding to the noise scenarios
ωk = (ωk0 , · · · , ωkT) sampled during the forward passes of SDDP.

We begin to prove the convergence by shifting the iteration and prove that the value function
Rk+1
t converges to the original value function Rt along the points xkt sampled during SDDP forward

passes.

Lemma 11.3.3. Consider the approximated value functions {Rkt }k∈N and sequence of state val-
ues {xkt }k∈N sampled by the above procedure. Let t ∈ {0, .., T − 1}. We suppose that

lim
k→∞

Rt+1(Xk
t+1(ωt))−Rkt+1(Xk

t+1(ωt)) = 0 , ∀ωt ∈ Ωt . (11.10)

Then,
lim
k→∞

Rt(x
k
t)−Rk+1

t (xkt) = 0 , (11.11a)

and
lim
k→∞

Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk
t ,X

k
t+1) = 0 . (11.11b)

Proof. We have, for all xkt ∈ Xt,

Rk+1
t (xkt) = max

κ≤k+1
θκt +

〈
λκt , x

k
t − xκ−1

t

〉
≥ θk+1

t by taking κ = k + 1

= Bt(Rk+1
t+1)(xkt)

≥ Bt(Rkt+1)(xkt) as Rkt+1 ≤ R
k+1
t+1 and Bt is monotone

= inf
(U ,Y)∈Gt(xkt)

Qt(Rkt+1)(U ,Y)

= Qt(Rkt+1)(Uk
t ,X

k
t+1) as Xk

t+1 ∈ St+1(Rkt+1)(xkt)

Thus, we have :

0 ≤ Rt(xkt)−Rk+1
t (xkt) ≤ Rt(xkt)−Qt(Rkt+1)(Uk

t ,X
k
t+1)

= Rt(x
k
t)− E

[
C>t U

k
t +Rkt+1(Xk

t+1)
]

= Rt(x
k
t)− E

[
C>t U

k
t +Rt+1(Xk

t+1)−Rt+1(Xk
t+1) +Rkt+1(Xk

t+1)
]

= Rt(x
k
t)− E

[
C>t U

k
t +Rt+1(Xk

t+1)
]

+ E
[
Rt+1(Xk

t+1)−Rkt+1(Xk
t+1)

]
= Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk

t ,X
k
t+1) + E

[
Rt+1(Xk

t+1)−Rkt+1(Xk
t+1)

]
≤ E

[
Rt+1(Xk

t+1)−Rkt+1(Xk
t+1)

]
,

Indeed by definition of Bt(Rt+1)(xkt), and as (Uk
t ,X

k
t+1) ∈ Gt(xkt) is admissible, we have

Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk
t ,X

k
t+1) ≤ 0 .

So, noting Ak := E
[
Rt+1(Xk

t+1)−Rkt+1(Xk
t+1)

]
we get the following inequalities

0 ≤ Rt(xkt)−Rk+1
t (xkt) ≤ Ak ,

−Ak ≤ Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk
t ,X

k
t+1) ≤ 0 .

213

Chapter 11. A complement on Fenchel duality and Dynamic Programming

But by induction hypothesis :

lim
k→∞

Ak = lim
k→∞

E
[
Rt+1(Xk

t+1)−Rkt+1(Xk
t+1)

]
=

|Ω|∑
i=1

πi lim
k→∞

(
Rt+1(Xk

t+1(ωi))−Rkt+1(Xk
t+1(ωi))

)
= 0 .

As a consequence, we have

lim
k→∞

Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk
t ,X

k
t+1) = 0 ,

lim
k→∞

Rt(x
k
t)−Rk+1

t (xkt) = 0 .

Hence the results. �

Now, we extend the result of Lemma 11.3.3 by proving the convergence for Rk, without index
shifting. To do so, we need the following lemma.

Lemma 11.3.4. Let g a convex function and X a compact. Suppose there exists a sequence of
α-Lipschitz convex functions gk satisfying

gk(x) ≤ gk+1(x) ≤ g(x) , ∀k ∈ N,∀x ∈ X . (11.14)

Then for any infinite sequence (xk)k ∈ XN

lim
k→∞

g(xk)− gk+1(xk) = 0⇐⇒ lim
k→∞

g(xk)− gk(xk) = 0 . (11.15)

Proof. This is a direct application of (Girardeau et al., 2014, Lemma A1) with κ = 1 and gk = fk−1.
�

Lemma 11.3.5. Consider the approximated value functions {Rkt }k∈N and sequence of state val-
ues {xkt }k∈N sampled by the above procedure. Let t ∈ {0, .., T − 1}. We suppose that

lim
k→∞

Rt+1(Xk
t+1(ωt))−Rkt+1(Xk

t+1(ωt)) = 0 , ∀ωt ∈ Ωt . (11.16)

Then,
lim
k→∞

Rt(x
k
t)−Rkt (xkt) = 0 . (11.17)

Proof. By Lemma 11.3.3 we have,

lim
k→∞

Rt(x
k
t)−Rk+1

t (xkt) = 0 .

We have also proven for all k that ||λkt ||∞ ≤ Lt, so Rkt (.) = max
κ≤k

θκt +
〈
λκt , · − xκ−1

t

〉
is Lispchitz

continuous with constant Lt. By applying Lemma 11.3.4 to {Rkt }k, Rt and {xkt }k, we get

lim
k→∞

Rt(x
k
t)−Rkt (xkt) = 0 .

Hence the results. �

214

11.3. A proof of convergence of abstract SDDP

11.3.2. Proving the convergence for all atoms

We extend the convergence property for all realizations of the discrete noise process. This result
relies on the law of large numbers: as for all i, πi > 0 the set St,i := {k ∈ N | ωkt = ωi} is infinite.

Let t ∈ {0, .., T − 1} and ε > 0. We define the set corresponding to the iterations k ∈ N where
the discrepancy between the original value function Rt and its approximation Rkt is above ε along
the state Xk

t sampled during the forward passes:

Kt,i,ε = {k ∈ N | Rt(Xk
t (ωi))−Rkt (Xk

t (ωi)) ≥ ε} . (11.18)

We define accordingly two Boolean stochastic processes {vki }k, {yki }k as

ykt,i = I{ωkt =ωi} = I{k∈Si}
vkt,i = I{k∈Kt,i,ε} .

At iteration k, vkt,i states whether the approximation Rkt as converged for the realization ωi, and

ykt,i states whether the noise ωi has been selected during the forward pass.
We define the selection stochastic process as

yk = {yki }t∈{0,..,T},i∈Ωt , (11.19)

that corresponds to the nodes selected at iterations k. We prove that if we know the realization of
the process {yk}k we are able to deduce the realization of the process vkt,i.

As we deal with information, we introduce the σ-field corresponding to information brought by
the process yk up to iteration k:

Fk = σ({yκ}κ∈{1,..,k}) , (11.20)

and the σ-field corresponding to the available information during pass k:

Fk→t = σ(Fk−1, {yks,i}1≤s≤t) . (11.21)

Lemma 11.3.6. The random variable vkt,i is measurable w.r.t. Fk→t−1:

σ(vki) ⊂ F→t−1
k .

Proof. Let k ∈ N. Using the cut operator defined in Equation (11.5), we have that

Rkt = Ct({xκt , θκ+1
t , λκ+1

t }κ=1,··· ,k) , (11.22)

thus, the approximated value function Rkt depends on trajectories previously sampled. We deduce
that the function Rkt is a random variable. We have:

• The previously selected noises {ωks }1≤s≤t depend on {yks,i}1≤s≤t.

• By Equation (11.2), Xk
t depends on previous selected noises {ωks }1≤s≤t and on current value

functions Rkt .

• By Equation (11.3), θk+1
t and λk+1

t depend on xkt and on Rk+1
t .

We deduce that Xk
t is measurable w.r.t. σ(Fk,Fk→t), and we prove by backward induction that

θk+1
t and λk+1

t (and thus Rk+1
t by Equation (11.22)) are measurable w.r.t. Fk.

Furthermore, we have that

vki = I{k∈Ki,ε} = I{Rt(Xkt (ωi))−Rkt (Xkt (ωi))≥ε}
, (11.23)

215

Chapter 11. A complement on Fenchel duality and Dynamic Programming

thus vki depends on Xk
t and Rkt . We deduce that

σ(vki) ⊂ σ(Fk→t,Fk−1) = Fk→t . (11.24)

Hence the results. �

We recall Lemma A3 of Girardeau et al. (2014) :

Lemma 11.3.7. Let {v}k∈N be a Boolean stochastic process in {0, 1} adapted to a filtration
(Fk)k∈N such that the number of terms that are non zero are almost surely infinite. Let {yk}k∈N be
a sequence of i.i.d. discrete random variables. Define the filtration Gk := (σ(Fk ∪ σ(y1, ..., yk−1))
and assume that for all k ∈ N, yk is independent of Gk. Let χ an extraction such that {k | vk =
1} = {χ(k) | k ∈ N?}. Finally we define

zk := yχ(k) .

Then (zk)k∈N is a sequence of i.i.d. random variables equal in law to y0.

Proof. See the technical proof in (Girardeau et al., 2014, Lemma A3). �

We deduce from the two previous lemma the following results.

Lemma 11.3.8. Consider the approximated value functions {Rkt }k∈N, sequence of state pro-
cess {Xk

t }k∈N and noise trajectories {ωkt }k∈N sampled by the above procedure. We suppose that

lim
k→∞

Rt(X
k
t (ωkt))−Rkt (Xk

t (ωkt)) = 0 , (11.25)

then we obtain the almost-sure convergence, for all ωi ∈ Ωt

Rt(X
k
t (ωi))−Rkt (Xk

t (ωi)) = 0 . (11.26)

Proof. By contradiction, we suppose there exists ωi ∈ Ωt such that

Rt(X
k
t (ωi))−Rkt (Xk

t (ωi)) 9
k→∞

0 .

There exists an ε > 0 such that the set Ki,ε (defined in Equation (11.18)) is infinite.

We can then define an extraction χ such that

{χ(k), k ∈ N} = Ki,ε . (11.27)

We define the Boolean stochastic processes {zk}k as

zk = y
χ(k)
t,i . (11.28)

By Lemma 11.3.7, we know that the process {zk}k is a sequence of i.i.d random variables equal in
law to y1

t,i.

According to the law of large number, we should have almost surely:

1

N

N∑
k=1

zk −→
N→∞

E(z1) = E(y1
t,i) = P(y1

t,i = 1) = P(ω1 = ωi) = πi > 0.

But by the convergence hypothesis (11.25), we have that Ki,ε ∩ Si = {k ∈ N | Rt(Xk
t (ωk)) −

216

11.4. Conclusion

Rkt (Xk
t (ωk)) ≥ ε , ωk = ωi} is finite a.s. Then,

0 ≤ 1

N

N∑
k=1

zk ≤ 1

N

∞∑
k=1

zk =
1

N

∑
k∈Ki,ε

yki =
|Ki,ε ∩ Si|

N
−→
N→∞

0. a.s.

We obtain a contradiction. Hence the conclusion. �

11.3.3. Convergence of abstract SDDP

We are now able to prove the convergence of the overall abstract SDDP algorithm.

Theorem 11.3.9. Let t ∈ {0, .., T − 1}, {Rkt }, {xkt } and {Xk
t } generated by the above procedure.

We have the almost-sure convergences

lim
k→∞

Rt(X
k
t (ωi))−Rkt (Xk

t (ωi)) = 0 , ∀ωi ∈ Ωt , (11.29a)

lim
k→∞

Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk
t ,X

k
t+1) = 0 . (11.29b)

Proof. We prove (11.29a) by backward induction on t. Since for all k, RT = RkT = K, the induction
hypothesis is true at time T . We now suppose that the induction hypothesis is true at time t+ 1
where t ≤ T − 1.

By applying Lemma 11.3.5 and Lemma 11.3.8 we obtain the first inequality (11.29a):

lim
k→∞

Rt(X
k
t (ωi))−Rkt (Xk

t (ωi)) = 0 , ∀ωi ∈ Ωt . (11.30)

Thanks to Lemma 11.3.3 we have (11.29b):

lim
k→∞

Bt(Rt+1)(xkt)−Qt(Rt+1)(Uk
t ,X

k
t+1) = 0 . (11.31)

Hence the convergence of the abstract SDDP algorithm. �

11.4. Conclusion

In this chapter, we extend Chapter 10 by adapting the proof of convergence of Girardeau et al.
(2014) to the abstract SDDP algorithm introduced in §10.2.3. We then detail some numerical
schemes to combine primal SDDP with dual SDDP. We refer to the conclusion of Chapter 10 for
an overview of the possible extensions.

217

Conclusion

It is good to have an end to journey
towards; but it is the journey that
matters, in the end.

Ursula K. Le Guin

This last chapter concludes three years of works between the Optimization and Systems group
— at CERMICS — and Efficacity — a French institute for energy transition. This work is in
continuation of previous scientific works done at the Optimization and Systems group, and develops
some ideas introduced in several PhD theses (Girardeau, 2010)-(Alais, 2013)-Leclère (2014).

We sum up hereafter the different contributions and perspectives for each chapter of this manuscript.

Contributions

The main contributions of this thesis are the following.

• In Chapter 3, we have framed different existing stochastic algorithms in a common framework
that allows to classify online policies generation methods.

• In Chapter 4, we have introduced a proper modelling for urban microgrids. This modelling
proves to be tractable for the use of stochastic optimization algorithms.

• In Chapter 5, we have compared the performance of three online policies — a heuristic, a
lookahead policy based on the Model Predictive Control (MPC) algorithm and a cost-to-go
policy based on the Stochastic Dual Dynamic Programming (SDDP) algorithm — to the
control of a domestic microgrid equipped with a micro-Combined Heat and Power generator
and a battery. Numerical results have illustrated that whereas optimization based policies
outperformed the heuristic, the performance of MPC and SDDP were too close to conclude
on the predominance of one algorithm over the other.

• In Chapter 6, we have extended the comparison between the SDDP based cost-to-go policy
and the MPC based lookahead policy, by dealing more carefully with the online information
brought by the past realizations of uncertainties. We have applied these policies to another
domestic microgrid example, this time equipped with solar panels and battery. Numerical
results have depicted the effectiveness of the SDDP based policy, which has yielded better
results in assessment than the MPC based policy.

• In Chapter 7, we have broadened the formalism lying behind multistage stochastic decompo-
sition algorithms by considering generic coupling constraints between spatial units. We have
presented in this formalism two decomposition algorithms, based respectively on price de-
composition and resource decomposition. We have displayed conditions under which spatial
and temporal decompositions are compatible.

• In Chapter 8, we have applied the price and resource decomposition algorithms to coupling
constraints formulated on a graph. We have compared these two decomposition algorithms
with a state-of-the-art SDDP solver, and showed the effectiveness of the decomposition
algorithms to solve large-scale problems (w.r.t. the number of state variables).

219

Chapter 11. A complement on Fenchel duality and Dynamic Programming

• In Chapter 9, we have presented the results of a common work with Pierre Carpentier,
Jean-Philippe Chancelier and Vincent Leclère, aiming to apply decomposition algorithms on
dams-valley problems. This chapter originated from an article published in 2018 (Carpentier
et al., 2018b).

• In Chapter 10, we have inserted the result of another common work — this time with Pierre
Carpentier, Jean-Philippe Chancelier, Vincent Leclère and Arnaud Lenoir — which was
submitted in 2018 (Leclère et al., 2018).

• In Chapter 11, we have provided a short complement to the previous chapter, with a proof
of convergence of the abstract SDDP algorithm introduced in Chapter 10. This chapter was
a joint work with Maël Forcier.

Perspectives

The different contributions open several doors, leading to several possible extensions.

• We believe that the comparison between lookahead and cost-to-go policies in Chapter 3 can be
refined, for instance by considering more complicated lookahead policies (such as stochastic
MPC methods) or by updating the value functions of the cost-to-go policies online. Another
approach would consider a mix of these two classes of policy, where the final value functions
of (stochastic) MPC would be computed offline by Dynamic Programming.

• The proper choice of the coordination design in Chapter 7 remains a challenge. We have
chosen to focus only on deterministic designs, but we obtained poor results for resource
decomposition in Chapter 8.

• Concerning decomposition algorithms, we have tested mainly price and resource decompo-
sition algorithms. On the problems studied in Chapter 8, other decomposition algorithms
gave poor results (such as ADMM, but the implementation used was not so elaborated) or
did not converge at all (like interaction-prediction based decomposition).

• In Chapter 8, we have decomposed the problems node by node, and solved each nodal
problem with the Stochastic Dual Dynamic Programming algorithm. An extension would be
to decompose the problems zone by zone rather than node by node. By doing so, we would
obtain larger suproblems, but whose sizes remain tractable to apply SDDP effectively.

• In Chapter 10, we have obtained a new manner to get a deterministic upper bound for SDDP.
However, the resolution of the dual problem remains slower than the resolution of the primal
problem, as all dual one-step problems deal with larger LP than primal one-step problems.
We believe that we could improve the performance of the dual algorithm by taking advantage
of the couplings existing between the primal and the dual problems.

220

Bibliography

ADEME (2017). Chiffres clés - Climat, Air et Énergie. Technical report, ADEME.
Alais, J.-C. (2013). Risque et optimisation pour le management d’énergies. Thèse de doctorat,

Université Paris-Est.
Arrow, K. J. and Hurwicz, L. (1958). Decentralization and computation in resource allocation.

Stanford University, Department of Economics.
Bacaud, L., Lemaréchal, C., Renaud, A., and Sagastizábal, C. A. (2001). Bundle methods in

stochastic optimal power management: A disaggregated approach using preconditioner. Com-
putational Optimization and Applications, 20(3):227–244.

Bacher, P., Madsen, H., and Nielsen, H. A. (2009). Online short-term solar power forecasting.
Solar Energy, 83(10):1772–1783.

Baetens, R. and Saelens, D. (2016). Modelling uncertainty in district energy simulations by stochas-
tic residential occupant behaviour. Journal of Building Performance Simulation, 9(4):431–447.

Bally, V., Pages, G., et al. (2003). A quantization algorithm for solving multidimensional discrete-
time optimal stopping problems. Bernoulli, 9(6):1003–1049.

Barty, K., Carpentier, P., Cohen, G., and Girardeau, P. (2010a). Price decomposition in large-scale
stochastic optimal control. arXiv:1012.2092.

Barty, K., Carpentier, P., and Girardeau, P. (2010b). Decomposition of large-scale stochastic
optimal control problems. RAIRO Operations Research, 44(3):167–183.

Barty, K., Roy, J.-S., and Strugarek, C. (2009). A stochastic gradient type algorithm for closed-loop
problems. Mathematical Programming, Series A, 119(1):51–78.

Baucke, R., Downward, A., and Zakeri, G. (2017). A deterministic algorithm for solving multistage
stochastic programming problems. Optimization Online.

Bauschke, H. H., Combettes, P. L., et al. (2017). Convex analysis and monotone operator theory
in Hilbert spaces, volume 2011. Springer.

Beeker, N., Malisani, P., and Petit, N. (2016). Discrete-time optimal control of electric hot
water tank. Symposium on Dynamics and Control of Process Systems, including Biosystems
(DYCOPS).

Bellman, R. (1957). Dynamic Programming. Princeton University Press, New Jersey.
Berthou, T. (2013). Development of building models for load curve forecast and design of energy

optimization and load shedding strategies. PhD thesis, Ecole Nationale Supérieure des Mines de
Paris.

Bertsekas, D. P. (2005a). Dynamic programming and optimal control, volume 1. Athena Scientific
Belmont, MA, third edition.

Bertsekas, D. P. (2005b). Dynamic programming and suboptimal control: A survey from ADP to
MPC. European Journal of Control, 11(4-5):310–334.

Bertsekas, D. P. (2008). Extended monotropic programming and duality. Journal of optimization
theory and applications, 139(2):209–225.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control: Approximate Dynamic
Programming. Athena Scientific, 4 edition.

Bertsekas, D. P. and Shreve, S. E. (1996). Stochastic Optimal Control: The Discrete-Time Case.
Athena Scientific, Belmont, Massachusets.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.
Bonabe de Rougé, R. (2018). Modélisation des solutions de micro-cogénération en vue de leur

221

Bibliography

intégration optimale au sein des bâtiments. PhD thesis, Ecole Nationale Supérieure des Mines
de Paris.

Borwein, J. and Lewis, A. S. (2010). Convex analysis and nonlinear optimization: theory and
examples. Springer.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122.

Carpentier, P., Chancelier, J.-P., De Lara, M., and Rigaut, T. (2018a). Time blocks decomposition
of multistage stochastic optimization problem. arXiv:1804.01711.

Carpentier, P., Chancelier, J.-P., Leclère, V., and Pacaud, F. (2018b). Stochastic decomposition
applied to large-scale hydro valleys management. European Journal of Operational Research,
270(3):1086–1098.

Carpentier, P., Cohen, C., Culioli, J.-C., and Renaud, A. (1996). Stochastic optimization of
unit commitment: a new decomposition framework. IEEE Transactions on Power Systems,
11(2):1067–1073.

Carpentier, P. and Cohen, G. (2017). Décomposition-coordination en optimisation déterministe et
stochastique, volume 81. Springer.

Carpentier, P., Cohen, G., Chancelier, J.-P., and De Lara, M. (2015). Stochastic Multi-Stage
Optimization, volume 75. Springer.

Cohen, G. (1978). Optimization by Decomposition and Coordination: A Unified Approach. IEEE
Transactions on Automatic Control, 23:222–232.

Cohen, G. (1980). Auxiliary Problem Principle and decomposition of optimization problems.
Journal of Optimization Theory and Applications, 32(3):277–305.

Cohen, G. (2004). Optimisation des Grands Systèmes. Cours du DEA MMME, Université de
Paris I.

Cohen, G. and Culioli, J.-C. (1990). Decomposition Coordination Algorithms for Stochastic Opti-
mization. SIAM Journal on Control and Optimization, 28(6):1372–1403.

Cohen, G. and Miara, B. (1990). Optimization with an auxiliary constraint and decomposition.
SIAM Journal on control and optimization, pages 137–157.

Dallagi, A. (2007). Méthodes particulaires en commande optimale stochastique. PhD thesis,
Université Panthéon-Sorbonne-Paris I.

De Lara, M., Carpentier, P., Chancelier, J.-P., and Leclère, V. (2014). Optimization Methods for
the Smart Grid. Conseil Francais de l’Energie.

de Matos, V. L., Philpott, A. B., and Finardi, E. C. (2015a). Improving the performance of
stochastic dual dynamic programming. Journal of Computational and Applied Mathematics,
290:196–208.

de Matos, V. L., Philpott, A. B., and Finardi, E. C. (2015b). Improving the performance of
stochastic dual dynamic programming. Journal of Computational and Applied Mathematics,
290:196–208.

Dellacherie, C. and Meyer, P. A. (1975). Probabilités et potentiel. Hermann.
Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for mathematical

optimization. SIAM Review, 59(2):295–320.
Dupačová, J., Gröwe-Kuska, N., and Römisch, W. (2003). Scenario reduction in stochastic pro-

gramming. Mathematical programming, 95(3):493–511.
Ekeland, I. and Temam, R. (1999). Convex Analysis and Variational Problems, volume 28 of

Classics in Applied Mathematics. SIAM.
Ernst, D., Glavic, M., Capitanescu, F., and Wehenkel, L. (2009). Reinforcement learning versus

model predictive control: a comparison on a power system problem. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):517–529.

Garcia, C. E., Prett, D. M., and Morari, M. (1989). Model predictive control: theory and practice—
a survey. Automatica, 25(3):335–348.

222

Bibliography

Gilbert, J. C. and Jonsson, X. (2007). LIBOPT – An environment for testing solvers on heteroge-
neous collections of problems. arXiv preprint cs/0703025.

Girardeau, P. (2010). Résolution de grands problèmes en optimisation stochastique dynamique.
Thèse de doctorat, Université Paris-Est.

Girardeau, P., Leclere, V., and Philpott, A. B. (2014). On the convergence of decomposition meth-
ods for multistage stochastic convex programs. Mathematics of Operations Research, 40(1):130–
145.

Guigues, V. (2016). Convergence analysis of sampling-based decomposition methods for risk-averse
multistage stochastic convex programs. SIAM Journal on Optimization, 26(4):2468–2494.

Guigues, V. (2017). Dual dynamic programing with cut selection: Convergence proof and numerical
experiments. European Journal of Operational Research, 258(1):47–57.

Gurobi Optimization Inc (2014). Gurobi Optimizer Reference Manual.
Haessig, P. (2014). Dimensionnement et gestion d’un stockage d’énergie pour l’atténuation des

incertitudes de production éolienne. PhD thesis, Ecole normale supérieure de Cachan.
Haessig, P., Ahmed, H. B., and Multon, B. (2015). Energy storage control with aging limitation.

In PowerTech, 2015 IEEE Eindhoven, pages 1–6. IEEE.
Heitsch, H. and Römisch, W. (2003). Scenario reduction algorithms in stochastic programming.

Computational optimization and applications, 24(2-3):187–206.
Heitsch, H. and Römisch, W. (2009). Scenario tree modelling for multistage stochastic programs.

Mathematical Programming, 118:371–406.
Heitsch, H., Römisch, W., and Strugarek, C. (2006). Stability of multistage stochastic programs.

SIAM Journal on Optimization, 17:511–525.
Heymann, B., Bonnans, J. F., Martinon, P., Silva, F. J., Lanas, F., and Jiménez-Estévez, G. (2015).

Continuous optimal control approaches to microgrid energy management. Energy Systems, pages
1–19.

Heymann, B., Bonnans, J. F., Silva, F., and Jimenez, G. (2016). A stochastic continuous time
model for microgrid energy management. In European Control Conference (ECC), pages 2084–
2089. IEEE.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (2012). Fundamentals of convex analysis. Springer Science
& Business Media.

Homem-de Mello, T., De Matos, V. L., and Finardi, E. C. (2011). Sampling strategies and stopping
criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal
scheduling. Energy Systems, 2(1):1–31.

Houwing, M., Negenborn, R. R., and De Schutter, B. (2011). Demand response with micro-CHP
systems. Proceedings of the IEEE, 99(1):200–213.

Journal Officiel (2013). Arrêté du 28 décembre 2012 relatif aux caractéristiques thermiques et aux
exigences de performance énergétique des bâtiments nouveaux.

Kall, P., Wallace, S. W., and Kall, P. (1994). Stochastic programming. Springer.
Kargarian, A., Mohammadi, J., Guo, J., Chakrabarti, S., Barati, M., Hug, G., Kar, S., and Baldick,

R. (2016). Toward distributed/decentralized DC optimal power flow implementation in future
electric power systems. IEEE Transactions on Smart Grid.

Kasten, F. and Young, A. T. (1989). Revised optical air mass tables and approximation formula.
Applied optics, 28(22):4735–4738.

Kuhn, D., Wiesemann, W., and Georghiou, A. (2011). Primal and dual linear decision rules in
stochastic and robust optimization. Mathematical Programming, 130(1):177–209.

Lamoudi, M. Y. (2012). Distributed Model Predictive Control for energy management in buildings.
PhD thesis, Université de Grenoble.

Leclère, V. (2014). Contributions to decomposition methods in stochastic optimization. PhD thesis,
Université Paris Est.

Leclère, V., Carpentier, P., Chancelier, J.-P., Lenoir, A., and Pacaud, F. (2018). Exact converging
bounds for stochastic dual dynamic programming via fenchel duality. Optimization Online.

223

Bibliography

Lenoir, A. and Mahey, P. (2017). A survey on operator splitting and decomposition of convex
programs. RAIRO Operations Research, 51(1):17–41.

Liu, P., Fu, Y., and Kargarian marvasti, A. (2014). Multi-stage stochastic optimal operation of
energy-efficient building with combined heat and power system. Electric Power Components and
Systems, 42(3-4):327–338.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE transactions on information theory,
28(2):129–137.

Loève, M. (1977). Probability Theory I. Springer Science & Business Media, New York, fourth
edition.

Löhndorf, N. and Shapiro, A. (2017). Modeling time-dependent randomness in Stochastic Dual
Dynamic Programming. Optimization Online.

Maceira, M. E. P. and Damazio, J. M. (2006). Use of PAR(p) model in the stochastic dual
dynamic programming optimization scheme used used in the operation planning of the Brazilian
hydropower system. Probability in the Engineering and Informational Sciences, 20:143–156.

Mahey, P., Koko, J., and Lenoir, A. (2017). Decomposition methods for a spatial model for long-
term energy pricing problem. Mathematical Methods of Operations Research, 85(1):137–153.

Malisani, P. (2012). Pilotage dynamique de l’énergie du bâtiment par commande optimale sous
contraintes utilisant la pénalisation intérieure. PhD thesis, Ecole Nationale Supérieure des Mines
de Paris.

Mataoui, M. (1990). Contributions à la décomposition et à l’agrégation des problèmes variationnels.
Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris.

Mohammadi, S., Soleymani, S., and Mozafari, B. (2014). Scenario-based stochastic operation man-
agement of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage
devices. International Journal of Electrical Power & Energy Systems, 54:525–535.

Morales, J. M., Conejo, A. J., Madsen, H., Pinson, P., and Zugno, M. (2013). Integrating renewables
in electricity markets: operational problems, volume 205. Springer Science & Business Media.

Noorian, A. M., Moradi, I., and Kamali, G. A. (2008). Evaluation of 12 models to estimate hourly
diffuse irradiation on inclined surfaces. Renewable energy, 33(6):1406–1412.

Oldewurtel, F. (2011). Stochastic model predictive control for energy efficient building climate
control. PhD thesis, Eidgenössische Technische Hochschule ETH Zürich.

Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann, B.,
and Morari, M. (2012). Use of model predictive control and weather forecasts for energy efficient
building climate control. Energy and Buildings, 45:15–27.

Olivares, D. E., Cañizares, C. A., and Kazerani, M. (2011). A centralized optimal energy manage-
ment system for microgrids. In Power and Energy Society General Meeting, 2011 IEEE, pages
1–6. IEEE.

Olivares, D. E., Lara, J. D., Cañizares, C. A., and Kazerani, M. (2015). Stochastic-predictive energy
management system for isolated microgrids. IEEE Transactions on Smart Grid, 6(6):2681–2693.

Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C., Iravani, R., Kazerani, M.,
Hajimiragha, A. H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., et al. (2014).
Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4):1905–1919.

Page, J., Robinson, D., Morel, N., and Scartezzini, J.-L. (2008). A generalised stochastic model
for the simulation of occupant presence. Energy and buildings, 40(2):83–98.

Paridari, K., Parisio, A., Sandberg, H., and Johansson, K. H. (2016). Robust scheduling of
smart appliances in active apartments with user behavior uncertainty. IEEE Transactions on
Automation Science and Engineering, 13(1):247–259.

Parisio, A., Wiezorek, C., Kyntaja, T., Elo, J., and H., J. K. (2015). An MPC-based energy
management system for multiple residential microgrids. In IEEE International Conference on
Automation Science and Engineering (CASE). IEEE.

Pereira, M. V. and Pinto, L. M. (1991). Multi-stage stochastic optimization applied to energy
planning. Mathematical programming, 52(1-3):359–375.

224

Bibliography

Pflaum, P., Alamir, M., and Yacine Lamoudi, M. (2014). Comparison of a primal and a dual
decomposition for distributed MPC in smart districts. 5th IEEE International Conference on
Smart Grid Communications.

Pflug, G. C. and Pichler, A. (2014). Multistage Stochastic Optimization. Springer.
Philpott, A., de Matos, V., and Finardi, E. (2013). On solving multistage stochastic programs

with coherent risk measures. Operations Research, 61(4):957–970.
Philpott, A. B. and De Matos, V. L. (2012). Dynamic sampling algorithms for multi-stage stochas-

tic programs with risk aversion. European Journal of Operational Research, 218(2):470–483.
Philpott, A. B. and Guan, Z. (2008). On the convergence of stochastic dual dynamic programming

and related methods. Operations Research Letters, 36(4):450–455.
Pinson, P., Baroche, T., Moret, F., Sousa, T., Sorin, E., and You,

S. (2018). The emergence of consumer-centric electricity markets.
http://pierrepinson.com/docs/pinsonetal17consumercentric.pdf.

Pontryagin, L. S. (1962). Mathematical theory of optimal processes. Routledge.
Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of dimensionality,

volume 703. John Wiley & Sons.
Powell, W. B. (2014). Clearing the jungle of stochastic optimization. Informs, pages 109–137.
Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, New York.
Rockafellar, R. T. (1968). Integrals which are convex functionals. Pacific Journal of Mathematics,

24(3):525–539.
Rockafellar, R. T. (1970). Convex analysis. Princeton University Press.
Rockafellar, R. T. (1971). Integrals which are convex functionals, II. Pacific Journal of Mathe-

matics, 39(2):439–469.
Rockafellar, R. T. (1974). Conjugate duality and optimization, volume 16. Siam.
Rockafellar, R. T. and Wets, R. J. (1976). Stochastic convex programming: relatively complete

recourse and induced feasibility. SIAM Journal on Control and Optimization, 14(3):574–589.
Rockafellar, R. T. and Wets, R. J.-B. (1991a). Scenarios and policy aggregation in optimization

under uncertainty. Mathematics of operations research, 16(1):119–147.
Rockafellar, R. T. and Wets, R. J.-B. (1991b). Scenarios and policy aggregation in optimization

under uncertainty. Math. Oper. Res., 16(1):119–147.
Rockafellar, R. T. and Wets, R. J.-B. (1998). Variational Analysis. Springer Science & Business

Media, Berlin.
Rujeerapaiboon, N., Schindler, K., Kuhn, D., and Wiesemann, W. (2017). Scenario reduction

revisited: Fundamental limits and guarantees. arXiv preprint arXiv:1701.04072.
Ruszczyński, A. (1997). Decomposition methods in stochastic programming. Mathematical pro-

gramming, 79(1):333–353.
Ruszczyński, A. and Shapiro, A., editors (2003). Stochastic Programming, volume 10 of Handbooks

in Operations Research and Management Science. Elsevier.
Schütz, T., Streblow, R., and Müller, D. (2015). A comparison of thermal energy storage models

for building energy system optimization. Energy and Buildings, 93:23–31.
Shapiro, A. (2006). On complexity of multistage stochastic programs. Operations Research Letters,

34:1–8.
Shapiro, A. (2011). Analysis of Stochastic Dual Dynamic Programming Method. European Journal

of Operational Research, 209:63–72.
Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2009). Lectures on stochastic programming:

modeling and theory. SIAM.
Shapiro, A., Tekaya, W., da Costa, J. P., and Soares, M. P. (2012). Final report for technical coop-

eration between georgia institute of technology and ons–operador nacional do sistema elétrico.
Georgia Tech ISyE Report.

Strugarek, C. (2006). Approches variationnelles et autres contributions en optimisation stochas-

225

Bibliography

tique. Thèse de doctorat, École Nationale des Ponts et Chaussées.
Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1. MIT

press Cambridge.
Takriti, S., Birge, J. R., and Long, E. (1996). A stochastic model for the unit commitment problem.

IEEE Transactions on Power Systems, 11(3):1497–1508.
Thomas, B. (2008). Benchmark testing of Micro-CHP units. Applied Thermal Engineering,

28(16):2049–2054.
Tsitsiklis, J. N. and Van Roy, B. (1996). Feature-based methods for large-scale dynamic program-

ming. Machine Learning, 22:59–94.
Van Ackooij, W., de Oliveira, W., and Song, Y. (2017). On regularization with normal solutions

in decomposition methods for multistage stochastic programming. Optimization Online.
Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications to optimal

control and stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663.
Vezolle, P., Vialle, S., and Warin, X. (2009). Large Scale Experiment and Optimization of a

Distributed Stochastic Control Algorithm. Application to Energy Management Problems. In
International Workshop on Large-Scale Parallel Processing (LSPP 2009), Rome, Italy.

Wallace, S. W. and Fleten, S.-E. (2003). Stochastic programming models in energy. Handbooks in
operations research and management science, 10:637–677.

Wets, R. J. (2002). Stochastic programming models: wait-and-see versus here-and-now. In Decision
Making Under Uncertainty, pages 1–15. Springer.

Widén, J. and Wäckelg̊ard, E. (2010). A high-resolution stochastic model of domestic activity
patterns and electricity demand. Applied Energy, 87(6):1880–1892.

Wytock, M., Moehle, N., and Boyd, S. (2017). Dynamic energy management with scenario-based
robust MPC. In American Control Conference (ACC), 2017, pages 2042–2047. IEEE.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical
Software (TOMS), 23(4):550–560.

Zou, J., Ahmed, S., and Sun, X. A. (2017). Stochastic dual dynamic integer programming.
Mathematical Programming, pages 1–42.

226

	Coverpage
	Introduction (version française)
	Contexte
	Gestion optimale des microgrids
	À propos de l'optimisation stochastique
	Contributions

	Introduction
	Context
	Management of microgrids
	Background on stochastic optimization
	Contributions

	Time decomposition in optimization and management of home microgrids
	A template to design online policies for multistage stochastic optimization problems
	Introduction
	Multistage stochastic optimization problems
	A template for lookahead policies
	A template for cost-to-go policies
	Assessment of online policies
	Discussion

	Background on the modelling of energy flows and stocks in microgrids
	Introduction
	Modelling uncertainties
	Modelling production
	Modelling storage
	Discussion

	Optimal management of a home microgrid with a CHP
	Introduction
	Problem statement
	Resolution methods
	Numerical results
	Discussion

	Optimal management of a home microgrid with solar panels
	Introduction
	Problem statement
	Resolution methods
	Numerical resolution
	Discussion

	Mixing time and spatial decomposition in large-scale optimization problems
	Upper and lower bounds for Bellman functions by spatial decomposition
	Introduction
	Bounds for an optimization problem under coupling constraints via decomposition
	Decomposition of local value functions by Dynamic Programming
	Improving bounds
	Discussion

	Optimal management of district microgrids
	Introduction
	Stocks and flows global optimization problem on a graph
	Mixing nodal and time decomposition
	Algorithmic implementation
	Numerical applications
	Beyond price and resource decompositions
	Discussion
	Appendix

	Stochastic decomposition applied to large-scale hydro valleys management
	Introduction
	Mathematical formulation
	Dual Approximate Dynamic Programming
	Numerical experiments
	Conclusion

	Contributions to Stochastic Dual Dynamic Programming
	Exact converging bounds for Stochastic Dual Dynamic Programming via Fenchel duality
	Introduction
	Linear Bellman operators
	Primal and dual SDDP
	Inner-approximation strategy
	Numerical results
	Conclusion

	A complement on Fenchel duality and Dynamic Programming
	Introduction
	Alternating forward and backward passes
	A proof of convergence of abstract SDDP
	Conclusion

	Conclusion

