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Abstract
This thesis work is presented in the framework of a scientific partnership between Laboratoire
Navier and the french start-up STRAINS. Believing in the need for new methodologies in
structural analysis, STRAINS is developing a new software dedicated to the structural analysis
of bridges. In this context, this work suggests new tools for the analysis of slender structures.

The higher-order elastic beam element developed by Ferradi et al. [2016] is first extended
to the case of eigenstrains, enabling the model to deal with various physical phenomena such
as creep, prestress or thermal loads. An enriched kinematics is used to capture the local
response of the structure. Different examples highlight the local accuracy of the model and its
fast computational performances.

The model is also extended to plasticity in small perturbations. Considering the plastic
strains developing in the structure as eigenstrains, the previous works are used to derive a
higher-order elastoplastic kinematics.

Finally, a new elastoplastic beam element for reinforced concrete is suggested. The
concrete material is described by using the elastoplastic beam model developed previously
while steel rebars are modeled by one dimensional bar elements. This method enables a fine
local description of the concrete behavior and an accurate representation of the reinforcement.
The validity of computations is assessed thanks to energy considerations.

Keywords: Beam model; Reduced model; Higher-order kinematics; Eigenstrains; Plasticity;
Reinforced concrete

Résumé
Ce travail s’inscrit dans le cadre d’un partenariat scientifique entre le Laboratoire Navier

et la société STRAINS. Convaincue du besoin de renouveler les méthodes actuelles de calcul
de structures, STRAINS développe un nouveau logiciel dédié à l’analyse des ouvrages d’art.
Dans ce contexte, cette thèse propose de nouveaux outils pour l’analyse des structures élancées.

Le modèle élastique de poutre d’ordre supérieur développé par Ferradi et al. [2016] est
d’abord adapté au cas des déformations imposées, permettant ainsi aumodèle de représenter un
grand nombre de phénomènes physiques tels que le fluage, la précontrainte ou les chargements
thermiques. Différents exemples viennent souligner la précision numérique du modèle ainsi
que ses performances en temps de calcul.

Le modèle est également étendu au cadre de la théorie de la plasticité. Considérant
les déformations plastiques comme des déformations imposées, les résultats précédemment
obtenus sont utilisés pour développer une nouvelle cinématique d’ordre supérieur.

Enfin, un nouvel élément de poutre élastoplastique pour le béton armé est proposé. Le béton
est décrit grâce au modèle élastoplastique et les ferraillages sont modélisés par des éléments
barres à une dimension. Cette méthode permet une description précise du comportement du
béton et une représentation fidèle des renforcements. La validité des calculs est évaluée par
des considérations de dissipation énergétique.

Mots-clésModèle de poutre; Cinématique d’ordre supérieur; Plasticité; Modèle réduit; Béton
armé
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Manuscript layout

After the second world war, the need for reconstruction and the cheap cost of materials
have led to an important growth of the construction industry. In that context, structural en-
gineering was mainly based on linear elastic computations and provided wide safety margins
and conservative recommandations. The situation observed nowadays is different. Developed
countries have reached high level of facilities and infrastructures and the main issue is to
provide accurate expertise on existing structures. The french start-up STRAINS therefore
ambitions to provide a new set of numerical tools for structural analysis.
This work is part of the development of a new software dedicated to the analysis of bridges
called Qantara. It aims at developing new beam finite elements for the analysis of slender
structures. This report is based on three articles produced during the time of this PhD and
respectively constituting Chapter 2, Chapter 3 and Chapter 4. An additional Chapter 1 has
been joined in order to introduce the subsequent chapters.

In Chapter 1, after setting the indutrial context that initiated this work, a review of the
elastic beammodels is first depicted. Based on very simple assumptions and used in basic load
cases, the first beammodels have quickly proved to be insufficient for dealing with higher-order
effects. The improvement of beam theories have resulted in an incremental extension of the
beam kinematics. A chronological description of the beam models, from the simplest as-
sumptions to the most complex kinematics is presented. This chapter is an introduction to the
elastic beam element presented inChapter 2. In a second time, a classification of elastoplastic
beam models is suggested. The integration of the elastoplastic behavior can be addressed by
macroscopic or local constitutive behaviors, and this introductory chapter of Chapter 3 aims
at distinguishing the main categories of elastoplatic models. Finally, an overview of the beam
models for reinforced concrete is presented. This last chapter is an introduction to Chapter 4.

The software Qantara is mainly based on the higher-order beam element developed by
Ferradi et al. [2016]. Considering the need in civil engineering applications to account for
many physical phenomena such as creep, thermal load or phasing construction, we aim in
Chapter 2 at developing a new beam element submitted to eigenstrains. Using the same
theoretical procedure for the model reduction, a new beam element especially derived for
the case of eigenstrains is presented. A couple of applications is suggested to illustrated the
numerical performance of the model.

We believe that the framework of linear elasticity is too restrictive for accurate structural
analysis and that nonlinear computations have become essential. Therefore we develop in
Chapter 3 an extension of the previous beam element to the framework of plasticity. We
provide a new finite element combining the numerical accuracy of higher-order models and
the time-efficiency of beam elements. This model is actually based on the beam element
submitted to eigenstrains introduced in Chapter 2 by considering the plastic strain as an
eigenstrain imposed on the structure. After setting the standard 3D plasticity framework, re-
ducing the 3D problem and describing the derivation of a kinematics accouting for nonlinear
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and inelastic displacements, the model is illustrated by a case study highlighting its strong
numerical abilities.

Considering the elastoplastic beam element presented inChapter 3, we saw an opportunity
to develop a new beam model for reinforced concrete. Using the simple and well-known fra-
mework of plasticity,Chapter 4 defines a newmodel combining the simplicity and robustness
of the theory of plasticity and the numerical accuracy and performance of the elastoplastic
beam element previously derived. A 3D Rankine criterion is formulated for concrete and a
closed-form expression of the local integration of the equilibrium equations is formulated.
The integration of the steel rebars as bar elements embedded into the concrete volume is then
described, and their kinematic connection to the concrete degrees of freedom is defined. Given
that no 3D Rankine’s yield criterion has been found in commercial softwares for a numerical
evaluation of our model, a multistep procedure validation is finally presented.

∗ ∗
∗
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Chapter 1

Introduction

Abstract: This chapter first sets the industrial context of the work presented in this report.
The company STRAINS in which the PhD has been carried out is presented. The subsequent
sections of this chapter are introductions to chapters 2, 3 and 4 respectively dealing with beam
model in linear elasticity, beam models in elastoplaticity and beam models for reinforced
concrete.
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Notations

In this section are defined notations used in the whole manuscript.

— All latin indices take values between 1 and 3 and all greek indices take values between
1 and 2

— Implicit Einstein’s summation is used here: given a = (a1, a2) and b = (b1, b2) two
vectors, aαbα = a1b1 + a2b2

— Given a function a(xi), the following notation is used for the derivatives :

a,i =
da
dxi

(1.1)

— According to the previous item, the following notation can be adopted for partial
derivatives:

∂xi =
∂

∂xi
, ∂σ =

∂

∂σ
(1.2)

— The in-plane Laplace operator is ∆x = ∂x2
1
+ ∂x2

2
— The in-plane gradient operator is ∇x =

(
∂x1, ∂x2

)
— ∇sx is the symmetric gradient operator
— The coefficient of Lame are expressed in terms of the Young modulus E and the

Poisson’s ratio ν:
µ =

E
2(1 + ν), λ =

νE
(1 + ν)(1 − 2ν) (1.3)

4



1.1. Industrial context

1.1 Industrial context

The objective of this section is to introduce the industrial context of this thesis. Born in 2014
in the minds of a handful of structural engineers, STRAINS aims at changing the current
paradigm of structural analysis. As part of the development of the software program Qantara
dedicated to the analysis of bridges, this work suggests new tools for the numerical analysis
of structures.

1.1.1 STRAINS: Structural Analysis & Innovative Softwares

1.1.1.1 Historical context

Structural engineers have historically been concerned by two main issues: the mechanical
expertise of existing structures and the design of new constructions. These two activities do
not require the same skills. The first implies intuition and understanding of physical concepts
while the second involves rigor and project management.

The construction industry has experienced an unprecedented growth in France since the end of
the second world war: two third of buildings are post 1948. This effervescence has encouraged
the production of studies for new constructions at the expense of the competences in structural
expertise. In this context, the low cost of materials has stimulated aesthetic and functional
considerations. Builders and designers were seeking for reliability of new complex structures
rather than savings of materials or structural optimisation. This period of growth was long
enough to strongly influence the structural engineering methods. The need for computer
softwares has quickly become a clear evidence. Material consumption being not an issue, it
has led to the development of fast computational methods ensuring large dimensioningmargins
that were not really assessed. Software publishers have designed time-efficient softwares able
to provide studies for complex structures in the framlework of elasticity. But this assumption
is no longer valid in the case of important loads. The elastic computations are usually followed
by the automatic verification of norms and standards. It therefore guarantees the safety of
structures at the cost of important margins.

Softwares for structural design and analysis are now able to span the whole production
process, from general design of structures to construction drawings. Developments have been
mainly brought to preprocessors for numerical modeling and to postprocessors for normative
verifications. Such softwares aim to provide all the necessary tools to engineers to produce
entire production studies. But they are based on ancient methods of mechanics and use low
order finite element models in elasticity.

Given the current level of facilities and infrastructures, a decrease of the number of new
constructions is predictable in developed countries. As a result, the need for structural expertise
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for existing structures will become more and more important. The structural reliability of old
infrastructures must be assessed and decisions must be taken about the necessity to strengthen
or repair them. This issue already concerns nuclear industry and will soon encompass all the
construction industry. It is therefore necessary to switch from a safe design with important
but not assessed margins to a fine evaluation of these safety margins. Physical phenomena
must be accurately understood and described. On the other hand, new buildings must now
cope with an increase of the material cost. The design of new infrastructures must therefore
be carried out with structural optimisation and material savings.

1.1.1.2 Structural analysis softwares

In order to assess the structural capacities of infrastructures, the linear elastic framework of
classic design must be discarded. However, current nonlinear methods are time-consuming,
and their numerical implementation and use require specific skills and knowledge. It is
therefore necessary to look for new effective techniques to access to the post-elastic behavior
of structures without a systematic use of complex nonlinear methods.

It is necessary for structural engineers to have a fast and global access to the weak points
of a structure design. Bridges for example are mostly modeled and designed by using beam
models with very simple kinematics. Those models cannot provide accurate information about
the design weaknesses. Costly volumic computations are therefore postprocessed locally to
validate the structure. But these computations are numerically too heavy to be carried out at
a first step. An intermediate solution must therefore be found.

New softwares must be designed for experts rather than for production. The aim is not
to provide a tool for systematic analysis, but for an accurate understanding of the physical
phenomena at stake. Softwares must be easy to use and deliver clear results. They are
addressed to experienced engineers and must avoid the "black box syndrom" by expliciting
the numerical methods used and providing an efficient control of the computations to users.
STRAINS develops a set of leading-edge softwares responding to these guidelines.

1.1.1.3 STRAINS

The start-up STRAINS is answering to the issues mentioned before by providing innovative
software programs dedicated to the structural analysis of existing and future buildings and
infrastructures. These programs are gathered into the numerical platform Digital-Structure.

A first aspect ofDigital-Structure is dedicated to the analysis of ultimate capacity of structures
as illustrated on Figure 1.1. The ultimate load is evaluated and framed on 3D meshes thanks
to limit analysis. This very effective method avoids the use of incremental elastoplastic
process. An error estimator is inherent to the method and automatic remeshing reduces the
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1.1. Industrial context

Figure 1.1 – Limit analysis of a connection on Digital-Structure (geometry, mesh and displa-
cement)

discretization error. Modern optimisation techniques are used to this end such as the interior
point method or second order conic programming [Bleyer, 2015]. A first program dedicated to
the analysis of steel connection called DS-Steel is already achieved and sold. A new program
called DS-Concrete for the analysis of reinforced concrete structures will soon be released.

Developments are also concentrated on the design of an innovative software program for the
structural analysis of bridges called Qantara. Based on the seminal works of Ferradi [Ferradi
et al., 2013; Ferradi and Cespedes, 2014; Ferradi et al., 2016] on the development of higher-
order beam models, Qantara aims to provide a full modeling of the structure and yields local
accurate results. Thanks to thismodel, postprocessingswith volumic or shell discretization can
be discarded. This program is expected to become a full structural analysis program including
static and dynamic computations and accounting for a wide range of physical phenomena such
as creep, phasing construction or prestress. Qantara is more precisely depicted in Section
1.1.2.

All the developments of STRAINS are based on modern computing techniques and embed
cutting-edge numerical components. Programs are designed on the basis of a client-server
model SAAS (SoftwareAsAService), meaning that the computations are processed on-line on
remote powerful servers. The client can therefore carry out computations from any numerical
device with a web connection without any software installation. Results are stored on a cloud
and can be downloaded locally by the client.

1.1.2 Qantara: a new software dedicated to bridge analysis

1.1.2.1 Softwares for bridge analysis: a state of the art

Many softwares for the structural analysis of bridges are available today on the market.
Moreover, some of these softwares are not limited to the study of bridges but are developed for
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amore general structural analysis framework. Examples of these are Sofistik (Germany),Midas
(South Korea), SAP2000 (USA), RM Bridge (Austria), PCP or Pythagore (France). However,
the sector of bridge softwares has remained relatively undeveloped in France, inducing a switch
towards foreign softwares. This is in contrast with the presence of strong french publishers in
the sector of softwares dedicated to the building industry such as Graitec or Robot (now par
of AutoDesk).

Software publishers concentrate their developments on two main topics. The first is the
communication between computing programs and drawing programs such asRevit orAutocad.
Second is the automatic check of the construction guidelines (Eurocodes, British Standard,
Aashto). In this context, numerical fields such as stress, strains or displacement are considered
as intermediate results not always accessible for the user. Softwares are therefore designed
as "black box" in which the numerical models and data are not easy to access. Numerical
methods are rarely explicited and a critical assessment of the numerical results is therefore
not possible. The use of systematic procedures and automated softwares is a natural evolution
for the sector of building construction where studies are very repetitive. But the opposite
situation is observed in civil engineering construction where unique infrastructures are mostly
considered.

Programs for civil engineering structures are mostly developed with beam finite elements.
They are used to model important structures including bridge decks, piers and towers. But
macroscopic models only deal with a fraction of the problem: longitudinal bending, which
is assumed to be constant on the entire width of the structure. Moreover, bridge decks are
now wider and wider in new bridge designs thus involving strong cross-sectional bending
effects. These global models are in practice completed by local shell or volumic computations
dedicated to the study of specific parts of the structure. This process is time-consuming and
complex.

1.1.2.2 Conception and design of a new ambitious software

In the context mentioned in the previous section, STRAINS aims to provide innovative and
modern tools for the structural analysis of bridges with the scientific support of Laboratoire
Navier. The main objectives of the software are the following: a comprehensive model, the
simplicity of use and a full set of analysis tools.

The main ingredient of this software is the new higher-order beammodel developed by Ferradi
et al. [2016]. Thanks to an enriched kinematics, the beam element enables the description
of the cross-sectional behavior of the structures and various effects due to warping. In this
context, the systematic use of complex shell or volumic computations is no longer necessary.
By increasing the complexity of a standard beam model by a factor of 10 or 20 the model
can provide results similar to the one usually obtained by local computations representing a
complexity factor or 1000 or 10000. Above all, the iterative and repetitive switch between

8



1.2. Beam models in linear elasticity

global and local computations is avoided. To our knowledge and as explained in Section 1.2
and 1.3, many developments are carried out on this kind of beam element but no one has been
implemented in a full structural analysis software so far.

In the short andmedium term, the software should position as a full software encompassing the
concepts of civil engineering. Nonlinear consitutive laws of construction materials like steel
and reinforced concrete must especially be implemented. Error estimators will be integrated
in the long run as well as automatic optimisation procedures.

The work presented in this report falls within the framework of the development of Qantara.
First, the higher-order elastic beam element has been adapted to the case of eigenstrains
(Chapter 2), enabling the model to account for phenomenological effects such as creep,
prestress or thermal loads. Then, the beam model has been extended to the framework of
elastoplasticity (Chapter 3). Finally, it has been used for the development of an elastopalstic
beam model for reinforced concrete (Chapter 4). All these developments are presented in the
subsequent sections.

1.2 Beam models in linear elasticity

This section presents a chronological review of the beam theories in linear elasticity. Starting
from the Euler-Bernoulli beam theory, the main beam models are successively introduced and
their beam equations are derived. The section is ended by a presentation of the more recent
higher-order beam models and particularly models using the asymptotic expansion method.

1.2.1 The Euler-Bernoulli beam model

1.2.1.1 Local description

The beam model of Euler-Bernoulli may be the first beam model to be formulated. It is based
on two simple kinematic assumptions, that are:

1. a cross-section is rigid in its own plane
2. a cross-section remains normal to the neutral axis of the beam

These assumptions can be translated into the following kinematics:

uα(x) = Uα(x3), u3(x) = U3(x3) − xαUα,3(x3), (1.4)

where Uα,3 is actually the inclination of the section relative to the axis Oxα. This kinematics
is represented on Figure 1.2.

The first hypothesis imply that no warping or transversal deformation can occur. As a
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x3

x2
U2

U2,3

x2
x2U2,3

undeformed shape

deformed shape

Figure 1.2 – Kinematics of the Euluer-Bernoulli model

consequence, the Poisson’s effect cannot be accounted for. The fact that the inclination of the
section relative to Oxα equals Uα,3 is a result of the second hypothesis.

The strain tensor is defined by ε = ∇sx(u). As a result of Equations (1.4):
ε33(x) = U3,3(x3) − xαUα,33(x3), εiα = εαi = 0. (1.5)

The Euler-Bernoulli beam model is formulated with the ad hoc assumption of pure traction in
direction 3 and the components of σ are expressed:

σ33 = E
(
U3,3 − xαUα,33

)
, σiα = σαi = 0. (1.6)

This expression is in clear contradiction witht the constitutive law, that is:

σ = 2µε + λtr (ε) . (1.7)

This incompatibility suggests that pure traction and pure axial strain cannot be simultaneously
achieved with a non-zero Poisson’s ratio. In order to fullfil the constitutive law, pure traction
is considered and a new expression of ε is given in accordance with Equation (1.7):

εββ = −ν
(
U3,3 − xαUα,33

)
, ε33 = U3,3 − xαUα,33, εi j = ε ji = 0 for i , j . (1.8)

The kinematic compatibility of strains is therefore discarded. Indeed, in the case of a non-
zero Poisson’s ratio, ε11 = ε22 , 0 and cross-sectional displacements occur. However the
slenderness of the beammakes this displacement negligible in comparison with the other rigid
motions so that it doesn’t come into conflict with the initial assumption of rigid cross-sections.

1.2.1.2 Beam equations

The macroscopic beam equations are obtained by using the principle of virtual work. Consi-
dering a beam represented by the domain Ω, the internal work is expressed by:

δW int =

∫
Ω

σ : δεdV . (1.9)

10



1.2. Beam models in linear elasticity

According to Equations (1.8) and (1.6), δW int expands in:

δW int =

∫
Ω

σ33
(
δU3,3 − xαδUα,33

)
dV . (1.10)

Equation (1.10) is integrated over the cross-section, yielding:

δW int =

∫ L

0

(
NδU3,3 + MαδUα,33

)
dx3, (1.11)

with L the length of the beam, N and Mα the normal force and the bending moments defined
by:

N =
∫

S
σ33dA, Mα =

∫
S
−xασ33dA (1.12)

The integration by parts of Equation (1.11) is formulated as follows:

δW int =

∫ L

0

(−N,3δU3 + Mα,33δUα

)
dx3 +

[
NδU3 + MαδUα,3 − Mα,3δUα

] L
0 . (1.13)

The second term of the sum is identified as the external work δWext. The principle of virtual
work ensuring that δW int = δWext, Equation (1.13) leads to the relation:∫ L

0

(−N,3δU3 + Mα,33δUα

)
dx3 = 0 (1.14)

Since any virtual displacement δU satisfies Equation (1.14), one finaly gets the three static
beam equations:

N,3 = 0, Mα,33 = 0. (1.15)

Macroscopic equilibrium is verified with three stress-resultants equations, which is consistent
with the fact that three unknowns have been introduced in the kinematics (U1,U2 and U3).

Remark It is considered in all what follows that the cross-sectional coordinate system is
placed at the center of gravity of the cross-section, meaning that for a homogeneous section:∫

S
xαdA = 0,

∫
S

x1x2dA = 0 (1.16)

Thus, the bending moments can be expressed in terms of the transversal displacements:

Mα(x3) = EIαUα,33(x3), with Iα =
∫

S
x2
αdA (1.17)

Thanks to Equation (1.16), injecting the expression of the stress components into Equation
(1.15) yields the local direct equations, that are:

u3,33 = 0, uα,3333 = 0 (1.18)
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1.2.1.3 Shear stress recovery

The Euler-Bernoulli model is a suitable theory for slender beams where the shear deflection
can be neglected. But in practice engineers need to estimate the shear distribution in the
cross-section. Shear force Qα is first computed as the derivative of the bending moment:

Qα = Mα,3 (1.19)

The distribution of the average shear stress τα at position hα is then recovered in the cross-
section thanks to the Jouravsky formula [Jouravskii, 1856]:

τα(hα) = Qα

Iαe(hα)mα(hα), (1.20)

where Iα is the bending moment, e(hα) is the width of the beam at hα and mα(hα) is the static
moment defined by:

mα(hα) =
∫

Sα(hα)
xαdA. (1.21)

Sα(hα) denotes the surface of the cross-section defined by xα > hα as represented on Figure
1.3.

h2

h1

S2(h2)

S1(h1) e1(h1)

e2(h2)

x1

x2

Figure 1.3 – Definition of a cross-section

1.2.1.4 Relevance of the model

The Euler-Bernoulli theory provides a very simple and convenient beam model with only
three kinematic unknowns. The longitudinal variable x3 is separated from the corss-sectional
variables xα in Equation (1.4). Pure longitudinal traction is assumed, leading to a strain
kinematically incompatible but satisfying the constitutive law. As defined in Equation (1.8)

12



1.2. Beam models in linear elasticity

this model does not account for shear energy. This kinematics is therefore relevant for
slender beams where shear effects are negligible. For shorter beams, shear effects are no
longer negligible and must be taken into account, otherwise computations may lead to wrong
estimates of the reponse of the beam. The Timoshenko model allievates this problem.

1.2.2 Shear force in a beam: The Timoshenko beam model

1.2.2.1 Local description

The Timoshenko beam model keeps the assumption of rigid cross-section, but releases the
normality of the cross-section to the neutral axis of the beam [Timoshenko, 1922]. This
means that the inclination of the section relative to Oxα is no longer equal to the longitudinal
derivative of the transversal displacement Uα,3. The kinematics of the model is given in
Equation (1.22) and represented on Figure 1.4.

uα(x) = Uα(x3), u3(x) = U3(x3) − xαθα(x3), (1.22)

By relaxing the two inclinations θ1 and θ2, the model accounts for shear strains. Indeed, the

x3

x2
U2

θ2 , U2,3

undeformed shape

deformed shape Euler-Bernoulli

Timoshenko

Figure 1.4 – Kinematics of the Timoshenko model

strain tensor ε = ∇sx(u) is expressed by;
εαβ = 0, 2εα3 = Uα,3 − θα, ε33 = U3,3 − xαθα,3. (1.23)

The Timoshenko beam model is also formulated by considering the in-plane stresses to be
zero. The components of σ are expressed:

σαβ = 0, σα3 = µ
(
Uα,3 − θα

)
, σ33 = E

(
Uα,3 − xαθα,3

)
(1.24)

As for the Euler-Bernoulli, this expression is in contradiction with the constitutive law of
Equation (1.7). εαβ = 0 and σαβ = 0 cannot be reached simultaneously with a non-zero

13
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Poisson’s ratio. In order to fulfill the compatibility, the considered strain is expressed by:

ε =
©­«
−ν (

U3,3 − xαθα,3
)

0 1
2
(
U1,3 − θ1

)
0 −ν (

U3,3 − xαθα,3
) 1

2
(
U2,3 − θ2

)
1
2
(
U1,3 − θ1

) 1
2
(
U2,3 − θ2

)
U3,3 − xαθα,3

ª®¬ (1.25)

The model therefore accounts for a shear stress, that is:

σα3(x) = µ
(
Uα,3(x3) − θα(x3)

)
(1.26)

Given that σα3 only depends on the longitudinal coordinate, the shear stress is constant in the
cross-section. However, the boundary conditions on the free edges of the cross-section impose
the relation:

σα3nα = 0, (1.27)

where nα is the in-plane normal to edge of the cross-section. Consequently, because σα3 , 0,
the free boundary conditions cannot be enforced.

1.2.2.2 Beam equations

The principle of virtual works of Equation (1.10) is expressed as follows:

δW int =

∫
Ω

[
σ13

(
δU1,3 − δθ1

)
+ σ23

(
δU2,3 − δθ2

)
+ σ33

(
δU3,3 − xαδθα,3

) ]
dV . (1.28)

By integrating over the cross-section and proceeding to an integration by parts, the following
static beam equations are obtained:

Qα,3 = 0, −Qα + Mα,3 = 0, N,3 = 0, (1.29)

where the shear forces Qα are the integration of the shear stresses over the cross-section:

Qα =

∫
S
σα3dA (1.30)

Thus the macroscopic stress-resultants can be expressed in terms of the kinematic unknowns:

N = ESU3,3, Qα = µS
(
Uα,3 − θα

)
, Mα = EIαθα,3 (1.31)

Thanks to Equation (1.16), injecting the expression of the stress components into Equation
(1.29) yields the following local equilibrium equations:

u3,33 = 0, uα,33 − θα,3 = 0, θα,333 = 0 (1.32)
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1.2. Beam models in linear elasticity

1.2.2.3 Relevance of the model

By accounting for a shear stress in its kinematics, the Timoshenko beam model improves the
Euler-Bernoulli model and is therefore widely used in the engineering community. Its main
limitation lies in the non-compliance with the free boundary conditions on the edges of the
cross-sections. In practice, a correction factor kcorr is often used for the shear stress which
then writes:

σα3 = kcorrµ
(
Uα,3 − θα

)
. (1.33)

As a result, the shear stiffness µS is modified into µScorr, yielding a better estimation of the
shear forces.

1.2.3 Torsion in a beam: the Vlasov beam theory

The Vlasov beam model is the first theory explicitely formulated to account for torsion. In the
present section, the historical works on beams submitted to torsion are first depicted, including
the crucial works of Saint-Venant. The solution of a beam submitted to a uniform torsion
is then computeda and the Vlasov beam model and its related beam equations are finally
described.

1.2.3.1 Historical background

Torsion in bars has historically focused the attention of many great scientists, among whom
Navier, Poisson, Cauchy and Saint-Venant. Coulomb was the first to establish in 1784 the
relation between the torque M3 and twist angle θ3 in circular bars, that is:

M3 = µJcircθ3,3, (1.34)

Indeed, in the particular case of circular bars submitted to torsion, cross-sections remain
plane and the torsion constant Jcirc is equal to the polar moment of inertia, which analytical
expression is given by:

Jcirc =
∫
Ω

(
x2

1 + x2
2

)
dV (1.35)

Among other conclusions, he found that the shear stress was maximum at points furthest from
the center of the circular bar.

In the beginning of the nineteenth century, Navier and Cauchy successively investigated the
torsion of non-circular prismatic bars trying to establish the equation equivalent to Equation
(1.34). In 1853, Saint-Venant was the first to correctly formulate the solutions of elliptic and
rectangular bars submitted to torsion [de Saint Venant, 1855]. Based on the experimental data
of Savart, torsion tests of Duleau and his own tests, he notably established that non-circular
cross-sections do not remain plane when torsion is applied, that the shear stress was zero in
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the corners of a rectangular cross-section and that the maximum shear stress was observed in
the middle of the shorter edges [Saeed, 1962].

Figure 1.5 – Pure torsion of bars with elliptic, square and rectangular cross-sections: original
drawings from A. Barré De Saint-Venant [de Saint Venant, 1855]

In 1871, Boussinesq analytically solved the problem of torsion in a beam by using an analogy
with the corresponding hydrodynamic problem. Defining the shear stress by the equation:

σ13 = −∂x2 F, σ23 = ∂x1 F (1.36)

where F(x1, x2) satisifies ∆xF = −2µθ3,3, he figured out that solving the expression of F was
equivalent to find the expression of the velocity of a fluid flowing along the axis of a tube with
the same cross-section. In this context, he obtained the following expression of the torque:

M3 = 2
∫

S
FdA = µJθ3,3, (1.37)

Most of the subsequent works on torsion were devoted to obtain the values of the torsional
constant J for particular shapes of the cross-section.

Based on the previous works of Saint-Venant and Boussinesq, Vlasov suggested in 1961 a
beam theory with torsional warping. This beam model is described in the present section.

1.2.3.2 Uniform torsion in a prismatic bar

We establish here the solution of a prismatic bar only submitted to uniform torsion, the
cross-section being not necessarily circular. The uniform torsion in a bar is expressed by:

θ3,33 = 0. (1.38)
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1.2. Beam models in linear elasticity

Figure 1.6 – Torsional warping for elliptic, square and triangular cross-sections: original
drawings from A. Barré De Saint-Venant [de Saint Venant, 1855]

The kinematics of the solution writes:

u =
©­«
−x2θ3
x1θ3
Ψ(x)

ª®¬ , (1.39)

where Ψ(x) is the torsion warping. The expression of Ψ is so far unknown. The strain
ε = ∇sxu takes the following expression:

2ε13 = −x2θ3,3 + Ψ,1, 2ε23 = x1θ3,3 + Ψ,2, εαβ = ε33 = 0, (1.40)

and the stress writes:

σ13 = µ
(−x2θ3,3 + Ψ,1

)
, σ23 = µ

(
x1θ3,3 + Ψ,2

)
, σαβ = σ33 = 0. (1.41)

The local equilibrium is given by the relation:

div(σ) = 0. (1.42)

We consider the third equation of (1.42), that is:

σ3i,i = 0. (1.43)

Injecting Equation (1.41) into (1.43) yields the simple relation:

∆xΨ = 0, (1.44)

where ∆x = ∂x2
1
+ ∂x2

2
is the cross-sectional Laplace operator. The free boundary conditions

on the edges of the cross-section is expressed by:

σα3nα = 0, (1.45)

which then yields, thanks to Equation (1.41):

∇xΨ · n = θ3,3 (x1n2 − x2n1) , (1.46)
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where ∇x =
(
∂x1, ∂x2

)
and n = (n1, n2). Denoting by ∂S the boundary of the cross-section S,

the torsion warping functionΨ is defined within a constant by the following partial differential
problem: {

∆xΨ = 0 on S
∇xΨ · n = θ3,3 (x1n2 − x2n1) on ∂S (1.47)

The resolution of Equation (1.47) cannot be carried out analytically, except for the special case
of circular sections where Ψ = 0. It therefore requires numerical methods such as the finite
element method. The torsional warping for elliptic, square and triangular cross-sections was
early represented by Saint-Venant (see Figure 1.6).

1.2.3.3 The Vlasov kinematics

Vlasov included in his model the solution of Equation (1.47) as a new static degree of freedom
[Vlasov, 1961]. The torsional kinematics of the Vlasov beam model therefore writes:

u(x) = ©­«
−x2θ3(x3)
x1θ3(x3)

ψ(xα)θ3,3(x3)
ª®¬ (1.48)

According to Equation (1.48), and within the framework of plane stress, the stress is given by:

σ =
©­«

0 0 µ
(
ψ,1 − x2

)
θ3,3

0 0 µ
(
ψ,2 + x1

)
θ3,3

µ
(
ψ,1 − x2

)
θ3,3 µ

(
ψ,2 + x1

)
θ3,3 Eψθ3,33

ª®¬ . (1.49)

The constitutive law then yields the expression of the compatible strain:

ε =
©­«

−νψθ3,33 0 1
2
(
ψ,1 − x2

)
θ3,3

0 −νψθ3,33
1
2
(
ψ,2 + x1

)
θ3,3

1
2
(
ψ,1 − x2

)
θ3,3

1
2
(
ψ,2 + x1

)
θ3,3 ψθ3,33

ª®¬ (1.50)

1.2.3.4 Beam equations

The principle of virtual works of Equation (1.10) is expressed according to Equations (1.49)
and (1.50):

δW int =

∫
Ω

[
σ13

(
ψ,1 − x2

)
θ3,3 + σ23

(
ψ,2 + x1

)
θ3,3 + σ33ψθ3,33

]
dV (1.51)

Integrating over the cross-section leads to the following expression of δW int:

δW int =

∫ L

0

[(M3 + φ) δθ3,3 + Bδθ3,33
]

dV, (1.52)
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1.2. Beam models in linear elasticity

with the stress-resultants M3, φ and B are defined by:

M3 =

∫
S
(x1σ23 − x2σ13) dA, φ =

∫
S
σα3ψ,αdA, B =

∫
S
σ33ψdA (1.53)

The stress-resultants are expressed in terms of the kinematic unnknowns by injecting the
expression of the stress components of Equation (1.50) into Equation (1.53):

M3 = µJθ3,3, φ = µPθ3,3, B = EKθ3,33, (1.54)

where

J =
∫

S
utorα

(
ψ,α + utorα

)
dA, P =

∫
S
ψ,α

(
utorα + ψ,α

)
dA, K =

∫
S
ψ2dA, (1.55)

with utor = (−x2, x1) the in-plane rotation of the section. The first equation of (1.54) is the same
equation as the one formulated by Coulomb in 1784 for circular beams. The expression of the
torsion constant J which is equal to the polar moment of inertia for circular sections, is given
in Equation 1.55 for general cross-sections. The bi-moment B appears for nonuniform torsion.
An simple example involving the bi-moment is a clamped thin-walled beam submitted to
torsion at its free end: the boundary condition prevents the section from rotating and generates
a kinematic frustration that propagates longitudinally. K is called the warping constant. The
constant P is actually equals to zero. Indeed, integrating by part the expression of P in
Equation (1.55) yields:

P =
∫

S
ψ

(
divxutor + ∆xψ

)
dA +

∫
∂S
ψ

(∇xψ + utor) · ndl (1.56)

According to Equation (1.47), ∆xψ = 0 and using Equation (1.48) yields ∇xψ · n = −utor · n
on ∂S. Given that divxutor = 0, we finally get P = 0.

By integrating by part Equation (1.52), the virtual work δW int can be expressed as follows:

δW int =

∫ L

0

(
B,33 − M3,3

)
δθ3dx3 +

[ (
M3 − B,3

)
δθ3 + Bδθ3,3

] L
0 (1.57)

The second member of Equation (1.57) is the external work δWext, yielding the following
equation: ∫ L

0

(
B,33 − M3,3

)
δθ3dx3 = 0. (1.58)

Equation (1.58) being satisfied for any virtual displacement, the static beam equations are:

B,33 − M3,3 = 0 (1.59)

The local equilibrium equation is obtained by injecting the expression of the stress components
of Equation (1.50) into Equation (1.60):

θ3,3333 − ω2θ3,33 = 0 (1.60)
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where ω2 =
µJ
EK

. The solution of Equation (1.60) is given by:

θ3(x3) = aeωx3 + be−ωx3 + cx3 + d, (1.61)

where the constants a, b, c and d are determined by the boundary conditions on the rotation
and the warping of the two extremities.

1.2.3.5 Relevance of the model

The theory developed by Vlasov for the torsion of beams enlarges the possible deformations
described by a beam model. In Equation (1.48), the longitudinal variable x3 is still separated
from the cross-sectional variables xα. The Vlasov beam model becomes particularly relevant
for short cantilever beams submitted to torsion where the bi-moment is non negligible and
the torsional warping becomes important. The torsional warping mode and its associated
degree of freedom have been computed for uniform torsion in prismatic bars. Consequently
the model becomes less relevant when it comes to non-uniform torsion. The Benscoter beam
model described in the coming section mitigates this problem.

1.2.4 Non-uniform torsion in a beam: the Benscoter beam model

1.2.4.1 The Benscoter kinematics

Based on the beam model developed by Vlasov, Benscoter suggested to relax the kinematic
variable associated to the new torsional warping mode [Benscoter, 1954]. The computation of
the warping mode ψ is unchanged and solved according to Equation (1.47), but its associated
variable is not equal to the unit angle of torsion θ3,3. This kinematic enrichement enables a
better description of the non-uniform torsion. The kinematics of the Benscoter model therefore
writes:

u(x) = ©­«
−x2θ3(x3)
x1θ3(x3)
ψ(xα)ξ(x3)

ª®¬ , (1.62)

ξ(x3) being the new degree of freedom associated to the warping mode ψ(xα).

1.2.4.2 Beam equations

The strain and stress are expressed according to Equation (1.62). The principle of virtual
works then yields:

δW int =

∫
Ω

[
σ13

(
ψ,1ξ − x2θ3,3

)
+ σ23

(
ψ,2ξ + x1θ3,3

)
+ σ33ψξ,3

]
dV (1.63)
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1.2. Beam models in linear elasticity

After an integration by part, the following static beam equations are obtained:

B,3 − φ = 0 M3,3 = 0 (1.64)

where the stress-resultants are expressed according to Equation (1.53). They can be written
in terms of the kinematic unknowns by using the stress components expressions:

M3 = µ
(
Lξ + I0θ3,3

)
, φ = µ

(
Qξ + Lθ3,3

)
, B = EKξ,3, (1.65)

where L, I0, Q are defined by:

L =
∫

S

(
utor · ∇xψ

)
dA, I0 =

∫
S
utor · utordA, Q =

∫
S
∇xψ · ∇xψdA. (1.66)

K is expressed according to Equation (1.55). The beam equations can be expressed under the
following matrix form:

©­«
M3
φ
B

ª®¬ = ©­«
µI0 µL 0
µL µQ 0
0 0 Ek

ª®¬ ©­«
θ3,3
ξ
ξ,3

ª®¬ (1.67)

Injecting Equation (1.66) into Equation (1.64) leads to the local equilibrium equation:

θ3,33 = − L
I0
ξ,3 ξ,333 − ω2ξ,3 = 0, with ω2 = µ

QI0 − L2

EKI0
(1.68)

One can notice that:

µ

∫
S

©­«
utor

∇xψ√
E/µψ

ª®¬
(
utor ∇xψ

√
E/µψ

) dA = ©­«
µI0 µL X
µL µQ Y
X Y EK

ª®¬ . (1.69)

The second member of Equation (1.69) is therefore a positive semi-definite matrix, and
consequently the relation QI0 − L2 ≥ 0 is satisfied, ensuring that ω2 ≥ 0. The solution of
Equation (1.68) is given by:

θ3 = − L
I0ω
(aeωx3 − be−ωx3) + dx3 + e, ξ = aeωx3 + be−ωx3 + c. (1.70)

The constants are determined by the boundary conditions on the rotation and the warping of
the two extremities.

1.2.4.3 Relevance of the model

The adjustment brought by Benscoter to the Vlasov model can be compared to the one
operated by Timoshenko on the Euler-Bernoulli model: a kinematic variable associated to a
new displacement mode is relaxed by creating a new degree of freedom. The relaxation of the
torsional warping enables a better description of the non-uniform torsion. This new degree of
freedom is especially useful in the case of a clamped boundary where a kinematic frustration
propagates from the extremity along the longitudinal axis.
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1.2.5 Higher-order beam models

The beam theories presented so far have been introduced in a chronological sequence, and
therefore from the simplest kinematics to the richest. Many models with further kinematic
refinements have since been suggested in order to overcome the limitations of the previous
theories, resulting in the development of higher-order beam models. After a brief description
of the works of Saint-Venant, partially mentioned in Section 1.2.3 for the study of torsion,
some of these models considered both significant and relevant for the present document are
presented in this section.

1.2.5.1 The Saint-Venant solution

As illustrated by the models presented so far, the common method used to improve a beam
solution is to enlarge the kinematics of its displacement solution and to relax the associated
degree of freedom if needed.

The Timoshenko beam model represents an enhancement of the Euler-Bernoulli model by
accounting for shear effects. However it cannot satisfy the free boundary conditions as
mentionned in Section 1.2.2. This issue has been actually solved by Saint-Venant in the XIXth

century. He first considered an homogeneous isotropic beam loaded at its end in a weak
sense. Starting from 3D considerations, a full 3D solution was obtained where the 6 classical
generalized stress evolve linearly along the beam and where the cross-section can deforme in
its own-plane and out of its plane. In this context, the displacement solution was found to
be a linear combination of the 6 rigid motions of the cross-section and of new displacements
he computed. The free boundary conditions are satisfied with these additional displacements
and a better approximation of the 3D stress solution is obtained. Furthermore, the traction,
bending moments, torsion moment and shear forces are correctly evaluated. The kinematics
associated to this solution is commonly known as the Saint-Venant solution.

In order to further improve the accuracy of beam solutions, many refined models have been
developed. Because of their enlarged kinematics they are called higher-order beam models.
Some of them are presented in this section.

1.2.5.2 The Iesan beam model

Iesan suggested an extension of the Saint-Venant solution to the case of heterogeneous and
anisotropic cross-sections [Iesan, 1976], the elasticity tensor being considered as a function of
the in-plane coordinates Ci j kl = Ci j kl(x1, x2). Assuming that the displacement vector is also a
function of the only in-plane coordinates ui = ui(x1, x2), the local equilibrium equations are
expressed on the cross-section. The solutions of the local equilibrium equations are the 6 rigid
motions of the cross-section and 4 additional displacement solutions.
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1.2. Beam models in linear elasticity

In the case of an homogeneous and isotropic material, the 4 additional solutions are exactly the
additional displacements previously identified by Saint-Venant. Their closed-form expressions
are:

u(1) =
ν

2
©­«

x2
2 − x2

1
−2x1x2

0

ª®¬ , u(2) =
ν

2
©­«
−2x1x2
x2

1 − x2
2

0

ª®¬ , u(3) = ν ©­«
−x1
−x2

0

ª®¬ , u(4) = ©­«
0
0

ψ(x1, x2)
ª®¬ .

(1.71)
The function ψ is the torsional warping already introduced in the Vlasov beam model. The 10
identified solutions of the cross-sectional equilibrium equations compose the kinematics of the
model. According to Equation (1.71), 3 transversal displacement and 1 warping displacement
are added to the 3 rigid translations and 3 rigid rotations of the cross-section. u(1) and u(2) are
higher-order displacements associated to the bending of the beam, whereas u(3) is associated
to its extension. These 3 displacements are considered only for a non-zero Poisson’s ratio.

Based on this kinematics, the beam model is then formulated. The body forces and surface
tractions considered are assumed to be polynomial functions of the longitudinal coordinate:

f =
m∑

p=1
f̃ p(x1, x2)xp

3 (1.72)

t =
m∑

p=1
t̃p(x1, x2)xp

3, (1.73)

where f̃ p and t̃p are functions of the in-plane coordinates and belong to C∞. The solution
is then computed thanks to a cascade resolution: assuming that the solution of the problem
loaded by the body force f n = f̃ n(x1, x2)xn

3 and the surface traction t
n = t̃n(x1, x2)xn

3 is known,
the problem loaded by f n+1 and tn+1 is formulated and solved. This way, the global problem
is solved order by order and the corresponding solutions are added to form the global solution.

Iesan successfully extended the Saint-Venant solution to the case of inhomogeneous and
anisotropic beams. A limitation of the model presented here is the high regularity required
for the loads. Indeed, concentrated loads commonly used in practice cannot be described by
Equations (1.72) or (1.73).

1.2.5.3 The asymptotic expansion models

The asymptotic expansionmethod Originated by theworks of Lions [1973], the asymptotic
expansion method has been widely used for the development of beam models. The concept of
this method is to express the variables of the 3D problem as power series of a small parameter.
In the case of beams it is the ratio between the typical size of the cross-section and the length
of the beam. Let consider for example a variable of the 3D problem a, a beam of length L and
with a typical dimension of its cross-section h. The scaling ratio η = h/L is formed and a is
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expanded as follows:
a(x) =

∑
k=0

ηkak(x), (1.74)

where ak(x) is the k th-order term of the asymptotic expansion of a. By introducing into
the rescaled problem the asymptotic expansions of each variable, the 3D problem can be
expressed as a power series of auxiliary problems. This collection of auxiliary problems are
then solved by induction. The first problems correspond to the leading orders of the problem
(k = 0, 1, 2, ...), while the higher-orders effects of the global response of the structure are
described by higher-order auxiliary problems.

The asymptotic expansion method for beam models Thanks to the asymptotic expansion
method, Trabucho and Viaño [1987] derived the beam theories previously developed, offering
by the way a new mathematical justification and insight to these models. The Euler-Bernoulli
theory is obtained in the first order of the asymptotic expansion. Going further in the expansion,
they derived the Timoshenko beam model [Trabucho and Viaño, 1990], the Saint-Venant
solution [Trabucho andViano, 1988] and developedmodels higher-order kinematics [Trabucho
and Viano, 1989].

The resolution on the cross-section of the auxiliray problems previously introduced yields a
collection of in-plane and warping displacements ũi = ũi(x1, x2) here called displacement
modes. These displacements modes are added to the kinematics of the model. The 3D
displacement u therefore writes:

u =
n∑

k=1
ũi(x1, x2)Xi(x3), (1.75)

where n is the size of the collection. The asymptotic expansion method is used for the com-
putation of the displacement modes but not for the resolution of the element. Considering the
modes ũi as kinematic enrichment carried by the independent generalized beam displacements
Xi = Xi(x3) overcomes the problem of regularity conditions identified in the model of Iesan
but also present if the asymptotic expansion formalism is considered for the resolution of the
element. Indeed, the application of the minimum of the potential energy on this kinematics
results in low regularity restrictions on the load applied. The formal mathematical framework
of this method also called the Galerkin spectral approximation has been depicted in [Miara
and Trabucho, 1992].

As a result, the asymptotic expansion method provides a systematic method to enrich the
kinematics of a beam model. The expansion order can be arbitrarily fixed, and the collection
of displacement modes is optimal for a given order n in terms of approximation error far from
the extremities. The limitation of the asymptotic method lies in the description of the reponse
of the structure close to the boundary conditions. Indeed, the displacement modes being
computed for cross-section far from the extremities, the influence of the boundary conditions
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1.3. Beam models in elastoplasticity

on the response of the strucuture is not explicitely captured by the kinematic enrichment. This
issue, not presented in this report, has been solved by STRAINS by computing additional
displacement modes specific to the boundary conditions.

Remark The expression of the displacement used in Equation (1.75) is a very general
notation for beam models and is not limited to the scope of asymptotic expansion models. For
example, the Euler-Bernoulli model can be expressed according to this formalism by writing:

ũ1 =
©­«

1
0
0

ª®¬ , ũ2 =
©­«

0
1
0

ª®¬ , ũ3 =
©­«

0
0
1

ª®¬ , ũ4 =
©­«

0
0
x1

ª®¬ , ũ5 =
©­«

0
0
x2

ª®¬ , (1.76)

each mode being respectively associated with the following kinematic variables:

X1 = U1, X2 = U2, X3 = U3, X4 = −U1,3, X5 = −U2,3 (1.77)

The improvement brought by the Timoshenko beam theory simply consists in relaxing the
kinematic variables X4 and X5, meaning that the same 5 displacement modes are considered,
but are associated with the following kinematic variables:

X1 = U1, X2 = U2, X3 = U3, X4 = −θ1, X5 = −θ2 (1.78)

The higher-order models presented in this section then introduce additional displacement
modes and kinematic variables.

The development of richer kinematics has led to higher-order beam models able to describe
a wide range of phenomena in linear elasticity. The introdcution of elastoplasticity addressed
in the next section is much more complex and the development of higher-order kinematics for
the description of elastoplastic behaviors is not straightforward.

1.3 Beam models in elastoplasticity

This section suggests a classification of the elastoplastic beam models. Two main categories
of models can be distinguished. First, the models based on a yield criterion expressed in
terms of one or several stress-resultants. These models are based on a macroscopic criterion
provding fast computational performance but poor local results. Second, the models using a
yield criterion expressed in terms of the stress-components. Thesemodels are locally accurate,
but are computationally more demanding.

1.3.1 Introduction of elastoplasticity in beam models

Elastoplasticity deals with the formation of irreversible strains in the structure and their
nonlinear effects on the global response of the beam.
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At the cross-section scale, plastic strains εp appear when the material is stressed beyond its
elastic limit. The total strain is therefore the sum of an elastic strain and a plastic strain:

ε = εe + εp. (1.79)

The nonlinear behavior of the beam is expressed through the stress-strain relationship. The
total strain being kinematically compatible and because of the apparition of plastic strain,
stress cannot be computed as a linear function of the displacement u anymore:

σ = C : (∇su − εp) , (1.80)

with C the stiffness tensor.

At the beam scale, the nonlinear behaviour of the structure is given by the relationship between
generalized stress and kinematic variables, as illustrated by the static beam equations given
in Equations (1.15), (1.29), (1.54) or (1.64). It is a macroscopic consequence of the local
nonlinear behaviour defined in Equation (1.80).

The state of the structure can therefore be defined either by the macroscopic stress-resultants
or by the local stresses. In each case, the elastic or plastic state of the beam is determined
through the use of a yield criterion. As a result the integration of the elastoplastic behavior in
a beam model might be adressed by two approaches.

The first approach consists in accounting for plasticity by using a yield criterion expressed in
terms of the stress-resultants. The local stresses are computed with an elastic assumption, then
integrated to form the generalized stresses. The latter are then corrected in case of a plastic
evolution according to the yield criterion. This method requires a preliminary formulation of
the yield surface for the corresponding stress-resultants. These nonlinear relations must be
established by 2D or 3D computations and should account for stress-resultants interactions.

The second approach is based on a local yield criterion expressed in terms of the local stress
σ. A 3D beam kinematics is considered and the elastoplastic behavior is locally integrated.
The two different approaches are described in Figure 1.7.

A review of the two approaches is presented in Section 1.3.2 for the models using a 1D
elastoplastic beam models and in Section 1.3.3 for the 3D elastoplastic beam models.

1.3.2 Beam models based on a 1D macroscopic yield criterion

1.3.2.1 An illustrative 1D elastoplastic Timoshenko beam model

Based on the simple model introduced in [Owen and Hinton, 1980], the 1D approach is first
illustrated with an elastoplastic model based on the Timoshenko kinematics. The Timoshenko
beam kinematics has been described in Section 1.2.2.
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U3,3, θα,3, θ3,3, ... N , Mα, M3,...

ε σ3D yield criterion

1D yield criterion

kinem
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∫
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macro approach
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Figure 1.7 – Illustration of the macroscopic and microscopic elastoplastic integration schemes

We consider a rectangular beam of cross-sectional dimensions b × h submitted to bending
around the axis Ox1. The first step in the definition of the elastoplastic model consists
in defining the yield criterion. The normal stress of the Timoshenko model is given by
σ33 = E

(
Uα,3 − xαθα,3

)
. The distribution of stress is therefore linear through the cross-section

with maximum andminimum stress reached at the top and bottom fibers of the section. During
bending, σ33 increases until it reaches a maximal plastic value σy as described on Figure 1.8.

Once σy is reached, plastification propagates throught the thickness of the section as described
in state (3), until the fully plastic state (4) is reached. The bending moments corresponding to
each situation are:

M (1)2 = E
bh3

12
θ2,3, M (2)2 =

σybh2

6
, M (3)2 = σyb

(
h2

4
−

x2
y

3

)
, M (4)2 =

σybh2

4
(1.81)

M (3)2 is a function of the local variable xy describing the propagation of the plastic zone through
the thickness of the section. Since we aim to express a elastoplastic equation expressing the
bending moment M2 as function of the curvature θ2,3, the intermediate state (3) is discarded
and we consider that the first plastification of the element corresponds to the full plastificaiton
of state (4). The yield moment is therefore defined by:

My =
σybh2

6
, (1.82)

and the 1D yield criterion has the simple following expression:

M2(x3) − My ≤ 0, (1.83)
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Figure 1.8 – Evolution of normal stress during bending
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Figure 1.9 – Moment-curvature relationship with the macro yield criterion
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1.3. Beam models in elastoplasticity

The moment-curvature law is represented on Figure 1.9.

The preliminary step is completed: the elastoplastic beam element is now defined by the
1D constitutive moment-curvature relationship represented on Figure 1.9 and by the yield
criterion expressed in Equation (1.82). The example studied here is very simple and accounts
only for one stress-resultant. If a second stress-resultant like the normal stress N or the second
bending moment M1t is introduced, the yield criterion must be redefined and must consider
the potential interactions between the resultants. The yield criterion becomes a function of
several parameters, motivating the name of yield surface.

1.3.2.2 Computation of the stress-resultants yield criterion

Yield criterion with one stress-resultant As illustrated by the previous Timoshenko-based
model, the main challenge in the 1D approach lies in the definition of the yield surface. Many
closed-form solutions have been historically proposed for simple cross-section geometry and
loadings.

In particular, the problem of prismatic bars submitted to torsion has been historically inves-
tigated since the seminal works of Saint-Venant. Based on the membrane analogy of Prandtl
[Prandtl, 1903], Nadai demonstrated in 1923 that the shear stress and the torque in a solid bar
submitted to torsion could be estimated by pouring dry sand on a tray whose shape is similar
to that of the cross-section of the bar [Nadai, 1923] (first published in german, his works were
then translated in english in [Nadai, 1931]). He established than the maximum torque that
could be withstand by the bar was proportional to the volume of sand on the tray and that
the stress distribution was given by the surface of the heap. This sand-heap analogy was first
formulated for solid bars but then extended to the case of hollow sections [Sadowsky, 1941]
with a numerical application given by [Shaw, 1944]. Following the work done by Nadai,
many models were developed with closed-form yield criterion for beams submitted to torsion
with common cross-section: solutions for the torsion of I-beams [Christopherson, 1940], oval
cross-sections [Sokolovsky, 1946] or rectangular sections [Smith and Sidebottom, 1965] were
successively formulated.

Combined stress-resultants yield criterion The formulation of the yield surface is more
complicated when it comes to combined generalized stress since their interactionmust be taken
into account. The yield surface of thin-walled beams submitted to both twisting and torsion
has been analytically expressed by Hill and Siebel [1951]. The formulation of a closed-form
solution was made possible by assuming constant distribution of stress through the thickness
of the wall. However, they found that the yield surface of solid bars could not be exactly solved
[Hill and Siebel, 1953].

The description of the yield surface becomes more complex as we consider more stress-
resultants and their potentiel interactions. The yield surface presented on Figure 1.10 has been
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numerically computed for a L-shaped reinforced concrete beam [Bleyer and de Buhan, 2013].
Its complex shape illustrates the difficulty to find analytical solutions for such cases. Bleyer
and de Buhan therefore suggested a numerical approximation of the yield surface by facets
and ellipsoids.

Figure 1.10 – Yield surface expressed in terms of bending moments and normal stress [Bleyer
and de Buhan, 2013]

Once the yield surface is described, the beam element can be formulated and solved. The main
advantage of this approach is the simplicity and computational performance of a 1D resolution
since the yield criterion is only checked at the longitudinal nodes of the beam. The price of
this computational efficiency is a potential local inaccuracy. As illustrated by the elastoplastic
Timoshenko beam model in the previous section, plastification is considered only when the
full plastic state has been reached, therefore discarded the stage of plastic propagation through
the thickness of the section. Beam models with local yield criteria expressed in terms of the
three-dimensional stress states are developed in order to mitigate this lack of local accuracy.

1.3.3 Beam models based on a local yield criterion

In order to improve the local accuracy of the beam model, the natural approach consists in
using a local yield criterion. Two solutions might be considered.

The first approach is to discretize the cross-section into layers (for 2D description) or fibers
(for 3D description), each one being associated with a beam kinematics. This is the spirit of
the example presented in Section 1.3.3.1 and the method used in multifibers models. This
method can be performed with simple kinematics for each layer or fiber but their multiplication
comes with a higher computation time.

The second approach is to enhance the kinematics of the beam element. One single beam
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1.3. Beam models in elastoplasticity

element is used but with a 3D kinematics able to describe the nonlinear behavior of the local
variables. The kinematics may be computed a priori or may evolve during the computation.
This second approach is presented in Section 1.3.3.2.

1.3.3.1 An illustrative elastoplastic Timoshenko beam model

We consider the beam introduced in Section 1.3.2.1. The beam is still submitted to bending
around axis Ox1. By contrast with the stress-resultants approach adopted previously, a local
criterion is used now. To that purpose, the cross-section of the beam is discretized into m
horitzontal layers of respective thickness tl as represented on Figure 1.11.
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Figure 1.11 – Evolution of normal stress during bending

Remark A discretization along 0x2 into layers is suitable for the present 2D description of
the beam and the study of bending around 0x1. As indicated previously, a discretization along
both cross-sectional axes with fibers could have been used as well for a finer 3D description
of the local response and for loads involving a nonuniform response of the section. This is the
method used in multifibers models.

Thanks to the discretization along 0x2, the spreading of yielding through the thickness of the
beam can be better described. Four intermediate states can be notably represented before full
plastic state is reached. Each layer is associated with the following local yield criterion:

|σ33(x)| − σy ≤ 0, (1.84)

Based on the stress components, this approach yields much better local results. The bending
moment can be computed at the different stages of the plastification. As long as the evolution
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Figure 1.12 – Moment-curvature relationship with the local yield criterion

is elastic, σ33(x) = −x2θ2,3(x3), and the descritized bending moment is given by:

M (1)2 = −2b

(m/2∑
l=1

Eltl x2
l

)
θ2,3, with xl =

(2l − 1)h
2m

(1.85)

where El is the Young modulus of each layer and xl the vertical position of the center of each
layer. This is the discrete form of the macroscopic relation M (1)2 = −EIθ2,3. Once yielding
starts spreading from the outer fibers to the center, the bending moment becomes:

M (2,3)2 = 2bσy
©­«

j∑
l=1

x2
l

xy
tl +

m/2∑
l= j+1

xltl
ª®¬ , (1.86)

where j is the number of the last plastified layer (x j > 0). Finally, the bending moment of the
full plastic state is given by:

M (4)2 =
σybh2

4
. (1.87)

For j = 0, Equation (1.86) consistently yields M (2,3)2 = M (4)2 . The moment-curvature relati-
onship is represented on Figure 1.12. Contrary to the stress-resultants approach, plastification
starts as soon as the absolute value of the normal stress of the outer layers is greater than the
elastic yield σy. Therefore the nonlinear relation between moment and curvature starts from
M2 =

(
σybh2) /6 and not M2 =

(
σybh2) /4.

By expressing the yield criterion locally, no preliminary computation is needed. The local
yield criterion is applied on each local integration point of each cross-section. This method
provides more accurate global and local results, but is computationally more demanding as
shown by the study of Gendy and Saleeb [1993].
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As indicated in the introduction of Section 1.3.3, an alternative local approach could have been
used: instead of improving the beam response by discretizing the beam element into several
beam element represented by layers, the model coumld have been improved by considering a
single beam element but with an enhanced kinematics. In the first case the number of degrees
of freedom is increased by increasing the number of sub-elements, in the second case the
number of degrees of freedom is increased by increasing the numbers of displacement modes.
The description of the latter case is presented in Section 1.3.3.2.

1.3.3.2 Higher-order models

Section 1.2 shows that the search of accuracy and performance in the development of elastic
beam models leads to the definition of higher-order kinematics. The same approach can be
adopted in order to develop elastoplastic beammodels. However the task is more complicated:
elastoplastic computations are mostly incremental and plasticity evolves during the compu-
tation. The nonlinear deformations involved are more complex to capture and the number
of displacement modes required to satisfactorily represent the beam response might be very
important.

Two methods are distinguished: models with kinematics defined before the nonlinear compu-
tation called a posteriori models, and models with kinematics computed and evolving during
the computation called a priori models.

A posteriorimodels Most of the time, the kinematics used to describe the elastic evotution of
a beam element is not suitable for describing its elastoplastic behaviour since not compatible
plastic strains of displacement and stress cannot be properly captured. New displacement
modes must therefore be added into the kinematics of the element. A posteriori models
define a kinematics for the element before its incremental resolution. It is assumed that this
kinematics is accurate enough to describe the whole elastoplastic evolution of the element.

The definition of additional displacement modes can be an educated guess based on the
knowledge of the load applied and on the geometry of the cross-section considered. For
instance, Bathe and Chaudhary [1982] studied the elastoplastic evolution of a rectangular
beam submitted to torsion. To that purpose, they defined the following displacement modes
in the kinematics of the element:

ũ1 =
©­«
−x2
x1
0

ª®¬ , ũ2 =
©­«

0
0

x1x2

ª®¬ , ũ3 =
©­«

0
0

x1x2(x2
1 − x2

2)
ª®¬ , (1.88)

each mode being associated with an independent kinematic variable. The first mode ũ1 is
the classical in-plane rotation of the cross-section, usually associated with the rotation angle
θ3. The modes ũ2 and ũ3 are warping mode added for the description of the elastoplastic
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evolution of the section. In the particular case of rectangular beams submitted to torsion, this
kinematics yields satisfactory results.

Many developments have been carried out in the field of thin-walled beams. The nonlinear
evolution of these elements is governed by a competition between plasticity and instabilities,
making of the description of their behavior a complex issue. Abambres et al. [2014] developed
a higher-order elastoplastic element for thin-walled beams. The kinematics is extended with
a large number of displacement modes (up to 137), thus covering the potential displacement
occuring during the elastoplastic evolution of the element. The methodology used for the
computation of the displacement modes is described in [Gonçalves et al., 2010]. The shape of
the cross-section is first discretized with nodes. Then "basic" modes are created by considering
the displacement of one node along one of the three directions. These basic modes are then
considered as imposed displacements in order to compute their higher-order related modes.
A great amount of modes is therefore created. Based on their relevance for the problem
studied, about half of them is then discarded. The method adopted here consists in creating
an exhaustive kinematics that encompass all the potential cross-sectional displacement of the
beam.

A similar approach is used by [Carrera and Giunta, 2010]: the kinematics is extended by using
displacement modes computed thanks to polynomials interpolated on a 2D discretization of
the cross-section.

The method adopted in [Abambres et al., 2014] and [Carrera and Giunta, 2010] aims to com-
pute a wide range of additional displacement modes in order to capture the nonlinearities of
the beam response. However the relevance of these modes is first assumed and confirmed a
posteriori by the results of the computations. The Proper Orthogonal Decomposition (POD)
enables to compute more empiric kinematics [Chatterjee, 2000]. This approach suggests to
extract a reduced basis from a set of displacement fields obtained by preliminary numeri-
cal computations or experimental data. The reduced basis is created by proceeding to an
orthogonalisation on the collection of displacement fields. This procedure is also known as
the Karhunen-Loeve decomposition or the single value decomposition. It aims to extract
the salient feature of the response of the structure. The accuracy of the model depends on
the truncation chosen in the creation of the reduced basis and on the similarity between the
displacement fields yielded by the preliminary computations and the displacement produced
by the situations studied a posteriori with the reduced model.

In the Nonuniform Transformation Field Analysis (NTFA), Michel and Suquet [2003]; Rous-
sette et al. [2009] suggested to study the elastoplastic behavior of composite materials with
a POD-like model. This model is not built by expressing the total displacement but with a
kinematics expressed for the plastic strains. Preliminary 3D computations are processed on
the sample material with elementary loadings (extension, compression, etc). A reduced basis
is then extracted from the set of plastic strains obtained from the elementary computations.
This method can be very effective when the scope of potential deformations is previously
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1.3. Beam models in elastoplasticity

identified and encompassed by the preliminary computations.

A posteriori models offer the great advantage to compute a single kinematics for the whole
nonlinear computation. The kinematics is created once and for all before the resolution of the
beam element. However two drawbacks are inherent to this kind of models. First, it can be
a complex task to identify all the potential displacements for an elastoplastic beam submitted
to general loads (shear and normal force, bending moment or torque). Second, as a result of
the first remark the number of displacement modes required to obtained satisfactory results
may be very large. The numerical efficiency of the model can be consequently affected. The
a priori models mitigate this issue by computing ad hoc kinematics computed during the
incremental elastoplastic procedure.

A priori models In order to define a kinematics more adapted to the current elastoplastic
state of the structure, a priorimodels update the kinematics during the incremental resolution
of the element. The kinematics therefore evolves according to the progression of plastic strain
in the structure. Baba and Kajita [1982] studied the classical problem of a prismatic bar
submitted to torsion. The kinematics adopted is the following:

ũ1 =
©­«
−x2
x1
0

ª®¬ , ũ2 =
©­«

0
0
ψ

ª®¬ , (1.89)

the first mode being associated with the in-plane rotation θ3 and the second mode with its
longitudinal derivative θ3,3. It is suggested by the Vlasov beam model in Equation (1.48),
the difference being that the warping function ψ is now computed according to elastoplastic
state of the cross-section. The section is discretized into square elements on which the local
elastoplastic equilibrium equations are expressed. The local value of the warping function ψe
is computed on each element of the beam section and their assembly yields the overall warping
function ψ. This way, the function ψ is computed as a function of the incremental rotations and
of the incremental plastic strain in the cross-section. Given the longitudinal variation of the
plastic state along the beam, the computation of a single plastic warping function for the whole
length is not a relevant choice. Therefore the beam is discretized into fine beam elements on
which a different warping function is computed and assumed constant. This method yields
results consistent with experimental data and closed-form solutions [Smith and Sidebottom,
1965]. Moreover, this model is effective for any shape of the cross-section without distinction
between solid, thick-walled or thin-walled section. The comparison between the a priori
model of [Bathe and Chaudhary, 1982] introduced previously and the model of [Baba and
Kajita, 1982] highlights the main differences between the two approaches. While the first
model is based on an assumed kinematics but is only valid for rectangular beams, the second
is effective for any shape of the cross-section, the price being the computation of the warping
function at each increment.

A generalization of the POD introduced previously has been widely developed and used
in the past years. This method, called the Proper Generalized Decomposition (PGD) also
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assumed a variables separation [Chinesta et al., 2011]. By contrast with the POD, the PGD
does not need a priori knowledge on the solution. This method was first devised and used
in the nonlinear and non-incremental Large Time Increment (LATIN) method developed by
Ladeveze [1999] and was initially called the radial time-space approximation. The LATIN
method is a method of resolution for nonlinear problems global in time and space which
consists in solving successive global and local linear problems. The PGD is one of the main
tool of this technique. A separation of the time and space coordinates is assumed and the
displacement is expressed as follows:

u =
∑

i

Si(x)Ti(t). (1.90)

Equation (1.90) is injected into the weak formulation of the equilibrium problem and the time
space functions Ti are computed for fixed space functions Si. The space functions can then be
updated according to a residual. Thanks to its non-incremental approach, this method enables
very fast computations for reasonable number of degrees of freedom (usually a few tens).
However the time computation can become large as the number of internal variables is high,
a space-time solver being applied for each couple Si(x)Ti(t). An example of a PGD technique
applied to a composite beam model can be found in [Vidal et al., 2012].

By computing displacement modes or reduced basis during the nonlinear resolution, a priori
models provides relevant kinematics without costly preliminary computations. By considering
only the kinematics relevant for the current iteration or increment, it solves the problem of the
accumulation of modes required by the a posteriori methods.

A classification of the elastoplastic beammodels presented in Section 1.3 is suggested in Figure
1.13. Models using a macroscopic yield criterion expressed in terms of the generalized stress
have first been described in Section 1.3.2. The yield surface is computed for a single stress-
resultant or by considering the combination of several stress-resultants and their interaction.
Models adopting a local yield criterion expressed in terms of the stress components have
been presented in a second time in Section 1.3.3. These models use two strategies in order
to improve their local accuracy. Some are discretized in the cross-sectional directions into
layers or fibers. Each subelement is associated with a beam kinematics which is usually
a Euler-Bernoulli or Timoshenko model. The second approach consists in improving the
kinematics of the element with displacement modes able to capture the nonlinearities due to
the local yielding of the structure. Here again, two types of models can be distinguished. A
first category of models completely define the beam kinematics before the resolution of the
element. This kinematics is fixed during the whole elastoplastic computation. The second
category updates the kinematics during the elastoplastic resolution process, thus considering
an evolving shorter and relevant kinematics for the model. The new elastoplastic beam model
presented in Chapter 3 falls within this last category of elastoplastic models.
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Figure 1.13 – Classification of the elastoplastic beam models presented in Section 1.3

1.4 Beam models for reinforced concrete

This section identifies the existing categories of beam models for reinforced concrete. Three
main steps are considered for the definition of a beam model for reinforced concrete. First, the
constituve behavior of materials must be defined. Many models of various complexity have
been suggested for concrete while the theory of plasticity is mostly used for steel. Second,
the beam model and its kinematics must be defined. Finally, the strutural connection between
steel and concrete must be numerically expressed. This third issue can be closely linked to the
choice of the beam model.

1.4.1 Description of a reinforced concrete beam model

The vast majority of today’s building and infrastructures use reinforced concrete for structural
material, naturally focusing the attention of the computational mechanics community on the
development of numerical models. In this context, the high slenderness of many structural
elements like beams or bridge decks stimulates the development of beam models.

The development of a beam model for reinforced concrete involves complex material and
structural issues. Three steps can be identified for the definition of a reinforced concrete beam
model.
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The first step is the constitutive modelling of steel and concrete. Steel is mostly described
with elastoplastic behavior associated to a Von-Mises criterion. This simple yield criterion
is indeed suitable for most metals. By contrast, concrete is a complex material both on the
local and the global scale. Its inherent inhomogeneity makes it a tough material to describe
and model. Section 1.4.2 is dedicated to the description of the main categories of constitutive
models suggested for concrete.

The second step is the definition of a beam model. The model must meet two major requi-
rements. First it must be able to describe the material heterogeneity of a reinforced concrete
element. Reinforced concrete is a composite material made of a concrete matrix and streng-
htened by steel rebars. We therefore expect the beam model to take the local description of
each material into account. Second, the model must exhibit a sufficiently refined kinematics
in order to provide accurate local results. The description of the main beam models used for
the definition of reinforced concrete is presented in Section 1.4.3.

The third step is the numerical modelling of the structural connection between steel and
concrete. Indded, steel rebars are patterned in order to ensure a better bond with concrete.
Interlocking of rebars and concrete aggregates prevents from bond-slip problems. This struc-
tural contact must find its counterpart in the defintion of the beam model. It is actually closely
linked to the definition of the beam model. This issue will be adressed at the end of Section
1.4.3.

1.4.2 Concrete constitutive behavior

1.4.2.1 Material description of concrete

Concrete is a material which may sustain high compressive loads. Usual concrete shows
linear elastic behavior up to a yield limit fc ranging from 20 MPa to 40 MPa. In contrast, it
exhibits a low tension strength and cannot support tensile stress higher than a value ft usually
between 0 MPa and 5 MPa. Important stresses generate cracks in both tension (σ > 0) and
compression (σ < 0) which result in a decrease of the stress as the deformation still gets
larger. This phenomenon, called softening can be seen as a negative hardening. The uniaxial
strain-stress behavior of concrete is represented on Figure 1.14. The softening stage quickly
leads to a total loss of strength in tension. A short positive hardening stage can be observed
before softening in compression.

The elastic range represented on Figure 1.14 is likely to evolve in case of cyclic loadings. In
3D structures, the elastic range depends on the 3D stress state. As observed by Kupfer et al.
[1969], the elastic domain of concrete is not a perfect square under biaxial stress. As shown on
Figure 1.15, the elastic limit in bi-compression is about 16% higher. It is known that concrete
can support stresses much more important than fc under hydrostatic stress state.
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Figure 1.14 – Strain-stress concrete relationship

Figure 1.15 – Küpfer biaxial stress tests for three types of concrete [Kupfer et al., 1969]

Softening comes with a decrease of the local stiffness of the material called damage. Like
plasticity, damage is usually described with a damage-variable that can only increase and takes
value between 0 for a sound material and 1 for a material without strength.

Three different categories of concrete descriptions can be distinguished among the large
amount of existing models. First, damage-models only use a damage description of the
concrete behavior in tension and compression. Second, plastic-models are based on the well-
known theory of plasticity. Finally, most ofmodels uses a combined platic-damage approach to
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benefit from the advantages of both descriptions. The three different categories are presented
in the coming sections.

1.4.2.2 Damage models

The nonlinear phenomena occuring out of the elastic domain is described with a damage
approach. Once the yield stress is reached in tension or compression, the softening and the
decrease of the material stiffness are described thanks to a damage variable. Denoting this
variable by D, a natural and common approach consists in weighting the local stiffness by the
factor (1 − D), D ranging from 0 to 1 [Mazars, 1986; de Vree et al., 1995]. The stress-strain
relation then reads:

σ = (1 − D)C : ε . (1.91)

This simple constitutive relation accounting for damage stands for an isotropic behavior. The
damage variable is governed by an equivalent strain which expression varies with the models.
A simple improvement of thismodel is brought by LaBorderie by considering two independent
damage variables Dc and Dt for describing the respective behavior of concrete in compression
and tension [La Borderie, 1991].

The damage phenomenon is due to the apparition of small cracks which open orthogonally to
the applied load. This inherent anisotropic behavior of damage is not taken into account by
the previous models. It has motivated the development of more complex damage models. A
common method to model the anisotropy of damage is to consider a second or fourth order
tensor D. However the development of such models must cope with two main difficulties.
First the damage constitutive law described by D must be defined and characterized. Then
the numerical implementation of these models is generally a complex task [Govindjee et al.,
1995; Leroux, 2012].

1.4.2.3 Plastic models

Due to the complexity of damage models, the well-known theory of plasticity is sometimes
preferred for the description of the nonlinear behavior of concrete. In addition, plasticity is a
more suitable framework for the description of irreversible strains or dilatancy. Plastic models
are the combination of a yield surface and hardening and softening laws.

The yield surface, defined by a yield criterion, defines the elastic domain in stress space. The
most used yield criterion for concrete include among others the common Mohr-Coulomb,
Drucker-Prager and the Rankine criteria, and more advanced criteria such that the criteria
suggested by [Willam and Warnke, 1974], Ottosen [Ottosen, 1977],[Hsieh et al., 1988] or the
more recent unified strength criterion suggested by [Du et al., 2010]. The latter three account
for complex features like the effect of hydrostatic pressure or the smoothness and convexity
of the yield surface. By introducing additional parameters for the definition of their criterion,
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they try to best fit with the experimantal data notably provided by Küpfer [Kupfer et al., 1969].

The hardening and softening laws define the plastic evolution once the yield surface is reached.
They are usually governed by scalar hardening or softening parameters. [Grassl et al., 2002]
suggested a hardening law using the trace of the plastic tensor as governing parameter for the
study of concrete under triaxial compression. Using a non-associated flow rule, their model
succeeded in accounting for the effect of triaxial stresses on the deformation of concrete.
Based on the yield surface suggested in [Bigoni and Piccolroaz, 2004], [Poltronieri et al.,
2014] developed a simple and robust elastoplastic model for concrete. They kept the essential
elements of a concrete model: smoothness and convexity of the yield surface and a hardening
law. Hardening is governed by a single parameter, and cannot describe softening. The choice
of directness and simplicity is intentional, therefore providing an efficient tool for the study
of concrete under trixial stresses. In order to enlarge the applicability of plastic models for
concrete, they can be combined with fracture criteria [Park and Kim, 2005].

1.4.2.4 Plastic-damage models

Advanced models describe accurately the complexity of the local behavior of concrete by
combining damage and plasticity. The use of both theories enables to represent the stiffness
degradation, the local damage, the softening and hardening evolution of stress or the propa-
gation of cracks. Plastic-damage models are usually the combination of isotropic hardening
and isotropic or anistropic damage.

In that context, the coupling between damage and plasticity can be addressed by different
approaches. A first category of plastic-damage models explicitely expressed the coupling
between plasticity and damage. Some models define the plastic relations in the effective
(undamaged) stress-space [Wu et al., 2006; Cicekli et al., 2007]. The coupling is thus described
by a damage variable in the plastic flow rule and damage is computed independently from
plastic strain. Other models express the plastic relations in the actual (damaged) stress space
[Brünig and Ricci, 2005]. However this second method has proved to be numerically less
stable [Al-Rub and Voyiadjis, 2004].

As mentioned before, damage is related to a local anisotropic opening of cracks. A better
description of concrete damage should therefore couple plasticity with anisotropic damage
law. However, the development of anisotropic laws for damage and their numerical imple-
mentation is not straightforward [Hansen et al., 2000; Carol et al., 2001; Cicekli et al., 2007],
justifying why isotropic models are often preferred [Salari et al., 2004; Grassl and Jirásek,
2006; de Sciarra, 2012].

Three categories of elastoplastic models have been described in this section. Damage models
are suitable for capturing the stiffness degradation and microscopic phenomena such as micro-
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cracks or softening. However, damage cannot account for important effects such as irreversible
strains or inelastic volumetric expansion in compression. These phenomena can be described
by plastic models. Plasticity has the great advantage to be a simple and numerically robust
theory offering a large scope of possible phenomenological descriptions: strong nonlinearities,
softening or irreversible strains can be considered in plasticity. However it is not sufficient
to take stiffness degradation into account. It has motivated the development of combined
plastic-damage models. These models offer accurate local description of concrete behavior
but must face with some difficulties: definition of the coupling between plasticity and damage,
the mathematical ill-posed nature of damage description and the complexity of the numerical
implementation inherited from damage definition.

1.4.3 Definition of the beam model

The definition of the beam element is the second step for the definition of beam model
for reinforced concrete. The same categories of models can be distinguished as the ones
presented in Section 1.3 and depicted in Figure 1.13. First, some elastoplastic model for
reinforced concrete based on stress-resultant approaches are described. Then, we present
more locally accurate models using local yield criterion and more specifically multi-fibers
models since they are the currently most developed beam models for the study of slender
reinforced concrete structures.

1.4.3.1 Stress-resultant based models

The steps for the definition of an elastoplastic beam model for reinforced concrete based on
a stress-resultant yield-criterion are the same as exposed in Section 1.3.2. A preliminary
desription of the yield surface must be computed. To that end, the cross-section may be
discretized with 1D or 2D elements in order to compute the relationship between the stress-
resultants considered and their associated kinematic variables. In the case of reinforced
concrete, the modeling of steel rebars must be considered. Then the 1D beam element
can then be formulated. The elastoplastic behavior is consequently integrated on the 1D
discretization of the element which prevents from costly local integrations on a discretization
of the cross-section and provides fast computations. The philosophy of the stress-resultants
beam models is well described in [Anthoine et al., 1997].

The combination of several stress-resultants should theoretically lead to the computation of
a multi-dimensional yield surface accounting for the interaction between the different stress-
resultants considered. However, the combined interaction of stress-resultants is often discarded
because of the complexity it implies. [Pham et al., 2012] suggested a model for reinforced
concrete frames submitted to axial deformation, shear and bending. While the bending
moment is given an elastoplastic constitutive law according to curvature, axial deformation
and shear are supposed to remain elastic. Similarly, [Bui et al., 2014] developed a beam
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element for reinforced concrete beams submitted to bending and shear without considering
their interaction in the yield criterion. Instead, the interaction of bending and shear can be
approximated by dividing the beam into two elements.

Themain advantage of stress-resultant model is the fast numerical computations they offer. By
contrast, they are not suitable for a fine description of the local behavior of reinforced concrete
structures. Based on a macroscopic yield criterion, the yield computed by the model may not
represent the actual microscopic state of the structure. This point has notably been highlighted
in Section 1.3 by the comparison of the two Timoshenko elastoplastic beam models. This is
especially true as steel rebars are now considered in the structure.

1.4.3.2 Multi-fibers models

The use of a local yield criterion mitigates the issue of local accuracy observed in the stress-
resultantmodels. In this context, multi-fibersmodels arewidely used for the study of reinforced
concrete beams. The cross-section is discretized into layers (for 2D problems) or in fibers
(for 3D problems). Each subelement (layer or fiber) is associated with a beam kinematics.
This method is particularly suitable for the description of inhomogeneous structures such as
reinforced concrete. Indeed, while some fibers are associated with the characteristics and the
local behavior of concrete, others can be used for the description of steel rebars. Longitudinal
rebars can therefore be easily and locally described. This approach is less convenient for the
representation of frame rebars. They can however be taken into account by modifying the
characteristics of concrete core, thus representing the effect of confinement. A multi-fibers
beam formulation is illustrated on Figure 1.16. A reinforced concrete structure composed
of longitudinal rebars and transversal frames is modeled by a multi-fibers element. The 3D
volume is discretized into 1D beam elements. According to its position each element is asso-
ciated with either the material characteristics of steel (in black), either with the characteristics
of plain concrete (in gray), or with the characteristics of confined concrete (in white). A
longitudinal 1D discretization of the beam element is considered for the local integration of
the elastoplastic equilibrium equations.

The kinematics used for the fibers is usually based on simple beam theory. A classic approach
consists in associating each fiberwith the Euler Bernoulli beammodel (see Section 1.2.1). This
model is convenient as long as shear effects can be neglected [Spacone et al., 1996; Spacone
and Limkatanyu, 2000]. Due to the unability of such models to account for shear forces, the
Timoshenko beam model is more commonly used in multi-fibers models (see Section 1.2.2).
By considering a uniform shear stress distribution in the cross-section, the Timoshenko model
can describedmore accurately local fields [Mazars et al., 2006] and can represents shear failure
mechanisms [Bui et al., 2014; Jukić et al., 2014]. However, the Timoshenko model cannot
satisfy the free boundary conditions on the cross-section as mentioned in Section 1.2.2.

An interesting review of multi-fibers beam models for reinforce concrete can be found in
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Figure 1.16 – Model reduction of a reinforced concrete beam to a multi-fibers beam element

[Ceresa et al., 2007].

1.4.3.3 Numerical description of the structural connection between steel and concrete

The third step in the definition of an elastoplastic beam model for reinforced concrete is the
modeling of the rebars. Rebars are additional structural elements fully embedded in a concrete
matrix. Aggregates interlocking and rebar’s surface patterns must ensure a strong bonding
between steel and concrete. The numerical modeling of the rebars must describe this structural
connection.

For stress-resultants models, this issue is only considered during the preliminary computation
of the yield surface. Once the yield criterion is defined, the 1D beam element is solved without
consideration about the inhomogeneous nature of reinforced concrete, thus underlining the
weakness of these models to provide accurate local results.

Multi-fibers models are convenient for the local description of longitudinal rebars. Without
specific methods for representing bond-slip effects, the structural connection is ensured by the
displacement continuity between steel fibers and concrete fibers. However, this approach does
not enable an accurate description of non-longitdudinal rebars. As shown on Figure 1.16,
non-longitudinal rebars are taken into account with an homogenization approach.
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A finer discretization is adopted for steel reinforcement in the reinforced concrete model
presented in Chapter 4. Concrete is represented by an elastoplastic beam element and rebars
are considered as 1D bar elements embedded into the 3D volume of the beam. They can
therefore be oriented and localized freely in the 3D volume of concrete, thus enabling an
accurate representation of complex reinforcements.

The complexity arising in the definition of a beam model for reinforced concrete has been
highlighted in this section. The first issue lies in the constitutive modelling of the material.
Complex constitutive laws providing an accurate description of damage and softening have
been suggested. But these models are often difficult to manipulate and implement in numerical
codes. The choice of the beam model is the second issue. The choice of a stress-resultants
based model often offers time-efficient numerical models, but fails in providing an accurate
description of the local behavior. To this end, a local approach like multi-fibers models is
more adapted. Finally, it has been shown that the modelling of rebars and their kinematic
relation with concrete are often linked to the definition of the beam model.

∗ ∗
∗
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Chapter 2

Higher-order elastic beam model with ei-
genstrains: theory and illustrations

Abstract: This chapter introduces a new higher-order elastic beam model accounting for
eigenstrains. Based on the higher-order elastic beammodel developed by Ferradi et al. [2016],
the extension suggested here enables the model to deal with a wide range of phenomena such
as creep, prestress or thermal loads. The beam model is first presented and then illustrated by
two applications: a table submitted to a thermal load and a cantilever beam prestressed by a
steel cable.
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2.1 Introduction

Structural analysismust take into account eigenstrains such as thermal load, prestress orweakly
coupled swelling phenomena. Furthermore, beam models are certainly the most widely used
models by structural engineers because of their simplicity. This motivates the introduction
of these prescribed strains into beam models. However, the kinematics of beam models is
often based on very simple assumptions which are often unable to describe precisely local
effects induced by these strains prescribed arbitrarily in the section. In the absence of richer
kinematics, shell models or full 3D computations are necessary. Those computations being
time-consuming, the simplicity and the great time efficiency of beam models motivates the
development of adequately refined higher-order beam models.

Beam models have a long history and a vast variety of contributions may be found in the
literature. The first beam models were based on ad-hoc assumptions on the 3D fields which
motivated the denomination axiomatic. Most of the time axiomatic models rely on an educated
guess on the 3D displacement field in a separated form between the longitudinal coordinate
and the in-section coordinates. Then, straightforward application of the minimum of potential
energy leads to 1D boundary value problems corresponding to the beam model. The Euler-
Bernoulli beam model was the first suggestion. In this model, it is assumed that the cross-
section of the beam is rigid in its own plane and that it remains orthogonal to the neutral
axis of the beam. Hence, this model neglects the transverse shear strain and suffers from a
kinematic contradiction: since the section is not allowed to deform in its plane, transverse
Poisson’s effect is precluded. The Timoshenko beam model allows an independent rotation
of the section with respect to the neutral axis in order to take the transverse shear strain into
account [Timoshenko, 1922]. However, since the section rotates rigidly, the shear strain is
uniform in the section which does not satisfy the free lateral boundary. Furthermore, the
transverse Poisson’s effect is still restrained. These contradictions, suggested to push further
the kinematic enrichment in a polynomial form as illustrated in [Carrera et al., 2011; Giunta
et al., 2016]. However, having a correct approximation requires a high number of kinematic
degrees of freedom and raises the question of the sparsity of the approximation as will be
recalled below.

It turns out that, at leading order in the slenderness, these kinematic contradictions were
resolved quite early thanks to Saint Venant solution [de Saint Venant, 1855]. Indeed, this
solution was originally derived for an elastic beam with a homogeneous and isotropic section
loaded at the extremities in a weak sense. Starting from static considerations, a full 3D
solution was obtained where the 6 classical generalized stress vary linearly along the beam
and the section is free to deform in its plane as well as out of its plane. More precisely,
the 3D displacement field appears as the superposition of the classical rigid motion of the
section and of additional displacements related to the generalized stress which correct the over-
constrained rigid motion of the section. As consequence, the 3D stress is better approximated
than in the preceding approaches and the traction, bending, torsional and shear force stiffnesses
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are correctly evaluated.

Whereas this solution is perfectly relevant for rather compact and homogeneous sections,
the Saint Venant solution is not accurate enough when considering more general sections
such as anisotropic or heterogeneous materials, open and closed thin-walled sections. A
classical illustration involves torsion warping. Indeed, the latter is assumed uniform along the
beam in the Saint Venant solution. Hence, clamped boundary conditions may not be strongly
satisfied. In practical situations, clamping a thin-walled beam generates a kinematic frustration
which propagates far from the extremity and needs correct estimation. A first successful
extension of Saint Venant solution was made by Vlasov [Vlasov, 1961] who included the
torsional warping as an independent static degree of freedom (so called bi-moment) followed
by Benscoter [Benscoter, 1954] who further assumed that the corresponding kinematic degree
of freedom is also independent. Both works rely on the torsional warping correction included
in the Saint Venant solution.

The efficiency of these models to capture end effects encouraged further refinement in more
general configurations. A noticeable contribution is from Iesan [Iesan, 1976] who extended the
Saint Venant solution to the case of fully anisotropic and heterogeneous section. In addition
the beam was loaded with body forces and surface tractions in a separated form between
in-section coordinates and the longitudinal coordinate. The longitudinal variation of the loads
was assumed polynomial of a fixed order and the corresponding solutions for each order is
obtained by a recursive process.

Almost identical results were obtained from the formal asymptotic expansion. Indeed, this
method is based on a scaling of the original 3D problem so that it depends explicitly on a
small parameter. In the case of beams, it is the ratio between the typical size of the cross
section and the length of the beam. Then the solution is assumed following an asymptotic
expansion with respect to the small parameter and inserted in the 3D equations. A collection
of embedded in-section and longitudinal problems is obtained which is solved by induction.
The monograph from Trabucho & Viano [Trabucho and Viaño, 1996] presents the method
and links the lowest orders of the asymptotic expansion with the Saint Venant solution as
well as Vlasov beam model. Most of recent contributions questions the correct derivation of
boundary conditions especially at higher order [Buannic and Cartraud, 2001a,b; Kim et al.,
2008; Kim and Wang, 2011]. Another family of enriched beam model was derived following
the so-called “Variational Asymptotic Method” [Yu et al., 2002; Yu and Hodges, 2004; Yu
et al., 2012; Hodges, 2006]. This approach is very similar to formal asymptotic expansion
and most of its developments were made assuming large displacements and rotations of the
section which makes higher-order developments much more involved.

In addition to the difficulties regarding boundary conditions, themain limitations of the asymp-
totic expansion approach are the very high regularity of the applied load which is required
when going higher order and the embedded structure of the sequence of 1D problems to be
solved. This makes the classical approach impractical for engineering applications. Remarka-
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bly, the same difficulty arises with the extended Saint Venant solution from Iesan [Iesan, 1976]
since only polynomial loadings are solution. For instance, concentrated loads commonly used
in practice do not satisfy such regularity.

A solution to overcome this difficulty is to consider the whole family of in-section displa-
cements or “modes” generated from formal asymptotic expansion as kinematic enrichment
carried by independent generalized beam displacements. Indeed, the application of the mi-
nimum of the potential energy does not restrict severely the regularity of the longitudinal
distribution of the applied load. The very first illustration of this approach is the model from
Benscoter [Benscoter, 1954] which treats the torsional warping as an independent degree of
freedom. In the case of a homogeneous and isotropic beam this idea was fully generalized by
Miara & Trabucho [Miara and Trabucho, 1992] (also detailed in [Trabucho and Viaño, 1996])
and so called “Galerkin spectral approximation”. This work is based on the seminal idea from
Vogelius & Babuska [Vogelius and Babuska, 1981a,b] which also originated the family of
“hierarchical models” for plates and shells [Actis et al., 1999]. Two noticeable observations
were made. First, the formal asymptotic expansion delivers a free family of kinematic enri-
chment which is dense in the space of the 3D solution. This means that going sufficiently high
in the expansion allows arbitrary refinement of the 3D solution. Second, the truncation of
this family ensures that the corresponding beam model is asymptotically consistent except at
the boundary. This means that the kinematic enrichment delivered by the formal asymptotic
expansion is optimal in terms of approximation error far from the extremities of the beam.

Practical implementation of this concept were suggested by El Fatmi [El Fatmi, 2016] Lahmar
et al. [Lahmar et al., 2017] and Ferradi et al. [Ferradi et al., 2016]. In [El Fatmi, 2016],
the enrichment was limited to the contribution of the Saint Venant modes and transverse
loadings which are uniform in the longitudinal direction. However, longitudinal or higher-
order enrichments were discarded and there remained an educated guess for enriching further
the beam model. This approach was also extended to uniform thermal loads in [Lahmar et al.,
2017]. In [Ferradi et al., 2016], the enrichment related to any kind of load was introduced
up to an arbitrary order. A closed-form solution of the higher-order beam model was derived
and comparisons with full 3D calculations were performed. Even for a concentrated load
arbitrarily located in the section, the approximated solution yielded surprisingly good results.

In the present paper, the same approach is applied to eigenstrains and illustrated with two cases
study. Furthermore, the higher order beammodel is implemented with NURBS finite elements
in order to allow longitudinal variations of the applied load. There are fewer contributions
related to applied eigenstrain in beam theories. In addition to those previously mentioned,
the general case of periodic beams as well as thin walled beam was investigated by Kolpakov
[Kolpakov, 1993, 1998, 2012]. However, the formal asymptotic expansion was not carried out
up to an arbitrary order.

This paper is also an opportunity to redevelop the formal asymptotic expansion procedure and
emphasize its close link with Saint Venant solution as well as the extension from Iesan [Iesan,
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1976]. It is organized as follows. First the formal asymptotic expansion procedure is applied
to a beamwith a prescribed eigenstrain and the higher-order beam theory is derived and solved
numerically with NURBS finite elements in Section 2.2. Then, two elementary cases study
are investigated. A bridge submitted to a local elevation of temperature in Section 2.3.1 and a
prestressed beam in Section 2.3.2

2.2 Kinematic enrichment based on the formal asymptotic
expansion

This section is dedicated to the extension of the higher-order elastic beam element developed
by Ferradi [Ferradi et al., 2016] to the case of eigenstrains. The 3D problem is first formulated
and the asymptotic expansion method is applied. The cascade resolution of the resulting
auxiliary problems yields a collection of displacement modes thus constituing the kinemetics
of the element. The cross-section of the beam is numerically approximated for the computation
of the displacement modes and the element is longitudinally approximated. A locking study
is carried out on the longitudinal interpolation functions.

2.2.1 The 3D problem and the asymptotic expansion method

2.2.1.1 The 3D problem

x2

x1
x3

L
h

∂Ωt

Ω

S+

S−

Figure 2.1 – The beam configuration

We consider a beam occupying the prismatic domain Ω (Figure 3.1) with a length L and a
cross-sectional typical size h. The boundary ∂Ω is the union of the lateral (free) surface ∂Ωt
and the two end sections S± (clamped). The longitudinal coordinate is x3 and the section
coordinates are x1 and x2 denoted as xα 1, the corresponding reference frame is denoted
(O, e1, e2, e3) where O is an arbitrary point of the plane x3 = 0.

1. In the following, Greek indices α, β, γ = 1, 2 denote in-section dimensions and Latin indices i, j, k, l =
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Higher-order elastic beam model with eigenstrains

The constitutive material of the beam is only function of the section coordinates xα and inva-
riant in the longitudinal direction. For convenience and without limitation, the corresponding
fourth order stiffness tensor C(xα) is assumed monoclinic with respect to a plane of normal
e3:

Cαβγ3 = C333α = 0. (2.1)

The beam is only subjected to eigenstrains ε∗i j . The corresponding 3D linear boundary value
problem writes as: 

divx σ = 0 on Ω,
σ = C : (ε − ε∗) on Ω,
ε = ∇s

xu on Ω,
σ · n = 0 on ∂Ωt,
u = 0 on S±,

(2.2)

where n is the outer normal to ∂Ωt , ∇s
x is the symmetric part of the 3D gradient operator and

divx is the 3D divergence operator. Casting the weak form of this boundary value problem
reveals that, in addition to the classical regularity of u, the eigenstrain load needs to be square
integrable.

Note that another way to introduce eigenstrains would be to turn it into a body force f ∗ =
− divx (C : ε∗) and a force per unit surface T ∗ = (C : ε∗) · n on ∂Ωt . Then it would be
possible to use the method presented in [Ferradi et al., 2016]. This remark shows that, without
considering fields regularity, the optimality result presented in [Miara and Trabucho, 1992]
may be adapted to the present situation. However, this approach involves the preliminary
computation of the divergence divx (C : ε∗), which may be a source of numerical imprecision,
especially with heterogeneous sections or eigenstrains with low regularity. This motivates the
present direct formulation of the higher-order beam theory.

2.2.1.2 Scaling and variable separation

A new set of coordinates yi is defined from the global coordinates,

(x1, x2, x3) = (hy1, hy2, Ly3) , (2.3)

which rewrites the derivation operator as:

∇x =
1
L

(
∇y3 +

1
η
∇yα

)
, (2.4)

as well as the integration over the domain Ω as:∫
Ω

dΩ =
∫ L

0

∫
S

dxαdx3 = L3
η

2

∫ 1

0

∫
S0

dyαdy3 = L3
η

2

∫ 1

0
〈 〉 dy3, (2.5)

1, 2, 3, all three dimensions. Einstein summation convention on repeated indices is used.
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2.2. Kinematic enrichment based on the formal asymptotic expansion

where η = h
L is the small parameter related to the slenderness of the beam, S0 is the scaled

cross-section, independent from η and 〈 〉 denotes integration on the scaled cross-section.

The eigenstrain is assumed to have the following separated form:

ε∗i j = η d̃i j(yα)T(y3), (2.6)

where d̃i j(yα) is the eigenstrain distribution in the section andT(y3) is its longitudinal variation.
In this section, capital letters denote functions of only the y3 coordinate (except for C) and •̃
denotes functions of only in-section coordinates yα.

2.2.1.3 Expansion

The asymptotic expansion method is a formal procedure in which all fields are assumed
sufficiently smooth. It yields a cascade of in-section and longitudinal boundary value problems
which are classically solved recursively. In the present case, only the in-section problems are
of interest in order to derive a collection of displacement modes.

The displacement, strain and stress variables are expanded as power series of the small para-
meter as follows [Sanchez-Palencia, 1980; Trabucho and Viaño, 1996; Buannic and Cartraud,
2001a; Zhao et al., 2015]:

u = L
(
U0
α(y3)eα + ηu1 + η

2u2 + ...
)
, (2.7)

ε = ε0 + ηε1 + η
2ε2 + ..., (2.8)

σ = σ0 + ησ1 + η
2σ2 + ... (2.9)

and introduced in the equations of the 3D boundary value problem (3.3) where each power p
of η is identified. The problem being linear, the choice of the starting order has no incidence
on the final formulation in terms of physical variable. Here the starting order is chosen so that
the leading order of the displacement field is 0. The starting order of the other fields is chosen
accordingly. This motivates the scaling of the eigenstrain in Equation (2.6).

For p ∈ N, each compatibility equations, boundary conditions and constitutive equations for
p and equilibrium equations for p − 1 yield an auxiliary problem on the cross-section which
splits in two uncoupled boundary value problems.
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Higher-order elastic beam model with eigenstrains

Transverse displacement First, the in-section displacement problems (transverse mode)
T p+1 are gathered for p ≥ 0:

T p+1 :



σp

αβ,β + σ
p−1
α3,3 = 0 on S0, (2.10a)

σp

αβ = Cαβγδ

(
εp

δγ − δp1d̃δγT
)
+ Cαβ33

(
εp

33 − δp1d̃33T
)

on S0, (2.10b)

σp

33 = C33αβ

(
εp

βα − δp1d̃βαT
)
+ C3333

(
εp

33 − δp1d̃33T
)

on S0, (2.10c)

εp

αβ = up+1
(α,β), εp

33 = up

3,3 on S0, (2.10d)

σp

αβnβ = 0 on ∂S0. (2.10e)

where σ−1 = 0 and δ1p = 1 if p = 1 and δ1p = 0 else. Transposing the results from [Ciarlet
and Ciarlet, 2004; Amrouche et al., 2006], for a simply connected cross-section and regular
enoughC and loadings, this boundary value problem on the displacement up+1

α is a pure traction
problem which is well-posed provided that the applied load is globally self-equilibrating for
in-section translations and rotation:〈

σp−1
α3,3

〉
= 0 and

〈
yβεβασ

p−1
α3,3

〉
= 0, (2.11)

where εαβ is the permutation operator: ε11 = ε22 = 0, ε12 = +1, ε21 = −1. Then, under
condition (2.11), the solution is uniquely defined up to the following rigid motion of the
section in its plane:

uR,p+1
α = Up+1

α (y3) + yβεβαΘ
p+1(y3). (2.12)

where Up+1
α is a transverse displacement and Θp+1 a twist rotation.

Longitudinal displacement Second, the longitudinal displacement problems (warpingmode)
Wp are obtained for p ≥ 0:

Wp+1 :



σp

3α,α + σ
p−1
33,3 = 0 on S0, (2.13a)

σp

α3 = Cα3β3 2
(
εp

β3 − δp1d̃β3T
)

on S0, (2.13b)

2εp

α3 = up+1
3,α + up

α,3 on S0, (2.13c)
σp

α3nα = 0 on ∂S0. (2.13d)

Again, for a simply connected cross-section and regular enough C and loadings, this boundary
value problem on the displacement up+1

3 is well-posed if the applied load is globally self-
equilibrating for the longitudinal translation:〈

σp−1
33,3

〉
= 0. (2.14)

In this case, the solution is uniquely defined up to a uniform longitudinal displacement:

uR,p+1
3 = Up+1

3 (y3). (2.15)
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2.2. Kinematic enrichment based on the formal asymptotic expansion

Resultants and macroscopic equilibrium equations The rigid motion of the section sug-
gests the following definition of the beam resultants at each order p ≥ 0:

N p

3 =
〈
σp

33
〉
, M p

α =
〈
yασ

p

33
〉
, M p

3 =
〈
yβεβασ

p

α3
〉

and V p
α =

〈
σp

α3
〉
, (2.16)

where N p

3 is the normal traction, M p
α are the bending moments 2, M p

3 is the moment of torsion
and V p

α are the shear forces.

These resultants must comply with the following beam equilibrium equations for each p ≥ 0:
N p

3,3 = 0, (2.17a)
M p

α,3 = V p+1
α , (2.17b)

M p

3,3 = 0, (2.17c)
V p

α,3 = 0. (2.17d)

Indeed, from the in-section equilibrium equations (2.10a) and (2.13a):〈
σp+1

3α,α + σ
p

33,3

〉
=

∫
∂S0 σ

p+1
α3 nαdl + N p

3,3 = 0,〈
yβ

(
σp+1

3α,α + σ
p

33,3

)〉
= −V p+1

β +
∫
∂S0 yβσ

p+1
α3 nαdl + M p

β,3 = 0,〈
yγεγα

(
σp+1
αβ,β + σ

p

α3,3

)〉
=

〈
−yγ,βεγασp+1

αβ

〉
+

∫
∂S0 yγεγασ

p+1
αβ nβdl + M p

3,3 = 0,〈
σp+1
αβ,β + σ

p

α3,3

〉
=

∫
∂S0 σ

p+1
αβ nβdl + V p

α,3 = 0.

(2.18)

Note that equilibrium equations (2.17a-c-d) are identical to conditions (2.11,2.14). Hence,
satisfying beam equilibrium equations ensures that T p andWp have a unique solution up to
the rigid motions (2.12,2.15).

2.2.2 Cascade resolution

The series of problems are now solved order by order.

2.2.2.1 First-order problems

Transverse displacement The problem T 1 is not loaded. Consequently, the transverse
displacement u1

α is a rigid motion and the corresponding stress is null:

u1
α = U1

α(y3) + yβεβαΘ
1(y3) and σ0

αβ = 0, σ0
33 = 0. (2.19)

Here, Θ1 appears as the leading order angle of twist and U1
α as the next order macroscopic

transverse displacement.

2. It will appear that M p
α is the working conjugate to the curvature Up

α,33 and not the conventional bending
moment. Indeed, the classical definition is mp

α =
〈
εαβyβσ

p

33
〉
= εαβM p

β . This choice is made for convenience.
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Higher-order elastic beam model with eigenstrains

Longitudinal displacement The longitudinal displacement problem (warping mode)W1

writes as:

W1 :


σ0

3α,α = 0 on S0, (2.20a)
σ0
α3 = Cα3β3 2ε0

β3 on S0, (2.20b)
2ε0

α3 = u1
3,α +U0

α,3 on S0, (2.20c)
σ0
α3nα = 0 on ∂S0. (2.20d)

The applied load is self-equilibrating and the solution of this boundary value problem writes
as:

u1
3 = U1

3 + yαU0
α,3 and σ0

α3 = 0, (2.21)

where U0
α,3 appears as the bending rotation and U1

3 as the leading order longitudinal displace-
ment.

2.2.2.2 Second-order problems

Transverse displacement The transverse displacement u2
α is derived through:

T 2 :



σ1
αβ,β = 0 on S0, (2.22a)

σ1
αβ = Cαβγδ

(
ε1
δγ − d̃δγT

)
+ Cαβ33

(
ε1

33 − d̃33T
)
, on S0, (2.22b)

σ1
33 = C33αβ

(
ε1
βα − d̃βαT

)
+ C3333

(
ε1

33 − d̃33T
)

on S0, (2.22c)

ε1
αβ = u2

(α,β), ε1
33 = U1

3,3 + yαU0
α,33 on S0, (2.22d)

σ1
αβnβ = 0 on ∂S0. (2.22e)

Again, the applied load is globally self-equilibrating. The solution of this boundary value
problem parametrized by the elongation U1

3,3, the curvatures U0
α,33 and the eigenstrain T writes

as the linear superposition of each contribution:

u2
α = ũe3

α U1
3,3 + ũχ1

α U0
1,33 + ũχ2

α U0
2,33 + ũT

α T +U2
α + yβεβαΘ

2, (2.23)

where ũe3
α , ũχ1

α , ũχ2
α are in-section displacements related to transverse Poisson’s effect under

pure traction and pure curvatures which are illustrated for a square section in Figure 2.2. When
the section is homogeneous, these correctors have a closed-form expression which is detailed
in [Zhao et al., 2015] for instance. Finally, ũT

α is a transverse Poisson’s effect related to the
eigenstrain. In order to be uniquely defined, the following constraints are applied to all these
in-section displacements:

〈ũα〉 = 0 and
〈
yβεβαũα

〉
= 0. (2.24)
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2.2. Kinematic enrichment based on the formal asymptotic expansion

(a) Transverse mode ũe3
α (b) Transverse mode ũχ1

α (c) Transverse mode ũχ2
α

Figure 2.2 – Transverse modes related to pure traction and pure curvatures for a homogeneous
square section with an isotropic material

(a) Warping mode ũχ3
3 (b) Warping mode ũV1

3 (c) Warping mode ũV2
3

Figure 2.3 – Warping modes related to pure torsion and pure shear forces for a homogeneous
square section with an isotropic material
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Higher-order elastic beam model with eigenstrains

Longitudinal displacement The longitudinal displacement u2
3 complies with:

W2 :



σ1
3α,α = 0 on S0, (2.25a)

σ1
α3 = Cα3β3 2

(
ε1
β3 − d̃β3T

)
on S0, (2.25b)

2ε1
α3 = u2

3,α + yβεβαΘ
1
,3 +U1

α,3 on S0, (2.25c)
σ1
α3nα = 0 on ∂S0. (2.25d)

The applied load is globally self-equilibrating. The solution of this boundary value problem
parametrized by Θ1

,3, U1
α,3 and T writes as the linear superposition of each contribution:

u2
3 = ũχ3

3 Θ
1
,3 + ũT

3T +U2
3 + yαU1

α,3, (2.26)

where ũχ3
3 is the torsion warping illustrated in Figure 2.3a and ũT

3 a warping related to the
eigenstrain. Indeed, the displacement ũχ3

3 is exactly the solution of the Neumann problem for
Saint Venant’s torsion. Again, these warpings are constrained as follows:

〈ũ3〉 = 0. (2.27)

Macroscopic constitutive equations From the solution of second order problems, the first
order stress may be written as:

σ1
αβ = σ̃

e3
αβU

1
3,3 + σ̃

χ1
αβU

0
1,33 + σ̃

χ2
αβU

0
2,33 + σ̃

T
αβT, (2.28a)

σ1
α3 = σ̃

χ3
α3Θ

1
,3 + σ̃

T
α3T, (2.28b)

σ1
33 = σ̃

e3
33U1

3,3 + σ̃
χ1

33 U0
1,33 + σ̃

χ2
33 U0

2,33 + σ̃
T
33T . (2.28c)

Expressing the traction and bending moments leads to the following constitutive equations:
N1

3 = A3U1
3,3 + S1U0

1,33 + S2U0
2,33 + NT

3 T, (2.29a)
M1

1 = S∗1U1
3,3 + D1U0

1,33 + D12U0
2,33 + MT

1 T, (2.29b)
M1

2 = S∗2U1
3,3 + D∗12U0

1,33 + D2U0
2,33 + MT

2 T, (2.29c)

where: 
A3 =

〈
σ̃e3

33
〉
, S1 =

〈
σ̃
χ1

33
〉
, S2 =

〈
σ̃
χ2

33
〉
, NT

3 =
〈
σ̃T

33
〉
,

S∗1 =
〈
y1σ̃

e3
33

〉
, D1 =

〈
y1σ̃

χ1
33

〉
, D12 =

〈
y1σ̃

χ2
33

〉
, MT

1 =
〈
y1σ̃

T
33

〉
,

S∗2 =
〈
y2σ̃

e3
33

〉
, D∗12 =

〈
y2σ̃

χ1
33

〉
, D2 =

〈
y2σ̃

χ2
33

〉
, MT

2 =
〈
y2σ̃

T
33

〉
.

(2.30)

The modulus A3 is the traction stiffness, D1 and D2 are the bending stiffnesses. The moduli
NT

3 , MT
1 and MT

2 are the traction and bending moments induced by the eigenstrain. It is proved
in Appendix (A) that S∗1 = S1, S∗2 = S2 and D∗12 = D12. The stiffnesses S1 and S2 are related to
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2.2. Kinematic enrichment based on the formal asymptotic expansion

the first moments of inertia. Furthermore, there is a position for O, the origin of the reference
frame, such that S1 = S2 = 0 and rotating the reference frame with respect to e3, there is an
angle such that D12 = 0. When the section is homogeneous, this choice of reference frame
corresponds to the centroid of the section oriented along one of the principal axis of the second
moments of inertia. This is assumed in the following:

N1
3 = A3U1

3,3 + NT
3 T, (2.31a)

M1
1 = D1U0

1,33 + MT
1 T, (2.31b)

M1
2 = D2U0

2,33 + MT
2 T . (2.31c)

Similarly the torsion is expressed as function of the macroscopic displacements and the
eigenstrain:

M1
3 = D3Θ

1
,3 + MT

3 T . (2.32)
where the torsion stiffness and the torsion induced by the eigenstrain are:

D3 =
〈
yγεγασ̃

χ3
α3

〉
and MT

3 =
〈
yγεγασ̃

T
α3

〉
. (2.33)

Whereas the uncoupling between traction and bendingmoments may always be satisfied with a
proper choice of the reference frame, the uncoupling between torsion is obtained here because
of the symmetry assumption (2.1). This assumption may be released without limiting the
approach presented here. Indeed, constitutive equations (2.31) and (2.32) would be simply
coupled in such a case.

2.2.2.3 Third-order problems

Transverse displacement The transverse displacement u3
α is derived through T 3 and loaded

by Θ1
,33, T,3, U2

3,3 and U1
α,33. The applied load is self-equilibrating in translation. Indeed:〈

σ1
α3

〉
= V 1

α = M0
α,3 = 0. (2.34)

Furthermore, from the macroscopic equilibrium in torsion (2.17c) and the constitutive equa-
tion (2.32), it is possible to express Θ1

,33 as function of T,3:

M1
3,3 = D3Θ

1
,33 + MT

3 T,3 = 0. (2.35)

Substituting this relation in T 3 ensures that it is equilibrated in rotation and leads to:

T 3 :



σ2
αβ,β +

(
σ̃T
α3 −

MT
3

D3
σ̃
χ3
α3

)
T,3 = 0 on S0, (2.36a)

σ2
αβ = Cαβγδε

2
δγ + Cαβ33ε

2
33, on S0, (2.36b)

σ2
33 = C33αβε

2
βα + C3333ε

2
33 on S0, (2.36c)

ε2
αβ = u3

(α,β), ε2
33 =

(
ũT

3 −
MT

3
D3

ũχ3
3

)
T,3 +U2

3,3 + yαU1
α,33 on S0, (2.36d)

σ2
αβnβ = 0 on ∂S0. (2.36e)
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Higher-order elastic beam model with eigenstrains

The solution of this boundary value problem writes as:

u3
α = ũT∇

α T,3+ũe3
α U2

3,3+ũχ1
α U1

1,33+ũχ2
α U1

2,33+U3
α+yβεβαΘ

3 with
〈
ũT∇
α

〉
= 0 and

〈
yβεβαũT∇

α

〉
= 0

(2.37)
and yields only one new transverse displacement localization related to the first-order variations
of T .

Longitudinal displacement The longitudinal displacement u3
3 complies with W3 and is

loaded byΘ2
,3, T,3, U1

3,33 and U0
α,333. The applied load is not globally self-equilibrating for each

individual loading. From the constitutive equation (2.31a) and the equilibrium equation (2.17a)
with p = 1 it is deduced that :

U1
3,33 = −

NT
3

A3
T,3. (2.38)

Substituting this inW3 ensures it is well-posed. Furthermore, it is also convenient to ensure
that the load is also self-equilibrating in bending. This is obtained, from the constitutive
equations (2.31b) and (2.31c) and the equilibrium equation (2.17b) for p = 1:

U0
1,333 =

V 2
1 − MT

1 T,3
D1

and U0
2,333 =

V 2
2 − MT

2 T,3
D2

. (2.39)

Inserting these relations in problemW3 leads to:

σ2
3α,α + σ̃

χ1
33

V2
1

D1
+ σ̃

χ2
33

V2
2

D2
+

(
σ̃T

33 −
NT

3
A3
σ̃e3

33 −
MT

1
D1
σ̃
χ1

33 −
MT

2
D2
σ̃
χ2

33

)
T,3 = 0, (2.40a)

σ2
α3 = Cα3β3 2ε2

β3, (2.40b)

2ε2
α3 = u3

3,α + ũχ1
α

V2
1

D1
+ ũχ2

α
V2

2
D2
+

(
ũT
α −

NT
3

A3
ũe3
α − MT

1
D1

ũχ1
α − MT

2
D2

ũχ2
α

)
T,3 + yβεβαΘ

2
,3 +U2

α,3, (2.40c)

σ2
α3nα = 0. (2.40d)

Equations (2.40a) to (2.40c) are applied on S0 and Equation (2.40d) is applied on ∂S0. The
solution is parametrized by the shear forces V 2

α the first-order variations of the eigenstrain T,3
and higher-order displacements. It writes as the linear superposition of each contributions:

u3
3 = ũV1

3 V 2
1 + ũV2

3 V 2
2 + ũT∇

3 T,3 + ũχ3
3 Θ

2
,3 + yαU2

α,3 +U3
3. with 〈ũ3〉 = 0 (2.41)

The longitudinal displacements ũV1
3 and ũV2

3 are warpings related to shear forces illustrated in
Figure (2.3b) and (2.3c). Indeed, considering the whole problemW3 loaded exclusively with
shear forces, one can identify the corresponding Neumann problems in Saint Venant’s beam
theory. Furthermore, the equilibrium equation (2.40a) considered with only the shear forces
loading and integrated on a partial section is actually Jouravskii’s Formula [Jouravskii, 1856]
which gives a fair estimate of shear stress in beams.
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2.2. Kinematic enrichment based on the formal asymptotic expansion

Macroscopic constitutive equations From the solution of third order problems, the second-
order stress may be written as:

σ2
αβ = σ̃

e3
αβU

2
3,3 + σ̃

χ1
αβU

1
1,33 + σ̃

χ2
αβU

1
2,33 + σ̃

T∇
αβT,3, (2.42a)

σ2
α3 = σ̃

V1
α3V 2

1 + σ̃
V2
α3V 2

2 + σ̃
T∇
α3 T,3 + σ̃

χ3
α3Θ

2
,3, (2.42b)

σ2
33 = σ̃

e3
33U2

3,3 + σ̃
χ1

33 U1
1,33 + σ̃

χ2
33 U1

2,33 + σ̃
T∇
33 T,3. (2.42c)

Expressing the second-order traction and bending moments leads to:
N2

3 = A3U2
3,3 + NT∇

3 T,3, (2.43a)
M2

1 = D1U1
1,33 + MT∇

1 T,3, (2.43b)
M2

2 = D2U1
2,33 + MT∇

2 T,3, (2.43c)

where NT∇
3 =

〈
σ̃T∇

33
〉
, MT∇

1 =
〈
y1σ̃

T∇
33

〉
and MT∇

2 =
〈
y2σ̃

T∇
33

〉
are the traction and bending

moments induced by the longitudinal variations of the eigenstrain T . Similarly the second-
order torsion is expressed as function of the macroscopic displacements and the eigenstrain:

M2
3 = D3Θ

2
,3 + yS

αεαβV
2
β + MT∇

3 T,3, (2.44)

where the torsion induced by the variations of eigenstrains is MT∇
3 =

〈
yγεγασ̃

T∇
α3

〉
and the shear

center of the beam is defined as:

yS
1 = −

〈
yαεαβσ̃

V2
β3

〉
and yS

2 =
〈
yαεαβσ̃

V1
β3

〉
. (2.45)

When the section presents two axis of symmetry, the shear center is in O but this is not always
true.

2.2.2.4 Fourth-order and higher-order problems

The induction process may be pursued any higher order. Indeed, noticing that V p

α,3 = 0 and
following the same procedure as for T 3 and W3 it appears that T 4 and W4 are formally
identical to T 3 andW3, incrementing the orders and depending on the second derivative of
T . Hence, going higher order leads to the derivation of displacement localizations related to
higher derivatives of T relevant for faster variations of T .

The use of the asymptotic expansion method is based on the scaling in equation (2.3). Hence
the rescaled coordinates yi have been used in the expression of the auxiliary problems T p

andWp. However, the distinction between the two sets of coordinates is no longer necessary
in practice once the section modes are computed. The use of the coordinates yi is therefore
dropped in all what follows and replaced by the use of the coordinates xi.
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2.2.3 Families of kinematic enrichment

In the asymptotic expansion procedure, three families of kinematic enrichment emerged. First,
the rigid motion of the section was carried by the six macroscopic variables Up

i , Up

α,3 and Θ
p

3.
They are respectively related to the following displacement modes:

ũU1 =
©­«

1
0
0

ª®¬ , ũU2 =
©­«

0
1
0

ª®¬ , ũU3 =
©­«

0
0
1

ª®¬ , ũΘ2 =
©­«

0
0
−x1

ª®¬ , ũΘ1 =
©­«

0
0
x2

ª®¬ , ũΘ3 =
©­«
−x2
x1
0

ª®¬ .
(2.46)

Second, the six correctors related to the six beam resultants 3were derived: ũe3
α , ũ

χ1
α , ũ

χ2
α , ũ

χ3
3 , ũ

V1
3 , ũ

V2
3 .

They are also referred to as Saint Venant’s modes [Iesan, 1976; El Fatmi, 2016]. Note that
ũ
χ3
3 is the warping used by Benscoter [Benscoter, 1954]. Third, exactly as in [Ferradi et al.,

2016], a family of modes related to the eigenstrain loading and its longitudinal variations was
obtained: ũT, ũT∇, ũT∇2 ...

Finally, this suggests gathering all these modes in the following approximation for the 3D
displacement:

u =
n∑

i=1
ũi(xα)Xi(x3) (2.47)

where n is the number of modes and Xk(x3) are longitudinal unknown fields. It is demonstrated
in [Miara and Trabucho, 1992] that the modes generated are linearly independent. But in the
eventuality where the components of the eigenstrains would be described respectively with
different longitudinal functions (T1,T2...), redundancies may occur. In this case it is necessary
to orthogonalize the basis of modes.

2.2.4 Numerical approximation of the higher-order beam model

The discretization of the section used for the resolution of the auxiliary problems is presented.
The discretization of the longitudinal beam element and the numerical approximation of the
total displacement are then exposed. This approximated expression of the displacement is used
to formulate the expression of the minimum of potential energy, leading to the 1D boundary
value problem.

2.2.4.1 Numerical resolution of the auxiliary problems

For each order p, the weak forms of T p andWp are expressed. The resolution of the for-
mulations obtained yields the displacement modes. The numerical resolution is operated by

3. From the traction, bending and torsion constitutive equations (2.31) and (2.32), ũe3
α , ũχβα and ũχ3

3 may
directly be expressed as function of N3, Mβ and M3.
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2.2. Kinematic enrichment based on the formal asymptotic expansion

a discretization of the section with finite elements. The elements chosen here are triang-
les, the interpolation being quadratic. More precisely, the isoparametric expressions of the
interpolation functions are:

N1(a1, a2) = a1(2a1 − 1) , N2(a1, a2) = a2(2a2 − 1) , N3(a1, a2) = (1 − a1 − a2)(1 − 2a1 − 2a2)
N4(a1, a2) = 4a1a2 , N5(a1, a2) = 4a2(1 − a1 − a2) , N6(a1, a2) = 4a1(1 − a1 − a2).

(2.48)
But there is no limitation in the choice of the type of finite elements. Stress and strain are
computed at the three Gauss points of each element while displacement is computed at the
nodes of the sectionalmesh. Note thatT p andWp are also loadedwith eigenstrainswhichmust
be expressed at the Gauss points (in Equation (2.40c) for instance). Hence, for the resolution
of T p andWp, the displacement loading the auxiliary problems must be interpolated at the
Gauss points thanks to the interpolation functions.

2.2.4.2 Numerical approximation of the beam element

To solve the higher-order beam model, the one-dimensional longitudinal problem needs to be
formulated. The kinematic variables Xi are expressed with interpolation functions:

Xi(x3) =
m∑

k=1
Nk(x3)Ũi,k, (2.49)

with m the number of interpolation functions. Ũi,k is the generalized displacement associated
to the mode i and the interpolation function k.
We useNURBS (Non-UniformRational B-Splines). NURBS are a generalization of B-Splines
and Bézier curves). NURBS basis functions are defined by a degree p and a non-uniform
knot vector Ξ = {ξ1, ξ2, ..., ξl} with l the number of knots. This domain partition allows the
definition of basis functions, defined recursively by the Cox-de Boor’s formulas. 0th order
functions are piecewise constants:

Nk,0(ξ) =
{

1 if ξk ≤ ξ < ξk+1,
0 otherwise. (2.50)

Higher-order basis functions (p > 0) are then defined by

Nk+1,p(ξ) = ξ − ξk

ξk+p − ξk
Nk,p−1(ξ) +

ξk+p+1 − ξ
ξk+p+1 − ξk+1

Nk+1,p−1(ξ). (2.51)

It defines m = l + p − 1 NURBS basis functions for the order p, each function being Cp−1. It
can be noticed that NURBS basis functions form a partition of unity:

m∑
k=1

Nk,p(ξ) = 1. (2.52)
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Figure 2.4 – 2nd-order NURBS basis functions for the knot vector
{0, 0.05, 0.1, 0.15, 0.2, 0.4, 0.7, 1}

Moreover the basis functions are in general not interpolatory except at the ends of the beam.
This motivates distinction between knots and "nodes".

Each basis function is a polynomial with a compact support contained in the interval[
ξk, ξk+p+1

]
. Their use is therefore convenient to describe very fast variations of a field:

refining the mesh defines more basis functions with short supports and affords a better loca-
lization of the field. This is an important advantage of NURBS over Lagrange polynomials:
the support of a Lagrange polynomial is the whole domain [ξ0, ξl], and a Lagrange polynomial
can show important oscillations on this interval in certain cases, a situation often called the
Runge’s phenomenon. The number of interpolation functions m depends on the refinement
of the mesh and the chosen polynomial degree. In practice, in order to better describe fast
variations of a mechanical field, the degree of the NURBS shouldn’t be too high, since the
higher the degree is, the larger the supports of the functions are. An illustration of NURBS
basis functions with a variable refinement of the mesh is presented in Figure 2.4.

2.2.4.3 Formulation of the beam problem

For a fixed degree p of NURBS interpolation, the total displacement can now be approximated
as:

û =
n∑

i=1
ũi(x)

m∑
k=1

Nk,p(x3)Ũi,k . (2.53)

The stationarity of the minimum of the potential energy based on equations (3.3) requires:

Find u ∈ K,
∫
Ω

ε(u) : C : ε(û)dΩ =
∫
Ω

ε∗ : C : ε(û)dΩ, ∀û ∈ K, (2.54)

where K = {regular enough u | u = 0 on S±} is the set of kinematically compatible fields.
The injection of the approximation û (3.52) into equation (2.54) leads to the classical linear
system:

KŨ = F th, (2.55)
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2.2. Kinematic enrichment based on the formal asymptotic expansion

where Ũ =
{
Ũi,k

}
with 1 ≤ i ≤ n and 1 ≤ k ≤ m. The resolution of (2.55) yields the value of

all the kinematic unknowns. Equation (3.52) then gives the total displacement.

2.2.4.4 Locking study

NURBS offers many advantages but they are not yet free from locking [Echter and Bischoff,
2010]. A cantilever beam has been studied in order to investigate this phenomenon and
define the range of applicability of the present discretization. The beam has a constant square
section of S = 1 × 1 m2, is clamped for x3 = 0 and is loaded for x3 = L by a vertical force
F(L) = F0/L3. The young’s modulus and the Poisson’s ratio are E = 35 GPa and ν = 0. The
kinematics of the beam comprises the rigid and Saint Venant’s modes, and also up to three
modes associated to the load applied and its gradients as described in [Ferradi et al., 2016]
and so called force modes. This means that there are only 15 kinematic DOF per section. The
beam element is interpolated with NURBS of various degrees, defined by 11 knots evenly
distributed in [0, L], with ξ1 = 0 and ξ11 = L. Hence the total number of DOF is the same for
all calculations.

The analytical expression of the vertical displacement at x3 = L for Euler’s model is well-
known. Hence, the following relative error between Euler’s model and the higher-order beam
model is defined:

eEuler =

�����ubeam2 − uEuler2

uEuler2

����� , with uEuler2 =
FL3

3EI
, and ubeam2 =

1
S
〈u2(x1, x2, L)〉 ,

(2.56)
where S is the area of the section. The Euler solution delivers a good indication on the
numerical behavior of the present finite element when the slenderness increases since it is
known to be the limit model for large slenderness.

First, the influence of the order of the NURBS on the locking phenomenon is investigated for
an enrichment limited to 2 force modes (the applied load and its first gradient). Figure 2.5a
shows the relative error as function of the slenderness of the beam for several NURBS orders.
For low slenderness, all relative errors are high. Indeed, for such slenderness, it is the Euler
model which is not valid. When increasing the slenderness, all beam models are expected to
converge towards the Euler solution. This is not the case when locking occurs. The first order
NURBS basis functions are identical to the Lagrange polynomials classically used. Therefore
the same locking phenomenon is observed and eEuler goes to 1 for high slenderness. The
second order NURBS also suffers from locking after L/h = 20. Third order NURBS tends
to the Euler’s solution with a best match for L/h = 50 and eEuler < 1.10−4. Locking appears
from L/h = 100. However, distance to Euler’s solution remains only about 1% for L/h = 500.

Second, the influence of the number of force modes is investigated with second order NURBS.
Figure 2.5b shows the relative error as function of the slenderness of the beam for several
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Figure 2.5 – Study of locking on a cantilever beam loaded at its end, NURBS interpolation

number of force modes. It shows that increasing the number of force modes does not influence
the slenderness above which locking occurs.

Therefore, for common situations with L/h < 100, second-order or third order NURBS can be
considered as adapted for the interpolation of the beam element. In case of higher slenderness,
increasing the number of longitudinal knots will mitigate locking.

2.3 Applications

This section presents two case studies using the beam element derived in the previous chapter.
A table submitted to a thermal load is first considereed. The beam is clamped at both ends and
the load shows longitudinal and horizontal discontinuities in its application. The model is then
illustrated by a cantilever beam prestressed by a steel cable. Both case studies are computed
with the higher-order beammodel and a volumic reference solution. The comparison highlights
the numerical accuracy of the beam solution and its computational performances.
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x1
x2

x1 = −0.5 m x1 = 2.5 m

x2

x3

x3 = 10 m x3 = 20 m

ST

LT

x2 = 0.65 m

10 m

0.3 m

0.5 m
0.8 m

40 m

Figure 2.6 – Geometry of the beam and domain ΩT submitted to thermal load

Figure 2.7 – Position of the thermal load area ΩT

2.3.1 Application to a thermal load

2.3.1.1 Thermal load on a clamped beam

To illustrate the method, we consider a beam clamped at both ends, and loaded with a thermal
load. The section of the beam is represented in Figure 2.6. The beam is 40 m long. The
volume of the beam is denoted by Ω. A thermal load is applied on the volume ΩT = ST × LT
described in Figures 2.6 and 2.7. The thermal load generates an isotropic strain on ΩT :

ε∗i j = α
(
T − T ref

)
δi j (2.57)

where α is the dilatation coefficient, here fixed at 12.10−6, andT ref is the reference temperature

T − T ref =

{
Tmax − T ref = 40◦C on ΩT
0◦C on Ω \ΩT

(2.58)
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mesh 1 2 3 4
elements in slab’s thickness 2 3 6 6
elements in slab’s width 40 100 100 200
total number of elements 18492 140000 280000 560000

total time 320 s 1577 s 8505 s 27753 s

Table 2.1 – Refinement of the meshes

The material considered is homogeneous and isotropic. We consider the following values of
the Young’s modulus and the Poisson’s ratio: E = 210 GPa and ν = 0.3.

2.3.1.2 Reference solution

A 3D model computed with Code_Aster is taken as a reference solution for our study. A
convergence study related to the refinement of the mesh is first carried out. 4 meshes are
investigated. Each mesh is made of hexahedric elements, each element being quadratic. The
refinements of the 4 meshes are described in Table 2.1.

In order to assess the convergence of the different computations, the values of the strains are
observed in the middle of the eigenstrain area (x3 = 15 m) and close to the strain discontinuity
(x3 = 9, 90 m). The results are extracted at the center of the slab’s thickness (x2 = 0.65 m)
and presented in Figure 2.8.

The results quickly converge. The Figure 2.8f representing the strain ε33 at x3 = 9, 90 m shows
a slower convergence. Figure 2.8f shows that convergence is reached for mesh 3, since the
curves of mesh 3 and mesh 4 are almost overlapping. Results obtained with mesh 2 shows a
gap with the converged values about 5%. Mesh 4 is chosen as the reference solution. In order
to compare the results of the solutions presented in Figures 2.8a-2.8f we define the following
L2-estimator for a given x3 and for x2 = 0.65 m:

eL2(εi j) =

[∫
L1

(
εi j(x1) − ε(4)i j (x1)

)2
dx1

]1/2

[∫
L1

(
ε
(4)
i j (x1)

)2
dx1

]1/2 (2.59)

where L1 = [−5, 5] is the width of the considered section. The relative errors between meshes
1, 2 and 3 and mesh 4 are gathered in Table 2.2. The maximum relative errors of each solution
give an estimate of the accuracy of the reference solution and will be compared to the error of
the higher-order beam approximation.
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(d) Strain ε11, x3 = 9, 90 m
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Figure 2.8 – Axial strains in the heated area and close to the temperature discontinuity for the
3D solution
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x3 = 15 m x3 = 9, 90 m
ε11 ε22 ε33 ε11 ε22 ε33

mesh 1 2, 81 4, 38 7, 21 1, 34 5, 15 7, 53
mesh 2 0, 40 0, 49 0, 02 0, 46 1, 85 5, 32
mesh 3 0, 98 0, 55 0, 01 0, 41 0, 63 0, 56

Table 2.2 – Strain relative errors eL2 in percentage of meshes 1, 2 and 3 compared to mesh 4

2.3.1.3 Higher-order beam solution

For the computation of the presentmethod, the section ismeshedwith 712 triangle elements, as
shown in Figure 2.9. Each element is quadratic. The longitudinal and transverse components
of the eigenstrain are assumed to vary accordingly to two different longitudinal functions T1
and T2:

ε∗α3 = 0
ε∗αβ = d(xγ)T1(x3)δαβ
ε∗33 = d(xγ)T2(x3)

(2.60)

where d(xα) is defined as:

d(xγ) =
{
α(Tmax − T ref) if xγ ∈ ST
0 if xγ < ST

(2.61)

The use of two different functions T1 and T2 is an arbitrary choice based on experience.
Since the components of the eigenstrain follow two different longitudinal functions, the 2D
computation yields twice as many eigenstrain modes, which represents a kinematics richer
than if a single function had been used. The first orthonormalized eigenstrain modes computed
up to the second gradients of T1 and T2 are given in Figure 2.9.

The longitudinal mesh is composed of 42 knots: 41 knots are evenly distributed between 0
and L and an additional knot is placed at x3 = 9, 90. This last knot is added in order to better
compute displacements and strains close to the eigenstrain discontinuity. This longitudinal
mesh is less refined than the one of the reference model which has 400 elements along its
longitudinal axis.

The model is first computed without eigenstrain modes. Thus the only modes considered
are rigid and Saint Venant’s modes as presented in Section 2.2.3. We call this solution S0
with 12 kinematic DOF per section. The model is then computed up to the second gradient
of the eigenstrain u∇T2

i , i = 1, 2. This should yield a maximum of 6 modes (uT1 , uT2 , u∇T1 ,
u∇T2 , u∇T2

1 and u∇T2
2 ). In our case of study uT1 = uT2 . We therefore get only 5 additional

eigenstrain modes which are presented in Figure 2.9. It can be noticed than uT1 = uT2 does not
imply uT1∇ = uT2∇, since the recursive definition of transversal problems T p+1 and warping
problemsWp+1 is second order: they imply loading terms as function of displacements of
the order p − 1 and p.
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(a) Transverse mode uT1 (b) Warping mode uT1∇

(c) Warping mode uT2∇ (d) Transverse mode uT1∇2

(e) Transverse mode uT2∇2

Figure 2.9 – The 5 eigenstrain modes related to the heated area in the cross-section for case
study 1.
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reference model higher-order beam model
type of elements 20-node hexahedron 6-node triangle + 42-knot beam

number of elements 560000 712 + 1
CPU computation time 27753 s 11 s

Table 2.3 – Comparison of the solutions

(a) 3D computation (b) Higher-order beam model

Figure 2.10 – Deformed structure under thermal load (amplification factor = 200)

We call this second solution S with 17 kinematic DOF per section. The comparison between
S and S0 highlights the contribution of the eigenstrain modes to the global response. The main
features of the 3D solution and the solution S are presented in Table 3.2.

2.3.1.4 Comparison of the solutions

The deformed structure obtained with the 3D computation and with the higher-order beam
model are presented in Figure 2.10 (the same scale is used for both figures). The color map
shows the norm of the 3D displacement. Figure 2.10 illustrates the ability of the higher-order
beam model to capture the cross-sectional displacements. The higher-order beam model can
also satisfactorily capture the discontinuities of loads: the heated area is easily identifiable in
Figure 2.10b.

A finer comparison of the present beam model to the reference model is now performed. Like
with the reference solution, the results presented hereafter are all extracted at the mid surface
of the slab (x2 = 0.65 m), as defined in Figure 2.6. In order to compare the different solutions
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we define as previously the following L2-estimators:

eL2(ui) =

[∫
L1

(
ui(x1) − u3D

i (x1)
)2

dx1

]1/2

[∫
L1

(
u3D

i (x1)
)2

dx1

]1/2 , eL2(εi j) =

[∫
L1

(
εi j(x1) − ε3D

i j (x1)
)2

dx1

]1/2

[∫
L1

(
ε3D

i j (x1)
)2

dx1

]1/2

(2.62)

Results in the heated area The first results presented are computed in the middle of the
heated area at x3 = 15 m. Displacement and strain are shown in Figures 2.11. Shear strains
being less significant are not presented here.

The displacementu1 matcheswellwith the 3D solution, since eL2 (u1(x3 = 15 m)) = 1, 69.10−2.
The discontinuity of the eigenstrain clearly appears in Figure 2.11a. Displacement obtained
with S0 shows that the beam modes are not sufficient to describe the global response to
this specific load. The vertical displacement u2 matches with the 3D model with an error
eL2(u2(x3 = 15 m)) = 2, 33.10−2, but a higher expansion order would bring even more sa-
tisfying results. Looking at the longitudinal displacement, the 3D solution is more rigid
than the beam solution, and eL2(u3(x3 = 15 m)) = 4, 00.10−2. The accuracy of the solu-
tion could be improved by refining the longitudinal mesh. According to Figures 2.11d to
2.11f, the axial strains computation shows very satisfying prediction. The strain ε33 shows a
little difference with the reference model eL2(ε33(x3 = 15 m)) = 2, 45.10−2. This error can
still be lowered by increasing the number of modes or by refining the longitudinal mesh. As
presented in Table 3.2, the computation of this method is fast, and it provides satisfying results.

Discontinuity and boundary conditions It is now interesting to compare the response
provided by both models close to the strain discontinuity and close to one clamped end. The
displacements computed at x3 = 9, 90 m and x3 = 1 m are shown in Figure 2.12.

Close to the discontinuity, the prediction of solution S is still satisfying. The cross-sectional
displacementsmatcheswith the 3Dmodel: eL2(u1(x3 = 9, 90m)) = 1, 42.10−2 and eL2(u2(x3 =
9, 90 m)) = 1, 50.10−2. Even if the longitudinal displacement is less satisfying with a L2-error
eL2(u3(x3 = 9, 90 m)) = 6, 94.10−2, it appears that the model has no real difficulty in capturing
the discontinuities. If needed, the results of u3 could be improved by increasing the number
of longitudinal knots.

The effect of the boundaries on the displacements appears in Figures 2.12d to 2.12f (x3 = 1m).
Solution S matches well on the 3D model for the longitudinal displacement u3 (eL2(u3(x3 =
1 m)) = 2, 52.10−2), but the cross-sectional displacements u1 and u2 are not so close to the
reference solution: eL2(u1(x3 = 1 m)) = 3, 57.10−1 and eL2(u2(x3 = 1 m)) = 1, 39.10−1)). Yet
the estimation is suitable for engineering practice. It is consistent to find less accurate results
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Figure 2.11 –Comparison of displacements and strains of the slab in the heated zone, x3 = 15m74
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Figure 2.12 – Displacement of the heated slab close to the temperature discontinuity x3 =
9, 90 m (a), (b), (c) and close to supports x3 = 1 m (d), (e), (f)
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Figure 2.13 – Section of the prestressed beam

close to the boundaries since the boundary conditions are not considered in the computation
of the modes. The boundaries requires particular strains that could be captured by adding
modes specifically computed for the boundary conditions under consideration.

2.3.2 Application to a prestressed beam

2.3.2.1 Prestressed cable in a cantilever beam

We further illustrate the present model with a cantilever beam prestressed with a steel cable.
The section of the beam is represented in Figure 2.13. The beam is 20 m long. The concrete
domain is denoted by Ωc and the steel domain by Ωs. A constant eigenstrain ε∗ = ε∗33e3 ⊗ e3
is applied in Ωs, with ε∗33 = 7.10−3, corresponding to 23 MN tension in the prestressed cable.
Both materials are homogeneous and isotropic with:

— (E, ν)concrete = (35 GPa, 0.2)
— (E, ν)steel = (200 GPa, 0.3)

The beam is 20m long. Note that, a real concrete beamwould require additional reinforcement
bars as well as a non-linear constitutive behavior. This simplified example is chosen here to
illustrate the ability of eigenstrain modes to capture rather fast variations of the strain in the
section.

2.3.2.2 Reference and beam solution

As for the previous example, a convergence study is carried out in order to choose the
reference solution. The study is computed with Code_Aster with full 3D computations. The
mesh of the chosen reference solution is made of 99680 pentahedric elements, each element
being quadratic. This mesh has been constructed by meshing the end section with 2492
triangles, and then by extruding this 2D mesh on 40 section evenly distributed from x3 = 0 to
x3 = L. For the computation with the higher-order beam model, the section is meshed with
1788 triangle elements. Each element is quadratic. The displacement modes are computed
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reference model higher-order beam model
type of elements 15-node pentahedron 6-node triangle + 41 longitudinal knots

number of elements 99680 1788 + 1
CPU computation time 1805 s 24 s

Table 2.4 – Main features of the 3D solution and solution S

accordingly to this load, using the same decomposition of the eigenstrain as in the previous
example. The sectional modes are computed up to the fourth gradient of the eigenstrain. The
5 first orthonormalized modes associated to the eigenstrain uT , u∇T , u∇T2 , u∇T3 and u∇T4

are represented in Figure 2.14. These three cross-sectional modes and two warping modes
clearly illustrate the action of the cable on the beam. The shift between purely transversal or
purely warping modes at each order comes from the monoclinic symmetry of the constitutive
material (2.1) and the absence of shear in the thermal loading of the present case study.

The longitudinal mesh is composed of 41 knots evenly distributed on the length of the beam.
The longitudinal mesh used here is the same as the one of the reference model. A first solution
only with the rigid and the Saint Venant’s modes is computed and called S0 with 12 kinematic
DOF per section. The solution using also the 5 eigenstrain modes is called S and involves
17 kinematics DOF per section. The main features of the 3D model and the solution S are
presented in Table 2.4.

2.3.2.3 Comparison of the solutions

The deformed structure obtained with the 3D computation and with the higher-order beam
model are presented in Figure 2.15 (the same scale is used for both figures). As expected,
the prestressed cable compresses and raises the beam. The higher-order beam model captures
cross-sectional displacements such as the lowering of the edges of the table, and warping
displacements such as the punching effect of the cable which can be observed at the end of
the beam. A finer comparison of the models is presented now. Displacements and strains are
computed at mid-span of the beam at x3 = 10 m and close to the clamped end at x3 = 0.5 m.
The results presented hereafter are all extracted at the axis of symmetry of the section for
x1 = 0 m.

Results atmid-span of the beam The displacements computed at x3 = 10m are presented in
Figure 2.16. Because of the symmetry of the structure and the load, the horizontal displacement
at x1 = 0 m is expected to be zero. Very low values are observed in the three computations.
However, these results can still be considered like almost zero values in view of the numerical
oscillations of the 3D solution. The vertical displacement in Figure 2.16b illustrates the
action of the cable close to x2 = 1.8 m. This effect cannot be captured without eigenstrain
modes. The L2-error is eL2(u2(x3 = 10 m)) = 1, 27.10−2. The longitudinal displacement is
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(a) Transverse mode uT (b) warping mode u∇T

(c) Transverse mode u∇T 2 (d) warping mode u∇T 3

(e) Transverse mode u∇T 4

Figure 2.14 – The 5 eigenstrain modes related to the prestress in the steel cable used in case
study 2.
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(a) 3D computation (b) Higher-order beam model

Figure 2.15 – Deformed structure under prestress steel cable (amplification factor = 100)

also well represented by the beam model with eL2(u3(x3 = 10 m)) = 2, 43.10−2. The strains
deriving from these displacements are presented in Figures 2.16d to 2.16f. The shear strains
are not presented here because of their very small amplitude. Thanks to the enrichment
of its kinematics, the beam model is able to capture the strains locally generated by the
cable. However, the strains ε11 and ε22 of solution S does not perfectly match with the
3D solution in the prestressed area, leading to the errors eL2(ε11(x3 = 10 m)) = 7, 67.10−2

and eL2(ε22(x3 = 10 m)) = 2, 69.10−1. The accuracy of these results could be improved by
providing a more refined mesh in the prestressed area of the model.

Results close to support The previous example showed that the results were less satisfactory
near the boundary conditions. This is confirmed in the present case by the computations at
x3 = 0.5 m. The beam solution S still correctly matches with the 3D solution, but larger errors
are observed: eL2(u2(x3 = 0, 5 m)) = 2, 43.10−1 and eL2(u3(x3 = 0, 5 m)) = 5, 12.10−2. It can
be noticed that even if the amplitude of the vertical displacement close to support is globally
1000 times smaller than in the middle of the beam at x3 = 10 m, the detailed influence of the
cable is still well captured by the beam model.

Regarding strains, the beam model does not perfectly match with the 3D model but remains
suitable for engineering practice. The L2-error of the axial strains are eL2(ε11(x3 = 0, 5 m)) =
1, 35.10−1, eL2(ε22(x3 = 0, 5 m)) = 2, 48.10−1 and eL2(ε33(x3 = 0, 5 m)) = 1, 56.10−1. So-
lution S does not describe the variation of ε33 around x2 = 1, 80 m. This is explained by
the influence of the boundary conditions on the displacement. This should be solved by the
computation and the addition of new modes specific to the boundary conditions.

2.4 Conclusion

A numerical method based on the asymptotic expansion method was recently suggested by
Ferradi et al.[Ferradi et al., 2016]. The strength of this higher-ordermodel is that the kinematics
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Figure 2.16 – Displacement and strain at mid-length of the beam, x3 = 10 m80
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of the beam is enriched not only with 2D-modes related to the geometry of the section, but
also according to the loads applied on the structure. This way, local effects produced by the
application of the loads are directly captured by the beam element. Moreover, the extension
of the kinematics does not require any a priori knowledge on the solution of the problem.
Based on the use of the asymptotic expansion method, this model enables the user to enrich
the kinematics of the beam until any expansion order n, and to refine the results subsequently.

Because of the presence of many inelastic phenomena in civil engineering applications, the
current paper extends this method to the case of eigenstrains. The introduction of eigenstrains
in the equilibrium equations leads to the computation of additional modes specific to the
strains applied to the structure. These modes are added to the higher-order kinematics of the
beam.

When compared to a 3D computation, the model presented here shows very satisfying results
with a significantly reduced computational cost. Indeed, only very few additional modes and
corresponding beam DOF (3 to 5) were required for capturing fairly well the applied eigen-
strains. These time performances can still largely be improved by more advanced numerical
techniques. As shown in this article, the model is able to capture strain discontinuities: the
thermal discontinuity introduced in the first example is faithfully described in the results com-
puted by the beam model. This example also illustrates the ability of the model to capture
both transverse and longitudinal discontinuities. The second example highlights the ability
of the model to render local behavior such as the punching of the prestress cable on the end
section of the clamped beam. However, the very close vicinity of the boundaries sometimes
seems more difficult to compute, as exposed in the first example. In order to better describe
the mechanical behavior next to boundary conditions, the introduction of new modes specific
to these boundary conditions is already under investigation.

∗ ∗
∗
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Chapter 3

Higher-order elastoplastic beam model

Abstract: This chapter presents a new higher-order elastoplastic beam model. The elastic
beam model introduced in Chapter 2 is extended to the case of plasticity. The standard
framework of plasticity is first set. The methodology for reducing a 3D model to a beam model
is then described and the higher-order elastoplastic beam model is presented. It is illustrated
by the case study of a cantilever beam asymmetrically loaded at its end by a vertical force.
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3.1 Introduction

Beam elements are among the most used elements in structural analysis. They combine
a significant simplicity in the modeling of structures and a strong time efficiency in the
computation of the results.

The development of linear elastic beammodels has been widely investigated. Since the earliest
model of Euler-Bernoulli, a large number of elastic beam models has been suggested. The
main issue in elasticity lies in the definition of the kinematics of the model which entirely
determines its efficiency. Higher-order beammodels offer extended kinematics able to describe
more accurately local phenomena in beam structures. There are numerous way to build such
kinematics assuming a priori a variable separation between the longitudinal coordinate of the
beam and the in-section coordinates. For instance, ProperOrthogonal Decomposition, reduced
basis approaches [Miled et al., 2013] or Proper Generalized Decomposition [Ladeveze, 1999;
Chinesta et al., 2011; Bognet et al., 2012] may be used depending on the existence of a priori
error estimators and the wish to update the kinematics during the computation.

It turns out that the formal asymptotic expansion of the 3D beam problem with respect to the
inverse of the slenderness of the beam provides such a basis which may be derived a priori for
any given beam cross-section. This approach, suggested early [Miara and Trabucho, 1992],
was recently implemented in the case of linear elastic beams submitted to arbitrary loads as
well as eigenstrains [Ferradi et al., 2016; Corre et al., 2017a]. Two noticeable observations
were made in [Miara and Trabucho, 1992]. First, the formal asymptotic expansion delivers
a free family of kinematic enrichment which is dense in the space of the 3D solution. This
means that going sufficiently high in the expansion allows arbitrary refinement of the 3D
solution. Second, the truncation of this family ensures that the corresponding beam model is
asymptotically consistent except at the boundary. This means that the kinematic enrichment
delivered by the formal asymptotic expansion is optimal in terms of approximation error far
from the extremities of the beam.

Introducing elasto-plastic behavior is more complex. The inherent non-linearity of plasticity
and the incremental nature of plastic analysismakes the definition of a relevant kinematicsmore
difficult. Two main approaches are followed when solving an elasto-plastic beam problem:
1D elasto-plastic beam model based on a priori cross-section analysis and 3D elasto-plastic
beam models based on a 3D beam kinematics.

The first natural approach is to express the plastic flow in terms of generalized beam variables
and to solve an elasto-plastic 1D problem. This requires the elasto-plastic analysis of the cross-
section for pure or combined generalized stresses and the derivation of the corresponding yield
surface. The cross-section analysis may be incremental or based on yield design but assumes
a uniform distribution of generalized stresses in the longitudinal direction: normal force,
shear forces, bending moments and torque. In this direction, closed-form solutions were
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first devised and numerical approximation of cross-section analysis were implemented later.
Indeed, the elastic problem of pure-torsion was early solved by Saint-Venant and the plastic
analysis of the torsion of a beam was sketched. [Nadai, 1931] was the first to suggest a
solution for the elasto-plastic problem and to calculate a plastic torque thanks to the sand-heap
analogy. Then, closed-form solutions of the plastic torque have then been developed for the
torsion of beams with common cross-sections: [Christopherson, 1940] solved the torsion of
I-beams, [Sokolovsky, 1946] obtained a solution for beams with oval sections and [Smith
and Sidebottom, 1965] for prismatic bars with rectangular sections. Closed form solutions
have also been obtained for bending analysis. Combined generalized stress state were also
investigated [Hill and Siebel, 1953; Boulton, 1962]. A key difficulty is the derivation of a
yield surface directly function of the beam generalized stress taking into account correctly their
possible interactions as well as hardening. There were recent improvements in this direction,
approximating the yield surface with facets or ellipsoids [Bleyer and de Buhan, 2013]. Once
the yield surface is defined, there remains to compute the elasto-plastic response of the beam,
either with closed form solutions [Štok and Halilovič, 2009], yield analysis [Olsen, 1999] or by
means of finite element approximations [Argyris et al., 1982; Papadrakakis and Papadopoulos,
1995]. This approach has the advantage to present fast computation time, since only a 1D
elasto-plastic problem needs to be solved. However, its accuracy remains limited by the beam
theory assumptions. First, it cannot handle local phenomena related to the distribution of
the applied load as well as to the boundary conditions. Second, it provides only an averaged
description of the actual stress in the beam.

In order to improve the accuracy of the beam model, the second classical approach consists
in setting a beam kinematics expressing the 3D displacement field in a separate form between
the in-section coordinates and the longitudinal coordinate. This kinematics may be defined a
priori ormay evolve during the incremental procedure. For a fixed increment of the generalized
displacements, the corresponding 3D stress is computed and the yield criterion is expressed
locally. A local algorithm such as the radial return is processed on the whole body to compute
the local plastic state of the beam. This locally admissible stress state is integrated on each
cross-section yielding the corresponding longitudinal distribution of the beam generalized
stresses. Finally, the beam global equilibrium is ensured with a classical Newton-Raphson
procedure. This approach was compared with purely 1D approach by [Gendy and Saleeb,
1993]. The 3D approach appeared to be much more accurate and closer to the full 3D solution
for a reasonably higher computation time than a 1D approach. Many numerical models
therefore adopt the continuum-based description in terms of 3D stress components in order
to benefit from its accuracy. The main difficulty lies again in the definition of a relevant
kinematics able to describe the displacement related to plastic flow.

Most approaches where the kinematics is fixed a priori rely on the ones already used in linear
elasticity such as Euler-Bernoulli, Timoshenko kinematics or even Saint-Venant solution,
eventually with non-linear geometric corrections. For instance, [Bathe and Chaudhary, 1982]
suggested to introduce the Saint-Venant warping function into the kinematics in order to
compute the elasto-plastic torsion of a rectangular beam. Once the kinematics is defined,
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there remains to choose the number of integration points in the cross-section in order to
compute precisely the local plastic flow. Multiplying integration points improves the accuracy
of the results at the price of a higher computation time for the cross-sections integrals. This is
the spirit of multi-fiber beam models (see for instance [Mazars et al., 2006]).

Another direction is to enrich arbitrarily the section kinematics with degrees of freedom not
necessarily related to classical cross-section displacements. An early attempt was made by
[Bathe andWiener, 1983] who performed the elastic-plastic analysis of I-beams in bending and
torsion composed of three simple beam elements. This concept was formalized extensively
by [Carrera et al., 2011] and co-workers.

Because plastic flow may not be easily known a priori a natural improvement of the preceding
methods is to update the beam kinematics during the load increments. This is the direction
followed by [Baba and Kajita, 1982] who suggested a method in which a warping mode is
determined according to the plastic state of each cross-section and which was recently updated
by [Tsiatas and Babouskos, 2017]. However, in this approach, it is necessary to compute a 2D
elasto-plastic cross-section problem, which remains computationally costly.

In this paper, the linear higher-order beam model based on the formal asymptotic expansion
[Ferradi et al., 2016; Corre et al., 2017a] is extended to elasto-plasticity in the small strains
framework. This is achieved as follows. First, a higher-order kinematics is computed a
priori for the considered section and applied load. As already mentioned, this kinematics
forms an optimal reduced basis far from the extremities of the beam. Second, during the
incremental procedure, this basis is updated with few displacement modes related to the
plastic flow which occurs in the beam. More precisely, the plastic strain in some chosen
cross-sections is considered as an eigenstrain load and used for computing the corresponding
section displacement following the formal asymptotic expansion in [Corre et al., 2017a]. Note
that, contrary to Nonuniform Transformation Field Analysis [Michel and Suquet, 2003, 2004;
Roussette et al., 2009] where a basis of plastic strains is introduced, in the present approach,
displacement plastic modes are added to the total displacement approximation. This approach
presents two major advantages. First, the number of beam degrees of freedom remains very
limited (about 20) thanks to the sparsity of the kinematics. Second, the update of the kinematics
is not two costly because few cross-sections are used for the update and it does not require
additional elasto-plastic computations in the cross-section.

The paper is organized as follows. The first section is dedicated to the description of a
standard 3D plasticity model: the J2 flow theory is described and its local integration as
well as the classic Newton-Raphson’s procedure are briefly recalled. The formulation of the
higher-order elastic beam model presented in [Ferradi et al., 2016; Corre et al., 2017a] is then
devised in Section 3.3: the definition of the kinematics thanks to the asymptotic expansion
method is briefly recalled. The adaptation of this higher-order beam model to the framework
of plasticity is presented in Section 3.4. Section 3.4.4 is dedicated to the description of the
iterative-incremental plasticity algorithm. A radial return algorithm is used locally and an
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adaptation of the Newton-Raphson’s procedure is suggested to satisfy the global equilibrium.
An application of the model to a cantilever beam is given is Section 3.5.

3.2 Standard 3D plasticity

This section sets the framework of standard three dimensional plasticity used for the subsequent
development of an higher-order elastoplastic beam model. After defining the elasto-plastic
boundary value problem, we consider the classic J2 flow theory with isotropic hardening.
The radial return algorithm used for the local integration of the equilibrium equations and
the global Newton-Rapshon procedure used for the global incremental algorithm are then
presented.

3.2.1 The elasto-plastic boundary value problem

x2

x1
x3

L
h

∂Ωt

Ω

∂Ω

S+

S−

Figure 3.1 – The beam configuration

We consider a beam occupying the prismatic domain Ω (Figure 3.1) with a length L and a
cross-sectional typical size h. The boundary ∂Ω is the union of the lateral surface ∂Ωt and the
two end sections S± (clamped). The longitudinal coordinate is x3 and the section coordinates
are x1 and x2 denoted as xα 1, the corresponding reference frame is denoted (O, e1, e2, e3)
where O is an arbitrary point of the plane x3 = 0.

The constitutive material of the beam is only function of the section coordinates xα and
invariant in the longitudinal direction. The fourth order elastic stiffness tensor C(xα) is
assumed isotropic.

Let [0,T] ⊂ R+ be the time interval of interest of the problem. The displacement of the beam

1. In the following, Greek indices α, β, γ = 1, 2 denote in-section dimensions and Latin indices i, j, k, l =
1, 2, 3, all three dimensions. Einstein summation convention on repeated indices is used.
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is defined by the function
u : Ω × [0,T] → R3 (3.1)

and the total infinitesimal strain tensor ε is the symmetric gradient of u. The total strain splits
into an elastic part εe and a plastic part εp:

ε(x, t) = εe(x, t) + εp(x, t) (3.2)

We consider an external body force b(x, t) defined on Ω × ]0,T], and a surfacic force t(x, t)
defined on ∂Ωt×]0,T] loading the beam. The evolution is elasto-plastic, quasi-static and under
small deformation. The corresponding 3D elasto-plastic boundary value problem writes as:

divx σ + b = 0 on Ω
σ = C : (ε − εp) on Ω
ε = ∇s

xu on Ω
σ · n = t on ∂Ωt
u = 0 on S±


× [0,T] , (3.3)

where n is the outer normal to ∂Ωt , ∇s
x is the symmetric part of the 3D gradient operator and

divx is the 3D divergence operator. The flow rule is not specified in equations (3.3) but is
given in Section 3.2.2.

3.2.2 J2 flow theory with isotropic hardening

The state of the beam at a time t is defined by the variables ε, εp, σ and p, where p is an
internal variable. In stress-space, the space of plastically compatible states is defined by:

Eσ = {(σ, p) ∈ S × R+ | f (σ, p) ≤ 0} (3.4)

where S is the space of statically compatible stresses, and f : S×R+ → R is the yield criterion
function. The state is elastic for any (σ, p) ∈ S × R+ such that f (σ, p) < 0. The boundary of
Eσ is defined by

∂Eσ = {(σ, p) ∈ S × R+ | f (σ, p) = 0} (3.5)

and is called the yield surface.

We consider an associated flow rule, therefore the plastic strain flow follows the normality
flow rule:

Ûεp = γ ∂ f
∂σ

(3.6)

where γ is a non-negative function called the consistency parameter, and Û• = ∂ • /∂t. We can
then express the Kuhn-Tucker conditions, describing the evolution of σ in Eσ:

γ ≥ 0, f (σ, p) ≤ 0, γ Ûf (σ, p) = 0 (3.7)
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The Huber-Von Mises [Mises, 1913] or J2 criterion is defined by the yield function:

f (σ, p) = | |s | | − R(p) ≤ 0 (3.8)

where s is the deviatoric part ofσ and | | • | | = √• : •. We consider a linear isotropic hardening
R defined by:

R(p) =
√

2
3
(σ0 + H · p) (3.9)

where σ0 is the yield stress, H is the plastic modulus and p : Ω×]0,T] → R+ is the equivalent
plastic strain, expressed by:

p(x, t) =
√

2
3

∫ t

0
| | Ûεp(x, τ)| |dτ (3.10)

Note that p ≥ 0, ∀t ∈ [0,T]. The criterion used here ensures the convexity of Eσ and a smooth
boundary ∂Eσ. The Prandlt-Reuss equations then write as:

f (σ, p) = | |s | | − R(p) ≤ 0, (3.11a)

Ûεp = γn, n =
s

| |s | | , (3.11b)

Ûp = γ
√

2
3
, Ûp ≥ 0, Ûp (| |s | | − R(p)) = 0 (3.11c)

Thanks to equation (3.6), the plastic flow is orthogonal to the yield surface since n is the
normal to the yield surface.

Using equations (3.7) and (3.11), the rate of change of σ can be expressed in terms of the total
strain rate Ûε:

Ûσ = Cep : Ûε . (3.12)

Here Cep is the elasto-plastic tangent moduli, given by:

Cep = κ1 ⊗ 1 + 2µ

(
I − 1

3
1 ⊗ 1 − n ⊗ n

1 + H
3µ

)
(3.13)

where κ is the bulk modulus, µ is the shear modulus, I is the fourth-order symmetric unit
tensor, and 1 is the second-order unit tensor.

3.2.3 Standard 3D plasticity algorithm

Considering the problem introduced in Section 3.2, we recall here the procedure classically
used to deal with an elasto-plastic 3D model.
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The equations governing the beam evolution are gathered in equations (3.3) and (3.11). We
assume that u(x, 0) = ε(x, 0) = εp(x, 0) = σ(x, 0) = f (x, 0) = t(x, 0) = 0. The time range
[0,T] of the study is uniformly discretized into N time steps: {t0, t1, ..., tN } with t0 = 0 and
tN = T . The objective of the plasticity algorithm is to compute the state of the structure
Sn =

{
un, εn, ε

p
n,σn, pn

}
for each time step t = tn. The state Sn+1 is computed from the

state of the previous step Sn and from the input f n+1 and tn+1. The approach is iterative:
the discretized equilibrium equations are solved at a global level, generating an incremental
strain ∆ε. This strain yields new state variables {σ, εp, p}, by integrating the local constitutive
equations. The global balance equation is then tested with the new stress. The iteration process
is continued until the global balance is satisfied.

3.2.3.1 The radial return algorithm

The local plasticity algorithm exposed in this section is the well-known radial return method.
The radial return algorithm was first introduced by [Wilkins, 1964], and was applied to J2 flow
theory. The linear isotropic and kinematic hardening have been considered and introduced
into the radial return algorithm by [Krieg and Key, 1976].

We consider the time step [tn, tn+1], and assume the state Sn to be known. The algorithm
solves the following problem: determine the state variables Cep

n+1, σn+1, εpn+1 and pn+1 at time
tn+1 with the knowledge of σn, εpn, pn and the strain increment ∆εn at time tn.

The equations (3.3) and (3.11) are discretized and expressed at t = tn+1:
σn+1 = σn + κtr (∆εn) 1 + 2µ

(
∆en − ∆εpn

)
,

| |sn+1 | | − R (pn + ∆pn) ≤ 0,
∆ε

p
n = ∆pn

√
3
2nn+1,

∆pn ≥ 0, ∆pn (| |sn+1 | | − R(pn + ∆pn)) = 0

(3.14)

where ∆en is the deviatoric part of ∆εn. The radial return algorithm is a well documented
procedure. It is summarized here in Algorithm 1.

The consistent elasto-plastic tangent moduli The consistent elasto-plastic tangent moduli
is the discrete counterpart of the continuum elasto-plastic tangent moduli defined in equation
(3.13). The notion of consistent tangent moduli was presented in [Simo and Taylor, 1985],
and originates in [Hughes and Taylor, 1978]. Its expression is given by:

C
ep
n+1 = C − Dn+1. (3.15)

HereDn+1 = 2µ
∂∆ε

p
n

∂∆εn
is a plastic correction to the elastic tensorC. Its expression is established

as follows:
Dn+1 = 2µ

[
θn

(
I − 1

3
1 ⊗ 1

)
+ θ̄nnn+1 ⊗ nn+1

]
(3.16)
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Algorithm 1 Radial return algorithm
Require: ∆εn, σn, εpn, pn
Ensure: C

ep
n+1, σn+1, εpn+1, pn+1

1: Compute trial elastic stresses strialn+1 = sn + 2µ∆en and σtrial
n+1 = σn + κtr(∆εn)1 + 2µ∆en

2: Compute f trialn+1 = | |strialn+1 | | − R(pn)
3: if f trialn+1 < 0 then
4: σn+1 = σ

trial
n+1, ε

p
n+1 = ε

p
n, pn+1 = pn

5: else if f trialn+1 > 0 then

6: Compute ∆pn by solving the consistency equation
√

3
2 | |strialn+1 | | − 3µ∆pn −

√
3
2 R(pn +

∆pn) = 0
7: Compute nn+1 = strialn+1/| |strialn+1 | |
8: Compute the increment of plastic strain ∆εpn = ∆pn

√
3
2nn+1

9: Update state variables σn+1 = σ
trial
n+1 − 2µ∆εpn, ε

p
n+1 = ε

p
n + ∆ε

p
n, pn+1 = pn + ∆pn

10: Compute the consistent elasto-plastic tangent moduli Cep
n+1

11: end if

where

θn =

√
2
3

3µ∆pn

| |strialn+1 | |
, θ̄n =

3µ
3µ + H

− θn (3.17)

3.2.3.2 The global algorithm

The objective of the plasticity algorithm is to yield the state Sn+1 with the knowledge of
the state Sn. The local integration of equations (3.3) and (3.11) ensures that the stress σn
computed with the algorithm 1 is plastically admissible, meaning that σn is inside the elasto-
plastic domain Eσ. The global algorithm will ensure that σn is statically admissible, meaning
that the global equilibrium is verified. If the evolution is plastic, both conditions are not
reached simultaneously, motivating the iterative procedure. The procedure presented here is
based on the Newton-Raphson algorithm.

Formulation of the balance equations and the Newton-Raphson algortihm The balance
equation writes as the weak form of the local equilibrium equations, here expressed as the
time step t = tn+1:∫

Ω

σn+1 : ε[û]dΩ =
∫
Ω

f n+1 · ûdΩ +
∫
∂Ωt

tn+1 · ûdS, ∀û ∈ C(S±, 0). (3.18)

where C(S±, 0) is the space of displacements kinematically admissible for a zero displacement
imposed on S±. The local Algorithm 1 is represented by the function L of the variables ∆εn,
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σn, εpn and pn.
σn+1 = L(∆ε,σn, ε

p
n, pn). (3.19)

The main input of the algorithm is the strain increment ∆εn. This motivates the choice of the
displacement increment ∆un as the main unknown of the problem. We write:

∆εn = ε[∆un]. (3.20)

For convenience, we only keep the first variable in the expression of stress at time tn+1:
σn+1 = L (ε[∆un]).

C(0) being the space of displacements kinematically admissible to zero, we must find ∆un ∈
C(0) such as the global balance is ensured, meaning that the residual is zero:

R(∆un, û) = 0, ∀û ∈ C(0), (3.21)

where

R(∆un, û) =
∫
Ω

L(ε[∆un]) : ε[û]dΩ −
∫
Ω

f n+1 · ûdΩ −
∫
∂Ωt

tn+1 · ûdS. (3.22)

The iterative process consists in finding ∆un satisfying equation (3.21) by using a Newton-
Raphson method: we iteratively correct ∆u(k)n thanks to the linearized equation:

R(∆u(k)n , û) +
〈
R′(∆u(k)n , û), δu(k)n

〉
= 0, (3.23)

where δu(k)n = ∆u
(k+1)
n −∆u(k)n is the correction brought to ∆u(k)n . The correction must satisfy

δu(k)n ∈ C(0). The convergence is reached for k such that:

| |R(∆u(k)n , û)| | < ε | |R(0, û)| |, (3.24)

where ε is a scalar setting the convergence tolerance. The increment is then updated
R(∆un, û) = R(∆u(k)n , û). Using equation (3.22), the second member of equation (3.23)
can be written as: 〈

R′(∆u(k)n , û), δu(k)n

〉
=

∫
Ω

ε[δu(k)n ] : Cep
n+1 : ε [û] dΩ. (3.25)

The consistent elasto-plastic tangent moduli Cep
n+1 is computed from the strain increment ∆ε(k)n

thanks to the radial return algorithm exposed in Algorithm 1.

Approximation of the global procedure Assuming a 3D discretization of the beam, the
Newton-Raphson procedure is approximated with finite elements. We consider a mesh with
Ne elements and G points of Gauss in each element. In all that follows, the finite element
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3.3. From a 3D model to a higher order beam model

matrices are denoted with the notation [•], and the finite element vectors are denoted with the
notation {•}. The approximation of equation (3.25) yields∫

Ω

ε[δu(k)n ] : Cep
n+1 : ε [û] dΩ = {û} [K ep]

{
δu(k)n

}
, (3.26)

where [K ep] is the global tangent stiffness matrix computed from the local elasto-plastic
tangent moduli Cep

n+1. The first member of equation (3.23) is approximated as follows:

− R(∆u(k)n , û) = {û} {R} (3.27)

{R} is the residual force, defined as the sum of the external and the internal forces:

{R} = {
Fext

n
}
+

{
F int,(k)

n

}
(3.28)

This leads to the classical formulation:

[K ep]
{
δu(k)n

}
= {R} (3.29)

The resolution of equation (3.29) yields the displacement correction
{
δu(k)n

}
. The global

algorithm is presented in Algorithms 2 and 3.

Algorithm 2 Standard global algorithm
1: Initialize state variables: S0 =

{
u0, ε0, ε

p
0,σ0, p0

}
2: for n = 1 to M do
3: Initialize Sn = Sn−1
4: {∆u} = {0}
5: Assemble the residual {R} = {

Fext} + {
F int}, r ref = | | {R} | |, r = r rf

6: i = 0
7: while r > r ref do
8: Assemble the elasto-plastic stiffness matrix [K ep]
9: Solve [K ep] {δu} = {R} and assemble {∆u} = {∆u} + {δu}

10: Compute {σn},
{
∆ε

p
n
}
and Cep← Algorithm 3

11: Compute
{
F int}

12: Update {R}, r = | | {R} | |
13: i = i + 1
14: end while
15: Update Sn =

{
un, εn, ε

p
n,σn, pn

}
16: end for

3.3 From a 3D model to a higher order beam model

This section presents the model reduction methodology. Starting from a three dimensional
problem, the model is reduced to a beam problem. The higher-order elastic beam model
presented in Chapter 2 is then recalled.
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Algorithm 3 Standard global subalgorithm
Require: ∆un, Sn
Ensure: σn, ∆εpn, ∆pn, Cep(x)
1: for e = 1 to Ne do
2: for g = 1 to G do
3: Compute ∆εn(xg) from ∆Ũ and B(k)n
4: Update εn(xg)
5: Update σn(xg), ∆εpn(xg), ∆pn(xg) and Cep(xg) ← Algortihm 1
6: end for
7: end for

3.3.1 Reduction of the 3D model

The standard algorithm presented in the previous section works for any 3D model. A 3D
mesh of the structure implies a great number of elements. Some steps within an iteration can
quickly become very time consuming, especially the assembly of the stiffness matrix and the
resolution of the global balance equation [K ep] {δu} = {R}. In the beam presented in Section
3.2.1, the longitudinal dimension is larger than the two other dimensions, characterized by the
length h. Therefore, we aim for a more time-efficient model taking this special geometrical
feature into account.

Using a separation of the cross-sectional coordinates (x1, x2) and the longitudinal coordinate
x3, the reduction of a 3D model to a beam model leads to the following expression of the
displacement:

u =
∑

i

ũi(xα)Xi(x3) (3.30)

where ũi are displacement modes defining the kinematics and Xi are the kinematic unknowns.
The displacement modes ũi are defined on the 2D cross-section of the beam. The displacement
modes ũi are an input of the beam model, allowing the reduction of 3D kinematic unknowns
for the 3Dmodel into 1D kinematic unknowns. The 3D displacement is therefore decomposed
into a "2D+1D" expression. The kinematic unknowns are computed by the resolution of the
global equilibrium equation which is expressed by the formulation of the beam element. The
formulation of the reduced element is obtained by expressing the principle of virtual work:

W(u, û) =
∫
Ω

ε[u] : C : ε[û]dΩ −
∫
Ω

f · û −
∫
∂Ωt

t · ûdS = 0, ∀û ∈ C(S±, 0). (3.31)

The strain ε is expressed by applying the compatibility relation to the equation (3.30):

ε(x) =
∑

i

(
M i

1(xα)Xi(x3) + M i
2(xα)Xi,3(x3)

)
. (3.32)
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where M i
1 and M i

2 are the following matrices:

M i
1 =

1
2


2ũi

1,1 ũi
1,2 + ũi

2,1 ũi
3,1

ũi
1,2 + ũi

2,1 2ũi
2,2 ũi

3,2
ũi

3,1 ũi
3,2 0

 , M i
2 =

1
2


0 0 ũi

1
0 0 ũi

2
ũi

1 ũi
2 2ũi

3

 (3.33)

The virtual displacement û ∈ C(S±, 0) is expressed according to equation (3.30) on the basis
of modes ũi with kinematics unknowns X̂i. Injecting equation (3.32) into equation (3.31)
then leads to an expression ofW in terms of the 1D kinematic unknowns Xi and X̂i. The
factorization ofW

(
Xi, X̂i

)
by X̂i gives the 1D global equilibrium equation. Its resolution

yields the kinematic unknowns Xi. The total displacement can then be computed thanks to
equation (3.30).

3.3.2 The higher-order beam model

The beam model introduced in the previous section is completely defined by the choice of
the modes ũi. The kinematics can be arbitrarily assumed like in the Euler-Bernoulli’s or
the Timoshenko’s beam models. They can also be established by means of an automated
procedure, independent of the section, which is the choice made in this paper.

3.3.2.1 The Asymptotic Expansion Load Decomposition beam model

This paper is based on the higher-order elastic beam model developed in [Ferradi et al., 2016]
and extended in [Corre et al., 2017a]. This model based on the asymptotic expansion method
enables the development of a systematic procedure in order to extend the kinematics of the
model. The kinematic unknowns are associated to displacement modes computed on the
cross-section of the beam. In [Ferradi et al., 2016], the kinematics is composed of two kinds
of modes. The first collection of modes are the modes of the Saint-Venant’s solution. The
collection of modes they form is denoted by BS-V. These modes are specific to the geometry of
the cross-section. The second collection of modes comprises modes also specific to the load
applied on the structure. For a given force f applied on the structure, the model presented
by Ferradi and al. enriches the kinematics with additional modes specific to f . These modes
enable the model to describe the participation of the load into the global response. This
additional basis of force modes is denoted by B f and represented by the action of the operator
B f on the load f :

B f = B f ( f ) (3.34)

The computation of the displacement modes is now explained in more details. For the
computation of the kinematics, we consider the beam to be purely linear elastic. The equations
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of the boundary value problem (BVP) are therefore:

P :


divx σ + b = 0 on Ω
σ = C : ε on Ω
ε = ∇s

xu on Ω
σ · n = t on ∂Ωt
u = 0 on S±

× [0,T] , (3.35)

Noticing that the ratio η = h
L is small for the geometry of a beam, a change of coordinates is

operated as follows:
(x1, x2, x3) = (hy1, hy2, Ly3) (3.36)

The scaled section is denoted S0, and ∂S0 is its boundary. Then, the method is based on two
main assumptions. The loads applied on the structure are first decomposed as products of a
cross-sectional function and a longitudinal function:

bα =
1
h
η2b̃α(yα)F(y3), b3 =

1
h
ηb̃3(yα)F(y3),

tα = η2t̃α(yα)F(y3), t3 = ηt̃3(yα)F(y3).
(3.37)

The variables are then expressed as power series of the scaling ratio η (asymptotic expansion):

u = L
(
u0 + ηu1 + η2u2 + ...

)
,

ε = ε0 + ηε1 + η2ε2 + ...,

σ = σ0 + ησ1 + η2σ2 + ...,

(3.38)

and introduced in the equations of the BVP (3.35). The powers p of η are then identified:
for each power p ∈ N, each compatibility equations, boundary conditions and constitutive
equations for p and equilibrium equations for p − 1 yield an auxiliary problem on the cross-
section which splits in two uncoupled boundary value problems.

Transverse displacement First, the in-section displacement problems (transverse mode) T
are gathered for p ≥ 0:

T p+1 :



σ
p
αβ,β + σ

p−1
α3,3 + δp2b̃αF = 0 on S0

σ
p
αβ = 2µεp

αβ + λε
p
kkδαβ, σ

p
33 = 2µεp

33 + λε
p
kk on S0

2εp
αβ = up+1

α,β + up+1
β,α , ε

p
33 = up

3,3 on S0

σ
p
αβnβ = δp2t̃αF on ∂S0

(3.39)

whereσ−1 = 0 and δp2 = 1 if p = 2 and δp2 = 0 else. For a simply connected cross-section, this
BVP on the displacement up+1

α is well-posed if the applied load is globally self-equilibrating
for in-section translations and rotation:〈

σ
p−1
α3,3

〉
= 0,

〈
yβεβασ

p−1
α3,3

〉
= 0 (3.40)

96



3.3. From a 3D model to a higher order beam model

where ε11 = ε22 = 0, ε12 = +1, ε21 = −1. The solution is thus defined up to a rigid motion of
the section in its plane.

Longitudinal displacement Second, the longitudinal displacement problems (warpingmode)
Wp are obtained for p ≥ 0:

Wp+1 :



σ
p
3α,α + σ

p−1
33,3 + δ1pb̃3F = 0 on S0

σ
p
α3 = 2µεp

α3 + λε
p
kkδα3 on S0

2εp
α3 = up+1

3,α + up
α,3 on S0

σ
p
α3nα = 0 on ∂S0

(3.41)

Again, for a simply connected cross-section, this BVP on the displacement up+1
3 is well-posed

if the load applied is globally self-equilibrating for the longitudinal translation:〈
σ

p−1
33

〉
= 0 (3.42)

The solution is defined up to a longitudinal displacement.

The successive resolutions of T p+1 and Wp+1 for each p such that 0 ≤ p ≤ nAE yields
a collection of displacement modes

(
ũi )

0≤i≤nAE
where nAE is the order of the asymptotic

expansion. Once orthonormalized thanks to a Grahm-Schmidt procedure, these modes form
the kinematics of the model. The modes are orthonormalized according to the L2-norm
defined as follows:

| | ũi | | = ©­«
∫

S

3∑
j=1

(
ũi

j

)2
dSª®¬

1/2

(3.43)

The computation of the modes is only made possible by assuming variable separation: they are
decompsed and expressed as the product of a function of the cross-sectional coordinates and
a function of the longitudinal coordinate. Therefore this model is here named the Asymptotic
Expansion Load Decomposition beam model (AELD-beam model).

3.3.2.2 The AELD extended to the case of eigenstrains

This higher-order beam model has been extended in [Corre et al., 2017a] to the case of
eigenstrain. Based on a situation where eigenstrains are applied on the structure, new modes
specific to eigenstrains are computed thanks to the same systematic procedure and are added
to the kinematics of the model. This enables the model to deal with various situations such
as creep, thermal loads or prestressed loads. The applied eigenstrain is also expressed as the
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product of a function of the cross-sectional coordinates and a function of the longitudinal
coordinate. Considering an applied eigenstrain ε∗, the basis of modes specific to ε∗ is denoted
by Bε∗ and represented as the action of the operator Bε on ε∗:

Bε
∗
= Bε (ε∗) (3.44)

The computation of the displacement modes of a beam submitted to eigenstrain is now
presented. The beam is still considered with a purely elastic behavior. The equations of the
BVP are in this case:

P :


divx σ = 0 on Ω
σ = C : (ε − ε∗) on Ω
ε = ∇s

xu on Ω
σ · n = 0 on ∂Ωt
u = 0 on S±

× [0,T] , (3.45)

The assumptions are the same as the ones described for the computation of modes for a
beam submitted to internal or external forces. We first operate a change of coordinate. The
eigenstrain is then expressed as the product of a cross-sectional function and a longitudinal
function:

ε∗i j = ηd̃i j(yα)T(y3) (3.46)

The variables are then expressed as power series of η and introduced into the equations of the
BVP (3.45), yielding a series of auxiliary problems which split into two uncoupled boundary
value problems.

Transverse displacement The in-section displacement problems T are expressed for p ≥ 0:

T p+1 :



σ
p
αβ,β + σ

p−1
α3,3 = 0 on S0

σ
p
αβ = 2µ

(
ε

p
αβ − δp1d̃αβT

)
+ λ

(
ε

p
kk − δp1d̃kkT

)
δαβ on S0

σ
p
33 = 2µ

(
ε

p
33 − δp1d̃33T

)
+ λ

(
ε

p
kk − δp1d̃kkT

)
on S0

2εp
αβ = up+1

α,β + up+1
β,α , ε

p
33 = up

3,3 on S0

σ
p
αβnβ = 0 on ∂S0

(3.47)

where σ−1 = 0. For a simply connected section, this BVP on the displacement up+1
α is

well-posed if the applied load is globally self-equilibrating for in-section translations and
rotation: 〈

σ
p−1
α3,3

〉
= 0 and

〈
yβεβασ

p−1
α3,3

〉
= 0 (3.48)

The solution is defined up to a rigid motion of the setion in its plane.
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3.4. The elastoplastic beam model

Longitudinal displacement The longitudinal displacement problemsWp+1 are obtained
for p ≥ 0:

Wp+1 :



σ
p
3α,α + σ

p−1
33,3 = 0 on S0

σ
p
α3 = 2µ

(
ε

p
α3 − δp1d̃α3T

)
on S0

2εp
α3 = up+1

3,α + up
α,3 on S0

σ
p
α3nα = 0 on ∂S0

(3.49)

For a simply connected section, this BVP on the displacement up+1
3 is well-posed if the applied

load is globally self-equilibrating for the longitudinal translation:〈
σ

p−1
33,3

〉
= 0 (3.50)

The solution is defined up to a uniform longitudinal displacement.

The higher-order elasto-plastic beam model developed in this paper is based on the AELD-
beam model and its extension to the case of eigenstrains.

3.4 The elastoplastic beam model

This section introduces a new higher-order elastoplastic beam element. Based on the higher-
order elastic beam element presented in Chapter II, the elastoplastic beam element is derived
within the framework of standard plasticity previously set. The three dimensional volume
of the beam element must discretized in order to locally integrate the local elastoplastic
equilibrium equations. The beam element is then formulated and the elastoplastic algorithm
of the beam model is presented.

3.4.1 Adaptation of the AELD-beammodel to the elasto-plastic behavior

The AELD-beam model introduced in the previous section has proven its efficiency for elastic
materials. The model is now adapted to the elasto-plastic behavior. Based on this higher-order
model, we must establish the right collection of displacement modes in order to describe
faithfully the behavior of an elasto-plastic structure.

We consider the elasto-plastic boundary value problem expressed in equation (3.3). The first
collection of modes to consider is the basis BS−V described previously. This basis of modes
is specific to the cross-section of the beam. The surface traction t applied on the beam then
generates a collection of force modes computed thanks to the operator B f :

Bt = B f (t) (3.51)
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Higher-order elastoplastic beam model

The introduction of degrees of freedom related to the plastic state of the beam is necessary to
correctly describe the effect of plasticity in the global response. Therefore, the plastic strain
computed at a given iteration of the global algorithm is considered as an eigenstrain imposed
on the structure in the next iteration. Based on the model presented in [Corre et al., 2017a],
additional modes of displacement are computed according to this eigenstrain. These new
plastic modes are computed added to the kinematics on the fly. The basis of modes specific to
a plastic strain εp is denoted by Bεp as expressed in equation (3.44).

This operation is repeated at each iteration. Themodel takes the effect of plasticity into account
through these plastic modes. The kinematics of the model is the union of the basis BS-V, B f

and Bεp . This union of basis is orthogonalized thanks to aGram-Schmidt orthogonalization to
form the total basis, and the total number of modes nmod used in the kinematics is the number
of modes in the total basis. An increment of displacement at a given iteration can be written
as follows:

∆u(x) =
nmod∑
i=1

ũi(xα)
m∑

j=1
Nj(x3)∆Ũi, j (3.52)

where nmod is the number of modes in the basis used for this iteration, m is the number of
longitudinal interpolation functions and∆Ũi, j are the increments the generalized displacement.
We define the generalized displacement vector ∆Ũ by:

∆Ũ =
(
∆Ũi, j

)
1≤i≤nmod
1≤ j≤m

(3.53)

The total number of degrees of freedom is therefore equals to ndof = nmode×m. The definition
of the interpolation functions Nj and the computation of the plastic strain required for the
computation of Bεp is described in the next section.

3.4.2 Numerical approximation of the higher order beam model

3.4.2.1 Longitudinal discretization

A longitudinal discretization of the beam must be defined for the computation of the lon-
gitudinal interpolation functions introduced in equation (3.30). As in [Corre et al., 2017a],
we choose to use NURBS basis functions to interpolate the beam element. The number of
NURBS interpolation functions m is defined by the relation:

m = nknot + norder − 1 (3.54)

where nnknot is the number of knots used for the definition of the NURBS and norder is the
interpolation order of the NURBS. A set of longitudinal integration points are needed for the
integration of the interpolation functions. Plasticity can appear anywhere in the structure, and
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3.4. The elastoplastic beam model

its detection is only made possible by the application of the local radial return algorithm in the
volumeΩ. A 3D discretization of the beam volume is therefore necessary. The simplest way is
to define a set of positions along the longitudinal axis and to run the radial return algorithm on
the cross-sections placed at these positions. Assuming a 3D displacement increment ∆u, the
strain increment ∆ε is computed on each cross-section. The plastic strain potentially detected
in these sections is then used for the computation of the plastic modes. The beam is therefore
decomposed into sections where the local equations of equilibrium are integrated and the state
variables are computed. We naturally choose to place these sections at the positions of the
longitudinal integration points of the interpolation functions. This set of Ns > m longitudinal
positions is denoted

{
s1, ..., sNs

}
.

3.4.2.2 Cross-sectional discretization

The discretization of the section of the beam used for the computation of the modes is the same
as the one used in [Corre et al., 2017a]: the modes are computed by using finite elements, the
elements being triangles and the interpolation being quadratic. The number of elements in the
section is denoted Ne and the number of Gauss points by element is denoted G. Ng = Ne ×G
is therefore the total number of Gauss points in the section.

As exposed in the previous section, ∆ε, ∆εp and ∆σ are computed in the Ns sections defined
by their longitudinal position, at the Gauss points of the mesh of each section. For simplicity
the sectional discretization of each section is similar to the one defined for the computation of
the modes. Therefore, the total number of Gauss points where the state variables are computed
is NGtot = Ns × Ne × G.

An illustration of a square beam discretization is presented on Figure 3.2: the beam is
longitudinally discretizedwith Ns = 10 points (which is also the number of integration points of
the beam), and each section is meshed with 712 triangle elements. The NURBS discretization
scheme is not recalled here.

3.4.3 Formulation of the beam element

Injecting equation (3.32) into equation (3.31) leads to the expression of the residualR
(
∆Ũ
(k)
n , Û

)
expressed in terms of the 1D increment of generalized displacement ∆Ũ (k)n and the 1D virtual
generalized displacement Û . We use the Newton-Raphson procedure in order to cancel this
residual and get the following equation:

R
(
∆Ũ
(k)
n , Û

)
+

〈
R′(∆Ũ (k)n , Û), δŨ (k)n

〉
= 0 (3.55)
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Higher-order elastoplastic beam model

(a) 3D view of the beam

(b) Discretization of the beam with Ne = 712 and Ns = 10

Figure 3.2 – Discretization of a square beam

which is the 1D counterpart of equation (3.23). The discretization of equation (3.55) leads to
the following 1D-equilibrium equation:

[K ep]
{
δŨ
(k)
n

}
= {R} . (3.56)

[K ep] ∈ Rndof×ndof is the global stiffnes matrix of the beam element, computed with the local
elasto-plastic tangent moduli Cep

n+1.
{
R(k)n

}
∈ Rndof is the 1D residual vector. The reduction of

the 3D model to a beam model has been exposed, and its numerical approximation described.
The elasto-plastic algorithm associated to this higher-order beam model is detailed in the next
section.

3.4.4 The elasto-plastic algorithm

The combination of the standard plasticity presented in section 3.2 and the reduced model
defined in Section 3.4 yields a new higher-order elasto-plastic beam model, characterized by
a the plasticity algorithm defined hereafter.

There is no change in the local integration of the constitutive equations and since the reduced
model has been discretized in Section 3.4 for the computation of local 3D variables, the local
algorithm remains defined by Algorithm 1. Major changes are made at the global level of the
algorithm.

102



3.4. The elastoplastic beam model

3.4.4.1 t = tn, first iteration: initialization of the increment

We consider the time step t = tn+1 and assume that the structure remains purely elastic until
tn (εpn = 0). If n = 0, the first iteration starts with the computation of the basis of modes,
B
(0)
1 as described in [Ferradi et al., 2016]. The asymptotic expansion is carried out up to the

order nAEM. The basis of modes is built by adding the basis composed of the modes of the
Saint-Venant solution BS-V, and the basis composed of the modes associated to the applied
load t1: Bt1 = B f (t1). The union of this two basis is then orthonormalized thanks to a
Gram-Schmidt procedure to form a linearly independent family:

B
(0)
1 =

(
BS-V ∪ Bt1

)
⊥

(3.57)

where (•)⊥ means that the basis is orthonormalized.

Since we consider monotonically incremental loads, Btn = Bt1 and the basis B(0)n+1 do not need
to be computed again for n ≥ 1. We have the relation:

B
(0)
n+1 = B

(0)
1 (3.58)

The total number of modes is n(0)mod = card
(
B
(0)
n+1

)
. The displacement u(x) is decomposed

on B(0)n+1, as defined in equation (3.52). The numerical approximation has been described in
Section 3.4.2. The basis B(0)n+1 is used to express the beam formulation presented in Section
3.4.3:

[K ]
B
(0)
n+1

{
δŨ

}
B
(0)
n+1
= {R}

B
(0)
n+1

(3.59)

In what follows, global matrices expressed on a basis B are denoted with the notation [•]B,
and global vectors expressed on a basis B are denoted with the notation {•}B. The norm of the
residual is saved in the scalar r ref. Equation (3.59) is solved, yielding the first displacement
increment

{
∆Ũ

}
B
(0)
n+1
=

{
δŨ

}
B
(0)
n+1

. We assume that this increment generates plasticity in the
structure, meaning that the yield criterion has been violated at least once. The sections where
a plastic strain has been computed are gathered in Ps:

Ps =
{
q ∈ {1, ..., Ns} /∃g ∈

{
1, ..., Ng

}
,∆εp(xgα, sq) , 0

}
(3.60)

where xgα denotes the transverse coordinates of the gth Gauss point of the section . It is recalled
that the same transverse discretization is used for the the Ns sections (see Section 3.4.2). The
residual {R}

B
(0)
n+1

is computed and we assume that it is found larger that the tolerance, meaning
that convergence is not reached. Hence the algorithm leads to the second iteration.

3.4.4.2 t = tn, subsequent iterations: computation of plastic modes

Subsequent iterationsmust bring corrections to the initial displacement. These corrections take
plastic flow into account by generating additional plastic modes. For each section q ∈ Ps where
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Higher-order elastoplastic beam model

plasticity has been detected, plastic modes are computed from the eigenstrain εp(k)n+1(x
g
α, sq).

The asymptotic expansion is performed up to the order nAEM introduced earlier. The plastic
basis computed at each plastic section are added to the basis of the previous iteration B(k−1)

n+1
to form the single orthonormalized basis B(k)n+1:

B
(k)
n+1 =

©­«B(k−1)
n+1 ∪

©­«
⋃
q∈Ps
B
ε
p(k)
n+1

q
ª®¬ª®¬⊥ (3.61)

where Bε
p(k)
n+1

q = Bε
(
ε
p(k)
n+1

)
denotes the family of plastic modes computed for the qth plastic

section. The new number of modes is n(k)mod = card
(
B
(k)
n+1

)
. The kinematics of the model

may have changed and the number of degrees of freedom n(k)dof may be modified. Therefore
the residual previously computed on B(k−1)

n+1 might need to be computed again on B(k)n+1. Since
B
(k−1)
n+1 ⊂ B(k)n+1, the update of the residual on the new basis is limited to the addition of the

values of the new degrees of freedom. The tangent global stiffness is built on the updated
basis, and the new correction

{
δŨ

}
B
(k)
n+1

is computed.

The addition of the increment of displacement between the increments n and n + 1 is only
possible if this increment of displacement is independent from the basis on which it has been
computed. Using the fact that the number of interpolation functions m is constant, we form at
each iteration the displacement δU j which only depends on the beam interpolation functions:

δU j(xα) =
n(k)mod∑
i=1

ũi(xα)δŨi, j, with 1 ≤ j ≤ m. (3.62)

The increment of displacement is updated:

∆U j = ∆U j + δU j . (3.63)

The strain increment ∆ε is then computed on the integration sections and the radial return
yields the stress increment. The state variables are updated from the converged value of the
previous iteration: {

σ(k)n+1

}
= {σn} + {∆σn} ,{

ε
p(k)
n+1

}
=

{
ε
p
n
}
+

{
∆ε

p
n
}
,{

p(k+1)
n+1

}
= {pn} + {∆pn} .

(3.64)

The residual is assembled and the iterations are continued until convergence is reached. The
total displacement is updated at the end of the increment n:

un+1(x) = un(x) +
m∑

j=1
∆U j(xα)Nj(x3) (3.65)
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3.5. Application to a cantilever beam

3.4.4.3 Optimization and description of the algorithm

It as been noticed from experience that plastic modes computed at different iterations of a same
increment were very similar. Therefore the orthonormalization of plastic modes computed at
an iteration k + 1 with respect to the basis of iteration k yields modes of a lower significance.
Computing again plastic modes within an increment increases the computational time for a
very weak gain in the local description of state variables. Without loss of accuracy, it is more
efficient to compute the plastic modes only at the first iteration. Thus, the basis of modes
remains constant during the increment and consequent gain in CPU time can be obtained in
the computation of the stiffness matrix and the force residual. This choice remains valid as
long as the load increments are not too important.

The global process is presented in algortihms 8 and 5. Algorithms 2 and 3 were expressed in
terms of the 3D kinematic unknown ∆u, while Algorithms 8 and 5 are expressed in terms of
the 1D kinematic unknown ∆Ũ . The main differences between Algorithm 2 and Algorithm
8 lie in the computation and the update of the kinematics of the beam model. The basis
of modes is updated as soon as plasticity occurs. This implies that the generalized external
forces Fext must be computed at each plastic iteration and that the generalized internal forces
F int must be computed at both the end of an iteration and at the beginning of the next
one. Algorithm 3 and Algoritgm 5 are different by their inputs: the first one deals with 3D
increments of displacement on every element of the 3D mesh, while the second one deals with
1D increments of displacement on each one of the Ns integration sections of the beam. The
1D inputs of Algorithm 5 are converted into 3D variables before applying the radial return
algorithm.

3.5 Application to a cantilever beam

This section first briefly investigates different Newton-Raphson’s incremental algorithms: the
quasi-Newton-Raphson method and the modified-Newton-Raphson method are successively
compared to the classic Newton-Raphson method. The section then shows an application of
the elastoplastic beam element to a cantilever I-beam asymmetrically loaded at its end. The
case study is computed with a volumic reference solution and compared to the results provided
by the beam solution. Parametric studies are then carried out in order to assess the parametric
sensitivity of the model.

3.5.1 Study of alternative Newton-Raphson’s methods

Before exposing the performance of the beam model on a I-beam, we first investigate on the
possible alternatives to the classic Newton-Raphson’s method. The most time-consuming
step of the algorithm 8 is the assembly of the consistent elasto-plastic stiffness matrix. It is
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Higher-order elastoplastic beam model

Algorithm 4 Beam global algorithm
1: Initialize state variables: S0 =

{
u0, ε0, ε

p
0,σ0, p0

}
2: Compute the invariant base of modes BS-V
3: for n = 0 to M − 1 do
4: Initialize Sn+1 = Sn
5:

{
∆Ũ

}
B
(k)
n+1
= {0}

6: if n = 0 then
7: Compute the basis of force modes B f 1 = B f ( f 1) ← see [Ferradi et al., 2016] and

Section 3.3.2.1
8: Assemble the initial basis of modes B(0)1 =

(
BS-V ∪ B f 1

)
⊥

9: else
10: B

(0)
n+1 = B

(0)
1

11: end if
12: k = 1
13: cmd = 0
14: while cmd = 0 do
15: if εpn , 0 and k = 1 then
16: Compute the basis of plasticity modes Bε

p
n = Bε

(
ε
p(k)
n

)
← see [Corre et al.,

2017a] and Section 3.3.2.2
17: Assemble the new basis Bn+1 =

(
B
(0)
n+1 ∪ Bε

p
n

)
⊥

18: Compute
{
Fext}

Bn+1
and

{
F int}

Bn+1
19: end if
20: Compute {R}Bn+1 =

{
Fext}

Bn+1
− {

F int}
Bn+1

21: if k = 1 then
22: r ref = | | {R}Bn+1 | |
23: end if
24: Assemble the consistent elasto-plastic stiffness matrix [K ep]Bn+1

25: Solve [K ep]Bn+1

{
δŨ

}
Bn+1
= {R}Bn+1 and assemble {∆U} = {∆U} + {δU}

26: Compute {σn+1},
{
ε
p(k)
n+1

}
and Cep← Algorithm 5

27: Compute {F}intBn+1
28: Update {R}Bn+1 , r = | | {R}Bn+1 | |
29: if r < εr ref then
30: cmd = 1
31: end if
32: k = k + 1
33: end while
34: Update 3D total displacement un+1 = un +

∑
∆U j Nj

35: end for
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3.5. Application to a cantilever beam

Algorithm 5 Beam global subalgorithm
Require: {∆Un}, Sn

Ensure:
{
σ(k)n+1

}
,
{
ε
p(k)
n+1

}
,
{
p(k)n+1

}
, Cep(x)

1: for s = 1 to Ns do
2: for e = 1 to Ne do
3: for g = 1 to G do
4: Compute ∆εn(xg) from ∆U and B(k)n+1
5: Update εn(xg)
6: Update εpn(xg), σn(xg), pn(xg) and Cep(xg) ← algortihm 1
7: end for
8: end for
9: end for

assembled by an integration operated both cross-sectionally and longitudinally. The update
of the basis of modes and the update of the consistent elasto-plastic moduli Cep imply a new
computation of the stiffness matrix in the classic Newton-Raphson’s method.

A simplified method commonly used in standard 3D plasticity consists in approximating at
each iteration the consistent elasto-plastic stiffness matrix by the elastic stiffness matrix. This
method, called themodifiedNewton-Raphson’smethod [Zienkiewicz, 1977], naturally implies
more iterations within a load increment, but each iteration is computed faster since it avoids
the update of the stiffness matrix. For the present higher-order beam model, it means that we
always consider the elastic moduli C instead of the consistent elasto-plastic moduli Cep for
the assembly of the global stiffness. However the stiffness matrix must still be computed each
time the basis of modes changes.

A third solution can be formulated in between theNewton-Raphson’s and themodifiedNewton-
Raphson’s method. The elastic moduli is updated at the first iteration of each increment, but
is kept constant during the whole increment. The update is therefore operated only once. This
method, called the quasi Newton-Rapshon’s method, should provide time performances in
between the performances of two first methods.

In order to compare the numerical performances of the three methods, we consider a simple
case of study. A cantilever beam of length L = 10 m with a square section of A = 1 m2 is
loaded at its end by a vertical force F = 8MN , as represented on Figure 3.3.

The material characteristics considered are:

E = 210 GPa, µ = 0.3, H = 0.1E, σ0 = 235 MPa (3.66)

The maximal plastic moment of a square beam is Mpl = σ0 Ah/4. With the values considered
here, Mpl = 58, 75 MN.m. The ratio between the moment applied and the maximal plastic
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Fx3
x1

x2

Figure 3.3 – 10 m cantilever beam loaded at its end by a force F

moment is FL/Mpl = 1, 36. Plasticity is expected to occur close to the clamped extremity
which should therefore be completely plastified. The longitudinal discretization of the beam
is therefore refined close to x3 = 0. The longitudinal mesh is composed of Ns = 29 points and
represented in Figure 3.4. The cross-sectional mesh is composed of 898 quadratic triangles.
The influence of the mesh refinement is not investigated in this example and will be studied in
the next section.

0 10
x3

F

Figure 3.4 – Longitudinal mesh of the beam, composed of 29 points represented by their
respective section

The problem is divided into 10 time steps. The force applied is uniformly divided, with
f0 = 0 and f10 = F. The Newton-Raphson’s mtethod (N-R), the quasi Newton-Raphson’s
method (qN-R) and the modified Newton-Raphson’s method (mN-R) are computed. The
average vertical displacements computed at x3 = L by the three solutions are compared to a
3D reference solution. The mesh of the 3D solution is defined by extruding longitudinally
a 2D section mesh with triangles. The number of triangles used is the same as the number
of triangles in the section of the beam model and the longitudinal partition of the 3D mesh
is the same as the longitudinal mesh of the beam model. The 3D model is composed of
25424 prismatic elements, each prism being quadratic in interpolation. The 3D solution uses
a classic Newton-Raphson algorithm. The average vertical displacement at the free extremity
is defined by:

〈u2〉 = 1
A

����∫
S

u2(xα, L)dS
���� (3.67)

The value of 〈u2〉 is computed for each solution at each time step. Results are presented in
Figure 3.5.
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Figure 3.5 – Vertical average displacement at x3 = L

increment 1 2 3 4 5 6 7 8 9 10 total time avg time/iteration
N-R 1 1 1 1 3 4 4 4 4 4 82 s 3.03 s
qN-R 1 1 1 1 6 14 21 23 19 17 201 s 1.93 s
mN-R 1 1 1 1 6 14 35 78 126 148 726 s 1.77 s
3D 1 1 1 3 4 4 5 5 4 5 8030 s 243 s

Table 3.1 – Comparison of the time performances of the N-R, qN-R and mN-R methods

The three methods converge on the same values. The average displacement computed for
each solution matches well with the 3D solution. The maximum relative distance between the
beam curves and the 3D solution on Figure 3.5 is 3, 3% for time step 9. The results provided
by the beam model are satisfactory. The comparison of the time performances of the three
methods are compared in Table 3.1.

Consequently to this investigation, computations are operated with the N-Rmethod in all what
follows.

3.5.2 Cantilever beam loaded at its free extremity

3.5.2.1 Case study

To illustrate the efficiency of the model presented, we consider a steel beam clamped at one
end and loaded on its free end. The beam chosen is a wide flange beam HE600M. This section
in class 1 in Eurocode 3, meaning that the beam reaches its limit of elasticity with no risk of
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Higher-order elastoplastic beam model

buckling. The geometry of a HE600M beam is detailed in Figure 3.6.

486620
21

40

305
45◦

75

Figure 3.6 – Dimensions in mm of a HE600M
cross-section

F
l

Figure 3.7 – Application of the load F on the
free end section

F

x3
x1

x2

Figure 3.8 – 3D representation of the HE600M cantilever beam loaded at its end

The beam considered has a length L = 6 m. A load is applied with eccentricity on top edge
of the free end of the beam, as represented on Figures 3.7 and 3.8. The force F is applied
on the length l = 230 mm. The study is decomposed into 10 times steps, and the load is
incrementally increased of 0.25 MN at each step until it reaches its final value 2.5 MN.

We consider the following values of the Young’s modulus and the Poisson’s ratio:

E = 210 GPa, µ = 0.3, H = 0.02E, σ0 = 235 MPa (3.68)

3.5.2.2 Reference solution

A 3D reference solution is computed on the finite element software Code_Aster. The beam
is modeled by extruding along the longitudinal axis a cross-section meshed with triangles,
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3.5. Application to a cantilever beam

forming 3D prismatic elements. The longitudinal extrusion is discretized such that shorter
3D elements are used close to the clamped extremity. This choice of modeling allows an
easy comparison between the 3D model and the beam model in terms of mesh refinement.
A cross-section is meshed with 430 triangles and the longitudinal axis is discretized with 19
sections, forming 7740 prismatic elements in total. The prismatic elements are interpolated
with quadratic functions. The longitudinal discretization is more refined close to the clamped
extremity since this is where plasticity is expected to occur.

All the computations presented in this paper are processed on a processor i7-4510U (2 cores
at 2.00 GHz).

3.5.2.3 Higher-order beam solution S0

Parameters of the solution S0 The method presented in the present paper is first computed
with a set of parameters chosen with an educated guess. This solution is called S0. Some
sensitivity studies are carried out later in the paper. The section of the solution S0 is meshed
with 399 triangle elements, as shown on Figure 3.9. The triangle elements are quadratic and
the mesh is composed of 399 triangles.

Figure 3.9 – Cross-setion meshed with 399 triangles

The NURBS basis functions which are the interpolation shape functions of the element are
defined by the following knot vector :VNURBS = {0, 0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6}. The total
number of interpolation functions is defined by the relation N = nknot+norder−1. We consider
second-order NURBS and therefore get 11 NURBS basis functions. As explained in Section
3.4.2, the integration points used for the longitudinal integration of the interpolation functions
are also the points where we place the integration sections. These integration sections are the
sections where the local radial algorithm is computed. Using the Simpson’s integration, the
total number of integration points is generally defined by the relation:

ninteg = 1 + 2 × E
(
norder + 1

2

)
× (nknot − 1) (3.69)
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Figure 3.10 – Longitudinal mesh composed of 19 integration sections

Figure 3.11 – Second-order NURBS basis functions used for the longitudinal interpolation of
the element

Second-order NURBS basis functions require the addition of one integration point in each
interval of the knot vector. The longitudinal axis is therefore meshed with 19 integration points
by refning VNURBS with the add of an integration point in the middle of each interval. The 19
corresponding integration sections are represented on Figure 3.10. The mesh is refined close
to the clamped extremity since the plasticity is expected to mainly occur in this location. This
longitudinal discretization is the same as the one defining the mesh of the reference solution.
The NURBS defined by VNURBS are represented on Figure 3.11.

All sections where a plastic strain occurs are not used for the computation of the plastic
modes. Indeed, it will drastically increase the computation time while close sections create
very similar plastic modes. Consequently, only the plastic strain of the 5th section is used
for the computation of the plastic modes. This section is called plastic mode section. The
choice of one or multiple plastic mode sections is arbitrary at this time but it should be then
automated.

Force modes are computed up to the 4th order of the asymptotic expansion (this choice is
based on experience), and plastic modes are computed up to the 3rd order of the asymptotic
expansion. Both expansion orders can indeed be different since force modes and plastic modes
are computed independently.

During the computation, the maximum number of modes in the basis is 22. The number of
interpolation shape functions being 11, the maximum number of degrees of freedom during
the computation is therefore ndof = 242. This number could be reduced by associating the
plastic modes only to the interpolation functions with non-zero values where plasticity has
been detected. But at this time, the modes of the basis are considered all along the beam
element.
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3.5. Application to a cantilever beam

Solution Sref Solution S0
type of elements 15-nodes prisms 6-nodes triangle + 19 longitudinal nodes

number of elements 7740 399 + 1
CPU computation time 818 s 11 s

Table 3.2 – Main features of the 3D solution and solution S0

Figure 3.12 – Deformed shape of the beam after the 10 load increments (solution S0)

Comparison with the 3D solution The main features of the 3D solution and solution S0 are
presented in Table 3.2.

The deformed structure obtained with the solution S0 is presented on Figure 3.12. The torque
due to the eccentricity of the load induces a longitudinal rotation of the cross-section, and the
transverse part of the load induces a bending of the beam.

In order to compare the two solutions, we compute the absolute displacement at the point A
placed on the free section of the beam (x3 = L) as represented on Figure ??. The absolute
displacements computed by both solutions during the 10 time steps of the study are shown on
Figure 3.13.

In view of the force-displacement curves shown on Figure 3.13, the results obtained with the
beam solution S0 are consistent with the reference solution. The beam solution satisfactorily
captures the plastic branch despite a low kinematic hardening (H = 0.02E). The curve of
S0 is slightly above the curve of Sref meaning that the force obtained with S0 for a given
displacement at point A is higher than the force obtained with S0. For uA = 0.8 m, solution
S0 associates a force higher than the force obtained by Sref of 2, 42%. In order to assess the
accuracy of the beam solution when compared to the reference solution the six components of
the plastic strain computed by the solution S0 and by the reference solution at x3 = 0, 5 m for
the given displacement of point A uA = 0.8 m are presented on Figure 3.14. All the variables
presented for a given displacement of point A are obtained by linear interpolations between
the increments defined in Section 3.5.2 and represented by dots on Figure 3.13.

We also define the following L2-estimator to compare the beammodel and the reference model
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A

Ax3 x1
x2

Figure 3.13 – Absolute displacement at point A

on a cross-section S:
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1/2

(3.70)

where εp,3Di j is the plastic strain computed by the reference solution.

The axial plastic strain presented on Figures 3.14a to 3.14c shows that nearly all parts of
the section have reached the elastic limit. As expected, the eccentricity of the load on the
free extremity of the beam creates a slightly uneven progression of plasticity in the section.
Therefore the highest values of the plastic strain components are observed on the top left and
the bottom left of the section where the absolute values of the stresses are the most important.
The plastic strain computed by S0 is slightly lower than the plastic strain computed by Sref
for each component. A late detection of plasticity due to the longitudinal refinement could
originate this "plastic delay". The influence of the longitudinal mesh refinement is investigated
in the next section. The values of the L2-estimator defined previously are for the axial strains
eL2

(
ε
p
11

)
= 3.92%, eL2

(
ε
p
22

)
= 3.46% and eL2

(
ε
p
33

)
= 3.90%

The non-axial components presented on Figures 3.14d to 3.14f seem less satisfying but this
should be qualified as their amplitude is about 10 times lower than the axial components.
Thus, the beam solution presented here shows satisfying results with a good compliance with
the 3D solution. The solution S0 has been defined with a set of parameters: mesh refinement,
NURBS order, expansion order, etc. The following sections investigate the influence of these
parameters on the results and show the possible ways to get more accurate results.
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3.5. Application to a cantilever beam

(a) εp11 computed by S0 (left) and Sref (right)

(b) εp22 computed by S0 (left) and Sref (right)

(c) εp33 computed by S0 (left) and Sref (right)

(d) εp12 computed by S0 (left) and Sref (right)

(e) εp13 computed by S0 (left) and Sref (right)

(f) εp23 computed by S0 (left) and Sref (right)

Figure 3.14 – Plastic strain computed by S0 and Sref close to the clamped extremity at x3 = 0.5m
for uA = 0.8 m
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3.5.3 Parametric studies

3.5.3.1 Mesh refinement

Solution S0 shows satisfying results in terms of displacement. Its longitudinal mesh has been
chosen arbitrarily and it is now interesting to investigate on the influence of the refinement
of the longitudinal mesh on the results. All solutions considered here are interpolated with
second-order NURBS, meshes can therefore be characterized by the knot vector used for the
definition of theNURBS, as explained in Section 3.5.2.3. A referencemeshm0 is characterized
by the following knot vector: {0, 1, 2, 3, 4, 5, 6}. More refined meshes are defined by adding
new knots in the interval [0, 1]. These additional knots are placed at the position x3 = 1/2n.

Thus, the knot vector of the mesh mn, n ∈ N is
{
0,

1
2n ,

1
2n−1 , ...,

1
2
, 1, 2, 3, 4, 5, 6

}
. The same

case study is computed for different longitudinal meshes. The main parameters of the six
solutions studied in this section are gathered in Table 3.3.

Solution Sm0 Sm1 Sm2 S0 Sm4 Sm5

plastic modes AE order 3 3 3 3 3 3
force modes AE order 4 4 4 4 4 4

NURBS order 2 2 2 2 2 2
knots 7 8 9 10 11 12

integration sections 13 15 17 19 21 23

Table 3.3 – Main parameters of solutions Sm0 to Sm5

The absolute displacement computed for each mesh is presented on Figure 3.15.
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lutions Sm0 to Sm5

0 1 2 3 4 5
n

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

re
la

tiv
e 

di
st

an
ce

 to
 S

re
f

uA = 0.4
uA = 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CP
U 

tim
e

1e1

CPU time

Figure 3.16 – eA(0.4) and eA(0.8) and CPU
time for solutions Sm0 to Sm5
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3.5. Application to a cantilever beam

The refinement of the longitudinal mesh close to the clamped end means an improvement of
the results. We define the relative distance between the reference solution and solution Smn

for a given uA by:

e(n)A (uA) =
����FSmn (uA) − FSref(uA)

FSref(uA)

���� (3.71)

The relative distance e(n)A is computed for each mesh mn for uA = 0.4 m and uA = 0.8 m. The
results are presented on Figure 3.16 with the CPU time needed by the computation of each
solution Smn . eA(uA = 0.8) can not be computed for i ≤ 1 since the computed displacement
does not reach this value (see on Figure 3.15). The two curves associated to eA(uA = 0.4) and
eA(uA = 0.8) confirms the results of Figure 3.15: the more the mesh is refined, the more the
results are accurate. Solutions Sm4 and Sm5 reach relative distances of 2% for uA = 0.4 m
and uA = 0.8 m. The improvement of the results naturally comes with a cost in CPU time.
When the less refined solution Sm0 takes only 10.5 s, the most refined solution Sm5 needs 14s
of computation.

Better results can therefore be obtained with a better refinement of the mesh. The choice of
the refinement is a compromise between the accuracy of a solution and its computational time.

3.5.3.2 Interpolation functions

The interpolation functions have a role in the quality of the results. The functions used in the
present paper are NURBS as described in [Corre et al., 2017a]. The degree of interpolation of
the NURBS has an incidence on the model: the higher is the degree of interpolation, the more
numerous are the functions of interpolation and the longer is their support. The parameters
used for the 4 solutions studied in this section are the same as the ones for solution S0 and
the interpolation degree of NURBS takes values from 1 to 4. The main parameters of the 4
solutions studied here are gathered in Table 3.4.

Solution Sp1 S0 Sp3 Sp4 Sp5

plastic modes AE order 3 3 3 3 3
force modes AE order 4 4 4 4 4

NURBS order 1 2 3 4 5
knots 10 10 10 10 10

integration sections 19 19 37 37 55

Table 3.4 – Main parameters of solutions Sp1 to Sp5

The absolute displacement at point A computed for each solution is presented on Figure 3.17.
The relative distances eA(uA = 0.4) and eA(uA = 0.8) and the CPU time required by solution
are presented on Figure 3.18.

Solution Sp1 is notably less satisfying than the other solutions: the relative distance eA(uA =
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Figure 3.17 – Displacement at point A for so-
lutions Sp1, S0 to Sp5
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Figure 3.18 – eA and computational cost for
solutions Sp1 to Sp5

0.4) is important (12%) and the force-displacement curve does not reach uA = 0.8 m. These
poor results were expected since locking occurs in the element for this interpolation order.
The increase of the order of the interpolation functions comes with an improvement in the
results: while eA(0.4) = 2.56% and eA(0.8) = 2.42% for S0, the relative distance is improved
in Sp3 with eA(0.4) = 1.09% and eA(0.4) = 1.13%. Best values are reached with Sp5:
eA(0.4) = 0.93% and eA(0.4) = 0.93%.

The computational cost of the solutions increases with the interpolation order. This is mainly
due to the increase of the number of degrees of freedom and of the integration sections induced
by a higher interpolation order. The CPU time curve presented in Figure 3.18 shows levels
of computation time: Sp1 and S0 need approximately the same CPU time, and so do Sp3 and
Sp4. This is explained by the increase of the number of integration sections: this number is
determined by equation (3.69) and is the same for the interpolation order 2p + 1 and 2p + 2.
The small increase of CPU time between p = 1 and p = 2 and between p = 3 and p = 4 is only
due to the increase of degrees of freedom. In view of the results, solutions Sp3 and Sp3 can be
an alternative to S0: the increase of the computational cost is notable but the improvement of
the results is significant.

3.5.3.3 Asymptotic expansion order for the computation of the plastic modes

The asymptotic expansion order used for the computation of the plastic modes in solution S0
has been set to nAE = 3. In this section, we investigate on the impact of nAE on the results.
The higher is nAE, the richer should be the kinematics and the better should be the solution.
Based on solution S0, (nAE = 3), 4 new solutions are studied with nAE taking values from 0 to
4. The main parameters of these solutions are gathered in Table 3.5 .
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3.5. Application to a cantilever beam

Solution Sn0 Sn1 Sn2 S0 Sn4

plastic modes AE order 0 1 2 3 4
force modes AE order 4 4 4 4 4

NURBS order 2 2 2 2 2
knots 10 10 10 10 10

integration sections 19 19 19 19 19

Table 3.5 – Main parameters of solutions Sn0 to Sn4

The relative distance eA for uA = 0.8 m computed by each solution and the relative total time
of each solution are presented on Figure 3.19. The force-displacement curves at point A are
not shown here since they are too close to afford a good comparison of the solutions.
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Figure 3.19 – eA and computational cost for solutions Sn0
0 to Sn4

0

As expected, the highest distance from the reference solution is obtained with the solution
without plastic modes: eA(uA = 0.4) = 3.13% and eA(Ua = 0.8) = 3.05%. Its computational
cost is the smallest since no time is spent on extending the kinematics with plastic modes. The
increase of nAE brings a reduction of the distance from the reference solution, and comes with
an increase of the computational cost. Sn4

0 is not better than Sn3
0 (respectively 2.56% versus

2.57% for uA = 0.4 m and 2.42% for both solutions for uA = 0.8 m). This means that the
plastic modes computed at the fourth expansion order do not bring information (in a spectral
meaning) when compared to the basis computed at the third order. However, it is interesting
to note that the solution without plastic modes quickly converges and yield satisfying results.
This is explained by the fact that the displacements induced by the plastic strain are alreadywell
described by the modes of the Saint-Venant’s solution and the force modes in this particular
case study.

Based on Figure 3.19, the value nAE = 3 seems relevant in the present case.
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3.6 Conclusion

A new higher-order elasto-plastic beam model has been presented. The model is based
on an enrichment of its kinematics on the fly during the incremental-iterative process. The
kinematics of the model, represented by 2D-displacement modes, is updated at each increment
according to the plastic state of the beam.

The model is based on the elastic beammodel recently presented in [Ferradi et al., 2016; Corre
et al., 2017a]. This higher-order elastic beam model does not need any a priori knowledge on
the solution of the problem to extend its kinematics. All the modes of the model are computed
thanks to the formal asymptotic expansion which is a systematic method. In the elasto-plastic
beam model presented in this paper, the plastic strain is considered as an eigenstrain loading
the structure and additional modes specific to the plastic state of the beam are added to the
kinematics of the model. The plastic strain is computed on integration sections defined by
their longitudinal position. The plastic strains computed on some chosen integration sections
are then used to compute 2D displacement plastic modes which extend the basis of modes
forming the kinematics of the element.

Locally, the model uses a classic radial return algorithm. 3D state variables are computed
on integration section where the local equilibrium equations are then integrated. This model
therefore yields local 3D results. The global algorithm is based on a standard global plastic
algorithm: the global equilibrium is expressed thanks to the principle of virtual works and is
reached with a Newton-Raphson’s convergence procedure. The algorithm is adapted to the
fact that the kinematics of the model is not fixed during the incremental-iterative process.
Thus, internal and external forces must be computed again every time the basis of modes
changes.

The model shows satisfying results with reduced time of computation when compared to 3D
computation. The method has been applied to the case of a cantilever beam loaded at its free
extremity by a force applied with eccentricity. The beam model required a computation time
about 100 times shorter than the computation time of the reference 3D solution computed on
Code_Aster. Since the kinematics of the element is adapted to the forces applied and to the
plastic state of the structure, this beam model is a general plastic model able to capture all the
deformations induced by the load considered: bending, torsion or shear forces. The numerical
differences between the beam solution and the reference solution for the example presented are
low, but we think they can still be lowered. Indeed, the computation of the displacement modes
do not take the boundary conditions into account. The clamped extremity of the cantilever
beam has a strong local influence on the values of the stress. The model could therefore be
improved if displacement modes specific to the boundary conditions were computed and added
to the kinematics of the model. Moreover, the model already presents very interesting gains
in computation time, but it could be even more time-efficient by considering parallelization
process, in particular for the computation of the stiffness matrix.
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3.6. Conclusion

The elasto-plastic beam model has been presented with isotropic material with a J2 yield
criterion. Its adaption to different yield criteria is easy. The extension of the model to
anisotropic material or to more complex material like reinforced concrete could be the next
step of the development of this elasto-plastic beam element.

∗ ∗
∗
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Chapter 4

Higher-order elastoplastic beammodel for
reinforced concrete

Abstract: This chapter defines a new beam model for reinforced concrete. The model
is defined in three steps. First the constitutive behavior of concrete is described and the
kinematic connection between steel and concrete is presented. Then the beam element based
on the elastopalstic beam element of Chapter 3 is introduced. The model is finally validated
by a multi-step procedure and illustrated by a study case.
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Higher-order elastoplastic beam model for reinforced concrete

4.1 Introduction

The development of a beammodel for reinforced concrete is a complex process involving three
main issues. The first difficulty arises in the definition of the materials behavior. Many models
of various complexity have been proposed to describe the global and local behavior of concrete
whereas theory of plasticity is almost always used for the material definition of steel. The
second difficulty lies in the definition of the kinematics and formulation of the beam model.
The beam element considered here should account for axial, shear and bending responses and
for their interactions. Finally, the strutural connection between steel and concrete must be
numerically expressed.

The first important feature is the definition of the concrete constitutive behavior. High stresses
lead to the apparitions of cracks in both tension and compression and has an impact on
the strain-stress behavior. First, we observe softening which is comparable to a negative
hardening. Second it causes damage [Lubliner et al., 1988]. Three types of concrete models
can be distinguished: damage models, plastic models using the plasticity theory and plastic-
damage models combining both damage and plasticity. Damage models efficiently capture the
stiffness degradation in the structure but they cannot represent the irreversible deformations.
[Govindjee et al., 1995; Mazars, 1986; Oller and Barbat, 2005]. By contrast, plastic models
cannot capture the effect of microcracks on the Young modulus but they are suitable for the
description of the irreversible deformations they cause [Chen, 2007; Feenstra and Borst, 1996;
Grassl et al., 2002]. The majority of models therefore consider both damage and plasticity.
Most of them are developed with istotropic damage law [Salari et al., 2004; Grassl and Jirásek,
2006]. Anisotropic damage models have been developed but their numerical applications
is much more complex [Meschke et al., 1998]. Numerical applicability of concrete models
quickly suffers from complex constitutive behaviors. Without regularization techniques, the
softening phase in the strain-stress response leads to mesh-dependent solutions. Moreover,
in the case of softening, both damage and plastic models can lead to multiple discontinuous
solutions.

The approach adopted in this paper to overcome this difficulty is the theory of plasiticity
without softening in order to provide a simple and robust concrete model. The Rankine yield
criterion is chosen for both tension and compression because of its simplicity and its usage
in the engineering community [ICAB, 2005; ACI, 2014]. The aim of the present model is
obviously not to provide a representation of the microcracks in concrete, but to yield accurate
kinematic descriptions of loaded reinforced concrete structures. Assuming that the degradation
of the stiffness in compression is not very important and that concrete strength in tension is
very low, the use of a damage parameter may be neglected. Based on the previous remarks on
softening, the choice is made not to consider negative hardening. The main limitation of this
approach is the infinite energy it can dissipate without restriction. Consequently the present
model adopts a fracture energy approach in order to limit the energy dissipation in tension.
Given the high strength of concrete in compression, the energy dissipation in compression will
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4.1. Introduction

not be an issue in most cases. In order to develop a simple and efficient reinforced concrete
model, we combine the simplicity of this concrete definition to the numerical efficiency of a
beammodel. It is important to mention that a more complex constitutive behavior for concrete
could be considered and a damage law could be coupled in a second step to the plastic model
presented in this paper.

The second important aspect of this paper is the definition of a kinematically accurate beam
model. The most natural way to define elastoplastic beam models is to use global scale
approach based on 1D stress-resultants. The nonlinear behavior of the structure is expressed
in terms of generalized stress integrated on the cross-section. It requires a preliminary analysis
for the computation of the linear and non-linear diagrams of stress-resultants: axial and shear
forces, bending moment and torque. If several stress-resultants are considered, their linear and
non-linear interactions should therefore be also considered. By solving the nonlinear problem
in terms of 1D generalized stress at each longitudinal integration points, this approach prevents
costly local integrations and provides fast computations [Ibrahimbegović and Frey, 1993].
Stress-resultant models are frequently used to study the ultimate load of frames [Pham et al.,
2012] but has also been used for other slender structures such as bridges [Oller and Barbat,
2005]. However the computation of the stress-resultants interactions can turn out to be tough.
Bui and al. [Bui et al., 2014] choose not to explicitly consider the interaction between shear
and bending in their beam element but to represent it through the assembly of two elements.
The main limitation of these models is their poor local accuracy since they are limited by the
beam theory assumptions and use 1D plastic or damage description.

The common way to improve local accuracy is to use multi-fibers beam models. The beam
cross-section is discretized in layers for 2D-beams or in fibers for 3D-beams. Each layer
or fiber is associated with a local beam kinematics. One of the first mention of the multi-
fibers model can be found in the book of Owen and Hinton [Owen and Hinton, 1980]. The
model have since widely been used for linear and nonlinear analysis of beam structures.
Thanks to its cross-sectional discretization, a multi-fibers model is suitable for describing
non-homogeneous structures such as reinfocred concrete beam: some fibers are associated
with the concrete properties while others are associated with steel properties thus representing
longitudinal rebars. Cross-sectional rebars cannot properly be represented with multi-fibers
model. However concrete can be given a modified constitutive law considering the effect of
confinement. This model is an intermediate solution between the macroscopic approach of a
single beam element and the microscopic approach of a 3D finite element solution. Indeed
it provides a microscopic description of the cross-sectional behavior of the structure while
benefiting from the simple kinematic assumption of each beam fiber. The 3D global response
of the beam submitted to external loads is recovered by integrating the fibers behavior through
the cross-section.

The simplest kinematics to associate with the fibers is the Euler-Bernoulli kinematics [Spacone
et al., 1996; Spacone and Limkatanyu, 2000; Moulin, 2010] where each cross-section remains
plane and normal to the deformed longitudinal axis. It provides an efficient and fast-computing
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element that accounts for axial and bending effects but the simple assumptions of the Euler-
Bernoulli beam model fails in taking shear effects into account. This model is therefore not
relevant as soon as shear effects are significant.

For this reason, many developments have been made using the Timoshenko beam model
that considers the cross-section not necessarily normal to the deformed longitudinal axis. It
consequently introduces a uniform shear force through the beam cross-section. Mazars et al.
used this kinematics to develop a multi-fibers beam element accounting for shear and torsion
for two damage models [Mazars et al., 2006]. As a result, the inclusion of shear effects in
the fibers kinematics provides far more accurate damage fields. By considering shear effects,
the Timoshenko kinematics leads to new failure mechanisms. This approach has therefore
been used to study reinforced concrete frames for shear failure analysis [Bui et al., 2014;
Pham et al., 2012; Jukić et al., 2014] or cyclic loading [Marini and Spacone, 2006]. However
the uniform shear stress introduced by the Timoshenko kinematics cannot satisfy the free
boundary conditions on the cross-section.

In order to further improve local accuracy of the element and to get a better description of ma-
croscopic forces, the approach adopted in the present paper is to use a higher-order elastoplastic
beam element. First developed in elasticity by [Ferradi et al., 2016], it has been extended to
eigenstrains [Corre et al., 2017a] before being adapted to the case of elastoplasticity [Corre
et al., 2017b]. The kinematics is enriched thanks to a systematic method with displacement
modes computed on the 2D cross-section of the structure. These modes bring local accuracy
and can easily describe higher-order shear effects as well as bending or torsion.

The third issue in the definition of a reinforced concrete beam model is the description
of the connection between steel and concrete. In most reinforced concrete beam models,
the description of the rebars is closely linked to the definition of the beam model like in
the multi-fibers models described previously. In the present model, one single higher-order
beam element is used and only the concrete matrix is represented by this element. Steel
rebars are therefore added as embedded elements and considered as 1D bars into the concrete
volume. They are meshed independently from concrete. This method affords a wide range of
reinforcement layouts.

The organization of the chapter is based on the three important steps first introduced. The
general definition of a material in multisplasticity and the global resolution of the reinforced
concrete structure are first given in Section 4.2. Based on this framework, Section 4.2.2 is
dedicated to the definition of the concrete material: constitutive behavior, yield criterion and
local projection algorithm on the yield surface are presented. Steel is then similarly defined in
Section 4.2.3. Both materials being characterized, the kinematic connection between concrete
and steel rebars is presented in Section 4.2.4. Section 4.3 provides a brief description of
the beam model. A validation procedure of the present model is then carried out and the
fracture-based approach defining the domain of validity of the computed strain-stress curves
is introduced. A mesh sensibility is finally processed.
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4.2 Definition of an elastoplastic reinforced concrete model

This section presents and characterizes an elastoplastic beam element for reinforced concrete.
The procedure considered for the definition of the model is first set. A concrete model based
on the Rankine’s yield criterion is presented and the local integration of the elastoplastic
equilibrium equations are formulated in a closed-form solution based on this criterion. The
steel rebars are introduced in the model as one dimensional bar elements embedded into
the concrete volume. The structural connection between concrete and rebars is numerically
expressed through kinematic relations.

4.2.1 General framework and methodology

4.2.1.1 Definition of the elastoplastic behavior

We consider an elastoplastic material in multisurface plasticity (see [Simo, 1985] and [Godio
et al., 2016]). In order to determine if the material is locally elastic or plastic, we first define
the space of plastically admissible states Eσ. Considering the stress σ and a plastic variable
p, Eσ is defined in stress-space by:

Eσ = {(σ, p) ∈ S × R+ | fi(σ, p) ≤ 0, ∀i ∈ [1, ...,m]} , (4.1)

where S is the space of statically compatible stresses defined by m yield criterion functions
fi : S×R+ → R. The definition of the functions fi fully characterizes Eσ. The yield criterion
of concrete is defined in Section 4.2.2.2.

The total strain splits into an elastic part and a plastic part:

ε = εe + εp. (4.2)

An elastoplastic constitutive law must then be defined. The consitutive law locally links the
stress to the elastic strain thanks to the stiffness matrix respectively denoted by C:

σ = C : (ε − εp) . (4.3)

The plastic strain εp involved in Equation (4.3) is computed thanks to the definition of the
flow rule. The present flow rule is associative and therefore links εp to the yield criterion
functions fi:

Ûεp =
m∑

i=1
Ûγi
∂ fi
∂σ

, (4.4)
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where γi are nonnegative scalars called consistency parameters. They follow the Kuhn-Tucker
complementary conditions:

γi ≥ 0, fi(σ, p) ≤ 0, γi fi(σ, p) = 0, (4.5)

and the consistency requirement:
γi Ûfi(σ, p) = 0 (4.6)

Equations (4.5) and (4.6) condition the evolutions of σ in Eσ.

4.2.1.2 Numerical formulation

We consider a 3D concrete structure defined by the domain Ω. The structure is loaded by the
volumic forces b and by the surfacic force t on St and displacements are imposed on Su. Let
[0,T] ⊂ R+ be the time interval of interest of the problem. The displacements are defined by
the functions:

u : Ω × [0,T] → R3 (4.7)
All the variables are functions of space position x and time t.

The elastoplastic boundary value problem to consider is expressed as follows:

divxσ + b = 0 on Ω
σ = C : (ε − εp) on Ω
ε = ∇s

xu on Ω
Ûεp = ∑

γi
∂ fi
∂σ on Ω

γi ≥ 0, fi ≤ 0, γi fi = 0 on Ω
γi Ûfi = 0 on Ω
σ · n = t on St
u = 0 on Su


× [0,T] (4.8)

For the resolution Equation (4.8), the time interval is divided into time increments. The
numerical resolution consists in finding the state Sn+1 = (un+1,σn+1, ...) at time tn+1 with the
knowledge of the previous state Sn. The local integration of Equation (4.8) ensures that the
stresses are plastically admissible, meaning that (σ, p) ∈ Eσ. The equilibrium equations are
verified globally, ensuring the static admissibility of the stresses. If the evolution is plastic,
both conditions are not reached simultaneously, motivating an iterative procedure. The local
algorithm used in this article is a return map algorithm defined in Section 4.2.1.3, and the
global procedure is a Newton-Raphson algorithm.

4.2.1.3 Local integration of the elastoplastic behavior

We assume that the state Sn is fully known. Strain increments ∆ε is applied on Sn between tn
and tn+1. The total strain at time tn+1 is then εn+1 = εn+∆ε. Because of the nonlinear relation
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between stresses and plastic strains (Equations (4.3) and (4.5)) they cannot be computed
simultaneously. Therefore we first assume that the evolutions are elastic and we form the trial
stress σtrial

n+1:
σtrial

n+1 = σn + C : ∆ε (4.9)

If fi
(
σtrial

n+1

)
≤ 0 for all the yield functions fi, then the assumption is correct and the evolution

is elastic andσn+1 = σ
trial
n+1. Otherwise, then the trial stress needs to be projected on the surface

of the yield criterion. The local projection of the trial stress is defined in Section 4.2.2.3.

Once the projection has yielded the plastically admissible state (σn+1, pn+1), the plastic strain
increment ∆εpn+1 can be computed.

4.2.1.4 Global resolution of the structure

The Newton-Raphson algorithm implies the use of the tangent stiffness matrix for the global
resolution of the structure. We iteratively solve the follwing equation to reach the global
equilibrium:

[K ep] {δũ} = {R} , (4.10)

where {δũ} is the increment of generalized displacements, {R} is the force residual and [K ep]
is the global tangent stiffness matrix.

Since we aim to define a reinforced concrete model and anticipating the integration of the
rebars, the global tangent stiffness matrix can be defined as the sum of the global tangent
stiffness matrix of concrete and the global tangent stiffness matrix of the rebars:

[K ep] = [K ep,c] + [
K ep,st] , (4.11)

where [K ep,c] is the tangent stiffness of concrete and [
K ep,st] is the tangent stiffness of steel.

The modeling of steel rebars and their definition as 1D elastoplastic material are presented
in Section 4.2.3. Their connection with the concrete material is described in Section 4.2.4.
In all the article, variables refering to concrete are denoted with no superscript and variables
referring to steel are denoted with the superscript •st.
For a time step tn+1, the global tangent stiffness matrix of concrete is defined by the following
relation:∫

Ω

ε [δu] : Cep,c
n+1 : ε [wc] dΩ = {δũ} [K ep,c] {ũc} , ∀wc ∈ C (Su, 0) , (4.12)

where Cep,c
n+1 is the local elastoplastic tangent moduli of concrete at time step tn+1. C (Su, 0) is

the space of displacements kinematically admissible for a zero displacement on Su, and {ũc}
is the general displacement vector associated to the displacement wc.
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Similarly, the global tangent stiffness matrix of steel rebars is defined by:∫
Ωst
εst

[
δust] : Cep,st

n+1 : εst
[
wst] dΩ =

{
ũst} [

K ep,st] {δũ} , ∀wst, (4.13)

where C
ep,st
n+1 is the local elastoplastic tangent moduli of steel rebars at time step tn+1. The

definition of the local elastoplastic tangent moduli are given in Section 4.2.2.4 for concrete
and in Section 4.2.3.3 for steel reinforcement.

The next section is dedicated to the description of the concrete material: the yield criterion,
the local integration algorithm and the computation of the elastoplastic tangent moduli are
exposed. The definition of the rebars is likewise given in Section 4.2.3 and Section 4.2.4 is
dedicated to their kinematic integration.

4.2.2 A new model for concrete materials

4.2.2.1 Concrete as an elastoplastic material

Despite its heterogeneous local properties, concrete can reasonably be considered as an
isotropic homogeneous material for its numerical modeling. The present model is developped
in order to study reinforced concrete structures submitted to moderate strains. The approach
adopted is to consider concrete as an elastoplastic material as represented on Figure 4.1. An
isotropic hardening with a very low isotropic hardening modulus H is considered. This choice
avoids potential strain localisation problems that can occur in perfect plasticity. Plasticity is
relevant for the representation of the behavior of concrete in compression. Despite concrete
has a brittle behavior in tension, the simplicity of the theory of plasticity is here prefered as
explained in the introduction.

present model
actual

σ

ε

Figure 4.1 – Elastoplastic model used for the concrete
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4.2. Definition of an elastoplastic reinforced concrete model

4.2.2.2 The Rankine’s yield criterion

Investigating the shape of Eσ for concrete materials, Kupfer carried out a series of biaxial
tests [Kupfer et al., 1969]. This way, he identified the shape of the admissible space states
for (σI, σI I, σI I I = 0) in principal stresses. While the limit of compression of concrete
was identified to a certain value in uniaxial stress, its limit was about 16% higher in bi-
compression, giving Eσ(σI, σI I, σI I I = 0) the shape of a square rounded in the bi-compression
zone. This experimental results are considered as a reference in civil engineering. However,
civil engineers are more likely to use a yield criterion were the compression and tension limits
of concrete are constant in unixial, bi-axial, or tri-axial compression. This assuption brings
simplicity in the analysis of the numerical results, particularly for the identification of the
inelastic zones. This criterion is defined in principal stress by:

− fc ≤ σI, σI I, σI I I ≤ ft (4.14)

where fc, ft ≥ 0 are respectively the compression and tension resistances of the material. The
criterion is known as the Rankine criterion, dating from 1876, and is represented by a cube in
principal stress. Since concrete is considered with an isotropic hardening, the usual Rankine
criterion defined in Equation (4.14) is modified as follows to account for the hardening:

− fc − Hp ≤ σI, σI I, σI I I ≤ ft + Hp (4.15)

where H is the plastic modulus. Eσ is therefore constructed with the 6 following functions:

f1 = σI − ft − Hp ≤ 0, f2 = σI I − ft − Hp ≤ 0, f3 = σI I I − ft − Hp ≤ 0
f4 = −σI − fc − Hp ≤ 0, f5 = −σI I − fc − Hp ≤ 0, f6 = −σI I I − fc − Hp ≤ 0 (4.16)

Eσ being defined with 6 criteria, 6 consistency parameters γi are considered. Thanks to the
simple expression of this yield criterion in principal stress, the local projection of a trial state
(σtrial

n+1, pn) < Eσ can be easily conducted as it will be shown in Section 4.2.2.3.

4.2.2.3 Local projection on the criterion

Equation (4.8) is locally integrated. The method used for the local integrations is a classic
return map algorithm as explained in Section 4.2.1.3: given a strain increment ∆ε, an elastic
trial stress σtrial

n+1 is formulated. If (σtrial
n+1, pn) ∈ Eσ, meaning that the yield criterion is satisfied,

the stress is plastically admissible and (σn+1, pn+1) = (σtrial
n+1, pn). If (σtrial

n+1, pn) < Eσ, σn+1 is
the closest point projection (see [Simo and Hughes, 1998]) of σtrial

n+1 onto the boundary ∂Eσ in
the norm induced by the metric G defined by:

G =

(
C−1 0

0 1/H
)
, (4.17)
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where C−1 is the compliance matrix. Thus, (σn+1, pn+1) is the state which satisfies the
following minimum principle:

(σn+1, pn+1) = ARG

[
MIN

(σ, p) ∈ Eσ

{
1
2



σtrial
n+1 − σ



2
C−1 +

1
2

H (pn − p)2
}]
, (4.18)

where ‖σ‖C−1 =
√
σ : C−1 : σ. The Lagrangian associated with this linearly constrained

problem is expressed:

L(σ, p, γ) = 1
2



σtrial
n+1 − σn+1



2
C−1 +

1
2

H(pn − p)2 +
6∑

i=1
∆γi fi(σ, p), (4.19)

and the corresponding Kuhn-Tucker optimality conditions are:

∂L
∂σ

����
n+1
= C−1 :

(
−σtrial

n+1 + σn+1

)
+

6∑
i=1
∆γi

∂ fi
∂σ

����
n+1
= 0, (4.20)

∂L
∂p

����
n+1
= ∆p −

6∑
i=1
∆γi = 0, (4.21)

fi(σn+1, pn+1), ∆γi ≥ 0, ∆γi fi(σn+1, pn+1) = 0. (4.22)

Equation (4.22) is actually the expression of the Kuhn-Tucker complementary conditions.
According to Equations (4.21) and (4.22),∆p ≥ 0 which is consistent with the definition of
p ∈ R+. Given that C−1 is isotropic, it can be shown that solving Equation (4.20) is equivalent
to solving its counterpart equation in principal stress, that is:

C−1 :
(
−Σtrialn+1 + Σn+1

)
+

6∑
i=1
∆γi

∂ fi
∂Σ

�����
n+1

= 0 (4.23)

where Σ is the stress tensor expressed in the principal stress space and the derivatives of the
second term are defined by:(

∂ fi
∂Σ

)
i j
=

∂ fi
∂σl( j)

, with l(1) = I, l(2) = I I and l(3) = I I I . (4.24)

The Kuhn-Tucker optimality conditions defined by Equations (4.21),(4.22) and (4.23) are now
considered. Assuming that Σtrn+1 < Eσ, 26 situations can be distinguished: Σn+1 is on one of
the 6 plans of the criterion, Σn+1 is on one of the 12 edges of the criterion or Σn+1 is on one
of the 8 corners of the criterion.
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The 26 local minimum values of Σn+1 and their associated consistency parameters ∆γi are
given in closed form solutions. The solution of Equation (4.18) is therefore the minimum of
these 26 values. A simple change of basis yields the expression σn+1.

The 2D interpretation of the projection of Σtrialn+1 onto Eσ is shown on Figure 4.2. Two cases are
represented: in the first case, the trial stress is in front of a plane andΣ is projected on this plane;
in the second case the trial stress is in front of a corner and Σ is projected on this corner. The
orthogonality represented on Figure 4.2 must be considered in the norm induced by the metric
G defined in Equation (4.17). This 2D representation can be easily extrapolated to the 3D case.

Σn

Σtrialn+1

Σn+1 Σn+1

Σtrialn+1

Σn

(0, 0)

case 1
case 2

Eσ

Figure 4.2 – Orthogonal projection of the trial elastic stress on the yield surface

Once the projected state σn+1, pn+1 is obtained, the plastic strain increment ∆εp can be
computed. It is directly computed from the trial stress and its projection. Indeed, the trial
stress is expressed:

σtrial
n+1 = σn + C : ∆ε (4.25)

therefore the projected stress σn+1 can be written:

σn+1 = σn + C : (∆ε − ∆εp) = σtrial
n+1 − C : ∆εp (4.26)

leading to the expression of the increment of plastic strain:

∆εp = C−1 :
(
σtrial

n+1 − σn+1

)
(4.27)

The local algorithm for concrete is presented in Algorithm 6.
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Algorithm 6 Concrete local algorithm
1: Compute the strain increment ∆ε from the generalized displacement increment ∆ũ
2: Form the trial stress σtrial

n+1
3: Compute f trialn+1 = f (σn+1, pn)
4: if then f trialn+1 > 0 then
5: Compute (σn+1, pn+1) and ∆γi according to Section 4.2.2.3
6: ε

p
n+1 = ε

p
n + C−1 : (σtr

n+1 − σn+1)
7: else
8: σn+1 = σ

trial
n+1, ε

p
n+1 = ε

p
n, pn+1 = pn

9: end if
10: Compute the tangent stiffness matrix C

ep,c
n+1← see Section 4.2.2.4

4.2.2.4 Computation of the algorithmic elastoplastic tangent moduli

We denote by Cact the array containing the indices of the saturated constraints, that is the
constraints for which fi(σn+1, pn+1) = 0. Then, according to [Simo and Hughes, 1998], the
algorithmic tangent moduli in the case of multisurface plasticity is expressed by:

Cep = Dn+1 −
∑

i ∈ Cact

∑
j ∈ Cact

Dn+1 : ∂σ fi,n+1 ⊗ Dn+1 : ∂σ f j,n+1

∂σ fi,n+1 : Dn+1 : ∂σ f j,n+1
(4.28)

where Dn+1 is defined by:

Dn+1 =

C−1
n+1 +

∑
i ∈ Cact

∆γi∂
2
σσ fi,n+1


−1

(4.29)

The derivatives ∂σ fi,n+1 and ∂2
σσ fi,n+1 are necessary for the computation of the tangent stiffness

moduli. The criterion is expressed in the principal stress space, and its derivatives according
to the general stress are required. The chain rule yields the following expression:

∂ fi
∂σ
=
∂ fi
∂Σ

:
∂Σ

∂σ
(4.30)

It can be shown that the second derivative has the following expression:

∂2 fi
∂σ2 =

∂Σ

∂σ
:
∂2 fi
∂Σ2 :

∂Σ

∂σ
+
∂ fi
∂Σ

:
∂2Σ

∂σ2 (4.31)

The first and second derivatives ∂Σ fi and ∂2
ΣΣ fi are easy to obtain since the yield surface is

analytically expressed in the principal stress. In particular, ∂2
ΣΣ fi = 0 for plans, leading to the

new relation:
∂2 fi
∂σ2 =

∂ fi
∂Σ

:
∂2Σ

∂σ2 (4.32)
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We denote by σ1, σ2 and σ3 the 3 eigenvalues of σ, and by n1, n2 and n3 their respective
eigenvector. The term ∂σΣ is then expressed:

(∂σΣ)lpqr =


∂σl

∂σqr
if l = p

0 otherwise
, where

∂σl

∂σqr
= (nl ⊗ nl)qr (4.33)

and
∂nl

∂σqr
=

3∑
p=1,p,l

nl ⊗ np + np ⊗ nl

σl − σp
· nl (4.34)

Equation (4.34) leads to the expression of ∂σσΣ. The demonstration of Equation (4.33) can
be found for example in [Silhavy, 2013]. The derivatives ∂σ fi and ∂2

σσ fi is computed with
Equations (4.32) to (4.34).

4.2.3 Modeling of steel rebars

Concrete has been fully described as an elastoplastic material in Section 4.2.2. The same
procedure is now adopted for the definition of the steel rebars.

4.2.3.1 Kinematic modeling of the steel rebars

The steel rebars are often modeled in reinforced concrete models by using homogeneization
methods. Benefiting from the thin cross-sectional dimensions of a rebar compared to the
dimensions of a concrete beam and from the higher Young modulus of steel compared to
concrete, we can reasonably consider the rebars as 1D bar elements. All variables related to
steel are thus expressed in scalar forms in the own coordinate system of a rebar: the stress σst,
the total strain εst, the plastic strain εpst and the displacement vst.

Denoting by s the local axis of a rebar, its elastoplastic boundary value problem can be
expressed as follows:

dσst

ds
+ bst = 0

σst = Est(εst − εpst)
εst =

dvst

ds
Ûεp = γ sign(σ)
γ ≥ 0, f st ≤ 0, γst f st = 0
γ Ûf st = 0


on Ωst × [0,T] , (4.35)

whereΩst is the domain occupied by steel and f st is the 1D yield criterion. The youngmodulus
of the rebars is Est and the elastoplastic tangent moduli is denoted by Eepst .
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4.2.3.2 Elastoplastic behavior and yield criterion of the steel reinforcement

The steel rebars are considered to be elastoplastic material with an isotropic hardening.
Although it would be easy to distinguish different steel properties in our model, we choose
here to consider that all the rebars share the same material properties in order to avoid
cumbersome notations. Thus, the isotropic hardening modulus of the rebars is denoted by Hst,
and their yield limit f sty . The strain-stress curve of the steel rebars is shown on Figure 4.3.

σ

ε

− f sty

f sty

1
Est

1 Est
p

Figure 4.3 – Elastoplastic model used for the steel rebars

The Von-Mises criterion with isotropic hardening is expressed in 1D as follows:

f st(σst, pst) = |σst | − f sty − Hstpst (4.36)

with Hst =
EstEst

p

Est + Est
p
, Est

p being defined on Figure 4.3.

4.2.3.3 Local integration of the equilibrium equations

The local integration of Equation (4.35) yields to the 1D return mapping algorithm presented
in Algorithm 7.
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Algorithm 7 Local 1D return-mapping algorithm for steel rebars
1: Compute the strain increment ∆εst from the displacement increment vst
2: Form the trial stress σtrial,st

n+1 = σst
n + Est∆εst

3: Compute f trial,stn+1 = f st(σtrial,st
n+1 )

4: if f trial,stn+1 > 0 then

5: ∆γst =
f st,trialn+1

Est + Hst

6: σst
n+1 =

[
1 − ∆γst

|σtrial,st
n+1 |

]
σtrial,st

n+1

7: ε
pst

n+1 = ε
pst
n + ∆γ

st sign(σtrial,st
n+1 )

8: pstn+1 = pstn + ∆γ
st

9: else
10: σst

n+1 = σ
trial,st
n+1 , εpst

n+1 = ε
pst
n , pstn+1 = pstn

11: end if
12: Compute the tangent moduli Eep,st

The tangent moduli is given by:

Eep,st =
∆σst

n+1
∆εstn+1

(4.37)

4.2.4 Kinematic relation between rebars and concrete

Concrete and steel have been assigned an elastoplastic behavior. We now need to describe the
kinematic relation between the two materials.

4.2.4.1 Procedure adopted

The choice adopted in the present paper is to connect steel to concrete by expressing explicitly
the degrees of freedom of the rebars in terms of the degrees of freedom of concrete. In
other words, the steel rebars are driven by the degrees of freedom of concrete and both global
tangent stiffness matrice [K ep,c] and [

K ep,st] of Equation (4.11) are expressed according to
this kinematics.

As it will be described in Section 4.2.4.2, this method enables the description of rebars
with any orientation in the 3D global axis system. Therefore, very complex reinforcements
can be described by the model. Moreover, since the kinematics adopted for the model is
the kinematics of concrete, we avoid unwanted bond-slip issues. It describes correctly the
cohesion between rebars and concrete aggregates, assuming that any cracking or debonding

137



Higher-order elastoplastic beam model for reinforced concrete

x3

x1

x2 v1

v2

N1

N2

Ω

Figure 4.4 – Modeling of a steel rebar for its integration in the stiffness of the beam element

occur.

The computation of the global elastoplastic tangent stiffness matrix [K ep] is given in Section
4.2.4.2, then the discretization of the rebars is described in Section 4.2.4.3.

4.2.4.2 Computation of the global tangent stiffness matrix

We consider a single bar defined by two nodes N1 and N2 into a concrete structure represented
by its domain Ω as shown on Figure 4.4. The respective positions of the nodes are x1 =
(x1

1, x1
2, x1

3) and x2 = (x2
1, x2

2, x2
3). Their respective displacement in the 3D space are u1 =

(u1
1, u

1
2, u

1
3) and u2 = (u2

1, u
2
2, u

2
3), while their scalar displacement in the local coordinate system

of the bar are v1 and v2. The local tangent stiffness of the bar is:

kep,st =
Eep,stSst

lst0

(
1 −1
−1 1

)
(4.38)

where Eep,st is defined in Equation (4.37), and Sst is the section of the bar.

We need to define the kinematics of concrete in order to express the stiffness of the bar
according to the degrees of freedom of concrete. We assume that a 3D displacement u can
expressed in terms of the generalized displacement ũ as follows:

u1 = T 1 ũ, and u2 = T 2 ũ (4.39)

If ndof is the number of degrees of freedom of the model, then the matrices T 1,T 2 ∈ R3×ndof .
T 1 and T 2 are the interpolation matrices at the respective positions x1 and x1 linking the 3D
displacements of the nodes to the degrees of freedom of concrete.

The angles between the bar and the three axis of the global coordinate system are denoted by
θ1, θ2 and θ3. Denoting ci = cos θi, and θ = (c1, c2, c3), the scalar local displacements v1 and
v2 can be expressed v1 = θu1 and v2 = θu2. Consequently, the tangent stiffness matrix of the
rebar is: [

K ep,st] = tAkep,stA, with A =

(
θT 1

θT 2

)
(4.40)
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Ω

Figure 4.5 – Discretization of a longitudinal rebar and a transversal frame

Equation (4.40) is actually the application of Equation (4.13) on the 1D bar element.

4.2.4.3 Discretization of the rebars

The rebar are discretized in bar elements. This discretization is especially necessary for non
straight rebars. The nodes numerically represent the structural embedding of steel in concrete.
The total number of nodes of the rebar i is denoted by nnode(i) where i ∈ [1, nrebar] and nrebar
is the total number of rebars. The rebar si is decomposed into nelem(i) bar elements. nelem(i)
depends on the shape of the rebar:

nelem(i) =
{

nrebar(i) if the rebar is closed
nrebar(i) − 1 else (4.41)

This discretization is illustrated on Figure 4.5: a longitudinal rebar is discretized with
nnode(1) = 14 nodes, forming 13 bar elements, and a transversal frame is discretized with
nnode(2) = 8 nodes, forming 8 bar elements. The local integration presented in Algorithm 7 is
computed on each bar element of each rebar.

According to the computation of the tangent stiffness matrix of steel described in Section
4.2.4.2, the global tangent stiffness matrix of Equation (4.11) can be decomposed on each bar
element of each rebar:

[K ep] = [K ep,c] +
nrebar∑

i=1

nelem(i)∑
j=1

[
K ep,st] i, j (4.42)

It is important to note that the discretization of the rebars is totally independent from the
discretization of the concrete volume. The local integrations of equilibrium equations of
concrete and steel can therefore be processed in any order. A mesh sensitivity study is carried
out in Section 4.4.5.

139



Higher-order elastoplastic beam model for reinforced concrete

4.2.4.4 Global algorithm for the reinforced concrete model

The global algorithm of the present elastoplastic reinforced concrete model is presented in
Algorithm 8.

Algorithm 8 Global algorithm for the elastoplastic reinforced concrete model
1: Initialize the state variables S0 =

{
u0, u

st
0 , ε0, ε

st
0 , ...

}
2: Initialize

{
F int} = 0

3: for n = 0 to M − 1 do
4: Initialize {∆ũ} = {0}
5: Compute generalized residual force vector {R} = {

F int
n+1

}
+

{
Fext

n+1
}

6: r ref = ‖{R}‖
7: while r > εr ref do
8: Compute the stiffness matrix [K ep] = [K ep,c] + [

K ep,st]
9: Solve [K ep] {δũ} = {R}
10: Update {∆ũ} = {∆ũ} + {δũ}
11: Compute locally {σn+1},

{
ε
p
n+1

}
, {pn+1} and Cep← Algorithm 6

12: Compute locally
{
σst

n+1
}
,
{
ε
pst
n+1

}
,
{
pstn+1

}
and Cep,st← Algorithm 7

13: Compute
{
F int} = {

F int,c} + {
F int,st}

14: Update {R} and r = ‖{R}‖
15: end while
16: Update the 3D total displacement un+1 = un + ∆u
17: end for

4.3 Definition of a beam element

This section is a short reminder of the elastoplastic beam model introduced in Chapter III.
The definition of the reinforced concretemodel as defined in the previous section could actually
be combined with any reduced or volumic model.

4.3.1 The AELD beam model

The present elastoplastic model for reinforced concrete has been presented for any kinematics
or 3D finite elements. The kinematics is the link between the general displacement vector {ũ}
and the 3D displacement vectors {u} and {

ust}. So far, this relation has only been represented
by the matrix T in Equation (4.39). This section is dedicated to the short presentation of the
kinematic model used for the case studies of Section 4.4.

This paper is based on the elastoplastic beammodel developped by [Corre et al., 2017b] called
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the Asymptotic Expansion Load Decomposition (AELD) beammodel. The elastic kinematics
of the element is based on a higher-order elastic beam model using the asymptotic expansion
method to extend its kinematics [Ferradi et al., 2016]. This model introduces new degrees
of freedom associated to arbitrary loads as well as eigenstrains applied to the beam [Corre
et al., 2017a]. In order to capture the effect of plasticity on the structure, this elastoplastic
model considers the plastic strain as an eigenstrain imposed on the structure and new degrees
of freedom are added on the fly into the kinematics during the incremental-iterative process.

This higher-order elastoplastic beammodel has been initially developpedwith J2-plasticity. Its
adaptation to the elastoplastic behaviors presented in Section 4.2.2 and 4.2.3 is straightforward.
The main elements of this model are briefly recalled.

4.3.2 Description of the beam kinematics

The beam element represents the concrete matrix of the structure and the concrete kinematics
drives the steel rebars. Therefore the elastoplastic boundary value problem and the elastoplastic
framework considered here are those of concrete presented in Section 4.2.

We consider a beam occupying the prismatic domain Ω. Considering a point (x1, x2, x3) ∈ Ω,
its 3D displacement u can be expressed with the following expression:

u(x1, x2, x3) =
n∑
i

ûi(x1, x2)
m∑
j

Nj(x3)ũi, j (4.43)

where ûi are displacement modes defining the kinematics, Nj are the longitudinal interpolation
functions and ũi, j are the generalized displacements. n and m are respectively the number of
displacement modes and the number of interpolation functions.

The displacement modes ûi are defined on the 2D cross-section of the beam. As described in
Section 4.3.1, the displacement modes belong to 3 different categories of modes. Some modes
only depends on the geometry of the cross-section. The participation of the loads applied on
the structure is captured by other modes, specific to the forces or the eigenstrains considered.
At last, some other modes capture the displacements due to the apparition of plasticity in the
beam.

The computation of the modes specific to the geometry and to the forces applied is presented
in [Ferradi et al., 2016]. [Corre et al., 2017a] presents the modes specific to eigenstrains while
the computation of modes for plasticity are developed in [Corre et al., 2017b]. For boundary
conditions different from clamped extremities (including linear or surfacic supports) additional
modes specific to the boundary conditions considered are also added in the collection ofmodes.
The boundary conditions are imposed by considering the supports as external forces imposed
on the structure. New degrees of freedom associated to the supports are introduced. The
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method is presented in [STRAINS, 2016].

4.3.3 Numerical approximation

The modes are computed on a transversal mesh of the cross-section S. The discretization
used is the same as the one used in [Corre et al., 2017a] and [Corre et al., 2017b]: the
modes are computed by using finite elements. The finite elements chosen are triangles, their
interpolation is quadratic. Strain and stress are computed and integrated at the 3 Gauss points
of each triangle element, and the modes of displacement are computed on the nodes of the
transversal mesh. We use NURBS basis functions for the longitudinal interpolations. The
reasons motivating this choice are explained in [Corre et al., 2017a]. We also define a set of
Ns longitudinal integration points for the integration of these interpolation functions.

4.3.4 Local integration of the equilibrium equations

Equation (4.8) must be integrated over the 3D volume of the structure. A 3D discretization of
the structure is therefore necessary. This 3D discretization is based on the transversal and lon-
gitudinal meshes already defined: the local equations are integrated on a set of cross-sections
all transversally discretized with the cross-sectional mesh described previously and placed at
the longitudinal positions of the Ns longitudinal integration points. Assuming a generalized
displacement increment ∆ũ, the corresponding 3D strain increment ∆ε is computed on the
Gauss points of each one of the Ns cross-sections. This way, the beam is decomposed into
sections where the local equations are integrated and the states variables are computed. We
naturally choose to place these sections at the positions of the longitudinal integration points
of the interpolation functions. We ensure that Ns is greater than m.

4.4 Validation of the model

This section suggests a procedure in order to validate the reinforced concrete beam model
presented in the two previous sections. A reinforced T-beam is first submitted to a load case in
elasticity in order to validate the connection between concrete and rebars. The model is then
submitted to an elastoplastic load case, a classic Von-Mises cirterion being considered. The
results provided by the beam solutions are compared to a volumic reference solution in both
cases. This second step validates the elastoplastic beam algorithm. Finally, the yield criterion
designed in Section 4.2 is implemented and results are commented.

The model has been described in the previous sections with a new model for concrete. The
Rankine’s criterion being not implemented in 3D in classic finite softwares (Code_Aster,
Abaqus), a comparison of a solution using the present model with a reference solution using a
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different yield criterion would not be relevant. Therefore we suggest to validate and evaluate
our model with a step-by-step procedure. First, the model is tested on a case study in elasticity
and evalutated by a comparison with a reference solution. This first step validates the inclusion
of the rebars in the model presented in Section 4.2.4. Then, the global elastoplastic element
is validated by using a Von-Mises cirterion for both concrete and steel. This widely used
criterion affords an easy comparison with a solution computed on an other finite element
software. The local integration algorithm used is the classic radial return algorithm. Finally,
the Von-Mises criterion and the radial return algorithm are replaced by the Rankine criterion
and the local algorithm respectively defined in Sections 4.2.2.2 and 4.2.2.3.

4.4.1 Reinforced T-beam in elasticity

In order to validate the integration of rebars in the elastoplastic model, a first case study is
conducted in linear elasticity. The results are compared with a 3D reference model computed
on the finite element software Code_Aster.

4.4.1.1 Description of the case study

We consider a 10 m-long T-beam simply supported at each end. The section of the T-beam
studied is presented on Figure 4.6. The load is applied over the entier width of the table,
between the longitudinal positions x3 = 4.5 m and x3 = 5.5 m as shown on Figure 4.7.

d = 0.1 m

d d

d
d

e

e

e

e = 0.086 m 0.2 m

0.2 m

0.8 m

1.4 m

0.1 m

3.6 m

0.2 m

0.4 m

Figure 4.6 – Geometry of the T-beam section

The beam is reinforced with steel rebars. The cross-sectional reinforcement is presented on
Figure ??. The beam is reinforced with 2 × 3 longitudinal rebars and 11 frames between
x3 = 0 and x3 = L. The boundary conditions and the longitudinal reinforcement are shown
on Figure 4.9. The left support is applied on the entire width of the cross-section and between
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F

Figure 4.7 – 3D description of the beam and its
load

Figure 4.8 – Surfaces modeling the rebars in
the reference solution

x3 = 0 m and x3 = 0.1 m where it freezes the three translations. The right support is applied
on the entire width of the cross-section between x3 = 9.9 m and x3 = 10 m where it freezes
the cross-sectional translations.

L = 10 m

1 mx3

x2

Figure 4.9 – Boundary conditions and longitudinal reinforcement

Young modulus Poisson’s ratio
concrete 20 GPa 0.2
steel 200 GPa -

Table 4.1 – Material properties of the T-beam

Thematerials property of the beam are gathered in Table 4.1. The diameters of the longitudinal
rebars and the frames are respectively 16mm and 10mm. All the distances indicated on Figure
4.6 are given according to the central axis of the rebars.

The beam is loaded by a force F = S × P with S = 3.6 m2 and P = 50 kN. The load is
described on Figure 4.7.
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4.4.1.2 Reference solution

The reference solution is computed with the finite element software Code_Aster. The con-
crete is modeled with 3D elements. The elements used here are tetrahedron with quadratic
interpolation and 10 Gauss points (TETRA10).

The rebars are represented as uniaxial grid, and modeled with anisotropic membrane elements
[De Soza, 2015]. The membranes are defined by surfaces based on the 3D mesh and are
consequently meshed with triangles. The 2D interpolation of the triangles is also quadratic
(T6 elements). Gauss points are added in the triangles for the integration of the steel behavior.
The considered surfaces are defined on Figure 4.31.

The longitudinal rebars are modeled with two horiztonal membranes represented in blue on
Figure 4.31 and the frames are modeled with two vertical membranes represented in red. Each
membrane is characterized by a section per unit length (in m2/m) and by the orientation of the
rebars.

The mesh characteristics for the reference solution are presented in Table 4.2.

concrete longitudinal rebars frames
Reference solution 146067 TETRA10 2136 T6 8908 T6
Beam solution 477 T6 × 81 21 1D bars 12 1D bars

Table 4.2 – Mesh characteristics for the reference solution

4.4.1.3 The beam solution

One only cross-sectional mesh is used in the beam model as explained in Section 4.2.4.3. For
the present case study, the cross-section of the T-beam is meshed with 477 quadratic triangles.
The mesh is shown on Figure 4.10.

Figure 4.10 – Cross-sectional mesh of the T-beam for the beam solution

The longitudinal interpolation functions are third-order NURBS and are defined by 21 knots
evenly distributed along the longitudinal axis of the beam. The element is locally integrated
on 81 integration section also evenly distributed along its axis. The kinematics of the element

145



Higher-order elastoplastic beam model for reinforced concrete

is composed of 28 displacement modes: 12 specific to the geometry, 6 modes specific to the
load applied and 10 modes specific to the boundary conditions.

The longitudinal rebars and the frames are respectively discretized with 21 and 12 bars.

4.4.1.4 Results

Once the problem solved, the 3D displacement of the beam solution can be easily assembled
according to Equation 4.43. The norm of the 3D displacement computed by the beam solution
and the reference solution are compared on Figure 4.11 (the same scale is adopted for both
deformed structures and the magnification factor is 500).

Figure 4.11 – Deformed shape computed by the beam solution (left) and by the reference
solution (right) in elasticity

Beyond the consistency of the two solutions, the ability of the beam solution to capture cross-
sectional displacements can be here underlined. Indeed, the lowering of the wings of the
T-beam is well described by the beam model thanks to its higher-order kinematics.

An interesting asset of the solution adopted for the modelling of the rebars in the beam element
is that it yields a 3D viewing of the rebar displacements as shown on Figure 4.12

In order to better estimate the validity of the beam solution, the displacement and stress of the
rebars computed by each solution are compared on Figures 4.13 and 4.14. The rebars being
not individually modeled in the 3D model, we use results computed by the reference solution
at the positions correponding to the rebars defined in Figures 4.6 and 4.9.

On Figure 4.13, the vertical displacement of two rebars (denominated by ST_0 and ST_1)
are presented according to the longitudinal position. The beam solution shows consistent
results when compared to the reference solution. The values computed by the beam solution
are slightly higher in absolute value: a maximum relative distance of 2.1% and 2.2% is
respectively observed for ST_0 and ST_1. This gap could be reduced by a finer discretization
of the rebars.
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Figure 4.12 – 3D viewing of the displacement of the rebars (absolute displacement in meters)

The axial stress of ST_0 and ST_1 are presented on Figure 4.14. The beam solution matches
with the reference solution: the relative distance between the two solutions at mid-span of the
beam (x3 = 5 m) are respectively 1.7% and 1.6% for ST_0 and ST_1. The stress computed by
the reference solutions shows oscillations close to the supports. These numerical effects are
regularized by the beam model.

ST_0

(a) Vertical displacement in the rebar ST_0

ST_1

(b) Vertical displacement in the rebar ST_1

Figure 4.13 – Vertical displacement computed by the beam model in the rebars ST_0 and
ST_1 and by the reference model at the corresponding positions
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ST_0

(a) Axial stress in the rebar ST_0

ST_1

(b) Axial stress in the rebar ST_1

Figure 4.14 – Axial stress computed by the beam model in the rebars ST_0 and ST_1 and by
the reference model at the corresponding positions

Finally, the components of the concrete stress computed by the two solutions at mid-span of
the beam (x3 = 5 m) are compared. Only the axial components and σ12 are presented in
Figure 4.15, the shear stresses σ13 and σ23 being zero by symmetry.

4.4.2 Reinforced T-beam in elastoplasticity

Section 4.4.1 has proven the validity of the present reinforced concrete model in elasticity.
Following the procedure defined previously, the model is now studied in elastoplasticity with
a Von-Mises criterion for both concrete and steel.

4.4.2.1 Description of the case study

The case study is the same as the one described in Section 4.4.1.1. Only thematerial properties
are changed and presented in Table 4.3. A Von-Mises criterion and an isotropic hardening is
adopted for both steel and concrete. The dimensions of the rebars are unchanged.

Young Modulus Poisson’s ratio Yield stress Plastic modulus
concrete 20 GPa 0.2 10 MPa 2 GPa
steel 200 GPa - 300 MPa 20 GPa

Table 4.3 – Material properties of the elastoplastic T-beam

148



4.4. Validation of the model

(a) σ11 computed by the beam solution (left) and by the reference solution (right) in kPa

(b) σ22 computed by the beam solution (left) and by the reference solution (right) in kPa

(c) σ33 computed by the beam solution (left) and by the reference solution (right) in kPa

(d) σ12 computed by the beam solution (left) and by the reference solution (right) in kPa

Figure 4.15 – Stress computed at mid-span of the beam (x3 = 5 m) by the beam solution and
the reference solution
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The beam is loaded by a force F(t) = S × P(t) with S = 3.6 m2. P takes values between 0
and 700 kPa. The load is discretized into 5 increments between 0 and 500 kPa and into 10
increments between 500 kPa and 700 kPa.

4.4.2.2 Results

During this case study, the yield stress of concrete and the yield stress of the rebars are
successively reached. This test provides therefore a good assessment of the accuracy of
the elastoplastic beam element presented here. The deformed shapes computed by the two
solutions are first compared on Figure 4.16 (the magnification ratio is 20). As for the elastic
case the beam solution describes correctly the lowering of the wings of the T-beam.

Figure 4.16 – Deformed shape computed by the beam solution (left) and by the reference
solution (right) in Von-Mises elastoplasticity (in meters)

In order to best evaluate the elastoplastic response of the structure computed by the beam
solution, the vertical displacement of the rebars ST_0 and ST_1 are presented on Figure 4.13.
The response of both rebars matches very well with the reference solution. A maximum
relative distance of 7.5 10−3 and 7.1 10−3 is respectively observed for ST_0 and ST_1 between
the two solutions.

The maximum vertical displacement at mid-span of the beam is represented according to
the load applied on Figure 4.18. This displacement corresponds to the point located at the
middle bottom of the section. As shown on the figure, the nonlinearity of the elastoplastic
behavior is well captured by the beam element. The yield stress of concrete is reached after
the second increment while the yield stress of steel is reached after the fourth. At the last
increment, the beam solution shows a displacement 1.83% larger than the reference solution.
This is consistent with the fact that the beam element appears to be slightly less stiff than the
reference solution (see Figures 4.13 and 4.17). We would normally have expected a stiffier
response of the beam solution. The explaination must be found in the modelling adopted for
the rebars since the modellings of the reference and beam soltions are neither fully satisfactory
nor equivalent.

The stress in rebar ST_0 at x3 = 5 m is shown on Figure 4.19. Three stages are easily
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ST_0

(a) Vertical displacement in the rebar ST_0

ST_1

(b) Vertical displacement in the rebar ST_1

Figure 4.17 – Vertical displacement computed by the beam model in the rebars ST_0 and
ST_1 and by the reference model at the corresponding positions at the last increment

identifiable. The two materials are first elastic and the stress progresses linearly in the rebar.
Once concrete has reached plastification, the stress increases faster until the yield stress of
steel is reached. The stress then progressed beyong the yield stress according to the plastic
modulus. Since the ratio between the Young modulus of steel and concrete is 10 and the
concrete yield stress is 10 MPa, the concrete yield stress is reached when the stress is 100 MPa
in steel. The yield stress of each material is numerically reached between two increments as
shown on Figure 4.19. A better time discretization should make the three different stages even
more distinct.

As long as the rebars are elastic, the relative distance between the two solutions is about 10−2.
Once the steel yield stress is reached a relative distance of 2.5 10−2 is observed. This gap
could be reduced by a finer discretization of the rebars.
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Figure 4.18 – Maximum vertical displacement at mid-splan of the beam (x3 = 5 m)

ST_0

plastification of rebars

plastification of concrete

steel yield stress

concrete yield stress

Figure 4.19 – Stress in ST_0 at x3 = 5 m according to the load applied
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(a) σ11 computed by the beam solution (left) and by the reference solution (right) in Pa

(b) σ22 computed by the beam solution (left) and by the reference solution (right) in Pa

(c) σ33 computed by the beam solution (left) and by the reference solution (right) in Pa

(d) σ12 computed by the beam solution (left) and by the reference solution (right) in Pa

Figure 4.20 – Stress computed at mid-span of the beam (x3 = 5 m) by the beam solution and
the reference solution
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Finally, the stresses at mid-span of the beam are presented in Figure 4.20 at the last increment.
The normal stress σ33 is the highest stress in value and the best described by the beam solution
when compared to the 3Dmodel. The axial stressσ22 is the less satistactory, but it is consistent
with the observation made in elasticity in Figure 4.15.

4.4.3 Reinforced beam with the new concrete model

The numerical behavior of the present reinforced concrete elastoplastic beam element has
been validated by the two previous sections. The new concrete model presented in Section
4.2.2 is now used instead of the Von-Mises criterion. The local radial return algorithm is
therefore replaced by the local projection algorithm described in Section 4.2.

4.4.3.1 Description of the case study

We consider a rectangular beam for the present case study: the cross-section of the beam is a
rectangle of dimensions 0.4 m×1.3 m. The beam is still 10 m long but is now clamped at both
ends. As a consequence the reinforcement is modified. The cross-sectional reinforcement
of the section is presented on Figure 4.21: 3 longitudinal rebars are placed at the bottom of
the section along the complete length of the beam while 3 rebars are placed at the top of
the section between x3 = 0 m and x3 = 3.5 m and their symetric counterparts are placed
between x3 = 6.5 m and x3 = 10 m. This reinforcement is motivated by the sign shift of the
bending moment. The longitudinal description of the reinforcement and the load applied on
the structure are shown on Figure 4.22.

(1) (2)
e d d e

e d d e

e

e

e = 0.086m
d = 0.1m

Figure 4.21 – Cross-sectional reinforcement for x3 ∈ [0, 3.5] ∪ [6.5, 10] (1) and x3 ∈ [3.5, 6.5]
(2)
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F

4.5m 5.5m 6.5m3.5m

Figure 4.22 – Longitudinal reinforcement and boundary conditions

The material properties of the reinforced beam are presented in Table 4.4.

Young Modulus Poisson’s ratio Plastic modulus
concrete 20 GPa 0.2 2 Pa
steel 200 GPa - 2 GPa

Table 4.4 – Material properties of the rectangular beam

The plastic modulus of concrete is intensionally very low. The plastic modulus of steel has
been chosen lower than actual values in order to emphasize the nonlinearity of the global
response of the structure. As explained in Section 4.2.2, an isotropic hardening is used only
to avoid potential localization problems. The tension strength of concrete is ft = 2MPa and
its compression resistance is fc = 40 MPa. The rebars still follow a Von-Mises criterion with
an isotropic hardening and their yield stress is 300 MPa.

The load is decomposed into 30 equivalent increments of Ft = 0.1 MPa. The final load is
therefore F30 = 3 MPa.

4.4.3.2 The beam solution

The cross-section is meshed with 102 quadratic triangular elements. As for the previous case
study, the interpolation functions are third-orderNURBSdefined by 21 knots evenly distributed
along the beam axis. The local integration is processed on 81 integration sections also evenly
distributed along the longitudinal axis. The kinematics is composed of 18 displacement
modes: 12 modes specific to the geometry and 6 modes specific to the load applied.

4.4.3.3 Results

The maximum vertical displacement (corresponding to the point located at the middle bottom
of the mid-span section) is presented on Figure 4.23. The successive plastification of concrete
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and steel are identified during the computation and indicated on the figure. Three stages can
be distinguished:

1. Concrete and steel are elastic
2. Concrete is plastic and steel is elastic
3. Concrete and steel are plastic

The stage before the plastification of concrete is short but can be identified on the figure. Once
concrete has reached ft , the loads are transmitted to the clamped end mainly by the rebars.
The global stiffness of the structure is reduced and the displacement increases faster. This
increase is then amplified by the plastification of the rebars.

cracking at mid-span

first plastification of concrete

first plastification of steel

Figure 4.23 – Maximum vertical displacement computed by the beam model

On Figure 4.24 is shown the stress computed in the rebar ST_3 (defined on the figure) as
function of the load applied on the beam. The stress represented is computed close to the
clamped end (x3 = 0.25 m) where plastification first occurs. The three stages listed above are
clearly illustrated. Both materials are elastic until the yield stress of concrete is reached. Since
the ratio between the respective Young modulus of steel and concrete is 10 and because the
traction resistance of concrete is 2 GPa, strees in steel is 20 GPa when ft is reached in concrete.
Once concrete has plastified, the rebar remains elastic but concrete no longer participates in
the load transmission, leading to a new linear stage with a more important increase of the steel
stress. Enventually the stress in the rebar reaches the yield stress (300 MPa). The evolution of
the stress is then limited due to the low plastic modulus adopted.

Figure 4.24 shows a satisfactory local reponse of the element. The global reponse of the
structure to the load applied is illustrated on Figures 4.25 and 4.26. The principal stress of
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steel yield stress

cracking at mid-span

plastification of the rebar

concrete 
reached ft

plastification of concrete

ST_3

Figure 4.24 – Stress in the rebar ST_3 closed to the clamped extremity (x3 = 0.25 m)

concrete are computed in the whole element, and the compression eigenvalue (the lowest
eigenvalue) is reprented on Figure 4.25 and the traction eigenvalue (the highest eigenvalue)
is represented on Figure 4.26. Both figures show the same sidewall of the beam at the 6
successive time steps {t5, t10, t15, t20, t25, t30}.

The minimum eigenvalues of the 6 time steps take values between −41 MPa and 1 MPa,
describing the distribution of compression stresses in the structure. The chosen lower bound
is smaller than the compression resistance fc because of the small isotropic hardening adopted.
The principal stress are obtained by post-processing the general stress. This step can lead to
positive compression eigenvalues, explaining the higher bound of 1 MPa. The 6 successive
time steps describe clearly the development of two struts in the structure from the load
application to the extremities. The compression limit is first reached at the clamped end at
t15 and then at the load application area at t20. The compression plastified area (in blue) then
expands and the compression increases in the two struts.

This load transmission was expected and highlights the ability of the present beam model to
represent 3D phenomenon out of its longitudinal axis.

The maximum eigenvalues take values between −0.2 MPa and 2.2 MPa, describing the
distribution of tensile stresses in the strucutre. The scale is slightly extended in traction and
compression for the reasons mentioned above. The traction limit fc is reached as of time step
t5. This is consistent with Figures 4.23 and 4.24 where the plastification of concrete seems
to occur at t2. The three expected areas in traction are distinctly described. These traction
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eigenvalues are complementary and consistent with compression eigenvalues observed on
Figure 4.25. The empty areas are due to eigenvalues out of scale. Finally the normal stress

t5

t10

t15

t20

t25

t30

x2

x3

Figure 4.25 – Evolution of the minimum eigenvalues in the beam (in kPa)

computed at mid-span of the beam (x3 = 5 m) is presented on Figure 4.27. The same 6
time steps are considered. The scale is [−42 MPa, 2.2 MPa]. On this figure, the equilibrium
between traction and compression is progressively setting up. The lower half of the section
reaches traction limit as of time step t5. Compression then gradually expends in the upper half
until the equilibrium is reached at t30.

By showing the expected reponse of the structure, this case study has confirmed the efficiency
of the present reinforced concrete elasotplastic beammodel. Figures 4.25 and 4.26 demonstrate
that the introduction of our new concrete model leads to a relevant 3D global response of the
beam. Moreover, it shows the great ability of this beam element to describe 3D phenomenon
such as the formation of the struts exhibited here.

4.4.4 Validity of the elastoplastic model

The main disadvantage of an elastoplastic approach is the infinite energy it can dissipate after
yield stress has been reached. Concrete is known to be a brittle material in tension and it
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x3

Figure 4.26 – Evolution of the maximum eigenvalues in the beam (in kPa)

t5 t10 t15 t20 t25 t30

Figure 4.27 – Evolution of the normal stress σ33 is the mid-span cross-section (x3 = 5 m)

cannot sustain high strains. Based on the results presented in the previous section, we suggest
a fracture mechanics approach. Considering the traction eigenvalues presented on Figure 4.26,
we identify on Figure 4.28 the concrete volume Vcrack in traction under the load application as
the area most likely to suffer from cracking. The energy needed to open a vertical crack in the
middle of this area is compared to the energy dissipated in Vcrack.

Based on Figure 4.27, we consider a crack opening of width b = 0.4 m and height h = 0.8 m
(approximately 60% of the height of the cross-section). The energy needed to open this crack
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h
Vcrack

x3

x2

Figure 4.28 – Definition of the potential cracked area

is thus:

Ecrack = G f × b × h (4.44)

whereG f is the fracture energy. According to the normCEB-FIP [Comité Euro International du Béton,
1993], G f is defined as follows:

G f = G f0

(
fc

10

)0.7
. (4.45)

G f0 is a reference fracture energy based on the size of the aggregates in concrete. Considering
an average size of 20 mm, G f0 = 36 N.m/m2 and Equation (4.44) yields:

Ecrack = 30.4 N.m (4.46)

This energy must be compared to the energy dissipated in Vcrack defined by:

Ediss(t) =
∫ t

0

∫
Vcrack

σ(τ) : Ûεp(τ)dVdτ (4.47)

The time-discretization of Equation 4.47 then yields:

Ediss(tn) =
n∑

k=1

[∫
Vcrack

σn : ∆εpndV
]
. (4.48)

The computed dissipated energy is presented on Figure 4.29. As long as concrete is elastic, no
energy is dissipated since εp = 0. Once concrete stress reaches ft , the energy increases linearly,
reflecting a linear evolution of the plastic strain increments (by neglecting the hardening of
concrete, the stress can be considered as constant). The energy drastically increases as soon
as plastification in the rebars is too important. The energy needed to open the crack is reached
at t25.
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Ecrack

Figure 4.29 – Energy dissipated in Vcrack according to the load applied

Time step t25 corresponding to the crack opening at mid-span of the beam has been indicated
on Figures 4.23 and 4.24. All the time steps subsequent to t25 can therefore be considered not
valid. This fracture mechanis approach has notably been used in [Radfar, 2013] for the study
of peeling off in a reinforced concrete beam submitted to three points bending.

4.4.5 Mesh sensitivity

4.4.5.1 Case study

The beam element and the rebars have different and independent meshes, as mentionned in
Section 4.2.4.3. This section is dedicated to the study of its mesh sensitivity. To this purpose,
we consider the beam represented on Figure 4.30 with the I-section presented on Figure 4.31.
This example is taken from the validation document [Flejou, 2011] of the documentation of
the finite element software Code_Aster.

L = 5 m

F

Figure 4.30 – 5 m beam loaded at mid-span
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Figure 4.31 – Geometry of the I-section
Figure 4.32 – Transversal mesh of the I-section

Since we study the mesh sensitivity of the model, the beam is supposed to be purely elastic.
The mechanincal properties of the beam are summarized in Table 4.5. The total sections of
the upper and lower rebars are respectively 3.10−4 m2 and 4.10−4 m2. The applied load is
F = 10 kN.

Young modulus Poisson’s ratio
concrete E = 21 GPa ν = 0.2
steel Est = 210 GPa -

Table 4.5 – Material properties

4.4.5.2 The AELD beam element

The beam is modeled with 1 AELD beam element. The kinematics of the beam element is
composed of 23 displacement modes.

The transversal mesh is composed of 144 quadratic triangles, as shown on Figure 4.32. The
transversal mesh sensitivity is not studied here.

The longitudinal mesh sensitivity of the beam element is investigated by changing the number
of knots defining the interpolation functions. As mentionned in Section 4.3.3, the element is
interpolated with NURBS functions. The polynomial order of the NURBS is 3. The number
of knots nknot takes different values from 2 to 40.

The rebars mesh sensitivity is studiedwith different discretizations: the rebars are successively
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meshed with nnode = 3 to nnode = 15 (the total number of bar elements defined in Section
4.2.4.3 is nrebar = 4 × nnode).

The data observed is the maximum vertical displacement um at mid-span of the beam. The
results are presented on Figure 4.33.

4.4.5.3 Results

The maximum vertical displacement um(nknot, nnode) is computed for 4 different number of
longitudinal knots: 5, 10, 20 and 40. The 4 corresponding curves are displayed on Figure
4.33. For each curve, the number of nodes in each one of the rebars takes values from 3 to 15.
The Euler solution is also represented and corresponds to the following value of uEulerm :

uEulerm =
FL3

48(EI)tot , (4.49)

where (EI)tot = EI + EstIst. The numerical value is uEulerm = 2.2735 10−3 m. Because of the
enriched kinematics of the AELD beam model, the beam element considered here is less stiff
than the Euler solution. Consequently the 4 curves are placed above the Euler solution.

Euler solution

Figure 4.33 – Maximum vertical displacement for different meshes refinements

As exepected, the more numerous the knots are, the less stiff the element is. Thus, for a given
value of nnode, the values of um monotonically increase from nknot = 5 to nknot = 40. On the
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opposite, the more numerous the nodes are, the stiffer the element is. Thus, for a given value
of nknot, each curve monotically decreases from nnode = 3 to nnode = 15. The increase of the
number of nodes in each rebar increases the connectivities between the degrees of freedom of
the beam element, and consequently makes it stiffer.

Considering the value um(nknot = 40, nnode = 15) as the converged value, we define the relative
error of each curve to the converged value by:

e1(nknot) =
����um(nknot, 15) − um(40, 15)

um(40, 15)

���� (4.50)

The values of e1 for each curve are presented in Table 4.6.

nknot 5 10 20
e1 1.39 10−2 5.43 10−3 1.72 10−3

Table 4.6 – relative error to the converged value um(40, 15)

The relative error to the converged value is lower than 1% for nknot = 10.

In order to determine the minimum number of nodes in each rebar, the following relative error
is defined:

e2(nknot, nnode) =
����um(nknot, nnode) − um(nknot, 15)

um(nknot, 15)

���� (4.51)

where um(nknot, 15) is considered as the reference for a given value of nknot. The results are
gathered in Table 4.7.

nnode 4 6 8 10 12 14
e2(5, nnode) 2.12 10−2 6.24 10−3 2.76 10−3 1.31 10−3 5.80 10−4 1.45 10−4

e2(10, nnode) 1.84 10−2 6.90 10−3 2.88 10−3 1.29 10−3 5.75 10−4 1.44 10−4

e2(20, nnode) 1.93 10−2 6.88 10−3 3.15 10−3 1.58 10−3 5.73 10−4 1.43 10−4

e2(40, nnode) 1.99 10−2 7.29 10−3 3.29 10−3 1.57 10−3 7.15 10−4 4.29 10−4

Table 4.7 – relative error of each curve for its own converged value

The number of nodes corresponding to the first value of e2 lower than 1% is nnode = 6 for each
curve. For the present study it can therefore be considered as a sufficient discretization of the
rebars. This reference case study for mesh sensitivity is a good predictor for the refinement
to adopt, even though a similar study should be carried out in plasticity to be completely
exhaustiven.
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4.5 Conclusion

This work introduces a new elastoplastic beam element for reinforced concrete. Both concrete
and steel are considered as elastoplasic materials. Concrete is associated with a Rankine
criterion and steel with a 1D Von-Mises criterion. The two materials are described and their
local integration in the global elastoplastic algorithm is presented. The structural connection
between concrete and steel rebars is then numerically characterized. The model is finally
validated through a step-by-step procedure where the relevance of the elastoplastic model is
justified. The beam element is based on the elastic beam formulation first developed by [Ferradi
et al., 2016], extended to eigenstrains in [Corre et al., 2017a] and adapted to the elastoplastic
case in [Corre et al., 2017b]. There is no limitation in the choice of the constitutive behavior
of concrete. A more complex model with damage and softening could be considered. The
coupling of damage to plasticity would require some modifications in the definition of the
beam model which model should be adpated in consequence.

The general definition of a material in multisurface plasticity is first given. In this framework
we define a concrete material with the multisurface Rankine criterion. During the local inte-
gration of the equilibrium equations, the stress is first assumed elastic before being projected
on the criterion if actually plastic. Thanks to the closed form expression of the criterion in
principal stress space, the projection step can be analytically solved. The elastoplastic steel
rebars are then characterized. They are independently meshed into the 3D structure with one
dimensional bar elements. This method has the great advantage to enable the definition of
various shape and layout of the rebars in the concrete volume. Complex reinforcement can be
represented. In this instance, this model offers more possibilities than the multifibers model
which are limited to longitudinal reinforcement. A classic 1D yield criterion is therefore
used and the radial return algorithm is processed for the local integration of the elastoplastic
equilibrium equations.

Rebars are fully embedded in the concrete matrix. Their structural connection is expres-
sed through the connection of their kinematics to the kinematics of concrete. Indeed, the
displacement of each node of the rebars is expressed in terms of the degrees of freedom of
the concrete beam element. Consequently the kinematics defined for concrete is imposed to
the rebars. Without additional kinematic enrichment, this method avoids unwanted bond-slip
effects. The tangent stiffness matrix used to solve the global element is the sum of the stiffness
of concrete and the stiffness of rebars, both expressed on the kinematics preliminarily defined
for the concrete beam element.

To our knowledge, the 3D Rankine criterion is not implemented in finite element softwares. In
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order to validate the present model, the following step-by-step procedure is therefore adopted.
The integration of the rebars is first validated by proceeding to an elastic computation on
a reinforced concrete structure. The results are then compared to a 3D reference solution
computed on the finite element software Code_Aster. The elastoplastic global algorithm is
then validated by processing the previous case study in elastoplasticity with a 3D Von-Mises
criterion for concrete and the 1D yield criterion for steel. The results are again compared
to a 3D reference solution. These two steps show very satisfactory consistency between the
beam solution and the reference solution. The rebar integration and the elastoplastic algorithm
being validated, the yield criterion is finally replaced by the Rankine criterion and the local
projection defined in the present paper. The example considered highlights the strength of
the present beam model to represent complex 3D phenomena. This ability is provided by the
enriched kinematics of the higher-order model considered.

The actual failure of the beam is estimated by a fracture mechanics approach. Based on the
stress distribution in the structure, the areas the more likely to crack are identified. The energy
dissipated in these areas are compared to the fracture energy of concrete. Once the fracture
energy is reached, the subsequent computations are considered not significant. This method
is a post processing and needs a local knowledge of the stress. It could therefore be improved
by implementing a systematic detection of the fracture mechanisms.

∗ ∗
∗
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Conclusion and outlook

Conclusion

In order to provide new tools for the structural analysis of bridges and slender structures, a
new beam model has been derived and adapted to a wide range of material properties and
load cases in this work. The result is the development of a new time efficient and numerically
accurate finite element.

Chapter 1 first sets the industrial context of this work. After outlining the historical context
that led to the current methods in structural engineering, we insisted on the need for change
observed by the company STRAINS. The former paradigm, based on linear elastic analysis
and conservative computations must now move to more explicit methods based on material
savings and on the accurate expertise of the structural reliability of existing structures. The
development of the software Qantara dedicated to the analysis of bridges is the industrial
framework of the present work which also benefits from the support of the Laboratoire Navier.
We the introduced the successive beam models, from the Euler-Bernoulli theory to the more
recent reduced model techniques. Based on very simple assumptions, the first beam models
are very time efficient and suitable for simple computations but may quickly prove insufficient.
Thus, each new beam model aimed at mitigating the weakness of the previous model. This
incremental improvement of the beam theories has led to a progressive extension of the beam
kinematics. Among recent beam models, we specifically presented models using the asymp-
totic expansion method. Based on a rescaling of the beam geometry, this method provides a
systematic extension of the kinematics of the model thus producing accurate beam elements
able to capture a wide range of deformations.
The next section dealt with elastoplastic beammodels. A clear distinction between two catego-
ries of models was operated: models based on a yield criterion expressed in terms of the stress-
resultants and models using a yield criterion expressed in terms of the stress-components. The
first are obviously more time-efficient since they are based on a 1D elastoplastic constitutive
behavior. But two main drawbacks were underlined: first it requires a preliminary computa-
tions of the yield surface potentially complex in case of multiple stress-resultants; second, it
cannot accurately describe the local behavior of the structure. On the other hand, we described
the local accuracy provided by the models based on a local yield criterion, but expressed the
fact that these models are naturally more demanding.
In the last part of Chapter 1, a quick overview of the beam model for reinforced concrete
was depicted. The definition of a beam model for reinforced concrete was focused on three
major issues: the description of the materials behavior, the definition of the beam model
and the kinematic connection between steel rebars and concrete. In this section, we exposed
the complexity of models involving damage laws or softening behaviors and insisted on the
potential numerical difficulties to implement such models.

In Chapter 2 a higher-order beam element submitted to eigenstrains called the AELD beam
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model is derived. This element answered to the need to describe many inelastic phenomena in
civil engineering applications. We first introduced the 3D problem and exposed the asymptotic
expansion method. Based on a scaling of the beam geometry, we showed how this method
leads to a series of cross-sectional auxiliary problems and how their successive resolution
yield displacement modes. Among these modes, some are specific to the strains applied to
the structure. The strength of this model is that it does not require any a priori knowledge
on the solution of the problem to extend its kinematics. The user can arbitrarily enrich the
kinematics until a given order n.
Two applications of the previous model were then given. First, a thermal load case highlighted
the ability of the model to capture faithfully the discontinuities of the strain applied. The local
variables proved to be satisfactorily described thanks to the additional displacement modes
specific to the eigenstrains. Furthermore, these results were obtained with a reduced number
of displacement modes. A prestressed cantilever beam was studied in a second time. We
showed the ability of the model to describe the local punching effect of the steel cable on the
beam. We considered that these two examples were good illustrations of performance of this
beam element. In both cases, fields close to the clamped end were more difficult to compute.
In order to better describe the mechanical response close to the boundary conditions, the
computation of additional displacement modes can be considered. These modes have actually
already been implemented in the code of Qantara but were not presented in this work.

Chapter 3 was dedicated to the extension of the AELD beam model to the framework of
the theory of plasticity. The standard 3D plasticity context was first established. We studied
the case of J2 flow theory with isotropic hardening. The classic radial return algorithm
was considered for the local integration of the equilibrium equations and a Newton-Raphson
procedure was used for the global incremental algorithm. These classical tools of plasticity
theory enabled us to focus on the reduced model formulation. We briefly described the
methodology to reduce a 3D problem into a beam problem, and we recalled the definition of
the elastic beam model developed in the previous section.
The next sectionwas dedicated to the formulation of the elastoplastic beammodel. Considering
the plastic strains of the previous iteration as eigenstrains imposed to the structure, we used
the elastic beam element previously formulated to solve each iteration. Additional modes
specific to the plastic strains were consequently computed. These new modes enable the
model to capture the displacement due to the yielding of the structure. The discretization of
the volume of the beam is an essential point. Indeed, the first detection of a plastic strain is
highly depending on the position of the sections on which the local equilibrium equations are
integrated. This point is still manual and it is necessary to implement an automatic procedure
in the future.
The model was illustrated with a cantilever I-beam loaded at its end. We intentionally chose
to asymmetrically load the beam in order to create torsion. Through the comparison of the
beam solution with the volumic reference solution, it highlights the ability of the model to
capture 3D effects. Parametric studies were then conducted in order to assess the parametric
sensitivity of themodel. Asmentioned before, the definition of the longitudinal mesh appeared
to be an important feature of the model. This model has been presented with J2 flow rule
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and with an isotropic hardening, but its extension to new yield criteria and hardening laws is
straightforward.

As an extension of the previous chapter, we developed a higher-order elastoplastic beammodel
for reinforced concrete in Chapter 4. Following the three main steps identified in Section
1.4 for the definition of a model for reinforced concrete, Section 4.2 was dedicated to the
description of the model without consideration of the reduced model. Considering that the
added value of this chapter was not the beam element but the elastoplastic model for reinforced
concrete, we focused on the definition of the material properties and the kinematic description
of the connection between steel and concrete. We aimed at developing an efficient and simple
model for the analysis of reinforced concrete structures. We therefore considered the theory of
plasticity for the description of the concrete behavior. The steel rebars were considered as 1D
bar elements embedded into the concrete volume. The connection between steel and concrete
was ensured by expressing the displacements of the rebars in terms of the degrees of freedom
of concrete. Without specific measures, this method avoids unwanted numerical bond-slip
effect between rebars and concrete. The reinforced concrete model were then combined to the
AELD beam model in Section 4.3.
To our knowledge, the 3D Rankine’s yield criterion is not implemented in commercial codes.
The direct comparison of our model to a reference solution was consequently not possible.
Therefore we suggested a multistep procedure to validate our new model for reinforced con-
crete. First, the connection between steel and concrete has been validated by the computation
of an elastic load case. The elastoplastic algorithm has then been verified by the computation of
an elastoplastic load case, a Von-Mises criterion being considered for both steel and concrete.
We compared the beam solution to volumic reference solutions computed on Code_Aster
for these first two steps. For the last step we replaced the yield criterion of concrete by the
Rankine’s criterion designed previously. A load case was then computed and analyzed. The
validity of the elastoplastic computation was finally assessed by an energy-based approach.
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Outlook

The possibilities offered by the AELD beam model are important, and this work is a first step
towards the development of a high-performance beam element for the study of bridges. Some
improvements can already be identified, some of which have been mentioned previously.

Improvements for the current AELD beam model

The extension of the kinematics thanks to the asymptotic expansion method provides very
accurate local results that could not be observed with other beammodels. However, the displa-
cements are computed for a cross-section far from the boundary conditions. The displacements
close to the extremities and in particular close to clamped ends are therefore more difficult to
describde. To address this issue, the computation of additional displacement modes specific
to the boundary conditions have been implemented into STRAINS’s software. The boundary
conditions are modeled by springs and their stiffness is added into the local equilibrium equa-
tion. Then using the asymptotic expansion method, new auxiliary problems are formulated
and solved, thus yielding additional modes specific to the conditions considered. These modes
proved their efficiency in capturing the displacements originated by the kinematic frustration
of the boundary conditions. Moreover, this method can be similarly applied to deal with
stiffeners placed along the axis of the beam since additional modes can be computed likewise.
An area for improvement is the longitudinal mesh of the element, both for elastic or elastoplas-
tic computations. In elasticity, we could consider a first computation with an homogeneous
longitudinal mesh. An automatic remeshing could then be operated in a second time according
to the results obtained, thus refining the areas close to the boundary conditions and close to
the load application area. This remeshing could be processed according to the elastic energy
or to the L2-norm of the elastic strain. An automatic remshing could be processed similarly
for elastoplastic computations, the main difference being that remeshing would occur directly
from one iteration to following, the same iteration being not computed twice. We expect the
mesh to be finer close to the boundary conditions, the load application areas and the plastified
areas. Aminimum size of mesh should be considered in order to avoid a too important increase
of the computation time.
The selection of the cross-sections on which are computed the displacement modes specific
to the plastic strains is still manual for elastoplastic computations. An educated guess is
necessary in order to anticipate the first or more significant plastification area. An automa-
tic procedure could be implemented in order to select these cross-section. Relevant criteria
should be defined in order to the number of cross-sections which could evolve during the
computations, and especially their positions. The automatic procedure could be taken to a
higher level by automating the choice of the asymptotic expansion order and therefore the
number of displacement modes. However such a procedure should not involve additional
iterations or increments that could increase the total computation cost.

170



4.5. Conclusion

Extension of the model

The AELD beam model was first defined in a linear elastic case, then extented in this work to
the case of eigenstrains, to the theory of plasticity and finally used for the definition a model
for reinforced concrete. Other extension are already considered by STRAINS for the AELD
beam model.
The AELD beam model has been naturally developed for prismatic bar element. But actual
bridges are rarely fully prismatic and exhibit more complex features, including skewed cross-
sections and curved longitudinal axis. That’s why an extension of the AELD beam model
to the case of non prismatic geometries has already been implemented into Qantara. This
extension of the element enables for example the user to carry out structural analysis on
a curved bridge by using one single beam element and still expect the local accuracy and
time efficiency of the model developed for prismatic bars. The next step is now to adapt
this geometrically non-linear beam element to the case of plasticity. The same methodology
previously developed for prismatic elements should be here re-used.
In order to enlarge the scope of our beam element, we intend to extend it to the case of
large displacements. An extension to large displacements would encompass a large scope of
possible applications in the analysis of bridges like the study of geometrical instabilities of
decks, stiffeners or bridge piers, or the modeling of large span stay-cables.
Furthermore, we think that this beam element could be used for themodeling of pipe structures.
Indeed, the deformation of a pipe is characterized by special displacement patterns like
ovalization of the cross-section. Such displacements cannot be described with classical beam
models but are easily captured by the additional displacementmodes composing the kinematics
of the AELD beam model. Simple tests on pipes submitted to transversal compressive loads
have confirmed our insight that such an application would be relevant for this beam element.

Connection with volumic finite elements

The objective of Qantara is not to provide only a stand-alone beam element for the analysis
of bridges but to provide a software for the modeling of the entire structure, from decks
to concrete abutments. The AELD model is not appropriate for the modeling of all the
structural elements. Indeed, it is not relevant to model massive piers or superstructures with
beam elements. Consequently we need to implement the connection of this beam element to
volumic elements. This work is currently processed by STRAINS and is developed within a
European project in an partnership with the french engineering company EGIS INDUSTRIES
and the Edinburgh Parallel Computing Centre. An important objective of this collaborative
project is to process complex computations with an High Performance Computing (HPC)
infrastructure.

Improvement of the numerical performance of the model

One of the strength of the model is its reduced beam formulation providing time efficient
computations. However the computational performance of the model could still be largely
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improved. Indeed, the computation of the stiffness matrix or the local integration of the
elastoplastic equilibrium equations are stages of the model which could be processed with
parallelization procedures. As mentioned before, this improvement of the numerical perfor-
mance of the STRAINS’s software programs is a major area of interest for STRAINS and is
currently handled via the collaborative European project Fortissimo.

∗ ∗
∗
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Appendix A

Proof of the symmetry of the beam consti-
tutive equation

In this section, the symmetry of the constitutive equation (2.29) is briefly sketched for Sη = S∗η .

Recall that:
Sη =

〈
σ̃
χη

33
〉

and S∗η =
〈
xησ̃

e3
33

〉
. (A.1)

The boundary value problem 2.22 being linear, each localization field ũA, σ̃A satisfies the
equations for a unit value of the macroscopic field A and vanishing the other macroscopic
fields. From the longitudinal constitutive equation (2.22c):

Sη =
〈
C33αβũχηα,β + C3333xη

〉
and S∗η =

〈
xη

(
C33αβũ

e3
α,β + C3333

)〉
, (A.2)

and the transverse constitutive equation (2.22b):

Sη =
〈(
σ̃e3
αβ − Cαβγδũ

e3
δ,γ

)
ũχηα,β + C3333xη

〉
and S∗η =

〈(
σ̃
χη
αβ − Cαβγδũ

χη
δ,γ

)
ũe3
α,β + xηC3333

〉
(A.3)

Because the in-plane stress must satisfy equilibrium equation (2.22a) as well as free boundary
conditions (2.22e) we have:〈

σ̃e3
αβũχηα,β

〉
= −

〈
σ̃e3
αβ,βũχηα

〉
= 0 and

〈
σ̃
χη
αβ ũe3

α,β

〉
= −

〈
σ̃
χη
αβ,βũe3

α

〉
= 0 (A.4)

From this and equation (A.3) it appears that Sη = S∗η . Similar arguments ensure D∗12 = D12.
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