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Spécialité de doctorat : Réseaux, information et communications

Thèse présentée et soutenue à Paris, le 19 mars 2019, par

JACQUES SAMAIN

Composition du Jury :

Marco Cagnazzo
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Abstract

Information-Centric Networking (ICN) is a promising architecture to address today
Internet multimedia traffic explosion and increasing user mobility: not only to
enhance the user’s quality of experience, but also to naturally and seamlessly
extend video support deeper in the network functions. However, to the best of our
knowledge, a thorough assessment of the benefits brought by ICN to multimedia
delivery has not been done yet. In this thesis, we aim at reducing the gap to such
assessment, by considering ICN in various multimedia delivery scenarios.

First, we assess the benefits brought by an ICN-based Dynamic Adaptive
Streaming (DAS) compared to TCP/IP based streaming, by means of an experi-
mental campaign that includes multiple channels (e.g., emulated Wi-Fi and LTE,
real 3G/4G traces), multiple clients (homogeneous vs heterogeneous mixture, syn-
chronous vs asynchronous arrivals) and carefully selected DAS adaptation logics
to cover the broad families of available adaptation algorithms. We also warn about
potential pitfalls that are nonetheless easily avoidable.

Second, we show how network assistance helps improving the users’ quality
of experience. To do so, we leverage the in-network caching feature of ICN and
propose a simple periodical network signal from the cache (i.e., per-quality hit
ratio) to be exploited by DAS adaptation logic to enhance further the user’s quality
of experience by avoiding the known cache-induced quality oscillations. We confirm
the soundness of our approach through experiments.

Finally, as live multimedia delivery is gaining momentum, we propose hICN-
RTC by integrating hICN (hybrid ICN), an ICN-in-IP solution, to WebRTC and
we design RICTP (Realtime Information Centric Transport Protocol), a content-
aware transport that minimizes the communication latency. Although still in de-
velopment, the results we gathered from early experiments are promising as they
show that hICN-RTC scales with the number of active speakers rather than the
total number of participants.
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Résumé

Les réseaux centrés sur l’information (ICN) sont une architecture prometteuse
pour faire face à l’explosion du trafic multimedia sur internet et à la mobilité crois-
sante des utilisateurs: non seulement ICN peut améliorer la qualité d’expérience
de l’utilisateur, mais ICN peut également étendre naturelle et de façon transpar-
ente la prise en charge du trafic vidéo dans les fonctions réseau. Cependant, à
notre connaissance, une évaluation approfondie des avantages apportés par ICN à
la diffusion multimédia n’a pas encore été réalisée. Dans cette thèse, nous voulons
réduire l’écart qui nous sépare d’une telle évaluation en prenant en compte ICN
dans divers scénarios de diffusion multimédia.

Tout d’abord, nous évaluons les avantages apportés par du DAS (Dynamic Ad-
aptive Streaming) basé sur ICN par rapport au streaming basé sur TCP/IP, au
moyen d’une campagne expérimentale comprenant plusieurs canaux (des émula-
tions Wi-Fi et LTE, des traçes 3G/4G), plusieurs clients (mélange homogène et
hétérogène, arrivées synchrones et asynchrones) et des logiques d’adaptation DAS
soigneusement sélectionnées pour couvrir les deux grandes familles d’algorithmes
disponibles. Nous mettons aussi en exergue les pièges potentiels qui sont néanmoins
facilement évitables.

Ensuite, nous montrons comment l’assistance du réseau contribue à améliorer
la qualité d’expérience des ultilisateurs. Pour ce faire, nous tirons parti de la fonc-
tionnalité de mise en cache réseau d’ICN et proposons un signal réseau simple
envoyé périodiquement par le cache à exploiter par l’algorithme d’adaptation DAS
pour optimiser la qualité d’expérience de l’utilisateur en évitant le phénomène bien
connu des oscillations induites par le cache. Des expériences nous permettent de
valider le bien-fondé de notre approche.

Enfin, puisque la diffusion multimedia en direct gagne du terrain, nous pro-
posons hICN-RTC, en intégrant hICN (hybrid ICN), une solution ICN-dans-IP, à
WebRTC, accompagné du protocole RICTP (Realtime Information Centric Trans-
port Protocol), un protocole de transport basé sur le contenu, qui minimise la
latence. Bien que toujours en développement, les résultats des premières expéri-
ences sont prometteurs car ils montrent que le trafic induit par hICN-RTC ne croit
qu’avec le nombre de locuteurs actifs plutôt qu’avec le nombre total de participants.
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Chapter 1

General Introduction

1.1 Video streaming to shape future networks

Video streaming, and more generally multimedia streaming over the internet, has
gained tremendous popularity in the last few years, and is most likely to be the
predominant application in the future years. Indeed, according to Cisco VNI fore-
cast [104], in 2022, 82% of the IP traffic is expected to be video. This increase
of traffic goes hand in hand with ever evolving video services: video contents are
now moving from Full HD (FHD) to Ultra HD (UHD, or 4K) or even 8K resol-
ution, while Virtual and Augmented Reality equipments are emerging, with high
bandwidth requirements. Furthermore, still according to Cisco VNI forecast, two-
third of all Internet traffic will be generated from wireless and mobile devices,
supported by heterogeneous and high speed 5G wireless access. This corroborates
the observed shift in video consumption: from TV broadcasted programs, we are
switching to streaming sessions over connected devices such as smartphones, tab-
lets and laptops relying on social platforms. This consistent move towards online
viewing has been illustrated during the last Rio 2016 Olympic games where NBC
claimed that “the first six days of [their ] Rio coverage generated 153.8 million ‘so-
cial media engagements’, 10 times larger than the total of NCAA Basketball March
Madness – held over 19 days – and outpaced the 32-day total of the entire 2014
soccer World Cup in Brazil”1. These factors, altogether, drive future 5G networks
design to meet new mobile video usage with very-high bandwidth requirement
under ultra-low latency constraints.

More specifically, these factors highlight the critical role of future 5G networks
in the support of Dynamic Adaptive Streaming (DAS). Here, DAS refers to the
various techniques that have emerged over the last years to realize an efficient mul-

1
https://www.kark.com/road-to-the-olympics/new-multiplatform-media-

consumption-drives-nbcs-olympic-strategy/530225621

1

https://www.kark.com/road-to-the-olympics/new-multiplatform-media-consumption-drives-nbcs-olympic-strategy/530225621
https://www.kark.com/road-to-the-olympics/new-multiplatform-media-consumption-drives-nbcs-olympic-strategy/530225621


Chapter 1. General Introduction 2

timedia delivery over the Internet, leveraging HTTP in most cases: many popular
ones are proprietary (e.g., Microsoft HSS, Apple HLS, Adobe HDS), while MPEG
Dynamic Adaptive Streaming over HTTP (DASH) recently became a standard.
DAS techniques rely on segmenting the video in several segments of equal tem-
poral length and encode each segment at different qualities (e.g., various resolu-
tions, various video bitrate). The client then requests the segments at the quality
that best matches its characteristics (both internal, such as her screen resolution,
and external, such as network condition). DAS techniques were initially designed
for CDN/OTT content delivery, and their interactions with the underlying network
has been only superficially studied so far. However, in a 5G environment where
mobility and heterogenous network access are important features, DAS interac-
tion with the network along with providing caching and computing capabilities to
the network edge should be considered in order to enable efficient mobile video
delivery.

In parallel, the Internet usage has significantly evolved over the past decades,
resulting in a mismatch between Internet usage and its architecture: on the one
hand, today’s Internet usage is mostly centered on information dissemination and
retrieval. Users upload and watch more and more multimedia contents on social
platforms, such as YouTube, Facebook or Netflix, turning the network in an instru-
ment to connect people with content. Moreover, the popularity of certain contents
(e.g., Olympic Games, the soccer World Cup, the super Bowl, ...) results in having
millions of users requesting the same content at the same time. On the other hand,
the network architecture still relies on the founding host-to-host IP architecture
principles, resulting in an end-to-end model that appears to be unsuited to deal
with multimedia delivery.

To overcome this mismatch, over-the-top (OTT) solutions, such as Content
Delivery Networks (CDNs) and peer-to-peer networks, have been designed and
widely deployed, carrying a large fraction of today’s Internet traffic. The drawback
of using such overlay models lies in the added complexity in the network ecosystem
as many application-layer technologies and players, such as CDN providers, ISP
and content providers, are involved, network management is also harder to do
from either a technical or business point of view. This complexity is illustrated
by the important technical inefficiencies that arise from the overlay model, such
as mobility management, dynamic content-to-location bindings, multicast, multi-
homing, etc.

1.2 ICN: a promising architecture

The tremendous stress put on the network by the ever increasing multimedia data
being transmitted over the Internet led, over the last years, to the emergence of a
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new research domain, called Future Internet, to investigate various approaches to
tackle actual network inefficiencies and to handle the traffic increase.

Among the Future Internet proposals, Information-Centric Networking (ICN)
offers a new networking paradigm leveraging content-awareness at the network
layer. More specifically, ICN is based on location-independent network names: each
content is addressed over the network by a unique network name, rather than being
addressed using locations (e.g., the IP address of the hosting server). The network
operations in ICN are then driven by content names, rather location identifiers and
thus enable a user-to-content communication. Addressing the content directly by
its network name allows for a more agile connectionless transport model, driven by
the end-user and not bounded to a network addressable interface. As a result, this
simplifies the management of mobile multi-homed communications and brings to
the ISPs a finer-grained control over carried data. Finally, thanks to the content-
awareness at the network level, ICN routers are able to route Interest packets
(requests for a network name specified in the packet) towards the nearest content
replicas, exploiting dynamic in-network caches and adaptive request routing for a
more efficient and cost-effective data delivery.

Interestingly enough, DAS techniques and ICN share some characteristics, such
as the pull-based approach: in both cases, it is the client that initiates the content
retrieval, by sending an Interest packet (ICN case) or an HTTP GET request (DAS
case); or the location-independent feature: in DAS, the segments are not necessarily
located on the same server and can potentially be retrieved from any location, thus
enabling potential multi source locations. To ensure the effective HTTP download
of the segment, its location is given to the client through a manifest file, but it is
needed by the nature of HTTP transfer over TCP/IP rather than a necessity from
DAS techniques. Therefore, ICN appears as a natural candidate to support the
evolution of multimedia delivery by leveraging content-aware capabilities at the
network level to achieve a joint video/network optimization, as there are several
features offered by ICN that are very appealing for DAS, such as network-level
caching, seamless mobility support or multi-path forwarding.

1.3 Thesis statement

The contribution of this thesis is threefold. First, this thesis proposes a com-
prehensive comparison of DAS systems over a TCP/IP stack versus an
ICN stack. The goal is here to assess the benefits that can be brought by an ICN
networking stack with respect to a TCP/IP one, along with the potential pitfalls
to avoid. To do so, as DAS performance are influenced by the adaptation logics, we
selected three adaptation logics from the state-of-the-art that are representative of
the whole design space, and we then assess the benefits coming from ICN features,
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such as enhanced rate adaptation, load-balancing on heterogeneous interfaces and
in-network loss detection and recovery. We show (Chapter 3) that DAS perform-
ance over an ICN stack can easily match and possibly significantly outperform
(especially in a multi-homed scenario) DAS performance over a TCP/IP stack.
We also show that the ICN features should be used jointly in order to achieve the
best performance, while DAS performance over an ICN stack with only selected
features (for example an enhanced rate adaptation without in-network loss detec-
tion and recovery) would result in a performance comparable or worse than the
DAS performance over a TCP/IP stack. This comparison is only focused on the
client-side, and does not consider the interactions with the network, other than
load-balancing done at the client over heterogeneous interfaces, as it would be the
case in a multi-homed client.

Secondly, this thesis investigates and proposes a network-assisted ap-
proach to DAS, by investigating further a particular ICN feature, in-network
caching, and how it can be leveraged to improve DAS performance. Specifically,
we explore (Chapter 4) the boundaries of the design space for network and client
interactions, highlighting both the benefits that come from in-network caching and
its well-known drawbacks, such as the cache-induced quality oscillations. We then
design a network-aware evolution of an existing adaptation logic (AdapTech, [15]),
that leverages a simple signal from the network (per-quality cache hit-rates) to take
educated decisions at the client-side. We confirm the soundness of this approach
by an experimental campaign that shows a significant increase of the DAS per-
formance when using our network-aware enhanced adaptation logic with respect
to a network-blind approach, where decisions are taken solely on client information
(such as estimated throughput and buffer level).

Third, we investigated DAS usage in an ICN network, but DAS techniques
do not fit all the video use cases over the Internet. More specifically, the latency
between the content source and the clients induced by a DAS system is typic-
ally of, at least, a few seconds, imposed by the chunk granularity. Therefore, DAS
techniques are not usually used for ultra low-latency media streaming, when real-
time latency is required for both media distribution and live interaction/feedback
from the clients, such as online gaming, betting, auctioning services or simply
web-conferencing. In such use-cases, WebRTC (Web Real-Time Communication)
emerges as a promising option. This thesis explores the scalability benefits
of integrating ICN to WebRTC. Indeed, WebRTC was not designed for large
scale and thus, to confirm WebRTC as a credible candidate for low-latency multi-
media streaming, it requires to have some scalability guarantees. More specifically,
we (Chapter 5) design and implement a WebRTC system over hICN (hybrid ICN,
an incrementally deployable ICN-in-IP solution [97]), along with a new Realtime
Information Centric Transport Protocol (RICTP), a content-aware transport that
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minimizes the latency. We show that WebRTC and ICN together provide an ar-
chitecture that scales with content (i.e., the number of active media streams in a
video conference) rather than end hosts (i.e., the number of participants) which is
the case with WebRTC over IP.
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• [123] Jacques Samain, Giovanna Carofiglio, Michele Tortelli, and Dario
Rossi. A simple yet effective network-assisted signal for enhanced dash qual-
ity of experience. In Proceedings of the 28th ACM SIGMM Workshop on
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Conference paper
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ello, Michele Papalini, and Mauro Sardara. Enhancing mobile video delivery
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• [27] Giovanna Carofiglio, Jordan Augé, Luca Muscariello, Michele Papalini,
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2.1 Video Delivery

As the multimedia demand over the Internet increased over the years, video de-
livery techniques also evolved to meet with the new video requirements. From
broadcast TV, streaming video contents took over the Internet through the years
to finally become the predominant application in IP traffic: according to Cisco
VNI forecast [104], more than 82% of IP traffic will be video by 2022. Following
on from this, the video delivery techniques evolved over the years, to face the in-
creasing demand from the users. Broadly, video streaming over the Internet can be
divided into two categories, depending on the nature of the desired content: either
Video on Demand (VoD) or live content. In the VoD case, the content is already
fully produced (e.g., a movie) while in the live case, the content is produced while
the client is watching (e.g., a sport event) and therefore the latency between the
source and the client should be kept to a minimum (especially in the case of web-
conferencing). The next sections describe further the different delivery protocols
that can be used to address the different use-cases.

7
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2.1.1 Video on Demand

For VoD, the latency between the source and the client is not an issue, since the
content is already fully produced. There are several techniques to achieve VoD
delivery over the Internet. The simplest one is to download the full video at the
client side and then play it locally. The video is, in this case, treated as a data file
and is downloaded by the client using file transfer protocols such as FTP [112],
HTTP [41] or more recently using peer-to-peer protocols, such as BitTorrent [31].
However, these protocols were designed to download the video locally and not
to stream the video: with these, the client has to wait for the download to be
completed before being able to start watching the video. Therefore, the startup
delay, that is, the time elapsed between the decision to watch the video, e.g.,
the click on the play button, and the first frame of the video being displayed
to the user, is equal to, at minimum, the downloading time of the video and
therefore can be arbitrary long as it depends on the size of the video file, the
network characteristics (available throughput) and the protocol used (especially
BitTorrent for non-popular content). Furthermore, this requires to have locally the
whole video file, which can be of several GBs for UHD (4K) movies and thus can
create storage issues, especially on mobile devices such as smartphones or tablets.

To reduce the startup delay, HTTP progressive download was introduced: by
allowing the client to start the video playback before the download is completed,
the startup delay is significantly decreased. Naturally, this requires to have a linear
download of the video file (for instance, this cannot be achieved using BitTorrent,
as it allows to download chunks of video in random order) and it also requires the
video being encoded in a video format that allows a linear decoding of the video,
meaning that the decoding does not need to make a first pass on the whole video
file before starting. Although this reduces the startup delay, therefore bringing
the video quicker to the user, it introduces new challenges to address, such as
rebuffering events, that can have a tremendous impact on the user’s quality of
experience, as shown in [53]. Indeed, by starting the playback of the video before
the end of the download, the user assumes that the video downloading rate will
be equal or exceed the playout rate: for example, while one second of video is
played, at least one second worth of video will be downloaded. If the network
conditions change (e.g., a drop in the available throughput), the downloading rate
can drastically decrease, and thus the player will eventually run out of video data
to display, resulting in a rebuffering event: the video is frozen while the player waits
for data to be downloaded. Therefore, even though HTTP progressive download
efficiently reduces the startup delay, using it in a mobile environment where the
available bandwidth fluctuates would lead to rebuffering events during the playback
of the video, which would negatively impact the user’s quality of experience.

To take into account the network variations (and thus the resulting rebuf-
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fering events in HTTP progressive download), the last few years witnessed the
introduction of Dynamic Adaptive Streaming (DAS) techniques, proprietary solu-
tions such as Microsoft Smooth Streaming [142], Adobe HTTP Dynamic Stream-
ing (HDS) [12] and Apple HTTP Live Streaming (HLS) [101], while MPEG-DASH
(Dynamic Adaptive Streaming over HTTP) [130] was recently standardized. The
main idea behind these techniques lies in segmentation: instead of downloading the
full video at once, the video is divided into segments of equal temporal length and
segments are then retrieved by the clients. To make it more resilient to network
variations, several qualities (different resolutions, different video bitrates) of each
segment are encoded. Then, depending on its local characteristics (e.g., available
throughput), the client selects the segment quality that would best fit her needs.
More details on DAS techniques, and especially on MPEG-DASH, can be found
in section 2.2.

2.1.2 Live video streaming

In the case of live video streaming, the source is producing the media while the user
asks for it. The main goal is therefore to minimize the latency between the two while
providing a smooth quality of experience to the user. Albeit DAS techniques can
provide a good user’s quality of experience, the minimum latency they can achieve
is bounded by the segment granularity: a segment must first be fully encoded before
being available for download. To achieve low-latency streaming, several real-time
streaming protocols were developed, such as RTMP and RTP.

Real-Time Messaging Protocol (RTMP) is a protocol that was initially a pro-
prietary protocol, but was partially released in [105]. It was developed by Macro-
media (now owned by Adobe) for streaming multimedia content over the Internet.
RTMP is a TCP-based protocol that establishes persistent connections between
Flash players and servers. it splits multimedia streams into fragments of size dy-
namically negotiated between the two parties.

Real-time Transport Protocol (RTP) [126] is a protocol that provides end-to-
end real-time data (e.g., audio, video) delivery services in a push-based fashion.
Typically, RTP runs on top of UDP, but it can be used on top of other underlying
transport or network protocols. If the underlying protocol is supporting multicast,
then RTP also supports multicast distribution. Its primary goal is to support web-
conferencing (audio and/or video) and to do so, it had to accommodate to the
different media formats available and therefore, a payload type identification is
provided in the RTP header to indicate to the receiver the encoded format of the
data carried in this RTP packet. Furthermore, as a receiver may receive multimedia
contents from several sources, a synchronization source (SSRC) identifier is present
in the RTP header to uniquely identify the media source of this packet. The RTP
header also presents a sequence number, that is incremented by one for each RTP
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packet sent, for the receiver to detect packet loss and packet reordering. RTP is
only designed to transport media data, and thus relies on session establishment
protocols, such as SIP (Session Initiation protocol), RTSP (Real-Time Streaming
Protocol), or SDP (Session Description Protocol).

It is worth noting that while RTP achieves near real-time experience, it presents
some scalability issues: for instance, the rate adaptation, unlike DAS techniques,
does not rely on predefined and preprocessed video segments encoded at different
qualities that the user chooses, but is rather done dynamically and continuously,
relying on feedback from the receiver and the sender (e.g., packet loss, measured
latency, etc). Indeed, such algorithms, like Google Congestion Control (GCC) [55],
Network Aware Dynamic Adaptation (NADA) [145] and Self-Clocked Rate Adapt-
ation for Multimedia (SCReAM) [68] dynamically adjust the video encoding rate
at the sender. Consequently, when multiple users wish to see the same multime-
dia stream, the sender can either use (i) only one encoder or (ii) one encoder per
user. When the sender uses only one encoder, the resulting rate adaptation has
to take into account the feedback from all the users, resulting in the selection of
the worst encoding rate among the rates achievable based on the feedback of each
user taken separately, leading to a sub-optimal quality of experience for the users.
But when the sender uses one video encoder per user, although each encoder re-
ceives feedback from one user and can therefore pick the optimal encoding rate for
this user, the CPU load generated by the different encoders prevents this solution
to scale above a certain (small) number of clients. To mitigate this issue, recent
works [50, 108, 22] use Simulcast to limit the number of encoders at the sender
side, while increasing the quality of experience of the users.

Therefore, when some latency is allowed (tens of seconds between the source
and the playback at the user), e.g., typically when user’s interactions is not re-
quired, like sporting events or TV shows, large content distribution still relies on
DAS techniques rather than RTP as it offers better scalability performances since
it uses CDN infrastructures. Furthermore, as DAS techniques leverage HTTP,
NAT traversal is not an issue, while RTP-based streaming techniques need to rely
on other protocols to achieve NAT traversal, such as STUN [120], TURN [88] or
ICE [119].

2.2 MPEG-DASH

In this section, we give a detailed description of one particular DAS techniques,
MPEG-DASH (Dynamic Adaptive Streaming over HTTP) [130], that was recently
standardized. While the details concern only one DAS technique, the core ideas
behind are shared with the others. We first give a general overview of MPEG-
DASH (Section 2.2.1) and then we review the adaptation logics used by the clients
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Figure 2.1: Dynamic Adaptive Streaming over HTTP: end-to-end scheme, present-
ing the video player and the video server.

(Section 2.2.2).

2.2.1 General

Figure 2.1 presents the different parties at play in a DAS scenario: a video player
requests the video from a server over the Internet. As described in Section 2.1.1,
the multimedia content is divided, either physically (different files) or logically
(same files, but the player only requests part of the file by means of HTTP range
requests) into segments of equal temporal length1. Each segment is encoded at
different qualities (e.g., different video bitrates and/or video resolutions) and made
available on the server through HTTP standard compliant GET requests. To watch
the content, the player downloads the multimedia segments sequentially. Before
the downloading of a segment, the client uses local parameters, such as buffer
level (the number of segments it has downloaded but not yet played), throughput
estimation, screen size, to select the best quality at which to download the segment.
The quality is selected following an algorithm, called the adaptation logic, which

1Note that all the multimedia content (video and audio) is chunked into segments, therefore
either audio and video are interleaved and divided into segments carrying both audio and video
data, or they are separated into two different streams of segments, thus requiring the player to
download both video and audio segments and to synchronize them to ensure smooth playback.



Chapter 2. Background 12

Media Presentation Description

…

Period

Period

Period

Period

Adaptation Set

id=as-1; type=“video”

Adaptation Set

id=as-2; type=“video”

Adaptation Set

id=as-3; type=“audio”; lang=“en”

Adaptation Set

id=s; type=“subtitles”; lang=“en”

...

Adaptation Set

Representation

id=rep-1; bitrate=100Kbps

Representation

id=rep-2; bitrate=200Kbps

Representation

id=rep-3; bitrate=500Kbps

...

Representation

Init Segment

url=”http://vid.com/v/init.mp4”

Segment

url=”http://vid.com/v/seg1.mp4”

...

Figure 2.2: Media Presentation Description

allows the client to adapt its streaming experience to its capabilities (network
characteristics, buffer level, screen size, etc).

To select the best quality, the client needs to be aware of the available qualities
for a given content. Such information, like also the URLs of the segments and
their relationships to one another, are gathered in one XML file, called a manifest,
or, in the case of MPEG-DASH, a Media Presentation Description (MPD). This
manifest is stored at the server side, and is the first entity to be downloaded by the
client. It describes all the adaptation possibilities for a given video. In the MPEG-
DASH case, the MPD presents a hierarchical structure, as depicted in Figure 2.2.
It is divided into Period components, which describe a part of the content: each
Period has a start time and a duration and several Periods can be used to divide a
video into chapters, but it can also be used to insert advertisements in the content
without having to integrate the advertisement into the video first.

Each Period is divided into Adaption Sets, which contain the multimedia streams
(video, audio and subtitles/captions). While a single Adaptation Set may contain
all the media streams for the content, it is common to have different media streams
in different Adaptation Sets, one per media. Besides, a given media stream can be
described by several Adaptation Sets: for instance, the audio stream can be rep-
resented by different Adaptation Sets, one per available language, or per audio
channel format (mono, stereo, 5.1, etc).

Each Adaptation Set is further divided into Representations, describing all the
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available qualities for the media stream contained in this Adaptation Set. Since
the main goal of adaptive streaming is to match the media bitrate to the available
bandwidth, it is common to have only one Representation for audio and subtitles
streams, as the impact of these streams on the used bandwidth is low, while the
video stream offers several Representations, as varying the video bitrate and video
resolution can greatly impact the used bandwidth.

Finally, each Representation contains a list of Media Segments, which describes
the media segments that construct the media stream. The Media Segment contains
the URL associated to this segment, and, if the segments are stored in a single
file, a byte range. Switching between two Representations could be achieved at any
point in the video by requesting a Media Segment from another Representation,
however, due to coding dependencies, jumping from one Representation to another
at arbitrary positions could prove complicated. To avoid this, MPEG-DASH intro-
duces Stream Access Points (SAP), where a client can effectively switch between
Representations. The simplest and most common case is to have a SAP at the be-
ginning of each Segment, that way, the client can switch from one Representation
to another at the end of each Segment.

2.2.2 Adaptation logics

The main goal of an adaptation logic is to optimize a chosen metric: for example,
the simplest adaptation logic is to always select the lowest quality available, that
way, the startup delay and the rebuffering probability are minimized. Most of
the adaptation logics focus on optimizing the quality of experience of the client,
by relying on simple metrics such as average quality, number of quality switches,
rebuffering events, or more elaborated ones, such as linear combinations of simple
metrics. These adaptation logics take into account parameters from the client (local
parameters) and/or from network entities (e.g., cache, video server, see chapter 4
for more information).

The local parameters depend only on the client and its environment, such as its
screen resolution, the available bandwidth and the buffer level. These parameters
are then used by the adaptation logic to select the most fitting segment quality. For
example, if the screen resolution is FHD, then downloading 4K segments would
require downscaling by the video player, therefore yielding the same quality of
experience as downloading FHD segments, but would use more bandwidth, as 4K
segments are bigger with respect to FHD ones. Therefore the adaptation logic
would select a segment quality for screen resolutions up to FHD.

The dynamics of the video buffer level, i.e., the amount of video (given in unit
of time, usually seconds) that can be played at the client-side at a given moment
t, as found in the literature, is modelled as follows: when the video is playing, the
buffer (denoted by B(t)) is drained linearly, as shown in Eq. 2.1, and can not be
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negative, hence the presence of the Max function.

B(t+ �t) = Max(0, B(t)� �t) (2.1)

When a segment is fully downloaded, it is appended to the buffer, and thus its
duration (denoted by τ) is added to the video buffer, Eq. 2.2.

B(t+ �t) = Max(0, B(t)� �t) + τ (2.2)

Therefore, the variation of the buffer ∆(B) during the download of a segment can
be expressed as: ∆(B) = τ � ∆download, where ∆download is the downloading time
of the segment. From this, we see that the buffer depletes when the downloading
time is higher than the segment duration (∆download > τ) and the buffer increases
when the downloading time is less than the segment duration (∆download < τ).
Rebuffering events occur when the buffer depletes fully, B(t) = 0, at which point
the video player stops and waits for the next segment to be fully downloaded. Fi-
nally, the buffer has a maximum capacity, Bmax. When the buffer level reaches the
maximum capacity (B(t) = Bmax), the player stops downloading video segments
until there is room in the buffer (drained because the video is playing, or emptied,
e.g., the client wants to seek the video). This creates an ON-OFF downloading
pattern inherent to DAS systems and well described in the literature [58, 83].

There are numerous works in the DAS literature that focus on application-level
and client-side adaptation logics for the video bitrate [15,34,59,66,83,91,129,131,
141], and, more recently, on their systematic comparison in mobile networks [71].
While most of the DAS literature only considers TCP/IP as the underlying proto-
cols, some works consider in-network functionalities offered by an ICN paradigm
to support DAS [21,48,75,76,80,86,107,111,115]. The main goal of an adaptation
logic is to maximize the quality of experience of the user, by (a) minimizing the re-
buffering events, (b) maximizing the average quality of the video, (c) minimizinge
number of quality switches, (d) minimizing the start-up delay.

Tab. 2.1 presents a summary of the most relevant work in the literature, and
explicitly separates the work done in the TCP/IP domain (top) versus in the
ICN domain. Following a consolidated taxonomy [133], DAS adaptation logics can
be categorized into one of two big families: rate-based (RB) or buffer-based
(BB), meaning that the adaptation logic mainly2 relies on either the estimated
throughput or the buffer level to take a decision. This is referred to as “main
approach” in Tab. 2.1.

2Despite this coarse distinction, in all the surveyed adaptation logics, both metrics (i.e.,
throughput and buffer level) are often jointly considered in order to obtain a finer adaptation.
However, according to the importance that each metric has in the whole decision process, it is
still possible to classify the strategy of interest as either mainly RB or mainly BB.
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Table 2.1: State of the art in dynamic adaptive video streaming.
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BOLA [131] Experiments BB C C O O
AdapTech [15] Experiments BB M M M
ELASTIC [34] Experiments BB C O O O C O
BBA-x [59] Experiments BB C O O O C
Miller(’12) [91] Experiments BB C O O O C
BIEB [129] Heuristic BB C C/O O O O O
Essaili(’13) [38] Simulation INA M
QFF [44] Optimization INA O C O
Thang(’14) [133] Experiments Investigation M M M
Huang(’12) [58] Experiments Investigation M M
Thang(’12) [132] Experiments Investigation M M
Akhshabi(’13) [14] Experiments Investigation M M M
Dobrian(’11) [37] Conviva Measurements M M M
YouSlow [53] Chrome Measurements M M M M
xMPC [141] Optimization BB/RB C C O O C C
LCC [113] Optimization Offline O C/O

Pensieve [90] Experiments
Neural
Network

M M M C

IC
N

Lederer(’14) [76] Emulation Investigation M M

Lederer(’13) [75] Emulation Investigation M M M M
DASC [86] Simulation Investigation O C
Petrangeli(’15)
[107]

Simulation Investigation M M M

DASH-INC [48] Model Characterization M
Bath(’15) [21] Experiments INA M
INA [111] Simulation INA+BB C O
DASCache [80] Optimization Offline O C
Rainer(’16) [115] Simulation Investigation O C

Legend: O: objective metric; C: control metric; M: measured metric.
BB: buffer-based; RB: rate-based; INA: in-network adaptation.

Additionally, for each work we report in this table the tools adopted to design
the proposed DAS adaptation logic (or to carry out the proposed analysis), along
with a set of Key Performance Indicators (KPI), including buffer level, throughput,
quality switches, rebuffering events, start-up latency, fairness, etc., that are used
either as a control (C) knob, an objective (O) of the algorithm, or a measured
(M) metric. The following sections will give an overview of the full landscape, and
provide some details about a few adaptation logics that we select as representative
of each class. Specifically, we select Probe AND Adapt (PANDA) [83] (mostly RB)
and Buffer Occupancy based Lyapunov Algorithm (BOLA) [131] (mostly BB), as
they are very popular and often used as reference benchmarks in the literature,
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and AdapTech [15], which provides an equal balance between BB and RB classes.
In the following sections, the buffer level, at a given moment t, will be denoted

by B(t), j 2 J1, NK, will represent the jth representation, while bj will represent its
associated average video bitrate. Furthermore, eCk denotes the measured through-
put of the kth segment, the size of the kth segment in the jth representation will
be denoted by Sk,j and the average segment size for the jth representation will be
denoted by Sj.

Rate-based strategies (TCP/IP)

Rate-based (RB) algorithms [66, 83], as their names indicate, rely on using the
measured throughput of the last segment, eCk, as an estimate for the throughput
of the next segment bCk+1. Based on this knowledge, the adaptation logic can infer
the highest affordable quality to be requested, as the highest quality with a bitrate
less or equal to the estimated throughput,:

ArgMax
j∈J1,NK

(bj  bCk+1)

However, pure rate-based algorithms suffer from inefficiencies [58], such as re-
bufferings events, since the bitrate of the representations in the manifest is an aver-
age, some segments may be significantly bigger than the average size (Sk,j > τ⇥bj)
and therefore, the actual downloading time, given by: ∆download = Sk,j/ bCk (assum-
ing that the estimation is accurate), may be significantly longer than the estimated
one, \∆download = Sj/ bCk, and may be higher than the segment duration, thus de-
pleting the buffer and eventually leading to rebuffering events.

The throughput estimation can also be the source of some inefficiencies, such as
bandwidth underutilization or overestimation, which would in both cases lead to
bad quality of experience for the user: in the former, the client would get a poor av-
erage video quality with respect to the one it could have had and in the latter, the
client would get some rebuffering events and quality switches. Both underutiliza-
tion and overestimation cases derive from the ON-OFF downloading pattern. [58]
explores the bandwidth underutilization case and presents the downward-spiral
effect: when competing with a TCP flow, a DAS video client suffers from the ON-
OFF pattern. When the client is in an OFF period, the competing flow uses all the
available bandwidth, and when the client starts to download a new segment, i.e.,
enters an ON period, it never reaches its fair share of the bandwidth, because it
takes some time for the TCP slow-start to ramp up to it. From this, the resulting
throughput is low and thus, a pure rate-based adaptation logic tends to select low
qualities for the segments. The overestimation case can be observed when two or
more DAS players compete for bandwidth [13, 83]: due to the ON-OFF patterns
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of the different clients, one client can be the only one in the ON phase at a given
point, thus getting the full bandwidth instead of sharing it with the other clients.
This leads to an overestimation of the available throughput at the client level,
leading to the selection of a quality too high to be sustainable, which will either
induce rebuffering events or quality switches. Moreover, the ON-OFF pattern could
also lead to unfairness between the different competing DAS clients: some might
be forced to request a lower quality with respect to their fair share. Finally, the
short-term variations of the bandwidth can induce fluctuation in the throughput
estimates and thus leading to quality switches at the client.

Several proposals exist to address the aforementioned issues at client [83, 66],
server [14], and/or network [38, 44] points of view.

Buffer-based strategies (TCP/IP)

Buffer-based (BB) algorithms [15, 34, 59, 91, 129, 131] rely on the current buffer
occupancy B(t) to select the video quality.

Typically, buffer-based algorithms divide the buffer into multiple ranges and
take different actions, according to which range the current buffer level is currently
at. Generally, the lowest quality is requested when the buffer is almost empty
or below a minimum threshold Bmin as to avoid rebuffering events; while the
highest quality is requested when the buffer is above a maximum threshold Bup.
To handle the remaining cases (i.e., Bmin  B(t)  Bup), a proper function (e.g.,
monotonically increasing) is needed to map any possible combination between
buffer occupancy and requested video quality inside the feasible region. Segments
that accumulate into the buffer can act as a cushion to absorb the effects of small
bandwidth variations; however, if the mapping spacing between two consecutive
bitrates is too narrow (e.g., number of available qualities too high compared to the
buffer range), unwanted quality switches could arise.

Beyond single-stack client-based adaptation

As previously stated, an adaptive video streaming service might take advantage,
at a relatively low cost, from built-in features of Information Centric Network-
ing (ICN) [89]. For this reason, despite some initial work assessing the perform-
ance of rate-based algorithms for Named Data Networking (NDN) [76], most of
the literature on video streaming and ICN has proposed and investigated in net-
work adaptation mechanisms [21, 48, 75, 80, 86, 107, 111]. Studies range from the
possibility to dynamically select the best performing link (i.e., between 4G and
Wifi) when downloading a video segment in a mobile scenario [75] (thus reaching
better performance than the classic scenario with a single link), to the usefulness
of caching in the presence of multiple clients fetching the same content [86] (thus
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resulting in an increment of the retrieved video quality over time). The picture is
however far from being complete. For instance, some argue [107] that the presence
of in-network caching may favor the use of Scalable Video Coding (SVC) for an
ICN-based adaptive streaming service, since the layered approach could increase
the efficiency and the flexibility of the adaptation process (i.e., as base layers can
be prioritized over enhancement layers in order to guarantee a continuous video
playout if the latter ones cannot be retrieved). At the same time, others point out
that this could induce some inefficiencies, like quality oscillations [48, 21] due to
hit/miss events interfering with the bandwidth estimation process, or even client
starvation [111]. Possible solutions propose to increase the decisional and com-
putational power of intermediate nodes (e.g., by altering the media description
according to cached bitrates or transcoding the cached qualities [48], or by let-
ting ICN routers perform some form of access control [111]). However, when the
in-network adaptation envelope is pushed too far, scalability issues may be en-
countered (e.g., as in [80], where the orchestrating entity has to solve an Integer
Linear Programming (ILP) optimization problem).

2.3 Information-Centric Networking

Information-Centric Networking (ICN) is a novel networking architecture that was
introduced by [62]. It proposes a content-centric communication paradigm that
leverages location-independent data names along with a content-aware connec-
tionless transport. Namely, ICN is based on location-independent data names,
where each content is addressed over the network by a unique data name, rather
than by a location (e.g., the IP address of the content-hosting server). The data
retrieval is thus one of the key difference between ICN and traditional host-centric
networking as, in ICN, the data is retrieved using their names rather than their
locations. Moreover, thanks to content-awareness carried by content names, an
ICN network is able to route content requests towards nearest content replicas,
exploiting in-network caching and adaptive request routing to achieve a more ef-
ficient and cost-effective data delivery. The following sections expand on the key
aspects of an ICN architecture, such as Named Data (Section 2.3.1), name-based
routing and forwarding (Section 2.3.2)

2.3.1 Named Data

The core idea of ICN is to use content-awareness directly at the network-layer
to perform network operations (such as forwarding and caching) on topology-
independent data names rather than on IP addresses. To achieve this, each Data
(video, file, sensor reading, etc) is divided into a sequence of chunks uniquely
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identified by a data name and stored in one and more servers. Naming data chunks
gives to ICN networks content-awareness and such networks can then take content-
aware decisions at the network-layer, without requiring any Deep Packet Inspection
(DPI) nor delegation to the application-layer.

The naming convention does not need to be specified and can therefore be
application-specific. The only requirement is to have a hierarchical naming struc-
ture, like the one already adopted by HTTP URLs, in order to achieve entry aggreg-
ation in name-based routing tables. A data name following such naming structure
is composed by a variable number of components (not necessarily human-readable),
hierarchically ordered.

Furthermore, ICN data names can potentially be unbounded (in contrast to,
e.g., IP addresses that are limited to either 32 – v4 – or 128 bits – v6) and therefore
an efficient name encoding scheme is an important challenge to (i) achieve a fast
name parsing and (ii) limit the space needed for carrying the data name in ICN
packets.

2.3.2 Name-based routing

ICN packets are divided in two categories, Interest and Data packets. Interest
packets are packets sent by the users to retrieve data chunks, while Data pack-
ets are the data chunks. Each Data packet is identified by the data name of the
corresponding data chunk. To request a given data chunk, a user sends out an
Interest packet for the data name associated to this data chunk. ICN routers then
process the received Interest packets by name in a hop-by-hop fashion towards a
permanent copy of the requested content. Symmetric routing is used to route back
the requested Data packets back to the user: ICN routers keep track of received
Interest packets to return data chunks to the user following the reverse request
path. To achieve the aforementioned, each ICN node maintains three structures
inside its forwarding engine:

• a Forwarding Information Base (FIB), that is used to forward Interest
packets towards potential sources of the requested data. It works like an IP
FIB, with the sole difference that it can have multiple outgoing faces3 for a
given name prefix rather than a single one.

• a Content Store (CS), that acts as a cache: when a Data packet arrives
at the router, it can decide to store this Data packet in its content store.
Subsequent Interest packets requesting the same data will then be satisfied

3Here, face designates where the packets can be sent/received. It can be a hardware interface,
but packets can also be exchanged with application processes within a computer.
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Figure 2.3: ICN forwarding engine.

by the content store directly, rather than forwarding the Interest packet to
the data source.

• a Pending Interest Table (PIT), that is used to route the Data packets
back to the user. The PIT keeps track of all forwarded Interest packets as PIT
entries. A PIT entry corresponds to a name and a list of face(s) on which an
Interest packet for this name has been received. When a Data packet arrives
at the node, it is forwarded on all the faces associated to the data name in
the corresponding PIT entry. As the routing is done only for Interest packets,
the PIT ensures that the Data packets are sent to the requesting user.

Figure 2.3 presents how ICN packets are handled by an ICN node, differenti-
ating the two types of packets in subfigures (a) and (b). The following paragraphs
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describe in more depth the routing operations of an ICN node.
When an Interest packet is received on a face in an ICN node (Figure 2.3-(a)),

the node first checks if the requested data chunk is locally stored. An exact match
lookup on the content store is performed for the data name carried by the Interest
packet. If there is a match, the corresponding Data packet (stored in the CS) is
send back to the user via the face on which the Interest packet was received. If
there is no matching data chunk in the content store, the node then performs an
exact match lookup on the PIT. If there is a matching PIT entry, the incoming
face (the face on which the Interest packet was received) is added to the list of
faces in the PIT entry and the Interest packet is discarded. This phenomenon is
known as PIT aggregation and will be described in more details later. If there is
no matching PIT entry, the node performs a longest prefix match lookup on the
FIB. If there is a match, a PIT entry for the data name carried by the Interest
is created and the Interest packet is forwarded to the face(s) given by the FIB
match. If there is no match, the Interest packet is discarded as the node does not
know how to handle it.

When a Data packet is received on a face in an ICN node (Figure 2.3-(b)),
the node checks if this data chunk was requested, by performing an exact match
lookup on the PIT. If there is no corresponding PIT entry for this data name, this
Data packet was not solicited from this node and is therefore discarded. If there is
a match in the PIT, the Data packet may be stored by the node in its content store
and it is then forwarded on each face listed in the matching PIT entry. Finally,
the PIT entry is removed, as all the pending requests (recorded by the PIT entry)
have been satisfied.

2.3.3 ICN features

ICN offers several features, and the key ones are described in the following para-
graphs.

Connectionless, pull-based, client-driven transport

In contrast to traditional sender-based TCP/IP model, the ICN data retrieval
model is driven by user requests (Interest packets) sent out for data chunks of the
requested content. Therefore, rate and congestion control are left to the end user
through a transport protocol offering the following characteristics:

• connectionless: no connection is established between the end points prior to
the data transfer.

• supports data retrieval from multiple sources: data chunks of a given content
may be retrieved from several locations in the network, such as intermediate
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caches or hosting server.

• supports multi-path communication: in the case of multi-homed users, mul-
tiple links may be used to retrieve data chunks, in order to perform traffic
load-balancing and potentially increase user performance.

Mobility support

As interfaces have no network addresses, physical mobility in ICN does not ne-
cessarily translate in a change of address in the data plane. Furthermore, thanks
to the connectionless and pull-based nature of the transport layer, the consumer
mobility is fully integrated in ICN. The consumer emits Interest packets that are
routed through the network towards data chunks and Data packets flow back to
the consumer following the trail of breadcrumbs left in the PIT entries. If the
consumer moves during the data transfer, the consumer simply re-emits Interest
packets for the data chunks that were not yet received and they will be routed
through the network towards the data chunks, that may be found in local caches.

Producer mobility is more challenging, however, some protocols were recently
proposed to tackle it, such as MAP-Me [18], an anchorless solution to manage
mobility of content producers in an ICN environment.

PIT aggregation

When an ICN node receives an Interest packet for a data name that is already
present in the PIT, the PIT entry is updated by adding the incoming interface to
the list of faces associated to this data name and the Interest is then discarded.
This exploits the ICN symmetric routing: as the Data packet follows the reverse
request path, the requested Data packet will traverse this node. Therefore, rather
than sending another Interest packet upstream (and thus increasing the traffic
load for a data chunk that was previously requested), the node adds the Interest
incoming face to the existing PIT entry, so that when the Data packet arrives, it
is forwarded on all the faces on which an Interest for this Data was received.

It is important to note here that each PIT entry is eventually removed, either
by reception of the solicited Data packet, or by the expiration of a timer. This timer
ensures that if the Interest packet was lost upstream, the communication is not
prevented: the PIT entry will eventually time out and the consumer is responsible
to re-issue Interest packets.

In-network caching

ICN nodes present a content store, that give them the ability to temporarily store
data chunks in order to serve future requests for these: this is the first step executed
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by an ICN node when it receives an Interest packet, it checks for the requested data
chunk in its content store. The decision to whether or not cache the data chunk
depends on caching algorithms such as Cache Everything Everywhere (CE2) [62],
Leave Copy Down (LCD) [74], ProbCache [114] or StreamCache [81]. Moreover,
cache replacement is decided upon cache policies that can be enforced, such as
FIFO (First In First Out, the first data chunk cached is the first to be replaced),
LRU (Least Recently Used), LFU (Least Frequently Used) or TTL (Time To
Live) [92].

Furthermore, coupled with the content-awareness provided by the data names,
this caching can be leveraged by mechanisms such as WLDR [28] to recover packet
losses from the network, without requiring the sender to identify and retransmit
lost packets.

Load-balancing

If there are several faces for a FIB entry, an ICN node may use some forwarding
strategy to choose on which face to forward the Interest packet. Such forwarding
strategies include broadcast, where the Interest packet is forwarded on each face of
the FIB entry, or Load-balancing strategies, where the face on which the Interest
packet is forwarded is selected based on some metric, such as the load on a link,
its RTT, the channel utilisation, etc...

Security considerations

Current Internet security is provided by protocol extensions such as IPsec and
TLS. TLS encrypts a layer 4 connection between two hosts to provide web se-
curity: the server authentication relies on certification authorities and a public
key infrastructure, while the transmitted data is encrypted thanks to symmetric
cypher on the end-points, based on a negotiated key.

In ICN, as there is no connections anymore, the security model is de facto differ-
ent : ICN security model is based on content encryption at the network layer, based
on asymmetric keys, along with a web of trust built upon certification authorities
and a public key infrastructure. The authentication of the data (i.e., the verifica-
tion of the publisher of this data) is done by including the producer signature of
the data and its name.

The atomic security service provided by ICN guarantees that the producer
has published a piece of data with the name available in the packet, enabling
location-independent secured content access. Denial of service attacks based on
cache poisoning can be blocked using signature verification techniques, however,
the cost is not negligible and some recent work [45] has started to build network
layer trust management that does not require in-network verification by using the
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concept of Interest-key binding.
Although ICN security framework permits content distribution, several services

require to be redesigned, such as, for example, access control: it requires to manage
and distribute keys to the group of users with granted access to the controlled data.
Furthermore, content revocation requires data version management and policy
enforcement to delete obsolete content from the network when need be.

2.3.4 ICN architectures

There are in the literature different ICN architectures, such as Content-Centric
Networking (CCN) [62], Named Data Networking (NDN) [143], Publish/Subscribe
Networking (PSIRP) [35], Community ICN (CICN) [2] and hybrid ICN (hICN) [97].
As the NDN, CICN and hICN architectures were used in this thesis, the remainder
of this section will focus on these architectures.

CICN and NDN share common roots in CCNx 1.0 (an implementation of CCN),
as they both originated from the CCN project, and an on-going effort at the
IRTF [1] aims for the convergence of NDN and CCN, while CICN focuses on
the CCNx 1.0 specification [94], but will evolve by keeping track of the work
done in the convergence group at the IRTF. Both CICN and NDN are open-
source projects4, and CICN offers a VPP plugin, to benefit from VPP [84] (Vector
Packet Processing), a high-performance packet-processing stack. However, both
architectures require a full ICN-enabled network to properly work, and therefore,
hICN [97] was recently introduced to offer an incremental deployment solution for
ICN into existing IP networks.

hICN proposes a solution to deploy ICN inside IP, rather than an overlay of
IP. It makes use of IPv4 or IPv6 RFC compliant packet formats and guarantees
transparent interconnection of standard IP routers and hybrid ICN-IP routers
while preserving pure ICN behaviour at layer 3 and above. In a nutshell, hICN
embeds data names in IP addresses and overloads regular IP packets (including
higher layers such as transport) with ICN semantics. The main appeal for these
changes is that such packets would be unnoticed by ICN-unaware equipments and
thus treated as a regular IP packet, while it will be processed as an ICN packet in
hICN-aware equipment.

More information on hICN is available in Chapter 5.

4CICN: https://wiki.fd.io/view/Cicn, NDN: https://github.com/named-data

https://wiki.fd.io/view/Cicn
https://github.com/named-data
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3.1 Introduction

In this chapter, we assess the benefits of video streaming over an ICN network
stack by comparing it against video streaming over a legacy TCP/IP network
stack. Since DAS techniques were initially designed for CDN/OTT content de-
livery, their interaction with the network has been only superficially studied so
far. In the 5G mobile and heterogeneous network access, it seems of utmost im-
portance to consider DAS application-network interaction, and to move caching
and computing capabilities to the network edge in order to enable efficient mobile
video delivery [17]. Given this context, ICN appears as a natural network substrate
for DAS [21, 48, 75, 76, 80, 86, 107, 111, 115]. The features offered by ICN, such as
network-level caching, multi-path forwarding capabilities and seamless mobility
support are all very appealing for DAS systems, and we argue that using such fea-
tures would help improving the user quality of experience. However, the potential
for ICN application in adaptive streaming services as an alternative to relieve from
some of the recognized inefficiencies of standard TCP/IP transport has been only
partially explored (refer to [140] for an overview of ICN aspects related to video de-
livery). Recently, valuable work started to appear [21,48,75,76,80,86,107,111,115],
which gives hints on the potential benefits coming by exploiting capabilities of an
ICN content-aware architectures to assist DAS rate adaptation inside the network,
rather than only at the client side. At the same time, the literature currently lacks a
systematic approach for testing the interplay of ICN and DAS. Similarly, a quan-
tification of the benefits ICN could bring over the current TCP/IP solutions in
realistic environments is far from being complete.

As a first step to evaluate such benefits, we selected three state-of-the-art DASH
adaptation logics (PANDA, AdapTech and BOLA) that are representative of the
whole design space and we compared the performance of video streaming over an
ICN network stack with video streaming over a TCP/IP network stack. This com-
parison was based on an experimental campaign using tools that we developed and
made available as open-source software. As there is no default transport protocol
in ICN, we resorted to previous work and used ICP, the Interest Control Protocol,
introduced in [25]. We considered a wide range of scenarios, varying the number of
clients (from single clients to multiples ones), the network stack (especially when
several clients are involved, we considered an homogeneous case, where all clients
have the same network stack type, ICN or TCP/IP, and a heterogeneous case),
the arrival rate of clients (synchronous versus asynchronous), the channels used
(emulated LTE and Wi-Fi, DASH profiles, real 3G/4G traces) and the different
levels of integration with an ICN network (vanilla NDN, wireless loss detection and
recovery at the access point, load-balancing). To the best of our knowledge, a sys-
tematic comparison is very rare, already in the TCP/IP DASH world, where [71]
represents the most notable exception. As such, the broader picture of a system-
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atic DAS comparison under both TCP/IP and ICP/NDN stacks that this work
addresses is still totally unexplored.

This chapter is divided as follow: Section 3.2 presents the three adaptation
logics that we selected and introduces the architecture, the emulation platform and
scenarios, Sections 3.3 and 3.4 report experimental results and finally Section 3.5
summarizes the main lessons.

The results presented in this chapter were published in [122] and a working
demo was shown at [121] and at MWC’171.

3.2 Methodology

3.2.1 Adaptation logics used

As described in Section 2.2.2, the DAS adaptation logics can be divided into two
families: the rate-based strategies and the buffer-based strategies. For each family,
we select one adaptation logic to compare its performance over a TCP/IP stack
versus an ICN one. Namely, we selected PANDA [83] (rate-based), BOLA [131]
(buffer-based) and AdapTech [15] (rate-based and buffer-based), since we identified
these strategies as representative of their families. They are described in more
details in the next paragraphs.

PANDA

The strategy proposed in [83], namely Probe and Adapt (PANDA), is a rate-based
adaptation logic that takes inspiration from TCP congestion control, implement-
ing the same principles at the application layer (i.e., operating at a video-segment
rather than at RTT timescale). The main observation is that throughput estim-
ates are accurate (i.e., they reflect the fair-share bandwidth) only when links are
oversubscribed and with no OFF periods (i.e., the client is always downloading).
In the remaining cases, overestimations occur. The idea is then to constantly probe
the available bandwidth by varying the requested bitrate. Since bitrates associated
to available video qualities are discrete, intervals between consecutive requests for
video segments are fine-tuned in order to obtain a continuous average data rate
sent over the network: the average data rate is used to probe the bandwidth until
congestion (i.e., when the network conditions cannot sustain the requested bitrate,
and a back off should occur), and determine inter-request time.

PANDA comprises four main steps:

1. the target average data rate is computed using an additive increase multi-
plicative decrease (AIMD)-like bandwidth estimation;

1
https://www.gsma.com/gsmaeurope/event/gsma-mobile-world-congress-2017/

https://www.gsma.com/gsmaeurope/event/gsma-mobile-world-congress-2017/
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2. the target rate is smoothed using an exponential weighted moving average
(EWMA);

3. the smoothed target rate is quantized in order to compute the quality to be
requested, this is achieved using a dead-zone quantizer with an up-shift (∆up)
and a down-shift (∆down), which act as safety margins to mitigate frequent
quality switching between two adjacent video bitrates;

4. the next segment request is scheduled to comply with a target inter-request
time: if the actual download time is smaller than this target, the client will
wait a time equal to their difference before requesting the next segment.

Compared to other rate-based players, PANDA is shown to have the best stability-
responsiveness trade-off, which is why we selected it as representative of the rate-
based adaptation logics.

BOLA

[131] proposes BOLA, a buffer-based adaptation logic that addresses the bitrate
adaptation using an utility maximization problem. The goal of this algorithm is
to maximize a joint utility defined by:

v̄N + �s̄N (3.1)

v̄N represents the time-average playback quality computed over the N segments
of the video (a logarithmic function is used to compute each single term), and s̄N
represents the average playback smoothness (i.e., the fraction of time spent not
rebuffering). � is a weighting parameter which allows to prioritize between the
two metrics. Through problem relaxation, the authors conceive an online version
of BOLA, where, at each time-slot, adaptation is made by monitoring the current
buffer level and by solving a deterministic optimization problem, whose constraints
are those of keeping the buffer as much stable as possible, and maximizing the
aforementioned utility function. Different variants of the main strategy are also
proposed in order to either minimize the number of quality shifts (i.e., since a
bitrate capping is introduced by monitoring the available bandwidth, utility can
be sacrificed), or maximize the utility (with more quality variations). BOLA is the
default strategy implemented in the DASH.js player [4], which makes it a good
representative of the buffer-based adaptation logics.

AdapTech

[15] introduces AdapTech, an adaptation logic that offers characteristics from both
buffer-based and rate-based strategies. The main goal of AdapTech is to stabilize
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the buffer level around a target value, Bsteady, while keeping the video quality as
smooth as possible, by avoiding to react to short term bandwidth spikes, which
would trigger unnecessary quality switches. The algorithm defines two thresholds,
✓1 and ✓2, which divide the buffer in three regions: the panic zone (0  B(t) 
✓1), the buffering-state zone (✓1  B(t)  ✓2) and the cushion-state zone (✓2 
B(t)  Bmax). The algorithm keeps track of two different bandwidth estimates:
the throughput of the last segment, A to which we will refer as the instantaneous
throughput, and its smoothed version, Â, computed via an EWMA ( ˆA(n) = ↵ ⇥

ˆA(n� 1) + (1� ↵)⇥ A(n)), to which we will refer as the average throughput.
The selection of the quality of the next segment is done following one of the

three modes described below. The used mode depends on which zone the buffer
level is and the current quality (qk):

• Panic mode: when the buffer level is in the panic zone, the lowest video
quality is selected;

• Buffering-state mode: when the buffer level is in the buffering-state zone,
the video quality is selected using the instantaneous throughput: if the in-
stantaneous throughput is higher than the video bitrate of the next quality
(A > bk+1), then the next quality, qk+1 is selected. If the instantaneous
throughput is lower than the current video bitrate (A  bk), then the qual-
ity is decreased and qk−1 is selected (assuming that the current quality is not
the lowest one);

• Cushion-state mode: when the buffer level is in the cushion-state zone,
the video quality is never decreased, and can be increased if over the last T
seconds, the average throughput is higher than the video bitrate of the next
quality (Â > bk+1) and the instantaneous throughput is also higher than the
video bitrate of the next quality.

The panic mode aims at quickly building up the buffer to avoid rebuffering
events. The buffering-state mode aims also at increasing the buffer, but as the
panic mode partially filled up the buffer, it is not critical to have the video seg-
ments as quickly as possible, therefore the quality selection can be done following
the instantaneous throughput variations. Therefore, the quality selection rapidly
adapts to network conditions by quickly switching to sustainable qualities. Finally,
in the cushion-state mode, on the one hand, the video quality can not be decreased
to avoid negative short-term fluctuations of the bandwidth, as the already built-up
buffer can absorb the downloading time variations induced by a negative spike in
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the bandwidth. On the other hand, the T parameter is introduced to prevent pos-
itive short-term fluctuation of the bandwidth to trigger unwanted quality switch.

As AdapTech offers characteristics from both rate-based and buffer-based strategies,
we select it to consider the impact of a hybrid adaptation logic.

3.2.2 Architecture

Figure 3.1 presents the reference architecture we consider to compare TCP/IP
pull-push and NDN pull-pull approaches in a DAS scenario2. To conduct our com-
parison, we used the MPEG-DASH standard [130] as the streaming system for our
emulations, while the videos were encoded using the H.264/MPEG-4 video coding
standard. The framework we used to orchestrate the experimental campaign is
called VICN and was open-sourced as part of a Linux foundation project [2] and
a bit more detailed in Appendix A, while the instructions to reproduce our results
can be found in Appendix C.

Client and server

The client controller drives the video segment request process, which consists of a
series of requests for video segments, encapsulated in HTTP request/response pairs
(the orange/black arrows). As previously indicated, we select state of the art rep-
resentatives for all possible adaptation logic families, namely rate-based (PANDA),
buffer-based (BOLA), or hybrid (AdapTech). For each adaptation strategy, we per-
form a thorough calibration in Section 3.3. Furthermore, clients have the option to
select one of the two network stacks: the TCP/IP and the NDN one. When the cli-
ents use a TCP/IP network stack, the video is served by an Apache HTTP server,
while an NDN repository [8] is used when the clients use an NDN network stack.
For our comparison, we consider both single and multiple clients scenarios, in both
homogeneous and heterogeneous settings, with either synchronous or asynchronous
start times.

Congestion control

While investigation of the congestion control flavor is not among the main goal of
our comparison, it is worth pointing out some differences among the two stacks un-
der investigation. In the TCP/IP case, congestion control of video-segment trans-
missions is exerted by the server according to the well known Cubic TCP flavor. In
the NDN case, control over video-segment transmissions is exerted by the client, by

2The client always selects which segment to pull from the server, but the segment retrieval is
achieved either via a push from the server (TCP/IP), or via apull from the client (NDN : each
data chunk of the segment is requested via Interest packets).
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Figure 3.1: Synoptic of the DAS video streaming architecture used for the
ICP/NDN vs TCP/IP comparison.

means of Interest control. Since in the NDN world there is neither a TCP equival-
ent, nor a protocol considered as the de facto “default” one, we resort to previous
work [25]. ICP, Interest Control Protocol, uses an AIMD mechanism to control
the window growth, which is regulated according to delay measurements – hence
we expect ICP to be no more aggressive than MIMD and loss-based TCP Cubic.
It is worth noting also that, unlike TCP, ICP does not support FastRetransmit,
therefore ICP recovers losses via timeouts; and ICP does not support slow-start
either, thus starting with AIMD congestion avoidance. Given this differences, we
also need to assess to what extent these differences impact the performance gap
between TCP/IP versus ICP/NDN, which we address in Sections 3.3.2 and 3.4.1.

Bandwidth estimation

While buffer level estimation is agnostic to the network stack used, and would
be therefore the same for both stacks, the throughput estimation differs between
the two network stacks we use here. TCP/IP clients only have estimates of the
download rate at the video segment level, which is the throughput of the TCP
connection carrying the video segment over an HTTP reply. As the bandwidth
is controlled at the server (sender) side, the client cannot have finer-grained es-
timations out of the box. Using sub-segment level estimations of the throughput
would require support from the TCP/IP stack at the server side, along with an
out-of-band protocol for signalling. This mismatch does not appear when the cli-
ent uses an NDN network stack, as all the control is exerted on the client side,
and thus the local client stack can leverage NDN-chunk level information to com-
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pute finer-grained bandwidth estimates, typically sub-segment level estimates. We
investigate further bandwidth estimation granularity in Section 3.4.2.

In-network loss recovery

As some previous work show, the NDN model offers new opportunities [115] for
the deployment of an efficient video streaming service, especially in mobile en-
vironments [75]: since NDN leverages the use of caches inside nodes and offers a
security model where contents themselves are secured, instead of the client-server
connection, Data packets can be, in principle, retrieved from multiple locations
(i.e., multipath support) and from any node in the network (thus implicitly build-
ing a multicast-transmission tree). To produce a fair comparison against TCP/IP,
we let aside large and long-lasting NDN caches, but an additional advantage of
NDN over TCP/IP is the fact that even small buffer memories can be used as
temporary caches. Using these would enable Wireless Loss Detection and Recov-
ery (WLDR) [28] of NDN Data packets at the first hop. WLDR induces a faster
and cheaper, in terms of network resources, loss recovery mechanism than retrans-
missions (at the client side for NDN or at the server side for TCP/IP stack).

WLDR is a mechanism that works between two directly interconnected nodes
and implemented at face level. By adding a sequence number in the header of the
NDN Interest and NDN Data packets and keeping track of the number of packets
sent on the face, WLDR is able to quickly detect losses. On the sender side, a
per-face counter is used to keep track of packets (Interest and Data) sent through
a given face. The counter gives the sequence number to be added in the header
of the packet and is then increased when the packet is sent. On the receiver side,
the node keeps an expected sequence number value, when a packet arrives, the
sequence number on that packet is compared to the expected value. If they are the
same, the expected value is incremented, if they differ, the receiver infers that there
was a loss on the link and can directly notify the sender about the lost packets: the
sequence number of the missing packets is known from the difference between the
received sequence number and the received one. The impact of WLDR on DAS is
investigated in Section 3.4.1.

Multi-cast/Multi-path support

In NDN, multi-cast and multi-path functions remain transparent to the applica-
tion, whose controller still operates on the aggregate rate. Unlike in IP, NDN nat-
urally supports multicast via PIT aggregation (and caching). Additionally, since
TCP/IP only supports a connection oriented mode, multi-path support must be
enforced at application level; at the same time, we are not aware of any DAS video
controller explicitly supporting multiple paths. Similarly, whereas Multi-path TCP
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Figure 3.2: Highest and lowest quality representations for the BBB (top) and TOS
(bottom) video: temporal evolution of video segment size (left) and cumulative
distribution function of the number of TCP/NDN messages per video-segment
(right).

(MTPTC) deployment is growing, a number of studies [64, 32] points to MPTCP as
actually harming user experience. Conversely, the ICP/NDN model allows a very
simple mean to support for multiple path, which can be implemented at NDN-
chunk level as a simple Load-Balancing (LB) function among all available faces,
and, thus, applied directly by the client. Notice that the load balancing is applied
to Interest packets, but due to NDN symmetric routing where Data follows back
the trail of breadcrumbs left in the PIT by Interest packets, the load balancing
consequently applies also to the corresponding video Data packets. Additionally,
we consider two granularities for the LB function: namely, at transport-segment
(i.e., at packet levelm easy in NDN, but hard in TCP) vs video-segment level
(possible in both NDN and TCP). We report multi-cast and multi-path results
respectively in Secs.3.3.3 and 3.4.4.
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3.2.3 Scenario description

Video sources

In this chapter, we use two different videos: Big Buck Bunny (BBB) and Tears of
Steel (TOS), both with a segment duration of 2 seconds. Both videos can be found
in the dataset of [77]. As our study focuses only on high-quality streaming, we se-
lected only a subset of the available representations of these videos. As a result, we
use BBB encoded in 9 video representations, 3 of which are encoded at 1280x720p
HD resolution (1, 1.2, and 1.5 Mbps) and the rest at 1920x1080p FHD resolu-
tion (2.1, 2.5, 3.1, 3.5, 3.8, and 4.2 Mbps). Similarly, for TOS we only consider
bitrates higher than 1Mbps, selecting 7 representations from the dataset, namely at
1280x720p (1.1, 1.5, and 2.4Mbps) and at 1920x1080p (3, 4, 6, and 10Mbps). Aim-
ing at supporting even higher qualities, for the TOS video we encoded three new
representations/qualities, i.e., 1920x1080p (FHD, 12Mbps), 2560x1440p (QHD,
15Mbps), and 3840x2160p (UHD or 4K, 18Mbps), that we appended to the exist-
ing ones, thus obtaining a total of 10 representations. For the sake of illustration,
Figure 3.2 presents, for both the lowest and the highest representations of each
video, the size of the segments. It also depicts the distribution of the number of
TCP segments (or NDN Data packets) per video segment in order to give an idea
of the granularity, in bytes, of the controller decision. It is worth highlighting that
a video segment can be composed of hundreds to thousands packets for the highest
qualities.

Network scenarios

In this section, we present the increasingly complex scenarios that we defined to
compare DAS over TCP/IP versus NDN. In these scenarios, we vary video (BBB,
TOS), bandwidth (DASH profile, heterogeneous access), NDN network features
enabled (vanilla, WLDR, LB), and the controller logic and settings. The DASH
profiles, defined in [3], are emulated using the Token Bucket Filter (TBF) of the
Linux traffic control suite (tc) 3, while the characteristics of the access network
are either emulated using the ns3 channel models in MiniNet (Wi-Fi and LTE), or
enforced using real 3G/4G traces [117, 136]. To perform a fair comparison of NDN
against TCP/IP, we left out scenarios involving routers equipped with caches.

Besides, while our framework is able to support the deployment of complex
network scenarios, we focus in this chapter on simpler topologies: the Internet
cloud depicted in Fig. 3.1 is modelled as a simple dumbbell topology connecting
the access point, either the Wi-Fi access point or the 3G/4G base station, to the
origin video server; thus assessing ICN capabilities at the network access. This

3
https://linux.die.net/man/8/tc

https://linux.die.net/man/8/tc
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simplistic setting alreay allows to assess implementing functions at network level,
as opposite to an over-the-top approach as CDN would do in a TCP/IP case (given
that Wi-Fi AP and 3G/4G base-station are managed by the ISPs, and currently
out of the reach of CDN providers). More specifically, the following cases were
considered:

(A) Calibration: A single client downloads the BBB video through a single
network channel with a bell-shaped bandwidth profile, taken from the DASH
profiles [3], used to calibrate the three selected adaptation logics (BOLA,
PANDA and AdapTech). The aim is to contrast their performance under (i)
TCP/IP vs (ii) vanilla NDN stacks (i.e., neither LB, nor WLDR). Results
are presented in Section 3.3.2.

(B) Multi-clients: An homogeneous (either all TCP/IP or all NDN) or an het-
erogeneous (half TCP/IP, half NDN) population of clients download the
TOS video, where clients start time are either synchronized (live streaming)
or desynchronized (VoD case). Results are presented in Section 3.3.3.

(C) Transport: A single client downloads the TOS video through a single emu-
lated Wi-Fi channel. We contrast (i) TCP/IP against (ii) vanilla NDN or
(iii) NDN with WLDR, furthermore varying the granularity of the band-
width estimation technique at either (iv) video-segment or (v) NDN-chunk
levels. Results are presented in Sections 3.4.1 and 3.4.2.

(D) Network Access: A single client downloads the TOS video, contrasting
different access types and emulation techniques: model-based Wi-Fi/LTE vs
trace-driven 3G/4G. Results are presented in Section 3.4.3.

(E) Load balance: A single client downloads the TOS video in a multi-homed
Wi-Fi and LTE environment. In this scenario we add a LB beyond the WLDR
capabilities, and contrast LB operations at (i) fine-grained, i.e., per Interest
vs (ii) coarse-grained, i.e., per video-segment level. Results are presented in
Section 3.4.4.

3.3 Calibration Results

In this section, we carry out a preliminary calibration of the selected DAS al-
gorithms over TCP/IP and NDN stacks. Rather than exhaustively present the full
quantitative details of the sensitivity of each parameter of each selected adaptation
logic, we show insights about the qualitative behaviour of the selected strategies,
while contrasting their performance under a TCP/IP and a bare-bone NDN stack.
Furthermore, we perform a careful tuning of the best algorithmic settings for each
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Figure 3.3: Time evolution of the estimated throughput for the three selected
strategies (EWMA smoothed version) and DASH capacity profile.

selected adaptation logic, settings that will be used for the remainder of the ex-
perimental campaign. The instructions to reproduce can be found in Appendix C.

We start our analysis by showing, at a glance, the behaviour of the three
selected DAS adaptation logics in their best configuration (Section 3.3.1), before
detailing the finding of these best configurations (Section 3.3.2).

3.3.1 Adaptation logic behaviour

We instrument the simple client-server scenario (A) with a client connected through
a wired link to a server, from which she requests video segments from BBB. The
bandwidth and delay of the wired link are varied following a standard DASH pro-
file, namely the 2a profile in [3], with 60 seconds variations. Introducing bandwidth
and delay variations allows us to illustrate the different operational points reached
by PANDA, BOLA and AdapTech, and also to assess the interplay between the
DASH client adaptation logic at network, i.e., IP vs NDN, and transport layers,
TCP vs ICP, under both stacks.

Figure 3.4 presents the time evolution of the requested quality (red line) and
the buffer level (green line) for the three selected strategies, and for the two stacks.
Each plot is annotated with a tuple: (q̄,#QS,f̄QS,|∆(QS)|,R,RTime), represent-
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Figure 3.4: Scenario (A) with BBB video: time evolution of requested quality (i.e.,
the correspondent video representation requested by the client, where “0” is the
lowest and “8” is the highest one) and buffer level for the best settings of the three
selected strategies (BOLA, AdapTech, and PANDA, on each different columns),
running on top of both ICP/NDN (top) vs TCP/IP (bottom) stacks. The picture
is annotated with a tuple (q̄,#QS,f̄QS,|∆(QS)|,R,RTime) representing the main
KPIs, namely: average quality q̄, number #QS, frequency f̄QS, and amplitude
|∆(QS)| of quality switches; number R and duration RTime of rebufferings. Out
of the box, in simple DASH settings, ICP/NDN performance matches that of
TCP/IP for all DAS strategies.

ing the main key performance indicators: the average quality q̄, the number of
quality switches #QS, their frequency f̄QS and their amplitude |∆(QS)|, along
with the number of rebuffering events R and the time spent in rebuffering RTime.
These key performance indicators are detailed in the next section. Furthermore,
the corresponding DASH capacity profile and the Exponential Weighted Moving
Average (EWMA) of the estimated throughput at the client is reported in Fig-
ure 3.3. Two main messages arise from these results.

First, for this basic scenario (A) with no packet losses, no difference appears
between the two stacks: each algorithm, being either prevalently buffer-based (e.g.,
BOLA and AdapTech) or rate-based (e.g., PANDA), behaves exactly the same,
regardless of the network stack. This is especially reassuring since ICP and TCP
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are two similar but not identical congestion control protocols, that are further-
more exerted in opposite pull vs push modes. For instance, while both ICP and
TCP use AIMD to govern the window growth, TCP reacts on losses, whereas
ICP reacts primarily on delay variations; additionally, TCP recovers losses mainly
via FastRecovery (if the cwnd is large enough), whereas ICP recovers losses via
Timeouts; finally, TCP implements slow-start, whereas ICP does not (in the cur-
rent implementation). Still, it can be seen that transport-layer differences do not
result in noticeable changes in the DAS algorithm behaviour.

Next, consider the specific behaviour of each algorithm. One can clearly see
a trend going from left (BOLA) to middle (AdapTech) and right (PANDA) in
both the quality and buffer level. Specifically, BOLA more aggressively follows
the bandwidth profile: this results in a higher average quality than the one in
AdapTech and PANDA. As a consequence, the buffer level is lower in BOLA with
respect to AdapTech and PANDA, since the former fully exploits the available
bandwidth to download at higher qualities, using the built buffer as a safety net
(notice that when the available bandwidth drops, the requested quality remains
high for a while, at the cost of buffer level), whereas the latter one use the available
bandwidth to increase the buffer and be more resilient against varying conditions.

3.3.2 Sensitivity analysis

The results presented in the previous section are gathered with DAS settings found
with an empiric sensitivity analysis, that we report in this section. More precisely,
we start from suggested configurations, either taken from reference papers, or open
source codebase when they are not available in the reference papers, and we vary
the most prominent parameters of each selected algorithm.

Specifically, we vary BOLA’s stable buffer threshold, which states the difference
between startup and steady state [131], in the range [6,24] seconds (the sugges-
ted default value in the DASH.js implementation [4] is 12 seconds). Concerning
the AdapTech strategy , we vary the two thresholds, ✓1 and ✓2 (expressed as per-
centage of the buffer size [15]), which affect the behaviour of AdapTech, exploring
✓1 2 {10%, 20%, 30%} and ✓2 2 {40%, 60%, 80%}; but we keep the T parameter
to its default value of 10 seconds [15]. Finally, for PANDA, we tune the Bmin

parameter, which we adapt to the length of the buffer in our experiments (i.e.,
60 seconds), and vary as Bmin 2 {34, 44, 54} seconds. Additionally, we use two
separate configurations: a more aggressive one, which follows the settings for the
thresholds ∆up and ∆down suggested in [83], while we obtain a more conservative
behaviour with the settings described in [82].

In order to comprehensively compare the three selected DAS algorithms, we
consider six different metrics, among the many available, to estimate the user
quality of experience [128]:
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Figure 3.5: Calibration of selected adaptation strategies in a simple client-server
scenario with bandwidth and delay variations.

• Average Video Quality q̄: the average quality of the downloaded video
segments over all chunks for the selected algorithm.
It is computed as q̄ = 1

K

PK

k=1
qk.

• Number of Quality Switches #QS: the total number of times the adapt-
ation logic changes the requested quality.

• Average Quality Switch Frequency f̄QS: the inverse of the average con-
tinuous quality playback (i.e., lapse of time at which successive segments are
requested at the same quality).
It is computed as f̄QS = 1/[ 1

S−1
⇥
PS

z=1
t(QSz)� t(QSz−1)], where t(QSz) is

the time instant of the z-th quality switch, and t(QS0) = 0s.

• Average Quality Variations |∆(QS)|: the average magnitude of a quality
switch between consecutive segments.
It is computed as |∆(QS)| = 1

K−1

PK

k=1
|qk+1 � qk|.

• Number of Rebuffering Events #R: the number of times the video play-
out is interrupted due to buffer depletion (i.e., rebuffering events).

• Total Time Rebuffering RTime: total amount of time spent rebuffering.
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In order to efficiently represent the above 6 key performance indicators for the
combination of the 46 explored settings, we depict results as a parallel coordinate
plot in Figure 3.5, which allows to grasp the correlation between KPIs for specific
settings. Each line in the plot presents the performance achieved by a DAS al-
gorithm with specific settings: in the parallel coordinate representation, lines are
a pure representation artefact that joins values taken by a DAS algorithm using
specific settings over the different KPIs. To distinguish between the different ad-
aptation logics used, each line is assigned a colour, depending on the strategy it
represents. Namely, a brown line depicts results for given settings of BOLA, while
green depicts AdapTech and gold, PANDA. Furthermore, a specific line type is
assigned for each network stack: a dashed line depicts a DAS experiment over a
TCP/IP stack, while a ICP/NDN stack is presented using a solid line. Finally,
the thicker lines indicate the best selected settings. Note that there are, for each
strategy, two thick line, indicating the best combination for this strategy over both
TCP/IP and ICP/NDN stacks. To select the best settings for each strategy, we
first select settings that avoid rebuffering events, because they represent the major
factor in user disengagement [37]. Among the remaining settings, we select the one
that maximizes the average video quality while minimizing the number of quality
switches: when the average video quality difference between two settings is less
than 5%, we select the setting that reduces the number of quality switches.

The results shown in Figure 3.5 reveal that there is not any significant difference
between the best cases of TCP/IP and ICP/NDN stacks for each strategy, at least
under the scenario used in this calibration phase. These results also confirm, to a
greater extent, the different behaviours observed in the previous section: BOLA
presents a more aggressive behaviour, while PANDA and AdapTech both present a
more conservative one. Indeed, the parallel curves associated to BOLA (the brown
ones in the plot), presents an adaptation strategy able to provide a higher average
quality (q̄) to the detriment of rebuffering events (in some cases) and quality
switches: both their number (#QS) and their frequency (f̄QS) are, on average,
higher with respect to PANDA and AdapTech. Furthermore, BOLA presents the
largest magnitude of quality switches; this outcome is linked to the higher f̄QS and
to the way |∆(QS)| is computed (i.e., since quality switches are more frequent, it
is less likely that the requested quality remains the same for a considerable number
of consecutive segments, which would, in that case, reduce |∆(QS)| by adding null
terms). Nevertheless, in the best BOLA setting, corresponding to a stable buffer
threshold of 18 seconds, the drawbacks are limited: there are no rebuffering events
occurring, the average quality is high, while the number and the frequency of
quality switches are significantly reduced compared to other BOLA settings, while
the average magnitude of the quality switches is almost in par with AdapTech and
PANDA.
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AdapTech and PANDA, on their side, offer a greater stability, which translates
into (i) a better quality smoothness, by virtue of less frequent quality switches of
furthermore smaller amplitudes and (ii) a general absence of rebuffering events,
with although the noticeable exception of two configurations of the aggressive
version of PANDA [83]. However, the tradeoff for this increased stability of the
video playout is a smaller average quality with respect to BOLA. To select the
optimal settings for AdapTech, we noticed from Figure 3.5 that varying ✓1 and
✓2 induces much more variability in the number of quality switches than in the
average quality, therefore, we select the setting configuration (✓1 = 30, ✓2 = 40)
that minimizes the frequency of quality switches, f̄QS. Finally, we rule out the
aggressive configuration of PANDA as it introduces rebuffering events, which we
want our selected strategies to totally avoid, and we select the least aggressive
version [82] with Bmin = 44s as the best PANDA setting configuration.

3.3.3 Multi-client scenarios

We next consider multi-client scenarios to assess if the selected calibration settings
yield to consistent results. The topology used in these scenarios is described in
Figure 3.6: four clients are connected to a router via wired links of capacity equal
to 15 Mbps. The router is connected to a video server via a wired link of capacity
30 Mbps. The clients run an instance of our video player, while the server serves
video segments of the TOS video.

More specifically, we design scenarios to study DAS performance with (i) a
homogeneous client population (i.e., all the clients are using the same network
stack, either TCP or NDN), as well as (ii) a heterogeneous population (i.e., half of

Video 

serverC=30Mbps

C’=15Mbps

Figure 3.6: Topology of the multi-clients scenarios.
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Figure 3.7: Multi-client Scenarios. Average quality and bandwidth fairness (with
95% confidence intervals over 10 runs) under homogeneous/heterogeneous popula-
tions, with synchronized/desynchronized client arrivals for BOLA (top), AdapTech
(middle), and PANDA (bottom).

the clients use a TCP stack and the other half use an NDN stack), and we further
distinguish the DAS performance between (i) synchronized and (ii) desynchronized
client arrival patterns. Simultaneous arrivals (the synchronized case) closely rep-
resent a live-streaming case, while asynchronous independent client requests (the
desynchronized case) correspond to a VoD case. Both arrival patterns are relevant
from practical viewpoints.

In particular, we do not expect the synchronization scenario to have noticeable
effect for TCP/IP: each client opens a connection to the server and starts request-
ing video segments over it. Therefore, the arrival patterns of the clients will have a
minor impact on the quality of experience at the client, since the number of clients
(4) in our scenarios is low, an overload of the server is highly improbable. On the
contrary, in the ICP/NDN case, the synchronization of the client arrivals is expec-
ted to be beneficial, since it would gain from the Interest packets aggregation at
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the PIT: in our case, the bottleneck is the link connecting the router to the server,
when all the clients are downloading video segments from the server, the resulting
bandwidth fair-share is 30/4 = 7.5 Mbps, we expect PIT aggregation to form a
multicast tree, leading the ICP/NDN clients to use the bottleneck bandwidth more
efficiently.

The five cases we consider are reported in Figure 3.7. The picture reports, for
each selected adaptation logic, the average quality, q̄, for a homogeneous population
of 1 ICP/NDN asynchronous clients, 2 ICP/NDN synchronous clients and 3
TCP/IP clients, as well as for a heterogeneous TCP and NDN population with
either 4 asynchronous or 5 synchronous clients. The picture also reports (gray
bars) the Jain fairness index [63] of the bandwidth share, useful to assess if some
of the N = 4 clients starves the other (J ⇡ 1

N
), or if clients equally compete for

resources (J ⇡ 1).

From these plots, we can gather three very important takeaways. First, as
expected, NDN synchronous clients benefit from PIT aggregation as they increase
their average video quality without increasing the upstream bandwidth: this is
particularly visible for the BOLA and AdapTech strategies contrasting 2 against
1 and 3 , where at least one quality level can be consistently gained in the
emulation settings. It is worth noting that as the clients start at the same time,
they request the same video segments (in a temporal viewpoint), and furthermore,
as all the adaptation logics start by requesting the lowest quality, all the clients
request the first video segment at the same quality at the same time and thus PIT
aggregation happens at the router and only one request for the video segment is
sent upstream towards the server. When the Data packets of this video segment
is sent back by the server, the router sends them back to all the clients. As the
clients receive the segments at the same time, their buffer level are the same,
and thus when using mainly buffer-based adaptation logics (AdapTech, BOLA),
they will request the next segment at the same quality, thus maintaining the PIT
aggregation. However, the PIT aggregation requires all the clients to send Interest
packets for the same Data packets at approximately the same time (one RTT
⇡ 5 � 10 ms in our settings), therefore, if there is a shift in the request patterns
of the clients of more than one RTT, the PIT aggregation will not be observed
anymore. Such a shift can happen when the clients introduce OFF periods in their
downloading patterns, due either to a full buffer (and thus the client has to wait
for room in the buffer) or to scheduling induced by the adaptation logic (which is
the case in PANDA).

Second, from 4 one can easily observe that ICP/NDN appears to be no more
aggressive than TCP/IP: the bandwidth share is fair and the average quality is
in par or slightly lower, which is expected due to the differences in the window
growth dynamics (delay-based and AIMD in ICP vs loss-based and MIMD in TCP
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Cubic).
Third, and most important, from 5 one can gather that the previous proper-

ties combine: especially noticeable under AdapTech, the PIT aggregation makes
synchronous ICP/NDN clients consume content as leafs of a multi-cast tree. This,
on the one hand, improves the quality for ICP/NDN, and, on the other hand,
reduces the used upstream bandwidth, which now becomes available for TCP/IP
as well. Notice also that no side effects appear, as bandwidth share is still fair also
under this circumstance.

To conclude this section, we validated that the expected benefits of ICP/NDN
hold, and we additionally observe that the selected settings from the calibration
for each of the adaptation logics are robust to multi-client scenarios as well.

3.4 Experimental Results

In this section, we carry out a fair comparison of DAS performance over TCP/IP
contrasted to what is achievable on ICP/NDN. We incrementally take into consid-
eration different features such as in-network loss recovery (Section 3.4.1), different
granularities of the bandwidth estimation (Section 3.4.2), heterogeneous access
technologies (Scetion 3.4.3) and in-network load-balancing among multiple paths
(Section 3.4.4). The different scenarios explored in this section are depicted in Fig-
ure 3.8: a single client is connected to a server using various access technologies,
emulated Wi-Fi, emulated LTE or 3G/4G traces, (Figure 3.8-(a)) or a single cli-
ent is connected both to Wi-Fi and LTE access points in a multi-homed fashion
(Figure 3.8-(b)).

Video 

server

Client

Video 

server

Client

(a)Single path: a single client is connected

to a server via various access technologies

(emulated Wi-Fi or LTE, 3G/4G traces)

/

(b)Multi-path: a single client is connected

to a server in a multi-homed scenario,

using emulated Wi-Fi and LTE access.

Figure 3.8: Topologies used during our experimental campaign.
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3.4.1 In-network loss recovery

Using the NS-3 Wi-Fi model, we emulate a realistic lossy link for the topology
described in Figure 3.8-(a). In order to get a bandwidth of approximately 6 Mbps,
we set the distance between the access point and the client to 60 m. While in
this case the TCP stack has decades of optimizations in recovering losses in an
end-to-end fashion, a vanilla NDN stack presents additional challenges: thanks
to its point-to-point nature, TCP can cope with losses by exploiting duplicated
acknowledgments received by the sender endpoint, while the NDN Data packets
sender endpoint might vary over time, making it difficult to learn about losses, even
when piggybacking control information in subsequent Interest packets. Following
from this, the simplest option for an NDN stack is to let the application handle
losses by re-issuing requests after a timeout. However, this solution, albeit simple,
is suboptimal, not only because it places the burden on the DAS application, but
also because the selection of a proper value of the timeout is far from being trivial:
note that the RTT may vary significantly as the Data packets can be retrieved from
different endpoints. Therefore, a more suitable option is not to rely on endpoints to
recover from losses but rather perform in-network loss recovery, which is especially
useful for the first wireless hop. In this case, the access point can detect losses
and retransmit earlier (up to one RTT) than in the TCP case. Without any loss
of generality, we use the Wireless Loss Detection and Recovery (referred hereafter
as WLDR) mechanism described in [28] (a brief description is also available in
Section 3.2.2). It is important to note that this mechanism does not require any
additional caches at network nodes, as it only leverages buffers on routers’ linecards
(of about 1 MB).

Figure 3.9-(a) reports, for all the selected adaptation logics, the selected video
quality (left) and the player buffer occupancy (right) over time, both for TCP/IP
(green curves), vanilla ICP/NDN (i.e., without WLDR, brown curves) and ICP/NDN
with WLDR (gold curves). From this plot, the impact of in-network loss recovery is
clearly visible: for all the selected strategies, vanilla ICP/NDN does not guarantee
the same performance as TCP/IP in terms of selected video quality (which is con-
sistently one level lower). Conversely, the ICP/NDN stack with WLDR equals the
performance of TCP/IP, showing that the loss recovery mechanism, albeit needed,
can be easily implemented directly at the network layer in NDN, so outside the
transport layer (as opposed to TCP/IP). Furthermore, an in-network loss recovery
mechanism such as WLDR would reduce the communication overhead with respect
to a TCP retransmission, as an in-network loss recovery occurs directly between
two adjacent nodes, while a TCP retransmission needs to traverse the whole path
from client to server.
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3.4.2 Bandwidth estimation granularity

Figures 3.9-(a) and 3.9-(b) present the impact of bandwidth estimation on the
DAS performance by contrasting a coarse-grained throughput estimation against
a fine-grained one. Specifically, in Figure 3.9-(a), each video segment constitues a
bandwidth sample, while a sample in Figure 3.9-(b) results from averaging estim-
ates over 50 NDN packets, as also proposed in [138]. As a consequence, the number
of available samples in the NDN case can grow up to two orders of magnitude more
with respect to the TCP segment-based estimate (recall Figure 3.2), thus resulting
in valuable extra information that can be used to implement a more timely and
refined estimate of the available bandwidth.

While we are aware that more sophisticated approaches would be possible (e.g.,
packet-pair for capacity [70], train or chirps for available bandwidth [99, 47, 116],
possibly in band with the data transfer [102]), our main interest here is not to
quantitatively assess a specific mechanism, but to point out qualitative properties
that can be expected from this building block. Furthermore, provided the avail-
ability of the complex aforementioned techniques for the TCP case, the resulting
estimate would, however, be available only at the server side, requiring out-of-band
protocols to signal it to DAS clients (differently from the NDN case).

When comparing Figure 3.9-(a) to Figure 3.9-(b), we notice that the instant-
aneous bandwidth variations are better tracked by a fine-grained estimate, which
allows DAS clients to better exploit the available capacity. However, a more re-
sponsive adaptation logic might result in an increased aggressiveness, as shown
by AdapTech and BOLA, where the number of quality switches increases, if it
is not smoothed by the strategy itself, as shown by the conservative version of
PANDA, which takes advantage of the finer-grained estimate by increasing the
selected video quality (with respect to the TCP/IP case) without any side effect.
It is also worth noticing that while a fine-grained bandwidth estimate allows to
a better use of the available capacity and thus downloading at a higher rate, the
buffer level is lower with respect to the TCP/IP case and can, in some cases, lead
to rebuffering events, for instance when using PANDA with a vanilla NDN network
stack (without WLDR). Therefore, we are not advocating to indiscriminately use
fine-grained bandwidth estimates (e.g., see the increase in quality shifts in some
cases), we consider more accurate techniques to estimate the available bandwidth
as a useful building block when coupled to, for example, in-network load balance,
where the availability of multiple (independent) channels can be exploited to either
increase the selected video quality, or guarantee the same quality if some of them
experience bad conditions: in these cases, being able to closely track channel evol-
ution would allow to fully benefit from the aggregate capacity.
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(a) Coarse granularity, per video segment bandwidth estimation (TCP-like)
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(b) Fine granularity, per NDN-chunk bandwidth estimation (NDN-like)
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Figure 3.9: Impact of in-network loss recovery and bandwidth estimation granular-
ity: (a) when a coarse video-segment granularity is used (for both NDN and TCP),
NDN+WLDR performance matches that of TCP. However (b) when a per-packet
granularity is used (for NDN only), it can be seen that more bandwidth can be
exploited, making the protocol more aggressive and thus either better performing
(PANDA) or prone to more quality switches (AdapTech).
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3.4.3 Access technology and emulation technique

In order to confirm the findings discussed in the previous sections in more real-
istic conditions, we now contrast DAS performance gathered via emulated channel
models (Wi-Fi and LTE) against those collected using real traces. In particular,
we use both 3G 4 and 4G 5 real traces, available at [117, 136]. For the emulated
cases, we set the distance between the client and the Wi-Fi access point to 60m,
resulting in a downstream capacity of approximately 6 Mbps, while the distance
between the client and the LTE base station is set to 1200 m, thus offering a down-
stream capacity of approximately 18 Mbps. We remark that if, on the one hand,
emulated models have the benefits of yielding arbitrarily long stochastic processes
– which ensure statistical relevance of the experiments over multiple independent
repetitions, real traces, on the other hand, represent samples of finite length, but
of real conditions – without requiring complex calibrations.

Figure 3.10 reports the DAS performance under the various access technologies:
the bottom plot in the figure illustrates the available bandwidth for the different
cases. Top plots report the detailed time evolution of the requested quality of the
video segments along with the buffer occupancy at the client using AdapTech as its
adaptation logic for each considered network stack (both TCP/IP and ICP/NDN)
under each access technology: left plots present results for emulated Wi-Fi and
LTE, while the right plots present results for 3G and 4G traces. Each time plot
is annotated with a tuple summarizing the performance details. To recall, the
tuple presents the average quality (q̄), the number of quality switches (#QS), the
frequency (fQS) and the magnitude of the quality switches (|∆(QS)|), along with
the number of rebuffering events (R) and the time spent rebuffering (RTime).
Furthermore, for each access technology, a bar chart shows the average requested
quality (along with 95% confidence intervals bars over 10 repetitions) for all the
selected adaptation strategies. It can be observed that, despite differences in the
stochastic nature of these processes, there is an agreement between the available
bandwidth and the average qualities: e.g., emulated Wi-Fi and trace-driven 3G
performance are similar for all DAS strategies, and the same holds for emulated
LTE vs trace-driven 4G. Overall, the comparison of both methodologies allows to
conclude that performance gathered over emulated models are not only statistically
relevant, but also qualitatively and quantitatively in agreement with real trace
driven conditions.

4
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/bus.ljansbakken-

oslo/report.2010-09-28_1407CEST.log
5
http://users.ugent.be/~jvdrhoof/dataset-4g/logs/report_bus_0006.log

http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/bus.ljansbakken-oslo/report.2010-09-28_1407CEST.log
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/bus.ljansbakken-oslo/report.2010-09-28_1407CEST.log
http://users.ugent.be/~jvdrhoof/dataset-4g/logs/report_bus_0006.log
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Figure 3.10: Access technologies: Emulated NS3 Wi-Fi and LTE (left columns) vs
Trace-Driven 3G/4G (right columns). Top picture reports the AdapTech case as
an example, annotated with (q̄,#QS,fQS,|∆(QS)|,R,RTime) performance details.
Middle bar charts report average quality (with 95% CI over 10 runs) for all DAS
strategies. Plot in the bottom row illustrates the available bandwidth with the
different access technologies and emulation techniques.
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3.4.4 In-network load-balancing

In this section, we consider the case where a client, using a ICP/NDN network stack
with WLDR enabled, is multi-homed with heterogeneous wireless technologies, as
depicted in Figure 3.8-(b). Specifically, we restrict our attention to emulated WiFi
and LTE conditions, which we expect to be both statistically relevant and with
a sufficient degree of realism for our purposes. The distance to the Wi-Fi access
point is set as in Section 3.4.1, while the LTE base station is placed at 1400 m,
offering a bandwidth of approximately 16 Mbps.

The NDN client performs load balancing of Interest requests, and as the cor-
responding Data packets are routed back to the user using the PIT, they are load
balanced as well. We consider a simple algorithm [25], where clients monitor the
number of Pending Interests (PIs), which are the sent Interest packets that are
not satisfied yet, for each prefix associated to a face. Any new Interest packet for
a given name is sent on a face for the matching prefix with a probability that
is inversely proportional to the PIs of that face (normalized over all faces). This
algorithm is motivated by the intuition that a face with many pending Interests is
slow to respond, whereas a face with no pending Interest is likely underutilized.

We do not engineer load balancing on the TCP/IP case, as it would be sig-
nificantly complex: this is well explained in [57], which testifies the complexity
that would entail an architecture using range-requests to load balance requests at
sub-video-segment level. At the same time, we argue that a TCP/IP load balan-
cing would, as for the bandwidth estimation, likely be performed at video-segment
level. Since ICP/NDN with WLDR roughly matches TCP/IP performance in the
single-path case (recall Section 3.4.1), we argue that ICP/NDN with WLDR per-
forming load-balancing at the video segment level would roughly match a DAS
system performing load-balancing at video segment level over multiple-paths via
a TCP/IP stack, at a smaller implementation cost. We therefore implemented
two load-balancing algorithms, a per-Interest one, that is described earlier, and a
per-video-segment one: when a new video segment is to be downloaded, the cli-
ent randomly picks one face matching the requested name and all the subsequent
Interest packets for that video segment will be sent on that face.

Figure 3.11 reports the DAS performance using the two load-balancing al-
gorithms: the per-Interest load-balancing (identified by the red curves) and the
per-video-segment load-balancing (represented by the green curves). The plots in
the top row present the requested quality for the video segments, while the bottom
plots report the EWMA of the split ratio over the LTE interface, i.e., the percent-
age of Interest packets (resp. video segments) that are sent (resp. requested) over
the LTE interface. Specifically, two curves for the split ratio are shown: the light-
colored one gives more weight to the instantaneous sample (↵ = 0.7) in order to
gauge the variability of the split ratio, whereas the thick-colored line is a heavily
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Figure 3.11: In-network support: load-balancing among WiFi and LTE interfaces.
Top plots show the instantaneous requested quality for segment vs Interest-level
load balance. Bottom plots show the percentage of segments vs Interest packets
aired over the LTE interface using EWMA smoothing.

smoothed version (↵ = 0.1) to make the average split clearly readable.

Figure 3.11 shows that only per-Interest load balancing allows to profit from
the aggregate bandwidth, while segment-level one is only partly helpful, and often
even counter-productive. Notice that, by performing fine-grained load balancing
decisions, BOLA, AdapTech, and PANDA not only exhibit a tremendous gain in
terms of the average quality increase, but also in terms of stability. This is due to
the fact that (i) fine-grained bandwidth estimation, coupled with (ii) fine-grained
forwarding decisions, make these algorithms able to aggressively and promptly
react to changes in the channel. Additionally, the stochastic variability that neg-
atively affected stability of the requested quality in the single channel Wi-Fi case,
is no longer a problem, since channels are independent. Conversely, per-video-
segment decisions forbid these algorithms to fully exploit the aggregate capacity,
since entire segments are downloaded over a single channel; this means that, even
in case of severe channel variations, the algorithm has to finish the current segment
download before switching interface, thus leading to undesirable quality switches.
It is worth noticing, in the end, that PANDA turns out to be the less aggress-
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ive adaptation logic6, being in line with results shown previously. In particular,
when load-balancing decisions are taken per video segment, the quality shifts are
drastically reduced with respect to BOLA and AdapTech, while in the case of per-
Interest load-balancing the average quality remains constantly at one level below
compared to BOLA and AdapTech.

3.4.5 Summary

Qualitative summary

Figure 3.12 summarizes the main findings of the experimental campaign, for the
AdapTech strategy. We choose to present only the results for AdapTech to avoid
cluttering the picture and the results presented with AdapTech still hold for the
two remaining adaptation logics (BOLA and PANDA). The picture is a scatter
plot where the axes represent two important KPIs: the x-axis represents the av-
erage quality q̄, while the y-axis represents the number of quality switches #QS
for different TCP/IP or ICP/NDN configurations. To ease off the comparison, the
origin of the axes is set as the values gathered in the TCP/IP case (red square).
To ease off further the reading of this plot, we annotate each point with the actual
averages (q̄, #QS). The picture shows that vanilla configurations of ICP/NDN,
i.e.,when no in-network loss recovery capabilities are used, and irrespectively to
the granularity of the bandwidth estimation technique 1 and 2 can hurt the
performance of DAS systems; however, the use of in-network loss recovery 3 puts
ICP/NDN in par with TCP/IP when the bandwidth estimation is performed at
video-segment level. Additionally, an NDN sender has the opportunity of track-
ing more closely the bandwidth variations, thereby being more aggressive in the
requested quality, which increases both the average quality as well as the quality
switch rate 4 . This is expected on a single channel, while when adding multi-
path functionalities, which are very simply implemented in NDN, one can leverage
statistical multiplexing to smooth out variability of bandwidth and losses. The
gain in average quality is already sizeable when load-balancing is performed at
video-segment level 5 , which could also possibly be implemented (with some sig-
nificant effort) in TCP/IP; however, the very large size of video-segments (several
thousand packets at the highest quality level) may play against multi-path cap-
abilities, still forcing undesirable quality switches. Conversely, when a fine-grained
load balancing (i.e., NDN-chunk level) is used, the DAS system is able to fully
exploit the available bandwidth with no penalty, i.e., almost doubling the quality
with a minimal amount of quality switches 6 – interestingly, a packet-level tech-

6While it is possible to use the more aggressive PANDA settings, possibly exploiting at max-
imum the extra capacity, this is not an angle we deem of interest, because of the downsides (i.e.,
rebuffering events) we highlighted in the single channel scenario.
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Figure 3.12: Scatter plot illustrating the effect of different ICP/NDN settings w.r.t.
TCP/IP for the average video quality (x-axis) and number of quality shifts (y-axis)
for AdapTech.

nique would not be advisable in the case of connection-oriented TCP, where letting
packets follow disjoint paths with different bandwidth and latency characteristics
would cause significant amount of out-of-order packet delivery, jeopardizing TCP
congestion control. Clearly, cases 1 - 5 are the pitfalls to be avoided in order to
attain the desirable ICP/NDN operational point 6 .

Quantitative summary

We finally present in Figure 3.13 and in Table 3.1 the average performance of the
different NDN settings 1 – 6 for the KPIs early used in the sensitivity analysis
(with the noticeable exception of the number and duration of rebuffering events,
as no rebuffering events occurred with our settings). To gather results that are not
tied to a specific DAS strategy, Figure 3.13 reports results averaged over all DAS
strategies.

Interestingly, the best ICP/NDN setting 6 significantly increases the average
quality – by almost a factor of two. This means that one can expect consistent and
considerable quality gains, that furthermore hold across strategies. Next, notice
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that the quality increase for 6 does not mechanically translate into a higher
number of quality switches, which remain close to that experienced in the TCP/IP
stack. As such, one can definitively confirm the interest in a carefully configured
ICP/NDN stack to enhance the performance of video streaming systems in future
networks: the necessary building blocks to achieve this goal are (i) fine-grained
bandwidth estimation at the ICP transport layer, coupled to (ii) fine-grained load-
balancing decisions among heterogeneous interfaces at the NDN client side, and
(iii) in-network loss recovery through the use of WLDR.

Conversely, other NDN settings (e.g., 4 and 5 ) lead to a more modest in-
creases in the average quality, at the price of a significant increase of the quality
switches. In line with studies that model how these objective metrics translate
into user Quality of Experience (QoE) [16, 56], we observe that a high number of
quality switches may not be desirable since it can offset the gain in the average
quality. Particularly interesting is the fact that setting 5 employs all ingredients
of 6 with a single difference: i.e., the granularity of the load balancing decisions,
that are taken at video-segment level. We can thus argue that the use of multiple
paths could be difficult in the TCP/IP world, where decisions are likely to happen
at this level of granularity [57], as this may ultimately harm user experience as
remarked in [64, 32].

Finally, other naive ICP/NDN settings are less interesting as they either match
3 , or even worsen 2 - 1 performance with respect to TCP/IP. These settings
correspond to a poor use of bandwidth estimation ( 1 , 3 ), or to the lack of network
support for loss recovery ( 1 , 2 ).
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Figure 3.13: Bar chart illustrating the effects of different ICP/NDN settings
(shaded gray) w.r.t. TCP/IP (red) for all the considered metrics: average video
quality q̄, number #QS, frequency fQS, and amplitude |∆(QS)| of quality shifts.
We report bars representing averages over the three strategies, along with standard
deviations.
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Table 3.1: The performance of the different ICP/NDN settings w.r.t. TCP/IP, de-
composed in all the considered metrics, averaged over all adaptation logics (BOLA,
PANDA and AdapTech). Specifically: average video quality q̄, number #QS, fre-
quency fQS, and amplitude |∆(QS)| of quality shifts, number of rebufferings R,
and rebuffering time RTime.

TCP 6 5 4 3 2 1

q 4.21 7.30 4.88 4.63 3.96 3.87 2.52

#QS 9.33 16.00 105.00 63.33 17.00 51.33 23.33

fQS 0.014 0.023 0.144 0.087 0.024 0.071 0.033

∆QS 0.033 0.052 0.350 0.225 0.060 0.182 0.086

#R 0 0 0 0 0 0 0

R Time[s] 0 0 0 0 0 0 0
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3.5 Conclusion

In this chapter, we contrasted the performance achievable by DAS systems using
rate-based vs buffer-based adaptation logics developed on top of an ICP/NDN
or a TCP/IP network stack. Our approach is experimental and based on a real
prototype, which we make available as open source software (Appendix A), along
with the necessary scripts to seamlessly repeat part of our evaluation.

Our experimental campaign includes multiple videos (up to 4K resolution at
18Mbps), multiple channels (including DASH profiles, as well as Wi-Fi and LTE
access emulated via NS-3, or real 3G/4G traces), multiple clients (in homogeneous
and heterogeneous population mixture, with synchronous and asynchronous ar-
rival patterns) and multiple adaptation logics (PANDA, AdapTech, and BOLA).
Concerning the ICP/NDN settings, we experiment with several building blocks
that include bandwidth estimation, use of multiple heterogeneous interfaces, and
in-network loss recovery. Our findings are that performance of ICP/NDN eas-
ily matchs and possibly significantly outperforms that of TCP/IP. While this is
achievable by combining relatively simple building blocks, we also find that all
these blocks are jointly needed, and that ICP/NDN performance can just match
or even worsen with respect to TCP/IP in the other cases. We argue that our
findings do not depend on the specific architecture design we used (NDN) and
still hold under another architecture design for ICN. For instance, [121] results are
in par with those presented in this chapter, and were gathered using the CICN
architecture.

Overall, we believe the work done in this chapter constitutes a first milestone
towards a fair and complete assessment of fully fledged ICN video distribution
systems, and their comparison with state of the art CDN technologies implemented
over a classic TCP/IP stack. The following step to achieve this more ambitious
goal, would be that of contrasting the two alternatives in more realistic scenarios
(e.g., more complex topologies with several origin servers, multiple videos, realistic
user arrival and mobility patterns, etc.). This would allow to better grasp pros and
cons of the two architectures (e.g., CDN request redirection and load balancing
vs ICN multicast and multipath support), as well as to assess their impact on the
overall performance from the user viewpoint.

Finally, in this chapter, we purposely left aside the presence of in-network
caches that can be leveraged in an ICN environment to have a fair comparison
with TCP/IP stacks. In the next chapter, we explore how in-network caching can
be exploited in an ICN environment to improve further the quality of experience
of DAS clients.
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4.1 Introduction

In this chapter we focus on how assistance from the network can affect dynamic
adaptive streaming. Network functions, such as in-network caching and multi-
path forwarding, along with network frameworks (such as Server and Network
Assisted DASH [135] or ICN), are good candidates to reduce the pressure put
on the network infrastructure by video streaming. As multi-path forwarding was
addressed in the previous chapter, we will concentrate here on in-network caching.
While the existing DAS literature abounds with adaptation logics [71], there is
no systematic study of the controller1 interaction with network functions, but
Section 4.2 will give an overview of the existing works in this area. In particular,
we argue that it would be desirable for any network-controller mechanism to be
as lightweight as possible, thus limiting the amount of information needed to be
collected from the network and disseminated to all the clients, as well as the rate at
which the information need to be disseminated. Additionally, such signal should
be easily pluggable within existing DASH controller, to naturally extend their
logic by fitting the additional information provided by the network, as opposite
to require a complete redesign around it. Our goal here is indeed not to propose
another adaptation logic but rather propose a network signal that can be exploited
by existing adaptation logics without much efforts.

It is known that in-network caching can positively impact the quality of ex-
perience by improving the requested video quality and relieving traffic load on
servers, as we show in [121], proactively caching video content at the network edge
effectively relieves traffic load from the core network.However, in-network caching
can negatively affect the controller stability, by increasing the quality switch ratio,
and thus inducing quality oscillations [78]. To reduce this cache-induced oscillation,
bandwidth shaping is seldom used to reduce the rate toward the cache [67] (which,
in practice, limits the cache usefulness), or the assistance of a centralized resource
manager is usually assumed [20] (which requires global instantaneous knowledge
and decision of all cached content and is therefore too heavyweight to have prac-
tical relevance). More specifically, our goal is to understand the feasibility of a
network-controller interaction that (i) uses the most lightweight network signal,
(ii) requires only minimal changes to existing DASH adaptation logics to take into
account this signal and (iii) maximize cache usefulness and thus increasing the
average video quality, while (iv) avoiding cache-induced oscillations.

To summarize the main takeaways from this chapter, we first expose in Sec-
tion 4.2 the various works that exploit network interactions with DAS clients and
then we systematically assess the impact of in-network caching when several ICN

1A controller is defined as in Section 3.2.2 : it is an entity that drives the video segment
request at the client following a given adaptation logic.
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DAS players compete to watch a video, exploring the boundaries of the design space
for network versus client interaction using various adaptation logics (Section 4.3)
and then we propose and evaluate (Section 4.4) a network-aware evolution of an
existing adaptation logic (specifically, AdapTech [15]), based on simple network
signals (specifically, per-quality cache hit-rates) exported at low rate timescales
(specifically, tens of seconds). We conducted an experimental campaign, worth
several weeks of video streaming, to confirm the soundness of our approach: by
integrating this simple network signal to an adaptation logic, we significantly in-
crease the DAS performance with respect to a network-blind adaptation logic. The
results gathered over this campaign also show the robustness of the network signal
used, i.e., tuning is not critical.

The results presented here were published in [123], and received the NOSSDAV
2018 best paper award.

4.2 Related Work

HTTP Adaptive Streaming (HAS) systems traditionally delegate bitrate selection
and control to the client application, which takes independent decisions based
on local estimates of available end-to-end bandwidth and awareness of buffer
level dynamics. Recently, many studies have shown the benefits of network as-
sistance in HAS to overcome the limitations of a purely client-driven scheme (see
e.g. [15, 36, 44, 23, 30, 72, 127, 20]). The lack of direct knowledge about network
status (congestion, bottleneck, cached content) as well as of coordination among
concurrent flows may result in frequent quality/bitrate oscillations, sub-optimal
bitrate decisions by the clients, unfairness among ongoing flows and inefficient
overall utilization of network resources. In addition, service differentiation and
management policies cannot be guaranteed in purely client-driven HAS. A ded-
icated MPEG standard has been developed to formalize the interaction between
client and network elements under the name of SAND, Server and Network Assisted
DASH( [135]). For the sake of simplicity, we classify previous work on network-
assisted video delivery in two classes: the first considering the assistance of a single
network element (i.e. server, intermediate cache, edge router), the second consid-
ering more network elements and involving complex control systems (e.g. CDNs,
SDN-based networks). Within each class, we also highlight the work leveraging
an Information-Centric approach. Finally, Table 4.1 presents the previous work,
explicitly separating the work using a single network element versus using multiple
network elements, with a further division of the work done in the TCP/IP model
versus in the ICN domain.
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4.2.1 Single element network assistance

Cache-assisted. In [78], authors observe that the deployment of cache servers within
the access network to cache video segments may cause incorrect estimation of the
available bandwidth at the client due to a possible overestimation of the available
bandwdith in case of retrieval from the cache and thus lead to bitrate oscillations
and lower QoE. They propose ViSIC (VIdeo Shaping Intelligent Cache), an intelli-
gent cache indirectly assisting bitrate adaptation by performing shaping of traffic
from the cache to prevent oscillations.

[69] proposes cache-assisted HAS. It estimates the bandwidth between the
client and the cache to orchestrate prefetching of segments from the server to match
such estimate, as to avoid cache-induced oscillations. To this aim, it requires the
cache to be aware of the MPD and of the adaptation logic used by the client(s).

[110] presents a cache-aware version of MPC [141], where two bandwidth es-
timations are kept at the client, one for the throughput to the cache and one to the
server. It also proposes an upper-bound for their cache-aware predictor to MPC,
where the cache state (i.e., which segments are cached) is perfectly known at any
point in time.
Proxy-assisted. [39] considers multiuser DASH distribution over a mobile network
access and proposes to optimize QoE by means of a proxy-assisted in-network ad-
aptation: a target transmission rate per user is determined and user requests are
modified at the proxy to match the computed optimal streaming rate. A similar
approach is described in [93], where authors introduce QoE-DASH,a proxy-based
system performing throughput measurements in the network and providing in-
structions to the client application about bitrates to select over time.
Server-assisted. [23] shares the same objective of maximizing QoE in a multiuser
HAS by means of an ILP optimisation solved in a centralised or decentralised way.
The optimization problem takes into account the impact of several factors, such
as number of clients, number of bottlenecks, latency, number of servers. In case
of centralized optimization, the server recomputes the optimal constant bitrate to
assign to each user every time a new client request arrives. As in proxy-assisted
HAS proposals, the capability to adapt rate at the client is traded-off for a global
optimization of resources’ allocation. In our work we take the purely client-driven
and network-driven solutions as references and investigate the space of solutions
in between combining network awareness and user QoE for informed client-driven
rate adaptation.

ICN-based

[48] starts by illustrating the downsides of video delivery in presence of in-network
caching: decreased cache hits and oscillations in video quality at the client if the
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path client-cache is significantly better than client-server. It then introduces some
cache assistance for DASH over ICN in order to avoid oscillations and reduced
cache hit ratio. The cache is given the ability to modify the MPD, to advertise its
cached qualities. Under the assumption that a distinction can be made between a
content served by the server and a content served by the cache, the client can then
manage two rate estimations: one for the server and one for the cache. We adopt
a similar per path estimation in our work. To reduce bitrate oscillations and to
maximise caching effectiveness, the intermediate cache performs live transcoding.
The drawback is that transcoding is heavy and not really scalable.

A similar cache-assisted HAS approach is developed in [111] under the assump-
tion of SVC (Scalable Video Coding). An intermediate ICN router caching video
segments monitors all the requests and then chooses to forward or drop the re-
quests, sending in the latter case a NACK to the client. The work also shows the
effect of video popularity (starvation of unpopular videos watchers that compete
with popular videos).

Recently, [67] has suggested shaping at the cache to avoid oscillations. The
shaping is done to guide the client to the next decision: if the next segment is
present in cache, at a given quality, the shaping will be done to match the bitrate
of this quality. The drawback is a diminished adaptiveness to variable network and
client conditions which we try to avoid in our work.

4.2.2 Multi-element network assistance

The body of work surveyed in this class focuses on multi-element network assist-
ance by designing a control plane assisting video delivery in multi-user, multi-cache
environments (e.g. CDNs) [85, 96, 43, 33]. The video control plane aggregates user
and network periodical measurements of parameters impacting video distribution
to feed global optimization based on the inferred network view. These works as-
sume a centralised system where the collection of information and the coordination
of client decisions take place, under either centralised or distributed optimisation.

The definition of the utility function may differ from one study to the other,
as well as the characterization of network parameters impacting user QoE. For
instance in [33], authors focus on network link congestion and use it at an aggregate
network level to drive local maximization of user QoE. A coordinator node is
utilized to aggregate network and client information and send back updates to the
clients to perform the next bitrate selection. Fairness is the key metric considered
in [51]. Indeed, the paper deals with the competition between HAS and TCP
flows. It derives an optimal bandwidth allocation scheme to guarantee fairness
and stability to HAS and to TCP flows. Also, it considers service differentiation
and applies bandwidth access priority to flows.
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SDN control. [98] leverages SDN to periodically collect application measure-
ments from the clients (such as buffer level) and network measurements (such
as congestion) and enforce decisions like route recomputation upon detection of
congestion with the aim of maximizing clients’ QoE.

[44] uses centralised SDN control to achieve QoE fairness between several
competing HAS players (a TV, a smartphone and a tablet). Similarly, [109] focuses
on avoiding rebuffering events at the player by prioritising streaming flows from
clients with a low buffer level. This is achieved by having the clients modifying
their HTTP requests to integrate their buffer level. Then a centralised SDN-based
controller is able to extract the information from the request and to calculate
player likelihood to experience a stall. Based on that, prioritization of flows and
rate switches at client side are determined. [127] performs a comparison of these
two approaches and more generally characterizes the interaction of Application-
Level Optimisation (ALO) and Network-level Optimisation (NLO).

[19] proposes an SDN-based dynamic resource allocation and management
architecture for HAS systems where resources are allocated dynamically for each
client with the aim to maximize per-client QoE, whilst taking into account different
clients needs (e.g., buffer sizes, display resolutions and quality requirements, etc.)
and network requirements (e.g., available bandwidth, latency, etc.)

Another SDN-based framework is proposed in [30] to perform bandwidth reser-
vation and provide bitrate guidance to clients. It investigates how these strategies
can impact the video delivery. Centralised optimisation to provide fairness in terms
of video quality, formulated as a max-min fairness problem. This results in having
a bitrate assigned to each client and then one of the three strategies is applied: (i)
bandwidth reservation, where a slice of bandwidth, matching the computed bitrate,
is assigned to the client, still deciding independently about rate adaptation, (ii)
bitrate guidance, where the result of a global optimisation is communicated to the
client to driven bitrate decisions, (iii) a hybrid of the first two strategies, namely
both bandwidth reservation and bitrate guidance are performed in a centralized
way.

[72] addresses the bursty nature of DASH by ressource allocation and player
assistance during playback. Upon the start of a streaming session, the client ex-
tracts from the DASH manifest the different video bitrates and selects the one
it can use (based on constraints on the client side, e.g., if the bitrate is too high
and exceeds the capacities of the device).Then the client sends this selection to
a service manager, that will do the ressource allocation. If the capabilities of the
device evolve over time (switch to full stream), the client can send an updated
selection of bitrate to the service manager. They compare different ressources al-
location and show that DASH performs better when there are two queues in the
network devices : one for DASH players and one for the rest of the traffic. They
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show that enforcing the bitrate selection at the service manager allows to lower
significantly the number of quality switches but may induce rebuffering events as
the service manager is not aware of the buffer level at the client side (to avoid this,
they introduce a safety threshold).

[20] defines an SDN-based framework for ABR control in CDNs. Network
measurements are periodically performed to monitor path conditions, the inform-
ation collected is aggregated by an SDN controller referred to as SABR and com-
municated to CDN caches and end users, respectively to enforce specific content
placement strategies and to lead to informed decisions at the clients based on
the communication with SABR. Unlike [20] we leverage ICN reactive caching to
optimize client bitrate selection in non-controlled network environments.

ICN-based

[115] investigates the performances of several forwarding strategies along with
different caching policies in the network. In [79], authors design DASCache, a
framework for optimal video caching in ICN which considers a controlled network
of caches. DASCache performs online optimization aiming at optimal video content
placement in cache. It works in rounds, by minimising the average access time
per bits for each clients. When a round starts, information about popularity of
content is collected at the edge routers. At the end of the round, a solver is called
to solve a BIP (Binary Integer Programming) problem. Clearly, the approach is
suitable for a small scale CDN-like environment where it is feasible to solve an
online optimization to derive content placement strategies. To broaden the scope of
previous work beyond the CDN case, we try to assess whether (and how) network-
assistance can be beneficial also in non-controlled network environments like the
mobile access and in presence of purely reactive caching with the objective of
preserving dynamic bitrate adaptation at the client.

4.3 To Cache or not to Cache?

While caching can be beneficial to DASH by increasing the average quality (e.g.,
as typically the bandwidth to the edge-cache is larger than that toward the end-
server), it may also negatively impact performance by increasing the quality switch
ratio (e.g., in case of a cache miss, which can further lead to oscillations). To
understand which conditions lead to performance impairment, and how to avoid
it, it is important to systematically study the design space of DASH interaction
with in-network caches.
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4.3.1 Design space

We consider a reference baseline scenario (without in-network caches) and contrast
it with in-network caching scenarios (with proactive vs reactive policies), consider-
ing both network-blind (buffer vs rate based) and network-aware adaptation: the
cache advertises to the client which quality is cached, and the client can either
have a strict (i.e., always follow the cache feedback and download the segments
at the advertised quality) or soft (i.e., follow the cache feedback, unless it can be
harmful to the client’s QoE, e.g., requesting a high quality when the buffer level
is low) interpretation of this feedback, to which we refer to as network feedback.
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Table 4.1: State of the art of network assistance in dynamic adaptive streaming,
over either TCP/IP or ICN.
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DASH adaptation logic

We consider two representative examples of network-blind DASH controller : BBA [59]
and AdapTech [15]which are described in the next paragraphs.

Buffer-Based Algorithm (BBA). Introduced in [59], this simple and robust
algorithm is agnostic to the network conditions, and its decisions are only driven by
the buffer state. In a nutshell, BBA2 defines two buffer thresholds, Bmin and Bupper

and uses the buffer level B(t) at the client to take decisions. If 0  B(t)  Bmin, the
quality selected is the lowest. If B(t) > Bupper, the quality selected is the highest
one. When Bmin  B(t)  Bupper, a linear mapping is done from the buffer level
to the selected quality.

AdapTech. A description of AdapTech can be found in Section 3.2. However, for
the ease of the reader, the following paragraphs describe AdapTech again.

[15] introduces AdapTech, an adaptation logic that offers characteristics from
both buffer-based and rate-based strategies. The main goal of AdapTech is to
stabilize the buffer level around a target value, Bsteady, while keeping the video
quality as smooth as possible, by avoiding to react to short term bandwidth
spikes, which would trigger unnecessary quality switches. The algorithm defines
two thresholds, ✓1 and ✓2, which divide the buffer in three regions: the panic zone
(0  B(t)  ✓1), the buffering-state zone (✓1  B(t)  ✓2) and the cushion-state
zone (✓2  B(t)  Bmax). The algorithm keeps track of two different bandwidth
estimates: the throughput of the last segment, A to which we will refer as the
instantaneous throughput, and its smoothed version, Â, computed via an EWMA
( ˆA(n) = ↵ ⇥ ˆA(n� 1) + (1 � ↵) ⇥ A(n)), to which we will refer as the average
throughput.

The selection of the quality of the next segment is done following one of the
three modes described below. The used mode depends on which zone the buffer
level is and the current quality (qk):

• Panic mode: when the buffer level is in the panic zone, the lowest video
quality is selected;

• Buffering-state mode: when the buffer level is in the buffering-state zone,
the video quality is selected using the instantaneous throughput: if the in-
stantaneous throughput is higher than the video bitrate of the next quality
(A > bk+1), then the next quality, qk+1 is selected. If the instantaneous
throughput is lower than the current video bitrate (A  bk), then the qual-

2We use the BBA-0 algorithm, referred to as BBA in the remainder of this chapter
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ity is decreased and qk−1 is selected (assuming that the current quality is not
the lowest one);

• Cushion-state mode: when the buffer level is in the cushion-state zone,
the video quality is never decreased, and can be increased if over the last T
seconds, the average throughput is higher than the video bitrate of the next
quality (Â > bk+1) and the instantaneous throughput is also higher than the
video bitrate of the next quality.

The panic mode aims at quickly building up the buffer to avoid rebuffering
events. The buffering-state mode aims also at increasing the buffer, but as the
panic mode partially filled up the buffer, it is not critical to have the video seg-
ments as quickly as possible, therefore the quality selection can be done following
the instantaneous throughput variations. Therefore, the quality selection rapidly
adapts to network conditions by quickly switching to sustainable qualities. Finally,
in the cushion-state mode, on the one hand, the video quality can not be decreased
to avoid negative short-term fluctuations of the bandwidth, as the already built-up
buffer can absorb the downloading time variations induced by a negative spike in
the bandwidth. On the other hand, the T parameter is introduced to prevent pos-
itive short-term fluctuation of the bandwidth to trigger unwanted quality switch.

Network: Cache policies

We consider three scenarios, and devise two modes of interaction between network
and application.

Baseline. No caches are considered in the network. On the client side, network-
blind BBA and AdapTech logics are used.

Proactive placement, no cache replacement. A proactive placement is per-
formed at the cache: one quality, arbitrarily selected, is fully cached at the router
(i.e., all the data packets of all the segments of the selected quality are cached),
and there is no cache replacement. Moreover, the router advertises the quality
that is in cache to the clients via annotations in the MPD file. Network-blind cli-
ents resort to their unmodified BBA and AdapTech adaptation logics to select the
quality of the next segment. Conversely, network-aware clients can interact with
two modes: 1 a strict one (referred to as the Strict policy), that forces the client
to download segments at the quality advertised by the network, regardless of its
state (buffer level and rate estimation); 2 a steered one (referred to as the Steered
policy), that follows the router indication unless its buffer level is below a given
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Figure 4.1: Design space at a glance: plots (a)-(d) show a key performance met-
ric, with different subplots for different scenarios, i.e., baseline (left), proactive
placement without replacement (middle) and no placement with LRU replace-
ment (right). The bottom x-axis reports the quality cached at the router (in the
proactive placement scenario) or the cache size in number of data packets (in the
LRU replacement scenario), while the top x-axis reports the equivalent cache size
in MB (both scenarios).

threshold (Bmin = 20% in our experiments), in which case the client downloads at
the lowest quality q = 0 (i.e., panic mode as in AdaptTech).

No proactive placement, LRU replacement. No proactive placement is per-
formed and the cache uses a LRU replacement as cache management policy. On
the client side, network-blind BBA and AdapTech logics are used.

4.3.2 Results at a glance

Scenarios

For the sake of simplicity, we consider six emulated clients connected (via Wi-Fi
802.11n or Ethernet) to an intermediate router (possibly equipped with a trans-
parent cache of controlled size S) connected to a video server via an Ethernet
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cache

Video 

serverCapacity C

cache size S

Figure 4.2: The topology used in our experiments: 6 clients are connected to an
intermediate router equipped with a cache and connected to a video server.

link (of controlled capacity C). The topology is described in Figure 4.2. All the
nodes (i.e., clients, router, servers) are ICN-enabled (using the ICN stack of the
Linux Foundation CICN project [134]), and each client runs an instance of Viper
(the default dual-stack TCP/IP and ICN video player of CICN, described in more
details in appendix B). We set the buffer capacity to 20 video segments, and uses
the default parameters of the adaptation algorithms indicated earlier. The server
hosts the Tears of Steel video encoded at 6 different qualities, identified by their
bitrates (i.e., 3, 6, 9, 12, 15 and 18 Mbps). More information on the tools used to
deploy our testbed can be found in Appendix A, and the instructions to reproduce
our results can be found in Appendix D.

Without loss of generality, we report here a case where we set the capacity
C = 60Mbps, and connect the clients to the intermediate router using a WiFi
802.11n link: clients are close to the access point, so that the WiFi channel capacity
is about 100 Mbps. In order to prevent PIT aggregation from occurring at startup
in our experiments (which would lead to a multicast tree to naturally form in ICN),
we introduce stochastic arrivals (with average inter-arrival of two seconds). For
each scenario, each player downloads once the video and we gather 95% confidence
interval over 10 runs.

Experimental results

We contrast in Figure 4.1 the wide boundaries of the design space with the usual
metrics: the average quality perceived by all clients (Figure 4.1-(a)), the number
of rebuffering events (Figure 4.1-(d)), the ratio of quality switches (the number
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of quality switches divided by the number of segments downloaded, Figure 4.1-
(b)) and the cache hit ratio (whenever relevant, Figure 4.1-(c)). Each subfigure
is further divided in three plots, one for each scenario: baseline (left), proactive
placement (middle) and reactive LRU cache (right). Whenever relevant, the cache
size is reported in bytes (top x-axis) and the placed quality or the equivalent
number of data packets are also indicated (bottom x-axis).

Baseline. In the baseline scenario, when no cache is available and without PIT
aggregation, the bottleneck for each client is the router-server link: the fair-share
is about 10 Mbps, so that the highest viable quality is q = 2 (bitrate b2 = 9Mbps).
However, due to the segment size fluctuation, the average quality is around 1.5 for
both BBA and AdapTech.

Proactive placement. For Network-blind clients, placement may be inefficient
when there is a mismatch between the available resources and the cached qualities:
these will be unlikely to be requested by the clients, either because too high qual-
ities are cached and there is not enough bandwidth to request them (e.g., b4 = 15
and b5 = 18 Mbps exceed the fair-share of the WiFi access to the cache), or be-
cause the cached quality is too low in terms of bitrate compared to the bottleneck
capacity (e.g., b0 = 3 and b1 = 6 Mbps are lower than the fair-share of each client
on the bottleneck link between the router and the original server). As such, placing
either the lowest or the highest qualities (qualities 0,1,4 and 5) does not result in
measurable gain compared to the baseline scenario, while the cache hit ratio is
low (up to 15% for quality 1, close to 0% for the other qualities). Rather, wrong
placement can even worsen the user QoE: placing q = 1 induces quality oscillations
(the quality switch ratio for AdapTech nearly doubles), while the other metrics are
not impacted.

Network-aware strategies, that are informed of the cached qualities, do not
necessarily benefit from proactive placement either: if the cached quality is too
low (qualities 0 and 1), the average quality of all clients is below the baseline
scenario. Conversely, when the cached quality is too high (qualities 4 and 5), we
see an improvement of the average quality, but at the costs of either rebufferings
(strict policy), or quality switches (steered policy). A well dimensioned proactive
placement (e.g., which can be the result of an optimization problem) exacerbates
the tradeoff between average quality and quality switch for both network-blind
and network-aware clients. For instance, placing quality q = 2 or 3 in our scenario
induces a cache hit increase for BBA (respectively 40% and 50%), along with a
slight increase of both the average quality and of the quality switch ratio3. Even

3This is due to BBA’s linear mapping from the buffer level to the quality requested: when
quality q = 2 is cached, it will be quickly retrieved from the cache, thus the client will eventually
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with well dimensioned proactive placement, AdapTech still suffers from cache-
induced quality oscillations: this can be inferred by a low cache hit ratio, a higher
quality switch ratio and no significant improvement of the average quality. It is
worth noting that network-aware policies with proactive placement yield better
results in terms of cache hit ratio and better (than AdapTech) or comparable (to
BBA) results for the average quality, but do not eradicate oscillations.

LRU caches. Finally, when LRU replacement is performed at the cache, we ob-
serve an improvement compared to the other scenarios: the average quality and
cache hit ratio are higher, while the quality switch ratio remains more or less the
same. It is worth noting that the size of the cache has some influence on the per-
formance of the clients: when the cache has a small size (18 MB), the average
quality is less than the one observed with a bigger cache (180 MB or 1800 MB).

4.4 Network-aware DASH proposal

From Section 4.3, we learn that caching increases average quality but possibly in-
duces quality oscillations. Proactive placement is cumbersome (as it should care-
fully take into account available and time-varying resources) whereas LRU caches
are simpler and thus appealing. At the same time, we observe that advertising
the cached quality to guide the client choice can improve the overall QoE: while
advertisement is natural in the proactive placement case, benefits should arise also
under LRU caches. Indeed, LRU caches are driven by the controller requests, which
would thus benefit from informed assistance from the network to increase cache
efficiency and reduce oscillations: the simplest possible signal that an LRU cache
can track (at low overhead) and export (through SAND, at low rate) is the aver-
age per-quality cache-hit-ratio (to which we will refer to as the average per-quality
hit-ratio). We now show how network-aware DASH clients can turn this simple
indication to a useful knob to refine their decision process by simply performing
throughput estimations on a per-path basis.

4.4.1 NA2: Network-Aware AdapTech

We enable clients to differentiate the source of each ICN Data packet by using a
path label. This allows to dicriminate server vs cache traffic, so that clients can
keep track of throughput estimations on a per-path basis: one estimation for the
throughput toward the cache and one toward the server. Furthermore, we enable
the cache to periodically advertise to the clients a per-quality pair of signals: the

request quality q = 3, which will take longer to download, depleting the buffer and causing the
player to request quality q = 2, and so on.
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average hit-ratio and number of samples (ICN Interest packets received). This ad-
vertisement can be done using SAND, but it can also be achieved by updating
the MPD on the fly at the cache in cases where the MPD is periodically up-
dated (e.g., MPD live). By combining these informations, the client can make an
educated choice on the quality of the next segment to download. Algorithm 1 de-
scribes Network-Aware AdapTech (NA2), a modified version of AdapTech taking
into account the in-network assistance provided by both path-labelling and cache
advertisements.

Like AdapTech, NA2 divides the buffer in three zones: the 1 panic zone, the
2 growing zone and the 3 steady zone, delimited by two thresholds: Bpanic and
Bsteady. In the 1 panic zone, the lowest quality is selected in order to quickly
fill the buffer as to avoid rebuffering events that are harmful to the user QoE.
In the 2 growing and 3 steady zones, selection is a two-step process: first we
compute the feasibility of each considered quality and second, we select the highest
feasible quality. A quality q is feasible if the downloading rate BW is higher than
the associated bitrate bq, i.e., the segment is downloaded faster than viewed. Spe-
cifically, the rate is multiplied by a conservative slack factor � to account for size
variations across segments, and the instantaneous BW or average dBW rates are
used depending on the buffer state.

Network-awareness kicks in zones 2 and 3 . If there are not enough samples
for this quality (Nq < Tsamples), the informations provided by the cache are not
significant and therefore a conservative choice is made, by using the estimated
throughput to the server to compute the quality’s feasibility. If there are enough
samples, the average per-quality cache-hit ratio Pq is segmented in three zones: 4
cold (Pq  PLow), 5 warm (PLow < Pq  PHigh) and 6 hot (Pq > PHigh) cache.
In the 4 cold zone, it is likely that segments of quality q are not cached, and will
be downloaded from the server, therefore the estimated throughput to the server
is used to conservatively compute the quality’s feasibility. In the 6 hot zone, it is
likely that the quality is cached and thus the estimated throughput to the cache
is used. Finally, in the 5 warm zone both estimates are used: in the 2 growing
buffer state, the main objective is to fill the buffer, therefore a conservative choice
is made (i.e., the quality has to be feasible for both paths), while in the 3 steady
buffer state, the buffer level is high enough to allow for a more optimistic choice
(i.e., the quality has to be feasible for at least one of the two paths).

As in AdapTech, we restrict the magnitude of a quality switch to one, and
therefore, in the 2 growing and 3 zones, we consider only the current quality
and the ones directly below and above it (when possible). Note that, just like
AdapTech, in the steady zone, we can only increase the quality if for at least T
seconds, the network conditions allow us to switch to a higher quality: at that
point, the can-switch-up (CSU) flag is set to True.
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Algorithm 1 NA2: Network-Assisted AdapTech

Params : TSamples // # of samples threshold

1 PLow,High // Cache thresholds

2 � // slack factor

Variable: B(t) // Buffer level

3 BWS, BWC // Server and cache instant throughput

4
dBW S, dBWC // Server and cache average throughput

5 {Pi}1≤i≤M , {Ni}1≤i≤M // Per quality cache hit and samples #

6 q, bq // Current quality and associated bitrate

7 CSU // Can-Switch-Up flag

8 Function BitrateSelection()

9 if B(t)  Bpanic then . 1 Panic
10 q 1

11 else if B(t)  Bsteady then . 2 Growing
12 q ArgMax

i∈Jq−1,q+1K

(IsFeasible(i, BWS, BWC))

13 else . 3 Steady
14 if IsFeasible(q+1, dBW S, dBWC) && CSU then
15 q q + 1

16 return q

17 Function IsFeasible(q, BWS, BWC)

18 if Nq  TSamples | | (Pq  PLow) then . 4 Cold
19 return (BWS ⇥ � > bq)

20 else
21 if Pq  PHigh then . 5 Warm
22 return (BWS ⇥ � > bq) && (BWC ⇥ � > bq)

23 else . 6 Hot
24 return BWC ⇥ � > bq
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Figure 4.3: Synoptic of AdapTech (left) + Network-Aware (NA, right) decisions

Finally, Figure 4.3 presents a graphic summary of our NA2 algorithm. The right
plot presents the buffer level divided in the three zones and the left plot presents
the Network-aware decisions.

4.5 Evaluation

4.5.1 Sensitivity analysis

To assess the impact of the different parameters of our algorithm on the user QoE,
we use the early described topology, in which all six clients are connected to the
router using an Ethernet link with a capacity of 30 Mbps. The router is connected
to the server via an Ethernet link of capacity C = 30 Mbps. To avoid PIT aggreg-
ation, we introduce stochastic arrivals (with average inter-arrival of 6 seconds).
We set the cache capacity of the router to 1.8GB (corresponding to 1.2M Data
packets). We use default AdapTech values for Bpanic = 10s, Bsteady = 20s, � = 0.8.
For Network-awareness, we advertise the cache hit-ratio every 30 seconds, and re-
quire to have collected at least TSamples = 104 packets. Assuming that the available
bandwidth to the server is lower than the one to the cache, the higher PLow is,
the more conservative our algorithm is. We thus set PLow = 0.1 to avoid being
too conservative and we vary PHigh from 0.1 to 0.9. For each value, we repeat
experiments 40 times, for a total of over 100 hours worth of experiments.

Figure 4.4 presents the ratio of the usual metrics of our algorithm vs baseline
AdapTech for the 10-th worst percentile of clients (left) and the median client
(right). We see that our algorithm significantly reduces the number of quality
switches (by about a factor of 2 in both cases) and drastically cut the rebuffering
rate (by about one order of magnitude for both cases). In the case of the me-
dian client, this is done as expected at the expense of the average quality, which
reduces by about 15%. Interestingly, for the worst 10-percentile of clients, the av-
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Figure 4.4: Sensitivity analysis: ratio of Network Aware vs Network blind per-
formance for the 10-th worst percentile of clients (left) and for the median client
(right).

erage quality actually increases by 50%, which is again a sizeable improvement.
Finally, note that results are very stable irrespectively of the exact (PLow, PHigh)
parameterization: we can observe the upper bound of average quality is obtained
at (0.1, 0.35) and the lower bound of quality switches at (0.1, 0.5).

4.5.2 Comparison with Network-blind baseline

In this section, we vary the cache capacity of the router between 90MB and 1.8 GB
(respectively corresponding to 60k and 1.2M packets). For each cache size, we run
20 experiments for each adaptation logic: network-blind AdapTech, NA2 (upper
bound), and NA2 (lower bound), for yielding a total of 120 experiments. The results
are presented in Figure 4.5, in terms of average quality, quality switch ratio, cache
hit ratio and rebuffering probability (the ratio of the number of rebufferings over
all experiments over the number of segments downloaded). The gold bars present
the results for network-blind AdapTech, the brown ones present the results for NA2

(upper bound) and the green ones presents the results for NA2 (lower bound).
For both cache sizes, we confirm that NA2 sizeably (drastically) reduces the

quality-switch (rebuffering) ratio. Particularly, when the cache is small (60k pack-
ets), NA2 outperforms a network blind AdapTech, both in average quality and in
quality switches. This is due to a better utilisation of the cache (notice the hit rate
increase): with network-blind AdapTech, quality oscillations happen which pollute
the cache. When the cache is small, this pollution is critical because it replaces
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Figure 4.5: Comparison of Network blind vs Network Aware AdapTech, for two
NA2 settings: upper bound of average quality (PLow, PHigh) = (0.1, 0.35) and lower
bound of quality switch ratio (PLow, PHigh) = (0.1, 0.5).

segments that can be useful for the other clients. Our network-aware approach
circumvents this pollution by giving more informations to the client, which can
make educated choices for the quality of the next segment and thus preventing
quality oscillations.

With a bigger cache (1.2M packets), the pollution is still present, but is less
critical because it does not replace useful segments. As a result, the average quality
is higher, for both network-aware and network-blind algorithms. The average qual-
ity observed for our network-aware approach is slightly lower than compared to
network blind AdapTech, which is necessary to prevent cache-induced quality os-
cillations. Shortly, NA2 is simple and robust, providing sizeable benefits for DASH
QoE.

Finally, we compare a network blind approach and NA2 (both upper and lower
bound) under different access networks. To do so, we use the same topology, along
with 3G4 and 4G5 traces for the access network between the clients and the router.
For both traces, we modified them to get an average bitrate of 18 Mbps, and each
client starts at a random point in the trace. Furthermore, we set the capacity of the
link between the access router and the server to C = 25 Mbps and we reproduce
the same experiments as described earlier. The results are gathered in Figure 4.6:
Figure 4.6-(a) reports results for the 3G traces and Figure 4.6-(b) the 4G traces.

We observe here that the size of the cache has no impact on the average quality
of the clients. This can be explained by the fluctuations in the traces along with the

4
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/tram.jernbanetorget-

ljabru/report.2010-12-16_1100_CEET.log
5
http://users.ugent.be/~jvdrhoof/dataset-4g/logs/report_foot_0001.log

http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/tram.jernbanetorget-ljabru/report.2010-12-16_1100_CEET.log
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/tram.jernbanetorget-ljabru/report.2010-12-16_1100_CEET.log
http://users.ugent.be/~jvdrhoof/dataset-4g/logs/report_foot_0001.log
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fact that users start at a random point in the traces making the cache less useful:
note how the cache-hit ratio remains the same (around 40%), independent of the
cache size. However, we also observe that NA2 sizeably reduces the quality-switch
ratio, successfully preventing the cache-induced quality oscillations.

4.6 Conclusion

In this chapter, we explored how in-network caching, coupled with network assist-
ance, impacts dynamic adaptive streaming. Specifically, we explored the design

0

1

2

3

4

5

60 120

A
v
er
ag
e
q
u
al
it
y

Network blind NA2 (upper bound) NA2 (lower bound)

0

0.2

0.4

0.6

0.8

1

60 120

Cache size (in thousands of packets)

Q
u
al
it
y
sw
it
ch
ra
ti
o

0

0.2

0.4

0.6

0.8

1

60 120

C
ac
h
e
H
it
ra
ti
o

10-5

10-4

10-3

10-2

60 120

R
eb
u
ff
er
in
g
ra
ti
o
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Figure 4.6: Comparison of Network blind vs Network Aware AdapTech , for the
upper and lower bound of average quality, under various access networks: 3G and
4G traces.
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space (Section 4.3) of in-network caching and showed that while in-network cach-
ing can improve the average video quality, it can induce quality oscillations. We
then proposed a simple signal such as the per-quality cache hit-rates from cache,
coupled with a per-path throughput estimation, which is effective for (i) avoid-
ing the cache-induced oscillations (reduction of the quality switch ratio), while
(ii) maintaining a comparable average quality (increasing worst case quality but
necessarily reducing quality for more aggressive clients), and (iii) increasing the
cache hit ratio.

While the quantitative results showed in this chapter are gathered with a spe-
cific network-aware evolution of AdapTech, we argue that network-assistance such
as the one we propose is beneficial to all rated-based adaptation logics: part of
our future work aims at systematically leveraging such signals in multiple control-
lers [71].

Additionally, we argue that the class of signals exported by the network could
be extended. Particularly, another appealing signal is binary feedback piggybacked
from the cache to assert whether the next segment in the same quality is cached.
On one hand, such feedback would require additional overhead at the cache (extra
lookup for content that has not been requested yet) and would also need a refined
timing: if the feedback is too early, the segment could be evicted from the cache,
and if the feedback is too late, it will reach the client after his decision. On the
other hand, such feedback would help further to increase the user QoE.

Finally, such network signal can be helpful in the case of live video, especially
in the case of dynamic adaptive streaming over ICN, where PIT aggregation and
in-network caching can significantly reduce the traffic load upstream. The next
chapter will cover how ICN can be leveraged in real-time communication to im-
prove existing architectures.
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5.1 Introduction

5.1.1 DAS real-time communication

As stated earlier in this thesis, DASH presents some advantages compared to live
streaming protocols (such as RTP, RTSP, RTMP, etc): for example, it does not
suffer from UDP filtering and it can do NAT traversal. However, DAS is not well
suited for ultra low-latency media streaming: some delays are induced with DAS,
as explained in [87]. It identifies the sources of delay as:

1. Content acquisition. It represents the delay induced by recording the media
(video and/or audio). This delay is not specific to DAS.

2. Server-side packetization of media segments. It represents the delay to have a
new media segment available. Most of the time, this is equal to the segment
duration as the server waits until it has received the whole media content for
this segment before making it available.

3. Asynchronous fetch of media segment. As the server does not signal to the
client that a new media segment is available, the client must poll for data,
resulting in some additional delay.

4. Time to download the segment. The delay induced by the network, it depends
on the size of the media segment and the network characteristics.

5. Buffering at the client-side. To ensure a smooth playback, the client buffers
one or more media segments to mitigate transport jitter, such as varying
download time.

6. Decoding at the client. The delay induced by the decoding of the media
segment at the client. This delay is not specific to DAS.

Therefore, the most straightforward way to reduce the latency for DAS is to lower
the segment duration. However, as shown in [87] and [139], this creates an overhead:
shorter video segments go hand in hand with a larger number of segments to
represent the same video and thus the HTTP encapsulation overhead increases [87].
Moreover, shorter video segments lead to an explosion in the number of HTTP
requests [139]. To circumvent this increase of HTTP requests, [139] proposes to
leverage HTTP 2.0 server push feature: the client can request in advance video
segments, which will be pushed to it as soon as one requested segment becomes
available at the server, hence reducing the delay by decreasing the segment duration
without increasing the number of HTTP requests from the client.

[24] exploits low latency video coding techniques (Gradual Decoding Refresh)
and HTTP 1.1 chunked-transfer encoding to reduce the segmentation delay. More
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precisely, by fragmenting media segments into chunks down to the video frame
level, the authors achieve a end-to-end latency of 240 ms. In [57], the authors
rely on application-layer multi-path along with frame byte-range signalling to the
client, in order to retrieve faster the video frames composing a segment and thus
reducing (i) the packetization delay since the segment is downloaded while it is
being constructed at the server side and (ii) the network induced delay by using
multiple paths to spread the downloading load.

However, while some issues are mitigated by these works, some issues are still
open. For instance, if short segments are used, each segment should start with
an I-frame, to ensure a smooth transition from one video quality to another, and
as I-frames are bigger (in bytes) than P or B-frames, reducing the duration of
media segments could lead to an increase of the size of the media segments. Fur-
thermore, DAS adaptation logics relies on having the same segment encoded at
different qualities. For low latency purposes, this would require to have all qualities
encoded at the same time, and thus having multiple encoders running, which is
CPU intensive for the server. Furthermore, if we assume an intra-segment down-
loading mechanism (as described in [57, 24]) with very low latency, if the network
conditions change rapidly, the client may want to switch the video quality, which
is only possible at the beginning of the downloading of a segment, limiting the
responsiveness of the adaptation logic, which, in very low latency environments,
can deeply impact the user’s quality of experience.

5.1.2 WebRTC

Traditionally used in collaboration systems, WebRTC is increasingly adopted by
media companies for live eventing, gaming, betting or auctioning services where
real-time latency is required for both media distribution and live interaction and/or
feedback from participants. One of the reasons for its recent success is the capability
to support low-latency targets better than HTTP live streaming technologies such
as HLS or MPEG/DASH, as shown in the previous section. By using WebRTC
the latency can be reduced from tens of seconds to few hundred milliseconds as
required by realtime communication applications.

However, unlike modern CDNs, WebRTC distribution model is not designed
for large scale and thus, scalability appears to be a key metric to validate WebRTC
as a credible candidate to support low latency streaming services. Taking a single
video stream and mirroring/multiplying it to thousands of users with the necessary
bandwidth today is complex and costly to manage via WebRTC, due to the point-
to-point nature of peer-to-peer or peer-to-central node communication model, as
well as to the centralised signalling infrastructure. To improve scalability, the ar-
chitecture of traditional multiparty conferencing tools has moved from peer-to-peer
to centralized: the Multi-point Control Unit (MCU)-based architecture was first
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introduced and, more recently, there was a trend to move toward the lighter and
possibly decentralised Selective Forwarding Unit (SFU)-based architecture. We
review all the WebRTC architectures in Section 5.4.

Using an SFU, most of the complexity of the central node is offloaded to the
conference participants or distributed to multiple control nodes. To avoid costly
encoding/decoding operations at the SFU (also referred to as media bridge), the
use of Simulcast [50] is becoming increasingly popular.

In the quest of a solution that combines scalability and efficiency benefits, we
explore in this chapter the potential benefits coming from the use of a different
underlying transport based on ICN principles. Native mobility and multicast are
among the major benefits that ICN would bring, where low-latency would be
achieved by dynamic hop-by hop forwarding of packets based on network conditions
and content awareness. ICN appears suitable for the support of RTC applications,
as partially confirmed by initial work within the ICN community [29, 65, 144].

In this chapter, we build on the SFU-based WebRTC architecture and in-
vestigate the additional scalability benefits that may result from removing the
point-to-point transport limitations by using an underlying content-based net-
work transport. To do so, we leverage the Hybrid Information-Centric Networking
(hICN ) architecture, an ICN-in-IP solution incrementally deployable that requires
minimal modifications to the current network and applications.

The contribution here is twofold: (i) we design and implement hICN-RTC,
an integrated WebRTC over hICN system, and (ii) we propose a new Realtime
Information Centric Transport Protocol, RICTP, a content-aware transport that
minimizes the communication latency. We assess their performance against stand-
ard WebRTC. The results are encouraging: hICN-RTC shows lighter load on the
SFU due to its integrated content-aware transport. More interestingly, hICN-RTC
scales with the number of active speakers rather than the total number of con-
nected users, overcoming existing known limitations of RTC platforms in terms of
maximum number of participants.

The rest of the chapter is organized as follows: Section 5.2 presents related work
in the ICN domain, Section 5.3 describes hICN; Section 5.4 reviews the existing
WebRTC architectures; we introduce hICN-RTC in Section 5.5 and the Realtime
Information Centric Transport Protocol (RICTP) in Section 5.6; our proposals are
evaluated in Section 5.7.

The work presented in this chapter was submitted here [103].

5.2 Related work

There have been some efforts in the ICN community to address real-time commu-
nication over ICN. VoCCN [61] and ACT [146] show the feasibility of real-time
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communications using ICN considering respectively two-party and multi-party au-
dio conferencing, while pointing out the benefits in terms of scalability, robustness
and security over similar IP based solutions. ACT also highlights specific meth-
ods to achieve conference discovery and speaker discovery in order to generalize a
distributed conferencing framework.

While they are both limited to audio conferencing, NDN-RTC [52] addresses
directly WebRTC by making the underlying networking stack NDN-based. NDN-
RTC addresses the additional complexities for generating, publishing, and con-
suming video content, and provides novel approaches to minimize latency using a
pull based communication framework. However, the application-support features
offered by NDN-RTC continue to rely on WebRTC host-based approaches, such as
measuring response time for Interests during bootstrap phase or during connection
disruptions for the wireless consumer, without exploiting the content awareness in
the network to improve efficiency and reduce latency of RTC.

Other work replaced the WebRTC-based approach with a full ICN architec-
ture trying to leverage monitoring at client-level [29, 65] and at network-level [144]
to decide upon rate adaptation. In [29] and [65], the authors design a Serverless
Scalable Audio-Video Conferencing, leveraging a push primitive rather than the
pull-only transport model of CCN/NDN to minimize latency without sacrificing
multicast, flow balance, caching and multipath routing features. They show good
scalability properties of the ICN approach to any number of conferences and video
flows, along with a good flexibility in adapting to random join/leave of participants.
They also highlight the benefits of a distributed approach to avoid single point of
bottlenecks in client-to-server and P2P exchanges. Finally, security considerations
are taken into account: communications are authenticated and private, using the
ICN content-based security model as opposed to the TLS/DTLS channel-based
approach. However, the proposed approach still remains host-only driven. In [65],
the proposed architecture, SRMCA (Scalable Real-time Multiparty Communica-
tion Architecture) attempts to reduce the end-user complexity by offloading some
of the conference framework functionality to the network. Critical operations like
namespace synchronization are provided by the network as a service, resulting in a
more deterministic response to join/leave events and network disruptions, as well
as opening up the case of a newer business model. The resulting simplified end-
user component allows higher scalability in terms of the number of participants
as corroborated by their experimental analysis. However, this comes hand-to-hand
with the loss of the pure distributed nature of the application as certain function-
alities are concentrated at network service points, and the incompatibility of such
an approach with WebRTC primitives.
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5.3 Hybrid ICN Background

Hybrid Information-Centric Networking (hICN) [97] extends the Internet Protocol
(IP) to allow named-data communications in IP, both v4 and v6, by overloading
the semantics of a few header fields in the IP packets as described in Section 5.3.1.
In particular, hICN (i) does not loose any of the ICN features, (ii) transparently
interconnects hICN routers with IP ones, which are able to process hICN packets
as standard packets, and (iii) can be implemented by reusing most of the exist-
ing software, minimizing the modifications required to the existing network and
applications.

As an implementation of the ICN architecture, hICN inherits the ICN pull-
based request/reply protocol semantics: an Interest packet is sent to retrieve a
Data packet. The forwarding pipeline implemented by the hICN forwarders is
introduced in Section 5.3.2.

The hICN architecture comprises a network layer (L3) and a transport layer
(L4) and provides service access points to content producers and consumers to
produce and consume named resources, respectively. This is done using the hICN
socket API discussed in Section 5.3.3.

5.3.1 Naming

Resource names are encoded as 128 (or 32) bits and can be represented using
the common hexadecimal or dotted decimal notation for IPv6 or IPv4 addresses
respectively, e.g. FE80:1111:2020::2020 or 192.168.1.1. hICN envisages the creation
of a new address family AF_HICN to encode resource names. We will refer to these
names as network names or name_prefixes. The name_prefixes are stored in the
IP packet header. In particular, in a data packet the name_prefix is stored in the
IP source address, while in an Interest packet it is stored in the IP destination field.
The modifications to the IP header (IPv6 in this example) packet are highlighted
in red in Figure 5.1.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| Traffic Class | Flow Label |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Payload Length | Next Header | Hop Limit |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address (Interest) or Name Prefix (Data) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address (Data) or Name Prefix (Interest) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.1: IPv6 interest and data packet description
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The transport layer, by definition, takes care of segmentation and reassembly
of upper layers protocol data units, with optional signing operations. The full data
packet name is obtained by appending the segmentation information, namely the
name_suffix, to the name_prefix. The name_suffix, along with other transport
layer information, is carried in a TCP-like header, represented in Figure 5.2 (the
modifications to the TCP header packet are also highlighted in red).

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Name Suffix |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Path Label |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Data | Time |M|A|S|R|S|F| Loss Detection |

| Offset| Scale |A|C|I|S|Y|I| and Recovery |

| | |N|K|G|T|N|N| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Checksum | Lifetime |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.2: hICN transport header inside TCP-like header.

For the sake of clarity, in the remainder of this paper we use human readable
names instead of IP addresses, where the name_prefix is made of a set of name
components. An example of human readable name_prefix is “/video/participant/”
where “/” is the separator between name components. The name_suffix is indic-
ated as “seg=x”.

5.3.2 Forwarding

Interest and Data packets follow a different forwarding path inside an hICN for-
warder. From a high level standpoint, Interests are forwarded using routing by
name while data packets are label switched, similarly to IP packets. The details of
the forwarding mechanisms are reported in the Internet Draft [97] and we briefly
discuss them here for clarity, distinguishing between Interest packet and Data
packet forwarding paths. In each case we explain how the forwarding function is
realized in an hICN-enabled router and how coexistence and transparent intercon-
nection with regular IP routers is provided.

A typical ICN router manage three structures to forward packets: the Forward-
ing Information Base (FIB), the Pending Interest Table (PIT) and the Content
Store (CS), the goal of the last two is to temporary store either pending Interest
packets or Data packets. In hICN, these two structures are collapsed into a single
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one, called packet cache. It is indexed by the full packet name (concatenation of
prefix and suffix) and uses different insertion/eviction policies for Interest and Data
packets, as discussed later in this section.

Packet classification and punting. Before explaining the forwarding procedures
we need to explain how an hICN router can classify a packet in order to process
it in the correct way. In particular the router needs to distinguish between Data
packets, Interest packets and standard IP packets. hICN routers use the Access
Control List functionality generally available on standard IP routers to classify
the packets by using source (src) and destination (dst) address fields: (i) if only src

belongs to AF_HICN the packet is a Data packet, (ii) if only dst belongs to AF_HICN,
the packet is an Interest packet, (iii) if none of the two fields belong to AF_HICN,
the packet is processed as a regular IP packet, (iv) the packet is dropped since
it is an invalid packet. Once the packet is classified it is punted in into the right
forwarding pipeline.

Interest forwarding path. When an hICN router receives an Interest packet,
an exact match lookup on the full name is performed in the packet cache. If there
is a DataHit (a Data packet corresponding to that name is in the packet cache),
the router directly satisfies the Interest packet, without forwarding it upstream:
the destination address of the matching Data packet is rewritten with the source
address carried in the Interest packet and the Data packet is then forwarded on
the incoming interface of the Interest packet. Note here that the source address
of the Interest packet is the IP address of the previous hICN-hop traversed by
the Interest packet. This address translation guarantees path symmetry at the
hICN level, but the Data packets will not necessarily follow the reverse path of the
Interest when traversing IP networks.

If there is an InterestHit (an Interest packet corresponding to that name is
in the packet cache), if the source address of the received Interest packet is the
same as the cached Interest packet, the incoming Interest packet is a duplicate,
if the source addresses differ, it is a request coming from a new source. There
already exist several solutions to handle these two cases in ICN and hICN adopts
the one described in [95]. The latter case, corresponding to a PIT aggregation is of
particular interest for this chapter. Specifically in that case, the incoming Interest
packet is stored in the packet cache and dropped. This ensures that only one
request for the same content is forwarded upstream, thus minimizing the traffic.

Finally, if there is NoHit (no packet corresponding for that name is stored
in the packet cache), the Interest packet is passed to the IP FIB lookup stage
to determine the set of available next hop options. This stage makes use of the
existing IP FIB lookup engine without modifications, with the sole exception that
hICN lookups return all the available output faces. The result is then passed to
the forwarding strategy that decides on which face(s) the Interest packet will be
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forwarded, according to some metrics that can be programmed. The Interest packet
is also stored in the packet cache to allow for aggregation of future Interest packets.

Data packet forwarding. When a Data packet arrives at the hICN forwarder,
an exact match lookup is done on the packet cache in order to find all the matching
Interest packets (Interest packets with the same name that can be satisfied with
the received Data packet). If there is no match, the Data packet is discarded.
Otherwise, if there is an InterestHit, the Data packet is cloned to satisfy all the
matching Interest packets: for each Interest packet that is cached, a copy of the
Data packet with its destination address rewritten with the Interest packet source
address is forwarded on the incoming interface of the Interest packet. The Interest
packet is then evicted from the packet cache. In this way, hICN is able to multicast
the content to many users. It is this feature that allows our proposed architecture
to scale with the number of content streams rather than the number of users, since
only one request per content is forwarded in the network. hICN-RTC is designed
to maximize the advantages coming from interest aggregation and hICN multicast.

5.3.3 Consumer/Producer socket API

The consumer and the producer sockets are the core of the API that applications
can leverage to implement location independent communications. hICN builds
upon [124] that provides an API and implementation of two name-based socket
types: consumer and producer socket. These sockets are uni-directional and are
used to send data at the producer side, and to receive data at the consumer side.

The consumer socket pulls data sending interests, with no knowledge of the
location of the one or multiple producers that can reply to the requests. For ex-
ample, the network itself, meaning an hICN router, can reply to an interest sent by
a consumer in case of a data hit in the packet cache, as described previously. The
consumer socket also implements the transport protocol that is responsible to de-
cide which and how many interests to send at any time. In this paper we present the
Realtime Information Centric Transport Protocol (RICTP) in Section 5.6. Other
kinds of protocols can be implemented, such as [25].

The producer socket responds to data requests coming from one or multiple
consumers with no knowledge of their location. In Section 5.6 we describe also the
role of the producer socket in RICTP. The producer socket also offers per-packet
integrity and data origin authentication which are exploited by the consumer socket
to verify the validity of the data, i.e., the data has been originated by a trusted
producer and never modified. Data confidentiality is instead left to the application
or higher layer protocols, e.g., SRTP.
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5.4 Review of WebRTC architectures

In the last six years, WebRTC architecture has significantly evolved from the
original peer-to-peer mesh. We quickly review here the main architectural options
with pros and cons.

Figure 5.3: WebRTC (a,b,c) and hICN-RTC (d) architectures

Full mesh or P2P-based: in this architecture, depicted in Figure 5.3-(a), each
participant sends directly its audio/video streams to all the other participants in
a peer-to-peer fashion. On the one hand, this architecture has the advantage of
minimizing latency by relying on direct point-to-point communications and, as
such, does not require any intermediate node between the participants since they
are all interconnected. On the other hand, it clearly does not scale well with the
number of participants: assuming N participants, each one has to encode N � 1
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times its audio/video stream and to decode each one of the received N�1 streams.
These are CPU-intensive tasks. In addition, this architecture requires significant
uplink bandwidth at the participant’s side, who needs to send its streams N � 1
times, and this is not always realistic.

Multipoint Control Unit (MCU)-based: in this architecture, depicted in
Figure 5.3-(b), each participant sends its audio/video streams to an intermediate
node, called Multipoint Control Unit (MCU). This node gathers all media streams
from the participants and, for each one of them, it encodes a composite stream that
contains all the media. These new streams are personalized for each client, both in
terms of content and bitrate. Thanks to this, the MCU is able to provide a really
good user experience to the participants. Such architecture also allows to partially
relieve some of the load on the participants, as each one encodes and sends only
one stream to the MCU and receives and decodes only one stream. However, it
creates new issues: the end-to-end delay increases since the MCU has to (i) decode
the incoming video streams, (ii) re-scale the different videos for the composite flow,
(iii) encode the composite video and (iv) send it to the participants. Furthermore,
the decoding and re-encoding of the video streams can be very intensive in terms
of CPU consumption, reducing the scalability of this approach.

Selective Forwarding Unit (SFU)-based: in this architecture, depicted in
Figure 5.3-(c), each participant sends its audio/video streams to an intermediate
node, called a Selective Forwarding Unit (SFU). This node then decides which
streams to forward to the participants. This adds some flexibility as the SFU
can decide to drop streams that are not important to the conference and forward
only the important ones, such as the streams from active speakers. The selection
of which streams to forward is performed using some selection algorithms, such
as [49]. This is achieved without any media processing at the SFU node, thus not
inducing extra delay nor extra CPU cycles. However, new challenges arise from
such architecture: while in the previously presented architectures (P2P and MCU)
a media stream is designed to be received by only one entity (participant or MCU),
thus allowing a one-to-one video bitrate adaptation, with a SFU, a video stream
can be received by more than one participant. Using the SFU, the video bitrate
adaptation must be handled by the sender of the stream that needs to take into
account the network conditions of all the receivers. To deal with this problem
Simulcast has been introduced [50]: the producer generates and sends the same
stream encoded with multiple bitrates to the SFU. The SFU decides which bitrate
to send to which participant.

Recent evolution of MCU/SFU-based architectures has triggered work in many
directions, notably distribution of control nodes (e.g. cascaded SFU [137], dis-
tribution of MCUs in the cloud [118], rate selection and adaptation at parti-
cipant’s side (e.g. Simulcast and related work on adaptation and congestion con-
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trol [50], [106], [108]).
These architectures have different properties and may be differently selected,

depending on the number of participants in a conference and of the resources
available at participant/server side. However, the SFU-based architecture seems
the most suitable for a scalability study. In the following section, we build upon
such an architecture to discuss the integration of Hybrid ICN in the underlying
network transport stack.

5.5 hICN-RTC Architecture

In this section we describe the architecture of our proposal. The main idea behind
hICN-RTC is to build upon the standard SFU-based architecture and adapt it to
hICN, by (i) integrating hICN both at clients and at central node, (ii) limiting
modifications to application-layer semantics, (iii) designing a RTC-tailored hICN
transport protocol.

In terms of proposed architecture, like in the SFU case, the central node for-
wards streams without any transcoding operation, with the difference that in
hICN-RTC we exploit the multicast features of the underlying hICN network to
replicate and distribute each flow, offloading the media bridge application. We call
our central node Hybrid Forwarding Unit or HFU. This node is composed of two
parts: the application, which remains similar to that of a classic SFU, and a hICN
forwarder. The HFU is represented in Figure 5.3-(d). We describe hICN-RTC as-
suming a star topology, i.e., a set of participants connected to the HFU through a
standard IP network and no hICN intermediate routers. We discuss more complex
typologies, in which participants connect to the HFU through an hICN network
at the end of the section. We also distinguish between uplink and downlink: the
uplink, also known as contribution, is the connection between the participants and
the HFU (or the central node in general), while the downlink, or distribution, is
the connection from the HFU to the participants.

The way hICN-RTC distributes audio and video in the uplink is depicted in
Figure 5.4. The HFU receives audio streams from all the participants by means
of standard UDP connections, and uses the audio level information [60] to rank
each participant according to their speaking activity [49]. The top-N participants
are elected as active speakers and their videos will be displayed during the confer-
ence. The number N is decided by the application. Once the HFU has its rank, it
starts to ask the video from the active speakers. Every active speaker publishes its
video stream under a unique name_prefix, e.g., /video/participant-2/. The video
stream is segmented into a sequence of RTP packets, each of them carried into a
single hICN data packet. The hICN name of each data packet is thus composed of
the name_prefix of the participant followed by the sequence number of the RTP
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packet, e.g, /video/participant-2/seg=x. To retrieve a video stream, the HFU asso-
ciates the SSRCs, available in the audio streams, to the name_prefix associated
to the active speaker. The transport layer then constructs the entire hICN data
name and retrieves the video. In the example in Figure 5.4, the application uses
N = 1, and the HFU retrieves the video stream from participant 2 who is the
only active speaker, i.e., the only one that will be displayed in the conference. The
transport protocol used to retrieve the video is detailed in the next section.

Figure 5.4: hICN-RTC architecture: uplink message exchange

We stress that in hICN-RTC the HFU pulls only the video from the N act-
ive speakers, while a standard SFU usually retrieves the video streams from all
participants and drops those belonging to the non-active speakers. This is the
first major difference between hICN-RTC and standard RTC architectures: since
the content is pulled, only the streams that are really needed are requested, thus
reducing the amount of traffic in the uplink.

In the downlink, every participant retrieves the video streams of the active
speakers from the HFU, as shown in Figure 5.5. As soon as the HFU gets some valid
data packets from an active speaker, it re-publishes them using some pre-defined
hICN names, e.g., /video/active-speaker-1/seg=x, /video/active-speaker-2/seg=x.
These names, which are distributed to the participants at connection time, are
used by all participants to request the video of the active speakers. By doing so,
all requests are aggregated by the hICN forwarder on the HFU, or they are directly
served by the hICN forwarder packet cache. For example, in Figure 5.5, the three
requests are aggregated at the forwarder and only one reaches the application.
When the application produces the data (only once), the hICN forwarder serves all
requests. In this way the application always receives one single request per packet
generated by each active speaker, serving only N flows, instead of N ⇥ P flows,
where P is the number of participants in the conference. Thus, the application can
scale much more as assessed in the evaluation in Section 5.7.
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Figure 5.5: hICN-RTC architecture: downlink message exchange

We described how we can reduce the load from the application by exploiting
the hICN forwarder at the HFU. However, the traffic sent by the hICN forwarder in
the network is the same generated by a standard SFU, because it needs to replicate
all the streams for all the conference participants. This load can be significantly
reduced by moving from a star topology to one with some hICN forwarders between
the clients and the HFU. These nodes will work as aggregation points, reducing the
load on the network. We show the benefits of additional in-network hICN nodes
in Section 5.7.

A drawback of the re-publishing approach used by hICN-RTC is that it invalid-
ates the signature carried by each data packet. A simple mechanism that solves this
problem is to allow the HFU to re-sign each packet, at the cost of: (i) increasing
the per-packet computational cost at the HFU, (ii) breaking the end-to-end integ-
rity and data provenance between consumers and producers which is one of the
pillars of hICN. A different approach involves the adoption of a modified version
of a hICN manifest [124], called mapping manifest. A mapping manifest contains
the changes made by the HFU in one or more hICN data packet. By receiving
a mapping manifest, a participant can reconstruct the original name in the data
packet and verify the signature calculated by the producer of the data, i.e., the
active speaker from which the HFU retrieved the data packet.

5.6 Realtime Information Centric Transport Pro-

tocol

As described in Section 5.3, hICN is a pull-based architecture: in order to retrieve
a Data packet, a consumer needs to request it using an Interest packet. This com-
munication pattern introduces two potential issues in the hICN-RTC architecture:
(i) consumers may suffer additional latency since a full round-trip time (RTT)
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elapses between the sending of an Interest packet and the reception of the corres-
ponding Data packet; (ii) consumers need to know what data to request, i.e., the
segment number of the newly generated data by the producer. In order to avoid
these two problems, we designed a transport protocol called Realtime Information
Centric Transport Protocol or RICTP. RICTP keeps at the consumer a window of
pending Interests packets (Interest packets sent but not yet satisfied), for data that
will be generated by the producer in the near future. In this section, we describe
how RICTP decides what data to ask and how many pending Interest packets are
needed for a consumer in order to get always fresh data in a timely fashion. The
protocol that we describe here is implemented inside the hICN sockets. A detailed
description of the hICN socket is available in [124].

At the current time RICTP is still a preliminary prototype that lacks many fea-
tures. We are actively working to extend RICTP in order to support Simulcast and
receiver-based adaptive bitrate selection as well as congestion-control. As discussed
at the end of this section, we are also looking at packet loss recovery mechanisms,
even if we think that the support given by the hICN network may reduce the need
of complex recovery protocols such as FEC. This will be part of a future study.
However, the preliminary results shown in Section 5.7.2 are encouraging.

5.6.1 RICTP Producer socket

Besides making available the RTP packets received from the application through
Data packets, the RICTP producer socket also provides auxiliary information that
consumers use to generate interests for new data. In particular, when the producer
socket receives an interest, it evaluates if it can be satisfied. If not it notifies the
consumer. Algorithm 2 describes in detail the actions executed by the producer.

When the producer socket receives an interest from the network the OnInterest
function is executed. First of all, the producer extracts the segment number from
the interest name, as well as the interest lifetime. Using these values, it computes
the maxSeg, which is the largest segment number that will be produced by the
socket before the expiration of the received interest. The producer socket also
keeps track of the segment number that will be used for the next data packet.
This value is stored in currentSeg. If the interest segment number is smaller than
currentSeg or it is larger than maxSeg, then the interest refers to data that was
produced in the past or to a data that will be produced too far ahead in the future.
In these cases the producer replies with a negative acknowledgment (nack). A nack

is a normal Data packet that contains the currentSeg and the current production
rate of the producer, called prodRate. The cache lifetime of a nack is set to 0 to
prevent them from being cached in the network and thus to ensure that the con-
sumers always receive an updated nack. The handling of a nack by the consumer
is described in the following section. In the other cases (segment > currentSeg and
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Algorithm 2 RICTP Producer Socket

Function OnInterest(interest)
segment = getSegment(interest);
lifetime = getLifetime(interest);
maxSeg = currentSeg + lifetime * prodRate;
if segment < currentSeg or segment > maxSeg then

sendNack(currentSeg, prodRate);

// else: do nothing, drop packet

Function OnDataRTP(rtpPacket)
data = createData(rtpPacket, prefix, currentSeg);
sendData(data);
currentSeg ++;

segment < maxSeg), the producer does not generate a nack, it simply drops the
received interest packet.

When the producer socket receives an RTP packet from the application the
OnDataRTP function is executed: the producer generates an hICN data packet with
the received RTP packet as payload, using as a name the prefix specified by the
application and, as a segment number, currentSeg. This packet is then passed to the
forwarder that runs underneath the producer socket. When the forwarder receives
the data packet it satisfies all the pending interests for such data.

This ensures that the Data packet will be distributed to all the consumers,
offloading the cost of packet replication from the application. Unlike nack pack-
ets, the Data packets are produced with a larger caching lifetime (1000ms in our
implementation) in order to allow for loss recovery from in-network caches.

5.6.2 RICTP Consumer Socket

The RICTP consumer socket needs to fulfil two objectives: (i) sizing the window
of pending Interest packets in order to avoid additional latency when retrieving
the video, and (ii) learning the segment number used by the producer in order to
ask for new data. To this end, RICTP uses a two phases approach: CATCH_UP

and IN_SYNC. In the CATCH_UP phase the consumer does not know how many
in flight Interest packets are needed in order to get fresh data from the producer.
Therefore, during this phase the consumer tries to quickly estimate this value by
increasing the pending Interest packets window exponentially. Once the consumer
starts to get new data, it switches to the IN_SYNC phase, where it simply tries to
remain in this state, taking into account possible network variations.
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The consumer uses three values to keep track of the pending Interest packets:
currentWin that indicates the current window size (i.e., the maximum number of
Interest packets that can be in flight at a given point in time), maxWin (an upper
bound for the window), and inFlight (the actual number of Interest packets in
flight). At rounds of fixed duration ∆, the consumer estimates the minimum RTT
to the producer and the producer’s production rate, which are then used to update
the size of the window.

Protocol Description

When the consumer joins the conference, it enters the CATCH_UP phase and
starts requesting the packet with segment number 0. currentWin and inFlight are
initialized to 1, and maxWin is initialized to MIN_WINDOW, a constant value
that we set, in our implementation, to 5. The behaviour of the RICTP consumer
is described in Algorithm 3.

Upon reception of a nack, the OnDataNack function is executed: first, inFlight is
decremented, as a nack satisfies a valid Interest packet. Second, the nack’s segment

number, the inProduction segment and the estimatedProdRate (the last two are
transported by the nack in its payload, and correspond to currentSeg and prodRate

defined earlier) are extracted. As nacks indicate that the consumer is out of sync
with the producer, we make use of the information given by the nack to try to
quickly re-synchronize: the consumer sets nextSegment (the segment number of
the next Interest packet) to inProduction + 1, and updates the estimation of the
production rate using the value in the nack’s payload. This value is used to size the
window of pending Interest packets, as described later. If inProduction > segment,
the consumer is asking for old data, therefore, it switches to the CATCH_UP phase
and increases the window. In the opposite case (inProduction < segment, as the
two values cannot be equal in a nack packet), the consumer is asking for data that
are not yet produced and therefore the consumer is in sync with the producer, but
it window of pending Interest packets is too large and has to be decreased. Finally,
the consumer tries to send a new Interest packet.

Upon reception of a Data packet, the OnDataRTP function is executed: first,
inFlight is decremented and the packet RTT (updateRtt) is computed, to be used to
determine the minimum RTT at each round. Second, the hICN header is removed
from the data packet and the resulting RTP packet is sent to the application. If
the consumer is in CATCH_UP phase, the window size is increased. Finally, the
consumer schedules new Interest packets. It is worth noting here that the socket
sends to the application RTP packets as soon as valid Data packets are received,
with no regard to the phase the consumer is in. In fact, valid Data packets can
be received during both (CATCH_UP and IN_SYNC) phases, forwarding directly
the resulting RTP packets to the application minimizes the time to video at the
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Algorithm 3 RICTP Consumer Socket: Packet handling

Function OnDataNack(nack)
inFlight --;
segment = getSegment(nack);
inProduction = getSegmentInProduction(nack);
estimatedProdRate = getProductionRate(nack);
nextSegment = inProduction +1;
if inProduction > segment then

phase = CATCH_UP;
increaseWindow();

else
decreaseWindow();
phase = IN_SYNC;

scheduleInterest();

Function OnDataRTP(data)
inFlight --;
updateRtt(getRtt(data));
sendContentToApp(getRTP(data));
if phase == CATCH_UP then

increaseWindow();
scheduleInterest();

Function scheduleInterest()

while inFlight < currentWin do
sendInterest(prefix, nextSegment);
inFlight ++;
nextSegment ++;

Function OnNewRound()
prodRateOnRound = receivedBytes/ roundDuration ⇥ ⌧ ;
estimatedProdRate = ↵ ⇥ estimatedProdRate + (1 � ↵) ⇥ prodRateOnRound;
minRtt = getMinRtt();
if no Nacks in the last 4 rounds then

phase = IN_SYNC;
updateWindow();
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application.
Finally, the OnNewRound function is called upon the beginning of a new round.

It estimates the production rate of the producer and the minRtt to the producer:
estimatedProdRate is computed by dividing the bytes received in the last round by
the round duration (roundDuration). To take into account estimation error, a factor
⌧ is used. Furthermore, an exponential weighted moving average of the estimated
production rate is used. minRtt is computed as the minimum RTT measured over
the last N rounds of the protocol (in our implementation, N = 30), so that the
estimation can take into account possible changes in the network RTT (this is
achieved via the getMinRtt() function in Algorithm 3). If the consumer did not
received any nack packet over the last four rounds, the consumer is considered in
sync with the producer and therefore the phase is set to IN_SYNC. At last, the
window of pending Interest packets is updated.

Window Adjustment

Algorithm 4 describes all the functions used by the RICTP consumer to handle
the window of pending Interest packets.

The function computeMaxWindow is used to compute the upper bound of the
window size, maxWin. It is computed as a sort of bandwidth delay product, where
the bandwidth is the estimated production rate of the producer and the delay
depends on the consumer phase: in the CATCH_UP phase, maxWin is set as the
product of estimatedProdRate and interestLifetime, while in the IN_SYNC phase,
maxWin is the product of estimatedProdRate and minRtt. In the CATCH_UP phase,
interestLifetime is used as delay because (i) during the CATCH_UP phase, the
consumer may have a wrong estimation of the minimum RTT and (ii) it allows
to generate a larger window (since an Interest packet lifetime is higher than an
RTT), increasing the chances to quickly match the producer production rate, even
in case of large network delay. Using the minRtt in the IN_SYNC phase allows
the consumer to maintains a window size close to the minimum value required to
remain synchronized with the producer.

During the CATCH_UP phase, the consumer tries to quickly synchronize with
the producer, therefore it increases the window size exponentially: every time a
packet (Data or nack) is received (except when the nack concerns a segment that
is not yet produced: inProduction < segment), the increaseWindow function is
called. This function first calls the computeMaxWindow function, and then increases
currentWin if possible (currentWin must be less or equal to maxWin).

When a nack concerning a segment that is not yet produced is received, the
window size is decreased through the function decreaseWindow. When the function
is called for the first time in a round, the window size is multiplied by 2/3, while
for subsequent nacks, the window size is reduced by 1. As most of the time nacks
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Algorithm 4 RICTP Consumer Socket: Window adjustment

Function computeMaxWindow()

if phase == IN_SYNC then
delay = minRtt;

else
delay = interestLifetime;

maxWin = delay * estimatedProdRate;

Function increaseWindow()
computeMaxWindow();
currentWin = min(maxWin, currentWin +1 );

Function decreaseWindow()

if is the first time in this round then
currentWin = currentWin *2/3;

else
currentWin --;

currentWin = max(currentWin, MIN_WINDOW);

Function updateWindow()

if phase == IN_SYNC then
computeMaxWindow();
if currentWin < (maxWin *2/3) then

currentWin = min(maxWin, currentWin * ↵);
else if currentWin > maxWin then

currentWin = max(currentWin * �, MIN_WINDOW);
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are received in batches, this prevents decreasing too much the window size, which
could lead to a desynchronization of the consumer and the producer. In any case,
the window size is bounded by MIN_WINDOW, which is the lowest possible value.

During the IN_SYNC phase, the goal is to keep the window size as stable
as possible, and therefore the function updateWindow is run once per round. If
currentWin < 2/3⇥maxWin, the window size is increased by an increase factor ↵.
If currentWin > maxWin (this may happen when switch from CATCH_UP phase
to IN_SYNC), the window size is decreased by a decrease factor �. In the other
case, the window size remains the same.

Packet Loss Recovery

In the case of a lossy network the consumer is responsible to recover the lost pack-
ets. In hICN, like in standard ICN, a loss is detected when an Interest timeout
occurs. This happens if an Interest packet is not satisfied within its lifetime. Unfor-
tunately this is not enough in real time applications, since the Interest lifetime can
be quite large, and when the loss is detected it is too late to recover the packet. To
overcome this problem we take advantage of the RTCP packets generated by the
application. In the standard WebRTC, the application generates an RTCP Gen-
eric NACK [100] packet as soon as a loss is detected. In our implementation we
intercept these packets in our socket and we transform them into Interest packets.
The generated Interest packets can then retrieve the corresponding Data packets
from in-network caches (if available) without having to be forwarded up to the
producer. Using this technique we are able to promptly detect losses, overcoming
the limitation of the timeout approach of ICN, and to reduce the time required to
retrieve lost packets with respect to the standard implementation, which requires
end-to-end retransmissions. This, combined with other in-network loss recovery
such as WLDR, described in [28], may reduce the need for more complex recovery
mechanisms such as FEC. We leave the discussion of this topic open for future
work.

5.7 Evaluation

In the following sections, we gather the results of a performance evaluation of hICN-
RTC: in Section 5.7.2, we assess the efficiency of RICTP, the pull-based transport
proposed in Section 5.6, in terms of response and quick retrieval of media streams
from the participants; and in Section 5.7.3, we report the scalability analysis of
hICN-RTC and compare it to state-of-the-art SFU-based WebRTC architecture.
The motivation for the former evaluation is to show that RICTP does not introduce
any additional latency in real-time video distribution, while the latter shows that
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hICN-RTC scales with the number of active speakers rather than the number of
participants in the conference.

5.7.1 Implementation and Experimental Settings

To implement hICN-RTC we have modified the code provided by the open source
project Jitsi [5]. We have implemented our hICN-RTC clients as web applications,
customizing WebRTC library inside Chromium [46]. The main modification inside
WebRTC library is the replacement of standard sockets by hICN ones. The hICN
sockets are implemented inside the hICN transport library, which provides mul-
tiple transport protocols, but in our experiments, we used RICTP, described in
Section 5.6. Each client runs its own hICN forwarder, which implements the hICN
network stack. Both hICN transport library and forwarder are extensions of the
open source code published in CICN as part of the FD.io project [134].

The application running on the HFU is a slightly modified version of the Jitsi
video-bridge. While we reuse most of the application logic, in particular the speaker
ranking that has a central part in our architecture, we have implemented, at the
application level, the video distribution protocol described in Section 5.5 (i.e., the
data renaming and the data publication) and hICN sockets with RICTP are used
in the application as well. The hICN forwarder running in the HFU is based on
VPP [84], which allows the forwarder to handle traffic in a more efficient way.
When in-network hICN nodes are used, their forwarder is also VPP-based.

All the participants in our conference produce a single video stream with an
average bitrate of 500 kbps at 25 frames per seconds (fps). We have also forced the
WebRTC library to produce new key frames at constant intervals, one every 100
frames, as recommended by WebRTC specifications. Since our stream produces
25fps, each client produces a new key frame each 4 seconds.

5.7.2 RICTP benchmarking

In this section we run some benchmark experiments to evaluate RICTP, the hICN-
RTC transport protocol proposed in Section 5.6. First, we start by measuring the
impact of the network delay on RICTP. For this purpose, we designed a simple
scenario: three users are connected to a video conference and a fourth one joins it
after a while. We then measure the time it takes for the new participant to receive
the first valid Data packet, i.e., the time elapsed between the connection of the
participant and the reception of the first video packet. We vary the RTT between
the new user and the HFU using the netem qdisc [42]. For each RTT value, we
run the experiment 30 times and compute the average and the standard deviation
of the collected measurements. We report the results in Figure 5.6.
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Figure 5.6: Time elapsed between the first Interest packet sent by a user and the
reception of the first valid Data packet varying the RTT

The plot shows that the new participant is able to get the first data packet
in about 2 RTTs, most of the time, meaning that RICTP is robust to network
delay. The only case where this observation does not hold is when we set the
round trip time equal to 10ms. This is due to the video production rate used
in our tests. In fact, when the new client joins the conference, it asks for video
segment 0 and receives a nack with the segment number of the packet that will
be produced next, say segment s. At this point, the client asks for segment s + 1
(according to Algorithm 3). The producer generates a stream at 500 kbps, meaning
one packet every 17ms (considering 1100 bytes the average size of an RTP packet).
This means that the reply to the second Interest packet may require up to 34ms,
that summed to the 2 RTTs, roughly gives the 50ms of the plot. This also explains
the higher variation on this result, since the delivery time depends on when the
new participant joins the conference. For higher RTT values, the production delay
is masked both by the RTT itself and by the fact that the new participant can
fetch the required data from the HFU cache.

However, in order to be able to render the video, a single data packet is not
enough and the client needs to receive an entire key frame. As described before,
a participant generates a key frame every 4 seconds. When a new client joins the
conference, it will receive a key frame in 2 seconds (on average) after reception of
the first valid data packet. Therefore, reducing the time needed by a participant
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to receive the first valid data packet helps reduce the time elapsed between a
participant joining a conference and rendering the video. We acknowledge that the
key frame reception can be sped up by explicitly asking for a new key frame at
connection time, like WebRTC does using RTCP PLI packets [100]. We leave the
explicit request of a key frame for future work.

In a second experiment we show that RICTP does not add extra delay in
addition to the one introduced by the network during the conference, even if it is
a pull-based protocol. We run again our conference with 4 participants connected
directly to the HFU and we measure the time that elapses between the creation
of a Data packet at producer side and its reception at consumer side. We run
the experiment in two settings: in the first setting, each link has 10ms of delay,
resulting in a total RTT between two participants, passing through the HFU, of
40ms; in the second setting the link delay is set to 30ms, with a total RTT of
120ms. The results in Figure 5.7 are obtained from one minute of conference.
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Figure 5.7: Distribution of the time elapsed between the production of an RTP
packet and its reception at the consumer

As expected, the plot shows that the majority of the packets are received
within 1/2RTT, meaning 20ms in the case of 40ms RTT and 60ms in the case of
120ms RTT. Is it worth noticing that with 120ms RTT some packets are received
with a small additional delay. These are the packets taken from the HFU cache.
A participant may retrieve content from the cache if it goes temporally out of
synch with the producer. However the cache helps to mask this border effect and
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helps the client to keep downloading and watch the video without switching to the
CATCH_UP phase of RICTP transport protocol.

5.7.3 hICN-RTC Scalability

In this section we show the better scalability of hICN-RTC with respect to baseline
WebRTC. More precisely, we set up a conference with many participants and
measure the traffic generated in the network, as well as the CPU load on the
central node. To test WebRTC we use a star topology where we use the Jitsi SFU
to connect all the clients. In the hICN-RTC case, we use the topology depicted in
Figure 5.8. It offers the same star topology as WebRTC for the comparison (upper
cloud), and we add a group of participants connected to the HFU through an
additional hICN node (lower cloud) to distinguish incremental benefits resulting
from hICN network enablement. In both cases the hICN traffic needs to traverse
an IP network to go from the clients to the HFU and vice versa. In all experiments,
we progressively add participants to the conference, setting the number of active
speakers equal to 3 (each client will display over time up to 3 videos in parallel).

Figure 5.8: Topology used for scalability tests.

The workload for the WebRTC experiments is generated using Selenium Grid [9].
We run multiple LXC [7] containers, each one containing an instance of Chrome
and a Selenium node. such nodes are controlled by a centralized orchestrator that
runs Jitsi Torture [6]. This tool sets all the parameters of the experiment, such as
number of participants, duration of the experiment and many others. The gener-
ation of the workload in this setting is quite heavy and we were not able to scale
it to more than 100 users due to the amount of resources required. In fact we
used 5 servers with 24 Xeon E5-2690 v3 CPUs each, for a total of 240 cores using
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hyper-threading, and a sixth server to run the Jisti video-bridge in isolation, in
order to reduce context switching that may have altered our measurements. For
the hICN-RTC workload, instead, we used a simple test application running over
RICTP transport. This application does not perform encode/decode operations of
the video and is therefore much more lightweight than a Chrome instance. This
allowed us to run many more clients in our testbed, up to 1000 clients with 3
servers only.

Figures 5.9 and 5.10 show the overall traffic generated in the conference. For
hICN-RTC we distinguish between network and application traffic. The network
traffic is the traffic received and sent by the hICN forwarder on the HFU. This
is measured on the link represented by a dashed blue line in Figure 5.8. The
application traffic is the traffic received and sent between the application and the
HFU, measured on the link represented by a dotted red line in Figure 5.8.

The uplink traffic (the traffic from the clients to the HFU) is reported in Fig-
ure 5.9. In the chart, we show how the traffic varies increasing the number of
participants in the same conference. In particular, for hICN-RTC we connect up
to 250 participants directly to the HFU, and we further increase the number of
participant up to 1000, connecting the new clients behind an hICN node. The
results in presence of such added clients are depicted with a grey background in
the plot. As already discussed above, we were only able to go up to 100 clients for
WebRTC, given the much higher amount of computing resources required for the
experiment. The log scale on the y axis highlights the different scaling behaviour
between WebRTC and hICN-RTC.

Specifically, we observe from the plot that the uplink traffic generated by
WebRTC increases linearly with the number of participants, as each one of them
sends its contribution (its media streams) to the SFU. With hICN-RTC, the uplink
traffic also grows when the number of participants increases, but only to account
for the increase of Interest packets sent by the users, which are clearly much smal-
ler in size. However, the traffic that reaches the application is always constant
in hICN-RTC, regardless of the number of participants (the application traffic is
depicted with red solid bars on the graph), and corresponds to the three videos
produced by the active speakers.

Moreover, the plot shows that adding an hICN router in the network helps
to improve even further the scalability of the system: not only the application
traffic remains unchanged, but also the incoming network traffic remains constant
when the number of users increases (gray zone from 250 to 1000 participants in
the graph). This is due to the request aggregation performed by the intermediate
hICN node in the network between clients and HFU.

The downlink traffic (the traffic from the HFU to the clients) is reported in
Figure 5.10. As expected, the downlink traffic in hICN-RTC is comparable to
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Figure 5.9: Uplink traffic.
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Figure 5.10: Downlink traffic.

the downlink traffic generated by WebRTC. However, the traffic coming from the
application is again constant, showing that hICN-RTC scales with the number of
active speakers, not with the number of participants. We also observe that the
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introduction of an hICN router in the network keeps the downlink traffic constant,
again as a result of the request aggregation.
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Figure 5.11: CPU usage.

The CPU usage in the central node is reported in Figure 5.11. We observe that
the CPU usage grows linearly in the case of WebRTC, while it remains constant
when using hICN-RTC. In particular, the plot shows that hICN-RTC supports a
conference with 10 times more participants with respect to WebRTC, using 150
times less CPU on the central node: 100 participants in a WebRTC conference
correspond to a 1500% (or 15 CPUs) usage, while 1000 participants in hICN-RTC
correspond to only 10% of one CPU.

5.8 Conclusion

The capability to scale with a large number of participants is key for WebRTC to
sustain increasing adoption in multiparty collaboration systems and in emerging
low-latency media streaming applications.

ICN communication model (embodied here by hICN) appears as an appeal-
ing option for providing an efficient (multi)-point to (multi)-point communication
model that scales with content, i.e. number of active media streams, rather than
end hosts, i.e. number of participants. The use of ICN connectionless and pull-
based transport could allow to overcome the limitations of existing point-to-point
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model, especially in presence of mobile or multi-homed devices, and potentially
provide interesting features in terms of low-latency congestion control (e.g. reli-
ability), caching and security. Previous attempts have either partially integrated
ICN characteristics with limited advantages or proposed a clean slate architecture
not compatible with WebRTC application layer.

In this chapter, we investigate the potential scalability benefits of leveraging
ICN in WebRTC stack, while minimizing modifications overall and specifically in
the application layer. To this aim, we select a recently proposed incremental design
of ICN implemented inside IP, Hybrid ICN (hICN), and propose hICN-RTC, a new
WebRTC architecture that fully exploits hICN features.

A light SFU-based topology is assumed where the central control node (re-
named HFU) offloads operation to the underlying network stack. It results in a
drastic reduction of network traffic as well as of CPU usage at the HFU.

We carry out a first evaluation assessment by means of hICN-RTC imple-
mentation in Jitsi. Results show that (i) application traffic in the HFU (i.e., the
traffic handled by Jitsi Videobridge) is minimized in hICN-RTC as a result of the
RICTP pull-based transport model: it becomes proportional to active speakers’
media streams only, rather than to the aggregate of the media streams produced
by all participants. (ii) The request aggregation performed by the hICN forwarder
in the HFU shields the application layer from handling the majority of traffic,
minimizing the CPU utilization which remains low and constant regardless the
number of participants in the conference. (iii) The introduction of an additional
hICN-enabled node in the network between a group of participants and the HFU
may help to further reduce traffic, as a consequence of in-network request aggreg-
ation and caching.

As predicted, such features of hICN-RTC allow the collaboration system to
scale with the number of active participants, i.e., the number of displayed media
streams at client side, which is a parameter decided by the application, rather than
with the number of total participants, e.g., supporting with hICN-RTC a conference
with 10 times more participants than in WebRTC using 150 times less resources
on the media bridge. A series of benchmarking tests also show that RICTP, the
pull-based transport presented in the paper, does not introduce additional latency
to the video distribution, validating the feasibility of our proposal.

Besides the encouraging results, the design, implementation and evaluation of
hICN-RTC are still at an initial stage. As future work, we plan to enrich hICN-RTC
with multiple features and to leverage more of the properties that the underlying
hICN communication paradigm offers. More specifically on transport protocol fea-
tures, we plan to extend basic loss and congestion control in RICTP, as well as to
add the capability to explicitly request a new key frame as a way to reduce the
time required to render the video when a new client joins the conference. In all
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such cases, in-network caching property of hICN would be leveraged for retrieval
of data directly from the cache, with no involvement of the application. We also
plan to implement Simulcast with bitrate adaptation decided at the client side in a
way that minimizes signaling in the network and leverages the statistics collected
on path in virtue of the hICN interest/data symmetric routing principle. Finally,
we believe that hICN-RTC holds promises for improved mobility and object-based
security in WebRTC as naturally inherited by hICN, still yet to be evaluated in
WebRTC context.
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Conclusion

Information-Centric Networking (ICN) appears as a promising candidate to solve
the mismatch between Internet usage and its architecture: nowadays, Internet us-
age is mostly centered on information dissemination and retrieval, while its ar-
chitecture still relies on an end-to-end model IP-based model that presents some
limitations when it comes to multimedia delivery. Several OTT approaches were
deployed to overcome this mismatch, such as CDNs and peer-to-peer networks,
and carry today a large fraction of the Internet traffic. However, such approaches
are far from perfect as technical inefficiencies such as mobility management, dy-
namic content-to-location bindings, multicast or multi-homing, require complex
solutions to be handled. ICN offers a novel networking paradigm, where the con-
tent itself is the focus point, rather than its location: rather than addressing the
hosting server of the content, the content itself is addressed in ICN. To put it
simple, the Where is replaced by the What. In ICN, mobility management, mul-
ticast or multi-homing issues are gracefully handled, thus simplifying networks. In
this thesis, we look carefully at the interaction of ICN and multimedia delivery,
with a particular attention to the resulting user’s quality of experience. To do so,
we considered several ICN architectures, namely NDN, CICN and hICN, but the
results we gathered are independent from the architecture and we argue that our
results still hold under other ICN architectures. We also considered several mul-
timedia delivery cases: Video on Demand, using broadly deployed ISO standard
MPEG-DASH, and Real-Time Communication, relying on WebRTC.

For the DASH use-case, we contrasted the performance achievable by DAS
systems (represented by MPEG-DASH) using rate-based and buffer-based adapt-
ation logics, on top of an ICN or a TCP/IP network stack. Our experimental
campaign resorted on different channels (DASH profiles, Wi-Fi and LTE access
emulated via NS-3, or real 3G/4G traces), multiple clients (in homogeneous or
heterogeneous population mixture (with respect to the network stack they used),
with synchronous or asynchronous arrival patterns) and various adaptation logics.
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We showed that when combining simple building ICN blocks, such as refined band-
width estimation, in-network loss detection and recovery or multi-path forwarding,
the performance of DAS over ICN matches and possibly significantly outperforms
(in terms of user’s quality of experience) the performance of DAS over TCP/IP.
However, we also show that to be efficient, these building blocks need to be used
together, otherwise, the DAS performance over ICN can worsen with respect to
TCP/IP.

However, this comparison only considered the benefits of ICN at the client-side,
without considering in-network caching that can be leveraged by ICN. Therefore,
we explored how in-network caching, along with network assistance, would impact
the user’s quality of experience. Specifically, we explored the design space of in-
network caching and pointed out (although we were not the first ones to do so),
that while in-network caching can improve the average video quality for the user,
it may also induce quality oscillations, degrading the user quality of experience.
We then proposed a simple signal from a cache that periodically exports to the
clients the per-quality cache hit-rate. This signal, coupled with a per-path band-
width estimation, successfully prevent the cache-induced quality oscillations, while
maintaining a comparable average quality and increasing the cache hit ratio. We
presented the integration of such signal to one adaptation logic, namely AdapTech,
but we argue that such network assistance can be leveraged by all rate-based ad-
aptation logics.

Due to the limited storage and the temporality of caching, in-network caching
is particularly appealing for popular contents, with a lot of watchers over a short
time span, such as live events (e.g., sports events such as the soccer world cup
2018, or Olympics). While DASH presents advantages over live streaming proto-
cols, such as RTP, RTSP or RTMP, it cannot sustain ultra-low latency constraints,
as required in Real-Time Communication that is used for video conferencing. In
such context, WebRTC is gaining popularity, but as its distribution model is not
designed for large scale, scalability is one of the key metrics to validate WebRTC
as a credible candidate to support large scale low latency streaming services. To
improve scalability, the architecture of traditional multiparty conferencing tools
moved from peer-to-peer to centralized with MCU-based and SFU-based architec-
tures. However, we argue that the scalability of such architecture can be improved
by leveraging ICN features and therefore we designed and implemented hICN-RTC,
a new WebRTC architecture that fully exploits hICN features. This architecture
builds on a SFU-based architecture, where the central node, called HFU, offloads
operations to the underlying network stack. The results of our first evaluation of
hICN-RTC are promising: the traffic handled by the HFU is proportional to active
speakers’ media streams only, rather than to the aggregate of the media streams
produced by all participants, thanks to RICTP, a pull-based transport protocol
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that was designed for hICN-RTC. As a consequence, the CPU utilization remains
low on the HFU. Furthermore, in-network caching and PIT aggregation can help
to further reduce traffic.

Overall, in this thesis we show the benefits that ICN can bring to multimedia
delivery, both in terms of user’s quality of experience and in terms of scalability
for WebRTC architecture.
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Appendix A

Tools used in our experiments

A.1 vICN

vICN (virtualized ICN) [125], is a data model-driven management system that
offers orchestration services and emulation of radio channels (LTE and Wi-Fi).
It relies on Linux containers to emulate large-scale networks. In a nutshell, vICN
relies on vICN topology files to describe the topologies to deploy. A vICN topology
file consists of a set of resources defined in a JSON file. These resources are vir-
tual representations of elements to be deployed by vICN. Such resources include
physical nodes, containers, applications, or network links and each resources is fur-
ther described by attributes . An example of such resource is given in Figure A.1:
here, the resource describe a Linux container ("type" : "LxcContainer"), named
cons ("name" : "cons"), using the cicn-image image ("image" : "cicn-image") and
deployed on the physical node named server ("node" : "server").

When a topology file is given to vICN, it will first parse the JSON file and
break down the resources dependencies to issue a set of instructions to execute in
order to deploy the desired topology. If we take again our example in Figure A.1,
to deploy this container, vICN needs first to resolve where the node on which the
container will be deployed is located (basically, a physical server is described as a
physical resource with a hostname). Then vICN needs to find where the container
image specified is stored. Once all of this is done, then vICN can instantiate the
cons container.

vICN presents a certain amount of resources, including CentralIP, a virtual
resource that assigns IP addresses and sets up the IP routing over the generated
topology. vICN also offers as resources applications from the CICN suite, described
in the next section, such as CICN forwarder. Finally, as vICN is open source
and modular, it is easy to add new resources to deploy new elements (e.g., new
applications) using vICN. Instructions to get the code and install vICN can be
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Figure A.1: An example of resource description in a vICN topology file.

found here [10].

A.2 The CICN suite

The open-source CICN project [134], as part of the FD.io project, offers a set
of open-source CICN applications.These applications include a CICN forwarder
(called Metis), an HTTP server and a DASH video player, called Viper, which is
described in more details in Appendix B. The HTTP server is an HTTP proxy
server, able to serve client requests using both TCP and ICN as underlying pro-
tocols. The ICN flavour, so far, only supports the HTTP GET method.

A.3 Videos used

In our experiments, we used several open-source videos. More specifically, we
used Big Buck Bunny from the Blender Institute, Tears of Steel from the Blender
Foundation and Sintel from the Blender Foundation. When available, we used
DASH dataset of these videos, found here [77], otherwise, we did the DASH en-
coding ourselves.
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Viper

Viper (VIdeo PlayER) is an open-source video player based on the official refer-
ence software of the ISO/IEC MPEG-DASH standard, libdash1, which provides
an object-oriented interface to the MPEG-DASH standard. Viper is part of the
CICN suite [134]. It is a dual stack DASH player, that supports video retrieval us-
ing either TCP or CICN from an HTTP video server. As it was mainly designed as
a prototype application for demonstrations, there is currently no support for audio
streams, but this feature is planned to be added later on. Moreover, a headless ver-
sion of Viper is available, which only sequentially downloads the video segments
(i.e., it does not decode the video segments) as to limit the CPU usage of one
instance of Viper in headless mode. Limiting the CPU usage to the downloading
of segments is particularly useful to run several instances of Viper on the same
machine, for experimental campaigns purposes.

Furthermore, Viper implements a variety of adaptation logics from the literat-
ure, such as BBA [59], PANDA [83], AdapTech [15], BOLA [131]. Viper code was
designed to be modular and therefore, adding new adaptation logics to it is fairly
easy to do, hence enabling Viper to be also used to test new adaptation strategies.
Besides, the network stack can be easily modified as well, e.g., to have Viper run
on top of NDN [143] or on top of QUIC [54].

Viper offers a GUI to set the various parameters of the player, such as which
network stack to use, the size of its buffer (in video segments), the adaptation logic
and its associated parameters. It also presents a field to enter the URL of the MPD
of the video to be fetched. For the headless version, all of these parameters can be
passed to the player through the command line. Furthermore, plots are available
to display, in real-time, user centric metrics, such as the buffer level, the quality
at which current segments are being downloaded and the quality of the video
segment currently displayed, Figure B.1 presents a screenshot of Viper, displaying

1https://github.com/bitmovin/libdash
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Figure B.1: Screenshot of Viper playing Sintel and displaying in real-time the buffer
level, the quality at which current segments are downloaded and the video quality
displayed.

such plots. A websocket [40] inside Viper can be used to export these user centric
information to external entities to collect stats or to monitor the behaviour of a
headless instance.

Finally, Viper is available and has been tested on several platforms, such as
Ubuntu 16.04, MacOSX 10.13, Android 7 and iOS 10. Code and instructions to
build are available here: [11].
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Small guide for DASH experiments

“Dynamic Adaptive Video Streaming: Towards a
systematic comparison of ICN and TCP/IP”

Reproducing ‘Calibration’ results (A Quick Guide)

This short guide will help you reproducing all the results reported in the Cal-
ibration section of Chapter 3. In particular, we investigate the performance of
a DAS system over a TCP/IP vs ICP/NDN stack, using three different adapta-
tion logics, namely PANDA, BOLA, and AdapTech (please refer to Chapter 3 for
further details and bibliographic references).
In order to reproduce the experiments you will need:

• The icn_das_lxc.tar.gz tarball, available at http://jaqu.eu/thesis/

DATA/icn_das_lxc.tar.gz, used to create the Linux Container (LXC) im-
age that will be instantiated as both the Client and the Server of the simple
scenario under investigation. An Ubuntu environment, along with the en-
coded video and the Apache web server are provided with the tarball.

• The icn_das_code.tar.gz tarball, available at http://jaqu.eu/thesis/

DATA/icn_das_code.tar.gz, which contains scripts to setup the topology
and launch experiments, as well as scripts to post-elaborate produced log
files (inside the results folder). Source code is also available: player.tar.gz
contains code for libdash, dash.js, and qtsampleplayer (inside which the three
adaptation strategies are coded), while client.tar.gz contains the code for the
ICP client.

Prerequisites

• LXC
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sudo apt install lxc

• LXD

LXD is the lightweight container hypervisor. For prerequisites, installation
and configuration please follow instructions at:

https://github.com/lxc/lxd

We configuring LXD with sudo lxd init , you can decide the type of storage
backend to be used: dir (default) or ZFS . In case you want to use ZFS,
you may need to install it on your machine (e.g., for Ubuntu < 15.10):

sudo apt-add-repository ppa:zfs-native/stable

sudo apt update

sudo apt install ubuntu-zfs

• Open vSwitch (OvS)

For the installation of OvS on 14.04 LTS Trusty (3.19.0), i.e., the only
one tested so far, please refer to the following instructions (taken from
https://gist.github.com/olegslavkin/af989e7a850eb67fa779):

– Install the git package

sudo apt-get update

sudo apt-get -y install git

– Clone OvS git Repo

git clone https://github.com/openvswitch/ovs.git

– Install tools

sudo apt-get -y install autoconf libtool make

– Build OvS

cd ovs/

./boot.sh

./configure --with-linux=/lib/modules/`uname -r`/build

make

– Install OvS

sudo make install

sudo make modules_install

https://github.com/lxc/lxd
https://gist.github.com/olegslavkin/af989e7a850eb67fa779
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– Create OvS Database

sudo ovsdb-tool create /usr/local/etc/openvswitch/conf.db vswitchd/vswitch.ovsschema

– Run OvS

sudo ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \

--remote=db:Open_vSwitch,Open_vSwitch,manager_options \

--private-key=db:Open_vSwitch,SSL,private_key \

--certificate=db:Open_vSwitch,SSL,certificate \

--bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert \

--pidfile --detach

sudo ovs-vsctl --no-wait init

sudo ovs-vswitchd --pidfile --detach

Calibration Experiments

Creation of a LXC Image

In order to create a LXC image, tarball icn_das_lxc.tar.gz (downloaded from
http://jaqu.eu/thesis/DATA/icn_das_lxc.tar.gz) must be imported using
the following command:

lxc image import icn_das_lxc.tar.gz --alias icn_das

where icn_das will be the alias associated to the LXC image. Please note that
if using a different alias, the change must be reflected inside the provided script
launch.sh , where also the name of the host interface must be changed if different
from eth0 .
Type lxc image list in order to check the presence of the newly created image.

Instantiation of Client and Server Containers

The idea (so far) is that of (i) launching the two containers (i.e., Client and Server),
(ii) uploading scripts and source code (i.e., libdash, dash.js, qtsampleplayer, etc.),
and (iii) compiling them directly inside the Client container. This means that
possible modifications of the source code can be done either inside or outside the
container environment (in the latter case, a new tarball must be created after
having modified the code).

http://jaqu.eu/thesis/DATA/icn_das_lxc.tar.gz
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In order to have the two containers ready to use, place your terminal inside the
icn_das_code directory, and execute the provided script:

./launch.sh

At the end of the experiments, containers can be removed by executing:

./cleanup.sh

Experiments

The provided container and scripts can be used to experiment with dynamic ad-
aptive streaming by changing different parts of the whole system, like network
stack, link conditions, adaptation logics and their parameters. As a consequence,
a minimum level of automation in the experiment campaign would be beneficial;
to reach that, it is required to:

• Guarantee a password-less ssh access between the two containers:

– Attach to the Client bash: lxc exec client bash (default way);

– Type: su ubuntu ; cd ~ ;

– Generate a pair of authentication keys: ssh-keygen -t rsa (press Enter
at all steps);

– Append the new public key in Server authorized_keys:

1. Copy the Client public key: cat .ssh/id_rsa.pub ;

2. Attach to the Server container (opening a new tab): lxc exec server bash ;

3. Copy the Client public key inside .ssh/authorized_keys ;

4. After the first login (ssh root@10.2.0.1 ), you will not be asked for
the password anymore.

• Attach to the Client container with the possibility to execute the screen ter-
minal:
lxc exec client -- sh -c “exec >/dev/tty 2>/dev/tty </dev/tty && /bin/bash”

Once in ubuntu@client:~$ (i.e., after su ubuntu ; cd ~ ), Calibration experiments
for the three adaptation strategies can be launched by executing the respective
script:

~
~
~
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./Exec_PANDA_Experiments.sh

./Exec_BOLA_Experiments.sh

./Exec_AdapTech_Experiments.sh

Since experiments cannot be executed in parallel, it might be useful to launch a
screen terminal, execute one of the script, and detach from the screen terminal.
Scripts will take care of executing the bandwidth shaping at the Server side, and of
producing a log file named according to the adaptation strategy and its parameters.
By default, the three provided scripts reproduce all the parameter settings reported
in the Calibration section, which could take time (10 minutes for each experiment,
on average). In order to reduce the combinatory, respective variables can be directly
modified from inside .sh scripts.

Results Processing

Post-processing can be done directly on the host machine by transferring the gen-
erated log files from the Client container into the results folder:

lxc file pull client/home/ubuntu/logFile .

where logFile must be changed with the actual name of the generated log file.
Scripts are also provided into the results folder; indeed, the processing can be
launched by executing:

./Extract_KPIs.sh . logFile

where the two parameters are the directory of the logFile (i.e., ‘.’) and the logFile
name. This script will generate a folder correspondent to the emulated scenario,
in which multiple files reporting different statistics will be created.
Notice that if emulating a scenario with the TCP/IP stack, it is required to execute
an additional script:

./Extract_QualitySwitch_TCP.sh . logFile

which will elaborate only the quality switch aspects (e.g., number, frequency, etc.),
and update the correspondent file in the folder created previously.
In the end, in order to have a synthetic representation of all the KPIs, the following
script:
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./CollectSummary.sh . logFile

will create a summary.csv file with all the metrics. It can be executed for all the
emulated scenarios in order to have a single file with all the aggregated statistics.
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Small guide to network-assisted

DASH experiments

This small guide aims at giving you the instructions to reproduce the results of
Chapter 4. The following will give you instructions to reproduce the extreme cases
results (Section 1), the network assisted results (Section 2) and finally Section 3
gives more information on the video player we used and the cache.

Preambule

To get the scripts and the container image, you must download the tarball: https:
//jaqu.eu/thesis/DATA/in-network-repro.tar.gz. Once expanded, this tar-
ball gives the container image along with the scripts and a copy of these instruc-
tions.

A working installation of vICN is needed, please follow instructions here:
https://wiki.fd.io/view/Vicn

Once you have installed vICN, you need to import the container image to lxc.
To do so, run the following command in your terminal:

$ lxc image import container-image/ubuntu_1604_NA.tar.gz --alias ubuntu_1604_NA

Note that ubuntu_1604_NA is the alias given to the LXC image. If you want
to change it, your change should be reflected in the vICN topologies provided un-
der the ./vicn folder. Once the import is done, you can check the presence of the

image with the command lxc image list .

For the processing of the results, we use gnuplot to compute means and stand-
ard deviations, it should therefore be installed on your system:
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$ sudo apt-get install gnuplot

D.1 Extreme cases

In this section, you will find the instructions to reproduce the results from Section
3 in our paper.

vICN deployment

First, spawn a screen for vICN:

$ screen -S vicn

Launch vICN:

$ sudo vicn -s vicn/wifi/topology.json

Once the deployment is done (the output is a bunch of INFO and/or WARN-
ING logs from websocket), leave the screen (do not kill the vicn process). Modify
the setup script, vicn/wifi/setup.sh , to set the right path to your video repository

by setting the variable PATH_TO_VIDEO_FILES . Then, run the script:

$ ./vicn/wifi/setup.sh

Note that, in order to keep the size manageable, we did not include the video
files in this folder. Once the setup script is run, it will make the folder indicated
by the PATH_TO_VIDEO_FILES variable the root folder of our web server.

Experiments

Once the testbed is deployed and setup (see previous section), you can start ex-
perimenting. In the folder scripts/extremes-cases , you will find three scripts, cor-
responding to the three scenarios described in our paper, as to reproduce the
results for the baseline scenario ( no-cache.sh ), the proactive placement scenario
( cache-no-replacement.sh ) and the reactive LRU cache scenario ( cache_LRU.sh ).
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Results processing

Once the experiments are done, the results are uploaded in the results/extreme-cases
folder, with one folder per scenario. The following assumes that every scenarios
were run in the previous section. If this is not the case, please update the process_data.sh
script to take into account only the scenarios that were performed. To process the
resulting log files, go into this folder:

$ cd results/extreme-cases

Run the post-processing script:

$ ../post-processing/process_data.sh

Upon completion, it will have created a new folder results inside the extreme-cases
folder. In this folder, you will find the aggregated metrics for the different scen-
arios. The per-client metrics are also available, in the scenario folder, you will find
one folder per client with the associated metrics.

Please note that the post-processing scripts expect a certain file organisation,
so if you change the way results are stored, keep in mind that your changes should
reflected in the post-processing scripts.

Teardown

To tear down the topology, kill the vicn process:

$ sudo killall -9 vicn

And then, run the clean-up script:

$ ./vicn/wifi/clean.sh

D.2 Network assistance

In this section, you will find the instructions to reproduce the results from Section
4.2 in our paper.
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vICN deployment

First, spawn a screen for vICN:

$ screen -S vicn

Launch vICN:

$ sudo vicn -s vicn/ethernet/topology.json

Once the deployment is done (the output is a bunch of INFO and/or WARN-
ING logs from websocket), leave the screen (do not kill the vicn process). Modify
the setup script, vicn/ethernet/setup.sh , to set the right path to your video repos-

itory by setting the variable PATH_TO_VIDEO_FILES . Then, run the script:

$ ./vicn/ethernet/setup.sh

Note that, in order to keep the size manageable, we did not include the video
files in this folder. Once the setup script is run, it will make the folder indicated
by the PATH_TO_VIDEO_FILES variable the root folder of our web server.

Experiments

Once the testbed is deployed and setup (see previous section), you can start ex-
perimenting. In the folder scripts/network-assistance , the script full-script.sh
enables you to re-run the scenarios described in our paper.

Results processing

Once the experiments are done, the results are uploaded in the results/network-assistance
folder, with one folder per scenario. The following assumes that every scenarios
were run in the previous section. If this is not the case, please update the process_data.sh
script to take into account only the scenarios that were performed. To process the
resulting log files, go into this folder:

$ cd results/network-assistance

Run the post-processing script:

$ ../post-processing/process_data.sh
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Upon completion, it will have created a new folder results inside the network-assistance
folder. In this folder, you will find the aggregated metrics for the different scen-
arios. The per-client metrics are also available, in the scenario folder, you will find
one folder per client with the associated metrics.

Please note that the post-processing scripts expect a certain file organisation,
so if you change the way results are stored, keep in mind that your changes should
reflected in the post-processing scripts.

Teardown

To tear down the topology, kill the vicn process:

$ sudo killall -9 vicn

And then, run the clean-up script:

$ ./vicn/ethernet/clean.sh

D.3 Extra information

Emergency button

The script ./scripts/tools/stop-all.sh gives the possibility to abort an experiment
by killing all the instances of the video player.

Changing the parameters of the video player

The video player we used is a modified version of Viper, available here: https://wiki.fd.io/view/Viper .
The usage is as follow:

$ viper [-nohead] [-n] [adaptationLogic [adaptationParameters]] [-u url]

-nohead
If present, the player will be in headless mode (it will download the MPD
from the url specified by the -u option and returns once it has finished
downloading the whole video)

-n
If present with -nohead, the player will use the ICN stack. Otherwise, the
TCP stack is used.
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-u
If present, it must be followed by the URL of the MPD.

adaptationLogic

BBA
-b BMin BUpper

ADAPTECH
-br Alpha BMin BSteady TSwitch-up SlackParameter ; The Alpha parameter
is the parameter for the EWMA calculating the average bandwidth.

STRICT
-strict enforcedQuality ; The quality downloaded will be the one at index
enforcedQuality (it should be an integer) in the MPD.

STEERED
-steered enforcedQuality BPanic

ADAPTECH_NA
-brna Alpha BMin BSteady TSwitch-up SlackParameter TLow THigh TSamples

Please note that all the buffer thresholds are expecting values as a percentage
of the total buffer.

Using the metis forwarder

Please refer to https://wiki.fd.io/view/Sb-forwarder for a full overview of the
metis forwarder.

In our scripts, the configuration of the cache is done using config files located in
the folder scripts/chosen-scenario/conf . In these config files, the two parameters
that can be modified are CS_SIZE, the size of the cache, and TIME_INTERVAL,
the time elapsed (in seconds) between two cache advertisements.
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Résumé de la thèse en français

Cette thèse étudie l’impact des réseaux centrés sur l’information (ICN – Informa-
tion Centric Networking) sur la qualité d’expérience des utilisateurs dans le cadre
de streaming multimedia, et plus particulièrement les cas de vidéos à la demande
(VoD) et vidéos en temps réel. Cette thèse est divisée en 6 chapitres, structurés
comme suit.

Le chapitre 1 introduit le contexte de cette thèse et les enjeux associés. En
effet, le streaming vidéo, et plus généralement multimédia, a pris une place de
choix dans l’utilisation d’internet au cours de ces dernières années, et tout porte
à croire que son impact sur le réseau internet sera prépondérant dans les années à
venir. Tout ceci met en lumière le décalage croissant entre l’architecture d’internet
et son usage. D’une part, l’essentielle utilisation d’internet aujourd’hui (sans pour
autant en faire la satire) réside dans la diffusion d’informations1: l’avènement de
plateformes sociales, telles que Facebook, YouTube ou encore Netflix, pousse leur
usagers à regarder et partager toujours plus de contenus, métamorphosant le réseau
en instrument pour connecter les gens à du contenu. De l’autre coté, l’architecture
d’internet repose toujours sur son principe fondateur de communication hôte à
hôte, inadapté à la distribution de contenu multimédia.

Afin de palier ce décalage et d’anticiper la charge colossale qui sera imposée
sur le réseau par le streaming multimédia, un nouveau champ de recherche est ap-
paru, appelé Future Internet. Parmi les architectures proposées, les réseaux centrés
sur l’information (ICN, pour Information-Centric Networking) offrent un nouveau
paradigme de réseaux qui permet une prise en compte du contenu directement au
niveau de la couche réseau, c’est à dire à l’échelle du paquet. De plus ICN présente
une connivence certaine avec les techniques d’adaptation dynamique de streaming2

1Information désigne ici tout type de contenu, comme par exemple des vidéos, des fichiers
audios, etc.

2Ce terme regroupe toute une variété de techniques apparues au cours des dernières années
pour optimiser la distribution multimédia. Parmi elles se trouvent MPEG-DASH, Microsoft HSS,
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(DAS, pour Dynamic Adaptive Streaming), ce qui en fait un bon candidat pour
accompagner l’évolution de la distribution multimédia, en exploitant ses diverses
caractéristiques.

Le chapitre 1 se termine par un énoncé des contributions de cette thèse, ainsi
que la liste des publications associées.

Le chapitre 2 parcourt l’état de l’art de la distribution vidéo, en faisant la
distinction entre la vidéo à la demande et la vidéo en temps réel. Notamment, ce
chapitre s’attarde sur MPEG-DASH (Dynamic Adaptive Streaming over HTTP,
ou, en français, streaming adaptatif dynamique via HTTP), un récent standard de
la communauté MPEG. Très succinctement, MPEG-DASH fonctionne comme suit:
chaque vidéo est divisée en segments de durée égale. Chaque segment est encodé
à des qualités différentes (différents débits vidéos, différentes résolutions d’écran).
Ainsi, télécharger séquentiellement les segments constituant une vidéo permet de la
reconstituer. Chaque segment peut être téléchargé à une qualité indépendante les
unes des autres. Un algorithme, appelé la logique d’adaptation, est responsable du
choix de la qualité à laquelle un segment va être téléchargé, basé sur des paramètres
mesurés au niveau du client (comme par exemple son débit disponible, la quantité
de vidéo présente en mémoire tampon, etc...). Ces logiques d’adaptation ont fait
l’objet de nombreux travaux ces dernières années, et ce chapitre conduit un état
de l’art des logiques existantes.

En outre, le chapitre 2 présente ICN et ces différentes caractéristiques en détails.
Très brièvement, avec ICN, chaque contenu (vidéo, fichier, etc...) est divisé en
fragments, appelés paquets Data, et chaque paquet Data est identifié par un data
name. Pour récupérer un paquet Data, un utilisateur envoie un paquet Interest,
avec le data name du paquet Data demandé. Pour ce faire, un routeur ICN se
repose sur trois structures de données: la FIB (Forwarding Information Base, ou
Base d’Informations de Retransmission), la PIT (Pending Interest Table, ou Table
des Interests en Attente) et le CS (Content Store, ou magasin de contenus). La
FIB contient les informations nécessaires pour transmettre un paquet Interest ; le
CS agit comme un cache et permet à un routeur ICN de stocker des paquets Data
pour pouvoir servir plus vite certains paquets Interest ; enfin, la PIT permet au
routeur ICN de transmettre un paquet Data.

Le chapitre 3 expose les bénéfices qui sont apportés par ICN dans la distri-
bution vidéo, et en particulier dans la VoD. Pour se faire, nous comparons ainsi
les deux piles réseau (ICN et IP) dans le cas de la VoD. Afin de couvrir tout le
spectre des logiques d’adaptation, nous en sélectionnons trois parmi les logiques
existantes dans l’état de l’art, que nous estimons représentatives des différentes fa-

Apple HLS et Adobe HDS.
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milles d’algorithmes. Une calibration de chaque algorithme sélectionné a été faite,
afin d’optimiser la meilleure qualité d’expérience (QoE) possible pour chaque al-
gorithme. Cette calibration a été effectuée sur une pile réseau TCP/IP et une
pile réseau NDN simple (c’est-à-dire sans aucune des améliorations proposées
ultérieurement), et parmi les différentes métriques existantes pour estimer la QoE,
nous en avons choisi six: la qualité moyenne de la vidéo, le nombre de change-
ments de qualité, la fréquence moyenne de changement de qualité, la moyenne
de l’amplitude des variations de qualité, le nombre d’évènements rebuffering3 et
le temps total passé en rebuffering. L’appendice C présente des instructions pour
reproduire nos expérience de calibration.

Une fois les algorithmes calibrés, nous avons pu comparer la qualité d’expérience
que les clients pouvaient espérer lors d’expériences de streaming multimédia via les
deux piles réseau dans différents scénarios, faisant varier le nombre de clients (un
seul client ou plusieurs), le type de réseau d’accès (Wi-Fi, LTE, traces 3G/4G),
le nombre de réseaux d’accès (un seul accès ou un scénario multi-homed, où un
client possède au moins deux accès – Wi-Fi et LTE), ou encore certaines fonction-
nalités de la pile réseau ICN. Nous montrons ainsi qu’une pile réseau ICN apporte
des bénéfices quantitatifs en termes de qualité d’expérience aux clients dans le cas
de streaming multimedia VoD, grâce à une estimation plus précise de la bande
passante disponible pour le client, ainsi qu’à un mécanisme de détection et de
recouvrement des pertes réseaux (appelé WLDR [28]), ou encore à un balance-
ment de la charge au niveau du client dans le cas d’un scénario multi-homed. Nous
montrons aussi que ces fonctionnalités permettent d’obtenir la meilleure qualité
d’expérience possible lorsqu’elles sont utilisés conjointement. Il est à noter cepend-
ant que cette comparaison des deux piles réseau se concentre sur le client, et ne
prend pas en compte les interactions possibles avec le réseau.

Le chapitre 4 propose une approche du streaming multimédia VoD assisté par
le réseau, en se focalisant sur une fonctionnalité précise d’ICN: le caching réseau.
Tout d’abord, nous explorons le champ des possibles dans l’espace des interactions
client-réseau, en présentant les avantages qu’un client peut tirer d’une interaction
active avec le réseau (par exemple, une augmentation de la qualité moyenne de
la vidéo), ainsi que les désavantages qui en découlent (par exemple, le phénomène
des oscillations de qualité vidéo demandée induites par le cache). Nous montrons
notamment que l’interaction client-réseau ne doit pas être faite de manière naïve,
afin d’améliorer la qualité d’expérience du client.

Nous proposons ensuite dans une deuxième partie du chapitre 4 une évolution
consciente du réseau d’une logique d’adaptation existante: AdapTech [15]. Notre

3Un évènement de rebuffering est un instant où le décodeur de vidéo n’a plus de segment
vidéo à décoder et donc force un arrêt temporaire de la vidéo au client
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proposition repose, d’une part, sur un signal du cache vers le client, lui donnant le
nombre de cache-hit par qualité vidéo; et d’autre part, sur un algorithme permet-
tant à la logique d’adaptation de prendre en compte ce signal pour faire un choix de
qualité vidéo. Sans entrer dans les détails, notre algorithme garde deux estimations
de débit: une vers le cache, et une vers le serveur source de la vidéo. En fonction du
signal émis par le cache, le client choisit d’utiliser l’une ou l’autre des estimations:
si le cache-hit est élevé pour une certaine qualité, il y a des chances que cette
dernière se trouve en cache, ainsi le client préférera l’estimation de débit vers le
cache, et si, au contraire, le cache-hit est bas pour une qualité, le client préférera
l’estimation de débit vers le serveur source. Une campagne expérimentale vient
confirmer notre approche et montre une performance accrue en comparaison à une
approche agnostique au réseau, où les décisions sont prises au niveau du client
uniquement.

Le chapitre 5 s’intéresse en particulier au cas du streaming vidéo en temps
réel. En particulier, alors que les chapitres 3 et 4 sont centrés sur le streaming
vidéo VoD et sur MPEG-DASH, ce standard, de part la granularité des segments
vidéo (de l’orde de quelques secondes), introduit des délais tels qu’il ne peut pas
être utilisé dans le cas du streaming vidéo en temps réel, où des temps de latence
très faibles sont attendus pour la distribution multimédia et pour l’interaction
des clients, comme par exemple avec les jeux en ligne, les enchères en ligne ou
plus simplement les visioconférences. Dans de tels cas, WebRTC (Web Real-Time
Communication) semble être une solution prometteuse. Ainsi, le chapitre 5 propose
et explore une intégration d’ICN dans WebRTC, et en particulier les bénéfices sur
le passage à l’échelle qui peut en résulter.

Nous concevons et implémentons un système WebRTC sur hICN (pour hybrid
ICN, une solution ICN-dans-IP incrémentalement deployable), ainsi qu’un pro-
tocole de transport ICN qui minimise la latence, appelé RICTP (pour Realtime
Information Centric Transport Protocol). Une première campagne expérimentale
montre qu’ICN et WebRTC ensemble donne une architecture qui passe l’échelle au
niveau du contenu (c’est-à-dire le nombre de flux media actifs dans une visiocon-
férence) plutôt qu’au niveau du nombre de participants, au contraire de WebRTC
sur IP.

Finalement, le chapitre 6 vient conclure cette thèse.
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Titre : Améliorer la qualité d’expérience en streaming multimedia en tirant parti des réseaux centrés sur

l’information

Mots clés : ICN, MPEG-DASH, QoE, WebRTC

Résumé : les réseaux centrés sur l’information (ICN)

sont une architecture prometteuse pour faire face à

l’explosion du trafic multimedia sur internet et á la

mobilité croissante des utilisateurs: non seulement

ICN peut améliorer la qualité d’expérience de l’utili-

sateur, mais ICN peut également étendre naturelle

et de façon transparente la prise en charge du tra-

fic vidéo dans les fonctions réseau. Cependant, à

notre connaissance, une évaluation approfondie des

avantages apportés par ICN à la diffusion multimédia

n’a pas encore été réalisée. Dans cette thèse, nous

voulons réduire l’écart qui nous sépare d’une telle

évaluation en prenant en compte ICN dans divers

scénarios de diffusion multimédia.

Tout d’abord, nous évaluons les avantages apportés

par du DAS (Dynamic Adaptive Streaming) basé sur

ICN par rapport au streaming basé sur TCP/IP, au

moyen d’une campagne expérimentale comprenant

plusieurs canaux (des émulations Wi-Fi et LTE, des

traçes 3G/4G), plusieurs clients (mélange homogène

et hétérogène, arrivées synchrones et asynchrones)

et des logiques d’adaptation DAS soigneusement

sélectionnées pour couvrir les deux grandes familles

d’algorithmes disponibles. Nous mettons aussi en

exergue les pièges potentiels qui sont néanmoins fa-

cilement évitables.

Ensuite, nous montrons comment l’assistance du

réseau contribue à améliorer la qualité d’expérience

des ultilisateurs. Pour ce faire, nous tirons parti

de la fonctionnalité de mise en cache réseau

d’ICN et proposons un signal réseau simple envoyé

périodiquement par le cache à exploiter par l’algo-

rithme d’adaptation DAS pour optimiser la qualité

d’expérience de l’utilisateur en évitant le phénomène

bien connu des oscillations induites par le cache. Des

expériences nous permettent de valider le bien-fondé

de notre approche.

Enfin, puisque la diffusion multimedia en direct gagne

du terrain, nous proposons hICN-RTC, en intégrant

hICN (hybrid ICN), une solution ICN-dans-IP, à We-

bRTC, accompagné du protocole RICTP (Realtime In-

formation Centric Transport Protocol), un protocole de

transport basé sur le contenu, qui minimise la latence.

Bien que toujours en développement, les résultats

des premières expériences sont prometteurs car ils

montrent que le trafic induit par hICN-RTC ne croit

qu’avec le nombre de locuteurs actifs plutôt qu’avec

le nombre total de participants.

Title : Improving quality of experience in multimedia streaming by leveraging Information-Centric Networking

Keywords : ICN, MPEG-DASH, QoE, WebRTC

Abstract : Information-Centric Networking (ICN) is a

promising architecture to address today Internet mul-

timedia traffic explosion and increasing user mobility:

not only to enhance the user’s quality of experience,

but also to naturally and seamlessly extend video sup-

port deeper in the network functions. However, to the

best of our knowledge, a thorough assessment of the

benefits brought by ICN to multimedia delivery has not

been done yet. In this thesis, we aim at reducing the

gap to such assessment, by considering ICN in va-

rious multimedia delivery scenarios.

First, we assess the benefits brought by an ICN-based

Dynamic Adaptive Streaming (DAS) compared to

TCP/IP based streaming, by means of an experimen-

tal campaign that includes multiple channels (e.g.,

emulated Wi-Fi and LTE, real 3G/4G traces), mul-

tiple clients (homogeneous vs heterogeneous mix-

ture, synchronous vs asynchronous arrivals) and ca-

refully selected DAS adaptation logics to cover the

broad families of available adaptation algorithms. We

also warn about potential pitfalls that are nonetheless

easily avoidable.

Second, we show how network assistance helps im-

proving the users’ quality of experience. To do so, we

leverage the in-network caching feature of ICN and

propose a simple periodical network signal from the

cache (i.e., per-quality hit ratio) to be exploited by DAS

adaptation logic to enhance further the user’s quality

of experience by avoiding the known cache-induced

quality oscillations. We confirm the soundness of our

approach through experiments.

Finally, as live multimedia delivery is gaining momen-

tum, we propose hICN-RTC by integrating hICN (hy-

brid ICN), an ICN-in-IP solution, to WebRTC and we

design RICTP (Realtime Information Centric Trans-

port Protocol), a content-aware transport that mini-

mizes the communication latency. Although still in de-

velopment, the results we gathered from early expe-

riments are promising as they show that hICN-RTC

scales with the number of active speakers rather than

the total number of participants.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
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