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Foreword 

Once a philosopher was asked a question, “who are you?”.  

The philosopher replied  

“मनोबुद्ध्यहङ्कार चित्ताचन नाहं , न ि श्रोत्रचिहे्व न ि घ्राणनेते्र।, न ि व्योम भूचमनन तेिो न वायुुः, चिदानन्दरूपुः चिवोऽहम् 

चिवोऽहम्”    -Nirvanashatakam by Adi Jagat Guru Shankaracharya  

Meaning: Neither am I the Mind, nor the Intelligence or Ego, neither am I the organs of Hearing 

(Ears), nor that of Tasting (Tongue), Smelling (Nose) or Seeing (Eyes), Neither am I the Sky, nor 

the Earth, Neither the Fire nor the Air, But I am the Ever-Pure Blissful Consciousness.  

The person then asked the philosopher, “what is this ever-pure blissful consciousness?” 

The philosopher smiled and replied, 

या चनिा सवनभूतानां तस्ां िागचतन संयमी | यस्ां िाग्रचत भूताचन सा चनिा पश्यतो मुने:  Bhagvad Gita chapter 2, 

verse 69  

Meaning: "Where the world is awake, there the man of self-control is sleeping. Where the world 

sleeps, there he is waking." It is in this awakening the ever-pure blissful consciousness is 

attained.  

The curious man then asked two final questions, “what is the practice to attain this awakening? 

And what is the advantage of such attainment?”  

For the first question the philosopher hence replies,  

योगचित्तवृचत्तचनरोधुः      Verse-2, Yog Patanjali sutras 

Meaning: The act to awaken the self (I) is yoga, because this act involves cessation of movements 

of mind. 

And for the final question the philosopher replies, 

तदा द्रष्ुुः स्वरूपेऽवस्थानम्     Verse-3, Yog Patanjali sutras 

Meaning: There is neither gain or loss in this act. There is no motive, no characteristics attached 

to this act as it involves cessation of all desires which are abstract (and thus not eternal, 

temporary, believed truth). However, the result of this act is that when mind is calm and clear 

like a lake (undisturbed from all the movements), the witness within is revealed in its true 

(eternal reality, universal truth, the true I) nature. This witness is the ever-pure blissful 

consciousness. In this discussion the person asking questions is the world spirit and the 

philosopher answering them is time (the ever learned, everlasting entity that acompasses the 

knowledge from the origin (which is unknown) until the end (which is unknown)). 

It is said that the “synthesis of world spirit (freedom, knowledge, religion, science, logic 

etc.) is derived from the historical figures of time.”    Introduction, Philosophy of 

history by Hegel. 

Thus, the effort and essence of natural philosophy presented in this thesis is a tribute 

to Mme. Marie Curie, Shri J.N. Tata, Shri Mohandas Karamchand Gandhi, Sardar Patel, Swami 

Vivekananda, Shankaracharya and Victor Hugo.
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 ABSTRACT 

Several countries such as France, Belgium and Switzerland have proposed to host a deep geological facility 

to confine high and mid-level long-lived radioactive waste within argillaceous formations. Such formations 

are considered as potential host-rock, because of their very high containment properties, i.e. high retention 

capacity and very low permeability. However, normal evolution of some waste containers is expected to 

lead to the release large amounts of soluble salts of nitrate and/or sulfate nature. These saline plumes would 

generate physicochemical imbalance and, by enhancing mineral dissolution and/or precipitation, could 

modify the local rock porous network. Thus, for safety assessment of such facility, the evolution of rock 

containment properties in response to these physicochemical phenomena over large time and space scale 

needs to be carefully assessed. This can be done by using diffusion-reaction numerical simulators based on 

equivalent (macroscopic) continuum approach considering representative elementary volume (REV). 

However, while these codes rely on processes to evaluate chemistry and transport at the REV scale, they 

rely on empirical relationships, such as Archie’s law, to inject information on the feedback of chemistry on 

diffusive transport properties. Thus, prior to long-term prediction, it is essential to create a set of data to test 

and improve the description of the feedback of chemistry on transport. In this view, this thesis work deals 

with developing such reactive diffusion experiments to estimate mineral precipitation impacts on 

containment properties of porous materials under diffusive transport regime; the capability of REV 

chemistry transport codes to reproduce such an experimental dataset can then be evaluated.  

In order to design these simplified experiments, three proxy porous materials (micritic chalk, compacted 

kaolinite and compacted illite) were chosen to address specific property describing claystones (clay surface 

charge, pore size distribution). Two sulfate-alkali minerals were selected as precipitating minerals: barite 

and gypsum, which present two end-members in reference to their kinetic rate of precipitation and solubility. 

In a first step, intact properties of each proxy material were determined (pore size distribution, effective 

diffusion coefficient (De) of water tracers (HTO & HDO) and anionic tracer, 36Cl-). Barite precipitation was 

studied in all the proxy materials and gypsum precipitation was studied in chalk only. During these through 

diffusion experiments, we monitored the evolution of reactant concentration in the reservoirs at both ends 

of the sample. Furthermore, after a known experimental time, 36Cl- and/or water tracers were allowed to 

diffuse through the porous samples impacted by precipitation. In addition to diffusive testing, the combined 

impact of pore structure and intrinsic property of mineral (solubility and kinetic rate of precipitation) on 

final evolution of mineral in each proxy material was quantified using X-ray tomography (µCT) and 

Scanning Electron Microscopy (SEM).  
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Despite similar porosity and diffusivity at intact conditions, chalk, kaolinite and illite were very distinctly 

impacted by barite precipitation. For chalk, De(HTO) and De(36Cl-) decreased by factors of 4 and 32 

(resp),.For kaolinite, De(HTO) is reduced by a factor of 200 and a total clogging was highlighted for 36Cl-,. 

Finally, for illite, no impact on diffusivity was observed. In fact, the µCT and SEM images showed that 

depending upon the pore structure of each proxy material the distribution of barite mineral was very 

different. Moreover, the distinct diffusive behavior of 36Cl- compared to HTO in chalk and kaolinite, clearly 

indicates that the newly formed barite has negative surface charge, capable of changing these neutral porous 

materials in semi-permeable membranes. For gypsum, the diffusive results showed that this mineral 

precipitation led to lower impact on diffusivity compared to barite in chalk. The µCT and SEM images 

further showed that compared to barite (thin precipitated zone in sample center) gypsum mineral had very 

different evolution (formation of isolated spherical clusters) in chalk. It was demonstrated that this 

difference stems from the fact that spatial variability in properties of pore structure (heterogeneous 

diffusivity and porosity) governed selective gypsum precipitation. Thus, the precipitation experiments of 

barite in three proxy materials and gypsum in chalk underline the role played by the characteristics of 

material pore structure and the intrinsic properties of the precipitating mineral.   

Finally, to test the robustness of chemistry transport codes, the results from the reactive diffusion 

experiments where barite or gypsum precipitated in chalk were numerically described in 1D and 2D using 

two codes namely HYTEC and CrunchTope. At 1D both codes were only able to reproduce the experimental 

results by adjusting several parameters such as cementation factor, kinetic rate constant. At 2D, when 

characteristics of the porous material (heterogeneous diffusivity field) were considered, HYTEC code well 

described the evolution of barite and gypsum precipitation in chalk.   
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 RÉSUMÉ 

Plusieurs pays tels que la France, la Belgique et la Suisse prévoient de confiner leurs déchets radioactifs de 

moyenne et haute activité à vie longue dans des installations souterraines sises au sein de formations 

argileuses profondes. Ces formations constituent en effet de très bonnes barrières ultimes contre la 

dispersion des radionucléides, de par leur grande capacité de rétention et leur très faible perméabilité. 

Néanmoins, la dégradation de certains colis de déchets devrait libérer d’importantes quantités de sels nitratés 

et sulfatés solubles. Ainsi, ces panaches salins en déséquilibre chimique avec l’encaissant devraient conduire 

à des phénomènes de dissolution et/ou précipitation, faisant évoluer localement la structure porale de la 

roche argileuse. Aussi, pour estimer la performance de telles installations souterraines, l’évolution des 

propriétés de confinement de ces roches en réponse à ces processus physicochimiques se doit d’être étudiée, 

et ce, sur des échelles de temps et d’espace représentatives du stockage. Cela est réalisé à l’aide de codes 

couplés chimie-transport basés sur une approche continue, à l’échelle de volumes élémentaires 

représentatifs (VER). Cependant, si ces codes reposent sur une description des processus pour évaluer la 

chimie et le transport, ils s’appuient sur des relations empiriques, telle la relation d’Archie, pour apporter 

de l’information sur l’effet de rétroaction de la chimie sur les propriétés de transport diffusif. De ce fait, il 

est primordial, avant les simulations long-termes de tester la robustesse de ces relations. Dans ce cadre, le 

présent travail de thèse s’est intéressé au développement d’expériences de diffusion réactives pour estimer 

(i) l’impact de la précipitation de minéraux sur les propriétés de confinement de matériaux poreux “modèles” 

et (ii) la capacité des codes de chimie-transport à reproduire ce jeu de données expérimentales.  

La mise au point de ces expériences simplifiées a nécessité de se focaliser sur trois matériaux poreux 

« modèles », de la craie, de la kaolinite et de l’illite, choisis pour décrire une propriété spécifique des roches 

argileuses (charges de surface des argiles ou structure du réseau poreux). Par ailleurs, deux minéraux 

sulfatés, gypse et barytine, ont été sélectionnés comme minéraux susceptibles de précipiter car ils 

représentent deux extrêmes vis-à-vis de leur cinétique de précipitation et de leur solubilité. Dans un premier 

temps, les propriétés initiales de chaque matériau « modèle » ont été déterminées : distribution de taille de 

pores, coefficient de diffusion effectif (De) des traceurs de l’eau (HTO ou HDO) ou d’un traceur des anions 

(36Cl-). La précipitation de la barytine a été étudiée sur les trois matériaux « modèles », tandis que celle du 

gypse uniquement au travers des échantillons de craie. Durant ces expériences de diffusion réactive, 

l’évolution des concentrations des réactifs dans les deux réservoirs enserrant l’échantillon poreux a été 

suivie, et, après un temps déterminé, le 36Cl- et/ou les traceurs de l’eau ont été injectés dans le réservoir 

amont pour diffuser au travers des échantillons déjà impactés par la précipitation. En complément des essais 
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de diffusion, des caractérisations des échantillons par micro-tomographie X (µCT) et par observation au 

Microscope électronique à Balayage (MEB) ont permis de préciser le rôle joué par la structure porale initiale 

du matériau « modèle » et celui des propriétés intrinsèques du minéral précipitant. 

Malgré des valeurs de porosité et de diffusivité associées à leur état initial assez proches, les trois matériaux 

« modèles » ont été impactés de façon très différente par la précipitation de barytine. Pour la craie, les 

valeurs de De(HTO) et De(36Cl-) baissent par des facteurs 4 et 32 (resp.). Pour la kaolinite, la valeur de 

De(HTO) est réduite par un facteur 200 et un colmatage total est mis en évidence pour 36Cl-. Enfin, pour 

l’illite, aucun impact sur la diffusivité de deux traceurs n’a été observé. Les images acquises par µCT et 

MEB ont montré que la distribution des précipités de barytine était très dépendante de la structure porale de 

chaque matériau modèle. De plus, le comportement diffusif distinct du 36Cl- par rapport à HTO, observé 

dans la craie et la kaolinite, montre clairement que la barytine néoformée possède une charge de surface 

négative capable de transformer ces matériaux poreux initialement neutres en membranes semi-perméables. 

Pour le cas du gypse, les résultats d’expériences de diffusion réactives dans la craie montrent que ce minéral 

conduit à un impact moins prononcé sur la diffusivité que la barytine. Les observations faites par µCT et 

par MEB révèlent que, comparé au cas de la barytine qui précipite sous forme d’une fine couche au centre 

de l’échantillon, le gypse a une évolution totalement différente, avec la formation de larges sphères isolées. 

Il a été démontré que cela est dû à la variabilité spatiale de la structure porale de la craie, associée aux 

propriétés thermodynamiques et cinétiques du gypse, qui gouvernent la précipitation localisée de gypse. Au 

final, toutes ces expériences de diffusion réactives soulignent le rôle prédominant joué par les 

caractéristiques de la structure porale du matériau et par les propriétés intrinsèques des minéraux 

précipitants.   

Enfin, l’estimation de la robustesse des codes de chimie transport a été réalisée à l’aide de deux codes, 

HYTEC et CrunchTope, à l’aide de simulations 1D et 2D. En 1D, les deux codes n’ont été capables de 

reproduire les données expérimentales qu’après un ajustement de certains paramètres (facteur de 

cimentation, constante de cinétique de précipitation). En passant en 2D, quand les caractéristiques du 

matériau poreux ont été prises en compte (champ hétérogène de diffusivité), le code HYTEC a bien décrit 

l’évolution distincte de la précipitation de barytine et de gypse au sein de la craie.  

  



xix 

 

 



1 

 

  



2 

 

 INTRODUCTION 

Several countries have proposed to confine their mid-level and high-level long-lived radioactive 

wastes in deep geological facilities that are based up using a multi-barrier concept. In France, 

Switzerland and Belgium, argillaceous formations are considered as a potential host-rock, acting 

as the ultimate barrier, because this type of material displays very good containment properties, 

i.e. high retention capacity and very low permeability.  

However, the presence of exogenous materials (iron, cement-based materials, etc.) creates 

physicochemical imbalances that will generate some evolutions at different locations in and 

around the repository. For instance, over time, the degradation of waste containers will allow the 

release of part of their content. Hence, the release of large amount of soluble salts or the 

degradation of the cement-made packages will lead to the generation of saline or alkaline plumes. 

These plumes would interact locally with the host rock and enhance perturbations such as mineral 

dissolution or precipitation down to possible clogging. Thus, the rock containment properties would 

evolve locally over time. This evolution is considered in the evaluation of the overall behavior of 

the repository, both by the industry and the Technical Safety Organization (TSO). 

The impacts of leached plumes on intact rock properties are studied by TSO such as French 

Institute for Radiological Protection and Nuclear Safety (IRSN) and BEL V in Belgium. To carry 

out such experiments, IRSN has developed an in situ experimental Underground Research 

Laboratory (URL) in Tournemire (Aveyron, France). One of these in situ experiments focused on 

interactions of cement/argillite for a duration of 15 years (Gaboreau et al., 2011). The experimental 

results showed some clogging at the cement-clay/argillite interface; also, due to dissolution, large 

pores were generated in cement and fissures with large porosities were observed in the argillite. 

This experiment shows that over large time and scale, hyper alkaline plume can change the 

containment property of the claystone. Another in situ study that is ongoing since 15 years at Mont 

Terri Rock laboratory deals with examining the fate of nitrate leaching from nitrate-containing 

bituminized radioactive waste, in a clay host rock for geological disposal (Leupin et al., 2018). This 

study shows that the release of nitrate plume may generate conditions favorable for microbial 

growth. This microbial growth can in turn potentially affect the environment of a repository by 

influencing redox conditions, metal corrosion and gas production or consumption under favorable 

conditions. Since the nitrate plume would be principally released from bituminized waste, such 
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microbial activity is expected in the proximity of a geological repository, i.e. in the excavation 

damaged zone, the engineered barriers, and first containments (the containers). 

Since the half-life of some radionuclides is of million years, for safety assessment, the impact of 

physicochemical perturbations induced by the exogenous materials on intact rock properties 

needs to be envisaged for larger time scales. 

Such long-term prediction can only be performed using representative elementary scale (REV) 

scale chemistry transport codes. The early work of such reactive transport simulation dates back 

to the early 1980’s, with the founding paper by (Yeh and Tripathi, 1989) where different 

approaches were discussed. During the 1990’s, an intensive phase of development took place, in 

several laboratories around the world (Lichtner, 1996; Steefel and MacQuarrie, 1996; Van der 

Lee, 1997). They were motivated by a new need in the Earth Sciences to develop models for some 

of the subsurface applications like:  

1. research into development of radioactive waste storage; 

2. need for long term performance assessment of the facilities; 

3. upscaling from laboratory scale (experiments ~a few weeks to a few years, centimeter to 

meter scale) to disposal scale. 

The strength of these codes is that they rely on processes (chemistry, transport), which gives 

robustness to their results. However, the feedback of chemical/mineralogical evolution on 

transport properties stems from the evolution of the pore structure, which only represented globally 

in the REV approach. Some empirical laws are then used to bridge the gap. For safety 

assessment, it is therefore necessary to evaluate the validity of the impact predicted by chemistry 

transport codes for long time scale and the actual impact of mineral perturbation on rock 

properties. Since, experimental long-term actual impacts are out of reach, the objective of this 

thesis is to determine the predictability limit of these chemistry transport codes. In this view, this 

thesis is thus divided into two parts. In the first part, laboratory scale experiments are performed 

to determine mineral precipitation impact on properties (porosity, diffusivity) of several porous 

materials. Then, a set of experimental results are reproduced using two codes (HYTEC and 

CrunchTope). Finally, by comparing the experimental and numerical results the limits of some 

relationships such as Archie’s law are presented. Such approach is necessary, as it will open new 

directions towards improving the predictability of these codes. 

In view of the aforementioned general objective, this thesis is divided into four main parts. 
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1. In the first part the basic properties of materials and the reactive transport simulation 

approach are explained. Then a detailed bibliographic work in connection with current 

thesis presented. From the results of these works, a methodology is extracted and based 

on which the experimental and numerical task are presented in rest of the thesis.  

2. In the second part, the experimental results dealing with mineral precipitation in different 

porous materials are presented. At the end of this chapter, a general discussion on the 

clogging phenomena is presented. 

3. In the third part a set of experimental results are reproduced numerically using HYTEC 

and CrunchTope in 1D and 2D. 

From experimental and numerical results, a final conclusion is presented. A roadmap is then 

proposed which will allow future development in view of increasing predictability of chemistry 

transport codes. 
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RÉSUMÉ 

En France, la formation géologique du Callovo-Oxfordien a été sélectionnée comme roche-hôte susceptible 

d’accueillir le centre industriel de stockage géologique (Cigéo) de déchets nucléaires. Or, parmi ces déchets, 

certains peuvent relâcher d’importantes quantités de sels solubles, capables d’induire des déséquilibres 

chimiques avec la roche encaissante et de ce fait, d’en modifier ses propriétés de confinement. Un tel 

phénomène peut être étudié à l’échelle du laboratoire, et ensuite extrapolé à des échelles de temps et 

d’espace plus représentatives de ce qui est attendu in situ, et ce, à l’aide de codes de chimie-transport. 

Pourtant, une telle extrapolation demande de vérifier au préalable la capacité des codes de chimie transport 

à prendre en compte de façon satisfaisante ces perturbations chimiques induites par les panaches salins. 

L’altération des propriétés de confinement de milieux poreux a été étudiée auparavant au CEA/L3MR par 

G. Berthe(2012) – sur les effets de la dissolution dans les argilites -, et par I. Fatnassi (2015) – sur les effets 

de la précipitation dans de la craie. Les résultats ainsi acquis à partir de leurs expériences de 

diffusion/réaction ont été modélisés à l’aide de codes comme HYTEC, ChunchFlow et PHREEQC. 

Cependant, il apparaît que ces expériences ne sont pas décrites de façon satisfaisante par ces codes. De la 

même manière, des limitations numériques ont été aussi notées par d’autres auteurs (Chagneau, 2015 et 

Poonoosamy, 2015). Il a été observé dans tous ces travaux que la distribution et la morphologie d’un 

précipité donné dépendent fortement de la distribution de taille de pores, des propriétés de surface et des 

propriétés intrinsèques du minéral. Aussi, selon les matériaux poreux, la distribution locale et la 

morphologie du précipité peut avoir un impact très différent sur la diffusivité des traceurs étudiés. Sachant 

que la précipitation dans les codes de chimie transport est décrite par un modèle de solubilité construit à 

partir des résultats obtenus en chimie en solution et que son impact sur la diffusivité est décrit par une loi 

empirique, la loi d’Archie, il est pertinent de s’interroger sur la capacité prédictive de ces codes. Aussi, ce 

chapitre est consacré à une revue de la littérature, plus particulièrement sur (i) les différents modes de transport 

des ions au travers de milieux poreux neutres ou chargés électriquement et (ii) les théories conventionnelles 

utilisées pour décrire les mécanismes de dissolution/précipitation dans les codes, ainsi que leur comparaison 

avec des approches plus récentes (S-N-T, PCS), qui prennent en compte les effets de confinement de la 

solution sur la dissolution/précipitation. En se basant sur cette revue bibliographique, il a été alors possible 

de proposer une approche méthodologique globale qui nous a servi à mieux évaluer l’importance de certains 

paramètres gouvernant le mécanisme de précipitation à l’échelle du pore. Une telle approche a pour but final 

de tester et d’améliorer la robustesse des lois utilisées dans les codes pour prédire l’impact de la précipitation 

sur la diffusivité à des échelles de temps et d’espace comparables à celles envisagées pour Cigéo.  
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1 Literature Review  

1.1 The materials of interest: the argillaceous rocks 

Argillaceous rocks (or claystones) display diversified mineral composition, clay (and other) 

minerals and varying porosity (depending upon their compaction). For instance, the mineralogical 

composition of Tournemire claystones consists of 40-50% of clay minerals, 20-30% of carbonate, 

15-20% of quartz, and the remaining part for accessory minerals, such as pyrite, and organic 

matter. The gravimetric water content in Tournemire claystones is about 4% and their total porosity 

about 11%1.  

1.1.1 Physical properties of clay minerals 

Clay minerals belong to the phyllosilicate subclass of silicate minerals. These minerals are formed 

from two basic sheet structures, i.e. tetrahedral and octahedral sheets, held together by ionic 

bonds2. In a tetrahedral sheet, the central ion of tetrahedron is mostly a silicon ion (Si4+) 

surrounded by four oxygen ions (O2-) at the apex of each unit, carrying one unsatisfied valence 

bond. These tetrahedral sheet units are formed with general formulae n((Si2O5)2-). The octahedral 

sheets are formed, either with general formula n(Al2(OH)6) giving gibbsite, or n(Mg3(OH)6) giving 

brucite. For octahedral sheets when the central ion is trivalent (e.g. Al3+), only 2/3 of the possible 

central space is occupied to balance the negative and positive charges. However, if the central 

ion is divalent (e.g. magnesium), all the positions must be filled for balancing the charge, forming 

a trioctahedral structure. These tetrahedral and octahedral sheets further link with each other in 

two different ways to form different groups of minerals. When one tetrahedral sheet is fused to 

one octahedral sheet, 1:1 type of linking is formed (Figure 1A). When two tetrahedral sheets are 

fused to an octahedral sheet, 2:1 type of linking is formed (Figure 1A).  



13 

 

 

Figure 1: A) Crystal structures of 1:1 and 2:1 type clay minerals. Here, M represents a cation central atom (Al, Mg, 

Fe, Si etc.), X (shaded circles) is usually OH, B) Siloxane cavity in the basal plane of the tetrahedral sheet2 

In mineral formed by 2:1 type of layer stacking, the plane of oxygen atoms on each side of such 

layer forms a siloxane surface (Figure 1B)2. This siloxane consists of a hexagonal cavity formed 

by six corner sharing Silicon tetrahedra. It is bordered by six oxygen atoms with hydroxyl group 

rooted at the bottom in the octahedral sheet. The reactivity of this siloxane cavity further depends 

on the distribution of charges in the layer of silicate structure. In absence of isomorphic 

substitution, the O atoms bordering the siloxane cavity will function as electron donors that can 

bind neutral molecules by means of van der Waals force of interaction. Under these 

circumstances, the siloxane layer would act as mild hydrophobic. However, if in the octahedral 

sheet, the isomorphic substitution of Al3+ occurs by a metal ion of lower valence (Mg2+), a negative 

structural charge is created that can attract cations and polar molecules. And, if this isomorphic 

substitution replaces Si4+ by Al3+ in the tetrahedral sheet, then an excess of negative charge is 

created much nearer to siloxane surface. This results in strong attraction of cations and polar 

molecules. These substitutions in octahedral and tetrahedral sheets disturb the original mild 

hydrophobic nature of siloxane surface. Hence, the 2:1 type of minerals possess heterogeneous 

basal surface, comprised of hydrophobic patches infused between the hydrophilic sites. The 

functional groups of these sites further interact with pore solution to form two kinds of complexes 

(Figure 2A): 1) If no water molecule is interposed between the surface site functional group and 

the ion or molecule it binds, it is known as inner sphere complexation and, 2) If at least one water 

molecule is interposed between the surface functional group of surface site and the ion or 
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molecule it binds, it is called outer sphere complexation 3.Figure 2B shows such type of 

complexation of surface site2. 

 

Figure 2: A) The inner sphere complexation, outer sphere complexation, and diffuse ion adsorption, illustrated for 

cations adsorbing on montmorillonite. B) Outer shell electrostatically bonded with the metal surface 2 

The inner sphere complexes involve ionic or covalent bonding, and the outer sphere complexes 

involve electrostatic bonding. Due to this reason, inner sphere complexes are more stable and 

form specific adsorption. Figure 2A shows an adsorption of monovalent cation on montmorillonite 

(a 2:1 type of clay mineral) where the ion is adsorbed in cavity of the siloxane due to inner sphere 

complexation. In Figure 2A, the combination of outer sphere and inner sphere complexes results 

in formation of the Stern layer on the siloxane site. Some of these solvated ions do not form 

complexes with charged surface functional group, but instead they screen the surface charge in a 

delocalized manner. These ions are said to be adsorbed in diffused-ion swarm and are fully 

dissociated from surface functional groups. Like outer-sphere complexes, these ions too undergo 

electrostatic complexation. These diffuse swarm ions further collectively produce a diffuse charge 

that exactly counters the negative surface charge. The combination of the surface charge 

altogether with the diffuse charge forms the electric double layer (EDL) (Figure 2A). However, if 

the swarm ions can move freely in the solution, a characteristic charge distribution arises which 

gives rise to diffuse double layer.   

 

 

B 
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The thickness of this double layer in Debye lengths (𝜅−1) can be calculated using Boltzmann 

distribution equation3: 

 

𝜅 =  √
2𝐹21000𝐼

휀𝑅𝑇
 

------------------------------ (1) 

𝐼 is the non-dimensional ionic strength 

휀 is the water dielectric constant (F.m-1) 

𝐹 is the Faraday constant (C.mol-1) 

𝑅 is the universal gas constant (J.mol-1.K-1) 

T is the temperature (K) 

In nature, these diffuse swarm ions of double layer are subjected to two opposing tendencies. 

Electrostatic forces attract them towards the negatively charged surface, whereas diffusion drags 

these ions towards the equilibrium where their concentration is smaller. Simultaneously, if the ions 

are of the same sign as of the surface charge, then they are repelled out of the double layer 

(anionic exclusion)1. 

1.1.2 Porous medium  

A material that contains pores or voids is termed as a porous material. The total porosity of this 

material is the ratio of the total volume of voids to the total volume of the material. As our material 

of interest is claystone and clay minerals, their porosity can be defined as 𝜙 = (1 −
𝜌𝑏

𝜌𝑠
), where 

𝜌𝑏(g.cm-3) is the bulk dry density of the material and 𝜌𝑠(g.cm-3) is the grain density of the material3. 

These pores can further be divided into three classes: 1) pores with diameter less than 2 nm are 

called nanopores, 2) pores with diameter between 2 and 50 nm are called mesopores and, 3) the 

pores whose diameter exceeds 50 nm are called macropores3. 

The admixture of these diversified pores constitutes a pore size distribution in a porous system. 

For a given pore of diameter D (m), the pore size distribution can be calculated by estimating the 

                                                

1 One must note that this is one way to describe the sorption double layer and triple layer for clayey 

system. In literature there are other models surface complexation models to describe the double 

layer and triple layer system for clayey systems34–36.   
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number of pores of diameter between D and D+𝛿(𝐷) that are contained in total pore fraction, 𝛼(𝐷). 

Mathematically, it can be represented as: 

 
∫ 𝛼(𝐷)𝑑(𝐷) = 1
∞

0

 
----------------------------------- (2) 

The volumetric flux of the fluid (Darcy flux) in a given porous medium can be estimated using 

Darcy’s relationship. This relationship establishes proportionality between the Darcy flux, q (m.s-

1), and the hydraulic gradient, 𝑑ℎ/𝑑𝑥: 

 
𝑞 =  

𝐾dh

dx
 

------------------------------ (3) 

Where, 𝐾 is the hydraulic conductivity (m.s-1) 

dh

dx
 is the hydraulic gradient (-) 

The proportionality factor K is the hydraulic conductivity of the porous medium. This factor 

depends upon the nature of a given porous medium (porosity, shape and size of pores) and also 

on the fluid (viscosity and density). However, Tournemire claystone possess very low hydraulic 

conductivity (10-14 < K < 10-12 m.s-1[1]). Therefore, diffusion is assumed to be the main governing 

transport phenomenon of neutral/ionic solvated species4. 

1.2 Transport through uncharged/charged porous medium 

1.2.1 Theory  

Case I: Diffusive transport under a concentration gradient  

In neutral systems, the diffusion process is concentration driven, and it governs Fick’s first law of 

diffusion. This law states that the diffusive flux of a species 𝑖 in solution (𝐽𝑖) (mol.m-2.s-1) is 

proportional to its concentration 𝑐𝑖 (mol.L-1) gradient: 

 
𝐽𝑖 = −𝐷𝑒,𝑖

𝜕𝑐𝑖
𝜕𝑥

 
------------------------------ (4) 

where, 𝐷𝑒,𝑖 is the effective diffusion coefficient 

that is specific to chemical species 𝑖 (m2.s-1) 

x is the distance(m) 
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Case 2: Diffusive transport under an electrochemical potential gradient: multicomponent diffusion  

The diffusive flux of ionic species i (Ji) through charged porous medium under the influence of 

electrochemical potential gradient is5,6:  

 
𝐽𝑖 = 

𝑢𝑖𝑐𝑖
|𝑧𝑖|𝐹

𝜕𝜇𝑖
𝜕𝑥

− 
𝑢𝑖𝑧𝑖𝑐𝑖
|𝑧𝑖|

𝜕𝜓

𝜕𝑥
 

------------------------------ (7) 

𝑧𝑖 is the charge number (-) 

𝐹 is the Faraday constant (C.mol-1) 

where, 𝑢𝑖 is the mobility of ions (m2.s-1V-1) 

𝜓 is the electric potential (V) 

The term 𝜇𝑖 in equation 7 is the electrochemical potential and it can further be elaborated as: 

 𝜇𝑖, = 𝜇𝑖
0 + 𝑅𝑇𝑙𝑛𝑎𝑖 + 𝑧𝑖𝐹𝜓 ------------------------------ (8) 

𝜇𝑖
0 is the standard potential (J.mol-1) 

𝑧𝑖 is the charge number (-) 

𝐹 is the Faraday constant (C.mol-1) 

𝑎𝑖, is the activity in water 

Finally, in absence of electrical current, ∑𝑧𝑖𝐽𝑖 = 0. We can calculate the value of  
𝜕𝜓

𝜕𝑥
 in equation 7: 

 

𝜕𝜓

𝜕𝑥
=  − 

∑
𝑢𝑗𝑧𝑗𝑐𝑗
|𝑧𝑗|𝐹

𝜕𝜇𝑖
𝜕𝑥

𝑛
𝑗=1

∑
𝑢𝑗𝑧𝑗

2𝑐𝑗

|𝑧𝑗|
𝑛
𝑗=1

 

 

----------------------------------- (9) 

where subscript 𝑗 is used to notify in forthcoming equations that they origin from potential term:  

Using this equation of electrical potential in equation 7, we get, 

  

𝐽𝑖 = 
𝑢𝑖𝑐𝑖
|𝑧𝑖|𝐹

𝜕𝜇𝑖
𝜕𝑥

+ 
𝑢𝑖𝑧𝑖𝑐𝑖
|𝑧𝑖|

∑
𝑢𝑗𝑧𝑗𝑐𝑗
|𝑧𝑗|𝐹

𝜕𝜇𝑖
𝜕𝑥

𝑛
𝑗=1

∑
𝑢𝑗𝑧𝑗

2𝑐𝑗

|𝑧𝑗|
𝑛
𝑗=1

 

 

--------------------------------- (10) 
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1.2.2 Multicomponent diffusion modeling in clay systems (Appelo et 

Wersin, 2007) 

Aim: To investigate the behavior of diffusing neutral specie HTO and charged species I- and 22Na+ 

into a modeled column containing surface charge.  

Experimental setup and methodology used  

A column of 0.2 m diameter and 0.5 m length was numerically designed using PHREEQC code. 

This column is contacted with 0.8 L porewater containing three tracers namely HTO, I-, 22Na+ which 

can diffuse2 into the column under two conditions: 

1) When column contained no surface charge 

2) When column contained surface charge equal to 0.11 eq.kg-1.  

1.2.3 Results and discussion  

Case I: When column contained no surface charge 

Figure 3A represents the evolution of concentration in HTO, I- and 22Na+ at the injection point, 

during the diffusion simulation with or without surface charge. This figure shows that, as the 

diffusion coefficient in bulk water is higher for HTO than sodium ion, HTO invades the column 

faster than Na+, so that HTO concentration decrease in the reservoir was higher than sodium. 

Figure 3B represents the situation when HTO, I- and 22Na+ diffused through the same column 

containing surface charge equal to 0.11 eq.kg-1. Due to the presence of this surface charge, the 

double layer occupies half of the pore volume.   

                                                

2  The diffusion coefficients of HTO,I-,22Na+  in free water were taken from database given by Appelo et Wersin (2007)
5  
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Figure 3: A) Multicomponent diffusion of tracers HTO, I-, and 22Na+through the modeled column without 

introducing surface charge. B) Multicomponent diffusion of tracers HTO, I-, and 22Na+through the modeled column 

containing surface charge equal to 0.11 eq/kg. C) Tracer concentration profiles in column (µmol/kg Opalinus clay), 

the circles in this figure indicate concentrations in column inlet5 

Case II: When column contained surface charge equal to 0.11 eq.kg-1. 

This figure shows that the decrease in concentration of water tracer (HTO) is unaffected by the 

presence of surface charge. But, in the same column, when anionic I- specie was injected, due to 

the presence of diffuse layer in half of the column, iodide was repelled away from the DDL. This 

anionic exclusion of iodide, resulted in lower decrease in its concentration compared to case-I. 

Contrary to iodide diffusion, when 22Na+ was injected in this surface charge-bearing column, it was 

either adsorbed in the DDL (outer-sphere complex or swarm diffuse ion) or was sorbed on the 

surface site (inner sphere complex) This type of sorption/adsorption resulted in steep decrease of 

22Na+ from bulk water (Figure 3B). This fixation of 22Na+ on surface sites (Su-) can be represented 

by the following equations: 

 𝑆𝑢− + 𝑁𝑎+  ↔ 𝑆𝑢𝑁𝑎       𝐾𝑆𝑢𝑁𝑎 = 1 

𝑆𝑢− + 𝐾+  ↔ 𝑆𝑢𝐾            𝐾𝑆𝑢𝐾 = 5 × 𝐾𝑆𝑢𝑁𝑎 

--------------------------------- (15) 

--------------------------------- (16) 

The value of this equilibrium constant 𝐾 (-)5 can be calculated using the following equation: 

 𝐾𝑖 = 
𝑎𝑆𝑢𝑁𝑎

𝑎𝑆𝑢− .   𝑎𝑁𝑎+
 --------------------------------- (17) 

where, 𝑎𝑆𝑢𝑁𝑎is the activity of site plus ion(-) 

𝑎𝑆𝑢− is the activity of surface site(-) 

𝑎𝑁𝑎+ is the activity of present Na+(-) 
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e.g. If  𝐾𝑖 = 105, from equation 15 and 16, we can see that only a fraction of diffused Na+ would 

be present in DDL and the rest of all the other cations would be fixed from DDL to surface. Using 

this value of equilibrium constant, the decrease in 22Na+ concentration is shown in Figure 3B. This 

figure shows two distinct curves of decrease in 22Na+ concentration from bulk water either by 

adsorption in DDL (red line) or sorption in surface sites (pink line). The concentration profile of 

these ionic species, as shown in Figure 3C, were also investigated during this modeling process. 

Iodide shows the effect of anion exclusion in the downward concentration jump at the borehole 

perimeter. 

Since only half of the pore space contains I-, the concentration in the rock (green line) appears to 

be halved compared to that in the borehole (green circle). This figure also shows that, when 22Na+ 

was injected in this column, its rapid fixation on negative surface (inner sphere complexation) took 

place. Due to this fixation, 22Na+ concentration near the surface sites increased as compared to 

initially injected concentration. But, in this case as 22Na+ was permanently fixed, its diffusion was 

inhibited to a very short distance. When a fraction of the injected 22Na+ was not fixed on the surface 

sites but was adsorbed in the mobile DDL zone (outer sphere complex), 22Na+ diffused to a 

distance greater than the fixed case.  

Finally, from this first multicomponent diffusion modeling through charged porous column, Appelo 

et Wersin(2007)5 showed that the presence of surface charge determines the fate of ionic transport 

through such media. However, there are some limitations of their approach. The most important 

limitation lies on the use in their modelling of several input parameters whose value can only be 

adjusted, especially when these authors applied their approach to a real case: the diffusion in 

Opalinus Clay. For instance, it is unclear how much Na is assigned to fixed sites or to the diffuse 

layer in the given clayey system, or what is the pore size available for anion diffusion.  

1.3 Reactive Transport experiments 

1.3.1 Introduction to precipitation and dissolution phenomena  

To understand the concept of precipitation/dissolution mechanisms, let us begin this discussion 

with formation of orthosilicic acid solution from silica mineral. This acid is formed when silica reacts 

with water, and this reaction can be written as7: 
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𝑆𝑖𝑂2 + 2𝐻2O 

𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
→        

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛
←          

̇

𝐻4𝑆𝑖𝑂4 

 

--------------------------------- (18) 

In equation 18, the solubility (Ksp) of SiO2 (s), is the maximum amount of this mineral that can be 

dissolved in a given volume of water. This solubility is a thermodynamic dependent 

property7.Thus, when the solid SiO2(s) mineral is in equilibrium with the orthosilicic acid solution, 

this equilibrium reaction can be written as: 

 Ksp =(𝐻4𝑆𝑖𝑂4)  --------------------------------- (19)  

Where (𝐻4𝑆𝑖𝑂4) is the activity of formed orthosilicic acid. This equilibrium condition defines the 

saturation state of orthosilicic solution. However, if more 𝐻4𝑆𝑖𝑂4 is added in the solution, then the 

solution contains an excess of orthosilicic acid larger compared to the solubility (Ksp). In this 

situation, the solution is said to be an oversaturated solution. From a thermodynamic point of view, 

SiO2(s) should precipitate from this solution. On the contrary, if the activity of (𝐻4𝑆𝑖𝑂4) in a given 

solution is smaller than Ksp,, then the dissolution of SiO2(s) solid phase would start until(𝐻4𝑆𝑖𝑂4) =

 Ksp or the  solid SiO2(s) disappears. 

In general, for a given mineral 𝐴𝑚𝐵𝑛(𝑠) dissolving in water, its stoichiometric equation can be 

written as7: 

 

𝐴𝑚𝐵𝑛(𝑠) 

𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
→        

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛
←          

̇

𝑚𝐴+𝑛 + 𝑛𝐵−𝑚 

 

--------------------------------- (20) 

In equation 19, to define the equilibrium condition, we compared the activity of orthosilicic acid 

with the solubility of SiO2(s) mineral, i.e. we compared the solubility of SiO2(s), with solvated ions 

of this mineral. These solvated ions can be mathematically represented in form of ion activity 

product (IAP):  

 IAP = (𝐴+𝑛)𝑚(𝐵−𝑚)𝑛 --------------------------------- (21)  

(𝐴𝑚
+𝑛) 𝑎𝑛𝑑 (𝐵𝑛

−𝑚) are the activies of the dissolved species (-) 
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From these theories, three important conventions can be drawn out: 

IAP = Ksp (saturated solution) Equilibrium between activities of 

dissolved species and Ksp. 

 

IAP < Ksp 

 

(undersaturated solution) 

The product of the activities of 

dissolved species is lower than 

Ksp, thus solid mineral will 

further dissolve into the solution  

until IAP= Ksp or the mineral 

disappears. 

 

IAP > Ksp 

 

(oversaturated solution) 

The product of the activities of 

dissolved species is higher than 

Ksp, and thus, mineral phase will 

start precipitating from solution. 

The precipitation/dissolution phenomena using aforementioned theories for solubility and ion 

activity product are well defined for the salts dissolving in bulk water. However, we want to 

investigate these precipitation/dissolution reactions in small volume of solution contained in pores 

whose size ranges from nm to µm.  

For this investigation, Rijniers et al8 used a Nuclear Magnetic Resonance (NMR) technique to 

investigate the impact of pore pressure on the bulk solubility of sodium sulfate salt. They showed 

that the pores of diameter 7 nm and 10 nm-size imparted pore pressure of 13 MPa and 9 MPa 

respectively. Due to this high pore pressure, the solubility of sodium sulfate increased by a factor 

of 3 (resp. 2.1) in 7 nm (resp. 10 nm) pores at 10°C. In another study, Putnis et Mauthe9 

investigated the impact of pore size on halite solubility within sandstone. They found that, in a well 

cemented sandstone sample, all of the halite was dissolved within 10 µm-size pores, but, halite in 

40 µm-size pore was still present in the porous network. 

Both of these studies show that as we decrease the volume of confined media, some other 

parameters such as disjunction pressure, tensile energy imparted by crystal size and pore size 

needs to be taken into considerations in addition to thermodynamic solubility in open solutions. In 

one study by Emmanuel et Ague(2008)10 and Emmanuel et al.(2010)11 compared two models, the 

classical constant solubility model and pore scale solubility (PCS) model. .In the constant solubility 
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model the thermodynamic solubility was used to describe stylolite precipitation in a range of pore 

size distribution (10-8m to 10-4m).In the PCS model, different parameters such as interfacial energy 

to initiate precipitation, pore size dependency, molar volume of mineral were considered in 

addition to the thermodynamic stylolite solubility. The end results of pore size distribution evolution 

in response to stylolite precipitation by both models showed that pore scale solubility model, 

contrary to constant one, enables to find a solubility product of stylolite that is much higher in 

nanopores.  

The impact of confined pore volumes on salt precipitation was seen in the work of J. Poonoosamy 

(2016)12. While investigating the barite precipitation in 10 µm3 and 100 µm3 pore volumes, she 

observed that in 100 µm3 pore volumes, nano-crystalline barite of size 10 nm precipitated at a rate 

of 1.1 nm/h, whereas, in 10 µm3 pore volumes, a rim of barite overgrowth was seen on the surface 

of pores at the rate of 10 nm/h. 

This work clearly shows that confined pore volumes play an important role in determining the 

precipitation rate of a given salt and also the morphology of the precipitate. For such an 

investigation, Supersaturation-Nucleation-Time (SNT) diagrams have been developed for each of 

the pore volumes. These diagrams are necessary to determine the time until which confined 

solution, enriched with salt, remained supersaturated, without nucleating. However, to develop 

such diagrams, one needs to determine the time and the supersaturation value at which the first 

visible nucleus is seen in the confined pore volume. 

Thus, in next section, an experimental method developed by Putnis et al.(1995)13 is discussed 

first. In this method, for a given reactant concentration and pore volumes, one can determine the 

supersaturation value needed for formation of first stable nucleus in these pore volumes. 

Incorporating these supersaturation values in classical nucleation theory, we can then develop the 

S-N-T diagrams. 

1.3.2 Qualitative analysis of barite and gypsum precipitation in silica 

gel porous medium (Putnis et al.,1995) 

To determine the supersaturation values for a given reactant concentration in porous medium, 

Putnis et al.(1995)13 used a counter diffusion technique which inspired the setup used by Fatnassi 

(2015)14 and Chagneau (2015)15.  

In this experiment, a silica gel sample of 9 mm in diameter and 280 mm long is prepared, by an 

acidification of sodium silicate solution to a pH of 5.5. This prepared gel is then solidified in a U-



24 

 

tube arrangement. After some time, when the gel hardens, the resulting silica hydrogel now 

contains 95.6% water within the interconnecting pores. This hardened gel has pores of diameter 

ranging between 100 and 500 nm.  

This gel sample is then sandwiched between two reservoirs, to prepare a counter diffusion cell 

setup. Figure 4 shows a schematic view of such counter-diffusion cell used by Putnis et al. 

(1995)13. At both ends of this material, two reservoirs are attached, where one of the reservoirs is 

filled with cationic reactant-bearing solutions, and the other with anionic reactant-bearing solution.  

Due to the concentration gradient, these saline solutions will counter-diffuse through the pores of 

silica gel to meet and induce a potential precipitation. As more and more of these reactants 

accumulate, the pore solution is oversaturated. And, at one point, the salt will then start 

precipitating in the pores.  

To evaluate the evolution of supersaturation over the period of experimental time, a set of 5 cells 

are prepared. Each of these cells is assigned to a specific diffusion time after which the reactants 

from the reservoirs are removed to stop the experiment. The gel column from the cell is then 

removed and sliced into 10 mm long section (Figure 4). These slices are then chemically analyzed 

to measure the concentration of the precipitating phase. From these measured concentrations, it 

is then possible to calculate the supersaturation value at each diffusion time. 

 

Figure 4: Schematic view of gel through diffusion experiment used in works of Prieto et al.(1989)16. Slices 1 to 28 

follow the pattern used to cut the column for chemical analysis at each diffusion time 

  

 

BaCl2/

CaCl2

BaCl2/

CaCl2
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To calculate the supersaturation (β) for these experiments, a non-stoichiometric equation was 

used. This equation can mathematically be written as: 

   
𝛽 =

∏𝑎𝑖
𝑣𝑖

𝐾𝑠𝑝
 

--------------------------------------- (22) 

where, ∏𝑎𝑖
𝑣𝑖 is the ion activity product (-) 

𝑣𝑖 is the stoichiometric ion number i in the solute formula (-) 

𝐾𝑠𝑝  is the solubility product (-) 

𝑎𝑖, is the activity of the species i in water (-) 

The activities of ions in equation 22 can be estimated using Debye-Hückel theory for moderately 

concentrated solution12. Table 1 shows the supersaturation values of gypsum, calculated at each 

diffusion time in the experiment where 1M of CaCl2 and Na2SO4 were injected from opposite ends 

of the reservoir. These supersaturation values can be plotted versus diffusion times (Figure 5). 

The interpolation of this curve gives an equation, using which the supersaturation at any given 

time in the experiment can be calculated. Finally, the derivative of this curve dβ/dt is the 

supersaturation rate (Rβ)). 

Table 1:Supersaturation and supersaturation rate evolution for the given diffusion time applied in experiments of 

Putnis et al (1995)13 

 CaSO4. 2H2O 

Diffusion 

Time (h) 

Supersaturation 

β(-)  

Supersaturation 

rate, Rβ 

(h-1) 

750 1.5 0.009 

1000 2.5 0.012 

1250 3.75 0.015 

1500 7.5 0.018 

1750 12.5 0.021 

2000 15 0.024 
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Figure 5: Plot of supersaturation vs. diffusion time for 1M CaCl2-Na2SO4, at the point where nucleation took place 13 

In addition to the supersaturation data, the optical observation of the silica gel enables to detect 

the first nucleus in the experiment and to determine the time required for starting precipitation, 

called “waiting time (tw)”. Thus, by means of this time, the supersaturation value at which the first 

nucleation was seen can be estimated as shown in Figure 5. This value is called the threshold 

(βth) supersaturation. This parameter gives a way to assess the impact of the pore size on 

precipitation phenomenon. In works of Putnis et al.(1995)13, they concluded that the smaller the 

pores of the medium used (gelatin with large pores or silica gel), the higher the threshold 

supersaturation. Therefore, for any given reactant concentration, Putnis et al.(1995)13 determined 

the values of the threshold supersaturation and waiting time (tw). Table 2 and Table 3 show these 

values for gypsum and barite precipitations at different reactant concentrations in reservoirs.  
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Table 2: Supersaturation rates calculated for gypsum precipitation for experiments with different reservoir 

concentrations 13 

CaCl2 

(M) 

Na2SO4 

(M) 

tw 

(waiting time) 

(h) 

βth 

(-) 

Rβ 

(h-1) 

0.5 0.5 1792 4.09 0.0037 

0.3 0.5 2024 2.23 0.0003 

 

Table 3: Supersaturation rates calculated for barite precipitation for experiments with different reservoir 

concentrations 13 

BaCl2 

(M) 

Na2SO4 

(M) 

tw (waiting time) 

(h) 

βth 

(-) 

Rβ 

(h-1) 

0.5 0.5 360 11663 109.8 

0.1 0.1 572 1929 7.2 

 

Table 2 and Table 3 clearly show the impact of both the reactant concentrations and the nature of 

the salt on the threshold supersaturation values and on the supersaturation rate. Hence, we can 

now conclude that, while studying the counter diffusion precipitation phenomena, if we know the 

reservoir concentrations, the methodology developed by Putnis et al.(1995)13 can be used to 

determine the threshold supersaturation and the waiting time (tw) for this experiment.  

1.3.3 Applications of Classical Nucleation Theory (CNT) 

In the previous section, we discussed how to determine the threshold supersaturation (βth) and 

the waiting time (tw) for a given precipitation experiment. However, both terminologies are 

dependent on the nature of the salt and concentration of reactants in the reservoirs, as mentioned 

before. Our interest lies in understanding the impact of confined pore volumes on 

dissolution/precipitation reactions. Thus for this reason, a method recently developed by Prieto 

(2014)17 is discussed in this section. In this method, he used the experimental data obtained from 

the work of Putnis et al. (1995)13  to develop Supersaturation-Nucleation-Time (S-N-T) diagrams. 

The aim of developing such diagram was to determine the rate at which a certain type of nucleation 

phenomenon occurs in confined pores volumes. These different types of nucleation were 

developed using some concepts from the classical nucleation theory (CNT). This theory states 
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that when a solution is oversaturated with a given salt, the salt nuclei will form clusters in the 

solution. As the size of the cluster overcomes a critical size, it forms a stable nucleus and then 

precipitates from the solution. However, the conversion of this cluster into stable nucleus depends 

upon surrounding in which it nucleates. Indeed, if these clusters are present in a solution where 

all the sites are potential sites for nucleation, then the precipitation will follow a Homogeneous 

type of Nucleation (HON). Conversely, if these clusters form stable nuclei in presence of a foreign 

substrate, then this type of nucleation is called Heterogeneous Nucleation (HEN) 17–19. But 

according to CNT, for both nucleation phenomena to occur, the cluster needs to overcome the 

interfacial energy, i.e. the surface energy of the cluster/solution interface17,18, e.g. If barite crystals 

form homogeneously (HON), they will require 1.37 J.m-2 of interfacial energy for this nucleation. If 

barite overgrows on the substrate (HEN), the interfacial energy decreases to 0.45 J.m-2. Due to 

this difference in associated interfacial energies for stable formation of nuclei, the HON and HEN 

types of nucleation will take place at different nucleating rates. 

To reproduce such S-N-T diagrams, the waiting time needs to be replaced by the induction time 

(Figure 5). We know that, the time elapsed between starting of experiment (no supersaturation) 

and observation of first nuclei (threshold supersaturation) is known as the waiting time. However, 

the induction time is the time elapsed between the ‘instantaneous’ creation of supersaturation and 

the detection of nucleation (see Figure 6). This time also known as induction time represents the 

metastability limit of solution during which a solution can remain supersaturated without 

nucleating. This induction time 𝑡(s) can mathematically be calculated as18: 

   𝑡 = 1/𝐽𝑉 ----------------------------------- (23) 

where 𝑉 is volume of the fluid (m3)  

𝐽 is the nucleating rate (m-3.s-1)3 

However, this equation is only suitable for measuring the induction time in systems where counting 

the number N of nuclei or detecting the appearance of a single nucleus in the solution is 

possible18.Thus, for other cases, when it is not possible to count the single forming nucleus, or 

detectable volumes, the induction times can be calculated using the following equation: 

                                                

3 The detailed description of how to calculate the nucleation rate can be found in works of J. Poonoosamy 

(2016)12 
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𝑡𝑒𝑥𝑝 = (
3𝛼𝑣
𝜋𝐺3𝐽

)

1
4
 

 

---------------------------------- (24) 

Where 𝛼𝑣 is the 
𝑉𝑑

𝑉𝑝
, i.e. the detectable volume fraction of the nucleating phase 

(-) 

𝐺 = 
𝑑𝑅

𝑑𝑡
 is the growth rate of the nucleating phase (m.s-1) 

𝑅 is the crystallite radius (m) obtained after completion of experiment 

𝑉𝑝 is the pore volume (m3)  

𝑉𝑑 is the detectable volume of the nucleating phase (m3)  

To illustrate the applicability of this induction time for the case where counting of forming nuclei is 

not feasible, the calculations done by J. Poonoosamy (2016)12  for barite precipitation in 

compacted sand pores is presented. In this study, the barite precipitation was done by injecting a 

solution with 0.5 M of BaCl2 into celestite-bearing compacted sand under an advective regime. 

This injection resulted in dissolution of celestite and precipitation of barite. To investigate the 

evolution of barite precipitates for pre-determined diffusion times, 5 sets of experimental cells were 

used. Each of these cells was assigned to reference diffusion times of 9, 28, 156, 200 and 300 

hours since the starting of the experiments12. At the end of each diffusion time, the experiment in 

the cell was stopped. The reactant solutions were pumped out and the sandstone sample was 

sliced into thin sections. These thin sections were then subjected to SEM observations to 

determine the barite growth in compacted sand pores over these diffusion times. 

Finally, to calculate the equation 24, the experimental dataset used were as follows: 

1) The detectable volume of the nucleating phase 𝑉𝑑, was assumed to be 1 µm3. This value 

corresponded approximately to the resolution of SEM images; 

2) Two pore volumes 𝑉𝑝 were taken in this study, i.e. 10 µm3 and 100 µm3; 

3) During these experiments, after first diffusion time of 9 hours, 10 nm-size barite 

nanoparticles were found in sandstone pores. Thus, the growth rate 𝐺 = 
𝑑𝑅

𝑑𝑡
 = 10-8 m / 

32400 s = 3.09 × 10-13 m.s-1. 

To reproduce the induction times, the interfacial energy was taken equal to 45 mJ.m-2 for HEN, 

and 137 mJ.m-2 for HON. In CNT theory, the nucleation takes place when clusters of a certain size 

overcome the critical size for nucleation. CNT theory also states that these clusters are formed 

from the monomers present in the solution. In the case of Poonoosamy (2016)12  work, the number 
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of dissolved monomers in pore solution was assumed to be N1 = 2.94 × 1023 m-3. Finally, using 

these calculated parameters, the Supersaturation - Nucleation – Time diagram was constructed 

for a saturation index 4(SI or ) value equal to 4 (directly taken from the experimental results). 

 

Figure 6: SNT diagrams for homogeneous and heterogeneous nucleation in 10 and 100 µm3 characteristic pore 

volumes, optimized for barite precipitation experiments. N1 represents the monomer concentration of barite12 

Observations: 

Figure 6 represents the S-N-T diagram for barite precipitation in pore volumes of 10 and 100 µm3. 

In this figure, we can see that, knowing the number of monomers available for nucleation, at SI = 

4, the induction times for HEN and HON in 10 and 100 µm3 pores are clearly different. The 

induction time for HON in 100 µm3 pore volume is equal to 9 hours and the one in 10 µm3 pore 

                                                

4 Saturation index SI is the ratio of ion activity product of ions contributing to precipitation and the solubility 

product of forming mineral, i.e. SI = IAP/Ksp. The importance of saturation index in precipitation is already 

described in section 1.3.1. 
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volume is equal to 319 hours. Similarly, the induction times for HEN in 100 µm3 and 10 µm3 pore 

volume are equal to 1 hours and 4 hours respectively  

Using these observations of S-N-T, and comparing them with experimental observations, 

Poonoosamy (2016)12 concluded that the barite grew at different rates in small and large pores. 

In small pores, the occurrence of barite overgrowth is due to the fact that HEN is the governing 

phenomenon, whereas in big pores, nano-crystalline barite precipitates because HON is the 

governing phenomenon. Thus, all of the observations from the works of Putnis et al. (1995)13 and 

J. Poonoosamy (2016)12 reveal some important key points: 

1) While studying the counter-diffusion precipitation experiments, the threshold 

supersaturation of the precipitate depends upon reactant concentration and the nature of 

precipitating salt; 

2) By lowering the reactant concentrations, the waiting time for nucleation increases; 

3) Determination of supersaturation at different diffusion times is helpful to develop the 

evolution of supersaturation as a function of the experimental time; 

4) The threshold supersaturation can be then taken as a reference supersaturation value in 

S-N-T diagrams; 

5) Using this S-N-T diagram, we can determine the rate at which a certain nucleation 

phenomenon takes place in a given pore volume;  

6) Finally, if the nucleation takes place in a polymodal pore-size distributed system, the 

precipitation will take place at different rates. 

1.4 Reactive Transport Simulation Codes  

In previous two sections we tried to understand 1) the modes of ionic diffusive transport through 

charged/neutral porous media and, 2) the dissolution/precipitation phenomena that could take 

place in porous media.  

In the third step, it is now time to quantify the impact induced by these precipitation/dissolution 

phenomena on ionic/neutral species transport through porous medium.  

This quantification can be done using some existing chemistry transport codes. Most of these 

codes use continuum approach, which incorporate physical laws to quantify the aforementioned 

impacts. Thus, the next sections briefly explain the continuum approach and the physical laws 

used in these codes.    
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1.4.1 Continuum approach 

A claystone is composed of mineral grains and pore spaces or voids. It can be simply stated as a 

porous medium. This porous medium is a highly heterogeneous structure that contains physical 

discontinuities. This porous medium can further be defined by the boundaries of pore walls in 

order to separate the claystone solid from the void space20,21. 

Although it is possible, in principle at least, to describe this pore-void system at each individual 

microscale, a precise description of such system becomes difficult as the size of the system 

increases. Thus, it is generally necessary to approximate the system by a more manageable one. 

“One quantitative description of the transport of fluids and their interaction with rocks is based on 

a mathematical idealization of the real physical system referred to as a continuum22.” In continuum 

theory, the actual discrete physical system, consisting of aggregates of mineral grains, interstitial 

pore spaces and fractures, is replaced by a system in which physical variables describing the 

system vary continuously in space 5.  The value of each physical variable assigned to a point in 

continuum space is obtained by locally averaging the actual physical property over some 

Representative Elementary Volume (REV). For example, the temperature in continuum can be 

defined as T(r,t), where r refers to a point in the continuum space with spatial coordinates (x,y,z), 

and t represents the time. Similarly, at this point r, the porosity, liquid saturation, and liquid 

concentration are represented as ф(r,t), sl(r,t), C
l
i(r,t) and Ci

g(r,t), where l and g refers to liquid and 

gas phase, and i represents the ith solute respectively22.All these physical parameters can then be 

incorporated in a single volume of REV: 

 𝑉𝑅𝐸𝑉(𝑟, 𝑡) =  𝑉𝑠(𝑟, 𝑡) + 𝑉𝑝(𝑟, 𝑡) --------------------------------- (25)  

  where 𝑉𝑠(𝑟, 𝑡) is solid volume at point r in continuum space and 
time t 

  𝑉𝑝(𝑟, 𝑡) is the porous volume at point r in continuum space and 

time t   

  

                                                

5 The governing diffusive transport equations used in continuum approach, have already been explained in 

section 1.2. Thus in this section they have not been re-listed 
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1.4.2 Mineral dissolution and precipitation 

In reactive transport codes, mineral dissolution/precipitation phenomena can take place either at 

the thermodynamic equilibrium (i.e. with no supersaturation) or with some kinetics effects 

quantified by the rate equation (i.e. “the rate at which this mineral tends to dissolve or 

precipitates”). This rate (Rs) can be mathematically written as23: 

 𝑅𝑠 = −𝐴𝑠 𝑘𝑟𝑎𝑡𝑒(1 − 𝑄𝑠/𝐾) --------------------------------- (26) 

where 𝑘𝑟𝑎𝑡𝑒denotes the kinetic rate constant (mol.m-2. s-1) 

−𝐴𝑠 is the specific surface area m2gmineral phase
−1  

K is the equilibrium constant (-) 

The Qs in equation 26 is the ion activity product which can further be defined as: 

 

𝑄𝑠 = 𝑎𝑖
−1∏𝑎𝑗

𝑣𝑖𝑗

𝑁𝑐

𝑗=1

 

 

---------------------------- (27) 

 

where aj and ai are the ion activity products of the primary and secondary 
species in the reactions (-) 

The kinetic rate constant in this case is calculated using Arrhenius equation23: 

 
𝑘𝑟𝑎𝑡𝑒 = 𝑘𝑟𝑎𝑡𝑒

0
𝐴(𝑇)

𝐴(𝑇0)
[−

1

𝑅
(
1

𝑇
−
1

𝑇0
)∆𝐸𝑚] 

--------------------------------- (28)  

  𝑘𝑟𝑎𝑡𝑒
0  denotes the rate constant(mol.m2.s-1) at temperature 𝑇0 

𝑅 is the universal gas constant (J.mol-1. K-1.) 

  ∆𝐸𝑚 is the activation energy (kJ.mol-1) 

𝐴(𝑇) is the pre-exponential factor  
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And the evolution of surface area6 in response to mineral precipitation can be written as21: 

 
𝐴𝑠 =  

𝐴𝑏𝑢𝑙𝑘𝑉𝑚
𝜙𝑚𝑀𝑊𝑚

 
--------------------------------- (29)  

  𝐴𝑏𝑢𝑙𝑘 is the bulk surface area (m2.m-3
porous medium)  

  𝑉𝑚 is the molar volume of the solid phase(m3.mol-1)  

  𝜙𝑚 is the initial volume fraction (-)  

  𝑀𝑊𝑚 is the molecular weight of the precipitating phase (g.mol-
1) 

1.4.3 Porosity changes 

As the precipitation/dissolution phenomena progress, the change in molar volumes of minerals is 

created by hydrolysis reactions (i.e., anhydrous phases, such as feldspars, reacting with aqueous 

fluids to form hydrous minerals such as zeolites or clays). The molar volumes of these newly 

generated minerals are either larger or smaller than those of the primary reactant minerals. 

Therefore, constant molar dissolution–precipitation reactions may either lead to porosity 

expansion or reduction20.  The response of this evolution of the porosity ɸ to changes in molar 

volumes of the medium can be mathematically written in the form: 

 

𝜙 = 1 − ∑ 𝜙𝑚

𝑁𝑚

𝑚=1

 

---------------------------- (30) 

Where Nm is the number of minerals (-) 

𝜙𝑚 is the volume fraction of mineral m in the rock (-) 

  

                                                

6 One must note that this is one way to describe the reactive surface area. However, depending upon the 

geometry of the reactive surface (plane, sphere etc.) there are many other possibilities to define this surface 

area.  
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1.4.4 Archie’s law  

The impact of precipitation/dissolution phenomena on diffusion can be coupled using Archie’s law, 

and it can be mathematically written as: 

 𝐷𝑒 = 𝐷𝑤𝜙
𝑚 --------------------------------- (31)  

  Where 𝐷𝑒 is the effective diffusion coefficient (m2.s-1)  

𝐷𝑤 is the diffusion coefficient in bulk water (m2.s-1) 

  𝜙 is the porosity of the medium (-) 

m is the fitting factor or cementitious factor (-) 

1.4.5 Some issues to address  

The rate equation for precipitation/dissolution reactions uses a kinetic rate constant, 𝑘𝑚, at which 

the mineral precipitates/dissolves. However, in the section dedicated to precipitation and 

dissolution phenomena, we observed two important points:  

- In the work of Putnis et al. (1995)13, it was seen that, when reactants react in pores, the solute-

rich solution firstly remains supersaturated for a certain time and then precipitation takes place. 

For both of these cases, the rate at which the supersaturation and the precipitation took place was 

not the same;  

- In the same section, we also illustrated an example dedicated to applications of CNT. In this 

illustration, Poonoosamy (2016)12 demonstrated that two types of barite precipitated in compacted 

SiO2 pores, for which precipitation rates were pore-specific. Therefore, the open question is “what 

is the true rate constant when the precipitation itself is taking place at different rates?” For the 

case of surface area, in literature, it is still ambiguous to accurately define the reactive surface 

area in continuum approach. It is noteworthy that existing codes differently integrate this surface 

area.  
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E.g. in CRUNCH flow, the reactive surface area is defined as21: 

 𝐴𝑏𝑢𝑙𝑘
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Precipitation  

Where, 𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial porosity (-) 

𝜙𝑚
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial individual mineral volume fraction (-) 

𝜙𝑚 is the individual mineral volume fraction (-) 

 

 

This defined surface is only valid for the cases where: 

1) If the volume fraction, 𝜙𝑚, of a mineral tends to 0, its surface area also tends to 0. 

2) {(
𝜙

𝜙0
)}

2/3
= 0, then the porosity of the medium tends to 0. 

Furthermore, Oelkers (1996)24 demonstrated that, when the fluid is channeled from a large space 

to a fracture, the reactive surface decreases by an order of more than 5. Thus, for a rock pore-

sizes ranging from nanometers to micrometers, the reactive surface area is going to change 

significantly, and true averaging might not result in a proper evolution of porosities due to 

precipitation/dissolution phenomena. In the Archie’s law, the cementation factor remains constant 

for a given porous material. However, when precipitation in the pores of this material occurs, or 

when mineral from the pores are dissolved, it is obvious that the tortuosity7 in this rock sample is 

going to change, due to pore expansion or reduction. Thus, when the porosity of the rock is 

evolving, the use of one cementation factor may not always be true. Thus, under this condition, 

the true reduction/increase in effective diffusivity of a given solute, after precipitation/dissolution 

                                                

7 The tortuosity is defined as the average ratio of the microscopic path length L (m) to the macroscopic path 

length in x (m) in medium or,  = L/x. This ratio is always greater than or equal to one and represents the 

tortuous pore channels generated from interconnected void spaces in a porous medium. 
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reaction, is hard to calculate using Archie’s law. Recall that this law is an empirical law and it was 

developed to calculate the resistivity of a family of rocks, where the pore space does not evolve 

but remains constant.  

2 Review of Studies Related to Current Problematic 

The previous section was dedicated to list the conventional theories used to describe (1) solute 

transport through porous medium, (2) the precipitation/dissolution phenomena through porous 

medium, and (3) how transport and precipitation/dissolution phenomena can be explained in 

continuum approach, using physical laws and rate equations in codes. In addition to this, some 

recent approaches, such as CNT and PCS were also given. However, the aim of the current thesis 

work is to assess the ability of the chemistry transport codes to tackle chemical perturbation 

induced by saline plume. Therefore, it would be now useful to correlate the bibliographic review 

with the works already done in the context of this thesis. Table 4, presents a non-exhaustive list 

of experimental or/and numerical works dealing with the current problematic. Note that in the 

current manuscript, only the studies dedicated to precipitation or dissolution were analyzed. 

Table 4: List of experimental and numerical works dealing with current problematic 

 Precipitation Dissolution Salinity gradient 

Neutral 

medium 

Fatnassi (2015) 

Chalk + gypsum 

 

Fatnassi (2015) 

Chalk + HCl 

 

Clay model 

medium 

Chagneau (2015) 

Compacted illite + SrSO4 

  

Claystones  Berthe (2012) 

TRNM + CO2 

enriched waters 

-Ezzouhri (2014) 

Torunemire claystone (TRNM) at constant ionic 

strength (IS) 

-Leroy (2005) 

(Callovo-Oxfordian claystone) COx with IS gradient  

osmosis 

Tremosa (2010) 

TRNM + IS gradient 
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2.1 Precipitation reaction in neutral or charged medium  

2.1.1 Barite precipitation experiment in neutral porous medium  

2.1.1.1 Materials and Methodology 

To investigate the impact of precipitation on a simple porous medium, Fatnassi (2015)25 carried 

out barite precipitation in a compacted chalk sample under diffusive transport. This chalk samples 

contained 97% of calcite with total porosity of 45% and a mean pore diameter of 660 nm. The 

sample was sandwiched between two reservoirs as shown in Figure 7. Each of the reservoirs was 

then filled with equilibrated water. This step enabled to reach a saturation state for the sample and 

a chemical equilibrium between the reservoir-rock-reservoir system. When equilibrium was 

achieved, a tritiated water (HTO) of known activity was injected in the upstream reservoir. Let us 

call this time of injection as t0 = 0. At this time, the concentration of this tracer in downstream is 

zero. Thus, due to tracer concentration gradient between the two reservoirs HTO diffused from 

upstream towards downstream reservoir. Using a semi-analytical approach developed by Radwan 

et al. (2006)26 and Didierjean et al. (2004)27 for through diffusion setups, the effective diffusion 

coefficient of this injected tracer through intact chalk sample was calculated. Note that this step 

was previously performed by Descostes et al. (2012)28. However, contrary to Fatnassi (2015), they 

used in their setup Peek perforated plates to maintain the chalk sample. Several studies have 

shown that such perforated plates tend to decrease the diffusive rate and thus, underestimate the 

effective diffusion coefficient. Therefore, this means that the value of 3.8 x 10-10 m².s-1 used by 

Fatnassi (2015) from Descostes et al. (2012)28 for the intact chalk is an underestimated value.  

 

Figure 7: Classical through diffusion setup for barite precipitation (Fatnassi, (2015)25) 
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After this step, the equilibrated water was replaced by reactive solutions, i.e. solutions with 20 mM 

of BaCl2 in upstream and 20 mM of K2SO4 in downstream reservoirs, respectively. Similar to 

previous step, HTO was also added in upstream reservoir to monitor the impact of precipitation 

on the diffusive flux of an inert tracer. Finally, radioactive 133Ba was also injected in upstream 

reservoir to investigate the barium concentration profile in post-mortem analysis. The barium from 

upstream and sulfate from downstream gradually diffused into the pores of sandwiched chalk 

sample and reacted with each other. This reaction further generated a barite-rich pore solution. 

As more and more of these ions diffused, their continuous reaction in pores oversaturated the 

pore solution. At one point, from this highly oversaturated solution, barite starts precipitating into 

the pore of chalk sample. As this precipitation reaction progressed, the forming precipitates 

partially or fully filled the pore space (or voids) decreasing the porosity of chalk sample.  

2.1.1.2 Results 

The experimental observations of this barite precipitation are divided into four parts: 

1) Determination of effective diffusion coefficient of HTO before and during barite precipitation in 

chalk samples 

The value of effective diffusion coefficient for HTO through intact chalk sample was equal to 3.8 ± 

0.5 x 10-10 m² s-1. This value was taken from the works of Descostes et al. (2012)28 for HTO through 

intact chalk sample. In the reactive step, a similar approach as in “non-reactive” step was followed 

to calculate the De
 for HTO during the barite precipitation in chalk sample. The new value of De 

during the barite precipitation was equal to 2.5 x 10- 10 m² s-1, i.e. 1.5 times lower than for intact 

chalk sample. Note that this approach is not strictly correct because the porous medium evolves 

continuously during the reactive experiment.  

2) Determination of porosity reduction of chalk sample through mass balance calculations: 

In parallel to determine the impact of precipitation in diffusivity of HTO tracer, Fatnassi (2015)25  

investigated the impact of barite precipitation on total porosity. This step was done by measuring 

the reactant concentrations at regular time intervals in solution. For the mass balance calculations, 

it was assumed that the volume of pores in the chalk sample (~ 2.7 mL) was negligible compared 

to volume of the reservoirs (130 + 170 mL). Using this assumption, the precipitated volume of the 

mineral was estimated from the change in the reactant concentration in the reservoirs using the 

molar volume of barite (52.1 cm3.mol-1). Figure 8 shows the evolution of the calculated porosity 
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for barite precipitation reaction. From this figure, we can see that the porosity decrease is relatively 

slow and small. For instance, starting from an initial porosity of 45 %, the porosity after 130 days 

is 42.5 % for the barite experiment.  

 

Figure 8: The precipitated volume of barite calculated from decrease in 133Ba concentration in upstream and SO4 

concentration in downstream reservoir. This precipitated mineral volume corresponded to decrease in porosity25 

2.1.1.3 Post mortem analysis 

To investigate the localization and the thickness of barite precipitated layer in chalk sample, optical 

and EDS-SEM analyses were done. These investigations revealed that the precipitation layer 

started at 2.85 ± 0.10 mm from inlet reservoir (Ba + HTO reservoir), i.e. not exactly in the middle 

of the sample. The thickness of this layer further was not larger than 100 µm, as shown in Figure 

9. 
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Figure 9: EDS-SEM observation of barite precipitation (pink line) in chalk porous medium. The precipitation zone 

observed is not strictly perpendicular. This zone consists of a densely precipitated barite (continuous pink line) with 

some barite precipitate islands nearby this continuous zone (pink spots)25 

The thickness of this precipitating layer can also be estimated using mass balance calculation with 

the chemical monitoring in solution. This technique allows us to estimate the amount of 

precipitating barite within chalk. In barite precipitation experiment, a volume of 0.14 cm3 of 

precipitating barite was estimated using this technique. If we assume that all the pores of this zone 

were filled by barite, then a thickness of about 350 µm can be deduced from this technique. 

However, the value of this thickness directly contradicts the precipitation zone thickness observed 

using EDS-SEM. This difference clearly indicates a discrepancy, addressing the issue of the 

precipitation phenomenon, i.e. the kinetic rate, the supersaturation, etc. 

2.1.1.4 Numerical modeling 

The aforementioned experimental results were quantified using the chemistry transport code 

CRUNCH Flow21. The effective diffusion coefficient of HTO for intact chalk was reproduced by 
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performing simulations without any chemical reaction and a cementation factor of 2.1 in the 

Archie’s law. This cementation factor was determined from the value of De given by Descostes et 

al. (2012)28 and with a D0 equal to 2 x 10-9 m² s-1 for water tracer (HTO)28. The diffusion curve for 

HTO was similar to the curve calculated from the semi-analytical approach. In next step, to 

reproduce the barite precipitation, a precipitation rate value of 1.5 x 10-11 mol.m-2.s-1 and a specific 

surface area value of 1.65 m² g-1 were introduced into the chemistry transport codes from a 

literature review29. Similarly, during this precipitation reaction, the evolution of reactant was also 

reproduced in CRUNCH code. The mass balance calculations were carried out. Figure 10 shows 

the impact of barite precipitation on porosity of chalk sample. The mass balance calculation done 

by CRUNCH resulted in generating a barite precipitate with a thickness of 350 µm. This value 

directly contradicted the optical observations (Figure 9), where the thickness of the precipitated 

layers was approximately 100 µm.  

 

Figure 10: Evolution of barite precipitation zone in chalk pores, predicted by Crunch flow using mass balance 

calculations25 
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2.1.2 Precipitation in surface charged porous medium  

2.1.2.1 Materials and methodology 

The clay material used in the study of Chagneau (2015)15 was the illite-du-Puy, a natural clay 

extracted from the Puy-en-Velay (Massif Central, France) Upper Eocene clay formation. The 

material contained carbonates and quartz, with a clay fraction composed primarily of illite (80-

100%)30. The illite-du-Puy used in this study was purified (removal of quartz and carbonaceous 

phases) and Na-exchanged in a standardized way, described in details by Glaus et al. (2012)30 . 

This illite-du-Puy was further compacted to a bulk dry density of 1700 kg.m-3. The total accessible 

porosity was 42%, with anion accessible porosity equal to 25%. The compacted illite-du-Puy clay 

was then sandwiched between two reservoirs containing equilibrated water and maintained by 

means of two perforated plates like Descostes et al. (2012)28 did. The experimental setup adopted 

by Chagneau (2015)15 is shown in Figure 11.  

 

Figure 11: Schematic view of through diffusion setup used by Chagneau (2015) for celestite precipitation 

In the first step, ionic equilibrium between sample pores was achieved using 0.5 M NaCl solution 

in reservoirs. After this step, reservoirs solutions were replaced by 0.5 M of SrCl2 and Na2SO4 in 

upstream and downstream reservoir respectively to launch celestite precipitation. To investigate 

the impact of celestite precipitation on diffusion of neutral and anionic species, the upstream 

reservoir was spiked with HTO (neutral) and 36Cl- (anionic) as the reference tracers. The upstream 

reservoir was also spiked with 85Sr2+ as a reactive tracer. The upstream reservoir solution of 
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volume 500 mL was not renewed during the duration of the experiments. This large volume 

ensured that the system was kept under constant boundary conditions (concentration variation of 

less than 5%). Also, since the volume withdrawn at periodic sampling was very small (1 to 2 mL), 

the variation in the volume was not significant. However, the downstream reservoir contained 

solution of volume 15 mL. Contrary to upstream case, the downstream solution was completely 

replaced every day at the initial phase of the experiment, then every week when the flux of tracers 

significantly decreased. A peristaltic pump circulated the solutions at a constant rate (50 µL.min-

1) through each end pieces. 

2.1.2.2 Results 

In this experiment, the normalized flux for HTO8 was taken as 1.3 × 10-8 m.s-1, and for 36Cl it was 

5.9 × 10-9 m.s-1. After the celestite precipitation for 70 days, the HTO flux decreased to 7.0 × 10-9 

m.s-1 and the 36Cl flux decreased to 1.0 × 10-9 m.s-1. To evaluate this decrease in HTO and 36Cl 

flux, it was necessary to evaluate the decrease in total porosity and anion accessible porosity after 

the celestite precipitation took place in illite sample. For this reason, a post-mortem analysis was 

done on this illite sample. In this analysis, a tomography (µCT) scan was used to locate the 

position of the precipitation front. Figure 12 shows the shape of precipitation zone obtained after 

the µCT scan. In this post-mortem analysis, the average porosity was found to be 52% in the 

undisturbed zone and 29% in the precipitated zone (for porosity calculation an additional post 

treatment called autoradiography was used, the details of this technique is detailed in 

Chagneau(2015)15. From these results, Chagneau (2015)15 concluded that celestite precipitated 

in larger pores where the extent of the anionic exclusion is the smallest. As the reaction 

progressed, these pores were occupied by celestite precipitates and the 36Cl path available for 

diffusion too was blocked. Thus, this resulted in higher decrease in the diffusive flux of 36Cl than 

HTO.  

                                                

8 In this thesis work, the impact on total porosity and anion accessible porosity was estimated by comparing 

the normalized flux of HTO and 36Cl in intact illite clay. As no initial and final values of effective diffusion 

coefficients were mentioned, in this discussion the flux are represented.  
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Figure 12: 3D reconstitution of the precipitation front (orange) in the in the illite sample15 

From Figure 12, we can see that, on contrary to Fatnassi (2015) experiment dealing with barite 

precipitation, the precipitating zone in this illite sample is not localized in the middle of the sample; 

on the contrary, it displays clear asymmetry, major precipitation within the perforated plate. As no 

explanation for such shape was found in the work of Chagneau (2015), this point remains for 

further discussion.  

2.1.3 Dissolution reaction in neutral and charged medium 

2.1.3.1 Calcite dissolution in neutral porous medium 

To investigate the impact of dissolution in simple porous medium, Fatnassi (2015) investigated 

the impact of an acid attack on porous network of unimodal chalk sample. In this dissolution study, 

the same through diffusion setup as used in barite precipitation in chalk medium was used. In a 

first step, a tritiated water was injected in the upstream reservoir. The effective diffusion coefficient 

of this tracer28 through intact chalk was equal to 3.8 × 10-10 m2.s-1. In second step, to induce 

dissolution, an equilibrated water with 0.1 M of HCl was injected in the upstream reservoir. This 

resulted in dissolution reaction and in an increase in the effective diffusion coefficient of water 

tracer to 6 × 10-10 m2.s-1 within 5 days since the beginning of the experiment. Due to the rapid 
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dissolution of calcite, large amount of CO2 was generated in the upstream reservoir. However, the 

experimental methodology adopted required to regularly open the upstream reservoir valve for 

sampling the solutions. Thus, when the upstream reservoir valve was opened, a de-gassing of 

CO2 was observed. Due to this frequent loss of CO2, an intermediate condition between an open 

system and closed one was created, making almost impossible an accurate reproduction of these 

data by means of a chemistry transport codes, without assuming very strong assumptions. 

2.1.3.2 Calcite dissolution in three tournemire claystones  

2.1.3.2.1 Materials and Methodology 

The main aim of Berthe’s (2012)31 work was to investigate the containment properties of clay rocks 

aged by an acid attack for mimicking CO2 storage. By means of the Tournemire experimental 

facility, three different claystones with different amount of carbonate minerals were investigated. 

Their mineralogy is presented in Figure 13, with: 

• Upper Toarcian level: drilled from depth of 15.76 meters below tunnel level with calcite and 

dolomite content equal to 15% and 1% respectively.  

• Paper Shale: drilled from depth of 149.90 meters with calcite and dolomite content equal 

to 34% and 2% respectively. 

• The Domerian: drilled from depth of 214.85 meters with calcite and dolomite content equal 

to 7% and 2% respectively. 

 

Figure 13: Different mineral compositions of Domerian, Paper Shale and Toarcian clays 

To demonstrate the impact of CO2-rich acid attack on these three clays, a brief description of the 

experimental setup used by Berthe (2012)31 is explained here (note that only results obtained on 

the Upper Toarcian level are presented in the current report). To prepare this experimental setup, 

the aforementioned clay samples were initially cut into 5 to 15 mm thickness and 30-35 mm 
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diameter slices. These samples were then sandwiched in a through diffusion setup and were pre-

equilibrated with pore water of known ionic concentration (Figure 14). After few days, when 

chemical equilibrium was reached, a neutral tracer (HDO or HTO) and an anionic tracer (36Cl-) 

were injected in the upstream reservoir. This step was necessary to estimate the anionic 

accessible porosity and total porosity of the intact sample. After this step, in upstream reservoir, 

pure CO2 gas was injected at pressure pCO2 = 1 atm, and in downstream reservoir, a mixture of 

N2/CO2 was injected at pCO2 = 10-2.4 atm to achieve the in-situ conditions of Tournemire claystone. 

The injection of pure CO2 in upstream reservoir generated an acidic solution of pH ~ 5, but the pH 

of downstream reservoir was maintained at 7.8.  To investigate the evolution of pH and chemistry 

throughout the experiment, samples were regularly taken in both reservoirs for analyses. Finally, 

in upstream reservoir, HTO and 36Cl of known concentration were injected. The evolution of these 

tracers was then evaluated by measuring their concentration in downstream at regular time 

intervals.  

2.1.3.2.2 Results 

The effective diffusion coefficients of HTO and 36Cl for intact Upper Toarcian sample were 

calculated using the same methodology adopted by Fatnassi (2015)25. In work of Berthe (2012)31, 

the effective diffusion coefficient for HTO was found to be De,HTO = 7.6 ×10-12 m2.s-1. The effective 

diffusion coefficient for 36Cl was found to be De,36Cl = 6.0 ×10-13 m2.s-1.The total and anion 

accessible porosity for this clay was found to be 12% and 3%, respectively. In second step, the 

acid attack was launched by injecting CO2 rich solution in the upstream reservoir. Within 10 days 

Berthe (2012)31 observed that the effective diffusion coefficient of HTO instantaneously increased 

to a value of 11.1 ×10-12 m2.s-1 and total porosity increased from 12% to 15%. In the same time, 

the anionic accessible porosity increased to 6%, with De,36Cl = 2.1 ×10-12 m2.s-1.  
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Figure 14: Schematic view of the through diffusion setup used for acid attack on Tournemire claystone samples. In 

upstream reservoir CO2 is injected at partial pressure 1 atm. In downstream reservoir, a mixture of N2 and CO2 is 

injected at partial pressure 10-2.4 atm. The solutions from both of the reservoirs are circulated through a perstaltic 

pump31 

1. Evolution of ion concentration and pH in upstream and downstream reservoirs: 

Table 5 represents the ionic concentration of upstream reservoir solution before and after acid 

attack. From this table, we can see that, except Ca2+, Mg2+ and HCO3
- almost all of the other ions 

stabilized during the acid attack. The significant increase in Ca2+, Mg2+ and HCO3
- ions clearly 

resembles the scenario of calcite and dolomite dissolution through Upper Toarcian argillite pores. 
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Table 5: Ionic concentration in upstream reservoir, before and after dissolution experiment 

Ions Upper 

Toarcian 

pore water 

mmol/L 

Increase in Ion concentration by acid attack 120 days after 

mmol/L 

Na 13 16 

K 0.30 0.5 

Mg 0.30 1.2 

Ca 0.50 5 

Cl 9.10 9 

SO4 1.00 1.1 

HCO3 3.70 16 

pH9 7.8 5.5 

At the end of the experiment, the amount of calcium dissolved from Upper Toarcian claystone was 

determined by measuring the calcium concentration in upstream reservoir. Comparing this 

calcium with the mineralogical calcite present in Upper Toarcian clay, it was found that only 3% of 

the calcite was dissolved.  Also, from the post-mortem analysis, it was found a good consistency 

between the dissolution of this 3% of calcium, and the almost 400 µm of calcite layer dissolved 

(Figure 15).  

                                                

9 The pH value corresponding to 7.8 is before injecting CO2 gas (pCO2 = 1atm). When CO2 attack began, the 

pH dropped down to 4.  
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Figure 15: MEB observation of Upper Toarcian clay. The green spots represent the calcium (i.e. the carbonate 

phase) present in the sample. On the left hand side, we can see that due to acid attack about 400 µm of calcite is 

dissolved from the clay sample31 

2.1.3.2.3 Numerical modeling  

The chemical changes in reservoirs of cells were numerically reproduced by Berthe (2012)31 with 

the geochemical code PhreeqC-1D by coupling chemistry and transport. Two solutions have been 

described on each side of the sample: one representing the upstream solution (Upper Toarcian 

synthetic pore water with a pCO2 ~ 1 atm) and the other representing the downstream solution 

(Upper Toarcian synthetic pore water with a pCO2 ~ 10 -2.4 atm). In this code, the sample 

description was done by inserting the right proportion of mineral reacting in the dissolution 

mechanisms. Thus, the mineral amounts were 26.64 mol/(Kg of water) of calcite, 0.97 mol/KgW 

of dolomite and 24.64 mol/KgW of illite32. The equilibrated water prepared for Upper Toarcian clay 

experiment, further was taken as a representative of pore water for modeling. 

The input parameters for the transport correspond to the initial transport properties of HTO 

obtained experimentally on intact Upper Toarcian sample. This means that a unique diffusion 

coefficient is considered for all the species with a unique accessible porosity. Moreover, as the 

geochemical code PhreeqC does not allow feedback on the porosity, it was therefore not  
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considered in this model. The dissolution rate was directly taken from the works of Lasaga (1998)23  

and the kinetic rate from Palandri et al. (2004)33, and the description of the cation exchange sites 

was also integrated31. Finally, the varying parameter in this model was the amount of carbonated 

minerals available for a possible dissolution in Figure 16 shows the comparison of the 

experimental and calculated data for calcium and magnesium in the upstream reservoir as a 

function of time. This good consistency was obtained assuming a reduction of the amounts of 

calcite and dolomite accessible for dissolution by a factor of 5.  

 

Figure 16: Comparison of the experimental and calculated concentrations of calcium and magnesium as a function 

of time in the upstream reservoir (Berthe, 2012) 
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2.1.3.2.4 Semi-analytical Modeling  

Using the semi-analytical approach developed by Didierjean et al.(2004)27 and Radwan (2006)26, 

a representative double layer model of Upper Toarcian clay was developed (Figure 17). This 

double layer model consists of a 400 µm-thick layer, altered by the CO2 attack and a second one 

composed of 4.6 mm of intact Upper Toarcian rock  

 

Figure 17: Schematic view of the two layer model31 

Berthe (2012)31 kept constant the values of the diffusive parameters for the intact layer, while for 

the aged layer, the effective diffusion coefficient and the porosity were adjusted to try to reproduce 

the diffusive flux of HTO and 36Cl. In experiments the author demonstrated that the increase in 

diffusivity of tracers at the CO2 inlet was primarily due to increased pore size along the sample 

(due to dissolution) rather than homogeneous dissolution of minerals. Thus, since, the code does 

not incorporate any processes to account for pore enlargement, it failed to reproduce experimental 

data set for HTO and 36Cl after the dissolution process.  

In literature the work of Putnis & Mauthe (2001)9 also showed that halite dissolution in sandstone 

pores was dependent on the pore size. In smaller pores faster dissolution was observed compared 

to dissolution in large pores. From this analogy, the enlargement of pores in Tournemire claystone 

can be explained as follows: at the initial stage of experiment, CO2 led to homogeneous dissolution 

of minerals near the inlet surface of the sample. After this, as CO2 enriched solution diffused further 

Intact zone

Dissolved

CO2

Equilibrated water

2 zones (with De and f ≠) in series

Aged zone



53 

 

into the sample, the minerals from the smallest pores were rapidly dissolved. This dissolution 

opened new pathways for CO2 to penetrate the sample and dissolution front progressed into the 

sample. Over time due to dissolution in smallest pores long channels were opened which then 

allowed higher diffusion of HTO and 36Cl tracers.  

3 Conclusions and adopted methodology for this study 

The two principal mineral perturbation extensively studied in literature are mineral dissolution and 

precipitation in porous media. A two-step approach is generally adopted: firstly, using laboratory 

scale experiments to determine the evolution of intact rock properties in response to each 

phenomenon, secondly reproducing these results using coupled chemistry transport codes for 

larger times and space scale. 

The impact of mineral dissolution on the intact properties of claystones is presented in the work 

of Berthe (2012)31. This study dealt with demonstrating macroscopic dissolution phenomena in 

three types of Tournemire claystones of varying distribution of pore size, carbonate minerals and 

clayey minerals. The dissolution phenomena were studied by CO2 attack on carbonate minerals. 

The impact of dissolution on intact properties of claystones was determined using water tracer 

(HTO) and anionic tracer (chloride-36). The end results from this study showed that the 

macroscopic impact of carbonate mineral dissolution on extent of water tracers and chloride-36 

diffusivity increase for the three claystones was similar. However, different dissolution patterns of 

carbonate minerals were observed in each claystone. This study thus showed that the evolution 

of claystone properties will depend upon the texture and distribution of carbonate minerals. This 

means that the initial local pore space and its evolution may potentially govern the evolution of 

rock containment properties. However, the chemistry transport codes (explained in section 1.4), 

usually at the REV scale, explicitly rely on average properties: e.g. an overall porosity and not a 

pore size distribution. The long-term impact of mineral perturbation on diffusivity of reference 

tracers in chemistry transport codes is envisaged using empirical Archie relationship on a local 

average scalar porosity.  

However, the works of Berthe (2012)31, showed that dissolution led to evolution (transformation, 

modification) of the pore structure and not the porosity. Moreover, in literature it has not yet been 

established if mineral dissolution due to CO2 attack on porous materials with same total porosity 

as Tournemire claystones but very different pore structure and distribution of carbonate minerals 

will lead to similar impact on diffusivity of HTO and 36Cl. In absence of these experiments, it cannot 
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be stated forehand if porosity evolution due to dissolution on one porous material can be used to 

predict such impact on different porous materials. Thus, the robust dataset of Berthe (2012)31 

cannot be used on first hand to test the limitations of Archie’s relationship.  

The study of the second mineral perturbation, “mineral precipitation impacts on intact properties 

of claystone” is even more complex. This is because the consolidated argillaceous rocks possess 

very low porosity, heterogeneous pore network with presence of clayey minerals with negative 

surface charge. Thus, there is sorption of cationic species and exclusion of anionic species from 

the pore network. From an experimental point of view, it is complex to engineer laboratory scale 

setups that can derive interpretable data sets showing evolution of claystone properties in 

response to mineral clogging. Like dissolution case, a strong experimental results dataset for 

clogging impacts on simple proxy materials is required.  

For this reason, two major works dealing with clogging phenomena under diffusive regime were 

carried out on proxy materials. The first dealt with celestite precipitation in compacted sand and 

in compacted illite15. Both experiments were carried out using a counter diffusion technique that 

is briefly explained in section 2.1.2. In such setups, the reactants counter diffuses from their 

respective reservoirs through the sample and generate a mineral precipitate into the porous 

system. In both cases the evolution of reactants concentration in reservoirs in response to 

precipitation was not determined. This step is essentially important for strontium ion as in 

compacted sand it purely contributes to precipitation in the sample pores. But in illite it contributes 

to precipitation and sorption on pore surface. Thus, for both cases, it is necessary to quantify the 

strontium behaviour in upstream in response to precipitation in samples. This chemistry evolution 

in reservoir can then be used in chemistry transport codes to determine if code can capture same 

effect that is seen experimentally. 

Moreover, for numerical simulations of compacted sand experiment, the total celestite amount and 

minimum porosity fitting was used to reproduce the impact on water tracer diffusivity. However, 

from the works of Poonoosamy (2016)12 and Prieto (2014)17, it is known that the local evolution of 

mineral is pore size dependent. This local evolution will then determine the effectiveness of 

clogging in changing the intact properties of studied material10. Thus, to test if Archie relationship 

is predictive for determining long term evolution of rock containment properties, such fitting is not 

sufficient. In illite experiment the impact of celestite precipitation on diffusivity of water tracer and 

anionic tracer (chloride-36) was studied15. The end results showed total clogging of anionic tracer 

through celestite precipitated illite sample. One of the hypotheses presented for such observation 
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was, “the newly formed celestite mineral possessed negative surface charge.” But the clay surface 

possesses the negative surface charge and the µCT images showed celestite precipitation at the 

clay surface-perforated plate interface. Moreover, since surface charge of celestite precipitated 

on neutral pore surface (i.e. compacted sand) remains unknown the clogging results of illite are 

still under debate. A similar work was carried out by Fatnassi (2015)25 on series of neutral porous 

materials such as sandstone, glass frits and chalk. This study also used counter diffusion setup to 

engineer mineral precipitation in porous sample. In each case the evolution of reactants in 

response to precipitation was demonstrated. However, in all of the studies the water tracers were 

injected in one reservoir at the very beginning of the experiments. The impact of precipitation on 

diffusion was then measured by their diffusive behaviour in counter reservoir. However, in all of 

the cases, before enough mineral precipitated to generate effective clogging, the water tracers 

reached equilibrium in the counter reservoirs. Thus, precipitation impact on diffusivity was not 

sufficiently demonstrated. Moreover, in absence of rigorous post mortem analyses such as micro-

tomography, scanning electron microscopy and abrasive peeling the evolution and morphology of 

mineral precipitates were not properly quantified. This step is necessary as the distribution and 

morphology of mineral precipitates in porous sample are essential to explain the macroscopic 

observations: chemistry evolution in reservoirs and impact on diffusivity. 

Both of these studies present a rigorous experimental approach to explain the mineral clogging 

phenomena in series of proxy porous materials. However, these experiments still do not explain 

“whether Archie relationship can be generalized for clogging phenomena on any porous media.” 

For such demonstration, following three questions needs to be answered: 

1. Can clogging phenomena be generalized for materials with same porosity but different 

pore size distributions? 

2. Will a same precipitating mineral lead to same effectiveness of clogging on two materials 

with same porosity but different surface charge properties?  

3. Will precipitating minerals of very different intrinsic properties such as solubility, kinetic rate 

of precipitation leads to same impact on diffusivity of a single porous material? 

In view of these questions, this thesis deals with engineering experiments to properly quantify the 

mineral precipitation in three proxy porous materials. In the first step, the intact properties such as 

pore size distribution and diffusion coefficients of reference tracers for each sample are 

determined. The pore size distribution of each sample was determined using mercury intrusion 
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and extrusion porosimetry and diffusion coefficients of reference tracers were measured using 

through diffusion technique. 

In the second step the impact of mineral precipitation on intact properties of each of the sample 

was carried out using counter diffusion setup. In these experiments, the behaviour of reactants in 

the reservoirs were measured using reservoir monitoring technique. At this time, the impact of 

precipitation on diffusivity of reference tracers was determined. This step was similar to intact 

diffusion step.  

In the third step the evolution of precipitated minerals in each sample were determined using post-

treatment analysis such as x-ray microtomography and Scanning electron microscopy. 

In the final step the chalk experiments were reproduced using chemistry transport codes: HYTEC 

and CrunchTope. This step helped us test the validity of Archie’s relationship compared to 

experimentally derived impact on diffusivity. The simulations were performed first in 1D, then in 

2D to investigate the impact of spatial variability.  

The first proxy material in our study, chalk sample is composed of grain matrix and randomly 

distributed coccoliths that add spatial variability in properties such as heterogeneous diffusive 

pathways and reactive surface area for precipitation. The second proxy materials is compacted 

illite which presents a pore size and negative surface charge closer to claystones. Thus, chalk and 

illite samples present end members in terms of surface charge on pore and pore size distribution. 

The third proxy material is compacted kaolinite which has pore size distribution closer to illite with 

presence of weak negative surface charge. Thus, the final porous material allowed us to test how 

mineral precipitation behaviour changes when pore size is decreased, and surface charge is 

gradually increased. 

For chalk, clogging experiments were carried to using two sulfate alkali minerals: barite and 

gypsum. These minerals present two opposites in terms of intrinsic properties such as solubility 

and kinetic rate of precipitation. Thus, chalk experiments will demonstrate if spatial variability with 

intrinsic properties will lead to similar evolution of barite and gypsum in chalk porosity. These 

experiments will eventually demonstrate if, for the same porous material, clogging phenomena 

impacts induced by the precipitation of different minerals can be generalized or not. For kaolinite 

and illite, barite precipitation was carried out to demonstrate if precipitation of this mineral leads to 

similar impact on diffusivity of water tracer as observed in chalk. This comparison eventually tests 
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similarity or difference in precipitation when “the pore size is reduced, and pore possess negative 

surface charge”.  

In all the three studies, anionic tracer (chloride-36) is injected in parallel to water tracer. This step 

was necessary to test whether newly formed barite mineral on the pore surface of chalk, kaolinite 

and illite samples has surface charge or not. 

Finally, based upon the aforementioned approach, this thesis is divided into following sections: 

1. In the first part, clogging experiments dealing with barite and gypsum evolution in chalk 

and their impact on water tracer diffusivity are explained in length. 

2. The first half of the second part deals with barite precipitation experiments in kaolinite. The 

obtained results are then compared with barite precipitation in chalk. Finally, the impact of 

surface charge of newly formed mineral barite on diffusivity of chloride-36 for chalk and 

kaolinite is assessed.  

In the second half of this part, barite precipitation in compacted illite and its impact on 

diffusivity of water tracer and anionic tracer is presented.  

3. A general discussion from all of the experimental results is finally presented. 

4. In the last part of this manuscript, the chalk experiments are numerically simulated in 1D 

and 2D using HYTEC and CrunchTope. 
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RÉSUMÉ  

Les réactions induites par la diffusion de réactifs provenant de sources multiples peuvent notablement 

modifier les propriétés de confinement d’une roche via des phénomènes de dissolution/précipitation 

prévalant au sein de sa porosité. De ce fait, ces mécanismes doivent être pris en compte pour évaluer les 

performances de confinement à court et long terme de roches de faible perméabilité utilisées pour accueillir 

un stockage souterrain. Cet article présente et analyse deux expériences conduites sous un régime diffusif 

et focalisées sur la précipitation de deux types de minéraux sulfatés (gypse : CaSO4.2H2O et barytine : 

BaSO4) dans une craie de faible perméabilité. Les changements dans le temps de la porosité et du coefficient 

de diffusion effectif (De) ont été évalués tout au long de la durée des expériences (envions 140 jours). Pour 

ce faire, nous avons procédé à une analyse du comportement de traceurs passifs et à une évaluation de la 

quantité de gypse ou de barytine précipitée à partir de la mesure de l’évolution des réactifs dans les réservoirs 

situés aux deux extrémités de l’échantillon. Ensuite, des observations par MEB-EDS et par micro-

tomographie à rayons X (µCT) ont été effectuées pour étudier l’évolution de la structure de la roche suite à 

la précipitation. Les résultats ont montré que le changement du volume poreux global (de 45% jusqu’à 43%) 

correspondant au volume de minéraux sulfatés ayant précipité est similaire pour les expériences impliquant 

le gypse ou la barytine. Inversement, l’impact de la précipitation sur les propriétés de diffusion des traceurs 

de l’eau injectés, 70 jours après le début des expériences est radicalement différent pour chacun des 

minéraux sulfatés étudiés. La précipitation de la barytine a généré un impact plus significatif que celui du 

gypse, i.e. De,intact = 4.15×10-10 m2.s-1 vs. De,barite = 1.1×10-10 m2.s-1 and De,gypsum = 2.5×10-10 m2.s-1. Les 

observations post-mortem des échantillons ont révélé la présence d’une fine zone de précipitation (~ 250 

µm) au centre de l’échantillon pour les expériences impliquant la barytine, tandis que dans le cas de la 

précipitation du gypse, des nodules de forme sphérique ont été observées. Les images obtenues avec le µCT 

à de plus hautes résolutions ont montré que la précipitation de la barytine n’est pas totalement homogène, 

ce qui explique la courbe de diffusion de HTO. Pour le gypse, les images post-mortem autour des amas 

sphériques ont montré la présence significative de macro-pores, appartenant à la porosité connectée, non 

encore remplis. Ces zones de craie intacte permettraient à HDO de diffuser à travers la zone précipitée, 

réduisant ainsi l’impact de la diffusivité sur le traceur de l’eau. Ces résultats expérimentaux indiquent que 

la morphologie et la distribution des précipités de barytine sont principalement contrôlées par un phénomène 

de nucléation homogène et hétérogène, alors que la précipitation du gypse est contrôlée par la variabilité 

spatiale des propriétés du système poreux initial (porosité, surface réactive, tortuosité, structure du réseau 

poral).  
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Abstract 21 

Reactions caused by the diffusion of reactants from different sources can alter rock diffusivity and 22 

are therefore the critical mechanisms for evaluating short and long-term behavior of low-23 

permeability rocks used as confinement layers for underground storage, for instance. This paper 24 

presents and discusses a set of two diffusion-driven reaction experiments focusing on precipitation 25 

of two end-member types of sulfate minerals (gypsum: CaSO4.2H2O and barite: BaSO4) in low-26 

permeability chalk. The time-resolved changes in porosity and effective diffusion coefficient (De) 27 

were evaluated along the duration of the experiments (~ 140 days), by analyzing the behavior of 28 

passive tracers and evaluating the amount of precipitated gypsum or barite from measuring the 29 

reactant concentration evolution in the reservoirs at both ends of the sample. Then SEM-EDS and 30 

X-ray microtomography (µCT) imaging were used to characterize the initial rock structure and the 31 

precipitated materials. Results showed that the change in porosity (from 45 % to about 43 %) 32 

corresponding to the volume of sulfate precipitated, are similar for gypsum and barite. Conversely, 33 

the precipitation impact on diffusion properties of the water tracers that were injected 70 days after 34 

the beginning of the precipitation step is distinctly different for the each of the studied sulfate 35 

mineral. The precipitation of barite generated a more significant impact than gypsum: De
intact = 36 

4.15×10-10 m2.s-1 vs. De
barite = 1.1×10-10 m2.s-1 and De

gypsum = 2.5×10-10 m2.s-1. Post-mortem imaging 37 

revealed a thin precipitated zone (~ 250 µm) in the center of the sample for the barite precipitation 38 

experiment, whereas isolated quasi-spherical clusters resulted from the gypsum precipitation. The 39 

µCT images at higher resolution showed that the precipitation of barite is heterogeneous at small 40 

scale, which explains the HTO diffusion curve. For gypsum, the post mortem imaging around the 41 

quasi-spherical clusters showed a significant presence of initial macropores of the connected 42 

porosity that were still unfilled. These intact chalk zones allowed HDO to diffuse through the 43 

precipitated zone lowering the impact on water tracer diffusivity. These experimental results 44 

indicate that the morphology and the distribution of barite precipitates is mainly controlled by 45 

homogeneous and heterogeneous nucleation phenomena, whereas gypsum precipitation is 46 

mainly controlled by the spatial variability of the initial porous system properties (reactive surface 47 

area, tortuosity, pore network structure).    48 
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1 Introduction 49 

Deep geological clayey rocks are the center of study in fields concerning development of facilities 50 

for hosting disposal of radioactive waste and sealing anthropogenic CO2 storage facilities ((Bachu, 51 

2002); (Gaucher et al., 2004)). These consolidated rocks are composed of clayey minerals such 52 

as illite, kaolinite and smectite, and other minerals such as quartz, carbonates, feldspars, sulfides 53 

and oxides. These rocks usually display very small pore sizes of few tens of nanometers with 54 

clayey minerals of permanent negative surface charge. Thus, these rocks have very low intrinsic 55 

permeability so that diffusion of ionic species is the governing transport phenomenon through such 56 

porous matrix. The negative surface charge present on pore surface imposes a strong anionic 57 

exclusion and strong adsorption of cationic species on pore surface of these rocks. Both of these 58 

properties are important factors to delay radionuclide diffusion from radioactive waste deep 59 

disposal facility to the surrounding geosphere. Similarly, the storage of captured anthropogenic 60 

CO2 in oil-depleted reservoirs relies on the very high tightness of these clayey formations acting 61 

as cap-rocks.  62 

However, in both of these fields’ physicochemical phenomena such as mineral dissolution and 63 

precipitation can alter rock properties and pose potential challenges at operational as well as 64 

geological time scales. For instance, in the case of the French concept of radioactive waste 65 

disposal the degradation of some waste packages over time can generate saline or alkaline 66 

plumes which are expected to interact with pore-water and enhance dissolution/precipitation 67 

phenomena ((De Windt et al., 2008); (Dagnelie et al., 2017). Conversely, in the case of the Swiss 68 

concept, the decay of fission products from high-mid level long lived radioactive waste such as 69 

134Cs and 137Cs will produce few kilograms per package of barium (Curti et al., 2010). Over the 70 

period of time due to corrosion the waste package can break and the interaction of released barium 71 

and sulfate-rich bentonite pore-water could precipitate barite (NAGRA, 2002). Estimating the 72 

amount of generated barite is a key issue as barite can incorporate 226Ra ((Grandia et al., 2008); 73 

(Brandt et al., 2015)) known to have a low affinity towards bentonite (Tachi et al., 2001). Similarly, 74 

in the case of CO2 storage the diffusion of anthropogenic CO2 and ionic species through the cap-75 

rocks can be accelerated when CO2-enriched fluid interacts with cap-rock minerals such as calcite 76 

and dolomite. At lab-scale several experiments have demonstrated the increase in diffusive 77 

parameters of ionic species in response to dissolution of carbonate minerals from the rock matrix 78 

((Credoz et al., 2009); (Wollenweber et al., 2009); (Berthe et al., 2011)). 79 
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Thus, such evolutions of rock containment properties over time must be characterized for the long-80 

term performance assessment of these deep facilities. Such estimation can be carried out using 81 

numerical models that couple the chemical and hydro-dynamical processes. Usually, these 82 

numerical models are based on a continuum approach that uses a macroscopic description of the 83 

mass, momentum and energy conservation from macroscopically measurable parameters. Most 84 

of the time, the parameters used in these coupled models are not measured directly. However, 85 

these parameters are critical to predicting the evolution of the system at large time and space 86 

scales. For instance, the changes in permeability and diffusivity in response to dissolution/clogging 87 

are often modeled by empirical relationships with porosity, such as the Kozeny-Carman’ and the 88 

Archie’s laws. These laws were developed for (highly) simplified pore geometry while the natural 89 

rocks display a large variability of structures ((Archie, 1942); (Carrier and Asce, 2003)). 90 

Furthermore, the empirical nature of these laws and their parametrization makes their use more 91 

questionable for predicting the impact of dissolution or precipitation reactions on transport 92 

parameters ((Le Gallo et al., 1998); (Noiriel, 2015); (Noiriel et al, 2016); (Gouze and Luquot, 93 

2011)).  94 

Thus, prior to long-term simulations on repository space scale, it is essential to test the robustness 95 

of such empirical laws on labscale experiments. In literature most experimental results that involve 96 

dissolution and/or clogging concern reservoir rocks, where solute transport occurs by both 97 

advection and dispersion ((Tartakovsky et al., 2008); (Katz et al., 2011); (Poonoosamy et al., 98 

2015)). Overall, these studies point out that continuum simulations using the Advection-Dispersion 99 

Equation (ADE) reproduce partially the effect of dissolution (Luquot and Gouze, 2009) and usually 100 

fails to reproduce the experimental data for clogging processes (Poonoosamy et al., 2015). The 101 

reason for that is the lack of detailed information obtained at scales smaller than those 102 

approximated by continuum models, while it is established that for instance the morphology and 103 

size of the precipitates as well as their localization in the pore space play a critical role on the 104 

resulting macroscopic behavior ((Luquot and Gouze, 2009); (Luquot et al., 2012)).  105 

For the clay-rich materials or tight carbonated rocks the dominant transport of solutes (reactants) 106 

should be considered as purely diffusive ((Andra, 2005); (Brosse et al., 2005); (Berne et al., 2010); 107 

(Savoye et al., 2010); (Savoye et al., 2012a)). In this case, diffusion parameters are commonly 108 

determined by means of through-diffusion methods, in which a non-reactive tracer diffuses through 109 

a sample from an inlet reservoir to an outlet reservoir (Shackelford, 1991). However, the presence 110 

of diversified clayey minerals and complex pore geometry together (Keller et al., 2013) makes it 111 
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challenging to engineer a laboratory scale setup for deriving reliable clogging impact models of 112 

the claystone porosity on tracer diffusivity.  113 

For this reason, it is crucial to investigate clogging impacts on proxy materials for which it is easier 114 

to perform controllable precipitation of a mineral.  115 

One of such study on a proxy material dealt with investigating the celestite precipitation in 116 

compacted low permeable illite (Chagneau et al., 2015). However, these studies have not been 117 

carried out to investigate the barite and gypsum clogging effectiveness on a low permeable porous 118 

material displaying a complex pore geometry. 119 

Thus, in the current paper we describe and discuss a set of reactive diffusion experiments through 120 

low-permeable chalk samples of micritic type (Descostes et al., 2012). The chalk matrix is mostly 121 

composed of calcite and thus prevents cationic adsorption on pore surface and anionic exclusion 122 

processes that are encountered in clay-rich rocks. In this study the change in properties of the 123 

chalk sample triggered by the precipitation of two sulfate alkali minerals (barite and gypsum) is 124 

investigated. Barite is a sparingly soluble mineral (Ksp
(barite) = 10—9.97) with slow kinetics of 125 

precipitation (krate, barite = 1.5×10—11 mol.m—2.s—1) and gypsum is a fairly soluble mineral (Ksp
(gypsum) 126 

= 10—4.58) with fast kinetics of precipitation (krate, gypsum = 1.0×10— 6 mol.m—2.s—1) ((Zhang and 127 

Nancollas, 1992); (Potgieter and Strydom, 1996); (Nagaraja et al., 2007)). Thus, these mineral 128 

presents the two extremities of sulfate alkali minerals due to the difference in their intrinsic 129 

properties. 130 

For this experimental study the sample properties and the experimental protocol are provided in 131 

Section 2. Counter-diffusion technique is used to induce precipitation of barite and gypsum 132 

minerals within chalk samples. The results of the coupled diffusion and reaction experiments are 133 

then detailed in Section 3 where using X-ray micro-tomography (µCT) the evolution of the porosity 134 

and impact on diffusivity through the sample are used to characterize the process. Then, using 135 

back-scattering electron mode scanning electron microscopy (BSE-SEM), the different patterns 136 

obtained experimentally for barite and gypsum precipitation are discussed in Section 4.  137 
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2 Materials and Methods 138 

2.1 Materials 139 

The sample used in this work is a micritic chalk. It is primarily composed of skeletal debris of 140 

calcareous nanofossils, mainly coccoliths, minor foraminifera, calcispheres and macrofossil 141 

fragments (Hjuler and Fabricius, 2009). During sedimentation stage the coccosphere usually falls 142 

apart, but occasionally some of the robust coccospheres can remain intact in the sediment. Due 143 

to compaction processes over time and very low cementation due to dissolution and re-144 

precipitation of calcite, micritic chalk samples have high porosity (40 % to 50 %) and very low 145 

permeability (Faÿ-Gomord et al., 2017). In the current study, such chalk samples were selected 146 

from Upper Cretaceous formations belonging to chalk aquifer of Paris Basin in Champagne region 147 

(France). These samples were derived from core sections (85 mm diameter) of a borehole P3 (-148 

53.0 m; -54.0 m below ground surface) that crossed the Lower-Campanian age stratigraphic layer 149 

(approximately 83 My). The chalk samples extracted from this zone are labelled 6Cb (Descostes 150 

et al., 2012). The extracted core was then cut into 0.65 cm-thick and 3.5 cm-diameter slices 151 

perpendicularly to the bedding plane using a diamond wire saw (no lubricating fluid was used). 152 

The mineralogy of these sliced chalk samples was quantified using X-ray powder diffraction 153 

analysis with a XRD 5000 INEL powder X-ray diffractometer using CuKα radiation, equipped with 154 

a CPS120 curve detector Si/Li. The analysis showed a dominant presence of calcite as expected 155 

(> 97 wt%) with minor fraction of quartz (< 3 wt%). The total accessible porosity of these chalk 156 

samples was determined by mercury intrusion porosimetry (MIP) with a Micromeritics Autopore III 157 

9420 apparatus. The resulting total porosity was equal to 45 % with critical pore throat of 158 

660 ± 100 nm. 159 

2.2 Methods 160 

2.2.1 The through diffusion cells 161 

A reactive diffusion experiment was set up to achieve two main objectives: evaluate the 162 

precipitation impact on total chalk porosity and its subsequent impact on water tracer diffusivity. 163 

Figure 1 represents a schematic diagram of a through diffusion experimental cell (Savoye et al., 164 

2015) used here for chalk samples. The chalk sample is sandwiched in-between two 165 

polypropylene reservoirs, namely the upstream and the downstream reservoirs of volume 178 ml 166 
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and 138 ml respectively. It is worth noticing that in a diffusion cell, the names upstream and 167 

downstream do not refer to advective flux but refer to the diffusive flux of the tracer injected in the 168 

upstream reservoir. In such setup, the concentration gradient was generated by injecting a tracer 169 

into the upstream reservoir and the downstream reservoir was filled with the tracer-deficient 170 

solution. Thus, the generated gradient allowed the tracer to diffuse through the chalk sample to 171 

the opposite reservoir. Two similar cells were prepared: CELL-A to study barite precipitation, and 172 

CELL-B to study gypsum precipitation.  173 

For these experiments, five synthetic pore-waters with different ionic compositions were prepared 174 

as listed in Table 1. The concentration values of ions in solutions were selected to have similar 175 

ionic strength in reservoirs and sample, calcite equilibrium with pore solution, and prohibition of 176 

secondary minerals such as witherite (for barite case) and anhydrite (for gypsum case). These 177 

calculations were performed using PHREEQC (Parkhurst and Appelo, 1999). The solutions were 178 

prepared with ultra-pure deionized water (18.2 MΩ.cm—1) and high purity salts. All the experiments 179 

were carried out at temperature 21 ± 1°C and pH ~7.7 in upstream and downstream reservoirs. 180 

In a first step, the upstream and downstream reservoirs were filled with the equilibrated synthetic 181 

solution. This allows establishing chemical equilibrium between the reservoirs and the pore 182 

solution. After this step, the reservoir solution was changed to set the boundary conditions of the 183 

reactive diffusion experiments: upstream solution enriched in BaCl2 (resp. CaCl2) for the barite 184 

experiment CELL-A (resp. gypsum experiment CELL-B), the downstream solution was enriched 185 

in K2SO4. The upstream reservoir was also spiked with 400 µL of 133Ba isotope of activity 186 

1.78 MBq.L—1 (i.e. an activity of the reservoir water of 4 kBq.L—1) and labelled CERCA 187 

ELSB45N°5245. Note that the concentration of reactants reported in Table 1 for barite and gypsum 188 

experiment are different. These concentrations were fixed to demonstrate the impact on diffusivity 189 

when similar amount of each mineral precipitates in chalk sample. The initial barium concentration 190 

in upstream was also the upper limit for prohibiting witherite precipitation in chalk sample and in 191 

reservoirs. 192 

2.2.2 Estimation of precipitate amounts using reservoir concentrations 193 

A reservoir monitoring technique was used to evaluate the amount of minerals precipitated. The 194 

reactant concentration was measured periodically both in the upstream and downstream 195 

reservoirs by withdrawing 100µL of solutions. The concentration of major ions (Na+, K+, Mg2+, Ca2+, 196 

Cl—, SO4
2—) in each sampled solution was measured using Ionic Chromatography (Dionex 500 197 



77 

 

and 120 equipped respectively with AS14 IonPac column and CS12A IonPac column). Note that 198 

chemistry evolution in both reservoirs for barite and gypsum experiments is given in 199 

Supplementary material. At the end of the experiment the final concentration of barium in upstream 200 

for CELL-A and sulfate in downstream for CELL-B were determined. At this stage it is assumed 201 

that all the reactants lost in reservoirs contributed to the precipitation in the chalk sample. Thus, 202 

using mass balance equation nreactant,chalk = ninitial – (ndownstream,final + nupstream,final), the reactant 203 

contribution to barite and gypsum precipitation in chalk is calculated. Using this value and knowing 204 

the molar volume of precipitated mineral (52.1 cm3.mol—1 for barite, 74.5 cm3.mol—1 for gypsum), 205 

the resulting total porosity decrease due to precipitation can be estimated.  206 

One must note by means of the chemistry of upstream and downstream reservoirs at each 207 

sampling time, the saturation index of secondary mineral anhydrite was checked using PhreeQc. 208 

The code estimated that this mineral remained under saturation. This step allowed us to 209 

demonstrate that only gypsum governed the clogging phenomena and there is no secondary 210 

mineral formation. A limitation of this method is that it assumes that precipitation process in the 211 

reservoirs is negligible. In practice, this may be a limitation for the experiments associated to 212 

precipitation of minerals with a high solubility (such as gypsum), as ions could have the time to 213 

diffuse from one reservoir to the counter reservoir, possibly leading to mineral precipitation in both 214 

reservoirs. However, even though in the gypsum case this method could overestimate the amount 215 

of precipitates in chalk, this allows an estimation of the status of the precipitation over time. 216 

Moreover, a direct estimation of precipitates within chalk samples was performed for 217 

crosschecking the values derived from reservoir monitoring.  218 

2.2.3 Estimation of precipitate amounts using abrasive peeling 219 

For the CELL-A, barite precipitation amount was also estimated using abrasive peeling technique. 220 

At the end of experiment (140 days) the sample was removed from the supporting rim of CELL-A, 221 

and successive peeling of ~80 µm thick chalk layers was carried out. The recovered chalk powder 222 

from each peeled layer was suspended in 4 ml of MiliQ water. The activity within this suspended 223 

solution was analyzed by gamma counting (Packard 1480 WIZARD, USA). Thus, by measuring 224 

133Ba activity in all peeled layers a distribution of 133Ba activity in precipitated and non-precipitated 225 

zones within the chalk sample was obtained (for detailed abrasive peeling technique see ((Van 226 

Loon and Eikenberg, 2005); (Savoye et al., 2012a)). Finally, the cumulative amount of activity was 227 

then converted into the amount of stable barium from the ratio of initial concentration of stable 228 

barium in upstream reservoir, and injected 133Ba activity. The resulting cumulative amount of stable 229 
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barium obtained from this distribution should thus represent the true amount of stable barium lost 230 

in upstream reservoir.  231 

2.2.4 Estimation of precipitate amount by leaching 232 

No radioactive tracer was used for the gypsum experiment. A small piece of the chalk sample 233 

containing precipitated gypsum was powdered and subjected to successive leaching technique in 234 

order to directly measure total gypsum having precipitated in chalk sample. For this operation, the 235 

sample was saturated with deionized water and then allowed to equilibrate for one week after 236 

which the sulfate concentration was measured in the solution recovered by ultracentrifugation. 237 

The residual powder was again dissolved in water, equilibrated and sulfate concentration is 238 

measured in centrifuged solution. This step was repeated until no sulfate is measured in leached 239 

water. Finally, the amount of recovered sulfate through this technique was compared with the 240 

amount of sulfate contributed to gypsum precipitation in chalk using the reservoir monitoring 241 

technique. Note that the concentration of sulfate at each leaching step was measured using the 242 

same chromatography technique used for reservoir monitoring step in section 2.2.2. 243 

2.2.5 Water tracer diffusivity in initial intact chalk 244 

Water tracer diffusivity in the chalk sample was estimated by injecting 30 µL of pure deuterated 245 

water in the upstream solution. By periodical sampling 100 µl of both upstream and downstream 246 

reservoirs the HDO concentration evolutions in both reservoirs was then followed for 70 days. The 247 

HDO concentration in each sampled volume was measured using a cavity-ringdown laser 248 

absorption spectrometer (Los Gatos Research LGR 100). 249 

Through-diffusion setup can be treated as a finite system of fixed initial conditions with constant 250 

diffusive parameters like accessible porosity (Ɛa), tracer effective diffusion coefficient (De). At t = 251 

0, the upstream reservoir tracer concentration is C0, while the chalk sample and the downstream 252 

reservoir are tracer-depleted. In this case the classical analytical solution of Fick’s 2nd law for 1D 253 

transport through a finite membrane given by ((Carslaw, H. and Jaeger, 1959); (Crank, 1975)) can 254 

be used as the reference solution.  255 

                                                                     ∂𝐶

∂𝑡
=

𝐷𝑒

𝑎

∂2𝐶

∂𝑥2
      …………………………………………………… (1) 256 

where C is the concentration per volume unit (mol.m—3), t is the time (s), εa is porosity (-), and De 257 

is the effective diffusion coefficient (m2 s—1). 258 



79 

 

However, at t > 0, these boundary conditions are released, and it is necessary to solve Fick’s 259 

second law for 1D transport numerically. At this stage, it was done, for a given value of the effective 260 

diffusion coefficient and porosity, by solving the Fick’s second law using numerical inversion of 261 

Laplace domain yielding a semi-analytical solution given by ((Didierjean et al., 2004); (Moridis, 262 

1998)). In our case, this operation was carried out using CEA’s tool called Interpretation Model of 263 

Diffusion Experiments (I-Mode)(Radwan et al., 2006). This tool was implemented in Excel software 264 

using Visual Basic for Applications.  265 

Finally, to reduce the uncertainty range associated to the diffusive transport parameters (effective 266 

diffusion coefficient De and accessible porosity, Ɛa) for HDO, two successive diffusion experiments 267 

on the same intact chalk sample were conducted.  268 

2.2.6 Water tracer diffusivity in mineral precipitated chalk 269 

Water tracer diffusivity values were estimated by injecting water tracers 70 days after the 270 

beginning of the reactive diffusion step. 70 days was chosen based on the reactant concentration 271 

monitoring in reservoirs when weak evolution of most of the reactant concentrations was 272 

observed. The upstream reservoir of CELL-B was spiked with 30 µL of pure deuterated water. The 273 

upstream of CELL-A was spiked with 300 µL of tritiated water (HTO) of activity 1 MBq.L—1 (i.e. an 274 

initial upstream reservoir activity of 1.68 kBq.L—1) and labelled CERCA ELSB45 n°7601122/A.  275 

Similar to measurement at diffusion step through intact chalk (section 2.2.5.), regular samplings 276 

of 100 µL were carried out in the upstream and downstream reservoirs in cells CELL-A and CELL-277 

B. The HTO activity of the sampled solutions was measured using a liquid scintillation recorder 278 

Packard Tricarb 2500. The HDO concentration within each of the sample was measured using a 279 

cavity ring-down laser absorption spectrometer (Los Gatos Research LGR 100). The uncertainties 280 

were estimated by propagation of the analytical error variances following the Gaussian error 281 

propagation law (see Savoye et al. (2012b) for details) for both the analytical methods. The 282 

resulting diffusive curves obtained through barite and gypsum precipitated chalk samples were 283 

fitted using I-MODE to estimate effective diffusion coefficient values for water tracers through the 284 

disturbed samples.  285 

2.2.7 Post-mortem 3D imaging (µCT) 286 

The 3D evolution of reacted chalk samples was carried out at two different resolutions using a 287 

Skyscan 1272, Bruker X-ray microtomography (µCT). In the first scan the milled barite and gypsum 288 
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chalk samples were scanned at 100 kV and 100 µA with a 0.11 mm copper filter. The rotation step 289 

was set at 0.4° and the frame averaging is set to 3. The resulting image size is 3280 x 4904 290 

(binning 1) with a pixel size of 5.5 µm for the chalk/barite sample and of 5 µm for the chalk/gypsum 291 

sample. 292 

For the second scan, to achieve high resolution, small samples of 1×1×1 mm3 were prepared from 293 

barite and gypsum precipitated chalk samples. The milled samples were scanned at 70 kV and 294 

114 µA with a 0.5 mm aluminium filter for the second scan. The rotation step was set at 0.3° and 295 

the frame averaging was set to 8. The images size is 3280 x 4904 (binning 1) with a pixel size of 296 

0.5 µm for the chalk/barite sample and of 1 µm for the chalk/gypsum sample.  297 

The reconstruction and the post processing were performed with the software NRecon with the 298 

InstaRecon algorithm and CTan. A median filter with 5 pixels round core, image cleaning and 299 

thresholding were applied. The same protocol was used for both barite and gypsum scans at 300 

0.5 µm and 1.0 µm pixel size.  301 

2.2.8 Post-mortem imaging, BSE-SEM 302 

The local morphology of barite and gypsum precipitates i.e. shape of crystals in coccoliths and 303 

grain porosity was determined using back-scattering electron mode scanning electron microscope 304 

(BSE-SEM). For this operation post precipitation reaction chalk samples of dimension 1×1×1 mm3 305 

were cut using a diamond wire. The thin slices were then polished using an ion milling system 306 

(SEMPrep 2 from Technoorg LINDA) to remove the dust coating generated when the samples 307 

were polished with sandpaper. Samples were then carbon-coated and analysed by BSE-SEM 308 

(using 7000F JEOL at 15 kV). 309 

3 Results  310 

3.1 Imaging 311 

3.1.1 Barite experiment 312 

Figure 2A shows the µCT image at 5.5 µm pixel size of barite precipitates distributed within a zone 313 

of thickness ~250 µm and located at the center of the chalk sample. However, this pixel size is 314 

much larger than the mean throat-pore size of chalk, i.e. 0.660 µm. Thus, the residual empty pores 315 

and the morphology of barite precipitates in the pores are below the resolution. Figure 2C shows 316 
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the result of a scan performed on a smaller sample, carried out at a pixel size of 0.5 µm. The 317 

presence of some macro porosity of size greater than 0.5 µm can be seen: even in the barite 318 

precipitated zone, some macro-pores remain empty (black holes in the Figure 2C). These empty 319 

pores would correspond to coccoliths as macro porosity present in the chalk sample. Note that 320 

empty pores of size less than 0.5 µm cannot be captured by the scan but might still be present. 321 

To roughly estimate the quantitative amount of porosity in the precipitated zone a small part of this 322 

scan was selected and treated by image processing. The segmented image (Figure 2E) shows that 323 

the residual macro porosity represents at least 1 % of the volume of this area.  324 

3.1.2 Gypsum experiment 325 

Figure 2B shows the µCT image at 5.5 µm pixel size. Large isolated spherical gypsum precipitates 326 

can be clearly observed, distributed around the center of the chalk sample. At this resolution, intact 327 

chalk matrix can also be seen around each sphere. Similar to the barite case, a smaller sample 328 

was chosen to focus on the spherical precipitated zone. Due to the difference in type of evolution, 329 

the post-treatment included qualitatively estimating porosity in and around the spherical gypsum 330 

precipitates. The area of residual porosity inside the gypsum spheres (Figure 2D) is less than 1 %. 331 

Outside of the spheres, large area of macro porosity can be observed (Figure 2F).  332 

3.2 estimation of the amount of precipitates 333 

3.2.1 Barite experiment 334 

Figure 3 shows the concentration evolution of reactants in the upstream and the downstream 335 

reservoirs for CELL-A. No counter diffusion was measured in the reservoirs: barium (resp. sulfate) 336 

concentration stays below detection limit in the downstream (resp. upstream) reservoirs. Indeed, 337 

the solubility of barite is very low (Ksp
(barite) = 10—9.97) so that saturation (and even supersaturation 338 

to initiate precipitation) is reached easily, and barite precipitation buffers barium and sulfate 339 

concentrations at very low levels (around 10— 5 mol.L—1 if barium and sulfate have similar 340 

concentrations).  341 

Using the mass balance equation (section 2.2.2.) the total amount of barium removed from the 342 

upstream reservoir is estimated to be 2.7 mmol. From this amount the total porosity decrease due 343 

to precipitation was calculated in the following manner. The molar volume of barite mineral is 344 

52.1 cm3.mol—1. Using this molar volume, the equivalent volume occupied by 2.7×10—3 mol of 345 

barite is 0.141 cm3, while the pore volume in the intact chalk before experiment was 2.65 cm3. 346 
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Thus, the volume at the end of the experiment is 2.51 cm3, i.e. a total porosity value of 42.5 %. 347 

Thus, if averaged on the whole sample, the overall porosity decrease caused by barite 348 

precipitation is 0.025. 349 

Figure 4 displays the amount of stable barium obtained from 133Ba activity measured within 350 

~80 µm of subsequently peeled chalk layers from upstream face towards downstream face for the 351 

total chalk sample thickness of 6 mm. The profile (x = 0 at the inlet) shows no precipitation up to x 352 

= 2 mm, then a sharp 200 µm-thick peak at x = 3 mm, consistent with the 250 µm-thick layers 353 

observed by µCT. Around this peak a diffuse and highly variable presence of barium can be 354 

observed denoting the occurrence of multiple isolated precipitated barite clusters. Finally, a long 355 

tail can be observed downstream from the peak. This is probably an artefact: due to chalk low 356 

density compared to barite, it is possible that, as the peeling progresses, the chalk surface freshly 357 

abraded would be contaminated with some precipitated zone barite/chalk powder not recovered 358 

by sand paper. The total amount of barite precipitates was estimated using the abrasive peeling 359 

results. The conversion of recovered activity to total barium is done using the ratio of stable 360 

Ba/133Ba (mol/Bq) known in the upstream reservoir of CELL-A at the beginning of the experiment. 361 

Thus, the cumulative Ba calculated using this technique is equal to 2.48 ± 0.05 mmol. This value 362 

is in good agreement with the 2.70 mmol of Ba estimated from reservoir monitoring step.  363 

3.2.2 Gypsum experiment 364 

The concentration evolution of calcium and sulfate over the experiment CELL-B duration is given 365 

in Figure 5. An accumulation of calcium and sulfate can be seen in the downstream and upstream 366 

(resp.) reservoirs. Indeed, contrary to barite, gypsum is a fairly soluble mineral (Ksp
(gypsum) = 10—367 

4.58), so that (with equal concentration boundary conditions) calcium and sulfate concentrations 368 

increase in the reservoirs, until the equilibrium value is reached. The concentrations are then 369 

buffered by gypsum, and stay on a plateau at 13 ± 0.5 mmol.L—1 throughout the experiment after 370 

20 days (see Fig. 3S in Supporting information, for gypsum saturation index as a function of time). 371 

Using the mass balance equation for sulfate, the estimated amount of gypsum precipitated in the 372 

chalk sample is 4 mmol. However, in this case, precipitation of gypsum in reservoirs cannot be 373 

excluded. Therefore, a direct estimation was performed using successive leaching experiment. 374 

The estimated gypsum precipitated is then 1.5 mmol. Thus, knowing the molar volume of gypsum 375 

(74.5 cm3.mol—1), the overall chalk porosity decreases due to precipitation estimated using the 376 

same methodology in section 3.2.1. (again, if averaged on the whole sample) is equal to 0.02.  377 
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3.3 Determination of water tracer diffusivity on intact chalk sample 378 

Figure 6 shows the experimental cumulative concentration evolution (red triangles) of HDO-379 

enriched water tracer in upstream and downstream reservoirs of the CELL-A. The two successive 380 

through-diffusion experiments were well reproduced numerically (dashed red line in Figure 6 for 381 

the first experiment) by I-Mode, using an effective diffusion coefficient value equal to 4.15×10—382 

10 m2.s—1 and an accessible porosity value equal to 45%. For a sample coming from the same 383 

core, the effective diffusion coefficient value noted in literature was 3.8×10—10  m2.s—1 (Descostes 384 

et al., 2012). Note that the chalk samples in Descostes et al. were covered with perforated plates 385 

which could have delayed the diffusion and thus could explain a possible lower estimation of 386 

effective diffusion coefficient.  387 

3.4 Determination of water tracer diffusivity on reacted chalk sample 388 

The evolution of the diffusion coefficient was estimated after 70 days of reactive diffusion 389 

experiment. Figure 7A shows the cumulative activity evolution of the tritiated water (HTO) in the 390 

downstream reservoir of CELL-A. Similarly, Figure 7B shows the evolution of the cumulative 391 

concentration changes of the deuterated water (HDO) in the downstream reservoir of CELL-B. In 392 

both of the figures the experimental curves were compared to diffusion curves computed for the 393 

intact chalk (black dashed lines) using De value (obtained in section 3.1). 394 

The effective diffusion coefficient values estimated for reproducing both the experiments are equal 395 

to 1.1×10—10 m2.s—1 for barite, and 2.5×10—10 m2.s—1 for gypsum.  396 

4 Discussion  397 

The amounts of barite and gypsum precipitating within chalk samples after 140 days of reactive 398 

diffusion experiment are similar, i.e. ~ 2.5 mmol of barium for barite estimated from abrasive 399 

peeling and 1.5 mmol of sulfate for gypsum from successive leaching. However, these two newly 400 

precipitated minerals led to distinct impact on water tracer diffusivity with barite showing a higher 401 

global impact on diffusivity than gypsum: De
barite = 1.1×10—10 m2.s—1 vs De

gypsum = 2.5×10—10 m2.s—1.  402 

These differences can be investigated using the detailed analysis of the µCT images. For the 403 

barite experiment, a sharp local porosity decrease is observed within the precipitated zone (Figure 404 

2E). This homogeneous layer with very low porosity would have a large overall impact on diffusion. 405 
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The residual macro porosity shown in Figure 2E, contributes only for a small fraction of the volume 406 

in the precipitated zone, and could allow the diffusion of HTO through this layer.  407 

For the gypsum case, the µCT image (Figure 2B) shows that precipitation might have drastically 408 

reduced the porosity in the spherical zones. However, the remaining intact zones between the 409 

spheres allowed HDO to diffuse through the sample. Thus, the overall impact on diffusivity is 410 

reduced compared to the barite case. 411 

This discrepancy leads to another question: “why the precipitated barite and gypsum in the chalk 412 

sample have dissimilar behaviors?” An answer may be searched by comparing the intrinsic 413 

properties of barite and gypsum, such as solubility and mineral precipitation rate.  414 

 415 

Barite case: 416 

The chalk matrix is composed of calcite with neutral pore surface. In such a system there is no 417 

alteration of the diffusion of ionic species such as barium and sulfate. Moreover, in free water both 418 

barium and sulfate ions possess similar diffusion coefficients (8.5×10—10 and 10.7×10—10 m2.s—1 419 

respectively, Li and Gregory, 1973). In the counter-diffusion setup, both ions are expected to meet 420 

in the center of the sample and saturate the pore solution with respect to barite in this zone. As 421 

the experiment progresses, the incoming barium and sulfate create supersaturated conditions in 422 

the pore solution in the center of the sample due to the very low solubility of barite.  423 

Once supersaturation is reached, stable nuclei of barite are formed in these pores. Thus, there is 424 

a positive feedback where the nuclei will enhance precipitation kinetics locally, therefore “draining” 425 

the reactants in the vicinity (down to saturation with respect to barite). As a result, precipitation is 426 

prevented out of the first line of precipitates. However, the initial growth of these nuclei and the 427 

resulting barite morphology depends on the locally governing nucleation phenomena.  428 

Figure 8A shows a SEM image obtained on the barite precipitated zone in the chalk sample. This 429 

image reveals a partly continuous barite precipitated line, surrounded by some delocalized barite 430 

islands. Higher magnification BSE-SEM images were recorded to observe barite morphology in 431 

the precipitated zone (Figure 8B). In this figure, big crystals of barite can be clearly observed within 432 

macro-pores voids of diameter ~20 µm. The formation of such large crystals can be attributed to 433 

homogeneous nucleation phenomena. In large pore volumes, each point of pore solution can be 434 

treated as a potential site that can form a super critical barite cluster, which will then convert into 435 
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stable nucleus. Such supercritical clusters (or stable nucleus) are formed when one of the instable 436 

cluster overcomes the interfacial energy of homogeneous nucleation (Nielsen and Sohnel, 1969). 437 

Then these nuclei will allow barite growth and enhance the precipitation in the larger pore voids 438 

(Kashchiev and van Rosmalen, 2003). 439 

Figure 8B shows a second morphology of barite in carbonate matrix, distinctly different from the 440 

barite crystals formed in big voids. Prieto (Prieto, 2014) showed that the time required for 441 

homogeneous nucleation to initiate precipitation is increased by 9 orders of magnitude when the 442 

pore size is reduced from 100 µm to 0.1 µm. Thus, barite growths preferentially occur by 443 

heterogeneous nucleation in smaller pore volumes (<1 µm) (Prasianakis et al., 2017). In our 444 

experiments, pores of mean throat-size of 0.660 µm form the majority of the matrix. Thus, the 445 

origin of this particular barite morphology (resembling overgrowth) can be attributed to 446 

heterogeneous nucleation. For such growth the surface of small and intermediate void spaces of 447 

matrix will act as a substrate on which the growth of the barite crystals occurs at lower interfacial 448 

energy values (Kashchiev and van Rosmalen, 2003).  449 

Gypsum case: 450 

Figure 9A shows the SEM imaging of a small selected region of the gypsum precipitated zone. 451 

This image shows gypsum precipitated zone connected through a nodular line. Below this zone, 452 

an isolated gypsum sphere of diameter of ca. 400 µm can be observed, in which gypsum has 453 

precipitated within coccoliths and the surrounding matrix. A higher magnification was used to 454 

determine the morphology of gypsum in the two regions (Figure 9B). Contrary to the barite case, 455 

gypsum does not display distinct morphologies both within the coccoliths and the surrounding 456 

chalk matrix. This can be attributed to the nucleation phenomena. It has been noted in literature 457 

that heterogeneous nucleation prevails at lower supersaturation (saturation index < 4), while 458 

homogeneous nucleation phenomena is dominant at higher supersaturation values (Alimi et al., 459 

2003). In our study, the saturation index with respect to gypsum within the reservoirs remains near 460 

equilibrium throughout the experimental duration (see Fig. 3S in the supporting information). Thus, 461 

heterogeneous nucleation mechanism is expected to dominate gypsum precipitation resulting in 462 

a single type of morphology for gypsum.  463 

Nevertheless, the nucleation mechanism does not explain the formation of the isolated clusters at 464 

the center of the sample. To explain this observation, the potential role of spatial variability can be 465 

investigated according to two scenarios. 466 



86 

 

Scenario-1: Gypsum evolution without spatial variability 467 

In the absence of spatial variability (diffusion, surface area, nucleation probability, or/and surface 468 

roughness), the counter diffusion of calcium and sulfate would equally saturate pores located at 469 

the center of the sample. These points are at the center of the sample because calcium and sulfate 470 

exhibit very close diffusion coefficient values in free water (7.9×10—10and 10.7×10—10 m2.s—1 471 

respectively) (Li and Gregory, 1973), and non-charged chalk would not modify this ratio. Thus, in 472 

these pores, there is an equal probability of formation of stable gypsum nuclei. Formation of these 473 

nuclei should generate a positive feedback and would enhance precipitation kinetics locally 474 

draining the reactants in the vicinity of these nuclei. Following this scenario, a thin precipitated 475 

layer similar to barite should be observed at the end of the experiment. However, the µCT images 476 

contradict this scenario, with isolated clusters of precipitates.  477 

Thus, a second scenario can be proposed in which spatial variability occurring within the porous 478 

system would govern gypsum precipitation. Note that such an impact of spatial variability on 479 

gypsum growth was observed for advection-controlled transport (e.g. (Singurindy and Berkowitz, 480 

2003); (Xie et al., 2015)). 481 

Two sub-cases were considered: the first one dealing with the presence of reactive mineral 482 

surface variability, and the second one with the occurrence of heterogeneous pore structure.    483 

Scenario-2a): Gypsum evolution in presence of reactive surface variability 484 

Gypsum precipitation was largely driven by heterogeneous nucleation phenomena, i.e. gypsum 485 

growth on pore surface at the mineral surface at near-equilibrium condition. In such scenario, the 486 

surface roughness and active surface area (acting as substrate) for precipitation are the main 487 

controlling parameters. A variable distribution of the surface roughness and area can be 488 

conjectured because the chalk matrix is composed of a mixture of grains and coccoliths. Thus, 489 

the variability of surface area available for gypsum growth will control nucleation distribution and 490 

kinetics at the center of sample even though the counter diffusing calcium and sulfate would 491 

equally saturate the pore volumes over time. 492 

These nuclei would then follow the similar positive feedback phenomena discussed in scenario-1 493 

and locally enhance precipitation. They will evolve as isolated more or less spherical clusters 494 

because they are initially irregularly distributed at the center of sample.  495 

Scenario-2b): Gypsum evolution in presence of heterogeneous pore structure 496 
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The chalk sample used in this study is composed of apparently randomly orientated coccoliths 497 

within carbonate grains. This mixture generates a heterogeneous pore network. Albeit gypsum 498 

precipitation occurs close to equilibrium conditions, small differences in saturation index may 499 

enhance or delay precipitation locally. This variability in the saturation results from the 500 

heterogeneity of the pore structure. For instance, less tortuous paths will trigger faster meeting of 501 

calcium and sulfate, and consequently faster gypsum nucleation, compared to more tortuous 502 

paths, even though calcium and sulfate have similar diffusive behavior in pore water. Then these 503 

nuclei will generate a positive feedback and evolve in similar fashion as in scenario-1 and will 504 

evolve as isolated more or less spherical clusters similarly to the scenario 2a. From the 505 

experimental data we gathered, it is not possible to infer which of the two aforementioned 506 

scenarios (2a and 2b) is dominant. However, both of them are linked to the spatial variability of 507 

the pore structure that has a critical role in controlling the early stage of the precipitation of gypsum 508 

characterized by a fast kinetics and high solubility.   509 

 510 
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5 Conclusion 511 

We reported experimental results concerning the change of the diffusive parameters of two water 512 

tracers (HDO and HTO) diffusing through chalk samples wherein either gypsum (CaSO4) or barite 513 

(BaSO4) precipitated. Results indicated that the amount of barium contributing to barite 514 

precipitation and the amount of sulfate contributing to gypsum to precipitation cause similar 515 

reduction of the chalk porosity (~0.02) after 140 days. However, the diffusive behavior of water 516 

tracers injected 70 days after the beginning of the precipitation step showed that barite impacts 517 

more on global diffusivity compared to gypsum, i.e. De
barite = 1.1×10— 10 m2.s— 1 vs De

gypsum = 2.5×10—518 

10 m2.s—1. 519 

Post-mortem imaging revealed a thin barite precipitated zone in the center of the sample (~ 520 

250 µm) whereas gypsum formed isolated quasi-spherical clusters in the center of the sample. 521 

For barite case, the µCT images at higher resolution showed presence of some fraction of unfilled 522 

macro porosity in the precipitated zone. For gypsum case, post mortem imaging showed a very 523 

small presence of empty pores within quasi-spherical clusters. However, a significant unfilled 524 

macro pores still remained surrounding these clusters of gypsum precipitates. Thus, barite and 525 

gypsum experiments show distinct microstructural changes in the precipitated zone inducing 526 

distinct impact on diffusivity of water tracers. 527 

Thus, one concludes that barite precipitation is governed by both homogeneous and 528 

heterogeneous nucleation phenomena, while gypsum precipitation is largely controlled by the 529 

spatial variability of the connected pore structure (surface roughness, heterogeneous porous 530 

structure). 531 

These experimental results should be used to perform quantitative simulations to test the 532 

hypothesis provided (supersaturation, spatial variability impact) in discussion section for both 533 

barite and gypsum case. Using a similar approach, barite and gypsum precipitation would be 534 

studied in low permeable clayey minerals that resemble surface charge and mean pore size close 535 

to claystones. The chalk results obtained in this paper would thus be used as a reference dataset 536 

in understanding derived results from clayey experiments. Such data set can be used to test 537 

empirical laws such as Archie’s law at REV scale. 538 

 539 

 540 
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List of Figures: 

Figure 1: Classical through diffusion cell. The chalk sample is sandwiched in-between two reservoirs filled with 

equilibrated water or reactive salts. 

Figure 2A: µCT image of barite precipitated zone in the center of the sample, 2B: isolated gypsum spheres in the 

center of the sample, 2C: µCT scan of barite precipitated zone at 0.5 µm resolution, some empty porosities can be 

seen, 2D: µCT around the gypsum precipitated sphere shows significant amount of macro porosity which allowed 

HDO diffusion through gypsum precipitated zone, 2E: at 0.5 µm in barite precipitated zone shows presence of at 

least 1% of macro porosity, 2F: within the gypsum precipitated sphere the chalk porosity decreased drastically 

(<1%) 

Figure 3: Reactants evolution in upstream and downstream of CELL-A (barite) 

Figure 4: Stable barium concentrations into the chalk sample. The distribution shows a very high concentration of 

Ba in the center of the sample, revealing the precipitation zone. 

Figure 5: Reactants evolution in upstream and downstream of CELL-B (gypsum) 

Figure 6: The red triangles show evolution of HDO diffusing from upstream through intact chalk into equilibrated 

solution of downstream reservoir. The dashed red line is the modeled water tracer curve reproduced using I-MODE 

technique. 

Figure 7: The red triangles show HDO and HTO evolutions in downstream reservoirs of CELL-A and CELL-B after 

the precipitation step. The dashed red line is the modeled water tracer curve through intact chalk. Comparison of 

modeled and experimental curves clearly shows two distinct impacts on water tracer diffusivity. 

Figure 8A: The SEM image shows 200 µm-thick continuous barite precipitated layer surrounded by isolated barite 

islands in center of chalk; 8B: big barite crystals formed in big voids, barite overfilling in small/intermediate voids. 

Figure 9A: SEM image shows of isolated gypsum sphere with a nodular line in the center of the sample below which 

an isolated sphere of size~400 µm can be seen, 9B: a closer look of isolated sphere shows similar morphology of 

gypsum in coccoliths (red circle) and surrounding matrix. 

 



97 

 

List of Table 
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Table 1. Chemical composition of the solutions used for the experiments 

 

 

Ions 

 

 

Rock-

equilibrated 

Solution 

mmol.L—1 

Barite experiment – 

CELL-A 

Gypsum experiment – 

CELL-B 

Upstream 

mmol.L—1 

Downstream 

mmol.L—1 

Upstream 

mmol.L—1 

Downstream 

mmol.L—1 

Na 159.40 119.40 159.40 0.50 0.89 

K - - 40.00 - 160.20 

Ca 20.62 20.62 20.62 80.50 1.25 

Mg 0.07 0.07 0.07 0.07 0.07 

Ba - 20.00 - - - 

Cl 200.20 200.39 200.20 161.30 1.34 

SO4 - - 20.00 - 80.10 

HCO3 0.39 0.39 0.39 0.23 2.12 

pCO2 

(atm) 
-3.5 -3.5 -3.5 -3.5 -3.5 
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Figure 7  
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7 Supplementary Material 

Fluid composition at the upstream and the downstream reservoirs 

1. Calculation of the saturation index for gypsum 
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1. Fluid composition at the upstream and the downstream reservoirs  

The evolution of the major ion concentrations in the upstream and the downstream reservoirs is 

reported in Tables S1 and S2 for the gypsum experiment and in Tables S3 and S4 for the barite 

experiment.  

Table S1. Concentration measured for the fluid sampled in the HDO upstream reservoir of the gypsum experiment. 

Sampling 

time 

[Na+] [K+] [Mg2+] [Ca2+] [Cl-] [SO4
2-] 

 Day mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L 

0.06 4.5 0.8 
 

79.8 158.8 0 

1.05 4.7 3.5 
 

77.5 155.7 1.1 

2.77 4.8 9.2 
 

77.5 156.5 2.2 

5.77 1.3 14.5 0.5 69.5 140.7 7.7 

6.77 1.5 17.8 0.5 72.4 137.2 8.4 

7.76 4.7 20.0 
 

68.5 143.7 6.8 

9.77 1.4 23.0 0.5 66.6 122.0 10.0 

14.77 1.3 30.0 0.5 60.4 124.8 13.9 

21.81 4.7 40.0 
 

57.9 122.8 13.1 

26.78 1.4 41.1 0.4 46.9 112.2 11.7 

35.80 1.4 47.5 0.4 42.9 111.2 12.4 

49.80 4.9 54.9 
 

40.9 108.8 12.3 

56.77 3.2 53.9 0.1 38.4 104.4 13.1 

63.79 3.2 54.4 0.1 37.3 102.0 11.8 

70.11 1.6 56.2 0.4 37.3 101.4 14.5 

70.93 0.5 54.0 0.3 34.9 98.9 13.5 

93.88 0.3 56.9 0.3 31.7 93.3 15.2 

114.86 0.4 61.4 0.3 30.5 85.6 15.2 

120.93  
   

110.2 13.5 

128.92  
   

102.6 13.0 
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Table S2. Concentration measured for the fluid sampled in the HDO downstream reservoir of the gypsum 

experiment. 

Sampling 

time 

[Na+] [K+] [Mg2+] [Ca2+] [Cl-] [SO4
2-] 

 Day mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L 

0.06 6.4 162.4 0.0 1.3 5.1 75.2 

1.05 7.1 158.9 0.0 
 

8.9 74.9 

2.77 7.1 152.4 0.0 
 

15.1 70.8 

5.77 2.8 141.7 0.1 8.7 20.7 66.4 

6.77 3.2 135.7 0.1 9.6 24.2 68.6 

7.76 7.0 141.4 0.0 10.7 27.3 64.4 

9.77 2.8 132.3 0.1 12.5 30.9 65.3 

14.77 3.4 119.1 0.2 15.1 40.1 57.6 

21.81 7.7 117.1 0.0 12.2 50.3 43.4 

26.78 3.0 102.1 0.2 13.1 50.6 39.3 

35.80 2.8 89.1 0.2 13.4 57.1 34.8 

49.80 7.1 95.7 0.0 17.1 66.9 29.7 

56.77 4.7 87.7 
 

17.1 67.5 27.9 

63.79 4.7 87.5 
 

17.5 71.7 28.6 

70.11 2.6 88.6 0.3 18.2 69.3 29.1 

70.93 0.4 82.8 0.1 16.4 64.3 28.7 

93.88 0.5 79.8 0.2 19.3 72.3 25.9 

114.86 0.5 76.9 0.2 20.7 78.2 24.3 

120.93  
   

80.6 20.7 

128.92  
   

71.0 29.6 

 

Figure S1 shows the evolution of the inert counter ion concentrations, i.e. chloride for calcium and 

potassium for sulfate for the gypsum experiment. One can notice a regular evolution until the 

concentration reach an asymptotic value corresponding to the quasi-equilibrium of concentrations 

between the two reservoirs. 
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Figure S1. Evolution of Cl and K concentrations as a function of time in the gypsum cell. Inlet means upstream and 

outlet downstream.
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Table S3. [Ba2+] and [SO4
2-] concentration measured in the HTO downstream reservoir of the barite experiment. 

Sampling 

time 

[Ba2+] 

from 

133Ba 

[SO4
2-] 

 Day mmol/L mmol/L 

0.02 20.0 < 0.01 

2.22 19.1  

3.22 18.4  

5.93 17.6  

6.95 17.2  

9.19 17.1  

10.22 16.4  

13.14 15.5 < 0.01 

17.20 14.7  

20.95 13.7  

24.13 13.1  

30.98 11.4  

38.10 11.1  

44.90 10.5  

56.00 9.1  

61.90 8.5  

75.90 7.5  

82.90 7.5  

93.93 7.2  

110.94 6.4 < 0.01 

133.20 5.7  

140.98 5.0 < 0.01 

 Potassium and sulfate concentrations in mEq.L-1 measured in the HTO downstream reservoir is 

given in FigureS2. 
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Figure S2. Comparison of K and SO4 concentration versus time in the HTO downstream reservoir for the barite 

experiment. 
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Table S4. Composition of the fluid recurrently sampled in the HTO downstream reservoir during the barite 

experiment. Note that the 133Ba concentration in all the samples was below the detection limit (< 0.01 mmol L-1). 

Sampling 

time 

[Na+] [K+] [Ca2+] [Cl-] [SO4
2-] 

 Day mmol/L mmol/L mmol/L mmol/L mmol/L 

0.02 165.4 43.6 27.3 221.8 20.0 

3.22 165.4 43.6 27.3 221.8 20.0 

6.95 145.3 35.1 23.8 208.5 17.7 

10.22 129.3 28.7 21.0 185.4 14.3 

13.14 157.0 32.7 25.5 214.1 15.0 

17.20 122.7 23.4 19.7 179.3 11.1 

28.17 144.0 22.0 23.3 204.1 8.8 

44.90 127.5 16.0 19.8 183.0 5.5 

66.13 132.6 15.1 21.3 205.3 3.3 

133.20 129.0 14.8 21.4 195.3 0.9 



115 

 

2. Calculation of the saturation index for gypsum 

The gypsum saturation index was calculated using the Phreeqc software for each of the sampled 

volume of fluid in the upstream and the downstream reservoirs. Figure S3 shows that the 

saturation is rapidly achieved in both reservoirs for t > 10 days.  

 

Figure S3. Gypsum saturation versus time measured in the upstream and downstream reservoir. Inlet means 

upstream and outlet downstream 
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 Chapter-2.2: Barite precipitation in Micritic Chalk 

and Compacted Kaolinite 
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RÉSUMÉ 

Le chapitre précédent proposait une expérience pour déterminer l’évolution du comportement d’un même 

milieu poreux (la craie) sous l’effet de la précipitation de deux minéraux (barytine et gypse). Les résultats 

sont prolongés dans ce chapitre avec un dispositif expérimental similaire de contre-diffusion, appliqué à la 

précipitation du même minéral (barytine) dans un nouveau milieu poreux : la kaolinite compactée. Craie 

micritique et de la kaolinite compactée présentent des propriétés similaires de porosité totale accessible et 

de diffusivité vis-à-vis de l’eau et des traceurs anioniques (36Cl-). En revanche, ils montrent une distribution 

de taille des pores très distincte. Les résultats de la tomographie à rayons X obtenus à différents temps 

d’expérience réactive ont montré des comportements différents pour la précipitation de la barytine dans la 

craie et dans la kaolinite : une fine zone de précipitation est observée dans la craie, tandis que la kaolinite 

montre la présence de groupes d’amas sphériques. Dans ce cas, la précipitation de la barytine a entrainé une 

diminution de la diffusivité de HTO d’un facteur de 28 dans la craie et de 1000 dans la kaolinite par rapport 

aux conditions intactes. La précipitation de la barytine conduit également à une diminution de la diffusivité 

de 36Cl- par un facteur 450 dans la craie, et un colmatage total dans la kaolinite, ce qui indiquerait que la 

barytine nouvellement formée aurait une charge de surface négative, capable de repousser les anions, tels 

que 36Cl-. Ces résultats soulignent clairement l’impact de la distribution de la taille des pores sur l’évolution 

et la distribution des précipités minéraux, ainsi que la capacité de la barytine néoformée à transformer des 

échantillons poreux comme la craie et la kaolinite en membranes semi-perméables.   
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Abstract: Pore scale process such as mineral precipitation has major impact in broad range of 

scientific fields: CO2 storage, deep geological radioactive waste disposal, oil recovery/fracking, 

batteries research to name some. To predict the evolution of porous material transport properties, 

it is however essential to test precipitation behavior in different confined volumes. In this view a 

classical counter diffusion approach was used to study barite precipitation in two porous materials 

namely micritic chalk and kaolinite. Both materials presented similar diffusivity of water and 

anionic tracers, and total accessible porosity, but very distinct pore size distribution. 

X-ray tomography results at different times showed distinct patterns of barite precipitation in chalk 

and kaolinite: thin precipitated zone in chalk vs spherical clusters in kaolinite. Barite precipitation 

led to HTO diffusivity decrease by a factor of 28 in chalk and 1000 in kaolinite respectively 

compared to intact conditions. While barite precipitation led to chloride-36 diffusivity decrease by 

factor of 450 in chalk and total clogging in kaolinite, clearly demonstrating that newly formed 

barite possesses negative surface charge. 

Thus, these results outline the impact of pore size distribution on evolution and distribution of 

mineral precipitates, and capability of newly formed barite mineral to add semi-permeable 

membrane properties to neutral porous samples such as chalk and kaolinite.  

Keywords: 

Experiment; diffusion; precipitation; chalk; kaolinite; barite; surface charge; pore structure. 
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Abstract: Pore scale process such as mineral precipitation has major impact in broad range of 

scientific fields: CO2 storage, deep geological radioactive waste disposal, oil recovery/fracking, 

batteries research to name some. To predict the evolution of porous material transport properties, 

it is however essential to test precipitation behavior in different confined volumes. In this view a 

classical counter diffusion approach was used to study barite precipitation in two porous materials 

namely micritic chalk and kaolinite. Both materials presented similar diffusivity of water and 

anionic tracers, and total accessible porosity, but very distinct pore size distribution. 

X-ray tomography results at different times showed distinct patterns of barite precipitation in chalk 

and kaolinite: thin precipitated zone in chalk vs spherical clusters in kaolinite. Barite precipitation 

led to HTO diffusivity decrease by a factor of 28 in chalk and 1000 in kaolinite respectively 

compared to intact conditions. While barite precipitation led to chloride-36 diffusivity decrease by 

factor of 450 in chalk and total clogging in kaolinite, clearly demonstrating that newly formed 

barite possesses negative surface charge. 

Thus, these results outline the impact of pore size distribution on evolution and distribution of 

mineral precipitates, and capability of newly formed barite mineral to add semi-permeable 

membrane properties to neutral porous samples such as chalk and kaolinite.  

Keywords: 

Experiment; diffusion; precipitation; chalk; kaolinite; barite; surface charge; pore structure. 
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INTRODUCTION 

In France, Switzerland and Belgium, argillaceous formations are considered as potential rocks 

to host radioactive waste disposal facilities1,2. Similarly, for CO2 sequestration such indurated rocks 

are used as cap rocks to seal anthropogenic CO2 reservoirs3–5. These rocks have been selected due 

to their high containment properties, related to their very low permeability, making diffusion the 

main mass transport process, and the presence of negative surface charge on clay minerals, capable 

of adsorbing radionuclides under cationic form. However, in both cases, physicochemical 

imbalances between radioactive waste or CO2, and these rocks should generate over a long period 

of time mineral dissolution and/or precipitation, changing the rock containment properties6,7. For 

instance, some radioactive waste should release large amount of soluble nitrate and sulfate salts, 

when they will be degraded. These saline plumes should then enhance precipitation and thus clog 

the claystone porosity. Similarly, the anthropogenic CO2 should interact with cemented minerals 

of cap rock and lead to dissolution of carbonate minerals.  

In view of the safety assessment of such facilities, long-term evolution of rock containment 

properties due to such chemical unbalanced conditions are generally estimated using chemistry 

transport codes. These codes use empirical Archie’s law to take into account the feedback of 

chemistry on diffusion driven mass transport. However, only a few laboratory scale experiments 

have been carried out to test the validity of such law used for reactive numerical models which 

couple chemical and diffusive processes via strong porosity changes.8,9 Recently, Rajyaguru et al.9 

showed that two sulfate alkali minerals, i.e. barite and gypsum, precipitating in chalk samples had 

very different impact on the diffusion of water tracer. The intrinsic properties of the two minerals 

(solubility, precipitation rate) combined with spatial variability in properties of chalk (pore 
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structure, reactive surface) led to two very distinct precipitation patterns, suggesting that clogging 

phenomenon cannot be generalized for different minerals precipitating in the same porous material. 

Chagneau et al.8 investigated celestite precipitation impact on water tracer diffusion in a compacted 

sand, a simplified system, having very large pores (~100 µm) compared to the porous medium of 

interest, i.e. the claystones, with main pore size ca. 20 nm. Both of these studies suggest that 

precipitation and its feedback on diffusion is governed more by the pore size distribution of the 

hosted material than by the porosity itself, contrary to the paradigm of the widely used Archie’ law. 

Moreover, the role played by the potential surface charge of the newly formed mineral on diffusion 

was recently suggested by Chagneau et al.10 to explain the complete restriction of 36Cl− diffusion 

by celestite precipitation in compacted illite. However, since this clay mineral also possesses 

negative surface charge, the authors were unable to decipher the respective contribution of each 

repulsing phase.  

Therefore, the objective of the current study is twofold. The first is estimate the role played by 

pore size distribution on the feedback of precipitation on diffusion. The second is to know whether 

newly formed precipitates are able to change a neutral porous medium into a semi-permeable 

membrane due to their surface charge. For that purpose, reactive-diffusion experiments were 

carried out with barite as the precipitating mineral in two neutral porous materials, chalk and 

compacted kaolinite, with similar porosity and water tracer diffusivity, but very different pore size 

distribution. Two different tracers were used for estimating the precipitation impact on their 

diffusive behavior: tritiated water (HTO) was used as the classical water tracer, and 36Cl− in order 

to quantify the extent of anionic exclusion induced by barite precipitation.  
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MATERIALS AND METHODS 

Sample Preparation and Characterization. Kaolinite KGa-2 under powder form (with particle 

size ~150 µm) was provided by the CNRS-Poitiers University. Prior to the diffusion experiments, 

the kaolinite powder was Na-saturated using five saturation cycles in a 1 mol.L−1 NaCl solution. A 

dialysis procedure was used to remove chloride from the samples until the silver nitrate test for Cl− 

was negative. Then, each size fraction was air-dried, sieved through a 150 μm mesh to avoid coarse 

aggregates, and stored at 25°C.  

Chalk samples were selected from Upper Cretaceous formations belonging to chalk aquifer of 

Paris Basin in Champagne region (France). The samples derived from a core section (85 mm 

diameter) of a borehole that crossed the Lower-Campanian age stratigraphic layer (approximately 

83 My). The extracted core was then sliced into 0.67 cm-thick and 3.3 cm-diameter slice 

perpendicularly to the bedding plane using a diamond wire saw (no lubricating fluid was used). 

Mercury intrusion and extrusion porosimetry (MIEP) characterization was carried out both on 

Na-kaolinite compacted at a dry density of 1690 kg.m−3 and chalk sample, using a Micromeritics 

Autopore III 9420 apparatus. The total porosity and mean pore throat derived from this analysis 

are 36 % and 35 nm, for kaolinite and 45% and 660 nm for chalk, respectively. The mercury 

intrusion-extrusion results of kaolinite and chalk samples are plotted in Figure S1 in supporting 

information. 

Diffusion experiments. Impact of barite precipitates on HTO and 36Cl− diffusion was studied 

using the through-diffusion technique. In a first step, the diffusive parameters for tracer were 

determined through intact materials; then the reactive diffusion experiments were launched by 

injecting barium and sulfate in the counter-diffusion reservoirs. Lastly, when chemical equilibrium 
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was almost achieved, HTO and 36Cl− were injected again in order to assess the barite precipitate 

impact on their diffusive behavior. Note that the first step for chalk (tracer diffusive behavior at 

intact condition) was already detailed in Rajyaguru et al.9. Two types of setup were used, depending 

on the studied material.  

Experimental setup used for kaolinite. The setup used for kaolinite was the one developed by 

Tertre et al. 11 It consists of a PEEK diffusion cell characterized by an inner diameter of 9.49 mm 

and two aqueous reservoirs (i.e. an upstream reservoir and a downstream reservoir). A peristaltic 

pump (Ismatec) was used to ensure the circulation of the solution from the upstream reservoir 

towards the upstream face of the diffusion cell and likewise on the downstream side of the sample. 

One must note that in counter-diffusive studies, these names (i.e. upstream and downstream) are 

just used to distinguish the two reservoirs and they do not bear any advective meaning. The 

schematic view of the complete diffusive cell connected to reservoirs is presented in Figure S2 in 

supporting information. 

The sample was compacted directly in place in the diffusion cell at a bulk dry density of 

1690 kg.m−3 (i.e. porosity) based on the dry mass of the solid placed in the cell and the volume of 

the cell, leading to a thickness of 10 mm.  

Each face of the cell holds two holes (inlet and outlet) to allow for the circulation of water 

between the reservoirs and the face of the sample. To ensure homogeneous supply of solution to 

the surface of the sample, before closing the diffusive cell with stainless steel covers, each face of 

the sample is covered with three porous layers11: Whatman cellulose nitrate membrane filters 

(manufactured by GE healthcare) of 0.8 µm mesh, then stainless-steel filter plates (pore diameter 
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10 µm from MOTT industrial division), and finally two grids (nominal spaces of 280 & 450 µm 

for monofilaments with diameters equal to 120 & 200 µm from Goodfellow).  

The samples were flushed using the ascendant capillary method to completely withdraw air from 

the pores. In this method, the cell is placed vertically, downstream facing upwards. Both holes 

downstream are were connected to a vacuum pump. Simultaneously on the upstream face, the outlet 

is injected with nitrogen pentoxide and the inlet with a 0.1 M NaCl solution using the peristaltic 

pump. Due to the small size of the sample, this equilibration step is achieved in two weeks. Finally, 

prior to diffusion experiments, the compacted kaolinite samples were equilibrated with 0.1 M NaCl 

solution to ensure the ionic charge balance between the reservoir electrolytes and pore solution. 

Two diffusion cells were prepared: The first diffusive cell labelled KAO-A was used to acquire 

diffusion parameters for tritiated water (HTO) and chloride-36 (36Cl−) through kaolinite at intact 

and reacted (barite precipitated) conditions. The second cell labelled KAO-B was used to determine 

the 3D-evolution of barite precipitates in kaolinite pore network after 30 days and 60 days of 

reactive diffusion step using X-ray microtomography.  

Experimental setup used for Chalk. The barite precipitation experiments in chalk were carried 

out using a static diffusion cell as developed by Descostes et al.12. In this setup, the chalk sample 

is sandwiched in between upstream and downstream reservoirs of volume 178 mL and 140 mL 

respectively. The sandwiched sample was held by a sample holder and all the parts (upstream, 

sample, sample holder, and downstream) were assembled, glued and screwed together to generate 

a complete through diffusion cell. Two similar cells were prepared: one for the determination of 

the tracer diffusive behavior through intact and reacted chalk (labelled as CHA-A), and the second 

one for the post-mortem characterization of reacted chalk by X-ray microtomography and SEM-
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observations (labelled as CHA-B). The details for the preparation of the cell, the equilibration step 

and the concentration of ions in reservoir solutions are detailed in Rajyaguru et al. 9 

Determination of HTO & 36Cl− diffusive behavior at intact kaolinite condition. After 

equilibration step, the total upstream reservoir solution of KAO-A was completely replaced with 

100 mL of fresh 0.1 M NaCl solution. This solution was spiked with 180 µl of tritiated water 

(labelled CERCA ELSB45 n°760112/4) and 65 µl of 36Cl− (labelled E&Z 1760-100-1) to achieve 

volumetric activity of 1 MBq.L−1 for HTO and 0.5 MBq.L−1 for 36Cl−. Similarly, the total 

downstream reservoir solution was completely replaced with 10 mL of fresh 0.1 M NaCl solution. 

Evolution of HTO and 36Cl− activity was estimated by periodic sampling in both reservoirs. To 

ensure a constant activity gradient between both reservoirs, the downstream solution was renewed 

with fresh10 mL of 0.1 M NaCl solution at each sampling. The protocol used for measurement of 

activity is as follows: 100 µL of upstream and downstream solutions, each mixed with 900 µL of 

ultrapure water and 4 mL of Ultimagold scintillation liquid in a 5 mL scintillation bottle. The 

activities were measured using a liquid scintillation recorder Packard Tricarb 2500. 

Treatment of experimental diffusive results. The experimental activity dataset for both HTO 

and 36Cl− were interpreted numerically using Fick’s second law for one-dimensional transport13.  

𝜕𝐶

𝜕𝑡
= 

𝐷𝑒

𝛼

𝜕2𝐶

𝜕𝑥2
= 

𝐷𝑒

+𝑅𝑑𝜌𝑎𝑝𝑝 

𝛿2𝐶

𝛿𝑥2
        (1) 

where C is the concentration in mol.m-3 (or activity Bq.m-3 in our case), t is the time in s, De is 

the effective diffusion coefficient in m2
.s

−1, α = 휀 + 𝑅𝑑𝜌𝑎𝑝𝑝  is the rock capacity factor, ε is the 

porosity, ρapp is the bulk dry density in kg.m−3, and Rd is the distribution ratio in m3.kg−1. The initial 
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and boundary conditions for this through diffusion setup in a condition when the concentration in 

upstream and downstream reservoir is left free to evolve are as follows: 

C(x,t) = 0 for t = 0          (2)  

C(x,t) = C0 for x = 0 at t = 0         (3) 

C(x,t) = 0 for x = L + 2l at t = 0        (4) 

where C0 is the initial concentration (or initial activity in Bq.m−3) in the upstream reservoir at the 

injection time, L is sample thickness (m) and l is the filter plate thickness (m). The total porosity 

and effective diffusion coefficient of these filter plates, equal to 28% and 2.3х10−10 m2.s−1 for HTO 

and 2.0х10−10 m2.s−1 for 36Cl−, are taken from literature11,14. Using the initial and boundary 

conditions from equation 2, 3 and 4, the semi-analytical solutions to determine the flux in 

downstream reservoirs is well noted in literature12,13,15,16.  

The semi-analytical solutions are implemented in CEA’s tool called Interpretation Model of 

Diffusion Experiments17 (I-Mode).  

For through-diffusion setup, the associated errors in measured cumulative activities in 

downstream reservoirs were calculated using Gaussian error propagation method. The 

mathematical equation for this operation were taken from Savoye et al.18 and Bazer-Bachi et al. 19. 

These equations are detailed in supporting information. Finally, from these calculated associated 

errors and experimental data points three diffusive curves at best fitting, minimum, and maximum 

were reproduced using I-mode to obtain the error range in measurement of effective diffusion 

coefficients.  
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Estimation of barite precipitation impact on diffusivity. Once HTO and 36Cl diffusive 

parameters were acquired at intact kaolinite conditions, out-diffusion of tracers from sample pores 

of KAO-A cell was carried out by replacing the solutions of both reservoirs with 100 mL of fresh 

0.1 M NaCl solution. This step was performed for 2 weeks to ensure complete out-diffusion of 

radiotracers. After this step, barite precipitation experiment was launched by replacing upstream 

reservoir with 20 mL of fresh 0.1 M NaCl solution containing 4 mM of BaCl2 (similarly 

downstream reservoir solution was replaced with 20 mL of 0.1M NaCl solution containing 4 mM 

Na2SO4). The upstream solution was spiked with 25 µL of 133Ba (source ELSB45 CERCA n°5245 

and source activity 1.78 MBq.L—1). For chalk experiments, the upstream reservoir was filled with 

equilibrated solution containing BaCl2 of concentration 20 mM (resp. 20 mM of Na2SO4 in 

downstream reservoir). 

After this step, barium from upstream (resp. sulfate from downstream) diffused into the sample 

and oversaturated the pore solution over time with respect to barite, from which barite then 

precipitated. For the total experimental time, the precipitation of barite in pores was followed by 

periodically measuring the decrease of barium in upstream (resp. sulfate in downstream). Thus, 

this operation allowed us to determine the time at which most of the barium (resp. sulfate from 

downstream) contributed to precipitation in pores, i.e. when the reactant concentrations reached 

quasi-equilibrium in respective reservoirs. At this point, the upstream solution of each cell was 

spiked with HTO and 36Cl radioactive tracer.  

For KAO-A, using the initial ratio of stable barium concentration and 133Ba activity in upstream, 

the sampled activities were converted into stable barium concentration. For this operation, 100 µL 

upstream solution was sampled periodically and mixed with 900 µL of ultrapure water. The activity 
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measurement for each sampling was done using gamma counter (Packard 1480 WIZARD, USA). 

Similarly, 100 µL downstream solution was periodically sampled and diluted in 900 µL of 

ultrapure water. The sulfate concentration in sampled volumes was measured using Ionic 

Chromatography (Dionex 500 equipped with AS14 IonPac column). Finally, barium (resp. sulfate 

in downstream) concentrations were plotted over time to determine its quasi-equilibrium in 

upstream. 

For kaolinite experiments, same volume of the tracers was directly injected in the upstream 

solution 85 days after the start of the reactive experiment to achieve the same initial volumetric 

activity (1 MBq.L−1 for HTO and 0.5 MBq.L−1 for 36Cl−) as intact case and not to disturb the 

chemistry of the system. For the same purpose, unlike intact-diffusive case, the downstream 

solution at each sampling time was not renewed but activity change was directly measured by 

periodically withdrawing 100 µL of solution from reservoirs. Protocol used to measure activities 

at each sampling in upstream and downstream is the same as intact conditions. 

For chalk, the reactive diffusion experiment was continued for total experimental time of 

300 days. At this stage the upstream solution was directly spiked with HTO (labelled CERCA 

ELSB45 n°760112/4) and 36Cl− (labelled E&Z 1760-100-1) to achieve volumetric activity of 

0.4 MBq.L−1 for HTO and 0.30 MBq.L−1 for 36Cl− respectively. Protocol used for measurement of 

activity consisted in mixing 4 mL of Ultimagold scintillation liquid with either 50 µL of upstream 

solution plus 900 µL of ultrapure water or 1 mL of downstream solution in a 5 mL scintillation 

bottle. 1 mL of tracer-free solution was added in downstream of chalk cell at each sampling in 

order to keep the volume of the downstream reservoir constant. 
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The activity data for of HTO and 36Cl for downstream of chalk and kaolinite were then fitted 

with I-Mode to determine the macroscopic change in effective diffusion coefficient values of these 

tracers at reacted chalk and kaolinite conditions.  

Post-mortem 3D imaging (µCT). The 3D view of barite precipitated zone in kaolinite and chalk 

samples was obtained using X-ray micro-tomography (µCT) technique. For this operation, barite 

precipitation experiments were cell KAO-B and cell CHA-B, using the same experimental 

conditions as in the radioactive cells for each study.  

For kaolinite experiment, after 30 days and 60 days of reactive diffusion experiment the 

circulation of reactants in KAO-B was temporarily stopped for about 1 day. The whole diffusion 

cell was disconnected from reservoirs and was placed in an X-ray micro-tomography (µCT) 

apparatus. After imaging, the cell was connected back to reservoirs to continue to barite 

precipitation process. In the case of chalk, the size of experimental setup prevented any µCT 

imaging during the experiment. Thus, CHA-B cell was dismantled after 140 days and barite 

precipitated chalk sample was removed from the supporting ring and was then used for imaging.  

For both studies the micro-tomography from Skyscan 1272 (Brucker) was used to acquire 

images. The µCT images for kaolinite and chalk samples were compared to determine the 

formation of precipitated zone in natural porous media (micritic chalk) and compacted porous 

media (kaolinite). 

Estimation of 36Cl affinity towards barite. To estimate any potential affinity of 36Cl towards 

newly formed barite, 36Cl adsorption was measured in batch experiments. Barite was synthetized 

by over-saturating solution with respect to barite to make it precipitate. The precipitates were 

recovered by filtration and dried at 105°C. Five aliquots of 1 g of barite were suspended in 2 mL 
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of a 0.1 M NaCl background electrolyte solution and spiked with 36Cl− tracer (source E&Z N°1760-

100-1). The 0.1 M NaCl-barite solution in each centrifuge tube was mixed for one week after which 

they were centrifuged. From the centrifuged solution, 100 µL of solution was sampled and mixed 

with 900 µL of ultrapure water and 4 mL of Ultimagold scintillation liquid. The activities were 

measured using a liquid scintillation recorder Packard Tricarb 2500. Finally, the distribution ratio 

of 36Cl was estimated using equation 5. 

𝑅𝑑,36𝐶𝑙 = 
𝑉

𝑚

𝐴0−𝐴𝑓

𝐴𝑓
         (5) 

(m3.kg−1), where Ao (Bq) is the initial activity present in solution, Af (Bq) is the final activity 

remaining in the centrifuged solution, V (m3) is the volume of solution in centrifuge tube, and m 

(kg) is the mass of barite. 

Retardation of Ba by adsorption on kaolinite. To characterize ion Ba2+ retardation by 

adsorption on kaolinite during the barite precipitation, Ba2+ adsorption was measured in 3 batch 

experiments. This was done by firstly spiking 20 mL of solution containing 4 mM BaCl2 reactant 

and 0.1 M NaCl as background electrolyte with 25 µL of 133Ba source (source activity 

1.78 MBq.L−1 and source CERCA ELSB 45 n°5245). Then, in each batch, 1 g of kaolinite was 

suspended with 5 mL of this spiked solution. After one week, the solution was centrifuged from 

the clay and using the same activity measurement protocol as 133Ba activity measurement for KAO-

A and CHA-A, and equation 5, the distribution ratio of Ba, 𝑅𝑑,𝐵𝑎, was measured. 

RESULTS AND DISCUSSION 

Diffusion of HTO and 36Cl— through intact materials. The experimental cumulative activity 

data for HTO and 36Cl− in downstream reservoir through intact kaolinite are reported in Figure 1. 
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These data were reproduced by simulated curves using I-mode with De,HTO,kaolinite 

= 29×10−11 m2.s−1 and De,36Cl,kaolinite = 24×10−11 m2.s−1. A small retardation factor of 2.5 for 36Cl 

was necessary to reproduce its cumulative activity. Such small retardation can be due to the positive 

edges of kaolinite.10 The diffusion coefficients for HTO and 36Cl−, and the retardation factor for 

36Cl− are close to values determined by Glaus et al.20 for KGa-1b type of kaolinite at a dry density 

of 1900 kg.m−3. Note that the self-diffusion coefficient of 36Cl in water is slightly lower compared 

to HTO21 (D0,HTO = 2×10−10 m2.s−1 and D0,36Cl = 1.7×10−10 m2.s−1 or D0,HTO/D0,36Cl = 1.17). The 

small difference in effective diffusion coefficient values (De,HTO/De,36Cl = 1.20) for both species 

through intact kaolinite is in the expected limit. For chalk, the effective diffusion coefficient for 

HTO determined in Rajyaguru et al. 9 is equal to De, HTO,chalk = 41.5×10—11 m2.s—1. For 36Cl− since 

the chalk matrix is composed of calcite (i.e. uncharged/neutral material), its diffusion is assumed 

to be similar to HTO in chalk, after renormalization to their respective self-diffusion coefficient in 

water. This means that the diffusive behavior of HTO and 36Cl− through intact chalk and kaolinite 

at a dry density of 1690 kg.m−3 are quite similar. 

Precipitation impact on diffusion. Reservoir monitoring step showed that reactants 

concentration (barium in upstream and sulfate in downstream reservoir) reached quasi equilibrium 

in reservoirs after 85 days and ca. 70 days of reactive diffusion step in KAO-A and CHA-A (Figure 

S3 in supporting information). The experimental cumulative activity data for HTO and 36Cl− in 

downstream reservoir through reacted kaolinite and chalk are reported in Figure 1 A and B. For 

kaolinite using Gaussian error propagation, the effective diffusion coefficients with I-mode fitting 

are respectively De,HTO,kaolinite= 1.5×10−12 m2.s−1, De
−

,HTO,kaolinite= 6×10−13 m2.s−1 and 

De+ HTO,kaolinite = 2.1×10−12 m2.s−1. Similarly, the diffusive parameters for HTO and 36Cl− with 
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minimum, maximum and best fits for chalk are reported in Table 1 (the modeled curves for HTO 

and 36Cl− are reported in Figure S6, and their corresponding De
−, De and De+ are reported in Table 

S1 in supporting information). For 36Cl− diffusion through reacted kaolinite cannot be reproduced: 

indeed, total clogging is observed for this tracer.  

µCT imaging of the barite precipitate. For chalk, the µCT image in Figure 2 A shows that 

barite precipitates are distributed in the reacted zone located in center of the sample.  

For kaolinite, the µCT images reported Figure 2 B and Figure 2 C after 30 days and 60 days of 

precipitation experiments show that compared to chalk this reacted zone shifted towards the barium 

reservoir. This shift is because the measured barium distribution ratio from batch experiments equal 

to 3x10−3 m3.kg−1 shows that there is a small adsorption of barium on kaolinite pore surface.  

These µCT images further shows that barite precipitates resembling spheres are evenly 

distributed in this reacted zone. However, since the resolution of scan (16 µm) is much larger than 

the mean size of pores (35 nm), each of the sphere in reality represents a cluster of small barite 

precipitates distributed in the matrix (see Figure S5 in supporting information for SEM images 

acquired from similar study). 

In both chalk and kaolinite experiments, the counter diffusing barium and sulfate will meet in 

the reacted zone and supersaturate the pore solution with respect to barite. At one-point barite 

precipitation will start from this solution forming stable seeds and the precipitation kinetics is 

locally enhanced. Consequently, the saturation is lowered down w.r.t. barite as the reactants 

concentration in surrounding solution are drained down to vicinity preventing formation of 

precipitates out of first points of precipitation.  
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In kaolinite-barite case, this mechanism can be responsible for the formation of clusters. Small 

heterogeneities in the system (orientation of pores, or random distribution of connectivity) enhance 

this process, dispersing the clusters widely around the center plane. 

On the contrary, chalk-barite evolution shows that the local variation in rate of supersaturation 

in pores in reacted zones is compensated. This is because the large pore volumes will require longer 

times to be supersaturated with respect to barite. The low solubility of barite along with these pore 

volumes will compensate for local variations. Thus, for chalk most of the first points of 

precipitation fell in a single line at the center of the sample and most of the porosity reduction 

occurred in this zone. 

Estimation of porosity and diffusive parameters in reacted zones.  

The extent of precipitation impact on intact properties of chalk and kaolinite can be explained by 

comparing the geometric factors of intact and reacted samples. This factor can be calculated using 

equation 622,23. 

𝐷𝑒 =
𝛿

𝜏2
 휀 × 𝐷0 = 𝐺 × 휀 × 𝐷0       (6) 

Where 𝛿 and 𝜏 are the constrictivity and tortuosity of a porous material that are usually combined 

in form of geometric factor G, De or De,precip (m2.s−1 ) is the effective diffusion coefficient of tracer 

at intact or reacted condition, D0 (m2.s−1 ) is the self-diffusion coefficient of tracer in water. 

Diffusion values calculated from the tracer experiments are given in Table 1. 

For these calculations, the change in porosity in each reacted zone after precipitation was carried 

out by estimating the amount of barite precipitated in pore space from mass balance calculations 

(Table 1). These calculations showed that after 140 days of experimental time, the amount of 
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barium contributing to barite precipitation in chalk and kaolinite is equal to 2.7 mmol and 

0.04 mmol respectively. Using molar volume of barite mineral (i.e. 0.019 mol.cm−3), the volumes 

occupied by barite in chalk and kaolinite are 0.14 cm3 and 0.0021 cm3, respectively.  

From µCT images and SEM observations, the thickness of chalk reacted zone is equal to ca. 

500 µm (see Figure S6 in supporting information), with maximum and minimum thickness equal 

to 1 mm and 300 µm respectively. From µCT images, for kaolinite, the thickness is equal to 

ca. 2 mm, with maximum and minimum thickness equal to 3 mm and 1 mm respectively. Finally, 

using the intact porous volumes at each thickness and the volume occupied by barite precipitates, 

the residual porosity remaining after precipitation was calculated (Table S3 in supporting 

information). These values reported in Table 1 clearly show that barite precipitation significantly 

decreased the total porosity in reacted zone of chalk compared to kaolinite (12% compared to 

34.5%). 

The effective diffusion coefficients for HTO and 36Cl− in reacted zones at selected thickness from 

previous case can be further be calculated using equation 7. This relationship is similar to the 

resistance equation used for capacitors in series:  

𝐷𝑒𝑞 = 
𝐿

𝑥

𝐷𝑝𝑟𝑒𝑐𝑖𝑝
+

𝐿−𝑥

𝐷𝑒,𝑖𝑛𝑡𝑎𝑐𝑡

         (7) 

where, 𝐷𝑒,𝑖𝑛𝑡𝑎𝑐𝑡 (m2.s−1) is the effective diffusion coefficient for HTO or 36Cl through intact 

sample, and 𝐷𝑒𝑞 (m2.s−1) is the minimum, maximum and best fit equivalent effective diffusion 

coefficient estimated by I-mode in section “precipitation impact on diffusivity”, 𝐷𝑝𝑟𝑒𝑐𝑖𝑝 (m2.s−1) is 

the diffusion coefficient for HTO and 36Cl− in reacted zone, and x and L are the thickness of reacted 

zone and sample respectively. The geometric factor values after integrating the effective diffusion 
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coefficients of HTO at thickness ca. 500 µm for chalk and 2 mm for kaolinite of reacted zone using 

equation 6 are reported in Table 1. This table shows that barite precipitation led to HTO diffusivity 

decrease by factor of 28 in chalk and 1000 in kaolinite respectively. The details of minimum and 

maximum De values reported in this table are explained in supporting information. The minimum, 

maximum and best fit diffusion coefficients reported in this table are reported in detail in 

supporting information (see Table S2). 

From the effective diffusion coefficient for HTO and total porosity for chalk and kaolinite, 

equation 6 shows that at intact conditions both sample have similar geometric factor. But after 

precipitation the geometric factor for chalk and kaolinite in reacted zone decreased by a factor 7 

and 10,000 respectively.  

This observation shows that for chalk even though there was significant porosity reduction in the 

thin reacted zone, the residual pores still connected the intact zone on each face of reacted zone. 

This connected zone then allowed significant amount of HTO to diffuse through reacted zone. 

However, for kaolinite, the small porosity reduction corresponds to significant reduction of 

connectivity in the system. This strong decrease in connectivity thus led to stronger reduction in 

HTO diffusivity in reacted zone.  

Anionic exclusion induced by the newly formed mineral. The effective diffusion coefficient 

determined experimentally, and the effective diffusion coefficient measured in reacted zone for 

36Cl− are reported in Table 1. These values show that for chalk, at a same residual porosity in 

reacted zone, barite precipitation decreased De,36Cl,chalk by factor of 450 compared to intact 

conditions. For kaolinite, even though HTO diffusion was measured, still total clogging of 36Cl− 

was observed. These results show that for both cases, barite precipitation has a stronger impact on 
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De,36Cl in kaolinite compared to chalk. This difference in diffusive behavior of 36Cl− compared to 

HTO through barite precipitated zone can be explained by the presence of surface charges on barite 

surface. The first possibility would be the presence of positive surface charge on barite mineral 

which would eventually lead to an adsorption of 36Cl−. In this case, a sharp decrease of 36Cl− activity 

in upstream reservoir is expected, related to a significant delay in 36Cl− breakthrough in the 

downstream reservoir. However, experimental data contradict such hypothesis. In chalk 

experiment, after 70 days of experiment, 67% of initial HTO activity and only 5% of initial 36Cl− 

activity decrease was observed in upstream reservoir. Similarly, for kaolinite, after 100 days of 

experiment, 70% of HTO activity and only 1% of 36Cl− activity decrease was observed in the 

upstream. The upstream graphs are presented in Figure S7 in supporting information. In chalk there 

was small activity evolution and in kaolinite no measurable activity were observed in downstream. 

Moreover, batch experiments measurement led to a very small distribution ratio value for 36Cl−, 

3x10−4 m3.kg−1. Thus, barite possessing positive surface charge can be excluded. 

The second possibility is that barite would possess negative surface capable of excluding anionic 

species such as 36Cl− from the reacted zone. From Table 1, at equal residual porosity in reacted 

zone for chalk, barite precipitation generated 15 times lower geometric factor of 36Cl− than HTO. 

Similarly, using De,precip,36Cl from Table 1, and geometric factor for 36Cl− similar to HTO (i.e. 0.06), 

equation 6 shows that of 12% total accessible porosity for HTO only 0.78% of porosity would be 

accessible for 36Cl− diffusion.  

This very small accessible porosity can very well explain the smaller diffusive rate of 36Cl− 

compared to HTO both in chalk and kaolinite. Moreover, this effect would be more pronounced in 

kaolinite where the pore size is almost twenty times smaller than in chaIk, resulting in a complete 
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anion exclusion of 36Cl−. Note that such observation are consistent with literature data, where 

zetameter tests showed that barite in solution equilibrated with this mineral has negative surface 

charge.24  

Several studies in literature have already demonstrated that the morphology of barite 

precipitation can be different in different void spaces.25,26 However, the present study shows that 

pore structure would govern the distribution of these precipitates. This distribution would decide 

the effectiveness of clogging by same mineral in blocking the diffusive pathways of different pore 

structures. The 36Cl− results shows that at conditions where the pore solution is equilibrated with 

barium and sulfate ions, the newly formed mineral would have negative surface charge capable of 

partially or totally blocking the diffusion of anionic species such as 36Cl−. 
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Figure 1. Cumulative total activity of HTO and 36Cl− diffusing through intact and reacted porous media, i.e. (A) 

compacted kaolinite and (B) micritic chalk. Simulated cumulative curves calculated by considering the diffusion 

parameters interpreting average experimental flux are shown as dashed lines. 

  

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 a
c
ti
v
it
y
, 
 B

q

Time, Days

HTO/36Cl diffusion for intact and barite-kaolinite case

HTO_barite

HTO_intact

36Cl_barite

36Cl_intact

HTO_I-Mode

HTO_intact

36Cl_intact

A

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10 20 30 40 50 60 70

C
u

m
u

la
ti
v
e

 a
c
ti
v
it
y
, 
B

q

Time, days

HTO/36Cl: Barite/Chalk- After 300 days 

HTO_barite

36Cl_barite

HTO_I-Mode

36Cl_I-Mode

HTO_Intact

B



144 

 

 

Figure 2 (A). Barite precipitated zone formed at the center of chalk sample between two intact matrix, (B). Barite 

precipitated zone in kaolinite shifted towards barium reservoir after 30 days, 2C: Barite precipitated zone in 

kaolinite shifted towards barium reservoir after 60 days. 
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Table 1. Porosity, effective diffusion coefficient and geometric factor values for HTO and 36Cl−, calculated for intact 

sample, whole reacted sample and only reacted zone 

 
Porosity 

% 

De, HTOх10-

11 

m2.s-1 

De,36Clх10-

11 

m2.s-1 

GHTO 

(-) 

G36Cl 

(-) 

C
h

a
lk

 

Intact conditions 
 

45 

 

41.5 

 

35.3 

 

0.46 

 

0.46 

R
e

a
c
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d
 c

o
n
d

it
io

n
s
 

 

Whole 

sample (6.5 

mm) 

 

42.5 

 

13.5 

 

 (11.5-

17.5) 

 

1.1  

 

(0.9-1.3) 

 

0.16 

 

0.015 

Reacted 

zone (300 

µm-500 µm-

1 mm) 

 

12  

(4 - 28.5) 

 

1.48 

(0.06 - 4.2) 

 

0.08 

(0.04 - 

0.25) 

 

0.06 

 

0.004 

K
a

o
li

n
it

e
 

Intact conditions 
 

 

36 

 

29 

 

23 

 

0.4 

 

0.38 

R
e

a
c
te

d
 c

o
n
d

it
io

n
s
 

 

Whole 

sample 

(10mm) 

 

35.5 

 

0.15 

(0.06 - 

0.21) 

 

(N/A) 

 

0.02 

 

N/A 

Reacted 

zone 

 

34.5 

(32 - 35) 

 

0.031 

(0.01 - 

0.05) 

 

(N/A) 

 

0.00004 

 

N/A 
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1. Mercury intrusion-extrusion porosimetry for chalk and compacted kaolinite 

 

Figure S1: Pore-size distribution derived from mercury porosimetry for chalk and for compacted kaolinite 
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2. Schematic view of counter-diffusion cell 

 

Figure S2: Counter-diffusion setup used for kaolinite experiments (the schematic figure is inspired from Savoye et 

al., 2011, J. Contam Hydrol.) 
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3. Reactants evolution in upstream reservoir for kaolinite & chalk experiments 

 

Figure S3: Evolution of Ba and SO4 concentrations as a function of time in upstream and downstream reservoirs of 

the barite-kaolinite cell and barite-chalk cell (results pre-obtained in Rajyaguru et al., 2019, Chem. Geol.) 
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4. BSE SEM of barite precipitated in chalk 

 

Figure S4: BSE-SEM image of barite precipitated zone of thickness ~500 µm in center of chalk sample((Rajyaguru 

et al., 2019)) 
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5. BSE-SEM of barite precipitates in kaolinite at 1.9 g.cm-3 dry density 

The evolution of barite precipitates in pore size less than 35 nm was studied by performing 

precipitation experiments in kaolinite compacted at dry density 1.9 g.cm3 The thickness and 

diameter of the sample were 0.6 cm and 0.9 cm respectively. The concentration of reactants was 

equal to 20 mM and the volume of reservoirs was equal to 50 ml. After one months of precipitation 

experiment the µCT image taken at resolution 15 µm showed barite precipitates distributed in the 

reacted zone. At this resolution each precipitate can be seen as big spheres formed in the reacted 

zone. However, the SEM observation showed that these spheres are in fact clusters of small barite 

precipitates formed in pores of size less than 35 nm. However, due to limitation of SEM images, 

the morphology of barite precipitates in such small porosity is still unknown. 

 

Figure S5: The µCT image after one month of precipitation experiment shows barite precipitates (resembling 

spheres) distributed in ~reacted zone. The SEM image of this reacted zone shows that each sphere in the reacted 

zone is a cluster of small barite precipitates 
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6. Calculation of associated errors in cumulative activities in downstream 

 Gauss error propagation formulae for calculating associated uncertainties  

The error on the experimental cumulative total activity 𝑄𝑑,𝑡𝑛in the downstream reservoir (through-

diffusion) is derived using the following equation: 

𝑄𝑑,𝑡𝑛 = 𝐴𝑑,𝑡𝑛 + ∑ 𝑎𝑑,𝑡𝑖
𝑛−1
𝑖         Eq. (A1) 

Where 𝐴𝑑,𝑡𝑛
 

(Bq) is the total activity measured at the time tn in the reservoir,

 

𝑎𝑑,𝑡𝑖is the

 

activity 

measured in the sample at the time ti.

  

𝜎𝑄𝑑,𝑡𝑛 = √𝜎𝐴𝑑,𝑡𝑛
2 + ∑ 𝜎𝑎𝑑,𝑡𝑖

2𝑛−1
𝑖        Eq. (A2)

 

In the same way, for the out-diffusion experiments, the cumulative total activity

 

𝑄𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑛
 

in the 

downstream or the upstream reservoirs is: 

 

𝑄𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑛 = 𝐴𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑛 − 𝐴𝑑_𝑜𝑟_𝑢𝑝,𝑡0 + ∑ 𝑎𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑖
𝑛−1
𝑖     Eq. (A3) 

Where

 

𝐴𝑑_𝑜𝑟_𝑢𝑝,𝑡0is the activity remaining in the downstream or upstream reservoir after the 

renewal of the solutions.

  

𝜎𝑄𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑛 = √𝜎𝐴𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑛
2 + 𝜎𝐴𝑑_𝑜𝑟_𝑢𝑝,𝑡0

2 + ∑ 𝜎𝑎𝑑_𝑜𝑟_𝑢𝑝,𝑡𝑖
2𝑛−1

𝑖     Eq. (A4)

 

𝐴𝑑,𝑡𝑛is defined as: 𝐴𝑑,𝑡𝑛 =
𝑎𝑑,𝑡𝑛×𝑀𝑑

𝑚𝑑,𝑡𝑛

       Eq. (A5)

 

Where Md is the total mass of the solution in the downstream reservoir (g) and md,tn is the mass of 

the collected solution (g). 

In the activity calculation, the errors 𝑎𝑑,𝑡𝑛−1 induced by md,tn-1, and Md are integrated in the error 

associated to 𝐴𝑑,𝑡𝑛as:  

𝜎𝐴𝑑,𝑡𝑛 = 𝑓(𝜎𝑀𝑑
, 𝜎𝑎𝑑,𝑡𝑛−1 , 𝜎𝑚𝑑,𝑡𝑛−1

)       Eq. (A6) 
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Applying the formulae of error propagation to this equation, one obtains: 

𝜎𝐴𝑑,𝑡𝑛 =
√(

𝜕𝐴𝑑,𝑡𝑛
𝜕𝑎𝑑,𝑡𝑛−1

)
2

⋅ 𝜎𝑎𝑑,𝑡𝑛−1
2 + (

𝜕𝐴𝑑,𝑡𝑛
𝜕𝑚𝑑,𝑡𝑛−1

)
2

⋅ 𝜎𝑚𝑑,𝑡𝑛−1

2 + (
𝜕𝐴𝑑,𝑡𝑛
𝜕𝑀𝑑

)
2

⋅ 𝜎𝑀𝑑

2   Eq. (A7) 

Hence: 

𝜎𝐴𝑑,𝑡𝑛 = 𝐴𝑑,𝑡𝑛√(
1

𝑎𝑑,𝑡𝑛−1
)
2

⋅ 𝜎𝑎𝑑,𝑡𝑛−1
2 + (

1

𝑚𝑑,𝑡𝑛−1

)
2

⋅ 𝜎𝑚𝑑,𝑡𝑛−1

2 + (
1

𝑀𝑑
)
2
⋅ 𝜎𝑀𝑑

2   Eq. (A8) 

Finally, the cumulative activities for HTO and 36Cl in downstream for reacted chalk and kaolinite 

were plotted with the associated certainties. The resulting curves were fitted to obtain minimum, 

maximum and best fits for each curve. 
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Figure S6: Experimental diffusive curves fitted with I-mode to calculate the diffusive parameter error range that are 

determined from the error bars of the experimental activity data, and the corresponding simulated cumulative 

curves10  

                                                

10 The HTO diffusive curve for chalk case is reported in (Rajyaguru et al., 2019).  
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Table-S1: Effective diffusion coefficients of HTO and 36Cl for chalk and HTO for kaolinite obtained by I-mode fitting 

for diffusive curves with associated errors in Figure-S6 

Total sample 
 

Chalk HTO 36Cl 

HTO 

Kaolinite,HTO 

De,best 13.5 1.1 0.15 

De, min 11.5 0.9 0.06 

De,max 17.5 1.3 0.21 

 

Table-S2: Diffusion coefficients of HTO and 36Cl for chalk and HTO for kaolinite in reacted zones of different zones 

calculated using best, minimum and maximum effective diffusion coefficients from Table-S1 

Reacted zone 

C
h

a
lk

 H
T

O
 

Thickness of 

reacted zone 

De,best 

х 10-11 

De, min 

х 10-11 

De,max 

х 10-11 

1mm 2.87 2.72 4.19 

500µm 1.48 1.41 2.2 

300µm 0.9 0.6 1.06 

C
h

a
lk

 3
6

C
l 

Thickness of 

reacted zone 

De,best 

х 10-11 

De, min 

х 10-11 

De,max 

х 10-11 

1mm 0.17 0.14 0.25 

500µm 0.086 0.07 0.12 

300µm 0.052 0.042 0.076 

K
a

o
li

n
it

e
H

T
O

 

Thickness of 

reacted zone 

De,best 

х 10-11 

De, min 

х 10-11 

De,max 

х 10-11 

1mm 0.15 0.006 0.22 

2mm 0.31 0.12 0.44 

3mm 0.46 0.18 0.66 
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Table-S3: Residual porosity calculated at different thickness of chalk and kaolinite samples 

Porosity 

calculations 

Selected 

Thickness 

Porous 

volume 

cm3 

Barite 

volume 

cm3 

%residual 

Porosity 

C
h

a
lk

 H
T

O
 

0.65 2.50 0.14 0.425 

1mm 0.855 0.14 0.285 

500µm 0.427 0.14 0.121 

300µm 0.256 0.14 0.044 

K
a

o
li

n
it

e
 H

T
O

 1 cm 0.636 0.00182 0.355 

1mm 0.0636 0.00182 0.331 

2mm 0.127 0.00182 0.345 

3mm 0.19 0.00182 0.355 

 

 

Figure S7: HTO and 36Cl evolution in upstream: HTO diffusive curve clearly shows the activity decrease in 

upstream, no activity decrease for 36Cl is observed after 80 days since its injection 
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 Chapter-2.3: Barite precipitation in Compacted 

Illite 
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RÉSUMÉ 

Les roches naturelles sont complexes tant au niveau de leur structure poreuse que de leur composition 

minéralogique, contenant et des minéraux dont les surfaces sont chargées négativement comme l’illite et la 

smectite, et des minéraux de surface quasi-neutre comme les quartz, les minéraux carbonatés, etc. Cette 

complexité rend de fait difficile leur étude dans une première approche. C’est pourquoi, pour évaluer de 

façon plus pertinente l’impact de différents paramètres sur la précipitation, différents matériaux modèles 

ont été utilisés ici : chacun portant une propriété des roches argileuses consolidées. Dans ce chapitre, des 

essais de diffusion réactive ont été réalisés en induisant une précipitation de barytine au sein d’échantillons 

d’illite compactée. De manière à simplifier le système et avoir un meilleur contrôle de la précipitation de 

barytine, l’argile a été pré-conditionnée sous forme de césium. Cette approche expérimentale a été envisagée 

afin de répondre à la question suivante : « Est-ce qu’un même type précipité peut conduire à un colmatage 

de même efficacité s’il opère dans des matériaux poreux de porosité similaire mais de charge de surface 

différentes ? ». En outre, les résultats des expériences sur la craie et la kaolinite ont montré que la barytine 

néoformée devait également avoir des charges de surface négatives eu égard au comportement distinct de 

HTO et de 36Cl-. Aussi, des essais de diffusion avec ces deux traceurs ont également été réalisés pour évaluer 

le possible impact de la charge de surface de la barytine sur l’exclusion des anions dans l’illite. 
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1 Materials and Methods 

1.1 Illite purification, conditioning and compaction 

The compacted samples for this study were prepared using Illite du Puy located in Massif Central, 

France. The unpurified clay rock in its natural form contains 70 wt% of illite, 20 wt% of calcite, 

5 wt% of kaolinite and 5 wt % of quartz (Poinssot, Baeyens, & Bradbury, 1999).The carbonate 

phases and quartz were removed from the clay by series of washing with 0.1 M HCl and passing 

the solution from sieve of mesh size 69 µm. The clay phase recovered from acidic solution was 

then washed repeatedly with MilliQ water. The final clay-water solution was centrifuged to obtain 

pure illite. The cation exchange capacity (CEC) for pure illite was already measured in literature 

and is equal to 225 meq.kg-1 (Altmann et al., 2015)(Poinssot et al., 1999).  

In our study, the reactive diffusion experiments are carried out using a counter diffusion setup: two 

reactants independently diffusing from counter reservoirs meet in sample pores to generate 

mineral precipitation. In a sample possessing neutral pore surface, the pore network will not alter 

the diffusion of both cations and anions in reference to water tracer diffusive behavior. However, 

the pore surface of compacted illite (in pure form) possesses permanent negative surface charge. 

Thus, in our setup, on one surface of the sample there is strong adsorption of cations and at the 

counter surface there is strong exclusion of anionic species. In such situation, the anions will 

diffuse through the anionic accessible porosity to the zone where cations are strongly adsorbed. 

In this case, most of the mineral may precipitate at one surface of the sample and consequently 

generate uninterpretable dataset. For this reason, in the first step, the clay was conditioned with 

cesium in order to reduce the affinity of barium towards the clay surface. For that purpose, the 

protocol detailed in (Altmann et al., 2015) was used. In this protocol, a constant pH 3.5 is 

maintained by addition of 5×10-2 M Cs-formiate/formic acid buffer. Subsequently the clay is 

washed with 1 M CsCl (4 times; no buffer added). Finally, the conditioned clay was with MilliQ 

water to remove excessive CsCl. A fine grained and homogeneous dry material obtained by 

freeze-drying was then stored at 96% relative humidity in a closed chamber at controlled 

temperature of 40°C. Since illite clay has higher affinity for the monovalent cesium ion than 

divalent barium ion, this conditioning would reduce the adsorption extent of barium. 
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Figure 1A: compacted illite sample at dry density 1900 kg.m-3, 1B: Pore size distribution for compacted illite 

sample 
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Finally, as shown in Figure 1A, this powder was used to prepare four compacted samples at bulk 

dry density 1900 kg.m-3 for this study. Three samples were dedicated for diffusion and reactive 

diffusion studies and the fourth sample was dedicated for determining total accessible porosity 

and mean pore size. This was achieved by means of Mercury Intrusion and Extrusion Porosimetry 

(MIEP) characterization using a Micromeritics Autopore III 9420 apparatus. The total porosity and 

mean pore throat derived from this analysis are 29% and 9 nm. The pore size distribution of 

compacted illite sample from mercury intrusion-extrusion results is plotted in Figure 1B. 

1.2 Diffusion experiments  

In this study, the experiments were carried out using through-diffusion technique (Berthe, Savoye, 

Wittebroodt, & Michelot, 2011; Putnis & Fernandez-Diaz, 1990; S. Savoye, Beaucaire, Grenut, & 

Fayette, 2015). The general sequence used is as followed: 

1. Determination of the diffusive parameters for tritiated water (HTO) and 36Cl tracers through 

intact materials (i.e., before precipitation), 

2. Launching of the reactive diffusion experiments by injecting barium and sulfate in the counter-

diffusion reservoirs, 

3. Determination of the diffusive parameters for HTO and 36Cl through reacted materials, when 

chemical equilibrium was almost achieved, in order to assess the barite precipitate impact on their 

diffusive behavior. 
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Figure 2: Through diffusion setup used for diffusion and reactive diffusion studies for compacted cesium-illite 

samples 

The schematic diagram of diffusive cell is presented in Figure 2 ((Tertre et al., 2018), (Sébastien 

Savoye, Frasca, Grenut, & Fayette, 2012), (Glaus, Frick, Rossé, & Loon, 2010)). This setup 

consists of a PEEK diffusion cell of inner diameter of 18.75 mm and two aqueous reservoirs (i.e., 

an upstream reservoir and a downstream reservoir). Using a peristaltic pump (Ismatec), the 

solutions of the upstream and downstreams reservoirs are homogenized. Note that the body of 

the diffusion cell is made of PEEK in order to allow for the characterization of the illite sample by 

means of X-Ray microtomography during the experiment. Three diffusion setups of this kind were 

prepared by directly compacting Cs-illite powder in the diffusion cell at a bulk dry density of 

1900 kg.m-3 (i.e., porosity). This is based on the dry mass of the solid placed in the cell and the 

volume of the cell, leading to a thickness of 6 mm. Before beginning the diffusion experiments, it 

is necessary to ensure homogeneous supply of solution to the surface of the sample (Tertre et al., 

2018). Thus, before closing the diffusive cell with stainless steel covers, each face of the sample 
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is covered with three porous layers in the following order: Whatman cellulose nitrate membrane 

filters (manufactured by GE healthcare) of 0.8 µm mesh, then stainless-steel filter plates (pore 

diameter 10 µm from MOTT industrial division), and finally two grids (nominal spaces of 280 & 

450 µm for monofilaments with diameters equal to 120 & 200 µm). Finally, using ascendant 

capillary method (Tertre et al., 2018), air from the compacted samples was removed after which 

the samples were equilibrated with 0.1 M CsCl solution. Due to the small size of the samples, the 

equilibration step was achieved in two weeks.  

The first diffusive cell labelled as ILL-A was firstly used to acquire diffusion coefficients of tritiated 

water (HTO) and chloride-36 (36Cl) for 70 days and finally to acquire the diffusive parameters of 

133Ba at intact conditions for 70 days. In the second and third cell labelled as ILL-B and ILL-C 

barite precipitation experiments were launched. ILL-B was used for chemistry monitoring in 

reservoirs and precipitation impact on diffusivity of HTO/36Cl after 70 days of experimental time. 

Finally, ILL-C was used to determine the 3D-evolution of barite precipitates in illite porous space 

after 30 days and 140 days of precipitation step using X-ray microtomography. 

1.2.1 HTO/36Cl and 133Ba diffusivity at intact conditions 

After equilibration step, the upstream and downstream solutions of ILL-A were completely 

renewed by 50 mL of fresh 0.1 M CsCl solution. The upstream was spiked with 6.5 µL of tritiated 

water (labelled CERCA ELSB50 n°80212/D, source activity 7599 MBq.L-1) and 32 µL of 36Cl 

(labelled E&Z 1760-100-1 source activity 767.32 MBq.L-1.) to obtain initial volumetric activity of 

1 MBq.L-1 (HTO) and 0.5 MBq.L-1(36Cl) respectively. Evolution of HTO and 36Cl activity was 

measured by periodic sampling in both reservoirs. After this step, out-diffusion of HTO and 36Cl 

was carried out by completely renewing the upstream and downstream bottles with 50 mL of fresh 

0.1 M CsCl solution. This step was carried out for 1 week to completely withdraw the tracers from 

sample pores. After out-diffusion step, the upstream solution was renewed with 50 mL of fresh 

0.1 M CsCl solution. This solution was spiked with 100 µL of 133Ba (ELSB45 CERCA N°5245 and 

source activity 1.78 MBq.L-1) to obtain initial volumetric activity of 1.7 kBq.L-1. Conversely, the 

downstream solution was renewed with 50 ml of fresh 0.1 M CsCl solution. Then, evolution of 

133Ba activity was measured by periodic sampling in both reservoirs. 

1.2.2 Barite precipitation experiment 

Barite precipitation experiment in cell ILL-B and ILL-C were launched by replacing upstream 

reservoir with 50 mL of fresh 0.1 M CsCl solution containing 20 mM of BaCl2 (resp Cs2SO4 in 
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downstream at same concentration). At the beginning of experiment, the upstream reservoir of 

ILL-B was spiked with similar amount of 133Ba from same source and initial volumetric activity used 

in ILL-A case. The monitoring of activity decreases of this tracer in upstream for the total time of 

reactive diffusion step was carried out by periodically sampling the upstream solution. From the 

initial conditions of upstream solution, the ratio of barium concentration (mol. L-1) and 133Ba specific 

activity (Bq. mL-1) is known. Using this ratio, the measured activity at each sampling was converted 

into stable barium concentration. In downstream reservoir of ILL-B cell, the sulfate concentration 

decrease for total experimental time was measured by periodic sampling of 100 µL of downstream 

reservoir solution and diluting it with 1.9 mL of MilliQ water. The concentration in each of the diluted 

sampled solution was measured using Ionic Chromatography measurements (Metrohm 850 

professional IC, equipped with ASup 7 150/4 column). At the end of experiment, by means of initial 

and final concentrations of each ion, the amount of barite precipitated into the porous sample was 

then estimated. Knowing the molar volume of barite (i.e. 0.019 mol.cm-3) and the porous volume 

of the sample, the porosity reduction due to precipitation was finally calculated. 

1.2.3 Precipitation impact on diffusivity 

To determine precipitation impact on diffusivity, HTO and 36Cl were injected in the upstream 

reservoir of ILL-B after 70 days of precipitation experiment. The source, volumetric activity of both 

tracers in upstream and the periodic sampling protocol in both reservoirs were the same as the 

ones used for ILL-A. The activity evolution in downstream of ILL-B was followed for 70 days. In 

the upstream of cell ILL-C after 140 days of reactive diffusion step, 44 µL of pure deuterated water 

(HDO) was injected. At each sampling time, 100 µL of solution was withdrawn from upstream and 

downstream reservoirs. The HDO concentration in each solution was measured using a cavity-

ringdown laser absorption spectrometer (Los Gatos Research LGR 100).  

1.2.4 Protocols used for determining activity of radioisotopes 

For HTO/36Cl activity measurement, following protocol was used: 100 µL of upstream and 

downstream solutions, each mixed with 900 µL of MillQ water and 4 ml of ultimagold scintillation 

liquid in a 5 ml scintillation bottle. The activities were measured using a liquid scintillation recorder 

Packard Tricarb 2500. For 133Ba activity measurement following protocol was used: 100 µL of 

upstream solution mixed with 900 µL of MilliQ water in 5 mL gamma counting bottle. The activity 

measurement for each sampling was done using gamma counter (Packard 1480 WIZARD, USA). 
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1.2.5 Treatment of experimental diffusive results 

The experimental activity dataset for both HTO and 36Cl were interpreted numerically using Fick’s 

second law for one-dimensional transport (Crank, 1975).  

                                     
𝜕𝐶

𝜕𝑡
= 

𝐷𝑒

𝛼

𝜕2𝐶

𝜕𝑥2
= 

𝐷𝑒

𝜙+𝑅𝑑𝜌𝑑𝑟𝑦 

𝛿2𝐶

𝛿𝑥2
                                                               (1) 

where C is the concentration in mol.m-3 (or activity Bq.m-3 in our case), t  is the time in s, De is the 

effective diffusion coefficient in m2
.s-1, α = 𝜙 + 𝑅𝑑𝜌𝑑𝑟𝑦  is the rock capacity factor, ϕ is the porosity, 

ρapp is the bulk dry density in kg.m-3, and Rd is the distribution ratio in m3.kg-1. The initial and 

boundary conditions for this through diffusion setup in a condition when the concentration in 

upstream reservoir is left free to decrease are as follows: 

C(x,t) = 0 for t = 0                                                                                                                         (2)  

C(x,t) = C0 for x = 0 at t = 0                                                                                                          (3) 

where C0 is the initial concentration (or initial activity in Bq.m-3) in the upstream reservoir at the 

injection time, L is the sample thickness (m) and l is the filter plate thickness (m). The total porosity 

and effective diffusion coefficient of these filter plates (equal to 28% and 2.3 х 10-10 m2.s-1 for HTO 

and 2.0 х 10-10 m2.s-1 for 36Cl) are taken from literature (Tertre et al., 2018),(González Sánchez et 

al., 2008). Using the initial and boundary conditions from equation 2 and 3, the semi-analytical 

solutions to determine the flux in downstream reservoirs is well noted in literature (Crank, 

1975),(Moridis, 1998),(Didierjean, Maillet, & Moyne, 2004),(Descostes et al., 2008). The semi-

analytical solutions are implemented in CEA’s tool called Interpretation Model of Diffusion 

Experiments (Radwan, Hanios, & Grenut, 2006) (I-Mode). Finally, using I-Mode the experimental 

data were reproduced numerically at certain values of effective diffusion coefficient.  

For all of the tracers used in ILL-A, ILL-B and ILL-C, the associated uncertainties in cumulative 

activity and cumulative concentration data for downstream were calculated using the equations 

from Gaussian error propagation method. These equations are detailed in Appendix-I. These 

associated errors were then plotted with the experimental data over time. Using I-Mode, three 

modeled curves were reproduced: two to accommodate the minimum and maximum range of 

error, and third to reproduce the activity data. These three curves represent the minimum, 

maximum and optimum data fit using I-Mode. The effective diffusion coefficient values obtained 
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for minimum and maximum fit present the error range in measurements of effective diffusion 

coefficients.  

1.3 Imaging of barite precipitates in Illite sample 

The 3D evolution of barite precipitates in compacted illite was determined after 30 days and 140 

days of reactive diffusion experiment in ILL-C cell. At the day of measurement, the circulation of 

reactants in cell was temporarily stopped. The whole diffusion cell was disconnected from 

reservoirs and was placed in an X-ray micro-tomograph (µCT) Skyscan 1272, Brucker apparatus. 

After imaging, the cell was connected back to reservoirs to continue the barite precipitation 

process.  

1.4 Barium sorption on Cs-illite: 

The adsorption of Ba2+ on Cs-illite was measured by means of batch experiments. This was done 

by firstly spiking 20 mL of solution containing 20 mM BaCl2 reactant and 0.1 M CsCl as 

background electrolyte with 25 µL of 133Ba source (source activity 1.78 MBq.L-1 and source 

CERCA ELSB45 n°5245). Then in each batch tube, 1 g of Cs-illite was suspended with 5 mL of 

this spiked solution. After one week the solution was centrifuged at 15,000 rounds per minute from 

the clay and activity in the solution was measured using the same activity measurement protocol 

used for ILL-A. The distribution coefficient Rd, 133Ba in m3.kg-1 was determined using equation-4.  

                       𝑅𝑑,133𝐵𝑎 = 
𝑉

𝑚

𝐴0−𝐴𝑓

𝐴𝑓
                                                              (4) 

where Ao (Bq) is the initial activity measured in solution, Af (Bq) is the final activity remaining in the 

centrifuged solution, V (m3) is the volume of solution in centrifuge tube, and m (kg) is the mass of 

dried illite powder. 

2 Results  

2.1 HTO, 36Cl and 133Ba diffusive parameters at intact conditions 

The evolution of the experimental activity data with associated errors for HTO, 36Cl and 133Ba in 

upstream and downstream reservoir of ILL-A are reported in Figure 3,Figure 4,and Figure 5 

respectively. In each figure, experimental data are reproduced using I-Mode with diffusive 

parameter values given in Table 1 as the best fit values. Moreover, in Figure 3,Figure 4, and Figure 
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5, two additional modeled curves are reported, bracketing the experimental data and their 

associated error bars. These curves allowed us to have an estimation of the associated 

uncertainties in diffusive parameters for each tracer given in Table 1.  

The analysis of Table 1 shows how the charge of the species clearly influences their diffusive 

behavior through a charged porous medium. Compared to the neutral species, i.e. HTO, the 

anionic one, i.e. 36Cl, has access to only two third of the total porosity, inducing a reduction of its 

De value. Conversely, cationic species, i.e. 133Ba, exhibits a quite high diffusion coefficient value, 

especially when converted in diffusivity, i.e. De over the D0 ratio (Table 1). In that case, diffusivity 

value is almost twice the HTO diffusivity one, indicating the occurrence of the enhanced diffusion 

process, already extensively described in literature (ref…). Moreover, note that the distribution 

coefficient measured in dispersed illite led to a value (Rd,133Ba = 3x10-3 m3.kg-1) in a very good 

agreement with the value estimated from diffusion experiment (Table 1). 

The comparison with literature data is complicated by the fact that the current experiments are the 

first ones performed through illite conditioned under cesium form. Only were through-diffusion 

experiments for HTO and 36Cl carried out through sodium and calcium conditioned illite compacted 

at the same dry density by (González Sánchez et al., 2008), (Glaus et al., 2010). These authors 

determines De HTO, Na-illite 13×10-11 m2.s-1 and De HTO, Ca-illite = 9.4×10-11 m2.s-1. This means that, at a 

same dry density, the effective diffusion coefficient of water tracer for Na-illite is 1.4 time larger 

compared to Ca-illite, and 3.3 time larger compared to Cs-illite. Note that for 36Cl, De Cs-illite and De 

Na-illite are similar (De,36Cl,Na-illite = 2.8×10-11 m2.s-1, (Glaus et al., 2010)). Such a difference in HTO 

diffusive behavior was explained by González Sánchez et al. (2008) by the differences in hydration 

or solvation of the Na and Ca cations (González Sánchez et al., 2008). In our case, cesium is 

known as being very weakly bonded to its hydration shell compared to calcium, and especially 

sodium ((Hartkamp & Coasne, 2014)). Therefore, we can assume that the status of the water 

interacting with the compensating cation adsorbed onto the clay surface can directly influence the 

diffusive rate of HTO. Nevertheless, this point is still under debate. 
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Table 1: Diffusion coefficients of HTO, 36Cl at intact(section 2.1) and reacted(section 2.5), and 133Ba (section 2.1) 

for intact illite conditions obtained at minimum, maximum and best fits using I-Mode 

 

 

 

 

 

 

 

 

 

Figure 3: HTO cumulative activity evolution in upstream and downstream for intact illite. The cumulative activity 

values measured in downstream reservoir are reproduced using I-Mode to obtain error range in diffusion 

coefficients 
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cell Tracer De,best 

× 10-11 

m2.s-1 

De,min 

× 10-11 

m2.s-1 

De,max 

× 10-11 

m2.s-1 

De,best/D0 

 

, 

- 

Rd 

kg.m-

3 

In
ta

c
t 

IIll-A HTO 3.9 3.1 4.5 0.0195 0.28 0 

IIll-A 36Cl 2.5 2 3.5 0.014 0.18 0 

IIll-A 
133Ba 2.8 2.5 3.2 0.037 6.2 3.1 

R
e

a
c

te
d

 IIll-B HTO 5 4 5.9    

IIll-B 36Cl 4 3 4.8    

IIll-A HDO 3.9 3.2 4.5    
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Figure 4:36Cl cumulative activity evolution in upstream and downstream for intact illite. The cumulative activity 

values measured in downstream reservoir are reproduced using I-Mode to obtain error range in diffusion 

coefficients 

 

Figure 5: 133Ba cumulative activity evolution in upstream and downstream for intact illite. The cumulative activity 

values measured in downstream reservoir are reproduced using I-Mode to obtain error range in diffusion 

coefficients 
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2.2 Evolution of barium and sulfate in response to precipitation 

The evolution of the barium concentration in upstream reservoir of cell ILL-B is plotted in Figure 

6. For comparison, a modeled curve of barium concentration decrease calculated from the intact 

case is also reported. This curve was obtained using the diffusion coefficient of barium for intact 

illite, sample thickness equal to 6 mm and the Rd value from batch experiments.  

This figure shows a faster decrease in barium concentration in upstream under reactive diffusion 

compared to diffusion at intact illite in ILL-A. Using the Rd and De, 133Ba from ILL-A study, the barium 

concentration decrease in Figure 6 was reproduced by I-Mode when the sample thickness was 

reduced to 1.2 mm instead of 6 mm. This shows that, in reactive diffusion, a zone just near the 

upstream surface of the sample is acting like a sink, which rapidly consumes all of the diffusing 

barium from upstream. The correct total amount of barium contributed to precipitation and 

adsorption in illite sample will be determined by abrasive peeling method. However, since this task 

is not performed for the moment, the amount of barium contributing to adsorption on clay surface 

and barite precipitation in illite sample remains unknown. 

Similarly, the concentration decrease data in downstream of sulfate is also reported in Figure 6. 

This figure shows a lower concentration decrease compared to barium in upstream. In our study 

the diffusion behavior of sulfate under pure diffusive condition was not determined. Thus, a 

modeled curve for sulfate concentration decrease under pure diffusion was reproduced, using 

sample thickness equal to 6 mm and 36Cl diffusion coefficient from ILL-A study. However, to model 

sulfate data in downstream for reactive diffusion, the De value was increased to 6х10-11 m2.s-1 and 

the sample thickness was decreased to 3 mm in I-Mode. Thus, compared to barium sulfate needs 

to diffuse across a larger distance in the sample before contributing to barite precipitation. The 

barium and sulfate evolution in upstream and downstream reservoirs for ILL-B clearly shows the 

asymmetry between their contributions to precipitation in illite experiment. 
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Figure 6: Ba and sulfate decrease is observed in reservoirs in response to barite precipitation in sample. The dashed 

lines are modeled curves obtained using I-Mode 

2.3 Xray-µCT imaging 

The 3D evolution of barite precipitates in illite sample of cell ILL-C after 30 days of reactive 

diffusion experiment are reported in Figure 7A and Figure 7C. Similarly, the evolution of these 

precipitates after 140 days of reactive diffusion experiment is reported in Figure 7B and Figure 7D 

respectively. These figures show that barite precipitated within two different zones in the cell: in 

precipitation plane closer to upstream (1.5 mm from the upstream surface) in the clay sample and 

at the interface between upstream face and PEEK filter. In our study, the compaction step was 

done as carefully as possible to have a homogeneous pore size distribution in the sample. 

However, the µCT images shows a tilted precipitation plane in the sample. In one half of 

precipitation plane significant amount of barite precipitation is observed, while a smaller amount 

of barite is observed in the other half. This means that the pore size distribution after compaction 

could not be totally homogeneous. Finally, the total amount of barite precipitated in both zones in 

illite sample cannot be quantified by means of µCT images. This is because the resolution of µCT 

images is 20 µm whereas barite precipitated in voids of nanometric scale size (between 9 nm and 

100 nm). The acquisition after 140 days more or less shows no obvious evolution of precipitated 

zone located in the sample. However, a significant evolution at the interface between sample 

surface and filter is clearly observed. Finally, in both of the acquisitions an empty space is 
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observed in the reacted zone. No barite precipitation is observed in this empty space. In literature, 

illite du Puy contains some fraction of smectite. Thus, one of the possible explanations is that this 

empty space could be in fact the gel formed by the smectite mineral. Such gels are known to have 

very small nano-porosity thus inhibiting precipitation. However, to quantify whether this empty 

space is infact gel, a high-resolution scanning such as TEM, FIB-SEM are to be performed. These 

tasks will be carried out in future. 

 

Figure 7A: Barite precipitated zone formed near the barium reservoir face of the illite sample after 30 days of 

precipitation; 7B: after 140 days no clear evolution in the precipitation zone is observed; 7C: At the interface 

between clay surface and PEEK filter, formation of barite precipitates can be observed after 30 days; 7D: At 

acquisition of 140 days the barite precipitates at the interface have evolved 
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2.4 Porosity reduction due to precipitation 

In section 2.2, a clear asymmetry between barium and sulfate contribution to barite precipitation 

was observed. The µCT images (section 2.3) further showed barite precipitation in two zones: in 

illite sample and on the interface between upstream surface of sample and PEEK filter. Since the 

amount of barite precipitated at interface remains unknown, the porosity reduction from chemistry 

monitoring cannot be accurately calculated. Thus, a range of porosity decrease was calculated 

from initial and final concentrations of barium and sulfate. E.g. From chemistry monitoring, the 

total amount of barium and sulfate contribution to precipitation is equal to 0.61 mmol and 0.004 

mmol respectively. Let us assume that out of these total amounts 50% of barium and sulfate 

contributed to precipitation in illite pores. Thus, from molar volume of barite, the total volume 

occupied by barite mineral is equal to 0.016 cm3 and 0.00011 cm3 respectively. From these 

volumes and sample pore volume, the residual porosity in sample is equal to 26.10 % and 27.99% 

respectively. A range of porosity decrease considering different percentage of barium and sulfate 

contribution to precipitation in sample are calculated in Table 2 respectively. These calculations 

show that although porosity reduction estimated by each reactant is very different, in all cases 

barite precipitation led to very small amount of total porosity reduction.  
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Table 2: Total volume of porous sample and amount of volume occupied by barite precipitates 

Sample 

Porosity, 

% 

 

28 

Porous 

volume 

cm3 

 

0.46 

Barium 

mmol 

 

0.61 

Sulfate 

mmol 

 

0.004 

Molar 

volume 

cm3/mol 

 

52 

%Volume 

occupied 

by barite 

Barium 

cm3 

Sulfate 

cm3 

%Porosity reduction 

 

Barium 

 

Sulfate 

100 0.031 0.00022 26.10 27.99 

75 0.024 0.00016 26.57 27.99 

50 0.016 0.00011 27.05 27.99 

25 0.008 0.00005 27.52 27.997 

10 0.003 0.00002 27.81 27.999 

 

2.5 Precipitation impact on diffusivity 

The experimental activity data for HTO and 36Cl in upstream and downstream of Ill-B are reported 

in Figure 8 and Figure 9. Similarly, the cumulative concentration data of HDO for ILL-C are 

reported in Figure 10. For all three cases, associated uncertainties in the cumulative activity were 

calculated using Gaussian error propagation equations from Appendix-I. The cumulative 

experimental data with associated uncertainties for downstream were modeled using I-Mode. 

Thus, for each tracer three modeled curves were generated: two resembling the error intervals 

and one resembling the best fit of the experimental data. The modeled curve at best fit was 

calculated by using generated an effective diffusion coefficient value for the given tracer and the 

modeled curves for the error range generated the error range in diffusion coefficient for each 
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tracer. These values for HTO, 36Cl and HDO obtained using I-Mode from Figure 8, Figure 9 and 

Figure 10 are reported in Table 1. For HTO and HDO, the effective diffusion coefficients are similar 

to the HTO diffusion coefficient value obtained for intact illite case. Thus, barite precipitation shows 

no significant impact on diffusivity of water tracer after 70 and 140 days of precipitation experiment. 

For 36Cl, Table 1 further shows that the effective diffusion coefficient of this tracer is closer to the 

value obtained at intact illite condition. Thus, barite precipitation shows no clear impact on the 

diffusivity of anionic tracer  

 

Figure 8: HTO cumulative activity evolution in upstream and downstream after 70 days of barite precipitation 

experiment in illite. The cumulative data of downstream are reproduced at minimum, best and maximum fits using I-

Mode 
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Figure 9: 36Cl cumulative activity evolution in upstream and downstream after 70 days of barite precipitation 

experiment in ILL-B. The cumulative data of downstream are reproduced at minimum, best and maximum fits using 

I-Mode 

 

Figure 10: HDO cumulative concentration evolution in upstream and downstream after 140 days of barite 

precipitation experiment in ILL-C. The cumulative data of downstream are reproduced at minimum, best and 

maximum fits using I-Mode 
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3 Discussion 

This study dealt with investigating the clogging impact on a proxy material that resembles a mean 

pore size and surface charge closer to consolidated claystones. These claystones are considered 

as potential host rock for radioactive waste disposal repository. Such proxy material was 

developed by compacting cesium-conditioned Illite du Puy at a dry density 1900 kg.m-3. From 

mercury intrusion and extrusion porosimetry, the mean pore diameter and total porosity of this 

compacted sample was equal to 9 nm and 28%, respectively. At intact conditions, the effective 

diffusion coefficient of HTO was lower compared to Ca-illite and Na-illite. However, the effective 

diffusion coefficient for 36Cl obtained in our study and the one obtained in literature on Na-illite are 

similar.  

To study the evolution of barite precipitate in illite sample and to evaluate its impact on diffusivity, 

precipitation experiments were launched in two cells. The chemistry of reactants, sample 

geometry and volume of reservoirs were same for both cases. In one cell (ILL-B), the chemistry 

monitoring clearly showed asymmetry between the evolution of the two reactants, barium and 

sulfate in upstream and downstream reservoirs, and their contribution to precipitation in illite 

sample. Barium is involved both in barite precipitation process and adsorbed on the illite surface, 

contrary to sulfate, only contributing to barite precipitation. Nevertheless, the mass balance 

calculations showed a very small amount of anionic porosity decrease due to barite precipitation 

in illite sample: from 18% (intact anionic porosity) to 14%, calculated from sulfate evolution, when 

assuming (i) 1 mm as the barite precipitation thickness, as indicated by µCT images and (ii) no 

precipitation outside the sample. However, the µCT images obtained after 30 days showed that 

barite precipitated in two distinct zones: the ca. 1-mm thick front, located within the sample, near 

the upstream side and a second one, located at the interface between sample upstream face and 

filter plate. The µCT images obtained after 140 days showed no clear evolution within sample, but 

a significant increase of the amount of precipitated barite outside the sample. These observations 

indicate that the mass balance calculation overestimates the sulfate actually involved in barite 

precipitating within sample because some sulfate ions are able to diffuse across illite so as to 

precipitate in the counter reservoir with barium. Note that such barite precipitation outside the 

sample was never observed in the barite experiments performed into chalk and kaolinite. The fact 

that sulfate is able to cross illite sample without precipitating indicates that either barium species 

are not accessible anymore or barite precipitation is partially inhibited into the small pores of illite. 

The first hypothesis contradicts the fact that cation exchange process is instantaneous and 
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reversible and that there is still barium in solution, capable of being involved in precipitation. 

Therefore, it seems that the inhibition of barite precipitation has to be considered. 

After 70 days of barite precipitation experiment, HTO and 36Cl tracer were injected in upstream 

reservoirs and their activity evolution was followed in the downstream one. The effective diffusion 

coefficient values obtained after fitting cumulative activity data for each tracer showed no clear 

impact of barite precipitation on their diffusivity. In the second cell (ILL-C), HDO was injected in 

upstream after 140 days of barite precipitation and its cumulative concentration evolution was 

measured in downstream reservoir. The effective diffusion coefficient value obtained after fitting 

the cumulative concentration curve further showed no clear impact of barite precipitation in 

diffusion of this water tracer. These two results are consistent with the fact that only a small amount 

barite would have precipitated within sample through a quite large thickness.  

Inhibition of barite precipitation within illite sample  

The bulk solubility of a given mineral may change in confined media. This is due to the tension 

applied by the pore space onto the forming mineral. One such study showed that sodium 

carbonate in 30 nm pores possess solubility similar to bulk conditions. However, when the pore 

size is decreased to 10 nm and 7 nm, the solubility of the same mineral increased by a factor of 2 

and 3 respectively(Rijniers, Huinink, Pel, & Kopinga, 2005). Such increase in solubility may 

decrease the precipitation probability in nanometer size pores. In another study, evolution of a 

pore size distribution in response to precipitation using constant solubility and pore scale pore size 

on the solubility in response to quartz precipitation was investigated (Emmanuel & Berkowitz, 

2007). In literature, the solubility product of a given mineral is equal to ratio of ion activity product 

and thermodynamic solubility (Stumm & Morgan, 2012). However, the pore scale solubility is 

controlled by the diameter of the pore and the interfacial energy to initial precipitation. The 

interfacial energy is the energy barrier that a cluster of instable mineral nuclei needs to overcome 

to form stable nuclei and precipitate(Prieto, 2014), (Kashchiev & van Rosmalen, 2003). The end 

works of this study showed evolution of pore size distribution for pores of size ranging in between 

10-4 m to 10-8 m. The constant solubility model showed evolution of very small porosities and 

macroporosities were less impacted. However, pore scale solubility model showed no precipitation 

of quartz in smallest pores, but, intermediate pores and macro pores were significantly impacted.  

In our study, the µCT images obtained after 30 days and 140 days indicated that barite precipitate 

continued to evolve at the interface between sample upstream face and filter plate. However, more 
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or less no clear evolution in the illite sample was observed at the resolution given by µCT. This 

means that in some pore voids, barite precipitated for initial 30 days after which the residual pore 

voids could inhibit barite precipitation. Such inhibition could take place in pores of size less than 

or equal to mean pore diameter of the sample.  

Moreover, no change in diffusive behavior of water tracer and 36Cl and was observed through 

barite precipitated illite samples. Thus, there is significant amount of connectivity still present in 

the reacted zone. From works of (Emmanuel & Berkowitz, 2007) and (Rijniers et al., 2005) and 

diffusion results of water tracer after 70 and 140 days, we suspect that due to very small size of 

these pores (<9 nm), barite precipitation might be limited in these pores so as to let tracer diffuse.  

Barite precipitation impact on 36Cl diffusion 

The precipitation impact on containment properties of a porous sample is generally estimated by 

using water tracer. However, several studies have shown that sulfate alkali minerals such as barite 

and celestite at equilibrated conditions are negatively surface charged (Bokern, Hunter, & 

McGrath, 2003),(González-Caballero, Cabrerizo, Bruque, & Delgado, 1988).  

In one of such studies, celestite precipitation in compacted Na-illite at dry density 1700 kg.m-3 

resulted in complete clogging of 36Cl tracer (Chagneau et al., 2015). From their observations, two 

conclusions were outlined:1) celestite precipitated in larger pores and was inhibited in the smaller 

pores, 2) newly formed celestite mineral possessed negative surface charge. In the first case, the 

pores that inhibited celestite precipitation were also inaccessible for diffusion of anions such as 

sulfate and 36Cl. This is because in these pores there is overlapping of electric double layer and 

no bulk water is available for these ions to diffuse. Thus, as the big pores were filled by celestite 

and as in small pores there was anionic exclusion, total clogging of 36Cl was observed. In the 

second case, the negative surface charge of celestite with the anionic accessible porosity 

altogether led to complete exclusion of 36Cl. 

In our study dealing with barite precipitation in two porous media namely chalk and kaolinite, barite 

mineral at equilibrated conditions possessed negative surface charge. In this study barite 

precipitation had strong impact on diffusive behavior of 36Cl through barite precipitated zone. 

However, in present work although µCT image showed some barite precipitation in the illite pores, 

the diffusive measurements showed no impact on 36Cl diffusivity. One must note that, in chalk and 

kaolinite barite clogging experiments, we saw clear impact of negative surface charge of barite on 

diffusion of 36Cl. But in illite we cannot confirm whether barite mineral formed on negatively surface 
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charged illite surface also has negative surface charge. The contribution of barium to sorption and 

precipitation in illite case remains unknown. 

Future Scope of Work: 

The contribution of reactants to precipitation in illite sample cannot be quantified since, there is 

sorption of barium on illite pores and barite precipitation at interface. For this investigation, we will 

perform some abrasive peeling to investigate the barium activity in the unreacted and reacted 

zone of illite. 

The morphology of barite in illite pores remains unknown. Thus, in future high-resolution scanning 

such as X-ray Synchrotron tomography, FIB-SEM imaging would be carried on illite samples. 

Finally, the empty space observed in the reacted zone will also be quantified using imaging 

techniques.  

  



188 

 

4 References 

Altmann, S., Aertsens, M., Appelo, T., Bruggeman, C., Gaboreau, S., Glaus, M., … Gaboreau, S. 

(2015). Processes of cation migration in clayrocks : Final Scientific Report of the CatClay 

European Project HAL Id : cea-01223753. 

Berthe, G., Savoye, S., Wittebroodt, C., & Michelot, J. L. (2011). Changes in containment 

properties of claystone caprocks induced by dissolved CO2seepage. Energy Procedia, 4, 5314–

5319. https://doi.org/10.1016/j.egypro.2011.02.512 

Bokern, D. G., Hunter, K. A., & McGrath, K. M. (2003). Charged Barite - Aqueous Solution 

Interface: Surface Potential and Atomically Resolved Visualization. Langmuir, 19(24), 10019–

10027. https://doi.org/10.1021/la0269255 

Chagneau, A., Tournassat, C., Steefel, C. I., Bourg, I. C., Gaboreau, S., Esteve, I., … Schäfer, T. 

(2015). Complete restriction of36Cl-diffusion by celestite precipitation in densely compacted illite. 

Environmental Science and Technology Letters, 2(5), 139–143. 

https://doi.org/10.1021/acs.estlett.5b00080 

Crank, J. (1975). The Mathematics of Diffusion. (C. Press, Ed.) (2nd ed.). Oxford. 

Descostes, M., Blin, V., Bazer-Bachi, F., Meier, P., Grenut, B., Radwan, J., … Tevissen, E. (2008). 

Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones 

(Meuse/Haute-Marne, France). Applied Geochemistry, 23(4), 655–677. 

https://doi.org/10.1016/j.apgeochem.2007.11.003 

Didierjean, S., Maillet, D., & Moyne, C. (2004). Analytical solutions of one-dimensional 

macrodispersion in stratified porous media by the quadrupole method: Convergence to an 

equivalent homogeneous porous medium. Advances in Water Resources, 27(6), 657–667. 

https://doi.org/10.1016/j.advwatres.2004.02.022 

Emmanuel, S., & Berkowitz, B. (2007). Effects of pore-size controlled solubility on reactive 

transport in heterogeneous rock. Geophysical Research Letters, 34(6), 1–5. 

https://doi.org/10.1029/2006GL028962 

Glaus, M. A., Frick, S., Rossé, R., & Loon, L. R. V. (2010). Comparative study of tracer diffusion 

of HTO,22Na+and36Cl-in compacted kaolinite, illite and montmorillonite. Geochimica et 

Cosmochimica Acta, 74(7), 1999–2010. https://doi.org/10.1016/j.gca.2010.01.010 



189 

 

González-Caballero, F., Cabrerizo, M. A., Bruque, J. M., & Delgado, A. (1988). The zeta potential 

of celestite in aqueous electrolyte and surfactant solutions. Journal of Colloid And Interface 

Science, 126(1), 367–370. https://doi.org/10.1016/0021-9797(88)90131-2 

González Sánchez, F., Van Loon, L. R., Gimmi, T., Jakob, A., Glaus, M. A., & Diamond, L. W. 

(2008). Self-diffusion of water and its dependence on temperature and ionic strength in highly 

compacted montmorillonite, illite and kaolinite. Applied Geochemistry, 23(12), 3840–3851. 

https://doi.org/10.1016/j.apgeochem.2008.08.008 

Hartkamp, R., & Coasne, B. (2014). Structure and transport of aqueous electrolytes: From simple 

halides to radionuclide ions. Journal of Chemical Physics, 141(12). 

https://doi.org/10.1063/1.4896380 

Kashchiev, D., & van Rosmalen, G. M. (2003). Review: Nucleation in solutions revisited. Crystal 

Research and Technology, 38(78), 555–574. https://doi.org/10.1002/crat.200310070 

Moridis, G. J. (1998). A SET OF SEMIANALYTICAL SOLUTIONS FOR PARAMETER 

ESTIMATION IN DIFFUSION CELL EXPERIMENTS. Sciences-New York, (June). 

Poinssot, C., Baeyens, B., & Bradbury, M. H. (1999). Experimental and modelling studies of 

caesium sorption on illite. Geochimica et Cosmochimica Acta, 63(19–20), 3217–3227. 

https://doi.org/10.1016/S0016-7037(99)00246-X 

Prieto, M. (2014). Nucleation and supersaturation in porous media (revisited). Mineralogical 

Magazine, 78(6), 1437–1447. https://doi.org/10.1180/minmag.2014.078.6.11 

Putnis, A., & Fernandez-Diaz, L. (1990). Factors controlling the kinetics of crystallization: 

Supersaturation evolution in a porous medium. Application to barite crystallization. Geological 

Magazine, 127(6), 485–495. https://doi.org/10.1017/S0016756800015417 

Radwan, J., Hanios, D., & Grenut, B. (2006). Qualification expérimentale de la plate-forme 

ALLIANCES . 1 ère Partie : Calculs préliminaires . GIF SUR YVETTE. https://doi.org/NT DPC / 

SECR 06-051 indice A DO 190 

Rijniers, L. A., Huinink, H. P., Pel, L., & Kopinga, K. (2005). Experimental evidence of 

crystallization pressure inside porous media. Physical Review Letters, 94(7), 23–26. 

https://doi.org/10.1103/PhysRevLett.94.075503 



190 

 

Savoye, S., Beaucaire, C., Grenut, B., & Fayette, A. (2015). Impact of the solution ionic strength 

on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling 

study. Applied Geochemistry, 61, 41–52. https://doi.org/10.1016/j.apgeochem.2015.05.011 

Savoye, S., Frasca, B., Grenut, B., & Fayette, A. (2012). How mobile is iodide in the Callovo-

Oxfordian claystones under experimental conditions close to the in situ ones? Journal of 

Contaminant Hydrology, 142–143, 82–92. https://doi.org/10.1016/j.jconhyd.2012.10.003 

Stumm, W., & Morgan, J. J. (2012). Aquatic chemistry: chemical equilibria and rates in natural 

waters (Vol. 126). John Wiley & Sons. 

Tertre, E., Savoye, S., Hubert, F., Prêt, D., Dabat, T., & Ferrage, E. (2018). Diffusion of Water 

through the Dual-Porosity Swelling Clay Mineral Vermiculite. Environmental Science and 

Technology, 52(4), 1899–1907. https://doi.org/10.1021/acs.est.7b05343 

s, M. A., & Diamond, L. W. (2008). Self-diffusion of water and its dependence on temperature and 

ionic strength in highly compacted montmorillonite, illite and kaolinite. Applied Geochemistry, 

23(12), 3840–3851. https://doi.org/10.1016/j.apgeochem.2008.08.008 

Hartkamp, R., & Coasne, B. (2014). Structure and transport of aqueous electrolytes: From simple 

halides to radionuclide ions. Journal of Chemical Physics, 141(12). 

https://doi.org/10.1063/1.4896380 

Kashchiev, D., & van Rosmalen, G. M. (2003). Review: Nucleation in solutions revisited. Crystal 

Research and Technology, 38(78), 555–574. https://doi.org/10.1002/crat.200310070 

Moridis, G. J. (1998). A SET OF SEMIANALYTICAL SOLUTIONS FOR PARAMETER 

ESTIMATION IN DIFFUSION CELL EXPERIMENTS. Sciences-New York, (June). 

Poinssot, C., Baeyens, B., & Bradbury, M. H. (1999). Experimental and modelling studies of 

caesium sorption on illite. Geochimica et Cosmochimica Acta, 63(19–20), 3217–3227. 

https://doi.org/10.1016/S0016-7037(99)00246-X 

Prieto, M. (2014). Nucleation and supersaturation in porous media (revisited). Mineralogical 

Magazine, 78(6), 1437–1447. https://doi.org/10.1180/minmag.2014.078.6.11 

Putnis, A., & Fernandez-Diaz, L. (1990). Factors controlling the kinetics of crystallization: 

Supersaturation evolution in a porous medium. Application to barite crystallization. Geological 

Magazine, 127(6), 485–495. https://doi.org/10.1017/S0016756800015417 



191 

 

Radwan, J., Hanios, D., & Grenut, B. (2006). Qualification expérimentale de la plate-forme 

ALLIANCES . 1 ère Partie : Calculs préliminaires . GIF SUR YVETTE. https://doi.org/NT DPC / 

SECR 06-051 indice A DO 190 

Rijniers, L. A., Huinink, H. P., Pel, L., & Kopinga, K. (2005). Experimental evidence of 

crystallization pressure inside porous media. Physical Review Letters, 94(7), 23–26. 

https://doi.org/10.1103/PhysRevLett.94.075503 

Savoye, S., Beaucaire, C., Grenut, B., & Fayette, A. (2015). Impact of the solution ionic strength 

on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling 

study. Applied Geochemistry, 61, 41–52. https://doi.org/10.1016/j.apgeochem.2015.05.011 

Savoye, S., Frasca, B., Grenut, B., & Fayette, A. (2012). How mobile is iodide in the Callovo-

Oxfordian claystones under experimental conditions close to the in situ ones? Journal of 

Contaminant Hydrology, 142–143, 82–92. https://doi.org/10.1016/j.jconhyd.2012.10.003 

Stumm, W., & Morgan, J. J. (2012). Aquatic chemistry: chemical equilibria and rates in natural 

waters (Vol. 126). John Wiley & Sons. 

Tertre, E., Savoye, S., Hubert, F., Prêt, D., Dabat, T., & Ferrage, E. (2018). Diffusion of Water 

through the Dual-Porosity Swelling Clay Mineral Vermiculite. Environmental Science and 

Technology, 52(4), 1899–1907. https://doi.org/10.1021/acs.est.7b05343 

 

. 



192 

 

  



193 

 

  



194 

 

 

 Chapter-2.4: Discussion of Precipitation 

Experiments 
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RÉSUMÉ 

Ce chapitre fait le point sur les principaux résultats expérimentaux acquis dans ce travail : des expériences 

de contre-diffusion réactive testant l’effet du minéral précipité (gypse ou barytine) ainsi que le milieu poreux 

initial (craie micritique, kaolinite compactée ou illite compactée conditionnée au césium). Les différences 

de propriétés chimiques des minéraux précipités (barytine et gypse) mènent à des comportements très 

différents sur le même type de matériau (craie micritique). La distribution spatiale des précipités et donc 

l’impact sur les propriétés de transport sont radicalement différents. Les résultats obtenus pour la 

précipitation du même minéral (barytine) dans deux matériaux (craie et kaolinite compactée) de porosité et 

diffusivité initiale différentes mènent également à une évolution très différente des propriétés de transport. 

Ainsi, l’analyse du colmatage induit par la précipitation d’un minéral dans un matériau ne peut pas être 

directement extrapolée à d’autres matériaux. Les résultats obtenus avec l’illite compactée montrent des 

effets d’inhibition de la précipitation. Il est ainsi montré l’importance de prendre en compte l’effet de taille 

de pore et de charge de surface du milieu poreux et des minéraux précipités. 
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The final goal of precipitation experiments was to demonstrate “whether Archie relationship can 

be generalized for clogging phenomena on any porous media.” For such demonstration, following 

three questions need to be answered: 

• Can clogging phenomena be generalized for materials with same porosity but different 

pore size distributions? 

• Will a same precipitating mineral lead to same effectiveness of clogging on two materials 

with different pore size distributions and different surface charge properties?  

• Will precipitating minerals of very different intrinsic properties, such as solubility or kinetic 

rate of precipitation, leads to same impact on diffusivity of a single porous material? 

To find possible answer of the first two questions barite precipitation experiments were carried in 

chalk, illite and kaolinite materials and, for the final question, barite and gypsum precipitation in 

chalk were carried out. These sulfate alkali mineral (i.e., barite and gypsum) were selected as they 

present two extremities in reference to their kinetic rate of precipitation and solubility. For each 

individual case, the experimental results are explained in length in their respective sections in this 

manuscript. However, for general discussion the principal end results are briefly recalled in this 

section.  

1 Barite precipitation in chalk, kaolinite and illite 

1.1 Precipitation behavior from chemistry monitoring 

The intact properties for the three proxy porous materials are presented in Table 1. The chalk 

porous matrix is composed of calcite and kaolinite pore surface possess weak negative surface 

charge. Thus, both water tracer (HTO) and anionic tracer (36Cl) have similar accessible porosity 

for diffusion. Thus Table 1 shows that HTO and 36Cl have similar diffusion behavior in each porous 

material. However, illite pore surface possess permanent negative charge. Therefore, the anionic 

accessible porosity and effective diffusion coefficient of 36Cl is lower than HTO. For these three 

porous materials, barite precipitation experiments were performed using counter diffusion of 

barium and sulfate ions from their respective reservoirs into the porous sample. At certain time, 

these ions will meet in sample pores and generate supersaturated solution with respect to barite. 

As the experiments progress, the pore solution will overcome the threshold supersaturation and 

form stable barite nuclei. Thus, barite precipitation removes some barium and sulfate from the 

pore solution so that supersaturation is reduced to saturation with respect to barite. Moreover, the 
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stable nuclei will provide additional barite surface on which incoming barium and sulfate ions will 

allow further barite growth over time. However, due to very different pore structure and pore 

surface properties, the distribution of these first points of precipitation are expected to be different 

for each porous material. The difference in precipitation impact on diffusivity in function of these 

materials was demonstrated from water tracer diffusivity measurements after 70 days of 

precipitation. 

Table 1: Intact properties such as accessible porosity and effective diffusion coefficients of water tracers and 36Cl for 

the three porous materials. * 36Cl diffusive coefficient for chalk was determined by fitting HTO experimental data 

(since diffusion of water tracer and chloride ion until infinite dilution in pure water are similar and since there are 

no charge surface in chalk material) 

Intact Properties 

Porous 

sample 

Total 

Porosity 

% 

De,HTO 

х10-10 

m2.s-1 

Anionic 

accessible 

Porosity 

% 

De,36Cl 

х10-10 

m2.s-1 

Chalk 45 4.15 45 4.05* 

Kaolinite 36 2.9 36 2.3 

Illite 29 0.5 19 0.27 

However, prior to this step, the behavior of barium and sulfate concentration decrease in reservoirs 

were determined using reservoir monitoring step. In this section, barium ion behavior in response 

to barite precipitation in chalk, kaolinite and illite is presented. This was done by reproducing two 

barium concentration curves using I-mode. The first curve presented the barium evolution in 

upstream under pure diffusion for intact sample case. The second diffusion curve presents barium 

evolution in upstream in response to barite precipitation in the sample. To model these curves the 

necessary input parameters for I-mode are geometry of the experimental cell: reservoir volumes, 

barium concentration in reservoir, sample surface and thickness and sample porosity. 

The final input parameter is barium diffusion coefficient which was determined using relationship 

De,Ba= ϕ×(Do,Ba/Do,HTO), for chalk and kaolinite case (the bulk diffusion coefficients for barium is 

Do,Ba = 8.5×10-10 m2.s-1 and for HTO is Do,HTO = 2×10-9 m2.s-1 are taken from literature 1). In the first 

step, using input parameters from Table 2 in I-mode, the modeled barium concentration curve for 

pure diffusion transport through intact sample is determined. This modeled curve for chalk is 

presented in Figure 1A. In the second step the experimental data points of barium concentration 
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decrease in response to barite precipitation in chalk were modeled using I-mode. In chalk 

experiment, all the barium lost in reservoir was consumed for barite precipitation in sample (no 

barium diffusion in counter reservoir). Thus, for the second step modeling a zero-concentration 

boundary condition was imposed by considering very large counter reservoir volume. Finally, to 

reproduce the experimental data points the barium effective diffusion was increased (value 

presented in Table 2).The resulting modeled curve is presented in Figure 1A. The two modeled 

curves for pure diffusion and reactive diffusion shows clear difference in barium concentration 

decrease in the reservoir. 

In precip_I_mode case a rapid barium concentration decrease is observed for initial 30 days of 

the experiment. This means that, at the very initial stage of experiment, first points of precipitation 

were formed in the chalk sample. These first points then acted as sink and rapidly consumed 

incoming barium to allow barite growth. After 30 days, I-mode showed a progressive barium 

concentration decrease. However, experimental data points showed that after this time barium 

concentration moved towards quasi-equilibrium stage. This means that after 30 days clogging as 

started to become effective enough to prevent barium ions to diffusion through the precipitated 

zone. Similar to chalk case for kaolinite, using the input parameters from Table 2 modeled curve 

for barium concentration decrease under pure diffusion is presented in Figure 1B. In chalk 

experiments, the barium concentration evolution in upstream reservoir for reactive diffusion step 

was reproduced by I-mode when De,Ba was increased. However, in kaolinite experiment, De,Ba was 

same as pure diffusion case but, to model the experimental data points, the sample thickness was 

decreased to 5 mm from initial thickness of 10 mm. Thus, in kaolinite the initial first points of 

precipitation were enough to block diffusion of barium through the precipitated zone. For this 

reason, a slow concentration decrease was observed in reservoir and the data-points reached 

quasi-equilibrium after 100 days of precipitation.  

For illite experiment, the effective diffusion coefficient and modeled curve for barium under pure 

diffusion case were obtained from experiments. The input parameters used to obtain the modeled 

curve of barium pure diffusion through illite sample (Figure 1)are presented in Table 2. Like chalk 

and kaolinite case, the experimental data points and modeled curve for barium concentration 

decrease in response to barite precipitation are presented in Figure 1C. As shown in Table 2 to 

reproduce the experimental data points in this figure the thickness of the illite sample was 

decreased from 6 mm to 1 mm. This means that a barite precipitation is rapidly consuming barium 

in a zone near the barium face of the sample. From reservoir monitoring, the precipitation impact 
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on diffusivity of water tracer and distribution of first points of precipitation remains unknown. Thus, 

barium behavior modelling using I-mode for chalk, kaolinite and illite shows the difference in 

clogging behavior of same mineral in three different porous materials.  

Table 2: Effective diffusion coefficients, sample thickness and counter reservoir volume/conditions considered to 

model barium diffusion under pure diffusion and reactive diffusion conditions for each sample 

Barium Pure diffusion case Barium under barite precipitation case 

 De,Ba 

х10-10 

m2.s؎

1 

Thickness 

of 

sample, 

mm 

Counter 

reservoir 

volume 

ml 

De,Ba 

х10-10 

m2.s؎

1 

Thickness 

of 

sample, 

mm 

Counter 

reservoir 

condition 

Chalk 19.1 6.7 138 25 6.7  

Zero 

boundary 

condition 

Kaolinite 15.68 10 20 15.68 5 

Illite 0.32 6 50 0.32 1 
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Figure 1: The experimental points presents barium concentration decrease in response to barite precipitation in 

chalk, illite and kaolinite sample. The dashed liners present the modeled concentration curves obtained using I-Mode 

for pure diffusion and reactive diffusion case. 

  

0

2

4

6

8

10

12

14

16

18

20

22

0 20 40 60 80 100 120 140

B
a

 c
o

n
c
e

n
tr

a
ti
o

n
, 
m

m
o

l.
L

-1

Time, days

Barite_chalk: Barium evolution in upstream

Ba_precip

Ba_Precip_Imode

Ba_intact_Imode
0

1

2

3

4

0 25 50 75 100 125 150

B
a

 c
o

n
c
e

n
tr

a
ti
o

n
, 
m

m
o

l.
L

-1

Time, days

Barite_Kaolinite: Barium evolution in upstream

Ba_precip

Ba_precip_Imode

Ba_intact_Imode

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200

B
a

 c
o

n
c
e

n
tr

a
ti
o

n
, 
m

m
o

l.
L

-1

Time, days

Barite_illite: Barium evolution in upstream

Ba_intact_imode

Ba_precip

Ba_precip_Imode



202 

 

 

1.2 Evolution of barite in chalk, kaolinite and illite samples 

The barite precipitated zones in 3D using µCT imaging in chalk, kaolinite and illite are presented 

in Figure 2. This figure shows that barite precipitated in a thin zone in the center of the chalk 

sample. For kaolinite, barite precipitates are distributed near the center of the sample (with a slight 

offset towards the barium face of the sample) . For illite, a thin precipitated zone was formed near 

the barium face of the sample. 

 

 

Figure 2: Evolution of barite precipitates in A: chalk, B: kaolinite and C: illite samples 
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The µCT images were obtained at resolution 5.5 µm for chalk, 10 µm for kaolinite and 20 µm for 

illite respectively. To locally characterize the barite precipitates, SEM imaging was performed on 

small samples of chalk and kaolinite on a small sample the barite precipitates. For both samples, 

these SEM images are presented in Figure 3. For chalk, the SEM imaging showed a quasi-

continuous line precipitated in the center of the sample (Figure 3A). Around this line some isolated 

barite precipitates were also observed. At a higher resolution two distinct barite morphologies were 

observed. In coccoliths big crystals of barite precipitated and, in pores of size less than or equal 

to mean pore diameter, barite overgrowth was observed (Figure 3C). In kaolinite, the SEM images 

shows that the distributed big barite spheres in µCT image are in fact barite clusters of small barite 

formed in pores of size less than or equal to mean pore size of kaolinite (Figure 3B and D).  

 

 

Figure 3: SEM observations for barite precipitates in chalk (A and C) and kaolinite samples (Band D). 
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As described earlier in the section 1.1, the experiments were performed using counter-diffusing 

technique where barium and sulfate diffuse into the sample and supersaturate the pore solution 

with respect to barite. The pores in which supersaturation to initiate precipitation is firstly achieved 

allows formation of stable barite seeds and the precipitation kinetics is locally enhanced. These 

pores are called first points of precipitation. In chalk, the final barite precipitated zone from SEM 

images shows that these first points of precipitation fall in a single line at the center of the sample. 

However, in kaolinite these first points of precipitation are distributed near the center of the sample. 

This difference in distribution is due to the difference in the mean pore size and pore size 

distribution. In each sample, due to orientation of pores or random distribution of connectivity, 

there is heterogeneity present in the system. Thus, there is local variation in diffusion of counter 

diffusing barium and sulfate ions. Consequently, the pore located in the precipitated zone first 

points where these ions will meet, the rate of supersaturation of pore solution with respect to barite 

will vary. However, the zone where precipitation took place in chalk contains simultaneously pore 

of size less than or equal to means pore size and coccoliths as macro porosities. The low solubility 

of barite and the pores (pore of size less than or equal to 660 nm and coccoliths) size will thus 

compensate the local variation in rate of supersaturation. For this reason, the first points of 

precipitation fell in the single line in the center of the sample from which barite eventually grew 

over the experimental time. On another hand, in kaolinite, the mean pore size is 20 times smaller 

than in chalk. Thus, the local variation in supersaturation seems to be significant as first points of 

precipitation are distributed, and they do not fall in single line. In this case once stable seeds of 

barite were formed in the first points, saturation was drained down to vicinity. Due to small volume 

of pores, barite precipitation was inhibited in the surrounding pores. Finally, as experiment 

progressed barite precipitates grew on this stable barite and formed clusters.  

In illite case, a very different evolution was observed. The µCT image shows that barite 

precipitated in a zone located close to the face of barium inlet reservoir. Barite also precipitated at 

an interface between barium inlet face of sample and filters (images already presented in illite 

experimental section). The µCT images taken after 30 days and 140 days of precipitation showed 

significant barite growth at the interface and no significant evolution in the illite sample. Several 

possibilities can explain the observed inhibition of barite precipitation in the illite sample. The first 

hypothesis is that illite sample possesses mean pore size 66 times smaller than chalk. Some 

works have shown that in such small confined volumes, due to the tension applied by the pore 

space onto the forming mineral, its bulk solubility may change 2. Such increase in solubility may 

decrease the precipitation probability in nanometer size pores. A numerical work using pore scale 



205 

 

solubility model showed that precipitation of quartz mineral of very low solubility was inhibited in 

pores of size 10-4 m to 10-8 m 3. The second hypothesis is that illite mineral contains permanent 

negative surface charge on the pore surface. In very small pores (of size few nanometers) there 

is overlapping of electric double layers. Thus, there is exclusion of sulfate anion from these pores 

and this will prevent barite formation in these pores. This means that barite might have initially 

precipitated in the pores of size greater than mean pore diameter. This was captured after 30 days 

of µCT imaging. But, since the two aforementioned cases have prevented barite precipitation in 

other pores, no evolution of precipitation zone in µCT of 140 days was observed. 

The chemistry monitoring and post-treatment imaging thus show that, in chalk and kaolinite 

samples of similar total porosity but very different pore size distributions and mean pore size, the 

distribution of barite precipitates is not same. Barite precipitation in illite shows a very different 

impact of pore size on precipitation process. 

1.3 Impact of barite precipitation on HTO diffusivity. 

The impact of different distribution of barite mineral in chalk, kaolinite and illite was determined by 

injecting HTO in one reservoir, after 70 days of precipitation process. The tracer was then allowed 

to diffuse into counter reservoir through the sample mineral precipitated zone. After next 70 days 

of acquisition, the tracer behavior through intact and mineral precipitated material were compared 

to determine precipitation impact on diffusivity. The HTO diffusivity obtained by fitting the HTO 

activity data points using I-mode for intact and barite precipitated samples are presented in Table 

3, respectively. These tables show that barite precipitation had higher impact on HTO diffusivity 

for kaolinite than chalk. For illite no visible impact on diffusivity was observed.  

Table 3: Diffusion coefficients for HTO and 36Cl obtained after fitting the HTO and 36Cl activity data after 70 days of 

precipitation experiment 

Precipitation impact on diffusivity 

Porous 

Sample 

De,HTO 

х10-10 m2.s-1 

De,36Cl 

х10-10 m2.s-1 

Chalk 1.3 0.015 

Kaolinite 0.11 Total clogging 

Illite 0.5 0.4 
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These observations thus suggest that distribution of barite precipitates had very different impact 

on blocking the important connectivity in the precipitated zone for each sample. The diffusivity 

results for kaolinite shows that the clusters of barite precipitates have significantly reduced the 

connectivity in the precipitated zone. In chalk, barite has significantly consumed pores in the very 

thin precipitation zone. However, the diffusivity data shows significant presence of empty pores 

that still allowed HTO diffusion. In illite, it seems that the connectivity of pore network is dominated 

by pores that inhibited barite precipitation. Thus, even after precipitation since most of the pores 

allowed HTO diffusion, no impact of barite precipitation was observed. 

2 Gypsum precipitation in chalk sample 

The µCT imaging showed formation of large isolated spherical gypsum precipitates around the 

center of the chalk sample (Figure 4A). A scan at higher resolution on a smaller sample showed 

very high porosity reduction in these spheres (Figure 4B). However, around each sphere 

significant intact macro-porosity was observed (Figure 4C). Such selective precipitation in isolated 

zones showed that contrary to barite, the spatial variability in properties, such as heterogeneous 

diffusive pathways of reactive surface, for precipitation along with solubility of gypsum has 

governed the precipitation phenomena. In our study, gypsum precipitation was largely driven by 

heterogeneous nucleation phenomena. In this case, gypsum growth takes place on the pore 

surface. Since chalk contains calcite grains and coccoliths, there is significant variation in surface 

roughness and active surface area (acting as substrate). Thus, the variability of surface area 

available for gypsum growth will control nucleation distribution and kinetics at the center of sample 

even though the counter diffusing calcium and sulfate would equally saturate the pore volumes 

over time. These nuclei would then follow the similar positive feedback phenomena as barite case 

and locally enhance precipitation. They will evolve as isolated more or less spherical clusters 

because they are initially irregularly distributed at the center of sample. Similarly, the randomly 

orientated coccoliths within carbonate grains mixture will also generate a heterogeneous pore 

network. Similar to barite case, these heterogeneous diffusive pathways will generate variation in 

rate of saturation in the precipitation zone. Since gypsum precipitation occurs close to equilibrium 

conditions, small differences in saturation index may enhance or delay precipitation locally. Thus, 

there is selective precipitation in points where saturation is slightly higher than the neighboring 

point. Once stable gypsum is formed in these first points, there is positive feedback which prevents 

precipitation in neighboring pores. As gypsum will grow from this initial point, they will finally form 

isolated spherical clusters in the center of the sample. To determine the impact of these isolated 
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spheres evolution in chalk on the diffusivity, water tracer was injected after 70 days of precipitation. 

Similar to barite case in chalk the experimental data points were reproduced using I-mode to 

obtain the diffusion coefficient. This fitting showed that gypsum precipitation reduced the intact 

water tracer diffusivity from 4.15×10-10 m2.s؎1to 2.5×10-10 m2.s؎1 respectively. Thus, gypsum 

precipitation in chalk led to lower impact on diffusivity than barite. This lower impact is due to the 

fact that although gypsum significantly reduced the porosity in the isolated clusters, but around 

these cluster there was still intact porosity remaining. Since, this intact porosity allowed significant 

water tracer to diffuse through precipitated zone, a lower impact was observed. 

 

Figure 4A: Gypsum precipitated spheres distributed in the chalk sample; 4B: Each sphere is cluster of gypsum 

precipitates in which porosity is significantly reduced; 4C: Around each sphere intact porosity can be clearly 

observed 
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3 Conclusion from reactive diffusion experiments 

The reactive diffusion experiments were carried out in view of finding possible answers to the 

following questions: 

1. Can clogging phenomena be generalized for materials with same porosity but different 

pore size distributions? 

2. Will a same precipitating mineral lead to same effectiveness of clogging on two materials 

with different pore size distributions and different surface charge properties?  

3. Will precipitating minerals of very different intrinsic properties such as solubility, kinetic rate 

of precipitation leads to same impact on diffusivity of a single porous material? 

From the end results of all the experiments following answers can thus be concluded: 

1. Barite precipitation in chalk and kaolinite showed that different pore size distributions led 

to very different impact on evolution for the same mineral precipitation (barite) and 

consequently a different impact on diffusivity of water tracer. Thus, barite precipitation 

results for one porous material cannot be used to predict the possible impact of 

precipitation on another porous material. 

2. The same experiment carried out in illite with the same reactants showed an inhibition of 

mineral precipitation (again barite). As a result, no evolution of the diffusivity was observed. 

Thus, the experimental results derived on materials with big pores and neutral surface 

cannot be used to predict possible impacts of precipitation on material with very small 

pores containing negative surface charge. 

3. An experiment carried out with the same substratum (chalk) and two different reactants 

(leading to barite or gypsum precipitation) showed that the intrinsic property of each 

mineral along with spatial variability in properties led to very distinct evolution of each 

mineral. This distinct evolution then led to very different impact on water tracer diffusivity. 

Finally, barite precipitation in chalk, kaolinite and illite experiments had very different impact on 

diffusivity of 36Cl (see Table 3). In chalk and kaolinite, barite mineral possessed negative surface 

charge due to which a strong impact on 36Cl diffusivity was observed. However, in illite no impact 

on diffusivity of this tracer was observed. Thus, these experiments show that barite mineral 

forming on neutral pore surface will have negative surface charge. However, the surface charge 

of barite forming on negative surface charged clayey mineral still remains unknown. 
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Out of all of these results, the barite and gypsum in chalk results will be used in next chapter to 

demonstrate if such distinct evolution can be reproduced at REV scale in 1D. Already from the 

experiment results, it can be expected that some kind of information on the intrinsic differences of 

reactivity for barite and gypsum have to be incorporated in the model so there can be a chance to 

simulate different behaviors. Then 2D modeling will be used to determine if numerically spatial 

variability in chalk properties along with intrinsic mineral properties can be quantified or not. 

Finally, the 1D modeling will be used to demonstrate if Archie’s relationship can be used as 

predictive model to determine very different chemistry feedback on diffusion in same porous 

material. 
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RÉSUMÉ 

Les chapitres précédents ont mis en évidence l’importance du type de milieu et des minéraux précipités sur 

la trajectoire d’évolution du milieu, en termes d’évolution de la structure poreuse du milieu et de ses 

propriétés de transport diffusif. Ces résultats sont utilisés pour tester les approches de modélisation transport 

réactif, ici à l’échelle du laboratoire. L’impact de la précipitation et de la dissolution sur les propriétés de la 

structure poreuse (perméabilité, porosité, diffusivité) est généralement prédit en utilisant des codes de 

chimie-transport s’appuyant sur une approche continue macroscopique. L’avantage de ce type de codes est 

qu’il permet de représenter le volume d’intérêt comme étant constitué d’éléments de volume qui 

caractérisent localement les propriétés du matériau, telles que la porosité, la perméabilité, etc. Dans la 

plupart des codes de chimie-transport actuels, la géométrie naturelle mais complexe du matériau est de ce 

fait simplifiée (homogénéisée) pour permettre l’acquisition de simulations réalisées à de larges échelles de 

temps et d’espace. En l’absence de représentation phénoménologique de la structure du milieu poreux et de 

son évolution, les changements de perméabilité et de diffusivité en réponse à une dissolution/précipitation 

s’appuient sur des relations empiriques comme les lois de Kozeny-Carman et d’Archie. Connaissant la 

nature empirique de ces lois, il apparaît alors nécessaire d’en tester leurs capacités prédictives.  Dans cette 

perspective, les résultats expérimentaux obtenus à l’aide d’expériences de précipitation/diffusion du gypse 

et de la barytine dans une craie micritique ont été modélisés en 1D et en 2D en utilisant deux codes de 

chimie-transport, HYTEC et CrunchTope. Pour rappel, les résultats expérimentaux avaient montré deux 

phénomènes distincts responsables de la distribution et de la morphologie des précipités de barytine et de 

gypse. Pour la barytine, il apparaissait que le phénomène de nucléation dépendait de la taille des pores, alors 

que pour le gypse, la distribution et la morphologie des précipités étaient gouvernées par la variabilité 

spatiale de la structure des pores de la craie. Dans l’approche classique 1D, le facteur de cimentation de la 

loi d’Archie (l’intensité de la dépendance du coefficient de diffusion à la porosité) a dû être calé sur chaque 

expérience. Les codes n’ont ainsi pas permis de modéliser à la fois, avec un jeu de paramètres cohérents, 

l’impact de la précipitation sur la diffusivité et la contribution des réactifs sur la précipitation. En outre, une 

analyse de sensibilité rigoureuse a été également réalisée sur des paramètres comme la surface réactive, la 

cinétique, le facteur de cimentation, et la sursaturation. Bien que ces étapes montrent un changement 

significatif du front de précipitation, et un impact sur la diffusivité et sur la quantité de réactifs contribuant 

à la précipitation, les codes n’ont toujours pas pu représenter les résultats expérimentaux obtenus. 

L’influence de la variabilité spatiale du milieu pointée lors du dépouillement des expériences a ensuite incité 

à prolonger les simulations vers des simulations 2D en présence d’une distribution de porosité hétérogène. 

Pour le gypse, deux cas furent considérés : une précipitation homogène et une autre hétérogène induite par 

le phénomène de nucléation. Le premier a montré que la précipitation du gypse était gouvernée par les 
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surfaces réactives alors que le second montrait qu’un phénomène de diffusion hétérogène régissait la 

précipitation. Les deux simulations ont montré la formation de nodules isolées au centre de l’échantillon, 

mais dans le cas hétérogène, la structure des nodules de gypse était plus proche de celles observées 

expérimentalement. L’utilisation du même ensemble de paramètres pour la modélisation numérique de la 

précipitation de la barytine a montré l’apparition d’une mince zone de précipité au centre de l’échantillon, 

compatible avec la réalité. Un résultat majeur est la possibilité de représenter deux expériences aux 

comportements si différents avec un jeu homogène de paramètres pour les modèles, ces paramètres étant en 

outre directement issus de l’observation ou de la littérature. Les résultats des modélisations numériques 

présentés dans ce chapitre montrent donc la nécessité d’une approche en deux temps : dans un premier 

temps, il s’agit de déterminer les différents facteurs gouvernant la distribution et la morphologie des 

précipités, et dans un second temps, d’incorporer ces facteurs prépondérants dans les codes, afin d’en 

améliorer la capacité prédictive. 
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1 Introduction to clogging experiments in chalk 

Numerical modelling using reactive transport codes was carried out based on the experimental 

results from study Rajyaguru et al. (under review). A brief description of the experimental setup, 

which is important for such modelling, is provided here. The experiments were conducted using a 

static diffusion cell, which consists of two reservoirs sandwiching a porous sample. The first 

reservoir is named upstream and the counter reservoir downstream. The porous sample used in 

this study is a chalk sample of micritic family (diameter 33 mm and thickness 6.5 mm). The volume 

of upstream reservoir and downstream reservoir is equal to 178 ml and 138 ml, respectively. The 

schematic view of the through diffusion cell is presented in Figure 1. 

 

Figure 1: Static through diffusion cell comprised of two reservoirs sandwiching a chalk sample and used for barite 

and gypsum precipitation experiments 

1.1 Choice of porous material and precipitating minerals for 

clogging experiments  

The total porosity of chalk is 45%, with mean pore throat of 660 nm and randomly distributed 

coccoliths as macropores. The coccoliths with grain matrix add spatial variability in properties such 

as reactive surface and heterogeneous pore structure (local variation in diffusion of ionic species). 

The impacts of such spatial variability on evolution of two sulfate alkali mineral were determined 

by studying precipitation of barite and gypsum in chalk. This step is important as it allowed us to 

demonstrate that barite and gypsum evolution to very different impacts on chalk properties 

(porosity, water tracer diffusivity). These minerals were selected due to their difference in intrinsic 

properties such as solubility and kinetic rate of precipitation. Barite is a sparingly soluble mineral 

 



217 

with slow kinetics of precipitation. The morphology and evolution of barite is also dependent upon 

the governing nucleation phenomena (Kashchiev and van Rosmalen, 2003; Prieto, 2014). 

Gypsum is a fairly soluble mineral compared to barite and it precipitates with fast kinetics. Contrary 

to barite, at solution saturation index values close to equilibrium with respect to gypsum, the 

precipitation of this mineral is governed by heterogeneous nucleation phenomena (Alimi et al., 

2003).  

1.2 Clogging experiments 

1.2.1 Chemistry of reservoirs 

For reactive diffusion experiments, the upstream reservoir and downstream reservoir were firstly 

filled with equilibrated solution. Then, BaCl2 (resp CaCl2 for gypsum case) was added to the 

upstream solution and Na2SO4 (same for gypsum case) to downstream solution. The detailed ion 

concentration for equilibrated solution and reactants injection is detailed in Table 1. 

Table 1: Chemical composition of the equilibrated solutions with reactants used for the barite and gypsum 

experiments 

 

Ions 

 

Rock-

equilibrated 

Solution 

mmol. L-1 

Barite experiment Gypsum experiment 

Upstream 

mmol. L-1 

Downstream 

mmol. L-1 

Upstream 

mmol. L-1 

Downstream 

mmol. L-1 

Na 159.40 119.40 159.40 0.50 0.89 

K - - 40.00 - 160.20 

Ca 20.62 20.62 20.62 80.50 1.25 

Mg 0.07 0.07 0.07 0.07 0.07 

Ba - 20.00 - - - 

Cl 200.20 200.39 200.20 161.30 1.34 

SO4 - - 20.00 - 80.10 

HCO3 0.39 0.39 0.39 0.23 2.12 

Log(pCO2) 

(atm) 

-3.5 -3.5 -3.5 -3.5 -3.5 
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1.1 Chemistry monitoring in reservoirs 

The evolution of reactant concentration in upstream and downstream reservoirs were followed 

using reservoir monitoring method for the total experimental time of 140 days (the method is 

detailed in chalk chapter). To evaluate the barite clogging impact on diffusivity, at the very 

beginning of experiment upstream solution was spiked with tritiated water. The evolution of activity 

in downstream was then followed for 140 days. A similar barite cell was prepared in which barite 

precipitation was carried out for 70 days after which HTO was injected in upstream and its activity 

was followed for the next 70 days. For gypsum, pure deuterated water (HDO) was injected in 

upstream and its downstream after which concentration evolution was followed for 70 days. On 

the 70th day, respecting the chemistry of equilibrated solution and reactants in upstream and 

downstream, both reservoirs solutions were replaced with HDO free solutions after which HDO 

was reinjected in upstream. 

2 Summary of results from chalk experiments 

2.1 Chemistry monitoring in reservoirs 

From initial and final reactant concentration in reservoirs both minerals led to similar total porosity 

decrease of chalk sample. However, reservoir monitoring step showed a distinct evolution of 

reactant in reservoir for both cases. In barite case, the concentrations of reactants in counter 

reservoir stayed below detection. This is because the solubility of barite is very low (Ksp(barite)=10-

9.97) so that saturation (and even supersaturation to initiate precipitation) is reached easily. 

Consequently, barite precipitation buffers barium and sulfate concentrations at very low levels 

(around 10-5 mol. L-1 if barium and sulfate have similar concentrations).Thus, all of the barium 

diffusing from upstream (resp. sulfate) into sample will contribute to barite precipitation in chalk. 

For gypsum case, an accumulation of calcium and sulfate in the counter reservoirs was observed. 

Since, gypsum is a fairly soluble mineral (Ksp(gypsum) = 10-4.58) so that (with equal concentration 

boundary conditions) calcium and sulfate concentrations increase in the reservoirs, until the 

equilibrium value is reached. Indeed, some evidence of gypsum precipitation was even found 

(although not quantified) in the reservoirs. After 20 days, calcium and sulfate concentrations are 

buffered by gypsum, and stay on a plateau throughout the experiment.  
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2.2 Clogging impacts on water tracer diffusivity 

For the tracer test at initial time, the water tracers injected in the upstream of barite and gypsum 

cell showed little and no significant impact of precipitation on their diffusivity. However, for the test 

at 70 days, a significant difference was observed. Barite precipitation decreased tritiated water 

diffusivity by a factor 3.7, whereas gypsum precipitation decreased deuterated water diffusivity by 

a factor of 1.6. These experimental acquisitions for tracer behavior under pure diffusion case for 

intact chalk and under reactive diffusion case for barite and gypsum clogging are explained in 

length in Rajyaguru et al (under revision, Chemical Geology, 2018, Chapter-2.1 on this 

manuscript).  

2.3 Evolution of barite and gypsum minerals in chalk sample 

The post treatment imaging of reacted chalk samples was carried out by means of X-ray 

microtomography and back scattering electron scanning electron microscopy (BSE-SEM). The 3D 

images from µCT clearly showed two distinct evolutions of barite and gypsum precipitated zones 

in the chalk sample. Barite precipitates were distributed in a thin zone located at the center of the 

sample. The BSE-SEM images further showed that barite precipitated with two different 

morphologies in this zone. 1) In pores of size less than or equal to mean pore throat of chalk barite 

grew on the pore surface due to heterogeneous nucleation phenomena. 2) In macro pores such 

as coccoliths barite precipitated from pore solution due to homogeneous nucleation phenomena. 

Finally, as barite precipitates resulting from each nucleation phenomena occupied most of the 

pores in the center of the sample, its precipitation had significant impact on diffusivity. 

For gypsum, 3D imaging showed isolated spherical clusters of gypsum precipitates distributed 

along the center of the sample. To determine gypsum precipitation impact on blocking the diffusive 

pathways a scan at higher resolution was carried out. From this scan residual porosity in spherical 

clusters and in matrix around these clusters was obtained by image processing. In spherical 

clusters, presence of very small amount of residual porosity and in surrounding matrix significant 

residual porosity were observed. Moreover, BSE-SEM images no distinct morphology of gypsum 

mineral was observed. Finally, as gypsum precipitates occupied the pores located only in each 

isolated spherical zone, the intact matrix surrounding each sphere allowed tracer to diffuse through 

the precipitated zone. Thus, a lower impact on diffusivity compared to barite case was observed 

for gypsum case 
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2.4 Conclusions from barite and gypsum experiments 

The barite precipitation in different pore volumes of chalk sample was governed by homogeneous 

and heterogeneous nucleation phenomena. The two distinct morphologies of barite precipitate 

were observed in the reacted zone, depending upon each phenomenon. Barite mineral would 

precipitate in this zone at saturation index around 4, as indicated by (Prasianakis et al., 2017). 

However, due to low solubility of mineral, such high saturation was easily reached and most of the 

barite precipitated in the first line of precipitation which is located in the center of the sample.  

For gypsum, isolated spheres distributed in the center of the sample were observed. Each sphere 

resembles a cluster of gypsum precipitates in the chalk pores. These spheres further demonstrate 

selective gypsum precipitation. Moreover, gypsum mineral in chalk precipitated at saturation index 

near to equilibrium. In literature at this saturation gypsum precipitation is governed by 

heterogeneous nucleation phenomena (Alimi et al., 2003). This means that gypsum mineral 

growth on pore surface controlled the precipitation phenomena. In this case reactive surface for 

precipitation can be the deciding parameter for selective gypsum precipitation. In our study, the 

chalk sample has a spatially variable distribution of the surface roughness since chalk matrix is 

composed of a mixture of grains and coccoliths. In this case although counter diffusing calcium 

and sulfate will equally saturate pore solution in the precipitation zone, some of the pores may 

provide higher surfaces for early formation gypsum nuclei, where further precipitation is then 

enhanced. Thus, these pores will control the distribution of gypsum nuclei and these nuclei will 

control kinetics of gypsum precipitation. Moreover, as these pores are randomly distributed in the 

precipitation zone, the precipitation controlling nuclei are also randomly distributed. As experiment 

progresses, these nuclei will grow and form isolated gypsum clusters. 

However, the variable distribution of grain porosity in chalk with coccoliths can also provide a 

heterogeneous pore network, i.e. varying tortuous diffusive pathways. In counter diffusion setup, 

these tortuous pathways will trigger either faster or slower meeting of calcium and sulfate ions in 

the pore solutions located in the precipitated zone. Consequently, the local rate of saturation with 

respect to gypsum will vary in each pore in the precipitation zone. Since, gypsum precipitates at 

saturation near to equilibrium, this variation may either enhance or delay precipitation. In this case, 

the pores in which saturation rate is higher will allow formation of first gypsum nuclei. The 

consequence is the same: these nuclei will locally enhance precipitation and generate isolated 

spherical clusters similarly to the previous scenario of surface roughness. 
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2.5 Motivation of Numerical Modelling 

The barite and gypsum experiments showed very different chemistry evolution in reservoirs, 

impact on diffusivity and evolution in the similar chalk porous matrix. It is clear then that the model 

needs to incorporate some information to describe the intrinsic differences in the reactivity of both 

minerals. Also, these experiments show that spatial variability with intrinsic property such as 

kinetic rate of precipitation and solubility can lead to very different evolution of similar pore 

structure. An accurate simulation strategy then needs to incorporate some level of initial spatial 

variability. In this work, the simulations are carried out at the representative elementary volume 

(REV) scale using two coupled chemistry transport codes: HYTEC and CrunchTope11.  

3 Description of the models 

3.1 Reactive transport codes 

Two chemistry transport codes were used for numerical analysis of barite and gypsum clogging 

experiments in chalk: HYTEC and CrunchTope. The generalized equation at representative 

elementary volume scale (REV) for HYTEC and CrunchTope codes are well described in 

(Lagneau, 2013; Lagneau and van der Lee, 2010; van der Lee et al., 2003) and (Steefel, 2009), 

respectively. For the numerical analysis of clogging experiments, these equations for mineral 

precipitation rate and feedback impact on porosity for both codes are presented in Table 2, 

(Cochepin et al., 2008).  

                                                

11 The REV scale model and continuum theory is well described in (Lichtner, 1996; Steefel and MacQuarrie, 

1996) 
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Table 2: Formulations of Archie’s law, kinetics and reactive surface area for HYTEC and CrunchTope (Cochepin et 

al., 2008) 

Clogging impact on 

diffusion  

HYTEC: Modified Archie’s 

law 

𝑫𝒆(𝝎) =  𝑫𝒆(𝝓𝟎) (
𝝓 − 𝝓𝒄

𝝓𝟎 −𝝓𝒄
)
𝜶

 

𝑫𝒆: effective diffusion 

coefficient 

𝝓𝒄: percolation threshold 

𝜶: cementation factor  

CrunchTope: Archie’s Law  

𝑫(𝝓) = 𝑫𝟎𝝓
𝒎  

𝑫𝒆: effective diffusion 

coefficient 

m: cementation coefficient 

Do: molecular diffusion 

coefficient 

 

Kinetic rate for precipitaiton 

𝒓𝒔 = −𝑨𝒔𝒌𝒓𝒂𝒕𝒆 [𝟏 − (
𝑸𝒔

𝑲
)] 

Qs : ion activity product  

K : mineral equilibrium 

constant  

As: specific surface area 

HYTEC 

-Abulk(m2.m-3
solution) = AsC  

As = 3/ρr 

ρ: particle density  

r: radius of spherical particle  

C: Particle concentration 

CrunchTope12 

-Abulk(m2.m-3
porous medium)  

         = [
𝜙

𝜙0
]
2
3⁄
 

𝜙0: porosity 

3.2 1D Numerical Modeling 

3.2.1 Geometry and Boundary conditions 

The barite and gypsum experiments are represented by a 1D closed system in both HYTEC and 

CrunchTope. This was done by maintaining zero gradient boundary conditions i.e. no transport of 

ions outside the discretized box in x. E.g. in CrunchTope, at the beginning and end of discretization 

in x (from upstream to downstream) the boundary condition was zero flux.  

In HYTEC, the system is represented by a 1D chalk sample of length 6.7 mm. On each side of the 

sample, 1D reservoirs of length 1 mm are set. To account the larger volume of reservoirs used in 

experiments (i.e. upstream of 178 ml and downstream of 138 ml) a bypass technique was used: 

porosities in 1 mm reservoirs contained porosities equal to 18700 % for upstream and 14500 % 

                                                

12 In our calculations, the initial surface area used is 100 m2.m؎3 until the volume fraction reaches the value 

defined by the user (e.g. 0.01% in input file in Appendix-3 and Appendix-4). Afterwards it evolves as A=Ao 

(𝜙/𝜙0)
2/3  
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for downstream. This trick yields the correct volume (and contents in solutes) while maintaining a 

short distance and maximizing diffusion between the reservoirs and the chalk sample. Thus, for 

the total simulation time the homogenization of the solutes in each reservoir is ensured. The 

discretization at dx = 100 µm and a sensitivity analysis by reducing the length down to 25 µm was 

performed. In CrunchTope, the reservoir size (in x) was increased to account for the relative 

volume of the reservoir and chalk sample. The discretization is chosen at dx = 10 µm in the chalk 

sample, and larger cells are used in the reservoir. A progressive refinement of meshes allowed us 

to avoid too strong difference in the mesh sizes. The solute homogenization in the reservoir was 

ensured by increasing the molecular diffusion coefficients of solutes by factor of 1000 in both 

reservoirs. 

3.2.2 Chemistry 

The chemistry of reactants in upstream and downstream reservoirs for both experiments is taken 

from Table 1. Although calcite is present in the chalk minerals, it is non-reactive under the 

conditions of the experiment, so that it was only considered for its surface area and its impact on 

heterogeneous precipitation of barite and gypsum. The kinetics constant for barite and gypsum 

precipitation (listed in Table 3) are directly obtained from literature. For gypsum, the simulation is 

performed using the kinetic rate equation from Table 2. The kinetic rate law is set to represent 

homogeneous nucleation. In HYTEC, this is achieved by spraying the system with a fake mineral 

“nucleus” of low reactive surface area. This surface will then allow gypsum to precipitate over it. 

When the precipitation starts, gypsum will then use its own surface area to advance the 

precipitation. After the first nucleation, the precipitation occurs mostly on the gypsum surface, to 

the relative surface area and kinetic rate for nucleus and gypsum.  

Table 3: Kinetic rate of precipitation and specific surface area for barite and gypsum mineral obtained from 

literature (Nagaraja, Abimanyu, Jung, & Yoo, 2007; Potgieter & Strydom, 1996; Zhang & Nancollas, 1992) 

Mineral properties krate 

mol m-2 s-1 

specific surface area (Ssp) 

m² g-1 

Barite 1 x 10-11 0.32 

Gypsum 1.5 x 10-6 1.65 

Both codes are able to take into account supersaturation criterion. When a mineral is present in a 

system, precipitation will occur (possibly under kinetic control) as soon a saturation is reached 

(saturation index ≥ 0). However, the first precipitate (initiation) can only occur if a supersaturation 
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in the solution can allow for the formation of first stable nuclei of mineral. These nuclei have to 

overcome the interfacial energy to achieve the stable form (Kashchiev and van Rosmalen, 2003; 

Prieto, 2014). Experimentally, the supersaturation state required for formation of such nuclei is 4.0 

for barite (Prasianakis et al., 2017) and 0.1 for gypsum. 

For CrunchTope, the following experimental data were numerically reproduced:  

(1) The evolution of cumulative activity or concentration of the water tracers (tritiated or deuterated 

water) in the reservoirs as a function of time,  

(2) The evolution of the reactant concentration (Ba, Ca and SO4) in the reservoirs as a function of 

time,  

(3) The change in porosity triggered by the reactions,  

(4) The thickness of the precipitate front and its localization within the samples.  

The CrunchTope simulations were performed using multicomponent diffusion. The diffusion 

coefficient values in bulk water of the water tracers (HTO and HDO) and ionic species at 21°C  

 

Table 4: Input parameters obtained from literature for numerical simulations, (Barbier et al., 2009; Berthe, Savoye, 

Wittebroodt, & Michelot, 2011; Descostes et al., 2008; Li & Gregory, 1973) 

Diffusion 

coefficients 

in bulk water 

х10-9 m² s-1 

D0
(HTO) or 

D0
(HDO) 

D0
(Ba2+) D0

(Ca2+) 
D0

(SO4--

) 
D0

(Cl-) D0
(Na+) D0

(K+) D0
(HCO3-) 

2 0.85 0.79 1.07 1.77 1.18 1.96 1.18 

 

For Hytec, the following experimental data were used for being numerically reproduced: 

(1) The evolution of cumulative activity or concentration of water tracers (deuterated or tritiated 

water) in the reservoirs as a function of time,  

(2) The evolution of the reactant concentration (Ba, Ca and SO4) in the reservoirs as a function of 

time,  

(3) The change in porosity and associated diffusion coefficient triggered by the reactions,  

(4) The thickness of the precipitation front and its localization within the samples,  
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A unique diffusion coefficient value was used for all the species. The mineral phases considered 

in the two codes were calcite as the porous material, and either gypsum or barite as the 

precipitating phase with precipitation rates (krate) and specific surface areas listed in Table 3  

3.2.3 Sensitivity Analysis 

The experimental results showed different evolution of reactants in reservoirs in barite and gypsum 

case. These experiments also showed different saturation at which each mineral precipitated. 

Finally, two distinct impacts on diffusivity of water tracers were also observed. Thus, to properly 

reproduce the end experimental results, different sensitivity analyses were performed using 

HYTEC or CrunchTope. 

These analyses included: (1) impact of the mesh size, by decreasing it from 100, 50 to 25 µm, (2) 

variation of the cementation factor with values varying from 1.5 to 2.1 and (3) test of the 

supersaturation values used to initiate the gypsum or barite precipitations, (4) progressive 

increase of krate,barite to decrease the thickness of precipitate front in order to have a greater impact 

on diffusivity of HTO, (5) progressive increase of bulk surface area in reservoirs (from 0.0.0001 to 

50,000 (m2
mineral).(m-3

porous medium)) at constant krate,gypsum (6) progressive decrease of krate,gypsum at 

constant bulk surface area in reservoirs. Note that the base simulation for gypsum is not the best 

estimate: test of additional criteria (like the possibility for gypsum to precipitate in the reservoirs) 

finally lead to a correct simulation.  

3.3 2D Numerical Modeling  

The experimental results showed a spatial variability for the gypsum precipitated: isolated clusters 

roughly along the central plane. This obviously cannot be reproduced by a 1D simulation. Thus, 

2D simulations were carried out including an initial spatial variability in the system. Thus, 2D 

numerical modeling was performed based upon the observations derived from the chalk 

experiments:  

1. Barite precipitates were uniformly distributed along the center line of chalk sample; 

2. Isolated pods of gypsum were formed along the center-line of chalk sample. 

For gypsum, two hypotheses were then proposed to explain such a pattern: 

1. A local variation in diffusion resulting from heterogeneous pore structure led to selective 

precipitation of gypsum; 
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2. A local variation in reactive surface area resulting from pores in grain matrix and coccoliths 

allowed additional surface for first points of precipitation.  

In both cases, gypsum can then evolve from these first nuclei to form isolated pods. 

3.3.1 Geometry 

The initial and boundary conditions are kept identical to the 1D base simulations for barite and 

gypsum. However, the system in y-direction is increased up to 8 mm high. This constitutes a 2D 

system with discretization as 100 µm along x axis and y axis. Like the 1D simulations, the 

reservoirs are described with porosity greater than unit, to account for a larger volume, without 

having to resort to a too high number of nodes. Two types of heterogeneity were investigated: 

- a heterogeneous initial “nucleus” surface area; 

- a local variation in diffusion from initial heterogeneous porosity field in chalk sample 

Table 5: Input parameters for gypsum growth in subset nucleus and subtest growth 

 supersaturation nucleus Growth Diffusion 

  krate 

mol.m-2.s-1 

S 

m2.g-1 

k 

mol.m-2.s-1 

S 

m2.g-1 

De х10-10 

m2.s-1 

simulation 

nucleus 

0.3 10-6 100 10-6 10 1.35 

simulation 

growth 

0.3 10-6 1 10-6 500 1.35 

A random porosity field, without spatial structure, was generated with a normal distribution 

centered on 0.45, with a standard deviation 0.05. The diffusion was altered accordingly, using 

Archie’s law. 

3.3.2 Geochemistry 

The conditions are identical to the base 1D simulations used for barite and gypsum experiments.  
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4 Results 

4.1 Base Simulations using HYTEC and CrunchTope 

4.1.1 Barite Base Simulation 

The 1D base scripts for barite case using HYTEC and CrunchTope simulation is reported in 

appendix S1 and appendix S3 respectively. The simulation results are presented in Figure 2 and 

Figure 3 respectively. As the numerical simulation starts, the reactants from their respective 

reservoirs diffuse into the chalk sample. As a result, the reactant concentration decreases in each 

reservoirs (Figure 2A and 2B, Figure 3B and 3C). Consequently, a diffusion profile can be 

observed for Ba2+ and SO4
2+ (Figure 2C). As more and more reactants meet in the sample, the 

saturation of pore solution in the center with respect to barite increases (Figure 2D). At one point, 

first nuclei of stable barite precipitate from this solution and the saturation falls below equilibrium. 

This allows for barite precipitation in a thin zone (Figure 2E) (inhibiting precipitation from first line 

of precipitation (Figure 2C)), with a resulting porosity loss (Figure 2F and Figure 3A). 

Consequently, a progressive decrease in diffusivity is observed in this thin precipitation zone 

(Figure 2F). The impact of decrease in porosity and diffusivity can be observed on the evolution 

of reactants in the reservoirs in response to precipitation over time. The concentration curves show 

a progressive concentration decrease of barium in upstream. After 60 days, gradually, barium 

concentration reaches quasi-equilibrium state showing that barite precipitates have filled most of 

the pores in the precipitated zone.  

The total amount of barite precipitated in this zone was deduced from concentration evolution of 

reactants in the reservoirs. The base simulations shows that the code reproduces correctly the 

experimental data for chemistry evolution of both reactants (Figure 2A and 2B Figure 3B and 3C), 

and the thickness of precipitated zone obtained from SEM images in chalk paper is approximately 

equal to ~500µm, the 1D code reproduce similar width of precipitation zone) and amount of barite 

precipitated in this zone (Figure 2E). In the base simulation, the tracer behavior in downstream in 

response to barite precipitation were also estimated for injection at 0 days and 70 days after 

beginning of precipitation. The experimentally and numerically derived tracer behavior are 

compared (Figure 2G, 2H) at cementation factor 1.8 and at cementation factor 1.97 (Figure 3D, 

3E) respectively. At cementation factor equal to 1.8 HYTEC fairly reproduced the water tracer 

behavior for injection at 0 days. The code well reproduced the water tracer behavior for injection 

at 70 days. But at cementation factor equal to 1.97, CrunchTope underestimated the impact of 

precipitation on the diffusivity of water tracers for both 0 to 70 days and 70 to 140 days.  
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Figure 2:comparison between HYTEC and experimental data for basic chalk barite simulation, concentration 

profiles for Ba2+ and SO4
2- at 5, 10, 20 and 50 days, A: Ba2+ evolution in upstream reservoir, B: SO4

2- evolution in 

downstream reservoir, C: concentration profiles for Ba2+ and SO4
2- in the center of the sample at 5, 10, 20 and 50 

days D: barite saturation index at 5, 10, 20 and 50 days in the precipitation zone, E: barite concentration evolution 

at 5, 10, 20 and 50 days after precipitation in thin zone in the center of the sample, F: evolution of barite has led to a 

progressive porosity decrease in the center of the sample , consequently decrease of diffusivity of water tracer in this 

zone is observed at each time step, G,H: Experimental (green circles) and numerical(continuous line) water tracer 

evolution in downstream reservoirs for water tracer injected at 0 days and 70 days after barite precipitation. 

A B

C D

E F

G H
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Figure 3: comparison between CrunchTope and experimental data for basic chalk barite simulation, A: Porosity 

reduction at times 0.02, 4, 9, 20 70 and 140 days due to barite center of chalk sample, B: Numerical and 

experimental evolution of barium and sulfate data points in upstream reservoir, C: Numerical and experimental 

evolution of barium and sulfate data points in downstream reservoir, D: numerical simulation of HTO activity for 0-

70 days, E: numerical simulation of HTO activity for 70-140 days  
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4.1.2 Gypsum Base Simulation 

The 1D base scripts for modeling gypsum experiment using HYTEC and CrunchTope are reported 

in appendix S2 and appendix S4 respectively. The gypsum experiments showed that precipitation 

had little impact on diffusivity of tracers injected after 0 days and 70 days of precipitation. Thus, 

the base simulation for HYTEC was performed without feedback, i.e cementation factor equal to 

0. But for CrunchTope, the simulations were performed at cementation factor equal to 1.97, with 

feedback effect. 

The numerical simulations show that counter diffusing calcium and gypsum meet in the center of 

the sample (Figure 4B). At the beginning of experiment the saturation increases up to zero (Figure 

4A and Figure 5A). As the experiment further progresses in the center of the sample, more and 

more Ca2+ and SO4
2- form gypsum and saturation index (SI) increase up to 0.1 is observed. 

Indeed, due to this process, precipitation is forbidden until the correct supersaturation is reached; 

after that, precipitation occurs rapidly (fast kinetics), locally, down to SI = 0. As a result, when this 

supersaturation is reached, gypsum starts precipitating and locally decreases the SI; diffusion 

propagates this lowered SI, preventing precipitation further form this point (the reactants are 

pumped in towards the first grains). This effect is highlighted on the sensitivity analysis on 

supersaturation (see next section). Moreover, once gypsum precipitation is initiated a progressive 

increase of gypsum mineral in the chalk sample takes place at each time step (evolution of two 

adjacent peaks in Figure 4C and a broadened peak in Figure 5C).  

However, a delay in time to achieve saturation to initiate precipitation was observed. This delay in 

gypsum precipitation is due to its higher solubility than barite. Thus, the saturation index to initiate 

precipitation is achieved at longer times (as Ksp
gypsum = 10-4.58, more calcium and sulfate ions are 

needed to achieve ion activity product (IAP) = Ksp or SI=0). Consequently, the formation of first 

stable nuclei to initiate precipitation is delayed compared to barite case (see time at which first 

gypsum precipitates in Figure 5C). This delay further allowed diffusion of reactants in the counter 

reservoirs until no precipitation takes place (Figure 4D, 4E and Figure 5E, 5F). Once precipitation 

is initiated the reactants are consumed and no further evolution in counter reservoirs is observed 

(after 20 days the reactants reach a plateau at 13 mmol and their concentration remains around 

this value in the counter reservoir). 

For HYTEC, the evolution of reactants in their respective reservoirs were well reproduced (Figure 

4D). But their evolution in counter reservoirs was overestimated (Figure 4E). On the contrary, for 

CrunchTope the evolution of calcium in upstream was well reproduced and the evolution of sulfate 

in downstream was overestimated. Finally, when chemistry feedback is taken into account, the 
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evolution of reactants in counter reservoirs was better reproduced compared to HYTEC 

simulation. This discrepancy between chemistry evolutions observed experimentally and 

numerically can be due to gypsum precipitation in reservoirs. Indeed, some experimental evidence 

of gypsum precipitation in both reservoirs were found which is bound to decrease the reactant 

concentrations. Since the model did not allow for gypsum precipitation in the reservoirs, no 

precipitation could occur (Figure 4C and Figure 5B and 5D). This difference can account for the 

discrepancy between simulation and observation: it will be addressed in 4.1.4.1. The tracer 

behavior for injection at 0 days and 70 days after gypsum precipitation were numerically 

reproduced in the base simulation (CrunchTope). At cementation factor 1.97, the code well 

reproduced the experimentally derived precipitation impact on diffusivity of water tracer for both 

cases (refer Figure 4G & 4H).   
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Figure 4: comparison between HYTEC and experimental data for basic chalk gypsum simulation, A: gypsum 

saturation index at 5, 10, 20 and 50 days in the precipitation zone, B: concentration profiles for Ca2+ and SO4
2- at 5, 

10, 20 and 50 days, C: gypsum concentration profile in the center of the sample at 5, 10, 20 and 50 days, D: 

evolution of Ca2+ in upstream reservoir and SO4
2- in downstream reservoir, E: evolution of SO4

2- in upstream 

reservoir and Ca2+ in downstream reservoir 

 

A B
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Figure 5: comparison between CrunchTope and experimental data for basic chalk gypsum simulation, A: Saturation 

index of gypsum mineral in two reservoirs and chalk sample, B: Very small amount of gypsum mineral precipitating 

in upstream, C: Gypsum precipitation zone in the center of the sample, D: No gypsum precipitation in downstream, 

E: numerical simulation of Ca2+ & SO4
2- in downstream reservoir, F: numerical simulation of Ca2+ & SO4

2- in 

upstream reservoir, G: numerical simulation of HDO concentration for 0-70 days, H: numerical simulation of HDO 

concentration for 70-140 days 

-2

-1.5

-1

-0.5

0

0.5

0 0.1 0.2 0.3 0.4

SI

Distance, mm

SI in gyp cell:Bulksurface_0_K_rate_10-6

0.02_days 10_days

25_days 70_days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
yp

su
m

 m
in

er
al

, m
ol

.m
-3

 d
ow

ns
tre

am
 

Distance from beginning of reservoir, mm

Downstream:Bulksurface_0_K_rate_10-6

0.02_days 10_days 25_days 70_days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
yp

su
m

 m
in

er
al

, m
ol

.m
-3

up
st

re
am

 

Distance from beginning of reservoir, mm

Upstream:Bulksurface_0_K_rate_10-6

0.02_days 10_days 25_days 70_days

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

C
on

ce
nt

ra
tio

n,
 m

M

Time, days

Chemistry Upstream:Bulksurface_0_Krate_10-6

Ca SO4 Ca-Crunch SO4-Crunch

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

C
on

ce
nt

ra
tio

n,
 m

M

Time, days

Chemistry Downstream:Bulksurface_0_Krate_10-6

Ca SO4 Ca-Crunch SO4-Crunch

0.E+00

4.E-07

8.E-07

1.E-06

2.E-06

2.E-06

2.E-06

3.E-06

3.E-06

4.E-06

4.E-06

4.E-06

0 10 20 30 40 50 60 70

C
um

ul
at

iv
e 

am
ou

nt
 H

D
O

, m
ol

Time, days

HDO_Bulksurface_0_K_rate_10-6

Experimental data

I-Mode: Intact

CrunchTope
0.E+00

4.E-07

8.E-07

1.E-06

2.E-06

2.E-06

2.E-06

3.E-06

3.E-06

4.E-06

4.E-06

4.E-06

70 80 90 100 110 120 130 140 150

Cu
m

ul
at

ive
 a

m
ou

nt
 H

DO
, m

ol

Time, days

HDO_Bulksurface_0_K_rate_10-6

I-Mode: Intact

Experimental data

CrunchTope

0

500

1000

1500

2000

2500

3000

3500

4000

4500

G
yp

su
m

 m
in

er
al

, m
ol

.m
-3

po
ro

us
 s

am
pl

e

Distance from upstream face, mm

Sample: Bulksurface_0_K_rate_10-6

0.02_days 10_days

25_days 70_days

A B

C

E

D

H

F

G



234 

4.1.3 Sensitivity analysis for barite  

4.1.3.1 Effect of the mesh size 

A sensitivity analysis was performed by changing the mesh size from 100 µm (base simulation) to 

50 µm and 25 µm respectively. The impact of mesh size on evolution of reactants in reservoirs 

and on the evolution of precipitation front in the center of the sample is presented in Figure 6(A to 

F). Figure 6D shows that the difference in impact of decrease in mesh size from 100µm to 50µm 

on the width of the precipitation front is small. Moreover, Figure 6D shows that the decrease in 

porosity and diffusivity in the precipitated zone for 100µm and 50µm case are similar. Thus, for 

these two mesh sizes the reactants evolution in reservoirs estimated by code are similar (Figure 

6A & 6B). However for 25 µm, as shown in Figure 6D an entailed (small) re-concentration of the 

solid on a thinner area in the center of the sample has significant impact on diffusivity and porosity 

decrease in Figure 6C. Consequently, after 60 days, total clogging is reached and no further 

evolution the system occurs for 25 µm case (Figure 6A and 6B). 

Moreover, at the same cementation factor the grid size showed similar tracer behavior for injection 

at 0 days after precipitation (Figure 6E). However, for injection after 70 days of precipitation, the 

grid size had very different impact the tracer behavior (Figure 6F). At grid size 100µm and 50µm 

a small difference in tracer behavior was observed and at 25µm the code showed no tracer 

behavior (resembling total clogging). Finally, for all cases the code underestimated the 

precipitation impact on diffusivity for each mesh size. 
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Figure 6: Sensitivity analyses at different mesh size on basic chalk barite simulation, A: Ba2+ evolution in upstream 

reservoir at different mesh sizes, B: SO4
2- evolution in downstream reservoir at different mesh sizes, C: concentration 

profiles for Ba2+ and SO4
2- at 5, 10, 20 and 50 days shows small entailed reconcentration of mineral for 25µm mesh 

size, D: simulations at 100µm and 50µm shows a similar progressive porosity decrease at times 5, 10, 20 and 50 

days in the center of the sample, at 25µm higher porosity and diffusivity decrease are observed, E: numerical( full 

lines) simulations show no impact of mesh size on tracer behavior for injection at 0 days of precipitation, F: 

numerical( full lines) simulations show significant impact of mesh size on tracer behavior for injection at 70 days of 

precipitation 

4.1.3.2 Effect of the cementation factor 

In barite experiments the chemistry monitoring showed a gradual barium concentration decrease 

for initial 60 days in upstream. At this time as the precipitated zone contains mostly empty or 

partially filled pores the barium ion can diffuse through the precipitated zone. This ion will then 

contribute to precipitation around the main precipitation line (the SEM images in chalk paper 

shows formation of isolated barite precipitates around main precipitated line). The impact of barite 

precipitation for initial times was captured by injecting the water tracer at beginning of experiment. 

In this step water tracer was injected in upstream at 0 days of precipitation and its activity evolution 
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E F
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was measured in downstream for 70 days. The data points in downstream were then fitted using 

I-mode to obtain water tracer diffusivity equal to 2.5×10؎10 m2.s؎1. Thus, using Archie’s law the 

change in cementation factor compared to intact case (1.97) is equal to 2.08. This observation 

shows that the partially filled or empty pores at initial that allowed barium diffusion at initial times 

also allowed water tracer to diffuse. Since diffusion of water tracer is faster than precipitation 

kinetics of barite, the water tracer achieved equilibrium in downstream before most of the pores 

were filled by barite in the precipitation zone. 

However, the chemistry monitoring further showed that after 60 days a gradual plateau was 

achieved in barium concentration in the upstream reservoir. This change from gradual 

concentration decrease to attainment of concentration plateau shows that most of the partially and 

unfilled pores are now filled with barite which can now effectively block important diffusive 

pathways. This change in barium ion behavior in response to precipitation was well captured by 

water tracer injection after 70 days of precipitation. Similar to injection at beginning of experiment 

case, the experimental data points of water tracer were reproduced using I-mode. The resulting 

water tracer diffusivity was equal to 1.1×10؎10 m2.s؎1 and using Archie’s law the new cementation 

factor was equal to 3.6. These observations show that after 60 days most of the pores in the center 

of the sample were filled with barite. These pores significantly blocked barium ion diffusion and 

water tracer diffusion through the precipitation zone. Thus, barium ion plateau in upstream and 

significant impact on diffusivity was observed. The chemistry monitoring and water tracer behavior 

thus shows two different evolution of chalk cementation factor in response to precipitation.  

To capture these aforementioned process (evolution of chemistry in reservoirs, thickness of 

precipitation front and consequently on diffusivity of water tracers) numerically a sensitivity 

analysis was performed on cementation factor. Based on the base simulation, the cementation 

factor varied from 1.8 (base) down to 1.5 and up to 2.1. Figure 7A and 7B shows that for values 

between 1.5 and 2, a very small difference in the impact on evolution of reactants evolution in 

reservoir is observed. However, at cementation factor value 2.1, total clogging is reached around 

80 days, with no further evolution of the system.  

Figure 7C shows that as the cementation increases, the entailed re-concentration in very thin zone 

increases in the center of the sample. Consequently, a sharp decrease in porosity and diffusivity 

is observed in this zone (Figure 7D). The change in cementation factor from 1.5 to 2.1 has no 

significant impact on modeled diffusive curves for 0 to 70 days (Figure 7E). However, at 

cementation factor 2 and 2.1, a sharp change is observed in the modeled diffusive curve for and 

70 to 140 days case (Figure 7F). The increase in the sensitivity of cementation factor in the latter 
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case can be explained from experimental observations. The codes showed porosity evolution for 

first 70 days of precipitation. Thus, for this period the grids in the precipitation zone are either 

partially filled or completely unfilled. Since numerically no impact on diffusivity was observed the 

change in cementation factor had no influence on the water tracer behavior. But, at 70 days 

different entailed (re)concentration of barite in thin zone was observed for each cementation factor. 

This means that at higher cementation factor more barite has precipitated in the thin zone and led 

to higher porosity and diffusivity decrease in this thin zone. In this case the change in cementation 

factor can drastically change the properties of barite precipitated chalk. For this reason, a small 

change of cementation factor and generated different water tracer behavior.   
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Figure 7: Sensitivity analyses at different cementation factors on basic chalk barite simulation, A: Ba2+ evolution in 

upstream reservoir, B: SO4
2- evolution in downstream reservoir, C: concentration profiles for Ba2+ and SO4

2- at 5, 

10, 20 and 50 days shows small entailed reconcentration of mineral at cementation factor equal to 2.1for 25µm mesh 

size, D: simulations at cementation factor values between 1.5 and 2 show a similar progressive porosity decrease at 

times 5, 10, 20 and 50 days in the center of the sample, at cementation factor equal to 2 higher porosity and 

diffusivity decrease are observed, E: numerical( full lines) simulations show no impact of cementation factor on 

tracer behavior for injection at 0 days of precipitation, F: numerical( full lines) simulations show significant impact 

of cementation factor on tracer behavior for injection at 70 days of precipitation  
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4.1.3.3 Effect of Supersaturation 

The third sensitivity analyses for barite case was impact of supersaturation on precipitation. For 

this purpose, two simulations were launched: supersaturation was equal to zero in the first and 

four in the second. Figure 8A shows that supersaturation has no impact on the evolution barite 

mineral in the center of the sample. Consequently, no impact on porosity and diffusivity decrease 

was observed in this zone (Figure 8B). Similarly, the evolution of barium in upstream in response 

to supersaturation is the same for both cases (Figure 8C and 8D). Thus, no change in modeled 

water tracer curve in downstream for 0 to 70 days case is observed. (Figure 8E).  

 

Figure 8: supersaturation sensitivity analysis, A: concentration profiles for barite in the center of the sample at 50 

days for the two supersaturation values, B: decrease in diffusion coefficient in center of the sample for 50 days, C: 

evolution of Ba2+ in upstream reservoir, D: evolution of SO4
2- in downstream reservoir E: evolution of water tracer 

in downstream for time 0 to 70 days since beginning of experiment, F: numerical( full lines) simulations show no 

impact of supersaturation on tracer behavior for injection at 0 days of precipitation 
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4.1.3.4 Effect of mineral precipitation rate value 

In the base simulation (see section 4.1.1), CrunchTope well reproduced the chemistry evolution 

in reservoirs but underestimated the impact of clogging on diffusion. In section 4.1.3.2 to properly 

fit the diffusive curves a sensitivity analysis in HYTEC was launched by changing cementation 

factors. These simulations showed that at higher cementation factor, an entailed re-concentration 

in very small area can lead to significant impact on diffusivity. 

Another way to generate such entailed re-concentration of barite in precipitation zone is by slightly 

increasing the k_rate (or mathematically equivalently the specific surface area). Thus, CrunchTope 

simulations were launched for different krates in an interval between krate = 10-11 and k_rate 10-

10 mol.m-2.s-1 respectively. The results for krate equal to 10-10 shows a progressive porosity decrease 

for initial numerical times (Figure 9A). However, on 70th day the entailed re-concentration of barite 

has led to total clogging in a very thin zone in the center of the sample. This effect is observed in 

chemistry evolution in reservoirs (Figure 9B and 10C). For the initial time until 30 days, barium 

and sulfate concentration decrease is observed in their respective reservoirs. From 30th day until 

end of simulations no further reactants concentration decrease is observed in their respective 

reservoirs showing total clogging effect. Moreover, for initial 30 days, the code underestimates the 

precipitation impact on water tracer behavior (Figure 9D), after which no tracer diffusion is 

observed in the downstream reservoir. Finally, at different krates, for 70 to 140 days, the code failed 

to reproduce the tracer behavior determined experimentally (Figure 9E). 
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Figure 9: Mineral precipitation rate sensitivity analysis, A: Total clogging due to barite precipitation in the center of 

chalk sample at higher k_rate, B: Numerical and experimental evolution of barium concentration in upstream 

reservoir, C: Numerical and experimental evolution of sulfate concentration in downstream reservoir, D: numerical 

simulation of HTO activity for 0-70 days at two different k_rates, E: numerical simulation of HTO activity for 70-140 

days at different k_rates  
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4.1.4 Sensitivity analysis for gypsum 

4.1.4.1 Effect of supersaturation 

To test the impact of supersaturation on precipitation, the base simulation was carried out without 

supersaturation effect. The evolution of saturation index and gypsum precipitation front in the 

center of the sample is presented in Figure 10(A to E) respectively. Figure 10A shows a gradual 

increase in saturation index in the chalk sample. However, throughout the simulation the saturation 

index neither increases nor decreases but remains at equilibrium (SI=0). This means that without 

supersaturation gypsum can start precipitating as soon as SI=0. In this case, there is “no pumping 

in effect,” so that the reaction front is much larger (Figure 10C). The simulation is very sensitive to 

the value of supersaturation: indeed, for supersaturation SI=0.6, the system fails to reach this 

saturation so that no precipitation occurs at all (not shown). Finally, the simulations without 

supersaturation effect led to similar evolution of calcium and sulfate concentration evolution in 

precipitation zone, in respective and counter reservoirs (Figure 10B, 10D and 10E)..  
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Figure 10: supersaturation sensitivity analysis, A: Gypsum simulation without supersaturation shows that gypsum 

can precipitate as soon as saturation is reached (hence SI<=0 everywhere), B: concentration profiles for Ca2+ and 

SO4
2- at 5, 10, 20 and 50 days, C:Gypsum concentration profiles at 5, 10, 20 and 50 days shows broadening of 

precipitation zone in the center of the sample, D: evolution of Ca2+ in upstream reservoir and SO4
2- in downstream 

reservoir, E: evolution of SO4
2- in upstream reservoir and Ca2+ in downstream reservoir 

4.1.4.2 Precipitation in reservoirs 

In section 4.1.2, the base simulations with no feedback well reproduced the evolution of reactants 

in their respective reservoirs. However, the code overestimated their evolution in counter 

reservoirs. This is because experimentally gypsum precipitated in the reservoirs, but numerically 

no such precipitation was observed. Thus, a simulation using the base simulation is carried out in 

this section to allow precipitation in the reservoirs. This is achieved by adding some reactive 

surface area favorable to gypsum precipitation in the reservoirs. 
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Figure 11: gypsum precipitation allowed in the reservoirs. A: gypsum saturation index at 5, 10, 20 and 50 days in 

the precipitation zone, B: concentration profiles for Ca2+ and SO4
2- at 5, 10, 20 and 50 days, C: evolution of Ca2+ 

and SO4
2- diffusing in the sample, D: evolution of Ca2+ and SO4

2- diffusing out of the sample, E: gypsum 

concentration profiles at 5, 10, 20, 50 days 

Figure 11A, shows that the added reactive surface has no impact on the evolution of saturation 

with respect to gypsum in the precipitation zone. Similarly, Figure 11E shows that due to presence 

of this reactive surface area some precipitation is indeed achieved in the reservoirs. It is difficult 

to calibrate the simulation due to the lack of experimental data (e.g. amount of gypsum precipitated 

in the reservoir). Although the Ca2+ and SO4
2- evolution is still not perfectly represented in their 

respective outlet reservoirs. It is interesting to note that this process leads to discontinuity in the 

slope which has been observed in the experiments after 20 and 40 days (Figure 11D).  
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Similar to former case, bulk surface area ranging from 0.00001 to 50,000 (m2
mineral.m-3

porous medium) 

were added in the upstream and downstream reservoirs to achieve precipitation in reservoirs. In 

this report the chemistry evolution, gypsum mineral evolution in samples and reservoirs for bulk 

surface area 50,000 (m2
mineral.m-3

porous medium) are presented in Figure 12. These figures show very 

small amount of gypsum precipitation in upstream and no precipitation in downstream. The 

gypsum mineral evolution in chalk sample remains the same as in the base simulation. Thus, 

HYTEC and CrunchTope simulations show that by only adding reactive surface area in the 

reservoirs significant precipitation cannot be achieved. Although delay in gypsum precipitation led 

to diffusion of reactants in counter reservoirs, but once gypsum precipitation is initiated in the chalk 

sample, the fast kinetics of gypsum pumps in all the reactants in the precipitation zone. Thus, 

precipitation further stops enough ions to diffuse into the counter reservoirs which can allow higher 

amount of gypsum precipitation. 

This can be achieved by gradually decreasing the theoretical kinetic rate (10-6 mol.m-2.s-1) in base 

simulation until significant precipitation in reservoirs is achieved. This main idea behind this 

approach was to slow down formation of gypsum in chalk sample. This would then allow more 

reactants to diffuse into counter reservoir. Finally, using the bulk surface area these reactants can 

allow higher gypsum precipitation in reservoirs. The numerical results for gypsum experiment at 

the kinetic rate of precipitation 10-7.7 mol.m-2.s-1 and bulk surface area 300 (m2
mineral).(m-3

porous 

medium)are presented in Figure 13. Figure 13A shows that decrease in krate has no impact on the 

saturation index of gypsum precipitation.  Figure 13B and 13D shows that at lower krate the bulk 

surface area is now sensitive and significant gypsum precipitated in reservoirs. However, Figure 

13C shows that the thickness of gypsum precipitation zone is broadened in the chalk sample. 

Moreover, Figure 13E and 13F shows that the code well reproduced calcium evolution in 

upstream, but it overestimated the sulfate evolution in downstream. The code well reproduced the 

reactants evolution in counter reservoirs. Thus, tracers were injected in upstream at 0 days and 

70 days after precipitation. The water tracer behavior in downstream is presented in Figure 13G 

and 13H respectively. Figure 13G shows that the code well reproduced the precipitation impact 

on diffusivity for 0 to 70 days. However, Figure 13H shows that the code underestimated the 

precipitation impact on diffusivity for 70 to 140 days. The latter observation contradicts the tracer 

behavior observed in Figure 5H for the base simulation.  
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Figure 12: bulk surface sensitivity in reservoirs, A: Saturation index of gypsum mineral in two reservoirs and chalk 

sample; B: Very small amount of gypsum mineral precipitating in upstream at very high bulk surface area; C: 

Gypsum precipitation zone in the center of the sample; D: No gypsum precipitation in downstream 
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Figure 13: Mineral precipitation rate sensitivity, A: Saturation index of gypsum mineral in two reservoirs and chalk 

sample, B: Significant amount of gypsum mineral precipitating in upstream, C: Expansion of gypsum precipitation 

zone in the center of the sample, D: Significant amount of gypsum precipitation in downstream; E: numerical 

simulation of Ca2+; SO4
2- in upstream reservoir, F: numerical simulation of Ca2+; SO4

2- in downstream reservoir, G: 

numerical simulation of HDO concentration for 0-70 days, H: numerical simulation of HDO concentration for 70-

140 days   
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4.2 2D simulations 

4.2.1 Chalk Gypsum  

Gypsum experiments showed that selective evolution of gypsum in isolated zone originated from 

spatial variability in properties such as heterogeneous pore structure and reactive surface area in 

chalk. However, at 1D, the code uses porosity equal to 45% in all the meshes and thus such 

impacts of pore structure are compensated.  

Moreover, the sensitivity analysis on base simulations showed that “evolution of diffusion first 

depends on pore structure rather than overall porosity”. Since, at 1D experimentally observed 

microstructure evolution cannot be quantified, 2D simulations were launched in HYTEC. A random 

porosity field is prepared using a normal law, centered on 0.45 and with a standard deviation of 

0.05. Note that no specific structure was constrained on the porosity field. For gypsum precipitation 

two subtests were carried out to determine the “nucleus” and “growth” governed gypsum growth. 

These subtests were carried out to demonstrate the change in gypsum precipitation front under 

competition between kinetic of (homogeneous) nucleation, kinetic of growth (heterogeneous) and 

diffusion. The input parameters for these tests are listed in Table 5. 

Figure 14 presents the cross-section view of 2D gypsum simulation for “nucleus” case. This 

simulation shows that the concentration decrease of reactants from inlet face to the center of the 

sample is not strictly linear (see Figure 14D for comparison between concentration evolution in 

homogeneous and heterogeneous diffusivity field). This means that there is small local variation 

in the diffusion of reactants towards the center of the sample. As more and more of reactants meet 

in the center of the sample the saturation index with respect to gypsum increases up to 0.3 (0.46 

days in Figure 14C). Moreover, to allow nucleus driven growth, in the center of the sample gypsum 

nucleus of varying concentration are distributed. The numerical simulations showed that some of 

these nuclei of highest concentration firstly allowed gypsum growth onto their surface (see Figure 

16 for nucleus driven growth at different time steps). Consequently, at these first points of 

precipitation the saturation index locally falls near to equilibrium (sharp point decrease in Figure 

14C and Figure 15A and 15B). This effect is shown in Figure 14A and 14B where after 0.46 days 

the nucleus pumps in the reactants and a sharp decrease in their concentration is observed locally.  

As the simulation proceeds, gypsum grows over these nuclei in form of 100 µm pods (Figure 16). 

Since these nuclei are randomly distributed at the central line of the sample these pods are 

isolated in reference to each other.  
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Figure 14: 2D simulations with spatial variability for “nucleus”, A: Evolution of Ca2+at different times in chalk 

sample, B: Evolution of SO4
2- at different times in chalk sample-, C: Evolution of saturation index in the center of the 

sample at different times, D: comparison between Ca2+ and SO4
2-at 1Dfor homogeneous diffusion (dashed lines) and 

2D for heterogeneous diffusion field (continuous lines) in sample 

 

Figure 15: 2D simulations with spatial variability for “nucleus”, A: Saturation index evolution in the center of the 

sample at 0.46 days, B: Saturation index evolution in the center of the sample when nucleus pumps in reactants to 

from first stable gypsum precipitates. 
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Figure 16: evolution of gypsum mineral in for subtest “nucleus” at time 1 day (A), 5 days (B), 10 days (C), 30 days 

(D), and 70 days (E)  
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Figure 17 presents the cross-section view of 2D gypsum simulation for “growth” case. Similar to 

previous case in this case too spatial variability has allowed a small local variation in the diffusion 

of reactants towards the center of the sample (see Figure 17D for comparison between 

concentration evolution in homogeneous and heterogeneous diffusivity field). Figure 17C shows 

that as more and more of reactants meet in the center of the sample the saturation index with 

respect to gypsum increases up to 0.3 (0.46 days in Figure 17C). As the simulations proceeds 

until 0.47days there is a saturation index decrease in approximately in a broad zone in the center 

of the sample (Figure 17C). This effect is also represented in Figure 17A Figure 17B where a flat 

concentration decrease is observed in the center of the sample. 

At 2D this broad zone in fact contains isolated spheres each containing grids in which saturation 

has fallen from 0.3 to equilibrium (Figure 18). These sharp decrease in saturation index shows 

formation of first clusters of gypsum nuclei in these isolated spherical zones (Figure 19B). As 

simulation proceeds, these first nuclei then allowed gypsum growth onto their surface. The end 

results of simulation thus showed formation of isolated gypsum spheres distributed in the center 

of the sample (Figure 19C, 19D and 19E). This surface growth case shows gypsum evolution seen 

in the experiments.   
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Figure 17: 2D simulations with spatial variability for “growth”, A: Evolution of Ca2+at different times in chalk 

sample, B: Evolution of SO4
2- at different times in chalk sample-, C: Evolution of saturation index in the center of the 

sample at different times, D: comparison between Ca2+ and SO4
2-at 1Dfor homogeneous diffusion (dashed lines) and 

2D for heterogeneous diffusion field (continuous lines) in sample 

 

Figure 18: 2D simulations with spatial variability for “growth”, A: Saturation index evolution in the center of the 

sample at 0.46 days, B: Saturation index evolution in the center of the sample when nucleus pumps in reactants to 

from first stable gypsum precipitates. 
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Figure 19: evolution of gypsum mineral in for subtest “growth” at time 1 day (A), 5 days (B), 10 days (C), 30 days 

(D), and 70 days (E) 
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4.2.2 Chalk-Barite 

The impact of spatial variability in diffusion on the evolution of barite at 2D was also tested using 

HYTEC. Figure 20 presents the cross-section view of 2D barite simulation. This figure shows that 

spatial variability has allowed a small local variation in the diffusion of reactants towards the center 

of the sample. However, despite the spatial variability, the simulations results are remarkably 

similar to the 1D simulation. The faster diffusion compared to kinetics prevents the formation of 

“spheres of influence”, and thus evenly distributes the precipitates along the central thin 

precipitation front. As simulations proceeds, barite grows at this first points of precipitates in the 

center of the sample (see barite evolution in 2D in figures Figure 21A to 21E). The end result is a 

thin barite precipitated front in the center of the sample. One must note that in experiments barite 

growth took place due to homogeneous and heterogeneous nucleation phenomena. However, in 

this simulation this part has not been tested.  

 

Figure 20: evolution of barite mineral using HYTEC at time 1 day (A), 5 days (B), 10 days (C), 30 days (D), and 70 

days (E) 
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Figure 21: evolution of barite mineral using HYTEC at time 1 day (A), 5 days (B), 10 days (C), 30 days (D), and 70 

days (E) 

 

A B 

C D 

E 



256 

CrunchTope simulations are still running. Results will be incorporated in a future paper focusing 

on the simulation results. 

5 Conclusion 

Barite and gypsum clogging experiments in chalk showed different evolution of reactants in 

reservoirs. The experimental data set of water tracers after 0 days and 70 days of precipitation 

experiments showed distinct impact for both cases: barite impacted more on diffusivity than 

gypsum. Based upon these experimental results, the numerical simulations were carried out in 1D 

and 2D. Finally, the experimental and numerical results were used to demonstrate the predictive 

limit of Archie’s relationship and kinetic rate equation. 

For barite experiments, the base simulations in 1D well reproduced the chemistry evolution in 

reservoirs. Moreover, HYTEC code well reproduced tracer behavior in response to precipitation 

for injection at 0 days and after 70 days since the beginning of experiment. But, CrunchTope failed 

to reproduce the water tracer behavior at both injections. The sensitivity analysis on cementation 

factor within reasonable limits well captured the chemistry behavior in response to precipitation. 

However, in each case the fitting did not properly reproduce the tracer behavior in response to 

precipitation. 

These results thus show that with proper adjustment of parameters barite precipitation can be well 

described in 1D for systems like chalk. 

However, 1D simulations are unable to describe the gypsum precipitation in chalk. This is because 

for gypsum structural information (spatial variability in properties of pore structure plus kinetics of 

precipitation and supersaturation) is necessity. From these experiments such information on 

structural properties can be used to carry 2D simulations. Using such information HYTEC well 

reproduced the isolated clustered evolution of gypsum in chalk. 

Standard simulation habits on such a system would go to 1D, which in our case not fully 

representative.  

On the contrary, barite and gypsum in 2D were simulated with the same model, despite large 

differences in behavior of precipitation (solubility, supersaturation, kinetics of precipitation, 

growth). All these differences stem from different chemical behavior, which are precisely 

represented in the models. The consistent model to represent both behaviors gives strength to 

the REV modeling approach. Still, we need to be very careful: experiments are needed to ensure 

that we identify all the key processes.   
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7 APPENDIX 

S1: 1D base simulation script for barite using HYTEC 

# CHALK 1D - barite 

# VLagneau - June 2018 

database = /home/vlagneau/bin/ctdp/chess.tdb 

permeability = 1e-20 m/s 

storage = 0.1 

flow-regime = stationary 

porosity = variable 

# Geometry 

# domain defines the global system 

# zone is the keyword for a specific area 

# -------------- 

domain = -4.35,-0.5 4.35,-0.5 4.35,0.5 -4.35,0.5 mm 

zone res_left { 

  geometry = rectangle -3.85,0 1,1 mm, nodes = 5,1 

  porosity = variable { 

    start = 187.09 

 archie = 1.8 

  }       

  diff.coeff = 1e-8 m2/s  #### PORE DIFFUSION 

  geochemistry = ch_left 

  modify at 70 d, source = 0.025e-6 m3/d using ch_inject 
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  modify at 70.01 d, source = 0 

} 

zone res_right { 

  geometry = rectangle 3.85,0 1,1 mm, nodes = 5,1 

  porosity = variable { 

    start = 145.51 

   archie = 1.8 

  } 

  diff.coeff = 1e-8 m2/s 

  geochem = ch_right 

} 

zone chalk { 

  geometry = rectangle 0,0 6.7,1 mm, nodes = 67,1 

  porosity = variable { 

    start = 0.45 

   archie = 1.8 

  }       

#  diff.coeff = 9.333e-10 m2/s 

  diff.coeff = 3.00e-10 m2/s 

  geochem = ch_initial 

} 

# Boundary conditions 

# ------------------------------ 

# Geochemistry 
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# unit is keyword for a "geochemical unit" 

# -------------- 

unit ch_initial { 

 mineral Calcite = 20 mol/L, surface = 0.55 m2/g ## mineral defined by mass/L of water!!! 

 mineral Barite = 0 mol/L, surface = 1.65 m2/g 

} 

unit ch_left { 

  total HDO = 1 umol/L 

  total BA = 20 mmol/L 

    total Ba[2+] = 20 mmol/L 

    total  Cl[-] = 40 mmol/L 

 mineral Calcite = 0 mol/L, surface = 0.55 m2/g ## surface is 0 because conc = 0 

 mineral Barite = 0 mol/L, surface = 1.65 m2/g 

} 

unit ch_right { 

    tot K[+] = 40 mmol/L 

    tot SO4[2-] = 20 mmol/L 

    tot SO4 = 20 mmol/L 

 mineral Calcite = 0 mol/L, surface = 0.55 m2/g  

 mineral Barite = 0 mol/L, surface = 1.65 m2/g 

} 

unit ch_inject { 

  total HDO2 = 1 umol/L 

 mineral Calcite = 0 mol/L, surface = 0.55 m2/g ## surface is 0 because conc = 0 
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 mineral Barite = 0 mol/L, surface = 1.65 m2/g 

} 

# Time criteria 

# ------------------------ 

duration = 141 day 

timestep = variable { 

    start = 1 min 

 maximum = 0.1 d 

} 

# Output parameters 

# ---------------------------- 

output-format = res, vtk 

sampling = 141 

## selections 

select aqueous{Ba[2+]}, aqueous{SO4[2-]} in mmol/l 

select Barite in mmol/L 

select SI{Barite}  ## saturation index 

select porosity 

select min-volume in L 

select diffusion in m2/s ### EFFECTIVE DIFFUSION 

select node 

select BA, SO4 in mmol/L 

select HDO, HDO2 in umol/L 

# DATABASE 
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# -------- 

exclude minerals 

include Calcite, Barite 

define base HDO 

define base HDO2 

 

extend mineral Barite { 

 kinetics { # prec 

  rate = 1.5e-11 mol/m2/s 

  y-term { 

   species = Barite 

   saturation-index = 1e4 

  } 

  area = Calcite 

 } 

 kinetics { # diss 

  rate = -1.5e-11 mol/m2/s 

  y-term, species = Barite 

  area = Barite 

 } 

} 

extend mineral Calcite { 

  logK = 100 

} 
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define base BA 

define base SO4 

 

S2: 1D base simulation script for gypsum using HYTEC 

# CHALK 1D - Gypsum 

# VLagneau - June 2018 

database = /home/vlagneau/bin/ctdp/chess.tdb 

# Geometry 

# domain defines the global system 

# zone is the keyword for a specific area 

# -------------- 

domain = -4.35,-0.5 4.35,-0.5 4.35,0.5 -4.35,0.5 mm 

zone res_left { 

geometry = rectangle -3.85,0 1,1 mm, nodes = 5,1 

porosity = 187.09 

diff.coeff = 1e-8 m2/s #### PORE DIFFUSION 

geochemistry = ch_left 

} 

zone res_right { 

geometry = rectangle 3.85,0 1,1 mm, nodes = 5,1 

porosity = 145.51 

diff.coeff = 1e-8 m2/s 

geochem = ch_right 
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} 

zone chalk { 

geometry = rectangle 0,0 6.7,1 mm, nodes = 67,1 

porosity = 0.45 

diff.coeff = 4e-10 m2/s 

geochem = ch_initial 

} 

# Boundary conditions 

# ------------------------------ 

# Geochimistry 

# unit is keyword for a "geochemical unit" 

# -------------- 

unit ch_initial { 

mineral Nucleus = 1 g/L, surface = 100 cm2/g 

mineral Gypsum = 0 g/L, surface = 1000. m2/g 

} 

unit ch_left { 

total Ca[2+] = 80 mmol/L 

total Cl[-] = 160 mmol/L 

mineral Nucleus = 0 g/L, surface = 1 cm2/g 

mineral Gypsum = 0 g/L, surface = 0. m2/g 

} 

unit ch_right { 

tot K[+] = 160 mmol/L 
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tot SO4[2-] = 80 mmol/L 

mineral Nucleus = 0 g/L, surface = 1 cm2/g 

mineral Gypsum = 0 g/L, surface = 0. m2/g 

} 

# Time criteria 

# ------------------------ 

duration = 130 day 

timestep = variable { 

start = 1 min 

maximum = 0.05 d 

} 

# Output parameters 

# ---------------------------- 

output-format = res, vtk 

sampling = 130 

## selections 

select aqueous{Ca[2+]}, aqueous{SO4[2-]} in mmol/l 

select Gypsum in mmol/L 

select SI{Gypsum} ## saturation index 

select porosity 

select min-volume in L 

select diffusion in m2/s ### EFFECTIVE DIFFUSION 

select node 

# DATABASE 
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# -------- 

exclude minerals 

include Calcite, Gypsum 

extend mineral Gypsum { 

### precipitation 

kinetics { 

rate = 1e-2 mol/m2/s 

y-term { 

species = Gypsum 

} 

area = Gypsum 

} 

### precipitation 

kinetics { 

rate = 1e-4 mol/m2/s 

y-term { 

saturation-index = 1 

species = Gypsum 

} 

area = Nucleus 

} 

### dissolution 

kinetics { 

rate = -1e-16 mol/m2/s 
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y-term, species = Gypsum 

area = Gypsum 

} 

} 

define mineral Nucleus { 

surface = 1 cm2/L 

} 

S3: 1D base simulation script for barite using CrunchTope 

TITLE 

Manipe.in: C6-Clogging - Crunchdiff  

END 

  

RUNTIME 

time_units         days 

timestep_max       0.01 

timestep_init      0.001 

time_tolerance     0.1 

hindmarsh          false 

correction_max     10.0 

debye-huckel       true 

database_sweep     false 

speciate_only      false 

graphics           kaleidagraph 

gimrt              true 
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solver             gmres  

pc                 ilu 

pclevel            2 

database           ./datacom_ikram.dbs 

coordinates        rectangular 

screen_output      10 

restart            crunchdiff.rst append 

save_restart       crunchdiff.rst 

END 

 

 

OUTPUT 

time_units            days 

time_series_interval  1 

!spatial_profile 0.02 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 

24. 25. 26. 27. 28. 29. & 

!          30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 

54. 55. 56. 57. 58. & 

!          59. 60. 62. 64. 66. 68. 70. 

spatial_profile 70.1 72. 74. 76. 80. 82. 84. 86. 88. 90. 92. 94. 96. 98. 100. 102. 104. 106. 108. 110. 

& 

          112. 114. 116. 118. 120. 122. 124. 126. 128. 130. 132. 134. 136. 138. 140. 

time_series_print    Tracer  Na+  Cl-  Ca++  Mg++  K+  HCO3-  SO4--  H+  Ba++ 

END 

 



271 

TRANSPORT 

distance_units meters 

time_units  second   

calculate_diffusion  2.E-9  

!calculate_diffusion  1.E-9  

dispersivity   0.0  0.0 

cementation_exponent     1.97 

D_25    Ca++     7.93e-10 

D_25    K+       19.6e-10 

D_25    Ba++     8.48e-10 

D_25    SO4--    10.7e-10 

D_25    Na+      13.3e-10 

D_25    Cl-      20.3e-10 

D_25    HCO3-    11.8e-10 

END 

 

BOUNDARY_CONDITIONS 

x_begin   amont          flux 

x_end     aval           flux 

END 

 

DISCRETIZATION 

xzones 182 1.00768E-03  7 220E-06  6 84E-06  12 42E-06  24 20E-06  651 9.98E-06  24 20E-06 

& 
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       12 42E-06 6  84E-06  7  220E-06  140 1.00577E-03 

END 

 

INITIAL_CONDITIONS 

amont       1-231 

calcaire  232-882 

aval      883-1071 

END 

 

Condition amont           

units            mol/kg 

temperature        25.0 

pH                 7.37 

Cl-             0.20039 

SO4--            0.0000 

Ca++            0.02062 

Mg++            0.00007 

Na+              charge 

K+                 0.00 

HCO3-           0.00039 

Ba++             0.0200 

Tracer                1 

Barite   0.0   bulk_surface_area   0 

Calcite  0.0  bulk_surface_area   0 
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END 

 

 

Condition aval            

units            mol/kg 

temperature       25.0 

pH                 7.69 

Cl-              0.1600 

SO4--            0.0200 

Ca++            0.02062 

Mg++            0.00007 

Na+              charge 

K+               0.0400 

HCO3-           0.00039 

Ba++              0.000 

Tracer              0.0 

Barite   0.0   bulk_surface_area   0 

Calcite  0.0   bulk_surface_area   0 

END 

 

Condition calcaire 

units            mol/kg 

temperature      25.0 

pH                  7.69 
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Cl-               0.2002 

SO4--             0.0000 

Ca++             0.02062 

Mg++             0.00007 

Na+               charge 

K+                   0.0  

HCO3-            0.00039 

Ba++              0.0000 

Tracer               0.0 

Calcite  0.55  bulk_surface_area    0 

Barite  0.0    specific_surface_area  1.65  0.0001 

End   

 

FLOW 

time_units      second 

distance_units  meters 

constant_flow      0.0   0.0   0.0 

END 

  

POROSITY 

porosity_update  true 

minimum_porosity  0.00000000001 

END 
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PRIMARY_SPECIES 

Cl- 

SO4-- 

Mg++ 

Na+ 

K+ 

Ba++ 

Tracer 

Ca++ 

HCO3- 

H+ 

END 

 

 

Minerals  

Barite    -label default  -rate  -10.8239 

Calcite    -label default 

End 

 

 

S2: 1D base simulation script for gypsum using CrunchTope 

TITLE 

Manipe.C1 in: sans Clogging en 1D 

END 
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RUNTIME 

time_units         days 

timestep_max       0.01 

timestep_init      0.001 

time_tolerance     0.1 

hindmarsh          false 

correction_max     10.0 

debye-huckel       true 

database_sweep     false 

speciate_only      false 

graphics           kaleidagraph 

gimrt              true 

solver             gmres  

pc                 ilu 

pclevel            2 

database           ./datacom_ikram.dbs 

coordinates        rectangular 

screen_output      10 

!restart            crunchdiff.rst append 

save_restart       crunchdiff.rst 

END 
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OUTPUT 

time_units           days 

time_series_interval 1 

spatial_profile 0.02 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 

24. 25. 26. 27. 28. 29. & 

            30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 

54. 55. 56. 57. 58. & 

            59. 60. 62. 64. 66. 68. 70. 

!spatial_profile 70.1 72. 74. 76. 80. 82. 84. 86. 88. 90. 92. 94. 96. 98. 100. 102. 104. 106. 108. 

110. & 

!            112. 114. 116. 118. 120. 122. 124. 126. 128. 130. 132. 134. 136. 138. 140. 

time_series_print    Tracer  Na+ Cl- Ca++  Mg++  K+  HCO3-  SO4--  H+ 

END 

 

TRANSPORT 

distance_units meters 

time_units  second   

calculate_diffusion  2.E-9  

dispersivity         0.0 

cementation_exponent 1.97 

D_25    Ca++     7.93e-10 

D_25    K+       19.6e-10 

D_25    SO4--    10.7e-10 

D_25    Na+      13.3e-10 

D_25    Cl-      20.3e-10 
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D_25    HCO3-    11.8e-10 

END 

 

BOUNDARY_CONDITIONS 

x_begin   amont          flux 

x_end     aval           flux 

END 

 

DISCRETIZATION 

xzones 182 1.00768E-03 7 220E-06 6 84E-06 12 42E-06  24 20E-06 651 9.98E-06  24 20E-06 & 

       12 42E-06 6 84E-06  7 220E-06  140 1.00577E-03 

END 

 

INITIAL_CONDITIONS 

amont       1-231 

calcaire  232-882 

aval      883-1071 

END 

 

Condition amont           

units            mol/kg 

temperature        25.0 

pH                 7.37 

Cl-              0.1613 
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SO4--            0.0001 

Ca++             0.0805 

Mg++            0.00007 

Na+              charge 

K+                 0.00 

HCO3-           0.00023 

Tracer           0.0678 

Gypsum   0.0   bulk_surface_area   0 

Calcite  0.0   bulk_surface_area   0. 

END 

 

Condition aval            

units            mol/kg 

Temperature        25.0 

pH                 7.69 

Cl-             0.00134 

SO4--            0.0801 

Ca++            0.00125 

Mg++            0.00007 

Na+              charge 

K+               0.1602 

HCO3-           0.00212 

Tracer            0.016 

Gypsum   0.0   bulk_surface_area   0 
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Calcite  0.0  bulk_surface_area    0. 

END 

 

Condition calcaire 

units             mol/kg 

temperature         25.0 

pH                  7.69 

Cl-               0.2002 

SO4--             0.0000 

Ca++             0.02062 

Mg++             0.00007 

Na+               charge 

K+                   0.0  

HCO3-            0.00039 

Tracer             0.016 

Calcite  0.55  bulk_surface_area    0 

Gypsum 0.0   specific_surface_area 0.32 0.0001 

END 

 

FLOW 

time_units      second 

distance_units  meters 

constant_flow      0.0 

END 
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POROSITY 

porosity_update  true 

minimum_porosity  0.00000000001 

END 

  

PRIMARY_SPECIES 

Tracer 

Cl-              

SO4--            

Ca++             

Mg++            

Na+              

K+   

HCO3- 

H+ 

END 

 

Minerals  

Gypsum      -label default  -rate -6.00  

Calcite     -label default 

END 
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 CONCLUSION AND PERSPECTIVES  

1 Conclusion 

Several countries have proposed to confine their radioactive wastes in deep geological facilities 

that are based upon the multi-barrier concept. In France, Switzerland and Belgium, argillaceous 

formations are considered as a potential host-rock, with their ability to sustainably confine the 

radionuclides. Indeed, this type of material displays very good containment properties, i.e. high 

retention capacity and very low permeability. However, some of the radioactive waste would 

release large amount of soluble salts that would generate a saline plume towards the natural 

medium. The presence of saline plume may further enhance some physicochemical reactions 

such as mineral precipitation/dissolution. In this situation, these reactions may locally alter the 

natural host-rock containment properties and therefore induce changes in transport properties of 

radionuclides. Thus, for safety assessment of such facility, the evolution of rock containment 

properties in response to these physicochemical phenomena over large time and space scale 

needs to be investigated. This can be done by determining impacts of each of these phenomena 

on intact rock properties (i.e. porosity, diffusivity of reference tracers) at the laboratory scale. Then, 

using chemistry transport codes, a process-based approach, these impacts can be calculated to 

larger times and space scales. But these codes rely on empirical relationships (e.g. Archie’s law) 

to describe the feedback of chemistry on the pore structure and therefore on the transport 

properties (e.g. diffusion). Thus, prior to long-term prediction of mineral perturbation impacts on 

rock intact properties, it is essential to test the robustness of this relationship by means of lab-

scale experiments.  

In this view, this thesis work dealt with developing laboratory experiments to estimate mineral 

precipitation impacts on intact properties of proxy porous materials under diffusive transport 

regime and the capability of REV chemistry transport codes to reproduce such an experimental 

dataset. The proxy materials were chosen because claystone of the argillaceous formations 

possess very low intrinsic permeability (diffusion of ionic species is the governing transport 

phenomena) and heterogeneous pore network with presence of clayey minerals of negative 

surface charge. In such scenario, there is sorption of cationic species and exclusion of anionic 

species from the pore network. Thus, in absence of lab-scale experiments on simple proxy 

materials, it is complex to engineer lab-scale setup that can derive interpretable data for 

precipitation impacts on intact claystone properties.  
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In this study, each proxy material addresses a physical or surface property that is found in 

claystones. The first proxy material is micritic chalk: it presents spatial variability in properties, 

such as heterogeneous pore structure and reactive surface area for mineral precipitation. The 

second material is compacted illite: it presents pore size distribution and negative surface charge 

closer to claystones. The third material is compacted kaolinite: it represents an intermediate 

between chalk and illite in terms of surface charge and pore size distribution. The final goal of 

these experiments was to demonstrate “whether Archie’s relationship can be generalized for 

clogging phenomena on any porous media.” For such demonstration, the following three questions 

needed to be answered. 

1. Can clogging phenomena be generalized for materials with same porosity but different 

pore size distributions? 

2. Will a same precipitating mineral lead to same effectiveness of clogging on two materials 

with different pore size distributions and different surface charge properties?  

3. Will precipitated minerals of very different intrinsic properties, such as solubility or kinetic 

rate of precipitation, leads to same impact on diffusivity of a single porous material? 

To find possible answer of the first two questions barite precipitation experiments were carried in 

chalk, illite and kaolinite materials and, for the final question, barite and gypsum precipitation in 

chalk were carried out. These sulfate alkali mineral (i.e., barite and gypsum) were selected as they 

present two extremities in reference to their kinetic rate of precipitation and solubility.  

From the end-results of all the experiments following answers can thus be concluded: 

1. Barite precipitation in chalk and kaolinite showed that different pore size distributions led 

to very different impact on evolution of barite mineral in each case and consequently a 

different impact on diffusivity of water tracer. Thus, barite precipitation results for one 

porous material cannot be used to predict the possible impact of precipitation on another 

porous material, even when they have similar porosity. 

2. The illite results showed that since inhibition of barite precipitates in majority of the pores 

is suspected, barite precipitation had no impact on diffusivity of water tracer. This inhibition 

of barite precipitates was not observed in chalk and kaolinite. Thus, the experimental 

results derived on materials with large pores and/or neutral surface cannot be used to 

predict possible impacts of precipitation on material with very small pores containing 

negative surface charge. 
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3. The barite and gypsum precipitation experiments in chalk showed that the intrinsic property 

of each mineral along with spatial variability in properties led to very distinct evolution of 

each mineral. This distinct evolution then led to very different impact on water tracer 

diffusivity. 

The experimental results also showed that the newly formed barite mineral in pores of chalk and 

kaolinite samples possessed negative surface charge. Thus, barite precipitates added semi-

permeable membrane behavior to chalk and kaolinite sample and consequently, a strong 

exclusion of 36Cl was observed. Thus, these experiments show that barite mineral forming on 

neutral pore surface will have negative surface charge. However, in illite no impact on diffusivity 

of this tracer was observed. Therefore, the surface charge of barite forming on negative surface 

charged clayey mineral still remains unknown. 

To check the predictability limit of Archie’s relationship, barite and gypsum experiments were 

reproduced at 1D and 2D using two chemistry transport codes (HYTEC and CrunchTope). The 

end-results for 1D showed that the experimental results can only be reproduced after proper fitting 

of some parameters like cementation factor, supersaturation or kinetic rate of precipitation. 

However, these fitting or proper adjustments can only be performed from the end-results of 

experiments. Thus, for long term simulations on larger time and space scales where the 

precipitation phenomena will occur for large set of minerals on complex porous materials, such 

fitting would have to be calibrated beforehand. On the contrary, for 2D simulations, when the 

structural information such as heterogeneous diffusivity field was taken into account in the chalk 

simulation script, the codes managed to accurately describe the impact of spatial variability on 

evolution of gypsum and barite in chalk, with a consistent of parameters for both experiments and 

without adjustment. 

Other approaches integrating a description of the pore structure are currently an active field of 

research. However, the computer intensity is such that their usability in safety assessment is still 

remote. Pending computing development avoiding such technical problems, the use of REV 

approaches and empirical laws associated with conservative safety margins are still necessary to 

forecast the global evolution of a system. 

The first general conclusion regarding REV simulation is that a very careful assessment of all the 

processes is key to a correct simulation. In this case, the importance of spatial heterogeneity and 

the differences in chemical behavior (supersaturation, kinetics) were greater than the actual 

cementation factor, although they had been largely underestimated in a priori simulations. In this 
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case, a consistent model was prepared, that can effectively reproduce both experiments, even 

though the evolutions in each experiment are very different.  

Second, although Archie’s law cannot represent the structural evolution of the pore network, and 

particularly does not integrate the differentiate behavior of different minerals, it can still be useful 

to represent the evolution of a system, provided all other relevant processes are well considered. 

With this conclusion in mind, well-devised experiments are still required to ensure that models are 

correctly calibrated before attempting the upscaling in time and space. 
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2 Perspectives  

Since last decade, several experimental and numerical approaches have been developed to 

understand the evolution of a precipitating mineral in porous media. One such experimental 

approach is to apply classical nucleation theory (which has been extensively used in crystal 

chemistry) to study mineral precipitation in porous media. The main goal behind this approach is 

to develop supersaturation-nucleation-time (S-N-T) diagrams for a given precipitating 

mineral(Prieto, 2014). E.g. It is known that barite mineral precipitation is governed either by 

homogeneous or heterogeneous nucleation phenomena. To initiate each nucleation process, a 

given solution needs to overcome the supersaturation with respect to barite mineral. As soon as 

this supersaturation is achieved within the solution, clusters of barite are formed. However, these 

clusters need to overcome the interfacial energy to form stable barite nuclei and initiate 

precipitation. Using S-N-T diagrams, one can determine the time and supersaturation that is 

required to initiate homogeneous and heterogeneous driven nucleation barite precipitation. Such 

S-N-T diagrams were developed in (Prieto, 2014) and (Poonoosamy et al., 2016) to determine 

pore size dependent nucleation phenomena. In a given set of conditions, using S-N-T diagrams 

both studies showed that at given supersaturation, the time required to initiate homogeneous 

nucleation was short in larger pores. Similarly, these diagrams showed that in smaller pores the 

time to initiate heterogeneous nucleation was short. 

In a similar approach, (Emmanuel & Berkowitz, 2007) by means of numerical simulations 

compared the evolution of a given pore size distribution using classical kinetic rate equation and 

pore size solubility model. In pore scale solubility model the thermodynamic solubility is replaced 

by “a pore controlled solubility” in which the solubility is constrained by the interfacial energy and 

the pore diameter, i.e. 𝑆𝑑 = 𝑆𝑜𝑒𝑥𝑝 (
𝛾

𝑑
) where d is the radius of the pore (m), 𝑆𝑜 is the bulk solubility 

(m3.mol-6) and 𝛾 is the interfacial energy (J.m-2). Using classical kinetic rate equation (constant 

solubility model) and PCS model the evolution of a sandstone pore size distribution (containing 

pores ranging between 10-8 m to 10-4 m) in response to stylolite precipitation was simulated. The 

end simulations showed that for constant solubility model precipitation resulted in total clogging of 

small and intermediate pores (10-8 m to 10-6). However, the simulations using PCS model showed 

that intermediate pores (10-6.5 m) were filled rapidly and the nanopores were completely left 

unfilled. These simulations showed that classical kinetic rate equation resulted in evolution of poly-

modal system into unimodal system, whereas for PCS, the system evolved from a polymodal to a 

bimodal system.  
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Both of these examples show that the initial characteristics of the pore structure of the studied 

porous material and the intrinsic properties of the precipitating mineral are required to go further 

in predicting the evolution of the material pore structure in response to precipitation. 

Similarly, the chalk, kaolinite and illite results in the current work highlight the importance of the 

pore structure characteristics in governing the effectiveness of precipitation phenomena. 

However, there are still some tasks that need to be completed. These tasks are necessary to 

experimentally demonstrate the role played by the pore size in precipitation. E.g. in illite case, 

inhibition process due to pore size was observed. However, the pore sample also possesses 

negative surface charge. Thus, it is complex to decipher from these results as in which pore 

inhibition of precipitation due to exclusion of sulfate ions from the pore and in which inhibition due 

pore size took place. For this purpose, barite precipitation in kaolinite sample of pore size 

distribution closer to illite can be studied. A detailed characterization of precipitation in this 

experiment using post-mortem techniques such as X-ray tomography, FIB-SEM or neutron 

scattering can be used to determine the minimum pore size in which barite precipitation can occur. 

These results can then be used to properly explain the inhibition process in illite.  

To study the impact of variation in pore structure characteristics, precipitation experiments can be 

performed into systems of varying surface charge and pore size distributions. For pore size 

distribution cases, illite compacted at lower dry density can be studied. For variation in surface 

charge impact (thickness of double layer, affinity extent of cationic reactant towards clay surface), 

experiments at higher background electrolyte and/or different illite conditioning (sodium 

conditioning or calcium conditioning) can also be studied. Finally, to determine the combined 

impact of pore structure characteristics and intrinsic properties of mineral on clogging 

effectiveness, different mineral can be used in the precipitation study. E.g. Celestite presents an 

intermediate between gypsum and barite in terms of solubility and rate of precipitation. This 

mineral can be studied in chalk, kaolinite and illite to determine its effectiveness in these systems. 

Note that in the current thesis preliminary experiments were carried out to study gypsum 

precipitation in compacted illite and kaolinite samples. The dry density of each sample was like 

barite experiments. However, first results showed precipitation on the sample surface and no 

gypsum precipitation into the sample. Thus, a simpler proxy material presenting a pore size 

distribution a little bit larger than to illite and kaolinite case can be used to determine the threshold 

of pore size below which gypsum precipitation is inhibited. Such pore size distributions can be 

found in samples like tight chalk and argillaceous-chalk (see (Descostes et al., 2012; Mallon & 

Swarbrick, 2008). 



290 

Moreover, barite experiments in chalk and kaolinite showed that at equilibrated conditions newly 

formed barite possessed negative surface charge. This additional surface charge led to significant 

exclusion of 36Cl from the precipitated zone. Such associated semi-permeable membrane effect 

of newly-formed precipitates can have deciding role for deep geological waste concept but also 

for ions transport in site remediation, and Li-ion battery research in which pore clogging is limiting 

factor for the discharge capacity (Bardenhagen et al., 2015). Several studies have shown that by 

means of potential determining ions (PDI), the surface charge of barite or celestite minerals can 

be controlled (and even reversed) (González-Caballero, Cabrerizo, Bruque, & Delgado, 1988; 

Hang, Shi, Feng, & Xiao, 2009). Thus, barite experiments can be launched in different porous 

systems. At one point when all reactants are consumed to precipitation in sample, the reservoirs 

can be spiked with such potential determining ions. After this step, the impact of surface charge 

change on diffusion of cationic and anionic species can be studied. 

In addition to precipitation, a second mineral perturbation that is extensively studied in literature is 

mineral dissolution phenomena. In present thesis, a brief overview of a robust experimental data 

set from works of (Berthe et al., 2011) has been presented. This works showed that dissolution 

phenomena led to generation of two dissolved zones. At the inlet of reactive solution, a complete 

dissolution of carbonate mineral in claystones and in the deeper section, a generation of newly-

formed preferential pathways. The latter contributed to increase in diffusivity of water and anionic 

tracers. However, to strengthen this work, especially regarding the role played by the pore size on 

the extent of dissolution, several dissolution experiments on proxy material need to be performed. 

These proxy materials should present distribution of calcite mineral similar to claystones. Some of 

the proxy materials that can be used for such study can be calcite-cemented sandstone or 

preparing compacted sample with a mixture between barite/gypsum illite and kaolinite powder, 

and chalk of micritic, tight and argillaceous family.  

Finally, the complementary results of barite precipitation in kaolinite at reactant concentration of 

4 mM and 20 mM showed generation of cracks after longer experimental times into the sample. 

This addresses this issue of mechanics in such system. Thus, along with precipitation experiments 

proposed previously, the diffusion cells can be attached to displacement probes to measure the 

pressure evolution as barite/gypsum or any other mineral starts to precipitate into the studied 

porous samples. Such pressure probe testing can be carried out on material of different tightness 

and precipitation of different amount of same mineral. For each case, the threshold pressure after 

which crack will occur can be determined. Thus, a range of pressure thresholds can be obtained. 

If the pressure is significant, then a set of experiments could be devised in triaxial cells in 

pressure/constraint conditions representative of the storage. 
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In addition to this broad and extensive range of experimental work, following are some numerical 

works that are also needed to be carried out: 

1. to develop models that can integrate characteristics of the porous materials (pore size 

distribution, surface charge); 

2. to develop kinetic rate relationship to take into account dependence of precipitation on 

pore size (Emmanuel & Berkowitz, 2007) and also on the type of growths (nucleation, 

supersaturation); 

3. to develop models able to take into account surface charge of newly formed minerals 

(semi-permeable effect), if any. 

To conclude, all the experiments and numerical work carried out in this thesis and the one that 

are proposed in perspectives will inevitably help increase the predictability of chemistry transport 

codes.  
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ABSTRACT 
Several countries such as France, Belgium and Switzerland have proposed to host a deep geological facility to confine high an d mid-level long 

lived radioactive waste into argillaceous formations. Such formations are considered as a potential host -rock, because of their very high 

containment properties, i.e. high retention capacity and very low permeability. However, decay of some radioactive waste is expected to release 

large amount of soluble salts of nitrate and/or sulfate nature. These saline plumes should generate physicochemical imbalance and, by enhancing 

mineral dissolution/clogging, could make evolve the local rock porous network. Thus, for safety assessment of such facility t he evolution of rock 

containment properties in response to these physicochemical phenomena over large time and space scale needs to be investigated. This can be 

done by using diffusion-reaction numerical simulators based on equivalent (macroscopic) continuum approach considering representative 

elementary volume (REV). But these codes rely on empirical relationships, such as the Archie’s law used to describe the feedback of chemistry 

on the diffusive transport properties. Thus, prior to long-term prediction, it is essential create a data to test and improve the description of the  

feedback of chemistry on transport. In this view, this thesis work dealt with developing such reactive diffusion experiments to estimate mineral 

precipitation impacts on containment properties of porous materials under diffusive transport regime and the c apability of REV chemistry transport 

codes to reproduce such an experimental dataset.  In order to design these simplified experiments, three proxy porous materials (micritic chalk, 

compacted kaolinite and compacted illite) were chosen to address specific  property describing claystones (clay surface charge, pore size 

distribution). Two sulfate-alkali minerals, namely barite and gypsum were selected as precipitating minerals, since they present two extremities in 

reference to their kinetic rate of precipitation and solubility. In a first step, intact properties of each proxy material were determined (pore size 

distribution, effective diffusion coefficient (De) of water tracers (HTO & HDO) and anionic tracer, 36Cl-). Barite precipitation was studied in all the 

proxy materials and gypsum precipitation was studied in chalk only. During these through diffusion experiments, we monitored the reactant 

concentration evolution in the reservoirs at both ends of the sample and, after a known experimental time, 36Cl - and/or water tracers could diffuse 

through the porous samples impacted by precipitation. In addition to diffusive testing, the combined impact of pore structure  and intrinsic property 

of mineral (solubility and kinetic rate of precipitation) on final evolution of mineral in each proxy material was also quantified using X-ray tomography 

(µCT) and Scanning Electron Microscopy (SEM).  Finally, to test the robustness of chemistry transport codes, the results from the reactive diffusion 

experiments where barite or gypsum precipitated in chalk were numerically described in 1D and 2D using two codes namely HYTEC and 

CrunchTope. 

MOTS CLÉS 

 
Argilites, matériaux poreux modèles, impact d'un panache salin, loi d'Archie, expériences de diffusion traversante, simulatio n numérique VER  

RÉSUMÉ 
Plusieurs pays tels que la France, la Belgique et la Suisse prévoient de confiner leurs déchets radioactifs de moyenne et haute activité à vie 

longue dans des installations souterraines sises au sein de formations argileuses profondes. Ces formations constituent en effet de très 

bonnes barrières ultimes contre la dispersion des radionucléides, de par leur grande capacité de rétention et leur très faibl e perméabilité. 

Néanmoins, la dégradation de certains colis de déchets devrait libérer d’importantes quantités de sels nitratés et sulfatés solubles. Ainsi, ce s 

panaches salins en déséquilibre chimique avec l’encaissant devraient conduire à des phénomènes de dissolution/colmatage, fais ant évoluer 

localement la structure porale de la roche argileuse. Aussi, pour estimer la performance de telles installations souterraines , l’évolution des 

propriétés de confinement de ces roches en réponse à ces processus physicochimiques se doit d’être étudié e, et ce, sur des échelles de 

temps et d’espace représentatives du stockage. Cela est réalisé à l’aide de codes couplés chimie -transport basés sur une approche continue, 

avec la définition de volumes élémentaires représentatifs (VER). Cependant, ces codes s’appuient pour leurs simulations sur des relations 

empiriques, telle la relation d’Archie, utilisée pour décrire l’effet de rétroaction de la chimie sur les propriétés de transport diffusif. De ce fait, 

il est primordial, avant les simulations long-termes. Dans ce cadre, le présent travail de thèse s’est intéressé au développement de telles 

expériences de diffusion réactives pour estimer (i) l’impact de la précipitation de minéraux sur les propriétés de confinemen t de matériaux 

poreux “modèles” et (ii) la capacité des codes de chimie-transport à reproduire ce jeu de données expérimentales. La mise au point de ces 

expériences simplifiées a nécessité de se focaliser sur trois matériaux poreux «  modèles », de la craie, de la kaolinite et de l’illite, choisis 

pour décrire une propriété spécifique des roches argileuses (charges de surface des argiles ou la structure du réseau poreux) . Par ailleurs, 

deux minéraux sulfatés, gypse et barytine, ont été sélectionnés comme minéraux susceptibles de pr écipiter car ils représentent deux extrêmes 

vis-à-vis de leur cinétique de précipitation et de leur solubilité. Dans un premier temps, les propriétés initiales de chaque matér iau « modèle » 

ont été déterminées (distribution de taille de pores, coefficient de diffusion effectif (De) des traceurs de l’eau (HTO ou HDO) ou d’un traceur 

des anions (36Cl-)). La précipitation de la barytine a été étudiée sur les trois matériaux «  modèles », tandis que celle du gypse uniquement 

au travers des échantillons de craie. Durant ces expériences de diffusion réactives, l’évolution des concentrations des réactifs dans les deux 

réservoirs enserrant l’échantillon poreux a été suivie, et, après un temps t, le 36Cl - et/ou les traceurs de l’eau ont été injectés dans le réservoir 

amont pour diffuser au travers des échantillons déjà impactés par la précipitation. En complément des essais de diffusion, de s caractérisations 

des échantillons par micro-tomographie X (µCT) et par observation au Microscope électronique à Balayage (MEB) on t permis de préciser le 

rôle joué par la structure porale initiale du matériau « modèle » et celui des propriétés intrinsèques du minéral précipitant.  Enfin, l’estimation 

de la robustesse des codes de chimie transport a été réalisée à l’aide de deux codes,  HYTEC et CrunchTope à l’aide de simulations 1D et 

2D. 
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