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Résumé substantiel de la thèse en
français

Dans cette thèse, nous étudions les propriétés de plusieurs modèles statistiques. Dans la majorité

des cas, il s’agira de modèles de dépendance, c’est-à-dire de modèles statistiques qui spécifient les

interactions entre différentes variables aléatoires.

Le premier modèle étudié est le modèle de régression linéaire en grande dimension. Classiquement,

on observe n réplications indépendantes et identiquement distribuées d’une variable aléatoire réelle Y ,

que l’on cherche à expliquer par p variables explicatives X1, . . . , Xp. On suppose qu’il existe un vecteur

β∗ ∈ Rp tel que Y = XTβ∗+ε, où X = (X1, . . . Xp) et ε est une variable aléatoire indépendante de X. On

s’intéresse plus particulièrement au cas dit “sparse”, où le vecteur β∗ est composé d’un grand nombre

de composante nulles. Autrement dit, on suppose que la sparsité s est faible, où s := Card{i : β∗i 6= 0}.

Dans ce cadre, il est habituel d’utiliser des estimateurs de type moindres-carrés pénalisés, qui peu-

vent permettent d’atteindre des vitesses optimales au sens minimax (cf. [12]). Néanmoins, ces esti-

mateurs nécessitent la connaissance a priori de l’écart-type σ∗ du bruit ε. Dans le Chapitre 2, nous

prouvons que deux estimateurs, le Square-root Lasso et le Square-root Slope permettent d’atteindre

les vitesses optimales à distance finie sans nécessiter la connaissance de σ∗. En outre, le Square-
root Slope ne nécessite pas non plus la connaissance de la sparsité s. Nous détaillons également des

algorithmes permettant le calcul du Square-root Slope.

Dans le Chapitre 3, nous proposons des modifications de ces estimateurs, qui leur permettent d’être

davantage robustes. En effet, les estimateurs traditionnels à base de moindres carrés sont, tout comme

la moyenne empirique, très sensibles aux valeurs aberrantes, et la présence d’une seule valeur aber-

rante peut considérablement réduire les performances d’un estimateur (cf. [91]). Dans cette optique,

nous proposons une version dite MOM (pour médiane-de-moyennes) des estimateurs adaptatifs du

précédent chapitre. Ces estimateurs MOM adaptatifs peuvent encore atteindre les vitesses optimales

en même temps qu’estimer l’écart-type du bruit σ∗. Nous proposons également un algorithme permet-

tant de calculer ces estimateurs.

La seconde partie de cette thèse est consacrée aux modèles de copules conditionnelles. Ces mod-

èles permettent de mettre en valeur la façon dont la dépendance entre les différentes composantes d’un

vecteur X varie en fonction d’une variable explicative Z. Formellement, par le théorème de Sklar, on

peut décomposer la fonction de répartition conditionnelle de X sachant Z = z de la façon suivante

∀x ∈ Rp, ∀z, FX|Z(x|Z = z) = CX|Z

(
FX1|Z(x1|Z = z), . . . , FXp|Z(xp|Z = z)

∣∣∣Z = z
)
,

où FX|Z est la fonction de répartition conditionnelle jointe de X sachant Z, pour i ∈ {1, . . . , n}, FXi|Z
est la fonction de répartition conditionnelle de Xi sachant Z et CX|Z est la copule conditionnelle de X
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sachant Z.

L’idée principale d’une telle décomposition est de séparer l’influence de Z sur les variables marginales

Xi d’une part ; et l’influence de Z sur la dépendance entre les composantes de Z, d’autre part. Cette

dernière est représentée par la copule conditionnelle de X sachant Z. Autrement dit, dans le cas

général, pour chaque valeur z de la variable conditionnante Z, il existe une copule conditionnelle

CX|Z( · |Z = z) décrivant la dépendance entre les différentes composantes de X conditionnellement

à l’évènement Z = z. Certains auteurs disent qu’un tel niveau de complexité n’est pas nécessaire, et

affirment parfois qu’une modélisation fixe de la copule conditionnelle est préférable. Cela permettrait

d’estimer une copule fixe, plutôt qu’une famille (infinie) de copules indexée par le paramètre z. D’autres

disent qu’un tel modèle est peu susceptible d’apparaı̂tre en pratique, et ne saurait être proche de la

réalité en général. Dans le chapitre 4, on développe des tests de cette hypothèse, appelée “hypothèse

simplificatrice”.

Formellement, cette hypothèse peut s’écrire “z 7→ CX|Z( · |Z = z) est une fonction constante”, c’est-

à-dire que la fonction CX|Z( · |Z = z) ne dépend pas du choix de z. Une première idée naturelle est

de construire un test de H0 basé sur une comparaison entre la copule conditionnelle CI|J estimée

avec et sans l’hypothèse simplificatrice. Ces estimateurs seront appelés respectivement Ĉs,I|J et ĈI|J .

Ainsi, en introduisant une certaine distance D entre copules conditionnelles, un test peut être basé

sur la statistique D(ĈI|J , Ĉs,I|J). Nous proposons des procédures de ré-échantillonage pour évaluer la

loi limite de telles statistiques de test et prouvons la validité d’un schéma de ré-échantillonage semi-

paramétrique spécifique.

Si l’hypothèse simplificatrice est rejetée, il faut modéliser la dynamique de la dépendance en fonction

de z. Pour ce faire, nous utilisons la version conditionnelle d’un indicateur de dépendance usuel, le tau

de Kendall. Pour un entier p fixé, et pour chaque z ∈ Rp, le tau de Kendall conditionnel d’un vecteur

bivarié X := (X1, X2) sachant un vecteur de covariables Z = z est défini par

τ1,2|Z=z = IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

∣∣Z1 = Z2 = z
)
− IP

(
(X2,1 −X1,1)(X2,2 −X1,2) < 0

∣∣Z1 = Z2 = z
)
,

où (X1,Z1) = (X1,1, X1,2, Z1,1, . . . , Z1,p) et (X2,Z2) = (X2,1, X2,2, Z2,1, . . . , Z2,p) sont deux copies in-

dépendantes de (X,Z).

On peut noter que le tau de Kendall conditionnel appartient toujours à l’intervalle [−1, 1] et reflète

une dépendance positive (si τ1,2|Z=z > 0) ou négative (si τ1,2|Z=z < 0) entre X1 et X2, sachant Z = z.

Contrairement aux corrélations, cette mesure a l’avantage d’être toujours bien définie, même si l’un

des Xk, k = 1, 2, n’admet pas de moments d’ordre 2. C’est le cas lorsqu’il suit une loi de Cauchy par

exemple.

Dans le chapitre 5, nous proposons des estimateurs du tau de Kendall conditionnel utilisant des

techniques d’estimation à noyau. Nous prouvons leurs propriétés asymptotiques et à distance finie,

sous des conditions faibles. Puis, dans le chapitre 6, nous proposons un modèle de type régression

pour le tau de Kendall conditionnel, de la forme Λ(τ1,2|z=z) = ψ(z)Tβ∗, où β∗ est un paramètre à

estimer, Λ est une transformation connue et ψ est un dictionnaire de fonctions. Un tel modèle peut

être utile également pour donner une estimation directe d’effets marginaux, du type ∂τ1,2|z=z/∂z1, qui

quantifient l’influence locale d’une des variables sur la dépendance entre X1 et X2.

Dans le chapitre 7, nous montrons les liens existants entre l’estimation du tau de Kendall condition-

nel et les problèmes de classification. Ainsi, soient W := 2 × 1{(X2,1 −X1,1)(X2,2 −X1,2) > 0} − 1 et

IP
(
(X2,1−X1,1)(X2,2−X1,2) > 0

∣∣Z1 = Z2 = z
)

= IP
(
W = 1

∣∣Z1 = Z2 = z
)

=: p(z). Nous pouvons alors
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remarquer que la prédiction de la concordance/discordance parmi les paires d’observations (X1,X2)

sachant Z peut être vue comme un problème de classification de ces paires. Si un modèle est capable

d’estimer la probabilité conditionnelle d’observer des paires concordantes d’observations, alors il est

capable d’estimer le tau de Kendall conditionnel. De telles probabilités conditionnelles sont justement

les sorties données par la plupart des algorithmes de classification usuels. Ainsi, la plupart des classi-

fieurs peuvent être utilisés ici (par exemple les classifieurs linéaires, les arbres de décision, les forêts

aléatoires, les réseaux de neurones, et ainsi de suite), mais appliqués ici à des paires d’observations.

Dans la troisième partie de cette thèse, nous abordons deux autres thèmes liés à l’inférence des

modèles statistiques. Dans le chapitre 8, nous montrons comment les techniques développées dans le

chapitre 6 peuvent se généraliser au cas de n’importe quelle U-statistique conditionnelle. Finalement,

dans le chapitre 9, nous étudions la construction d’intervalles de confiance pour des ratios de moyennes.

Nous montrons que les estimateurs asymptotiques classiques construits à partir du théorème central

limite et de la delta-méthode peuvent ne pas marcher dans certains régimes. Nous proposons des

indicateurs fondés sur des théorèmes d’impossibilité pour détecter de tels cas, et proposons d’autres

intervalles de confiance, uniformément valides sur des classes de distributions.
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Chapter 1

Introduction

In the era of big data, statistics and data science are increasingly useful and necessary to analyze

the huge volume of information that is available. Of primary importance are the tasks of estimation

and prediction: estimation because we want to infer some parameter or functional that determine the

unknown data generating process, and prediction because we want to learn from some datasets to

deduce some information about the future.

Often, several random variables X1, . . . , Xd are available and interact with each other. Therefore it

is obvious that inference from the joint law of X := (X1, . . . , Xd) should take into account the potential

dependence between the different components of X.

Indeed, in applications, many datasets are fundamentally multivariate. Let us describe shortly a few

examples: in finance, we may want to model the joint distribution of the returns of several assets ; in

hydrology, it is important to model the joint distribution of the characteristic of several rivers ; in social

sciences, usually several variables are available, in the individual level (income, wealth, age and so on)

as well as in the aggregated level (GDP, unemployment rate, average life expectancy and so on) ; in

biostatistics, interactions between different genes or different characteristics of the patients may be of

interest.

In this thesis, we study two main dependence modeling frameworks : the high-dimensional sparse

linear regression, studied in Chapters 2 and 3, and the conditional dependence framework, studied in

Chapters 4, 5, 6 and 7. Other related topics are discussed in the last part : estimation of conditional

U-statistics in Chapter 8, and confidence intervals for ratios of means in Chapter 9.

4 2

5 3

87

6

9

2. Improved bounds for Square-root Lasso and Square-root Slope
3. Robust-to-outliers simultaneous inference and noise level estimation
4. About tests of the simplifying assumption
5. About kernel-based estimation of the conditional Kendall’s tau
6. About Kendall’s regression
7. A classification point-of-view of the conditional Kendall’s tau
8. Estimation of a regular conditional functional
9. Confidence intervals for ratios of means

Figure 1.1: Links between the different chapters
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1.1 Estimation of the conditional mean: linear regression and re-

lated methods

1.1.1 Least-squares estimators and penalization

One of the oldest well-known dependence model is the linear regression. In such cases, the statisti-

cian tries to explain specifically one of the variables, called for example Y , using the other variables

X1, . . . , Xp. As usual, we assume that there is a true parameter β∗ ∈ Rp such that Y = XTβ∗ + ε,

where X := (X1, . . . , Xp) is the vector of explanatory variables and ε is a random variable representing

the uncertainty. Indeed, in the general case, there is no reason why there would be enough information

in X to completely explain the variable Y . We observe n > 0 i.i.d. replications of (X, Y ), denoted by

(X1, Y1), . . . , (Xn, Yn), and we define the design matrix as X := (X1, . . . ,Xn)T and Y := (Y1, . . . , Yn)T .

As our goal is to infer the unknown parameter β∗, we can invoke the usual least-squares estimator

β̂LS := arg minβ∈Rp ||Y − Xβ||2n, where ||u||2n := (1/n)
∑n
i=1 u

2
i for a vector u ∈ Rn.

If p > n, the estimator β̂LS may not be relevant. Often, it is no longer unique, and may lead to a

perfect reconstruction of the signal Y as an artifact of lack of observations due to the small size n. In

this case, additional assumptions have to be made about the model to make the task of inference easier.

The most usual assumption is the so-called sparsity of the vector β∗: a vector β∗ is said to be s-sparse

for a given integer s > 0 if the number of nonzero coefficients of β∗, denoted by |β∗|0 ≤ s. In other

words, we assume that Y is not affected by all the variables X1, . . . Xp, but only by s of them. Obviously,

the statistician does not have knowledge of the precise set of variables that are relevant. For example,

in biostatistics, the statistician may assume that only a few genes are relevant without knowing which

ones.

As a consequence of this sparsity assumption, we do not want to have β “too big”, in the sense that

large values of β should be seen as less appropriate, even if they seem to lead to a better fit. Therefore,

we introduce penalized least-squares estimators of β∗, of the form

β̂pen := arg min
β∈Rp

||Y − Xβ||2n + pen(β),

where pen(·) is a real-valued function of β ∈ Rp. Choice of the penalization function is not an easy task,

and different alternatives are possible. The penalization pen(β) := λ × |β|0 with a tuning parameter λ

seems to be a natural choice, but this estimator is NP-hard to compute, meaning that it is impossible to

compute in polynomial time.

The Lasso estimator [135] uses a convex relaxation of this penalization, with pen(β) := λ × |β|1,

where | · |1 is the l1-norm, i.e. the sum of the absolute values of the coefficients. Bellec, Lecué and

Tsybakov [12] have shown that it is possible to choose a tuning parameter λLasso, opt. such that the

Lasso estimator with this choice of λ attains the optimal minimax rates of prediction and estimation in

this sparse framework, under an assumption on the design matrix X.

Nevertheless, the tuning parameter λLasso, opt. depends on the sparsity s, i.e. the number of non-zero

coefficients of β, that is unknown in practice. Bellec, Lecué and Tsybakov [12] provide two possibilities to

solve this issue. The first solution is to use a Lepski-type procedure to aggregate all the Lasso estimators

for every choice of s. As a result, the aggregated estimator is adaptive to s. The second solution consists

in using a different estimator, the Slope.

The Slope estimator [20] is another penalized least-squares estimator, whose penalty is defined by

|β|∗ :=
∑p
j=1 λj |β|(j), with tuning parameters λ1 ≥ · · · ≥ λp > 0, defining |β|(j) as the j-th largest
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component of |β|. The intuition behind the Slope estimator is simple: larger components of β should be

more penalized than smaller ones. Bellec, Lecué and Tsybakov [12] have shown that there exists opti-

mal tuning parameters λSlope, opt.1 , . . . , λSlope, opt.p such that the Slope estimator also attains the optimal

minimax rates of estimation and prediction.

1.1.2 Adaptivity to σ using two square-root estimators

Both the Lasso and the Slope estimators attains optimal rates, but the chosen tuning parameter depends

on σ, the standard deviation of the noise ε. This may cause a problem since there is no reason why σ

should be known in practice, making both estimators impossible to compute due to a lack of knowledge

about σ. Looking closer at both estimators, it appears that the “optimal” tuning parameters are both

proportional to σ. We can therefore rewrite those estimators as β̂pen := arg minβ∈Rp ||Y − Xβ||2n + σ ×
pen(β), where pen(β) is a “standardized” version of the penalty.

If we knew the true β∗, we could replace σ by an oracle estimator σ̂oracle := ||Y − Xβ∗||n. It is also

possible to replace σ in the minimization program by ||Y − Xβ||n, which is an estimator of σ depending

on β. The corresponding minimization problem would be ||Y −Xβ||2n + ||Y −Xβ||n× pen(β). Simplifying

this expression, we define a family of square-root penalized estimators by

β̂sqrt, pen := arg min
β∈Rp

||Y − Xβ||n + pen(β), where ||Y − Xβ||n :=

√√√√ 1

n

n∑
i=1

(Yi −XT
i β)2.

The name “square-root” follows from the first part of the objective function ||Y − Xβ||n, which is the

square-root of the usual least-squares criteria. A first member of this family is the square-root Lasso

estimator, defined as the square-root estimator using the | · |1 penalization. It was first introduced by Sun

and Zhang [134] and Belloni et al. [14] under the name “scaled Lasso”. In a similar way, we define the

square-root Slope using the penalization |β|∗.

In Chapter 2, we show that the square-root Lasso estimator β̂SQL attains the minimax rates of es-

timation and prediction under Gaussian noise and a restricted eigenvalue condition about the design

matrix X. Indeed, there exists universal constants C1, C2 > 0, such that for every n large enough, with

IPβ∗ -probability at least 1− (s/p)s− (1+e2)e−n/24, the estimator β̂SQL with the tuning parameter chosen

as λSQL, opt. := γ
√

(1/n) log(2p/s) and γ ≥ 16 + 4
√

2 satisfies

||X(β̂SQL − β∗)||n ≤
C1

κ2
σ

√
s

n
log
(p
s

)
,

∀q ∈ [1, 2], |β̂SQL − β∗|q ≤
C2

κ2
σs1/q

√
1

n
log

(
2p

s

)
,

where | · |q is the lq-norm and κ is a constant that only depend on the design X. This estimator is adaptive

to σ in the sense that λSQL, opt. does not depend on σ anymore, as opposed to the tuning parameters of

the usual Lasso and Slope.

Nevertheless, the square-root Lasso estimator is not adaptive to s, in the sense that knowledge of

the true sparsity s is necessary to achieve this bound. Using a Lepski-type adaptation of this estimator,

we prove that an aggregated estimator of the square-root Lasso achieves optimality in the prediction

norm || · ||n or in an estimation norm | · |q, for a fixed q ∈ [1, 2] without any knowledge on s. In fact,

we show a more general result: any family of estimators of β depending on s admits an adaptive to s

aggregated version that achieve the same rate as the oracle estimator with the true s. Computation of

this aggregated version is detailed in Algorithm 2.
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Combining the ideas of the Slope and the square-root estimators, the Square-root Slope should be

adaptive to both s and σ. We explain how any algorithm to compute the Slope estimator can be adapted

to compute the Square-root Slope. Then, we show that there is a universal choice of tuning parameters

λSQS, opt.j := γ
√

(1/n) log(2p/j) independent of s and σ, and γ can be any real greater or equal to

16 + 4
√

2. With such a choice of tuning parameters and under an assumption on the design matrix X,

there exists universal constants C ′1, C ′2 > 0, such that for every n large enough, with IPβ∗ -probability at

least 1− (s/p)s − (1 + e2)e−n/24, the estimator β̂SQS satisfies

||X(β̂SQL − β∗)||n ≤
C ′1
κ′2

σ

√
s

n
log
(p
s

)
,

|β̂SQL − β∗|2 ≤
C ′2
κ′2

σs1/2

√
1

n
log

(
2p

s

)
,

where κ′ is a constant that only depends on the design X. This shows that the Square-root Slope attains

the minimax optimal rates of prediction and estimation in the l2 norm.

1.1.3 Robustness to outliers using the Median-of-Means approach

Robustness is a natural idea in statistics: it seems interesting to ask what would happen to the estimator

if the model is wrong, or if some observations have been “contaminated”. Sometimes, the estimators are

not robust, in the sense that only one outlier is enough to destroy the whole performance of an estimator.

Following [44], we define the breakdown point of an estimator T by :

ε∗(T,DI) = min
m∈N

{ m

n+m
: sup
DO:|DO|=m

∣∣T (DI ∪ DO)− T (DI)
∣∣ = +∞

}
, (1.1)

for an (uncontaminated) dataset DI of size |DI | = n > 0. The breakdown point ε∗(T,DI) is the minimum

proportion of outliers needed to “break the estimator” with the datset DI . In other words, it is the

minimum number of points that we need to add to the dataset DI of informative data such that the

estimator T can lie arbitrary far away from its previous value T (DI). The quantity ε∗(T,DI) can be

therefore seen as a measure of the robustness of the estimators (see [91] for a review of such measures

of robustness and new robust estimators).

Most of the times, the breakdown point of an estimator does not directly depends on the dataset DI ,

but it is often only a function of its size n = |DI |. For example, the breakdown point of the empirical mean

is 1/(n + 1), meaning that one needs only to add a single outlier to any dataset to make the empirical

mean arbitrary high. The median is another location estimator, with a better breakpoint of 1/2. Indeed,

we need to double the size of the any dataset in order to be able to arbitrary modify its median.

The same problem happens with the Lasso and other least-squares estimators : a single outlier

added to any dataset can reduce strongly the performance of the Lasso estimator, as proved in [91].

This problem affects in fact all the previous estimators since they are based on the minimization of the

empirical risk ||Y − Xβ||n =
√

1
n

∑n
i=1(Yi −XT

i β)2, which is a kind of empirical mean.

In [91], Lecué and Lerasle propose to replace the empirical mean by an empirical median-of-mean

(MOM) and use a minimaxisation trick as follows.

1. Given a dataset D of size n, we can divide it into K blocks D1, . . .DK of size n/K (assumed to be

an integer) corresponding to a partition {1, . . . , n} = B1 t · · · tBK ;
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2. On each block Bk, we compute the criteria of β against β̃

PBk(lβ − lβ̃) :=
1

|Bk|
∑
i∈Bk

(Yi −XT
i β)2 − (Yi −XT

i β̃)2,

for every β, β̃ ∈ Rp ;

3. The global MOM criteria of β against β̃ is defined by

MOMK(lβ − lβ̃) := Median
{
PBk(lβ − lβ̃), k = 1, . . . ,K

}
;

4. Finally, the MOM-K estimator of β is defined by

β̂MOM−K := arg min
β∈Rp

max
β̃∈Rp

MOMK

(
lβ − lβ̃

)
+ λ
(
pen(β)− pen(β̃)

)
, (1.2)

where λ is a tuning parameter and pen(·) is a penalty function, such as the Lasso or the Slope

penalty.

They show that the resulting estimator, called the MOM-Lasso (resp. MOM-Slope) attains the optimal

minimax rate of convergence while having a breakdown point of (K/2)/(n+K/2). Indeed, both estima-

tors are robust to up toK/2 outliers, because such a small number of outliers could not affect the median

in step 3 above. Lecué and Lerasle also propose similar estimators for a more general framework where

Yi = f(Xi) + ε, with f belonging to a space of functions F .

Nevertheless, their estimators are not adaptive to the moments of ε, meaning that, to attain the

optimal rates, the tuning parameter λ has to be chosen in a way that depends on the standard deviation

of ε, which is unknown in practice. We propose, in Chapter 3, an adaptive version of the MOM-Lasso and

MOM-Slope. Moreover, it allows a simultaneous inference of the noise level, i.e. the standard deviation

σ of ζ. With the Lasso penalty, this joint estimator is defined by

(β̂, σ̂)Adaptive−MOM−Lasso := arg min
β∈Rd

, σ>σmin

max
β̃∈Rd

, χ>σmin

MOMK

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
+ µ

(
|β|1 − |β̃|1

)
,

(1.3)

where

MOMK

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
:= Median

{
PBk

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
, k = 1, . . . ,K

}

and, for all k = 1, . . . ,K,

PBk

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
:=

1

|Bk|
∑
i∈Bk

(Yi −XT
i β)2

σ
− (Yi −XT

i β̃)2

χ
.

We prove that this adaptive version is still robust to up to K/2 outliers and still attains the optimal

rates of convergence in a non-asymptotic way. Moreover, the optimal choice of the tuning parameter

µ that allows to attain these rates does not depend on σ anymore. This means our estimators is also

adaptive to σ. We propose also a generalization of this estimator to the framework where Yi = f(Xi)+ε,

and prove a bound on the errors of the estimator (f̂ , σ̂) where f̂ is an estimator of f and σ̂ is an estimator

of the standard deviation of ε.
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1.2 Copulas and conditional dependence modeling

1.2.1 Distributions with given margins

In the previous section, we studied different ways of estimating adaptively the conditional mean of a

variable Y given other variables X1, . . . , Xp. Nevertheless, more general models are needed if one

wants to estimate a multivariate law without any specific separation between explained or explanatory

variables. More precisely, in our framework, the statistician is given n i.i.d. replications X1, . . . ,Xn of

a random vector X in Rd, and our goal is to estimate the law of X. It can be convenient to model

use a parametric model for the law of X, so that the values of the estimated parameters can be easily

interpreted in application. Often, it can be challenging to find a good parametric model for the data,

especially in a multivariate framework.

We will distinguish two kind of parameters: on the first side, marginal parameters, i.e. parameters that

only influence the univariate margins X1, . . . , Xd ; and on the other side, “pure” dependence parameters.

For example, assume that d = 2 and that law of X is bivariate Gaussian with means µ1, µ2, standard

deviation σ1, σ2 and correlation ρ. Then (µ1, µ2, σ1, σ2) is a vector of marginal parameters and ρ is a

pure dependence parameter, meaning that the distributions of X1 and X2 do not change with ρ. On the

contrary, the covariance Cov1,2 := σ1σ2ρ is a somehow mixed parameter that we would like to avoid,

since it contained some information about the margins and about the dependence at the same time.

One fruitful idea for inference is a generalization of this idea. This is the fundamental concept of

copula modeling, giving general and flexible estimation techniques such as inference from margins (see

Algorithm 1), where the marginals are estimated first and the dependence is modelled in a second step.

The concept of copula itself comes from Sklar [125] in 1959 (see Sklar [126] and Scheizer [121] for

historical references). Probabilists were interested in properties of several classes of distributions, in

particular distributions with given margins. For example, if we have d continuous distributions F1, . . . , Fd

on R, how can we construct d-dimensional distributions F1:d whose margins are F1, . . . , Fd ?

Theorem 1.1 (Sklar, 1959). Let d ≥ 2 be an integer.

1. Let F1:d be a distribution function on Rd with continuous margins F1, . . . , Fd, and X ∼ F1:d. Then
there exists a distribution C on [0, 1]d with uniform margins, named the copula of X1, . . . , Xd such
that the following equation holds

∀x = (x1, . . . , xd) ∈ Rd, F1:d(x) = C
(
F1(x1), . . . , Fd(xd)

)
,

and C is given by

∀u = (u1, . . . , ud) ∈ [0, 1]d, C(u1, . . . , ud) = F1:d

(
F−1 (u1), . . . , F−d (ud)

)
,

where F−i is the inverse function of Fi, for i = 1, . . . , d.

2. Conversely, if F1, . . . , Fd are continuous distributions on R, and C is a copula (i.e. a continuous
distribution on [0, 1]d with uniform margins), then F1:d defined by

∀x = (x1, . . . , xd) ∈ Rd, F1:d(x) := C
(
F1(x1), . . . , Fd(xd)

)
,

is a joint distribution on Rd whose margins are respectively distributed as F1, . . . , Fd and whose
copula is C.
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3. Moreover, C is the joint distribution of U = (U1, . . . , Ud) where Ui := Fi(Xi) for i = 1, . . . , d when
X = (X1, . . . , Xd) ∼ F1:d.

Therefore, we have a bijection between the joint cdf F1:d and the decomposition (F1, . . . , Fd, C). This

allows to separate on the one hand the marginal distributions F1, . . . Fd, that can be estimated separately,

with possibly different models, and on the other hand the copula C, which summarizes the whole depen-

dence between the components of X. The copula C can be understood as a standardization of the law

of X where all the information about the margins has been removed. Indeed, for every j ∈ {1, . . . , d},
Uj := Fj(Xj) follows a uniform distribution on [0, 1] and this is true as long as the marginal distributions

Fi are continuous, that will be assumed everywhere in the following.

X1

...

Xd

U1

Ud

...

F1

Fd

CF

Figure 1.2: Decomposition of a vector X = (X1, . . . , Xd) with multivariate cumulative distribution function

F , margins F1, . . . Fd and copula C using Sklar’s Theorem (Theorem 1.1).

1.2.2 Inference of copulas models

In practice, the univariate margins F1, . . . Fd are unknown and need to be estimated in a first, preliminary

step. Let F̂1, . . . , F̂d be their respective estimators. They can be of any type (parametric, semi-parametric

or non-parametric), but a simple choice consists in using the empirical marginal cumulative distribution

function, i.e. F̂j(t) := (1/n)
∑n
i=1 1{Xi,j ≤ t}.

From these estimators, we compute the pseudos-observations Ûi,j := F̂j(Xi,j) for every 1 ≤ i ≤ n,

1 ≤ j ≤ d. Indeed, the statistician cannot access the true values Ui,j := Fj(Xi,j) since they are not

observe and depend on the unknown cdfs F1, . . . Fd. Strictly speaking, for every i ∈ {1, . . . , n}, the

random vector (Ui,1, . . . , Ui,d) follows the copula C, but the pseudo-observation Ûi := (Ûi,1, . . . , Ûi,d)

will not follow C. As n → ∞, the estimated marginals cdfs F̂1, . . . , F̂d should converge to the true

univariate cdfs, so it is still relevant to use the pseudos-observations (Ûi,j)i,j to estimate C.

The equivalent of the empirical cdf in this setting is the empirical copula, defined by

∀u := (u1, . . . , ud) ∈ [0, 1]d, Ĉn(u) :=
1

n

n∑
i=1

1{Ûi ≤ u} =
1

n

n∑
i=1

1{Ûi,1 ≤ u1, . . . , Ûi,d ≤ ud}. (1.4)

Note that the empirical copula Ĉn is not a copula since its margins are not continuous, and therefore not

uniform on [0, 1]. The empirical copula has been well-studied and converges to the true copula under

mild assumptions, see Fermanian et al. [51] and references therein.

Several parametric models of copulas are also available. One of the simplest copula is the Gaus-

sian copula with correlation matrix Σ, defined as the copula of the Gaussian distribution N (0,Σ). One

can similarly construct the Student copula as the copula of the multivariate Student distribution with

correlation matrix Σ and degrees of freedom ν.

Another important class of copulas is the class of Archimedean copulas. A copula C of dimension 2

is called Archimedean if there exists a function ϕ convex, continuous, strictly decreasing from [0, 1] to
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[0,+∞[ such that ϕ(1) = 0 and ∀(u, v) ∈ [0, 1]2, C(u, v) = ϕ(−1)
(
ϕ(u) + ϕ(v)

)
. Archimedean copulas

also exist in dimensions strictly larger than 2, under stronger assumptions on the function ϕ. In practice,

we can fix a family of generator (ϕθ)θ∈Θ for a low dimension parameter space Θ, and a parameter θ that

can be easily estimated. Several examples of such families are given in [106][Table 4.1].

More generally, assume that we have a finite-dimensional parameter space Θ ⊂ Rp, and a parametric

family of copulas C := {Cθ, θ ∈ Θ}, with densities cθ. As before, we assume that we are given n i.i.d.

replications X1, . . . ,Xn of a random vector X ∈ Rd, whose copula Cθ∗ belongs to the parametric family

C, for a true unknown parameter θ∗ ∈ Θ. One of the main techniques for estimating θ∗ is the so-called

Canonical Maximum Likelihood Estimation, which simply the pseudo-maximum likelihood estimation of

the model using the pseudos-observations Ûi,j := F̂j(Xi,j), i = 1, . . . , n, j = 1, . . . , p where F̂j is the

estimated univariate cdf of Xj . Usually F̂j is chosen as the empirical cdf of Xj , that allow for any

marginal distributions. This gives an estimator θ̂ defined by

θ̂ := arg max
θ∈Θ

n∑
i=1

log cθ
(
Ûi,1, . . . Ûi,n

)
. (1.5)

Such an estimator is convergent and asymptotically normal under usual regularity conditions, see Tsuka-

hara [137] for details and a proof.

Algorithm 1: Algorithm for the inference from margins
Input: n i.i.d. observations X1, . . . ,Xn of dimension d

for j ← 1 to d do
estimate the marginal law Fj by the empirical cdf F̂j or using a parametric model ;

for every i = 1, . . . , n, compute the pseudos-observation Ûi,j := F̂j(Xi,j) ;

end
estimate the copula Ĉ using the pseudos-observations Û1:n,1:d

• either by the empirical copula, defined in Equation (1.4)

• or by Canonical Maximum Likelihood Estimation Ĉn := Cθ̂ where θ̂ is defined by Equation (1.5) ;

Output: d marginals F̂1, . . . F̂d and a copula Ĉ.

1.2.3 Conditional copulas and the simplifying assumption

We study now a related framework, where the statistician observe i.i.d. replications of a vector X =

(XI ,XJ) where XI ∈ Rp is a vector of conditioned variables and XI ∈ Rd−p is a vector of conditioning

variables, in the sense that we want to model the law of XI given XJ . In the previous sections, we have

separated marginal and dependence parameters of a given distribution F . Similarly, we would like to

separate

• “conditional marginal parameters”, i.e. parameters linked to the conditional marginals cdfs Fj|J :=

FXj |J of Xj given J for j = 1, . . . , p;

• “conditional dependence parameters”, i.e. parameters linked to the conditional copula CI|J of XI

given XJ .
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This conditional copula exists by the conditional version of Sklar’s Theorem (Theorem 1.1), by which we

can decompose the conditional multivariate cdf FI|J as follows

∀xI ∈ Rp, ∀xJ , FI|J(xI |XJ = xJ) = CI|J

(
F1|J(x1|XJ = xJ), . . . , Fp|J(xp|XJ = xJ)

∣∣∣XJ = xJ

)
. (1.6)

These conditional copulas have been introduced by Patton [111, 112] and in a more general context

by Fermanian and Wegkamp [52]. For example, in a time series context, we may have a sequence of

random vectors (Xt)t indexed by the time t ∈ Z. To predict one observation using the previous one

in a Markov-chain like model, we would need to estimate the conditional law of Xt+1 given Xt. This is

close to the previous framework, with the formal choice XI := Xt+1 and XJ := Xt. In this case, the

conditional copula of Xt+1 given Xt can be understood as the prediction of the dependence between

the different components of Xt+1 given Xt.

Conditional copulas also naturally appear in the so-called vine framework, see [74, 77, 10]. Let us

detail this idea. Using Bayes’ theorem, one can show that any (unconditional) copula of dimension d can

be decomposed using d(d−1)/2 bivariate conditional copula. By this term, we mean conditional copulas

where the conditioned vector XI is of dimension 2, while the conditioning vector XJ has a dimension

between 0 and d−2. This decomposition, also called pair-copula construction [1], allows a a very flexible

way of constructing any multivariate copula.

Getting back in the classical framework, the conditional copula of an explained random vector XI

given an explanatory vector XI can be used to explain how the dependence among the components of

X can change with the values of the conditioning variable. Indeed, in the general case, the conditional

copula of XI given XJ = xJ does depend on the conditioning variable xJ . Sometimes, to make the

inference easier, people assume that the conditional copula is constant with respect to the conditioning

variable xJ . This is called the “Simplifying Assumption” for a given conditional copula model and may

or may not be satisfied in practice, i.e. with a given data-generating process. A visual representation of

the simplifying assumption when d = 2 is given on Figure 1.3. The general case, where the conditional

copula does depend on the conditioning variable Z, is illustrated on Figure 1.4.

Z

X1

X2

Figure 1.3: The “simplifying assumption”: Z has

an influence on the conditional margins X1 and

X2, but not on the conditional dependence be-

tween them.

Z

X1

X2

Figure 1.4: The general case: Z has an influ-

ence on the conditional marginsX1 andX2, and

also on their conditional dependence.

In Chapter 4, we provide some tests of this Simplifying Assumption H0. Formally, it is defined as

follows:

H0 : the function xJ 7→ CI|J(·|XJ = xJ) is constant. (1.7)

Let us define Cs,I|J be the cdf of the vector ZI|J :=
(
(F1|J(X1|XJ), . . . , Fp|J(Xp|XJ)

)
, called the sim-

plified, or partial copula. We prove in Proposition 4.4 that H0 is equivalent to the independence be-
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tween ZI|J and XJ , and that if the conditional copula is constant with respect to the conditioning vari-

able, then it is constant to the copula Cs,I|J . Note that the simplifying assumption does not imply that

CI|J(uI |XJ = xJ) = CI(uJ) where CI is the usual (unconditional) copula of XI (see Remark 4.1). This

means that the simplified copula Cs,I|J has no reason to be equal to the usual copula CI .

Nevertheless, we can have an estimate of Ĉs,I|J by averaging kernel-based estimators of the condi-

tional copula ĈI|J , or as the empirical cdf or empirical copula of ZI|J . This allows us to adapt any test

statistics for the constancy of a function to the test of our simplifying assumption. For any norm || · ||
on the space generated by the class of all conditional copulas, the test statistics ||ĈI|J − Ĉs,I|J || can be

used to test H0. For example, we can think of Kolmogorov-Smirnov-type statistics

T 0
KS,n := ‖ĈI|J − Ĉs,I|J‖∞ = sup

uI∈[0,1]p
sup

xJ∈Rd−p

∣∣ĈI|J(uI |xJ)− Ĉs,I|J(uI)
∣∣,

or Cramer von-Mises-type test statistics

T 0
CvM,n :=

∫ (
ĈI|J(uI |xJ)− Ĉs,I|J(uI)

)2

w(duI , dxJ),

for some weight function of bounded variation w, that could be chosen as random. Other tests statistics

can be constructed using the fact that H0 is equivalent to the independence between ZI|J and XJ ,

recycling usual independence test statistics.

Similar test statistics can be constructed under parametric assumptions. Let C := {Cθ, θ ∈ Θ} be a

family of copulas and assume that for every xJ ∈ Rp−d, there exists a conditional parameter θ(xJ) ∈ Θ

such that CI|J(·|XJ = xJ) = Cθ(xJ ). Then H0 is equivalent to the existence of a constant parameter θ0

such that ∀xJ , θ(xJ) = θ0. Test statistics can in this case be constructed as ||θ̂(·)− θ̂0||, using weighted

versions of the CMLE estimators defined in Equation 1.5 and a norm || · || on the space of functions

Rd−p → Θ.

In both cases, asymptotic distributions of these tests statistics are complicated to obtain and may

not pivotal, in the sense that they may depend on unknown parameters. Therefore, we propose to

use the bootstrap to estimate quantiles of the asymptotic distribution of a given test statistic T . We

propose different bootstrap schemes in general nonparametric framework, as well as under parametric

assumptions.

The simplifying assumption that we have studied before concerns the constancy of conditional copu-

las with respect to pointwise conditioning events, i.e. conditioning events of the form XJ = xJ , for some

fixed value of xJ . One can wonder what would happen for different conditioning events, for example if

we would conditioned by an event of the form xJ ∈ AJ for a borelian subset AJ ⊂ Rd−p. Similarly as in

Theorem 1.1 and Equation 1.6, we have the decomposition

FI|J(XI ≤ xI |XJ ∈ AJ) = CAJI|J

(
F1|J(x1|XJ ∈ AJ), . . . , Fp|J(xp|XJ ∈ AJ) |XJ ∈ AJ

)
,

for every point xI ∈ Rp and every subset AJ ∈ AJ , where AJ is the set of all Borel subsets of Rd−p.
This defines implicitly a conditional copula CAJI|J that depends of the conditioning set AJ in the general

case. So, it is tempting to replace H0 by

H̃0 : CAJI|J (uI |XJ ∈ AJ) does not depend onAJ ∈ AJ , for any uI .

Surprisingly and counter-intuitively, CAJI|J still depends on AJ even under the simplifying assumption

H0 ! This is due to the non-linear transformation in Sklar’s theorem. In fact, we prove that H̃0 is
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equivalent to a test of independence between XI and XJ , which is much stronger than the simplifying

assumption H0. Indeed, H0 means that XJ has no influence on the conditional dependence between

the components of XI ; if XI and XJ were independent, XJ would have no influence on the conditional

distribution of XJ , meaning no influence on its conditional margins nor on its conditional dependence.

Nevertheless, one can weaken the latter assumption, and restrict oneself to a finite family AJ of

subsets with positive probabilities. For such a family, we could test the assumption

H0 : AJ 7→ CAJI|J ( · |XJ ∈ AJ) is constant over AJ .

We propose similar test statistics of H0 in both non-parametric and parametric frameworks, as well as

adapted bootstrap procedures. We prove the validity of a particular bootstrap resampling schemes.

Finally, we illustrate the relevance of all these test statistics and related methods on simulated data.

1.2.4 Kendall’s tau: a measure of dependence, and its conditional version

Since the copula is a cdf, it lives in an infinite-dimensional space and can be hard to represent, store

(in the memory of a computer) or interpret in applications. Therefore, it may be useful to model the

dependence by a number, rather than by a function. One can invoke the usual (Pearson’s) coefficient

of correlation, but it is not always defined. More precisely, the correlation coefficient does not exists

when one of the marginal distribution does not belongs to L2, for example, if it is a Cauchy distribution.

Moreover, the correlation coefficient is no invariant with respect to increasing transformations of the

margins, such as a logarithmic transformation.

Several margin-free measures of dependence have been proposed, one of the best-known among

them is Kendall’s tau [80]. For a bivariate random vector X = (X1, X2), it is defined as

τ1,2 := IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

)
− IP

(
(X2,1 −X1,1)(X2,2 −X1,2) < 0

)
, (1.8)

where X1 := (X1,1, X1,2) and X2 := (X2,1, X2,2) are two i.i.d. replications of X. This can be interpreted

as the probability of observing a concordant pair (“the two variables move in the same direction”) minus

the probability of observing a discordant pair (“the two variables move in opposite direction”). Note that

Kendall’s tau is always defined for any distribution on R2 without any moment assumption and lies in the

interval [−1, 1]. It is invariant by increasing transformations of the marginal distribution and therefore only

depends on the copula of X. The link between the Kendall’s tau of a given distribution and its copula

is in fact explicit and given by τ1,2 = 4
∫

[0,1]2
C(u, v)dC(u, v)− 1. Further properties of Kendall’s tau and

related dependence measures are detailed in [106].

Kendall’s tau can be estimated easily by the empirical proportion of concordant pairs minus the

empirical proportion of discordant pairs, giving an estimator τ̂ . For most bivariate families of copulas

C = {Cθ, θ ∈ Θ ⊂ R}, there exists a bijection Ψ between the Kendall’s tau and the parameter θ, such

that τ = Ψ(θ). Then a natural estimator for θ is given by the technique called “Inversion of Kendall’s tau”,

that is θ̂ := Ψ(−1)(τ̂), where Ψ(−1) denotes the inverse of Ψ.

In a bivariate framework, the inference procedure for the law of X can be therefore divided in four

independent steps:

1. Estimation of the first marginal distribution F1 ;

2. Estimation of the second marginal distribution F2 ;
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3. Choice / selection of the family of copula C, which determines the shape of the dependence ;

4. Estimation of the Kendall’s tau τ and the corresponding parameter θ, which determines the strength
of the dependence.

By using Sklar’s theorem, we can construct an estimator of the cdf of X as

F̂X(x) := C
Ψ(−1)

(
τ̂
)(F̂1(x1) , F̂2|Z(x2)

)
,

where x = (x1, x2) ∈ R2.

Assume now that we observe n > 0 i.i.d replications (X1,Z1), . . . , (Xn,Zn) of a vector (X,Z) where

X is a bivariate random vector and Z is a vector of explanatory variables. The conditional law of X given

Z can be decomposed using the conditional version of Sklar’s Theorem, as in Equation 1.6, using the

conditional marginals F1|Z and F2|Z and the conditional copula CX|Z. Assume that the two conditional

margins F1|Z and F2|Z have already been estimated parametrically or non-parametrically (for example,

using kernel smoothing techniques). If the simplifying assumption holds, the conditional copula CX|Z is

constant with respect to Z and usual (unconditional) copula models can be used to estimate it.

On the contrary, if the simplifying assumption does not hold, then the statistician has to estimate the

conditional copula CX|Z. This corresponds to the estimation of a model of the thick arrow in Figure 1.4.

It is always possible to use nonparametric estimators of a conditional copula, for example by kernel-

smoothing, but they are very hard to visualize - and a fortiori to interpret. Indeed, even when the

dimension of Z is one, the graph of a conditional copula is an hyper-surface in dimension 4.

A simple idea is the use of the conditional Kendall’s tau. Remember that Kendall’s tau for a copula

C is τ(C) = 4
∫
CdC − 1. We can therefore extend this definition in a straightforward way as

τ1,2|Z=z := τ(CX|Z=z) = 4

∫
CX|Z=zdCX|Z=z − 1

= IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

∣∣Z1 = Z2 = z
)
− IP

(
(X2,1 −X1,1)(X2,2 −X1,2) < 0

∣∣Z1 = Z2 = z
)
,

(1.9)

where (X1,Z1) = (X1,1, X1,2, Z1,1, . . . , Z1,p) and (X2,Z2) = (X2,1, X2,2, Z2,1, . . . , Z2,p) are two inde-

pendent versions of (X,Z). This can be interpreted as the probability of observing a concordant pair

conditionally to Z = z minus the probability of observing a discordant pair conditionally to Z = z. We

note that the conditioning event Z1 = Z2 = z in Equation 1.9 is unusual, but it is necessary. Indeed,

conditional probabilities of concordance/discordance are only relevant when the two observations follow

the same distribution. In this case, it corresponds to the constraint Z1 = Z2.

In a parametric framework, one can use the conditional Kendall’s tau to estimate the conditional

parameter of a conditional copula. Indeed, let C1,2|Z(·|Z = z) be the conditional copula between X1 and

X2 given Z = z, C := {Cθ, θ ∈ Θ} be a family of copulas and assume that for every z, there exists a

conditional parameter θ(z) ∈ Θ such that C1,2|Z(·|Z = z) = Cθ(z). Assume that there is a bijection Ψ

such that τ(Cθ) = Ψ(θ), where τ(Cθ) denotes the Kendall’s tau of the copula Cθ. Then if we are given

an estimator τ̂1,2|Z=z of the conditional Kendall’s tau between X1 and X2 given Z = z, we can estimate

the conditional copula between X1 and X2 given Z = z by

Ĉ1,2|Z( · |Z = z) := C
Ψ(−1)

(
τ̂1,2|Z=z

) ,
where Ψ(−1) denotes the inverse function of Ψ. This allows one to separate the inference procedure for

the joint law of (X,Z) in five independent steps:
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1. Estimation of the first conditional marginal distribution F1|Z which determines the influence of the

covariate Z on X1 ;

2. Estimation of the first conditional marginal distribution F2|Z which determines the influence of the

covariate Z on X2 ;

3. Choice / selection of the family of conditional copula C, which determines the shape of the condi-
tional dependence ;

4. Estimation of the conditional Kendall’s tau τ1,2|Z=· and the corresponding parameter θ(z), which

determines the strength of the conditional dependence ;

5. Estimation of the law of the conditioning variable Z.

As a consequence, an estimator of the joint cdf FX,Z can be constructed using these five pieces, by

F̂X,Z(x, z) := F̂Z(z)× C
Ψ(−1)

(
τ̂1,2|Z=z

)(F̂1|Z(x1|Z = z) , F̂2|Z(x2|Z = z)
)
,

where x = (x1, x2) ∈ R2 and z ∈ Rp.

1.2.5 Estimation of the conditional Kendall’s tau

To estimate the conditional Kendall’s tau, we will follow three different approaches. In Chapter 5, we

show how kernel-based estimators can be used to estimate the conditional Kendall’s tau. In Chapter 6,

we propose to estimate the conditional Kendall’s tau by a regression-type model. Finally, in Chapter 7,

we show how classification-based methods can be used for the estimation of the conditional Kendall’s

tau.

The conditional Kendall’s tau can be rewritten as τ1,2|Z=z = IE[g(X1,X2)|Z1 = Z2 = z] for a well-

chosen choice of g and two i.i.d. replications (X1,Z1), (X2,Z2) of a random vector (X,Z) ∈ R2+p,

where dim(Z) = p > 0. Therefore, in Chapter 5, we propose a corresponding kernel-based estimator

of the conditional Kendall’s tau. It is given by τ̂1,2|Z=z :=
∑n
i=1

∑n
j=1 wi,n(z)wj,n(z)g(Xi,Xj), where

wi,n(z) = Kh(Zi − z), K is a kernel on Rp and h > 0 is the so-called bandwidth.

Our first result is a concentration inequality for the estimated conditional Kendall’s tau: we show

that for a given z, t > 0 small enough and t′ > 0, with probability larger than 1 − exp
(
− nhpt2/(C1 +

C2t)
)
− exp

(
− nh2pt′2/(C3 + C4t

′)
)
, we have

∣∣τ̂1,2|Z=z − τ1,2|Z=z

∣∣ < φ(t, t′, h), for some explicit con-

stants C1, . . . , C4 and an explicit function φ, under some regularity conditions. Then, we show its con-

sistency, uniform consistency and asymptotic normality under different regularity assumptions on the

data-generating process.

This kernel-based can be nevertheless costly to compute when we want to estimate the whole curve

z 7→ τ1,2|Z=z. We may also want to have a parametric form for the conditional Kendall’s tau that would

be easier to interpret in applications. Therefore, in Chapter 6, we propose the following regression-

type model. For a given link function Λ : [−1, 1] → R, and a given basis (ψi), we can always do the

decomposition

Λ
(
τ1,2|Z=z

)
=
∑
i

ψi(z)β∗i = ψ(z)Tβ∗, (1.10)

where the β∗i are real coefficients, assuming that only a finite number of functions is necessary to

reconstruct this transformation of the conditional Kendall’s tau. It seems difficult to have intuition about
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what kind of functions should be incorporated in the family ψi. As a consequence, we advise to include

different transformations, such as polynomials, trigonometric or indicator functions, keeping in mind that

only a few of them might be relevant to the analysis. This means that the vector β∗ is sparse, in the

sense that most of its coefficients may be equal to 0. As in the previous section, we would like to use

a penalized regression to estimate Model 1.10. A direct estimation of it seems difficult since we do

not observe realizations of the conditional Kendall’s tau itself. Therefore, we will use a two-step based

procedure :

1. Fixing some design points z′1, . . . , z
′
n′ with n′ > 0, we estimate the conditional Kendall’s tau using

a kernel-based estimator at each of those points, giving estimators τ̂1,2|Z=z′i
for i = 1, . . . , n′.

2. Then we estimate β∗ by the following penalized least-squares estimator

β̂PLS := arg min
β∈Rp′

[ 1

n′

n′∑
i=1

(
Λ(τ̂1,2|Z=z′i

)−ψ(z′i)
Tβ
)2

+ λ|β|1
]
, (1.11)

where | · |1 is the l1 norm and λ is a tuning parameter.

Finally, for any point z, the conditional Kendall’s tau itself can be estimated by Λ−1
(
zT β̂PLS). As a by-

product, the coefficient β̂PLS can also be used to estimate marginal effects of the form ∂τ1,2|Z=z/∂zj

for j = 1, . . . , p. This can be useful to have a quantity that measures how the conditional dependence

between X1 and X2 change with the variable Zj , for example.

We prove a concentration bound for β̂PLS with explicit constants that holds with high probability

under regularity assumptions on the data-generating process and on the design matrix. Then we prove

the consistency and the asymptotic normality of β̂PLS , when n → ∞ and n′ is fixed. In this situation,

our estimator β̂PLS does not fulfill the oracle property in the sense that it fails to estimate the true set of

relevant variables with probability tending to 1.

We show that a related adaptive procedure can recover the true set of relevant variable. It is defined

with the same l1-penalized criteria, but it uses a random tuning parameter λ = µ/|β̃|δ, where β̃ is a

consistent estimator of β∗ and µ = µn,n′ is a deterministic sequence satisfying some rate assumption.

Getting back to the previous estimator β̂, we show that, under some regularity assumptions, it is

consistent in the framework where both n and n′ tend to the infinity. We also compute its asymptotic

distribution, and show that the rate significantly improved in this double-asymptotic framework: we obtain

β̂PLSn,n′ − β∗ � (nn′hp)−1/2, that can be compared with the equivalent β̂PLSn,n′ − β∗ � (nhp)−1/2 obtained

when n′ is fixed.

In Chapter 7, we show how the problem of estimating the conditional Kendall’s tau can be rewritten

as a classification task. Indeed, remember that it is defined as

τ1,2|Z=z = IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

∣∣Z1 = Z2 = z
)
− IP

(
(X2,1 −X1,1)(X2,2 −X1,2) < 0

∣∣Z1 = Z2 = z
)
.

We now introduce the variable W defined by

W = 1
{

(X2,1 −X1,1)(X2,2 −X1,2) > 0
}
− 1

{
(X2,1 −X1,1)(X2,2 −X1,2) < 0

}
.

As the distribution of X is continuous, W belongs to the set {−1, 1} almost surely, where W = 1 cor-

responds to the observation of a concordant pair and W = −1 to a discordant pair. Using this new

variable W , we can rewrite the conditional Kendall’s tau as

τ1,2|Z=z = IP
(
W = 1

∣∣Z1 = Z2 = z
)
− IP

(
W = −1

∣∣Z1 = Z2 = z
)

= 2IP
(
W = 1

∣∣Z1 = Z2 = z
)
− 1 = 2p(z)− 1, (1.12)
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where p(z) := IP
(
W = 1

∣∣Z1 = Z2 = z
)
. Therefore, estimating the conditional probability of the variable

W being equal to 1 or −1 is equivalent to estimating the conditional Kendall’s tau. Actually, the prediction

of concordance/discordance among pairs of observations (X1,X2) given Z can be seen as a classifica-

tion task of such pairs. If a model is able to evaluate the conditional probability of observing concordant

pairs of observations, then it is able to evaluate conditional Kendall’s tau, and the former quantity is one

of the outputs of most classification techniques.

For an i.i.d. sample D := (Xi,Zi)i=1,...,n, we define W(i,j) as

W(i,j) := 2× 1{(Xj,1 −Xi,1)(Xj,2 −Xi,2) > 0} − 1 =

1 if (i, j) is a concordant pair,

−1 if (i, j) is a discordant pair,
(1.13)

for every 1 ≤ i, j ≤ n, i 6= j. A classification technique will allocate a given couple (i, j) into one of the

two categories {1,−1} (or “concordant versus discordant”, equivalently), with a certain probability, given

the value of the common covariate Z.

We first consider a parametric approach, assuming a single-index model of the form τ1,2|Z=z =

g
(
ψ(z)Tβ∗

)
, similarly as in Model 1.10, where g = Λ(−1). We propose to use maximum-likelihood-type

methods to estimate the parameter β∗. For one observation (W(i,j),Zi,Zj), given Zi = Zj = z, its

log-likelihood is

`β(W(i,j), z) :=

(
1 +W(i,j)

2

)
log IPβ

(
W(i,j) = 1

∣∣∣Zi = Zj = z

)
+

(
1−W(i,j)

2

)
log IPβ

(
W(i,j) = −1

∣∣∣Zi = Zj = z

)
.

In practice, when the underlying law of Z is continuous, there is virtually no couple for which Zi = Zj .

Therefore, we will consider a localized “approximated” log-likelihood, based on (W(i,j),Zi,Zj) for all

pairs (i, j), i 6= j. It will be defined as the double sum

Ln(β) :=
1

n(n− 1)

∑
i,j;i6=j

Kh(Zi − Zj)`β(W(i,j), Z̃i,j),

where K is a kernel on Rp, h a bandwidth, and Z̃i,j a point belonging to a neighborhood of Zi or Zj ,

for example Zi or Zj themselves, or (Zi + Zj)/2. Finally, we define a penalized approximate maximum

likelihood estimator of β∗ by

β̂PAML := arg max
β∈Rp′

Ln(β)− λn|β|1. (1.14)

Note that, contrary to the two-step estimators considered previously in Equation (1.11), β̂PAML is not a

solution of a convex program in general, and therefore may difficult to compute in practice. Nevertheless,

it does not need any choice of design points as previously. If g is chosen as the equivalent of the probit

or logit link function, then we prove that the optimization program (1.14) is in fact a convex program, that

can be easily solved in polynomial time using a classical software for solving (penalized) weighted probit

or logit regressions.

More generally, if we are given a dataset D := (Xi,Zi)i=1,...,n, we can always construct the dataset

of pairs, defined as D̃ := (Wk, Z̃k, Vk)1≤k≤n(n−1)/2, where each pair (i, j) with i < j is indexed by an

integer k. Each observation in this dataset is made up of three components. The first is Wk := Wi,j ,

i.e. the concordance/discordance of the pair (i, j) ; this is the variable that we want to predict. The

explanatory variable of the pair (i, j) is defined by Z̃k := Z̃i,j . Finally we construct a weight variable

Vk := Vi,j = Kh(Zi − Zj), which measures how close Zi and Zj are, and therefore, it measures how

relevant for the estimation of the conditional Kendall’s tau the pair (i, j) is. Indeed, remember that in the

definition of the conditional Kendall’s tau τ1,2|Z=z, the conditioning event is of the form Z1 = Z2 = z.
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Assume we are given a classification algorithm that takes in input a dataset with an explained vari-

able, a vector of explanatory variables and a weight for each observation. We remark that it corresponds

exactly to the caracteristic of the dataset of pairs D̃ constructed above. Therefore, we can directly apply

any classification algorithm on the dataset D̃. As a result we will obtained an estimated function p̂(z) of

the probability of observing a concordant pair given the covariate z. We can plug this estimate to obtain

an estimator of the conditional Kendall’s tau by τ̂1,2|Z=z = 2p̂(z)− 1, using Equation (1.10).

Nearly all classification algorithms can be adapted following this principled, and we detail the case of

the probit logit, decision trees, random forest, nearest neighbors and neural networks. One can remark

that observations in the dataset of pairs D̃ are not independent. For example, the pair (1, 2) and (1, 3) are

not independent since they share the same first observation (X1,Z1). Nevertheless, we show that this

lack of independence is not too much harmful since most couple of pairs are independent in fact. The

performance of all these estimators and their sensitivities to each component of the model is assessed

in a simulation study. Finally, we apply all these estimators to a dataset of European stock indices, and

compare the conditional dependence between them.

1.3 Other topics in inference

1.3.1 Estimation of a regular conditional functional by conditional U-statistic
regression

Remember that Kendall’s tau, defined in Equation (1.8), can be also rewritten as

τ1,2 :=

∫
1
{

(x2,1−x1,1)(x2,2−x1,2) > 0
}
−1
{

(x2,1−x1,1)(x2,2−x1,2) < 0
}
dIPX(x1,1, x2,1)dIPX(x1,1, x2,1).

This means Kendall’s tau is what we will call a regular function θ(IPX) of the law of X. Similarly, the

conditional Kendall’s tau τ1,2|Z=z can be rewritten as θ(IPX|Z=z) with the same conditional θ(·). Many

results detailed in Chapters 5 and 6 are not specific to the case of the (conditional) Kendall’s tau, but can

be generalized to any regular (conditional) functional. Such generalizations are studied in Chapter 8,

with corresponding theoretical results.

Our framework will be the following. We observe n i.i.d. replications (Xi,Zi) ∼ (X,Z), i = 1, . . . , n.

The random variable X belongs to a measurable space (X ,A) while Z ∈ Rp. We will denote the joint

law of (X,Z) by IPX,Z and the conditional law of X|Z by IPX|Z. A regular conditional functional is defined

as a functional of the form

θ(z1, . . . , zk) = θ
(
IPX|Z=z1

, . . . , IPX|Z=zk

)
=

∫
g∗(x1, . . . ,xk)dIPX|Z=z1

(x1) · · · dIPX|Z=zk(xk),

for a fixed function g∗ : X k → R, where k > 0. For example, in the case of the conditional Kendall’s tau,

X = R2, k = 2, and g∗(x1,x2) is 1 if the pair (x1,x2) is concordant and −1 if it is discordant.

Our goal is to estimate the function (z1, . . . zk) 7→ θ(z1, . . . , zk). The first method consists in using a

kernel estimator θ̂ of θ. Asymptotic properties of such an estimator were proved by Stute [132]. Under

some regularity assumptions, we prove that, with probability greater than 1− 2 exp
(
− [n/k]t2hkp/(C1 +

C2t)
)
− 2 exp

(
− [n/k]t′2hkp/(C6 +C7t

′)
)
, we have

∣∣θ̂(z1, . . . , zk)− θ(z1, . . . , zk)
∣∣ ≤ (1 +C3h

α +C4t
)
×(

C5h
k+α + t′

)
, for some explicit constants C1, . . . , C7.

Then we propose a regression-type model generalizing the parametric model that we proposed for

the conditional Kendall’s tau in Equation (1.10). It is defined as

∀(z1, . . . , zk) ∈ Zk, Λ
(
θ(z1, . . . , zk)

)
= ψ(z1, . . . , zk)Tβ∗, (1.15)
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for a given transformation Λ : Range(g∗) 7→ R, a basis ψ of size r > 0, and a true unknown parameter β∗

to be estimated. This model cannot be directly estimated, as both sides of the equation are unobserved.

Nevertheless, given a finite collection of points z′1, . . . , z
′
n′ ∈ Z

n′ and a collection Ik,n′ of injective func-

tions σ : {1, . . . , k} → {1, . . . , n′}, we can use the kernel estimate θ̂(z′σ(1), . . . , z
′
σ(k)) for each choice

of σ ∈ Ik,n′ . Then, the estimator β̂ can be defined in a second step as the minimizer of the following

l1-penalized criteria

β̂(g∗) := arg min
β∈Rr

 (n′ − k)!

n′!

∑
σ∈Ik,n′

(
Λ
(
θ̂
(
z′σ(1), . . . , z

′
σ(k)

))
−ψ

(
z′σ(1), . . . , z

′
σ(k)

)T
β

)2

+ λ|β|1

 ,
where λ is a tuning parameter. We prove a nonasymptotic bound on β̂(g∗) that holds with high probability.

Then we consider two different asymptotic regimes : n → ∞ with a fixed n′ and (n, n′) jointly tends to

the infinity. In both regimes, we show that, under suitable regularity conditions, the estimator β̂(g∗) is

consistent and we derive its asymptotic law.

1.3.2 About confidence intervals for ratios of means

In Section 1.3.1, we have given non-asymptotic bounds for our kernel estimator, which is defined as

a ratio of two sums. In fact, the same techniques can be used to obtain concentration inequalities for

ratios of means. These inequalities are of the form,
∣∣Xn/Y n − IE[X]/IE[Y ]| ≤ Ψ(α), with probability at

least 1 − α, where Ψ is a function that depends on the regularity assumptions made on the distribution

of X and Y , Xn := n−1
∑n
i=1Xi,n, and we observe n i.i.d. replications (Xi,n, Yi,n) ∼ (X,Y ).

In Chapter 9, we prove two versions of these concentrations inequalities, when X and Y both admits

second moments, or when the supports of X and Y are bounded. We give explicit expressions for the

corresponding functions Ψ, which are of the form (C + o(1))/
√
nα (respectively (C + o(1))

√
ln(1/α)/n).

This allows us to construct confidence intervals for ratios of means, that are valid for any fixed n ∈ N .

The most popular method for constructing confidence intervals is based on an application of the delta

method. In practice, statisticians tend to examine thinner and thinner effects as more and more data are

available. This forms a sequence-of-models framework under which we prove a generalization of the

delta method for ratios of means. Finally, we prove a lower bound and an impossibility result related to

the nonasymptotic inference of ratios of means. More precisely, we show that there exists a minimum

size for any nonasymptotic confidence interval and a minimum level under which no "reasonable test"

can be defined.
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Chapter 2

Improved bounds for Square-root
Lasso and Square-root Slope

Abstract

Extending the results of Bellec, Lecué and Tsybakov [12] to the setting of sparse high-

dimensional linear regression with unknown variance, we show that two estimators, the Square-

Root Lasso and the Square-Root Slope can achieve the optimal minimax prediction rate, which

is (s/n) log (p/s), up to some constant, under some mild conditions on the design matrix. Here,

n is the sample size, p is the dimension and s is the sparsity parameter. We also prove optimality

for the estimation error in the lq-norm, with q ∈ [1, 2] for the Square-Root Lasso, and in the l2

and sorted l1 norms for the Square-Root Slope. Both estimators are adaptive to the unknown

variance of the noise. The Square-Root Slope is also adaptive to the sparsity s of the true param-

eter. Next, we prove that any estimator depending on s which attains the minimax rate admits an

adaptive to s version still attaining the same rate. We apply this result to the Square-root Lasso.

Moreover, for both estimators, we obtain valid rates for a wide range of confidence levels, and

improved concentration properties as in [12] where the case of known variance is treated. Our

results are non-asymptotic.

Keywords: Sparse linear regression, minimax rates, high-dimensional statistics, adaptivity,

square-root estimators.

Based on [35]: Derumigny A, Improved bounds for Square-root Lasso and Square-root Slope.

Electronic Journal of Statistics, 12(1) :741–766, 2018.

2.1 Introduction

In a recent paper by Bellec, Lecué and Tsybakov [12], it is shown that there exist high-dimensional

statistical methods realizable in polynomial time that achieve the minimax optimal rate (s/n) log (p/s)

in the context of sparse linear regression. Here, n is the sample size, p is the dimension and s is the

sparsity parameter. The result is achieved by the Lasso and Slope estimators, and the Slope estimator

is adaptive to the unknown sparsity s. Bounds for more general estimators are proved by Bellec, Lecué

and Tsybakov [13, 11]. These articles also establish bounds in deviation that hold for any confidence
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level and for the risk in expectation. However, the estimators considered in [12, 13, 11] require the

knowledge of the noise variance σ2. To our knowledge, no polynomial-time methods, which would be at

the same time optimal in a minimax sense and adaptive both to σ and s are available in the literature.

Estimators similar to the Lasso, but adaptive to σ are the Square-Root Lasso and the related Scaled

Lasso, introduced by Sun and Zhang [134] and Belloni, Chernozhukov and Wang [14]. It has been

shown to achieve the rate (s/n) log(p) in deviation with the value of the tuning parameter depending

on the confidence level. A variant of this estimator is the Heteroscedastic Square-Root Lasso, which is

studied in more general nonparametric and semiparametric setups by Belloni, Chernozhukov and Wang

[15], but it also achieves the rate (s/n) log(p) and depends on the confidence level. We refer to the book

by Giraud [67] for the link between the Lasso and the Square-Root Lasso and a short proof of oracle

inequalities for the Square-root Lasso. In summary, there are two points to improve for the Square-root

Lasso method:

(i) The available results on oracle inequalities are valid only for the estimators depending on the confi-

dence level. Thus, one cannot have an oracle inequality for one given estimator at any confidence

level except the one that was used to design it.

(ii) The obtained rate is (s/n) log(p) which is greater than the minimax rate (s/n) log(p/s).

The Slope, which is an acronym for Sorted L-One Penalized Estimation, is an estimator introduced

by Bogdan et al. [20], that is close to the Lasso, but uses the sorted l1 norm instead of the standard l1
norm for penalization. Su and Candès [133] proved that, as opposed to the Lasso, the Slope estimator

is asymptotically minimax, in the sense that it attains the rate (s/n) log(p/s) for two isotropic designs,

that is either for X deterministic with 1
nX

TX = Ip×p or when X is a matrix with i.i.d. standard normal

entries. Moreover, their result has not only the optimal minimax rate, but also the exact optimal constant.

General isotropic random designs are explored by Lecué and Mendelson [93]. For non-isotropic random

designs and deterministic designs under conditions close to the Restricted Eigenvalue, the behavior of

the Slope estimator is studied in [12]. The Slope estimator is adaptive only to s, and requires knowledge

of σ, which is not available in practice. In order to have an estimator which is adaptive both to s and

σ, we will use the Square-Root Slope, introduced by Stucky and van de Geer [131]. They give oracle

inequalities for a large group of square-root estimators, including the new Square-Root Slope, but still

following the scheme where (i) and (ii) cannot be avoided. The square-root estimators are also members

of a more general family of penalized estimators defined by Owen [109, equations (8)-(9)] ; using their

notation, these estimators correspond to the case where HM is the squared loss and BM is a norm

(either the l1 norm or the slope norm).

The paper is organized as follows. In Section 2.2, we provide the main definitions and notation. In

Section 2.3, we show that the Square-Root Lasso is minimax optimal if s is known while being adaptive

to σ under a mild condition on the design matrix (SRE). In Section 2.4, we show that any sequence of

estimators can be made adaptive to the sparsity parameter s, while keeping the same rate up to some

constant, with a computational cost increased by a factor of log(s∗) where s∗ is an upper bound on the

sparsity parameter s. As an application, the Square-root Lasso modified by this procedure is still optimal

while being now adaptive to s (in addition of being already adaptive to σ). In Section 2.5, we show how

to adapt any algorithm for computing the Slope estimator to the case of the Square-root Slope estimator.

In Section 2.6, we study the Square-Root Slope estimator, and show that it is minimax optimal and

adaptive both to s and σ, under a slightly stronger condition (WRE). The (SRE) and (WRE) conditions

have already been studied by Bellec, Lecué and Tsybakov [12] and hold with high probability for a large
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class of random matrices. Moreover, the inequalities we obtain for each estimator are valid for a wide

range of confidence levels. Proofs are given in Section 2.7.

2.2 The framework

We use the notation | · |q for the lq norm, with 1 ≤ q ≤ ∞, and | · |0 for the number of non-zero

coordinates of a given vector. For any v ∈ Rp, and any set of coordinates J , we denote by vJ the

vector (vj1{i ∈ J})i=1,...,p, where 1 is the indicator function. We also define the empirical norm of

a vector u = (u1, . . . , un) as ||u||2n := 1
n

∑n
i=1 u

2
i . For a vector v ∈ Rp, we denote by v(j) the j-th

largest component of v. As a particular case, |v|(j) is the j-th largest component of the vector |v| whose

components are the absolute values of the components of v. We use the notation 〈·, ·〉 for the inner

product with respect to the Euclidean norm and (ej)j=1,...,p for the canonical basis in Rp.

Let Y ∈ Rn be the vector of observations and let X ∈ Rn×p be the design matrix. We assume that

the true model is the following

Y = Xβ∗ + ε. (2.1)

Here β∗ ∈ Rp is the unknown true parameter. We assume that ε is the random noise, with values in

Rn, distributed as N (0, σ2In×n), where In×n is the identity matrix. We denote by IPβ∗ the probability

distribution of Y satisfying (2.1). In what follows, we define the set B0(s) := {β∗ ∈ Rp : |β∗|0 ≤ s}. In the

high-dimensional framework, we have typically in mind the case where s is small, p is large and possibly

p� n.

We define two square-root type estimators of β∗: the Square-Root Lasso β̂SQL and the Square-Root

Slope β̂SQS by the following relations

β̂SQL ∈ arg min
β∈Rp

(
1√
n
|Y − Xβ|2 + λ|β|1

)
, (2.2)

β̂SQS ∈ arg min
β∈Rp

(
1√
n
|Y − Xβ|2 + |β|∗

)
, (2.3)

where λ > 0 is a tuning parameter to be chosen, and the sorted l1 norm, | · |∗, is defined for all u ∈ Rp

by |u|∗ =
∑p
j=1 λj |u|(j), with tuning parameters λ1 ≥ · · · ≥ λp > 0.

2.3 Optimal rates for the Square-Root Lasso

In this section, we derive oracle inequalities with optimal rate for the Square-Root Lasso estimator.

We will use the Strong Restricted Eigenvalue (SRE) condition, introduced in [12]. For c0 > 0 and

s ∈ {1, . . . , p}, it is defined as follows,

SRE(s, c0) condition : The design matrix X satisfies

max
j=1,...,p

||Xej ||n ≤ 1

and
κ(s) := min

δ∈CSRE(s,c0):δ 6=0

||Xδ||n
|δ|2

> 0, (2.4)

where CSRE(s, c0) := {δ ∈ Rp : |δ|1 ≤ (1 + c0)
√
s|δ|2} is a cone in Rp.
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The condition maxj=1,...,p ||Xej ||n ≤ 1 is standard and corresponds to a normalization. It is shown

in [12, Proposition 8.1] that the SRE condition is equivalent to the Restricted Eigenvalue (RE) condition

of [19] if that is considered in conjunction with such a normalization. By the same proposition, the RE

condition is also equivalent to the s-sparse eigenvalue condition, which is satisfied with high probability

for a large class of random matrices. It is the case, if for instance, n ≥ Cs log(ep/s) and the rows of X
satisfies the small ball condition, which is very mild, see, e.g. [12].

Note that the minimum in (2.4) is the same as the minimum of the function δ 7→ ||Xδ||n on the set

CSRE(s, c0) ∩ {δ ∈ Rp : |δ|2 = 1}, which is a continuous function on a compact of Rp, therefore this

minimum is attained. When there is no ambiguity over the choice of s, we will just write κ instead of κ(s).

Theorem 2.1. Let s ∈ {1, . . . , p} and assume that the SRE(s, 5/3) condition holds. Choose the following
tuning parameter

λ = γ

√
1

n
log

(
2p

s

)
, (2.5)

and assume that

γ ≥ 16 + 4
√

2 and s

n
log

(
2p

s

)
≤ 9κ2

256γ2
. (2.6)

Then, for every δ0 ≥ exp(−n/4γ2) and every β∗ ∈ Rp such that |β∗|0 ≤ s, with IPβ∗ -probability at least
1− δ0 − (1 + e2)e−n/24, we have

||X(β̂SQL − β∗)||n ≤ σmax

(
C1

κ2

√
s

n
log
(p
s

)
, C2

√
log(1/δ0)

n

)
, (2.7)

|β̂SQL − β∗|q ≤ σmax

C3

κ2
s1/q

√
1

n
log

(
2p

s

)
, C4s

1/q−1

√
log2(1/δ0)

n log(2p/s)

 , (2.8)

where 1 ≤ q ≤ 2, and C1 > 0, C2 > 0, C3 > 0, C4 > 0 are constants depending only on γ.

The values of the constants C1, C2, C3 and C4 in Theorem 2.1 can be found in the proof, in Section

2.7.2. Using the fact that κ ≤ 1 and choosing δ0 = (s/p)s, we get the following corollary of Theorem 2.1.

Corollary 2.2. Under the assumptions of Theorem 2.1, with IPβ∗ -probability at least 1 − (s/p)s − (1 +

e2)e−n/24, we have

||X(β̂SQL − β∗)||n ≤
C2

κ2
σ

√
s

n
log
(p
s

)
,

|β̂SQL − β∗|q ≤
C4

κ2
σs1/q

√
1

n
log

(
2p

s

)
,

where 1 ≤ q ≤ 2.

Theorem 2.1 and Corollary 2.2 give bounds that hold with high probability for both the prediction

error and the estimation error in the lq norm, for every q in [1, 2]. Note that the bounds are best when

the tuning parameter is chosen as small as possible, i.e. with γ = 16 + 4
√

2. As shown in Section 7 of

Bellec, Lecué and Tsybakov [12], the rates of estimation obtained in the latter corollary are optimal in a

minimax sense on the set B0(s) := {β∗ ∈ Rp : |β∗|0 ≤ s}. We obtain the same rate of convergence as

[12] (see the paragraph after Corollary 4.3 in [12]) up to some multiplicative constant.

The rate is also the same as in Su and Candès [133], but the framework is quite different: we

obtain a non-asymptotic bound in probability whereas they consider asymptotic bounds in expectation
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(cf. Theorem 1.1 in [133]) and in probability (Theorem 1.2) but without giving an explicit expression of

the probability that their bound is valid. Our result is non-asymptotic and valid when general enough

conditions on X are satisfied whereas the result in [133] is asymptotic as n → ∞, and valid for two

isotropic designs, that is either for X deterministic with 1
nX

TX = Ip×p or when X is a matrix with i.i.d.

standard normal entries.

Similarly to [12], for each tuning parameter γ, there is a wide range of levels of confidence δ0 under

which the bounds of Theorem 2.1 are valid. However, [12] allows for an arbitrary small confidence level

while in our case, there is a lower bound on the size of the confidence level under which the rate is

obtained. Note that this bound can be made arbitrary small by choosing a sample size n large enough.

Note that the possible values chosen for the tuning parameter λ are independent of the underlying

standard deviation σ, which is unknown in practice. This gives an advantage for the Square-Root Lasso

over other methods such as the ordinary Lasso. Nevertheless, this estimator is not adaptive to the

sparsity s, so that we need to know that |β∗|0 ≤ s in order to be able to apply this result. In the following

section, we suggest a procedure to make the Square-root Lasso adaptive to s while keeping its optimality

and adaptivity to σ.

2.4 Adaptation to sparsity by a Lepski-type procedure

Let s∗ be an integer in {2, . . . , p/e}. We want to show that the Square-Root Lasso can also achieve the

minimax optimal bound, adaptively to the sparsity s on the interval [1, s∗] (in addition of being already

adaptive to σ). Following [12], we will use aggregation of at most log2(s∗) Square-Root Lasso estimators

with different tuning parameters to construct an adaptive estimator β̃ of β and at the same time an

estimator s̃ of the sparsity s.

In the following, we use the notation

κ∗ := κ(2s∗).

Note that κ∗ = mins=1,...,2s∗ κ(s). Indeed, the function κ(·) is decreasing, because the minimization (2.4)

is done on spaces that are growing with s, in the sense of the inclusion. We will assume that the condition

SRE(2s∗, 5/3) holds and that (2s∗/n) log
(
2p/(2s∗)

)
≤ 9κ2

∗/(256γ2). The functions b 7→ (b/n) log(2p/b)

and κ(·) are respectively increasing (by Lemma 2.4) and decreasing, so this ensures that the second

part of condition (2.6) is satisfied for any s = 1, . . . , 2s∗.

We can reformulate Corollary 2.2 as follows: for any s = 1, . . . , 2s∗ and any γ ≥ 16 + 4
√

2

sup
β∗∈B0(s)

IPβ∗

(
||X(β̂SQL(s,γ) − β

∗)||n ≤
C2(γ)

κ2
∗

σ

√
s

n
log
(p
s

))

≥ 1−
(
s

p

)s
− (1 + e2)e−n/24, (2.9)

denoting by β̂SQL(s,γ) the estimator (2.2) with the tuning parameter λ(s,γ) given by (2.5). Replacing s by 2s

in equation (2.9), we get that for any s = 1, . . . , s∗ and any γ ≥ 16 + 4
√

2,

sup
β∗∈B0(2s)

IPβ∗

(
||X(β̂SQL(2s,γ) − β

∗)||n ≤
C2(γ)

κ2
∗

σ

√
2s

n
log
( p

2s

))

≥ 1−
(

2s

p

)2s

− (1 + e2)e−n/24. (2.10)
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Remark that λ(s,γ) = γ
√

1
n log

(
2p
s

)
= γ̃

√
1
n log

(
2p
s

)
− log(2)

n = λ(2s,γ̃) for some γ̃ > γ. As a conse-

quence, β̂SQL(s,γ) = β̂SQL(2s,γ̃) and we can apply Equation (2.10), replacing γ by γ̃ and we get

sup
β∗∈B0(2s)

IPβ∗

(
||X(β̂SQL(s,γ) − β

∗)||n ≤
C2(γ̃)

κ2
∗

σ

√
2s

n
log
( p

2s

))

≥ 1−
(

2s

p

)2s

− (1 + e2)e−n/24. (2.11)

Note that equations (2.9) and (2.11) are the same as equations (5.2) and (5.4) in Bellec, Lecué and

Tsybakov [12], taking C0 := max
(
C2(γ), C2(γ̃)

)
/κ2
∗, except that we have a supplementary term −(1 +

e2)e−n/24. Similarly, we deduce from Corollary 2.2 that

sup
β∗∈B0(s)

IPβ∗

(
|X(β̂SQL(s,γ) − β

∗)|q ≤
C4(γ)

κ2
∗

σs1/q

√
s

n
log

(
2p

s

))

≥ 1−
(
s

p

)s
− (1 + e2)e−n/24, (2.12)

sup
β∗∈B0(2s)

IPβ∗

(
|β̂SQL(s,γ) − β

∗|q ≤
C4(γ̃)

κ2
∗

σs1/q

√
2s

n
log

(
2p

2s

))

≥ 1−
(

2s

p

)2s

− (1 + e2)e−n/24. (2.13)

We describe now an algorithm to compute this adaptive estimator. The idea is to use an estimator

s̃ of s which can be written as s̃ := 2m̃ for some positive data-dependent integer m̃. We will use the

notation M := max{m ∈ N : 2m ≤ s∗}, so that the number of estimators we consider in the aggregation

is M .

The suggested procedure is detailed in Algorithm 2 below, with the distance d(β, β′) = ||X(β − β′)||n
or d(β, β′) = |β − β′|q for q ∈ [1, 2]. It can be used for any family of estimators (β̂(s))s=1,...s∗ , and

chooses the best one in terms of the distance d(·, ·), resulting in an aggregated estimator β̃. Note that

the weight function w(·) used in the algorithm cannot depend on σ as in [12], i.e. to have the form

w(b) = C0σ
√

(b/n) log(p/b) (respectively w(b) = C0σb
1/q
√

(1/n) log(p/b) ), because we are looking for

a procedure adaptive to σ. Therefore, we will remove σ from w and use an estimate σ̂.

Algorithm 2: Algorithm for adaptivity.
Input: a distance d(·, ·) on Rp

Input: a function w(·) : [1, s∗]→ R+ satisfying Assumption 2.4.1

Input: a family of estimators
(
β̂(s)

)
s=1,...,s∗

M ← blog2(s∗)c ;

for m← 1 to M + 1 do
compute the estimator β̂(2m) ;

end
compute σ̂ ← ||Y − Xβ̂(2M+1)||n ;

compute the set S1 ←
{
m ∈ {1, . . . ,M} : d

(
β̂(2k−1), β̂(2k)

)
≤ 4σ̂C0w(2k), for all k ≥ m

}
;

if S1 6= ∅ then m̃← minS1 else m̃←M ;

Output: s̃← 2m̃

Output: β̃ ← β̂(s̃)
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Assumption 2.4.1. The function w(·) : [1, s∗]→ R+ satisfies the following conditions:

1. w(·) is increasing on [1, s∗] ;

2. There exists a constant C ′ > 0 such that, for all m = 1, . . . ,M , we have
m∑
k=1

w(2k) ≤ C ′ · w(2m) ;

3. There exists a constant C ′′ > 0 such that, for all b = 1, . . . , s∗,

w(2b) ≤ C ′′w(b).

Assumption 2.4.2. The family of estimators (β̂(s))s=1,...,s∗ satisfies

sup
β∗∈B0(2s)

IPβ∗
(
σ/2 ≤ σ̂ ≤ ασ

)
≤ un,p,M ,

with a constant α > 0, σ̂ := ||Y − Xβ̂(2M+1)||n, and un,p,M > 0.

Theorem 2.3. Let s∗ ∈ {2, . . . , p/e} and let (β̂(s))s=1,...,s∗ be a collection of estimators satisfying As-
sumption 2.4.2 such that, for any s = 1, . . . , s∗,

sup
β∗∈B0(s)

IPβ∗
(
d(β̂(s) , β

∗) ≤ C0σw(s)
)
≥ 1−

(
s

p

)s
− un, (2.14)

and

sup
β∗∈B0(2s)

IPβ∗
(
d(β̂(s) , β

∗) ≤ C0σw(2s)
)
≥ 1−

(
2s

p

)2s

− un, (2.15)

for a constant C0 > 0, a function w(·) : [1, s∗]→ R+ satisfying Assumption 2.4.1, and un > 0.

Then, there exists a constant C5, depending on C0, C
′, C ′′, C2, κ and α such that, for all β∗ ∈ B0(s),

the aggregated estimator β̃ satisfies:

IPβ∗

(
d(β̃, β∗) ≤ C5 · σw(s)

)
≥ 1 − 3(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M .

Furthermore,

IPβ∗
(
s̃ ≤ s

)
≥ 1− 2(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M .

This theorem is proved in Section 2.7.3.1. In particular, it implies that when β̂(s) = β̂SQL(s,γ) , the aggre-

gated estimator β̃ has the same rate on B0(s) as the estimators with known s. We detail it below. The

following lemmas proved in Sections 2.7.3.2 and 2.7.3.3 assure that Theorem 2.3 can be applied to the

family β̂(s) = β̂SQL(s,γ) .

Lemma 2.4. Assumption 2.4.1 is satisfied with the choices

w(b) =
√

(b/n) log(p/b) and w(b) = b1/q
√

(1/n) log(2p/b), for q ∈ [1, 2].
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Lemma 2.5. Assume that the SRE(2s∗, 5/3) condition holds and

γ ≥ 16 + 4
√

2 and 2s∗
n

log

(
p

s∗

)
≤ min

(
9κ2
∗

256γ2
,

κ4
∗

2C2(γ)2

(
1√
2
− 1

2

)2
)
,

where κ∗ := κ(2s∗). Then Assumption 2.4.2 is satisfied with the choice

(β̂(s))s=1,...,s∗ = (β̂SQL(s,γ))s=1,...,s∗ , α = 2 +
3
√

2C2(γ)

16κγ
,

and un,p,M = (2M+1/p)2M+1

− (1 + e2)e−n/24.

Combining Equations (2.9), (2.11) with Theorem 2.3 and Lemmas 2.4 and 2.5, we obtain the following

results for the case of the Square-root Lasso.

Corollary 2.6. Under the same assumptions as in Lemma 2.5, using Algorithm 2, with (β̂(s))s=1,...,s∗ =

(β̂SQL(s,γ))s=1,...,s∗ , the distance d(β, β′) = ||X(β − β′)||n, and the weight w(b) =
√

(b/n) log(p/b), we have
that, for all β∗ ∈ B0(s), the aggregated estimator β̃ satisfies

IPβ∗

(
||X(β̃ − β∗)||n ≤ C5 · σ

√
s

n
log
(p
s

))
≥ 1 − 3(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M ,

and

IPβ∗
(
s̃ ≤ s

)
≥ 1− 2(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M ,

where un = (1 + e2)e−n/24, un,p,M = (2M+1/p)2M+1 − (1 + e2)e−n/24, and C5 is a constant depending
only on γ and κ∗.

Corollary 2.7. Under the same assumptions as in Lemma 2.5, using Algorithm 2, with (β̂(s))s=1,...,s∗ =

(β̂SQL(s,γ))s=1,...,s∗ , the distance d(β, β′) = |β − β′|q, and the weight w(b) = b1/q
√

(1/n) log(2p/b), for q ∈
[1; 2], we have that, for all β∗ ∈ B0(s), the aggregated estimator β̃ satisfies

IPβ∗

(
|β̃ − β∗|q ≤ C5 · σs1/q

√
1

n
log
(p
s

))
≥ 1 − 3(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M ,

and

IPβ∗
(
s̃ ≤ s

)
≥ 1− 2(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M ,

where un = (1 + e2)e−n/24, un,p,M = (2M+1/p)2M+1 − (1 + e2)e−n/24, and C5 is a constant depending
only on γ and κ∗.

Thus, we have shown that the suggested aggregated procedure based on the Square-root Lasso is

adaptive to s while still being adaptive to σ and minimax optimal. Note that the computational cost is

multiplied by O(log(s∗)).
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2.5 Algorithms for computing the Square-root Slope

In this part, our goal is to provide algorithms for computing the square-root Slope estimator. A natural

idea is revisiting the algorithms used for the square-root Lasso and for the Slope, then adapting or

combining them.

Belloni, Chernozhukov and Wang [14, Section 4] have proposed to compute the Square-root Lasso

estimator by reducing its definition to an equivalent problem, which can be solved by interior-point or

first-order methods. The equivalent formulation as the Scaled Lasso, introduced by Sun and Zhang

[134] allows one to view it as a joint minimization in (β, σ). Sun and Zhang [134] propose an iterative

algorithm which alternates estimation of β using the ordinary Lasso and estimation of σ.

Zeng and Figueiredo [144] studied several algorithms related to estimation of the regression with the

ordered weighted l1-norm, which is the Slope penalization. Bogdan et al. [20] provide an algorithm for

computing the Slope estimator using a proximal gradient.

As in the case of the Square-root Lasso, we still have for any β,

||Y − Xβ||n = min
σ>0

(
σ +
||Y − Xβ||2n

σ

)
, (2.16)

where the minimum is attained for σ̂ = ||Y − Xβ||n. As a consequence,

β̂SQS ∈ arg min
β∈Rp

(
||Y − Xβ||n + |β|∗

)
is equivalent to take the estimator β̂ in the joint minimization program

(β̂, σ̂) ∈ arg min
β∈Rp

, σ>0

(
σ +
||Y − Xβ||2n

σ
+ |β|∗

)
.

Alternating minimization in β and in σ gives an iterative procedure for a "Scaled Slope" (see Algo-

rithm 3).

Algorithm 3: Scaled Slope algorithm
Input: explained variable Y , design matrix X ;

Input: tuning parameters λ1 ≤ · · · ≤ λp ;

choose some initialization value for σ̂, for example the standard deviation of Y ;

repeat
estimate β̂ by the Slope algorithm with the parameters σ̂ · λ1, . . . , σ̂ · λp ;

estimate σ̂ by ||Y − Xβ̂||n ;
until convergence;

Output: a joint estimator
(
β̂, σ̂

)
;

2.6 Optimal rates for the Square-Root Slope

In this part, we will use another condition, the Weighted Restricted Eigenvalue condition, introduced in

[12]. For c0 > 0 and s ∈ {1, . . . , p}, it is defined as follows,

WRE(s, c0) condition : The design matrix X satisfies

max
j=1,...,p

||Xej ||n ≤ 1



Chapter 2. Improved bounds for Square-root Lasso and Square-root Slope 42

and

κ′ := min
δ∈CWRE(s,c0):δ 6=0

||Xδ||n
|δ|2

> 0, (2.17)

where

CWRE(s, c0) :=

δ ∈ Rp : |δ|∗ ≤ (1 + c0)|δ|2

√√√√ s∑
j=1

λ2
j


is a cone in Rp.

To obtain the following result, we assume that the Weighted Restricted Eigenvalue condition holds.

This condition is shown to be only slightly more constraining than the usual Restricted Eigenvalue con-

dition of [19], but is nevertheless satisfied with high probability for a large class of random matrices,

see Bellec, Lecué and Tsybakov [12] for a discussion. Note that, in a similar way as in definition (2.4),

the minimum is attained. Indeed, κ′ is equal to the minimum of the function δ 7→ ||Xδ||n on the set

CWRE(s, c0) ∩ {δ ∈ Rp : |δ|2 = 1}, which is a continuous function on a compact of Rp.

Theorem 2.8. Let s ∈ {1, . . . , p} and assume that the WRE(s, 20) condition holds. Choose the following
tuning parameters

λj = γ′
√

log(2p/j)

n
, for j = 1, . . . , p, (2.18)

and assume that

γ′ ≥ 16 + 4
√

2 and s

n
log

(
2ep

s

)
≤ κ′2

256γ′2
. (2.19)

Then, for every δ0 ≥ exp(−n/4γ′2) and every β∗ ∈ Rp such that |β∗|0 ≤ s, with IPβ∗ -probability at least
1− δ0 − (1 + e2)e−n/24, we have

||X(β̂SQS − β∗)||n ≤ σmax

(
C ′1
κ′

√
s

n
log
(p
s

)
, C ′2

√
log(1/δ0)

n

)
, (2.20)

|β̂SQS − β∗|∗ ≤ σmax

(
C ′1
κ′2

s

n
log
(p
s

)
, C ′2

log(1/δ0)

n

)
, (2.21)

|β̂SQS − β∗|2 ≤ σmax

(
C ′1
κ′2

√
s

n
log
(p
s

)
, C ′2

√
log2(1/δ0)

sn log(p/s)

)
, (2.22)

for constants C ′1 > 0 and C ′2 > 0 depending only on γ′.

The values of the constants C ′1 and C ′2 can be found in the proof, in Subsection 2.7.4. Note that

the bounds are best when the tuning parameters is chosen as small as possible, i.e. using the choice

γ′ = 16 + 4
√

2. Using the fact that κ′ ≤ 1 and choosing δ0 = (s/p)s, we get the following corollary.

Corollary 2.9. Under the assumptions of Theorem 2.8, with IPβ∗ -probability at least 1 − (s/p)s − (1 +

e2)e−n/24, we have

||X(β̂SQS − β∗)||n ≤
C ′1
κ′
σ

√
s

n
log
(p
s

)
,

|β̂SQS − β∗|∗ ≤
C ′1
κ′2

σ
s

n
log
(p
s

)
,

|β̂SQS − β∗|2 ≤
C ′1
κ′2

σ

√
s

n
log
(p
s

)
,
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These results show that the Square-Root Slope estimator, with a given choice of parameters, attains

the optimal rate of convergence in the prediction norm || · ||n and in the estimation norm | · |2. We also

provide a bound on the sorted l1 norm | · |∗ of the estimation error. One can note that the choice of λi that

allows us to obtain optimal bounds does not depend on the level of confidence δ0, but only influence the

size of the range of valid δ0. This improves upon the oracle result of Stucky and van de Geer [131], in

which the parameter does depend on the level of confidence and the rate does not scale in the optimal

way, i.e., as
√

(s/n) log(p/s). Moreover, we can see that our estimator is independent of the underlying

standard deviation σ and of the sparsity s, even if the rates depend on them. Note that, up to some

multiplicative constant, we obtain the same rates as for the Slope in Bellec, Lecué and Tsybakov [12].

In Su and Candès [133], the Slope estimator is proved to attain the sharp constant in the asymptotic

framework where σ is known and for specific X ; whereas here we obtain only the minimax rates, but in

a non-asymptotic framework, and under general assumptions on the design matrix X.

For this estimator, we did not provide a bound for the l1 norm, for the same reasons as in [12].

Indeed, the coefficients λj of the components of β are different in the sorted norm. As a consequence,

we do not provide inequalities for lq norms when q < 2, that are obtained by interpolation between the l1
and l2 norms.

2.7 Proofs

2.7.1 Preliminary lemmas

Let β∗ ∈ Rp, S ⊂ {1, . . . , p} with cardinality s and denote by SC the complement of S. For i ∈ {1, . . . , p},
let β∗i be the i-th component of β∗ and assume that for every i ∈ SC , β∗i = 0.

Lemma 2.10. We have∣∣∣(β̂SQL − β∗)SC ∣∣∣1 ≤ ∣∣∣(β̂SQL − β∗)S ∣∣∣1 +
1

λ
√
n|ε|2

〈
XT ε , β̂SQL − β∗

〉
.

The proof follows from the arguments in Giraud [67, pages 110-111], and it is therefore omitted.

Lemma 2.11. Let u ∈ Rp be defined by u := β̂SQS − β∗. We have
p∑

j=s+1

λj |u|(j) ≤
s∑
j=1

λj |u|(j) +
1√
n|ε|2

〈
XT ε , u

〉
.

Proof : We combine the arguments from Giraud [67, pages 110-111], and from the proof of Lemma

A.1 in [12]. First, we remark that the sorted l1 norm can be written as follows, for any v ∈ Rp,

|v|∗ = max
φ

p∑
j=1

λj
∣∣vφ(j)

∣∣ ,
where the maximum is taken over all permutations φ = (φ(1), . . . , φ(p)) of {1, . . . , p}.

By definition, β̂SQS is a minimizer of (2.3), so we have

|Y − Xβ̂SQS |2 − |Y − Xβ∗|2 ≤
√
n
(
|β∗|∗ − |β̂SQS |∗

)
.
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Let φ be any permutation of {1, . . . , p} such that

|β∗|∗ =

s∑
j=1

λj |β∗φ(j)| and |uφ(s+1)| ≥ |uφ(s+2)| ≥ · · · ≥ |uφ(p)|. (2.23)

We have

|β∗|∗ − |β̂SQS |∗ ≤
s∑
j=1

λj

(∣∣β∗φ(j)

∣∣− ∣∣β̂SQSφ(j)

∣∣)− p∑
j=s+1

λj
∣∣β̂SQSφ(j)

∣∣
≤

s∑
j=1

λj
∣∣uφ(j)

∣∣− p∑
j=s+1

λj
∣∣β̂SQSφ(j)

∣∣
=

s∑
j=1

λj
∣∣uφ(j)

∣∣− p∑
j=s+1

λj
∣∣uφ(j)

∣∣.
Since the sequence λj is non-increasing, we have

∑s
j=1 λj |uφ(j)| ≤

∑s
j=1 λj |u|(j). The permutation φ

satisfies (2.23), therefore,
∑p
j=s+1 λj |u|(j) ≤

∑p
j=s+1 λj |uφ(j)|. From the previous inequalities, we get

that

|Y − Xβ̂SQS |2 − |Y − Xβ∗|2 ≤
√
n

 s∑
j=1

λj |u|(j) −
p∑

j=s+1

λj |u|(j)

 . (2.24)

By convexity of the mapping β 7→ ||Y −Xβ||2, we have

|Y − Xβ̂SQS |2 − |Y − Xβ∗|2

≥ −

〈
XT ε
|ε|2

, β̂SQS − β∗
〉

= − 1

|ε|2

〈
XT ε , β̂SQS − β∗

〉
. (2.25)

Combining (2.24) and (2.25), we get

− 1

|ε|2

〈
XT ε , β̂SQS − β∗

〉
≤
√
n

 s∑
j=1

λj |u|(j) −
p∑

j=s+1

λj |u|(j)

 ,

which concludes the proof.

�

Lemma 2.12. We have

|X(β̂SQL − β∗)|22 ≤
〈
XT ε , β̂SQL − β∗

〉
+ λ
√
n|Y − Xβ̂SQL|2|β̂SQL − β∗|1.

Lemma 2.13. We have

|X(β̂SQS − β∗)|22 ≤
〈
XT ε , β̂SQS − β∗

〉
+
√
n|Y − Xβ̂SQS |2|β̂SQS − β∗|∗.

Proof : We will give a general proof of Lemmas 2.12 and 2.13 in the case of an estimator defined by

β̂ := arg min
β∈Rp

(
1√
n
|Y − Xβ|2 + ||β||

)
, (2.26)
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where || · || is a norm on Rp. Lemmas 2.12 and 2.13 are obtained as special cases corresponding to

|| · || = λ| · |1 and || · || = | · |∗. Denote by || · ||dual the norm dual to || · ||.

Since β̂ is optimal, we know that XT (Y − Xβ̂)/(
√
n|Y − Xβ̂|2) belongs to the subdifferential of the

function || · || evaluated at β̂. Thus, there exists v ∈ Rp such that ||v||dual ≤ 1 and

XT (Y − Xβ̂)
√
n|Y − Xβ̂|2

+ v = 0.

Thus, we have

|X(β̂ − β∗)|22 =
〈
XT ε , β̂ − β∗

〉
+
√
n|Y − Xβ̂∗|2〈v , β̂ − β∗〉.

The conclusion results from the inequality

〈v , β̂ − β∗〉 ≤ ||v||dual||β̂ − β∗|| ≤ ||β̂ − β∗||.

�

Lemma 2.14. We have

γ′
√

(s/n) log(2p/s) ≤

√√√√ s∑
j=1

λ2
j ≤ γ

′
√

(s/n) log(2ep/s).

Proof : From Stirling’s formula, we deduce that s log(s/e) ≤ log(s!) ≤ s log(s). Therefore

s log(2p/s) ≤
s∑
j=1

log(2p/j) = log(2p)− log(s!) ≤ s log(2ep/s).

The conclusion follows from the definition of the λj in (2.18).

�

The following simple property is proved in Giraud [67, page 112]. For convenience, it is stated here

as a lemma.

Lemma 2.15. With IPβ∗ -probability at least 1− (1 + e2)e−n/24, we have

σ√
2
≤ |ε|2√

n
≤ 2σ.

We will also use the following theorem from Bellec, Lecué and Tsybakov [12, Theorem 4.1].

Lemma 2.16. Let 0 < δ0 < 1 and let X in Rn×p be a matrix such that

max
j=1,...,p

||Xej ||n ≤ 1.

For any u = (u1, . . . up) in Rp, we define :

G(u) := (4 +
√

2)σ

√
log(1/δ0)

n
||Xu||n,

H(u) := (4 +
√

2)

p∑
j=1

|u|(j)σ
√

log(2p/j)

n
,

F (u) := (4 +
√

2)σ

√
log(2p/s)

n

√s|u|2 +

p∑
j=s+1

|u|(j)

 .
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If ε ∼ N (0, σ2In×n), then the random event{
1

n
εTXu ≤ max

(
H(u), G(u)

)
,∀u ∈ Rp

}
,

is of probability at least 1− δ0/2.

Moreover, by the Cauchy-Schwarz inequality, we have H(u) ≤ F (u), for all u in Rp.

2.7.2 Proof of Theorem 2.1

Lemma 2.16 allows one to control the random variable εTXu that appears in Lemmas 2.10 and 2.12 with

u := β̂SQL−β∗. Our calculations will take place on an event of probability at least 1−δ0− (1+e2)e−n/24,

where both Lemmas 2.15 and 2.16 can be used. Applying Lemma 2.16, we will distinguish between the

two cases : G(u) ≤ F (u) and F (u) < G(u).

First case : G(u) ≤ F (u).

Then we have

(4 +
√

2)

√
log(1/δ0)

n
||Xu||n ≤ (4 +

√
2)

√
log(2p/s)

n

√s|u|2 +

p∑
j=s+1

|u|(j)

 .

We will show first that u is in the SRE cone, so that we can use the SRE assumption. From Lemma

2.10, we have

|uSC |1 ≤ |uS|1 +
1

λ
√
n|ε|2

〈
XT ε , β̂SQL − β∗

〉
≤ |uS|1 +

1√
nλ|ε|2

nσ(4 +
√

2)

√
log(2p/s)

n

√s|u|2 +

p∑
j=s+1

|u|(j)


≤ |uS|1 +

1

4

(√
s|u|2 + |uSC |1

)
,

where in the last inequality, we have used Lemma 2.15 and assumption (2.6). We deduce that

3

4
|u|1 ≤

7

4
|uS|1 +

1

4

√
s|u|2 ≤

7

4

√
s|u|2 +

1

4

√
s|u|2 = 2

√
s|u|2.

Therefore, we have

|u|1 ≤
8

3

√
s|u|2, (2.27)

and thus, the following inequality holds |u|1 ≤ (1 + c0)
√
s|u|2, with c0 = 5/3, allowing us to use the

SRE(s, 5/3) assumption.

From Lemmas 2.12 and 2.16, and using that, in view of the SRE(s, 5/3) condition, ||Xu||n ≥ κ|u|2, we

deduce that

||Xu||2n ≤ (4 +
√

2)σ

√
log(2p/s)

n

√s|u|2 +

p∑
j=s+1

|u|(j)


+

(
|ε|2√
n

+ ||Xu||n
)

8

3
λ
√
s|u|2

≤ (4 +
√

2)
11

3
σ

√
s

log(2p/s)

n

||Xu||n
κ

+ (2σ + ||Xu||n)
8

3
λ
√
s
||Xu||n
κ

.
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Thus,

||Xu||n ≤ (4 +
√

2)
11

3
σ

√
s

log(2p/s)

n

1

κ
+ (2σ + ||Xu||n)

8

3
λ
√
s

1

κ
.

Under assumptions (2.5) and (2.6), we have

8λ
√
s

3κ
=

8γ

3κ

√
s

n
log

(
2p

s

)
≤ 1

2
.

Thus, we have

||Xu||n ≤ 2

(
44 + 11

√
2

3κ
σ

√
s

n
log

(
2p

s

)
+

16σλ
√
s

3κ

)

≤ 88 + 22
√

2 + 32γ

3κ
σ

√
s

n
log

(
2p

s

)
. (2.28)

We have proved in (2.27) that |u|1 ≤ (1 + c0)
√
s|u|2, with c0 = 5/3, so we get that |u|2 ≤ ||Xu||n/κ.

Therefore, we can deduce the following inequalities

|u|2 ≤
88 + 22

√
2 + 32γ

3κ2
σ

√
s

n
log

(
2p

s

)
, (2.29)

|u|1 ≤
704 + 176

√
2 + 256γ

9κ2
σs

√
1

n
log

(
2p

s

)
. (2.30)

Second case : F (u) ≤ G(u).

Then we have

(4 +
√

2)

√
log(2p/s)

n

√s|u|2 +

p∑
j=s+1

|u|(j)

 ≤ (4 +
√

2)

√
log(1/δ0)

n
||Xu||n.

Thus

|u|1 ≤
√
s|u|2 +

p∑
j=s+1

|u|(j) ≤

√
log(1/δ0)

log(2p/s)
||Xu||n.

From Lemmas 2.12 and 2.16, we find

||Xu||2n ≤ (4 +
√

2)σ

√
log(1/δ0)

n
||Xu||n + λ

(
|ε|2√
n

+ ||Xu||n
)
|u|1

≤ (4 +
√

2)σ

√
log(1/δ0)

n
||Xu||n + λ (2σ + ||Xu||n)

√
log(1/δ0)

log(2p/s)
||Xu||n.

Thus,

||Xu||n ≤ (4 +
√

2)σ

√
log(1/δ0)

n
+ λ (2σ + ||Xu||n)

√
log(1/δ0)

log(2p/s)
.

We have chosen λ = γ
√

1
n log

(
2p
s

)
, therefore we have

||Xu||n ≤ σ
√

log(1/δ0)

n
(4 +

√
2 + 2γ) + ||Xu||nγ

√
log(1/δ0)

n
.
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By assumption, exp(−n/4γ2) ≤ δ0, thus we have

||Xu||n ≤ σ
√

log(1/δ0)

n
(8 + 2

√
2 + 4γ). (2.31)

As a consequence, we have

|u|1 ≤

√
log(1/δ0)

log(2p/s)
||Xu||n ≤ σ

√
log2(1/δ0)

n log(2p/s)
(8 + 2

√
2 + 4γ). (2.32)

We have also
√
s|u|2 ≤

√
log(1/δ0)
log(2p/s) ||Xu||n, thus

|u|2 ≤ σ

√
log2(1/δ0)

sn log(2p/s)
(8 + 2

√
2 + 4γ). (2.33)

As a conclusion, we can prove the result (2.7) by combining the inequalities (2.28) and (2.31). The

general bound for |u|q, with 1 ≤ q ≤ 2 is a consequence of the norm interpolation inequality |u|q ≤
|u|2/q−1

1 |u|2−2/q
2 which proves (2.8).

�

2.7.3 Proofs of the adaptive procedure

2.7.3.1 Proof of Theorem 2.3

We choose s ∈ [1, s∗] and assume that β∗ ∈ B0(s). Define IP := IPβ∗ and m0 := blog2(s)c+ 1.

For any a > 0, we have

IP
(
d(β̃, β∗) ≥ a

)
≤ IP

(
d(β̃, β∗) ≥ a, m̃ ≤ m0

)
+ IP(m̃ ≥ m0 + 1). (2.34)

On the event {m̃ ≤ m0}, we have the decomposition

d(β̃, β∗) ≤
m0∑

k=m̃+1

d
(
β̂(2k−1), β̂(2k)

)
+ d
(
β̂(2m0 ), β

∗). (2.35)

Using Assumption 2.4.1, we get that,

m0∑
k=m̃+1

d
(
β̂(2k−1), β̂(2k)

)
≤

m0∑
k=m̃+1

4σ̂C0w(2k) (2.36)

≤ 4σ̂C0C
′w(2m0) ≤ 4σ̂C0C

′C ′′w(s). (2.37)

We have 2m0 ≤ 2s, therefore applying Assumption (2.15), we have with IPβ∗ -probability at least 1 −
(2s/p)

2s − un,

d(β̂(2m0 ), β
∗) ≤ C2(γ̃)

κ2
σw(2s) ≤ C2(γ̃)C ′′

κ2
σw(s). (2.38)

Combining equations (2.35), (2.37), (2.38) and Assumption 2.4.2, we get with IPβ∗ -probability at least

1− (2s/p)2s − un − un,p,M ,

d(β̃, β∗) ≤
(

4σC0C
′C ′′α+

C2(γ̃)C ′′

κ2

)
σw(s). (2.39)
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We now bound the probability IP(m̃ ≥ m0 + 1).

IP(m̃ ≥ m0 + 1) ≤
M∑

m=m0+1

IP(m̃ = m0 + 1)

≤
M∑

m=m0+1

M∑
k=m

IP

(
d
(
β̂(2k−1), β̂(2k)

)
> 4σ̂C0w(2k)

)

≤
M∑

m=m0+1

M∑
k=m

IP

(
d
(
β̂(2k−1), β

∗
)
> 2σ̂C0w(2k)

)
+ IP

(
d
(
β̂(2k), β

∗
)
> 2σ̂C0w(2k)

)
≤ 2

M∑
m=m0+1

M∑
k=m−1

IP

(
d
(
β̂(2k−1), β

∗
)
> 2σ̂C0w(2k)

)

≤ 2

M∑
m=m0+1

M∑
k=m−1

IP

(
d
(
β̂(2k−1), β

∗
)
> 2σ̂C0w(2k), σ̂ ≥ σ

2

)
+ IP

(
σ̂ <

σ

2

)
.

Combining the previous equation with Assumption 2.4.2, and then with Assumption (2.15), we get

IP(m̃ ≥ m0 + 1)

≤ 2

M∑
m=m0+1

M∑
k=m−1

IP

(
d
(
β̂(2k−1), β

∗
)
> σC0w(2k)

)
− un,p,M

≤ 2M2

((
2s

p

)2s

+ un

)
− un,p,M

≤ 2(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− un,p,M .

As a consequence, we deduce the bound on s̃. Combining the last equation with equations (2.34) and

(2.39), we finally get that

IP

(
d(β̃, β∗) ≥

(
4σC0C

′C ′′α+
C2(γ̃)C ′′

κ2

)
σw(s)

)
≤ 3(log2(s∗) + 1)2

((
2s

p

)2s

+ un

)
− 2un,p,M .

�

2.7.3.2 Proof of Lemma 2.4

Now, we consider the general case of the function w(b) = b1/q
√

(1/n) log(ap/b), with q a fixed number of

the interval [1, 2]. The first case will correspond to a = 1 and q = 2 and the second case will correspond

to a = 2 with any choice of q.

We want to that the first part of Assumption 2.4.1 is satisfied, i.e., w is increasing on the interval

[1, s∗]. Let b ∈ [1, s∗]. We have

w′(b) =
1

q
b(1/q)−1

√
1

n
log
(ap
b

)
+ b(1/q)

− 1
nb

2
√

1
n log

(
ap
b

)
=
b(1/q)−1n−1/2

(
(2/q) log

(
ap
b

)
− 1
)

2
√

log
(
ap
b

) ,
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which is positive when (2/q) log
(
ap
b

)
− 1 ≥ 0, that is, when b ≤ ape−q/2.

We have b ≤ s∗ ≤ p/e = ape−q/2 when a = 1 and q = 2. When a = 2 and q ∈ [1, 2], p/e ≤ 2pe−1 ≤
ape−q/2. In the two cases we consider, we have proved that w′(·) ≥ 0 on the interval [1, s∗], thus the

function w is increasing on this interval. This proves that the first part of Assumption 2.4.1 is satisfied.

Let m be an integer in the interval [1,M ].

m∑
k=1

w(2k) =

m∑
k=1

2k/q
√

1

n
log
(ap

2k

)
=

m−1∑
k=0

2(m−k)/q

√
1

n
log
( ap

2m−k

)
=

2m/q√
n

m−1∑
k=0

1

2k/q

√(
log
( ap

2m

)
+ k log(2)

)
≤ 2m/q√

n

(m−1∑
k=0

1

2k/q

√
log
( ap

2m

)
+

m−1∑
k=0

√
k

2k/q

√
log(2)

)

≤ 2m/q√
n

(√
log
( ap

2m

) 1

1− 2−1/q
+

m−1∑
k=0

4

2k/2q

√
log(2)

)

≤ 2m/q
√

1

n
log
( ap

2m

)( 1

1− 2−1/q
+

4
√

log(2)

1− 2−1/(2q)

)
,

which proves that the second part is satisfied.

Let b be an integer of [1, s∗]. We have w(2b) = (2b)1/q
√

(1/n) log(2p/(2b)) ≤ 21/qw(b), which proves that

the third part is satisfied.

�

2.7.3.3 Proof of Lemma 2.5

We have β∗ ∈ B0(s) ⊂ B0(2M+1), therefore, we can apply Corollary 2.2 and Lemma 2.15, we have with

IPβ∗ -probability at least 1− (2M+1/p)2M+1 − (1 + e2)e−n/24,

σ̂ ≤ ||ε||n +
∣∣∣∣X(β̂(2M+1) − β∗)

∣∣∣∣
n

≤ 2σ +
C2(γ)

κ2
∗

σ

√
2M+1

n
log
( p

2M+1

)
≤ σ

(
2 +

C2(γ)

κ2
∗

√
2s

n
log

(
2p

s

))
≤ σ

(
2 +

3
√

2C2(γ)

16κ∗γ

)
,

and

σ̂ ≥ ||ε||n −
∣∣∣∣X(β̂(2M+1) − β∗)

∣∣∣∣
n

≥ σ√
2
− C2(γ)

κ2
∗

σ

√
2M+1

n
log
( p

2M+1

)
≥ σ

(
1√
2
−
√

2C2(γ)

κ2
∗

√
s

n
log

(
2p

s

))

≥ σ

(
1√
2
−
√

2C2(γ)

κ2
∗

√
2s∗
n

log

(
p

s∗

))

≥ σ

 1√
2
−

√(
1√
2
− 1

2

)2
 ≥ σ

2
.

�
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2.7.4 Proof of Theorem 2.8

We act as in Section 2.7.2, with suitable modifications. We place ourselves in the event where both

Lemmas 2.15 and 2.16 are valid, and set now u := β̂SQS−β∗. Applying Lemma 2.16, we will distinguish

between the two cases : G(u) ≤ H(u) + σ|u|2
√∑s

j=1 λ
2
j and H(u) + σ|u|2

√∑s
j=1 λ

2
j < G(u).

First case : G(u) ≤ H(u) + σ|u|2
√∑s

j=1 λ
2
j .

Applying Lemma 2.11, Lemma 2.16 and then Lemma 2.15, we have

|u|∗ =

p∑
j=1

λj |u|(j)

≤ 2

s∑
j=1

λj |u|(j) +
1√
n|ε|2

〈
XT ε , β̂SQS − β∗

〉

≤ 2

√√√√ s∑
j=1

λ2
j |u|2 +

n√
n|ε|2

(4 +
√

2)
σ

γ′
|u|∗ + σ|u|2

√√√√ s∑
j=1

λ2
j


≤ 4

√√√√ s∑
j=1

λ2
j |u|2 +

8 + 2
√

2

γ′
|u|∗,

and we get

|u|∗ ≤
4|u|2

1− 8 + 2
√

2

γ′

√√√√ s∑
j=1

λ2
j ,

Using assumption (2.19), we have γ′ ≥ 16 + 4
√

2, therefore |u|∗ ≤ 8|u|2
√∑s

j=1 λ
2
j . As a consequence,

we get u ∈ CWRE(s, c0) with c0 := 8. Invoking Lemmas 2.13, 2.14, 2.16 and using the WRE(s, c0)

condition, we get

||Xu||2n ≤
1

n

〈
XT ε , u

〉
+

1√
n
|Y − Xβ̂|2|u|∗

≤ (4 +
√

2)
σ

γ′
|u|∗ + σ|u|2

√√√√ s∑
j=1

λ2
j + (2σ + ||Xu||n)|u|∗

≤
(

(32 + 8
√

2)
σ

γ′
+ 17σ + 8||Xu||n

)
|u|2

√√√√ s∑
j=1

λ2
j

≤
(

(32 + 8
√

2)
σ

γ′
+ 17σ + 8||Xu||n

)
||Xu||n
κ′

γ′
√

(s/n) log(2ep/s).

Thus,

||Xu||n ≤
σ

κ′

√
s

n
log

(
2ep

s

)
32 + 8

√
2 + 17γ′

1− 8γ′

κ′

√
s

n
log

(
2ep

s

) .

Applying condition (2.19), we obtain

||Xu||n ≤ (64 + 16
√

2 + 34γ′)
σ

κ′

√
s

n
log

(
2ep

s

)
. (2.40)
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This and the WRE condition imply

|u|2 ≤ (64 + 16
√

2 + 34γ′)
σ

κ′2

√
s

n
log

(
2ep

s

)
. (2.41)

Therefore, using the inequality |u|∗ ≤ 8|u|2
√∑s

j=1 λ
2
j , we get from Lemma 2.14

|u|∗ ≤ 8(64 + 16
√

2 + 34γ′)γ′
σ

κ′2
s

n
log

(
2ep

s

)
. (2.42)

Second case : H(u) + σ|u|2
√∑s

j=1 λ
2
j ≤ G(u).

Then we have

(4 +
√

2)
σ

γ′
|u|∗ + σ|u|2

√√√√ s∑
j=1

λ2
j ≤ (4 +

√
2)σ

√
log(1/δ0)

n
||Xu||n.

Therefore we have

|u|∗ ≤ γ′
√

log(1/δ0)

n
||Xu||n, and |u|2

√√√√ s∑
j=1

λ2
j ≤ (4 +

√
2)

√
log(1/δ0)

n
||Xu||n. (2.43)

Invoking Lemmas 2.13 and 2.16, and using (2.43), we get

||Xu||2n ≤ (4 +
√

2)σ

√
log(1/δ0)

n
||Xu||n + σ|u|2

√√√√ s∑
j=1

λ2
j + (2σ + ||Xu||n)|u|∗

≤ (4 +
√

2)σ

√
log(1/δ0)

n
||Xu||n + σ(4 +

√
2)

√
log(1/δ0)

n
||Xu||n

+ (2σ + ||Xu||n)γ′
√

log(1/δ0)

n
||Xu||n.

which yields

||Xu||n ≤ (8 + 2
√

2 + 2γ′)σ

√
log(1/δ0)

n
+ ||Xu||nγ′

√
log(1/δ0)

n
,

We have chosen exp(−n/4γ′2) ≤ δ0, which implies that

||Xu||n ≤ (16 + 4
√

2 + 4γ′)σ

√
log(1/δ0)

n
. (2.44)

We can deduce from (2.43) that

|u|∗ ≤ (16 + 4
√

2 + 4γ′)σγ′
log(1/δ0)

n
, (2.45)

and combining the second part of (2.43) with Lemma 2.14, we get

|u|2γ′
√
s

n
log
(p
s

)
≤ (4 +

√
2)

√
log(1/δ0)

n
||Xu||n

≤ (4 +
√

2)(16 + 4
√

2 + 4γ′)σ
log(1/δ0)

n
.

Finally, we get that

|u|2 ≤
(4 +

√
2)(16 + 4

√
2 + 4γ′)

γ′
σ

√
log2(1/δ0)

sn log(p/s)
. (2.46)
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Chapter 3

Robust-to-outliers simultaneous
inference and noise level estimation
using a MOM approach

Abstract

In this article, we extend the results of the previous chapter to a more robust setting, where

outliers are present in the data. We present a family of penalized Median-of-Means (MOM)

estimators to estimate conditional mean models, and as a special case, high-dimensional linear

regression models. Our procedures allows simultaneous inference of conditional mean and noise

level using a joint convex-concave optimization procedure, that can be computed easily. We give

simultaneous estimation bounds for the conditional mean and the noise level, as well as for the

risk of the estimator. In the high-dimensional linear regression, we show that our estimator is

minimax optimal in estimation with the lp norm while being robust to outliers and adaptive to the

noise variance. Bounds for the estimated standard deviation are also given.

Keywords: Median-of-means, robustness, adaptivity, minimax optimal rates.

Based on [37]: Derumigny, A., Robust-to-outliers simultaneous inference and noise level estima-

tion using a MOM approach, in progress, 2019.

3.1 Introduction

One of the most simple problem in statistics is the estimation of an univariate mean. Of course, it is

always possible to use the empirical mean, but it may not be an ideal choice. Indeed, the empirical

mean is not robust, meaning that only one outlier in the dataset can push the mean towards infinity.

One of the procedures to guarantee optimality even in the presence of outliers is the Median-of-Means

(MOM) framework [43]. Its principle is very simple: divide the sample in K blocks, compute the empirical

mean on each block, and return the median of these means. Note that this procedure is naturally robust

to the presence of up to K/2 outliers. In the multivariate case, it is more difficult to construct robust and

optimal estimators, see [98, 72].
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Recently MOM procedures have received a great amount of attention for estimating conditional

means, see [90, 91, 104]. Furthermore, Median-of-Means (MOM) type approaches have been devel-

oped for a lot of frameworks such as classification [92], empirical risk minimization [30], sub-sampling

and hyper-parameter tuning [88], and reproducing kernel Hilbert space embedding [96].

In the recent paper [91], it was proved that minimaximization of a MOM-type criteria can be used to

construct robust minimax optimal estimators in the linear high-dimensional framework. Nevertheless,

these estimators require the knowledge of the standard deviation of the noise, which is unknown in

practice. It is proposed in [91] to use the square-root Lasso or the square-root Slope to estimate the

noise level at a first step. If there is even one outlier in the data, this noise level estimator will not be

robust which makes the whole procedure not robust as a consequence.

In Section 3.2, we propose a joint estimator for the parameter and the noise level in the high dimen-

sional framework under sparsity. We propose an algorithm to compute it using penalized optimization

techniques. We show that, under some conditions, this estimator can achieve optimal rates of estima-

tion. This is proved by an application of Section 3.3 where we give a more general result of the estimation

of a conditional mean in a given function class F under some technical assumptions. The rest of the

chapter is devoted to the proofs of the main results.

3.2 Results in the high-dimensional linear regression framework

Let X ∈ Rd and Y ∈ R, with d ≥ 1 be two random variables such that

Y = XTβ∗ + ζ, , (3.1)

where ζ is a real random variable satisfying IE|ζ| < +∞. We assume that IE[ζ] = 0 and define σ∗2 :=

IE[ζ2] unknown, but greater than a lower bound σmin and κ∗ := IE[ζ4]/σ∗4. We do not necessarily

assume that ζ is independent of X, but we will assume that the link between ζ and X is not too strong,

see Assumption 3.2.1.

Our goal is to estimate (β∗, σ∗) in Model 3.1, assuming that β∗ is sparse, in the sense that |β∗|0 ≤ s,
where s is a given integer smaller than d and |β∗|0 is the number of coefficients of β∗. Finally, we assume

that we observe n > 0 pairs of random variables (Xi, Yi)i=1,...,n ∈ Rn×(d+1), where the observations are

divided into the two following groups:

• the informative group I ⊂ {1, . . . , n}, where the pairs (Xi, Yi), i ∈ I are independent and follow

the same distribution as (X,Y ) ;

• the outlier group O ⊂ {1, . . . , n} : for every i ∈ O, (Xi, Yi) are outliers, meaning that they may

not follow Model (3.1) ; they may be deterministic and even adversarial in the sense that they may

depend on the informative data (Xi, Yi)i∈I defined above and on the choice of the estimator.

Obviously, we have I∪O = {1, . . . , n} and I∩O = ∅meaning that, for each pair (Xi, Yi), the correspond-

ing index i ∈ {1, . . . , n} belongs to one of the two groups. Of course, it is unknown to the statistician

whether i belongs to I or O. Otherwise, we would just remove the outlier group. To construct a robust

estimator, we will use the Median-of-Means framework. Our estimator is defined as follows:

1. Given a dataset D = {(Xi, Yi), i = 1, . . . , n} of size n > 0, we can divide it into K blocks D1, . . .DK
of size n/K (assumed to be an integer) corresponding to a partition {1, . . . , n} = B1 t · · · t BK ,

where K is a tuning parameter to be chosen later ;
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2. For each k = 1, . . . ,K, the criteria of (β, σ) against (β̃, χ) on the block Bk is defined by

PBk

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
:=

1

|Bk|
∑
i∈Bk

(
(Yi −XT

i β)2

σ
+ σ − (Yi −XT

i β̃)2

χ
− χ

)
,

for every β, σ, β̃, χ ∈ Rp × R+ × Rp × R+, where |Bk| denotes the cardinal of Bk ;

3. The global MOM criteria of (β, σ) against (β̃, χ) is defined by

MOMK

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
:= Median

{
PBk

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
, k = 1, . . . ,K

}
;

4. Finally, the MOM-K estimator of (β∗, σ∗) is defined by

(β̂, σ̂) := arg min
β∈Rd

, σ>σmin

max
β̃∈Rd

, χ>σmin

[
MOMK

(
lβ
σ

+ σ −
lβ̃
χ
− χ

)
+ µ

(
|β|1 − |β̃|1

)]
, (3.2)

where µ is a tuning parameter to be chosen.

An algorithm to compute the joint estimator (β̂, σ̂) is proposed in Algorithm 4. The main idea is to

alternate minimization steps in (β, σ) and maximization steps in (β̃, ρ). For this reason, we call (3.2) a

minmax-MOM estimator. The minimization and maximization steps should only use data from the central

block, i.e. the block Bk realizing the median in step 3 above. Indeed, the MOMK criteria is not affected

by local variations of (β, σ, β̃, χ) in the other blocks Bk′ when k′ 6= k.

As the minimization and maximization steps are similar, we detail only the former. We separate the

joint minimization step in (β, σ) in two steps, one in β, and one in σ. When σ and (β̃, χ) are fixed, the

partial minimization in β of the criterion (3.2) is locally equivalent to the minimization of the program

minβ
∑
i∈Bk(Yi −XT

i β)2 + µσ|β|1. This is the classical Lasso program on the dataset Dk, with a tuning

parameter defined as λ := µσ. Therefore, any algorithm to compute the usual Lasso estimator (or even

one step of the optimization program of the Lasso) may be used to update β. In Algorithm 4 and as an

example, we choose to do a subgradient step. It is equal to

2XTk (Yk − Xkβ(t−1))− σ(t−1)sign(β(t−1)),

where σ(t−1) is the estimated standard deviation at the previous step, sign is the component-wide sign,

with the convention sign(0) = 0, Yk is the vector (Yi)i∈Bk and Xk is the matrix whose lines are the

vectors XT
i , for i ∈ Bk. Note that other choices of updates for β are possible, such as the use of

proximal gradient descent, alternating direction method of multipliers (ADMM), and cyclic coordinate

descent, as for non-adaptive minmax-MOM estimators (see respectively Algorithms 2, 3 and 4 in [91]).

When β and (β̃, χ) are fixed, the partial minimization in σ of the criterion (3.2) is locally equivalent to

the minimization of the program minσ a/σ+ σ, where a = (1/|Bk|)
∑
i∈Bk(Yi−XT

i β)2. This optimization

program admits a closed-form solution σ =
√
a, which is the update step of σ that we will use. If

we observe σ < σmin, then we update σ := σmin, but this should not occur too much often in practice.

Indeed, if a given σ is very small, it means that for one of the blocks, there exists a parameter β for which

a = (1/|Bk|)
∑
i∈Bk(Yi − XT

i β)2. This would mean that at least for one of the blocks, the noise has a

very small intensity, and should rather invite the applied statistician to set a lower σmin. There exists

other possibilities of updating σ. For instance, if σ is too much unstable, then we could use instead the

update step σ(t) ← (σ(t−1) +
√
a)/2 or other autoregressive filters. This would slow the convergence of

σ, but would introduce more stability.
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The maximization in (β̃, χ) follows exactly the same procedure as the minimization in (β, σ): we do a

first update step on β̃ and a second update step of the parameter σ. Following the conclusions of [91],

we use a random choice of blocks at each step. Such a choice is useful in the sense that it should help to

avoid saddle-points. Indeed, when the blocks are fixed, only the central block is used in the optimization

step. This could mean that other blocks don’t influence the optimization process. By randomizing the

blocks, we are sure to change at each step which dataset is used. This allows to "explore" better the

space of parameters, and improves strongly the performance of minmax-MOM algorithms.

Algorithm 4: An alternating sub-gradient algorithm to compute the adaptive minmax MOM-LASSO

estimator of (β∗, σ∗) using random blocks
Input: a dataset D = (Xi, Yi)i=1,...,n ;

Input: tuning parameters µ, σmin > 0, K ∈ {1, . . . , n}, two step size sequences (ηt)t∈N and (η̃t)t∈N

Input: initial point (β(0), σ(0), β̃(0), χ(0)) ∈ Rd × R+ × Rd × R+, and stopping criteria ε0 > 0

Initialize t← 0 ;

repeat
Update t← t+ 1 ;

/* Update of β and σ */

Partition {1, . . . , n} into K blocks B1, . . . BK at random ;

Find k ∈ {1, . . . ,K} such that

MOMK

(
lβ(t−1)

σ(t−1)
+ σ(t−1) −

lβ̃(t−1)

χ(t−1)
− χ(t−1)

)
= PBk

(
lβ(t−1)

σ(t−1)
+ σ(t−1) −

lβ̃(t−1)

χ(t−1)
− χ(t−1)

)
;

Update β(t) ← β(t−1) + 2ηtXTk (Yk − Xkβ(t−1))− µσ(t−1)ηtsign(β(t−1)) ;

Update σ(t) ← |Yk − Xkβ(t)|2/|Bk|1/2 ;

/* Update of β̃ and χ */

Partition {1, . . . , n} into K blocks B1, . . . BK at random ;

Find k ∈ {1, . . . ,K} such that

MOMK

(
lβ(t)

σ(t)
+ σ(t) −

lβ̃(t−1)

χ(t−1)
− χ(t−1)

)
= PBk

(
lβ(t)

σ(t)
+ σ(t) −

lβ̃(t−1)

χ(t−1)
− χ(t−1)

)
;

Update β̃(t) ← β̃(t−1) + 2η̃tXTk (Yk − Xkβ̃(t−1))− µχ(t−1)η̃tsign(β̃(t−1)) ;

Update χ(t) ← |Yk − Xkβ̃(t)|2/|Bk|1/2 ;

until |β(t−1) − β(t)|2 < ε0 , |β̃(t−1) − β̃(t)|2 < ε0 , |σ(t−1) − σ(t)| < ε0 and |χ(t−1) − χ(t)| < ε0;

Output: a joint estimator
(
β̂, σ̂

)
:=
(
β(t), σ(t)

)
;

To prove statistical properties of (β̂, σ̂), we will need the following set of assumptions.

Assumption 3.2.1. Denote by (ej)j=1,...d the canonical basis of Rd. We assume that there exist some
finite constants C1, C2, C3, θ0, θm such that

1. |I| ≥ n/2 and |O| ≤ C1s log(ed/s),

2. X is isotropic and ∀t ∈ Rd, 1 ≤ p ≤ C2 log(ed), 1 ≤ j ≤ d, ||XT ej ||Lp ≤ C3
√
p ||XT ej ||L2

,

3. ∀t ∈ Rd, ||XT t||L2
≤ θ0||XT t||L1

, and V ar
[
ζXT t

]
≤ θm||XT t||L2

,

where for p > 0 and for any function f : Rp → R, ||f(X)||Lp is defined, if it exists, as ||f(X)||Lp(PX) =( ∫
|f(x)|pdPX(x)

)1/p, PX denotes the law of the random vector X, and XT denotes the transpose of
the random vector X.
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The first assumption affirms that the number of informative data should be at least half of the sample

size. Conversely, if more than half of the data have been corrupted, than there is little hope of recovering

information about the informative data. Second, the outlier should not be too much numerous compared

to the number of observations times the minimax optimal rates. This is similar to the assumption needed

in [91]. The second assumption is necessary to apply [103, Theorem 1.6] to bound Gaussian mean

widths (that are related to the Rademacher complexities that we will define in Section 3.3) by local

Gaussian mean widths. These local Gaussian mean widths will be bounded by the minimax rates

using [93, Lemma 5.3]. These two steps will ensure that our estimator of β∗ attains the optimal minimax

rates. The third assumption is a special case of small ball property, which is often needed to establish

bounds in learning without using concentration inequalities, see [102, 83]. Finally, the last inequality is

satisfied when ζ and X are independent. We relax this hypothesis of independence, but still assume

that the dependence between ζ and X is not too strong.

The following theorem is proved in Section 3.7.2, and show that the estimator (β̂, σ̂) attains the

minimax optimal rate adaptively in σ.

Theorem 3.1. Assume that β∗ is s-sparse for a given s ≤ d, and that n & s log(ed/s). Under Assump-
tion 3.2.1 and if there exist c, c′ such that Conditions (3.5)-(3.13) are satisfied for µ0 = κ∗1/4σ∗, there
exist constants c1, c2, c3, c4, c5, c6 > 0 independent of s, d, n, σ∗, κ such that, choosing the regularization
parameter as

µ := c1

√
1

n
log

(
ed

s

)
,

we have

IP

(
∀p ∈ [1, 2], |β̂ − β∗|p ≤ c2||ζ||L4s1/p

√
1

n
log

(
ed

s

)
and |σ̂ − σ∗| ≤ σ∗(K/n)1/2(κ∗ − 1)1/2/10

)
≥ 1− c3 exp(−K/c4),

for every integer K such that c5 max
(
|O|, ||ζ||L4s log(ed/s)

)
≤ K ≤ c6n.

Note that these constants are fixed but might be difficult to compute in practice. To obtain precise

values for these constants, for instance c1, one would need to quantify the constants c2 in [103, Theorem

1.6] for q0 = 4 and L = 2 and C in [93, Lemma 5.3], using their notation.

3.3 A general framework

In this section, we generalize the results of the previous section. We now assume that the explanatory

variable X has values in a measurable space X , and we denote by F a class of measurable functions

from X to R included in the space L2(PX), where PX is the law of X. This means that for every f ∈ F ,

||f(X)||2L2
:=
∫
f(x)2dPX(x) is supposed to be finite. The random variable Y is still with values in R,

and we assume that

Y = f∗(X) + ζ, (3.3)

for a given unknown function f∗ in the class F . The assumptions on ζ are the same as in the previous

section: it has finite moments at least of the order 4, and an unknown square deviation σ∗ greater than

a lower bound σmin > 0. This lower bound will be needed in the proofs, see Section 3.6.9.1.
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Note that, if X = Rd for a fixed d > 0 and F is the class of sparse linear functionals, i.e. if for a given

s ≤ d, we have F = {fβ := (x ∈ Rd 7→ βTx ∈ R), β ∈ Rd, |β|0 ≤ s}, we recognize indeed the framework

of the previous section.

Finally, our goal is to estimate (f∗, σ∗) given a dataset of random pairs D = (Xi, Yi), i = 1, . . . , n,

where the observations are split in two groups : the informative group I, for which (Xi, Yi) are indepen-

dent and distributed as (X,Y ) ; and the outlier group O, made up of potentially adversarial variables.

Our estimators is a generalization of (3.2), defined by :

1. Given a dataset D = {(Xi, Yi), i = 1, . . . , n} of size n > 0, we can divide it into K blocks D1, . . .DK
of size n/K (assumed to be an integer) corresponding to a partition {1, . . . , n} = B1 t · · · tBK ;

2. For each k = 1, . . . ,K, the criteria of (f, σ) against (f̃ , χ) on the block Bk is defined by

PBk

(
lf
σ

+ σ −
lf̃
χ
− χ

)
:=

1

|Bk|
∑
i∈Bk

(
(Yi − f(Xi))

2

σ
+ σ − (Yi − f(Xi))

2

χ
− χ

)
,

for every f, σ, f̃ , χ ∈ F × R+ × F × R+, where |Bk| denotes the cardinal of Bk ;

3. The global MOM criteria of (f, σ) against (f̃ , χ) is defined by

MOMK

(
lf
σ

+ σ −
lf̃
χ
− χ

)
:= Median

{
PBk

(
lf
σ

+ σ −
lf̃
χ
− χ

)
, k = 1, . . . ,K

}
;

4. Finally, the MOM-K estimator of (β∗, σ∗) is defined by

(f̂ , σ̂) := arg min
f∈F, σ>σmin

max
g∈F, χ>σmin

[
MOMK

(
lf
σ

+ σ − lg
χ
− χ

)
+ µ(||f || − ||g||)

]
(3.4)

= arg min
f∈F, σ>σmin

max
g∈F, χ>σmin

TK,µ(g, χ, f, σ) = arg min
f∈F, σ>σmin

CK,µ(f, σ),

where µ is a tuning parameter to be chosen, || · || is a norm on the space of functions generated by

F ,

TK,µ(g, χ, f, σ) := MOMK

(
lf
σ

+ σ − lg
χ
− χ

)
+ µ(||f || − ||g||)

and CK,µ(f, σ) := maxg∈F, χ>σmin
TK,µ(g, χ, f, σ).

Note that this estimator (f̂ , σ̂) depends only on two tuning parameters K and µ. To prove its properties,

we will need the following assumption, which is a generalization of Assumption 3.2.1.

Assumption 3.3.1. There exists θ0, θm such that, for all i ∈ I and f ∈ F

1. V ar
[
ζ(f − f∗)(X)

]
≤ θ2

m||f − f∗||2L2
,

2. ||f − f∗||L2
≤ θ0||f − f∗||L1

.

The first part of this assumption specifies that the dependence between the noise ζ and transfor-

mations f − f∗ of X is not too strong compared to the norm of these transformations. It is satisfied

as a special case when ζ and X are independent. The second assumption is related to the small ball

assumption and controls the link between the L1 and the L2 norms of f − f∗.

Definition 3.2. Let F be a class of functions X → R. Let E be the vector space generated by F and
|| · || a norm on E, which will be used for regularization.
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1. The subdifferential of || · || at any f ∈ F is denoted by (∂ || · ||)f := {z∗ ∈ E∗ : ||f + h|| ≥
||f ||+ z∗(h), ∀h ∈ E}, where (E∗, || · ||∗) is the dual normed space of (E, || · ||).

2. For any ρ > 0, we set

Hρ := {f ∈ F : ||f − f∗|| = ρ and ||f − f∗||L2
≤ r(ρ)},

Γf∗ :=
⋃

f∈f∗+(ρ/20)B

(
∂|| · ||

)
f
,

∆(ρ) := inf
f∈Hρ

sup
z∗∈Γf∗ (ρK)

z∗(f − f∗),

3. We will use the so-called sparsity inequality ∆(ρ) ≥ 4ρ/5, and we define ρ∗ as the smallest ρ > 0

satisfying it.

4. The risk of a function f ∈ F is defined by R(f) := IE
[
(Y − f(X))2

]1/2.

Definition 3.3. Let εi be independent random variables uniformly distributed on {−1, 1}, and indepen-
dent from the dataset D. For all f ∈ F , r > 0 and ρ > 0, we denote Breg(f, ρ, r) := {g ∈ F : ||g− f ||L2

≤
r, ||g − f || ≤ ρ}. For every γQ, γM > 0, we define two so-called Rademacher complexities by

rQ(ρ, γQ) = inf

{
r > 0 : ∀J ⊂ I, |J | ≥ N

2
, IE sup

f∈Breg(f∗,ρ,r)

∣∣∣∑
i∈J

εi(f − f∗)(Xi)
∣∣∣ ≤ γQ|J |r} ,

rM (ρ, γM ) = inf

{
r > 0 : ∀J ⊂ I, |J | ≥ N

2
, IE sup

f∈Breg(f∗,ρ,r)

∣∣∣∑
i∈J

εiξi(f − f∗)(Xi)
∣∣∣ ≤ γM |J |r2

}
,

and let r = r( · , γM , γQ) be a continuous non-decreasing function R+ → R+ depending on γQ, γM such
that for every ρ > 0, r(ρ, γQ, γM ) > rQ(ρ, γQ) and r(ρ, γQ, γM ) > rM (ρ, γM ).

Theorem 3.4. Let Assumption 3.3.1 hold and assume that

n ≥ K(κ∗ − 1)1/2/400, (3.5)

r2(2ρK) ≤ min

(
2γ̃1σ

∗2 , 2cθ2
0σ
∗2
)
, (3.6)

(2 + γ̃1)γ̃1σ
∗ ≤ c′

40µ0cθ0
r2(2ρK), (3.7)

where γ̃1 := (K/n)1/2(κ∗ − 1)1/2/10, with the choice γQ = 1/(720θ0), and γM = ε/360. Let us define
K∗ as the smallest integer satisfying K∗ ≥ nεr2(ρ∗)/(284θ2

m) and ε := 1/(cθ2
0) for a constant c > 0.

Let K be an integer in
[

max(K∗, 8|O|) , n/(96(θ0θm)2)
]
. We define implicitly ρK as the solution of

r2(ρK) = (384θ2
m/ε

2) · (K/n), where r(·) is defined in [91, Definition 5]. Let c′, µ0 > 0 such that

µ0 ≤ 64σ∗(1 + γ̃1)/5, (3.8)

µ0 ≤ 4c′σmin/5, (3.9)

µ0 ≥
16c′

c− 32
σ∗
(
1 + γ̃1/2

)
(3.10)

σ∗ ≤
(
1 + (17c′/20µ0)

)
σmin (3.11)

c ≥ 32σ∗(1− γ̃1)

(
2

σ∗ − r(ρK)
+

2

σ∗ − σ∗γ̃1
+

4c′

µ0

)
(3.12)

c′ ≥ 10µ0

σmin
− 5µ0

σ∗
. (3.13)
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Choosing the regularization parameter as µ := (c′ε/µ0)r2(ρK)/ρK , we have

||f̂ − f∗|| ≤ 2ρK , (3.14)

||f̂ − f∗||L2 ≤ r(2ρK), (3.15)

|σ̂ − σ∗| ≤ σ∗γ̃1, (3.16)

R(f̂) ≤ R(f∗) + 2

(
1 + ε+ γ̃1

)
r2(2ρK) + σ∗(1 + γ̃1)(σ∗γ̃1 + 2µρK)

+ (σ∗ + r(2ρK))

[
2
(
1 + γ̃1

)
σ∗γ̃1 +

(
2ε

σ∗ − r(κρK)
+
c′εκ

µ0

)
r2(ρK)

]
. (3.17)

with probability 1− c1 exp(−K/c2), where c1 and c2 are universal constants.

This theorem allows us to bound in a general framework statistical errors on an event that holds with

high probability. Indeed, on this event of probability 1 − c1 exp(−K/c2), we control the distance of the

estimators f̂ to its true value f∗ in the regularization norm || · || and in the || · ||L2 norm. We also control

the distance between the estimated standard deviation σ̂ and the true standard deviation σ∗. Finally, we

control the risk of f̂ , meaning that it is smaller than the risk associated with the true function f∗, plus a

residual term.

Note that, even if many parameters appear in the statement of Theorem 3.4 above, the estimator

still depends only on two parameters, that are µ and K. If µ can be chosen as in the statement of

this theorem, as well as other parameters, the theorem apply, and gives bounds on our estimators with

high probability. If the condition of Theorem 3.4 could not be satisfied with any choice of c′, c, µ0 for a

given µ, then the joint estimator (f̂ , σ̂) can still be computed, but without any theoretical guarantee on its

performance.

3.4 Technical lemmas

The following lemma is adapted from from Lecué and Lerasle [91, Equations (16), (18), and (19)].

Lemma 3.5. There exists an event Ω1(K) of probability bigger than 1 − 4 exp(−K/4320) such that, for
all ρ ∈ {κρK : κ ∈ {1, 2}}, and all f ∈ F such that ||f − f∗|| ≤ ρ, we have

1. If ||f − f∗||L2 ≥ rQ(ρ, γQ), then Q1/4,K

(
(f − f∗)2

)
≥ Q1/8,K

(
(f − f∗)2

)
≥ 1

(4θ0)2 ||f − f
∗||2L2

,

2. Q3/4,K

(
2ζ(f − f∗)

)
≤ Q7/8,K

(
2ζ(f − f∗)

)
≤ α1

3. P [−2ζ(f − f∗)] ≤ min
(
Q1/8,K [−2ζ(f − f∗)] , Q1/4,K [−2ζ(f − f∗)]

)
+ α1

where α1 := 2ε ·max

(
r2
M (ρ, γM ) ,

720θ2
m

ε2
K

n
, ||f − f∗||L2

)
and ε := 1/(cθ2

0).

Proof of Lemma 3.5: The results are proved by following the same steps as in the proof of Equations (16),

(18), and (19) in Lecué and Lerasle [91], choosing η = 1/8, γ = 15/16, α = x = 1/45, γQ = 1/(720θ0),

and γM = ε/360.

�

The following lemma is proved in [91, Lemma 4]. We reproduce it here for convenience.
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Lemma 3.6. Let ρ ≥ 0, Γf∗(ρ) :=
⋃
f∈f∗+(ρ/20)B

(
∂|| · ||

)
f
. For all g ∈ F ,

||f∗|| − ||g|| ≤ ρ

10
− sup
z∗∈Γf∗ (ρ)

z∗(g − f∗).

Lemma 3.7. Let ρ > 0, for all f ∈ F such that ||f − f∗|| ≤ ρ and |σ − σ∗| ≤ ασ, we have

P [−2ζ(f − f∗)] ≤ (σ∗ + ασ)TK,λ(f∗, σ∗, f̂ , σ̂) + α1 + (σ∗2 + γ1)
ασ
σ∗2

+ (σ∗ + ασ)(ασ + µρ).

where α1 := 2ε ·max

(
r2
M (ρ, γM ) ,

720θ2
m

ε2
K

n
, ||f − f∗||L2

)
.

Proof: We apply part 3 of Lemma 3.5 and get

P [−2ζ(f − f∗)] ≤ Q1/4,K [−2ζ(f − f∗)] + α1

≤ Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + α1

≤ σQ1/4,K

[
1

σ
(lf − lf∗)

]
+ α1

≤ σQ1/4,K

[
lf
σ

+ (σ − σ∗)− lf∗

σ∗
+ lf∗

(
1

σ∗
− 1

σ

)]
+ α1 + σασ

≤ σQ1/2,K

[
lf
σ

+ (σ − σ∗)− lf∗

σ∗

]
−Q1/4,K

[
− lf∗

(
1

σ∗
− 1

σ

)]
+ σµ(||f || − ||f∗||) + α1 + σ(ασ + µρ)

≤ σTK,λ(f∗, σ∗, f̂ , σ̂)−Q1/4,K [−ζ2]

(
1

σ∗
− 1

σ

)
+ α1 + σ(ασ + µρ).

We apply now Lemma 3.9 and the mean value theorem to the function x 7→ 1/x, and we get

P [−2ζ(f − f∗)] ≤ σTK,λ(f∗, σ∗, f̂ , σ̂) + α1 + (σ∗2 + γ1)
ασ
σ∗2

+ σ(ασ + µρ)

≤ (σ∗ + ασ)TK,λ(f∗, σ∗, f̂ , σ̂) + α1 + (σ∗2 + γ1)
ασ
σ∗2

+ (σ∗ + ασ)(ασ + µρ).

�

In the following, we will use the notation K := {k ∈ {1, . . . ,K} : Bk ⊂ I}.

Lemma 3.8. Let γ, γ1, η, x > 0 such that γ(1 −KV ar[Z]/(nγ2
1) − x) ≥ 1 − η. Let K ∈ [|O|/(1 − γ), n].

Let Z be a real-valued random variable. There exists an event Ω(Z,K) with probability greater than
1− exp(−γx2K/2) such that, on the event Ω(Z,K)∣∣{k ∈ [K] : |PBk(Z)− IEZ| ≤ γ1}

∣∣ ≥ K(1− η).

Proof : We have

|{k ∈ [K] : |PBk(Z)− IEZ| ≤ γ1}| ≥
∑
k∈K

1{|PBk(Z)− IEZ| ≤ γ1}

= |K| −
∑
k∈K

IP{|PBk(Z)− IEZ| ≥ γ1} −
∑
k∈K

(
1{|PBk(Z)− IEZ| ≥ γ1} − IP{|PBk(Z)− IEZ| ≥ γ1}

)
.

We bound the first term using Chebychev’s inequality∑
k∈K

IP{|PBk(Z)− IEZ| ≥ γ1} ≤ |K|
V ar[PBk(Z)− IEZ]

γ2
1

= |K|V ar[Z]

|Bk|γ2
1

= |K|KV ar[Z]

nγ2
1

.
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We bound the other term using Hoeffding’s inequality∑
k∈K

(
1{|PBk(Z)− IEZ| ≥ γ1} − IP{|PBk(Z)− IEZ| ≥ γ1}

)
≤ x|K|,

on an event Ω(Z,K) of probability greater than 1− exp(−x2|K|/2). Combining the previous inequalities,

we get that on Ω(Z,K),

|{k ∈ K : |PBk(Z)− IEZ| ≤ γ1}| ≥ |K|
(

1− KV ar[Z]

nγ2
1

− x
)
≥ Kγ

(
1− KV ar[Z]

nγ2
1

− x
)
.

�

Lemma 3.9 (Bounding the quantiles of ζ2). Assume that K ≤ nα3. On an event Ω2(K) of probability
greater than 1 − exp(−5K/13824), we have Q1/4,K [ζ2] ≤ σ∗2 + γ1 and −σ∗2 − γ1 ≤ Q1/4,K [−ζ2] ≤
−σ∗2 + γ1, where γ1 = α

1/2
3 σ∗2(κ∗ − 1)1/2/5. The same inequalities are also valid with 1/4 replaced by

1/8, on the same event. As a consequence, this is valid for the choice α3 := K/n.

Proof of Lemma 3.9: We apply Lemma 3.8 with Z := ζ2, V ar[Z] = IE[ζ4] − IE[ζ2]2 = σ∗4(κ∗ − 1),

η = 1/8, γ = 15/16, x = 1/36, γ1 = 6
(
α3V ar[Z]

)1/2, so that γ(1 − KV ar[Z]/(nγ2
1) − x) ≥ 1 − η with

probability 1 − exp(−γx2K/2) = 1 − exp(−5K/13824). Therefore, on the same event, all Q1/8,K [ζ2],

Q1/4,K [ζ2], Q3/4,K [ζ2] and Q7/8,K [ζ2] belongs to the interval
[
IEζ2 − γ1 , IEζ2 + γ1

]
. We get also that

Q1/8,K [−ζ2], Q1/4,K [−ζ2] ∈
[
− IEζ2 + γ1 , −IEζ2 + γ1

]
.

�

Lemma 3.10. Let κ ∈ {1, 2} and α2,κ = (K/n)1/2σ∗(κ∗ − 1)1/2/10. Under the assumptions of Theo-
rem 3.4, we have

1. γ1 ≤ 2σ∗α2,κ + α2
2,κ, therefore

√
σ∗2 + γ1 ≤ σ∗ + α2,κ ;

2. 2ε−(4θ0)−2

σ∗+α2,κ
+ c′ε

µ0
≤ 0 ;

3. α2,κ
2 ≤ γ1 + 2α2,κσ

∗ − r2(κρK), therefore σ∗ − α2,κ ≤
√
σ∗2 + γ1 − r2(κρK) ;

4. 2εr2(ρK)−γ1
σ∗2 ≤ 4 + γ1

σ∗2 ;

5. 2ε−(4θ0)−2

σ∗+α2,1
+ 11c′ε

10µ0
≤ 2ε

σ∗−r(ρK) + c′ε
µ0

where γ1 := (K/n)1/2σ∗2(κ∗ − 1)1/2/5

Proof of Lemma 3.10: 1. By construction, we have γ1 = 2σ∗α2,κ. Therefore, the claimed inequality is

satisfied.

2. Because we have assumed that Equation (3.10) holds, we have

µ0 ≥
16c′

c− 32
σ∗
(
1 + (K/n)1/2(κ∗ − 1)1/2/10

)
.

This is equivalent to

µ0

(
2

c
− 1

16

)
+
c′

c
σ∗
(
1 + (K/n)1/2(κ∗ − 1)1/2/10

)
≤ 0,

which can be rewritten as

2/(cθ2
0)− 1/(4θ0)2

σ∗
(
1 + (K/n)1/2(κ∗ − 1)1/2/10

) +
c′/(cθ0)

µ0
≤ 0.
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3. By Equation (3.5), we derive that α2,κ ≤ 2σ∗, which means that α2,κ
2 ≤ 2α2,κσ

∗. Using Equa-

tion (3.6), we get r2(κρK) ≤ 2α2,κσ
∗ = γ1. Combining the two equations, we get α2,κ

2 + r2(κρK) ≤
2α2,κσ

∗ + γ1.

4. Using Equation (3.6), we get r2(ρK) ≤ 2cθ2σ∗2. Therefore 2εr2(ρK)/σ∗2 ≤ 4, which implies the

claimed result.

5. We have

2ε− (4θ0)−2

σ∗ + α2,1
+

11c′ε

10µ0
≤ c′ε

10µ0
≤ 2ε

σ∗ − r(ρK)
+
c′ε

µ0
,

where the first inequality is a consequence of part 4 of this lemma.

�

3.5 Control of the supremum of TK,µ(g, χ, f ∗, σ∗) on each F
(κ)
i

3.5.1 Preliminaries

In this section, we will assume to be on the event Ω(K) := Ω1(K) ∩ Ω2(K), where Ω1(K) is defined in

Lemma 3.5 and Ω2(K) is defined in Lemma 3.9. For κ ∈ {1, 2}, and any fixed α2,κ > 0, let us define

F
(κ)
1 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| ≤ κρK , ||g − f∗||L2

≤ r(κρK) and |σ∗ − χ| ≤ α2,κ}

F
(κ)
2 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| ≤ κρK , ||g − f∗||L2

> r(κρK) and |σ∗ − χ| ≤ α2,κ}

F
(κ)
3 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| > κρK and |σ∗ − χ| ≤ α2,κ}

F
(κ)
4 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| ≤ κρK , ||g − f∗||L2 ≤ r(κρK) and χ > σ∗ + α2,κ}

F
(κ)
5 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| ≤ κρK , ||g − f∗||L2

> r(κρK) and χ > σ∗ + α2,κ}

F
(κ)
6 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| > κρK and χ > σ∗ + α2,κ}

F
(κ)
7 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| ≤ κρK , ||g − f∗||L2

≤ r(κρK) and χ < σ∗ − α2,κ}

F
(κ)
8 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| ≤ κρK , ||g − f∗||L2 > r(κρK) and χ < σ∗ − α2,κ}

F
(κ)
9 := {(g, χ) ∈ F × R∗+ : ||g − f∗|| > κρK and χ < σ∗ − α2,κ}.

Lemma 3.11. On the event Ω(K), it holds for all κ ∈ {1, 2} that

sup
(g,χ)∈F (κ)

1

TK,µ(g, χ, f∗, σ∗) ≤
(

2 +
γ1

σ∗2

)
α2,κ +

(
2ε

σ∗ − r(κρK)
+
c′εκ

µ0

)
r2(ρK) := B1,κ

sup
(g,χ)∈F (κ)

2

TK,µ(g, χ, f∗, σ∗) ≤
(

2 +
γ1

σ∗2

)
α2,κ +

(
2ε− (4θ0)−2

σ∗ − α2,κ
+
c′εκ

µ0

)
r2(ρK) := B2,κ

sup
(g,χ)∈F (κ)

3

TK,µ(g, χ, f∗, σ∗) ≤ max

((
2 +

γ1

σ∗2

)
α2,κ + κε

( 2

σ∗ − α2,κ
− 7c′

10µ0

)
r2(ρK) ,

(
2 +

γ1

σ∗2

)
α2,κ + κ

(
2ε− (4θ0)−2

σ∗ + α2,κ
+

11c′ε

10µ0

)
r2(ρK)

)
:= B3,κ

sup
(g,χ)∈F (κ)

4

TK,µ(g, χ, f∗, σ∗) ≤ γ1

σ∗2
α2,κ +

(
2ε

σ∗ + α2,κ
+
c′εκ

µ0

)
r2(ρK) := B4,κ

sup
(g,χ)∈F (κ)

5

TK,µ(g, χ, f∗, σ∗) ≤ γ1

σ∗2
α2,κ +

c′εκ

µ0
r2(ρK) := B5,κ

sup
(g,χ)∈F (κ)

6

TK,µ(g, χ, f∗, σ∗) ≤ max

(
γ1

σ∗2
α2κ + κε

( 2

σ∗ + α2,κ
− 7c′

10µ0

)
r2(ρK) ,
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( γ1

σ∗2
− 1
)
α2,κ + κ

(
2ε− (4θ0)−2

)
σ + α2,κ

+
11c′ε

10µ0

)
r2(ρK)

)
:= B6,κ

sup
(g,χ)∈F (κ)

7

TK,µ(g, χ, f∗, σ∗) ≤
(

2εr2(κρK)− γ1

σ∗2
− 2

)
α2,κ +

(
2ε

σ∗
+
c′εκ

µ0

)
r2(ρK) := B7,κ

sup
(g,χ)∈F (κ)

8

TK,µ(g, χ, f∗, σ∗) ≤
(

2 +
γ1

σ∗2

)
α2,κ +

(
(2ε− (4θ0)−2)

σ∗ − α2,κ
+
c′εκ

µ0

)
r2(ρK) := B8,κ

sup
(g,χ)∈F (κ)

9

TK,µ(g, χ, f∗, σ∗) ≤ max

(
γ1

σ∗2
α2,κ +

(
2ε

σmin
− 7c′ε

10µ0

)
κr2(ρK) ,

(
2 +

γ1

σ∗2

)
α2,κ + κ

(
2ε− (4θ0)−2

)
σ − α2,κ

+
11c′ε

10µ0

)
r2(ρK)

)
:= B9,κ.

Each bound is respectively proved in each of the subsections of Section 3.6. The following lemma

gives a comparison between all these bounds.

Lemma 3.12. We have B1,1 = maxi=1,...,9Bi,1 and −B1,1 > maxi=2,...,9Bi,2.

3.5.2 Proof of the first assertion of Lemma 3.12

In this section, we show that B1,1 is bigger than the other Bi,1, i = 2, . . . , 9.

Case i = 2: using α2,1 ≤ r(1× ρK), we get

2ε− (4θ0)2

σ∗ − α2,1
≤ 2ε

σ∗ − α2,1
≤ 2ε

σ∗ − r(1× ρK)
,

therefore B2,1 ≤ B1,1.

Case i = 3:

ε
( 2

σ∗ − α2,1
− 7c′

10µ0

)
≤ 2ε

σ∗ − r(1× ρK)
− 7c′ε

10µ0
≤ 2ε

σ∗ − r(1× ρK)
+
c′ε× 1

µ0
,

and, applying part 5 of Lemma 3.10, 2ε−(4θ0)−2

σ∗+α2,1
+ 11c′ε

10µ0
≤ 2ε

σ∗−r(1×ρK) + c′ε
µ0
, therefore B3,1 ≤ B1,1.

Cases i = 4, 5, 8: Each of the two terms in the definition of Bi,1 is smaller than the corresponding

term in the definition of B1,1, therefore Bi,1 ≤ B1,1.

Case i = 6: Same as for i = 3.

Case i = 7: The result in this case follows because 2+ γ1
σ∗2 ≥

2εr2(ρK)−γ1
σ∗2 −2, by part 4 of Lemma 3.10.

Case i = 9: B9,1 ≤ B1,1 if

2ε

σmin
− 7c′ε

10µ0
≤ 2ε

σ∗ − r(1× ρK)
+
c′ε× 1

µ0
,

which is equivalent to

1

σmin
≤ 1

σ∗ − r(ρK)
+

17c′

20µ0
,

i.e. σ∗ − r(κρK) ≤
(
1 + (17c′/20µ0)

)
σmin, which is true as we have assumed Equation (3.11).

�
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3.5.3 Proof of the second assertion of Lemma 3.12

In this section, we show that −B1,1 is bigger than Bi,2, for all i = 2, . . . , 9. We only give a sketch of the

proof here since it results from elementary computations. Because of Equation (3.7) we can control all

the terms of the form α2,κ by terms of the form r2(ρK). Therefore, we only compare such terms. All

inequalities are similar and consequences of Equation (3.12), using the definition ε = 1/(cθ2
0). For the

term i = 9, the inequality is a consequence of Equation (3.13).

�

3.6 Proof of Lemma 3.11

Let us remark that

TK,µ(f, σ, f∗, σ∗) := MOMK

(
lf∗

σ∗
+ σ∗ − lf

σ
− σ

)
+ µ(||f∗|| − ||f ||)

= MOMK

(
lf∗
( 1

σ∗
− 1

σ

)
+ (σ∗ − σ) +

1

σ
(lf∗ − lf )

)
+ µ(||f∗|| − ||f ||)

= MOMK

(
lf∗
( 1

σ∗
− 1

σ

)
+ (σ∗ − σ) +

1

σ

(
2ζ(f − f∗)− (f − f∗)2

))
+ µ(||f∗|| − ||f ||).

This decomposition will be a key component of the proofs below.

3.6.1 Bound on F
(κ)
1

Let g ∈ F (κ)
1 . Using the inequality (g − f∗)2 ≥ 0 and the triangular inequality, we get

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ α2,κ +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

2

χ
ζ(g − f∗)

))
+ µ||f∗ − f ||

≤ α2,κ +
2

χ
Q3/4,K

[
ζ(g − f∗)

]
−Q1/4,K [ζ2]

( 1

χ
− 1

σ∗

)
+ µκρK

≤ α2,κ +
1

σ∗ − r(κρK)
Q3/4,K

[
2ζ(g − f∗)

]
+ (σ∗2 + γ1)

α2,κ

σ∗2
+ µκρK .

where in the last line, we used Lemma 3.9. By the part 2 of Lemma 3.5, using the fact that α1 ≤
2εr2(κρK), and plugging our choice of µ, we get

TK,µ(g, χ, f∗, σ∗) ≤
(

1 +
σ∗2 + γ1

σ∗2

)
α2,κ +

(
2ε

σ∗ − r(κρK)
+
c′εκ

µ0

)
r2(ρK).

�

3.6.2 Bound on F
(κ)
2

Let (g, χ) ∈ F (κ)
2 . We have

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ (σ∗ − χ) +Q3/4,K

(
lf∗
( 1

σ∗
− 1

χ

)
+

1

χ

(
2ζ(g − f∗)

))
− 1

χ
Q1/4[(g − f∗)2] + µ(||f∗ − g||)

≤ α2,κ +Q3/4,K

(
lf∗
( 1

σ∗
− 1

χ

)
+

1

χ

(
2ζ(g − f∗)

))
− 1

χ
Q1/4[(g − f∗)2] + µκρK
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≤ α2,κ +
1

χ
Q7/8,K

[
2ζ(g − f∗)

]
−Q1/8[−ζ2]

( 1

σ∗
− 1

χ

)
− 1

χ
Q1/4[(g − f∗)2] + µκρK .

On the right hand-side of the last equation, we will bound the second term using part 1 of Lemma 3.5,

the third term using Lemma 3.9 and the fourth term using part 2 of Lemma 3.5. Finally, we replace µ

and ρK by their values so that we get

TK,µ(g, χ, f∗, σ∗) ≤ α2,κ +
α1 − ||f∗ − g||2L2

P
(4θ0)−2

χ
+
α2,κ(σ∗2 + γ1)

σ∗2
+
c′εκ

µ0
r2(ρK).

We have 2ε < (4θ0)−2, therefore α1 − ||f∗ − g||2L2
P

(4θ0)−2 ≤ (2ε − (4θ0)−2)r2(ρK) and we can deduce

that

TK,µ(g, χ, f∗, σ∗) ≤
(

1 +
σ∗2 + γ1

σ∗2

)
α2,κ +

(
2ε− (4θ0)−2

σ∗ − α2,κ
+
c′εκ

µ0

)
r2(ρK).

�

3.6.3 Bound on F
(κ)
3

Let (g, χ) ∈ F (κ)
3 . We have

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
− µ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗) +
µρK
10

,

(3.18)

where the last line results from the application of Lemma 3.6 with ρ = ρK . We follow now the proof of

Lemma 5 in [91]. Let us define f := f∗ + ρK(g − f∗)/||g − f∗||. By convexity of F , we get f ∈ F . Let

Υ := ||g − f∗||/ρK . Noting that ||f − f∗|| = ρK , and g − f∗ = Υ(f − f∗), we have

MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
− µ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

= MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

1

χ

(
2Υζ(f − f∗)−Υ2(f − f∗)2

))
− µΥ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗)

≤MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

1

χ

(
2Υζ(f − f∗)−Υ(f − f∗)2

))
− µΥ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗),

where in the last line, we used the fact that Υ ≥ 1. Therefore, combining the previous equation with

Equation (3.18), we get

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)− (f − f∗)2

))
− µΥ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10
, (3.19)

3.6.3.1 Case ||f − f∗||L2
P
≤ r(ρK)

Remembering that ||f − f∗|| = ρK , we can deduce that f ∈ HρK Using the definition of K∗, the fact

that K ≥ K∗, we get that ρK ≥ ρ, and therefore ρK follows the sparsity equation, from which we derive

supz∗∈Γf∗ (ρK) z
∗(f − f∗) ≥ ∆(ρK) ≥ 4ρK/5. Using our choice of µ, we get

−µ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≤ −4c′ε

5µ0
r2(ρK).
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Combining this with Equation (3.19) and the fact that (f − f∗)2 ≥ 0, we get that

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)

))
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ α2,κ +
Υ

χ
Q3/4,K

[
2ζ(f − f∗)

]
−
( 1

σ∗
− 1

χ

)
Q1/4,K

[
− ζ2

]
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤
(

1 +
σ∗2 + γ1

σ∗2

)
α2,κ + Υ

( 1

χ
Q3/4,K

[
2ζ(f − f∗)

]
− 4c′ε

5µ0
r2(ρK)

)
+
c′εκ

10µ0
r2(ρK).

Applying part 2 of Lemma 3.5, we get Q3/4,K

[
2ζ(f − f∗)

]
≤ α1 ≤ 2εr2(ρK). Therefore,

TK,µ(g, χ, f∗, σ∗) ≤
(

2 +
γ1

σ∗2

)
α2,κ + Υ

( 2ε

σ∗ − α2,κ
− 4c′ε

5µ0

)
r2(ρK) +

c′εκ

10µ0
r2(ρK).

Using the inequalities µ0 ≤ 4c′(σ∗ − α2,κ)/5, and Υ > κ , we finally get

TK,µ(g, χ, f∗, σ∗) ≤
(

2 +
γ1

σ∗2

)
α2,κ + κε

( 2

σ∗ − α2,κ
− 7c′

10µ0

)
r2(ρK).

3.6.3.2 Case ||f − f∗||L2
P
> r(ρK)

We have ||f − f∗|| = ρK , therefore, it follows from parts 1 and 2 of Lemma 3.5,

MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)− (f − f∗)2

))
≤ Υ

χ

(
Q7/8,K

[
2ζ(f − f∗)

]
−Q1/4,K

[
(f − f∗)2

])
−
( 1

σ∗
− 1

χ

)
Q1/8,K

[
− ζ2

]
≤ Υ

χ

(
α1 − 4θ−2

0 ||f − f∗||2L2

)
+
σ∗2 + γ1

σ∗2
α2,κ

≤ Υ

χ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
σ∗2 + γ1

σ∗2
α2,κ

≤ κ

σ∗ + α2,κ

(
2ε− (4θ0)−2

)
r2(ρK) +

σ∗2 + γ1

σ∗2
α2,κ,

because 2ε− (4θ0)−2 ≤ 0. Plugging this back in Equation (3.19), we get

TK,µ(g, χ, f∗, σ∗) ≤
(

2 +
γ1

σ∗2

)
α2,κ + Υ

(
2ε− (4θ0)−2

σ∗ + α2,κ
r2(ρK) + µρK

)
+
µκρK

10

≤
(

2 +
γ1

σ∗2

)
α2,κ + Υ

(
2ε− (4θ0)−2

σ∗ + α2,κ
+ 16

ε

µ0

)
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤
(

2 +
γ1

σ∗2

)
α2,κ + κ

(
2ε− (4θ0)−2

σ∗ + α2,κ
+

11c′ε

10µ0

)
r2(ρK).

�

3.6.4 Bound on F
(κ)
4

Let (g, χ) ∈ F (κ)
4 . Recall that, in this case, χ > σ∗ + α2,κ. We have

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ (σ∗ − χ) +MOMK

(
lf∗

σ∗
+

1

χ

(
2ζ(g − f∗)

))
+ µ||f∗ − g||

≤ (σ∗ − χ) +
1

χ
Q3/4,K

[
2ζ(g − f∗)

]
+
( 1

σ∗
− 1

χ

)
Q1/4,K [−ζ2] + µκρK .
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We apply part 2 of Lemma 3.5 and Lemma 3.9, and, using our choice of µ and ρK , we deduce that

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)(
σ∗2 + γ1

)
+

(
2ε

σ∗ + α2,κ
+
c′εκ

µ0

)
r2(ρK).

The function χ 7→ −χ − a/χ is decreasing for χ ≥
√
a. Applying the first part of Lemma 3.10, we have√

σ∗2 + γ1 ≤ σ∗ + α2,κ. Therefore, the maximum of the former function is attained for χ = σ∗ + α2,κ,

which yields

TK,µ(g, χ, f∗, σ∗) ≤ −α2,κ +
( 1

σ∗
− 1

σ∗ + α2,κ

)(
σ∗2 + γ1

)
+

(
1

σ∗ + α2,κ
+
c′εκ

µ0

)
r2(ρK)

≤
(
σ∗2 + γ1

σ∗2
− 1

)
α2,κ +

(
2ε

σ∗ + α2,κ
+
c′εκ

µ0

)
r2(ρK).

�

3.6.5 Bound on F
(κ)
5

Let (g, χ) ∈ F (κ)
5 . Recall that, in this case, χ > σ∗ + α2,κ. We have

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ (σ∗ − χ) +
1

χ

(
Q7/8,K

[
2ζ(g − f∗)

]
−Q1/4,K

[
(g − f∗)2

])
−
( 1

σ∗
− 1

χ

)
Q1/8,K

[
− ζ2

]
+ µκρK .

We bound Q7/8,K

[
2ζ(g− f∗)

]
using part 2 of Lemma 3.5 ; Q1/4,K

[
(g− f∗)2

]
using part 1 of Lemma 3.5

; and Q1/8,K

[
− ζ2

]
by Lemma 3.9.

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
α1 − ||f∗ − g||2L2

P
(4θ0)−2

χ
+
( 1

σ∗
− 1

χ

)(
σ∗2 + γ1

)
+ µκρK .

We have 2ε < (4θ0)−2, therefore α1 − ||f∗ − g||2L2
P

(4θ0)−2 ≤ 0 and, plugging in our choice of µ and ρK ,

we can deduce that

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)(
σ∗2 + γ1

)
+
c′εκ

µ0
r2(ρK)

The function χ 7→ −χ − a/χ is decreasing for χ ≥
√
a. Applying the first part of Lemma 3.10, we have√

σ∗2 + γ1 ≤ σ∗ + α2,κ. Therefore, the maximum of the former function is attained for χ = σ∗ + α2,κ,

which yields

TK,µ(g, χ, f∗, σ∗) ≤ −α2,κ +
( 1

σ∗
− 1

σ∗ + α2,κ

)(
σ∗2 + γ1

)
+
c′εκ

µ0
r2(ρK)

≤
(
σ∗2 + γ1

σ∗2
− 1

)
α2,κ +

c′εκ

µ0
r2(ρK).

3.6.6 Bound on F
(κ)
6

Let (g, χ) ∈ F
(κ)
6 . Recall that, in this case, χ > σ∗ + α2,κ. Following the beginning of the proof in

Section 3.6.3, we have as in Equation (3.19)

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)− (f − f∗)2

))
− µΥ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10
, (3.20)
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3.6.6.1 Case ||f − f∗||L2
P
≤ r(ρK)

Remembering that ||f − f∗|| = ρK , we can deduce that f ∈ HρK Using the definition of K∗, the fact

that K ≥ K∗, we get that ρK ≥ ρ, and therefore ρK follows the sparsity equation, from which we derive

supz∗∈Γf∗ (ρK) z
∗(f − f∗) ≥ ∆(ρK) ≥ 4ρK/5. Using our choice of µ, we get

−µ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≤ −4c′ε

5µ0
r2(ρK).

Combining this with Equation (3.20) and the fact that (f − f∗)2 ≥ 0, we get that

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)

))
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
Υ

χ
Q3/4,K

[
2ζ(f − f∗)

]
−
( 1

σ∗
− 1

χ

)
Q1/4,K

[
− ζ2

]
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1) + Υ

( 1

χ
Q3/4,K

[
2ζ(f − f∗)

]
− 4c′ε

5µ0
r2(ρK)

)
+
c′εκ

10µ0
r2(ρK).

Applying part 2 of Lemma 3.5, we get Q3/4,K

[
2ζ(f − f∗)

]
≤ α1 ≤ 2εr2(ρK). Therefore,

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1) + Υ

( 2ε

σ∗ + α2,κ
− 4c′ε

5µ0

)
r2(ρK) +

c′εκ

10µ0
r2(ρK).

Using the inequalities µ0 ≤ 4c′(σ∗ + α2,κ)/5, and Υ > κ, we finally get

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1) + κε

( 2

σ∗ + α2,κ
− 7c′

10µ0

)
r2(ρK). (3.21)

The function χ 7→ −χ − a/χ is decreasing for χ ≥
√
a. Applying the first part of Lemma 3.10, we have√

σ∗2 + γ1 ≤ σ∗ + α2,κ. Therefore, the maximum of the former function is attained for χ = σ∗ + α2,κ,

which, combined with Equation (3.21), yields

TK,µ(g, χ, f∗, σ∗) ≤ −α2κ +
α2,κ

σ∗2
(σ∗2 + γ1) + κε

( 2

σ∗ + α2,κ
− 7c′

10µ0

)
r2(ρK)

≤ γ1

σ∗2
α2κ + κε

( 2

σ∗ + α2,κ
− 7c′

10µ0

)
r2(ρK).

3.6.6.2 Case ||f − f∗||L2
P
> r(ρK)

We have ||f − f∗|| = ρK , therefore, it follows from parts 1 and 2 of Lemma 3.5,

MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)− (f − f∗)2

))
≤ Υ

χ

(
Q7/8,K

[
2ζ(f − f∗)

]
−Q1/4,K

[
(f − f∗)2

])
−
( 1

σ∗
− 1

χ

)
Q1/8,K

[
− ζ2

]
≤ Υ

χ

(
α1 − (4θ0)−2||f − f∗||2L2

)
+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1).

≤ Υ

χ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1).

Plugging this back in Equation 3.20, we get

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
Υ

χ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1)

− µΥ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10
.
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As 2ε − (4θ0)−2 ≤ 0, the function χ 7→ −χ − a/χ is decreasing for χ ≥
√
a, and σ∗ + α2,κ ≥

√
a, where

here, a = σ∗2 + γ1 + (4θ0)−2 − 2ε, we get

TK,µ(g, χ, f∗, σ∗) ≤ −α2,κ +
Υ

σ + α2,κ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
σ∗2 + γ1

σ∗2
α2,κ

− µΥ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10

≤ γ1

σ∗2
α2,κ + Υ

((
2ε− (4θ0)−2

)
r2(ρK)

σ∗ + α2,κ
+ µρK

)
+
µκρK

10

≤ γ1

σ∗2
α2,κ + Υ

(
2ε− (4θ0)−2

σ∗ + α2,κ
+
c′ε

µ0

)
r2(ρK) +

c′κεr2(ρK)

10µ0
.

Using Υ ≥ κ ≥ 0, and
(

2ε−(4θ0)−2

σ∗+α2,κ
+ c′ε

µ0

)
≤ 0, by the second part of Lemma 3.10, we get

TK,µ(g, χ, f∗, σ∗) ≤ γ1

σ∗2
α2,κ + κ

(
2ε− (4θ0)−2

σ∗ + α2,κ
+
c′ε

µ0

)
r2(ρK) +

c′κεr2(ρK)

10µ0

≤ γ1

σ∗2
α2,κ + κ

(
2ε− (4θ0)−2

σ∗ + α2,κ
+

11c′ε

10µ0

)
r2(ρK).

�

3.6.7 Bound on F
(κ)
7

Let (g, χ) ∈ F (κ)
7 . Recall that, in this case, χ < σ∗ − α2,κ. We have

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ σ∗ − χ+MOMK

(
− lf∗

( 1

χ
− 1

σ∗

)
+

1

χ

(
2ζ(g − f∗)

))
+ µ(||f∗ − g||)

≤ σ∗ − χ+
1

χ
Q3/4,K

[
2ζ(g − f∗)

]
+
( 1

χ
− 1

σ∗

)
Q1/4,K

[
− ζ2

]
+ µκρK .

We apply part 2 of Lemma 3.5, using the fact that α1 ≤ 2εr2(ρK), and Lemma 3.9 to get

TK,µ(g, χ, f∗, σ∗) ≤ σ∗ − χ+
2εr2(ρK)

χ
+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1) + µκρK

≤ σ∗ − χ+
σ∗2 + γ1

σ∗
+

2εr2(κρK)− σ∗2 − γ1

χ
+ µκρK .

We have 2εr2(ρK) < σ∗2 + γ1, so that r2(κρK)− σ∗2 − γ1 < 0. The function χ 7→ −χ− a/χ is increasing

for 0 < χ ≤
√
a. Applying the third part of Lemma 3.10, we have σ∗ − α2,κ ≤

√
σ∗2 + γ1 − r2(κρK).

Therefore, the highest value is attained when χ = σ∗ − α2,κ, and we get

TK,µ(g, χ, f∗, σ∗) ≤ −α2,κ +
σ∗2 + γ1

σ∗
+

2εr2(κρK)− σ∗2 − γ1

σ∗ − α2,κ
+ µκρK

= −α2,κ +
σ∗2 + γ1

σ∗
+

2εr2(κρK)− σ∗2 − γ1

σ∗
− 2εr2(κρK)− σ∗2 − γ1

σ∗
+

2εr2(κρK)− σ∗2 − γ1

σ∗ − α2,κ
+ µκρK

≤ −α2,κ +
2εr2(κρK)

σ∗
+ α2,κ

2εr2(κρK)− σ∗2 − γ1

σ∗2
+ µκρK ,

Replacing µ and ρK by their values, we get

TK,µ(g, χ, f∗, σ∗) ≤
(

2εr2(κρK)− σ∗2 − γ1

σ∗2
− 1

)
α2,κ +

(
2ε

σ∗
+
c′εκ

µ0

)
r2(ρK),

�
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3.6.8 Bound on F
(κ)
8

Let (g, χ) ∈ F (κ)
8 . Recall that, in this case, χ < σ∗ − α2,κ. We have

TK,µ(g, χ, f∗, σ∗) = MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+ (σ∗ − χ) +

1

χ

(
2ζ(g − f∗)− (g − f∗)2

))
+ µ(||f∗|| − ||g||)

≤ (σ∗ − χ) +
1

χ
Q7/8,K

[
2ζ(g − f∗)

]
− 1

χ
Q1/4,K

[
(g − f∗)2

]
+

(
1

χ
− 1

σ∗

)
Q1/8,K [−ζ2] + µκρK .

We bound the second term using part 2 of Lemma 3.5, the third using part 1 of Lemma 3.5 and the

fourth using Lemma 3.9. Finally, we replace in the last term µ and ρK by their values, so that we have

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
α1 − ||f∗ − g||2L2

P
(4θ0)−2

χ
+

(
1

χ
− 1

σ∗

)(
− σ∗2 − γ1

)
+
c′εκ

µ0
r2(ρK)

We have 2ε < (4θ0)−2, therefore α1 − ||f∗ − g||2L2
P

(4θ0)−2 ≤ (2ε − (4θ0)−2)r2(ρK) and we can deduce

that

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +

(
1

σ∗
− 1

χ

)(
σ∗2 + γ1

)
+

(
(2ε− (4θ0)−2)

σ∗ − α2,κ
+
c′εκ

µ0

)
r2(ρK).

The function χ 7→ −χ− a/χ is increasing for 0 < χ <
√
a. We have σ∗ − α2,κ <

√
σ∗2 + γ1. Therefore,

the highest value is attained when χ = σ∗ − α2,κ, and we get

TK,µ(g, χ, f∗, σ∗) ≤
(

1 +
σ∗2 + γ1

σ∗2

)
α2,κ +

(
(2ε− (4θ0)−2)

σ∗ − α2,κ
+
c′εκ

µ0

)
r2(ρK).

�

3.6.9 Bound on F
(κ)
9

Let (g, χ) ∈ F
(κ)
9 . Recall that in this case, χ < σ∗ − α2,κ Following the beginning of the proof in

Section 3.6.3, we have as in Equation 3.19

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)− (f − f∗)2

))
− µΥ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10
. (3.22)

3.6.9.1 Case ||f − f∗||L2
P
≤ r(ρK)

Remembering that ||f − f∗|| = ρK , we can deduce that f ∈ HρK . Using the definition of K∗, the fact

that K ≥ K∗, we get that ρK ≥ ρ, and therefore ρK follows the sparsity equation, from which we derive

supz∗∈Γf∗ (ρK) z
∗(f − f∗) ≥ ∆(ρK) ≥ 4ρK/5. Using our choice of µ, we get

−µ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≤ −4c′ε

5µ0
r2(ρK).

Combining this with Equation (3.20) and the fact that (f − f∗)2 ≥ 0, we get that

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)

))
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
Υ

χ
Q3/4,K

[
2ζ(f − f∗)

]
−
( 1

σ∗
− 1

χ

)
Q1/4,K

[
− ζ2

]
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1) + Υ

( 1

χ
Q3/4,K

[
2ζ(f − f∗)

]
− 4c′ε

5µ0
r2(ρK)

)
+
c′εκ

10µ0
r2(ρK).
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Applying part 2 of Lemma 3.5, we get Q3/4,K

[
2ζ(f − f∗)

]
≤ α1 ≤ 2εr2(ρK). Therefore,

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1) + Υ

(2ε

χ
− 4c′ε

5µ0

)
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
σ∗2 + γ1

σ∗
+

1

χ

(
− σ∗2 − γ1 + 2Υεr2(ρK)

)
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

The minimization is done on χ > σmin, therefore we have χ−1 ≤ σ−1
min, and we get

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
σ∗2 + γ1

σ∗
+
−σ∗2 − γ1

χ
+

2Υεr2(ρK)

σmin
−Υ

4c′ε

5µ0
r2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
σ∗2 + γ1

σ∗
+
−σ∗2 − γ1

χ
+

(
2ε

σmin
− 4c′ε

5µ0

)
Υr2(ρK) +

c′εκ

10µ0
r2(ρK)

Using the inequalities µ0 ≤ 4c′σmin/5, and Υ > κ, we get

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
σ∗2 + γ1

σ∗
+
−σ∗2 − γ1

χ
+

(
2ε

σmin
− 4c′ε

5µ0

)
κr2(ρK) +

c′εκ

10µ0
r2(ρK)

≤ (σ∗ − χ) +
σ∗2 + γ1

σ∗
+
−σ∗2 − γ1

χ
+

(
2ε

σmin
− 7c′ε

10µ0

)
κr2(ρK)

The function χ 7→ −χ − a/χ is increasing for χ ≤
√
a, and σ∗ − α2,κ ≤

√
a, where here a = σ∗2 + γ1.

Therefore, the maximum of the former function is attained for χ = σ∗ − α2,κ, which yields

TK,µ(g, χ, f∗, σ∗) ≤ α2,κ + (σ∗2 + γ1)

(
1

σ∗
− 1

σ∗ − α2,κ

)
+

(
2ε

σmin
− 7c′ε

10µ0

)
κr2(ρK)

≤
(
σ∗2 + γ1

σ∗2
− 1

)
α2,κ +

(
2ε

σmin
− 7c′ε

10µ0

)
κr2(ρK).

3.6.9.2 Case ||f − f∗||L2
P
> r(ρK)

We have ||f − f∗|| = ρK , therefore, it follows from parts 1 and 2 of Lemma 3.5,

MOMK

(
lf∗
( 1

σ∗
− 1

χ

)
+

Υ

χ

(
2ζ(f − f∗)− (f − f∗)2

))
≤ Υ

χ

(
Q7/8,K

[
2ζ(f − f∗)

]
−Q1/4,K

[
(f − f∗)2

])
−
( 1

σ∗
− 1

χ

)
Q1/8,K

[
− ζ2

]
≤ Υ

χ

(
α1 − (4θ0)−2||f − f∗||2L2

)
+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1).

≤ Υ

χ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1).

Plugging this back in Equation 3.22, we get

TK,µ(g, χ, f∗, σ∗) ≤ (σ∗ − χ) +
Υ

χ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
( 1

σ∗
− 1

χ

)
(σ∗2 + γ1)

− µΥ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10
.

As 2ε − (4θ0)−2 ≤ 0, the function χ 7→ −χ − a/χ is increasing for χ ≤
√
a, and σ∗ − α2,κ ≤

√
a, where

here, a = σ∗2 + γ1 − 2ε+ (4θ0)−2, we get

TK,µ(g, χ, f∗, σ∗) ≤ α2,κ +
Υ

σ − α2,κ

(
2ε− (4θ0)−2

)
||f − f∗||2L2

+
σ∗2 + γ1

σ∗2
α2,κ

− µΥ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) +
µκρK

10

≤
(

2 +
γ1

σ∗2

)
α2,κ + Υ

(
2ε− (4θ0)−2

)
r2(ρK)

σ − α2,κ
+ µρK

)
+
µκρK

10
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≤
(

2 +
γ1

σ∗2

)
α2,κ + Υ

(
2ε− (4θ0)−2

)
σ − α2,κ

+
c′ε

µ0

)
r2(ρK) +

c′κεr2(ρK)

10µ0

≤
(

2 +
γ1

σ∗2

)
α2,κ + κ

(
2ε− (4θ0)−2

)
σ − α2,κ

+
11c′ε

10µ0

)
r2(ρK).

�

3.7 Proofs of main results

3.7.1 Proof of Theorem 3.4

We begin the proof by applying Lemmas 3.5 and 3.9, and on the rest of the proof, we will reason

on the set Ω(K) := Ω1(K) ∩ Ω2(K). By Lemmas 3.5 and 3.9, IP
(
Ω(K)

)
≥ 1 − 4 exp(−K/4320) −

exp(−5K/13824) ≥ 1 − 5 exp(−K/4320). Applying the definition of the estimators in Equation (3.4), we

have on Ω(K)

CK,µ(f̂ , σ̂) ≤ CK,µ(f∗, σ∗) = sup
g∈F, χ>σmin

TK,µ(g, χ, f∗, σ∗)

≤ max
i∈[5]

sup
(g,χ)∈F (1)

i

TK,µ(g, χ, f∗, σ∗) ≤ max
i∈[5]

Bi,1

≤ B1,1,

where the last inequality follows by combining Lemma 3.11 (for κ = 1) and the first part of Lemma 3.12.

The proof is completed by application of the following lemma.

Lemma 3.13. Assume that CK,µ(f̂ , σ̂) ≤ B1,1. Then Equations (3.14)-(3.16) hold and

R(f̂) ≤ R(f∗) +

(
1 + 2ε+

σ∗2 + γ1

σ∗2

)
r2(2ρK) + (σ∗ + r(2ρK))B1,1 + (σ∗ + α2,2)(α2,2 + 2µρK).

Proof: For any x ∈ RK , Q1/2(x) ≥ −Q1/2(−x). As a consequence,

B1,1 ≥ CK,µ(f̂ , σ̂) = sup
g∈F, χ>σmin

TK,µ(g, χ, f̂ , σ̂) ≥ TK,µ(f∗, σ∗, f̂ , σ̂) = −TK,µ(f̂ , σ̂, f∗, σ∗).

We deduce that on Ω(K), (f̂ , σ̂) ∈ {(g, χ) ∈ F × R∗+ : TK,µ(g, χ, f∗, σ∗) ≥ −B1,1}. Applying the second

part of Lemma 3.12, we have −B1,1 > supi=2,...9Bi,2 and, combining this with Lemma 3.11 (for κ = 2),

we get that (f̂ , σ̂) ∈ F (2)
1 . By definition of F (2)

1 , we have ||f̂ − f∗|| ≤ 2ρK , ||f̂ − f∗||L2
≤ r(2ρK), and

|σ − σ∗| ≤ α2,2, as claimed.

Finally, we prove the control on the excess risk. We apply Lemma 3.7 with ρ := 2ρK and ασ := α2,2

R(f̂)−R(f∗) = ||f̂ − f∗||2L2
+ P [−2ζ(f − f∗)]

≤ r2(2ρK) + (σ∗ + r(2ρK))TK,λ(f∗, σ∗, f̂ , σ̂) + 2ε ·max

(
r2
M (ρ, γM ) ,

384θ2
m

ε2
K

n
, ||f − f∗||L2

)
+ (σ∗2 + γ1)

r(2ρK)

σ∗2
+ (σ∗ + α2,2)(α2,2 + 2µρK).

We bound TK,λ(f∗, σ∗, f̂ , σ̂) by CK,λ(f̂ , σ̂), and r2
M (ρ, γM ) ,

384θ2
m

ε2
K

n
, ||f − f∗||L2

by r2(2ρK).

R(f̂)−R(f∗)

≤
(

1 + 2ε+
σ∗2 + γ1

σ∗2

)
r2(2ρK) + (σ∗ + r(2ρK))CK,λ(f̂ , σ̂) + (σ∗ + α2,2)(α2,2 + 2µρK)



Chapter 3. Robust-to-outliers simultaneous inference and noise level estimation using a MOM
approach 76

≤
(

1 + 2ε+
σ∗2 + γ1

σ∗2

)
r2(2ρK) + (σ∗ + r(2ρK))B1,1 + (σ∗ + α2,2)(α2,2 + 2µρK).

�

3.7.2 Proof of Theorem 3.1

We will apply Theorem 3.4. Following [91, pages 39-40] and with q0 = 4 (in their notation), it is possible

to choose the function r(·) and ρ such that

ρ∗ = cL,1||ζ||L4s

√
1

n
log

(
ed

s

)
and r2(ρ∗) = cL,2||ζ||2L4

s

n
log

(
ed

s

)
,

where cL,1, cL,2 are constants depending on C1. Therefore, we can see that, with c1 := c′εcL,2/cL,1 and

ε := 1/(833θ2
0), our choice of µ satisfies

µ := c1

√
1

n
log

(
ed

s

)
=
c′ε

µ0

r2(ρ∗)

ρ∗
,

where µ0 := ||ζ||L4 . Note that µ0 = IE[ζ4]1/4 = κ∗1/4σ∗.

Therefore, conditions in Theorem 3.4 are satisfied, which give the bounds

|β̂ − β∗|1 ≤ 2ρ∗ ∼ cL,1||ζ||L4s

√
1

n
log

(
ed

s

)
,

|β̂ − β∗|2 ≤ 2r2(ρ∗) ∼ cL,2||ζ||2L4

s

n
log

(
ed

s

)
.

The results follows by application of the norm interpolation inequality.

|β̂ − β∗|p ≤ |β̂ − β∗|−1+2/p
1 |β̂ − β∗|2−2/p

2 . ||ζ||L4s1/p

√
1

n
log

(
ed

s

)
. �
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Chapter 4

About tests of the “simplifying”
assumption for conditional copulas

Abstract

We discuss the so-called “simplifying assumption” of conditional copulas in a general framework.

We introduce several tests of the latter assumption for non- and semiparametric copula models.

Some related test procedures based on conditioning subsets instead of point-wise events are pro-

posed. The limiting distribution of such test statistics under the null are approximated by several

bootstrap schemes, most of them being new. We prove the validity of a particular semiparametric

bootstrap scheme. Some simulations illustrate the relevance of our results.

Keywords: Conditional copula, simplifying assumption, bootstrap.

Based on [38]: Derumigny, A., & Fermanian, J. D., About tests of the “simplifying” assumption for

conditional copulas. Dependence Modeling, 5(1), 154-197, 2017.

4.1 Introduction

In statistical modelling and applied science more generally, it is very common to distinguish two subsets

of variables: a random vector of interest (also called explained/exogenous variables) and a vector of

covariates (explanatory/endogenous variables). The objective is to predict the law of the former vector

given the latter vector belongs to some subset, possibly a singleton. This basic idea constitutes the

first step towards forecasting some important statistical sub-products as conditional means, quantiles,

volatilities, etc. Formally, consider a d-dimensional random vector X. We are faced with two random

sub-vectors XI and XJ , s.t. X = (XI ,XJ), I ∪ J = {1, . . . , d}, I ∩ J = ∅, and our models of interest

specify the conditional law of XI knowing XJ = xJ or knowing XJ ∈ AJ for some subset AJ ⊂ R|J|.
We use the standard notation for vectors: for any set of indices I, xI means the |I|-dimensional vector

whose arguments are the xk, k ∈ I. For convenience and without a loss of generality, we will set

I = {1, . . . , p} and J = {p+ 1, . . . , d}.

Besides, the problem of dependence among the components of d-dimensional random vectors has

been extensively studied in the academic literature and among practitioners in a lot of different fields.

The raise of copulas for more than twenty years illustrates the need of flexible and realistic multivariate
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models and tools. When covariates are present and with our notation, the challenge is to study the

dependence among the components of XI given XJ . Logically, the concept of conditional copulas has

emerged. First introduced for pointwise (atomic) conditioning events by Patton ([111, 112]), the definition

has been generalized in [52] for arbitrary measurable conditioning subsets. In this paper, we rely on the

following definition: for any borel subset AJ ⊂ Rd−p, a conditional copula of XI given (XJ ∈ AJ) is

denoted by CAJI|J (·|XJ ∈ AJ). This is the cdf of the random vector (F1|J(X1|XJ ∈ AJ), . . . , Fp|J(Xp|XJ ∈
AJ)) given (XJ ∈ AJ). Here, Fk|J(·|XJ ∈ AJ) denotes the conditional law of Xk knowing XJ ∈ AJ ,

k = 1, . . . , p. The latter conditional distributions will be assumed continuous in this paper, implying the

existence and uniqueness of CAJI|J (Sklar’s theorem). In other words, for any xI ∈ Rp,

IP (XI ≤ xI |XJ ∈ AJ) = CAJI|J

(
F1|J(x1|XJ ∈ AJ), . . . , Fp|J(xp|XJ ∈ AJ)

∣∣∣XJ ∈ AJ
)
.

Note that the influence of AJ on CAJI|J is twofold: when AJ changes, the conditioning event (XJ ∈ AJ)

changes, but the conditioned random vector (F1|J(X1|XJ ∈ AJ), . . . , Fp|J(Xp|XJ ∈ AJ)) changes too.

In particular, when the conditioning events are reduced to singletons, we get that the conditional

copula of XI knowing XJ = xJ is a cdf CI|J(·|XJ = xJ) on [0, 1]p s.t., for every xI ∈ Rp,

IP (XI ≤ xI |XJ = xJ) = CI|J
(
F1|J(x1|XJ = xJ), . . . , Fp|J(xp|XJ = xJ) |XJ = xJ

)
.

With generalized inverse functions, an equivalent definition of a conditional copula is as follows:

CI|J (uI |XJ = xJ) = FI|J
(
F−1|J(u1|XJ = xJ), . . . , F−p|J(up|XJ = xJ)|XJ = xJ

)
,

for every uI and xJ , setting FI|J(xI |XJ = xJ) := IP (XI ≤ xI |XJ = xJ).

Most often, the dependence of CI|J(·|XJ = xJ) w.r.t. to xJ is a source of significant complexi-

ties, in terms of model specification and inference. Therefore, most authors assume that the following

“simplifying assumption” is fulfilled.

Simplifying assumption (H0): the conditional copula CI|J(·|XJ = xJ) does not depend on xJ , i.e.,

for every uI ∈ [0, 1]p, the function xJ ∈ Rd−p 7→ CI|J(uI |XJ = xJ) is a constant function (that depends

on uI ).

Under the simplifying assumption, we will set CI|J(uI |XJ = xJ) =: Cs,I|J(uI). The latter iden-

tity means that the dependence on XJ across the components of XI is passing only through their

conditional margins. Note that Cs,I|J is different from the usual copula of XI : CI(·) is always the

cdf of the vector (F1(X1), . . . , Fp(Xp)) whereas, under H0, Cs,I|J is the cdf of the vector ZI|J :=

(F1|J(X1|XJ), . . . , Fp|J(Xp|XJ)) (see Proposition 4.4 below). Note that the latter copula is identical

to the partial copula introduced by Bergsma [17], and recently studied in [61, 128] in particular. Such

a partial copula is always be defined (whether H0 is satisfied or not) as the cdf of ZI|J . Note that it is

equal to
∫
Rd−p CI|J(uI |XJ = xJ)dPJ(xJ).

Remark 4.1. The simplifying assumption H0 does not imply that Cs,I|J(·) is CI(·), the usual copula of
XI . This can be checked with a simple example: let X = (X1, X2, X3) be a trivariate random vector s.t.,
given X3, X1 ∼ N (X3, 1) and X2 ∼ N (X3, 1). Moreover, X1 and X2 are independent given X3. The
latter variable may be N (0, 1), to fix the ideas. Obviously, with our notation, I = {1, 2}, J = {3}, d = 3

and p = 2. Therefore, for any couple (u1, u2) ∈ [0, 1]2 and any real number x3, C1,2|3(u1, u2|x3) = u1u2

and does not depend on x3. Assumption H0 is then satisfied. But the copula of (X1, X2) is not the
independence copula, simply because X1 and X2 are not independent.
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Basically, it is far from obvious to specify and estimate relevant conditional copula models in practice,

especially when the conditioning and/or conditioned variables are numerous. The simplifying assump-

tion is particularly relevant with vine models (see [1], among others). Indeed, to build vines from a

d-dimensional random vector X, it is necessary to consider sequences of conditional bivariate copulas

CI|J , where I = {i1, i2} is a couple of indices in {1, . . . , d}, J ⊂ {1, . . . , d}, I ∩ J = ∅, and (i1, i2|J) is

a node of the vine. In other words, a bivariate conditional copula is needed at every node of any vine,

and the sizes of the conditioning subsets of variables are increasing along the vine. Without additional

assumptions, the modelling task becomes rapidly very cumbersome (inference and estimation by max-

imum likelihood). Therefore, most authors adopt the simplifying assumption H0 at every node of the

vine. Note that the curse of dimensionality still apparently remains because conditional marginal cdfs

Fk|J(·|XJ) are invoked with different subsets J of increasing sizes. But this curse can be avoided by

calling recursively the non-parametric copulas that have been estimated before (see [105]).

Nonetheless, the simplifying assumption has appeared to be rather restrictive, even if it may be seen

as acceptable for practical reasons and in particular situations. The debate between pro and cons of

the simplifying assumption is still largely open, particularly when it is called in some vine models. On

one side, [68] affirms that this simplifying assumption is not only required for fast, flexible, and robust

inference, but that it provides “a rather good approximation, even when the simplifying assumption is far

from being fulfilled by the actual model”. On the other side, [5] maintain that “this view is too optimistic”.

They propose a visual test ofH0 when d = 3 and in a parametric framework. Their technique was based

on local linear approximations and sequential likelihood maximizations. They illustrate the limitations

of H0 by simulation and through real datasets. They note that “an uncritical use of the simplifying

assumption may be misleading”. Nonetheless, they do not provide formal test procedures. Beside, [4]

have proposed a formal likelihood test of the simplifying assumption but when the conditional marginal

distributions are known, a rather restrictive situation. Some authors have exhibited classes of parametric

distributions for which H0 is satisfied: see [68], significantly extended by [130]. Nonetheless, such

families are rather strongly constrained. Therefore, these two papers propose to approximate some

conditional copula models by others for which the simplifying assumption is true. This idea has been

developed in [128] in a vine framework, because they recognize that “it is very unlikely that the unknown

data generating process satisfies the simplifying assumption in a strict mathematical sense.”

Therefore, there is a need for formal universal tests of the simplifying assumption. It is likely that the

latter assumption is acceptable in some circumstances, whereas it is too rough in others. This means,

for given subsets of indices I and J , we would like to test

H0 : CI|J(·|XJ = xJ) does not depend on xJ ,

against that opposite assumption. Hereafter, we will propose several test statistics of H0, possibly

assuming that the conditional copula belongs to some parametric family.

Note that several papers have already proposed estimators of conditional copula. [141], [63] and [52]

have studied some nonparametric kernel based estimators. [32], [119] studied bayesian additive models

of conditional copulas. Recently, [120] invoke B-splines to manage vectors of conditioning variables. In

a semiparametric framework, i.e. assuming an underlying parametric family of conditional copulas,

numerous models and estimators have been proposed, notably [3], [2], [50] (single-index type models),

[140] (additive models), among others. But only a few of these papers have a focus on testing the

simplifying assumption H0 specifically, although convergence of the proposed estimators are necessary

to lead such a task in theory. Actually, some tests of H0 is invoked “in passing” in these papers as
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potential applications, but without a general approach and/or without some guidelines to evaluate p-

values in practice. As exceptions, in very recent papers, [62] have tackled the simplifying assumption

directly through comparisons between conditional and unconditional Kendall’s tau. Moreover, [87] have

proposed tests of the latter assumption for vine models.

Example 4.2. To illustrate the problem, let us consider a simple example of H0 in dimension 3. As-
sume that p = 2 and d = 3. For simplicity, let us assume that (X1, X2) follows a Gaussian distribution
conditionally on X3, that is :(

X1

X2

)∣∣∣X3 = x3 ∼ N

((
µ1(x3)

µ2(x3)

)
,

(
σ2

1(x3) ρ(x3)σ1(x3)σ2(x3)

ρ(x3)σ1(x3)σ2(x3) σ2
2(x3)

))
. (4.1)

Obviously, α(·) := (µ1, µ2, σ1, σ2)(·) is a parameter that only affects the conditional margins. Moreover,
the conditional copula of (X1, X2) given X3 = x3 is gaussian with the parameter ρ(x3). Six possible
cases can then be distinguished:

a. All variables are mutually independent.

b. (X1, X2) is independent of X3, but X1 and X2 are not independent.

c. X1 andX2 are both marginally independent ofX3, but the conditional copula ofX1 andX2 depends
on X3.

d. X1 (or X2) and X3 are not independent but X1 and X2 are independent conditionally given X3.

e. X1 (or X2) and X3 are not independent but the conditional copula of X1 and X2 is independent of
X3.

f. X1 (or X2) and X3 are not independent and the conditional copula of X1 and X2 is dependent of
X3.

These six cases are summarized in the following table:

ρ(·) = 0 ρ(·) = ρ0 ρ(·) is not constant
α(·) = α0 a b c

α(·) is not constant d e f

In the conditional Gaussian model (4.1), the simplifying assumptionH0 consists in assuming that we live
in one of the cases {a, b, d, e}, whereas the alternative cases are c and f . In this model, the conditional
copula is entirely determined by the conditional correlation. Note that, in some other models, the con-
ditional correlation can vary only because of the conditional margins, while the conditioning copula stay
constant: see [128].

Note that, in general, there is no reason why the conditional margins would be constant in the con-

ditioning variable (and in most applications, they are not). Nevertheless, if we knew the marginal cdfs’

were constant with respect to the conditioning variable, then the test of H0 (i.e. b against c) would

become a classical test of independence between XI and XJ .

TestingH0 is closely linked to the m-sample copula problem, for which we have m different and inde-

pendent samples of a p-dimensional variable XI = (X1, . . . , Xp). In each sample k, the observations are

i.i.d., with their own marginal laws and their own copula CI,k. The m-sample copula problem consists on

testing whether the m latter copulas CI,k are equal. Note that we could merge all samples into a single
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one, and create discrete variables Yi that are equal to k when i lies in the sample k. Therefore, the

m-sample copula problem is formally equivalent to testing H0 with the conditioning variable XJ := Y .

Conversely, assume we have defined a partition {A1,J , . . . , Am,J} of Rd−p composed of borelian

subsets such that IP(XJ ∈ Ak,J) > 0 for all k = 1, . . . ,m, and we want to test

H0 : k ∈ {1, . . . ,m} 7→ C
Ak,J
I|J ( · |XJ ∈ Ak,J) does not depend on k.

Then, divide the sample in m different sub-samples, where any sub-sample k contains the observations

for which the conditioning variable belongs to Ak,J . Then, H0 is equivalent to a m-sample copula prob-

lem. Note thatH0 looks like a “consequence” ofH0 when it is not the case in general (see Section 4.3.1),

for continuous XJ variables.

Nonetheless, H0 conveys the same intuition as H0. Since it can be led more easily in practice (no

smoothing is required), some researchers could prefer the former assumption than the latter. That is

why it will be discussed hereafter. Note that the 2-sample copula problem has already been addressed

by [115], and the m-sample by [23]. However, both paper are designed only in a nonparametric frame-

work, and these authors have not noticed the connection with the simplifying assumption.

The goal of the paper is threefold: first, to write a “state-of-the art” of the simplifying assumption

problem; second to propose some “reasonable” test statistics of the simplifying assumption in different

contexts; third, to introduce a new approach of the latter problem, through “box-related” zero assump-

tions and some associated test statistics. Since it is impossible to state the theoretical properties of all

these test statistics, we will rely on “ad-hoc arguments” to convince the reader they are relevant, without

trying to establish specific results. Globally, this paper can be considered also as a work program around

the simplifying assumption H0 for the next years.

In Section 4.2, we introduce different ways of testing H0. We propose different test statistics under

a fully nonparametric perspective, i.e. when CI|J is not supposed to belong into a particular parametric

copula family, through some comparisons between empirical cdfs’ in Subsection 4.2.1, or by invoking a

particular independence property in Subsection 4.2.2. In Subsection 4.2.3, new tools are needed if we

assume underlying parametric copulas. To evaluate the limiting distributions of such tests, we propose

several bootstrap techniques (Subsection 4.2.4). Section 4.3 is related to testing H0. In Subsection

4.3.1, we detail the relations between H0 and H0. Then, we provide tests statistics of H0 for both the

nonparametric (Subsection 4.3.2) and the parametric framework (Subsection 4.3.3), as well as bootstrap

methods (Subsection 4.3.4). In particular, we prove the validity of the so-called “parametric independent”

bootstrap when testing H0. The performances of the latter tests are assessed and compared by simula-

tion in Section 4.4. A table of notation is available in Appendix 4.6 and some of the proofs are collected

in Appendix 4.7.

4.2 Tests of the simplifying assumption

4.2.1 “Brute-force” tests of the simplifying assumption

A first natural idea is to build a test of H0 based on a comparison between some estimates of the

conditional copula CI|J with and without the simplifying assumption, for different conditioning events.

Such estimates will be called ĈI|J and Ĉs,I|J respectively. Then, introducing some distance D between
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conditional distributions, a test can be based on the statistics D(ĈI|J , Ĉs,I|J). Following most authors,

we immediately think of Kolmogorov-Smirnov-type statistics

T 0
KS,n := ‖ĈI|J − Ĉs,I|J‖∞ = sup

uI∈[0,1]p
sup

xJ∈Rd−p
|ĈI|J(uI |xJ)− Ĉs,I|J(uI)|, (4.2)

or Cramer von-Mises-type test statistics

T 0
CvM,n :=

∫ (
ĈI|J(uI |xJ)− Ĉs,I|J(uI)

)2

w(duI , dxJ), (4.3)

for some weight function of bounded variation w, that could be chosen as random (see below).

To evaluate ĈI|J , we propose to invoke the nonparametric estimator of conditional copulas proposed

by [52]. Alternative kernel-based estimators of conditional copulas can be found in [63], for instance.

Let us start with an iid d-dimensional sample (Xi)i=1,...,n. Let F̂k be the marginal empirical distribution

function of Xk, based on the sample (X1,k, . . . , Xn,k), for any k = 1, . . . , d. Our estimator of CI|J will be

defined as

ĈI|J(uI |XJ = xJ) := F̂I|J

(
F̂−1|J(u1|XJ = xJ), . . . , F̂−p|J(up|XJ = xJ)|XJ = xJ

)
,

F̂I|J(xI |XJ = xJ) :=
1

n

n∑
i=1

Kn(Xi,J ,xJ)1(Xi,I ≤ xI), (4.4)

where

Kn(Xi,J ,xJ) := Kh

(
F̂p+1(Xi,p+1)− F̂p+1(xp+1), . . . , F̂d(Xi,d)− F̂d(xd)

)
,

Kh(xJ) := h−(d−p)K (xp+1/h, . . . , xd/h) ,

and K is a (d − p)-dimensional kernel. Obviously, for k ∈ I, we have introduced some estimates of the

marginal conditional cdfs’ similarly:

F̂k|J(x|XJ = xJ) :=

∑n
i=1Kn(Xi,J ,xJ)1(Xi,I ≤ xI)∑n

j=1Kn(Xj,J ,xJ)
· (4.5)

Obviously, h = h(n) is the term of a usual bandwidth sequence, where h(n) → 0 when n tends

to the infinity. Since F̂I|J is a nearest-neighbors estimator, it does not necessitate a fine-tuning of

local bandwidths (except for those values xJ s.t. FJ(xJ) is close to one or zero), contrary to more

usual Nadaraya-Watson techniques. In other terms, a single convenient choice of h would provide

“satisfying” estimates of ĈI|J(xI |XJ = xJ) for most values of x. For practical reasons, it is important

that F̂k|J(xk|xJ) belongs to [0, 1] and that F̂k|J(·|xJ) is a true distribution. This is the reason why we use

a normalized version for the estimator of the conditional marginal cdfs.

To calculate the latter statistics (4.2) and (4.3), it is necessary to provide an estimate of the underlying

conditional copula under H0. This could be done naively by particularizing a point x∗J ∈ Rd−p and by

setting Ĉ
(1)
s,I|J(·) := ĈI|J(·|XJ = x∗J). Since the choice of x∗J is too arbitrary, an alternative could be to

set

Ĉ
(2)
s,I|J(·) :=

∫
ĈI|J(·|XJ = xJ)w(dxJ),

for some function w that is of bounded variation, and
∫
w(dxJ) = 1. Unfortunately, the latter choice

induce (d − p)-dimensional integration procedures, that becomes a numerical problem rapidly when

d− p is larger than three.
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Therefore, let us randomize the “weight” functions w, to avoid multiple integrations. For instance,

choose the empirical distribution of XJ as w, providing

Ĉ
(3)
s,I|J(·) :=

∫
ĈI|J(·|XJ = xJ) F̂J(dxJ) =

1

n

n∑
i=1

ĈI|J(·|XJ = Xi,J). (4.6)

An even simpler estimate of Cs,I|J , the conditional copula of XI given XJ under the simplifying as-

sumption, can be obtained by noting that, underH0, Cs,I|J is the joint law of ZI|J := (F1(X1|XJ), . . . , Fp(Xp|XJ))

(see Property 4.4 below). Therefore, it is tempting to estimate Cs,I|J(uI) by

Ĉ
(4)
s,I|J(uI) :=

1

n

n∑
i=1

1(
(
F̂1|J(Xi,1|Xi,J) ≤ u1, . . . , F̂p|J(Xi,p|Xi,J) ≤ up

)
, (4.7)

when uI ∈ [0, 1]p, for some consistent estimates F̂k|J(xk|xJ) of Fk|J(xk|xJ). A similar estimator has

been promoted and studied in [60] or in [114], but they have considered the empirical copula associated

to the pseudo sample ((F̂1(Xi1|XiJ), . . . , F̂p(Xip|XiJ)))i=1,...,n instead of its empirical cdf. It will be

called Ĉ(5)
s,I|J . Hereafter, we will denote Ĉs,I|J one of the “averaged” estimators Ĉ(k)

s,I|J , k > 1 and we can

forget the naive pointwise estimator Ĉ(1)
s,I|J . Therefore, under some conditions of regularity, we guess that

our estimators Ĉs,I|J(uI) of the conditional copula under H0 will be
√
n-consistent and asymptotically

normal. It has been proved for C(5)
s,I|J in [60] or in [114], as a byproduct of the weak convergence of the

associated process.

Under H0, we would like that the previous test statistics T 0
KS,n or T 0

CvM,n are convergent. Typically,

such a property is given as a sub-product by the weak convergence of a relevant empirical process,

here (uI ,xJ) ∈ [0, 1]p ×Rd−p 7→
√
nhd−pn (ĈI|J −CI|J)(uI |xJ). Unfortunately, this will not be the case in

general seing the previous process as a function indexed by xJ , at least for wide ranges of bandwidths.

Due to the difficulty of checking the tightness of the process indexed by xJ , some alternative techniques

may be required as Gaussian approximations (see [28], e.g.). Nonetheless, they would lead us far

beyond the scope of this paper. Therefore, we simply propose to slightly modify the latter test statistics,

to manage only a fixed set of arguments xJ . For instance, in the case of the Kolmogorov-Smirnov-type

test, consider a simple grid χJ := {x1,J , . . . ,xm,J}, and the modified test statistics

T 0,m
KS,n := sup

uI∈[0,1]p
sup

xJ∈χJ
|ĈI|J(uI |xJ)− Ĉs,I|J(uI)|.

In the case of the Cramer von-Mises-type test, we can approximate any integral by finite sums, possibly

after a change of variable to manage a compactly supported integrand. Actually, this is how they are

calculated in practice! For instance, invoking Gaussian quadratures, the modified statistics would be

T 0,m
CvM,n :=

m∑
j=1

ωj

(
ĈI|J(uj,I |xj,J)− Ĉs,I|J(uj,I)

)2

, (4.8)

for some conveniently chosen constants ωj , j = 1, . . . ,m. Note that the numerical evaluation of ĈI|J
is relatively costly. Since quadrature techniques require a lot less points m than “brute-force” equally

spaced grids (in dimension d, here), they have to be preferred most often.

Therefore, at least for such modified test statistics, we can insure the tests are convergent. Indeed,

under some conditions of regularity, it can be proved that ĈI|J(uI |XJ = xJ) is consistent and asymp-

totically normal, for every choice of uI and xJ (see [52]). And a relatively straightforward extension

of their Corollary 1 would provide that, under H0 and for all U := (uI,1, . . . ,uI,q) ∈ [0, 1]p(q+r) and
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X := (xJ,1, . . . ,xJ,q) ∈ R(d−p)q,{√
nhd−pn (ĈI|J − Cs,I|J)(uI,1|XJ = xJ,1), . . . ,

√
nhd−pn (ĈI|J − Cs,I|J)(uI,q|XJ = xJ,q),

√
n(Ĉs,I|J − Cs,I|J)(uI,q+1), . . . ,

√
n(Ĉs,I|J − Cs,I|J)(uI,q+r)

}
,

converges in law towards a Gaussian random vector. As a consequence,
√
nhd−pn T 0,m

KS,n and nhd−pn T 0,m
CvM,n

tends to a complex but not degenerate law under the H0.

Remark 4.3. Other test statistics of H0 can be obtained by comparing directly the functions ĈI|J(·|XJ =

xJ), for different values of xJ . For instance, let us define

T̃ 0

KS,n := sup
xJ ,x′J∈R

d−p
‖ĈI|J(·|xJ)− ĈI|J(·|x′J)‖∞

= sup
xJ ,x′J∈R

d−p
sup

uI∈[0,1]p
|ĈI|J(uI |xJ)− ĈI|J(uI |x′J)|, (4.9)

or
T̃ 0

CvM,n :=

∫ (
ĈI|J(uI |xJ)− ĈI|J(uI |x′J)

)2

w(duI , dxJ , dx
′
J), (4.10)

for some function of bounded variation w. As above, modified versions of these statistics can be ob-
tained considering fixed xJ -grids. Since these statistics involve higher dimensional integrals/sums than
previously, they will not be studied more in depth.

The L2-type statistics T 0
CvM,n and T̃ 0

CvM,n involve at least d summations or integrals, which can

become numerically expensive when the dimension of X is “large”. Nonetheless, we are free to set con-

venient weight functions. To reduce the computational cost, several versions of T 0
CvM,n are particularly

well-suited, by choosing conveniently the functions w. For instance, consider

T (1)
CvM,n :=

∫ (
ĈI|J(uI |xJ)− Ĉs,I|J(uI)

)2

ĈI(duI) F̂J(dxJ),

where F̂J and ĈI denote the empirical cdf of (Xi,J) and the empirical copula of (Xi,I) respectively.

Therefore, T (1)
CvM,n simply becomes

T (1)
CvM,n =

1

n2

n∑
j=1

n∑
i=1

(
ĈI|J(Ûi,I |XJ = Xj,J)− Ĉs,I|J(Ûi,I)

)2

, (4.11)

where Ûi,I = (F̂1(Xi,1), . . . , F̂p(Xi,p)), i = 1, . . . , n. Similarly, we can choose

T̃ (1)

CvM,n :=

∫ (
ĈI|J(uI |xJ)− ĈI|J(uI |x′J)

)2

ĈI(duI) F̂J(dxJ) F̂J(dx′J)

=
1

n3

n∑
j=1

n∑
j′=1

n∑
i=1

(
ĈI|J(Ûi,I |XJ = Xj,J)− ĈI|J(Ûi,I |XJ = Xj′,J)

)2

.

To deal with a single summations only, it is even possible to propose to set

T (2)
CvM,n :=

∫ (
ĈI|J(F̂1|J(x1|xJ), . . . , F̂p|J(xp|xJ)|xJ)

− Ĉs,I|J(F̂1|J(x1|xJ), . . . , F̂p|J(xp|xJ))
)2

F̂ (dxI , dxJ),

where F̂ denotes the empirical cdf of X. This means

T (2)
CvM,n =

1

n

n∑
i=1

(
ĈI|J

(
F̂1|J(Xi,1|Xi,J), . . . , F̂p|J(Xi,p|Xi,J)|XJ = Xi,J

)
− Ĉs,I|J

(
F̂1|J(Xi,1|Xi,J), . . . , F̂p|J(Xi,p|Xi,J)

))2

.
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We have introduced some tests based on comparisons between empirical cdfs’. Obviously, the same

idea could be applied to associated densities, as in [49] for instance, or even to other functions of the

underlying distributions.

Since the previous test statistics are complicated functionals of some “semi-smoothed” empirical

process, it is very challenging to evaluate their asymptotic laws under H0 analytically. In every case,

these limiting laws will not be distribution free, and their calculation would be very tedious. Therefore,

as usual with copulas, it is necessary to evaluate the limiting distributions of such tests statistics by

a convenient bootstrap procedure (parametric or nonparametric). These bootstrap techniques will be

presented in Section 4.2.4.

4.2.2 Tests based on the independence property

Actually, testing H0 is equivalent to a test of the independence between the random vectors XJ and

ZI|J := (F1(X1|XJ), . . . , Fp(Xp|XJ)) strictly speaking, as proved in the following proposition.

Proposition 4.4. The vectors ZI|J and XJ are independent iff CI|J(uI |XJ = xJ) does not depend on
xJ for every vectors uI and xJ . In this case, the cdf of ZI|J is Cs,I|J .

Proof: For any vectors uI ∈ [0, 1]p and any subset AJ ⊂ Rd−p,

IP(ZI|J ≤ uI ,XJ ∈ AJ) = IE
[
1((XJ ∈ AJ)IP(ZI|J ≤ uI |XJ)

]
=

∫
1((xJ ∈ AJ)IP(ZI|J ≤ uI |XJ = xJ) dIPXJ

(xJ)

=

∫
AJ

IP(Fk(Xk|XJ = xJ) ≤ uk,∀k ∈ I|XJ = xJ) dIPXJ
(xJ)

=

∫
AJ

CI|J(uI |XJ = xJ) dIPXJ
(xJ).

If ZI|J and XJ are independent, then

IP(ZI|J ≤ uI)IP(XJ ∈ AJ) =

∫
1((xJ ∈ AJ)CI|J(uI |XJ = xJ) dIPXJ

(xJ),

for every uI and AJ . This implies IP(ZI|J ≤ uI) = CI|J(uI |XJ = xJ) for every uI ∈ [0, 1]p and every xJ

in the support of XJ . This means that CI|J(uI |XJ = xJ) does not depend on xJ , because ZI|J does

not depend on any xJ by definition.

Reciprocally, under H0, Cs,I|J is the cdf of ZI|J . Indeed,

IP(ZI|J ≤ uI) = IP (Fk(Xk|XJ) ≤ uk,∀k ∈ I)

=

∫
IP (Fk(Xk|XJ = xJ) ≤ uk,∀k ∈ I|XJ = xJ) dIPXJ

(xJ)

=

∫
CI|J(uI |XJ = xJ) dIPXJ

(xJ) =

∫
Cs,I|J(uI) dIPXJ

(xJ) = Cs,I|J(uI).

Moreover, due to Sklar’s Theorem, we have

IP(ZI|J ≤ uI ,XJ ∈ AJ) =

∫
1(xJ ∈ AJ)CI|J(uI |XJ = xJ) dIPXJ

(xJ)

=
∫
1(xJ ∈ AJ)Cs,I|J(uI) dIPXJ

(xJ) = IP(ZI|J ≤ uI)IP(XJ ∈ AJ),

implying the independence between ZI|J and XJ . �
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Then, testing H0 is formally equivalent to testing

H∗0 : ZI|J = (F1(X1|XJ), . . . , Fp(Xp|XJ)) and XJ are independent.

Since the conditional marginal cdfs’ are not observable, keep in mind that we have to work with

pseudo-observations in practice, i.e. vectors of observations that are not independent. In other words,

our tests of independence should be based on pseudo-samples(
F̂1|J(Xi,1|Xi,J), . . . , F̂p|J(Xi,p|Xi,J)

)
i=1,...,n

:= (Ẑi,I|J)i=1,...,n, (4.12)

for some consistent estimate F̂k|J(·|XJ), k ∈ I of the conditional cdfs’, for example as defined in Equa-

tion (4.5). The chance of getting distribution-free asymptotic statistics will be very tiny, and we will have

to rely on some bootstrap techniques again. To summarize, we should be able to apply some usual tests

of independence, but replacing iid observations with (dependent) pseudo-observations.

Most of the tests of H∗0 rely on the joint law of (ZI|J ,XJ), that may be evaluated empirically as

GI,J(xI ,xJ) := IP(ZI|J ≤ xI ,XJ ≤ xJ)

' ĜI,J(x) := n−1
n∑
i=1

1(Ẑi,I|J ≤ xI ,Xi,J ≤ xJ).

Now, let us propose some classical strategies to build independence tests.

• Chi-square-type tests of independence: Let B1, . . . , BN (resp. A1, . . . , Am) some disjoint subsets

in Rp (resp. Rd−p).

Iχ,n = n

N∑
k=1

m∑
l=1

(
ĜI,J(Bk ×Al)− ĜI,J(Bk × Rd−p)ĜI,J(Rp ×Al)

)2

ĜI,J(Bk × Rd−p)ĜI,J(Rp ×Al)
· (4.13)

• Distance between distributions:

IKS,n = sup
x∈Rd

|ĜI,J(x)− ĜI,J(xI ,∞d−p)ĜI,J(∞p,xJ)|, or (4.14)

I2,n =

∫ (
ĜI,J(x)− ĜI,J(xI ,∞d−p)ĜI,J(∞p,xJ)

)2

ω(x) dx, (4.15)

for some (possibly random) weight function ω. Particularly, we can propose the single sum

ICvM,n =

∫ (
ĜI,J(x)− ĜI,J(xI ,∞d−p)ĜI,J(∞p,xJ)

)2

ĜI,J(dx)

=
1

n

n∑
i=1

(
ĜI,J(Ẑi,I|J ,Xi,J)− ĜI,J(Ẑi,I|J ,∞d−p)ĜI,J(∞p,Xi,J)

)2

. (4.16)

• Tests of independence based on comparisons of copulas: let C̆I,J and ĈJ be the empirical copulas

based on the pseudo-sample (Ẑi,I|J ,Xi,J)i=1,...,n, and (Xi,J)i=1,...,n respectively. Set

ĬKS,n = sup
u∈[0,1]d

|C̆I,J(u)− Ĉ(k)
s,I|J(uI)ĈJ(uJ)|, k = 1, . . . , 5, or

Ĭ2,n =

∫
u∈[0,1]d

(
C̆I,J(u)− Ĉ(k)

s,I|J(uI)ĈJ(uJ)
)2

ω(u) du,

and in particular

ĬCvM,n =

∫
u∈[0,1]d

(
C̆I,J(u)− Ĉ(k)

s,I|J(uI)ĈJ(uJ)
)2

C̆I,J(du).



Chapter 4. About tests of the “simplifying” assumption for conditional copulas 89

The underlying ideas of the test statistics ĬKS,n and ĬCvM,n are similar to those that have been

proposed by Deheuvels ([33],[34]) in the case of unconditional copulas. Nonetheless, in our case,

we have to calculate pseudo-samples of the pseudo-observations (Ẑi,I|J) and (Xi,J), instead of a

usual pseudo-sample of (Xi).

Note that the latter techniques require the evaluation of some conditional distributions, for instance

by kernel smoothing. Therefore, the level of numerical complexity of these test statistics of H∗0 is com-

parable with those we have proposed before to test H0 directly.

4.2.3 Parametric tests of the simplifying assumption

In practice, modelers often assume a priori that the underlying copulas belong to some specified para-

metric family C := {Cθ, θ ∈ Θ ⊂ Rm}. Let us adapt our tests under this parametric assumption. Appar-

ently, we would like to test

Ȟ0 : CI|J(·|XJ) = Cθ(·), for some θ ∈ Θ and almost every XJ .

Actually, Ȟ0 requires two different things: the fact that the conditional copula is a constant copula w.r.t. its

conditioning events (test of H0) and, additionally, that the right copula belongs to C (classical composite

Goodness-of-Fit test). Under this point of view, we would have to adapt “omnibus” specification tests

to manage conditional copulas and pseudo observations. For instance, and among of alternatives, we

could consider an amended version of Andrews’s ([7]) specification test

CKn :=
1√
n

max
j≤n
|
n∑
i=1

[
1(Ẑi,I|J ≤ Ẑj,I|J)− Cθ̂0(Ẑj,I|J)

]
1(Xi,J ≤ Xj,J)|,

recalling the notation in (4.12). For other ideas of the same type, see [145] and the references therein.

The latter global approach is probably too demanding. Here, we prefer to isolate the initial problem

that was related to the simplifying assumption only. Therefore, let us assume that, for every xJ , there

exists a parameter θ(xJ) such that CI|J(·|xJ) = Cθ(xJ )(·). To simplify, we assume the function θ(·) is

continuous. Our problem is then reduced to testing the constancy of θ, i.e.

Hc0 : the function xJ 7→ θ(xJ) is a constant, called θ0.

For every xJ , assume we estimate θ(xJ) consistently. For instance, this can be done by modifying

the standard semiparametric Canonical Maximum Likelihood methodology ([56, 137]): set

θ̂(xJ) := arg max
θ∈Θ

n∑
i=1

log cθ

(
F̂1|J(Xi,1|XJ = Xi,J), . . . , F̂p|J(Xi,p|XJ = Xi,J)

)
·Kn(Xi,J ,xJ),

through usual kernel smoothing in Rd−p , where cθ(u) := ∂pCθ(u)/∂u1 · · · ∂up for θ ∈ Θ and u ∈ [0, 1]p.

Alternatively, we could consider

θ̃(xJ) := arg max
θ∈Θ

n∑
i=1

log cθ

(
F̂1|J(Xi,1|XJ = xJ), . . . , F̂p|J(Xi,p|XJ = xJ)

)
·Kn(Xi,J ,xJ),

instead of θ̂(xJ). See [2] concerning the theoretical properties of θ̃(xJ) and some choice of conditional

cdfs’. Those of θ̂(xJ) remain to be stated precisely, to the best of our knowledge. But there is no doubt

both methodologies provide consistent estimators, even jointly, under some conditions of regularity.
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Under Hc0, the natural “unconditional” copula parameter θ0 of the copula of the ZI|J will be estimated

by

θ̂0 := arg max
θ∈Θ

n∑
i=1

log cθ

(
F̂1|J(Xi,1|Xi,J), . . . , F̂p|J(Xi,p|Xi,J)

)
. (4.17)

Surprisingly, the theoretical properties of the latter estimator do not seem to have been established in the

literature explicitly. Nonetheless, the latter M-estimator is a particular case of those considered in [50] in

the framework of single-index models when the link function is a known function (that does not depend

on the index). Therefore, by adapting their assumption in the current framework, we easily obtain that θ̂0

is consistent and asymptotically normal if cθ is sufficiently regular, for convenient choices of bandwidths

and kernels.

Now, there are some challengers to test Hc0:

• Tests based on the comparison between θ̂(·) and θ̂0:

T c∞ := sup
xJ∈Rd−p

‖θ̂(xJ)− θ̂0‖, or T c2 :=

∫
‖θ̂(xJ)− θ̂0‖2ω(xJ) dxJ , (4.18)

for some weight function ω.

• Tests based on the comparison between Cθ̂(·) and Cθ̂0 :

T cdist :=

∫
dist

(
Cθ̂(xJ ), Cθ̂0

)
ω(xJ) dxJ , (4.19)

for some distance dist(·, ·) between cdfs’.

• Tests based on the comparison between copula densities (when they exist):

T cdens :=

∫ (
cθ̂(xJ )(uI)− cθ̂0(uI)

)2

ω(uI ,xJ) duI dxJ . (4.20)

Remark 4.5. It might be difficult to compute some of these integrals numerically, because of unbounded
supports. One solution is to to make change of variables. For example,

T c2 =

∫
‖θ̂(F−J (uJ))− θ̂0‖2ω(F−J (uJ))

duJ

fJ(F−J (uJ))
·

Therefore, the choice ω = fJ allows us to simplify the latter statistics to
∫
‖θ̂(F−J (uJ))− θ̂0‖2duJ , which

is rather easy to evaluate. We used this trick in the numerical section below.

4.2.4 Bootstrap techniques for tests of H0

It is necessary to evaluate the limiting laws of the latter test statistics under the null. As a matter of fact,

we generally cannot exhibit explicit - and distribution-free a fortiori - expressions for these limiting laws.

The common technique is provided by bootstrap resampling schemes.

More precisely, let us consider a general statistics T , built from the initial sample S := (X1, . . . ,Xn).

The main idea of the bootstrap is to construct N new samples S∗ := (X∗1, . . . ,X
∗
n) following a given

resampling scheme given S. Then, for each bootstrap sample S∗, we will evaluate a bootstrapped test

statistics T ∗, and the empirical law of all these N statistics is used as an approximation of the limiting

law of the initial statistic T .
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4.2.4.1 Some resampling schemes

The first natural idea is to invoke Efron’s usual “nonparametric bootstrap”, where we draw independently

with replacement X∗i for i = 1, . . . , n among the initial sample S = (X1, . . . ,Xn). This provides a

bootstrap sample S∗ := (X∗1, . . . ,X
∗
n).

The nonparametric bootstrap is an “omnibus” procedure whose theoretical properties are well-known

but that may not be particularly adapted to the problem at hand. Therefore, we will propose alternative

sampling schemes that should be of interest, even if we do not state their validity on the theoretical basis.

Such a task is left for further researches.

An natural idea would be to use some properties of X under H0, in particular the characterization

given in Proposition 4.4: under H0, we known that Zi,I|J and Xi,J are independent. This will be only

relevant for the tests of Subsection 4.2.2, and for a few tests of Subsection 4.2.1, where such statistics

are based on the pseudo-sample (Ẑi,I|J ,Xi,J)i=1,...,n. Therefore, we propose the following so-called

“pseudo-independent bootstrap” scheme:

Repeat, for i = 1 to n,

1. draw X∗i,J among (Xj,J)j=1,...,n;

2. draw Ẑ∗i,I|J independently, among the observations Ẑj,I|J , j = 1, . . . , n.

This provides a bootstrap sample S∗ :=
(
(Ẑ∗1,I|J ,X

∗
1,J), . . . , (Ẑ∗n,I|J ,X

∗
n,J)

)
.

Note that we could invoke the same idea, but with a usual nonparametric bootstrap perspective: draw

with replacement a n-sample among the pseudo-observations (Ẑi,I|J ,Xi,J)i=1,...,n for each bootstrap

sample. This can be called a “pseudo-nonparametric bootstrap” scheme.

Moreover, note that we cannot draw independently X∗i,J among (Xj,J)j=1,...,n, and beside X∗i,I

among (Xj,I)j=1,...,n independently. Indeed, H0 does not imply the independence between XI and

XJ . At the opposite, it makes sense to build a “conditional bootstrap” as follows:

Repeat, for i = 1 to n,

1. draw X∗i,J among (Xj,J)j=1,...,n;

2. draw X̂∗i,I independently, along the estimated conditional law of XI given XJ = X∗i,J . This can be

down by drawing a realization along the law F̂I|J(·|XJ = X∗i,J), for instance (see (4.4)). This can

be done easily because the latter law is purely discrete, with unequal weights that depend on X∗i,J

and S.

This provides a bootstrap sample S∗ :=
(
(X̂∗1,I ,X

∗
1,J), . . . , (X̂∗n,I ,X

∗
n,J)

)
.

Remark 4.6. Note that the latter way of resampling is not far from the usual nonparametric bootstrap.
Indeed, when the bandwidths tend to zero, once x∗J = Xi,J is drawn, the procedure above will select the
other components of Xi (or close values), i.e. the probability that x∗I = Xi,I is “high”.

In the parametric framework, we might also want to use an appropriate resampling scheme. As a

matter of fact, all the previous resampling schemes can be used, as in the nonparametric framework,

but we would not take advantage of the parametric hypothesis, i.e. the fact that all conditional copulas

belong to a known family. We have also to keep in mind that even if the conditional copula has a
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parametric form, the global model is not fully parametric, because we have not provided a parametric

model neither for the conditional marginal cdfs Fk|J , k = 1, . . . , p, nor for the cdf of XJ .

Therefore, we can invoke the null hypothesis Hc0 and approximate the real copula Cθ0 of ZI|J by Cθ̂0 .

This leads us to define the following “parametric independent bootstrap”:

Repeat, for i = 1 to n,

1. draw X∗i,J among (Xj,J)j=1,...,n;

2. sample Z∗
i,I|J,θ̂0

from the copula with parameter θ̂0 independently.

This provides a bootstrap sample S∗ :=
(
(Z∗

1,I|J,θ̂0
,X∗1,J), . . . , (Z∗

n,I|J,θ̂0
,X∗n,J)

)
.

Remark 4.7. At first sight, this might seem like a strange mixing of parametric and nonparametric boot-
strap. If |J | = 1, we can nonetheless do a “full parametric bootstrap”, by observing that all estimators
of our previous test statistics do not depend on XJ , but on realizations of F̂J(XJ) (see Equations (4.4)
and (4.5)). Since the law of latter variable is close to a uniform distribution, it is tempting to sample
V ∗i,J ∼ U[0,1] at the first stage, i = 1, . . . , n, and then to replace F̂J(Xi,J) with V ∗i,J to get an alternative
bootstrap sample.

Without using Hc0, we could define the “parametric conditional bootstrap” as:

Repeat, for i = 1 to n,

• draw X∗i,J among (Xj,J)j=1,...,n;

• sample Z∗i,I|J,θ∗i
from the copula with parameter θ̂(X∗i,J).

This provides a bootstrap sample S∗ :=
(
(Z∗1,I|J,θ∗i

,X∗1,J), . . . , (Z∗n,I|J,θ∗i
,X∗n,J)

)
.

Note that, in several resampling schemes, we should be able to keep the same XJ as in the original

sample, and simulate only Z∗i,I|J in step 2, as in [7], pages 10-11. Such an idea has been proposed

by [108], in a slightly different framework and univariate conditioning variables. They proved that such a

bootstrap scheme “works”, after a fine-tuning of different smoothing parameters: see their Theorem 1.

4.2.4.2 Bootstrapped test statistics

The problem is now to evaluate the law of a given test statistic, say T , under H0 by the some bootstrap

techniques. We recall the main technique in the case of the classical nonparametric bootstrap. We

conjecture that the idea is still theoretically sound under the other resampling schemes that have been

proposed in Subsection 4.2.4.1.

The principle for the nonparametric bootstrap is based on the weak convergence of the underlying

empirical process. Formally, if S := {X1, . . . ,Xn} in an iid sample in Rd, X ∼ F and if Fn denotes

its empirical distribution, it is well-known that
√
n (Fn − F ) tends weakly in `∞ towards a d-dimensional

Brownian bridge BF . And the nonparametric bootstrap works in the sense that
√
n (F ∗n − Fn) converges

weakly towards a process B′F , an independent version of BF , given the initial sample S.

Due to the Delta Method, for every Hadamard-differentiable functional χ from `∞(Rd) to R, there

exists a random variable Hχ s.t.
√
n (χ(Fn)− χ(F )) ⇒ Hχ. Assume a test statistics T n of H0 can be

written as a sufficiently regular functional of the underlying empirical process as

T n := ψ
(√
n (χs(Fn)− χ(Fn))

)
,
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where χs(F ) = χ(F ) under the null assumption. Then, under H0, we can rewrite this expression as

T n := ψ
(√
n (χs(Fn)− χs(F ) + χ(F )− χ(Fn))

)
. (4.21)

Given any bootstrap sample S∗ and the associated empirical distribution F ∗n , the usual bootstrap equiv-

alent of T n is

T ∗n := ψ
(√
n (χs(F

∗
n)− χs(Fn) + χ(Fn)− χ(F ∗n))

)
,

from Equation (4.21). See [139], Section 3.9, for details and mathematically sound statements.

Applying these ideas, we can guess the bootstrapped statistics corresponding to the tests statistics

of H0, at least when the usual nonparametric bootstrap is invoked.

Let us illustrate the idea with T 0
KM,n. Note that ĈI|J(·|XJ = ·) = χKM (Fn)(·) and Ĉs,I|J = χs,KM (Fn)

for some smoothed functional χKM and χs,KM . Under H0, χKM = χs,KM and T 0
KS,n := ‖χKM (Fn) −

χKM (F )− χs,KM (Fn) + χs,KM (F )‖∞. Therefore, its bootstrapped version is

T 0,∗
KS,n := ‖χKM (F ∗n)− χKM (Fn)− χs,KM (F ∗n) + χs,KM (Fn)‖∞

= ‖Ĉ∗I|J − ĈI|J − Ĉ
∗
s,I|J + Ĉs,I|J‖∞.

Obviously, the functions Ĉ∗I|J and Ĉ∗s,I|J have been calculated as ĈI|J and Ĉs,I|J respectively, but re-

placing S by S∗. Similarly, the bootstrapped versions of some Cramer von-Mises-type test statistics

are

T 0,∗
CvM,n :=

∫ (
Ĉ∗I|J(uI |xJ)− ĈI|J(uI |xJ)− Ĉ∗s,I|J(uI) + Ĉs,I|J(uI)

)2

w(duI , dxJ).

When playing with the weight functions w, it is possible to keep the same weights for the bootstrapped

versions, or to replace them with some functionals of F ∗n . For instance, asymptotically, it is equivalent to

consider

T (1),∗
CvM,n :=

∫ (
Ĉ∗I|J(uI |xJ)− ĈI|J(uI |xJ)− Ĉ∗s,I|J(uI) + Ĉs,I|J(uI)

)2

Ĉn(duI) F̂J(dxJ), or

T (1),∗
CvM,n :=

∫ (
Ĉ∗I|J(uI |xJ)− ĈI|J(uI |xJ)− Ĉ∗s,I|J(uI) + Ĉs,I|J(uI)

)2

Ĉ∗n(duI) F̂
∗
J (dxJ).

Similarly, the limiting law of

T (2),∗
CvM,n :=

∫ (
Ĉ∗I|J(F̂ ∗n,1(x1|xJ), . . . , F̂ ∗n,p(xp|xJ)|xJ)

− ĈI|J(F̂ ∗n,1(x1|xJ), . . . , F̂ ∗n,p(xp|xJ)|xJ)− Ĉ∗s,I|J(F̂ ∗n,1(x1|xJ), . . . , F̂ ∗n,p(xp|xJ))

+ Ĉs,I|J(F̂ ∗n,1(x1|xJ), . . . , F̂ ∗n,p(xp|xJ))
)2

Hn(dxI , dxJ),

given Fn is unchanged replacing Hn by H∗n.

The same ideas apply concerning the tests of Subsection 4.2.2, but they require some modifications.

Let H be some cdf on Rd. Denote by HI and HJ the associated cdf on the first p and d− p components

respectively. Denote by Ĥ, ĤI and ĤJ their empirical counterparts. Under H0, and for any measurable

subsets BI and AJ , H(BI ×AJ) = H(BI)H(AJ). Our tests will be based on the difference

Ĥ(BI ×AJ)− ĤI(BI)ĤJ(AJ) = (Ĥ −H)(BI ×AJ)

− (ĤI −HI)(BI)ĤJ(AJ)− (ĤJ −HJ)(AJ)HI(BI).

Therefore, a bootstrapped approximation of the latter quantity will be

(Ĥ∗ − Ĥ)(BI ×AJ)− (Ĥ∗I − ĤI)(BI)Ĥ
∗
J(AJ)− (Ĥ∗J − ĤJ)(AJ)ĤI(BI).

To be specific, the bootstrapped versions of our tests are specified as below.
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• Chi-square-type test of independence:

I∗χ,n := n

N∑
k=1

m∑
l=1

1

Ĝ∗I,J(Bk × Rd−p)Ĝ∗I,J(Rp ×Al)

(
(Ĝ∗I,J − ĜI,J)(Bk ×Al)

− Ĝ∗I,J(Bk × Rd−p)Ĝ∗I,J(Rp ×Al) + ĜI,J(Bk × Rd−p)ĜI,J(Rp ×Al)
)2

.

• Distance between distributions:

I∗KS,n = sup
x∈Rd

|(Ĝ∗I,J − ĜI,J)(x)− Ĝ∗I,J(xI ,∞d−p)Ĝ∗I,J(∞p,xJ) + ĜI,J(xI ,∞d−p)ĜI,J(∞p,xJ)|

I∗2,n =

∫ (
(Ĝ∗I,J−ĜI,J)(x)−Ĝ∗I,J(xI ,∞d−p)Ĝ∗I,J(∞p,xJ)+ĜI,J(xI ,∞d−p)ĜI,J(∞p,xJ)

)2

ω(x) dx,

and I∗CvM,n is obtained replacing ω(x) dx by Ĝ∗I,J(dx) (or even ĜI,J(dx)).

• A test of independence based on the independence copula: Let C̆∗I,J , C̆∗I|J and Ĉ∗J be the empirical

copulas based on a bootstrapped version of the pseudo-sample (Ẑi,I|J ,Xi,J)i=1,...,n, (Ẑi,I|J)i=1,...,n

and (Xi,J)i=1,...,n respectively. This version can be obtained by nonparametric bootstrap, as usual,

providing new vectors Ẑ∗i,I|J at every draw. The associated bootstrapped statistics are

Ĭ∗KS,n = sup
u∈[0,1]d

|(C̆∗I,J − C̆I,J)(u)− C̆∗I|J(uI)Ĉ
∗
J(uJ) + C̆I|J(uI)ĈJ(uJ)|,

Ĭ∗2,n =

∫
u∈[0,1]d

(
(C̆∗I,J − C̆I,J)(u)− C̆∗I|J(uI)Ĉ

∗
J(uJ) + C̆I|J(uI)ĈJ(uJ)

)2

ω(u) du,

Ĭ∗CvM,n =

∫
u∈[0,1]d

(
(C̆∗I,J − C̆I,J)(u)− C̆∗I|J(uI)Ĉ

∗
J(uJ) + C̆I|J(uI)ĈJ(uJ)

)2

C̆∗I,J(du).

In the case of the parametric statistics, the situation is pretty much the same, as long as we invoke

the nonparametric bootstrap. For instance, the bootstrapped versions of some previous test statistics

are

(T c2)
∗

:=

∫
‖θ̂∗(xJ)− θ̂(xJ)− θ̂∗0 + θ̂0‖2ω(xJ) dxJ , or

(T cdens)
∗

:=

∫ (
cθ̂∗(xJ )(uI)− cθ̂(xJ )(uI)− cθ̂∗0 (uI) + cθ̂0(uI)

)2

ω(uI ,xJ)duI dxJ .

in the case of the nonparametric bootstrap. We conjecture that the previous techniques can be applied

with the other resampling schemes that have been proposed in Subsection 4.2.4.1. Nonetheless, a

complete theoretical study of all these alternative schemes and the statement of the validity of their

associated bootstrapped statistics is beyond the scope of this paper.

Remark 4.8. For the “parametric independent” bootstrap scheme, we have observed that the test powers
are a lot better by considering

(T c2)
∗∗

:=

∫
‖θ̂∗(xJ)− θ̂∗0‖2ω(xJ) dxJ , or

(T cdens)
∗∗

:=

∫ (
cθ̂∗(xJ )(uI)− cθ̂∗0 (uI)

)2

ω(uI ,xJ)duI dxJ ,

instead. The relevance of such statistics may be theoretically justified in the slightly different context
of “box-type” tests in the next Section (see Theorem 4.14). Since our present case is close to the
situation of “many small boxes”, it is not surprising that we observe similar features. Note that, contrary
to the nonparametric bootstrap or the “parametric conditional” bootstrap, the “parametric independent”
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bootstrap scheme usesH0. More generally, and following the same idea, we found that using the statistic
T ∗∗ := ψ (

√
n (χs(F

∗
n)− χ(F ∗n))) for the pseudo-independent bootstrap yields much better performance

than T ∗. In our simulations, we will therefore use T ∗∗ as the bootstrap test statistic (see Figures 4.1 and
4.2).

Remark 4.9. In a vine model, every node is associated with a bivariate conditional copula, and it is desir-
able that they satisfy H0. Unfortunately, the arguments of such copulas are defined through conditional
distributions Fi(Xi|XK) for some subsets K ⊂ {1, . . . , d}. Therefore, we do not observe realizations of
such arguments, except for the first level. In practice, they have to be replaced with pseudo-observations
in our previous test statistics. Their calculation involves the bivariate conditional copulas that are asso-
ciated with the previous nodes in a recursive way. The theoretical analysis of the associated bootstrap
schemes is challenging and falls beyond the scope of the current work.

4.3 Tests with “boxes”

4.3.1 The link with the simplifying assumption

As we have seen in Remark 4.1, we do not have Cs,I|J = CI in general. This is the hint there are

some subtle relations between conditional copulas when the conditioning event is pointwise or when

it is a measurable subset. Actually, to test H0 in Section 4.2, we have relied on kernel estimates and

smoothing parameters, at least to evaluate conditional marginal distributions empirically. To avoid the

curse of dimension (when d − p is “large” i.e. larger than three in practice), it is tempting to replace

the pointwise conditioning events XJ = xJ with XJ ∈ AJ for some borelian subsets AJ ⊂ Rd−p,
IP(XJ ∈ AJ) > 0. As a shorthand notation, we shall write AJ the set of all such AJ . We call them

“boxes” because choosing d − p-dimensional rectangles (i.e. intersections of half-spaces separated

by orthogonal hyperplans) is natural, but our definitions are still valid for arbitrary borelian subsets in

Rd−p. Technically speaking, we will assume that the functions xJ 7→ 1(xJ ∈ AJ) are Donsker, to apply

uniform CLTs’ without any hurdle. Actually, working with XJ -“boxes” instead of pointwise will simplify

a lot the picture. Indeed, the evaluation of conditional cdfs’ given XJ ∈ AJ does not require kernel

smoothing, bandwidth choices, or other techniques of curve estimation that deteriorate the optimal rates

of convergence.

Note that, by definition of the conditional copula of XI given (XJ ∈ AJ), we have

IP(XI ≤ xI |XJ ∈ AJ)

= CAJI|J (IP(X1 ≤ x1|XJ ∈ AJ), . . . , IP(Xp ≤ xp|XJ ∈ AJ)|XJ ∈ AJ) ,

for every point xI ∈ Rp and every subset AJ in AJ . So, it is tempting to replace H0 by

H̃0 : CAJI|J (uI |XJ ∈ AJ) does not depend onAJ ∈ AJ , for any uI .

For any xJ , consider a sequence of boxes (A
(n)
J (xJ)) s.t. ∩nA(n)

J (xJ) = {xJ}. If the law of X is

sufficiently regular, then limn C
A

(n)
J

I|J (uI |XJ ∈ A
(n)
J ) = CI|J(uI |XJ = xJ) for any uI . Therefore, H̃0

implies H0. This is stated formally in the next proposition.
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Proposition 4.10. Assume that the function h : Rd → [0, 1], defined by h(y) := IP(XI ≤ yI |XJ = yJ)

is continuous everywhere. Let xJ ∈ Rd−p such that Fi|J(·|xJ) is strictly increasing for every i = 1, . . . , d.
Then, for any sequence of boxes (A

(n)
J (xJ)) such that ∩nA(n)

J (xJ) = {xJ}, we have

lim
n
C
A

(n)
J (xJ )

I|J (uI |XJ ∈ A(n)
J (xJ)) = CI|J(uI |XJ = xJ),

for every uI ∈ [0, 1]p.

Proof: Consider a particular uI ∈ [0, 1]p. If one component of uI is zero, the result is obviously

satisfied. If one component of uI is one, this component does not play any role. Therefore, we can

restrict ourselves on uI ∈ (0, 1)p. By continuity, there exists xI ∈ Rp s.t. ui = Fi|J(xi|xJ) for every

i = 1, . . . , p. Let the sequences (x
(n)
i ) such that ui = Fi|J(x

(n)
i |XJ ∈ A

(n)
J ) for every n and every

i = 1, . . . , p. First, let us show that x(n)
i → xi when n tends to the infinity. Indeed, by the definition of

conditional probabilities ([124], p.220), we have

ui = IP(Xi ≤ x(n)
i |XJ ∈ A(n)

J ) =
1

IP(XJ ∈ A(n)
J )

∫
{yJ∈A(n)

J }
IP(Xi ≤ x(n)

i |XJ = yJ) dIPXJ
(yJ),

and

ui = IP(Xi ≤ xi|XJ = xJ) =
1

IP(XJ ∈ A(n)
J )

∫
{yJ∈A(n)

J }
IP(Xi ≤ x(n)

i |XJ = xJ) dIPXJ
(yJ)

+ IP(Xi ≤ xi|XJ = xJ)− IP(Xi ≤ x(n)
i |XJ = xJ).

By substracting the two latter identities, we deduce

1

IP(XJ ∈ A(n)
J )

∫
{yJ∈A(n)

J }

[
IP(Xi ≤ x(n)

i |XJ = yJ)− IP(Xi ≤ x(n)
i |XJ = xJ)

]
dIPXJ

(yJ)

= IP(Xi ≤ xi|XJ = xJ)− IP(Xi ≤ x(n)
i |XJ = xJ). (4.22)

But, by assumption, Fi|J(t|yJ) tends towards Fi|J(t|xJ) when yJ tends to xJ , for any t (pointwise

convergence). Actually, the latter convergence is uniform on R: ‖Fi|J(·|yJ) − Fi|J(·|xJ)‖∞ tends to

zero when yJ → xJ . This is a straightforward consequence of Pólya’s Theorem (also called second

Dini’s Theorem in the literature): see Subsection (A.1) in [18] for instance. From (4.22), we deduce that

IP(Xi ≤ x
(n)
i |XJ = xJ) → IP(Xi ≤ xi|XJ = xJ). By the continuity of Fi|J(·|xJ), we get x(n)

i → xi, for

any i = 1, . . . , p.

Second, let us come back to conditional copulas: setting x
(n)
I := (x

(n)
1 , . . . , x

(n)
p ), we have

C
A

(n)
J

I|J (uI |A(n)
J )− CI|J(uI |xJ)

= C
A

(n)
J

I|J (F1|J(x
(n)
1 |A

(n)
J ), . . . , Fp|J(x(n)

p |A
(n)
J )|A(n)

J )− CI|J(F1|J(x1|xJ), . . . , Fp|J(xp|xJ)|xJ)

= FI|J(x
(n)
I |A

(n)
J )− FI|J(xI |xJ)

=
1

IP(XJ ∈ A(n)
J )

∫
{yJ∈A(n)

J }

[
IP(XI ≤ x

(n)
I |XJ = yJ)− IP(XI ≤ xI |XJ = xJ)

]
dIPXJ

(yJ).

Since x
(n)
I tends to xI when n→∞ and invoking the continuity of h at (xI ,xJ), we get CA

(n)
J

I|J (uI |A(n)
J )→

CI|J(uI |xJ) when n→∞. �

Unfortunately, the opposite is false. Counter-intuitively, H̃0 does not lead to a consistent test of the

simplifying assumption. Indeed, under H0, we can see that CAJI|J (uI |XJ ∈ AJ) depends on AJ in

general, even if CI|J(uI |XJ = xJ) does not depend on xJ !
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This is due to the nonlinear transform between conditional (univariate and multivariate) distributions

and conditional copulas. In other words, for a usual d-dimensional cdf H, we have

H(xI |XJ ∈ AJ) =
1

IP(AJ)

∫
AJ

H(xI |XJ = xJ) dIPXJ
(xJ), (4.23)

for every measurable subset AJ ∈ AJ and xI ∈ Rp. At the opposite and in general, for conditional

copulas,

CAJI|J (uI |XJ ∈ AJ) 6= 1

IP(AJ)

∫
AJ

CI|J(uI |XJ = xJ) dIPXJ
(xJ), (4.24)

for uI ∈ [0, 1]p. And even if we assume H0, we have in general,

CAJI|J (uI |XJ ∈ AJ) 6= 1

IP(AJ)

∫
AJ

Cs,I|J(uI) dIPXJ
(xJ) = Cs,I|J(uI). (4.25)

As a particular case, taking AJ = Rd−p, this means again that CI(uI) 6= Cs,I|J(uI).

Let us check this rather surprising feature with the example of Remark 4.1 for another subset AJ .

Recall that H0 is true and that Cs,1,2|3(u, v) = uv for every u, v ∈ [0, 1]. Consider the subset (X3 ≤ a),

for any real number a. The probability of this event is Φ(a). Now, let us verify that

uv 6= H(F−1|3(u|X3 ≤ a), F−2|3(v|X3 ≤ a)|X3 ≤ a),

for some u, v in (0, 1). Clearly, for every real number xk, we have

IP(Xk ≤ xk|X3 ≤ a) =
1

Φ(a)

∫ a

−∞
Φ(xk − z)φ(z) dz, k = 1, 2, and

IP(X1 ≤ x1, X2 ≤ x2|X3 ≤ a) =
1

Φ(a)

∫ a

−∞
Φ(x1 − z)Φ(x2 − z)φ(z) dz.

In particular, IP(Xk ≤ 0|X3 ≤ a) = (1 + Φ(−a))/2. Therefore, set u∗ = v∗ = (1 + Φ(−a))/2 and we

get

H(F−1|3(u∗|X3 ≤ a), F−2|3(v∗|X3 ≤ a)|X3 ≤ a) = H(0, 0|X3 ≤ a)

=
1

3

(
1 + Φ(−a) + Φ2(−a)

)
6= u∗v∗.

In this example, Cs,1,2|3(·) 6= C
]−∞,a]
1,2|3 (·|X3 ≤ a), for every a, even if H0 is satisfied.

Nonetheless, getting back to the general case, we can easily provide an equivalent of Equation (4.23)

for general conditional copulas, i.e. without assuming H0.

Proposition 4.11. For all uI ∈ [0, 1]p and all AJ ∈ AJ ,

CAJI|J (uI |XJ ∈ AJ) =
1

IP(AJ)

∫
AJ

ψ(uI ,xJ , AJ)dIPXJ
(xJ), with

ψ(uI ,xJ , AJ)

= CI|J

(
F1|J

(
F−1|J(u1|XJ ∈ AJ)

∣∣XJ = xJ

)
, . . . , Fp|J

(
F−p|J(up|XJ ∈ AJ)

∣∣XJ = xJ

)∣∣∣∣∣XJ = xJ

)
.
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Proof: From (4.23), we get :

H(xI |XJ ∈ AJ)

=
1

IP(AJ)

∫
AJ

H(xI |XJ = xJ) dIPXJ
(xJ)

=
1

IP(AJ)

∫
AJ

CI|J

(
F1|J(x1|XJ = xJ), . . . , Fp|J(xp|XJ = xJ)

∣∣XJ = xJ

)
dIPXJ

(xJ).

We can conclude by using the following definition of the conditional copula

CAJI|J (uI |XJ ∈ AJ) = H(F−1|J(u1|XJ ∈ AJ), . . . , F−p|J(up|XJ ∈ AJ)|XJ ∈ AJ). �

Now, we understand why (4.24) (and (4.25) under H0) are not identities: the conditional copulas,

given the subset AJ , still depend on the conditional margins of XI given XJ pointwise in general.

Note that, if Xi is independent of XJ for every i = 1, . . . , p, then, for any such i,

Fi|J

(
F−i|J(ui|XJ ∈ AJ)

∣∣XJ = xJ

)
= Fi

(
F−i (ui)

)
= ui,

and we can revisit the identity of Proposition 4.11: under H0, we have

CAJI|J (uI |XJ ∈ AJ) =
1

IP(AJ)

∫
AJ

CI|J(uI |XJ = xJ) dIPXJ
(xJ)

=
1

IP(AJ)

∫
AJ

Cs,I|J(uI) dIPXJ
(xJ) = Cs,I|J(uI).

This means H0 and H̃0 are equivalent. We consider such circumstances as very peculiar and do not

have to be confused with a test of H0. Therefore, we advise to lead a preliminary test of independence

between XI and XJ (or at least between Xi and XJ for any i = 1, . . . , p) before trying to test H0 itself.

Now, let us revisit the characterisation of H0 in terms of the independence property, as in Subsec-

tion 4.2.2. The latter analysis is confirmed by the equivalent of Proposition 4.4 in the case of conditioning

subsets AJ . Now, the relevant random vector would be

ZI|AJ :=
(
F1|J(X1|XJ ∈ AJ), . . . , Fp|J(Xp|XJ ∈ AJ)

)
,

that has straightforward empirical counterparts. Then, it is tempting to test

H̃
∗
0 : ZI|AJ and (XJ ∈ AJ) are independent for every borelian subset AJ ⊂ Rd−p.

Nonetheless, it can be proved easily that this is not a test of H0, unfortunately.

Proposition 4.12. ZI|AJ and (XJ ∈ AJ) are independent for every measurable subset AJ ⊂ Rd−p iff
XI and XJ are independent.

Proof: For any measurable subset AJ and any uI ∈ [0, 1]p, under H̃
∗
0, we have

IP
(
ZI|AJ ≤ uI ,XJ ∈ AJ

)
= IP

(
ZI|AJ ≤ uI

)
IP(XJ ∈ AJ).

Consider xI ∈ Rp. Due to the continuity of the conditional cdfs’, there exists uk s.t. Fk(xk|XJ ∈ AJ) =

uk, k = 1, . . . , p. Then, using the invertibility of x 7→ Fk(x|XJ ∈ AJ), we get IP
(
ZI|AJ ≤ uI ,XJ ∈ AJ

)
=

IP (XI ≤ xI ,XJ ∈ AJ) . This implies that H̃
∗
0 is equivalent to the following property: for every xI ∈ Rp

and AJ ,

IP (XI ≤ xI ,XJ ∈ AJ) = IP (XI ≤ xI) IP (XJ ∈ AJ) . �
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The previous result shows that a test of H̃∗0 is a test of independence between XI and XJ . When

the latter assumption is satisfied, H̃0 and then H0 are true too, but the opposite is false.

Previously, we have exhibited a simple trivariate model whereH0 is satisfied when XI and XJ are not

independent. Then, we see that it is not reasonable to test whether the mapping AJ 7→ CAJI|J (·|XJ ∈ AJ)

is constant over AJ , the set of all AJ such that IPXJ
(AJ) > 0, with the idea of testing H0.

Nonetheless, one can weaken the latter assumption, and restrict oneself to a finite family AJ of

subsets with positive probabilities. For such a family, we could test the assumption

H0 : AJ 7→ CAJI|J ( · |XJ ∈ AJ) is constant over AJ .

To fix the ideas and w.l.o.g., we will consider a given family of disjoint subsets AJ = {A1,J , . . . , Am,J}
in Rd−p hereafter. Note the following consequence of Proposition 4.11.

Proposition 4.13. Assume that, for all AJ ∈ AJ and for all i ∈ I,

Fi|J(x|XJ = xJ) = Fi|J(x|XJ ∈ AJ), ∀xJ ∈ AJ , x ∈ R. (4.26)

Then, H0 implies H0.

Obviously, if the family AJ is too big, then (4.26) will be too demanding: H0 will be close to a test

of independence between XI and XJ , and no longer a test of H0. Moreover, the chosen subsets in

the family AJ do not need to be disjoint, even if this would be a natural choice. As a special case, if

Rd−p ∈ AJ , the previous condition is equivalent to the independence between Xi and XJ for every i ∈ I.

Note that (4.26) does not imply that the vector of explanatory variables XJ should be discretized.

Indeed, the full model requires the specification of the underlying conditional copula too, independently

of the conditional margins and arbitrarily. For instance, we can choose a Gaussian conditional copula

whose parameter is a continuous function of XJ , even if (4.26) is fulfilled. And the law of XI given XJ

will depend on the current value of XJ .

A test of H0 may be relevant in a lot of situations, beside technical arguments as the absence of

smoothing. First, the case of discrete (or discretized) explanatory variables XJ is frequent. When XJ

is discrete and takes a value among {x1,J , . . . ,xm,J}, set Ak,J = {xk,J}, k = 1, . . . ,m. Then, there is

identity between testing H0 and H0, with AJ = {A1,J , . . . , Am,J}. Second, the level of precision and

sharpness of a copula model is often lower than the models for (conditional) margins. To illustrate this

idea, a lot of complex and subtle models to explain the dynamics of asset volatilities are available when

the dynamics of cross-assets dependencies are often a lot more basic and without clear-cut empiri-

cal findings. Therefore, it makes sense to simplify conditional copula models compared to conditional

marginal models. This can be done by considering only a few possible conditional copulas, associated

to some events (XJ ∈ Ak,J), k = 1, . . . ,m. For example, Jondeau and Rockinger [78] (the first paper

that introduced conditional dependence structures, beside Patton [112]) proposed a Gaussian copula

parameter that take a finite of values randomly, based on the realizations of some past asset returns.

Third, similar situation occur with most Markov-switching copula models, where a finite set of copulas is

managed. In such models, the (unobservable, in general) underlying state of the economy determines

the index of the box: see [31],[142],[129],[53], among others.

Therefore, testing H0 is of interest per se. Even if this is not equivalent to H0 (i.e. the simplifying

assumption) formally, the underlying intuitions are close. And, particularly when the components of
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the conditioning variable XJ are numerous, it can make sense to restrict the information set of the

underlying conditional copula to a fixed number of conveniently chosen subsets AJ . And the constancy

of the underlying copula when XJ belongs to such subsets is valuable in a lot of practical situations.

Therefore, in the next subsections, we study some specific tests of H0 itself.

4.3.2 Non-parametric tests with “boxes”

To specify such tests, we need first to estimate the conditional marginal cdfs’, for instance by

F̂k|J(x|XJ ∈ AJ) :=

∑n
i=1 1(Xi,k ≤ x,Xi,J ∈ AJ)∑n

i=1 1(Xi,J ∈ AJ)
,

for every real x and k = 1, . . . , p. Similarly the joint law of XI given (XJ ∈ AJ) may be estimated by

F̂I|J(xI |XJ ∈ AJ) :=

∑n
i=1 1(Xi,I ≤ xI ,Xi,J ∈ AJ)∑n

i=1 1(Xi,J ∈ AJ)
·

The conditional copula given (XJ ∈ AJ) will be estimated by

ĈAJI|J (uI |XJ ∈ AJ) := F̂I|J(F̂−1|J(u1|XJ ∈ AJ), . . . , F̂−p|J(up|XJ ∈ AJ)|XJ ∈ AJ).

Therefore, it is easy to imagine tests of H0, for instance

T KS,n := sup
uI∈[0,1]d

sup
k,l=1,...,m

|ĈAk,JI|J (uI |XJ ∈ Ak,J)− ĈAl,JI|J (uI |XJ ∈ Al,J)|, (4.27)

T CvM,n :=

m∑
k,l=1

∫ (
Ĉ
Ak,J
I|J (uI |XJ ∈ Ak,J)− ĈAl,JI|J (uI |XJ ∈ Al,J)

)2

w(duI), (4.28)

for some nonnegative weight functions w, or even

T dist,n :=

m∑
k,l=1

dist
(
Ĉ
Ak,J
I|J (·|XJ ∈ Ak,J), Ĉ

Al,J
I|J (·|XJ ∈ Al,J)

)
, (4.29)

where dist(·, ·) denotes a distance between cdfs’ on [0, 1]p. More generally, define the matrix

M̂(AJ) :=

[
1(k 6= l) dist

(
Ĉ
Ak,J
I|J (·|XJ ∈ Ak,J), Ĉ

Al,J
I|J (·|XJ ∈ Al,J)

)]
1≤k,l≤m

,

and any statistic of the form ||M̂(AJ)|| can be used as a test statistics of H0, when || · || is a norm on

the set of m×m-matrices. Obviously, it is easy to introduce similar statistics based on copula densities

instead of cdfs’.

4.3.3 Parametric test statistics with “boxes”

When we work with subsets AJ ∈ Rd−p instead of pointwise conditioning events (XJ = xJ), we can

adapt all the previous parametric test statistics of Subsection 4.2.3. Nonetheless, the framework will be

slightly modified.

Let us assume that, for every AJ ∈ AJ , CAJI|J (·|XJ ∈ AJ) belongs to the same parametric copula

family C = {Cθ, θ ∈ Θ}. In other words, CAJI|J (·|XJ ∈ AJ) = Cθ(AJ )(·) for every AJ ∈ AJ . Therefore, we

could test the constancy of the mapping AJ 7→ θ(AJ), i.e. to test

Hc0 : the function k ∈ {1, . . . ,m} 7→ θ(Ak,J) is a constant called θb0.
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Clearly, for every AJ ∈ AJ , we can estimate θ(AJ) by

θ̂(AJ) := arg max
θ∈Θ

n∑
i=1

log cθ

(
F̂1|J(Xi,1|Xi,J ∈ AJ), . . . , F̂p|J(Xi,p|Xi,J ∈ AJ)

)
1(Xi,J ∈ AJ).

It can be proved that the estimate θ̂(AJ) is consistent and asymptotically normal, by revisiting the proof

of Theorem 1 in [137]. Here, the single difference w.r.t. the latter paper is induced by the random sample

size, modifying the limiting distributions. The proof is left to the reader.

Under the zero assumption Hc0, the parameter of the copula of (F1(X1|XJ ∈ Ak,J), . . . , Fp(Xp|XJ ∈
Ak,J)) given (XJ ∈ Ak,J) is the same for any k = 1, . . . ,m. It will be denoted by θb0, and we can still

estimate it by the semi-parametric procedure

θ̂b0 := arg max
θ∈Θ

m∑
k=1

n∑
i=1

log cθ

(
F̂1|J(Xi,1|Xi,J ∈ Ak,J), . . . , F̂p|J(Xi,p|Xi,J ∈ Ak,J)

)
1(Xi,J ∈ Ak,J).

Obviously, under some conditions of regularity and under Hc0, it can be proved that θ̂b0 is consistent and

asymptotically normal, by adapting the results of [137].

For convenience, let us define the “box index” function k(xJ) :=
∑m
k=1 k1{xJ ∈ Ak,J}, for any

xJ ∈ Rd−p. In other words, k is the index of the box Ak,J that contains xJ . It equals zero, when no box

in AJ contains xJ . Let us introduce the r.v. Yi := k(Xi,J), that stores only all the needed information

concerning the conditioning with respect to the variables Xi,J . We can then define the empirical pseudo-

observations as

Zi,I|Y :=

m∑
k=1

(
F1|J(Xi,1|XJ ∈ Ak,J), . . . , Fp|J(Xi,p|XJ ∈ Ak,J)

)
1{Xi,J ∈ Ak,J}

=
(
F1|J(Xi,1|XJ ∈ Ak(Xi,J ),J), . . . , Fp|J(Xi,p|XJ ∈ Ak(Xi,J ),J)

)
=

(
F1|Y (Xi,1|Yi), . . . , Fp|Y (Xi,p|Yi)

)
,

for any i = 1, . . . , n. Since we do not observe the conditional marginal cdfs’, we define the observed

pseudo-observations that we calculate in practice: for i = 1, . . . , n,

Ẑi,I|Y :=
(
F̂1|J(Xi,1|XJ ∈ AYi,J), . . . , F̂p|J(Xi,p|XJ ∈ AYi,J)

)
.

Note that we can then rewrite the previous estimators as

θ̂(Ak,J) = arg max
θ∈Θ

n∑
i=1

log cθ

(
Ẑi,I|Y

)
1(Yi = k), and θ̂b0 = arg max

θ∈Θ

n∑
i=1

log cθ

(
Ẑi,I|Y

)
.

Now, let us revisit some of the previously proposed test statistics in the case of “boxes”.

• Tests based on the comparison between θ̂(·) and θ̂0:

T c∞ :=
√
n max
k=1,...,m

‖θ̂(Ak,J)− θ̂0‖, T
c

2 := n

m∑
k=1

‖θ̂(Ak,J)− θ̂0‖2ωk, (4.30)

for some weights ωk.

• Tests based on the comparison between Cθ̂(·) and Cθ̂0 :

T cdist :=

m∑
k=1

dist(Cθ̂(Ak), Cθ̂0)ωk, (4.31)

and others.
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4.3.4 Bootstrap techniques for tests with boxes

In the same way as in the previous section, we will need bootstrap schemes to evaluate the limiting laws

of the test statistics ofH0 orHc0 under the null. All the nonparametric resampling schemes of Subsection

4.2.4.1 (in particular Efron’s usual bootstrap) can be used in this framework, replacing the conditional

pseudo-observations Ẑi,I|J by Ẑi,I|Y , i = 1, . . . , n. The parametric resampling schemes of Subsection

4.2.4.1 can also be applied to the framework of “boxes”, replacing θ̂0 by θ̂b0 and θ̂(xJ) by θ̂(AJ). In the

parametric case, the bootstrapped estimates are denoted by θ̂∗0 and θ̂∗(AJ). They are the equivalents of

θ̂b0 and θ̂n(AJ), replacing (Ẑi,I|J , Yi) by (Z∗i , Y
∗
i ).

The bootstrapped statistics will also be changed accordingly. Writing them explicitly is a rather

straightforward exercise and we do not provide the details, contrary to Subsection 4.2.4. For exam-

ple, the bootstrapped statistics corresponding to (4.30) is(
T c2
)∗

:= n

m∑
k=1

‖θ̂∗(Ak,J)− θ̂(Ak,J)− θ̂∗0 + θ̂b0‖2ωk,

where θ̂∗0 is the result of the program arg maxθ
∑n
i=1 log cθ

(
Ẑ∗i,I|Y

)
, in the case of Efron’s nonparametric

bootstrap.

As we noticed in Remark 4.8, some changes are required when dealing with the “parametric indepen-

dent” bootstrap. Indeed, under the alternative, we observe θ̂∗(Ak,J)− θ̂∗0 ≈ 0, because we have precisely

generated a bootstrap sample under Hc0. As a consequence, the law of
(
T c2
)∗ would be close to the law

of T c2 but under the alternative, providing very small powers. Therefore, convenient bootstrapped test

statistics of H0 under the “parametric independent” scheme will be of the type(
T c2
)∗∗

:= n

m∑
k=1

‖θ̂∗(Ak,J)− θ̂∗0‖2ωk.

Such a result is justified theoretically by the following theorem.

Theorem 4.14. Assume that Hc0 is satisfied, and that we apply the parametric independent bootstrap.
Set

Θn, 0 :=
√
n
(
θ̂0 − θ0

)
,Θn,k :=

√
n
(
θ̂(Ak,J)− θ0

)
, k = 1, . . . ,m,

Θ∗n,0 :=
√
n
(
θ̂∗0 − θ0

)
, and Θ∗n,k :=

√
n
(
θ̂∗(Ak,J)− θ0

)
, k = 1, . . . ,m.

Then there exists two independent and identically distributed random vectors
(
Θ0, . . . ,Θm

)
and

(
Θ⊥0 , . . . ,Θ

⊥
m

)
,

and a real number a0 such that(
Θn,0, . . . ,Θn,m,Θ

∗
n,0, . . . ,Θ

∗
n,m

)
=⇒

(
Θ0, . . . ,Θm,Θ

⊥
0 + a0Θ0, . . . ,Θ

⊥
m + a0Θ0

)
.

The proof of this theorem has been postponed in Appendix 4.7.

As a consequence of the latter result, applying the parametric independent bootstrap procedures for

some test statistics based on comparisons between θ̂0 and the θ̂(Ak,J) is valid. For instance, T c2 and(
T c2
)∗∗ will converge jointly in distribution to a pair of independent and identically distributed variables.

Indeed, we have(
T c2 ,

(
T c2
)∗∗)

=

(
n

m∑
k=1

‖θ̂bn,0 − θ̂n(Ak,J)‖2ωk , n
m∑
k=1

‖θ̂∗n,0 − θ̂∗n(Ak,J)‖2ωk

)

=

(
n

m∑
k=1

‖θ̂bn,0 − θ0 + θ0 − θ̂n(Ak,J)‖2ωk , n
m∑
k=1

‖θ̂∗n,0 − θ0 + θ0 − θ̂∗n(Ak,J)‖2ωk

)

=⇒

(
m∑
k=1

‖Θ0 −Θk‖2ωk ,
m∑
k=1

‖Θ⊥0 + a0Θ0 −Θ⊥k − a0Θ0‖2ωk

)
.
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The same reasoning applies with T c∞ and T cdist, for sufficiently regular copula families.

Remark 4.15. We have to stress that the first-level bootstrap, i.e. resampling among the conditioning
variables Xi,J , i = 1, . . . , n is surely necessary to obtain the latter result. Indeed, it can be seen that
the key proposition 4.16 is no longer true otherwise, because the limiting covariance functions of the two
corresponding processes Gn and G∗n will not be the same: see remark 4.22 below.

4.4 Numerical applications

Now, we would like to evaluate the empirical performances of some of the previous tests by simulation.

Such an exercise has been led by [58] or [16] extensively in the case of goodness-of-fit test for uncon-

ditional copulas. Our goal is not to replicate such experiments in the case of conditional copulas and

for tests of the simplifying assumption. Indeed, we have proposed dozens of test statistics and numer-

ous bootstrap schemes. Moreover, testing the simplifying assumption through H0 or some “box-type”

problems through H0 doubles the scale of the task. Finally, in the former case, we depend on smooth-

ing parameters that induce additional degrees of freedom for the fine tuning of the experiments (note

that [58] and [16] have renounced to consider tests that require additional smoothing parameters, as the

pivotal test statistics proposed in [49]. In our opinion, an exhaustive simulation experiment should be

the topic of (at least) one additional paper. Here, we will restrict ourselves to some partial numerical el-

ements. They should convince readers that the methods and techniques we have discussed previously

provide fairly good results and can be implemented in practice safely.

Hereafter, we consider bivariate conditional copulas and a single conditioning variable, i.e. p = 2 and

d = 3. The sample sizes will be n = 500, except if it is differently specified. Concerning the bootstrap, we

will resample N = 200 times to calculate approximated p-values. Each experiment has been repeated

500 times to calculate the percentages of rejection. The computations have been made on a standard

laptop, and, for the non-parametric bootstrap, they took an average time of 14.1 seconds for Iχ,n ; 26.9s

for T 0,m
CvM,n, 103s for I2,n, 265s for T c2 and 0.922s for T c2.

In terms of model specification, the margins of X = (X1, X2, X3) will depend on X3 as

X1 ∼ N (X3, 1), X2 ∼ N (X3, 1) and X3 ∼ N (0, 1).

We have studied the following conditional copula families: given X3 = x,

• the Gaussian copula model, with a correlation parameter θ(x),

• the Student copula model, with 4 degrees of freedom and a correlation parameter θ(x),

• the Clayton copula model, with a parameter θ(x),

• the Gumbel copula model, with a parameter θ(x),

• the Frank copula model, with a parameter θ(x).

In every case, we calibrate θ(x) such that the conditional Kendall’s tau τ(x) satisfies τ(x) = Φ(x)τmax,

for some constant τmax ∈ (0, 1). By default, τmax is equal to one. In this case, the random Kendall’s tau

are uniformly distributed on [0, 1].

Test of H0: we calculate the percentage of rejections of H0, when the sample is drawn under the

true law (level analysis) or when it is drawn under the same parametric copula family, but with varying
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parameters (power analysis). For example, when the true law is a Gaussian copula with a constant

parameter ρ corresponding to τ = 1/2, we draw samples under the alternative through a bivariate

Gaussian copula whose random parameters are given by τ(X3) = Φ(X3). The chosen test statistics

are T 0
CvM , T̃ 0

CvM (nonparametrics test of H0), Iχ,n and I2,n (nonparametric tests of H0 based on the

independence property) and T c2 (a parametric test of Hc0). To compute these statistics, we use the

estimator of the partial copula defined in Equation (4.6).

Test of H0: in the case of the test with boxes, the data-generating process will be

X1 ∼ N (γ(X3), 1), X2 ∼ N (γ(X3), 1) and X3 ∼ N (0, 1),

where γ(x) = Φ−1 (bmΦ(X3)c/m), so that the boxes are all of equal probability. As m→∞, we recover

the continuous model for which γ(x) = x.

In the same way, we calibrate the parameter θ(x) of the conditional copulas such that the conditional

Kendall’s tau satisfies τ(X3) = bmΦ(X3)c/m.

The choice of “the best” boxes A1,J , . . . , Am,J is not an easy task. This problem happens frequently

in statistics (think of Pearson’s chi-square test of independence, for instance), and there is no universal

answer. Nonetheless, in some applications, intuition can be fuelled by the context. For example, in

finance, it makes sense to test whether past positive returns induce different conditional dependencies

between current returns than past negative returns. And, as a general “by default” rule, we can divide

the space of XJ into several boxes of equal (empirical) probabilities. This trick is particularly relevant

when the conditioning variable is univariate. Therefore, in our example, we have chosen m = 5 boxes of

equal empirical probability for X3, with equal weights.

We have only evaluated T c2 for testing Hc0. In the following tables, for the parametric tests,

• “bootNP” means the usual nonparametric bootstrap ;

• “bootPI” means the parametric independent bootstrap (where ZI|J is drawn under Cθ̂0 and XJ

under the usual nonparametric bootstrap);

• “bootPC” means the parametric conditional bootstrap (nonparametric bootstrap for XJ , and XI is

sampled from the estimated conditional copula Cθ̂(X∗J ));

• “bootPseudoInd” means the pseudo-independent bootstrap (nonparametric bootstrap for XJ , and

draw Ẑ∗I|J independently, among the pseudo-observations Ẑj,I|J );

• “bootCond” means the conditional bootstrap (nonparametric bootstrap for XJ , and XI is sampled

from the estimated conditional law of XI given X∗J ).

Concerning tests of H0, the results are relatively satisfying. For the nonparametric tests and those

based on the independence property (Tables 4.1 and 4.2) the rejection rates are large when τmax = 1,

and the theoretical levels (5%) are underestimated (a not problematic feature in practice). This is still the

case for tests of the simplifying assumption under a parametric copula model through T c2: see Tables 4.3

and 4.4. The three bootstrap schemes provide similar numerical results. Remind that the bootstrapped

statistics is (T c2)
∗∗ with bootPI (Remark 4.8). Tests of H0 under a parametric framework and through T c2

confirm such observations. To evaluate the accuracy of the bootstrap approximations asymptotically, we

have compared the empirical distribution of some test statistics and their bootstrap versions under the

null hypothesis for two bootstrap schemes (see Figures 4.5 and 4.6). For the nonparametric bootstrap,
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the two distributions begin to match each other at n = 5000 whereas n = 500 is enough for the parametric

independent bootstrap.

We have tested the influence of τmax: the smaller is this parameter, the smaller is the percentage of

rejections under the alternative, because the simulated model tends to induce lower dependencies of

copula parameters w.r.t. X3: see Figures 4.1, 4.2, 4.3, and 4.4. Note that, on each of these figures, the

point at the left corresponds to a conditional Kendall’s tau which is constant, and equal to 0 (because

τmax = 0) whereas the rejection percentages in Tables 4.1 and 4.3 correspond to a conditional Kendall’s

tau constant, and equal to 0.5. As the two data-generating process are not the same, the rejection

percentages can differ even if both are under the null hypothesis. Nevertheless, in every case, our

empirical sizes converge to 0.05 as the sample size increases. When n = 5000, we found that the

percentage of rejections are between 4% and 6%.

We have not tried to exhibit an “asymptotically optimal” bandwidth selector for our particular testing

problem. This could be the task for further research. We have preferred a basic ad-hoc procedure. In

our test statistics, we smooth w.r.t. F3(X3) (or its estimate, to be specific), whose law is uniform on

(0, 1). A reasonable bandwidth h is given by the so-called rule-of-thumb in kernel density estimation,

i.e. h∗ = σ(F3(X3))/n1/5 = 1/(
√

12n1/5) = 0.083. Such a choice has provided reasonable results. The

typical influence of the bandwidth choice on the test results is illustrated in Figure 4.7. In general, the

latter h∗ belongs to reasonably wide intervals of “convenient” bandwidth values, so that the performances

of our considered tests are not very sensitive to the bandwidth choice.

To avoid boundary problems, we have slightly modified the test statistics: we remove the observa-

tions i such that F3(Xi,3) ≤ h or F3(Xi,3) ≥ 1 − h. This corresponds to changing the integrals (resp.

max) on [0, 1] to integrals (resp. max) on [h, 1− h].

Family T 0
CvM,n (4.8) T̃ 0

CvM,n (4.10) Iχ,n (4.13) I2,n (4.15)

Gaussian 0 0 0 0

Student 0 0 0 0

Clayton 0 0 1 0

Gumbel 1 1 0 1

Frank 0 0 0 0

Table 4.1: Rejection percentages under the null (nonparametric tests, nonparametric bootstrap bootNP).

Family T 0
CvM,n (4.8) T̃ 0

CvM,n (4.10) Iχ,n (4.13) I2,n (4.15)

Gaussian 98 100 100 93

Student 100 99 98 90

Clayton 99 99 99 98

Gumbel 99 98 100 95

Frank 98 100 98 50

Table 4.2: Rejection percentages under the alternative (nonparametric tests, nonparametric bootstrap

bootNP).
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Family
T c2 (4.18) T c2 (4.30)

bootPI bootPC bootNP bootPI bootPC bootNP

Gaussian 4 0 0 6 4 1

Student 6 0 2 4 5 3

Clayton 7 0 1 7 1 1

Gumbel 3 1 0 9 2 2

Frank 4 0 6 3 5 1

Table 4.3: Rejection percentages under the null (parametric tests).

Family
T c2 (4.18) T c2 (4.30)

bootPI bootPC bootNP bootPI bootPC bootNP

Gaussian 100 100 100 100 100 100

Student 100 100 100 100 100 100

Clayton 100 62 98 100 98 100

Gumbel 100 100 34 100 99 76

Frank 100 100 100 100 100 100

Table 4.4: Rejection percentages under the alternative (parametric tests).
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Figure 4.1: Rejection percentages for the statistics Iχ (4.13) as a function of τmax: we use the gaussian

copula, with a conditional parameter θ(x) calibrated such that the conditional Kendall’s tau τ(x) satisfies

τ(x) = τmax · Φ(x). Solid line: bootNP. Dashed line : bootPseudoInd. Dotted line : bootCond.



Chapter 4. About tests of the “simplifying” assumption for conditional copulas 107

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

tauMax

R
e
je

c
ti
o
n
 %

Figure 4.2: Rejection percentages for the statistics I2,n (4.15) as a function of τmax: we use the gaussian

copula, with a conditional parameter θ(x) calibrated such that the conditional Kendall’s tau τ(x) satisfies

τ(x) = τmax · Φ(x). Solid line: bootNP. Dashed line : bootPseudoInd. Dotted line : bootCond.
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Figure 4.3: Rejection percentages for the statistics T c2 (4.18) as a function of τmax: we use the gaussian

copula, with a conditional parameter θ(x) calibrated such that the conditional Kendall’s tau τ(x) satisfies

τ(x) = τmax · Φ(x). Solid line: bootNP. Dashed line : bootPI. Dotted line : bootPC.



Chapter 4. About tests of the “simplifying” assumption for conditional copulas 108

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

tauMax

R
e
je

c
ti
o
n
 %

Figure 4.4: Rejection percentages for the statistics T c2 (4.30) as a function of τmax: we use the gaussian

copula, with a conditional parameter θ(x) calibrated such that the conditional Kendall’s tau τ(x) satisfies

τ(x) = τmax · bmΦ(X3)c/m. Solid line: bootNP. Dashed line : bootPI. Dotted line : bootPC.
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Figure 4.5: QQ-plot of a sample of the test statistic T c2 and a sample of the bootstrap test statistic (T c2)∗

using the non-parametric bootstrap for the gaussian copula, with different sample sizes and under Hc0
(conditional Kendall’s tau is constant and equal to 0.5).



Chapter 4. About tests of the “simplifying” assumption for conditional copulas 110

0.00 0.05 0.10 0.15 0.20

0
.0

0
0
.0

5
0
.1

0
0

.1
5

0
.2

0

sampleStats

s
a

m
p

le
B

o
o
ts

S
ta

ts

Figure 4.6: QQ-plot of a sample of the test statistic T 2,c and a sample of the bootstrap test statistic

(T 2,c)
∗∗ using the parametric independent bootstrap for the gaussian copula, with n = 500 and under

Hc0 (conditional Kendall’s tau is constant and equal to 0.5).

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

h

R
e
je

c
ti
o
n
 %

Figure 4.7: Rejection percentage for the statistic T 0,m
CvM,n (4.8) with m = 20 as a function of h. The red

(resp. black) line corresponds to the alternative (resp. zero) assumption.
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4.5 Conclusion

We have provided an overview of the simplifying assumption problem, under a statistical point of view.

In the context of nonparametric or parametric conditional copula models (with unknown conditional

marginal distributions), numerous testing procedures have been proposed. We have developed the

theory towards a slightly different but related approach, where “box-type” conditioning events replace

pointwise ones. This opens a new field for research that is interesting per se. Several new bootstrap

procedures have been detailed, to evaluate p-values under the zero assumption in both cases. In partic-

ular, we have proved the validity of one of them (the “parametric independent” bootstrap scheme under

H0).

Clearly, there remains a lot of work. We have opened the Pandora box rather than provided definitive

answers. Open questions are still numerous: precise theoretical convergence results of our test statistics

(and others!), validity of these new bootstrap schemes, bandwidth choices, empirical performances,...

All these dimensions would require further research. We have made a contribution to the landscape of

problems related to the simplifying assumption, and proposed a working program for the whole copula

community.

Acknowledgements: The authors acknowledge the two anonymous reviewers for their numerous

and very useful comments and suggestions.

4.6 Notation
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X = (XI ,XJ) random vector of size d

I, J {1, . . . , p} and {p+ 1, . . . , d}
S = (X1,1:d, . . . ,Xn,1:d) initial sample of n i.i.d. observations

AJ measurable subset in Rd−p

AJ collection of all measurable subsets of Rd−p

such that XJ is in each set with positive probability

AJ = {A1,J , . . . , Am,J} partition of Rd−p into m sets

such that XJ is in each set with positive probability

Y box index, i.e. Y is the k such that XJ ∈ Ak,J
Ûi,k i-th pseudo-observation of the k-th variable

ZI|J conditional observation of XI given XJ

ZI|Y conditional observation of XI given the box index Y

C copula family indexed by the elements of a set Θ

Cθ copula of the family C with the parameter θ ∈ Θ

cθ density of the copula Cθ
θ0 unconditional parameter of the copula of ZI|J
θ(xJ) parameter of the conditional copula of ZI|J given XJ = xJ

θb0 unconditional parameter of the copula of ZI|Y
θ(AJ) conditional parameter of the copula of ZI|Y given XJ ∈ AJ

Fi(·) marginal cdf of Xi, i = 1, . . . , d

Fi|J(·|XJ ∈ AJ) conditional marginal cdf of Xi given XJ ∈ AJ , i = 1, . . . , p

Fi|J(·|XJ = xJ) conditional marginal cdf of Xi given XJ = xJ , i = 1, . . . , p

FI|J(·|XJ ∈ AJ) conditional joint cdf of XI given XJ ∈ AJ
FI|J(·|XJ = xJ) conditional joint cdf of XI given XJ = xJ

GI,J(·) joint cdf of (ZI|J ,XJ)

CAJI|J (·|XJ ∈ AJ) conditional copula of XI given XJ ∈ AJ
CI|J(·|XJ = xJ) conditional copula of XI given XJ = xJ

Cs,I|J(·) partial copula of XI given XJ

Table 4.5: Table of notation
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T 0
CvM,n (4.3) brute-force test statistic of H0, constructed with the L2 distance

between the conditional and the partial copula

(resp. T 0
KS,n (4.2)) (resp. L∞ distance)

(resp. T 0,m
CvM,n (4.8)) (resp. L2 distance using a fixed number m of points)

T̃ 0

CvM,n (4.10) brute-force test statistic of H0, constructed with the L2-distance

(resp. T̃ 0

KS,n (4.9)) (resp. L∞-distance) between all pairs of conditional copulas

Iχ,n (4.13) chi-square-type test statistic of the independence between ẐI|J and XJ

IKS,n (4.14) test statistic based on the distance between the joint empirical cdf

of (ẐI|J ,XJ) and the product of their empirical cdf, using the L∞ norm

(resp. I2,n (4.15)) (resp. using the L2 norm)

(resp. ICvM,n (4.16)) (resp. using the L2 norm, weighted by the joint empirical cdf as weight)

T c∞ (4.18) test statistic based on the L∞ distance between the parameter of the

conditional copula and the constant parameter of the partial copula

(resp. T c2 (4.18)) (resp. L2 distance)

(resp. T cdist (4.19)) (resp. using some distance between the estimated copulas)

(resp. T cdens (4.20)) (resp. using the L2 distance between the estimated copula densities)

T dist,n (4.29) brute-force test statistic of H0 constructed with the distance dist(·, ·)
between all pairs of conditional copulas with Borelian subsets

(resp. T KS,n (4.27)) (resp. with the L∞ distance)

(resp. T CvM,n (4.28)) (resp. with the L2 distance)

T c∞ (4.30) test statistic based on the L∞ distance between the parameters

estimated on each set and the simplified parameter

(resp. T c2 (4.30)) (resp. based on the L2 distance)

(resp. T cdist (4.31)) (resp. based on some distance between the copulas whose parameters are

estimated on each set and the copula with the simplified parameter)

T ∗, T ∗∗ bootstrap statistics corresponding to a general test statistic T

Table 4.6: Table of main test statistics
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4.7 Proof of Theorem 4.14

4.7.1 Preliminaires

Let (Zi)i=1,...,n be a sequence of i.i.d random vectors in [0, 1]p, Zi being drawn from the true cdf Cθ0 .

They have the same law as the previously called vectors Zi,I|AJ or Zi,I|Y under the zero assumption

Hc0. Let (Xi,J)i=1,...,n be a sequence of i.i.d random vectors in Rd−p, Xi,J ∼ FJ . Let (Z∗i )i=1,...,n be

an independent sequence of i.i.d random vectors in [0, 1]p, where Z∗i ∼ Cθ0 exactly as Zi. The three

samples (Zi), (Xi,J) and (Z∗i ) are mutually independent. Let (X∗i,J)i=1,...,n be a sequence of i.i.d random

vectors in Rd−p, which are drawn from Fn,J , the empirical cdf of X1,J , . . .Xn,J , and independently of both

(Zi) and (Z∗i ).

In the following, we shall use the notation f⊗g := (x, y) 7→ f(x)g(y) when f , g are two real functions,

possibly from different spaces. Set l(θ, ·) := log cθ(·). We will need some conditions of regularity.

Assumption (R): (θ,uI) 7→ l(θ,uI) is three times differentiable with respect to θ, for every uI ∈ (0, 1)p.

Moreover, for every ε > 0,

IE

[
sup

θ|‖θ−θ0‖≤ε
sup

{z|‖z−Zi‖≤‖Ẑi,I|Y −Zi‖}
|| ∂

3l

∂θ3
(θ, z) ||

]
< +∞.

The latter technical assumption can be weakened through some trimming techniques, as in [50].

Since this would require to change the definitions of the parametric estimators, we do not try to improve

towards this direction. We will set
.
cθ := ∂cθ/∂θ and

..
c θ := ∂2cθ/∂θ

2.

We associate to every Xi,J (resp. X∗i,J ) its corresponding index Yi (resp. Y ∗i ) s.t. Xi,J ∈ AYi (resp.

X∗i,J ∈ AY ∗i ). For convenience, we assume that (Ak)k=1,...,m is a partition of Rd−p. Otherwise, we

have to restrict our sample to the observations for which Xi,J belongs to some “box” Ak, k = 1, . . . ,m.

Therefore, denote by Cn, C∗n, Pn,Y and P ∗n,Y the empirical laws of (Zi), (Z∗i ), (Yi) and (Y ∗i ) respectively.

The joint law of (Z1, Y1) (resp. (Z1,X1,J)) will be denoted by G := Cθ0 ⊗ PY (resp. G := Cθ0 ⊗ FJ ),

with PY (k) = IP(Y = k), k = 1, . . . ,m. Denote by Gn (resp. Gn) the empirical law of (Zi, Yi)i=1,...,n

(resp. (Zi,Xi,J)i=1,...,n) Moreover, G∗n and G
∗
n will be the empirical distributions of (Z∗i , Y

∗
i )i=1,...,n and

(Z∗i ,X
∗
i,J)i=1,...,n respectively. Let Pn be the joint probability distribution of(

Zi, Yi,Z
∗
i , Y

∗
i

)
i=1,...,n

∈
(
[0, 1]p × {1, . . . ,m}

)⊗2n
.

The following proposition is key. It will be proved in Subsection 4.7.3.

Proposition 4.16. Consider the empirical process defined on [0, 1]p × Rd−p by

Gn(z,xJ) :=
√
n(Gn −G)(z,xJ) :=

1√
n

n∑
i=1

{1
(
(Zi,Xi,J) ≤ (z,xJ)

)
− Cθ0(z)FJ(xJ)},

and the corresponding bootstrapped empirical process

G∗n(z,xJ) :=
1√
n

n∑
i=1

1
(
(Z∗i ,X

∗
i,J) ≤ (z,xJ)

)
− Cθ0(z)

1√
n

n∑
i=1

1(Xi,J ≤ xJ),

or, equivalently, G∗n =
√
n(G

∗
n−Cθ0 ⊗Fn,J). Then there exist two independent and identically distributed

Gaussian processes AG and A⊥G such that
(
Gn , G

∗
n

)
converges to (AG , A

⊥
G) weakly in

(
`∞
(
[0, 1]p ×

Rd−p
))2

.
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As a Corollary, we deduce the same results when the discrete variables Yi replace the variables Xi,J .

Proposition 4.17. Under the assumptions of Proposition 4.16, let the empirical process defined on
[0, 1]p × {1, . . . ,m} by

Gn(z, k) :=
√
n(Gn −G)(z, k)

:=
1√
n

n∑
i=1

{1
(
Zi ≤ z, Yi = k

)
− Cθ0(z)PY (k)},

and its bootstrapped empirical process

G∗n(z, k) :=
1√
n

n∑
i=1

1
(
Z∗i ≤ z, Y ∗i = k

)
− Cθ0(z)

1√
n

n∑
i=1

1(Yi = k),

or equivalently G∗n =
√
n(G∗n − Cθ0 ⊗ Pn,Y ), Pn,Y (k) being the empirical proportion of Sn-observations

into Ak. Then, there exist two independent and identically distributed processes AG and A⊥G such that(
Gn , G∗n

)
converges to (AG , A⊥G) weakly in

(
`∞
(
[0, 1]p × {1, . . . ,m}

))2

.

Remark 4.18. The covariance function of AG (or A⊥) is given by

IE[AG(z, y)AG(z′, y′)] = lim
n

IE[Gn(z, y)Gn(z′, y′)]

= 1(y = y′)IP(Y = y)Cθ0(z ∧ z′)− IP(Y = y)IP(Y = y′)Cθ0(z)Cθ0(z′).

As a “toolbox”, we will need the following lemma.

Lemma 4.19. Let θ̂b0 and θ̂(Ak) be the estimators based on the pseudo-sample (Ẑi,I|Y , Yi)i=1,...,n (and
then on the sample (Zi, Yi)i=1,...,n) as

θ̂b0 := arg max
θ∈Θ

n∑
i=1

log cθ(Ẑi,I|Y ), and

θ̂(Ak) := arg max
θ∈Θ

n∑
i=1

log cθ(Ẑi,I|Y ).1(Yi = k), k = 1, . . . ,m.

We will assume they lie in the interior of Θ. Set Θn,0 :=
√
n
(
θ̂b0 − θ0

)
, and, for k = 1, . . . ,m, Θn,k :=

√
n
(
θ̂(Ak)− θ0

)
. Moreover, for any distribution H on [0, 1]p × {1, . . . ,m}, set

ψk,1(H) :=

∫
∂l

∂θ

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = y2}dH(z1, y1)∫
1{y1 = k}dH(z1, y1)

)
q=1,...,p

1{y2 = k} dH(z2, y2),

ψk,2(H) :=

∫
∂2l

∂θ2

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = y2}dH(z1, y1)∫
1{y1 = k} dH(z1, y1)

)
q=1,...,p

1{y2 = k} dH(z2, y2).

(i) For k = 1, . . . ,m,

Θn,k = −
√
nψk,1(Gn)

ψk,2(Gn)
+ oP (1).

(ii) For every discrete law PY with values in {1, . . . ,m}, the corresponding distribution G̃ := Cθ0 ⊗ PY
satisfies ψk,1(G̃) = 0.

(iii) ψ1 := (ψ1,1, . . . , ψm,1) is Hadamard-differentiable at every cdf H, and its differential is given by
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.
ψk,1(H)(h) =

∫
∂l

∂θ

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = y2}dH(z1, y1)∫
1{y1 = k}dH(z1, y1)

)
q=1,...,p

1{y2 = k} dh(z2, y2)

+

p∑
j=1

∫
∂2l

∂θ ∂zj

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = y2}dH(z1, y1)∫
1{y1 = k}dH(z1, y1)

)
q=1,...,p

1{y2 = k}

·

(∫
1{z1

j ≤ z2
j , y

1 = y2}dh(z1, y1)∫
1{y1 = k}dH(z1, y1)

−
∫
1{z1

j ≤ z2
j , y

1 = y2}dH(z1, y1)
∫
1{y1 = k}dh(z1, y1)(∫

1{y1 = y2}dH(z1, y1)
)2

)
dH(z2, y2)

(iv)

Θn,0 = −
∑m
k=1

√
n
(
ψk,1(Gn)

)∑m
k=1 ψk,2(Gn)

+ oP (1) =

∑m
k=1 ψk,2(Gn)Θn,k∑m
k=1 ψk,2(Gn)

+ oP (1)

Proof : Note that Ẑi,I|J is an explicit measurable function of the sample (Zi,I|J)i=1,...,n. Indeed, for any

i = 1, . . . , n and q = 1, . . . , p,

Ẑi,q|Y :=F̂n,q(Xi,q|XJ ∈ AYi,J)

:=

∑n
j=1 1{Xj,q ≤ Xi,q,Xj,J ∈ AYi,J}∑n

j=1 1{Xj,J ∈ Ak(Xi,J ),J}

=

∑n
j=1 1{Fq(Xj,q|XJ ∈ AYj ,J) ≤ Fq(Xi,q|XJ ∈ AYj ,J), Yj = Yi}∑n

j=1 1{Yj = Yi}

=

∑n
j=1 1{Fq(Xj,q|XJ ∈ AYj ,J) ≤ Fq(Xi,q|XJ ∈ AYi,J), Yj = Yi}∑n

j=1 1{Yj = Yi}

=

∑n
j=1 1{Zj,q|Y ≤ Zi,q|Y , Yj = Yi}∑n

j=1 1{Yj = Yi}
. (4.32)

We deduce that θ̂b0 and θ̂(Ak) are measurable functions of the unobservable random variables Zi,I|Y

and Yi, for i = 1, . . . , n.

(i). Let k ∈ {1, . . . ,m}. Applying successively the first order condition for the estimator θ̂(Ak) and

some Taylor series expansions, we have

0 =
1

n

n∑
i=1

∂l

∂θ
(θ̂(Ak), Ẑi,I|J)1{Yi = k}

= B1,k
n −B2,k

n

(
θ̂(Ak,J)− θ0

)
+ oP

(
θ̂(Ak,J)− θ0

)
, with

B1,k
n :=

1

n

n∑
i=1

∂l

∂θ

(
θ0, Ẑi,I|J

)
1{Yi = k} and B2,k

n := − 1

n

n∑
i=1

∂2l

∂θ2

(
θ0, Ẑi,I|J

)
1{Yi = k},

implying

Θn,k :=
√
n
(
θ̂(Ak,J)− θ0

)
=

√
nB1,k

n

B2,k
n

+ oP
(
Θn,k

)
.

Now, invoking (4.32), let us compute the numerator of this expression:

B1,k
n =

1

n

n∑
i=1

∂l

∂θ

θ0,

(∑n
j=1 1{Zj,q ≤ Zi,q, Yq = k}∑n

j=1 1{Yj = k}

)
q=1,...,p

1{Yi = k}

=

∫
∂l

∂θ

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = k}dGn(z1, y1)∫
1{y1 = k}dGn(z1, y1)

)
q=1,...,p

1{y2 = k}dGn(z2, y2)

= ψk,1(Gn).
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In the same way, the denominator can be rewritten as

B2,k
n = −

∫
∂2l

∂θ2

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = k}dGn(z1, y1)∫
1{y1 = k}dGn(z1, y1)

)
q=1,...,p

1{y2 = k}dGn(z2, y2)

= −ψk,2(Gn).

(ii). We now prove the second part of the lemma. Since G̃ = Cθ0 ⊗ FY , we get

ψk,1(G̃) :=

∫
∂l

∂θ

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = k}dG̃(z1, y1)∫
1{y1 = k}dG̃(z1, y1)

)
q=1,...,p

1{y2 = k}dG̃(z2, y2)

=

∫
∂l

∂θ

θ0,

(
IP{Z1

q ≤ z2
q , Y

1 = k}
IP{Y 1 = k}

)
q=1,...,p

1{y2 = k}dG̃(z2, y2)

=

∫
∂l

∂θ

(
θ0,
(
IP{Z1

q ≤ z2
q}
)
q=1,...,p

)
dCθ0(z2)

∫
1{y2 = k}dFY (y2)

= IP{Y = k}
∫

∂l

∂θ

(
θ0, z

2
)
dCθ0(z2) = 0.

(iii). We remark that the law G appears three times in ψk,1: two times in the log-density l and one

time at the end of the main integral. By separating the effect of a change from H to H + h in the main

integral only (first term of the differential) and the effect of a change in l, and using the standard rule of

differential calculus (l is differentiable), we obtain the second part of the given result.

(iv). As in the proof of (i), we apply successively the first order condition for θ̂bn,0 and some Taylor

series expansion to get

0 =
1

n

n∑
i=1

∂l

∂θ
(θ̂b0, Ẑi,I|Y ) = B1

n −
(
θ̂b0 − θ0

)
B2
n + oP

(
θ̂b0 − θ0

)
, with

B1
n :=

1

n

n∑
i=1

∂l

∂θ

(
θ0, Ẑi,I|Y

)
=

m∑
k=1

B1,k
n and B2

n := − 1

n

n∑
i=1

∂2l

∂θ2

(
θ0, Ẑi,I|Y

)
=

m∑
k=1

B2,k
n .

We deduce

Θn,0 :=
√
n
(
θ̂b0 − θ0

)
=

√
nB1

n

B2
n

+ oP
(
Θn,0

)
=

√
n
∑m
k=1B

1,k
n∑m

k=1B
2,k
n

+ oP
(
Θn,0

)
=

√
n
∑m
k=1 ψk,1(Gn)∑m

k=1−ψk,2(Gn)
+ oP

(
Θn,0

)
=

∑m
k=1 ψk,2(Gn)Θn,k∑m
k=1 ψk,2(Gn)

+ oP
(
Θn,0

)
. �

Lemma 4.20. Let `n be defined by

`n :=

n∑
i=1

log

(
cθ̂b0

(Z∗i )

cθ0(Z∗i )

)
.

If there exists a random vector Θ0 such that Θn,0 =⇒ Θ0 under Pn, then we have

`n = ΘT
0 W⊥ −

1

2
ΘT

0 I0Θ0 + oP (1) ,

where W⊥ ∼ N (0, I0) is independent of the sample
(
Zi,I|Y , Yi

)
i=1,...,n

and I0 is the Fisher information
matrix

I0 := IECθ0

[ .
c
T

θ0(Z)
.
cθ0(Z)

c2θ0(Z)

]
.



Chapter 4. About tests of the “simplifying” assumption for conditional copulas 118

Proof : By a Taylor expansion, we obtain

`n =

n∑
i=1

{l
(
θ̂b0,Z

∗
i

)
− l (θ0,Z

∗
i )}

=
(
θ̂b0 − θ0

)T n∑
i=1

∂l

∂θ
(θ0,Z

∗
i ) +

1

2

(
θ̂b0 − θ0

)T n∑
i=1

∂2l

∂θ2
(θ0,Z

∗
i )
(
θ̂b0 − θ0

)
+Rn

= ΘT
n,0

[
1√
n

n∑
i=1

∂l

∂θ
(θ0, Z

∗
i )

]
+

1

2
ΘT
n,0

[
1

n

n∑
i=1

∂2l

∂θ2
(θ0, Z

∗
i )

]
Θn,0 +Rn.

First, we have

Rn ≤ Cst||θ̂b0 − θ0||3 sup
θ|‖θ−θ0‖≤‖θ̂b0−θ0‖

||
n∑
i=1

∂3l

∂θ3
(θ, Z∗i ) ||

≤ Cst||Θn,0||3 · sup
θ|‖θ−θ0‖≤‖θ̂b0−θ0‖

|| 1
n

n∑
i=1

∂3l

∂θ3
(θ, Z∗i ) || · 1√

n
= OP

(
1√
n

)
,

by Assumption (R). By the usual CLT, we know that 1√
n

∑n
i=1 ∂l/∂θ (θ0, Z

∗
i ) −→W⊥.W⊥ is independent

of
(
Zi,I|Y , Yi

)
i=1,...,n

as a limit of a sequence of variables that have the same property. Using the law of

large numbers, we have also

1

n

n∑
i=1

∂2l

∂θ2
(θ0, Z

∗
i ) =

1

n

n∑
i=1

..
c θ
cθ

(Z∗i )−
.
c
T

θ

.
cθ
c2θ

(Z∗i ) =⇒ 0− I0 �

4.7.2 Proof of Theorem 4.14

We first reason under Pn as in Theorem 1 in [57]. By Proposition 4.17, under Pn, there exist two

independent and identically distributed processes AG and A⊥G such that
√
n
(
Gn − Cθ0 ⊗ PY , G∗n − Cθ0 ⊗ Pn,Y

)
=⇒ (AG , A⊥G),

weakly in
(
`∞
(
[0, 1]p × {1, . . . ,m}

))2

. By (iii) of Lemma 4.19, ψ1 is Hadamard-differentiable and so,

using the functional Delta-method, we deduce
√
n
(
ψ1(Gn)− ψ1(Cθ0 ⊗ PY ) , ψ1(G∗n)− ψ1(Cθ0 ⊗ Pn,Y )

)
=⇒

( .
ψ1(G)(AG) ,

.
ψ1(G)(A⊥G)

)
.

By (ii) of Lemma 4.19, ψ1(Cθ0 ⊗ PY ) = ψ1(Cθ0 ⊗ Pn,Y ) = 0, implying
√
n
(
ψ1,1(Gn), . . . , ψm,1(Gn) , ψ1,1(G∗n), . . . , ψm,1(G∗n)

)
=⇒

( .
ψ1,1(G)(AG), . . . ,

.
ψm,1(G)(AG) ,

.
ψ1,1(G)(A⊥G), . . . ,

.
ψm,1(G)(A⊥G)

)
.

By Slutsky’s theorem, we have

√
n
(ψ1,1(Gn)

ψ1,2(Gn)
, . . . ,

ψm,1(Gn)

ψm,2(Gn)
,
ψ1,1(G∗n)

ψ1,2(G∗n)
, . . . ,

ψm,1(G∗n)

ψm,2(G∗n)

)
=⇒

( .
ψ1,1(G)(AG)

ψ1,2(G)
, . . . ,

.
ψm,1(G)(AG)

ψm,2(G)
,

.
ψ1,1(G)(A⊥G)

ψ1,2(G)
, . . . ,

.
ψm,1(G)(A⊥G)

ψm,2(G)

)
.

By (i) of Lemma 4.19, the latter convergence result implies(
Θn,1, . . . ,Θn,m , Θ∗n,1, . . . ,Θ

∗
n,m

)
=⇒

( .
ψ1,1(G)(AG)

−ψ1,2(G)
, . . . ,

.
ψm,1(G)(AG)

−ψm,2(G)
,

.
ψ1,1(G)(A⊥G)

−ψ1,2(G)
, . . . ,

.
ψm,1(G)(A⊥G)

−ψm,2(G)

)
=:
(

Θ1, . . . ,Θm , Θ⊥1 , . . . ,Θ
⊥
m

)
.
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Moreover,
(

Θ1, . . . ,Θm

)
and

(
Θ⊥1 , . . . ,Θ

⊥
m

)
are independent and identically distributed under Pn, by

construction. Because of (iv) of Lemma 4.19, Θn,0 can asymptotically be seen as a mean of the Θn,k

and this provides

Θn,0 =

∑m
k=1 ψk,2(Gn)Θn,k∑m
k=1 ψk,2(Gn)

=⇒
∑m
k=1 ψk,2(G)Θk∑m
k=1 ψk,2(G)

=: Θ0.

Therefore, by the continuous mapping theorem, we deduce(
Θn,0, . . . ,Θn,m , Θ∗n,0, . . . ,Θ

∗
n,m

)
=⇒

(
Θ0, . . . ,Θm , Θ⊥0 , . . . ,Θ

⊥
m

)
,

and we still have that
(

Θ0, . . . ,Θm

)
and

(
Θ⊥0 , . . . ,Θ

⊥
m

)
are independent and identically distributed under

Pn.

Now, we will work under P∗n the probability measure over
(
[0, 1]p × {1, . . . ,m}

)⊗2n whose density

with respect to Pn is

dP∗n
dPn

(z1, y1, . . . , zn, yn, z
∗
1, y
∗
1 , . . . , z

∗
n, y
∗
n) =

n∏
i=1

cθ̂b0
(z∗i )

cθ0(z∗i )
,

where θ̂b0 is the estimator of θ0 when applied to the “sample” (z1, y1, . . . , zn, yn). We remark that

dP∗n
dPn

(Z1, Y1, . . . ,Zn, Yn,Z
∗
1, Y

∗
1 , . . . ,Z

∗
n, Y

∗
n ) = exp(`n).

Since we have shown that Θn,0 =⇒ Θ0 under Pn, use Lemma 4.20 and obtain

`n = ΘT
0 W⊥ −

1

2
ΘT

0 I0Θ0 + oP (1) .

Therefore, under Pn, we have(
dP∗n
dPn

,Θn,0, . . . ,Θn,m,Θ
∗
n,0, . . . ,Θ

∗
n,m

)
=⇒

(
ζ,Θ0, . . . ,Θm,Θ

⊥
0 , . . . ,Θ

⊥
m

)
,

where ζ := exp
(
ΘT

0 W⊥ −ΘT
0 I0Θ0/2

)
. Note that IE[ζ] = IE[IE[ζ|Θ0]] = 1 because Θ0 and W⊥ are

independent, and W⊥ ∼ N (0, I0). This corresponds to condition (iii) of Theorem 3.10.5 of [139], and

we deduce P∗n is contiguous with respect to Pn. We can then apply Le Cam’s Third Lemma (Theorem

3.10.7 of [139]. We get that, under P∗n,(
Θn,0, . . . ,Θn,m,Θ

∗
n,0, . . . ,Θ

∗
n,m

)
=⇒

(
Θ̃0, . . . , Θ̃m,Θ

∗
0, . . . ,Θ

∗
m

)
,

where IE[χ(Θ̃0:m,Θ
∗
0:m)] = IE[ζχ(Θ0:m,Θ

⊥
0:m)] for any simple function χ. Choose w1 and w2 ∈ Rm+1 and

set Σ := V ar
[
Θ0:m

]
. Then, we have

IE[exp(iwT1 Θ̃0:m + iwT2 Θ∗0:m)] = IE[ζ exp(iwT1 Θ0:m + iwT2 Θ⊥0:m)]

= IE[exp(ΘT
0 W⊥ −ΘT

0 I0Θ0/2 + iwT1 Θ0:m + iwT2 Θ⊥0:m)]

= IE
[

exp(iwT1 Θ0:m −ΘT
0 I0Θ0/2) IE[exp(ΘT

0 W⊥ + iwT2 Θ⊥0:m) |Θ0:m]
]

= IE

[
exp(iwT1 Θ0:m −ΘT

0 I0Θ0/2) exp

(
1

2

(
−wT2 Σw2 + ΘT

0 I0Θ0 + 2iw2IE[Θ⊥0:m

TW⊥]Θ0

))]
= IE

[
exp

(
iwT1 Θ0:m − wT2 Σw2/2 + iw2IE[Θ⊥0:m

TW⊥]Θ0

)]
= IE

[
exp

(
iwT1 Θ0:m + iw2Θ⊥0:m + iw2IE[Θ⊥0:m

TW⊥]Θ0

)]
.
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Therefore, we have proven the following equality:(
Θ̃0, . . . , Θ̃m,Θ

∗
0, . . . ,Θ

∗
m

)
law
=
(
Θ0, . . . ,Θm,Θ

⊥
0 + a0Θ0, . . . ,Θ

⊥
m + amΘ0

)
,

where ak = IE[Θ⊥k
TW⊥]. To finish the proof, it remains to show that ak = a0 for all k ∈ {1, . . . ,m}, i.e.

IE[Θ⊥0
TW⊥] = IE[Θ⊥k

TW⊥].

First, we know from the proof of Lemma 4.19 that Θk,n = −
.
ψk,1(G)(AG)/ψk,2(G) + oP (1), k =

1, . . . ,m and Θ0,n = −
.
ψ0,1(G)(AG)/ψ0,2(G) + oP (1), where

ψ0,1(G) :=

∫
∂l

∂θ

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = y2}dG(z1, y1)∫
1{y1 = y2}dG(z1, y1)

)
q=1,...,p

 dG(z2, y2),

and

ψ0,2(G) :=

∫
∂2l

∂θ2

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = y2}dG(z1, y1)∫
1{y1 = y2}dG(z1, y1)

)
q=1,...,p

 dG(z2, y2).

This implies Θk = −
.
ψk,1(G)(AG)/ψk,2(G), k = 0, . . . ,m.

Actually, the reasoning is exactly the same when dealing with Θ∗k,n and Θ⊥k , k = 0, . . . ,m, replacing

AG by A⊥G. We get

Θ⊥k = −
.
ψk,1(G)(A⊥G)

ψk,2(G)
, and Θ⊥0 = −

.
ψ0,1(G)(A⊥G)

ψ0,2(G)
·

Second, note that, when k = 1, . . . ,m,

ψk,2(G) :=

∫
∂2l

∂θ2

θ0,

(∫
1{z1

q ≤ z2
q , y

1 = k}dG(z1, y1)∫
1{y1 = k} dG(z1, y1)

)
q=1,...,p

1{y2 = k} dG(z2, y2)

= IP(Y = k)

∫
∂2l

∂θ2

(
θ0,

(∫
1{z1

q ≤ z2
q}dCθ0(z1)

)
q=1,...,p

)
dCθ0(z2)

= IP(Y = k)

∫
∂2l

∂θ2
(θ0, z) dCθ0(z2)

= IP(Y = k)ψ0,2(G).

Third, let us calculate
.
ψk,1(G)(h), k = 0, 1, . . . ,m. From Lemma 4.19, we have

.
ψk,1(G)(h) =

∫
∂l

∂θ

(
θ0, z

2
)
1{y2 = k} dh(z2, y2) +

p∑
j=1

∫
∂2l

∂θ ∂zj

(
θ0, z

2
)
1{y2 = k}

·

(∫
1{z1

j ≤ z2
j , y

1 = y2}dh(z1, y1)∫
1{y1 = y2}dG(z1, y1)

−
∫
1{z1

j ≤ z2
j , y

1 = y2}dG(z1, y1)
∫
1{y1 = y2}dh(z1, y1)(∫

1{y1 = y2}dG(z1, y1)
)2

)
dG(z2, y2).

for k = 1, . . . ,m. Since G = Cθ0 ⊗ FY , we can simplify the latter equalities:

.
ψk,1(G)(h) =

∫
∂l

∂θ

(
θ0, z

2
)
1{y2 = k} dh(z2, y2) + IP(Y = k)

p∑
j=1

∫
∂2l

∂θ ∂zj

(
θ0, z

2
)

·

(∫
[1{z1

j ≤ z2
j , y

1 = y2} − z2
j1{y1 = y2}]dh(z1, y1)∫

1{y1 = y2}dG(z1, y1)

)
dCθ0(z2).
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Since
.
ψ0,1(G)(h) =

∑m
k=1

.
ψk,1(G)(h), we have

.
ψ0,1(G)(h) =

∫
∂l

∂θ

(
θ0, z

2
)
dh(z2, y2) +

p∑
j=1

∫
∂2l

∂θ ∂zj

(
θ0, z

2
)

·

(∫
[1{z1

j ≤ z2
j , y

1 = y2} − z2
j1{y1 = y2}]dh(z1, y1)∫

1{y1 = y2}dG(z1, y1)

)
dCθ0(z2)dFY (y2).

Then, we can rewrite
.
ψk,1(G)(h) = M1(h, k) + IP(Y = k)M3(h, k) and

.
ψ0,1(G)(h) = M2(h) +∑m

k′=1 IP(Y = k′)M3(h, k′), where

M1(h, k) :=

∫
∂l

∂θ

(
θ0, z

2
)
1{y2 = k} dh(z2, y2), M2(h) :=

∫
∂l

∂θ

(
θ0, z

2
)
dh(z2, y2),

M3(h, k) :=

p∑
j=1

∫
∂2l

∂θ ∂zj

(
θ0, z

2
)(∫ [1{z1

j ≤ z2
j , y

1 = k} − z2
j1{y1 = k}]dh(z1, y1)∫

1{y1 = k}dG(z1, y1)

)
dCθ0(z2).

Substituting h by A⊥G, we get

Θ⊥k = −
.
ψk,1(G)(A⊥G)

ψk,2(G)
= − M1(A⊥G, k)

IP(Y = k)ψ0,2(G)
− M3(A⊥G, k)

ψ0,2(G)
,

Θ⊥0 = −
.
ψ0,1(G)(A⊥G)

ψ0,2(G)
= −M2(A⊥G)

ψ0,2(G)
−
∑m
k′=1 IP(Y = k′)M3(A⊥G, k′)

ψ0,2(G)
·

Fourth, since W⊥ is the weak limit of
∑n
i=1

∂l

∂θ
(θ0,Z

∗
i ) /
√
n under Pn, this implies W⊥ =

.
ψ3(G)(A⊥G),

with

ψ3(G) =

∫
∂l

∂θ
(θ0, z) dG(z, y), and

.
ψ3(G)(h) =

∫
∂l

∂θ
(θ0, z) dh(z, y).

Finally, by (i) of the following Lemma 4.21, we have IE[M1(A⊥G, k)TW⊥] = IP(Y = k)IE[M2(A⊥G)TW⊥],

By (ii) of the latter lemma, we have IE[M3(A⊥G, k)TW⊥] = IE[M3(A⊥G, k′)TW⊥] for all k and k′. Finally, we

obtain IE[Θ⊥0
TW⊥] = IE[Θ⊥k

TW⊥], which finishes the proof. �

Lemma 4.21. Assume that Hc0 is satisfied. Then,

(i) For k = 1, . . . ,m,

IE

[∫
∂l

∂θT
(θ0, z)1{y = k} dA⊥G(z, y)

∫
∂l

∂θ
(θ0, z

′) dA⊥G(z′, y′)

]
= IP(Y = k) IE

[∫
∂l

∂θT
(θ0, z) dA⊥G(z, y)

∫
∂l

∂θ
(θ0, z

′) dA⊥G(z′, y′)

]
.

(ii) The expectations

IE

[∫
∂2l

∂θT ∂zj

(
θ0, z

2
)(∫ [1{z1

j ≤ z2
j , y

1 = k} − z2
j1{y1 = k}]dA⊥G(z1, y1)∫

1{y1 = k}dG(z1, y1)

)
dCθ0(z2)

·
∫

∂l

∂θ

(
θ0, z

3
)
dA⊥G(z3, y3)

]
do not depend on k = 1, . . . ,m.
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Proof : (i) By simple calculations, we obtain

IE

[∫
∂l

∂θT
(θ0, z)1{y = k} dA⊥G(z, y)

∫
∂l

∂θ
(θ0, z

′) dA⊥G(z′, y′)

]
=

∫
∂l

∂θT
(θ0, z)1{y = k} ∂l

∂θ
(θ0, z

′) dz,y, z′,y′
(
IE
[
A⊥G(z, y)A⊥G(z′, y′)

])
=

∫
∂l

∂θT
(θ0, z)1{y = k} ∂l

∂θ
(θ0, z

′) {δy′=ydIP(y)[dCθ0(z)δz′=z + dCθ0(z′)δz=z′ ]

−dCθ0(z)dCθ0(z′)dIP(y)dIP(y′)}

= 2IP(Y = k)

∫
∂l

∂θT
(θ0, z)

∂l

∂θ
(θ0, z) dCθ0(z)− IP(Y = k)

∫
∂l

∂θT
(θ0, z) dCθ0(z) ·

∫
∂l

∂θ
(θ0, z) dCθ0(z).

By summing up the latter identities w.r.t. k = 1, . . . ,m, we prove (i).

(ii) For convenience, let us write φ2(z) := ∂2l/(∂θT ∂zj) (θ0, z) and φ3(z) := ∂l(θ0, z)/∂θT . We get

the result if we prove that

A1,k := IE

[∫
φ2(z2)

(∫
1{z1

j ≤ z2
j }1{y1 = k}dA⊥G(z1, y1)∫

1{y1 = k}dG(z1, y1)

)
dCθ0(z2)

∫
φ3(z3) dA⊥G(z3, y3)

]
and

A2,k := IE

[∫
φ2(z2)

(∫
z2
j1{y1 = k}dA⊥G(z1, y1)∫
1{y1 = k}dG(z1, y1)

)
dCθ0(z2)

∫
φ3(z3) dA⊥G(z3, y3)

]

do not depend on k. We will do the task for A1,k, k = 1, . . . ,m, and the calculations will be similar for

A2,k. Note that

A1,k =
1

IP(Y = k)

∫
φ2(z2)1{z1

j ≤ z2
j }1{y1 = k}φ3(z3) dCθ0(z2)dz1,y1,z3,y3IE

[
A⊥G(z1, y1)A⊥G(z3, y3)

]
=

1

IP(Y = k)

∫
φ2(z2)1{z1

j ≤ z2
j }1{y1 = k}φ3(z3) dCθ0(z2){

δy3=y1dIP(y1)[dCθ0(z1)δz3=z1 + dCθ0(z3)δz1=z3 ]− Cθ0(z1)dCθ0(z3)dIP(y1)dIP(y3)
}
.

We deduce that

A1,k = 2

∫
φ2(z2)1{z1

j ≤ z2
j }φ3(z1) dCθ0(z1)dCθ0(z2)

−
∫
φ2(z2)1{z1

j ≤ z2
j }φ3(z3) dCθ0(z1)dCθ0(z2)dCθ0(z3),

that does not depend on k. �

4.7.3 Proof of Proposition 4.16

As usual with the nonparametric bootstrap, we rewrite the bootstrapped empirical process by counting

the number of times every observation of the initial sample is drawn:

dG
∗
n =

1

n

n∑
i=1

Mn,iδ(Z∗i ,Xi,J ),

where Mn,i denotes the number of times (X∗i,J) has been redrawn in a n-size bootstrap resampling

with replacement. It is well-known that Mn := (Mn,1, . . . ,Mn,n) follows a multinomial distribution

M(n, n−1, . . . , n−1): its mean is n and the associated probabilities are 1/n, . . . , 1/n. In other words,

G∗n(z,xJ) =
1√
n

n∑
i=1

Mn,i{1((Z∗i ,Xi,J) ≤ (z,xJ))− Cθ0(z)Fn,J(xJ)}.
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We can remove the dependence between the random components Mn,i, i = 1, . . . , n by a “Pois-

sonization” procedure. We mimic van der Vaart and Wellner [139], p.346: instead of drawing n times the

initial observations, this is done Nn times, where Nn follows a Poisson distribution with mean n and Nn
is independent of the initial sample. Then, the n variables MNn,1, . . . ,MNn,n are i.i.d. Poisson random

variables with mean one. And we can build the new process as

G̃∗n(z,xJ) :=
1√
n

n∑
i=1

MNn,i{1(Z∗i ,Xi,J )≤(z,xJ ) − Cθ0(z)Fn,J(xJ)}.

Actually, the distance between G∗n and G̃∗n is negligible. Indeed, for every (z,xJ),

∆n(z,xJ) := (G̃∗n −G∗n)(z,xJ) =
1√
n

n∑
i=1

(MNn,i −Mn,i){1(Z∗i ,Xi,J )≤(z,xJ ) − Cθ0(z)Fn,J(xJ)}

is centered. Moreover, by independence between the observations and by the resampling scheme, we

have

IE[‖∆n‖2∞] = IE[sup
z,xJ

∆2
n(z,xJ)] ≤ 1

n2

n∑
i,j=1

IE[|(MNn,i −Mn,i)(MNn,j −Mn,j)|]

≤ 1

n2

n∑
i,j=1

IE[(MNn,i −Mn,i)
2]1/2IE[(MNn,j −Mn,j)

2]1/2

≤ IE[(MNn,1 −Mn,1)2],

because the sequence (MNn,i−Mn,i)i=1,...,n is exchangeable. Given Nn = k, the i-th variable |MNn,i−
Mn,i| is binomial with the parameters (|k − n|, 1/n), i.e.

P (|Mk,i −Mn,i| = l) = Cl|k−n|
1

nl

(
1− 1

n

)|k−n|−l
, l = 0, . . . , |k − n|.

Therefore, we obtain

IE[(MNn,i −Mn,i)
2] =

∞∑
k=0

exp(−n)
nk

k!

{
|k − n|
n

(1− 1

n
) +

(
|k − n|
n

)2
}
.

Simple calculations provide
∞∑
k=0

exp(−n)
nk

k!

|k − n|
n

=
2nn

n!
exp(−n) ∼

(
2

πn

)1/2

,

by Stirling’s formula, and
∞∑
k=0

exp(−n)
nk

k!

(
k − n
n

)2

=
exp(−n)

n2

∞∑
k=0

nk

k!
(k(k − 1) + k(1− 2n) + n2) =

1

n
·

We deduce IE[(MNn,i−Mn,i)
2] = O(n−1/2) and IP (‖∆n‖∞ > ε) −→ 0, when n tends to the infinity, given

almost all sequences Sn := (Zi,Xi,J)i=1,...,n. This means that we can safely replace G∗n by G̃∗n, and the

theorem follows if we prove the weak convergence of (Gn, G̃∗n).

Note that we can rewrite

G̃∗n(z,xJ) =
1√
n

n∑
i=1

(MNn,i − 1) {1(Z∗i , Xi,J) ≤ (z,xJ)− Cθ0(z)FJ(xJ)}

+
1√
n

n∑
i=1

{1(Z∗i , Xi,J) ≤ (z,xJ)− Cθ0(z)FJ(xJ)} − Cθ0(z)
√
n (Fn,J − FJ) (xJ)

+

(
1− 1

n

n∑
i=1

MNn,i

)
Cθ0(z)

√
n (Fn,J − FJ) (xJ)

:= G̃∗n,1(z,xJ) + G̃∗n,2(z,xJ)−Gn,3(z,xJ) +Rn(z,xJ).
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Obviously, the last remaining term is oP (1) uniformly w.r.t. (z,xJ), and it can be forgotten. Moreover,

since the variables (MNn,i−1)i=1,...,n are i.i.d., centered with variance one and independent of the data,

we can invoke some multiplier bootstrap results. Consider we live in the spaceW := [0, 1]p×[0, 1]p×Rd−p

that is related to our observations Wi := (Zi,Z
∗
i ,Xi,J), i = 1, . . . , n. The true distribution of Wi under the

null is PW , whose cdf is Cθ0 ⊗ Cθ0 ⊗ FJ . Applying Corollary 2.9.3. in [139], the sequence of processes

(Wn,W∗n) :=

(
n−1/2

n∑
i=1

(δWi
− PW ), n−1/2

n∑
i=1

(MNn,i − 1)(δWi
− PW )

)

converges weakly in `∞(F)× `∞(F) to a vector of independent Gaussian processes, where F denotes

any Donsker class of measurable functions fromW to R.

Now, let us consider the class F of functions

fz0,z′0,xJ,0
: (z, z′,xJ) 7→ 1(z ≤ z0, z

′ ≤ z′0,xJ ≤ xJ,0),

for any triplet (z0, z
′
0,xJ,0) in [0, 1]p× [0, 1]p×Rd−p. Note that F is Donsker, that G̃∗n,1(z,xJ) = W∗nf1,z,xJ ,

G̃∗n,2(z,xJ) = Wnf1,z,xJ and that G̃∗n,3(z,xJ) = Cθ0(z)Wnf1,1,xJ . By the permanence of the Donsker

property (see Section 2.10 in [139], and the continuity of Cθ0 , the process G̃∗n converges in `∞([0, 1]p ×
Rd−p) to a gaussian process A⊥. Obviously, Gn tends in distribution in `∞([0, 1]p ×Rd−p) to a Gaussian

process A, whose covariance function is given by

IE
[
Gn(z,xJ)Gn(z′,x′J)

]
= Cθ0(z ∧ z′)FJ(xJ ∧ x′J)− Cθ0(z)FJ(xJ)Cθ0(z′)FJ(x′J),

for every z, z′,xJ ,x
′
J). By some standard calculations, we check that IE[G̃∗n(z,xJ)G̃∗n(z′,x′J)] = IE[Gn(z,xJ)Gn(z′,x′J)]

for every couples (z,xJ) and (z′,x′J), implying that A and A⊥ have the same covariance functions. More-

over, the two limiting processes A and A⊥ are uncorrelated because

IE[Gn(z,xJ)G̃∗n(z′,x′J)] = IE[Gn(z,xJ)IE[G̃∗n(z′,x′J)|Sn]] = 0,

for every couples (z,xJ) and (z′,x′J). Therefore, the A and A⊥ are two independent versions of the

same Gaussian process.

Remark 4.22. If there were no resampling of the observations Xi,J at the first level, this would no longer
be true. Indeed, the corresponding bootstrapped process would be given by

G∗∗n (z,xJ) :=
1√
n

n∑
i=1

1(Xi,J ≤ xJ) {1(Z∗i ≤ z)− Cθ0(z)} ,

implying
IE
[
G∗∗n (z,xJ)G∗∗n (z′,x′J)

]
= FJ(xJ ∧ x′J)[Cθ0(z ∧ z′)− Cθ0(z)Cθ0(z′)],

that is different of IE
[
Gn(z,xJ)Gn(z′,x′J)

]
.

To conclude, we apply Corollary 1.4.5. in [139]: for every bounded nonnegative Lipschitz function h

and h̃,

IE[h(Gn)h̃(G̃∗n)]− IE[h(A)h̃(A⊥)] = IE[h(Gn)
(

IE[h̃(G̃∗n)|Sn]− IE[h̃(A⊥)]
)

]

+ IE[
(
h(Gn)− IE[h(A)]

)
]IE[h̃(A⊥)].

The first (resp. second) term tends to zero by the weak convergence of G̃∗n (resp. Gn). This concludes

the proof. �



Chapter 5

About kernel-based estimation of
conditional Kendall’s tau:
finite-distance bounds and asymptotic
behavior

Abstract

We study nonparametric estimators of conditional Kendall’s tau, a measure of concordance be-

tween two random variables given some covariates. We prove non-asymptotic bounds with ex-

plicit constants, that hold with high probabilities. We provide “direct proofs” of the consistency

and the asymptotic law of conditional Kendall’s tau. A simulation study evaluates the numerical

performance of such nonparametric estimators.

Keywords: Conditional dependence measures, kernel smoothing, conditional Kendall’s tau.

Based on [40]: Derumigny, A., & Fermanian, J. D., About kernel-based estimation of conditional

Kendall’s tau: finite-distance bounds and asymptotic behavior. ArXiv preprint, arXiv:1810.06234,

2018.

5.1 Introduction

In the field of dependence modeling, it is common to work with dependence measures. Contrary to

usual linear correlations, most of them have the advantage of being defined without any condition on

moments, and of being invariant to changes in the underlying marginal distributions. Such summaries

of information are very popular and can be explicitly written as functionals of the underlying copulas:

Kendall’s tau, Spearman’s rho, Blomqvist’s coefficient... See Nelsen [106] for an introduction. In partic-

ular, for more than a century (Spearman (1904), Kendall (1938)), Kendall’s tau has become a popular

dependence measure in [−1, 1]. It quantifies the positive or negative dependence between two random

variables X1 and X2. Denoting by C1,2 the unique underlying copula of (X1, X2) that are assumed to be
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continuous, their Kendall’s tau can be directly defined as

τ1,2 := 4

∫
[0,1]2

C1,2(u1, u2)C1,2(du1, du2)− 1 (5.1)

= IP
(
(X1,1 −X2,1)(X1,2 −X2,2) > 0

)
− IP

(
(X1,1 −X2,1)(X1,2 −X2,2) < 0

)
,

where (Xi,1, Xi,2)i=1,2 are two independent versions of X := (X1, X2). This measure is then interpreted

as the probability of observing a concordant pair minus the probability of observing a discordant pair.
See [86] for an historical perspective on Kendall’s tau. Its inference is discussed in many textbooks

(see [71] or [94], e.g.). Its links with copulas and other dependence measures can be found in [106]

or [75].

Similar dependence measure can be introduced in a conditional setup, when a p-dimensional covari-

ate Z is available. When thousands of papers refer to Kendall’s tau, only a few of them have considered

conditional Kendall’s tau (as defined below) until now. The goal is now to model the dependence be-

tween the two components X1 and X2, given the vector of covariates Z. Logically, we can invoke the

conditional copula C1,2|Z=z of (X1, X2) given Z = z for any point z ∈ Rp (see Patton [111, 112]), and the

corresponding conditional Kendall’s tau would be simply defined as

τ1,2|Z=z := 4

∫
[0,1]2

C1,2|Z=z(u1, u2)C1,2|Z=z(du1, du2)− 1

= IP
(
(X1,1 −X2,1)(X1,2 −X2,2) > 0

∣∣Z1 = Z2 = z
)

− IP
(
(X1,1 −X2,1)(X1,2 −X2,2) < 0

∣∣Z1 = Z2 = z
)
,

where (Xi,1, Xi,2,Zi)i=1,2 are two independent versions of (X1, X2,Z). As above, this is the probability

of observing a concordant pair minus the probability of observing a discordant pair, conditionally on Z1

and Z2 being both equal to z. Note that, as conditional copulas themselves, conditional Kendall’s taus

are invariant w.r.t. increasing transformations of the conditional margins X1 and X2, given Z. Of course,

if Z is independent of (X1, X2) then, for every z ∈ Rp, the conditional Kendall’s tau τ1,2|Z=z is equal to

the (unconditional) Kendall’s tau τ1,2.

Conditional Kendall’s tau, and more generally conditional dependence measures, are of interest per

se because they allow to summarize the evolution of the dependence between X1 and X2, when the

covariate Z is changing. Surprisingly, their nonparametric estimates have been introduced in the litera-

ture only a few years ago ([63],[141],[52]) and their properties have not yet been fully studied in depth.

Indeed, until now and to the best of our knowledge, the theoretical properties of nonparametric con-

ditional Kendall’s tau estimates have been obtained “in passing” in the literature, as a sub-product of

the weak-convergence of conditional copula processes ([141]) or as intermediate quantities that will be

“plugged-in” ([50]). Therefore, such properties have been stated under too demanding assumptions.

In particular, some assumptions were related to the estimation of conditional margins, while this is not

required (Kendall’s tau are based on ranks). In this paper, we will directly study nonparametric esti-

mates τ̂1,2|z without relying on the theory/inference of copulas. Therefore, we will state their main usual

properties of statistical estimates: exponential bounds in probability, consistency, asymptotic normality.

Our τ1,2|Z=z has not to be confused with so-called “conditional Kendall’s tau” in the case of truncated

data ([136], [101]), in the case of semi-competing risk models ([89], [73]), or for other partial information

schemes ( [27], [81], among others). Indeed, particularly in biostatistics or reliability, the inference of

dependence models under truncation/censoring can be led by considering some types of conditional

Kendall’s tau, given some algebraic relationships among the underlying random variables. This would
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induce conditioning by subsets. At the opposite, we will consider point-wise conditioning events only in

this paper, under a nonparametric point-of-view. Nonetheless, such point-wise events can be found in

the literature, in parametric or semi-parametric frameworks, as for the identifiability of frailty distributions

in bivariate proportional models ( [107], [100]). Other related papers are [8] or [97], that are dealing

with extreme co-movements (bivariate extreme-value theory). There, the the tail conditioning events of

Kendall’s tau have probabilities that go to zero with the sample size.

In Section 5.2, different kernel-based estimators of the conditional Kendall’s tau are proposed. In

Section 5.3, the theoretical properties of the latter estimators are proved, first with finite-distance bounds

and then under an asymptotic point-of-view. A short simulation study is provided in Section 5.4. Proofs

are postponed into the appendix.

5.2 Definition of several kernel-based estimators of τ1,2|z

Let (Xi,1, Xi,2,Zi), i = 1, . . . , n be an i.i.d. sample distributed as (X1, X2,Z), and n ≥ 2. Assuming con-

tinuous underlying distributions, there are several equivalent ways of defining the conditional Kendall’s

tau:

τ1,2|Z=z = 4 IP
(
X1,1 > X2,1, X1,2 > X2,2

∣∣Z1 = Z2 = z
)
− 1

= 1− 4 IP
(
X1,1 > X2,1, X1,2 < X2,2

∣∣Z1 = Z2 = z
)

= IP
(
(X1,1 −X2,1)(X1,2 −X2,2) > 0

∣∣Z1 = Z2 = z
)

− IP
(
(X1,1 −X2,1)(X1,2 −X2,2) < 0

∣∣Z1 = Z2 = z
)
.

Motivated by each of the latter expressions, we introduce several kernel-based estimators of τ1,2|Z=z:

τ̂
(1)
1,2|Z=z := 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1
{
Xi,1 < Xj,1, Xi,2 < Xj,2

}
− 1,

τ̂
(2)
1,2|Z=z :=

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)
(
1
{

(Xi,1 −Xj,1).(Xi,2 −Xj,2) > 0
}

− 1
{

(Xi,1 −Xj,1).(Xi,2 −Xj,2) < 0
})
,

τ̂
(3)
1,2|Z=z := 1− 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1
{
Xi,1 < Xj,1, Xi,2 > Xj,2

}
,

where 1 denotes the indicator function, wi,n is a sequence of weights given by

wi,n(z) =
Kh(Zi − z)∑n
j=1Kh(Zj − z)

, (5.2)

with Kh(·) := h−pK(·/h) for some kernel K on Rp, and h = h(n) denotes a usual bandwidth sequence

that tends to zero when n → ∞. In this paper, we have chosen usual Nadaraya-Watson weights.

Obviously, there are alternatives (local linear, Priestley-Chao, Gasser-Müller, etc., weight), that would

lead to different theoretical results.

The estimators τ̂
(1)
1,2|Z=z, τ̂

(2)
1,2|Z=z and τ̂

(3)
1,2|Z=z look similar, but they are nevertheless different, as

shown in Proposition 5.1. These differences are due to the fact that all the τ̂ (k)
1,2|Z=z, k = 1, 2, 3 are affine

transformations of a double-indexed sum, on every pair (i, j), including the diagonal terms where i = j.

The treatment of these diagonal terms is different for each of the three estimators defined above. Indeed,
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setting sn :=
∑n
i=1 w

2
i,n(z), it can be easily proved that τ̂ (1)

1,2|Z=z takes values in the interval [−1 , 1− 2sn],

τ̂
(2)
1,2|Z=z in [−1 + sn , 1 − sn], and τ̂

(3)
1,2|Z=z in [−1 + 2sn , 1]. Moreover, there exists a direct relationship

between these estimators, given by the following proposition.

Proposition 5.1. Almost surely, τ̂ (1)
1,2|Z=z + sn = τ̂

(2)
1,2|Z=z = τ̂

(3)
1,2|Z=z − sn, where sn :=

∑n
i=1 w

2
i,n(z).

This proposition is proved in Section 5.5.1. As a consequence, we can rescale easily the previous

estimators so that the new estimator will take values in the whole interval [−1, 1]. This would yield

τ̃1,2|Z=z :=
τ̂

(1)
1,2|Z=z

1− sn
+

sn
1− sn

=
τ̂

(2)
1,2|Z=z

1− sn
=
τ̂

(3)
1,2|Z=z

1− sn
− sn

1− sn
.

Note that none of the latter estimators depends on any estimation of conditional marginal distribu-

tions. In other words, we only have to choose conveniently the weights wi,n to obtain an estimator of

the conditional Kendall’s tau. This is coherent with the fact that conditional Kendall’s taus are invariant

with respect to conditional marginal distributions. Moreover, note that, in the definition of our estimators,

the inequalities are strict (there are no terms corresponding to the cases i = j). This is inline with the

definition of (conditional) Kendall’s tau itself through concordant/discordant pairs of observations.

The definition of τ̂ (1)
1,2|Z=z can be motivated as follows. For j = 1, 2, let F̂j|Z(·|Z = z) be an estimator

of the conditional cdf of Xj given Z = z. Then, a usual estimator of the conditional copula of X1 and X2

given Z = z is

Ĉ1,2|Z(u1, u2|Z = z) :=

n∑
i=1

wi,n(z)1
{
F̂1|Z(Xi,1|Z = z) ≤ u1 , F̂2|Z(Xi,2|Z = z) ≤ u2

}
.

See [141] or [52], e.g. The latter estimator of the conditional copula can be plugged into (5.1) to define

an estimator of the conditional Kendall’s tau itself:

τ̂1,2|Z=z := 4

∫
Ĉ1,2|Z(u1, u2|Z = z) Ĉ1,2|Z(du1, du2|Z = z)− 1 (5.3)

= 4

n∑
j=1

wj,n(z)Ĉ1,2|Z
(
F̂1|Z(Xj,1|Z = z), F̂2|Z(Xj,2|Z = z)

∣∣Z = z
)
− 1.

Since the functions F̂j|Z(·|Z = z) are non-decreasing, this reduces to

τ̂1,2|Z=z = 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1
{
Xi,1 ≤ Xj,1, Xi,2 ≤ Xj,2

}
− 1

= 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1
{
Xi,1 < Xj,1, Xi,2 < Xj,2

}
− 1 + oP (1) = τ̂

(1)
1,2|Z=z + oP (1).

Veraverbeke et al. [141], Subsection 3.2, introduced their estimator of τ1,2|z by (5.3). By the functional

Delta-Method, they deduced its asymptotic normality as a sub-product of the weak convergence of the

process
√
nh
(
Ĉ1,2|Z(·, ·|z) − C1,2|Z(·, ·|z)

)
when Z is univariate. In our case, we will obtain more and

stronger theoretical properties of τ̂ (1)
1,2|Z=z under weaker conditions by a more direct analysis based on

ranks. In particular, we will not require any regularity condition on the conditional marginal distributions,

contrary to [141]. Indeed, in the latter paper, it is required that Fj|Z(·|Z = z) has to be two times contin-

uously differentiable (assumption R̃3) and its inverse has to be continuous (assumption R1). This is not

satisfied for some simple univariate cdf as Fj(t) = t1(t ∈ [0, 1])/2+1(t ∈ (1, 2])/2+t1(t ∈ (2, 4])/4+1(t >

4), for instance. Note that We could similarly justify τ̂ (3)
1,2|Z=z in a similar way by considering conditional

survival copulas.
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Let us define g1, g2, g3 by

g1(Xi,Xj) := 41
{
Xi,1 < Xj,1, Xi,2 < Xj,2

}
− 1,

g2(Xi,Xj) := 1
{

(Xi,1 −Xj,1)× (Xi,2 −Xj,2) > 0
}
− 1

{
(Xi,1 −Xj,1)× (Xi,2 −Xj,2) < 0

}
,

g3(Xi,Xj) := 1− 41
{
Xi,1 < Xj,1, Xi,2 > Xj,2

}
,

where for i = 1, . . . , n, we set Xi := (Xi,1, Xi,2). Clearly, τ̂ (k)
1,2|z is a smoothed estimator of IE[gk(X1,X2)|Z1 =

Z2 = z], k = 1, 2, 3. The choice of the bandwidth h can be done in a data-driven way following the gen-

eral conditional U-statistics framework detailed in Dony and Mason [45, Section 2]. Indeed, for any

k ∈ {1, 2, 3} and z ∈ Z, denote by τ̂ (h, k)
−(i,j), 1,2|Z=z the estimator τ̂ (k)

1,2|Z=z that is made with the smoothing

parameter h and our dataset where the i-th and j-th observations have been removed. As a conse-

quence, the random function τ̂
(h, k)
−(i,j), 1,2|Z=· is independent of

(
(Xi,Zi), (Xj ,Zj)

)
. As usual with kernel

methods, the bandwidth ĥ has to be chosen. It would be tempting to propose h as the minimizer of the

cross-validation criteria

CVDM (h) :=
2

n(n− 1)

n∑
i,j=1

(
gk(Xi,Xj)− τ̂ (h, k)

−(i,j), 1,2|Z=(Zi+Zj)/2

)2

Kh(Zi − Zj),

for k = 1, 2, 3 or for τ̃1,2|Z=·. The latter criterion would be a “naively localized” version of the usual

cross-validation method. Unfortunately, we observe that the function h 7→ CVDM (h) is most often

decreasing in the range of realistic bandwidth values. If we remove the weight Kh(Zi − Zj), then

there is no reason why gk(Xi,Xj) should be equal on average to τ̂
(k)
−(i,j), 1,2|Z=(Zi+Zj)/2

, and we are

not interested in the prediction of concordance/discordance pairs for which the Zi and Zj are far apart.

Therefore, a modification of this criteria is necessary. We propose to separate the choice of h for the

terms gk(Xi,Xj)−τ̂ (h, k)
−(i,j), 1,2|Z=(Zi+Zj)/2

and the selection of the “convenient pairs” of observations (i, j).

This leads to the new criterion

CVh̃(h) :=
2

n(n− 1)

n∑
i,j=1

(
gk(Xi,Xj)− τ̂ (h, k)

−(i,j), 1,2|Z=(Zi+Zj)/2

)2

K̃h̃(Zi − Zj), (5.4)

with a potentially different kernel K̃ and a new fixed tuning parameter h̃. Even if more complex pro-

cedures are possible, we suggest to simply choose K̃(z) := 1{|z|∞ ≤ 1} and to calibrate h̃ so that

only a fraction of the pairs (i, j) have non-zero weight. In practice, set h̃ as the empirical quantile of(
{|Zi − Zj |∞ : 1 ≤ i < j 6= n} of order 2Npairs/(n(n− 1)), where Npairs is the number of pairs we want

to keep.

Note that such dependence measures are of interest for the purpose of estimating (conditional or

unconditional) copula models too. Indeed, several popular parametric families of copulas have a simple

one-to-one mapping between their parameter and the associated Kendall’s tau (or Spearman’s rho):

Gaussian, Student with a fixed degree of freedom, Clayton, Gumbel and Frank copulas, etc. Then,

assume for instance that the conditional copula C1,2|Z=z belongs is a Gaussian copula with a parameter

ρ(z). Then, by estimating its conditional Kendall’s tau τ1,2|Z=z, we get an estimate of the corresponding

parameter ρ(z), and finally of the conditional copula itself. See [119], e.g.

5.3 Theoretical results

5.3.1 Finite distance bounds

Hereafter, we will consider the behavior of conditional Kendall’s tau estimates given Z = z belongs to

some fixed open subset Z in Rp. For the moment, let us state an instrumental result that is of interest per
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se. Let f̂Z(z) := n−1
∑n
j=1Kh(Zj − z) be the usual kernel estimator of the density fZ of the conditioning

variable Z. Note that the estimators τ̂ (k)
1,2|Z=z, k = 1, . . . , 3 are well-behaved only whenever f̂Z(z) > 0.

Denote the joint density of (X,Z) by fX,Z. In our study, we need some usual conditions of regularity.

Assumption 5.3.1. The kernel K is bounded, and set ‖K‖∞ =: CK . It is symmetrical and satisfies∫
K = 1,

∫
|K| < ∞. This kernel is of order α for some integer α > 1: for all j = 1, . . . , α − 1 and every

indices i1, . . . , ij in {1, . . . , p},
∫
K(u)ui1 . . . uij du = 0. Moreover, IE[Kh(Z− z)] > 0 for every z ∈ Z and

h > 0. Set K̃(·) := K2(·)/
∫
K2 and ‖K̃‖∞ =: CK̃ .

Assumption 5.3.2. fZ is α-times continuously differentiable on Z and there exists a constant CK,α > 0

s.t., for all z ∈ Z,∫
|K|(u)

p∑
i1,...,iα=1

|ui1 . . . uiα | sup
t∈[0,1]

∣∣ ∂αfZ
∂zi1 . . . ∂ziα

(z + thu)
∣∣ du ≤ CK,α.

Moreover, CK̃,2 denotes a similar constant replacing K by K̃ and α by two.
Assumption 5.3.3. There exist two positive constants fZ,min and fZ,max such that, for every z ∈ Z,
fZ,min ≤ fZ(z) ≤ fZ,max.

Proposition 5.2. Under Assumptions 5.3.1-5.3.3 and if CK,αhα/α! < fZ,min, for any z ∈ Z, the estima-
tor f̂Z(z) is strictly positive with a probability larger than

1− 2 exp
(
− nhp

(
fZ,min − CK,αhα/α!

)2
/
(
2fZ,max

∫
K2 + (2/3)CK(fZ,min − CK,αhα/α!)

))
.

The latter proposition is proved in Section 5.5.2. It guarantees that our estimators τ̂ (k)
1,2|z, k = 1, . . . , 3,

are well-behaved with a probability close to one.

The next regularity assumption is necessary to explicitly control the bias of τ̂1,2|Z=z.

Assumption 5.3.4. For every x ∈ R2, z 7→ fX,Z(x, z) is differentiable on Z almost everywhere up to the
order α. For every 0 ≤ k ≤ α and every 1 ≤ i1, . . . , iα ≤ p, let

Hk,~ι(u,v,x1,x2, z) := sup
t∈[0,1]

∣∣∣∣ ∂kfX,Z
∂zi1 . . . ∂zik

(
x1, z + thu

) ∂α−kfX,Z
∂zik+1

. . . ∂ziα

(
x2, z + thv

)∣∣∣∣,
denoting ~ι = (i1, . . . , iα). Assume that Hk,~ι(u,v,x1,x2, z) is integrable and there exists a finite constant
CXZ,α > 0 such that, for every z ∈ Z and every h < 1,∫

|K|(u)|K|(v)

α∑
k=0

(
α

k

) p∑
i1,...,iα=1

Hk,~ι(u,v,x1,x2, z)|ui1 . . . uikvik+1
. . . viα | du dv dx1 dx2

is less than CXZ,α.

The next three propositions state pointwise and inform exponential inequalities for the estimators

τ̂
(k)
1,2|Z=z, when k = 1, 2, 3. They are proved in Section 5.5.3. We will denote c1 := c3 := 4 and c2 := 2.

Proposition 5.3 (Exponential bound with explicit constants). Under Assumptions 5.3.1-5.3.4, for every
t > 0 such that CK,αhα/α! + t ≤ fZ,min/2 and every t′ > 0, if CK̃,2h2 < fz(z), we have

IP

(
|τ̂ (k)

1,2|Z=z − τ1,2|Z=z| >
ck

f2
z (z)

(CXZ,αh
α

α!
+

3fz(z)
∫
K2

2nhp
+ t′

)
×
(

1 +
16f2

Z(z)

f3
Z,min

(CK,αhα
α!

+ t
)))

≤ 2 exp
(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
+ 2 exp

(
− (n− 1)h2pt′2

4f2
Z,max(

∫
K2)2 + (8/3)C2

Kt
′

)
+ 2 exp

(
−

nhp(fz(z)− CK̃,2h2)2

8fZ,max
∫
K̃2 + 4CK̃(fz(z)− CK̃,2h2)/3

)
,

for any z ∈ Z and every k = 1, 2, 3.
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Alternatively, we could obtain a better rate of approximation, at the price of managing unknown

(universal) constants instead of explicit constants.

Proposition 5.4 (Alternative exponential bound without explicit constants). Under Assumptions 5.3.1-
5.3.4, for every t > 0 such thatCK,αhα/α!+t ≤ fZ,min/2 and every t′ > 0 s.t. t′ ≤ 2hp(

∫
K2)3f3

Z,max/C
4
K ,

there exist some universal constants C2 and α2 s.t.

IP

(
|τ̂ (k)

1,2|Z=z − τ1,2|Z=z| >
ck

f2
z (z)

(CXZ,αh
α

α!
+

3fz(z)
∫
K2

2nhp
+ t′

)
×
(

1 +
16f2

Z(z)

f3
Z,min

(CK,αhα
α!

+ t
)))

≤ 2 exp
(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
+ 2 exp

(
−

nhp(fz(z)− CK̃,2h2)2

8fZ,max
∫
K̃2 + 4CK̃(fz(z)− CK̃,2h2)/3

)
+ 2 exp

( nhpt2

32
∫
K2(

∫
|K|)2f3

Z,max + 8CK
∫
|K|fZ,maxt/3

)
+ C2 exp

(
− α2nh

pt′

8fZ,max(
∫
K2)

)
,

for any z ∈ Z and every k = 1, 2, 3, if CK̃,2h2 < fZ(z) and 6hp
( ∫
|K|
)2
fz,max <

∫
K2.

Remark 5.5. In Propositions 5.2, 5.3 and 5.4, when the support of K is included in [−c, c]p for some
c > 0, fZ,max can be replaced by a local bound supz̃∈V(z,ε) fZ(z̃), denoting by V(z, ε) a closed ball of
center z and any radius ε > 0, when h c < ε. Moreover, if it is not guaranteed that IE[Kh(Z−z)] is positive,
the results above apply, replacing 2/3 by 4/3 in the denominators of inequality in Proposition 5.3.

As a corollary, the two latter result yield the weak consistency of τ̂ (k)
1,2|Z=z for every z ∈ Z, when

nh2p →∞ (choose the constants t and t′ ∼ hp sufficiently small, in Proposition 5.4, e.g.).

It is possible to obtain uniform bounds, by slightly strengthening our assumptions. Note that this next

result will be true if n is sufficiently large, when Proposition 5.4 was true for every n.

Assumption 5.3.5. The kernel K is Lipschitz on (Z, ‖ · ‖∞), with a constant λK and Z is a subset of an
hypercube in Rp whose volume is denoted by V. Moreover, K and K2 are regular in the sense of [66]
or [47].

Proposition 5.6 (Uniform exponential bound). Under the assumptions 5.3.1-5.3.5, there exist some
constants LK and CK (resp. LK̃ and CK̃) that depend only on the VC characteristics of K (resp. K̃),
s.t., for every µ ∈ (0, 1) such that µfz,min < CXZ,αh

α/α! + bK
∫
K2fZ,max/CK , if fZ,max < C̃XZ,2h

2/2 +

bK̃
∫
K̃2fZ,max/CK̃ ,

IP

(
sup
z∈Z
|τ̂ (k)

1,2|Z=z − τ1,2|Z=z| >
ck

f2
z,min(1− µ)2

(
CXZ,αh

α

α!
+

3fz,max
∫
K2

2nhp
+ t

))

≤ LK exp
(
− Cf,Knhp

(
µfz,min −

CXZ,αh
α

α!

)2)
+ C2D exp

(
− α2nth

p

8fZ,max(
∫
K2)

)
+ LK̃ exp

(
− Cf,K̃nh

p(fz,max − C̃XZ,2h
2)2/4

)
+ 2 exp

(
−

A2nh
pt2C−4

K

162A2
1

∫
K2f3

z,max(
∫
|K|)2

)
+ 2 exp(− A2nh

pt

16C2
KA1

),

for n sufficiently large, k = 1, 2, 3, and for every t > 0 s.t.

t ≤ 2hp(

∫
K2)3f3

Z,max/C
4
K ,

−16A1C
2
K

Ag
∫
K2f3

z,max(
∫
|K|)2

n1/2hp/2
ln(hp

∫
K2f3

z,max(

∫
|K|)2) < t, and

nhpt ≥
( ∫

K2
)
fz,maxM2(p+ β)3/2 log

( 4C2
K

hpfz,max
∫
K2

)
, β = max

(
0,

logD

log n

)
, D := dV

(4CKλK
h

)pe,
for some universal constants C2, α2,M2, A1, A2 and a constant Ag that depends on K and fz,max.
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We have denoted Cf,K := log(1 + bK/(4LK))/(LKbKfz,max
∫
K2), for an arbitrarily chosen positive

constant bK ≥ CK . Similarly, Cf,K̃ := log(1 + bK̃/(4LK̃))/(LK̃bK̃fz,max
∫
K̃2), bK̃ ≥ CK̃ .

5.3.2 Asymptotic behavior

The previous exponential inequalities are not optimal to prove asymptotic results. Indeed, they directly

or indirectly rely on upper bounds, as in Hoeffding or Bernstein-type inequalities. In the case of kernel

estimates, this implies the necessary condition nh2p →∞, at least. By a direct approach, it is possible to

state the consistency of τ̂ (k)
1,2|Z=z, k = 1, 2, 3, and then of τ̃1,2|Z=z, under the weaker condition nhp →∞.

Proposition 5.7 (Consistency). Under Assumption 5.3.1, if nhpn → ∞, limK(t)|t|p = 0 when |t| → ∞,
fZ and z 7→ τ1,2|Z=z are continuous on Z, then τ̂ (k)

1,2|Z=z tends to τ1,2|Z=z in probability, when n → ∞ for
any k = 1, 2, 3.

This property is proved in Section 5.5.6. Moreover, Proposition 5.6 does not allow to state the strong

uniform consistency of τ̂ (k)
1,2|Z=z because the threshold t has to be of order hp at most. Here again, a

direct approach is possible.

Proposition 5.8 (Uniform consistency). Under Assumption 5.3.1, assume that nh2p
n / log n→∞, limK(t)|t|p =

0 when |t| → ∞, K is Lipschitz, fZ and z 7→ τ1,2|Z=z are continuous on a bounded set Z, and there
exists a lower bound fZ,min s.t. fZ,min ≤ fZ(z) for any z ∈ Z. Then supz∈Z

∣∣τ̂ (k)
1,2|Z=z − τ1,2|Z=z

∣∣ → 0

almost surely, when n→∞ for any k = 1, 2, 3.

This property is proved in Section 5.5.7. To derive the asymptotic law of this estimator, we will

assume:

Assumption 5.3.6. (i) nhpn →∞ and nhp+2α
n → 0; (ii) K( · ) is compactly supported.

Proposition 5.9 (Joint asymptotic normality at different points). Let z′1, . . . , z′n′ be fixed points in a set
Z ⊂ Rp. Assume 5.3.1, 5.3.4, 5.3.6, that the z′i are distinct and that fZ and z 7→ fX,Z(x, z) are continuous
on Z, for every x. Then, as n→∞,

(nhpn)1/2
(
τ̂1,2|Z=z′i

− τ1,2|Z=z′i

)
i=1,...,n′

D−→ N (0,H(k)), k = 1, 2, 3,

where τ̂1,2|Z=z denotes any of the estimators τ̂ (k)
1,2|Z=z, k = 1, 2, 3 or τ̃1,2|Z=z, and H is the n′×n′ diagonal

real matrix defined by

[H(k)]i,j =
4
∫
K21{i=j}

fZ(z′i)

{
IE[gk(X1,X)gk(X2,X)|Z = Z1 = Z2 = z′i]− τ2

1,2|Z=z′i

}
,

for every 1 ≤ i, j ≤ n′, and (X,Z), (X1,Z1), (X2,Z2) are independent versions.

This proposition is proved in Section 5.5.8.

Remark 5.10. The latter results will provide some simple tests of the constancy of the function z 7→
τ1,2|z, and then of the constancy of the associated conditional copula itself. This would test the famous
“simplifying assumption” (“H0 : C1,2|Z=z does not depend on the choice of z”), a key assumption for vine
modeling in particular: see [5] or [68] for a discussion, [38] for a review and a presentation of formal tests
for this hypothesis.
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5.4 Simulation study

In this simulation study, we draw i.i.d. random samples (Xi,1, Xi,2, Zi), i = 1, . . . , n, with univariate

explanatory variables (p = 1). We consider two settings, that correspond to bounded and/or unbounded

explanatory variables respectively:

1. Z =]0, 1[ and the law of Z is uniform on ]0, 1[. Conditionally on Z = z, X1|Z = z and X2|Z = z

both follow a Gaussian distribution N (z, 1). Their associated conditional copula is Gaussian and

their conditional Kendall’s tau is given by τ1,2|Z=z = 2z − 1.

2. Z = R and the law of Z is N (0, 1). Conditionally on Z = z, X1|Z = z and X2|Z = z both follow

a Gaussian distribution N (Φ(z), 1), where Φ(·) is the cdf of the Z. Their associated conditional

copula is Gaussian and their conditional Kendall’s tau is given by τ1,2|Z=z = 2Φ(z)− 1.

These simple frameworks allow us to compare the numerical properties of our different estimators

in different parts of the space, in particular when Z is close to zero or one, i.e. when the conditional

Kendall’s tau is close to −1 or to 1. We compute the different estimators τ̂ (k)
1,2|Z=z for k = 1, 2, 3, and

the symmetrically rescaled version τ̃1,2|z. The bandwidth h is chosen as proportional to the usual “rule-

of-thumb” for kernel density estimation, i.e. h = αhσ̂(Z)n−1/5 with αh ∈ {0.5, 0.75, 1, 1.5, 2} and n ∈
{100, 500, 1000, 2000}. For each setting, we consider three local measures of goodness-of-fit: for a given

z and for any Kendall’s tau estimate (say τ̂1,2|Z=z), let

• the (local) bias: Bias(z) := IE[τ̂1,2|Z=z]− τ1,2|Z=z,

• the (local) standard deviation: Sd(z) := IE
[(
τ̂1,2|Z=z − IE[τ̂1,2|Z=z]

)2]1/2,

• the (local) mean square-error: MSE(z) := IE
[(
τ̂1,2|Z=z − τ1,2|Z=z

)2].
We also consider their integrated version w.r.t the usual Lebesgue measure on the whole support of z,

respectively denoted by IBias, ISd and IMSE. Some results concerning these integrated measures

are given in Table 5.1 (resp. Table 5.2) for Setting 1 (resp. Setting 2), and for different choices of αh and

n. For the sake of effective calculations of these measures, all the theoretical previous expectations are

replaced by their empirical counterparts based on 500 simulations.

For every n, the best results seem to be obtained with αh = 1.5 and the fourth (rescaled) estimator,

particularly in terms of bias. This is not so surprising, because the estimators τ̂ (k), k = 1, 2, 3, do not

have the right support at a finite distance. Note that this comparative advantage of τ̃ in terms of bias

decreases with n, as expected. In terms of integrated variance, all the considered estimators behave

more or less similarly, particularly when n ≥ 500.

To illustrate our results for Setting 1 (resp. Setting 2), the functions z 7→ Bias(z), Sd(z) and MSE(z)

have been plotted on Figures 5.1-5.2 (resp. Figures 5.3-5.4), both with our empirically optimal choice

αh = 1.5. We can note that, considering the bias, the estimator τ̃ behaves similarly as τ̂ (1) when the

true τ is close to −1, and similarly as τ̂ (3) when the true Kendall’s tau is close to 1. But globally, the

best pointwise estimator is clearly obtained with the rescaled version τ̃1,2|Z=·, after a quick inspection of

MSE levels, and even if the differences between our four estimators weaken for large sample sizes. The

comparative advantage of τ̃1,2|z more clearly appears with Setting 2 than with Setting 1. Indeed, in the

former case, the support of Z’s distribution is the whole line. Then f̂Z does not suffer any more from the

boundary bias phenomenon, contrary to what happened with Setting 1. As a consequence, the biases

induced by the definitions of τ̂ (k)
1,2|z, k = 1, 3, appear more strinkingly in Figure 5.3, for instance: when z
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is close to (−1) (resp. 1), the biases of τ̂ (1)
1,2|z (resp. τ̂ (3)

1,2|z) and τ̃1,2|z are close, when the bias τ̂ (3)
1,2|z (resp.

τ̂
(1)
1,2|z) is a lot larger. Since the squared biases are here significantly larger than the variances in the tails,

τ̃1,2|z provides the best estimator globally considering ”both sides” together. But even in the center of Z’s

distribution, the latter estimator behaves very well.

In Setting 2 where there is no boundary problem, we also try to estimate the conditional Kendall’s tau

using our cross-validation criterion (5.4), with Npairs = 1000. More precisely, denoting by hCV the mini-

mizer of the cross-validation criterion, we try different choices h = αh×hCV with αh ∈ {0.5, 0.75, 1, 1.5, 2}.
The results in terms of integrated bias, standard deviation and MSE are given in Table 5.3. We do not

find any substantial improvements compared to the previous Table 5.2, where the bandwidth was chosen

“roughly”. In Table 5.4, we compare the average hCV with the previous choice of h. The expectation of

hCV is always higher than the “rule-of-thumb” href , but the difference between both decreases when the

sample size n increases. The standard deviation of hCV is quite high for low values of n, but decreases

as a function of n. This may be seen as quite surprising given the fact that the number of pairs Npairs
used in the computation of the criterion stays constant. Nevertheless, when the sample size increases,

the selected pairs are better in the sense that the differences |Zi − Zj | can become smaller as more

replications of Zi are available.

5.5 Proofs

For convenience, we recall Berk’s (1970) inequality (see Theorem A in Serfling [123, p.201]). Note that,

if m = 1, this reduces to Bernstein’s inequality.

Lemma 5.11. Let m,n > 0, X1, . . . ,Xn i.i.d. random vectors with values in a measurable space X
and g : Xm → [a, b] be a symmetric real bounded function. Set θ := IE[g(X1, . . . ,Xm)] and σ2 :=

V ar[g(X1, . . . ,Xm)]. Then, for any t > 0 and n ≥ m,

IP

((
n

m

)−1∑
c

g(Xi1 , . . . ,Xim)− θ ≥ t

)
≤ exp

(
− [n/m]t2

2σ2 + (2/3)(b− θ)t

)
,

where
∑
c denotes summation over all subgroups of m distinct integers (i1, . . . , im) of {1, . . . n}.

5.5.1 Proof of Proposition 5.1

Since there are no ties a.s.,

1 + τ̂
(1)
1,2|Z=z = 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)
(
1
{
Xi,1 < Xj,1

}
− 1

{
Xi,1 < Xj,1, Xi,2 > Xj,2

})
= 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1
{
Xi,1 < Xj,1

}
+ τ̂

(3)
1,2|Z=z − 1.

But

1 =

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z) =

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)
(
1
{
Xi,1 ≤ Xj,1

}
+ 1

{
Xi,1 > Xj,1

})
= 2

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1
{
Xi,1 < Xj,1

}
+

n∑
i=1

w2
i,n,

implying that

1 + τ̂
(1)
1,2|Z=z = 4

(1− sn
2

)
+ τ̂

(3)
1,2|Z=z − 1,



Chapter 5. About kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and
asymptotic behavior 135

n = 100 n = 500 n = 1000 n = 2000

IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE

α
h

=
0.

5

τ̂
(1)
1,2|Z=z -133 197 66.5 -34.5 84.9 9.86 -18.2 61.6 4.85 -10.9 46 2.65

τ̂
(2)
1,2|Z=z -12.9 187 43.7 -4.08 84.4 8.58 -0.9 61.5 4.49 -1.07 46 2.53

τ̂
(3)
1,2|Z=z 107 190 56.6 26.4 84.5 9.26 16.4 61.5 4.76 8.8 46 2.6

τ̃1,2|Z=z -0.91 213 48.2 -1.18 86.9 8.55 0.733 62.4 4.46 -0.149 46.4 2.5

α
h

=
0.

75

τ̂
(1)
1,2|Z=z -88 150 35.8 -26.3 68 6.32 -13.9 50.7 3.33 -7.98 37.6 1.8

τ̂
(2)
1,2|Z=z -10.4 145 26.3 -5.97 67.9 5.6 -2.33 50.6 3.12 -1.39 37.5 1.74

τ̂
(3)
1,2|Z=z 67.2 146 30.6 14.3 67.9 5.75 9.2 50.6 3.19 5.2 37.5 1.76

τ̃1,2|Z=z -2.06 157 26.7 -3.99 69.2 5.49 -1.21 51.2 3.05 -0.76 37.8 1.69

α
h

=
1

τ̂
(1)
1,2|Z=z -67.8 123 24.5 -19.2 58.7 4.8 -11 43.1 2.52 -6.34 33 1.44

τ̂
(2)
1,2|Z=z -9.99 121 19 -3.95 58.6 4.39 -2.35 43.1 2.39 -1.39 33 1.4

τ̂
(3)
1,2|Z=z 47.8 122 20.9 11.3 58.7 4.47 6.34 43.1 2.41 3.57 33 1.41

τ̃1,2|Z=z -3.48 128 18.1 -2.34 59.5 4.18 -1.46 43.4 2.29 -0.897 33.2 1.35

α
h

=
1.

5

τ̂
(1)
1,2|Z=z -44.6 101 17.5 -15.9 50.4 4.12 -9.7 35.9 2.13 -5.52 27.6 1.28

τ̂
(2)
1,2|Z=z -5.81 100 14.9 -5.68 50.3 3.84 -3.84 35.9 2.02 -2.18 27.6 1.24

τ̂
(3)
1,2|Z=z 33 101 15.5 4.58 50.3 3.77 2.01 35.9 1.99 1.15 27.6 1.23

τ̃1,2|Z=z -1.09 104 13.4 -4.55 50.8 3.57 -3.19 36.1 1.9 -1.83 27.7 1.18

α
h

=
2

τ̂
(1)
1,2|Z=z -37.8 91.4 17.3 -11.8 43.8 4.14 -7.2 31.2 2.35 -5.97 23.7 1.43

τ̂
(2)
1,2|Z=z -8.03 91.4 15.4 -3.93 43.8 3.94 -2.75 31.2 2.28 -3.44 23.7 1.39

τ̂
(3)
1,2|Z=z 21.7 91.7 15.4 3.91 43.8 3.87 1.7 31.2 2.24 -0.912 23.7 1.37

τ̃1,2|Z=z -4.5 94.2 13.5 -3.01 44.1 3.62 -2.24 31.3 2.12 -3.16 23.8 1.32

Table 5.1: Results of the simulation in Setting 1. All values have been multiplied by 1000. Bold values

indicate optimal choices for the chosen measure of performance.
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Figure 5.1: Local bias, standard deviation and MSE for the estimators τ̂ (1) (red) , τ̂ (2) (blue), τ̂ (3) (green),

τ̃ (orange), with n = 100 and αh = 1.5 in Setting 1. The dotted line on the first figure is the reference at

0.
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Figure 5.2: Local bias, standard deviation and MSE for the estimators τ̂ (1) (red) , τ̂ (2) (blue), τ̂ (3) (green),

τ̃ (orange), with n = 500 and αh = 1.5 in Setting 1. The dotted line on the first figure is the reference at

0.
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n = 100 n = 500 n = 1000 n = 2000

IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE

α
h

=
0.

5

τ̂
(1)
1,2|Z=z -207 227 180 -54.1 83.9 16.9 -29.6 55.3 5.81 -16.9 38.9 2.49

τ̂
(2)
1,2|Z=z 1.15 207 97 0.845 80.5 10.8 0.557 54.4 4.35 0.145 38.6 2.04

τ̂
(3)
1,2|Z=z 210 228 181 55.7 83.2 16.4 30.7 55.4 5.9 17.2 38.9 2.5

τ̂
(4)
1,2|Z=z 1.4 225 51.9 0.987 81.4 6.86 0.456 55 3.22 0.175 38.9 1.66

α
h

=
0.

75

τ̂
(1)
1,2|Z=z -144 175 98.6 -33.3 60.6 7.5 -19.8 41.9 3.12 -10.6 30.5 1.42

τ̂
(2)
1,2|Z=z -2.33 163 56.2 1.73 59.4 5.56 -0.0619 41.7 2.51 0.665 30.4 1.24

τ̂
(3)
1,2|Z=z 140 176 99.2 36.8 60.7 7.73 19.7 42.1 3.12 11.9 30.5 1.45

τ̂
(4)
1,2|Z=z -3.15 170 30.3 1.69 60.2 3.85 -0.093 42.1 1.95 0.645 30.5 1.05

α
h

=
1

τ̂
(1)
1,2|Z=z -99.8 143 57.7 -24.9 50.9 5.06 -13.5 36.6 2.28 -6.92 26.6 1.09

τ̂
(2)
1,2|Z=z 1.17 132 34.6 0.903 50.4 4.02 1.16 36.5 1.97 1.46 26.6 0.994

τ̂
(3)
1,2|Z=z 102 139 54.4 26.7 51 5.13 15.8 36.6 2.33 9.83 26.6 1.11

τ̂
(4)
1,2|Z=z 2.51 138 20.1 0.897 50.9 2.89 1.16 36.7 1.56 1.48 26.7 0.847

α
h

=
1.

5

τ̂
(1)
1,2|Z=z -59.1 104 28.1 -14.7 42.3 3.87 -7.56 29.7 1.86 -4.17 21.8 0.932

τ̂
(2)
1,2|Z=z 4.34 99.7 21.4 2.05 42.1 3.48 2.07 29.6 1.75 1.35 21.8 0.899

τ̂
(3)
1,2|Z=z 67.8 103 29.6 18.8 42.3 3.96 11.7 29.6 1.92 6.87 21.8 0.957

τ̂
(4)
1,2|Z=z 3.34 103 13.4 2.08 42.5 2.6 2.08 29.7 1.39 1.35 21.8 0.755

α
h

=
2

τ̂
(1)
1,2|Z=z -37.2 88.2 23.9 -9.57 38.2 4.6 -3.75 26.2 2.34 -1.09 19.8 1.32

τ̂
(2)
1,2|Z=z 8.17 85.9 21.2 2.69 38 4.45 3.32 26.1 2.3 2.99 19.8 1.32

τ̂
(3)
1,2|Z=z 53.5 87.4 25.3 14.9 38.1 4.74 10.4 26.2 2.41 7.08 19.8 1.36

τ̂
(4)
1,2|Z=z 8.47 88.5 15 2.69 38.4 3.59 3.33 26.3 1.93 3 19.9 1.15

Table 5.2: Results of the simulation in Setting 2. All values have been multiplied by 1000. Bold values

indicate optimal choices for the chosen measure of performance.
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Figure 5.3: Local bias, standard deviation and MSE for the estimators τ̂ (1) (red) , τ̂ (2) (blue), τ̂ (3) (green),

τ̃ (orange), with n = 100 and αh = 1.5 in Setting 2. The dotted line on the first figure is the reference at
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Figure 5.4: Local bias, standard deviation and MSE for the estimators τ̂ (1) (red) , τ̂ (2) (blue), τ̂ (3) (green),
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n = 100 n = 500 n = 1000 n = 2000

IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE

α
h

=
0.

5

τ̂
(1)
1,2|Z=z -111 154 66.2 -36.9 66.8 9.01 -22.4 48.2 4.06 -12.9 36.1 2.04

τ̂
(2)
1,2|Z=z 0.0488 137 36.3 0.236 64.2 6.45 0.546 46.8 3.14 1.29 35.7 1.78

τ̂
(3)
1,2|Z=z 111 151 60.6 37.4 66.3 8.88 23.5 47.2 4.07 15.5 36.2 2.18

τ̂
(4)
1,2|Z=z 1.38 132 18.3 0.27 64.5 4.49 0.61 46.8 2.36 1.29 35.6 1.49

α
h

=
0.

75

τ̂
(1)
1,2|Z=z -67.4 117 35.7 -23.3 52.1 5.27 -13.9 37.8 2.4 -7.6 29 1.3

τ̂
(2)
1,2|Z=z 4.32 108 23.5 0.809 50.7 4.21 1.03 37.2 2.07 1.78 28.8 1.21

τ̂
(3)
1,2|Z=z 76.1 119 35.4 24.9 51.6 5.12 16 37.6 2.49 11.2 29.1 1.39

τ̂
(4)
1,2|Z=z 4.98 106 13.3 0.86 51.6 3.13 1.03 37.5 1.63 1.81 28.9 1.02

α
h

=
1

τ̂
(1)
1,2|Z=z -43 101 28 -15.8 45.7 4.44 -9.51 33.1 2.04 -4.68 25.1 1.07

τ̂
(2)
1,2|Z=z 7.87 93.1 22.4 2.01 44.8 3.91 1.57 32.7 1.87 2.29 24.9 1.03

τ̂
(3)
1,2|Z=z 58.8 97.6 27.2 19.8 45.3 4.41 12.7 32.9 2.1 9.27 25.1 1.14

τ̂
(4)
1,2|Z=z 8.51 98 15.7 2.05 46 3.01 1.57 33.1 1.5 2.33 25.1 0.871

α
h

=
1.

5

τ̂
(1)
1,2|Z=z -16.1 95.6 41.7 -6.36 43 6.35 -4.04 30.6 2.87 -1.11 22.1 1.34

τ̂
(2)
1,2|Z=z 14.9 92.6 40.4 5.08 42.6 6.2 3.17 30.4 2.83 3.47 22 1.34

τ̂
(3)
1,2|Z=z 46 92.8 42.2 16.5 42.6 6.45 10.4 30.4 2.94 8.06 22.1 1.4

τ̂
(4)
1,2|Z=z 15.6 100 35.2 5.11 44 5.31 3.17 31 2.45 3.5 22.4 1.17

Table 5.3: Results of the simulation in Setting 2 using h = αh × hCV where hCV has been chosen by

cross-validation. All values have been multiplied by 1000. Bold values indicate optimal choices for the

chosen measure of performance.

n 100 500 1000 2000

IE[hCV ] 0.77 0.43 0.34 0.27

Sd[hCV ] 0.17 0.091 0.060 0.057

href = n−1/5 0.40 0.29 0.25 0.22

Table 5.4: Expectation and standard deviation of the bandwidth selected by cross-validation as a function

of the sample size n, and comparison with bandwidth href chosen by the rule-of-thumb.
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and then τ̂ (1)
1,2|Z=z = τ̂

(3)
1,2|Z=z − 2sn. Moreover,

τ̂
(2)
1,2|Z=z =

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)
(
1
{
Xi,1 > Xj,1, Xi,2 > Xj,2

}
+ 1

{
Xi,1 < Xj,1, Xi,2 < Xj,2

}
− 1

{
Xi,1 > Xj,1, Xi,2 < Xj,2

}
− 1

{
Xi,1 < Xj,1, Xi,2 > Xj,2

}
= 2

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)
(
1
{
Xi,1 > Xj,1, Xi,2 > Xj,2

}
− 1

{
Xi,1 > Xj,1, Xi,2 < Xj,2

})

=
1

2

(
τ̂

(1)
1,2|Z=z + 1

)
+

1

2

(
τ̂

(3)
1,2|Z=z − 1

)
=
τ̂

(1)
1,2|Z=z + τ̂

(3)
1,2|Z=z

2
= τ̂

(1)
1,2|Z=z + sn = τ̂

(3)
1,2|Z=z − sn. �

5.5.2 Proof of Proposition 5.2

Lemma 5.12. Under Assumptions 5.3.1, 5.3.2 and 5.3.3, we have for any t > 0,

IP

(∣∣f̂Z(z)− fZ(z)
∣∣ ≥ CK,αh

α

α!
+ t

)
≤ 2 exp

(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
.

This Lemma is proved below. If, for some ε > 0, we haveCK,αhα/α!+t ≤ fZ,min−ε, then f̂(z) ≥ ε > 0

with a probability larger than 1− 2 exp
(
−nhpt2/(2fZ,max

∫
K2 + (2/3)CKt)

)
. So, we should choose the

largest t as possible, which yields Proposition 5.2.

It remains to prove Lemma 5.12. Use the usual decomposition between a stochastic component and

a bias: f̂Z(z)− fZ(z) =
(
f̂Z(z)− IE[f̂Z(z)]

)
+
(
IE[f̂Z(z)]− fZ(z)

)
. We first bound the bias from above.

IE[f̂Z(z)]− fZ(z) =

∫
Rp

K(u)
(
fZ
(
z + hu

)
− fZ(z)

)
du.

Set φz,u(t) := fZ
(
z + thu

)
for t ∈ [0, 1]. This function has at least the same regularity as fZ, so it is

α-differentiable. By a Taylor-Lagrange expansion, we get∫
Rp

K(u)
(
fZ
(
z + hu

)
− fZ(z)

)
du =

∫
Rp

K(u)

( α−1∑
i=1

1

i!
φ(i)
z,u(0) +

1

α!
φ(α)
z,u(tz,u)

)
du,

for some real number tz,u ∈ (0, 1). By Assumption 5.3.1 and for every i < α,
∫
Rp K(u)φ

(i)
z,u(0) du = 0.

Therefore, ∣∣∣IE[f̂Z(z)]− fZ(z)
∣∣∣ =

∣∣∣ ∫
Rp

K(u)
1

α!
φ(α)
z,u(tz,u)du

∣∣∣
=

1

α!

∣∣∣ ∫
Rp

K(u)

p∑
i1,...,iα=1

hαui1 . . . uiα
∂αfZ

∂zi1 . . . ∂ziα

(
z + tz,uhu

)
du
∣∣∣ ≤ CK,α

α!
hα.

Second, the stochastic component may be written as

f̂Z(z)− IE[f̂Z(z)] = n−1
n∑
i=1

Kh(Zi − z)− IE
[
n−1

n∑
i=1

Kh(Zi − z)
]

= n−1
n∑
i=1

(
gz(Zi)− IE[g(Zi)]

)
,

where g(Zi) := Kh(Zi − z). Apply Lemma 5.11 with m = 1 and the latter g(Zi). Here, we have

b = −a = h−pCK , θ = IE[g(Z1)] ≥ 0 and
∣∣V ar[g(Z1)]

∣∣ ≤ h−pfZ,max ∫ K2, and we get

IP

(∣∣ 1
n

n∑
i=1

Kh(Zi − z)− IE[Kh(Zi − z)]
∣∣ ≥ t) ≤ 2 exp

(
− nt2

2h−pfZ,max
∫
K2 + (2/3)h−pCKt

)
. �
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5.5.3 Proof of Proposition 5.3

We show the result for k = 1. The two other cases can be proven in the same way.

Consider the decomposition

τ̂1,2|Z=z − τ1,2|Z=z = 4
∑

1≤i,j≤n

wi,n(z)wj,n(z)1
{
Xi < Xj

}
− 4IP

(
X1 < X2

∣∣Z1 = Z2 = z
)

=
4

n2f̂2
Z(z)

∑
1≤i,j≤n

Kh(Zi − z)Kh(Zj − z)
(
1
{
Xi < Xj

}
− IP

(
X1 < X2

∣∣Z1 = Z2 = z
))

=:
4

f̂2
Z(z)

∑
1≤i,j≤n

Si,j(z).

Therefore, for any positive numbers x and λ(z), we have

IP(|τ̂1,2|Z=z − τ1,2|Z=z| > x) ≤ IP
( 1

f̂2
Z(z)

>
1 + λ(z)

f2
Z(z)

)
+ IP

(4(1 + λ(z))

f2
Z(z)

× |
∑

1≤i,j≤n

Si,j(z)| > x
)

≤ IP
(
| 1

f̂2
Z(z)

− 1

f2
Z(z)

| > λ(z)

f2
Z(z)

)
+ IP

(4(1 + λ(z))

f2
Z(z)

× |
∑

1≤i,j≤n

Si,j(z)| > x
)
.

For any t s.t. CK,αhα/α! + t < fZ,min/2, set

λ(z) =
16f2

z (z)

f3
Z,min

(CK,αhα
α!

+ t
)
.

Then, this yields

IP
(
|τ̂1,2|Z=z − τ1,2|Z=z| > x

)
≤ IP

(
| 1

f̂2
Z(z)

− 1

f2
Z(z)

| > 16

f3
Z,min

(CK,αhα
α!

+ t
))

+ IP
(
|
∑

1≤i,j≤n

Si,j(z)| > f2
z (z)x

4(1 + λ(z))

)
.

By setting

x =
4

f2
z (z)

(CXZ,αh
α

α!
+

3fz(z)
∫
K2

2nhp
+ t′

)(
1 +

16f2
Z(z)

f3
Z,min

(CK,αhα
α!

+ t
))

,

and applying the next two lemmas 5.13 and 5.14, we get the result. �

Lemma 5.13. Under Assumptions 5.3.1-5.3.3 and if CK,αhα/α! + t < fZ,min/2 for some t > 0,

IP

(
| 1

f̂2
Z(z)

− 1

f2
Z(z)

| > 16

f3
Z,min

(CK,αhα
α!

+ t
))
≤ 2 exp

(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
,

and f̂Z(z) is strictly positive on these events.

Proof : Applying the mean value inequality to the function x 7→ 1/x2, we get the inequality
∣∣∣1/f̂2

Z(z)−

1/f2
Z(z)

∣∣∣ ≤ 2
∣∣f̂Z(z) − fZ(z)

∣∣/f∗Z3, where f∗Z lies between f̂Z(z) and fZ(z). Denote by E the event E :={
|f̂Z(z)− fZ(z)| ≤ CK,αhα/α! + t

}
. By Lemma 5.12, we obtain

IP(E) ≥ 1− 2 exp
(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
. (5.5)

Therefore, on this event E ,
∣∣f̂Z(z) − fZ(z)

∣∣ ≤ fZ,min/2, so that fZ,min/2 ≤ f̂Z(z). We have also

fZ,min/2 ≤ fZ(z) and then fZ,min/2 ≤ f∗Z. Combining the previous inequalities, we finally get∣∣∣∣ 1

f̂2
Z(z)

− 1

f2
Z(z)

∣∣∣∣ ≤ 16

f3
Z,min

∣∣f̂Z(z)− fZ(z)
∣∣ ≤ 16

f3
Z,min

(CK,αhα
α!

+ t
)
,
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on E . But since

IP

(
| 1

f̂2
Z(z)

− 1

f2
Z(z)

| > 16

f3
Z,min

(CK,αhα
α!

+ t
))
≤ IP(Ec),

we deduce the result. �

Lemma 5.14. Under Assumptions 5.3.1-5.3.4, if CK̃,2h2 < fz(z), we have for any t > 0

IP

(∣∣∣ ∑
1≤i,j≤n

Si,j(z)
∣∣∣ > CXZ,αh

α

α!
+

3fz(z)
∫
K2

2nhp
+ t

)
≤ 2 exp

(
− (n− 1)h2pt2

4f2
Z,max(

∫
K2)2 + (8/3)C2

Kt

)

+ 2 exp

(
−

nhp(fz(z)− CK̃,2h2)2

8fZ,max
∫
K̃2 + 4CK̃(fz(z)− CK̃,2h2)/3

)
.

Proof : Note that
∑

1≤i,j≤n Si,j(z) =
∑

1≤i6=j≤n
(
Si,j(z)−IE[Si,j(z)]

)
+n(n−1)IE[S1,2(z)]+

∑n
i=1 Si,i(z).

The “diagonal term”
∑n
i=1 Si,i(z) = −IP

(
X1 < X2

∣∣Z1 = Z2 = z
)∑n

i=1K
2
h(Zi − z)/n2 is negative and

negligible. It will be denoted by −∆n(z) < 0. Note that K̃(·) := K2(·)/
∫
K2 is a two-order kernel. Then,

f̃z(z) :=
∑n
i=1 K̃h(Zi − z)/n is a consistent estimator of fZ(z). Therefore, due to Lemma 5.12 and with

obvious notations, we have for every ε > 0

IP

(∣∣f̃Z(z)− fZ(z)
∣∣ ≥ CK̃,2h

2

2
+ ε

)
≤ 2 exp

(
− nhpε2

2fZ,max
∫
K̃2 + (2/3)CK̃ε

)
.

This implies

IP

(
|
∫
K2

n2hp

n∑
i=1

K̃h(Zi − z)−
fZ(z)

∫
K2

nhp
| ≥

(∫ K2

nhp

)(CK̃,2h2

2
+ ε
))

≤ 2 exp

(
− nhpε2

2fZ,max
∫
K̃2 + (2/3)CK̃ε

)
.

By choosing ε s.t. CK̃,2h
2/2 + ε = fz(z)/2, ∆n will be smaller than 3fz(z)

∫
K2/(2nhp) with a probability

that is larger than

1− 2 exp

(
− nhpε2

2fZ,max
∫
K̃2 + (2/3)CK̃ε

)
. (5.6)

Now, let us deal with the main term, that is decomposed as a stochastic component and a bias

component. First, let us deal with the bias. Simple calculations provide, if i 6= j,

IE[Si,j(z)] = n−2IE

[
Kh(Zi − z)Kh(Zj − z)

(
1
{
Xi < Xj

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))]

= n−2

∫
R2p+2

Kh(z1 − z)Kh(z2 − z)
(
1
{
x1 < x2

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))

× fX,Z(x1, z1) fX,Z(x2, z2) dx1 dz1 dx2 dz2

= n−2

∫
R2p+2

K(u)K(v)
(
1
{
x1 < x2

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))

×
(
fX,Z

(
x1, z + hu

)
fX,Z

(
x2, z + hv

)
− fX,Z(x1, z) fX,Z(x2, z)

)
dx1 du dx2 dv,

because, for every z,

0 =

∫
R4

(
1
{
x1 < x2

}
− IP

(
X1 < X2

∣∣Z1 = Z2 = z
))
fX,Z(x1, z)fX,Z(x2, z) dx1 dx2.

Apply the Taylor-Lagrange formula to the function φx1,x2,u,v(t) := fX,Z
(
x1, z + thu

)
fX,Z

(
x2, z + thv

)
.

With obvious notation, this yields

IE[Si,j(z)] = n−2

∫
K(u)K(v)

(
1
{
x1 < x2

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))
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×
( α−1∑
k=1

1

k!
φ(k)
x1,x2,u,v(0) +

1

α!
φ(α)
x1,x2,u,v(tx1,x2,u,v)

)
dx1 du dx2 dv

=

∫
K(u)K(v)

n2α!

(
1
{
x1 < x2

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))
φ(α)
x1,x2,u,v(tx1,x2,u,v)dx1 du dx2 dv.

Since φ(α)
x1,x2,u,v(t) is equal to

α∑
k=0

(
α

k

) p∑
i1,...,iα=1

hαui1 . . . uikvik+1
. . . viα

∂kfX,Z
∂zi1 . . . ∂zik

(
x1, z + thu

) ∂α−kfX,Z
∂zik+1

. . . ∂ziα

(
x2, z + thv

)
,

using Assumption 5.3.4, we get ∣∣IE[S1,2(z)]
∣∣ ≤ CXZ,αh

α/(n2α!). (5.7)

Second, the stochastic component will be bounded from above. Indeed,∑
1≤i 6=j≤n

(Si,j(z)− IE[Si,j(z)]) =
1

n2

∑
1≤i6=j≤n

gz
(
(Xi,Zi) , (Xj ,Zj)

)
,

with the function gz defined by

gz
(
(Xi,Zi), (Xj ,Zj)

)
:= Kh(Zi − z)Kh(Zj − z)

(
1
{
Xi < Xj

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))

−IE

[
Kh(Zi − z)Kh(Zj − z)

(
1
{
Xi < Xj

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))]

.

The symmetrized version of g is g̃i,j =
(
gz
(
(Xi,Zi) , (Xj ,Zj)

)
+gz

(
(Xj ,Zj) , (Xi,Zi)

))
/2. We can now

apply Lemma 5.11 to the sum of the g̃i,j . With its notation, θ = IE
[
g̃i,j
]

= 0. Moreover,∣∣∣V ar[gz((Xi,Zi), (Xj ,Zj)
)]∣∣∣

≤
∫
K2
h(z1 − z)K2

h(z2 − z)
(
1
{
x1 < x2

}
− IP

(
Xi < Xj

∣∣Zi = Zj = z
))2

× fX,Z(x1, z1)fX,Z(x2, z2) dx1 dx2 dz1 dz2

≤
∫
K2(t1)K2(t2)

h2p
fX,Z(x1, z− ht1)fX,Z(x2, z− ht2) dx1 dx2 dt1 dt2

≤ h−2pf2
Z,max

(∫
K2
)2

,

and the same upper bound applies for g̃i,j (invoke Cauchy-Schwarz inequality). Here, we choose b =

−a = 2C2
Kh
−2p. This yields

IP
( 2

n(n− 1)

∑
1≤i<j≤n

g̃i,j > t
)
≤ exp

(
− [n/2]t2

2h−2pf2
Z,max(

∫
K2)2 + (4/3)C2

Kh
−2pt

)
(5.8)

Then, for every t > 0, we obtain

IP
(
|
∑

1≤i 6=j≤n

(
Si,j(z)− IE[Si,j(z)]

)
| ≥ t

)
≤ IP

( 1

n2
|
∑

1≤i 6=j≤n

gz
(
(Xi,Zi) , (Xj ,Zj)|

)
≥ t
)

≤ IP
( (n− 1)

n
× 2

n(n− 1)
|
∑

1≤i<j≤n

g̃i,j | ≥ t
)

≤ 2 exp

(
− [n/2]t2

2h−2pf2
Z,max(

∫
K2)2 + (4/3)C2

Kh
−2pt

)
.

The latter inequality, (5.6) and (5.7) yield the result. �
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5.5.4 Proof of Proposition 5.4

Alternatively, we can apply Theorem 1 in Major [99] instead of the Bernstein-type inequality that has

been used in the proof of Proposition 5.3. With the notations of this proof, this will yield the following

lemma, that straightforwardly implies the result.

Lemma 5.15. Under Assumptions 5.3.1-5.3.4 and when t ≤ 2hp(
∫
K2)3f3

Z,max/C
4
K , 6hpfZ,max

( ∫
|K|
)2
<∫

K2 and CK̃,2h2 < fz(z), we have

IP

(∣∣∣ ∑
1≤i,j≤n

Si,j(z)
∣∣∣ > CXZ,αh

α

α!
+

3fz(z)
∫
K2

2nhp
+ t

)
≤ C2 exp

(
− α2nh

pt

8fZ,max(
∫
K2)

)

+ 2 exp

(
−

nhp(fz(z)− CK̃,2h2)2

8fZ,max
∫
K̃2 + 4CK̃(fz(z)− CK̃,2h2)/3

)
+ 2 exp

( nhpt2

32
∫
K2(

∫
|K|)2f3

Z,max + 8CK
∫
|K|fZ,maxt/3

)
for some universal positive constants C2 and α2.

Proof : We lead exactly the same reasoning and the same notations as in Lemma 5.14, until (5.8).

Now, with the same notations, introduce gi := IE[g̃i,j |Xi,Zi] and consider ξi,j := g̃i,j − gi − gj . Then,

ξi,j is a degenerate (symmetrical) U-statistics because IE[ξi,j |Xi,Zi] = IE[ξi,j |Xj ,Zj ] = 0, when i 6= j.

Actually ξi,j =: ξz(Xi,Zi,Xj ,Zj) for some function ξz and set

`z : (x1, z1,x2, z2) 7→ h2p

4C2
K

ξz
(
(x1, z1) , (x2, z2)

)
, (5.9)

for a fixed z and a fixed h. This yields ‖`z‖∞ ≤ 1 and, by usual changes of variables, we obtain∫
`2z(x1, z1,x2, z2) fX,Z(x1, z1)fX,Z(x2, z2) dx1 dx2 dz1 dz2

≤ 3h2p (
∫
K2fz,max)2

(4C2
K)2

+ 6h3p

∫
K2fz,max(

∫
|K|fz,max)2

(4C2
K)2

≤ σ2, with

σ := hpCσ, Cσ :=

∫
K2fz,max

2C2
K

, (5.10)

because 6hp
∫
K2fz,max(

∫
|K|fz,max)2 ≤ (

∫
K2fz,max)2. With the notations of [99], this implies D = 1,

m = 1 and L is arbitrarily small. Therefore, Theorem 2 in [99] yields

IP
( 1

2n
|
∑
i 6=j

`z(Xi,Zi,Xj ,Zj)| > x
)
≤ C2 exp

(
− α2x

σ

)
, (5.11)

for some universal constants C2 and α2 when x ≤ nσ3. By setting t/2 = 4C2
Kx/(nh

2p) and applying

Lemma 5.11, this provides

IP
(
|
∑

1≤i6=j≤n

(
Si,j(z)− IE[Si,j(z)]

)
| ≥ t

)
≤ IP

( 1

n2
|
∑

1≤i 6=j≤n

ξij | ≥ t/2
)

+ IP
(
| 1
n

n∑
i=1

gi| ≥ t/4
)

≤ C2 exp
(
− α2nth

p

8fZ,max(
∫
K2)

)
+ 2 exp

( nhpt2

32
∫
K2(

∫
|K|)2f3

Z,max + 8/3CK
∫
|K|fZ,maxt

)
when t ≤ 2hp(

∫
K2)3f3

Z,max/C
4
K . The latter inequality, (5.6) and (5.7) conclude the proof. �
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5.5.5 Proof of Proposition 5.6

For k = 1, we follow the paths of the proof of Proposition 5.4. Since τ̂1,2|Z=z−τ1,2|Z=z = 4
∑

1≤i,j≤n Si,j(z)/f̂2
Z(z),

we prove the result if we bound from above 1/f̂2
Z(z) and

∣∣∑
1≤i,j≤n Si,j(z)

∣∣ uniformly w.r.t. z ∈ Z. To be

specific, for any positive constant µ < 1, if |f̂Z(z)−fZ(z)| ≤ µfz,min, then 1/f̂2
z,max(z) ≤ f−2

z,min(1−µ)−2.

We deduce

IP(sup
z∈Z
|τ̂1,2|Z=z − τ1,2|Z=z| > x) ≤ IP

(
‖f̂Z − fZ‖∞ > µfz,min

)
+ IP(

4

f2
Z,min(1− µ)2

sup
z∈Z
|
∑

1≤i,j≤n

Si,j(z)| > x).

First invoke the uniform exponential inequality, as stated in [116], Proposition 9: for every ε < bK
∫
K2fZ,max/CK ,

IP
(
‖f̂Z − fZ‖∞ > ε+

CXZ,αh
α

α!

)
≤ IP

(
‖f̂Z − IE[f̂Z]‖∞ > ε

)
≤ LK exp

(
− Cf,Knhpε2

)
, (5.12)

for n sufficiently large. Then, apply Lemma 5.16, by setting (x, ε) so that

x =
4

f2
z,min(1− µ)2

(CXZ,αh
α

α!
+

3fz,max
∫
K2

2nhp
+ t
)

and ε+
CXZ,αh

α

α!
= µfz,min. �

Lemma 5.16. Under the assumptions of Proposition 5.6, we have

IP

(
sup
z∈Z

∣∣∣ ∑
1≤i,j≤n

Si,j(z)
∣∣∣ > CXZ,αh

α

α!
+

3fz,max
∫
K2

2nhp
+ t

)

≤ C2D exp

(
− α2nth

p

8fZ,max(
∫
K2)

)
+ LK̃ exp

(
− Cf,K̃nh

p(fz,max − C̃XZ,2h
2)2/4

)
+ 2 exp

(
−

A2nh
pt2C−4

K

162A2
1

∫
K2f3

z,max(
∫
|K|)2

)
+ 2 exp(− A2nh

pt

16C2
KA1

),

when t ≤ 2hp(
∫
K2)3f3

Z,max/C
4
K ,

−16A1C
2
K

Ag
∫
K2f3

z,max(
∫
|K|)2

n1/2hp/2
ln(hp

∫
K2f3

z,max(

∫
|K|)2) < t, and

nhpt ≥
( ∫

K2
)
fz,maxM2(p+ β)3/2 log

( 4C2
K

hpfz,max
∫
K2

)
, β = max

(
0,

logD

log n

)
, D := dV

(4CKλK
h

)pe,
for some universal constants C2, α2,M2, A1, A2 and a constant Ag that depends on K and fz,max.

Proof : We will use the arguments and notations of the proof of Lemmas 5.14 and 5.15. We still invoke

the decomposition
∑

1≤i,j≤n Si,j(z) =
∑

1≤i6=j≤n
(
Si,j(z)−IE[Si,j(z)]

)
+n(n−1)IE[S1,2(z)]+

∑n
i=1 Si,i(z).

First let us find a uniform bound for the “diagonal term” ∆n(z) =
∑n
i=1 Si,i(z) =

∫
K2f̃z(z)/(nhp). As

in (5.12), for every ε < bK̃
∫
K̃2fZ,max/CK̃ ,

IP
(
‖f̃Z − fZ‖∞ > ε+

C̃XZ,2h
2

2

)
≤ LK̃ exp

(
− Cf,K̃nh

pε2
)
,

for n sufficiently large. This implies

IP

(
sup
z∈Z
|
∫
K2

n2hp

n∑
i=1

K̃h(Zi − z)−
fZ(z)

∫
K2

nhp
| ≥

(∫ K2

nhp

)(
ε+

C̃XZ,2h
2

2

))
≤ LK̃ exp

(
− Cf,K̃nh

pε2
)
.
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Choose ε s.t. C̃XZ,2h
2/2 + ε = fz,max/2. Then, supz |∆n(z)| will be smaller than 3fz,max

∫
K2/(2nhp)

with a probability that is larger than

1− LK̃ exp
(
− Cf,K̃nh

pε2
)
. (5.13)

Moreover, it is easy to see that

sup
z∈Z

∣∣IE[S1,2(z)]
∣∣ ≤ CXZ,αh

α/(n2α!). (5.14)

With the same notations as in the proof of Lemma 5.15, the stochastic component will be driven by∑
1≤i 6=j≤n

(Si,j(z)− IE[Si,j(z)]) =
1

n2

∑
1≤i 6=j≤n

gz
(
(Xi,Zi) , (Xj ,Zj)

)
=

1

n2

∑
1≤i 6=j≤n

g̃i,j =
1

n2

∑
1≤i 6=j≤n

ξi,j +
2(n− 1)

n2

n∑
i=1

gi.

Now apply Theorem 1 in [99], by recalling (5.9) and considering the family F :=
{
`z, z ∈ Z

}
, for

a fixed bandwidth h. The constant σ has the same value as in (5.10). It is easy to check that the latter

class of functions is L2 dense (see [99]). Set ε ∈ (0, 1). Since K is λK-Lipschitz, every function `z ∈ F
can be approximated in L2 by a function `zj ∈ F , for some j ∈ {1, . . . ,m} s.t.

∫
|`z − `zi |2dν ≤ ε2,

for any probability measure ν. Indeed,
∫
|`z − `zi |2dν ≤ 64λ2

K‖z − zj‖2∞C2
Kh
−2 that is less than ε2, if

we cover Z by a grid of m points (zj) in Z s.t. ‖z − zj‖∞ ≤ εh/(8CKλK) := εδ. This can be done

with m ≤ ε−pd
∏p
k=1

(
(bk − ak)/δ

)
e = ε−pdVδ−pe points. Then, with the notations of [99], L = p and

D = V(8CKλK/h)p. As above, this yields

IP
(

sup
z∈Z

1

n2
|
∑

1≤i6=j≤n

ξZ(Xi,Zi,Xj ,Zj) , (Xj ,Zj)
)
| > t

)
≤ C2D exp

(
− α2nh

pt

8(
∫
K2)fZ,max

)
, (5.15)

when t ≤ 2hp(
∫
K2)3f3

Z,max/C
4
K .

It remains to bound IP(supz∈Z |n
−1
∑n
i=1 gi| > t/4). Consider the family of functions

F := {(x1, z1) ∈ R×Z 7→ hp

4C2
K

IE[gz(x1, z1,X,Z)], z ∈ Z}.

This family of functions is bounded is one and its variance is less than σ2 := hp
∫
K2f3

z,max

( ∫
|K|
)2.

Apply Propositions 9 and 10 in [50] that is coming from [47]: for some universal constants A1 and A2,

some constant Ag that depends on K and fz,max (see Proposition 1 in [47]) and for every x > 0,

IP
(

sup
z∈Z

hp

4C2
K

|
n∑
i=1

IE[gz(Xi,Zi,X,Z)|Xi,Zi]| > A1

(
x+Agn

1/2σ ln(1/σ)
))

≤ 2
(

exp
(
− A2x

2

nσ2

)
+ exp(−A2x)

)
,

or

IP
(

sup
z∈Z

1

n
|
n∑
i=1

gi| > 4A1C
2
K

(
x− Agσ

n1/2hp
ln(σ)

))
≤ 2 exp

(
− A2nh

2px2

σ2

)
+ 2 exp(−A2nh

px).

For any positive t s.t.

4A1C
2
K

(n− 1)Agσ

n3/2hp
ln(1/σ) < t/8,

note that we can find a real x > thp/(16C2
KA1). Then, we have

IP
(

sup
z∈Z

(n− 1)

n2
|
n∑
i=1

gi| >
t

4

)
≤ 2 exp

(
−

A2nh
pt2C−4

K

162A2
1

∫
K2f3

z,max(
∫
|K|)2

)
+ 2 exp(− A2nh

pt

16C2
KA1

). (5.16)
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Therefore, for such t, we obtain from (5.16) and (5.15) that

IP
(

sup
z∈Z
|
∑

1≤i 6=j≤n

(
Si,j(z)− IE[Si,j(z)]

)
| ≥ t

)
≤ C2D exp

(
− α2nh

pt

8(
∫
K2)fZ,max

)

+ 2 exp
(
−

A2nh
pt2C−4

K

152A2
1

∫
K2f3

z,max(
∫
|K|)2

)
+ 2 exp(− A2nh

pt

15C2
KA1

).

for sufficiently large integers n. The latter inequality, (5.13) and (5.14) yield the exponential upper bound.

�

5.5.6 Proof of Proposition 5.7

Let us note that τ1,2|Z=z = IE
[
gk(X1,X2)

∣∣Z1 = z,Z2 = z
]

for every k = 1, 2, 3, and that our estimators

with the weights (5.2) can be rewritten as τ̂ (k)
1,2|Z=z := Un(gk) / {Un(1) + εn} where

Un(g) :=
1

n(n− 1)IE[Kh(z− Z)]2

∑
1≤i 6=j≤n

g(Xi,Xj)Kh(z− Zi)Kh(z− Zj) =:
1

n(n− 1)

∑
1≤i6=j≤n

gi,j ,

for any measurable bounded function g, with the residual diagonal term εn :=
∑n
i=1K

2
h(z− Zi)/{n(n−

1)IE[Kh(z− Z)]2}. By Bochner’s lemma (see Bosq and Lecoutre [21]), εn is OP ((nhp)−1), and it will be

negligible compared to Un(1). Since the reasoning will be exactly the same for every estimator τ (k)
1,2|z, i.e.

for every function gk, k = 1, 2, 3, we omit the sub-index k. Then, the functions gk will be simply denoted

by g.

The expectation of our U-statistics is

IE
[
Un(g)

]
:= IE

[
g(X1,X2)Kh(z− Z1)Kh(z− Z2)

]
/IE[Kh(z− Z)]2

=

∫
g(x1,x2)K(t1)K(t2)fX,Z(x1, z + ht1)fX,Z(x2, z + ht2)dx1 dx2 dt1 dt2/IE[Kh(z− Z)]2

→ 1

f2
Z(z)

∫
g(x1,x2)fX,Z(x1, z)fX,Z(x2, z)dx1dx2 = IE

[
g(X1,X2)

∣∣Z1 = z,Z2 = z
]
,

applying Bochner’s lemma to z 7→
∫
g(x1,x2)fX|Z=z(x1)fX|Z=z(x2) dx1 dx2 = τ1,2|Z=z, that is a continu-

ous function by assumption.

Set θn := IE[Un(g)], g∗(x1,x2) := (g(x1,x2) + g(x2,x1))/2 and g∗i,j = (gi,j + gj,i)/2 for every (i, j),

i 6= j. Note that Un(g) = Un(g∗). Since g∗ is symmetrical, the Hájek projection Ûn(g∗) of Un(g∗) satisfies

Ûn(g∗) :=
2

n

n∑
j=1

IE[g∗0,j |Xj ,Zj ]− θn.

Note that IE[Ûn(g∗)] = θn = τ1,2|Z=z+oP (1). Since V ar(Ûn(g∗) = 4V ar(IE[g∗0,j |Xj ,Zj ])/n = O((nhp)−1),

then Ûn(g∗) = θn + oP (1) = τ1,2|Z=z + oP (1).

Moreover, using the notation gi,j := g∗i,j − IE[g∗i,j |Xj ,Zj ] − IE[g∗i,j |Xi,Zi] + θn for 1 ≤ i 6= j ≤ n,

we have Un(g∗) − Ûn(g∗) =
∑

1≤i6=j≤n gi,j/n(n − 1). By usual U-statistics calculations, it can be easily

checked that

V ar
(
Un(g∗)− Ûn(g∗)

)
=

1

n2(n− 1)2

∑
1≤i1 6=j1≤n

∑
1≤i2 6=j2≤n

IE[gi1,j1gi2,j2 ] = O
( 1

n2h2p

)
.

Indeed, when all indices (i1, i2, j1, j2) are different, or when there is a single identity among them,

IE[gi1,j1gi2,j2 ] is zero. The first nonzero terms arise when there are two identities among the indices,
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i.e. i1 = i2 and j1 = j2 (or i1 = j2 and j1 = i2). In the latter case, we get an upper bound as O((nhp)−2)

when fZ is continuous at z, by usual changes of variable techniques and Bochner’s Lemma. Then,

Un(g∗) = Ûn(g∗) + oP (1) = τ1,2|Z=z + oP (1). Note that Un(1) + εn tends to one in probability (Bochner’s

lemma). As a consequence, τ̂1,2|Z=z = Un(g∗) / (Un(1) + εn) tends to τ1,2|Z=z/1 by the continuous

mapping theorem. �

5.5.7 Proof of Proposition 5.8

Let us note that

τ1,2|Z=z = IE
[
gk(X1,X2)

∣∣Z1 = z,Z2 = z
]

=

∫
gk(x1,x2)fX|Z=z(x1)fX|Z=z(x2)dx1dx2 = φk(z)/f2

Z(z)

where φk(z) :=
∫
gk(x1,x2)fX,Z(x1, z)fX,Z(x2, z)dx1dx2. We can also write τ̂

(k)
1,2|Z=z = φ̂k(z)/f̂2

Z(z),

where φ̂k(z) := n−2
∑n
i,j=1Kh(Zi − z)Kh(Zj − z)gk(Xi,Xj) and f̂Z(z) := n−1

∑n
i=1Kh(Zi − z). There-

fore, we have

τ̂
(k)
1,2|Z=z − τ1,2|Z=z =

φ̂k(z)− φk(z)

f̂2
Z(z)

− τ1,2|Z=z
f̂Z(z)− fZ(z)

f̂2
Z(z)

×
(
f̂Z(z) + fZ(z)

)
.

By usual uniform consistency results (see for example Bosq and Lecoutre [21]), supz∈Z
∣∣f̂Z(z)−fZ(z)

∣∣→
0 almost surely, as n→∞. We deduce that

min
z∈Z

f̂2
Z(z) ≥ f2

Z,min/2, and max
z∈Z
|f̂Z(z) + fZ(z)| ≤ 2 max

z∈Z
fZ(z) a.s.

This means it is sufficient to prove the uniform strong consistency of φ̂k onZ, to obtain that supz∈Z
∣∣τ̂ (k)

1,2|Z=z−
τ

(k)
1,2|Z=z

∣∣ tends to zero a.s.

Note that, by Bochner’s Lemma, supz∈Z
∣∣IE[φ̂k(z)] − φk(z)

∣∣ → 0. Then, it remains to show that

supz∈Z
∣∣φ̂k(z) − IE[φ̂k(z)]

∣∣ → 0 almost surely. Let ρn > 0 be such that we cover Z by the union of ln
open balls B(tl, ρn), where t1, . . . , tln ∈ Rp and ln ∈ N∗. Then

sup
z∈Z

∣∣φ̂k(z)− IE[φ̂k(z)]
∣∣ ≤ sup

l=1,...ln

∣∣φ̂k(tl)− IE[φ̂k(tl)]
∣∣+An,

where An := supl=1,...ln supz∈B(tl,ρn)

∣∣φ̂k(z) − φ̂k(tl) − (IE[φ̂k(z)] − IE[φ̂k(tl)])
∣∣. For any index l ∈

{1, . . . , ln} and any z ∈ B(tl, ρn), a first-order expansion yields∣∣φ̂k(z)− φ̂k(tl)− (IE[φ̂k(z)]− IE[φ̂k(tl)])
∣∣

=

∣∣∣∣ 1

n(n− 1)

∑
1≤i 6=j≤n

gk(Xi,Xj)Kh(z− Zi)Kh(z− Zj)

− 1

n(n− 1)

∑
1≤i6=j≤n

gk(Xi,Xj)Kh(tl − Zi)Kh(tl − Zj)

−
(

IE
[
gk(X1,X2)Kh(z− Z1)Kh(z− Z2)

]
− IE

[
gk(Xi,Xj)Kh(tl − Zi)Kh(tl − Zj)

])∣∣∣∣
≤ CLip,Kh−2p−1|z− tl|

(
IE
[
|gk(X1,X2)|

]
+

1

n(n− 1)

∑
1≤i6=j≤n

|gk(Xi,Xj)|
)

= O(h−2p−1ρn) = o(1),

for some constant CLip,K and by choosing ρn = o(h2p+1
n ). Actually, we can cover Z in such a way that

ln = O(h
−p(2p+1)
n ). This is always possible because Z is a bounded set in Rp. Note that the previous

upper bound is uniform w.r.t. l and z ∈ B(tl, ρn), proving that An = o(1) everywhere.
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Now, for every l = 1, . . . , ln, apply Equation (5.8) for every z = tl. For any t > 0, this provides

IP

(
1

n(n− 1)

∣∣∣∣∑
i 6=j

g(l)
(
(Xi,Zi), (Xj ,Zj)

)
− IE

[
g(l)
(
(X1,Z1), (X2,Z2)

)]∣∣∣∣ > t

)
≤ exp

(
− C0nh

2p
n t

2

C1 + C2t

)
,

for some positive constants C0, C1, C2, by setting

g(l)
(
(Xi,Zi), (Xj ,Zj)

)
:= gk(Xi,Xj)Kh(tl − Zi)Kh(tl − Zj).

Therefore, we deduce

IP

(
sup

l=1,...ln

∣∣φ̂k(tl)− IE[φ̂k(tl)]
∣∣ ≥ t) ≤ C4h

−p(2p+1)
n exp

(
− C0nh

2p
n t

2

C1 + C2t

)
,

for some constant C4. Finally, applying Borel-Cantelli lemma, supz∈Z
∣∣φ̂k(z) − IE[φ̂k(z)]

∣∣ tends to zero

a.s., proving the result. �

5.5.8 Proof of Proposition 5.9

By Markov’s inequality,
∑n
i=1 w

2
i,n(z) = OP ((nhp)−1) for any z, that tends to zero. Then, by Slutsky’s

theorem, we get an asymptotic equivalence between the limiting laws of any τ̂ (k)
1,2|z, k = 1, 2, 3, and of

their linearly transformed versions τ̃1,2|z. Thus, we will prove the asymptotic normality of τ̂ (k)
1,2|z for some

index k = 1, 2, 3, simply denoted by τ̂1,2|z.

Let g∗(x1,x2) := (gk(x1,x2) + gk(x2,x1))/2 for some index k = 1, 2, 3 (that will be implicit in the

proof). We now study the joint behavior of (τ̂1,2|Z=z′i
− τ1,2|Z=z′i

)i=1,...,n′ . We will extend Stute [132]’s

approach, in the case of multivariate conditioning variable z and studying the joint distribution of U-

statistics at several conditioning points. As in the proof of Proposition 5.7, the estimator with the weights

given by (5.2) can be rewritten as τ̂1,2|Z=z′i
:= Un,i(g

∗) / (Un,i(1) + εn,i), where

Un,i(g) :=
1

n(n− 1)IE[Kh(z′i − Z)]2

n∑
j1,j2=1,j1 6=j2

g(Xj1 ,Xj2)Kh(z′i − Zj1)Kh(z′i − Zj2),

for any bounded measurable function g : R4 → R. Moreover, supi=1,...,n′ |εn,i| = OP (n−1h−p). By a

limited expansion of fX,Z w.r.t. its second argument, and under Assumption 5.3.4, we easily check that

IE
[
Un,i(g)

]
= τ1,2|Z=z′i

+ rn,i, where |rn,i| ≤ C0h
α
n/f

2
Z(z′i), for some constant C0 that is independent of i.

Now, we prove the joint asymptotic normality of
(
Un,i(g)

)
i=1,...,n′

. The Hájek projection Ûn,i(g) of

Un,i(g) satisfies Ûn,i(g) := 2
∑n
j=1 gn,i

(
Xj ,Zj

)
/n− θn, where θn := IE

[
Un,i(g)

]
and

gn,i(x, z) := Kh(z′i − z)IE
[
g(X,x)Kh(z′i − Z)

]
/ IE[Kh(z′i − Z)]2.

Lemma 5.17. Under the assumptions of Proposition 5.9, for any measurable bounded function g,

(nhp)1/2
(
Ûn,i(g)− IE

[
Un,i(g)

])
i=1,...,n′

D−→ N (0,M∞(g)), as n→∞,

where, for 1 ≤ i, j ≤ n′,

[M∞(g)]i,j :=
4
∫
K21{z′i=z′j}

fZ(z′i)

∫
g
(
x1,x)g

(
x2,x)fX|Z=z′i

(x)fX|Z=z′i
(x1)fX|Z=z′i

(x2)dx dx1 dx2.



Chapter 5. About kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and
asymptotic behavior 150

This lemma is proved in Section 5.5.9. Similarly as in the proof of Lemma 2.2 in Stute [132], for every

i = 1, . . . , n′ and every bounded symmetrical measurable function g, we have (nhp)1/2V ar
[
Ûn,i(g) −

Un,i(g)
]

= o(1), which implies

(nhp)1/2
(
Un,i(g)− IE

[
Un,i(g)

])
i=1,...,n′

D−→ N (0,M∞(g)), as n→∞.

Considering two measurable and bounded functions g1 and g2, we have Un,i(c1g1+c2g2) = c1Un,i(g1)+

c2Un,i(g2) for every real numbers c1, c2. By the Cramér-Wold device, we easily state that

(nhp)1/2

((
Un,i(g1)− IE

[
Un,i(g1)

])
i=1,...,n′

,
(
Un,i(g2)− IE

[
Un,i(g2)

])
i=1,...,n′

)
D−→ N

(
0,

[
M∞(g1) M∞(g1, g2)

M∞(g1, g2) M∞(g2)

])
,

as n→∞, where

[M∞(g1, g2)]i,j :=
4
∫
K21{z′i=z′j}

fZ(z′i)

∫
g1

(
x1,x)g2

(
x2,x)fX|Z=z′i

(x)fX|Z=z′i
(x1)fX|Z=z′i

(x2)dx dx1 dx2.

Set τ̃1,2|Z=z′i
:= Un,i(g

∗) /Un,i(1). Since (nhpn)1/2
(
τ̂1,2|Z=z′i

− τ̃1,2|Z=z′i

)
= OP

(
(nhpn)1/2εn,i

)
is oP (1),

it is sufficient to establish the asymptotic law of (nhpn)1/2
(
τ̃1,2|Z=z′i

− τ1,2|Z=z′i

)
. Since IE[Un,i(1)] =

1 + o((nhp)−1/2) and IE[Un,i(g
∗)] = τ1,2|Z=z′i

+ o((nhpn)−1/2), we get

(nhp)1/2

((
Un,i(g

∗)− τ1,2|Z=z′i

)
i=1,...,n′

,
(
Un,i(1)− 1

)
i=1,...,n′

)
D−→ N

(
0,

[
M∞(g∗) M∞(g∗, 1)

M∞(g∗, 1) M∞(1)

])
, as n→∞.

Now apply the Delta-method with the function ρ(x,y) := x/y where x and y are real-valued vectors of

size n′ and the division has to be understood component-wise. The Jacobian of ρ is given by the n′×2n′

matrix

Jρ(x,y) =
[
Diag

(
y−1

1 , . . . y−1
n′

)
, Diag

(
− x1y

−2
1 , · · · − xn′y−2

n′

)]
,

where, for any vector v of size n′, Diag(v) is the diagonal matrix whose diagonal elements are the vi,

with i = 1, . . . , n′. We deduce (nhp)1/2
(
τ̃1,2|Z=z′i

− τ1,2|Z=z′i

)
i=1,...,n′

D−→ N (0,H), as n→∞, setting

H := Jρ(~τ , e)

[
M∞(g∗) M∞(g∗, 1)

M∞(g∗, 1) M∞(1)

]
Jρ(~τ , e)T ,

where ~τ =
(
τ1,2|Z=z′i

)
i=1,...,n′

and e is the vector of size n′ whose all components are equal to 1. Thus,

we have Jρ(~τ , e) =
[
Idn′ ,−Diag(~τ)

]
, denoting by Idn′ the identity matrix of size n′ and by Diag(~τ) the

diagonal matrix of size n′ whose diagonal elements are the τ1,2|z′i , for i = 1, . . . , n′. To be specific, we

get

H = M∞(g∗)−Diag(~τ)M∞(g∗, 1)−M∞(g∗, 1)Diag(~τ) +Diag(~τ)M∞(1)Diag(~τ).

For i, j in {1, . . . , n′} and using the symmetry of the function g∗, we obtain

[M∞(g∗)]i,j =
4
∫
K21{z′i=z′j}

fZ(z′i)
IE[g∗(X1,X)g∗(X2,X)|Z = Z1 = Z2 = z′i],

[Diag(~τ)M∞(g∗, 1)]i,j = τ1,2|Z=z′i

4
∫
K21{z′i=z′j}

fZ(z′i)
IE[g∗(X1,X)|Z = Z1 = z′i]

=
4
∫
K21{z′i=z′j}

fZ(z′i)
τ2
1,2|Z=z′i

= [M∞(g∗, 1)Diag(~τ)]i,j = [Diag(~τ)M∞(1)Diag(~τ)]i,j .
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As a consequence, we obtain

[H]i,j =
4
∫
K21{z′i=z′j}

fZ(z′i)

(
IE[g∗(X1,X)g∗(X2,X)|Z = Z1 = Z2 = z′i]− τ2

1,2|Z=z′i

)
. �

5.5.9 Proof of Lemma 5.17

Let us first evaluate the variance-covariance matrixMn,n′ := [Cov(Ûn,i, Ûn,j)]1≤i,j≤n′ . Note that IE
[
gn,i(Xj ,Zj)

]
=

IE
[
Ûn,i

]
= IE

[
Un,i(g)

]
, and that(

(nhp)1/2
(
Ûn,i − IE[Un,i(g)]

))
i=1,...,n′

=
2hp/2

n1/2

n∑
j=1

(
gn,i(Xj ,Zj)− IE[Un,i(g)]

)
i=1,...,n′

,

that is a sum of independent vectors. Thus, Cov(Ûn,i, Ûn,j) = 4n−1Cov
(
gn,i
(
X,Z

)
, gn,j

(
X,Z

))
, for

every i, j in {1, . . . , n′}, and

IE
[
gn,i(X,Z)gn,j(X,Z)

]
=

∫
Kh(z′i − z)Kh(z′j − z)

IE
[
g(X,x)Kh(z′i − Z)

]
IE
[
g(X,x)Kh(z′j − Z)

]
IE[Kh(z′i − Z)]2IE[Kh(z′j − Z)]2

fX,Z(x, z)dx dz

∼ 1

hpf2
Z(z′i)f

2
Z(z′j)

∫
g
(
x1,x)g

(
x2,x)Kh(z′i − z)Kh(z′j − z)Kh(z′i −w1)Kh(z′j −w2)

× fX,Z(x, z)fX,Z(x1,w1)fX,Z(x2,w2)dx dz dx1 dw1 dx2 dw2

∼ 1

hpf2
Z(z′i)f

2
Z(z′j)

∫
g
(
x1,x)g

(
x2,x)K(u1)K(u2)K(u)K(

z′j − z′i
h

+ u)fX,Z(x, z′i − hu)

× fX,Z(x1, z
′
i − hu1)fX,Z(x2, z

′
j − hu2)dx du dx1 du1 dx2 du2.

If i 6= j and K is compactly supported, the latter term is zero when n is sufficiently large, and

Cov(Ûn,i, Ûn,j) = −4n−1IE[Un,i]IE[Un,j ] ∼ −4n−1τ1,2|Z=z′i
τ1,2|Z=z′j

= o
(
(nhp)−1

)
.

Otherwise, i = j and, as IE
[
gn,i
(
X1,Z1

)]
= O(1), we have

V ar
((
gn,i(X,Z)

)2) ∼ 1

hpf4
Z(z′i)

∫
g
(
x1,x)g

(
x2,x)K(u1)K(u2)K2(u)fX,Z(x, z′i − hu)

× fX,Z(x1, z
′
i − hu1)fX,Z(x2, z

′
i − hu2) dx du dx1 du1 dx2 du2

∼
∫
K2

hpfZ(z′i)

∫
g
(
x1,x)g

(
x2,x)fX|Z=z′i

(x)fX|Z=z′i
(x1)fX|Z=z′i

(x2) dx dx1 dx2,

by Bochner’s lemma. We have proved that, for every i, j ∈ {1, . . . , n′},

nhp[Mn,n′ ]i,j →
4
∫
K21{z′i=z′j}

fZ(z′i)

∫
g
(
x1,x)g

(
x2,x)fX|Z=z′i

(x)fX|Z=z′i
(x1)fX|Z=z′i

(x2) dx dx1 dx2,

as n→∞. Therefore, nhpMn,n′ tends to M∞.

We now verify Lyapunov’s condition with third-order moments, so that the usual multivariate central

limit theorem would apply. It is then sufficient to show that(hp/2
n1/2

)3 n∑
j=1

IE
[∣∣gn,i(Xj ,Zj)− IE[Un,i(g)]

∣∣3] = o(1). (5.17)

For any j = 1, . . . , n, we have

IE
[∣∣gn,i(Xj ,Zj)− IE[Un,i(g)]

∣∣3]
∼
∫ ∣∣∣ 1

f2
Z(z′i)

∫
g(x1,x)Kh(z′i − z1)Kh(z′i − z)fX,Z(x1, z1)dx1 dz1 − IE

[
Un,i(g)

]∣∣∣3fX,Z(x, z)dx dz.



Chapter 5. About kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and
asymptotic behavior 152

By the change of variable z1 = z′i − ht1 and z = z′i − ht, we get

IE
[∣∣gn,i(Xj ,Zj)− IE[Un,i(g)]

∣∣3] ∼ h−2p

∫ ∣∣∣ 1

f2
Z(z′i)

∫
g(x1,x)K(t1)K(t)fX,Z(x1, z

′
i − ht1)dx1 dt1

− hpIE
[
Un,i(g)

]∣∣∣3fX,Z(x, z′i − ht)dx dt = O(h−2p),

because of Bochner’s lemma, under our assumptions. Therefore, we have obtained(hp/2
n1/2

)3 n∑
j=1

IE
[∣∣gn,i(Xj ,Zj)− IE[Un,i(g)]

∣∣3] = O(h3p/2n−3/2nh−2p) = O((nhp)−1/2) = o(1).

Therefore, we have checked Lyapunov’s condition and the result follows. �



Chapter 6

About Kendall’s regression

Abstract

Conditional Kendall’s tau is a measure of dependence between two random variables, condition-

ally on some covariates. We assume a regression-type relationship between conditional Kendall’s

tau and some covariates, in a parametric setting with a large number of transformations of a small

number of regressors. This model may be sparse, and the underlying parameter is estimated

through a penalized criterion. We prove non-asymptotic bounds with explicit constants that hold

with high probabilities. We derive the consistency of a two-step estimator, its asymptotic law and

some oracle properties. Some simulations and applications to real data conclude the paper.

Keywords: Conditional dependence measures, kernel smoothing, regression-type models, con-

ditional Kendall’s tau.

Based on [39]: Derumigny, A., & Fermanian, J. D., About Kendall’s regression. ArXiv preprint,
arXiv:1802.07613, 2018.

6.1 Introduction

In dependence modeling, it is common to work with scalar dependence measures which are margin-

free. They can be used to quantify the positive or negative relationship between two random variables

X1 and X2. One of the most popular of them is Kendall’s tau, a dependence measure defined by

τ1,2 := IP
(
(X1,1 −X2,1)(X1,2 −X2,2) > 0

)
− IP

(
(X1,1 −X2,1)(X1,2 −X2,2) < 0

)
,

where (Xi,1, Xi,2), i = 1, 2 are i.i.d. copies of (X1, X2), see [106]. When a covariate Z is available, it is

natural to work with the conditional version of this, i.e. the conditional Kendall’s tau. It is defined as

τ1,2|Z=z := IP
(
(X1,1 −X2,1)(X1,2 −X2,2) > 0

∣∣Z1 = Z2 = z
)

− IP
(
(X1,1 −X2,1)(X1,2 −X2,2) < 0

∣∣Z1 = Z2 = z
)
,

where (Xi,1, Xi,2,Zi), i = 1, 2 are i.i.d. copies of (X1, X2,Z). In such a model, the goal is to study to what

extent a p-dimensional covariate z can affect the dependence between the two variables of interest X1

and X2.

Most often, it is difficult to have a clear intuition about the functional link between some measure

of dependence and the underlying explanatory variables. Sometimes, it is even unclear whether the
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covariates have an influence on the dependence between the variables of interest. This is the so-

called “simplifying assumption”, well-known in the world of copula modeling (see [38] and the references

therein). This issue is particularly crucial with pair-copula constructions, as pointed out in [68], [5], [87],

among others. In our case, we will evaluate an explicit and flexible link between some dependence

measure, the Kendall’s tau, and the vector of covariates. As a sub-product of our model, we will be able

to provide a test of the “simplifying assumption”.

Given a dataset (Xi,1, Xi,2,Zi), i = 1, . . . , n, we will focus on the function z 7→ τ1,2|Z=z for z ∈ Z,

where Z denotes a compact subset of Rp. This Z represents a set of “reasonable” values for z, so that

the density fZ is bounded from below on Z. In order to simplify notation, the reference to the conditioning

event Z ∈ Z will be omitted. A first natural choice would be to invoke a nonparametric estimator of

τ1,2|Z=z as in [63], [141] and [40]. Here, we prefer to obtain parameters that can be interpreted and that

would sum up the information about the conditional Kendall’s tau. Moreover, kernel-based estimation

can be very costly under a computational point of view: for m values of z, the prediction of all these

conditional Kendall’s taus has a total cost of O(mn2), that can be large if a large number m is required.

Other estimators of the conditional Kendall’s tau, based on classification methods, are proposed in [41].

In this paper, our idea is to decompose the function z 7→ τ1,2|Z=z on some functional basis (ψi)i≥1,

as any element of a space of functions from Z to R. First note that a Kendall’s tau takes its values

in the interval [−1, 1], and not on the whole real line. Nevertheless, for some known increasing and

continuously differentiable function Λ : [−1, 1] → R, the function z 7→ Λ
(
τ1,2|Z=z

)
takes values on up to

the whole real line potentially, and it can be decomposed on any basis (ψi)i≥1. Typical transforms are

Λ(τ) = log
(

1+τ
1−τ

)
(the Fisher transform) or Λ(τ) = log(− log((1−τ)/2)). We will assume that only a finite

number of elements are necessary to represent this function. This means that we have

Λ
(
τ1,2|Z=z

)
=

p′∑
i=1

ψi(z)β∗i = ψ(z)Tβ∗, (6.1)

for all z ∈ Z, with p′ > 0 and a “true” unknown parameter β∗ ∈ Rp
′
. The functionψ(·) :=

(
ψ1(·), . . . , ψp′(·)

)T
from Rp to Rp

′
is known and corresponds to deterministic transformations of the covariates z. In practice,

it is not easy to have intuition about which kind of basis to use, especially in our framework of conditional

dependence measurement. Therefore, the most simple solution is the use of a lot of different functions

: polynomials, exponentials, sinuses and cosinuses, indicator functions, etc... They allow to take into

account potential non-linearities and even discontinuities of conditional Kendall’s taus with respect to

z. For the sake of identifiability, we only require their linear independence, as seen in the following

proposition (whose straightforward proof is omitted).

Proposition 6.1. The parameter β∗ in Model (6.1) is identifiable if and only if the functions (ψ1, . . . , ψp′)

are linearly independent IPZ-a.e. in the sense that, for any given vector t = (t1, . . . , tp′) ∈ Rp
′
,

IPZ

(
ψ(Z)T t = 0

)
= 1 implies t = 0.

With such a large choice among flexible classes of functions, it is unlikely we will be able to guess

the right ones ex ante. Therefore, it will be necessary to consider a large number of functions ψi under

a sparsity constraint: the cardinality of S, the set of non-zero components of β∗, is less than some

s ∈ {1, . . . , p′}. It is denoted by |S| = |β∗|0, where | · |0 yields the number of non-zero components of

any vector in Rp
′
. Note that, in this framework, p′ can be moderately large, for example 10 or 30 while

the original dimension p is small, for example p = 1 or 2. This corresponds to the decomposition of a

function, defined on a small-dimension domain, in a mildly large basis.
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Once an estimator β̂ of β∗ has been computed, the prediction of all the conditional Kendall’s tau’s

for m values of z, which is just the computation of Λ(−1)
(
ψ(z)T β̂

)
can be done in O(ms), that is much

faster than what was previously required with a kernel-based estimator for large m, as soon as s ≤ n2

(see Section 6.4.1 for a discussion).

Estimating Model (6.1) not only provides an estimator of the conditional Kendall’s tau τ1,2|Z=z, but

also easily provides estimators of the marginal effects of z as by-product. For example, given z ∈ Z, the

marginal effect of z1, i.e. ∂τ1,2|Z=z(z)/∂z1, can be directly estimated by
(
∂z1ψ(z)

)T
β̂ · Λ(−1)′(ψ(z)T β̂

)
,

assuming that ψ and Λ(−1) are differentiable respectively at z and ψ(z)T β̂. Such sensitivities can be

useful in many applications.

A desirable empirical feature of Model (6.1) would be the possibility of obtaining very high/low lev-

els of dependence between X1 and X2, for some Z values, i.e. Λ(−1)(ψ(z)Tβ∗) should be close (or

even equal) to 1 or −1 for some z. This can be the case even if Z is compact, that is here required

for theoretical reasons. Indeed, the image of {τ1,2|z|z ∈ Z} = [τmin, τmax] through Λ is an interval

[Λmin,Λmax]. If ψ(z)Tβ∗ ≥ Λmax (resp. ψ(z)Tβ∗ ≤ Λmin), then simply set τ1,2|Z=z = τmax or even one

(resp. τ1,2|Z=z = τmin or even (−1)).

Contrary to more usual models, the “explained variable” - the conditional Kendall’s tau τ1,2|Z=z - is

not observed in (6.1). Therefore, a direct estimation of the parameter β∗ (for example, by the ordinary

least squares, or by the Lasso) is unfeasible. In other words, even if the function z 7→ Λ
(
τ1,2|Z=z

)
is

deterministic, finding the best β in Model (6.1) is far from being just a numerical analysis problem since

the function to be decomposed is unknown. Nevertheless, we will replace τ1,2|Z=z by a nonparametric

estimate τ̂1,2|Z=z, and use it as an approximation of the explained variable. More precisely, we fix a

finite collection of points z′1, . . . , z
′
n′ ∈ Z

n′ and we estimate τ̂1,2|Z=z for each of these points. Then, β̂ is

estimated as the minimizer of the l1-penalized criteria

β̂ := arg min
β∈Rp′

[ 1

n′

n′∑
i=1

(
Λ(τ̂1,2|Z=z′i

)−ψ(z′i)
Tβ
)2

+ λ|β|1
]
, (6.2)

where λ is a positive tuning parameter (that may depend on n and n′), and | · |q denotes the lq norm, for

1 ≤ q ≤ ∞. This procedure is summed up in the following Algorithm 5. Note that even if we study the

general case with any λ ≥ 0, the properties of the unpenalized estimator can be derived by choosing

the particular case λ = 0.

Algorithm 5: Two-step estimation of β

Input: A dataset (Xi,1, Xi,2,Zi), i = 1, . . . , n

Input: A finite collection of points z′1, . . . , z
′
n′ ∈ Z

n′

for j ← 1 to n′ do
Compute the estimator τ̂1,2|Z=z′j

using the sample (Xi,1, Xi,2,Zi), i = 1, . . . , n ;

end
Compute the minimizer β̂ of (6.2) using the τ̂1,2|Z=z′j

, j = 1, . . . , n′, estimated in the above step ;

Output: An estimator β̂.

Several nonparametric estimators of τ̂1,2|Z=z′j
can potentially be used. We refer to [40] for a detailed

analysis of their statistical properties. They are of the form

τ̂1,2|Z=z :=

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)g∗(Xi,Xj), (6.3)
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where g∗ is a bounded function, Xi := (Xi,1, Xi,2) for i = 1, . . . , n andwi,n(z) := Kh(Zi−z)/
∑n
j=1Kh(Zj−

z), h = h(n) > 0 denoting the bandwidth sequence. In the same way, the conditional Kendall’s tau can

be rewritten as τ1,2|Z=z = IE[g∗(X1,X2)|Z1 = Z2 = z] for the same choices of g∗. Possible choices of

g∗ are given in Section 6.9.

In Section 6.2, we state non-asymptotic results for the our estimator β̂ that hold with high probability.

In Section 6.3, its asymptotic properties are stated. In particular, we will study the cases when n′ is fixed

and n→∞, and when both indices tend to the infinity. We also give some oracle properties and suggest

a related adaptive estimator. Sections 6.4 and 6.5 illustrate respectively the numerical performances of

β̂ on simulated and real data. All proofs and two supplementary figures have been postponed at the end

of the chapter.

Remark 6.2. At first sight, in Model (6.1), there seems to be no noise perturbing the variable of interest.
In fact, this is a simple consequence of our formulation of the model. In the same way, a classical linear
model Y = XTβ∗ + ε can be rewritten as IE[Y |X = x] = xTβ∗ without any explicit noise. By definition,
IE[Y |X = x] is a deterministic function of a given x. In our case, Λ

(
τ1,2|Z=z

)
is a deterministic function

of the variable z. This means that we cannot formally write a model with noise, such as Λ
(
τ1,2|Z=z

)
=

ψ(z)Tβ∗ + ε where ε is independent of the choice of z. Indeed, the left-hand side of the latter equality is
a z-mesurable quantity, unless ε is constant almost surely.

Remark 6.3. Note that the conditioning event of Model (6.1) is unusual: usual regression models con-
sider IE[g(X)|Z = z] as a function of the conditioning variable z. Here, the probabilities of concor-
dant/discordant pairs are made conditionally on Z1 = Z2 = z. This unusual conditioning event will
necessitate some peculiar theoretical treatments.

Remark 6.4. Instead of a fixed design setting (z′i)i=1,...,n′ in the optimization program, it would be pos-
sible to consider a random design: simply draw n′ realizations of Z, independently of the n-sample that
has been used for the estimation of the conditional Kendall’s taus. The differences between fixed and
random designs are mainly a matter of presentation and the reader could easily rewrite our results in
a random design setting. We have preferred the former one to study the finite distance properties and
asymptotics when n′ is fixed (Section 6.3.1). When n and n′ will tend to the infinity (Section 6.3.3),
both designs are encompassed de facto because we will assume the weak convergence of the empirical
distribution associated to the sample (z′i)i=1,...,n′ , when n′ →∞.

6.2 Finite-distance bounds on β̂

Our first goal is to prove finite-distance bounds in probability for the estimator β̂. Let Z′ be the matrix

of size n′ × p′ whose lines are ψ(z′i)
T , i = 1, . . . , n′, and let Y ∈ Rn

′
be the column vector whose

components are Yi = Λ(τ̂1,2|Z=z′i
), i = 1, . . . , n′. For a vector v ∈ Rp

′
, denote by ||v||n′ := |v|2/

√
n′

its empirical norm. We can then rewrite the criterion (6.2) as β̂ := arg min
β∈Rp′

[
||Y − Z′β||2n′ + λ|β|1

]
,

where Y and Z′ may be considered as “observed”, so that the practical problem is reduced to a standard

Lasso estimation procedure. Define some “residuals” by ξi,n := Λ(τ̂1,2|Z=z′i
)−ψ(z′i)

Tβ∗ = Λ(τ̂1,2|Z=z′i
)−

Λ(τ1,2|Z=z′i
), for i = 1, . . . , n′. Note that these ξi,n are not “true residuals” in the sense that they do not

depend on the estimator β̂, but on the true parameter β∗. We also emphasized the dependence on n in

the notation ξi,n, which is a consequence of the estimated conditional Kendall’s tau.

To get non-asymptotic bounds on β̂, assume the Restricted Eigenvalue (RE) condition, introduced

by [19]. For c0 > 0 and s ∈ {1, . . . , p}, assume
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RE(s, c0) condition : The design matrix Z′ satisfies

κ(s, c0) := min
J0 ⊂ {1, . . . , p′}
Card(J0) ≤ s

min
δ 6= 0

|δJC0 |1 ≤ c0|δJ0 |1

|Z′δ|2√
n′|δ|2

> 0.

Note that this condition is very mild, and is satisfied with a high probability for a large class of random

matrices: see [12, Section 8.1] for references and a discussion.

Assumption 6.2.1. The function z 7→ ψ(z) are bounded on Z by a constant Cψ. Moreover, Λ(·) is
continuously differentiable. Let T be the range of z 7→ τ1,2|Z=z, from Z towards [−1, 1]. On an open
neighborhood of T , the derivative of Λ(·) is bounded by a constant CΛ′ .

Theorem 6.5 (Fixed design case). Suppose that Assumptions 6.9.1-6.9.4 and 6.2.1 hold and that the
design matrix Z′ satisfies the RE(s, 3) condition. Choose the tuning parameter as λ = γt, with γ ≥ 4

and t > 0, and assume that we choose h small enough such that

hα ≤ min

(
fZ,minα!

4CK,α
,

f4
Z,minα! t

8CψCΛ′(f2
Z,min + 8f2

Z,max)CXZ,α

)
. (6.4)

Then, we have

IP
(
||Z′(β̂ − β∗)||n′ ≤

4(γ + 1)t̃
√
s

κ(s, 3)
and |β̂ − β∗|q ≤

42/q(γ + 1)t̃s1/q

κ2(s, 3)
, for every 1 ≤ q ≤ 2

)
≥ 1− 2n′ exp

(
− nhpC1

)
− 2n′ exp

(
− (n− 1)h2pt2

C2 + C3t

)
− 2 exp

(
−

nhp(fZ,max − CK̃,2h2)2

C4 + 4CK̃(fZ,min − CK̃,2h2)/3

)
, (6.5)

whereC1 := f2
Z,min/

(
32fZ,max

∫
K2+(8/3)CKfZ,min

)
, C2 := {16CψCΛ′(f

2
Z,min+8f2

Z,max)fZ,max
∫
K2}2/f8

Z,min,
C3 := (64/3)CψCΛ′C

2
K(f2

Z,min+ 8f2
Z,max)/f4

Z,min, C4 := 8fZ,max
∫
K̃2, and t̃ := t+ 3

∫
K2/(nhpfZ,min).

This theorem, proved in Section 6.6.2, yields some bounds that hold in probability for the prediction

error ||Z′(β̂ − β∗)||n′ and for the estimation error |β̂ − β∗|q, 1 ≤ q ≤ 2, under the specification (6.1). Note

that the influence of n′ and p′ is hidden through the Restricted Eigenvalue number κ(s, 3). The result

depends on three parameters γ, t and h. Apparently, the choice of γ seems to be easy, as a larger γ

deteriorates the upper bounds. Nonetheless, it is a bit misleading because β̂ implicitly depends on λ

and then on γ (for a fixed t). Nonetheless, choosing γ = 4 is a reasonable “by default” choice. Moreover,

a lower t provides a smaller upper bound, but at the same time the probability of this event is lowered.

This induces a trade-off between the probability of the desired event and the size of the bound, as we

want the smallest possible bound with the highest probability. Moreover, we cannot choose a too small

t, because of the lower bound (6.4): t is limited by a value proportional to hα. The latter h cannot be

chosen as too small, otherwise the probability in Equation (6.5) will decrease. To be short: low values
of h and t yield a sharper upper bound with a lower probability, and the opposite. Therefore, a trade-off

has to be found, depending of the kind of result we are interested in.

Clearly, we would like to exhibit the sharpest upper bounds in (6.5), with the “highest probabilities”.

Let us look for parameters of the form t ∝ n−a and h ∝ n−b, with a, b > 0. The assumptions of Theorem

6.5 imply bα ≥ a (to satisfy (6.4)) and 1− 2a− 2pb > 0 (so that the right-hand side of (6.5) tends to 1 as

n→∞, i.e. nhp →∞ and nt2h2p →∞). For fixed α and p, what are the “optimal” choices a and b under

the constraints bα ≥ a and 1− 2a− 2pb > 0 ? The latter domain is the interior of a triangle in the plane
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(a, b) ∈ R2
+, whose vertices are O := (0, 0), A := (0, 1/(2p)) and B := (α/(2p+2α), 1/(2p+2α)), plus the

segment ]0, B[. All points in such a domain would provide admissible couples (a, b) and then admissible

tuning parameters (t, h). In particular, choosing the neighborhood of B, i.e. a = α(1− ε)/(2p+ 2α) and

b = 1/(2p+ 2α) for some (small) ε > 0, will be nice because the upper bounds will be minimized.

Corollary 6.6. For 0 < ε < 1, choosing the parameters λ = 4t, t = (n− 1)−α(1−ε)/(2α+2p) and

h = ch(n− 1)−1/(2α+2p), ch :=
( f4

Z,minα!

2CψCΛ′(f2
Z,min + 16f2

Z,max)CXZ,α

)1/α

,

we have, if n is sufficiently large so that (6.4) is satisfied,

IP
(
||Z′(β̂ − β∗)||n′ ≤

20
√
s

κ(s, 3)(n− 1)α(1−ε)/(2α+2p)
and

|β̂ − β∗|q ≤
5.42/qs1/q

κ2(s, 3)(n− 1)α(1−ε)/(2α+2p)
, for every 1 ≤ q ≤ 2

)
≥ 1− 2n′ exp

(
− C1c

p
h(n− 1)(2α+p)/(2α+2p)

)
− 2n′ exp

(
−

c2ph (n− 1)2αε/(2p+2α)

C2 + C3(n− 1)−α(1−ε)/(2α+2p)

)
− 2 exp

(
−
cph(n− 1)(2α+p)/(2α+2p)(fZ,max − CK̃,2h2)2

C4 + 4CK̃(fZ,min − CK̃,2h2)/3

)
.

6.3 Asymptotic behavior of β̂

6.3.1 Asymptotic properties of β̂ when n→∞ and for fixed n′

In this part, n′ is still supposed to be fixed and we state the consistency and the asymptotic normality of β̂

as n→∞. As above, we adopt a fixed design: the z′i are arbitrarily fixed or, equivalently, our reasonings

are made conditionally on the second sample.

For n, n′ > 0, denote by β̂n,n′ the estimator (6.2) with h = hn and λ = λn,n′ . The following lemma,

proved in Section 6.7.1, provides another representation of this estimator β̂n,n′ that will be useful here-

after.

Lemma 6.7. We have β̂n,n′ = arg min
β∈Rp′ Gn,n′(β), where

Gn,n′(β) :=
2

n′

n′∑
i=1

ξi,nψ(z′i)
T (β∗ − β) +

1

n′

n′∑
i=1

{
ψ(z′i)

T (β∗ − β)
}2

+ λn,n′ |β|1. (6.6)

We will invoke a convexity argument : “Let gn and g∞ be random convex functions taking minimum

values at xn and x∞, respectively. If all finite dimensional distributions of gn converge weakly to those

of g∞ and x∞ is the unique minimum point of g∞ with probability one, then xn converges weakly to x∞”

(see [79], e.g).

Theorem 6.8 (Consistency of β̂). Under the assumptions of Lemma 6.23, if n′ is fixed and λ = λn,n′ →
λ0, then, given z′1, . . . , z

′
n′ and as n tends to the infinity, β̂n,n′

P−→β∗∗ := infβ G∞,n′(β), where G∞,n′(β) :=∑n′

i=1

(
ψ(z′i)

T (β∗ − β)
)2
/n′ + λ0|β|1. In particular, if λ0 = 0 and < ψ(z′1), . . . ,ψ(z′n′) >= Rp

′
, then

β̂n,n′
P−→β∗.
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Proof : By Lemma 6.23, the first term in the r.h.s. of (6.6) converges to 0 as n→∞. The third term in

the r.h.s. of (6.6) converges to λ0|β|1 by assumption. We have just proven that Gn,n′ → G∞,n′ pointwise

as n→∞. We can now apply the convexity argument, because Gn,n′ and G∞,n′ are convex functions.

As a consequence, arg minβ Gn,n′(β) → arg minβ G∞,n′(β) in law. Since we have adopted a fixed

design setting, β∗∗ is non random, given (Z′1, . . . ,Z
′
n′). The convergence in law towards a deterministic

quantity implies convergence in probability, which concludes the proof. Moreover, when λ0 = 0, β∗ is

the minimum of G∞,n′ because the vectors ψ(z′i), i = 1, . . . , p′ generate the space Rp
′
. Therefore, this

implies the consistency of β̂n,n′ . �

To evaluate the limiting behavior of β̂n,n′ , we need the joint asymptotic normality of (ξ1,n, . . . , ξn′,n),

when n→∞ and given z′1, . . . , z
′
n′ . By applying the Delta-method to the function Λ( · ) component-wise,

this is given by the following corollary of Lemma 6.24.

Corollary 6.9. Under the assumptions of Lemma 6.24, (nhpn)1/2 [ξ1,n, . . . , ξn′,n]
T tends in law towards a

random vector N
(
0, H̃

)
given (z′1, . . . , z

′
n′), where H̃ is a n′ × n′ real matrix defined, for every integers

1 ≤ i, j ≤ n′, by

[H̃]i,j :=
4
∫
K21{z′i=z′j}

fZ(z′i)

(
Λ′
(
τ1,2|Z=z′i

))2

×
{

IE[g̃(X1,X)g̃(X2,X)|Z = Z1 = Z2 = z′i]− τ2
1,2|Z=z′i

}
,

where g̃ is the symmetrized version g̃(x1,x2) := (g∗(x1,x2) + g∗(x2,x1))/2.

Theorem 6.10 (Asymptotic law of the estimator). Under the assumptions of Lemma 6.24, and if λn,n′(nhpn,n′)1/2

tends to ` when n → ∞, we have (nhpn,n′)
1/2(β̂n,n′ − β∗)

D−→ u∗ := arg min
u∈Rp′ F∞,n′(u), given

z′1, . . . , z
′
n′ , where

F∞,n′(u) :=
2

n′

n′∑
i=1

p′∑
j=1

Wiψj(z
′
i)uj +

1

n′

n′∑
i=1

(
ψ(z′i)

Tu
)2

+ `

p′∑
i=1

(
|ui|1{β∗i =0} + ui sign(β∗i )1{β∗i 6=0}

)
,

with W = (W1, . . . ,Wn′) ∼ N
(

0, H̃
)
.

This theorem is proved in Section 6.7.2. When ` = 0, we can say more about the limiting law in

general. Indeed, in such a case, u∗ = arg min
u∈Rp′ F∞,n′(u) is the solution of the first order conditions

∇F∞,n′(u) = 0, that are written as
∑n′

i=1Wiψ(z′i) +
∑n′

i=1ψ(z′i)ψ(z′i)
Tu = 0. Therefore,

u∗ = −
( n′∑
i=1

ψ(z′i)ψ(z′i)
T
)−1 n′∑

i=1

Wiψ(z′i),

when Σn′ :=
∑n′

i=1ψ(z′i)ψ(z′i)
T is invertible. Then, the limiting law of (nhpn,n′)

1/2(β̂n,n′−β∗) is Gaussian,

and its asymptotic covariance is Vas := Σ−1
n′
∑n′

i,j=1[H̃]i,jψ(z′i)ψ(z′j)
TΣ−1

n′ .

The previous results on the asymptotic normality of β̂n,n′−β∗ can be used to testH0 : β∗ = 0 against

the opposite. As said in the introduction, this would constitute a test of the “simplifying assumption”, i.e.

the fact that the conditional copula of (X1, X2) given Z does not depend on this covariate. Some tests

of significance of β∗ would be significantly simpler than most of the tests of the simplifying assumption

that have been proposed in the literature until now. Indeed, the latter ones have been built on nonpara-

metric estimates of conditional copulas and, as sub-products of the weak convergence of the associated

processes, the test statistics behaviors are obtained. Therefore, such statistics depend on a prelimi-

nary non-parametric estimation of conditional marginal distributions (see [141], [38], e.g.), a source of

complexities and statistical noise. At the opposite, some tests of H0 based on β̂n,n′ do not require this
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stage, at the cost of a (probably small) loss of power. For instance, in the case of ` = 0, we propose the

Wald-type test statistics

Wn := nhpn,n′(β̂n,n′ − β
∗)TVn(β̂n,n′ − β∗), Vn := Σ−1

n′

n′∑
i,j=1

Ĥi,jψ(z′i)ψ(z′j)
TΣ−1

n′ .

Ĥi,j :=
4
∫
K21{z′i=z′j}

f̂Z(z′i)

(
Λ′
(
τ̂1,2|Z=z′i

))2

×
{
Gn(z′i)− τ̂2

1,2|Z=z′i

}
,

where f̂Z(Z) and Gn(z) denote consistent estimators of fZ(z) and IE[g̃(X1,X)g̃(X2,X)|Z = Z1 = Z2 =

z] respectively. Under H0, Wn tends to a chi-square distribution with n′ degrees of freedom. For in-

stance, with the notation of Section 6.1, we propose

Gn(z) =

n∑
i,j,k=1,i6=j 6=k

wi,n(z)wj,n(z)wk,n(z)g̃(Xi,Xk)g̃(Xj ,Xk).

Note that if there is an intercept, i.e. if one of the functions in ψ (say, ψ1) is constant to 1, it should be

removed in the statistics above. The corresponding coefficients of β̂ should be removed as well. Indeed,

in this case the simplifying assumption does not correspond to β∗ = 0, but rather to β∗−1 = 0 where β∗−i
denotes the vector β∗ where the i-th coefficient has been removed.

6.3.2 Oracle property and a related adaptive procedure

Let remember that S := {j : β∗j 6= 0} and assume that |S| = s < p so that the true model depends on a

subset of predictors. In the same spirit as [48], we say that an estimator β̂ satisfies the oracle property if

• vn(β̂S −β
∗
S ) converges in law towards a continuous random vector, for some conveniently chosen

rate of convergence (vn), and

• we identify the nonzero components of the true parameter β∗ with probability one when the sample

size n is large, i.e. the probability of the event
(
{j : β̂j 6= 0} = S

)
tends to one.

As above, let us fix n′ and n will tend to the infinity. Then, denote {j : β̂j 6= 0} by Sn, that will implicitly

depend on n′. It is well-known that the usual Lasso estimator does not fulfill the oracle property, see

[146]. Here, this is still the case. The following proposition is proved in Section 6.7.3.

Proposition 6.11. Under the assumptions of Theorem 6.10, lim supn IP (Sn = S) = c < 1.

A usual way of obtaining the oracle property is to modify our estimator in an “adaptive” way. Follow-

ing [146], consider a preliminary “rough” estimator of β∗, denoted by β̃n, or more simply β̃. Moreover

νn(β̃n − β∗) is assumed to be asymptotically normal, for some deterministic sequence (νn) that tends

to the infinity. Now, let us consider the same optimization program as in (6.2) but with a random tuning

parameter given by λn,n′ := µn,n′/|β̃n|δ, for some constant δ > 0 and some positive deterministic se-

quence (µn,n′). The corresponding adaptive estimator (solution of the modified Equation (6.2)) will be

denoted by β̌n,n′ , or simply β̌. Hereafter, we still set Sn = {j : β̌j 6= 0}. The following theorem is proved

in Section 6.7.4.

Theorem 6.12 (Asymptotic law of the adaptive estimator of β). Under the assumptions of Lemma 6.24,
if µn,n′(nhpn,n′)1/2 → ` ≥ 0 and µn,n′(nhpn,n′)1/2νδn →∞ when n→∞, we have

(nhpn,n′)
1/2(β̌n,n′ − β∗)S

D−→ u∗∗S := arg min
uS∈R

s
F̌∞,n′(uS ), where
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F̌∞,n′(uS ) :=
2

n′

n′∑
i=1

∑
j∈S

Wiψj(z
′
i)uj +

1

n′

n′∑
i=1

(∑
j∈S

ψj(z
′
i)uj

)2

+ `
∑
i∈S

ui
|β∗i |δ

sign(β∗i ),

with W = (W1, . . . ,Wn′) ∼ N
(
0, H̃

)
.Moreover, when ` = 0, the oracle property is fulfilled: IP (Sn = S)→

n

1.

6.3.3 Asymptotic properties of β̂ when n and n′ jointly tend to +∞

Now, we consider a framework in which both n and n′ are going to the infinity, while the dimensions

p and p′ stay fixed. To be specific, n and n′ will not be allowed to independently go to the infinity. In

particular, for a given n, the other size n′(n) (simply denoted as n′) will be constrained, as detailed in

the assumptions below. In this section, we still work conditionally on z′1, . . . , z
′
n′ , . . .. The latter vectors

are considered as “fixed”, inducing a deterministic sequence. Alternatively, we could consider randomly

drawn z′i from a given law. The latter case can easily been stated from the results below but its specific

statement is left to the reader.

Theorem 6.13 (Consistency of β̂n,n′ , jointly in (n, n′)). Assume that Assumptions 6.9.1-6.9.4 and 6.2.1
are satisfied. Assume that

∑n′

i=1ψ(z′i)ψ(z′i)
T /n′ converges to a matrix Mψ,z′ , as n′ → ∞. Assume that

λn,n′ → λ0 and n′ exp(−Anh2p)→ 0 for everyA > 0, when (n, n′)→∞. Then β̂n,n′
P−→ arg min

β∈Rp′ G∞,∞(β),

as (n, n′) → ∞, where G∞,∞(β) := (β∗ − β)Mψ,z′(β
∗ − β)T + λ0|β|1. Moreover, if λ0 = 0 and Mψ,z′ is

invertible, then β̂n,n′ is consistent and tends to the true value β∗.

Proof of this theorem is provided in Section 6.7.5. Note that, since the sequence (z′i) is determin-

istic, we just assume the usual convergence of
∑n′

i=1ψ(z′i)ψ(z′i)
T /n′ in Rp

′2
. Moreover, if the “second

subset” (z′i)i=1,...,n′ were a random sample (drawn along the law IPZ), the latter convergence would be

understood “in probability”. And if IPZ satisfies the identifiability condition (Proposition 6.1), then Mψ,z′

would be invertible and β̂n,n′ → β∗ in probability. Now, we want to go one step further and derive the

asymptotic law of the estimator β̂n,n′ .

Assumption 6.3.1. (i) The support of the kernel K(·) is included into [−1, 1]p. Moreover, for all n, n′

and every (i, j) ∈ {1, . . . , n′}2, i 6= j, we have |z′i − z′j |∞ > 2hn,n′ .

(ii) (a) n′(nhp+4α
n,n′ + h2α

n,n′ + (nhpn,n′)
−1)→ 0, (b) λn,n′(n′ nhpn,n′)1/2 → 0,

(c) nhp+αn,n′/ lnn′ →∞.

(iii) The distribution IPz′,n′ :=
∑n′

i=1 δz′i/n
′ weakly converges as n′ →∞, to a distribution IPz′,∞ on Rp,

with a density fz′,∞ with respect to the p-dimensional Lebesgue measure.

(iv) The matrix V1 :=
∫
ψ(z′)ψ(z′)T fz′,∞(z′)dz′ is non-singular.

(v) Λ(·) is two times continuously differentiable. Let T be the range of z 7→ τ1,2|Z=z, from Z towards
[−1, 1]. On an open neighborhood of T , the second derivative of Λ(·) is bounded by a constant
CΛ′′ .

Part (i) of the latter assumption forbids the design points (z′i)i≥1 from being too close to each

other and too fast, with respect to the rate of convergence (hn,n′) to 0. This can be guaranteed by

choosing an appropriate design. For example, if p = 1 and Z = [0, 1], choose the dyadic sequence

1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, . . .

Part (ii) can be ensured by first choosing a slowly growing sequence n′(n), and then by choosing h

that would tend to 0 fast enough. Note that a compromise has to be found concerning these two rates.
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The sequence λn,n′ should be chosen at last, so that (b) is satisfied. Interestingly, it is always possible

to choose the asymptotically optimal bandwidth, i.e. h ∝ n−1/(2α+p). In this case, we can set n′ = na,

with any a ∈]0, 2α/(2α+ p)[ and the constraints are satisfied.

The design points z′i are deterministic, similarly to all results in the present paper. For a given n′,

we can invoke the non-random measure IPz′,n′ := n′−1
∑n′

i=1 δz′i . Equivalently, all results can be seen

as given conditionally on the sample (z′i)i≥1. In (iii), we impose the weak convergence of IPz′,n′ to a

measure with density w.r.t. the Lebesgue measure. Intuitively, this means we do not want to observe

some design points that would be repeated infinitely often (this would result in a Dirac component in

IPz′,∞). An optimal choice of the density fz′,∞ is not an easy task. Indeed, even if we knew exactly the

true density fZ, there is no obvious reasons why we should select the z′i along fZ (at least in the limit). If

we want a small asymptotic variance Ṽas (see below), the distribution of the design should concentrate

the z′i in the regions where Λ′
(
τ1,2|Z=z′

)2 is small and where ψ(z′)ψ(z′)T is big.

Part (iv) of the assumption is usual, and ensure that the design is somehow “asymptotically full rank”.

This matrix V1 will also appear in the asymptotic variance of β̂n,n′ .

Part (v) allow us to control a remainder term in a Taylor expansion of Λ. Notice that this technical

assumption was not necessary in the previous section, where we used the Delta-method on the vector

(τ̂1,2|Z=z′i
−τ1,2|Z=z′i

)i=1,...,n′ . But when the number of terms n′ tends to infinity, we have to invoke second

derivatives to control remainder terms.

The proof of the next theorem is provided in Section 6.8.

Theorem 6.14 (Asymptotic law of β̂n,n′ , jointly in (n, n′)). Under Assumptions 6.3.1 and 6.9.1-6.9.4, we
have

(nn′hpn,n′)
1/2(β̂n,n′ − β∗)

D−→ N (0, Ṽas),

where Ṽas := V −1
1 V2V

−1
1 , V1 is the matrix defined in Assumption 6.3.1(iv), and

V2 :=

∫
K2

∫
(g̃(x1,x3)g̃(x2,x3)− τ1,2|z′1=z′2=z)Λ′

(
τ1,2|Z=z

)2
ψ(z)ψ(z)T ,

× fX|Z(x1|Z = z)fX|Z(x2|Z = z)fX|Z(x3|Z = z)
fz′,∞(z)

fZ(z)
dx1 dx2 dx3 dz

′.

6.4 Simulations

6.4.1 Numerical complexity

Let us take a short numerical application to compare the complexity of our new estimator with the kernel-

based ones. Assume that the size of our dataset is n = 1.000, with a fixed small p, and p′ = 100. We want

to estimate the conditional Kendall’s tau on m = 10.000 given points z1, . . . , zm. Using simple kernel-

based estimation, the total number of operations is of the order of n2 ×m = 1.0002 × 10.000 = 1010. On

the contrary, using our new parametric estimators, the cost can be decomposed in the following way:

1. We choose the design points z′1, . . . , z
′
n′ (say, equi-spaced) with n′ = 100.

2. We estimate the kernel-based estimator on these n′ points (cost: n2 × n′ = 1.0002 × 100 = 108).

3. We run the Lasso optimization, which is a convex program, so its computation time is linear in n′

and p′ (cost: n′ × p′ = 100× 100 = 104).
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4. Finally, for each zi, we compute the prediction Λ(−1)
(
β̂T zi

)
, and let us assume that s = 50 (cost:

m× s = 10.000× 50 = 5× 105).

Summing up, the computational cost of this realistic experiment is around 108, which is 100 times faster

than the kernel-based estimator. Moreover, each new point zm+1 will result in a marginal supplementary

cost of 50 operations, compared with a marginal cost of n2 = 1.0002 = 106 for the kernel-based estimator.

Such a huge difference is due to the fact that we have transformed what was previously available as U-

statistic of order 2 with a O(n2) computational cost for each prediction, into a linear parametric model

with s non-zero parameters, giving a cost of O(s) operations for each prediction.

6.4.2 Choice of tuning parameters and estimation of the components of β

Now, we evaluate the numerical performance of our estimates through a simulation study. In this sub-

section, we have chosen n = 3000, n′ = 100 and p = 1. The univariate covariate Z follows a uniform

distribution between 0 and 1. The marginals X1|Z = z and X2|Z = z follow some Gaussian distributions

N (z, 1). The conditional copula of (X1, X2)|Z = z belongs to the Gaussian copula family. Therefore, it

will be parameterized by its (conditional) Kendall’s tau τ1,2|Z=z, and is denoted by Cτ1,2|Z=z
. Obviously,

τ1,2|Z=z is given by Model (6.1). The dependence between X1 and X2, given Z = z, is specified by

τ1,2|Z=z := 3z(1− z) = 3/4− (3/4)(z − 1/2)2.

We will choose Λ as the identity function and the z′i as a uniform grid on [0.01, 0.99]. The values 0 and

1 for the z′i are excluded to avoid boundaries numerical problems. As for regressors, we will consider

p′ = 12 functions of Z, namely ψ1(z) = 1, ψi+1(z) = 2−i(z − 0.5)i for i = 1, . . . , 5, ψ5+2i(z) = cos(2iπz)

and ψ6+2i(z) = sin(2iπz) for i = 1, 2, ψ11(z) = 1{z ≤ 0.4}, ψ12(z) = 1{z ≤ 0.6}. They cover a mix of

polynomial, trigonometric and step-functions. Then, the true parameter is β∗ = (3/4, 0,−3/4,09), where

09 is the null vector of size 9.

Our reference value of the tuning parameter h is given by the usual rule-of-thumb, i.e. h = σ̂(Z)n−1/5,

where σ̂ is the estimated standard deviation of Z. Data-driven choices of the bandwidth h of the first

estimator are presented in [40]. Moreover, we designed a cross validation procedure (see Algorithm

6) whose output is a data-driven choice for the tuning parameter λ̂cv. Finally, we perform the convex

optimization of the Lasso criterion using the R package glmnet by [55].

Algorithm 6: Cross-validation algorithm for choosing λ.

Divide the dataset D = (Xi,1, Xi,2,Zi)i=1,...,n into N disjoint blocks D1, . . . ,DN ;

foreach λ do
for k ← 1 to N do

Estimate the conditional Kendall’s taus
(
τ̂

(k)
1,2|Z=z′i

)
i=1,...,n′

on the dataset Dk ;

Estimate β̂(−k) by Equation (6.2) on the dataset D\Dk using the tuning parameter λ ;

Compute Errk(λ) :=
∑
i=1,...,n′

(
τ̂

(k)
1,2|Z=z′i

−ψ(z′i)
T β̂(−k)

)2

;

end

end
Return λ̂cv := arg minλ

∑
k Errk(λ).

In our simulations, we observed that the estimation of β̂ is not very satisfying if the family of function

ψi is far too large. Indeed, our model will “learn the noise” produced by the kernel estimation, and there
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Figure 6.1: Mean absolute bias
∑12
i=1 |IE[β̂i] − β∗i |/12 and mean standard deviation

∑12
i=1 σ(β̂i)/12, for

different data-driven choices of the tuning parameters h and λ.

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 β̂11 β̂12

True value 0.75 0 -0.75 0 0 0 0 0 0 0 0 0

Bias -0.13 3.6e-05 0.26 0.0033 -0.045 -0.0051 -0.011 -2e-04 -3.2e-05 0.073 -0.0013 0.00021

Std. dev. 0.15 0.00041 0.18 0.035 0.078 0.041 0.022 0.0051 0.00037 0.15 0.007 0.0041

Prob. 1 0.015 0.96 0.015 0.4 0.069 0.36 0.076 0.0076 0.33 0.038 0.023

Table 6.1: Estimated bias, standard deviation and probability of being non-null for each estimated com-

ponent of β (h = 0.25 σ̂(Z)n−1/5 and λ = 2λ̂cv).

will be “overfitting” in the sense that the function Λ(−1)
(
ψ(·)T β̂

)
will be very close to τ̂1,2|Z=·, but not

to the target τ1,2|Z=·. Therefore, we have to find a compromise between misspecification (to choose a

family of ψi that is not rich enough), and over-fitting (to choose a family of ψi that is too rich).

We have led 100 simulations for couples of tuning parameters (λ, h), where λ ∝ λ̂cv, and h ∝
σ̂(Z)n−1/5. The results in term of empirical bias and standard deviation of β̂ are displayed in Figure

6.1. Empirically, we find the smallest h tend to perform better than the largest ones. The influence of the

tuning parameter λ (around reasonable values) is less clear. Finally, we selected h = 0.25σ̂(Z)n−1/5 and

λ = 2λ̂cv. With the latter choice, the coefficient by coefficient results are provided in Table 6.1. The em-

pirical results are relatively satisfying, despite a small amount of over-fitting. In particular, the estimation

procedure is able to identify the non-zero coefficients almost systematically. To give a complete picture,

for one particular simulated sample, we show the results of the estimation procedure, as displayed in

Figures 6.4 and 6.5 in Section 6.10.

6.4.3 Comparison between parametric and nonparametric estimators of the con-
ditional Kendall’s tau

We will now compare our estimator of the conditional Kendall’s tau, i.e. z 7→ Λ(−1)
(
ψ(z)T β̂

)
with the

kernel-based estimator, i.e. the first-step estimator. For this, we will consider six different settings:

1. as previously, a Gaussian copula parameterized by its conditional Kendall’s tau, given by τ1,2|Z=z :=
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3z(1− z) = 3/4− (3/4)(z − 1/2)2 (well-specified model) ;

2. a badly-specified model, with a Frank copula whose parameter is given by θ(z) = tan(πz/2). Note

that the parameter θ of the Frank family belongs to R\{0} and that its Kendall’s tau is not written in

terms of standard functions of its parameter θ, see [106, p.171] ;

3. an intermediate model with a Frank copula calibrated to have the same conditional Kendall’s tau

as in the first setting ;

4. another intermediate model with a Gaussian copula calibrated to have the same conditional Kendall’s

tau as in the second setting ;

5. a Gaussian copula with a conditional Kendall’s tau constant equal to 0.5 ;

6. a Frank copula with a conditional Kendall’s tau constant equal to 0.5.

This setting will allows to see the effect of good/bad specifications and of changes in terms of copula

families. In Table 6.2, for each setting, we provide five numerical measures of performance of a given

estimator:

• the integrated bias: IBias :=
∫
z

(
IE[τ̂1,2|Z=z]− τ1,2|Z=z

)
dz ;

• the integrated variance: IV ar :=
∫
z

IE
[(
τ̂1,2|Z=z − IE[τ̂1,2|Z=z]

)2]
dz ;

• the integrated standard deviation: ISd :=
∫
z

IE
[(
τ̂1,2|Z=z − IE[τ̂1,2|Z=z]

)2]1/2
dz ;

• the integrated mean square-error: IMSE :=
∫
z

IE
[(
τ̂1,2|Z=z − τ1,2|Z=z

)2]
dz ;

• the CPU time used for the computation.

Note that integrals have been approximately computed using a discrete grid {0.0005× i, i = 0, . . . , 2000}.
Globally, in terms of IMSE, the parametric estimator of τ1,2|z is doing a better work than a kernel esti-

mator almost systematically (with the single exception of setting 3) and not only in terms of computation

time. Surprisingly, even under mis-specification, this conclusion applies whatever the sample size. The

differences are particularly striking when the conditional Kendall’s tau is a constant function (i.e. under

the simplifying assumption).

6.4.4 Comparison with the tests of the simplifying assumption

Now, under the six previous settings, we compare the test of the simplifying assumption H0 developed

in Section 6.3.1 with some of the bootstrapped-based tests of the latter assumption that has been intro-

duced in [38]. In particular, they propose a nonparametric test, using the statistic T 0
CvM defined by

T 0
CvM :=

∫
[0,1]3

(
Ĉ1,2|Z=F̂−1

Z (u3)(u1, u2)− Ĉs,1,2|Z(u1, u2)
)2

du1du2du3,

where Ĉ1,2|Z=z is a kernel-based nonparametric estimator of the conditional copula of (X1, X2)|Z = z

and Ĉs,1,2|Z(u1, u2) := n−1
∑n
i=1 Ĉ1,2|Z=Zi(u1, u2). We will also invoke their parametric test statistic

T c2 :=

∫ 1

0

(
θ̂
(
F̂−1
Z (u)

)
− θ̂
)2

du,
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Kernel-based estimator Two-step estimator with n′ = 100 points

Setting 1 2 3 4 5 6 1 2 3 4 5 6

n = 500

IBias -29.3 -14.9 -31.5 -6.35 -32.2 -29.9 -23.9 -19.5 -26 -10.5 -31.6 -29.9

IV ar 17.4 26.4 16.9 26.2 18.5 16.8 27 17.1 28 16.8 1.9 1.65

ISd 123 158 120 157 132 126 43.3 62.5 43.8 56.4 29.7 26.6

IMSE 17.4 26.5 16.9 26.4 18.5 16.8 27 17.1 28 16.9 1.91 1.65

CPU time (s) 4.63 5.83 4.62 4.85 4.74 4.9 1.47 1.72 1.42 1.45 1.52 1.54

n = 1000

IBias -16.6 -11.6 -15.8 -2.97 -16.6 -17.7 -12.6 -12.3 -12.3 -5.42 -16.6 -17.6

IV ar 8.92 17.3 8.23 13.8 8.82 8.52 8.06 7.59 9.03 6.31 0.622 0.659

ISd 89.2 116 84.5 115 92.2 90.5 30.2 47.8 35.5 43.1 18.2 18.6

IMSE 9.01 17.4 8.31 14 8.88 8.57 8.07 7.61 9.04 6.34 0.624 0.661

CPU time (s) 13 12.5 12.8 12.3 12.3 12.7 3.44 3.58 3.73 3.59 3.63 3.68

n = 2000

IBias -9.94 -4.96 -10 -4.47 -10.7 -10.5 -6.99 -6.55 -7.27 -5.81 -10.6 -10.5

IV ar 4.76 7.62 4.49 7.81 4.94 4.65 3.09 2.49 3.3 2.44 0.345 0.351

ISd 65.2 85 62.6 86.4 69.4 67.3 22.7 31.4 22.3 32.3 14.7 15.2

IMSE 4.77 7.63 4.5 7.83 4.95 4.66 3.09 2.49 3.3 2.44 0.345 0.352

CPU time (s) 67.7 68.6 67.2 73.4 72.3 59.2 15.1 15.1 15.1 16.4 17.9 14.8

Table 6.2: Comparison of the performance between the two estimators. Integrated measures have been

multiplied by 103, for readability.

where θ̂(z) estimates the parameter of the Gaussian (resp. Frank) copula given Z = z, assuming we

know the right family of conditional copula, and θ̂ consistently estimates the parameter of the corre-

sponding simplified copula (under the null). Moreover, F̂−1
Z denotes the empirical quantile function that

is associated to the Z-sample. The latter test statistics depends on an a priori chosen parametric cop-

ula family. To evaluate the risk of mis-specification, we also include in our table the parametric test T c2
assuming that the data come from a Clayton copula, whereas the true copula is Gaussian or Frank. For

these three tests, p-values are computed by the usual nonparametric bootstrap, with 100 resampling:

see Table 6.3. Globally, the test based on Wn performs very well under all settings, compared to the

alternative nonparametric test. It is only beaten by T c2 that is obtained by choosing the right copula

family, a not very realistic situation. When it is not the case,Wn does a better work.

Not under H0 Under H0

1 2 3 4 5 6

Wn 88.7 99.8 87.3 100 12 12.1

T 0
CvM 59.5 52 64.7 37.5 0 0

T c2 100 100 100 100 0.2 2.6

T c2 (Clayton) 68 13 100 100 1.8 1.8

Table 6.3: Comparison of the performance between different tests of the simplifying assumption under

the six settings of Section 6.4.3, with n = 500.
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6.4.5 Dimension 2 and choice of ψ

In this section, we will fix the sample size n = 3000 and the dimension p = 2. The random vector Z will

follow a uniform distribution on [0, 1]2, X1|Z = z ∼ N (0, z1), X2|Z = z ∼ N (0, z1). Given Z = z, the

conditional copula of X1 and X2 is Gaussian. We consider three different choices for the functional form

of its conditional Kendall’s tau :

Setting 1. τ1,2|Z=z = (3/4)× (z1 − z2) ;

Setting 2. τ1,2|Z=z = (4/8)× cos(2πz1) + (2/8)× sin(2πz2) ;

Setting 3. τ1,2|Z=z = (3/4)× tanh(z1/z2),

where z = (z1, z2). We try different choices of dictionaries ψ. For convenience, define p0(x) := 1,

pi(x) := 2−i(x−0.5)i, trig0(x) := 1, and trigi(x) :=
(

cos(2iπx), sin(2iπx)
)
, for x ∈ R and i ∈ N∗. We will

use the notation (g1, g2)⊗ (g3, g4) := (g1g3, g1g4, g2g3, g2g4). We are interested in the following functions

ψ, that are defined for every z ∈ Rp by

ψ(1)(z) :=
(

1,
(
pi(z1)

)
i=1,...,5

,
(
pi(z2)

)
i=1,...,5

)
=
(
pi(z1)× pj(z2)

)
min(i,j)=0,max(i,j)≤5

∈ R11,

ψ(2)(z) :=
(
pi(z1)× pj(z2)

)
min(i,j)≤1,max(i,j)≤5

∈ R20,

ψ(3)(z) :=
(
pi(z1)× pj(z2)

)
min(i,j)≤2,max(i,j)≤5

∈ R27,

ψ(4)(z) :=
(
pi(z1)× pj(z2)

)
max(i,j)≤5

∈ R36,

ψ(5)(z) :=
(

1,
(
trigi(z1)

)
i=1,...,5

,
(
trigi(z2)

)
i=1,...,5

)
∈ R21,

ψ(6)(z) :=
(
trigi(z1)⊗ trigj(z2)

)
min(i,j)≤1,max(i,j)≤5

∈ R57,

ψ(7)(z) :=
(
trigi(z1)⊗ trigj(z2)

)
min(i,j)≤2,max(i,j)≤5

∈ R85,

ψ(8)(z) :=
(
trigi(z1)⊗ trigj(z2)

)
max(i,j)≤5

∈ R121,

ψ(9)(z) :=
(
ψ(1)(z),ψ(5)(z)

)
∈ R31, ψ(10)(z) :=

(
ψ(2)(z),ψ(6)(z)

)
∈ R76,

ψ(11)(z) :=
(
ψ(3)(z),ψ(7)(z)

)
∈ R137, ψ(12)(z) :=

(
ψ(4)(z),ψ(8)(z)

)
∈ R156,

where in the last 4 dictionaries, we count the function constant to 1 only once. We choose n′ = 400 and

the design points z′i are chosen as an equispaced grid on [0.1, 0.9]2. We consider similar measures of

performance for our estimators as in Section 6.4.3. The only difference is that the integration in z is now

done on the unit square [0, 1]2. In practice, integrals are discretized, and estimated by a sum over the

points {(0.01× i, 0.01× j), 0 ≤ i, j ≤ 100}. Results are displayed in the following Table 6.4.

We note that the size of the family ψ seems to have a tiny influence on the computation time, which

lies always between 6 and 8 seconds. In all settings, polynomial families (ψ(1) to ψ(4)) give the best

IMSE, even when the true function is trigonometric (Setting 2) or under misspecification (Setting 3).

Nevertheless, using trigonometric functions can help to reduce the integrated biais and standard de-

viation. Indeed, in Setting 2, trigonometric families (ψ(5) to ψ(8)) do a fair job according to these two

measures of performance. Similarly, in Setting 3, mixed families (ψ(9) to ψ(12)) achieve an acceptable

performance. In Settings 1 and 2, they often yield improvement other a msispecified family, especially

in terms of integrated standard deviation.

Comparisons between three indicators IMSE, IBias and ISd may be surprising at first sight, but

there is no direct link between their values. Indeed, for every point z, MSE(z) = Bias(z)2 + Sd(z)2,

while IMSE =
∫
MSE(z)dz, IBias =

∫
Bias(z)dz and ISd =

∫
Sd(z)dz. Therefore, a procedure
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Setting 1 Setting 2 Setting 3

IBias ISd IMSE Time IBias ISd IMSE Time IBias ISd IMSE Time

ψ(1) 0.577 19.4 1.44 6.82 -0.632 24 1.4 6.75 -7.71 17 6.79 6.67

ψ(2) 0.309 18.9 1.43 6.77 -0.166 23.7 1.35 6.66 -7.57 16.9 6.8 6.66

ψ(3) 0.728 19.9 1.63 6.77 -0.36 27.1 1.9 6.67 -7.63 23.7 3.45 7.06

ψ(4) 0.513 18.9 1.81 6.77 -0.245 26.5 2.22 6.68 -7.29 25 2.06 7.52

ψ(5) 1.5 25.7 15.7 6.77 0.0616 15 2.67 6.66 -8.38 21.6 14.9 7.51

ψ(6) 1.64 26 15.7 6.79 0.269 15 2.61 6.66 -8.23 21.9 14.9 7.52

ψ(7) 0.311 26.1 17 6.79 0.0167 15 3.14 6.69 -7.33 23.1 15.1 7.26

ψ(8) 1.2 26 17.3 6.88 -0.113 14.6 3.15 6.7 -7.6 22.9 15.3 7.2

ψ(9) 0.596 17.7 2.05 6.79 0.492 15.8 2.72 6.67 -7.93 16.3 7.04 7.19

ψ(10) -0.0921 18 2.08 6.77 -0.493 16.6 2.75 6.66 -7.65 16.7 6.94 7.19

ψ(11) 0.529 17.3 2.57 6.83 -0.165 15.8 3.08 6.7 -6.87 23 4.76 7.21

ψ(12) 0.5 16.9 2.64 6.92 -0.078 16.4 3.24 6.76 -7.07 25.5 4.43 7.54

Table 6.4: Comparison of the estimation using different ψ families. All integrated measures have been

multiplied by 1000. Computation time is given in seconds.

that minimize both Ibias and ISd still may not minimize IMSE, and conversely. This is due to the

non-linearity of the square function, combined with the integration.
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6.5 Real data application

Now, we apply the model given by (6.1) to a real dataset. From the website of the World Factbook of

the Central Intelligence Agency, we have collected data of male and female life expectancy and GDP

per capita for n = 206 countries in the world. We seek to analyze the dependence between male

and female life expectancies conditionally on the GDP per capita, i.e. given the explanatory variable

Z = log10(GDP/capita). This dataset and these variables are similar as those in the first example

studied in [63].

We use n′ = 100, h = 2σ(Z)n−1/5 and the same family of functions ψi as in Section 6.4.2 above

(once composed with a linear transform to be defined on [min(Z),max(Z)]). The results are displayed in

Figure 6.2. As expected, the levels of conditional dependence between male and female expectancies

are strong overall. Many poor countries suffer from epidemics, malnutrition or even wars. In such cases,

life expectancies of both genders are exposed to the same “exogenous” factors, inducing high Kendall’s

taus. Logically, we observe a monotonic decrease of such Kendall’s taus when Z is larger, up to Z ' 4.5,

as already noticed by [63]. Indeed, when countries become richer, more developed and safe, men and

women less and less depend on their environment (and on its risks of death, potentially). Nonetheless,

when Z become even larger (the richest countries in the world), conditional dependencies between male

and female life expectancies interestingly increase again, because men and women behave similarly in

terms of way of life. In particular, they can benefit from the same levels of security and health and are

exposed to the same lethal risks.

6.6 Proofs of finite-distance results for β̂

In this section, we will use the notation u := β̂ − β∗ and ξ = [ξi,n]i=1,...,n′ , ξi,n = Yi − (Z′β)i.

6.6.1 Technical lemmas

Lemma 6.15. We have ||Z′u||2n′ ≤ λ|u|1 +
1

n′
〈
ξ , Z′u

〉
.

Proof : As β̂ is optimal, through the Karush-Kuhn-Tucker conditions, we have (1/n′)Z′T (Y − Z′β̂) ∈
∂
(
λ|β̂|1

)
, where ∂

(
λ|β̂|1

)
is the subdifferential of the norm λ| · |1 evaluated at β̂. The dual norm of | · |1 is

| · |∞, so there exists v such that |v|∞ ≤ 1 and (1/n′)Z′T (Y − Z′β̂) + λv = 0. We deduce successively

Z′TZ′(β∗ − β̂)/n′ + Z′T ξ/n′ + λv = 0,

1

n′
|Z′(β∗ − β̂)|22 +

1

n′
(β∗ − β̂)TZ′T ξ + λ(β∗ − β̂)Tv = 0, and finally

||Z′(β∗ − β̂)||2n′ ≤
1

n′

〈
Z′(β̂ − β∗) , ξ

〉
+ λ|β∗ − β̂|1. �

Lemma 6.16. We have |uSC |1 ≤ |uS|1 +
2

λn′
〈
ξ , Z′u

〉
.

Proof : By definition, β̂ is a minimizer of ||Y − Z′β||2n′ + λ|β|1. Therefore, we have

||Y − Z′β̂||2n′ + λ|β̂|1 ≤ ||Y − Z′β∗||2n′ + λ|β∗|1.

After some algebra, we derive ||Y−Z′β̂||2n′−||Y−Z′β∗||2n′ ≤ λ
(
|(β∗− β̂)S|1−|(β̂−β

∗)SC |1
)
. Moreover,

the mapping β 7→ ||Y − Z′β||2n′ is convex and its gradient at β∗ is −2Z′T (Y − Z′β∗)/n′ = −2Z′T ξ/n′.
So, we obtain

||Y − Z′β̂||2n′ − ||Y − Z′β∗||2n′ ≥
−2

n′

〈
Z′T ξ , β̂ − β∗

〉
.
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Figure 6.2: Estimated conditional Kendall’s tau τ̂1,2|Z=z (red curve), and prediction Λ(−1)
(
ψ(z)T β̂

)
(blue

curve) as a function of z for the application on real data, where the estimated non-zero coefficients are

β̂1 = 0.78, β̂7 = −0.043, β̂8 = 0.069 and β̂11 = 0.020.
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Figure 6.3: Evolution of the estimated non-zero coefficients as a function of the regularization parameter

λ for the application on real data. All the other non-displayed ψi coefficients are zero.
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Combining the two previous equations, we get

(−2)
〈
Z′T ξ, β̂ − β∗

〉
/n′ ≤ λ

(
|(β∗ − β̂)S|1 − |(β̂ − β

∗)SC |1
)
. �

Lemma 6.17. Assume that maxj=1,...,p′

∣∣∣ 1
n′

∑n′

i=1 Z
′
i,jξi,n

∣∣∣ ≤ t, for some t > 0, that the assumption
RE(s, 3) is satisfied, and that the tuning parameter is given by λ = γt, with γ ≥ 4. Then, ||Z′(β̂−β∗)||n′ ≤
4(γ + 1)t

√
s

κ(s, 3)
and |β̂ − β∗|q ≤

42/q(γ + 1)ts1/q

κ2(s, 3)
, for every 1 ≤ q ≤ 2.

Proof : Under the first assumption, we have the upper bound

1

n′
〈
Z′T ξ , u

〉
≤ |u|1 max

j=1,...,p′

∣∣∣ 1

n′

n′∑
i=1

Z ′i,jξi,n

∣∣∣ ≤ |u|1t.
We first show that u belongs to the cone

{
δ ∈ Rp

′
: |δSC |1 ≤ 3|δS|1, Card(S) ≤ s

}
, so that we will be

able to use the RE(s, 3) assumption with J0 = S. From Lemma 6.16, |uSC |1 ≤ |uS|1 + 2t|u|1/λ. With

our choice of λ, we deduce |uSC |1 ≤ |uS|1 + 2|u|1/γ. Using the decomposition |u|1 = |uSC |1 + |uS|1,

we get |uSC |1 ≤ |uS|1(γ + 2)/(γ − 2) ≤ 3|uS|1. As a consequence, we have

|u|1 = |uSC |1 + |uS|1 ≤ 4|uS|1 ≤ 4
√
s|u|2 ≤ 4

√
s ||Z′u||n′/κ(s, 3).

By Lemma 6.15,

||Z′u||2n′ ≤ λ|u|1 +
1

n′
〈
ξ , Z′u

〉
≤ λ|u|1 + |u|1t ≤ |u|1(γ + 1)t ≤ 4

√
s

κ(s, 3)
||Z′u||n′(γ + 1)t

We can now simplify and we get

||Z′u||n′ ≤
4(γ + 1)t

κ(s, 3)

√
s, |u|2 ≤

4(γ + 1)t

κ2(s, 3)

√
s, and |u|1 ≤

16(γ + 1)t

κ2(s, 3)
s.

Now, we compute a general bound for |u|q, with 1 ≤ q ≤ 2, using the Hölder norm interpolation inequality:

|u|q ≤ |u|2/q−1
1 |u|2−2/q

2 ≤ 42/q(γ + 1)ts1/q

κ2(s, 3)
· �

6.6.2 Proof of Theorem 6.5

Using Lemma 6.21, for every t1, t2 > 0 such that CK,αhα/α!+t1 ≤ fZ,min/2, with probability greater than

1−2n′ exp
(
−
(
nhpt21

)
/
(
2fZ,max

∫
K2+(2/3)CKt1

)
)
)
−2n′ exp

(
−(n−1)h2pt22f

4
Z,min /

(
4f2

Z,max(
∫
K2)2+

(8/3)C2
Kf

2
Z,mint2

))
− 2 exp

(
−
(
nhp(fz(z)− CK̃,2h2)2

)
/
(
8fZ,max

∫
K̃2 + 4CK̃(fz(z)− CK̃,2h2)/3

))
, we

have

max
j=1,...,p′

∣∣∣∣ 1

n′

n′∑
i=1

Z ′i,jξi,n

∣∣∣∣ ≤ Cψ max
i=1,...,n′

∣∣ξi,n∣∣ ≤ CψCΛ′ max
i=1,...,n′

∣∣τ̂1,2|Z=z′i
− τ1,2|Z=z′i

∣∣
≤ 4CψCΛ′

(
1 +

16f2
Z,max

f3
Z,min

(CK,αhα
α!

+ t1

))(CXZ,αh
α

f2
Z,minα!

+ t2

)
.

We choose t1 := fZ,min/4 so that, because of Condition (6.4), we get CK,αhα/α! + t1 ≤ fZ,min/2. Now

we choose t2 := tf2
Z,min/{8CψCΛ′(f

2
Z,min + 8f2

Z,max)}. By Condition (6.4), CXZ,αh
α/(f2

Z,minα!) ≤ t2, so

that we have

4CψCΛ′

(
1 +

8f2
Z,max

f2
Z,min

)
×
(
CXZ,αh

α

f2
Z,minα!

+ t2

)
≤ 8t2CψCΛ′

(
1 +

8f2
Z,max

f2
Z,min

)
≤ t.
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As a consequence, we obtain that

IP

(
max

j=1,...,p′

∣∣∣ 1

n′

n′∑
i=1

Z ′i,jξi,n

∣∣∣ > t+
3
∫
K2

nhpfZ,min

)

≤ 2n′ exp

(
−

nhpf2
Z,min

32fZ,max
∫
K2 + (8/3)CKfZ,min

)
+ 2n′ exp

(
− (n− 1)h2pt2

C2 + C3t

)
+ 2 exp

(
−

nhp(fZ,max − CK̃,2h2)2

8fZ,max
∫
K̃2 + 4CK̃(fZ,min − CK̃,2h2)/3

)
,

and we can apply Lemma 6.17 to get the claimed result. �

6.7 Proofs of asymptotic results for β̂n,n′

6.7.1 Proof of Lemma 6.7

Using the definition (6.2) of β̂n,n′ , we get

β̂n,n′ := arg min
β∈Rp′

1

n′

n′∑
i=1

(
Λ(τ̂1,2|Z=z′i

)−ψ(z′i)
Tβ
)2

+ λn,n′ |β|1

= arg min
β∈Rp′

1

n′

n′∑
i=1

(
ξi,n +ψ(z′i)

Tβ∗ −ψ(z′i)
Tβ
)2

+ λn,n′ |β|1

= arg min
β∈Rp′

1

n′

n′∑
i=1

ξ2
i,n +

2

n′

n′∑
i=1

ξi,nψ(z′i)
T (β∗ − β) +

1

n′

n′∑
i=1

(
ψ(z′i)

T (β∗ − β)
)2

+ λn,n′ |β|1

= arg min
β∈Rp′

2

n′

n′∑
i=1

ξi,nψ(z′i)
T (β∗ − β) +

1

n′

n′∑
i=1

(
ψ(z′i)

T (β∗ − β)
)2

+ λn,n′ |β|1. �

6.7.2 Proof of Theorem 6.10

Let us define rn,n′ := (nhpn,n′)
1/2, u := rn,n′(β − β∗) and ûn,n′ := rn,n′(β̂n,n′ − β∗), so that β̂n,n′ =

β∗ + ûn,n′/rn,n′ . By Lemma 6.7, β̂n,n′ = arg min
β∈Rp′ Gn,n′(β). We have therefore

ûn,n′ = arg min
u∈Rp′

[−2

n′

n′∑
i=1

ξi,nψ(z′i)
T u

rn,n′
+

1

n′

n′∑
i=1

(
ψ(z′i)

T u

rn,n′

)2
+ λn,n′

∣∣β∗ +
u

rn,n′

∣∣
1

]
,

or ûn,n′ = arg min
u∈Rp′ Fn,n′(u), where, for every u ∈ Rp

′
,

Fn,n′(u) :=
−2rn,n′

n′

n′∑
i=1

ξi,nψ(z′i)
Tu +

1

n′

n′∑
i=1

(
ψ(z′i)

Tu
)2

+ λn,n′r
2
n,n′

(∣∣β∗ +
u

rn,n′

∣∣
1
−
∣∣β∗∣∣

1

)
.

Note that, by Corollary 6.9, we have

2rn,n′

n′

n′∑
i=1

ξi,nψ(z′i)
Tu =

2

n′

n′∑
i=1

p′∑
j=1

rn,n′ξi,nψj(z
′
i)uj

D−→ 2

n′

n′∑
i=1

p′∑
j=1

Wiψj(z
′
i)uj .

We also have, for any (fixed) u and when n is large enough,

∣∣β∗ +
u

rn,n′

∣∣
1
−
∣∣β∗∣∣

1
=

p′∑
i=1

(
|ui|
rn,n′

1{β∗i =0} +
ui
rn,n′

sign(β∗i )1{β∗i 6=0}

)
.
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Therefore λn,n′r2
n,n′

(∣∣β∗ + u/rn,n′
∣∣
1
−
∣∣β∗∣∣

1

)
→ `

∑p′

i=1

(
|ui|1{β∗i =0} + ui sign(β∗i )1{β∗i 6=0}

)
.

We have shown that Fn,n′(u)
D−→ F∞,n′(u). Those functions are convex, hence the conclusion fol-

lows from the convexity argument. �

6.7.3 Proof of Proposition 6.11

The proof closely follows Proposition 1 in [146]. It starts by noting that IP (Sn = S) ≤ IP
(
β̂j = 0, ∀j 6∈ S

)
.

Because of the weak limit of β̂ (Theorem 6.10 and the notation therein), this implies

lim sup
n

IP
(
β̂j = 0, ∀j 6∈ S

)
≤ IP

(
u∗j = 0, ∀j 6∈ S

)
.

If ` = 0, then u∗ is asymptotically normal, and the latter probability is zero. Otherwise, ` 6= 0 and define

the Gaussian random vector ~Wψ := 2
∑n′

i=1Wiψ(z′i)/n
′. The KKT conditions applied to F∞,n′ provide

~Wψ +
2

n′

n′∑
i=1

ψ(z′i)ψ(z′i)
Tu∗ + `v∗ = 0,

for some vector v∗ ∈ Rp whose components v∗j are less than one in absolute value when j 6∈ S, and

v∗j = sign(β∗j ) when j ∈ S. If u∗j = 0 for all j 6∈ S, we deduce

( ~Wψ)S +
[ 2

n′

n′∑
i=1

ψ(z′i)ψ(z′i)
T
]
S ,S

u∗S + ` sign(β∗S ) = 0, and (6.7)

∣∣∣∣( ~Wψ)Sc +
[ 2

n′

n′∑
i=1

ψ(z′i)ψ(z′i)
T
]
Sc,S

u∗S

∣∣∣∣ ≤ `, (6.8)

componentwise and with obvious notation. Combining the two latter equations provides∣∣∣∣( ~Wψ)Sc −
[ n′∑
i=1

ψ(z′i)ψ(z′i)
T
]
Sc,S

[ n′∑
i=1

ψ(z′i)ψ(z′i)
T
]−1

S ,S

(
~Wψ)S + ` sign(β∗S )

)∣∣∣∣ ≤ `, (6.9)

componentwise. Since the latter event is of probability strictly lower than one, this is still the case for the

event
{
u∗j = 0, ∀j 6∈ S

}
. �

6.7.4 Proof of Theorem 6.12

The beginning of the proof is similar to the proof of Theorem 6.10. With obvious notation, ǔn,n′ =

arg min
u∈Rp′ F̌n,n′(u), where for every u ∈ Rp

′
,

F̌n,n′(u) :=
−2rn,n′

n′

n′∑
i=1

ξi,nψ(z′i)
Tu +

1

n′

n′∑
i=1

(
ψ(z′i)

Tu
)2

+ µn,n′r
2
n,n′

p′∑
i=1

1

|β̃i|δ

(
|β∗i +

ui
rn,n′

| − |β∗i |
)
.

If β∗i 6= 0, then

µn,n′r
2
n,n′

|β̃i|δ

(
|β∗i +

ui
rn,n′

| − |β∗i |
)

=
µn,n′rn,n′

|β̃i|δ
ui sign(β∗i ) =

`

|β∗i |δ
ui sign(β∗i ) + oP (1).

If β∗i = 0, then
µn,n′r

2
n,n′

|β̃i|δ

(
|β∗i +

ui
rn,n′

| − |β∗i |
)

=
µn,n′rn,n′ν

δ
n

|νnβ̃i|δ
|ui|.
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By assumption νnβ̃i = Op(1), and the latter term tends to the infinity in probability iff ui 6= 0. As a

consequence, if there exists some i 6∈ S s.t. ui 6= 0, then F̌n,n′(u) tends to the infinity. Otherwise, ui = 0

when i 6∈ S and F̌n,n′(u) → F̌∞,n′(uS ). Since F̌∞,n′ is convex, we deduce [79] that ǔS → u∗S , and

ǔSc → 0Sc , proving the asymptotic normality of β̌n,n′,S .

Now, let us prove the oracle property. If j ∈ S, then β̌j tends to βj in probability and IP(j ∈ Sn)→ 1.

It suffices to show that IP(j ∈ Sn) → 0 when j 6∈ S. If j 6∈ S and j ∈ Sn, the KKT conditions on F̌n,n′
provide

−2rn,n′

n′

n′∑
i=1

ξi,nψj(z
′
i) +

2

n′

n′∑
i=1

ψj(z
′
i)ψ(z′i)

T ǔn,n′ = −µn,n
′rn,n′ν

δ
n

|νnβ̃j |δ
sign(ǔj)·

Due to the asymptotic normality of β̌ (that implies the one of ǔn,n′), the left hand side of the previous

equation is asymptotically normal, when ` = 0. On the other side, the r.h.s. tends to the infinity in

probability because νnβ̃j = OP (1). Therefore, the probability of the latter event tends to zero when

n→∞. �

6.7.5 Proof of Theorem 6.13

By Lemma 6.7, we have β̂n,n′ = arg min
β∈Rp′ Gn,n′(β), where

Gn,n′(β) :=
2

n′

n′∑
i=1

ξi,nψ(z′i)
T (β∗ − β) +

1

n′

n′∑
i=1

(
ψ(z′i)

T (β∗ − β)
)2

+ λn,n′ |β|1.

Define also G∞,n′(β) :=
∑n′

i=1

(
ψ(z′i)

T (β∗ − β)
)2
/n′ + λ0|β|1. We have

∣∣Gn,n′(β)−G∞,n′(β)
∣∣ ≤ ∣∣∣∣ 2

n′

n′∑
i=1

ξi,nψ(z′i)
T (β∗ − β)

∣∣∣∣+ |λn,n′ − λ0| × |β|1.

By assumption, the second term on the r.h.s. converges to 0. We now show that the first term on the

r.h.s. is negligible. Indeed, for every ε > 0,

IP
(∥∥ 1

n′

n′∑
i=1

ξi,nψ(z′i)
∥∥ > ε

)
≤ IP

(‖CΛ′‖
n′

n′∑
i=1

|τ̂z′i − τz′i | × ‖ψ(z′i)
∥∥ > ε

)

≤
n′∑
i=1

IP
(
|τ̂z′i − τz′i | > Cstε

)
,

where Cst is the constant (‖CΛ′‖ × ‖Cψ‖)−1. Apply Lemma 6.21 with the t = fZ,min/4 and t′/ε is a

sufficiently small constant. When n is sufficiently large, we get

IP
(
|τ̂1,2|Z=z − τ1,2|Z=z| > Cstε

)
≤ 4 exp

(
− nh2pCst′

)
,

for some constant Cst′ > 0. Thus,
∑n′

i=1 ξi,nψ(z′i)/n
′ = oIP(1), and Gn,n′(β) = G∞,n′(β) + oIP(1) for

every β.

Since
∑n′

i=1 ψ(z′i)ψ(z′i)
T /n′ tends towards a matrix Mψ,z′ , deduce that G∞,n′(β) tends to G∞,∞(β)

when n′ →∞. Therefore, for all β ∈ Rp
′
, Gn,n′(β) weakly tends to G∞,∞(β). By the convexity argument,

we deduce that arg minβ Gn,n′(β) weakly converges to arg minβ G∞,∞(β). Since the latter minimizer is

non random, the same convergence is true in probability. �
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6.8 Proof of Theorem 6.14

We start as in the proof of Theorem 6.10. Define r̃n,n′ := (nn′hpn,n′)
1/2, u := r̃n,n′(β − β∗) and ûn,n′ :=

r̃n,n′(β̂n,n′ − β∗), so that β̂n,n′ = β∗ + ûn,n′/r̃n,n′ . We define for every u ∈ Rp
′
,

Fn,n′(u) :=
−2r̃n,n′

n′

n′∑
i=1

ξi,nψ(z′i)
Tu +

1

n′

n′∑
i=1

(
ψ(z′i)

Tu
)2

+ λn,n′ r̃
2
n,n′

(∣∣β∗ +
u

r̃n,n′

∣∣
1
−
∣∣β∗∣∣

1

)
, (6.10)

and we obtain ûn,n′ = arg min
u∈Rp′ Fn,n′(u).

Lemma 6.18. Under the same assumptions as in Theorem 6.14, T1 := (r̃n,n′/n
′)
∑n′

i=1 ξi,nψ(z′i) tends
in law towards a Gaussian random vector N (0, V2).

This lemma is proved in Section 6.8.1. It will help to control the first term of Equation (6.10), which is

simply −2TT1 u.

Concerning the second term of Equation (6.10), using Assumption 6.3.1(iii), we have for every u ∈
Rp
′

1

n′

n′∑
i=1

(
ψ(z′i)

Tu
)2 → ∫ (

ψ(z′)Tu
)2
fz′,∞ dz′. (6.11)

This has to be read as a convergence of a sequence of real numbers indexed by u, because the design

points z′i are deterministic. We also have, for any u ∈ Rp
′

and when n is large enough,

∣∣β∗ +
u

r̃n,n′

∣∣
1
−
∣∣β∗∣∣

1
=

p′∑
i=1

( |ui|
r̃n,n′

1{β∗i =0} +
ui
r̃n,n′

sign(β∗i )1{β∗i 6=0}

)
.

Therefore, by Assumption 6.3.1(ii)(b), for every u ∈ Rp
′
,

λn,n′ r̃
2
n,n′

(∣∣β∗ +
u

r̃n,n′

∣∣
1
−
∣∣β∗∣∣

1

)
→ 0, (6.12)

when (n, n′) tends to the infinity. Combining Lemma 6.18 and Equations (6.10-6.12), and defining the

function F∞,∞ by

F∞,∞(u) := 2W̃Tu +

∫ (
ψ(z′)Tu

)2
fz′,∞(z′)dz′, u ∈ Rp

′
,

where W̃ ∼ N (0, V2), we obtain that every finite-dimensional margin of Fn,n′ converges weakly to the

corresponding margin of F∞,∞. Now, applying the convexity lemma, we get

ûn,n′
D−→ u∞,∞, where u∞,∞ := arg min

u∈Rp′
F∞,∞(u).

Since F∞,∞(u) is a continuously differentiable convex function, we apply the first-order condition∇F∞,∞(u) =

0, which yields 2W̃ + 2
∫
ψ(z′)ψ(z′)Tu∞,∞fz′,∞(z′)dz′ = 0. As a consequence u∞,∞ = −V −1

1 W̃ ∼
N (0, Ṽas), using Assumption 6.3.1(iv). We finally obtain r̃n,n′

(
β̂n,n′ − β∗

) D−→ N
(
0, Ṽas

)
, as claimed. �

6.8.1 Proof of Lemma 6.18 : convergence of T1

Using a Taylor expansion, we have

T1 :=
r̃n,n′

n′

n′∑
i=1

ξi,nψ(z′i) =
r̃n,n′

n′

n′∑
i=1

(
Λ
(
τ̂1,2|Z=z′i

)
− Λ

(
τ1,2|Z=z′i

))
ψ(z′i) = T2 + T3,
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where the main term is

T2 :=
r̃n,n′

n′

n′∑
i=1

Λ′
(
τ1,2|Z=z′i

)(
τ̂1,2|Z=z′i

− τ1,2|Z=z′i

)
ψ(z′i),

and the remainder is

T3 :=
r̃n,n′

n′

n′∑
i=1

α3,i

(
τ̂1,2|Z=z′i

− τ1,2|Z=z′i

)2
ψ(z′i),

with ∀i = 1, . . . , n′, |α3,i| ≤ CΛ′′/2, by Assumption 6.3.1(v).

Using the definition (6.3) of τ̂1,2|Z=z, the definition of the weights wi,n(z) and the notation ψ(z) :=

Λ′
(
τ1,2|Z=z

)
ψ(z), we rewrite T2 =: T4 + T5, where

T4 :=
r̃n,n′

n′n2

n′∑
i=1

n∑
j1=1

n∑
j2=1

Kh(z′i − Zj1)Kh(z′i − Zj2)

f2
Z(z′i)

×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i), (6.13)

T5 :=
r̃n,n′

n′n2

n′∑
i=1

n∑
j1=1

n∑
j2=1

Kh(z′i − Zj1)Kh(z′i − Zj2)

(
1

f̂Z(z′i)
2
− 1

fZ(z′i)
2

)
×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i). (6.14)

Note that we can put together the terms (j1, j2) and (j2, j1). This corresponds to the substitution of g∗

by its symmetrized version g̃. In the following, we will therefore assume that g∗ has been symmetrized

without loss of generality. The random variable T4 can be seen (see Equation (6.13)) as a sum of

(indexed by i) U-statistics of order 2. Its Hájek projection will yield the asymptotically normal dominant

term of T2.

To lighten notation, we denote τi := τ1,2|Z1=Z2=z′i
, f(·, ·) = fX,Z(·, ·) and

gi,j1,j2 := g∗(Xj1 ,Xj2)− IE
[
g∗(X1,X2)|z′i

]
= g∗(Xj1 ,Xj2)− τi.

Implicitly, all the expectations we will consider are expectations conditionally on the sequence of z′i,

i ≥ 1.

First note that, by usual α-order limited expansions, we have

IE[T4] =
r̃n,n′

n′n2

n′∑
i=1

n(n− 1)

∫
Kh(z′i − z1)Kh(z′i − z2)

f2
Z(z′i)

(
g∗(x1,x2)− τi

)
×ψ(z′i)f(x1, z1)f(x2, z2) dx1 dx2 dz1 dz2

− r̃n,n′

n′n

n′∑
i=1

τiψ(z′i)

∫
K2
h(z′i − z)

f2
Z(z′i)

f(x, z)dx dz

=
(n− 1)r̃n,n′

n′n

n′∑
i=1

∫
K(t1)K(t2)

f2
Z(z′i)

(
g∗(x1,x2)− τi

)
×ψ(z′i)f(x1, z

′
i − ht1)f(x2, z

′
i − ht1) dx1 dx2 dt1 dt2

− r̃n,n′

n′nhp

n′∑
i=1

τiψ(z′i)

∫
K2(t)

f2
Z(z′i)

fX,Z(x, z′i − ht)dx dt
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=
(n− 1)r̃n,n′h

2α

n′n

n′∑
i=1

∫
K(t1)K(t2)

f2
Z(z′i)

(
g∗(x1,x2)− τi

)
×ψ(z′i)d

(α)
Z f(x1, z

∗
i ) · t

(α)
1 d

(α)
Z f(x2, z

∗
i ) · t

(α)
2 dx1 dx2 dt1 dt2

− r̃n,n′

n′nhp

n′∑
i=1

τi

∫
K2

∫
ψ(z′i)

f2
Z(z′i)

f(x, z∗i ) dx

= O
(
r̃n,n′h

2α + r̃n,n′/(nh
p)
)

= O
(√

nn′hp+4α +
√
n′/(nhp)

)
= o(1),

under Assumption 6.3.1 (ii). Above, we have denoted by z∗i some vectors in Rp s.t. ‖z′i − Z∗i ‖∞ < 1.

They depend on z′i, x1, x2 or x, respectively.

Moreover, set

T4 − IE[T4] =
r̃n,n′

n′n2

n′∑
i=1

n∑
j1,j2=1

ζi,j1,j2 , (6.15)

ζi,j1,j2 =
(
Kh(z′i − Zj1)Kh(z′i − Zj2)gi,j1,j2 − IE

[
Kh(z′i − Zj1)Kh(z′i − Zj2)gi,j1,j2

]) ψ(z′i)

f2
Z(z′i)

·

Note that V ar(T4) = IE[T4T
T
4 ] + o(1) and

IE[T4T
T
4 ] =

r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j1,j2=1

n∑
j3,j4=1

IE[ζi1,j1,j2ζ
T
i2,j3,j4 ].

By independence, IE[ζi,j1,j2ζ
T
i,j3,j4

] = 0 when {j1, j2} ∩ {j3, j4} = ∅.

Otherwise, assume that j1 = j3 = j and there are no other identities among the four indices

(j1, j2, j3, j4). Set

ζi := IE
[
Kh(z′i − Z1)Kh(z′i − Z2)gi,1,2

] ψ(z′i)

f2
Z(z′i)

. (6.16)

Then,

IE[ζi1,j,j2ζ
T
i2,j,j4 ] = ζi1,j,j2,i2,j,j4 − ζi1ζ

T

i2 ,

where

ζi1,j,j2,i2,j,j4 := IE
[
Kh(z′i1 − Zj)Kh(z′i1 − Zj2)Kh(z′i2 − Zj)Kh(z′i2 − Zj4)gi1,j,j2g

T
i2,j,j4

]
×

ψ(z′i1)ψ(z′i2)T

f2
Z(z′i1)f2

Z(z′i2)

=
ψ(z′i1)ψ(z′i2)T

hpf2
Z(z′i1)f2

Z(z′i2)

∫
K(t1)K(t2)K

(z′i2 − z′i1
h

+ t1

)
K(t4)

(
g∗(x1,x2)− τi1

)
×

(
g∗(x1,x4)− τi2

)
f(x1, z

′
i1 − ht1)f(x2, z

′
i1 − ht2)f(x4, z

′
i4 − ht4) dx1 dx2 dx4 dt1 dt2 dt4.

By assumption, ζi1,j,j2,i2,j,j4 is zero when i1 6= i2. Otherwise, when i1 = i2 = i,

ζi,j,j2,i,j,j4 '
ψ(z′i)ψ(z′i)

T

hpfZ(z′i)

∫
K2

∫ (
g∗(x1,x2)− τi

)(
g∗(x1,x4)− τi

)
× fX|Z(x1|z′i)fX|Z(x2|z′i)fX|Z(x4|z′i) dx1 dx2 dx4 := Ci,1,2,4/h

p.

It is easy to check that the terms with other identities among the four indices jk, as ζi,j,j2,i,j,j2 or

ζi,j,j2,i,j,j will induce negligible remainder terms. Therefore, we get

r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j,j2,j4=1

ζi1,j,j2,i2,j,j4 '
1

n′

n′∑
i=1

Ci,1,2,4.
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Concerning the terms induced by the product of two ζi, note that, by limited expansions,

ζi =
ψ(z′i)

f2
Z(z′i)

∫
Kh(z′i − z1)Kh(z′i − z2)

(
g∗(x1,x2)− τi

)
f(x1, z1)f(x2, z2) dx1 dz1 dx2 dz2

=
ψ(z′i)

f2
Z(z′i)

∫
K(t1)K(t2)

(
g∗(x1,x2)− τi

)
f(x1, z

′
i − ht1)f(x2, z

′
i − ht2) dx1 dt1 dx2 dt2

=
h2αψ(z′i)

f2
Z(z′i)

∫
K(t1)K(t2)

(
g∗(x1,x2)− τi

)
d

(α)
Z f(x1, z

∗
i ) · t

(α)
1 d

(α)
Z f(x2, z

∗
i ) · t

(α)
2 dx1 dt1 dx2 dt2,

with the same notation as above. As a consequence, supi ζi = O(h2α) and

r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j,j2,j4=1

ζi1ζi2 '
r̃2
n,n′

n

( 1

n′

n′∑
i=1

ζi,1,2

)2

= O
(h4αr̃2

n,n′

n

)
= O(n′h4α+p) = o(1).

Therefore, we obtain

r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j,j2,j4=1

IE[ζi1,j,j2ζ
T
i2,j,j4 ] ' 1

n′

n′∑
i=1

Ci,1,2,4.

To calculate IE[T4T
T
4 ], there are three other similar terms, that respectively correspond to the cases

j1 = j4, j2 = j3 or j2 = j4. Therefore, we deduce

V ar(T4) ' IE[T4T
T
4 ] ' 4

n′

n′∑
i=1

Ci,1,2,4

' 4

∫
K2

∫
ψ(z)ψ(z)T

fZ(z)

∫ (
g∗(x1,x2)− τ1,2|Z1=Z2=z

)(
g∗(x1,x4)− τ1,2|Z1=Z2=z

)
× fX|Z(x1|z)fX|Z(x2|z)fX|Z(x4|z)fz′,∞(z) dx1 dx2 dx4 dz,

that is equal to the so-called variance-covariance matrix V2. Now assume that T4−IE[T4] is asymptotically

normal, i.e. T4 − IE[T4]
D−→ N (0, V2). This result will be proved in Subsection 6.8.2.

Let us decompose the term T5, as defined in Equation (6.14). For every i = 1, . . . , n′, a usual Taylor

expansion yields

1

f̂2
Z(z′i)

− 1

f2
Z(z′i)

=
1

f2
Z(z′i)

{ 1(
1 +

f̂Z(z′i)− fZ(z′i)

fZ(z′i)

)2
− 1
}

= −2
f̂Z(z′i)− fZ(z′i)

f3
Z(z′i)

+ T7,i,

where

T7,i =
3

f2
Z(z′i)

(1 + α7,i)
−4
( f̂Z(z′i)− fZ(z′i)

fZ(z′i)

)2

, for some |α7,i| ≤
∣∣∣ f̂Z(z′i)− fZ(z′i)

fZ(z′i)

∣∣∣.
Therefore, we obtain the decomposition T5 = −2T6 + T7, where

T6 :=
r̃n,n′

n′n2

n′∑
i=1

n∑
j1=1

n∑
j2=1

Kh(z′i − Zj1)Kh(z′i − Zj2)
( f̂Z(z′i)− fZ(z′i)

f3
Z(z′i)

)
×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i),

T7 :=
r̃n,n′

n′n2

n′∑
i=1

n∑
j1=1

n∑
j2=1

Kh(z′i − Zj1)Kh(z′i − Zj2)T7,i

×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i).
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Summing up all the previous equations, we get

T1 =
(
T4 − IE[T4]

)
− 2T6 + T7 + T3 + o(1). (6.17)

Afterwards, we will prove that all the remainders terms T6, T7 and T3 are negligible, i.e. they tend to zero

in probability. These results are respectively proved in Subsections 6.8.3, 6.8.4 and 6.8.5. Combining all

these elements with the asymptotic normality of T4 (proved in Subsection 6.8.2), we get T1
D−→ N (0, V2),

as claimed. �

6.8.2 Proof of the asymptotic normality of T4

We will lead the usual Hájek projection of T4. To weaken notation, denote IE[ζi,j1,j2 |Xj1 ,Zj1 ] := IE[ζi,j1,j2 |j1].

Then, recalling (6.15), we can write

T4 − IE[T4] = T4,1 + T4,2 + T4,3, with

T4,1 :=
2r̃n,n′

n′n2

n′∑
i=1

n∑
j1,j2=1

1(j1 6= j2)IE[ζi,j1,j2 |j1],

T4,2 :=
2r̃n,n′

n′n2

n′∑
i=1

n∑
j=1

IE[ζi,j,j |j], and

T4,3 :=
r̃n,n′

n′n2

n′∑
i=1

n∑
j1,j2=1

(
ζi,j1,j2 − IE[ζi,j1,j2 |j1]− IE[ζi,j1,j2 |j2]

)
.

We will prove that T4,2 and T4,3 are oP (1). Therefore, the asymptotic normality of T4 reduces to the one

of T4,1.

Note that nT4,1/2(n− 1) =
∑n
j=1 βj,n,n′ , where

βj,n,n′ :=
r̃n,n′

n′n

n′∑
i=1

IE[ζi,j,0|j], j = 1, . . . , n,

by formally considering a random vector Z0 that is independent of the other Zj , j ≥ 1. Therefore, we get

a triangular array of random vectors (βj,n,n′)j=1,...,n, s.t., for a fixed n, the variables βj,n,n′ are mutually

independent given the vectors z′i, i ≥ 1. Let us check Lyapunov’s sufficient condition, that will imply the

asymptotic normality of T4,1. In other words, it is sufficient to prove that

n∑
j=1

‖βj,n,n′‖3∞ −→ 0, (6.18)

when n and n′ tend to the infinity. Recalling (6.16), we can rewrite

βj,n,n′ =
r̃n,n′

n′n

n′∑
i=1

{
Kh(z′i − Zj)

ψ(z′i)

f2
Z(z′i)

∫
Kh(z′i − z)

(
g∗(x,Xj)− τi

)
f(x, z) dx dz− ζi

}
:=

r̃n,n′

n′n

n′∑
i=1

γi,j ,

where supi ζi := O(h2α). Note that

‖βj,n,n′‖3∞ ≤ p3
r̃3
n,n′

(n′)3n3

n′∑
i1,i2,i3=1

‖γi1,j‖∞‖γi2,j‖∞‖γi3,j‖∞.
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The terms that that involve some products by the means ζik , k = 1, 2, 3, are negligible and they may be

forgotten here. For some constants Cst, this provides

n∑
j=1

IE
[
‖βj,n,n′‖3∞

]
≤
Cst r̃3

n,n′

(n′)3n3

n∑
j=1

n′∑
i1,i2,i3=1

‖ψ‖∞(z′i1)‖ψ‖∞(z′i2)‖ψ‖∞(z′i3)

f2
Z(z′i1)f2

Z(z′i2)f2
Z(z′i3)

× IE
[∣∣Kh(z′i1 − Zj)

∫
Kh(z′i1 − z1)

(
g∗(x1,Xj)− τi1

)
f(x1, z1) dx1 dz1

∣∣
×

∣∣Kh(z′i2 − Zj)

∫
Kh(z′i2 − z2)

(
g∗(x2,Xj)− τi2

)
f(x2, z2) dx2 dz2

∣∣
×

∣∣Kh(z′i3 − Zj)

∫
Kh(z′i3 − z3)

(
g∗(x3,Xj)− τi3

)
f(x3, z3) dx3 dz3

∣∣].
By some now usual changes of variables, the latter expectations are zero when one of the three indices

i1, i2 and i3 is different from the others. Thus, the non-zero expectations are obtained when i1 = i2 = i3.

In the latter case, we get

n∑
j=1

‖βj,n,n′‖3∞ ≤
Cst r̃3

n,n′

(n′)3n2

n′∑
i=1

‖ψ‖3∞(z′i)

f6
Z(z′i)

×
∫
|K|3h(z′i − z)

∣∣∣ ∫ Kh(z′i − z1)
(
g∗(x1,x)− τi

)
f(x1, z1) dx1 dz1

∣∣∣3f(x, z) dx dz

≤
Cst r̃3

n,n′

(n′)3n2h2p

n′∑
i=1

‖ψ‖3∞(z′i)

f6
Z(z′i)

∫
|K|3(t)

∣∣ ∫ K(t1)
(
g∗(x1,x)− τi

)
f(x1, z

′
i − ht1) dx1 dt1

∣∣3
× f(x, z′i − ht) dx dt = O

( r̃3
n,n′

(n′)2n2h2p

)
= O

( 1

(nn′hp)1/2

)
= o(1).

Concerning the remainder terms T4,2 and T4,3, note that IE[T4,2] = IE[T4,3] = 0. Moreover, since

IE[ζi,j,j |j] is centered,

IE[T4,2T
T
4,2] =

4r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j=1

IE
[
IE[ζi1,j,j |j]IE[ζTi2,j,j |j]

]
.

When i1 6= i2, some usual changes of variables yield

IE
[
IE[ζi1,j,j |j]IE[ζTi2,j,j |j]

]
=
ψ(z′i1)ψ(z′i2)T

f2
Z(z′i1)f2

Z(z′i2)
τi1τi2

×
(

IE
[
K2
h(z′i1 − Zj)K

2
h(z′i2 − Zj)

]
− IE

[
K2
h(z′i1 − Zj)

]
IE
[
K2
h(z′i2 − Zj)

])
= O(h−2p),

uniformly w.r.t. i. By a similar reasoning, we can prove that

sup
i

IE
[
IE[ζi,j,j |j]IE[ζTi,j,j |j]

]
= O(h−3p).

Therefore,

IE[T4,2T
T
4,2] = O

( r̃2
n,n′

(n′)2n4

(
(n′)2nh−2p + n′nh−3p

))
= O

( n′

n2hp
+

1

n2h2p

)
= o(1).

Concerning T4,3, this remainder term is centered and

IE[T4,3T
T
4,3] =

r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j1,j2=1

n∑
j3,j4=1

IE
[
{ζi1,j1,j2 − IE[ζi1,j1,j2 |j1]− IE[ζi1,j1,j2 |j2]}

× {ζi2,j3,j4 − IE[ζi2,j3,j4 |j3]− IE[ζi2,j3,j4 |j4]}T
]
. (6.19)
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The expectations on the latter r.h.s. are zero when {j1, j2} ∩ {j3, j4} = ∅ due to independence and the

fact that the terms ζi,j,j′ are centered. Otherwise, there is at least an identity among the indices jk,

k = 1, . . . , 4. For instance, assume j1 = j3 = j and j 6= j2 6= j4. Then,

IE
[
{ζi1,j,j2 − IE[ζi1,j,j2 |j]− IE[ζi1,j,j2 |j2]}{ζi2,j,j4 − IE[ζi2,j,j4 |j]− IE[ζi2,j,j4 |j4]}T

]
= IE

[
{ζi1,j,j2 − IE[ζi1,j,j2 |j]}{ζi2,j,j4 − IE[ζi2,j,j4 |j]}T

]
= IE

[
IE
[
{ζi1,j,j2 − IE[ζi1,j,j2 |j]}{ζi2,j,j4 − IE[ζi2,j,j4 |j]}T

∣∣∣j]]
= IE

[
IE
[
ζi1,j,j2ζ

T
i2,j,j4 |j

]]
− IE

[
IE
[
ζi1,j,j2 |j

]
IE
[
ζTi2,j,j4 |j

]]
= 0.

Due to the symmetry of the latter cross-products, all cases of a single identity among the jk, k = 1, . . . , 4,

yield the same result. Therefore, we need (at least) two identities among them to obtain non zero

covariances in the calculation of IE[T4,3T
T
4,3]. Thus, let us assume that j1 = j3 and j2 = j4. Then, the

corresponding terms in (6.19) is

r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j1,j2=1

IE
[
{ζi1,j1,j2 − IE[ζi1,j1,j2 |j1]− IE[ζi1,j1,j2 |j2]}{ζi2,j1,j2 − IE[ζi2,j1,j2 |j1]− IE[ζi2,j1,j2 |j2]}T

]

=
r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j1,j2=1

(
IE
[
ζi1,j1,j2ζ

T
i2,j1,j2

]
− 2IE

[
IE[ζi1,j1,j2 |j1]IE[ζi2,j1,j2 |j1]T

])
=: v4,3,1 − v4,3,2.

By now usual techniques, we get

v4,3,1 =
r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j1,j2=1

IE
[
ζi1,j1,j2ζ

T
i2,j1,j2

]
'

r̃2
n,n′

(n′)2n4

n′∑
i=1

n∑
j1,j2=1

IE
[
ζi,j1,j2ζ

T
i,j1,j2

]

'
r̃2
n,n′

(n′)2n2

n′∑
i=1

ψ(z′i)ψ
T

(z′i)

f4
Z(z′i)

∫
K2
h(z′i − z1)K2

h(z′i − z2)
(
g∗(x1,x2)− τi

)2
f(x1, z1)

× f(x2, z2) dx1 dz1 dx2 dz2 = O
( r̃2

n,n′

n′n2h2p

)
= O

( 1

nhp
)

= o(1).

Moreover,

v4,3,2 =
r̃2
n,n′

(n′)2n4

n′∑
i1,i2=1

n∑
j1,j2=1

IE
[
IE[ζi1,j1,j2 |j1]IE[ζTi2,j1,j2 |j1]

]

'
r̃2
n,n′

(n′)2n4

n′∑
i=1

n∑
j1,j2=1

IE
[
IE[ζi,j1,j2 |j1]IE[ζTi,j1,j2 |j1]

]

'
r̃2
n,n′

(n′)2n2

n′∑
i=1

ψ(z′i)ψ
T

(z′i)

f4
Z(z′i)

∫
K2
h(z′i − z1)Kh(z′i − z2)Kh(z′i − z3)

(
g∗(x1,x2)− τi

)
×

(
g∗(x1,x3)− τi

)
f(x1, z1)f(x2, z2)f(x3, z3) dx1 dz1 dx2 dz2 dx3 dz3

= O
( r̃2

n,n′

n′n2hp

)
= O

( 1

n

)
= o(1).

Another case of two identities occurs when j1 = j4 and j2 = j3, but it can be dealt similarly. Then,

we have proved that IE[T4,3T
T
4,3] = o(1) and T4,3 = oP (1).
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6.8.3 Convergence of T6 to 0

Replacing f̂Z in the definition of T6 above by the normalized sum of the kernels, we get

T6 =
r̃n,n′

n′n2

n′∑
i=1

n∑
j1=1

n∑
j2=1

Kh(z′i − Zj1)Kh(z′i − Zj2)

f3
Z(z′i)

(
IE[f̂Z(z′i)]− fZ(z′i)

)
×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i)

+
r̃n,n′

n′n3

n′∑
i=1

n∑
j1=1

n∑
j2=1

n∑
j3=1

Kh(z′i − Zj1)Kh(z′i − Zj2)

f3
Z(z′i)

(
Kh(z′i − Zj3)− IE[f̂Z(z′i)]

)
×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i) =: T6,1 + T6,2.

The first term T6,1 is a bias term. By Assumptions 6.9.1-6.9.2,

sup
i=1,...,n′

∣∣IE[f̂Z(z′i)]− fZ(z′i)
∣∣ = O(hα).

The sum of the diagonal terms in T6,1 is

− r̃n,n
′

n′n2

n′∑
i=1

n∑
j=1

K2
h(z′i − Zj)

f3
Z(z′i)

(
IE[f̂Z(z′i)]− fZ(z′i)

)
IE
[
g∗(X1,X2)|Z1 = Z2 = z′i

]
ψ(z′i),

that is OIP

(
r̃n,n′h

α/(nhp)
)
. The sum of the extra-diagonal terms in T6,1 is the r.v.

T 6,1 :=
r̃n,n′

n′n2

n′∑
i=1

∑
1≤j1 6=j2≤n

Kh(z′i − Zj1)Kh(z′i − Zj2)

f3
Z(z′i)

(
IE[f̂Z(z′i)]− fZ(z′i)

)
×
(
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

])
ψ(z′i).

Note that z 7→ fZ(z) and (z1, z2) 7→ IE
[
g∗(X1,X2)|Z1 = z1,Z2 = z2

]
are α-times continuously differen-

tiable on Z and Z2 respectively, because of Assumptions 6.9.2 and 6.9.4. By α-order Taylor expansions

of such terms, they yield some factors hα. It is easy to check that the expectation of (T 6,1)2 is of order

r̃2
n,n′h

2α/(n2h2p). Therefore,

T6,1 = OIP

( r̃n,n′hα
nhp

)
= OIP

( (n′)1/2hα√
nhp

)
= oIP(1).

Concerning T6,2, we can assume that the indices j1, j2 and j3 are pairwise distinct. Indeed, the

cases of one or two identities among such indices can be easily dealt. They yield an upper bound that is

OIP(r̃n,n′h
α/(nhp)) as above, and they are negligible. Once we remove such terms from the triple sums

(indexed by (j1, j2, j3)) defining T6,2, we get the centered r.v. T 6,2. Let us calculate the second moment

of T 6,2.

IE
[
T

2

6,2

]
:=

nn′hp

n′2n6

n′∑
i1=1

n′∑
i2=1

∑
1≤j1 6=j2 6=j3≤n

∑
1≤j4 6=j5 6=j6≤n

IE

[
Kh(z′i1 − Zj1)Kh(z′i1 − Zj2)

f3
Z(z′i1)

×
(
Kh(z′i1 − Zj3)− IE[f̂Z(z′i1)]

) (
g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i1

])
ψ(z′i1)

×
Kh(z′i2 − Zj4)Kh(z′i2 − Zj5)

f3
Z(z′i2)

(
Kh(z′i2 − Zj6)− IE[f̂Z(z′i2)]

)
×
(
g∗(Xj4 ,Xj5)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i2

])
ψ(z′i2)T

]

=:
nn′hp

n′2n6

n′∑
i1,i2=1

∑
1≤j1 6=j2 6=j3≤n

∑
1≤j4 6=j5 6=j6≤n

Ei1,i2,j1−j6 .
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When all the indices of the latter sums are different, the latter expectation is zero. Non zero terms

above are obtained only when j3 and j6 are equal to some other indices. In the case j3 = j6 and no

other identity among the indices, we obtain two extra factors hα through α-order limited expansions of

(z1, z2) 7→ IE
[
g∗(X1,X2)|Z1 = z1,Z2 = z2

]
. This yields an order O(nn′hp+2α/(nhp)). When j3 and

j6 are equal to two different indices (j3 = j4 and j6 = j2, e.g.), we lose another factor hp but we still

benefit from the two latter factors hα. This yields an upper bound O(nn′hp+2α/(n2h2p)) = o(1). The

other situations can be managed similarly. We get

IE
[
T

2

6,2

]
= O

(nn′hp+2α

nhp

)
= o(1).

Globally, we obtain T6 → 0 in probability under Assumptions 6.3.1(ii)(a). �

6.8.4 Convergence of T7 to 0

Since supi=1,...,n′ |f̂Z(z′i)− fZ(z′i)| = oIP(1), note that

sup
i=1,...,n′

|T7,i| ≤
6

f4
Z,min

sup
i=1,...,n′

|f̂Z(z′i)− fZ(z′i)|2,

with a probability arbitrarily close to one. Apply Lemma 6.19 with a fixed t > 0 and z = z′i for each

i = 1, . . . , n′

IP

(
sup

i=1,...,n′
|T7,i| ≥

6

f4
Z,min

(
CK,αh

α

α!
+ t

)2)
≤ 2n′ exp

(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
.

Set t ∝ hα/2. Deduce supi=1,...,n′ |T7,i| = OIP(hα) since nhp+α/ lnn′ →∞ by assumption. Then,

|T7| ≤
r̃n,n′

n′n2
sup
i
|T7,i|

n′∑
i=1

|ψ(z′i)|

×
n∑

j1=1

n∑
j2=1

|K|h(z′i − Zj1)|K|h(z′i − Zj2)
∣∣∣g∗(Xj1 ,Xj2)− IE

[
g∗(X1,X2)|Z1 = Z2 = z′i

]∣∣∣.
The expectation of the double sum isO(hα), by an α-order limited expansion of (z1, z2) 7→ IE

[
g∗(X1,X2)|Z1 =

z1,Z2 = z2

]
. Then, by Markov’s inequality, we deduce

T7 = OIP(r̃n,n′ sup
i
|T7,i|hα) = OIP(r̃n,n′h

2α) = OIP

(
(n′nhp+4α)1/2

)
,

and then T7 = oIP(1) due to Assumption 6.3.1(ii)(a). �

6.8.5 Convergence of T3 to 0

For every ε > 0, by Markov’s inequality,

IP(|T3| > ε) ≤CΛ′′ r̃n,n′

2n′ε

n′∑
i=1

IE
[(
τ̂1,2|Z=z′i

− τ1,2|Z=z′i

)2]
ψ(z′i).

An approximated calculation of IE
[(
τ̂1,2|Z=z′i

− τ1,2|Z=z′i

)2] can be obtained following the steps of the

proof of Lemma 6.24. Indeed, it can be easily seen that the order of magnitude of the latter expectation

is the same as the variance of Un,i(g∗), and then of its Hájek projection Ûn,i(g). Since the latter variance

is O((nhp)−1), we get

IP(|T3| > ε) ≤ B r̃n,n
′

nhpε
,

for some constant B. Since n′/(nhp)→ 0, we get T3 = oIP(1), as claimed. �
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6.9 Technical results concerning the first-step estimator

Three possible choices for g∗ are given in [40]

g1(Xi,Xj) := 4 · 1
{
Xi,1 < Xj,1, Xi,2 < Xj,2

}
− 1,

g2(Xi,Xj) := 1
{

(Xi,1 −Xj,1).(Xi,2 −Xj,2) > 0
}
− 1

{
(Xi,1 −Xj,1).(Xi,2 −Xj,2) < 0

}
,

g3(Xi,Xj) := 1− 4 · 1
{
Xi,1 < Xj,1, Xi,2 > Xj,2

}
,

where 1 is the indicator function. In the following, we assume that we have chosen g∗ as one of the gk
for a fixed k ∈ {1, 2, 3}.

Assumption 6.9.1. The kernel K is bounded, and set ‖K‖∞ =: CK . It is symmetrical and satisfies∫
K = 1,

∫
|K| < ∞. This kernel is of order α for some integer α > 1: for all j = 1, . . . , α − 1 and every

indices i1, . . . , ij in {1, . . . , p},
∫
Rp K(u)ui1 . . . uij du = 0,.

Assumption 6.9.2. fZ is α-times continuously differentiable and there exists a constant CK,α > 0 s.t.,
for all z ∈ Z, ∫

|K|(u)

p∑
i1,...,iα=1

|ui1 . . . uiα | sup
t∈[0,1]

∣∣ ∂αfZ
∂zi1 . . . ∂ziα

(z + tu)
∣∣ du ≤ CK,α.

Assumption 6.9.3. There exist two positive constants fZ,min and fZ,max such that, for every z ∈ Z,
fZ,min ≤ fZ(z) ≤ fZ,max.

Lemma 6.19. Under Assumptions 6.9.1, 6.9.2 and 6.9.3, we have for any t > 0,

IP

(∣∣f̂Z(z)− fZ(z)
∣∣ ≥ CK,αh

α

α!
+ t

)
≤ 2 exp

(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
.

Lemma 6.20. Under Assumptions 6.9.1-6.9.3 and if CK,αhα/α! < fZ,min, the estimator f̂Z(z) is strictly
positive with a probability larger than

1− 2 exp
(
− nhp

(
fZ,min − CK,αhα/α!

)2
/
(
2fZ,max

∫
K2 + (2/3)CK(fZ,min − CK,αhα/α!)

))
.

Assumption 6.9.4. For every x ∈ R2, z 7→ fX,Z(x, z) is differentiable almost everywhere up to the order
α, z ∈ Z. For every 0 ≤ k ≤ α and every 1 ≤ i1, . . . , iα ≤ p, let

Hk,~ι(u,v,x1,x2, z) := sup
t∈[0,1]

∣∣∣∣ ∂kfX,Z
∂zi1 . . . ∂zik

(
x1, z + tu

) ∂α−kfX,Z
∂zik+1

. . . ∂ziα

(
x2, z + tv

)∣∣∣∣,
denoting ~ι = (i1, . . . , iα). Assume that Hk,~ι(u,v,x1,x2, z) is integrable and there exists a finite constant
CXZ,α > 0, such that, for every z ∈ Z,

∫
|K|(u)|K|(v)

α∑
k=0

(
α

k

) p∑
i1,...,iα=1

Hk,~ι(u,v,x1,x2, z)|ui1 . . . uikvik+1
. . . viα | du dv dx1 dx2

is less than CXZ,α.
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Lemma 6.21 (Exponential bound for the estimated conditional Kendall’s tau). Under Assumptions 6.9.1-
6.9.4, for every t > 0 such that CK,αhα/α! + t ≤ fZ,min/2 and every t′ > 0, we have

IP

(
|τ̂ (k)

1,2|Z=z − τ1,2|Z=z| >
ck

f2
z (z)

(CXZ,αh
α

α!
+

3fz(z)
∫
K2

2nhp
+ t′

)
×
(

1 +
16f2

Z(z)

f3
Z,min

(CK,αhα
α!

+ t
)))

≤ 2 exp
(
− nhpt2

2fZ,max
∫
K2 + (2/3)CKt

)
+ 2 exp

(
− (n− 1)h2pt′2

4f2
Z,max(

∫
K2)2 + (8/3)C2

Kt
′

)
+ 2 exp

(
−

nhp(fz(z)− CK̃,2h2)2

8fZ,max
∫
K̃2 + 4CK̃(fz(z)− CK̃,2h2)/3

)
,

with c1 := c3 := 4 and c2 := 2.

Remark 6.22. In Lemma 6.20 and 6.21, fZ,min can be replaced by fZ(z). Moreover, when the support of
K is included in [−c, c] for some c > 0, fZ,max can be replaced by supz̃∈V(z,ε) fZ(z̃), denoting by V(z, ε)

a closed ball of center z and any radius ε > 0, when n c < ε.

Lemma 6.23 (Consistency). Under Assumption 6.9.1, if nhpn → ∞, limK(t)|t|p = 0 when |t| → ∞, fZ
and z 7→ τ1,2|Z=z are continuous on Z, then τ̂1,2|Z=z tends to τ1,2|Z=z in probability, when n→∞.

To derive the asymptotic law of this estimator, we will assume:

Assumption 6.9.5. (i) nhpn →∞ and nhp+2α
n → 0; (ii) K( · ) is compactly supported.

Lemma 6.24 (Asymptotic normality). Assume 6.9.1, 6.9.4, 6.9.5, that the z′i are distinct and that fZ and
z 7→ fX,Z(x, z) are continuous on Z, for every x.

Then, (nhpn)1/2
(
τ̂1,2|Z=z′i

− τ1,2|Z=z′i

)
i=1,...,n′

D−→ N (0,H) as n→∞, where H is a n′× n′ real matrix
defined by

[H]i,j =
4
∫
K21{z′i=z′j}

fZ(z′i)

{
IE[g̃(X1,X)g̃(X2,X)|Z = Z1 = Z2 = z′i]− τ2

1,2|Z=z′i

}
,

for every 1 ≤ i, j ≤ n′, and (X,Z), (X1,Z1), (X2,Z2) are independent copies, where g̃ is the sym-
metrized version g̃(x1,x2) := g∗(x1,x2) + g∗(x2,x1))/2.

6.10 Estimation results for a particular sample
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Figure 6.4: Evolution of the estimated non-zero coefficients as a function of the regularization parameter

λ. The non-zero coefficients are β1 = 3/4 and β3 = 3/4. Note that the coefficients β̂2, β̂5 and β̂9

coefficients are always zero (and are not displayed).
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Figure 6.5: True conditional Kendall’s tau τ1,2|Z=z (black curve), estimated conditional Kendall’s tau

τ̂1,2|Z=z (red curve), and prediction Λ(−1)
(
ψ(z)T β̂

)
(blue curve) as a function of z. For the blue curve,

the regularization parameter is 2λ̂cv ' 0.034 where λ̂cv is selected by Algorithm 6.



Chapter 7

A classification point-of-view on
conditional Kendall’s tau

Abstract

We show how the problem of estimating conditional Kendall’s tau can be rewritten as a classifica-

tion task. Conditional Kendall’s tau is a conditional dependence parameter that is a characteristic

of a given pair of random variables. The goal is to predict whether the pair is concordant (value

of 1) or discordant (value of −1) conditionally on some covariates. We prove the consistency

and the asymptotic normality of a family of penalized approximate maximum likelihood estima-

tors, including the equivalent of the logit and probit regressions in our framework. Then, we detail

specific algorithms adapting usual machine learning techniques, including nearest neighbors, de-

cision trees, random forests and neural networks, to the setting of the estimation of conditional

Kendall’s tau. Finite sample properties of these estimators and their sensitivities to each com-

ponent of the data-generating process are assessed in a simulation study. Finally, we apply all

these estimators to a dataset of European stock indices.

Keywords: Conditional Kendall’s tau, conditional dependence measure, machine learning, clas-

sification task, stock indices.

Based on [41]: Derumigny, A., & Fermanian, J. D., A classification point-of-view about conditional

Kendall’s tau. Computational Statistics & Data Analysis, 135, 70-94, 2019.

7.1 Introduction

Beside linear correlations, most dependence measures between two random variables are functions of

the underlying copula only: Spearman’s rho, Kendall’s tau, Blomqvist’s beta, Gini’s measure of asso-

ciation, etc. As a consequence, they are independent of the corresponding margins. This is seen as

a positive point. See Joe [76], Nelsen [106], for instance, and, as a reminder, some basic definitions

in 7.7. Such measures are well-known and widely used by practitioners. When some covariates are

available, natural extensions of these tools can be defined, providing so-called “conditional” measures

of dependence. In theory, it is sufficient to replace copulas by conditional copulas to obtain the “condi-

tional version” of any dependence measure. Surprisingly, this simple and fruitful idea has not yet been
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widely used in the literature. Nonetheless, in a series of papers, Gijbels et al. [63, 64, 65, 61] have

popularized this approach, with a focus on conditional Kendall’s tau and Spearman’s rho. Note that

conditional dependence measures have been invoked in different frameworks, often without any explicit

link with conditional copulas: truncated data (Tsai [136], e.g.), multivariate dynamic models (Jondeau

and Rockinger [78], Almeida and Czado [6], among others), vine structures (So and Yeung [127]), etc.

Now, let us introduce our key dependence measure: for each z ∈ Rp, the conditional Kendall’s tau of

a bivariate random vector X := (X1, X2) given some covariates Z = z may be defined as

τ1,2|Z=z = IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

∣∣Z1 = Z2 = z
)
− IP

(
(X2,1 −X1,1)(X2,2 −X1,2) < 0

∣∣Z1 = Z2 = z
)
,

where X1 = (X1,1, X1,2) and X2 = (X2,1, X2,2) are two independent versions of X. To simplify, we will

assume that the law of X given Z = z is continuous w.r.t. the Lebesgue measure, for every z. This

implies

τ1,2|Z=z = 2 IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

∣∣Z1 = Z2 = z
)
− 1.

A conditional Kendall’s tau belongs to the interval [−1, 1] and reflects a positive (τ1,2|Z=z > 0) or

negative (τ1,2|Z=z < 0) dependence between X1 and X2, given Z = z. Unlike correlations, this measure

has the advantage of being always defined, even if some Xk, k = 1, 2, has no finite second moments

(when it follows a Cauchy distribution, for example).

Some estimators of conditional Kendall’s tau have already been proposed in the literature, either as

a by-product of the estimation of conditional copulas - see Gijbels et al. [63] and Fermanian and Lopez

[50] - or directly, as in Derumigny and Fermanian [39, 40]. Nonetheless, to the best of our knowledge,

nobody has yet noticed the relationship between conditional Kendall’s tau and classification methods.

Let us explain this simple idea. Denote W := 2× 1{(X2,1 −X1,1)(X2,2 −X1,2) > 0} − 1 and

IP
(
(X2,1 −X1,1)(X2,2 −X1,2) > 0

∣∣Z1 = Z2 = z
)

= IP
(
W = 1

∣∣Z1 = Z2 = z
)

=: p(z).

Actually, the prediction of concordance/discordance among pairs of observations (X1,X2) given Z can

be seen as a classification task of such pairs. If a model is able to evaluate the conditional probability of

observing concordant pairs of observations, then it is able to evaluate conditional Kendall’s tau, and the

former quantity is one of the outputs of most classification techniques. Therefore, most classifiers can

potentially be invoked (for example linear classifiers, decision trees, random forests, neural networks

and so on [54]), but applied here to pairs of observations.

Indeed, for every 1 ≤ i, j ≤ n, i 6= j, define W(i,j) as

W(i,j) := 2× 1{(Xj,1 −Xi,1)(Xj,2 −Xi,2) > 0} − 1 =

1 if (i, j) is a concordant pair,

−1 if (i, j) is a discordant pair.
(7.1)

A classification technique will allocate a given couple (i, j) into one of the two categories {1,−1} (or

“concordant versus discordant”, equivalently), with a certain probability, given the value of the common

covariate Z.

Section 7.2 introduces a general regression-type approach for the estimation of conditional Kendall’s

tau. Some asymptotic results of consistency and asymptotic normality are stated. In Section 7.3, we ex-

plain how some machine learning techniques can be adapted to deal with our particular framework, and

we detail the corresponding algorithms. A small simulation study compares the small-sample properties

of all these algorithms in Section 7.4. In Section 7.5, these techniques are applied to European stock

market data. We evaluate to what extent the dependence between pairs of European stock indices may

evolve with respect to different covariates. All proofs have been postponed into appendices.
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7.2 Regression-type approach

Typically, a regression-type model based on conditional Kendall’s tau may be written as

τ1,2|Z=z = g0(z, β∗), ∀z ∈ Z ⊂ Rp, (7.2)

for some finite dimensional parameter β∗ ∈ Rp
′

and some function g0. As a particular case, a single-

index approach would be

τ1,2|Z=z = g(ψ(z)Tβ∗), ∀z ∈ Z, (7.3)

where ψ : Rp → Rp
′

is known, and g may be known (parametric model) or not (semi-parametric model),

as in [39]. In this section, we propose an inference procedure of β∗ under (7.3) when the link function

g is analytically known. This procedure will be based on the signs of pairs only, and not on the specific

values of the vectors Xi. Then, since inference will be based on the observations of W ∈ {1,−1}, our

model belongs to the family of limited-dependent variable methods. One difficulty will arise from the

pointwise conditioning events Zi = Zj = z, that will necessitate localization techniques. Actually, we

will consider couples of observations Xi and Xj for which the associate covariates are close to a given

value z. Indeed, the relationship (7.3) does not define the dependence levels between every couple

(Xi,Zi) and (Xj ,Zj), i 6= j, but only between those that share the same covariate. If the variables Z

were discrete, we would consider a subset of couples such that Zi = Zj . In our case of continuous

variables Z (see below), the latter event does not occur almost surely, and some smoothing/localization

techniques have to be invoked.

Let K be a p-dimensional kernel and (hn) be a bandwidth sequence. The bandwidth will simply

be denoted by h and we set Kh(z) = K(z/h)/hp. The log-likelihood associated to the observation

(W(i,j),Zi,Zj) given Zi = Zj = z is

`β(W(i,j), z) :=

(
1 +W(i,j)

2

)
log IPβ

(
W(i,j) = 1

∣∣∣Zi = Zj = z

)
+

(
1−W(i,j)

2

)
log IPβ

(
W(i,j) = −1

∣∣∣Zi = Zj = z

)
.

In practice, when the underlying law of Z is continuous, there is virtually no couple for which Zi = Zj .

Therefore, we will consider a localized “approximated” log-likelihood, based on (W(i,j),Zi,Zj) for all

pairs (i, j), i 6= j. It will be defined as the double sum

Ln(β) :=
1

n(n− 1)

∑
i,j;i6=j

Kh(Zi − Zj)`β(W(i,j), Z̃i,j),

for any choice of Z̃i,j that belongs to a neighborhood of Zi or Zj . We will assume that K is a compactly

supported p-dimensional kernel of order m ≥ 2.

The most obvious choices would be to select Z̃i,j among {Zi,Zj , (Zi + Zj)/2}. Here, we propose

Ln(β) :=
1

n(n− 1)

∑
i,j;i 6=j

Kh(Zi − Zj)`β(W(i,j),Zi)

=
1

n(n− 1)

∑
i,j;i 6=j

Kh(Zi − Zj)

{(
1 +W(i,j)

2

)
log

(
1

2
+

1

2
g(ψ(Zi)

Tβ)

)

+

(
1−W(i,j)

2

)
log

(
1

2
− 1

2
g(ψ(Zi)

Tβ)

)}
,

under (7.3). We can therefore derive an estimator of β∗ based on the maximization of the latter function,

with a `1 penalty (Lasso-type estimator), as

β̂ := arg max
β∈Rp′

Ln(β)− λn|β|1, (7.4)
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where λn (also simply denoted as λ) is a tuning parameter to be chosen. Note that Ln(β) is not really a

likelihood function since the observations (W(i,j),Zi,Zj) for every couple (i, j), i 6= j, are not mutually

independent.

If K ≥ 0, the objective function is a concave function of β if it satisfies

δg′′(t)(1 + δg)(t) ≤ (g′)2(t), ∀t, (7.5)

for δ ∈ {1,−1}. When β 7→ Ln(β) is concave, the penalized criterion above is concave too and the

calculation of β̂ can be led in practical terms through convex optimization routines, even with a large

number of regressors (p′ � 1). Since this will be our framework, we will show that (7.5) holds for some

usual classification techniques. When it is not the case, we have to rely on other optimization schemes

and to avoid considering too many regressors.

Moreover, note that, when g is odd (i.e. g(−t) = −g(t)), the estimator simply becomes

β̂ := arg max
β∈Rp′

1

n(n− 1)

∑
i,j;i 6=j

Kh(Zi − Zj) log

(
1

2
+

1

2
g(W(i,j)ψ(Zi)

Tβ)

)
− λ|β|1. (7.6)

The implementation of an algorithm to solve problem (7.4) or its simplified version (7.6) may seem

difficult due to the non-differentiability of the l1 norm. Nevertheless, as in the case of the ordinary Lasso,

it can be solved in a very efficient way using the Alternative Direction Method of Multipliers (ADMM)

for general l1 minimization, following [24, Section 6.1]. More precisely, assume Ln(β) is a concave

and differentiable function of β (this is the case in both Examples 7.1 and 7.2). Then the optimization

task (7.4) can be rewritten as finding the solution (x, z) ∈ R2p′ ofminimize f(x) + g(z)

subject to x− z = 0,
(7.7)

where f(x) := −Ln(x) and g(z) := λn|z|1. The solution is given by iterating the following algorithm,

denoting by u ∈ Rp
′

the dual variable of the problem (7.7) and by ρ > 0 the step size (similarly to the

usual gradient descent algorithm),

xk+1 := arg min
x

(
f(x) + (ρ/2)||x− zk + uk||22

)
,

zk+1 := Sλn/ρ(x
k+1 + uk),

uk+1 := uk + xk+1 − zk+1,

where for any κ > 0, Sκ is the element-wise soft thresholding operator, i.e. for each component Sκ(a) :=

(1−κ/|a|)+×a, for a 6= 0, and Sκ(0) := 0. Note that we have reduced the non-differentiable problem (7.4)

into a sequence of differentiable optimization steps for x, and the computation of the proximal operator

Sκ for the z-updates. We refer to [110] for a detailed presentation about proximal operators and their

use in optimization. ADMM can also be adapted for large-scale data, using standard libraries and

frameworks for parallel computing such as MPI, MapReduce and Hadoop, see [24] for more details

about the implementation of such methods.

Example 7.1 (Logit). If we choose the Fisher transform g(t) = (et − 1)/(et + 1), then g is odd and the
optimization program becomes

β̂ := arg max
β∈Rp′

1

n(n− 1)

∑
i,j;i6=j

Kh(Zi − Zj) log
(
logit(W(i,j)ψ(Zi)

Tβ)
)
− λ|β|1,
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where the so-called logit link function is defined by logit(x) = ex/(1 + ex). Therefore β̂ can be seen
as the maximizer of the log-likelihood of a weighted logistic regression with independent realizations of
an explained variable W(i,j), given some explanatory variables Zi. On a practical side, when K ≥ 0,
the β-criterion is concave. This allows to use the existing software and optimization routines of logistic
regression without many changes.

Example 7.2 (Probit). Similarly, choosing g(t) = 2Φ(t) − 1, where Φ denotes the cdf of the standard
normal distribution, yieds the equivalent of a (weighted) probit regression. Indeed, this function g is odd,
(7.6) applies in this case and our criterion in (7.4) is concave wrt β.

Let us assume that a family of models or some statistical procedure allow the calculation of the

functional link g(εψ(z)Tβ) and then p(z), for any z, ε ∈ {−1, 1} and any given value β: logit, probit,

regression trees, neural networks, etc. Then, we can estimate the “true” parameter β∗ by β̂, as given

by (7.4), in practical terms.

Now, we state the asymptotic properties of β̂, under the assumption that β 7→ Ln(β) is concave. To

this goal, we introduce some notation.

For any x and y ∈ Rp, denote

p(x,y) := IPβ∗((X2,1 −X1,1)(X2,2 −X1,2) > 0|Z1 = x,Z2 = y).

The latter expectations are calculated when the underlying parameter is assumed to be the true value

β∗. Note that p(x) := p(x,x) and 2p(z)− 1 = τ1,2|Z=z. Moreover, for any x,y and z ∈ Rp, set

p(x,y, z) := IPβ∗((X2,1−X1,1)(X2,2−X1,2) > 0, (X3,1−X1,1)(X3,2−X1,2) > 0|Z1 = x,Z2 = y,Z3 = z).

This is the conditional probability that X1, X2 and X3 are concordant, given their respective covariates.

Denote, for any β ∈ Rp
′
,

φ(x,y, β) := p(x,y) log (q(x, β)) + (1− p(x,y)) log (1− q(x, β)) , q(x, β) := 1/2 + g(ψ(x)Tβ)/2.

Note that q(z, β∗) = p(z). Finally, for any real function f and ε > 0, denote by fε the function x 7→
supt, |x−t|<ε |f(t)|.

Regularity assumption R0: The density fZ of Z is assumed to be m-times continuously differentiable.

Moreover, the functions φ(x, ·, β) and q(·, β) are continuous for any x ∈ Z and any β ∈ Rp
′
. To simplify,

(x,y, z) 7→ p(x,y, z) will be continuous on Z3.

Theorem 7.3. Under R0, (7.14) and (7.15) in 7.8, if λn → λ∞ and n2hp → ∞ when n → ∞, if the
true model is given by (7.3) and β 7→ Ln(β) is concave, then the solution β̂ of (7.4) tends in probability
towards β∗∗ := arg maxβ L∞(β)− λ∞|β|1, where

L∞(β) :=

∫
φ(z, z, β)f2

Z(z) dz.

In particular, when λ∞ = 0, the estimator β̂ tends to arg maxβ L∞(β) = β∗, because φ(z, z, β) is the

expected log-likelihood associated to W(1,2) given Z1 = Z2 = z. Thus, for every z, the latter quantity is

maximal when β = β∗.
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Theorem 7.4. Under the conditions of Theorem 7.3 and some additional conditions of regularity in 7.9
(notably (7.16), (7.17), (7.18) and (7.19)), if n1/2λn → µ and nhp →∞ when n→∞, then n1/2(β̂ − β∗)
weakly tends to

u∗ = arg min
u∈Rp

W(β∗)u +
1

2
uTH(β∗)u− µ

∑
k;β∗k=0

|uk| − µ
∑

k;β∗k 6=0

sign(β∗k)uk,

where W(β∗) ∼ N (0p,Σβ∗), Σβ∗ =
∫
∂βφ(z, z, β∗)∂βφ(z, z, β∗)T f3

Z(z) dz and

H(β∗) =

∫
∂2
β,βT φ(z, z, β∗)f2

Z(z) dz.

Remark 7.5. All the previous results and those of the next sections are based on the kernel-weighted
log-likelihood criterion Ln(β), and then on the choice of the bandwidth h. We have not tried to find an
“optimal” smoothing parameter h. This task is outside the scope of this paper and is left for further
research. Instead, we have preferred to rely on the usual rule-of-thumb (Scott [122]), even if, strictly
speaking, it is relevant only for kernel estimators of densities. Nonetheless, we have not empirically
found an “excessive sensitivity” of our simulation results w.r.t. h.

7.3 Classification algorithms and conditional Kendall’s tau

In the latter section, we have studied a localized likelihood procedure to estimate β∗ under (7.3), when

we can explicitly write (and code) the link function g. This may be seen as a restrictive approach,

because it is far from obvious to guess the right functional form of g. To improve the level of flexibility

of our conditional Kendall’s tau model, we recall the estimation of τ1,2|z is similar to the evaluation of

IP
(
W(1,2) = 1

∣∣Z1 = Z2 = z
)
, i.e. the probability p(z) of classifying the couple (1, 2) into one of two

categories (concordant or discordant), given a common value z of their covariates. Formally, the answer

of such a question can be directly yielded by some classification algorithms. This is the topic of this

section. Therefore, instead of estimating an assumed parametric model by penalization, as in (7.4), a

classification algorithm will “automatically” evaluate p(z) by p̂(z). An estimator of the conditional Kendall’s

tau will simply be τ̂1,2|Z=z := 2p̂(z)− 1.

Now, we show how different classification algorithms can be used and adapted to the estimation

of τ1,2|Z=z in practice. The first step is to transform the dataset D = (Xi,1, Xi,2,Zi)i=1,...,n ∈
(
R2+p

)
,

called the initial dataset, into an object D̃, that will be called the dataset of pairs (see Algorithm 7). Each

element of this dataset of pairs is indexed by an integer k ∈ {1, . . . , n(n − 1)/2}, which corresponds to

any (unordered) pair (i, j), i 6= j, of observations in the initial dataset.

For any pair of observations, we compute the associated covariate Z̃k which is just the average of

the two covariates Zi and Zj (contrary to Section 7.2 where we have chosen Zi). Note that we want Zi
and Zj to be close to each other, so that the pair (i, j) is relevant. This means that a weight variable Vk
is defined for any pair. It is related to the proximity between Zi and Zj . Obviously, if Vk = 0 then the

corresponding pair is not kept, finally. This selection induces also a computational benefit, by reducing

the size of the dataset and the computation time. For example, suppose that n = 4000. Then, up to

around 8 × 106 possible pairs can be constructed but only a small group of them (around 104 or 105

pairs, typically) will be relevant. The others are pairs for which the covariates are considered too far

apart. Note that, in order to increase the proportion of k such that the weight Vk is zero, it is sufficient

to use compactly supported kernels. For instance, for any arbitrary p-dimensional kernel K, we can

consider K̃(z) := γK(z)1{‖z‖∞ ≤ 1}, with some normalizing constant γ so that
∫
K̃ = 1.
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Algorithm 7: Algorithm for creating the dataset of pairs from the initial dataset.

Input: Initial dataset D = (Xi,1, Xi,2,Zi)i=1,...,n ∈
(
R2+p

)n
;

k ← 0 ;

for i← 1 to (n− 1) do
for j ← (i+ 1) to n do

Z̃k ← (Zi + Zj)/2 ;

Wk ←W(i,j) as defined in Equation (7.1) ;

Vk ← Kh(Zi − Zj) ;

k ← k + 1 ;
end

end
Define K := {k : Vk > 0} ;

Output: A dataset of pairs D̃ := (Wk, Z̃k, Vk)k∈K ∈
(
{−1, 1} × Rp × R+

)n(n−1)/2.

7.3.1 The case of probit and logit classifiers

With the new dataset D̃, we can virtually apply any classification method to predict the concordance

value Wk of the pair k, given the covariate Z̃k and the weight Vk. The logit and probit models yield

some of the oldest and easiest methods in classification. They have straightforward adapted versions

in our case: see Algorithm 8. These weighted penalized GLM procedures are estimated using the R

package ordinalNet [143]. Note that we are still estimating τ1,2|Z=z under the parametric model given

by (7.3). The tuning parameter λ can be chosen using a generalization of Algorithm 2 in Derumigny and

Fermanian [39]. The chosen λ is the one which minimizes the cross-validation criterion,

CV (λ) :=

N∑
k=1

d
(
z 7→ τ̂

(k)
1,2|Z=z ; z 7→ g

(
ψ(z)T β̂(λ,−k)

))
,

where d(· ; ·) is a distance on a space of bounded functions of z, for example the distance generated by

the L2 norm, τ̂ (k)
1,2|Z=· is an estimator of Kendall’s tau using the dataset Dk, β̂(λ,−k) is estimated on the

dataset D\Dk using the tuning parameter λ, and the initial dataset D has been separated at random in

N subsets D1, . . . ,DN of equal size.

Algorithm 8: Estimation of the conditional Kendall’s tau τ1,2|Z=z using a logit (resp. probit) regres-

sion.

Input: A dataset of pairs D̃ := (Wk, Z̃k, Vk)k∈K
Input: A point z ∈ Z, a function ψ and a penalty level λ;

Compute the usual weighted penalized logit (resp. probit) estimator β̂ on the dataset

(Wk,ψ(Z̃k), Vk)k∈K with a tuning parameter λ ;

Output: An estimator τ̂1,2|Z=z := (eψ(z)T β̂ − 1)/(eψ(z)T β̂ + 1)

(resp. τ̂1,2|Z=z := 2Φ(ψ(z)T β̂)− 1).

7.3.2 Decision trees and random forests

Now, let us discuss how partition-based methods can be used for the estimation of the conditional

Kendall’s tau. Strictly speaking, such techniques are parametric: the relationship (7.2) implicitly applies,
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but for some complex untractable function g. And the parameter β∗ is related to some covariate thresh-

olds, typically. Nonetheless, a classical decision tree can be directly trained on the weighted dataset D̃.

We use the R package tree by Ripley [117], following Breiman et al. [25]. Therefore, the application

of decision trees to our framework is straightforward, and does not require any special adaptation, con-

trary to random forests. And the tree procedure allows the calculation of the probability of observing a

concordant pair, given any common value of Z.

In a classical classification setting, random forests are techniques of aggregation of decision trees

that are built on a subset of samples and subsets of variables. More precisely, a typical random forest

algorithm is the following: sample 80% of the rows of the dataset (without replacement), and 80% of the

explanatory variables; estimate a tree on this, and repeat this procedure a certain number of times, with

different sub-samples every time. In our framework, it is not clear at which level subsampling should

take place.

The easiest solution would be to directly plug-in the dataset of pairs D̃ into a classical random forest

algorithm, but it does not obviously lead to the best solution. For comparison, we detail this solution in

Algorithm 9. We propose now an improvement on Algorithm 9. Indeed, noting that aggregation of trees

is useless if all trees are identical, it seems that the more variability in the input of the trees, the better.

Following this idea, we have noticed that the observations in the dataset of pairs are not independent.

Influence of this lack of independence is discussed in a general setting in Section 7.3.5. For example,

the pair (1, 2) is usually not independent of the pair (1, 3), because they both share the first observation

(X1,1, X1,2,Z1). Therefore, to increase the diversity of inputs in the different trees, we suggest to lead a

first sampling Sj on the initial dataset, and then to build a dataset of pairs on the sampled observations

Dj := (Xi,1, Xi,2,Zi)i∈Sj (see Algorithm 10). As a matter of fact, if for example the first observation does

not belong to the sample Sj , then the dataset Dj and the estimated tree T j become both independent

of this first observation (X1,1, X1,2,Z1). This independence property makes the trees less dependent,

and significantly improves the performance in our results compared to the original Algorithm 9.

Algorithm 9: Random forests un-adapted for the estimation of the conditional Kendall’s tau

Input: Initial dataset D = (Xi,1, Xi,2,Zi)i=1,...,n ∈
(
R2+p

)n
;

Compute the dataset of pairs D̃ using Algorithm 7 on D ;

for j ← 1 to Ntree do
Sample a set Sj ⊂ {1, . . . , n(n− 1)/2} without replacement ;

Compute the dataset of pairs D̃j = (Wk, Z̃k, Vk)k∈Sj using observations from D̃ ;

Sample a set S ′j ⊂ {1, . . . , p′} without replacement ;

Estimate a classification tree T j on the dataset (Wk, (ψl(Z̃k))
l∈S ′j , Vk)k∈Sj ;

end
Output: An estimator τ̂1,2|Z=· := N−1

tree

∑Ntree
j=1 T j(·).
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Algorithm 10: Random forests adapted for the estimation of the conditional Kendall’s tau

Input: Initial dataset D = (Xi,1, Xi,2,Zi)i=1,...,n ∈
(
R2+p

)n
;

for j ← 1 to Ntree do
Sample a set Sj ⊂ {1, . . . , n} without replacement ;

Dj ← (Xi,1, Xi,2,Zi)i∈Sj ;

Compute the dataset of pairs D̃j = (Wk, Z̃k, Vk)k∈Kj using Algorithm 7 on Dj , providing Kj ;

Sample a set S ′j ⊂ {1, . . . , p′} without replacement ;

Estimate a classification tree T j on the dataset (Wk, (ψl(Z̃k))
l∈S ′j , Vk)k∈Kj ;

end
Output: An estimator τ̂1,2|Z=· := N−1

tree

∑Ntree
j=1 T j(·).

7.3.3 Nearest neighbors

The nearest neighbors also provide a very popular classification algorithm and can be directly used

on the dataset D̃ (see Algorithm 11). Here, we no longer assume (7.3) or even (7.2), and we live

in a nonparametric framework. A pretty difficult problem is to choose a convenient number of nearest

neighbors. As usual in nonparametric statistics, we must find a compromise between variance (tendancy

to undersmooth, i.e. to choose a too small N ) and bias (tendancy to oversmooth, i.e. to choose a too

big N ). Moreover, in our case, with n(n − 1)/2 possible pairs, choosing a right value for N can be

challenging. Indeed, in the usual (i.i.d.) nearest neighbor framework, the asymptotically optimal N is a

power of the sample size. Here, this is different because there are three potential sample sizes: n, if

we consider there are fundamentally n sources of randomness, n(n− 1)/2 by considering that the new

sample has a cardinality equal to the number of pairs, or even |K| that is random and depends on h.

Thus, our problem is to choose a “relevant formula” for N based on the “convenient” sample size.

Algorithm 11: Estimation of the conditional Kendall’s tau τ1,2|Z=z using nearest neighbors.

Input: A dataset of pairs D̃ := (Wk, Z̃k, Vk)k∈K
Input: A point z ∈ Z, a number N of nearest neighbors and a distance d on Rp

′
;

Kz ← arg minE⊂K,|E|=N
(∑

k∈E d
(
ψ(z),ψ(Z̃k)

))
;

Output: An estimator τ̂ (N)
1,2|Z=z :=

(∑
k∈Kz

VkWk

)
/
∑
k∈Kz

Vk.

In applications, one might not be interested in the value of the conditional Kendall’s tau at only one

point, but also in the whole function z 7→ τ1,2|Z=z. The goodness of this estimation is linked to the

underlying density fZ of Z: the estimation can be made more precise in regions where fZ is high,

allowing to use a higher number of neighbors with close covariates. At the opposite, in some regions

where fZ is low, a smaller N should be used. Note that, in general, fZ is unknown and its estimation

may be difficult as well, due to the curse of dimensionality. Therefore, it is highly desirable to build a local

number of neighbors N(z). Such a local choice N(z) will help to avoid both under- and over-smoothing

in all parts of the space Z.

Cross-validation techniques are widely use for the choice of tuning parameters, but might not be here

the best solution as one would like to find a local choice of N . This problem has similarities with classical

non-parametric regression. We propose to use a procedure inspired by Lepski’s method for choosing

the bandwidth [95], once adapted to our setting. Lepski’s method is built on a simple principle: when two
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non-parametric estimators are close, the best is the smoothest. When two non-parametric estimators

are far apart, the best is the least smooth. Let (Zi)i∈I be a partition of Z. The goal will be to choose

the best estimator on each Zi, which corresponds to the choice of a local number of nearest neighbors

Ni. This procedure is called “local” since the diameters of the Zi will be small. For example, if p = 1

and Z is a bounded interval then the Zi can be chosen as small intervals. We denote by N ⊂ N the

finite set of possible numbers of neighbors. Following Lepski’s approach, we choose N as a geometric

progression, i.e. N = {ba1 × ai2c, i = 1, . . . , imax} for some constants a1, a2 > 0, where bxc denotes the

integer part of a real x.

To measure how far the estimators are from each other, we introduce a distance di, i ∈ I. As

our estimators of conditional Kendall’s tau are bounded (between −1 and 1) and measurable, several

choices are possible. In applications, we will use

di(f, g) =

(
1

jmax

jmax∑
j=1

[
(f(zi,j)− g(zi,j))/M

]2)1/2

, zi,1, . . . , zi,jmax ∈ Zi, (7.8)

where M is a normalization factor independent of i and the subsets zi,1, . . . , zi,jmax are arbitrarily chosen

in Zi, i = 1, . . . , imax. We will use M = (max−min){τ̂ (N)
1,2|Z=z, N ∈ N , z ∈ Z}. Indeed, in the classical

nonparametric regression model Y = f(X)+ε, with an unknown function f ,M should be replaced by the

standard deviation of the noise ε. In our case, we can define a (pseudo-)noise ξz,N := τ̂
(N)
1,2|Z=z−τ1,2|Z=z,

but it is unknown in practice and its distribution is complicated. Therefore M serves as a proxy of the

amplitude of the variations in the estimated conditional Kendall’s tau. This normalization by M ensures

a kind of adaptativity of the estimation.

Algorithm 12: Lepski’s method for a local choice of the number of nearest neighbors, and the

corresponding estimator of the conditional Kendall’s tau.

Input: A set N ⊂ N of possible numbers of nearest neighbors and the corresponding estimates

τ̂
(N)
1,2|Z=· given by Algorithm 11, for all N ∈ N ;

Input: A partition (Zi)i∈I of Z and a distance di on a space of bounded measurable real

functions defined on Zi, for every i ∈ I;

foreach i ∈ I do

Si ←
{
N ∈ N : di

(
τ̂

(N)
1,2|Z=· , τ̂

(N ′)
1,2|Z=·

)
≤ A

√
(1/N ′) log(max(N )/N ′),∀N ′ ∈ N ∩ [1, N ]

}
; (7.9)

Ni ← max(Si);

end
Output: An estimator z 7→ τ̂1,2|Z=z :=

∑
i∈I 1{z ∈ Zi}τ̂

(Ni)
1,2|Z=z.

We have observed that the sensitivity to N is not too large, if it is chosen in a reasonable way, for

example between 5 or 10 possibilities. When Z is univariate, a simple partition (Zi)i∈I can be given by

the deciles of Z. We choose A = 1 for simplicity since we believe there is no procedure for choosing

it. A statistician who would like to play with the smoothness of the result is free to adjust the constant

A, using an expert knowledge of the situation. Finally, the zi,j can be chosen as quantiles of Z, or as a

regular grid on each Zi.
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7.3.4 Neural networks

Nowadays, neural networks have become very popular with a wide range of applications. In classification

problems, a neural network can be seen as an estimator that depends on some parameters, but in a

very flexible and complex way. For every input z, it yields the probability of belonging to any class. In our

framework, we will train a network on the dataset of pairs D̃. It is well-known that most neural networks

do not induce convex programs, and the outputs therefore depend on some initial parameter values.

One strategy is to independently train networks with different starting parameter values, that may be

randomly chosen, for example.

This method of using independent estimators (conditionally on the initial sample D) and then aggre-

gating them is related to the random forest approach of the previous section and the discussion therein.

Therefore, the same techniques are relevant and we have noticed an improvement in terms of perfor-

mance by using an adapted version of Algorithm 10. More precisely, we fix a number of neural networks.

For each neural network, we sample without replacement a part of the initial dataset from which the cor-

responding dataset of pairs is constructed and used as a training set. In order to improve stability, we

aggregate the predictions of the different neural networks by using their median as the final predicted

Kendall’s tau. There is a trade-off between computation time and accuracy: a larger number of networks

should improve the accuracy while taking obviously a longer time to be trained. The precise choice of

the best architecture of the network is a complicated task, which is left for future research. As we are

looking for functions z 7→ τ1,2|Z=z which are smooth almost everywhere and easy to interpret in appli-

cations, we choose a simple architecture with Nnnet = 10 neural networks, each having a single hidden

layer of 3 neurons. Besides, bigger networks seem to deteriorate the performance of this estimator, see

Section 7.4.6.

Algorithm 13: Neural networks with median bagging, adapted for the estimation of the conditional

Kendall’s tau
Input: Initial dataset D = (Xi,1, Xi,2,Zi)i=1,...,n ∈

(
R2+p

)n
;

for j ← 1 to Nnnet do
Sample a set Sj ⊂ {1, . . . , n} without replacement ;

Dj ← (Xi,1, Xi,2,Zi)i∈Sj ;

Compute the dataset of pairs D̃j = (Wk, Z̃k, Vk)k∈Kj using Algorithm 7 on Dj , providing Kj ;

Estimate a neural net Nj on the dataset (Wk,ψ(Z̃k), Vk)k∈Kj ;

end
Output: An estimator τ̂1,2|Z=· := Median{Nj(·), j = 1, . . . , Nnnet}.

7.3.5 Lack of independence and its influence on the proposed algorithms

The machine learning methods that are discussed in this section were all designed for i.i.d. data. But

it is easy to see that some observations in the dataset of pairs D̃ will not be independent. Indeed,

assume that the observations in the original dataset (Xi,1, Xi,2,Zi)i=1,...,n are i.i.d., to simplify. The pair

(i = 1, j = 2) and the pair (i = 1, j = 3) both involve the first observation (X1,1, X1,2,Z1), and therefore

are not independent. This is a theoretical problem, but numerical results in Section 7.4 show that this

does not often seem to be a problem in practice.
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As far as the logit and probit are concerned, it was proved in the previous Section 7.2 that they are

related to a family of estimators that can use D̃ “as is”. They yield consistent and asymptotically normal

estimates, nonetheless, if the specification is correct. It is likely that the other methods presented here

enjoy similar properties and are also largely unaffected by dependence between pairs. Note that, if all

observations in D are identically distributed, then the observations in D̃ are identically distributed as well.

This is favourable to our methods.

Concerning the dependence inside D̃, we will show that it is not too strong. For example, the pairs

(1, 2) and (1, 3) are not independent, but the pairs (1, 2) and (3, 4) are indeed independent. This means

that there is still “a large proportion of” independence left in D̃. Formally, if two distinct pairs are randomly

chosen in D̃, the probability that they are really independent is high. Indeed, there are Ntot := n(n −
1)(n(n − 1) − 2)/8 couples of distinct pairs. Beside, the number Nind of couples of pairs which are

independent is Nind := n(n − 1)(n − 2)(n − 3)/8. The factor 1/8 appears in both Ntot and Nind since

we can always switch the two observations in the first pair, in the second pair, and switch the two pairs

(every 4-tuple is counted 23 = 8 times). It is easy to see that Nind/Ntot = 1−O(1/n) as n→∞.

This means that the pairs are “almost all” independent from each other, as n→∞. In other words, the

dependence between two pairs become negligible with averages. That is the reason why the machine

learning methods used will perform well if the original dataset D is large enough. If the original dataset

D is not i.i.d., for example as observations of a time series, we conjecture that such methods will work

in a similar way as long as dependence is not too strong, for example if the data-generating process

satisfies some usual assumptions, see Remark 7.6.

Whenever bootstrap, subsetting, resampling, or cross-validation is led on these classification-based

estimators, we advise to perform them on the original dataset D rather than on the dataset of pairs D̃, as

we did in Sections 7.3.1, 7.3.2 and 7.3.4. This seems to yield a good improvement in performance. An

example is given by the difference between Algorithms 9 and 10. This can be simply summed up as “do
the resampling on the original dataset D, not on the transformed dataset D̃”. Nevertheless, a complete

study and justification of this general principle is beyond the scope of this paper and is left for future

work.

7.4 Simulation study

In this section, we have studied the relative performances of our estimators by simulation. For a given

model and a given method of estimation, we sample 100 different experiments, and estimate the model

for each sample. We fix the sample size as n = 3000. We remark that, for a given dimension p > 0

of Z and a given support Z of Z, we have different “blocks” of the model which can be chosen in an

independent way:

(i) the law IPZ of Z,

(ii) the function z ∈ Z 7→ τ1,2|Z=z,

(iii) the (conditional) copula family (Cτ )τ∈(0,1) or (Cτ )τ∈(−1,1) of (X1, X2)|Z = z, indexed by its con-

ditional Kendall’s tau - for example the Gaussian, Student, Clayton, Gumbel, etc, copula families.

Such a family can also depend on Z: for example, think of a Student copula with varying degrees

of freedom -,

(iv) the conditional margins X1|Z and X2|Z,
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(v) the choice of the functions ψi, for i = 1, . . . , p′,

(vi) the choice of the estimator τ̂1,2|Z=·.

Our so-called “reference setting” will be defined as p = 1, Z = [0, 1] and (i) IPZ = U [0;1] ; (ii)

τ1,2|Z=z = 3z(1− z) ; (iii) (Cτ )τ∈(0,1) is the Gaussian Copula family ; (iv) IPX1|Z=z = IPX2|Z=z = N (z, 1).

For each tested model, the performance of the estimator will be evaluated by the mean integrated `2

error. With obvious notation, it will be estimated as

Err := IE

[∫
Z

(τ̂1,2|Z=z − τ1,2|Z=z)2dz

]
≈ 1

NsimuNpoints

Nsimu∑
i=1

Npoints∑
j=1

(τ̂
(i)

1,2|Z=z(j) − τ1,2|Z=z(j))2, (7.10)

where Nsimu, Npoints are positive integers, z(1), . . . , z(Npoints) are fixed points in Z, and τ̂ (i)

1,2|Z=z(j) is the

estimated conditional Kendall’s tau at point z(j) trained on data from the i-th simulation. We choose

Nsimu := 100 experiments, and in this reference setting, the integral is discretized with Npoints := 100

equispaced points on the segment [0.01, 0.99], to avoid numerical problems at the boundaries.

In the following simulations, “logit” and “probit” refer to Algorithm 8. “Tree” refers to the applica-

tion of the method tree() of package tree by Ripley [117] on the dataset D̃ produced by Algorithm 7.

“Random forests” refers to Algorithm 10. “Nearest neighbors” refers to the adapted version using Algo-

rithm 11, once aggregated using Algorithm 12. Finally “Neural networks” refers to Algorithm 13. Such

specifications are now part of our “reference setting”.

7.4.1 Choice of the functions {ψi}, i = 1, . . . , p′.

We consider six different choices of ψ, that are

1. No transformation, i.e. ψ(1)
1 (z) = z.

2. Polynomials of degree lower than 4: ψ(2)
i (z) = 2−i+1(z − 0.5)i−1 for i = 1, . . . , 5.

3. Polynomials of degree lower than 10: ψ(3)
i (z) = 2−i+1(z − 0.5)i−1 for i = 1, . . . , 11.

4. Fourier basis of order 2 with an intercept: ψ(4)
1 (z) = 1, ψ(4)

2i (z) = cos(2πiz) and ψ(4)
2i+1(z) = sin(2πiz)

for i = 1, 2.

5. Fourier basis of order 5 with an intercept: ψ(5)
1 (z) = 1, ψ(5)

2i (z) = cos(2πiz) and ψ(5)
2i+1(z) = sin(2πiz)

for i = 1, . . . , 5.

6. Concatenation of ψ(2) and ψ(4), which will be denoted by ψ(6).

For each of the choices of ψ above, and each estimator, we compute the criterion (7.10). The results

are displayed in the following Table 7.1.

With the choice of ψ(6), logit and probit methods provide the best results. This good performance

deteriorates with other choices of ψ, especially when the model is misspecified. Neural networks pro-

vide the best results with ψ(1), and their performance declines when further transformations of z are

introduced in ψ. Nearest neighbors have nearly the best behavior with ψ(1), and it does not seem that

other transformations can significantly increase its performance. On the contrary, for trees and random

forests, it seems that bigger families ψ can yield improvements over ψ(1).

From now on, we will choose ψ(6) for the methods logit, probit, tree and random forests. Indeed,

for these methods, this choice of ψ yields nearly the lowest error criterion and presents the advantages
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Chosen ψ Logit Probit Tree Random forests Nearest neighbors Neural network

ψ(1) 48.1 48.1 7.5 4.89 2.26 0.561

ψ(2) 0.721 0.554 4.28 3.28 2.26 1.32

ψ(3) 0.663 0.528 4.13 3.41 2.23 1.73

ψ(4) 1.41 1.45 4.73 14.2 2.72 1.74

ψ(5) 1.05 1.06 4.76 10.3 2.79 2.67

ψ(6) 0.456 0.434 4.57 3.15 2.64 3.87

Table 7.1: Error criterion (7.10) for each choice of ψ and each method, multiplied by 1000.

of proposing various shapes, which will help to combine the performances of both polynomials and

oscillating functions. On the contrary, for the methods nearest neighbors and neural networks, we

choose ψ(1) as adding new functions does not seem to increase the performance of both of these

methods. Figure 7.1 displays a comparison of the different methods on a typical simulated sample.

7.4.2 Comparing different copulas families

Now, we keep the reference setting and we change only its part (iii), i.e. the functional form of the

conditional copula. The results are displayed in Table 7.3. We observe that such choice of a paramet-

ric copula families has nearly no effect on the performance of the estimators. Nonetheless, with the

Student copula (either with fixed or variable degrees of freedom), most estimators have slightly worse

performances than with other copulas. This can be explained by the fact that this copula allows asymp-

totic dependence, i.e. a strong tail association.

Copula family Logit Probit Tree Random Nearest Neural

forests neighbors network

Gaussian 0.456 0.434 4.57 3.15 2.26 0.561

Student 4 df 0.549 0.515 4.54 3.28 2.87 0.753

Student (2 + 1/z) df 0.531 0.518 4.66 3.23 2.82 0.805

Clayton 0.498 0.472 4.52 3.36 2.67 0.742

Gumbel 0.45 0.431 4.56 3.23 2.66 0.775

Frank 0.448 0.42 4.5 3.28 2.13 0.615

Table 7.3: Error criterion (7.10) for each copula family and each method, multiplied by 1000.

7.4.3 Comparing different conditional margins

In this subsection, we still start from the reference setting and we change only its part (iv), i.e. the

functional form of the conditional margins (X1|Z) and (X2|Z). We consider the following alternatives:

1. IPX1|Z=z = IPX2|Z=z = N (z, 1) (as in the reference case).

2. IPX1|Z=z = N (cos(10πz), 1) ; IPX2|Z=z = N (z, 1). The idea is to make X1 oscillate fast enough so

that the algorithms will have difficulties to localize concordant and discordant pairs ;

3. IPX1|Z=z = Exp(|z|) ; IPX2|Z=z = U [z,z+1]. This choice allows to see how estimation is affected by

changes in the conditional support of (X1, X2) given Z = z ;
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Figure 7.1: An example of the estimation of the conditional Kendall’s tau using different estimation

methods (see Table 7.2 below). The black dash-dotted curve is the true conditional Kendall’s tau that

has been used in the simulation experiment.

Method Logit Probit Tree Random Nearest Neural

forests neighbors network

Algorithm Algorithm 8 Algorithm 8 tree() of [117] Algorithm 10 Algorithms 11-12 Algorithm 13

Color orange red blue green purple black

Table 7.2: Summary of available estimation methods for the estimation of the conditional Kendall’s tau

and corresponding algorithm and curve color.

For each estimator, we state in the second line of the above table the algorithm used to compute it, and

in the third line the color of the corresponding curve on Figures 7.1 to 7.13. For example, the estimator

“probit” is computed using Algorithm 8 and corresponds to the red curves.
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4. IPX1|Z=z = N (0, z2) ; IPX2|Z=z = U [0,|z|]. Then, we will see how estimation is affected by changes

in the conditional variance of (X1, X2) given Z = z.

Setting Logit Probit Tree Random forests Nearest neighbors Neural network

1. 0.456 0.434 4.57 3.15 2.26 0.561

2. 0.809 0.818 4.65 3.72 2.65 0.838

3. 1.15 1.12 5.29 4.21 3.57 1.32

4. 0.493 0.471 4.43 3.44 2.54 0.662

Table 7.4: Error criterion (7.10) for each choice of conditional margins and each method, multiplied by

1000.

In a similar way as in the previous section, the results of these experiments, as displayed in Table

7.4 show that changes in terms of conditional marginal distributions generally have a mild impact on the

overall performance of the estimators. Moreover, such changes have no effect on the ranking between

estimators: the logit and probit methods are always the best, followed by the neural networks, the

nearest neighbors, and the random forests are behind (in this order). The estimator Tree shows the

lowest performance, but note that it also has the lowest computation time.

7.4.4 Comparing different forms for the conditional Kendall’s tau

In this part, we keep the reference setting, but we change only its part (ii), i.e. the functional form of the

conditional Kendall’s tau itself. We consider the following choices:

1. f1(z) := 0.9− 0.81{z ≥ 0.5},

2. f2(z) := 3z(1− z),

3. f3(z) := 0.5 + 0.4 sin(4πz),

4. f4(z) := 0.1 + 1.6z1{z < 0.5}+ 1.6(z − 0.5)1{u ≥ 0.5}.

The results are presented in Table 7.5. If the estimated model is close to be well-specified, the best

methods are parametric, i.e. the logit and probit regressions. In all the other cases, neural networks
seem to perform very well. There appears a compromise between a minimization of the error and

a minimization of the computation time. We refer to Table 7.8 for a quantitative comparison of the

performance of such methods in terms of computation time as a function of the sample size n.

Setting Logit Probit Tree Random forests Nearest neighbors Neural network

f1 11.2 11.6 4.12 4.03 3.89 1.48

f2 0.456 0.434 4.57 3.15 2.26 0.561

f3 3.77 3.22 5.95 4.76 2.35 2.17

f4 12.8 12.8 16.8 10 3.71 1.97

Table 7.5: Error criterion (7.10) for different Kendall’s tau models and each estimation method, multiplied

by 1000.



Chapter 7. A classification point-of-view on conditional Kendall’s tau 203

7.4.5 Higher dimensional settings

In the previous sections, we had chosen a univariate vector Z, i.e. p = 1. Since this may sound a bit

restrictive, we would like to obtain some finite-sample results in dimension p = 2. Note that the latter

dimension cannot be too high because of the curse of dimensionality linked with the necessary kernel

smoothing (done in Algorithm 7 when creating the dataset of pairs). We also choose a simple dictionary

ψ of functions, which consists of the two projections on the coordinates of Z. The performance of the

estimators is still be assessed by the approximate error criterion (7.10). The corresponding z(j) are

chosen as a grid of 400 points equispaced on the square [0.01, 0.99]2.

In this framework, we first choose block (iii) of the model : the conditional copula of X1 and X2 given

Z will be Gaussian, and block (iv) : IPX1|Z=z = IPX2|Z=z = N (z1, 1). We will try different combinations

for the remaining blocks (i) and (ii), as described as follows:

(1) Z1 ∼ N (0, 1), Z2 ∼ U [−1,1], and the copula of (Z1, Z2) is Gaussian with a Kendall’s tau equal to

0.5. Moreover, τ1,2|Z=z = z2 tanh(z1). This model is interesting because the function z 7→ τ1,2|Z=z

will be far away from a linear function of ψ(z), and machine learning techniques should work better

than logistic/probit regressions.

(2) We keep the same model as previously, but by setting g(τ1,2|Z=z) = z1 + z2, using the function g in

Example 7.1 so that we recover the parametric setting of Section 7.2.

(3) Z1 ∼ Exp(1), Z2 ∼ N (0, 1) and both variables are independent. Set τ1,2|Z=z = exp(−z1|z2|).
Again, we have a misspecified nonlinear model that is far away from logit/probit models.

The results are given in Table 7.6. With the exception of the well-specified setting (2), the logit model

performs worse than non-parametric methods. In all these settings, neural networks show better per-

formances than all other methods, followed by nearest neighbors and tree-based methods. Finally,

parametric methods are the worst, especially under misspecification of the model.

Setting Logit Probit Tree Random forests Nearest neighbors Neural network

(1) 35.5 35.5 9.63 11.7 6.72 2.21

(2) 0.433 0.681 10.9 5.85 4.33 0.848

(3) 17.8 17.2 5.72 9.79 1.84 1.36

Table 7.6: Error criterion (7.10) for each setting with 2-dimensional Z random vectors and each method,

multiplied by 1000.

7.4.6 Choice of the number of neurons in the one-dimensional reference setting

We consider networks with different numbers of neurons, and study their performance, both statistically

and computationally. The results are displayed in the following Table 7.7. We observe that increasing

the number of neurons only seems to deteriorate the performance of the method.

7.4.7 Influence of the sample size n

In our one-dimensional reference setting, we fix all the parameters except n. For a grid of values of n

we evaluate the performance of our estimators.
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Number of neurons 3 5 10 30

Criteria 0.561 0.808 1.47 1.45

Time (s) 234 429 607 5.29e+03

Table 7.7: Error criterion (7.10) multiplied by 1000, and average computation time in seconds for each

architecture of the neural networks.

Logit Probit Tree Random Nearest Neural

forests neighbors network

n = 1000
Criteria 1.58 1.52 5.85 4.45 4.01 2.01

Time (s) 59.6 156 0.215 8.11 5.04 30.6

n = 2000
Criteria 0.666 0.64 4.9 3.39 2.95 1.79

Time (s) 192 489 0.99 35.9 17.1 85.3

n = 3000
Criteria 0.456 0.434 4.57 3.15 2.26 0.561

Time (s) 414 1010 2.37 87 36.9 234

n = 5000
Criteria 0.275 0.253 3.77 3.05 1.69 0.791

Time (s) 957 2420 6.37 218 111 461

n = 8000
Criteria 0.22 0.204 3.6 3.39 1.27 0.225

Time (s) 2178 5480 15.2 499 290 1268

Table 7.8: Error criterion (7.10) multiplied by 1000 and computation time in seconds for each method and

each choice of n.

We observe that, for most methods, the computation time increases and the error criterion decreases

when the sample size increases. We note that the number of pairs isO(n(n−1)) (at most) and, therefore,

the computation time should increase as O(n2), which is coherent with the results of Table 7.8. The

relative order of the performances does not seem to change with the sample size n: the same methods

are the best ones with small or large n. Note that we have not tried to find an “optimal” fine-tuning of the

parameters for each method and each choice of n. Indeed, finding optimal choices of tuning parameters

is not an easy task (in a theoretical and practical sense). More accurate analysis are left for future

research.

7.4.8 Influence of the lack of independence

In Section 7.3.5, we explain some theoretical considerations about the lack of independence in the

dataset D̃ and some consequences. The following simulation experiment complements this analysis

with some empirical results.

Indeed, using Algorithm 7, we note that pairs of observations are not independent, and therefore, the

elements of the dataset of pairs D̃ are not independent from each other in general. This could damage

the performance of our methods, compared to a situation where all elements would be independent. We

now consider such a situation, in order to compare the performance of the methods in both cases. Note

that the cardinality of D̃ is n(n− 1)/2. Therefore, we will compare the two following settings:

1. Reference situation: fix n = 3000, simulate n independent copies Dn := (Xi,1, Xi,2,Zi)i=1,...,n,
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construct the dataset of pairs D̃n using Algorithm 7. Use the estimators on the training set D̃n.

2. Independent situation: fix n = 3000, simulate n(n−1) ' 9, 000, 000 independent copies Dn(n−1) :=

(Xi,1, Xi,2,Zi)i=1,...,n(n−1). Create the dataset of consecutive pairs Dn(n−1) on this sample using

Algorithm 14. This means that we use only consecutive pairs, i.e. (1,2), (3,4), (5,6), and so on.

Use the estimators on the training set Dn(n−1).

Algorithm 14: Algorithm for creating the dataset of consecutive pairs from the initial dataset.

Input: Initial dataset D = (Xi,1, Xi,2,Zi)i=1,...,n ∈
(
R2+p

)n
;

for k ← 1 to bnc/2 do
i, j ← 2k − 1, 2k ;

Z̃k ← (Zi + Zj)/2 ;

Wk ←W(i,j) as defined in Equation (7.1) ;

Vk ← Kh(Zi − Zj) ;

end
Define K := {k : Vk > 0} ;

Output: A dataset of pairs D := (Wk, Z̃k, Vk)k∈K ∈
(
{−1, 1} × Rp × R+

)bnc/2.

Note that, by construction, the cardinalities of Dn(n−1) and D̃n are the same, i.e. both have exactly

n(n−1)/2 pairs. This is the reason why we chose to simulate n(n−1) points in the independent situation,

so that these two numbers of pairs can match. Note that the elements in D are independent from each

other by construction while some elements in D̃ may not be independent from each other in general. We

can now compare the performances of the estimators trained on Dn(n−1) and on D̃n using the criterion

(7.10). Some results are given in Table 7.9. Note that the simulation of the each (Xi,1, Xi,2,Zi) is still

made under the previous one-dimensional “reference setting”.

Logit Probit Tree Random Nearest Neural

forests neighbors network

Independent 0.127 0.114 3.02 2.52 0.12 0.0363

Not independent 0.456 0.434 4.57 3.15 2.26 0.561

Table 7.9: Error criterion (7.10) multiplied by 1000 for each method and each situation. “Independent”

means the independent situation with Dn(n−1), and “Not independent” means the reference situation

with D̃n.

As expected, all estimators show a better performance in the independent situation. Nonetheless,

the independent situation has been simulated using n(n− 1) ' 9, 000, 000 points whereas the reference

situation uses only n = 3, 000 points. Even if the numbers of pairs in both experiments are the same, the

sample size of the dataset was much larger in the independent situation. This means that there is more

information available, and explains also why the independent situation has a better performance: it just

uses more data. Such a huge sample may not be available in practice though.

Nevertheless, the original procedure costs O(n2), which can be large for very large values of n. In

this case, it is always to possible to restrict oneself to consecutive pairs, with a cost of only O(n). Such

a procedure is possible if the dataset is very large and Algorithm 14 can be seen as an alternative
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to Algorithm 7 where only consecutive pairs are used. This would lower the computation cost at the

expense of precision.

7.5 Applications to financial data

In this section, we study the changes of the conditional dependence between the daily returns of MSCI

stock indices during two periods: the European debt crisis (from 18 March 2009 to 26 August 2012)

and the after-crisis period (26 August 2012 to 2 March 2018). We will consider the couples (Germany,

France), (Germany, Denmark), (Germany, Greece), respectively denoted by (X1, X2), (X1, X3), (X1, X4).

We will separately consider two choices of conditioning variables Z:

• a proxy variable for the intraday volatility σ := (High − Low)/Close, where High denotes the

maximum daily value of the Eurostoxx index, Low denotes its minimum and Close is the index

value at the end of the corresponding trading day.

• a proxy of so-called “implied volatility moves” ∆σI . It will record the daily variations of the EuroStoxx

50 Volatility Index, whose quotes are available at https://www.stoxx.com/index-details?symbol=

V2TX: ∆σIi := V 2TX(i) − V 2TX(i − 1) for each trading day i. The EuroStoxx 50 Volatility Index

V 2TX measures the levels of future volatility, as anticipated by the market through option prices.

Note that, for a given couple, the levels of the estimated conditional Kendall’s tau are different (in

general) for different conditioning variables. Indeed, the unconditional Kendall’s tau τ1,2, the average

conditional Kendall’s tau with respect to σ, which is IEσ
[
τ1,2|σ

]
and the average conditional Kendall’s tau

with respect to ∆σI , which is IE∆σI
[
τ1,2|∆σI

]
have no reason to be equal.

Both conditioning variables σ and ∆σI are of dimension 1. For each method and each conditioning

variable, we will use the “best” choice of ψ as determined from the simulations in Section 7.4.1, that

is ψ(6) for the methods logit, probit, tree and random forests and ψ(1) for the methods Nearest neigh-
bors and neural networks. On the following figures, the matching between colors and corresponding

estimators still follows Table 7.2.

Remark 7.6. It is well-known that sequences of asset returns are not i.i.d. In particular, their volatilities
are time-dependent, as in GARCH-type or stochastic volatility models. Moreover, the tail behavior of
their distributions is significantly varying, due to some periods of market stress. Several families of
models (switching regime models, jumps, etc) have tried to capture such stylized facts. We conjecture
that such temporal dependencies will not affect our results too much. Indeed, dependence will be
mitigated by considering all possible couples of random vectors, independently of their dates. It is
easy to go one step beyond, for instance by keeping only the couples of returns indexed by i and j when
|i−j| > m, for some “reasonably chosen” threshold m (m = 20, e.g.). In every case, it is highly likely that
our inference procedures are still consistent and asymptotically normal, for most types of dependence
between successive observations (mixing processes, weak dependence, m-dependence, mixingales,
etc), even if the asymptotic variances are different from ours.

7.5.1 Conditional dependence with respect to the Eurostoxx’s volatility proxy σ

We will first consider the conditioning events given by σ, the proxy variable for the market intraday volatil-

ity. The results are displayed on Figures 7.2 to 7.7. Intuitively, dependence should tend to increase with

https://www.stoxx.com/index-details?symbol=V2TX
https://www.stoxx.com/index-details?symbol=V2TX
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Figure 7.2: Conditional Kendall’s tau between

(X1, X2) given σ during the European debt crisis
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Figure 7.3: Conditional Kendall’s tau between

(X1, X2) given σ during the After-crisis period
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Figure 7.4: Conditional Kendall’s tau between

(X1, X3) given σ during the European debt crisis
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Figure 7.5: Conditional Kendall’s tau between

(X1, X3) given σ during the After-crisis period
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Figure 7.6: Conditional Kendall’s tau between

(X1, X4) given σ during the European debt crisis
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Figure 7.7: Conditional Kendall’s tau between

(X1, X4) given σ during the After-crisis period
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market volatility: when “bad news” are announced, they are source of stress for most dealers, especially

inside the Eurozone that brings together economically connected countries. This phenomenon should

be particularly sensitive during the European debt crisis, because a lot of such “bad news” were related

to the Eurozone itself (economic/financial news of public debts in several European countries). Let us

see whether this is the case.

On most figures, the estimated conditional Kendall’s tau seems to exhibit some kind of concavity.

The behavior of these functions can be roughly broken down into two main regimes:

1. The “moderate” volatility regime (also called the “normal regime”) in the sense that the volatility

stay mild, say in the lower half of its range. In this normal regime, conditional Kendall’s tau is an

increasing function of volatility. This is coherent with most empirical research where it is shown

that dependence increases with volatility.

2. The high volatility regime: this is a “stressed regime” where σ lies in the upper half of its range. In

this less frequent regime, the influence of the European volatility σ on the conditional Kendall’s tau

appears to be less clear: the estimators become more “fluctuating” and more different from each

other, as a consequence of the small number of observations in most stressed regimes.

During the European debt crisis (see Figures 7.2, 7.4 and 7.6), the three couples seem to exhibit the

same shape of conditional dependence with respect to σ, even if their average levels are different. These

similarities can be a little bit surprising considering that the economic situations of the corresponding

countries are different. It can be conjectured that the heterogeneity in the “mean” levels of conditional

dependence is sufficient to reflect this diversity of situations. In this perspective, the increasing pattern

of conditional dependence w.r.t. the “volatility” would be a pure characteristic of that period, regardless

of the chosen pair of European countries. Indeed, we have observed this pattern for most couples of

European countries in the Eurozone. An explanation might be that investors were focusing on the same

international news, for example, about the future of the Eurozone, and, therefore, they were reacting in

a similar way, irrespective of the country.

For each couple of countries, conditional Kendall’s tau is nearly always lower during the After-crisis

period than during the European debt crisis. Apparently, in the After-crisis period, factors and events

that are specific to each country attract more attention from investors than during the crisis, which results

in lower dependence. In this context, the shapes of conditional dependence are no longer similar for

different couples. In particular, the conditional Kendall’s tau between German and French returns show a

significant increase during the low volatility regime and a decrease during the high volatility regime: see

Figure 7.3. The conditional dependence between the German and the Danish returns is also increasing

during the low volatility regime, but in the high volatility, their conditional Kendall’s tau seems to be

rather constant, even increasing according to the nearest neighbors and the neural networks estimators.

Concerning Figure 7.7, we do not seem any clear tendency. It is likely that σ has almost no impact on

the conditional dependence between the German and Greek stock index returns.

7.5.2 Conditional dependence with respect to the variations ∆σI of the Eu-
rostoxx’s implied volatility index

The implied volatility is computed using option prices. In this sense, this financial quantity reflects

investors’ anticipation of future uncertainty. When important events happen, investors most often update

their anticipations, which results in a change of implied volatilities. This change, denoted by ∆σI may be
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Figure 7.8: Conditional Kendall’s tau between

(X1, X2) given ∆σI during the European debt cri-

sis
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Figure 7.9: Conditional Kendall’s tau between

(X1, X2) given ∆σI during the After-crisis period
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Figure 7.10: Conditional Kendall’s tau between

(X1, X3) given ∆σI during the European debt cri-

sis
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Figure 7.11: Conditional Kendall’s tau between

(X1, X3) given ∆σI during the After-crisis period
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Figure 7.12: Conditional Kendall’s tau between

(X1, X4) given ∆σI during the European debt cri-

sis
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Figure 7.13: Conditional Kendall’s tau between

(X1, X4) given ∆σI during the After-crisis period
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linked to variations of the conditional dependence between stock returns of different countries. Figures

7.8 to 7.13 illustrate the variations of the conditional Kendall’s tau between couples of stock returns with

respect to the conditioning variable ∆σI during the two periods we study.

For each couple, the levels of the conditional Kendall’s tau are higher during the European debt crisis

than during the after-crisis period. This is coherent with our conclusions in the previous subsection. But

here, conditional Kendall’s taus look like concave functions of ∆σI during the crisis, while they exhibit

“double bumps” features after the crisis. During the crisis, when ∆σI is small in absolute value, implied

volatilities do not change much and the dependence is in general higher than during big changes of the

market implied volatility, i.e. when |∆σI | is high (see Figures 7.10 and 7.12).

One exception is the couple (France, Germany), for which the conditional Kendall’s tau is roughly a

decreasing function of ∆σI during the crisis. France and Germany are close countries and have strong

economic relationships, but Germany is seen as a country in the “center of Europe” while France share a

lot of similarities with countries of the periphery (in the South of Europe). Indeed, during the crisis, when

implied volatility decreases (corresponding to a negative value of ∆σI ), the dependence is higher, which

can be interpreted as investors seeing the two countries as close. On the contrary, when the market

implied volatility increases, there are concerns in the market about the robustness of Eurozone and

investors raise doubts about southern European countries - including France - which tend to decrease

the conditional Kendall’s tau between French and German returns.

After the crisis, the couples (Germany, France), and (Germany, Denmark) revert to a more usual

shape of conditional dependence: when volatility does not change much, conditional Kendall’s tau is low

; when volatility changes much, conditional Kendall’s tau is higher, reflecting more stressed situations.

In this period, an exception is the couple (Germany, Greece), whose conditional Kendall’s tau has a par-

ticular shape, that looks like the one of the couple (Germany, France) during the crisis. This is coherent

with the fact that, in stressed situations, when volatility increases, investors sometimes remembers that

Greece still has a fragile economy, which results in a lower conditional Kendall’s tau. But three estima-

tors suggest that, when volatility increases very much, conditional Kendall’s tau between Germany and

Greece increases again, following the classical tendencies that we had already observed.

7.6 Conclusion

In a parametric setting, we have proposed a localized log-likelihood method to estimate conditional

Kendall’s tau. When the link function is analytically tractable and explicit, it is then possible to code and

optimize the full penalized criterion. The consistency and the asymptotic normality of such estimators

have been stated. In particular, this is the case for logit or probit-type link functions. We noticed that

evaluating a Kendall’s tau is equivalent to evaluating a probability of being classified as a concordant

pair. Therefore, most classification procedures can be adapted to directly estimate conditional Kendall’s

tau. Classification trees, random forests, nearest neighbors and neural networks have been discussed.

They generally provide more flexible parametric models than previously.

We note that multiple trade-offs arise when choosing one of these methods, as displayed in Ta-

ble 7.10. Depending on the requirements of the situation, statisticians can choose some algorithms that

best match their needs. To summarize, trees and random forests methods are the fastest ones, but

exhibit the lowest performances. Parametric methods such as the logit and probit may perform very well

under some “simple” functional forms of g and ψ, but they deteriorate quickly when the true underlying
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Method
Performance Computation Interpretation Tuning parameters

in the sense of (7.10) time Number Difficulty of choice

Logit / Probit (well-specified) Best Very Slow Yes 1 Easy

Logit / Probit (mis-specified) Low Very Slow Possible 1 Easy

Tree Average Very Fast Possible 3 (see [117]) Average

Random forests Good Average No at least 4 Average

Nearest neighbors Very Good Fast No at least 5 Complicated

Neural network Excellent Slow No at least 2 Complicated

Table 7.10: Strengths and weaknesses of the proposed estimation procedures

model departs from their parametric specification. Note that they also show the longest computation

time. Nonetheless, interpretability of the coefficient β can be useful in applications. Even if the model

is misspecified, it can still be seen as an estimation of the best approximation of z 7→ τ1,2|Z=z on the

functional space generated by ψ. Nearest neighbors methods are average in terms of computation time

as well as performance. Neural networks are the slowest of all our nonparametric methods, but they

behave nearly uniformly the best ones in term of prediction. Finally, we have evaluated these different

methods on several empirical illustrations.

7.7 Some basic definitions about copulas

Here, we recall the main concepts around copulas and conditional copulas. First, a d-dimensional

copula is a cdf on [0, 1]d whose margins are uniform distributions. Sklar’s theorem states that, for any

d-dimensional distributions H, whose marginal cdfs’ are denoted as F1, . . . , Fd, there exists a copula C

s.t.

H(x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
, (7.11)

for every (x1, . . . , xd) ∈ Rd. If the law of H is continuous, the latter C is unique, and it is called the copula
associated to H. Inversely, for a given copula and some univariate cdfs’ Fk, k = 1, . . . , d, Equation (7.11)

defines a d-dimensional cdf H.

The latter concept of copula is similarly related to any random vector X whose cdf is H, and there

is no ambiguity by using the same term. Copulas are invariant w.r.t. strictly increasing transforms of

the margins Xk, k = 1, . . . , d. They provide very practical tools for modeling complex and/or highly

dimensional distributions in a flexible way, by splitting the task into two parts: the specification of the

marginal distributions on one side, and the specification of the copula on the other side. Therefore,

a copula can be seen as a function that describes the dependence between the components of X,

independently of the marginal distributions. Several popular dependence measures are functionals of

the underlying copula only: Kendall’s tau, Spearman’s rho, Blomqvist coefficient, etc. The classical

textbooks by Joe [76] or Nelsen [106] provide numerous and detailed results.

Numerous parametric families of copulas have been proposed in the literature: Gaussian, Student,

Archimedean, Marshall-Olkin, extreme-value, etc. Several inference methods have been adapted to

evaluate an underlying copula, possible without estimating the marginal cdfs’ (Canonical Maximum Like-
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lihood). See Cherubini and Luciano [29] for details. Nonparametric methods have been developed too,

since the seminal papers of Deheuvels [33, 34] about empirical copula processes.

Second, conditional copulas have been formally introduced by Patton [112, 111]. They are rather

straightforward extensions of the latter concepts, when dealing with conditional distributions. Formally,

for a given sigma-algebra F , let H(·|F) (resp. Fk(·|F)) be the conditional distribution of X (resp. Xk,

k = 1, . . . , d) given F . The “conditional version of” Sklar’s theorem now states that there exists a random

copula C(·|F) s.t.

H(x1, . . . , xd|F) = C
(
F1(x1|F), . . . , Fd(xd|F)|F

)
, a.e. (7.12)

for every (x1, . . . , xd) ∈ Rd. If the law of H(·|F) is continuous, the latter C(·|F) is unique, and it is called

the conditional copula associated to H(·|F), given F . Inversely, given F , a conditional copula C(·|F)

and some univariate cdfs’ Fk(·|F), k = 1, . . . , d, Equation (7.12) defines a d-dimensional conditional cdf

H(·|F). See Fermanian and Wegkamp [52] for extensions of the latter concepts.

7.8 Proof of Theorem 7.3

Simple calculations provide: if i 6= j and under (7.3),

IE[Ln(β)] = IE
[
Kh(Zi − Zj)`β(W(i,j),Zi)

]
= IE

[
Kh(Zi − Zj)IE[`β(W(i,j),Zi)|Zi,Zj ]

]
= IE

[
Kh(Zi − Zj)

(
p(Zi,Zj) log

(
1

2
+

1

2
g(ψ(Zi)

Tβ)

)
+ (1− p(Zi,Zj)) log

(
1

2
− 1

2
g(ψ(Zi)

Tβ)

))]
= IE [Kh(Zi − Zj)φ(Zi,Zj , β)]

= IE

[∫
K(t)φ(Zi,Zi − ht, β)fZ(Zi − ht) dt

]
,

that tends to IE [φ(Zi,Zi, β)fZ(Zi)] = L∞(β) when n → ∞, if
∫ (
φ(z, ·, β)fZ(·)

)
ε
(z)fz(z) dz < ∞, for

some ε > 0 (invoke the dominated convergence Theorem and the compact support of K).

Now, let us prove that, for any β, Ln(β) tends towards L∞(β) in probability, when n → ∞. It is

sufficient to prove that the variance of Ln(β) tends to zero.

IE
[(
Ln(β)− IE[Ln(β)]

)2]
=

1

n2(n− 1)2

∑
i1,j1;i1 6=j1

∑
i2,j2;i2 6=j2(

IE
[
Kh(Zi1 − Zj1)Kh(Zi2 − Zj2)`β(W(i1,j1),Zi1)`β(W(i2,j2),Zi2)

]
− IE[Ln(β)]2

)
=:

1

n2(n− 1)2

∑
i1,j1;i1 6=j1

∑
i2,j2;i2 6=j2

vi1,j1,i2,j2 ,

with obvious notation. Obviously, vi1,j1,i2,j2 is zero when i1 and j1 are not equal to i2 nor j2. At the

opposite, in the case of equalities between some of these four indices, we get non-zero terms.

To be specific, when i1 = i2 = i, and j1 6= j2, we have

vi,j1,i,j2 = IE
[
Kh(Zi − Zj1)Kh(Zi − Zj2)`β(W(i,j1),Zi)`β(W(i,j2),Zi)

]
− IE[Ln(β)]2

= IE

[∫
K(x)K(y)A(Zi,Zi − hx,Zi − hy)fZ(Zi − hx)fZ(Zi − hy) dx dy

]
− IE[Ln(β)]2,

by setting

A(x,y, z) := IE
[
`β(W(i,j1),Zi)`β(W(i,j2),Zi)|Zi = x,Zj1 = y,Zj2 = z

]
= p(x,y, z) log2 q(x, β) + (p(x,y)− p(x,y, z)) log q(x, β) log(1− q(x, β))

+ (p(x, z)− p(x,y, z)) log q(x, β) log(1− q(x, β)) + (1− p(x,y)− p(x, z) + p(x,y, z)) log2(1− q(x, β)).
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If
∫
A(z, ·, ·)ε(z, z)f2

Z,ε(z)fZ(z) dz < ∞ for some ε > 0, then vi,j1,i,j2 tends to a constant when n → ∞
(independently of the choice of such indices).

A similar analysis can be led for the other terms. When i1 = j2 and j1 6= i2, we get

vi1,j1,i2,i1 = IE
[
Kh(Zi1 − Zj1)Kh(Zi2 − Zi1)`β(W(i1,j1),Zi1)`β(W(i2,i1),Zi2)

]
− IE[Ln(β)]2

= IE

[∫
K(x)K(y)B(Zi1 ,Zi1 − hx,Zi1 + hy)fZ(Zi1 − hx)fZ(Zi1 + hy) dx dy

]
− IE[Ln(β)]2,

by setting

B(x,y, z) := IE
[
`β(W(i1,j1),Zi1)`β(W(i2,i1),Zi2)|Zi1 = x,Zj1 = y,Zi2 = z

]
= p(x,y, z) log q(x, β) log q(z, β) + (p(x,y)− p(x,y, z)) log q(x, β) log(1− q(z, β))

+ (p(x, z)− p(x,y, z)) log q(z, β) log(1− q(x, β))

+ (1− p(x,y)− p(x, z) + p(x,y, z)) log(1− q(x, β)) log(1− q(z, β)).

If
∫
B(z, ·, ·)ε(z, z)f2

Z,ε(z)fZ(z) dz <∞, then vi1,j1,i,i1 tends to a constant when n→∞.

When j1 = j2 = j and i1 6= i2, we obtain

vi1,j1,i2,j2 = IE
[
Kh(Zi1 − Zj)Kh(Zi2 − Zj)`β(W(i1,j),Zi1)`β(W(i2,j),Zi2)

]
− IE[Ln(β)]2

= IE

[∫
K(x)K(y)C(Zj + hx,Zj ,Zj + hy)fZ(Zj + hx)fZ(Zj + hy) dx dy

]
− IE[Ln(β)]2,

by setting

C(x,y, z) := IE
[
`β(W(i1,j),Zi1)`β(W(i2,j),Zi2)|Zi1 = x,Zj = y,Zi2 = z

]
= p(x,y, z) log q(x, β) log q(z, β) + (p(x,y)− p(x,y, z)) log q(x, β) log(1− q(z, β))

+ (p(y, z)− p(x,y, z)) log q(z, β) log(1− q(x, β))

+ (1− p(x,y)− p(y, z) + p(x,y, z)) log(1− q(x, β)) log(1− q(z, β)).

If
∫
C(·, z, ·)ε(z, z)f2

Z,ε(z)fZ(z) dz <∞, then vi1,j,i2,j tends to a constant when n→∞.

When j1 = i2 and i1 6= j2:

vi1,j1,j1,j2 = IE
[
Kh(Zi1 − Zj1)Kh(Zj1 − Zj2)`β(W(i1,j1),Zi1)`β(W(j1,j2),Zj1)

]
− IE[Ln(β)]2

= IE

[∫
K(x)K(y)D(Zj1 + hx,Zj1 ,Zj1 − hy)fZ(Zj1 + hx)fZ(Zj1 − hy) dx dy

]
− IE[Ln(β)]2,

by setting

D(x,y, z) := IE
[
`β(W(i1,j1),Zi1)`β(W(j1,j2),Zj1)|Zi1 = x,Zj1 = y,Zj2 = z

]
= p(x,y, z) log q(x, β) log q(y, β) + (p(x,y)− p(x,y, z)) log q(x, β) log(1− q(y, β))

+ (p(y, z)− p(x,y, z)) log q(y, β) log(1− q(x, β))

+ (1− p(x,y)− p(y, z) + p(x,y, z)) log(1− q(x, β)) log(1− q(y, β)).

If
∫
D(·, z, ·)ε(z, z)f2

Z,ε(z)fZ(z) dz <∞, then vi1,j1,j1,j2 tends to a constant when n→∞.

There are two cases of two equalities. If i1 = i2 = i and j1 = j2 = j, this yields

vi,j,i,j = IE
[
Kh(Zi − Zj)

2`2β(W(i,j),Zi)
]
− IE[Ln(β)]2

= h−pIE

[∫
K(x)2E(Zi,Zi − hx)fZ(Zi − hx) dx

]
− IE[Ln(β)]2,
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by setting

E(x,y) := IE
[
`2β(W(i,j),Zi)|Zi = x,Zj = y

]
= p(x,y) log2 q(x, β) + (1− p(x,y)) log2(1− q(x, β)).

If
∫
E(z, ·)ε(z)fZ,ε(z)fZ(z) dz <∞, then hpvi,j,i,j tends to a constant when n→∞.

Finally, if i1 = j2 and j1 = i2, we get

vi1,j1,i1,j1 = IE
[
Kh(Zi1 − Zj1)2`β(W(i1,j1),Zi1)`β(W(j1,i1),Zj1)

]
− IE[Ln(β)]2

= h−pIE

[∫
K(x)2F (Zi,Zi − hx)fZ(Zi − hx) dx

]
− IE[Ln(β)]2,

by setting

F (x,y) := IE
[
`β(W(i1,j1),Zi1)`β(W(j1,i1),Zj1)|Zi1 = x,Zj1 = y

]
= p(x,y) log q(x, β) log q(y, β) + (1− p(x,y)) log(1− q(x, β)) log(1− q(y, β)).

If
∫
F (z, ·)ε(z)fZ,ε(z)fZ(z) dz <∞, then hpvi1,j1,j1,i1 tends to a constant when n→∞.

Summarizing the previous terms, we have obtained V ar(Ln(β)) = O(n−1 + n−2h−p), that tends to

zero pointwise, when n2hp →∞. We deduce Ln(β)−L∞(β) = Ln(β)−IE[Ln(β)]+IE[Ln(β)]−L∞(β) =

oP (1). Since Ln(·) and L∞(·) are concave, invoking the convexity lemma of Geyer [59] (see Knight and

Fu [82], alternatively), the maximizer β̂ of Ln tends in probability towards the maximizer of L∞. �

We summarize the latter technical assumptions that are sufficient to obtain the consistency of β̂: for

some ε > 0, ∫ (
φ(z, ·, β)fZ(·)

)
ε
(z)fz(z) dz <∞, (7.13)

∫ (
A(z, ·, ·)ε(z, z) +B(z, ·, ·)ε(z, z) + C(·, z, ·)ε(z, z) +D(·, z, ·)ε(z, z)

)
f2
Z,ε(z)fZ(z) dz <∞, (7.14)

∫ (
φ(z, ·, β)ε(z) + E(z, ·)ε(z) + F (z, ·)ε(z)

)
fZ,ε(z)fZ(z) dz <∞. (7.15)

7.9 Proof of Theorem 7.4

Set u :=
√
n(β − β∗) and û :=

√
n(β̂ − β∗). Obviously,

û = arg max
u∈Rp′

Ln(β∗ + n−1/2u)− λn|β∗ + n−1/2u|1,

= arg max
u∈Rp′

nLn(β∗ + n−1/2u)− nLn(β∗)− nλn
{
|β∗ + n−1/2u|1 − |β∗|1

}
.

Note that

nλn|β∗ + n−1/2u|1 − n|β∗|1 = n1/2λn
∑

k;β∗k=0

|uk|+ n1/2λn
∑

k;β∗k 6=0

sign(β∗k)uk

−→ µ
∑

k;β∗k=0

|uk|+ µ
∑

k;β∗k 6=0

sign(β∗k)uk,

when n→∞. Moreover,

nLn(β∗ + n−1/2u)− nLn(β∗) = n1/2L̇n(β∗).u +
1

2
uT L̈n(β)u +

1

6
√
n

...
Ln(β).u(3),

for some (random) β s.t. |β∗ − β| < |β∗ − β|. We will successively prove that
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(i) n1/2L̇n(β∗) weakly tends to a Gaussian random vector W, W ∼ N (0p,Σβ∗);

(ii) L̈n(β∗) tends in probability towards a constant matrix H(β∗);

(iii)
...
Ln(β) is OP (1).

Then, û = arg maxu Ln(u), where Ln(u) weakly tends to

L∞(u) := W.u +
1

2
uTH(β∗)u− µ

∑
k;β∗k=0

|uk| − µ
∑

k;β∗k 6=0

sign(β∗k)uk,

that is concave. The result will follow, applying Theorem 1 in Kato [79].

First, let us prove (i), i.e. the asymptotic normality of n1/2L̇n(β) for any given parameter β. Consider

the centered criterion

Mn(β) := L̇n(β)− IE[L̇n(β)] =
1

n(n− 1)

∑
i,j;i 6=j

`ij(β),

where `ij := Kh(Zi − Zj)∂β`β(W(i,j),Zi)− IE[L̇n(β)]. We symmetrize the localized likelihood:

Mn(β) =
1

2n(n− 1)

∑
i,j;i 6=j

Mij(β),

where Mij(β) (or simply Mij) is `ij(β) + `ji(β). Note that Mij = Mji and that IE[Mij ] = 0.

By the dominated convergence theorem and a change of variable, we easily check that IE[L̇n(β)] =

∂βL∞(β) + o(1) if, for some ε > 0, we have
∫ (
∂βφ(z, ·, β)fZ(·)

)
ε
(z)fz(z) dz < ∞. Moreover, by simple

calculations, we get, if i 6= j,

IE[Mn|Zi] =
1

2n
IE[Mij +Mji|Zi] =

1

n
IE[Mij |Zi]

=
1

n

∫
{Kh(Zi − z)∂βφ(Zi, z, β) +Kh(z− Zi)∂βφ(z,Zi, β)}fZ(z) dz− 2

n
IE[L̇n(β)]

=
1

n

∫
K(t){∂βφ(Zi,Zi − ht, β)fZ(Zi − ht) + ∂βφ(Zi + ht,Zi, β)fZ(Zi + ht)} dt− 2

n
IE[L̇n(β)]

=
2

n
∂βφ(Zi,Zi, β)fZ(Zi)−

2

n
L̇∞(β) + o(n−1) + rn,i,

where, by a m-order limited expansion, we obtain

‖rn,i‖ ≤
Cst.hm

∫
|K|

nm!
‖(fZ(·)∂βφ(Zi, ·, β))(m) + (fZ(·)∂βφ(·,Zi, β))(m)‖ε(Zi),

for any norm ‖ · ‖ on Rp and a positive constant Cst. We deduce that n1/2
∑n
i=1 IE[Mn|Zi] is asymptoti-

cally normal by invoking the usual CLT, under condition (7.17) below. To be specific, the Hájek projection

of Mn is
√
n

2

n∑
i=1

IE[Mn|Zi] =
1√
n

n∑
i=1

{∂βφ(Zi,Zi, β)fZ(Zi)− L̇∞(β)}+ oP (1) N (0,Σβ), with

Σβ :=

∫
∂βφ(z, z, β)∂βφ(z, z, β)T f3

Z(z) dz− L̇∞(β)L̇∞(β)T .

Note that that L̇∞(β∗) = 0.

Now consider the “remainder term” ∆n := Mn(β)−
∑n
i=1 IE[Mn|Zi]/2. Since IE[Mn|Zi] = n−1IE[Mij |Zi],

we deduce

∆n = Mn(β)− 1

2

n∑
i=1

IE[Mn|Zi] =
1

2n(n− 1)

∑
i,j;i 6=j

{Mij − IE[Mij |Zi]}.
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It is relatively easy to prove that ∆n is negligible, i.e. ∆n = oP (n−1/2). Indeed, let us prove that the

variance of n1/2∆n tends to zero with n:

V ar(n1/2∆n) = nIE[∆n∆T
n ] =

1

4n(n− 1)2

∑
i1,j1;i1 6=j1

∑
i2,j2;i2 6=j2

δ(i1, i2, j1, j2),

δ(i1, i2, j1, j2) = IE
[
{Mi1j1 − IE[Mi1j1 |Zi1 ]} × {Mi2j2 − IE[Mi2j2 |Zi2 ]}T

]
.

If there is no identity among the indices (i1, j1, i2, j2), with i1 6= j1 and i2 6= j2, then δ(i1, i2, j1, j2) is zero.

Moreover, this is still the case when there is only a single identity. For instance, assume i1 = i2 = i and

j1 6= j2. Then,

δ(i, i, j1, j2) = IE
[
{Mij1 − IE[Mij1 |Zi]} × {Mij2 − IE[Mij2 |Zi]}T

]
= IE

[
{Mij1 − IE[Mij1 |Zi]} × IE[{Mij2 − IE[Mij2 |Zi]}T |Zi,Zj1 ]

]
= IE [{Mij1 − IE[Mij1 |Zi]} × 0] = 0.

The other terms for which a single identity between the indices can be managed similarly.

At the opposite, non-zero terms appear when i1 = i2 = i and j1 = j2 = j. In this case, we obtain

δ(i, i, j, j) = IE
[
{Mij − IE[Mij |Zi]}{Mij − IE[Mij |Zi]}T

]
= IE[MijM

T
ij ]− IE[IE[Mij |Zi]IE[Mij |Zi]T ].

By a usual change of variable and by symmetry, we get

IE[MijM
T
ij ] = 2IE

[
{`ij(β)`ij(β)T + `ij(β)`ji(β)T }

]
= 2IE

[
K2
h(Zi − Zj)∂β`β(W(i,j),Zi)∂β`β(W(i,j),Zi)

T

+ Kh(Zi − Zj)Kh(Zj − Zi)∂β`β(W(i,j),Zi)∂β`β(W(j,i),Zj)
T
]

+O(1)

= 2h−pIE

[∫ (
K2(x)H1(Zi,Zi − hx) +K(x)K(−x)H2(Zi,Zi − hx)

)
fZ(Zi − hx) dx

]
+O(1)

= 2h−p
∫ (

K2(x)H1(z, z− hx) +K(x)K(−x)H2(z, z− hx)
)
fZ(z− hx)fZ(z) dx dz +O(1),

by setting

H1(x,y) = IE
[
∂β`β(W(i,j),Zi)∂β`β(W(i,j),Zi)

T |Zi = x,Zj = y
]

= p(x,y)
ψ(x)ψ(x)T g′(ψ(x)Tβ)2

(1 + g(ψ(x)Tβ))2
+ (1− p(x,y))

ψ(x)ψ(x)T g′(ψ(x)Tβ)2

(1− g(ψ(x)Tβ))2
, and

H2(x,y) = IE
[
∂β`β(W(i,j),Zi)∂β`β(W(j,i),Zj)

T |Zi = x,Zj = y
]

= p(x,y)
ψ(x)ψ(y)T g′(ψ(x)Tβ)g′(ψ(y)Tβ)

(1 + g(ψ(x)Tβ))(1 + g(ψ(y)Tβ))
+ (1− p(x,y))

ψ(x)ψ(y)T g′(ψ(x)Tβ)g′(ψ(y)Tβ)

(1− g(ψ(x)Tβ))(1 + g(ψ(y)Tβ))
·

Therefore, IE[MijM
T
ij ] is O(h−p), if

∫
(‖H1‖+ ‖H2‖)ε(z, ·)fZ(·)ε(z)fZ(z) dz <∞.

The last possible case providing non-zero δ(i1, i2, j1, j2) is i1 = j2 = i and j1 = i2 = j. Then, we

obtain

δ(i, j, j, i) = IE
[
{Mij − IE[Mij |Zi]} × {Mji − IE[Mji|Zj ]}T

]
= δ(i, i, j, j),

due to the symmetry of Mij . Thus, we have proved that V ar(n1/2∆n) = O(n−1h−p)) = o(1), which

implies

n1/2Mn(β) =
n1/2

2

n∑
i=1

IE[Mn|Zi] + oP (1).
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We deduce that n1/2Mn(β) weakly tends towards the Gaussian random vector N (0p,Σβ) for any β.

When β = β∗, ∂βL∞(β∗) = 0, and this yields (i).

Second, let us deal with (ii) above. It is easy to prove that L̈n(β∗) tends to H(β∗) in probability, when

n tends to the infinity. Indeed, the arguments are exactly the same as in 7.8, where we have proved that

Ln(β∗) is convergent in probability. We only have to replace `β(·, ·) by its second derivatives w.r.t. β. To

save space, the specific derivations of such conditions of regularity are left to the reader: simply replace

the functions A, B,...,F of 7.8 by their second derivatives w.r.t. β, taken at β = β∗, and rewrite (7.14)

and (7.15).

Third, to prove (iii), it is sufficient to state that IE[‖
...
Ln(β)‖] is bounded from above, uniformly w.r.t. β

in a small neighborhood of β∗. By derivation, we get, for every indices a, b, c in {1, . . . , p′},

IE[| ∂3

∂βa∂βb∂βc
Ln(β)|]

≤ Cst× IE

[
|K|h(Zi − Zj)

{
p(Zi,Zj)H(1,Zi, β, a, b, c, ) + (1− p(Zi,Zj))H(−1,Zi, β, a, b, c)

}]
,

where, for every δ ∈ {1,−1},

H(δ,Zi, β, a, b, c) =

(
|g′(ψ(Zi)

Tβ)|3

|1 + δg(ψ(Zi)Tβ)|3
+
|g′g′′(ψ(Zi)

Tβ)|
|1 + δg(ψ(Zi)Tβ)|2

+
|g′′′(ψ(Zi)

Tβ)|
|1 + δg(ψ(Zi)Tβ)|

)
|ψ(Zi)aψ(Zi)bψ(Zi)c|.

and Cst denotes a real constant that depend on g and (a, b, c) only. Therefore, it is sufficient to assume

that∫
|K|(t)

(
p( z− ht)H(1, z, β, a, b, c) + (1− p(z, z− ht))H(−1, z, β, a, b, c)

)
fZ(z)fZ(z− ht) dt dz <∞.

This is guaranteed by Assumption (7.19) below. Then, under the latter assumption, (iii) is stated and this

finishes the proof. �

For convenience, let us gather the main technical assumptions that have been requested to prove

Theorem 7.4: for some ε > 0, ∫ (
∂βφ(z, ·, β)fZ(·)

)
ε
(z)fz(z) dz <∞. (7.16)

IE
[
‖(fZ(·)∂βφ(Zi, ·, β))(m) + (fZ(·)∂βφ(·,Zi, β))(m)‖ε(Zi)

]
<∞. (7.17)

∫
(‖H1‖+ ‖H2‖)ε(z, ·)fZ(·)ε(z)fZ(z) dz <∞. (7.18)

For every indices (a, b, c) ∈ {1, . . . , p′} and for V(β∗), some (small) neighborhood around β∗,

sup
β∈V(β∗)

∫ (
(p(z, ·)fZ(·))ε(z)H(1, z, β, a, b, c) + ((1− p)(z, ·)fZ(·))ε(z)H(−1, z, β, a, b, c, )

)
fZ(z) dz <∞.

(7.19)

Remark 7.7. Note that ||p(·, ·)||∞ ≤ 1. If g and its derivatives are bounded, Condition (7.19) is satisfied
if

sup
β∈V(β∗)

sup
δ∈{−1,1}

∫
‖ψ(z)‖3|1 + δg(ψ(z)Tβ)|−3fZ,ε(z)fZ(z) dz <∞.
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Part III

Other topics in inference





Chapter 8

Estimation of a regular conditional
functional by conditional U-statistic
regression

Abstract

U-statistics are a large class of estimators, generalizing the empirical mean of a random variable

X to sums over every k-tuple of distinct observations of X. They can be used to estimate a

regular functional θ(IPX) of the law of X. When a covariate Z is available, a conditional U-statistic

describes the effect of z on the conditional law of X given Z = z. Conditional U-statistics can

therefore be used to estimate a regular conditional functional θ(IPX|Z=·). We give non-asymptotic

bounds for conditional U-statistics and review asymptotic results. Then, assuming a parametric

model of the conditional functional of interest, we propose a regression-type estimator based on

conditional U-statistics. Its theoretical properties are derived, first in a non-asymptotic framework

and then in two different asymptotic regimes. Some examples are given to illustrate our methods.

Keywords: kernel smoothing, regression-type models, penalized estimation.

Based on [36]: Derumigny, A., Estimation of a regular conditional functional by conditional U-

statistics regression. Arxiv preprint, arXiv:1903.10914, 2019.

8.1 Introduction

Let X be a random variable with values in a measurable space (X ,A), and denote by IPX its law. A

natural application is X = RpX , for a fixed dimension pX > 0. Often, we are interested in estimating a

regular functional θ(IPX) of the law of X, of the form

θ(IPX) = IE
[
g(X1, . . . ,Xk)

]
=

∫
g(x1, . . . ,xk)dIPX(x1) · · · dIPX(xk),
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for a fixed k > 0, a function g : X k → R and X1, . . .Xk
i.i.d.∼ IPX. Following Hoeffding [69], a natural

estimator of θ(IPX) is the U-statistic θ̂(IPX), defined by

θ̂(IPX) :=
∑

σ∈Ik,n

g
(
Xσ(1), . . . ,Xσ(k)

)
,

where Ik,n is the set of injective functions from {1, . . . , k} to {1, . . . , n}. For an introduction to the theory

of U-statistics, we refer to Koroljuk and Borovskich [84] and Serfling [123, Chapter 5].

In our framework, we assume that we do not only observe X, but we observe in fact (X,Z) where Z

is a p-dimensional covariate. We are now interested in functionals of the conditional law IPX|Z. For each

z1, . . . , zk ∈ Z, where Z is a compact subset of Rp, we can define such a functional θz1,...zk by

θz1,...zk(IPX|Z=·) := θ(IPX|Z=z1
, . . . , IPX|Z=zk)

= IE⊗k
i=1 IPX|Z=zi

[
g(X1, . . . ,Xk)

]
= IE

[
g(X1, . . . ,Xk)

∣∣Zi = zi,∀i = 1, . . . , k
]

=

∫
g(x1, . . . ,xk)dIPX|Z=z1

(x1) · · · dIPX|Z=zk(xk).

This can be seen as a generalization of θ(IPX) to the conditional case. Indeed, when X and Z are

independent, the new functional θz1,...zk(IPX|Z=·) is equal to the unconditional functional θ(IPX). For

convenience, we will use the notation θ(z1, . . . , zk) := θz1,...zk(IPX|Z=·), treating the law of (X,Z) as fixed

(but unknown). Stute [132] defined a kernel-based estimator θ̂(z1, . . . , zk) of the conditional functional

θ(z1, . . . , zk) by

θ̂(z1, . . . , zk) :=

∑
σ∈Ik,n Kh

(
Zσ(1) − z1

)
· · ·Kh

(
Zσ(k) − zk

)
g
(
Xσ(1), . . . ,Xσ(k)

)∑
σ∈Ik,n Kh

(
Zσ(1) − z1

)
· · ·Kh

(
Zσ(k) − zk

) , (8.1)

where h > 0 is the bandwidth, K(·) a kernel on Rp, Kh(·) := h−pK(·/h), and (Xi,Zi)
i.i.d.∼ IPX,Z.

Stute [132] proved the asymptotic normality of θ̂(z1, . . . , zk) and its weak and strong consistency. Dony

and Mason [45] derived its uniform in bandwidth consistency under VC-type conditions over a class of

possible functions g.

Nevertheless, the estimator (8.1) has several weaknesses. First, interpretation of the whole hyper-

surface (z1, . . . , zk) 7→ θ̂(z1, . . . , zk) can be difficult. Indeed, the latter is a curve of dimension 1 + p× k,

which is rather challenging to visualize even for small values of p and k. Second, for each new tuple

(z1, . . . , zk), computation of θ̂(z1, . . . , zk) has a cost of O(nk). This means that if we want to estimate

θ̂(z
(i)
1 , . . . , z

(i)
k ) for every i = 1, . . . , N , where

(
z

(1)
1 , . . . , z

(1)
k , . . . , z

(N)
1 , . . . , z

(N)
k

)
∈ Zk×N , then the total

cost is O(Nnk). Third, it is well-known that kernel estimators are not very smooth, in the sense that

they usually present many spurious local minima and maxima, that can be a problem in applications.

Therefore, we may want to have estimators which are more monotone with respect to the conditioning

variables z1, . . . zk, and have a simple functional form.

Another idea is to decompose the function (z1, . . . , zk) 7→ θ(z1, . . . , zk) in a basis (ψi)i≥0, generalizing

the work of Derumigny and Fermanian [39]. This may not be always easy if the range of the function

θ(·, · · · , ·) is a strict subset of R. In that case, it is always possible to use a “link function” Λ, strictly

increasing and continuously differentiable such that the range Λ ◦ θ(·, · · · , ·) is exactly R. Whatever the

choice of Λ (including the identity function), we can decompose the latter function in any basis (ψi)i≥0.

If only a finite number r > 0 of elements of this basis are necessary to represent the whole function

Λ ◦ θ(·, · · · , ·) over Zk, then we have the following parametric model

∀(z1, . . . , zk) ∈ Zk, Λ
(
θ(z1, . . . , zk)

)
= ψ(z1, . . . , zk)Tβ∗, (8.2)
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where β∗ ∈ Rr is the true parameter and ψ(·) :=
(
ψ1(·), . . . , ψr(·)

)T ∈ Rr. In most applications, finding

an appropriate basis ψ is not easy ; this will depend of the choice of the (conditional) functional θ.

Therefore, the most simple solution consists in choosing a concatenation of several well-known basis

such as polynomials, exponentials, sinuses and cosinuses, indicator functions, etc... They allow to take

into account potential non-linearities and even discontinuities of the function Λ ◦ θ(·, · · · , ·). The only

condition is their linear independence, as seen in the following proposition (whose straightforward proof

is omitted).

Proposition 8.1. The parameter β∗ is identifiable in Model (8.2) if and only if the functions (ψ1(·), . . . , ψr(·))
are linearly independent IP⊗nZ -almost everywhere in the sense that, for all vectors t = (t1, . . . , tr) ∈ Rr,
IP⊗nZ

(
ψ(Z1, . . . ,Zn)T t = 0

)
= 1 =⇒ t = 0.

With such a choice of a wide and flexible class of functions, it is likely that not all these functions are

relevant. This is what is know as sparsity, i.e. the number of non-zero coefficients of β∗, denoted by |S|
= |β∗|0 ≤ s, for some s ∈ {1, . . . , r}, where | · |0 is the number of non-zero components of a vector of Rr

and S is the set of non-zero components of β∗. Note that in this framework, r can be moderately large,

for example 30 or 50 while the original dimension p is small, for example p = 1 or 2. This corresponds to

the decomposition of a function, defined on a small-dimension domain, in a mildly large basis.

Remark 8.2. At first sight, in Model (8.2), there seem to be no noise perturbing the variable of interest.
In fact, it can be seen as a simple consequence of our formulation of the model. In the same way, the
classical linear model Y = XTβ∗ + ε can be rewritten as IE[Y |X = x] = xTβ∗ without any explicit noise.
By definition, IE[Y |X = x] is a deterministic function of a given x. In our case, the corresponding fact is:
Λ
(
θ(z1, . . . , zk)

)
is a deterministic function of the variables (z1, . . . , zk). This means that we cannot write

formally a model with noise, such as Λ
(
θ(z1, . . . , zk)

)
= ψ(z1, . . . , zk)Tβ∗ + ε where ε is independent

of the choice of (z1, . . . , zk) since the left-hand side of the latter equality is a (z1, . . . , zk)-mesurable
quantity, unless ε is constant almost surely.

Contrary to more usual models, the explained variable Λ
(
θ(z1, . . . , zk)

)
, is not observed in Model (8.2).

Therefore, a direct estimation of the parameter β∗ (for example, by the ordinary least squares, or by the

Lasso) is unfeasible. In other words, even if the function (z1, . . . , zk) 7→ Λ
(
θ(z1, . . . , zk)

)
is deterministic

(by definition of conditional probabilities), finding the best β in Model (8.2) is far from being a numeri-

cal analysis problem since the function to be decomposed is unknown. Nevertheless, we will replace

Λ
(
θ(z1, . . . , zk)

)
by the nonparametric estimate Λ

(
θ̂(z1, . . . , zk)

)
, and use it as an approximation of the

explained variable.

More precisely, we fix a finite collection of points z′1, . . . , z
′
n′ ∈ Z

n′ and a collection Ik,n′ of injective

functions σ : {1, . . . , k} → {1, . . . , n′}. Note that we are not forced to include all the injective functions

in Ik,n′ , reducing its number of elements. This will allow us to decrease the computational cost of the

procedure. For every σ ∈ Ik,n′ , we estimate θ̂(z′σ(1), . . . , z
′
σ(k)). Finally, the estimator β̂ is defined as the

minimizer of the following l1-penalized criteria

β̂ := arg min
β∈Rr

 (n′ − k)!

n′!

∑
σ∈Ik,n′

(
Λ
(
θ̂
(
z′σ(1), . . . , z

′
σ(k)

))
−ψ

(
z′σ(1), . . . , z

′
σ(k)

)T
β

)2

+ λ|β|1

 , (8.3)

where λ is a positive tuning parameter (that may depend on n and n′), and | · |q denotes the lq norm, for

1 ≤ q ≤ ∞. This procedure is summed up in the following Algorithm 15. Note that even if we study the

general case with any λ ≥ 0, corresponding properties of the unpenalized estimator can be derived by

choosing the particular case λ = 0.
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Algorithm 15: Two-step estimation of β

Input: A dataset (Xi,1, Xi,2,Zi), i = 1, . . . , n

Input: A finite collection of points z′1, . . . , z
′
n′ ∈ Z

n′ , selected for estimation

Input: A collection of N k-tuples for prediction
(
z

(1)
1 , . . . , z

(1)
k , . . . , z

(N)
1 , . . . , z

(N)
k

)
∈ Zk×N

for σ ∈ Ik,n′ do
Compute the estimator θ̂

(
z′σ(1), . . . , z

′
σ(k)

)
using the sample (Xi,Zi), i = 1, . . . , n ;

end
Compute the minimizer β̂ of (8.3) using the θ̂

(
z′σ(1), . . . , z

′
σ(k)

)
, j = 1, . . . , n′, estimated in the

above step ;

for i← 1 to N do
Compute the prediction θ̃(z(i)

1 , . . . , z
(i)
k ) := Λ(−1)

(
ψ(z

(i)
1 , . . . , z

(i)
k )T β̂

)
;

end
Output: An estimator β̂ and N predictions θ̃(z(i)

1 , . . . , z
(i)
k ), i = 1, . . . , N .

Once an estimator β̂ of β∗ has been computed, the prediction of all the conditional functionals is

reduced to the computation of Λ(−1)
(
ψ(z

(i)
1 , . . . , z

(i)
k )T β̂

)
:= θ̃(z

(i)
1 , . . . , z

(i)
k ), for every i = 1, . . . , N . The

total computational cost of this new method is therefore O(|Ik,n′ | · n′k + |Ik,n′ | · r + Ns) operations.

The first term corresponds to the cost of evaluating each non-parametric estimator (8.1). The second

term corresponds to the minimization of the convex optimization program (8.3), and the last one is the

prediction cost. Note that it can provide a huge improvement compared to the previously available

estimator with a cost in O(Nnk) when N →∞, i.e. when we want to recover the full function θ(·, · · · , ·).
Moreover, the speedup given by Algorithm 15 compared to the original conditional U-statistics (8.1) even

increases with the sample size n, for moderate choices of n′.

A similar model, called functional response has already been studied ; see, e.g. Kowalski and

Tu [85, Chapter 6.2]. They provide a method to estimate the parameter β∗, using generalized estimating

equations. However, they only provides asymptotic results for their estimator, and their algorithm needs

to solve a multi-dimensional equation which has no reason to be convex.

In Section 8.2, we provide both asymptotic properties and non-asymptotic bounds for the non-

parametric estimator θ̂. Section 8.3 is devoted to the theoretical study of the two-step parametric es-

timator β̂. Finally, we detail examples in Section 8.4. All proof have been postponed to the Appendix.

8.2 Theoretical properties of the nonparametric estimator θ̂(·)

Remark that if g is symmetric, then θ̂(z1, . . . , zk) is equal to

θ̂↑(z1, . . . , zk) :=

∑
σ∈I↑k,n

Kh

(
Zσ(1) − z1

)
· · ·Kh

(
Zσ(k) − zk

)
g
(
Xσ(1), . . . ,Xσ(k)

)
∑
σ∈I↑k,n

Kh

(
Zσ(1) − z1

)
· · ·Kh

(
Zσ(k) − zk

) , (8.4)

where I↑k,n is the set of strictly increasing functions from {1, . . . , k} to {1, . . . , n}. As a consequence, the

cost of the computation of θ̂↑ is reduced by a factor of k! compared to θ̂. The estimator θ̂ is well-defined

if and only if Nk(z1, . . . , zk) > 0, where

Nk(z1, . . . , zk) :=
k!(n− k)!

n!

∑
σ∈I↑k,n

Kh

(
Zσ(1) − z1

)
· · ·Kh

(
Zσ(k) − zk

)
. (8.5)
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8.2.1 Non-asymptotic bounds for Nk

To prove that our estimator θ̂(z1, . . . , zk) exists with a probability that tends to 1, we will study the behavior

of Nk. We will need the following assumptions to control the behavior of the kernel K and of the density

of Z.

Assumption 8.2.1. The kernel K(·) is bounded, i.e. there exists a finite constant CK such that K(·) ≤
CK and

∫
K(u)du = 1. The kernel is of order α for some α > 0, i.e. for all j = 1, . . . , α − 1 and all

1 ≤ i1, . . . , iα ≤ p,
∫
K(u)ui1 . . . uij du = 0.

Assumption 8.2.2. fZ is α-times continuously differentiable on Z and there exists a finite constant CK,α
such that, for all z1, . . . zk,∫ ∣∣∣K(u1

)
· · ·K

(
uk
)∣∣∣ ∑
m1+ ···+mk=α

(
α

m1:k

)

·
k∏
i=1

p∑
j1,...,jmi=1

∣∣ui,j1 . . . ui,jmi ∣∣ sup
t∈[0,1]

∣∣∣∣∣ ∂mifZ
∂zj1 · · · ∂zjmi

(
zi + tui

)∣∣∣∣∣ du1 · · · duk ≤ CK,α

where
(
α

m1:k

)
:= α!/

(∏k
i=1(mi!)

)
is the multinomial coefficient.

Assumption 8.2.3. fZ(·) ≤ fZ,max for some finite constant fZ,max.

Lemma 8.3. Under Assumptions 8.2.1, 8.2.2 and 8.2.3, we have for any t > 0,

IP

(∣∣Nk(z1, . . . , zk)−
k∏
i=1

fZ(zi)
∣∣ ≤ CK,α

α!
hα + t

)
≥ 1− 2 exp

(
− [n/k]t2

h−kpC1 + h−kpC2t

)
,

where C1 := 2fkZ,max||K||2k2 , and C2 := (4/3)CkK and ||K||22 :=
∫
K2.

This Lemma is proved in Section 8.6.1. More can be said if the density fZ is bounded below. There-

fore, we will use the following assumption.

Assumption 8.2.4. There exists a constant fZ,min > 0 such that for every z ∈ Z, fZ(z) > fZ,min.

If for some ε > 0, we have CK,αh
α/α! + t ≤ fZ,min − ε, then f̂(z) ≥ ε > 0 with probability larger

than on the event whose probability is bound in Lemma 8.3. We should therefore choose the largest t

possible, which yields the following corollary.

Corollary 8.4. Under Assumptions 8.2.1-8.2.4, ifCK,αhα/α! < fZ,min, then the random variableNk(z1, . . . , zk)

is strictly positive with probability larger than

1− 2 exp

(
−

[n/k]hkp
(
fZ,min − CK,αhα/α!

)2
C1 + C2

(
fZ,min − CK,αhα/α!

) ),
guaranteeing the existence of the estimator θ̂(z1, . . . , zk) on this event.

8.2.2 Non-asymptotic bounds in probability for θ̂

To establish bounds on θ̂ for every fixed n, we will need some assumptions on the joint law of (X,Z).

Assumption 8.2.5. There exists a measure µ on (X ,A) such that IPX,Z is absolutely continuous with
respect to µ⊗ Lebp, where Lebp is the Lebesgue measure on Rp.
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Assumption 8.2.6. For every x ∈ X , z 7→ fX,Z(x, z) is differentiable almost everywhere up to the order
α. Moreover, there exists a finite constant Cg,f,α > 0, such that, for every positive integers m1, . . . ,mk

such that
∑k
i=1mi = α, for every 0 ≤ j1, . . . , jmi ≤ p,∫ k∏

i=1

∣∣∣∣∣(g(x1, . . . ,xk
)
− IE

[
g(X1, . . . ,Xk)

∣∣Zi = zi,∀i = 1, . . . , k
])

·

(
∂mifX,Z

∂zj1 · · · ∂zjmi

(
xi, zi + ui

)
− ∂mifX,Z
∂zj1 · · · ∂zjmi

(
xi, zi

)) ∣∣∣∣∣dµ(x1) · · · dµ(xk) ≤ Cg,f,α
k∏
i=1

∣∣ui∣∣∞,
for every choices of x1, . . . ,xk ∈ X and z1, . . . , zk ∈ Z,u1, . . . ,uk ∈ Rp such that zi + ui ∈ Z. There
exists a constant C ′K,α such that

∑
m1+ ···+mk=α

(
n

m1:k

)∫ k∏
i=1

K(ui)

p∑
j1,...,jmi=1

ui,j1 . . . ui,jmi

k∏
i=1

∣∣ui∣∣∞du1 · · · duk ≤ C ′K,α.

An easy situation is the case when g is bounded, i.e. when the following assumption hold.

Assumption 8.2.7. There exists a constant Cg such that ||g||∞ ≤ Cg < +∞.

When g is not bounded, a weaker result can still be proved under a “conditional Bernstein” assump-

tion. This assumption will help us to control the tail behavior of g so that exponential concentration

bounds are available.

Assumption 8.2.8 (conditional Bernstein assumption). There exists a positive function Bg such that, for
all l ≥ 1 and z1, . . . , zk ∈ Rkp,

IE
[∣∣g(X1, . . . ,Xk)

∣∣l ∣∣∣Z1 = z1, . . . ,Zk = zk

]
≤ Bg(z1, . . . , zk)ll!,

such that Bg(Z1, . . . ,Zk) ≤ B̃g almost surely, for some finite positive constant B̃g.

As a shortcut notation, we will define also Bg,z := Bg(z1, . . . , zk). The following proposition is proved

in Section 8.6.2.

Proposition 8.5 (Exponential bound for the estimator θ̂(z1, . . . , zk), with fixed z1, . . . zk ∈ Zk). Assume
either Assumption 8.2.7 or the weaker Assumption 8.2.8. Under Assumptions 8.2.1-8.2.6, for every
t, t′ > 0 such that CK,αhα/α! + t < fZ,min/2, we have

IP

(∣∣θ̂(z1, . . . , zk)− θ(z1, . . . , zk)
∣∣ < (1 + C3h

α + C4t
)
×
(
C5h

k+α + t′
))

≥ 1− 2 exp

(
− [n/k]t2hkp

C1 + C2t

)
− 2 exp

(
− [n/k]t′2hkp

C6 + C7t′

)
,

where C3 := 4fkZ,maxf
−2k
Z,minCK,α/α!, C4 := 4fkZ,maxf

−2k
Z,min and C5 := Cg,f,αC

′
K,αf

−k
Z,min/α!.

If Assumption 8.2.7 is satisfied, the result holds with the following values: C6 := 2C2
gf

k
Z,maxf

−2k
Z,min||K||2k2 ,

C7 := (8/3)CkKC
k
g f
−k
Z,min ; in the case of Assumption 8.2.8, the result holds with the following alternative

values: C̃6 := 128
(
Bg,z + B̃g

)2
C2k−1
K f−2k

Z,min, C̃7 := 2
(
Bg,z + B̃g

)
CkKf

−k
Z,min.

8.2.3 Asymptotic results for θ̂

The estimator θ̂(z1, . . . , zk) has been first studied by Stute (1991) [132]. He proved the consistency and

the asymptotic normality of θ̂(z1, . . . , zk). We recall his results as they will be used in Section 8.3.
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Assumption 8.2.9. (i) hn → 0 and nhpn →∞ ;

(ii) K(z) ≥ CK,11{|z|∞≤CK,1} for some CK,1, CK,2 > 0 ;

(iii) there exists a decreasing functionH : R+ → R+, and positive constants c1, c2 such thatH(t) =
t→∞

o(t−1)

and c1H(|z|∞) ≤ K(z) ≤ c2H(|z|∞).

Proposition 8.6 (Consistency of θ̂, Theorem 2 in Stute [132]). Under Assumption 8.2.9, for IP⊗kZ -almost
all (z1, . . . , zk), θ̂(z1, . . . , zk)

P−→ θ(z1, . . . , zk) as n→∞.

We introduce now a few more notation to state the asymptotic normality of θ̂. For 1 ≤ j, l,m ≤ k and

z1, . . . , z3k ∈ Z3k, define

θj,l(z1, . . . , zk) := IE
[
g(X1, . . . ,Xj−1,X,Xj+1, . . . ,Xk)g(Xk+1, . . . ,Xk+l−1,X,Xk+l+1, . . . ,X2k)∣∣Z = zj ; Zi = zi,∀i = 1, . . . , k, i 6= j ; Zk+i = zi,∀i = 1, . . . , k, i 6= l

]
,

θ̃j,l(z1, . . . , z2k) := IE
[
g(X1, . . . ,Xj−1,X,Xj+1, . . . ,Xk)g(Xk+1, . . . ,Xk+l−1,X,Xk+l+1, . . . ,X2k)∣∣Z = zj ; Zi = zi,∀i = 1, . . . , 2k, i /∈ {j, k + l}

]
. (8.6)

θj,l,m(z1, . . . , z3k) := IE
[
g(X1, . . . ,Xj−1,X,Xj+1, . . . ,Xk)

g(Xk+1, . . . ,Xk+l−1,X,Xk+l+1, . . . ,X2k)g(X2k+1, . . . ,X2k+m−1,X,X2k+m+1, . . . ,X3k)∣∣Z = zj ; Zi = zi,∀i = 1, . . . , 3k, i /∈ {j, k + l, 2k +m}
]
.

Assumption 8.2.10. (i) hn → 0 and nhpn →∞ ;

(ii) K is symmetric at 0 and bounded with compact support ;

(iii) θj,l is continuous at (z1, . . . , zk) for all 1 ≤ j, l ≤ k ;

(iv) θ is two times continuously differentiable in a neighborhood of (z1, . . . , zk) ;

(v) θj,l,m is bounded in a neighborhood of the point (z1, . . . , zk, z1, . . . , zk, z1, . . . , zk) ∈ Z3k for all
1 ≤ j, l,m ≤ k ;

(vi) fZ is twice differentiable in neighborhoods of zi, 1 ≤ i ≤ k.

Proposition 8.7 (Asymptotic normality of θ̂, Corollary 2.4 in Stute [132]). Under Assumption 8.2.10,
√
nhpn

(
θ̂(z1, . . . , zk)− θ(z1, . . . , zk)

) D−→ N (0, ρ2),

where ρ2 :=
∑k
j,l=1 1{zj=zl}

(
θj,l(z1, . . . , zk)− θ2(z1, . . . , zk)

)
||K||22/fZ(zj).

Moreover, let N be a positive integer, and
(
z

(1)
1 , . . . , z

(1)
k , . . . , z

(N)
1 , . . . , z

(N)
k

)
∈ Zk×N . Then under

similar regularity conditions,
√
nhpn

(
θ̂(z

(i)
1 , . . . , z

(i)
k )− θ(z(i)

1 , . . . , z
(i)
k )
)
i=1,...,N

D−→ N (0,H), where for 1 ≤
j̃, l̃ ≤ N ,

[H]j̃,l̃ :=

k∑
j,l=1

1{
z
(j̃)
j =z

(l̃)
l

}(θ̃j,l (z(j̃)
1 , . . . , z

(j̃)
k , z

(l̃)
1 , . . . , z

(l̃)
k

)
−θ
(
z

(j̃)
1 , . . . , z

(j̃)
k

)
θ
(
z

(l̃)
1 , . . . , z

(l̃)
k

)) ||K||22
fZ

(
z

(j̃)
j

) .

Note that the second part of Proposition 8.7 above is a consequence of the first one. Indeed, for

every (c1, . . . , cN ) ∈ RN , we can define θ
(
z

(1)
1 , . . . , z

(1)
k , . . . , z

(N)
1 , . . . , z

(N)
k

)
:=
∑N
ĩ=1 cĩθ(z

(̃i)
1 , . . . , z

(̃i)
k )

and corresponding versions of g, θ̂ and ρ2. Finally, the conclusion follows from the Cramér-Wold device.
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8.3 Theoretical properties of the estimator β̂

Let us define the matrix Z of dimension |Ik,n′ |×r by [Z′]i,j := ψj
(
z′σi(1), . . . , z

′
σi(k)

)
, where 1 ≤ i ≤ |Ik,n′ |,

1 ≤ j ≤ r and σi is the i-th element of Ik,n′ . The chosen order of Ik,n′ is arbitrary and has no

impact in practice. In the same way, we define the vector Y of dimension |Ik,n′ | defined by Yi :=

Λ
(
θ̂
(
z′σi(1), . . . , z

′
σi(k)

))
, such that the criterion (8.3) is in the standard Lasso form

β̂ := arg min
β∈Rr

[
||Y − Z′β||2 + λ|β|1

]
,

where for any vector v of size |Ik,n′ |, its scaled norm is defined by ||v|| := |v|2/
√
|Ik,n′ |. Following [39],

we define ξi,n, for 1 ≤ i ≤ |Ik,n′ |, by

ξi,n = ξσi,n := Λ
(
θ̂
(
z′σi(1), . . . , z

′
σi(k)

))
−ψ

(
z′σi(1), . . . , z

′
σi(k)

)T
β∗

= Λ
(
θ̂
(
z′σi(1), . . . , z

′
σi(k)

))
− Λ

(
θ
(
z′σi(1), . . . , z

′
σi(k)

))
.

8.3.1 Non-asymptotic bounds on θ̂

We will also use the Restricted Eigenvalue (RE) condition, introduced by Bickel, Ritov and Tsybakov [19].

For c0 > 0 and s ∈ {1, . . . , p}, it is defined as follows,

RE(s, c0) condition : The design matrix Z′ satisfies

κ(s, c0) := min

J0 ⊂ {1, . . . , r}
|J0| ≤ s

min

δ 6= 0

|δJC0 |1 ≤ c0|δJ0 |1

||Z′δ||
|δ|2

> 0.

Note that this condition is very mild, and is satisfied with a high probability for a large class of random

matrices: see Bellec et al. [12, Section 8.1] for references and a discussion. We will also need the

following regularity assumption on the function Λ(·).

Assumption 8.3.1. The function z 7→ ψ(z) are bounded on Z by a constant Cψ. Moreover, Λ(·) is
continuously differentiable. Let T be the range of θ, from Zk towards R. On an open neighborhood of
T , the derivative of Λ(·) is bounded by a constant CΛ′ .

The following theorem is proved in Section 8.6.3.

Theorem 8.8. Assume either Assumption 8.2.7 or the weaker Assumption 8.2.8. Suppose that Assump-
tions 8.2.1-8.2.6 and 8.3.1 hold and that the design matrix Z′ satisfies the RE(s, 3) condition. Choose
the tuning parameter as λ = γt, with γ ≥ 4 and t > 0, and assume that we choose h small enough such
that

h ≤ min

((fZ,minα!

4CK,α

)1/α

,
( t

2C5C8

)1/(k+α)
)
, (8.7)

where C8 := CψCΛ′
(
1 + C4fZ,min/2

)
. Then, we have

IP
(
||Z′(β̂ − β∗)|| ≤ 4(γ + 1)t

√
s

κ(s, 3)
and |β̂ − β∗|q ≤

42/q(γ + 1)ts1/q

κ2(s, 3)
, for every 1 ≤ q ≤ 2

)
≥ 1− 2

∑
σ∈Ik,n′

[
exp

(
−

[n/k]f2
Z,minh

kp

16C1 + 4C2fZ,min

)
+ exp

(
− [n/k]t2hkp

4C2
8C6,σ + 2C8C7,σt

)]
. (8.8)
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If Assumption 8.2.7 is satisfied, the result holds with C6,σ and C7,σ constant, respectively to C6 and C7

defined in Proposition 8.5 ; in the case of Assumption 8.2.8, the result holds with the following alternative
values: C6,σ := 128

(
Bg(z

′
σ(1), . . . , z

′
σ(k)) + B̃g

)2
C2k
K f−2k

Z,min and
C7,σ := 2

(
Bg(z

′
σ(1), . . . , z

′
σ(k)) + B̃g

)
CkKf

−k
Z,min.

The latter theorem gives some bounds that hold in probability for the prediction error ||Z′(β̂ − β∗)||n′
and for the estimation error |β̂−β∗|q with 1 ≤ q ≤ 2 under the specification (8.2). Note that the influence

of n′ and r is hidden through the Restricted Eigenvalue number κ(s, 3). The result depends on three

parameters to be chosen: γ, t, h. The choice of γ is easy, as a larger γ can only deteriorate the bound.

We therefore have an interest in choosing the smallest γ possible, i.e. γ = 3.

The choice of the parameters t and h is more difficult. Indeed, looking at Equation (8.8), we can see

that a lower t gives a smaller bound, but at the same time the probability of this event (which probability

is bounded in Equation (8.8)) is lower. This induces a trade-off between the probability of the event

and the size of the bound, as we want the smallest possible bound with the highest possible probability.

Moreover, we cannot choose t too small, because of the lower bound (8.7): t is limited by a value

proportional to hα. On the one hand, we could choose a small h, but on the other hand, the probability

of the event in Equation (8.8) will decrease. Summing up this reasoning in other words, we get the

following conclusion: low values of h and t give a smaller bound, while high values of h and t give
a high probability. Therefore, there is some kind of compromise to do, depending of the kind of bound

one is looking for.

8.3.2 Asymptotic properties of β̂ when n→∞ and for fixed n′

In this part, n′ is still assumed to be fixed and we state the consistency and the asymptotic normality of β̂

as n→∞. As above, we adopt a fixed design: the z′i are arbitrarily fixed or, equivalently, our reasoning

are made conditionally on the second sample. In this section, we follow Derumigny and Fermanian [39]

by giving similar results. Proofs are identical and therefore omitted.

For n, n′ > 0, denote by β̂n,n′ the estimator (8.3) with h = hn and λ = λn,n′ .

Lemma 8.9. We have β̂n,n′ = arg min
β∈Rp′ Gn,n′(β), where

Gn,n′(β) :=
2(n′ − k)!

n′!

∑
σ∈Ik,n′

ξσ,nψ
(
z′σ(1), . . . , z

′
σ(k)

)T
(β∗ − β)

+
(n′ − k)!

n′!

∑
σ∈Ik,n′

{
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
(β∗ − β)

}2
+ λn,n′ |β|1. (8.9)

Theorem 8.10 (Consistency of β̂). Under Assumption 8.2.9, if n′ is fixed and λ = λn,n′ → λ0, then,
given z′1, . . . , z

′
n′ and as n tends to the infinity, β̂n,n′

P−→β∗∗ := infβ G∞,n′(β), where

G∞,n′(β) :=
1

n′

∑
σ∈Ik,n′

(
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
(β∗ − β)

)2

+ λ0|β|1.

In particular, if λ0 = 0 and < {ψ
(
z′σ(1), . . . , z

′
σ(k)

)
: σ ∈ Ik,n′} >= Rr, then β̂n,n′

P−→β∗.



Chapter 8. Estimation of a regular conditional functional by conditional U-statistic regression 230

Theorem 8.11 (Asymptotic law of the estimator). Under Assumption 8.2.10, and if λn,n′(nhpn,n′)1/2 tends
to ` when n → ∞, we have (nhpn,n′)

1/2(β̂n,n′ − β∗)
D−→ u∗ := arg minu∈Rr F∞,n′(u), given z′1, . . . , z

′
n′ ,

where

F∞,n′(u) :=
2(n′ − k)!

n′!

∑
σ∈Ik,n′

r∑
j=1

Wσψj
(
z′σ(1), . . . , z

′
σ(k)

)
uj +

(n′ − k)!

n′!

∑
σ∈Ik,n′

(
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
u
)2

+ `

r∑
i=1

(
|ui|1{β∗i =0} + ui sign(β∗i )1{β∗i 6=0}

)
,

with W = (Wσ)σ∈Ik,n′ ∼ N
(

0, H̃
)

where

[H̃]σ,ς :=

k∑
j,l=1

1{
z′
σ(j)

=z′
ς(l)

} ||K||22
fZ

(
z′σ(j)

)Λ′
(
θ
(
z′σ(1), . . . , z

′
σ(k)

))
Λ′
(
θ
(
z′ς(1), . . . , z

′
ς(k)

))

·
(
θ̃j,l

(
z′σ(1), . . . , z

′
σ(k), z

′
ς(1), . . . , z

′
ς(k)

)
− θ

(
z′σ(1), . . . , z

′
σ(k)

)
θ
(
z′ς(1), . . . , z

′
ς(k)

))
,

and θ̃j,l is as defined in Equation (8.6).

Moreover, lim supn→∞ IP (Sn = S) = c < 1, where Sn := {j : β̂j 6= 0} and S := {j : βj 6= 0}.

A usual way of obtaining the oracle property is to modify our estimator in an “adaptive” way. Following

Zou [146], consider a preliminary “rough” estimator of β∗, denoted by β̃n, or more simply β̃. Moreover

νn(β̃n − β∗) is assumed to be asymptotically normal, for some deterministic sequence (νn) that tends

to the infinity. Now, let us consider the same optimization program as in (8.3) but with a random tuning

parameter given by λn,n′ := λ̃n,n′/|β̃n|δ, for some constant δ > 0 and some positive deterministic

sequence (λ̃n,n′). The corresponding adaptive estimator (solution of the modified Equation (8.3)) will be

denoted by β̌n,n′ , or simply β̌. Hereafter, we still set Sn = {j : β̌j 6= 0}.

Theorem 8.12 (Asymptotic law of the adaptive estimator of β). Under Assumption 8.2.10, if the following
convergence hold λ̃n,n′(nhpn,n′)1/2 → ` ≥ 0 and λ̃n,n′(nhpn,n′)1/2νδn →∞ when n→∞, we have

(nhpn,n′)
1/2(β̌n,n′ − β∗)S

D−→ u∗∗S := arg min
uS∈R

s
F̌∞,n′(uS ), where

F̌∞,n′(uS ) :=
2(n′ − k)!

n′!

∑
σ∈Ik,n′

∑
j∈S

Wσψj(z
′
i)uj +

(n′ − k)!

n′!

∑
σ∈Ik,n′

(∑
j∈S

ψj(z
′
i)uj

)2

+ `
∑
i∈S

ui
|β∗i |δ

sign(β∗i ),

with W = (Wσ)σ∈Ik,n′ ∼ N
(
0, H̃

)
.

Moreover, when ` = 0, the oracle property is fulfilled: IP (Sn = S)→ 1 as n→∞.

8.3.3 Asymptotic properties of β̂ jointly in (n, n′)

Now, we consider the framework in which both n and n′ are going to infinity, while the dimensions p and

r stay fixed. We now provide a consistency result for β̂n,n′ .

Theorem 8.13 (Consistency of β̂n,n′ , jointly in (n, n′)). Assume that Assumptions 8.2.1- 8.3.1 are sat-
isfied. Assume that

∑
σ∈Ik,n′

ψ
(
z′σ(1), . . . , z

′
σ(k)

)
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
/n′ converges to a matrix Mψ,z′ , as

n′ → ∞. Assume that λn,n′ → λ0 and n′ exp(−Anhkp) → 0 for every A > 0, when (n, n′) → ∞. Then
β̂n,n′

P−→ arg minβ∈Rr G∞,∞(β), as (n, n′) → ∞, where G∞,∞(β) := (β∗ − β)Mψ,z′(β
∗ − β)T + λ0|β|1.

Moreover, if λ0 = 0 and Mψ,z′ is invertible, then β̂n,n′ is consistent and tends to the true value β∗.
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Note that, since the sequence (z′i) is deterministic, we only assume the convergence of the se-

quence of deterministic matrices
∑
σ∈Ik,n′

ψ
(
z′σ(1), . . . , z

′
σ(k)

)
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
/n′ in Rr

2

. Moreover,

if the “second subset” (z′i)i=1,...,n′ were a random sample (drawn along the law IPZ), the latter conver-

gence would be understood “in probability”. And if IPZ satisfies the identifiability condition (Proposition

8.1), then Mψ,z′ would be invertible and β̂n,n′ → β∗ in probability. Now, we want to go one step further

and derive the asymptotic law of the estimator β̂n,n′ . For this, we will need the following assumption.

Assumption 8.3.2. (i) The support of the kernel K(·) is included into [−1, 1]p. Moreover, for all n, n′

and every (i, j) ∈ {1, . . . , n′}2, i 6= j, we have |z′i − z′j |∞ > 2hn,n′ .

(ii) (a) n′(nhp+4α
n,n′ +h2α

n,n′ +hpn,n′ + (nhpn,n′)
−1)→ 0, (b) λn,n′(n′ nhpn,n′)1/2 → 0, (c) n′ nhpn,n′ →∞ and

nhp+2α−ε
n,n′ / lnn′ →∞ for some ε ∈ [0, 2α[.

(iii) The distribution IPz′,n′ := |Ik,n′ |−1
∑
σ∈Ik,n′

δ(z′
σ(1)

,...,z′
σ(k)

) weakly converges as n′ → ∞, to a
distribution IPz′,k,∞ on Rkp. There exists a distribution IPz′,∞ on Rkp, with a density fz′,∞ with
respect to the p-dimensional Lebesgue measure such that IPz′,k,∞ = IP⊗kz′,∞.

(iv) The matrix V1 :=
∫
ψ(z′1, . . . z

′
k)ψ(z′1, . . . z

′
k)T fz′,∞(z′1) · · · fz′,∞(z′k)dz′1 · · · dz′k is non-singular.

(v) Λ(·) is two times continuously differentiable. Let T be the range of θ, from Zk towards R. On an
open neighborhood of T , the second derivative of Λ(·) is bounded by a constant CΛ′′ .

(vi) some integrals exists and are finite. We will especially need the folowing ones.

Ṽ1 :=

∫
θ
(
z′1, . . . , z

′
k

)
Λ′
(
θ
(
z′1, . . . , z

′
k

))
ψ
(
z′1, . . . , z

′
k

)
fz′,∞(z1) · · · fz′,∞(zk) dz1 · · · dzk ;

V2 :=

∫
||K||22
fZ(z′1)

g
(
x1,x2, . . . ,xk

)
g
(
x1,y2, . . . ,yk

)
Λ′2
(
θ(z′1, . . . , z

′
k)
)
ψ
(
z′1, . . . , z

′
k

)
ψ
(
z′1, . . . , z

′
k

)T
× fX|Z=z′1

(x1) dµ(x1)dµ(z′1)

k∏
i=2

fX|Z=z′i
(yi)fX|Z=z′i

(xi)fz′,∞(z′i) dµ(xi)dµ(yi)dz
′
i.

Theorem 8.14 (Asymptotic law of β̂n,n′ , jointly in (n, n′)). Under Assumptions 8.2.1-8.2.5 and under
Assumption 8.3.2, we have

(n× n′ × hpn,n′)
1/2(β̂n,n′ − β∗)

D−→ N (0, Ṽas),

where Ṽas := V −1
1 V2V

−1
1 , V1 is the matrix defined in Assumption 8.3.2(iv), and V2 in Assumption 8.3.2(v).

This theorem is proved in Section 8.7.

8.4 Applications and examples

Following Example 4.4 in Stute [132], we consider the function g(x1, x2) := 1{x1 ≤ x2}, with k = 2. In

this case θ(z1, z2) = IP(X1 ≤ X2|Z1 = z1,Z2 = z2). The parameter θ(z1, z2) quantifies the probability

that the quantity of interest X be smaller if we knew that Z = z1 than if we knew that Z = z2.

To illustrate our methods, we choose a simple example, with the Epanechnikov kernel, defined by

K(x) := (3/4)(1 − u2)1|u| ≤ 1. It is a kernel of order α = 2, with
∫
K2 = 3/5. Assumption 8.2.1 is then

satisfied with CK := 3/4. Fix p = 1, Z = [−1, 1], X = R, fZ(z) = φ(z)1{|z| ≤ 1}/(1 − 2Φ(−1)), where
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Φ and φ are respectively the cdf and the density of the standard Gaussian distribution and X|Z = z ∼
N (z, 1), for every z ∈ Z. For any z1, z2 ∈ Z,∫ ∣∣∣K(u1

)
· · ·K

(
uk
)∣∣∣ ∑
m1+ ···+mk=α

(
α

m1:k

)

·
k∏
i=1

p∑
j1,...,jmi=1

∣∣ui,j1 . . . ui,jmi ∣∣ sup
t∈[0,1]

∣∣∣∣∣ ∂mifZ
∂zj1 · · · ∂zjmi

(
zi + tui

)∣∣∣∣∣ du1 · · · duk

=

∫
K(u1)K(u2)

∑
m1+m2=2

2

m1!m2!
·
k∏
i=1

∣∣umii ∣∣ sup
t∈[0,1]

∣∣∣∣∂mifZ∂zmi

(
zi + tui

)∣∣∣∣ du1du2

≤
∫
K(u1)K(u2) ·

(∣∣u2
2

∣∣ sup
z∈Z
|fZ(z)| sup

z∈Z

∣∣∣∣∂2fZ
∂z2

(z)

∣∣∣∣
+

1

2

∣∣u1u2

∣∣ sup
z∈Z

∣∣∣∣∂fZ∂z (z)

∣∣∣∣ sup
z∈Z

∣∣∣∣∂fZ∂z (z)

∣∣∣∣+
∣∣u2

1

∣∣ sup
z∈Z

∣∣∣∣∂2fZ
∂z2

(z)

∣∣∣∣ sup
t∈[0,1]

|fZ(z)|

)
du1du2

≤ 2× 0.592 ×
∫
K(u)u2du+

1

2
× 0.362

( ∫
|u|K(u)du

)2 ≤ 0.2.

Assumption 8.2.2 is then satisfied with CK,α = 0.2. Assumption 8.2.3 is easily satisfied with fZ,max =

1/
(√

2π(1 − 2Φ(−1))
)
≤ 0.59. Therefore, we can apply Lemma 8.3. We compute the constants C1 :=

2fkZ,max||K||2k2 = 2 × 0.592 × (3/5)2 ≤ 0.26 and C2 := (4/3)CkK = (4/3) × (3/4)2 = 3/4. Therefore, for

any n ≥ 0, h, t > 0, z1, z2 ∈ Z, we have

IP

(∣∣N2(z1, z2)− fZ(z1)fZ(z2)
∣∣ ≤ 0.1hα + t

)
≥ 1− 2 exp

(
− [n/2]t2

0.26h2 + 0.75h2t

)
,

Assumption 8.2.4 is satisfied with fZ,min = φ(1)/(1−2Φ(−1)) > 0.35, so that we can apply Corollary 8.4.

Therefore, the estimator θ̂(z1, z2) exists with probability greater than

1− 2 exp

(
−

(n− 1)h2
(
0.35− 0.1h2

)2
0.52 + 1.5×

(
0.35− 0.1h2

)),
Note that this probability is greater than 0.99 as soon as n ≥ 3

(
0.52 + 1.5 × (0.35 − 0.1h2)

)
/
(
h2(0.35 −

0.1h2)2
)
. For example, with h = 0.2, it means that the estimator θ̂(z1, z2) exists with a probability greater

than 99% as soon as n is greater than 651.

We list below other possible examples of applications. Conditional moments constitute also a natural

class of U-statistics. They include the conditional variance (pX = 1, k = 2, g(X1, X2) = X2
1 −X1 ·X2)

and the conditional covariance (pX = 2, k = 2, g(X1,X2) := X1,1 ·X2,1 −X1,1 ·X2,2). The conditional

variance gives information about the volatility of X given the variable Z. Conditional covariances can be

used to describe how the dependence moves as a function of the conditioning variables Z. Higher-order

conditional moments (skewness, kurtosis, and so on) can also be estimated by higher-order conditional

U-statistics, and they described respectively how the asymmetry and the behavior of the tails of X

change as function of Z.

Gini’s mean difference, an indicator of dispersion, can also be used in this framework. Formally, it

is defined as the U-statistic with pX = 1, k = 2 and g(X1, X2) := |X1 − X2|. Its conditional version

describes how two variables are far away, on average, given their conditioning variables Z. for example,

X could be the income of an individual, Z could be the position of its home, and θ(z1, z2) represent the

average inequality between the income of two persons, one at point z1 and the other at point z2.

Other conditional dependence measures can also be written as conditional U-statistics, see e.g.

Example 1.1.7 of Koroljuk and Borovskisch [84]. They show how a U-statistic of order k = 5 can be used
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to estimated the dependence parameter

θ =

∫∫ (
F1,2(x, y)− F1,2(x,∞)F1,2(∞, y)

)
dF1,2(x, y).

In our framework, we could consider a conditional version, given by

θ(z1, z2) =

∫∫ (
F1,2|Z=z(x, y)− F1,2|Z=z(x,∞)F1,2|Z=z(∞, y)

)
dF1,2|Z=z(x, y),

where X is of dimension pX = 2. Finally, the conditional Kendall’s tau is also included in our framework,

with pX = 2, k = 2, g(X1,X2) := 4 · 1{X1<X2} − 1.

8.5 Notations

In the proofs, we will use the following shortcut notations: x1:k denotes the k-tuple (x1, . . . ,xk). Similarly,

for a function σ, σ(1 : k) denotes the tuple (σ(1), . . . , σ(k)), and Xσ(1:k) is the k-tuple (Xσ(1), . . . ,Xσ(k)).

For any variable Y and any collection of given points (z1, . . . zk), the conditional expectation IE[Y |Z1:k =

z1:k] denotes IE[Y |Z1 = z1, . . . ,Zk = zk]. We denote by
∫
φ(z1:k)dz1:k the integral

∫
φ(z1, . . . , zk)dz1 · · · dzk

for any integrable function φ : Rk×p → R, and by
∫
g(x1:k)dµ⊗k(x1:k) the integral

∫
g(z1, . . . , zk)dµ(x1) · · · dµ(xk)

for any µ-integrable function g : X k → R.

8.6 Finite distance proofs for θ̂ and β̂

For convenience, we recall Berk’s (1970) inequality (see Theorem A in Serfling [123, p.201]). Note that,

if m = 1, this reduces to Bernstein’s inequality.

Lemma 8.15. Let k > 0, n ≥ k, X1, . . . ,Xn i.i.d. random vectors with values in a measurable space X
and g : X k → [a, b] be a real bounded function. Set θ := IE[g(X1:k)] and σ2 := V ar[g(X1:k)]. Then, for
any t > 0,

IP

(n
k

)−1 ∑
σ∈I↑k,n

g
(
Xσ(1:k)

)
− θ ≥ t

 ≤ exp

(
− [n/k]t2

2σ2 + (2/3)(b− θ)t

)
,

where Ik,n is the set of bijective functions from {1, . . . , k} to {1, . . . , n} and I↑k,n is the subset of Ik,n
made of increasing functions.

Note that g does not need to be symmetric for this bound to hold. Indeed, if g is not symmetric, we can

nonetheless apply this lemma to the symmetrized version g̃ defined as g̃(x1:k) := (k!)−1
∑
σ∈Ik,k g(xσ(1:k)),

and we get the result.

8.6.1 Proof of Lemma 8.3

We decompose the quantity to bound into a stochastic part and a bias as follows:

Nk(z1:k)−
k∏
i=1

fZ(zi) =
(
Nk(z1:k)− IE[Nk(z1:k)]

)
+
(
IE[Nk(z1:k)]−

k∏
i=1

fZ(zi)
)
.
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We first bound the bias.∣∣∣∣IE[Nk(z1:k)
]
−

k∏
i=1

fZ(zi)

∣∣∣∣ =

∣∣∣∣IE[(nk
)−1 ∑

σ∈Ik,n

k∏
i=1

Kh

(
Zσ(i) − zi

)]
−

k∏
i=1

fZ(zi)

∣∣∣∣
=

∣∣∣∣ ∫ ( k∏
i=1

fZ(zi + hui)−
k∏
i=1

fZ(zi)
) k∏
i=1

K(ui)dui

∣∣∣∣
=

∣∣∣∣ ∫ (φz,u(1)− φz,u(0)
) k∏
i=1

K(ui)dui

∣∣∣∣,
where φz,u(t) :=

∏k
j=1 fZ

(
zi + thuj

)
for t ∈ [−1, 1]. Note that this function has at least the same

regularity as fZ, so it is α-differentiable, and by a Taylor-Lagrange expansion, we get∣∣∣∣IE[Nk(z1:k)]−
k∏
i=1

fZ(zi)

∣∣∣∣ =

∣∣∣∣ ∫Rkp

( α−1∑
i=1

1

i!
φ(i)
z,u(0) +

1

α!
φ(α)
z,u(tz,u)

) k∏
i=1

K(ui)dui

∣∣∣∣.
For l > 0, we have

φ(l)
z,u(0) =

∑
m1+ ···+mk=l

(
α

m1:k

) k∏
i=1

∂mi
(
fZ
(
zi + htui

))
∂tmi

(0)

=
∑

m1+ ···+mk=l

(
α

m1:k

) k∏
i=1

p∑
j1,...,jmi=1

hmiui,j1 . . . ui,jmi
∂mifZ

∂zj1 · · · ∂zjmi

(
zi + tz,uhui

)
,

where
(
α

m1:k

)
:= α!/

(∏k
i=1(mi!)

)
is the multinomial coefficient. Using Assumption 8.2.1, for every i =

1, . . . , α − 1, we get
∫
K(u1) · · ·K(uk)φ

(i)
z,u(0)du1 · · · duk = 0. Therefore, only the last term remains and

we have ∣∣∣∣IE[Nk(z1:k)]−
k∏
i=1

fZ(zi)

∣∣∣∣ =

∣∣∣∣ ∫ ( 1

α!
φ(α)
z,u(tz,u)

) k∏
i=1

K(ui)dui

∣∣∣∣ ≤ CK,α
α!

hα,

using Assumption 8.2.2.

Second, we bound the stochastic part. We have

Nk(z1:k)− IE[Nk(z1:k)] =
k!(n− k)!

n!

∑
σ∈I↑k,n

k∏
i=1

Kh

(
Zσ(i) − zi

)
−

k∏
i=1

IE[Kh

(
Zi − zi

)
].

Then, we can apply Lemma 8.15 to the function g defined by g(z̃1, . . . , z̃k) :=
∏k
i=1Kh

(
z̃i − zi

)
. Here,

we have b = −a = h−kpCkK , and

V ar
[
g(Z1, . . . ,Zk)2

]
≤ IE

[
g(Z1, . . . ,Zk)2

]
=

k∏
i=1

IE
[
Kh

(
Zi − zi

)2] ≤ h−kpfkZ,max||K||2k2 .

Finally, we get

IP

((
n

k

)−1

Nk(z1:k)− IE[Nk(z1:k)] ≥ t

)
≤ exp

(
− [n/k]t2

2h−kpfkZ,max||K||2k2 + (4/3)h−kpCkKt

)
,

�

8.6.2 Proof of Proposition 8.5

We have the following decomposition

|θ̂(z1:k)− θ(z1:k)|
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=

∣∣∣∣Nk(z1:k)−1 (n− k)!

n!

∑
σ∈Ik,n

k∏
i=1

Kh

(
Zσ(i) − zi

)(
g(Xσ(1:k))− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])∣∣∣∣
=

∏k
i=1 fZ(zi)

Nk(z1, . . . , zk)
·
∣∣∣∣ (n− k)!

n!

∑
σ∈Ik,n

k∏
i=1

Kh

(
Zσ(i) − zi

)
fZ(zi)

(
g(Xσ(1:k))− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])∣∣∣∣
=:

∏k
i=1 fZ(zi)

Nk(z1, . . . , zk)
·
∣∣∣∣ ∑
σ∈Ik,n

Sσ

∣∣∣∣.
The conclusion will follow from the next three lemmas, where we will bound separately

∏k
i=1 fZ/Nk, the

bias term
∣∣∑

σ∈Ik,n IE[Sσ]
∣∣ and the stochastic component

∣∣∑
σ∈Ik,n

(
Sσ − IE[Sσ]

)∣∣.
Lemma 8.16 (Bound for

∏k
i=1 fZ(zi)/Nk). Under Assumptions 8.2.1, 8.2.2, 8.2.3, and 8.2.4 and if for

some t > 0, CK,αhα/α! + t < fkZ,min/2, we have

IP

(∣∣∣∣ 1

Nk(z1:k)
− 1∏k

i=1 fZ(zi)

∣∣∣∣ ≤ 4

f2k
Z,min

(
CK,αh

α

α!
+ t

))

≥ 1− 2 exp

(
− [n/k]t2

2h−kpfkZ,max||K||2k2 + (4/3)h−kpCkKt

)
,

and on the same event, Nk(z1:k) is strictly positive and∏k
i=1 fZ(zi)

Nk(z1:k)
≤ 1 +

4fkZ,max
f2k
Z,min

(
CK,αh

α

α!
+ t

)
.

Proof : Using the mean value inequality for the function x 7→ 1/x, we get∣∣∣∣ 1

Nk(z1:k)
− 1∏k

i=1 fZ(zi)

∣∣∣∣ ≤ 1

N2
∗

∣∣Nk(z1:k)−
k∏
i=1

fZ(zi)
∣∣,

where N∗ lies between Nk(z1:k) and
∏k
i=1 fZ(zi). By Lemma 8.3, we get

IP

(∣∣Nk(z1:k)−
k∏
i=1

fZ(zi)
∣∣ ≤ CK,α

α!
hα + t

)
≥ 1− 2 exp

(
− [n/k]t2

2h−kpfkZ,max||K||2k2 + (4/3)h−kpCkKt

)
.

On this event,
∣∣Nk(z1:k)−

∏k
i=1 fZ(zi)

∣∣ ≤ (1/2)
∏k
i=1 fZ(zi) by assumption, so that fkZ,min/2 ≤ Nk(z1:k).

We have also fkZ,min/2 ≤
∏k
i=1 fZ(zi). Thus, we have fkZ,min/2 ≤ N∗. Combining the previous inequali-

ties, we finally get∣∣∣∣ 1

Nk(z1:k)
− 1∏k

i=1 fZ(zi)

∣∣∣∣ ≤ 1

N2
∗

∣∣Nk(z1:k)−
k∏
i=1

fZ(zi)
∣∣ ≤ 4

f2k
Z,min

(
CK,αh

α

α!
+ t

)
.

�

Now, we provide a bound on the bias.

Lemma 8.17. Under Assumptions 8.2.1 and 8.2.6, we have
∣∣IE[Sσ]

∣∣ ≤ Cg,f,αCK,αhkα/(fkZ,minα!).

Proof : We remark that

0 =

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])
fX|Z=z1

(x1) · · · fX|Z=zk(xk)dµ⊗k(x1:k)

=

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])fX,Z(x1, z1) · · · fX,Z(xk, zk)∏k
i=1 fZ(zi)

dµ⊗k(x1:k). (8.10)
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We have

IE[Sσ] = IE

[
Kh(Zσ(1) − z1) · · ·Kh(Zσ(k) − zk)∏k

i=1 fZ(zi)

(
g
(
Xσ(1), . . . ,Xσ(k)

)
− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])]

=

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

]) k∏
i=1

K(ui)

fZ(zi)
fX,Z(xi, zi + hui) dµ(xi)dui

=

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])( k∏
i=1

fX,Z

(
xi, zi + hui

)
−

k∏
i=1

fX,Z

(
xi, zi

)) k∏
i=1

K(ui)

fZ(zi)
dµ(xi)dui.

We apply now the Taylor-Lagrange formula to the function

φx1:k,u1:k
(t) :=

k∏
i=1

fX,Z

(
xi, zi + hui

)
,

and get

IE[Sσ] =

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])(
φx1:k,u1:k

(t)(1)− φx1:k,u1:k
(t)(0)

) k∏
i=1

K(ui)

fZ(zi)
dµ(xi)dui

=

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])
·
( α−1∑
j=1

1

j!
φx1:k,u1:k

(t)(j)(0) +
1

α!
φx1:k,u1:k

(t)(α)(tx,u)

) k∏
i=1

K(ui)

fZ(zi)
dµ(xi)dui

=

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])
·
(

1

α!
φx1:k,u1:k

(t)(α)(tx,u)

) k∏
i=1

K(ui)

fZ(zi)
dµ(xi)dui

=

∫ (
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])
· 1

α!

(
φx1:k,u1:k

(t)(α)(tx,u)− φx1:k,u1:k
(t)(α)(0)

) k∏
i=1

K(ui)

fZ(zi)
dµ(xi)dui.

For every real t, we have

φ(α)(t) =
∑

m1+ ···+mk=α

(
n

m1:k

) k∏
i=1

∂mi
(
fX,Z

(
xi, zi + htui

))
∂tmi

=
∑

m1+ ···+mk=α

(
n

m1:k

) k∏
i=1

p∑
j1,...,jmi=1

hmiui,j1 . . . ui,jmi
∂mifX,Z

∂zj1 · · · ∂zjmi

(
xi, zi + htui

)
= hα

∑
m1+ ···+mk=α

(
n

m1:k

) k∏
i=1

p∑
j1,...,jmi=1

ui,j1 . . . ui,jmi
∂mifX,Z

∂zj1 · · · ∂zjmi

(
xi, zi + htui

)
. (8.11)

Therefore, we get

IE[Sσ] =
∑

m1+ ···+mk=α

(
n

m1:k

)∫ k∏
i=1

K(ui)∏k
i=1 fZ(zi)

p∑
j1,...,jmi=1

ui,j1 . . . ui,jmi

·
(
g(x1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])
·

(
∂mifX,Z

∂zj1 · · · ∂zjmi

(
xi, zi + htui

)
− ∂mifX,Z
∂zj1 · · · ∂zjmi

(
xi, zi

))
dµ(x1)du1 · · · dµ(xk)duk,

and, using Assumption 8.2.6, this yields∣∣IE[Sσ]
∣∣ ≤ Cg,f,αCK,αh

α+k

fkZ,minα!
.
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�

Now we bound the stochastic component. We have the following equality∣∣∣∣ ∑
σ∈Ik,n

(
Sσ − IE[Sσ]

)∣∣∣∣ =

∣∣∣∣ (n− k)!

n!

∑
σ∈Ik,n

g
(
(Xσ(1),Zσ(1)) , . . . , (Xσ(k),Zσ(k))

)∣∣∣∣
with the function g̃ defined by

g̃
(
(X1,Z1) , . . . , (Xk,Zk)

)
=
Kh

(
Z1 − z1

)
· · ·Kh

(
Zk − zk

)∏k
i=1 fZ(zi)

(
g(X1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])
− IE

[
Kh

(
Z1 − z1

)
· · ·Kh

(
Zk − zk

)∏k
i=1 fZ(zi)

(
g(X1:k)− IE

[
g(X1:k)

∣∣Z1:k = z1:k

])]

By construction, IE
[
g̃
(
(X1,Z1) , . . . , (Xk,Zk)

)]
= 0. If g̃ is bounded, we can derive an immediate bound

for this stochastic component. Indeed, we would have ||g̃||∞ ≤ 4CkKh
−kpCkg /f

k
Z,min. Moreover, we have

V ar
[
g̃
(
(X1,Z1) , . . . , (Xk,Zk)

)]
≤ IE

[
K2
h

(
Z1 − z1

)
· · ·K2

h

(
Zk − zk

)∏k
i=1 f

2
Z(zi)

g2(X1, . . . ,Xk)

]
≤ C2

gf
k
Z,maxf

−2k
Z,minh

−kp||K||2k2 .

Therefore, we can apply Lemma 8.15, and we get

IP

(∣∣∣ ∑
σ∈Ik,n

(
Sσ − IE[Sσ]

)∣∣∣ > t

)
≤ 2 exp

(
− [n/k]t2

2C2
gf

k
Z,maxf

−2k
Z,minh

−kp||K||2k2 + (8/3)CkKh
−kpCkg f

−k
Z,mint

)
.

In the following Lemma 8.18, our goal will be to bound the stochastic component using only Assump-

tion 8.2.8 on the conditional moments of g.

Lemma 8.18. Under Assumptions 8.2.1, 8.2.4 and 8.2.8, for every t > 0, we have

IP

 ∑
σ∈Ik,n

Sσ − IE[Sσ] > t

 ≤ exp

(
−

t2f2k
Z,minh

kp[n/k]

128
(
Bg,z + B̃g

)2
C2k−1
K + 2t

(
Bg,z + B̃g

)
CkKf

k
Z,min

)
.

Proof: Using the same decomposition for U-statistics as in Hoeffding [70], we obtain

∑
σ∈Ik,n

Sσ − IE[Sσ] =
1

n!

∑
σ∈In,n

1

[n/k]

[n/k]∑
i=1

Vn,i,σ,

where

Vn,i,σ := g̃
((

Xσ(1+(i−1)k),Zσ(2+(i−1)k)

)
, . . . ,

(
Xσ(ik),Zσ(jk)

))
.

For any λ > 0, we have

IP

 ∑
σ∈Ik,n

Sσ − IE[Sσ] > t

 ≤ e−λtIE
exp

λ ∑
σ∈Ik,n

Sσ − IE[Sσ]


≤ e−λtIE

exp

λ 1

n!

∑
σ∈In,n

1

[n/k]

[n/k]∑
i=1

Vn,i,σ


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≤ e−λt 1

n!

∑
σ∈In,n

IE

exp

λ 1

[n/k]

[n/k]∑
i=1

Vn,i,σ


≤ e−λt 1

n!

∑
σ∈In,n

[n/k]∏
i=1

IE

[
exp

(
λ

1

[n/k]
Vn,i,σ

)]

≤ e−λt
(

sup
σ∈In,n, i=1,...,[n/k]

IE
[
exp

(
λ[n/k]−1Vn,i,σ

)])[n/k]

. (8.12)

Let l ≥ 2. Using the inequality (a+ b+ c+ d)l ≤ 4l(al + bl + cl + dl), we get

IE
[
|Vn,i,σ|l

]
= IE

[
|Vn,1,σ|l

]
≤ 4l IE

[
|g(Xσ(1), . . . ,Xσ(k))|l

k∏
i=1

|Kh|l
(
Zσ(i) − zi

)
f lZ(zi)

]
+ 4l IE

[∣∣IE[g(X1:k)
∣∣Z1:k = z1:k

]∣∣l k∏
i=1

|Kh|l
(
Zσ(i) − zi

)
f lZ(zi)

]
+ 4l

∣∣∣∣IE[g(Xσ(1), . . . ,Xσ(k))

k∏
i=1

Kh

(
Zσ(i) − zi

)
f lZ(zi)

]∣∣∣∣l

+ 4l
∣∣∣∣IE[∣∣IE[g(X1:k)

∣∣Z1:k = z1:k

]∣∣ k∏
i=1

Kh

(
Zσ(i) − zi

)
f lZ(zi)

]∣∣∣∣l
Using Jensen’s inequality for the function x 7→ |x|p with the second, third and fourth terms, and the law

of iterated expectations for the first and the third terms, we get

IE
[
|Vn,i,σ|l

]
≤ 4l · 2 IE

[
IE
[
|g(Xσ(1), . . . ,Xσ(k))|l

∣∣Zσ(1), . . . ,Zσ(k)

] k∏
i=1

|Kh|l
(
Zσ(i) − zi

)
f lZ(zi)

]
+ 4l · 2 IE

[
IE
[∣∣g(X1:k)

∣∣l∣∣Zi = zi,∀i = 1, . . . , k
] k∏
i=1

|Kh|l
(
Zσ(i) − zi

)
f lZ(zi)

]
≤ 4l · 2 IE

[(
Blg(Z1, . . . ,Zk) +Blg(z1, . . . , zk)

)l
l!

k∏
i=1

|Kh|l
(
Zσ(i) − zi

)
f lZ(zi)

]
≤ 4l · 2

(
B̃lg +Blg(z1, . . . , zk)

)
l!(h−kpCkKf

−k
Z,min)l−1 f−kZ,min

≤ 2
(

4
(
B̃g +Bg,z

)
h−kpCkKf

−k
Z,min

)l
l!hkpC−1

K ,

where Bg,z := Bg(z1, . . . , zk). Remarking that IE[Vn,i,σ] = 0 by construction of g̃, we obtain

IE
[
exp

(
λ[n/k]−1Vn,i,σ

)]
= 1 +

∞∑
l=2

IE
[
(λ[n/k]−1Vn,i,σ)l

]
l!

≤ 1 + 2C−1
K hkp

∞∑
l=2

(4λ[n/k]−1
(
Bg,z + B̃g

)
h−kpCkKf

−k
Z,min)l

≤ 1 + 2C−1
K hkp ·

(
4λ[n/k]−1

(
Bg,z + B̃g

)
h−kpCkKf

−k
Z,min

)2

1− 4λ[n/k]−1
(
Bg,z + B̃g

)
h−kpCkKf

−k
Z,min

≤ exp

(
32λ2[n/k]−2

(
Bg,z + B̃g

)2
h−kpC2k−1

K f−2k
Z,min

1− 4λ[n/k]−1
(
Bg,z + B̃g

)
h−kpCkKf

−k
Z,min

)
,

where the last statement follows from the inequality 1 + x ≤ exp(x). Combining the latter bound with

Equation (8.12), we get

IP

 ∑
σ∈Ik,n

Sσ − IE[Sσ] > t

 ≤ exp

(
−λt+

32λ2
(
Bg,z + B̃g

)2
C2k−1
K

f2k
Z,minh

kp[n/k]− 4λ
(
Bg,z + B̃g

)
CkKf

k
Z,min

)
. (8.13)
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Remarking that the right-hand side term inside the exponential is of the form −λt+ aλ2

b−cλ , we choose the

value

λ∗ =
tb

2a+ tc
=

tf2k
Z,minh

kp[n/k]

64
(
Bg,z + B̃g

)2
C2k−1
K + t

(
Bg,z + B̃g

)
CkKf

k
Z,min

(8.14)

such that −λ∗t +
aλ2
∗

b−cλ∗ = − t2b
4a+2ct = − t

2λ∗. Therefore, the right-hand side term of Equation (8.13) can

be simplified, and combining this with Equation (8.14), we obtain

IP

 ∑
σ∈Ik,n

Sσ − IE[Sσ] > t

 ≤ exp

(
−

t2f2k
Z,minh

kp[n/k]

128
(
Bg,z + B̃g

)2
C2k−1
K + 2t

(
Bg,z + B̃g

)
CkKf

k
Z,min

)
.

�

8.6.3 Proof of Theorem 8.8

By Proposition 8.5, for every t1, t2 > 0 such that CK,αhα/α! + t < fZ,min/2, we have

IP

(
|θ̂(z1, . . . , zk)− θ(z1, . . . , zk)| <

(
1 + C3h

α + C4t1
)
×
(
C5h

k+α + t2
))

≥ 1− 2 exp

(
− [n/k]t21h

kp

C1 + C2t1

)
− 2 exp

(
− [n/k]t22h

kp

C6 + C7t2

)
,

We apply this proposition to every k-tuple
(
z′σ(1), . . . , z

′
σ(k)

)
where σ ∈ Ik,n′ . Combining it with

Assumption 8.3.1, we get

IP

(
sup
i
|ξi,n| < CΛ′

(
1 + C3h

α + C4t1
)
×
(
C5h

k+α + t2
))

≥ 1− 2

|Ik,n′ |∑
i=1

[
exp

(
− [n/k]t21h

kp

C1 + C2t1

)
+ exp

(
− [n/k]t22h

kp

C6 + C7t2

)]
,

Choosing t1 := fZ,min/4 and using the bound (8.7) on h, we get

IP

(
sup
i
|ξi,n| < CΛ′

(
1 + C3

fZ,minα!

4CK,α
+ C4

fZ,min
4

)
×
(
C5h

k+α + t2
))

≥ 1− 2

|Ik,n′ |∑
i=1

[
exp

(
−

[n/k]f2
Z,minh

kp

16C1 + 4C2fZ,min

)
+ exp

(
− [n/k]t22h

kp

C6 + C7t2

)]
.

Choosing t2 = t/(2C8) = t/
(

2CψCΛ′
(
1 +C3

fZ,minα!
4CK,α

+C4
fZ,min

4

))
, and using the bound (8.7) on hα, we

get

IP

(
sup
i
|ξi,n| < t/Cψ

)
≥ 1− 2

|Ik,n′ |∑
i=1

[
exp

(
−

[n/k]f2
Z,minh

kp

16C1 + 4C2fZ,min

)
+ exp

(
− [n/k]t2hkp

4C2
8C6 + 2C8C7t

)]
.

On the same event, we have maxj=1,...,p′

∣∣∣ 1
n′

∑n′

i=1 Z
′
i,jξi,n

∣∣∣ ≤ t, by Assumption 8.3.1. The conclusion

results from the following lemma.

Lemma 8.19 (From [39, Lemma 25]). Assume that maxj=1,...,p′

∣∣∣ 1
n′

∑n′

i=1 Z
′
i,jξi,n

∣∣∣ ≤ t, for some t > 0,
that the assumption RE(s, 3) is satisfied, and that the tuning parameter is given by λ = γt, with γ ≥ 4.

Then, ||Z′(β̂ − β∗)|| ≤ 4(γ + 1)t
√
s

κ(s, 3)
and |β̂ − β∗|q ≤

42/q(γ + 1)ts1/q

κ2(s, 3)
, for every 1 ≤ q ≤ 2.

�
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8.7 Proof of Theorem 8.14

Define r̃n,n′ := (n × n′ × hpn,n′)1/2, u := r̃n,n′(β − β∗) and ûn,n′ := r̃n,n′(β̂n,n′ − β∗), so that β̂n,n′ =

β∗ + ûn,n′/r̃n,n′ . We define for every u ∈ Rp
′
,

Fn,n′(u) :=
−2r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

ξσ,nψ
(
z′σ(1), . . . , z

′
σ(k)

)T
u

+
1

|Ik,n′ |
∑

σ∈Ik,n′

{
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
u
}2

+ λn,n′ r̃
2
n,n′

(∣∣β∗ +
u

r̃n,n′

∣∣
1
−
∣∣β∗∣∣

1

)
, (8.15)

and we obtain ûn,n′ = arg min
u∈Rp′ Fn,n′(u) applying Lemma 8.9.

Lemma 8.20. Under the same assumptions as in Theorem 8.14,

T1 :=
r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

ξσ,nψ
(
z′σ(1), . . . , z

′
σ(k)

) D−→ N (0, V2).

This lemma is proved in Section 8.7.1. It will help to control the first term of Equation (8.15), which is

simply −2TT1 u.

Concerning the second term of Equation (8.15), using Assumption 8.3.2(iii), we have for every u ∈
Rp
′

1

|Ik,n′ |
∑

σ∈Ik,n′

{
ψ
(
z′σ(1), . . . , z

′
σ(k)

)T
u
}2

→
∫ (

ψ(z′1, . . . , z
′
k)Tu

)2
fz′,∞(z′1) · · · fz′,∞(z′k) dz′1 · · · dz′k. (8.16)

This has to be read as a convergence of a sequence of real numbers indexed by u, because the design

points z′i are deterministic. We also have, for any u ∈ Rp
′

and when n is large enough,

∣∣β∗ +
u

r̃n,n′

∣∣
1
−
∣∣β∗∣∣

1
=

p′∑
i=1

( |ui|
r̃n,n′

1{β∗i =0} +
ui
r̃n,n′

sign(β∗i )1{β∗i 6=0}

)
.

Therefore, by Assumption 8.3.2(ii)(b), for every u ∈ Rp
′
,

λn,n′ r̃
2
n,n′

(∣∣β∗ +
u

r̃n,n′

∣∣
1
−
∣∣β∗∣∣

1

)
→ 0, (8.17)

when (n, n′) tends to the infinity. Combining Lemma 8.20 and Equations (8.15-8.17), and defining the

function F∞,∞ by

F∞,∞(u) := 2W̃Tu +

∫ (
ψ(z′1, . . . , z

′
k)Tu

)2
fz′,∞(z′1) · · · fz′,∞(z′k) dz′1 · · · dz′k,

where u ∈ Rr and W̃ ∼ N (0, V2), we obtain that every finite-dimensional margin of Fn,n′ weakly con-

verges to the corresponding margin of F∞,∞. Now, applying the convexity lemma, we get

ûn,n′
D−→ u∞,∞, where u∞,∞ := arg min

u∈Rr
F∞,∞(u).

Since F∞,∞(u) is a continuously differentiable convex function, apply the first-order condition∇F∞,∞(u) =

0, which yields

2W̃ + 2

∫
ψ(z′1, . . . , z

′
k)ψ(z′1, . . . , z

′
k)Tu∞,∞fz′,∞(z′1) · · · fz′,∞(z′k) dz′1 · · · dz′k = 0.

As a consequence u∞,∞ = −V −1
1 W̃ ∼ N (0, Ṽas), using Assumption 8.3.2(iv). We finally obtain

r̃n,n′
(
β̂n,n′ − β∗

) D−→ N
(
0, Ṽas

)
, as claimed. �
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8.7.1 Proof of Lemma 8.20

Using a Taylor expansion yields

T1 :=
r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

ξσ,nψ
(
z′σ(1), . . . , z

′
σ(k)

)
=

r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

(
Λ
(
θ̂
(
z′σ(1), . . . , z

′
σ(k)

))
− Λ

(
θ
(
z′σ(1), . . . , z

′
σ(k)

)))
ψ
(
z′σ(1), . . . , z

′
σ(k)

)
= T2 + T3,

where the main term is

T2 :=
r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

Λ′
(
θ
(
z′σ(1), . . . , z

′
σ(k)

))(
θ̂
(
z′σ(1), . . . , z

′
σ(k)

)
− θ
(
z′σ(1), . . . , z

′
σ(k)

))
ψ
(
z′σ(1), . . . , z

′
σ(k)

)
,

and the remainder is

T3 :=
r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

α3,σ ·
(
θ̂
(
z′σ(1), . . . , z

′
σ(k)

)
− θ
(
z′σ(1), . . . , z

′
σ(k)

))2

ψ
(
z′σ(1), . . . , z

′
σ(k)

)
,

with ∀σ ∈ Ik,n′ , |α3,σ| ≤ CΛ′′/2, by Assumption 8.3.2(v).

Let us define ψσ := Λ′
(
θ
(
z′σ(1), . . . , z

′
σ(k)

))
ψ
(
z′σ(1), . . . , z

′
σ(k)

)
, for every σ ∈ Ik,n′ . Using the defini-

tion (8.1), we rewrite T2 := T4 + T5 where

T4 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

∏k
i=1Kh

(
Zς(i) − z′σ(i)

)∏k
i=1 fZ(z′σ(i))

(
g
(
Xς(1), . . . ,Xς(k)

)
− θ
(
z′σ(1), . . . , z

′
σ(k)

))
ψσ,

T5 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

k∏
i=1

Kh

(
Zς(i) − z′σ(i)

)(
g
(
Xς(1), . . . ,Xς(k)

)
− θ
(
z′σ(1), . . . , z

′
σ(k)

))
×
(

1

Nk(z′σ(1), . . . , z
′
σ(k))

− 1∏k
i=1 fZ(z′σ(i))

)
ψσ.

To lighten the notations, we will define Kσ,ς :=
∏k
i=1Kh

(
Zς(i) − z′σ(i)

)
, gς := g

(
Xς(1), . . . ,Xς(k)

)
, θσ :=

θ
(
z′σ(1), . . . , z

′
σ(k)

)
, fZ′,σ :=

∏k
i=1 fZ(z′σ(i)), and Nσ := Nk(z′σ(1), . . . , z

′
σ(k)), for every σ ∈ Ik,n′ and

ς ∈ Ik,n, so that

T4 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

Kσ,ς

fZ′,σ

(
gς − θσ

)
ψσ, (8.18)

T5 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

Kσ,ς

(
gς − θσ

)( 1

Nσ
− 1

fZ′,σ

)
ψσ. (8.19)

Using α-order limited expansions, we get

IE[T4] =
r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

∫ ∏k
i=1Kh

(
zi − z′σ(i)

)
fZ′,σ

(
g
(
x1:k

)
− θσ

) k∏
i=1

fX,Z(xi, zi)dµ
⊗k(x1:k)dz1:k (8.20)

=
r̃n,n′

|Ik,n′ |
∑

σ∈Ik,n′

∫ ∏k
i=1K

(
ti
)

fZ′,σ

(
g
(
x1:k

)
− θσ

) k∏
i=1

fX,Z(xi, z
′
σ(i) + hti)dµ

⊗k(x1:k)dt1:k

=
r̃n,n′h

kα

|Ik,n′ |
∑

σ∈Ik,n′

∫ ∏k
i=1K

(
ti
)

fZ′,σ

(
g
(
x1:k

)
− θσ

) k∏
i=1

d
(α)
Z fX,Z(xi, z

∗
σ(i))dµ

⊗k(x1:k)dt1:k

= O
(
r̃n,n′h

kα
)

= O
(

(n× n′ × hp+2kα
n,n′ )1/2

)
= o(1),
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where above, z∗i denote some vectors in Rp such that |z′i − z∗i |∞ ≤ 1, depending on z′i and xi.

We can therefore use the centered version of T4, defined as

T4 − IE[T4] =
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

gσ,ς ,

gσ,ς :=
ψσ
fZ′,σ

(
Kσ,ς

(
gς − θσ

)
− IE

[
Kσ,ς

(
gς − θσ

)])
.

Computation of the limit of the variance matrix V ar[T4].

We have V ar[T4] = IE[T4T
T
4 ] + o(1).

V ar[T4] =
r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n

IE[gσ,ςg
T
σ,ς ] + o(1).

By independence, IE[gσ,ςg
T
σ,ς ] = 0 as soon as ς ∩ ς = ∅, where we identify a permutation ς and its image

ς({1, . . . , k}). Therefore, we get

V ar[T4] '
nn′hpn,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n
ς∩ς 6=∅

IE
[
gσ,ς g

T
σ,ς

]

=
nn′hpn,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n
ς∩ς 6=∅

gσ,ς,σ,ς − g̃σ g̃Tσ ,

where g̃σ := ψσIE
[
Kσ,ς

(
gς − θσ

)]
/fZ′,σ and

gσ,ς,σ,ς :=
ψσψ

T

σ

fZ′,σfZ′,σ
IE

[
Kσ,ςKσ,ς

(
gς − θσ

)(
gς − θσ

)]
.

Assume now that ς ∩ ς is of cardinality 1, i.e. there exists only one couple (j, j) ∈ {1, . . . , k}2 such that

ς(j) = ς(j). Then,

gσ,ς,σ,ς =
ψσψ

T

σ

fZ′,σfZ′,σ

∫ (
g(X1:k)− θσ

)(
g(xk+1, . . . ,xk+j−1,xj ,xk+j+1, . . . ,x2k)− θσ

)
·
k∏
i=1

Kh

(
zi − z′σ(i)

)
fX,Z(xi, zi)dµ(xi)dzi ·Kh

(
zj − z′

σ(j)

)
·

k∏
i=1, i 6=j

Kh

(
zk+i − z′

σ(i)

)
fX,Z(xk+i, zk+i)dµ(xk+i)dzk+i

=
ψσψ

T

σ

fZ(zj)

∫ (
g(X1:k)− θσ

)(
g(xk+1, . . . ,xk+j−1,xj ,xk+j+1, . . . ,x2k)− θσ

)
·
k∏
i=1

K(ti)
fX,Z(xi, z

′
σ(i) + hti)

fZ(z′σ(i))
dµ(xi)dti · h−pK

(
ti +

z′σ(j) − z′
σ(j)

h

)

·
k∏

i=1, i 6=j

K(tk+i)
fX,Z(xk+i, z

′
σ(i)

+ htk+i)

fZ(zk+i)
dµ(xk+i)dtk+i

' ψσψ
T

σ

fZ(zj)

∫ (
g(X1:k)− θσ

)(
g(xk+1, . . . ,xk+j−1,xj ,xk+j+1, . . . ,x2k)− θσ

)
·
k∏
i=1

K(ti)
fX,Z(xi, z

′
σ(i))

fZ(zi)
dµ(xi)dti · h−pK

(
ti +

z′σ(j) − z′
σ(j)

h

)

·
k∏

i=1, i 6=j

K(tk+i)
fX,Z(xk+i, z

′
σ(i)

)

fZ(z′
σ(i)

)
dµ(xk+i)dtk+i.
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By assumption, this is zero unless σ(j) = σ(j). In this case, it can be simplified, giving

gσ,ς,σ,ς '
ψσψ

T

σ

fZ(zj)hp

∫
K2

∫ (
g(x1:k)− θσ

)(
g(xk:2k,j→j)− θσ

)
·
k∏
i=1

fX|Z=z′
σ(i)

(xk)dµ(xi)

k∏
i=1, i 6=j

fX|Z=z′
σ(i)

(xk+i)dµ(xk+i) =: h−pgσ,σ,j,j ,

where xk:2k,j→j := (xk+1, . . . ,xk+j−1,xj ,xk+j+1, . . . ,x2k).

Note that, if ς ∩ ς is of cardinality strictly greater than 1, some supplementary powers of h−p arise

thanks to the repeated kernels in ς and ς. As a consequence, they are of lower order and therefore

negligible. Using α-order expansions as in Equation (8.20), we get supσ |g̃σ| = O(hkα). Thus,

V ar[T4] ' O
(
nn′hp+2kα

n,n′

)
+

nn′hpn,n′

|Ik,n′ |2 · |Ik,n|2
∑
ς∈Ik,n

k∑
j,j=1

∑
ς∈Ik,n

ς(j)=ς(j), |ς∩ς|=1

∑
σ,σ∈Ik,n′ , σ(j)=σ(j)

h−pgσ,σ,j,j

' n′

|Ik,n′ |2
k∑

j,j=1

∑
σ,σ∈Ik,n′ , σ(j)=σ(j)

gσ,σ,j,j

→
k∑

j,j=1

gj,j,∞ = V2,

where

gj,j,∞ :=

∫
Λ′
(
θ
(
z′1:k

))
Λ′
(
θ
(
z′
k:2k,j→j

))
ψ
(
z′1:k

)
ψT
(
z′
k:2k,j→j

) ∫ K2

fZ(z′j)

∫ (
g(x1:k)− θ(z′1:k)

)
·
(
g(xk:2k,j→j)− θ(z

′
k:2k,j→j)

) 2k∏
i=1,i6=k+j

fX|Z=z′i
(xi)fZ′,∞(z′i)dµ(xi)dz

′
i.

In Section 8.7.2, we will prove that T4 is asymptotically Gaussian ; therefore, its asymptotic variance will

be given by V2.

Now, decompose the term T5, defined in Equation (8.19), using a Taylor expansion of the function

x 7→ 1/(1 + x) at 0.

1

Nσ
− 1

fZ′,σ
=

1

fZ′,σ

(
1

1 +
Nσ−fZ′,σ
fZ′,σ

− 1

)
= −Nσ − fZ

′,σ

f2
Z′,σ

+ T7,σ,

where

T7,σ :=
1

fZ′,σ
(1 + α7,σ)−3

(
Nσ − fZ′,σ
fZ′,σ

)2

, with |α7,σ| ≤
∣∣∣∣Nσ − fZ′,σfZ′,σ

∣∣∣∣ .
We have therefore the decomposition T5 = −T6 + T7, where

T6 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

Kσ,ς

(
gς − θσ

)Nσ − fZ′,σ
f2
Z′,σ

ψσ, (8.21)

T7 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

Kσ,ς

(
gς − θσ

)
T7,σψσ. (8.22)

Summing up all the previous equation, we get

T1 = (T4 − IE[T4])− T6 + T7 + T3 + o(1).
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Afterwards, we will prove that all the remainders terms T6, T7 and T3 are negligible, i.e. they tend to zero

in probability. These results are respectively proved in Subsections 8.7.3, 8.7.4 and 8.7.5. Combining all

these elements with the asymptotic normality of T4 (proved in Subsection 8.7.2), we get T1
D−→ N (0, V2),

as claimed. �

8.7.2 Proof of the asymptotic normality of T4

Using the Hájek projection of T4, we define

T4 − IE[T4] = T4,1 + T4,2, where

T4,1 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

k∑
i=1

IE[gσ,ς |ς(i)],

T4,2 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

(
gσ,ς −

∑
i=1,...,k

IE[gσ,ς |ς(i)]
)
,

denoting by |i the conditioning with respect to (Xi,Zi), for i ∈ {1, . . . , n}. We will show that T4,1 is

asymptotically normal, and that T4,2 = o(1).

Using the fact that the (Xi,Zi)i are i.i.d., and denoting by Id the injective function i 7→ i, we have

T4,1 =
kr̃n,n′

n|Ik,n′ |
∑

σ∈Ik,n′

n∑
i=1

IE

[
ψσ
fZ′,σ

Kσ,Id

(
gId − θσ

)
− gσ

∣∣∣∣i]

' kr̃n,n′

n|Ik,n′ |
∑

σ∈Ik,n′

n∑
i=1

IE

[
ψσ
fZ′,σ

Kσ,Id

(
gId − θσ

)∣∣∣∣i] =:

n∑
i=1

α4,i,n,

because supσ |gσ| = O(hkα), as proved in the previous section, hence negligible. The α4,i,n, for 1 ≤ i ≤
n, form a triangular array of i.i.d. variables. To prove the asymptotic normality of T4,1, it remains to check

Lyapunov’s condition, i.e. we will show that
∑n
i=1 IE

[
|α4,i,n|3∞

]
→ 0. We have

n∑
i=1

IE
[
|α4,i,n|3∞

]
= n IE

[
|α4,1,n|3∞

]
=

k3nr̃3
n,n′

n3|Ik,n′ |3
∑

σ,ν,ϑ∈Ik,n′

ψσ ⊗ψν ⊗ψϑ
fZ′,σfZ′,νfZ′,ϑ

IE

[
IE
[
Kσ,Id

(
gId − θσ

)∣∣∣1]IE[Kν,Id

(
gId − θν)

)∣∣∣1]IE[Kϑ,Id

(
gId − θϑ)

)∣∣∣1]]

=
k3r̃3

n,n′

n2|Ik,n′ |3
∑

σ,ν,ϑ∈Ik,n′

ψσ ⊗ψν ⊗ψϑ
fZ(z′ν(1))fZ(z′ϑ(1))

∫
Kh

(
z1 − z′σ(1)

)
Kh

(
z1 − z′ν(1)

)
Kh

(
z1 − z′ϑ(1)

)
·
k∏
i=2

Kh

(
zi − z′σ(i)

)
Kh

(
zk+i − z′ν(i)

)
Kh

(
z2k+i − z′ϑ(i)

)
·
(
g(x1:k)− θσ)

)(
g(x1,x(k+2):(2k))− θν)

(
g(x1,x(2k+2):(3k))− θϑ)

·
k∏
i=1

fX,Z(xi, zi)

fZ(z′σ(i))
dµ(xi)dzi

k∏
i=2

fX,Z(xk+i, zk+i)

fZ(z′ν(i))
dµ(xk+i)dzk+i

k∏
i=2

fX,Z(x2k+i, z2k+i)

fZ(z′ϑ(i))
dµ(x2k+i)dz2k+i

'
k3r̃3

n,n′

n2|Ik,n′ |3
∑

σ,ν,ϑ∈Ik,n′

ψσ ⊗ψν ⊗ψϑ
fZ(z′ν(1))fZ(z′ϑ(1))

∫
h−2pK(t1)K

(
t1 +

z′σ(1) − z′ν(1)

h

)
K

(
t1 +

z′σ(1) − z′ϑ(1)

h

)

·
k∏
i=2

Kh

(
ti
)
Kh

(
tk+i

)
Kh

(
t2k+i

)(
g(x1:k)− θσ)

)(
g(x1,x(k+2):(2k))− θν)

(
g(x1,x(2k+2):(3k))− θϑ)

·
k∏
i=1

fX|Z=z′
σ(i)

(xi)dµ(xi)dzi

k∏
i=2

fX|Z=z′
ν(i)

(xk+i)dµ(xk+i)dzk+i

k∏
i=2

fX|Z=z′
ϑ(i)

(x2k+i, t2k+i)dµ(x2k+i)dt2k+i,
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where in the last equivalent, we use a change of variable from the zi to the ti, and then the continuity of

the density fX,Z with respect to z, because h = o(1).

Because of our assumptions, the terms of the sum for which σ(1) 6= 1 or ν(1) 6= 1 are zero. Therefore,

we get

n∑
i=1

IE
[
|α4,i,n|3∞

]
=
r̃3
n,n′h

−2p

n2|Ik,n′ |3
∑

σ,ν,ϑ∈Ik,n′ ,σ(1)=ν(1)=1

O(1) = O

(
(nn′hp)3/2

n2n′2h2p

)
= O

(
1

(nn′hp)1/2

)
= o(1).

We prove now that T4,2 = o(1). Note first that, by construction, IE[T4,2] = 0. Computing its variance,

we get

IE
[
T4,2T

T
4,2

]
= IE

[
r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n

(
gσ,ς −

∑
i=1,...,k

IE
[
gσ,ς
∣∣ς(i)])(gσ,ς − ∑

i=1,...,k

IE
[
gσ,ς

∣∣ς(i)])T]

=:
r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n

IE
[
g̃σ,σ,ς,ς

]
. (8.23)

Because of IE[gσ,ς ] = 0 and by independence, the terms in the latter sum for which ς ∩ ς = ∅ are zero.

Otherwise, there exists j1, j2 ∈ {1, . . . , k} such that ς(j1) = ς(j2). If ς ∩ ς is of cardinal 1, meaning that

there is no other identities between elements of ς and ς, then we will show that the corresponding term

is zero as well. We place ourselves in this case, assuming that |ς ∩ ς| = 1, and we get

IE
[
g̃σ,σ,ς,ς

]
= IE

[(
gσ,ς −

∑
i=1,...,k

IE
[
gσ,ς
∣∣ς(i)])(gTσ,ς − ∑

i=1,...,k

IE
[
gTσ,ς

∣∣ς(i)])]

= IE

[(
gσ,ς − IE

[
gσ,ς
∣∣ς(j1)

])(
gTσ,ς − IE

[
gTσ,ς

∣∣ς(j2)
])]

= IE

[
IE

[(
gσ,ς − IE

[
gσ,ς
∣∣ς(j1)

])(
gTσ,ς − IE

[
gTσ,ς

∣∣ς(j1)
])∣∣∣∣ς(j1)

]]

= IE

[
IE

[
gσ,ςg

T
σ,ς

∣∣∣∣ς(j1)

]]
− IE

[
IE
[
gσ,ς
∣∣ς(j1)

]
IE
[
gTσ,ς

∣∣ς(j1)
]]

= 0.

Therefore, non-zero terms in Equation (8.23) correspond to the case where there exists j3 6= j1, j4 6= j1

such that ς(j3) = ς(j4). It is equivalent to |ς ∩ ς| ≥ 2. We will ignore higher-order terms, i.e. the ones for

which |ς ∩ ς| > 2, as they yield higher powers of hp and are therefore negligible. Finally, Equation (8.23)

becomes

IE
[
T4,2T

T
4,2

]
'

r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n
|ς∩ς|=2

(
IE
[
gσ,ςg

T
σ,ς

]
− 2kIE

[
IE
[
gσ,ς
∣∣ς(i)]IE[gTσ,ς ∣∣ς(i)]]

)
.

As before, using change of variables and limited expansions, we can prove that

r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ς∈Ik,n
|ς∩ς|=2

IE
[
gσ,ςg

T
σ,ς

]
= o(1),

and similarly for the other term.
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8.7.3 Convergence of T6 to 0

Using Equation (8.21), we have T6 = T6,1 + T6,2, where

T6,1 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

Kσ,ς

(
gς − θσ

)Nσ − IE[Nσ]

f2
Z′,σ

ψσ, (8.24)

T6,2 :=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

Kσ,ς

(
gς − θσ

) IE[Nσ]− fZ′,σ
f2
Z′,σ

ψσ. (8.25)

We first prove that T6,1 = o(1). Using Equation (8.5), we have

T6,1 =
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

1

f2
Z′,σ

Kσ,ς

(
gς − θσ

)(
Nk(z′σ(1:k))− IE[Nk(z′σ(1:k))]

)
ψσ

=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς∈Ik,n

1

f2
Z′,σ

Kσ,ς

(
gς − θσ

) ∑
ν∈Ik,n

( k∏
i=1

Kh

(
Zν(i) − z′σ(i)

)
− IE

[ k∏
i=1

Kh

(
Zν(i) − z′σ(i)

)])
ψσ

=
r̃n,n′

|Ik,n′ | · |Ik,n|
∑

σ∈Ik,n′

∑
ς,ν∈Ik,n

1

f2
Z′,σ

Kσ,ς

(
gς − θσ

)(
Kσ,ν − IE

[
Kσ,ν

])
ψσ.

The terms for which |ς∩ν| ≥ 1 induce some powers of (nhp)−1, and are therefore negligible. We remove

them to obtain an equivalent random vector T 6,1, which is centered. Therefore it is sufficient to show

that its second moment tends to 0.

IE
[
T 6,1T

T

6,1

]
=

r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′

∑
ς,ν∈Ik,n
ς∩ν=∅

∑
ς,ν∈Ik,n
ς∩ν=∅

ψσ
f2
Z′,σ

ψ
T

σ

f2
Z′,σ

gσ,σ,ς,ς,ν,ν ,

gσ,σ,ς,ς,ν,ν := IE

[
Kσ,ς

(
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The term gσ,σ,ς,ς,ν,ν is 0 in two cases : if ν ∩ (ς ∪ ς ∪ ν) or if ν ∩ (ς ∪ ς ∪ ν). This condition can be written as

∅ =
[
ν ∩ (ς ∪ ν)

]
∪
[
ν ∩ (ς ∪ ν)

]
= (ν ∪ ν) ∩ (ς ∪ ν) ∩ (ς ∪ ν).

We deduce that non-zero terms arise only when there exists j1, j2 ∈ {1, . . . , k} such that: ν(j1) = ν(j2)

or ν(j1) = ς(j2) or ν(j1) = ς(j2). Therefore, we can write IE
[
T 6,1T

T

6,1

]
= T6,1,1 + T6,1,2 + T6,1,3, where
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We will prove that T6,1,1 = o(1). The two other terms can be treated in a similar way. Because of our

assumptions, the terms for which σ(j1) 6= σ(j2) are zero. This divides the number of possible terms by

n′. By using limited expansions as in Equation (8.20), we get that gσ,σ,ς,ς,ν,ν = O(hkα−p). Therefore, we

have T6,1,1 = O
(
nn′hp

nn′ h
kα−p) = O(hkα) = o(1).



Chapter 8. Estimation of a regular conditional functional by conditional U-statistic regression 247

Concerning T6,2, its variance matrix is given by

V ar
[
T6,2

]
=

r̃2
n,n′

|Ik,n′ |2 · |Ik,n|2
∑

σ,σ∈Ik,n′
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ς,ς∈Ik,n

IE[Nσ]− fZ′,σ
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)(
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Kσ,ς

(
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Kσ,ς

(
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))]
.

Note that gσ,σ,ς,ς = 0 when ς ∩ ς = ∅. This divides the number of terms in the sum above by n, and

imposes that σ ∩ ς 6= 0, which divides the number of terms in the sum above by another n′. Finally,

limited expansions gives a bound of hkα−p. Summing up all these elements, we obtain V ar
[
T6,2

]
=

O(
r̃2
n,n′

nn′ h
kα−p) = O(hkα) = o(1). Similarly, we get IE

[
T6,2

]
= o(1) by a Taylor expansion.

8.7.4 Convergence of T7 to 0

We recall Equation (8.22):

T7 =
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By Lemma 8.3 applied to z1 = z′σ(1), . . . , zn′ = z′σ(n′), for σ ∈ Ik,n′ , we get
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,

for any t > 0. Therefore, supσ∈Ik,n′ |T7,σ| = OIP(h2α) by choosing t = hα/k. Then,
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The expectation of the double sum is O(hα), by α-order limited expansions. By Markov’s inequality, we

deduce
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therefore T7 = oIP(1).

8.7.5 Convergence of T3 to 0

We have
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where
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We show that T8 = o(1). The two other terms can be treated in a similar way.
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Note that terms for which ς 6= ς ∈ Ik,n′ are zero, because the z′i are distinct and because of our

Assumption 8.3.2(i). Therefore, we get
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Chapter 9

Confidence intervals for ratios of
means: limitations of the delta method
and honest confidence intervals

Abstract

In econometrics, many parameters of interest can be written as a ratio of two expectations. The

main method to construct a confidence interval for such a parameter consists in an application of

the delta method. Nevertheless, the delta method is an asymptotic procedure, and the obtained

intervals may not be relevant if the sample size is small, or if we consider a sequence of models

in which statisticians or econometricians study thinner and thinner effects as they have access to

more and more data. We prove a generalization of the delta method for ratios of expectations in

this “sequence of models” framework. Our paper complements it with a partial impossibility result:

nonasymptotic confidence intervals can be built for ratios of expectations, but not at every level.

Based on this, we propose an easy-to-compute rule-of-thumb index to appraise the reliability of

asymptotic confidence intervals based on the delta method. Some simulations and applications

to real data illustrate the practical usefulness of our rule of thumb and how our nonasymptotic

confidence intervals compare to the asymptotic ones.

Keywords: Delta-method, confidence regions, uniformly valid inference, sequence of models.

Based on [42] : Derumigny, A., Girard, L., & Guyonvarch Y., On the construction of confidence

intervals for ratios of expectations. Arxiv preprint, arXiv:1904.07111, 2019.

9.1 Introduction

In applied econometrics, the prevalent method for constructing confidence intervals (CIs) is asymptotic:

the theoretical guarantees for most CIs used in practice hold only when the number of observations

tends to infinity. For a large class of parameters, the construction of asymptotic CIs also relies on the

delta method. In this paper, we focus on parameters that can be expressed as ratios of expectations for

which the delta method is a standard procedure to conduct inference. The objective is twofold: provide

tools to detect cases in which the delta method may behave poorly and develop inference procedures
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that remain valid even in such cases.

Many popular estimands in economics take the form of ratios of expectations. A broad class of such

examples are estimands that correspond to conditional expectations, since any conditional expectation

with a discrete conditioning variable or a conditioning event can be written as a ratio of unconditional

expectations. For instance, assume that we observe an i.i.d. sample of individuals indexed by i ∈
{1, . . . , n} with Wi the wage of an individual and Di an indicator equal to 1 whenever individual i belongs

to some treatment group, say a training program; 0 otherwise. Suppose you are interested in the average

wage of participants in the program. We have E [W | D = 1] = E [WD] /E [D] as D is binary, which is

indeed a ratio of expectations.

As for any parameter, one major goal in practice is to construct confidence intervals that are reliable

in finite samples. Nevertheless, CIs based on asymptotic justification are widely used in practice. In

that respect, it is crucial to know how such asymptotic CIs perform when the sample size n is finite. For

ratios of expectations, we document this issue on simulations (see details in Section 9.3.1). One of our

findings is that the coverage of asymptotic CIs based on the delta method happens to be far below the

nominal level, even for large sample sizes, when the expectation in the denominator is close to 0. For

some scenarios, asymptotic CIs require above 100,000 observations to get reasonably close to their

nominal level. Denominators close to 0 are not unusual in practice. Coming back to the treatment/wage

example of the previous paragraph, a small denominator would correspond to a binary treatment with a

low participation rate.

Besides, it is sometimes of interest to consider sequences of distributions indexed by the sample size

as it can rationalize the practice of applied social researchers. The heuristic idea is that researchers can

consider narrower effects as the data gets richer. This is similar to some frameworks that have been

developed for weak instrumental variables. For instance, a researcher may look at the average value of

a variable A of interest in a subgroup of the data. A subgroup could be defined as the intersection of,

say, time, geographical area, gender, age, income brackets and so on. As the number of observations n

grows, it is possible to consider subgroups gn that become thinner and thinner (intersection of more and

more variables, for examples). This practice could be modelled as estimating θn := E [A | Gn = 1] =

E [AGn] /P (Gn = 1) where Gn is a binary variable that is equal to 1 if an individual belongs to the

subgroup gn and limn→+∞P (Gn = 1) = 0. In such a setting, it is unclear, even asymptotically, what the

properties of CIs based on the delta method are. We show that usual CI can fail, and the limiting law of

θn− θ̂n may not be Gaussian any more, denoting by θ̂n the empirical ratio. In some cases, the difference

θn − θ̂n may actually have a Cauchy limit, for example. Complementing these asymptotic properties, we

show on simulations that when the denominator in the ratio goes to zero, those CIs can behave very

badly in finite samples too.

The guiding theme of this paper is therefore to develop valid inference procedures in those settings

and a practical and easy-to-compute index assessing the reliability of asymptotic CIs for a given dataset

with a finite sample size n.

This goal connects to a broad existing literature. In a nutshell, there exist old-established concen-

tration results for expectations, namely upper bounds on the probability that an empirical mean departs

from its expectation more than a given threshold, that enable to construct confidence intervals valid for

any sample size and for large classes of probability distributions (see in particular [22]). To our knowl-

edge, there is no such result for ratios of expectations. One of the contributions of this paper is to provide

similar concentration results for ratios of expectations, which yield nonasymptotic confidence intervals
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that are valid for classes of distributions that satisfy suitable moment bounds or support conditions. We

consider distributions within a class characterized by a lower bound on the first moment for the de-

nominator variable, and an upper bound on the second moment for both numerator and denominator

variables1.

In addition, our results highlight that there exists a critical confidence level, above which it is not

possible to construct nonasymptotic CIs, uniformly valid on such classes, and that are almost surely

bounded under every distribution of those classes. More precisely, we exhibit explicit upper and lower

bounds on this critical confidence level: the former is a threshold above which we show it is impossible

to construct such CIs; the latter is a threshold below which we show how to construct them.

These ideas closely relate to some impossibility results as regards the construction of confidence

intervals. A large share of the research effort has concentrated on the problem of constructing confi-

dence intervals for the expectation of a distribution. In an early contribution, [9] show that, when P is

the set of all distributions on the real line with finite expectation, θ(P ) is the expectation with respect to

P and Θ = R, a confidence interval built from an i.i.d. sample of n ∈ N∗ observations that has coverage

1 − α must contain any real number with probability at least 1 − α for every P ∈ P. Broadly speaking,

any confidence interval must have infinite length with positive probability for every P ∈ P to ensure a

coverage of 1− α > 0.

Stronger results can be derived when one further restricts P or Θ. When P is taken to be the set of

all distributions on the real line with variance uniformly bounded by a finite constant (henceforth called

the BC-case), it is possible to show (using the Bienaymé-Chebyshev inequality) that for every n ∈ N∗

and every α ∈ (0, 1), there exists a confidence interval that is almost surely bounded under every P ∈ P
and has coverage 1− α. In this case, the obtained CIs have the advantage that their length shrinks to 0

at the optimal rate 1/
√
n. But on the downside, they are rarely of size 1− α, even asymptotically, except

for some extreme distributions. This means that in practice, they are very conservative.

A strand of the literature has also investigated more complex problems in which θ(P ) is not restricted

to being an expectation. For very general parameters, [46] derives a generalization of [9]. An implication

of the results in [46] is the existence of an impossibility theorem for ratios of expectations. Let P be a

distribution on R2 with marginals PX and PY . If θ(P ) = EPX [X] /EPY [Y ], then for every α ∈ (0, 1), it is

impossible to build nontrivial CIs of coverage 1− α when P is the set of all distributions on R2 with finite

second moments and Θ = {θ = EPX [X] /EPY [Y ] : (EPX [X] ,EPY [Y ]) ∈ R× R∗}. As will be explained

below, this impossibility result breaks down as soon as P is chosen such that |EPY [Y ]| is bounded away

from 0 uniformly over P. Interestingly, the impossibility breaks down only partly in the sense that there

remains an upper bound on confidence levels (that depends on n) above which it is impossible to build

nontrivial CIs.

Other results for parameters built as differentiable transformations of one or more expectations are

given in [118] and [113]: in particular, the latter gives conditions on P and θ : P 7→ θ(P ) under which CIs

constructed with the delta method are asymptotically of size 1− α uniformly over P.

An interesting consequence of our results is that, even if we assume a known positive lower bound

on the expectation in the denominator, the limitation on the coverage of our nonasymptotic CIs remains.

That point complements [46] and can be interpreted as a partial impossibility results: for a given sample

size n, interesting CIs can be built but not at every confidence level. By contrast, provided the expectation

1We refer to this setting as the “Bienaymé-Chebyshev” (BC) case. In Appendix 9.9, we present similar results for distributions
whose supports are bounded (“Hoeffding” case).
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in the denominator is not null, the delta method gives CIs at every confidence level, but their coverage

is only asymptotic.

That discrepancy may cast some doubts on the validity of asymptotic CIs. Hence, we suggest a rule-

of-thumb index to assess the reliability of the delta method for ratios of expectations. The heuristic idea

is simply, for a given sample, to compute the upper bound on the attainable level of our CIs2: for a level

higher than that bound, asymptotic CIs based on the delta method might not reach the nominal level and

could therefore be suspect. We illustrate the empirical usefulness of that rule on various simulations.

The rest of the paper is organized as follows. Section 9.2 details our framework and assumptions.

In Section 9.3, we illustrate the weaknesses of the CIs based on the delta method with a denominator

“close to 0” on simulations and detail the asymptotic behavior of the delta-method in such a framework.

Section 9.4 is devoted to the construction of nonasymptotic confidence intervals and presents a lower

bound on the critical confidence level. In Section 9.5, we derive an upper bound on the critical confidence

level and a lower bound on the length of nonasymptotic CIs. This section also includes the description

of a practical index to gauge the soundness of asymptotic CIs from the delta method. In Section 9.6,

some simulations and applications to a real dataset are presented to illustrate our methods. Section

9.7 concludes. The proofs of all results are postponed to Appendix 9.8. Additional results under an

alternative set of assumptions (Hoeffding case) are also detailed in Appendix 9.9. Finally, Appendix 9.10

shows supplementary simulations.

9.2 Our framework

Throughout the paper, for any random variable U and n i.i.d. replications (U1,n, . . . , Un,n), we denote by

Un the empirical mean of U , that is n−1
∑n
i=1 Ui,n. We present the two main assumptions on the data

generating process that we maintain throughout the article.

Assumption 9.2.1. For every n ∈ N∗, we observe a sample (Xi,n, Yi,n)i=1,...,n
i.i.d.∼ PX,Y,n, where PX,Y,n

is a given distribution on R2. The real random variables X1,n and Y1,n are such thatE
[
X2

1,n

]
+E

[
Y 2

1,n

]
<

+∞, P (X1,n = 0) < 1 and E [Y1,n] ≥ lY,n, where lY,n > 0 is known.

Note that in practice, the value of lY,n may not be available for the statistician. This is the reason

why, in Section 9.5.2, we propose practical methods that do not need the knowledge of lY,n. It is worth

noting that n indexes both the distribution PX,Y,n of the observations in this model, and the number of

observations n. This encompasses the standard i.i.d. setup if the distribution of the observations does

not change with n: for every n ∈ N∗, PX,Y,n = PX,Y for some given distribution PX,Y .

The assumption P (X1,n = 0) < 1 simply rules out the possibility of having a numerator almost

surely equal to 0, which is a very mild restriction in practice. The last part of the assumption is more

interesting. As we assume the existence of a finite expectation, we can consider E [Y1,n] ≥ 0 without

loss of generality3. In order to have properly defined ratios of interest, we need to assume away a null

denominator, namely suppose that for every n ∈ N∗, E [Y1,n] > 0. The assumption E [Y1,n] ≥ lY,n > 0

for every n ∈ N∗ is stronger but, necessary to derive nonasymptotic CIs with maintained coverage and

that are not trivial. Otherwise, if lY,n = 0, the impossibility theorem of [46] applies and prevents from

constructing nontrivial CIs no matter the confidence level. Our assumption allows lY,n to decrease to 0

though, which enables us to handle cases where the delta method may fail.
2Equivalently, for a stated nominal level for the confidence interval, we can compute the minimum required sample size.
3Otherwise, we simply replace Yi,n by its opposite −Yi,n.
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In a way, given the results of [46], Assumption 9.2.1 can be seen as close to the minimal hypothesis

that allows for the possibility of nontrivial confidence intervals for a ratio of expectations in a nonasymp-

totic framework.

Assumption 9.2.2. There exist finite constants uX,n, uY,n such that the second moments of X1,n and
Y1,n are bounded, i.e. E

[
X2

1,n

]
≤ uX,n, and E

[
Y 2

1,n

]
≤ uY,n.

This framework, where Assumptions 9.2.1 and 9.2.2 hold, will be denoted as the BC case since it

is possible under this assumption to construct CIs using the Bienaymé-Chebyshev inequality. In Ap-

pendix 9.9, we present an adapted version of all our results under the assumption that X1,n and Y1,n

have a bounded support instead of Assumption 9.2.2. This corresponds to what we will call the “Hoeffd-
ing case” because under such assumptions, we can use the Hoeffding inequality to build nonasymptotic

confidence intervals with exponential speed of convergence.

Our objective is to make inference on the ratio of expectations E [X1,n] /E [Y1,n] by constructing

confidence intervals. To sum up, Assumptions 9.2.1 and 9.2.2 define a set P of distributions for

some known constants lY,n, uX,n and uY,n. For a distribution PX,Y,n in P, the parameter of interest

is θ(PX,Y,n) = E [X1,n] /E [Y1,n] with values in Θ = R. We will study confidence intervals Cn that are

functions of the n bivariate observations (X1,n, Y1,n), . . . , (Xn,n, Yn,n).

In practice, it is possible that Y n = 0 for a given sample, and it may even happen with a strictly

positive probability for some non-continuous distributions of Y . This means that θ̂n := Xn/Y n does

not exist for such samples. In such a case, it is difficult to construct a meaningful confidence interval.

Different conventions are possible:

• We could choose to define Cn = R in this case. This means that the true parameter θ belongs to

Cn, by definition. We believe that such a case would artificially improve the coverage of Cn, as it

means that, the higher P(Y n = 0), the better our interval would be in term of coverage.

• We could choose Cn = ∅. This means that the hypothesis θ = θ0 would be rejected for each

θ0 ∈ R, using the duality between tests and confidence intervals. This also something that we

would like to avoid, as it may not seem reasonable to reject every choice of θ0 for the only reason

that it cannot be estimated with the current sample.

• Other choices are possible, for example Cn = {0}, but they do not seem reasonable either, as

there is no reason to select only 0 in our confidence interval, especially if Xn 6= 0.

For these reasons, we choose to let Cn undefined for such samples, in the same way as the ratios x/0

are undefined for any real x. In practice, it means that nothing can be said: for any value x ∈ R, it is

undefined whether x belongs or not to Cn (in the same way as it is undefined whether 1/0 is smaller

or higher than 2). Of course, when meeting such a case, the applied statistician could change the

sample, for example by collecting more data. One could also consider sub-samples (possibly several

and combine them in some way) of data for which the empirical mean of the denominator differs from 0.

Nevertheless, the construction of satisfactory estimators in this case lies beyond the scope of this paper.

9.3 Limitations of the delta method

In general, the coverage of asymptotic CIs with nominal level 1−α is uncontrolled for finite samples: for a

sample of size n, the coverage of asymptotic CIs may be well below 1− α. Intuitively, this phenomenon
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should be driven by "problematic" distributions in P in the following sense: when P is close to the

boundary of P, the probability c(n, P ) := PP⊗n (Cn 3 θ(P )) may be much smaller than 1− α.

Let us focus on our case of interest where θ(P ) is a ratio of expectations. For this problem, it is

possible to build valid asymptotic CIs based on the delta method. We recall this fact in Section 9.3.1

and illustrate on simulations that when the expectation in the numerator is close to zero, c(n, P ) can be

well below the nominal level of the CIs and it may require a very large number of observations to make

c(n, P ) reasonably close to the nominal level. In Section 9.3.2, we investigate a more serious issue: in

the sequence-of-model framework presented in Section 9.2, we let the expectation in the denominator

not only be close to zero, but converge to zero as n increases. We show on simulations that depending

on the speed at which the denominator goes to zero, c(n, P ) can either converge to the nominal level

(more or less fast) or even not converge at all to the nominal level. This sheds light on a partial failure of

the delta method when the denominator goes to zero that we derive formally in Section 9.3.3.

9.3.1 Asymptotic approximation takes time to hold

We first recall how to derive asymptotic confidence intervals based on the delta method in the case

where, for every n ∈ N∗, PX,Y,n is identical, hence denoted PX,Y . In this case, we simply denote

E[X] = E [X1,n] and E[Y ] = E [Y1,n]. Under Assumption 9.2.1, combining the multivariate central limit

theorem and the delta method yields

√
n

(
Xn

Y n
− E[X]

E[Y ]

)
d−−−−−→

n→+∞
N (0,∇φ′Σ∇φ) , (9.1)

where ∇φ′Σ∇φ = V [X] /E[Y ]2 + E[X]2V[Y ]/E[Y ]4 − 2Cov [X,Y ]E[X]/E[Y ]3 and φ is the func-

tion (x, y) 7→ x/y. As with expectations, we use the shortcuts V [X] = V [X1,n] and Cov [X,Y ] =

Cov [X1,n, Y1,n]. Based on (9.1), we can construct an asymptotic CI for the parameter of interest

E[X]/E[Y ] using a consistent estimate of the asymptotic variance ∇φ′Σ∇φ and Slutsky’s lemma.

To assess the quality of this CI, we compute c(n, P ) using simulations for different sample sizes n and

distributions P and compare it to the nominal level. By definition, c(n, P ) forms an upper bound of the

coverage rate. We therefore denote c(n, P ) the maximal coverage, in the sense that the true coverage

of our CIs may be lower, but it could not be higher than cn,P . We focus on CIs with a 95% nominal level.

More specifically, for different sample sizes n and values of E[Y ], we draw 5000 independent samples of

size n (Xi, Yi)
n
i=1

i.i.d.∼ N (1, 1)⊗N (E[Y ], 1). We compute the maximal coverage for CIs based on the delta

method for every pair (n,E[Y ]) using the 5000 replications. E[Y ] ranges from 0.01 (the denominator is

close to zero) to 0.75 (the denominator is far from zero). Figure 9.1 sums up the results. For every

n, it turns out that the closer E[Y ] to 0, the smaller the maximal coverage of the delta method. When

E[Y ] = 0.01, the maximal coverage gets close to the nominal level for n around 300,000.

9.3.2 Asymptotic results may not hold for sequences of models

Unlike the result displayed in (9.1), it is unclear how the quantity
√
n
(
Xn/Y n −E[X]/E[Y ]

)
behaves

asymptotically when we consider sequences of statistical models with the expectation in the denominator

tending to 0 as n increases. For a given specification, Figure 9.2 shows the maximal coverage of

asymptotic CIs based on the delta method when E [Y1,n] = Cn−b where C is set to 0.025 and b varies.

For a speed b ≥ 1/2, 1/2 being the usual speed of the CLT, the maximal coverage of asymptotic CIs

based on (9.1) is incorrect in the sense that it is far lower than the nominal level 1 − α and it does not
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Figure 9.1: Maximal coverage of asymptotic CIs based on the delta method.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (E[Y ], 1). The nominal pointwise asymptotic level is set to 0.95. For

a pair (E[Y ], n), the coverage is obtained as the mean over 5,000 repetitions.

converge to the latter. Our simulations even suggest that the maximal coverage tends to 0 for b > 1/2.

For b < 1/2, the maximal coverage of the delta method seems to tend to 1−α. Yet, in line with Figure 9.1,

the validity of the asymptotic approximation requires very large sample sizes.

At this stage, Figure 9.2 present some evidence that the standard asymptotic CIs based on the delta

method need to be adapted for sequences of models and that the speed of decrease toward 0 of the

expectation E [Y1,n] matters. The next subsection detail formal results to adapt the delta method for

ratios of expectations in this setup.

9.3.3 Extension of the delta method for ratios of expectations in the sequence-
of-models framework

We are interested in the asymptotic distribution, as n tends to infinity, of the real random variable Sn :=
√
n
(
Xn/Y n −E [X1,n]/E [Y1,n]

)
. The following theorem states the asymptotic behavior of Sn according

to the comparison of 1/
√
n and E [Y1,n], under a multivariate Lindeberg condition. As the distributions

PX,Y,n change with n without any link from one to the next, it is not possible to obtain equivalents almost

surely or in probability. To overcome this difficulty, we can only consider convergences in distribution,

or here equivalents in distributions. We say that two sequences of random variables Xn and Yn are

equivalent in distribution if there exists a probability space Ω̃ and two sequences of random variables

X̃n, Ỹn such that ∀n ∈ N, Xn
d
= X̃n, and Yn

d
= Ỹn, and X̃n is equivalent to Ỹn almost surely, as n → ∞.

This theorem is proved in Section 9.8.1.

Theorem 9.1. Let Assumption 9.2.1 hold. Assume that V[(X1,n, Y1,n)] → V where V is a positive
definite matrix, that P(Y n = 0)→ 0, as n→∞ and that supn∈N∗ E

[
|X1,n|3

]
and supn∈N∗ E

[
|Y1,n|3

]
are

finite.
Then, the sequence of random variables Sn :=

√
n
(
Xn / Y n −E [X1,n] /E [Y1,n]

)
satisfies:
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Figure 9.2: Coverage of asymptotic CIs based on the delta method.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (Cn−b, 1), with C = 0.025. The nominal pointwise asymptotic level is

set to 0.95. For a pair (E[Y ], n), the coverage is obtained as the mean over 5,000 repetitions.

1. If n1/2E [Y1,n]→ 0, then Sn is equivalent in distribution to:
√
n
(
Xn −E [X1,n]

)
E [Y1,n]

−
√
n
(
Y n −E [Y1,n]

)
E [X1,n]

E [Y1,n]
2 , as n→∞.

2. If n1/2E [Y1,n]→ +∞, then Sn is equivalent in distribution to:

√
n

(√
n(Xn −E [X1,n])
√
n(Y n −E [Y1,n])

− E [X1,n]

E [Y1,n]

)
, as n→∞.

3. If there exists a finite constant C 6= 0 such that
√
nE [Y1,n]→ C as n→∞, then Sn is equivalent in

distribution to:

nE [X1,n]

(
1

C +
√
n
(
Y n −E [Y1,n]

) − 1

C

)
+

n
(
Xn −E [X1,n]

)
C +

√
n
(
Y n −E [Y1,n]

) , as n→∞.

Theorem 9.1 can thus be interpreted as a generalization of the result given by the CLT and the delta

method for ratios of expectations. The sequence-of-models framework allows the expectation in the

denominator to tend to 0. Figure 9.3 and its companion table highlight the different asymptotic regimes

depending on the behaviors of {E [X1,n]}n∈N∗ and {E [Y1,n]}n∈N∗ .

The main takeaway of the latter is that when E [X1,n] = C1/n
a and E [Y1,n] = C2/n

b for some con-

stants C1 6= 0 and C2 6= 0, and b < 1/2 (namely the expectation in the denominator converges to 0 at a

slower rate than the standard CLT one), Sn properly renormalized by n to a power that is a function of a

and b, still converges in distribution to a Normal random variable. Asymptotically valid inference based

on Normal approximation remains valid in that case, even if the length of such confidence intervals may

not decrease with the sample size n. In all other cases (except when a > b > 1/2), up to a normalization

of some power of n, Sn converges weakly to a non-Gaussian distribution, in some cases to generalized
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Figure 9.3: Separation between the different asymptotic regimes as a function of (a, b), where E [X1,n] =

C1/n
a and E [Y1,n] = C2/n

b, (a, b) ∈ R∗+
2.

a < b a = b a > b

b > 1/2 n1/2W1/W2 n1/2
(
W1/W2 − C1/C2

)
−nb−a+1/2C1/C2

b = 1/2 n1−a
(
C1/(C2 +W2)− C1/C2

)
n1/2

(
C1/(C2 +W2)− C1/C2 +W1/(C2 +W2)

)
n1/2

(
W1/(C2 +W2)

)
b < 1/2 n2b−aC1W2/C

2
2 nb(W1/C1 − C1W2/C

2
2 ) nbW1/C1

Table 9.1: Limiting law of Sn :=
√
n
(
Xn/Y n − E [X1,n] /E [Y1,n]

)
in the nine different regimes. The

variables (W1,W2) follow the distribution N (0, V ), where V = limV [(X1,n, Y1,n)].
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Cauchy distributions with parameters that depend on the data generating process. Theoretically, quan-

tiles of the limiting distribution could be computed and thus asymptotic confidence intervals, as in the

Normal case. Overall, the results of the table highlight that the method to conduct inference will depend

on the speed of convergence of both numerators and denominators. In comparison, the nonasymptotic

confidence intervals shown in Section 9.4 provide a unique way of conducting inference, once a class of

distributions is defined.

9.4 Construction of nonasymptotic confidence intervals

To construct nonasymptotic confidence intervals for ratios of expectations, we rely on the possibility to

ensure that, with large probability, (i) Xn is close to E [X1,n] and (ii) Y n is both close to E [Y1,n] and

bounded away from 0. Under Assumptions 9.2.1 and 9.2.2, the Bienaymé-Chebyshev inequality can be

applied to obtain (i) and (ii). Without extra assumptions, we are only able to build nonasymptotic CIs at

confidence levels that are not too close to 1 (see Section 9.4.2). This limitation does not arise when one

builds a nonasymptotic CI for an expectation. In that sense, we can say that building a nonasymptotic CI

for a ratio of expectations is more demanding. Intuitively, the extra difficulty of the latter task comes from

the need to ensure (ii). To stress that point, we show in the next subsection that when Y n is bounded

away from 0 and positive almost surely, we can build a nonasymptotic CI for a ratio at every confidence

level.

9.4.1 An easy case: the support of Y is well-separated from 0

We present a simple framework in which it is possible to build nonasymptotic CIs, valid for every n ∈ N∗,
and with coverage 1 − α for every α ∈ (0, 1). To do so, we restrict further the set P of admissible

distributions with the following assumption.

Assumption 9.4.1. There exists aY,n > 0 such that Y1,n ≥ aY,n almost surely.

Under Assumption 9.4.1, for every n ∈ N∗, Y n ≥ aY,n > 0 almost surely under every distribution in P
and Y

−1

n is bounded from above. This assumption obviously rules out binary {0, 1} random variables in

the denominator of the ratio, which can be quite restrictive in practice. Under this assumption, the follow-

ing theorem gives a concentration inequality for our ratio of expectations. It is proved in Section 9.8.2.

Theorem 9.2. Under Assumptions 9.2.1, 9.2.2 and 9.4.1, we have for every n ∈ N∗ and ε ∈ R∗+,

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ >
(
ε+
√
uX,n

)
ε

aY,nlY,n
+

ε

lY,n

)
≤ uX,n

nε2
+
uY,n − l2Y,n

nε2
.

As a consequence, P
(
E [X1,n] /E [Y1,n] ∈ [Xn/Y n ± t]

)
≥ 1− α, with the choice

t :=
1

lY,n

√
uX,n + uY,n − l2Y,n

nα

1 +
1

aY,n


√
uX,n + uY,n − l2Y,n

nα
+
√
uX,n


 ,

for every α ∈ (0, 1).

The theorem shows that it is possible to construct nonasymptotic CIs for ratios of expectations, with

guaranteed coverage at every confidence level, that are almost surely bounded under every distribution

in P. In Section 9.4.2, we give an analogous result that only requires Assumptions 9.2.1 and 9.2.2 to

hold, so that it encompasses the case of {0, 1}-valued denominators. However, the cost to pay will be

an upper bound on the achievable coverage of the confidence intervals.
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9.4.2 Nonasymptotic confidence intervals with no assumption on the support
of PY

We seek to build nontrivial nonasymptotic CIs under Assumptions 9.2.1 and 9.2.2 only. Under Assump-

tion 9.2.1, E [Y1,n] 6= 0, so that there is no issue in considering the fraction E [X1,n] /E [Y1,n]. However,

without Assumption 9.4.1,
{
Y n = 0

}
has positive probability in general so that Xn/Y n is well-defined

with probability less than one. Note that when PY,n is continuous wrt to Lebesgue’s measure, there is no

issue in defining Xn/Y n anymore since the event
{
Y n = 0

}
has probability zero. This is not an easier

case from a theoretical point-of-view though, since without more restrictions, Y n can still be arbitrarily

close to zero with positive probability.

Theorem 9.3. Assume that Assumptions 9.2.1 and 9.2.2 hold. For every n ∈ N∗, ε > 0, ε̃ ∈ (0, 1), we
have

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ( (
√
uX,n + ε)ε̃

(1− ε̃)2
+ ε

)
1

lY,n

)
≤ uX,n

nε2
+
uY,n − l2Y,n
nε̃2l2Y,n

.

As a consequence, P
(∣∣Xn/Y n − E [X1,n] /E [Y1,n]

∣∣ > t
)
≤ α, with the choice

t =
1

lY,n


(√

uX,n +
√

2uX,n/nα
)√

2(uY,n − l2Y,n)/nαl2Y,n(
1−

√
2(uY,n − l2Y,n)/nαl2Y,n

)2 +

√
2uX,n
nα

 ,

for every α > αn :=
2(uY,n−l2Y,n)

nl2Y,n
.4

This theorem is proved in Section 9.8.3. It states that when lY,n > 0, it is possible to build valid

nonasymptotic CIs with finite length up to the confidence level 1−αn. This is a more positive result than

[46] which states that it is not possible to build nontrivial nonasymptotic CIs when lY,n is taken equal

to 0, no matter the confidence level. On the other hand, it is more negative than Theorem 9.2. Note

that Theorem 9.3 is not an impossibility theorem since it only claims that considering confidence levels

smaller than 1−αn is sufficient to build nontrivial CIs under Assumptions 9.2.1 and 9.2.2. The remaining

question is to find out whether it is necessary to focus on confidence levels that do not exceed a certain

threshold under Assumptions 9.2.1 and 9.2.2. We answer this in Section 9.5.1.

Theorem 9.3 has two other interesting consequences: for every confidence level up to 1 − αn, a

nonasymptotic CI of the form
[
Xn/Y n ± t̃

]
with t̃ > t has coverage 1− α but is conservative. Moreover,

if the DGP does not depend on n (i.e in the standard i.i.d. setup), for every fixed α, the length of the

confidence interval shrinks at the optimal rate 1/
√
n. Note that the coefficient 2 in the definition of αn

defined above can be reduced to any number w > 1, at the expense of increasing the length of the

confidence interval. In fact, the latter tends to infinity when w → 1. This is due to the fact we equalize

both terms in the bound of the probability above, and more subtle choices are possible indeed.

9.5 Nonasymptotic CIs: impossibility results and practical guide-

lines

In this section, we prove two impossibility results: a necessary lower bound on the length of nonasymp-

totic CIs and a maximum confidence level above which it is impossible to build nontrivial nonasymptotic

CIs.
4Equivalently, it means that for a given level α, the above choice of t is valid for every integer n > nα := 2(uY,n− l2Y,n)/αl

2
Y,n.
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9.5.1 An upper bound on testable confidence levels

Proposition 9.4. For every n ∈ N∗, and every α ∈ (0, αn) , where αn :=
(
1−l2Y,n/uY,n

)n, if l2Y,n/uY,n < 1,
there is no finite t > 0 such that

[
Xn/Y n ± t

]
has coverage 1 − α over P, where P is the class of all

distributions satisfying Assumptions 9.2.1 and 9.2.2 for fixed lY,n, uX,n and uY,n.

This theorem asserts that confidence intervals of the form
[
Xn/Y n ± t

]
with coverage higher than

1−αn under Assumptions 9.2.1 and 9.2.2 are not defined (or are of infinite length) with positive probability

for at least one distribution in P. This is due to the fact that αn is the lower bound on P(Y n = 0) over all

distributions in P.

Remark that when uY,n/l2Y,n = 1, there is no impossibility result anymore: assume that uY,n/l2Y,n = 1

and let Q be a distribution on R2 that satisfies Assumptions 9.2.1 and 9.2.2. Let (Xi,n, Yi,n)ni=1
i.i.d.∼ Q. We

have thatV [Y1,n] = 0, which implies that Y1,n = E [Y1,n] almost surely. Assumption 9.2.1 further ensures

that Y1,n 6= 0 almost surely. Consequently, the results of Section 9.4.1 apply and allow us to conclude

that under Assumptions 9.2.1, 9.2.2 and uY,n/l
2
Y,n = 1, it is possible to build nontrivial nonasymptotic

CIs at every confidence level. Indeed, in that case, we are in fact only estimating a simple mean, and

therefore there is no constraint on α.

Proposition 9.4 is in fact a corollary of the more general Theorem 9.5 that states that it is impossible

to construct confidence intervals that contain Xn/Y n almost surely and are almost surely bounded over

P with coverage greater than 1− αn. It is proven in Section 9.8.5.

Theorem 9.5. Let n ∈ N∗, and a random set In that containsXn/Y n almost surely whenever it is defined
and is undefined if Y n = 0. Then supPn∈P P

(
In undefined

)
≥ αn.

Combining Theorems 9.3 and 9.5, we conclude that there exists some critical level 1−αcn that belongs

to the interval [1−αn, 1−αn] such that it is impossible to build nontrivial nonasymptotic CIs if and only if

their nominal level is above 1− αcn. Finally, it is worth remarking that with a sample of size n, CIs based

on the delta method with a nominal level 1− α > 1− αcn cannot have coverage 1− α.

9.5.2 Practical methods and plug-in estimators

Nonasymptotic confidence intervals based on Theorem 9.3 require Assumptions 9.2.1 and 9.2.2. In

particular, they require the knowledge of the constants lY,n, uX,n and uY,n that determine the class

of distributions we consider. In practice, we need to state values for lY,n, uX,n and uY,n to build our

nonasymptotic CIs and to compute αn (equivalently nα)5 or αn. Note that constructing nontrivial and

nonasymptotic CIs that overcome the limitations of having to choose some a priori class of distributions

is not possible. Indeed, we would get back to [9] and [46] type impossibility results.

How to choose lY,n, uX,n and uY,n depends on the specific application. In some cases, stating values

can be sensible if researchers do have (some) control or expert knowledge of the variables. Resuming

an example started in Section 9.1, if the variable in the denominator happens to be an indicator of

participating to some treatment and in the setting of a Randomized Controlled Trial, researchers can

have intuitions about reasonable values for the upper bound uY,n of the probability of being treated, for

instance.

Without prior information, a first approximation would be to replace the unknown constants with their

empirical counterparts. Under i.i.d. sampling, the latter are consistent estimates of the former; though
5Actually, the computation of αn and nα only require knowledge of lY,n and uY,n.
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it ruins the exact nonasymptotic approach. On the other hand, it enables us to construct our CIs and

the quantity nα, which can be useful in practice as a rule of thumb. We stick to that principle in all our

numerical applications (Section 9.6).

For a given level 1 − α and a class of distributions satisfying Assumptions 9.2.1 and 9.2.2 for some

values lY,n, uX,n and uY,n, nα is the minimal sample size required to construct our nonasymptotic CIs.

For a sample size n < nα, the data is not rich enough to construct nonasymptotic CIs of Theorem 9.3

at this level. Heuristically, the comparison of nα and n can be used as a rule of thumb to quickly assess

whether the nominal level of asymptotic CIs based on the delta method holds6. Several simulations tend

to confirm the practical interest of that rule of thumb as the obtained nα turns out to be empirically very

close to the sample size above which the coverage of asymptotic CIs converges to the nominal level

1− α (see Section 9.6.1).

9.5.3 A lower bound on the length of nonasymptotic confidence intervals

The following theorem is an extension of [26][Proposition 6.2] to ratios. It is proved in Section 9.8.4.

Theorem 9.6. For every integer n ≥ 7, every α ∈
(

0, 1 ∧ n/
(
lY,n +

√
uY,n − l2Y,n

)2
)

, and every

ξ < 1 there exists a distribution Q on R2 that satisfies Assumptions 9.2.1 and 9.2.2 such that for
(Xi,n, Yi,n)

n
i=1

i.i.d∼ Q, we have

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ξ

√
vn

3nα

)
> α,

where vn := uX,n/
(
lY,n +

√
uY,n − l2Y,n

)2.

With this theorem, we can claim that for every α ∈
(

0, 1 ∧ n/
(
lY,n +

√
uY,n − l2Y,n

)2
)

, confidence

intervals of the form
[
Xn/Y n ± t

]
cannot have uniform coverage 1 − α under Assumptions 9.2.1 and

9.2.2 if they are shorter than
√
vn/(3nα). By a careful inspection of the proof (see Lemma 9.9), we can

in fact replace the value 3 in the theorem by any number strictly larger than e = exp(1), at the price of

assuming n ≥ n0 for n0 large enough. It is interesting to note that the distributions Q that are built in the

proof of the theorem are extremal in P in the sense that they satisfy E
[
X2
n

]
= uX,n, E [Y1,n] = lY,n and

E
[
Y 2
n

]
= uY,n.

9.6 Numerical applications

9.6.1 Simulations

This section presents simulations that support the use of nα, or equivalently αn, as a rule of thumb to give

insight into the reliability of the asymptotic confidence intervals from the delta method. The simulations

resume the setting of Figure 9.1.

In Figure 9.4, a nominal level 1−α is fixed and we show the coverage of asymptotic CIs as a function

of the sample size n, as well as nα derived in Theorem 9.3. It happens that the coverage converges

toward its nominal level for sample sizes around nα, which supports nα as a rule of thumb of interest in

practice7.
6Equivalently, we could compare αn and α. As a rule of thumb, αn can be seen as the lowest α (hence the highest nominal

level 1− α) for which the asymptotic CIs based on the delta method are reliable given the sample size n.
7This fact holds across various specifications (see additional simulations in Appendix 9.10).
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Figure 9.4: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.1, V[X] = 1, V[Y ] = 2,

Corr(X,Y ) = 0.5. The nominal pointwise asymptotic level is set to 0.90. For a sample size n, the coverage

is obtained as the mean over 5,000 repetitions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
,

setting here α = 0.1, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.5: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb αn.

Specification: sample size n = 1, 000, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.25, V[X] = 2,

V[Y ] = 1, Corr(X,Y ) = 0.5. For each nominal level 1 − α in the x-axis, we draw 10, 000 samples, compute the

asymptotic CIs and see whether it covers or not the ratio of interest; we report the mean over the 10, 000 repetitions in

the y-axis. The solid line is the first bisector y = x. The dashed vertical line shows αn := 2
(
uY,n − lY,n2

)
/
(
nlY,n

2
)
,

setting here lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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In Figure 9.5, a sample size is fixed and we show the coverage8 of asymptotic CIs for different

nominal levels, as well as αn. It is the converse of Figure 9.4.

The rule of thumb based on αn suggests that at nominal levels higher than 1−αn (and for the sample

size at hand) asymptotic CIs show some undercoverage. In the specification of Figure 9.5, αn turns out

to fall close to the lowest α (hence highest 1− α) for which the coverage of asymptotic CIs attains their

nominal level9.

All in all, Figures 9.4 and 9.5 and additional simulations (see Appendix 9.10) advocate the use of the

nα derived in Theorem 9.3 (or conversely αn) as a rule of thumb to appraise the reliability of asymptotic

CIs for ratios of expectations.

9.6.2 Application to real data

We illustrate the use of our confidence intervals with two applications on real data using French La-

bor Survey between 2010 and 2017.10 Both applications resume our canonical example of conditional

expectations and use n = 204, 246 observations.

First, we compute the expected wage conditional on belonging to top wage brackets. Let W be a real

random variable that denotes the wage of an employee. For a given top wage W0, the parameter of in-

terest is E [W |W ≥W0], with W0 = q1−τ (W ) the quantile at order 1−τ of W . It can be written as a ratio

with the variable in the numerator X = W1{W ≥W0} and in the denominator Y = 1{W ≥W0}. In what

follows, we focus on the comparison between our nonasymptotic confidence intervals and the asymp-

totic CIs from the delta method. As explained in Section 9.5.2, we compute our confidence intervals

using plug-in estimators to delimit the class of distributions we consider.

2000

4000

6000

5% 20% 35% 50% 65% 80% 95%

Top %

E
xp

ec
te

d 
w

ag
e 

co
nd

iti
on

al
 o

n 
be

lo
ng

in
g 

to
 to

p 
%

estimate

asymp. CI by DM

nonasymp. CI by BC

nonasymp. minimal CI

Figure 9.6: Expected wage conditional on belonging to top % as a function of τ .

Figure 9.6 compares the confidence intervals constructed using Theorem 9.3 with the confidence

intervals constructed using the delta method. As expected, our nonasymptotic CIs are broader than
8The coverage shown is in fact an estimate obtained with Monte-Carlo simulations, namely the mean over a large number of

repetitions, as usual in MC simulations.
9Again, this fact appears to hold for various specifications (cf. Appendix 9.10).

10The complete references of the databases are as follows: “Enquête Emploi en continu (version FPR)” - year, INSEE, ADISP,
for year going through 2010 to 2017.



Chapter 9. Confidence intervals for ratios of means: limitations of the delta method and honest
confidence intervals 264

the ones from the delta method. Both CIs get narrower as the expectation in the denominator moves

away from 0. Figure 9.6 also displays a plug-in estimate of nonasymptotic CIs based on the minimal

half-length t∗ presented in Theorem 9.6. As a reminder, no nonasymptotic CI of the form
[
Xn/Y n ± t

]
can have good coverage if t < t∗. On Figure 9.6, we cannot distinguish CIs based on the delta method

from nonasymptotic CIs with minimal half-length (see details below in Figures 9.7 and 9.8).
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Figure 9.7: Expected wage conditional on belonging to top % as a function of τ (zoom).

Figures 9.7 and 9.8 zoom in subintervals of the previous graph in order to better compare the asymp-

totic confidence intervals from the delta method and the nonasymptotic CIs based on half-length t∗ from

Theorem 9.6. When focusing on the top of the distribution, the asymptotic CIs happen to be broader

than the minimal one (Figure 9.7). On the contrary, with an expectation in the denominator further from

0, the length of the asymptotic CIs is lower than the minimal one (Figure 9.8).

Nevertheless, we do not have formal results to compare those lengths. At this stage, we can simply

say that it is in some sense reassuring that the length of the asymptotic CIs increases relatively more

than the length of the minimal one as we focus on thinner top percentage of the distribution.

Using the same data, our second application is an estimation of the proportion of women within the

top brackets of the distribution of income. IfG is an indicator variable equal to 1 for women and 0 for men,

the conditional expectation of interest can be defined as E [G |W ≥ q1−τ (W )]. As in the first application,

Figure 9.9 compares the different confidence intervals.

9.7 Conclusion

We provide an overview of the problem of constructing confidence intervals for a ratio of means in

asymptotic and nonasymptotic frameworks. Using the delta method, asymptotic confidence intervals

can be constructed but they have no coverage guarantee for a finite sample size. Nonasymptotic con-

fidence intervals are proposed, but they depend on unknown parameters, which are functions of the

data-generating process. To overcome such difficulties, we have proposed plug-in estimators based on

a rule of thumb that allows the statistician to quantify whether the coverage of the delta-method should
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Figure 9.8: Expected wage conditional on belonging to top % (zoom)
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be close to its nominal level (or not). Finally, we have illustrate our methods with simulated data, and we

have applied it to a real dataset to construct confidence intervals for conditional expectations of wages.

9.8 Proofs of the results in Sections 9.3, 9.4 and 9.5

9.8.1 Proof of Theorem 9.1

Let θX,n := E [X1,n], θY,n := E [Y1,n], hX,n :=
√
n(Xn − θX,n) and hY,n :=

√
n(Y n − θY,n). We first

rewrite Theorem 9.1 using this notation.

Theorem 9.7. Let Assumption 9.2.1 hold. Assume that E[|X1,n|3] and E[|Y1,n|3] are bounded and
V[(X1,n, Y1,n)]→ V where V is a positive definite matrix and that P(Y n = 0)→ 0, as n→∞.

Then the sequence of random variables An := Xn/Y n − θX,n/θY,n satisfies :

1. If n−1/2 = o(θY,n), then An is equivalent to n−1/2
(
hX,n/θY,n − hY,nθX,n/θ2

Y,n

)
, as n→∞.

2. If θY,n = o(n−1/2), then An is equivalent to hX,n/hY,n − θX,n/θY,n.

3. If there exists a finite constant C 6= 0 such that
√
nθY,n → C as n → ∞, then An is equivalent to

√
nθX,n

(
1/(C + hY,n)− 1/C

)
+ hX,n/(C + hY,n).

Let us define Wn := 1{θY,n + hY,n/
√
n = 0} and remark that Wn = 1 whenever Y n = 0. By

assumption P(Y n = 0) → 0, therefore Wn
d−−−−−→

n→+∞
δ0. Moreover, the positive-definiteness of V

and the boundedness of E[|X1,n|3] and E[|Y1,n|3] ensure that the Cramer-Wold device applies and

(hY,n, hX,n)
d−−−−−→

n→+∞
N (0, V ). By Slutsky’s Lemma, we also get (hY,n, hX,n,Wn)

d−−−−−→
n→+∞

N (0, V ) ⊗ δ0.

We can therefore apply the almost sure representation theorem, see [138, Theorem 2.19]. It means that

there exists a probability space (Ω̃, Ũ , P̃), a sequence of random vectors (h̃Y,n, h̃X,n, W̃n) such that for

every n ≥ 1, (h̃Y,n, h̃X,n, W̃n)
d
= (hY,n, hX,n,Wn), and a random vector (h̃Y,∞, h̃X,∞, W̃∞) following the

distribution N (0, V )⊗ δ0 such that (h̃Y,n, h̃X,n, W̃n)
a.s.−→ (h̃Y,∞, h̃X,∞, W̃∞), where the convergence is to

be seen as of a sequence of random vectors defined on (Ω̃, Ũ , P̃). Let us define

Ãn :=
θX,n + h̃X,n/

√
n

θY,n + h̃Y,n/
√
n
− θX,n
θY,n

d
=
θX,n + hX,n/

√
n

θY,n + hY,n/
√
n
− θX,n
θY,n

=
Xn

Y n
− θX,n
θY,n

= An.

Moreover, we have W̃n = 1{θY,n + h̃Y,n/
√
n = 0} and W̃∞ = 0 almost surely. We can define

Ω̃∗ = {ω̃ ∈ Ω̃ : W̃n(ω̃)→ 0 and ∃N > 0,∀n ≥ N, h̃Y,n(ω̃) 6= 0}.

By the almost sure convergence of (h̃Y,n, W̃n), we get P̃(Ω̃∗) = 1, and for every ω̃ ∈ Ω̃∗, W̃n(ω̃) = 0

and h̃Y,n(ω̃) 6= 0 for every n large enough. This means that for every given ω̃ ∈ Ω̃∗, and for every n

large enough, Ãn is well-defined. In the rest of the proof, we will fix such a ω̃ ∈ Ω̃∗, so that all random

variables may be considered as deterministic. By the almost sure representation theorem, this means

that the equivalents and limits that will be obtained will still be valid in law in the original spaces Ωn.

First case: We have

Ãn =
Xn

Y n
− θX,n
θY,n

=
θX,n + h̃X,n/

√
n

θY,n + h̃Y,n/
√
n
− θX,n
θY,n

=
θX,n + h̃X,n/

√
n

θY,n

(
1− h̃Y,n√

nθY,n
+O

(
(
√
nθY,n)−2

))
− θX,n
θY,n

∼ −θX,nh̃Y,n√
nθ2

Y,n

+
h̃X,n√
nθY,n

,
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as claimed.

Second case: We have

Ãn =
θX,n + h̃X,n/

√
n

θY,n + h̃Y,n/
√
n
− θX,n
θY,n

=
θX,n + h̃X,n/

√
n(

h̃Y,n + o(1)
)
/
√
n
− θX,n
θY,n

=

√
nθX,n + h̃X,n

h̃Y,n
− θX,n
θY,n

+ o
(√

nθX,n + 1
)

∼ θX,n
( √

n

h̃Y,n
− 1

θY,n

)
+
h̃X,n

h̃Y,n
,

and the result follows from the fact that
√
n/h̃Y,n is negligible compared to 1/θY,n.

Third case: We have

Ãn ∼
θX,n + h̃X,n/

√
n

C/
√
n+ h̃Y,n/

√
n
− θX,n
C/
√
n

=

√
nθX,n + h̃X,n
C + hY,n

−
√
nθX,n
C

.

We factorize by θX,n in the latter expression, which completes the proof.

�

9.8.2 Proof of Theorem 9.2

We fix arbitrary n ∈ N∗ and ε ∈ R∗+. By the triangle inequality first, then using the bound |Xn| ≤
|Xn −E [X1,n] |+ |E [X1,n] | and Assumptions 9.2.1 to 9.4.1 in the second inequality, we get:∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ ≤ |Xn| ·
∣∣∣∣ 1

Y n
− 1

E [Y1,n]

∣∣∣∣+
1

E [Y1,n]

∣∣∣∣Xn −E [X1,n]

∣∣∣∣
≤
(∣∣Xn −E [X1,n]

∣∣+
√
uX,n

) ∣∣Y n −E [Y1,n]
∣∣

aY,nlY,n
+

∣∣Xn −E [X1,n]
∣∣

lY,n
.

Consequently, the event considered in Theorem 9.2 is included in the event:(∣∣Xn −E [X1,n]
∣∣+
√
uX,n

) ∣∣Y n −E [Y1,n]
∣∣

aY,nlY,n
+

∣∣Xn −E [X1,n]
∣∣

lY,n
>

(
ε+
√
uX,n

)
ε

aY,nlY,n
+

ε

lY,n
. (9.2)

If both |Xn −E [X1,n] | and |Y n −E [Y1,n] | are inferior or equal to ε, event (9.2) cannot happen. By

contraposition, we obtain:

P

((∣∣Xn −E [X1,n]
∣∣+
√
uX,n

) ∣∣Y n −E [Y1,n]
∣∣

aY,nlY,n
+

∣∣Xn −E [X1,n]
∣∣

lY,n
>

(
ε+
√
uX,n

)
ε

aY,nlY,n
+

ε

lY,n

)
≤ P

({∣∣Xn −E [X1,n]
∣∣ > ε

}
∪
{∣∣Y n −E [Y1,n]

∣∣ > ε
})

≤ P
(∣∣Xn −E [X1,n]

∣∣ > ε
)

+P
(∣∣Y n −E [Y1,n]

∣∣ > ε
)
,

where we use the union bound for the last inequality. The first conclusion follows from using twice

Bienaymé-Chebyshev’s inequality applied to the variables Xn and Y n and the fact that under Assump-

tions 9.2.1 and 9.2.2 and Jensen’s inequality, V [X1,n] ≤ uX,n and V [Y1,n] ≤ uY,n − l2Y,n. The second

conclusion follows from solving (uX,n + uY,n − l2Y,n)/(nε2) = α.

�
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9.8.3 Proof of Theorem 9.3

We start by introducing and proving an intermediate lemma that is also used to prove Theorem 9.12. For

a random variable U , ε > 0, and ε̃ ∈ (0, 1) we define the following events:

AUε :=
{∣∣Un −E[U ]

∣∣ ≤ ε}, and ÃUε̃ :=
{∣∣Un −E[U ]

∣∣ ≤ ε̃∣∣E[U ]
∣∣}.

Lemma 9.8. Assume that Assumption 9.2.1 holds. Then for every n ∈ N∗, ε > 0 and ε̃ ∈ (0, 1), we have

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ( (|E [X1,n] |+ ε) ε̃

(1− ε̃)2
+ ε

)
1

|E [Y1,n] |

)
≤ 1−P

(
AX1,n
ε

)
+ 1−P

(
Ã
Y1,n

ε̃

)
.

We use this lemma with different concentration inequalities, giving different speeds (namely Bienaymé-

Chebychev or Hoeffding inequality).

Proof of Lemma 9.8: We fix arbitrary ε > 0 and ε̃ ∈ (0, 1). Without loss of generality, we can assume that

E [Y1,n] > 0 and E [X1,n] ≥ 0.

First, using the union bound, note that the event AX1,n
ε ∩ Ã

Y1,n

ε̃ holds with a probability bigger than

P

(
A
X1,n
ε

)
+ P

(
Ã
Y1,n

ε̃

)
− 1. Hence, its complement is of probability lower than 1 − P

(
A
X1,n
ε

)
+ 1 −

P

(
Ã
Y1,n

ε̃

)
.

Second, we show that the event considered in Lemma 9.8 is included in the complement of AX1,n
ε ∩

Ã
Y1,n

ε̃ , which concludes the proof. To do so, we reason by contraposition and do the following computa-

tions on the event AX1,n
ε ∩ ÃY1,n

ε̃ .

By the triangle inequality, we get∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ ≤ |Xn| ·
∣∣∣∣ 1

Y n
− 1

E [Y1,n]

∣∣∣∣+
1

E [Y1,n]

∣∣∣∣Xn −E [X1,n]

∣∣∣∣.
We now bound the first term using the mean value theorem applied to the function f(x) := 1/(x+E [Y1,n])∣∣∣∣ 1

Y n
− 1

E [Y1,n]

∣∣∣∣ =
∣∣∣f(Y n −E [Y1,n])− f(0)

∣∣∣ ≤ |Y n −E [Y1,n] |
(1− ε̃)2E [Y1,n]

2 ≤
ε̃E [Y1,n]

(1− ε̃)2E [Y1,n]
2 ,

where the first inequality uses that, on the event ÃY1,n

ε̃ , a lower bound on |x+E [Y1,n] | with x varying

between 0 and Y n −E [Y1,n] is (1− ε̃)|E [Y1,n] |. Therefore, on AX1,n
ε ∩ ÃY1,n

ε̃ ,∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ ≤ |Xn| ·
ε̃E [Y1,n]

(1− ε̃)2E [Y1,n]
2 +

ε

E [Y1,n]

≤
(
|E [X1,n] |+ |Xn −E [X1,n] |

) ε̃

(1− ε̃)2E [Y1,n]
+

ε

E [Y1,n]

≤
(
|E [X1,n] |+ ε

)
ε̃

(1− ε̃)2E [Y1,n]
+

ε

E [Y1,n]
,

where we use the triangle inequality to get the second line. It is indeed the complement of the event

considered in the statement of Lemma 9.8.

�

Proof of Theorem 9.3:
We fix arbitrary n ∈ N∗, ε > 0 and ε̃ ∈ (0, 1). By Lemma 9.8, we have

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ( (|E [X1,n] |+ ε) ε̃

(1− ε̃)2
+ ε

)
1

|E [Y1,n] |

)
≤ 1−P

(∣∣Xn −E [X1,n]
∣∣ ≤ ε)+ 1−P

(∣∣Y n −E [Y1,n]
∣∣ ≤ ε̃∣∣E [Y1,n]

∣∣).
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Using Jensen’s inequality and Assumption 9.2.2, we have |E [X1,n] | ≤ (uX,n)1/2, and Assumption 9.2.1

entails 1/|E [Y1,n] | ≤ 1/lY,n. Consequently, we get

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > (
(√
uX,n + ε

)
ε̃

(1− ε̃)2
+ ε

)
1

lY,n

)
≤ 1−P

(∣∣Xn −E [X1,n]
∣∣ ≤ ε)+ 1−P

(∣∣Y n −E [Y1,n]
∣∣ ≤ ε̃∣∣E [Y1,n]

∣∣).
Using Bienaymé-Chebyshev’s inequality twice gives the bounds

1−P
(∣∣Xn −E [X1,n]

∣∣ ≤ ε) ≤ V [X1,n]

nε2

1−P
(∣∣Y n −E [Y1,n]

∣∣ ≤ ε̃∣∣E [Y1,n]
∣∣) ≤ V [Y1,n]

nε̃2 (E [Y1,n])
2 .

For the numerator, V [X1,n] = E
[
X2

1,n

]
− (E [X1,n])

2 ≤ E
[
X2

1,n

]
≤ uX,n using Assumption 9.2.2. For

the denominator, Assumption 9.2.1 immediately entails that 1/l2Y,n is an upper bound on 1/ (E [Y1,n])
2

and l2Y,n a lower bound on (E [Y1,n])
2. Therefore

V [Y1,n]

nε̃2 (E [Y1,n])
2 ≤

E
[
Y 2

1,n

]
− lY,n2

nε̃2lY,n
2 ≤ uY,n − lY,n2

nε̃2lY,n
2 ,

where the second inequality uses Assumption 9.2.2.

Combining the two bounds yields the following upper bound on the probability considered in Theo-

rem 9.3
uX,n
nε2

+
uY,n − lY,n2

nε̃2lY,n
2 , (9.3)

as claimed.

For the second part of Theorem 9.3, for a fixed α, we equalize each of the two terms in (9.3) to α/2

and solve for ε and ε̃, which yields:

ε2 =
2uX,n
nα

and ε̃2 =
2
(
uY,n − lY,n2

)
nαl2Y,n

.

The bound αn comes from the fact that ε̃ needs to be smaller than 1.

�

9.8.4 Proof of Theorem 9.6

To prove Theorem 9.6, we need the following lemma.

Lemma 9.9. For every integer n ≥ 7 and every x ∈ (0, 1), x (1− x/n)
n−1 ≥ x/3.

Proof of Lemma 9.9: we write the lemma to be applied directly in the demonstration of Theorem 9.6, but

the inequality is equivalent to (1− x/n)
n−1 ≥ 1/3. Under our assumptions on n and x, ln (1− x/n) is

well-defined. Using Taylor-Lagrange formula on the function [0, x] 3 t 7→ ln (1− t/n) yields:(
1− x

n

)n−1

= exp
(

(n− 1) ln
(

1− x

n

))
= exp

(
−(n− 1)

(
x

n
+

1

2 (1− τx/n)
2

x2

n2

))
for some τ ∈ (0, 1). Using the fact that n−1

n ≤ 1, x ≤ 1 and 1
2(1−τx/n)2

≤ 1
2(1−n−1)2

, we get that under our

assumptions
(
1− x

n

)n−1 ≥ exp
(
−
(

1 + 1
2n(1−n−1)2

))
. This bound is actually valid for every x ∈ (0, 1)

and every n ∈ N∗. The computation of exp
(
−
(

1 + 1
2n(1−n−1)2

))
shows that the latter is larger than 1/4

whenever n ≥ 3 and larger than 1/3 whenever n ≥ 7.
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�

Proof of Theorem 9.6: we start using arguments developed in the proof of [26][Proposition 6.2]. We

detail those for the sake of clarity. For every n ∈ N∗ and η >
√
uX,n/n, let us define the following

distribution on R, which will be used for the variable in the numerator11:

Pn,uX,n,η :=
uX,n
2n2η2

δ{−nη} +

(
1− uX,n

n2η2

)
δ{0} +

uX,n
2n2η2

δ{nη}.

This distribution is symmetric, centered and has variance uX,n. As shown in [26], every i.i.d. sample

(Xi,n)ni=1 drawn from Pn,uX,n,η satisfies

P
(
Xn ≤ −η

)
= P

(
Xn ≥ η

)
≥ P

(
Xn = η

)
≥

n∑
i=1

P (Xi,n = nη,Xj,n = 0, ∀j 6= i) =
uX,n
2nη2

(
1− uX,n

η2n2

)n−1

.

Note further that for every integer n ≥ 2, the inequality P
(
Xn ≥ η

)
≥ P

(
Xn = η

)
becomes strict

and for every ξ ∈ (0, 1)
{∣∣Xn

∣∣ ≥ η} ⊆ {∣∣Xn

∣∣ > ξη
}

. As a result, if (Xi,n)ni=1
i.i.d.∼ Pn,uX,n,η, for every

η > 0, we have

P
(∣∣Xn

∣∣ > ξη
)
>
uX,n
nη2

(
1− uX,n

η2n2

)n−1

. (9.4)

The following steps do not show up in [26] since they are specific to controlling ratios of expectations

and sample averages. For every n ∈ N∗, let us define the following distribution on R, which will be used

for the variable in the denominator

Pn,lY,n,uY,n :=
1

2
δ{lY,n−

√
uY,n−l2Y,n} +

1

2
δ{lY,n+

√
uY,n−l2Y,n}.

Let (Xi,n, Yi,n)ni=1
i.i.d.∼ Pn := Pn,uX,n,η⊗Pn,lY,n,uY,n . Observe that E [Y1,n] = lY,n and E

[
Y 2

1,n

]
= uY,n.

Furthermore,
∣∣Y n∣∣ ≤ lY,n +

√
uY,n − l2Y,n almost surely. This implies that for every η > 0 and ξ ∈ (0, 1),

the following holds {∣∣Xn

∣∣ > (lY,n +
√
uY,n − l2Y,n

)
ξη
}
⊆
{∣∣∣∣Xn

Y n

∣∣∣∣ > ξη

}
.

For fixed n ≥ 7 and α ∈
(

0, 1 ∧ n/
(
lY,n +

√
uY,n − l2Y,n

)2
)

, we choose η = η(α) =
√
vn/3nα.

Combining the above inclusion with (9.4), and Lemma 9.9 (with the choice x = 3α), we conclude that

there exists a distribution on R2, namely Pn, that fulfills Assumptions 9.2.1 and 9.2.2 such that

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ξ

√
vn

3nα

)
> α,

which completes the proof.

�

9.8.5 Proof of Theorem 9.5

By Lemma 9.10, for every ξ < 1∧
(
uY,n/l

2
Y,n−1

)
, there exists a distribution Pn, ξ such that P

(
Y n = 0

)
≥

α̃n(ξ). Taking the supremum over ξ, we deduce that

sup
Pn∈P

P
(
Y n = 0

)
≥ sup

ξ
α̃n(ξ) = αn.

Using the assumption that In is undefined wheneverXn/Y n is undefined (which is equivalent to Y n = 0),

we deduce that P
(
In undefined

)
≥ αn.

11The notation δ denotes the Dirac distribution.
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Lemma 9.10. For each ξ in the interval
(

0, 1∧
(
uY,n/l

2
Y,n− 1

))
, there exists a distribution Pn, ξ ∈ P such

that P
(
Y n = 0

)
≥ α̃n, where α̃n :=

(
1− (1 + ξ)l2Y,n/uY,n

)n.

Note that the interval
(

0, 1 ∧
(
uY,n/l

2
Y,n − 1

))
is not empty since we have assumed uY,n/l2Y,n > 1.

Proof of Lemma 9.10: We consider the following distribution on R

Pn,lY,n,uY,n,c,ξ :=
( c
n

)1/n

δ{0} +
1

2

(
1−

( c
n

)1/n
)
δ{yc−} +

1

2

(
1−

( c
n

)1/n
)
δ{yc+},

where c ∈ (0, n) is some constant to be chosen later, yc− := lY,n(1 −
√
ξ)/(1 − (c/n)1/n) and yc+ :=

lY,n(1 +
√
ξ)/(1 − (c/n)1/n). Let Y1,n ∼ Pn,lY,n,uY,n,c,ξn . Observe that E [Y1,n] = lY,n and E

[
Y 2

1,n

]
=

l2Y,n(1 + ξn)/
(
1− (c/n)1/n

)
. With the choice

c = cn := n

(
1−

l2Y,n
uY,n

(1 + ξ)

)n
,

we haveE
[
Y 2

1,n

]
= uY,n. Note that cn is strictly positive, because 1− l2Y,n

uY,n
(1 + ξn) > 0. This is equivalent

to uY,n/l2Y,n > 1 + ξn, which is true by assumption.

Consider now the following product measure on R2 defined by Pn := δ{√uX,n} ⊗ Pn,lY,n,uY,n,cn,ξ. Let

(Xi,n, Yi,n)ni=1
i.i.d.∼ Pn. These random vectors satisfy E

[
X2

1,n

]
= uX,n, E [Y1,n] = lY,n and E

[
Y 2

1,n

]
=

uY,n. The next step is to build a lower bound on the event {Y n = 0}.
The assumption that (Xi,n, Yi,n)ni=1

i.i.d.∼ Pn and the construction of Pn,lY,n,uY,n,cn,ξ imply that

P
(
Y n = 0

)
=
cn
n

=

(
1−

l2Y,n
uY,n

(1 + ξ)

)n
= α̃n

�

9.9 Adapted results for Hoeffding framework

Assumption 9.9.1. For every n ∈ N∗, there exist finite constants aX,n, bX,n, aY,n, bY,n such that X1,n

(respectively Y1,n) lies PX,Y,n-almost surely in the interval [aX,n, bX,n] (resp. [aY,n, bY,n]).

The support of X1,n and Y1,n is allowed to change with n, even though in many examples of interest,

the former can be chosen independent from n. Assumptions 9.2.1 and 9.9.1 together correspond to

the Hoeffding case because under these two assumptions, we can use the Hoeffding inequality to build

nonasymptotic CIs.

9.9.1 Concentration inequality in the easy case

Assumption 9.9.2. For every n ∈ N∗, the lower bound aY,n is strictly positive.

Theorem 9.11. Let uX,n := (bX,n − aX,n)
2 and uY,n := (bY,n − aY,n)

2. Under Assumptions 9.2.1, 9.9.1
and 9.9.2, we have for every n ∈ N∗ and ε ∈ R∗+

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ε

lY,n

{
1 +

1

aY,n
(|aX,n| ∨ |bX,n|+ ε)

})

≤ 4 exp

(
− 2nε2

uX,n ∨ uY,n

)
.
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As a consequence, P
(∣∣Xn/Y n − E [X1,n] /E [Y1,n]

∣∣ > t
)
≤ α, with the choice

t :=
1

lY,n

√
(uX,n ∨ uY,n) ln (4/α)

2n

(
1 +

1

aY,n

(
|aX,n| ∨ |bX,n|+

√
(uX,n ∨ uY,n) ln (4/α)

2n

))
,

for every α ∈ (0, 1).

The theorem shows that it is possible to construct nonasymptotic CIs for ratios of expectations at

every confidence level that are almost surely bounded. However, it requires the additional Assumption

9.9.2, that in particular does not allow for binary {0, 1} random variables in the denominator which

may limit its applicability for various applications. In Section 9.9.2, we give an analogous result that

only requires Assumptions 9.2.1 and 9.9.1 to hold, so that it encompasses the case of {0, 1}-valued

denominators. However, the cost to pay will be an upper bound on the achievable coverage of the

confidence intervals.

9.9.2 Concentration inequality in the general case

We seek to build nontrivial nonasymptotic CIs under Assumptions 9.2.1 and 9.9.1 only. Under Assump-

tion 9.2.1, E [Y1,n] 6= 0, so that there is no issue in considering the fraction E [X1,n] /E [Y1,n]. However,

without Assumption 9.9.2,
{
Y n = 0

}
has positive probability in general so that Xn/Y n is well-defined

with probability less than one and undefined else. Note that when PY,n is continuous wrt to Lebesgue’s

measure, there is no issue in defining Xn/Y n anymore since the event
{
Y n = 0

}
has probability zero.

This is not an easier case to establish concentration inequalities though, since without more restrictions,

Y n can still be arbitrarily close to zero with positive probability.

Theorem 9.12. Assume that Assumptions 9.2.1 and 9.9.1 hold. For every n ∈ N∗, ε > 0, ε̃ ∈ (0, 1), we
have

P

(∣∣∣∣Xn

Y n
− E [X1,n]

E [Y1,n]

∣∣∣∣ > ( (|aX,n| ∨ |bX,n|+ ε)ε̃

(1− ε̃)2
+ ε

)
1

lY,n

)
≤ 2 exp(−nε2γ (X1,n)) + 2 exp(−nε̃2γ (Y1,n)),

where γ (X1,n) = 2/(bX,n − aX,n)2 and γ (Y1,n) = 2l2Y,n/(bY,n − aY,n)2.
As a consequence, P

(∣∣Xn/Y n − E [X1,n] /E [Y1,n]
∣∣ > t

)
≤ α, with the choice

t :=

√
ln(4/α)

nγ (X1,n) ∧ γ (Y1,n)

(
|aX,n| ∨ |bX,n|+

√
ln(4/α)/nγ (X1,n)

(1−
√

ln(4/α)/nγ (Y1,n))2
+ 1

)
1

lY,n
,

for every α > αn,H := 4e−nγ(Y1,n).12

This theorem is proven in Section 9.9.4. It states that when lY,n > 0, it is possible to build valid

nonasymptotic CIs with finite length up to the confidence level 1 − αn,H . This is a more positive result

than [46] which claims that it is not possible to build nontrivial nonasymptotic CIs when lY,n is taken

equal to 0, no matter the confidence level. On the other hand, it is more negative than Theorem 9.11.

Note that Theorem 9.12 is not an impossibility theorem since it only claims that considering confidence

levels smaller than 1− αn,H is sufficient to build nontrivial CIs under Assumptions 9.2.1 and 9.9.1. The

remaining question is to find out whether it is necessary to focus on confidence levels that do not exceed

a certain threshold under Assumptions 9.2.1 and 9.9.1. We answer this in Section 9.9.3.

Theorem 9.12 has two other interesting consequences: for every confidence level up to 1 − αn,H , a

nonasymptotic CI of the form
[
Xn/Y n ± t̃

]
with t̃ > t has good coverage but is too conservative. What

is more, if the DGP does not depend on n (i.e in the standard i.i.d. setup), for every fixed α > αn,H , the

length of the confidence interval shrinks at the optimal rate 1/
√
n.

12Equivalently, it means that for a given level α, the choice of t is valid for every integer n > nα := ln(4/α)/γ (Y1,n).
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9.9.3 An upper bound on testable confidence levels

Theorem 9.13. For every n ∈ N∗, and every α ∈
(
0, αn,H

)
, where αn,H :=

(
1 − lY,n/(bY,n − aY,n)

)n,
if (bY,n − aY,n)/lY,n > 1, there is no finite t > 0 such that

[
Xn/Y n ± t

]
has coverage 1 − α over PH ,

where PH is the class of all distributions satisfying Assumptions 9.2.1 and 9.9.1 for a fixed lower bound
lY,n and fixed lengths bX,n − aX,n and bY,n − aY,n.

This theorem asserts that confidence intervals of the form
[
Xn/Y n ± t

]
with coverage higher than

1 − αn,H under Assumptions 9.2.1 and 9.9.1 are not defined (or are of infinite length) with positive

probability for at least one distribution in PH . The additional restriction (bY,n − aY,n)/lY,n > 1 is rather

mild in practice: it is equivalent to bY,n − aY,n > lY,n and is satisfied as soon as aY,n ≤ 0 and bY,n >

lY,n > 0. This encompasses all DGPs where the denominator is {0, 1}-valued and the probability that

the denominator equals 1 is bounded from below by lY,n ∈ (0, 1).

Note that for Theorems 9.11 and 9.12, it is required to know not only the length bX,n − aX,n but also

the actual endpoints of the support, aX,n and bX,n. On the contrary, Theorem 9.13 does not require the

latter. In that respect, the class of Theorem 9.13 is larger than the one of the two preceding theorems.

9.9.4 Proof of Theorems 9.11 and 9.12

The proofs are identical to those of Theorems 9.2 and 9.3, except for the Bienaymé-Chebyshev inequality

that has to be replaced with the Hoeffding inequality. The latter can be used under Assumption 9.9.1.

Note also that E [X1,n] is now bounded by |aX,n| ∨ |bX,n|.

9.9.5 Proof of Theorem 9.13

By Lemma 9.14, for every ξ < 1∧
(
(bY,n−aY,n)/lY,n−1

)
, there exists a distribution Pn, ξ ∈ PH satisfying

Assumptions 9.2.1 and 9.9.1 such that P
(
Y n = 0

)
≥ α̃n,H(ξ). Denote its marginal distributions by

PX,n, ξ and PY,n, ξ. Therefore, Pn, ξ satisfies Assumptions 9.2.1 and 9.9.1, and Xn/Y n is undefined with

probability greater than α̃n,H(ξ). Taking the supremum over ξ, we deduce that

sup
Pn∈PH

P
(
Y n = 0

)
≥ sup

ξ
α̃n(ξ) = αn,H .

This means that the random interval I∗n :=
[
Xn/Y n ± t

]
cannot have coverage higher than 1 − αn,H

since it may be undefined with a probability higher than αn,H .

�

Lemma 9.14. For each ξ in the interval
(

0, 1 ∧
(
(bY,n − aY,n)/lY,n − 1

))
, there exists a distribution

Pn, ξ ∈ PH such that P
(
Y n = 0

)
≥ α̃n,H , where α̃n,H :=

(
1− (1 + ξ)lY,n/(bY,n − aY,n)

)n.

Note that the interval
(

0, 1 ∧
(
(bY,n − aY,n)/lY,n − 1

))
is not empty since we have assumed (bY,n −

aY,n)/lY,n > 1.

Proof of Lemma 9.14: We consider the following distribution on R

Pn,lY,n,c,ξ :=
( c
n

)1/n

δ{0} +
1

2

(
1−

( c
n

)1/n
)
δ{yc−} +

1

2

(
1−

( c
n

)1/n
)
δ{yc+},

where c ∈ (0, n) is some constant to be chosen later, yc− := lY,n(1 − ξ)/(1 − (c/n)1/n) and yc+ :=

lY,n(1 + ξ)/(1− (c/n)1/n). Let Y1,n ∼ Pn,lY,n,c,ξn . Observe that E [Y1,n] = lY,n. With the choice

c = cn := n

(
1− lY,n

bY,n − aY,n
(1 + ξ)

)n
,
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we have yc+ = bY,n − aY,n. Note that cn is strictly positive, because 1 − lY,n
bY,n−aY,n (1 + ξn) > 0. This is

equivalent to bY,n − aY,n/lY,n > 1 + ξn, which is true by assumption.

Consider now the following product measure on R2 defined by Pn :=
(
0.5δ{0} + 0.5δ{bX,n−aX,n}

)
⊗

Pn,lY,n,cn,ξ. Let (Xi,n, Yi,n)ni=1
i.i.d.∼ Pn. These random vectors satisfy E [Y1,n] = lY,n, (max−min)[Y1,n] =

bY,n − aY,n and (max−min)[X1,n] = bX,n − aX,n. The next step is to build a lower bound on the event

{Y n = 0}.
The assumption that (Xi,n, Yi,n)ni=1

i.i.d.∼ Pn and the construction of Pn,lY,n,cn,ξ imply that

P
(
Y n = 0

)
=
cn
n

=

(
1− lY,n

bX,n − aX,n
(1 + ξ)

)n
= α̃n,H

�
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9.10 Additional simulations

This section complements the simulations presented in the main body of the article. Figures show the

same objects but with different specifications of the distribution used. We use those different specifica-

tions as the order of presentation in this section.

In this setting of simulations, we use the best bounds by setting the constants lY,n and uY,n that

define our class of distributions equal to the actual corresponding moments (respectively the expec-

tation for lY,n and the second moment i.e. the expectation of the square for uY,n). That is we use

nα = 2(E[Y ]2 +V[Y ])/(αE[Y ]2).

In practical settings, the rule-of-thumb will be to replace the theoretical and unknown moments by

their empirical counterparts and use the nα obtained to appraise the reliability of the asymptotic CIs from

the delta method.

9.10.1 Gaussian distributions
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Figure 9.10: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.025, 1). The nominal pointwise asymptotic level is set to 0.95. For

a sample size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].

9.10.2 Rule of thumb using αn

Symmetrically, we can consider the rule of thumb for a fixed sample size n and compare the desired

nominal level 1− α of the test to the rule of thumb 1− αn, with the αn derived in Theorem 9.3.

9.10.3 Student distributions

The specification here is two Student distributions, both in the numerator and in the denominator. Stan-

dard Student distributions are centered. We use therefore translated versions by simply adding the

expectations in order to avoid a null denominator for the ratio of expectations of interest. Below, T (µ, ν)

denotes the distribution of a translated standard Student variable: µ+T where T is distributed according
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Figure 9.11: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.05, 1). The nominal pointwise asymptotic level is set to 0.95. For

a sample size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.12: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.1, 1). The nominal pointwise asymptotic level is set to 0.95. For

a sample size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = V[Y ] +E[Y ]2.
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Figure 9.13: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.25, 1). The nominal pointwise asymptotic level is set to 0.95. For

a sample size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.5, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.14: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.5, 1). The nominal pointwise asymptotic level is set to 0.95. For

a sample size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.5, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.15: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N (1, 1)⊗N (0.75, 1). The nominal pointwise asymptotic level is set to 0.95. For

a sample size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.5, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.16: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.1, V[X] = 1, V[Y ] = 2,

Corr(X,Y ) = 0.5. The nominal pointwise asymptotic level is set to 0.90. For a sample size n, the coverage

is obtained as the mean over 5,000 repetitions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
,

setting here α = 0.1, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.17: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.5, V[X] = 2, V[Y ] = 1,

Corr(X,Y ) = −0.3. The nominal pointwise asymptotic level is set to 0.99. For a size n, the coverage is obtained

as the mean over 5,000 repetitions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here

α = 0.01, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.18: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y ] = 0.05, V[X] = 2, V[Y ] = 1,

Corr(X,Y ) = −0.7. The nominal pointwise asymptotic level is set to 0.95. For a size n, the coverage is obtained

as the mean over 5,000 repetitions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here

α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.19: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb αn.

Specification: sample size n = 2, 000, PX,Y,n = N2 (bivariate Gaussian) with E[X] = 1, E[Y ] = 0.1, V[X] = 1,

V[Y ] = 1, Corr(X,Y ) = 0. For each nominal level 1 − α in the x-axis, we draw 5, 000 samples, compute the

asymptotic CIs and see whether it covers or not the ratio of interest; we report the mean over the 5, 000 repetitions in

the y-axis. The solid line is the first bisector y = x. The dashed vertical line shows αn := 2
(
uY,n − lY,n2

)
/
(
nlY,n

2
)
,

setting here lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].

to a Student distribution with ν degrees of freedom. To satisfy Assumption 9.2.1, we need finite variance:

we use degrees of freedom strictly higher than 2 for this purpose.

9.10.4 Exponential distributions

The specification here is two exponential distributions, both in the numerator and in the denominator.

In this setting of simulations, we use as previously the best bounds by setting the constants lY,n and

uY,n that define our class of distributions equal to the actual corresponding moments (respectively the

expectation for lY,n and the second moment i.e. expectation of the square for uY,n). In other words, we

use nα = 2(E[Y ]2 +V[Y ])/(αE[Y ]2).

For reminder, in practical settings, the rule-of-thumb will be to replace the theoretical and unknown

moments by their empirical counterparts and use the nα obtained to appraise the reliability of the asymp-

totic CIs from the delta method.

However, for exponential distributions, the variance is equal to the square of the expectation. Conse-

quently, whatever the parameter of the exponential distribution in the denominator, we have nα = 4/α.

Previous simulations suggest that the closer the expectation in the denominator to 0, the larger the

sample size required for the asymptotic approximation to hold. At first sight, We might be worried for the

usefulness of our rule-of-thumb to get nα independent of E[Y ]. However, in the special case of exponen-

tial distributions, the lower the expectation, the lower too is the variance. Intuitively, the lower variance

will compensate having an expectation closer to 0. The previous statement that links the closeness to 0 of

the expectation in the denominator and the sample size required to reach the asymptotic approximation

presupposes keeping fixed the variance. It cannot be anymore for exponential distributions.

The following simulations reveal that the convergence of the coverage of the asymptotic confidence
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Figure 9.20: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = T (E[X], 3)⊗ T (E[Y ], 3) with E[X] = 0.5, E[Y ] = 0.5. The nominal pointwise

asymptotic level is set to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed

vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.21: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = T (E[X], 3)⊗ T (E[Y ], 3) with E[X] = 0.5, E[Y ] = 0.1. The nominal pointwise

asymptotic level is set to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed

vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.22: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, the marginal distributions of X and Y are T (E[X], 3) and T (E[Y ], 3), with E[X] = 1,

E[Y ] = 0.25 and simulated using a Gaussian copula to have Corr(X,Y ) ≈ 0.5. The nominal pointwise asymptotic

level is set to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical

line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].

intervals toward their nominal level happens for n around one hundred and more and, furthermore, has

the same pattern whatever the expectation of the exponential distribution in the denominator. Our rule-

of-thumb nα appears to be a bit small. Nonetheless, it is coherent that it is constant across the value of

E[Y ].

9.10.5 Pareto distributions

The specification here is two Pareto distributions, both in the numerator and in the denominator. Pareto

distributions have support in R∗+. They would fall in the easier case when the support of the denomina-

tor is well separated from 0. To assess the dependability of our rule-of-thumb in the general case, we

use translated Pareto distributions. In what follows, the notation Pareto(E[Y ], τ, γ) denotes the distribu-

tion of a random variable that follows a Pareto distribution with shape parameter equal to γ translated

such that its support is (τ,+∞) and its expectation is E[Y ]. A variable that is distributed according to

Pareto(E[Y ], τ, γ) is equal in distribution to P + (E[Y ]− γtY )/(γ− 1) with tY = (E[Y ]− τ)× (γ− 1) and

P a usual Pareto distribution with support or scale parameter tY and shape parameter γ, that is P has

the density x 7→ 1{x ≥ tY } × γtγY /xγ+1 with respect to Lebesgue measure.

9.10.6 Bernoulli distributions

With discrete distributions for the variable at the denominator, it may happen that Y n = 0, all the more so

as the expectation in the denominator and the sample size are low in the case of Bernoulli distributions.

In that situation, the confidence interval is said to be undefined and, for any arbitrary value, the statement

that the CI contains that value is considered as false. Consequently, in the simulations with discrete

distributions in the denominator, whenever the sample drawn is such that Y n = 0, we count the draw

as a no coverage occurrence in the Monte Carlo estimation of the (maximal) coverage. Concretely, the

maximal coverage displayed in the graph is computed as the mean over B repetitions. The repetitions



Chapter 9. Confidence intervals for ratios of means: limitations of the delta method and honest
confidence intervals 283

0.80

0.85

0.90

0.95

0 50 100 150 200

Sample size n

M
ax

im
al

 c
ov

er
ag

e 
(n

om
in

al
 le

ve
l =

 9
5%

)

Figure 9.23: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = E ⊗ E with E[X] = 1, E[Y ] = 0.5. The nominal pointwise asymptotic level is set

to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.24: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = E ⊗ E with E[X] = 1, E[Y ] = 0.1. The nominal pointwise asymptotic level is set

to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.25: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = E ⊗ E with E[X] = 1, E[Y ] = 0.01. The nominal pointwise asymptotic level is set

to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.26: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, the marginal distributions of X and Y are two exponentials, with E[X] = 1, E[Y ] = 0.5 and

simulated using a Gaussian copula to have Corr(X,Y ) ≈ 0.75. The nominal pointwise asymptotic level is set to

0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.27: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, the marginal distributions of X and Y are two exponentials, with E[X] = 1, E[Y ] = 0.01

and simulated using a Gaussian copula to have Corr(X,Y ) ≈ 0.75. The nominal pointwise asymptotic level is set

to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.28: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N
∗, PX,Y,n = Pareto(1,−1.5, 5)⊗ Pareto(E[Y ],−1.5, 5), with E[Y ] = 0.5. The nominal

pointwise asymptotic level is set to 0.95. For a size n, the coverage is obtained as the mean over 5,000 rep-

etitions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ],

uY,n = E[Y ]2 +V[Y ].
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Figure 9.29: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = Pareto(1,−1.5, 3)⊗ Pareto(E[Y ],−0.5, 3), with E[Y ] = 0.25. The nominal

pointwise asymptotic level is set to 0.95. For a size n, the coverage is obtained as the mean over 5,000 rep-

etitions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ],

uY,n = E[Y ]2 +V[Y ].
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Figure 9.30: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = Pareto(1,−1.5, 5)⊗ Pareto(E[Y ],−1, 5), with E[Y ] = 0.1. The nominal point-

wise asymptotic level is set to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repeti-

tions. The dashed vertical line shows nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ],

uY,n = E[Y ]2 +V[Y ].
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for which Y n = 0 account for 0 in the mean.

Note that in some specifications, a substantial part of the repetitions yield Y n = 0. For instance,

with Bernoulli distributions, for n smaller than 10 and the expectation at the denominator equal to 0.01,

around 10% only of the repetitions display Y n 6= 0.
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Figure 9.31: Maximal coverage of asymptotic CIs based on the delta method.

Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(E[Y ]). The nominal pointwise asymptotic level is set to 0.95. For a

pair (E[Y ], n), the coverage is obtained as the mean over 10,000 repetitions.

With two Bernoulli variables in the numerator and the denominator, we are both in the BC and the

Hoeffding cases. The following graphs illustrate the use of nα to appraise the reliability of the asymptotic

confidence based on the delta method. We show both the one obtained in the BC case (Theorem 9.3)

and the one obtained in the Hoeffding case (Theorem 9.12). Again, as in the main body of the paper,

we follow a plug-in strategy to compute in practice nα and, in the setting of simulations, we simply use

the known moments and bounds of the DGP used in the simulation.

9.10.7 Poisson distributions

The specification here considers two variables distributed according to a Poisson distribution, both in the

numerator and in the denominator.

A Poisson distribution is entirely defined by its positive real parameter, which is equal to both its

expectation and its variance. Consequently, to have denominator close to 0, we would need small

variance too, as in the exponential specification (see Section 9.10.4). In order to disentangle expectation

and variance, we use below translated Poisson variables. Precisely, the notation Poisson(µ, σ2), µ ∈ R,

σ2 ∈ R∗+, denotes a distribution alike to a Poisson, with parameter and variance equal to σ2 but translated

such that its expectation is µ. That is a variable distributed according to Poisson(µ, σ2) is equal in

distribution to P + (µ − σ2) with P a standard Poisson distribution with parameter σ2 - that is with

density with respect to the counting measure equal to (σ2)k exp(−σ2)/(k!) for every k ∈ N. Thus, a

Poisson(µ, σ2) has expectation µ and variance σ2.
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Figure 9.32: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(0.25). The nominal pointwise asymptotic level is set to 0.95. For

a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows nα :=

2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 + V[Y ] (BC case). The dotted one

shows nα := ln(4/α)/γ(Y1,n), setting here α = 0.05, aY,n = 0, bY,n = 1 and lY,n = E[Y ] (Hoeffding case).
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Figure 9.33: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(0.1). The nominal pointwise asymptotic level is set to 0.99. For a

size n, the coverage is obtained as the mean over 10,000 repetitions. The dashed vertical line shows nα :=

2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.01, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ] (BC case). The dotted shows

nα := ln(4/α)/γ(Y1,n), setting here α = 0.01, aY,n = 0, bY,n = 1 and lY,n = E[Y ] (Hoeffding case).
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Figure 9.34: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα (zoom: starting

from higher n compared to Figure 9.32).

Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(0.25). The nominal pointwise asymptotic level is set to 0.99. For

a size n, the coverage is obtained as the mean over 10,000 repetitions. The dashed vertical line shows nα :=

2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.01, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ] (BC case). The dotted shows

nα := ln(4/α)/γ(Y1,n), setting here α = 0.01, aY,n = 0, bY,n = 1 and lY,n = E[Y ] (Hoeffding case).
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Figure 9.35: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = B(0.5)⊗ B(0.5). The nominal pointwise asymptotic level is set to 0.99. For a

size n, the coverage is obtained as the mean over 10,000 repetitions. The dashed vertical line shows nα :=

2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.01, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ] (BC case). The dotted shows

nα := ln(4/α)/γ(Y1,n), setting here α = 0.01, aY,n = 0, bY,n = 1 and lY,n = E[Y ] (Hoeffding case).
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Figure 9.36: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, the marginal distributions of X and Y are two Bernoulli, with E[X] = 0.5 and E[Y ] = 0.25

and simulated using a Gaussian copula to have Corr(X,Y ) ≈ 0.35. The nominal pointwise asymptotic level is set

to 0.95. For a size n, the coverage is obtained as the mean over 10,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ] (BC case). The dotted

shows nα := ln(4/α)/γ(Y1,n), setting here α = 0.05, aY,n = 0, bY,n = 1 and lY,n = E[Y ] (Hoeffding case).
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Figure 9.37: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = Poisson(0.5, 2)⊗ Poisson(0.1, 1). The nominal pointwise asymptotic level is set

to 0.9. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.1, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.38: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = Poisson(1, 4)⊗ Poisson(0.25, 3). The nominal pointwise asymptotic level is set

to 0.99. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.01, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.39: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, PX,Y,n = Poisson(0.5, 2)⊗ Poisson(0.5, 2). The nominal pointwise asymptotic level is set

to 0.95. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.05, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.40: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, the marginal distributions of X and Y are Poisson(0.5, 2) and Poisson(0.1, 1), and sim-

ulated using a Gaussian copula to have Corr(X,Y ) ≈ 0.7. The nominal pointwise asymptotic level is set to

0.90. For a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows

nα := 2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.1, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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Figure 9.41: Maximal coverage of asymptotic CIs based on the delta method and rule-of-thumb nα.

Specification: ∀n ∈ N∗, the marginal distributions ofX and Y arePoisson(1, 4) andPoisson(0.25, 3), and simulated

using a Gaussian copula to have Corr(X,Y ) ≈ 0.4. The nominal pointwise asymptotic level is set to 0.99. For

a size n, the coverage is obtained as the mean over 5,000 repetitions. The dashed vertical line shows nα :=

2
(
uY,n − lY,n2

)
/
(
αl2Y,n

)
, setting here α = 0.01, lY,n = E[Y ], uY,n = E[Y ]2 +V[Y ].
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[129] J. Stöber and C. Czado. Regime switches in the dependence structure of multidimensional finan-

cial data. Computational Statistics & Data Analysis, 76:672–686, 2014.

[130] J. Stoeber, H. Joe, and C. Czado. Simplified pair copula constructions—limitations and extensions.

Journal of Multivariate Analysis, 119:101–118, 2013.

[131] B. Stucky and S. van de Geer. Sharp oracle inequalities for square root regularization. Journal of
Machine Learning Research, 18:1–29, 2017.

[132] W. Stute. Conditional U-statistics. Ann. Probab., 19(2):812–825, 1991.

[133] W. Su and E. Candes. Slope is adaptive to unknown sparsity and asymptotically minimax. Annals
of Statistics, 44(3):1038–1068, 2016.

[134] T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, pages 1–20, 2012.

[135] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

[136] W.-Y. Tsai. Testing the assumption of independence of truncation time and failure time. Biometrika,

77(1):169–177, 1990.

[137] H. Tsukahara. Semiparametric estimation in copula models. Canadian Journal of Statistics,

33(3):357–375, 2005.

[138] A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

[139] A. W. Van Der Vaart and J. A. Wellner. Weak convergence. In Weak convergence and empirical
processes, pages 16–28. Springer, 1996.

[140] T. Vatter and V. Chavez-Demoulin. Generalized additive models for conditional dependence struc-

tures. Journal of Multivariate Analysis, 141:147–167, 2015.

[141] N. Veraverbeke, M. Omelka, and I. Gijbels. Estimation of a conditional copula and association

measures. Scand. J. Stat., 38(4):766–780, 2011.

[142] Y.-C. Wang, J.-L. Wu, and Y.-H. Lai. A revisit to the dependence structure between the stock

and foreign exchange markets: A dependence-switching copula approach. Journal of Banking &
Finance, 37(5):1706–1719, 2013.

[143] M. J. Wurm, P. J. Rathouz, and B. M. Hanlon. Regularized ordinal regression and the ordinalNet

R package. Arxiv preprint„ arXiv:1706.05003, 2017.

[144] X. Zeng and M. A. T. Figueiredo. The ordered weighted `1 norm: Atomic formulation, projections,

and algorithms. Arxiv preprint„ arXiv:1409.4271, 2014.

[145] J. X. Zheng. A consistent test of conditional parametric distributions. Econometric Theory,

16(5):667–691, 2000.

[146] H. Zou. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc., 101(476):1418–

1429, 2006.



Bibliography 303



Titre: Contributions à l’analyse statistique des modèles de dépendance en grande dimension

Mots clés: Copules conditionnelles, statistique en grande dimension, distribution conditionnelle

Résumé: Cette thèse peut être divisée en trois

parties. Dans la première partie, nous étudions des

méthodes d’adaptation au niveau de bruit dans le

modèle de régression linéaire en grande dimension.

Nous prouvons que deux estimateurs à racine carrée,

peuvent atteindre les vitesses minimax d’estimation et

de prédiction. Nous montrons qu’une version similaire

construite à partir de médianes de moyennes, peut

encore atteindre les mêmes vitesses optimales en

plus d’être robuste vis-à-vis de l’éventuelle présence

de données aberrantes.

La seconde partie est consacrée à l’analyse de

plusieurs modèles de dépendance conditionnelle.

Nous proposons plusieurs tests de l’hypothèse sim-

plificatrice qu’une copule conditionnelle est constante

vis-à-vis de son évènement conditionnant, et nous

prouvons la consistance d’une technique de ré-

échantillonage semi-paramétrique. Si la copule con-

ditionnelle n’est pas constante par rapport à sa vari-

able conditionnante, alors elle peut être modélisée

via son tau de Kendall conditionnel. Nous étudions

donc l’estimation de ce paramètre de dépendance

conditionnelle sous 3 approches différentes : les tech-
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study the construction and the theoretical properties

of confidence intervals for ratios of means under dif-
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