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Résumé

Au cours du dernier siècle, le volume de vidéos stockées chez des organismes
tel que l’Institut National de l’Audiovisuel a connu un grand accroissement. Ces
organismes ont pour mission de préserver et de promouvoir ces contenus, car, au-
delà de leur importance culturelle, ces derniers ont une vraie valeur commerciale
grâce à leur exploitation par diverses médias. Cependant, la qualité visuelle des
vidéos est souvent moindre comparée à celles acquises par les récents modèles de
caméras. Ainsi, le but de cette thèse est de développer de nouvelles méthodes de
restauration de séquences vidéo provenant des archives de télévision française, grâce
à de récentes techniques d’optimisation.

La plupart des problèmes de restauration peuvent être résolus en les formulant
comme des problèmes d’optimisation, qui font intervenir plusieurs fonctions convexes
mais non-nécessairement différentiables. Pour ce type de problèmes, on a souvent
recourt à un outil efficace appelé opérateur proximal. Le calcul de l’opérateur prox-
imal d’une fonction se fait de façon explicite quand cette dernière est simple. Par
contre, quand elle est plus complexe ou fait intervenir des opérateurs linéaires, le
calcul de l’opérateur proximal devient plus compliqué et se fait généralement à l’aide
d’algorithmes itératifs.
Une première contribution de cette thèse consiste à calculer l’opérateur proximal
d’une somme de plusieurs fonctions convexes composées avec des opérateurs linéaires.
Nous proposons un nouvel algorithme d’optimisation de type primal-dual, que nous
avons nommé Algorithme Explicite-Implicite Dual par Blocs. Notre algorithme se
base sur un schéma explicite-implicite préconditionné pour minimiser le problème
dual, en alternant à chaque itération, entre une étape de gradient sur la par-
tie différentiable du problème dual et une étape proximale sur le partie restante.
L’algorithme proposé permet de ne mettre à jour, à chaque itération, qu’un sous-
ensemble de blocs choisi selon une règle déterministe acyclique. Notons aussi que
notre algorithme permet de traiter les opérateurs linéaires sans passer par leur inver-
sion ni par des sous-itérations, ce qui réduit grandement la complexité d’implément-
ation et de calcul. Des résultats de convergence ont été établis pour les deux suites
primales et duales générées par notre algorithme.
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iv Résumé

Nous avons appliqué notre algorithme au problème de déconvolution et désentrel-
acement de séquences vidéo. Ce dernier consiste à estimer une séquence vidéo
progressive à partir d’une séquence entrelacée, où chaque image entrelacée résulte
de la combinaison des lignes impaires d’une image progressive et des lignes paires
de l’image progressive suivante. Ainsi, notre tâche consiste à estimer les lignes
paires/impaires supprimées, tout en réalisant une opération de déconvolution sur
les images estimées. Pour cela, nous avons modélisé notre problème sous la forme
d’un problème d’optimisation dont la solution est obtenue à l’aide de l’algorithme
explicite-implicite dual par blocs. Nous avons comparé l’algorithme proposé à
des algorithmes d’optimisation de la littérature et les résultats obtenus montrent
l’efficacité de notre méthode en terme de qualité de restauration et de vitesse de
convergence. Ceci est essentiellement dû au traitement par blocs et à l’utilisation
de matrices de préconditionnement.

Dans la deuxième partie de cette thèse, nous nous sommes intéressés au développ-
ement d’une version asynchrone de notre l’algorithme explicite-implicite dual par
blocs, pour le calcul de l’opérateur proximal d’une somme de fonctions convexes
composées avec des opérateurs linéaires. Dans cette nouvelle extension, chaque
fonction composant le critère est considérée comme locale et rattachée à une unité
de calcul. Ces unités de calcul traitent les fonctions et les données qui lui sont as-
sociées de façon indépendante les unes des autres. Afin d’obtenir une solution de
consensus, il est nécessaire d’établir une stratégie de communication efficace, qui
est définie dans notre cas par un hypergraphe connecté. Un point crucial dans le
développement d’un tel algorithme est le choix de la fréquence et du volume de
données à échanger entre les unités de calcul, dans le but de préserver de bonnes
performances d’accélération.
Nous avons évalué numériquement notre algorithme distribué sur un problème de
débruitage de séquences vidéo. Nous avons implémenté l’algorithme sur une archi-
tecture multi-coeurs à l’aide de l’outil “MPI” (Message-Passing Interface) pour la
gestion des communications entre processeurs. Les images composant la vidéo sont
partitionnées de façon équitable sur les processeurs, puis, chaque processeur exécute
une instance de l’algorithme de façon asynchrone et communique avec les processeurs
voisins uniquement. Les bons résultats obtenus en terme de temps d’exécution et en
fonction du nombre de processeurs utilisé soulignent l’efficacité de notre méthode.

Finalement, nous nous sommes intéressés au problème de déconvolution aveugle
de séquences vidéo, qui vise à estimer le noyau de convolution et la séquence orig-
inale à partir de la séquence dégradée observée. Ce type de problème inverse est
sévèrement mal posé, par conséquent, il est nécessaire de recourir à une approche
régularisée afin de le résoudre.
Nous avons proposé dans cette dernière partie une nouvelle méthode de déconvolution
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aveugle basée sur la formulation d’un problème non-convexe, résolu par un algo-
rithme itératif qui, à chaque itération, alterne entre l’estimation de la séquence
originale et l’identification du noyau de convolution. Notre méthode a la partic-
ularité de pouvoir intégrer diverses types de fonctions de régularisations avec des
propriétés mathématiques différentes. Nous avons réalisé des tests et simulations
sur des séquences synthétiques et réelles, avec différents noyaux de convolution.
Nous avons décomposé la tâche de restauration en deux étapes : (i) une étape de
déconvolution aveugle permettant d’identifier le noyau de convolution à partir de la
séquence dégradée, (ii) une étape de déconvolution non-aveugle visant à estimer la
séquence originale à partir de la séquence dégradée et du noyau identifié. La flexi-
bilité de notre approche nous a permis de réaliser des comparaisons entre plusieurs
fonctions de régularisation spatiale, convexes et non-convexes, en terme de qualité
d’estimation au sein de la première et de la deuxième étape du processus.
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- Chapter 1 -

Introduction

Context

The last century has witnessed an explosion in the amount of video data stored
with holders such as the National Audiovisual Institute whose mission is to preserve
and promote the content of French broadcast programs. Beyond the cultural impact
of these records, their value is increased due to commercial reexploitation through
recent visual media. However, the perceived quality of the old data fails to satisfy
the current public demand. The purpose of this thesis is to propose new methods for
restoring video sequences supplied from television archive documents, using modern
optimization techniques with proven convergence properties.

In a large number of restoration issues, the underlying optimization problem is
made up with several functions which might be convex and non-necessarily smooth.
In such instance, the proximity operator, a fundamental concept in convex analysis,
appears as the most appropriate tool. These functions may also involve arbitrary
linear operators that need to be inverted in a number of optimization algorithms.
In this spirit, we developed a new primal-dual algorithm for computing non-explicit
proximity operators based on forward-backward iterations. The proposed algorithm
is accelerated thanks to the introduction of a preconditioning strategy and a block-
coordinate approach in which at each iteration, only a “block” of data is selected and
processed according to a quasi-cyclic rule. This approach is well suited to large-scale
problems since it reduces the memory requirements and accelerates the convergence
speed, as illustrated by some experiments in deconvolution and deinterlacing of video
sequences.
Afterwards, a close attention is paid to the study of distributed algorithms on both
theoretical and practical viewpoints. We proposed an asynchronous extension of the

1



2 Chapter 1. Introduction

dual forward-backward algorithm, that can be efficiently implemented on a multi-
cores architecture. In our distributed scheme, the primal and dual variables are
considered as private and spread over multiple computing units, that operate in-
dependently one from another. Nevertheless, communication between these units
following a predefined strategy is required in order to ensure the convergence toward
a consensus solution.

We also address in this thesis the problem of blind video deconvolution that
consists in inferring from an input degraded video sequence, both the blur filter
and a sharp video sequence. Hence, a solution can be reached by resorting to
nonconvex optimization methods that estimate alternatively the unknown video
and the unknown kernel. In this context, we proposed a new blind deconvolution
method that allows us to implement numerous convex and nonconvex regularization
strategies, which are widely employed in signal and image processing.

Collaborations

This thesis is the result of a collaboration with the National Audiovisual Institute
under the supervision of Jean-Hugues CHENOT and in collaboration with Louis
LABORELLI. The thesis was financially supported by the National Research and
Technology Association (ANRT), within a CIFRE convention. This collaboration
provided new insights and a deep understanding on real-word problems arising in
video processing, and more precisely for the restoration of old films and television
shows, which is an original and less investigated problem in the literature of video
processing.

Organization of the document

Chapter 2 provides an introduction to inverse problems in the context of im-
age/video processing, where one seeks to recover the closest version of an original
sharp image (or a sequence of images) from the observed one. We are interested in
this thesis in two main image and video restoration issues, namely deconvolution
(both its blind and non-blind schemes) and super-resolution. In this context, we
present in that chapter an overview of state-of-the-art image/video deconvolution
and super-resolution approaches. Then, we pay attention to degradations and arti-
facts observed on videos supplied from old television archives.
Inverse problems are usually solved thanks to formulations as optimization prob-
lems where one minimizes a criterion expressed as a sum of functions, representing
a description of the degradation process and some a priori knowledge on the ex-
pected sharp image/video. However, the solution to this problem is usually not
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explicit and iterative methods are hence needed. We present in Chapter 3 a re-
view on standard iterative algorithms for addressing different types of minimization
problems depending on the mathematical properties of the involved functions. More
precisely, we cover gradient methods, proximal algorithms, Majorize-Minimize ap-
proaches, primal-dual techniques and dual forward-backward algorithms.

Chapter 3 shows that a solution to numerous optimization problems involves
the computation of proximity operators. Depending on the underlying objective
function, a closed form expression of the latter may not be available, so that inner
iterations are necessary. We focus in Chapter 4 on the evaluation of the proximity
operator of a sum of convex possibly nonsmooth functions composed with arbi-
trary matrices. We design a new dual forward-backward algorithm that relies on a
block-coordinate approach. At each iteration, only a subset of the processed data is
selected according to a quasi-cyclic rule, which allows us to reduce the complexity
of the algorithm and its memory requirements. The convergence is also acceler-
ated thanks to the introduction of preconditioning matrices that are designed using
Majorize-Minimize strategies. One advantage of the proposed method is that it does
not require the computation of the norm of the involved linear operators, which in
our applications is intractable.
The performance of our algorithm are assessed in terms of acceleration and restora-
tion quality on synthetic and real sequences in Chapter 5. We focus on the prob-
lem of deconvolution and deinterlacing of video sequences, namely recovering the
missing even/odd rows of each frame of the observed interlaced video, while en-
suring good restoration quality. The experimental results illustrate that the dual
bock-coordinate forward-backward algorithm achieves satisfactory acceleration rates
compared to existing algorithms in the literature.

Then, we consider in Chapter 6 a distributed version of the dual block-coordinate
forward-backward algorithm form Chapter 4. In the asynchronous framework, the
blocks are partitioned over several computing units that manage their associated
primal and dual variables locally. The computing units can process data indepen-
dently one from each others, and communication between them are required and
realized according to a predefined strategy, in order to ensure the convergence to-
wards an aggregate solution. The amount and frequency of transfers between the
computing units is adjusted so that the acceleration gain obtained through parallel
architectures is not compromised. We evaluate our distributed algorithm on the
problem of video denoising, where we provide an implementation on a multi-core
machine using the MPI library. The numerical experiments evaluate the execution
time with respect to the number of used processors. Our results show that the pro-
posed algorithm runs efficiently on a distributed architecture, and speedup rates up
to a factor 16 have been achieved.
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In the aforementioned applications, the deconvolution process was non-blind,
which means that the blur filter was assumed to be known. However, this assump-
tion may not be consistent for real-world image and video restoration problems.
Thus, we consider in Chapter 7 the blind video deconvolution problem, that con-
sists in estimating both the convolution filter and the original video sequence from
the observed degraded sequence. There exists a large number of regularization-based
methods for image deconvolution problems which rely on several regularization func-
tions with different mathematical properties (e.g., total variation, total generalized
variation, `1/`2 norm ....). Few studies have been performed to compare them in an
exhaustive manner. In this chapter, we propose a unified framework for blind video
deconvolution that allows to take into account these various regularization strate-
gies. We provide some experiments on synthetic blurred video sequences, comparing
the regularization approaches, in the context of blind deconvolution first, and once
the convolution kernels are identified, we perform a non-blind deconvolution stage
on the same degraded sequences. Finally, in Chapter 8 we draw some conclusions
and present some perspectives and future works.

Publications

Journal papers :

1) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. Dual block-coordinate forward-backward
algorithm with application to deconvolution and deinterlacing
of video sequences. To appear in Journal of Mathematical Imaging
and Vision, 2016.

2) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Hugues
Talbot. Distributed proximity operator computation with ap-
plications to video deconvolution and super-resolution. To be
submitted, 2017.

3) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. An alternating proximal method for blind
video deconvolution. To be submitted, 2017.

Conference papers :

3) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. A distributed strategy for computing
proximity operators. 49th Asilomar Conference on Signals, Systems
and Computers, pp. 396-400, Pacific Grove, California, USA, 8-11 Nov.
2015.



5

4) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. A dual block-coordinate proximal algo-
rithm with application to deconvolution of interlaced video se-
quences. In International Conference on Image Processing (ICIP 2015),
pp. 4917- 4921, Quebec City, Canada, 27-30 Sep. 2015.

5) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. A hybrid alternating proximal method for
blind video restoration. In European Signal Processing Conference
(EUSIPCO 2014), pp. 1811-1815, Lisboa, Portugal, Sep. 2014.

Workshops/Seminars:

6) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. Accelerated dual forward-backward algo-
rithms. Application to video restoration. Optimization techniques
for inverse problems, Modena, Italy, 19-21 Sep. 2016.

7) Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli. Alternating proximal strategy for blind
video restoration involving various regularization strategies. Ap-
plied Inverse Problems Conference, Helsinki, Finland, 25-29 May 2015.
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2.1 Introduction

Nowadays, images and videos play a prominent part in our personal and pro-
fessional life, therefore the need for a higher image quality becomes increasingly
important. In this thesis We are mainly interested in two fundamental topics in
image and video processing, namely deconvolution and super-resolution. First, we
begin by providing in Section 2.2 an overview on inverse problems in the context
of image processing. Then, we introduce in Sections 2.3 and 2.4 the image decon-
volution and super-resolution problems for still images, and present some standard
and recent approaches to address them. Afterwards, we focus on video restoration
issues in Section 2.5, especially in the case of videos from television archives.

2.2 Inverse problems

2.2.1 Introduction

A wide number of optimization problems aim at recovering an image from cor-
rupted measurements that cannot be processed in a direct way. Usually, the target
image is related to the observations through a system which describes the degrada-
tion process, covering lens imperfections, quantization or down-sampling operations.
The recovery of the true image is known as an inverse problem [Demoment, 1989;
Bertero and Boccacci, 1998]. This class of problems is encountered in image and
video restoration problems such as denoising, deconvolution, inpainting, tomogra-
phy, arising in various application fields [Jansson, 1997; Hammond et al., 2011; Pock
et al., 2010].
Solving an inverse problem requires the design of a direct model that links the target
image to the observations. Within the context of image restoration, the generic form
of a direct model is usually as follows

y = Hx+ w, (2.1)

where y ∈ RM denotes the observed image, x ∈ RN represents the original sought
image, and H ∈ RM×N is an operator describing the degradation system. In this
thesis, we focus on linear degradation operators, such as convolution and decimation
operators. The observed image y is usually affected by perturbations arising during
the acquisition and transmission stages. These perturbations are cumulated and
represented in the model (2.1) as an additive random noise w ∈ RM .
The inverse problem associated to the model (2.1) consists in finding an estimate
x̂ ∈ RN of the original image x from the measured image y knowing the degrada-
tion operator H. Nevertheless, in some applications, the linear operator H is also
unknown. In such cases, the blind inverse problem amounts to inferring both the
original image and the linear operator from the observations.
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+
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Inverse Problem

Figure 2.1: Diagram representing a linear inverse problem.

Inverse problems are usually ill-posed in the sense of Hadamard’s definition [Hadamard,
1902], which states the following conditions that have to be fulfilled by a well-posed
problem:

1. Existence : there exists a solution to the problem.

2. Uniqueness : the solution to the problem is unique.

3. Stability : the solution depends continuously on the observations, namely
when the perturbation on the observed image y tends towards zero, the error
on the estimated image x̂ tends as well towards zero.

In the case of an inverse problem involving a degradation operator H, the well-
posedness of the problem is ensured if Im(H) = RM (existence), which means that
each observation y ∈ RM is an image of x ∈ RN by the linear operator H. The
second condition (uniqueness) is guaranteed if Ker(H) = {0} which refers to the
fact that the solution to Hx = 0 is the singleton {0}. Finally the inverse mapping
has to be continuous (stability) which is satisfied in finite dimension when H is
invertible.

Let us consider the case when the linear mapping H is an invertible square matrix
in RN×N . Then a direct solution can be computed as follows:

x̂ = H−1y. (2.2)

However, for most degradation operators in image restoration tasks, H is ill-conditio-
ned, which means that the condition number of H, given by the ratio between its
maximum and minimum singular values σmax/σmin, is high. Hence, the obtained
image x̂ = x + H−1w becomes highly sensitive to the noise component w due to
the prominence of the term H−1w, leading to an unsatisfactory restoration quality.
The same problem occurs in the case of a non-invertible linear operator, when the
pseudo-inverse matrix H>(H H>)−1 is used instead.
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Figure 2.2: Deconvolution problem: original image x (left), degraded image y with a
motion blur and a zero mean additive Gaussian noise (right). The inverse problem consists
in finding an estimate of the image x from the observed image y. In the case of a blind
deconvolution problem, the blur operator is unknown and has to be estimated as well.

An efficient approach to find a consistent estimate x̂ of x is to define it as a solution
to a minimization problem formulated as follows

Find x̂ ∈ argmin
x∈RN

Φ(x) + Ψ(x), (2.3)

where Φ denotes a data fidelity term that measures the residual error between the
observed image y and Hx, and Ψ is a regularization term [Demoment, 1989] which
is introduced in order to provide a stable solution to the ill-posed problem by incor-
porating a priori knowledge on the sought image.
In the blind context, the inverse problem is ill-posed with respect to the image and
to the linear operator. Thus, prior information on the operator H is needed in order
to get a stable identification. Estimates x̂ and Ĥ can be obtained by solving the
following problem

Find
(
x̂, Ĥ

)
∈ argmin

x∈RN ,H∈RM×N
Φ(x,H) + Ψ(x) + Θ(H), (2.4)

where Θ represents a regularization function on the linear mapping H.

2.2.2 Variational formulation

Bayesian interpretation

Inverse problems are often (almost always) ill-posed, and a formulation as a mini-
mization problem is a suitable way to solve them. A Bayesian approach for choosing
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an adequate data fidelity and regularization terms can be adopted to construct this
minimization problem. In the Bayesian framework, all the observed and unknown
quantities are viewed as stochastic variables with probability densities based on prior
convictions. Let us assume that y and x are realizations of random variables Y and
X, respectively. Then finding an estimate x̂ using a Maximum A Posteriori (MAP)
approach reads

Find x̂ ∈ argmax
x∈RN

PX|Y=y(x), (2.5)

where PX|Y=y is the posterior probability distribution. This probability density can
be decomposed into a likelihood function and prior probability density thanks to
the Bayes rule

Find x̂ ∈ argmax
x∈RN

PY|X=x(y)
PX(x)

PY(y)
,

⇔ Find x̂ ∈ argmax
x∈RN

PY|X=x(y)PX(x), (2.6)

where PX and PY are the probability densities of X and Y respectively.
By using the monotonicity property of the logarithm function, (2.6) can be expressed
as

Find x̂ ∈ argmin
x∈RN

(
− logPY|X=x(y)− logPX(x)

)
. (2.7)

Hence, by setting

(∀x ∈ RN)


Φ(x) = − logPY|X=x(y)

Ψ(x) = − logPX(x),
(2.8)

one can retrieve the minimization problem (2.3).
By defining the probability distribution related to the noise component PW, we have(

∀ (x, y) ∈ RN × RM
)
PY|X=x(y) = PW|X=x(w) = PW(w), (2.9)

with w = y −Hx, and assuming that the random variables X and W are indepen-
dent.
Thus, in a Bayesian framework, the choice of the data fidelity term Φ depends on
the noise type, whereas the regularization term Ψ is related to prior knowledge on
the sought image.

Data fidelity term

In this thesis, we will consider data corrupted by a zero mean Gaussian noise
with independent and identically distributed components, and a covariance matrix
Γ ∈ RM×M . Thus the probability density PW(w) is given by a normal distribution:(

∀w ∈ RM
)
PW(w) =

1√
(2π)Mdet(Γ)

exp

(
−1

2
w>Γ−1w

)
, (2.10)
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where “det(Γ)” denotes the determinant of the matrix Γ.
By introducing the minus-logarithm function, we obtain:(

∀w ∈ RM
)
− log (PW(w)) =

1

2
w>Γ−1w +

1

2
log
(
(2π)Mdet(Γ)

)
. (2.11)

Since
1

2
log
(
(2π)Mdet(Γ)

)
∈ R is a constant that does not depend on w = y −Hx,

the function Φ can be defined as(
∀x ∈ RN

)
Φ(x) = − log (PW(y −Hx)) =

1

2
(y −Hx)> Γ−1 (y −Hx). (2.12)

When Γ = σ2 IdM with IdM the identity matrix of RM×M , Φ reduces to(
∀x ∈ RN

)
Φ(x) =

1

2σ2
‖y −Hx‖2. (2.13)

Regularization term

Thanks to regularization, a stable and computable solution to inverse problems
can be supplied. The ill-posedness is circumvented through the introduction of prior
knowledge on the sought image. A first regularization approach has been proposed
by Tikhonov [Tikhonov, 1943; Tikhonov and Arsenin, 1977]. It plays an analogous
role to the minus-logarithm prior of the MAP estimation and employs a quadratic
functional on the estimated image. The corresponding variational model is the
following

Find x̂ ∈ argmin
x∈RN

1

2
‖y −Hx‖2 + λ‖Λx‖2, (2.14)

where Λ ∈ RN×N is a linear operator that can represent for instance the identity
matrix IdN , which leads to a resulting image with low norm. In most cases, Λ
corresponds to a finite differences operator denoted ∇ ∈ R2N×N , thereby, a global
smoothness on the image derivatives is imposed. The weight λ ∈]0,+∞] is a regular-
ization parameter which is selected to balance the contribution of the data fidelity
and regularization terms in order to obtain a well restored image.

Example 2.1 Let us consider the case of an image denoising problem i.e., H = IdN .
The denoised image can be inferred by solving the following minimization problem

Find x̂ ∈ argmin
x∈RN

1

2
‖x− y‖2 +

λ

2
‖∇x‖2. (2.15)

where ∇ =

[
∇H

∇V

]
is the concatenation of gradient operators in the horizontal and

vertical directions ∇H and ∇V respectively, that is:

(∇Hf)(i,j) =

{
f(i,j) − f(i,j−1) if j > 1

f(i,j) if j = 1,
(2.16)
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(a) Noisy image
(SNR = 18.14 dB)

(b) Tikhonov regularization
(SNR = 21.16 dB)

(c) Total Variation
regularization (SNR = 24.30

dB)

Figure 2.3: Image denoising: Degraded image with Gaussian noise σ = 15 (left),
restored image using the Tikhonov model (middle), restored image using the TV model
(right).

and

(∇Vf)(i,j) =

{
f(i,j) − f(i−1,j) if i > 1

f(i,j) if i = 1,
(2.17)

where f(i,j) denotes the pixel intensity of f at pixel (i, j). An explicit solution to
Problem (2.15) is given by

x̂ =
(
IdN + λ∇>∇

)−1
y. (2.18)

The restoration quality can be assessed with the Signal to Noise Ratio (SNR), which
is usually expressed as a measurement in decibels (dB) and defined as

SNR(x̂, x) = 20 log10

(
‖x‖
‖x̂− x‖

)
. (2.19)

The Tikhonov model can be implemented in an efficient way, however, the re-
stored image is generally over-smoothed as shown in Figure 2.3b. Hence, the main
discontinuities that characterise the image such as the edges, are not well preserved.
A very popular approach to overcome the drawbacks of the Tikhonov regularization
is the Total Variation (TV) model that was proposed by Rudin, Osher, and Fatemi
(also known as the ROF model) [Rudin et al., 1992]. The Total Variation is defined
as follows

(∀z ∈ RN1×N2) tv(z) =

N1∑
i=1

N2∑
j=1

√
(∇hz)2

(i,j) + (∇vz)2
(i,j), (2.20)

The performance of the TV model in the context of image denoising is illustrated
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Figure 2.4: Wavelet decomposition: Original image (left), Symmlet-4 decomposition
with 1 level of resolution (right).

in Figure 2.3c.
Even though the difference between the Tikhonov and TV models only lies in the
substitution of the `2 norm by the `1 norm, a significant improvement in terms of
image quality is observed. The TV regularization penalizes small discontinuities
such as noise, while it preserves large discontinuities that correspond to the edges
of the image. Nevertheless, the restored images by the TV model suffer from a ma-
jor drawback that is the introduction of the so-called staircase artifacts [Nikolova,
2009]. This is due to the fact that the minimizer of the underlying variational
problem favours denoised images with piecewise constant regions. Numerous works
have been undertaken in order to attenuate the staircase effect [Buades et al., 2006;
Gilboa and Osher, 2008; Condat, 2014] essentially relying on higher order derivatives
[Benning et al., 2013; Bredies et al., 2010; Chan et al., 2000; You and Kaveh, 2000].
Other interesting regularization strategies for image restoration have been proposed.
They are based on the wavelet/frame decomposition [Mallat, 2008; Pustelnik et al.,
2016] where the sparsity of the frame coefficients of the sought image is assumed.
Figure 2.4 shows an example involving a symmlet-4 wavelet decomposition of an
image with one level of resolution.
There exist two classes of frame-based sparse representations [Selesnick and Figueiredo,
2009; Elad et al., 2007; Wallis et al., 2017]. The first method is the synthesis model
[Figueiredo et al., 2007; Pustelnik et al., 2010] where the image x ∈ RN is expressed
by means of its wavelet coefficients x = Fu, with F ∈ RN×Q a synthesis operator
and u ∈ RQ a vector of wavelet coefficients. The general form of the underlying
minimization problem is

x̂ = Fû (2.21)

with û = argmin
u∈RQ

1

2
‖HFu− y‖2 + Ψ(u), (2.22)
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Figure 2.5: Sparsity promoting norms: `0 norm (thick, red), `1 norm (dashed, black),

and `p quasi-norm with p =
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(solid, blue).

where Ψ is a sparsity inducing function, typically an `1 norm. On the other hand,
there is the analysis model, where the image is directly processed in such a way that
its frame analysis coefficients are sparse [Almeida and Figueiredo, 2013]:

Find x̂ = argmin
x∈RN

1

2
‖Hx− y‖2 + Ψ(Ax), (2.23)

where A ∈ RQ×N is an analysis operator and Ψ a sparsity promoting function.
Note that, when the operators F and A are orthonormal matrices, both analysis
and synthesis models are equivalent. Thus, A = F> = F−1 and FF−1 = IdN . This
result does not apply in the overall framework, e.g., for overcomplete frames [Elad
et al., 2007].

The above-mentioned regularizations involve sparsity promoting convex func-
tions, which aim at approximating the `0 norm of the signal, i.e., the total number
of its non-zero coefficients. Nevertheless, solving inverse problems regularized by
the `0 norm is very challenging, since this latter function is nonconvex and discon-
tinuous, which makes the underlying optimization problem difficult to solve. As an
alternative, a number of image deconvolution algorithms resort to nonconvex but
continuous regularization functions which approximate more closely the `0 norm
compared to its convex relaxation by the `1 norm, as illustrated in Figure 2.5.
Nonconvex regularizations are yet challenging from an optimization point of view,
due to the presence of local minima that may not correspond to the sought solution.
However, a number of image restoration methods employ such regularizations [Kr-
ishnan et al., 2011; Repetti et al., 2015; Perrone and Favaro, 2016; Chouzenoux et al.,
2013] and achieve satisfying image quality, although leading to a local minimum.

A shared feature between the latter regularization-based methods is that they
rely on penalization functions. The variational model (2.3) can also include hard
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constraints through indicator functions. An indicator function associated to a convex
subset C ⊂ RN is denoted by ιC , and is equal to zero if the estimated image belongs
to C, and to +∞ otherwise (see definition 3.2). Thus, Ψ is defined as

Ψ = λ ιC = ιC . (2.24)

The set C corresponds to one constraint or to the intersection of several elementary
constraints imposed on the reconstructed image x ∈ RN . Note that a regularization
parameter is useless when considering hard constraints.

Example 2.2 In blind deconvolution problems where one also aims to identifying
the blur filter h ∈ RP , a normalization constraint is usually defined on the convo-
lution filter in order to avoid the scaling ambiguity. Moreover, depending on the
imaging system, a positivity condition can also be imposed. Thus, the associated
regularization function is defined by

Θ = ιC , (2.25)

where

C =

{
h ∈ [0, 1]P

∣∣∣ P∑
p=1

hp = 1

}
, (2.26)

with hp the p-th component of the convolution filter h.

It should be noted that a single regularization term can be represented as a sum of
several functions, possibly including hard constraints. Hence, the variational model
(2.3) can be expressed as:

Find x̂ ∈ argmin
x∈RN

Φ(x) +
∑
i

Ψi(x), (2.27)

where each function Ψi ensures some a priori feature of the unknown image x. This
kind of regularization strategies occurs frequently in image restoration problems, as
illustrated in a number of examples in Chapters 5 and 6, where video restoration
problems are addressed.

2.3 Introduction to image deconvolution

Image deconvolution is a classical inverse problem in image processing. It ap-
pears in various application fields such as photography, medical imaging, astronomy
and remote sensing. Despite huge improvements have been achieved in current tech-
nologies, the acquisition process and imaging materials are not yet perfect, resulting
in a degraded image which is typically modelled by convolution with some impulse
response of a blur kernel, also called point spread function (PSF) [Chantas et al.,
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2008; Danielyan et al., 2012; Figueiredo and Nowak, 2003]. Thus, the need of de-
convolution can appears in any application where image acquisition occurs. Some of
these blurring processes are nonlinear or spatially variant [Campisi and Egiazarian,
2007]. However, most of contributions in image restoration assume a linear spatially
invariant blur, as it is the case in this thesis. Efficiently solving the deconvolution
problem has been of main interest in image processing for several decades, leading
to numerous contributions in the field, which can be divided into two classes of
methods depending on the number of available observed images.

2.3.1 Single-channel deconvolution

Let us first consider problems with only one degraded image, which is also refered
to as single-channel deconvolution. The associated direct model is hence given by

y = x ∗ h+ w, (2.28)

where y ∈ RN denotes the observed image, x ∈ RN the original unknown image,
h ∈ RP denotes the PSF of the blur kernel, and w ∈ RN represents an additive
noise. Note that (2.28) is an instance of the general degradation model (2.1) in the
case when the linear operator H is the Hankel-block-Hankel matrix associated to the
blurring filter h. Image deconvolution can be categorized into two types: non-blind
deconvolution and blind deconvolution. The latter consists in estimating both the
sharp image and the blur kernel from the observation, which makes it much more
difficult to solve.

Non-blind deconvolution

Although the blur kernel is known, estimating the original image remains an ill-
posed problem due to the ill-conditioned nature of the convolution operators. One
of the oldest deconvolution methods is Richardson-Lucy deconvolution approach,
originally proposed independently by [Richardson, 1972] and [Lucy, 1974]. It is an
iterative method ensuring non-negativity of the estimated image. However, this
turns out to be insufficient for the cancellation of restoration artifacts and the re-
covery of high frequency details. Other popular deconvolution routines resort to
regularization-based methods by including available a priori information, that en-
sure various statistical properties of natural images. For images with sharp changes
of intensity, an appropriate regularization is based on variational integrals such as
the total variation regularization [Rudin et al., 1992]. Minimizing variational inte-
grals preserves the edges of images, and provides satisfactory results in denoising and
deblurring problems [Vogel and Oman, 1999; Oliveira et al., 2009; Chan et al., 2013].
Another popular approach is to represent the unknown image as a linear combination
of few coefficients (usually an overcomplete dictionary) and to enforce this sparse
representation by using the `p norm with 0 6 p 6 1. A solution can be obtained
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in the transform domain (coefficients of the frame elements) using either a synthe-
sis or an analysis model. Conclusions presented in [Selesnick and Figueiredo, 2009]
suggest that, for deconvolution problems, the analysis approach might be preferable
because sparsity should be enforced only on high-pass coefficients, which can be
easily implemented in the analysis approach. It has been shown that the analysis
approach can be solved efficiently using variable splitting methods such as Bregman
iterative method [Goldstein and S. Osher, 2009] and augmented Lagrangian method
[Afonso et al., 2010; Chan et al., 2013].

It is worth mentioning that some deconvolution methods resort to modifying the
imaging device in order to obtain higher image quality, such as specially designed
CMOS sensors [Liu and Gamal, 2001] and hybrid imaging systems [Ben-Ezra and
Nayar, 2004; Levin et al., 2007].

Blind deconvolution

If the blur kernel is unknown, we deal then with the single-channel blind decon-
volution problem, which is clearly more complicated than the classical deconvolution
problem. Blind image deconvolution is severely ill-posed since there exist an infin-
ity of pairs (image/blur) that lead to the same observed image. The blind case
is however, a much more realistic framework that can be encountered frequently
in optics, where the optical instruments are imperfect, and in photography due to
misfocusing or camera shake, resulting in blurry images with unknown blur kernel.
Typical kinds of blur in real-word images are thus, the out-of-focus blur and the
motion blur, caused by camera shake or by the motion of the scene. Some simple
examples of these blur kernels are shown in Figure 2.6.

Blind deconvolution methods fall into two categories according to the blur iden-
tification process, the prior blur identification methods in which the blur kernel
is identified first, then the unknown image is inferred using a non-blind method
[Carasso, 2011]. On the other hand, in the joint estimation methods, the blur ker-
nel and unknown image are simultaneously estimated [Chan and Wong, 1998; Bar
et al., 2004]. In practice the unknown image and the blur filter are estimated in
an alternative manner using prior knowledge on both of them. However, in some
blind problems, a parametric form of the blur is known, which makes the decon-
volution process easier and reduces to estimating its specific parameters [Carasso,
2002; Chang et al., 2007; Krylov and Nasonov, 2009]. For example, a motion blur
can be approximated by a linear segment characterized by its length L and its angle
θ. Nevertheless, this may lead to poorly structured optimization problems.

Example 2.3 In the case of an out-of-focus blur caused by camera defocusing, a
complete description of the blurring model includes the distance between the camera
and the object, the aperture shape and size, focal length... Nevertheless, most of
these information are not available when the picture is taken. When the blur is
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(a) Out-of-focus blur (b) Uniform motion blur (c) Nonuniform motion blur

Figure 2.6: Examples of blur models: Blur filters (top), associated blurred images (bot-
tom).

large, it can be approximated by a circular blur with radius r > 0 as follows

hp1,p2 =


1

πr2
if
√
p2

1 + p2
2 6 r,

0 otherwise.

(2.29)

Another rough approximation can be obtained by the following square parametric
model

hp1,p2 =


1

L2
if |p1| 6

L− 1

2
and |p2| 6

L− 1

2
,

0 otherwise,

(2.30)

where L is an odd integer.

However, for more complex blurs such as nonuniform motion blurs, the blurring
operation cannot be described by a parametric model. In this case, regularizations
are employed generally, to incorporate prior knowledge on the blur kernel and the
sought image trough penalizations and hard constraints. A variety of regularization-
based methods have been designed [Fergus et al., 2006; Levin, 2007; Shan et al., 2008;
Joshi et al., 2008; Levin et al., 2009; Krishnan et al., 2011], which try to make use
of statistical priors of natural images in order to reduce the set of possible solutions
satisfying Model (2.28). They usually resort to the well known property of natural
images that gradients follow a heavy tailed distribution, which implies to impose
a sparsity constraint on the gradient of the unknown image. Methods of this type
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have recently been able to achieve good deconvolution results. However, a number of
these approaches rely on sophisticated energy minimization methods [Fergus et al.,
2006; Shan et al., 2008], and as a result they can often induce a high computational
cost. On the other hand, regularizations and hard constrains are also applied to
the blur kernel. They usually cover the physical properties of the imaging system
such as the positivity of the kernel coefficients, smoothness, sparsity and energy
preservation which is guaranteed when the sum of the kernel coefficients is equal
to one [Krishnan et al., 2011; Komodakis and Paragios, 2012; Kotera et al., 2013].
This last condition is widely used in blind deconvolution issues since it allows to
overcome the scaling ambiguity.

2.3.2 Multichannel deconvolution

In some applications, the acquisition system is able to provide multiple obser-
vations of the original scene. In electron microscopy, for example, many differently
focused version of the same image are acquired during a single experiment, due to
an intrinsic trade-off between the bandwidth of the imaging system and the contrast
of the resulting image. Besides, pushbroom imaging systems [Song et al., 2017] can
acquire hyperspectral images in which each pixel provides local spectral information
about a scene of interest across a large number of contiguous bands. In other ap-
plications, such as photography or video acquisition, continuous shooting or video
capture with the camera provides several images that are blurred in a different way
since our hand moves randomly (see Figure 2.7). In case of multiple measurements,
the restoration algorithm can exploit the redundancy present in the observations
and, in principle, it can achieve performance not obtainable from a single measure.
The degradation model relating the observations (yk)16k6K to the unknown image
x can be expressed as follows:

∀k ∈ {1, . . . , K} yk = x ∗ hk + wk, (2.31)

where hk for k ∈ {1, . . . , K} denotes blur filters and (wk)16k6K is a random noise
realization.

Numerous methods based on multiple observed images have been proposed to
obtained a good deblurred image. Earlier works in [Harikumar and Bresler, 1999a,b;
Giannakis and Heath Jr, 2000] developed algorithms for multichannel blind image
restoration. They estimated the blur functions first and/or find restoration filters
(deconvolver). The original image is restored using classical image deconvolution
methods or by convolving the observed image with the restoration filter. In the
noise-free case, the aforementioned algorithms can recover the original image, up
to a scalar multiplier. However, in the noisy case, the obtained image suffers from
noise amplification. Afterwards, energy minimization-based approaches have been
proposed [Li et al., 2014; Chen et al., 2008; Zhuo et al., 2010; Sroubek and Milanfar,
2012]. In some of these approaches, a pair of images is employed, for example, in [Li
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Figure 2.7: Degradation model of the multichannel deconvolution problem : The original
image is captured by K channels and corrupted with noise, resulting in K different degraded
images.

et al., 2014], a pair of blurred and noisy images is used, and in [Chen et al., 2008]
two blurred images with different blur kernels are employed. The unknown image is
inferred iteratively with the two blur kernels. [Sroubek and Milanfar, 2012] proposed
a method that reformulates the one in [Harikumar and Bresler, 1999a] as a multi-
channel regularization term and simultaneously minimizes an energy function with
respect to the image and blur kernels. This allows to handle inexact kernel sizes and
to compensate for small misalignment in input images, which makes multichannel
deconvolution more practical and able to handle large blur kernels.

In this thesis, we will propose a number of energy minimization-based blind and
non-blind deconvolution approaches. Our algorithms are applied to videos with
added complexity of content motion, which allows us to benefit from the advantages
of the multichannel methods. In addition, when considering the non-blind problem,
super-resolution is simultaneously performed on the observed video sequences.

2.4 Introduction to image super-resolution

Super-Resolution (SR) denotes the class of methods that search for one or sev-
eral high resolution images (HR) from one or several low resolution images (LR)
of the same scene. Spatial resolution of an image varies depending on the imag-
ing device. Resolution grows by increasing the number of sensors in a unit area,
or equivalently by decreasing the pixel size [Park et al., 2003]. However, such a
strategy is not optimal since it induces an increase in the cost of the imaging device
and may result in images affected by shot noise, due the decrease of the amount of
light captured by each sensor. Thereby, a suitable solution to obtain sharp and high
resolution images results from a compromise between hardware performance and
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Figure 2.8: Direct model associated to super-resolution.

some post-processing techniques. Super-resolution techniques have been utilized in
many real-word applications such as satellite image processing [Tsai and Huang,
1984; Zhang et al., 2012], medical imaging [Maintz and Viergever, 1998; Peleg and
Yeshurun, 2001], surveillance video [Cristani et al., 2004; Zhang et al., 2010], facial
image analysis [Zou and Yuen, 2012; Li and Chang, 2009; Ma et al., 2009], remote
sensing [Tatem et al., 2001; Li et al., 2008] to name a few. They can be imple-
mented in both spatial and frequency domains. Super-resolution methods can be
classified into two categories depending on the number of involved low resolution
images, multiple-images based super-resolution [Tsai and Huang, 1984] and single-
image based super-resolution [Fattal, 2007; Mjolsness, 1985]. The first category
gathers most popular SR algorithms which assume that K low resolution images
representing the same scene from different perspectives, are supplied. Single-image
based super-resolution algorithms resort to several techniques to infer the sharp de-
tails, such as regularization approaches and learning-based methods. It should be
noted that interpolation techniques (usually on a single image) differ completely
from super-resolution methods. The former increases the size of the image, but it
does not reconstruct its missing details.

2.4.1 Multiple-image super-resolution

Multiple-images based super-resolution issues are ill-posed inverse problems which
aim at inferring a high resolution image from the set of low resolution observations
as shown in Figure 2.8. The associated direct model is the following [Irani and Peleg,
1990]

(∀k ∈ {1, . . . , K}) yk = SHkMk x+ wk, (2.32)

where yk ∈ RM is the k-th observed low resolution image of the target high
resolution image denoted by x ∈ RN . Mk ∈ RN×N is a linear operator modelling
the displacement between the observed image y and the original scene, Hk ∈ RN×N

denotes a blurring operator, and S ∈ RM×N is a down-sampling or decimation
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Figure 2.9: Concept of multiple-based image super-resolution: Subpixel displacement
between the LR images provide the necessary information to construct the HR image.

operator of factor q = N/M . Finally, wk ∈ RM represents additive noise.
Figure 2.9 illustrates the idea behind multiple-image based SR, where three LR
images resulting from different shifting operations of the original image followed by
a decimation, are used in order to obtain the underlying HR image .

Multiple-image super-resolution in the frequency domain

The pioneer work on multiple-image based SR methods in the frequency domain
has been proposed by [Tsai and Huang, 1984], where the authors exploit the aliasing
and translation properties of the continuous and discrete Fourier transforms. This
algorithm was initially proposed in order to process several low resolution images
acquired by Landsat4 satellite. These images capture the same area of the Earth up
to some translation. The initial algorithm considers noiseless images but subsequent
works have been carried out in order to address the case of noisy and blurry low
resolution images [Kim et al., 1990; Tekalp et al., 1992; Bose et al., 1994; Nguyen
et al., 1999].
Super-resolution algorithms in the frequency domain have a low computational cost,
nevertheless, they fail to achieve satisfactory results in real-world applications where
the degradation models are more involved and the displacement between the LR
images is not necessary translational or when there is motion in the image content.
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Multiple-image super-resolution in the spatial domain

Almost all recent super-resolution techniques address the multiple-image SR
problem in the spatial domain, by utilizing complementary information between
the low resolution images. The simplest method to estimate the high resolution
image is to decompose the problem into three sub-problems [Elad and Hel-Or, 2001;
Farsiu et al., 2004]. This method assumes that the blur operator Hk is identical for
all k ∈ {1, . . . , K}. Hence, the motion shift operator Mk and H of model (2.32) can
be reexpressed as follows

(∀k ∈ {1, . . . , K}) yk = SMkHx+ wk

= SMkz + wk, (2.33)

where z ∈ RN is the blurry version of the unknown x with the blur operator H. The
high resolution image is generated after the following simple steps:

1. a registration stage in-which one of LR images is chosen as reference, and the
others are aligned with it at a subpixel precision [Zhao and Sawhney, 2002;
Lee et al., 2010].

2. a non-uniform interpolation is performed based on the registered images in
order to obtain a high resolution blurred image z [Nasonov and Krylov, 2010;
Shimizu et al., 2008; Nasir et al., 2012].

3. a deblurring step is applied to the interpolated image z using a deconvolution
algorithm.

This super-resolution scheme is intuitive and computationally efficient for simple
observation models [Farsiu et al., 2004; Chiang and Boulte, 2000]. However, it is
clearly suboptimal in the sense that the registration errors are propagated to the
last stage of the method. Furthermore, the non-uniform interpolation does not
guarantee good results since it does not take into account blur and noise effects.
Numerous works have been performed based on the same scheme where the order
of the steps has been changed [Mancas-Thillou and Mirmehdi, 2005; Thillou and
Mirmehdi, 2007], or in-which the two first steps have been combined [Protter and
Elad, 2009]. Super-resolution techniques may resort to the Bayesian framework to
obtain an estimate of the sought high resolution image from a set of low resolution
observations [Shekarforoush et al., 1996; Shen et al., 2007; Purkait and Chanda,
2012]. The proposed SR algorithms mainly vary in the choice of the prior distribu-
tion. One can mention the Gaussian Markov Random Field prior (GMRF) [Chen
et al., 2012; Joshi et al., 2004] which is reminiscent of the Tikhonov model in the
deterministic scheme, the Huber-based GMRF in [Chakrabarti et al., 2007; Pickup
et al., 2003] and the well known Total-Variation prior in [Yuan et al., 2012].
Many MAP-based SR algorithms assume that the motion operators are known or
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pre-estimated, however, there exist variants which estimate the high resolution im-
age and the motion operators jointly [Tom and Katsaggelos, 1995; Segall et al.,
2004]. The estimation of the high resolution image and the computation of mo-
tion parameters can benefit one from each other to achieve a good image quality.
Nevertheless, they are computationally more expensive.

2.4.2 Single-image super-resolution

Multiple-image super-resolution algorithms utilize a set of LR images to recon-
struct the sharp details of the sought HR image. However, in various real-world
applications, several low resolution observations of the same scene is not available.
As an extreme but frequent situation, only one single LR image can be provided.
One of the proposed approaches to address the single-image SR problem tries to solve
the underlying ill-posed problem through the introduction of prior knowledge on the
expected high resolution image. This class of methods is termed reconstruction-based
methods [Fattal, 2007; Fan and Yeung, 2007; Dai et al., 2009] and aims at recon-
structing the missing details of the upscaled image while preserving the continuity
and sharpness of the edges [Li and Orchard, 2001; Dai et al., 2007; Fattal, 2007].
This can also be performed by considering regularization functions that preserve
strong discontinuities in the spatial domain such as the Total Variation regulariza-
tion [Aly and Dubois, 2005], or in the frequency domain through wavelet transforms,
where the wavelet coefficients of the estimated HR image are enforced to be sparse
[Sen and Darabi, 2009].

Another class of single-image SR algorithms is referred to as learning-based meth-
ods [Mjolsness, 1985; Capel and Zisserman, 2001; Zou and Yuen, 2012] and resorts
to trained dictionaries in order to infer fine details. The dictionary contains pairs of
HR images/patches and the corresponding degraded LR images/patches. In most
learning-based methods, the image is partitioned into (possibly overlapping) square
patches of pixels. For each input LR patch, a set of neighboor LR patches from the
dictionary is selected. The candidate LR patches are weighted and a reconstruction
model is derived from the selected low and high resolution pairs. Afterwards, this
model is applied to the input LR patch in order to reconstruct its associated HR
patch [Stephenson and Chen, 2006]. Finally, the HR image is obtained by merging
all the reconstructed HR patches as illustrated in Figure 2.10.

The dictionary can be external i.e., built from external training images, or internal,
namely the dictionary is built from the input LR image itself. The latter type of
dictionaries relies on the self-similarity property which states that image structures
of natural images are repeated across different scales [Lu et al., 2012]. Hence, for
a given input LR patch, a correspondence can be found within the same image,
possibly with different scales and locations.
Learning-based methods have shown their efficiency in recovering sharp high reso-
lution images. However, a number of parameters have to be appropriately adjusted,
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Mapping LR ↔ HR

Figure 2.10: Generic diagram of learning-based single-image SR algorithms: the LR
image is partitioned into patches, Afterwards, the HR patches are constructed thanks to
the self-similarity property and using a dataset of (LR/HR) patches. Finally the HR image
is generated by assembling all the HR patches.

such as the patch size and the content and size of the dictionary, which has a strong
impact on the performance of these methods. In fact, large-size datasets do not nec-
essary yield an improvement of the SR results since irrelevant image may increase the
search time and lead to poorly reconstructed HR images [Li et al., 2009]. Thereby,
the dictionary should involve images sharing the same statistics (e.g., fingerprint or
face database).

Recent learning-based super-resolution approaches rely on machine learning tech-
niques and more precisely on Convolutional Neural Networks (CNN) [LeCun et al.,
1989]. The CNN are mainly inspired from biological nervous system and consist of
computational processing units termed neurons, which exchange and communicate
via weighted connections that are adjusted during the training step. A CNN is made
up of several layers. Each layer receives inputs which represent features of the LR
image from the previous one, processes them and then sends them to the next layer,
as illustrated in Figure 2.11. Recently, after the phenomenal success of convolu-
tional neural networks in image classification problems [Krizhevsky et al., 2012; He
et al., 2014] CNN-based super-resolution methods attracted an increasing attention.
In this context, we mention the works in [Dong et al., 2014; Romano et al., 2016],
which propose a patch-based SR approach in-which the input LR image is upscaled
using a cheap interpolation (e.g., Bilinear, Bicubic) and then partitioned into over-
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Figure 2.11: Convolutional Neural Network composed of 3 layers and 10 neurons.

lapping patches which are refined using a small trained CNN, on a large number
of examples, and then merged to reconstruct the HR image. Similar approaches
have been proposed in [Shi et al., 2016; Wang et al., 2016] where, instead of inter-
polating the LR image, an upscaling filter is learned and applied at the final layer.
This allows to reduce the computational cost while keeping good super-resolution
results.

2.5 Introduction to video restoration

We are interested in this thesis in two main aspects of video restoration, namely
video deconvolution and super-resolution. The developed techniques are usually in-
spired from multi-image deconvolution and super-resolution methods that we have
discussed in the previous section, and further exploit the temporal correlation ex-
isting between neighbor frames. A particular attention is paid in this manuscript to
the restoration of videos from old television archive videos.

2.5.1 Video deconvolution

Real-life video sequences are usually blurred. This results from the overall effect
of different factors such as defocus, motion blur, and optical blur. However, motion
blur represents one of the artifacts that causes the most visually annoying blurry
images. In addition, videos are subject to spatial and temporal aliasing which
appears in images or video frames when the cut-off frequency of the sensor is lower
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than that of the lens. Temporal aliasing arises in video sequences when the frame
rate of the camera is not fast enough to capture high frequencies caused by fast
moving objects. As for single images, video deblurring is usually formulated as an
inverse deconvolution problem which aims at jointly estimating the blurring operator
and the underlying sharp video sequence. The t-th frame of the latter is related to
the observation as follows

(∀t ∈ {1, . . . , T}) yt = ht ∗ xt + wt, (2.34)

where T denotes the number of frames of the video sequence, y = (yt)16t6T ∈ RTN

is the observed video sequence, x = (xt)16t6T ∈ RTN is the original sharp video se-
quence, (ht)16t6T ∈ RTP denotes spatial convolution kernels, and (wt)16t6T ∈ RTN

represents additive noise.
Video deblurring is highly related to multi-image deconvolution [Paragios et al.,
2006; Chen et al., 2008; Cai et al., 2009; Sroubek and Milanfar, 2012]. It has been
shown in [Cai et al., 2009] that given multiple observations, enforcing the frame
sparsity improves the accuracy of identifying the blur kernels and reduces the ill-
posedness of the problem. However, multi-image deconvolution algorithms require
that all the input images are aligned and that the content is the same (static scene).
On the other hand, the authors in [Li et al., 2010] proposed to estimate the camera
motion and to explicitly model the video blur as a function of the motion being esti-
mated. A joint energy function is formulated between the underlying sharp sequence
and motion parameters. Recently, [Kim and Lee, 2015] proposed to simultaneously
tackle the problem of optical flow estimation and frame restoration in general blurred
videos. This is done by simultaneously estimating the optical flow and latent sharp
frames through the minimization of a single nonconvex energy function. Addressing
these two problems simultaneously requires a much more complex optimization, due
to the more sophisticated direct model linking all the blurry observations.

2.5.2 Video super-resolution

Video super-resolution consists in estimating high-resolution frames from low-
resolution input sequences. Video super-resolution has become one of the fundamen-
tal problems in image and video processing that has been extensively investigated
for decades. With the popularity of high-definition display devices, such as High-
definition television (HDTV), or even Ultra-high-definition television (UHDTV), on
the market, there is an increasing demand for transferring LR videos into HR videos
so that they can be displayed on high-resolution television screens. The sought HR
frames are related through warping based on motion fields. They are smoothed
with blur kernels, down-sampled and corrupted with additive noise to generate the
observed LR frames. The direct degradation model is therefore given by

(∀t ∈ {1, . . . , T}) yt = S(ht ∗ xt) + wt, (2.35)
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where S ∈ RM×N is a decimation operator. There have been great advances in
super-resolution algorithms recently, and some of these works handle the case of
video sequences. Among them, we mention the works in [Liu and Sun, 2011, 2014]
in which a Bayesian approach is proposed for simultaneously estimating the HR
frames, motion blur and noise parameter. The regularization terms for all unknowns
are `1 norms. An estimated noise parameter is used to update the weight of the
fidelity term at each iteration of the optimization algorithm. Promising results are
shown for 4× upscaling of real-life videos, but only Gaussian blurs are considered.
[Ma et al., 2015] presented an algorithm that extended the same idea to handle
motion blur. [Zhou et al., 2012] proposed to retrieve high-frequency details from
complementary multiframes by non-uniform interpolation, depending on registered
LR frames with sub-pixel accuracy. They further improved the SR performance in
[Zhou et al., 2014] when the number of LR input frames is small, by taking advantage
of nonlocal self-similarity to fit local surfaces. [Liao et al., 2015] proposed to apply
the multi-frame SR method of [Elad and Hel-Or, 2001] to obtain SR drafts with
different motion estimation parameters, and then to combine them through a deep
convolutional neural network (CNN).

2.5.3 Television archives

The last century has witnessed an explosion in the amount of video data stored
with holders such as Institut National Audiovisuel (France), British Broadcast-
ing Company (United Kingdom), Radiotelevisão Portuguesa (Portugal), Beeld en
Geluid (Netherlands) and Library of Congress (USA) to name a few. Beyond the
cultural heritage these data represent, their value is increased by their commercial
reexploitation through digital visual media [Elgharib et al., 2013]. This requires the
archived data to be compatible with the current standards of visual quality. This,
however, is usually not the case as the data are often visually degraded during their
recording and long-term storage under poor physical and climate condition. Televi-
sion archives are affected by several artifacts such as blur, echoes and many types
of noise. Among them, let us mention the Gaussian noise, the grain noise [Naranjo
et al., 2006], and the flicker noise which consists in global intensity variations be-
tween two consecutive frames. Noise reduction is essential for high image quality,
however, removing all of it can be undesirable, especially for the grain noise since it
can be considered as part of the video or film “feel” [Kokaram, 1998]. The content
of video archive documents can be corrupted by other kinds of impairments such as
blotches that occur mainly due to dirt particles adhering to the film material or due
to film abrasion. Blotches appear as temporally impulsive dark and bright spots
which are distributed randomly over an image sequence. Another type of artifacts
that may rise in analog television records is the ghost effect [Dhake, 1999]. It ap-
pears as a weak replica of the transmitted image. In fact, waves of television signals
can take paths of different length and some of them may be reflected and attenuated
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Figure 2.12: Ghost effect that appears as a shadow at the right of the main image.

by walls of buildings. The reflected signal is then weaker than the one committed
directly from the transmitter. This causes a lagging ghost image since the reflected
signal reaches the receiver device after a longer path, appearing as a displacement
in time as shown in the example in Figure 2.12.

Unlike films, in which the whole image is projected on a screen at once, a tele-
vision video frame is composed of rapidly scanning lines across a screen starting at
the top of the screen and moving to the bottom [Dhake, 1999]. These lines can be
scanned in two ways. The first way is to split the lines into two fields in which all of
the odd numbered lines are scanned first and then all of the even numbered lines are
displayed next, producing a complete frame. This process is called interlacing or
interlaced scan [Mallat, 2006]. Figure 2.13 shows an example of an interlaced frame
composed of odd and even fields. The second method, is referred to as progressive
scan which allows the lines to be displayed sequentially. This means that both the
odd and even numbered lines are displayed in the same image. Progressive scan
is more and more used in digital video recording, digital televisions, and computer
monitors.

Several analog television standards have been around for six decades: the Na-
tional Television Systems Committee (NTSC) which is used mainly in north Amer-
ica and Japan, the Séquentiel Couleur Avec Mémoire (SECAM) that is adopted
in France and Russia, and the Phase Alternating Line rate (PAL) used in western
Europe and Asia. The aforementioned standards are quite similar and differ mainly
in image resolution, frequency sampling, and color representation. The NTSC stan-
dard is a 60 fields/30 frames-per-second system for transmission and display of video
images. It is based on interlaced scan, where each frame is decomposed in two fields
of 244 lines. Besides, PAL and SECAM format for video broadcasting and display
are interlaced systems clocked at 50 field/25 frames per second with 288 lines per
field.
With the new large HD screens and flat panel televisions such as Plasma and LCD,
the resolution produced by traditional television are not reproduced nicely from the
interlaced scanning method. To overcome this limitation, the concept of deinterlac-
ing was introduced. Deinterlacing is the process of constructing a progressive video
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Figure 2.13: Interlaced image (left), its decomposition into odd and even fields (right).

sequence from an interlaced one. This is realized by splitting each interlaced frame
into an odd and even fields, and then estimating the missing even/odd rows using a
super-resolution technique, as illustrated in Figure 2.14.
We provide in Chapter 5 a new joint video deblurring and deinterlacing method
based on a variational formulation of the problem. We define an energy function
which is minimized by a recent iterative optimization algorithm, that will be pre-
sented in Chapter 4.

Figure 2.14: Deinterlacing as a super-resolution problem: interlaced video of four odd
and even fields (left). Progressive video with the estimated missing rows displayed as red
squares (right).
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2.6 Conclusion

We have seen in this chapter that numerous image and video processing issues
can be cast as inverse problems whose solution is obtained through the resolution
of an optimization problem. The latter consists in minimizing an objective function
composed of a data fidelity and regularization terms. Regularization functions are
chosen according to established assumptions on sharp natural images in order to
enhance the perceived quality. This can be done either by exploiting the degraded
image itself, or by utilizing a number of images, provided that correlations exist
between them. In the next chapter, we shall detail a number of optimization methods
that are widely used in image and video restoration problems.
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3.1 Introduction

An efficient way to address image and video restoration issues is to express
them as optimization problems which aim at minimizing a sum of data fidelity and
regularization terms. Usually, optimization problems do not have an explicit and
closed form solution, so an iterative algorithm is developed for this purpose. These
algorithms depend heavily on the mathematical properties of the terms constituting
the cost function. Large efforts have been made during the last decades in developing
efficient algorithms for solving a wide range of optimization problems, while being
careful to the complexity. This chapter is dedicated to the presentation of some
fundamental tools in large-scale optimization. First, we recall in Section 3.2 some
basic definitions and set up our notations, then we give in Section 3.3 a number of
efficient minimization algorithms.

3.2 Definitions and notation

We recall below some definitions and theorems of convex optimization analysis,
and introduce the notation that will be used throughout the thesis.

Definition 3.1 Let ψ be a function from RN to ]−∞,+∞]

(i) The domain of ψ, denoted by domψ, is given by

domψ = {x ∈ RN | ψ(x) < +∞}.

(ii) ψ is proper if and only if its domain dom ψ is nonempty.

(iii) ψ is coercive if
lim

‖x‖→+∞
ψ(x) = +∞.

(iv) ψ is lower-semicontinuous at x0 ∈ RN if

lim
x→x0

inf ψ(x) > ψ(x0).

ψ is said to be lower-semicontinuous if the above inequality is satisfied for every
x0 ∈ RN .

Definition 3.2 Let E be a subset of RN . The indicator function relative to the set
E is denoted by ιE : RN →]−∞,+∞] and defined as

ιE(x) =

{
0 if x ∈ E,

+∞ otherwise.
(3.1)
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Definition 3.3 [Bauschke and Combettes, 2017] Let C be a subset of RN . C is
convex if

(∀λ ∈]0, 1[)
(
∀(x, y) ∈ C2

)
λx+ (1− λ)y ∈ C.

Definition 3.4 [Bauschke and Combettes, 2017] Let ψ be a function from RN to
]−∞,+∞]

(i) The function ψ is convex if

(∀λ ∈]0, 1[)
(
∀(x, y) ∈ (domψ)2

)
ψ(λx+ (1− λ)y) 6 λψ(x) + (1− λ)ψ(y).

(ii) ψ is strictly convex if

(∀λ ∈]0, 1[)
(
∀(x, y) ∈ (domψ)2, x 6= y

)
ψ(λx+(1−λ)y) < λψ(x)+(1−λ)ψ(y).

(iii) ψ is strongly convex with constant β if ψ − (β/2)‖ · ‖2 is convex.

Note that if ψ is convex, then its domain dom ψ is convex.

Definition 3.5 Let ψ and ϕ be functions from RN to ] − ∞,+∞]. The infimal
convolution of ψ and ϕ is defined as

ψ � ϕ : RN → [−∞,+∞] : x→ inf
y∈RN

(ψ(y) + ϕ(x− y)) . (3.2)

The neutral element of the infimal convolution corresponds to the indicator function
of the set containing the zero vector of RN denoted by {0}:(

∀x ∈ RN
)

ψ � ι{0}(x) = ψ(x).

The Moreau envelope of ψ of parameter γ > 0 is

γψ = ψ �

(
1

2γ
‖ · ‖2

)
. (3.3)

Definition 3.6 [Bauschke and Combettes, 2017; Rockafellar, 1974] Let ψ : RN →
[−∞,+∞] be a proper function. ψ∗ denotes the conjugate function of ψ (see Figure
3.1) and is defined as follows:

ψ∗ : RN → [−∞,+∞] : u→ sup
x∈RN

(〈x|u〉 − ψ(x)) . (3.4)

Definition 3.7 Let A ∈ RN×N and B ∈ RN×N be symmetric positive definite
matrices. The Loewner partial order is defined as

A � B (resp. A � B) ⇔ (∀x ∈ RN \ {0}) x>Ax > x>Bx (resp. x>Ax > x>Bx).
(3.5)
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ψ

〈u | x〉

−ψ∗(u)

Figure 3.1: ψ∗(u) is the supremum of the signed vertical difference between ψ and the
continuous linear functional 〈· | u〉.

The weighted dot product and norm associated with a symmetric positive definite
matrix A ∈ RN×N , will be denoted respectively by(

∀x ∈ RN
) (
∀y ∈ RN

)
〈x|y〉A = 〈x|Ay〉 and ‖x‖A = 〈x|Ax〉

1
2 .

Note that, if A = IdN the identity matrix of RN , the weighted norm ‖x‖A reduces
to the standard euclidean norm ‖x‖.

Definition 3.8 [Bauschke and Combettes, 2017; Rockafellar, 1974] Let Γ0(RN) de-
note the set of convex proper lower-semicontinuous functions from RN to ]−∞,+∞],
and ψ ∈ Γ0(RN). The Moreau sub-differential of ψ at x ∈ domψ is defined as follows
(see Figure 3.2 for an example)

∂ψ(x) =
{
t ∈ RN : ∀y ∈ RN , ψ(y)− 〈y − x | t〉 > ψ(x)

}
. (3.6)

Proposition 3.9

(i) If ψ : RN →]−∞,+∞] is a proper function, then

x ∈ argmin ψ ⇔ 0 ∈ ∂ψ(x),

where 0 denotes the zero vector of RN .

(ii) If ψ ∈ Γ0(RN) is Gâteaux differentiable, then(
∀x ∈ RN

)
∂ψ(x) = {∇ψ(x)} ,

where ∇ψ(x) is the gradient of ψ at x.
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Figure 3.2: An example of three sub-gradients, t1, t2 and t3 of ψ at x.

Definition 3.10 The differentiable function ψ : RN →]−∞,+∞] has a β-Lipschitz
gradient on a subset E of RN with β > 0, if(

∀(x, y) ∈ E2
)
‖∇ψ(x)−∇ψ(y)‖ 6 β‖x− y‖.

Definition 3.11 Let ψ be a function in Γ0(RN). The proximity operator of ψ at
x̃ ∈ RN is defined as the unique minimizer of the following problem [Moreau, 1965]

proxψ(x̃) = argmin
x∈RN

ψ(x) +
1

2
‖x− x̃‖2. (3.7)

Moreover, for every γ > 0, proxγψ(x̃) is given by

proxγψ(x̃) = argmin
x∈RN

ψ(x) +
1

2γ
‖x− x̃‖2. (3.8)

Thus proxγψ(x̃) corresponds to the point where the infimum is reached in the cal-
culation of the Moreau envelope of parameter γ of ψ at x̃.
The proximity operator proxψ(x) is characterized by the following inclusion(

∀(x, p) ∈ RN × RN
)

p = proxψ(x) ⇔ x− p ∈ ∂ψ(p). (3.9)

Definition 3.12 Let ψ ∈ Γ0(RN) and B ∈ RN×N be a symmetric positive definite
matrix. The proximity operator of ψ at x̃ ∈ RN relative to the metric induced by
B is denoted by proxB,ψ(x̃) and defined as

proxB,ψ(x̃) = argmin
x∈RN

ψ(x) +
1

2
‖x− x̃‖2

B. (3.10)

The proximity operator of ψ∗, the conjugate function of ψ, can be expressed by
means of proxB,ψ using the Moreau decomposition formula given by

proxB,ψ∗ = Id −B−1proxB−1,ψ(B ·). (3.11)

When B is equal to the identity matrix of RN , one retrieves the classical proximity
operator in (3.7). Besides, when B = γ−1IdN , (3.8) is recovered.
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Figure 3.3: Iterative gradient descent for minimizing a function f . Each generated
iterate has a lower cost than its predecessor.

3.3 Optimization algorithms

As pointed out in Chapter 2, a solution to inverse problems, and especially
to image and video restoration issues, can be obtained by formulating them as
minimization problems. The adopted resolution strategy depends heavily on the
mathematical properties of the involved functions. Hereafter, we will present some
of the main algorithms that are employed in the field of inverse problems in image
processing.

3.3.1 Gradient descent algorithm

Let us first consider the problem of minimizing a differentiable function f ∈
Γ0(RN) with a β-Lipschitz gradient, where β > 0, namely

Find x̂ ∈ argmin
x∈RN

f(x). (3.12)

Then, the solution x̂ to problem (3.12) satisfies

∇f(x̂) = 0. (3.13)

Iterative algorithms are usually employed to find a solution to minimization prob-
lems. This is achieved by constructing a sequence (xn)n∈N converging toward a
minimizer. A well-known algorithm for solving (3.12) is the gradient descent algo-
rithm [Bertsekas, 1999] which relies on the evaluation of the gradient of f at each
iteration n ∈ N in order to identify a direction leading to a minimizer, as illustrated
in Figure 3.3.
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Algorithm 1 Gradient descent algorithm

Initialization:

Let x0 ∈ RN

For every n ∈ N, and 0 < γn < 2β−1

for n = 0, 1, . . . do

xn+1 = xn − γn∇f(xn)

end for

3.3.2 Proximal point algorithm

In various optimization problems, the function f in Γ0(RN) to minimize is not
differentiable. A popular approach to address such case is to express the next iterate
xn+1, for n ∈ N, as a function of the current one, as follows [Rockafellar, 1976]

xn+1 = xn − γntn with tn ∈ ∂f(xn+1) and γn > 0. (3.14)

Thereby, we have

xn − xn+1 ∈ γn∂f(xn+1). (3.15)

Using the characterization of the proximity operator in (3.9), (3.15) is equivalent to

xn+1 = proxγnf (xn). (3.16)

Thus, the proximal point algorithm given by Algorithm 2 can be derived.

Algorithm 2 Proximal point algorithm

Initialization:

Let x0 ∈ RN

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn+1 = proxγnf (xn)

end for

When f is is in Γ0(RN), proxγnf (xn) is unique. The convergence of Algorithm 2
is then established by Theorem 3.13.

Theorem 3.13 [Bauschke and Combettes, 2017] Let f be a function in Γ0(RN) with
argmin f 6= ∅. Assume that

∑
n∈N γn = +∞, then the sequence (xn)n∈N generated

by Algorithm 2 converges to the solution to problem (3.12).
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f

q(·, xn)

xnxn+1

Figure 3.4: An illustrative example of the Majorize-Minimize strategy: at each
iteration n ∈ N, a tangent majorant q(·, xn) of f at xn is built and the next iterate
xn+1 is defined as the minimizer of q(·, xn).

3.3.3 Majorize-Minimize strategy

Another minimization strategy can be obtained by resorting to the Majorize-
Minimize (MM) framework. MM techniques represent a class of iterative methods
that substitute at each iteration n ∈ N, the function f : RN →] −∞,+∞] to be
minimized by a surrogate tangent majorant function q : RN × RN →] − ∞,+∞]
which fulfils the following conditions at x′ ∈ RN :(

∀x ∈ RN
)

q(x, x′) > f(x)

q(x′, x′) = f(x′). (3.17)

An illustration of MM principle is shown in Figure 3.4. A generic MM algorithm is
given by Algorithm 3 [Ortega and Rheinboldt, 1970].

Algorithm 3 Majorize-Minimize algorithm

Initialization:

Let x0 ∈ RN

for n = 0, 1, . . . do

xn+1 = argmin
x∈RN

q(x, xn)

end for

Majorize-Minimize methods require to construct a sequence of tangent majorant
functions. These functions may depend on the previous iterate or not [Jacobson
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and Fessler, 2007; Hunter and Lange, 2004]. However, the common focus of these
methods is that the surrogate function has to be computationally simpler to min-
imize than the original one. One can find in [Lange, 2010; Erdogan and Fessler,
1999] several methods for constructing such majorant functions.

An interesting case of MM techniques is provided when f is a differentiable
function with a Lipschitz gradient. Then, the tangent majorant function q can be
chosen quadratic and defined as follows: Let xn ∈ RN be the vector obtained at
iteration n ∈ N,

(
∀x ∈ RN

)
q(x, xn) = f(xn) + 〈x− xn | ∇f(xn)〉+

1

2
‖x− xn‖2

An , (3.18)

with An ∈ RN×N a symmetric semi-definite positive matrix that allows to satisfy
the majoration condition (3.17) for f at xn. Within this context, the MM algorithm
can be formulated as a preconditioned version of Algorithm 1:

Algorithm 4 Quadratic Majorize-Minimize algorithm

Initialization:

Let x0 ∈ RN

for n = 0, 1, . . . do

xn+1 = xn − A−1
n ∇f(xn)

end for

Remark 3.14 if f : RN →]−∞,+∞] is a differentiable function with a β-Lipschitz
gradient, then the quadratic function q(·, xn) defined according to (3.18) with An =
α IdN with α > β, is a tangent majorant function of f at xn. In that case, Algo-
rithm 1 is recovered.

Note that many works have been supplied in which non-necessarily quadratic
majorant functions are utilized [Bolte and Pauwels, 2016; Ochs et al., 2015], which
allows to address a larger class of problems.

3.3.4 Forward-backward algorithm

Let us now consider minimization problems involving a sum of two functions
with different properties. This kind of problems is widely encountered in image
restoration tasks where an estimate of the sought image is obtained by minimizing
the sum of a data fidelity term and a regularization term. In other words, let us
consider the following problem:

Find x̂ ∈ argmin
x∈RN

χ(x) = f(x) + g(x), (3.19)
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Figure 3.5: An illustration of few iteration of the forward-backward algorithm when
f is a smooth function and g is the indicator function of a convex set. Note that when
xn − γn∇f(xn) belongs to C, the iteration reduces to a simple gradient descent step.

where f ∈ Γ0(RN) is a differentiable function with a β-Lipschitz gradient, and
g ∈ Γ0(RN). It can be shown from [Combettes and Wajs, 2005] that the solution to
problem (3.19) satisfies the following fixed point equation:

x̂ = proxγg (x̂− γn∇f(x̂)) , (3.20)

with γ ∈]0,+∞[. Using the characterization (3.20), the forward-backward algorithm
is developed. This algorithm comprises a gradient descent step on the differentiable
function f (forward step), followed by a proximal step on the nonsmooth and convex
function g (backward step) [Chen and Rockafellar, 1997], as shown by Algorithm 5.

Algorithm 5 Forward-backward algorithm

Initialization:

Let x0 ∈ RN

For every n ∈ N, 0 < γn < 2β−1 and λn ∈]0, 1]

for n = 0, 1, . . . do

x̃n = xn − γn∇f(xn)

x̃n+1 = proxγng(x̃n)

xn+1 = xn + λn (x̃n+1 − xn)

end for

Theorem 3.15 Let f ∈ Γ0(RN) be a differentiate function with β-Lipschitz gradi-
ent, and g ∈ Γ0(RN). Assuming that argmin χ 6= ∅ and
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• 0 < infn∈N γn 6 supn∈N γn < 2β−1,

• 0 < infn∈N λn 6 λn 6 1,

then, the sequence (xn)n∈N generated by Algorithm 5 converges towards the solution
to problem (3.19).

It should be noted that the authors in [Attouch and Bolte, 2009; Attouch et al.,
2011] have proven that the convergence guarantees of Algorithm 5 to a critical
point of χ remain valid even when f and g are non-necessary convex functions with
λn = 1. In addition, [Cruz and Nghia, 2016; Salzo, 2016] have also investigated
the case when ∇f does not fulfill the Lipschitz assumption. Furthermore, in many
cases, the proximity operator of g can be non-explicit and thus non accurate. In
such instance, numerous variants have been proposed in order to take into account
the potential errors and preserve the convergence properties of Algorithm 5. This
can be realized by incorporating additional terms accounting for errors [Combettes
and Wajs, 2005], or by designing an inexact version with relative errors [Attouch
et al., 2011].

3.3.5 Variable metric forward-backward algorithm

As discussed in the previous section, the forward-backward algorithm is well-
adapted to minimization problems involving a sum of a differentiable and convex
functions. However, despite its low computational cost, it suffers from a slow con-
vergence rate [Chouzenoux et al., 2014]. Thereby, a close attention has been paid to
accelerate it. An interesting approach consists in utilizing a variable metric at each
iteration of the algorithm thanks to the introduction of preconditioning matrices
[Combettes and Vũ, 2014a; Chouzenoux et al., 2014]. Hence, let us consider again
the minimization problem (3.19) with f and g satisfying the following assumptions:

Assumption 3.16

1. f : RN →]−∞,+∞] is differentiable with a β-Lipschitz gradient and β > 0.

2. g ∈ Γ0

(
RN
)

and its restriction to dom g is continuous.

3. χ is a coercive function.

The following algorithm has been proposed to solve problems in the form of (3.19)
in an effective way.
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Algorithm 6 Variable metric forward-backward algorithm

Initialization:

Let x0 ∈ RN

For every n ∈ N, 0 < γn < 2 and λn ∈]0, 1]

for n = 0, 1, . . . do

x̃n = xn − γnA−1
n ∇f(xn)

x̃n+1 = proxγ−1
n An,g

(x̃n)

xn+1 = xn + λn (x̃n+1 − xn)

end for

Inexact versions of Algorithm 6 have been supplied in order to take into account
potential errors in the computation of the gradient of f and the proximity operator of
g [Chouzenoux et al., 2014; Bonettini et al., 2016a]. The convergence of Algorithm 6
has been established in [Combettes and Vũ, 2014a; Frankel et al., 2015] under dif-
ferent assumptions on f , g and the metrics (An)n∈N, and in [Bonettini et al., 2016b]
where an inexact version of Algorithm 6 has been proposed and analyzed based on
an Armijo-type line-search along a suitable descent direction. Here, we focus on the
result from [Chouzenoux et al., 2014] that relies on the following MM assumption:

Assumption 3.17

1. For all n ∈ N, the function q(·, xn) defined by(
∀x ∈ RN

)
q(x, xn) = f(xn) + 〈x− xn | ∇f(xn)〉+

1

2
‖x− xn‖2

An , (3.21)

is a majorant function of f at xn.

2. There exist (ν, ν) ∈]0,+∞[2 such that, for all n ∈ N: ν IdN 6 An 6 ν IdN

Assumption 3.18

1. There exists λ ∈]0,+∞[ such that, for all n ∈ N: λ 6 λn 6 1.

2. There exist (ν, ν) ∈]0,+∞[2 such that, for all n ∈ N: ν 6 γnλn 6 2− ν.

Furthermore, χ has to satisfy the so-called Kurdyka- Lojasiewicz inequality given in
the next definition.

Definition 3.19 A function ψ : RN → R satisfies the Kurdyka- Lojasiewicz in-
equality if for every ξ ∈ R and for every bounded subset E ∈ RN , there exist three
constants κ > 0, ζ > 0 and θ ∈ [0, 1[ such that [Lojasiewicz, 1963](

∀t ∈ ∂ψ(y)
)

‖t‖ > κ|ψ(y)− ξ|θ, (3.22)

for every y ∈ E such that |ψ(y)− ξ| 6 ζ (with the convention 00 = 0).
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The inexact variable metric forward-backward algorithm is given by Algorithm 7.

Algorithm 7 Inexact variable metric forward-backward algorithm

Initialization:

Let x0 ∈ dom g and b ∈]0,+∞[

For every n ∈ N, γn ∈]0,+∞[ and λn ∈]0, 1]

for n = 0, 1, . . . do

Find x̃n ∈ RN and rn ∈ ∂g(x̃n) such that

g(x̃n) + 〈x̃n − xn | ∇f(xn)〉+ γ−1
n ‖x̃n − xn‖2

An
6 g(xn)

‖∇f(xn) + rn‖ 6 b‖x̃n − xn‖An
xn+1 = xn + λn (x̃n − xn)

end for

Theorem 3.20 Assuming that Assumptions 3.16, 3.17 and 3.18 are fulfilled and χ

satisfies the Kurdyka- Lojasiewicz inequality, then

1. The sequences (xn+1)n∈N and (x̃n+1)n∈N generated by Algorithms 6 or 7 con-
verge to a critical point x̂ of χ.

2. For all n ∈ N, the sequences χ(xn+1) and χ(x̃n+1) converge toward χ(x̂). More-
over, χ(xn+1) is a non-increasing sequence.

3. The following inequalities are satisfied

+∞∑
n=0

‖xn+1 − xn‖ < +∞ and
+∞∑
n=0

‖x̃n+1 − x̃n‖ < +∞. (3.23)

3.3.6 Block-coordinate variable metric forward-backward al-
gorithm

We will consider in this section a special instance of Problem (3.19) dealing with
the case when g is a separable function. We assume that the vector x ∈ RN can
be decomposed into J blocks (xj)16j6J where J is the cardinal number of the set of
partitions of {1, . . . , N} and (xj)16j6J ∈ RN1 × . . .× RNJ , i.e.,

(
∀x ∈ RN

)
g(x) =

J∑
j=1

gj(x
j), (3.24)

The following algorithm generalizing Algorithm 6, has been proposed in [Chouzenoux
et al., 2016] to handle efficiently minimization problems of this form, where at each
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iteration n ∈ N, only a block of index j ∈ {1, . . . , J} is selected and its associated
variable xj is updated.

Algorithm 8 Block-coordinate variable metric forward-backward algorithm

Initialization:

Let x0 ∈ RN

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

Let jn ∈ {1, . . . , J}
x̃jnn = xjnn − γn(Ajnn )−1∇jnf(xn)

x̃jnn+1 = proxγ−1
n Ajnn ,gjn

(x̃jnn )

xjn+1 = xjn

end for

For every x ∈ RN and j ∈ {1, . . . J},∇jf(x) ∈ RNj denotes the gradient of f
with respect to xj computed at x, j denotes the complementary set of j i.e., j =
{1, . . . , J}\{j}, and xj = (x1, . . . , xj−1, xj+1, . . . , xJ). The convergence is established
assuming that f and (gj)16j6J fulfill the following assumptions:

Assumption 3.21

1. f : RN →]−∞,+∞] is differentiable with a β-Lipschitz gradient and β > 0.

2. ∀j ∈ {1, . . . , J} gj : RNj →] − ∞,+∞] is proper, lower semicontinuous,
bounded from below by an affine function and its restriction to its domain is
continuous.

3. χ is a coercive function.

Assumption 3.22

1. Let us define the partial function fj(·, xj) : RNj → R as follows

(∀y ∈ RNj) fj(y, x
j) = (x1, . . . , xj−1, y, xj+1, . . . , xJ). (3.25)

For every n ∈ N, the function qjn(·, xn) defined by(
∀x ∈ RN

j

)
qjn(x, xn) = f(xn)+〈x−xjnn | ∇jnf(xn)〉+ 1

2
‖x−xjnn ‖2

Ajnn
, (3.26)

is a majorant function of fjn(·, xjn) at xjnn .

2. There exist (ν, ν) ∈]0,+∞[2 such that, for all n ∈ N: ν IdNj 6 Ajnn 6 ν IdNj
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Assumption 3.23 Let (jn)n∈N be the sequence of updated block indices. There ex-
ists a constant K > J such that, for every n ∈ N, {1, . . . J} ⊂ {jn, . . . , jn+K−1}.

Assumption 3.24 One of the following statements holds:

1. There exists (γ, γ) ∈]0,+∞[2 such that, for every n ∈ N, γ 6 γn 6 1− γ

2. For every j ∈ {1, . . . , J} gj is a convex function and there exist (γ, γ) ∈
]0,+∞[2 such that for every n ∈ N, γ 6 γn 6 2− γ

Theorem 3.25 Assuming that Assumptions 3.21, 3.22, 3.23 and 3.24 are fulfilled
and χ satisfies the Kurdyka- Lojasiewicz inequality, then

1. The sequences (xn)n∈N generated by Algorithm 8 converges to a critical point
x̂ of χ.

2. For all n ∈ N, the sequences χ(xn) is a non-increasing sequence converging to
χ(x̂).

3. This sequence has a finite length in the sense that

+∞∑
n=0

‖xn+1 − xn‖ < +∞. (3.27)

3.3.7 Primal-dual algorithms

Let us now consider minimization problems involving nonsmooth terms com-
posed with linear operators. This can be encountered for example when dealing
with an image in the wavelet domain, or when penalizing its gradient. Hence in the
following, we focus on minimization problems of the form:

Find x̂ ∈ argmin
x∈RN

f(x) + g(x) + h(Ax), (3.28)

where f ∈ Γ0(RN) is a differentiable function with a β-Lipschitz gradient, g ∈
Γ0(RN), h ∈ Γ0(RM) and A ∈ RM×N is a linear operator. A solution to problem
(3.28) can be obtained by solving both the primal problem and its associated dual
problem [Komodakis and Pesquet, 2015; Bonettini et al., 2014; Bednarczuk et al.,
2016], that is expressed by

Find ŷ ∈ argmin
y∈RM

(f ∗� g∗)(−A>y) + h∗(y). (3.29)

If the pair (x̂, ŷ) ∈ RN × RM is such that

− A>ŷ −∇f(x̂) ∈ ∂g(x̂) and Ax̂ ∈ ∂h∗(ŷ), (3.30)
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then (x̂, ŷ) is referred to as Kuhn-Tucker point.

The combination of problems (3.28) and (3.29) yields the so-called search of a
saddle point of the Lagrangian problem [Bauschke and Combettes, 2017] given by

minimize
x∈RN

maximize
y∈domh∗

f(x) + g(x)− h∗(y) + 〈Ax | y〉. (3.31)

If (x̂, ŷ) ∈ RN × RM is a Kuhn-Tucker point, then x̂ is a solution to the primal
problem (3.28), ŷ is a solution to the dual problem (3.29), and (x̂, ŷ) is a solution to
(3.31) [Bauschke and Combettes, 2017]. However, the converse does not necessary
holds, i.e., the Kuhn-Tucker condition (3.30) may not be satisfied even though x̂ and
ŷ are solutions to problems (3.28) and (3.29) respectively [Bauschke and Combettes,
2017; Komodakis and Pesquet, 2015].
In addition, if the following condition is fulfilled

ri(domh) ∩ A (dom g) 6= ∅, (3.32)

where ri(S) is the relative interior of a set S, then the set of solutions to problem
(3.29) is nonempty and, for every solution to primal and dual problems x̂ and ŷ
respectively, the pair (x̂, ŷ) is a solution to problem (3.31), and the following equality
is satisfied

f(x̂) + g(x̂) + h(Ax̂) = −
(
(f ∗� g∗)(−A>ŷ) + h∗(ŷ)

)
. (3.33)

The class of algorithms that minimize both primal and dual problems are termed
primal-dual algorithms. Among them, we mention the one proposed by Condat-Vũ
[Condat, 2013; Vũ, 2013] that is given by Algorithm 9.

Algorithm 9 Primal-dual algorithm [Condat, 2013; Vũ, 2013]

Initialization:

Let (x0, y0) ∈ RN × RM and (σ, τ) ∈]0,+∞[2

For every n ∈ N, λn ∈]0,+∞[

for n = 0, 1, . . . do

x̃n+1 = proxτg
(
xn − τ(∇f(xn) + bn + A>yn)

)
+ an

ỹn+1 = proxσh∗(yn + A(2x̃n+1 − xn)) + cn

xn+1 = λnx̃n+1 + (1− λn)xn

yn+1 = λnỹn+1 + (1− λn)yn

end for

The convergence of Algorithm 9 is stated by the following theorem:
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Theorem 3.26 [Condat, 2013] Let τ > 0 and σ > 0 and β > 0 be the Lipschitz
constant of ∇f . Assuming that the following hold

1. τ−1 − σ‖A‖2 > β/2

2. ∀n ∈ N, λn ∈]0, λ[ where λ = 2− β (τ−1 − σ‖A‖2)
−1
/2 ∈ [1, 2[

3.
∑

n∈N λn(λ− λn) = +∞

4.
∑

n∈N λn‖an‖ < +∞,
∑

n∈N λn‖bn‖ < +∞ and
∑

n∈N λn‖cn‖ < +∞

then, there exists a pair (x̂, ŷ) ∈ RN × RM solution to problems (3.28)-(3.29) such
that the sequences (xn)n∈N and (yn)n∈N generated by Algorithm 9 converge to x̂ and
ŷ respectively.

Note that when f = 0, one recovers the primal-dual algorithm of [Chambolle
and Pock, 2010; Pock et al., 2009], whose convergence conditions are less restrictive
than those of Algorithm 9.

3.3.8 Dual forward-backward algorithm

As we have observed in this chapter, the proximity operator is a prominent tool
when treating optimization problems including nonsmooth terms. However, the
evaluation of proximity operators can be quite involved and a closed form expression
may not exist. In this section, we address the problem of computing the proximity
operator of a sum of two possibly nonsmooth functions involving a linear operator,
by adopting a primal-dual approach. First, let us define

χ(x) = g(x) + h(Ax). (3.34)

where g ∈ Γ0(RN), h ∈ Γ0(RM) and A is a linear operator in RM×N . We aim at
evaluating the proximity operator of χ at x̃ ∈ RN in the metric induced by C, i.e.,

Find x̂ = proxC,χ(x̃),

= argmin
x∈RN

g(x) + h(Ax) +
1

2
‖x− x̃‖2

C , (3.35)

where C ∈ RN×N is a symmetric strictly positive definite matrix.
Assuming that ri

(
A(dom g)

)
∩ ri(domh) 6= ∅, the dual problem is expressed by

Find ŷ = argmin
y∈RM

ϕ
(
−C−1/2A>y + C1/2x̃

)
+ h∗(y), (3.36)

where ϕ =
((
g ◦ C−1/2

)∗
� 1

2
‖ . ‖2

)
has a nonexpansive (i.e., 1-Lipschitzian) gradi-

ent. The gradient of the smooth part of (3.36) can be expressed by means of g as
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follows

∇ϕ ◦
(
−C−1/2A> ·+C1/2x̃

)
= −AC−1/2∇ϕ ◦

(
−C−1/2A> ·+C1/2x̃

)
,

= −AC−1/2 proxg◦C−1/2

(
C1/2x̃− C−1/2A>·

)
,

= −A proxC,g
(
x̃− C−1A>·

)
, (3.37)

A solution to solve problem (3.35) is to apply the forward-backward Algorithm 5 to
the dual problem (3.36). By setting xn = proxC,g

(
x̃− C−1A>yn

)
for all n ∈ N, the

following algorithm is obtained

Algorithm 10 Dual forward-backward algorithm

Initialization:

Let y0 ∈ RM , β = ‖AC−1/2‖2 and ε ∈]0, 1]

For every n ∈ N, γn ∈ [εβ−1, (2− ε)β−1]

for n = 0, 1, . . . do

xn = proxC,g(x̃− C−1A>yn)

ỹn = yn + γnAxn

yn+1 = ỹn − γnproxγ−1
n h(γ

−1
n ỹn)

end for

The convergence of Algorithm 10 is established by Theorem 3.27, deduced from
[Combettes et al., 2011].

Theorem 3.27 The sequences (xn)n∈N, (yn)n∈N generated by Algorithm 10 converge
to the solution to Problems (3.35)-(3.36), x̂ and ŷ respectively, and the pair (x̂, ŷ)
satisfies the Kuhn-Tucker condition (3.30).

In short, Algorithm 10 results from the application of the forward-backward
algorithm to the dual problem (3.36). In the next chapter, we propose an accelerated
version of this approach for the problem of computing the proximity operator of χ

when h is a separable function.

3.4 Conclusion

We have highlighted in this chapter a number of optimization algorithms that
are developed according to the mathematical properties of the functions which are
dealt with. Some of these algorithms are applicable on differentiable functions, while
others on non differentiable ones. Most of the mentioned algorithms resort to the
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proximity operator. Hence, a particular attention is paid in this thesis to provide
new efficient tools for evaluating it when an explicit form is not available. In this
spirit, the next chapter addresses the problem of computing the proximity operator
of a composite function by providing new algorithms with established convergence
guarantees.
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4.1 Introduction

This chapter is dedicated to the proposal of new primal-dual algorithms based
on the dual forward-backward algorithm. These algorithms are combined with pre-
conditioning and block coordinate strategies so as to get an improved performance.
The proposed methods are used for computing proximity operators when they do
not have a closed form expression, especially when dealing with a sum of several
convex functions involving linear operators. In addition, we show that our algo-
rithms benefit from convergence guaranties on both primal and dual sequences for
arbitrary linear operators.

The remainder of the chapter is structured as follows: we begin by presenting in
Section 4.2 a preconditioned algorithm for the non-separable case. Then, we derive
in Section 4.3, new fast algorithms for the separable case by introducing a block-
coordinate strategy, and investigate their convergence properties in Section 4.4. The
application of the proposed algorithms to deconvolution and super-resolution of
interlaced video sequences will be addressed in Chapter 5.

4.2 Non-separable case

4.2.1 Problem statement

Similarly to the work in [Combettes et al., 2011], let us focus on the computation
of the proximity operator of a function F at x̃ ∈ RN , where F is defined as(

∀x ∈ RN
)

F (x) = f(x) + g(Ax), (4.1)

with f ∈ Γ0(RN), g ∈ Γ0(RM) and A ∈ RM×N is a linear operator. The problem is
thus equivalent to:

Find x̂ = proxF (x̃),

= argmin
x∈RN

f(x) + g(Ax) +
1

2
‖x− x̃‖2. (4.2)

Problem (4.2) has attracted a large interest and has been widely investigated
in the literature via deterministic and stochastic approaches. Among deterministic
methods, one can mention the dual parallel algorithm in [Combettes et al., 2011],
that converges strongly to the sought proximity operator, in the case of convex
proper lower-semicontinuous functions composed with bounded linear operators. Its
particular case is the Dykstra-like algorithm [Bauschke and Combettes, 2008] when
the problem reduces to evaluating the proximity operator of a sum of two convex
functions. It is also worth mentioning the work in [Fu et al., 2014] which proposes
a parallel splitting version of the alternating direction method of multipliers [Boyd
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et al., 2011].
An appealing idea in the context of optimization is to adopt a block coordinate
strategy [Chouzenoux et al., 2016], in such a way that two successive iterations deal
with different blocks of variables. The block selection rule can be either deterministic
(e.g., cyclic, quasi-cyclic, greedy) [Richtárik and Takác, 2011; Saha and Tewari, 2013]
or random [Jaggi et al., 2014; Combettes and Pesquet, 2015; Pesquet and Repetti,
2015; Onose et al., 2016]. Based on this idea, various stochastic algorithms have been
initially proposed in machine learning area, usually known as dual ascent algorithms.
One can mention the stochastic dual coordinate ascent algorithm [Shalev-Shwartz
and Zhang, 2013] where the functions are assumed to be Lipschitz continuous or
smooth with a Lipschitz gradient, and its variant [Qu et al., 2015] where the selec-
tion rule of the blocks is arbitrary and the smoothness of the objective function is
required. Another stochastic algorithm is the communication efficient distributed
dual coordinate ascent algorithm [Jaggi et al., 2014] which has been designed in
order to distribute block processing over multiple cores or remote machines. Nev-
ertheless, the convergence guaranties shown for these dual ascent algorithms only
concern decay properties on the dual of the objective function, the variables being
assumed to be scalar. In the deterministic case, an accelerated FISTA-like method
is proposed in [Chambolle and Pock, 2015], where the authors investigate a similar
problem. They provide convergence guaranties for primal iterates as well, when each
involved function deals with a variable belonging to R2.

4.2.2 Preconditioned dual forward-backward

As seen in the previous chapter, a solution to problem (4.2) can be obtained
using Algorithm 10, that relies on its dual formulation given by

Find ŷ = argmin
y∈RM

ϕ(−A>y + x̃) + g∗(y), (4.3)

where ϕ = f ∗� 1
2
‖ . ‖2 as defined in Section 3.3.8 with C = IdN , and assuming

that:

Assumption 4.1 ri
(
A(dom f)

)
∩ ri(dom g) 6= ∅.

We propose a preconditioned version of Algorithm 10 by applying Algorithm 6
to the dual problem (4.3). This consists in introducing a preconditioning matrix B
in the gradient step on the smooth function ϕ, and the proximal step on the convex
function g∗ as follows

For n = 0, 1, . . .⌊
ỹn = yn − γnB−1∇

(
ϕ ◦ (−A> ·+x̃)

)
(yn)

yn+1 = proxγ−1
n B,g∗(ỹn)

(4.4)
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where y0 ∈ RM , B ∈ RM×M is a symmetric positive definite matrix with B �
AA> and

(∀n ∈ N) γn ∈ [ε, 2− ε] with ε ∈]0, 1]. (4.5)

By setting

(∀n ∈ N) xn = proxf (x̃− A>yn), (4.6)

the gradient step in (4.4) can be formulated by means of xn using (4.6), whereas,
the proximity operator of g∗ can be rewritten in terms of g thanks to Moreau de-
composition formula (3.11). This leads to the following algorithm:

Algorithm 11 Preconditioned dual forward-backward algorithm

Initialization:

Let y0 ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃− A>yn)

ỹn = yn + γnB
−1Axn

yn+1 = ỹn − γnB−1proxγnB−1,g(γ
−1
n Bỹn)

end for

It can be shown that the sequences (xn)n∈N and (yn)n∈N generated by Algo-
rithm 11 converge to the solutions to the primal and dual problems x̂ and ŷ respec-
tively [Combettes et al., 2010]. Moreover the following relation is satisfied

x̂ = proxf (x̃− A>ŷ). (4.7)

4.2.3 Link with Dykstra algorithm

Let us introduce the variables

(∀n ∈ N) pn = proxγnB−1,g(γ
−1
n Bỹn), (4.8)

qn = −A>yn+1 + x̃− γnA>B−1pn,

= x̃− A>(γnB
−1Axn + yn), (4.9)

and let us notice that, if γn ≡ γ satisfies (4.5) , then the following recursive relation
is fulfilled:

qn+1 = qn + γA>B−1(pn − Axn+1). (4.10)

Algorithm 11 can then be rewritten as
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Algorithm 12 Dykstra-like formulation of Algorithm 11

Initialization:

Let y0 ∈ RM , x0 = proxf (x̃− A>y0) and q0 = x̃− A>(γB−1Ax0 + y0)

For every n ∈ N, γ ∈]0,+∞[

for n = 0, 1, . . . do

pn = proxγB−1,g(γ
−1Byn + Axn)

yn+1 = yn + γB−1(Axn − pn)

xn+1 = proxf (qn + γA>B−1pn)

qn+1 = qn + γA>B−1(pn − Axn+1)

end for

In particular, as pointed out in [Combettes et al., 2010], if A = IdN and
γB−1 = IdM we retrieve the same iterative structure as the Dykstra-like algorithm
which was proposed in [Bauschke and Combettes, 2008] and whose convergence was
proved for another initialization strategy.

4.3 Separable case

4.3.1 Problem statement

Algorithm 11 exhibits some limitations in the case when g in (4.1) is a separable
function, since one has to deal with the full linear operator A at each iteration,
which may be very costly when the size of A is large.
Now, we will derive new algorithms based on Algorithm 11 when g is a separable
function, namely:

(∀x ∈ RN) g(Ax) =
J∑
j=1

gj(Ajx), (4.11)

where, for every j ∈ {1, . . . , J}, Aj is a non null matrix in RMj×N with
J∑
j=1

Mj = M ,

gj ∈ Γ0(RMj), and

A =

A1
...
AJ

 . (4.12)
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Then, problem (4.2) becomes:

Find x̂ = proxF (x̃),

= argmin
x∈RN

f(x) +
J∑
j=1

gj(Ajx) +
1

2
‖x− x̃‖2. (4.13)

According to (4.12), the dual problem reads:

Find ŷ = argmin
y=(yj)16j6J∈RM

ϕ
(
x̃−

J∑
j=1

A>j y
j
)

+
J∑
j=1

g∗j (y
j). (4.14)

Note that the dual variable y is now decomposed into J blocks of variables
(yj)16j6J .

4.3.2 Dual block forward-backward algorithm

The application of the variable metric block-coordinate forward-backward Al-
gorithm 8 to the dual problem (6.4) yields the new Algorithm 13 where, at each
iteration n ∈ N, a block of index jn is activated and its associated dual variable yjnn
is updated by performing a proximal step on the function gjn , in the metric induced
by a preconditioning matrix Bjn satisfying (4.15). Note that the dual variable yjnn is
the only one to be processed at the n-th iteration, whereas the other dual variables
of index j 6= jn are kept intact during this iteration.

Algorithm 13 Dual block forward-backward algorithm

Initialization:

Let (yj0)16j6J ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃− A>yn)

jn ∈ {1, . . . , J}
ỹjnn = yjnn + γnB

−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB−1
jn

proxγnB−1
jn
,gjn

(
γ−1
n Bjn ỹ

jn
n

)
yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}

end for

The step size (γn)n∈N fulfils (4.5), and

(∀j ∈ {1, . . . , J}) Bj � OMj
with Bj � AjA

>
j . (4.15)
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The simplest (non-preconditioned) version of Algorithm 13 is obtained by choosing

(∀j ∈ {1, . . . , J}) Bj = βjIdMj
, (4.16)

where βj is the squared spectral norm of the associated linear operator Aj, i.e.,
βj = ‖Aj‖2.

Remark 4.2

1. The pair
(
x̂, (ŷj)16j6J

)
is a solution to the primal and dual problems if and

only if 

−
J∑
j=1

A>j ŷ
j ∈ ∂f(x̂) + x̂− x̃

⇔ x̂ = proxf

(
x̃−

J∑
j=1

A>j ŷ
j
)
,

(∀j ∈ {1, . . . , J}) ŷj ∈ ∂gj(Ajx̂).

(4.17)

(4.18)

When the functions (gj)16j6J are differentiable, the second optimality condi-
tion can be used to define a dual residue, which is exploited for the blocks
selection rule in some recent dual coordinate ascent strategies [Csiba et al.,
2015].

2. If relation (4.16) is satisfied, f = θ‖ · ‖1 with θ ∈ (0,+∞), and (∀j ∈
{1, . . . , J}) gj = ι{bj} with bj ∈ RMj , we recover an algorithm similar to the
one studied in [Lorenz et al., 2014].

4.3.3 Simplified form

In Algorithm 13, the update of the primal variable xn involves all the dual
variables (yjnn )16j6J and the whole matrix A>. This is clearly suboptimal since only
one block jn is being processed at iteration n ∈ N. To overcome this shortcoming,
we introduce a new variable (zn)n∈N ∈ RN that takes into account only the updated
dual variable.
To do so, let us define (zn)n∈N such that

zn = −A>yn = −
J∑
i=1

A>i y
i
n. (4.19)
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Then we have

zn+1 = −
J∑
i=1

A>i y
i
n+1 = −

J∑
i=1
i 6=jn

A>i y
i
n+1 − A>jny

jn
n+1,

= −
J∑
i=1

A>i y
i
n − A>jny

jn
n+1 + A>jny

jn
n ,

= zn − A>jn(yjnn+1 − yjnn ). (4.20)

Hence, Algorithm 13 becomes:

Algorithm 14 Simplified dual block forward-backward algorithm

Initialization:

Let (yj0)16j6J ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃+ zn)

jn ∈ {1, . . . , J}
ỹjnn = yjnn + γnB

−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB−1
jn

proxγnB−1
jn
,gjn

(γ−1
n Bjn ỹ

jn
n )

yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}
zn+1 = zn − A>jn(yjnn+1 − yjnn )

end for

with the initialization

z0 = −
J∑
j=1

A>j y
j
0. (4.21)

This simplified form of Algorithm 13 is more efficient in the sense that the updating
steps of both primal and dual variables involves only the selected block jn, thereby,
the simplified version reduces the complexity of the algorithm and its memory re-
quirements.

4.3.4 Particular case when f = 0

A special interesting case is obtained when f is the null function. Then, the
update of the primal variable in Algorithm 14 reduces to

xn = x̃+ zn. (4.22)
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Thus, by changing the initialization (4.21) to x0 = x̃ −
J∑
j=1

A>j y
j
0 and after some

simplifications, Algorithm 14 becomes:

Algorithm 15 Dual block forward-backward algorithm when f = 0

Initialization:

Let (yj0)16j6J ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

jn ∈ {1, . . . , J}
ỹjnn = yjnn + γnB

−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB−1
jn

proxγnB−1
jn
,gjn

(
γ−1
n Bjn ỹ

jn
n

)
yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}
xn+1 = xn − A>jn(yjnn+1 − yjnn )

end for

4.3.5 Link with the parallel dual forward-backward

Algorithm 14 can be compared with its parallel variant proposed in [Combettes
and Vũ, 2014b, Example 5.6] given by:

Algorithm 16 Parallel dual block forward-backward algorithm [Combettes and Vũ,
2014b]

Initialization:

Let (yj0)16j6J ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxf (x̃+ zn)

for j = 1, . . . , J do

ỹjn = yjn + γnB
−1
j Ajxn

yjn+1 = ỹjn − γnB−1
j proxγnB−1

j ,gj

(
γ−1
n Bj ỹ

j
n

)
end for

zn+1 = zn −
∑J

j=1A
>
j (yjn+1 − yjn)

end for

where z0 is defined according to (4.21) and the preconditioning matrices (Bj)16j6J
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are such that

∀j ∈ {1, . . . , J} Bj � βIdMj
, (4.23)

with β =
J∑
j=1

‖Aj‖2.

Some similarities existing between Algorithms 14 and 16 can be observed. How-
ever, in Algorithm 16, the dual variables (yjn)16j6J are updated in parallel and the
update of xn has to be performed from all these dual variables. Conversely, in Algo-
rithm 14, the dual variables are updated sequentially, and after any update of each
of them, the primal variable is also updated. When no parallel implementation is
used, this second solution can be expected to be more efficient with a faster conver-
gence speed.
Moreover, it should be noted that conditions (4.23) imposed on the matrices (Bj)16j6J

in Algorithm 16 appear to be more restrictive than those imposed in Algorithm 14
(see conditions (4.15)). Since the preconditioning matrices (Bj)16j6J usually play
an important role in the convergence speed, more freedom in their choice should
also be beneficial to the algorithm performance.

A variant of the above parallel algorithm dealing with the case when f = 0 can be
derived from the parallel block forward-backward algorithm proposed in [Combettes
et al., 2011] which, in the absence of error terms and relaxation factor, reads:

Algorithm 17 Parallel dual block forward-backward algorithm when f = 0 [Com-
bettes et al., 2011]

Initialization:

Let (yj0)16j6J ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

for j = 1, . . . , J do

ỹjn = yjn + γnB
−1
j Ajxn

yjn+1 = ỹjn − γnB−1
j proxγnB−1

j ,gj

(
γ−1
n Bj ỹ

j
n

)
end for

xn+1 = xn −
J∑
j=1

A>j (yjn+1 − yjn)

end for

where

∀j ∈ {1, . . . , J} Bj = βω−1
j IdMj

, with β = max
j∈{1,...,J}

‖Aj‖2,
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and (ωj)16j6J ∈]0, 1]J are such that
J∑
j=1

ωj = 1.

Algorithms 15 and 17 exhibit several similarities, however, as mentioned hereabove,
the main difference lies in the update rule of the dual variables. Another advantage of
Algorithm 15 is that it leads to less restrictive conditions on the matrices (Bj)16j6J .
Indeed, for Algorithm 17, we have

(∀j ∈ {1, . . . , J}) Bj � ωjBj = βIdMj
� ‖Aj‖2IdMj

� AjA
>
j .

4.3.6 Extension to a general metric

In practice, one may be interested in more general problems of the form [Chouzenoux
et al., 2014]:

Find x̂ = argmin
x∈RN

f(x) +
J∑
j=1

gj(Ajx) +
1

2
‖x− x̃‖2

C . (4.24)

where C ∈ RN×N is a symmetric strictly positive definite matrix. Algorithms can
be deduced from Algorithms 14 and 15 by simply replacing the Euclidean metric
of RN by the metric induced by C (while keeping the standard Euclidean metric
for the spaces RMj with j ∈ {1, . . . , J}). By noticing that in the new metric, the
adjoints of operators (Aj)16j6J are replaced by (C−1A>j )16j6J , Algorithm 14 yields:

Algorithm 18 Dual block forward-backward algorithm in a general metric

Initialization:

Let (yj0)16j6J ∈ RM

For every n ∈ N, γn ∈]0,+∞[

for n = 0, 1, . . . do

xn = proxC,f (x̃+ zn)

jn ∈ {1, . . . , J}
ỹjnn = yjnn + γnB

−1
jn
Ajnxn

yjnn+1 = ỹjnn − γnB−1
jn

proxγnB−1
jn
,gjn

(
γ−1
n Bjn ỹ

jn
n

)
yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}
zn+1 = zn − C−1A>jn(yjnn+1 − yjnn )

end for

where

z0 = −C−1

J∑
j=1

A>j y
j
0 and ∀j ∈ {1, . . . , J} Bj � AjC

−1A>j .
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Note that, when J = 1, we recover a preconditioned version of Algorithm 10.
Similarly, a new algorithm can be derived from Algorithm 15 for computing the
sought proximity operator in the metric induced by the matrix C when f = 0.
This is achieved by simply substituting the adjoints operators of (Aj)16j6J with
(C−1A>j )16j6J , when updating the primal variable xn.

4.4 Convergence analysis

We will need some additional assumptions in order to establish the convergence
of the preconditioned dual block forward-backward Algorithm 14:

Assumption 4.3

1. For every j ∈ {1, . . . , J}, the restriction of g∗j on its domain is continuous.

2. The sequence (jn)n∈N follows a quasi-cyclic rule, i.e., there exists K > J such
that, for every n ∈ N, {1, . . . , J} ⊂ {jn, . . . , jn+K−1}.

3. The functions f and (gj)16j6J are semi-algebraic.

The following result can then be established:

Proposition 4.4 Suppose that Assumptions 4.1 and 4.3 hold. Let (xn)n∈N and(
yn = (yjn)16j6J

)
n>1

be sequences generated by Algorithm 14. If (yn)n>1 is bounded,

then (xn)n∈N converges to the solution to the primal problem (4.13) and (yn)n>1

converges to a solution to the dual one (6.4).

Proof. We have seen that our algorithm amounts to applying a block-coordinate
forward-backward approach to the function:

Φ: (yj)16j6J 7→ ϕ
(
−

J∑
j=1

A>j y
j + x̃

)
+

J∑
j=1

g∗j (y
j). (4.25)

Since ‖·‖2 is a semi-algebraic function and semi-algebraicity is preserved under stan-
dard operations such as sum, infimum, conjugate, and inf-convolution, it can be de-
duced from Assumption 4.3.3 that Φ is semi-algebraic. It follows from [Chouzenoux
et al., 2016, Theorem 3.1] that the sequence

(
yn
)
n>1

generated by Algorithm 14
converges to a critical point ŷ of Φ. Since Φ is a convex function, such a critical
point is a (global) minimizer of Φ. By using now (4.6) and the continuity of the
proximity operator, it follows that the sequence (xn)n∈N converges to a solution x̂
satisfying (4.7). As already mentioned, x̂ is then the solution to (4.13).
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Remark 4.5

1. The boundedness of sequence (yn)n>1 is satisfied if Φ is a coercive function.
This happens, in particular, if all the functions (g∗j )16j6J are coercive, that
is when, for every j ∈ {1, . . . , J}, 0 ∈ int (dom gj) [Bauschke and Combettes,
2017, Proposition 14.16].

2. The quasi-cyclic rule (also sometimes called essentially cyclic rule) provides
much more flexibility than the cyclic one. In particular, some of the (blocks
of) variables may be activated more frequently than others, and the order in
which the variables are swept can be randomly chosen.

Some more accurate convergence rate results can also be provided. In particular,
we give below conditions for which the linear convergence of the proposed algorithm
is secured.

Proposition 4.6 Suppose that Assumptions 4.1 and 4.3 hold and that x̂ and ŷ are
the limits of the sequences (xn)n∈N and

(
yn = (yjn)16j6J

)
n>1

, respectively. assuming

that (yn)n∈N is bounded, there exist α ∈]0,+∞[ and λ ∈]0,+∞[ such that, for every
n > 1,

‖xn − x̂‖ 6 λ‖A‖n−α (4.26)

‖yn − ŷ‖ 6 λn−α. (4.27)

In addition, if one of the following conditions is met:

1. Φ, as defined by (4.25), is strongly convex,

2. f is Lipschitz differentiable and A is surjective1,

3. For every j ∈ {1, . . . , J}, gj is Lipschitz differentiable,

4. Φ is a piecewise polynomial function of degree 2,

5. f is a quadratic function and, for every j ∈ {1, . . . , J}, g∗j is a piecewise
polynomial function of degree 2,

then, there exist τ ∈ [0, 1[ and λ′ ∈]0,+∞[ such that, for every n > 1,

‖xn − x̂‖ 6 λ′‖A‖τn (4.28)

‖yn − ŷ‖ 6 λ′τn. (4.29)

1It is sometimes said that A is full row rank.
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Proof. As shown by [Chouzenoux et al., 2016, Theorem 3.2], the convergence rate
of the dual forward-backward algorithm depends on the  Lojasiewicz exponent of
function Φ defined by (4.25) at ŷ. Then, (4.27) corresponds to the worst case upper
bound. It then follows from (4.6), (4.7), and the nonexpansiveness of the proximity
operator [Bauschke and Combettes, 2017] that, for every n > 1,

‖xn − x̂‖ = ‖proxf (x̃− A>yn)− proxf (x̃− A>ŷ)‖
6 ‖A>(yn − ŷ)‖
6 ‖A‖‖yn − ŷ‖, (4.30)

which yields (4.26).
If Φ is a strongly convex function [Bolte et al., 2016] or Φ is a piecewise polyno-

mial function of degree 2 [Bolte et al., 2016], the  Lojasiewicz exponent of function
Φ is equal to 1/2. It then follows from [Chouzenoux et al., 2016, Theorem 3.2] that
(4.29) holds. The decay behavior of (xn)n>1 in (4.28) is then deduced as previously.
If f is Lipschitz differentiable, then f + 1

2
‖ · ‖2 is also Lipschitz differentiable, and

its conjugate ϕ is thus strongly convex [Bauschke and Combettes, 2017]. Since A is
surjective,

(yj)16j6J 7→ ϕ
(
−

J∑
j=1

A>j y
j + x̃

)
is strongly convex. The strong convexity of Φ is then guaranteed.
Similarly, if Condition 3 holds, then, for every j ∈ {1, . . . , J}, g∗j is strongly convex,
hence Φ.
Finally, if Condition 5 holds, f+ 1

2
‖·‖2 is a quadratic function and so is its conjugate

ϕ. Since functions (g∗j )16j6J are assumed to be piecewise polynomial functions of
degree 2, Φ is a piecewise polynomial function of degree 2.

4.5 Conclusion

We provided in this chapter several primal-dual splitting algorithms for comput-
ing the proximity operator of convex composite functions. These algorithms rely on
primal-dual formulation of the considered minimization problem, which gives the
possibility of handling numerous linear operators without having to invert them.
Moreover, the proposed algorithms benefit form a block-coordinate strategy that
allows to improve their flexibility and convergence speed. Hence, the proposed al-
gorithms are well-adapted to large-scale optimization problems, which have a large
spectrum of real-world applications. The convergence of our approach has been
theoretically analyzed and some experimental results in the context of video decon-
volution and super-resolution will be supplied in the next chapter.
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5.1 Introduction

We have introduced in Chapter 4 new algorithms for computing the proximity
operator of a sum of convex composite functions. We will now apply the proposed
algorithms to the problem of joint deconvolution and super-resolution of video se-
quences [Elad and Feuer, 1999; Farsiu et al., 2006; Héas et al., 2016]. More precisely,
we consider the problem of estimating an unknown progressive video from an inter-
laced one, in-which each frame is formed by merging two successive fields resulting
from odd (resp. even) horizontal lines of the first (resp. second) frame [Jensen
and Anastassiou, 1993]. The human visual system becomes more sensitive to in-
terlacing artefacts on new HD flat LCD and plasma screens [Keller et al., 2005].
Hence, the need for high quality progressive videos has become essential to meet
the actual customer’s demand [Keller, 2007]. For this purpose, we design a new
deconvolution and deinterlacing method that resorts to the dual block-coordinate
forward-backward method that has been proposed in Chapter 4.

This chapter is organised as follows: we present in Section 5.2 the underlying
degradation model and provide a formulation of its resolution through the mini-
mization of a convex cost function. Then, we propose in Section 5.3 a minimization
strategy to resolve it based on the dual block-coordinate forward backward algo-
rithm. The performance of our deconvolution and deinterlacing method is assessed
in terms of restoration quality and convergence speed in Section 5.4. Finally, some
conclusions are given in Section 5.5.

5.2 Observation model

Let us denote by x = (xt)16t6T ∈ RTN the original high-resolution video sequence
and y = (yt)16t6T ∈ RTQ the observed low-resolution sequence, with T the number
of time frames, and N (resp. Q) the number of pixels of each image in the HR (resp.
LR) sequence. The direct model relating x to y can be expressed by

(∀t ∈ {1, . . . , T}) yt = St (h ∗ xt) + wt, (5.1)

where St ∈ RQ×T represents a decimation operator, h ∈ RP corresponds to a con-
volution kernel accounting for spatial blur, and (wt)16t6T ∈ RTQ is a Gaussian
additive noise. In our context, the down-sampling St is a row decimation operator
where St = So for odd frames and St = Se for even frames. Note that, the number of
rows in the progressive video sequence (xt)16t6T is equal to twice that of the fields
in the interlaced video sequence (yt)16t6T , thereby we have N = 2Q.

An estimate of the original unknown sequence can be obtained by finding a
solution to the following penalized least squares problem:

minimize
x∈RTN

F (x) = Φ(x) + Ψ(x), (5.2)
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where Φ denotes the data fidelity term given by

(∀x ∈ RTN) Φ(x) =
1

2

T∑
t=1

‖St(h ∗ xt)− yt‖2, (5.3)

and Ψ is a regularization function introducing prior information on the unknown
video sequence, which is defined as

(∀x ∈ RTN) Ψ(x) =
T∑
t=1

ψt(xt) + ι[xmin,xmax]TN (x) +M(x). (5.4)

The indicator function ι[xmin,xmax]TN imposes a range [xmin, xmax] on each pixel value
of the images composing the video sequence, ψt is a spatial regularization term
that handles each image xt ∈ RN independently, while M accounts for a temporal
regularization term.

5.2.1 Spatial regularization

For every t ∈ {1, . . . , T}, ψt incorporates prior information on each image xt ∈
RN . We propose to employ in this chapter the semi-local total variation [Condat,
2014] defined by

(∀z ∈ RN) ψt(z) = η sltv(z),

=
∑
`∈Ω

χ
2 (Dz − V`Dz) . (5.5)

where η > 0 , D ∈ R2N×N is the concatenation of the horizontal and vertical gradient
operators:

D =

[
∇H

∇V

]
, with ∇H ∈ RN×N , ∇V ∈ RN×N , (5.6)

Ω = {1, . . . , 6} and (V`)`∈{1,...,6} ∈ R2N×2N represent shift operators as illustrated in

Figure 5.1. Moreover, for every q ∈ N∗, χq : RqL → R is given by

(
∀(z1, . . . , zq) ∈ (RL)q

)
χq(z1, . . . , zq) =

L∑
k=1

√
(z1,k)

2 + · · ·+ (zq,k)
2. (5.7)
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zn(V1z)n(V3z)n

(V2z)n

(V4z)n

(V5z)n

(V6z)n

Figure 5.1: Shift operators (V`)`∈{1,...,6} applied to a given pixel position n ∈
{1, . . . , N}.

Note that (5.5) can be rewritten as

(∀z ∈ RN) sltv(z) =
∑
`∈Ω

χ
2 (L`z) with, for every ` ∈ Ω, L` = (Id2N − V`)D.

(5.8)

5.2.2 Temporal regularization

The temporal regularization functionM in (5.4) is employed in order to take into
account temporal redundancies between successive frames. It is defined as follows

(∀x ∈ RTN) M(x) =
T∑
t=1

∑
`∈Vt

β`,t‖xt −M`→tx`‖1, (5.9)

where ‖ · ‖1 denotes the `1 norm, in addition, for every t and `, β`,t are positive
weights selected proportionally to the distance |t − `| between the frame index of
images xt and x`, the index set Vt defines the neighborhood of the current image
xt (i.e., ` ∈ Vt is such that |` − t| is small), and M`→t ∈ RN×N is a linear operator
modelling the motion fields between the current image xt and the neighboring image
x`. The matrices M`→t are related to some vertical and horizontal shift matrices
u`→t ∈ RN1×N2 and v`→t ∈ RN1×N2 respectively, with N1 (resp. N2) corresponding
to the height (resp. width) of the images (i.e., N1N2 = N), in such a way that,
(∀i ∈ {1, . . . , N1}) (∀j ∈ {1, . . . , N2}) :

M`→tx`(i, j) ≈ x` (i− u`→t(i, j) , j − v`→t(i, j)) . (5.10)

More precisely, we set

u`→t = u`→t + δu`→t and v`→t = v`→t + δv`→t, (5.11)
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where u`→t and v`→t represent the integer part of u`→t and v`→t respectively, and
δu`→t, δ

v
`→t are their decimal part. We propose to resort to the following bilinear in-

terpolation in order to approximate (5.10): (∀i ∈ {1, . . . , N1}) (∀j ∈ {1, . . . , N2})

M`→tx`(i, j) = (1− δu`→t(i, j)) (1− δv`→t(i, j))x` (i− u`→t(i, j) , j − v`→t(i, j))
+ (1− δu`→t(i, j)) δv`→t(i, j)x` (i− u`→t(i, j) , j − v`→t(i, j)− 1)

+ δu`→t(i, j) (1− δv`→t(i, j))x` (i− u`→t(i, j)− 1 , j − v`→t(i, j))
+ δu`→t(i, j)δ

v
`→t(i, j)x` (i− u`→t(i, j)− 1 , j − v`→t(i, j)− 1) . (5.12)

Thus

M`→t = D1,`→tM1,`→t +D2,`→tM2,`→t +D3,`→tM3,`→t +D4,`→tM4,`→t, (5.13)

where Dk,`→t ∈ RN×N with k ∈ {1, . . . , 4} are diagonal matrices such that, for every
y ∈ RN , for every i ∈ {1, . . . , N1} and for every j ∈ {1, . . . , N2}:

D1,`→ty(i, j) = (1− δu`→t(i, j)) (1− δv`→t(i, j)) y(i, j),

D2,`→ty(i, j) = (1− δu`→t(i, j)) δv`→t(i, j) y(i, j),

D3,`→ty(i, j) = δu`→t(i, j) (1− δv`→t(i, j)) y(i, j),

D4,`→ty(i, j) = δu`→t(i, j) δ
v
`→t(i, j) y(i, j),

and Mk,`→t ∈ {0, 1}N×N , k ∈ {1, . . . , 4}, are defined as

M1,`→ty(i, j) = y (i− u`→t(i, j) , j − v`→t(i, j)) ,
M2,`→ty(i, j) = y (i− u`→t(i, j) , j − v`→t(i, j)− 1) ,

M3,`→ty(i, j) = y (i− u`→t(i, j)− 1 , j − v`→t(i, j)) ,
M4,`→ty(i, j) = y (i− u`→t(i, j)− 1 , j − v`→t(i, j)− 1) .

The adjoint operator (Mk,`→t)
> is such that, for every n ∈ {1, . . . , N} and k ∈

{1, . . . , 4}, the n′-th component of
(

(Mk,`→t)
> y
)

with y ∈ RN , corresponds to the

sum of all the pixels located at n ∈ {1, . . . , N} in the image y to which the pixel
of index n′ has been displaced in the resulting image (Mk,`→ty). Thereby, for every
n′ ∈ {1, . . . , N} (

(Mk,`→t)
> (Dk,`→t)

>y
)
n′

=
∑

n∈Sk
n′,`→t

(Dk,`→t y)n , (5.14)

where, for every i ∈ {1, . . . , N1} and for every j ∈ {1, . . . , N2},

S1
n′,`→t = {n | i = i′ + u`→t(i, j) ; j = j′ + v`→t(i, j)},
S2
n′,`→t = {n | i = i′ + u`→t(i, j) ; j = j′ + v`→t(i, j) + 1},
S3
n′,`→t = {n | i = i′ + u`→t(i, j) + 1 ; j = j′ + v`→t(i, j)},
S4
n′,`→t = {n | i = i′ + u`→t(i, j) + 1; j = j′ + v`→t(i, j) + 1},
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and n (resp. n′) is the index of the pixel located at (i, j) (resp. (i′, j′)) in the
corresponding image.

According to (5.13), the norm of the motion compensation operator M`→t reads

‖M`→t‖ = ‖
4∑

k=1

Dk,`→tMk,`→t‖ 6
4∑

k=1

‖Dk,`→tMk,`→t‖. (5.15)

Note that, for every k ∈ {1, . . . , 4}, Mk,`→t is an N×N binary matrix. By definition,
for every n′ ∈ {1, . . . , N}, the n′-th column of this matrix has nonzero entries at the
row indices n ∈ Skn′,`→t. Therefore, since Dk,`→t is a diagonal matrix,

(Mk,`→t)
> (Dk,`→t)

>Dk,`→tMk,`→t

is also diagonal with n′-th diagonal entry equals∑
n∈Sk

n′,`→t

Dk,`→t(n, n)2.

Thus, ‖Dk,`→tMk,`→t‖ can be easily computed according to

‖Dk,`→tMk,`→t‖ = max
n′∈{1,...,N}


√√√√ ∑

n∈Sk
n′,`→t

Dk,`→t(n, n)2

 . (5.16)

5.3 Minimization strategy

A solution to Problem (5.2) can be obtained by making use of PALM Algo-
rithm 19 proposed in [Bolte et al., 2014] (see also Algorithm 8 for recent extensions)
which provides an asymptotically exact solution to (5.2). The images (xt)16t6T

are processed sequentially, where at each iteration, an image xt is updated with a
forward-backward iteration that consists of a gradient step on Φ with respect to xt,
and a proximal step on Ψt which represents the restriction of Ψ to the t-th image
defined as: for every x ∈ RTN ,

(∀z ∈ RN) Ψt(z|x) = η
∑
`∈Ω

χ
2 (L`z) + ι[xmin,xmax]N (z)

+
∑
`∈Vt

β`,t‖z −M`→tx`‖1 +
∑
`∈Vt

βt,`‖x` −Mt→`z‖1, (5.17)

thus, the number of terms in (5.17) is equal to

J = |Ω|+ 2 |Vt|+ 1, (5.18)
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where |Z| denotes the cardinality of a set Z. PALM algorithm reads:

Algorithm 19 PALM algorithm for solving Problem (5.2)

Initialization:

Let (x0
t )16t6T ∈ RTN

For every k ∈ N and t ∈ {1, . . . , T}, σkt ∈]0,+∞[

for k = 0, 1, . . . do

for t = 1, . . . , T do

x̌t,k =
(
xk+1

1 , . . . , xk+1
t−1 , x

k
t , x

k
t+1 . . . , x

k
T

)
x̃kt = xkt − σkt

(
∇xtΦ(x̌t,k)

)
xk+1
t = prox(σkt )−1IN ,Ψt(·|x̌t,k)

(
x̃kt
)

end for

end for

where ∇xtΦ denotes the gradient of Φ with respect to xt and

0 < σkt < 2θ−1
t ,

with θt the Lipschitz constant of ∇xtΦ (i.e., θt = ‖StH‖2 with H ∈ RN×N the
Hankel-block Hankel matrix form of the convolution kernel h). Since F is semi-
algebraic and Φ is Lipschitz differentiable, the sequence (xk)k∈N generated by PALM
algorithm is guaranteed to converge to a solution to Problem (5.2) [Bolte et al., 2014].

As the proximity operator of the function (5.17) does not have a closed form
expression and involves several linear operators, we resort to an inner iteration to
estimate it by means of Algorithms 14, 15, and 17. Note that, when implementing
Algorithm 14, function f in (4.13) is chosen equal to ι[xmin,xmax]N since it does not
involve any linear operator, whereas, in Algorithms 15 and 17, the latter function
is regarded as some of the gj functions, the corresponding Aj being the identity
matrix. Let us emphasize that PALM algorithm is robust to computational errors
in the proximal step [Chouzenoux et al., 2016], assuming that a sufficient decrease
condition is satisfied. In practice, a rough stopping criterion on the inner loop will
be used in order to avoid numerical instabilities.

5.4 Experimental results

5.4.1 Data-set Benchmark

We evaluate the performance of our method using a benchmark of four sequences
of images:
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• Two synthetic video sequences Foreman and Claire of size N = 352 × 288
(resp. N = 360 × 288) composed of T = 50 frames. These video sequences
were blurred with the horizontal convolution kernel shown in Figure 5.6 which
corresponds to a realistic model of the observed degradations in the context
of old television archives, then interlaced and finally corrupted with a white
Gaussian noise. The process results in a degraded video sequence with spatial
dimension Q = 352× 144 (resp. Q = 360× 144). The videos are sourced from
http://media.xiph.org/video/derf/.

• Two real interlaced sequences of size Q = 720 × 288 supplied by INA from
French broadcast archive programmes Au théâtre ce soir and Tachan. We
extract T = 50 fields from each sequence and apply our method to recover
progressive sharp video sequences with resolution N = 720× 576.
For the deconvolution task, we use spatial convolution kernels shown in Fig-
ure 5.9a and Figure 5.9b, that are obtained using blind identification methods
in [Krishnan et al., 2011] and [Abboud et al., 2014].

These sequences are provided as RGB videos. We apply our method on their lumi-
nance component only, which represents a grayscale version of the original images,
while the two chrominance components are processed with a median filter of size 3×3
on each component separately, in order to reduce the residual persistent noise. The
motion matrices (u`→t, v`→t) involved in the temporal regularization term are com-
puted from the luminance component of the degraded sequences using the method
described in [Liu et al., 2008], and then spatially interpolated to reach the final reso-
lution. The neighborhood Vt includes the previous and next frames of the image xt.
Moreover the set Ω involved in the semi-local total variation term is of cardinality
6, so that the number of terms in (5.17) is equal to J = 10 or 11, namely:

• (∀j ∈ {1, . . . , 6}) gj = χ
2 and (Aj)16j66 = (L`)`∈Ω,

• (∀j ∈ {7, 8}) gj = ‖ · ‖1 and Aj = IdN ,

• (∀j ∈ {9, 10}) gj = ‖ · ‖1 and (Aj)96j610 = (Mt→`)`∈Vt ,

• For Algorithm (15) or (17), g11 = ι[xmin,xmax]N and A11 = IdN .

5.4.2 Numerical performance

Restoration quality

Table 5.1 presents the performance of our restoration method in terms of SNR,
averaged SSIM [Wang et al., 2004], and MOVIE [Seshadrinathan and Bovik, 2010].
The latter is a video quality assessor, that takes into account both spatial and
temporal aspects in the quality measurement. Moreover, the results in terms of
SNR per frame are displayed in Figures 5.2a and 5.2b. The simulations are run
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(b) Claire sequence

Figure 5.2: SNR values per frame : Degraded (blue diamond), restored (red circle).

using 100 iterations of PALM algorithm, which appears to be sufficient to reach the
convergence of the method. Note that the values related to the degraded sequences
are evaluated on a spatially interpolated version of them, with a final resolution
equals to N . In addition, it should be mentioned that, for each test scenario, the
restoration results we obtained are similar in terms of visual quality, regardless of
the chosen optimization algorithm.

Sequences SNR (dB) SSIM MOVIE

Foreman
Degraded

Restored

25.54

28.95

0.78

0.90

4.34 ×10−4

3.73 ×10−4

Claire
Degraded

Restored

25.27

29.21

0.85

0.96

1.97 ×10−3

1.77 ×10−3

Table 5.1: Quality of our deinterlacing and deconvolution method.

Our reconstruction method achieves good quality results for all tested sequences.
This can also be assessed by visual inspection on Figures 5.7 and 5.8, and for the
real sequences on Figures 5.10 and 5.11, for which no ground truth is available. The
motion compensation terms play a central role in the restoration quality, especially
in the deinterlacing process. This is emphasized in the case of Foreman sequence,
where the motion between two successive images is fast, which leads to a rough
estimation of motion operators, at the price of a lower improvement of the restoration
quality, especially in terms of MOVIE.
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Convergence speed

Let us analyse the convergence speed of the proposed algorithms. First, in
order to investigate the impact of preconditioning strategies, we have carried out
a number of tests regarding the preconditioning matrices related to the involved
linear operators (Aj)16j6J . These evaluations are performed on the synthetic
sequence Foreman using Algorithm 19, combined with Algorithm 15. We work
with diagonal preconditioning matrices in order to achieve a good trade-off between
the convergence acceleration and the computation time.
The tested preconditioning matrices are

• ∀j ∈ {1, . . . , J} Bj = ‖Aj‖2 IdMj
,

and

• ∀j ∈ {1, . . . , J} Bj = Diag
(
|Aj| |A>j | 1Mj

)
,

(5.19)

(5.20)

where 1Mj
denotes the ones vector of RMj .

In the non-preconditioned case (5.19), we need to supply the norms of the operators
(Aj)16j6J . As far as motion compensation operators are concerned, this norm is
either approximated using (5.15), or precomputed using the power iterative method
in [Golub and Van Loan, 1996].

Figure 5.3a presents the average execution time needed for computing the prox-
imity operator of Ψt per image, by means of Algorithm 15. The latter is stopped
when the relative decrease of the criterion gets below 10−5 which appears sufficient
in practice to ensure the stability of the whole PALM algorithm. A Matlab 7 im-
plementation is used with an Intel(R) Xeon(R) E5-2670 CPU @ 2.3 GHz. We get
an acceleration of factor 2 using the preconditioning strategy (5.20) instead of the
approximated version of the non-preconditioned case (5.19), while the acceleration
is of factor 4/3 if the exact norms of the motion operators are used in (5.19). Note
however that the exact computation of these norms is not a realistic strategy when
processing long videos at standard or high resolution, since it calls upon an iter-
ative and costly method. Figure 5.3b shows the variation of the cost function
F (x)−F (x̂) with respect to the execution time, where F is defined in (5.2), and F (x̂)
represents the minimum of F obtained at the end of the corresponding simulations.
Figures 5.4a-5.4d illustrate the averaged time spent in computing the proximity op-
erator of Ψt for all the images composing the video sequences over 100 iterations
of PALM Algorithm 19, using either Algorithm 14, 15, or 17. The preconditioning
strategy (5.20) is used for Algorithms 14 and 15. Depending on the video sequence,
the best performances in terms of computation time are obtained either with Al-
gorithm 14 or Algorithm 15 with small differences between them. In addition, the
dual FB Algorithm 17 from [Combettes et al., 2011] is up to 18 times slower to
reach the stopping criterion. We have also compared the convergence speed of our
approach (using Algorithm 14 and preconditioning formula (5.20)) with that of the
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(a) Average execution time per frame for comput-
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using Algorithm 15 and Fore-

man sequence: preconditioning strategy (5.20) (red
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Figure 5.3: Foreman sequence : Convergence acceleration.

primal-dual algorithm from [Condat, 2013] for solving Problem (5.2). This evalu-
ation is realized using Algorithm 19 combined with Algorithm 14 on the synthetic
video Foreman. Figure 5.5 shows the variation of the cost function F (x) − F (x̂)
with respect to execution time for both methods. We observe that the proposed
algorithm reaches the sought solution about 4 times faster than the algorithm in
[Condat, 2013]. This emphasizes the gain provided by our algorithms in terms of
acceleration.
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(d) Au théâtre ce soir sequence.

Figure 5.4: Averaged execution time (in s.) per frame: Algorithm 14 (blue square),
Algorithm 15 (red diamond) and Algorithm 17 (green circle).
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Figure 5.5: Comparison between the proposed method and the one based on a primal-
dual algorithm from [Condat, 2013] in terms of execution time (s.): proposed method with
Algorithm 14 (solid thin blue), primal-dual-based method (dashed thick orange).
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Figure 5.6: Synthetic spatial convolution kernel, P = 53.
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Figure 5.7: Foreman sequence: degraded low resolution fields (top), restored high
resolution images (bottom).

Figure 5.8: Claire sequence: degraded low resolution fields (top), restored high resolu-
tion images (bottom).
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Figure 5.9: Spatial convolution kernels for real sequences provided by INA, P = 101.

Figure 5.10: Tachan sequence: degraded low resolution fields (top), restored high res-
olution images (bottom).
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Figure 5.11: Au théâtre ce soir sequence: degraded low resolution fields (top), restored
high resolution images (bottom).
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5.5 Conclusion

We have addressed in this chapter the challenging problem of joint deconvolution
and deinterlacing of blurred video sequences, which amounts to recover the missing
even/odd rows of each successive frames, while keeping a good image quality. For
this aim, we resorted to a penalized formulation of the problem, and used the block-
coordinate algorithm proposed in Chapter 4 to solve it. The proposed algorithm
has been compared to similar algorithms in the literature, and our simulation re-
sults show the good performance of the proposed method regarding both restoration
quality and convergence speed. We propose in the next chapter to extend the algo-
rithm proposed in Chapter 4 to a distributed framework, with the aim to handle the
computation of the sought proximity operator in a more efficient manner, by taking
advantage of the multi-cores architecture, available in recent computers systems.
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6.1 Introduction

We propose in this chapter a new distributed algorithm for computing the prox-
imity operator of a sum of convex functions involving linear operators. The pro-
posed algorithm extends the dual block preconditioned forward-backward algorithm
that was introduced in Chapter 4, to a distributed asynchronous framework [Boyd
et al., 2011; Pesquet and Repetti, 2015; Komodakis et al., 2015; Iutzeler et al., 2016;
Richtárik and Takác, 2016; Komodakis et al., 2016]. Each involved function is now
considered as locally related to a node of a connected hypergraph, where commu-
nications are allowed between neighboring nodes that share the same hyperedge.
Moreover, our method takes advantage of variable metric techniques that have been
shown to be efficient for accelerating the convergence speed of proximal approaches.
It also benefits from primal-dual splitting strategies strengths (in particular their
ability to handle a finite sum of convex functions without inverting none of the
involved linear operators).

The remainder of this chapter is organized as follows: we introduce in Section 6.2
our minimization problem and recall the centralized algorithm for computing the
sought proximity operator. In Section 6.3, we present a distributed extension of the
algorithm. Afterwards, Section 6.4 proposes a practical version of our asynchronous
algorithm and investigates its implementation on a distributed architecture. The
performance of the proposed algorithm are evaluated in Section 6.5 regarding the
acceleration with respect to the number of used computing units, and finally, some
conclusions are drawn in Section 6.6.

6.2 Minimization problem

Let us first recall the considered optimization problem. We are interested, in
this chapter, in computing the proximity operator of the following sum of functions
at a given point x̃ of RN :

(
∀x ∈ RN

)
G(x) =

J∑
j=1

gj(Ajx), (6.1)

where, for every j ∈ {1, . . . , J}, gj : RMj →]−∞,+∞] is a proper lower-semicontinuous
convex possibly nonsmooth function and Aj is a linear operator in RMj×N . In addi-
tion, it is assumed that

J⋂
j=1

dom (gj ◦ Aj) 6= ∅. (6.2)

Computing the proximity operator of G amounts to finding the solution to the
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following minimization problem:

Find x̂ = proxG(x̃)

= argmin
x∈RN

J∑
j=1

gj(Ajx) +
1

2
‖x− x̃‖2. (6.3)

A number of primal-dual proximal algorithms [Chambolle and Pock, 2010; Boţ and
Hendrich, 2013; Combettes and Pesquet, 2015; Boyd et al., 2011] can be applied to
solve Problem (6.3) by making use of its dual formulation given by:

Find ŷ = argmin
y=(yj)16j6J∈RM

1

2

∥∥∥x̃− J∑
j=1

A>j y
j
∥∥∥2

+
J∑
j=1

g∗j (y
j), (6.4)

where (g∗j )16j6J are the Fenchel-Legendre conjugate functions of (gj)16j6J .
Among existing efficient primal-dual approaches, one can mention the dual block
preconditioned forward-backward Algorithm 15, which benefits from the acceleration
provided by variable metric methods through the introduction of preconditioning
matrices. Moreover, convergence guaranties on both generated primal sequence
(xn)n∈N and dual sequences (yjn)n∈N∗ with j ∈ {1, . . . , J} have been established for
this algorithm in Section 4.4 under a quasi-cyclic rule on the block selection.

6.3 Distributed algorithm

Let us ground on Algorithm 15 in order to design a distributed (i.e., decen-
tralized) solution to Problem (6.3). This can be achieved by resorting to a global
consensus technique [Pustelnik et al., 2011; Boyd et al., 2011; Pesquet and Repetti,
2015; Komodakis and Pesquet, 2015] and rewriting the problem under the following
form:

Find x̂ = argmin
x=(xj)16j6J∈Λ

J∑
j=1

gj(Ajx
j) +

1

2

J∑
j=1

‖xj − x̃‖2
Ωj
, (6.5)

where (Ωj)16j6J are diagonal N×N matrices with positive diagonal elements and Λ
is the vector subspace of RNJ defined so as to introduce suitable coupling constraints
on the vectors (xj)16j6J . The most standard choice for such constraint set is

Λ =


x

1

...
xJ

 ∈ RNJ | x1 = . . . = xJ

 . (6.6)

One can indeed notice that, provided that

J∑
j=1

Ωj = IdN , (6.7)



88 Chapter 6. Distributed algorithm for computing proximity operators

the solution to Problem (6.5) yields the solution to Problem (6.3) when the variables
(xj)16j6J are all equal to the solution x̂ to Problem (6.3).

6.3.1 Local form of consensus

We propose instead to split the constraint set Λ into L local linear constraints
Λ`. For every ` ∈ {1, . . . , L}, each constraint set Λ` handles a nonempty subset V`

of {1, . . . , J} with cardinality κ` such that, for every x = [(x1)>, . . . , (xJ)>]> ∈ RNJ ,

x ∈ Λ ⇔ (∀` ∈ {1, . . . , L}) (xj)j∈V` ∈ Λ`. (6.8)

Examples of vector subspaces (Λ`)16`6L allowing this condition to be satisfied will be
discussed in Section 6.3.3. Each node j ∈ {1, . . . , J} is associated with function gj,
which is considered as local and processes its own private data. Moreover, each node
j is allowed to communicate with nodes that belong to the same set V`. The sets
(V`)16`6L can thus be viewed as the hyperedges of a hypergraph having J nodes. It is
worth noticing that the case of a graph topology is encompassed by this formulation
when setting for every ` ∈ {1, . . . , L} the cardinality of the set V` equals to κ` = 2.
Figure 6.1 shows an illustrative example, where the hypergraph is composed of J = 7
nodes associated with functions (gj)16j67 and L = 4 hyperedges represented by the
sets (V`)16`64 with cardinalities κ1 = 3, κ2 = 2, κ3 = 2, and κ4 = 3, respectively.
Node 4 belonging to the set V2 can communicate with node 5. Besides, node 3
belongs to V1 and V4, hence it is allowed to communicate with nodes {1, 2, 5, 7}.

1

2

4

3

5

6
7

V1

V2
V3

V4

Figure 6.1: Connected hypergraph of J = 7 nodes and L = 4 hyperedges.

Let us define, for every ` ∈ {1, . . . , L}, the matrix S` ∈ RNκ`×NJ associated with
constraint set Λ`, which extracts the vector (xj)j∈V` from the concatenated vector
x = [(x1)>, . . . , (xJ)>]> ∈ RNJ :

(xj)j∈V` = [(xi(`,1))>, . . . , (xi(`,κ`))>]> = S` x, (6.9)
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where i(`, 1), . . . , i(`, κ`) denote the elements of V` ordered in an increasing manner.
The transpose matrix of (S`)16`6L is such that, for every v` = (v`,k)16k6κ` ∈ RNκ` ,

x = [(x1)>, . . . , (xJ)>] = S>` v
`, (6.10)

where

xj =

{
v`,k if j = i(`, k) with k ∈ {1, . . . , κ`}
0 otherwise.

(6.11)

From a signal processing standpoint, the matrix S` can be viewed as a decimation
operator while its transpose is the associated interpolator.

The above definitions allow us to propose the following equivalent formulation
of Problem (6.5):

Find x̂ = argmin
x=(xj)16j6J∈RNJ

J∑
j=1

gj(Ajx
j) +

L∑
`=1

ιΛ`(S` x) +
1

2

J∑
j=1

‖xj − x̃‖2
Ωj
. (6.12)

The main difference between formulations (6.5) and (6.12) is the introduction of
the term

∑L
`=1 ιΛ`(S` x). This latter formulation makes the link with Problem (6.3)

more explicit. More precisely, in order to solve Problem (6.12) using Algorithm 15,
it is necessary to set:

• J ′ = J + L,

• (∀` ∈ {1, . . . , L}) MJ+` = Nκ`,

• M =
∑J ′

j=1Mj,

• (∀j ∈ {1, . . . , J}) Aj = [ 0 . . . 0︸ ︷︷ ︸
N(j−1)×

AjΩ
−1/2
j 0 . . . 0︸ ︷︷ ︸

N(J−j)×

],

• D = Diag (Ω
−1/2
1 , . . . ,Ω

−1/2
J ),

• (∀` ∈ {1, . . . , L}) gJ+` = ιΛ` and AJ+` = S`D.

Then, Problem (6.12) is recast as:

Find x̂ = Dx̂′ such that

x̂′ = argmin
x′∈RNJ

J ′∑
j=1

gj(Ajx
′) +

1

2
‖x′ − x̃′‖2, (6.13)

where x̃′ = [Ω
1/2
1 x̃>, . . . ,Ω

1/2
J x̃>]> ∈ RNJ .
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6.3.2 Derivation of the proposed algorithm

The application of Algorithm 15 for the resolution of Problem (6.13) yields:


Bj ∈ RMj×Mj with Bj � AjA

>
j , j ∈ {1, . . . , J ′}

ε ∈]0, 1]

(yj0)16j6J ′ ∈ RM

x′0 = x̃′ −
∑J ′

j=1 A
>
j y

j
0.

For n = 0, 1, . . .

γn ∈ [ε, 2− ε]
jn ∈ {1, . . . , J ′}
ỹjnn = yjnn + γn(Bjn)−1Ajnx

′
n

yjnn+1 = ỹjnn − γn(Bjn)−1proxγn(Bjn )−1,gjn

(
γ−1
n Bjn ỹ

jn
n

)
yjn+1 = yjn, j ∈ {1, . . . , J ′} \ {jn}
x′n+1 = x′n −A>jn(yjnn+1 − yjnn ).

(6.14)

Let us now show that the above algorithm can be simplified.
First, note that (∀j ∈ {1, . . . , J}) AjA

>
j = AjΩ

−1
j A>j and (∀` ∈ {1, . . . , L})

‖AJ+`‖ = ‖S`D‖ = maxj∈V` ‖Ω
−1/2
j ‖. It can also be observed that

(∀` ∈ {1, . . . , L}) (∀γ ∈ (0,+∞)) proxγ−1gJ+`
(γ−1·) = γ−1ΠΛ` , (6.15)

where ΠΛ` is the linear projector onto the vector space Λ`.
Hence, by setting

(∀` ∈ {1, . . . , L}) BJ+` = ϑ−1
` IdNκ` (6.16)

with ϑ` = minj∈V` ‖Ωj‖, and

(∀j ∈ {1, . . . , J}) V∗j =
{

(`, k)
∣∣ ` ∈ {1, . . . , L}, k ∈ {1, . . . , κ`} and i(`, k) = j

}
,

(6.17)



6.3. Distributed algorithm 91

Algorithm (6.14) can be re-expressed as

Bj ∈ RMj×Mj with Bj � AjΩ
−1
j A>j , j ∈ {1, . . . , J}

ϑ` = min
j∈V`
‖Ωj‖, ` ∈ {1, . . . , L}

ε ∈]0, 1]

z`0 ∈ RNκ` , ` ∈ {1, . . . , L}
yj0 ∈ RMj , xj0 = x̃− Ω−1

j

(
A>j y

j
0 +

∑
(`,k)∈V∗j

z`,k0

)
, j ∈ {1, . . . , J}.

For n = 0, 1, . . .

γn ∈ [ε, 2− ε]
jn ∈ {1, . . . , J + L}
If jn 6 J

ỹjnn = yjnn + γn(Bjn)−1Ajnx
jn
n

yjnn+1 = ỹjnn − γn(Bjn)−1proxγn(Bjn )−1,gjn

(
γ−1
n Bjn ỹ

jn
n

)
yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}
z`n+1 = z`n, ` ∈ {1, . . . , L}
xjnn+1 = xjnn − Ω−1

jn
A>jn(yjnn+1 − yjnn )

xjn+1 = xjn, j ∈ {1, . . . , J} \ {jn}
else

`n = jn − J
z̃`nn = z`nn + γnϑ`n(xjn)j∈V`n
z`nn+1 = z̃`nn − ΠΛ`n

(z̃`nn )

z`n+1 = z`n, ` ∈ {1, . . . , L} \ {`n}
yjn+1 = yjn, j ∈ {1, . . . , J}
For k = 1, . . . , κ`n⌊
x
i(`n,k)
n+1 = x

i(`n,k)
n − Ω−1

i(`n,k)(z
`n,k
n+1 − z`n,kn )

xjn+1 = xjn, j 6∈ V`n .

(6.18)

Hereabove, for more readibility, we have set, for every n ∈ N,

xn = [(x1
n)>, . . . , (xJn)>]> = Dx′n,

z`n = yJ+`
n ∈ RNκ` ,

z̃`n = ỹJ+`
n ∈ RNκ` .

Furthermore, it can be noticed that, for every n ∈ N such that jn = J + `n > J ,

ΠΛ`n
(z`nn+1) = ΠΛ`n

(
z̃`nn − ΠΛ`n

(z̃`nn )
)

= ΠΛ`n

(
z̃`nn
)
− ΠΛ`n

(
ΠΛ`n

(z̃`nn )
)

= 0. (6.19)

Since, for every ` ∈ {1, . . . , L} \ {`n},

z`n+1 = z`n, (6.20)
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Property (6.19) can be extended by induction to

(∀n ∈ N)(∀` ∈ {1, . . . , L}) ΠΛ`(z
`
n) = 0 (6.21)

by an appropriate initialization of the algorithm (e.g., by choosing (∀` ∈ {1, . . . , L})
z`0 = 0). Hence, for every n ∈ N such that jn = J + `n > J ,

ΠΛ`n
(z̃`n) = γnϑ`nΠΛ`n

(
(xjn)j∈V`n

)
, (6.22)

which implies that

z`nn+1 − z`nn = γnϑ`n
(
(xjn)j∈V`n − ΠΛ`n

(
(xjn)j∈V`n

))
. (6.23)

The second part of Algorithm (6.18) dealing with the case when jn > J can then be
reexpressed as described in lines 18 to 24 of Algorithm 20. It can be observed that,
in the resulting algorithm, we were able to drop the variables (z`n)16`6L, for every
n ∈ N.

Algorithm 20 Distributed Preconditioned Dual Forward-Backward

1: Initialization:
2: V` ≡ index set of nodes in hyperedge ` ∈ {1, . . . , L}
3: Bj ∈ RMj×Mj with Bj � AjΩ

−1
j A>j , j ∈ {1, . . . , J}

4: ϑ` = min
j∈V`
‖Ωj‖, ` ∈ {1, . . . , L}

5: ε ∈]0, 1]
6: yj0 ∈ RMj , xj0 = x̃− Ω−1

j A>j y
j
0, j ∈ {1, . . . , J}.

7: Main loop:
8: for n = 0, 1, . . . do
9: γn ∈ [ε, 2− ε]

10: jn ∈ {1, . . . , J + L}
11: if jn 6 J then Local optimization
12: ỹjnn = yjnn + γn(Bjn)−1Ajnx

jn
n

13: yjnn+1 = ỹjnn − γn(Bjn)−1proxγn(Bjn )−1,gjn

(
γ−1
n Bjn ỹ

jn
n

)
14: yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}
15: xjnn+1 = xjnn − Ω−1

jn
A>jn(yjnn+1 − yjnn )

16: xjn+1 = xjn, j ∈ {1, . . . , J} \ {jn}
17: else Projection
18: `n = jn − J
19: yjn+1 = yjn, j ∈ {1, . . . , J}
20: p`nn = ΠΛ`n

(
(xjn)j∈V`n

)
21: for k = 1, . . . , κ`n do

22: x
i(`n,k)
n+1 = x

i(`n,k)
n + γnϑ`nΩ−1

i(`n,k)(p
`n,k
n − xi(`n,k)

n )
23: end for
24: xjn+1 = xjn, j 6∈ V`n .
25: end if
26: end for
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One can notice that the body of Algorithm 20 is composed of two main parts:

• First a local optimization part (lines 12 to 16) which is reminiscent of the
Dual Block Forward-Backward algorithm where, at each iteration, a block jn
is selected and the associated dual and primal variables yjnn (line 13) and xjnn
(line 15) are updated, respectively. Note that the main difference between the
proposed algorithm and Algorithm 15 lies in the fact that each block jn is now
associated with a local primal variable xjnn whereas, in Algorithm 15, xn was
a shared variable.

• The second part of Algorithm 20 is a projection step (lines 18 to 24) in which
a set V`n is selected and all the variables (xjn)jn∈V`n are updated by means of
a projection operating over the selected set V`n .

In Algorithm 20, all computation steps only involve local variables, which is ben-
eficial for parallel processing. Moreover, a high flexibility is allowed by adopting
a quasi-cyclic rule for choosing the indices jn and `n at each iteration n. The
distributed Algorithm 20 inherits all the advantages of primal-dual methods, in par-
ticular it requires no inversion of the matrices (Aj)16j6J , which is of main interest
when these matrices do not have a simple structure and are of very large size. Note
that the proposed approach is quite different from the ones developed in [Pesquet
and Repetti, 2015; Richtárik and Takác, 2016] since we do not assume a random
sweeping rule for the block index selection, and our convergence analysis does not
rely on nonexpansiveness properties of the involved operators.

6.3.3 Consensus choice

Generic case

When the operators (Aj)16j6J have no specific structure, a natural choice for the
vector spaces (Λ`)16`6L is to adopt a form similar to that of Λ in (6.6):

(∀` ∈ {1, . . . , L}) Λ` =


 v

`,1

...
v`,κ`

 ∈ RNκ` | v`,1 = . . . = v`,κ`

 . (6.24)

Note that (6.8) and (6.24) imply that the hypergraph induced by the hyperedges
(V`)16`6L is connected (Figure 6.1 is an example of such a connected hypergraph).
In this context, the connectivity of the hypergraph is essential in order to allow the
global consensus solution to be reached.

For every ` ∈ {1, . . . , L}, the projection onto Λ` is then simply expressed as(
∀(v`,k)16k6κ` ∈ RNκ`

)
ΠΛ`

(
(v`,k)16k6κ`

)
= [(v`)>, . . . , (v`)>]>, (6.25)
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where

v` = mean
(
(v`,k)16k6κ`

)
(6.26)

and mean(·) designates the arithmetic mean operation (i.e., mean
(
(v`,k)16k6κ`

)
=

κ−1
`

∑κ`
k=1 v

`,k).

In addition, Condition (6.7) is met by simply choosing (∀j ∈ {1, . . . , J}) Ωj =

ωjIdN , where (ωj)16j6J ∈]0, 1]J are such that
∑J

j=1 ωj = 1

These simplification lead to the following modifications of lines 20-23 in Algo-
rithm 20:

x`nn = mean
(
(xjn)j∈V`n

)
For k = 1, . . . , κ`n⌊
x
i(`n,k)
n+1 = x

i(`n,k)
n + γnϑ`nω

−1
i(`n,k)(x

`n
n − x

i(`n,k)
n ).

(6.27)

Dimension reduction

Under its previous form, Algorithm 20 requires each node of the hypergraph to
handle a local copy of several variables. In particular, for the j-th node, a vector xjn
of dimension N has to be stored, which may be prohibitive for highly dimensional
problems. However, very often in image processing problems, the operator (Aj)16j6J

has a sparse block structure, which makes it possible to alleviate this problem. More
specifically, it will be assumed subsequently that

(∀j ∈ {1, . . . , J})
(
∀xj = ([xj]t)16t6T ∈ RN

)
Ajx

j =
∑
t∈Tj

Aj,t[xj]t, (6.28)

where, for every j ∈ {1, . . . , J}, [xj]t is a vector corresponding to a block of data of
dimension L, T is the overall number of blocks (i.e., N = TL), and Tj ⊂ {1, . . . , T}
defines the reduced index subset of the components of vector xj acting on the oper-
ator Aj. In the above equation, (Aj,t)t∈Tj are the associated reduced-size matrices
of dimensions Mj × L. Similarly to the way xj has been block-decomposed, let us
split the diagonal matrix Ωj as

Ωj = Diag (Ωj,1, . . . ,Ωj,T ) (6.29)

where, for every t ∈ {1, . . . , T}, Ωj,t is a diagonal matrix of size L × L. It then
obviously holds that AjΩ

−1
j A>j =

∑
t∈Tj Aj,tΩ

−1
j,tA>j,t. To avoid degenerate cases, we

will subsequently assume that (∀j ∈ {1, . . . , J}) Tj 6= ∅ and
J⋃
j=1

Tj = {1, . . . , T}.

In our distributed formulation, the specific form of the operators (Aj)16j6J sug-
gests us to set the vector subspaces (Λ`)16`6L so as to reach the consensus only for
the components ([xj]t)16j6J,t∈Tj of vectors (xj)16j6J . This means that the space Λ
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(resp. Λ` with ` ∈ {1, . . . , L}) is defined as

(xj)16j6J ∈ Λ ⇔ (∀(j, j′) ∈ {1, . . . , J}2)(∀t ∈ Tj ∩ Tj′) [xj]t = [xj
′
]t

(6.30)

(resp. (xj)j∈V` ∈ Λ` ⇔ (∀(j, j′) ∈ V2
`)(∀t ∈ Tj ∩ Tj′) [xj]t = [xj

′
]t).

It can be noticed that, although the hypergraph must still be built so that (6.8)
holds, Λ is no longer given by (6.6), since the components ([xj]t)16j6J,t6∈Tj are un-
constrained. The main interest of this choice is that Problem (6.5) then decouples
into two optimization problems:

• the minimization of the function

([xj]t)16j6J,t∈Tj 7→
J∑
j=1

gj

(∑
t∈Tj

Aj,t[xj]t
)

+
1

2

J∑
j=1

∑
t∈Tj

‖[xj]t − [x̃]t‖2
Ωj,t

(6.31)

subject to Constraint (6.30);

• the unconstrained minimization of the function

([xj]t)16j6J,t6∈Tj 7→
J∑
j=1

∑
t6∈Tj

‖[xj]t − [x̃]t‖2
Ωj,t

. (6.32)

Since the second problem is trivial, the variables ([xjn]t)16j6J,t6∈Tj generated at each
iteration n ∈ N of Algorithm 20 are useless and, consequently, they can be discarded.
By doing so, only |Tj| vectors1 ([xjn]t)t∈Tj of dimension L need to be stored at the
j-th node (instead of T vectors of this size) and the number of computations to be
performed during the projection step are also diminished.

This yields Algorithm 21 where, in the synchronization step, averaging operations
corresponding to the projection onto Λ`n have been substituted for lines 20-23 in
Algorithm 20. The notation

(∀t ∈ {1, . . . , T}) T∗t =
{
j ∈ {1, . . . , J}

∣∣ t ∈ Tj
}
, (6.33)

has been introduced for the computation of the averages. In particular, in line 27 of
Algorithm 21, if V` ∩ T∗t is a singleton, which means that the t-th block component
of the vector x appears only once in the expression of gj(Ajx) for indices j in the
`n-th hyperedge, then the averaging reduces to setting [xjn+1]t = [xjn]t. It is also
worthwhile to note that, when (∀j ∈ {1, . . . , J}) Tj = {1, . . . , T}, the consensus
solution described in Section 6.3.3 is recovered. It must be however pointed out
that, in general, to have the equivalence between the minimization of (6.31) subject

1|S| is the cardinality of a set S.
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to Constraint (6.30) and the resolution of Problem (6.3), the following condition has
to be substituted for (6.7):

(∀t ∈ {1, . . . , T})
∑
j∈T∗t

Ωj,t = IdL. (6.34)

In Algorithm 21, this has been simply achieved by setting (∀j ∈ {1, . . . , J}) (∀t ∈ Tj)
Ωj,t = ωj,tIdL, where (ωj,t)16j6J,t∈Tj are positive real such that (∀t ∈ {1, . . . , T})∑

j∈T∗t
ωj,t = 1. In turn, the notation (Ωj,t)16j6J,t6∈Tj is no longer used in this algo-

rithm.

Although Algorithm 21 can give rise to a variety of distributed implementations,
we will focus on a simpler instance of this algorithm in the remainder of this chapter.

6.4 A useful special case

Let us consider the case when C 6 J processing units are available. In the
remainder of the chapter, to simplify our presentation, we will restrict our attention
to a case of practical interest for the video application described in Section 6.5 by
making the following assumptions.

Assumption 6.1

1. The hyperedges (V`)16`6C form a partition of {1, . . . , J}.

2. For every ` ∈ {1, . . . , C}, let TV` =
⋃
j∈V` Tj.

(a) For every (`, `′) ∈ {1, . . . , C}2, TV` ∩ TV`′ = ∅ if |`− `′| > 1.

(b) For every ` ∈ {2, . . . , C − 1}, TV`−1
∩ TV` ∩ TV`+1

= ∅.

An example of hypergraph satisfying Assumption 6.11 is displayed in Figure 6.2.
For every ` ∈ {1, . . . , C}, TV` is the set of the block indices t of the components [xj]t
where j is any node in V`. According to Assumption 6.1-2a, these indices may only
be common to hyperedges having preceding or following index values (i.e., `− 1 or
`+ 1). Finally, Assumption 6.1-2b means that no overlap is allowed between block
indices shared with the preceding hyperedge and the following one.
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Algorithm 21 Distributed Preconditioned Dual Forward-Backward after Dimen-
sion Reduction

1: Initialization:
2: V` ≡ index set of nodes in hyperedge ` ∈ {1, . . . , L}
3: Tj ≡ index set of blocks used at node j ∈ {1, . . . , J}
4: T∗t ≡ index set of nodes using block t ∈ {1, . . . , T}
5: {ωj,t | 1 6 j 6 J, t ∈ Tj} ⊂]0, 1] such that (∀t ∈ {1, . . . , T})

∑
j∈T∗t

ωj,t = 1

6: Bj ∈ RMj×Mj with Bj �
∑
t∈Tj

ω−1
j,t Aj,tA>j,t, j ∈ {1, . . . , J}

7: ϑ` = min
j∈V`,t∈Tj

ωj,t, ` ∈ {1, . . . , L}

8: ε ∈]0, 1]
9: yj0 ∈ RMj , [xj0]t = [x̃]t − ω−1

j,t A>j,ty
j
0, j ∈ {1, . . . , J}, t ∈ Tj.

10: Main loop:
11: for n = 0, 1, . . . do
12: γn ∈ [ε, 2− ε]
13: jn ∈ {1, . . . , J + L}
14: if jn 6 J then Local optimization

15: ỹjnn = yjnn + γnB
−1
jn

∑
t∈Tjn

Ajn,t[xjnn ]t

16: yjnn+1 = ỹjnn − γnB−1
jn

proxγnB−1
jn
,gjn

(
γ−1
n Bjn ỹ

jn
n

)
17: yjn+1 = yjn, j ∈ {1, . . . , J} \ {jn}
18: for t ∈ Tjn do
19: [xjnn+1]t = [xjnn ]t − ω−1

jn,t
A>jn,t(y

jn
n+1 − yjnn )

20: end for
21: ([xjn+1]t)t∈Tj = ([xjn]t)t∈Tj , j ∈ {1, . . . , J} \ {jn}
22: else Projection
23: `n = jn − J
24: yjn+1 = yjn, j ∈ {1, . . . , J}
25: for j ∈ V`n do
26: for t ∈ Tj do
27: [xjn+1]t = [xjn]t + γnϑ`nω

−1
j,t

(
mean

(
([xj

′
n ]t)j′∈V`n∩T∗t

)
− [xjn]t

)
28: end for
29: end for
30: ([xjn+1]t)t∈Tj = ([xjn]t)t∈Tj , j 6∈ V`n .
31: end if
32: end for
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6.4.1 Form of the algorithm

An interesting instance of Algorithm 21 is then obtained by setting L = C + 1
and by assuming that each hyperedge V` with ` ∈ {1, . . . , C} corresponds to a
given computing unit where the computations are locally synchronized. In addition,
hyperedge VL is set to {1, . . . , J} in order to model global synchronization steps
consisting of an averaging over all the available nodes. At each iteration n, only a
subset Jn,` of dual variable indices is activated within the `-th hyperedge and their
update is followed by either a possible local synchronization or a global one.

Algorithm 22 summarizes the proposed approach. For simplicity, the index L has
been dropped in variable ϑL. Note that, if the local synchronization step is omitted
(by setting [xjn+1]t = [xjn+1/2]t in line 27), the algorithm still makes sense since it
can be easily shown that it actually corresponds to a rewriting of Algorithm 21 in
the case when L = 1 and V1 = {1, . . . , J}. Unlikely, the global synchronization
is mandatory although it has not to be performed at each iteration but only in a
quasi-cyclic manner.

It should be emphasized that even in the case when all the dual variables are
updated iteratively (i.e., (∀` ∈ {1, . . . , L}) (∀n ∈ N) Jn,` = V`), Algorithm 22
exhibits a different structure from the one of the parallel dual forward-backward
algorithm in [Combettes et al., 2011].

1

2

4

3

5

6 7

V1

V2

V3

V4

V5

Figure 6.2: Hypergraph of J = 7 nodes, C = 4 computing units and L = 5
hyperedges.

6.4.2 Distributed implementation

Let us now look more precisely at the implementation of Algorithm 22 on a
distributed architecture having C ∈ N∗ computing units, each computing unit being
indexed by an integer c ∈ {1, . . . , C}. Figure 6.3 shows an illustrative example of
C = 4 computing units based on the hypergraph defined in Figure 6.2.
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Algorithm 22 Special case of distributed Preconditioned Dual Forward-Backward

1: Initialization:
2: V` ≡ index set of nodes associated with computing unit ` ∈ {1, . . . , C}
3: Tj ≡ index set of blocks used at node j ∈ {1, . . . , J}
4: T∗t ≡ index set of nodes using block t ∈ {1, . . . , T}
5: {ωj,t | 1 6 j 6 J, t ∈ Tj} ⊂]0, 1] such that (∀t ∈ {1, . . . , T})

∑
j∈T∗t

ωj,t = 1

6: Bj ∈ RMj×Mj with Bj �
∑
t∈Tj

ω−1
j,t Aj,tA

>
j,t, j ∈ {1, . . . , J}

7: ϑ = min
16j6J,16t6T

ωj,t, ϑ` = min
j∈V`,t∈Tj

ωj,t, ` ∈ {1, . . . , C}

8: ε ∈]0, 1]
9: yj0 ∈ RMj , [xj0]t = [x̃]t − ω−1

j,t A
>
j,ty

j
0, j ∈ {1, . . . , J}, t ∈ Tj .

10: for n = 0, 1, . . . do Main loop
11: for ` = 1, . . . , C do
12: Jn,` ⊂ V`
13: for j ∈ Jn,` do Local optimization

14: ỹjn = yjn + γnB
−1
j

∑
t∈Tj

Aj,t[xjn]t

15: yjn+1 = ỹjn − γnB−1
j proxγnB−1

j ,gj

(
γ−1
n Bj ỹ

j
n

)
16: for t ∈ Tj do

17: [xjn+1/2]t = [xjn]t − ω−1
j,t A>j,t(y

j
n+1 − y

j
n)

18: end for
19: end for
20: for j ∈ V` \ Jn,` do

21: yjn+1 = yjn

22: ([xjn+1/2]t)t∈Tj = ([xjn]t)t∈Tj
23: end for
24: if local synchronization is requested then
25: for j ∈ V` do
26: for t ∈ Tj do

27: [xjn+1]t = [xjn+1/2]t+γnϑ`ω
−1
j,t

(
mean

(
([xj

′

n+1/2]t)j′∈V`∩T∗t
)
−[xjn+1/2]t

)
28: end for
29: end for
30: end if
31: end for
32: if global synchronization is requested then
33: for t = 1, . . . , T do [xn]t = mean

(
([xjn+1/2]t)j∈T∗t

)
;

34: for j = 1, . . . , J do
35: for t ∈ Tj do

36: [xjn+1]t = [xjn+1/2]t + γnϑω
−1
j,t ([xn]t − [xjn+1/2]t)

37: end for
38: end for
39: end if
40: end for
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c = 1 c = 2 c = 3 c = 4

1 2 3 4 5 6 7

Figure 6.3: Partitioning of J = 7 nodes and L = 5 hyperedge on C = 4 computing
units.

As we have seen, each computing unit c ∈ {1, . . . , C} handles κc terms corre-
sponding to the nodes in Vc of the hypergraph, and processes the functions (gj)j∈Vc
associated with these nodes. Furthermore, a global synchronization step needs to be
performed. This task could be assigned to one of the computing unit, say the first
one, as modelled in Figure 6.4 by adding a fictitious term corresponding to hyper-
edge VC+1. This would however lead to a centralized scheme where the computing
load between the different units could be unbalanced.

c = 1 c = 2 c = 3 c = 4

1 2 3 4 5 6 7V5

Figure 6.4: Partitioning of J = 7 nodes and L = 1 hyperedge on C = 4 computing
systems.

A better strategy consists of distributing the operations performed on line 33
of Algorithm 22 over the different computing units. For this purpose, let us first
note that at iteration n, the c-th computing unit only needs the block components
([xn]t)t∈TVc

. In addition, because of Assumption 6.1-2a, some of these variables may
be shared with the computing units c−1 (if c 6= 1) and c+1 (if c 6= C), where part of
the variables [xjn+1/2]t necessary to compute the averages are locally available. As a
consequence of Assumption 6.1-2b, no other variables than those available in either
TVc−1 ∩TVc or TVc ∩TVc+1 are necessary . For example, if c 6= 1 and t ∈ TVc−1 ∩TVc ,
the averaging operation reads

[xn]t =
1

|T∗t |
∑
j∈T∗t

[xjn+1/2]t

=
1

|T∗t |
(
[sn,c−1]t + [sn,c]t

)
, (6.35)

where
[sn,c−1]t =

∑
j∈Vc−1∩T∗t

[xjn+1/2]t, (6.36)
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and [sn,c]t is similarly defined. Since the variables ([xjn+1/2]t)j∈Vc−1∩T∗t are not avail-
able at unit c, the latter summation has to be performed by unit c−1 and the result
has to be transmitted to unit c. This one will then be able to compute [xn]t, so as to
update variables ([xjn+1]t)j∈Vc∩T∗t . Besides, [xn]t will be sent to unit c − 1, which in

turn will update their variables ([xjn+1]t)j∈Vc−1∩T∗t . A similar synchronization process
can be followed for blocks with indices t ∈ TVc ∩ TVc+1 with c 6= C. Finally, for the
block indices t in TVc which do not belong to TVc−1 or TVc+1 ,

[xn]t = mean
(
([xjn+1/2]t)j∈Vc∩T∗t

)
=

[sn,c]t
|T∗t |

, (6.37)

as we have then |Vc∩T∗t | = |T∗t |. This means that locally averaging is only required
for these blocks. In Figures 6.5 and 6.6, the synchronization workflow is summarized,
while, in Algorithm 23, a more detailed account of the whole process is given.

Vc−1 Vc Vc+1

i(c− 1, 1) i(c− 1, κc−1) i(c, 1) i(c, κc) i(c+ 1, 1) i(c+ 1, κc+1). . . . . .. . .

[xi(c−1,1)]t [xi(c−1,κc−1)]t [xi(c,1)]t [xi(c,κc)]t [xi(c+1,1)]t [xi(c+1,κc+1)]t

Transmit ([sn,c−1]t)t∈TVc−1
∩TVc

Transmit ([sn,c]t)t∈TVc∩TVc+1

Figure 6.5: Global synchronisation process: Transmission of local summations to the
next computing unit.

Vc−1 Vc Vc+1

i(c− 1, 1) i(c− 1, κc−1) i(c, 1) i(c, κc) i(c+ 1, 1) i(c+ 1, κc+1). . . . . .. . .

[xi(c−1,1)]t [xi(c−1,κc−1)]t [xi(1,c)]t [xi(c,κc)]t [xi(c+1,1)]t [xi(c+1,κc+1)]t

Transmit ([xn]t)t∈TVc−1
∩TVc

Transmit ([xn]t)t∈TVc∩TVc+1

Figure 6.6: Global synchronisation process: Transmission of averaged blocks to the
previous computing unit.

Remark 6.2

1. It must be emphasized that, in order to facilitate the derivation of our algo-
rithm, a common iteration variable n has been used for each computing unit.
However, units have the ability to process data at their own speed. In par-
ticular, each unit may perform a different number of local synchronizations
before a global one is made. In this sense, our algorithm is asynchronous. To
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understand why such behavior is allowed, it suffices to note that if no global
synchronization arises and Jn,c = ∅, (xjn+1)j∈Vc = (xjn)j∈Vc . This means that
such a void iteration can be used to model a time when the c-th computing
unit is idle while others are locally updating their variables.

2. When the c-th computing unit will operate a global synchronization, it will
suspend its activities until it receives data from units c−1 (line 33) and/or c+1
(line 37), which happens only when these units also are globally synchronizing
their variables. To ensure low latencies, global synchronization steps however
have to be scheduled (quasi-)periodically for each computing unit based on
their processing speeds (faster ones should schedule less frequent synchroniza-
tions than slower ones). Alternatively, when one unit decides to perform a
global synchronization, it can broadcast a message to the others to warn them
to do the same.

3. Other forms of local consensus could be thought of. For example, another
choice would consist in setting L = 2C − 1 and (∀c ∈ {1, . . . , C − 1}) VC+c =
Vc∪Vc+1. Then, each node c ∈ {1, . . . , C−1} could be responsible for driving
the synchronization with its neighbor of index c+ 1. It appears however more
difficult, in this context, to devise an efficient procedure for avoiding deadlocks.
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Algorithm 23 Special case of distributed PDFB for the c-th computing unit

1: Setting of global constants:
2: Tj ≡ index set of blocks used at node j ∈ {1, . . . , J}
3: T∗t ≡ index set of nodes using block t ∈ {1, . . . , T}
4: {ωj,t | 1 6 j 6 J, t ∈ Tj} ⊂]0, 1] such that (∀t ∈ {1, . . . , T})

∑
j∈T∗

t

ωj,t = 1

5: ϑ = min
16j6J,16t6T

ωj,t, ε ∈]0, 1], (γn)n∈N sequence of [ε, 2− ε]
6: Initialization:
7: Vc ≡ index set of nodes associated with computing unit c
8: TVc ≡ set of block indices used in Vc (with the convention TV0 = TVC+1

= ∅)

9: Bj ∈ RMj×Mj with Bj �
∑
t∈Tj

ω−1j,t Aj,tA
>
j,t, j ∈ Vc

10: ϑc = min
j∈Vc,t∈Tj

ωj,t, ` ∈ {1, . . . , C}

11: yj0 ∈ RMj , [xj0]t = [x̃]t − ω−1j,t A
>
j,ty

j
0, j ∈ Vc, t ∈ Tj .

12: for n = 0, 1, . . . do Main loop
13: Jn,c ⊂ Vc
14: for j ∈ Jn,c do

15: ỹjn = yjn + γnB
−1
j

∑
t∈Tj

Aj,t[xjn]t

16: yjn+1 = ỹjn − γnB−1j proxγnB−1
j ,gj

(
γ−1n Bj ỹ

j
n

)
17: for t ∈ Tj do [xjn+1/2]t = [xjn]t − ω−1j,t A>j,t(y

j
n+1 − yjn) ;

18: end for
19: for j ∈ Vc \ Jn,c do

20: yjn+1 = yjn
21: ([xjn+1/2]t)t∈Tj = ([xjn]t)t∈Tj

22: end for
23: for t ∈ TVc

do [sn,c]t =
∑

j∈Vc∩T∗
t

[xjn+1/2]t ;

24: if synchronization is local then
25: for j ∈ Vc do
26: for t ∈ Tj do

27: [xjn+1]t = [xjn+1/2]t + γnϑc ω
−1
j,t

( [sn,c]t
|Vc ∩ T∗t |

− [xjn+1/2]t

)
28: end for
29: end for
30: else Global synchronization
31: if c 6= C then send ([sn,c]t)t∈TVc∩TVc+1

to unit c+ 1 ;

32: if c 6= 1 then
33: wait for receiving ([sn,c−1]t)t∈TVc−1

∩TVc
from unit c− 1

34: for t ∈ TVc−1 ∩ TVc do [xn]t =
1

|T∗t |
(
[sn,c−1]t + [sn,c]t

)
;

35: send ([xn]t)t∈TVc−1
∩TVc

to unit c− 1

36: end if
37: if c 6= C then wait for receiving ([xn]t)t∈TVc∩TVc+1

from unit c+ 1 ;

38: for t ∈ TVc
\ (TVc−1

∪ TVc+1
) do [xn]t =

[sn,c]t
|T∗t |

;

39: for j ∈ Vc do
40: for t ∈ Tj do

41: [xjn+1]t = [xjn+1/2]t + γnϑω
−1
j,t

(
[xn]t − [xjn+1/2]t

)
42: end for
43: end for
44: end if
45: end for
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6.5 Application to video denoising

6.5.1 Observation model

In this section, we provide a validation of the proposed distributed algorithm for
denoising video sequences. The original sequence x = ([x]t)16t6T ∈ RTL is naturally
decomposed in T blocks of data, each corresponding to one image containing L
pixels. The degradation model relating the observed noisy sequence y = ([y]t)16t6T ∈
RTL to the sought sequence x with TL = N is given by

(∀t ∈ {1, . . . , T}) [y]t = [x]t + [w]t, (6.38)

where ([w]t)16t6T ∈ RTL represents an additive zero-mean white Gaussian noise.
An estimate of the unknown video can be inferred by solving Problem (6.3) where
J = T and x̃ = y. The last quadratic term in (6.3) is a least squares data fidelity
term ensuring the compliance with Model (6.38), and functions (gj)16j6T stand for
regularization functions that incorporate both temporal and spatial prior knowledge
on each video frame. The temporal regularization is fulfilled by taking into account
motion compensation between the previous and next neighbouring frames. More
precisely, at each time t ∈ {2, . . . , T −1}, the linear operator At extracts the current
frame xt and its neighbors (xt−1, xt+1) as shown by Figure 6.7. The linear operators
(At)16t6T thus have the block sparse structure expressed by (6.28) with

(∀t ∈ {1, . . . , T}) Tt =
{

max{t− 1, 1}, t,min{t+ 1, T}
}

(6.39)

and

A1,1 =

[
IL
0

]
, A1,2 =

[
0
IL

]
, (6.40)

(∀t ∈ {2, . . . , T − 1}) At,t−1 =

IL0
0

 , At,t =

 0
IL
0

 , At,t+1 =

 0
0
IL

 , (6.41)

AT,T−1 =

[
IL
0

]
, AT,T =

[
0
IL

]
. (6.42)
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Figure 6.7: Linear operator At that extracts the current frame and its neighbors.

For every t ∈ {1, . . . T}, each regularization function gt : RMt → [0,+∞[ is con-
vex, proper, lower semi-continuous and such that

Mt =

{
3L if t 6= 1 and t 6= T

2L otherwise,
(6.43)

and, for every x = ([x]t)16t6T ,

gt (([x]t′)t′∈Tt) = η tgv([x]t) + ι[xmin,xmax]L([x]t) + ht (([x]t′)t′∈Tt) , (6.44)

where “tgv” denotes the Total Generalized Variation regularization from [Bredies
et al., 2010], defined as

(∀z ∈ RL) tgv(z) = min
q∈R2L

α0
χ

2 (Dz − q) + α1
χ

3 (Gq) , (6.45)

with (α0, α1) ∈]0,+∞[2, D ∈ R2L×L is the concatenation of the horizontal and
vertical spatial gradient operators:

D =

[
∇H

∇V

]
, with ∇H ∈ RL×L, ∇V ∈ RL×L, (6.46)

and χ is the sparsity promoting function defined in (5.7). Moreover, G ∈ R3L×2L is
a second order derivative operator given by

G =


−∇>H 0

−∇>V −∇>H
0 −∇>V

 . (6.47)

The indicator function ι[xmin,xmax]L in (6.44) imposes a range [xmin, xmax] on the pixel
values in each frame. In addition, ht is a function introducing a temporal regular-
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ization of the form

ht (([x]t′)t′∈Tt) =


βt−1,t

χ
1([x]t −Mt−1→t [x]t−1) + βt+1,t

χ
1([x]t −Mt+1→t [x]t+1)

if t 6= 1 and t 6= T

β2,1
χ

1([x]1 −M2→1 [x]2) if t = 1

βT−1,T
χ

1([x]T −MT−1→T [x]T−1) if t = T ,

(6.48)
where Mt−1→t ∈ RL×L (resp. Mt+1→t ∈ RL×L) is a motion compensation operator
between the reference frame xt−1 (resp. xt+1) and the current frame xt, defined as
described in Section 5.2.2. Finally, η, (βt−1,t)26t6T and (βt+1,t)16t6T−1 are positive
regularization parameters controlling the importance of the contribution of their
associated terms. The values of these parameters have been set empirically so as to
achieve the best denoising performance.

6.5.2 Proposed method

We employ our proposed asynchronous distributed framework to address the
previous denoising problem. More precisely, we use the practical implementation
detailed in Algorithm 23. Functions (gt)16t6T and their associated primal variables
([xt]t′)t′∈Tt for t ∈ {1, . . . , T}, are spread over C computing units, each of them
handling the same number of nodes, i.e., (∀c ∈ {1, . . . , C}) κc = κ (with T = κC).
The associated hyperedges are then given by

(∀c ∈ {1, . . . , C}) Vc = {(c− 1)κ+ 1, . . . , cκ}. (6.49)

Note that, since

(∀c ∈ {1, . . . , C}) TVc =
{

max{(c− 1)κ, 1}, . . . ,min{cκ+ 1, T}
}

(6.50)

⇒ (∀c ∈ {1, . . . , C − 1}) TVc ∩ TVc+1 = {cκ, cκ+ 1}, (6.51)

Assumption 6.1 holds provided that κ > 1.
In the local optimization first performed at the n-th iteration of Algorithm 23,

we used, for every j ∈ {1, . . . , T}, Bj =
∑

t∈Tj ω
−1
j,t IMj

and γn ≡ 1.7. Then, the
local or global synchronization steps are performed as described in Section ??. In
our case, for every t ∈ {1, . . . , T},

T∗t = Tt (6.52)

so that, if t ∈ TVc with c ∈ {1, . . . , C} corresponds neither to the smallest index nor
the largest index in Vc, then 3 values need to be summed to compute [sn,c]t. If t
is smallest or largest index in Vc, then the summation involves two terms whereas,
if c > 1 and t = (c − 1)κ (resp. c < C and t = cκ + 1)), then [sn,c]t = [xt+1

n+1/2]t

(resp. [sn,c]t = [xt−1
n+1/2]t). In global synchronization steps, by virtue of (6.51), only
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variables [sn,c]cκ and [sn,c]cκ+1 need to be transmitted from computing unit c 6= C to
computing unit c + 1, which in return sends back the updated averages [xn]cκ and
[xn]cκ+1. This workflow is illustrated in Figures 6.8 and 6.9 by an example showing
two computing units handling κ = 3 nodes.

c = 2 c = 3

4 5 6 7 8 9

 x3

x4

x5

 x4

x5

x6

 x5

x6

x7

  x6

x7

x8

 x7

x8

x9

 x8

x9

x10


[x4
n]t′ [x5

n]t′ [x6
n]t′ [x7

n]t′ [x8
n]t′ [x9

n]t′

Transmit ([sn,2]t′)t′∈{6,7}

. . .. . .. . . . . .. . .. . .

Figure 6.8: Transmission of local sums ([sn,2]t′)t′∈{6,7} shared between TV2 =

{3, 4, 5, 6, 7} and TV3 = {6, 7, 8, 9, 10} from computing unit c = 2 to computing unit c = 3.

c = 2 c = 3
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. . .. . .. . . . . .. . .. . .

Figure 6.9: Transmission of averaged images ([xn]t′)t′∈{6,7} from computing unit c = 3
to computing unit c = 2.

It can be noticed that the global synchronizations are activated every 4 iterations.
This synchronization frequency has been chosen in order to achieve a good trade-off
between the communication overhead and a satisfactory convergence speed of the
algorithm. It should be mentioned that the weights (ωj,t)16t6T,j∈T∗t are set to 1

|T∗t |
.
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6.5.3 Simulation results

The performance of the proposed denoising method are evaluated on the stan-
dard test video sequences Foreman and Claire with T = 72 frames. These frames
are of size 348 × 284 for the first sequence and 300 × 278 for the second one, hence
N = 7115904 (resp. N = 6004800). The degraded videos are obtained by adding
zero-mean white Gaussian noise to the original video sequences, resulting in an ini-
tial SNR of 24.41 dB for the first sequence and 24.77 dB for the second one. Our
method is implemented with Julia-0.4.6 and a Message Passing Interface (MPI)
wrapper for managing communication between cores [Forum, 1994; Gropp et al.,
1999]. We use a multi-core architecture using 2 Intel(R) Xeon(R) E5-2670 v3 CPU
@ 2.3 GHz processors, each of them having 12 cores, hence C = 24. The experiments
are run using 60 iterations of Algorithm 23, which appears to be sufficient to reach
the convergence of our method.

We evaluate the proposed distributed approach in terms of restoration quality
and acceleration provided by our algorithm with respect to the number of used com-
puting units. The images composing the video sequences are partitioned in groups
of equal size κ processed by the computing units, thereby we consider the cases when
C ∈ {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} cores are employed, as shown in Table 6.1.

Number of cores C 1 2 3 4 6 8 9 12 18 24

Number of images per core κ 72 36 24 18 12 9 8 6 4 3

Table 6.1: Investigated simulation scenarios and the number of images per core in each
case.

Figure 6.10 shows the associated speedup in execution time for both sequences
with respect to the number of used cores, estimated as follows:

Speedup forC cores =
Execution time with 1 core

Execution time withC cores
. (6.53)

For the first sequence the execution time with 1 core is equal to 107003 s, while it
is equal to 84247 s for the second one.
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(b) Claire sequence.

Figure 6.10: Speedup with respect to the number of used cores: proposed method (solid,
blue, diamond), linear speedup (dashed, green).

Figure 6.10 shows that the speedup increases super linearly as we increase the
number of cores from 1 to 9. Indeed, due to the large size of the dataset, it cannot
be stored in the cache memory when a small number of cores are used. Hence, a
significant amount of time is spent in RAM access [Janakiram et al., 2005]. By
increasing the number of cores, the data seem to fit more and more the cache size,
which reduces the RAM access time and consequently the global execution time
despite the communication overhead. However, this speedup is limited up to some
extent, after which its increase becomes slower as the number of core increases, dis-
playing a saturation effect (in agreement with Amdahl’s law [Amdahl, 1967]) when
the number of computing units is more than 9.

In order to investigate the latter behaviour, we display in Figure 6.11 the execu-
tion times per core on Foreman sequence, for the three main steps of Algorithm 23
namely, the local optimization, local synchronization, and global synchronization
when either C = 8 or C = 24 cores are used. As expected we observe a significant
reduction of the execution time for the local optimization step when going from 8 to
24 cores, but the resulting gain is less than 3, although the computations are then
performed independently on each core. The average execution time for the local
synchronization step is also reduced as the number of images handled by each core
decreases. One can finally observe that the global communication overhead increases
as a larger number of cores is used. This behavior appears to be consistent, however
it can be noticed on Figure 6.11b that the second half of cores (13 to 24) is much
slower than the first one, which is detrimental to the global synchronization process.
This fact seems to point out hardware limitations of the Intel-based two-processor
computer architecture that we use.
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(a) 8 cores.

(b) 24 cores.

Figure 6.11: Execution time of Algorithm 23 steps: local optimization (left), local syn-
chronization (middle), global synchronization (right).

Figure 6.12 illustrates the performance of our denoising method in terms of
restoration quality. One can observe that our method achieves satisfactory restora-
tion results with an improvement of 7.6 dB for Foreman and 9 dB for Claire with
respect to the degraded video. Moreover, the convergence to the sought solution
has been reached in each experiment regardless the number of used cores. However,
it can be noticed a slight deterioration of the convergence profile when the number
of cores is increased, since the global synchronisation plays then a more prominent
role.
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Figure 6.12: SNR versus iteration number.
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Finally, Figures 6.13 and 6.14 show some frames extracted from the degraded
and restored sequences, which allow us to evaluate the good visual quality of the
performed denoising.

Figure 6.13: Foreman sequence: Input degraded images (top) initial SNR = 24.41 dB,
associated restored images (bottom) final SNR = 32.04 dB.

6.6 Conclusion

This chapter has introduced a fully parallelized version of the preconditioned dual
block-coordinate forward-backward algorithm for computing proximity operators.
Our algorithm benefits from all the advantages of primal-dual methods and the
acceleration provided by a block-coordinate strategy combined with a variable metric
approach. We mainly focused on an instance of the proposed approach for which
we proposed an asynchronous implementation, assuming that a given number of
computing units is available. Although our distributed algorithm can be applied
to a wide range of inverse problems, we have been interested in its application to
video sequence denoising. The experimental results we obtained are quite promising
and demonstrate the ability of our algorithm to take advantage of multiple cores.
An acceleration of about 15 has indeed been reached with a standard two-processor
computer configuration.
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Figure 6.14: Claire sequence: Input degraded images (top) initial SNR = 24.77 dB,
associated restored images (bottom) final SNR = 33.74 dB.
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7.1 Introduction

Blurring occurs frequently in video sequences captured by consumer devices, as
a result of various factors such as lens aberrations, defocus, relative camera-scene
motion, and camera shake. When it comes to the contents of archive documents
such as old films and television shows, the degradations are even more serious due
to several physical phenomena happening during the sensing, transmission, record-
ing, and storing processes [Chenot et al., 1998; Kokaram, 1998; Naranjo and Albiol,
2000; Kokaram and Godsill, 2002]. Most of these degradations can be summarized
into two main categories. The first type is of random nature and appears in images
as noise, mainly caused by electronic devices. The second one is deterministic and
results in blur and oscillations whose common causes are lens imperfections, motion
of the scene, diffusion in sensors, and physical or electronic transmission problems.

We provide in this chapter a versatile formulation of the blind video deconvo-
lution problem that seeks to estimate both the sharp unknown video sequence and
the underlying blur kernel from an observed video. This inverse problem is severely
ill-posed, and an appropriate solution can be obtained by modeling it as a nonconvex
minimization problem. We propose a novel iterative algorithm to solve it, grounded
on the use of recent advances in convex and nonconvex optimization techniques,
and having the ability of including numerous well-known regularization strategies
[Rudin et al., 1992; Bredies et al., 2010; Repetti et al., 2015; Perrone and Favaro,
2016].
The reminder of this chapter is structured as follows: we introduce in Section 7.2
the formulation of the blind deconvolution problem as a minimization problem and
present a number of regularization strategies that can be adopted in the context
of image/video processing. Afterwards, we present our minimization approach in
Section 7.3, which solves efficiently the resulting nonconvex problem. Section 7.4
illustrates some experimental results on synthetic and real video sequences, and
finally, some conclusions are given in Section 7.5.

7.2 Problem statement

7.2.1 Observation model

Blind video deconvolution amounts to inferring an original sharp video sequence
x = (xt)16t6T ∈ RTN and a spatial convolution kernel h ∈ RP from an observed
degraded video sequence y = (yt)16t6T ∈ RTN , satisfying the following degradation
model

(∀t ∈ {1, . . . , T}) yt = h ∗ xt + wt, (7.1)
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where T denotes the number of frames included in the video sequence and (wt)16t6T ∈
RTN represents an additive noise. If no additional information is supplied, this prob-
lem is very ill-conditioned and its resolution may lead to unstable and unsatisfactory
results. Thus, we resort to the following penalized formulation in order to solve it:

minimize
x∈RTN ,h∈RP

(F (x, h) = Φ(x, h) + Ψ(x) + Θ(h)) . (7.2)

The cost function F is composed of a least squares data fidelity term Φ which
ensures the compliance to Model (7.1), and is given by

Φ(x, h) =
1

2

T∑
t=1

‖h ∗ xt − yt‖2, (7.3)

and of two regularization functions Ψ and Θ that incorporate prior information on
the sought images and kernel, respectively. The objective function F is nonconvex
due to the coupling existing in the data fidelity term between the variables x and
h. This suggests the use of an optimization method that alternates between the
estimation of the images composing the sequence x, and the identification of the
PSF h in order to reach a critical point of (7.2). Besides, it is worth noticing that
the choice of the regularization functions Ψ and Θ plays a prominent role in the
quality of the restored video and the identified kernel. A number of regularization
strategies has been proposed in the context of image/video processing. Moreover,
the adopted optimization method depends heavily on the mathematical properties
of the retained penalty functions. One of the contributions of this chapter is to
propose a unique and versatile optimization method that can handle a wide class of
regularization functions, as detailed in the following.

7.2.2 Video estimation

Let us consider a simpler problem which consists in estimating the video sequence
while assuming a known PSF h. The images composing the video sequence can be
inferred by solving the following problem

minimize
x∈RTN

Φ(x, h) + Ψ(x), (7.4)

where Ψ is defined as follows

(∀x ∈ RTN) Ψ(x) =
T∑
t=1

(
η ψ(xt) + ι[xmin,xmax]N (xt)

)
+M(x), (7.5)

where ψ is a spatial regularization function handling each frame xt separately,
ι[xmin,xmax]N denotes an indicator function that sets a range on the pixel values of
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each image, and finally M is a smoothed version of the motion term (5.9) intro-
duced in Section 5.2.2:

(∀x ∈ RTN) M(x) =
1

2

T∑
t=1

∑
`∈Vt

β`,t‖xt −M`→tx`‖2. (7.6)

Various choices of spatial regularization functions can be adopted in the Model (7.5).
Let us list some of them herebelow.

• Total Variation (TV) is one of the most popular regularization method in
image restoration. It has been initially introduced for image denoising and
reconstruction problems [Rudin et al., 1992], and reads:

(∀z ∈ RN) ψ(z) = χ
2 (Dz) , (7.7)

where D ∈ R2N×N is the discrete gradient operator defined in (6.46) as the con-
catenation of the horizontal and vertical gradient operators ∇H ∈ RN×N ,∇V ∈
RN×N respectively, and χ

q is the sparsity promoting function in (5.7). The
total variation promotes the sparsity of the image derivatives, which has the
advantage of reducing the noise and preserving strong edges. However, it
may lead to piecewise constant images and induce staicase artefacts [Nikolova,
2009].

• Total Variation on a Staggered Grid (TVSG) that has been recently proposed
in [Condat, 2016], introduces a new formulation of the total variation with a
more accurate adaptation of the continuous definition to the discrete domain,
instead of the classical finite differences in (6.46). It resorts to a sophisticated
gradient operator which is defined as

(∀z ∈ RN) ψ(z) = min
(v1,v2,v3)∈R(2N)3

{
χ

2 (v1) + χ
2 (v2) + χ

2 (v3) |

L>1 v1 + L>2 v2 + L>3 v3 = Dz
}
, (7.8)

where L>1 , L
>
2 , L

>
3 denote the adjoint operators of L1, L2, L3 respectively, de-

fined as follows. Let u ∈ R2N =

[
u1

u2

]
, then :
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L1u ∈ R2N =

[
q1,1

q1,2

]
is such that

q1,1(i, j) = u1(i, j),

q1,2(i, j) = (u2(i, j) + u2(i, j − 1) + u2(i+ 1, j) + u2(i+ 1, j − 1)) /4,

L2u ∈ R2N =

[
q2,1

q2,2

]
is such that

q2,1(i, j) = (u1(i, j) + u1(i− 1, j) + u1(i, j + 1) + u1(i− 1, j + 1)) /4,

q2,2(i, j) = u2(i, j),

L3u ∈ R2N =

[
q3,1

q3,2

]
is such that

q3,1(i, j) = (u1(i, j) + u1(i− 1, j)) /2,

q3,2(i, j) = (u2(i, j) + u2(i, j − 1)) /2,

where i ∈ {1, . . . , N1}, j ∈ {1, . . . , N2} with N1N2 = N .
This new definition of gradient fields leads to a regularized approach that
improves the sharpness of the edges, and presents a better isotropy compared
to the standard total variation.

• Smoothed One Over Two-Total Variation (SOOT-TV) is a nonconvex sparsity
promoting function combining the `1/`2 norm and the total variation operator.
`1/`2 can be viewed as a more accurate approximation to `0 compared to the
convex `1 norm, as shown in Figure 7.1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 7.1: Sparsity promoting norms: `0 norm (thin solid yellow), `1 norm (thick
dashed red), `1/`2 norm (thick solid blue), log-`1 norm (thin magenta ‘◦’), Welsch penalty
(thin dashed green).
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Here, we will focus on the log-smoothed version of the `1/`2 norm called
”SOOT” introduced in [Repetti et al., 2015]. The prior then reads:

(∀z ∈ RN) ψ(z) = log

(
`1,α(Dz) + β

`2,λ(Dz)

)
, (7.9)

where

`1,α(Dz) =
2N∑
n=1

(√
(Dz)2

n + α2 − α
)
, `2,λ(Dz) =

√√√√ 2N∑
n=1

(Dz)2
n + λ2, (7.10)

D ∈ R2N×N is the discrete gradient operator defined in (6.46) and α, β, λ are
positive parameters.

• Smoothed log-Total Variation (log-TV) is a nonconvex smooth sparsity pro-
moting regularization function from [Perrone and Favaro, 2016] defined as
follows

(∀z ∈ RN) ψ(z) =
N∑
n=1

log
(√

(∇Hz)2
n + (∇Vz)2

n + α2
)
,

=
1

2

N∑
n=1

log
(
(∇Hz)2

n + (∇Vz)2
n + α2

)
, (7.11)

where α > 0 and ∇H ∈ RN×N ,∇V ∈ RN×N are gradient operators in the
horizontal and vertical directions, defined in (2.16) and (2.17) respectively.
Similarly to the `1/`2 norm, the log-based penalty used in (7.11) can be viewed
as a nonconvex approximation to `0.

• Welsch-Total Variation (Welsch-TV) is based on the so-called “Welsch func-
tion” [Dennis and Welsch, 1978] defined by

R→ R : t→ 1− exp
(
−t2/(2σ2)

)
.

The Welsch function is bounded and approaches 1 exponentially fast as |t| →
+∞. It is convex near the origin, for t2 < σ2 and nonconvex elsewhere. Its
adaptation to the context of image and video deconvolution is realized by
applying it to the image gradients in order to improve their sparsity:

(∀z ∈ RN) ψ(z) =
N∑
n=1

(
1− exp

(
−
(
(∇Hz)2

n + (∇Vz)2
n

)
/(2σ2)

))
. (7.12)

Finally, we also consider the spatial regularization already defined in Chapters 5 and
6, namely:
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• Semi-Local Total Variation (SLTV) defined in (5.8)

(∀z ∈ RN) ψ(z) =
∑
`∈Ω

χ
2 (L`z) with L` = (Id2N − V`)D.

where the operators (V`)`∈{1,...,6} ∈ R2N×2N are the shift operators illustrated
in Figure 5.1.

• Total Generalized Variation (TGV) defined in (6.45)

(∀z ∈ RN) ψ(z) = min
q∈R2N

α0
χ

2 (Dz − q) + α1
χ

3 (Gq) .

where G is a second order derivative operator defined in (6.47).

7.2.3 Kernel identification

The spatial convolution kernel is estimated by solving the minimization problem
(7.2) with respect to h while keeping the images (xt)16t6T fixed, which reduces to
solve

minimize
h∈RP

Φ(x, h) + Θ(h), (7.13)

where Θ accounts for an indicator function of a set H representing a constrained
set, so that a priori information on the sought kernel are satisfied. In the proposed
method, the following constraints are considered:

(∀h ∈ RP ) Θ(h) = ιH(h), (7.14)

with

H =
{
h = (hp)16p6P |

P∑
p=1

hp = 1, (7.15)

(∀p ∈ {1, . . . , P}) hmin,p 6 hp 6 hmax,p,
}
. (7.16)

The first constraint (7.15) is used in order to avoid the so-called scaling ambiguity.

In fact, let (x̂, ĥ) be a solution to (7.2), then each pair (αx̂, 1
α
ĥ) with α 6= 0 is also

a solution satisfying Model (7.1). Thus imposing (7.15) ensures the uniqueness and
the normalization of the solution. The second constraint (7.16) is adjusted regarding
to prior information on the physical properties of the sought convolution kernel. As
an example, for old television archive contents, the kernel h may have a narrow spike
and small (possibly negative) components.
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7.3 Optimization method

7.3.1 Minimization strategy

In order to find estimates of the sharp video sequence x and the convolution
kernel h, we alternatively minimize F in (7.2) with respect to each image (xt)16t6T ,
followed by a minimization with respect to the kernel h.
To do so, we propose an alternating strategy based on the block-coordinate variable
metric forward-backward algorithm given by Algorithm 8 in Chapter 3, where at
each iteration, a forward-backward iteration is performed with respect to each image
xt, by means of a gradient descent step on the smooth part of the restriction of F
to xt, and a proximal step on the remaining nonsmooth part. Then, we apply a
proximal step on the restriction of F to h while all the images of the sequence x are
considered as constant.

In order to adapt our alternating minimization strategy to the resolution of
Problem (7.2), we propose to rewrite the objective function F as follows

minimize
x∈RTN ,h∈RP

(F (x, h) = f1(x, h) + f2(x) + Θ(h)) , (7.17)

where f1 represents the smooth part of Φ(x, h) + Ψ(x) and f2 its nonsmooth part.
Two cases arise depending on the smoothness of the spatial regularization function ψ:

• ψ is nonsmooth, e.g., in case of TV, SLTV, TGV and TVSG, then

(∀x ∈ RTN), (∀h ∈ RP ) f1(x, h) = Φ(x, h) +M(x),

(∀x ∈ RTN) f2(x) =
T∑
t=1

(
η ψ(xt) + ι[xmin,xmax]N (xt)

)
.

• ψ is smooth, e.g., it corresponds to the nonconvex regularizations, SOOT-TV,
log-TV and Welsch-TV, then

(∀x ∈ RTN), (∀h ∈ RP ) f1(x, h) = Φ(x, h) +

(
T∑
t=1

η ψ(xt)

)
+M(x),

(∀x ∈ RTN) f2(x) =
T∑
t=1

ι[xmin,xmax]N (xt).

We propose to solve Problem (7.17) with the proximal-based alternating minimiza-
tion strategy shown in Algorithm 8, which reads in our context:



7.3. Optimization method 121

Algorithm 24 Blind video deconvolution

Initialization:

For every k ∈ N, γkt ∈ ]0, 2[ and µk ∈ ]0,+∞[

for k = 0, 1, . . . do

for t = 1, . . . , T do

x̌t,k =
(
xk+1

1 , . . . , xk+1
t−1 , x

k
t , x

k
t+1 . . . , x

k
T

)
x̃kt = xkt − γkt A−1

t,k

(
∇xtf1(x̌t,k, hk)

)
xk+1
t = prox(γkt )−1At,k,f2

(
x̃kt
)

end for

hk+1 = proxµk (Θ+Φ(xk+1,·))(h
k)

end for

where ∇xt denotes the gradient of f1 with respect to the image xt, and At,k is
a semi-definite positive matrix in RN×N satisfying the majorant condition for f1 at
x̌t,k, i.e., the function Q(·, x̌t,k) defined by(
∀x ∈ RN

)
Q(x, x̌t,k) = f1(x̌t,k) + 〈x− xkt | ∇xtf1(x̌t,k)〉+

1

2
‖x− xkt ‖2

At,k
, (7.18)

is a majorant function of the restriction of f1 to the image xt at x̌t,k.

7.3.2 Construction of the majorant

The choice of a good majorant function Q(·, x̌t,k) of the restriction of f1 to the
image xt at each iteration k ∈ N has a strong leverage on the numerical perfor-
mance of the proposed method. Thereby, one has to favour curvature matrices
(At,k)16t6T,k∈N that are easy to handle.
Depending on the choice of the spatial regularization ψ, (At,k)16t6T,k∈N is defined as
described below.

1. ψ is nonsmooth e.g., in case of TV, SLTV, TGV, and TVSG

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k = υt,k IdN , (7.19)

where υt,k is the Lipschitz constant of the gradient of f1 with respect to xkt :

∇
(

1

2
‖hk ∗ · − yt‖2 +M(xk+1

1 , . . . , xk+1
t−1 , · , xkt+1, . . . , x

k
T )

)
. (7.20)

According to (7.6), such a Lipschitz constant is thus expressed as

υt,k = ‖Hk‖2 +
∑
`∈Vt

β`,t +
∑

`∈{1,...,T}:t∈V`

βt,`‖Mt→`‖2, (7.21)
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where ‖Hk‖ is maximum magnitude of the frequency response of the blur filter
estimate at iteration k and (‖Mt→`‖)16`6T,t∈V` denote the spectral norms of
the operators used for motion compensation based on xkt .

2. ψ is SOOT-TV

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k =

(
υt,k +

9η ‖D‖2

8λ2

)
IdN +

η A`1,α(x̌t,k)

`1,α(Dx̌t,k) + β
,

(7.22)
where υ is Lipschitz constant of (7.20) and

(∀z ∈ RN) A`1,α(z) = Diag
(
Ω>s(z)

)
+ ε IdN , (7.23)

where, for every z ∈ RN , s(z) ∈ R2N is such that, for every i ∈ {1, . . . , 2N}

(∀z ∈ RN) s(i)(z) = ((D(i)z)2 + α2)−1/2,

D(i) ∈ R1×N denotes the ith row of D, Ω(i,j) =
∣∣D(i,j)

∣∣ ∑N
k=1

∣∣D(i,k)
∣∣ and

ε > 0.

3. ψ is log-TV

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k = υt,kIdN + η Alog(x̌t,k), (7.24)

where υ is the Lipschitz constant of (7.20) and

(∀z ∈ RN) Alog(z) = Diag
(
Ω>s(z)

)
+ ε IdN , (7.25)

where, for every z ∈ RN , s(z) ∈ RN is such that, for every i ∈ {1, . . . , N}

(∀z ∈ RN) s(i)(z) = ((∇(i)
H z)2 + (∇(i)

V z)2 + α2)−1,

∇(i)
H ∈ R1×N (resp. ∇(i)

V ∈ R1×N) denotes the ith row of ∇H (resp. ∇V) , and
Ω = ΩH + ΩV :

Ω
(i,j)
H =

∣∣∣∇(i,j)
H

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
H

∣∣∣ , Ω
(i,j)
V =

∣∣∣∇(i,j)
V

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
V

∣∣∣ , ε > 0.

4. ψ is Welsch-TV

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k = υt,kIdN + η Aw(x̌t,k), (7.26)



7.3. Optimization method 123

where υ is Lipschitz constant of (7.20) and

(∀z ∈ RN) Aw(z) = σ−2Diag
(
Ω>s(z)

)
+ ε IdN , (7.27)

where, for every z ∈ RN , s(z) ∈ RN is such that, for every i ∈ {1, . . . , N}

(∀z ∈ RN) s(i)(z) = exp
(
−((∇(i)

H z)2 + (∇(i)
V z)2)/(2σ2)

)
,

∇(i)
H ∈ R1×N (resp. ∇(i)

V ∈ R1×N) denotes the ith row of ∇H (resp. ∇V) and
Ω = ΩH + ΩV :

Ω
(i,j)
H =

∣∣∣∇(i,j)
H

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
H

∣∣∣ , Ω
(i,j)
V =

∣∣∣∇(i,j)
V

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
V

∣∣∣ , ε > 0.

Proof.

SOOT-TV

Let us set(
∀z ∈ RN

)
η ψ(z) = η log

(
`1,α(Dz) + β

`2,λ(Dz)

)
= ψ1(z) + ψ2(z), (7.28)

where ψ1(z) = η log(`1,α(Dz)+β) and ψ2 = −η log(`2,λ(Dz)). We need to prove
that

1. A`1,α(z) satisfies the majoration condition for `1,α at z,

2.
A`1,α (z)

`1,α(Dz)+β
satisfies the majoration condition for ψ1 at z,

3. 9η ‖D‖2
8λ2

is a Lipschitz constant for ψ2.

Proving Statements 2 and 3 is similar to the proof provided in [Repetti et al., 2015].
Let us now consider Statement 1, first let us define

`1,α(D ·) =
2N∑
i=1

φ
(
D(i) ·

)
, (7.29)

(∀v ∈ R) φ(v) =
√
v2 + α2 − α. (7.30)

We have [Allain et al., 2006]

(∀u ∈ R) φ (u) 6 φ (v) + (u− v)φ̇ (v) +
κ(v)

2
(u− v)2 , (7.31)
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with, for every v ∈ R,

φ̇(v) =
v√

v2 + α2
and κ(v) =

1√
v2 + α2

. (7.32)

Thus, for every ω ∈ RN ,

φ
(
D(i)ω

)
6 φ

(
D(i)z

)
+
〈
ω − z,D(i)>φ̇

(
D(i)z

)〉
+
κ(D(i)z)

2

(
D(i)(ω − z)

)2
, (7.33)

By combining (7.29) and (7.33), we have, for every ω ∈ RN ,

`1,α(Dω) 6 `1,α(Dz) + 〈ω − z,∇ (`1,α ◦ (D·)) (z)〉

+
1

2
(D(ω − z))>Diag(s(z))D(ω − z). (7.34)

where, for every z ∈ RN , s(z) ∈ R2N is such that, for every i ∈ {1, . . . 2N},

(∀z ∈ RN) s(i)(z) = ((D(i)z)2 + α2)−1/2.

Let us define (σj)16j6N ∈]0,+∞[N such that
∑N

j=1 σj = 1, so that, for every i ∈
{1, . . . , 2N}

(
D(i)(ω − z)

)2
=

(
N∑
j=1

D(i,j)(ωj − zj)

)2

,

=

(
N∑
j=1

D(i,j)(ωj − zj)

)2

,

=

(
N∑
j=1

σj
D(i,j)(ωj − zj)

σj

)2

. (7.35)

According to the Jensen’s inequality, we get(
N∑
j=1

σj
D(i,j)(ωj − zj)

σj

)2

6
N∑
j=1

σj

(
D(i,j)(ωj − zj)

σj

)2

,

=
N∑
j=1

(
D(i,j)(ωj − zj)

)2

σj
. (7.36)

Taking for all j ∈ {1, . . . , N}, σj =
|D(i,j)|∑N
k=1|D(i,k)| , then
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(
D(i)(ω − z)

)2
6

N∑
j=1

((
D(i,j)(ωj − zj)

)2

σj

)
,

=
N∑
j=1

(D(i,j)(ωj − zj)
)2

|D(i,j)|∑N
k=1|D(i,k)|

 ,

=
N∑
j=1

∣∣D(i,j)
∣∣ N∑
k=1

∣∣D(i,k)
∣∣ (ωj − zj)2. (7.37)

This yields
‖D(ω − z)‖2 6 ‖ω − z‖2

A`1,α (z), (7.38)

with
A`1,α(z) = Diag

(
Ω>s(z)

)
+ ε IdN , (7.39)

where Ω(i,j) =
∣∣D(i,j)

∣∣ ∑N
k=1

∣∣D(i,k)
∣∣ , and ε > 0.

log-TV

The process of constructing the majorant when ψ stands for log-TV regulariza-
tion, is similarly to the one of SOOT-TV, by setting [Chouzenoux et al., 2016]

(∀z ∈ RN) ψ(z) =
1

2

N∑
i=1

log
(
(∇Hz)2

i + (∇Vz)2
i + α2

)
,

=
N∑
i=1

φ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
, (7.40)

where

(∀v ∈ R) φ(v) =
1

2
log
(
v2 + α2

)
. (7.41)

Using (7.31) with, for every v ∈ R,

φ̇(v) =
v

v2 + α2
and κ(v) =

1

v2 + α2
, (7.42)

we have that, for every ω ∈ RN ,

φ

(√
(∇(i)

H ω)2 + (∇(i)
V ω)2

)
6 φ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
+

〈
ω − z, φ̇

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)〉

+

κ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
2

(
(∇(i)

H (ω − z))2 + (∇(i)
V (ω − z))2

)
.

(7.43)
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By combining (7.40) and (7.43), we obtain, for every ω ∈ RN ,

ψ(ω) 6 ψ(z) + 〈ω − z,∇ψ(z)〉+
1

2
(ω − z)>Diag(s(z)) (ω − z) , (7.44)

where, for every z ∈ R, s(z) ∈ RN is such that, for every i ∈ {1, . . . N},

(∀z ∈ RN) s(i)(z) =
(

(∇(i)
H z)2 + (∇(i)

V z)2 + α2
)−1

.

Thereby, for every ω ∈ RN ,

ψ(ω) 6 ψ(z) + 〈ω − z,∇ψ(z)〉+
1

2
‖ω − z‖2

Alog(z), (7.45)

where
(∀z ∈ RN) Alog(z) = Diag

(
Ω>s(z)

)
+ ε IdN , (7.46)

with ε > 0 and Ω = ΩH + ΩV such that

Ω
(i,j)
H =

∣∣∣∇(i,j)
H

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
H

∣∣∣ , Ω
(i,j)
V =

∣∣∣∇(i,j)
V

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
V

∣∣∣ .
Welsch-TV

The construction of this majorant is analogous to the one of log-TV regulariza-
tion, by taking

(∀z ∈ RN) ψ(z) =
N∑
i=1

(
1− exp

(
−
(
(∇Hz)2

i + (∇Vz)2
i

)
/(2σ2)

))
,

=
N∑
i=1

φ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
, (7.47)

with
(∀v ∈ R) φ(v) = 1− exp

(
−v2/(2σ2)

)
. (7.48)

Using (7.31) and, for every v ∈ R,

φ̇(v) =
v

σ2
exp

(
−v2/(2σ2)

)
and κ(u) =

1

σ2
exp

(
−v2/(2σ2)

)
, (7.49)

we obtain, for every ω ∈ RN ,

φ

(√
(∇(i)

H ω)2 + (∇(i)
V ω)2

)
6 φ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
+

〈
ω − z, φ̇

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)〉

+

κ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
2

(
(∇(i)

H (ω − z))2 + (∇(i)
V (ω − z))2

)
.

(7.50)
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By combining (7.47) and (7.50), and following the same idea in the previous proof,
we have, for every ω ∈ RN ,

ψ(ω) 6 ψ(z) + 〈ω − z,∇ψ(z)〉+
1

2
‖ω − z‖2

Aw(z), (7.51)

where
(∀z ∈ RN) Aw(z) = Diag

(
Ω>s(z)

)
+ ε IdN , (7.52)

with, for every z ∈ R, s(z) ∈ RN is such that, for every i ∈ {1, . . . N},

(∀z ∈ RN) s(i)(z) = exp
(
−((∇(i)

H z)2 + (∇(i)
V z)2)/(2σ2)

)
,

ε > 0 and Ω = ΩH + ΩV such that

Ω
(i,j)
H =

∣∣∣∇(i,j)
H

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
H

∣∣∣ , Ω
(i,j)
V =

∣∣∣∇(i,j)
V

∣∣∣ N∑
k=1

∣∣∣∇(i,k)
V

∣∣∣ .

7.3.3 Implementation of the proximity operator of f2

The retained metric matrices (At,k)16t6T,k∈N being diagonal, the proximity opera-
tor involved in Algorithm 24 may have a closed form expression when f2 is a “simple”
function. However, when the latter is more sophisticated, for example when it repre-
sents a sum of functions possibly composed with linear operators, we have to resort
to some iterative strategies in order to evaluate it. In our framework, the computa-
tion of the proximity operator of f2 at each image xt (i.e., prox(γkt )−1At,k,f2

) depends
also on the choice of the spatial regularization function ψ. In some instances, it
has an explicit form while in others, we must use specific algorithms to evaluate it,
namely

• for smooth nonconvex regularization functions ψ (SOOT-TV, log-TV and
Welsch-TV), we have

(∀z ∈ RN) f2(z) = ι[xmin,xmax]N (z),

so that the proximity operator has an explicit expression, since it reduces to
the projection into [xmin, xmax].

• for nonsmooth convex regularization functions ψ (TV, SLTV, TGV, TVSG),
we have

(∀z ∈ RN) f2(z) = ψ(z) + ι[xmin,xmax]N (z),
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and the proximity operator is evaluated using the following algorithms:

TV SLTV TGV TVSG

Dual forward-backward

[Combettes et al., 2011]
Algorithm 15

Primal-dual splitting

[Condat, 2013]

Alternating proximal

gradient [Ma, 2016]

Table 7.1: List of optimization algorithms used for computing the proximity operator
with respect to the different convex regularization functions.

7.3.4 Implementation of the proximity operator for kernel
estimation

The blur kernel h is estimated in Algorithm 24 by computing the proximity
operator of the sum of the data fidelity term and regularization function Θ (i.e.,
proxµk (Θ+Φ(xk+1,·))). Since there is no closed form expression for the latter proximity
operator, we resort to the parallel proximal algorithm (PPXA) in [Combettes and
Pesquet, 2008] to evaluate it.

7.3.5 Convergence analysis

The convergence properties of Algorithm 24 depends on the settings of parame-
ters (γkt , µk)t∈{1,...,T},k∈N and the preconditioning matrices (At,k)16t6T,k∈N. First, let
us state the following proposition related to the quadratic form of the data fidelity
term Φ.

Proposition 7.1 Let us define the symmetric definite positive matrix

B = µX>X + IdP , (7.53)

where IdP is the identity matrix of RP , µ ∈ (0,+∞) and X ∈ RTN×P is such that
Xh = (h ∗ xt)16t6T . Then, for every h ∈ RP and x ∈ RTN ,

proxµ (Θ+Φ(xk+1,·)) (h) = proxµ−1B,Θ(h− µB−1∇hΦ(x, h)), (7.54)

and, for every x ∈ RTN and h′ ∈ RP ,

Φ(x, h′) +∇h′Φ(x′, h′)>(h− h′) +
1

2
‖h− h′‖2

µ−1B > Φ(x, h). (7.55)
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Proof. Let q ∈ RP be the value of the proximity operator of Φ(x, ·) + Θ at h, i.e.,
q = proxµ(Θ+Φ(x,·)) (h). We have the following subdifferential inclusion:

h− q ∈ µ (∂Θ(q) +∇qΦ(x, q))

⇔ h− q ∈ µ ∂Θ(q) + µX>(Xq − y)

⇔ h− (IdP + µX>X)q + µX>y ∈ µ ∂Θ(q)

⇔ (IdP + µX>X)−1(h+ µX>y)− q ∈ µ (IdP + µX>X)−1∂Θ(q) (7.56)

Thus, by setting B = IdP + µX>X,

q = proxµ−1B,Θ (B−1(h+ µX>y))

⇔ q = proxµ−1B,Θ (h− µB−1X>(Xh− y))

⇔ q = proxµ−1B,Θ (h− µB−1∇hΦ(x, h)). (7.57)

Because of the quadratic form of Φ,

Φ(x, h′) +∇h′Φ(x′, h′)>(h−h′) +
1

2
(h−h′)>∇2

h′Φ(x′, h′)(h−h′) = Φ(x, h), (7.58)

where the Hessian of Φ(x′, ·) is

∇2
h′Φ(x′, h′) = X>X � X>X + µ−1IdP = µ−1B (7.59)

(� stands for the Loewner order). This yields (7.55).

This allows us to derive the following convergence result:

Theorem 7.2 Let us consider Algorithm 24. Assume that

(∀t ∈ {1, . . . , T}) 0 < inf
k∈N

γkt and sup
k∈N

γkt < 2, (7.60)

0 < inf
k∈N

µk and sup
k∈N

µk < +∞. (7.61)

Then, the sequence (xk, hk)k∈N converges to a critical point (x̂, ĥ) of F . Moreover,(
F (xk, hk)

)
k∈N is a nonincreasing sequence converging to F (x̂, ĥ).

Proof. It follows from Proposition 7.1 that the proximal step for kernel estimation
in Algorithm 24 at iteration k ∈ N reduces to a preconditioned forward-backward
iteration with the preconditioning matrix (µk)−1Bk where Bk = µkX>k Xk + IdP and
Xk ∈ RTN×P is such that, for every h ∈ RP , Xkh = (h∗xkt )16t6T . Algorithm 24 thus
appears as a special case of the block-coordinate variable metric forward-backward
algorithm studied in [Chouzenoux et al., 2016] where T + 1 blocks of variables are
involved (corresponding to the T frames and the kernel to be estimated). Indeed,
the cost function in (7.17) satisfies the assumptions required in [Chouzenoux et al.,
2016]:
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• it is a coercive function (since both variables x and h are constrained to belong
to compact sets) and it satisfies Kurdyka- Lojasiewicz inequality;

• f1 is a function with a Lipschitz continuous gradient;

• the function (x, h) 7→ f2(x) + Θ(h) is a proper convex lower-semicontinuous
function which is separable with respect to the blocks of variables;

• according to Section (7.3.2) and Equation (7.55), the curvature matrices (At,k)16t6T

and (µk)−1Bk used at each iteration k ∈ N provide quadratic majorant approx-
imations to the restriction of f1 to the current activated block.

In addition, since (xkt )16t6T,k∈N and (hk)k∈N are constrained to belong to bounded
sets, it follows from the expressions derived in Section 7.3.2 and the positive lower
bound already exhibited on (υt,k)16t6T,k∈N that, for every t ∈ {1, . . . , T}, there exists
(at,min, at,max) ∈]0,+∞[2 such that

(∀k ∈ N) at,minIdN � At,k � at,maxIdN . (7.62)

According to (7.61), there also exists (bmin, bmax) ∈]0,+∞[2 such that

(∀k ∈ N) bminIdP � (µk)−1Bk = X>k Xk + (µk)−1IdP � bmaxIdP . (7.63)

The convergence result then follows from [Chouzenoux et al., 2016, Theorem 3.1].

7.4 Experimental results

We assess in this section the performance of the proposed approach on artificially
and naturally degraded video sequences. We first begin with an evaluation on the
synthetic video sequences Foreman and Claire presented in Chapter 5, that have
been blurred using the four convolution kernels displayed in Figure 7.2, and to which
a Gaussian noise with zero mean, and variance equal to 2 have been added. Since
it is usually challenging to develop a blind deconvolution method that achieves
satisfactory results for both blur kernel and unknown video in a single step, we
proceed successively in our method with a blind, and then a non-blind stages.

Our evaluation is composed of two parts, the first part is dedicated to the blind
deconvolution step in-which we aim at identifying the blur kernel from the input
degraded sequence using Algorithm 24. Then, we continue with the so-called non-
blind deconvolution step where the observed degraded sequence and the identified
kernel are both employed to estimate the unknown sharp video sequence.
We also apply the proposed method to the real video sequences Tachan and Au
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théâtre ce soir supplied by INA, that have been introduced in Chapter 5. Neigh-
boring frames such that |` − t| = 1 have been taken into account in the temporal
regularization term M. The motion matrices (M`→t)`,t have been estimated from
the degraded sequence y, using the optical flow estimation algorithm from [Liu et al.,
2008]. It should be noted that all the experiments are initialized with the Dirac delta
function for the kernel identification step, and the input degraded video sequence
for both blind and non-blind steps.

(a) P = 1× 53 (b) P = 15× 15 (c) P = 7× 11 (d) P = 17× 17

Figure 7.2: Synthetic convolution kernels.

7.4.1 Blind video deconvolution step

Figure 7.3 shows the quadratic of error on kernel identification for the seven
regularization approaches presented in Section 7.2.2, and the four tested convolution
kernels. This error is evaluated as follows

Error = ‖h− ĥ‖2, (7.64)

where ĥ ∈ RP denotes the ground truth kernel and h ∈ RP is the estimated one.
Note that the parameters involved in the regularization approaches have been ad-
justed in each experiment in order to obtain the lowest possible error.

We observe in Figure 7.3 that the results vary slightly depending on the kernels
and video sequences. We can notice that the TVSG achieves low errors regardless
of the kernel and the video sequence. The nonconvex regularizations achieve also
low errors on kernel identification in certain cases (e.g., kernels (a) and (c) with
Foreman sequence, and kernel (a) with Claire sequence). Nevertheless, they can
also fail in identifying the correct kernel possibly because of the existence of numer-
ous local minima, in addition, they are harder to adjust since they involve multiple
parameters, that may be quite different from a degraded sequence to another (see
Table 7.3). Note that the worst results in terms of kernel identification are usually
achieved by the SLTV regularization. This may be due to the fact that the latter
relies on second order derivative operators, that tend to over-smooth the images and
particularly the edges, resulting in an unsatisfactory kernel identification.
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It should be noted that the convex regularizations SLTV and TVSG are approxi-
mately 5 times slower than TV while TGV is about 10 times slower. Besides, the
nonconvex regularizations are comparable with TV in terms of computational cost
by iteration. Moreover, SOOT-TV leads to a slower convergence compared to the
other nonconvex penalties.

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(a) Foreman sequence

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(b) Claire sequence

Figure 7.3: Performance in terms of error on kernel identification with respect to the
different regularizations and blur kernels, from left to right: TV, SLTV, TGV, TVSG,
SOOT-TV, log-TV, Welsch-TV.

Table 7.2 illustrates the gap between the best and worst identification quality scores
with respect to the two synthetic sequences and the four convolution kernels.
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Sequences Kernel (a) Kernel (b) Kernel (c) Kernel (d)

Foreman

Worst

Best

9.94× 10−4

(SLTV)

1.98× 10−4

(SOOT-TV)

8.92× 10−3

(TGV)

7.8× 10−3

(Welsch-TV)

3.28× 10−2

(SLTV)

1.41× 10−2

(log-TV)

6.13× 10−2

(SOOT-TV)

1.73× 10−2

(TVSG)

Claire

Worst

Best

3.78× 10−3

(TV)

2.55× 10−3

(Welsch-TV)

9.32× 10−3

(SLTV)

6.93× 10−3

(TVSG)

3.83× 10−2

(SLTV)

1.84× 10−2

(TV)

5.05× 10−2

(SLTV)

3.14× 10−2

(TVSG)

Table 7.2: Gap between the best and worst kernel identification scores.

7.4.2 Non-blind video deconvolution step

Let us now investigate the performance of the previous regularizations in the
context of non-blind video deconvolution. For each kernel, the identified one with
the lowest error is selected for performing non-blind deconvolution on the input de-
graded sequences. To this aim, we resort to the same optimization strategy given
by Algorithm 24, where we omit the kernel identification step since it is assumed to
be known, as shown by Algorithm 25. For these experiments, the parameters are
again adjusted so that the best SNR is obtained. Figures 7.4 and 7.5 illustrate the

Algorithm 25 Non-blind video deconvolution

Initialization:

Let h ∈ RP be the identified kernel

For every k ∈ N, γkt ∈ ]0, 2[

for k = 0, 1, . . . do

for t = 1, . . . , T do

x̌t,k =
(
xk+1

1 , . . . , xk+1
t−1 , x

k
t , x

k
t+1 . . . , x

k
T

)
x̃kt = xkt − γkt A−1

k

(
∇xtf1(x̌t,k, h)

)
xk+1
t = prox(γkt )−1Ak,f2

(
x̃kt
)

end for

end for

restoration quality in terms of SNR and MOVIE [Seshadrinathan and Bovik, 2010],
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for the different regularization approaches.

The performance in terms of images quality are much more stable compared to
the errors on kernel identification. High SNR scores are usually obtained using the
TGV and TVSG regularizations, and in some cases by TV and log-TV. Moreover,
the lowest SNR are usually obtained with the SLTV regularization and by some
nonconvex regularization such as the Welsch-TV (e.g., kernel (a) for Foreman and
Claire sequences). The regularizations that have achieved the best scores in terms of
restoration quality with respect to SNR and MOVIE are displayed in Tables 7.4 and
7.5, respectively. The latter emphasizes the good performance of some nonconvex
regularizations. Figures 7.7 and 7.8 show images taken from Foreman and Claire
sequences respectively. We present some frames from the degraded sequences and
the corresponding restored frames with the best regularizations in terms of SNR. We
can observe from the above figures and tables that the proposed method achieves
good performance in terms of video restoration quality, where a gain up to 7 dB is
obtained.

Sequences Kernel (a) Kernel (b) Kernel (c) Kernel (d)

Foreman

Degraded

Restored

28.72 dB

33.60 dB

(TVSG)

22.72 dB

26.90 dB

(TVSG)

21.58 dB

26.64 dB

(TGV)

19.88 dB

24.83 dB

(TV)

Claire

Degraded

Restored

26.99 dB

30.84 dB

(TVSG)

22.40 dB

28.35 dB

(log-TV)

20.49 dB

27.67 dB

(log-TV)

20.04 dB

27.17 dB

(TVSG)

Table 7.4: Performance of the best non-blind deconvolution methods in terms of SNR.

Sequences Kernel (a) Kernel (b) Kernel (c) Kernel (d)

Foreman

Degraded

Restored

2.03×10−4

7.7×10−5

(SOOT-TV)

1.58 ×10−3

4.82×10−4

(SOOT-TV)

2.41×10−3

1.17×10−3

(TV)

3.12×10−3

1.83×10−3

(SOOT-TV)

Claire

Degraded

Restored

2.04×10−3

5.28×10−4

(TVSG)

9.52×10−3

2.9×10−3

(Welsch-TV)

1.18×10−2

3.32×10−3

(log-TV)

1.19×10−2

3.67×10−3

(TGV)

Table 7.5: Performance of the best non-blind deconvolution methods in terms of MOVIE.
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Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(a) Foreman sequence

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(b) Claire sequence

Figure 7.4: Performance in terms of SNR with respect to the different regularizations
and blur kernels, from left to right: TV, SLTV, TGV, TVSG, SOOT-TV, log-TV, and
Welsch-TV.

7.4.3 Real Data

We have applied our blind deconvolution method to the interlaced real sequences
Tachan and Au théâtre ce soir provided by INA. The odd and even fields of each
frame are extracted and both blind and non-blind deconvolution stages are per-
formed on them. Once the restored fields are obtained, they are merged in order to
reconstruct a deblurred interlaced sequence. The estimated kernels with respect to
the different regularization approaches are displayed in Figure 7.6.

Since no ground truth is available for the real sequences, and based on visual
inspection on the videos from the blind deconvolution step and the comparison of
the regularizations on the synthetic sequences, we select the kernels estimated with
SOOT-TV and log-TV regularizations for Tachan and Au théâtre ce soir se-
quences respectively, for the non-blind deconvolution step. Moreover, we employ in
the second step the spatial regularizations that have achieved the best performance
on synthetic data, namely TGV, TVSG and log-TV. Figures 7.9, 7.10, 7.11 and 7.12
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Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(a) Foreman sequence

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(b) Claire sequence

Figure 7.5: Performance in terms of MOVIE with respect to the different regularizations
and blur kernels, from left to right: TV, SLTV, TGV, TVSG, SOOT-TV, log-TV, and
Welsch-TV.

illustrate images taken from the input degraded sequences and the restored ones
with the above-listed regularizations. One can notice the enhancement of the sharp-
ness and the visual quality of the restored images, and the attenuation of several
artifacts such as the ghost effect in Au théâtre ce soir sequence.
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Figure 7.6: Identified blur kernels (P = 101) with the different regularization approaches:
Tachan (left), Au théâtre ce soir (right).

SNR = 28.72 dB SNR = 22.72 dB SNR = 21.58 dB SNR = 19.88 dB

SNR = 33.60 dB SNR = 26.90 dB SNR = 26.64 dB SNR = 24.83 dB

Figure 7.7: Foreman sequence: images from the degraded sequence (top), corresponding
restored images with the best choice of spatial regularizations in terms of SNR (bottom).
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SNR = 26.99 dB SNR = 22.40 dB SNR = 20.49 dB SNR = 20.04 dB

SNR = 30.84 dB SNR = 28.35 dB SNR= 27.67 dB SNR = 27.17 dB

Figure 7.8: Claire sequence: images from the degraded sequence (top), corre-
sponding restored images with the best choice of spatial regularizations in terms of
SNR (bottom).

7.5 Conclusion

We have presented in this chapter a new variational method for blind video
deconvolution. Our approach relies on the minimization of a penalized criterion
to enhance the restoration quality. Our iterative algorithm alternates between two
steps, namely a video estimation step followed by a kernel identification stage, which
makes the proposed algorithm well adapted to both blind and non-blind schemes.
The versatility of the proposed method allows us to consider a temporal regular-
ization associated with a large number of convex and nonconvex spatial regulariza-
tion strategies that are usually employed for solving image and video restoration
problems. The experimental results on both synthetic and real data revealed that
our method achieves good results in both blind and non-blind video deconvolution
problems, depending on the chosen spatial regularization and the considered prob-
lem (blind/non-blind deconvolution). This approach could be further accelerated
through preconditioning and/or an adaptation for an implementation on parallel
computing architectures, as seen in the previous chapters.
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(a) Tachan sequence

(b) Au théâtre ce soir sequence

Figure 7.9: 4-th and 9-th frames from the input degraded and interlaced sequences.
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(a) TGV regularization

(b) TVSG regularization

(c) log-TV regularization

Figure 7.10: Tachan sequence: 4-th and 9-th frames from the restored sequences with
the best spatial regularizations in non-blind deconvolution.
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(a) TGV regularization

(b) TVSG regularization

(c) log-TV regularization

Figure 7.11: Au théâtre ce soir sequence: 4-th and 9-th frames from the restored
sequences with the best spatial regularizations in non-blind deconvolution.
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(a) Tachan sequence

(b) Au théâtre ce soir sequence

Figure 7.12: Zoom on part of images, from left to right: degraded sequence, restored
sequence with TGV, restored sequence with TVSG, restored sequence with log-TV.
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- Chapter 8 -

Conclusion

Contributions

This thesis was dedicated to the proposal of new video restoration methods with
a particular emphasis on the contents of old television archives. As we have seen,
video restoration issues can be expressed as inverse problems whose solution is ob-
tained by minimizing an objective function composed of several terms with different
mathematical properties. Thereby, we proposed in this thesis different optimization
methods that can handle efficiently a broad range of video restoration problems.

When the optimization problem is nonsmooth, the proximity operator appears
as the appropriate tool. Hence, we have first considered the problem of computing
the proximity operator of a sum of convex functions composed with arbitrary linear
operators. We have developed a new primal dual splitting algorithm, called dual
block-coordinate forward-backward, that resorts to the dual formulation of the prob-
lem, to which forward-backward iterations are applied by performing a gradient step
on the smooth part of the criterion, and a proximal step on its nonsmooth part. Our
algorithm takes advantage of primal-dual methods since it does not require any lin-
ear operator inversion, which turns to be of great interest when the latter are of high
dimension. Moreover, the proposed algorithm relies on a block-coordinate strategy
where at each iteration, only a subset or a “block” of the overall data is processed
according to a quasi-cyclic rule, which is very useful from an implementation point
of view since it reduces the memory requirements of the algorithm. The convergence
properties of the proposed algorithm have been analyzed and established for both
generated primal and dual iterates.

The application to a problem of jointly deinterlacing and deblurring video se-
quences demonstrates the good performance of the proposed algorithm. In the
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interlaced television transmission standard, only the odd/even rows of two succes-
sive frames are preserved and then merged to reconstruct a single frame. Hence,
we aim at recovering the discarded even/odd rows of each frame, while preforming
a deconvolution operation. To do so, we have proposed a variational formulation
of the problem that relies on both spatial and temporal regularizations. We have
compared several variants of the dual block-coordinate algorithm to alternative al-
gorithms in the literature and we have shown that the proposed method achieves
satisfactory performance in terms of restoration quality on both synthetic and real
videos. In terms of convergence speed, thanks to the block-coordinate approach and
the use of preconditioning matrices, a speed up of factor 18 was reached.

In the second part of this thesis, we focused on the development of an asyn-
chronous algorithm based on the dual block-coordinate forward-backward algorithm.
The asynchronous algorithm is implemented on a distributed architecture having a
given number of independent computing units. In the asynchronous framework, each
function composing our objective function is considered as locally related to a single
computing unit. However, a consensus constraint has to be imposed in order to
ensure the convergence toward an aggregate solution. This consensus is obtained by
designing a suitable communication strategy between the computing units, defined
by a connected hypergraph. Moreover, in order to maintain good performance of
the proposed distributed algorithm, a close attention has been paid to the frequency
and the amounts of data to transfer. This requirement is mandatory to achieve a
good acceleration factor.
We have implemented our distributed algorithm on a multicore architecture using
the Message-Passing Interface “MPI” for the management of inter-processors com-
munication. We have designed a communication strategy in-which the images com-
posing the video sequence are equally partitioned over the computing units. These
units run the proposed asynchronous algorithm in an independent manner and com-
municate with neighbouring units only. Numerical experiments on the problem of
video sequences denoising show that our algorithm achieves satisfactory and promis-
ing results in terms of acceleration gain regarding the number of available computing
units.

Finally, we have considered the problem of blind video deconvolution, that con-
sists in estimating both the blur filter and sharp video sequence from an observed
and degraded sequence. In this context, the associated inverse problem is blind
and severely ill-posed so that regularization on both video sequence and convolution
kernel are required. We have proposed a formulation as a nonconvex optimization
problem and developed an efficient algorithm that alternates between a video esti-
mation step and a kernel identification step until reaching a suitable solution. The
major advantage of our method is that it has the ability of handling various recent
regularization approaches having different mathematical properties. We have pro-
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vided numerical experiments and comparison on synthetic and real video sequences
with multiple convolution kernels. We have considered several convex and nonconvex
spatial regularization functions and compared their performance on both synthetic
and real video sequences.

Perspectives

The work carried out during this thesis opens the door to many perspectives.
We will cite a few of them in the following.

Joint blind deconvolution and super-resolution method

We have proposed in Chapter 5 a joint deconvolution and super-resolution method
for video sequences, while we have addressed the problem of blind video deconvo-
lution in Chapter 7. An interesting perspective of this thesis would be to develop
a combined blind video deconvolution and super-resolution method, that seeks to
identify both the blur filter and the high resolution video sequence from the input de-
graded low resolution video. Most of the works in image and video super-resolution
are non-blind, i.e., they assume that the blur kernel is known or can be neglected.
This assumption is clearly non realistic since blur always degrades the images during
the different images acquisition stages.
The design of such an approach could be based on an extension of our blind decon-
volution method, by introducing the downsampling operator S of Chapter 5 to the
objective function of Chapter 7, as follows

minimize
x∈RTN ,h∈RP

(
F (x, h) =

1

2

T∑
t=1

‖S(h ∗ xt)− yt‖2 + Ψ(x) + Θ(h)

)
,

and solving the resulting problem with Algorithm 24 of Chapter 7.

Full color video processing

A classical way to perform deconvolution and/or super-resolution on RGB im-
ages or videos is to either process the luminance component only, or to apply the
method to the three channels in an independent manner. The luminance compo-
nent is obtained by converting the RGB video to the YCbCr model, afterwards, the
chrominance components can be omitted or softly processed, as we have seen in the
thesis where we have applied a small median filter of size 3×3 on the “Cb” and “Cr”
channels. Both of these methods are sub-optimal since they do not fully exploit the
correlation across the color bands. Thereby, another approach that could improve
the restoration results would be to process the three RGB channels in a single step
[Chierchia et al., 2014; Mousavi and Monga, 2017]. The underlying model should
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include in this case a new regularization term that maintains the correlation between
the three channels in the spatial or gradient domains, e.g., using `1 or `2 norm.

Motion estimation

We have assumed in this thesis, that the motion fields relating neighbour frames
are pre-computed over the input degraded images, for all our numerical experiments
on video restoration. This strategy represented a good trade-off between the com-
putation overhead (cost) and the restoration quality of the estimated sequences.
However, this remains a rough approximation of the displacements between the
frames, hence, we propose as a prospect to include the estimation and the refine-
ment of the motion operators (M`→t)(`,t)∈{1,...,T}2 within our method.
Motion fields estimation has been extensively studied in the literature, especially for
multi-frames super-resolution [Sroubek and Milanfar, 2012; Héas et al., 2016]. This
can be achieved using a block matching technique [Kanj et al., 2015], or by enforcing
some non-negative function of (M`→t)(`,t)∈{1,...,T}2 to be small, More specially, it as-
sumed that the sought motion operators are sparse in some representation, such as
the gradient domain. It should be noted that the underlying optimization problem
is nonconvex, and only a convergence towards a local minimum can be guaranteed,
because of the coupling term relating the frames and motion operators. The un-
derlying problem could be solved using an alternating strategy similar to the one
of Algorithm 24, that would alternate between the video restoration step and the
motion operators estimation step.

Further investigation and extension of the distributed algo-
rithm

The work that we have presented in Chapter 6 offers news and various prospects
in both practical and theoretical aspects. A short-term perspective would be to
evaluate our algorithm on more powerful architectures that are dedicated to parallel
computing with a larger volume of data. This will allow to further investigate the
acceleration gain provided by our method and its saturation threshold. We may also
further optimize our Julia implementation, or rewrite our code with other program-
ming languages such as C++ combined with OpenMP and OpenMPI. Moreover, it
would be interesting to employ such a framework in the blind deconvolution scheme.
Each computing unit would handle its own set of images and the associated con-
volution kernel. However, the latter is assumed to be the same for all the images
composing the video sequence. Hence, the work would involve the design and the
study of an efficient communication strategy, with a suitable synchronization scheme.
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J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique.
Princeton University Bulletin, 13:49–52, 1902. 9

D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via
spectral graph theory. Appl. Comp. Harm. Anal., 30(2):129–150, Mar. 2011. 8

G. Harikumar and Y. Bresler. Exact image deconvolution from multiple FIR blurs.
IEEE Trans. Image Process., 8(6):846–862, Jun. 1999a. 20, 21

G. Harikumar and Y. Bresler. Perfect blind restoration of images blurred by multiple
filters: Theory and efficient algorithms. IEEE Trans. Image Process., 8(2):202–
219, Feb. 1999b. 20

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional
networks for visual recognition. In IEEE Eur. Conf. Comput. Vis. (ECCV 2014),
pages 346–361, Zurich, Switzerland, 6-12 Sept. 2014. 26

P. Héas, A. Drémeau, and C. Herzet. An efficient algorithm for video superresolution
based on a sequential model. SIAM J. Imaging Sci., 9(2):537–572, Jan. 2016. 68,
148

D. R. Hunter and K. Lange. A tutorial on mm algorithms. Amer. Stat., 58(1):30–37,
Feb. 2004. 41

M. Irani and S. Peleg. Super-resolution from image sequences. In IEEE Conf.
Pattern Recognt. (ICPR 1990), pages 115–120, Atlantic Citys, USA, 16-21 Jun.
1990. 22

F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem. Explicit convergence rate of
a distributed alternating direction method of multipliers. IEEE Trans. Autom.
Control, 61(4):892–904, Apr. 2016. 86

M. W. Jacobson and J. A. Fessler. An expanded theoretical treatment of iteration-
dependent majorize-minimize algorithms. IEEE Trans. Image Process., 16(10):
2411–2422, Oct. 2007. 40



Bibliography 163

M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I.
Jordan. Communication-efficient distributed dual coordinate ascent. In Adv.
Neural Inf. Process. Syst. (NIPS 2014), pages 3068–3076. Montréal, Canada, 8-13
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